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Abstract

In this thesis the modelling of overdispersed spatial count regression data is addressed.

Particular emphasis is given to the Generalized Poisson distribution and zero inflated mod-

els. Further, the incorporation of spatial random effects which allows for the modelling of

an underlying spatial dependency pattern, forms a central part. For the considered models

efficient Markov Chain Monte Carlo (MCMC) algorithms are developed and implemented.

In particular a novel Gibbs sampler for spatial Poisson regression models is developed us-

ing data augmentation techniques and compared to existing methods. An application to a

comprehensive data set from a German car insurance company is given. Spatial regression

models for the number of claims and claim size are developed. In contrast to the classical

compound Poisson model we allow for dependencies between claim frequency and claim

size. Based on these models the total claim sizes are simulated which are fundamental for

premium calculation in insurance.





Zusammenfassung

In dieser Arbeit werden räumliche Regressionsmodelle für Zähldaten mit Überdispersion

betrachtet. Das Hauptaugenmerk liegt hier bei der Generalisierten Poissonverteilung und

Modellen, die einen Nullenüberschuss erlauben. Die Einführung von zufälligen räumlichen

Effekten, durch welche überdies räumliche Abhängigkeiten in den Daten modelliert wer-

den, ist von zentraler Bedeutung. Für die betrachteten Modelle werden effiziente ”Markov

Chain Monte Carlo” (MCMC) Algorithmen entwickelt und implementiert. Insbesondere

wird ein neuartiger Gibbs Sampler für räumliche Poisson Regressionsmodelle vorgestellt

und mit existierenden Methoden verglichen. Die erarbeiteten Modelle und Algorithmen

werden zur Analyse eines umfassenden Datensatzes einer deutschen KFZ-Versicherung

verwendet. Hier werden zum ersten Mal räumliche Regressionsmodelle entwickelt, welche

Abhängigkeiten zwischen der Anzahl der Schäden und der Schadenshöhe zulassen. Basierend

auf diesen Modellen werden die Gesamtschäden der Versicherungsnehmer simuliert, welche

die Grundlage zur Prämienkalkulation in der Versicherung bilden.





Acknowledgements

First of all, I would like to express my gratitude to Prof. Claudia Czado for the excellent,

intensive supervision during the last three years. This thesis has gained a lot from many

fruitful discussions and valuables ideas proposed by her. I am also very grateful for her

encouragement and support of research stays abroard and the participation on scientific

conferences.

Further I would like to thank Dr. Carmen Fernández for the very good supervision on my

thesis during my six month stay at the Statistics Department at Lancaster University. I

have learned a lot from her wide experience in MCMC methods and gained many ideas

which influenced this thesis.

I would also like to thank Prof. Arnoldo Frigessi for inviting me to a research stay in Oslo

and his helpful and encouraging suggestions on parts of my thesis during this time.
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Chapter 1

Introduction

Count data are data taking only categorical values and arise in many statistical applica-

tions. In insurance the number of claims caused by a policyholder is an important quantity

to be modelled, in epidemiology the number of cases with a certain disease is of interest.

The most popular model for count data is the Poisson distribution where the probability

for k counts is given by

P (Y = k) = exp(−µ)
µk

k!

with µ denoting the intensity of the Poisson distribution. When the data contain covariate

information – for example age and gender of the policyholders, the type of car etc. in car

insurance – a regression can be performed on the mean E(Yi) = µi of the i-th observa-

tion (i = 1, .., n), i.e. the mean can be modelled in terms of covariates xi and unknown

regression parameters β. Usually a logarithmic link function is assumed resulting in

µi = exp(x′
iβ).

However, the Poisson distribution is rather restrictive in the sense that equality of the

variance and the mean is assumed. Frequently, count data display a variance which is

considerably higher than the mean, a phenomenon which is called overdispersion. In this

case the Poisson assumption is violated and the use of the Poisson model will not be

appropriate for analysing the data.

Therefore more flexible models which relax the Poisson assumption have been widely dis-

cussed in the literature, see Winkelmann (2003) for an overview. In many cases overdis-

persion is caused due to unobserved heterogeneity in the data. A frequently used model

for overdispersed data is the negative binomial distribution which arises as a mixture dis-

tribution from a Poisson distribution where the parameter µ is assumed to be random and

1



2 1. Introduction

to follow a Gamma distribution. By this the negative binomial distribution allows for un-

observed heterogeneity among subjects. The generalized Poisson distribution introduced

by Consul and Jain (1973) provides another possibility for modelling overdispersion. Here

a second parameter is introduced which allows an independent modelling of the variance

and the mean. However, in contrast to the negative binomial distribution, the general-

ized Poisson distribution seems to be much less known in the statistical community. For

this reason, one aim of this thesis is to investigate the generalized Poisson distribution in

more detail, to apply it on real data and to give a comparison to the negative binomial

distribution.

Overdispersion might also be caused by an extraordinary large amount of zero counts in

the data. Consider for example the number of traffic accidents in car insurance. Here,

typically very few claims are observed, for most of the policyholders we expect to ob-

serve no claim at all. For data of this type zero inflated models may be used, see again

Winkelmann (2003). Additionally to the zeros arising from the count data model, in zero

inflated models part of the zero observations are assumed to be extra, strategic zeros. In

car insurance this might be the case for policyholders which do not report minor claims

in order to keep their no-claims bonus. Zero inflated models can be used in combination

with any count data distribution, in this thesis in particular the zero inflated Poisson and

the zero inflated generalized Poisson model are considered.

As mentioned already above, overdispersed data display an extra variability which can be

interpreted as unobserved heterogeneity which is not satisfactorily explained by the incor-

porated covariates. Therefore, another approach for taking unobserved heterogeneity into

account consists in the introduction of observation specific random effects γ = (γ1, .., γn).

The mean is then specified as

µi = exp(x′
iβ + γi).

Further, when the data are spatially indexed - for example for policyholders of a Ger-

man insurance company the district they are living in is known- spatial random effects,

i.e. random effects associated with geographic areas rather than individuals, might be

assumed. For the estimation of these spatial effects strength can be borrowed from neigh-

bouring regions by assuming that the effect in regions lying close together is similar. In

a Bayesian approach this is done by assuming a prior distribution for the spatial effects

which takes the neighbourhood structure of the regions into account and allows for de-

pendencies between regions. The most popular model for spatial effects is probably the

intrinsic conditional autoregressive (CAR) model introduced by Besag and Kooperberg
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(1995). However, the intrinsic CAR model is not proper and care must be taken in order to

achieve propriety of the posterior distribution. Several modifications of the intrinsic CAR

model leading to a proper joint distribution of the spatial effects have been proposed in

the literature, in this thesis a proper model based on Pettitt, Weir, and Hart (2002) will

be used.

As already indicated, models are considered in a Bayesian context in this thesis. This

allows for parameter uncertainty by assuming the parameters to be random and in par-

ticular enables the modelling of a spatial dependency pattern by imposing a CAR prior

on the spatial effects. The resulting posterior distributions will be high dimensional, com-

plex functions of the unknown parameters which in general are not tractable analytically

anymore. Therefore, Markov Chain Monte Carlo (MCMC) methods will be used for pa-

rameter estimation. While in general MCMC samplers are easily implemented using Gibbs

and Metropolis Hastings algorithms, convergence and mixing of the samplers crucially de-

pends on issues like model parameterisation, choice of the proposal densities and update

schemes for the parameters, see for example Roberts and Sahu (1997) and Gelfand et al.

(1995). Therefore, the development and implementation of efficient MCMC algorithms

for all considered models forms an important part of this thesis as well. The MCMC sam-

plers have been implemented in Matlab, various techniques for improving convergence

and mixing have been applied.

In particular, a new methodology for spatial Poisson regression models is presented. It is

shown, that a data augmentation scheme developed in Frühwirth-Schnatter and Wagner

(2004a) can be extended to spatial Poisson regression models leading to a straightforward

Gibbs sampler. Usually, Metropolis Hastings algorithms have to be used for this kind

of models which require the choice of adequate, often computationally costly proposal

distributions. Using data augmentation however, the model can be transformed into an

approximate normal linear model allowing for a Gibbs sampler, i.e. direct samples from

the full conditionals are possible.

The work in this thesis has been mainly motivated by a very large and comprehensive

data set from a German car insurance company. The analysis of these data using the

discussed models is another main issue of this thesis.

Here, not only the modelling of the number of claims of the policyholders is of interest.

In order to obtain a basis for premium calculation predictions of the total claim sizes are

needed. Since the total claim size is determined both by the number of claims and the

average or individual claim sizes, respectively, typically a separate analysis of the number

of claims and claim size is performed. In the classical compound Poisson model going
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back to Lundberg (1903) independence of claim frequency and claim size is assumed. One

important contribution of this thesis is that we relax this assumption and allow for depen-

dencies between these two quantities. In particular, claim size is modelled conditionally

on the observed number of claims which allows us to incorporate the number of claims

as covariate in the model for claim size. Similar to the count data models, covariates and

spatial effects are incorporated in the models for claim size as well. In particular, spatial

Gamma regression models will be assumed.

An outline of the thesis is given in the following. In Chapter 2 the basics in Bayesian infer-

ence and MCMC methods are briefly summarized. The two main MCMC algorithms, the

Gibbs sampler and the Metropolis Hastings sampler are introduced and several choices

for proposal distributions are discussed.

Bayesian Model Choice including assessment of the model fit and model comparison is

addressed in Chapter 3. Next to the well known deviance information criterion (DIC),

the predictive model choice criterion and several proper scoring rules for categorical and

continuous variables are presented.

In Chapter 4 the modelling of spatial effects is addressed. We introduce a proper Gaussian

conditional autoregressive prior based on Pettitt et al. (2002) which allows the modelling

of a spatial dependency structure and can be efficiently handled in a MCMC setting.

In Chapter 5, which is closely based on Gschlößl and Czado (2005b), various models for

count data are presented. Besides the Poisson model, we additionally consider models

allowing for overdispersion and an excessive number of zero observations, in particular

the negative binomial, the generalized Poisson and zero inflated models. For these models

a regression setup including spatial random effects is developed, prior specifications and

details on the MCMC algorithms for parameter estimation are provided. The models are

investigated in an application in epidemiology: the number of invasive meningococcal dis-

ease cases in Germany, reported in the year 2004, is analysed. Models are compared using

the criteria presented in Chapter 3. We observe a rather high degree of overdispersion in

the data which is captured best by the generalized Poisson model when spatial effects are

neglected. However, when spatial effects are added to the models, a spatial Poisson model

provides the best fit to the data.

A new MCMC methodology for spatial Poisson regression models is presented and evalu-

ated in Chapter 6, following closely Gschlößl and Czado (2005a). Using data augmentation

we show, that by the introduction of two sequences of latent variables a straightforward

Gibbs sampler is available for a Poisson regression model including spatial effects. In par-
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ticular, the influence of model parameterisation and different update strategies on the

mixing of the MCMC chains is discussed. The developed Gibbs samplers are analysed in

two simulation studies and applied to model the expected number of claims for policy-

holders of a German car insurance company. The mixing of the Gibbs samplers depends

crucially on the model parameterisation and the update schemes. The best mixing is

achieved when collapsed algorithms are used, reasonable low autocorrelations for the spa-

tial effects are obtained in this case. For the regression effects however, autocorrelations

are rather high, especially for data with very low heterogeneity. For comparison a single

component Metropolis Hastings algorithms is applied which displays very good mixing

for all components. Although the Metropolis Hastings sampler requires a higher computa-

tional effort, it outperforms the Gibbs samplers which would have to be run considerably

longer in order to obtain the same precision of the parameters.

Chapters 7 and 8 are based on Gschlößl and Czado (2005c). In Chapter 7 spatial regression

models for claim size are presented. Here, two approaches are considered. Both models

for the individual claim sizes as well as models for the average claim size per policyholder

are assumed. We consider models conditionally on the number of claims, which allows

us to model claim size in dependence of the observed number of claims. Based on the

models for claim frequency and claim size, finally the posterior predictive distribution of

the total claim sizes can be approximated. For this independence of the number of claims

and claim size is not required.

An application to car insurance data for policyholders in Germany within one year is

presented in Chapter 8. For more than 350000 policyholders the data contain the number

of claims, the corresponding claim sizes as well as several covariates like age, gender, type

of car, kilometers driven per year and no-claims bonus. The number of claims is mod-

elled using the regression models presented in Chapter 5. Besides a number of covariates,

spatial random effects associated with the 440 districts in Germany are taken into ac-

count, allowing for spatial dependencies. For these data a spatial Poisson model turns out

to be sufficient, an extension to models allowing for overdispersion like the generalized

Poisson distribution or zero inflated models gives no improvement. For claim size the two

approaches discussed in Chapter 7 are taken. Again covariates and spatial random effects

are incorporated. Both the models for the number of claims and claim size are improved

by the inclusion of spatial effects, in particular a smooth spatial pattern is observed. While

the expected number of claims decreases from the south western parts of Germany to the

east, a contrary trend is recognized for the average and individual claim sizes. Further, we

quantify significant number of claims effects on claim size. With an increasing number of
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claims, the average and individual claim sizes tend to decrease. Based on the MCMC out-

put of the models for claim frequency and claim size the posterior predictive distribution

of the total claim sizes is approximated. Also posterior prediction of the total claim size

is improved by allowing for spatial effects, the impact of number of claims effects however

diminishes.



Chapter 2

Basics on MCMC

In this section the basics of Bayesian inference and Markov Chain Monte Carlo (MCMC)

simulation are briefly summarized. For more information see Gilks et al. (1996b) and

Gelman et al. (2004). A good overview about MCMC methods is given by Dellaportas and

Roberts (2003). Note, that the terms ’density’ and ’distribution’ are used interchangeably

throughout this thesis.

Assume we have a statistical model p(y|θ) for the vector of observed data y depending on

a vector of unknown parameters θ. In a Bayesian context the parameter θ is assumed to

be random with prior distribution π(θ). Using Bayes theorem the posterior distribution

of θ is given by

p(θ|y) =
p(y|θ) · π(θ)

∫

p(y|θ) · π(θ)dθ

∝ p(y|θ) · π(θ).

However, in general the posterior distribution for complex statistical models is a high di-

mensional, not analytically and numerically tractable function. MCMC provides a method

to generate approximate samples from the posterior distribution which can be used to ap-

proximate quantities like the posterior mean, mode etc. by its empirical counterpart. The

two basic algorithms used in MCMC are the Gibbs sampler first introduced by Geman and

Geman (1984) and discussed by Gelfand and Smith (1990) and the Metropolis Hastings

sampler developed by Metropolis et al. (1953) and Hastings (1970). These algorithms are

described in the following sections.

7



8 2. Basics on MCMC

2.1 Gibbs Sampler

Suppose we want to sample from a posterior distribution p(θ|y) where the parameter θ is

divided into d components θ = (θ1, .., θd)
′. The Gibbs sampler is based on the full condi-

tional distributions denoted by p(θi|θ−i) := p(θi|θi,y), where θi = (θ1, .., θi−1, θi+1, .., θd)
′

denotes the vector of θ without the i-th component. The algorithm of the Gibbs sampler

proceeds as follows:

1. choose a starting value θ(0) = (θ
(0)
1 , .., θ

(0)
d )′ and set t = 1

2. sample θ(t) = (θ
(t)
1 , .., θ

(t)
d )′ by

θ
(t)
1 ∼ p

(

θ1|θ(t−1)
2 , .., θ

(t−1)
d

)

θ
(t)
2 ∼ p

(

θ2|θ(t)
1 , θ

(t−1)
3 , .., θ

(t−1)
d

)

...

θ
(t)
d ∼ p

(

θd|θ(t)
1 , .., θ

(t)
d−1

)

3. increase t by 1 and return to step 2.

2.2 Metropolis Hastings (MH) Sampler

The Gibbs sampler successively samples from the full conditional distributions. However,

if the full conditionals do not belong to any standard distribution, samples from them

can no longer be obtained directly and sampling might be very tedious. In this case, the

Metropolis Hastings (MH) algorithm can be used. Instead of sampling directly from the

full conditional of θ, a candidate value θ̃ from an arbitrary proposal distribution q(θ̃, ·) is

drawn and accepted with a certain probability. Like the Gibbs sampler, the MH sampler

updates the parameters component by component. However, for notational simplicity the

MH algorithm is described for one single component in this section. The algorithm works

as follows:

1. choose a starting value θ(0) and set t = 1

2. – propose a candidate value θ̃ ∼ q(θ̃, ·)

– accept θ̃ with probability min
{

1,
p(θ̃|y)

p(θ(t−1)|y)

q(θ(t−1), θ̃)

q(θ̃, θ(t−1))

}

and set θ(t) = θ̃, other-

wise set θ(t) = θ(t−1)
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3. increase t by 1 and return to step 2.

Efficiency of the MH sampler depends crucially on the choice of proposal distribu-

tion. In the following sections some proposal distributions are described, in particular we

consider a symmetric random walk proposal, an independence proposal and Gamerman’s

proposal distribution.

2.2.1 Symmetric random walk proposal distribution

A symmetric random walk proposal density is a symmetric density of the form

q(θ̃, θ) = q(|θ̃ − θ|).

In this case, the acceptance probability simplifies to min
{

1,
p(θ̃|y)

p(θ|y)

}

with θ denoting

the current value of the parameter. A common choice for a random walk proposal dis-

tribution is a normal distribution centered around the current value θ, i.e. q(θ̃, θ) =
1√

2πτ2
exp[− 1

2τ2 (θ̃ − θ)2]. When only small moves are generated by the proposal distribu-

tion, the acceptance rates will be very high, but the chain will move very slowly and take

a long time to explore the whole parameter space. In contrast, when large moves are pro-

posed, the moves will often fall in the tail of the posterior distribution, resulting in very

low acceptance rates. Therefore, we tune the variance τ 2 of the normal proposal using

pilot runs in order to achieve acceptance rates between 30 and 60 % as recommended by

Besag et al. (1995).

2.2.2 Independence proposal distribution

An independence proposal distribution is a proposal which is independent of the current

value of the sampled parameters, i.e. q(θ̃, ·) = q(θ̃). In order to achieve high acceptance

rates, the proposal distribution should be a good approximation to the target distribution

p(θ|y) with slightly heavier tails. If a light tailed proposal distribution is used, the chain

might get stuck in the tails of the target distribution resulting in low acceptance rates.

A common independence proposal is a normal distribution with the same mode and

inverse curvature at the mode as the target distribution p(θ|y), see for example Gilks

et al. (1996a). Here, the mode has to be determined in every iteration using a numerical

optimization routine, for example the Newton-Raphson algorithm or the bisection method.

The algorithm for this independence MH sampler is given by
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1. choose a starting value θ(0) and set t = 1

2. – calculate the mode θmode and the inverse curvature at the mode −H(θmode)
−1

of the target distribution, where H(θ) :=
δ2p(θ|y)

δθ2

– propose a candidate value θ̃ ∼ N(θmode,−H(θmode)
−1)

– accept θ̃ with probability min
{

1,
p(θ̃|y)

p(θ(t−1)|y)

q(θ(t−1))

q(θ̃)

}

and set θ(t) = θ̃, other-

wise set θ(t) = θ(t−1)

3. increase t by 1 and return to step 2.

Alternatively to the normal distribution a t-distribution with v degrees of freedom can

be used. For large v this is approximately a normal distribution, whereas for small values

of v a distribution with thicker tails is obtained. In particular, v = 1 corresponds to the

Cauchy distribution.

The density of the t-distribution with v degrees of freedom is given by

fv(t) =
Γ((v + 1)/2)√

vπΓ(v/2)(1 + t2v−1)(v+1)/2
∝ 1

(1 + t2v−1)(v+1)/2
.

The density for the transformation y = µ + σ · z where z ∼ t(v), i.e. y is t-distributed

with mean µ and variance v
v−2

σ2, is then proportional to

fv(y) ∝
1

σ

1

(1 +
(

y−µ
σ

)2

v−1)(v+1)/2

. (2.1)

In order to determine the mode and the inverse curvature at the mode of (2.1), we calculate

the first and the second derivative of the logarithm of fv(y)

log fv(y) ∝ − log σ − v + 1

2
log(1 +

(y − µ

σ

)2

v−1).

(log fv(y))
′ = −v + 1

vσ

(

y−µ
σ

)

1 +
(

y−µ
σ

)2

v−1

(log fv(y))
′′ = −v + 1

v

1

σ2

1 −
(

y−µ
σ

)2
1
v

[1 +
(

y−µ
σ

)2
1
v
]2
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Since (log fv(y))
′ = 0 for y = µ, the mode is given by y = µ and since

(log fv(µ))′′ = −v + 1

v

1

σ2

the inverse curvature at the mode is given by v
v+1

σ2. Equating the mode and the inverse

curvature at the mode of both the target and the t-distribution, we finally obtain

θmode = µ and −H(θmode)
−1 =

v

v + 1
σ2

and therefore σ =
(

−v+1
v
H(θmode)

−1
)

1
2
. For the MH independence sampler using the

t-distribution the sampling procedure is the following:

1. choose a starting value θ(0) and set t = 1

2. – calculate the mode θmode and the inverse curvature at the mode −H(θmode)
−1

of the target distribution

– propose a candidate value

θ̃ ∼ q(θ̃) = Γ((v+1)/2)
Γ(v/2)

√
vπ

1
σ

(

1+
(

θ̃−θmode
σ

)2

v−1
)−(v+1)/2

where σ =
(

−v+1
v
H(θmode)

−1
)

1
2

– accept θ̃ with probability min
{

1,
p(θ̃|y)

p(θ(t−1)|y)

q(θ(t−1))

q(θ̃)

}

and set θ(t) = θ̃, other-

wise set θ(t) = θ(t−1)

3. increase t by 1 and return to step 2.

Throughout this thesis, independence proposals based on the t-distribution with v = 20

degrees of freedom will be used.

2.2.3 Gamerman’s proposal distribution

In a GLM setting, Gamerman (1997) proposes a MH algorithm based on the iterative

weighted least squares (IWLS) algorithm. Like the independence proposal described in

the previous section, Gamerman’s proposal distribution takes the structure of the model

into account by both incorporating likelihood and prior of the model.

Assume, that for independent observations yi, i = 1, .., n we have a model from the expo-

nential family, i.e. the likelihood can be written in the form

f(yi|θi) = exp
(yiθi − b(θi)

φi

)

c(yi, φi), i = 1, .., n,
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where b(·) and c(·) are known functions depending on the model under consideration

and the scale parameters φi are assumed to be known. The canonical parameter θi is

related to the mean via µi = b′(θi) and to the regression parameters α = (α1, .., αp)
′

via the link function g(µi) = ηi = x′
iα. The vector xi = (xi1, .., xip)

′ denotes the vec-

tor of covariates for observation i, the design matrix containing the covariate vectors

for all observations is denoted by x = (x1, ..,xn). By this setting, a Generalized Linear

Model (GLM) is defined. The maximum likelihood estimate α̂ in a GLM is obtained

using the IWLS algorithm to the vector of transformed variables ỹ(α) with compo-

nents ỹi(α) := x′
iα + (yi − µi)g

′(µi), i = 1, .., n, see McCullagh and Nelder (1989). The

IWLS algorithm starts from an arbitrary value α = m(0) and then iteratively obtains

m(t), t = 1, .. as the least squares estimator of the weighted linear model ỹ(m(t−1)) ∼
Np(x

′α,W−1(m(t−1))), where W is a diagonal matrix of weights W (α) = diag(wii)i=1,..,n

with w−1
ii = b′′(θi)(g

′(µi))
2. That is, α̂ is obtained after convergence of the iteration

m(t) = (x′W (m(t−1))x)−1x′W (m(t−1))ỹ(m(t−1)) with associated asymptotic covariance

matrix C(t) = (x′W (m(t−1))x)−1.

In a Bayesian context we additionally assume a prior for α, in particular we consider

the normal prior α ∼ Np(µ0, V0). According to the results from the Bayesian version

of the IWLS algorithm for a canonical link function, see West (1985), again the pos-

terior mode α̂ and the approximate posterior covariance matrix C of α can be ob-

tained from iterative schemes which now additionally incorporate the prior informa-

tion, in particular m(t) = (V −1
0 + x′W (m(t−1))x)−1(V −1

0 µ0 + x′W (m(t−1))ỹ(m(t−1))) and

C(t) = (V −1
0 + x′W (m(t−1))x)−1. The posterior distribution of α is then asymptotically

normal distributed with

α|y ≈ Np(α̂, C),

where C = (V −1
0 + x′W (α̂)x)−1. Gamerman (1997) proposes a MH algorithm with a

proposal density based on only one step of this iteration, starting at the current value

α(t−1). This algorithm reads as follows:

1. choose a starting value α(0) and set t = 1

2. – propose a candidate value α̃ with

α̃ ∼ N
(

(V −1
0 + x′W (α(t−1))x)−1(V −1

0 µ0 + x′W (α(t−1))ỹ(α(t−1)),

(V −1
0 + x′W (α(t−1))x)−1

)

– accept α̃ with probability min
{

1,
p(α̃|y)

p(α(t−1)|y)

q(α(t−1)|α̃)

q(α̃|α(t−1))

}

and set α(t) = α̃,
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otherwise set α(t) = α(t−1)

3. increase t by 1 and return to step 2.

Note, that the above algorithm is given in a very general notation. Often it is more

convenient not to update the whole vector α in one block, but to divide it in several com-

ponents, say for example α = (α1,α2)′ and corresponding block structure for the design

matrix x′ = (x1,x2). In this case, for the update of α1 the transformed variables change

to ỹi(α
1) = x′

iα + (yi − µi)g
′(µi) − x2′

i α2, i.e. x2′
i α2 is treated as an offset. Similarly, for

the update of α2, x1′
i α1 appears as an offset. For details see Gamerman (1997).

Note, that in comparison to the independence proposal discussed in the previous section

where the mode of the target is computed using several iterations of a numerical opti-

mization routine, for Gamerman’s proposal only one step of the iteration is performed

and therefore less computation time is required. However, Gamerman’s proposal can only

be applied in a straightforward manner to models from the exponential family.

2.3 Further algorithms and improving MCMC

In case that not all full conditionals can be easily sampled from directly, a popular mixture

of the Gibbs and the MH sampler is the Metropolis-within-Gibbs sampler, see for example

Dellaportas and Roberts (2003). Like in the Gibbs sampler, the parameters are updated

component by component, however, components with a non standard full conditional are

updated using a MH-step instead of a Gibbs step.

For univariate log-concave distributions adaptive rejection sampling (ARS) introduced by

Gilks and Wild (1992) enables efficient sampling. ARS is an adaptive method where the

distribution function to be sampled from is approximated by an envelope and a squeezing

function which are both piecewise exponential, for details see Gilks and Wild (1992).

Many techniques for improving MCMC are discussed in the literature, here we will only

briefly mention some techniques used in this thesis later on.

For highly correlated components convergence and mixing of MCMC algorithms can be

improved by blocking these components and update them jointly in one step.

Another technique for improving MCMC when high correlations between components are

present is using collapsed algorithms, see Liu, Wong, and Kong (1994). Collapsing means,

that components are updated according to their marginal distribution, i.e. with the highly

correlated components integrated out.
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Of particular importance is the parameterisation of the model which can crucially deter-

mine mixing and convergence of the MCMC samplers. See Gelfand et al. (1995), Roberts

and Sahu (1997) and Papaspiliopoulos et al. (2003) for further information on this topic.

Reparameterisation issues will be discussed in more detail in Chapter 6. A very good

review and summary of the existing parameterisation techniques is given in Frühwirth-

Schnatter (2004), with special emphasis on time series models.



Chapter 3

Model choice

MCMC enables parameter estimation for a wide range of models. Once a model has been

fitted, an important issue is model choice. Model choice includes both the assessment of

the model fit as well as model comparison. We will discuss posterior predictive p-values

for checking the model, while the deviance information criterion (DIC), the predictive

model choice criterion (PMCC) and several scoring rules will be considered for comparing

models.

3.1 Assessment of model fit using posterior predic-

tive p-values

Gelman et al. (1996) propose a method for model checking using the posterior predictive

distribution for a discrepancy measure. Stern and Cressie (2000) use this method for

model checking in disease mapping models. Assume a model having likelihood p(y|θ)

with unknown parameters θ and posterior distribution p(θ|y). The posterior predictive

density for a replication yrep = (yrep,1, .., yrep,n) of the observed data y = (y1, .., yn) is

defined as

p(yrep|y) :=

∫

p(yrep, θ|y)dθ

=

∫

p(yrep|θ)p(θ|y)dθ. (3.1)

Here independence of yrep and y given θ is assumed. The posterior predictive distribution

therefore averages the conditional density of the data over the posterior distribution of the

parameters θ. It can be estimated by p̂(yrep|y) := 1
R

∑R
j=1 p(y|θ̂

j
) where θ̂

j
, j = 1, .., R

denotes the j-th MCMC iterate of θ after burnin.

15
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For model checking choose a discrepancy measure D(y, θ) which may depend on θ, like

for example the deviance or the χ2-statistic given later in this section. Then, the posterior

predictive p-value for this discrepancy measure is given by

pb(y) = P (D(yrep, θ) ≥ D(y, θ)|y).

This posterior predictive p-value can be computed as follows using a set of MCMC draws

θ̂
j
, j = 1, .., R from the posterior distribution p(θ|y).

• For each draw θ̂
j
, j = 1, .., R simulate a replicated data set yjrep according to its

sampling distribution p(yrep|θ̂
j
)

• Compute the discrepancy measures D(yjrep, θ̂
j
) and D(y, θ̂

j
)

If the discrepancy measure D(y, θ) depends on θ, Gelman et al. (1996) propose to produce

a scatterplot of the pairs (D(y, θ̂
j
), D(yjrep, θ̂

j
)), j = 1, .., R. If the model fit is good, the

observed data should be similar to the simulated data, i.e. the discrepancy measures eval-

uated for the observed data should not be outliers compared to the discrepancy measures

evaluated for the simulated data. Therefore, for a good model fit about half of the points

should fall below and half above the 45 degree line. The p-value can then be estimated

by the proportion of pairs for which D(yjrep, θ̂
j
) ≥ D(y, θ̂

j
), i.e.

p̂b =
1

R

R
∑

j=1

I(D(yjrep, θ̂
j
) ≥ D(y, θ̂

j
)),

where I(·) denotes the indicator function. An extreme p-value close to 0 or 1 indicates

a lack of fit of the model according to the chosen discrepancy measure. If D(y, θ) is

independent of θ a histogram of D(yjrep) can be displayed and compared to D(y).

Possible discrepancy measures include the

• non standardized deviance: D(y, θ) = Dev(y, θ) = −2 log p(y|θ)

• χ2-discrepancy: D(y, θ) = χ2(y, θ) =
∑n

i=1

(yi − E(Yi|θ))2

V ar(Yi|θ)

• D(y) = DIC(y) which will be introduced in Section 3.2.1.

Only recently Hjort et al. (2005) have pointed out limitations of posterior predictive

p-values. They state, that nothing can be learned from medium p-values and propose to

base model evaluation on calibrated posterior predictive p-values instead. However, this

would require an immense computational effort for the models considered in this thesis.
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3.2 Model comparison

Bayes factors based on marginal likelihood provide a method for model comparison, see

Kass and Raftery (1995). Further, Bayesian Model Averaging (BMA), see for example

Hoeting et al. (1999), which is based on Bayes factors presents a method for model selec-

tion taking model uncertainty into account. However, for complex hierarchical models like

those which will be considered in this thesis, the computation of Bayes factors requires

substantial efforts , see Han and Carlin (2001). Therefore, we use model choice criterions

and scoring rules which can be easily computed using the available MCMC output in this

thesis.

3.2.1 Deviance Information Criterion (DIC)

Spiegelhalter et al. (2002) suggest to use the following criterion for model comparison

in Bayesian inference. Assume a probability model p(y|θ). The Bayesian deviance D(θ),

which is used as a measure for goodness of fit, is defined as

D(θ) = −2 log p(y|θ) + 2 log f(y)

where f(y) is some fully specified standardizing term. To measure the model complexity

Spiegelhalter et al. (2002) introduce the effective number of parameters pD defined by

pD := E[D(θ|y)] −D(E[θ|y])

= posterior mean of the deviance − deviance of the posterior means.

Finally they define the deviance information criterion (DIC) as the sum of the posterior

mean of the deviance and the effective number of parameters

DIC := E[D(θ|y)] + pD.

According to this criterion the model with the smallest DIC is to be preferred. pD and

DIC are easily computed using the available MCMC output by taking the posterior mean

of the deviance to obtain E[D(θ|y)] and the plug-in estimate of the deviance D(E[θ|y])

using the posterior means E[θ|y] of the parameter θ.

The DIC may be also used for comparing non nested models. However, in this case, the

full normalizing constants of p(y|θ) have to be taken into account when computing the

deviance D(θ). An information theoretic discussion of the DIC as criterion for posterior

predictive model comparison is given in van der Linde (2005).
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3.2.2 Predictive model choice criterion (PMCC)

A related approach for model comparison is given by the predictive model choice criterion

(PMCC) considered by Laud and Ibrahim (1995) and Gelfand and Ghosh (1998). It is

based on the posterior predictive distribution p(yrep|y) (see (3.1)). The PMCC is defined

by

PMCC :=

n
∑

i=1

(µi − yi)
2 +

n
∑

i=1

σ2
i , (3.2)

where µi := E(yrep,i|y) and σ2
i := V ar(yrep,i|y) denote the expected value and the variance

of a replicate yrep,i of the posterior predictive distribution. Similar to the DIC, models with

a smaller value of the PMCC are preferred. While the first term
∑n

i=1(µi − yi)
2 gives a

goodness-of-fit measure which will decrease with increasing model complexity, the second

term
∑n

i=1 σ
2
i can be considered as penalty term which will tend to be large both for poor

and overfitted models, see Gelfand and Ghosh (1998). The quantities µi and σ2
i can be

estimated based on the MCMC output θ̂
j
, j = 1, .., R by µ̂i := 1

R

∑R
j=1 µi(θ̂

j
) and σ̂2

i :=
1
R

∑R
j=1 σ

2
i (θ̂

j
), where µi(θ) and σ2

i (θ) denote the mean and the variance of the underlying

model p(y|θ) depending on the parameters θ. When the mean µi(θ) and the variance

σ2
i (θ) of the model are not explicitly available, the PMCC can be alternatively evaluated

using simulation. For every MCMC iteration j = 1, .., R after burnin, a replicated data

set yjrep = (yjrep,1, .., y
j
rep,n) can be simulated from p(y|θ̂j). The mean µi and the variance

σ2
i can then be estimated by the empirical counterparts µ̂i := 1

R

∑R
j=1 y

j
rep,i and σ̂Si :=

1
R−1

∑R
j=1(y

j
rep − µ̂i)

2.

The PMCC will be used in the application given in Chapter 8 for comparing models for

the number of claims and for individual, average and total claim sizes. Since the mean

µi(θ) and the variance σ2
i (θ) are explicitly given in the models for the number of claims,

the individual and the average claim sizes, we will compute the PMCC directly using the

MCMC output of these models. The distribution of the total claim sizes however, is not

available in an analytically closed form, therefore here, the PMCC will be evaluated using

simulation as described above.

3.2.3 Proper scoring rules

Gneiting and Raftery (2004) consider scoring rules for assessing the quality of probabilistic

forecasts. A scoring rule assigns a numerical score based on the forecast of the predictive

distribution of a specific model and the value that was observed and can be used for
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comparing the predictive distribution of several models. Ideally, both calibration and

sharpness of the predictive distribution are taken into account. Calibration refers to the

statistical consistency between the observed and the predicted data, whereas sharpness is

determined by the concentration of the predictive distribution and is independent of the

observed value. Gneiting and Raftery (2004) also use scoring rules in estimation problems

for assessing the optimal score estimator for the unknown model parameters. Assume a

parametric model Pθ := p(y|θ) with parameters θ based on the sample y = (y1, .., yn).

Then, the mean score

Sn(θ) =
1

n

n
∑

i=1

S(Pθ, yi)

can be taken as a goodness-of-fit measure, where S is a strictly proper scoring rule, i.e.

the highest score is obtained for the true model. For details on strictly proper and proper

scoring rules see Gneiting and Raftery (2004). Since for the true parameter vector θ0, see

Gneiting and Raftery (2004),

argmaxθSn(θ) → θ0, n→ ∞,

the optimum score estimator based on scoring rule S is given by θ̂n = argmaxθSn(θ). We

will use scoring rules in a Bayesian context as measures for comparing models based on

their posterior predictive distribution. Gneiting and Raftery (2004) provide and discuss

several scoring rules, we will present some of the proper scoring rules for categorical and

continuous variables here. All considered scores are positively oriented, i.e. the model with

the highest mean score Sn(θ) is favoured.

Scoring rules for categorical variables

For categorical variables scores are based on the posterior predictive probability vector

pi = (pi1, pi2, .., pim). Here the component pij := P (yi = j|y) denotes the posterior pre-

dictive probability that the i-th observation takes the value j which can be estimated by

p̂ij := 1
R

∑R
k=1 p(yi = j|θk) where θk, k = 1, .., R, denotes the k-th MCMC iterate of θ

after burnin. For computational reasons we set pim := 1 −
∑m−1

k=1 pik where m − 1 gives

the highest response value observed in the data. This ensures that the probability vector

pi sums up to 1. We consider the logarithmic score and the Brier score for categorical

variables.

The logarithmic score is defined by

S(pi, yi) = log piyi
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where piyi = P (y = yi|y) denotes the posterior predictive probability for the true value

yi under the considered model. Therefore, the logarithmic score chooses the model which

gives the highest probability for observing the true value.

The Brier score first proposed by Brier (1950) is defined by

S(pi, yi) = 2piyi − 1 −
m
∑

k=1

p2
ik

The mean Brier score corresponds to the expression

−1

n

m
∑

j=1

n
∑

i=1

(pij − p̂empij )2

where p̂empij =

{

1 yi = j

0 otherwise
denotes the empirical probability that the i-th observation

takes the value j. Hence, according to the Brier score the model which minimizes the

squared difference between the observed and the estimated probabilities is considered

best.

Both scoring rules are strictly proper, see Gneiting and Raftery (2004). Further, when

parameter estimation is done using MCMC both scores are computed easily based on the

available MCMC output as indicated above.

Scoring rules for continuous variables

For continuous variables we consider the logarithmic score (LS), the continuous ranked

probability score (CRPS), the interval score (IS) and a score for quantiles which we denote

as quantile score (QS).

The logarithmic score LS for the i-th observation is given by

LS(p(yrep|y), yi) := log p(yrep = yi|y),

where p(yrep = yi|y) denotes the posterior predictive density at yrep = yi of the model

under consideration. When a sample of MCMC iterates θ̂
j
, j = 1, .., R after burnin is

available, an approximation of log p(yrep = yi|y) for the i-th observation is straightforward,

i.e.

ˆlog p(yrep = yi|y) := log
( 1

R

R
∑

j=1

p(yi|θ̂
j
)
)

,

where p(y|θ̂j) denotes the density at the observed value y based on the j-th MCMC it-

erates. In contrast to the logarithmic score which only considers the posterior predictive
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distribution evaluated at the observed value, the following scoring rules take both cali-

bration and sharpness into account.

The continuous ranked probability score CRPS for a parametric model Pθ with posterior

predictive cumulative density function (cdf) F (x) :=
∫ x

−∞ p(ỹ|y)dỹ is defined by

CRPS(F, yi) = −
∫ ∞

−∞
(F (x) − 1{x ≥ yi})2dx,

where 1{x ≥ y} takes the value 1 if x ≥ y and 0 otherwise. Hence, the CRPS can be

interpreted as the integrated squared difference between the predictive and the empirical

cdf based on the single observation yi. The CRPS can be seen as the analogue to the

Brier score for continuous variables. A graphical illustration of the CRPS is presented

in Figure 3.1 when Pθ is a normal distribution with mean θ1 and variance θ2. Here the
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Figure 3.1: Pdf (left column with y = 0, 2 indicated as dashed lines) and cdf of a normal

distribution with mean 0 and standard deviation 1 (first row) and 4 (second row), respec-

tively. The differences between the cdf and the empirical cdf for two observations y = 0

(middle) and y = 2 (right) are indicated as dashed regions.

pdf of a normal distribution with mean 0 and standard deviation 1 (left panel in first

row) and 4 (left panel in second row), respectively, is plotted. The difference between the

corresponding cdf and the empirical cdf for two observations y = 0 and y = 2 is indicated

in the middle and right plot of each row as dashed regions. These plots show that the

CRPS rewards sharp distributions, but also takes into account if the observation y is close
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to the center or rather in the tails of the distribution. According to Székely (2003) the

CRPS can be expressed as

CRPS(F, yi) =
1

2
E|yrep,i − ỹrep,i| − E|yrep,i − yi|. (3.3)

Here yrep,i, ỹrep,i are independent replicates from the posterior predictive distribution p(·|y)

and the expectation is taken with respect to p(·|y). Estimation of the CRPS is again

straightforward using the available MCMC output: for j = 1, .., R simulate two replicated

data sets yjrep = (yjrep,1, .., y
j
rep,n), ỹ

j
rep = (ỹjrep,1, .., ỹ

j
rep,n) based on the distribution p(y|θ̂j)

and estimate the mean formula in (3.3) by Ê|yrep,i − ỹ,rep,i| := 1
R

∑R
j=1 |y

j
rep,i − ỹjrep,i| and

Ê|yrep,i − yi| := 1
R

∑R
j=1 |y

j
rep,i − yi|.

The interval score ISα is based on the (1−α) 100 % posterior prediction interval defined

by I = [li, ui] where li and ui denote the α
2

and 1 − α
2

quantile of the posterior predictive

distribution for the i-th observation. It rewards narrow prediction intervals and assigns

a penalty for observations which are not covered by the interval. The interval score is

defined by

ISα(li, ui, yi) =















−2α(ui − li) − 4(li − yi) if yi ≤ li

−2α(ui − li) if li ≤ yi ≤ ui

−2α(ui − li) − 4(yi − ui) if yi ≥ ui

.

Using the available MCMC output, replicated data sets yjrep = (yjrep,1, .., y
j
rep,n), j = 1, .., R,

can be simulated from which li and ui, i = 1, .., n can be determined. In order to compare

models based on prediction intervals with both moderate and large coverage, we will use

α = 0.1 and α = 0.5, respectively.

As will be seen in the application given in Chapter 8, the posterior predictive distribution

of the total claim size in car insurance typically has most of its mass at zero. In particular,

zero will in general be included in the posterior prediction intervals and the interval

score will not be appropriate for model comparison. Here one sided scores might be more

interesting to investigate. Gneiting and Raftery (2004) propose a proper scoring rule based

on the quantiles rα,i at level α ∈ (0, 1) of the predictive distribution for the i-th observation

given by

S(rα,i, yi) = αs(rα,i) + (s(yi) − s(rα,i))1{yi ≤ rα,i} + h(yi)

for a nondecreasing function s and h arbitrary. We will use this score with the special

choice s(x) = x and h(x) = −αx and refer to the resulting scoring rule as quantile score
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QSα which is given by

QSα(rα,i, yi) = (yi − rα,i)[1{yi≤rα,i} − α].

Analogous to the interval score, the α-quantile rα,i of the posterior predictive distribution

can be computed based on the MCMC output and evaluation of the quantile score is

straightforward.

The predictive model choice criterion PMCC discussed in the previous section, can be

expressed as a scoring rule as well. The corresponding positively oriented score function

is defined by

S(Pθ, yi) = −(E(yrep,i|y) − yi)
2 − V ar(yrep,i|y).

However, this is not a proper scoring rule, see Gneiting and Raftery (2004), and should

be used with care.





Chapter 4

Spatial modelling

In this thesis, models allowing for spatial dependencies for regional data are considered.

This is carried out by introducing spatial random effects which incorporate a certain

dependency structure. For regional data conditional autoregressive (CAR) models are a

popular choice for modelling spatial patterns. CAR models are based on the assumption

that the effects of adjacent sites are similar, leading to a spatially smoothed pattern. By

this strength can be borrowed from neighbouring sites for the estimation of the spatial

effects. Pettitt et al. (2002) propose a Gaussian conditional autoregressive (CAR) model

for univariate data on irregularly spaced sites. In contrast to the widely used intrinsic

CAR model, introduced by Besag and Kooperberg (1995), this model gives a proper joint

distribution of the spatial effects. Further in a MCMC setting it allows for an efficient

update of the spatial hyperparameter included in the model. We will define this model

for regional data and use it for the modelling of spatial effects.

4.1 Gaussian conditional autoregressive models

Assume J sites {1, ..., J} and let γ = (γ1, .., γJ)
′ denote the vector containing the spatial

effects for each site. Then Pettitt et al. (2002) assume a multivariate normal distribution

for γ, in particular

γ ∼ NJ(µ, σ
2(IJ − C)−1M)

where µ = (µ1, .., µJ)
′, σ is a scale parameter and IJ the J-dimensional identity matrix.

Here C = (cij)i,j=1,..,J is a matrix with zeros along its main diagonal, i.e. cii = 0, whose off

diagonal entries cij , i 6= j, are non-zero only when site i and j are neighbours, M =

diag(mii), i = 1, .., J is a diagonal matrix such that (IJ − C)−1M is symmetric and

25
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positive-definite. The precision matrix Q is defined by Q = M−1(IJ − C). Pettitt et al.

(2002) show that the full conditional of γi given all the remaining components γ−i =

(γ1, .., γi−1, γi+1, .., γJ) is given by

γi|γ−i ∼ N(µi +
∑

j∼i
cij(γj − µj), σ

2mii),

where we write i ∼ j if sites i and j are contiguous, i.e. if cij 6= 0. Pettitt et al. (2002)

define sites to be neighbours if they lie within a certain distance δ. The scale of spatial

dependence between site i and j is determined via the matrix ̺ = (̺ij)i,j=1,..,J where

̺ij =

{

̺(dij), i 6= j

0, i = j
(4.1)

and dij denotes the Euclidean distance between sites i and j. They propose several choices

for ̺ij , for example

̺ij =

{

1, 0 < dij < δ

0, dij ≥ δ

which gives equal weight to all neighbours of site i which are a distance δ away. The

precision matrix Q = (Qij)i,j=1,..,J is constructed using this matrix ̺ and the parameter

ψ which determines the overall degree of spatial dependence by

Qij =

{

1 + |ψ|∑i∼j ̺ij i = j

−ψ̺ij i 6= j
.

This representation results from using matrices C and M defined as

cij :=







ψ̺ij
1 + |ψ|

∑

k∼i ̺ik
, j 6= i

0, j = i

and

mii :=
1

1 + |ψ|
∑

k∼i ̺ik
, i = 1, 2, .., J

which satisfies cijmjj = cjimii for i, j = 1, .., J and implies that Q is symmetric. In

addition they show that Q is positive-definite.

In this thesis we are dealing with regional data and we will use a slightly altered version

of the above model. We define regions to be neighbours if they share a common border

and additionally take µ to be zero, i.e.

γ ∼ NJ (0, σ
2Q−1).
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Defining the matrix ̺ as

̺ij =

{

1 i ∼ j

0 otherwise
(4.2)

we obtain with this special choice

Qij =















1 + |ψ| ·Ni i = j

−ψ i 6= j, i ∼ j

0 otherwise

, (4.3)

where Ni denotes the number of neighbours of region i. Thus the conditional distribution

of γi, given all the remaining components γ−i, i = 1, .., J is given by

γi|γ−i ∼ N
( ψ

1 + |ψ| ·Ni

∑

j∼i
γj , σ

2 1

1 + |ψ| ·Ni

)

. (4.4)

The partial correlation between γi and γj given all other regions is given by

corr(γi, γj|γ−{i,j}) =











ψ
√

1 + |ψ|Ni

√

1 + |ψ|Nj

, i ∼ j

0 , otherwise

,

see Pettitt et al. (2002). In the conditional mean the conditional autoregressive structure

of the model is reflected: conditionally on the effects of all other regions, the effect of

region i only depends on the neighbouring regions. The conditional variance of the effect

of region i depends both on the spatial hyperparameters ψ, σ2 and on the number of

neighbours of this region. The more neighbours a region has, the stronger is the spatial

smoothing leading to a decreased conditional variance. For ψ = 0 all regions are spatially

independent, the precision matrix Q given in (4.3) reduces to the identity matrix in this

case. For ψ → ∞ the asymptotic behaviour of this model can be presented as follows:














γJ ∼ N(0, σ2V22) with limψ→∞ V22 = 1
J

γ−J|γJ ∼ NJ−1(µJ , σ
2Q−1

11 )

with limψ→∞ µJ = γJ · 1J−1 and limψ→∞Q−1
11 = 0

, (4.5)

where Q11 ∈ R
J−1,J−1, V22 ∈ R and −J = (1, 2, .., J − 1) denotes all indices except J.

The proof is shown in the Appendix A. Hence, with ψ → ∞ the covariance matrix of

the spatial effects tends to zero, resulting in a strong smoothed spatial pattern, i.e. the

degree of dependence increases. Note, that ψ > 0 induces positive conditional partial

correlations, while for ψ < 0 negative conditional partial correlations are obtained. In the
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remainder of this thesis ψ will be restricted to take positive values only since we expect

similar, positive correlated effects for neighbouring regions.

To get a better idea of the overall dependence parameter ψ, we consider the correlations

between neighbours of first to fifth order for several values of ψ. Since σ is only a scale

parameter, it has no influence on the correlations. Note, that we look at the unconditional

correlations here. The order of a neighbour will be explained below. Assume 100 regions

on a 10 × 10 grid. We consider two different neighbourhood structures:

Structure 1: regions with a common border are neighbours

Structure 2: regions with at least a common corner are neighbours

These structures are illustrated in Figure 4.1 for a region in the corner, on the middle

edge and in the middle of the grid. Neighbours of the same order are plotted in the same

colour. Direct neighbours are referred to as neighbours of order 1, the next neighbours of

those to neighbours of order 2 and so on.

The correlations between the region in the corner, middle edge and middle of the grid and

its neighbours are plotted in Figure 4.2 for Structure 1 and in Figure 4.3 for Structure 2

for ψ = 1, 3 and 6. On the x-axis the order of the neighbours is given. First of all, the

correlations decrease polynomial with increasing order of the neighbours. Correlations

to neighbours of the same order are not necessarily the same for all neighbours as the

distances to the region of interest are different. The highest correlations are obtained for

the region in the corner of the grid since the spatial dependency is distributed on fewer

neighbours there. Consequently the correlations between the middle region and its neigh-

bours are the smallest. As supposed by the model the correlations increase with increasing

values of ψ. The correlations behave similarly for both neighbourhood structures with the

difference that there is a higher variation of the correlations to neighbours of the same

order for structure 2. This is due to the fact that this structure considers more regions as

neighbours.

4.2 Computational issues

A convenient feature of this Gaussian CAR model is that the determinant of Q which is

needed for the update of ψ in a Markov Chain Monte Carlo (MCMC) algorithm can be
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Figure 4.1: Neighbours of order 1 to 5 of a region on the corner, middle edge and middle

of the grid, using two different neighbour structures (first row: Structure 1, second row:

Structure 2).

computed efficiently using the following results by Pettitt et al. (2002) :

Q = I + |ψ|D − ψρ (4.6)

=















I − ψ(ρ −D), ψ > 0

I, ψ = 0

I − ψ(ρ +D), ψ < 0

,

where D = diag(
∑

k∼i ρik, i = 1, .., J). With (4.2), D can be written as D = diag(Ni, i =

1, .., J). Let λi, i = 1, .., J denote the eigenvalues of ρ − D and νi, i = 1, .., J denote the

eigenvalues of ρ +D, then the eigenvalues ξi, i = 1, .., J of Q are given by

ξi =















1 − ψλi, ψ > 0

1, ψ = 0

1 − ψνi, ψ < 0

. (4.7)
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Figure 4.2: Correlations between a region on the corner, middle edge and middle of the

grid and its neighbours of order 1 to 5, using neighbour structure 1.
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Figure 4.3: Correlations between a region on the corner, middle edge and middle of the

grid and its neighbours of order 1 to 5, using neighbour structure 2.

The determinant of Q is therefore given by

|Q| =















∏J
i=1(1 − ψλi), ψ > 0

1, ψ = 0
∏J

i=1(1 − ψνi), ψ < 0

. (4.8)
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Since the eigenvalues λi and νi only depend on the number of neighbours and the neigh-

bourhood structure, they only have to be determined once at the beginning of the MCMC

algorithm and can then be reused for the calculation of the determinant of Q in every

iteration.

4.3 Related conditional autoregressive models

Many other authors have dealt with conditional autoregressive models. An overview about

CAR models is given in the book by Banerjee et al. (2004) and in Jin et al. (2004)

where also multivariate CAR models are discussed. The most popular model is probably

the intrinsic CAR model introduced by Besag and Kooperberg (1995) where the full

conditional of γi given γ
−i is given by

γi|γ−i ∼ N
(

∑

j∼i

γj
Ni
,
σ2

Ni

)

. (4.9)

This model can be extended to the weighted version

γi|γ−i ∼ N
(

∑

j

ρij
∑

j ρij
γj,

σ2

∑

j ρij

)

, (4.10)

where ρij are the elements of a symmetric positive-definite matrix similar to (4.1). If ρij

is chosen as in (4.2) this model reduces to the unweighted intrinsic CAR model (4.9).

The joint density for γ in the intrinsic CAR model is improper in contrast to model (4.4)

described above which has a proper joint density. Therefore, using the intrinsic CAR

model care must be taken in order to achieve propriety of the posterior distribution.

Czado and Prokopenko (2004) consider a modification of model (4.4) given by

γi|γ−i ∼ N
( ψ

1 + |ψ| ·Ni

∑

j∼i
γj, σ

2 1 + |ψ|
1 + |ψ| ·Ni

)

(4.11)

where the conditional variance is multiplied by the additional term 1 + |ψ|. This is a

proper model as well but in the limit ψ → ∞ reduces to the intrinsic CAR model.

Another modification of the intrinsic CAR model leading to a proper joint distribution

has been presented by Sun et al. (1999). They introduce the parameter |̺| < 1 such that

γi|γ−i ∼ N
(

̺
∑

j∼i

γj
Ni
,
σ2

Ni

)

(4.12)

to get a proper multivariate normal distribution for γ. Here, the intrinsic CAR model is

the limiting case for ̺ = 1. A multivariate version of this model has also been used by

Gelfand and Vounatsou (2003) to model spatial effects in hierarchical models.





Chapter 5

Spatial regression models for count

data

In this chapter regression models for count data allowing for overdispersion and spatial

dependence patterns are considered. Probably the most popular model for count data is

the Poisson distribution. For a random variable Y the density of the Poisson distribution

with parameter µ is given by

P (Y = y|µ) = exp(−µ)
µy

y!
.

We use the notation Y ∼ Poi(µ). In the Poisson model equality of the mean and the

variance is assumed, in particular

E(Y |µ) = V ar(Y |µ) = µ.

However, for count data often overdispersion is observed, i.e. the variance in the data is

greater than the mean. In this case, the Poisson distribution is not appropriate any more

and more flexible models, which allow the variance to be larger than the mean, should

be used. We follow two approaches for dealing with the extra variability in overdispersed

data. On the one hand, we consider a wider class of models allowing for overdispersion,

on the other hand spatial random effects are introduced to capture unobserved spatial

heterogeneity in the data.

Overdispersion with respect to the Poisson model can be modelled by introducing an addi-

tional parameter. In particular we consider the negative binomial (NB) distribution and

the generalized Poisson (GP) distribution introduced by Consul and Jain (1973). Both

models allow an independent modelling of the mean and the variance by the inclusion of

an additional parameter.

33
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When dealing with a data set with an excessive number of zeros, zero-inflated models

might be used, see for example Winkelmann (2003). In contrast to the GP and the NB

model, overdispersion in zero inflated models is caused by the occurrence of more zero

observations than expected. Zero inflated models can be used in combination with any

model for count data. Additionally to the zero observations arising from the count data

model an extra proportion of zeros is incorporated. Lambert (1992) introduced the zero

inflated Poisson regression model, a Bayesian analysis of the zero inflated Poisson model

is given in Rodrigues (2003). Zero inflated regression models in combination with the

generalized Poisson distribution have been addressed in Famoye and Singh (2003b) and

Famoye and Singh (2003a) using maximum likelihood estimation, a Bayesian analysis

without the inclusion of covariates is given in Angers and Biswas (2003). Agarwal et al.

(2002) use a zero inflated Poisson regression model for spatial count data in a Bayesian

framework.

The second approach for modelling unobserved data heterogeneity is the introduction of

random effects. For spatially indexed data which are the focus of this thesis, spatial ran-

dom effects associated with each region or site may be used, allowing for the modelling

of an underlying spatial dependency structure.

In the following we consider Poisson, NB, GP and zero inflated (ZI) regression models

both including and without spatial random effects in a Bayesian context. A spatial cor-

relation structure is incorporated by assuming the Gaussian conditional autoregressive

spatial prior presented in Chapter 4 for the spatial effects. Since this results in a high di-

mensional, complex posterior distribution, Markov Chain Monte Carlo (MCMC) is used

for parameter estimation.

The considered models will then be applied for analysing the number of invasive meningo-

coccal disease cases reported in Germany in the year 2004. An application of some of the

models on a large data set from a German car insurance company will be given in Chapter

8. Here the number of claims of a policyholder within one year will be modelled. This

chapter is organized as follows. In Section 5.1 the negative binomial, the generalized Pois-

son and zero-inflated regression models are presented. The regression set up and prior

specifications for the regression and model dependent overdispersion parameters as well

as for the spatial effects are given in Section 5.2. Finally, in Section 5.3 the application

on invasive meningococcal disease data in Germany is given. Models are compared using

the deviance information criterion (DIC) and proper scoring rules, see Chapter 3. We

observe a substantial degree of overdispersion in the data which is modelled best by the

GP distribution when spatial effects are neglected. While the addition of spatial random
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effects gives no or little improvement to the models allowing for overdispersion, spatial

effects turn out to be significant for the Poisson model. In particular, according to the DIC

and the scoring rules a spatial Poisson model gives the best fit for these data. However,

no smooth spatial pattern is modelled. Instead some isolated regions with high risk are

detected by the spatial effects, indicating that the risk is not sufficiently explained by the

incorporated covariates in these regions.

Conclusions are drawn in Section 5.4. Details about the MCMC algorithms can be found

in the Appendix B, a brief summary of the used update schemes is given in Section 5.5.

5.1 Models for overdispersed count data

5.1.1 Negative Binomial (NB) distribution and Regression

The density of the negative binomial distribution with parameters r > 0 and µ > 0

denoted by NB(r,µ) is defined by

P (Y = y|r, µ) =
Γ(y + r)

Γ(r)y!
·
( r

µ+ r

)r

·
( µ

µ+ r

)y

, y = 0, 1, 2, ... (5.1)

with mean and variance specified by

E(Y |r, µ) = µ and V ar(Y |r, µ) = µ
(

1 +
µ

r

)

.

The variance is the mean multiplied by the positive factor ϕ := 1+ µ
r

and therefore greater

than the mean, i.e. overdispersion can be modelled in the negative binomial distribution.

We call the factor ϕ dispersion factor. In the limit r → ∞ the NB distribution converges to

the Poisson distribution with parameter µ, see Winkelmann (2003). The negative binomial

distribution also arises from a Poisson distribution where the parameter θ is assumed

to be random and to follow a Gamma distribution with mean E(θ) = µ and variance

V ar(θ) = µ2

r
. Therefore, overdispersion in the NB model can be interpreted by unobserved

heterogeneity among observations. From
P (Y = y + 1)

P (Y = y)
=
y + r

y + 1

( µ

µ+ r

)

, we can derive

that P (Y = y + 1) > P (Y = y) if y < µr−µ−r
r

:= k. Therefore, if k is not an integer, the

NB distribution is unimodal with mode at y = ⌊k⌋, i.e. the integer part of k. If k is an

integer there are two modes at y = k and y = k + 1.

In a regression model with Yi ∼ NB(r, µi) independent for i = 1, .., n, the mean of Yi is

specified in terms of covariates xi and unknown regression parameters β by

E(Yi|xi,β) = µi > 0.
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Note, that in the NB regression model the dispersion factor ϕi := 1+ µi
r

takes observation

specific values.

5.1.2 Generalized Poisson (GP) distribution and Regression

The generalized Poisson distribution has been introduced by Consul and Jain (1973) and is

investigated in detail in Consul (1989). A random variable Y is called generalized Poisson

distributed with parameters θ and λ, denoted by GP(θ, λ), if

P (Y = y|θ, λ) =







θ(θ + yλ)y−1 1

y!
exp(−θ − yλ), y = 0, 1, 2, ...

0 for y > mwhen λ < 0
(5.2)

where θ > 0, max(−1,− θ
m

) < λ ≤ 1 and m ≥ 4 is the largest positive integer for which

θ + mλ > 0 for negative λ. For λ < 0 the model gets truncated. In this case, the lower

limit for λ ensures, that there are at least five classes with positive probability.

Mean and variance are given by

E(Y |θ, λ) =
θ

1 − λ
and V ar(Y |θ, λ) =

θ

(1 − λ)3
= E(Y |θ, λ) · 1

(1 − λ)2
, (5.3)

hence ϕ := 1
(1−λ)2

can be interpreted as an dispersion factor for the GP distribution.

For λ = 0, the generalized Poisson distribution reduces to the Poisson distribution with

parameter θ, equality of mean and variance are obtained in this case. For λ < 0 un-

derdispersion can be modelled, whereas for λ > 0 overdispersion is obtained. Figure 5.1

illustrates the density of the GP distribution for θ = 8 and several values of λ. A larger

value of λ > 0 corresponds to a greater overdispersion, i.e. a larger variance. A small value

of λ in contrast clearly reduces the variance. In Figure 5.2 the density of the generalized

Poisson distribution is shown for θ = 1, 3, 5 and λ = −0.2, 0.2. The larger θ, the larger

the mean, i.e. a greater shift to the right can be seen. Consul (1989) shows that the GP

distribution is unimodal for all values of θ and λ. In the remainder of this thesis only the

problem of overdispersion will be addressed, i.e. λ will be assumed to take only values in

the interval [0, 1). Similar to the NB model, the GP distribution is a mixture of Poisson

distributions as has been proved by Joe and Zhu (2005).

A regression model for independent GP distributed response variables Yi, i = 1, .., n is set

up by specifying the mean in terms of covariates and regression parameters by

E(Yi|xi; β, λ) = µi > 0
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Figure 5.1: Probability mass function of the generalized Poisson distribution with θ = 8

and λ = −0.4,−0.2, 0, 0.2, 0.4, 0.75.

like in the NB model. Using (5.3) yields that µ =
θ

1 − λ
and leads to another parameter-

isation of the GP model, denoted by GP (µ, λ), given by

P (Y = y|µ, λ) = µ[µ(1 − λ) + λy]y−1 (1 − λ)

y!
exp
[

−µ(1 − λ) − λy
]

, y = 0, 1, 2, .... (5.4)

Throughout the remainder of this thesis this parameterisation of the GP distribution will

be used. While the dispersion parameter in the NB regression model depends on µi leading

to a variance function which is quadratic in µi, the dispersion parameter ϕ = 1
(1−λ)2

in

the GP regression model is the same for each observation and results in a linear variance

function.

5.1.3 Comparison of NB and GP distribution

In order to compare the behaviour of the NB and the GP distribution, we equate the mean

and the variance of a GP(µ, λ) with the mean and the variance of a NB(r, µ) distributed

random variable, i.e.

µ

(1 − λ)2
= µ(1 +

µ

r
)
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Figure 5.2: Probability mass function of the Generalized Poisson distribution with θ =

1, 3, 5 and λ = 0.2,−0.2.

has to hold and the equation

r =
µ(1 − λ)2

λ(2 − λ)
(5.5)

is obtained. In Figure 5.3 the NB distribution is plotted in comparison to the GP dis-

tribution with equal mean and variance, i.e. with µ and r chosen according to (5.5). For

a better visual comparison the densities of these discrete distributions are presented as

line plots. For small values of λ both distributions behave very similarly. With increasing

values of λ slight differences between the two distributions can be observed which become

greater when λ tends to 1. In particular, the NB distribution gives more mass to small

values of y if a large overdispersion is present.

Comparison of GP and NB model via empirical variances

Assume we have Poisson data yi ∼ Poi(µi), i = 1, .., n and fit the appropriate Poisson

model. Then, due to the equality of variance and mean in the Poisson model, a plot of

the estimated posterior means µ̂i against the empirical variances V ar(yi)
emp, i = 1, .., n



5.1. Models for overdispersed count data 39

0 10 20
0

0.2

0.4

0.6

0.8
µ=1, λ=0.2

0 10 20
0

0.2

0.4

0.6

0.8
µ=1, λ=0.5

0 10 20
0

0.5

1
µ=1,λ=0.9

0 10 20 30
0

0.05

0.1

0.15

0.2
µ=10, λ=0.2

0 10 20 30
0

0.02

0.04

0.06

0.08
µ=10, λ=0.5

0 10 20 30
0

0.2

0.4

0.6

0.8
µ=10, λ=0.9

0 20 40
0

0.02

0.04

0.06
µ=30, λ=0.2

0 20 40
0

0.01

0.02

0.03

0.04
µ=30, λ=0.5

0 20 40
0

0.1

0.2

0.3

0.4
µ=30, λ=0.9

GP
NB

Figure 5.3: Comparison of the generalized Poisson distribution (solid line) with µ =

1, 10, 30 and λ = 0.2, 0.5, 0.9 to the negative binomial distribution (dashed line) with

µ = 1, 10, 30 and r = µ(1−λ)2

λ(2−λ)
.

should give approximately a 45 degree line. What happens if the data are generalized

Poisson or negative binomial distributed but a Poisson model is assumed? Gives this plot

an idea of the true underlying model? To check this we conduct a simulation study.

Simulation study

In order to get a good estimator for the empirical variance we use a replicated data set.

In particular we assume three covariates, an intercept, an indicator variable x1 and a

continuous standardized covariate x2, for 500 observations xi = (1, xi1, xi2), i = 1, .., 500

and replicate each observation 20 times. Then, we simulate both GP (µi, λ) and NB(r, µi)

distributed response variabels yij, i = 1, .., 500, j = 1, .., 20 where µi = exp(x′
iβ) with

some known β for λ = 0, 0.2, 0.5, 0.8 and r = 0, 10, 100. β is chosen in such a way that

we obtain response values up to about 120. For each of these seven simulated data sets a

Poisson model is fitted and the posterior mean µ̂i is estimated by µ̂i = 1
R

∑R
j=1 exp(x′

iβ̂
j
)

where R gives the number of MCMC iterations after burnin and β̂
j

= (β̂j0, β̂
j
1, β̂

j
2) de-
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notes the j-th draw of the regression parameters. The empirical variance is estimated by

V ar(yi)
emp = 1

19

∑20
j=1(yij − ȳi)

2 where ȳi = 1
20

∑20
j=1 yij. The resulting scatter plots of

µ̂i and V ar(yi)
emp, i = 1, .., 500 are given in Figures 5.4 and 5.5 for the GP and the NB

data, respectively. The solid line in each plot is a smooth of the data whereas the dotted

line gives the expected variances according to the true models, i.e. µi
(1−λ)2

in the GP model

and µi(1 + µi
r
) in the NB Model where for λ and r the true values are taken.
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Figure 5.4: Scatter plot of µ̂i and V ar(yi)
emp, i = 1, .., 500 for GP (µi, λ) data with λ =

0, 0.2, 0.5, 0.8 when a Poisson Model is fitted, solid line gives a smooth of the data, the

dotted line gives µi
(1−λ)2

.

For the GP data in Figure 5.4 the smoothed curve and the dotted lines are very

close for all values of λ. The slope of the smoothed curve indeed represents the degree of

overdispersion present in the data. Therefore, if the scatter plot of the estimated posterior

means and the empirical variances in a Poisson model significantly deviates from the 45

degree line, this is an indication for overdispersion in the data. For the NB data the

empirical variances, indicated by the smooth of the data, and the variances expected

from the true underlying model are reasonable close as well, especially for r = 100,

i.e. data close to the Poisson distribution. For r = 10, 1 the scatter plot clearly is not

along the 45 degree line, again indicating the presence of overdispersion. In comparison

to the GP data where the plots scatter along a rather straight line, a slight quadratic
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Figure 5.5: Scatter plot of µ̂i and V ar(yi)
emp, i = 1, .., 500 for NB(r, µi) data with r =

100, 10, 1 when a Poisson model is fitted, solid line gives a smooth of the data, the dotted

line gives µi(1 + µi
r
).

trend can be observed for the NB data. This is expected since the variance in the NB

model is a quadratic form of the mean. Therefore scatterplots of the estimated posterior

means and the empirical variances in a Poisson model may not only reveal the presence

of overdispersion but indicate as well whether a GP or a NB model is more appropriate.

Similar results where obtained for replicated data with smaller response values. However,

if the data are not replicated, it is hard to find an appropriate estimator for the empirical

variance. The straightforward estimator V ar(yi)
emp = 1

R

∑R
j=1(yi − exp(x′

iβ̂
j
))2 does not

work well, no clear pattern in the scatter plots is visible. Therefore these plots do not

contain any valuable information for the real data in our application.

5.1.4 Zero Inflated (ZI) Models

For count data with an excessive number of zero observations zero inflated (ZI) models

can be used. These models allow for a higher number of zeros than can be explained

by standard models for count data. Additional to the zero observations arising from the

supposed count data distribution, a proportion of extra zeros is assumed. ZI models have

been widely used in the literature, see Winkelmann (2003) for an overview.

Let π(y|θ) be a distribution function for count data with unknown parameters θ. Then a

zero inflated model with extra proportion p ∈ [0, 1] of zeros is defined by (see Agarwal et al.

(2002))

P (Y = y|p, θ) =

{

p+ (1 − p)π(y = 0|θ) if y = 0

(1 − p)π(y|θ) if y > 0
(5.6)
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Mean and variance are given by

E(Y |p, θ) = (1 − p)Eπ(Y |θ) (5.7)

and

V ar(Y |p, θ) = p(1 − p)[Eπ(Y |θ)]2 + (1 − p)V arπ(Y |θ). (5.8)

The introduction of latent indicator variables Z = (Z1, .., Zn)
′ leads to a model which

is easier to handle in a Bayesian context and in particular allows a Gibbs step for p. Zi

takes the value zi = 0 for all observations with yi > 0. For all zero observations yi = 0,

the latent variable takes the value zi = 0 if observation i arises from the count data

distribution π(y|θ) and the value zi = 1 if it is an extra zero. The joint distribution of Yi

and Zi is therefore determined by

P (Yi = 0, Zi = 1|pi, θ) = pi, P (Yi = 0, Zi = 0|pi, θ) = (1 − pi)π(yi = 0|θ),
P (Yi = yi, Zi = 1|pi, θ) = 0, P (Yi = yi, Zi = 0|pi, θ) = (1 − pi)π(yi|θ), yi > 0

which can be written succinctly

P (Yi = yi, Zi = zi|pi, θ) = pzii [(1 − pi)π(yi|θ)]1−zi .

Marginally, Zi ∼ Bernoulli(pi). Using the latent variables Z, the joint likelihood of Y =

(Y1, .., Yn)
′ and Z is given by

f(Y,Z|p, θ) =
n
∏

i=1

pzii [(1 − pi)π(yi|θ)]1−zi (5.9)

=
∏

i:yi=0

pzii [(1 − pi)π(0|θ)]1−zi ·
∏

i:yi>0

(1 − pi)π(yi|θ) (5.10)

In this thesis we will focus on the zero inflated Poisson and the zero inflated generalized

Poisson models, which are special cases of the ZI model (5.6). The zero inflated negative

binomial distribution will not be discussed, since the GP model turned out to be more

adequate than the NB model for the application considered later on.

Zero Inflated Poisson (ZIP) Distribution

Here the Poisson distribution is assumed for the underlying count data distribution, i.e.

π(y|θ) := π(y|µ) = µy
exp(−µ)

y!
. Using (5.7) and (5.8), mean and variance of the ZIP

distribution, denoted by ZIP (p, µ), are specified by

E(Y |p, µ) = (1 − p)µ
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and

V ar(Y |p, µ) = (1 − p)µ(µp+ 1) = E(Y |p, µ)(µp+ 1).

For p > 0 the dispersion factor ϕ := µp+ 1 of the ZIP model is positive, i.e. the presence

of extra zeros leads to overdispersion.

Zero Inflated Generalized Poisson (ZIGP) Distribution

The ZIGP regression model was already introduced by Famoye and Singh (2003b), in

Famoye and Singh (2003a) a generalisation to k-inflated GP regression models is given.

Czado and Min (2005) show asymptotic existence, consistency and asymptotic normality

of the maximum likelihood estimator in a ZIGP regression model. These results remain

valid for a GP and ZIP regression model. A Bayesian analysis of the ZIGP model is

presented in Angers and Biswas (2003), however they do not incorporate covariates. The

zero inflated generalized Poisson distribution, denoted by ZIGP (p, θ, λ), is obtained if the

density function of the GP distribution is chosen for π(y|θ). The mean and the variance

of the ZIGP distribution are then given by

E(Y |p, µ, λ) = (1 − p)µ

and

V ar(Y |p, µ, λ) = p(1 − p)µ2 + (1 − p)
µ

(1 − λ)2
= (1 − p)µ

[

pµ+
1

(1 − λ)2

]

= E(Y |p, µ, λ)
[

pµ+
1

(1 − λ)2

]

.

The dispersion factor of the ZIGP model is therefore given by ϕ := pµ + 1
(1−λ)2

. Here,

overdispersion can both result from the overdispersion parameter λ of the GP distribution

and the extra proportion of zeros p when p > 0.

Zero Inflated Regression Models

In a regression model Yi ∼ ZIP (pi, µi) and Yi ∼ ZIGP (pi, θi, λ), independent for i =

1, .., n, respectively, a regression can be performed both for p = (p1, .., pn)
′ and for µ =

(µ1, .., µn)
′. As in the NB and GP model the parameter µi is assumed to depend on

covariates xi and unknown regression parameters β. For the proportion of extra zeros a

logistic link might be chosen, i.e. pi =
exp(x̃′

i
α)

1+exp(x̃′

i
α)

with covariate vector x̃i and regression

parameters α. However, for the data considered in our application no significant zero

inflation is detected. An extension to ZI models with regression on p therefore seems
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unnecessary and is not addressed further in this thesis.

Alternatively to ZI models hurdle models, see for example Winkelmann (2003) for an

overview, could be used. The most widely used hurdle model is the zero hurdle model which

assumes two separate models for zero and non-zero observations. Attention is however

restricted to zero inflated models in this thesis.

5.2 Regression set up and prior specifications

In order to account for parameter uncertainty and to allow for an underlying spatial

structure we consider the count data regression models discussed in Section 5.1 in a

Bayesian context. MCMC will be used for parameter estimation. Assume the response

variables Yi, i = 1, .., n to be observed at J regions. Besides the Poisson regression model

Poi(µi) we consider the NB(r, µi), GP (µi, λ), ZIP (p, µi) and ZIGP (p, µi, λ) regression

models. In each of these models the parameter µi, i = 1, .., n is specified by

µi = ti exp(x′
iβ + γR(i)), (5.1)

where xi = (1, xi1, .., xik) denotes the vector of covariates and ti gives the observation

specific exposure which will be treated as an offset. The vector β = (β0, .., βk) denotes

the vector of unknown regression parameters. Note, that an intercept β0 is included in

the model. To allow for geographical differences in the J regions spatial random effects

γ = (γ1, .., γJ) are introduced, R(i) ∈ {1, .., J} denotes the region of the i-th observation.

For the zero inflated models we assume a constant p for all observations. Parameter

estimation in the regression set up is done using a Bayesian approach with the prior

specifications given in the following. The parameters β, γ, λ, p and r respectively are

taken to be a priori independent. Since we have little prior knowledge on the regression

parameters β, we assume a noninformative normal prior, in particular

π(β) ∼ Nk+1(0, τ
2Ik+1)

with τ 2 = 100. The spatial effects γ are modelled using the CAR model described in

Section 4, i.e.

π(γ|σ2, ψ) ∼ N(0, σ2Q−1)

with Q specified as in (4.3). For the spatial hyperparameters σ2 and ψ also proper priors

are assumed, in particular we choose for σ2 the noninformative prior

σ2 ∼ IGamma(a, b) with a = 1 and b = 0.005
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which is a common parameter choice for vague gamma priors and for ψ the prior ψ ∼ 1
(1+ψ)2

which is concentrated on small values for ψ close to 0. For the model specific parameters

the following noninformative prior distributions are chosen:

• GP Regression: π(λ) ∼ U([0, 1])

• NB Regression : π(r) ∼ Gamma(a, b), i.e. π(r) = ba

Γ(a)
ra−1e−rb, where a = 1 and

π(b) ∼ Gamma(c, d), i.e. π(b) ∝ bc−1e−bd with c = 1 and d = 0.005

• ZIP/ZIGP Regression: π(p) ∼ U([0, 1])

The schemes of the MCMC algorithms and details about the chosen proposal distributions

for Metropolis Hastings steps can be found in the Appendix.

5.3 Application

5.3.1 Data description

In this section the proposed models will be used to analyse the number of invasive meningo-

coccal disease cases reported in Germany during the year 2004. Meningococcal disease is

caused by bacteria and can lead to serious, perilous diseases, like for example meningitis,

in which case we refer to invasive meningococcal disease. In 2004, 600 cases of invasive

meningococcal disease were reported in Germany. Germany is divided into 439 regions,

for each of these regions the number of invasive meningococcal disease cases is given for

both men and women. A histogram of the total number of cases in each region is given

in Figure 5.6. A high proportion (67.2 %) of the data is equal to zero, on average 1.37

cases of meningococcal disease are observed in each region, the maximum number of cases

observed in one region is 18. The variance of the data is 3.71 which is substantially higher

than the mean and therefore already indicates the presence of overdispersion in the data.

On a higher aggregation level Germany consists in 16 states. Besides the modelling of

overdispersion in the data, an interesting issue is to detect whether there are areas with

an increased risk of contracting invasive meningococcal disease. In this case, vaccination

could be strongly recommended in these risky regions. Therefore we include the 16 states

as covariates in our model, which will be modelled as factor covariates with state 1 as

reference level. Since we are interested in relative risks, population effects are eliminated

by including the expected number of cases in each region as an offset in the analysis.

The expected number of cases in each region is determined by the population in each
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Figure 5.6: Histogram of the observations yi, i = 1, .., 439.

region times the overall observed risk, i.e. the total number of cases divided by the total

population.

Extra heterogeneity in the data, which might not be satisfactorily explained by the gender

or the state factors, can be handled by the model specific dispersion parameters in the

NB, the GP and the ZI models. While overdispersion in the NB and the GP model can be

interpreted as unobserved heterogeneity among observations, zero inflated models would

assume that part of the observations equal to zero are extra zeros, i.e. in some regions the

occurrence of invasive meningococcal disease might not have been reported.

On the other hand, heterogeneity in the data might also be taken into account by assum-

ing a finer geographic resolution, i.e. by including a random spatial effect for each region.

We will assume the CAR prior presented in Section 4 for these spatial effects which allows

for a spatial dependency structure. In contrast to this approach, the effects of the states

included as factor covariates can be seen as unstructured effects on a lower resolution,

since no correlation between states is allowed.

We first analysed the data set in Splus using a Poisson model without spatial effects in-

cluding an intercept and as covariates the gender and the 16 states as factor covariates.

No significant influence of gender could be detected, therefore we decided to model the

total number of cases without distinguishing between men and women. This means, that

we have only one observation yi, i = 1, .., 439 for each region. The four states Nordrhein-

Westfalen, Mecklenburg-Vorpommern, Sachsen-Anhalt and Thüringen were found to be

significant and only the regression indicators of these states will be included in the fol-

lowing. This model was used as an initial model for the MCMC algorithms of the models

discussed in Section 5.1.
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5.3.2 Models

The MCMC algorithms for the Poisson, the GP, the NB, the ZIP and the ZIGP regression

models are run for 20000 iterations. The parameter µi, i = 1, .., n is specified for all models

by

µi = ti exp(x′
iβ + γi)

with the same covariates included in each model and ti = popi
∑n
i=1 yi

∑n
i=1 popi

where popi denotes

the population in region i. All models are fitted with and without spatial effects. Since

we have only one observation for each region we use the simplified notation γR(i) = γi.

The first 5000 iterations of the MCMC samplers are discarded as burnin, convergence

is achieved well before for all models. After convergence the mixing of the samplers is

satisfactorily good, the estimated empirical autocorrelations with lag 5 are in general well

below 0.05 for the regression parameters in all non spatial models and both the regression

parameters and the spatial effects in the spatial GP and ZIGP models. Only in the spatial

Poisson, ZIP and NB models a lag of about 20 is needed in order to obtain autocorrelations

of the regression parameters below 0.05, for the spatial effects the autocorrelations are

below 0.05 at a lag of 5 in the Poisson and ZIP models and a lag of about 10 in the

NB model. The estimated posterior means and 90 % credible intervals for the regression

parameters are reported in Table 5.1 for all models. Estimation of the intercept slightly

differs between the models and also changes when spatial effects are added, especially for

the Poisson and ZIP models where large spatial effects are observed, see below. Estimation

of the state effects is rather similar in all models.

For a comparison of the estimated overdispersion in the different models, we consider

the estimated dispersion factors ϕi which are defined by 1 + µi
r
, 1

(1−λ)2
, (pµi + 1) and

pµi +
1

(1−λ)2
for the NB, GP, ZIP and ZIGP regression models, respectively. In particular,

we compute the mean, minimum, maximum value and quantiles of the estimated posterior

means ϕ̂i := 1
R

∑R
j=1 ϕ̂

j
i of the dispersion factors in each model, where ϕ̂ji denotes the

j-th MCMC iterate for ϕi after burnin. The results are reported in Table 5.2. Note,

that the dispersion factor in the GP regression model is the same for all observations,

whereas it depends on the parameter µi and therefore is different for each observation

in the other models. Except for the ZIP model, all models exhibit a substantial degree

of overdispersion with respect to the Poisson model, regardless whether spatial effects

are included or not. In the non spatial NB model the average of the estimated posterior
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Model γ β̂0 β̂1 β̂2 β̂3 β̂4

Poi no -0.17 0.43 0.65 0.56 0.56

(−0.26,−0.09) (0.30, 0.57) (0.28, 1.02) (0.23, 0.87) (0.22, 0.88)

NB no -0.15 0.42 0.67 0.54 0.48

(−0.25,−0.04) (0.23, 0.60) (0.23, 1.10) (0.16, 0.91) (0.09, 0.85)

GP no -0.16 0.42 0.65 0.45 0.50

(−0.26,−0.06) (0.26, 0.58) (0.22, 1.06) (0.05, 0.84) (0.09, 0.88)

ZIP no -0.13 0.43 0.69 0.60 0.59

(−0.23,−0.03) (0.27, 0.59) (0.29, 1.08) (0.25, 0.94) (0.24, 0.95)

ZIGP no -0.15 0.42 0.67 0.47 0.52

(−0.26,−0.04) (0.23, 0.61) (0.22, 1.09) (0.05, 0.87) (0.09, 0.92)

Poi yes -0.25 0.40 0.68 0.58 0.47

(−0.38,−0.14) (0.18, 0.61) (0.21, 1.13) (0.19, 0.97) (0.06, 0.86)

NB yes -0.18 0.41 0.68 0.55 0.48

(−0.29,−0.06) (0.20, 0.61) (0.23, 1.21) (0.17, 0.93) (0.08, 0.87)

GP yes -0.16 0.42 0.65 0.45 0.50

(−0.26,−0.06) (0.25, 0.58) (0.21, 1.06) (0.04, 0.84) (0.09, 0.88)

ZIP yes -0.23 0.39 0.68 0.60 0.49

(−0.36,−0.10) (0.16, 0.63) (0.22, 1.14) (0.19, 0.99) (0.07, 0.90)

ZIGP yes -0.15 0.42 0.66 0.48 0.52

(−0.26,−0.04) (0.23, 0.61) (0.22, 1.09) (0.06, 0.88) (0.10, 0.92)

Table 5.1: Posterior means and 90 % credible intervals for the regression parameters

(β1, .., β4: effects for the states Nordrhein-Westfalen, Mecklenburg-Vorpommern, Sachsen-

Anhalt and Thüringen, respectively) in the different models for the meningococcal disease

data.

means of the dispersion parameter is given by 1.396 and drops to 1.293 when spatial

effects are included. The range of the estimated spatial effects in the NB model, see Table

5.3, is considerably smaller than in the Poisson model where unexplained heterogeneity

in the data is captured by the spatial effects alone. However, part of the data variability

in the NB model is explained by spatial effects as well rather than the parameter r alone.

This is in contrast to the GP and ZIGP model, where the estimated spatial effects are

all very close to zero. Overdispersion in these models is captured by the parameter λ

only, resulting in a high estimated dispersion parameter. Results are hardly affected by

the inclusion of spatial effects. The extension from a GP to a ZIGP model has almost no
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ϕ̂i
Parameter

γ
mean (2.5 %, 97.5 %)

mean min 25% 50% 75% max

r in NB yes 6.433 (2.483, 22.552) 1.293 1.051 1.150 1.205 1.313 5.358

no 3.836 (2.202, 6.864) 1.396 1.064 1.200 1.273 1.428 7.053

λ in GP yes 0.162 (0.098, 0.231) 1.432

no 0.163 (0.098, 0.232) 1.435

p in ZIP yes 0.029 (0.001, 0.087) 1.041 1.007 1.020 1.028 1.044 1.536

no 0.056 (0.006, 0.125) 1.081 1.013 1.041 1.056 1.089 2.226

p in ZIGP yes 0.019 (0.001, 0.064)

λ in ZIGP yes 0.155 (0.088, 0.224)
1.434 1.412 1.421 1.426 1.436 1.819

p in ZIGP no 0.019 (0.001, 0.063)

λ in ZIGP no 0.157 (0.090, 0.227)
1.440 1.417 1.427 1.432 1.442 1.826

Table 5.2: Estimated posterior means for the model specific dispersion parameters in the

considered models with and without spatial effects, with the 2.5 % and 97.5 % quantiles

given in brackets. Further the mean, range and quantiles of the estimated posterior means

of the dispersion factors ϕ̂i are given.

influence on the estimation of λ and the average dispersion parameter ϕi, the proportion

of extra zeros p is estimated very close to zero.

In the non spatial ZIP model the proportion of extras zeros p is estimated as 5.6 %,

resulting in an average dispersion parameter of about 1.081. According to the large 95 %

credible interval for p however, no significant degree of zero inflation seems to be present.

Unobserved heterogeneity still present in the data after adjusting for covariates is captured

better by the GP and NB model, whereas the assumptions of extra zeros is obviously not

appropriate for this data. When spatial effects are included to the ZIP model the estimated

proportion of extra zeros drops even further, indicating that unexplained heterogeneity

is picked up mostly by the spatial effects alone like in the Poisson model, the range of

the estimated posterior means of the spatial effects in the ZIP and the Poisson model is

almost the same, see Table The map plot of the estimated posterior means of the spatial

effects in the Poisson model, given in Figure 5.7 roughly represents the spatial pattern of

the observed relative risk in each region yi
ti
, i = 1, .., n which is plotted in the left panel

in Figure 5.8. The estimated posterior mean and median of the spatial hyperparameter

ψ in the Poisson model, see Table 5.3 are rather small, the lower bound of the 95 %

credible interval is close to zero, indicating that the overall degree of spatial dependence
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Model [minj γ̂j maxj γ̂j ] ψ̂ σ̂2

mean median 95 % CI mean median 95 % CI

Poisson [−0.383, 1.059] 0.394 0.207 (0.011,0.431) 0.541 0.422 (0.149, 0.615)

NB [−0.151, 0.345] 1.223 0.588 (0.015,1.352) 0.227 0.140 (0.012,0.281)

GP [−0.009, 0.020] 2.604 1.194 (0.038,2.199) 0.012 0.005 (0.001,0.011)

ZIP [−0.371, 0.998] 0.329 0.235 (0.013,0.397) 0.477 0.417 (0.169,0.529)

ZIGP [−0.011, 0.019] 1.739 1.154 (0.044,1.905) 0.018 0.011 (0.001,0.027)

Table 5.3: Range of estimated posterior means of the spatial effects as well as estimated

posterior means, medians and 95 % credible intervals for the spatial hyperparameters in

the considered models for the meningococcal disease data.

is very small. This is reflected in the estimated spatial pattern which is not particularly

smooth. Only some rather isolated regions, which are marked in black in the right map

in Figure 5.7, have a significant positive spatial effect according to the 80 % credible

intervals. In these regions the observed number of invasive meningococcal disease cases

was rather high and most of them do not lie within the four states included as covariates.

Therefore without spatial effects the risk in these regions is not modelled sufficiently. The

estimated posterior means of the risk factor µi
ti

are plotted for the non-spatial and spatial

Poisson model in the middle and right panel. In the non-spatial Poisson model geographic

differences are modelled by four state indicators only. Since the risk in two of the states,

which are neighbours, is about the same, visually only three states can be distinguished in

this plot. The inclusion of spatial random effects gives a rather smoothed representation

of the true pattern, however the rough structure is detected reasonable well.

5.3.3 Model comparison using DIC

In order to compare the presented models the DIC, reviewed in Section 3.2.1, is consid-

ered. In Table 5.4, the DIC, the posterior mean of the deviance and the effective number

of parameters are given for each model. Only in the Poisson regression case a well de-

fined normalizing constant f(y) (see Section 3.2.1) exists, while in all other models the

likelihood of the saturated model depends on the unknown overdispersion parameters.

Therefore we make the choice of setting the normalizing function f(y) to 0. Consequently

E[D(θ|y)] is based only on the unscaled deviance which cannot be directly interpreted as

an overall goodness of fit measure of one specific model. However, E[D(θ|y)] can be used

for comparing the model fit of several models when the number of parameters is roughly
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−0.39 1.05 0 1

Figure 5.7: Maps of the estimated posterior means (left) and 80 % credible intervals

(white: 0 included in credible interval, black: strictly negative credible interval) of the

spatial effects in the Poisson regression model for the meningococcal disease data.

the same.

Model γ DIC E[D(θ|y)] pD

Poisson no 1291.8 1286.8 5.04

NB no 1273.9 1267.8 6.10

GP no 1265.6 1259.6 6.01

ZIP no 1291.8 1285.9 5.96

ZIGP no 1267.8 1261.5 6.35

Poisson yes 1248.7 1159.1 89.56

NB yes 1270.8 1240.0 30.74

GP yes 1265.7 1258.3 7.32

ZIP yes 1255.4 1175.1 80.31

ZIGP yes 1267.6 1260.2 8.28

Table 5.4: DIC, E[D(θ|y)] and effective number of parameters pD for the different models.

For the non spatial models the lowest value of the DIC is obtained for the GP model, while

the DIC for the Poisson and the ZIP model takes the highest value. Hence, according to

the DIC the GP model is considered best among the non spatial models, while the Poisson
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Figure 5.8: Maps of the observed risk yi
ti

(left) and the estimated posterior means of the

relative risk factor µi
ti

in the non-spatial (middle) and spatial (right) Poisson regression

model for the meningococcal disease data.

and ZIP model clearly perform worse. The effective number of parameters pD is close to

the true number of parameters which is five for the Poisson regression model, six for the

NB, GP and ZIP regression models and seven for the ZIGP regression model.

When spatial effects are added, the posterior mean of the deviance and the number

of effective parameters in the GP and ZIGP models hardly change. As mentioned in

the previous section already, spatial effects are not significant in these models, i.e. after

adjusting for covariate information, there is no further spatial heterogeneity in the data

which might be captured by the spatial effects. Instead any overdispersion present in

the data seems to be sufficiently captured by the model specific dispersion parameter.

The DIC for the spatial NB model is slightly better than for the non spatial one, hence

spatial effects improve the model. However, the spatial pattern is rather smooth as can

be seen from the effective number of parameters estimated by 30.74. For the Poisson

and ZIP regression model in contrast, a significant drop in the DIC is observed when

spatial effects are taken into account. This shows that there is some extra variability in

the data which is not sufficiently explained by the covariates only in these models. Since

the Poisson model does not allow for overdispersion and the heterogeneity is not of a

zero inflated nature, for these two models the unexplained variability is covered by the

spatial effects. According to the DIC the spatial Poisson model gives the best fit and is

to be preferred to a non spatial GP model. Note, that the DIC must be used with care

here, since strictly speaking the DIC is defined for distributions of the exponential family

only, see van der Linde (2005). However, the posterior mean of the deviance E[D(θ|y)]
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which can be considered for comparing the model fit of the non spatial models where the

number of parameters is very close, gives the same ranking of the models as the DIC.

5.3.4 Model checking using proper scoring rules

Apart from the DIC we also compute the Brier score and the logarithmic score presented

in Section 3.2.3 for each model, results are reported in Table 5.5. These scores are based

both on the posterior predictive probabilities and the true observed number of cases and

therefore provide a good measure for checking which model fits the data best. The results

Model γ Brier score logarithmic score

Poisson no -0.6937 -1.4569

NB no -0.6883 -1.4363

GP no -0.6873 -1.4272

ZIP no -0.6921 -1.4549

ZIGP no -0.6878 -1.4291

Poisson yes -0.6280 -1.2422

NB yes -0.6717 -1.3779

GP yes -0.6863 -1.4243

ZIP yes -0.6481 -1.3251

ZIGP yes -0.6900 -1.4529

Table 5.5: Brier score and logarithmic score for the considered models with and without

spatial effects.

support the conclusions drawn in the previous section. For the non spatial models the

GP regression model fits the heterogeneity in the data best, followed by the ZIGP and

NB regression model. The use of a non spatial ZIP regression model does not seem to be

appropriate, the gain in comparison to the non spatial Poisson model for which the lowest

scores are obtained is very small. The scores for the GP and the ZIGP model hardly change

by allowing for spatial effects, indicating that the model specific dispersion parameters

capture the data heterogeneity well. Again a small improvement in the NB model is

observed when spatial effects are included. The scores for the spatial Poisson and ZIP

model however, are considerably smaller than for the other models. This confirms again,

that spatial effects have a significant influence in these models and that a spatial Poisson

model gives the best fit to the data.
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5.4 Conclusions

We have presented several regression models for count data allowing for overdispersion.

Overdispersion is either modelled by the introduction of an additional parameter as in the

NB and GP model, by allowing for an extra proportion of zero observations using zero

inflated models or by combining zero inflated models with overdispersed distributions.

Further, additionally spatial random effects are included in the models in order to ac-

count for unobserved spatial heterogeneity in the data. This approach allows for spatial

correlations between observations.

These models were applied to analyse the number of invasive meningococcal disease cases

in Germany in the year 2004. The DIC, the Brier and the logarithmic score were used

for model comparison. The models allowing for overdispersion gave a significantly better

fit than an ordinary non spatial Poisson regression model. Among these non spatial mod-

els, the GP model fitted the data best, while the overdispersion present did not seem to

be caused by the presence of extra zeros in the data. For the GP and the ZIGP model

the inclusion of spatial effects did not improve the models, in the NB model still some

significant spatial variation was detected. For the Poisson model which does not allow

for overdispersion and the ZIP model which is not modelling the nature of the overdis-

persion appropriately, the inclusion of spatial effects led to a significant improvement.

According to the considered criterions the spatial Poisson model is to be preferred to all

other models. But we would like to note that the spatial model fitted shows no smooth

surface structure, it rather indicates isolated specific regions where the covariates provide

no adequate fit.

Instead of analysing the number of cases of invasive meningococcal disease for one year

only, it might be interesting to include data over several years in the analysis. Space-time

interactions could be included in order to examine whether the spatial pattern changed

over the years.

5.5 Algorithmic schemes

Details on the MCMC algorithms for the presented models are given in the Appendix B.

In this section the algorithmic schemes we finally used are summarized. Most update steps

are performed using a single component Metropolis Hastings (MH) step. For the proposal

distributions either a symmetric random walk proposal or an independence proposal is

used. In particular, for the independence proposal we take a t-distribution with v = 20
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degrees of freedom with the same mode and the same inverse curvature at the mode as

the target distribution, see Section 2.2.2.

5.5.1 GP regression model

• Sample λ|y,β,γ

• Sample βj |y, λ,β−j,γ, j = 0, .., k

• Update of spatial effects

– Sample 1
σ2 |γ, ψ ∼ Gamma

– Sample ψ|γ, σ

– Sample γj|y, λ,β,γ−j, ψ, σ, j = 1, .., J

Since the full conditional of σ2 is Inverse Gamma, σ2 can be sampled directly using a

Gibbs step. For the remaining parameters a MH step is used. In particular, λ, β and

γ are updated component by component using an independence proposal distribution.

The spatial hyperparameter ψ is updated using a random walk proposal. For the Poisson

regression model the algorithmic scheme is the same, but with λ set fix to 0.

5.5.2 NB regression model

• Sample r|y,β,γ

• Sample βj |y, r,β−j,γ, j = 0, .., k

• Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in 5.5.1

– Sample γj|y, r,β,γ−j, ψ, σ, j = 1, .., J

In the NB regression model r,β and γ are updated component by component using

a MH step. For r a random walk proposal is used, while γ and β are updated using an

independence sampler.
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5.5.3 ZI models

To avoid convergence problems in the ZI models which arose in simulated data due to

correlation between the intercept β0, p and λ, we use collapsed algorithms, in particular

β0, p and λ are updated with the latent variables z integrated out, i.e. based on model

(5.6). Doing so convergence and mixing of the samplers was improved a lot.

ZIP model with constant p

• Updates with z integrated out

– Sample β0|y, p,β−0,γ

– Sample p|y,β,γ

• Sample zi|y, p,β,γ ∼ Bernoulli
( p

p+ (1 − p) exp(−µi)
)

∀iwith yi = 0

• Sample βj |y,β−j, z,γ, j = 1, .., k

• Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in 5.5.1

– Sample γj|y,β, z,γ−j, ψ, σ, j = 1, .., J

The latent variables z can be updated using a Gibbs step. Since the full conditional of p

is log concave, adaptive rejection sampling (ARS) introduced by Gilks and Wild (1992) is

used to update p. For the parameters β and γ a MH step using an independence proposal

distribution is performed.

ZIGP model with constant p

• Updates with z integrated out

– Sample β0|y, p, λ,β−0,γ

– Sample p|y, λ,β,γ

– Sample λ|y, p,β,γ

• Sample zi|y, λ, p,β,γ ∼ Bernoulli
( p

p+ (1 − p) exp(−µi)
)

∀iwith yi > 0

• Sample βj |y, λ,β−j, z,γ, j = 1, .., k
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• Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in 5.5.1

– Sample γj|y, λ,β, z,γ−j , ψ, σ, j = 1, .., J

For the ZIGP model the same proposal distributions as in the ZIP model are used. For λ

an independence proposal is taken.





Chapter 6

A Gibbs sampler for spatial Poisson

regression models

In this chapter we present a straightforward Gibbs sampler for spatial Poisson regression

models using data augmentation techniques. In particular, we aim to investigate whether

this Gibbs sampler is found to be superior to a conventional single site Metropolis Hast-

ings (MH) sampler. The issue of model parameterisation and several update schemes for

the parameters in the Gibbs sampler is thoroughly addressed. The performance of the

developed Gibbs sampler schemes and the MH sampler is investigated in two simulation

studies as well as on real data from a German car insurance company. Performance of the

samplers is measured in the computational costs required to obtain the same precision of

the posterior means of the parameters.

Since the full conditional distributions of a spatial Poisson regression model do not follow

any standard distribution, often single site MH steps are performed in a MCMC setting,

see for example Diggle et al. (1998), Dimakos and Frigessi (2002) or Chapter 5 in this

thesis. However, this requires the choice of appropriate proposal distributions in order to

achieve reasonable acceptance rates and a good mixing of the MCMC chains. Advanced

independence proposals, like for example a normal proposal with the same mode and

inverse curvature at the mode as the target distribution which have been used for the

models presented in the previous chapter, can lead to high acceptance rates and low au-

tocorrelations but involve considerable computational efforts.

Frühwirth-Schnatter and Wagner (2004a) developed a Gibbs sampler for Poisson regres-

sion models for small counts. They show that by data augmentation via the introduction

of two sequences of latent variables a linear normal model is obtained. In Frühwirth-

Schnatter and Wagner (2004b) an application of this Gibbs sampler to state space models

59
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is given, in Frühwirth-Schnatter and Wagner (2004a) the same methodology is applied for

standard Poisson regression models and Poisson regression models with overdispersion.

Using similar techniques, a Gibbs sampler for logistic models is developed in Frühwirth-

Schnatter and Waldl (2004).

The aim of this chapter is to show that this methodology can be extended to spatial Pois-

son regression models in a straightforward manner allowing for a Gibbs update of both

regression parameters and spatial effects. Although we only consider spatial Poisson data

distributed on regions in this thesis, the presented methodology could also be applied on

geostatistical Poisson models, see Diggle et al. (1998).

It is well known, that mixing and convergence of the Gibbs sampler depends crucially on

several implementation issues, see for example Roberts and Sahu (1997) for a detailed

discussion. High autocorrelations can be reduced by updating several parameters in one

block or using collapsed algorithms (see Section 2.3), another important issue is model pa-

rameterisation. Gelfand et al. (1995) discuss the efficiency of centered and non-centered

parameterisations for hierarchical normal linear models, Papaspiliopoulos et al. (2003)

address parameterisation issues for several classes of hierarchical models and introduce

partially non-centered parameterisations. Christensen et al. (2005) propose the standard-

ization and orthogonalization of all model components leading to efficient and robust

MCMC algorithms.

In this chapter both centered and non-centered model parameterisations are considered,

various algorithmic schemes, in particular a joint block update of the intercept and the

spatial effects as well as collapsed algorithms, are discussed. The performance of the sam-

plers is examined and compared to a single site MH sampler with independence proposals

in two simulation studies. In the first study, the samplers are applied on data with both

large and small spatial effects, while the second study considers the influence of the data

heterogeneity on the performance of the samplers. The performance of the samplers is

measured in the computational costs required in order to obtain a certain precision of the

posterior means of the regression parameters and spatial effects. This is done by taking

both the Monte Carlo error of the posterior means of the parameters and the computa-

tional time required for one iteration into account. A very similar approach for comparing

the performance of MCMC samplers is conducted by Christensen and Waagepetersen

(2002). Among the Gibbs samplers collapsed algorithms perform best. In particular for

data with small spatial effects, the Monte Carlo errors of the spatial effects are consid-

erably reduced when collapsed samplers and model parameterisations with non-centered

scale or variance are used. The Monte Carlo errors of the regression parameters however
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are rather high, especially for data with low heterogeneity. The MH independence sampler

in contrast, exhibits very low Monte Carlo errors and good mixing for both regression and

spatial effects in all settings. Although the MH sampler requires a higher computational

effort, this drawback is compensated by the high precision of the posterior means of the

parameters. In order to obtain the same precision the Gibbs samplers would have to be

run considerably longer, diminishing the computational advantage in comparison to the

MH sampler. Therefore we have to conclude that the proposed Gibbs sampler for spatial

Poisson regression models can not outperform a single site MH sampler using indepen-

dence proposals.

This chapter is organized as follows. In Section 6.1 the spatial Poisson regression model

is specified and the two steps of the data augmentation scheme are described for this spe-

cific model. Details on several algorithmic schemes for updating the regression and spatial

effects are given in Section 6.2. In Section 6.3 the developed Gibbs sampler schemes are

examined and compared to a single component MH sampler with independence proposals

in two simulation studys. We also apply the Gibbs samplers to model the expected num-

ber of claims in a real data set from a German car insurance company. Section 6.4 gives

a summary and draws conclusions.

6.1 Data augmentation and Gibbs sampler for spatial

Poisson regression models

We assume that observations Yi, i = 1, .., n observed at J regions follow a Poisson model

yi ∼ Poisson(µi). (6.1)

The mean µi is specified by

µi = ti exp(z′iα) := ti exp(x′
iβ + v′

iγ) = ti exp(x′
iβ + γR(i)) (6.2)

where z′i = (x′
i,v

′
i) denotes the covariate vector xi = (1, xi1, .., xip)

′ and the incidence vec-

tor vi = (vi1, .., viJ)
′ for the regions, i.e. vij =

{

1, if R(i) = j

0 otherwise
, with R(i) ∈ {1, .., J}

denoting the region of the i-th observation. Further α = (β,γ)′ denotes the vector of

regression parameters β = (β0, β1, .., βp) and spatial random effects γ = (γ1, ..γJ). By

the inclusion of spatial effects we allow for geographical differences in the J regions. The

quantity ti gives the exposure time for the i-th observation.
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We assume a normal prior distribution centered around zero with a large standard devi-

ation for the regression parameters β, in particular

β ∼ Np+1(0, V0)

where V0 = τ 2Ip+1 with τ 2 = 100. Here Np(µ,Σ) denotes the p-variate Normal distribution

with mean µ and covariance matrix Σ. For the spatial effects the conditional autoregressive

(CAR) prior

γ|ψ, σ2 ∼ NJ(0, σ
2Q−1)

is used where the elements of the precision matrix Q = (Qij), i, j = 1, .., J are defined as

in (4.3), see Section 4. Therefore, we have a multivariate normal prior distribution for the

regression and spatial parameters α which is given by

α|θ ∼ Np+1+J(0,Σ) (6.3)

with Σ =

(

V0 0

0 σ2Q−1

)

. For the spatial hyperparameters θ = (ψ, σ2) the proper prior

distributions

ψ ∼ 1

(1 + ψ)2
and σ2 ∼ IGamma(1, 0.005)

are assumed. The parameterisation of this model described by Observation Equation

(6.2) and Prior Specification (6.3) is called non-centered in the mean, since the intercept

β0 appears in the observation equation, but not in the spatial prior formulation. Other

possible model parameterisations include parameterisations additionally non-centered in

the scale and variance of the spatial prior as well as a centered parameterisation, where

the intercept β0 only appears as the mean of the spatial prior. These parameterisations

are summarized in Table 6.1. For a summary on existing parameterisation techniques

see for example Frühwirth-Schnatter (2004). Initially, our investigations are based on the

non-centered mean parameterisation given by (6.2) and (6.3). Necessary changes when

other parameterisations are used will be indicated specifically.

6.1.1 Step 1: Introduction of hidden inter-arrival times

The basic idea of the data augmentation scheme developed by Frühwirth-Schnatter and

Wagner (2004b) is to regard the Poisson observations yi, i = 1, .., n, as the number of

jumps of an unobserved Poisson process with intensity µi within the unit interval. In the
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parameterisation spatial prior observation equation

centered γc ∼ N(β0, σ
2Q−1) µi = ti exp(x′

i−0β−0 + v
′
iγ
c)

non-centered mean γ ∼ N(0, σ2Q−1) µi = ti exp(β0 + x
′
i−0β−0 + v

′
iγ)

non-centered mean and scale γ∗ ∼ N(0, Q−1) µi = ti exp(β0 + x
′
i−0β−0 + σv′

iγ
∗)

non-centered mean and variance γ∗∗ ∼ N(0, I) µi = ti exp(β0 + x
′
i−0β−0 + σv′

iLγ∗∗)

where LL′ = Q−1

Table 6.1: Spatial prior and observation equation for different model parameterisations,

where xi−0 := (xi1, .., xip)
′ and β−0 := (β1, .., βp)

first step of the data augmentation, yi + 1 hidden inter-arrival times τij , j = 1, .., yi + 1

are introduced for each observation yi. From the properties of a Poisson process, see for

example Mikosch (2004), it is well known that the inter-arrival times are independent and

follow an exponential distribution with parameter µi, i.e.

τij |α ∼ Exponential(µi) =
Exponential(1)

µi
.

Taking the logarithm we obtain

log τij |α = − logµi + ǫij

= − log ti − z′iα + ǫij, ǫij ∼ log(Exponential(1)). (6.4)

Denote by τ = {τij , i = 1, .., n, j = 1, .., yi + 1} the collection of all inter-arrival times.

Then the posterior distribution of α conditional on τ

p(α|θ,y, τ ) = p(α|θ, τ )

is independent of y. Conditional on τ we are now dealing with model (6.4) which is linear

in the parameters α, but still has a non-normal error term.

6.1.2 Step 2: Mixture approximation for error term

The second step of the data augmentation scheme eliminates the non-normality of model

(6.4). The error term in (6.4) can be approximated by a mixture of K normal distributions

with mean mr, variance s2
r and weight wr, r = 1, .., K, i.e.

p(ǫij) = exp(ǫij − exp(ǫij)) ≈
K
∑

r=1

wrfN(ǫij ;mr, s
2
r),
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where fN(·;mr, s
2
r) denotes the density of the normal distribution with mean mr and

variance s2
r. Frühwirth-Schnatter and Wagner (2004b) show that K = 5 is sufficient to

obtain a close approximation to the normal distribution. They also give the corresponding

values for mr, s
2
r and wr. The second step of the data augmentation then consists in the

introduction of the component indicators rij ∈ {1, .., 5} as latent variables. We denote the

set of all component indicators by R = {rij, i = 1, .., n, j = 1, .., yi + 1}. Conditional on

R we have

log τij |α, rij = − log ti − z′iα +mrij + ǫij , ǫij ∼ N(0, s2
rij

),

i.e.

(log τij + log ti −mrij )|α, rij ∼ N(−z′iα, s
2
rij

). (6.5)

Therefore we are dealing with a normal model which is linear in α now. The posterior

distribution of α conditional on τ and R is given by

p(α|θ, τ ,R) ∝ π(α|θ)
n
∏

i=1

yi+1
∏

j=1

1

srij
exp
[

− 1

2s2
rij

(log τij + log ti −mrij + z′iα)2
]

.

Since the prior distribution π(α|θ) is normal as well, the resulting posterior distribu-

tion is multivariate normal and a Gibbs sampler can be applied. Note, that by performing

this data augmentation we are no longer dealing with n but with
∑n

i=1(yi + 1) obser-

vations. Therefore this Gibbs Sampler is mainly useful for count data with small counts

only, otherwise the data set might get very large.

6.1.3 Algorithmic scheme

The algorithmic scheme for the above Gibbs Sampler is the following:

Choose appropriate starting values for the component indicators R and the inter-arrival

times τ .

(1) sample regression and spatial parameters α = (β,γ)′ given τ ,R, θ

(2) sample spatial hyperparameters θ = (ψ, σ2) given α

(3) sample the inter-arrival times τij given α,y

(4) sample the component indicators rij given τ ,α
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Step (1) consists of sampling from a multivariate normal distribution. This can be done

in one block, however it might be computationally more efficient to perform an update

in several smaller blocks. We will consider several update strategies for step (1) later in

more detail. The spatial hyperparameter ψ is updated using a MH step, whereas σ2 can

be updated using a Gibbs step. Steps (3) and (4), elaborated in Frühwirth-Schnatter and

Wagner (2004b), are described in the following sections.

6.1.4 Sampling the inter-arrival times

Given y and α, the inter-arrival times for different observations i = 1, .., n are indepen-

dent. For fixed i however, τi1, .., τi,yi+1 are stochastically dependent, but independent of

the component indicators R. The inter-arrival times τi1, .., τiyi are independent of α and

only depend on the number of jumps, whereas τi,yi+1 depends on the model parameters.

Using this we have

p(τ |y,α,R) =
n
∏

i=1

p(τi1, .., τiyi , τi,yi+1|yi,α)

=

n
∏

i=1

p(τi,yi+1|yi,α, τi1, .., τiyi)p(τi1, .., τiyi|yi)

It is well known that, given yi = n, the n arrival times of a Poisson process are distributed

as the order statistics of n U([0, 1]) distributed random variables, see for example Mikosch

(2004). The last inter-arrival time τi,yi+1, given yi, τi1, .., τiyi, is exponentially distributed

with mean 1
µi

= 1
ti exp(z′iα)

conditionally on being greater than 1−
∑yi

j=1 τij . Using the lack

of memory property of the exponential distribution this corresponds to sampling τi,yi+1

from an exponential distribution with mean 1
µi

plus an ”offset” 1 −
∑yi

j=1 τij . Therefore

the inter-arrival times can be sampled as follows:

• If yi > 0

– sample yi random numbers ui1, .., uiyi ∼ U([0, 1])

– sort these random numbers: ui,(1), .., ui,(yi)

– define τij as the increments τij = ui,(j) − ui,(j−1), j = 1, .., yi where uj,(0) := 0

– sample τi,yi+1 = 1 −
∑yi

j=1 τij + ζi, where ζi ∼ Exponential(µi)

• If yi = 0 sample τi1 = 1 + ζi, where ζi ∼ Exponential(µi)
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6.1.5 Sampling the component indicators

The component indicators R are mutually independent given τ ,α, therefore

p(R|τ ,α) =

n
∏

i=1

yi+1
∏

j=1

p(rij|τij ,α)

Further

p(rij = k|τij,α) =
p(rij = k, τij ,α)

p(τij ,α)
=
p(τij |rij = k,α)p(rij = k)

p(τij |α)

∝ p(τij |rij = k,α)wk (6.6)

since wk = p(rij = k). Since log τij |α, rij ∼ N(− log µi + mrij , s
2
rij

), τij is log normal

distributed, i.e.

p(τij |rij = k,α) ∝ 1

skτij
exp
[

−1

2

( log(τij) + logµi −mk

sk

)2]

.

rij can therefore be sampled from the discrete distribution (6.6) with K = 5 categories.

6.1.6 Starting values

Starting values for the component indicators rij are obtained by drawing random numbers

from 1 to K. For τij starting values are generated according to the sampling procedure de-

scribed in Section 6.1.4. For observations equal to zero we sample ζi ∼ Exponential(0.1),

for observations greater than zero ζi ∼ Exponential(yi), as suggested in Frühwirth-

Schnatter and Wagner (2004b).

6.2 Updating schemes for the regression parameters

and spatial effects

For α = (β,γ) several update schemes are possible and will be discussed in this section.

For notational convenience we define with N :=
∑n

i=1(yi + 1)

τ̃ = (τ̃1, .., τ̃N) := (τ11, .., τ1,y1+1, τ21, .., τ2,y2+1, .., τn1, .., τn,yn+1),

ǫ̃ = (ǫ̃1, .., ǫ̃N ) := (ǫ11, .., ǫ1,y1+1, ǫ21, .., ǫ2,y2+1, .., ǫn1, .., ǫn,yn+1),

m̃ = (m̃1, .., m̃N) := (mr11 , .., mr1,y1+1, mr21 , .., mr2,y2+1 , .., mrn1, .., mrn,yn+1)
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and

s̃2 = (s̃2
1, .., s̃

2
N) := (s2

r11
, .., s2

r1,y1+1
, s2
r21
, .., s2

r2,y2+1
, .., s2

rn1
, .., s2

rn,yn+1
).

Let t̃ = (t̃1, .., t̃N) denote the vector where ti is repeated yi + 1 times. Further define

ỹ = (ỹ1, .., ỹN) := (log τ̃1 − m̃1 + log t̃1, .., log τ̃N − m̃N + log t̃N ).

Using this notation (6.5) is written as

ỹi|α,R ∼ N(−z̃′iα, s̃
2
i )

where z̃ =









z̃′1
...

z̃′N









is a N × (p+ 1 + J)-matrix where zi is repeated yi + 1 times.

6.2.1 Block update of regression parameters and spatial effects

For a joint update of the regression parameters β and the spatial effects γ in one block

we have to consider the full conditional of α = (β,γ)′ which is given by

p(α|θ, τ ,R) ∝ π(α|θ)
N
∏

i=1

exp
(

− 1

2s̃2
i

(ỹi + z̃′iα)2
)

∝ exp
{

−1

2

[

α′Σ−1α +

N
∑

i=1

1

s̃2
i

(ỹi + z̃′iα)2
]}

∝ exp
{

−1

2

[

α′Σαα − 2α′µα

]}

,

where Σα := Σ−1 +
∑N

i=1
1
s̃2i

z̃iz̃
′
i and µα := −

∑N
i=1

1
s̃2i

z̃iỹi.

Hence,

α|θ, τ ,R ∼ Np+1+J(Σ
−1
α µα,Σ

−1
α ).

6.2.2 Separate update of regression parameters and spatial ef-

fects

The calculation of the posterior covariance matrix Σ−1
α in Section 6.2.1 can be computa-

tionally expensive if the number of regression parameters and spatial effects is large as

is the case in most spatial applications. Therefore it might be more efficient to update β

and γ in two separate blocks. The full conditional distributions of β and γ are given by

β|γ, θ, τ ,R ∼ Np+1(Σ
−1
β µβ,Σ

−1
β ) and γ|β, θ, τ ,R ∼ NJ(Σ

−1
γ µγ ,Σ

−1
γ ).

The explicit formulas for Σβ, µβ, Σγ and µγ are given in Table 6.2.
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Section

6.2.2 Σβ := V −1
0 +

∑N
i=1

1
s̃2i

x̃ix̃
′
i

µβ := −∑N
i=1

1
s̃2i

x̃i(ỹi + γR(i))

Σγ := 1
σ2Q+

∑N
i=1

1
s̃2i

ṽiṽ
′
i

µγ := −
∑N

i=1
1
s̃2i

ṽi(ỹi + x̃′
iβ)

6.2.3 Σβ−0 := V −1
0β−0

+
∑N

i=1
1
s̃2i

x̃β−0ix̃
′
β−0i

(block) µβ−0
:= −∑N

i=1
1
s̃2i

x̃β−0i(ỹi + γR(i) + β0)

Σγβ0 :=

(

τ−2 0

0 1
σ2Q

)

+
∑N

i=1
1
s̃2i

(1, ṽi)(1, ṽi)
′

µγβ0
:= −

∑N
i=1

1
s̃2i

(1, ṽi)(ỹi + x̃′
β−0i

β−0)

V0β−0 = τ 2Ip

x̃β−0i = (x̃i1, .., x̃ip)

6.2.4 Σcol := τ−2I +
∑N

i=1
1
s̃2i

x̃ix̃
′
i − (

∑N
i=1

1
s̃2i

ṽix̃
′
i)

′A−1(
∑N

i=1
1
s̃2i

ṽix̃
′
i)

(coll1 ) µcol := (
∑N

i=1
1
s̃2i

ṽix̃
′
i)
′A−1(

∑N
i=1

1
s̃2i

ṽiỹi) −
∑N

i=1
1
s̃2i

x̃iỹi

A :=
∑N

i=1
1
s̃2
i

ṽiṽ
′
i + σ−2Q

6.2.5 Σ∗
col := τ−2I +

∑N
i=1

1
s̃2
i

x̃ix̃
′
i − (σ

∑N
i=1

1
s̃2
i

ṽix̃
′
i)
′(A∗)−1(σ

∑N
i=1

1
s̃2
i

ṽix̃
′
i)

(coll2 ) µ∗
col := (σ

∑N
i=1

1
s̃2i

ṽix̃
′
i)(A

∗)−1(σ
∑N

i=1
1
s̃2i

ṽiỹ
′
i) −

∑N
i=1

1
s̃2i

x̃iỹi

A∗ := σ2
∑N

i=1
1
s̃2i

ṽiṽ
′
i +Q

Σ∗
γ := σ2

∑N
i=1

1
s̃2
i

ṽiṽ
′
i +Q

µ∗
γ := −σ

∑N
i=1

1
s̃2i

ṽi(ỹi + x̃′
iβ)

Σ∗
σ :=

∑N
i=1

1
s̃2i

(γ∗R(i))
2 + τ−2

σ

µ∗
σ := −∑N

i=1 γ
∗
R(i)

1
s̃2
i

(ỹi + x̃′
iβ)

6.2.6 Σ∗∗
col := τ−2I +

∑N
i=1

1
s̃2
i

x̃ix̃
′
i − (σ

∑N
i=1

1
s̃2
i

L̃′vix̃
′
i)
′(A∗∗)−1(σ

∑N
i=1

1
s̃2
i

L̃′vix̃
′
i)

(coll3 ) µ∗∗
col := (σ

∑N
i=1

1
s̃2i
L′ṽix̃

′
i)(A

∗∗)−1(σ
∑N

i=1
1
s̃2i
L̃′viỹ

′
i) −

∑N
i=1

1
s̃2i

x̃iỹi

A∗∗ := σ2
∑N

i=1
1
s̃2i
L′ṽiṽ

′
iL+ I

Σ∗∗
γ := σ2

∑N
i=1

1
s̃2i
L′ṽiṽ

′
iL+ I

µ∗∗
γ := −σ

∑N
i=1

1
s̃2i
L′ṽi(ỹi + x̃′

iβ)

Σ∗∗
σ :=

∑N
i=1

1
s̃2i

(γ∗∗′(
∑N

i=1
1
s̃2i
L′ṽiṽ

′
iL)γ∗∗ + τ−2

σ

µ∗∗
σ := −

∑N
i=1 v′

iLγ∗∗ 1
s̃2i

(ỹi + x̃′
iβ)

6.2.7 µcent
γ := β0

σ2Q1 −
∑N

i=1
1
s̃2i

ṽi(ỹi + x̃′
β−0i

β−0)

(centered) Σβ0 := 1
σ2

∑J
i,j=1Qij + 1

τ2

µβ0 := 1
σ2 1

′Qγc

Table 6.2: Covariance and mean specifications for the update strategies in Sections 6.2.2-

6.2.7.
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6.2.3 Block update of the intercept and the spatial effects (block)

Due to identifiability problems between the intercept β0 and the spatial effects γ mixing

and convergence is not very good when β and γ are updated in two separate blocks.

Better results are achieved if a joint block update of β0 and γ is performed, whereas the

remaining parameters β−0 = (β1, .., βp) are still updated in one separate block. With this

setting the posterior distributions are given by

β−0|β0,γ, θ, τ ,R ∼ Np(Σ
−1
β−0

µβ−0
,Σ−1

β−0
)

and

γ, β0|β−0, θ, τ ,R ∼ NJ+1(Σ
−1
γβ0

µγβ0
,Σ−1

γβ0
)

with Σβ−0 , µβ−0
, Σγβ0 and µγβ0

as given in Table 6.2.

6.2.4 Collapsed algorithm for a model parameterisation with a

non-centered mean (coll1 )

Another possibility is to use a collapsed algorithm. This means, that particular compo-

nents of the posterior are integrated out and an update based on the marginal distribution

is performed. In our context the joint posterior distribution of β and γ can be written as

p(β,γ|θ, τ ,R) ∝ p(β|τ ,R)p(γ|β, θ, τ ,R)

where p(β|τ ,R) =
∫

p(β,γ|θ, τ ,R)dγ is the marginalised posterior density of β with γ

integrated out. It is shown in the Appendix C that

β|τ ,R ∼ Np+1(Σ
−1
colµcol,Σ

−1
col)

with Σcol and µcol as given in Table 6.2.

Step (1) in the algorithmic scheme presented in Section 6.1.3 is then the following for

the collapsed algorithm:

• sample β from Np+1(Σ
−1
colµcol,Σ

−1
col)

• sample γ|β, θ, τ ,R as in Section 6.2.2
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6.2.5 Collapsed algorithm for a model parameterisation with a

non-centered mean and scale (coll2 )

Up to now, we only considered models with the non-centered mean parameterisation

specified by (6.2) and the spatial prior γ|ψ, σ ∼ NJ(0, σ
2Q−1). In this section we consider

a model where the prior of the spatial effects is not only non-centered in the mean, but

in the scale as well, i.e. the third model parameterisation given in Table 6.1. By assuming

γ∗|ψ ∼ NJ(0, Q
−1), σ appears as an unknown parameter in the observation equation, in

particular we have

µi = ti exp(x′
iβ + σγ∗R(i)).

For this parameterisation and π(·) denoting the prior distributions, the joint posterior of

β,γ∗, ψ and σ is given by

p(β,γ∗, ψ, σ|ỹ, τ ,R) ∝ exp
{

−1

2

n
∑

i=1

1

s̃2
i

(ỹi + x̃′
iβ + σṽ′

iγ
∗)2
}

π(β)π(γ∗|ψ)π(ψ)π(σ).

Following the lines of Section 6.2.4 we obtain for β the marginalized posterior distribution

β|σ, τ ,R ∼ Np+1((Σ
∗
col)

−1µ∗
col, (Σ

∗
col)

−1).

The full conditional distribution for γ∗ is given by

γ∗|β, τ ,R, σ, ψ ∼ NJ((Σ
∗
γ)

−1µ∗
γ, (Σ

∗
γ)

−1).

The definitions of Σ∗
col, µ∗

col, Σ∗
γ and µ∗

γ can be found in Table 6.2. The spatial hyperpa-

rameter ψ is again updated using a MH step since the full conditional distribution given

by

p(ψ|γ∗) ∝ |Q| 12 exp(−1

2
γ∗′Qγ∗)π(ψ)

can not be sampled from directly. For this model parameterisation we choose a normal

prior for σ, in particular σ ∼ N(0, τ 2
σ). Note, that σ is not restricted to take positive values,

leading to unidentifiability, since the same likelihood results for (σ,γ∗) and (−σ,−γ∗).

However, as pointed out by Frühwirth-Schnatter (2004), this leads to an improved mix-

ing for models with small scales σ since boundary problems for σ are avoided. The full

conditional distribution of σ is then again normal, in particular

σ|β,γ∗, τ ,R ∼ N((Σ∗
σ)

−1µ∗
σ, (Σ

∗
σ)

−1),

see Table 6.2 for details on Σ∗
σ and µ∗

σ.
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6.2.6 Collapsed algorithm for a model parameterisation with a

non-centered mean and variance (coll3 )

In this section we consider the model parameterisation non-centered in both mean and

variance, also given in Table 6.1. In contrast to the non-centered parameterisation in scale

only considered in the previous section, we now assume the prior

γ∗∗ ∼ NJ(0, I).

The spatial structure incorporated in the precision matrix Q is now moved to the obser-

vation equation given by

µi = ti exp(x′
iβ + σv′

iLγ∗∗),

where L is a lower triangular matrix resulting from the Cholesky decomposition Q−1 =

LL′. The resulting joint posterior distribution of β,γ∗∗, ψ and σ is given by

p(β,γ∗∗, ψ, σ|ỹ, τ ,R) ∝ exp
{

−1

2

n
∑

i=1

1

s̃2
i

(ỹi + x̃′
iβ + σṽ′

iLγ∗)2
}

π(β)π(γ∗∗)π(ψ)π(σ).

The marginalized posterior distribution of β changes to

β|σ, τ ,R ∼ Np+1((Σ
∗∗
col)

−1µ∗∗
col, (Σ

∗∗
col)

−1),

the full conditional distribution of γ∗∗ is given by

γ∗∗|β, τ ,R, σ, ψ ∼ NJ((Σ
∗∗
γ )−1µ∗∗

γ , (Σ
∗∗
γ )−1),

with Σ∗∗
col, µ∗∗

col, Σ∗∗
γ and µ∗∗

γ as given in Table 6.2. The full conditional distribution of ψ

is given by

p(ψ|β,γ∗∗, σ, τ ,R) ∝ exp
{

−1

2

(

γ∗∗′[σ2

N
∑

i=1

1

s̃2
i

L′ṽiṽ
′
iL]γ∗∗ + 2σ

N
∑

i=1

1

s̃2
i

ṽ′
iLγ∗∗(ỹi + x̃′

iβ)
)}

· π(ψ).

While ψ is again updated using a MH step, the full conditional distribution of σ is given

by

σ|β,γ∗∗, ψ, τ ,R ∼ N((Σ∗∗
σ )−1µ∗∗

σ , (Σ
∗∗
σ )−1),

see Table 6.2 for details on Σ∗∗
σ and µ∗∗

σ . Here again the normal prior σ ∼ N(0, τ 2
σ) is

assumed.
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6.2.7 Centered CAR-Model (centered)

Alternatively, the centered spatial prior γc|β0 ∼ N(β0, σ
2Q−1) with β0 ∼ N(0, τ 2) and

β−0 ∼ N(0, τ 2Ip) can be used. For this model the posterior distribution for β−0 is the

same as in Section 6.2.3 but with µβ−0
replaced by −

∑N
i=1

1
s̃2i

x̃β−0i(ỹi + γcR(i)).

The posterior distribution for γc is given by

γc|β0,β−0, θ, τ ,R,y ∼ NJ(Σ
−1
γ µcent

γ ,Σ−1
γ )

where Σγ is the same as in Section 6.2.2 and µcent
γ is given in Table 6.2.

β0 is updated in an extra Gibbs step, in particular

β0|β−0,γ, θ, τ ,R,y ∼ N(Σ−1
β0
µβ0,Σ

−1
β0

)

with Σβ0 and µβ0 defined as in Table 6.2.

6.3 Simulation studies and application

We aim to apply the developed Gibbs samplers to analyse the expected number of claims in

a data set from a German car insurance company. The data include 16307 policyholders in

Bavaria with full comprehensive car insurance within one year and contain information on

several covariates like age and gender of the policyholders, kilometers driven per year and

the geographical region each policyholder is living in. Bavaria is divided into 96 regions.

The variability of these data is very small, 95% of the observations are zero observations,

the highest number of claims observed is only four. The data have been already analysed

by Gschlößl and Czado (2005b) who considered both a spatial Poisson regression model

as well as spatial models taking overdispersion into account. They show that the spatial

effects are very small for these data and have no significant contribution to explaining the

expected claim number.

In this section, the performance of the Gibbs sampler schemes developed in Sections 6.1

and 6.2 will be examined on simulated data first. For comparison, we additionally use a

single site Metropolis Hastings algorithm for spatial Poisson regression models with an

independence proposal where both β and γ are updated component by component. In

particular, we use a t-distribution with 20 degrees of freedom as proposal which has the

same mode and inverse curvature at the mode as the target distribution.

The performance of the samplers is measured in terms of the computation time required

in order to obtain a certain precision of the estimated posterior means of the parameters.
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The posterior mean of a variable θ is given by θ̄ :=
∑R

j=1 θ̂
j with θ̂j , j = 1, .., R denoting

the MCMC iterates of θ after burnin. The precision of θ̄ is given by the Monte Carlo

standard error of θ̄ which is defined as σMC(θ̄) := σasy(θ̄)√
R

where

σ2
asy(θ̄) := V ar(θ)

(

1 + 2
∞
∑

k=1

ρk(θ)
)

denotes the asymptotic variance of θ̄, V ar(θ) the sample variance and ρk(θ) the autocorre-

lation of the MCMC iterates θ̂1, .., θ̂R at lag k. The asymptotic variance will be estimated

using the initial monotone sequence estimator (see Geyer (1992)), defined by

σ̂2
asy(θ̄) := ˆV ar(θ)(1 + 2

2m+1
∑

j=1

ρ̂k(θ)),

where m is chosen to be the largest integer such that the sequence Γm = ρ̂2m(θ)+ ρ̂2m+1(θ)

is positive and monotone. Here ˆV ar(θ) := γ̂0, ρ̂k(θ) :=
γ̂k
γ̂0

, γ̂k := 1
R

∑R−k
j=1 (θ̂j−θ̄)(θ̂j+k−θ̄).

We additionally require the estimated empirical autocorrelations ρ̂2m+1(θ) to fall below

0.1.

In order to obtain a certain precision k, R =
σ̂2
asy

k2 samples are needed. Hence, the compu-

tation time required to obtain a precision k for an algorithm with computational costs m

per iteration, is given by R ·m. For a direct comparison of the Gibbs sampler schemes to

the MH independence sampler we consider the computational costs relative to the costs

of the MH sampler required to obtain the same precision of the posterior means of the

parameters. This is given by Rrel ·mrel :=
σ̂2
asy

σ̂2
asy,ind

· m
mind

, where σ̂2
asy,ind and mind denote

the estimated asymptotic variance and the computational costs for one iteration of the

MH independence sampler.

We consider two studies. In the first study the influence of the size of the spatial effects on

mixing behaviour is examined, while in the second study the impact of data heterogeneity

is investigated. In both studies the Gibbs samplers described in Sections 6.2.3-6.2.7, i.e.

the following model parameterisations and update schemes are assumed:

• non-centered mean:

– block update of β−0|β0,γ and (β0,γ)|β−0 given in Section 6.2.3 (block)

– collapsed algorithm given in Section 6.2.4 (coll1 )

• non-centered mean and scale: collapsed algorithm given in Section 6.2.5 (coll2 )

• non-centered mean and variance: collapsed algorithm given in Section 6.2.6 (coll3 )
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• centered parameterisation: algorithm given in Section 6.2.7 (centered)

In the following we will refer to these samplers as block, coll1, coll2, coll3 and centered.

6.3.1 Computational costs

Recall, that by using the data augmentation scheme described above, we are no longer

dealing with n observations, but with N =
∑n

i=1(yi + 1) latent inter-arrival times τij and

mixture component indicators rij. Both τ and R have to be updated, therefore the number

of variables to sample from in each iteration is 2N + J + p + 1(+2 hyperparameters) in

comparison to J+p+1(+2 hyperparameters) variables in the MH independence sampler.

The MH independence sampler in contrast requires the calculation of the posterior mode

and the inverse curvature at the posterior mode for each of the J + p + 1 components

in every iteration. The posterior mode may be obtained using the bisection method for

example. In our simulation studies, except the sampler coll3, the Gibbs samplers are

always faster than the MH independence sampler. However, the computational advantage

of the Gibbs samplers depends on the complexity of the model. The computational costs

mrel relative to the costs of the MH sampler for one iteration are reported in Table

6.3. For the setting in Study 1 with 5000 observations, an intercept and two covariates for

example, the centered Gibbs sampler only takes 0.86 times as long as the MH independence

sampler. For the setting in Study 2 with a larger data set the centered Gibbs sampler even

takes only 0.26 times as long. Among the Gibbs samplers the centered Gibbs sampler is

the fastest, followed closely by the Gibbs sampler using a block update. The collapsed

Gibbs samplers non-centered in the mean (coll1 ) and non-centered in mean and scale

(coll2 ) require slightly more time than the centered Gibbs sampler. The computational

effort for the Gibbs sampler in the model parameterisation non-centered in the mean and

the variance (coll3 ) however is more than twice as large. In this algorithm a Cholesky

decomposition of the precision matrix Q−1 has to be performed in every iteration.

6.3.2 Study 1: Influence of the size of the spatial effects

We consider two simulated data sets of size 5000 with yi ∼ Poisson(µi), i = 1, .., 5000.

For both data sets the mean µi is specified by

µi = exp(β0 + xi1β1 + xi2β2 + γR(i))

where x1 is an indicator variable and x2 a continuous standardized variable. The exposure

is assumed to be ti = 1 for all observations. We assume a simple spatial structure, namely
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sampler Study 1 Study 2

independence 1 1

block 0.87 0.27

centered 0.86 0.26

coll1 0.96 0.30

coll2 0.99 0.31

coll3 2.18 0.57

Table 6.3: Computation times mrel for the different samplers relative to the MH indepen-

dence sampler for the settings in Study 1 and Study 2.

100 regions on a 10 × 10 grid. The spatial effects γ are generated according to the CAR

prior γ ∼ N(0, σ2Q−1) with spatial dependence parameter ψ = 3. For the first simulated

data set y1 we assume σ2 = 1 resulting in a range of [min(γ) max(γ)] = [−0.86, 0.85] for

the spatial effects, whereas for the second data set y2 we take σ2 = 0.01 resulting in a

range of [min(γ) max(γ)] = [−0.08, 0.08]. The Gibbs samplers block, coll1, coll2, coll3 and

centered as well as the independence MH sampler are run for 5000 iterations, a burnin of

1000 iterations is taken. As described above, the performance of the samplers is measured

in terms of the Monte Carlo standard error of the posterior means of the parameters and

the required computation times. Since estimation of the Monte Carlo error is based on

the estimated empirical autocorrelations, this quantity also depends on the mixing of the

samplers. For a fair comparison of the Monte Carlo error of the spatial effects the model

parameterisation of each sampler has to be taken into account. Therefore we compute the

Monte Carlo error for β0 + γ for the MH independence sampler and the samplers block

and collapsed, while for the centered sampler the standard error of γ is considered since

here the intercept is the spatial prior mean and therefore already included in γ. For the

coll2 and coll3 samplers the Monte Carlo errors for β0 + σγ and β0 + σLγ, respectively,

are computed.

In the left panel of Table 6.4, for each sampler the Monte Carlo standard errors and the

performance relative to the MH independence sampler Rrel ·mrel are reported for the re-

gression parameters β1, β2 and the spatial effects in data set y1. For the spatial effects the

average error, taken over all J components, is given. Additionally plots of the empirical

estimated autocorrelations are presented in Figure 6.1. In the left panel the autocorre-

lations for 25 of the spatial effects, in the right panel autocorrelations for the regression

effects are plotted. Mixing for all Gibbs samplers is reasonable well, in average autocorre-
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lations of the spatial effects are below 0.1 at a lag of about 16 to 18. The average Monte

Carlo error for the spatial effects is around 0.01 for all Gibbs samplers. The Monte Carlo

error of the regression parameters however is lower for the collapsed Gibbs samplers, for

the block and the centered Gibbs sampler especially the autocorrelations of β1 decrease

rather slowly.

The independence MH sampler in contrast, displays the smallest Monte Carlo error for

both spatial effects and regression parameters. In average the autocorrelations of β0+γj are

below 0.1 at a lag 3 already, the autocorrelations for the regression parameters decrease

rapidly as well. Considering the computational effort relative to the MH independence

sampler, given by Rrel ·mrel, the MH independence sampler outperforms the Gibbs sam-

plers considerably. The computational effort required to obtain the same precision of the

posterior means of the spatial effects is more than 5 times as large for the Gibbs samplers

compared to the independence sampler.

Data set y1 Data set y2

sampler spatial β1 β2 spatial β1 β2

effects effects

independence 0.0041 0.0015 0.0032 0.0021 0.0013 0.0030

1 1 1 1 1 1

block 0.0100 0.0039 0.0130 0.0031 0.0042 0.0108

5.18 5.88 14.36 1.90 9.08 11.28

centered 0.0102 0.0045 0.0115 0.0061 0.0078 0.0279

5.32 7.74 11.11 7.26 30.96 74.38

coll1 0.0101 0.0031 0.0117 0.0022 0.0024 0.0097

5.83 4.10 12.83 1.05 3.27 10.04

coll2 0.0099 0.0027 0.0105 0.0025 0.0029 0.0114

5.77 3.21 10.66 1.40 4.93 14.30

coll3 0.0101 0.0024 0.0102 0.0023 0.0026 0.0133

13.23 5.58 22.15 2.62 8.72 42.85

Table 6.4: Estimated σ̂MC (upper row) for the regression parameters β1, β2 and average

estimated σ̂MC for the spatial effects γ +β0 in the MH independence, block, coll1 sampler,

γ in the centered, β0+σγ in the coll2 and β0+σLγ in the coll3 sampler, as well asRrel·mrel

(lower row) for all parameters for data set y1 and y2 using different update strategies in

Study 1.
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The corresponding results for data set y2 with small spatial effects are reported in the

right panel in Table 6.4, plots of the estimated empirical autocorrelations are given in

Figure 6.2. Here, clearly the lowest precision and worst mixing is obtained if the Gibbs

sampler based on the centered model parameterisation is used. This confirms the results

given in Gelfand et al. (1995). They show that for a hierarchical normal linear model with

random effects the centered parameterisation is efficient if the variance of the random

effects dominates the variance in the data. However, if the variance of the random effects

is very small in contrast to the variability of the data (as it is the case in data set y2), high

posterior correlations result. For the block and particularly the collapsed Gibbs samplers

a considerably lower Monte Carlo error is obtained. The average Monte Carlo error of the

spatial effects in the collapsed sampler coll1 is almost as small as in the MH independence

sampler. For the regression effects however, the MH independence sampler exhibits lower

Monte Carlo standard errors. The computational costs Rrel · mrel relative to the MH

sampler, which are required to obtain the same precision of the posterior means of the

parameters are greater 1 for all Gibbs samplers for both spatial effects and regression

parameters. Hence, the independence sampler gives the best performance for data set y2

as well.

The variance of the two simulated data sets y1 and y2 takes the values var(y1) = 0.51 and

var(y2) = 0.49. However, the variability of our real data from a car insurance company

is very small, the variance of these data is only 0.05. Therefore we conduct a second

simulation study where we examine whether the heterogeneity of the data influences the

performance of the samplers.

6.3.3 Study 2: Influence of data heterogeneity

We simulate two data sets based on the design of the real data where, according to Gschlößl

and Czado (2005b), eight covariates significant for explaining the expected claim number

yi were observed, i.e. yi ∼ Poisson(µi), i = 1, .., 16307 with

µi = ti exp(x′
iβ + γR(i)).

Here xi = (1, xi1, .., xi8) and xik, k = 1, .., 8 are standardized categorical and metrical co-

variates, the observation specific exposure ti takes values up to one year. In this setting we

have 96 irregular regions in Bavaria. The spatial effects γ again are generated according

to the CAR prior γ ∼ N(0, σ2Q−1) with ψ = 8 and σ2 = 0.01. This results in small spatial

effects with a range of [−0.06 0.08], i.e. spatial effects similar to the ones observed in
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Figure 6.1: Estimated empirical autocorrelations for the spatial effects (left panel) and

the regression parameters β1 (solid),β2 (dashed) (right panel) for the independence MH

sampler (i), the block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers

for data set y1.

our real data set. For the first data set y3 the intercept β0 is taken to be −1, whereas

for the second data set y4 we take β0 = −2.5. For the remaining regression parameters

the same values are assumed for both data sets. The resulting variances of y3 and y4 are

V ar(y3) = 0.46 and V ar(y4) = 0.05, i.e. data set y4 has very low heterogeneity and is

close to our real data. The variance of data set y3 is not particularly high either, but in

comparison to data set y4 we will refer to this data set as data with high heterogeneity.

The block, centered, coll1, coll2 and coll3 Gibbs samplers are run for 5000 iterations, the

first 1000 iterations are discarded for burnin. For comparison again the MH independence

sampler is applied. The Monte Carlo errors for the posterior means of the regression pa-

rameters β1, .., β8, the spatial effects γ in the centered, β0 + γ in the non-centered mean,

β0 + σγ in the non-centered mean and scale and β0 + σLγ in the non-centered mean
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Figure 6.2: Estimated empirical autocorrelations for the spatial effects (left panel) and

the regression parameters β1 (solid),β2 (dashed) (right panel) for the independence MH

sampler (i), the block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers

for data set y2.

and variance model parameterisation and the quantities Rrel ·mrel are reported in Table

6.5. For the high heterogeneity data set y3 the collapsed Gibbs samplers coll2 and coll3

exhibit the lowest Monte Carlo errors for the spatial effects among the Gibbs samplers.

The sampler coll2 even only requires 38 % of the computational effort of the MH sampler

in order to obtain the same precision for the spatial effects. The precision and autocorre-

lations (see Figure 6.3) of the regression effects however are considerably smaller in the

independence sampler compared to all Gibbs samplers. In order to achieve a high precision

like in the MH sampler for all parameters, for each Gibbs sampler the maximum relative

effort Rrel · mrel, occurring for spatial and regression parameters, is required. Since the

maximum values Rrel ·mrel are considerably greater than 1 for each Gibbs sampler, the

MH sampler is clearly superior to the Gibbs samplers.
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The average Monte Carlo error for the spatial effects in data set y4 with low hetero-
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Figure 6.3: Estimated empirical autocorrelations for the spatial effects (left panel) and

the regression parameters β1, .., β8 (right panel) for the independence MH sampler (i), the

block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers for data set y3.

geneity is rather high for the three Gibbs sampler schemes block, centered and coll1 for

both spatial effects and regression parameters, the estimated empirical autocorrelations

plotted in Figure 6.4 decrease very slowly. While for the high heterogeneity data y3 the

computational costs in order to obtain the same precision for the spatial effects of the

block Gibbs sampler are only 0.65 times as large as of the MH sampler, for the data y4

the performance of the Gibbs sampler is clearly worse with Rrel ·mrel = 5.37. Results are

improved for the collapsed algorithms based on the model parameterisations non-centered

in the scale (coll2 ) and in the variance (coll3 ). The sampler coll2 performs even better

than the MH sampler (Rrel ·mrel = 0.45). As indicated in Section 6.2.5, the model param-

eterisation with non-centered scale is supposed to improve mixing particularly for models

with small scale σ2 which is the case for data sets y3 and y4. However, the Monte Carlo
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Figure 6.4: Estimated empirical autocorrelations for the spatial effects (left panel) and

the regression parameters β1, .., β8 (right panel) for the independence MH sampler (i), the

block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers for data set y4.

errors for the regression parameters are rather high for all Gibbs samplers and in partic-

ular considerably higher than for the high heterogeneity data y3. The MH independence

sampler in contrast exhibits a high precision for all parameters again. Compared to data

set y3, the standard errors for all parameters resulting from the MH sampler are about

twice as large for data set y4, this loss of precision however is much smaller than for

the Gibbs samplers. According to the performance measure Rrel ·mrel for the regression

parameters, the MH sampler outperforms the Gibbs samplers considerably. For example,

although the Gibbs sampler coll2 sampler only requires 31 % of the computation time of

the MH sampler for one iteration (see Table 6.3), 30.33 (Rrel ·mrel for β2) times the effort

of the MH sampler for data set y4 would be needed in order to obtain for all parameters

a precison comparable to the MH sampler.

Note that, compared to the collapsed algorithm coll2, the collapsed algorithm coll3 does
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not display significantly lower standard errors, neither in Study 1 nor in Study 2. The

additional computational effort required for coll3 which is more than twice as large as for

coll2, see Table 6.3, does not pay off.

data sampler spatial β1 β2 β3 β4 β5 β6 β7 β8

effects

ind 0.0020 0.0346 0.0327 0.0003 0.0003 0.0008 0.0010 0.0003 0.0002

1 1 1 1 1 1 1 1 1

y3 block 0.0031 0.1771 0.1627 0.0013 0.0022 0.0042 0.0039 0.0015 0.0009

0.65 7.07 6.68 5.07 14.54 7.44 4.11 6.75 5.47

centered 0.0036 0.1955 0.1768 0.0015 0.0020 0.0038 0.0045 0.0013 0.0010

0.84 8.30 7.60 6.50 11.56 5.87 5.27 4.88 6.50

coll1 0.0040 0.1487 0.1635 0.0011 0.0018 0.0032 0.0032 0.0015 0.0009

1.20 5.54 7.50 4.03 10.80 4.80 3.07 7.50 6.08

coll2 0.0022 0.1561 0.1736 0.0014 0.0021 0.0030 0.0031 0.0012 0.0010

0.38 6.31 8.74 6.75 15.19 4.36 2.98 4.96 7.75

coll3 0.0024 0.1899 0.1505 0.0014 0.0022 0.0031 0.0028 0.0016 0.0011

0.82 17.17 12.07 12.41 30.65 8.56 4.47 16.21 17.24

ind 0.0048 0.0673 0.0611 0.0006 0.0006 0.0017 0.0021 0.0006 0.0005

1 1 1 1 1 1 1 1 1

y4 block 0.0214 0.5199 0.3323 0.0038 0.0041 0.0217 0.0211 0.0076 0.0030

5.37 16.11 7.99 10.83 12.61 43.99 27.26 43.32 9.72

centered 0.0114 0.5906 0.4910 0.0040 0.0052 0.0150 0.0209 0.0060 0.0055

1.47 20.02 16.79 11.56 19.53 20.24 25.75 26.00 31.46

coll1 0.0189 0.6749 0.6181 0.0052 0.0057 0.0129 0.0133 0.0049 0.0049

4.65 30.17 30.70 22.53 27.08 17.27 12.03 20.01 28.81

coll2 0.0058 0.5505 0.6044 0.0038 0.0048 0.0076 0.0070 0.0050 0.0041

0.45 20.74 30.33 12.43 19.84 6.20 3.44 21.53 20.84

coll3 0.0091 0.5301 0.4789 0.0052 0.0056 0.0097 0.0096 0.0048 0.0044

2.05 35.36 35.02 42.81 49.65 18.56 11.91 36.48 44.14

Table 6.5: Estimated σ̂2
MC (upper row) for the regression parameters β1, .., β8 and esti-

mated average σ̂2
MC for the spatial effects γ + β0 in the MH independence, block, coll1

sampler, γ in the centered, β0 + σγ in the coll2 and β0 + σLγ in the coll3 sampler, as

well as Rrel ·mrel (lower row) for data set y3 and y4 using different update strategies in

Study 2.
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6.3.4 Application to car insurance data

Finally we apply the discussed Gibbs samplers as well as the independence MH sampler

on the car insurance data set described at the beginning of this section. The Monte

Carlo errors for the posterior means of the regression and the spatial effects as well

as the corresponding values of Rrel · mrel are reported in Table 6.6. Similar results as

for data set y4 which is very close to our real data, are observed. In particular for the

regression parameters, the performance of all Gibbs samplers is considerably worse than

the performance of the MH independence sampler. When using the non-centered scale

and variance parameterisations at least for the spatial effects reasonable low errors are

obtained, however, according to the relative effort Rrel · mrel the MH sampler is still

superior.

sampler spatial β1 β2 β3 β4 β5 β6 β7 β8

effects

independence 0.0046 0.0673 0.0628 0.0006 0.0007 0.0017 0.0020 0.0006 0.0005

1 1 1 1 1 1 1 1 1

block 0.0192 0.5201 0.3823 0.0051 0.0083 0.0116 0.0203 0.0037 0.0047

4.70 16.13 10.01 19.51 37.96 12.57 27.82 10.27 23.86

centered 0.0138 0.5465 0.5847 0.0045 0.0068 0.0126 0.0145 0.0048 0.0028

2.34 17.14 22.54 14.63 24.54 14.28 13.67 16.64 8.15

coll1 0.0207 0.5967 0.5753 0.0040 0.0073 0.0155 0.0082 0.0043 0.0032

6.08 23.58 25.28 13.33 32.63 24.94 5.04 15.41 12.29

coll2 0.0116 0.4359 0.6172 0.0046 0.0063 0.0122 0.0096 0.0057 0.0044

1.97 13.00 29.94 18.22 25.11 15.97 7.14 27.98 24.01

coll3 0.0100 0.5167 0.5945 0.0056 0.0060 0.0115 0.0110 0.0054 0.0036

2.69 33.60 51.08 49.65 41.88 26.08 17.24 46.17 29.55

Table 6.6: Estimated σ̂MC (upper row) for the regression parameters β1, .., β8 and average

estimated σ̂MC for the spatial effects γ +β0 in the MH independence, block, coll1 sampler,

γ in the centered, β0+σγ in the coll2 and β0+σLγ in the coll3 sampler, as well asRrel·mrel

(lower row) for the car insurance data using different update strategies.
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6.4 Summary and conclusions

We have presented a new MCMC methodology for spatial Poisson regression models, ex-

tending the approach by Frühwirth-Schnatter and Wagner (2004b). Using data augmen-

tation we have shown that a straightforward Gibbs sampler for spatial Poisson models is

available. Several update schemes like a joint block update of the intercept and the spatial

effects as well as collapsed algorithms have been discussed. Further we have addressed the

issue of model parameterisation, centered as well as non-centered model parameterisa-

tions in the mean, the scale and the variance have been considered. The performance of

the Gibbs sampler based on different model parameterisations and update schemes has

been compared to a single site MH independence sampler on simulated and real data.

Performance is measured in terms of the computational costs required in order to obtain

the same precision of the posterior means of the parameters.

For data which are not too homogeneous, the Gibbs samplers display good mixing and

reasonable small Monte Carlo errors. In particular for data with small spatial random

effects, the performance is improved when collapsed Gibbs samplers are used, while the

centered parameterisation is not very efficient any more in this case. The MH indepen-

dence sampler however exhibits the smallest Monte Carlo errors for all parameters for

data with both small and large spatial effects. Taking additionally the required computa-

tion times of the samplers into account, the MH sampler gives the best performance.

For data with low heterogeneity the Monte Carlo errors increase significantly for all Gibbs

samplers, mixing of the samplers is much worse. The MH sampler in contrast also mixes

well for low heterogeneity data, the precision of the posterior means of the parameters

is considerably higher than for the Gibbs samplers. Considering the computation times

of the samplers and the required MCMC iterations in order to obtain the same preci-

sion for all parameters, the MH sampler clearly outperforms the Gibbs samplers for low

heterogeneity data. Similar results are observed for the real data which also display low

heterogeneity.

In the literature various approaches for MCMC estimation in spatial Poisson models are

provided. Knorr-Held and Rue (2002) discuss efficient block sampling MH algorithms for

Markov random field models in disease mapping, based on the methodology developed in

Rue (2001). Haran et al. (2003) study MH algorithms with proposal distributions based

on Structured MCMC, introduced by Sargent et al. (2000), for spatial Poisson models,

while Christensen et al. (2005) discuss Langevin-Hastings updates in spatial GLMM’s.

Rue et al. (2004) present non-Gaussian approximations to hidden Markov random fields
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and give applications in disease mapping and geostatistical models. These methods have

been found to be superior to a conventional MH sampler only performing individual up-

dates of the parameters. Therefore, since a single site MH sampler clearly outperformed

the Gibbs samplers developed in this chapter, a comparison of the Gibbs samplers to these

methods seems to be unnecessary. However, the performance of the Gibbs samplers might

be improved by applying the reparameterisation techniques presented in Christensen et al.

(2005).





Chapter 7

Spatial regression models for claim

size

Premiums in insurance are based on the expected total claim size which is determined

both by the number of claims as well as by the individual or average claim sizes. Spatial

regression models for the number of claims have been discussed in detail in the previous

chapters. Now, we will consider spatial regression models for claim size. One important

contribution of this thesis is that we allow for dependencies between the number of claims

and claim size. This is in contrast to the classical compound Poisson model going back

to Lundberg (1903), where independence of claim frequency and claim size is assumed.

In the classical Poisson-Gamma model the number of claims is assumed to follow a Pois-

son distribution and to be independent of the claim sizes which are modelled Gamma

distributed. The use of GLMs in actuarial science has been discussed by Haberman and

Renshaw (1996) who give several applications, including premium rating in non-life insur-

ance based on models for claim frequency and average claim size. A more detailed study

of GLMs for claim frequency and average claim sizes taking covariate information into

account is given in Renshaw (1994). Taylor (1989) and Boskov and Verrall (1994) analyse

household contents insurance data incorporating geographic information. Whereas Taylor

(1989) uses spline functions, Boskov and Verrall (1994) assume a spatial Bayesian model

based on Besag et al. (1991). However, instead of performing a separate modelling of claim

frequency and claim size, in both papers adjusted loss ratios are fitted.

Another approach, which also does not perform a separate analysis of claim size and

frequency is given by Jørgensen and de Souza (1994) and Smyth and Jørgensen (2002).

They use a compound Poisson model, which they call Tweedie’s compound Poisson model

due to its association to exponential dispersion models, for analysing car insurance data.

87
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Based on the joint distribution of the number of claims and the total claim sizes, they

model the claim rate, defined by the total costs per exposure unit, directly. The problem of

premium rating taking latent structures into account and using separate models for claim

frequency and claim size has been addressed by Dimakos and Frigessi (2002). Based on a

spatial Poisson regression model and a spatial Gamma regression model for the average

claim size, they determine premiums by the product of the expected claim frequency and

the expected claim size. This approach relies on the independence assumption of claim

frequency and claim size. Here the spatial structure is modelled via an improper Markov

Random Field following Besag et al. (1991).

This thesis extends the approach by Dimakos and Frigessi (2002) in several ways. Whereas

Dimakos and Frigessi (2002) consider only models for the average claim size per policy-

holder, we alternatively assume models for the individual claim sizes of each policyholder

and investigate whether this leads to improved predictions of the total claim sizes. Fur-

ther we allow for dependencies between the number of claims and claim size. In particular,

claim size is modelled conditionally on the number of claims which allows us to include

the observed number of claims as covariate. The models for individual and average claim

sizes are presented in Sections 7.1 and 7.2, respectively.

Based on the MCMC output of the models for claim frequency and the average and indi-

vidual claim sizes, respectively, the posterior predictive distribution of the total claim sizes

can be approximated using simulation. This is described in Section 7.3. We would like to

emphasize again, that independence of claim size and claim frequency is not necessary

here.

7.1 Modelling individual claim sizes

For policyholder i = 1, .., n let Sik, k = 1, .., Ni, denote the individual claim sizes for the

Ni observed claims. It is natural for the analysis of claim size to take only observations

with positive claim size into account. In this thesis we are interested in modelling claim

sizes resulting from traffic accidents in car insurance, not including IBNR (incurred but

not reported) losses. These kind of data typically have a skewed distribution, but do no

contain extremely high claims which would require the use of heavy tailed distributions

like for example the Pareto distribution, see for example Mikosch (2004). Therefore we

assume a Gamma model for claim size. In particular, we assume the individual claim sizes
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to be independent Gamma distributed conditionally on Ni

Sik|Ni ∼ Gamma(µSIi , v), k = 1, .., Ni, i = 1, .., n (7.1)

with mean and variance given by

E(Sik|Ni) = µSIi and V ar(Sik|Ni) =
(µSIi )2

v
.

For the parameterisation used here, the density of the Gamma distribution is given by

f(sik|µSi , v) =
v

µSIi Γ(v)

(vsik
µSIi

)v−1

exp
(

−vsik
µSIi

)

.

We consider a regression on the mean µSIi including covariates wi and spatial effects ζI

for the J geographical regions. By choosing a log link we obtain

µSIi = exp(w′
iα

I + ζIR(i)
), k = 1, .., Ni, i = 1, .., n. (7.2)

Here wi = (1, wi1, .., wip)
′ denotes the vector of covariates for the i-th observation including

an intercept, αI = (αI0, α
I
1, .., α

I
p)

′ the vector of unknown regression parameters and ζI =

(ζI1 , .., ζ
I
J) the vector of spatial effects which are modelled by the CAR prior specified in

Chapter 4, like in the Poisson model for claim frequency. Since we consider a model for

the individual claim sizes conditionally on the number of claims, the observed number of

claims Ni may be introduced as a covariate as well. The number of claims per policyholder

observed in car insurance data typically is very low, therefore we include Ni as a factor

covariate with reference level Ni = 1. Hence, including number of claims effects denoted

by αINi=k, k = 2, ..,maxiNi, the mean µSIi reads as follows

µSIi = exp(w′
iα

I + ζIR(i)
) (7.3)

= exp(

p
∑

k=0

wikα
I
k +

maxiNi
∑

k=2

nkiα
I
Ni=k

+ ζIR(i)
), k = 1, .., Ni, i = 1, .., n,

where nki =

{

1, Ni = k

0, otherwise
.

Additional variability between policyholders might be modelled by replacing, the number

of claims effects αINi=k, k = 1, ..,maxiNi in (7.3) with normal distributed policyholder

specific random effects ci|Ni ∼ N(αINi=k, σ
2
Ni=k

) centered at αINi=k and variance σ2
Ni=k

depending on the number of observed claims. However, this model extension did not

improve the model fit for the data considered in the application presented in Chapter 8

and therefore will not be further persecuted.
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7.2 Modelling average claim sizes

Alternatively, the average claim sizes Si, i = 1, .., n can be modelled. The average claim

size Si for policyholder i is given by

Si :=

Ni
∑

k=1

Sik
Ni

.

Since we assume the Sik|Ni, k = 1, .., Ni to be independent and identically distributed, the

average claim size Si given the observed number of claims Ni is again Gamma distributed

with mean E(Si|Ni) = µSAi = µSIi and variance V ar(Si|Ni) =
(µSAi )2

Niv
, that is we have

Si|Ni ∼ Gamma(µSAi , Niv). (7.4)

Again a regression is performed on the mean µSAi , both covariates and spatial effects are

taken into account. Note, that the covariates w̃ = (1, w̃1, .., w̃p̃) do not necessarily have

to be the same ones as for the individual claim sizes and that the estimated regression

parameters and spatial effects for the average claim size will differ from the ones for

the individual claim sizes. To point this out, we use the index A for the mean µSAi , the

regression parameters αA and the spatial effects ζA in the model for average claim sizes.

With a log link we obtain the following model

µSAi = exp(w̃′
iα

A + ζAR(i)).

Here again, number of claims effects αANi=k, k = 1, ..,maxiNi, can be included leading to

µSAi = exp(w̃′
iα

A + ζAR(i)
) (7.5)

= exp(

p̃
∑

k=0

w̃ikα
A
k +

maxiNi
∑

k=2

nkiα
A
Ni=k

+ ζAR(i)
), k = 1, .., Ni, i = 1, .., n,

with nki defined as in the previous section.

Prior distributions for claim size models

Similar to the models for the number of claims (see Section 5.2) we have little prior

knowledge on the regression parameters αI and αA in the models for individual and

average claim sizes, respectively. Therefore we assume a normal prior with large standard

deviation, in particular,

αI ∼ Np+maxiNi(0, τ
2Ip+maxiNi), αA ∼ Np̃+maxiNi(0, τ

2Ip̃+maxiNi)
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with τ 2 = 100 which is a common choice. For the scale parameter v the gamma prior

v|a, b ∼ Gamma(a, b), i.e. π(v|a, b) = ba

Γ(a)
va−1 exp(−vb) with a = 1 is assumed, resulting

in the conditional mean and variance given by E(v|a = 1, b) = 1
b

and V ar(v|a = 1, b) = 1
b2

.

Following a fully Bayesian approach we also assign a noninformative gamma prior to the

hyperparameter b, in particular b|c, d ∼ Gamma(c, d), i.e. π(b|c, d) = dc

Γ(c)
bc−1 exp(−bd)

with c = 1 and d = 0.005, resulting in E(b|c, d) = 200 and V ar(b|c, d) = 40000. However,

the models turn out to be very robust with respect to the prior on b, a very similar

estimated posterior mean of v is obtained when b is fixed to 0.005, which is a popular

choice for a flat gamma prior.

The spatial effects are modeled using the CAR prior described in Chapter 4, i.e.

ζ l|σ2, ψ ∼ NJ(0, σ
2Q−1), l = I, A,

with the elements of Q defined as in (4.3). For the hyperparameters σ2 and ψ the same

prior distributions as in Section 5.2 are assumed. The hyperparameter b can be sampled

directly from a Gamma distribution. For the regression parameters, the spatial hyperpa-

rameters and the scale parameter v a single component MH algorithm with symmetric

random walk is used. The spatial effects are updated component by component using an

independence MH sampler with a t-proposal distribution with the same mode and inverse

curvature at the mode as the target distribution, see Section 2.2.2.

7.3 Posterior predictive distribution of the total claim

size

The distribution of the total claim sizes is not available analytically, but can be determined

numerically using recursion formulas going back to Panjer (1981) when independence of

claim size and claim frequency is assumed. In our approach the independence assumption

is violated, however, based on the MCMC output of the models for the number of claims

and claim size the posterior predictive distribution of the total claim size can be approx-

imated. For this independence of claim size and the number of claims is not required.

In the following we describe how the total claim size STi =
∑Ni

k=1 Sik for policyholder

i = 1, .., n can be simulated based on the MCMC output. Let β̂
Nj

, γ̂Nj ,α̂Aj, ζ̂
Aj

, α̂Ij,

ζ̂
Ij
, j = 1, .., R denote the MCMC draws after burnin for the regression parameters and

spatial effects of the claim frequency and claim size models, respectively. The quantities

v̂Aj and v̂Ij denote the MCMC draws of v in the Gamma model for average and individual
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claim sizes, respectively. Then, for models based on the average claim sizes, proceed as

follows. For j = 1, .., R

• simulate N j
i ∼ Poisson(µ̂i

Nj) where µ̂i
Nj := ti exp(xN ′

i β̂
Nj

+ γ̂NjR(i))

• if N j
i = 0 set STji = 0

• otherwise simulate:

Sji ∼ Gamma(µ̂SAji , v̂AjN j
i ) where µ̂i

SAj := exp(w̃′
iα̂

Aj+ ζ̂AjR(i)) and set STji = N j
i ·Sji

Based on the models for individual claim sizes, the simulation of the total claim size

changes to: for j = 1, .., R

• simulate N j
i ∼ Poisson(µ̂i

Nj) where µ̂i
Nj := ti exp(xN ′

i β̂
Nj

+ γ̂NjR(i))

• if N j
i = 0 set STji = 0

• otherwise simulate for k = 1, .., N j
i :

Sjik ∼ Gamma(µ̂SIji , v̂Sj) where µ̂i
SIj := exp(w′

iα̂
Ij + ζ̂IjR(i)) and set STji =

∑Nj
i

k=1 S
j
ik

Thus, a sample STji , j = 1, .., R of the total claim size STi is obtained by which the posterior

predictive distribution of STi can be approximated.



Chapter 8

Application to German car insurance

data

The models described in the previous chapter will now be used to analyse individual and

average claim sizes in a data set from a German car insurance company. Since we aim

to obtain the posterior predictive distribution of the total claim size, we also analyse the

number of claims in this data set. This will be done using some of the models discussed

in Chapter 5.

Our main questions of interest for this application are the followings: does the inclusion of

spatial effects improve the models and can we observe a spatial pattern for the expected

number of claims and the expected claim sizes? Do the individual and average claim sizes

of a policyholder depend on the number of observed claims, i.e. are there significant num-

ber of claims effects for the models for claim size? Based on the models for the number of

claims and claim size, we will finally approximate the posterior predictive distribution of

the total claim sizes. Here again, we are interested, to what extent the inclusion of spatial

and claim number effects influences the total claim sizes. Should we prefer models for the

individual or the average claim sizes?

Models are compared using several criteria like the deviance information criterion (DIC),

the predictive model choice criterion (PMCC) and several scoring rules discussed in Chap-

ter 3. The inclusion of spatial effects leads to a significantly improved model fit both for

claim frequency and claim size, more accurate predictions of the total claim sizes are

obtained. When spatial effects are neglected the posterior predictive means of the total

claim sizes in some regions with particular high (low) observed total claims are estimated

considerably lower (higher) than based on the spatial models. Further, effects for the

number of claims turn out to be significant for the claim size models, for an increasing

93
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number of claims, both average and individual claim sizes tend to decrease. The results

for the average and individual claim sizes are very similar, therefore modelling of average

claim sizes seems to be sufficient.

8.1 Data description

The data set contains information about policyholders in Germany with full comprehen-

sive car insurance within the year 2000. Not all policyholders were insured during the

whole year, however the exposure time ti of each policyholder is known. Several covari-

ates like age and gender of the policyholder, kilometers driven per year, type of car and

age of car are given in the data. The deductible which differs between policyholders will

also be included as covariate. Germany is divided into 440 regions, for each policyholder

the region he is living in is known. We analyse a subset of these data, in particular we

only consider traffic accident data for policyholders with three types of midsized cars. The

resulting data set contains about 350000 observations. There is a very large amount of

observations with no claim in the data set and the maximum number of observed claims

is only 4, see Table 8.1.

number of claims percentage of observations

0 0.960

1 0.039

2 6.9 · 10−4

3 1.7 · 10−5

4 2.8 · 10−6

Table 8.1: Summary of the observed claim frequencies in the data.

The histogram of the observed positive individual claim sizes in DM given in Figure 8.1

reveals that the distribution of the claim sizes is highly skewed. The average individual

claim size is given by DM 5371.0, the largest observed claim size takes the value DM

49339.1 which is less than 0.01 % of the sum of all individual claim sizes. Therefore, the

data do not contain extreme values giving rise for the use of heavy tailed distributions

and the Gamma model seems to be justified.

For an increasing number of observed claims, the average individual claim sizes decrease,

see Table 8.2, indicating a negative correlation between claim size and number of claims.
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Figure 8.1: Histogram of the observed positive individual claim sizes.

all observations Ni = 1 Ni = 2 Ni = 3 Ni = 4

mean 5371.0 5389.9 4403.8 3204.2 330.5

Table 8.2: Mean of the observed individual claim sizes taken over all observations and

over observations with Ni = k, k = 1, 2, 3, 4 observed claims separately.

8.2 Modelling claim frequency

We first address the modelling of claim frequency. In order to identify significant covari-

ates and interactions, the data set is analysed in Splus first using a Poisson model without

spatial effects. The obtained covariates specification is then used as a starting specifica-

tion for our MCMC algorithms. An intercept, seventeen covariates like age, gender of the

policyholders or mileage and interactions were found to be significant for explaining claim

frequency. However, for reasons of confidentiality no details about these covariates and

their effects will be reported. In order to obtain low correlations between covariates, we

use centered and standardized covariates throughout the whole application. Since Ger-

many is divided into 440 irregular spaced regions, 440 spatial effects are introduced for

the MCMC analysis. We are interested in spatial effects after adjusting for population

effects, therefore the population density in each of these regions is included as covariate

as well. In particular the population density is considered on a logarithmic scale which

turned out to give the best fit in the initial Splus analysis.

We assume the Poisson, generalized Poisson (GP) and zero inflated Poisson (ZIP) re-

gression models presented in Chapter 5. All models include the same covariates and

interactions. The same prior distributions (see Section 5.2) and MCMC algorithms as

in Chapter 5 are used. The MCMC algorithms are run for 10000 iterations, a burnin

of 1000 iterations is found to be sufficient after investigation of the MCMC trace plots.

Both models including and without spatial effects, all containing the same covariates, are
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assumed. The estimated posterior means of the model specific parameters λ in the GP

and p in the ZIP models as well as summary statistics on the estimated dispersion factors

ϕ̂ := 1
R

∑R
j=1

1

(1−λ̂j) in the GP and ϕ̂ := 1
R

∑R
j=1(1 + p̂jµ̂ji ) in the ZIP model are reported

in Table 8.3. Here λ̂j , p̂j and µ̂ji = ti exp(x′
iβ̂

j
) denote the j-th MCMC iterates, R gives

the number of recorded MCMC iterations after burnin. The overdispersion parameter λ

in the GP model without and including spatial effects is estimated very close to zero,

the estimated posterior mean of the dispersion factor takes the value 1.0004, indicating

that no overdispersion is present in these data. The proportion of extras zeros p in the

ZIP models is estimated by only 2.61 % and 3.05 % in the models including and without

spatial effects. Therefore, despite the large amount of zero observations in the data, most

of them are explained as zeros arising from the underlying Poisson model. However, the

dispersion factors in the ZIP models are estimated notedly higher than in the GP model,

i.e. the variability of the data is estimated higher in the ZIP models.

model γ model specific ϕ̂i

parameters mean min 25 % 50 % 75 % max

GP no λ̂ : 1.80 · 10−4 1.0004

(4.40 · 10−6, 6.70 · 10−4)

GP yes λ̂ : 1.97 · 10−4 1.0004

(7.74 · 10−6, 7.19 · 10−4)

ZIP no p̂: 0.0305 1.0639 1.0626 1.0634 1.0639 1.0643 1.0782

(0.0010, 0.0886)

ZIP yes p̂: 0.0261 1.0548 1.0537 1.0543 1.0547 1.0551 1.0663

(0.0007, 0.0902)

Table 8.3: Estimated posterior means of the model specific parameters λ in the GP model

and p in the ZIP model with 95% credible intervals given in brackets and summary

statistics for the estimated model specific dispersion parameters ϕ̂i.

model mini γ̂i maxi γ̂i

Poisson -0.441 0.285

GP -0.430 0.282

ZIP -0.429 0.279

Table 8.4: Range of the estimated posterior means of the spatial effects in the Poisson,

GP and ZIP model.

The range of the estimated posterior means of the spatial effects γ̂i = 1
R

∑R
j=1 γ̂

j
i , i =
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1, .., J , given in Table 8.4, is almost the same in all models and only slightly decreases in

the GP and ZIP model compared to the Poisson model.

We compare models using the DIC and the PMCC, see Table 8.5. The DIC is about the

same for all spatial models, giving no preference to the GP and ZIP models. However,

when spatial effects are neglected, the DIC values increase significantly for all models,

indicating that significant spatial effects are present. This shows that, after taking the

information given by the covariates into account, there is still some unexplained spatial

heterogeneity present in the data which is captured by the spatial effects. Although the

inclusion of the population density in each region allows for geographic differences already,

spatial random effects still have a significant influence on explaining the expected number

of claims. The values of the PMCC also decrease for the spatial models compared to the

non spatial ones, the lowest value is obtained for the spatial Poisson model. Note, that the

first term of the PMCC representing the model fit is about the same for all spatial and non

spatial models, respectively. The second term of the PMCC in contrast, is considerably

higher for the ZIP models, indicating that the variability estimated in the ZIP model is

rather high. This concurs with the estimated dispersion factors which are high in the ZIP

model, compared to the GP model.

Hence, the spatial Poisson regression model seems to be sufficient for these data, apart

from the unobserved spatial heterogeneity captured by the spatial effects no overdispersion

could be detected in the data. Therefore, in the following only the Poisson model will be

considered.

model γ DIC E[D(θ|y)] pD PMCC
∑n

i=1(µi − yi)
2
∑n

i=1 σ
2
i

Poisson no 122372 122356 16.0 28624 14297 14328

Poisson yes 122143 122045 98.2 28613 14280 14334

GP no 122374 122358 16.1 28629 14297 14332

GP yes 122144 122048 96.4 28617 14280 14337

ZIP no 122374 122358 15.9 29547 14297 15250

ZIP yes 122142 122052 90.8 29399 14281 15117

Table 8.5: DIC, posterior mean of the deviance D(θ|y), effective number of parameters

pD and PMCC, split in its two components, for the considered models for claim frequency

with and without spatial effects γ.

The left panel in the top row in Figure 8.2 shows a map of the estimated posterior means

of the spatial effects in the Poisson model. The corresponding posterior means of the risk



98 8. Application to German car insurance data

factors exp(γi) for the minimum and maximum spatial effects are given by 0.65 and 1.34.

A trend from the east to the west of Germany is visible, the risk for claims tends to be

lower in the east and increases towards the south western regions. A map of the 80 %

credible intervals for the spatial effects is given by the right panel. For the eastern and

south western regions significant spatial effects are present, whereas the spatial effects for

the regions in the middle of Germany do not significantly differ from zero.

8.3 Modelling average claim sizes

In this section the average claim sizes Si :=
∑Ni

k=1 Sik are analysed using the spatial

Gamma regression Model (7.4), i.e. Si|Ni ∼ Gamma(µSAi , Niv) with mean specification

(7.5). Considering only observations with a positive number of claims, altogether 14066

observations are obtained. Again, significant covariates and interactions are identified by

analysing the data in Splus first, assuming a Gamma model without spatial effects. An

intercept and fourteen covariates including gender, type and age of car as well as the

population density in each region, modelled as polynomial of order four, have been found

to have significant influence. Further, the observed number of claims Ni is included as

covariate. Since the highest number of claims is four, the number of claims is treated as

a factor with three levels where Ni = 1 is taken as reference level. These covariates will

be taken into account when analysing the data set using MCMC. Therefore, including

spatial and number of claims effects the mean µSAi is specified by

µSAi = exp(w̃′
iα

A + ζAR(i)) = exp(

15
∑

k=1

w̃ikα
A
k + n2iα

A
Ni=2 + n3iα

A
Ni=3 + n4iα

A
Ni=4 + ζAR(i))

where nki =

{

1, Ni = k

0, otherwise
. We consider both models with and without number of

claims effects αANi=k, k = 2, 3, 4 in the following, to quantify the influence of these effects.

The MCMC sampler for Model (7.4) including and without spatial effects and the observed

number of claims is run for 10000 iterations. Again a burnin of 1000 is found to be

sufficiently large. Models are compared using the DIC, the PMCC and some of the scoring

rules given in Section 3. The lowest value of the DIC is obtained for the model both

including Ni and spatial effects (see Table 8.6). Although the increase of the estimated

effective number of parameters is very small when the number of claims is included as

covariate, the values of the posterior mean of the deviance decreases by 28 and 40 in the

model with and without spatial effects respectively, indicating a significant improvement.



8.3. Modelling average claim sizes 99

number of claims

−0.441 0.285 −1 1

average claim size

−0.215 0.119 −1 1

individual claim size

−0.204 0.129 −1 1

Figure 8.2: Map of the estimated posterior means (left) together with map of the 80 %

credible intervals (right) for the spatial effects in the Poisson (top row), average (middle

row) and individual (bottom row) claim size regression model. For grey regions, zero is

included in the credible interval, black regions indicate strictly positive, white regions

strictly negative credible intervals.
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average claim size models

model with DIC E[D(θ|y)] pD

αANi=k ζA

yes yes 269092 269020 72.7

yes no 269136 269119 16.5

no yes 269122 269048 73.9

no no 269175 269159 15.9

αANi=k ζA LS ISα=0.5 ISα=0.1 CRPS PMCC
∑n

i=1(µi − yi)
2

∑n
i=1 σ

2
i

yes yes -9.5642 -11152 -4082.4 -2471.9 7.332 · 1011 3.540 · 1011 3.792 · 1011

yes no -9.5699 -11225 -4105.2 -2481.8 7.363 · 1011 3.575 · 1011 3.788 · 1011

no yes -9.5669 -11161 -4086.7 -2474.2 7.290 · 1011 3.538 · 1011 3.752 · 1011

no no -9.5734 -11234 -4114.9 -2484.3 7.321 · 1011 3.580 · 1011 3.741 · 1011

individual claim size models

model with DIC E[D(θ|y)] pD

αINi=k ζI

yes yes 273888 273803 85.1

yes no 273935 273914 21.2

no yes 273961 273883 78.1

no no 274009 273991 17.7

αINi=k ζI LS ISα=0.5 ISα=0.1 CRPS PMCC
∑n

i=1(µi − yi)
2

∑n
i=1 σ

2
i

yes yes -9.5539 -11129 -4072.3 -2467.6 7.428 · 1011 3.596 · 1011 3.832 · 1011

yes no -9.5600 -11206 -4101.6 -2478.5 7.452 · 1011 3.636 · 1011 3.816 · 1011

no yes -9.5570 -11157 -4087.2 -2473.8 7.432 · 1011 3.611 · 1011 3.822 · 1011

no no -9.5628 -11232 -4106.7 -2483.6 7.468 · 1011 3.650 · 1011 3.819 · 1011

Table 8.6: DIC, posterior mean of the deviance D(θ|y), effective number of parameters

pD and mean score Sn(θ) for scoring rules LS, ISα (α = 0.5, 0.1), CRPS and PMCC, split

in its two components, for the models including and without spatial and claim number

effects. In the top tables results for the average claim size models, in the lower tables

results for the individual claim size models are given.
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The results for the scoring rules and the PMCC, divided into its two components, are

reported in Table 8.6 as well. The computation of the DIC, the PMCC and the scores

is based on 5000 iterations of the MCMC output, the first 5000 iterations are neglected.

Note, that the computation of the interval score ISα and the continuous ranked probability

score CRPS is based on simulated data, whereas the logarithmic score LS and the PMCC

are calculated directly using the MCMC output. For the logarithmic score LS, the interval

score ISα and the CRPS the highest mean score Sn(θ) is obtained for the model including

spatial effects and number of claims effects. This confirms the significance of spatial and

number of claims effects. According to the negatively oriented PMCC the spatial models

also are to be preferred to the non-spatial ones. However, lower values of the PMCC are

obtained for the models without number of claims effects which is mainly caused by the

second term of the PMCC. Here it should be kept in mind, that the PMCC is not a proper

scoring rule as noted in Section 3.2.3.

A map of the posterior means and the 80 % credible intervals of the spatial effects for

the model both including spatial effects and Ni is given in the middle row in Figure 8.2.

Similar results are obtained for the model without Ni. The estimated posterior means of

the risk factors exp(γi) for the minimum and maximum spatial effects range from 0.81

to 1.13. Contrary to the estimated spatial effects for claim frequency, the average claim

size tends to be higher for some regions in the east of Germany, whereas for regions in

the south western part lower claim sizes are to be expected. Again, according to the 80 %

credible intervals, the spatial effects are only significant for some regions in the east and

the south west of Germany.

The estimated posterior means together with 95 % credible intervals of the number of

claims effects αANi=k, k = 2, 3, 4 are reported in Table 8.7. For an easier interpretation of

the results we also give the estimated posterior means of the factors exp(αANi=k), k = 2, 3, 4

which quantify the relative risk in contrast to observations with the same covariates

but only one observed claim. Compared to a policyholder with one observed claim, the

expected average claim size for an observation with two observed claims decreases by

about 25 %. If three or four claims have been reported, the expected average claim size

even decreases by about 75 % and 92 %, respectively. This is illustrated graphically in

Figure 8.3 where scatterplots of the estimated posterior means µ̂i
SA in the model without

Ni (x-axis) to the ones in the model including Ni (y-axis) are given. In the left panel

the scatterplot for all observations with one claim is given, while in the middle and right

panel the corresponding plots for all observations with two and three observed claims,

respectively, are shown. Since only one observation with four claims is given in the data,
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average claim size models

parameter posterior mean of αANi=k posterior mean of exp(αANi=k)

αAN(i)=2 -0.295 0.745

(−0.382,−0.203) (0.683, 0.817)

αAN(i)=3 -1.951 0.146

(−2.376,−1.462) (0.093, 0.232)

αAN(i)=4 -2.642 0.082

(−3.473,−1.544) (0.031, 0.214)

individual claim size models

parameter posterior mean of αIN(i)=k posterior mean of exp(αINi=k)

αIN(i)=2 -0.237 0.789

(−0.305,−0.167) (0.737, 0.846)

αIN(i)=3 -0.559 0.575

(−0.756,−0.349) (0.470, 0.705)

αIN(i)=4 -2.636 0.0842

(−3.507,−1.501) (0.030, 0.223)

Table 8.7: Estimated posterior means of the number of claims effects and the risk factors

exp(αlN(i)=k), l = I, A in the Gamma model for average (top) and individual (bottom)

claim sizes including spatial effects, with the 95 % credible intervals given in brackets.

the scatterplot for Ni = 4 is omitted. The estimation of the expected average claim sizes

for the observations with one claim is very close in the models with and without number

of claims effects, which is to be expected since Ni = 1 is the baseline. The means µSAi

for observations with two or three claims in contrast are estimated notedly smaller when

number of claims effects are taken into account.

8.4 Modelling individual claim sizes

Now, the individual claim sizes Sik, k = 1, .., Ni, i = 1, .., n will be analysed directly

using Model (7.1), i.e. Sik|Ni ∼ Gamma(µSIi , v).This time we do not consider the data

aggregated for each policyholder like in Section 8.3, but deal with Ni positive claims

for every person, resulting in 14325 observations altogether. The data have again been
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Figure 8.3: Scatterplots of the estimated posterior means µ̂SAi in the spatial Gamma

models for average (top) and individual (bottom) claim sizes with and without number

of claims effects, the solid line gives the 45 degree line.

analysed in Splus first using a Gamma model without taking spatial effects into account.

Altogether an intercept and sixteen covariates, the same ones as for the average claim

size and two additional interaction terms, turned out to be significant for explaining the

individual claim sizes. Again, we assume both models with and without the observed

number of claims Ni as a factor covariate and including and without spatial effects. When

both spatial and claim number effects are included, the mean µSIi reads

µSIi = exp(w′
iα

I + ζIR(i)) = exp(
17
∑

k=1

wikα
I
k + n2iα

I
Ni=2 + n3iα

I
Ni=3 + n4iα

I
Ni=4 + ζIR(i)).

10000 iterations of the MCMC algorithm are performed and a burnin of 1000 is taken.

According to the DIC values for these models given in Table 8.6, the model fit is signif-

icantly improved by including the number of claims as covariate. Taking spatial effects

into account additionally gives a better model fit. The results for the scoring rules and

the PMCC are also given in Table 8.6. Confirming the results of the DIC, the highest
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mean score of scoring rules LS, ISα and CRPS and the lowest value of the PMCC is

obtained for the model both including spatial effects and number of claims effects. The

estimated posterior means of the spatial effects for the model including Ni together with

the 80 % credible intervals are given in the bottom row in Figure 8.2. The results are

very similar to the findings for the average claim size in the previous section, here the

minimum and maximum posterior means of the risk factors exp(γi) are given by 0.82 and

1.14, respectively.

In Table 8.7 the estimated posterior means together with 95% credible intervals are re-

ported for the number of claims effects αINi=k and the relative risk factors exp(αINi=k), k =

2, 3, 4, in the model including spatial effects. The effects are significant for all levels, in-

dicating a decrease of the expected individual claim sizes for an increasing number of

claims. The results are also illustrated in Figure 8.3 using scatterplots. Again, the esti-

mated posterior means µ̂i
SI of the model means µSIi based on the spatial model without

claim number effects for observations with two or three claims are clearly higher than

the ones based on the spatial model including the number of claims as covariate. Note,

that in comparison to the results for the average claim size where the factor exp(αANi=3)

for observations with three claims was estimated by 0.146, the factor exp(αINi=3) for the

individual claim sizes is estimated by 0.575, resulting in a considerably lower decrease of

the expected individual claim sizes. A direct comparison of the models for average and

individual claim sizes based on the DIC, the PMCC or the scoring rules is not possible,

since the average claim size models are based on aggregated data resulting in less obser-

vations. However, qualitatively the findings are very similar, in both approaches the best

model fit is obtained when both spatial and claim number effects are taken into account.

8.5 Posterior predictive distribution of the total claim

size

Based on the MCMC output of the models for the number of claims and claim size the

posterior predictive distribution of the total claim size can be approximated, as described

in Section 7.3. In order to compare the simulated total claim sizes STi based on the

different models for claim size and claim frequency, we compute the continuous ranked

probability score CRPS and the predictive model choice criterion PMCC. The DIC and

the logarithmic score cannot be computed here, since they are based on the explicit form

of the total claim size distribution which is not available. The interval score will also
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be omitted out of the following reasons: Due to the large amount of observations with

zero claims in our data set, the percentage of simulations with total claim size equal to

zero is also very high. Zero will be included in the (1 − α) 100 % posterior predictive

intervals of the total claim sizes for α = 0.5, 0.1 for almost all observations. Therefore

only observations falling above the upper quantiles of the prediction intervals would be

considered as outliers and be penalized. Hence, the use of the interval score will not be

appropriate any more. Instead we consider one-sided quantities here like the quantiles rα

at level α = 0.95, 0.99 and the number of observations falling above these quantiles and

compute the quantile score QSα described in Section 3.2.3 for α = 0.95, 0.99. Both the

scores as well as the PMCC are computed using 5000 simulations of the total claim sizes

STi .

The results for the simulations based on models for the average and the individual claim

sizes, reported in Tables 8.8 and 8.9, are qualitatively the same.

The PMCC favours the simulations based on the models including spatial effects for

the number of claims only, further better results are achieved when number of claims

effects are taken into account. This is caused especially by the second term of the PMCC,

representing the model variances, which are considerably lower when the number of claims

is included as covariate in the claim size models.

The mean scores for the CRPS and the quantile scores QSα, α = 0.95, 0.99, are very close

for all models, in general slightly higher scores are obtained for simulations based on a

spatial Poisson model for the number of claims. Further, the simulations based on a spatial

model for both claim frequency and claim size and including number of claims effects tend

to achieve the highest score. The size of the quantiles seems to be mainly determined by the

inclusion or neglect of spatial effects in the Poisson model for the number of claims. The

quantiles at level α = 0.95 are higher when spatial effects are included on the number of

claims, reflecting a higher model complexity. The percentage of observations falling above

the 95 % quantile ranges from 3.60 % to 3.65 %, lying below the expected 5 %. This

might be caused by the fact noted already above. Since for some observations even the

95 % quantile will be only zero, a zero observation will not be regarded as an outlier. This

might be overcome by randomizing zero observations, i.e. considering zero observations as

outliers with a certain probability when the 95 % quantile takes the value zero. The 99 %

quantiles in contrast, are slightly higher when no spatial Poisson models are assumed, the

percentage of outliers is close to the expected 1 %. Comparing the results in Tables 8.8

and 8.9, no significant difference is observed for the CRPS and the quantile scores between

the simulations based on average and individual claim sizes, respectively. When number
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freq size

γ ζA PMCC
∑n

i=1(µi − yi)
2

∑n
i=1 σ

2
i

with αANi=k

yes yes 1.5757 · 1012 7.8032 · 1011 7.9540 · 1011

no no 1.5735 · 1012 7.8069 · 1011 7.9279 · 1011

yes no 1.5710 · 1012 7.8046 · 1011 7.9089 · 1011

no yes 1.5856 · 1012 7.8088 · 1011 8.0477 · 1011

without αANi=k

yes yes 1.5960 · 1012 7.8055 · 1011 8.1541 · 1011

no no 1.5909 · 1012 7.8088 · 1011 8.1000 · 1011

yes no 1.5894 · 1012 7.8072 · 1011 8.0871 · 1011

no yes 1.6052 · 1012 7.8108 · 1011 8.2414 · 1011

freq size 95 % 99 %

γ ζA CRPS quantile outliers QS0.95 quantile outliers QS0.99

with αANi=k

yes yes -212.26 476.3 3.60 % -205.2 6400.6 1.15 % -134.9

no no -212.35 456.0 3.65 % -205.7 6426.9 1.16 % -135.5

yes no -212.27 480.7 3.60 % -205.3 6393.5 1.17 % -135.4

no yes -212.36 460.0 3.65 % -205.8 6454.0 1.16 % -135.5

without αANi=k

yes yes -212.30 473.6 3.60 % -205.2 6433.6 1.16 % -135.3

no no -212.30 453.8 3.65 % -205.7 6455.1 1.16 % -135.5

yes no -212.28 477.8 3.60 % -205.3 6422.6 1.17 % -135.7

no yes -212.34 456.2 3.65 % -205.9 6482.1 1.16 % -135.7

Table 8.8: In the upper table the PMCC, split in its two components is given for several

models for the simulated total claim sizes STi , based on models for average claim sizes.

In the lower table the mean score Sn(θ) for the CRPS, the 95 % and 99 % quantiles,

the percentage of observations lying above these quantiles and the corresponding quantile

mean scores QSα, α = 0.95, 0.99, are given.

of claims effects are included, better values of the PMCC are obtained when models for

the average claim sizes are assumed. Without number of claims effects in contrast, the

PMCC gives a slight preference to simulations based on individual claim sizes. Hence,
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freq size

γ ζI PMCC
∑n

i=1(µi − yi)
2

∑n
i=1 σ

2
i

with αINi=k

yes yes 1.5869 · 1012 7.8078 · 1011 8.0607 · 1011

no no 1.5830 · 1012 7.8103 · 1011 8.0196 · 1011

yes no 1.5807 · 1012 7.8091 · 1011 7.9976 · 1011

no yes 1.5960 · 1012 7.8132 · 1011 8.1473 · 1011

without αINi=k

yes yes 1.5911 · 1012 7.8089 · 1011 8.1017 · 1011

no no 1.5878 · 1012 7.8120 · 1011 8.0664 · 1011

yes no 1.5865 · 1012 7.8101 · 1011 8.0550 · 1011

no yes 1.6002 · 1012 7.8141 · 1011 8.1882 · 1011

freq size 95 % 99 %

γ ζI CRPS quantile outliers QS0.95 quantile outliers QS0.99

with αANi=k

yes yes -212.28 484.3 3.60 % -205.5 6442.8 1.15 % -135.0

no no -212.38 464.4 3.64 % -206.0 6469.6 1.15 % -135.3

yes no -212.35 489.3 3.60 % -205.6 6434.0 1.16 % -135.5

no yes -212.35 467.0 3.65 % -206.2 6498.1 1.16 % -135.5

without αANi=k

yes yes -212.27 477.2 3.61 % -205.5 6427.2 1.16 % -135.0

no no -212.33 457.2 3.65 % -206.0 6453.8 1.16 % -135.7

yes no -212.32 481.3 3.61 % -205.6 6422.5 1.16 % -135.5

no yes -212.36 459.6 3.65 % -206.1 6481.6 1.16 % -135.6

Table 8.9: In the upper table the PMCC, split in its two components is given for several

models for the simulated total claim sizes STi , based on models for individual claim sizes.

In the lower table the mean score Sn(θ) for the CRPS, the 95 % and 99 % quantiles,

the percentage of observations lying above these quantiles and the corresponding quantile

mean scores QSα, α = 0.95, 0.99, are given.

although more detailed data information is available for the individual claim size models,

this additional knowledge has no significant influence on the prediction of the total claim

sizes, at least when number of claims effects are taken into account.
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In Figure 8.4 map plots of the observed total claim sizes and the posterior predictive means
1
R

∑R
j=1 S

Tj
i of the simulated total claim sizes, averaged over each region, are given. Since

we only consider the posterior predictive mean of the simulated total claim sizes, it is

natural that the map displaying the true total claim sizes shows more extreme values.

Hence, for a better visual comparison of the maps, we have built six classes for the

total claim size in these plots, assuming equal length for the four middle classes, but

summarizing extremely small or high values in broader classes. The simulations are based

on the models for average claim sizes with the number of claims included as covariate. The

plots look very similar for the simulations based on the models for the individual claim

sizes. When spatial effects are included in the Poisson model (middle row), an increasing

trend from the east to the west is observable for the simulated total claim sizes. The

additional inclusion of spatial effects for the average claim size leads to small changes

in the very eastern and south western parts of Germany. The rough spatial structure of

the observed total claim sizes (top) is represented reasonable well for these two models.

However, if spatial effects are only included for the average claim sizes, the regions with

high observed total claim sizes in the middle and south western parts of Germany are not

detected. The same holds for the simulations based on the models without any spatial

effects. For regions in the east of Germany with rather low true total claim sizes for

example, the mean of the total claim sizes is estimated up to 1.27 times as high when

no spatial effects at all are taken into account compared to a spatial modelling of claim

frequency and claim size. For one south western region with large observed total claims in

contrast, the posterior mean of the simulated total claim size based on non spatial models

is only estimated 0.69 times as large compared to the simulations based on spatial models

for claim frequency and claim size.

The estimated probabilities for the total claim sizes being equal to zero as well as density

estimates of the positive simulated total claim sizes of the policyholders in the two regions

Hannover and Lörrbach are given in Figure 8.5. For Hannover the largest posterior mean

of the spatial effect in the average claim size model was estimated (ζ̂A = 0.12), while in

Lörrbach the smallest effect ζ̂A = −0.22 was observed. The estimated posterior means of

the spatial effects in the Poisson model for the number of claims are given by γ̂ = −0.10

in Hannover and γ̂ = 0.29 in Lörrbach. Figure 8.5 shows that the estimated probability

for zero total claim sizes and the density estimates of the positive total claim sizes notedly

change when spatial effects are included to the models for claim frequency and average

claim size. In Hannover, the inclusion of spatial effects to the models for claim frequency

and the average claim size leads to a higher estimated probability of zero total claim sizes
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0 612

γ for frequency and size γ for frequency

γ for size no γ

Figure 8.4: Observed total claim sizes (top) and simulated total claim sizes based on

Poisson and Gamma models for average claim sizes with and without spatial effects. grey

level classification: [0, 100), [100, 150), [150, 200), [200, 250), [200, 300), [300,∞)
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and heavier tails for the estimated density of the positive total claim sizes. In Loerrbach

in contrast, the estimated probability for zero total claim sizes decreases and more mass

is given to small positive total claim sizes when spatial effects are added.
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Figure 8.5: Estimated probabilities for zero total claim sizes (left panel) and density

estimates of the positive total claim sizes (right panel) of the policyholders in the regions

Hannover and Loerrbach based on spatial (solid lines) and non spatial (dashed lines)

models for both claim frequency and average claim size.

Ideally, when the predictive quality of models is of interest, the data should not be used

twice, i.e. parameter estimation should be based on part of the data only and predictions

should be done for the remaining data. Since in this section model comparison rather than

prediction was focussed, all data were used for parameter estimation and simulation of the

total claim sizes. However, for the sake of completeness, we also fitted the Poisson models

for claim frequency and the Gamma models for the average claim size based on 75 % of the

data only and simulated the total claim sizes for the remaining 25 % of the data. Results

for the PMCC, the CRPS and the quantile scores, reported in Table 8.10, are qualitatively

the same as observed before. The mean scores are very close for all models, the quantile

scores give a slight preference to simulations based on a spatial Poisson model. Note, that

the mean scores take lower values now compared to the simulations based on all data.

Further, about 9 % of the observations exceed the 95 % quantile, about 2.9 % fall above

the 99 % quantile. This shows, that prediction of the true total claim sizes is worse here.

However, this is to be expected, since the information given in these 25 % of the data has

not been accounted for in parameter estimation.
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freq size

γ ζA PMCC
∑n

i=1(µi − yi)
2

∑n
i=1 σ

2
i

with αANi=k

yes yes 4.0026 · 1011 2.0460 · 1011 1.9567 · 1011

no no 4.0013 · 1011 2.0465 · 1011 1.9548 · 1011

yes no 3.9932 · 1011 2.0460 · 1011 1.9470 · 1011

no yes 4.0193 · 1011 2.0475 · 1011 1.9718 · 1011

without αANi=k

yes yes 4.0472 · 1011 2.0467 · 1011 2.0005 · 1011

no no 4.0447 · 1011 2.0468 · 1011 1.9979 · 1011

yes no 4.0384 · 1011 2.0467 · 1011 1.9917 · 1011

no yes 4.0627 · 1011 2.0482 · 1011 2.0145 · 1011

freq size 95 % 99 %

γ ζA CRPS quantile outliers QS0.95 quantile outliers QS0.99

with αANi=k

yes yes -213.73 470.3 8.9 % -207.2 6376.2 2.9 % -139.4

no no -213.75 451.4 9.0 % -207.5 6411.0 2.9 % -139.3

yes no -213.76 472.3 8.9 % -207.3 6370.3 2.9 % -139.3

no yes -213.82 452.0 9.0 % -207.7 6247.5 2.9 % -139.8

without αANi=k

yes yes -213.77 467.2 8.9 % -207.3 6412.0 3.0 % -139.3

no no -213.80 448.3 9.0 % -207.4 6444.1 2.9 % -139.4

yes no -213.72 469.3 8.9 % -207.4 6403.0 2.9 % -139.5

no yes -213.75 448.6 9.0 % -207.8 6459.9 2.9 % -140.6

Table 8.10: PMCC, split in its two components, mean score Sn(θ) for the CRPS, the

95 % and 99 % quantiles, the percentage of observations lying above these quantiles

and the corresponding quantile mean scores QSα, α = 0.95, 0.99, for several models for

the simulated total claim sizes STi , based on models for average claim sizes. Parameter

estimation is based on 75 % of the data, total claim sizes are simulated for remaining 25

% of the data.

8.6 Summary and conclusions

We have presented a Bayesian approach for modelling claim frequency and claim size

taking both covariates as well as spatial effects into account. For the number of claims
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a Poisson model turned out to give a sufficient fit. For these data no significant overdis-

persion or the presence of extra zeros was detected. In contrast to the common approach

where independence of the number of claims and claim size is assumed, we do not need

this assumption. Instead, we have shown, that by including the observed number of claims

as covariate for claim size, models for claim sizes are significantly improved. If for example

a policyholder caused two or three claims, the expected average claim size decreases by

about 25 and 75 %, respectively, compared to a policyholder with only one claim.

We have considered models for both individual and average claim sizes, both models gave

very similar results in our application to car insurance data. Based on the models for claim

frequency and individual and average claim sizes, respectively, we finally approximated

the posterior predictive distribution of the total claim sizes using simulation. According

to several scoring rules and the PMCC, especially the inclusion of spatial effects in the

model for claim frequency leads to improved predictions of the total claim sizes. However,

the inclusion of number of claims effects in the claim size models hardly affects the total

claim sizes according to the scoring rules. This can be explained by the fact, that very

rarely more than one claim is simulated and therefore number of claims effects have al-

most no impact.

Further, the additional information available when the non-aggregated data for individual

claim sizes are analysed, does not lead to better predictions of the total claim size. The

modelling of average claim sizes turned out to be sufficient.
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Proof of result (4.5)

Proof of (4.5): Let Q and V be partitioned as follows

Q =

(

Q11 Q12

Q21 Q22

)

with Q11 ∈ R
J−1,J−1, Q22 ∈ R

Q−1 := V =

(

V11 V12

V21 V22

)

with V11 ∈ R
J−1,J−1, V22 ∈ R

For the proof results from the intrinsic conditional autoregressive Gaussian process (see

Besag and Kooperberg (1995)) will be used. The precision matrix of the intrinsic CAR

model is denoted by

Q0 =

(

Q0
11 Q0

12

Q0
21 Q0

22

)

with Q0
ij =















Ni for i = j

−1 for i ∼ j

0 otherwise

which is connected to the model used in this paper by

Q = ψ ·Q0 + I (A.1)

for ψ > 0. The following results (see Czado and Prokopenko (2004)) will be used:

(Q0
11)

−1Q0
12 = −1J−1 (A.2)

Q0
22 = Q0

21[(Q
0
11)

−1Q0
12] (A.3)
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Using Rao (1973), p.33, yields to

V22 = (Q22 −Q21(Q11)
−1Q12)

−1

(A.1)
= (ψQ0

22 + 1 − ψQ0
21(ψQ

0
11 + IJ−1)

−1ψQ0
12)

−1

= [ψ(Q0
22 +

1

ψ
−Q0

21(Q
0
11 +

1

ψ
IJ−1)

−1Q0
12)]

−1

and

lim
ψ→∞

V22 = lim
ψ→∞

1
ψ

Q0
22 + 1

ψ
−Q0

21(Q
0
11 + 1

ψ
IJ−1)−1Q0

12

1
ψ

=x
= lim

x→0

x

Q0
22 + x−Q0

21(Q
0
11 + xIJ−1)−1Q0

12

l’Hospital
= lim

x→0

1

1 −Q0
21(Q

0
11 + xIJ−1)−2Q0

12

=
1

1 +Q0
21(Q

0
11)

−2Q0
12

=
1

1 + [Q0
21(Q

0
11)

−1][(Q0
11)

−1Q0
12]

(A.2)
=

1

1 + (J − 1)
=

1

J

The theorem of l’Hospital can be applied here since the denominator in the second equality

takes the value 0 for x = 0 using (A.3). By Anderson (1958) and Rao (1973), p.33,

E(γ−J
|γJ) = µJ = V12(V22)

−1γJ = −(Q11)
−1Q12γJ

= −(Q0
11ψ + IJ−1)

−1(ψQ0
12)γJ = −[ψ(Q0

11 +
1

ψ
IJ−1)]

−1ψQ0
12γJ

= − 1

ψ
(Q0

11 +
1

ψ
IJ−1)

−1ψQ0
12γJ = −(Q0

11 +
1

ψ
IJ−1)

−1Q0
12γJ

and

lim
ψ→∞

µJ = −(Q0
11)

−1Q0
12γJ

(A.2)
= γJ1J−1

Further, by Anderson (1958) the covariance matrix of γ−J
|γJ is given by

Cov(γ−J
|γJ) = σ2(V11 − V12V

−1
22 V21) = σ2Q−1

11 .

Here again Rao (1973), p33, was used. Taking the limit yields to

lim
ψ→∞

Q−1
11 = lim

ψ→∞

1

ψ
(Q0

11 +
1

ψ
IJ−1)

−1 = 0.



Appendix B

Details on the MCMC algorithms for

the count data models

For the count data models presented in Chapter 5 Metropolis within-Gibbs samplers are

implemented in Matlab. The regression parameters β, the spatial random effects γ, the

spatial hyperparameters ψ, σ2 and the model specific dispersion parameters are updated

component by component. When the full conditional distribution can be sampled from

directly, a Gibbs step is implemented otherwise a MH step is used. Therefore in the

following the full conditionals for all model parameters in the considered models are

derived.

B.1 GP regression model

The joint posterior distribution of the regression parameters β, the overdispersion para-

meter λ and the spatial effects γ in the GP regression model is proportional to

p(β, λ,γ|y,x, ψ, σ2) ∝
[

n
∏

i=1

p(yi|xi,β,γ, λ)
]

·π(γ|ψ, σ2) · π(λ) · π(β)

∝
[

n
∏

i=1

exp{logµi + (yi − 1) log(µi + yi
λ

1 − λ
) + yi log(1 − λ)

− µi(1 − λ) − λyi}
]

·π(γ|ψ, σ2) · π(λ) · π(β)

=
[

n
∏

i=1

exp{xi
′β + γR(i) + (yi − 1) log

(

exp(xi
′β + γR(i)) + yi

λ

1 − λ

)

+ yi log(1 − λ) − exp(xi
′β + γR(i))(1 − λ) − λyi}

]

· π(γ|ψ, σ2) · π(λ) · π(β).
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The prior distributions are chosen as in Section 5.2. From this joint posterior distribution

we derive the full conditional distributions for the regression parameters β

p(β|λ,γ,y,x) ∝
n
∏

i=1

exp{xi
′β + γR(i) + (yi − 1) log

(

exp(xi
′β + γR(i)) + yi

λ

1 − λ

)

− exp(xi
′β + γR(i))(1 − λ) − 1

2
β′τ−2Ik+1β},

for the overdispersion parameter

p(λ|β,γ,y,x) ∝
n
∏

i=1

exp{(yi − 1) log
(

exp(xi
′β + γR(i)) + yi

λ

1 − λ

)

−yi log
1

1 − λ

− exp(xi
′β + γR(i))(1 − λ) − λyi}

and for the spatial effects

p(γ|λ,β,y,x) ∝
n
∏

i=1

exp{xi
′β + γR(i) + (yi − 1) log

(

exp(xi
′β + γR(i)) + yi

λ

1 − λ

)

− exp(xi
′β + γR(i))(1 − λ) − 1

2σ2
γ ′Qγ}.

In particular we have for the l-th component of γ given the remaining spatial components

γ−l, the data and all other parameters

p(γl|λ,β,y,x,γ−l) ∝
[

∏

i withR(i)=l

exp{xi
′β + γR(i) + (yi − 1) log

(

exp(xi
′β + γR(i)) + yi

λ

1 − λ

)

− exp(xi
′β + γR(i))(1 − λ)}

]

exp{− 1

2σ2
(γ2
l Ql,l + 2γl

∑

j 6=l
γjQj,l)}

=
[

∏

i withR(i)=l

exp{xi
′β + γR(i) + (yi − 1) log

(

exp(xi
′β + γR(i)) + yi

λ

1 − λ

)

− exp(xi
′β + γR(i))(1 − λ)}

]

exp{− 1

2σ2
[γl(γlQl,l + 2

∑

j∼l
γjQj,l)]}.

The full conditional distributions for the spatial hyperparameters are given by

p(ψ|σ2,γ,β, λ,y) ∝ p(ψ|σ2,γ)

∝ |Q| 12 exp
[

− 1

2σ2
γ ′Qγ

]

·π(ψ)

= exp
[1

2

(

log |Q| − 1

σ2
γ ′Qγ

)]

·π(ψ)

and

p
( 1

σ2
|γ, ψ

)

∝
( 1

σ2

)
J
2 · exp

[

−1

2
γ ′Qγ · 1

σ2

]

·
( 1

σ2

)a−1

· exp[−b 1

σ2
]

=
( 1

σ2

)
J
2
+a−1

· exp
[

−(
1

2
γ ′Qγ + b) · 1

σ2

]

∼ Gamma
(J

2
+ a,

1

2
γ ′Qγ + b

)

.
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Since the full conditional of σ2 is again Inverse Gamma, σ2 can be sampled directly. For

the remaining parameters a MH Algorithm with either a symmetric random walk or an

independence proposal described as in Section 2.2.2 is used. In independence samplers a t-

proposal with the same mode and inverse curvature at the mode as the target distribution

is used, see Section 2.2.2 for details. The mode is determined using the bisection algorithm,

hence the first and the second derivatives of the full conditionals have to be calculated.

For the Poisson regression model the same algorithm with λ fixed to 0 can be used. The

update of the spatial hyperparameters ψ and σ2 is the same for all models and is therefore

not mentioned any more in the following.

B.2 NB regression model

The joint posterior distribution of β, r and γ in the NB regression model is given by

p(β, r,γ|y,x) ∝
[

n
∏

i=1

p(yi|r,β,γ)
]

·π(β) · π(γ|ψ, σ2) · π(r|a, b) · π(b|c, d).

We obtain the following full conditionals:

• p(β|r,γ,y,x) ∝
[

∏n
i=1

(

r
µi+r

)r(
µi
µi+r

)yi]

·π(β)

• p(γ|r,β,y,x) ∝
[

∏n
i=1

(

r
µi+r

)r(
µi
µi+r

)yi]

·π(γ|ψ, σ2)

• p(r|γ,β,y,x, a, b) ∝
[

∏n
i=1

Γ(yi+r)
Γ(r)

(

r
µi+r

)r(
µi
µi+r

)yi]

ra−1e−rb

• p(b|r, c, d) ∝ ba+c−1 · e−b(r+d) ∼ Gamma(a + c, r + d)

The prior distributions for β and γ are the same as in the GP model. Only b can be

sampled directly using a Gibbs step, the remaining parameters are updated using a single

component MH algorithm. For the regression parameters β and the spatial effects γ

independence proposal distributions, as described in the previous section, are chosen,

whereas for the parameter r a symmetric random walk proposal is assumed.

B.3 ZI models

In this section details about the MCMC algorithms for the ZI models are given.
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B.3.1 Gamerman Proposal for regression parameters and spa-

tial effects in the ZIP model

The ZIP distribution is not a distribution of the exponential family, however for all ob-

servations with zi = 0, i.e. for all observations arising from the Poisson distribution with

mean µi, we are still in a GLM setting. Therefore Gamermans proposal distribution , see

Section 2.2.3 can be used. We use the following notation:

Yi ∼ ZIP (pi, µi) withµi = ti exp(x′
iβ + γR(i)) := ti exp(x̃′

iα)

where x̃′
i = (x′

i,v
′
i) with vi = (vi1, .., viJ), vij =

{

1, ifR(i) = j

0 otherwise
and α = (β,γ)′.

According to Section 5.2 we assume a Normal prior for α in the general notation π(α) ∼
N(µ0, V0). For all observations yi with zi = 0 the likelihood can be expressed as

f(yi|µi, pi) = exp[yi log(µi) − µi − log yi! + log(1 − pi)],

i.e. we have b(θi) = µi = exp(θi) and the canonical link is given by g(µi) = log(µi) = ηi =

x̃′
iα. According to Section 2.2.3 the weights are then given by w−1

ii = b′′(θi)(g
′(µi))

2 =

µi
1
µ2
i

= µ−1
i . For the ZIP model the matrix of weights is therefore given by

W (α) = diag
(

[(1 − zi)µi]
−1
)

= diag
(

[(1 − zi) exp(x̃′
iα)]−1

)

.

With this choice of W (α) the Gamerman algorithm can then be applied for the update of

α given y, z and p as described in Section 2.2.3. Note, that for computational efficiency

we do not update the whole vector α in one block but divide it into several components.

In our model, β is updated in one block, whereas the spatial effects γj, j = 1, .., J are

updated component by component. As described in Section 2.2.3 the fixed components

are then treated as offsets.

B.3.2 Independence Sampler for ZIGP and ZIP models

Since the GP distribution does not belong to the exponential family, the implementation

of Gamerman’s proposal is not straightforward anymore. Therefore we use an indepen-

dence sampler with a t- proposal distribution with the same mode and inverse curvature

at the mode for a separate update of βj , j = 1, .., k and γj, j = 1, .., J as described in

Section 2.2.2. Again the bisection method is used to compute the mode of the target dis-

tributions. Then, it remains to evaluate the inverse curvature of the target at the mode.
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Therefore in the following, the full conditionals as well as their first and second derivative

of all model parameters are reported. Of course the same algorithms can be used for the

ZIP model with λ fixed to 0.

Independence proposals for regression parameters

Recall that π(βj) ∼ N(0, τ 2). The first and second derivatives of the full conditional of βj

l(βj) := log p(βj|λ, p,β−j,γ,y, z) ∝
n
∑

i=1

(1 − zi)
[

logµi + (yi − 1) log(µi +
λ

1 − λ
yi)

− µi(1 − λ)
]

+ log π(βj)

=

n
∑

i=1

(1 − zi)
[

log µi + (yi − 1) log(µi +
λ

1 − λ
yi) − µi(1 − λ)

]

− 1

2τ 2
β2
j

=
∑

i:zi=0

[

log µi + (yi − 1) log(µi +
λ

1 − λ
yi) − µi(1 − λ)

]

− 1

2τ 2
β2
j

are given by

∂l(βj)

∂βj
=
∑

i:zi=0

[

xij(1 + (yi − 1)
µi

µi +
λ

1−λyi
− µi(1 − λ))

]

−
β2
j

τ 2

∂2l(βj)

∂β2
j

=
∑

i:zi=0

{

xijxikµi

[

(yi − 1)
λ

1−λyi

(µi +
λ

1−λyi)
2
− (1 − λ)

]}

− 1

τ 2

Independence proposals for spatial effects

For the spatial effects γj, j = 1, ..J we obtain the following full conditional and first and

second derivatives:

l(γj) := log p(γj|λ, p,β,γ−j,y, z) ∝
∑

i:R(i)=j

(1 − zi)
[

log µi + (yi − 1) log(µi +
λ

1 − λ
yi)

− µi(1 − λ)
]

−1 + |ψ|Nj

2σ2

(

γj −
ψ

1 + |ψ|Nj

∑

i∼j
γi

)2

=
∑

i:R(i)=j&zi=0

[

logµi + (yi − 1) log(µi +
λ

1 − λ
yi) − µi(1 − λ)

]

− 1 + |ψ|Nj

2σ2

(

γj −
ψ

1 + |ψ|Nj

∑

i∼j
γi

)2
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∂l(γj)

∂γj
=

∑

i:R(i)=j&z(i)=0

[

1 + (yi − 1)
µi

µi +
λ

1−λyi
− µi(1 − λ)

]

−1 + |ψ|Nj

σ2

(

γj −
ψ

1 + |ψ|Nj

∑

i∼j
γi

)

∂2l(γj)

∂γj∂γk
=

∑

i:R(i)=j&zi=0

µi

[

(yi − 1)
λ

1−λyi

(µi +
λ

1−λyi)
2
− (1 − λ)

]

−1 + |ψ|Nj

σ2

B.3.3 Update of p

Without regression for p

We consider the case of a constant p first. Based on the likelihood given in (5.9) including

the latent variables z, p can be updated directly using a Gibbs step. Assuming a uniform

prior for p, i.e. π(p) ∼ U([0, 1]), the full conditional for p is given by

p(p|β,γ, λ,y,x, z) ∝
[

∏

i:yi=0

pzi(1 − p)1−zi ·
∏

i:yi>0

(1 − p)
]

= p♯i:yi=0& zi=1(1 − p)♯i:yi>0+♯i:yi=0& zi=0

:= pa(1 − p)b,

i.e. p ∼ Beta(a + 1, b+ 1).

Regression for p

Now we assume that p may depend on some covariates x̃i and unknown regression pa-

rameters α = (α1, .., αm) via a logit-link, i.e. pi =
exp(x̃′

iα)

1 + exp(x̃′
iα)

, i = 1, .., n. For the

parameters αj, j = 1, .., m the Normal prior π(αj) ∼ N(0, τ 2
α) is assumed.

Gamerman’s Algorithm

If α is updated given the latent variables z, Gamerman’s proposal can be used. The full

conditional for α is given by

p(α|z) ∝
[

∏

i:yi=0

pzii (1 − pi)
1−zi ·

∏

i:yi>0

(1 − pi)
]

·π(α)

=
[

∏

i:yi=0

( exp(x̃′
iα)

1 + exp(x̃′
iα)

)zi( 1

1 + exp(x̃′
iα)

)1−zi][ ∏

i:yi>0

( 1

1 + exp(x̃′
iα)

)]

·π(α)

=
[

n
∏

i=1

exp(x̃′
iαzi)

1 + exp(x̃′
iα)

]

·π(α).
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Since marginally zi ∼ Bernoulli(pi) the mean of zi is given by

E(zi) = µi = pi =
exp(x̃′

iα)

1 + exp(x̃′
iα)

.

Further

ηi = x̃′
iα = log

pi
1 − pi

= log
µi

1 − µi
= g(µi)

and the derivative of g(µi) is given by

g′(µi) =
1

µi(1 − µi)
.

Define

z̃i(α) = ηi + (zi − µi)g
′(µi) = x̃′

iα + (zi − pi)
1

pi(1 − pi)

and W (α) = diag(Wi(α)) where Wi(α) = 1
g′(µi)

= µi(1 − µi). Based on results from

the IWLS algorithm, see Section 2.2.3, in Gamerman’s Algorithm a multivariate normal

proposal with mean

f(α) = (V −1
0 +X ′W (α)X)−1(V −1

0 µ0 +X ′W (α)z̃(α))

and variance

cov = (V −1
0 +X ′W (α)X)−1)

is chosen for α, i.e. q(α̃|α) ∼ N(f(α), cov(α)). The resulting acceptance probability is

then given by

min
{

1,
p(α̃|z)

p(α|z)

q(α|α̃)

q(α̃|α)

}

.

B.3.4 Collapsed Algorithms

In simulated data, due to identifiability problems between the intercept β0 and p no

stationarity of the chains was reached for β0 and p, mixing was rather bad. Since the full

conditionals of these two parameters are only linked via the latent variables z we used

collapsed algorithms where we update β0 and p with z integrated out, that is based on the

likelihood given in (5.6). Therefor convergence of the chains was improved a lot. Again

an independence sampler described as in Section 2.2.2 is used. The necessary first and

second derivatives of the full conditionals are given in the following sections.
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Update of the intercept with z integrated out

The likelihood in the ZIGP-Model with the latent variables integrated out is given by

log l(y) ∝
∑

i:yi=0

log
[

p+ (1 − p) exp(−µi(1 − λ))
]

+
∑

i:yi>0

[

log(1 − p) + log µi + (yi − 1) log
(

µi +
λ

1 − λ
yi

)

+yi log(1 − λ)

− µi(1 − λ) − λyi

]

.

Therefore we have

l(β0) := log p(β0|y, p, λ,β−0,γ) ∝
∑

i:yi=0

log
[

p+ (1 − p) exp(−µi(1 − λ))
]

+
∑

i:yi>0

[

log µi + (yi − 1) log(µi +
λ

1 − λ
yi) − µi(1 − λ)

]

− β2
0

2τ 2
.

The first and second derivative are then given by

l′(β0) =
∑

i:yi=0

−(1 − p) exp(−µi(1 − λ))µi(1 − λ)

p+ (1 − p) exp(−µi(1 − λ))
+
∑

i:yi>0

[

1 + (yi − 1)
µi

µi +
λ

1−λyi
− µi(1 − λ)

]

− β0

τ 2

and

l′′(β0) =
∑

i:yi=0

µi(1 − λ)(1 − p) exp(−µi(1 − λ))
[

p(µi(1 − λ) − 1) − (1 − p) exp(−µi(1 − λ))
]

[p+ (1 − p) exp(−µi(1 − λ))]2

+
∑

i:yi>0

[

(yi − 1)
λ

1−λyiµi

(µi +
λ

1−λyi)
2
− µi(1 − λ)

]

− 1

τ 2
.

Update of constant p with z integrated out

The logarithm of the full conditional for p with the latent variables z integrated out is

given by

l(p) := log p(p|y, λ,β,γ) ∝
∑

i:yi=0

log
[

p + (1 − p) exp(−µi(1 − λ))
]

+
∑

i:yi>0

log(1 − p)

The first and the second derivatives are therefore given by

l′(p) =
∑

i:yi=0

1 − exp(−µi(1 − λ))

p+ (1 − p) exp(−µi(1 − λ))
−
∑

i:yi>0

1

1 − p
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l′′(p) =
∑

i:yi=0

−[1 − exp(−µi(1 − λ))]2

[p+ (1 − p) exp(−µi(1 − λ))]2
−
∑

i:yi>0

1

(1 − p)2
.

Note that l′′(p) < 0, i.e. the full conditional of p is log concave. Therefore, adaptive rejec-

tion sampling (ARS) can be applied as well.

Regression for p with z integrated out

Due to the correlation between α and the intercept β0 induced by z no stationarity was

reached. Therefore we update α with z integrated out as well using and independence

sampler. The full conditional of αj is then given by

l(αj) := log p(αj|y, λ,α−j,β,γ) ∝
∑

i:yi=0

log
[ 1

1 + exp(x̃′
iα)

(exp(x̃′
iα) + exp(−µi(1 − λ)))

]

−
∑

i:yi>0

log(1 + exp(x̃′
iα)) −

α2
j

2τ 2
α

and the first and second derivatives by

∂l(αj)

∂αj
=
∑

i:yi=0

x̃ij exp(x̃′
iα)

exp(x̃′
iα) + exp(−µi(1 − λ))

−
n
∑

i=1

x̃ij exp(x̃′
iα)

exp(x̃′
iα) + 1

− αj
τ 2
α

and

∂2l(αj)

∂α2
j

=
∑

i:yi=0

x̃2
ij exp(−µi(1 − λ)) exp(x̃′

iα)

[exp(x̃′
iα) + exp(−µi(1 − λ))]2

−
n
∑

i=1

x̃2
ij exp(x̃′

iα)

[exp(x̃′
iα) + 1]2

− 1

τ 2
α

.

λ-update without z’s

In the ZIGP Model convergence was further complicated by additional correlation between

λ and β0 and p. To overcome these problems also λ was updated with the latent variables

z integrated out. The full conditional of λ is then given by

l(λ) := log p(λ|y, p,β,γ) ∝
∑

i:yi=0

log
[

p+ (1 − p) exp(−µi(1 − λ))
]

+
∑

i:yi>0

[

(yi − 1) log
(

µi +
λ

1 − λ
yi

)

+yi log(1 − λ) − λ(yi − µi)
]

and we obtain the following first and second derivatives:

l′(λ) =
∑

i:yi=0

(1 − p) exp(−µi(1 − λ))µi
p+ (1 − p) exp(−µi(1 − λ))

+
∑

i:yi>0

[

(yi − 1)yi
1

(1 − λ)2(µi +
λ

1−λyi)

− yi
1

1 − λ
− yi + µi

]
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l′′(λ) =
∑

i:yi=0

p(1 − p)µ2
i exp(−µi(1 − λ))

[p + (1 − p) exp(−µi(1 − λ))]2

+
∑

i:yi>0

[ yi(yi − 1)

(1 − λ)3(µi +
λ

1−λyi)
·
(

2 − yi

(1 − λ)(µi +
λ

1−λyi)

)

−yi
1

(1 − λ)2

]



Appendix C

Collapsed algorithm in Section 6.2.4

For the collapsed algorithm in Section 6.2.4 we consider p(β|τ ,R) =
∫

p(β,γ|θ, τ ,R)dγ.

We have

p(β,γ|θ, τ ,R) ∝ exp
{

−1

2

[

N
∑

i=1

1

s̃2
i

(ỹi + x̃′
iβ + ṽ′

iγ)2 + γ ′σ−2Qγ + β′τ−2Iβ
]}

= exp
{

−1

2

[

β′τ−2Iβ +

N
∑

i=1

1

s̃2
i

(ỹi + x̃′
iβ)2

]}

× exp
{

−1

2

[

γ ′
(

N
∑

i=1

1

s̃2
i

ṽiṽ
′
i + σ−2Q

)

γ + 2γ ′
N
∑

i=1

1

s̃2
i

ṽi(ỹi + x̃′
iβ)
]}

:= c(β) × exp
{

−1

2

[

γ ′Aγ + 2γ ′a
]}

(C.1)

where A :=
∑N

i=1
1
s̃2i

ṽiṽ
′
i + σ−2Q. Further

exp
{

−1

2

[

γ ′Aγ + 2γ ′a
]}

∝ exp
{

−1

2

[

γ ′Aγ + 2γ ′A(A−1a) + (A−1a)′A(A−1a) − (A−1a)′A(A−1a)
]}

∝ exp
{

−1

2

[

(γ + A−1a)′A(γ + A−1a) − (A−1a)′A(A−1a)
]}

and therefore
∫

exp
{

−1

2

[

γ ′Aγ + 2γ ′a
]}

dγ ∝ (2π)
J
2 |A|− 1

2 exp
{1

2
(A−1a)′A(A−1a)

}

∝ exp
{1

2
(A−1a)′A(A−1a)

}

(C.2)

From (C.1) and (C.2) it then follows that

∫

p(β,γ|θ, τ ,R)dγ

125
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∝ c(β) exp
{1

2
(A−1a)′A(A−1a)

}

∝ exp
{

−1

2

[

β′(τ−2I +

N
∑

i=1

1

s̃2
i

x̃ix̃
′
i)β + 2β′

N
∑

i=1

1

s̃2
i

x̃iỹi − a′A−1a
]}

Finally, with

a′A−1a =
(

N
∑

i=1

1

s̃2
i

ṽiỹi +

N
∑

i=1

1

s̃2
i

ṽix̃
′
iβ
)′
A−1

(

N
∑

i=1

1

s̃2
i

ṽiỹi +

N
∑

i=1

1

s̃2
i

ṽix̃
′
iβ
)

∝ β′
(

N
∑

i=1

1

s̃2
i

ṽix̃
′
i

)′
A−1

(

N
∑

i=1

1

s̃2
i

ṽix̃
′
i

)

β + 2β′
(

N
∑

i=1

1

s̃2
i

ṽix̃
′
i

)′
A−1

(

N
∑

i=1

1

s̃2
i

ṽiỹi

)

it follows that

p(β|τ ,R) ∝ exp
{

−1

2

[

β′
(

τ−2I +
N
∑

i=1

1

s̃2
i

x̃ix̃
′
i − (

N
∑

i=1

1

s̃2
i

ṽix̃
′
i)
′A−1(

N
∑

i=1

1

s̃2
i

ṽix̃
′
i)
)

β

− 2β′
(

(
N
∑

i=1

1

s̃2
i

ṽix̃
′
i)
′A−1(

N
∑

i=1

1

s̃2
i

ṽiỹi) −
N
∑

i=1

1

s̃2
i

x̃iỹi

)]}

,

i.e.

β|τ ,R ∼ N(Σ−1
colµcol,Σ

−1
col)

with

Σcol := τ−2I +

N
∑

i=1

1

s̃2
i

x̃ix̃
′
i − (

N
∑

i=1

1

s̃2
i

ṽix̃
′
i)

′A−1(

N
∑

i=1

1

s̃2
i

ṽix̃
′
i)

and

µcol := (
N
∑

i=1

1

s̃2
i

ṽix̃
′
i)
′A−1(

N
∑

i=1

1

s̃2
i

ṽiỹi) −
N
∑

i=1

1

s̃2
i

x̃iỹi.
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aterförsäkring av kollektivrisker. Akad. afhandling. almqvist och wicksell, uppsala,

Almqvist och Wicksell, Uppsala.

McCullagh, P. and J. Nelder (1989). Generalized Linear Models. 2nd edn, London:

Chapman & Hall.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equa-

tions of state calculations by fast computing machine. J. of Chemical Physics 21,

1087–1091.

Mikosch, T. (2004). Non-Life Insurance Mathematics. An Introduction with Stochastic

Processes. New York: Springer.

Panjer, H. (1981). Recursive evaluation of a family of compound distributions. ASTIN

Bulletin 11, 22–26.

Papaspiliopoulos, O., G. O. Roberts, and M. Sköld (2003). Non-centered parameter-
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