TECHNISCHE UNIVERSITAT MUNCHEN

Zentrum Mathematik

Regression Models for Ordinal
Valued Time Series: Estimation

and Applications in Finance

Gernot Muller

Vollstandiger Abdruck der von der Fakultat fiir Mathematik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Herbert Spohn
Prifer der Dissertation: 1. Univ.-Prof. Claudia Czado, Ph.D.
2. Univ.-Prof. Dr. Ludwig Fahrmeir,

Ludwig-Maximilians-Universitat Miinchen

Die Dissertation wurde am 7.4.2004 bei der Technischen Universitat Miinchen eingereicht
und durch die Fakultit fiir Mathematik am 23.6.2004 angenommen.






Acknowledgement

Foremost, I thank Prof. Dr. Claudia Czado for her constant support and encouragement
and for many valuable suggestions and fruitful discussions during the last three years.
I am also very grateful for many opportunities to travel and getting in touch with

distinguished scientists in the fields of statistics and mathematical finance.

I want to thank the Deutsche Forschungsgemeinschaft for their financial support via the

Sonderforschungsbereich 386.

Further I would like to thank my friends and colleagues at Munich University of Tech-

nology for the very comfortable working atmosphere.

Last but not least I thank my parents for their support in all situations and all my

friends for their encouragement especially during the last months.






Abstract

Price changes arising in high-frequency financial data usually take on only values which
are integer multiples of a certain amount, for example multiples of one sixteenth of a
dollar. Therefore, the price changes represent an ordinal valued time series. Many of the
common models cannot take this feature into account while also covering other features
of such time series such as the dependency on covariates. Here two new models for
ordinal valued time series with covariates are introduced. The first can be considered as
an autoregressive extension of the common ordered probit model, the second as a dis-
cretized version of a stochastic volatility model. We investigate whether the estimation
of the model parameters can be done by Markov Chain Monte Carlo (MCMC) methods.
It is shown that in both cases standard MCMC algorithms have bad convergence prop-
erties. Therefore two grouped move multigrid Monte Carlo (GM-MGMC) samplers are
developed which estimate the parameters accurate and fast. By applying both models to
intraday data from the IBM stock at the New York Stock Exchange interesting depen-
dencies of the price changes on covariates are detected and quantified. Implementations
of the GM-MGMC samplers in C++ are provided.






Zusammenfassung

Preisveranderungen bei hochfrequenten Finanzdaten nehmen gewohnlich nur Werte an,
die ganzzahlige Vielfache von zum Beispiel einem 16tel Dollar sind. Daher stellen sie eine
ordinale Zeitreihe dar. Viele der iiblichen Modelle konnen diese Eigenschaft nicht gleich-
zeitig mit anderen Eigenschaften wie Abhangigkeiten von Kovariablen beriicksichtigen.
Hier werden zwei neue Modelle fiir ordinale Zeitreihen mit Kovariablen eingefiihrt. Das
erste Modell ist ein autoregressives ordered probit Modell, das zweite ein diskretisiertes
stochastisches Volatilitatsmodell. Da in beiden Féllen standard Markov Chain Monte
Carlo Algorithmen schlechte Konvergenz zeigen, werden grouped move multigrid Monte
Carlo (GM-MGMC) Sampler entwickelt, die die Parameter genau und schnell schitzen.
Durch die Anwendung beider Modelle auf intraday Daten der IBM Aktie werden Ab-
hangigkeiten der Preisveranderungen von Kovariablen quantifiziert. Implementierungen
der GM-MGMC Sampler in C++ werden zur Verfiigung gestellt.

Vil






Contents

1 Introduction 1

2.1
2.2
2.3

2.4
2.5

2.6

2.7

2 Statistical Foundations 5
Random variable generation . . . . . . .. ... ... oL, 5
Bayesian inference . . . . . . .. ... o 7
Markov chain Monte Carlo (MCMC) methods . . . . .. ... ... ... 9
2.3.1 Classical Monte Carlo integration . . . . . . ... ... ... ... 10
2.3.2 Markov chains . . . . . . ... Lo 10
2.3.3 Metropolis-Hastings algorithm . . . . . . .. ... ... ... ... 12
2.3.4 Gibbssampler . . . . ... ... 15
235 Reducedruns . . . . .. ..o 16
General strategies for improving MCMC . . . . ... .. ... ... ... 17
Auxiliary particle filters . . . . . .. ..o o oL 18
2.5.1 The filtering problem . . . . . . .. ... oo 19
2.5.2 Particle filters . . . . .. ..o 19
2.5.3 Auxiliary particle filters . . . . . ... ..o 21
Model selection via Bayes factors . . . . . ... .. ... .. ... .... 22
2.6.1 Bayes factor and marginal likelihood . . . . . ... .. ... ... 22
2.6.2 Estimation strategies . . . . . . .. ... 23
Basic models . . . . . ..o 25
2.7.1 Ordered probit model . . . . . . . ... ... ... .. ....... 25
2.7.2 Stochastic volatility models . . . . . ... ..o 26
2.7.3 State space models and associated algorithms . . . . . ... ... 26
Features of the price change process . . . . . . . . . ... ... ... ... 30

2.8

1X



X CONTENTS

3 The Autoregressive Ordered Probit Model 33
3.1 Model formulation . . . .. .. ... 33
3.2 Standard Gibbs sampler . . . . . .. ... L 34

3.2.1 Latent variableupdate . . . . . .. .. ... ... ... ..., .. 35
3.2.2 Joint regression and autoregressive parameter update . . . . . . . 36
3.2.3 Cutpoint parameter update . . . . . . ... ... ... . ... .. 37
3.3 GM-MGMC sampler . . . .. ... . . ... .. 37
3.3.1 Development of an appropriate grouped-move-step . . . . . . . . . 38
3.3.2  An illustration: Standard sampler against GM-MGMC . . . . . . 40
3.4 Simulationstudy . . . . .. ..o 41
3.4.1 Design of the simulation study . . . . . . .. ... ... .. .... 45
3.4.2 Results of the simulation study . . . .. .. ... ... .. .... 48

4 Estimation of the Marginal Likelihood for the Autoregressive Ordered

Probit Model 51
4.1 Filtering . . . . . . .. 52
4.2 Estimation of the likelihood ordinate . . . . . . .. ... ... ... ... 53
4.3 Computation of the prior ordinate . . . . . . . . ... .. ... ... ... 55
4.4 Estimation of the posterior ordinate . . . . . . . . ... ... ... .... 95

5 Application of the Autoregressive Ordered Probit Model to High-

Frequency Finance 59
5.1 Data description . . . . . . ..o 59
5.2 Exploratory analysis . . . . . . .. ... o 60
5.3 Model estimation . . . . . . ... Lo 62
5.4 Bayes factor of AOP against OP model . . . . . . .. ... ... ... .. 64

6 Stochastic Volatility Model for Ordinal Valued Time Series 69
6.1 Model formulation . . . .. .. ..o o 70
6.2 A hybrid MCMC algorithm . . . .. ... ... ... ... ... ... 71
6.2.1 State space approximation of the latent process . . . ... .. .. 72

6.2.2 Prior distributions . . . . . . . . ... L. 73



CONTENTS xi

6.2.3 Regression parameter update (B-update) . . . . . ... ... ... 73
6.2.4 Latent variable update (y/-update) . . ... .. ... ... .... 74
6.2.5 Cutpoint parameter update (¢y-update) . . . . . . ... ... ... 75
6.2.6 Mixture index update (s;-update) . . . . .. ... 75
6.2.7 («, ¢,0) joint update and log-volatility update (h-update) . . .. 76
6.3 GM-MGMC sampler . . . .. . ... 80
6.3.1 Development of an appropriate grouped move step . . . . . . . .. 81
6.3.2  An illustration: Hybrid MCMC against GM-MGMC . . . . . .. 84
6.4 Simulationstudy . . .. .. ... 90
6.4.1 Setting 1. . . . . . . 92
6.4.2 Setting 2. . . . . . . .. 93

7 Application of the Ordinal-Response Stochastic Volatility Model to

High-Frequency Finance 95
7.1 Description of IBM data . . . . .. ... ... ... ... ...... 95
7.2 Log returns and signed price changes . . . . . . .. ... ... ... ... 98
7.3 Model estimation . . . . . ... ..o 100
7.3.1 Specification of the hyperparameters . . . . ... ... ... ... 101
7.3.2 Parameter estimates and conclusions . . . . ... ... ... L. 102
7.3.3 Volatility estimates . . . . . . ... oo 106

8 Ordinal-Response Stochastic Volatility Model with Student-t Errors 111

81 The OSVt model . . . . . . . . ... ... . .. 112
8.2 Hybrid MCMC updates for OSVt model . . . . . ... ... ... .... 113
8.3 GM-MGMC sampler . . . . . . ... ... ... 117
8.4 Simulationstudy . . . ... ... 119
8.5 Applicationto IBM data . . . . ... ... ... . 122
9 Summary and Conclusion 125

A Nelder-Mead Minimization Algorithm 129



xii CONTENTS

B Implementation of GM-MGMC Sampler for AOP Model 135
C Implementation of GM-MGMC Sampler for OSV and OSVt Model 145
D Implementation of Procedures for Random Variables 177

E Implementation of used Matrix Class 183



Chapter 1

Introduction

Price changes arising in high-frequency financial data usually take on only few values
which are integer multiples of a certain amount, for example multiples of one sixteenth
of a dollar. Therefore the price changes over time represent an ordinal valued time series.
Moreover, the price changes may depend on covariates such as the transaction volume
or the time between trades. In addition, the volatility of the price change process is not
constant, since one can observe periods with high price fluctuations which are followed

by relative quite periods and vice versa. This effect is called volatility clustering.

Up to now, many models cannot take all these features of the price change process
into account. Moreover, only few effort has been made to develop parameter driven
models for such time series. In contrast to observation driven models, parameter driven
models usually assume a latent process which does not depend on past observations. In
general, parameter driven models allow easier interpretations than observation driven
models. For price changes observation driven models were proposed by Hausman, Lo,
and MacKinlay (1992) and Rydberg and Shephard (2003). Hausman, Lo, and MacKinlay
(1992) applied the common ordered probit model to price changes of the IBM stock,
although this model cannot capture a possibly present autoregressive structure in the
latent process. Rydberg and Shephard (2003) suggested a decomposition model, where
the price change is assumed to be a product of three random variables, namely of a price

change indicator, of the direction and of the absolute value of the price change.

Many other models for high-frequency data do not focus on the price changes itself, but
on the durations between the transactions. Recent developments in modeling durations
are for example the ACD model of Engle and Russell (1998) and the many extensions
such as the fractionally integrated ACD model of Jasiak (1998), the SCD model of



2 CHAPTER 1. INTRODUCTION

Bauwens and Veredas (2004), and the log-ACD model of Bauwens and Giot (2000). For
a global overview about models for high-frequency financial data including models for

returns and durations see Bauwens and Giot (2001) or Dacorogna et al. (2001).

The aim of this thesis is to develop new parameter driven models which cover all impor-
tant features of the price change process. Efficient MCMC (Markov chain Monte Carlo)
estimation procedures are to be provided for fitting the new models to specific data sets.
By applying the models to data sets from the New York Stock Exchange, we want to

find important covariates and to quantify their impact on the price changes.

We point out that the aim of modeling the price change process is mainly to understand
the structure of the data. This knowledge then can be used for example by governing
boards of exchanges which may adapt the trading process. However, the prediction
of future price changes and the development of trading strategies based on predictions
will in general be impossible for the following reason: Long-range dependencies (in this
context ’long’ means a period of about 10 transactions or more) do probably not exist
(cf. for example Hausman et al. (1992) or Rydberg and Shephard (2003)) and therefore
the prediction of price changes more than 10 steps ahead cannot be very accurate.
Since, however, usually up to 20 transactions take place per minute and it will take half
a minute in minimum to realize an order, a profitable trading strategy based on the

microstructure of the price process cannot be developed.

In Chapter 2 we first summarize some basic results from statistics which are used in
the subsequent chapters. In particular, we introduce important results in the context of
Bayesian inference and Markov chain Monte Carlo methods. Moreover, we outline the
ideas of Bayes factors for model selection and of non-standard statistical methods such

as auxiliary particle filters.

In Chapter 3 we consider a model, which can be viewed as an extension of the common
ordered probit (OP) model since it has the features of this model but also allows for
an autoregressive time structure in the data. We call this model autoregressive or-
dered probit (AOP) model. For fitting the AOP model to a specific data set, we
first develop a standard MCMC algorithm. This algorithm has a structure similar to the
algorithm by Albert and Chib (1993) for the common OP model and exhibits similar
problems in convergence and mixing. However, a method by Liu and Sabatti (2000)
is applied to achieve better results. This method uses randomly drawn elements from
an appropriate transformation group to make additional transformation steps in each
MCMC iteration. We found a special transformation group which allowed for the devel-

opment of a GM-MGMC (grouped move multi-grid Monte Carlo) sampler as introduced



by Liu and Sabatti (2000). The use of this GM-MGMC sampler leads to much more

satisfying results as is shown in a simulation study.

In Chapter 4 we develop an estimation procedure for the marginal likelihood of the AOP
model. This allows for the computation of Bayes factors to decide whether the AOP
model can fit a given data set better than other models. Since the estimation of the
marginal likelihood also requires a filtering procedure we provide an auxiliary particle
filter for the new model. Auxiliary particle filters were introduced by Pitt and Shephard
(1999). Since the OP model is a submodel of the AOP model, the algorithms can be
easily simplified and applied also to the common ordered probit model. Therefore, for
given data we are able to compare in particular the fit of the AOP model to the fit of
the OP model.

In Chapter 5 we apply the AOP model to absolute price changes of the IBM stock on
December 4, 2000, at the New York Stock Exchange (NYSE). This data set consists of
2000 observations. We search for significant covariates and quantify the autoregressive
dependencies between the latent variables. By computing the Bayes factor of the AOP
against the common OP model we show that the AOP model fits the data set decisively
better than the OP model.

In Chapter 6 we introduce a model which is a discretized version of a stochastic volatility
(SV) model. It can be applied to ordinal valued time series and therefore is called
ordinal-response stochastic volatility (OSV) model. We consider a hybrid MCMC
sampler for fitting the OSV model to specific data sets. As for the AOP model, there
arise problems in convergence and mixing. Therefore we again develop a grouped move
step and construct a GM-MGMC sampler for the OSV model. In a simulation study we

examine the improvement in convergence.

In Chapter 7 the OSV model is applied to the price changes of the IBM stock in a
period of nine days. This data set consists of more than 22000 observations. We detect
significant covariates and quantify their impact on the price change process. The results
are compared with theoretical considerations of the trading process which have been
undertaken by Diamond and Verrecchia (1987), Easley and O’Hara (1987), and Tauchen
and Pitts (1983).

In Chapter 8 we consider an extension of the OSV model which allows for Student-t
distributed errors and which therefore is called OSVt model. We answer the question
whether it is more accurate to use errors from a t-distribution with unknown degrees of

freedom instead of normally distributed errors, as is often the case in modeling financial



4 CHAPTER 1. INTRODUCTION

time series since the t-distribution has heavier tails than the normal distribution. The
GM-MGMC algorithm is derived from the corresponding algorithm for the OSV model
developed in Chapter 7. In a simulation study we show that the GM-MGMC sampler
leads to accurate estimates for all parameters, in particular for the unknown degrees of
freedom of the t-distribution. Finally we fit the OSVt model to the same data set which
is investigated in Chapter 7.

In Appendix A the Nelder-Mead method, a minimization algorithm from numerics, is
described. The Appendices B and C contain C++ implementations of the GM-MGMC
samplers for the AOP and the OSV/OSVt model, respectively. These implementations
use procedures for random variable generation and related things and a matrix class

which can be found in Appendices D and E, respectively.



Chapter 2
Statistical Foundations

Here we summarize some foundations from statistics and stochastics which are used in
the following chapters. After stating results for random variable generation, we recall
the basic ideas behind Bayesian inference and the Markov chain Monte Carlo (MCMC)
methods which are important especially for Chapters 3, 6, and 8. Then we deal with
auxiliary particle filters and Bayes factors which are used in Chapters 4 and 5. We sum-
marize the definitions and some properties of the ordered probit model, the stochastic
volatility model, and the family of state space models, which serve as basic models. Fi-
nally we have a look at the features of stock price changes, since all non-simulated data
sets investigated in the following chapters represent such data. Since the Nelder-Mead
optimization procedure which is used in Chapter 6 is an algorithm from numerics, it is

not described here, but in the Appendix.

We note that all symbols and abbreviations which appear in the text are summarized
in an index after the appendix. Mostly we use the terms distribution and density inter-

changeably.

2.1 Random variable generation

A good way to construct efficient simulation methods is to represent a distribution as a
mixture of other distributions. Let f(z) denote the density of a random variable X and

g(x,y) the joint density of X and another random variable Y. If Y is continuous, f can

5



6 CHAPTER 2. STATISTICAL FOUNDATIONS

be represented as the marginal of the density ¢ in the form

f(x) = /g(w,y) dy.

Another useful representation is

f(x) = / () hay) dy (2.1)

where h; and hy are the conditional and the marginal density of X|Y = y and Y/,

respectively. For a discrete variable Y, representation (2.1) corresponds to
fx) = fy()py
y

with component distributions f,(z) and probabilities p, :== P(Y = y).

These equations induce directly several well-known possibilities to draw from f which

we summarize in the following Algorithm:

Algorithm 2.1 Random variable generation via mixture representations

1. If Y is continuous and the joint distribution g(z,y) is simple to simulate from,
generate a sample (x,y) from the joint distribution and obtain the sample x from

f as the first component of (z,y).

2. If'Y is discrete and the component distributions f,(x) are simple to simulate from,

choose y with probability p, and generate an observation from f,.

3. If the conditional distribution h; of X|Y = y is simple to simulate from as well as
the marginal distribution hs of Y, generate a sample y from the marginal distri-

bution of Y and then generate x from the conditional distribution of X|Y = y.

A well-known example for the third possibility is the sampling from the Student-t dis-
tribution with v degrees of freedom, which can be done by first drawing y from a x?

distribution and then x from a normal distribution depending on y.

Another often used method for drawing random variables is rejection sampling. Given
a density of interest f, the first requirement is the determination of a density ¢ and a
constant M such that

f(@) < Mg(x)

on the support of f. Then the procedure given in Algorithm 2.2 is called rejection

sampling:



2.2. BAYESIAN INFERENCE 7

Algorithm 2.2 Rejection sampling

1. Generate z ~ g and u ~ Unif(0, 1).

2. fu < f(x)/(Mg(zx)), consider x as a sample from f.

3. Else, return to 1.
The proof, that this algorithm produces a sample from f, is given in Robert and Casella
(2000), Chapter 2.

Now we consider the special case that one wants to sample from a truncated distri-
bution fg, which is proportional to a distribution f on a subset S of the support of f
and zero elsewhere. Here one can use ¢ = f and set M to the proportionality constant,

which equals fs(z)/f(z) for all x € S. Then we have, as required,

_ fs@) ey
fo(w) = Ty @) = My()
on the support of fs. Now consider the fraction
fs(z)
M f(x)

which is evaluated in Step 2 of Algorithm 2.2. On the support of fg the fraction equals 1,
since on S we have M = fq(x)/f(x). If x ¢ S, then fg(x) = 0, so that the fraction equals
0. Hence, for a target distribution fg which is a truncated version of another distribution
f, rejection sampling reduces to sampling from the non-truncated distribution f until
the sample lies in S. We note that although this is a simple method to draw from
truncated distributions, it can take a long time to get a sample, when the probability

under f to get a sample in S is small.

For more details on random variable generation we refer to Robert and Casella (2000).

2.2 Bayesian inference
Here we introduce the basic ideas of Bayesian inference. A comprehensive treatment of
this topic is given for example in Gelman et al. (1995).

In contrast to the classical frequentist approach, from a Bayesian perspective there is

no fundamental distinction between random variables and parameters of a statistical



8 CHAPTER 2. STATISTICAL FOUNDATIONS

model: all are considered random quantities. Let y denote the vector of observations,
and @ the vector of all parameters and latent (i.e. unobservable) variables in the model.
Formal inference then requires setting up a joint probability distribution p(y, @) over all
random quantities. This joint distribution comprises two parts: a prior distribution
7(0) which represents the uncertainty about @ before observing y, and a likelihood

f(y|@). Specifying 7(0) and f(y|@) gives a full probability model, in which

m(y,0) = f(y|0)n(0).

Since the data y contains information about @ one can use y to update the information
about 0 by determining the distribution of @ conditional on y. Using the Bayes theorem,
this distribution is given by

10
"OW) = Tyle)e6)do 22)

It is called posterior distribution of @, and is the object of all Bayesian inference.

The evaluation of the integral in Equation (2.2) is the source of most of the practical
difficulties in Bayesian inference, especially in high dimensions. In most applications,
analytic evaluation is impossible. Numerical evaluation is difficult and inaccurate in
more than about 20 dimensions. Therefore one often uses Monte Carlo integration or
Markov chain Monte Carlo (MCMC) methods (cf. Section 2.3) to approximate the
posterior distribution. These methods also take advantage of the fact, that the integral
in Equation (2.2) equals f(y) and therefore does not depend on 6, which leads to the

fundamental proportionality

m(0ly) o f(y|0)m(0). (2:3)

Now we introduce some further notations for the prior and posterior distributions. A
prior or posterior density is called proper, if it integrates to any positive finite value c.
If ¢ = 1, it is called normalized, otherwise unnormalized. Of course, in the latter

L. A prior or posterior density

case it easily can be renormalized by multiplication by ¢~
is called improper, if it integrates to oo. Improper priors often lead to proper posterior
distributions, but they always should be used with care. A prior with 7(6) x 15(0), 6 €
R*, S C R¥, is called noninformative on the support S, or shortly noninformative.
However, we point out that also the choice of the support S may reflect some prior
information about 6. Usually the prior distribution is taken from a parametric family,
for example the family of normal distributions. The parameters which parameterize this
family (in the normal distribution case the mean and variance) and which determine the

exact prior distribution, are called hyperparameters.



2.3. MARKOV CHAIN MONTE CARLO (MCMC) METHODS 9

As mentioned above, the object of Bayesian inference is the posterior distribution for the
vector 6. Here one is interested in location measures such as the posterior mean and
the posterior mode and in scale measures such as the posterior standard deviation.
We note that, according to (2.3), the posterior mode estimate formally coincides with

the maximum likelihood estimate when a noninformative prior is used.

Instead of the confidence intervals considered in the classical approach one can determine
credible intervals for each component 6; of 8. A 100(1 — )% credible interval for a
parameter 6; € R is an interval [ := [T, Trigng] for which

/7T(9]|’y) d9] =1—-« (24)
I
where 7(6;|y) denotes the marginal posterior for ;. For a parameter which can take on

only values from a discrete set A one can use the condition

Y wj=ily) >1-a

1€B

for a set B C A instead of (2.4). In general, for each parameter 6; there exist many
intervals which satisfy the corresponding condition. However, usually one chooses Ijof; to
be the a/2-quantile and Iy;gp,¢ to be the (1—a/2)-quantile of the corresponding marginal

posterior distribution.

In the following section we summarize the basic concepts of the MCMC methods which

will be used later for the approximation of posterior densities.

2.3 Markov chain Monte Carlo (MCMC) methods

In this section we give a short introduction to Markov chain Monte Carlo (MCMCQ)
methods which are used in the following chapters to draw samples from posterior distri-
butions. We start by describing the two underlying concepts: Monte Carlo integration
and Markov chains. Then we describe the basic MCMC algorihms: The Metropolis-
Hastings algorithm and its most important special case, the Gibbs sampler. Finally we
summarize the idea of reduced runs of a Gibbs sampler, a concept which employs the
original Gibbs sampler with only slight modifications to sample from other distributions
than the posterior distribution. For a detailed introduction to MCMC we refer to Gilks
et al. (1996) and Robert and Casella (2000).



10 CHAPTER 2. STATISTICAL FOUNDATIONS

2.3.1 Classical Monte Carlo integration

The classical Monte Carlo integration is a simulation-based method to evaluate an inte-

gral of the form

where f is a density and h a function which transforms the random variable X. This
integral can be approximated by generating a sample xy, ...,z from the density f and

then computing the average
M
. 1
hat = < m; W)

since hy converges almost surely to Ef[h(X)] by the Strong Law of Large Numbers
(cf. Breiman (1992), Ch. 3). Moreover, when h* has a finite expectation under f, the

expression

har = Ey[h(X)]
VUM
with vy = M2 M [h(x,,) — has]? converges in distribution to the standard normal
distribution N(0, 1) by the Central Limit Theorem (cf. Breiman (1992), Ch. 8). This can

be used for the construction of confidence bounds on the approximation of E¢[h(X)].

2.3.2 Markov chains

A Markov chain is a collection of random variables or random vectors {X;|i € M}
where usually M = N. The evolution of the Markov chain on a space {2 C RP is governed
by the transition kernel
P(x,A) = Pr( X, €Al X, =2, X;,j <1
= Pr( X, €A|X,;,=x) (xeQ, ACQ) (2.5)

which embodies the Markov assumption that the distribution of each succeeding state in

the sequence, given the current and the past states, depends only on the current state.

In general, the transition kernel has both a continuous and a discrete component. For

some function p: Q x Q — [0, 00), the kernel can be expressed as

P(z,dy) = p(z,y)dy + r(x)lsy(x) (2.6)

where p(z,z) = 0 and r(x) = 1 — [, p(x,y)dy. Therefore the transition from z to y

occurs according to p(x, y), and the transition from @ to @ occurs with probability r(x).



2.3. MARKOV CHAIN MONTE CARLO (MCMC) METHODS 11

Following Equation (2.5), the transition kernel provides the distribution of X;,; given
that X; = x. The nth-step-ahead transition kernel is given by

PU(e,4) = [ POy, A)P(e,dy)
Q
where P (z, dy) = P(x, dy) and

P(w,A):/AP(m,dy).

Under certain conditions stated below the distribution given by the nth iterate of the
transition kernel converges to the invariant distribution 7* for n — oo. This invariant

distribution satisfies

o (dy) = /Q P(a, dy)n(z) dz (2.7)

where 7 is the density of 7* with respect to the Lebesque measure, i.e. 7*(dy) =
7(y)dy. The invariance condition states that if X; is distributed according to 7*, then

all subsequent elements of the chain are also distributed according to 7*.

A Markov chain is called reversible if the function p(x,y) in Equation (2.6) satisfies

f(@)p(z,y) = f(y)p(y,x) Vo,y

for a density f(-). If this condition holds, then f(-) is the density of an invariant
distribution. This follows from Equations (2.6) and (2.7) since for all sets A C Q

/P(az,A)f(a:)d:z; = // p(z,y)f dydw+A()f(:1:)da:
= // p(y, da:dy+/A()f(w)da:

_ /l_ﬂy)]f()dy%()f(w)dw

- / f(y) dy

Another important notion is that of 7*-irreducibility, where 7* is a probability measure.
This is the requirement that the chain is able to visit all sets with positive probability
under 7* from any starting point in 2. Formally, a Markov chain is said to be 7*-

irreducible if for every x € )
mT(A)>0=P(X; €Al Xg=2) >0

for some 7 > 1.



12 CHAPTER 2. STATISTICAL FOUNDATIONS

A Markov chain is called aperiodic if there does not exist a partition (€, ...,2_1) of
Q for some k£ > 2 such that

P(XiEQimodk|XOEQO):1 V.

Hence, the aperiodicity of a chain ensures that the chain does not cycle through a finite

number of sets.

These definitions allow us to state the following results, which form the basis for Markov
chain Monte Carlo methods. The first result gives conditions under which a strong law
of large numbers holds. For a proof see Tierney (1994), Corollary 1 and Theorem 3. The
second result gives conditions under which the probability density of the Mth iterate

converges to its unique, invariant density (cf. Tierney (1994), Theorem 1).

Theorem 2.1
Suppose { X ;} is a 7 -irreducible, aperiodic Markov chain with transition kernel P( -, -)
and invariant distribution ©*. If P(x, -) is absolutely continuous with respect to © for
allx € Q, then m* is the unique invariant distribution of P( -, -) and for all m*-integrable
real-valued functions h,

| M

MZh(Xi) — /h(w)w(a:) dx as M — oo, a.s.

i=1
Theorem 2.2
Suppose { X ;} is a 7w -irreducible, aperiodic Markov chain with transition kernel P( -, -)

and invariant distribution 7*. Then for w*-almost every x € 2, and all sets A
| PM(x, A) — 7*(A) ||— 0 as M — oo

where || - || denotes the total variation distance.

The MCMC methods considered in the following sections always produce chains which
have an invariant distribution by construction. Therefore the existence of the invari-
ant distribution does not have to be checked in any particular application of MCMC
methods. The other conditions appearing in Theorems 2.1 and 2.2 can also easily be
satisfied, as is stated in the following section. More convergence results in the context
of Markov chain Monte Carlo methods can be found in Robert and Casella (2000).

2.3.3 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) method is a general MCMC method to produce sample

variates from a given multivariate target density. In the Bayesian context the target



2.3. MARKOV CHAIN MONTE CARLO (MCMC) METHODS 13

density is usually the posterior density. Like other MCMC methods the MH-algorithm
produces a realization of a Markov chain which has the given target density as invariant

distribution.

The MH method employs a proposal density which is used to supply a proposal value
and a probability of move. This probability is based on the ratio of the target density
(evaluated at the proposal value in the numerator and the current value in the denom-
inator) times the ratio of the proposal density (at the current value in the numerator
and the proposal value in the denominator). Since only ratios of the target density are

involved, knowledge of the normalizing constant of the target density is not required.

In particular, the goal is to simulate from the d-dimensional distribution 7* that has
density 7(0), @ € R?, with respect to some dominating measure. To define the algorithm,
let ¢(6°,0°) denote the proposal density which is used to supply a proposal value 6°
given the current value 8°, and let «(0°,0°) denote the function

7(0°)4(6°.0")
m(6%)q(6°,0°)
1 otherwise.

min [ 1} if 7(6°)q(6°,6°) > 0,

«a(6°,60°) =

In algorithmic form, the simulated values are obtained by the following recursive proce-

dure.

Algorithm 2.3 Metropolis-Hastings algorithm

1. Specify an initial value 0.
2. Repeat forv=1,..., M

e Draw the proposal value 8° from q(0(i’1), -).
e Draw a sample u(¥ from the uniform distribution Unif(0, 1).

o Let '
9l .— { o if ul < a(6"7Y, 6%),

60U~ otherwise.
3. Return the values {0(1), 02 ... O(M)}.
The Markov chain produced by the MH algorithm has under general conditions the

limiting distribution 7*. Therefore, the variates are from 7* only in the limit as the

number of iterations becomes large but, in practice, after an initial burn-in phase the



14 CHAPTER 2. STATISTICAL FOUNDATIONS

chain is assumed to have converged and subsequent values are taken as approximate

draws from 7*.

There exist many conditions which can be shown to be sufficient for irreducibility and
aperiodicity of the MH-chain. For example, the following quite unrestrictive condition
is given in Roberts and Tweedie (1996).

Proposition 2.1
Assume that the target demsity m is bounded and positive on every compact set of its

support S. If there exist positive numbers ¢ and § such that
q(0°,0°) > ¢ if || 0°—6°| <34,

then the MH-chain is irreducible and aperiodic.

For more conditions which guarantee irreducibility and aperiodicity see Robert and
Casella (2000), Chapters 4 and 6.

In applications when the dimension of @ is large it is preferable to construct the Markov
chain by first grouping @ into n blocks, i.e. @ = (0,,...,0,), where 8, € R% and
sampling each block, conditioned on the remaining blocks, by the MH-algorithm. Let
{0:(6;,071(65,...,0, 1,0;.,...,0,)) |1 <k <n} denote a collection of proposal den-

sities. Then the multiple-block MH-algorithm can be summarized as follows.

Algorithm 2.4 Multiple-block Metropolis-Hastings algorithm

. e ey 0
1. Specify an initial value ) = (Og ), ce 0(0)).

n

2. Repeat forv=1,..., M
Repeat for k =1,...,n

e Draw the proposal value 6} from qk(Og_l), . O@k), where

6" .= 6", ... 0" 6D . i)

k+1 » n

e Draw a sample u,(f) from Unif(0, 1).

o Let
o e (i i-1) poiali
9\ .— { 0 if “l(c) < ak(eé )79k|9(—)k);
k

B 953_1) otherwise,



2.3. MARKOV CHAIN MONTE CARLO (MCMC) METHODS 15

where
(| 7(6;,0)a(8;. 056" >
11111 -1 () i—1) ’
77(919 79—k)Qk(0k 70k|9—k)
it m(0) ", 0)ax(67 ", 0716%)) > 0,

an(8Y7",6710%)) =

(1 otherwise.
(2.8)

3. Return the values {8V, 0% ... 91},

As for example in Chib and Greenberg (1994), the proposal densities g can be tailored

to the actual values of 8 and can vary across iterations.

2.3.4 Gibbs sampler

The Gibbs sampler is a special case of the multiple-block MH-algorithm. Here one uses
the full conditional distribution defined by

7r('|01;---;Ok—1;9k+1;---;0n); kzl,...,n,

as proposal density for 0,. Obviously this proposal density is independent from the
previous value 0,(5_1) of 0. Since 7(0,|0 ) x 7(0y, 0 ) the acceptance probability in
Equation (2.8) becomes
n(6;. 0 (6 V0% | _
D) g0 go g o[~ ©
W(ek ,0° k) (ekae k)

which means that each proposed value is accepted with probability 1. Hence the Gibbs

sampler can be summarized as follows.

Algorithm 2.5 Gibbs sampler

1. Specify an initial value 8© = (8", ... 8").
2. Repeat fori=1,...,. M

o (Generate Ogi) from (- |49g*1)7 o 0(#1))'
e Generate Ogi) from 7( - |9§i)7 (9%1'—1)7 L 0(1’—1))'



16 CHAPTER 2. STATISTICAL FOUNDATIONS

e Generate 6! from 7(- |0gi), ce G(i),l).

n

3. Return the values {1, 0% ... 9@},

When not all full conditionals can be determined explicitly, one can update some blocks
by an MH-step. Such multiple-block MH-algorithms in which only some of the blocks
are sampled using the full conditional distributions are called hybrid (MCMC) algo-
rithms.

2.3.5 Reduced runs

After burn-in an iteration ¢ of the Gibbs sampler generates a vector (0%“, ..., 09 which
is considered as a sample from the full posterior distribution 7(64, ..., 80,|y). Here again

all components @; are allowed to be 1- or multi-dimensional.

If {ki,...,kn} is a subset of {1,...,n} and one is interested in a sample from
7(Ok,, ..., 0, |y), it is sufficient to take the sample (0%2), ce fo)), and to consider the
vector (0,(;1), cee 05;;) as a sample from 7(6y,,...,0y, |y). This follows directly from

Algorithm 2.1, 1. Therefore one can use the same Gibbs sampler to produce samples

from 7(0g,,..., 0. |y).

Now suppose that (ki, ..., Kkmy kmi1s - ki, ki1, - -, kn) is any permutation of the first
n positive integers (1,2,3,...,n). If 6

K12 6}, are known and one is interested in a

sample from 7(0y,,..., 0, |0 ,0%,,Y), one can use a so-called reduced run of

<>
km-‘,—l’ “ e
the Gibbs sampler. That means that one fixes the values 6}  ,...,0; and runs the

original Gibbs sampler without updating 0 , 01, We emphasize that not only the

el
components with indices ki, ..., k,, must be updated, but all with indices k; 1, ..., ki,

too. Of course, each iteration of the reduced run of the Gibbs sampler delivers a sample

from
7r(0k1, ceey ka, 0kl+17 ceey Gkn|0;m+1, ceey zl’y)’
so that one has only to discard the components ki1, ..., k, to get a sample from
T(Ogy,y- .., Okm|0;m+1, 00, Y).

The reduced runs provide a simple method to use the original Gibbs sampler with only
slight modifications for sampling from other distributions than the posterior distribution.
As described in Chib (1995), one can take advantage from reduced runs for example in

the estimation of marginal likelihoods.



2.4. GENERAL STRATEGIES FOR IMPROVING MCMC 17

2.4 General strategies for improving MCMC

One possibility to improve the convergence of the MCMC chains is to use block up-
dates where several lower-dimensional updates are combined to a higher-dimensional
joint update. As Gilks et al. (1996) point out especially blocking of highly correlated
components into a higher-dimensional component may improve mixing. However, sam-
pling from higher-dimensional distributions can be difficult and time expensive, so that

often one must search for other methods to speed up the convergence.

Another possibility is to use random permutations of the updating order, since a fixed
order is not necessary. Moreover, not all components need to be updated in each itera-
tion. To improve mixing, Zeger and Karim (1991) suggest to update highly correlated
components more frequently than other components.

In Sections 3.3 and 6.3 we use a method which is often difficult to apply, but which may

heavily speed up the convergence. It is based on the following theorem:

Theorem 2.3 (Liu and Sabatti (2000))

If T is a locally compact group of transformations defined on the sample space S, L its
left-Haar measure, w € S follows a distribution with density w, and v € T is drawn from
7(y(w))|Jy(w)|L(dy), with J,(w) = det (0y(w)/0w), Oy(w)/0w the Jacobian matriz,
then w* = y(w) has density 7, too.

In this context, a locally compact group I' of transformations on S has the following

properties:

e ['is a locally compact space.
e ['is a group with respect to the composition operation.

e The group operations (y1,72) — 7172 and v — v~ are continuous.

A measure L is called left-Haar measure with respect to the transformation group I'
if

L(B) = L(yB)
for all v € I' and for all measurable subsets B of I'. For details on left-Haar measures
we refer to Rao (1987).



18 CHAPTER 2. STATISTICAL FOUNDATIONS

A well-known locally compact transformation group is the translation group on S

along an arbitrary direction e,

Lirans = {’Y eR': y(w) =w + e = (w +’Y€1,---;wd+7€d)},

with left-Haar measure L(dy) = dv. Following the Theorem of Liu and Sabatti (2000),
v has to be drawn from 7(w + 7ve) in this case. Another example is the scale group

on S,

Lscale ©= {r>0:9(w) =yw = (ywy,...,ywa)},

with left-Haar measure L(dy) = vy~ 'dy. Here 7 has to be drawn from v*~ 7 (yw).

In the MCMC context, one can use the Theorem of Liu and Sabatti (2000) by applying
the transformation 7 to a group w of parameters, since the sample v(w) can be consid-
ered to be from the same distribution as the original sample w. The move w — y(w)
is called grouped move step. It has to be inserted in each iteration of the underlying
MCMC algorithm. The resulting algorithm is called GM-MGMC (grouped move
multi-grid Monte Carlo) sampler. Whether a GM-MGMC sampler shows a better
convergence than the parent MCMC algorithm also depends on the choice of the trans-
formation group I' and the distribution 7. Of course, they should always be chosen so
that on the one hand the problematic parameters are transformed and on the other hand

the distribution 7 (y(w))|J,(w)|L(dy) allows to draw samples very fast.

Finally we emphasize that a grouped move step is not a block update, since the compo-
nents of w are deterministically transformed by a randomly drawn transformation

element .

2.5 Auxiliary particle filters

In this section we describe some simulation-based filtering methods. For the following
chapters a special filtering procedure turns out to be useful which is called auxiliary
particle filtering. This method was introduced and investigated by Pitt and Shephard
(1999) as an extension of particle filters. The particle filtering method has been used
for example by Gordon et al. (1993) and Kitagawa (1996) on non-Gaussian state space

models.



2.5. AUXILIARY PARTICLE FILTERS 19

2.5.1 The filtering problem

We consider a time series y;, t = 1,...,7T', which is supposed to be conditionally indepen-
dent given an unobserved state y; which is itself assumed to be Markovian. Let F; denote
the vector of observations until time ¢, i.e. F; := (y1,...,¥:). Then the assumptions im-

ply that, for instance, f(y:ly;. Fio1) = f(yely;) and f(yilyi 1. Fior) = f(yilyi_,), which
simplifies the following equations. The state evolution is initialized by some density

fws)

Filtering means to learn about the state y; given contemporaneously available infor-
mation. We do this by estimating the density (or probability distribution function)
fyf|F), t=1,...,T. Filtering can be viewed as a procedure with two stages which are

repeatedly applied. Starting from f(y;_,|F;—1) one first produces the prediction density

FOEF) = [ PO £ P i (2.9
and secondly moves to the filtering density via Bayes theorem,

f(yt|yf)f(yf|}—t—1)
f (el Fir)

flyi|F) = (2.10)
where f(y|Fi1) = [ f(uelyi) f(yi|Fi1) dy;f. In most cases the integrals in Equations
(2.9) and (2.10) cannot be solved analytically, so numerical or simulation-based methods

must be used, for example particle filters which are discussed in the following.

2.5.2 Particle filters

Particle filters are the class of simulation filters that recursively approximate the filtering
random variable y; ||F,_; by ’particles’ y;l,, ..., yi* with discrete probability mass
7y, ...,m, ) respectively. That means that a continuous variable is approximated by
a discrete one with random support. In the literature often all of the 7", are assumed

to equal 1/M.

Since the particles are considered to be samples from f(y; ,|F; 1), one can approximate
the prediction density (2.9) by

M
yt|~7:t 1) = Zf Yyt (2.11)
m=1



20 CHAPTER 2. STATISTICAL FOUNDATIONS

which is called the empirical prediction density. This can be combined with the

density f(y:|y;) to get, up to proportionality,

M
(yt|~7:t o< f(ylyy) Zf Yrlylmty (2.12)
m=1

which is called the empirical filtering density. Particle filters then sample from this
density to produce new particles y;1, ...,y with weights 7}, ..., 7M. This procedure
can be iterated through the data.

There are several methods to sample from the filtering density f(y;|F;), for instance,
sampling /importance resampling (SIR), rejection sampling (cf. Section 2.1), or MCMC.
For our purposes the SIR method is the most useful one, and therefore we do not discuss
the others here. Details to importance sampling can be found for example in Robert
and Casella (2000), Section 3.3.

A SIR-based particle filter has the form given in Algorithm 2.6 which is evident from
Equation (2.10). For a full filtering procedure this algorithm has to be applied succes-
sively for t = 1,...,T. To get started one has to draw a sample {y*,...,ysM} from

fwg)-
Algorithm 2.6 SIR-based particle filter
1. Draw y;t, ...y from f(y;|F_1).

2. For each r € {1,..., R} evaluate the weights

L f(yt|y;§kr)f(yzcr|ft*1) _ *
W= TR ) (vely;")

and compute 7, := w,/ Zle w;.
3. Resample among {y;"|r = 1,..., R} using the associated probabilities {7} to
produce a sample of size M from f(y;|F).

This method requires R > M. It samples from f(y;|F;) by making ’blind’ proposals
yit, .oyt from f(yr|F;i1), ignoring the fact that y, is known. A particle filter is
called adapted if it makes proposals that take into account the value of y,. An adapted
SIR-based particle filter has the following structure.

Algorithm 2.7 Adapted SIR-based particle filter

1. Draw y;%, ...,y " from g(y;|F;), where g is some proposal density.



2.5. AUXILIARY PARTICLE FILTERS 21

2. For each r € {1,..., R} evaluate the weights

o e Ty | Fi)
o (| 7o)

R
and compute m, == w,/ > ;" w;.

3. Resample among {y;"|r = 1,..., R} using the associated probabilities {7} to
produce a sample of size M from f(y;|F).

This method looks very attractive. However, we know from Equation (2.11) that, for a
particle filter, f(yr|F, 1) = oM f(yr|y™)a™,. Therefore one must evaluate at least
M - R densities to generate M samples from f(y;|F;). Given that M and R are typically
very large, this implies that the adapted SIR-based particle filter is very computer-
intensive and not practicable for many models. In the following section we consider a
method which does not require so many density evaluations.

2.5.3 Auxiliary particle filters

The aim of the considered filtering procedures is a fast sampling from the density
f(yf|Fi), which can up to proportionality be approximated by (2.12). One can rewrite
this expression in the form

M
Fyi|Fe) o Z FQely) £y ly ) my
m=1
and define the densities f(y;, m|F;), m =1,..., M, by the condition
FyssmlFe) o< flyelye) £y 1y ™) mi"
Of course, m serves as an index on the mixture in Equation (2.11).

Now a sample from f(y;|F;) can be produced by first drawing from the joint density
f(y;, m|F;) and then discarding the second component. Since m is present simply to aid
the task of simulation, it is called an auxiliary variable. Particle filters of this type

are called auxiliary particle filters.

As in the case without auxiliary variable, one can use SIR, rejection sampling, or MCMC

methods for sampling from f(y;, m|F;). Again we consider only the SIR-based method.



22 CHAPTER 2. STATISTICAL FOUNDATIONS

Algorithm 2.8 SIR-based auxiliary particle filter

1. Make R proposals (y;",m") from ¢(y;, m|F;), where g is some proposal density.
2. For each r € {1,..., R} evaluate the weights

_ Sy f ™)
' glyi™, m"|F)

(2.13)

R
and compute m, == w,/ Y ;" w;.

3. Resample among {y;"|r = 1,..., R} using the associated probabilities {7} to
produce a sample of size M from f(y;|F;).

The auxiliary SIR-based particle filter is an adaptable and very flexible method, since
the proposal density ¢g can depend on y, and y;™. g should be chosen so that the weights
w, are as equal as possible. If one can achieve exactly equal weights, the procedure is
called fully adapted to the model.

Since we only use the SIR-based auxiliary particle filter in the subsequent chapters, we
refer to Pitt and Shephard (1999) for more details about other auxiliary particle filters.

2.6 Model selection via Bayes factors

In this section we introduce some basic notions in the context of Bayes factors and
consider some estimation strategies which follow the papers by Chib (1995) and Chib
and Jeliazkov (2001).

2.6.1 Bayes factor and marginal likelihood

We consider the problem of comparing a collection of models { M, ..., M} which reflect
competing hypotheses about the data. We suppose that each model M, is characterized
by a model-specific parameter vector 8, € ©; C R% of dimension d;. Let f(y|@,, M)
denote the likelihood for the model M;.

Bayesian model selection proceeds by pairwise comparison of the models M, ..., My,

through their posterior odds ratio, which for any two models M; and M; is defined by



2.6. MODEL SELECTION VIA BAYES FACTORS 23

B;; Evidence against model j

1-3.2 Not worth more than a bare mention
3.2 -10 Substantial

10 — 100 Strong

> 100 Decisive

Table 2.1: Jeffrey’s Bayes factor scale with B;; denoting the Bayes factor for model 7
versus model j.

P(M;ly)/P(Mj|y). This ratio can also be written as

P(Mily) _ P(M;,y) _ P(M;) m(y|M,) (2.14)
P(Mjly)  P(Mjy) P(M;) m(y|Mj) '

where

m(y|M) = [ F(yl6r, M)m(8)15) b (2.15)

is the marginal likelihood of M, with 7,(6,|M;) denoting the prior for 8, in model M,.
The first fraction on the right-hand side of (2.14) is known as the prior odds and the
second as the Bayes factor.

When the prior odds on the models M; and M; is equal to one, the Bayes factor and the
posterior odds are equal. If this holds for all 7,j € {1,..., L}, model selection is done
by finding an appropriate estimate of the marginal likelihood for each competing model

and then computing the Bayes factors for all pairs of competing models.

The strength of evidence in favor of model M; versus model M; can then be evaluated
according to the Bayes factor scale in Table 2.1, which was first proposed by Jefireys
(1961).

2.6.2 Estimation strategies

The calculation of the marginal likelihood can be a difficult task in complex models. Of
course, the analytic evaluation of the integral in Equation (2.15) is almost never possible.
Furthermore, because the marginal likelihood is obtained by integrating the sampling
density f(y|8,, M) with respect to the prior distribution of the parameters, and not the
posterior distribution, the posterior MCMC output from the simulation cannot be used

directly for estimation.

An alternative approach is given in Chib (1995). This approach is based on another



24 CHAPTER 2. STATISTICAL FOUNDATIONS

representation of the marginal likelihood that is amenable to calculation by MCMC
methods. Because the marginal likelihood is the normalizing constant of the posterior

density m,(6,|y, M;), one can write

f(y|6:, My)m (6, M)

M) =
m{y M) m(6i]y, M)

(2.16)

which is referred to as the basic marginal likelihood identity. Evaluating the right-
hand side of this identity at some appropriate point 8] and taking logarithms one obtains

the expression
logm(y|M;) = log f(y|6;, M) + log m (0| M;) — log m (6] |y, M;) (2.17)

from which the marginal likelihood can be estimated by finding an estimate of the
posterior ordinate m;(07|y, M;), and of the likelihood ordinate f(y|6;, M;), when this
expression is not calculable directly. For estimation efficiency, the point 8 is generally
taken to be a high-density point in the support of the posterior. Here the posterior mean

or the posterior mode can be an appropriate choice.

When the model M, includes latent variables, another marginal likelihood identity often
turns out to be useful. In this case the parameter vector 6, consists of a classical
parameter vector 1, and of the vector z; of the latent variables, 8, = (¢, z;). Therefore

Equation (2.16) becomes

yl), z), My)m (], 27| M)
771('(#?; Z?|y7 Ml)

miy|a) = L4

This identity is not that useful because it requires the computation of the posterior ordi-
nate m; (7, 27|y, M;) whose dimension can easily run into the hundreds, if not thousands.

The same is true for the alternative representation

f(y, 2] Y], My)m(vp; | M)

m(y|M;) = S
(ylah) (9%, 2]y, M)

To avoid this problem one can integrate out the latent variables z; and use the identity

yl), My)m (| M)
7Tl(¢?|y7 Ml)

m(y|M,) = Al (2.18)

which usually leads to a quite efficient estimation of the marginal likelihood since the

latent variables do not appear any more.



2.7. BASIC MODELS 25

2.7 Basic models

Here we consider some well-known models which play a role in the following chapters.
First we introduce the ordered probit model which will be extended in Chapter 3 by
an autoregressive component. Then we have a look at stochastic volatility models for
a continuous response. Finally we consider a general form of state space models and
provide the corresponding Kalman recursions and the simulation smoother by De Jong
and Shephard (1995).

2.7.1 Ordered probit model

In the ordered probit (OP) model it is assumed that y = (y1,...,y,)" is a vector
of n independent ordinal random variables and that y;, « = 1,...,n, takes on the value
ke {1,..., K} with probability

pir = (e, + z;B8) — P(cx—1 + z;B)

where ®(-) denotes the cumulative distribution function of the standard normal distri-
bution. The cutpoints ¢, have to satisfy the order condition —occ =: ¢y < ¢; < ... <
ck—1 < Cx = 00. &; is a p X 1 column vector of covariates and 8 = (51,...,06,) apx1

vector of regression coefficients.

An equivalent representation of the ordered probit model was used by Albert and Chib
(1993). They introduced latent variables y; such that

vi=k <= vy €lcr1, k),
y; = x,B +¢;,

fork=1,...,K and i =1,...,n, where all errors €] ~ N(0,1) are assumed to be inde-
pendent. Albert and Chib (1993) took advantage of this latent variable representation
for the construction of a Gibbs sampler to estimate the cutpoints ¢, and the regression
coefficients f31,..., fp.

We note that if the expression @3 contains an intercept, one has to fix one of the

cutpoints for reasons of identifiability. Usually the cutpoint ¢; is fixed to 0.



26 CHAPTER 2. STATISTICAL FOUNDATIONS

2.7.2 Stochastic volatility models

Stochastic volatility (SV) models are used for modeling time series with non-constant
volatility where the volatility shows a stochastic behavior. Such time series occur for
example in finance. So far, all stochastic volatility models have been designed for a
continuous response. In Chapter 6, however, we will introduce a SV model for ordinal-

valued time series.

The basic SV model for continuous variables yy,...,yr is defined by the following
equations (cf. Taylor (1986)):

yr = exp(h{/2)e;, (2.19)
hy = wu+o(hi_y —p)+on, (2.20)

where all the variables ¢} and 7] are assumed to be independent and standard normally
distributed. The latent variables h} represent the log-volatilities which form an AR(1)-

process with independent errors of mean 0 and standard deviation o > 0.

As an extension of the basic SV model, covariate vectors x; and z; with corresponding
regression parameter vectors 3 and a can be inserted in Equations (2.19) and (2.20),

respectively:

vy = x,8+exp(h;/2)e], (2.21)
hi = p+za+o(hi —p)+on. (2.22)

Obviously, the covariate vector x; changes the mean of y, given 8 and h;, whereas the

covariate vector z; has an impact on the log-volatility A;.

Another extension is to replace the standard normally distributed errors €; by Student-
t distributed errors. Also jump components can be inserted. There exist many pa-
pers which deal with SV models. For example, Jacquier et al. (1994) have proposed
a Bayesian treatment of SV models. MCMC methods for SV models with both t-
distributed errors and a jump component have been developed by Chib et al. (2002).

2.7.3 State space models and associated algorithms

State space models are a flexible family of models which can be used in many applica-
tions. The corresponding techniques were originally developed in connection with the

control of linear systems. However, since there exist state space representations for many



2.7. BASIC MODELS 27

well-known models, for example autoregressive moving average (ARMA) processes, these
techniques can also be used in other contexts. Details on state space models and the

derivation of the Kalman recursions can be found in Harvey (1989).
We consider the multivariate Gaussian state space model defined by

Yy, = ct+tht+Gtut7 t= 1,...,T, (223)
Ty = di+ Sy + Hyuy, Uy ~ Npym(0,1) iid, (2.24)

with initial state
ry Nm(ivl‘o, P1|0). (225)

The vectors y, € R" are called observations, whereas the vectors &; € R™ represent the
(unobserved) states. Accordingly, (2.23) is called observation equation and (2.24)
state equation. The system vectors c¢; € R" and d; € R” are assumed known as well
as the system matrices Z, € R™*™, G, € R*("tm) G, ¢ R™™ and H, € R™*+m)
For simplicity we assume here that G,H; = 0, and we define ¥} := G,G} and X7 := H,H,.
The process is initiated by the state vector &; which is normally distributed with known

mean ;o € R™ and known covariance matrix Pjjp € R™*™.

We are interested in the distribution f(y,|y;,...,y,_1) of y, given the observations

Yy,---, Y. oince we assume normally distributed errors w, this distribution is also
multivariate normal. The same holds for the distribution f(x|yy,...,y, ;) of ; given
Yq,---5Y;_q1. We denote the means and covariance matrices of these conditional distri-
butions by

Yijt— = E(yly, -5y, Fyj1 = Cov(ylyrs -+ Y1),

o1 = Blxyy, ..., y1), Pyj—1 = Cov(xeyy, .- Y1)

The following Kalman recursions allow for the computation of these quantities, suc-

cessively for £ = 1,...,T. Recall that z,)o and Py are known.
Y1 = G+ L&y, (2.26)
Ut = Y Y1 (2.27)
Fpuw = ZPyaZ,+ %Y, (2.28)
K, = SiPu.ZiF;, (2.29)
L, = S, — KiZ, (2.30)
Ty = di + Sy + Ky, (2.31)
Py = SiPyuLy+ 3. (2.32)



28 CHAPTER 2. STATISTICAL FOUNDATIONS

The vectors v, are called innovations. Although one could insert the explicit expres-
sions for the matrices K; and L; in Equations (2.31) and (2.32), these matrices should

be used to reduce the number of matrix multiplications required.

If the new observation y, becomes available, the estimates for the corresponding state can
be updated. In particular, &; given the observations y, ..., ¥y, is normally distributed
with mean x,; and covariance matrix P;. These quantities are provided by the following

updating equations:

Tyt = Typ1+ Pt\tflztIFtTtl,l'vt; (2.33)
Py = Py — Pt|t71Z£Ftﬁ1,1ZtPt\tfl- (2.34)

Inserting Equations (2.33) and (2.29) in Equation (2.31) we get a shorter expression for

L1t

Ty = dy + Spxyp—1 + Ky
= di+ Si(xys — Pt|thZ£Ft‘_t1,1'Ut) + Stpt|thZ£Ft‘_tl,1'Ut
= dt + St$t|t-

Similarly, inserting (2.34) and (2.30) in (2.32) we get

Py = StPt‘t,lL; + 37
= S;Py—1S; — SiPiy—1 Zi K| + Xf
= SiPy1S; — Stpt\t—lZtIFtTtl_ltht\t—lsé + X7
= S;PS; + %7

Therefore, alternatively to Equations (2.26) up to (2.32) one can use the recursions

2.35
2.36
2.37
2.38
2.39
2.40
241
2.42

Y1 = €+ LTy, (
Ve = Y~ Yyi-1» (
Fiuow = ZiPpaZi+ %Y, (
Ni = PuaZiFyl, (
Ty = xTy1 + Ny, (
Py = Py-1 — NZiPy, (
T = dy + STy, (
(

)
)
)
)
)
)
)
)

Pt+1|t == StPt‘tS£ + th

which provide additionally the state estimate .



2.7. BASIC MODELS 29

The system vectors and matrices of the state space model (2.23) to (2.25) are typically
parameterized by some hyperparameters, which we combine in a vector 8. Now we show

how the Kalman recursions can be used to compute the likelihood for a specific value of
6. Since

T
fy - yr|60) = f(y]0) Hf YlYis- Y-, 0) (2.43)
t=2

and the distribution of y,, given the past observations, is multivariate normal with mean

Y41 and covariance matrix Fy_q we get immediately

T
nI’ 1
log f(yy,--.,yr[0) = —710g(27r)—5210g(det(Ft|t_1))
1 < 7
52 Y- 1) t\t 1(y yt\tfl)'
t=1

Using the innovations v; defined in (2.27) this equation can be simplified to

nT
log f(yy,.-.,yp|0) = —710g(27r - —Zlog (det(Fyz—1) Zv t‘t (e (2.44)

This representation is known as the prediction error decomposition of the log like-
lihood. The covariance matrices Fy;_, as well as the innovations v; depend on the
parameters contained in 8. We emphasize that therefore the maximization of the log
likelihood by a numerical optimization procedure requires a full run of the Kalman

recursions for each value of @ at which the log likelihood is evaluated.

In the following we deal with the problem of how to generate a sample from the multi-

variate normal posterior distribution

f(lela sy ZTwT|y17 e Y, 0)

where 6 denotes the vector of parameters in the model. This can be done using the
simulation smoother of De Jong and Shephard (1995), which involves first running
the Kalman recursions (2.35) to (2.42), storing {vy, Fyj;_1, NV;} for each ¢t = 1,..., T,

and then running the following backward recursions for t =7),...,1, where 7 = 0 and



30 CHAPTER 2. STATISTICAL FOUNDATIONS

Mpr =20
D, = Ft|;1_1 + N/S|M;S;N;, (2.45)
b, = Fy'v — NS, (2.46)
Q: = XY —-XVD>Y, (2.47)
K ~ N,(0,Q), (2.48)
A, = SUDZ - NISMLS), (2.49)
r = ZiF v+ (S] - ZiN{S) T — AQ7 Ky, (2.50)
Myy = ZiF L2+ (Sp— ZIN[S)M(Se — SiNZy) + Q71 A, (2.51)
& = y,—c—XVb, — K. (2.52)
Then &, is a sample from f(Z,x¢|Z 12441, Zrxer, Yy, -, Y, 0). Since

T
f(Zizy, ..., Zrxrly,, ..., yp, 0) = Hf(tht|Zt+1mt+17 s ZrTT, Y1, -5 Y, 0)

t=1
this implies directly that (&,,...,&,) is a sample from f(Z1x1, ..., Zrer|y,, ...,y 0).
Note that k; in Equation (2.48) is drawn randomly from a multivariate normal distri-
bution.

We finally remark that the computation of some matrices appearing in the Kalman
recursions and in the simulation smoother as for example A; is not absolutely necessary,
since one could insert the corresponding expressions in the other equations. However,
since these matrices appear in more than one equation, one can save computation time,
since the corresponding expressions only have to be computed once. Of course, the
number of multiplications can further be reduced, for example by storing (S; — S;V; Z;)

in an additional matrix.

2.8 Features of the price change process

The data which will be investigated in Chapters 5, 7, and 8 is high-frequency data
collected at the New York Stock Exchange (NYSE). In high-frequency finance, one
considers all transactions of one or more stocks or derivatives which occur in a certain
period. The structure of such data differs heavily from data which is collected only once
a day but over a long period of two or more years. Usually one only has to consider few
days to collect enough data, since more important stocks are traded up to 500 times per

hour, so that one observes sometimes over 3000 transactions per day.



2.8. FEATURES OF THE PRICE CHANGE PROCESS 31

We are interested in modeling the high-frequency behavior of price changes of stocks.
The first important feature of such price changes is that they take on only values which
are integer multiples of a certain amount, called tick-size. On June 24, 1997 the tick
size at NYSE was changed from 1/8$ to 1/16$, and since January 29, 2001, the tick size
is 1/100$. In the following chapters we only consider data collected between these two
dates, therefore the tick-size is always one sixteenth of a dollar. However, mostly only
few integer multiples occur: In about 99% of the transactions the lie between —3/16%
to +3/16%. Therefore one observes an ordinal valued time series, and the use of
continuous response models as for example common stochastic volatility models (cf.
Taylor (1986) or Chib et al. (2002)) seems not to be adequate.

Another important feature of the price changes is that they may depend on several
covariates. This follows from theoretical considerations about the trading process. For
example, Diamond and Verrecchia (1987) give theoretical reasons for the assumption
that longer periods between consecutive transactions usually lead to a higher volatility
of the price change process. Easley and O’Hara (1987) and Tauchen and Pitts (1983)

give reasons for the dependency on the transaction volume.

The third important feature of the price change process is that the transaction times are
not equidistant. One can take this into account for example by using an appropriate
covariate which contains the time elapsed since the last transaction. Then one can search
for the impact of this covariate on the process. Another possibility is to use continuous-
time models where one assumes that the process is observed at non-equidistant time

points.

Fourth, looking at the price changes one can observe periods with higher price fluctu-
ations which are followed by relative quite periods and vice versa. This effect is called
volatility clustering. It also implies that the volatility of the price change process is

non-constant.

To capture these features one can use either a single model for the signed price changes
or a decomposition strategy where the price changes are decomposed, for example into
the product of the absolute values and the sign of the price changes. An even finer
decomposition is used by Rydberg and Shephard (2003). The AOP model which will be
introduced in the following chapter can model the absolute price changes whereas the
the OSV and OSVt models considered in Chapters 6, 7, and 8 capture the structure
of the signed price changes. For a comprehensive treatment on market microstructure
theory we now refer to O’Hara (1995).






Chapter 3

The Autoregressive Ordered Probit
Model

In this chapter we introduce a model which can be considered as an autoregressive
extension of the ordered probit model. After formulating the model in Section 3.1 we
develop a standard Gibbs sampler for parameter estimation in Section 3.2. However
this algorithm exhibits bad convergence properties. To get a sampling method with
a better convergence behavior we utilize in Section 3.3 a special transformation group
on the sample space which allows to develop a grouped move multi-grid Monte Carlo
(GM-MGMC) sampler (cf. Section 2.4). A simulation study is given in Section 3.4 to

demonstrate the substantial improvement by this new algorithm.

3.1 Model formulation

We assume that we can observe a discrete response time series {y;,t = 1,...,T}, where y,
takes on only K different values, and a (p + 1)-dimensional vector &, = (1, z4,...,zy)’
of real-valued covariates for each t € {1,...,7}. To model the time dependency in
{ys,t = 1,...,T} we assume that there exists an underlying unobserved autoregres-
sive real-valued time series {y;,¢ = 1,...,T} which produces the discrete values y; by

thresholding. In particular, the following latent variable representation holds:

w =k <= vy €lcr-1,6k), ke{l,...,K}, (3.1)
yi = a8+ dy;_, + &5, te{l,...,T}, (3.2)

33



34 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

where —00 = ¢y < ¢1 < ... < ¢g_1 < cg = oo are unknown cutpoints, and 8 =
(Bo,---,Bp) is a vector of unknown regression cofficients. All latent variables (except
parameters) are marked with an asterisk *. We assume that £; ~ N (0, §?) i.i.d. Since the
vector of covariates contains an intercept, we have to fix ¢; for reasons of identifiability.
In particular, we set ¢; = 0. For the same reasons we have to fix the variance 42, since
otherwise we could multiply ¢ := (¢g,...,¢cx 1), B and y* := (y5,...,y;)" by a positive
constant without changing the likelihood. Therefore we assume ¢* = 1. It remains to
estimate the latent variables y;,¢ = 0,...,7T, the cutpoints ¢;,j = 2,..., K — 1, the

regression parameters 3;,7 = 0,...,p and the autoregressive parameter ¢.

For the following we introduce the notations

0 = (Boy---,0p 0),
Yy = (Y, yr),
Y = W0 U Yo r)
and cr = (CoyeneyCht,Chotye s Cx 1)

Univariate normal distributions that are truncated to an interval [a,b] are denoted by
Niayj(pt,0%). For the n-dimensional normal distribution with mean p and covariance
matrix ¥ we write N, (u, X).

3.2 Standard Gibbs sampler

Now we develop an MCMC algorithm that allows us to draw approximate samples from
the posterior distribution 7(c, 8, y*|y). In the following we use the notations f(-) and
f(+]) for distributions (densities) and conditional distributions (densities), respectively.
For prior and posterior distributions we also use the notations 7(-) and 7(-|-), respec-

tively.

For the Bayesian approach we have to specify prior distributions for ¢, @ and y;. We

assume
. L o - _
m(y5,0,€) o< exp {_5 [U 2(%)2 + 7 2ﬂ113 +p 2¢2] } : ]1{0<cz<...<cK,1<C} (3-3)

where o, 7, p and C are known hyperparameters. We assume all parameters to be
a priori independent, except of the vector ¢ for which the order condition has to be
fulfilled. We choose normal priors for y;, 8 and ¢, respectively, and a noninformative

prior on the set {0 < ¢; < ... < ¢x_1 < C} for the cutpoints. We can take large values



3.2. STANDARD GIBBS SAMPLER 35

for o, 7 and p, when there is little prior information about y§ and 8. At this point we

also redefine cx := C for notational convenience.

Since the regression parameters and the autoregressive parameter can be updated in one
block only the updates for the latent variables differ from the updates for the ordered
probit model considered in Albert and Chib (1993). Of course, all full conditional
distributions are proportional to the joint distribution f(y*,y, 3, ¢, ¢), so we can always

take advantage of the factorization

A
f(y*ayalg7¢7c) = Hf ytayt|y07'"7y;5k—17y17"'7yt17187¢7c)] W(y67/67¢7c)
Lt=1

T
= Hf yielrs e) f (i lyi— 173;@] (5,8, ¢, €). (3.4)
Lt=1

3.2.1 Latent variable update

Since the joint density f(y*|y,B,¢,c) of the latent variables is proportional to

f(y*,y,B,0,¢) and vy is a priori N(0,0?)-distributed and independent of the other
(3

parameters, it follows from Equation (3.4) that

FWoly, y" 0, B,0,¢) o< f(yilve, B, d)m(ys)
o' eXp{—% [(yi‘—w’lﬂ—d)yé)z + (y5)°0 2]}

X exp {—% [(5)? (8% +0%) — 2y [ (i — 218)]] } ;

so that

y0|y,y0,,8,¢,c~N< ¢2+0__2 ,¢2+O'_2 .
Furthermore, for t =1,...,7 — 1, we can see from Equation (3.4) that
f(y:|y7 y*—ta 167 ¢7 C) X yt|yz<7 C)f(yﬂy:_p 167 ¢)f(y:<+1|yz<7 /37 ¢)

[\DII—‘ l\DI»—A N | —

x ]l{yz*e[cyt—1,0yt)} exp |:(y:tk - m;ﬂ - ¢y:71)2 + (y:+1 - $;+1,3 - ¢y:)2] }

X Al )} P 5 [W0)° = 20 (@ B+0y; 1) + 6°(7)” — 2u; d)(yé‘ﬂ—wiﬂﬂﬂ}

o
/—’H/—’H/—’HA

= Ul )) P =5 L) (14 6%) = 207 [y — @44.8) + (218 + ¢yf1)ﬂ} :



36 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

Therefore f(y;|ly,y*,,8,6,¢) (t =1,...,7 — 1) is a truncated normal distribution, in
particular

“ly, y* oyt — ) B)+ (& B+ oy ) 1
yt|y’y_t”3’¢’c ~ N[Cytflacw) < - = t = .

1+ ¢ 14 ¢2
For f(yily,y* 1, B, ¢, c) we get from Equation (3.4)

fWrly, yr, B, 6.¢) o< flyrlyr. ) f(yrlyr_1, B, 9)
1 * / * 2
= ]l{y*Te[CyT—hcyT)} P {_5 [(yT — @B ¢yT_1) } }
which is again a truncated normal distribution, in particular

y;|y7 yiTa 167 ¢7 c ~ N[CyT—lzcyT) (w’I]’IB =+ (by;“fla 1)

3.2.2 Joint regression and autoregressive parameter update

Here we can update all the parameters 3;, j = 0,...,p, and ¢ in one block. The

derivation of the full conditional is completely analogous to the ordered probit model
(cf. Albert and Chib (1993)).

Defining b} := (x},y; ) for t = 1,...,T and D := diag(772%,...,772,p~?) we can again
use Equation (3.4) to see that for @ = (5o, ..., By, ¢)’

fOly,y",c) [H Fyilyi_y, 9)] 7(0)

T p
o exp {— S i —mB— oy )+ > T8+ p‘W] }

L t=1 §=0

= exp {— > (y - b0)* + 0’D0] }

t=1

N | =

N | =

DN —

[ T
x exp {— > " (—y; b0 — b0y + b6b,6) + 0’D0] }

<§T:btb;) +D 9”. (3.5)

B T
1
= exp{—§ —2 <nyb;) 0+6

t=1

Using the T x (p + 2)-matrix Z defined by

bll Iz - oz Yy

/ *
b, 1 om0 21y Y,



3.3. GM-MGMC SAMPLER 37

we can derive from Equation (3.5) that
Oly,y",c ~ Npa(B2'y7, %)

which is a (p + 2)-dimensional normal distribution with covariance matrix ¥ :=
(Z2'Z + D).

3.2.3 Cutpoint parameter update

We are now interested in the full conditionals f(cx|y, y*, B, ¢, c_y) for k € {2,..., K—1}.
From Equation (3.4) it follows that

T
f(ck|y7 y*a /37 ¢7 c—k) X [H f(yt|yz<7 C)] 7T(C)
. t=1
- Ilﬂ&@q%rh@»}]ﬂw<@<xxK1<C}
Li=1

= H ]l{y;‘e[ck_l,ck)} H ]l{y;‘e[ck,ck+1)} ]1{0<C2<...<CK,1<C}-
{t=1,....T|yt=k} {t=1,...,T|yt=k+1}

Obviously this is an uniform distribution for ¢, which is unequal zero if and only if all
the following conditions are fulfilled:

ce. > y;forallte{1,...,T}, wherey, =k,
Ck > Ck—1,
g < yiforallte{l,...,T}, wherey, =Fk+1,

Cr < Cgg1-

We conclude that f(ck|y, y*, B, ¢, c_k) is an uniform distribution in the interval (I, ry),

where

lp = max {Ckla tjfllaXT {ilye = k}} ) (3.6)

=1,..,

— mm{@ﬂwgmfwmh=k+u}. (3.7)

3.3 GM-MGMC sampler

Simulation experiments with the standard Gibbs sampler developed in Section 3.2 show

that the produced MCMC-chains converge very slowly to the region around the true



38 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

value especially for the cutpoints ¢; and the regression intercept fy (cf. Subsection 3.3.2).
This behavior was also observed by Cowles (1996) for the independent multinomial case,
which can be explained as follows. The parameter ¢; is drawn from a uniform distribution
with boundaries I; and r; given in Equations (3.6) and (3.7). If the observed data set is
large (e.g. T" = 2000), the difference r;—1; is very small, so ¢, has very little room to move
in one iteration. Therefore we look for some possibilities to speed up the convergence of
the standard Gibbs sampler.

One general possibility is, of course, to update some variables in one block, for example
all latent variables yf. In this case we have to draw a sample of a (T + 1)-dimensional
truncated normal distribution instead of drawing 7+1 samples from univariate truncated
normal distributions. However, to get a sample from a multivariate truncated normal
distribution one has to employ a Gibbs sampler itself (cf. Geweke (1991) or Robert
(1995)). Simulations show that one reaches an improvement in convergence, but the
computational cost is very high. So if one uses this method fewer iterations are needed
for a comparable result, but the time used for each iteration increases in such a way that
the overall improvement is negligible. In addition this blocking of the latent variables
does not involve the update of the cutpoints ¢, which seems to be most important.
Therefore, we use now a method that was proposed by Liu and Sabatti (2000).

3.3.1 Development of an appropriate grouped-move-step

Using the same notation, we apply the Theorem by Liu and Sabatti (2000) given in

Section 2.4 where w is a vector with 7"+ p + K + 1 components, namely

w:(yg)ka"'7y>7k‘7ﬁ07'"7Bpac27"'7CK717¢)7

and 7 is the posterior density of w. The difficulty in the choice of a suitable transfor-
mation group is to find one where the resulting distribution allows to draw samples very
fast. Unfortunately, in our problem standard transformation groups as the translation
group or the scale group do not lead to an easy sampling distribution. Therefore we use
the group

Lpi={y>0:v(w) = (ywi, ..., Y0, Wyi1,...,wa)}

which we call a partial scale group on S. Here only m components are transformed,
the others remain fixed. The left-Haar measure for this group is again v~ 'd~ as for the
(total) scale group. We easily compute det (0y(w)/0w) = ™. Therefore

7 (y(w))]Jy(w)|L(dy) = v 'm(yw) dy.



3.3. GM-MGMC SAMPLER 39

In order to get an easy sampling distribution for our problem we take m =17 + p + K

and let only the parameter ¢ remain fixed. Therefore

Y(Ww) = (VY5s - - VYT VBos - -+ VBps V2, - -, YCR -1, D) -

The posterior distribution in our problem is given by
7.‘-(,Ll)|y) - W(y8<7"'7y;767 c7 ¢|y17"'7yT)

T
o exp {—% [Z(yi‘ =Bz — ¢yi_1)* + 0 () + T8 + p‘W] } :
t=1

t=1

T
: [H ﬂ[cyt_hcyt)(y:)] ]l{0<02<...<cK_1<C}-

The density ™ 'm(yw|y) is therefore proportional to

T

— 1 * * — * — —

7™ exp {—5 [Z(vyt — Bz — ¢yy;_))’ + 0 (vyp)? T BB A+ p W] } :
t=1

T
' [H ﬂ[wcyt_l,vcyt)(’yy:)] ]l{0<702<...<7cK_1<C}

t=1

T
o< ™ exp {—%72 [Z(yi‘ —B'®; — ¢y )" + 0 (yg)* + T‘Qﬂ’B] } :

t=1

t=1

T
: [H ]l[cytl,cyt)(y:)] ]1{0<762<...<7CK,1<C}- (38)

For all v > 0 we have the equivalence

0 <vycy <...<7yckg 1 <C and cxg 1 <]
— [0<02 <...<cg1 < C and ~? <C2/c§(_1].
Since expression (3.8) is considered to be a density for 7 (up to a normalizing constant),

and since during all updates of the MCMC sampler the condition 0 < ¢y < ... < cg_1 <
C' is always fulfilled, this equivalence leads to the proportionality

]1{0<’YC2<...<"/CK_1<C} X ]l{0<’YC2<...<"/CK_1<C}]l{CK_1<C}
= ]1{0<c2<...<cK,1<C}]l{y2<c2/c§(_l}
o pzcoryey -
Therefore expression (3.8) simplifies to

T
m—1 1
(v*) 7 exp {_572 [Z(yi‘ =Bz — dyi) + 07 () + T_QHB] } et

t=1



40 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

which is proportional to a Gamma distribution I'(a, b) truncated to (0, C?/c% _,) for 7

with parameters

T+K+p+1
— 5 , (3.9)
y _ LW B oyl ) o () 7 B8 (3.10)

2
Here the T'(a, b) density is given by fr(.s (z) = b%* e /T(a) for z > 0.

One can easily sample from the truncated Gamma distribution by rejection sampling (cf.
Section 2.1). Of course, if one chooses a prior for ¢ with infinite support, i.e. C' = oo,

one has to draw from the corresponding non-truncated Gamma distribution.

In this way we get a new algorithm that lies in the class of the grouped move multigrid
Monte Carlo (GM-MGMC) algorithms (Liu and Sabatti (2000)). Each iteration consists
of the following two parts:

Algorithm 3.1 One iteration of the GM-MGMC sampler for the AOP model

1. MCMC-Step: Generate an iteration from the standard Gibbs-sampler using

e latent variable update,
e joint regression and autoregressive parameter update,

e cutpoint parameter update,
to get Yl Bewr> Peur, Cour @s current values.

2. GM-Step: Draw ” from I'(a, b) truncated to (0, C?/cZ,, _;) with a and b defined
in (3.9) and (3.10) respectively, and update the current values by multiplication
with the group element v = /2,

Ynew < VWeurs
/Bnew — ,71801”7

c’new — VCC’U,T' .

Note that ¢.,, does not need to be updated since it remains unchanged under the partial

scale group.

3.3.2 An illustration: Standard sampler against GM-MGMC

We now illustrate the improvement in convergence which is achieved by adding the

GM-step presented in the previous subsection to the standard sampler. For this pur-



3.4. SIMULATION STUDY 41

pose we first simulated two covariates x4 and x4 independently from N(—1,1) and
N(—0.25,0.18%), respectively, for ¢ = 1,...,2000. Using these covariates we then sim-
ulated one data set of length 7" = 2000 from the autoregressive ordered probit model
with parameters ¢o = 1.2, ¢3 = 2.2, ¢4 = 3.1, ¢c5 = 4.1, c¢ = 5.3, By = 2.9, 5, = —0.6,
P2 = 9.0 and ¢ = 0.5.

We run both the standard Gibbs sampler and the GM-MGMC sampler for the simu-
lated data set for 15000 iterations. The starting values for the cutpoints ¢y, ..., cs are
2,4,6,8,10, respectively, and 0.0 for each of the regression coefficients. Here and in the
following section we always use the hyperparameters C' = oo, 0 = 1, 7 = 100, and
p = 0.5 for the prior distributions of ¢, y;, §; (j = 0,1,2), and ¢, respectively (cf.
Equation (3.3)).

Figures 3.1 and 3.2 demonstrate the fundamental superiority of the GM-MGMC sampler.
As can be seen from Figure 3.1 the chains for the cutpoints produced by the standard
Gibbs sampler move very slowly to the regions around the true values which are indicated
by the horizontal lines. The sharp drop in the chains of ¢4, ¢5, and ¢ from the standard
Gibbs sampler at the beginning can be explained by the fact that the samples of {y;|y; €
{4,5,6}} lie close to the lower limit of the corresponding intervals. Hence the cutpoints
¢4, ¢5, and cg have more room to move in the first iterations. We can guess that it will
take thousands of iterations until the chains for the cutpoints produced by the standard
Gibbs sampler will have converged. The same holds for the chains for the regression
coefficients, given in Figure 3.2. The chains produced by the GM-MGMC sampler are
also given in Figures 3.1 and 3.2. They converge within about only 20 iterations, and
this holds for both the cutpoints and for the regression coefficients. Finally we note that
the chain for the autoregressive parameter ¢ converges quite fast for both samplers and

is therefore not shown here.

We further determined the autocorrelations in the chains after a burn-in period of 5000
iterations for both samplers. As can be seen from Figure 3.3, the GM-MGMC sampler is
better also from this point of view, since the autocorrelations in the GM-MGMC chains

are much smaller than in the chains from the standard sampler.

3.4 Simulation study

Chen, Shao, and Ibrahim (2000) point out that GM-MGMC algorithms do not always

guarantee faster convergence than the parent MCMC algorithm. Therefore we now test



42 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

Chains of cutpoints produced by standard Gibbs sampler

&
¢, |5
c

© '\\ b
L
<
N
o Cy G

0 200 400 600 800 1000

lteration
Chains of cutpoints produced by GM-MGMC sampler
o]
gl
09] c 05
¢y [

) G Cg
< o han .'..rl‘.l....... A poiy " AN v'-A"'AvAv"r"‘T 1‘,.'4@""-\';-4"». Ashm _‘_mq_,,u.u\..h AN

s Amngrnrciinh Al et WA A At A MYty M st
N
o]

0 200 400 600 800 1000

iteration

Figure 3.1: First 1000 iterations of chains for cutpoints produced by standard Gibbs
sampler (above) and GM-MGMC sampler (below). The horizontal thin lines indicate

the true values.



3.4.

SIMULATION STUDY

8 10 12

6

8 10 12

6

Chains of regression coefficients produced by standard Gibbs sampler

B

e P P VY PR A - _VBQ_‘L —
by

0 200 400 600 800 1000

iteration

Chains of regression coefficients produced by GM-MGMC sampler

ey Ak st atbn s, AN Pete At AN A At A e M A s Aoy, e A VA A Aadrh,
¥ ¥ A W W w W ' L

0 200 400 600 800 1000

iteration

43

Figure 3.2: First 1000 iterations of chains for regression coefficients produced by standard
Gibbs sampler (above) and GM-MGMC sampler (below). The horizontal thin lines

indicate the true values.



44

Figure 3.3: Autocorrelations of chains produced by standard Gibbs sampler (dotted)
and GM-MGMC sampler (solid).

CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

° °
7 7
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
lag lag lag
o - o
\-| \-|
n n
o o
o} "™ o}
7 o o

° °©
7 7
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
lag lag lag
b1 o B2 o 0
Ll Ll
P | —— 1
o o
N I ) " . °
bty e B B g
° °
7 7
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
lag lag lag



3.4. SIMULATION STUDY 45

this GM-MGMC algorithm in different situations and investigate especially the accuracy

of the posterior mean estimates.

3.4.1 Design of the simulation study

First we mention that the smaller the number K of categories is the better the parame-
ter estimates are when the GM-MGMC sampler is used. Therefore we investigate the
behavior of this Gibbs sampler for data sets with a for our practical concerns relative
high number of categories, K = 7. Further we take 7" = 2000.

We investigate the behavior of the GM-MGMC Gibbs sampler for six different para-
meter sets that differ in the sign of the autoregressive parameter ¢, in the frequencies
that occur in the categories, and in the covariates. See Table 3.1 for specific choices
made. Especially concerning the frequencies we are interested in whether the parame-
ter estimates are better if the frequencies in the categories are nearly identical than in
situations where the majority of the observations lies in one or two categories and only
few observations in the other categories. This is important for many practical problems,
for example for our application in Chapter 5. There more than 80% of the observations
lie in the categories 1 and 2, and only 4.2% in category 4. In the following, 'very dif-
ferent’ frequencies means that there is at least one category with more than 40% of the
observations and at least one category with less than 5% of the observations. 'Nearly

identical’ means that in each category lie between 11% and 18% of the observations.

The parameter sets A to D are connected in the sense that in each we use two co-
variates generated from normal distributions with specified mean and variance values,
and that there appear all combinations of positive/negative ¢ and nearly identical /very

different frequencies. In parameter set E, covariate x;; is an exponential trend with

Parameter set 0] Frequencies in categories | Covariates
A negative nearly identical 2 (normally distributed)
B positive nearly identical 2 (normally distributed)
C negative very different 2 (normally distributed)
D positive very different 2 (normally distributed)
E negative nearly identical 2 (exp.trend,Bernoulli(0.6))
F negative nearly identical 4 (normally distributed)

Table 3.1: Design of the simulation study.



46 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

Tt1 T2 Tt3 T4
Parameter set | mean | stdd. || mean | stdd. || mean | stdd. | mean | stdd.
A -0.40 | 2.20 || 0.02 | 0.02
B -1.00 | 1.00 || -0.25| 0.18
C 0.00 | 0.10| 0.30 | 0.90
D -1.00 | 0.90 || -0.25 | 0.11
F 0.00 | 0.80 1.60 | 1.10 || 0.40 | 0.60 | -0.50 | 0.40

Table 3.2: Means and standard deviations of the normal distributions from which the

covariates are generated for parameter sets A, B, C, D, and F.

Parameter set | co | 3| ¢ | 5| ¢ || Bo| [ Ba| B3| Pa 0]
A 1.3 124135146571 49| 0.8]-60.0 -0.2
B 1.2 12231141531 29]-0.6 9.0 0.5
C 0711730404729 7.9 0.6 -0.3
D 0819|3547 |55(3.3]-0.6 9.0 0.4
E 061324313727 02] -1.1 -0.3
F 0.711.8]35|46]53]28]|-0.8 04105]04|-0.3

Table 3.3: Settings of cutpoints, regression coefficients, and autoregressive parameter.

2y = ellT = ot/2000

and x4, t=1,...,2000 is drawn from a Bernoulli-distribution with
success probability 0.6. In parameter set F we use four covariates generated from normal

distributions.

For each parameter set we first chose the value of the autoregressive parameter ¢. Then
we tried not only different cutpoints to get nearly identical or very different frequencies
in the categories, but also different standard deviations of the normal distributions the
covariates were generated from. This is because otherwise we would have had very small
or very high values for the cutpoint c¢x_; = ¢4, which would mean that the influence of
the noise would have been very large or very small. The means and standard deviations
of the normal distributions used in parameter sets A, B, C, D, and F are given in
Table 3.2. Figure 3.4 shows the densities of 8;z;;, 7 = 1,2, the sum x;3, and the error
component ¢; for parameter sets A to D. In the fourth and fifth column one can compare
the influence of ;8 and of the noise ¢;. The specific settings of the cutpoints, regression

coefficients, and autoregressive parameter are given in Table 3.3.



3.4. SIMULATION STUDY

parameter set A parameter set A parameter set A parameter set A parameter set A
density density density density density
of By of Byxg of fpxy of X'B of ex
5 0 5 5 0 5 5 0 5 5 0 5 5 0 5
parameter set B parameter set B parameter set B parameter set B parameter set B
density density density density density
of By of By of BoXy of X' of e
S5 0 5 5 0 5 S50 5 S50 5 S50 5
parameter set C parameter set C parameter set C parameter set C parameter set C
density density density density density
of Bo of Byxy of By of X'B of ex
5 0 5 5 0 5 5 0 5 5 0 5 5 0 5
parameter set D parameter set D parameter set D parameter set D parameter set D
density density density density density
of By of By of BoXy of X' of ex
S5 0 5 50 5 S50 5 S50 5 S50 5

densities for the sum @8 and the error component ; ~ N(0,1).

47

Figure 3.4: Generating densities for 3z, 7 = 1,2, in the parameter sets A to D,



48 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

The simulation consists of the following three steps:

1. Generation of one design matrix per parameter set.
2. Simulation of 100 data sets per parameter set using the design of step 1.

3. 15000 iterations of the GM-MGMC Gibbs sampler for each of the data sets.

3.4.2 Results of the simulation study

The computing time of the C+-+ program is about 0.029 seconds per iteration in
presence of two covariates and about 0.045 seconds in presence of four covariates on
an UltraSPARC III Cu 900 Mhz processor, so that we had an over-all computing
time of about 80 hours. As starting values we took 5, = 0, 7 = 0,...,p, ¢ = 0,
(€oy€3,€4y...) =(2,4,6,...), and randomly drawn values uniformly distributed between
cy,—1 and ¢y, for y;, t = 1,...,2000. After running the GM-MGMC sampler we esti-
mated the parameters by the posterior means using the iterations 3001 to 15000, and
computed estimates of the relative bias, the standard deviation for the relative bias,
the relative MSE, and the standard deviation for the relative MSE for each parame-
ter in each parameter set. The estimates of the relative bias (ﬁrel), the relative MSE

(@rel), and of the corresponding standard deviations are defined as

N 11,
By = 5520 (4 —v).

r=1
— 11N, 2
MSE,¢ = @E Z (@Dr - ¢> ;
r=1
- 1 1 R oo 12
Std(Brel) = E m Z [% - ",b - wBreli| )
r=1
o 1 1 R . 2 _—7?
std(MSE ) = W m Z {(@br — ¢) _ WMSErel] ,
=1

where 1) is the parameter to be estimated and 1@ the posterior mean estimate of
for the r** data set based on 12000 iterations of the GM-MGMC algorithm. Here we
used Erel = ¢_1B, where B is the common bias estimate, and the independence of the

estimated posterior means for different data sets.

Table 3.4 contains the estimates of the relative bias, relative MSE, and their standard

deviations for the model parameters in the parameter sets A,B,C,D,E, and F. The au-



3.4. SIMULATION STUDY 49
N A B C D E F
relative bias
co -0.0144 -0.0017 -0.0015 0.0010 0.0032 0.0186
c3 -0.0036 -0.0039 -0.0011 0.0017 0.0026 0.0022
c4 0.0065 -0.0025 0.0021 0.0009 0.0031 0.0053
cs 0.0060 0.0011 0.0039 0.0010 0.0026 0.0071
C6 0.0012 -0.0034 0.0072 0.0036 0.0017 -0.0064
Bo 0.0047 -0.0068 -0.0063 0.0035 0.0075 -0.0010
051 -0.0041 -0.0114 -0.0032 0.0014 0.0031 0.0036
B2 -0.0030 -0.0037 0.0254 0.0045 0.0057 0.0045
B3 -0.0325
B4 0.0117
) -0.0273 0.0026 0.0063 0.0005 0.0005 0.0107
standard deviation for relative bias
co 0.0027 0.0031 0.0039 0.0001 0.0003 0.0070
c3 0.0023 0.0021 0.0024 0.0002 0.0003 0.0031
c4 0.0016 0.0019 0.0019 0.0001 0.0003 0.0019
Cs 0.0009 0.0016 0.0019 0.0001 0.0003 0.0015
C6 0.0015 0.0013 0.0019 0.0004 0.0002 0.0012
5o 0.0010 0.0029 0.0018 0.0004 0.0007 0.0035
051 0.0023 0.0028 0.0032 0.0001 0.0003 0.0022
B2 0.0017 0.0023 0.0025 0.0005 0.0006 0.0044
B3 0.0089
Ba 0.0102
) 0.0029 0.0025 0.0042 0.0000 0.0000 0.0048
relative MSE
co 0.000907 0.000969 0.001513 0.001295 0.005365 0.005120
c3 0.000547 0.000445 0.000590 0.000877 0.002018 0.000941
c4 0.000290 0.000377 0.000353 0.000257 0.001294 0.000382
Cs 0.000121 0.000245 0.000364 0.000221 0.000854 0.000272
C6 0.000225 0.000174 0.000422 0.000649 0.000458 0.000185
5o 0.000128 0.000885 0.000353 0.001061 0.002759 0.001172
051 0.000531 0.000904 0.001034 0.002384 0.015712 0.000492
B2 0.000310 0.000559 0.001254 0.000503 0.005167 0.001926
B3 0.008809
Ba 0.010432
) 0.001599 0.000632 0.001774 0.001164 0.001637 0.002347
standard deviation for relative MSE

co 0.000095 0.000114 0.000181 0.000130 0.000536 0.000736
c3 0.000066 0.000042 0.000060 0.000088 0.000202 0.000115
c4 0.000037 0.000035 0.000043 0.000026 0.000129 0.000042
Cs 0.000013 0.000033 0.000031 0.000022 0.000085 0.000033
C6 0.000042 0.000020 0.000029 0.000065 0.000046 0.000037
5o 0.000021 0.000078 0.000041 0.000106 0.000276 0.000149
051 0.000051 0.000092 0.000122 0.000238 0.001571 0.000066
5 0.000028 0.000074 0.000112 0.000050 0.000517 0.000171
03 0.000885
4 0.001636
) 0.000132 0.000077 0.000205 0.000116 0.000164 0.000304

Table 3.4: Estimates of the relative bias, relative MSE, and their standard deviations
for model parameters in the parameter sets A, B, C, D, E, and F.




50 CHAPTER 3. THE AUTOREGRESSIVE ORDERED PROBIT MODEL

toregressive parameter ¢ is always estimated quite well. The relative bias is in most
cases between -1% and +1% for the cutpoints as well as for the regression parameters.
The relative MSE is less than 0.001 for most of the parameters in the parameter sets A
to D. That means that on average the estimates are less than 3% away from the true
values. The relative MSE is worse for the parameter sets E and F. The worst value we
get for 3, in set E which is the regression parameter for the exponential trend. Further
we like to mention that all these estimates are similar if one uses the iterations 5001 to
15000 instead of iterations 3001 to 15000.

For all data sets and parameter sets the autocorrelations in the chains show a similar
behavior as in the example of Section 3.3.2 and are therefore not shown once more.
Sometimes the autocorrelations oscillate around zero, but the absolute values of the
autocorrelations decline similar to the curves in Figure 3.3. Note that the data set used

in Section 3.3.2 is simulated with the parameters of parameter set B.

We conclude that the GM-MGMC Gibbs sampler works very well in most situations,
especially there is no difference in the performance whether the autoregressive parameter
is positive or negative and whether there are categories with very different frequencies
or not. As expected, the fewer covariates we use, the better is the estimation. The
autocorrelations in the chains produced by the GM-MGMC Gibbs sampler are explicitly
better than those in the chains produced by the standard Gibbs sampler.



Chapter 4

Estimation of the Marginal
Likelihood for the Autoregressive
Ordered Probit Model

In this chapter we further deal with the autoregressive ordered probit model introduced
in Chapter 3. An interesting question for the application of a certain model to a given
data set is always whether this model fits the data set better or worse than other ones.
To answer this question one can use for example Bayes factors (cf. Section 2.6) which
require the estimation of the marginal likelihood for the data set under the model. In
this chapter we therefore provide an estimation procedure for the marginal likelihood

for the autoregressive ordered probit model defined by Equations (3.1) and (3.2).

Since in this model latent variables are involved, we use the marginal likelihood identity
(cf. Section 2.6.2) in the form of Equation (2.18), which can here be written in the form

_ fyle?, 0%)m(c’, 6°)

(4.1)

where ¢® and 6° = (5, .., By, ¢°)" are corresponding posterior mean estimates. In the
following sections we first consider a filtering procedure and then the estimation and
computation of the three factors which appear on the right-hand side in Equation (4.1).

F: will always denote the vector of observations until time ¢, i.e. F; := (y1,..., ;).

ol



52 CHAPTER 4. MARGINAL LIKELIHOOD ESTIMATION FOR AOP MODEL

4.1 Filtering

In this section we present a fully adapted SIR-based auxiliary particle filter for the
autoregressive ordered probit model. This filtering procedure is important for the es-
timation of the likelihood ordinate f(y|c®,0°) and is part of Algorithm 4.2 presented

later.

The general form of a SIR-based auxiliary particle filter is given by Algorithm 2.8 in
Section 2.5.3. Using the notation of that section we choose

g(yzka m|ft7 & 9) X f(yt|yz<= C, O)f(yﬂy:inlv C, 0)
]l{yfe[cytfl,cyt)}N(y:|w218 + ¢y:tkin1a 1)

as proposal density. This immediately implies that the numerator equals the denomina-
tor in Equation (2.13) and therefore the weights given by Equation (2.13) all equal 1.
Hence they are all the same and the algorithm is fully adapted to the model (cf. Section
2.5.3). Therefore the resampling step 3 of Algorithm 2.8 is not necessary and we just

have to sample from the proposal density. Since
g(y;tk7 m|ft7 & 9) = g(yﬂma fta (& 0)g(m|ft7 C, 0)

this can be done by first choosing m € {1,..., M} with probability g(m|F;, ¢, 0) and
then sampling from ¢(y;|m, F, ¢, ). Since

omlFrc,8) — / oyt m|F, ¢, 0) dy;

o /ﬂ{y;e[cytl,cyt)}N(yﬂwm + oy, 1) dyf (4.2)
Cyt

= N(yf|z,B + ¢y,™, 1) dy;

Cyp—1

= ey —mB —oy") — ey 1 — @B — oY) = vm  (43)

where ®(-) denotes the probability function of the standard normal distribution, we
must first evaluate the weights v, appearing in Equation (4.3) for m = 1,..., M, and
then compute the probabilities ¥, := v,/ Z;\il vj; which are associated to the numbers
1,..., M. We note that the proportionality constant needed in Equation (4.2) is inde-
pendent of y; and m, so we can use the weights v, directly without taking into account

any normalizing constants.
After drawing m with probability v, we then have to sample from

9(y;Im, Fi, ¢, 0) ]l{y;‘e[cyt,l,cyt)}N(y:|w:tﬂ + ¢y, ", 1)



4.2. ESTIMATION OF THE LIKELIHOOD ORDINATE 53

which is a normal distribution with mean x;3 + ¢y;”; and variance 1, truncated to

[Cyrl: Cyt)‘

The following Algorithm 4.1 summarizes the necessary steps to produce a sample
{yrt, .. yi™} from f(y;|Fi, €, 0) when a sample {y;',, ...,y } from f(y; | Fi1,¢,0)
is given. For a full filtering procedure this algorithm has to be applied successively
for t = 1,...,T. To get started one has to draw a sample {yi',... y5™} from
f(ys|Fo,c,0) = f(yile,0). This density is just the N(0,0?)-density, since the prior

of y; is chosen to be independent of ¢ and 6.

Algorithm 4.1 Fully adapted SIR-based auxiliary particle filter

1. Given {y'),...,y™M} from f(y; ,|F: 1, ¢, 0), calculate the weights
Um = (Cyt t/B ¢y ) (Cytfl —332,8—¢y:1n1), m € {17"'7M}7
and the corresponding probabilities vy, := v,/ Zj\il vj. Set k= 1.
2. Choose m € {1,..., M} with probability 1,, and sample y;* from
Nieyrrey,) (@8 + 0y", 1),

3. If K < M, increment k to k 4+ 1 and go to Step 2.
If k = M, consider {y;',...,y™} as a sample from f(y;|F;,c,0).

4.2 Estimation of the likelihood ordinate

Since f(yl|e, @) can be decomposed into

f(yle, ) Hf il Fio1, ¢, 0)

the likelihood ordinate f(y|e, @) can be estimated by estimating all the one-step ahead
densities f(y;|Fi 1,¢,0), t = 1,...,T. The following procedure takes advantage of
this decomposition. Although we want to evaluate f(y|c®, 6°) we suppress the ¢’ for

notational convenience.

Algorithm 4.2 Estimation of the likelihood function

1. Set t = 1, initialize ¢, and obtain a sample y3', ..., ye™ from f(y;|e, ). Since
the prior of y; is chosen to be independent of ¢ and @, this density is just the
N(0, 0?)-density.



o4

CHAPTER 4. MARGINAL LIKELIHOOD ESTIMATION FOR AOP MODEL

2. For each value y;™ from f(y;_,|Fi-1, ¢, 0) draw

g™~ N (@B + dy™ 1),

The set {y:(m), m=1,..., M} can be considered to be a sample from the den-
sity f(y;|Fi-1,¢,0). This follows directly from Algorithm 2.1, 3., with h; =
f(y?|y2l177'—t71, & 0) and hy = f(yzll|~7:t*1ﬂ ¢, 0)

. Estimate the one-step ahead density f(y:|F; 1, ¢, 8) by

(yt|ft 1, C, 0 Z ]l{y*(m) cyt Ly, } (44)
This estimate can be derived from the equation

f(yt|7:t—1, C, 9) = /f(yt|yt*; Fi—1, ¢, O)f(yﬂft—la C, 9) dyf.

I
—_

Since {y;"™, m ., M} represents a sample from f(y;|F;_1, ¢, 8) (cf. Step 2)

and
f(yt|y;tkaft—17 C, 0) - f(yt|y;tk7 C) = ﬂ{y;‘e[cyt_l,cyt)}

the integral can be approximated by the classical Monte Carlo integration (cf.

Section 2.3.1) by averaging the expressions ]l{yf(m)E[cyt—hcyt)}'

Of course, the estimator in Equation (4.4) will be zero when all the y:(m)’

s lie
outside the interval [c,, 1, ¢y, ). This would nullify the complete likelihood ordinate.
Therefore M should be chosen not too small to avoid this problem and to achieve

a sufficiently high accuracy.

. Apply the filtering procedure in Algorithm 4.1 to obtain a sample y;!, ... yiM

from f(y;|F, ¢, 0).

5. If t <T', increment ¢ to ¢t + 1 and go to Step 2.

6. Return the estimated log likelihood ordinate

log f(ylc, 6) Zlogf il Fio1,c,0).

t=1



4.3. COMPUTATION OF THE PRIOR ORDINATE 59

4.3 Computation of the prior ordinate

Since we assumed
1. _
m(c,0) oc exp <_§ [T Q,BIB +p 2¢2}> : ]1{0<c2<...<cK,1<C}

with known hyperparameters 7, p, C', we can evaluate the factor 7(¢®, 8°) by multiplying

the three factors
m(B°) = Il— N(Bslo,72),

¢°) = N(6°(0,0%),

<
m(c®) o Njoceg<..<es._ <C)-

Whereas the first and second factor can be evaluated directly with the density function
of the normal distribution, the third factor demands the computation of the normal-
izing constant, which is the inverse of the volume of the (K —2)-dimensional subset
{(ca,...,cx1) |0 < g < ... < cg_y < C} of RE“2Z, The volume of this subset can

easily be derived to equal

c pC c 1 s
deg_q ... dey = ———C" 77,
[ ] e de=

Therefore 7(c®) = (K —2)!/C*~2.

4.4 Estimation of the posterior ordinate

The aim of this section is to find an estimate for 7(c°, 6°|y). Since this expression can

be decomposed into

77(07 0|y) = 77(9|Ca y)W(CK_1|02, -, CK-_2, y)W(CK_2|02; -, CK-3, y) o '77(02|y)

it is sufficient to estimate the K — 1 factors

7T(C<2>|y), ety 7.‘-(C<I>(72|C<2>7 ety C;(f?n y)7 7T(C<;(71|C<2>, ety 6%727 y)a 7T(00|C<>, y) (45)

For this purpose we use in the following the techniques described in Section 2.3.5. We
point out here that all full conditional distributions appearing in this section are known
from Section 3.2, including the normalizing constants, so that the evaluation is straight-

forward.



56 CHAPTER 4. MARGINAL LIKELIHOOD ESTIMATION FOR AOP MODEL

First we consider the estimation of 7(¢§|y). Running the full Gibbs sampler, we get M
samples

(C[2m}7 . ‘70[17(71}71, a[m],y*[m}) ~ 7T(C, aay*|y)7 m = 1’ oy M.

Y

Therefore we can estimate 7 (c5|y) using the Monte Carlo integration principle by eval-
uating and averaging M full conditionals for c¢,:

C2|y Zf C2|C3 ). CK 170[m]7y*[m}7y)
where
1
[m] [m] , *[m] [m] _ 4[m]
(c3les™, -1, 0™y y) = (TQ 5 ) ]l{cge(l[m] T[m])}
[m] . _ { *[m] _ }
with ls max{O,tHllﬁfT Yy ‘yt }
and T[m} = mln{c[ } min { [ }‘ —3}}
2 3 o M T Yy Yi

The other K — 2 factors appearing in (4.5) are all estimated by reduced runs of the
Gibbs sampler, which we discuss now.

To estimate 7(c5|cs, y) we use a reduced run where ¢, is fixed at ¢§ and all components

but ¢y are updated in each iteration. So we get .J samples (cgj], e c[;ﬁ_l, oYl ), j =
1,...,J, from w(cs,...,cx 1,0,y%|c5,y). Again we can now estimate 7(c3|cS, y) using

the Monte Carlo integration principle by evaluating and averaging .J full conditionals

for cs:
J

Hlesy) = = S0 f(l A, 67,y )
=1
where J
f(c)es, cgj], e CB@_I, oVl il ) = (rgj] — lgj])lﬂ{cge(l?y]#gﬂ)}
with lgj] ‘= max {CQ,tHIIaX {yt ‘yt = 3}}
and Tgﬂ ‘= min {cgﬂ, ‘min {y:[ﬂ ‘yt = 4}} .
t=1,....T

In the next reduced run c; and c3 are fixed at ¢ and cf, respectively. With the same
arguments as before one gets

1 L

~ . . i
7T(CZ|C<2>7 Cg’ y) o Z Z f(CZ|C<2>, C;, 0[5]7 ) C[K]flﬂ 0[”7 Y m: y)
=1



4.4. ESTIMATION OF THE POSTERIOR ORDINATE o7

where f(cf|c5, 5, cg], el c[[l(]fl, 0[”,y*m,y) is again density of an uniform distribution.

This principle carries over to the remaining factors in (4.5). Finally, the last factor,
7(6°|c®,y), is estimated using a reduced run where the cutpoints ¢, are fixed to cj,
k=2,...,K — 1, respectively, and only @ and y* are updated in each iteration. Here

we get
1 N
7%(0°|c°, y) — ~ Z f(0<>|c<>7 y*[n}, y)
n=1

where f(0°|c®, y*I" y) is the Np+2(0°|2[”]Z["]'yi[8], Y)-density

-1

with S = (2020 4 diag(r=2, ... 772, p72))
1z -0 Ty ?Jg[n]

and zh .= :
1z - 2z y;@l

We point out that it is very important to use only reduced runs from the standard
Gibbs sampler without grouped moved steps. This is because all reduced runs require
at least the fixing of the cutpoint ¢y = ¢§. Therefore it is not possible to multiply all
cutpoints ¢y, ...,cx 1 by an element (unequal 1) from the partial scale group. This,
however, would be done by a grouped move step. The requirement to use the standard
Gibbs sampler without grouped move steps seems to be a major disadvantage for our
estimating procedure, but this is not really the case. The grouped move steps were used
mainly to speed up the convergence for the cutpoints. However, from the full run of
the GM-MGMC sampler we have already good estimates for all parameters including
the cutpoints, which can be used as starting values in the reduced runs, so that the

convergence problem does not play a role any more.

Finally we note that an alternative approach to estimate the posterior ordinate was
developed by Ritter and Tanner (1992). This method is based on the invariance condition
of the Gibbs chain and only requires draws from the full Gibbs run, where all full
conditionals must be known including the normalizing constants. However, the method
by Ritter and Tanner (1992) is only precise when the posterior is low-dimensional and
the model does not contain latent variables (cf. Chib and Jeliazkov (2001)). Therefore,
for the autoregressive ordered probit model we will get more accurate results with the

decomposition used here.






Chapter 5

Application of the Autoregressive
Ordered Probit Model to
High-Frequency Finance

We now want to detect and to quantify the influence of covariates information on price
changes of stocks. For this we choose data of the IBM stock traded on Dec 4, 2000 at
the NYSE. We first consider the data set and conduct a short exploratory analysis for
the covariates. To detect whether the data contains an autoregressive structure we then
fit the autoregressive ordered probit model to the observations. Furthermore we also fit
the common ordered probit model (cf. Section 2.7.1) to the data and finally investigate
using Bayes factors how big the benefit is of using the autoregressive ordered probit

model instead of the ordered probit model.

5.1 Data description

The IBM stock is a very frequently traded stock (about 400 transactions per hour), so
that we have enough data even if we do not use data from the first minutes after opening
and the last minutes before closing which might exhibit a different behavior. On the Dec
4, 2000, between 9:35:59 am and 2:42:40 pm there was a total of 2001 transactions of
the IBM stock at the NYSE. The data is taken from the TAQ2 database of the NYSE,

which contains the following covariates:

e TIMEDIFF, the time elapsed between two following transactions in seconds,

29



60 CHAPTER 5. APPL. OF AOP MODEL TO HIGH-FREQUENCY FINANCE

price change | category | frequency

0% 1 859

+1/16% 2 782

+2/16% 3 275

< —3/16% and > 3/16% 4 84

Table 5.1: Absolute price changes: associated categories and observed frequencies.

e SIZE, the volume of the transaction.

As response y; we take the absolute values of the price differences. The price differences
take on only values which are integer multiples of 1/16 US$, and 99.5% of them lie
between —3/16 US$ and +3/16 US$. The absolute price differences are a reasonable
quantity to consider, since a price difference can be decomposed into the product of
the absolute price change and the direction of the price change. These two factors of
the time series may not only depend on different covariates but may also demand for
a different modeling. We note, that a decomposition of the price change into three
factors (activity, direction of price change, and absolute price change) was considered in
Rydberg and Shephard (2003).

Because we consider only the absolute values of the price changes from one transaction
to the next one, we associate the signed price changes to the response categories as
shown in Table 5.1.

5.2 Exploratory analysis

First we want to conduct an exploratory analysis to choose appropriate transformations
of the covariates. However, two problems arise here. The first problem arises since the
response variable is discrete and takes on only few values. Therefore ordinary scatter
plots are not informative, especially when the regressor is also discrete or categorical.
Instead, we group the covariate data in intervals of the same length or use categories
and then compute the average response per interval or per category. Now we can look

for a linear (quadratic, logarithmic . ..) relationship.

This relationship, however, is between y; in Equation (3.1) and x; in Equation (3.2).
Therefore linearity can be destroyed by the (a priori unknown) cutpoints ¢, which is

the second problem. Only when the cutpoints are estimated to be nearly equidistant, we



5.2. EXPLORATORY ANALYSIS 61

15 17 1.9

average response

13

11

[0.0,0.4) [0.4,0.8) [0.8,1.2) [1.2,1.6) [1.6,2.0) [2.0,..)
log(TIMEDIFF+1)

Figure 5.1: Relationship between response and the covariate log(TIMEDIFF+1).

have a validation for the chosen transformation of the covariate. Otherwise one should
use other transformations that take into account the different distances between the
cutpoints. At this point further research will be necessary to develop iterative methods

for choosing appropriate transformations.

Considering the covariate TIMEDIFF it is useful to take the logarithm of TIMEDIFF
plus 1 to get a nearly linear dependency of the response. Of course, by adding 1 we avoid
the value log(0). As described above, we group the data in intervals of the same length
and compute the average response for each interval. The result can be seen in Figure
5.1. The relationship is quite linear. For small (logarithmic) time differences we have an
average response of 1.17, for big ones an average response of 1.90. The relatively high

difference of 1.90 — 1.17 = 0.73 is a first hint at the strong significance of this covariate.

Considering the covariate SIZE it turns out again to be useful to take the logarithm to
get a nearly linear dependency of the response. Again we group the data in intervals
and compute the average response for each interval. A plot of the average response per
category is given in Figure 5.2. The relationship is quite linear. However, the difference
between the maximal and minimal average response is only 1.87 — 1.71 = 0.16. So we
expect that log(SIZE) is not as significant as log(TIMEDIFF+1).



62 CHAPTER 5. APPL. OF AOP MODEL TO HIGH-FREQUENCY FINANCE

19

average response
1.8

1.7

[....6.1) [6.1,6.6) [6.6,7.1) [7.1,..)
log(SIZE)

Figure 5.2: Relationship between response and the covariate log(SIZE).

5.3 Model estimation

We now fit the autoregressive ordered probit model defined in Equations (3.1) and (3.2)
to the data. Since we are also interested in a comparison of this model to the ordered
probit model without an autoregressive component, we made all computations for both
models. We abbreviate these models by AOP (Autoregressive Ordered Probit) and OP
(Ordered Probit), respectively. In particular, the latent structures of these two models

are given by

AOP:  y; = By + fi1 - log(TIMEDIFF+1), + f35 - log(SIZE), + ¢y;_, + <7,
OP:  y = By + b1 - log(TIMEDIFF-+1), + f, - log(SIZE), + &}

We first consider the specification of the hyperparameters 7 (standard deviation of prior
for the regression coefficients), o (standard deviation of prior for yg), p (standard devi-
ation of prior for ¢), and C' (maximum for cutpoint ¢3). Since the variance of the error
term ¢; is fixed to 1 and the cutpoint ¢; is fixed to 0, we do not expect a very high
value for the cutpoint ¢z and for |y5|. Otherwise the error term £; would have hardly
any impact on the time series, and therefore the data could be nearly deterministically
explained by the covariates and the autoregression. Therefore we choose C' = 10 and

0? = 1.0. For the same reason we do not expect an extreme intercept 3y. Since the



5.3. MODEL ESTIMATION 63

Parameter | Prior distribution

c Uniform on {(e2,¢3) |0 < 2 < ¢35 < 10}
Yo N(0,1)
Bo N(0,10

b N
o N
¢ N(0,0.1)

Table 5.2: Prior distributions for the cutpoints ¢, for the latent variable y, for the

regression coefficients (3, and for the autoregressive parameter ¢.

logarithms of (TIMEDIFF+1) and SIZE have values between 0 and 10.8, we also do not
expect extreme values for 3;, j = 1,2. Therefore we choose 7> = 10 which leads here to
a sufficiently uninformative prior for the regression coefficients. The autoregressive com-
ponent in the AOP model is expected to be present, but not too large, so the choice of
p? = 0.1 seems to be adequate. Table 5.2 summarizes the chosen prior distributions. By
using other hyperparameter values we have seen that the posterior estimates are not very

prior-sensitive. This also can be expected because of the large number of observations.

For the estimation of the OP model the corresponding GM-MGMC sampler of Liu and
Sabatti (2000) is used. The GM-MGMC sampler for the OP model can be derived in a
natural way from the GM-MGMC sampler for the AOP model since the OP model is a
submodel of the AOP model. The partial scale group used for the sampler in the AOP
case then simplifies to a (total) scale group since the parameter ¢ does not occur in the
OP model.

We now run both GM-MGMC samplers for 15000 iterations and discard the first 5000
iterations for burn-in. From the simulation study in Section 3.4 we know that this leads
to very accurate estimates. The results are summarized in Table 5.3. It shows the poste-
rior mean estimates for the cutpoints, the regression coefficients, and the autoregressive
parameter using the iterations 5001 to 15000 of the GM-MGMC sampler together with

their corresponding estimated standard deviations and 90% credible intervals.

We conclude that the intercept, log(TIMEDIFF+1), and log(SIZE) are all significant in
both models, as well as the autoregressive component in the AOP model with posterior
mean estimate 0.1362. Because of the positive sign of the estimates for 3; we conclude
that the more time elapses since the last transaction, the higher the expected price

change is. The same holds for the transaction volume: The more stocks are traded, the



64 CHAPTER 5. APPL. OF AOP MODEL TO HIGH-FREQUENCY FINANCE

Autoregressive Ordered Probit Ordered Probit

estimate ‘ std.err. ‘ 90% cred.int. estimate ‘ std.err. ‘ 90% cred.int.

) 1.1231 | 0.0344 | (1.0664,1.1798) 1.1172 | 0.0327 | (1.0648,1.1710)
c3 1.9593 | 0.0540 | (1.8733,2.0496) 1.9381 | 0.0534 | (1.8509,2.0278)
Bo || -0.5567 | 0.1437 | (-0.7918,-0.3224) | -0.5179 | 0.1442 | (-0.7527,-0.2813)
f1 || 0.2350 | 0.0328 | (0.1821,0.2888) 0.2278 | 0.0324 | (0.1743,0.2805)
fa | 0.0368 | 0.0197 | (0.0043,0.0688) 0.0368 | 0.0196 | (0.0044,0.0695)
0] 0.1362 | 0.0277 | (0.0913,0.1818)

Table 5.3: Posterior mean estimates and corresponding estimated standard deviations
and 90% posterior credible intervals for parameters in Models AOP and OP.

higher the expected price change is.

Figure 5.3 shows the estimated posterior marginal densities for the parameters in the
AOP model. The densities are unimodal and quite symmetric, so that the posterior mean
estimates represent a high density point. This property is used in the next section. The
estimated marginal densities for the parameters in the OP model have the same shape
and are therefore not shown. Figure 5.4 finally shows the estimated autocorrelations
in the chains produced by the GM-MGMC samplers after the burn-in period of 5000
iterations for both the AOP model (solid curves) and the OP model (dotted curves).
The autocorrelations decline quite fast for all parameters and differ hardly between the
two models.

5.4 Bayes factor of AOP against OP model

Since the posterior mean estimate of ¢ in the AOP model is 0.1362 and the corresponding
90% credible interval is far away from 0, we can assume the presence of an autoregressive
structure in the IBM data. From this point of view we prefer the AOP model to the
OP model for this data set. However, so far we do not know, how big the benefit is of
using the AOP model instead of the simpler OP model. Therefore we now estimate the
marginal likelihoods for the data under the two models to determine an estimate for the
Bayes factor of the AOP against the OP model.

We follow Chapter 4 and estimate the likelihood ordinate, the posterior ordinate, and
the prior ordinate for both models. Since AOP and OP are nested models and, in



5.4. BAYES FACTOR OF AOP AGAINST OP MODEL 65

V) G
(]
© 0
o ¢
(u]
¢
N
N
H
(o} (e}
09 1.0 11 12 13 17 18 19 20 21 2.2 2.3
Bo By
o}
o
0
N )
(]
(0]
o <
N
(0]
o © :
-1.0 -05 00 01 02 03 04
By 0
0
= o}
o
0
(o}
]
(0]
o ¢
N
(o} ‘ : ‘ ‘ ‘ : o} : ‘ ‘ :
-0.10 -0.05 00 0.05 010 0.15 00 01 02 03

Figure 5.3: Estimated posterior marginal densities for parameters of autoregressive or-

dered probit model.



66 CHAPTER 5. APPL. OF AOP MODEL TO HIGH-FREQUENCY FINANCE

o]
ri
n
o
o} A R
o
o] o]
7 7
0 100 200 300 400 500 0 100 200 300 400 500
lag lag
0 bo ° By
o o
n n
] o]
o " L o]
o ! M )
¢) ¢)
7 7
0 100 200 300 400 500 0 100 200 300 400 500
lag lag
o B, o 0 (only in AOP model)
= =
n n
o] o]
o} — s o it
o) v ’ “ o) i T R v
o] o]
7 7
0 100 200 300 400 500 0 100 200 300 400 500
lag lag

Figure 5.4: Autocorrelations of chains produced by the GM-MGMC samplers for the
AOP model (solid) and the OP model (dotted). Visible difference only for cutpoints.



5.4. BAYES FACTOR OF AOP AGAINST OP MODEL 67

Autoregressive Ordered Probit | Ordered Probit
log f(y|c®, 6°) -2233.3235 -2244.9539
log m(c®, 6°) -10.0014 -10.1388
logm(c®, 6°|y) 15.4477 13.0259
log m(y) -2258.7726 -2268.1186
Bayes factor of AOP against OP exp(-2258.7726+2268.1186) = 11452.92

Table 5.4: Estimated log likelihood ordinate, log prior ordinate, log posterior ordinate
and marginal log likelihood for Models AOP and OP. Bayes Factor of AOP against OP.

particular, OP is a submodel of AOP, we can use the estimation methods for the AOP
model also for the OP model. Of course, the algorithms presented in Chapter 4 simplify
in this case. For example, since y; is independent from y; ; in the OP model, a filtering
procedure as for the AOP model is not necessary here and Algorithm 4.1 reduces to
sampling M times from Ni, _, ., )(x{B,1). Furthermore, since the OP model does not
contain the autoregressive component of the AOP model, @ = 8 and the prior ordinate
7(c®, 6°) equals 7(c®)m(B°).

For the fixed parameters ¢® and 6° appearing in Equation (4.1) one should use high
density points (cf. Section 2.6.2). Hence we take the corresponding posterior mean
estimates given in Table 5.3. We run the Algorithms 4.1 and 4.2 with M = 30000
particles. This takes about 130 minutes for the AOP model on an UltraSPARC III Cu
900 Mhz processor. The choice of M seems to be sufficiently high since we got nearly
the same results for M = 10000 and M = 20000. The computation of the prior ordinate
can be done exactly. Here we only mention that since the hyperparameter C' was chosen
to be 10 and we have 4 response categories, we get 7(c°) = 2/C? = 0.02. For the means
which have to be computed for estimating the posterior ordinate, we use 10000 samples

from the full and the reduced runs each. Table 5.4 summarizes the results.

We get a Bayes factor of 11452.92 for the AOP against the OP model. Following the
Bayes factor scale in Table 2.1, we conclude that the autoregressive ordered probit model
fits the IBM data decisively better than the ordered probit model.






Chapter 6

Stochastic Volatility Model for

Ordinal Valued Time Series

From Section 2.8 we know that the volatility of the signed price change process varies
over time. Moreover one can observe periods with important price fluctuations followed
by relative quiet periods and vice versa (volatility clustering). These features cannot
be covered by the autoregressive ordered probit (AOP) model (cf. Chapter 3) since we
assume a constant variance of the noise term ¢; in Equation (3.2). Therefore we applied
in Chapter 5 the AOP model only to the absolute price changes and not to the signed

ones which also take the directions of the price changes into account.

In the following chapters we now want to model the signed price change process. There-
fore we must allow for a non-constant volatility term. One large class of models which
contains a non-constant volatility term is the class of stochastic volatility (SV) models
(cf. Section 2.7.2). However, the common SV models are used for continuous data, so

that we cannot apply them directly to the signed price change process.

Therefore in this chapter we first introduce a new model which can be applied to ordinal
valued time series and which allows for a non-constant volatility like common SV models.
Then we describe an Hybrid MCMC algorithm to estimate the parameters in the model.
This algorithm exhibits convergence problems similar to the standard sampler of Section
3.2 for the AOP model, and therefore we develop appropriate grouped move steps to
speed up the convergence. Simulations will show the fundamental improvement which

is achieved by using these grouped move steps.

69



70 CHAPTER 6. OSV MODEL

6.1 Model formulation

To cover the main features of the price change process as ordinal response, non-constant
volatility, and dependence on covariates we introduce now the Ordinal-response Sto-
chastic Volatility (OSV) Model defined by the following three equations:

w=k & y € [a-1,), (6.1)
y; = m,B+ exp(h;/2)e], (6.2)
hi = p+ziee+o(hi ) —p—2z,_a) + oy, (6.3)

where £ "X N(0,1) independent of 5 "~ N(0,1), k € {1,...,K}, t € {1,...,T}, and

hi = p. x; and z, are vectors of covariates, for ¢ = 0 we set

The parameters ¢y, ..., cx 1 are cutpoints. For notational convenience we set ¢y := —00

and ¢y := 4o00. Additionally we define y := (y1,...,yr).

We call the latent variables y; the continuous versions of the observations y;. Given
the covariate vector x; and the latent variable A}, y; is normally distributed with con-
ditional mean x;3 and conditional variance exp(h;). The log-volatilities h; form an
autoregressive process of order one with impact of another covariate vector z;. Since
the expression zj_;a is subtracted in the brace in Equation (6.3), the vector z, has an

impact only on h; but not on future log-volatilities i}, s > t.

We now consider the problem of identifiability of the unknown parameters in this model.
If we want to allow that x}3 contains an intercept /3, we have to fix one of the cutpoints,
for example the cutpoint ¢;. If we would not fix it, we could get an equivalent model
by taking some real-valued constant and adding this constant to all y;’s, to all ¢;’s,
and to (y. Therefore we set ¢; = 0. Furthermore, we have to fix another cutpoint or,
alternatively, the intercept p in the log-volatility evolution equation (6.3). If we would
not fix any of these, we would get an equivalent model by first taking some constant
C > 0 and then using the parameter transformations ¢; := Cc, y; := Cyy, B := Cp,
ﬁ;‘ = hi +2logC, and i := p+ 2logC. Since some of the equations in Section 6.3,
where we develop the GM-MGMC sampler, would not longer be true if we would fix
another cutpoint, we fix p. Obviously a large value for p would heavily increase the
volatility exp(h}) and therefore the cutpoints would also become very large. For this we
set it = —0.6 which leads to non-extreme parameter estimates in the data sets considered

later.



6.2. A HYBRID MCMC ALGORITHM 71

After fixing ¢; and p the parameters and latent variables to estimate are the

e cutpoints ¢ := (¢g,...,¢cx_1),

e latent continuous versions of v, y* := (yi,...,y}),

e log-volatilities h* := (h, ..., h}),

e regression parameters 8 = (0, ..., 3,)’ for the means of the latent variables,
e regression parameters a = (aq,...,qa,)" for the log-volatilities,

e autoregressive parameter ¢ in the log-volatility Equation (6.3),

e standard deviation o in the log-volatility Equation (6.3).

We emphasize that &;=(1, x4, ..., 7)) contains an intercept, whereas z,=(zy, . .., 2y)’

does not, since Equation (6.3) already contains the (fixed) intercept .

6.2 A hybrid MCMC algorithm

For estimating the parameters in the OSV model we describe in this section a Hybrid
MCMC algorithm. The algorithm consists of two parts, where the second part uses ideas
of the MCMC sampler developed in Chib, Nardari, and Shephard (2002). However, there
are several differences to the sampler of Chib, Nardari, and Shephard (2002). First, the
SV model considered there uses the equation h; = p+ zja+ ¢(hf_| — 1) +on; instead of
Equation (6.3), so that the covariate vector z; also has an impact on future log-volatilities
h% for s > t. Secondly, in the sampler of Chib et al. (2002) the prior distributions for
a, ¢, and o do not appear while updating these parameters, in spite of the fact that
on page 284 of Chib et al. (2002) informative normal, beta, and log-normal priors are
assumed, respectively. This seems to be incorrect, as well as some of the recursions for
the block update of h*, where often a factor ¢ is missing. Last, we use a multivariate
normal proposal distribution instead of the multivariate t-distribution in Chib et al.

(2002) for the update of e, ¢, and o. Here, of course, both possibilities are admissible.

Now we turn back to the parts of the Hybrid MCMC algorithm described here. In the
first part the regression parameter vector B, the latent variables y;, ¢ = 1,...,T, and
the cutpoints co, ..., cx_1 are updated. For the update of the remaining parameters in

the second part we switch to a state space approximation of the latent process (6.2) and



72 CHAPTER 6. OSV MODEL

2
qi my; vy

0.00730 | -11.40039 | 5.79596
0.10556 | -5.24321 | 2.61369
0.00002 | -9.83726 | 5.17950
0.04395 1.50746 | 0.16735
0.34001 | -0.65098 | 0.64009
0.24566 0.52478 | 0.34023
0.25750 | -2.35859 | 1.26261

~.

N O Ut W N~

Table 6.1: Parameters of seven-component Gaussian mixture to approximate the distri-
bution of log ;2.

(6.3). We now first describe this state space approximation, then we specify the prior
distributions and the updates in the Hybrid MCMC sampler.

6.2.1 State space approximation of the latent process

Obviously, Equation (6.2) is equivalent to
log (y; — m;,@)Q = h} +loge}®. (6.5)

The distribution of loge;? can be approximated by a seven-component mixture of nor-
mals, as in Kim, Shephard, and Chib (1998). In particular,

7
logei? ~ Z g
i=1

where u; @ is normally distributed with mean m; and variance v? independent of t.
Moreover, the random variables {ur(i) |t=1,...,T,i=1,...,7} are independent. The
quantity g; denotes the probability that the mixture component ¢ occurs. These probabil-
ities are also independent of ¢ and are given in Table 6.1 together with the corresponding

means and variances.

Now let s, € {1,...,7} denote the component of the mixture that occurs at time ¢ and
let 7(s;) denote the prior for s,, where 7 (s, =4) = ¢;. Defining ; := log (y; — «}3)°,
Equation (6.5) leads to the following state space approximation of the latent process

(6.2) and (6.3):

go= hi+u", (6.6)
hi = p+zioe+¢lhiy — p— 2z 0) + oy (6.7)



6.2. A HYBRID MCMC ALGORITHM 73

We will use this approximation for sampling ¢, o, o, and h;, t =1,...,T. Of course,
we now have to sample in addition the unknown mixture indices s, for t = 1,...,T.
For notational convenience we define g* := (97,...,95), 8 := (s1,...,57), and 8 4 :=
(S1y-nySt1yStats .-+ ST)-

6.2.2 Prior distributions

For the Bayesian approach we now specify the prior distributions for ¢, 8, hj, o, ¢, and

o. We assume prior independence so that the joint prior density can be written as

(¢, B, hy, &, ¢,0) = m(e)m(B)m(hg)m(an) - - - w(ag)m(¢)m(0).

For B we choose a multivariate normal prior distribution, for i the Dirac measure at

i, and for the remaining parameters noninformative priors. In particular,

m(c) = ]1{0<C2<...<CK,1<C},

m(B) = Np11(B]bo, Bo),
m(hg) = Lnapy,
m(ag) = lc,,c0)(a)), i=1,...,q,
(@) = ln(9),

(o) = lpc, (o),

where C' > 0, C, > 0, and C, > 0 are (known) hyperparameters, as well as the mean

vector by and the covariance matrix By.

In the following sections we specify the MCMC updates.

6.2.3 Regression parameter update (G-update)

Given B and hj, the latent variable y; is normally distributed with mean ;3 and vari-



74 CHAPTER 6. OSV MODEL

ance exp(h;). Together with the N,.1(by, By) prior for 3 we get

fBly,c,y",h* 0, 6,0) = f(Bly", h")

x f(y",B8,h")

T
= [[rwiB.h)-=(B)
t=1

X exp

1 3 M +(B—by)By (B — bo)] }

V]

—_

[\
—
~~
%
~—
—
~~
<
~—

= exp

< —2y/x; I -1 d B'xx;3 11
X expy§ —= Zﬁ—QbOBO /3+ZGX})7*+BBO ,3
t= —
1 a y; ) "oz
—= -2 L7t _ 4 b Byt ! nd BT S :
{ ; (Zexp(hz*>+ o )ﬂ” (Zexp(hz*)+ o )P

From this we conclude that Bly, ¢, y*, h*, o, ¢, 0 ~ N,11(b, B) where

T , -1
Lty 1
B = + B
<; exp(hj) =" )
L "
and b = B Yt 4 Blb, | .
(; exp(hj) "

6.2.4 Latent variable update (y;-update)

Since
fwily,e.y™, B,h" e, 0,0) = f(yily, e, B,h7) o< f(yis ¢, B, hy)
o< [fyyise) - f(yi1B,hi)
* 2
I, ey, ) (W) exp {—%%}
draw y;, t =1,...,T, from the univariate truncated normal distribution

) (i |28, exp(hy))

[Cytfl Cyt



6.2. A HYBRID MCMC ALGORITHM I6)

6.2.5 Cutpoint parameter update (c;-update)

Investigating the full conditionals f(ckly, c_x, y*, 8, h", a, ¢,0) for k € {2,..., K — 1}
we can see that

T

f(Ck|’y,C,k,y*,,8, h*7a7¢70) - f(Ck|’y,C,k,y*) X f(yaca y*) - [Hf(ytky::c)] 7T(C).

t=1

From this decomposition it follows that
[T

f(ck|y7 C_k, y*a 167 h*a «, ¢7 U) X H ]l[cyt—lycyt) (y;ﬁk)] ]1{0<02<...<CK_1<C}
Lt=1

= H ]1[01«71,%) (y:) H ﬂ[ck,ckﬂ) (y:) ]l{0<cQ<...<cK_1<C}-

{t=1,...,T'|y+=k} {t=1,...,T|ys=k+1}

Therefore we have the same expressions as in Subsection 3.2.3 and can conclude that

f(ekly, y*, B, ¢, c_) is an uniform distribution in the interval (I, ), where

ly = max {Ckla tjfllaXT {yilye = k}} ; (6.8)

rg = min {C]H_l’tnllinT {ilye =k + 1}} : (6.9)

.....

6.2.6 Mixture index update (s;-update)

For the updates of the remaining parameters we switch to the state space approximation

(6.6) and (6.7) of the latent process. Therefore we now compute

7; = log(y; — x}8)?, t=1,...,T,

and consider for the remaining updates only the system

go= h+ul™, (6.10)
hi = p+zioe+ d(hisy — p— 2z 0) + oy (6.11)
Since the mixture indices {s;, t =1,...,T} are conditionally independent, we have on

the one hand

f(8t|’g*7h*737t7a7¢70) = f(8t|gzc7h:) X f(stagz(?h:) = f(gﬂh:?‘gt)ﬂ_(st)‘



76 CHAPTER 6. OSV MODEL

On the other hand, given hA; and s;, y; is normally distributed with mean h; + m,, and

variance vZ,. We conclude that
f(slg* B s, a,0,0) o N(G; |hy + myg,,v2) w(se).

This, of course, is no standard distribution. For the update of s; we therefore first have
2

i

~x * 2
g = 1 exp { — (97 — hy —mi)
! V2, 2 v}

Then we must draw s; € {1,...,7} according to the probabilities

to evaluate the seven densities N (h; +m;,v7), i = 1,...,7, each at the point ¢}, resulting

in the values

Tt Qi

— 1=1,...,7.
Zk:l Ttk dk

f(St =1 | Q*J h*a S_¢, &, ¢70-) =

6.2.7 (a,¢,0) joint update and log-volatility update (h-update)

Here we take again advantage of the state space representation which allows for the
application of the Kalman recursions, the prediction error decomposition and the sim-
ulation smoother described in Section 2.7. If we compare the model Equations (2.23),
(2.24) and (6.10), (6.11) and take into account that we have univariate observations and
states here, we see that the notations correspond to each other in the following way (the

notations from Section 2.7 are given on the left-hand side of each assignment):

Y, = g:a C; = Mgy, Zt = ]-7 Gt = (Ustao)la
x; = hj, di = p+z,0—o(p+ zj00), Sy = ¢, H, = (0,0)".

Since the dimensions both of the observation and of the state equation equal one in this
context, the matrices appearing in the model equations and in the Kalman recursions
shrink to real valued numbers (except G; and H;). Therefore we will substitute the upper
case letters for the matrices by the corresponding lower case letters in the following.
Moreover, we will denote the innovations by e; instead of v; to avoid confusions with the

mixture variances v,.

Now define 6 := (&', ¢,0)". Since f(h*,0|y",s) = f(h*|0,9",s)f(0|y",s) we will draw
a sample from f(0|g*, s) and then use this sample for a block update of h*.

First we consider the sampling from f(6|y*, s) which is done by a Metropolis-Hastings
(MH) step. Let 8° denote the current value of 8. The MH step requires

e the specification of an appropriate proposal density ¢( - ) for ,



6.2. A HYBRID MCMC ALGORITHM

e sampling a proposal 8° from this proposal density,

7

e the evaluation of the target density f(-|g*,s) at 8° and 0° (at least up to a

normalizing constant),

e the evaluation of the proposal density ¢(-) at 8° and 8° (at least up to a normal-

izing constant), and

e finally accepting the proposal 8° with probability

N il T
(013, 5) = min { FEA TS 1]

(6.12)

If the proposal 6° is rejected, the current value 0° is retained as the next draw.

First we show how f(0|g*, s) can be evaluated up to a normalizing constant. Since

f0ly*;s) o f(G1,---: 07,0, 8)

T

= f@10.s) | ] £l - 57-1,0.8) | 7(8, )
Lt=2 J
= .

o f(5:10,8) ([ £ @155 51,0, 8)| 7(6)
Lt=2 J

we have, for some unknown normalizing constant d € R independent of 0,

T
f(9|17*: 3) =d- f(gﬂea 3) [H f(ﬂﬁgik, SR 71&:717 0, S)] 7T(0)
t=2

Defining
T

90ly", s) := [(yi]0, ) [H F@gLs - 90,0, S)]

t=2

we can write Equation (6.13) in the form

f(0|g*7 S) =d- g(0|g*7 S) : W(O)a
or, equivalently,

log f(0)y*, s) —logd =log g(8|y*, s) + log 7 (8).

(6.13)

(6.14)

The second term on the right-hand side of this equation can be evaluated directly using

the known prior densities for a, ¢, and 0. Comparing (2.43) and (6.14) we see that for



78 CHAPTER 6. OSV MODEL

the evaluation of the first term we can apply the prediction error decomposition given

by Equation (2.44) which has here the following form:

2
€

Jiji—1

T i 1 —
log (07", s) = 5 log(27) — 5 tz_;log Jej—1 — 5 tz_l: (6.15)
e; and fi,_1 are given by the Kalman recursions. Recall, that since 7(hg) = Lips—py
and since zg = (0,...,0)" (cf. Equation (6.4)), h] given hj is normally distributed with
mean hyjo := ft + 2z and variance p;jo := 0. These quantities serve as initial values for

the following recursions which correspond to Equations (2.35) to (2.42) applied to state
space model (6.10) and (6.11):

Y1 = Mgy + Py, (6.16)
e = U — Y1, (6.17)
foe1 = pyea +0%, (6.18)
ng = pt|t71ft‘_t1,1; (6.19)
hye = hye—1 + ey, (6.20)
pe = (1= ne)pee-n, (6.21)
hepe = p+ 2o+ @lhy — p— zy00), (6.22)
P = Ppy+o’, (6.23)

Therefore, the target density can be evaluated at 8° and 6° up to the normalizing

constant d, which, of course, cancels down in the first fraction of expression (6.12).

Next we specify the proposal density. We take a (¢ + 2)-dimensional normal distribution
for 8 where the mean is determined by the maximum likelihood estimator m of the
target density f(0|y*,s). As covariance matrix W we take the negative inverse of the

Hessian matrix V of [log ¢(0|y", s) + log7(0)] at m. In particular,

m = argmaax [log g(0)7*, 8) + log7(0)],
2 ~ % -1
W o= —Vl = _ 0" [logg(6|y ,S)I—l- log 7(0)] |
0000 O

m is found by numerical minimization of — [log g(8|y*, s) + log 7(6)]. We do this using
the Nelder-Mead minimization algorithm, which is described in detail in Appendix A.
It requires neither analytically nor numerically determined derivatives of the function to
be minimized. Instead, starting with an initial simplex, it generates in each iteration a

new simplex until a stopping criterion is fulfilled. How the next simplex is constructed



6.2. A HYBRID MCMC ALGORITHM 79

depends only on the values of the function to minimize at the vertices of the current
simplex. Therefore, for each vertex, g(-|g*, s) has to be evaluated running the Kalman
recursions and applying the prediction error decomposition (6.15). We pass only the
current value 6° = (67,...,67,,) to our implementation of the Nelder-Mead algorithm,

which itself generates an initial simplex determined by the ¢ + 3 vertices

o 6+ a o o:
03 03 63+ a 03
0g+2 0g+2 0g+2 040 +a

for some constant a € R, a # 0. The algorithm finally returns the maximum likelihood
estimator m. The Hessian matrix V' at m is then evaluated by numerically approxi-
mating the derivatives on an equally spaced grid. To justify the transformation of the
Hessian matrix appearing in the definition of W we note that the Hessian matrix V' at
the maximum m is negative definit, hence —V positive definit as well as W = —V !, as
it has to be to serve as a covariance matrix. Moreover, high values on the diagonal of the
Hessian matrix V' indicate sharply declining values around the maximum, which corre-
spond to small values in the diagonal of the covariance matrix. Therefore the negative

inverse W of V' is used as covariance matrix.
We now summarize the Metropolis-Hastings step to draw a sample from f(0|g", s):
1. Find the maximum likelihood estimator m of [log ¢(8|y*, s) + log7(@)] using the

Nelder-Mead algorithm where log g(0|y*, s) is evaluated running the Kalman re-

cursions (6.16) to (6.23) and applying the prediction error decomposition (6.15).
2. Approximate the Hessian matrix V' at m and calculate W = -V L,

3. Draw a proposal 6° from the (¢ + 2)-dimensional normal distribution ¢(@) =
Nq+2(0|m7 W)

4. Accept the proposal 8° with probability
a(6°,0°|y*, s) = min {g(@ |Z{ ,8) (0°) 9(0) 1} .

If 6° is rejected, retain 6° as the next draw.

Next we consider the block update of h from f(h|0,9",s). Let 8° = (a*, ¢, 0°)

denote the sample from the MH step before. Sampling can be done using the simulation



80 CHAPTER 6. OSV MODEL

smoother of De Jong and Shephard (1995) which is described in Section 2.7. It requires
running the Kalman recursions (6.16) to (6.23) with @ = a®, ¢ = ¢°, and 0 = o°,
storing e;, fy;—1 and n, for each ¢ =1,...,T, and finally running the following backward
recursions for ¢t = 7', ..., 1 which correspond to Equations (2.45) to (2.52). Initially set

rr =0 and mr = 0.

dy = fyly + P nimy, (6.24)

by = ft|_t1,1€t — ¢rury, (6.25)

q = v, — v, d, (6.26)

ke ~ N(0,q), (6.27)

a; = vft(dt — $*nymy), (6.28)

Ti_1 = ft|_t1,1€t + (¢ — ¢ny)re — avg; 'k, (6.29)

me1 = flg (0= ) me + ajg, (6.30)

& = U —my, —vlb — Ky (6.31)

Following Section 2.7, the vector ({i,...,&r) can be considered as a sample from the

conditional distribution f(h},..., h3|0,7%,s).

6.3 GM-MGMC sampler

Simulations with the Hybrid MCMC sampler developed in Section 6.2 show that the
produced chains especially for the cutpoints ¢, and the regression intercept 3, converge
very slowly to the region around the true values (cf. Section 6.3.2). We encountered
these problems already for the standard Gibbs sampler in the autoregressive ordered
probit model of Chapter 3. There we achieved a fast convergence by an appropriate
grouped move step which was inserted after one complete iteration of the standard

Gibbs sampler.

In the following we develop again a grouped move step based on the Theorem of Liu
and Sabatti (2000) (cf. Section 2.4). Inserting this step in the Hybrid MCMC sampler
of Section 6.2 we have an algorithm which falls again in the class of the GM-MGMC

samplers.



6.3. GM-MGMC SAMPLER 81

6.3.1 Development of an appropriate grouped move step

As was pointed out in Section 2.4 the difficulty in developing a suitable grouped move
step is how to choose the distribution 7 and the transformation group I' which appear in
the Theorem of Liu and Sabatti (2000) (cf. Section 2.4). They should be chosen in such
a way that on the one hand the problematic parameters are transformed and that on the
other hand the distribution w(y(x))|J,(x)|L(dv) allows to draw samples very fast. For
the AOP model we succeeded by using the posterior distribution and the partial scale

group for 7 and T, respectively.

Here, however, it seems to be impossible to find a transformation group which satisfies
these conditions when 7 is the full posterior distribution. Therefore we apply the Theo-
rem of Liu and Sabatti (2000) not to the full posterior distribution, but on a certain

conditional one. In particular, we set

w = (yikw"7y;“7027"'7CK—17607"'761))7
combine the remaining parameters to
R = (h*7 a7 ¢7 O-) 7

and let 7(w) be the conditional distribution f(w|y, R). With F; denoting the observa-

tions until time ¢, i.e. F; = (y1,...,y:), we see that

f(yTJ"'ay;tkayachaR) = f(yt|y;---;y:;}—t—laC;BaR)f(yﬂyik;---;y;lp]:t—lacaﬂ;R)‘
'f(y)lka"'7y:717ftflaca/37R)
- f(yt|y:<7 c)f(y':(|ﬂ7 R)f(yra .- '7y:<—17ft—17 07/37 R) (632)

Using Equation (6.32) recursively we have the following proportionality for the condi-

tional distribution 7(w):

m(w) = fyi,.-- yr ¢ Bly, R)
X f(y)lk7"'7y;7y7c7ﬂ7R)

= [H f(elyy, C)] [H f(yi1B, R)] 7(c, B, R).

Since we assume ¢, B, and R to be a priori independent of each other, a (p + 1)-

dimensional normal distribution for 8 with mean vector by, and covariance matrix By



82 CHAPTER 6. OSV MODEL

and noninformative priors for the cutpoints, we get

-7 T

m(w) o Hf(ytiyz:@] n(c) [H f(y:w,R)] ~(8)
:t;l t=1

- H]l[cyt—l,cyt)(y;;)] ]1{0<62<...<CK_1<C}

B

At this point we now have to set the mean of the normal prior for B to zero, i.e. 7(8) =

N,+1(B 10, By). Otherwise some of the transformations in the following equations cannot

} |

be made. Using this prior for B3, expression (6.33) simplifies to

- 1 [« (y; — z,B)?
X H ﬂ[cyt_l,cyt)(yt*) ]1{0<62<...<CK_1<C} €xp —5 Z w + ,BIBO_I,@
t=1

t=1

In order to get an easy sampling distribution we now use the scale group

I'={y>0:v9(w)=(yw,...,ywq)}

with y~!dvy as left-Haar measure. In this case 7 has to be drawn from v*~!7(yw), where
d denotes the dimension of w. Since w contains all the latent variables y;, t =1,...,T,
the cutpoints ¢, & = 2,...,K —1,and 3;, 7 = 0,...,p, we have d =T + K +p — 1.
Therefore we get the proportionality

T
'Ydilﬂ(')’w) X 7T+K+p72 [H ]1[7(:“_1,70%)(7?}:)] Lo<rea<...<rer—1<C}

t=1

T

(vy; —xB _

cexp{ —= i — =By +78'By 1B
t=1 exp(hy)

} . (6.34)

For all v > 0 we have the equivalence

0<vyce <...<7yckg 1 <C and cg 1 <]
— [0<02 <...<cg1 < C and ~? <C2/c§(_1}.
Since expression (6.34) is considered to be a density for v (up to a normalizing constant),

and since during all updates of the Hybrid MCMC sampler the condition 0 < ¢; < ... <
cx_—1 < C'is always fulfilled, this equivalence leads to the proportionality

Kocyer<crer—1<cy X Mocqes<icren1<cy e 1<y
= ]l{0<cz<...<cK_1<C}11{72<CZ/C%(71}

X ]l{'y?<02/c§(71}'



6.3. GM-MGMC SAMPLER 83

Therefore expression (6.34) simplifies to

T

v H [Cyt—lrcyt)(yt) {r2<c?/c3_,} €XP _5’}’ Z W +B8'B, B
=1 t=1

2 exp(h;) } Lpzcore )

If one chooses a prior for ¢ with infinite support, i.e. C' = oo, this expression is propor-

T
T+K+p—2 1 *_ pl )2
o (72) D) eXp {__72 [Z (yt m1518) + ,BIBO_I,B
t=1

tional to a Gamma distribution I'(a, b) for v* with parameters

T+ K

a = %7 (6.35)
1 [ (5 — =B)* 1

b = - 'By :
5 Z ot~ TABB| (6.36)

where the I'(a, b) density is given by fr(. (z) = b*a* e " /I(a), z > 0.

If a finite support for ¢ is chosen, i.e. C' < oo, one gets a Gamma distribution for ~?
with the same parameters as before, however truncated to (0, C?/c% ). Of course, one
can easily sample also from this truncated Gamma distribution by rejection sampling
(cf. Section 2.1).

If v2 is drawn from the (truncated) Gamma distribution with a and b given in (6.35) and
(6.36), respectively, the Theorem by Liu and Sabatti (2000) guarantees that yw = /72w
can be considered as a sample from 7(w) = f(wly, R), if w itself is a sample from this
conditional distribution. Such a sample is given directly after the updates of 3, v},
t=1,...,7T,and ¢;, k = 2,..., K — 1. Therefore we insert the corresponding grouped
move step exactly at this point in each iteration of the Hybrid MCMC sampler from
Section 6.2. This results in a GM-MGMC sampler, where each iteration consists of the

following steps:

Algorithm 6.1 One iteration of the GM-MGMC sampler for the OSV model

1. MCMC-Step (Part 1)

e Draw 8 from (p + 1)-variate normal.
e Draw y/, t =1,...,T, from truncated univariate normals.

e Draw ¢, k= 2,..., K — 1, from Unif(ly, ;) where
l, = max{c 1, tgaXT{yﬂyt =k}},

re = min{cgiq, t:r{linT{yﬂyt =k+1}}.



84 CHAPTER 6. OSV MODEL

Get B, Yiyrs Cour as current values.

2. GM-Step
Draw 72 from the (truncated) I'(a,b) distribution with a and b defined in (6.35)
and (6.36), respectively, and update B.,., Y%, , Cer by multiplication with the

group element v = /7?2,

/Bnew — ,YIBCUTW
* *
ynew — 'chur?

cnew < ’chuT‘ .

3. MCMC-Step (Part 2)

e Compute §; = log(y; — x}8)* for t =1,...,T.
e Draw s, t =1,..., T, proportional to Pr(s,)N(g;|h; 4+ ms,, vZ).

e Draw (a, ¢, 0) via Metropolis-Hastings step; use ML-estimates of (a, ¢, ) to

find an adequate multivariate normal proposal (see Section 6.2.7).

e Draw A" in one block using the simulation smoother of De Jong and Shephard
(1995) (see Section 6.2.7).

6.3.2 An illustration: Hybrid MCMC against GM-MGMC

We now illustrate the fundamental improvement which is achieved by adding the GM-
step to the Hybrid MCMC sampler of Section 6.2. Here and in the following we always
use the hyperparameters C' = oo, by = 0, By = diag(10,...,10), C, = 105, C, = 10, so

that the prior distributions are

m(c) = Lo<er<...<ex_1<o0}s

7(B) = N,1(B]0,diag(10,...,10)),
m(ay) = N 106<a <106}, j=1,...,q,
T(p) = I 1<p<ty

m(o) = Tjo<o<10}-

We simulate an OSV process of length 7" = 22000 where we allow for K = 7 response
categories. For the log-volatility Equation (6.3) we use a two-dimensional covariate
vector z;. The two components are exactly the covariates from the IBM data which

will be used in Chapter 7. The simulation parameters in the log-volatility equation are



6.3. GM-MGMC SAMPLER 85

set to a; = 0.25, as = 0.15, ¢ = 0.90 and o = 0.20. Using these parameters we first
simulate the log-volatility process {h; |t = 1,...,T}. The covariate vector x; in the
equation for the latent variables y; also has two components. The first corresponds to
the intercept and is always 1, the second is the lagged response 3;_;. The simulation
parameters are set to Sy = 3.50 and 3, = —0.30. To generate the response, we choose
the cutpoints as ¢y = 0.90, ¢5 = 1.80, ¢4 = 2.75, ¢5 = 3.65, and ¢ = 4.50. We note that
these simulation parameters are chosen close to the estimated values for the IBM data
presented in Chapter 7. Therefore, by showing that the GM-MGMC sampler works very
well for these parameters and covariates, we get a first justification that the GM-MGMC
algorithm works well for the IBM data.

We run both the Hybrid MCMC sampler from Section 6.2 and the GM-MGMC sampler
for 4000 iterations. As starting values for the cutpoints ¢, . . ., cg we choose 2.0, 4.0, 6.0,
8.0, 10.0, respectively, 0.0 for each of the regression coefficients «;, 0.8 for ¢, and 0.3 for
o. Since each iteration starts with the B-update, starting values for 3;, 7 = 0,...,p, are

not necessary.

Figures 6.1 to 6.4 demonstrate the fundamental superiority of the GM-MGMC sampler.
They show the first 1000 iterations of both the Hybrid MCMC and the GM-MGMC
sampler for the cutpoints cs, ..., cg, the regression coefficients fy, 31, a1, and as, and
the parameters ¢ and o. As can be seen from Figure 6.1 the chains for the cutpoints
produced by the Hybrid MCMC sampler move very slowly around the starting values
and do hardly move to the regions around the true values which are indicated by the
horizontal lines. It is not clear, whether the chains for the cutpoints produced by the
Hybrid MCMC sampler will converge at all, and when they do so, it will take thousands
of iterations. The same holds for the observed chains for the regression coefficients,
given in Figures 6.2 and 6.3, respectively. The observed chains of ¢ and o are given in
Figure 6.4. For the Hybrid MCMC sampler, they stabilize at completely wrong values.
Moreover, the observed chains for aq, as, ¢, and ¢ do not move after iteration 5: The
proposal values in the MH-step were never accepted. This, however, is probably a

consequence of the fact, that the other parameters are also estimated wrongly.

The chains produced by the GM-MGMC sampler are also given in the Figures 6.1 to
6.4. They converge within about only 100 iterations for the cutpoints as well as for
the regression coefficients and the parameters ¢ and o. An interesting effect occurs at
iterations 2 to 13 of the parameters «y, as, ¢, and o, which do not move during these 11
iterations. This effect is typical for the burn-in period and can be explained as follows.

The parameters «;, s, ¢, and o are drawn by a Metropolis-Hastings step (cf. Section



86 CHAPTER 6. OSV MODEL

Chains of cutpoints produced by Hybrid MCMC sampler

10

0 200 400 600 800 1000

iteration

Chains of cutpoints produced by GM-MGMC sampler

10

0 200 400 600 800 1000

iteration

Figure 6.1: First 1000 iterations of chains for cutpoints produced by Hybrid MCMC
sampler (above) and GM-MGMC sampler (below). The horizontal thin lines indicate

the true values.



6.3. GM-MGMC SAMPLER 87

Chains of regression coefficients f; produced by Hybrid MCMC sampler

@ L e T APy T Y., TP Sy FOPSIP RV
Bo

©
<
N
o) Bl

0 200 400 600 800 1000

iteration
Chains of regression coefficients ; produced by GM-MGMC sampler

]
©
. By o
N
] by

-

0 200 400 600 800 1000

iteration

Figure 6.2: First 1000 iterations of chains for regression coefficients f; produced by
Hybrid MCMC sampler (above) and GM-MGMC sampler (below). The horizontal thin

lines indicate the true values.



88

CHAPTER 6. OSV MODEL

Chains of regression coefficients ; produced by Hybrid MCMC sampler

<
o
Uy
N
o
Uy

o]
o]

0 200 400 600 800 1000

iteration
Chains of regression coefficients o produced by GM-MGMC sampler
<
o
0y
| A o R s A p A" ' 'Y, ' "TLaM A
N et L T Y R Y WY W VR VIV AR YY)
o
AV LT  AAR UL L AN A Ay in by g

| 0
@)
o

0 200 400 600 800 1000

lteration

Figure 6.3: First 1000 iterations of chains for

regression coefficients «; produced by

Hybrid MCMC sampler (above) and GM-MGMC sampler (below). The horizontal thin

lines indicate the true values.



6.3. GM-MGMC SAMPLER 89

Chains of parameters ¢ and ¢ produced by Hybrid MCMC sampler

0
o | | ,
N %
o 0
@)
o
0 200 400 600 800 1000
lteration
Chains of parameters ¢ and o produced by GM-MGMC sampler
A AAF‘I‘LMWM"WLA Bty Awwﬁmﬂ?ﬂmv# A'..-\'mr_'..ww
©
’J
)
o
0
o]
o
0 200 400 600 800 1000
iteration

Figure 6.4: First 1000 iterations of chains for parameters ¢ and o produced by Hybrid
MCMC sampler (above) and GM-MGMC sampler (below). The horizontal thin lines

indicate the true values.



90 CHAPTER 6. OSV MODEL

6.2). During the iterations 2 to 13, the proposal values for these parameters were never
accepted. However, when the chains of the other parameters get closer to the true
values (cf. Figures 6.1 and 6.2), the multivariate normal proposal for 8 = (a1, ag, @, 0)
approximates the target density very good, and the chains of the components of 8 start
to converge. After the first 100 iterations, the average acceptance rate is about 90%.
Since the proposal density for 0 is adapted to the target density very carefully, this leads

to a fast mixing in the whole support of the target density.

We further investigate the empirical autocorrelations for the lags 0 to 200 in the observed
chains after a burn-in period of 1000 iterations for both samplers. As can be seen from
Figure 6.5, the GM-MGMC sampler is better also from this point of view since the
empirical autocorrelations in the GM-MGMC chains decline very fast. In contrast, in
the chains produced by the Hybrid MCMC sampler they decline very slowly and are
greater than 0.5 even at lag 200. Furthermore, the empirical autocorrelations for the
chains aq, a3, ¢, and o produced by the Hybrid MCMC sampler do not exist, since
these four chains did not move during the iterations 1001 to 4000. Therefore, for these
parameters, Figure 6.5 only contains the autocorrelations for the chains produced by the
GM-MGMC sampler.

Summarizing the results of this section, we conclude that the Hybrid MCMC sampler
of Section 6.2 does not work well and therefore hardly can be used for fitting the OSV
model to a data set. In contrast, the GM-MGMC sampler works very well, since the
chains converge very rapidly and the autocorrelations in the chains are small. However,
an open interesting question is, how accurate the parameter estimates are when we run

the GM-MGMC sampler several times. This will be investigated in the next section.

6.4 Simulation study

Here we conduct a simulation study to assess the accuracy of the posterior mean es-
timates by the GM-MGMC sampler. In the Sections 6.4.1 and 6.4.2 we consider two
settings which differ in the choice of the covariates, the length of the data, and the values
of the simulation parameters. The second setting is interesting for the application in
Chapter 7 since the covariates in the simulated data set are taken from the IBM data

set investigated there.



6.4. SIMULATION STUDY

o C3 G4
T T O NS I et e BN
o]
o
o]
7
0 5 100 150 200 0 5 100 150 200 5 100 150 20
lag lag lag
0 G B
o e
O N LN, LT
o
o]
f
0 5 100 150 200 0 5 100 150 200 5 100 150 200
lag lag lag
0 By 0 )
-
o e AanrN oy
o ) =
o]
7
0 5 100 150 200 0 5 100 150 200 5 100 150 200
lag lag lag
0 9 0
o
o]
o
°
i
0 5 100 150 200 0 5 100 150 200
lag lag

91

Figure 6.5: Autocorrelations of chains produced by Hybrid MCMC sampler (dotted)

and GM-MGMC sampler (solid).



92 CHAPTER 6. OSV MODEL

¢ g Bo B a Co C3 Cy Cs Ce
0.901]0.25) 2.80]-0.30 || 0.80 || 0.60 | 1.20 | 1.75 | 2.35 | 3.00

Table 6.2: Parameters for Simulation Setting 1.

6.4.1 Setting 1

Here the prior distributions from Section 6.3.2 are used. 20 data sets are simulated, each
of length 8000, with response categories 1,...,7. First we simulate the covariate vector
z; for the log-volatility equation. In this setting z; is assumed to be one-dimensional
and is therefore denoted by the corresponding non-bold letter z;. To have a covariate not
too similar to a normal distributed random variable we simulate uniformly distributed
errors

a; ~ Unif(—0.1,0.1) i.i.d., t=1,...,8000,

and use these errors to compute
2, = 0.16 - sin(t/40)? + ay, t=1,...,8000.

The covariate z; is used for all 20 data sets. The other covariate vector consists of the
component for the intercept and the lagged observation, i.e. a; = (1,y;_1)". This is
reasonable choice for high-frequency financial data (cf. Chapter 7). Of course, using the
lagged observation as covariate, one must compute y; directly after simulating y; since

y; is needed for the simulation of y; ;.

The parameter choices used for simulation are given in Table 6.2. They are close to the
ones which we found in high-frequency data investigated (cf. Chapter 7). The cutpoints
are chosen so that the frequencies in the categories also correspond to those in high-
frequency data, where only few observations lie in the categories 1 and 7, and many

observations in category 4.

We computed posterior mean estimates by running the GM-MGMC sampler for 4000
iterations each, where the first 1000 iterations were discarded for burn-in. Running
the GM-MGMC sampler for such data sets takes about 2.1 seconds per iteration on an
UltraSPARC IIT Cu 900 Mhz processor. Therefore, running 4000 iterations for each of
the 20 data sets takes about 47 hours.

Table 6.3 gives the means and standard deviations of the posterior mean estimates across
the 20 samples, based on 4000 GM-MGMC draws, discarding the first 1000. Since the

means of the posterior mean estimates are almost identical to the true values for all



6.4. SIMULATION STUDY 93

true mean | std. dev. true mean | std. dev.
0] 0.90 | 0.9010 0.0100 | ¢ | 0.60 | 0.6069 0.0255
o 0.25 | 0.2562 0.0239 | ¢3 | 1.20 | 1.2095 0.0266
Bo | 2.80 | 2.8176 0.0569 | ¢4 | 1.75 | 1.7631 0.0519
B | -0.30 | -0.3041 0.0080 | ¢5 | 2.35 | 2.3560 0.0527
a; | 0.80 | 0.7872 0.0896 | cg | 3.00 | 2.9898 0.0638

Table 6.3: Means and standard deviations of the posterior mean estimates across the 20

samples in Setting 1 using the GM-MGMC sampler.

¢ g Bo B aq &%) Co C3 Cy4 Cs Ce
0.9010.201 3.50 | -0.30 | 0.25 1 0.15 ] 0.90 | 1.80 | 2.75 | 3.65 | 4.50

Table 6.4: Parameters for Simulation Setting 2.

parameters, we conclude that on average we estimate nearly the true parameter values.
Moreover, as one can see from the standard deviations, the posterior mean estimates

themselves have always been close to the true values for each of the 20 data sets.

6.4.2 Setting 2

For the second parameter setting we use again the same prior distributions as in Section
6.3.2. In contrast to Setting 1, also the covariate vectors and the simulation parameters
are the same as in the example of Section 6.3.2. We recall that the covariate vector z;
was two-dimensional and that the covariate vector x; consists of the component for the
intercept and the lagged observation 1; ;. Hence, x; is the same as in Setting 1. As
mentioned in Section 6.3.2, the simulation parameters (cf. Table 6.4) lie close to the
estimated values for the IBM data in Chapter 7. Since the parameters are estimated
very well in this parameter setting, we can conclude that the estimates which we get for

the IBM data are also accurate.

Again we simulate 20 data sets. However, the length of each data set is now T" = 22000,
which is close to the length of the IBM data set of Chapter 7 (there T = 22689).
We computed posterior mean estimates by running the GM-MGMC sampler for 4000

iterations each, where the first 1000 iterations were discarded for burn-in.

Running the GM-MGMC sampler for such data sets takes about six seconds per iteration



94 CHAPTER 6. OSV MODEL

true mean | std. dev. true mean | std. dev.
0] 0.90 | 0.8942 0.0093 | ¢ | 0.90 | 0.9041 0.0121
o 0.20 | 0.2080 0.0150 || ¢3 | 1.80 | 1.8041 0.0124
Bo | 3.50 | 3.5092 0.0281 || ¢4 | 2.75 | 2.7558 0.0186
B | -0.30 | -0.3011 0.0049 || ¢5 | 3.65 | 3.6581 0.0263
a; | 0.25 | 0.2513 0.0090 || ¢ | 4.50 | 4.5147 0.0419
as | 0.15 | 0.1524 0.0095

Table 6.5: Means and standard deviations of the posterior mean estimates across the 20

samples in Setting 2 using the GM-MGMC sampler.

on an UltraSPARC III Cu 900 Mhz processor. Therefore, running 4000 iterations for
each of the 20 data sets takes about 133 hours.

Table 6.5 gives the means and standard deviations of the posterior mean estimates across
the 20 samples. As in parameter Setting 1, the means of the posterior mean estimates
are almost identical to the true values for all parameters. Therefore we conclude that
on average we estimate nearly the true parameter values. Moreover, the standard devi-
ations are very small, so that for each of the 20 data sets the posterior mean estimates

themselves have always been close to the true values.



Chapter 7

Application of the Ordinal-Response
Stochastic Volatility Model to
High-Frequency Finance

In this chapter we apply the OSV model to data from the IBM stock in January 2001. In
contrast to Chapter 5, where we applied the AOP model to the absolute price changes,

we model here the signed price changes.

First, we describe the data set in Section 7.1. Since many papers today deal with
models for the log returns of prices of stocks or derivatives, we consider in Section
7.2 the difference between modeling the the signed price changes and modeling the log
returns. Finally in Section 7.3 we fit the OSV model to the data.

7.1 Description of IBM data

The data used here are price changes of the IBM stock traded at the New York Stock
Exchange (NYSE) from January 9, 2001 to January 25, 2001. In this period we removed
data from Mondays and Fridays, and data before 09:50am and after 03:40pm to exclude
data which might exhibit a special behavior. Table 7.1 gives the periods contained in
our IBM data set.

The prices and therefore also the price differences take on only values which are in-

teger multiples of 1/16 US$. Since price changes of less than —3/16$ and more than

95



96 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

day time min. price ($) | max. price($)
Jan 9 (Tuesday) 09.50am - 03.40pm 91 7/16 95 12/16
Jan 10 (Wednesday) | 09.50am - 03.40pm 92  5/16 94 15/16
Jan 11 (Thursday) | 09.50am - 03.40pm 91 4/16 94  4/16
Jan 16 (Tuesday) 09.50am - 03.40pm 91 13/16 93 11/16
Jan 17 (Wednesday) | 09.50am - 03.40pm 94 13/16 97 12/16
Jan 18 (Thursday) | 09.50am - 03.40pm 104  3/16 110 0/16
Jan 23 (Tuesday) 09.50am - 03.40pm 107 10/16 109 7/16
Jan 24 (Wednesday) | 09.50am - 03.40pm 108 15/16 111 7/16
Jan 25 (Thursday) | 09.50am - 03.40pm 109 8/16 111 2/16

Table 7.1: Periods contained in the IBM data set and minimal and maximal prices of
IBM stock in each period.

price diff. ($)|<-3/16| -2/16 | -1/16 0 1/16 2/16 | > 3/16
response 1 1 2 3 4 5t 6 7
frequency 151 1053 4886 | 10333 | 5222 860 184

Table 7.2: Price differences and corresponding response categories together with ob-

served frequencies.

+3/16$ hardly occur, we deal with them like price changes of —3/16$ and +3/168$, re-
spectively. Therefore, we only observe seven different price changes. We associate these
price changes to the categories 1,...,7 in a natural way, as can be seen from Table 7.2.

Adding up the frequencies in Table 7.2, we see that we have a total of 22689 observations.

The data is taken from the TAQ2 database of the NYSE, which contains the covariates
TIMEDIFF (the time which elapses between two subsequent transactions in seconds) and
SIZE (the volume of the transaction). From the application of the autoregressive ordered
probit model to another IBM data set in Chapter 5 we know that these covariates have
an impact on how large a price change is. Therefore we use the same transformations
of TIMEDIFF and SIZE as in Chapter 5 for the covariate vector z; in the log-volatility
equation since a high (log-) volatility also can lead to larger price changes. However, we
recall that in Section 6.1 we fixed the parameter y to —0.6 to get non-extreme parameter
estimates. Therefore we now center the covariate vector z; at 0 since otherwise the mean
of the log-volatilities would no longer be —0.6 but could become much larger or smaller.
With TIMEDIFF,; denoting the time which elapses between the transaction at time ¢ —1



7.1. DESCRIPTION OF IBM DATA 97

TIMEDIFF (seconds) 21 || SIZE (stocks) 2.9
min 0 -1.9563 100 | -2.1339
avg 8.3357 | 0.0000 2331 | 0.0000
max 116 2.8059 180000 | 5.3616

Table 7.3: Minimum, average, and maximum for the two original covariates and their

transformations z.; and z.,.

and the transaction at time ¢, we have

22689

2y = log(TIMEDIFF, + 1) — llog(TIMEDIFF}, + 1)] .

22689
k=1

By adding 1 to TIMEDIFF; we avoid the value log(0). In the same way we center now
the second component of z;. In particular, with SIZE; denoting the transaction volume

of the transaction at time ¢, we have

22689

Ztg = log(SIZEt) — m £ [lOg(SIZEk)] .

Table 7.3 gives some summary information about these two covariates for the log-

volatility equation.

Considering the response one can observe that often a positive price jump is followed by
a negative one and vice versa (cf. Figure 7.1). This can be taken into account by using
the lagged response as covariate in the model Equation (6.2) since the covariates there
have an impact on the mean of the latent variables y;. Therefore, also recalling that )3
must contain an intercept, we use x; := (1,y,-1)" as covariate vector for Equation (6.2).
We note that exploratory analyses for TIMEDIFF and SIZE show that often higher
values of these covariates come along with higher price changes, but partly upwards and
partly downwards. Therefore we do not expect an impact of these covariates on the
mean of the latent variables y;.

Before we fit in Section 7.3 the OSV model to the data, we show that for our data it
is reasonable to take the price changes instead of the commonly used log returns as

respomnse.



98 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

| A
I N N N I
g1 AR A
VNN T
| [ Sy

(o] 10 20 30 40 50
time index

Figure 7.1: Price changes of IBM stock at January 9, 2001 (first 50 transactions after
09:50am).

7.2 Log returns and signed price changes

As mentioned before, in many papers not the price changes itself, but the log returns
are modeled. Here we show that at least for our data set it is reasonable to consider the

signed priced changes.

First we introduce some notations. Let p; denote the transaction price at time ¢. The

ry:=log | — ).
Pt

With d; denoting the signed price change at time ¢, i.e. d; := p; — p;_1, it is evident that

1 +d d
r, = log <pt17+t> = log <1 + —t> . (7.1)
Dt—1 D1

One important argument for considering the log return is that the log return takes the

log return is then defined as

actual value of the stock into account, in contrast to the price difference. We illustrate
this in a short example. Consider two cases (1) and (2) with stock prices p§1_)1 = 10
and p@l =100 at time ¢t — 1, respectively. Intuitively, one might model the stock prices
in such a way that (1) a rise from 10 to 10.5 dollars is as probable as (2) a rise from
100 to 105 dollars since both equals a rise of 5%. This can adequately be modeled by

considering the log returns, since

r =log (1 +0.5/10) = log (1 + 5/100)) = r{*.



7.2. LOG RETURNS AND SIGNED PRICE CHANGES

d; in dollars | r; for p* = 91.2500 | r; for pMaX = 111.4375
-3/16 -0.002057 -0.001684

-2/16 -0.001371 -0.001122

-1/16 -0.000685 -0.000561

0 0.000000 0.000000

1/16 0.000685 0.000561

2/16 0.001369 0.001121

3/16 0.002053 0.001681

99

Table 7.4: Price changes d; and corresponding log returns r; for p?f}n = 91.2500 and
pitaX — 111.4375.

Therefore, if one models the log returns, one models the relative price changes. In

contrast, if one considers the signed price differences, one gets
dY =10.5 — 10 # 105 — 100 = d\?.

But d{") = d\¥ when in both cases (1) and (2) the price rises by the same amount, for
example 50 cents. Therefore, a model for the signed price changes takes only the price

changes themselves into account, but not the price at time ¢ — 1.

Of course, the larger the difference between the prices p§1_)1 and p§2_)1 becomes the larger is

the difference between modeling the log returns and modeling the signed price changes.

As can be seen from Table 7.1 the stock prices in our IBM data set lie between p?f}n =
91.2500 and p@* := 111.4375 dollars. Using Equation (7.1) we can compute the log
returns r; which correspond to the price changes d; when the actual price p;_; has these
(for our data set) extreme values. The result is shown in Table 7.4. From Equation
(7.1) we see that, for known d;, the log return r; is a monotone function of p, ;. We
conclude that for known d; the log returns in our data set lie in the intervals given by
the second and third column of Table 7.4. These intervals are illustrated in Figure 7.2

together with the corresponding price changes.

We see that the log returns occur in clusters which are clearly separated from each other.
For example, log returns between 0.00001 and 0.00055 do not occur. Therefore we doubt
whether it makes sense to model the log returns of this data set by a continuous distri-
bution, as would be done by applying common SV models, and prefer the application of
the OSV model, which, of course, does not distinguish between the different log returns

in each interval.



100 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

price changes —-3/16 —2/16—-1/16 O 1/16 2/16 3/16

possible log return34F_I I ‘ I W
\ \ \

—0.002 —0.001 o 0.001 0.002

Figure 7.2: Price changes and the corresponding log returns which can occur in the IBM

data set.

Finally we note that the rise from 91.2500 to 111.4375 dollars corresponds to a rise by
22 percent. This is a large gain for a period of 16 days. However, especially if one were
to consider longer time periods, there can be gains or losses of for example 50 percent
or even more. It is obvious, that the log return clusters in Figure 7.2 become narrower
when the range of the stock prices in the data set decreases. For small ranges only few
log returns will occur, and after appropriate rescaling they will all be very close to the
corresponding integer multiple of 1/16. Hence for data sets with small price range the
difference between modeling the price differences and modeling the log returns is very
small. However, the difference between these modeling approaches increases with the
range of the stock prices of the data set to be considered.

7.3 Model estimation

We now fit the OSV model to the data. First we specify the hyperparameters for the
prior distributions, then we compute the parameter estimates and investigate what these
estimates tell us about the structure of the IBM data set. Finally we have a look at the

(log-) volatility estimates.



7.3. MODEL ESTIMATION 101

Parameter | Prior distribution

c Uniform on {(cg,...,¢) |0 < <...<c¢g <00}
B8 N5 (0, diag(10,10))

h Dirac(—0.6)

o Uniform on {—100 < oy < 100}

Qg Uniform on {—100 < oy < 100}

o) Uniform on {—1 < ¢ < 1}

o Uniform on {0 < o < 10}

Table 7.5: Prior distributions for the cutpoints ¢, for the regression coefficient vector
B, for the latent variable hg, for the regression coefficients «;, and for the parameters ¢

and o in the log-volatility equation.

7.3.1 Specification of the hyperparameters

We have to specify the hyperparameters C' (maximum for cutpoints), by (mean for
B-prior), By (covariance matrix for B-prior), C, (bound for noninformative «;-prior,
j =1,2), and C, (upper bound for noninformative o-prior). First, to be able to apply
the grouped move step in our GM-MGMC algorithm, we must set by = 0 (cf. Section
6.3.1). Moreover, we set C' := oo. Of course, we could also choose a finite value, but
then rejection sampling would be required in the grouped move step. Since we use the
covariate vector @; = (1,y; 1), the values of this vector lie between 1 and 7 for all ¢.
Therefore we do not expect extreme values for the coefficients 3;, ;7 = 0,1, and the
choice By = diag(10, 10) seems to be appropriate. The values of the components of the
covariate vector z; lie between —2.1339 and 5.3616 for all ¢ (cf. Table 7.3). Since this
covariate vector has an impact on the log-volatility, we do not expect extreme values for
the coefficients «;, 7 = 1,2. The choice of C, = 100 therefore seems to be sufficiently
high. Since we do not expect a dominating impact of the error term on; on the log-
volatility, the value 10 for C, could be adequate. Table 7.5 summarizes the chosen prior
distributions.

We checked out by using other hyperparameter values that the posterior estimates are
not very prior-sensitive. For example, the less informative B-prior N (0, diag(10%, 10%))
leads to nearly identical estimates. This also can be expected because of the large

number of observations.



102 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

estimate | std.err. 90% cred.int. estimate | std.err. | 90% cred.int.

¢ | 0.9061 | 0.0119 | (0.8853,0.9248) |l co | 0.9332 | 0.0137 | (0.9102,0.9554)
o | 0.2230 | 0.0194 | (0.1922,0.2570) || c3 | 1.8248 | 0.0208 | (1.7894,1.8587)
Bo | 3.5152 | 0.0463 | (3.4402,3.5908) |l ¢4 | 2.7609 | 0.0310 | (2.7087,2.8113)
( )
( )

f1 | -0.3073 | 0.0070 | (-0.3188,-0.2962) || ¢5 | 3.6893 | 0.0443 | (3.6140,3.7609
ap | 0.2599 | 0.0182 | (0.2298,0.2912 4.4500,4.6623

) || ce| 4.5562 | 0.0636
ag | 0.1511 | 0.0090 | (0.1363,0.1665)

Table 7.6: Posterior mean estimates and corresponding estimated standard deviations

and 90% posterior credible intervals for parameters in OSV model.

7.3.2 Parameter estimates and conclusions

We now run the GM-MGMC sampler from Section 6.3.1 for 4000 iterations and discard
the first 1000 iterations for burn-in. From the simulations in Sections 6.3.2 and 6.4 we
know that this leads to very accurate estimates. The results are summarized in Table 7.6.
It shows the posterior mean estimates for the parameters ¢ and o in the log-volatility
equation, for the regression coefficients 3y, 1, a1, and ay, and for the cutpoints, using
the iterations 1001 to 4000 of the GM-MGMC sampler together with their corresponding
estimated standard deviations and 90% credible intervals.

Since the 90% credible intervals for Sy, 1, a;, and «y are far away from zero, we conclude
that the intercept, the lagged observation y; 1, log(TIMEDIFF, 4 1), and log(SIZE;) all
have a significant impact on the new observation y;. Also the credible intervals for the
autoregressive parameter ¢ and the standard deviation o are far away from zero. The
estimate 0.9061 for ¢ shows the high dependence of the log-volatility i} on the previous

*

log-volatility h; ,, but is still away from the nonstationary case ¢ = 1.

Figure 7.3 shows the estimated posterior marginal densities for the parameters in the
OSV model. The densities are unimodal and quite symmetric, so that the posterior
mean estimates also represent high density points. Figure 7.4 shows the estimated
autocorrelations in the chains produced by the GM-MGMC sampler after the burn-in
period of 1000 iterations. The autocorrelations decline quite fast for all parameters.
This justifies that no subsampling is required to estimate the standard errors of the
estimates.

The negative sign of the estimate —0.3073 for ; and the positive signs of the estimates

0.2599 for o and 0.1511 for ay lead to the following qualitative conclusions:



7.3. MODEL ESTIMATION 103

) C3 Cy

15
o 5 10 15
o a4 8

0.86 0.90 0.94 0.98 170 175 180 18 190 26 21 28 29

s C Bo

o 2 P 6
o 2 4
o 2 a4 6

3% 36 31 38 39 44 46 48 33 34 35 36 37

Bl 0lq 0y

o 20 40
o 5 10
O 10 30

-034 032 -030 028 020 025 030 035 010 012 014 016 018 020

(o] 10 20
> -
(o] 5 10
>’ -

0.84 0.88 0.92 0.9 015 020 05 030

Figure 7.3: Estimated posterior marginal densities for parameters of OSV model.



104 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

o] 2 o] % o] b
o \v\\ o o
o] o] o]
o o o
o] o] o]
7 7 7
0 5 100 150 200 0 5 100 150 200 0 5 100 150 200
lag lag lag
o Cs o s o Bo
o \M.’\ o o
o] o] o]
o ¢! o
o] o] o]
7 7 T
0 5 10 150 200 0 5 100 150 200 0 5 10 150 200
lag lag lag
o B o 0 o 0y
Ll Ll 3l
o i - ol N °
o o} o ~
o] o] o]
7 7 7
0 5 100 150 200 0 5 100 150 200 0 5 100 150 200
lag lag lag
o] ¢ o] 0
o k\’w/\ o
o] o]
o ¢!
o °
7 7
0 5 100 150 200 0 50 100 150 200
lag lag

Figure 7.4: Autocorrelations of chains produced by the GM-MGMC sampler for para-
meters of OSV model.



7.3. MODEL ESTIMATION 105

e Positive price changes are often followed by negative ones and vice versa (this

confirms what we have seen directly in Figure 7.1).

e The more time elapses between two subsequent transactions, the higher the (log-)
volatility is, or, equivalently, the more time elapses, the higher the probability for

a big price change is.

e The more stocks are traded, the higher the (log-) volatility is, or, equivalently, the
more stocks are traded, the higher the probability for a big price change is.

These results agree with many publications about theoretical results for the price change
process. Diamond and Verrecchia (1987) point out, that periods without transactions
can be considered as a hint for the existence of bad news. Because of the prohibition
of short-selling, i.e. of selling a stock without owning it, many investors cannot use bad
information by selling. Therefore, longer periods between consecutive transactions usu-
ally lead to a higher volatility of the price change process. Following Easley and O’Hara
(1987), well informed investors usually buy or sell large amounts of stocks in each trans-
action to take maximal advantage of their informations. Therefore, noninformed market
participants associate large transaction volumes with existence of new information and
trade themselves. Hence for large transaction volumes one can expect higher volatilities.
The same dependence between market informations, transaction volumes, and expected
volatility is derived by Tauchen and Pitts (1983).

Using the posterior mean estimates for oy and «y we can compare the impacts of TIME-
DIFF and SIZE on the log-volatilities. From Table 7.3 we know that the time difference
always lies between 0 and 116 seconds. For each of these 117 values we compute the
corresponding transformation z.; (cf. Section 7.1) and multiply the resulting value by
the posterior mean estimate 0.2599 for ;. The same is done for the transaction volume
with range 100 to 180000 stocks. Here the transformed values z., are multiplied by the

estimate 0.1511 for as.

The result can be seen in Figure 7.5. For the extreme values TIMEDIFF = 0 and
TIMEDIFF = 116, the estimated impacts are about —0.51 and 0.73, respectively. The
corresponding estimates for the covariate SIZE are —0.32 and 0.81. Since 0.73 4 0.51 =
1.24 and 0.81 4+ 0.32 = 1.13, we conclude that the covariate TIMEDIFF affects the log-
volatility slightly more than the covariate SIZE. Moreover, the impact of both covariates

is quite large if one takes the posterior mean estimate 0.2230 for ¢ into account.



106 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

0.8

0.4

estimated impact on log-volatility

0 20 40 60 80 100 120
time difference (seconds)

Figure 7.5: Estimated impacts of TIMEDIFF and SIZE on the log-volatilities h;. The

estimated joint impact of both covariates is given by adding these individual impacts.

7.3.3 Volatility estimates

We are now interested in detecting periods with higher volatility and periods with lower
volatility. From Section 6.1 we know that in the OSV model the log-volatility is not
determined uniquely until the additive constant y is fixed. For computational reasons we
fixed this parameter to = —0.6, but in this context it may be more intuitive to consider
log-volatilities with mean zero. Therefore we now define the normalized volatility at
time t by

vy :=exp{h; — u} = exp{h; + 0.6}

since the covariates in the log-volatility equation were also centered at zero. In each
iteration ¢ the GM-MGMC sampler produces estimates ﬁ;‘z of hj, t = 1,...,22689,
which, of course, can be used in the following way to get estimates ¢} for the normalized

volatilities v;:
| 000

1=1001



7.3. MODEL ESTIMATION 107

The implementation of the GM-MGMC sampler for the OSV model which is provided
in Appendix C also computes the estimates 0}, t = 1,...,22689. Figure 7.6 shows the
IBM stock prices and the estimated normalized volatilities for ¢ = 1,...,6000, which
corrsponds to the period, January 9, 09:50:00am to January 11, 11:00:36am.

We note that the large price jumps from Tuesday to Wednesday and Wednesday to
Thursday (time indices 2772 — 2773 and 5277 — 5278) are not surprising since we
discarded all transactions after 03:40pm and before 09:50am. However, for the compu-
tation of the first price difference and the covariate TIMEDIFF; on a new day we used

always the last transaction before 09:50am on this new day.

In Figure 7.7 we zoom into Figure 7.6 from time index 500 to 680. This period also
contains the highest volatility peak at observation 602. One can see that the estimated

volatilities move rapidly especially when the volatility is high.

To detect not only single peaks of the volatility but also short periods with a high
volatility one can compute moving averages of the estimated volatilities, defined
by

t+k

k) _ 1 n

for £ € Ny. For fixed ¢ this is the average of 2k 4+ 1 values from time index ¢t — k to time
index t + k. Of course, the higher the parameter k is chosen, the smoother the resulting
moving average will be. We computed the values @f’m for k = 2 and t = 503,...,678.
The result is the thick blue curve in Figure 7.7. Now we can easily detect small periods of
higher volatility by checking where the moving average is greater than a chosen limit. In
Figure 7.7 we chose the limit 2.1. The periods where the moving average is greater than
2.1 are indicated by the vertical dashed lines. Now considering the corresponding stock
prices we see how accurate the volatility estimates are: Exactly during these periods we

observe higher price fluctuations of the IBM stock.

Finally in Figure 7.8 we illustrate the impact of the covariates TIMEDIFF and SIZE
on the volatility. The blue curve shows the estimated normalized volatilities for the
OSV model with these two covariates, whereas the orange curve shows the estimated
normalized volatilities for the same OSV model without covariates in the log-volatility
equation. The estimated volatilities differ clearly: The curve for the model without
covariates is smoother, whereas the model with TIMEDIFF and SIZE detects a much
higher variability of the volatilities. We can take this as an additional hint for the

significance of the used covariates.



108 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

Tue, Jan9 11:00am 13:00pm 15:00pm Wed, Jan 10
5
8
53 T
05

time index 500 1000 1500 2000 2500 3000
Tue, Jan 9 11:00am 13:00pm 15:00pm Wed, Jan 10
2o
g
s <
S
= N
0
(0]
o]
time index 500 1000 1500 2000 2500 3000
11:00am 13:00pm 15:00pm Thu, Jan 11 11:00am
5
0
Q
R %
X
3
time index 3500 4000 4500 5000 9500 6000
11:00am 13:00pm 15:00pm Thu, Jan 11 11:00am
2o
g
° <
>
= N
0
(0]
o]
time index 3500 4000 4500 5000 5500 6000

Figure 7.6: IBM stock prices and estimated normalized volatilities on January 9 to 11,
2001.



7.3. MODEL ESTIMATION 109

Tue, Jan 9 10:50am 11:00am
Te}
0 m
(o))
O
Q
S
x O
S8
[%)]
Te}
<
o
time index 550 600 650
Tue, Jan 9 10:50am 11:00am
P
= O
K
S
L
O
(&)
o
time index 550 600 650

Figure 7.7: IBM stock prices (above) and estimated normalized volatilities v} (below,

thin blue curve) between 10:39:10am and 11:03:17am on January 9, 2001. The thick

2]

curve (below) shows the moving average v, of the normalized volatilities. It is marked

2]

green, when v;”"” > 2.1, that is, when a period of high volatility occurs. In these periods

also the stock price curve (above) is marked green.



110 CHAPTER 7. APPL. OF OSV MODEL TO HIGH-FREQUENCY FINANCE

Tue, Jan 9 10:50am 11:00am

estimated volatility
—
——

B |
A M Mi\\f\f\wnv/\“/\\J/\v/\/M ﬁ WMW |

\\/ V/\v/\ \/ "\/ |

time index 550 600 650

Figure 7.8: Estimated normalized volatilities vy’ between 10:39:10am and 11:03:17am on
January 9, 2001. Blue curve: OSV model with covariates TIMEDIFF and SIZE in the
log-volatility equation. Orange curve: OSV model without covariates in the log-volatility

equation.



Chapter 8

Ordinal-Response Stochastic
Volatility Model with Student-t

Errors

After fitting the OSV model to IBM data, we now try to answer the question whether
it is really adequate to use normally distributed errors in Equation (6.2). As often in
modeling financial time series it may be more accurate to allow for Student-t distributed
errors, since the Student-t distribution has heavier tails. Therefore we introduce in
Section 8.1 an extension of the OSV model, the OSVt model. In Section 8.2 we derive
the MCMC updates for fitting the OSVt model to a data set, and investigate in Section
8.3 how the GM step of the GM-MGMC sampler for the OSV model must be modified
in the OSVt case. After a simulation study in Section 8.4 we answer in Section 8.5 the
question whether the OSVt model should be used for such data or whether the OSV

model is sufficiently accurate.

We note that Chib et al. (2002) use the same technique which is applied in the following
to extend their SV model to a SVt model with t-distributed errors. Unfortunately,
they only mention that they use a ’tailored proposal density’ for the MH-update of the
unknown degrees of freedom, but do not specify this density precisely. This, however, is
the most difficult and important task for the extension of the SV to the SVt model as
well as for the extension of the OSV to the OSVt model, as can be seen from Section 8.2.

111



112 CHAPTER 8. OSVT MODEL

8.1 The OSVt model

First we recall the three defining equations for the OSV model:

w=k < y € lcr-1,¢), (8.1)
y, = x,8+exp(h;/2)e}, (8.2)
hi = p+zie+o(hy | —p— 2z, ) + oy, (8.3)

§ idd

where, in particular, ¥ = N(0,1) independent of 5 "~ N(0,1). Now we replace the
normal distribution of the errors €} in Equation (8.2) by a Student-t distribution with
v degrees of freedom. Here we can take advantage from the well-known decomposition
of a t-distributed random variable in a product of a normally and a Gamma-distributed
random variable, which is also used for the generation of t-distributed random numbers
(cf. Robert and Casella (2000)):

e; ~ N(0,1) independent of A ~T (%, %) — XNV a1, (0,1). (8.4)
Here t,(a,b?) denotes the general form of the non-central t-distribution with location
parameter a and scale parameter b. Its density is given by

v+1

T (e
ftu(a,bz)(x)—w(l—F;( ; >) : reR (8.5)

Using the decomposition in (8.4) we define the Ordinal-response Stochastic Vo-
latility Model with t-distributed errors (OSVt Model) by the following three

equations:

=k & y € [a-La), (8.6)
yi = @B+ exp(hl /2N e, (8.7)
hi = p+zioe+d(hiy — p— 2z 0) + oy, (8.8)

where ¢f "X N(0,1) independent of A "X I'(¢/2,r/2). In all other respects we assume

the same conditions as for the OSV model.

In addition to the parameters and variables to estimate in the OSV model, now the
variables A\j and the parameter v have to be estimated. From the non-central t-density
(8.5) it follows directly that a + bY ~ t,(a,b?) if Y ~ t,(0,1). Therefore, given 3, hj,

and v, the latent variables y; are non-central t-distributed. In particular,

fi1B, by v) = tu(yi |z B, exp(hy)). (8.9)



8.2. HYBRID MCMC UPDATES FOR OSV'T MODEL 113

However, if in addition A} is given, y; is again normally distributed with mean ;8 and

variance exp(h})A\; L.
For notational convenience we define

A= (AL LA
and A%, = (AL AL AL, AD).

8.2 Hybrid MCMC updates for OSVt model

Here we develop an Hybrid MCMC sampler for the OSVt model. Since the OSVt
model differs only slightly from the OSV model, the derivation of the updates is com-
pletely analogous to Section 6.2. Mostly, one has only to replace the term exp(h;) by
exp(hf)Ar !, Therefore we just provide the updates without derivations. Of course, in
addition we now need an update for the degrees of freedom v of the t-distribution, and
updates for the variables \;, ¢t =1,...,7. For v we assume a noninformative prior on the
set {1,...,127}. This choice will become clear later. Following the model definition, the
variables A} are assumed a priori independent of each other and I'(v/2, v/2)-distributed.
Moreover, we assume v and A\;, ¢ =1,...,T, a priori independent of all other parameters

and variables.

The regression parameter update for 8 consists here of sampling from N, (b, B) where

T , —1
LTy ~1
B = E ——————+B
( exp(hf)A;~h " )

t=1

T *
1Yy 1
d b = B g —= _ + Bi'by | .
o ( exp(h)\~0 " 0)

t=1

For the latent variable update of y; one has to draw from the univariate truncated

normal distribution

* * x—1
N[cyt_l,cyt) (vi | 1B, exp(h)N ™) -
The cutpoint parameter update is not affected by the variables A;.

Again one can take advantage from a state space approximation of Equations (8.7) and
(8.8). However, instead of using y; = log(y; — «}3)? as in the OSV model, here one
must compute

i = log(y; — =,B)* + log A, t=1,...,T.



114 CHAPTER 8. OSVT MODEL

Using this definition of y; the updates of the mixture indices s;, the complete Metropolis-
Hastings step for the joint update of «, ¢, and o, and the h*-update can be done exactly
as described in Sections 6.2.6 and 6.2.7.

Next we consider the updates which must be made in addition to the OSV case. Again

defining 0 := (o, ¢, 0), one can update v and A}, t =1,...,T, by first drawing v from

f(l/|y767y*7167h*70)

and then sampling \;, ¢ =1,..., T, from

f()‘;k | Y, C, y*a/ﬂa h*; )\7t, v, 0)

For the update of v we have

f(l/|y’c7y*7ﬁ’h*70) - f(l/|y*’ﬂ’h*)
x f(r,y",B,h7)

= [H f ;18 by, V)] (V).

Now using Equation (8.9) and the noninformative prior of v on the set {1,...,127}, we
derive that

T
f(l/ | Yy, cC, y*a :85 h’*7 0) X [H tu(y:|w;ﬁ? eXp(h:))] ]1{1,...,127}(1/)- (810)
t=1

We emphasize that this target density is discrete with support {1,...,127}. Since it is
no standard distribution, we draw v by a Metropolis-Hastings step. The difficulty in
developing an MH step is the choice of an appropriate proposal density. It should be from
a parametric distribution family where the mode and the variance can be easily adapted
to the current data situation to achieve a good approximation of the target density.
For this, however, we must determine the global maximum of the (unnormalized) target
density given on the right-hand side of (8.10). This can be very time-expensive since we
do not have any special information about this function. Here now we can take great

advantage of the restriction to the support {1,...,127}, as is explained in the following.

When we assume that the target density f(-|y*, 8, h*) only has one global and no other

local maximum, we can find

=g, max, fv]y', B h)



8.2. HYBRID MCMC UPDATES FOR OSV'T MODEL 115

by evaluating f(-|y*, B, h") at only 13 points. At the beginning, one evaluates f(v =
64 | y*, B, h*). In the next step, the values f(v = 32| y*, 8, h") and f(v =96 | y*, B, h")
are computed. Since we assume that there exists only one maximum, we can now restrict

the set where the maximum can be:

If flv=32|y*,B,h") > f(v="064|y*,B,h"), we know that m < 64.
If flv=96|y*,B,h") > f(v==064|y*,B,h"), we know that m > 64.
Else we know that 32 < m < 96.

Therefore by evaluating f(-|y*, 3, h*) at two additional points, we restrict the set from
127 to 63 elements. With another two points, one can restrict it to 31 elements, and so

on. Therefore, m is found after the evaluation of f(-|y*, 3, h*) at 13 values of v.

Moreover, since the t-distribution becomes more and more similar to the normal distri-

bution as v increases, the maximal value 127 for v seems to be sufficiently large.

There exist several possibilities to choose a proposal with support {1,...,127}. For ex-
ample, one can use the Binomial distribution family Bin(126, p), p € [0, 1] with support
{0,...,126} and shift it by 1. However, this distribution family only has one free para-
meter so that one cannot adapt both the mode and the variance. Another possibility is
to truncate discrete distributions with infinite support to the set {1,...,127}. Since the
Poisson and the Geometric distributions are also parameterized by only one parameter,

one may suggest the family of the Negative Binomial distributions NegBin(u, o) with

density
Pe+a)( p \°( 1 \*'
Iz+at) L v (8.12)
z! at+pu) |

This density has an infinite discrete support and allows for adapting the mean and the
variance by the parameters p and a. Moreover, the truncation of the Negative Binomial
density to {1,...,127} is no problem, since one can use rejection sampling for drawing
and since it is not necessary to know the normalizing constant for the MH step. However,
the evaluation of expression (8.12) requires the computation of the Gamma function at
r+a~! and of (z!). Especially when z is large (e.g. x = 100) this may cause numerical
problems without using special computation methods. Moreover, since (8.12) must be
evaluated for 13 different values of x per iteration, the determination of the maximum

will be very time-expensive.



116 CHAPTER 8. OSVT MODEL

For these reasons we use a proposal distribution ¢,; which can be considered as a dis-
cretized and truncated version of the Gamma(a, b) distribution and which does not have
the disadvantages of the Negative Binomial distribution. In particular, we define g, by

its unnormalized version ¢, with

z+0.5
qg,b(x) = / fIq‘L(a,b) (y) dy, Tr = ]-7 R 1277
z—0.5

—0.

where f{, ) (y) denotes the value of the unnormalized Gamma(a, b)-density at y:

ftan W) =y* e, x> 0.

Sampling from g, is straight-forward, since one only has to sample from the Gamma(a, b)
distribution, until the sample lies in the interval [0.5,127.5), and then to round the sam-

ple to the nearest integer.

For evaluating ¢;, at © we use the Newton-Cotes formula with 5 nodes:

1

Qap(z) = 90 [ 7 [l (@ —0.5) + 32 fp(x —0.25) +12- fii, ) (z)

+32 ° fIz‘L(a,b) (.T + 025) + 7 ° fIz‘L(a,b) (l‘ + 05)]
with remainder —%%fﬁ(a(’ﬁb)) (&) for some & € [x — 0.5,z + 0.5].

Now we choose the parameters a and b of the Gamma-distribution, from which the
proposal is generated. Since the Gamma(a, b)-distribution has mode (@ —1)/b and since
m is the value that maximizes the target density, ¢ and b must satisfy the equation

m = (a — 1)/b. The variance v? := a/(b?) of the Gamma-distribution is chosen as

0.05-m? if 1 <m < 10,
v? = ¢ 0.10-m? if 10 < m < 30,
0.20-m? if 30 < m < 127,

since for this choice we usually observe acceptance probabilities of about 30 to 60 percent
on average. Perhaps a more sophisticated method to choose v? may lead to an even better

adaption to the target density.

The formulas (a — 1) /b = m and a/(b*) = v? (a,b > 0) are equivalent to the expressions

by - m + vVm?2 + 4v?
- 202 ’

a = bm+1,

which give the parameters of the Gamma(a, b)-distribution from which the proposal

distribution is generated.



8.3. GM-MGMC SAMPLER 117

As mentioned above, starting from the actual value v®, the use of this truncated dis-
cretized Gamma distribution as proposal distribution allows for a fast sampling of a

proposal value v° and for an accurate and fast computation of the acceptance probabi-

lity
o * h* (111 l/.
a(v®,v°|y*, B, h") = min f(y.|y*,,8, *) qu’b( o),l )
f(l/ |y 7167h )qa,b(l/ )
Next we investigate the update of A}, ¢ =1,...,T. Here we can see that

f()‘zc|yacay*7:67h*7A—t7V;9) = f()\f|yt*,6,h:,z/)
o< (ALY B hiv)
= fW18,his A, v)m(AL)-

Given B, hi, A, and v, the variable y; is normally distributed with mean ;3 and vari-

ance exp(h?)\* . Moreover, since 7(\!) is the Gamma(v/2, v/2)-density, we conclude

that
* * * 1 1 —33,3 % V.,
f(/\t|yacay 7/37h' 7A—t7V79) 0.8 |:)\*1/2 exp{ M}} /\t 1exp{_§/\t}
_ xipr_1 . 1( Z \*
= \272 exp{ {2 eXp h* + 2} t}

M\‘:

2 exp(h*)/\* !

Hence, the variables A}, t = 1,..., T, have to be drawn from Gamma(c, d;)-distributions,
where
v+l
¢ = —5
g - vr i —@p) ep(hi)
t —_ .
2

8.3 GM-MGMC sampler

The derivation of the GM step for the OSVt model is again analoguous to the OSV case.

One uses the same vector

(% *
— (yla"'7yT7627"'7CK717ﬁ07"'7Bp)7
but, of course, has now the following vector of remaining parameters:

R:=(h", X\ a,¢,0).



118 CHAPTER 8. OSVT MODEL

Again one considers the conditional distribution f(w|y, R). The scale group which
was used as transformation group in the OSV case leads here also to a (truncated)

Gamma(a, b)-distribution for v2. However, here the parameter b depends on the variables
A

T+K
o = ﬂ, (8.13)

T
1 —:ctB V2N P

= Z B . .14

b | S e (8.14)

=1

The GM-MGMC sampler for the OSVt model therefore consists of 3 MCMC parts and
the GM step which must be inserted after the first MCMC part. Whereas for part 2
one switches to the state space approximation, parts 1 and 3 use the original model
equations. The steps of one iteration of the GM-MGMC sampler are summarized in the

following Algorithm 8.1.

Algorithm 8.1 One iteration of the GM-MGMC sampler for the OSVt model

1. MCMC-Step (Part 1)

e Draw 3 from (p + 1)-variate normal.
e Draw y/, t =1,...,T, from truncated univariate normals.

e Draw ¢, k= 2,..., K — 1, from Unif(ly, ;) where

I, = max{ck,l, max {yf|yt =k}},

re = min{cgi1, :mln {y/lye =k +1}}.

.....

Get B

curs Your» Cour a5 current values.

2. GM-Step
Draw 72 from the (truncated) T'(a,b) distribution with a and b defined in (8.13)
and (8.14), respectively, and update B},,., Yr.» Ceur Dy multiplication with the

group element v = /7?2,

/Bne'w — ,YIBC’U,TW
£ *
ynew A ’yycuw

c’ne'w — VCC’U,T' .



8.4. SIMULATION STUDY 119

3. MCMC-Step (Part 2)

e Compute g = log(y; — ,3)? + log \}.
e Draw s, t =1,..., T, proportional to Pr(s,)N(g;|hj 4+ my,,v).

e Draw (a, ¢, 0) via Metropolis-Hastings step; use ML-estimates of (a, ¢, o) to

find an adequate multivariate normal proposal.

e Draw h” in one block using the simulation smoother of De Jong and Shephard
(1995).

4. MCMC-Step (Part 3)

e Draw v by a Metropolis-Hastings step; use an ML-estimate of v to find an

adequate discretized and truncated Gamma proposal.

e Draw Ay, ¢ =1,...,T from Gamma distributions.

We note that one can use also some modified versions of this GM-MGMC sampler,
since, following Section 2.4, not all parameters need to be updated in each iteration.
For example, the parameter v is used only for modeling the tail-behavior of the error
distribution for the latent variables y;. Therefore one can omit the update for v until
the other chains have moved away from the starting values towards the area around the
true values. From the simulations in Chapter 6 we know that this takes about 50 to
100 iterations. For this one can use for example the starting value v = 10 in the first
50 iterations and update v only from iteration 51 on. Since v is updated in Part 3 and
remains unchanged under the GM-step one can use the same GM-step as in the original
sampler. The implementation of the GM-MGMC sampler in Appendix C allows also for

this modification which we will use in Sections 8.4 and 8.5.

8.4 Simulation study

Here we investigate the accuracy of the posterior mean estimates for the parameter v in
the OSVt model. We do this by two simulation settings where the simulation parameters
for ¢, o, Po, P1, a1, as, and ¢y, ..., cg are identical to that chosen in Section 6.4.2. Also
the used covariates from IBM data are the same as well as the prior distributions. In
addition, we take an uniform prior on the set {1,...,127} for v. The starting values are

also the same as in 6.4.2, for ¥ we use in both settings the starting value 10.



120 CHAPTER 8. OSVT MODEL

true mean | std. dev. true mean | std. dev.
0] 0.90 | 0.8919 0.0171 || ¢ | 0.90 0.9129 0.0178
o 0.20 | 0.2152 0.0304 || ¢3 | 1.80 1.8169 0.0360
Bo | 3.50 | 3.5181 0.0391 || ¢4 | 2.75 2.7788 0.0343
B | -0.30 | -0.3010 0.0069 || ¢5 | 3.65 3.6740 0.0468
a; | 0.25 | 0.2540 0.0138 || ¢¢ | 4.50 4.5303 0.0552
as | 0.15 | 0.1549 0.0100 || v 15 | 14.8781 2.4203

Table 8.1: Means and standard deviations of the posterior mean estimates across the 20

samples in Setting 1.

true mean | std. dev. true mean | std. dev.
0] 0.90 | 0.8928 0.0164 || ¢ | 0.90 0.9167 0.0192
o 0.20 | 0.2131 0.0297 || ¢3 | 1.80 1.8276 0.0384
Bo | 3.50 | 3.5214 0.0524 || ¢4 | 2.75 2.7741 0.0395
B | -0.30 | -0.3022 0.0075 || ¢5 | 3.65 3.6735 0.0525
a; | 0.25 | 0.2517 0.0136 || c¢ | 4.50 4.5405 0.0670
as | 0.15 | 0.1545 0.0098 || » | 100 | 98.2844 8.3142

Table 8.2: Means and standard deviations of the posterior mean estimates across the 20

samples in Setting 2.

In the first simulation setting we choose v = 15, in the second v = 100. We simulate
20 data sets for both parameter settings, each of length 7" = 22000, which is close to
length of the IBM data set of Section 8.5. We compute the posterior mean estimates
by running the GM-MGMC sampler for 4000 iterations each, discarding the first 1000

iterations for burn-in.

Running the GM-MGMC sampler for such data sets takes about 6.8 seconds per iteration
on an UltraSPARC III Cu 900 Mhz processor. Therefore, running 4000 iterations for 20
data sets takes about 151 hours.

Tables 8.1 and 8.2 give the means and standard deviations of the posterior mean esti-
mates across the 20 samples for the Settings 1 and 2, respectively. We note that in spite
of the fact, that v is drawn from a discrete distribution, the posterior means for v will of
course not be integers in general. The same is true for the means of the posterior means

for v.



8.4. SIMULATION STUDY 121

Chain of v for a data set in Setting 1

8 AUMUMJM tmmnv

S W ” WWW %WWMMM
o | VAN N L o

S “H ‘W N ” | \, }\ I 'Vr ]Hm” W IR

0 200 400 600 800 1000

iteration

Figure 8.1: First 1000 iterations of chain of v for both a data set of Setting 1 (above)
and Setting 2 (below).

In Setting 1, where we chose the value 15 for v, the mean of the posterior mean esti-
mates is about 14.9 with standard deviation 2.4. Hence v was always estimated quite
well, which is also true for the other parameters. In Setting 2, where the true value
for v was 100, the mean of the posterior mean estimates is 98.3. Therefore the GM-
MGMC sampler estimates v well on average. However, the standard deviation of about
8.3 is quite large. This may be a consequence of the fact that the t-distribution be-
comes more and more similar to the normal distribution when the degrees of freedom
increase. Therefore one needs much more data to be able to distinguish clearly between
t-distributions with high degrees of freedom. The other parameters are all estimated

quite well again.

Figure 8.1 shows the chain for v for both a data set of Setting 1 and 2. In the first 50

iterations v was fixed at the starting value 10. For Setting 1 the chain moves around



122 CHAPTER 8. OSVT MODEL

estimate | std.err. 90% cred.int. estimate | std.err. 90% cred.int.

¢ | 0.9133 | 0.0087 | (0.8984,0.9275) | co| 0.9489 0.0095 | (0.9333,0.9641)
o | 0.2066 | 0.0136 | (0.1851,0.2294) |l c¢3| 1.8548 0.0163 | (1.8280,1.8812)
Bo | 3.5388 | 0.0385 | (3.4749,3.6016) || ¢4 | 2.7794 0.0243 | (2.7381,2.8183)
( )
( )

f1 | -0.3082 | 0.0064 | (-0.3181,-0.2976) || ¢5 | 3.7217 0.0329 3.6679,3.7759
ap | 0.2584 | 0.0172 | (0.2301,0.2861) | ¢ | 4.6116 0.0476 4.5351,4.6868
as | 0.1482 | 0.0078 | (0.1362,0.1615) | v | 106.81 | 15.4530 (77,126)

Table 8.3: Posterior mean estimates and corresponding estimated standard deviations
and 90% posterior credible intervals for parameters in OSVt model.

more slowly than for Setting 2, however, fast enough to move several times around the
whole support of the posterior distribution during 3000 iterations.

We conclude that the GM-MGMC sampler works very well also for the OSVt model.
Since both for v = 15 and v = 100 the posterior mean estimates are satisfyingly accurate,
we will use the GM-MGMC sampler in the following section to fit the OSVt model to
the IBM data from Chapter 6.

8.5 Application to IBM data

Here we answer the question whether our IBM high-frequency data set in fact requires
modeling with the heavier tailed t-distributed errors. For this we run the GM-MGMC
sampler for the OSVt model for 4000 iterations and discard again the first 1000 for burn-
in. From the simulations in Section 8.4 we know that this leads quite accurate estimates.
The results are summarized in Table 8.3. It shows the posterior mean estimates together
with their corresponding estimated standard deviations and 90% credible intervals for
the parameters ¢ and o in the log-volatility equation, for the regression coefficients [,

b1, a1, and as, for the cutpoints ¢, ..., ¢, and for the parameter v.

Comparing these values to the results for the OSV model in Table 7.6, we see that the
posterior mean estimates for the OSV model are nearly identical to the posterior mean
estimates in the OSVt model. The posterior mean estimate for the additional parameter
v is about 107. Since a t-distribution with 107 degrees of freedom is already quite close
to a normal distribution, we conclude that the usage of t-distributed errors is not really
necessary for our IBM data. Therefore we prefer the OSV model.



8.5. APPLICATION TO IBM DATA 123

] -lllllll“‘l

300

frequency

100

0 20 40 60 80 100 120 140
V
o)
o
>
-
Qo
5
go A A NM_A WA A VNP AVNI
7 © RV Y VARG A R e
5
0
0
5
"5
o
|
0 50 100 150 200
lag

Figure 8.2: Histogramm for estimates of v for iterations 1001 to 4000 (above). Autocor-

relation of chain for v after iteration 1000 (below).



124 CHAPTER 8. OSVT MODEL

Figure 8.2 shows an histogram of the estimates for the parameter v in iterations 1001 to
4000. Tt suggests that the marginal posterior for v is unimodal, but of course not sym-
metric, since the chosen prior does not allow for values greater than 127. Furthermore,
Figure 8.2 shows the estimated autocorrelations in the chain for v after iteration 1000.
They decline very fast, and therefore justify that no subsampling is required to estimate

the standard error of v.



Chapter 9

Summary and Conclusion

In this thesis we introduced two regression models for ordinal valued time series: The au-
toregressive ordered probit (AOP) and the ordinal-response stochastic volati-
lity (OSV) model. The latter was also extended to the OSVt model with t-distributed

errors.

The AOP model is an autoregressive extension of the common ordered probit
model. To fit this model to specific data sets, we developed a GM-MGMC algorithm.
The grouped move steps which were used in each iteration are based on a special trans-
formation group. We called this group partial scale group, since it rescales only a
subspace of the support of the posterior distribution. As was shown in a simulation
study, this transformation group led to a fundamental improvement of the convergence

and mixing properties, compared to a standard Gibbs sampler.

To decide whether the AOP model can fit a given data set better than other models we
developed an estimation procedure for the marginal likelihood of the AOP model
which allows for the computation of Bayes factors. In this context we also provided
an auxiliary particle filter for the AOP model.

We applied the AOP model to price changes of the IBM stock on December 4, 2000,
collected at the New York Stock Exchange. However, since the variance of the latent
process in the AOP model is assumed to be constant, we used not the signed but the
absolute values of the price changes and hence followed a decomposition strategy similar
to Rydberg and Shephard (2003). It turned out that the autoregressive component
of the AOP model is significant. Moreover, we quantified the impact of significant

covariates: The time between trades and the transaction volume. In both cases

125



126 CHAPTER 9. SUMMARY AND CONCLUSION

higher values increase the probability for a large price change. By estimating
the corresponding Bayes factor we showed that the AOP model fits the data set
decisively better than the common OP model.

The OSV model is a discretized version of a stochastic volatility model and there-
fore can be applied to ordinal valued time series. It allows for a non-constant volatility
of the continuous latent process from which the discrete response is assumed to be gen-
erated. Because of the autoregressive structure in the log-volatility also the volatility
clustering effect can be modeled adequately. We developed a GM-MGMC sampler
for fitting the OSV model to specific data sets. The exceptional feature of the used
grouped move step is that one considers a certain conditional distribution and there-
fore has to perform the grouped move step exactly between two specific hybrid MCMC
updates in each iteration. A simulation study illustrated the fundamental improvement
of the convergence and mixing properties, compared to the hybrid MCMC sampler. As
a byproduct we detected a mistake in the paper by Chib et al. (2002). For a certain
update in their MCMC algorithm they did not take the corresponding informative prior

into account.

We applied the OSV model to the price changes of the IBM stock in a period of nine days
in January 2001. The mean of the latent continuous process from which the discrete
response is generated significantly increases when the previous response decreases and
vice versa. The log-volatilities have a strong autoregressive structure. The corre-
sponding parameter estimate is about 0.9 and hence large but away from one. Moreover,
the time between trades and the transaction volume are significant covariates for
the evolution of the log-volatilities. The signs of the corresponding parameter estimates
led to the conclusion, that the volatility increases when more time between two
subsequent transactions elapses. The same is true for the transaction volume: The
more stocks are traded the higher is the probability for a large price change.
These results agree with theoretical considerations of the trading process which have
been undertaken by Diamond and Verrecchia (1987), Easley and O’Hara (1987), and
Tauchen and Pitts (1983).

Finally we investigated whether it is more accurate to use t-distributed instead of nor-
mally distributed errors. For this we expanded the OSV model to the OSVt model
and adapted the GM-MGMC sampler of the OSV model to the OSVt case. The OSVt
model was fitted to the same IBM data set as the OSV model. The value of the posterior
mean estimate for the degrees of freedom of the t-distribution was about 107. Since this

value is quite large, we concluded that the use of t-distributed errors is not really



127

necessary for this data set and that the use of normally distributed errors seems to be

adequate.

An open issue is the development of an appropriate model selection criterion for the OSV
and OSVt model. Such a criterion would allow for example to quantify the improvement
which is achieved by using additional covariates or to compare the OSV(t) model to
totally different models. One possibility is to develop an estimation procedure for the

marginal likelihood to be able to compute Bayes factors.

Another possibility is to use the Deviance Information Criterion (DIC) for model com-
parison. However, as was pointed out by Delorio and Robert in the discussion of the
paper Spiegelhalter et al. (2002), the use of the DIC seems problematic for models,
where latent variables are involved. They show that several versions of the DIC can be
considered which differ in the treatment of the latent variables. Some versions do not use
the latent variables, whereas some incorporate them as additional parameters. Delorio
and Robert show that the different strategies can lead to rather different results in model
selection. Therefore more investigation is required to answer the question whether and
how the DIC criterion can be used properly for the AOP and the OSV(t) model.

A possible extension of the models discussed here is to consider corresponding models in
which the parameters are allowed to switch amongst a given number of states according
to a hidden Markov process. The basic stochastic volatility model under this assumption
has been investigated by So et al. (1998). Second, one can develop continuous time
analogues of the AOP and the OSV model. For this one may use the approaches by
Elerian et al. (2001) and Eraker (2001). The advantage of such continuous time models is
the handling of the non-equidistant transaction times. Instead of using a corresponding
covariate one assumes that the time-continuous process is observed at non-equidistant
time points. Third, one can extend the models to the multivariate case and apply them
to ordinal-valued time series with multivariate response, for example to price changes of

several stocks.

Finally we note that the models which have been introduced here can be used also in
other situations. For example, another important area where ordinal valued time series
occur is medicine. Patients assess the severity of their pain on an ordinal scale, say, on
the set {0,1,...,5}. Naturally these data may have an autoregressive structure, and
also some covariates such as temperature or humidity may influence the pain severity.
If one expects a constant volatility of the process, especially the application of the AOP

model could be appropriate.






Appendix A

Nelder-Mead Minimization

Algorithm

Here we describe the Nelder-Mead minimization algorithm which is used in Section 6.2
to find an appropriate proposal density for the Metropolis-Hastings step used there.
The Nelder-Mead algorithm, first published in Nelder and Mead (1965), is used for
unconstrained minimization of a scalar-valued nonlinear function of n real variables.
Since it requires only function values and not any derivative information (explicit or
implicit), it falls in the class of direct search methods. Especially in lower dimensions
the Nelder-Mead algorithm works very well and converges fast to the minimum. For a

detailed discussion of the convergence properties we refer to Lagarias et al. (1998).

A large subclass of the direct search methods, including the Nelder-Mead method, main-
tains at each step a nondegenerate simplex, a geometric figure in n dimensions of nonzero
volume that is the convex hull of n+ 1 vertices. Each iteration of a simplex-based direct
search method begins with a simplex, specified by its n 4+ 1 vertices and the associated
function values. One or more test points are computed, along with their function values,
and the iteration terminates with a new different simplex such that the function values

at its vertices satisfy some form of descent condition compared to the previous simplex.

Now we describe the Nelder-Mead algorithm in detail. Aim is the minimization of the
real-valued function f(x) for € R". First four scalar parameters must be specified
to define a complete Nelder-Mead method. These are the coefficients of reflection
(p), expansion (), contraction (), and shrinkage (¢). According to the original
Nelder-Mead paper, these parameters should satisfy the conditions p > 0, x > 1, x > p,

129



130 APPENDIX A. NELDER-MEAD MINIMIZATION ALGORITHM

0<vy<1,and 0 < 0 < 1. Often used choices of these parameters are

1

1
p=1  x=2, ~v=j3, and o= 3.

At the beginning of iteration k, £ > 0, a nondegenerate simplex Ay is given, along with
its n 4+ 1 vertices which are points in R". First these vertices are ordered and labeled as
:cgk), cee :cﬁfjl, such that
k k k
<< <)

where fi(k) denotes f (:cgk)). As we are searching for a minimum we refer to :cgk) as the
best point or vertex and to xﬁfjl as the worst. Accordingly f,sl_?l is referred to as the
worst function value, and so on. The result of each iteration is either a single new vertex

which replaces the worst vertex $7(1121 in the set of vertices for the next iteration, or, if a

shrink step is performed, a set of n new points which, together with the best point :cgk),

form the new simplex Ag,y # Ay for the next iteration. Algorithm A.1 summarizes
the steps of one iteration of the Nelder-Mead method. For notational convenience we

suppress the iteration index %)

Algorithm A.1 One iteration of the Nelder-Mead method

1. Order. Order the n + 1 vertices to satisfy f(x1) < f(@2) < ... f(®n41).
2. Reflect. Compute the reflection point
T = T+ p(T — Tpt1) = (1+9)T — pppy

where & :=n~' "  x; is the centroid of the n best points.
Evaluate ff):= f(:c[r]).
If fi < fp) < fu, accept the reflected point x[,; and terminate the iteration.

3. Expand. If f,; < fi, calculate the expansion point
T = T+ X(@Tp ) = T+ px(& — Toy1) = (L4 p)T — pXTota

and evaluate fi := f(x}q).
If fig < fir), accept @) and terminate the iteration.

If fig > fir], accept x,) and terminate the iteration.

4. Contract. If f,) > f,, perform a contraction between Z and the better of x,

and .



131

a. Outside. If f, < f,] < fnq1, perform an outside contraction: Calculate
T =T +y(@p —2) = Z+Yp(& — o) = (14 p7)2 — pyTosa

and evaluate fq := f(x[q).
If fiq < fir), accept @) and terminate the iteration.

If fiq > f, perform a shrink step (step 5).

b. Inside. If f;; > fn41, perform an inside contraction: Calculate

T = & — V(@ — Tpy1) = (1 —7)& + vt

and evaluate fi.. := f(®[cq).
If fieg < fns1, accept @) and terminate the iteration.

If fieqg > fus1, perform a shrink step (step 5).

5. Shrink. Evaluate f at the n points
v; = 331—|—0'(£Bi—331), i:2,...,n—i—1,

and consider in the next iteration the simplex which is represented by the (un-

ordered) vertices @1, v, ..., Upy1.

Figures A.1 and A.2 visualize the effects of reflection, expansion, contraction, and shrink-
age for a simplex in two dimensions, i.e. a triangle, using the standard coefficients p = 1,
x = 2,7 =0.5,and 0 = 0.5. We observe that, except in a shrink, the one new vertex al-
ways lies on the (extended) line joining & and @, ;. During an expansion or contraction

with the standard coefficients the shape of the simplex performs a noticeable change.

Nelder and Mead (1965) did not mention how to order the vertices in the case of equal
function values. Lagarias et al. (1998) provide the following tie-breaking rules, which
assign to the new vertex the highest possible index consistent with the relation

F@) < fad ) << ).

Nonshrink ordering rule. When a nonshrink step occurs, the worst vertex 337(1]21 is
discarded. The accepted point created during the kth iteration, denoted by v®), becomes
a new vertex and takes position j 4+ 1 in the vertices of Ay, where

j = max {I| fo®) < f(=) }.

0<I<n

All other vertices retain their relative ordering from iteration k.



132 APPENDIX A. NELDER-MEAD MINIMIZATION ALGORITHM

x|¢
x[®

X1 X[

Xle]

Figure A.1: Nelder-Mead simplices after a reflection (left) and an expansion step (right).
The original simplex is indicated by the dashed lines.

w o v

Figure A.2: Nelder-Mead simplices after an outside contraction (left), an inside contrac-

tion, and a shrink (right). The original simplex is indicated by the dashed lines.



133

Shrink ordering rule. In a shrink step the only vertex carried over from iteration k
to iteration k + 1 is wgk). For the case that a:gk) and one or more of the new points are

ties as the best point, only one tie-breaking rule is specified. If

min { ("), )} = f(a?),

then :vgkﬂ) = mgk).

Finally we note that, to have a stopping criterion, one can compute the difference be-
tween the worst and the best vertex, f,gl_?l —fl(k), and stop the algorithm if this expression

is sufficiently small.

For more details on the Nelder-Mead simplex algorithm and variations we refer to Wal-
ters et al. (1991).






Appendix B

Implementation of GM-MGMC
Sampler for AOP Model

Here we provide the C++ implementation of the GM-MGMC sampler for the AOP
model. Before compiling the program, one must adapt some file names and constants
to the data. This must be done in the section which is marked by '’Change only this
section’. More informations can be seen directly in the program code which contains
many detailed comments. At the beginning the two header-files 'randomGM.h’ and
‘matrixGM.h’ are included. These can be found in Appendix D and E, respectively, and

must be copied into the same directory as the following program.

=
// GM-MGMC SAMPLER FOR AOP MODEL --- by GERNOT MUELLER, 2004

e
// Change program only in the marked section below !

//

// Steps needed before executing the program:

// - adapt the program code to your data and files (only in marked section!)
// - save the program (aop.cpp)

// - compile the program (e.g. using: CC -04 aop.cpp)

// - you will get an executable ’a.out’ file

// - type a.out to execute

//

// Maximal number of covariates: 8

// Maximal number of cutpoints : 10

// Maximal length of data : 6000

J e R R S

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <iostream.h>

#define SPEC

135



136 APPENDIX B. GM-MGMC SAMPLER FOR AOP MODEL

#include "randomGM.h"
#include "matrixGM.h"

[ e
[ /=== mmmmm e CHANGE ONLY THIS SECTION —-—---—=—======m==mmmmmmm
F e R S
#define TTTTTT 2000 // length of data

unsigned int ITER=15000; // do not change ITER (number of iterations in total) and
unsigned int BURN=5000; // BURN (number of Burnin iterations) without changing the
// strategy for result files!

unsigned int NNCP=3; // number of cutpoints (e.g. 4 data categories => NNCP=3 )
unsigned int NCOV=4; // number of (covariates including intercept) + 1
// (e.g. two covariates => set NCOV = 4)
unsigned int CINT=0; // must equal 1 if the design file contains column with 1’s
// for intercept
// must equal O else
unsigned int USEGM=1; // if grouped move steps should be used, set to 1, else to 0

double tau =0.10000000; // has meaning of tau”{-2} (hyperparam. for beta-prior)
double sigma=1.00000000; // has meaning of sigma”{-2} (hyperparam. for y_0"\ast-pr.)
double rho =10.0000000; // has meaning of rho~{-2} (hyperparam. for phi-prior)

// give paths for data source files:

// procsource: response file, desgsource: design file
char procsource[]="ibm04decproc.txt";
char desgsource[]="ibm04decdesgTDSIZE.txt";

// give paths for parameter result files:

// resultGM: result file, when GM steps are used

// resultNOGM: result file, when no GM steps are used
char resultGM[]="TDSIZE_LRARgm.txt";
char resultNOGM[]="TDSIZE_LRARnogm.txt";

// give paths for latent variable result files:
// resultY5: result file for iterations 5001- 7000
// resultY7: result file for iterations 7001- 9000
// resultY9: result file for iterations 9001-11000
// resultY1ll: result file for iterations 11001-13000
// resultY13: result file for iterations 13001-15000

char resultY5[]="TDSIZE_LRARgmY5.txt";

char resultY7[]="TDSIZE_LRARgmY7.txt";

char resultY9[]="TDSIZE_LRARgmY9.txt";

char resultY11[]="TDSIZE_LRARgmY11.txt";

char resultY13[]="TDSIZE_LRARgmY13.txt";

// further global variables
Matrix X(TTTTTT,NCOV);
Matrix XtXinv (NCOV,NCOV);
Matrix Tau(NCOV,NCOV);
Matrix Trunc(NCOV,3);
Matrix Start(NCOV,1);
Matrix Mu(NCOV,1);

Matrix F(TTTTTT,1);



Matrix beta(NCOV,1);

Matrix ESTX(TTTTTT,NCOV) ;
Matrix ESTXtXinv(NCOV,NCOV) ;
Matrix ESTMu(NCOV,1);
Matrix ESTF(TTTTTT,1);

unsigned int TTTT=TTTTTT;
unsigned int Y[6004];
double YA_hat[6004];
double c_hat[12];

double beta_hat[12];

//
//
//
//
//
//
//
//
//

void gibbs(unsigned int T, unsigned int NREG, unsigned int NCP,
unsigned long int iter, unsigned int burnin, unsigned int gm_start,
unsigned int gm_end, unsigned int hist_file=0)

137

Gibbs sampler for AOP model

T = length of data

NREG = number of (covariates including intercept) + 1

NCP = number of cutpoints (e.g. 4 data categories => NNCP=3 )

iter = number of iterations to do

burnin = number of burn-in iterations

gm_start = first iteration with grouped move step

gm_end = last iteration with grouped move step (gm_end<gm_start: no gm steps!)
hist_file = if history files should be produced =1, else =0

// declaration of variables

unsigned long int 1i;

int k,1,t;

double c_sum[12], c_sum2[12];

double beta_sum[12], beta_sum2[12];

for (i=0; i<=10; i++)
{
c_sum[i]=0.00000; c_sum2[i]=0.00000;
beta_sum[i]=0.00000; beta_sum2[i]=0.00000;
}

double g_sq=0.00000, g=0.00000;

FILE *stream;

FILE *streamY5;
FILE *streamY7;
FILE *streamY9;
FILE *streamY11;
FILE *streamY13;

double 40=0.0,d1=0.0,d2=0.0,d3=0.0,d4=0.0,d5=0.0,d6=0.0,d7=0.0,d8=0.0,d9=0.0;
double d10=0.0,d11=0.0,d12=0.0,d13=0.0,d14=0.0,d15=0.0,d16=0.0,d20=0.0;

double d21=0.0,d22=0.0,d23=0.0,d24=0.0;
double d100=0.0,d101=0.0,d102=0.0,d103=0.0;
double impact0=0.0000;

// when result files must be produced, write column names into the files

if (hist_file==1)



138

//

APPENDIX B. GM-MGMC SAMPLER FOR AOP MODEL

if (gm_start<=iter && gm_end>=iter) stream=fopen(resultGM,"w");
if (gm_start>iter) stream=fopen (resultNOGM, "w") ;

for (k=2; k<=NCP; k++) fprintf(stream, "c%d \t", k);
for (k=0; k<=NREG-2; k++) fprintf (stream, "betal’d \t", k);
fprintf(stream, "betald \n", NREG-1);

streamY5=fopen(resultY5,"w");

for (k=0; k<=T-1; k++) fprintf(stream¥Y5, "Yastl)d \t", k);
fprintf (streamY5, "Yast)d \n", T);
streamY7=fopen(resultY7,"w");

for (k=0; k<=T-1; k++) fprintf(stream¥7, "Yast)d \t", k);
fprintf (streamY7, "Yast’d \n", T);
streamY9=fopen(resultY9,"w");

for (k=0; k<=T-1; k++) fprintf(streamY9, "Yastl)d \t", k);
fprintf (streamY9, "Yast)d \n", T);
streamYll=fopen(resultY11,"w");

for (k=0; k<=T-1; k++) fprintf(streamY11l, "Yast’%d \t", k);
fprintf (streamY11, "Yast’d \n", T);
streamY13=fopen(resultY13,"w");

for (k=0; k<=T-1; k++) fprintf(streamY13, "Yast’d \t", k);
fprintf (streamY13, "Yast)d \n", T);

starting values for c

for (i=1; i<=NCP; i++) c_hat[i]=2%(i-1.000000); // 0,2,4,6,8,10,...

//

// if you change anything here, then you must change
// also the starting values for the y_t"\ast’s !

starting values for beta

for (i=0; i<=NREG-1; i++) beta_hat[i]=0.000000;

//

if
{

//

fo

//
fo

{

write the starting values for c and beta in the file
(hist_file==1)

for (k=2; k<=NCP; k++) fprintf (stream, "%f \t", c_hat[k]);
for (k=0; k<=NREG-2; k++) fprintf(stream, "J)f \t", beta_hat[k]);
fprintf (stream, "%f \n", beta_hat[NREG-1]);

starting values for the y_t"\ast’s

r (i=1; i<=T; i++)
for (k=1; k<=NCP+1; k++)
if (Y[il==k) YA_hat[i]l=uniform(2*k-3.9500,2%k-2.0500) ;

generate matrix Tau
r (i=1; i<=NREG; i++)

for (k=1; k<=NREG; k++)

{
if (i==k) Tau(i,i)=tau;
else Tau(i,k)=0.00000;



139

Tau (NREG,NREG) =rho;

// set random generator on a random position
randomize() ;

// iteration loop

for (i=1; i<=iter; i++)

{
if (1%100==1 && gm_start<=iter && gm_end>=iter) printf("\n GM \n");
if (i%100==1 && gm_start>iter) printf("\n NO \n");
if (i%10==0) printf("%d \n",i);
ittt

// y_0"\ast - update

impactO=beta_hat [0];
for (k=1; k<=NREG-2; k++) impactO+=beta_hat [k]*X(1,k+1);
dO = beta_hat [NREG-11*(YA_hat[1]-impact0)/
(1+beta_hat [NREG-1]*beta_hat [NREG-1]+sigma) ;
YA_hat [0]=normal (d0,sqrt (1.00000/ (1+beta_hat [NREG-1]*beta_hat [NREG-1]+sigma)));

Rt
// y_t~\ast - update, t=1,...,T-1

for (t=1; t<=T-1; t++)

{

impactO=beta_hat [0];
for (k=1; k<=NREG-2; k++) impactO+=beta_hat[k]*X(t+1,k+1);

dl = YA_hat[t+1]-impactO;

impactO=beta_hat [0];
for (k=1; k<=NREG-2; k++) impactO+=beta_hat [k]*X(t,k+1);

d2 = -beta_hat [NREG-1]*YA_hat[t-1]-impactO;

d3 1.00000/ (1+beta_hat [NREG-1]*beta_hat [NREG-1]) ;

d4 = (beta_hat[NREG-1]*d1-d2)*d3;

if (Y[t]==1)
YA_hat[t]=rs_trunc_normal (0.000000,d4,sqrt(d3));

if (Y[t]>1 && Y[t]<NCP+1)
YA_hat[t]=ds_trunc_normal(c_hat[Y[t]-1],c_hat[Y[t]l],

d4,sqrt(d3));

if (Y[t]==NCP+1)
YA_hat[t]=1s_trunc_normal (c_hat [NCP],d4,sqrt(d3));

// y_T"\ast - update

impactO=beta_hat[0];
for (k=1; k<=NREG-2; k++) impactO+=beta_hat [k]*X(T,k+1);

d5 = impactO+beta_hat [NREG-1]*YA_hat[T-1];
if (Y[TI==1)
YA_hat[T]=rs_trunc_normal(0.000000,d5,1.0000) ;
if (Y[TI>1 && Y[TI<NCP+1)
YA_hat [T]=ds_trunc_normal(c_hat[Y[T]-1],c_hat[Y[T]],d5,1.0000);
if (Y[T]==NCP+1)
YA_hat [T]=1s_trunc_normal (c_hat[NCP],d5,1.0000) ;



140

APPENDIX B. GM-MGMC SAMPLER FOR AOP MODEL

// beta - update

// write last column of matrix X

for (t=1; t<=T; t++) X(t,NREG)=YA_hat[t-1];
XtXinv = (! (X.transp()*X+Tau));

for (t=1; t<=T; t++) F(t,1)=YA_hat[t];

Mu = XtXinv*(X.transp())*F;

beta = mvnormal (Mu,XtXinv);

for (k=1; k<=NREG; k++) beta_hat[k-1]=beta(k,1);

// ¢ - update
for (k=2; k<=NCP; k++)

{
di15=c_hat[k-1];
for (1=1; 1<=T; 1++) if (Y[1]== &% YA_hat[1]>d15) d15=YA_hat[1];
if (k<NCP) di16 = c_hat[k+1];
else di16 = 1000.0;
for (1=1; 1<=T; 1++) if (Y[1]==k+1 && YA_hat[1]1<d16) d16=YA_hat[1];
c_hat[k] = uniform(d15,d16);
}
if (i>=gm_start && i<=gm_end)
{
// grouped move step
d20=0.000000;
for (t=1; t<=T; t++)
{
impactO=beta_hat[0];
for (k=1; k<=NREG-2; k++) impactO+=beta_hat[k]*X(t,k+1);
d20=d20 + ( YA_hat[t] - impactO - beta_hat[NREG-1]*YA_hat[t-1] )=*
( YA_hat[t] - impactO - beta_hat[NREG-1]*YA_hat[t-1] );
}
d20=d20 + sigmaxYA_hat[0]*YA_hat[0];
for (k=0; k<=NREG-2; k++) d20 += taux*beta_hat[k]*beta_hat[k];
d20=420/2.000000;
// draw gamma"2 from truncated Gamma-distribution
do {
g_sq = rand_gamma(0.50000%(1.00000*T+1.00000*NREG+1.00000*NCP) ,d20) ;
} while (g_sq>100/(c_hat [NCP]*c_hat[NCP]));
g = sqrt(g_sq);
for (t=0; t<=T; t++) YA_hat[t] = gxYA_hat[t];
for (k=0; k<=NREG-2; k++) beta_hat[k] = gxbeta_hat[k]; // not phi!
for (k=2; k<=NCP; k++) c_hat[k] = g*c_hat[k];
}
A

// write c, beta, and the YA’s in the result file
if (hist_file==1)

{
for (k=2; k<=NCP; k++) fprintf(stream, "%f \t", c_hat[k]);
for (k=0; k<=NREG-2; k++) fprintf(stream, "%f \t", beta_hat[k]);
fprintf(stream, "%f \n", beta_hat[NREG-1]);

}

if (hist_file==1 && i>5000 && i<=7000)
{



//

for (k=0; k<=T-1; k++) fprintf (streamY5, "%f \t", YA_hat[k]);

fprintf (streamY5, "%f \n", YA_hat[T]);

}

if (hist_file==1 && i>7000 && i<=9000)

{
for (k=0; k<=T-1; k++) fprintf (streamY7, "%f \t", YA_hat[k]);
fprintf (streamY7, "%f \n", YA_hat[T]);

}

if (hist_file==1 && i>9000 && i<=11000)

{
for (k=0; k<=T-1; k++) fprintf (streamY9, "%f \t", YA_hat[k]);
fprintf (streamY9, "%f \n", YA_hat[T]);

}

if (hist_file==1 && i>11000 && i<=13000)

{
for (k=0; k<=T-1; k++) fprintf (streamY11, "%f \t", YA_hat[k]);
fprintf (streamY11, "%f \n", YA_hat[T]);

}

if (hist_file==1 && i>13000 && i<=15000)

{
for (k=0; k<=T-1; k++) fprintf(streamY13, "%f \t", YA_hat[k]);
fprintf (streamY13, "%f \n", YA_hat[T]);

}

Rt

// produce posterior mean estimates
if (i>burnin)

for (k=2; k<=NCP; k++) c_sum[k] = c_sum[k] + c_hat[k];

for (k=0; k<=NREG-1; k++) beta_suml[k] = beta_sum[k] + beta_hat[k];

// print posterior mean estimates on screen
for (k=2; k<=NCP; k++) c_sum[k] = c_sum[k]/(iter-burnin);

for (k=0; k<=NREG-1; k++) beta_sum[k] = beta_sum[k]/(iter-burnin);

for (k=2; k<=NCP; k++) printf ("ckd:\t%f\n",k,c_suml[k]);
for (k=0; k<=NREG-2; k++) printf("betald:\t/%f\n",k,beta_suml[k]);
printf ("phi:\t%f\n",beta_sum[NREG-1]);

// close result files

if (hist_file==1)

{
fclose(stream) ; fclose(stream¥5); fclose(streamY7);
fclose(streamY9); fclose(streamY11); fclose(streamY13);

main program

int main(void)

// set random generator on a random position
randomize() ;

141



142 APPENDIX B. GM-MGMC SAMPLER FOR AOP MODEL

// declaration of variables

int i;

float f1,f2,f3,f4,f5,f6,f7,f8,f9;
FILE *sourcestreaml;

FILE *sourcestream?2;

sourcestreaml = fopen(procsource,"r");
sourcestream2 = fopen(desgsource,"r");
[ m

// read process data
for (i=1; i<=TTTT; i++) fscanf(sourcestreaml,"%d\n",&Y[i]);
fclose(sourcestreaml);

// read covariate data
if (CINT==1) // File with covariates contains 1’s for intercept
{

for (i=1; i<=TTTT; i++)

{
switch(NCOV)
{
case 4: fscanf(sourcestream2,"%f %f %f \n",&f1,&f2,&f3);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; break;
case 5: fscanf(sourcestream2,"%f %f %f %f \n",&f1,&f2,&f3,&f4);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; break;
case 6: fscanf(sourcestream2,"}f %f %f %f %f \n",&f1,&f2,&f3,&f4,&f5);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
break;
case 7: fscanf(sourcestream2,"%f %f %f %f %f %f \n",&f1,&f2,&f3,&f4,&f5,
&f6);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; break;
case 8: fscanf(sourcestream2,")f %f %f %f %f %f %f \n",&f1,&f2,&f3,&f4,
&f5,4f6,4f7) ;
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; X(i,7)=f7; break;
case 9: fscanf(sourcestream2,"),f %f %f %f %f %f %f 4f \n",&f1,&f2,&f3,
&f4,4f5,4f6,41F7 ,&£8) ;
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; X(i,7)=f7; X(i,8)=f8; break;
case 10: fscanf (sourcestream2,")f %f %f %f %f %f %f %f %f \n",&f1,&f2,
&f3,&f4,4f5,4f6,4f7,&£8,4f9) ;
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; X(i,7)=Ff7; X(i,8)=f8; X(i,9)=f9; break;
}
}
fclose(sourcestream?) ;
}
else // File with covariates does not contain 1’s for intercept
{
for (i=1; i<=TTTT; i++)
{
switch(NCOV)
{

case 4: fscanf(sourcestream2,"%f %f \n",&f2,&f3);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; break;

case 5: fscanf(sourcestream2,")f %f %f \n",&f2,&f3,&f4);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; break;

case 6: fscanf(sourcestream2,")f %f %f %f \n",&f2,&f3,&f4,&f5);



case

case

case

case

}
}

10:

143

X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
break;
fscanf (sourcestream2,"%f %f %f %f %f \n",&f2,&f3,&f4,%&f5,&f6);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; break;
fscanf (sourcestream2,")f %f %f %f %f %f \n",&f2,&f3,&f4,4&f5,4f6,
&Ef7);
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; X(i,7)=f7; break;
fscanf (sourcestream2,")f %f %f %f %f %f %f \n",&f2,&f3,&f4,&f5,
&f6,4f7,4£8) ;
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; X(i,7)=f7; X(i,8)=f8; break;
fscanf (sourcestream2,"%f %f %f %f %f %f %f %f \n",&f2,&f3,&f4,
&f5,4£6,4f7,&£8,4f9) ;
X(i,1)=1.000000; X(i,2)=f2; X(i,3)=f3; X(i,4)=f4; X(i,5)=f5;
X(i,6)=f6; X(i,7)=Ff7; X(i,8)=f8; X(i,9)=f9; break;

fclose(sourcestream?) ;

}

// GM steps should be used
if (USEGM==1) gibbs(TTTT,NCOV,NNCP,ITER,BURN,1,ITER,1);
// no GM steps should be used

else

return(l);

gibbs (TTTT,NCOV,NNCP, ITER,BURN,ITER+1,ITER,1);






Appendix C

Implementation of GM-MGMC
Sampler for OSV and OSVt Model

Here we provide the C++ implementation of the GM-MGMC sampler for both the OSV
and the OSVt model. Before compiling the program, one must adapt some file names
and constants to the data. This must be done in the section which is marked by 'Change
only this section’. More informations can be seen directly in the program code which
contains many detailed comments. At the beginning the two header-files 'randomGM.h’
and 'matrixGM.h’ are included. These can be found in Appendix D and E, respectively,

and must be copied into the same directory as the following program.

e
// GM-MGMC SAMPLER FOR 0SV AND 0SVt MODEL --- by GERNOT MUELLER, 2004

e
// Change program only in the marked section below !

//

// Steps needed before executing the program:

// - adapt the program code to your data and files (only in marked section!)
// - save the program (osvt.cpp)

// - compile the program (e.g. using: CC -04 osvt.cpp)

// - you will get an executable ’a.out’ file

// - type a.out to execute

//

// Maximal number of X-covariates: 10 (including intercept)

// Maximal number of Z-covariates: 6

// Maximal number of cutpoints: 6

// Maximal length of data: 60000

J e R R S

#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#include<math.h>
#include"matrixGM.h"

145



146 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

#include"randomGM.h"

// function declarations

double func(double x1=0.00000, double x2=0.00000, double x3=0.00000,
double x4=0.00000, double x5=0.00000, double x6=0.00000,
double x7=0.00000, double x8=0.00000, double x9=0.00000,
double x10=0.00000) ;
void neldermead(unsigned int n, double xstart1=0.00000, double xstart2=0.00000,
double xstart3=0.00000, double xstart4=0.00000,
double xstart5=0.00000, double xstart6=0.00000,
double xstart7=0.00000, double xstart8=0.00000,
double xstart9=0.00000, double xstart10=0.00000,
unsigned int steps=100, double precision=0.0000001,
unsigned int viewsteps=0);
void simu(double mu, double phi, double sigmal);
double impactX(void);
void draw_CP(void);
void draw_Y(void);
void draw_s(void);
void draw_nu(void);
void draw_LAMBDA(void);
void draw_H(void);
void draw_BETA(void);
void Hesse(unsigned int n, double griddist=0.0001, double x1=0.00000,
double x2=0.00000, double x3=0.00000, double x4=0.00000,
double x5=0.00000, double x6=0.00000, double x7=0.00000,
double x8=0.00000, double x9=0.00000, double x10=0.00000);
double minimum(double x, double y);

/) m = //
F e R R //
// //
// CHANGE ONLY THTIS SECTION //
// //
/) mm //
/) mm //
// DATA AND MODEL PARAMETERS //
J e //
#define TTTT 22689 // length of data //
#define NNNN 4 // number of parameters to estimate in log-vola-equation//
// length of theta = (alpha_1,...,alpha NCOVZ,phi,sigma)//

// = NCOVZ + 2 //

#define NCOVX 2 // length of covariate vector X (including intercept) //
#define NCOVZ 2 // length of covariate vector Z (Z never contains an //
// intercept!) //

#define NMATRIX 2 // set to 1 if NCOVZ=0, else set to NCOVZ //
#define NNCP 6 // number of response categories minus 1 //
#define ITER 4000 // number of iteratiomns to do //
#define BURNIN 1000 // number of burnin-steps //
#define TAKENORMALERRORS 1 // if 1, normal errors, if O t errors are assumed //
#define USESIMULATION O // if real data is to be estimated, type O, otherwise 1 //
e //
// PARAMETERS FOR SIMULATION /!
F e R //
#define SIMUPHI 0.90 // !/
#define SIMUSIGMA 0.20 // //
//

#define SIMUBETA0O  3.50 // //

#define SIMUBETA1 -0.30 // //



147

#define SIMUBETAZ2 1.60 // //
#define SIMUBETA3 0.50 // //
#define SIMUBETA4 0.00 // //
#define SIMUBETA5  0.00 // //
#define SIMUBETA6  0.00 // //
#define SIMUBETA7  0.00 // //
#define SIMUBETAS8 0.00 // //
#define SIMUBETA9 0.00 // //
//

#define SIMUALPHA1  0.25 // //
#define SIMUALPHA2 0.15 // //
#define SIMUALPHA3  0.00 // //
#define SIMUALPHA4 0.00 // //
#define SIMUALPHAS 0.00 // //
#define SIMUALPHA6 0.00 // //
//

#define SIMUCUTP1  0.00 // //
#define SIMUCUTP2  0.90 // //
#define SIMUCUTP3 1.80 // //
#define SIMUCUTP4 2.75 // //
#define SIMUCUTPS 3.65 // //
#define SIMUCUTP6  4.50 // //
// covariates which are to be used in simuation must be //

// defined in function simu(...)! //

/) mm //
// STARTING VALUES //
F e R //
#define PHISTART 0.85 // //
#define SIGMASTART 0.30 // //
#define NUSTART 10 // //
//

#define ALPHA1START 0.00 // //
#define ALPHA2START 0.00 // //
#define ALPHA3START 0.00 // //
#define ALPHA4START 0.00 // //
#define ALPHASSTART 0.00 // //
#define ALPHA6START 0.00 // //
//

#define CP2START 1.00 // //
#define CP3START 2.00 // //
#define CP4START 3.00 // //
#define CP5START 4.00 // //
#define CP6START 5.00 // //
F e R R //
// HYPERPARAMETERS FOR PRIORS //
J e R //
#define BETAVARIANCE 10.0000 // each beta_j has prior N(0O,BETAVARIANCE) //
#define ALPHABOUND 100.000 // each alpha_j has pr. Unif (-ALPHABOUND,ALPHABQUND) //
#define SIGMABOUND 10.0000 // sigma has prior Unif (0,SIGMABOUND) //
/) mm //
// INPUT AND OUTPUT FILES //
F e //
char procsource[]="ibm9daysproc.txt"; // input file for response //
char desgX[]="ibm9daysxdesg.txt"; // input file for design X (tab-seperated) //
char desgZ[]="ibm9dayszdesgCENT.txt"; // input file for design Z (tab-seperated) //
// //

char paraOUT[]="osvtPARA.dat"; // output file for parameter estimates //
char volasOUT[]="osvtVOLAS.dat"; // output file for est. volatilities //
char logvolasQUT[]="osvtLOGVOLAS.dat"; // output file for est. log-volatilities //
// //

char procSIMlatent[]="osvtY.dat"; // output file for lat. variables in sim. //



148 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

char procSIM[]="osvtYOBS.dat"; // output file for simulated process //
[ mm //
F e R S //
// ADVANCED OPTIONS /!
e //
#define MUFIX -0.60 // model parameter mu must be fixed for identifiab. //
#define GMSTEPS 1 // if set to 1, program uses GM-steps; if 0, not //
#define GMSTART 0 // GM-steps will be used only after iteration GMSTART //
#define NUDRAWSTART 50 // nu will be drawn only after iteration NUDRAWSTART //
#define PHIDRAWSTART O // phi will be drawn only after iteration PHIDRAWSTART //
#define USEPSEUDOAUTOREGR 1 // see function SIMU() ! //
#define USECHANGEDHTEQUATION 1 // if 1, covariates Z only have impact on present //
#define DFDF 15 // degr. of freedom of t-distr. (only for simulation) //
#define PRECISION 0.0000001 // for minimization-algorithm //
#define MAXMINSTEPS 200 // for minimization-algorithm //
#define GRID 0.001 // grid distance for computation of the Hessian matrix //
#define CONTROLONSCREEN O // if 1, current control info is printed on screen //
#define SCREENUPDATEINTERVAL 2 // used only if CONTROLONSCREEN equals O //
/) mm //
/) mm //
F e R R S //
m = -

// Declaration of variables and matrices

Matrix Z(TTTT,NMATRIX);
Matrix ALPHAest (NMATRIX,1);

double min[21];

double minhist[21] [ITER+2];
double alphahist[11] [ITER+2];
double avgl[21];

double avgalpha[11];

double h00=0.00000, p00=0.00000;
double H[TTTT+2];

double LAMBDA[TTTT+2];
double U[TTTT+2];

double Y[TTTT+2];

double Yest[TTTT+2];
unsigned int YOBS[TTTT+2];
double CP[10];

double CPest[10];

Matrix X(TTTT,NCOVX);
Matrix BETA(12,1);

Matrix BETAest (NCOVX,1);
Matrix UNIT(NCOVX,NCOVX);
Matrix XT(NCOVX,1);

Matrix INTER1(NCOVX,NCOVX);
Matrix INTER2(NCOVX,NCOVX);
Matrix INTER3(NCOVX,NCOVX);
Matrix INTER3INV(NCOVX,NCOVX);
Matrix INTER4(NCOVX,1);
Matrix INTER5(NCOVX,1);
Matrix ALPHA(12,1);

double YAST[TTTT+2];

double NORMAL[TTTT+2];
double HESSE[11]1[11];
unsigned int sest[TTTT+2];
double Hest[TTTT+2];

double LogVolaEST[TTTT+2];



149

double VolaESTI[TTTT+2];

double LAMBDAest[TTTT+2];

unsigned int nuest=NUSTART;

double phiest=0.90000, sigmalest=0.20000, accnu=0.00000;

double mufix=MUFIX;

double htt[TTTT+2], httml[TTTT+2], kt[TTTT+2], fttml[TTTT+2], pttml [TTTT+2];
double ptt[TTTT+2], et[TTTT+2] ,nt [TTTT+2],rt [TTTT+2],ut [TTTT+2],dt [TTTT+2];
double ct[TTTT+2], zetat[TTTT+2],bt[TTTT+2];

Matrix HESSEM(NNNN,NNNN) ;
Matrix HESSEINV (NNNN,NNNN) ;
Matrix MU(NNNN,1);

Matrix MVN(NNNN,1);

Matrix THETA(NNNN,1);

unsigned int ACTUALITER=0;
double PI = 3.14159265358979;

// constants for the seven-component mixture approximation

double gmix[9] ={ 0.00000, 0.00730, 0.10556, 0.00002, 0.04395, 0.34001, 0.24566,
0.25750, 0.00000};
double gmixacc[9] ={ 0.00000, 0.00730, 0.11286, 0.11288, 0.15683, 0.49684, 0.74250,
1.00000, 0.00000};
double mumix[9] ={ 0.00000,-11.40039,-5.24321,-9.83726, 1.50746,-0.65098, 0.52478,
-2.35859, 0.00000};
double sigma2mix[9]={ 0.00000, 5.79596, 2.61369, 5.17950, 0.16735, 0.64009, 0.34023,
1.26261, 0.00000};
double sigmamix[9] ={ 0.00000, 2.40748, 1.61669, 2.27585, 0.40908, 0.80006, 0.58329,
1.12366, 0.00000};
=
e
e

int main(void)
{
// Declaration of variables
int i,j,k,1l,ncovz;
ncovz=NCOVZ;
double frac1=0.00000, frac2=0.00000, acceptprob=0.50000;
double interc;
double dgm1=0.00000, dgm2=0.00000, dgm3=0.00000, dgmgamma=0.00000;
FILE *stream;
FILE *procstream;
FILE *proc;
FILE *xdesg;
FILE *zdesg;
unsigned int uil;
double f1,£f2,£3,f4;
for (i=1; i<=TTTT; i++) LogVolaEST[i]=0.000000;
for (i=1; i<=TTTT; i++) VolaEST[i]=0.000000;
FILE *LogVolas;
FILE *Volas;

// for fast evaluation of student-t density -> see random.h
savegammafactors() ;

// generate unit matrix
for (i=1; i<=NCOVX; i++) for (k=1; k<=NCOVX; k++) UNIT(i,k)=0.00000;



150 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

for (i=1; i<=NCOVX; i++) UNIT(i,i)=1.00000;

// open output file and generate head line

stream = fopen(paraQUT,"w+");

if (TAKENORMALERRORS==1) fprintf (stream,"phi \t sigma \t ");

else fprintf(stream,"phi \t sigma \t nu \t ");

for (i=0; i<NCOVX-1; i++) fprintf(stream,"betald \t ",i);
if (NCOVZ==0 && NNCP<2)
{
if (GMSTEPS==1)
{
fprintf (stream,"betald \t",NCOVX-1);
fprintf (stream,"gamma \n");
}
else
fprintf (stream, "betald \n",NCOVX-1);
}
else
{
fprintf (stream,"beta’d \t",NCOVX-1);
if (NCOVZ==0)
{
for (i=2; i<NNCP; i++) fprintf (stream,"cutpointyd \t",i);
if (GMSTEPS==1)
{
fprintf (stream,"cutpointid \t",NNCP);
fprintf (stream,"gamma \n");
}
else
fprintf (stream,"cutpoint’%d \n",NNCP);

if (NNCP<2)

for (i=1; i<NCOVZ; i++) fprintf(stream,"alphajd \t",i);
if (GMSTEPS==1)
{
fprintf (stream,"alpha%d \t",NCOVZ);
fprintf (stream,"gamma \n");
}
else
fprintf (stream,"alpha%d \n",NCOVZ);

if (NCOVZ>0 && NNCP>=2)

for (i=1; i<=NCOVZ; i++) fprintf(stream,"alpha%d \t ",i);
for (i=2; i<NNCP; i++) fprintf (stream,"cutpoint’%d \t",1i);
if (GMSTEPS==1)
{

fprintf (stream,"cutpointi%d \t",NNCP);

fprintf (stream,"gamma \n");
}
else

fprintf (stream,"cutpointid \n",NNCP);

}

// set random number generator on a random position
randomize() ;

if (USESIMULATION==1)



151

// simulate process
simu(MUFIX,SIMUPHI,SIMUSIGMA) ;
// write simulated process in corresponding file
procstream = fopen(procSIM,"w+");
for (i=1; i<=TTTT; i++) fprintf(procstream,"%d \n",Y0BS[i]);
fclose(procstream);
}
else
{
// read input file which contains the observations
proc = fopen(procsource,"r");
for (i=1; i<=TTTT; i++)
{
fscanf (proc,"%d\n",&uil);
YOBS[i]=uil;
}

fclose(proc);

// read input file which contains x-design
xdesg = fopen(desgX,"r");
for (i=1; i<=TTTT; i++)
{
for (k=1; k<NCOVX; k++)
{
fscanf (xdesg,"%1f\t",&f1);
if (k==1) X(i,k)=1.000000;
else X(i,k)=f1;
}
fscanf (xdesg,")1f\n" ,&f1);
X(i,NCOVX)=£f1;
}
fclose(xdesg) ;

// read input file which contains z-design
zdesg = fopen(desgZ,"r");
for (i=1; i<=TTTT; i++)
{
for (k=1; k<NCOVZ; k++)
{
fscanf (zdesg,"%1f\t",&£3) ;
Z(i,k)=£3;
}
fscanf (zdesg,"%1f\n" ,&£3);
Z(i,NCOVZ)=£3;
}
fclose(zdesg);

// initialize parameters and variables

// initialize LAMBDAest
if (TAKENORMALERRORS==0)
for (i=1; i<=TTTT; i++)
LAMBDAest [i]=rand_gamma (0.50000*NUSTART,0.50000*NUSTART) ;
else
for (i=1; i<=TTTT; i++)
LAMBDAest [i]=1.00000;

// initialize Hest
Hest [0]=mufix;



152

APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

for (i=1; i<=TTTT; i++)

{

}

interc=0.00000;

if (NCOVZ>0) interc +

if (NCOVZ>1) interc +

if (NCOVZ>2) interc += ALPHA3START*Z(i,3);

if (NCOVZ>3) interc += ALPHA4START*Z(i,4);

if (NCOVZ>4) interc += ALPHASSTART*Z(i,5);

if (NCOVZ>5) interc += ALPHA6START*Z(i,6);

Hest[i]=mufix+interc+PHISTART* (Hest[i-1]-mufix)+
SIGMASTART*normal(0.00000,1.00000) ;

ALPHA1START*Z(i,1);
ALPHA2START*Z(i,2);

// initialize CPest

CPest[1]=0.000000; // this cutpoint is fixed for reasons of identifiability!

CPest [2]=CP2START;
CPest [3]=CP3START;
CPest [4]=CP4START;
CPest [6]1=CP5START;
CPest [6]1=CP6START;

// initialize Yest
for (i=1; i<=TTTT; i++)

{

switch (YOBS[il)

{
case 1: Yest[i] = -0.500000; break;
case 2: Yest[i] = 0.500000% (CPest[1]+CPest[2]); break;
case 3: Yest[i] = 0.500000% (CPest[2]+CPest[3]); break;
case 4: Yest[i] = 0.500000% (CPest[3]+CPest[4]); break;
case 5: Yest[i] = 0.500000% (CPest[4]+CPest[5]); break;
case 6: Yest[i] = 0.500000%(CPest[5]+CPest[6]); break;
case 7: Yest[i] = CPest[6]+0.500000; break;

}

// Gibbs sampler loop

for (i=1; i<=ITER; i++)

{

ACTUALITER=i;

if (CONTROLONSCREEN==1) printf("\n");

if (CONTROLONSCREEN==1) printf("iteration: %d \n",i);
else

if (ACTUALITERY,SCREENUPDATEINTERVAL==0) printf("iteration: %d \n",i);

// beta-update

if (CONTROLONSCREEN==1) printf("draw_BETA\n");
draw_BETA() ;

// y_t~\ast-update

if (CONTROLONSCREEN==1) printf("draw_Y\n");

draw_Y(Q);

// cupoint-update



153

if (CONTROLONSCREEN==1) printf("draw_CP\n");
draw_CP();
// GM-STEP

dgmgamma = 1.000000;
if (GMSTEPS==1 &% ACTUALITER>GMSTART)

{
dgm1=0.50000% (TTTT+NNCP+NCOVX);  // NNCP+1 = K; NCOVX-1 = p,
// therefore K+p = NNCP+NCOVX; now dgml=a
dgm2=0.00000;
for (k=1; k<=NCOVX; k++)
dgm2 += BETAest(k,1)*BETAest(k,1)*(1.00000/BETAVARIANCE) ;
for (k=1; k<=TTTT; k++)
{
dgm3=0.00000;
for (j=1; j<=NCOVX; j++) dgm3 += BETAest(j,1)*X(k,j); // dgm3=x_k’beta
dgm2 += (Yest[k]-dgm3)*(Yest[k]-dgm3)*LAMBDAest [k]/exp(Hest[k]);
}
dgm2 = 0.50000*dgm2; // now dgm2=b;
dgmgamma=rand_gamma (dgml,dgm?2) ;
dgmgamma=sqrt (dgmgamma) ;
if (dgmgamma>1.050000) dgmgamma=1.050000;
if (dgmgamma<0.952381) dgmgamma=0.952381;
if (CONTROLONSCREEN==1) printf ("GAMMA: %f\n",dgmgamma) ;
for (k=1; k<=NCOVX; k++) BETAest(k,1)= dgmgamma*BETAest(k,1);
for (k=2; k<=NNCP; k++) CPestl[k] = dgmgamma*CPest [k] ;
for (k=1; k<=TTTT; k++) Yest[k] = dgmgammax*Yest [k] ;
}
e R R

// mixture index update

if (CONTROLONSCREEN==1) printf("draw_s\n");

draw_s();
R R
// MH-step for update of phi, sigma, alpha_j, j=1,...,q

if (CONTROLONSCREEN==1) printf ("draw_THETA\n");
// Search the argument, which maximizes log(g(theta)),
// that is, which minimizes -log(g(theta))
if (i==1)
{
switch (ncovz)
{
case 0: neldermead (NNNN,PHISTART,SIGMASTART); break;
case 1: neldermead (NNNN,PHISTART,SIGMASTART,ALPHA1START); break;
case 2: neldermead (NNNN,PHISTART,SIGMASTART,ALPHA1START,ALPHA2START) ;
break;
case 3: neldermead(NNNN,PHISTART,SIGMASTART,ALPHA1START,ALPHA2START,
ALPHA3START) ; break;
case 4: neldermead (NNNN,PHISTART,SIGMASTART,ALPHA1START,ALPHA2START,



154

APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

ALPHA3START,ALPHA4START) ; break;
case 5: neldermead (NNNN,PHISTART,SIGMASTART,ALPHA1START,ALPHA2START,
ALPHA3START,ALPHA4START ,ALPHASSTART) ; break;
case 6: neldermead(NNNN,PHISTART,SIGMASTART,ALPHA1START,ALPHA2START,
ALPHA3START,ALPHA4START ,ALPHASSTART ,ALPHA6START) ;
break;
}
}
else
{
switch (ncovz)
{
case 0: neldermead (NNNN,THETA(1,1),THETA(2,1)); break;
case 1: neldermead (NNNN,THETA(1,1),THETA(2,1) ,THETA(3,1)); break;
case 2: neldermead (NNNN,THETA(1,1),THETA(2,1) ,THETA(3,1) ,THETA(4,1));
break;
case 3: neldermead(NNNN,THETA(1,1),THETA(2,1) ,THETA(3,1),THETA(4,1),
THETA(5,1)); break;
case 4: neldermead (NNNN,THETA(1,1),THETA(2,1),THETA(3,1) ,THETA(4,1),
THETA(5,1) ,THETA(6,1)); break;
case 5: neldermead (NNNN,THETA(1,1),THETA(2,1),THETA(3,1) ,THETA(4,1),
THETA(5,1) ,THETA(6,1) ,THETA(7,1)); break;
case 6: neldermead(NNNN,THETA(1,1),THETA(2,1) ,THETA(3,1) ,THETA(4,1),
THETA(5,1) ,THETA(6,1) ,THETA(7,1) ,THETA(8,1)); break;

[

}

for (k=1; k<=2; k++) minhist[k][i] = min[k];
for (k=1; k<=NCOVZ; k++) alphahist[k][il= min[2+k];

// Compute the Hessian at the minimum
switch (ncovz)

{
case 0: Hesse(NNNN,GRID,min[1] ,min[2]); break;
case 1: Hesse(NNNN,GRID,min[1],min[2],min[3]); break;
case 2: Hesse(NNNN,GRID,min[1] ,min[2],min[3] ,min[4]); break;
case 3: Hesse(NNNN,GRID,min[1] ,min[2],min[3],min[4],min[5]); break;
case 4: Hesse(NNNN,GRID,min[1],min[2],min[3],min[4],min[5],min[6]); break;
case 5: Hesse(NNNN,GRID,min[1] ,min[2],min[3],min[4],min[5],min[6],min[7]);
break;
case 6: Hesse(NNNN,GRID,min[1] ,min[2] ,min[3] ,min[4],min[5] ,min[6] ,min[7],
min[8]); break;
}

// Copy the arrays into matrices
for (k=1; k<=NNNN; k++) MU(k,1)=min[k];
for (k=1; k<=NNNN; k++) for (1=1; 1<=NNNN; 1++) HESSEM(k,1)=HESSE[k][1];
if (CONTROLONSCREEN==1)
printf ("Hessian matrix pos.def.: %d \n",HESSEM.posdef());

// Draw a proposal MVN from the multivariate normal distribution:
HESSEINV=HESSEM. invertPosDef () ;
MVN=mvnormal (MU,HESSEINV) ;
if (CONTROLONSCREEN==1)
{
printf("min phi : %f \n",MU(1,1));
printf("min sigma: %f \n",MU(2,1));
if (NCOVZ>0) printf ("min alphal: %f \n",MU(3,1));
if (NCOVZ>1) printf ("min alpha2: %f \n",MU(4,1));
if (NCOVZ>2) printf ("min alpha3: %f \n",MU(5,1));
if (NCOVZ>3) printf("min alphad: %f \n",MU(6,1));



155

if (NCOVZ>4) printf ("min alphab: %f \n",MU(7,1));
if (NCOVZ>5) printf ("min alpha6: %f \n",MU(8,1));
}

// We need theta_0 for computing the acceptance probability
if (i==1) for (k=1; k<=NNNN; k++) THETA(k,1)=min[k];

// Compute the acceptance probability
switch (ncovz)

{
case 0: fracl = exp(-func(MVN(1,1),MVN(2,1))
+func(THETA(1,1),THETA(2,1))); break;
case 1: fracl = exp(-func(MVN(1,1),MVN(2,1),MVN(3,1))
+func(THETA(1,1),THETA(2,1) ,THETA(3,1))); break;
case 2: fracl = exp(-func(MVN(1,1),MVN(2,1),MVN(3,1),MVN(4,1))
+func (THETA(1,1) ,THETA(2,1) ,THETA(3,1) ,THETA(4,1)));
break;
case 3: fracl = exp(-func(MVN(1,1),MVN(2,1),MVN(3,1),MVN(4,1),MVN(5,1))
+func(THETA(1,1) ,THETA(2,1) ,THETA(3,1) ,THETA(4,1),
THETA(5,1)));
break;
case 4: fracl = exp(-func(MVN(1,1),MVN(2,1),MVN(3,1),MVN(4,1),MVN(5,1),
MVN(6,1))
+func (THETA(1,1) ,THETA(2,1) ,THETA(3,1) ,THETA(4,1),
THETA(5,1) ,THETA(6,1)));
break;
case 5: fracl = exp(-func(MVN(1,1),MVN(2,1),MVN(3,1),MVN(4,1),MVN(5,1),
MVN(6,1) ,MVN(7,1))
+func (THETA(1,1) ,THETA(2,1) ,THETA(3,1) ,THETA(4,1),
THETA(5,1) ,THETA(6,1) ,THETA(7,1)));
break;
case 6: fracl = exp(-func(MVN(1,1),MVN(2,1),MVN(3,1),MVN(4,1),MVN(5,1),
MVN(6,1) ,MVN(7,1) ,MVN(8,1))
+func (THETA(1,1) ,THETA(2,1) ,THETA(3,1) ,THETA(4,1),
THETA(5,1) ,THETA(6,1) ,THETA(7,1) ,THETA(8,1)));
break;
}

frac2 = undmvnormal (THETA,MU,HESSEINV) /undmvnormal (MVN,MU,HESSEINV) ;
acceptprob=minimum(1.00000,fraci*frac2) ;

if (CONTROLONSCREEN==1) printf ("ACCEPT-PROBABILITY: %f \n",acceptprob);
minhist[4] [i]=acceptprob;

// if we accept the proposal MVN, theta changes
if (uniform(0,1)<=acceptprob) for (k=1; k<=NNNN; k++) THETA(k,1)=MVN(k,1);

if (ACTUALITER<=PHIDRAWSTART) THETA(1,1)=PHISTART;

// update of log-volatilities

if (CONTROLONSCREEN==1) printf("draw_H\n");
draw_HQ) ;

// estimate the log-volatilities and write output-file at iteration ITER
if (i>BURNIN)

{

for (k=1; k<=TTTT; k++) LogVolaEST[k] += Hest[k];
}
if (i==ITER)

{



156

APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

for (k=1; k<=TTTT; k++) LogVolaEST[k]=LogVolaEST[k]/(1.00000* (ITER-BURNIN));
LogVolas = fopen(logvolasQUT,"w+");

fprintf(LogVolas,"logVolatilities \n");

for (k=1; k<=TTTT; k++) fprintf(LogVolas,"%f \n",LogVolaEST[k]);
fclose(LogVolas);

// estimate the volatilities and write output-file at iteration ITER
if (i>BURNIN)

{
for (k=1; k<=TTTT; k++) VolaEST[k] += exp(Hest[k]+0.60000);
}
if (i==ITER)
{
for (k=1; k<=TTTT; k++) VolaEST[k] = VolaEST[k]/(1.00000*(ITER-BURNIN));
Volas = fopen(volasQUT,"w+");
fprintf (Volas,"NormalizedVolatilities \n");
for (k=1; k<=TTTT; k++) fprintf(Volas,")f \n",VolaEST[k]);
fclose(Volas);
}
[/ ===

// nu-update (only for 0SVt-model)

if (ACTUALITER<=NUDRAWSTART || TAKENORMALERRORS==1) nuest=NUSTART;
else

{
if (CONTROLONSCREEN==1) printf ("draw_nu\n");
draw_nu();

}

minhist[5] [ACTUALITER]=(double) nuest;
minhist[6] [ACTUALITER]=accnu;

// lamda-update (only for 0SVt-model)

if (TAKENORMALERRORS==0)

{
if (CONTROLONSCREEN==1) printf ("draw_LAMBDA\n");
draw_LAMBDA() ;

}

else

{
for (k=1; k<=TTTT; k++) LAMBDAest[k]=1.00000;

}

/== m e

// write output-file which contains the parameter estimates

if (TAKENORMALERRORS==1)
fprintf(stream,"%f \t %f \t ",THETA(1,1),THETA(2,1));
else
fprintf (stream,"%f \t %f \t %d \t ",THETA(1,1),THETA(2,1) ,nuest);
for (k=1; k<NCOVX; k++) fprintf(stream,"%f \t ",BETAest(k,1));
if (NCOVZ==0 && NNCP<2)
{
if (GMSTEPS==1)
{
fprintf (stream,"%f \t", BETAest (NCOVX,1));
fprintf (stream,"%f \n", dgmgamma);
}



157

else
fprintf (stream,"%f \n", BETAest (NCOVX,1));
}
else
{
fprintf (stream,")f \t",BETAest(NCOVX,1));
if (NCOVZ==0)
{
for (k=2; k<NNCP; k++) fprintf(stream,")f \t",CPestl[k]);
if (GMSTEPS==1)
{
fprintf (stream,")f \t",CPest[NNCP]);
fprintf(stream,"’f \n",dgmgamma) ;
}
else
fprintf (stream,")f \n",CPest[NNCP]);

if (NNCP<2)

for (k=1; k<NCOVZ; k++) fprintf(stream,"%f \t ",THETA(2+k,1));
if (GMSTEPS==1)
{
fprintf (stream,")f \t",THETA(2+NCOVZ,1));
fprintf(stream,")f \n",dgmgamma) ;
}
else
fprintf (stream,"%f \n",THETA(2+NCOVZ,1));

if (NCOVZ>0 && NNCP>=2)

for (k=1; k<=NCOVZ; k++) fprintf(stream,"%f \t ",THETA(2+k,1));
for (k=2; k<NNCP; k++) fprintf (stream,"%f \t",CPest[k]);
if (GMSTEPS==1)
{
fprintf (stream,")f \t",CPest[NNCP]);
fprintf(stream,")f \n",dgmgamma) ;
}
else
fprintf(stream,"’f \n",CPest [NNCP]);

}

// write results on screen
for (i=BURNIN+1; i<=ITER; i++)

for (k=1; k<=6+NCOVX; k++) avg[k] += minhist[k] [i];
for (i=BURNIN+1; i<=ITER; i++)
for (k=1; k<=NCOVZ; k++) avgalphal[k] += alphahist[k][i];

printf ("\n\nPosterior mean estimates:\n");

printf("phi  :\t%f\n",avg[1]/(ITER-BURNIN));

printf("sigma :\t%f\n",avg[2]/(ITER-BURNIN));

if (TAKENORMALERRORS==0) printf("nu :\t%f\n",avg[5]/(ITER-BURNIN)) ;

for (i=1; i<=NCOVX; i++) printf("betald :\t%f\n",i-1,avg[6+i]/(ITER-BURNIN));
for (i=1; i<=NCOVZ; i++) printf("alpha%d:\t%f\n",i,avgalphali]/(ITER-BURNIN));
printf ("\nAverage of acceptance probabilities:\n");

printf ("theta:\t%f\n",avg[4]/(ITER-BURNIN));

if (TAKENORMALERRORS==0) printf("nu :\t%f\n",avg[6]/(ITER-BURNIN)) ;

printf ("\n");

fclose(stream) ;



158 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

void Hesse(unsigned int n, double griddist,
double x1, double x2, double x3, double x4, double x5,
double x6, double x7, double x8, double x9, double x10)

int 1i,j,k;

double x[11], x1[11], xr[11], xlol[11], xrol[11], xlul11], xrull1];
double xx, xxr, xx1l, xxro, xxlo, xxru, xxlu;

x[1]=x1; x[2]=x2; x[3]=x3; x[4]=x4; x[5]=x5;

x[6]1=x6; x[7]=x7; x[8]=x8; x[9]=x9; x[10]=x10;

for (i=1; i<=n; i++) for (k=1; k<=n; k++) HESSE[i] [k]=0.00000;
xx = func(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10);

// Compute diagonal of matrix
for (i=1; i<=n; i++)

{
for (k=1; k<=n; k++) x1[k] = x[k];
for (k=1; k<=n; k++) xr[k] = x[k];
x1[i] = x[i] - griddist;
xr[i] = x[i] + griddist;
xx1 = func(x1[1],x1[2],x1[3],x1[4],x1[5]1,x1[6],x1(7]1,x1[(8],x1[9]1,x1[10]);
xxr = func(xrl1],xr[2],xr[3],xr(4],xr[5],xr[6],xr(7],xr(8],xr[9],xr[10]);
HESSE[i] [i] = (xxr-2*xx+xxl)/(griddist*griddist);
}
for (i=1; i<=n; i++)
{
for (j=1; j<=n; j++)
if (jr=i)
{
for (k=1; k<=n; k++) xlo[k] = x[k];
for (k=1; k<=n; k++) xrol[k] = x[k];
for (k=1; k<=n; k++) xlulk] = x[k];
for (k=1; k<=n; k++) xrulk] = x[k];
xlo[i] = xlo[i]-griddist;
xlo[j] = xlo[jl+griddist;
xro[i] = xro[il+griddist;
xro[j] = xro[jl+griddist;
x1luli] = xlul[il-griddist;
x1lulj] = xlul[jl-griddist;
xruli] = xrulil+griddist;
xrulj] = xrul[jl-griddist;
xxro = func(xro[1], xro[2], xrol[3], xro[4], xro[5],
xro[6], xro[7], xro[8], xro[9], xro[10]);
xxlo = func(xlol[1], xlo[2], xlol3], xlol[4], xlol[5],
xlo[6], xlol[7], x1lo[8], x1o[9], x1lo[10]);
xxru = func(xrull]l, xrul2], xrul3], xrul4], xrul5],
xrul6], xrul7], xrul8], xrul9], xrul10]);
xxlu = func(xlul[1], x1u[2], x1ul[3], x1u[4], x1lul5],
x1ul[6], x1ul[7], x1ul[8], x1ul[9], x1ul[10]);
HESSE[i] [j] = (xxro-xxlo-xxru+xxlu)/(4*griddist*griddist);
HESSE[j1[i] = HESSE[il[j];
}
}
}



159

double func(double x1, double x2, double x3, double x4, double x5,
double x6, double x7, double x8, double x9, double x10) // MinusLogG

{

int k,t;

double result
double intert

int alphajoutofbounds=0;

double muF
double phiF

double sigmalF

= 0.000000;
= 0.000000;
double intertml= 0.000000;

= x1;
X2;

double alpha[10];

if
if
if
if
if
if

for (k=1; k<=NCOVZ; k++)

double sigma2F =

(NCOVZ>0)
(NCOVZ>1)
(NCOVZ>2)
(NCOVZ>3)
(NCOVZ>4)
(NCOVZ>5)

alphal1]
alphal2]
alphal3]
alphal4]
alphal5]
alphal[6]

mufix;

x3;
x4;
x5;

= x6;

x7;

= x8;

if (alphalk]<-ALPHABOUND || alphalk]>ALPHABOUND) alphajoutofbounds=1;

double phi2F

sigmalF*sigmalF;
phiF*phiF;

if (sigmalF<0.001 || sigmalF>SIGMABOUND ||

phiF>=0.999 || phiF<=-0.999 || alphajoutofbounds==1)
return (1000000000) ;
else

{

}

htt[0]= muF;
ptt[0]= sigma2F/(1.00000-phi2F);

for (t=1; t<=TTTT; t++)

{

intert

{

= 0.00000;

for (k=1; k<=NCOVZ; k++) intert += alphalk]*Z(t,k);
intertml = 0.00000;

if (USECHANGEDHTEQUATION==1)

if (t>1) for (k=1; k<=NCOVZ; k++) intertml += alphalk]*Z(t-1,k);

3

httmi[t]
pttml[t]

fttml[t]

kt[t]
htt[t]
ptt[t]

result

}

muF + intert + phiF*(htt[t-1]-muF-intertml);
phi2F*ptt[t-1] + sigmalF;

= pttml[t] + sigmaZmix[sest[t]];

= pttmi[t]/fttml[t];
= httmi[t] + kt[t]*(YAST[t]-mumix[sest[t]]-httmi[t]);
= (1-kt[t])*pttmi[t];

= result - log(fttmi[t]) - (YAST[t]-mumix[sest[t]]-httml[t])*

(YAST[t]-mumix[sest[t]]-httmi[t])/fttml[t];

return (-0.50000*result) ;



160 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

Vo

{

id simu(double mu, double phi, double sigmal)

int t,i,k;

double x0 = 0.00000;
double zO = 0.00000;
double inter = 0.00000;
double interz = 0.00000;
double interzml = 0.00000;

FILE *streamY;
streamY = fopen(procSIMlatent,"w+");

FILE *xde;
FILE *zde;
double f11,f12,f13,f14;

// read given (simulated or real) files with covariates
xde = fopen(desgX,"r");
for (i=1; i<=TTTT; i++)

{
for (k=1; k<NCOVX; k++)
{
fscanf (xde,"%1f\t",&f11);
if (k==1) X(i,k)=1.000000;
else X(i,k)=f11;
}
fscanf (xde,"%1f\n",&f11);
X(i,NCOVX)=f11;
}
fclose(xde);

zde = fopen(desgZ,"r");
for (i=1; i<=TTTT; i++)
{
for (k=1; k<NCOVZ; k++)
{
fscanf (zde,"%1f\t",&f13);
Z(i,k)=£f13;
}
fscanf (zde,"%1f\n",&f13);
Z(i,NCOVZ)=£f13;
}

fclose(zde);

// copy the true beta’s in vector BETA

BETA(1,1)=SIMUBETAO; BETA(2,1)=SIMUBETA1; BETA(3,1)=SIMUBETA2;
BETA(4,1)=SIMUBETA3; BETA(5,1)=SIMUBETA4; BETA(6,1)=SIMUBETAS5;
BETA(7,1)=SIMUBETA6; BETA(8,1)=SIMUBETA7; BETA(9,1)=SIMUBETAS;
BETA(10,1)=SIMUBETA9;

// copy the true alpha’s in vector ALPHA
ALPHA(1,1)=SIMUALPHA1; ALPHA(2,1)=SIMUALPHA2; ALPHA(3,1)=SIMUALPHA3;
ALPHA(4,1)=SIMUALPHA4; ALPHA(5,1)=SIMUALPHA5; ALPHA(6,1)=SIMUALPHA6;

// copy the true cutpoints in vector ALPHA
CP[1]=SIMUCUTP1; CP[2]=SIMUCUTP2; CP[3]=SIMUCUTP3;



161

CP[4]=SIMUCUTP4; CP[5]=SIMUCUTP5; CP[6]=SIMUCUTP6;

// generate the needed random variables

for (t=1; t<=TTTT; t++) NORMAL[t]=normal(0.00000,sigmal);

for (t=1; t<=TTTT; t++) U[t] =normal(0,1);

for (t=1; t<=TTTT; t++) LAMBDA[t]=rand_gamma(DFDF/2,DFDF/2);

if (TAKENORMALERRORS==1) for (t=1; t<=TTTT; t++) LAMBDA[t]=1.00000;

// generate process

H[0]=mu;

for (t=1; t<=TTTT; t++)

{
// compute the covariates’ impact at time t
inter=0.00000;
if (USEPSEUDOAUTOREGR==1)

{
if (t==1) X(t,2)=4.00000;
else X(t,2)=(double) YOBS[t-1];
}
for (i=1; i<=NCOVX; i++) inter += BETA(i,1) *X(t,i);
interz=0.00000;
for (i=1; i<=NCOVZ; i++) interz 4= ALPHA(i,1)*Z(t,1i);

interzml = 0.00000;
if (USECHANGEDHTEQUATION==1)
{

}

if (t>1) for (i=1; i<=NCOVZ; i++) interzml += ALPHA(i,1)*Z(t-1,1i);

// compute H[t] and Y[t] at time t
H[t] = mu + interz + phi*(H[t-1]-mu-interzml) + NORMAL[t];
Y[t] = inter + exp(0.5000%H[t]) * U[t] * sqrt(LAMBDA[t]);

if (Y[t]1<CP[1]) YOBS[tl=1;
else
if (Y[t]l<CP[2] || NNCP==1) YOBS[t]=2;
else
if (Y[t]<CP[3] || NNCP==2) YOBS[t]=3;
else
if (Y[t]<CP[4] || NNCP==3) YOBS[t]=4;
else
if (Y[tI<CP[5] || NNCP==4) YOBS[t]=5;
else
if (Y[t]l<CP[6] || NNCP==5) YOBS[t]=6;
else YOBS[t]=7;

if (t<10 && CONTROLONSCREEN==1)
printf ("H[%d]: %f \t impact of alpha: %f \n",t,H[t],interz);
fprintf (streamY,"%f \t %d \n",Y[t],YOBS[t]);
}

fclose(streamV) ;

}

double impactX(unsigned int t)
{
int i;
double inter=0.000000;
if (NCOVX==0) return 0.000000;
else



162 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

{
for (i=1; i<=NCOVX; i++) inter+=BETAest(i,1)*X(t,i);
return inter;
}
}
T
void draw_CP(void)
{
int i,t;
double 1left=0.000000, right=0.000000;
for (i=2; i<=NNCP; i++)
{
left = CPest[i-11;
if (i<NNCP) right = CPest[i+1]; else right=1000.0;
for (t=1; t<=TTTT; t++)
{
if (YOBS[t]==i) if (Yest[t]>left) 1left = Yest[t];
if (YOBS[t]l==i+1) if (Yest[t]l<right) right = Yest[t];
}
CPest[i]=uniform(left,right);
if (CONTROLONSCREEN==1)
printf ("CPest[%d] = %f \t left = %f \t right = %f \n",
i,CPest[i],left,right);
}
}
/=== o
void draw_Y(void)
{
unsigned int k,t;
double interb=0.000000;
for (t=1; t<=TTTT; t++)
{
interb=0.000000;
for (k=1; k<=NCOVX; k++) interb += BETAest(k,1)*X(t,k);
switch (YOBS[t])
{
case 1: Yest[t] = rs_trunc_normal( 0.00000, interb,
sqrt (exp(Hest[t])/LAMBDAest[t])); break;
case 2: Yest[t] = ds_trunc_normal(0.00000, CPest[2],interb,
sqrt (exp(Hest[t])/LAMBDAest[t])); break;
case 3: Yest[t] = ds_trunc_normal(CPest[2],CPest[3],interb,
sqrt (exp(Hest [t])/LAMBDAest[t])); break;
case 4: Yest[t] = ds_trunc_normal (CPest[3],CPest[4],interb,
sqrt (exp(Hest[t])/LAMBDAest[t])); break;
case 5: Yest[t] = ds_trunc_normal(CPest[4],CPest[5],interb,
sqrt (exp(Hest[t])/LAMBDAest[t])); break;
case 6: Yest[t] = ds_trunc_normal(CPest[5],CPest[6],interb,
sqrt (exp(Hest [t])/LAMBDAest[t])); break;
case 7: Yest[t] = ls_trunc_normal (CPest[6], interb,
sqrt (exp(Hest [t])/LAMBDAest[t])); break;
}
}
}



163

void draw_BETA(void)
{
unsigned int i,k,t;
double d1=0.00000,d2=0.00000;

for (i=1; i<=NCOVX; i++) for (k=1; k<=NCOVX; k++) INTER1(i,k)=0.00000;
for (i=1; i<=NCOVX; i++) for (k=1; k<=NCOVX; k++) INTER2(i,k)=0.00000;
for (i=1; i<=NCOVX; i++) for (k=1; k<=NCOVX; k++) INTER3(i,k)=0.00000;
for (i=1; i<=NCOVX; i++) INTER4(i,1)=0.00000;

for (t=1; t<=TTTT; t++)

{
XT = (X.tmat2(t,1,t,NCOVX)) .transpQ);
INTER2 = XT*XT.transp();
d1 = LAMBDAest [t]/exp(Hest[t]);
INTER3 INTER3 + d1*INTER2;

d2
INTER4

Yest [t]*d1;
INTER4 + d2#*XT;

}
INTER3 = INTER3 + (1.00000/BETAVARIANCE)=*UNIT;
// INTER 3 is just the matrix B now

INTER3INV
INTERS

INTER3. invertPosDef () ;
INTER3INV*INTER4;

BETAest mvnormal (INTER5, INTER3INV) ;

for (i=1; i<=NCOVX; i++) minhist[6+i] [ACTUALITER]=BETAest(i,1);

void draw_nu(void)

{
unsigned int nnu,nustep,k,t;
double dens[130];
unsigned int expo[130];
unsigned int maxfound=0;
unsigned int proposal=150;
double aa,bb,vv;
double ffrac1=0.000000;
double ffrac2=0.000000;
int ediff=0;

double result=1.00000;
double resultold=1.00000;
double resultnew=1.00000;

// find approximate argmax for target demnsity
nnu=64;
nustep=32;

result=1.000000;
dens[nnu]=0.000000;
expo [nnul=0;

for (t=1; t<=TTTT; t++)
{



164

}

APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

result*=dstudent (Yest [t] ,nnu, impactX(t) ,exp(0.500000*Hest [t]));
// avoiding too small or too big results

if (result<0.0100000) { result*=100.00000; expo[nnul+=2; }

if (result>100.00000) { result/=100.00000; expo[nnul-=2; }

dens[nnu]=result;

while (maxfound==0)

{

}

result=1.000000;
dens [nnu-nustep]=0.000000;
expo [nnu-nustep]=0;

for (t=1; t<=TTTT; t++)

{
result*=dstudent (Yest[t] ,nnu-nustep, impactX(t),exp(0.500000*Hest [t]));
// avoiding too small or too big results
if (result<0.0100000) { result*=100.00000; expo[nnu-nustep]+=2; }
if (result>100.00000) { result/=100.00000; expo[nnu-nustep]-=2; }
}

dens [nnu-nustep]=result;

result=1.000000;
dens [nnu+nustep]=0.000000;
expo [nnu+nustep]=0;

for (t=1; t<=TTTT; t++)

{
result*=dstudent (Yest[t] ,nnu+nustep,impactX(t),exp(0.500000*Hest [t]));
// avoiding too small or too big results
if (result<0.0100000) { result*=100.00000; expo[nnutnustep]+=2; }
if (result>100.00000) { result/=100.00000; expo[nnutnustep]-=2; }
}

dens [nnu+nustep]=result;

if (expo[nnu+nustepl<expo[nnu] ||
(expo [nnu+nustep]l==expo[nnu] && dens[nnu+nustep]>dens[nnul])) nnut+=nustep;
else
if (expo[nnu-nustepl<expo[nnu] ||
(expo[nnu-nustep]==expo[nnu] && dens[nnu-nustep]>dens[nnu])) nnu-=nustep;

if (nustep==1) maxfound=nnu;
else nustep/=2;

if (CONTROLONSCREEN==1) printf ("maxfound=%d\n" ,maxfound) ;

// use discretized gamma distr. with truncation to 0.5 - 127.5 as proposal density

while (proposal>127 || proposal<1l)
{

}

vv=0.2*maxfound*maxfound;

if (maxfound<30) vv=0.10*maxfound*maxfound;

if (maxfound<10) vv=0.05*maxfound*maxfound;
bb=maxfound/ (2*vv)+sqrt (maxfound*maxfound+4*vv) /2/vv;
aa=bbx*xbb*vv;

// mode of this gamma distribution is now maxfound
proposal = (int) floor(rand_gamma(aa,bb)+0.50000) ;

// accept or not?
// compute posterior(proposal)/posterior(nuest)



165

expo [nuest]=0;
resultold=1.000000;

for (t=1; t<=TTTT; t++)

{
resultold*=dstudent (Yest[t],nuest,impactX(t),exp(0.500000%Hest [t]));
// avoiding too small or too big results
if (resultold<0.0100000) { resultold*=100.00000; expol[nuest]+=2; }
if (resultold>100.00000) { resultold/=100.00000; expo[nuest]-=2; }

}

expo [proposall=0;
resultnew=1.000000;

for (t=1; t<=TTTT; t++)

{
resultnewx=dstudent (Yest[t],proposal, impactX(t),exp(0.500000*Hest [t]));
// avoiding too small or too big results
if (resultnew<0.0100000) { resultnew*=100.00000; expol[proposall+=2; }
if (resultnew>100.00000) { resultnew/=100.00000; expol[proposall-=2; }

}

ediff=expo[nuest]-expo[proposall;
ffracl=resultnew/resultold;

if (ediff<0) for (k=0; k<-ediff; k+=2) ffracl*=0.010000;
if (ediff>0) for (k=0; k<ediff; k+=2) ffracl*=100.0000;

// compute proposal-density(nuest)/proposal-density(proposal)
// via Newton-Cotes-formula
ffrac2=unddisgamma(nuest,aa,bb)/unddisgamma (proposal,aa,bb);
// via linear approximation

// ffrac2=pow(1.00000*nuest/(1.00000*proposal) ,aa-1)*

// exp (bb* (-1.00000*nuest+1.00000*proposal)) ;

// compute acceptance probability
accnu=minimum(1.00000,ffraci*ffrac2);

if (CONTROLONSCREEN==1)

{
printf ("resultold=%f; expo=)d; nuest =J%d\n",resultold,expo[nuest],nuest);
printf ("resultnew=Jf; expo=}d; proposal=%d\n",
resultnew,expo [proposal] ,proposal) ;
printf ("aa=%f\n",aa);
printf ("bb=%£f\n",bb);
printf ("ffracl=Yf\n",ffracl);
printf ("ffrac2=Yf\n",ffrac2);
}

if (uniform(0,1)<=accnu) nuest=proposal;
else nuest=nuest;
if (CONTROLONSCREEN==1)
printf ("accept proposal with prob=)f; nuest=/,d\n",accnu,nuest);

if (ACTUALITER<=NUDRAWSTART) nuest=NUSTART;

void draw_LAMBDA(void)



166 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

{

unsigned int t;

for (t=1; t<=TTTT; t++)

LAMBDAest [t]=rand_gamma (0.50000% (nuest+1.00000) ,
0.50000* (nuest+(Yest[t]-impactX(t))*
(Yest[t]-impactX(t))/exp(Hest[t])));

}
J e R R S

void draw_H(void)

{
int k,t;
double intert = 0.000000;
double intertml= 0.000000;

double muF = mufix;
double phiF = THETA(1,1);
double sigmalF = THETA(2,1);

unsigned int counter=0;

double alpha[10];

if (NCOVZ>0) alphal[1] = THETA(3,1);
if (NCOVZ>1) alphal[2] = THETA(4,1);
if (NCOVZ>2) alphal[3] = THETA(5,1);
if (NCOVZ>3) alphal[4] = THETA(6,1);
if (NCOVZ>4) alphal[5] = THETA(7,1);
if (NCOVZ>5) alphal[6] = THETA(8,1);
double sigma2F = sigmalF*sigmalF;
double phi2F = phiFx*phiF;

htt[0]= muF;
ptt[0]= sigma2F/(1.00000-phi2F) ;

for (t=1; t<=TTTT; t++)

{
intert = 0.00000;
for (k=1; k<=NCOVZ; k++) intert += alphalk]*Z(t,k);
intertml = 0.00000;
if (USECHANGEDHTEQUATION==1)
{
if (t>1) for (k=1; k<=NCOVZ; k++) intertml += alphalk]*Z(t-1,k);
}
httmi[t] = muF + intert + phiFx*(htt[t-1]-muF-intertml);
pttmi[t] = phi2F*ptt[t-1] + sigmalF;
fttmi[t] = pttml[t]+sigmaZmix[sest[t]];
kt[t] = pttml[t]/fttmi[t];
htt[t] = httm1[t]+kt[t]* (YAST[t]-mumix[sest[t]]-httml[t]);
pttlt] = (1-kt[t])*pttmil[t];
et[t] = YAST[t]-mumix[sest[t]]-httml[t];
}

// now all e_t’s, fttml_t’s, and k_t’s are known

rt [TTTT]=0.00000;
ut [TTTT]=0.00000;



167

counter=0;

for (t=TTTT; t>=1; t--)

{
nt[t] = 1.00000/fttm1[t] + phiF*phiF*kt[t]*kt[t]*ut[t];
dt[t] = et[t]/fttm1[t] - rt[t]*phiF*kt[t];
ct[t] = sigmaZmix[sest[t]] - sigma2mix[sest[t]]*sigma2mix[sest[t]]*nt[t];
if (ct[t]>=0.00000) zetat[t] = normal(0.00000,sqrt(ct[t]));
else
{
zetat[t] = 0.00000;
counter++;
}
bt [t] = sigma2mix[sest[t]]*( nt[t] - phiF*phiFx*kt[t]*ut[t]);
rt[t-1] = et[t]/fttm1[t] + (phiF - phiF*kt[t])*rt[t] - bt[t]l*zetat[t]/ct[t];
ut[t-1] = 1.00000/fttm1[t] + (phiF - phiF*kt[t])*(phiF - phiF*kt[t])*ut[t] +
bt [t]*bt[t]/ct[t];
Hest[t] = YAST[t] - mumix[sest[t]] - sigmaZmix[sest[t]]*dt[t] - zetat[t];
if (Hest[t]<-20)
{
Hest [t]=-20;
if (CONTROLONSCREEN==1) printf("H[%d] set to -20\n",t);
}
if (Hest[t]> 5)
{
Hest[t]=5;
if (CONTROLONSCREEN==1) printf("H[%d] set to 5\n",t);
}
}
if (CONTROLONSCREEN==1) printf("zetal[t]-corrections: %d \n",counter);
}
== -

void draw_s(void)
{
int t;
double unifrandoms [TTTT+2];
double punnorml, punnorm2, punnorm3, punnorm4, punnormb, punnorm6, punnorm7, SsS;

for (t=1; t<=TTTT; t++)
YAST[t] = log((Yest[t]-impactX(t))*(Yest[t]-impactX(t))) + log(LAMBDAest[t]);

for (t=1; t<=TTTT; t++) unifrandoms[t]=uniform(0.0000,1.0000);

for (t=1; t<=TTTT; t++)

{
punnorml = 0.00730*dnorm(YAST[t] ,Hest[t]-11.40039,2.40748);
punnorm2 = 0.10556*dnorm(YAST[t],Hest[t]- 5.24321,1.61669);
punnorm3 = 0.00002*dnorm(YAST[t] ,Hest[t]- 9.83726,2.27585);
punnorm4 = 0.04395*%dnorm(YAST[t],Hest[t]+ 1.50746,0.40908);
punnormb = 0.34001*dnorm(YAST[t],Hest[t]- 0.65098,0.80006) ;
punnormé = 0.24566*dnorm(YAST[t] ,Hest[t]+ 0.52478,0.58329);
punnorm7 = 0.25750*dnorm(YAST[t] ,Hest[t]- 2.35859,1.12366);



168 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

ss = punnorml+punnorm2+punnorm3+punnorm4+punnormb+punnormé+punnorm? ;

if (unifrandoms[t]>(punnorml+punnorm2+punnorm3+punnorm4+punnormb+punnormé) /ss)

sest[t]=7;
else
if (unifrandoms[t]>(punnorml+punnorm2+punnorm3+punnorm4+punnorms)/ss)
sest[t]=6;
else
if (unifrandoms[t]>(punnorml+punnorm2+punnorm3+punnormé)/ss) sest[t]=5;
else
if (unifrandoms[t]>(punnorml+punnorm2+punnorm3)/ss) sest[t]=4;
else
if (unifrandoms[t]>(punnorml+punnorm?)/ss) sest[t]=3;
else

if (unifrandoms[t]>punnormi/ss) sest[t]=2;
else sest[t]=1;

void neldermead(unsigned int n, double xstartl, double xstart2, double xstart3,
double xstart4, double xstartb, double xstart6, double xstart7,
double xstart8, double xstart9, double xstartiO,
unsigned int steps, double precision, unsigned int viewsteps)

double rho=1.00000, chi=2.00000, gamma=0.50000, sigma=0.50000;

double x[12], xx[12][13], xorder[12][13], xbar[12];
double xreflect[12], xexpand[12], xc[12], xcc[12];
double f[12], freflect, fexpand, fc, fcc, fchange;
unsigned int shrink=0,1i,k, j,ochange;
unsigned int order[12];
unsigned int iter=0;
double ninv;
switch (n)
{
case
case
case

1: ninv=1.0000000; break;
2: ninv=0.5000000; break;
3: ninv=0.3333333; break;
case 4: ninv=0.2500000; break;
case 5: ninv=0.2000000; break;
case 6: ninv=0.1666667; break;
case 7: ninv=0.1428571; break;
case 8: ninv=0.1250000; break;
case 9: ninv=0.1111111; break;
0: ninv=0.1000000; break;

// start vertices
for (i=1; i<=n+1; i++)

{

switch (n)

{
case 10: xorder[10] [i]l=xstart10;
case 9: xorder[ 9][i]l=xstart9;
case 8: xorder[ 8][i]=xstart8;
case 7: xorder[ 7][i]=xstartT7;
case 6: xorder[ 6][i]=xstart6;



case
case
case
case
case

}

: xorder[ 5] [i]=xstart5h;
: xorder[ 4] [i]l=xstart4;
: xorder[ 3][i]=xstart3;
: xorder[ 2] [i]=xstart2;
: xorder[ 1] [i]=xstarti;

=N W O

for (i=1; i<=n; i++) xorder[i][il=xorder[i][i]+0.1;

switch (n)

{

case

case

case

case

case

case

case

case

case

case 10:

1:

for (k=1; k<=2; k++)
f [k]=func(xorder[1][k]);
break;

: for (k=1; k<=3; k++)

f [k]=func(xorder[1] [k] ,xorder[2] [k]);
break;

: for (k=1; k<=4; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k]);
break;

: for (k=1; k<=5; k++)

f[k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k]) ;
break;

: for (k=1; k<=6; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k],
xorder [5] [k]);
break;

: for (k=1; k<=T; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k],
xorder [5] [k] ,xorder [6] [k]) ;
break;

: for (k=1; k<=8; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k],
xorder [5] [k] ,xorder[6] [k] ,xorder[7] [k]) ;
break;

: for (k=1; k<=9; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k],
xorder [5] [k] ,xorder[6] [k] ,xorder[7] [k],xorder[8][k]);
break;

: for (k=1; k<=10; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k],
xorder [5] [k] ,xorder[6] [k] ,xorder[7] [k],xorder[8] [k],
xorder [9] [k]);

break;
for (k=1; k<=11; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k] ,xorder[4] [k],
xorder [5] [k] ,xorder[6] [k] ,xorder[7] [k] ,xorder[8] [k],
xorder [9] [k] ,xorder[10] [k]);

break;

if (viewsteps==1)

printf ("Opti-Step: %d \t Values of f: ", iter);
for (k=1; k<=n+1; k++) printf("%f ", £[k1);
printf("\n");

}

for (i=1; i<=n+1; i++) order[i]=i;
for (k=1; k<=n+1; k++)

169



170

}

APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

for (j=1; j<=n; j++)

if (F[j+11<£05D)
{
fchange=f[j+1]; f[j+11=£[j]; f[jl=fchange;
ochange=order[j+1]; order[j+1]=order[j]; order[j]=ochange;
}
}

for (k=1; k<=n+1; k++) for (i=1; i<=n; i++) xx[i][k]=xorder[i][order[k]];
for (k=1; k<=n+1; k++) for (i=1; i<=n; i++) xorder[i][k]l=xx[i][k];

if (viewsteps==1)

{

}

for (k=1; k<=n; k++)

{
printf ("XORDER: ") ;
for (i=1; i<=n; i++) printf("%f ",xorder[k][i]);
printf("\n");

}

while (iter<steps && fabs((f[n+1]1-f[1])/f[n+1])>precision)

{

iter++;

if (viewsteps==1)

{
printf ("Opti-Step: %d \t Values of f: ", iter);
for (k=1; k<=n+1; k++) printf("%f ", f[kl);
printf("\n");

}

// REFLECT

for (i=1; i<=n; i++)

{
xbar[i]=0.0000000;
for (k=1; k<=n; k++) xbarl[il=xbar[il+xorder[i][k];
xbar [i]l=ninv*xbar[i];

}
//printf ("Values of xbar: %f %f %f \n", xbar[1], xbar[2], xbar[3]);

for (i=1; i<=n; i++) xreflect[i]=(1.00000+rho)*xbar[i]-rho*xorder[i] [n+1];

switch (n)
{
case 1: freflect=func(xreflect[1]); break;
case 2: freflect=func(xreflect[1],xreflect[2]); break;
case 3: freflect=func(xreflectl[1],xreflect[2],xreflect[3]); break;
case 4: freflect=func(xreflectl[1],xreflect[2],xreflect[3],xreflect[4]);
break;
case b5: freflect=func(xreflect[1],xreflect[2],xreflect[3],xreflect[4],
xreflect[5]);
break;

case 6: freflect=func(xreflect[1],xreflect[2],xreflect[3],xreflect[4],
xreflect[5],xreflect[6]);
break;
case 7: freflect=func(xreflect[1],xreflect[2],xreflect[3],xreflect[4],
xreflect[5] ,xreflect[6],xreflect[7]);
break;



171

case 8: freflect=func(xreflect[1],xreflect[2],xreflect[3],xreflectl[4],
xreflect[5],xreflect[6],xreflect[7],xreflect[8]);
break;
case 9: freflect=func(xreflect[1],xreflect[2],xreflect[3],xreflect[4],
xreflect[5],xreflect[6],xreflect[7],xreflect[8],
xreflect[9]);
break;
case 10: freflect=func(xreflect[1],xreflect[2],xreflect[3],xreflect[4],
xreflect[5],xreflect[6],xreflect[7],xreflect[8],
xreflect[9],xreflect[10]);
break;

}

//printf ("freflect: %f \n",freflect);

if (f[1]l<=freflect && freflect<f[n])

{
//accept
for (i=1; i<=n; i++) { xorder[i] [n+1]=xreflect[i]; fln+1]l=freflect; }
if (viewsteps==1) printf ("REFLECT 1\n");

}

else

{

if (freflect<f[1]) // EXPAND
{
for (i=1; i<=n; i++)
xexpand [1]=(1.00000+rho*chi)*xbar[i]-rho*chi*xorder[i] [n+1];

switch (n)
{
case 1: fexpand=func(xexpand[1]); break;
case 2: fexpand=func(xexpand[1],xexpand[2]); break;
case 3: fexpand=func(xexpand[1],xexpand[2],xexpand[3]); break;
case 4: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4]);
break;
case b5: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4],
xexpand[5]);
break;

case 6: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4],
xexpand [5] ,xexpand[6]) ;
break;
case 7: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4],
xexpand[5] ,xexpand[6] ,xexpand[7]) ;
break;
case 8: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4],
xexpand [5] ,xexpand[6] ,xexpand[7],xexpand[8]) ;
break;
case 9: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4],
xexpand[5] ,xexpand[6] ,xexpand[7] ,xexpand[8],
xexpand[9]);
break;
case 10: fexpand=func(xexpand[1],xexpand[2],xexpand[3],xexpand[4],
xexpand [5] ,xexpand[6] ,xexpand[7],xexpand[8],
xexpand [9] ,xexpand[10]) ;
break;

if (fexpand<freflect)

//accept xexpand



172 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

for (i=1; i<=n; i++) { xorder[i] [n+1]=xexpand[i]; f[n+1]=fexpand; 3}
if (viewsteps==1) printf ("EXPAND\n");

}
else
{
//accept xreflect
for (i=1; i<=n; i++) { xorder[i][n+1]=xreflect[i]; f[n+1]=freflect; }
if (viewsteps==1) printf ("REFLECT 2\n");
}
}
else // (freflect>=f[n]) // OUTSIDE CONTRACTION
{
if (freflect<f[n+1])
{
for (i=1; i<=n; i++)
xc[1]=(1.00000+rho*gamma) *xbar [i] -rho*gamma*xorder [i] [n+1];
switch (n)
{
case 1: fc=func(xc[1]); break;
case 2: fc=func(xc[1],xc[2]); break;
case 3: fc=func(xc[1],xc[2],xc[3]); break;
case 4: fc=func(xc[1],xc[2],xc[3],xc[4]); break;
case b5: fc=func(xc[1],xc[2],xc[3],xc[4],xc[5]); break;
case 6: fc=func(xc[1],xc[2],xc[3],xc[4],xc[5],xc[6]); break;
case 7: fc=func(xc[1],xc[2],xc[3],xc[4],xc[5],xc[6],xc[7]); break;
case 8: fc=func(xcl[1],xc[2],xc[3],xc[4],xc[5],xc[6],xc[7],xc[8]);
break;
case 9: fc=func(xc[1],xc[2],xc[3],xc[4],xc[5],xc[6],xc[7],xc[8],
xc[9]1);
break;
case 10: fc=func(xcl[1],xc[2],xc[3],xc[4],xc[5],xc[6],xc[7],xc[8],
xc[9],xc[10]); break;
}
if (fc<=freflect)
{
//accept xc
for (i=1; i<=n; i++) { xorder[i] [n+1]l=xc[il; f[n+1]=fc; }
if (viewsteps==1) printf("OUT CONTRACTION\n");
}
else shrink=1;
}

else // INSIDE CONTRACTION

{

for (i=1; i<=n; i++)
xcc[1]=(1.00000-gamma) *xbar [i] +gamma*xorder [i] [n+1];

switch (n)
{
case 1: fcc=func(xcc[1]); break;
case 2: fcc=func(xcc[1],xcc[2]); break;
case 3: fcc=func(xcc[1],xcc[2],xcc[3]); break;
case 4: fcc=func(xccl[1],xcc[2],xcc[3],xcc[4]); break;
case b5: fcc=func(xcc[1],xcc[2],xcc[3],xcc[4],xcc[5]); break;
case 6: fcc=func(xccl[1],xccl[2],xccl3],xccl[4],xcc[5],xccl6]);
break;
case 7: fcc=func(xccl[1],xcc[2],xccl3],xccl[4],xcc[5],xccl6],
xccl[7]);
break;

case 8: fcc=func(xcc[1],xcc[2],xcc[3],xcc[4],xcc[5],xcc[6],



}

if (shrink==1)

{

}

xcc[7],xccl[8]);
break;

case 9: fcc=func(xccl[1],xcc[2],xccl3],xccl[4],xcc[5],xccl6],

xcc[7],xcc[8],xcc[9]);
break;

case 10: fcc=func(xcc[1],xcc[2],xcc[3],xcc[4],xcc[5],xcc[6],

xcc[7],xcc[8],xcc[9],xcc[10]);
break;

if (fcc<f[n+1])

{

}

//accept xcc
for (i=1; i<=n; i++) { xorder[i] [n+1]l=xcclil; fln+1]=fcc; }
if (viewsteps==1) printf("INS CONTRACTION\n");

else

}

shrink=0;

shrink=1;

// SHRINK STEP

if (viewsteps==1) printf ("SHRINK\n");

for (k=2; k<=n+1; k++)
for (i=1; i<=n; i++)
xorder[i] [k]=(1.00000-sigma)*xorder [i] [1]+sigma*xorder[i] [k];

// ORDER

switch (n)

{

case

case

case

case

case

case

case

case

1:

for (k=2; k<=2; k++)
f [k]=func(xorder[1]1[k]);
break;

: for (k=2; k<=3; k++)

f [k]=func(xorder[1] [k] ,xorder[2] [k]);
break;

: for (k=2; k<=4; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k]);
break;

: for (k=2; k<=5; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k]);
break;

: for (k=2; k<=6; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k]);
break;

: for (k=2; k<=7; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k]);
break;

: for (k=2; k<=8; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder [6] [k],
xorder [7] [k]);

break;

: for (k=2; k<=9; k++)

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k],
xorder [7] [k] ,xorder [8] [k]);

173



174 APPENDIX C. GM-MGMC SAMPLER FOR OSV AND OSV'T MODEL

break;
case 9: for (k=2; k<=10; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder [6] [k],
xorder [7] [k] ,xorder [8] [k] ,xorder[9] [k]) ;
break;
case 10: for (k=2; k<=11; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k],
xorder [7] [k] ,xorder [8] [k] ,xorder [9] [k],
xorder[10] [k]);
break;

}

for (i=1; i<=n+1; i++) order[il=i;
for (k=1; k<=n+1; k++)
{

for (j=1; j<=n; j++)

if (£[j+11<£[30)
{
fchange=f[j+1]; flj+11=£[j]1; f[jl=fchange;
ochange=order[j+1]; order[j+1]=order[j]; order[j]l=ochange;
}
}
}
for (k=1; k<=n+1; k++) for (i=1; i<=n; i++) =xx[i][k]I=xorder[i][order[k]];
for (k=1; k<=n+1; k++) for (i=1; i<=n; i++) <xorder[i] [k]=xx[i][k];
}
else
{
// ORDER
switch (n)
{
case 1: for (k=2; k<=2; k++)
f [k]=func(xorder[1][k]);
break;
case 2: for (k=2; k<=3; k++)
f [k]=func(xorder[1] [k],xorder[2] [k]);
break;
case 3: for (k=2; k<=4; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k]);
break;
case 4: for (k=2; k<=5; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k]) ;
break;
case b5: for (k=2; k<=6; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k]);
break;
case 6: for (k=2; k<=7; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k]) ;
break;
case 7: for (k=2; k<=8; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k],
xorder [7] [k]);
break;
case 8: for (k=2; k<=9; k++)



}

175

f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k],
xorder [7] [k] ,xorder [8] [k]);
break;
case 9: for (k=2; k<=10; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder[6] [k],
xorder [7] [k] ,xorder [8] [k] ,xorder[9] [k]);
break;
case 10: for (k=2; k<=11; k++)
f [k]=func(xorder[1] [k],xorder[2] [k] ,xorder[3] [k],
xorder [4] [k] ,xorder [5] [k] ,xorder [6] [k],
xorder [7] [k] ,xorder [8] [k] ,xorder[9] [k],
xorder [10] [k]) ;
break;

3

for (i=1; i<=n+1; i++) order[i]=i;
for (k=1; k<=n+1; k++)

{
for (j=1; j<=n; j++)
{
if (F[j+11<£05D)
{
fchange=f[j+1]; fLj+11=£[j]; f[jl=fchange;
ochange=order[j+1]; order[j+1]=order[jl; order[j]l=ochange;
}
}
}

for (k=1; k<=n+1; k++) for (i=1; i<=n; i++) xx[i][k]=xorder[i][order[k]];
for (k=1; k<=n+1; k++) for (i=1; i<=n; i++) =xorder[i][k]l=xx[i][k];

(viewsteps==1)

printf ("actual precision: %f\n",(f[n+1]1-£f[1])/f[n+1]);
printf("based on the values:\n");

printf ("Opti-Step: %d \t Values of f: ", iter);

for (k=1; k<=n+1; k++) printf("%f ", f[kl);
printf("\n");

for (k=1; k<=n; k++) minl[k] = xorderl[k][1];

double minimum(double x, double y)

{

if (x<=y) return x;

else

return y;






Appendix D

Implementation of Procedures for

Random Variables

The following C++ code is the header-file ‘TandomGM.h’ which is used by the programs
in Appendices B and C. It contains functions for random number generation and density

evaluations and must be copied into the same directory as the calling program.

= e
// FILE FOR GENERATION OF RANDOM NUMBERS AND EVALUATION OF DENSITIES

// by GERNOT MUELLER, 2004
T

#ifndef __RANDOM_H
#define __RANDOM_H

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
#include "matrixGM.h"

// set the pseudo random number generator on a random starting position

void randomize(void)

{

time_t t;

srand ((unsigned) time(&t));
X
e R S
// GENERATION OF RANDOM NUMBERS FROM UNIVARIATE DISTRIBUTIONS
-

// draw a random number from the Unif(a,b) distribution

177



178 APPENDIX D. PROCEDURES FOR RANDOM VARIABLES

inline double uniform(double a=0.00000, double b=1.00000)

{

int zufall = 0;

while ((zufall == 0) || (zufall == RAND_MAX)) zufall = rand();

return (double(zufall)/double(RAND_MAX))*(b-a)+a;
}
T

// draw a random number from the N(mu,sigma) distribution
// sigma = standard deviation!

inline double normal(const double & mu=0, const double & sigma=1)
{

double ul = uniform();

double u2 = uniform();

return mu + sigmax(sqrt(-2*log(ul))*sin(6.2831853*u2));

// draw a random number from the Exp(lambda) distribution
inline double rand_expo(double lambda)

{
return (- 1/lambda)*log(uniform());

// draw a random number from the Gamma(a,b) distribution

double rand_gamma(double a,double b)

{
if (a > 1)
{
double hl = a-1; // hl equals b in Devroye (1986)
double h2 = 3%a-0.75; // h2 equals c in Devroye (1986)

double U,V,W,Y,X,Z;
int accept = 0;

do
{
U = uniform();
V = uniform();
W = Ux(1-U);
Y = sqrt(h2/W)*(U-0.5);
X =hl +Y;
if (X > 0)
{
Z = 64xWxWxWxV*V;
if (Z <= (1-(2*Y*Y) /X)) accept = 1;
else
{
if (((X/h1) > 0) && (log(Z) <= ( 2*(hlxlog(X/h1l) - Y)))) accept = 1;
}
}
}
while (accept == 0);
return X/b;
}
else
{
if (a == 1) return rand_expo(b);

else



double X = rand_gamma(a+1,1)*pow(uniform(),1/a);
return X/b;

// draw a random number double-side truncated normal distribution

inline double ds_trunc_normal(const double & left, const double & right,
const double & mu=0, const double & sigma=1)

{
// default value if support of truncated distribution is too far away
// from mean of non-truncated distribution
if (left-mu>3*sigma) return 0.98*left+0.02*right;
if (mu-right>3*sigma) return 0.02%left+0.98*right;
unsigned accept = 0;
double rand;
while (!accept)
{
rand = normal (mu,sigma);
if ((rand <= right) && (rand >= left)) accept = 1;
}
return rand;
}
/===

// draw a random number left-side truncated normal distribution

inline double ls_trunc_normal(const double & left,
const double & mu=0, const double & sigma=1)

{
// default value if support of truncated distribution is too far away
// from mean of non-truncated distribution
if (left-mu>3*sigma) return left+0.02;
unsigned accept = 0;
double rand;
while (!accept)
{
rand = normal (mu,sigma);
if (rand >= left) accept = 1;
}
return rand;
}
ittt

// draw a random number from right-side truncated normal distribution

inline double rs_trunc_normal(const double & right,
const double & mu=0, const double & sigma=1)
{
// default value if support of truncated distribution is too far away
// from mean of non-truncated distribution
if (mu-right>3*sigma) return right-0.02;
unsigned accept = 0;
double rand;
while (!accept)
{
rand = normal (mu,sigma);
if (rand <= right) accept = 1;

179



180 APPENDIX D. PROCEDURES FOR RANDOM VARIABLES

}

return rand;

// density of normal distribution

inline double dnorm(double x, double mu, double sigma)
{
return exp(-0.5000000000* (x-mu) * (x-mu) / (sigma*sigma))/
(sqrt(2.0000000000%3.14159265359) *sigma) ;
}

// unnormalized density of gamma distribution

inline double undgamma(double y, double alpha, double beta)

{
return pow(y,alpha-1.000000)*exp(-betax*y);

// density of student t-distribution
// definition see Gelman, Carlin, Stern, and Rubin: Bayesian Data Analysis
// nu: degress of freedom, mean: location parameter, sigma: scale parameter

double gammafactors[302];

// compute Gamma((nu+1)/2)/Gamma(nu/2)
inline double gammafactorsforstudent(unsigned int nu)
{

unsigned int t=0;

double result=1.00000000;

for (t=nu; t>=3; t-=2)
result=result*(1.00000*(t-1))/(1.00000*(t-2));

if (t==2) result=result*0.886227;
if (t==1) result=result/1.772454;

return result;

}

// store the factors Gamma((nu+1)/2)/Gamma(nu/2)
void savegammafactors(void)
{
unsigned int i;
for (i=2; i<=300; i++) gammafactors[i]l=gammafactorsforstudent(i);

}

// density of student t-distribution at y
inline double dstudent(double y, unsigned int nu, double mean=0.0000000000,
double sigma=1.0000000000)
{
double result = 0.000000;
double nud 1.000000%*nu;
double PI 3.14159265358979;
double inter 0.000000;

inter = (y-mean)/sigma;



result = pow(1.000000+inter*inter/nud,-0.500000%nud-0.500000) ;
gammafactors [nul *result/(sqrt (nud*PI)*sigma) ;

result

return result;

181

// unnormalized density of discretized gamma distribution truncated at 1.5 and 128.5

// using Newton-Cotes with 5 nodes, evaluated at y

inline double unddisgamma(unsigned int y, double alpha, double beta)

{

// random numbers from multivariate normal-distribution

Matrix mvnormal (Matrix & Mu, Matrix & Sigma)

{

// unnormalized density of multivariate normal distribution, evaluated at X

double undmvnormal (Matrix & X, Matrix & Mu, Matrix & Sigma)

{

}

double z=1.000000%y;

return (7*undgamma(z-0.500000,alpha,beta)+32*undgamma(z-0.250000,alpha,beta)
+12*undgamma (z,alpha,beta) +32*xundgamma (z+0.250000, alpha,beta)
+7*undgamma (z+0.500000,alpha,beta))/90.000000;

unsigned int i, d=Sigma.m;
Matrix B(d,d);
B=Sigma.Cholesky();
Matrix X(d,1);

Matrix Y(d,1);

for (i=1; i<=d; i++) X(i,1)=normal(0,1);

Y = Mu + B*X;
return Y;

unsigned int d=Sigma.m;
Matrix M(1,1);

Matrix XX(d,1);

Matrix XXX(d,1);

XX = X - Mu;

XXX = Sigma.invertPosDef ()*XX;
M = XX.transp()*XXX;

return exp(-0.500000%M(1,1));

#endif






Appendix E

Implementation of used Matrix
Class

The following C++ code is the header-file 'matrixGM.h’ which is used by the programs
in Appendices B, C, and D. It contains a matrix class with important matrix functions

and must be copied into the same directory as the calling program.

[ m
// MATRIX CLASS --- by GERNOT MUELLER, 2004

[ e e o
// most important available operators: ! (inversion), *, +, -

// most important available functions:

// FUNCTION NAME VALUE

// transp transposed matrix

// Cholesky Cholesky matrix

// invCholesky inverse of Cholesky matrix (fast implementation!)

// invertPosDef inverse of pos. definit matrix (fast implementation!)
// tmat2 submatrix

// rang rank of matrix

// det determinant of matrix

// posdef 1, if matrix is pos. definit, 0 else

F e R R S

#ifndef __MATRIXGM_H
#define __MATRIXGM_H

#include <iostream.h>
#include <assert.h>
#include <math.h>

//#define SPEC huge
#define SPEC
int max(int i, int k);

// class declaration

183



184 APPENDIX E. IMPLEMENTATION OF USED MATRIX CLASS

class Matrix
{
public:
// constructor
Matrix (unsigned zeilen, unsigned spalten)

{

m = zeilen;

n = spalten;

M = new SPEC double[m*n];

for (int x=0; x<m; x++) for (int y=0; y<n; y++) *(M+x*n+y)=0.0;
}

// copy constructor
Matrix(Matrix &toCopy) ;

// destructor
“Matrix() { delete[] M; }

// return element, e.g. A(1,2);

double & operator () (unsigned zeile, unsigned spalte)
{

assert(zeile && zeile<=m && spalte && spalte<=n);
return *(M+(zeile-1)*n+spalte-1);

}

// assignment operator
Matrix& operator =(const Matrix& toAssign);

// unary plus
Matrix operator +()

{
}

return *this;

// unary minus
Matrix operator -()

{
Matrix Q(m,n);
for (int i=1; i<=m; i++) {
for (int k=1; k<=n; k++) Q(i,k) = (-(x(M+(i-1)*n+k-1)));
}
return Q;
}

// addition
friend Matrix operator +(const Matrix& A, const Matrix& B);

// subtraction
friend Matrix operator -(const Matrix& A, const Matrix& B);

// multiplication by matrix
friend Matrix operator *(const Matrix& A, const Matrix& B);

// multiplication by scalar
friend Matrix operator *(const double f, const Matrix& B)
{
Matrix Q(B.m,B.n);
for (int i=1; i<=B.m; i++) {
for (int k=1; k<=B.n; k++)
Qi,k) = £x(x(B.M+(i-1)*B.n+k-1)); //Q(i,k) = £*B(i,k);



185

}
return Q;

}

// transpose matrix
Matrix transp(void);

// invert matrix
friend Matrix operator !(const Matrix& A);

// Cholesky-decomposition
Matrix Cholesky(void) ;

// invert Cholesky-matrix
Matrix invCholesky(void);

// invert positive definite matrix
Matrix invertPosDef (void);

// change rows i and k
Matrix change_rows(unsigned i, unsigned k);

// change columns i und k
Matrix change_cols(unsigned i, unsigned k);

// multiply row z by double f
Matrix mult_r(double f, unsigned z)

{
assert(z>0 && z<=m);
for (int i=1; i<=n; i++) (x(M+(z-1)*n+i-1))=F*x(*(M+(z-1)*n+i-1));
return *this;

}

// multiply column s by double f
Matrix mult_c(double f, unsigned s)

{
assert(s>0 && s<=n);
for (int i=1; i<=m; i++) (*x(M+(i-1)*n+s-1))=f*x(*x(M+(i-1)*n+s-1));
return *this;

}

// add row i to row k
Matrix add_r(unsigned i, unsigned k)

{
assert(i>0 && i<=m && k>0 && k<=m);
for (int x=1; x<=n; x++)
(e (M+ (k1) *n+x-1) ) =k (M+(k-1) *n+x-1) )+ (x (M+ (i-1) *n+x-1)) ;
return *this;
}

// left top ixk-submatrix
Matrix tmat(unsigned i, unsigned k)

{
assert(i<=m && k<=n);
Matrix Q(i,k);
for (int x=1; x<=i; x++) for (int y=1; y<=k; y++) Q(x,y)=*(M+(x-1)*n+y-1);
return Q;
}

// submatrix (i,k) to (j,1)
Matrix tmat2(unsigned i, unsigned k, unsigned j, unsigned 1)



186

}

APPENDIX E. IMPLEMENTATION OF USED MATRIX CLASS

assert(i<=m && j<=m && k<=n && 1<=n);
Matrix Q(j-i+1,1-k+1);
for (int x=i; x<=j; x++)
for (int y=k; y<=1; y++) Q(x-i+1l,y-k+1)=*x(M+(x-1)*n+y-1);
return Q;

// compute rank
int rang(void)

}

int x,y;
Matrix Q(m,n);
for (x=1; x<=m; x++) for (y=1; y<=n; y++) Q(x,y)=(x(M+(x-1)*n+y-1));

int i=1,k,q,pivz,pivs,test=0,t=0;
double max,f=0.;
if (m>n) g=n; else g=m;
while (i<=q && test==0) {
// choose pivot
max=0. ;
for (x=1i; x<=m; x++) {
for (y=i; y<=n; y++) {
if (fabs(Q(x,y))>max) { pivz=x; pivs=y; max=fabs(Q(x,y)); }
}
}
if (i==1 && max==0) return(0);
if (max!'=0) {
Q=Q.change_rows (i,pivz) ;
Q=Q.change_cols(i,pivs);
for (k=i+1; k<=m; k++) {
if (QCk,i)!=0) {
assert (Q(i,i)!'=0);
f=-(Q(k,1)/Q(i,1));
Q=Q.mult_r(f,1i);
Q=Q.add_r(i,k);
Q=Q.mult_r(1./f,i);

3

for (x=i+1; x<=m; x++) {
for (y=i+l; y<=n; y++) {
if ((floor(Q(x,y)*100000+0.5)/100000)!=0.) t=1;
}
}
if (t==1) t=0; else test=1;
i++;
}

return (--1i);

// compute determinant (Gauss-elimination)
double det(void)

{

assert(n==m);

int x,y;

Matrix Q(a,n);

for (x=1; x<=n; x++) for (y=1; y<=n; y++) Q(x,y)=(xM+(x-1)*n+y-1));
if (Q.rang()<n) return(0.);

int i=1,k,pivz,pivs,numb_c_changes=0;



187

double max,f=0.,det=0.;
while (i<=n) {
// choose pivot in i-th column
max=0. ;
for (x=1i; x<=n; x++) {
if (fabs(Q(x,1))>max) { pivz=x; max=fabs(Q(x,i)); }
}

if (i!'=pivz) { Q=Q.change_rows(i,pivz); numb_c_changes++; }
for (k=i+1; k<=n; k++) {
if (QCk,1)!=0) {

assert(Q(i,i)!'=0);

£=-(Q(k,1)/Q(i,1i));

Q=Q.mult_r(f,i);

Q=Q.add_r(i,k);

Q=Q.mult_r(1./f,i);

i++

}

// compute determinant of upper triangular matrix
det = 1.;

for (x=1; x<=n; x++) { det=det*Q(x,x); }

if (numb_c_changes’2==1) det=-det;

return(det) ;

}

// test whether matrix is positive definite (O=no, 1l=yes)
int posdef (void)

{
assert(m==n);
int x,y;
Matrix Q(n,n);
for (x=1; x<=n; x++) for (y=1; y<=n; y++) Q(x,y)=(xM+(x-1)*n+y-1));
for (x=1; x<=n; x++) if (((Q.tmat(x,x)).det())<=0.) return(0);
return(1);

}

public:

unsigned m,n;
SPEC double *M;
};

// copy constructor
Matrix::Matrix(Matrix &toCopy)

{

m = toCopy.m;

n = toCopy.n;

M = new SPEC double[m*n];

for (int i=0; i<=m-1; i++) for (int k=0; k<=n-1; k++) *(M+i*n+k)=toCopy(i+1,k+1);
}
T

// assignment operator
Matrix& Matrix::operator =(const Matrix& toAssign)
{

delete M;



188 APPENDIX E. IMPLEMENTATION OF USED MATRIX CLASS

m = toAssign.m;
n = toAssign.n;
M = new SPEC double[m*n];
for (int i=0; i<=m-1; i++) {
for ( int k=0; k<=n-1; k++) {
* (M+i*n+k)=*(toAssign.M+i*toAssign.n+k) ; // *(M+ixn+k)=toAssign(i+1,k+1);

}
}

return *this;

// addition
Matrix operator +(const Matrix& A, const Matrix& B)

{
assert ((A.m==B.m) && (A.n==B.n));
Matrix X(A.m,A.n);
for (int i=1; i<=A.m; i++)
for (int k=1; k<=A.n; k++)
X(i,k)=(x(A.M+(i-1)*A.n+k-1))+(*(B.M+(i-1)*B.n+k-1));//X(i,k)=A(i,k)+B(i,k);
return X;
}
== -

// subtraction
Matrix operator -(const Matrix& A, const Matrix& B)

{
assert ((A.m==B.m) && (A.n==B.n));
Matrix X(A.m,A.n);
for (int i=1; i<=A.m; i++)
for (int k=1; k<=A.n; k++)
X(i,k)=(*x(A.M+(i-1)*A.n+k-1))-(*(B.M+(i-1)*B.n+k-1));//X(i,k)=A(i,k)-B(i,k);
return X;
}
m -

// multiplication by matrix
Matrix operator *(const Matrix& A, const Matrix& B)

{
assert(A.n==B.m) ;
Matrix X(A.m,B.n);
for (int i=1; i<=A.m; i++) {
for (int k=1; k<=B.n; k++) {
X(i,k)=0.;
for (int 1=1; 1<=A.n; 1++)
X(1,k)=X{G,k)+(x(A.M+(i-1)*A.n+1-1) ) *(*(B.M+(1-1)*B.n+k-1) ) ;
// +A(i,1)*B(1,k);
}
}
return X;
}
A T

// transpose matrix

Matrix Matrix::transp(void)

{
Matrix Q(n,m);
for (int i=1; i<=m; i++) for (int k=1; k<=n; k++) Q(k,1)=+*(M+(i-1)*n+k-1);
return Q;

3



189

// invert matrix
Matrix operator !(const Matrix& A)
{
int a,b,c,d,pivz=0,pivs=0,n=A.n,t=0;
double max=0.;
assert (A.m==A.n);
Matrix Q(n,n);
Matrix v(n,1), w(n,1);
for (a=1; a<=n; at++) for (b=1; b<=n; b++) Q(a,b)=(*x(A.M+(a-1)*A.n+b-1));
// Q(a,b)=A(a,b);
for (a=1; a<=n; a++) {
// choose pivot
max=0. ;
for (b=1; b<=n; b++) {
for (c=1; c<=n; c++) {
t=0;
for (d=1; d<=n; d++) if (v(d,1)==b) t=1;
if (t==0 && v(c,1)==0) {
if (fabs(Q(b,c))>max) { pivz=b; pivs=c; max=fabs(Q(b,c)); }
}
}
}
// now Q(pivz,pivs) is the pivot
v(pivs,1)=pivz;

// elements which are not in pivot row or pivot column
for (b=1; b<=n; b++) {
if (b!=pivz) {
for (c=1; c<=n; c++) {
if (c!=pivs) Q(b,c)=Q(b,c)-(Q(b,pivs)*Q(pivz,c)/Q(pivz,pivs));
}

3

// elements of pivot column
for (b=1; b<=n; b++) if (b!=pivz) Q(b,pivs)=Q(b,pivs)/Q(pivz,pivs);

// elements of pivot row
for (c=1; c<=n; c++) if (c!=pivs) Q(pivz,c)=-(Q(pivz,c)/Q(pivz,pivs));

// pivot
Q(pivz,pivs)=1/Q(pivz,pivs);
}

W=V;

for (a=1; a<n; a++) {
t=0; c=0;
while (t==0 && c<n) {
c++;
if (v(c,1)==a) t=1;
}
Q.change_cols(a,c);
v(c,1)=v(a,1); v(a,1)=a;
}

for (b=1; b<n; b++) {
t=0; d=0;
while (t==0 && d<n) {
d++;



190 APPENDIX E. IMPLEMENTATION OF USED MATRIX CLASS

if (w(d,1)==b) t=1;
}
Q.change_rows (int (w(b,1)),b);
w(d,1)=w(b,1); w(b,1)=b;
}

return Q;

// Cholesky-decomposition
Matrix Matrix::Cholesky(void)
{
Matrix Q(n,n);
int i,k,j;
double x;
for (i=1; i<=n; i++) {
for (k=i; k<=n; k++) {
x = (x(M+(i-1)*n+k-1));
for (j=i-1; j>=1; j—-) x = x - (x*(M+(k-1D)*n+j-1))*(x (M+(i-1)*n+j-1));
if (i==k) Q(i,1) = sqrt(x);
else { Q(k,i) = x / Q@,1); (x(M+(k-1D)*n+i-1)) = x / Q(i,1); }
}
}
for (k=1; k<=n; k++) for (i=1; i<=k-1; i++) (*(M+(k-1)*n+i-1))=(*(M+(i-1)*n+k-1));
return Q;

// invert Cholesky-matrix
Matrix Matrix::invCholesky(void)
{
Matrix Q(m,n);
int 1i,j,k;
double sum;
for (k=1; k<=n; k++) {
for (i=k; i<=n; i++) {
if (i==k) sum=1.0000000;
else sum=0.0000000;
for (j=1; j<=i-k; j++) sum —-= (k(M+(i-1)*n+k+j-2))* (*x(Q.M+(k+j-2)*n+k-1));
sum /= (*(M+(i-1)*n+i-1));
Q(i,k)=sum;
}
}

return Q;

// invert positive definite matrix
Matrix Matrix::invertPosDef (void)
{
Matrix Q(n,n);
Matrix Inverse(n,n);
Q = ((*this).Cholesky()).invCholesky();
for (int i=1; i<=n; i++)
for (int k=1; k<=n; k++)
for (int j=max(i,k); j<=n; j++)
Inverse(i,k) += Q(j,1)*Q(j,k);
return Inverse;



191

// change rows i and k
Matrix Matrix::change_rows(unsigned i, unsigned k)

{
assert (i && k && i<=m && k<=m);
double t;
if (it=k) {
for (int p=1; p<=n; p++) {
t=* (M+(i-1)*n+p-1);
* (M+(i-1)*n+p-1)=* (M+(k-1) *n+p-1) ;
* (M+(k-1)*n+p-1)=t;
}
}
return *this;
}
[/ = e e

// change columns i and k
Matrix Matrix::change_cols(unsigned i, unsigned k)

{
assert(i && k && i<=n && k<=n);
double t;
if (i'=k) {
for (int p=1; p<=m; p++) {
t=*(M+(p-1)*n+i-1);
* (M+(p-1)*n+i-1)=* (M+(p-1)*n+k-1);
* (M+(p-1) *n+k-1)=t;
X
3
return *this;
}
=

int max(int i, int k) { if (i<k) return(k); else return(i); }

#tendif






Symbols

Abbreviations
AOP

GM
GM-MGMC
ii.d.

MCMC

MH

oSV

OSVt

Functions

F(@)]a=v
]1[(1‘)

]l{condition(a:1 ..... Tn)}

and Abbreviations

autoregressive ordered probit

grouped move

grouped move multi-grid Monte Carlo

independent and identically distributed

Markov chain Monte Carlo

Metropolis-Hastings

Ordinal-response Stochastic Volatility

Ordinal-response Stochastic Volatility with t-distributed

errors

f(z) evaluated at x = v

indicator function for interval or set I, evaluated at x
(=1, if z € I, else =0)

indicator function, evaluated at (xq,...,z,)

(=1, if condition(xy, ..., x,) is true, else =0)

Special symbols, vectors, and matrices

)I

( .
0
diag(dy, ..., d,)
Fi

transposition

equal for all indices (e.g. Z; = 1 abbreviates 7, = 1 V1)

vector where all components equal zero, 0 := (0,...,0)’
diagonal matrix with diagonal elements dy, ..., d,
vector of observations until time ¢, F; := (y1, ..., y)

Symbols for random variables and distributions

Bin(n, p) Binomial distribution, success with probability p, n trials

193



194

Xi

Dirac(x)
['(a,b)
NegBin(u, a)
N(u,0?)
N(z|p,0?)
Niasy (1, 0%)
NP(I"’) E)
Np(w“'l’a E)

t,(a,b?)

ty(z]a, b?)

Unif(a, b)

SYMBOLS AND ABBREVIATIONS

Chi-Squared distribution with v degress of freedom

Dirac measure for z, i.e. X ~ Dirac(z) = P(X =z) =1
Gamma distribution with parameters a and b

Negative Binomial distribution with parameters p and «
normal distribution with mean p and variance o2

density of normal distribution with mean p and variance o2,
evaluated at x

normal distribution with mean p and variance o2 truncated to
the interval [a, 0]

p-variate normal distribution with mean g and covariance
matrix X

density of p-variate normal distribution with mean g and
covariance matrix ¥, evaluated at @«

Student-t distribution with v degrees of freedom

and location and scale parameters a and b, respectively
density of Student-t distribution with v degrees of freedom
and location and scale parameters a and b, respectively,
evaluated at x

Uniform distribution with boundaries a and b

Symbols for sets

R
N
No

set of all real-valued numbers
set of all natural numbers, {1,2,3,...}

set of all natural numbers including zero, {0,1,2,3,...}



Bibliography

Albert, J. H. and S. Chib (1993). Bayesian Analysis of Binary and Polychotomous
Response Data. Journal of the American Statistical Association 88, 669—679.

Bauwens, L. and P. Giot (2000). The Logarithmic ACD model: an application to
the bid-ask quote process of three NYSE stocks. Annales d’Economie et de Statis-
tique 60, 117-149.

Bauwens, L. and P. Giot (2001). Econometric Modelling of Stock Market Intraday

Activity. Boston: Kluwer Academic Publishers.

Bauwens, L. and D. Veredas (2004). The stochastic conditional duration model: a
latent variable model for the analysis of financial durations. Journal of Economet-
rics 119, 381-412.

Breiman, L. (1992). Probability. Philadelphia: STAM.

Chen, M.-H., Q.-M. Shao, and J. G. Ibrahim (2000). Monte Carlo Methods in Bayesian
Computation. New York: Springer.

Chib, S. (1995). Marginal Likelihood from the Gibbs Output. Journal of the American
Statistical Association 90, 1313-1321.

Chib, S. and E. Greenberg (1994). Bayes inference for regression models with
ARMA (p,q)-errors. Journal of Econometrics 64, 183-206.

Chib, S. and I. Jeliazkov (2001). Marginal Likelihood from the Metropolis-Hastings
Output. Journal of the American Statistical Association 96, 270-281.

Chib, S., F. Nardari, and N. Shephard (2002). Markov chain Monte Carlo methods
for stochastic volatility models. Journal of Econometrics 108, 281-316.

Cowles, M. K. (1996). Accelerating Monte Carlo Markov chain convergence for

cumulative-link generalized linear models. Statistics and Computing 6, 101-111.

Dacorogna, M. M., R. Gengay, U. A. Miiller, R. B. Olsen, and O. V. Pictet (2001).

An Introduction to High Frequency Finance. San Diego: Academic Press.

195



196 BIBLIOGRAPHY

De Jong, P. and N. Shephard (1995). The simulation smoother for time series models.
Biometrika 82, 339-350.

Diamond, D. W. and R. E. Verrecchia (1987). Constraints on short-selling and asset
price adjustment to private information. Journal of Financial Economics 18, 277—
311.

Easley, D. and M. O’Hara (1987). Price, trade size, and information in security mar-
kets. Journal of Financial Economics 19, 113-138.

Elerian, O., S. Chib, and N. Shephard (2001). Likelihood inference for discretely

observed non-linear diffusions. Econometrica 69, 959-994.

Engle, R. F. and J. R. Russell (1998). Autoregressive conditional duration; a new

model for irregularly spaced transaction data. Econometrica 66, 1127-1162.

Eraker, B. (2001). MCMC analysis of diffusion models with applications to finance.
Journal of Business and Economic Statistics 19, 177-191.

Gelman, A.; J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). Bayesian Data Ana-
lysis. London: Chapman and Hall.

Geweke, J. (1991). Efficient Simulation from the Multivariate Normal and Student-
t Distribution Subject to Linear Constraints and the Evaluation of Constraint
Probabilities. Computing Science and Statistics: Proceedings of the Twenty-Third
Symposium on the Interface 23, 571-578.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996). Markov Chain Monte

Carlo in Practice. London: Chapman and Hall.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993). A Novel Approach to Non-
Linear and Non-Gaussian Bayesian State Estimation. IEEE Proceedings F' 140,
107-113.

Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter.
Cambridge: Cambridge University Press.

Hausman, J. A.; A. W. Lo, and A. C. MacKinlay (1992). An ordered probit analysis

of transaction stock prices. Journal of Financial Economics 31, 319-379.

Jacquier, E., N. G. Polson, and P. E. Rossi (1994). Bayesian analysis of stochastic
volatility models. Journal of Economic and Business Statistics 12, 371-389.

Jasiak, J. (1998). Persistence in intertrade durations. Finance 19, 166-195.
Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford: Clarendon Press.

Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference
and comparison with ARCH models. Review of Economic Studies 65, 361-393.



BIBLIOGRAPHY 197

Kitagawa, G. (1996). Monte Carlo Filter and Smoother for Non-Gaussian Non-Linear
State Space Models. Journal of Computational and Graphical Statistics 5, 1-25.

Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright (1998). Convergence
properties of the Nelder-Mead simplex method in low dimensions. STAM Journal
on Optimization 9, 112-147.

Liu, J. S. and C. Sabatti (2000). Generalized Gibbs sampler and multigrid Monte
Carlo for Bayesian computation. Biometrika 87, 353—-369.

Nelder, J. A. and R. Mead (1965). A simplex method for function minimization.
Computer Journal 7, 308-313.

O’Hara, M. (1995). Market Microstructure Theory. Malden: Blackwell Publishers.

Pitt, M. K. and N. Shephard (1999). Filtering via Simulation: Auxiliary Particle
Filters. Journal of the American Statistical Association 94, 590-599.

Rao, M. M. (1987). Measure Theory and Integration. New York: Wiley.

Ritter, C. and M. A. Tanner (1992). Facilitating the Gibbs sampler: The Gibbs Stop-
per and the Griddy-Gibbs sampler. Journal of the American Statistical Associa-
tion 87, 861-868.

Robert, C. P. (1995). Simulation of truncated normal variables. Statistics and Com-
puting 5, 121-125.

Robert, C. P. and G. Casella (2000). Monte Carlo Statistical Methods. New York:
Springer.

Roberts, G. O. and R. L. Tweedie (1996). Geometric convergence and Cen-

tral Limit Theorems for multidimensional Hastings and Metropolis algorithms.
Biometrika 83, 95-110.

Rydberg, T. H. and N. Shephard (2003). Dynamics of trade-by-trade price movements:

decomposition and models. Journal of Financial Econometrics 1, 2-25.

So, M. K. P., K. Lam, and W. K. Lee (1998). A stochastic volatility model with
Markov switching. Journal of Business and Economic Statistics 16, 244-253.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde (2002). Bayesian
measures of model complexity and fit. Journal of the Royal Statistical Society B 64,
583-6309.

Tauchen, G. E. and M. Pitts (1983). The price variability-volume relationship on

speculative markets. Econometrica 51, 485-505.

Taylor, S. J. (1986). Modelling Financial Time Series. Chichester: John Wiley.



198 BIBLIOGRAPHY

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. The Annals
of Statistics 22, 1701-1728.

Walters, F. H., L. R. Parker, S. L. Morgan, and S. N. Deming (1991). Sequential
Simplex Optimization. Boca Raton: CRC Press.

Zeger, S. L. and M. R. Karim (1991). Generalized linear models with random effects:
a Gibbs sampling approach. Journal of the American Statistical Association 86,
79-86.



Index

AOP model, see autoregressive ordered
probit model

aperiodic, 12, 14

autoregressive ordered probit model, 33,
41, 51, 52, 57, 59, 62, 69, 80

auxiliary particle filter, 21, 22, 52, 53

auxiliary variable, 21

basic marginal likelihood identity, 24
Bayes factor, 22, 23, 51, 59, 64, 67
scale, 23, 67
block update, 17, 18, 38, 71, 76, 79, 84,
119
burn-in, 13, 16, 41, 63, 64, 85, 90, 92, 93,
102, 120, 122

credible interval, 9, 63, 64, 102, 122
cutpoint, 25, 34, 37, 38, 40, 41, 46, 50,
57,60-63, 75, 82, 85, 92,102, 113

full conditional, 15, 35-37, 55-57, 75
fully adapted, 22, 52, 53

Gibbs sampler, 15, 16, 34, 38, 45, 56, 57,
80

GM step, see grouped move step

GM-MGMC, 18, 40, 41, 48, 50, 63, 80,
83, 90, 92, 102, 117, 118, 122

grouped move multigrid Monte Carlo, see
GM-MGMC

grouped move step, 18, 40, 84, 117

hybrid (MCMC), 16, 80, 82-84

199

hyperparameter, 8, 34, 41, 62, 63, 73, 84,
100, 101

improper, 8
invariant distribution, 11

irreducible, 11
Kalman recursions, 27, 29, 30, 76, 78-80

latent variable, 24, 25, 33-35, 38, 40, 57,
63, 101

left-Haar measure, 17, 38, 82

log-volatility, 26, 70, 76, 84, 85, 92, 96,
97, 101, 102, 106, 107, 122

marginal likelihood, 23, 51, 64

Markov chain, 10-14

Metropolis-Hastings, 12-14, 76, 79, 84,
85, 114, 119

multiple-block, 14

Nelder-Mead, 78, 79, 130
noninformative, 8, 9, 34, 73, 82, 101, 113,
114

observation equation, 27

OP model, see ordered probit model

order condition, 25, 34

ordered probit model, 25, 33, 35, 36, 62,
64

ordinal-response stochastic vol. model,
70, 71, 83, 84, 90, 102, 106, 107,
112, 122



200

OSV model, see ordinal-response stochas-
tic volatility model
OSVt model, 112, 113, 117-119, 122

partial scale group, 38
particle filter, 19
adapted, 20
auxiliary, 21, 22, 52, 53
fully adapted, 22, 52, 53
posterior distribution, 8, 9, 16, 34, 39,
81, 122
posterior mean, 9, 45, 48, 63, 64, 67, 90,
92-94, 102, 105, 119-122
posterior mode, 9
posterior odds, 22
prediction error decomposition, 29, 76,
79
prior distribution, 8, 34, 40, 41, 71-74,
77,82-84,93, 100, 101, 113, 114,
119, 124
prior odds, 23
proper, 8

reduced run, 16, 56, 57
rejection sampling, 6, 7, 40, 83

reversible, 11

sampling/importance resampling, 20

scale group, 18

simulation smoother, 29, 30, 76, 80, 84,
119

SIR, see sampling/importance resampling

state equation, 27

state space model, 27, 72, 78, 113, 118

stochastic volatility model, 26

transformation group, 17, 18, 38, 81, 118
transition kernel, 10-12

translation group, 18

INDEX

truncated distribution, 7, 36, 38, 40, 74,
83, 84, 113, 116-119

volatility clustering, 31, 69



