
Shape fluctuations of crystal facets

and surface growth in one dimension

PATRIK L. F ERRARI

SUPERVISED BY

PROF. DR. H. SPOHN

June 2004





Zentrum Mathematik

Technische Universität München

Shape fluctuations of crystal facets

and surface growth in one dimension

PATRIK L. FERRARI

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Rupert Lasser
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Herbert Spohn

2. Univ.-Prof. Dr. Franz Merkl,
Ludwig-Maximilians-Universität München

3. Univ.-Prof. Dr. Wolfgang König,
Universität Leipzig

Die Dissertation wurde am 07.06.2004 bei der Technischen Universität München einge-
reicht und durch die Fakultät Mathematik am 02.11.2004 angenommen.





i

Acknowledgments

I am very grateful to my supervisor Herbert Spohn for his guidance, his availability for dis-
cussions, his valuable advice, and for teaching me the importance of combining physical
problems with mathematical rigor. Special thanks go to Michael Prähofer who explained
me patiently their previous works facilitating my understanding of the subject. During
our discussions I very much appreciated his critical thinking as well as his physical intu-
ition. I have profited from discussions with other people too, in particular, with Tomohiro
Sasamoto whose work turned out to be linked with my own, with Kurt Johansson and
Richard Kenyon explaining to me their work, and Craig Tracy giving me some advice on
random matrices. My thanks go also to Jani Lukkarinen for several technical discussions.

In the preparation of the manuscript, I have benefited from the advice of Herbert Spohn,
and from the careful reading of Michael Prähofer who helped in reducing the number of
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Zusammenfassung

In dieser Dissertation betrachten wir zwei Modelle der statistischen Mechanik, eines im
Nichtgleichgewicht und das andere im Gleichgewicht. Die Verbindung zwischen den Mo-
dellen liegt in den mathematischen Methoden, die für ihre Untersuchung benutzt werden.

Als erstes betrachten wir dasPolynukleare Wachstumsmodell(PNG) in einer Raum-
dimension, das der KPZ-Universalitätsklasse angehört, wobei KPZ für Kardar, Parisi und
Zhang steht. Für Wachstumsmodelle erwartet man, dass für grosse Wachstumszeitt die
statistischen Eigenschaften nur von qualitativen Eigenschaften der Dynamik und von Sym-
metrien abhängen, aber nicht von den Details des Modells. ImPNG-Modell skalieren die
Höhenfluktuationen für grosse Wachstumszeitt wie t1/3 und die Korrelationslänge wie
t2/3. Prähofer und Spohn haben bewiesen, dass die statistischenEigenschaften einer trop-
fenförmigen Oberfläche vom Airy-Prozess beschrieben werden. Dieses Ergebnis wurde
durch die Erweiterung der Oberfläche zu einen Multi-layer-Modell erhalten. In dieser Dis-
sertation betrachten wir den translationsinvarianten Fall und bestimmen den asymptoti-
schen Punktprozess an einer festen Stelle. Wir beweisen, dass dieser Punktprozess der
Skalierung von Eigenwerten am Rand des Spektrums einer Zufallsmatrix des Gausschen
Orthogonalen Ensembles (GOE) entspricht.

Zweitens betrachten wir ein vereinfachtes Modell einer Kristallecke: die3D-Ising-
Eckefür tiefe Temperaturen. Die Ecke besteht aus drei Facetten,die durch eine gerundete
Fläche verbunden sind, siehe Abbildung 1.1 in der Einleitung. Wir analysieren die Begren-
zungslinie einer der Facetten. Wenn die Kristallecke eine typische Ausdehnung der Länge
L hat, dann haben die Fluktuationen der Begrenzungslinie dieGrössenordnungL1/3, und
die longitudinalen Korrelationen skalieren wieL2/3. Wir beweisen, dass die richtig skalier-
te Begrenzungslinie vom Airy-Prozess gut beschrieben wird. Das ist auch der Fall für das
“terrace-ledge-kink”-Modell (TLK) und deshalb erwarten wir, dass der Airy-Prozess die
Facettenbegrenzungen für die Modelle beschreibt, die der Universalitätsklasse mit kurz-
reichweitigen Wechselwirkungen angehören.

Obwohl die zwei Modelle physikalisch sehr unterschiedliche Systeme beschreiben,
werden für ihre Untersuchung ähnliche mathematische Methoden benutzt. Beide Model-
le können auf eine Menge von sich nicht überkreukenden Linien abgebildet werden, die
man auch als Trajektorien von Fermionen interpretieren kann. Für diese Linien definiert
man einen Punktprozess. Für die 3D-Ising-Ecke besteht er ineinem erweiterten deter-
minantischen Punktprozess, dessen Kern gegen den erweiterten Airy-Kern konvergiert.
Der Airy-Kern erscheint auch in der Randskalierung von Dysons Brownscher Bewegung
für GUE-Zufallsmatrizen. Der Prozess für das PNG-Modell ist ein Pfaffscher Punktpro-
zess (an einer festen Stelle) und sein2×2-Matrixkern konvergiert gegen den der GOE-
Zufallsmatrizen. In der Dissertation diskutieren wir auchdie Verbindung zu einigen ande-
ren Modellen: das Problem der längsten steigenden Teilfolgen, gerichtete Polymere, “last
passage percolation”, der total asymmetrische Ausschlussprozess, zufällige Parkettierun-
gen und 3D-Young-Diagramme.
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Abstract

In this thesis we consider two models, the first belonging to non-equilibrium and the sec-
ond one to equilibrium statistical mechanics. The two models are connected the mathe-
matical methods used to their analysis.

The first model analyzed is thepolynuclear growth model(PNG) in one dimension,
which belongs to the KPZ (Kardar-Parisi-Zhang) universality class. For growth processes,
when the growth timet is large, the statistical properties of the surface are expected to
depend only on qualitative properties of the dynamics and onsymmetries, but not on
the details of the models. In the case of the PNG, for large growth time t the surface
height fluctuations scale ast1/3 and the spatial correlation length ast2/3. For boundary
conditions inducing a droplet shaped surface, it was shown by Prähofer and Spohn that
the statistics of the surface is described by the Airy process. This result was obtained by
extending the surface line to a multi-layer model. In this thesis we consider the space-
translation invariant case and determine the limit point process of the multi-layer model at
fixed position. The process coincides with the edge scaling of eigenvalues of the Gaussian
orthogonal ensemble (GOE) of random matrices.

The second model we study is the3D-Ising cornerat zero temperature. The corner
of the crystal is composed by three facets (flat pieces) and a rounded piece interpolating
between them, see Figure 1.1 in the Introduction for an illustration. We analyze the border
line between the rounded and a flat piece. When the corner defect size is large, say of linear
lengthL, the fluctuations of the border line are of orderL1/3 and the spatial correlation
length scales asL2/3. We prove that the (properly rescaled) border line is well described
by the Airy process. This is also the case for the terrace-ledge-kink (TLK) model, a simple
model used to describe surfaces close to the high symmetry ones. We expect that the Airy
process describes the border of the facets in the class of surface models with short range
interactions.

Although the two models describe physically very differentsystems, the mathemat-
ical methods employed for their investigation are similar.Both models can be mapped
into some non-intersecting line ensembles, which can also be viewed as trajectories of
fermions. One can associate some point processes to the lineensembles. For the 3D-Ising
corner it is an extended determinantal point process, whosekernel converges to the ex-
tended Airy kernel. The Airy kernel appears also in the edge scaling of Dyson’s Brownian
motion for GUE random matrices. The process for the PNG is a Pfaffian point process (at
fixed position) and the2× 2 matrix kernel converges to the one of GOE random matrices.
In the thesis we also discuss the connection with some other models: the longest increas-
ing subsequence problem, directed polymers, last passage percolation, totally asymmetric
exclusion process, random tiling, 3D-Young diagrams, and indirectly, Gaussian ensembles
of random matrices.
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Versione abbreviata

Premessa: la versione italiana dell’abstract è rivolta al lettore “comune” e non propria-
mente ai fisici e/o matematici. A quest’ultimi si consiglia di leggere la versione inglese e
l’introduzione, dove il lavoro è presentato in modo più dettagliato.

In questo lavoro di dottorato studiamo due problemi di meccanica statistica, il pri-
mo riguarda un modello di crescita (fuori equilibrio) e il secondo descrive un sistema in
equilibrio (termodinamico).

Innanzitutto abbiamo considerato un modello che descrive la crescita di una “superfi-
cie” su di un substrato unidimensionale, dunque la superficie è una linea. Si pensi ad un
materiale poroso fine, ad esempio un foglio di carta, che viene messo a contatto con un
liquido. Con il passar del tempo il bordo tra la parte bagnatae quella asciutta cresce global-
mente in modo regolare, pur presentando alcune irregolarità. In altre parole, se prendiamo
due campioni diversi per fare lo stesso esperimento e osserviamo la linea che delimita la
parte bagnata dopo un lasso di tempo uguale, vedremo piccoledifferenze, fluttuazioni.
Nel nostro modello, chiamatomodello di crescita polinuclere, abbiamo posto l’attenzione
sulle proprietà statistiche della superficie in crescita, come le fluttuazione sopraccitate.

Il secondo è un modello semplificato di un angolo di un cristallo, chiamato3D-Ising
corner. L’angolo consiste in tre facce lisce e una parta arrotondata che le interpola, vedi
Figura 1.1 a pagina 2 dell’introduzione. Abbiamo posto la nostra attenzione sulla linea
che separa la regione arrotondata da una delle facce lisce. Se “guardata da lontano” questa
linea ha una forma ben definita, ma facendo un ingrandimento ci si accorge che il dettaglio
dipende dal campione preso in considerazione. Infatti ci sono delle fluttuazioni, le quali,
assieme ad altre proprietà statistiche, sono state studiate in questo lavoro.

Apparentemente i due modelli non hanno un granché in comune.In effetti dal pun-
to di vista fisico i sistemi presi in considerazione sono molto diversi. L’unica analogia
immediata è che studiamo in entrambi i casi interfacce “unidimensionali”, cioè delle li-
nee. Ciononostante una connessione esiste ed è dovuta alla descrizione matematica dei
due sistemi. Infatti, entrambi possono essere descritti daun insieme di linee che non si
intersecano. A loro volta queste linee sono reinterpretatecome traiettorie di particelle su
una linea retta, le quali non vengono mai in contatto tra di loro. La conseguenza è che
caratteristiche simili possono essere riscontrate nei duemodelli analizzati. Ad esempio, le
proprietà statistiche che abbiamo riscontrato nel “3D-Ising corner” sono le stesse prece-
dentemente trovate da Prähofer e Spohn nel modello di crescita polinucleare nel caso in
cui l’interfaccia prende la forma di una goccia.
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Chapter 1

Introduction

The title of the thesis refers to two subjects. The first,shape fluctuations of crystal facets,
belongs to equilibrium statistical mechanics. The studiedsystem is a crystal and we are
interested in the fluctuations of the flat pieces of the surface, called facets. The second,
surface growth in one dimension, is part of non-equilibrium statistical mechanics. One
considers a surface which grows above a one-dimensional substrate due to deposition of
atoms. The two physical systems described are very different and at first sight there is no
reason why they should share common features. However, as wewill discover and explain
in great detail in our work, the two problems are linked to each other.

A crystal in equilibrium at very low temperature consists essentially of facets (flat
pieces) which are connected forming sharp angles. When the temperature is increased,
the facets become smaller and are interpolated by some rounded surfaces of the crystal,
and eventually all the facets have disappeared. On the otherhand, if the temperature is
above someTM the crystal melts. The shape of the crystal is determined by the surface
free energy, and the solid-liquid transition by the total free energy. We just introduced the
term facet to designate an intuitive quantity, but due to thermal fluctuations it might not
be always a well defined object. For a surface with a fixed orientation, the free energy
per unit length of a step in the surface decreases as the temperature is increased, and
vanishes above some temperatureTR. In the latter case, there is no longer any mechanism
preventing the formation of extra steps, and the surface becomes rough.TR is called
roughening temperature and depends on the orientation of the surface. For high-symmetry
surfaces, e.g.(1 0 0) or (1 1 1) for a cubic lattice, the roughening temperature is larger than
the melting temperatureTM for most materials. The situation changes for the surfaces
whose orientations are close to a high-symmetry one, calledvicinal surfaces. For example,
consider the surface(0 0 1) and their vicinal surfaces(1 1n) for largen. They consist of a
succession of(0 0 1) terraces separated by steps. Those steps that are not at equal distance
have to pay an energyε for each atom of the step. Whenε is small enough, a vicinal
surface can be rough already at fairly low temperature compared withTM , i.e.,TR ≪ TM .
To the reader interested in the physical background we suggest for further details the book
Physics of Crystal Growthby Pimpinelli and Villain [73].

We are interested in the statistics of the facets’ borders inthe temperature range where
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Figure 1.1: Crystal corner viewed from the(111) direction.

they live on a mesoscopic scale, large with respect to the atomic scale, but small with
respect to the macroscopic one. Therefore we consider temperatures not too small but
also (considerably) less thanTR, since aboveTR the facets are no longer recognizable.
In this temperature range, the facets are macroscopically flat and well localized, but on a
microscopic scale irregularities still occur due to thermal fluctuations. This happens also
close to the borders of the facets, which are then not uniquely defined. Nevertheless one
can define a coarse-grained border of the facets, because theirregularities are relevant only
on the atomic scale. Depending on the material and on the facet orientations, the facets
are smooth up to some hundreds of kelvins, thus also at room temperature. Figure 1.1 is a
computer-generated image of the model we actually study. Itis called the 3D-Ising corner.
The facets are perfectly flat and their borders are easily recognizable.

We consider large crystals at equilibrium with fixed number of atomsN . This is the
fixed volume constraint, under which there is a Gibbs measureon the possible crystal con-
figurations. The equilibrium crystal shape is the expected shape under the measure. It is
determined by minimizing the surface free energy under the volume constraint. The for-
mation of facets with a specific orientation depends on the energy of interactions between
the atoms and the structure of the crystal. Since we are interested in the statistical proper-
ties of the (coarse-grained) border of the facets induced bythe Gibbs measure, we consider
N sufficiently large so that the border fluctuations are in an intermediate scale between the
atomic distance and the macroscopic one. WhenN becomes very large, the width of the
fluctuations is expected to become independent of the details of the microscopic model
and depend only on some qualitative properties, like whether the interactions have short of
long range. This is universality hypothesis. The models which show the same fluctuations
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are said to be in the same universality class. For example, the model studied in this thesis
belongs to the class of models with short range interactions.

Growth processes belong to non-equilibrium statistical mechanics, whose aim is to ex-
plain the macroscopic and mesoscopic properties from (simple) microscopic laws. There
are different types of growth to be distinguished. A solid can grow in a solution (or in
a vapor) and the growth depends on the concentration (or on the partial pressure) of the
atoms of the growing solid. Another way of growth, put at actual use in laboratories, is
molecular beam epitaxy (MBE). It consists of ejecting single atoms (or molecules) onto
the surface under ultra-high vacuum conditions. What happens to the atoms when they
reach the surface? At very low temperature they essentiallystick to the location where
they arrive. At higher temperatures the atoms diffuse for a while on the surface until meet
a preexisting step and stay there, or they meet another diffusing atom and stick together
forming a dimer. The mobility of a dimer is much reduced and other atoms attach to it
forming a growing island. If the temperature is high enough,small clusters are not stable
and break up time and again. Therefore the atoms diffuse until they meet a preexisting
step. Another phenomenon which can occur when a crystal is growing by deposition are
instabilities. For example, a diffusing atom reaching the boundary of an island has a ten-
dency to be reflected and thus remains on the island. In this case, islands grow only when
atoms moving on a lower level attach to it. This creates a surface which resembles to an
ensemble of steep mountains with deep valleys. Instabilities can occur also in growth from
a liquid, mainly for two-dimensional systems, in which casethe shape is not convex but
lots of spikes appear. Growth occurs also in the atmosphere where water molecules form
hailstones or snow flakes. Let us finally note that growth processes can include also other
phenomena, like the spread of a liquid in a porous medium, where the growing quantity is
the wetted region, or even the spread of a fire line in a forest.The border of the surface
can be one or two dimensional, or even have (on a certain scale) a fractal dimension. To
the reader interested in the physical background we suggestthe booksPhysics of Crystal
Growthby Pimpinelli and Villain [73],Fractal Concepts in Surface Growthby Barabási
and Stanley [15], andIslands, Mounds and Atomsby Michely and Krug [63].

In our work we consider a surface growth model on a one dimensional substrate. We
are interested in statistical properties of the growing surface for large growth times. They
are expected to be independent on the details of the model anddepend uniquely on quali-
tative properties like conservation laws and symmetries (phenomenon of universality). In
particular, one can try to find the scale invariant quantities, that is, those showing the same
quantitative law under the appropriate rescaling of space and time. A growth is said to
be local if the new material added to the surface depends onlyon local properties of the
surface. A smoothening mechanism prevents the surface fromproducing, for example,
spikes. This is the case of local diffusion of atoms from the high to the low parts of the
surface. When growth is local and has a smoothening mechanism, the growing cluster
has a well defined interface and on the macroscopic level its growth is deterministic, thus
it has a macroscopic limit shape. The fluctuations with respect to the mean macroscopic
shape are relevant only on a mesoscopic level. This is the observable we are mainly in-
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terested in. The most studied class of local growth models isKPZ universality class. In
one dimension, it is characterized by the extra requirementthat the speed of growth as a
function of the slope of the tangent surface has a non-zero curvature. The KPZ model was
introduced by Kardar, Parisi, and Zhang where they described a random surface growth
by a stochastic differential equation. It is the simplest equation for the dynamics of an
interface which includes irreversibility, nonlinearity,randomness, and locality. It contains
a Laplacian term which smoothes the surface and contrasts a local noise term, and a non-
linear term, the square of the surface gradient, which expands the hills laterally. In our
thesis we study a model in the KPZ universality class in one dimension.

Now that the class of models are explained we can come back to the question of the
similarities between growth in one dimension and border facets of equilibrium crystals.
On a macroscopic level, that is for large growth timet, a one dimensional growing surface
having a limit shape can be parameterized by a single-valuedheight function. This is
also the case of the border of a facet at equilibrium. In the example of Figure 1.1 we
fix the coordinate axis so that the facets are in the surfaces with (0 0 1), (0 1 0), (1 0 0)
directions meeting at the origin. Then the boundary of the(0 0 1) facet is a curve in the
xy-plane described as a height function. The distance to the origin scales asL if the
missing volume of the corner scales asL3. On a microscopic scale we still can describe the
growing surface and the border of the facet by a height function if we do a coarse graining.
Therefore both models can be described in a similar way. Of course, this does not yet mean
that the models have any relevant statistical property in common. For KPZ growth in one
dimension, the height fluctuation above a fixed position scales ast1/3 and the height at two
different points are correlated on a distance of ordert2/3. This is exactly what happens
for the case of the 3D-Ising corner too, where the role oft is taken over byL. Moreover,
in the growth model we consider, when initial conditions create a growing droplet, the
height profile is described by an Airy process. This process also describes the border
of the facet in the 3D-Ising corner! The reason of these similarities lies in the underlying
mathematical description of the two models. In fact both models can be mapped into some
non-intersecting line ensembles having the same mathematical structure.

Finally a note on the structure of the thesis. Instead of starting immediately from the
study of the above models, we first introduce directed polymers. The reason is that directed
polymers are directly connected to the models, they are the link between them. We begin
by describing the problem of the longest length of directed polymers in a Poisson point
process. This model is directly related to the longest increasing subsequence in a random
permutation. We also present a discrete analogue, that is, directed polymers onZ2. This is
made in the first part of Chapter 2. The second part is devoted to the surface growth model
we study: the polynuclear growth (PNG) model. It it known that the height of the surface
is the same as the longest length of directed polymers on Poisson points. The PNG droplet
is obtained when the surface grows above a single spreading island. An important result
of Prähofer and Spohn on the PNG droplet is that the fluctuations of the surface height are
described by the Airy process. We also present a discrete version of the PNG model and
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shortly discuss the question of universality. In the third part of Chapter 2 we consider the
model of a crystal which we actually study: the 3D-Ising corner. The border of the facets
can be expressed via the lengths of some directed polymers onZ2. Our new result is that
the fluctuations of the facet boundary are described by the Airy process. With this result
we then discuss the question of universality of the fluctuations of the facet borders.

Chapter 3 is devoted to the explanation of the point processes which occur in our
analysis. First we review the concept of point processes with particular focus on deter-
minantal and Pfaffian ones. Secondly we introduce the Gaussian ensembles of random
matrices, whose eigenvalues are point processes. Of particular interest are point processes
of top eigenvalues when the size of the matrices goes to infinity, and the distribution of
the largest eigenvalue. These point processes are also the limiting ones of our models.
Dyson’s Brownian motion describes an evolution of the eigenvalues of the Gaussian en-
sembles. Starting from it we then discuss the generalization of the point processes when
they are subject to an evolution. In the last part of the chapter we go back to the PNG and
3D-Ising corner models. We explain how they are mapped to some set of non-intersecting
line ensembles. The position of the lines form an extended point process. For the 3D-Ising
corner they are an extended determinantal point process. This is also the case for the PNG
droplet and is the reason why both models are described by theAiry process. Also the
evolution of the largest eigenvalue in Dyson’s Brownian motion for hermitian matrices is
described by the Airy process. If the constraint that the surface grows only above one
island is suppressed, then the surface is statistically translation invariant. This is called
the flat PNG and only its one-point distribution is known. Thespace correlations are not
yet known, but the conjecture is that it is the same as the evolution of the largest eigen-
value for Dyson’s Brownian motion in the case of symmetric matrices. For fixed position,
the line ensemble of the flat PNG is a point process. Our novel finding is that this point
process, in the limit of large growth time, is the same as the point process for fixed time of
the eigenvalues of Dyson’s Brownian motion for symmetric matrices, in the limit of large
matrix size. This is a step towards the just explained conjecture.

Chapter 4 contains our new result on the flat PNG as well as its rigorous derivation.
Similarly, in Chapter 5 we present our new result on the 3D-Ising corner model and analyze
it. In the Appendix we include various results completing the discussions of Chapters 2
and 3.





Chapter 2

From directed polymers to polynuclear
growth model and 3D-Ising corner

2.1 Directed polymers and longest increasing subse-
quence

To describe the problem considered in this section we first have to introduce the Pois-
son process. Then we define the directed polymers on Poisson points, give some known
results and connections with other problems, in particularwith the longest increasing sub-
sequence.

2.1.1 The Poisson process

Consider a Borel setD of R2 which can either be bounded or unbounded. The Poisson
process onD is a point process(Ω,F ,P) defined as follows. Letω be a countable config-
uration of points inD. For any compact subsetB of D, denote the number of points ofω
in B by n(B)(ω). Then

Ω = {ω|n(B)(ω) <∞, ∀ compactB ⊂ D} (2.1)

is the set of all locally finite configurations of points inD. LetF be theσ-algebra of events
onΩ.

Definition 2.1. A Poisson processof intensity̺ > 0 in D is given by setting the probabilityP such that, for all compactB ⊂ D,P({n(B) = k}) =
(̺|B|)k
k!

e−̺|B| (2.2)

and events on disjoints subsets ofD are independent: for allm ∈ N, k1, . . . , km ∈ N, and
B1, . . . , Bm ⊂ D, if Bi ∩ Bj = ∅ for i 6= j, thenP( m⋂

i=1

{n(Bi) = ki}
)

=
m∏

i=1

P({n(Bi) = ki}). (2.3)
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More generally one can fix a locally integrable intensity̺ : D → R+. Then the
Poisson process with density̺(x) is defined as before up to the following modification of
(2.2). Let

¯̺(B) = |B|−1

∫

B

dx̺(x), (2.4)

then (2.2) is replaced byP({n(B) = k}) = e− ¯̺(B) ¯̺(B)k/k!. (2.5)

2.1.2 Directed polymers on Poisson points

Point-to-point problem

We introduce a partial ordering≺ as follows. Forx, y ∈ R2 we say thatx ≺ y if both
coordinates ofx are strictly less than those ofy. Consider a Poisson process with intensity
̺ inR2.

Definition 2.2. A directed polymer on Poisson pointsstarting atS and ending atE is a
piecewise linear pathπ connectingS ≺ q1 ≺ . . . ≺ ql(π) ≺ E, qi ∈ ω Poisson points. The
lengthl(π) of the directed polymerπ is the number of Poisson points visited byπ.

We denote byΠ(S,E)(ω) the set of directed polymers fromS to E. The maximal
length ofπ ∈ Π(S,E)(ω) is

L(S,E)(ω) = max
π∈Π(S,E)(ω)

l(π). (2.6)

A directed polymer of maximal length is also calledmaximizerand the set of maximizers
is denoted byΠmax(S,E)(ω). This is thepoint-to-pointsetting because both initial and
final points are fixed. Figure 2.1 is a realization of the Poisson process with intensity1 in
the square[0, 15]2. The highest and lowest maximizers are visualized.

Some questions one would like to answer are:
a) What it the distribution of the maximal length?
b) How does this distribution depend on the relative positions ofS andE?
c) Where are typically located the points of the maximizers?

The answer to question b) is simple. Take as starting pointS = (0, 0) and the two
following end-points,E1 = (t, t) andE2 = (γt, γ−1t) for someγ ≥ 1. Denote byR1,
resp.R2, the rectangle with opposite cornersS andE1, resp.E2. Consider the bijective
mappingΦ : R2 → R2 defined byΦ(x, y) = (γx, γ−1y). Φ preserves the distribution on
points andΦ(R1) = R2. Moreover, a directed polymer inR1 is mapped into a directed
polymer inR2. Consequently the distribution ofL(S,E) depends only on the area of the
rectangle with opposite cornersS andE. Therefore we considerS = (0, 0), E = (t, t),
and denote the maximal length byL(t) = L(S,E).
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Figure 2.1: A realization of Poisson points with density̺= 1 in the square of edge-
length15. The highest and lowest directed polymers of maximal lengthare shown.

Figure 2.2: Realization of Figure 2.1 transformed byΦ with γ = 1.25.

Question a), in thet → ∞ limit, was settled by Baik, Deift, and Johansson in their
already famous paper [10]. Their result reads

lim
t→∞

P(L(t) − 2t

t1/3
≤ s

)
= F2(s) (2.7)

whereF2 is the GUE Tracy-Widom distribution [100]. In other words for larget

L(t) ≃ 2t+ t1/3ζGUE (2.8)

with ζGUE a random variableF2-distributed. Thelength fluctuation exponent1/3 in (2.8)
is denoted byχ.

Question c) has an answer in terms of thetransversal fluctuation exponentξ defined as
follows. Denote byCγ(t) the cylinder of widthtγ around the segment(0, 0) → (t, t),

Cγ(t) = {(x, y) ∈ R2|0 ≤ x+ y ≤ 2t, |y − x| ≤
√

2tγ}. (2.9)

Consider the set of configurationsω such that all the maximizers are contained inCγ(t),

Aγ(t) = {ω ∈ Ω|π ⊆ Cγ(t) for all π ∈ Πmax(t)(ω)} (2.10)
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whereΠmax(t)(ω) ≡ Πmax((0, 0), (t, t))(ω). Thenξ is defined by

ξ = inf{γ > 0| lim inf
t→∞

P(Aγ(t)) = 1}. (2.11)

Johansson proves [44] that for this modelξ = 2/3. Sinceξ > 1/2, the directed polymers
aresuperdiffusive.

The previous results,χ = 1/3 andξ = 2/3, implies that the scaling identity

χ = 2ξ − 1 (2.12)

holds for this model. (2.12) is expected to hold in any dimensions for a large class of re-
lated models, like growing surfaces, first and directed lastpassage percolation. We discuss
it further in section 2.1.5 for directed last passage percolation onZd. An heuristic argu-
ment leading to the scaling relation (2.12) is the following. The length of a typical path
from (0, 0) to (x, y) is ∼ 2

√
xy. Hence, a maximal path from(0, 0) to (t, t) that passes

through(t(α− δ), t(α + δ)), 0 < α < 1, δ small, is shorter by the amount

2t
√

(α + δ)(α− δ) + 2t
√

(1 − α− δ)(1 − α + δ) − 2t ≃ tδ2

α(1 − α)
(2.13)

which should be of the same order of the fluctuationstχ. Thereforeδ2 ∼ tχ−1, and
tξ ∼ tδ ∼ t(χ+1)/2.

Point-to-line problem

A modification of the problem consists in considering the setof directed polymers starting
from (0, 0) and ending in the segment of lineUt = {(x, y) ∈ R2

+|x + y = 2t}. This is
called thepoint-to-lineproblem. The fluctuation exponent is stillχ = 1/3, but the fluctua-
tion of the maximal length,Lℓ(t), is governed by the GOE Tracy-Widom distribution [101]
F1(s),

lim
t→∞

P(Lℓ(t) − 2t

t1/3
≤ 2−2/3s

)
= F1(s), (2.14)

that is,Lℓ(t) ≃ 2t+2−2/3t1/3ζGOE for larget, with ζGOE a random variableF1-distributed.
This result follows from related problems [13, 77]: the longest increasing subsequence, see
Section 2.1.3, and the polynuclear growth model which is discussed in Section 2.2.

For the point-to-line problem, some other questions arise.The first we discuss is about
the (non-)uniqueness of the end-point of the maximizers. Consider the set of directed
polymers of maximal length fromO = (0, 0) to Ut, denoted byΠmax(O,Ut). For any
π ∈ Πmax(O,Ut), denote byE(π) ∈ Ut the closest point onUt to the last Poisson point of
π. The question is to know whether typically the directed polymers of maximal length ends
in a unique point or not. Denote bydeg(ω) the number of such points. Some numerical
studies indicates thatdeg has a distribution which is not reduced to a point mass. For large
t, P(deg(ω) = k) ≃ (q−1 − 1)qk, k ≥ 1, (2.15)
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t = 25
t = 50
t = 100
q = 0.574

k

P(deg(ω)=
k
)

0 2 4 6 8 10 12 14 16

1
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Figure 2.3: Probability distributiondeg for t = 25, 50, 100 over105 runs for eacht, and
the fit obtained forq = 0.574.

with q = 0.574±0.005, i.e.,E(deg) ≃ 2.35±0.03, see Figure 2.3. We run a simulation up
to t = 1000 but only over103 runs. The average value of end points was about2.4 ± 0.1.
We then made the simulation fort = 25, 50, 100 for 105 runs, and the fit of these results is
q = 0.574 ± 0.005, which means that the average number is2.35 ± 0.03.

SinceE(π) is typically not unique, we investigate a second random variable: the max-
imal distance between theE(π)’s. Let π+, resp.π−, be in Πmax(O,Ut) such that the
distanced(t) = |E(π+) − E(π−)| is maximal. The simulations fort = 25, 50, 100 over
105 runs show the following behaviors.
1) There is a frequency ofa = 42.6% ± 0.5% that the end point is unique, i.e., thatd = 0.
Therefore the distribution ofd has the formaδ(x) + ρt(x).
2) For small distances,ρt has a limit behavior without needing to be rescaled int, see
Figure 2.4, but whend is increasedρt shows thet-dependence, see Figure A.6 in Appen-
dix A.8.
3) The densityρt extends over an intervalO(t2/3) and then has (super-)exponential cutoff.
Define the rescaled densityρr(ξ) = ρt(x = ξt2/3)t2/3. If we plot ξ 7→ t1/3ρr(ξ) then we
have a good collapse of the functions for different values oft, see Figures 2.5 and A.7.

Now consider the distribution ofdr = d/t2/3. The above results imply that it has a
delta peak at the origin plus a densityρr. For larget, the contributions of small distance,
2), much smaller thanO(t2/3), sum up with the frequencya and create the delta peak at
zero,atδ(ξ). For the density, definef(ξ) = limt→∞ t1/3ρr(ξ). For larget, the probability
measureµ of the rescaled distancedr is

µ(ξ) ≃ atδ(ξ) + t−1/3f(ξ). (2.16)

x 7→ f(ξ) is a continuous function which has a polynomial decay at the beginning and is
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t = 25
t = 50
t = 100
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d
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Figure 2.4: Probability density of the distribution of the distanced for t = 25, 50, 100
and smalld. The fit is best fort = 50, 100 and isρ = 2.2d(1 + 16d2)−1.
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Figure 2.5: Rescaled probability density of the distribution of the distanced for t =
25, 50, 100.

followed by a (super-)exponential decay which becomes important close toξ = 1. Our
data do not permit to obtain the precise power-law decay, butthey indicate that is should
be∼ ξ−1.

The normalization condition impliesat ≃ 1 − t−1/3
∫R+

f(ξ)dξ. Thus the weight of

the distribution is concentrated in the central peak exceptfor a fraction of ordert−1/3. A
measure of the form (2.16) for the rescaled distancedr implies that the moments of the
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distanced are given byE(dk) = t2k/3E(dkr) ≃ t(2k−1))/3

∫R+

f(ξ)ξkdξ (2.17)

for k ≥ 1. The simulations fort = 25, 50, 100 leads toE(d)/t1/3 ≃ 0.55, Var(d2)/t ≃ 0.23. (2.18)

We also made simulations also for larger values oft, up tot = 1000, but with only1000
runs. The results agree with (2.17) and (2.18), see Table A.1.

A second question concerns the position of the branching of directed polymers. Con-
sider for all pointsE ∈ Ut the set of directed polymers of maximal length fromO = (0, 0)
to E, Πmax(O,E). Take two end pointsE1 andE2 on Ut such that|E2 − E1| ≃ tν ,
0 < ν ≤ 1. We say that two directed polymersπ1 andπ2 intersect atx ∈ R2 if x is a
Poisson point visited by bothπ1 andπ2. Then the problem of last branching of directed
polymers is the following. Define the set

I(E1, E2)(ω) = {x ∈ ω|∃π1 ∈ Πmax(O,E1), π2 ∈ Πmax(O,E2), x ∈ π1 ∩ π2} (2.19)

and letJ(E1, E2) be the closest element ofI(E1, E2) to Ut. ThenJ(E1, E2) is called
the last branching pointof directed polymers with end-points inE1 andE2. We would
like to know something about the random variableJ(E1, E2). One would expect that the
branching is governed by the transverse exponent2/3. If ν = 2/3, the last branching point
should have a distance of ordert fromUt with some distribution, on that scale, not reduced
to a point mass. On the other hand ifν > 2/3 the branching will be close to the root and
if ν < 2/3 the branching will be close toUt. We give a partial answer to this problem
in [30], where we prove the following estimates for the position of J(E1, E2).

Theorem 2.3.LetE1 = (t, t) andE2 = E1 + ytν(−1, 1) with y ∈ R fixed.

i) For ν > 2/3, there exists aC(y) <∞ such that for allσ > 5/3 − ν,

lim
t→∞

P({d(O, J(E1, E2)) ≤ C(y)tσ}) = 1. (2.20)

ii) For ν ≤ 2/3 and for allµ < 2ν − 1/3 one has

lim
t→∞

P({d(J(E1, E2), Ut) ≤ tµ}) = 0. (2.21)

In particular for ν = 2/3, one can choose anyµ < 1.

Figure 2.6 shows the set of maximizers from(0, 0) to (a part of)Ut for a realization
with t = 2000.
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Figure 2.6: Set of all maximizers from the origin to the lineUt. The sample uses
∼ 8 · 106 Poisson points, which in our units correspond tot = 2000 and̺ = 2. Only
the section[0, 1] × [−1/6, 1/6] is shown. The picture is rotated of−45 degrees.

2.1.3 Directed polymers and longest increasing subsequences

As we will explain, the directed polymers on Poisson points is closely related to the follow-
ing combinatorial problem. LetSN denote the permutation group of the set{1, . . . , N}.
For each permutationσ ∈ SN the sequence(σ(1), . . . , σ(N)) has an increasing subse-
quence of lengthk, (n1, . . . , nk), if 1 ≤ n1 < n2 < . . . < nk ≤ N . Denote byLN(σ)
the length of the longest increasing subsequence for the permutationσ. The problem of
finding the asymptotic law forLN for uniform distribution onSN is also called Ulam’s
problem (1961). Ulam conjectured [106] on the basis of MonteCarlo simulations that
asymptoticallyE(LN) ≃ c

√
N , that is the limitc = limN→∞N−1/2E(LN) exists. Some

other numerical analysis by Baer and Brock [9] suggestedc = 2. The proof of the ex-
istence ofc was obtained by Hammersley [39]. Then Logan and Sheep [61] proved that
c ≥ 2, and Vershik and Kerov [108] showed thatc = 2, thus settling Ulam’s problem.
Other proofs are due to Aldous and Diaconis [5], Seppäläinen[89], and Johansson [41].
The proofs in [61, 108] use Young tableaux representation, see below, where an asymptotic
analysis is carried out forfixedlargeN . Another approach is used by Hammersley in [39],
where he considers the length of the permutation to be Poisson distributed with mean value
N . This point of view is equivalent to the directed polymers onPoisson points. The sub-
sequent works [5, 89, 41] are also in this framework. For moredetails, see the review by
Diaconis and Aldous [6].

The next step is to analyze the fluctuations. Some Monte Carlosimulation of Odlyzko
and Rains (1993), see also [68], indicated that asymptotically Var(LN) ≃ c0N

1/3 with
c0 ≃ 0.819, and alsoE(LN ) ≃ 2

√
N + c1N

1/6 with c1 ≃ −1.758. The final answer is
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given by Baik, Deift and Johansson [10]. They proved that

lim
N→∞

P(LN ≤ 2
√
N + sN1/6) = F2(s), s ∈ R (2.22)

whereF2 is the GUE Tracy-Widom distribution. From this result it follows thatc0 =
0.8132 . . . andc1 = −1.7711 . . .. To obtain (2.22) they use the Poissonized version of
the problem. Instead of fixing the length of the permutationsto N , they consider the set
S = ∪n≥0Sn and assign the probabilitye−NkN/k! that a permutation is inSk. They
first prove that (2.22) holds for this problem, and secondly obtain the result via a de-
Poissonization method, consisting in bounding from above and below the distribution of
LN in terms of the Poissonized one.

The problem of the longest increasing subsequence of lengthN is equivalent to the
problem of finding the longest directed polymer from(0, 0) to (t, t) whenN points are
distributed uniformly in the square[0, t]2, and the directed polymers on Poisson points is
the Poissonized version. In statistical physics the problem with fixedN corresponds to
the canonical ensemble, the one with Poisson distributed length to the grand canonical
ensemble, and theN → ∞ limit is the thermodynamical limit.

2.1.4 Young tableaux and increasing subsequences

On a more combinatorial point of view, the longest increasing subsequence can be seen
via the Young tableaux associated to a permutation. The Young tableaux are defined
as follows. Take a partitionλ = (λ1, λ2, . . . , λk) of an integerN , i.e., satisfying
λ1 ≥ λ2 ≥ . . . λk ≥ 1 and

∑k
i=1 λi = N . A Young tableau ofshapeλ = (λ1, λ2, . . .) is

a diagram withk rows andλi cells for rowi, i = 1, . . . , k, where the cells are occupied
by the numbers1, 2, . . . , N increasingly in each row and column (or, by symmetry, de-
creasingly). The Robinson-Schensted correspondence is abijectionbetween permutations
σ ∈ SN andpairsof Young tableaux(P(σ),Q(σ)) with N cells and the same shape. The
algorithm leading to(P(σ),Q(σ)) is the following [88]:

P-tableau: for i = 1 toN :

Placeσ(i) in the top row of theP-tableau as follows: a) ifσ(i) is higher than
all numbers in the first row of theP-tableau, then append to the right of them,
b) otherwise put it at the place of the smallest higher element of the first row
of P.
If an element was replaced in rowj, take it and apply the same procedure in
row j + 1.

Q-tableau: for i = 1 toN :

Placei in the position where a number appeared the first time at stepi in the
P-tableau.
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As an illustration we show the construction of the Young tableaux for the permutation
σ = (6, 2, 5, 1, 4, 8, 7, 3), whose shape isλ = (3, 3, 1, 1).

i 1 2 3 4 5 6 7 8

P 6 2 6 2 5
6

1 5
2
6

1 4
2 5
6

1 4 8
2 5
6

1 4 7
2 5 8
6

1 3 7
2 4 8
5
6

Q 1 1 2 1 2
3

1 2
2
4

1 2
3 5
4

1 2 6
3 5
4

1 2 6
3 5 7
4

1 2 6
3 5 7
4
8

The shapes of the Young tableauxP(σ) andQ(σ) are the same by construction. In par-
ticular, the length of the longest increasing subsequence of σ equals the length of the first
row [6]

LN (σ) = λ1(σ). (2.23)

Thus a way to determine the asymptotic behavior ofLN is via the analysis of the length
of the first row on Young tableaux. The measure onλ induced by the uniform measure
onSN is thePlancherelmeasure: letdλ denote the number of Young tableaux of shapeλ,
then

PlN (λ) =
d2
λ∑

µ∈YN
d2
µ

, λ ∈ YN (2.24)

with YN denoting the set of partitions of{1, . . . , N}.
Finally we discuss the interpretation of allλi’s. Consider a Poisson process in[0, t]2

andω a configuration withN points. Let(xi, yi), i = 1, . . . , N , be the points ofω, where
the index is defined by the rulexi ≤ xi+1, and the permutationσ ∈ SN by yσ(i) < yσ(i+1).
Clearly the length of the longest increasing subsequence ofσ, LN (σ), equals the length
of the longest directed polymer from(0, 0) to (t, t) for the configurationω, which is the
λ1 of P(σ). The interpretation of the otherλi’s follows from a theorem of Greene. Let
σ ∈ SN andλ = (λ1, . . . , λm) be a the shape ofP(σ). Let, fork ≤ m, ak(σ) be the length
of the longest subsequence ofσ consisting ofk disjoint increasing subsequences. Greene
proves [36] that

ak(σ) = λ1 + · · ·+ λk. (2.25)

In terms of directed polymers (2.25) means thatak is the maximal sum of the lengths of
k non-intersecting directed polymers from(0, 0) to (t, t), where non-intersecting means
without common Poisson points.
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2.1.5 Discrete analogous of directed polymers

We describe a discrete analogous onZ2 of the directed polymers problem, because it leads
to a discrete analogous of the polynuclear growth model discussed in Section 2.2. It is also
linked with the totally asymmetric exclusion process, TASEP.

Let ω(i, j), (i, j) ∈ Z2
+ be independent geometrically distributed random variables,P(ω(i, j) = k) = (1 − q)qk, k ∈ Z+ (2.26)

with q ∈ (0, 1). The directed polymers from(0, 0) to (M,N) is the set of up/right paths
π from (0, 0) to (M,N), i.e., sequences of points(ik, jk), k = 0, . . . ,M + N , of sites
in Z2

+ with (i0, j0) = (0, 0), (iM+N , jM+N) = (M,N), and (ik+1, jk+1) − (ik, jk) ∈
{(1, 0), (0, 1)}. We denote byΠM,N the set of directed polymers from(0, 0) to (M,N).
The length of the directed polymer is defined by the sum of theω(i, j) visited by the
directed polymer, and we are interested in the length of the longest directed polymers in
ΠM,N given by

LN,M = max
π∈ΠM,N

∑

(i,j)∈π
ω(i, j). (2.27)

Πmax
M,N denote the set of directed polymers inΠM,N of maximal length. This model was

considered by Johansson in [43], where he obtained the following results. For the asymp-
totic expected value of the length of directed polymers he proved that, for eachq ∈ (0, 1)
andγ ≥ 1,

m(γ, q) ≡ lim
N→∞

1

N
E(L[γN ],N) =

(1 +
√
γq)2

1 − q
− 1, (2.28)

[·] denotes the integer part. The fluctuations around the mean value are described by the
GUE Tracy-Widom distributionF2 as follows. For eachq ∈ (0, 1) andγ ≥ 1, ands ∈ R,
write

σ(γ, q) =
q1/6γ−1/6

1 − q
(
√
γ +

√
q)2/3(1 +

√
γq)2/3, (2.29)

then

lim
N→∞

P(
L[γN ],N ≤ m(γ, q)N + σ(γ, q)N1/3s

)
= F2(s). (2.30)

A generalization of this model consists in takingω(i, j), (i, j) ∈ Z2
+ be independent

geometrically distributed random variables withP(ω(i, j) = k) = (1 − aibj)(aibj)
k, k ∈ N (2.31)

with theai’s and thebi’s in [0, 1). The 3D-Ising corner problem introduced in Section 2.3
will be closely related to this generalization.
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Question of universality

Consider the more general case of directed polymers where the i.i.d. random variables
ω(i, j) are positiveand have a distributionF (not reduced to a point mass) satisfyingE(ω) <∞ andVar(ω) <∞. The random variable

L∗
N = LN,N − ω(N,N) (2.32)

is superadditive, i.e.,L∗
N+M ≥ L∗

N + L∗
M . The subadditive ergodic theorem ensures the

existence of the limit

lim
N→∞

L∗
N

N
= µ(0) (2.33)

with probability one, from which follows thatlimN→∞N−1LN,N = µ(0) too. Similarly,
we can consider the end-pointP (α) = (N − [N tan(α)], N + [N tan(α)]), with α the
angle to the diagonal (the straight line passing by(0, 0) and(N,N)). Then for someµ(α),
limN→∞N−1LP (α) = µ(α) a.s. too. As for the directed polymers on Poisson points, we
define the length fluctuation exponentχα such that

χα = lim
N→∞

ln Var(LP (α))

2 lnN
(2.34)

and the lateral fluctuation exponentξα as follows. LetCγ be the cylinder of widthNγ with
axis passing by(0, 0) andP (α). Then

ξα = inf{γ > 0|P(π ∈ Πmax
P (α) ∩ Cγ) = 1}. (2.35)

There are quantities, like the functionµ(α), that depend on the distributionF . But
other quantities like the exponentsξ andχ are expected to be independent of the details
of F , i.e., to beuniversalwithin a class of models. It is known that the scaling relation
χα = 2ξα − 1 is not always satisfied ifµ′′(α) = 0. From scaling theory and the results
of some solvable models it is known that in dimension two the universal exponents are
ξ = 2/3 andχ = 1/3. Assume the condition thatµ′′ exists and

µ′′(α) 6= 0. (2.36)

Then the conjecture is that, if (2.36) is satisfied, thenχα = 2ξα − 1 holds withχα =
χ = 1/3 andξα = ξ = 2/3 independent ofα. In the above model, (2.36) does not hold
for α = ±π/4, but this is a point where (2.36) does not apply sinceµ′′ does not exist.
For α = ±π/4, ξ = 0 because the directed polymers can not fluctuate laterally atall,
andχ = 1/2 since the length is a sum of i.i.d. random variables. It is notclear if the
condition of finite second moment is enough or if one needs to assume the existence of
exponential moments. Even in the discrete model studied above there is not a rigorous
proof of ξ = 2/3. The strategy used to proveξ = 2/3 for the Poisson case [44] can be
easily adapted to the discrete case, but a large deviation estimate for one of the tails is
missing.

Several attempts of proving the scaling relation (2.12),2ξ − 1 = χ, have been made
over the past years with some partial but rigorous results, the most relevant can be found
in [65, 60, 74]. In these papers some of the rigorous results involve modified versions ofξ
andχ.
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Figure 2.7: Directed polymers and TASEP. The bold line passes by the points ofB6, the
black dots arẽD6, and the numbers are theω(i, j). The right shows how the jump of a
particle is reflected byBt.

Poisson points and TASEP limits

There are two limits which are of particular interest:

a) Theq → 0 limit leads to the Poisson points case as follows. DefineN = t
√
̺/q

and take the limitq → 0 with t fixed. Thenm(γ, q)N → √
̺γt, andσ(γ, q)N1/3 →

(
√
γ̺t)1/3. In particular, for̺ = 1 andγ = 1, m(γ, q)N → 2t andσ(γ, q)N1/3 → t1/3,

compare with equation (2.7). The picture of Poisson points with intensity̺ is directly
obtained in theq → 0 limit if, for fixed t, the lattice spacing is

√
q/̺.

b) The second limit isq → 1, which leads to the totally asymmetric exclusion process,
TASEP [43, 78]. Let us callL(i, j) the waiting time from(0, 0) to (i, j), and define the
domain

Dt = {(i+ 1
2
, j + 1

2
) ∈ (N+ 1

2
)2|L(i, j) ≤ t}. (2.37)

Now rotate the picture byπ/4, denote byL the image of the latticeZ2
+ and byD̃t the

one ofDt. Let k = i − j andBt the lowest set of points inL which are abovẽDt, see
figure 2.7. At each timet, we associate a set of random variables{ηk(t), k ∈ Z} to each
bond(Bt(k), Bt(k+1)) by settingηk(t) = 1 if Bt(k+1)−Bt(k) = (1,−1) andηk(t) = 0
if Bt(k + 1) − Bt(k) = (1, 1). ηk(t) represents the state of the sitek, it is 1 if there is
a particle atk at timet and zero if it is empty. Fort = −1, the initial configuration of
particles isηk(t) = 1 for k < 0 andηk(t) = 0 for k ≥ 0. If at timet a particle occupies site
k and is followed by an empty space, at timet+ 1 it will be at sitek + 1 with probability
1 − q. Moreover each particle jumps independently. This is the discrete time TASEP with
geometrical distributed waiting times. Now consider theq → 1 limit. Let the unit time
interval be1−q. Then the waiting timeτ(i, j) = (1−q)ω(i, j) is in the limit exponentially



20 From directed polymers to polynuclear growth model and 3D-Ising corner

x

t
t = T

h = 0

h = 1

h = 2 h = 3h = 3

Figure 2.8: Graphical construction generating the surface height fromthe Poisson
points.

distributed. In fact,P(τ(i, j) ≤ s) =
∑

t∈N∩[0,s/(1−q)]
P(ω(i, j) = t)

=
∑

t′∈(1−q)N∩[0,s]

P(ω(i, j) = t′/(1 − q))
q→1−→

∫ s

0

e−tdt. (2.38)

2.2 Polynuclear growth model (PNG)

The first model we consider which is related with the directedpolymers on Poisson points
is the polynuclear growth model (PNG) in one spatial dimension.

2.2.1 Polynuclear growth model and Poisson points

The PNG model in1+1 dimension is a growth model for a one dimensional surface, which
at timet and positionx is described by a height functionx 7→ h(x, t) ∈ Z. It is a local
random growth model. Space and time are continuous and the height is discrete (given
in “atomic units”). First we consider the case of flat initialconditionh(x, 0) = 0 for all
x ∈ R, the case of non-flat initial condition is discussed later. Fix a T > 0, then for each
configuration of Poisson pointsω ∈ Ω we define the height functionh(x, t)(ω), (x, t) ∈R× [0, T ], by the following graphical construction. Because of flat initial conditions, we
seth(x, 0)(ω) = 0 and we callnucleation eventsthe points ofω. Each nucleation event
generates two lines, with slope+1 and−1 along its forward light cone. A line ends upon
crossing another line. In Figure 2.8 the dots are the nucleation events and the lines follow
the forward light cones. The heighth(x, t)(ω) is then the number of lines crossed along the
straight path from(x, 0) to (x, t). Sinceω is locally finite, it follows thatx 7→ h(x, t)(ω),
t ∈ [0, T ], is locally bounded and the number of discontinuities is locally finite.
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The interpretation of the graphical construction in terms of a growing surface is the
following. The surface height at positionx ∈ R and timet ≥ 0 is h(x, t) ∈ Z. The initial
condition ish(x, 0) = 0 for all x ∈ R. For fixed timet, consider the height profilex 7→
h(x, t). We say that there is an up-step (of height one) atx if h(x, t) = limy↑x h(y, t) + 1
and a down-step (of height one) atx if h(x, t) = limy↓x h(y, t) + 1. A nucleation event
which occurs at positionx and timet is a creation of a pair of up- and down-step atx at
time t. The up-steps move to the left with unit speed and the down-steps to the right with
unit speed. When a pair of up- and down-step meet, they simplymerge. In Figure 2.8 the
dots are the nucleation events, the lines with slope−1 (resp.+1) are the positions of the
up-steps (resp. down-steps). In the case that the initial surface profile is not flat, the surface
height at some later timet is obtained similarly. The only difference is the following. To
the lines generated by the Poisson points we need to add additional lines starting from the
t = 0 axis with slope−1, resp.+1, if initially at x there is an up-step, resp. a down-step.
Moreover, the number of lines crossed along the straight path from (x, 0) to (x, t) is the
height differenceh(x, t) − h(x, 0). Varying the density on Poisson points̺ in the space,
different geometries are obtained, see below.

2.2.2 Longest directed polymers and surface height

We explain the connection between the longest directed polymers on Poisson points and
the surface height.

The PNG droplet

The PNG droplet is obtained when the density of Poisson points is constant (here we
choose̺ = 2) in the forward light cone of the origin and zero outside, i.e., for (x, t) ∈R×R+

̺(x, t) =

{
2 if |x| ≤ t,
0 if |x| > t,

(2.39)

and the initial height profile is flat,h(x, 0) = 0 for x ∈ R. The height above the origin at
time t, h(0, t), equals the number of times that we enter in a light cone when we follows
any path from(0, 0) to (0, t) with “speed” between−1 and+1, i.e., with absolute slope
bigger than one in the(x, t) graph. Notice thath(0, t) depends only on the Poisson points
in the diamond{(x′, t′)| |x′| ≤ t′, |x′| ≤ t − t′}. In particular, consider the paths which
enter in the light cones only at the nucleation points and that consists in straight segments
between these points. These path are thepoint-to-pointdirected polymers of maximal
length rotated byπ/4, see Figure 2.9. Thereforeh(0, t) equals the length of the longest
directed polymer from(0, 0) to (t/

√
2, t/

√
2) on Poisson points withintensity two, which,

by rescaling, is equal to the lengthL(t) of the longest directed polymer from(0, 0) to (t, t)
on Poisson points withintensity one. Thus by (2.7) the asymptotic behavior ofh(0, t) is

lim
t→∞

P(
h(0, t) ≤ 2t+ t1/3s

)
= F2(s), (2.40)
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Figure 2.9: Height and directed polymers for the droplet geometry

with F2 the GUE Tracy-Widom distribution. By invariance of the directed polymers and
Poisson process under the mappingΦ : R2 → R2,

Φ(x, t) =
(
γ−γ−1

2
t− γ+γ−1

2
x, γ+γ

−1

2
t− γ−γ−1

2

)
x, (2.41)

it follows that, for fixedτ ∈ (−1, 1),

lim
t→∞

P(h(τt, t) ≤ 2t
√

1 − τ 2 + t1/3(1 − τ 2)1/6s) = F2(s). (2.42)

For this model also the spatial correlations are known. Consider the height func-
tion at timeT , x 7→ h(x, T ). For largeT the fluctuations scales asT 1/3 and it turns
out that the spatial correlations scales asT 2/3. The limit shape of the PNG droplet,
limT→∞ T−1h(τT, T ), is 2

√
1 − τ 2. Then the rescaled surface height is given by

ξ 7→ hedge
T (ξ) = T−1/3

(
h(ξT 2/3) − (2T − ξ2T 1/3)

)
. (2.43)

In [81] it is proven that, in the sense of finite dimensional distribution,

lim
T→∞

hedge
T (ξ) = A(ξ) (2.44)

whereA is theAiry process, whose precise definition and properties are given in Sec-
tion 3.3.3.

Recently Borodin and Olshanski showed [19] that the Airy process describes the space-
time correlations along anyspace-like(andlight-like) path in the droplet geometry. They
work with Young diagrams. To each point(u, v) ∈ R2

+, they consider the random Young
diagram (the shape of Young tableaux)Y (u, v) obtained by RSK correspondence. Then
for each space-like path inR2

+ they construct a Markov chain which describes the evo-
lution of the Young diagramY . The caseu + v = T is the one analyzed by Prähofer
and Spohn [81]. The caseuv = const correspond to the terrace-ledge-kink (TLK) model
which was used, together with the 3D-Ising model, to determine universality for the fluc-
tuations of a crystal around the equilibrium shape, see Section 2.3.4 and [29]. Fortime-like
paths no result is known. The major difficulty lies on the lackof the Markov property.
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Figure 2.10: Height and directed polymers for the flat geometry

The flat PNG

With flat PNG we mean the surface obtained when the density of Poisson points is constant
in R × R+ (as before we choose̺= 2). In this case, since no other constraint is fixed,
the surface heighth(x, t) is statistically translation-invariant, thus we considerx = 0. The
heighth(0, t) depends only on the Poisson points in the intersection of thebackwards light
cone of(0, t) andR × R+, namely in the triangle{(x′, t′)| t′ ≥ 0, |x′| ≤ t − t′}. h(0, t)
is the number of times that any path from(0, t) to thet = 0 axis “speed” between−1 and
+1 exits a light cone. In particular, consider the paths that exit the light cones only at the
nucleation points and that consist in straight segments between these points. Let us apply
a rotation ofπ/4, see Figure 2.10. Then the rotated paths are thepoint-to-line(or better
line-to-point) directed polymers of maximal length on Poisson points with intensity two.
Rescaling to intensity one, we obtainh(0, t) = Lℓ(t) whereLℓ(t) is the one of (2.14).
Thus for larget,

lim
T→∞

P(
h(0, t) ≤ 2t+ t1/32−2/3s

)
= F1(s), (2.45)

with F1 the GOE Tracy-Widom distribution.
For this model the spatial correlations are still unknown. In [28] we do a first step in

the understanding of it. We will explain it extensively in Section 3.4 and Chapter 4.

2.2.3 Discrete time version of the polynuclear growth model

We now consider a discrete time version of the polynuclear growth model. It is closely
related to the discrete version of the directed polymers introduced in Section 2.1.5. Here
the space isZ and the time isN. We consider only flat initial conditions, i.e.,h(x,−1) = 0
for all x ∈ Z. The discrete PNG model is defined by

h(x, t) = max{h(x− 1, t− 1), h(x, t− 1), h(x+ 1, t− 1)} + ω̃(x, t), (2.46)

for t ≥ 0, whereω̃(x, t) ∈ Z+, (x, t) ∈ Z×N, are independent random variables.
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Figure 2.11:Z2 and the latticeL (bold lines).x = i − j andt = i + j.

Remark: One could also considerh(x, 0) = 0 for all x ∈ Z and start nucleations at
time t = 1, or nucleate only at semi-integer timesN+ 1

2
.

The discrete PNG can be seen directly in the framework of the continuous PNG as
follows. Consider continuous space-time with nucleationsoccurring independently only
in (x, t) ∈ Z×N. The important difference is that the nucleations generatesteps of height
ω̃(x, t) and not only of unit height. Therefore the picture of Figure 2.8 has to be also
slightly modified. Each nucleation generateω̃(x, t) lines which follow the forward light
cone. Moreover, the lines merge as follows. Let us considerm ≤ n: if at some point in
space-timem lines with slope+1 meetn lines of slope−1, them first lines merge and
the remainingn−m lines with slope−1 continue.

Of particular interest is the case whereω̃(x, t) = 0 if x− t is odd, in which case there
is a direct correspondence to the directed polymers.ω̃(x, t) is therefore non zero in the
latticeL (rotated byπ/4), see Figure 2.11. We denote its vertices byi = (x + t)/2 and
j = (t − x)/2. Denote alsoω(i, j) = ω̃(i − j, i + j). We discuss the two geometries
already considered in the continuum.

The discrete PNG droplet

For the droplet geometry, the extra condition to be imposed is ω̃(x, t) = 0 if |x| > t,
meaning thatω(i, j) = 0 for i < 0 or j < 0. The heighth(x, t), for x − t even, is equal
to the length of the longest directed polymer from(0, 0) to ((x + t)/2, (t − x)/2) on the
latticeL. Some results are known in the case thatω(i, j) is a geometric random variable
with parameteraibj , i.e.,P(ω(i, j) = k) = (1 − aibj)(aibj)

k, k ∈ Z+. In particular for
ai = bi =

√
q, 0 < q < 1, i ≥ 0,

h(x, t) = L(x+t)/2,(t−x)/2 (2.47)

with L the one defined in (2.27). A point([γN ], N), γ ≥ 1, N ∈ N, in the lat-
tice L, corresponds to(x, t) = ([(γ − 1)N ], [(γ + 1)N ]). We want to knowh(τT, T )
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with τ ∈ (−1, 1). By symmetry considerτ ∈ [0, 1), takeγ = (1 − τ)/(1 + τ) and
N = T (1 − τ)/2 = T/(1 + γ). Then

µ(τ, q) =
m(γ, q)

(1 + γ)
=

1

1 + γ

((1 +
√
γq)2

1 − q
− 1

)
(2.48)

with m(γ, q) given in (2.28). Define also

σ̃(τ, q) =
σ(γ, q)

(1 + γ)1/3
=

q1/6γ−1/6

(1 − q)(1 + γ)1/3
(
√
γ +

√
q)2/3(1 +

√
γq)2/3 (2.49)

with σ(γ, q) given in (2.29). Then the asymptotics ofh(x, t) follows from (2.30) and
writes

lim
T→∞

P(h([τT ], T ) ≤ µ(τ, q)T + σ̃(τ, q)T 1/3s) = F2(s). (2.50)

Moreover, for largeT , the height is described by the Airy processA as proven by Johans-
son in [46]. He shows that, forτ = 0, the processhT given by

ξ 7→ κ1T
−1/3

(
h(ξκ2T

2/3, T ) − µ(1, q)T
)

(2.51)

converges toA(ξ)− ξ2 asT → ∞, whereκ1 = 21/3σ(1, q)−1 andκ2 = 21/3σ(1, q)−1(1+√
q)(1 − √

q)−1. The convergence is in the weak*-topology of probability measures on
C([−M,M ]) for an arbitrarily fixedM > 0, that is, for anyf ∈ C([−M,M ]), one has
limT→∞

∫M

−M dxhT (x)f(x) =
∫ M

−M dx(A(ξ) − ξ2)f(x).

In the limit q → 0 and with lattice spacing
√
q/̺, the continuum version of the PNG

droplet is recovered (̺the Poisson points intensity), and in the limitq → 1 with unit time
equal1 − q, the TASEP is obtained, see Section 2.1.5.

Discrete flat PNG

The connection with discrete directed polymers onZ2 implies that heighth(x, t), for
x − t even, is equal to the length of the longest directed polymer from the set (line)
{(i, j) ∈ L|i+ j = 0} to ((x+ t)/2, (t− x)/2) on the latticeL.

2.2.4 Recent developments on 1D polynuclear growth model

It is in [77] that Prähofer and Spohn obtained the one-point distribution function for the
surface height in both the PNG droplet and the flat PNG geometries. Their results are
achieved by identifying the surface height with the longestdirected polymers, for which
Baik and Rains already analyzed the asymptotics [13, 12]. The joint-distribution of the
height profile is obtained in [81] using a multilayer generalization of the PNG, see Sec-
tion 3.4, which is also used in our analysis. The idea of the multilayer comes from the
work of Johansson on the Aztec diamond [45], where a rhombus-shaped (checkerboard)
table is tiled with dominos, see Figure 2.12. On the tiling one can introduce a set of lines
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Figure 2.12: A dominos tiling for an Aztec diamond with50 dominos. The border line
between the regular and the North regular tiling is the center of the top line.

with initial and final points in the lower half diamond as shown in the figure. The only rule
is the following. In vertical dominos the lines have slope+1 or −1 and in the horizontal
ones the lines can only be horizontal. The dominos are classified into four types, North,
South, East, and West, depending on how the lines fill them. The names are so chosen be-
cause for large tables, close to the North, South, East, and West corners there is a regular
tiling of the corresponding dominos. In the central region the tiling is “disordered”. The
border line between the regular and the disordered region isdescribed by the Airy process
as proven in [47].

More recently Sasamoto and Imamura study the (discrete) half-droplet PNG geometry,
which consists in allowing nucleations only in positivex andx ≤ t [40]. They prove that
the rescaled height is GUE distributed away from thex = 0 axis and there is a transition
to GSE atx = 0. If extra nucleations are added at the origin with intensityγ ≥ 0, the
distribution abovex = 0 has a transition forγ = 1. Forγ < 1 it is still GSE, forγ = 1 it is
GOE distributed, and forγ > 1 the fluctuations become Gaussian because the contribution
of the nucleation at the origin dominates. The one-point distribution asymptotics follows
from [13, 12] too.

A modification of the PNG droplet consists in adding sources at the boundaries, which
means that extra nucleations with fixed (linear) densityα+ andα− are independently added
in the forward light cone of the origin, i.e., in(x, t) such that|x| = t. This model was
introduced by Prähofer and Spohn [77, 78]. Then Baik and Rains analyzed it in details [11]
with the following results. Forα± small, the effects coming from the edges are small and
the fluctuations are still GUE distributed. On the other hand, if α+ > 1 or α− > 1, then
the boundary effects are dominant the fluctuations become Gaussian. The cases where
α+ = 1 and/orα− = 1 are also studied and other statistics arise. Of particular interest is
whenα+α− = 1 for 1−α± = O(T−1/3), in which case the PNG growth is stationary and
has a flat limit shape.
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2.2.5 Universality

The PNG model explained above is in the(1 + 1)-dimensional KPZ universality class.
We do not enter into details, which can be found, together with some discussion of higher
dimensional cases, in the thesis of Michael Prähofer [76], Chapters 2 and 3, see also [79].

KPZ equation

The(d+1)-dimensional KPZ equation was introduced by Kardar, Parisi, and Zhang in [48]
as a continuum description of ad-dimensional stochastic surface growth, which is para-
meterized by a height functionh(x, t), x ∈ Rd, relative to a substrate. The KPZ equation
writes

∂th(x, t) = v0 + ν∆h(x, t) + 1
2
λ(∇h(x, t))2 + η(x, t). (2.52)

v0 is a deterministic growth which can be eliminated by changing the frame of the observer.
The Laplace termν∆h(x, t), ν 6= 0, represents the surface tension, smooths the surface
and contrasts the noise termη(x, t) which is assumed to be local. The surface hills expand
laterally if the non-linear termλ 6= 0.

KPZ universality class

Now let us restrict tod = 1. The conditions for a surface growth model on a one-
dimensional substrate to be in the KPZ universality class are the following:
1) the evolution is local, i.e.,h(x, t + dt) depends on the values ofh(y, t) only for
|y − x| . O(dt),
2) the randomness is local, i.e.,η(x, t) andη(y, t) are not correlated in time and for same
time they are correlated only if|y − x| ≤ C for someC > 0 fixed,
3) let v(u) be the growth velocity of the stationary surfacehu(x, t) with fixed slope
u = ∂xh, then the KPZ condition isv′′(u) 6= 0.

Some explanation on 3) are needed. Assume that a growth mechanism is given, like
the PNG rules. For a finite system of sizeL, impose chiral boundary conditions (periodic
up to a vertical shift) such that the surface grows with fixed mean slopeu. The height
process is also required to be ergodic, i.e., the mean of observables ofh(x, t) on the state
space for a fixed timet and the mean over the evolution for fixedx agree in the large time
limit. In the thermodynamic limit,L→ ∞, one expects to have a unique limiting process,
hu(x, t), whose gradient is stationary in space and time. If this is the case, thenv = v(u)
denotes the growth velocity ofhu(x, t).

Condition 3) is the same as the condition on the curvature (2.36) in the last passage
percolation, where one can define a growing random setB(t) = {x ∈ Zd|Lx ≤ t}. Then
the mean speed of growth ofB(t) in the directionα is v(α) = 1/µ(α), from which the
equivalence of the two conditions.
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The PNG model is in the KPZ universality class

The first two conditions are satisfied, becauseh(x, t + dt) depends only onh(y, t) with
|y − x| ≤ dt, and the noise is a Poisson process in space-time, thus completely uncorre-
lated. Thus one need to verify condition 3).

Let x 7→ hu(x, 0) be a two-sided random walk of mean slopeu, i.e., the up-steps
and down-steps, are two independent Poisson processes onR with densitiesρ+ andρ−
satisfying the conditionρ+ − ρ− = u. Moreover, the nucleations have to be counterbal-
anced by the annihilation, so in a time intervaldt, ̺Ldt = 2ρ+ρ−Ldt, i.e.,ρ+ρ− = 1

2
̺,

with ̺ = 2 is the space-time density of nucleations. Next one verify that the PNG evo-
lution does not modify the up- and down-steps processes. Thelast step is to determine
v(u) = ∂tE(hu(x, t)). In an intervaldt, each up- and down-step moves ofdt, thus the
area underhu(x, t) is typically increased by(ρ+ + ρ−)Ldt. The annihilation and the nu-
cleation contributions compensate in average. Thusv = ρ+ + ρ−, and, using the previous
relations withu and̺, the velocity is given by

v(u) =
√

4 + u2. (2.53)

Thus condition 3) is satisfied which indicates that the PNG model is in the KPZ universal-
ity class.

2.3 3D-Ising model at zero temperature

The second model we consider that belongs to the same framework is the 3D-Ising corner
at zero temperature. First we explain the model, secondly weshow the correspondence of
the Ising corner with a particular case of the (discrete) directed polymers, and finally we
explain our results. The detailed analysis is then carried out in Chapter 5.

2.3.1 The model

As a very common phenomenon, crystals are faceted at sufficiently low temperatures with
facets joined through rounded pieces. Of course, on the atomic scale the crystal surface
must be stepped. These steps meander through thermal fluctuations. On a facet the steps
are regularly arranged except for small errors, whereas on arounded piece the steps have
more freedom to fluctuate. Our aim is to understand the precise step statistics, where the
step bordering the crystal facet is of particular interest.To gain some insight we will study
a simplified statistical mechanics model of a cubic crystal.Its equilibrium shape has three
facets, each consisting of a part of one of the coordinate planes. The facets do not touch
each other and there is an interpolating rounded piece, see Figure 1.1 in the Introduction.
For this model the step statistics will be analyzed in great detail. In section 2.3.4 we
explain how our results relate to the predictions of universal properties of crystals with
short range step-step interactions.
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Let us first explain our model for the corner of a crystal. The crystal is assumed to
be simple cubic with latticeZ3. We use lattice gas language and associate to each site
x ∈ Z3

+, the occupation variablenx = 0, 1 with 1 standing for sitex occupied by an atom
and0 for sitex empty. Up to a chemical potential the binding energy of the configuration
n is

H(n) = J
∑

|x−y|=1

(nx − ny)
2, J > 0. (2.54)

We consider very low temperatures, meaning that all allowedconfigurations have the same
energy, i.e., the same number of broken bonds. To define properly, we introduce the
reference configurationnref in which only the octantZ3

+ is occupied,

nref
x =

{
1 for x ∈ Z3

+,
0 for x ∈ Z3 \ Z3

+.
(2.55)

n is an allowed configuration if for a sufficiently large boxΛ one has

nx = nref
x for all x ∈ Z3

+ \ Λ andH(n) −H(nref) = 0. (2.56)

The set of allowed configurations is denoted byΩ. By constructionΩ is countable. To
favor a crystal corner, we introduce the fugacityq, 0 < q < 1, and assign to eachn ∈ Ω
the weight

qV (n), (2.57)

whereV (n) is the number of atoms removed fromnref , i.e.

V (n) =
∑

x∈Z3
+

(1 − nx). (2.58)

A configurationn ∈ Ω can uniquely be represented by a height functionh overZ2
+.

For the column at(i, j) ∈ Z2
+, all sites belowh(i, j), excludingh(i, j), are empty and all

sites aboveh(i, j) are filled.n ∈ Ω if and only if

h(i+ 1, j) ≤ h(i, j), h(i, j + 1) ≤ h(i, j), h(i, j) → 0 for (i, j) → ∞. (2.59)

By abuse of notation, the set of height functions satisfying(2.59) is also denoted byΩ.
For h ∈ Ω let V (h) =

∑
(i,j)∈Z2

+
h(i, j) be the volume inZ3

+ belowh. Then the weight

for the heighth is qV (h).
There is an alternative way to describe configurationsn ∈ Ω, which we just mention

for completeness, but will not use later on. One builds the crystal out of unit cubes and
projects its surface along the(111)-direction, which results in a tiling of the planeR2 with
lozenges (rhombi) oriented along0, 2π/3, and4π/3. With the orientation of Figure 2.13
there are three sectors of the plane corresponding to the polar angleθ with −π/6 < θ <
π/2, π/2 < θ < 7π/6, 7π/6 < θ < 11π/6. n ∈ Ω if and only if the tiling in each sector
becomes regular sufficiently far away from the origin.
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1 2

3

(a) (b)

Figure 2.13: (a) The(111)-projection of a configurationn ∈ Ω. In each of the three sec-
tors the tiling becomes regular far away from the origin. (b)The corresponding perfect
matching on the honeycomb lattice.

Instead of tilings, if preferred, one can also think of covering the dual honeycomb
lattice by dimers such that every site is covered. In computer science this is called perfect
matching. Equivalently, to have a more statistical mechanics flavor, one can consider the
fully frustrated antiferromagnetic Ising model on a triangular lattice, i.e., for an allowed
spin configuration every triangle must have exactly two spins of the same sign. Erasing all
bonds connecting equal sign spins yields a lozenge tiling, and vice versa.

2.3.2 3D-Ising corner and directed polymers

Our main goal is to describe the line bordering the facet and the rounded part of the crys-
tal corner. We are therefore interested in the linei 7→ h(0, i), i ∈ Z+. We now give the
connection between the 3D-Ising corner and the generalization (2.31) of the directed poly-
mers onZ2

+ introduced in Section 2.1.5. Consider independent random variablesω(i, j),
(i, j) ∈ Z2

+, geometrically distributed with mean valueqi+j+1, q ∈ (0, 1) as above:P(ω(i, j) = k) = (1 − qi+j+1)q(i+j+1)k, k ∈ Z+. (2.60)

Denote byL(i, j) the length of the longest directed polymer from(i, j) to (∞,∞). This
quantity is well defined becauseq < 1. In fact, consider the random variableα(m) =∑

i+j≥m ω(i, j). ThenP(α(m) ≥ 1) ≤ E(α(m)) ≤ mqm

(1 − q)
→ 0, m→ ∞. (2.61)
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Therefore when a directed polymer goes to infinity, with probability one it only passes
a finite number of sites(i, j) with ω(i, j) > 0. By symmetryL(i, j) is also the maxi-
mal length of directed polymers from infinity to(i, j), i.e., with down-left steps. From
Section 2.2.3 we know the relation between directed polymers and PNG growth. The
connection between directed polymers and 3D-Ising corner is

h(i, 0) = L(i, 0), h(0, i) = L(0, i), (2.62)

for i ∈ Z+ in law. On the other hand, there is not a simple connection betweenL(i, j),
i, j > 0, and the heightsh(i, j). The best way to explain this correspondence is via
a multilayer extension of the PNG. It is introduced in Section 3.4 and in Section 3.4.2
we will derive the correspondence of the whole 3D-Young diagrams with the directed
polymers (via PNG growth) described above.

2.3.3 Bulk and edge scaling

The step statistics is studied in the limitq → 1, which means that the typical missing
volume from the corner is large, sinceE(V (h)) ≃ 2ζ(3)(1 − q)−3, ζ the Riemann’s zeta
function. Thus it is convenient to set

q = 1 − 1

T
, T → ∞. (2.63)

Let hT denote the random height function distributed according to

1

ZT
exp[ln(1 − 1

T
)V (hT )] (2.64)

relative to the counting measure onΩ, ZT the normalizing partition function. For largeT
the heights areO(T ). Thus one expects a limit shape on the scaleT . In fact, as proved
in [20, 69],

lim
T→∞

1

T
hT ([uT ], [vT ]) = hma(u, v) (2.65)

in probability. Here(u, v) ∈ R2
+ and [·] denotes the integer part. LetD = {(u, v) ∈R2

+, e
−u/2+e−v/2 > 1}. OnD, hma is strictly decreasing in both coordinates andhma > 0,

whereashma = 0 onR2
+\D. The analytic form ofhma is given in Section 5.3. Ifr denotes

the distance to∂D = {(u, v) ∈ R2
+, e

−u/2 + e−v/2 = 1}, it follows thathma vanishes as
r3/2. This is the Pokrovsky-Talapov law [75].

Our interest here is to zoom to the atomic scale. There are mainly two interesting
limits. The first is the to focus in the bulk of the 3D-Ising corner, i.e., in the rounded
part. Consider a macroscopic point(u, v) ∈ D and the local height statistics{hT ([uT ] +
i, [vT ] + j), (i, j) ∈ Z2}. In the limit T → ∞, locally the height profile is planar and
one expects that the height statistics corresponds to a random tiling of the plane with the
three types of lozenges from Figure 2.13, such that the relative fraction of lozenges yields
the average slope∇hma(u, v). This property will be proven in Section 5.3 and we refer
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Figure 2.14: Zoom to the facet edge in Figure 1.1.

to it as local equilibrium: asT → ∞, locally one has a translation invariant, spatially
ergodic Gibbs measure for the lozenges with their chemical potentials determined through
∇hma(u, v).

An even more intriguing limit is to zoom to the facet edge, which means to take
(u, v) ∈ ∂D, see Figure 2.14. Since the step density vanishes at∂D, typically there
will be only a few steps in focus. Thus it is more natural to consider directly the crystal
step bordering the facet. By symmetry we can choose the border step lying in the2 − 3
plane. Then the border step is given as the graph of the function

t 7→ bT (t) = hT (0, t), t ∈ N. (2.66)

From (2.59) we havebT (t + 1) ≤ bT (t) andlimt→∞ bT (t) = 0. For largeT , bT is O(T ),
and there is a limiting shape according to

lim
T→∞

T−1bT ([τT ]) = b∞(τ), (2.67)

where
b∞(τ) = −2 ln(1 − e−τ/2), τ > 0. (2.68)

(2.68) tells us only the rough location of the step. For the step statistics the relevant
quantity is the size of the fluctuations ofbT ([τT ]) − Tb∞(τ). As will be shown they are
of orderT 1/3 which is very different from steps inside the rounded piece of the crystal
which are allowed to fluctuate only aslnT [93]. On a more refined level one would like
to understand correlations, e.g., the joint height statistics at two pointst andt′. They have
a systematic part corresponding toTb∞(τ). Relative to it the correlation length along the
border step scales asT 2/3, which reflects that on short distances the border step lookslike
a Brownian motion. Thusb∞ has to be expanded including the curvature term and the
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correct scaling for the border step is

AT (s) = T−1/3
{
bT ([τT+sT 2/3])−

(
b∞(τ)T + b′∞(τ)sT 2/3 + 1

2
b′′∞(τ)s2T 1/3

)}
. (2.69)

Hereτ > 0 is a fixed macroscopic reference point ands ∈ R with sT 2/3 the longitudinal
distance.s 7→ AT (s) is regarded as a stochastic process ins. In Chapter 5 we prove the
convergence

lim
T→∞

AT (s) = κA(sκ/2) (2.70)

in the sense of convergence of finite dimensional distributions. The limit processA(s)
is the stationary Airy process. Its scale is determined by the local curvature viaκ =
3
√

2b′′∞(τ).

2.3.4 Universality of shape fluctuations of crystal shapes

Equilibrium crystal shapes typically consist of various flat facets connected by rounded
surfaces. For a microscopically flat facet there must be an atomic ledge bordering the
facet. This border step could be blurred because of thermal excitations, but is clearly
visible at sufficiently low temperatures [97, 67, 66]. Whilein the interior of the rounded
piece of the crystal the step line density is of order one on the scale of the lattice constant, it
decays to zero as the edge of a high symmetry facet is approached. Ifr denotes the distance
from the facet edge, according to Pokrovsky-Talapov [75] the step line density vanishes
as

√
r. Thus there is a lot of space for the border ledge to meander, in sharp contrast to

steps in the rounded part which are so confined by their neighbors that they fluctuate only
logarithmically [93]. Now we discuss the statistics of border ledge fluctuations. In the
3D-Ising corner model, the border ledge isbT .

In this section we follow the outline of our paper [29]. Firstwe present the terrace-
ledge-kink (TLK) model and obtain a form for the universality of the border ledge fluctua-
tions. In the TLK model spatial translation invariance is imposed, therefore it might seem
somewhat artificial, we therefore compare the result with the 3D-Ising corner analyzing the
consequences of (2.70). By universality we expect our result to be valid for short-range
step-step crystal interactions. To obtain the form which properly distinguishes between
model-dependent and universal properties we have to rely ona few notions from the ther-
modynamics of equilibrium crystal shapes [3].

TLK model

We first consider the terrace-ledge-kink (TLK) model, whichserves as a description of
a vicinal surface, i.e., a crystal cut at a small angle relative to a high symmetry crystal
plane. The surface is made up of an array of ledges which on theaverage run in parallel
and are separated by terraces. The ledges are not perfectly straight and meander through
kink excitations, only constrained not to touch a neighboring ledge. One can think of these
ledges also as discrete random walks constrained not to cross, i.e., with a purely entropic
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Figure 2.15: Top lines for a TLK model with volume constraint.

repulsion. Such a line ensemble is very closely related to Dyson’s Brownian motion, in
which the random walks are replaced by continuum Brownian motions. As discussed in
[49, 23], the location of the steps at fixed random walk timet have the same distribution
as the eigenvalues of a GUE(β = 2) random matrix. On this basis it is expected that
the ledge-ledge distance is governed by the GUE level spacing [25]. This prediction is
verified experimentally [26], however with deviations fromβ = 2 which are attributed to
long range elastic forces mediated through the bulk of the crystal and not included in the
TLK model.

If in the TLK model one retains the lattice structure in the transverse direction and
makes the continuum approximation in the direction along the ledges, then the ledges can
be regarded as the world lines of free fermions in space-timeZ × R [109]. The world
lines are piecewise constant and have jumps of only one lattice spacing. Consequently
the transfer matrix has a nearest neighbor hopping term and the Pauli exclusion principle
guarantees entropic repulsion in the sense that ledges do not meet.

The TLK model, in the version as just explained, has no facet.The crystalline surface
has a constant average slope. Slope variations can be enforced through avolume con-
straint. For this purpose we introduce the “occupation” variablesηj(t), |j| ≤ N , |t| ≤ T ,
in the surface patch[−N,−N +1, ..., N ]× [−T, T ]: ηj(t) = 1 if there is some ledge pass-
ing through(j, t), andηj(t) = 0 otherwise. In these variables, up to an overall constant,
the crystal volume is given by

Av =

∫ T

−T
dt

N∑

j=−N
j ηj(t) (2.71)

and volume constraint means to have an ensemble of ledges where the actionAv is kept
fixed.

Without volume constraint the transfer matrix is generatedby a free fermion Hamil-
tonian with nearest neighbor hopping [109]. Imposing the volume constraint grand-
canonically adds to the fermionic action the termλ−1Av with a suitable Lagrange mul-
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tiplier λ−1. Thereby the nearest neighbor hopping Hamiltonian is modified to

HF =
∑

j∈Z (
− a∗jaj+1 − a∗j+1aj + 2a∗jaj +

j

λ
a∗jaj

)
. (2.72)

aj , resp.a∗j , is the annihilation, resp. creation, operator at lattice site j ∈ Z. They satisfy
the anticommutation relations{ai, a∗j} = δij , {ai, aj} = 0 = {a∗i , a∗j}. In (2.72) we have
taken already the limitN → ∞. The transfer matrix ise−tHF , t ≥ 0, and in the limit
T → ∞ one has to compute the ground state expectations forHF . A macroscopic facet
emerges asλ → ∞. In Figure 2.15 we display a typical ledge configuration for the TLK
model with volume constraint. There is no further ledge above the one shown and for
j → −∞ ledges are perfectly flat and densely packed.

Since a ledge corresponds to a fermionic world line, the average step densityEλ(ηj(t)) = ρλ(j) is independent oft and given byEλ(ηj(t)) = Eλ(a∗jaj) with Eλ
on the right denoting the ground state expectation forHF . By the linear potential in (2.72)
steps are suppressed for largej. Hence the average surface heighthλj (t) at (j, t), relative
to the high symmetry plane, equals

hλj (t) = −
∞∑

k=j

Eλ(ηk(t)). (2.73)Eλ(a∗jaj) can be computed in terms of the Bessel functionJj(z) of integer orderj and its

derivativeLj(z) =
dJj(t)

dj
with the result [81]

ρλ(j) = Eλ(a∗jaj) = λ
(
Lj−1+2[λ](2λ)Jj+2[λ](2λ) − Lj+2[λ](2λ)Jj−1+2[λ](2λ)

)
(2.74)

where[·] denotes the integer part. For largeλ the heighthλj (t) is of orderλ. Therefore we
rescale the lattice spacing by1/λ. Then the macroscopic equilibrium crystal shape defined
by

heq(r, t) = lim
λ→∞

λ−1h[λr](λt) (2.75)

is given by

heq(r − 2, t) =






r for r ≤ −2,
1
π

(
r arccos(r/2) −

√
4 − r2

)
for − 2 ≤ r ≤ 2,

0 for r ≥ 2.
(2.76)

Thus under volume constraint the TLK model has two facets, one with slope1, the other
one with slope0, joined by a rounded piece. The upper facet edge is located atr = 0. It
has zero curvature. Expanding nearr = 0 results inheq(r, t) ∼= − 2

3π
(−r)3/2, consistent

with the Pokrovsky-Talapov law.
With the exact result (2.74) it becomes possible to refine theresolution. The appropri-

ate step size isλ1/3 lattice constants. For the step densityρλ(j) = Eλ(a∗jaj) close tor = 0
one finds

lim
λ→∞

λ1/3ρλ(λ
1/3x) = −xAi(x)2 + Ai′(x)2 , (2.77)
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Ai the Airy function. (2.77) has the asymptotics

1

π

√
|x| for x→ −∞, (2.78)

1

8πx
exp(−4x3/2/3) for x→ ∞.

Our real interest are the border ledge fluctuations. Clearlythe border ledge is the top
fermionic world line which we denote bybλ(t). bλ(t) takes integer values and is piecewise
constant with unit size kinks. Since, at fixedt, the steps in the bulk have approximately the
same statistics as a GUE random matrix, one would expect thatthe transverse fluctuations
of the border ledge equal those of the largest eigenvalue. Indeed, using the fermionic
transfer matrix combined with an asymptotic analysis [81],one finds that

u 7→ λ−1/3bλ(λ
2/3u) (2.79)

converges to the Airy process in theλ → ∞ limit. Therefore the one-point distribution is
the GUE Tracy-Widom distributionF2,

lim
λ→∞

P(bλ(0) ≤ λ1/3s) = F2(s), s ∈ R. (2.80)

In our context an experimentally more accessible quantity is the ledge wanderingE(
(bλ(t) − bλ(0))2

)
. In the limit of largeλ it has been computed in [81] with the re-

sult
Var

(
bλ(t) − bλ(0)

)
≃ λ2/3g(λ−2/3t). (2.81)

Thus the transverse fluctuations are on the scaleλ2/3. In particular, for smalls the scaling
functiong(s) is linear ins, g(s) ≃ 2|s|, indicating that for small, on the scaleλ2/3, sepa-
rations the border ledge has random walk statistics. On the other handg(s) saturates for
larges, g(s) ≃ g(∞) − 2/s2, reflecting that the border ledge fluctuations are stationary
(on the scaleλ2/3). For more details on the Airy process, see Section 3.3.3.

An alternative proof of the convergence of (2.79) to the Airyprocess follows from the
recent work [19]. Their proof involves Markov dynamics on Young diagrams.

Thermodynamics

The border ledge of the TLK model and the 3D Ising corner have the same scaling be-
havior, which suggests the scaling to hold in greater generality. To obtain the form which
properly distinguishes between model-dependent and universal properties we have to rely
on a few notions from the thermodynamics of equilibrium crystal shapes [3]. Let us denote
byh(x, y) the height of a vicinal surface relative to the high symmetryreference plane. We
find it convenient to measureh in number of atomic layers, whereasx, y are measured in a
suitable macroscopic unit. Thush is dimensionless andx, y have the dimension[length].
Further letkBTf(u) be the surface free energy per unit projected area dependingon the
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Figure 2.16: The original coordinate axis isx− y and the tangential one ise1 − e2. The
crystal lies in the region with negativez.

local slopeu = ∇h. Below the roughening transitionf has a cone atu = 0 and for small
u behaves as

f(u) ≃ γ(θ)|u| +B(θ)|u|3 (2.82)

with θ the polar angle ofu [37, 107]. Theline stiffness̃γ is defined through̃γ(θ) =
γ(θ) + γ′′(θ). As argued in [4], for short range surface models the Gaussian curvature of
the equilibrium crystal shape has a universal jump across the facet edge, which implies the
relation

γ̃(θ)B(θ) = π2/6. (2.83)

Let us denote bŷf the Legendre transform off . If
∫
dxdyf(∇h(x, y)) is minimized

under the constraint of fixed volume, then the resulting equilibrium surface is given by
h(x, y) = ℓf̂(ℓ−1x, ℓ−1y), whereℓ is the Lagrange multiplier adjusted so to give the cor-
rect volume [8].h is convex downwards and has a convex facet lying in thex-y plane. The
facet boundary is determined byγ(θ) alone. Close to the facet edge,h ∼= −2

3
γPTd

3/2 with
d the normal distance to the facet edge, which defines thePokrovsky-Talapov coefficient
γPT . Under Legendre transformation the angleθ becomes the angle between thex-axis
and the outher normal to the facet and, correspondingly,γPT , the local curvatureκ0, and
the distancer of a point on the edge to the origin are parametrized through this angleθ.
The relationship betweeñγ andB implies, see Appendix A.1,

γ2
PTκ0 = 2ℓ−2π−2. (2.84)

We return to the border ledge fluctuations close to a given angle θ0. For this purpose it
is convenient to use a preferred axis coordinate systeme1 − e2, see Figure 2.16, centered
at r(θ0) with the e1-axis tangential and thee2-axis along the inner normal to the facet.
In this frame, we denote byx2 = b(x1) the fluctuating border step, where(x1, x2) are
the coordinate of the points ine1 − e2. ThenE(b(x2)) = 1

2
κ⊥(θ0)x

2
1, in approximation.

For sufficiently small|x1|, still large on the scale of the lattice,b(x1) is like a random
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walk and Var
(
b(x1) − b(0)

) ∼= σ2
⊥|x1|, which defines the local wandering coefficientσ2

⊥.
Following [3] it is natural to equateσ⊥(θ)2 with the inverse stiffness̃γ(θ)−1. This implies

σ2
⊥ = κ⊥ℓ, κ⊥ = π2γ2

PT,⊥σ
4
⊥/2 (2.85)

valid for any point on the facet edge.
The general scaling form is obtained now by using the TLK model as benchmark.

Locally the border ledge performs a random walk with nearestneighbor hopping rate1,
see (2.72), thusσ2 = 2. From (2.76) the PT coefficient isγPT = 1/π

√
ℓ in our units.

Using these two as model-dependent parameters yields the scaling form

Var
(
b(x1) − b(0)

)
≃ (πγPT,⊥)−4/3g

(
(πγPT,⊥)4/3σ2

⊥x1/2
)
. (2.86)

Of course, through (2.84), (2.85), any other pair of model-dependent parameter can be
used to reexpress (2.86).

3D-Ising corner model

Within the volume-constrained TLK model we arrived at an interesting prediction for the
border ledge fluctuations. This can be compared with the result of the 3D-Ising corner,
where we prove that the border ledge is described by the Airy process too. Then from
(2.70) it follows, for largeT ,

Var
(
bT (τT + t) − bT (τT )

)
≃ κ2T 2/3g(κT−2/3t/2) (2.87)

with κ = 3
√

2b′′∞(τ). As we have seen, the(111)-projection of the 3D-Ising corner gives
a lozenge tiling. The free-energy of the lozenge tiling is the logarithm of the partition
function computed in [111, 16] using Kasteleyn’s method [50]. From this it follows that
the “natural” limit shape iŝf(0, y) = − ln(1−e−y), which is the half of the one computed
by the parameterT , compare with (2.68). Thus the first relation is

ℓ = 2T. (2.88)

Then explicit computations leads to

κ⊥ = (2T )−1σ2
⊥,

σ2
⊥ = 2b′′∞(τ)(1 + b′∞(τ)2)−3/2, (2.89)

γPT,⊥ = (2b′′∞(τ))−1/2T−1/2π−1(1 + b′∞(τ)2)3/4.

The terms1 + b′∞(τ)2 come from the particular orientation of thee1 − e2 axis, see (A.9)
in Appendix A.1.

2.3.5 On general macroscopic facets

In this section we discuss the macroscopic equilibrium crystal shapes, one of which is the
limit shape of the 3D-Ising corner. The macroscopic shape which minimize the surface
free energy can be determined by the Wulff construction. Fora more extended description
see [73].
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The surface tension

First we define the surface tensionσ. Consider a macroscopic three-dimensional crystal
and a planeΠ with normal directionu. To break the crystal into two parts along the plane
Π and create two surfaces of areaA, a workW (u) is needed. The surface tensionσ(u)
is the surface free energy per unit area, which is then given by σ(u) = W (u)/2A in the
limit of large crystals. LetΣ be the surface of a crystal, the total free energy ofΣ is given
by

F =

∫

Σ

σdS (2.90)

wheredS is the surface element. (2.90) assumes already that the crystal is large (negligible
border effects) and incompressible.

Equilibrium crystal shape

Equilibrium crystal shapes results from the minimization of the surface free energy. Given
the surface tensionσ, there is a geometrical construction which leads to the unique con-
vex crystal shape minimizing the surface free energy (up to aglobal scaling fixed by the
volume), the

Wulff construction : Fix the originO, and for each directionu define the
pointH on the spherical plot ofσ given byOH = σ(u)u. Construct the plane
Πu passing byH and orthogonal tou. Then surface crystal shape is the inner
envelope of all the planesΠu.

Facets in equilibrium crystal shapes appear only when the surface tension has non-
differentiable points/lines.

Random surfaces and random tilings

Now we consider a particular class of random surfaces, the ones which can be mapped to
random tilings. One example is the 3D-Ising corner described above. The surface tension
can also be computed by microscopic models, the free energy being− lnZ with Z the
partition function. For the 3D-Ising corner, the limit shape was obtained already in [16]
using the mapping to the random tiling explained above, for which the free energy was
known [111]. Moreover, in [20] a law of large numbers is proven for the microscopic
model and shown that the limit shape obtained by the Wulff construction agrees using the
free energy− lnZ.

A first variation of the rhombus tiling of Figure 2.13 consists in giving different weights
to the orientations of the rhombi. In this case a new facetF shows up with normal direction
(1, 1, 1) as proven by Blöte, Hilhorst, and Nienhuis in [17]. The border of the facetF
shows the Pokrovsky-Talapov law too.

Recently Kenyon, Okounkov, and Sheffield [53] studied random surfaces which arise
as height functions of random tilings on weighted, bipartite lattices with periodic boundary
conditions. Among others, they shows (Theorem 5.5 in [53]) that inside any of the rounded
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pieces the second derivative has constant determinant. This result would imply that (2.82)
holds for these models too, thus also the PT-law.

Airy process: an open question

Consider for example the facetF . Macroscopically it is flat, but on a microscopic scale
some irregularities exist. The border line between the rounded part and the facetF is not
uniquely defined. One can define it as the border of the first macroscopic island without
including eventual spikes on the atomic scale. Therefore, up to some coarse graining of
order one, the different possible definitions should agree.From the argument explained
above, the Pokrovsky-Talapov law should hold for all the facets likeF . Therefore we can
conjecture that the border line of these facets are also described by the Airy process, but
the question remains open.



Chapter 3

Line ensembles and point processes

In this chapter we first introduce the notion of point processand two of its classes, the
determinantal and the Pfaffian point processes. Then we consider the Gaussian ensem-
bles of random matrix theory. Their eigenvalues form some determinantal/Pfaffian point
processes. An edge scaling at the border of the spectrum of eigenvalues leads to some lim-
iting point processes which show up in our results on the 3D-Ising corner and on the flat
PNG. The eigenvalues of the Gaussian ensembles can be seen aspositions of particles sub-
jected to some random evolution. This is known as Dyson’s Brownian motion and leads
to a natural extension of the determinantal point process. In the last part of the chapter we
turn back to our models and we map them to some non-intersecting line ensembles. In the
subsequent two chapters we study the point processes definedby the positions of the lines.

3.1 Point processes

3.1.1 Determinantal point processes

Definitions

A point process is a measurable mapping from a probability space to a measurable
space [64]. First let us construct the probability space. Denote byX a one-particle space,
which we take to beRd, Zd, or some subset of them. LetΓ be the space of finite or count-
able configurations of particles inX, where the particles are ordered in some natural way
andeach configurationξ = (xi), xi ∈ X, i ∈ Z (or N if d > 1) is locally finite, i.e.,
for every compactB ⊂ X, the number ofxi ∈ B, denotedn(B)(ξ), is finite. Next we
define theσ-algebra onΓ via the cylinder sets. For any bounded Borel setB ⊂ X and
n ≥ 0, CB

n = {ξ ∈ Γ, n(B)(ξ) = n} is a cylinder set. Then we defineF as theσ-algebra
generated by all cylinder sets and denote byP a probability measure on(Γ,F).

Secondly we define the measurable space of thepoint measures. LetB(X) be the Borel
σ-algebra ofX. A point measure onX is a positive measureν on the space(X,B(X))
which is a locally finite sum of Dirac measures, i.e., forx ∈ X, ν(x) =

∑
i∈I δ(x − xi)

with xi ∈ X, I ⊂ N, and for any bounded subsetB ⊂ X, xi ∈ B for a finite number of
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i ∈ I. Then denote byMp(X) the space of point measures defined onX andMp(X) the
σ-algebra generated by the applicationsν → ν(f) of Mp(X) toN ∪ {∞} obtained when
f spanB(X).

Definition 3.1. A point processη on X is a measurable mapping from(Γ,F ,P) into
(Mp(X),Mp(X)). The probability law of this point process is the image ofP byη.

Moments of random variables (observables) can be expressedin terms of correlation
functions which are defined as follows.

Definition 3.2. Let µ be a reference measure onX. Then-point correlation functionof
point process on(Γ,F ,P) is a locally integrable functionρ(n) : Xn → R+ such that:
a) if µ is absolutely continuous with respect to the Lebesgue measure: for any disjoint
infinitesimally small subsets[xi, xi + dxi], i = 1, . . . , n,P({n([xi, xi + dxi]) = 1, i = 1, . . . , n}) = ρ(n)(x1, . . . , xn)µ(dx1) . . . µ(dxn), (3.1)

whereµ(dx) denotesµ([x, x+ dx]).
b) if µ is supported on a discrete sets of points: for any distinct pointsx1, . . . , xn ofX,P({n(xi) = 1, i = 1, . . . , n}) = ρ(n)(x1, . . . , xn)µ(x1) . . . µ(xn). (3.2)

Obviously then-point correlation functions have to be symmetric in their arguments.
The first question is to know whether then-point correlation functions defines uniquely
the point process or not. A first sufficient condition found byRuelle, chapters 4.7 and 7
in [87], writesρ(n)(x1, . . . , xn) ≤ cn a.s. for somec > 0 uniformly in (x1, . . . , xn). Lenard
studied the problem again and obtained a weaker condition. Let us define, forA ⊂ X,

mA
k =

1

k!

∫

Ak

ρ(k)(x1, . . . , xk)dµ(x1) . . .dµ(xk). (3.3)

If for all boundedmeasurable subsetA ⊂ X

∞∑

k=1

(mA
k )−1/k = ∞, (3.4)

then the point process is uniquely defined [58, 91].
SincemA

k ≤ mB
k if A ⊂ B, then to verify (3.4) it is enough to analyze the behavior of

mA
k for largeA. In particular, forX = R it is enough to check (3.4) forA = [−M,M ]

for all M ∈ R. Remark also that no uniformity inM is required. In terms of correlation
functions, if

ρ(n)(x1, . . . , xn) ≤ n2ncn a.s. (3.5)

for somec > 0, then (3.4) is satisfied. There is a stronger condition than (3.4) but easy
to verify in some concrete situations [58], namelylim infk→∞(mA

k )−1/k > 0 for every
boundedA ⊂ X.
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The second question analyzed by Lenard [59] is to know under which conditions a
set of locally integrable functionsρn : Xn → R+ are correlation functions of some point
process. The first condition is thesymmetry condition

ρn(x1, . . . , xn) = ρn(xσ(1), . . . , xσ(n)) (3.6)

for all permutationσ ∈ Sn, which is obviously necessary. To state the second condition,
we first have to introduce a few definitions. We denote byK the space offinite sequences
of points inX: K =

⋃
n≥0X

n whereX0 denotes the empty sequence. A subsetH ⊆ K is
compact if and only if it is of the formH =

⋃m
n=0Hn with Hn ⊂ Xn compact andm ≥ 0

finite. Consider any real valued functionf onK with compact support and denote byfk
the restriction off toXk. Define a real functionSf onΓ by

(Sf)(ξ) =
∑

k≥0

∑

i1 6=...6=ik

fk(xi1 , . . . , xik). (3.7)

The sum overk is finite becausef is of compact support. Thepositivity conditionis the
following. If f : K → R is a bounded measurable function such that(Sf)(ξ) ≥ 0 for all
ξ ∈ Γ, thenE(Sf) =

∑

k≥0

∫

Xk

fk(x1, . . . , xk)ρn(x1, . . . , xk)dµ(x1) · · ·dµ(xk) ≥ 0 (3.8)

holds ifρn are correlation functions,µ being the reference measure onX.
Correlation functions are important in the computation of expected values of observ-

ables. Some random variables of interest are often calledlinear statisticsand are of the
form ∑

i

f(xi) (3.9)

for some real functionf . Define the functionu = 1 − ef . ThenE(
exp

( ∑

j

f(xj)
))

= E( ∏

j

(1 − u(xj))

)
=

∞∑

n=0

(−1)nE( ∑

j1<...<jn

n∏

k=1

u(xjk)

)

=

∞∑

n=0

(−1)n

n!
E( ∑

j1 6=...6=jn

n∏

k=1

u(xjk)

)
(3.10)

=
∞∑

n=0

(−1)n

n!

∫

Xn

dnµ(x)ρ(n)(x1, . . . , xn)
n∏

j=1

u(xj).

An interesting class of point processes which will be considered in the rest of the
section are the determinantal point processes, also calledfermionicsince the probability
that two points are at the same position is zero.
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Definition 3.3. A point process is calleddeterminantalif then-point correlation functions
are given by

ρ(n)(x1, . . . , xn) = Det(K(xi, xj))1≤i,j≤n (3.11)

whereK(x, y) is a kernel of an integral operatorK : L2(X,µ) → L2(X,µ), non-negative
and locally trace class.

The positivity is required because then-point correlation functions are positive, and
locally trace class because each configuration is locally finite. For a determinantal point
process, (3.11) in (3.10) leads toE( ∏

j

(1 − u(xj))

)
=

∞∑

n=0

(−1)n

n!

∫

Xn

Det(K(xi, xj))1≤i,j≤n

n∏

j=1

u(xj)d
nµ(x)

≡ Det(1− uK)L2(X,µ) (3.12)

where for eachϕ ∈ L2(X,µ),

[(uK)ϕ](x) =

∫

X

u(x)K(x, y)ϕ(y)dµ(y). (3.13)

The last determinant in (3.12) is calledFredholm determinantof the operatoruK on the
spaceL2(X,µ), see also Appendix A.2. Note thatuK in (3.12) can be replaced by the
symmetrizedu1/2Ku1/2, where withu1/2 we mean the multiplication operator byu(x)1/2.

A special but important observable which can be computed viaa Fredholm determinant
is thehole probability. For a subsetB of X the probability that it is empty isP({n(B) = 0}) = E( ∏

j

(1 − χB(xj))

)
= Det(1−K)L2(B,µ). (3.14)

In particular for a determinantal point process onR or Z which has alast particlewhose
position is denoted byxmax, the distribution ofxmax writesP(xmax ≤ t) = P(n((t,∞)) = 0) = Det(1−K)L2((t,∞),µ). (3.15)

The next question is to know whether a given point process is determinantal or not.
Borodin (Prop. 2.2 of [18], see also Tracy and Widom for the GUE case [102]) determined
the following class of determinantal point process.

Theorem 3.4. If we have a measure of the form

1

ZN
Det(ϕj(xk))j,k=1,...,N Det(ψj(xk))j,k=1,...,NdNµ(x), (3.16)

then it is a determinantal process with kernel

KN(x, y) =
N∑

i,j=1

ψi(x)[A
−1]i,jϕj(y) (3.17)



3.1 Point processes 45

where

A = [Ai,j]i,j=1,...,N , Ai,j =

∫

X

ψj(t)ϕi(t)dµ(t) (3.18)

Unfortunately, although an explicit formula is given, it isnot always easy (feasible) to
invert the matrixA asN → ∞. A particular case is whenA = 1 in a particular basis. In
this case the kernelKN(x, y) becomes of simple form and the limiting distribution can be
analyzed.

Some important kernels: sine and Airy kernel

Let x, x′ ∈ R, thesine kernelis defined by

S̺(x, x
′) =

sin(̺π(x− x′))

π(x− x′)
, (3.19)

with ̺ the density of points. By rescaling,̺ can be always be set to one, but we prefer to
keep the parameter in general. TheAiry kernelwrites

A(x, x′) =
Ai(x) Ai′(x′) − Ai′(x) Ai(x′)

x− x′
(3.20)

whereAi(x) is the Airy function [1]. In some models appears thediscrete sine kernel,
which means only thatx, x′ ∈ Z.

In Section 3.2.2 we will see that the asymptotics in the bulk of the spectrum of GUE
random matrices leads to the sine kernel, and in the edge of the spectrum to the Airy
kernel.

3.1.2 Pfaffian point processes

A generalization of determinantal point process are thePfaffian point processes. First we
define the Pfaffian. LetA = [Ai,j]i,j=1,...,2N be anantisymmetricmatrix, then its Pfaffian
is defined by

Pf(A) =
∑

σ∈S2N
σ2i−1<σ2i

(−1)|σ|
N∏

i=1

Aσ2i−1,σ2i
, (3.21)

whereS2N is the set of all permutations of{1, . . . , 2N}. Notice that the Pfaffian depends
only on the upper triangular part ofA. For an antisymmetric matrix the identityPf(A)2 =
Det(A) holds.

Definition 3.5. A point process isPfaffianif then-point correlation functionsare given by

ρ(n)(x1, . . . , xn) = Pf[K(xi, xj)]i,j=1,...,n, (3.22)

whereK(x, y) is a2 × 2 antisymmetric matrix kernel.
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With the notation[K(xi, xj)]i,j=1,...,n we mean the2n × 2n matrix composed byn2

matrix blocksK(xi, xj) of size2 × 2.
A class of Pfaffian point process is introduced in [82], see also [92]. Let(X,µ) be a

measurable space,f1, . . . , f2N complex-valued functions onX andε(x, y) be anantisym-
metric kernel, and define by

p(x1, . . . , x2N ) =
1

Z2N

Det[fj(xk)]j,k=1,...,2N Pf[ε(xj, xk)]j,k=1,...,2N (3.23)

the density of a2N-dimensional probability distribution onX2N with respect toµ⊗2N , the
product measure generated byµ. The normalization constant is given by

Z2N =

∫

X2N

d2NµDet[fj(xk)]j,k=1,...,2N Pf[ε(xj , xk)]j,k=1,...,2N = (2N)! Pf[M ] (3.24)

where the matrixM = [Mi,j]i,j=1,...,2N is defined by

Mi,j =

∫

X2

fi(x)ε(x, y)fj(y)dµ(x)dµ(y). (3.25)

The point process with measure (3.23) is Pfaffian with the antisymmetric kernel
K(x, y) given by

K(x, y) =

(
K1,1(x, y) K1,2(x, y)
K2,1(x, y) K2,2(x, y)

)
, (3.26)

where
K1,1(x, y) =

∑2N
i,j=1 fi(x)M

−1
j,i fj(y),

K1,2(x, y) =
∑2N

i,j=1 fi(x)M
−1
j,i (εfj)(y),

K2,1(x, y) =
∑2N

i,j=1(εfi)(x)M
−1
j,i fj(y),

K2,2(x, y) = −ε(x, y) +
∑2N

i,j=1(εfi)(x)M
−1
j,i (εfj)(y),

(3.27)

provided thatM is invertible, and(εfi)(x) =
∫
X
ε(x, y)fi(y)dµ(y). M−1

j,i means the(j, i)
component of the inverse of the matrixM . Note the order of indices inM−1

j,i . Similarly
to the determinantal processes, the linear statistics of Pfaffian processes is given by the
Fredholm Pfaffian of the kernelK. Let u = 1 − ef , thenEN(

exp
(∑

j

f(xj)
))

= EN( 2N∏

j=1

(1 − u(xj))

)
= Pf(J −Ku) =

√
Det(1+ JKu)

(3.28)

with the matrix kernelJ(x, y) = δx,y

(
0 1
−1 0

)
. For Fredholm Pfaffian see Appen-

dix A.2.
Finally notice that the determinantal point processes are included in the Pfaffian ones.

In fact if K is of the formK =

(
ε K0

−K0 0

)
, then for arbitraryε the point process is

determinantal with kernelK0. In fact,Pf(J +K) = Det(1+K0) in this case [82].
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3.2 Random matrices

3.2.1 Classical Gaussian random matrix ensembles

In this section we explain some results on the classical Gaussian random matrix ensembles
which are linked with our problems. Of particular interest for our work are the edge statis-
tics of the eigenvalues, which lead to the Tracy-Widom distributions [103]. The standard
reference on classical random matrices is Mehta’s book [62]. The reader interested in a
shorter discussion on random matrices in physics can read [56]. For more recent reviews
see for example [71, 72].

Gaussian Orthogonal, Unitary, Symplectic Ensembles

Usually the spectrum of an hamiltonian contains both continuum and discrete part. If we
are interested in the discrete spectrum we restrict the Hilbert space to a finite subspace
where the hamiltonian is represented as a hermitian matrix.Moreover, if there exists
some constants of motion, then the matrix is decomposed intoblocks. Consider one of
these blocks, say aN × N hermitian matrixH. If the only constraints are space-time
symmetries, then there are three important cases of random matrices [24]

- β = 1: if the system is invariant with respect to time-inversion and the total angular
momentum is integer or the system is rotational invariant, then the matrixH can be
takenreal symmetric. Since it can be diagonalized by an orthogonal transformation,
the corresponding random matrix ensemble is calledorthogonal.

- β = 2: if the system is not invariant with respect to time-inversion (for example,
systems with external magnetic field), then the matrixH is complex hermitian. It
can be diagonalized by an unitary transformation, so the random matrix ensemble is
calledunitary.

- β = 4: if the system is invariant with respect to time-inversion but with half-integer
total angular momentum, then the matrixH is real quaternionic. It can be diago-
nalized by a symplectic unitary transformation and the random matrix ensemble is
calledsymplectic(see Appendix A.3).

The meaning ofβ will be clear at the level of the distribution of eigenvalues. The
eigenvalues are real for all these three ensembles. The classical Gaussian ensembles are
obtained setting the probability distribution on matricesas

p(H)dH =
1

Z ′ e
−Tr(H2)/2NdH (3.29)

wheredH is the Lebesgue product measure on the independent elementsof H andZ ′

is the normalization. The ensembles of random matrices obtained are calledGaussian
Orthogonal(GOE),Unitary (GUE), andSymplectic(GSE)Ensemblesfor β = 1, β = 2,
andβ = 4 respectively.
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Remark: the factor1/2N in (3.29) is somewhat unusual, but it turns out to be conve-
nient for the comparison with the results on the PNG and the 3D-Ising corner.

The distribution (3.29) is also recovered by taking the independent elements ofH as
Gaussian random variables with mean zero and varianceN for the diagonal terms,N/2
for the non-diagonal terms (since inTr(H2) they appears twice).

Another way to obtain (3.29) is to maximize the functional “entropy” [14]

S(p) = −
∫
p(H) ln p(H)dH (3.30)

under the conditionE(Tr(H2)/2N) = 1
2
n, wheren = N + 1

2
βN(N −1) is the number of

independent elements of the matrixH, see also Appendix A.4. This is the same method
used to derive the canonical and grand-canonical measures in statistical mechanics.

Distribution of eigenvalues

One interesting quantity of random matrices is the distribution of eigenvalues, because
they are the energy of the system with HamiltonianH. The probability distribution (3.29)
depends only on the eigenvalues of the matrices, reflecting the requirement that (3.29)
has to be independent of the choice of the basis used to describe the physical system. This
means that (3.29) is invariant under the symmetry group, i.e., orthogonal groupG = O(N)
for GOE, unitary groupG = U(N) for GUE, and unitary symplectic groupG = USp(2N)
for GSE.

We can diagonalizeH by a transformation of the groupG, H = gΛg−1 for some
g ∈ G, with Λi,j = λiδi,j, λi the eigenvalues ofH. The infinitesimal transformation is

δH = gδH ′g−1, δH ′ = δΛ + [g−1δg,Λ], (3.31)

which implies that the jacobian of the change of variable from H to H ′ is one. On the
other hand,

δH ′
i,j = δλiδi,j + δΩi,j(λi − λj), δΩ = g−1δg, (3.32)

then the jacobian fromH ′ to (Λ, g) is given by
∏

1≤i<j≤N |λj − λi|β. The variationsδΩ
can be described by parameterizing the groupG, and give as volume element the Haar
measuredG. It then follows thatdH = |∆N(λ)|βdλdG, with dλ =

∏N
k=1 dλk and

∆N(λ) = Det(λj−1
i )Ni,j=1 =

∏

1≤i<j≤N
(λj − λi). (3.33)

∆N(λ) is called the Vandermonde determinant. Finally integrating over the symmetry
groupG, the joint probability distribution of the eigenvalues isPβ,N(λ1, . . . , λN)dλ1 · · ·dλN =

1

Zβ,N
|∆N(λ)|β

N∏

j=1

e−λ
2
j/2Ndλj, (3.34)

with Zβ,N the normalization constant.
Now we review some results on the distribution of eigenvalues in theN → ∞ limit.
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Wigner semi-circle law

Denote byρβ,N(λ) the expected density of eigenvalues atλ. For largeN this density
vanishes outside the interval[−2N, 2N ] and has a semi-circle shape (if the eigenvalues
are rescaled by2N). This is theWigner semi-circle law, and in our setting writes

ρβ,N(λ) ≃ 1

π

√
(1 − (λ/2N)2)+ (3.35)

for largeN , wherex+ = max{0, x}.
In [42] the global fluctuations properties of the eigenvalues is studied. The case for

general confining potentialV (x) (in the Gaussian ensemblesV (x) = x2/2N) so that the
weight on random matrices ise−Tr(V (H)) and for allβ is studied. In our setting the result
is the following. For continuous functionf : [−1, 1] → R which increases at most as the
potentialV ,

lnE(
e
PN

j=1
f(λj/2N)

)
−

∫ 2N

−2N

dλρβ,∞(λ)f(λ/2N) −→ B(f) (3.36)

asN → ∞ whereB(f) is an explicit quadratic functional off . Remark that no factor
1/
√
N is needed.

Fluctuations in the bulk for GUE

In a recent preprint, Gustavsson considers the distribution of thek-th largest eigenvalue of
GUE [38]. He proves that ifk → ∞ asN → ∞ (and by symmetry,N − k → ∞ too),
then it converges to a normal distribution when properly rescaled. First considerk such
thatλk is in the bulk. Letk = k(N) be chosen such thatk/N → a ∈ (0, 1) asN → ∞.
Let t be the value such thatEN(λk) = 2Nt. Then, for largeN ,

λk ≃ 2Nt+

(
lnN

2(1 − t2)

)1/2

ξG (3.37)

with ξG a random variable with normal distributionN(0, 1). Next he consideredk such
thatk → ∞ asN → ∞ but withk/N → 0, thus still close to the edge. Then, for largeN ,

λN−k ≃ 2N

(
1 −

(
3π

4
√

2

)2/3

(k/N)2/3

)
+

(
2

(12π)2/3

ln k

(k/N)2/3

)1/2

ξG. (3.38)

He also determines a convergence of the joint-distributionfunctions ofm eigenvalues.

Largest eigenvalue: Tracy-Widom distributions

The Wigner semi-circle law tells us that the largest eigenvalue λN,max is located close to
2N . Tracy and Widom study the distribution ofλN,max in the limitN → ∞ for β = 1, 2, 4
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Figure 3.1: Probability densities of the Tracy-Widom distributions generated using [80].

with the following result [100, 101], see also their review paper [103]. LetFβ,N(t) =Pβ,N(λN,max ≤ t), thenFβ(s) defined by

Fβ(s) = lim
N→∞

Fβ,N
(
2N + sN1/3

)
(3.39)

exists forβ = 1, 2, 4. Forβ = 2, it is given by

F2(s) = exp
(
−

∫ ∞

s

(x− s)q2(x)dx
)

(3.40)

whereq is the unique solution of the Painlevé II equationq′′ = sq + 2q3 satisfying the
asymptotic conditionq(s) ∼ Ai(s) for s → ∞. F2 is called theGUE Tracy-Widom
distribution. Forβ = 1 theGOE Tracy-Widom distributionreads

F1(s) = exp
(
− 1

2

∫ ∞

s

q(x)dx
)
F2(s)

1/2 (3.41)

and forβ = 4 theGSE Tracy-Widom distributionreads

F4(s/
√

2) = cosh
(1

2

∫ ∞

s

q(x)dx
)
F2(s)

1/2. (3.42)

Remark:F2(s) can also be rewritten as a Fredholm determinant of the Airy operator, see
Section 3.2.2, andF1(s), F4(s) as Fredholm Pfaffians, see Section 3.2.3.

Some characteristics of these distributions are reported in the following table.
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β Mean Variance Skewness Kurtosis
1 -1.20653 1.6078 0.293 0.165
2 -1.77109 0.8132 0.224 0.094
4 -2.30688 0.5177 0.166 0.049

We remind that, if χ is a random variable, then the skewness is defined byE((χ−E(χ))3)/E((χ−E(χ))2)3/2 and measures the degree of asymmetry of the dis-
tribution of χ. The kurtosis is defined byE((χ − E(χ))4)/E((χ − E(χ))2)2 − 3 and
measures the degree to which a distribution is flat or peaked (for normal distribution is0).

Moreover the tails of the distributions are, forx→ −∞,

ln(F ′
1(x)) ≃ − 1

24
|x|3, ln(F ′

2(x)) ≃ − 1

12
|x|3, ln(F ′

4(x)) ≃ − 1

24
|
√

2x|3, (3.43)

and forx→ ∞,

ln(F ′
1(x)) ≃ −2

3
x3/2, ln(F ′

2(x)) ≃ −4

3
x3/2, ln(F ′

4(x)) ≃ −2

3
(
√

2x)3/2. (3.44)

3.2.2 GUE eigenvalues: a determinantal process

Consider the case ofN×N hermitian matrices and letV (x) be aneven degreepolynomial
with positive leading coefficient. Define a measure on randommatrices by

1

Z ′
N

e−TrV (M)dM (3.45)

with dM =
∏N

i=1 dMi,i

∏
1≤i<j≤N dReMi,j dImMi,j . The GUE ensemble is recovered

by settingV (x) = x2/2N . The same procedure used for the GUE case leads to the
distribution of eigenvalues

1

ZN
∆N(λ)2

N∏

j=1

e−V (λj)dλj. (3.46)

We denote byζN the point process of the eigenvaluesλ1, . . . , λN of the random matri-
ces, i.e.,

ζN(x) =

N∑

j=1

δ(x− λj), x ∈ R. (3.47)

In particular the point process ofN ×N GUE random matrices is denoted byζGUE
N .

ζN is a determinantal point process. For GUE random matrices this is an old re-
sult of Gaudin, Mehta, and Dyson, see Chapter 5 of [62]. Letpk(x), k = 0, 1, . . .
be the orthogonal polynomials with respect to the weighte−V (x)dx, normalized as∫R pi(x)pj(x)e−V (x)dx = δi,j. Then the eigenvalue processζN is determinantal with cor-
relation kernel

KN(x, y) =
N−1∑

k=0

pk(x)pk(y)e
− 1

2
(V (x)+V (y)). (3.48)



52 Line ensembles and point processes

Using the Christoffel-Darboux formula [99], (3.48) can be rewritten as

KN(x, y) =
uN−1

uN

pN(x)pN−1(y) − pN−1(x)pN (y)

x− y
e−

1

2
(V (x)+V (y)). (3.49)

whereuk is the leading coefficient ofpk. (3.48) can be recovered by Theorem 3.4 as fol-
lows. Let the reference measureµ be the Lebesque measure. Consider the vector space
WN with basisB1 = {ϕj(x) = ψj(x) = xj−1e−V (x)/2, j = 1, . . . , N}, and with the scalar
product〈g, f〉 =

∫R f(x)g(x)dx. After a change of basis (Gram-Schmidt orthonormal-
ization) one obtains an orthonormal basisB2 = {bj(x), j = 1, . . . , N}. If we denote
byM the matrix with elementsMj,k = ϕj(xk), then the measure (3.16) isDet(M)dNx.
Let S be the basis transformation matrix fromB1 to B2 andM̃ be the matrix with en-
triesM̃j,k = bj(xk). ThenM̃ = S−1M and then the measure (3.16) isDet M̃ DetSdNx.
DetS is a number which can be included in the normalization andA = 1 in the basis of
thebj(x) ≡ pj−1(x)e

−V (x)/2’s.
Random matrices are therefore connected with orthogonal polynomials, which are also

linked among others to the corner growth model, the PNG droplet, non-colliding random
processes. For a review on these connections, see [54].

GUE kernel and its asymptotics

For GUE random matricesV (x) = x2/2N and the kernelKN is theHermite kernelgiven
by

KH
N (x, y) =

N−1∑

k=0

pk(x)pk(y)e
−(x2+y2)/4N (3.50)

= N
pN(x)pN−1(y) − pN−1(x)pN (y)

x− y
e−(x2+y2)/4N ,

wherepk(x) = (2πN)−1/4(2kk!)−1/2pH
k (x/

√
2N) with the (standard) Hermite polynomi-

als

pH
k (x) = ex

2 dk

dxk
e−x

2

. (3.51)

See Appendix A.5 for more details on Hermite polynomials.
First we focus in the bulk of the spectrum. The density of eigenvalues close to2Na,

|a| < 1, is u(a) = 1
π

√
1 − a2. The asymptotics of the Hermite polynomials (A.43) with

x = 2Na+ t/u(a) leads to
√
NpN−h(x)e

−x2/4N ≃ π−1/2 sin(α0N + πt+ αhh)/γ(a) for
largeN , with α0 a constant,αh = π

2
− arcsin(a), andγ(a) = (1 − a2)1/4. Applying this

with h = 0 andh = 1 to the kernel (3.50) we conclude that in the bulk the Hermite kernel
converges to the sine kernel,

lim
N→∞

1

u(a)
KH
N

(
2Na +

t

u(a)
, 2Na+

t′

u(a)

)
= S1(t, t

′), (3.52)
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for anya ∈ (−1, 1).
Now we focus at the edge of the spectrum2N . Since the fluctuations of the largest

eigenvalues are of orderN1/3, the edge scaling of the point processζGUE
N is

ηGUE
N (ξ) = N1/3ζGUE

N (2N + ξN1/3). (3.53)

Thus the kernel of the determinantal point processηGUE
N reads

KGUE
N (ξ, ξ′) = N1/3KH

N

(
2N + ξN1/3, 2N + ξ′N1/3

)
. (3.54)

From the asymptotic (A.42) we obtainpN−h(x)e
−x2/4N ≃ N−1/3 Ai

(
ξ + N−1/3(h− 1

2
)
)

for largeN , wherex = 2N + ξN1/3. Using this forh = 0 andh = 1 we obtain that the
limit of (3.54) asN → ∞ is the Airy kernel (3.20),

lim
N→∞

KGUE
N (ξ, ξ′) = A(ξ, ξ′). (3.55)

From the asymptotics at the edge of the spectrum, the Tracy-Widom distributionF2(s) is
given also by

F2(s) = Det(1−A)L2((t,∞),dx) (3.56)

with A the Airy kernel. To be precise, the convergence of (3.55) obtained above is uni-
formly for ξ, ξ′ is a bounded set. To obtain (3.56) one need some uniform boundfor
ξ → ∞ too. This follows from the super-exponential decay ofpN−h(x)e

−x2/4N for x
larger than the last maximum.

3.2.3 GOE and GSE eigenvalues: Pfaffian processes

In this section we consider the point processes of the GOE andGSE eigenvalues which
are Pfaffian point processes [92]. For example, in the GOE case the distribution of the
eigenvalues is given by (3.23) withfj(x) = xj−1 andε(x, y) = sgn(x− y). Here we want
to describe the edge scaling of the GOE and GSE point processes. If the weight ise−V (x)

instead ofe−x
2/2N , with V an even degree polynomial with positive leading coefficient

then, by (3.23)-(3.27), the GOE and GSE eigenvalues are still Pfaffian point processes for
a different kernel.

GOE random matrices

We denote byζGOE
N the point process of the eigenvaluesλ1, . . . , λN of a N × N GOE

random matrix, i.e.,

ζGOE
N (x) =

N∑

j=1

δ(x− λj), x ∈ R. (3.57)

At the edge of the spectrum,2N , the eigenvalues are orderN1/3 apart, see (3.39). The
edge rescaled point process is then given by

ηGOE
N (ξ) = N1/3ζGOE

N (2N + ξN1/3), (3.58)
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and forf a test function of compact support,

ηGOE
N (f) =

∫R dξf(ξ)ηGOE
N (ξ) =

N∑

j=1

f
(
(λj − 2N)/N1/3

)
. (3.59)

We denote byηGOE the limit of ηGOE
N asN → ∞.

The limit point processηGOE is characterized by its correlation functions as follows.
Let us denote byρ(n)

GOE(ξ1, . . . , ξn) then-point correlation functions ofηGOE, i.e., the joint
density of having eigenvalues atξ1, . . . , ξn. Then

ρ
(n)
GOE(ξ1, . . . , ξn) = Pf[GGOE(ξi, ξj)]i,j=1,...,n (3.60)

wherePf is the Pfaffian andGGOE is the2× 2 antisymmetric matrix kernel with elements

GGOE
1,1 (ξ1, ξ2) =

∫ ∞

0

dλAi(ξ1 + λ) Ai′(ξ2 + λ) − (ξ1 ↔ ξ2), (3.61)

GGOE
1,2 (ξ1, ξ2) =

∫ ∞

0

dλAi(ξ1 + λ) Ai(ξ2 + λ) +
1

2
Ai(ξ1)

∫ ∞

0

dλAi(ξ2 − λ),

GGOE
2,1 (ξ1, ξ2) = −GGOE

1,2 (ξ2, ξ1)

GGOE
2,2 (ξ1, ξ2) =

1

4

∫ ∞

0

dλ

∫ ∞

λ

dµAi(ξ1 − λ) Ai(ξ2 − µ) − (ξ1 ↔ ξ2),

Ai is the Airy function [1] and the notation(ξ1 ↔ ξ2) means that the previous term is
repeated withξ1 and ξ2 interchanged. The GOE kernel was studied in [101]. It is not
uniquely defined, for example the one reported in [32, 40] differs slightly from the one
written here, but they are equivalent because they yield thesame point process. The point
processηGOE is uniquely determined by its correlation functions, see the discussion in
Section 3.1.1.

Finally let us remark thatF1 can be written in terms of a Fredholm Pfaffian. First we
consider theN ×N matrices.

F1,N(ξ) = E( N∏

j=1

(1 − 1[ξ,∞)((λj − 2N)/N1/3))

)
(3.62)

=
N−1∑

n=0

(−1)n

n!

∫

(ξ,∞)n

dnξ Pf[GGOE
N (ξi, ξj)]i,j=1,...,n,

where GGOE
N is the kernel of the rescaled point processηGOE

N . Then F1(ξ) =
limN→∞ F1,N(ξ) is given by

F1(ξ) =
∞∑

n=0

(−1)n

n!

∫

(ξ,∞)n

dnξ Pf[GGOE(ξi, ξj)]i,j=1,...,n (3.63)

= Pf(J −GGOE) =
√

Det(1+ JGGOE)
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whereJ is the matrix kernelJ(x, y) = δx,y

(
0 1
−1 0

)
. The Fredholm Pfaffian and

determinant are on the measurable space((ξ,∞), dx), i.e.,

Pf(J −GGOE) =

∞∑

n=0

(−1)n

n!

∫

(ξ,∞)n

dξ1 · · ·dξn Pf
[
GGOE(ξk, ξl)

]
k,l=1,...,n

(3.64)

and

Det(1−KGOE) =
∞∑

n=0

(−1)n

n!

∫

(ξ,∞)n

dξ1 · · ·dξn
∑

i1,...,in∈{1,2}
Det

[
KGOE
ik,il

(ξk, ξl)
]
k,l=1,...,n

(3.65)
with KGOE = −JGGOE.

Remark: One can also consider instead ofDet(1 −KGOE) the determinantDet(1 −
K̂GOE) with K̂GOE the operator with kernelKGOE. K̂GOE is not trace-class on
L2((ξ,∞), dx) ⊕ L2((ξ,∞), dx) because it is not even Hilbert-Schmidt. Neverthe-
less it is possible to make sense of it as follows.̂KGOE is Hilbert-Schmidt in the
spaceL2((ξ,∞), θdx) ⊕ L2((ξ,∞), θ−1dx) whereθ is any positive weight function with
θ−1 ∈ L1(ξ,∞), dx) which grows at most polynomially atx → ∞. MoreoverT̃r(K̂GOE)
the sum of the diagonal terms is absolutely integrable. Thenthe modified Fredholm deter-
minant is defined byDet(1− K̂GOE) = e−T̃r(K̂GOE) Det2(1− K̂GOE) with Det2 the regu-
larized determinant [34]. This is made in [105] where they actually prove theN → ∞ con-
vergence of the kernel and of the modified Fredholm determinant, leading thus to (3.65).

GSE random matrices

As for GOE, we denote byζGSE
N the point process of the eigenvaluesλ1, . . . , λN ofN ×N

GSE random matrices, i.e.,

ζGSE
N (x) =

N∑

j=1

δ(x− λj), x ∈ R. (3.66)

The edge rescaled point process is then given by

ηGSE
N (ξ) = N1/3ζGSE

N (2N + ξN1/3), (3.67)

andηGSE is the limit ofηGSE
N asN → ∞.

The limit point processηGSE is characterized by its correlation functions as follows.
Let us denote byρ(n)

GSE(ξ1, . . . , ξn) then-point correlation functions ofηGSE, i.e., the joint
density of having eigenvalues atξ1, . . . , ξn. Then

ρ
(n)
GSE(ξ1, . . . , ξn) = Pf[GGSE,TW(ξi, ξj)]i,j=1,...,n (3.68)

wherePf is the Pfaffian andGGSE,TW is a2×2 antisymmetric matrix kernel with elements

GGSE,TW
i,j (ξ1, ξ2) = 21/4GGSE

i,j (ξ1/
√

2, ξ2/
√

2), i, j ∈ {1, 2}, (3.69)
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where

GGSE
1,1 (ξ1, ξ2) =

∫ ∞

0

dλ

∫ ∞

λ

dµAi(ξ1 + λ) Ai(ξ2 + µ) − (ξ1 ↔ ξ2), (3.70)

GGSE
1,2 (ξ1, ξ2) =

∫ ∞

0

dλAi(ξ1 + λ) Ai(ξ2 + λ) − 1

2
Ai(ξ2)

∫ ∞

0

dλAi(ξ1 + λ),

GGSE
2,1 (ξ1, ξ2) = −GGSE

1,2 (ξ2, ξ1)

GGSE
2,2 (ξ1, ξ2) =

1

4

∫ ∞

0

dλAi(ξ2 − λ) Ai′(ξ1 − λ) − (ξ1 ↔ ξ2).

We have chosen to writeGGSE,TW is terms ofGGSE to keep more evident the analogies
and differences with the GOE kernel. The kernelGGSE is the one of the point process with
last particle distribution given byF4(s/

√
2). The GSE kernel was studied in [101].

3.3 Extended determinantal point processes

3.3.1 Dyson’s Brownian motion

Dyson [23] noticed that the distribution of eigenvalues (3.34) is identical to theequilibrium
probability distribution of thepositionsof N point charges, free to move inR under the
forces deriving from the potentialW at inverse temperatureβ, with

U(x1, . . . , xN ) = −
∑

1≤i<j≤N
ln |xi − xj | +

1

2Nβ

N∑

i=1

x2
i . (3.71)

In the attempt to interpret the Coulomb gas as a dynamical system Dyson considered the
positions of the particles in Brownian motion subjected to the interaction forces−∇U and
a frictional forcef (which fixes the rate of diffusion, or equivalently, the timescale).

LetρN (x1, . . . , xN ; t) be the time-dependent probability density of finding the particles
at positionsxj at timet. ρN satisfies the Smoluckowski equation

∂ρN
∂t

=
N∑

i=1

[
1

2

∂2ρN
∂x2

i

+
β

2

∂

∂xi

(
∂U

∂xi
ρN

)]
(3.72)

which has as unique stationary solution (3.34) (we fixed the parameters of [23] asf =
2/β anda2 = βN). In other words, the set{x1, . . . , xN} satisfies the set of stochastic
differential equations

dxj(t) =

(
− 1

2N
xj(t) +

β

2

N∑

i=1,
i6=j

1

xj(t) − xi(t)

)
dt+ dbj(t) , j = 1, ..., N, (3.73)

with {bj(t), j = 1, ..., N} a collection ofN independent standard Brownian motions. We
refer to thestationary process of (3.73) as Dyson’s Brownian motion. Note that forβ ≥ 1
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the process is well defined because there is no crossing of theeigenvalues, as proved by
Rogers and Shi [86].

Moreover, Dyson showed that in term of random matrices, thisis equivalent to the
evolution of the eigenvalues when then = N + 1

2
N(N − 1)β independent elements of

M , {Mµ, µ = 1, . . . , n}, evolve as independent Ornstein-Uhlenbeck processes. More
precisely, letP (M1, . . . ,Mn; t) denote the time-dependent probability density of theMµ,
then

∂P

∂t
=

n∑

µ=1

[
κµ
2

∂2P

∂M2
µ

+
1

2N

∂

∂Mµ
(MµP )

]
(3.74)

with κµ = 1 if Mµ is a diagonal term andκµ = 1/2 otherwise.
Let M(0) be the initial condition of a matrix evolving according to (3.74). Then the

matrix distribution at timet is given by

P (M(t) = M)dM =
1

ZN
(1 − q2)−n/2 exp

(
−Tr(M − qM(0))2

2N(1 − q2)

)
dM (3.75)

with q = exp(−t/2N).
For β = 2 Dyson’s Brownian motion, the properly rescaled largest eigenvalue con-

verges to the Airy process in theN → ∞ limit, see Section 3.3.3.
Finally we remark that it is connected with the Calogero-Sutherland model in one

dimension [98]. It describes a system ofN particles moving onR, whose Hamiltonian is

HCS = −
N∑

k=1

∂2

∂x2
k

+
β(β − 2)

2

∏

1≤k<l≤N

1

(xk − xl)2
+ ω2

N∑

k=1

x2
k. (3.76)

Set the external potential strength asω = 1/2N . The ground stateΩ0 has energyE0 = ωn,
n = N + 1

2
N(N − 1)β and is given, without normalization, by

Ω0(x1, . . . , xN) = e−
1

2
ω
PN

k=1
x2

k

∏

1≤k<l≤N
|xk − xl|β/2. (3.77)

The connection with Dyson’s Brownian motion is via the ground state transformation
as follows. LetXt = (x1(t), . . . , xN (t)) ∈ RN be an Ito diffusion with infinitesimal
generatorL given by

Lf = −Ω−1
0 (H̃Ω0f), H̃ = 1

2
(HCS − E0), (3.78)

for f ∈ C2
0(RN ). Some simple computations leads to

L =
N∑

j=1

1

2

∂2

∂x2
j

+
N∑

j=1

a(xj)
∂

∂xj
, a(xj) =

β

2

N∑

i=1,
i6=j

1

xj − xi
− 1

2N
xj . (3.79)

L is the generator of a diffusionXt which satisfies (see Chapter 7 of [70])

dXt = A(Xt)dt+ dBt (3.80)
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with A(Xt)j = a(xj(t)) anddBt anN-dimensional standard Brownian motion, which is
identical to (3.73).

The careful reader has probably noticed that the system withHamiltonian (3.76) is
not well defined as soon as no domain is specified. Notice that the Hamiltonian is the
same forβ and2 − β, thus considerβ ≥ 1. Let us discuss the caseN = 2. Defining
the half-distance between the particles byX = (x2 − x1)/2 and the center of mass by
Y = (x1 + x2)/2. One hasHCS

2 = HCM +HD with

HCM = −1

2

∂2

∂Y 2
+ 2ω2Y 2, HD = −1

2

∂2

∂X2
+
β(β − 2)

8X2
+ 2ω2X2. (3.81)

The minimal domain ofHCS
2 consists in smooth functions vanishing atX = 0. In this

case, forβ ≥ 3 there is an unique self-adjoint extension because bothX = 0 and the
X = ∞ are in the limit point case, see Appendix to X.I of [84]. The ground state wave
function is (3.77) (the solution withβ ≤ −1 is not inL2(R)). For β ∈ [1, 3), X = ∞
is still in the limit point case, butX = 0 is in the circle case, thus there exists a one-
parameter family of self-adjoint extensions, but only for two of theme−tH

CS
2 is a positive

kernel (see [94] for a discussion of the singularitya/x2). The ground states are given by
(3.77) withβ and2 − β. In particular forβ = 1 there is only one-selfadjoint extension
with positive transition kernel. A similar situation appears in Dyson’s Brownian motion in
a circle [95]. For generalN we do not know rigorous results, but it is expected the same
situation of before but with theβ ≥ 3 replaced byβ ≥ 2 + 2/N .

3.3.2 Extended point process

Definition

Consider a point processη(x, 0) describing for example particles in a potential. It is natural
to considerη(x, 0) =

∑
i δ(x − xi(0)) as the point process at timet = 0 and let the

particles evolve in time according to some prescribed dynamics Φt, i.e.,x(t) = Φt(x(0))
with x(t) = (x1(t), x2(t), . . .). For each timet ≥ 0 defineη(x, t) =

∑
i δ(x − xi(t)).

We say thatη(x, t), t ∈ [0, T ] with T ∈ R+, is anextended point processif for each
fixed t ∈ [0, T ] η(x, t) is a point process. We thus exclude situations where there can
be somewhere a condensation during[0, T ] of infinitely many particles. Otherwise the
position of the particles would not be anymore a point process after some time.

Remark: The evolution is not restricted to continuous time,also discrete time evolution
are allowed.

An example of an extended point process is Dyson’s Brownian motion. As we shall
see below, forβ = 2 its space-timecorrelations are given by a determinantal form with
a space-time kernel. The process is then calledextended determinantal point processand
the kernel is theextended kernel.
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Extended Hermite kernel

Now we restrict to Dyson’s Brownian motion withβ = 2. (3.75) can be straightforwardly
generalized to multi-time distributions, the so-called multi-matrix model. LetMj be the
matrix at timetj . Let 0 = t0 < t1 < . . . < tm andqj = exp(−(tj+1 − tj)/2N). Then the
multi-time measure reads

1

ZN,m
exp

(
−Tr(M2

0 )

2N

)m−1∏

j=0

exp

(
−Tr(Mj+1 − qjMj)

2

2N(1 − q2
j )

)
dM0 . . .dMm. (3.82)

For this multi-matrix model the joint-distribution of the eigenvalues reads (see e.g. [27])

1

ZN,m
∆N(λ0)∆N(λm)

N∏

i=1

e−(α0λ2
0,i+αm−1λ2

m,i)
m−1∏

k=0

Det
[
eβkλk,iλk+1,j

]
i,j=1,...,N

m∏

k=0

dλk

(3.83)
whereλk = (λk,j), j = 1, . . . , N , are the eigenvalues of the matrixMk, k = 0, . . . , m,

αk =
1

(1 − q2
k)2N

, βk =
qk

(1 − q2
k)N

. (3.84)

We consider fixed initial and final eigenvalues (or matrices), so that the Vandermonde de-
terminants in (3.83) can be absorbed by the normalization constant. For the same reason,
we can replaceα0 andαm−1 by γ0 = α0 − 1/4N andγm−1 = αm−1 − 1/4N without
changing the distribution. In this case it is known [27] thatthe joint probability distribu-
tions of eigenvalues have a determinantal form. To obtain the kernel, a more useful form
of (3.83) is the following. Define

q(t) = e−t/2N , α(t) =
1

2N(1 − q(t)2)
, γ(t) = a(t) − 1

4N
, β(t) =

q(t)

N(1 − q(t)2)
,

(3.85)
and

Φt,t′(λ, λ
′) =

{
e−γ(t

′−t)(λ2+λ′2)eβ(t′−t)λλ′√α(t′ − t)/π for t′ > t,
0 for t′ ≤ t.

(3.86)

Φt,t′ is the transition function from timet to time t′. Then the joint-distribution of the
eigenvaluesλk,i, k = 1, . . . , m− 1, i = 1, . . . , N , is given by

1

Z ′
N,m

m−1∏

k=0

Det
[
Φtk ,tk+1

(λk,i, λk+1,j)
]
i,j=1,...,N

dλ1 · · ·dλm−1 (3.87)

with λ0 andλm fixed, andZ ′
N,m another normalization constant.

The following result of Johansson gives an explicit formulafor the kernel of the ex-
tended determinantal point process with joint-distribution (3.87). For two transition func-
tionsϕ andψ theirconvolutionis defined by

(ϕ ∗ ψ)(x, y) =

∫R ϕ(x, z)ψ(z, y)dµ(z). (3.88)
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Define, fort0 < t1 < . . . < tm,

ϕti,tj (x, y) =

{
(ϕti,ti+1

∗ . . . ∗ ϕtj−1,tj)(x, y), i < j
0, i ≥ j.

(3.89)

The form (3.86) is chosen such thatΦt1,t3(x1, x3) =
∫RΦt1,t2(x1, x2)Φt2,t3(x2, x3)dx2. It

is not necessarily to include the normalization constant
√
α(t′ − t)/π, but it simplifies

some computations.

Theorem 3.6(Johansson [46]). Consider a measure with joint density of the form

1

Z

m−1∏

k=0

Det[ϕtk ,tk+1
(xi(tk), xj(tk+1))]i,j=1,...,N . (3.90)

If the configurations at timet0 and timetm, i.e.,x0
i = xi(t0) andxmi = xi(tm) for i =

1, . . . , N , arefixed, then the measure (3.90) has determinantal correlation functions with
extended kernel

K(x, t; x′, t′) = −ϕt,t′(x, x′) +
N∑

i,j=1

ϕt,tm(x, xmi )[A−1]i,jϕt0,t′(x
0
j , x

′) (3.91)

whereA = [ϕt0,tm(x0
i , x

m
j )]i,j=1,...,N .

The only problem in using Theorem 3.6 is that one needs to invert the matrixA, and this
is not always a simple task.

Applying this theorem to the transition functionΦ one obtains the kernel for Dyson’s
Brownian motionβ = 2

KN(x, t; x′, t′) =

{ ∑N−1
k=0 e

k(t−t′)/2Npk(x)pk(y)e
−(x2+y2)/4N , t ≥ t′

−∑∞
k=N e

−k(t′−t)/2Npk(x)pk(y)e
−(x2+y2)/4N , t < t′

(3.92)

wherepk(x) = pH
k (x/

√
2N)(

√
2πN2kk!)−1/2. The Hermite polynomialspH

k (x) are given
in Appendix A.5. Since Dyson’s Brownian motion is stationary, (3.92) is obtained in
the limit t0 → −∞ and tm → ∞. For the asymptotic analysis is convenient to mod-
ify slightly the form of the kernel. We will use the kernel defined byKH

N(x, t; x′, t′) =
e−(t−t′)/2KN(x, t; x′, t′) which gives the same correlation functions. It is called theex-
tended Hermite kerneland reads

KH
N(x, t; x′, t′) =

{ ∑−1
k=−N e

k(t−t′)/2NpN+k(x)pN+k(y)e
−(x2+y2)/4N , t ≥ t′

−∑∞
k=0 e

k(t−t′)/2NpN+k(x)pN+k(y)e
−(x2+y2)/4N , t < t′

(3.93)

For more details on the derivation of (3.92) see Appendix A.6.
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Extended Airy kernel

An important extended kernel is the extended Airy kernel defined by

A(u, s; u′, s′) =

{ ∫ 0

−∞ dλ eλ(s−s′) Ai(u− λ) Ai(u′ − λ) for s ≥ s′,

−
∫ ∞
0

dλ eλ(s−s′) Ai(u− λ) Ai(u′ − λ) for s < s′.
(3.94)

In particular fors = s′ (3.94) is equal to (3.20).
In the limit of largeN , KH

N converges in the edge scaling limit to the extended Airy
kernel. The edge scaling is the following. Lett = 2sN2/3, x = 2N + uN1/3, and
similarly rescalet′ andx′. Then the edge-rescaled extended Hermite kernel convergesto
the extended Airy kernel,

lim
N→∞

N1/3KH
N(2N + uN1/3, 2sN2/3; 2N + u′N1/3, 2s′N2/3) = A(u, s; u′, s′). (3.95)

For the convergence, see Appendix A.7.

Extended GUE point process and its asymptotics

The extended GUE point process is the process which describes Dyson’s Brownian motion
with β = 2. Let the eigenvaluesλ1(t), . . . , λN(t) evolve according to (3.73) and having
the stationary distribution att = 0. The extended GUE point process is defined by

ζGUE
N (x, t) =

N∑

j=1

δ(λj(t) − x) (3.96)

and has the kernel (3.93). The edge scaling ofζGUE
N is

ηGUE
N (u, s) = N1/3ζGUE

N (2N + xN1/3, 2uN2/3). (3.97)

In the sense of finite-dimensional distributions,ηGUE
N (u, s) has a limit asN → ∞, which

we denote byηGUE(u, s). (3.95) implies that the kernel ofηGUE(u, s) is the Airy kernel.

3.3.3 Airy process

The Airy process is the limiting process of the edge-rescaled largest eigenvalue of Dyson’s
Brownian motion withβ = 2. Let λ1(t) < . . . < λN(t) the eigenvalues of GUE random
matrices of Dyson’s Brownian motion. The largest eigenvalue λN converges to the Airy
process

A(s) = lim
N→∞

N−1/3(λN(sN−2/3) − 2N) (3.98)

in the sense of joint distributions.
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The Airy process is defined by its finite-dimensional distribution [81, 47]. For given
a1, . . . , an ∈ R ands1 < . . . < sn ∈ R, we definef on Λ = {s1, . . . , sn} × R by
f(sj, x) = χ(aj ,∞)(x). ThenP(A(s1) ≤ a1, . . . ,A(sn) ≤ an) = Det(1− f 1/2Af 1/2)L2(Λ,dnx)

with A the extended Airy kernel.
The Airy process was first introduced by Prähofer and Spohn intheir work on the

PNG droplet [81]. They proved thatA(t) is almost surely continuous, stationary int,
and invariant under time-reversal. Its single time distribution is given by the GUE Tracy-
Widom distribution. In particular, for fixedt,P(A(t) > y) ≃ e−y

3/24/3 for y → ∞,P(A(t) < y) ≃ e−|y|3/12 for y → −∞. (3.99)

Thus the Airy process is localized. Define the functiong by

Var(A(t) −A(0)) = g(t). (3.100)

From [81] we know thatg grows linearly for smallt and that the Airy process has long
range correlations:

g(t) =

{
2t+ O(t2) for |t| small,
g(∞) − 2t−2 + O(t−4) for |t| large.

(3.101)

with g(∞) = 1.6264 . . .. The coefficient2 of the correlation’s decay is determined
in [2, 110]. The Airy process has been recently investigatedand a set of PDE’s [2] and
ODE’s [104] describing it are determined.

3.4 Description of the systems via line ensembles

Although physically the polynuclear growth model and the 3D-Ising corner at zero temper-
ature are not connected, we have analyzed them using the samemathematical framework.
The two systems are mapped to two different sets of non-intersecting line ensembles. The
lines can be seen as the trajectories of particles which can not occupy simultaneously the
same position (state), thus they are fermions. The idea of this mapping was already suc-
cessfully applied by Johansson to the Aztec diamond problem[45], and by Prähofer and
Spohn to the PNG droplet [81].

3.4.1 Line ensemble for the polynuclear growth model

The surface height at timeT , x 7→ h(x, T ), does not contain anymore the information of
the position of the Poisson points, because when two islandsmerge, we lose information.
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t
t = T

ℓ = 0 ℓ = −1 ℓ = −2 ℓ = −3

Figure 3.2: RSK construction up to timet = T .

Therefore the measure induced by the Poisson process on the set of heights is not easy to
describe. A way of recording the lost information is to extend the model to a multilayer
model. This is achieved using the Robinson-Schensted-Knuth (RSK) construction.

We first recall briefly the construction of the PNG surface height h(x, t) of Sec-
tion 2.2.1. Leth(x, 0) = 0 for all x ∈ R and fix aT > 0. Let ω ∈ Ω be a configuration
of Poisson points inR × [0, T ]. Each Poisson point is a nucleation event which generate
two lines, with slope+1 and−1 along its forward light cone. A line ends upon crossing
another line. Thenh(x, t)(ω), (x, t) ∈ R × [0, T ], is the number of lines crossed along
the straight path from(x, 0) to (x, t). This construction is the level0 of the RSK construc-
tion, which leads to a set of height functionshℓ(x, t)(ω), (x, t) ∈ R × [0, T ], ℓ ≤ 0 as
follows. At t = 0 we sethℓ(x, 0) = ℓ with ℓ = 0,−1, . . ., whereℓ denotes the level’s
height. The top height is defined byh0(x, t)(ω) ≡ h(x, t)(ω). The meeting points of the
forward light cones generated by the points ofω are called theannihilation eventsof level
0. h−1(x, t)(ω) is constructed ash0(x, t)(ω) but the nucleation events for level−1 are the
annihilation events of level0 andh−1(x, t)(ω) + 1 equals the number of lines for level
−1 crossed from(x, 0) to (x, t). In Figure 3.2 the nucleation events of level−1 are the
empty dots, whose forward light cones are the dotted lines. Setting the annihilation events
of levelj as the nucleation events for levelj − 1, the set of height functionshℓ(x, t)(ω) is
defined for allℓ ≤ 0. By construction, the number of lines of levelj along the path from
(x, 0) to (x, t) is greater than the one of levelj − 1, for all j ≤ 0. Therefore

hj(x, t) ≥ hj−1(x, t) + 1 (3.102)

for all x ∈ R, t ∈ [0, T ], j ≤ 0.
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Figure 3.3: Line ensemble fort = T for the point configuration of Figure 3.2.

Non-intersecting line ensembles fort = T

The RSK construction gives us the set of height functions{hℓ, ℓ ≤ 0}. If we want to
look at the PNG height at fixed time, sayt = T , we consider the set of height functions
x 7→ hℓ(x, T ), ℓ ≤ 0. By (3.102){hℓ(·, T ), ℓ ≤ 0} is a set of non-intersecting line
ensemble withx 7→ h0(x, T ) the surface profile at timeT . Figure 3.3 shows this line
ensemble for the Poisson points of Figure 3.2.

Non-intersecting line ensembles for other space-time cuts

In some situations, as in our work on the flat PNG, it can be convenient to analyze a line
ensemble which corresponds to another cut in the space-time. Consider a continuous and
piecewise differentiable pathγ : I → R × [0, T ], I ⊂ R an interval. Then the line
ensemble corresponding toγ, denoted by{Hℓ, ℓ ≤ 0}, is given byHℓ(s) = hℓ(γ(s)),
s ∈ I, ℓ ≤ 0. It is a non-intersecting line ensemble because of (3.102).

Discrete multilayer PNG

The multilayer generalization of the discrete PNG growth (2.46) is similar to the continu-
ous one. As in Section 2.2.3 we consider the caseω̃(x, t) = 0 for x−t odd. The nucleations
for the0th level are simply thẽω(x, t). When two islands of levelℓ+ 1 merge at(x, t), we
record the lost of information in the nucleation of levelℓ, ωℓ(x, t). The multilayer growth
then writes

hℓ(x, t) = max{hℓ(x− 1, t− 1), hℓ(x, t− 1), hℓ(x+ 1, t− 1)} + ωℓ(x, t), (3.103)

where

ω0(x, t) = ω̃(x, t),

ωℓ(x, t) = min{[hℓ+1(x− 1, t− 1) − hℓ+1(x, t− 1)]+, (3.104)

[hℓ+1(x+ 1, t− 1) − hℓ+1(x, t− 1)]+}, for ℓ ≤ −1,
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Figure 3.4: Line ensembles for nucleations̃ω (3.105). Each height is represented by
a histogram of width one. The grey patterns indicated the newnucleations. In the last
figure the nucleation for level−1 comes from the dashed region.

wherex+ = max{0, x}. In Figure 3.4 we show the line ensemble for nucleations given by

ω̃(0, 0) = 1,
ω̃(−1, 1) = 2, ω̃(1, 1) = 3,
ω̃(−2, 2) = 0, ω̃(0, 2) = 2, ω̃(2, 2) = 1.

(3.105)

Remark: If one prefers the framework with continuous space-time, then the line ensembles
of Figure 3.4 are the ones taken at timest = 1

2
, t = 3

2
, andt = 5

2
.

3.4.2 Line ensemble for 3D-Ising corner

We have seen in Section 2.3.1 that the allowed configuration of the 3D-Ising corner are
the 3D-Young diagrams. In view of Figure 2.13, it is natural to representh in terms of its
level lines or, equivalently, the gradient lines as drawn inFigure 3.5(a). In Figure 3.5(b)
the underlying lattice is distorted in such a way that the gradient lines become “trajecto-
ries” on a square lattice. It is this latter representation which will be used in the sequel.
Clearly, the surface statistics can be reconstructed from the statistics of the line ensemble.
More importantly, the border line between rounded and the2 − 3 facet is given directly
by the top lineh0(i), i ≥ 0. As first noticed by Okounkov and Reshetikhin [69] the oc-
cupation number field corresponding to the line ensemble of Figure 3.5 has determinantal
correlations. In Section 5.2 we rederive their results using the fermionic framework, which
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Figure 3.5: The gradient lines for the tiling of Figure 2.13: (a) on the(111)-projection,
(b) as function oft.

is a convenient starting point for our asymptotic analysis.We could have chosen to de-
scribe the 3D-Young diagrams with the level lines. In this case we would have obtained
the border line in the1 − 2 plane directly, but by symmetry they are equivalent.

The gradient lines of Figure 3.5 are defined through

t = j − i, hℓ(t) = h(i, j) + ℓ(i, j), (3.106)

where
ℓ(i, j) = −(i+ j − |i− j|)/2 (3.107)

labels the line,(i, j) ∈ Z2
+. hℓ is increasing fort ≤ 0 and decreasing fort ≥ 0,

hℓ(t) ≤ hℓ(t+ 1), t ≤ 0, hℓ(t) ≥ hℓ(t+ 1), t ≥ 0, (3.108)

with the asymptotic condition
lim
t→±∞

hℓ(t) = ℓ. (3.109)

By construction the gradient lines satisfy the non-crossing constraint

hℓ−1(t) < hℓ(t− 1), t ≤ 0, hℓ−1(t) < hℓ(t+ 1), t ≥ 0. (3.110)

Height configurationsh are mapped one-to-one to gradient lines satisfying (3.108),
(3.109), and (3.110).

We extendhℓ to piecewise constant functions onR such that the jumps are at mid-
points, i.e., at points ofZ + 1

2
. For a given line,hℓ, let tℓ,1 < . . . < tℓ,k(ℓ) < 0 be the

left jump times with jump heightssℓ,1, . . . , sℓ,k(ℓ) and let0 < tℓ,k(ℓ)+1 < . . . < tℓ,k(ℓ)+n(ℓ)

be the right jump times with jump heights−sℓ,k(ℓ)+1, . . . ,−sℓ,k(ℓ)+n(ℓ). The volume of the



3.4 Description of the systems via line ensembles 67

3D-Young diagram is simply given by the sum of the area below the lineshj (of course
with respect to the basis levelj), that is

V (h) =

k(ℓ)+n(ℓ)∑

j=1

sℓ,j|tℓ,j|. (3.111)

Thus from (2.57), (2.58) follows that the weight for the lineconfiguration{hℓ}ℓ=0,−1,... is

∏

ℓ∈Z−

exp

[
ln(1 − 1/T )

( k(ℓ)+n(ℓ)∑

j=1

sℓ,j|tℓ,j|
)]
. (3.112)

Connection with directed polymers

In Section 2.3.2 we anticipated that there is a connection between a discrete model of
directed polymers and the 3D-Ising corner. Now all the notions needed to explain it are
introduced. The directed polymers are onZ2

+ and generated by independent random vari-
ablesω(i, j), (i, j) ∈ Z2

+, geometrically distributed with mean valueqi+j+1, q ∈ (0, 1).
The role of the growth timeT → ∞ is now taken over byq → 1. Let us denote byL(i, j)
the length of the longest directed polymer from(i, j) ∈ Z2

+ to the infinity. Then we want
to show that

h(i, 0) = L(i, 0), h(0, i) = L(0, i), i ≥ 0 (3.113)

in law.
It would be natural to do the PNG growth starting from the corner and as in the discrete

PNG growth explained above. But this does not give us the statistics of theL(i, 0) all at
the same time. Instead we do the backwards PNG growth, where growth starts from the
infinity and come back to the origin. Since we want to fit in the previous framework of
PNG growth, we invert the time axis. Thus we definet = −(j + i)/2, which then goes
from −∞ to 0. Moreover, denotex = (j − i)/2 and consider̃ω(x, t) = ω(i, j) for x − t
even,|x| ≤ −t, andω̃(x, t) = 0 otherwise. We apply the discrete PNG growth dynamics
(3.103) with initial conditionshℓ(x,−∞) = ℓ for all x ∈ Z, ℓ ≤ 0. The dynamics runs up
to t = 0, see Figure 3.6 for an illustration.

Consider the set of line ensemble{Hℓ(j), j ∈ Z, ℓ ≤ 0} associated to the path ex-
pressed in the(x, t) coordinate axis by

γ : Z → Z× Z−

k 7→ (k,−|k|). (3.114)

The correspondence between PNG and directed polymers impliesL(0, i) = H0(i)
andL(i, 0) = H0(−i) for i ≥ 0. Thus we need to see thatH0(±i) = h(0,±i). This
is obtained by proving that the gradient lines of the 3D-Ising corner and the set of line
ensemble{Hℓ, ℓ ≤ 0} are indeed identical. First let us check that the conditions(3.108),
(3.109), and (3.110) are exactly satisfied by{Hℓ, ℓ ≤ 0}. (3.109) holds by definition of
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Figure 3.6: (Backwards) PNG growth and 3D-Ising corner.(i, j) ∈ Z2
+ and x =

(j − i)/2, t = −(i + j)/2.

our initial conditions. For (3.108) consideri ≤ 0, the casei ≥ 0 is analogous. (3.108) is
the only constraint between the heights of a level-line because

Hℓ(i) = hℓ(i, i) = max{hℓ(i− 1, i− 1), hℓ(i, i− 1), hℓ(i+ 1, i− 1)} + ω̃(i, i)

≥ hℓ(i− 1, i− 1) = Hℓ(i− 1). (3.115)

The third condition (3.110) reflects the non-intersecting constraint of the PNG growth,
hℓ(i, i) > hℓ−1(i, i), which implies

Hℓ−1(i) = hℓ−1(i, i) < hℓ(i, i) ≤ hℓ(i− 1, i− 1) = Hℓ(i− 1). (3.116)

Next we show that the distribution of the gradient line ensemble and{Hℓ, ℓ ≤ 0} coincide.
A given configuration of lines{Hℓ(i), ℓ ≤ 0, i ∈ Z} carries the weight

∏

i,j≥0

q(i+j+1)ω(i,j). (3.117)

Consider the extension of{Hℓ(t), ℓ ≤ 0} from t ∈ Z to t ∈ R defined by setting̃Hℓ(t) =
Hℓ(t) for t ∈ Z and with jumps only atZ + 1

2
. In term of RSK lines, each(i, j) ∈ Z2

+

generatesω(i, j) pair of lines. Each RSK line originated at(i, j) ∈ Z2
+ which moves in the

(0,−1) direction (with slope−1 in PNG picture) generates an up-jump att = −(i + 1
2
)

in some level line and each line moving in the(−1, 0) direction leads to a down-jump at
t = j + 1

2
in some level line. The weight of a couple of lines coming from(i, j) ∈ Z2

+ is
qi+j+1 and can be divided by assigning the weightqi+1/2 to each up-jump att = −(i+ 1

2
)

and the weightqj+1/2 to each down-jump att = j + 1
2
. It then follows

∑

i,j≥0

(i+ j + 1)ω(i, j) =
∑

ℓ≤0

∫R(H̃ℓ(x) − ℓ)dx =
∑

ℓ≤0

∑

i∈Z (Hℓ(i) − ℓ), (3.118)

which is the same weight of the line ensembles for the 3D-Ising corner configurations
(3.112). Therefore the set of line ensembles{H̃ℓ, ℓ ≤ 0} is identical to the gradient lines
of the 3D-Ising corner.



Chapter 4

Analysis of the flat PNG line ensemble

This chapter is devoted to our result on the flat PNG model [28]. First we formulate our
main result and then we prove it.

4.1 Formulation of the result

We consider the line ensemble introduced in section 3.4.1 for the flat PNG model at time
t = T . It is statistically translation invariant. Define the point process onZ describing the
line ensemble at fixed position, sayx = 0, by

ζflat
T (j) =

{
1 if a line passes at(0, j),
0 if no line passes at(0, j).

(4.1)

The largestj such thatζflat
T (j) = 1 is the PNG height and from the Baik and Rains re-

sult [13] we know that it fluctuates on aT 1/3 scale around2T . The edge rescaled point
process is defined as follows. For any smooth test functionf of compact support,

ηflat
T (f) =

∑

j∈Z ζflat
T (j)f

(
(j − 2T )/(T 1/32−2/3)

)
, (4.2)

where the factor2−2/3 is the same as in (2.45). Notice that in (4.2) there is no prefactor
to the sum. The reason is that close to2T , the points ofζflat

T are orderT 1/3 apart andηflat
T

remains a point process in the limitT → ∞. ηflat
T has a last particle, i.e.,ηflat

T (ξ) = 0 for
all ξ large enough, and even in theT → ∞ limit has a finite density which increases as√−ξ asξ → −∞. Consequently the sum in (4.2) is effectively finite.

As our main result we prove that the point processηflat
T converges weakly to the point

processηGOE asT → ∞.

Theorem 4.1.For anym ∈ N and smooth test functions of compact supportf1, . . . , fm,

lim
T→∞

ET( m∏

k=1

ηflat
T (fk)

)
= E( m∏

k=1

ηGOE(fk)

)
. (4.3)



70 Analysis of the flat PNG line ensembleET refers to expectation with respect to the Poisson process measurePT . The expected
value on the r.h.s. of (4.3) is computed via the correlation functions (3.60).

The result of Theorem 4.1 is a first step towards a conjecture on the self-similar sta-
tistics of the PNG with flat initial conditions. The startingobservation is that, as for the
PNG, also to random matrices one can introduce a line ensemble in a natural way. This is
the Dyson’s Brownian motion, see Section 3.3.1. The height statisticsx 7→ h(x, t) for the
PNGdroplet is linked to the Airy process by

lim
T→∞

T−1/3
(
h(τT 2/3, T ) − 2

√
T 2 − (τT 2/3)2

)
= A(τ), (4.4)

where the term subtracted fromh is the asymptotic shape of the droplet [81]. To obtain
this result, Prähofer and Spohn consider the line ensemble obtained by RSK and define
a point process like (4.1) but extended to space-time. It is adeterminantal point process
and in the edge scaling it converges, asT → ∞, to the point process associated with the
extended Airy kernel. Thus they prove not only that the top line converges to the Airy
process, but also that the top lines converges to the top lines of Dyson’s Brownian motion
with β = 2.

One can extendηGOE
N of (3.58) to space-time as in (3.97), i.e., define

ηGOE
N (u, s) = N1/3ζGOE

N (2N + xN1/3, 2uN1/3), ζGOE
N (x, t) =

N∑

j=1

δ(λj(t) − x) (4.5)

whereζGOE
N is the extended point process of Dyson’s Brownian motion with β = 1. The

conjecture is that, under edge scaling, the processx 7→ h(x, T ) for flat PNG is in distribu-
tion identical to the largest eigenvalue of Dyson’s Brownian motion withβ = 1. The result
of Theorem 4.1 makes this conjecture more plausible. In factwe now know that, not only
h(0, T ) in the limit T → ∞ and properly rescaled is GOE Tracy-Widom distributed, but
also that the complete point processηflat

T converges to the edge scaling of Dyson’s Brown-
ian motion withβ = 1 for fixed time. Forβ = 1 Dyson’s Brownian motion one expects
that under edge scaling the full stochastic process has a limit. More explicitly, one focuses
at the space-time point(2N, 0), rescales space by a factorN1/3, time byN2/3, and expects
that the statistics of the lines has a limit forN → ∞. It could be that this limit is again
Pfaffian with suitably extended kernel. But even forβ = 1 Dyson’s Brownian motion this
structure has not been unravelled.

The outline of the remainder of the chapter is the following.In section 4.2 we introduce
an auxiliary point process,ζ sym

T , from whichζflat
T can be recovered.ζ sym

T derives from the
end-points of a line ensemble with a relatively simple distribution. In section 4.3 we obtain
a formula for then-point correlation functions ofζ sym

T . They are given by Pfaffians of a
2 × 2 matrix kernel. In section 4.4 we derive an explicit expression of the kernel and in
section 4.5 we analyze its edge scaling. Finally in section 4.6 we first prove the same as
Theorem 4.1 for the edge scaling ofζ sym

T , and secondly using it we can prove Theorem 4.1.
Appendix 4.A contains some bounds used in the asymptotic analysis.
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x

t

s

j

γ(0)

γ(s)

γ(T
√

2)
H0

H−1

H−2

Figure 4.1: A configuration with three Poisson points in the triangle△+ and their sym-
metric images with respect to thet = 0 axis. The pathγ is the bold line. On the right we
draw the top lines of the line ensemble associated toγ, {Hj(s), j ≤ 0, s ∈ [0, T

√
2]}.

4.2 Line ensemble

4.2.1 Line ensemble for the� symmetry

The line ensemble for flat PNG generated by RSK at timet = T is not easy to analyze
because there are non-local constraints on the line configurations. Instead, we start consid-
ering the point processζflat

T . First remark that this point process depends only on the points
in the triangle△+ = {(x, t) ∈ R × R+|t ∈ [0, T ], |x| ≤ T − t}. We then consider the
Poisson points only in△+ and add their symmetric images with respect to thet = 0 axis,
which are in△− = {(x, t) ∈ R×R−|(x,−t) ∈ △+}. We denote byζsym

T the point process
at (0, T ) obtained by RSK construction using the Poisson points and their symmetric im-
ages, see Figure 4.1. To studyζsym

T we consider adifferent line ensemble. Let us consider
the path in space-time defined byγ(s) = (T − s/

√
2, s/

√
2), s ∈ [0, T

√
2], and construct

the line ensemble{Hj(s), j ≤ 0, s ∈ [0, T
√

2]}, as follows. The initial conditions are
Hj(0) = j since the height att = 0 is zero everywhere. Every times thatγ crosses a RSK
line corresponding to a nucleation event of levelj, Hj has an up-jump. Then the point
processζsym

T is given by the points{Hj(T
√

2), j ≤ 0}. In Proposition 4.3 we show that
ζflat
T can be recovered byζsym

T , in fact we prove thathj(0, T ) = 1
2
(Hj(T

√
2) + j).

Next we have to determine the allowed line configurations andtheir distribution in-
duced by the Poisson points. This is obtained as follows. We prove that theparticle-hole
transformation on the line ensemble{Hj(s), j ≤ 0, s ∈ [0, T

√
2]} is equivalent to a par-

ticular change of symmetry in the position of the nucleationevents, and we connect with
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S(σ)

T (σ)

S(σ̃)

T (σ̃)

Figure 4.2: Line ensembles forσ = (2 4 5 1 6 3) and σ̃ = (3 6 1 5 4 2). For the even
levels,ℓ = 0,−2, we use the solid lines and for the odd levels,ℓ = −1,−3, the dashed
lines. The line ensemble ofS(σ) corresponds to the line ensemble{Hj(s), j ≤ 0, s ∈
[0, T

√
2]} of Figure 4.1.

the half-droplet PNG problem studied by Sasamoto and Imamura [40].

Young tableaux

Let σ = (σ(1), . . . , σ(2N)) be a permutation of{1, . . . , 2N} which indicate the order in
which the Poisson points are placed in the diamond△+ ∪△−. More precisely, let(xi, ti)
be the positions of the points with the indexi = 1, . . . , N such thatti + xi is increasing
with i, andσ is the permutation such thattσ(i)−xσ(i) is increasing ini too. Let us construct
the line ensembles along the paths(T, 0) → (0, T ) and(−T, 0) → (0, T ). The relative
position of the steps on the line ensembles are encoded in theYoung tableauxS(σ) and
T (σ) constructed using Schensted’s algorithm. If thekth step occurs in lineHj , then in
the Young tableau there is ak in row j, see Figure 4.2.

In our case the points are symmetric with respect to the axist = 0 and we refer to it
as the symmetry�. In the case studied in [40], the points are symmetric with respect to
the axisx = 0 and we call it the symmetry�. Consider a configuration of points with
symmetry� and letσ be the corresponding permutation. The RSK construction leads
to the line ensembles ofT (σ) andS(σ) as shown in the left part of Figure 4.2. If we
apply the axis symmetry with respect tox + t = 0, then we obtain a configuration of
points shown in the right part of Figure 4.2. The points have now the symmetry� and
the corresponding permutatioñσ is obtained simply by reversing the order ofσ, that is, if
σ = (σ(1), . . . , σ(2N)) thenσ̃(j) = σ(2N + 1 − j). By Schensted’s theorem [88],

S(σ̃) = S(σ)t, . (4.6)

Moreover, the positions of the steps in the line ensembles ofS(σ) andS(σ̃) occurs at the
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}

}

}

j

0
1

Figure 4.3: Particle (solid) and hole (dashed) line ensembles for the example of Fig-
ure 4.2. The particle line ensemble is the one associated with S(σ), and the hole line
ensemble is the one ofS(σ̃) reflected with respect to the linej = 1/2. The pairing rule
is shown by the brackets.

same positions, but of course in different line levels. Figure 4.2 shows an example with
σ = (2 4 5 1 6 3), for which the Young tableaux are

S(σ) =

(
1 3 5 6
2 4

)
,

T (σ) =

(
1 2 3 5
4 6

)
,

S(σ̃) = T (σ̃) =




1 2
3 4
5
6


 .

Particle-hole transformation

At the level of line ensemble we can apply the particle-hole transformation, which means
that a configuration of lines is replaced by the one with jumpsat the same positions and
the horizontal lines occupy the previous empty spaces, as shown in Figure 4.3. Let us start
with the line ensemble corresponding toS(σ), then the Young tableau for thehole line
ensembleis given byS(σ)t. In fact, the information encoded inS(σ) tell us that thej th

particle has jumps at (relative) positionS(σ)j,k, k ≥ 1, for j ≥ 1. On the other hand,
thej th hole has jumps where the particles have theirj th jump. Therefore the particle-hole
transformation is equivalent to the symmetry transformation� → �.

Allowed line configurations and measure

Sasamoto and Imamura [40] study the half-droplet geometry for PNG, where nucleation
events occurs symmetrically with respect tox = 0, i.e., with the� symmetry. In particular,
they prove that the point process atx = 0 converges to the point process of eigenvalues of
the Gaussian Symplectic Ensemble (GSE). Its correlation functions have the same Pfaffian
structure as GOE but with a different kernel. In a way the lineensemble they study is the
hole line ensemble described above, thus their edge scalingfocuses at the top holes, i.e., in
the region where the lowest particles are excited. Notice that the change of focus between
particles and holes changes the statistics from GSE to GOE. This differs from the case
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of the PNG droplet [81] where for both holes and particles theedge statistics is GUE.
Although the result of [40] cannot be applied directly to oursymmetry, some properties
derived there will be of use.

From [40] we know that for the symmetry� a hole line configuration is allowed if:
a) the lines do not intersect, b) have only down-jumps, c) they satisfy thepairing rule:
Hhole

2j (T
√

2) = Hhole
2j−1(T

√
2) for all j ≥ 1. This implies that for the symmetry� a line

configuration{Hj} is allowed if: a) the lines do not intersect, b) have only up-jumps, c)
Hj(T

√
2)−Hj(0) is evenfor eachj ≤ 0. Moreover, there is a one-to-one correspondence

between allowed configurations and nucleation events. The probability measure for the
line ensemble turns out to have a simple structure. ConsiderPoisson points with intensity
̺ and symmetry�. Each Poisson point(x, t) ∈ △+ has a probability̺ dxdt of being in
[x, x+ dx] × [t, t+ dt]. In the corresponding line ensemble this weight is carried by two
jumps, therefore the measure induced by the points on a line configuration{Hj} is given
by

√
̺#jumps in{Hj} times the uniform measure.

4.2.2 Flat PNG and line ensemble for� symmetry

The correspondence between the point processζflat
T andζ sym

T is as follows. Let us consider
a permutationσ with Young tableauS(σ) of shape(λ1, λ2, . . . , λm). Let, fork ≤ m, ak(σ)
be the length of the longest subsequence consisting ofk disjoint increasing subsequences.

Theorem 4.2(Greene [36]). For all k = 1, . . . , m,

ak(σ) = λ1 + · · ·+ λk. (4.7)

The geometric interpretation is the following. Letσ be the permutation which corre-
sponds to some configuration of Poisson points in△+ ∪ △−. Thenak is the maximal
sum of the lengths ofk non-intersecting (without common points) directed polymers from
(0,−T ) to (0, T ).

Proposition 4.3. Letπ be a Poisson point configuration in△+ and let the corresponding
Young tableauS(π) have shape(λ1, λ2, . . . , λm). Let π̃ be the configuration of points
on △+ ∪ △− with symmetry� which is identical toπ in △+. ThenS(π̃) has shape
(λ̃1, λ̃2, . . . , λ̃m) = (2λ1, 2λ2, . . . , 2λm).

Proof. To prove the proposition is enough to prove thatak(π̃) = 2ak(π) for k = 1, . . . , m.
i) ak(π̃) ≥ 2ak(π): it is obvious since we can choose thek directed polymers oñπ by
completing the ones onπ by symmetry.
ii) ak(π̃) ≤ 2ak(π): assume it to be false. Then there existsk directed polymers in△+

andk in △− such that the total length is strictly greater than2ak(π). This implies that at
least one (by symmetry both) of the sets ofk directed polymers has total length strictly
greater thatak(π). But this is in contradiction with the definition ofak(π), therefore
ak(π̃) ≤ 2ak(π).



4.3 Correlation functions 75

Sinceλ1−j = hj(0, T ) − j andλ̃1−j = Hj(T
√

2) − j, it follows from this proposition
that

hj(0, T ) = 1
2
(Hj(T

√
2) + j) (4.8)

for all j ≤ 0.

4.3 Correlation functions

Non-intersecting lines can be viewed as trajectories of fermions in discrete spaceZ and
continuous time[0, T

√
2]. Let us start with a finite number of fermions,2N , which implies

that only the information in the first2N levels in the RSK construction is retained. For any
configuration, the number of non perfectly flat lines, is obviously bounded by the number
of Poisson points in△+. On the other hand for fixedT , the probability of having a number
of Poisson points greater than2N decreases exponentially fast forN large. First we derive
an exact formula for then-point correlation function for finiteN , and then take the limit
N → ∞ so that, for any fixedT , each line configuration contains all the information of
the Poisson points. Finally we consider the asymptotic for largeT .

Let a∗j andaj , j ∈ Z, be the creation and annihilation operator for the fermionsand|∅〉
be the state without fermions. The initial state is then given by

|Ωin〉 =
0∏

j=−2N+1

a∗j |∅〉, (4.9)

and the final state is

|Ωfin〉 =
∑

n∈CN

0∏

j=−2N+1

a∗j+2nj
|∅〉 (4.10)

whereCN = {{n0, . . . , n−2N+1}|nj ≥ nj−1, nj ≥ 0}. Let us define the up-jump operator
as

α1 =
∑

k∈Z a∗k+1ak, (4.11)

which when applied on|Ωin〉 is actually a finite sum. Then the evolution from the initial
state(t = 0) to the final one(t = T

√
2) is given by the transfer operator

exp(T̃ α1), T̃ =
√

2̺T = 2T. (4.12)

The linear statistics, i.e., for a bounded functiong : Z→ R, isEN,T( 0∏

j=−2N+1

(1 − g(xfin
j ))

)
=

〈Ωfin|
∏

y∈Z(1 − g(y)a∗yay)e
T̃ α1 |Ωin〉

〈Ωfin|
∏

y∈Z eT̃ α1 |Ωin〉
(4.13)
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where thexfin
j , j ∈ {−2N + 1, . . . , 0} are the position of the fermions at timeT

√
2. Let

us denote byρ(n)(x1, . . . , xn) then-point correlation function ofζ sym
T . ThenEN,T( 0∏

j=−2N+1

(1 − g(xfin
j ))

)
=

∑

n≥0

(−1)n

n!

∑

x1,...,xn∈Z ρ(n)(x1, . . . , xn)
n∏

j=1

g(xj). (4.14)

For finiteN , ρ(n) = 0 for n > 2N .

Proposition 4.4. Let us define the matrixΦ with entries

Φx,i =
1

(x− i)!
T̃ x−iΘ(x− i), (4.15)

with Θ the Heaviside function, the antisymmetric matricesS andA

Sx,y =
1 + sgn(x− y)(−1)x

2

1 − sgn(x− y)(−1)y

2
sgn(x− y), (4.16)

Ai,j =
∑

x,y∈ZΦt
i,xSx,yΦy,j = [ΦtSΦ]i,j . (4.17)

Then then-point correlation function, forn ∈ {0, . . . , 2N}, are given by

ρ(n)(x1, . . . , xn) = Pf [K(xi, xj)]i,j=1,...,n (4.18)

whereK is a2 × 2 matrix kernel,K(x, y) =

(
K1,1(x, y) K1,2(x, y)
K2,1(x, y) K2,2(x, y)

)
, with

K1,1(x, y) = −∑0
i,j=−2N+1 Φt

i,xA
−1
i,j Φ

t
j,y

K1,2(x, y) = −∑0
i,j=−2N+1 Φt

i,xA
−1
i,j [Φ

tSt]j,y = −K2,1(y, x)

K2,1(x, y) = −∑0
i,j=−2N+1[Φ

tSt]i,xA
−1
i,j Φ

t
j,y

K2,2(x, y) = Stx,y −
∑0

i,j=−2N+1[Φ
tSt]i,xA

−1
i,j [Φ

tSt]j,y.

(4.19)

When N → ∞, (4.14) becomes a Fredholm Pfaffian,Pf (J −Kg) =
√

Det(1− J−1Kg), whereJ =

(
0 1
−1 0

)
, see Section 8 of [82]. In this case, we

consider bounded functionsg with support bounded from below, so that the sum in (4.14)
is well defined. From the point of view of operators, the determinant has to be though as
defined through the modified determinant like in the case of the GOE case, see discussion
at the end of Section 3.2.3. Finally, note thatA is invertible becauseDet(A) is the partition
function of the line ensemble.

Proof. Since it is often used, we denote the ordered setI = {−2N+1, . . . , 0}, and instead
of writing a matrixM = [Mi,j ]i,j=−2N+1,...,0 we writeM = [Mi,j ]i,j∈I . Let w({xin} →
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{xfin
n
}), n ∈ CN as given in (4.10), be the weight of fermions starting from positions

{xin} = (xin
i )i∈I , xin

i = i, and ending at{xfin
n
} = (xfin

j )j∈I , xfin
j = j + 2nj. The non-

intersection constraint implies [49] that the weight can beexpressed via determinants,

w({xin} → {xfin
n
}) = Det[ϕi,j]i,j∈I (4.20)

with
ϕi,j = 〈∅|aj+2nj

eT̃ α1a∗i |∅〉 =
[
eT̃ α1

]
j+2nj ,i

= Φj+2nj ,i. (4.21)

Taking into account the even/odd initial position of the fermions, (4.20) can be rewritten
as

w({xin} → {xfin
n
}) = Det[Φi(x

fin
j )]i,j∈I

0∏

j=−N+1

e(xfin
2j )o(xfin

2j−1) (4.22)

with

e(x) =
1 + (−1)x

2
, o(x) =

1 − (−1)x

2
. (4.23)

Let us denote byp(x−2N+1, . . . , x0) the probability that the set of end points{xfin
j , j =

−2N + 1, . . . , 0} coincide with the set{x−2N+1, . . . , x0}. We want to show that this
probability can be written as a determinant times a Pfaffian.Since thexj ’s do not have to
be ordered, letπ be the permutation of{−2N + 1, . . . , 0} such thatxπ(i) < xπ(i+1), that
is, xπ(i) = xfin

i , i ∈ I. Moreover, define the matrixΞ = [Ξi,j]i,j∈I by settingΞi,j = δi,π(j).
Then

[Φi(x
fin
j )]i,j∈I = [Φi(xj)]i,j∈I Ξ. (4.24)

Now let us show that

0∏

j=−N+1

e(xfin
2j )o(xfin

2j−1) = Pf[Stxfin
i ,xfin

j
]i,j∈I . (4.25)

Since xfin
i < xfin

i+1, the componentsi, j (i < j) of the r.h.s. matrix are given by
o(xfin

i )e(xfin
j ). The Pfaffian of a matrixM = [Mi,j]i,j∈I is

Pf(M) =
∑

σ
σ2i−1<σ2i

(−1)|σ|
0∏

i=−N+1

Mσ2i−1,σ2i
, (4.26)

where the sum is on the permutationsσ of {−2N + 1, . . . , 0} with σ2i−1 < σ2i. The
identity permutation gives already l.h.s. of (4.25). Thus we have to show that all other
terms cancels pairwise. Take a permutationσ such thatσ(2i− 1) < σ(2j − 1) < σ(2i) <
σ(2j) and define the permutationσ′ by settingσ′(2j) = σ(2i), σ′(2i) = σ(2j), and
σ′(k) = σ(k) otherwise. The term of the Pfaffian coming fromσ andσ′ are identical up
to a minus sign because(−1)|σ| = −(−1)|σ

′|. Moreover, the only permutation for which
σ(2i − 1) < σ(2j − 1) < σ(2i) < σ(2j) can not be satisfied for somei, j is the identity.
Consequently (4.25) holds.
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Finally, define the matrixG = Ξt [Stxi,xj
]i,j∈I Ξ. Replacing the definition ofΞ we

obtainG = [St
xfin

i ,xfin
j

]i,j∈I . Then

p(x−2N+1, . . . , x0) = w({xin} → {xfin
n }) (4.27)

= Det[Φi(x
fin
j )]i,j∈I

0∏

j=−N+1

e(xfin
2j )o(xfin

2j−1)

= Det[Φi(xj)]i,j∈I Det(Ξ) Pf(Ξt [Stxi,xj
]i,j∈I Ξ)

= Det[Φi(xj)]i,j∈I Pf[Stxi,xj
]i,j∈I

where we used the property of PfaffiansPf(ΞtTΞ) = Pf(T ) Det(Ξ), see e.g. [96], and
Det(Ξ) = (−1)|π|.

The probability (4.27) is of the form (3.23) with

ε(x, y) = Stx,y, fi(x) = Φx,i (4.28)

from which follows that

Mi,j = −Ai,j , (εfi)(x) = −[SΦ]x,i, (4.29)

and the kernel is given by

K ′(x, y) =

(
−K1,1(x, y) K1,2(x, y)
K2,1(x, y) −K2,2(x, y)

)
. (4.30)

ButK andK ′ are two equivalent kernels (they give the same correlation functions) since

K ′ = U tKU with U = i

(
1 0
0 −1

)
andPf[U tKU ] = Det[U ] Pf[K]. We useK instead

of K ′ uniquely because another derivation of the kernel gaveK and we already carried
out the analysis.

4.4 Kernel for finite T

In this section we compute the components of the kernel givenin (4.19). At this stage we
take the limitN → ∞. The justification of this limit is in the end of this section.The first
step is to find the inverse of the matrixA. First we extendA to be defined for alli, j ∈ Z
by using (4.17) to alli, j. Let us divideℓ2(Z) = ℓ2(Z∗

+)⊕ ℓ2(Z−), whereZ∗
+ = {1, 2, . . .}

andZ− = {0,−1, . . .}. The inverse ofA in (4.19) is the one in the subspaceℓ2(Z−). Let
us denote byP− the projector onZ− andP+ the one onZ∗

+.

Lemma 4.5. The inverse ofA in subspaceℓ2(Z−), which can be expressed as
P−(P−AP− + P+)−1P−, is given by

[A−1]i,j = [α−1e
−T̃ α−1P−e

−T̃ α1 − e−T̃ α−1P−e
−T̃ α1α1]i,j (4.31)

where[α1]i,j = δi,j+1 andα−1 ≡ αt1.
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Proof. First we rewriteA as a sum of a Toeplitz matrix plus the remainder. Letαe be the
matrix with [αe]i,j = δi,j

1+(−1)i

2
andαo = 1− αe. Then

S =
∑

k≥0

α2k+1
1 αo −

∑

k≥0

α2k+1
−1 αe. (4.32)

It is then easy to see that, forVe(x) an even polynomial of arbitrarily high order

Ve(α±1)αe = αeVe(α±1), Ve(α±1)αo = αoVe(α±1) (4.33)

and forVo(x) an odd polynomial of arbitrarily high order

Vo(α±1)αe = αoVo(α±1), Vo(α±1)αo = αeVo(α±1). (4.34)

HenceA can be written as

A = exp(T̃ α−1)
∑

k≥0

(α2k+1
1 αo − α2k+1

−1 αe)(cosh(T̃α1) + sinh(T̃ α1)). (4.35)

We pull the last factor in (4.35) in front of the sum using the commutation relations (4.33)
and (4.34), and, after some algebraic manipulations, we obtain

A = M +R (4.36)

whereM = 1
2
Φt(Q − Qt)Φ, R = 1

2
(Q + Qt)(αo − αe), with Q =

∑
k≥0 α

2k+1
1 and

Φ = exp(T̃ α1).
Let B = [Φ−1]t(α−1P− − P−α1)Φ

−1. We want to prove that it is the inverse ofA
in the subspaceℓ2(Z−). First notice thatBi,j = 0 if i ≥ 1 or j ≥ 1, which implies
[A · B]i,j = [P−AP− · B]i,j for i, j ≤ 0. Therefore, fori, j ≤ 0,

[A ·B]i,j = [(M +R) · [Φ−1]tU0Φ
−1]i,j (4.37)

with
U0 = α−1P− − P−α1, (4.38)

and, expandingM +R, we have

[A · B]i,j =
[(
eT̃ α−1 Q−Qt

2
eT̃ α1 + Q+Qt

2
(αo − αe)

)(
e−T̃ α−1U0e

−T̃ α1

)]

i,j

=
[
eT̃ α1U1e

−T̃ α1

]

i,j
+

[
eT̃ α−1U2e

−T̃ α1

]

i,j
(4.39)

whereU1 = 1
2
(Q − Qt)U0 andU2 = 1

2
(Q + Qt)(αo − αe)U0. The components of these

matrices are given by

[U1]n,m = δn,m1[n≤0] +
1

2
δm,0 sgn(n− 1)

1 + (−1)n

2
,

[U2]n,m =
1

2
δm,0

1 + (−1)n

2
, (4.40)

and a simple algebraic computation leads then to[A · B]i,j = δi,j for i, j ≤ 0. Finally,
sinceA andB are antisymmetric,[B ·A]i,j = [At ·Bt]j,i = [A ·B]j,i = δi,j too. Therefore
B is the inverse ofA in the subspaceℓ2(Z−).
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The second step is to find an explicit expression for the kernel’s elements. Using the
fact that[A−1]i,j of Lemma 4.5 is zero fori ≥ 1 or j ≥ 1, we can extend the sum over all
i, j ∈ Z and obtain

K1,1(x, y) = −[ΦA−1Φt]x,y,

K1,2(x, y) = −K2,1(y, x),

K2,1(x, y) = −[SΦA−1Φt]x,y,

K2,2(x, y) = Stx,y − [SΦA−1ΦtSt]x,y.

(4.41)

PutΨ = eT̃ α1e−T̃α−1 . We writeS as in (4.32), use the commutation relations (4.33) and
(4.34), and after some straightforward algebra obtain

K1,1 = −ΨU0Ψ
t,

K2,1 = −Ψt(SU0 − U1)Ψ
t − ΨU1Ψ

t, (4.42)

K2,2 = St + SKt
1,1,

whereU1 is given by (4.40), and

[U0]n,m = (δn,m−1 − δm,n−1)1[n,m≤0]

[SU0 − U1]n,m =
1

2

1 + (−1)n

2
δm,0. (4.43)

Using these relations we obtain the kernel elements, which are summed up in the
following

Lemma 4.6.
K(x, y) = G(x, y) +R(x, y), (4.44)

with

R1,1(x, y) = 0,

R1,2(x, y) = −(−1)y

2
Jx+1(2T̃ ),

R2,1(x, y) =
(−1)x

2
Jy+1(2T̃ ),

R2,2(x, y) = −S(x, y) +
1

4
sgn(x− y)

−(−1)x

2

∑

m≥1

Jy+2m(2T̃ ) +
(−1)y

2

∑

n≥1

J2n+x(2T̃ ), (4.45)

and

G1,1(x, y) = −
∑

n≥1

Jx+n+1(2T̃ )Jy+n(2T̃ ) +
∑

n≥1

Jy+n+1(2T̃ )Jx+n(2T̃ ), (4.46)
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G1,2(x, y) =
∑

n≥1

Jx+n(2T̃ )Jy+n(2T̃ ) − Jx+1(2T̃ )

( ∑

m≥1

Jy+2m−1(2T̃ ) − 1

2

)
, (4.47)

G2,1(x, y) = −
∑

n≥1

Jx+n(2T̃ )Jy+n(2T̃ ) + Jy+1(2T̃ )

( ∑

m≥1

Jx+2m−1(2T̃ ) − 1

2

)
, (4.48)

G2,2(x, y) =
∑

m≥1

∑

n≥m
Jx+2m(2T̃ )Jy+2n+1(2T̃ ) −

∑

n≥1

∑

m≥n
Jx+2m+1(2T̃ )Jy+2n(2T̃ )

−1

2

∑

m≥1

Jx+2m(2T̃ ) +
1

2

∑

n≥1

Jy+2n(2T̃ ) − 1

4
sgn(x− y), (4.49)

whereJm(t) denotes the mth order Bessel function.

Remark: this result could also be deduced starting from Section 5 of [82]. Now we
justify theN → ∞ limit. Let us first explain the idea. Denote the setsI = {−2N +
1, . . . , 0} andL = {−N + 1, . . . , 0}. We consider the kernel’s elements forx, y ≥ 0.
For (i, j) ∈ I2 \ L2, the inverse ofA for finite N differs from the inverse forN = ∞
only byO(e−µN ) with µ = µ(T̃ ) > 0. On the other hand, the contribution toK.,.(x, y)
coming from(i, j) ∈ (I \ L)2 are exponentially small inN . Therefore, replacing the
inverse ofA for finite N with the inverse obtained in Lemma 4.5 we introduce only an
error exponentially small inN . The dependence of the kernel’s elements onN is only via
the extension of the sums in (4.19), which limit is the one we derived in Lemma 4.6.

In what follows we denote byAN the2N × 2N matrix (4.17) and byA theN = ∞
one.

Lemma 4.7. If we replace[A−1
N ]i,j by A−1

i,j in the kernel’s elements (4.19), then forN

large enough, the error made isO(e−µN ) for some constantµ = µ(T̃ ) > 0. The error is
uniform forx, y ≥ 0.

Proof. Here we use some results of Appendix 4.A.1. First, we define the matrixB by
setting,Bi,j = A−1

i,j for (i, j) ∈ I × L, andBi,j = −A−1
−2N+1−i,−2N+1−j for (i, j) ∈

I × (I \ L). Since[AN ]i,j = −[AN ]−2N+1−i,−2N+1−j , by (4.107) follows that

ANB = 1− C (4.50)

for some matrixC with ‖C‖ = maxi,j |Ci,j| ≤ O(e−µ2N). Therefore, forN large enough,

A−1
N = B(1 +D), D =

∑

k≥1

Ck (4.51)

with ‖D‖ ≤ O(e−µ2N) too. Thus, replacingA−1
N with B we introduce an error in the

kernel’s elements ofO(N2e−µ2N).
If we replaceBi,j with A−1

i,j also in (i, j) ∈ L × (I \ L) we introduce an error of
O(N2e−µ3N ), with µ3 = min{µ1, µ2/2}. This is achieved using (4.106) fori < j +N/2,
and (4.104) otherwise.
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The final step is to show, using only the antisymmetry ofA−1
N that the contribution of

K.,. coming from(i, j) ∈ (I \L)2 are also exponentially small inN . For(i, j) ∈ (I \L)2,
it is easy to see that, uniformly inx, y ≥ 0,

Φx,i = O(e−µ1N ) (4.52)

(SΦ)x,i = O(e−µ1N ), for oddx,

(SΦ)x,i = sinh(T̃ ) + O(e−µ1N), for evenx and eveni,

(SΦ)x,i = cosh(T̃ ) + O(e−µ1N), for evenx and oddi.

Therefore, the contributions forK1,1, K1,2, andK2,1 areO(N2e−µ1N) because they con-
tain at least a factorO(e−µ1N) coming fromΦx,i or Φt

j,y. ForK2,2 there are terms without
O(e−µ1N), and containing onlysinh(T̃ ) and/orcosh(T̃ ). These terms cancel exactly be-
causeA−1

N is antisymmetric. Consequently, we can simply replaceBi,j with A−1
i,j also in

(i, j) ∈ (I \ L)2 up to an errorO(N2e−µ1N).

4.5 Edge scaling and asymptotics of the kernel

In this section we define the edge scaling of the kernel, provide some bounds on them
which will be used in the proofs of Section 4.6, and compute their T → ∞ limit.

The edge scaling of the kernel is defined by

Gedge
T ;1,1(ξ1, ξ2) = T̃ 2/3G1,1([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3])

Gedge
T ;k (ξ1, ξ2) = T̃ 1/3Gk([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3]), k = (1, 2), (2, 1)

Gedge
T ;2,2(ξ1, ξ2) = G2,2([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3]), (4.53)

and similarly forRedge
T ;k (ξ1, ξ2).

Next we compute some bounds on the kernel’s elements such that, when possible, they
are rapidly decreasing forξ1, ξ2 ≫ 1.

Lemma 4.8. Write

Ω0(x) =

{
1, x ≤ 0
exp(−x/2), x ≥ 0

, Ω1(x) =

{
1 + |x|, x ≤ 0
exp(−x/2), x ≥ 0

, (4.54)

Ω2(x) =

{
(1 + |x|)2, x ≤ 0
exp(−x/2), x ≥ 0

. (4.55)

Then there is a positive constantC such that for largeT̃

|Redge
T ;1,2(ξ1, ξ2)| ≤ CΩ0(ξ1),

|Redge
T ;2,1(ξ1, ξ2)| ≤ CΩ0(ξ2), (4.56)

|Redge
T ;2,2(ξ1, ξ2)| ≤ C(Ω1(ξ1) + Ω1(ξ2)),
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and

|Gedge
T ;1,1(ξ1, ξ2)| ≤ CΩ2(ξ1)Ω2(ξ2),

|Gedge
T ;1,2(ξ1, ξ2)| ≤ CΩ1(ξ1)(1 + Ω2(ξ2)), (4.57)

|Gedge
T ;2,1(ξ1, ξ2)| ≤ CΩ1(ξ2)(1 + Ω2(ξ1)),

|Gedge
T ;2,2(ξ1, ξ2)| ≤ C(1 + Ω1(ξ1) + Ω1(ξ2) + Ω1(ξ1)Ω1(ξ2)).

Proof. We use Lemma 4.13 and Lemma 4.14 to obtain the above estimate.
1) The bounds on|Redge

T ;1,2(ξ1, ξ2)| and|Redge
T ;2,1(ξ1, ξ2)| are implied by Lemma 4.13.

2) Bound on|Redge
T ;2,2(ξ1, ξ2)|.

|Redge
T ;2,2(ξ1, ξ2)| ≤

5

4
+

1

2

∑

M∈N/T̃ 1/3

|J[2T̃+(2M+ξ2)T̃ 1/3](2T̃ )| + (ξ1 ↔ ξ2) (4.58)

and

∑

M∈N/T̃ 1/3

|J[2T̃+(2M+ξ2)T̃ 1/3](2T̃ )| ≤
∑

M∈N/T̃ 1/3

|J[2T̃+(M+ξ2)T̃ 1/3](2T̃ )|. (4.59)

For ξ2 ≤ 0,

(4.59) ≤
∑

M∈(ξ2+N/T̃ 1/3)∩[ξ2,0]

|J[2T̃+MT̃ 1/3](2T̃ )| +
∑

M∈N/T̃ 1/3

|J[2T̃+MT̃ 1/3](2T̃ )|. (4.60)

By (4.108) the first term is bounded by a constant times(1 + |ξ2|) and by (4.109) the
second term by a constant. Forξ2 ≥ 0,

(4.59) ≤
∑

M∈ξ2+N/T̃ 1/3

|J[2T̃+MT̃ 1/3](2T̃ )| (4.61)

which, by (4.109), is bounded by a constant timesexp(−ξ2/2). Therefore

∑

M∈N/T̃ 1/3

|J[2T̃+(M+ξ2)T̃ 1/3](2T̃ )| ≤ C Ω1(ξ2). (4.62)

for a constantC, from which follows the desired bound.
3) Bound on|Gedge

T ;1,1(ξ1, ξ2)|. Let us defineJ̃n(t) = Jn+1(t) − Jn(t). Then

Gedge
T ;1,1(ξ1, ξ2) = T̃ 2/3

∑

M∈N/T̃ 1/3

J[2T̃+(ξ1+M)T̃ 1/3](2T̃ )J̃[2T̃+(ξ2+M)T̃ 1/3](2T̃ )

− (ξ1 ↔ ξ2). (4.63)
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For largeT̃ , the sums are very close integrals and this time we use both Lemma 4.13 and
Lemma 4.14, obtaining

|Gedge
T ;1,1(ξ1, ξ2)| ≤ C

∫ ∞

0

dMΩ0(M + ξ1)Ω1(M + ξ2)

≤ C

∫ ∞

0

dMΩ1(M + ξ1)Ω1(M + ξ2) (4.64)

for a constantC > 0. It is then easy to see that r.h.s. of (4.64) is bounded as follows:
for ξ1 ≤ ξ2 ≤ 0 by C(1 + |ξ1|)2, for ξ1 ≤ 0 ≤ ξ2 by C(1 + |ξ1|)2 exp(−ξ2/2), and for
0 ≤ ξ1 ≤ ξ2 by C exp(−ξ1/2) exp(−ξ2/2), for some other constantC > 0. Therefore
|Gedge

T ;1,1(ξ1, ξ2)| ≤ CΩ2(ξ1)Ω2(ξ2).

4) Bound on|Gedge
T ;1,2(ξ1, ξ2)|.

Gedge
T ;1,2(ξ1, ξ2) =

∑

M∈N/T̃ 1/3

J[2T̃+(ξ1+M)T̃ 1/3](2T̃ )
(
T̃ 1/3J[2T̃+(ξ2+M)T̃ 1/3](2T̃ )

)

−T̃ 1/3J[2T̃+(ξ1+M)T̃ 1/3+1](2T̃ )
( ∑

M∈N/T̃ 1/3

J[2T̃+(ξ1+2M)T̃ 1/3−1](2T̃ ) − 1

2

)
.

In the first sum, the term withξ2 is bounded by a constant and remaining sum was already
estimated in (4.62). The second term is bounded by a constanttimesΩ0(ξ1)Ω2(ξ2). Using
Ω0(ξ1) ≤ Ω1(ξ1) we conclude that|Gedge

T ;1,2(ξ1, ξ2)| ≤ CΩ1(ξ1)(1 + Ω2(ξ2)).

5) Bound on|Gedge
T ;2,1(ξ1, ξ2)|. The bound is the same as for|Gedge

T ;1,2(ξ1, ξ2)|.
6) Bound on|Gedge

T ;2,2(ξ1, ξ2)|. The terms with the double sums are estimated applying twice
(4.62) and are then bounded byΩ1(ξ1)Ω1(ξ2). The two terms with only one sum are
bounded byΩ1(ξ1) andΩ1(ξ2) respectively, and the signum function by1/4. Therefore,
for some constantC > 0, |Gedge

T ;2,2(ξ1, ξ2)| ≤ C(1 + Ω1(ξ1) + Ω1(ξ2) + Ω1(ξ1)Ω1(ξ2)).

Finally we compute the pointwise limits of theG’s since they remains in the weak
convergence.

Lemma 4.9. For any fixedξ1, ξ2,

lim
T̃→∞

Gedge
T ;k (ξ1, ξ2) = GGOE

k (ξ1, ξ2), (4.65)

where theGGOE
k ’s are the ones in (3.61).

Proof. Let us considerξ1, ξ2 fixed. In the proof of Lemmas 4.8, we have already obtained
uniform bounds inT for Gedge

T ;k (ξ1, ξ2), so that dominated convergence applies. To obtain
the limits we use (4.133), i.e.,

lim
T→∞

T 1/3J[2T+ξT 1/3](2T ) = Ai(ξ), (4.66)
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and
lim
T→∞

T 2/3(J[2T+ξT 1/3+1](2T ) − J[2T+ξT 1/3](2T )) = Ai′(ξ). (4.67)

The limit ofGedge
T ;1,1(ξ1, ξ2) follows from (4.63).

The limit ofGedge
T ;1,2(ξ1, ξ2) leads to

∫ ∞

0

dλAi(ξ1 + λ) Ai(ξ2 + λ) − 1

2
Ai(ξ1)

( ∫ ∞

0

dλAi(ξ2 + λ) − 1

)
(4.68)

which equalsGGOE
1,2 since

∫ ∞
0

dλAi(ξ2 + λ) − 1 = −
∫ ∞

0
dλAi(ξ2 − λ).

The limit ofGedge
T ;2,1(ξ1, ξ2) is obtained identically.

Finally, the limit ofGedge
T ;2,2(ξ1, ξ2) is given by

1

4

∫ ∞

0

dλ

∫ ∞

λ

dµAi(ξ1 + λ) Ai(ξ2 + µ) − (ξ1 ↔ ξ2) (4.69)

− 1

4

∫ ∞

0

dλAi(ξ1 + λ) +
1

4

∫ ∞

0

dµAi(ξ2 + µ) − 1

4
sgn(ξ1 − ξ2),

which can be written in a more compact form. Since
∫R dλAi(λ) = 1,

∫ ∞

0

dλAi(ξ1 + λ) =

∫ ∞

0

dλ

∫ ∞

−∞
dµAi(ξ1 + λ) Ai(ξ2 + µ), (4.70)

and the signum can be expressed as an integral ofAi(ξ1 + λ) Ai(ξ2 + µ)

− sgn(ξ1 − ξ2) =

∫R dλ

∫R dµAi(ξ1 + λ) Ai(ξ2 + µ) sgn(λ− µ). (4.71)

In fact

r.h.s. of(4.71) =

∫R dλ

∫R dµAi(λ) Ai(µ) sgn(λ− µ+ ζ) = b(ζ) (4.72)

with ζ = ξ2 − ξ1. Forζ = 0 it is zero by symmetry. Then considerζ > 0, the caseζ < 0
follows by symmetry. By completeness of the Airy functions,

db(ζ)

dζ
=

∫R dµAi(µ) Ai(µ− ζ) = δ(ζ). (4.73)

Then using (4.70) and (4.71) we obtain the result.

Remark that the GOE kernel in [40] differs slightly from the one written here, but they
are equivalent in the sense that they give the same correlation functions.

For the residual terms the limit does not exist, but exists inthe even/odd positions. In
particular

lim
T→∞

∑

m≥1

J[2T̃+ξT̃ 1/3+2m](2T̃ ) =
1

2

∫ ∞

0

dλAi(ξ + λ). (4.74)
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4.6 Proof of Theorem 4.1

In this section we first prove the weak convergence of the edgerescaled point process of
ηsym
T to ηGOE in theT → ∞ limit. Secondly, using the equivalence of the point process
ζ sym
T andζflat

T , we prove Theorem 4.1.

Theorem 4.10.Let us define the rescaled point process

ηsym
T (f) =

∑

x∈Z f((x− 2T̃ )/T̃ 1/3)ζ sym
T (x) (4.75)

with T̃ =
√

2̺T = 2T and f a smooth test function of compact support. In the limit
T → ∞ it converges weakly to the GOE point process, i.e., for allm ∈ N, andf1, . . . , fm
smooth test functions of compact support,

lim
T→∞

ET( m∏

k=1

ηsym
T (fk)

)
= E( m∏

k=1

ηGOE(fk)

)
(4.76)

where the GOE kernel is given in 3.61.

Proof. Let f1, . . . , fm be smooth test functions of compact support andf̂i(x) = fi((x −
2T̃ )/T̃ 1/3), thenET( m∏

k=1

ηsym
T (fk)

)
=

∑

x1,...,xm∈Z f̂1(x1) . . . f̂m(xm) Pf[K(xi, xj)]i,j=1,...,m

=
∑

x1,...,xm∈Z f̂1(x1) . . . f̂m(xm) Pf[(XKX t)(xi, xj)]i,j=1,...,m/Det[X]m

=
1

T̃m/3

∑

x1,...,xm∈Z f̂1(x1) . . . f̂m(xm) Pf[L(xi, xj)]i,j=1,...,m (4.77)

whereX =

(
T̃ 1/3 0

0 1

)
andL(x, y) = (XKX t)(x, y), i.e.,L1,1(x, y) = T̃ 2/3K1,1(x, y),

Lk(x, y) = T̃ 1/3Kk(x, y), for k = (1, 2), (2, 1), andL2,2(x, y) = K2,2(x, y). Moreover,
we define the edge scaling for the kernel elements as

Ledge
T ;k (ξ1, ξ2) = Lk([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3]). (4.78)

In what follows we denote byξi = (xi− 2T̃ )/T̃ 1/3. To simplify the notations we consider
T̃ ∈ N, but the same proof can be carried out without this condition, replacing for exampleZ/T̃ 1/3 by (Z− 2T̃ )/T̃ 1/3 in (4.79). ThenET( m∏

k=1

ηsym
T (fk)

)
=

1

T̃m/3

∑

ξ1,...,ξm∈Z/T̃ 1/3

f1(ξ1) · · ·fm(ξm) Pf[Ledge
T (ξi, ξj)]i,j=1,...,m. (4.79)
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Let us denoteξIi = [ξiT̃
1/3]/T̃ 1/3 the “integer” discretization ofξi. ThenET( m∏

k=1

ηsym
T (fk)

)
=

∫Rm

dξ1 · · ·dξmf1(ξ
I
1) · · ·fm(ξIm) Pf[Ledge

T (ξIi , ξ
I
j )]i,j=1,...,m.

(4.80)
Using the definition in (4.53) we have

Ledge
T ;k (ξ1, ξ2) = Gedge

T ;k (ξ1, ξ2) +Redge
T ;k (ξ1, ξ2), (4.81)

therefore (4.80) consists in one term with onlyGedge
T ;k plus other terms which contain at

least oneRedge
T ;k .

First consider the contribution where onlyGedge
T ;k occur. LetMf > 0 be the smallest

number such thatfj(x) = 0 if |x| ≥ Mf , for all j = 1, . . . , m. We bound the product of
thefi’s by

|f1(ξ
I
1) · · ·fm(ξIm)| ≤

m∏

j=1

‖fj‖∞1[−Mf ,Mf ](ξj) (4.82)

and, in the same way as in Lemma 4.12 but withKedge
T ;k replaced byGedge

T ;k , we conclude that
this is uniformly integrable inT . We then apply dominated convergence and take the limit
inside the integral obtaining

lim
T→∞

∫Rm

dξ1 · · ·dξmf1(ξ
I
1) · · · fm(ξIm) Pf[Gedge

T (ξIi , ξ
I
j )]i,j=1,...,m

=

∫Rm

dξ1 · · ·dξmf1(ξ1) · · · fm(ξm) Pf[GGOE(ξi, ξj)]i,j=1,...,m. (4.83)

Next we have to show that whenever someRedge
T ;k are present their contribution vanish

in the limit T → ∞. In (4.80) we have to compute the Pfaffian ofET defined by

ET (n, l) =






Ledge
T ;1,1((n+ 1)/2, (l + 1)/2), n odd, l odd,

Ledge
T ;1,2((n+ 1)/2, l/2), n odd, l even,

Ledge
T ;2,1(n/2, (l + 1)/2), n even, l odd,

Ledge
T ;2,2(n/2, l/2), n even, l even,

(4.84)

for 1 ≤ n < l ≤ 2m, with Ledge
T ;k (a, b) ≡ Ledge

T ;k (ξa, ξb). The Pfaffian ofET is given by

Pf(ET ) =
∑

σ∈S2m
σ2i−1<σ2i

(−1)|σ|ET (σ1, σ2) · · ·ET (σ2m−1, σ2m). (4.85)

Now we have to check that the product of residual terms does not contain twice the term
(−1)x for the samex. This is implied by Lemma 4.11.
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Let us decompose the sum in (4.79) into2m sums, depending on whetherξiT̃ 1/3 is
even or odd. Denoteξei = [ξiT̃

1/3/2]2/T̃ 1/3 andξoi = ([ξiT̃
1/3/2]2 + 1)/T̃ 1/3 the “even”

and “odd” discretizations ofξi. Then

(4.79) =
1

2m

∑

si={o,e},
i=1,...,m

∫Rm

dξ1 · · ·dξmf1(ξ
s1
1 ) · · · fm(ξsm

m ) Pf[Ledge
T (ξsi

i , ξ
sj

j )]i,j=1,...,m.

(4.86)
With this subdivision, each term in the Pfaffian converges pointwise to a well defined limit.
Moreover all the2m integrals, includingGedge

T ;k ’s and/orRedge
T ;k ’s, are uniformly bounded in

T . By dominated convergence we can take the limit inside the integrals.
Each time that there is aRedge

T ;1,2(ξi, ξj), or Redge
T ;2,1(ξj, ξi), the integral withsi = o and

the one withsi = e only differs by sign, therefore they cancel each other. Eachtime
that appearsRedge

T ;2,2(ξi, ξj), the part including coming from the(−1)xi and the one with
(−1)xj simplifies in the same way. Finally we consider the second part, the one including
theS and signum function. The sum ofsi = {o, e} andsj = {o, e} of the terms with
−S(ξiT̃

−1/3, ξjT̃
−1/3) equals minus the ones with1

4
sgn((ξi − ξj)T̃

−1/3). Consequently
all the terms including at least one timeRedge

T ;i have a contribution which vanishes in the
T → ∞ limit.

Lemma 4.11.The following products do not appear in (4.85):

(a)Ledge
T ;2,2(xi, xj)L

edge
T ;1,2(xk, xi), (b)Ledge

T ;2,2(xi, xj)L
edge
T ;1,2(xk, xj),

(c)Ledge
T ;2,2(xi, xj)L

edge
T ;2,1(xi, xk), (d)Ledge

T ;2,2(xi, xj)L
edge
T ;2,1(xj , xk)

(e)Ledge
T ;1,2(xi, xj)L

edge
T ;2,1(xj, xk).

(4.87)

Proof. We prove it by reductio ab absurdum. We assume that the product appear and we
obtain a contradiction. (a) appears if there exist somea < b andc < d with a, b, d even
andc odd, all different, such thati = a/2, j = b/2, k = (c + 1)/2, i = d/2. But this is
not possible sinced 6= a. (b) appears if there exist somea < b andc < d with a, b, d even
andc odd, all different, such thati = a/2, j = b/2, k = (c + 1)/2, j = d/2. But this is
not possible sinced 6= b. (c) appears if there exist somea < b andc < d with a, b, c even
andd odd, all different, such thati = a/2, j = b/2, i = c/2, k = (d + 1)/2. But this is
not possible sincec 6= a. (d) appears if there exist somea < b andc < d with a, b, c even
andd odd, all different, such thati = a/2, j = b/2, j = c/2, k = (d + 1)/2. But this is
not possible sincec 6= b. (e) appears if there exist somea < b andc < d with b, c even and
a, d odd, all different, such thati = (a + 1)/2, j = b/2, j = c/2, k = (d+ 1)/2. But this
is not possible sincec 6= b.

Lemma 4.12.There exists a constantC > 0 such thatET(
|ηsym
T (1[−M,∞))|m

)
≤ CmeMm/2(m)m/2 (4.88)

uniformly inT .
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Proof. Them-point correlation functionρ(m)(ξ1, . . . , ξm) is a sum of product ofKedge
T ;k ’s

which contains twice everyξi’s, i = 1, . . . , m, and only inKedge
T ;k the two argument can be

the same. From Lemma 4.8, for anyξ1, ξ2 ∈ R,

|Kedge
T ;1,1(ξ1, ξ2)| ≤ C exp(−ξ1/2) exp(−ξ2/2) (4.89)

|Kedge
T ;1,2(ξ1, ξ2)| ≤ C exp(−ξ1/2)

|Kedge
T ;2,1(ξ1, ξ2)| ≤ C exp(−ξ2/2)

|Kedge
T ;2,2(ξ1, ξ2)| ≤ C.

For negativeξ we could replaceexp(−ξ1/2) by (1 + |ξ1|)2 where appears, but for our
purpose this is not needed.

All the products inρ(m)(ξ1, . . . , ξm) contain at least oneexp(−ξi/2) for eachi. In fact,
this holds if:Kedge

T ;2,2(ξ1, ξ2) is not multiplied byKedge
T ;1,2(ξ3, ξ2),K

edge
T ;1,2(ξ3, ξ1),K

edge
T ;2,1(ξ1, ξ3),

Kedge
T ;2,1(ξ2, ξ3), and if Kedge

T ;1,2(ξ1, ξ2) is not multiplied byKedge
T ;2,1(ξ2, ξ3). This is already

proven in Lemma 4.11.
Consequently,ET(

|ηsym
T (1[−M,∞))|m

)
=

∫

[−M,∞)m

dξ1 . . .dξmρ
(m)
T (ξ1, . . . , ξm)

≤ (2m)m/2
(∫

[−M,∞)

C exp(−ξ/2)dξ
)m

= 2mCmeMm/2(2m)m/2 (4.90)

uniformly in T . The term(2m)m/2 comes from the fact that the absolute value of a de-
terminant of an × n matrix with entries of absolute value not exceeding1 is bounded by
nn/2 (Hadamard bound). Finally resetting the constant asC2

√
2 the lemma is proved.

To prove Theorem 4.1 we use Theorem 4.10, Proposition 4.3, and Lemma 4.12.

Proof of Theorem 4.1.Let us denote byxj , j ≤ 0, the position of thejth element ofζflat
T

andxsym
j , j ≤ 0, the position of thejth element ofζsym

T . Then defineξj,T andξsym
j,T by

xj = 2T + ξj,TT
1/32−2/3, xsym

j = 4T + ξsym
j,T (2T )1/3. (4.91)

By Proposition 4.3,xj − j = 1
2
(xsym

j − j), which implies

ξj,T = ξsym
j,T +

j

(2T )1/3
. (4.92)

Let f1, . . . , fm be test functions of compact support and denote byMf > 0 the minimal
value such thatfj(x) = 0 if |x| ≥ Mf , j = 1, . . . , m. ThenET( m∏

k=1

ηflat
T (fk)

)
= ET( m∏

k=1

∑

i≤0

fk(ξ
sym
i,T + i/(2T )1/3)

)
(4.93)

= ET( ∑

i1,...,im≤0

m∏

k=1

fk(ξ
sym
ik,T

+ ik/(2T )1/3)
)
.
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We bound thefk’s by their supremum times1[−Mf ,Mf ] as in (4.82), then

|r.h.s. of(4.93)| ≤ ET( m∏

j=1

∑

i≤0

1[−Mf ,Mf ](ξ
sym
i,T + i/(2T )1/3)

) m∏

j=1

‖fj‖∞, (4.94)

and, since1[−Mf ,Mf ](ξ
sym
i,T + i/(2T )1/3) ≤ 1[−Mf ,∞)(ξ

sym
i,T + i/(2T )1/3) ≤ 1[−Mf ,∞)(ξ

sym
i,T ),

it follows that

|r.h.s. of(4.93)| ≤ ET( m∏

j=1

ηsym
T (1[−Mf ,∞))

) m∏

j=1

‖fj‖∞ (4.95)

which is uniformly bounded inT from Lemma 4.12. Therefore by Fubini’s theorem,ET( m∏

k=1

ηflat
T (fk)

)
=

∑

i1,...,im≤0

ET( m∏

k=1

fk(ξ
sym
ik,T

+ ik/(2T )1/3)
)
. (4.96)

Moreover,fk(ξ
sym
ik,T

+ ik/(2T )1/3) = fk(ξ
sym
ik,T

) + f ′
k(ξ̃ik,T )ik/(2T )1/3 for someξ̃ik,T ∈

[ξsym
ik,T

+ ik/(2T )1/3, ξsym
ik,T

]. Therefore (4.96) equals

∑

i1,...,im≤0

ET( m∏

k=1

fk(ξ
sym
ik,T

)
)

= ET( m∏

k=1

ηsym
T (fk)

)
(4.97)

plus2m − 1 terms which contains somef ′
k(ξ̃ik,T )ik/(2T )1/3. Finally we have to show that

these terms vanish asT → ∞. First we bound thefk’s and thef ′
k’s by ‖fk‖∞ and‖f ′

k‖∞
times1[−Mf ,Mf ]. Therefore each of the2m − 1 terms is bounded by a

1

T |J |/3

∏

k∈I
‖fk‖∞

∏

k∈J
‖f ′

k‖∞
∑

i1,...,im≤0

m∏

k∈J
|ik|ET( m∏

k=1

1[−Mf ,∞)(ξ
sym
ik,T

)
)

(4.98)

whereI andJ are subset of{1, . . . , m} with I ∪J = {1, . . . , m} andJ is non-empty. Let
j0 = min{i1, . . . , im}, thenET( m∏

k=1

1[−Mf ,∞)(ξ
sym
ik,T

)
)

= ET(1[−Mf ,∞)(ξ
sym
j0,T

)
)

= PT(
ξsym
j0,T

≥ −Mf

)
≤ PT(

ηsym
T (1[−Mf ,∞)) ≥ j0

)
(4.99)

≤
ET(

|ηsym
T (1[−Mf ,∞))|3m

)

|j0|3m
≤ O(C3meMf3m/2(3m)3m/2)∏m

k=1 |ik|3
,

since|j0| ≥ |ik| for all k + 1, . . . , m. From (4.99) it follows that (4.98) is uniformly
bounded inT and vanishes asT → ∞. We have then proved that, for allf1, . . . , fm
smooth test functions of compact support,

lim
T→∞

ET( m∏

k=1

ηflat
T (fk)

)
= lim

T→∞
ET( m∏

k=1

ηsym
T (fk)

)
= E( m∏

k=1

ηGOE(fk)
)
, (4.100)

the last equality being Theorem 4.10.
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4.A Appendices

4.A.1 Bounds on the inverse ofA

Let us denote the finite matrixA byAN and its inverse byA−1
N . For theN = ∞ case we use

the notationsA andA−1. Let us denoteI = {−2N+1, . . . , 0} andL = {−N+1, . . . , 0}.
Using (4.36) we have

|Ai,j| ≤ 1 +
1

2

∑

k≥i

∑

l≥j

T̃ k−i

(k − i)!

T̃ l−j

(l − j)!
= 1 +

1

2
e2T̃ . (4.101)

To obtain some properties ofA−1, we first estimate[e−T̃ α−1P−e
−T̃ α1 ]i,j.

[e−T̃ α−1P−e
−T̃ α1 ]i,j =

∑

max{i,j}≤k≤0

(−T̃ )k−i

(k − i)!

(−T̃ )k−j

(k − j)!
(4.102)

=
∑

l≥0

T̃ 2l(−T̃ )|i−j|

l!(l + |i− j|)! −
∑

l>−max{i,j}

T̃ 2l(−T̃ )|i−j|

l!(l + |i− j|)!

= (−1)|i−j|I|i−j|(2T̃ ) −
∑

l>−max{i,j}

T̃ 2l(−T̃ )|i−j|

l!(l + |i− j|)! ,

whereIk is the modified Bessel functionI of orderk. From (4.102) and(l + |i − j|)! ≥
l!|i− j|! follows

∣∣[e−T̃ α−1P−e
−T̃ α1 ]i,j

∣∣ ≤ I0(2T̃ )
T̃ |i−j|

|i− j|! ≤
T̃ |i−j|

|i− j|!e
2T̃ , (4.103)

which implies
∣∣A−1

i,j

∣∣ ≤ 2
T̃ |i−j|

|i− j|!e
2T̃ ≤ c1(T̃ )e−µ2(T̃ )|i−j|, (4.104)

for some constantsc1, µ2 > 0.
The remainder sum in (4.102) is exponentially small in−max{i, j}. In fact, forn =

−max{i, j},

∣∣[e−T̃ α−1P−e
−T̃ α1 ]i,j − (−1)|i−j|I|i−j|(2T̃ )

∣∣

≤ T̃ |i−j|

|i− j|!
∑

l>n

T̃ 2l

(l!)2
≤ T̃ |i−j|

|i− j|!I0(2T̃ )e−µ1(T̃ )n (4.105)

for some constantµ1 > 0. Thus, for all(i, j) such thatmax{i, j} ≤ −N/2,

∣∣A−1
i,j − lim

m→∞
A−1
i−m,j−m

∣∣ ≤ c2(T̃ )e−µ1N/2 (4.106)
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for some constantc2 > 0, that is, in this regionA−1 is exponentially close to a Toepliz
matrix.

For j ∈ L, using (4.101) and (4.104), we obtain

∣∣[ANA−1 − 1]i,j∣∣ =
∑

l≤−2N

Ai,lA
−1
l,j ≤ c3(T̃ )e−µ2N (4.107)

with c3 > 0 a constant.

4.A.2 Some bounds and relation on Bessel functions

Lemma 4.13.For N ≥ 0,

|T 1/3J[2T+NT 1/3](2T )| ≤ exp(−N/2)O(1) (4.108)

uniformly inT ≥ T0 for some constantT0.
For N ≤ 0 it follows from a result of Landau [57], see (4.134), that

|T 1/3J[2T+NT 1/3](2T )| ≤ C (4.109)

uniformly inT for a constantC > 0.

Proof. To obtain the bound we use 9.3.35 of [1], i.e., forz ∈ [0, 1],

Jn(nz) =

(
4ζ

1 − z2

)1/4 [
Ai(n2/3ζ)

n1/3
(1 + O(n−2)) +

Ai′(n2/3ζ)

n5/3
O(1)

]
(4.110)

where

ζ(z) = (3/2)2/3
[
ln(1 +

√
1 − z2) − ln(z) −

√
1 − z2

]2/3

. (4.111)

In our case,n = 2T +NT 1/3 andz = (1+ε)−1 with ε = 1
2
NT−2/3 ≥ 0. This implies that

z ∈ [0, 1]. In this interval the functionζ(z) is positive and decreasing. The prefactor is
estimated using4ζ(z(ε))(1− z(ε)2)−12−4/3 ≤ 1 + 4

5
ε for all ε > 0. Moreover, forx ≥ 0,

Ai(x) ≤ Ai(x/2) and|Ai′(x)| ≤ Ai(x/2). Therefore

|T 1/3J[2T+NT 1/3](2T )| ≤
(
1 + 4

5
ε
)1/4

Ai(n2/3ζ/2)(1 + O(T−4/3)) (4.112)

where we also used(2T )1/3 ≤ n1/3. Next we bound (4.112) separately forN ≤ 1
2
T 2/3

andN ≥ 1
2
T 2/3.

Case 1)0 ≤ N ≤ 1
2
T 2/3. In this caseε ≤ 1

4
and, forε ∈ [0, 1/3], ζ(z(ε)) ≥ ε holds.

Replacingn by 2T in the Airy function we have an upper bound since it is a decreasing
function, consequently

|T 1/3J[2T+NT 1/3](2T )| ≤ 2 Ai(N2−4/3)(1 + O(T−4/3)). (4.113)
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Finally it is easy to verify that2 Ai(N2−4/3) ≤ exp(−N/2), and obtain the bound of the
lemma.

Case 2)N ≥ 1
2
T 2/3. In this caseε ≥ 1

4
andz(ε) ≤ 4

5
. In this intervalζ(z) ≥ 1

4
(ln(8ε))2/3

from which follows

|T 1/3J[2T+NT 1/3](2T )| ≤ (NT−2/3)1/4 Ai
(

1
8
(n ln(4NT−2/3))2/3

)
O(1). (4.114)

For x ≥ 0, Ai(x) ≤ exp(−2
3
x3/2), andN ≥ 1

2
T 2/3 impliesÑ = 4NT−2/3 ≥ 2. Conse-

quently,

|T 1/3J[2T+NT 1/3](2T )| ≤ Ñ1/4 exp(−c1T (1 + Ñ/8))O(1)

≤ exp(−c1T ) exp(−2c2TÑ)Ñ1/4O(1) (4.115)

with c1 = ln(2)/3, c2 = c1/16. ForT ≥ 10 andÑ ≥ 2, Ñ1/4 exp(−c2TÑ) ≤ 1, and
exp(−c2TÑ) ≤ exp(−N/2) for T large enough. These two last inequalities imply

|T 1/3J[2T+NT 1/3](2T )| ≤ exp(−c1T ) exp(−N/2)O(1) (4.116)

for T large enough, and the lemma is proved.

Lemma 4.14.For all N ≥ 0,

DT,N = |T 2/3(J[2T+NT 1/3+1](2T ) − J[2T+NT 1/3](2T ))| ≤ exp(−N/2)O(1) (4.117)

uniformly inT ≥ T0 for some constantT0.
For N ≤ 0, there is a constantC > 0 such that

DT,N ≤ C(1 + |N |) (4.118)

uniformly inT ≥ 1.

Proof. First we considerN ≥ 0. Let N ′ = N + T−1/3, then we have to subtract
J[2T+NT 1/3](2T ) to J[2T+N ′T 1/3](2T ). In term ofε = 1

2
NT−2/3 the difference is1/(2T ).

Let us define

q(ε) =

(
4ζ(z(ε))

1 − z(ε)2

)1/4

(1 + ε)−1/3, p(ε) = (1 + ε)2/3ζ(z(ε)), (4.119)

and

f(ε) =
q(ε)

(2T )1/3
Ai[(2T )2/3p(ε)]. (4.120)

With these notations,

J[2T+NT 1/3](2T ) = f(ε) +
q(ε)

(2T )1/3
Ai[(2T )2/3p(ε)]O(T−2)

+
q(ε)

(2T )1/3
Ai′[(2T )2/3p(ε)]O(T−4/3). (4.121)
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Now we boundDT,N as follows.

Case 1) Let us considerN ∈ [0, 1
2
T 2/3]. The second and the third terms are simply

bounded by their absolute value. Then

|DT,N | ≤ T 2/3
∣∣∣f(ε+

1

2T
) − f(ε)

∣∣∣

+T 2/3 max
x∈{ε,ε+1/2T}

q(x)

(2T )1/3
Ai[(2T )2/3p(x)]O(T−2) (4.122)

+T 2/3 max
x∈{ε,ε+1/2T}

q(x)

(2T )1/3
|Ai′[(2T )2/3p(x)]|O(T−4/3).

The first term is bounded by

T 2/3
∣∣∣f(ε+

1

2T
) − f(ε)

∣∣∣ ≤ T 2/3 sup
x∈[ε,ε+1/2T ]

∣∣f ′(x)
∣∣ 1

2T
, (4.123)

where

∣∣f ′(x)
∣∣ ≤ |q′(x)| |Ai[(2T )2/3p(x)]|

(2T )1/3
+ |q(x)p′(x)|Ai[(2T )2/3p(x)](2T )1/3. (4.124)

We are considering the case ofN ∈ [0, 1
2
T 2/3], which corresponds toε ∈ [0, 1/4]. The

functionsq, q′, andq · p′ behave modestly in this interval. They satisfy

q(x) ∈ [1.22, 1.26], |q′(x)| ∈ [0.14, 0.17], |q(x)p′(x)| ∈ [1.3, 1.6] (4.125)

for x ∈ [0, 1/4]. The Airy function and its derivative are bounded as in Lemma4.13.
Therefore

|DT,N | ≤ exp(−N/2)(1 + O(T−2/3)). (4.126)

Case 2) Let us considerN ≥ 1
2
T 2/3. This case is simpler. We apply (4.116) and obtain the

bound

|DT,N | ≤ T 2/3 exp(−c1T ) exp(−N/2)O(1) ≤ exp(−N/2)O(1) (4.127)

for T large enough.
Secondly we considerN ≤ 0. For |N | ≥ T 1/3, using (4.134) we obtain

|DT,N | ≤ c3T
1/3 ≤ c3|N | (4.128)

for some constantc3 > 0. Next we consider|N | ≤ T 1/3. SinceN is negative,z ≥ 1 and
(4.110) holds withζ(z) given by [1]

ζ(z) = −(3/2)2/3
[√

z2 − 1 − arccos(1/z)
]2/3

. (4.129)
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Recall thatz = (1 + ε)−1 andε = 1
2
NT−2/3. |ε| ≤ 1

2
T−1/3 is very close to zero. The

estimate follows the same outline as for the case 1) for positive N . TakeT ≥ 1, then
ε ∈ [−1

2
, 0] and

q(ε) ∈ [1.25, 1.37], |q′(ε)| ∈ [0.16, 0.25], |q(ε)p′(ε)| ∈ [1.5, 3.1]. (4.130)

The difference is that now the Airy function in not rapidly decreasing sincep(ε) ≤ 0
and its derivative is even increasing. We use some simple bounds: |Ai(x)| ≤ 1 and
|Ai′(x)| ≤ 1 + |x| for all x, with the result

|DT,N | ≤ c4(1 + |N |)(1 + O(T−2/3)) (4.131)

for a constantc4 > 0.

Some relations involving Bessel functions

Here we give some relation on Bessel function [1] which are used in the work. Bessel
functionsJn are defined via the generating function by

exp
(

1
2
z(t− 1/t)

)
=

∑

k∈Z tkJk(z), (t 6= 0). (4.132)

Then

1. forn ∈ N, J−n(z) = (−1)nJn(z),

2. J0(z) + 2
∑

k≥1 J2k(z) = 1,

3. J2
0 (z) + 2

∑
k≥1 J

2
k(z) = 1,

4. forn ≥ 1,
∑2n

k=0(−1)kJk(z)J2n−k(z) + 2
∑∞

k=1 Jk(z)J2n+k(z) = 0.

Moreover the limit
lim
T→∞

T 1/3J[2T+ξT 1/3](2T ) = Ai(ξ) (4.133)

holds. A useful result of Landau [57] is the following:

|Jn(x)| ≤ c|x|−1/3, c = 0.785... for all n ∈ Z. (4.134)





Chapter 5

Analysis of the 3D Ising corner line
ensemble

This chapter is devoted to our results on the 3D-Ising corner[31]. Our main and new result
is that the line bordering a flat facet and the rounded part is,in the thermodynamic limit,
described by an Airy process. The precise statement of the main result is explained in the
next section. The other results are precisely stated in the corresponding sections.

5.1 Formulation of the main result

The line ensemble explained in Section 2.3 can be thought of as world lines of “fermions”
is discrete space,j ∈ Z, and discrete time,t ∈ Z. It is then natural to introduce the
(extended) point process of occupation variables,η(j, t), by

η(j, t) =

{
1 if there is a line passing at(j, t),
0 otherwise.

(5.1)

As explained in Section 5.2,η is an extended determinantal point process. In the thermo-
dynamic limit,q = 1 − 1/T → 1, we focus at two different regions of the crystal corner.
In Section 5.4 we focus in the rounded part of the 3D-Ising corner, which corresponds to
the bulk of the line ensemble, i.e., where the density of lines is away both from0 and1. In
this case the kernel of the point processη is an extension of the sine kernel in theT → ∞
limit.

Secondly we focus at the edge, where the density of lines vanishes. This is discussed
in Section 5.5 where we prove that, properly rescaled, the kernel of η converges to the
extended Airy kernel. In Section 2.3.3 we denoted bybT (t) = hT (0, t) the line bordering
the2 − 3 facet and the rounded piece, and by

b∞(τ) = lim
T→∞

T−1bT ([τT ]) = −2(1 − e−τ/2) (5.2)

its limit shape. Then we defined the edge scaling ofbT by (2.69), i.e.,

AT (s) = T−1/3
{
bT ([τT + sT 2/3])−

(
b∞(τ)T + b′∞(τ)sT 2/3 + 1

2
b′′∞(τ)s2T 1/3

) }
. (5.3)
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The convergence ofηedge
T to the extended Airy point process implies that the border step

statistics, properly scaled asAT converges to the Airy process. The result is also used in
our discussion on the universality of the border step fluctuations, see Section 2.3.4.

Theorem 5.1. LetAT (s) be the border step rescaled as in (5.3) and letA(s) be the Airy
process. Then for anym, si, ai ∈ R, i = 1, . . . , m, the limit

lim
T→∞

PT( m⋂

i=1

{AT (si) ≤ ai}
)

= P( m⋂

i=1

{A(siκ/2) ≤ ai/κ}
)

(5.4)

with κ = 3
√

2b′′∞(τ) holds.

With Theorem 5.1 we prove that the stochastic processs 7→ AT (s) converges, asT →
∞, to s 7→ κA(sκ/2) in the sense of finite dimensional distributions. Probabilistically,
it would be natural to lift this theorem to the weak convergence of path measures. The
missing piece is the tightness for the sequence of stochastic processAT (s). We have not
attempted to fill this gap. The interested reader is referredto [47], where tightness for the
edge scaling of the Aztec diamond is proved.
Theorem 5.1 will be proven in Section 5.6. This chapter ends with an appendix on fermi-
onic correlations which are applied to show thatη is an extended determinantal point
process.

5.2 Extended determinantal point process

5.2.1 Fermions

The basic tool is the transfer matrix fromt to t + 1, t ∈ Z. A fermion is created
(resp. annihilated) at the positionj ∈ Z by the operatora∗j (resp.aj). The CAR alge-
bra{a∗j , aj , j ∈ Z} overZ is defined by the anticommutation relations

{ai, aj} = 0, {a∗i , a∗j} = 0, {ai, a∗j} = δi,j (5.5)

for i, j ∈ Z. First we considert ≤ −1, in which case only up-steps can occur. To each unit
up-step at timet we assign the weightqt = q|t+1/2| which satisfy (3.112). The rule is that
in a jump fromi to j, j ≥ i, one creates additional particles at sitesm with i+1 ≤ m ≤ j
and annihilates particles at sitesm with i ≤ m ≤ j − 1. E.g. if a fermionic world line
jumps from−1 to3, one creates particles at positions0, 1, 2, 3, and annihilates the particles
at−1, 0, 1, 2. This rule ensures the non-crossing constraint (3.110), since, if two fermionic
world lines would intersect, a fermion is created twice at the same position, which leads
to a zero contribution. The corresponding rule applies tot ≥ 0 with the difference that the
jumps are downwards only.

Let us define the operators
bl =

∑

k∈Z a∗k+lak. (5.6)



5.2 Extended determinantal point process 99

The transfer matrix fromt to t+ 1 is a sum of then-step transitionsTn as

T̂ (t, t+ 1) = 1+ qtT1 + q2
t T2 + . . .+ qnt Tn + . . . , (5.7)

where

Tn =
(−1)n

n!

∑

k1,...,kn

ak1 . . . akna
∗
kn+1 . . . a

∗
k1+1. (5.8)

The(−1)n prefactor results from the left ordering of theaj anda∗j ’s.
We would like to reexpressTn in terms of products of thebi’s only. Forn,m > 0 the

commutators are

bna
∗
k = a∗kbn + a∗k+n, bnak = akbn − ak−n, [bn, bm] = 0, [b−n, b−m] = 0. (5.9)

These relations lead to

Tn =
∑

d1,...,dn≥1
d1+2d2+...=n

n∏

j=1

(
bj
j

)dj 1

dj!
. (5.10)

The Schur polynomials{pk(y)}k≥0 are polynomials such that

exp

( ∑

k≥1

tkyk

)
=

∑

l≥0

pl(y)t
l, y = y1, y2, . . . , (5.11)

and given explicitly by

pl(y) =
∑

x1,...,xl≥1
x1+2x2+...=l

l∏

j=1

y
xj

j

xj !
. (5.12)

Comparing with (5.11) yields

T̂ (t, t+ 1) =
∑

l≥0

qltTl = exp

( ∑

k≥1

qkt
bk
k

)
. (5.13)

We conclude that the transfer matrix is given by

T̂ (t, t+ 1) = exp

(∑

k≥1

qk|t+1/2| bk
k

)
(5.14)

for t ∈ Z− = {−1,−2, . . .}, and, by the same reasoning,

T̂ (t, t+ 1) = exp

( ∑

k≥1

qk(t+1/2) b−k
k

)
(5.15)

for t ∈ Z+.
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T̂ (t, t + 1) is quadratic in the fermion operators. Hence it is the secondquantization
of a one-particle operator acting ofℓ2. For easier reading second quantization is merely
indicated by a “̂ ”, i.e., for A acting ofℓ2 we setÂ = Γ(A) as its second quantization.
From (5.14), (5.15) we read off

T (t, t+ 1) = exp

(∑

k≥1

qk|t+1/2|

k
αk

)
(5.16)

for t ∈ Z−, and

T (t, t+ 1) = exp

( ∑

k≥1

qk(t+1/2)

k
α−k

)
(5.17)

for t ∈ Z+ with matricesαk defined through

[αk]i,j =

{
1 if i− j = k,
0 otherwise.

(5.18)

T (t, t+ 1) are invertible with theℓ2-norms

‖T (t, t+ 1)‖ ≤ exp

(
q|t+1/2|

1 − q|t+1/2|

)
,

‖T (t, t+ 1)−1‖ ≤ exp

(
q|t+1/2|

1 − q|t+1/2|

)
. (5.19)

For the state att = ±∞ all sites inZ− ∪ {0} are filled, those inZ+ \ {0} are empty,
which, together with the transfer matrices (5.14), (5.15) determines the Green’s functions
of an imaginary time (Euclidean) Fermi field. It is inhomogeneous in space-time and
uniquely given through the two-point function〈a∗i (t)aj(t′)〉. To compute it correctly one
has to employ the standard finite volume approximation. We first restrict all world lines
to lie in the spatial interval[−M,M ]. Thereby the transfer matrix depends onM in the
sense that all creation and annihilation operators with index |k| > M are set equal to zero.
The state at±∞ is (1, . . . , 1, 0, . . . , 0)t which is2M + 1 long with the last1 at site0. The
projector on this state is approximated through

exp[βN̂M ] (5.20)

in the limit β → ∞ with N̂M =
∑0

k=−M a∗kak −
∑M

k=1 a
∗
kak. We first compute the equal

time Green’s function through

〈a∗i (t0)aj(t0)〉T = (5.21)

= lim
M→∞

lim
L→∞

lim
β→∞

1

Zβ,M,L
Tr

(
eβ

bNM

L∏
t

t=t0

T̂M(t, t+ 1)a∗iaj

t0−1∏
t

t=−L
T̂M(t, t+ 1)

)
,

where the trace is over the antisymmetric Fock spaceF with one-particle space
ℓ2([−M, . . . ,M ]). The products are time-ordered increasingly from right to left, which is
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indicated by the superscriptt at the product symbol
∏

. Zβ,M,L is the normalizing partition
function, which is defined through the same trace witha∗i aj replaced by1. As explained
in Appendix 5.A.1, (5.21) can be expressed in terms of one-particle operators as the limit
M,L, β → ∞ of

〈a∗i (t0)aj(t0)〉T,βML =

[1 +

( t0−1∏
t

t=−L
TM (t, t+ 1)eβNM

L∏
t

t=t0

TM(t, t+ 1)

)−1]−1

j,i

. (5.22)

LetP+ + P− = 1 in ℓ2 with P+ the projection ontoZ+ \ {0} and let

eGright(t0) =

∞∏

t=t0

T (t, t+ 1), eGleft(t0) =

t0−1∏

t=−∞
T (t, t+ 1), (5.23)

and

eG↑(t0) =

min(0,t0)−1∏

t=−∞
T (t, t+ 1), eG↓(t0) =

∞∏

t=max(0,t0)

T (t, t+ 1). (5.24)

By (5.19) the infinite products are well-defined, as are theirinverses. TheT (t, t + 1)’s
commute and no time-ordering is required. Hence

G↑(t0) =

min(0,t0)−1∑

t=−∞

∑

r≥1

qr|t+1/2|

r
αr =

∑

r≥1

µr(t0)αr,

G↓(t0) =

∞∑

t=max(0,t0)

∑

r≥1

qr(t+1/2)

r
α−r =

∑

r≥1

νr(t0)α−r (5.25)

with

µr(t0) =
qr/2q−rmin(0,t0)

r(1 − qr)
, νr(t0) =

qr/2qrmax(0,t0)

r(1 − qr)
. (5.26)

In (5.22) we take limits as indicated in (5.21). Then

〈a∗i (t0)aj(t0)〉T =
[
eGleft(t0)P−(P−e

Gright(t0)eGleft(t0)P− + P+)−1P−e
Gright(t0)

]
j,i
. (5.27)

Let

eG− =

−1∏

t=−∞
T (t, t+ 1), eG+ =

∞∏

t=0

T (t, t+ 1). (5.28)

TheneGright(t0)eGleft(t0) = eG+eG− = eG−eG+ and, decomposingℓ2 = P−ℓ2⊕P+ℓ2, we have

eG− =

[
a 0
c b

]
, eG+ =

[
a′ c′

0 b′

]
. (5.29)

Thus

P−(P−e
Gright(t0)eGleft(t0)P− + P+)−1P− =

[
(aa′)−1 0

0 0

]
(5.30)
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and, since

e−G− =

[
a−1 0

−b−1ca−1 b−1

]
, e−G+ =

[
(a′)−1 −(a′)−1c′(b′)−1

0 (b′)−1

]
, (5.31)

we obtain
e−G+P−e

−G− = P−(P−e
Gright(t0)eGleft(t0)P− + P+)−1P−. (5.32)

Therefore
〈a∗i (t0)aj(t0)〉T =

[
eGleft(t0)e−G+P−e

−G−eGright(t0)
]
j,i
, (5.33)

which rewrites as

〈a∗i (t0)aj(t0)〉T =
[
eG↑(t0)−G↓(t0)P−e

−(G↑(t0)−G↓(t0))
]
j,i
. (5.34)

The Fermi field depends onT throughq = 1− 1/T . For this reason we keep the indexT .
Using the anticommutation relations (5.5) in (5.21) we immediately obtain

〈aj(t0)a∗i (t0)〉T =
[
eG↑(t0)−G↓(t0)P+e

−(G↑(t0)−G↓(t0))
]
j,i
. (5.35)

Thus our final result for the equal time correlations reads

〈a∗i (t0)aj(t0)〉T =
∑

l≤0

[
eG↑(t0)−G↓(t0)

]
j,l

[
e−G↑(t0)+G↓(t0)

]
l,i
,

〈aj(t0)a∗i (t0)〉T =
∑

l>0

[
eG↑(t0)−G↓(t0)

]
j,l

[
e−G↑(t0)+G↓(t0)

]
l,i
. (5.36)

To extend (5.36) to unequal times we have to go through the same limit procedure as
before. Since the argument is in essence unchanged, there isno need to repeat. We define
the propagator froma to b, a ≤ b, through

eG(a,b) =
b−1∏

t=a

T (t, t+ 1), eG(a,a) = 1, eG(b,a) = e−G(a,b). (5.37)

Using the identity

e−G(0,t0)ame
G(0,t0) =

∑

k∈Z [
eG(0,t0)

]
m,k
ak (5.38)

for t ≥ t′, the full two-point function is given by

〈a∗j(t)aj′(t′)〉T =
∑

l≤0

[
eG↑(0)−G↓(0)+G(0,t′)

]
j′,l

[
e−G↑(0)+G↓(0)−G(0,t)

]
l,j
,

〈aj(t)a∗j′(t′)〉T =
∑

l>0

[
eG↑(0)−G↓(0)+G(0,t)

]
j,l

[
e−G↑(0)+G↓(0)−G(0,t′)

]
l,j′
. (5.39)
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5.2.2 Correlation functions

Moments of the random fieldη(j, t) introduced above can be expressed through fermionic
correlations. We consider first equal time correlations. The basic identity isET( n∏

k=1

η(jk, t)

)
=

〈 n∏

k=1

a∗jk(t)ajk(t)

〉

T

, (5.40)

whereET is the expectation with respect to the normalized weight (3.112). If {j1, . . . , jn}
are distinct, then, as explained in Appendix 5.A.2, the fermionic expectation is determi-
nantal and ET( n∏

k=1

η(jk, t)

)
= Det(RT (jk, t; jl, t))1≤k,l≤n, (5.41)

with
RT (i, t; j, t) = 〈a∗i (t)aj(t)〉T . (5.42)

If coinciding arguments are admitted, then (5.41) still holds with the convention

RT (i, t; j, t) =

{
〈a∗i (t)aj(t)〉T for i ≤ j,
〈a∗i (t)aj(t)〉T − δi,j = −〈aj(t)a∗i (t)〉T for i > j.

(5.43)

(5.40) is easily extended to unequal time correlations. Letus considern disjoint space-
time points(j1, t1), . . . , (jn, tn) ordered increasingly ast1 ≤ t2 ≤ . . . ≤ tn. Then the basic
identity is ET( n∏

k=1

η(jk, tk)

)
= 〈a∗jn(tn)ajn(tn) · · ·a∗j1(t1)aj1(t1)〉T . (5.44)

Using (5.38) the left hand side equals

∑

k1,...,kn
l1,...,ln

n∏

q=1

[
e−G(0,tq)

]
kq,jq

[
eG(0,tq)

]
jq,lq

〈a∗kn
aln · · ·a∗k1al1〉T . (5.45)

Let us set

RT (j, t; j′, t′) =

{
〈a∗j(t)aj′(t′)〉T for t ≥ t′,
−〈aj′(t′)a∗j (t)〉T for t < t′.

(5.46)

Then the unequal time correlations are given byET( n∏

k=1

η(jk, tk)

)
= Det(RT (jk, tk; jl, tl))1≤k,l≤n. (5.47)

The identity (5.47) has been derived from left to right. One can read it also from right
to left. ThenRT is the defining kernel, resp. Green’s function, which is considered to be
given and (5.47) defines the moments of some determinantal space-time random field overZ×Z. Of course,RT cannot be chosen arbitrarily, since the right hand side of (5.47) must
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be moments of a probability measure. For determinantal random fields over the space
coordinate only, compare with (5.41), proper conditions onthe defining kernel have been
studied in detail [91, 90]. The space-time variant is less well understood, see [46] for a
discussion.

The determinantal property is preserved under limits. Thusthrough bulk and edge
scaling further determinantal space-time random fields will be encountered below. One of
them is overZ×Z with equal-time given through the sine-kernel. The other isoverZ×R
with equal-time given through the Airy kernel.

5.3 Limit shape

On the macroscopic scale, in the limitT → ∞, the random fieldη(j, t) becomes deter-
ministic with a profile given by

ρ(ζ, τ) =






1 for ζ ≤ b−∞(τ),
1
π

arccos
(
cosh(τ/2) − e−ζ+|τ |/2/2

)
for b−∞(τ) < ζ < b∞(τ),

0 for ζ ≥ b∞(τ),
(5.48)

with
b−∞(τ) = −2 ln(1 + e−|τ |/2), b∞(τ) = −2 ln(1 − e−|τ |/2). (5.49)

More precisely, for all continuous test functionsf : R2 → R with compact support

lim
T→∞

1

T 2

∑

j,t

f(j/T, t/T )η(j, t) =

∫
dζdτρ(ζ, τ)f(ζ, τ) (5.50)

almost surely. (5.50) assumes more spatial averaging than needed. In fact, it suffices to
choose a test function whose support on the scale of the lattice diverges asT → ∞ and to
properly normalize.

As a consequence of (5.50) the limit (2.65) holds.hma can be read off from (5.48) and
is given in parametric form through

hma(u, v) =

{
0 for (u, v) ∈ R2

+ \ D,
1
2
(u+ v − |τ |) + ζ(u, v) for (u, v) ∈ D, (5.51)

whereτ = v − u and whereζ(u, v) is the unique solutionζ of the equation

1

2
(u+ v − |τ |) =

∫ ζ

b−∞(τ)

(1 − ρ(ζ ′, τ))dζ ′ − ζ (5.52)

in the interval[b−∞(τ), b∞(τ)]. While the limit (5.50) has been established by Okounkov
and Reshetikhin [69], compare also with Section 5.4, the existence of the limit shape has
been proved before by Cerf and Kenyon [20]. Instead of (2.64), they used the fixed volume
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constraintV (h) = 2ζR(3)T 3, resp.V (h) ≤ 2ζR(3)T 3, with ζR the Riemann zeta function.
They write the limit shapeS0, as a set ofR3, in the parametric representation

S0 = {2(f(a, b, c) − ln a, f(a, b, c) − ln b, f(a, b, c) − ln c) | a, b, c > 0} (5.53)

with

f(a, b, c) =
1

4π2

∫ 2π

0

du

∫ 2π

0

dv ln(a + beiu + ceiv). (5.54)

Herea, b, c denote the weights for the three orientations of the lozenges andf(a, b, c) is
the corresponding free energy per unit area for the lozenge tiling of the plane. As expected
from the equivalence of ensembles, the shapes given by (5.51) and (5.53) are identical.
This can be seen as follows. Letz = (z1, z2, z3) represent a point on the limit shape.
We comparez2 − z1 and z3 − z1 (resp.z3 − z2) for z2 ≥ z1 (resp.z2 ≤ z1) for the
parametrizations (5.51) and (5.53). This leads toa = 1, b = e−τ/2, c = e−ζ/2 for z2 ≥ z1
and tob = 1, a = e−|τ |/2, c = e−ζ/2 for z2 ≤ z1. Since (5.54) is symmetric ina, b, c, one
verifies that indeed

∫ ζ

−2 ln(1+e−|τ |/2)

(1 − ρ(ζ ′, τ))dζ ′ = 2f(1, e−|τ |/2, e−ζ/2) + ζ. (5.55)

According to (5.51),hma = 0 onR2
+ \ D. Close to the edge the height vanishes with

the power3/2. E.g. in the directionτ = v − u one has

hma(r, τ) ≃
2

3
cosh(τ/4)π−121/4r3/2 (5.56)

with r the distance to the edge. The3/2 power is known as Pokrovsky-Talapov law [75].
A limit shape theorem is a law of large numbers. It is available also for related tiling

models. A famous case is the Aztec diamond [21]. Cohn, Larsenand Propp [22] consider
the 3D-Young diagrams constrained to the boxαN × βN × γN with α, β, γ ∼ O(1)
and compute the limit shape asN → ∞. In the line-ensemble representation their model
corresponds toq = 1 with the boundary conditions that att = −αN, βN all lattices sites
are occupied except for those in the interval[1, γN ]. [22] computed the line density and
from it the limit shape. Two or higher order point functions are not studied. From our
representation we see that higher order correlation functions are determinantal even in this
case. However the computation of the two-point function is more complicated, since one
cannot rely any more on an expression like (5.34). For a list of further limit shape theorems
we refer to the survey [51].

The limit shape can be determined through minimizing the appropriate macroscopic
free energy functional. The input is the microscopic surface tension at given slope∇h. For
example in the(111)-frame the surface tensionσ(111)(∇h) is given by (5.54), wherea, b, c
are defined through the prescribed surface tilt∇h. σ(111) has been computed in [50, 111,
16]. Correspondingly there is a surface tension in the(001)-frame, denoted byσ(001)(∇h).
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To obtain the free energyF for some macroscopic height profileh over a bounded
domainB, one argues thath is made up of little planar pieces, each one of them having
the surface tension at the corresponding local slope. Adding up yields

F(h) =

∫

B
dudv σ(001)(∇h(u, v)). (5.57)

In our case we haveB = R2
+, h is decreasing in both variables such thath(u, v) = 0 for

(u, v) → ∞, andV (h) =
∫
B dudv h(u, v). The minimizer ofF , under these constraints

andV (h) = 2ζR(3), ishma from (5.51). Equivalently one could minimizeF(h) + V (h).
Probabilistically,F(h) + V (h) can be viewed as a large deviation functional in the

sense that in the limitT → ∞, with respect to the normalized probabilityZ−1qV (h),PT (
T−1hT ([uT ], [vT ]) ≃ h

)
= O

(
e−T

2(F(h)+V (h)−F(hma)−V (hma))
)

(5.58)

for given macroscopic height profileh [20].
Expanding (5.58) to quadratic order inδh = h− hma yields a heuristic formula for the

covariance of the Gaussian shape fluctuations. In spirit it is proportional to(−∂2
u − ∂2

v)
−1,

hence like a massless Gaussian field. This implies in particular, that on the macroscopic
scale shape fluctuations are small, of orderlnT only. Gaussian fluctuations are proved for
the Aztec diamond in [45] and for domino tilings of a Temperleyan polyomino in [52].

The limit shape theorem (5.48) implies that also the border step has a deterministic
limit. We state a result, which is stronger than what could bededuced from (5.48) and
which follows by the transfer matrix techniques to be explained in Section 5.5.

Theorem 5.2. Let bT be the border step as defined in (2.66). Then for anyδ > 0, c > 0,
0 < u− < u+ <∞ one has

lim
T→∞

P (
|T−1bT ([uT ]) − b∞(u)| ≥ cT−2/3+δ, u− ≤ u ≤ u+

)
= 0. (5.59)

5.4 Bulk scaling, local equilibrium

For local equilibrium we zoom to a point(ζ0, τ0)T with b−∞(τ0) < ζ0 < b∞(τ0) at average
densityρ = ρ(ζ0, τ0), which means to consider the random field

ηbulk
T (j, t) = η([ζ0T ] + j, [τ0T ] + t) (5.60)

with (j, t) ∈ Z2 and [ ] denoting the integer part. Properly speaking we should keep
the reference point(ζ0, τ0) in our notation. Since it is fixed throughout, we suppress it
for simplicity. In the limitT → ∞, ηbulk

T (j, t) becomes stationary. Then at fixedt, one
has to fill the Fermi states up to the densityρ which implies thatηbulk

∞ (j, t), t fixed, is
a determinantal point process onZ as defined through the discrete sine-kernel. Only at
τ0 = 0, the inhomogeneity of the underlyingη-field can still be seen, which, of course, is
an artifact of our coordinate system. In the(1 1 1)-projection the lineτ0 = 0 would be just
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like any other local slope with a corresponding stationary distribution of lozenges. The
caseτ0 = 0 can also be treated. For simplicity we omit it and requireτ0 6= 0.

Let us define the kernelS(j, t; j′, t′) by

S(j, t; j′, t′) =
sgn(t− t′)

2π

∫

I(t,t′)

dk exp
[
ik(j′ − j) + (t′ − t) ln(1 − e−|τ0|/2e−ik)

]
(5.61)

for τ0 > 0 and

S(j, t; j′, t′) =
sgn(t− t′)

2π

∫

I(t,t′)

dk exp
[
ik(j′ − j) − (t′ − t) ln(1 − e−|τ0|/2eik)

]
(5.62)

for τ0 < 0, where

I(t, t′) =

{
[−πρ, πρ], if t ≥ t′,
[πρ, 2π − πρ], if t < t′,

andsgn(t− t′) = 1, if t ≥ t′, andsgn(t− t′) = −1, if t < t′. In particular at equal times

S(i, t; j, t) =
sin(ρπ(i− j))

π(i− j)
, (5.63)

which is the sine-kernel.S depends on the reference point(ζ0, τ0). In the particular case
of equal times the dependence is only through the local density.

Theorem 5.3. In the sense of convergence of local distributions we have

lim
T→∞

ηbulk
T (j, t) = ηsine(j, t). (5.64)

For τ0 > 0, ηsine(j, t) is the determinantal space-time random field with defining kernel
(5.61) and forτ0 < 0 the one with the kernel (5.62).

Remark: Theorem 5.3 is identical to Theorem 2 of [69]. We use here an integral rep-
resentation for the defining kernelRT which differs somewhat from the one of [69] and
which turns out to be convenient in the context of the edge scaling.

Proof. We consider the caseτ0 > 0 only, sinceτ0 < 0 follows by symmetry. Let us set

BT (j, t; j′, t′) = eg(j)−g(j
′)RT ([ζ0T ] + j, [τ0T ] + t; [ζ0T ] + j′, [τ0T ] + t′), (5.65)

whereRT is defined in (5.46) andg(j) = j |τ0|T ln(1 − 1/T )/2. The determinant in
(5.47) does not change under similarity transformation, inparticular not under multiplying
by eg(ui)−g(uj). ThereforeET( m∏

k=1

ηbulk
T (jk, tk)

)
= Det(BT (jk, tk; jl, tl))1≤k,l≤m (5.66)
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and we need to prove that pointwise

lim
T→∞

BT (j, t; j′, t′) = S(j, t; j′, t′). (5.67)

First considert ≥ t′. For τ0 > 0 we takeT large enough so thatτ0T + t′ ≥ 0 (this
simplifies (5.72) below). Using (5.47) we obtain

BT (j, t; j′, t′) = eg(j)−g(j
′) (5.68)

×
∑

l≤0

[
eG↑(τ0T )−G↓(τ0T+t)

]
ζ0T+j,l

[
eG↓(τ0T+t′)−G↑(τ0T )

]
l,ζ0T+j′

.

An explicit expression for the matrix elements of the two-point functions can be found
using the translation invariance of the one-particle operators. In Fourier representation
they are given by

[
exp

( ∑

r∈Z σrαr)]

n,m

=
1

2π

∫ π

−π
exp(−ik(n −m)) exp

( ∑

r∈Z σreikr)dk (5.69)

for σr ∈ R. Then using (5.69) and changingl into−l, we have

BT (j, t; j′, t′) =
∑

l≥0

eg(j)

2π

∫ π

−π
dkeσ(k)T eϕq(k,t)e−ik(ζ0T+j)e−ikl

× e−g(j
′)

2π

∫ π

−π
dk′e−σ(k′)T e−ϕq(k′,t′)eik

′(ζ0T+j′)eik
′l, (5.70)

where

σ(k) = (1 − q)
∑

r≥1

qr/2

r(1 − qr)

(
eikr − qrτ0/(1−q)e−ikr

)
(5.71)

and

ϕq(k, t) =
∑

r≥1

qr/2(1 − qrt)

r(1 − qr)
qrτ0/(1−q)e−ikr. (5.72)

To study the asymptotic of integrals as (5.70) we consider the complexk plane and
regard the integration in (5.70) as being along the real linefrom−π to π. Such a line inte-
gral can be deformed to another pathC with the same endpoints. The complex integration
alongC will be denoted by

∫
C

dk · · · . In the particular case when the path is on the real

line, say froma to b, the integral will be denoted by
∫ b

a
dk · · · .

Let us consider the following four paths:ξ0 = −π → π, ξ1(p) = −π + ip → π + ip,
ξ2 = −π → −π + ip, andξ3 = π + ip → π with 0 ≤ p ≤ τ0. The factors in (5.70) are
integrals alongξ0. Their integration contour can be deformed fromξ0 to ξ2◦ξ1◦ξ3 without
changing the integrals, since the integrands are holomorphic. Moreover the integrals onξ2
andξ3 cancel exactly because of periodicity of the integrands. Wetransform the integral
in k into the integral alongξ1(θ) and the one ink′ into the integral alongξ1(θ + ε), with
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0 < ε ≪ 1 andθ = −τ0T ln(1 − 1/T )/2. θ is chosen such that the exponentially large
function inT passes through the critical point ofσ(k′). Consequently we have

BT (j, t; j′, t′) =
eg(j)−g(j

′)

(2π)2

∫

ξ1(θ)

dk′
∫

ξ1(θ+ε)

dke(σ(k)−σ(k′))T eiζ0T (k′−k)

× eϕq(k,t)−ϕq(k′,t′)ei(k
′j′−kj)(1 − ei(k

′−k))−1. (5.73)

As T → ∞ we obtain

σ(k) = 2i
∑

r≥1

e−rτ0/2

r2
sin((k − iτ0/2)r) + O(1/T ). (5.74)

Therefore the terms that increase or decrease exponentially in T in (5.73) areE(k) and
−E(k′), where

E(k) = 2i
∑

r≥1

e−rτ0/2

r2
sin((k − iτ0/2)r) − iζ0k. (5.75)

The critical points ofE(k) are

± kc + iτ0/2, kc = arccos

(
cosh(τ0/2) − e−ζ0+τ0/2

2

)
∈ R. (5.76)

For Im(k) = τ0/2, Re(E(k)) = ζ0τ0/2, the analysis ofRe(E(k)) for k close to the line
Im(k) = τ0/2 shows that, forRe(E(k)) ∈ [−π,−kc]∪[kc, π], it decreases when increasing
Im(k) and, forRe(E(k)) ∈ [−kc, kc], it decreases when decreasingIm(k).

Next we transform the integral into a sum of three terms, the first two vanish as
T → ∞ and the third one gives the final result, see Figure 5.1. We have

∫
I0

dk′dk · · · =∫
I1

dk′dk · · ·+
∫
I2

dk′dk · · ·+
∫
I3

dk′dk · · · , where the integrand is the one of (5.73). Let
us compute the three integrals separately. For the integration alongI3, first we integrate
outk taking the residuum atk = k′. Then changing the variable toz = k′ − iθ we obtain

∫

I3

dk′dk · · · = 1

2π

∫ kc

−kc

dzeϕq(z+iθ,t)−ϕq(z+iθ,t′)eiz(j
′−j). (5.77)

The asymptotic ofϕq(z + iθ, t) is

ϕ(z, t) = lim
q→1

ϕq(z + iθ, t) = −t ln(1 − e−τ0/2e−iz). (5.78)

The integrals alongI1 andI2 are treated in the same way. Let us estimate, e.g., the one
alongI1. First we integrate ink. The integral

∫
dk · · ·

, such that the integration avoids
the two arcs of circle of radius̃ε around the critical points (see Figure 5.1), is bounded by
O

(
e−aε̃T/(ε̃T )

)
for somea > 0. O

(
e−aε̃T/T

)
comes from integratingeE(k)T andO (1/ε̃)

because the minimum of|k − k′| equalsε̃. The integration through the two arcs around
the critical points is bounded byO

(
ea

′ε̃T/(ε̃T )
)

for somea′ > 0, because the integrand is
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k′
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Figure 5.1: Deformation of integration paths. The original integral, along I0, is de-
formed to the sum of integrals alongI1, I2, andI3. k is integrated along the dashed lines
andk′ along the solid lines. The full dots are the critical points of σ(k).

at most ofO
(
ea

′ ε̃T/ε̃
)

for somea′ > 0 and the length of the path of integration isO(1/T ).
We choose thereforẽε = 1/T , so that

∫
dk · · ·

 ≤ O(1). The integration ink′ gives an
extra-factorO(1/T ), and

lim
T→∞

∫

I1

dk′dk · · · = 0. (5.79)

Summarizing fort ≥ t′, we have proved that,

lim
T→∞

BT (j, t; j′, t′) =
1

2π

∫ ρπ

−ρπ
dzeϕ(z,t−t′)eiz(j

′−j), (5.80)

whereρ = kc/π andϕ(z, t) as given in (5.78). In particular fort = t′, ϕ(z, t − t′) = 0,
which implies (5.63). The caset < t′ is treated in a similar way, leading to

lim
T→∞

BT (j, t; j′, t′) = − 1

2π

∫ 2π−ρπ

ρπ

dzeϕ(z,t−t′)eiz(j
′−j). (5.81)

Therefore

lim
T→∞

ET( m∏

k=1

ηbulk
T (jk, tk)

)
= Det(S(jk, tk; jl, tl))1≤k,l≤m

= Eb

( m∏

k=1

ηsine(jk, tk)

)
. (5.82)
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The proof forτ0 < 0 is identical.

(5.80), (5.81) define a space-time homogeneous Fermi field. Physically it corresponds
to fermions on the latticeZ in their ground state at densityρ and with kinetic energy

Ekin(k) = ln(1 − e−|τ0|/2−ik sgn τ0). (5.83)

Ekin is complex reflecting that the fermions have a drift.
The moments (5.82) define a probability measurePb on the lozenge tilings of the

plane, where the relative fraction of their type depends on the reference point(ζ0, τ0). Pb

is a Gibbs measure in the sense that its conditional expectations satisfy the DLR equations.
We refer to [33] of how DLR equations are adjusted in the context of surface models.Pb is
translation invariant with a definite fraction of each type of lozenges.Pb is even spatially
mixing, since truncated correlations decay to zero. One would expect thatPb is the unique
Gibbs measure with these properties. A proof would require that the same limit measure
Pb is obtained when other boundary conditions are imposed, at fixed lozenge chemical
potentials. To our knowledge, only for the surface model studied in [33] such a uniqueness
property has been established.

5.5 Edge scaling

For the edge scaling one zooms at a macroscopic point lying exactly on the border of the
facet, i.e., at(ζ0, τ0)T with ζ0 = b∞(τ0). For simplicity we setτ0 > 0. τ0 < 0 follows by
symmetry. Since at the edge the step density is zero, one has to consider a scale coarser
than the one for the bulk scaling in Section 5.4. From our study of the PNG droplet we
know already that the longitudinal scale isT 2/3 and the transversal scale isT 1/3. On that
scale the curvature ofb∞ cannot be neglected. Therefore the correct reference points are

t(s) = [τ0T + sT 2/3], (5.84)

j(r, s) = [b∞(τ0)T + b′∞(τ0)sT
2/3 + 1

2
b′′∞(τ0)s

2T 1/3 + rT 1/3].

Note that(r, s) ∈ R2. The discrete lattice disappears under edge scaling. Let usabbreviate

α1 = b∞(τ0) = −2 ln(1 − e−τ0/2),
α2 = −b′∞(τ0) = e−τ0/2/(1 − e−τ0/2),
α3 = b′′∞(τ0) = e−τ0/2/2(1 − e−τ0/2)2.

(5.85)

Then the edge-scaled random field reads

ηedge
T (r, s) = T 1/3η([α1T − α2sT

2/3 + 1
2
α3s

2T 1/3 + rT 1/3], [τ0T + sT 2/3]). (5.86)

The prefactorT 1/3 is the volume element forrT 1/3. Properly speaking we should keep the
reference timeτ0. Since it is fixed throughout, we suppress it in our notation.

Sinceηedge
T is determinantal, so must be its limit. For the PNG droplet under edge

scaling the limit is the Airy random field and, by universality, in our model the steps close
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to the facet edge should have the same statistics in the limitT → ∞. The Airy field is
determinantal in space-time with Green’s function

KAiry(r, s; r′, s′) = sgn(s′ − s)

∫R dλ θ(λ(s− s′))eλ(s′−s) Ai(r − λ) Ai(r′ − λ), (5.87)

where the step functionθ(s) = 0, if s < 0, andθ(s) = 1, if s ≥ 0. The Airy field is
stationary in time. In particular, the equal time correlations are given through the Airy
kernel

KAiry(r, s; r′, s) =

∫ 0

−∞
dλAi(r − λ) Ai(r′ − λ) (5.88)

=
1

r − r′
(
Ai(r) Ai′(r′) − Ai(r′) Ai′(r)

)
.

Theorem 5.4. Under edge scaling (5.86) the correlation functions have the following
limit,

lim
T→∞

ET( m∏

k=1

ηedge
T (rk, sk)

)
= E( m∏

k=1

(
κ−1ηAiry

(rk
κ
,
κ

2
sk

)))
(5.89)

uniformly for rk in a bounded set. Hereκ = 3
√

2b′′∞(τ0). In particular for the process
ηedge
T (f, s) =

∫
dxf(x)ηedge

T (x, s), smeared over continuous test functionsf : R → R
with compact support, one has

lim
T→∞

ηedge
T (f, s) =

∫
dxf(κx)ηAiry(x, sκ/2) (5.90)

in the sense of the convergence of joint finite-dimensional distributions.

To prove Theorem 5.4 one only has to establish that under edgescaling (5.46) con-
verges to (5.87). We define the rescaled kernel (5.46) as

KT (r, s; r′, s′) =
e−g(r,s)

e−g(r′,s′)
T 1/3RT (j(r, s), t(s); j(r′, s′), t(s′)) (5.91)

whereg(r, s) = −j(r, s)(τ0T ln(1 − 1/T )/2 + sT 2/3 ln(1 − 1/T )/2) andRT (j, t; j′, t′)
from (5.46).

Proposition 5.5. The edge-scaled kernel (5.91) converges to the Airy kernel

lim
T→∞

KT (r, s; r′, s′) = κ−1KAiry

(
r

κ
,
κ

2
s;
r′

κ
,
κ

2
s′

)
(5.92)

uniformly forr, r′ in bounded sets.
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Granted Proposition 5.5 we establish Theorem 5.4.

Proof of Theorem 5.4.From (5.47) and (5.86) it follows thatET( m∏

k=1

ηedge
T (rk, sk)

)
= Det

(
T 1/3RT (j(rk, sk), t(sk); j(rl, sl), t(sl))

)
1≤k,l≤m . (5.93)

This determinant does not change when multiplied by the factor e−g(r,s)+g(r
′,s′) and there-

fore ET( m∏

k=1

ηedge
T (rk, sk)

)
= Det(KT (rk, sk; rl, sl))1≤k,l≤m. (5.94)

Note thatg(r, s) diverges asT → ∞. On the other handE( m∏

k=1

(
κ−1ηAiry

(rk
κ
,
κ

2
sk

)))
= Det

(
κ−1KAiry

(rk
κ
,
κ

2
sk;

rl
κ
,
κ

2
sl

))

1≤k,l≤m
.

(5.95)
Theorem 5.4 thus follows from (5.92).

We turn to the proof of Proposition 5.5. As bounded set we fix throughout a centered
boxB ⊂ Rd, where the dimensiond depends on the context.

Proof of Proposition 5.5.Let us first considers2 ≥ s1. By definition ofKT (r2, s2; r1, s1),
(5.39), (5.69), and (5.46), we have

KT (r2, s2; r1, s1) =
e−g(r1,s1)

e−g(r2,s2)
T 1/3 ×

×
∑

l≤0

1

2π

∫ π

−π
dke−ikj(r1,s1)eikle

P
n≥1

(µneikn−νne−ikn)e
P

n≥1
ϕ1

ne
−ikn

(5.96)

× 1

2π

∫ π

−π
dk′eik

′j(r2,s2)e−ik
′le−

P
n≥1(µneik′n−νne−ik′n)e−

P
n≥1 ϕ

2
ne

−ik′n

,

whereµn = qn/2/n(1 − qn), νn = µnq
nτ0T , andϕin = νn(1 − qnsiT

2/3

). As in Section 5.4
we regard the integrals in (5.96) as complex line integrals and use the notation explained
below (5.72).

The integrands in (5.96) are holomorphic away from{k ∈ C |Re(k) = 0, |Im(k −
iτ0/2)| ≥ τ0/2} and the straight path from−π to π can be deformed provided no singu-
larities are touched. In our choice the deformed path has three straight lines, the first one
from−π to−π+ iβi(T ), the second one from−π+ iβi(T ) to π+ iβi(T ), and the last one
from π + iβi(T ) to π with βi ∈ (0, τ0), see Figure 5.2. To be precise, the path along the
real line touches atk = 0 the starting point of a branch cut of the term in the exponential,
but still the integral remains unchanged by the above deformation. Since the integrands
are2π-periodic along the real axis, the first and the last integrals cancels exactly.β1(T ) is
determined such that the terms in the exponential are purelyimaginary. We obtain

βi(T ) = −1

2

(
siT

2/3 ln(1 − 1/T ) + τ0T ln(1 − 1/T )
)
, i = 1, 2. (5.97)
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Re

Im

0

τ0

−π π

Figure 5.2: Deformation of the integration path. The original integral, from−π to π, is
deformed along the integral on the dashed path.

We also definel = LT 1/3. Then the summation goes overL ∈ T−1/3(Z− ∪ {0}) and

KT (r2, s2; r1, s1) =
e−g(r1,s1)

e−g(r2,s2)
T 1/3

4π2

∑

L∈T−1/3(Z−∪{0})

J̃1(L)J̃2(L)eδ1−δ2 , (5.98)

where
δi = j(ri, si)βi(T ) − βi(T )LT 1/3 (5.99)

and

J̃1(L) =

∫ π

−π
e−ikj(r1,s1)eikLT

1/3

exp

[
2i

∑

n≥1

µn sin(kn)e−β1(T )n

]
dk, (5.100)

J̃2(L) =

∫ π

−π
eik

′j(r2,s2)e−ik
′LT 1/3

exp

[
− 2i

∑

n≥1

µn sin(k′n)e−β2(T )n

]
dk′.

Finally definingJi(L) = T 1/3J̃i(L), we have

KT (r2, s2; r1, s1) =
∑

L∈T−1/3(Z−∪{0})

(4π2T 1/3)−1e
1

2
L(s2−s1)(1+O(T−1))J1(L)J2(L). (5.101)

For the cases2 < s1 the result is

KT (r2, s2; r1, s1) = −
∑

L∈T−1/3(Z+\{0})

(4π2T 1/3)−1e
1

2
L(s2−s1)(1+O(T−1))J1(L)J2(L). (5.102)

Now we proceed as follows. First we prove that, asT → ∞, Ji(L) → 2π
κ

Ai
(
ri−L
κ

)

for L ∈ B, by using the steepest descend curve for the term which is exponentially small
in T . Secondly we consider separatelys2 < s1 ands2 ≥ s1. In the latter case, for largeL,
we need the steepest descend curve for the whole integrand. The same strategy has been
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used in [35]. In the cases2 < s1, for largeL, the steepest descend curve does not exist
anymore. On the other hand the terme−L(s1−s2) serves as a convergence factor and we
only need to find bounds for theJi(L).

Convergence forL in a bounded set

LetL ∈ B. The integralJ1(L) is written as

J1(L) = T 1/3

∫ π

−π
eTψ1,T (k)eikLT

1/3

dk, (5.103)

where
ψ1,T (k) = −ikT−1j(r1, s1) + 2i

∑

n≥1

µn
T
e−β1n sin(kn). (5.104)

We make a saddle point approximation by using a curve which, for smallk, is very close
to the steepest descend curve forψ(k), where

ψ(k) = lim
T→∞

(ikLT 1/3 + ψ1,T (k))/T (5.105)

and the convergence is uniform for(s1, r1, L) ∈ B. For the limit we obtain

ψ(k) = ψ0(k) + 2ik ln
(
1 − e−τ0/2

)
, (5.106)

where

ψ0(k) =
∑

n≥1

2i sin(kn)
e−nτ0/2

n2
. (5.107)

In particularψ(k) is holomorphic inC \ {k = x + iy ∈ C | x = 0, |y| ≥ τ0/2} and the
whole integrand is2π-periodic along the real axis.

Instead of integrating along the straight path−π → π we integrate alongC = {k =
x+ iy, y = − |x| /

√
3}, see Figure 5.3. Forx small this path is almost at steepest descend.

The real part ofψ(k) reaches its maximum atk = 0. To evaluate the errors forx away
from zero we prove that the real part ofψ(k) is strictly decreasing for|x| increasing. By
symmetry we consider onlyx ∈ [0, π]. A simple computation gives

dψ(k)

dx
= −(i+ 1/

√
3) ln(Q) (5.108)

with

Q =
(1 − eix+x/

√
3−τ0/2)(1 − e−ix−x/

√
3−τ0/2)

(1 − e−τ0/2)2
(5.109)

and

ReQ =
cosh(τ0/2) − cosh(x/

√
3) cos(x)

2 sinh2(τ0/4)
,

ImQ = −sin(x) sinh(x/
√

3)

2 sinh2(τ0/4)
. (5.110)
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π/6

Figure 5.3: Deformation of the integration path. The path from−π to π is deformed
into C plus the dashed ones.

Using thatcosh(x/
√

3) cos(x) ≤ 1 and is maximal atx = 0, we haveReQ(x) ≥
ReQ(0) = 1, the inequality being strict ifx 6= 0. ObviouslyImQ ≤ 0. Therefore

Re

(
dψ(k)

dx

)
= − 1

2
√

3
ln((ReQ)2 + (ImQ)2) + arctan(ImQ/ReQ) ≤ 0 (5.111)

for all x ∈ [0, π] and for all τ0 ∈ (0,∞). The inequality is strict ifx 6= 0. Since
dRe(ψ(k))

dx
= Re

(
dψ(k)

dx

)
and by (5.111),Reψ(k) is maximal atk = 0, ψ(0) = 0, and is

strictly decreasing for|x| increasing.
Let us fix ε, 0 < ε ≪ 1, and letCε be the part ofC with x ∈ [−ε, ε]. Then the

contribution atJ1(L) coming fromC \ Cε is exponentially small inT .

Lemma 5.6. For someδ > 0,

J1(L) = O
(
e−δT

)
+ T 1/3

∫

Cε

eψ1,T (k)T eikLT
1/3

dk. (5.112)

Proof. Let C̃+
ε be the part ofC with x ∈ [ε, π] andC̃−

ε the one withx ∈ [−π,−ε]. For
x ≥ ε, Reψ(k) ≤ Reψ(0) − 2δ < 0 for suitableδ = δ(ε) > 0. In addition

ψ1,T (k)T + ikLT 1/3 = ψ(k)T + O
(
(L− r1)T

1/3 + s1T
2/3

)
. (5.113)

Then

∫ eC+

ε

eψ1,T (k)T eikLT
1/3

dk

 ≤ e−δT
∫ π

ε

2√
3
e(Reψ(k)−δ)T eO((L−r1)T 1/3+s1T 2/3)dx. (5.114)

For (L, s1, r1) ∈ B, the integral on the right side is uniformly bounded and therefore


∫ eC+
ε

eψ1,T (k)T eikLT
1/3

dk

 = O
(
e−δT

)
. (5.115)

Similarly for the integral along̃C−
ε .
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Lemma 5.7. Uniformly for (L, r1, s1) ∈ B, one has

J1(L) = O
(
e−δT

)
+ O

(
T−1/3

)
+

2π

κ
Ai

(
r1 − L

κ

)
(5.116)

for largeT , withκ = 3
√

2α3.

Proof. By Lemma 5.6 we have to evaluate the contribution of the integral alongCε. Fork
close to0 we have

ψ1,T (k)T + ikLT 1/3 = −2

3
iα3k

3T − ikT 1/3(r1 − L) (5.117)

+ O
(
s2
1k + s1k

3T 2/3 + k5T
)
.

Let C+
ε be the part ofC with x ∈ [0, ε] andC−

ε the one withx ∈ [−ε, 0]. Then
∫
Cε

· · · =∫
C+

ε
· · · +

∫
C−

ε
· · ·. We consider explicitly only one of the two integrals, the second being

evaluated in the same fashion,

T 1/3

∫

C+
ε

eψ1,T (k)T+ikLT 1/3

dk

= T 1/3

∫

C+
ε

e−
2

3
iα3k3T e−ikT

1/3(r1−L)eO(s21k+s1k3T 2/3+k5T)dk (5.118)

= T 1/3

∫

C+
ε

e−
2

3
iα3k3T e−ikT

1/3(r1−L)dk + E1(L).

The error term is the integral alongC+
ε with integrand

T 1/3e−
2

3
iα3k3T e−ikT

1/3(r1−L)(eO(s21k+s1k3T 2/3+k5T) − 1) (5.119)

= T 1/3e−
2

3
iα3k3T e−ikT

1/3(r1−L)eO(s21k+s1k3T 2/3+k5T)O
(
s2
1k + s1k

3T 2/3 + k5T
)
.

The term in the exponential is−2
3
iα3k

3T (1 + χ1) − ikT 1/3(r1 − L)(1 + χ2), whereχ1

andχ2 can be made arbitrarily small by takingε small enough (s1 is bounded). With the
change of variablez = kT 1/3 we obtain

E1(L) =
1

T 1/3

∫

T 1/3C+
ε

e−i
2

3
α3(1+χ1)z3−i(1+χ2)(r1−L)zO

(
s2
1z + s1z

3 + z5T−1/3
)
dz. (5.120)

Remark that at the boundary of the integration, the real partof the integrand behaves as
e−

2

3
α3ε3T . This integral is uniformly bounded inT for (L, r1, s1) ∈ B. The same holds for

the integral onC−
ε . ConsequentlyE1(L) = O

(
T−1/3

)
.

Next we extend the integration fromCε to −πT 1/3(1, cos(π/6)) and
πT 1/3(1,− cos(π/6)), obtaining the pathD1. In this way we add an error of
O

(
e−δ

′(ε)T
)

with δ′(ε) ∼ ε3. Similarly we can complete the path up tox = ±NπT 1/3,
y = −NπT 1/3/

√
3 by straight lines. The integral is equal to the integration from

−NπT 1/3 to NπT 1/3, since the function is2πT 1/3 periodic in the real direction and the
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error added by completing the integral is exponentially small in T , for all N . Therefore
we may take the limitN → ∞.

Finally we obtain (5.116), since
∫ ∞

−∞
e−i

2

3
α3z3−iz(r1−L)dz =

2π

κ
Ai

(
r1 − L

κ

)
(5.121)

with κ = 3
√

2α3.

Convergence ofKT (r2, s2; r1, s1) with s2 < s1

Lemma 5.8. Uniformly for (ri) ∈ B, i = 1, 2,

lim
T→∞

KT (r2, s2; r1, s1) = −
∫ ∞

0

e
1

2
L(s2−s1) Ai

(
r1 − L

κ

)
Ai

(
r2 − L

κ

)
dL

κ2
(5.122)

with κ = 3
√

2α3.

Proof. Since(r1, r2) ∈ B, let us setL0 such thatL0 ≤ 2(|r1| + |r2| + 1) for all r1, r2.
KT can be transformed into an integral adding an errorO

(
T−1/3

)
. Let us fix anε with

0 < ε≪ 1. Then

−KT (r2, s2; r1, s1) =

∫ L0

0

J1(L)J2(L)
e−LX

4π2
dL+

∫ εT 2/3

L0

J1(L)J2(L)
e−LX

4π2
dL

+

∫ ∞

εT 2/3

J1(L)J2(L)
e−LX

4π2
dL+ O

(
T−1/3

)
(5.123)

with X = 1
2
(s1 − s2)(1 + O(1/T )) > 0. Since|Ji(L)| ≤ T 1/3, i = 1, 2, the third term

is bounded byT 2/3e−εT
2/3X/X → 0 asT → ∞. By Lemma 5.7 the first term converges,

uniformly for (ui, si) ∈ B, to

∫ L0

0

Ai

(
r1 − L

κ

)
Ai

(
r2 − L

κ

)
eL

s2−s1
2

1

κ2
dL (5.124)

asT → ∞.
We consider the second term. We have already established thepointwise convergence

of Ji(L) to 2π
κ

Ai
(
ri−L
κ

)
. If we obtain that for largeT , |Ji(L)| ≤ G with a constantG

independent ofri, si andL ∈ [L0, εT
2/3], then by dominated convergence

lim
T→∞

∫ εT 2/3

L0

J1(L)J2(L)e−LXdL =

∫ ∞

L0

Ai

(
r1 − L

κ

)
Ai

(
r2 − L

κ

)
e

1

2
L(s2−s1)

κ2
dL (5.125)

uniformly for (ri) ∈ B. This property is proven in the following lemma.

Lemma 5.9. For L ∈ [L0, εT
2/3], |Ji(L)| ≤ G with the constantG independent ofsi, ri,

andL, provided0 < ε≪ 1 andT large enough.
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Proof. The exponential terms in (5.103) are purely imaginary fork real. Let us set

ψI1(k) =
1

i
(ikLT−2/3 + ψ1,T (k)), (5.126)

then

J1(L) = T 1/3

∫ π

−π
eiψ

I
1(k)Tdk. (5.127)

In particular fork close to0,

ψI1(k) = −2

3
α3k

3
(
1 + O

(
k2+s1T

−1/3
))

− k(r1 − L)T−2/3
(
1 + O

(
s2
1T

−1/3
))
.

(5.128)
Since(r1 − L)T−2/3 ∼ O(ε) at most, we set̃L = (L − r1)T

−2/3. ψI1(k) has two local
extrema at±k(L̃) with

k(L̃) =
√
L̃c0

(
1 + O

(
L̃+ s2

1T
−1/3

))
(5.129)

andc0 = (2α3)
−1/2. Moreover for|k| ≥ 2k(L̃), ψI1(k) is strictly decreasing.J1(L) =∫ π

−π · · · =
∑4

i=1

∫
Ii
· · · whereI1 = [−π,−2c0

√
L̃], I2 = [−2c0

√
L̃, 0], I3 = [0, 2c0

√
L̃],

andI4 = [2c0
√
L̃, π]. The integrals alongI1 andI4 are evaluated similarly and so are the

integrals alongI2 andI3. We present in detail only the integration alongI3 andI4. Let

γ =
√
L̃. Then

∫

I4

· · · = T 1/3

∫ π

2c0γ

eiψ
I
1
(k)Tdk = T 1/3

∫ u(π)

u(2c0γ)

f(u)eiuTdu (5.130)

whereu = ψI1(k) andf(u) = dk(u)
du

. Integrating by parts we obtain

T−1/3

∫

I4

· · · = f(u)
eiuT

iT


u(π)

u(2c0γ)

−
∫ u(π)

u(2c0γ)

df(u)

du

eiuT

iT
du. (5.131)

Fork ∈ I4 with |k| ≤ ε follows from (5.128) thatdu
dk
< 0 and d2u

dk2 ≥ 0. Fork > ε,

du

dk
= L̃− ln

(
1 + e−τ0 − 2e−τ0/2 cos(k)

1 + e−τ0 − 2e−τ0/2

)
+ O

(
s1T

−1/3
)
. (5.132)

Then fork ∈ I4 with k > ε, du
dk
< 0 and d2u

dk2 ≥ 0. Thereforedf(u)
du

= −(du
dk

)−3 d2u
dk2 where

du
dk
< 0 and d2u

dk2 ≥ 0 for every point inI4. Thusdf(u)
du

does not change sign alongI4, and


∫

I4

· · ·
 ≤ 2

T 2/3
(|f(u(π))| + |f(u(2c0γ))|) . (5.133)
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Using (5.132), forT sufficiently large,

|f(u(π))| =
2 ln(1 − e−τ0/2) − 2 ln(1 + e−τ0/2) + γ2 + O

(
s1T

−1/3
)−1

≤
ln(1 − e−τ0/2) − ln(1 + e−τ0/2)

−1
= G1, (5.134)

providedε small enough (which impliesγ sufficiently small). The second term is bounded
by

|f(u(2c0γ))| =


1 + O

(
γ2 + s1T

−1/3
)

−γ2

 ≤ 2/γ2 (5.135)

for ε small ands1 ∈ B. Therefore we have, uniformly in(r1, s1) ∈ B,

∫

I4

· · ·
 =


∫

I1

· · ·
 ≤ 2G1

T 2/3
+

2

(L− r1)
≤ 2G1

T 2/3
+

2

(L0 − r1)
. (5.136)

Next we estimate


∫
I3
· · ·

.

∫

I3

· · · = T 1/3

∫ 2c0γ

0

eiψ
I
1
(k)Tdk = T 1/3

∫ c2γ

−c1γ
ei
eψ(k)Tdk (5.137)

whereψ̃(k) = ψI1(k − k(L̃)), c1 = c0(1 + O(γ)) andc2 = c0(1 + O(γ)). Let us define
the pathsξ0 = {k = x, x : −c1γ → c2γ}, ξ1 = {k = −c1γe−iϕ, ϕ : 0 → π/4},
ξ2 = {k = e−iπ/4x, x : −c1γ → c2γ}, ξ3 = {k = c2γe

iϕ, ϕ : π/4 → 0}. Then∫
I3
· · · =

∫
ξ0
· · · =

∑3
i=1

∫
ξi
· · · . The integrals alongξ1 andξ3 are estimated in the same

way.

T 1/3

∫

ξ1

ei
eψ(k)Tdk = T 1/3

∫ π/4

0

eiϕei
eψ(k(ϕ))T ic0γ(1 + O(γ))dϕ (5.138)

and therefore
T

1/3

∫

ξ1

ei
eψ(k)Tdk

 ≤ 2T 1/3γc0

∫ π/4

0

e−T Im( eψ(k(ϕ)))dϕ. (5.139)

Sinceψ̃(k(ϕ)) = ψ̃(0) + 1
2
ψ̃′′(0)k(ϕ)2(1 + δ1(ϕ)) with δ1(ϕ) → 0 asε→ 0 andk(ϕ)2 =

c20γ
2(1 + O(γ))e−2iϕ, one has

Imψ̃(k(ϕ)) = −1

2
ψ̃′′(0)(k(ϕ))2(1 + δ2(ϕ))c20γ

2(1 + O(γ)) sin(2ϕ) (5.140)

with δ2(ϕ) → 0 asε→ 0. Moreover, forε small enough,sin(2ϕ)(1+δ2(ϕ))(1+O(γ)) ≥
ϕ. From this it follows

T
1/3

∫

ξ1

ei
eψ(k)Tdk

 ≤ 2T 1/3c0γ

∫ π/4

0

eTc
2
0γ

2 eψ′′(0)ϕ/2dϕ (5.141)

≤ 2T 1/3c0γ

∫ ∞

0

eTc
2
0
γ2 eψ′′(0)ϕ/2dϕ =

4T 1/3c0γ

Tc20γ
2

ψ̃′′(0)

.
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We computẽψ′′(0) = −2γc−1
0

(
1 + O

(
γ2 + s1T

−1/3
))

. Therefore fors1 ∈ B andT large
enough, T

1/3

∫

ξ1

ei
eψ(k)Tdk

 ≤ 4

(L− r1)
≤ 4

(L0 − r1)
. (5.142)

Next we need to evaluate the integral alongξ2,

T 1/3

∫

ξ2

ei
eψ(k)Tdk = T 1/3e−iπ/4eiT

eψ(0)

∫ c2γ

−c1γ
eT

eψ′′(0)x2/2(1+O(x))dx. (5.143)

Then for sufficiently smallδ,
T

1/3

∫

ξ2

ei
eψ(k)Tdk

 ≤ T 1/3

∫ c2γ

−c1γ
eT

eψ′′(0)x2(1+δ)/2dx

≤ T 1/3

∫ ∞

−∞
eT

eψ′′(0)x23/4dx ≤ T 1/3

∫ ∞

−∞
e−x

2Tγ/c0dx (5.144)

=

√
π
√
c0

4
√
L− r1

=

√
π
√
c0

4
√
L0 − r1

.

Thus we have, uniformly fors1 ∈ B andT large enough,

∫

I3

· · ·
 ≤ 8

(L0 − r1)
+

√
π
√
c0

4
√
L0 − r1

. (5.145)

ThereforeJi(L) is bounded by

|Ji(L)| ≤ 4G1

T 2/3
+

20

(L0 − ri)
+

2
√
π

4
√

2α3(L0 − ri)
. (5.146)

SinceL0−ri ≥ 2 andX > 0, it follows thatJ1(L)J2(L)e−LX is bounded by an integrable
function on[L0, εT

2/3] for 0 < ε≪ 1 andT large enough.

Convergence ofKT (r2, s2; r1, s1) with s2 ≥ s1

Lemma 5.10.Uniformly for (si, ri) ∈ B, i = 1, 2,

lim
T→∞

KT (r2, s2; r1, s1) =

∫ 0

−∞
e

1

2
L(s2−s1) Ai

(
r1 − L

κ

)
Ai

(
r2 − L

κ

)
dL

κ2
(5.147)

with κ = 3
√

2α3.

Proof. Let us setL0 such thatL0 ≥ 2(|r1| + |r2| + 1) for all (r1, r2) ∈ B. Then the sum
in KT can be approximated by an integral at the expense of an errorO

(
T−1/3

)
. Let us fix

ε, 0 < ε≪ 1. Then

KT (r2, s2; r1, s1) =

∫ 0

−L0

J1(L)J2(L)
eLX

4π2
dL+

∫ −L0

−εT 2/3

J1(L)J2(L)
eLX

4π2
dL

+

∫ −εT 2/3

−∞
J1(L)J2(L)

eLX

4π2
dL+ O

(
T−1/3

)
, (5.148)
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with X = 1
2
(s2 − s1)(1 + O(1/T )) ≥ 0. The convergence of the first term has already

been proved. Let us set̃L = −(L− r1)T
−2/3. In the remainder of the proof we set

ψ(k) =
1

i
ψ1,T (k) − kL̃. (5.149)

First consider̃L ≥ ε.

J1(L) = T 1/3

∫ π

−π
eψ(k)Tdk. (5.150)

With the change of variableu = ψ(k), f(u) = dk(u)
du

, and integration by parts, we have

|J1(L)| ≤ T 1/32ψ(π)

T
max

k∈[ψ(−π),ψ(π)]


df(u)

du

 . (5.151)

To compute
df(u)

du

 we usedf(u)
du

= −(du
dk

)−3 d2u
dk2 .

du
dk

 is (5.132) withL̃ replaced by

−L̃. It is easy then to see that uniformly fors1 ∈ B, maxk∈[ψ(−π),ψ(π)]

df(u)
du

 ≤ G1L̃
−1

for G1 = 2/(sinh(τ0/2)ε)2 <∞. Then for a suitable constantG2 <∞,

|J1(L)| ≤ G2(r1 − L)−1. (5.152)

The same holds forJ2, therefore the third term in (5.148) is bounded by
∫ −εT 2/3

−∞

G2
2

(L+ |r1| + |r2|)2
dL, (5.153)

which is convergent forT finite and vanishes forT → ∞.
Finally we consider0 < L̃ ≤ ε. Let us setβ =

√
2(cosh(τ0/2) − 1). We integrate

overC =
{
k = x+ iy(x), y(x) = −

√
y(0)2 + x2/3

}
, with iy(0) the stationary point of

ψ(·, L̃), see Figure 5.4.y(0) = −β
√
L̃+ O

(
L̃3/2

)
andC is almost the steepest descend

curve forx small. This path has the property that the real part ofψ(k) is strictly decreasing
as|x| increases and

ψ(iy(0)) = −2

3
βL̃3/2

(
1 + O

(
s2
1T

−1/3 + L̃
))

. (5.154)

We divide the integral in the part with|x| ≤ ε and the remainder,

J1(L) = T 1/3

∫ π

−π
eψ(k)Tdk = T 1/3

∫

C

eψ(k)Tdk = T 1/3

∫

Cε

eψ(k)Tdk + E2(L), (5.155)

where

E2(L) = T 1/3

∫

C\Cε

eψ(k)Tdk = O
(
e−δT eψ(x=0)T

)
= O

(
e−δT e−

2

3
β(r1−L)3/2

)
. (5.156)

We then need to integrate only close tox = 0. We first establish some properties ofψ(k)
for x = 0.
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Re

Im

0

τ0
2

− τ0
2

−π π

C

y0

Figure 5.4: Deformation of the integration path. The path from−π to π is deformed
into C plus the dashed ones.

Lemma 5.11.

i) ψ(iy(0), L̃) = −2
3
βL̃3/2 + O

(
L̃5/2 + L̃3/2s2

1T
−1/3

)
,

ii) dψ(k,eL)
dk

|k=iy(0) = 0,

iii) d2ψ(k,eL)
dk2 |k=iy(0) = − 2

β

√
L̃+ O

(
L̃+

√
L̃s1T

−1/3
)
,

iv) d3ψ(k,eL)
dk3 |k=iy(0) = − 2

β2 i+ O
(
L̃+ s1T

−1/3
)
.

(5.157)

Proof. i) follows from Equation (5.154) and ii) becausek = iy(0) is a stationary point of

ψ(·, L̃). iv) follows from (5.117) because2α3 = 1/β2. Finally letλ =
√
L̃. Then

d

dλ

d2ψ(k, L̃)

dk2
=

d3ψ(k, L̃)

dk3

dk

dλ
(5.158)

and evaluating atk = iy(0) andλ = 0 we obtain iii).

With these properties

J1(L) −E2(L) = T 1/3

∫

Cε

eψ(k)Tdk (5.159)

= e−
2

3
βeL3/2T eO(eL5/2T+eL3/2s2

1
T 2/3)T 1/3

∫

Cε

dke−
1

β

√eL(k−iy(0))2T e
− i

3β2 (k−iy(0))3T

×eO
�eL(k−iy(0))2T+

√eL(k−iy(0))2s1T 2/3+eL(k−iy(0))3T+(k−iy(0))3s1T 2/3+(k−iy(0))4T
�
.

Let γ =
√
r1 − L, then

√
L̃ = γT−1/3. Let k′ = k − iy(0), then the integration is along

C ′
ε = Cε + iy(0).

J1(L) −E2(L) = e−
2

3
βγ3

eO(γ5T−2/3+γ3s2
1
T−1/3)T 1/3

∫

C′
ε

dke−
γ
β
k2T 2/3

e
− i

3β2
k3T

× exp[O
(
γ2k2T 1/3 + γs1k

2T 1/3 + γ2k3T 1/3 + k3s1T
2/3 + k4T

)
]. (5.160)
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SinceL̃ can be made arbitrarily small, fors1 ∈ B the exponent of the term in the integral
can be written as

− γ

β
k2T 2/3(1 + χ1) −

i

3β2
k3T (1 + χ2), (5.161)

where theχi can be made as small as desired by choosingε small enough. After the
change of variablekT 1/3 = z the integral becomes

∫

C′
εT

1/3

dze−
γ
β
z2(1+χ1)e

− i
3β2

z3(1+χ2)
. (5.162)

The integration is taken along a contour, symmetric with respect to the imaginary axis and
such that forRe(z) ≥ 0, arg(z) ∈ [−π/6, 0]. This implies that the integral is uniformly
bounded.

Replacing the term in front of the integral (5.160) by one, the error can be estimated as

e−
2

3
βγ3

(
eO(γ5T−2/3+γ3s21T

−1/3) − 1
)
, (5.163)

since the integral in (5.160) is bounded. ForL̃ ≤ ε,

(r1 − L)5/2T−2/3 + (r1 − L)3T−1/3 ≤ (r1 − L)3/2ε+ (r1 − L)
√
ε. (5.164)

As a consequence

e−
2

3
βγ3

(
eO(γ5T−2/3+γ3s2

1
T−1/3) − 1

)
≤ O

(
e−

β
2
γ3

(γ5T−2/3 + γ3s2
1T

−1/3)
)

≤ O
(
T−1/3e−

β
2
(r1−L)3/2

)
. (5.165)

After this step we can also remove the error inside the integral (5.160). As in the case of
L ∈ B, the removal of this error leads to an additional error ofT−1/3 with the prefactor
e−

2

3
β(r1−L)3/2

. Consequently we have obtained

J1(L) = e−
2

3
β(r1−L)3/2

∫

C′
εT

1/3

dze−
γ
β
z2e

− i
3β2 z

3

+ O
(
T−1/3e−

2

3
β(r1−L)3/2

)

+ O
(
T−1/3e−

1

2
β(r1−L)3/2

)
+ O

(
e−δT e−

2

3
β(r1−L)3/2

)
. (5.166)

Next we change to the variablez = w + iβ
√
r1 − L. The integral becomes

∫

C′
εT

1/3+iβγ

e
− i

3β2w
3−i(r1−L)w

dw. (5.167)

Finally completing the contour of the integration such thatit goes to infinity in the
directions arg(w) = ϕ± with ϕ+ = −π/6 andϕ− = −5π/6 leads to an exponentially
small error. Using that2α3 = 1/β2, the main term goes to2π

κ
Ai

(
r1−L
κ

)
. Since the errors

are integrable inL and go to zero asT → ∞, we obtain, fors2 ≥ s1,

lim
T→∞

KT (r2, s2; r1, s1) =

∫ 0

−∞
e

1

2
L(s2−s1) Ai

(
r1 − L

κ

)
Ai

(
r2 − L

κ

)
dL

κ2
(5.168)

with κ = 3
√

2α3.



5.6 Proof of Theorem 5.1 125

With the change of variableλ = L/κ, (5.168) is rewritten as

lim
T→∞

KT (r2, s2; r1, s1) = κ−1

∫ 0

−∞
e

1

2
λ(s2−s1)κ Ai

(r1
κ

− λ
)

Ai
(r2
κ

− λ
)

dλ

= κ−1KAiry
(r2
κ
,
κ

2
s2;

r1
κ
,
κ

2
s1

)
. (5.169)

5.6 Proof of Theorem 5.1

Now we have all the elements to prove our main theorem.

Proof of Theorem 5.1.Let fi be the indicator function of(ai,∞). Then (5.4) corresponds
to

lim
T→∞

PT( m⋂

i=1

{ηedge
T (fi, si) = 0}

)
= P( m⋂

i=1

{ηAiry(fi/κ, siκ/2) = 0}
)
. (5.170)

We choosea large enough and splitfi = fai + ga with fai the indicator function of(ai, a]
andga the one of(a,∞). Then

∣∣∣∣PT( m⋂

i=1

{ηedge
T (fi, si) = 0}

)
− PT( m⋂

i=1

{ηedge
T (fai , si) = 0}

)∣∣∣∣ ≤

≤
m∑

i=1

PT (
ηedge
T (ga, si) ≥ 1

)
. (5.171)

The term PT( m⋂

i=1

{ηedge
T (fai , si) = 0}

)
(5.172)

converges to P( m⋂

i=1

{ηAiry(fai /κ, siκ/2) = 0}
)

(5.173)

which yields the right hand side of (5.4) asa→ ∞.
The terms in the sum of the right hand side of (5.171) are bounded byPT (

ηedge
T (ga, si) ≥ 1

)
≤ ET (

ηedge
T (ga, si)

)
=

∫ ∞

a

ET (
ηedge
T (r, si)

)
dr. (5.174)

From (5.101), ET (
ηedge
T (r, si)

)
≃

∫ ∞

0

1

4π2
J1(−L)2dL. (5.175)
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J1(−L) is indeed a function ofr+L, which asymptotics has been studied already forr+L
large, but bounded byr + L ≤ εT 2/3, with the result (5.166). Therefore the integrals in
(5.174), (5.175) converge forr + L ≤ εT 2/3.

Next considerr + L > εT 2/3. Let L̃ = (r + L)T−2/3. With the change of variable
u = ψ(k) and integrating twice by parts, we obtain

|J1(−L)| ≤ T 1/3 2ψ(π)

T 2
max

k∈[ψ(−π),ψ(π)]


d3k(u)

du3

 . (5.176)

Similarly as for (5.152) we have,

max
k∈[ψ(−π),ψ(π)]


d3k(u)

du3

 ≤ G1L̃
−2, (5.177)

for a suitable constantG1 <∞, which yields

|J1(−L)| ≤ G2(r + L)−2T−1/3 (5.178)

for some constantG2 <∞. Therefore the integrals in (5.174), (5.175) have a boundG(a)
uniform inT which vanishes asa→ ∞

5.A Appendix: fermionic correlations

5.A.1 Two-point function

Let Â =
∑

k,l∈ZAk,la∗kal be the second quantization of the one-particle matrixA. It is
assumed thate−A is trace class andDet(1 + eA) 6= 0 (see [85], Chap. XIII). We use the
identities

e−
bAa∗i e bA =

∑

j∈Z a∗j [e−A]j,i, e−
bAaie bA =

∑

j∈Z [eA]i,jaj. (5.179)

Then

〈a∗iaj〉 =
1

Z
Tr(e−

bAa∗i aj) =
∑

n∈Z 1

Z
Tr(a∗n[e

−A]n,ie
− bAaj) (5.180)

=
∑

n∈Z [e−A]n,i(−〈a∗naj〉 + δj,n) = [e−A]j,i −
∑

n∈Z 〈a∗naj〉[e−A]n,i,

and ∑

n∈Z 〈a∗n[1+ e−A]n,iaj〉 = [e−A]j,i. (5.181)

Finally multiplying this expression by
∑

i∈Z [(1+ e−A)−1]i,m we obtain

〈a∗maj〉 = [(1+ eA)−1]j,m. (5.182)
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5.A.2 Proof of (5.41)-(5.43)

We prove recursively that

〈a∗i1aj1 · · ·a∗inajn〉 = Det(R(ik, jl))1≤k,l≤n, (5.183)

where

R(ik, jl) =

{
〈a∗ikajl〉 if k ≤ l,
−〈ajla∗ik〉 if k > l.

(5.184)

Then, takingik = jk for all k, the result (5.41)-(5.43) is obtained. Forn = 1 the formula
holds by definition. Suppose the formula (5.183) has been established for somen, i.e.

〈a∗i1aj1 · · ·a∗inajn〉 =



〈a∗i1aj1〉 〈a∗i1aj2〉 · · · 〈a∗i1ajn〉
−〈aj2a∗i1〉 〈a∗i2aj2〉 · · · 〈a∗i2ajn〉

...
...

. ..
...

−〈ajna∗i1〉 −〈ajna∗i2〉 · · · 〈a∗inajn〉



. (5.185)

We will need one more expression for〈· · · 〉 such that in the firstk pairs the annihilation
operator precedes the creation operator,

〈aj1a∗i1 · · ·ajka∗ika∗ik+1
ajk+1

. . . a∗inajn〉 =

= (−1)k



−〈aj1a∗i1〉 · · · 〈a∗i1ajk〉 〈a∗i1ajk+1
〉 · · · 〈a∗i1ajn〉

...
. . .

...
...

. . .
...

−〈ajka∗i1〉 · · · −〈ajka∗ik〉 〈a∗ikajk+1
〉 · · · 〈a∗ikajn〉

−〈ajk+1
a∗i1〉 · · · −〈ajk+1

a∗ik〉 〈a∗ik+1
ajk+1

〉 · · · 〈a∗ik+1
ajn〉

...
. . .

...
...

. . .
...

−〈ajna∗i1〉 · · · −〈ajna∗ik〉 −〈ajna∗ik+1
〉 · · · 〈a∗inajn〉



.

(5.186)
Let us prove this formula. Fork = 0, it agrees with (5.185). Suppose it to be true for some
k. Let us then prove that the formula (5.186) holds fork + 1,

〈aj1a∗i1 · · ·ajk+1
a∗ik+1

a∗ik+2
ajk+2

. . . a∗inajn〉 =

= −〈aj1a∗i1 · · ·ajka∗ika
∗
ik+1

ajk+1
. . . a∗inajn〉 (5.187)

+ δik+1,jk+1
〈aj1a∗i1 · · ·ajka∗ika

∗
ik+2

ajk+2
. . . a∗inajn〉.

Using the expression (5.186) and considering the expansionof the determinant in the(k+
1)th column (or row), it is easy to see that (5.187) corresponds, up to a factor of−1,
to the expression (5.186) but with the diagonal terma∗ik+1

ajk+1
replaced by−ajk+1

a∗ik+1
.

Therefore (5.186) holds fork + 1, too.
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Now we prove (5.185) forn + 1 by using (5.185) forn and (5.186) forn andk ≤ n,

〈a∗qaj1 · · ·a∗in+1
ajn+1

〉 =
1

Z
Tr(e−

bAa∗qaj1 · · ·a∗in+1
ajn+1

)

=
∑

m∈Z 1

Z
[e−A]m,q Tr(e−

bAaj1 · · ·a∗in+1
ajn+1

a∗m)

= −
∑

m∈Z [e−A]m,q 〈a∗maj1 · · ·a∗in+1
ajn+1

〉 (5.188)

+

n+1∑

p=2

[e−A]jp,q 〈aj1a∗i2 · · ·ajp−1
a∗ipa

∗
ip+1

ajp+1
. . . a∗in+1

ajn+1
〉

+ [e−A]j1,q 〈a∗i2aj2 · · ·a∗in+1
ajn+1

〉.

We take the term with the sum overm ∈ Z together with the first one and multiply the
whole expression by

∑
q∈Z [(1+ e−A)−1]q,i1 to obtain

〈a∗i1aj1 · · ·a∗in+1
ajn+1

〉 = 〈a∗i1aj1〉〈a∗i2aj2 · · ·a∗in+1
ajn+1

〉 (5.189)

+

n+1∑

p=2

〈a∗i1ajp〉〈aj1a∗i2 · · ·ajp−1
a∗ipa

∗
ip+1

ajp+1
. . . a∗in+1

ajn+1
〉.

Using (5.185) and (5.186) forn terms we see that this last expression is nothing else than
the expansion with respect to the first row of (5.185) withn substituted byn+ 1.



Appendix

A.1 Equilibrium crystal shape geometry

As illustrated in Figure A.5, we define

x = x0 + δ, y = y0 + f ′(x0)δ − ε (A.1)

and
x̃ = x− x0, ỹ = y − y0. (A.2)

If z(ε, δ) ∼= −2
3
γPTε

3/2, then

z(x̃, ỹ) ∼= −2

3
γPT (f ′(x0)x̃− ỹ)3/2. (A.3)

Let px = ∂xz, py = ∂yz, andθ the angle between thex-axis and the outher normal to the
facet. Thenf ′(x0) = − ctan θ. The surface profile and the free-energy density (surface
tension) per unit projected are the Legendre transform one of the other [8]

z(x, y) = ℓf̂(x/ℓ, yℓ), f(px, py) = ℓ−1(z − xpx − ypy). (A.4)

Close to the flat surface, some algebra leads to

f(|p|) = γ(θ)|p| +B(θ)|p|3 (A.5)

with

γ(θ) =
ctan(θ)x0 − y0

ℓ
√

1 + ctan(θ)2
, B(θ) =

1

3ℓγ2
PT (1 + ctan(θ)2)3/2

. (A.6)

Definingκ = f ′′(x0) it follows that dx0

dθ
= (1 + ctan(θ)2)κ−1 and dy0

dθ
= − ctan(θ)(1 +

ctan(θ)2)κ−1. The stiffness̃γ is then

γ̃(θ) = γ(θ) + γ′′(θ) =
(1 + ctan(θ)2)3/2

κℓ
, (A.7)

therefore

γ̃(θ)B(θ) =
1

3ℓ2κγ2
PT

=
π2

6
, (A.8)
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x

y

z

y = f(x)
(x0, y0)

δ

ε
e1

e2

facet

Figure A.5: The facet in thex− y plane goes into the rounded surface in the negativez.

where the last equality in (A.7) comes from thermodynamics [4]. γPT , κ, andσ2 are the
PT coefficient, the second derivative of the border line, andthe local wandering coefficient
in the (x, y, z) coordinate axis. The change of coordinate from(x, y) to (e1, e2) leads to
the PT coefficient, the curvature, and the local wandering coefficient in the orthogonal
coordinate axis,γPT,⊥, κ⊥, andσ2

⊥ namely

κ⊥(θ) = κ(1 + ctan(θ)2)−3/2,

γPT,⊥(θ) = γPT (1 + ctan(θ)2)3/4, (A.9)

σ2
⊥(θ) = σ2(1 + ctan(θ)2)−3/2.

A.2 Fredholm determinant and Fredholm Pfaffian

A.2.1 Preliminaries

These notions are taken from [83], Chapter VI. LetH be a separable Hilbert space. De-
note byL(H) the set of all bounded linear operator fromH to H. Let {ϕn}∞n=1 be an
orthonormal basis ofH. Then, for any positive operatorA ∈ L(H), the trace is defined
by Tr(A) =

∑∞
n=1(ϕn, Aϕn).

An operatorA ∈ L(H) is called trace classif and only if Tr(|A|) < ∞, where
|A| =

√
A∗A.

An operatorA ∈ L(H) is calledHilbert-Schmidtif and only if Tr(A∗A) < ∞. These
operators can be expressed via an integral kernel. Let(M,µ) be a measurable space and
H = L2(M,µ). ThenA ∈ L(H) is Hilbert-Schmidt if and only if there is a function (the
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kernel)K ∈ L2(M ×M,µ⊗ µ) with

(Af)(x) =

∫

M

K(x, y)f(y)dµ(y). (A.10)

Moreover,‖A‖2
2 =

∫
M
|K(x, y)|2dµ(x)dµ(y).

The notions in the following part are taken from [85], Chapter XIII. Let H be an Hilbert
space, then

⊗nH is defined as the vector space of multilinear functionals onH: for given
ϕ1, . . . , ϕn ∈ H, ϕ1 ⊗ · · · ⊗ ϕn ∈ ⊗nH by

(ϕ1 ⊗ · · · ⊗ ϕn)(〈η1, . . . , ηn〉) = (ϕ1, η1) · · · (ϕn, ηn) (A.11)

for any〈η1, . . . , ηn〉 ∈ H × · · · × H. The inner-product is defined by

(ϕ1 ⊗ · · · ⊗ ϕn)(η1 ⊗ · · · ⊗ ηn) = (ϕ1, η1) · · · (ϕn, ηn), (A.12)

and for any operatorA ∈ L(H) there is an operatorΓn(A) ∈ L(
⊗nH) with

Γn(A)(ϕ1 ⊗ · · · ⊗ ϕn) = Aϕ1 ⊗ · · · ⊗Aϕn. (A.13)

It satisfiesΓn(AB) = Γn(A)Γn(B).
Next we consider the antisymmetric subspace of

⊗nH, denoted by
∧nH. LetSn de-

note the permutation group of{1, . . . , n}, then
∧nH is the space spanned by the elements

ϕ1 ∧ · · · ∧ ϕn =
1√
n!

∑

σ∈Sn

(−1)sgn(σ)ϕσ(1) ⊗ · · · ⊗ ϕσ(n). (A.14)

The operatorΓn(A) restricted to
∧nH is denoted by

∧n(A).

A.2.2 Fredholm determinant

Determinant of a trace class operator

If the Hilbert spaceH has finite dimensionn, then
∧n(A) is the operator multiplication

by Det(A) (the usual determinant). The Fredholm determinant extendsthe notion of de-
terminant to infinite dimensional Hilbert spaces. For all trace class operatorsA acting on
a finite-dimensional spaceH with dimensionn, one can see that

Det(1 + A) =
n∑

k=0

Tr
(∧k

(A)
)
, (A.15)

where the termk = 0 is by definition set to be1. In the case dimH = ∞, Det(1 + A) is
defined by (A.15) withn replaced with∞. The sum converges becauseA is trace class.

In particular, consider the case of an integral operator onH = L2(M,µ) given by a
kernelK, i.e.,

(Af)(x) =

∫

M

K(x, y)f(y)dµ(y). (A.16)
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If A is trace class and the kernelK is continuous, then

Tr
(∧n

(A)
)

=
1

n!

∫

Mn

Det
(
K(xi, xj)

)
1≤i,j≤ndµ(x1) · · ·dµ(xn). (A.17)

The determinant (A.15) then writes

Det(1 + A) =
∞∑

n=0

1

n!

∫

Mn

Det
(
K(xi, xj)

)
1≤i,j≤ndµ(x1) · · ·dµ(xn). (A.18)

(A.18) is called Fredholm determinant onH = L2(M,µ).

Determinant of a kernel

The Fredholm determinant can also be defined for a kernelK without passing by the
operators, as explained e.g. in [7]. Let(M,µ) be a measure space andA(x) be a positive
continuous function onM such that1/A(x) ∈ L2(M,µ). We say that a measurable set
S ⊂M ×M is thin if for all x0, y0 ∈ M the sets

{x ∈M |(x, y0) ∈ S}, {x ∈M |(x0, y) ∈ S}, {x ∈M |(x, x) ∈ S} (A.19)

are ofµ-measure zero. A thick subset ofM ×M is defined as the complement of a thin
subset.

A functionK(x, y) onM ×M is akernelif:
1)K(x, y) is measurable,
2) for some thick open subsetU ⊂M ×M ,K(x, y) is continuous onU ,
3) ‖K‖A = sup(x,y)∈M×M A(x)A(y)|K(x, y)| <∞.
The class of kernels form a vector space with the norm‖ · ‖A.

For any kernelK(x, y) andn > 0 define

∆n(K) =

∫

Mn

dµ(x1) · · ·dµ(xn) Det[K(xi, xj)]i,j=1,...,n (A.20)

and∆0(K) = 1. One can show that

∫

Mn

dµ(x1) · · ·dµ(xn) |Det[K(xi, xj)]i,j=1,...,n| ≤ Cn‖K‖nAnn/2 (A.21)

with a constantC > 0 (depending onA). Thus∆n(K) is well-defined and the Fredholm
determinant attaced to the kernelK is defined by

∆(K) =
∞∑

n=0

(−1)n

n!
∆n(K). (A.22)
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A.2.3 Fredholm Pfaffian

As for the Fredholm determinant, also the Fredholm Pfaffian of a kernel is defined via
series. Consider a kernel a2 × 2 matrix kernelK on a measurable space(M,µ). Assume
thatK is antisymmetric, i.e.,K(x, y) = −Kt(y, x). This means

K1,2(x, y) = −K2,1(y, x), Ki,i(x, y) = −Ki,i(y, x) = 0, i = 1, 2. (A.23)

Define another kernelJ as the2 × 2 matrix

J(x, y) = δx,y

(
0 1
−1 0

)
. (A.24)

The Fredholm Pfaffian is defined in Rains’s paper [82]. DenoteΓ =
⋃∞
n=0M

n, let
S = {x1, . . . , xn} ⊂ Γ and denote byK(S) = [K(xi, xj)]i,j=1,...,n. Then, sinceK is
antisymmetric,

Pf[(J +K)(S)] = Pf [J(xi, xj) +K(xi, xj)]i,j=1,...,n (A.25)

=
∑

S′⊂S
Pf[K(S ′)] =

n∑

m=0

∑

i1 6=...6=im

Pf [K(xik , xil)]l,k=1,...,m .

The Fredholm Pfaffian on the measurable space(M,µ) is defined by

Pf(J +K) =

∫

S⊂Γ

Pf(K(S))dµ(S) (A.26)

=

∞∑

n=0

1

n!

∫

Mn

dµ(x1) . . .dµ(xn) Pf [K(xi, xj)]i,j=1,...,n .

It is also shown that the connection with the Fredholm determinant is

Pf(J +K)2 = Det(1− JK). (A.27)

A.3 Real quaternionic matrices

A quaternion is a linear combination of the basis quaternions {e0 ≡ 1, e1, e2, e3}, which
satisfye21 = e22 = e23 = −1 ande1e2e3 = −1. A N × N quaternionic matrixQ is then
Q = Q0 +Q1e1 +Q2e2 +Q3e3 with Qµ someN ×N matrices. The quaternion of basis
eµ can be represented as2 × 2 matriceŝeµ

ê0 =

(
1 0
0 1

)
, ê1 =

(
i 0
0 −i

)
, ê2 =

(
0 1
−1 0

)
, ê3 =

(
0 i
i 0

)
. (A.28)

Therefore theN ×N matrixQ can be represented by a2N × 2N matrix Q̂. A quaternion
is calledreal if the coefficients ofQ are real:qµj,k ∈ R, µ = 0, . . . , 3, j, k = 1, . . . , N . The
quaternion conjugateof a quaternionq = q0 + q1e1 + q2e2 + q3e3 is

q̄ = q0 − q1e1 − q2e2 − q3e3, (A.29)
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thecomplex conjugateof q is

q∗ = q∗0 + q∗1e1 + q∗2e2 + q∗3e3, (A.30)

and theHermite conjugateis

q† = q̄∗ = q∗0 − q∗1e1 − q∗2e2 − q∗3e3. (A.31)

For real quaternion the modulus ofq is given by|q|2 = q̄q = qq̄ = q2
0 + q2

1 + q2
2 + q2

3.
Consider the2N × 2N representation̂Q of a quaternion matrixQ with elementsQj,k,

j, k = 1, . . . , N . The operations on̂Q reflect toQ as follows. The transposition gives
(QT )j,k = −e2q̄k,je2, the Hermitian conjugation(Q†)j,k = (qk,j)

†, and the time reversal
(QR)j,k = e2(Q

T )j,ke
−1
2 = q̄k,j.

An hermitian matrix,Q† = Q, which is at the same time quaternionic real must satisfy
q†j,k = q̄j,k = qk,j, thereforeq0

j,k must form a real symmetric matrix andqµj,k real antisym-
metric matrices forµ = 1, 2, 3. Consequently the number of independent variables of such
matrices isN + 4N(N − 1)/2 = N(2N − 1).

A 2N × 2N real quaternionic matrix̂Q is diagonalized by a unitary matrixU such
thatUUR = URU = 1. These matrices compose a group, theunitary symplecticgroup
USp(2N). Each eigenvalue of̂Q is twice degenerate and each couple corresponds to an
eigenvalue ofQ (Kramers degeneracy).

A.4 Gaussian ensembles via variational principle

LetS(p) = −
∫
p(H) ln p(H)dH be the entropy for the joint distribution function on ran-

dom matricesp. We want to maximizeS(p) under the constraintC =
∫
p(H) Tr(H2)dH

be fixed and the constraint of the normalization. LetB = − ln(A) − 1 andλ be the
Lagrange multiplier, i.e.,

S(p) = −
∫
p(H) ln p(H)dH − λ

(∫
p(H) Tr(H2)dH − C

)

+(lnA+ 1)
(∫

p(H)dH − 1
)
. (A.32)

Let p0 be the distribution which maximizeS(p), then at first order inδp, δS(p0) = S(p0 +
δp) − S(p0) = 0, i.e.,

− 1 − ln(p0) − λTr(H2) + lnA+ 1 = 0, (A.33)

which impliesp(H) = A exp(−λTr(H2)). The normalization condition fixes the value
of A,

A−1 =

∫
e−λTr(H2)dH ≡ a(λ). (A.34)
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The second constraint writes

C =
1

a(λ)

∫
Tr(H2)e−λTr(H2)dH = − 1

a(λ)

da(λ)

dλ
. (A.35)

Let us estimatea(λ). With the change of variableX = H
√
λ, we obtain

a(λ) = λ−n/2
∫
e−Tr(X2)dX (A.36)

wheren is the dimension of the space where the integral is made, i.e., the number of
independent elements of the matrix. The integral overdX being finite and independent of
λ, it follows that

da(λ)

dλ
= a(λ)

−n
2λ

, (A.37)

and finallyλ = n
2C

. Since we wantλ = 1/2N , it follows that

C = nN, n = N +
1

2
βN(N − 1). (A.38)

A.5 Hermite polynomials

The Hermite polynomials{pH
k } are orthogonal with respect to the weighte−x

2

onR, i.e.,
∫R pH

k (x)pH
l (x)e−x

2

dx =

{
0 if k 6= l,√
π2kk! if k = l.

(A.39)

They satisfy the recursion relations

pH
0 (x) = 1,

pH
1 (x) = 2x, (A.40)

pH
k (x) = 2xpH

k−1(x) − 2(k − 1)pH
k−2(x), k ≥ 2,

thus the leading coefficient ofpH
k (x) is uk = 2k. Another representation of Hermite poly-

nomials is

pH
k (x) = ex

2 dk

dxk
e−x

2

. (A.41)

An asymptotics of Hermite polynomial relevant for our purpose is the following [99]. For
x = (2n+ 1)1/2 − 2−1/2n−1/6t, t bounded,

e−x
2/2pH

n (x) = (2π)1/42n/2(n!)1/2n−1/12
(
Ai(t) + O(n−2/3)

)
, (A.42)

and forx = (2n+ 1)1/2 cosψ, with ψ ∈ (0, π),

e−x
2/2pH

n (x) =
2n/2(n!)1/2

(πn/2)1/4

1√
sinψ

(
sin

[(1

2
n +

1

4

)
(sin(2ψ) − 2ψ) +

3

4
π
]

+ O(n−1)

)
.

(A.43)
In all these formulas theO-terms hold uniformly.
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A.6 Kernel for β = 2 Dyson’s Brownian motion

First of all we develop the transition functionΦ defined in (3.86) in terms of orthogonal
polynomials involving the Hermite polynomialspH

k . Let us define

fk(x) = (
√

2πN2kk!)−1/2pH
k (x/

√
2N)e−x

2/4N , (A.44)

then, fort′ > t,

Φt,t′(x, x
′) =

∞∑

k=0

fk(x)fk(x
′)q(t′ − t)k. (A.45)

Considert0 < t1 < t2 < t3 with t1−t0 ≫ 1 andt3−t2 ≫ 1. Denote byQ1 = e−(t1−t0)/2N ,
q = e−(t2−t1)/2N , andQ2 = e−(t3−t2)/2N . We want the expression of the kernel in the limit
t0 → −∞ andt3 → ∞, i.e.,Q1 → 0 andQ2 → 0.

First we deriveKN (x, t2; x
′, t1). We can write it as product of matrices as follows. Let

u = [fi(x)Q
i
2]i=0,...,∞, R = [fi(x

3
j )]i=0,...,∞,

j=0,...,N−1
,

vt = [fj(x
′)Qj

1]j=0,...,∞, L = [fj(x
0
i )]i=0,...,N−1,

j=0,...,∞
, (A.46)

D = [(Q1Q2q)
iδi,j]i,j=0,...,∞.

TheN × N matrix to be inverted writesA = LDR and the kernelKN = uRA−1Lv.
Dividing the indices as follows{0, . . . ,∞} = {0, . . . , N −1}∪{N, . . . ,∞} we write the
matrices as blocks. The index1 refers to the set{0, . . . , N − 1} and the index2 to the set
{N, . . . ,∞}, explicitly

KN = [u1 u2][R1,1 R2,1]
tA−1[L1,1 L1,2][v1 v2]

t,

A = [L1,1 L1,2]

[
D1,1 0
0 D2,2

]
[R1,1 R2,1]

t. (A.47)

The inverse ofA can be well approximated byB = R−1
1,1D

−1
1,1L

−1
1,1. The inverseD1,1

obviously exists.L1,1 andR1,1 are also invertible provided that both the initial positions
x0
i and the final positionsx3

i are distinct. In fact their determinants are Vandermonde
determinants. A simple computation showsAB = 1 + Q1Q2qO(1), O(1) meaning a
matrix with coefficients of order one. ThusA−1 = B(1+Q1Q2qO(1)). Then

KN = (u1R1,1 + u2R2,1)R
−1
1,1D

−1
1,1L

−1
1,1(1+Q1Q2qO(1))(L1,1v1 + L1,2v2)

= u1D
−1
1,1v1(1 + O(Q1Q2q)) + u1D

−1
1,1L

−1
1,1(1+Q1Q2qO(1))L1,2v2 (A.48)

+u2R2,1R
−1
1,1(1 +Q1Q2qO(1))D−1

1,1v2 + u2 · · ·D−1
1,1v2. (A.49)

Since
u1D

−1
1,1 = [f0(x) f1(x)(Q2q)

−1 · · · fN−1(x)(Q2q)
N−1] (A.50)

and
v2 = QN

2 [fN(x′) fN+1(x
′)Q2 · · · ]t, (A.51)
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the second term is of orderQ2. Similarly the third term is of orderQ1. The fourth term is
of orderQ1Q2. Thus in the limitQ1 → 0 andQ2 → 0 the kernel is

KN(x, t2; x
′, t1) = u1D

−1
1,1v1 =

N−1∑

k=0

fk(x)fk(x
′)q−k. (A.52)

The derivation formula forKN(x, t1; x
′, t2) is deduced in an analogous way. To

obtain the term with the double sum we need only to remark thatin this caseD =
[(Q1Q2/q)

iδi,j]i,j=0,...,∞ because the intervals[t0, t2] and[t1, t3] intersects. Thus

KN (x, t1; x
′, t2) = −

∞∑

k=0

fk(x)fk(x
′)qk +

N−1∑

k=0

fk(x)fk(x
′)qk = −

∞∑

k=N

fk(x)fk(x
′)qk.

(A.53)

A.7 Convergence of the extended Hermite kernel to the
extended Airy kernel

Recently new bounds on the Hermite polynomials are obtainedby Krasikov [55]. They
implies

max
x∈R (|pHk (x/

√
2N)|e−x2/4N) ≤

{
C22/k

√
k!k−1/12, k ≥ 1,

C, k = 0
(A.54)

for some constantC > 0.
With this estimate we obtain that the rescaled Hermite kernel is uniformly bounded in

the spatial arguments.

Lemma A.12.

lim
N→∞

N1/3KH
N (x = 2N + uN1/3, 2sN2/3; y = 2N + u′N1/3, 2s′N2/3) = A(u, v; u′, v′)

(A.55)
uniformly inu, u′ ∈ R.

Proof. First we want to show that

N1/3KH
N (x = 2N + uN1/3, 2sN2/3; y = 2N + u′N1/3, 2s′N2/3) (A.56)

is uniformly bounded inu, u′ ∈ R for N large enough. Consider first the cases − s′ =
∆s > 0. Then

(A.56) =
−1∑

k=−N
e∆skN

−1/3

N1/3 p
H
N+k(x/

√
2N)e−x

2/4NpHN+k(y/
√

2N)e−y
2/4N

√
2πN2N+k(N + k)!

=
1

N1/3

∑

κ∈I
eκ∆sN2/3

pH
N+κN1/3(x/

√
2N)e−x

2/4NpH
N+κN1/3(y/

√
2N)e−y

2/4N

√
2πN2N+κN1/3(N + κN1/3)!
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whereI = {−N, . . . ,−1}N−1/3. This last sum can be written as an integral of a func-
tion fN (u, u′,∆s) which is constant on intervals of widthN−1/3. If we prove that|fN |
is bounded by an integrable function, then by dominated convergence we can exchange
the limit and the integral. (A.43) implies that this function converges pointwise to the
integrand of the extended Airy kernel. Thus the limit will bethe desired one.

In what follow theCi are positive constant which do not depend onu, u′. Using (A.54)
we obtain

|(A.56)| ≤ C + C2
1

N1/3

∑

κ∈J
eκ∆sN2/3 1

(1 + κN−1/3)1/6

≤ C + C3

∫ −N1/3

−N2/3

dκeκ∆sN1/18 + C3

∫ −N−1/3

−N1/3

dκeκ∆s(1 −N−1/3)−1/6

≤ C + C4N
1/18 e

−N1/3∆s

∆s
+

1 − e−N
1/3∆s

∆s
(A.57)

with J = {−N + 1, . . . ,−1}N−1/3.
In the case∆s < 0 is similar. In the same way we get

|(A.56)| ≤ C5
1

N1/3

∑

κ∈L
eκ∆sN2/3 1

(1 + κN−1/3)1/6

≤ C6

∫ ∞

0

dκeκ∆s ≤ C6

|∆s| (A.58)

with L = N−1/3N.
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A.8 Numerical analysis
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Figure A.6: Probability density of the distribution of the distanced for t = 25, 50, 100.
The fit isρ = 2.2d(1 + 16d2)−1 ≃ 0.14/d.
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Figure A.7: Rescaled probability density of the distribution of the distanced for t =
25, 50, 100.
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t E(deg) E(d)/t1/3 Var(d(t))/t
25 2.42 0.57± 0.027 0.24± 0.018
50 2.43 0.52± 0.028 0.22± 0.022
100 2.38 0.57± 0.034 0.26± 0.027
150 2.43 0.56± 0.033 0.20± 0.022
200 2.36 0.54± 0.036 0.22± 0.026
300 2.48 0.56± 0.039 0.22± 0.028
400 2.31 0.52± 0.040 0.22± 0.029
500 2.41 0.51± 0.039 0.19± 0.026
600 2.48 0.61± 0.047 0.26± 0.034
700 2.42 0.57± 0.045 0.23± 0.032
800 2.36 0.60± 0.050 0.27± 0.043
1000 2.37 0.54± 0.049 0.24± 0.037
Mean 2.40 0.56 0.23

Table A.1: Results of the simulations for different values oft and 1000 runs each.
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Figure A.8: Mean and variance for values oft up to 1000. For eacht the simulation
consists in 1000 runs.
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