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Zusammenfassung

Empirische Volatilität ist nicht konstant in der Zeit und weist Tails auf, die schwerer

sind als normalverteilt. Des Weiteren sieht man oft Sprünge und Clusterverhalten.

In dieser Arbeit wird das Extremwertverhalten verschiedener Volatilitätsmodelle un-

tersucht: Subexponentielle Lévy getriebene MA Prozesse im Anziehungsbereich der

Gumbel-Verteilung, regulär variierende gemischte MA Prozesse, Ornstein-Uhlenbeck

Prozesse mit exponentiellem Tail und COGARCH Prozesse.

Der Schwerpunkt dieser Arbeit liegt in der Untersuchung von subexponen-

tiellen Lévy getriebenen MA Prozessen Y (t) =
∫∞

−∞
f(t− s) dL(s) für t ∈ R, wobei

f eine deterministische Funktion und L ein Lévy Prozess ist. In Kapitel 1 beschäfti-

gen wir uns mit dem extremalen Verhalten im Maximum-Anziehungsbereich der

Gumbel-Verteilung und in Kapitel 2 im Anziehungsbereich der Fréchet-Verteilung.

Das Verhalten in den beiden Anziehungsbereichen ist sehr unterschiedlich. Für beide

Klassen werden hinreichende Bedingungen an die Kernfunktion f gegeben, so dass

eine stationäre Version des MA Prozesses Y existiert. Wir berechnen das Tailverhal-

ten der stationären Verteilung. Es stellt sich heraus, dass die stationäre Verteilung

auch wieder subexponentiell ist und sogar im gleichen Anziehungsbereich wie der

treibende Lévy Prozess L liegt. Somit modellieren sie schwere Tails und Volatil-

itätssprünge. Die Analyse des extremalen Verhaltens basiert auf einem zeit-diskreten

Gitter, das bei den Sprungzeitpunkten des Lévy Prozesses L und den Extrema der

Kernfunktion f geeignet gewählt wird. Nachdem die diskrete Folge mit Marken

versehen worden ist, wird das Grenzwertverhalten des daraus entstehenden Punkt-

prozesses berechnet. Dieser liefert vollständige Information über das extremale Ver-

halten. Unter Anderem ergibt sich daraus die Konvergenz der normalisierten, wach-

senden Maxima. Beide Modelle weisen Volatilitätscluster auf. Regulär variierende

MA Prozesse verweilen lange über einer hohen Schwelle, im Gegensatz dazu haben

MA Prozesse im Anziehungsbereich der Gumbel-Verteilung nur in einzelnen Punk-

ten Exzesse.

Desweiteren betrachten wir in Kapitel 3 das Extremwertverhalten von Ornstein-

Uhlenbeck Prozessen mit exponentiell fallendem Tail. Es ist ähnlich zum subex-

ponentiellem MA Prozess im Anziehungsbereich der Gumbel-Verteilung. Sie haben

schwere Tails aber keine Volatilitätscluster. Als letzte Klasse an Volatilitätsmodellen

wird der COGARCH Prozess untersucht. Getrieben von einen compound Poisson

Prozess weist er auch regulär variierende Tails, Volatilitätssprünge und Cluster in

den Extrema auf.





Abstract

Empirical volatility changes in time and exhibits tails, which are heavier than those

of normal distributions. Moreover, empirical volatility has - sometimes quite sub-

stantial - upwards jumps and clusters on high levels. We investigate classical and

non-classical stochastic volatility models with respect to their extreme behavior:

subexponential Lévy driven MA processes in the maximum domain of attraction of

the Gumbel distribution, regularly varying mixed MA processes, Ornstein-Uhlenbeck

processes with exponentially decreasing tails and COGARCH processes.

The basic volatility models of this thesis are subexponential Lévy driven MA

processes Y (t) =
∫∞

−∞
f(t−s) dL(s) for t ∈ R where f is a deterministic function and

L is a Lévy process. In Chapter 1 we study the extremal behavior of subexponential

MA processes in the maximum domain of attraction of the Gumbel distribution and

in Chapter 2 of the Fréchet distribution. The behavior is quite different in these

different regimes. For both classes we give sufficient conditions for the kernel func-

tion f , such that a stationary version of the MA process Y exists, which preserves the

infinitely divisibility of L. We calculate the tail behavior of the stationary distribu-

tion, which is again subexponential and in the same maximum domain of attraction

as the driving Lévy process L. Hence they capture heavy tails and volatility jumps.

Our investigation on the extremal behavior of Y is based on a discrete-time skeleton

of Y chosen to incorporate those times, where large jumps of the Lévy process L and

extremes of the kernel function f occur. Adding marks to this discrete-time skeleton,

we obtain, by the weak limit of marked point processes, complete information about

the extremal behavior. A complementary result guarantees the convergence of run-

ning maxima. Both models have volatility clusters. Regularly varying MA processes

have long high level excursion in contrast to subexponential MA processes in the

maximum domain of attraction of the Gumbel distribution, where they collapse into

single points.

Furthermore, in Chapter 3 we investigate the extremal behavior of Ornstein-

Uhlenbeck processes with exponential tails. This is similar to subexponential

Ornstein-Uhlenbeck processes in the maximum domain of attraction of the Gumbel

distribution. They are heavy tailed, but do not exhibit volatility clusters. As the last

class of continuous-time volatility models, we study a continuous-time GARCH(1,1)

model. Driven by a compound Poisson process it exhibits regularly varying tails,

volatility upwards jumps and clusters on high levels.





Acknowledgement

It is a particular pleasure for me to express my sincere thanks to my advisor

Prof. Dr. Claudia Klüppelberg for having confidence in me and for her infinite help

and support. I feel also very grateful that by her assistance, I came into contact

with very distinguished scientists and that she gave me the opportunity to travel

extensively.

It is a pleasure for me to thank Prof. Dr. Gennady Samorodnitsky for his encour-

agement especially at the Autumn School on Risk Management in September 2003.

I have extremely benefited from discussions with him.

I acknowledge with thanks the hospitality of Prof. Dr. Holger Rootzén and his col-

leagues at the Department of Mathematical Statistics, Chalmers University of Tech-

nology in fall 2003. Discussions with him have been very fruitful and stimulating.

I would like to thank my colleagues at the Munich University of Technology for their

support and for the enjoyable company during the last years.

Last but not least I thank my family for their support in all situations and all my

friends for their encouragement especially during the last months.

Financial support by the Deutsche Forschungsgemeinschaft through the graduate

program "Angewandte Algorithmische Mathematik" at the Munich University of

Technology is gratefully acknowledged.





Contents

Introduction 1

1 Extremes of subexponential Lévy driven MA processes 15

1.1 Definitions and auxiliary results . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Subexponential distributions on the real line . . . . . . . . . . 20

1.1.2 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1.4 Extreme value theory . . . . . . . . . . . . . . . . . . . . . . . 34

1.2 Results on marked point processes . . . . . . . . . . . . . . . . . . . . 35

1.2.1 Point processes . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.2.2 Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.2.3 Marked point processes . . . . . . . . . . . . . . . . . . . . . . 50

1.3 Tail behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.3.1 The Poisson shot noise process . . . . . . . . . . . . . . . . . . 54

1.3.2 The general MA process . . . . . . . . . . . . . . . . . . . . . 57

1.3.3 Tail behavior of M(h) and M(Γk) . . . . . . . . . . . . . . . . 61

1.4 Extremal behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.4.1 The marked point process at a discrete-time skeleton . . . . . 65

i



ii Table of contents

1.4.2 The point process of local maxima . . . . . . . . . . . . . . . 74

1.4.3 Normalizing constants of running maxima . . . . . . . . . . . 81

1.4.4 Extremal index function . . . . . . . . . . . . . . . . . . . . . 83

2 Extremes of regularly varying Lévy driven mixed MA processes 87

2.1 Multivariate regular variation . . . . . . . . . . . . . . . . . . . . . . 93

2.2 Regularly varying mixed MA processes . . . . . . . . . . . . . . . . . 96

2.2.1 Existence of heavy tailed mixed MA processes . . . . . . . . . 96

2.2.2 Tail behavior of heavy tailed mixed MA processes . . . . . . . 102

2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.3 Regularly varying shot noise processes . . . . . . . . . . . . . . . . . 108

2.4 Point process convergence . . . . . . . . . . . . . . . . . . . . . . . . 116

2.5 Extremal behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.5.1 The point process of local maxima . . . . . . . . . . . . . . . 125

2.5.2 The marked point process at a discrete-time skeleton . . . . . 135

2.5.3 Normalizing constants of running maxima . . . . . . . . . . . 136

2.5.4 Extremal index function . . . . . . . . . . . . . . . . . . . . . 137

2.5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3 Extremal behavior of stochastic volatility models 143

3.1 Extremal behavior of generalized Cox-Ingersoll-Ross models . . . . . 148

3.2 Extremal behavior of Lévy-OU volatility models . . . . . . . . . . . . 151

3.2.1 Lévy-OU processes with subexponential tails . . . . . . . . . . 155

3.2.2 Lévy-OU processes with exponential tails . . . . . . . . . . . . 161

3.3 Extremal behavior of the COGARCH model . . . . . . . . . . . . . . 170

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Table of contents iii

A Appendix 183

A.1 Basic notation and definition . . . . . . . . . . . . . . . . . . . . . . . 183

A.2 Stationary solution of a random recurrence equation . . . . . . . . . . 187

A.3 The conditions Dr(un) and D′(un) . . . . . . . . . . . . . . . . . . . . 187

A.4 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 201

Index 213

Notation 215





Introduction

Extreme value theory

Extreme value theory is a statistical discipline that develops techniques and models

for describing rare events of extremes. The subject has a rich mathematical theory

and also a long tradition of applications in a variety of areas. The interest in this the-

ory has increased continuously during the last decades, partly due to the fact that

catastrophic events are often followed by large pecuniary claims. Hence, extreme

value models and techniques are widely applied for designing protection systems

against the effects of extreme events in such diverse fields as financial risk manage-

ment, insurance mathematics, engineering sciences, environmental engineering and

environmental statistics. Many applications of extreme value theory are described

in the monograph of Gumbel [73].

Classical extreme value theory is the asymptotic theory for maxima

M(n) = max{Y1, . . . , Yn}

of independent identically distributed (i. i. d.) random variables {Yk}k∈N with dis-

tribution function F . The central limit theory obtains an asymptotic normal distri-

bution for the sum of many i. i. d. random variables with finite variance, whatever

their common original distribution function is. The distribution function has not

to be known precisely to apply the asymptotic theory. A similar situation exists in

extreme value theory. The extremal types theorem, discovered by Fisher and Tip-

pett [66], and discussed afterwards by Gnedenko [67], exhibits possible limit forms

of the distribution of M(n) under linear normalization. This means that, provided

an > 0 and bn ∈ R are sequences such that

lim
n→∞

P(a−1
n (M(n) − bn) ≤ x) = lim

n→∞
F n(anx+ bn) = G(x) , x ∈ R , (0.0.1)

1
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for some non-degenerate distribution G (we say F is in the maximum domain of

attraction of G and write F ∈ MDA(G)), then there are constants a > 0, b ∈ R

such that x 7→ G(ax+ b) is one of the following three extreme value distributions:

• Fréchet: Φα(x) =

{
0, x ≤ 0,

exp (−x−α) , x > 0,
for α > 0.

• Gumbel: Λ(x) = exp (−e−x) , x ∈ R .

• Weibull: Ψα(x) =

{
exp (− (−x)α) , x ≤ 0,

1, x > 0,
for α > 0 .

Of great importance for the development of extreme value theory was the work of de

Haan [56], who applied rigorously methods from regular variation as the appropriate

analytic tool. In this framework the class of regularly varying distributions R−α is

famous, where F ∈ R−α satisfies limt→∞ F (tx)/F (t) = x−α for every x > 0 and

some α ∈ R, where F (x) = 1 − F (x). The question arises now for criteria on a

distribution tail to belong to a maximum domain of attraction and to characterize

the norming constants an, bn. This is based on the intuition that the far out tail of

F determines completely the maximum domain of attraction of F . In the maximum

domain of attraction of the Fréchet distribution are only distributions with regularly

varying tails; examples are the stable, Cauchy, Pareto and Burr distribution. All

essential results of regularly varying functions can be found in Bingham et al. [29].

Distributions in MDA(Λ) have lighter tails than regularly varying distributions and

distributions in MDA(Ψα) have bounded support to the right. For details we refer

to the excellent monographs about extreme value theory of Embrechts et al. [60],

Leadbetter et al. [95] and Resnick [125].

Extreme value theory is not only concerned with maximum domain of attractions

and the calculation of normalizing constants an, bn, but also with the more sophisti-

cated behavior of exceedances. An exceedance of Yk at level un means that Yk > un.

Instead of considering the times at which high-threshold exceedances occur and the

excess values over the threshold as two separate processes, they are combined into

one point process. Since exceedances occur randomly in time, a point process counts

the number of events, where k/n ∈ [s, t) and Yk > un = anx+ bn for any 0 ≤ s < t,

x ∈ R. The time is normalized, since un is increasing and so the number of ex-

ceedances in a fixed time interval is decreasing. A sequence of such point processes
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converges weakly to a Poisson random measure. Hence we obtain additional infor-

mation, for example, about the location of maxima, the behavior of upper order

statistics, joint convergence of maxima and minima and records. Point processes of

exceedances are essential to understand the structure of the extremal behavior of

any sequence of random variables. The theory of point processes has been treated

in detail in Kallenberg [80] and Resnick [125].

The results of extreme value theory for i. i. d. sequences as extremal types theorem

and convergence of point processes were generalized for stationary sequences un-

der weak dependence restrictions, well-known as D(un) and D′(un) conditions by

Watson [143], Berman [23], Loynes [101], Leadbetter [93] and others. The D(un) con-

dition describes the degree of independence of maxima on separated intervals, the

D′(un) condition avoids clusters in extremes. The qualitative behavior of extremes

of the stationary sequence and the associated i. i. d. sequence are the same.

In this thesis we concentrate on the extremes of continuous-time processes. The

pioneering work started for Gaussian processes with Rice [127,128,129]. The present

view of extremal behavior for continuous-time processes began with Cramér [48,49]

and Pickands [119, 118]. A wealth of other papers followed, which complemented

the results of Cramér and Pickands. A general theory on the extremal behavior of

stationary continuous-time processes {Y (t)}t∈R, which have almost surely continuous

sample paths and continuous one-dimensional distribution is given in the seminal

monograph of Leadbetter et al. [95], see also Leadbetter and Rootzén [96], and

further references therein. Their approach is via a discrete-time skeleton, so that

results of stationary sequences can be applied. To this end for a fixed h > 0 the

sequence of submaxima

Mk = sup
(k−1)h≤t<kh

Y (t) for k ∈ N (0.0.2)

is defined. If the D(un) and D′(un) conditions are valid for the discrete-time se-

quence {Mk}k∈N, then the extremal behavior of the continuous-time process can be

described by this. Among other results an extremal types theorem holds. However,

it is clearly the tail of the distribution of M1 rather than Y (1), which determines the

limiting type. The conditions D(un) and D′(un) are reformulated onto conditions

on the continuous-time process Y , known as C(un) and C ′(un) condition.

The best understood continuous-time processes are Gaussian processes. For sta-

tionary normal sequences and processes the D, D′ and C, C ′ conditions reduce to
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conditions on the covariance function, known as Berman’s condition, since the dis-

tribution of Gaussian processes are completely described by their mean value and

covariance function. The early monographs on extreme value theory of Leadbetter

et al. [95] and Berman [26] contain all basic results on this topic, and it is this

source from which all specific results are derived. Berman has an alternative ap-

proach as the C, C ′ condition by considering excursions of upcrossings above high

levels; such events are called sojourns. The extreme behavior of stationary diffusions

driven by Brownian motion has been investigated by Newell [114], Berman [24,26],

Mandl [105], Davis [51] and Borkovec and Klüppelberg [32]. Such models, though

driven by Brownian motion can fall outside the family of Gaussian processes. They

have played an important role in physics, but also as financial models. Typical appli-

cations are term structure models such as the Vas̆ic̆ek model, the Cox-Ingersoll-Ross

model and the generalized hyperbolic diffusion.

A substantial contribution to the extremal behavior of continuous-time processes

came from Albin [2,3]. He developed a theory, which is independent of the maximum

domain of attraction. These results he used for describing the extremal behavior of

totally skewed stable processes [4, 5, 6], differentiable processes [7] and Ornstein-

Uhlenbeck processes [1].

Stochastic volatility models

Continuous-time models play a crucial role in modern finance. They provide the

basis of option pricing, asset allocation and term structure theory. The underlying

process of asset prices, exchange rates, indices, or interest rates is often irregularly

spaced, in particular, in the context of high frequently data. Consequently, one of-

ten works with continuous-time models. Moreover, such data have often leptokurtic

marginal distributions; i. e. their histograms show a very pronounced peak around

zero and are heavy tailed. Further stylized features exhibited by financial data are

volatility clusters on high levels, large fluctuations and long-range dependence. The

meaning of heavy tailed is that the marginal distribution is heavier tailed than a

normal distribution. Evidence of heavy tails in financial asset returns distributions

are plentiful since the seminal work of Mandelbrot [104] on cotton prices. Clustering

in the data causes periods of high and low activity which imply periods of high and

low volatility. Hence, volatility processes are typical examples with these stylized
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features. Such observations resulted in an enormous effort to develop empirically

reasonable models, which can be integrated in financial theory. For an introduc-

tion and overview of stochastic volatility models we refer to Barndorff-Nielsen and

Shephard [17] and Shephard [139].

A natural class of heavy tailed distributions is given by the class of subexponential

distributions denoted by S. A random variable Y is subexponential, if

P(Y1 + . . .+ Yn > x) ∼ P(max{Y1, . . . , Yn} > x) for x→ ∞,

where {Yn}n∈N is an i. i. d. sequence with the same distribution as Y . This clearly in-

dicates the strong influence of the largest value on the total sum. A few large values

are likely to determine the long term behavior of the system. The name arises from

their property, that the tail of Y decreases slower than any exponential function

and hence no exponential moment exists. The class of subexponential distributions

includes regularly varying distributions, the semi-heavy tailed Weibull distribution

with shape parameter less than one and the log-normal distribution. Subexponential

distributions have gained popularity in various contexts of applied probability such

as telecommunication models, branching theory, queueing models, insurance math-

ematics and financial risk management. Subexponential distributions can belong to

two different maximum domain of attractions. All regularly varying distributions

are subexponential and belong to MDA(Φα). Other subexponential distributions

like the lognormal and semi-heavy tailed Weibull distribution belong to MDA(Λ)

and have rapidly varying tails, i. e. limt→∞ F (tx)/F (t) = 0 for every x > 1 and the

limit is ∞ for 0 < x < 1. Distributions in MDA(Ψα) have bounded support to the

right and hence can not be subexponential. A survey of the class of subexponen-

tial distributions is provided by Goldie and Klüppelberg [70], see also Embrechts et

al. [60].

Certain time series models are very popular in financial econometrics, where they are

designed to capture some of the distinctive features mentioned above. An approach

is to derive from discrete-time models continuous-time models that arise naturally

and intuitively to reflect the stylized facts of financial processes. Classical time series

theory is mostly concerned with MA (moving average) processes

Yn =
∞∑

k=−∞

ckZn−k for n ∈ N, (0.0.3)

where {Zk}k∈Z is an i. i. d. sequence, {ck}k∈Z is a sequence of constants, and the

infinite sum is assumed to converge with probability one. This class includes ARMA
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processes used most frequently in applications in engineering, physics, chemistry

and metrology; see Brockwell and Davis [38]. The right tail and the extremal be-

havior of a stationary MA process depend on the weights, the right and the left

tail of the marginal distribution function of the noise variables. MA processes with

subexponential noise variables Z exhibit heavy tails as well as clusters in extremes

depending on the properties of the filter. The maximum domain of attraction of the

subexponential noise variables Z plays a crucial role for the extremal behavior of

Y . The quantitative behavior of extremes of MA processes in different maximum

domain of attractions is similar, but the qualitative behavior is completely different.

They are very well studied in Davis and Resnick [54, 55] and Rootzén [130]. As a

result of clusters classical extreme value theory, as mentioned in the introduction, is

not applicable.

The aim of this thesis is to provide and investigate a wide class of continuous-time

models which reflects the extremal properties of empirical volatilities, namely heavy

tails and high level volatility clustering. We are concerned with a continuous-time

version of the MA process as given in (0.0.3) with respect to its extremal behavior.

The continuous-time analogue to an i. i. d. sequence in discrete-time is constituted

by the increments of a Lévy process L = {L(t)}t∈R, because of its independent and

stationary increments. Moreover, we assume that L(0) = 0 and that L is càdlàg.

Then similarly to the definition of the discrete-time MA process (0.0.3) we define

the continuous-time MA process {Y (t)}t∈R as

Y (t) =

∫ ∞

−∞

f(t− s) dL(s) for t ∈ R , (0.0.4)

where the kernel function f : R → R is measurable. A typical example is the

Ornstein-Uhlenbeck process with f(t) = e−λt 1[0,∞)(t) for some λ > 0, propagated

as stochastic volatility model by Barndoff-Nielsen and Shephard [15], and CARMA

processes studied by Brockwell [35, 36]. The class of continuous-time MA processes

is very flexible to design models to fit marginal features of the distribution of data

as well as to deal separately with the observed dependence structure in data. Under

certain conditions on the kernel function f the resulting process (0.0.4) can even

exhibit long range dependence, another stylized fact often observed in empirical

volatilities. Furthermore, MA processes can capture volatility jumps. The sample

path behavior of the continuous-time MA process depends on both, the driving Lévy

process L and the kernel function f . As a result of the simple structure of stable

distributions, properties of stable MA processes are very well known; we refer to the
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excellent monograph of Samorodnitsky and Taqqu [137]. The extremal behavior of

stable MA processes had already been investigated in 1978 by Rootzén [130].

In this thesis, we are concerned with the whole class of subexponential Lévy driven

MA processes, this means MA processes driven by a Lévy process, whose increment

distribution is subexponential. There have been many open questions concerning this

class: starting with the existence of a stationary version of Y we proceed to extreme

value problems as the tail behavior of the marginal distribution, tail behavior of

functionals of Y , extremal behavior of local maxima, sample path behavior in the

neighborhood of local maxima, running maxima and clustering of extremes. The

sample path behavior of subexponential Lévy driven MA processes is similar to

subexponential discrete-time MA processes: they are heavy tailed and have clusters

in extremes, such that they constitute an ideal class for modelling high frequency

financial data.

Necessary and sufficient conditions for the existence of Lévy driven MA processes are

already given in Rajput and Rosinski [121], Theorem 2.7. They depend on both the

generating triplet of the Lévy process L and the properties of the kernel function f .

In our framework we calculate necessary conditions for a subexponential Lévy driven

MA process depending only on the kernel function f . In the case of regularly MA

processes they are nearly necessary.

Increments of Lévy processes are infinitely divisible, hence we are concerned with

infinitely divisible subexponential distributions. An important characterization of

infinitely divisible subexponential distributions is the tail equivalence of probability

measure and Lévy measure. For calculating the tail behavior of the stationary dis-

tribution of the MA process we use this property. As intended they are also heavy

tailed even subexponential and in the same maximum domain of attraction as the

driving Lévy process. Hence, they are possible candidates for modelling volatility

processes. A basic difference in the two regimes MDA(Φα) and MDA(Λ) is that

regularly varying MA processes are tail equivalent to the increments of the Lévy

process; but the tails of subexponential Lévy driven MA processes in MDA(Λ) is

considerably lighter than the tails of the increments of the driving Lévy process.

Our investigation on the extremal behavior is based on a discrete-time skeleton of

Y chosen to incorporate those times, where large jumps of the Lévy process and

extremes of the kernel function simultaneously occur. In the following we give an

intuitive explanation of this approach. For the sake of argument we restrict our
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attention to a subexponential MA process, where the Lévy process is positive and

has countably many jumps. We denote the jump times by {Γk}k∈N and assume that

f has a unique maximum in η with value f(η) = f+. As a result of the heavy

tails, the Lévy process has jumps, which are larger than the typical ones. Hence Y

achieves an extreme value nearly the largest jump of L multiplied with the largest

value of f , which is f+. This value is by (0.0.4) achieved in Y (Γk+η) for some k ∈ N.

Motivated by this idea, which we will make mathematically precise also for general

subexponential Lévy driven MA processes, the study of the extremal behavior of

the continuous-time process Y is reduced to study the extremal behavior of the

discrete-time skeleton {Y (Γk + η)}k∈N. This sequence has similar extremal behavior

as a discrete-time MA process, such that we can use analog techniques as there. The

extremal behavior of these sequence {Y (Γk + η)}k∈N is described by point processes

of high level exceedances of Y (Γk + η). An interpretation of the limit process allows

to provide an interpretation of the extreme behavior of the process. Our results are

derived under a weak condition ensuring a Poisson type limit.

All these considerations concern in a first step the discrete-time skeleton only and

ignore the fact that we deal with continuous-time processes. We furthermore intro-

duce marks as the proper concept to derive the limiting behavior of the excursions

of Y above high levels. In order to retain information about Y near Γk + η we at-

tach to each Y (Γk + η) a mark, namely {Y (Γk + ti)}i=1,...,d for t1, . . . , td ∈ R and

sups∈Ik
Y (s), where Ik is a surrounding interval of Γk+η, such that the marked point

process describes the sample path behavior near its extremes. Interesting questions,

we investigate, concern the length of the excursion and the rate of “decrease” after

Γk + η. Hence, we obtain perfect information about the extremal behavior of the

continuous-time process.

The limit process of the marked point process turns out to be different in differ-

ent regimes. As a measure for clusters in extremes we use the extremal index of

the discrete-time sequence {Mk}k∈N as given in (0.0.2). For regularly varying Lévy

driven MA processes the extremal index is always less than one, which indicates

clusters in extremes. In contrast to this clusters of subexponential Lévy driven MA

processes in MDA(Λ) only occur, if the kernel function f has more than one local

supremum or infimum, respectively. Hence from this point of view, subexponential

Ornstein-Uhlenbeck processes in MDA(Λ) are not appropriate for modelling volatil-

ity clusters. Furthermore, a very important qualitative difference of the extremal

behavior in these both regimes is that regularly varying MA processes have long



Introduction 9

high level excursions in contrast to MA processes in S ∩ MDA(Λ), where they col-

lapse into single points. These points are also determined by the extremes of the

kernel function f . Both cases have in common that extremes are caused by large

jumps of the Lévy process and extremes of the kernel function. Thus, the normaliz-

ing constants of the running maxima as given in (0.0.1) are calculated by the right

and left tails of L(1) in combinations with the values of the supremum and the

infimum of the kernel function f .

In the case of Lévy processes with L(1) ∈ R−α the class of processes we are studying

is much larger than (0.0.4). There we replace L by an infinitely divisible, indepen-

dently scattered random measure, which is a generalization of a Lévy process. Thus

we obtain a larger class of continuous-time models, which is more flexible for mod-

elling long memory in the data. In this case (0.0.4) are mixed MA processes and

include in particularly Lévy driven MA processes. An interesting example is the

superposition of Ornstein-Uhlenbeck processes, also applied as stochastic volatility

model by Barndorff-Nielsen and Shephard [14].

In addition, we study the extremal behavior of Ornstein-Uhlenbeck processes with

exponential tails, namely the Γ-Ornstein-Uhlenbeck process and Ornstein-Uhlenbeck

processes driven by a convolution-equivalent Lévy process (Definition A.1.3). Convo-

lution-equivalent distribution functions are generalizations of subexponential distri-

bution functions, hence they share the important property of tail-equivalence of the

probability measure and the Lévy measure. Moreover, they all belong to MDA(Λ).

An important example in finance are the class of generalized inverse Gaussian dis-

tributions; the normal inverse Gaussian model has been prominent, see Barndorff-

Nielsen [12]. In this thesis we include the Γ-Ornstein-Uhlenbeck process for its im-

portance in the context of variance gamma models; see Madan and Seneta [103].

We will also compute the tail behavior of the stationary version of the Ornstein-

Uhlenbeck process, the point process behavior of local maxima, the normalizing

constants of running maxima and the extremal index function. The results are ana-

log to subexponential Ornstein-Uhlenbeck-processes in MDA(Λ): they exhibit heavy

tails, but can not model volatility clusters.

A completely different approach to obtain continuous-time volatility models starts

with a GARCH model and derives from this discrete-time model a continuous-time

model. GARCH models and their extensions have been in the limelight as appropri-

ate models to capture certain empirical facts of volatility processes; see Engle [61] for
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an overview on GARCH modelling and Mikosch and Stărică [113] for their extremal

behavior. We use the approach of Klüppelberg, Lindner and Maller [87], who started

with a discrete-time GARCH(1,1) model and replaced the noise variables by a Lévy

process with jumps ∆Lt = Lt − Lt−, t ≥ 0. The left continuous volatility process is

defined by

dY (t+) = βdt+ Y (t) eX(t−) d(e−X(t)) ,

where β > 0. The auxiliary càdlàg process X is defined by

X(t) = t log η −
∑

0<s≤t

log(1 + λη(∆L(s))2) ,

for η > 1 and λ ≥ 0. It is an essential feature of this model that the price process

S(t) is given by dS(t) =
√
Y (t) dL(t). This continuous-time GARCH(1,1) model is

called a COGARCH(1,1) model. COGARCH processes have the important feature

to model upward jumps as well as to have a heavy tailed stationary distribution.

Similar to the Lévy driven MA process, we choose a discrete-time skeleton of the

process by the jump times of a compound Poisson process L for modelling the ex-

tremal behavior. Applications of classical results on extreme value theory of random

recurrence equations by de Haan et al. [57] yield that they have clusters of extremes.

An excellent review article on volatility modelling of the COGARCH process against

the Ornstein-Uhlenbeck process is Klüppelberg et al. [88].

A general guideline

This thesis is divided into three chapters, which are based on the papers [63,62,64].

Chapter 1 deals with the extremal behavior of subexponential Lévy driven MA

processes in MDA(Λ) and Chapter 2 is devoted to subexponential Lévy driven mixed

MA processes in MDA(Φα), which contains as special class the Lévy driven MA

processes. Finally, Chapter 3 is concerned with financial applications: we investigate

classical and non-classical volatility models: generalized Cox-Ingersoll-Ross models,

subexponential Ornstein-Uhlenbeck processes, Ornstein-Uhlenbeck processes with

exponential tails and COGARCH processes. Here we draw heavily from the more

technical results in Chapter 1 and Chapter 2, complementing known results on the

more traditional generalized Cox-Ingersoll-Ross models with new results.
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For the technical results, in particular, of Chapter 1 and Chapter 2, an extensive

notation was necessary. Consequently, it was not possible to use a consistent notation

in the thesis. In order to avoid misunderstandings, the notation is explained in detail

in each chapter. Moreover, each chapter starts with a detailed introduction including

a guideline.

In the following we present a guideline to the thesis, summarized from the introduc-

tion to each chapter.

Chapter 1. We present in Section 1.1 the necessary definitions and basic results

of Lévy driven MA processes Y in S ∩ MDA(Λ). Hence, Section 1.1.1 is devoted to

subexponential distributions on the real line and the properties we need. A section on

stationarity of MA processes in S ∩MDA(Λ) follows. Section 1.1.3 is devoted to the

most important examples of MA processes. A prominent example is a process driven

by a compound Poisson process, which is also called Poisson shot noise process in the

literature. Throughout this chapter and Chapter 2 Poisson shot noise processes form

the basic structure of our results and proofs. A short summary on simple notions of

extreme value theory concludes Section 1.1.

In Section 1.2 we derive general results for weak convergence of point processes

(in Section 1.2.1), marks (in Section 1.2.2) and for marked point processes (in Sec-

tion 1.2.3) for subexponential processes in the maximum domain of attraction of the

Gumbel distribution. Weak convergence of point processes are fundamental for our

continuous-time process as its extreme behavior is governed by a discrete-time skele-

ton. Our results are derived under a weak condition ensuring a Poisson type limit.

Such results apply immediately to discrete-time MA processes. We furthermore in-

troduce marks as the proper concept to derive the limiting behavior of excursions

of continuous-time processes.

Section 1.3 deals with the tail behavior of Y (0) and the tail behavior of certain

functionals of Y . Proofs are based on the fact that Lévy measures and their cor-

responding distributions are tail-equivalent in the subexponential case and Rosinski

and Samorodnitsky [132].

The results of Sections 1.2 and 1.3 are applied in Section 1.4 to the continuous-time

process Y by choosing a proper discrete-time skeleton. In the case that f has a unique

supremum we show in Section 1.4.2 that the running maxima of Y happen exactly

at jump times of L shifted by the argument, where the supremum of f happens.
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Furthermore, in Section 1.4.3 we calculate the limit distribution of running maxima

of Y . Finally, in Section 1.4.4 we introduce the extremal index function as a proper

concept for modelling clusters of exceedances for continuous-time processes.

Chapter 2. We start with a short introduction into multivariate regular variation in

Section 2.1 followed by an investigation of regularly varying mixed MA processes Y

in Section 2.2. This includes on the one hand sufficient conditions for the stationarity

of the mixed MA process Y in Section 2.2.1 and on the other hand the tail behavior

of the mixed MA process Y and the tail behavior of M(h) = supt∈[0,h] Y (t) for

h > 0 in Section 2.2.2. Finally, Section 2.2.3 gives with FICARMA and supOU

processes the most prominent examples for regularly varying mixed MA processes,

which exhibit long range dependence. In Section 2.3 we obtain analogous results as

for regularly varying mixed MA processes for regularly varying renewal shot noise

processes.

Section 2.4 is concerned with the point process behavior of multivariate regularly

varying stationary sequences. We present analog results as given in Section 1.2 for

stationary sequences in S∩MDA(Λ) for multivariate regularly varying stationary se-

quences. Moreover, Davis and Mikosch [53] generalize results of Davis and Hsing [52]

on the point process behavior of stationary processes with regularly varying tails to

a multivariate setting. We give an overview of their results, which are then applied

in Section 2.5. First, we study the asymptotic behavior of the embedded marked

point process of local maxima of Y in Section 2.5.1. Afterwards, in Section 2.5.2,

we present under less restrictive assumptions than in Section 2.5.1 a marked point

process result, which also includes the behavior of large infima of Y . Moreover, we

obtain the limit distribution of running maxima of the mixed MA process in Sec-

tion 2.5.3, and compute the extremal index function in Section 2.5.4. The results

are in particular valid for stationary renewal shot noise processes.

Chapter 3. This chapter is based on joint work with Claudia Klüppelberg and

Alexander Lindner. We investigate classical and non classical stochastic volatility

models with respect to their extreme behavior. Classical volatility models as the

generalized Cox-Ingersoll-Ross model can model heavy tails, but are not able to

model volatility jumps. We review, in Section 3.1, their extremal behavior, which can

be in different maximum domain of attractions. Volatility jumps can be modelled

by Lévy driven Ornstein-Uhlenbeck processes, which are content of Section 3.2.

Their extremal behavior is characterized by the extremal behavior of the driving
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Lévy process, so that we have to distinguish between different classes of driving

Lévy processes. So Section 3.2.1 concerns the two subexponential models. Both can

capture heavy tails but only the regularly varying Ornstein-Uhlenbeck process has

clusters.

Then, in Section 3.2.2, we study Ornstein-Uhlenbeck processes with exponential

tails. As a prominent example we investigate the Γ-Ornstein-Uhlenbeck process, i. e.

the stationary volatility is gamma distributed. As an important larger class we study

Ornstein-Uhlenbeck processes, whose driving Lévy process belongs to the class of

convolution-equivalent tails. These classes extend subexponential Lévy processes in

a natural way; see Definition A.1.3. It turns out that for all Ornstein-Uhlenbeck

processes in Section 3.2, high level volatility clusters are exhibited only in the case

of regularly varying Lévy processes.

The last class of models reviewed in this chapter concerns the COGARCH process in

Section 3.3. In contrast to the Lévy driven Ornstein-Uhlenbeck process considered

before, the COGARCH volatility has heavy tails under quite general conditions

on the driving Lévy process L. Furthermore, the COGARCH exhibits high level

volatility clusters.

Finally, in Section 3.4 a short conclusion is given. Here we compare the models

introduced in Chapter 3. It turns out that there is a striking similarity concerning

the extremal behavior of models with the same stationary distribution. Here we also

discuss briefly some further empirical facts of volatility data.





Chapter 1

Extremes of subexponential Lévy

driven MA processes

In this chapter we investigate the extremal behavior of a stationary continuous-time

moving average (MA) process of the form

Y (t) =

∫ ∞

−∞

f(t− s) dL(s) for t ∈ R , (1.0.1)

where f : R → R, called kernel function, is measurable, and the driving process

L = {L(t)}t∈R is a Lévy process. We recall that a general Lévy process L has inde-

pendent and stationary increments, L(0) = 0 and is càdlàg, i. e. L has a. s. (almost

surely) right continuous sample paths with left hand limits. To make the definition

of Y = {Y (t)}t∈R meaningful we define the driving Lévy process on R by gluing

together two independent Lévy processes {L+(t)}t≥0 and {L−(t)}t≥0 with identical

distribution, so that L(t) = L+(t) for t ≥ 0 and L(t) = −L−(−t−) for t < 0. A

Lévy process L = {L(t)}t∈R on the real line is characterized by the Lévy-Khinchine

representation of its characteristic function E(eiuL(t)) = exp(tψ(u)) for t , u ∈ R with

ψ(u) = ium−
1

2
u2σ2 +

∫

R

(
eiux − 1 − iuκ(x)

)
dν(x) for u ∈ R , (1.0.2)

and κ(x) = x1[−1,1](x), where 1A denotes the indicator function of the set A. The

quantities (m,σ2, ν) are called the generating triplet of the Lévy process L. Here

m ∈ R, σ2 ≥ 0 and ν is a measure on R, called Lévy measure, satisfying ν({0}) = 0

and
∫

R
(1 ∧ |x|2) ν(dx) <∞.

15



16 1 Extremes of subexponential Lévy driven MA processes

We shall decompose L in three independent Lévy processes according to its jump

sizes, which are represented by ν: L = L1 − L2 + L3, where L1 = {L1(t)}t∈R and

L2 = {L2(t)}t∈R are independent positive Lévy processes, with Lévy measures

ν1 (A) = ν(A ∩ (1,∞)) and ν2 (A) = ν(−A ∩ (−∞,−1)) for A ∈ B(R)

and generating triplet (0, 0, νi) for i = 1, 2. The Lévy process L3 = {L3(t)}t∈R has

Lévy measure

ν3(A) = ν(A ∩ [−1, 1]) for A ∈ B(R),

i. e. it has finite support. Then L1 and L2 are increasing compound Poisson processes

whose jumps are larger than 1, and L3 has jumps with modulus only smaller than 1

and generating triplet (m,σ2, ν3). Throughout this chapter we shall need properties

and results for Lévy processes; we refer to the three monographs Applebaum [9],

Bertoin [27] and Sato [138].

This decomposition of L induces a decomposition of Y giving Y = Y1 − Y2 + Y3,

where for i = 1, 2, 3,

Yi(t) =

∫ ∞

−∞

f(t− s) dLi(s) for t ∈ R (1.0.3)

are independent MA processes. We have to be careful that Yi is a stationary i. d.

process. Note already here, that Y1 is positive provided that f is positive.

The sample path behavior of Y depends on the driving Lévy process and on the

kernel function. We also consider in this chapter only the short memory case, where

the kernel function (which is also sometimes called memory function) decreases suf-

ficiently fast; see Remark 1.1.8 (b). Extreme value theory for continuous-time (and

discrete-time) stochastic processes has meanwhile a long history. A theory for Gaus-

sian processes was developed during the eighties; see e. g. Albin [2,3], Berman [25,26],

Leadbetter and Rootzén [96,97] and Leadbetter et al. [95]. Under appropriate mix-

ing conditions, in the short memory case, when for instance Berman’s condition

holds, Gaussian processes behave like i. i. d. random variables with distribution of

the maxima of the process over a fixed interval.

Extreme value theory for stable MA processes was derived by Rootzén [130]. Such

models have a completely different extreme behavior than Gaussian models. Incre-

ments of L have infinite second moment, hence large values are likely to occur leading
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immediately to regularly varying stationary distributions. Moreover, large values are

carried on in time by the kernel function causing long high level excursions of the

process Y .

We are concerned with the extremal behavior of the process Y driven by a subexpo-

nential Lévy process. Subexponential models are typical models for situations, where

extremely large values are likely to occur in comparison to the mean size of the data.

In our context this concerns the increments of the process L, which are subexponen-

tial; see Definition 1.1.1. The thesis is on subexponential Lévy driven MA processes.

They also include the class of stable distributions, but are a much richer class. We

concentrate in this chapter on subexponential distributions in the maximum domain

of attraction of the Gumbel distribution, i. e. there exist constants aT > 0, bT ∈ R

for T > 0 such that limT→∞ TP(L(1) > aTx + bT ) = exp(−x) = − log Λ(x). Those

distributions have moments of every order and their tails decrease faster than poly-

nomial. Examples include the lognormal and the heavy-tailed Weibull distributions;

see Example 1.1.4. Under appropriate conditions it will turn out that the stationary

distribution of Y is subexponential and tail-equivalent to f(tU)L(1) for some t > 0

and an uniform r. v. U on (−1, 1), i. e. both have the same tail behavior. High level

excursions of Y are, in contrast to the stable model, no longer persistent; in the

limit they collapse into singular time points.

Throughout the chapter we shall need the following conditions on the Lévy process.

Condition (L1).

The marginal distribution L(1) of the Lévy process L satisfies L(1) ∈ S∩R−∞ (L(1)

is subexponential (Definition 1.1.1) with rapidly varying right tail (Definition 1.1.3)).

Condition (L2).

There exists a p ∈ (0, 1] such that the following tail balance condition holds:

lim
x→∞

ν (−∞,−x]

ν [x,∞)
=

1 − p

p
.

If the support of ν is bounded below we assume w. l. o. g. ν (−∞,−1] = 0, else we

choose another decomposition of L. If the support of ν is not bounded below, then

we assume further p ∈ (0, 1).

If p ∈ (0, 1) then −L(1) ∈ S ∩ R−∞. In the case p = 1 the accessorily condition

that the support of ν is bounded below can be relaxed, but then the proofs are more

complex.
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For the kernel function we require the following condition.

Condition (K1).

The kernel function f : R → R is a regulated function, i. e. left and right hand limits

exist, and for some δ ∈ (0, 1),
∫ ∞

−∞

sup
0<s<1

|f(s+ t)|δ dt <∞.

Hence f is bounded and has at most countable many discontinuities. We write

f+(t) = max{0, f(t)}, f+ = sup
t∈R

f+(t), f−(t) = max{0,−f(t)}, f− = sup
t∈R

f−(t) and

assume f+ ≥ f−.

We shall show in Remark 1.1.8 (b) that such kernel functions imply short memory

of the process Y : the covariance function is integrable.

Condition (K2).

Define

O1 :=
{
α ∈ R : f(α) = f+

}
, O2 :=

{
α ∈ R : f(α) = −f+

}
.

Then we define for i = 1, 2, P (i) := card Oi < ∞ and denote Oi = {α
(i)
1 , . . . , α

(i)

P (i)},

with α
(i)
1 < . . . < α

(i)

P (i) . The support of f is a connected interval. f is continuous

in the interior of its support [a, b], [a,∞) , (∞, a], respectively with a < b and right

and left continuous at the boundary.

Thus kernel functions, which are piecewise constant in their extremes, are excluded.

Our investigation is based on a discrete-time skeleton {Y (tn)}n∈N of Y chosen as to

incorporate those times, where big jumps of the Lévy process and extremes of the

kernel function occur. We embed the normalized process {Y (tn)}n∈N in a point pro-

cess and derive the weak limit of this sequence of point processes. Not surprisingly,

we find a strong analogy to discrete-time MA processes and corresponding results

of Davis and Resnick [55] and Rootzén [131]. We model the path behavior of the

continuous-time process near high level excursions by a mark on the point process.

Obviously marks are influenced by the kernel function and its local suprema. We

shall show that they behave asymptotically like the deterministic functions f/f+ or

−f/f+. Our findings show that specifically chosen discrete-time points determine

the extremal behavior of the continuous-time process.

The chapter is organized as follows. In Section 1.1 we summarize the necessary def-

initions and basic results. Section 1.1.1 is devoted to subexponential distributions
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on the real line and the properties we shall need. A section on stationarity follows.

Section 1.1.3 is devoted to the most important examples. Prominent in this chap-

ter will be processes driven by a compound Poisson process, which are also called

Poisson shot noise processes in the literature. Throughout this chapter, Poisson shot

noise processes form the basic structure for our results and proofs. This is due to the

fact that they correspond to the processes Y1 and Y2 in the decomposition (1.0.3).

A short summary on simple notions of extreme value theory concludes Section 1.1.

In Section 1.2 we derive general results for weak convergence of point processes

(in Section 1.2.1), marks (in Section 1.2.2) and for marked point processes (in Sec-

tion 1.2.3). Weak convergence of point processes are fundamental for our continuous-

time process as its extreme behavior is governed by a discrete-time skeleton. Our

results are derived under a weak condition ensuring a Poisson type limit. Such results

apply also immediately to discrete-time MA processes. We furthermore introduce

marks as the proper concept to derive the limiting behavior of excursions of Y .

Section 1.3 is devoted to the tail behavior of Y (0) and the tail behavior of certain

functionals of Y . Proofs are based on the fact that Lévy measures and their cor-

responding distribution functions are tail-equivalent in the subexponential case and

Rosinski and Samorodnitsky [132].

The results of Sections 1.2 and 1.3 are applied in Section 1.4.1 to the continuous-

time process Y by choosing the proper discrete-time skeleton. In the case that f

has an unique supremum we show in Section 1.4.2 that the running maxima of Y

happen exactly at jump times of L shifted by the argument, where the supremum

of f happens. Furthermore, in Section 1.4.3 we calculate the limit distribution of

running maxima of Y . Finally, in Section 1.4.4 we introduce the extremal index

function as proper concept for modelling clusters of exceedances for continuous-time

processes.
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1.1 Definitions and auxiliary results

Throughout the chapter we shall use the following notation: we write F = 1 − F

for the right tail of the distribution function (d. f.) F , F 2∗ for the convolution F ∗F

and F 2∗ = 1 − F 2∗. For any random variable (r. v.) Z on R we write Z+ = Z ∨ 0

and Z− = −Z ∨ 0; X
d
= Y , if the distributions of the random variables (r. v. s) X

and Y coincide. For real functions g and h we abbreviate g(t) ∼ h(t) for t → ∞,

if g(t)/h(t)
t→∞
−→ 1 and we denote g+(t) = max{0, g(t)}, g−(t) = max{0,−g(t)},

g+ = supt∈R g
+(t), g− = supt∈R g

−(t).

1.1.1 Subexponential distributions on the real line

Subexponentiality is a property of the right tail of a distribution. Consequently, it

has been defined originally for positive r. v. s..

In the context of this chapter L(1) has a distribution on the whole of R, which has a

subexponential right tail. The definition of a subexponential r. v. has been extended

from a positive r. v. to a r. v. on R by Willekens [144], and we shall start with this

definition.

Definition 1.1.1

Let F be a d. f. on R with F (x) < 1 for every x ∈ R.

(i) F belongs to the class of long tailed distributions, denoted by L, if for all y ∈ R

locally uniformly limx→∞ F (x+ y)/F (x) = 1.

(ii) F belongs to the class of subexponential distributions, denoted by S, if F ∈ L

and limx→∞ F 2∗(x)/F (x) exists and is finite.

If F ∈ L or F ∈ S and Z is a r. v. with d. f. F , then we write Z ∈ L or Z ∈ S.

The class S is closed under tail-equivalence, i. e. if F ∈ S and G is a d. f. with

limx→∞ F (x)/G(x) = q ∈ (0,∞), then also G ∈ S. It helps to think of a subexpo-

nential r. v. Z on R as a r. v. whose positive part Z+ ∈ S. A survey of the class of

subexponential distributions with support on R+ is provided by Goldie and Klüp-

pelberg [70], see also Embrechts et al. [60]. The following result summarizes mostly

known properties of subexponentials on R needed for this chapter.
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Proposition 1.1.2

(i) If F ∈ L, then F (x/2)2 = o(F (x)) for x → ∞ and limx→∞ eεxF (x) = ∞ for

any ε > 0.

(ii) If F ∈ S, then limx→∞ F 2∗(x)/F (x) = 2.

(iii) Suppose F ∈ S, Fi d. f. with limx→∞ Fi(x)/F (x) = qi ≥ 0 for i = 1, 2 and

G = F1 ∗ F2. Then

lim
x→∞

G(x)

F (x)
= q1 + q2. (1.1.1)

If qi > 0 for some i ∈ {1, 2}, then also Fi, G ∈ S. Moreover, for q1 > 0,

lim
x→∞

∫ x/2

−∞

F 2(x− u)

F 1(x)
F1(du) =

q2
q1
, lim

x→∞

∫ x/2

−∞

F 1(x− u)

F 1(x)
F2(du) = 1. (1.1.2)

(iv) Let N be a Poisson r. v. with mean µ and {Xk}k∈N be an i. i. d. sequence with

d. f. F ∈ S. Then the r. v. Y =
∑N

k=1Xk has d. f. G = e−µ
∑∞

n=0
µn

n!
F ∗n, G ∈ S

and

G(x) ∼ µF (x) for x→ ∞.

(v) Let F be an infinitely divisible (i. d.) d. f. with Lévy measure ν. Then

F ∈ S ⇐⇒
ν [1, x)

ν [1,∞)
∈ S for x > 1 ⇐⇒ F (x) ∼ ν(x,∞) for x→ ∞.

(vi) If X ∈ S then XY ∈ S if and only if X+Y + ∨X−Y − ∈ S. If X ∈ S has only

support on R+ and Y is a bounded r. v., then XY ∈ S.

Proof.

(i) Cline [44], Lemma 2.

(ii) Pakes [115], Corollary 2.1.

(iii) Pakes [115], Lemma 2.4 and Lemma 5.1 proves (1.1.1) of (iii) and Fi, G ∈ S

if qi > 0 for some i ∈ {1, 2}. In the case q1 + q2 = 0 we calculate for x ∈ R

F1 ∗ F2(x) =

∫ x/2

−∞

F 2(x− u)F1(du) +

∫ x/2

−∞

F 1(x− u)F2(du) + F 1 (x/2)F 2 (x/2) .

Taking into account that F ∈ S and (i) holds, we obtain

F 1 (x/2)F 2 (x/2)

F (x)
=
F 1 (x/2)F 2 (x/2)

F (x/2)F (x/2)

F (x/2)F (x/2)

F (x)

x→∞
−→ 0.



22 1 Extremes of subexponential Lévy driven MA processes

Let ε > 0 be arbitrary. Then there exists an x1 > 0 such that 0 ≤ F 1(x)/F (x) ≤ ε

for every x ≥ x1. Consequently,
∫ x/2

−∞

F 1(x− u)

F (x)
F2(du) ≤ ε

∫ x/2

−∞

F (x− u)

F (x)
F2(du) ≤ ε

F ∗ F2(x)

F (x)

x→∞
−→ ε,

where we used (iii). Similarly, the second summand tends to zero.

If q1 > 0, by (i), for x→ ∞,

F1 ∗ F2(x) =

∫ x/2

−∞

F 1(x− u)F2(du) +

∫ x/2

−∞

F 2(x− u)F1(du) + F 1

(x
2

)
F 2

(x
2

)

∼

∫ x/2

−∞

F 1(x− u)F2(du) +

∫ x/2

−∞

F 2(x− u)F1(du). (1.1.3)

Applying Fatou’s Lemma, we obtain the lower bound

lim inf
x→∞

∫ x/2

−∞

F 2(x− u)

F 1(x)
F1(du) ≥

q2
q1
, lim inf

x→∞

∫ x/2

−∞

F 1(x− u)

F 1(x)
F2(du) ≥ 1 (1.1.4)

and hence by (1.1.1) and (1.1.3) the inequalities in (1.1.4) are equalities.

(iv) Pakes [115], Theorem 5.1.

(v) Pakes [115], Theorem 3.1.

(vi) XY ∈ S ⇐⇒ X+Y + ∨ X−Y − = X+Y + + X−Y − = (XY )+ ∈ S. The sec-

ond statement has been proved by Cline and Samorodnitsky [46], Corollary 2.5. �

We shall also need certain properties of regularly varying functions. For further

definitions and properties we refer to Bingham et al. [29].

Definition 1.1.3

A positive measurable function u : R → R+ is regularly varying with index α,

denoted by u ∈ Rα for α ∈ R, if

lim
t→∞

u(tx)

u(t)
= xα for x > 0 .

u is said to be slowly varying if α = 0 and rapidly varying, denoted by u ∈ R−∞, if

the above limit is equal to 0 for x > 1 and ∞ for 0 < x < 1. (The case α = ∞ is

also possible, but not relevant in this thesis.)

The class of subexponential distributions includes all distributions with regularly

varying tails, the lognormal distribution and heavy-tailed Weibull distributions. A

prominent example in the context of this chapter is the following:
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Example 1.1.4 (Extended heavy-tailed Weibull model)

Let the right tail of the d. f. F behave like

F (x) ∼ exp(−u(x)) for x→ ∞,

where u ∈ Rα with α ∈ (0, 1) and there exist a v > 1 such that u(tx) ≤ xδu(t)

for all t ≥ v and x > 1, then F ∈ S. The heavy-tailed Weibull distribution

F (x) = K exp (−xα), x ≥ 0, for α ∈ (0, 1) and K > 0, or Benktander Type II

are special examples.

Proof.

Without loss of generality suppose F (x) = exp(−u(x)) for x ∈ R. The statement

of Proposition 3.7 (a), Baltrunas et al. [11] is satisfied. Thus u(t) is absolutely

continuous on t ≥ v with Lebesgue density q(t) → 0 as t → ∞, and tq(t)/u(t) ≤ ρ

for t ≥ v. In particular, F (x) = exp(−u(v)) exp(−
∫ x

v
q(t) dt) for x ≥ v. Hence

F is tail-equivalent to an absolutely continuous d. f., which is by Lemma 3.8. (a),

Baltrunas et al. [11], subexponential. Then also F ∈ S. �

Note that one can construct examples, where u ∈ Rα, but u(tx) ≤ xδu(t) for all

t ≥ v and x > 1 is not satisfied, such that F /∈ S, see Cline [44], pp. 536.

We present some consequences of conditions (L1) and (L2).

Remark 1.1.5 (Condition (L1) and (L2))

(a) Let L(1),−L(1) ∈ S. Then holds P(L(1) > x) ∼ P(L1(1) > x) ∼ ν(x,∞) and

P(L(1) < −x) ∼ P(L2(1) > x) ∼ ν(∞,−x) for x → ∞ by Proposition 1.1.2 (v).

Especially, (see also Lemma 1.3.4)

P(|L(1)| > x) = P(L(1) > x) + P(L(1) < −x)

∼ P(L1(1) > x) + P(L2(1) > x) for x→ ∞.

If additionally (L2) is satisfied then Proposition 1.1.2 (iii) implies |L(1)| ∈ S and

P(|L(1)| > x) = P(L(1) > x) + P(−L(1) > x) ∼
1

p
P(L(1) > x) for x→ ∞.

Suppose only L(1) ∈ S and p = 0. Then

P(L1(1) − L2(1) − |L3(1)| > x) ≤ P(|L(1)| > x) (1.1.5)

≤ P(L1(1) + L2(1) + |L3(1)| > x).
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The Lévy measure of L1 + L2 is ν1 + ν2, which behaves asymptotically like ν. We

obtain L1(1) + L2(1) ∈ S with P(L1(1) + L2(1) > x) ∼ P(L(1) > x) as x → ∞. By

Sato [138], Theorem 26.1, and Proposition 1.1.2 (iii) we have

P(L1(1) + L2(1) + |L3(1)| > x) ∼ P(L(1) > x) for x→ ∞.

Similarly we obtain the same behavior for the right side of (1.1.5), such that

P(|L(1)| > x) ∼ P(L(1) > x) for x→ ∞. Taking

P(|L(1)| > x) = P(L(1) > x) + P(L(1) < −x)

into account yields further P(L(1) < −x)/P(L(1) > x) → 0 for x→ ∞.

(b) For i = 1, 2, the r. v. s Li(1) ∈ S ∩ R−∞ are positive with ELi(1)q < ∞

for q > 0 (cf. Embrechts et al. [60]). Applying Sato [138], Corollary 25.8 yields∫
|x|>1

|x|qνi(dx) < ∞, for q > 0 and thus
∫
|x|>1

|x|qν(dx) < ∞. Again by Sato [138],

Corollary 25.8 we have E|L(1)|q <∞ for q > 0. �

1.1.2 Stationarity

Before investigating extremal properties of the process Y given in (1.0.1) we summa-

rize some basic results of continuous-time MA processes. Under certain conditions

Y (0) is well-defined as a limit in probability of integrals of step functions approximat-

ing f . This has been shown by Rajput and Rosinski [121] who also gives conditions

for Y (0) to be i. d.. The conditions are formulated in terms of the kernel function f

and the generating triplet of the driving Lévy process.

Proposition 1.1.6 (Rajput and Rosinski [121], Theorem 2.7)

Let L be a Lévy process with generating triplet (m,σ2, ν). Then Y (0) given in (1.0.1)

is well-defined and i. d. if and only if

∫ ∞

−∞

∣∣∣∣mf(s) +

∫ ∞

−∞

(κ(xf(s)) − f(s)κ(x)) ν(dx)

∣∣∣∣ ds <∞,

∫ ∞

−∞

|σ2f(s)|2 ds <∞,

∫ ∞

−∞

∫ ∞

−∞

min{1, |f(s)x|2} ν(dx) ds <∞,
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where κ(x) = x1[−1,1](x). The generating triplet is (mY , σ
2
Y , νY ), where

mY =

∫ ∞

−∞

mf(s) +

∫ ∞

−∞

(κ(xf(s)) − f(s)κ(x)) dν(x) ds,

σ2
Y = σ2

∫ ∞

−∞

f 2(s) ds, (1.1.6)

νY [x,∞) =

∫

f(s)>0

ν

[
x

f(s)
,∞

)
ds+

∫

f(s)<0

ν

(
−∞,

x

f(s)

]
ds for x > 0.

The above integrals are originally defined as Lebesgue integrals, but in our frame-

work Lebesgue and Riemann integrals are the same, so we shall not distinguish

between them. As can also be seen, if the driving Lévy process L has no Gaussian

component, then the second condition is meaningless, i. e. Y (0) has a Gaussian com-

ponent if and only if L has one. In the next Lemma we give some simple sufficient

conditions for a MA process to be i. d..

Proposition 1.1.7

Let L be a Lévy process with E|L(1)|δ < ∞ for some δ ∈ (0, 1] and suppose that

f : R → R is measurable. Assume that

∫ ∞

−∞

sup
0<s<1

|f(s+ t)|δ dt <∞. (1.1.7)

Then Y (0) given in (1.0.1) is i. d.. Moreover, the MA process Y given in (1.0.1)

is stationary. The finite dimensional distributions of Ŷ (t) =
∫∞

−∞
f(t + s) dL(s) for

t ∈ R and Y coincide. In particular,

Y (0) =

∫ ∞

−∞

f(−s) dL(s)
d
=

∫ ∞

−∞

f(s) dL(s) = Ŷ (0).

Proof.

Note that

∫ ∞

−∞

sup
0<s<1

|f(s+ t)|δ dt <∞ ⇐⇒
∞∑

k=−∞

sup
k<s<k+1

|f(s)|δ <∞. (1.1.8)

As f is bounded we assume without loss of generality |f(t)| ≤ 1 for t ∈ R. From

(1.1.8) we conclude
∞∑

k=−∞

sup
k<s<k+1

|f(s)|γ <∞
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for γ ≥ δ and by the comparison test |f |γ is integrable. Recalling that

κ(x) = x1[−1,1](x) we estimate

∫ ∞

−∞

∣∣∣∣mf(s) +

∫ ∞

−∞

κ(xf(s)) − f(s)κ(x) ν(dx)

∣∣∣∣ ds

≤ m

∫ ∞

−∞

|f(s)| ds+

∫ ∞

−∞

∫

|f(s)x|≤1
|x|>1

|xf(s)| ν(dx) ds

≤ m

∫ ∞

−∞

|f(s)| ds+

∫ ∞

−∞

|f(s)|δ ds

∫

|x|>1

|x|δ ν(dx) <∞,

where we used Fubini’s theorem and
∫
|x|>1

|x|δν(dx) <∞ by Remark 1.1.5 (b). On

the other hand we have

∫ ∞

−∞

∫ ∞

−∞

min{1, |f(s)|2x2} ν(dx) ds (1.1.9)

=

∫ ∞

−∞

f(s)2 ds

∫ 1

−1

x2 ν(dx) +

∫

|x|>1

[∫

f(s)2x2>1

1 ds+

∫

f(s)2x2≤1
|x|>1

f(s)2x2 ds

]
ν(dx)

≤

∫ ∞

−∞

f(s)2 ds

∫ 1

−1

x2 ν(dx) +

∫

|x|>1

[∫

f(s)2x2>1

1 ds+

∫ ∞

−∞

|f(s)|δ|x|δ ds

]
ν(dx).

By the standard property of Lévy measures
∫

R
(1∧|x|2) ν(dx) <∞ and the quadratic

integrability of |f |2 we yield that the first summand of (1.1.9) is finite. Again by

the integrability of |f |δ and as
∫
|x|>1

|x|δν(dx) <∞ we also conclude that the third

term is finite. For the remaining part we have

∫

|x|>1

∫

f(s)2x2>1

1 ds ν(dx) =

∫

f(s) 6=0

ν

(
−∞,−

1

|f(s)|

)
+ ν

(
1

|f(s)|
,∞

)
ds.

Define ck = supt∈[k−1,k) |f(t)| for k ∈ Z and f(t) =
∑∞

k=−∞ ck 1[k−1,k)(t) for t ∈ R.

Let {Zk}k∈Z be an i. i. d. sequence with d. f. (ν1 + ν2)((−∞, x])/(µ1 + µ2). Since

E|Z1|
δ <∞ and

∑∞
k=−∞ |ck|

δ <∞ by (1.1.8) and monotone convergence we have

E

[
∞∑

k=−∞

|ckZk|
δ

]
= E|Z1|

δ

∞∑

k=−∞

|ck|
δ <∞.

Thus
∑∞

k=−∞ |ckZk|
δ < ∞ a. s.. By Jensen’s-inequality for sequences we obtain∑∞

k=−∞ |ckZk| ≤ (
∑∞

k=−∞ |ckZk|
δ)1/δ <∞. Thus

∣∣∑∞
k=−∞ ckZk

∣∣ <∞ a. s.. Applying

the three-series theorem it is necessary that
∑∞

k=−∞ P(|ckZk| > 1) < ∞. Thus we
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obtain
∫

f(s) 6=0

ν

(
−∞,−

1

|f(s)|

)
+ ν

(
1

|f(s)|
,∞

)
ds

≤

∫

f(s) 6=0

ν

(
−∞,−

1

f(s)

)
+ ν

(
1

f(s)
,∞

)
ds

= (µ1 + µ2)
∞∑

k=−∞

P(|ckZk| > 1) <∞.

Hence also
∫∞

−∞

∫∞

−∞
min{1, |f(s)|2x2} ν(dx) ds < ∞. Thus by Proposition 1.1.6 the

r. v. Y (0) is well-defined and i. d..

For u1, . . . , un ∈ R, −∞ < t1 < . . . < tn < ∞, n ∈ N, define the kernel function

f̃(t) =
∑n

k=1 ukf(tk − t), t ∈ R. Since f̃ satisfies (1.1.7), by the first statement of

the proof the r. v. s

u1Y (t1) + . . .+ unY (tn) =

∫ ∞

−∞

f̃(s) dL(s),

u1Y (t1 + h) + . . .+ unY (tn + h) =

∫ ∞

−∞

f̃(s+ h) dL(s)

are i. d. and their characteristic triplets coincide. Hence by the Cramér-Wold device

Y is stationary. Similarly, {Ŷ (t)}t∈R is stationary and Y and Ŷ have the same finite

dimensional distributions. �

Remark 1.1.8

(a) Equivalent conditions to (1.1.7) and (1.1.8) can be found in Balkema and de

Haan [10].

(b) Let Y be the MA process given in (1.0.1) satisfying (K1) and (L1). Then Y is

stationary and Y (0) is i. d., with covariance function

Cov(Y (0), Y (h)) =

∫ ∞

−∞

f(s)f(s+ h) ds.

Thus Y is a short memory process with
∫∞

−∞
Cov(Y (0), Y (h)) dh = (

∫∞

−∞
f(t))2 <∞.

More about second order properties of MA processes can be found in the monograph

of Daley and Vere-Jones [50], Chapter 8; especially Proposition 8.5. IV about repre-

sentation of MA processes is to mention. The computation of the mean and variance

of a Poisson shot noise process is known as Campbell’s formulae, see Sato [138],

Proposition 19.5.
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(c) The assumption δ < 1 is not a necessary condition for Y to be stationary; see

Lemma 2.2.3 in the case |L(1)| ∈ Rα, α > 0. �

Proof of Remark 1.1.8 (b).

Taking Remark 1.1.5 (b) into account gives

∫

|x|>1

|x|2 νY (dx) =

∫ ∞

−∞

∫

|f(s)x|>1

|f(s)x|2 ν(dx) ds ≤

∫ ∞

−∞

f(s)2 ds

∫

|x|>1/f+

ν(dx) <∞

and thus EY (0)2 <∞. For h ≥ 0 denote the characteristic function of (Y (0), Y (h))

by ϕ(Y (0),Y (h)), with ψ given in (1.0.2). Then Proposition 2.6 of Rajput and Rosin-

ski [121] yields

ϕ(Y (0),Y (h))(u1, u2) = exp

(∫ ∞

−∞

ψ(u1f(−s) + u2f(h− s)) ds

)
for u1, u2 ∈ R.

Thus we obtain on the one hand

Cov(Y (0), Y (h)) = EY (0)Y (h) =
∂2

∂u1∂u2

ϕ(Y (0),Y (h))(u1, u2)

∣∣∣∣
(u1,u2)=(0,0)

=

∫ ∞

−∞

f(s)f(h+ s) ds

and on the other hand

∫ ∞

−∞

Cov(Y (0), Y (h)) dh =

∫ ∞

−∞

[
f(s)

∫ ∞

−∞

f(h+ s) dh

]
ds =

(∫ ∞

−∞

f(s)

)2

.

�

1.1.3 Examples

Example 1.1.9 (Poisson shot noise process)

An important special case of Y given in (1.0.1) is a MA process driven by a compound

Poisson process. Consider a compound Poisson process L = {L(t)}t∈R with

L(t) =

N(t)∑

j=1

Zj and L(−t) =

−N(−t−)∑

j=1

Z−j for t ≥ 0, (1.1.10)
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where N = {N(t)}t∈R is a Poisson process on R with intensity µ > 0 and jump

times Γ = {Γk}k∈Z\{0}, Γ−1 < 0 < Γ1, Γk < Γk+1, for k ∈ Z\{−1, 0}. The process

N is independent of the i. i. d. sequence Z = {Zk}k∈Z. The Lévy measure ν of L is

ν [x,∞) = µP(Z1 > x) for x ∈ R, so that the generating triplet is (
∫
κ(x) ν(dx), 0, ν)

(cf. Sato [138], Theorem 4.3). Let f be continuous in the interior of its support

[a, b], (−∞, a], [a,∞), respectively, −∞ ≤ a < b ≤ ∞, right and left continuous

at the boundary points and satisfies (K1). Favorable for Y with kernel function f

driven by the compound Poisson process L given in (1.1.10), which satisfies (L1), is

the simple representation

Y (t) =

∫ t−a

t−b

f(t− s) dL(s) =

N(t−a)∑

j=N(t−b)+1
j 6=0

f(t− Γj)Zj for t ∈ R a. s.. (1.1.11)

Notice that the left and the right hand side have a. s. càdlàg sample paths by domi-

nated convergence and
∫∞

−∞
sup0<s<1 |f(t+s)|δ dt <∞. We call Y given in (1.1.11) a

Poisson shot noise process. If additionally f is positive and Z1 has only support on

R+, then we call (1.1.11) a positive Poisson shot noise process. On the other hand,

if the kernel function f has only support on R+, then

Y (t) =

N(t)∑

j=−∞
j 6=0

f(t− Γj)Zj for t ∈ R a. s..

In this case with f(0) > 0, Y jumps if and only if N jumps. In particular, if f is

non-increasing, f(0) > 0, and has only support on R+, then the positive Poisson

shot noise process is non-increasing between successive jumps of L, and thus Y has

a local supremum in t if and only if t ∈ Γ.

More general shot noise processes can be defined by replacing the Poisson process

by a point process, e. g. a renewal process, and {Zjf(t)}t≥0 by {Xj(t)}t≥0, j ∈ N,

an i. i. d. sequence of stochastic processes. In that case Y (t) =
∑

Γj≤tXj(t− Γj) for

t ≥ 0. An introduction in shot noise processes can be found in Bondesson [30,31] and

Parzen [116]. Such methodological papers have been complemented by application

based work.

We conclude this Example with a summary of the relevant literature. The sim-

plest class of shot noise processes are those driven by a Poisson process; i. e. jumps

have deterministic size. Hsing and Teugels [78] were among the first to analyze the

point process behavior of such processes with bounded positive non-increasing ker-

nel functions supported on a finite interval; this work was continued by Doney and
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O’Brien [58] using kernel functions with support on R+.

Another simple class arises, when the kernel function has bounded memory and

the driving Lévy process is a point process. Then there exists a t0 > 0 such that

Y (0) is independent of Y (t) for t ≥ t0. The point process behavior of this class

with non-negative, non-increasing kernel functions has been investigated by Homble

and McCormick: when the jump size distribution has regularly varying tails, has

been studied in McCormick [108], gamma or logconcave densities in Homble and

McCormick [75,76].

The times Γ are interpreted as random time points, where shocks arrive with a

certain memory modelled by the kernel function. Such models are used in various

branches of stochastic modelling like bunching in traffic, computer failure times,

earthquake aftershocks, applications to workload input models in teletraffic and risk

theory. We refer to Klüppelberg et al. [90] and references therein.

Applications fall basically into two regimes, stationary and non-stationary situations

occur. We indicate two special economic applications. Stationary models play an

important role in finance; for instance as volatility and log-price models. Samorod-

nitsky [135, 136] introduces a quite sophisticated heavy-tailed stationary shot noise

process for log-prices or log-exchange rates. Models with stationary increments play

an important role in finance. An extension of the Black-Scholes model has been con-

sidered in Klüppelberg and Kühn [85], who suggested a Poisson shot noise process

to extend the Black-Scholes model by allowing for information coming as shocks

into the market. The kernel function can be chosen to model short or long range

dependence effects in the market.

On the other hand shot noise processes can be useful in the context of insurance

as models for delay in claim settlement. For j ∈ N the process {Xj(t)} models the

payoff function of an insurance claim, i. e. it is an increasing random process. Then

Y is called an explosive shot noise process; see Klüppelberg and Mikosch [89]. �

Example 1.1.10 (Discrete-time MA process)

Let ξ = {ξk}k∈Z be an i. i. d. sequence of r. v. s and {ck}k∈Z be a sequence of real

constants. Then we call a stochastic process Y = {Yn}n∈Z with

Yn =
∞∑

k=−∞

cn−kξk for n ∈ Z (1.1.12)

a discrete-time MA process (cf. Brockwell and Davis [38]). If ξ is i. d., this model can

be considered as a special case of Y in (1.0.1): choose f(t) =
∑∞

k=−∞ ck 1[k−1,k)(t)
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for t ∈ R. The continuous-time MA process Y at discrete-time points

Y (n) =
∞∑

k=−∞

cn−k[L(k + 1) − L(k)] for n ∈ Z,

is a discrete-time MA process.

By Proposition 1.1.7 the process Y and hence also the discrete-time MA process

{Y (n)}n∈Z is stationary, if
∑∞

k=−∞ |ck|
δ < ∞ for some δ ∈ (0, 1). For discrete-time

MA processes this is a typical sufficient condition for stationarity (see for example

Davis and Resnick [55]).

We conclude again with a summary of the relevant literature about extreme behavior

of discrete-time MA processes: Davis and Resnick [55] investigate a subexponential

noise in the maximum domain of attraction of the Gumbel distribution and in [54]

models with regularly varying noise. The case of light tailed noise is studied by Lind-

ner and Klüppelberg [86]. Finally we mention Rootzén [131] with noise, whose right

tail decreases approximately as Kx−β exp(−xα) for x → ∞ for some 0 < α < ∞.

In the case 0 < α < 1 the noise is subexponential. The structure of this chapter is

very similar to his paper. �

Example 1.1.11 (CARMA process)

For q < p, q, p ∈ N0 define polynomials

b(z) := b0 + b1z + . . .+ bqz
q and a(z) := zp + a1z

p−1 + . . .+ ap for z ∈ C, (1.1.13)

such that the zeros of a, denoted by λj, j = 1, . . . , p, have strictly negative real

parts, i. e. <(λj) < 0. Assume that the Lévy measure ν of the Lévy process L

satisfies
∫
|x|>2

log |x|ν(dx) < ∞. Then the MA process Y given by (1.0.1) with

kernel function

f(t) =
1

2π

∫ ∞

−∞

eitω b(iω)

a(iω)
dω for t ∈ R,

is stationary and is called continuous-time ARMA(p,q) (CARMA(p,q)) process. It

is possible to interpret Y as solution of the stochastic differential equation

a(D)Y (t) = b(D)DL(t) for t ≥ 0,

where D denotes the differential operator with respect to t. If condition (L1) holds,

then Remark 1.1.5 (b) implies that
∫
|x|>2

log |x|ν(dx) < ∞. Furthermore, the ker-

nel function has the property that f(t) = 0 for t ≤ 0 and the representation
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f(t) =
∑p

j=1 cjλ
mj

j exp(λjt) for t > 0, where cj ∈ R, mj ∈ N is the multiplicity

of the zero λj of a. If λ denotes the zero of a with the largest real part of all zeros

of a and multiplicity m, then |f(t)| ∼ Ktm exp(<(λ) t) for t → ∞, K > 0. Hence f

satisfies conditions (K1) and (K2).

A famous special case is the CARMA(1,0) process with representation

Y (t) =

∫ t

−∞

eλ(t−s) dL(s) for t ∈ R, λ < 0, (1.1.14)

which is nothing else but an Ornstein-Uhlenbeck (OU) process driven by a Lévy

process. If the zeros of a are distinct, then we can interpret any CARMA process as

a linear combination of p OU processes, driven by the same Lévy process.

An extremal analysis of OU processes driven by a Lévy process with light-tails has

been provided by Albin [1]. Such a process differs qualitatively not much from the

classical OU process driven by a Brownian motion. So again, it behaves more or less

like i. i. d. random variables with d. f. P(sup0≤t≤1 Y (t) ≤ x).

Barndorff-Nielsen and Shephard [15, 14] use positive OU processes as a model for

stochastic volatility, which is considered in Chapter 3. See Brockwell [35, 36] for a

more general account on CARMA processes and their applications to financial time

series. As empirical volatility often exhibits long memory, Barndorff-Nielsen and

Shephard [13] extend their model by exactly the above-mentioned idea of summing

up p different OU models driven by independent Lévy processes, in contrast to the

same Lévy process by a CARMA process (Example 2.2.10). It can be shown that

for p→ ∞ the limit process has the long memory property.

Brockwell and Marquardt [39], on the other hand, extends the class of CARMA pro-

cesses to fractionally integrated CARMA (FICARMA) processes (Example 2.2.9),

which also exhibit the long memory property. In Anh et al. [8] further models for

continuous-time processes with long memory can be found. Such processes, however,

fall out of the framework of this chapter by Remark 1.1.8 (b), but are included in

Chapter 2 about subexponential mixed MA processes in the domain of attraction

of the Fréchet distribution. �
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Example 1.1.12 (Stochastic differential delay equation)

Let f : [−r,∞) → R for some r ≥ 0 be absolutely continuous on [0,∞) and the

solution of the differential delay equation

df(t) =

∫

[−r,0]

f(t+ s)ϑ(ds) dt for Lebesgue almost all t ≥ 0,

f(t) = 0 for t ∈ [−r, 0) and f(0) = 1.

Moreover, let ϑ be a finite signed measure on [−r, 0], and we assume that

max

{
<(λ) : λ ∈ C, λ−

∫

[−r,0]

eλs ϑ(ds) = 0

}
< 0.

Suppose further that the Lévy measure ν of the Lévy process L satisfies the condition∫
|x|>2

log |x|ν(dx) < ∞. Then the MA process (1.0.1) with kernel function f is

stationary (Gushchin and Küchler [74]). Since it is the solution of

dY (t) =

(∫

[−r,0]

Y (t+ s)ϑ(ds)

)
dt+ dL(t) for t ≥ 0

it is called affine stochastic differential delay equation (SDDE). If condition (L1)

holds then, by the same argument as for CARMA processes, the assumption

∫

|x|>2

log |x|ν(dx) <∞

is satisfied.

Since |f(t)| ≤ Ce−γt for t ∈ R and some γ, C > 0, it satisfies also conditions (K1)

and (K2).

A typical example for a weight measure is ϑ = λ ε0 for some λ < 0, with ε0 the

Dirac measure in zero. Then Y is again an OU process. Weight measures ϑ with

exponential densities ϑ′ = −βeαs for α, β ∈ R can be found in Reiß [122].

Delay equations play an important role in biology, for example, in population mod-

els with the natural time delay due to a pregnancy period, or age dependent birth

and death models. The regulation of water temperature of a shower is also a famous

example. We refer to McDonald [109]. Other examples of delay equations can be

found in Mackey [102] and Benhabib and Rustichini [22]. �
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1.1.4 Extreme value theory

In this section we summarize some results on extreme value theory, where we restrict

ourselves to the situation of subexponential distributions. All these are standard

results in classical extreme value theory and can be found in many textbooks; we

refer here to Embrechts et al. [60] or Leadbetter et al. [95].

Definition 1.1.13

A d. f. F is in the maximum domain of attraction of a non-degenerate d. f. G, we

write F ∈ MDA(G), if there exist normalizing constants an > 0, bn ∈ R such that

for an i. i. d. sequence {Zk}k∈Z with d. f. F

lim
n→∞

P(a−1
n ( max

k=1,...,n
Zk − bn) ≤ x) = G(x) for x ∈ R . (1.1.15)

We also write Z1 ∈ MDA(G).

If an > 0, bn ∈ R, then, by setting un = anx + bn for x ∈ R, relation (1.1.15) is

equivalent to

lim
n→∞

nF (un) = − logG(x) for x ∈ R . (1.1.16)

The d. f. G (up to location and scale change) is by the Fisher and Tippett Theorem

either a Fréchet d. f. Φα(x) = exp(−xα) for x > 0 (α > 0), a Weibull d. f. Ψα(x) =

exp(−(−x)α) for x < 0 (α > 0), or a Gumbel d. f. Λ(x) = exp(−e−x) for x ∈ R.

If F ∈ S its support is unbounded above, hence G is either a Fréchet or Gumbel

d. f.. The fact that subexponential d. f. may belong to MDA(Φα) or MDA(Λ) has

consequences when studying extremal events. It is well-known that F ∈ MDA(Φα)

if and only if F ∈ R−α.

In this chapter we concentrate on F ∈ MDA(Λ) ∩ S; in that case F ∈ R−∞.

For conditions and examples of such d. f. we refer to Goldie and Resnick [71] and

Example 1.1.4.

We shall also use the following representation for F ∈ MDA(Λ) ∩ S, which is a

generalization of Karamata’s theorem:

F (x) = c(x) exp

[
−

∫ x

0

1

ω(u)
du

]
for x > 0,

where c : R+ → (0,∞) with lim
x→∞

c(x) = c and ω : R+ → R+ absolutely continuous

with lim
x→∞

ω(x) = ∞. Furthermore, it is possible to choose

bn = inf

{
x : F (x) ≥ 1 −

1

n

}
and an = ω(bn) . (1.1.17)
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Thus the normalizing constants satisfy

bn
n→∞
−→ ∞, an

n→∞
−→ ∞ and bn/an

n→∞
−→ ∞.

For the continuous-time process Y we are concerned with quantities like

sup0≤t≤T Y (t) and we shall use a continuous version of the Poisson condition (1.1.16).

Since also limT→∞ TF (ubT c) = − logG(x), the discrete sequence un in (1.1.16) can

be replaced by the continuous sequence uT := ubT c with aT and bT chosen analo-

gously.

As an example, consider a compound Poisson process L given as in (1.1.10) with

generic jump size Z1. Since the Lévy measure of L is ν [x,∞) = µP(Z1 > x) for

x ∈ R, Proposition 1.1.2 (v) gives L(1) ∈ S if and only if Z1 ∈ S, and in that case,

P(L(1) > x) ∼ µP(Z1 > x) for x→ ∞.

Hence the normalizing constants aT > 0, bT ∈ R of L(1) are connected to the

normalizing constants ãT , b̃T ∈ R of Z1 by ãT = aT/µ and b̃T = bT/µ. By defining

uT = aTx+ bT , x and ũT = ãTx+ b̃T for x ∈ R,

lim
T→∞

TP(L(1) > uT ) = − logG(x) ⇐⇒ lim
T→∞

TP(Z1 > ũT ) = − logG(x) (1.1.18)

holds.

1.2 Results on marked point processes

In this section we begin our investigation on the extremal behavior of processes,

not necessarily stationary, in S ∩ MDA(Λ). As is intuitively clear, extremes of a

continuous-time MA process driven by any subexponential Lévy process are caused

by large jumps of the Lévy process in cooperation with extremes of the kernel

function. We shall model this by a discrete-time skeleton {Y (tn)}n∈N of Y given by

a point process, where high threshold exceedances of the Lévy process in combination

with extremes of the kernel function happen, which create excursions over the high

threshold, which can be modelled as marks on the exceedance points.

Concerning the discrete-time skeleton our approach shows similarity to Rootzén [131],

where extremes of a discrete-time MA process as given in (1.1.12), with a spe-

cific model for the noise were investigated. That paper concentrates on noises of
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a subexponential model class given by P(ξk > x) ∼ Kx−β exp(−xα) for x → ∞,

β ∈ R, 0 < α < ∞, where 0 < α < 1 is a subclass of the extended heavy-tailed

Weibull distribution, Example 1.1.4.

Consider the discrete-time MA process (1.1.12). An extreme value of ξ among the ξk

determines the behavior of Y such that Yn behaves roughly like cn−kξk. For models

with right tail in R−α, α > 0, extremes are more pronounced than in S∩MDA(Λ). In

the different domains of attractions this affects excursions above a high threshold in

the following sense. If ξk ∈ S ∩MDA(Λ), then the right tail of ξk is rapidly varying,

implies

lim
T→∞

P(cn−kξk > uT |c
+ξk > uT ) = 1cn−k=c+ .

This is in contrast to the right tail of ξk belonging R−α resulting in

lim
T→∞

P(cn−kξk > uT |c
+ξk > uT ) =

(
cn−k/c

+
)α
.

This gives a precise description of excursions in both subexponential models. For

models in S ∩ MDA(Λ) high threshold excursions depend only on the times, where

extremes of f occur; for models in R−α high threshold excursions depend on the

whole kernel function. Thus in both maximum domains of attractions extremes of

Y are caused by extremes of c and ξ but the length of an excursion above a high

threshold is different.

In Section 1.2.1 we shall show under a general point process setup that extremes of

Yn are caused by extremes of the subexponential ξ. In Section 1.2.2 the behavior

of the normalized process Y is studied whenever an exceedance occurs. Finally, we

summarize the results of Section 1.2.1 and 1.2.2 by incorporating both effects into

marked point processes in Section 1.2.3. Throughout, we continue with the example

of a discrete-time MA process providing a good intuition. We then apply our theory

in Section 1.4.1 and 1.4.2 to describe the extremal behavior of the continuous-time

process Y given in (1.0.1) at a properly chosen discrete-time skeleton. This yields a

full description of the extreme behavior of Y .

1.2.1 Point processes

We follow Resnick [124,125] and introduce point processes to describe the extremal

behavior precisely. Let S denote the locally compact and separable Hausdorff space
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[0,∞)×R with the Borel σ-field B(S) and MP (S) denotes the class of point measures

(integer-valued Radon measures) on S provided with the metric ρ that generates the

topology of vague convergence (for every f ∈ Cc(S) the map from MP (S) → R with

µ 7→
∫
f dµ is continuous). A Radon measure on a locally compact and separable

Hausdorff space is a measure, which is finite on compact sets. A measure of the

form
∑

k∈I εxk
, where xk ∈ S, I is at most countable and εxk

denotes the Dirac

measure in xk, is a point measure. The space (MP (S), ρ) is a complete and separable

metric space (cf. Bauer [21], Theorem 31.5) provided with the Borel σ-field MP (S).

A point process in S is a random element in (MP (S),MP (S)), i. e. a measurable

map from a probability space (Ω,A,P) into (MP (S),MP (S)). A typical example

in extreme value theory for a point process is a Poisson random measure. Given

a Radon measure ϑ on B(S), a point process κ is called Poisson random measure

with mean measure (or intensity measure) ϑ, denoted by PRM(ϑ), if κ(A) is Poisson

distributed with mean ϑ(A) for every A ∈ B(S) and if, for mutually disjoint sets

A1, . . . , An ∈ B(S), n ∈ N, the r. v. s κ(A1), . . . , κ(An) are independent (independent

increment property). More about point processes can be found in Daley and Vere-

Jones [50] and Kallenberg [81]. We remark that
T→∞
=⇒ denotes weak convergence.

The idea is now to consider a subexponential sequence and add a small r. v. to each

r. v., where the meaning of a small r. v. is that its right tail decreases faster than that

of the subexponential r. v.. Then this small r. v. has no influence on the point process

behavior. A similar result also holds for regularly varying tails (see Lemma 2.4.4).

Finally, in Proposition 1.2.5 we investigate the point process behavior of a sum of

two subexponential sequences, which are tail-equivalent.

Theorem 1.2.1

Let Z = {Zk}k∈N be identically distributed r. v. s in S ∩ MDA(Λ) and θ = {θk}k∈N

be a sequence of r. v. s, where θk is independent of Zk for k ∈ N. Suppose aT > 0,

bT ∈ R are constants such that

lim
T→∞

TP(Z1 > uT ) = exp(−x)

for uT = aTx+ bT with x ∈ R holds. Further assume that there exists a r. v. Θ such

that for every k ∈ N, x ∈ R,

P(θk > x) ≤ P(Θ > x) and P(Θ > x) = o(P(Z1 > x)) for x→ ∞.

Denote by

ζT =
∞∑

k=1

ε(k/T,a−1
T (Zk+θk−bT )) and κ̃T =

∞∑

k=1

ε(k/T,a−1
T (Zk−bT ))
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point processes in MP (S). Suppose there exists a point process κ in MP (S) with

κ([s, t) × {x}) = 0 a. s. such that κ̃T
T→∞
=⇒ κ. Let I = [s, t) × (x,∞) ⊆ S. Then

lim
T→∞

P(ζT (I) 6= κ̃T (I)) = 0.

In the following Corollary we see that the result is also valid under certain scalings

of time.

Corollary 1.2.2

Suppose the assumptions of Theorem 1.2.1 hold. Let {Γk}k∈N be the jump times of a

Poisson process with intensity µ > 0. Let α ∈ R be arbitrary and

sk ∈ [Γk−1 + α,Γk+1 + α) for k ∈ N, setting Γ0 := 0. For T > 0 denote by

κ̃T =
∞∑

k=1

ε(k/T,a−1
T (Zk−bT )) and κT =

∞∑

k=1

ε((skµ)/T,a−1
T (Zk+θk−bT ))

point processes in MP (S). Let I = [s, t) × (x,∞) ⊆ S. Then

lim
T→∞

P(κT (I) 6= κ̃T (I)) = 0

and in particular κT
T→∞
=⇒ κ. Especially for Z i. i. d. κ is PRM(ϑ) with mean measure

ϑ(dt× dx) = dt × e−x dx.

The main step of proving Theorem 1.2.1 is the following Lemma.

Lemma 1.2.3

Let Z ∈ S ∩ MDA(Λ) be independent of the r. v. s θ and X. Suppose there exist

constants aT > 0, bT ∈ R, such that for uT = aTx+ bT with x ∈ R,

lim
T→∞

TP(Z > uT ) = exp(−x). (1.2.1)

For ε > 0 define vT = aT ε.

(a) Suppose P(θ > x) = o(P(Z > x)) for x→ ∞. Then

lim
T→∞

TP(θ + Z > uT , Z ≤ uT − vT ) = 0, (1.2.2)

lim
A↑∞

lim
T→∞

TP (θ + Z > uT , |Z − uT | > aTA) = 0. (1.2.3)

(b) Then

lim
T→∞

TP(θ + Z ≤ uT , Z > uT + vT ) = 0.

(c) Suppose P(X > x) ∼ q P(Z > x) for x→ ∞ and q > 0. Then

lim
T→∞

TP(X + Z > uT , X ≤ uT − vT , Z ≤ uT − vT ) = 0.



1.2 Results on marked point processes 39

Proof.

Denote by FZ , Fθ and FX the d. f. s of Z, θ and X, respectively.

(a) Note that uT → ∞, vT → ∞ and also uT/2− vT = (x/2− ε)aT + bT/2 → ∞ for

T → ∞. Hence, we can assume that uT/2 < uT − vT . Now, suppose for the moment

that for T → ∞,
∫ uT−vT

uT /2

F θ(uT − y)FZ(dy) = o(FZ(uT )), (1.2.4)

∫ uT /2

−∞

F θ(uT − y)FZ(dy) = o(FZ(uT )), (1.2.5)

FZ (uT/2)F θ (uT/2) = o(FZ(uT )). (1.2.6)

Then we estimate and obtain for T → ∞,

P (θ + Z > uT , Z ≤ uT − vT , θ ≤ uT/2) ≤

∫ uT−vT

uT /2

F θ(uT − y)FZ(dy) = o(FZ(uT ))

and

P (θ + Z > uT , Z ≤ uT/2) =

∫ uT /2

−∞

F θ(uT − y)FZ(dy) = o(FZ(uT )).

Then

P(θ + Z > uT , Z ≤ uT − vT )

≤ P (θ + Z > uT , Z ≤ uT − vT , θ ≤ uT/2)

+P (θ + Z > uT , Z ≤ uT/2) + P (Z > uT/2, θ > uT/2)

= o(FZ(uT )) for T → ∞.

Applying (1.2.1) yields (1.2.2). On the other hand, we estimate

P(θ + Z > uT , |Z − uT | > aTA)

P(Z > uT )

=

∫ uT−aT A

−∞

F θ(uT − y)

FZ(uT )
FZ(dy) +

∫ ∞

uT +aT A

F θ(uT − y)

FZ(uT )
FZ(dy)

≤ sup
z>aT A

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )
+
FZ(uT + aTA)

FZ(uT )
. (1.2.7)

For the first summand in (1.2.7) the assumption in (a) and the fact that uT → ∞,

aT → ∞ for T → ∞ gives

lim
T→∞

sup
z>aT A

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )
= 0. (1.2.8)
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Applying (1.2.1) again gives for the second summand in (1.2.7)

lim
T→∞

FZ(uT + aTA)

FZ(uT )
= lim

T→∞

FZ (aT (x+ A) + bT )

FZ (aTx+ bT )
=

exp(−x− A)

exp(−x)
A→∞
−→ 0. (1.2.9)

The result (1.2.3) follows then by (1.2.7)-(1.2.9).

Next we prove (1.2.4)-(1.2.6). By the same argument as used for (1.2.8) and the fact

uT , vT → ∞ for T → ∞ we obtain (1.2.4):

∫ uT−vT

uT /2

F θ(uT − y)

FZ(uT )
FZ(dy) ≤ sup

z≥vT

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )

T→∞
−→ 0.

Similarly, we obtain (1.2.5). As uT → ∞ for T → ∞, we have

∫ uT /2

−∞

F θ(uT − y)

FZ(uT )
FZ(dy) = sup

z≥uT /2

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )

T→∞
−→ 0.

Finally, (1.2.6) follows from Proposition 1.1.2 (i), which gives

0 ≤ lim
T→∞

F θ (uT/2)FZ (uT/2)

FZ(uT )
= lim

T→∞

F θ (uT/2)

FZ (uT/2)
lim

T→∞

FZ (uT/2)FZ (uT/2)

FZ(uT )
= 0.

Statement (1.2.6) also holds, if θ and Z are tail-equivalent.

(b) We have

lim
T→∞

TP(Z > uT + vT , θ + Z ≤ uT ) ≤ lim
T→∞

TP(Z > uT + vT )P(θ ≤ −vT ) = 0.

(c) Since FX ∈ L, we know that FX(uT − y)/FZ(uT ) → q for T → ∞ locally

uniformly in y. Moreover, by Proposition 1.1.2 (iii)

lim
T→∞

∫ uT /2

−∞

FX(uT − y)

FZ(uT )
FZ(dy) = q.

Thus by Pratt’s Lemma (Gänssler and Stute [68], Lemma 1.11.16)

lim
T→∞

P (X + Z > uT , X ≤ uT − vT , Z ≤ uT/2)

P(Z > uT )

= lim
T→∞

∫ uT /2

vT

FX(uT − y)

FZ(uT )
FZ(dy)

=

∫ ∞

−∞

lim
T→∞

FX(uT − y)

FZ(uT )
1[vT ,

uT
2

](y)FZ(dy) = 0.
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By symmetry also P(X+Z > uT , X ≤ uT/2, Z ≤ uT −vT ) = o(FZ(uT )) for T → ∞.

Thus by (1.2.6)

P (X + Z > uT , X ≤ uT − vT , Z ≤ uT − vT )

≤ P (X + Z > uT , X ≤ uT − vT , Z ≤ uT/2)

+P (X + Z > uT , X ≤ uT/2, Z ≤ uT − vT ) + P (X > uT/2) P (Z > uT/2)

= o(FZ(uT )) for T → ∞.

�

Proof of Theorem 1.2.1.

Let ε > 0 be arbitrary. Write Iε = [s, t) × (x− ε, x+ ε]. Then

{ζT (I) 6= κ̃T (I)} ⊆
⋃

k∈[Ts,T t)

{θk + Zk > uT , Zk ≤ uT − vT}

∪
⋃

k∈[Ts,T t)

{θk + Zk ≤ uT , Zk > uT + vT} ∪ {κ̃T (Iε) > 0}.

Hence by Lemma 1.2.3 (a) and (b),

P (ζT (I) 6= κ̃T (I))

≤ T (t− s)P(Θ + Z1 > uT , Z1 ≤ uT − vT )

+T (t− s)P(Θ + Z1 ≤ uT , Z1 > uT + vT ) + P(κ̃T (Iε) > 0)
T→∞
−→ 0 + P(κ(Iε) > 0)

ε→0
−→ 0.

�

To prove Corollary 1.2.2 we modify an argument of Hsing and Teugels [78]; see their

proof of Theorem 4.2 and Lemma 2.1. We include the proof here, since it keeps the

thesis self-contained.

Lemma 1.2.4

Let {Yk}k∈N be a sequence of r. v. s and assume there exists a r. v. Y such that for

some x0 ∈ R,

P(Yk > x) ≤ P(Y > x) for x ≥ x0.
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Suppose there exist constants aT > 0, bT ∈ R such that uT = aTx + bT → ∞ for

x ∈ R and P(Y > uT ) = O(T−1) for T → ∞. Assume {Γk}k∈N are the jump times

of a Poisson process N = {N(t)}t≥0 with intensity µ > 0. Let α ∈ R be arbitrary

and sk ∈ [Γk−1 + α,Γk+1 + α) for k ∈ N, setting Γ0 := 0. For T > 0 denote by

ζT =
∞∑

k=1

ε(k/T,a−1
T (Yk−bT )) and κT =

∞∑

k=1

ε((skµ)/T,a−1
T (Yk−bT ))

point processes in MP (S). Let I = [s, t) × (x,∞) ⊆ S. Then

lim
T→∞

P(ζT (I) 6= κT (I)) = 0.

Proof.

Without loss of generality we assume α ≥ 0. For T > 0 define the point processes

ηT =
∞∑

k=0

ε((k+αµ)/T,a−1
T (Yk−bT )) and η̃T =

∞∑

k=0

ε((Γkµ+αµ)/T,a−1
T (Yk−bT )).

Then

P(ζT (I) 6= ηT (I)) ≤
∑

Ts−αµ≤k≤Ts

P(Yk > uT ) +
∑

Tt−αµ≤k≤Tt

P(Yk > uT )

≤ 2αµP(Y > uT )
T→∞
−→ 0. (1.2.10)

Next, define the events

AT =

{∣∣∣∣N
(
sT − αµ

µ

)
− (sT − αµ)

∣∣∣∣ > εT

}
,

BT =

{∣∣∣∣N
(
tT − αµ

µ

)
− (tT − αµ)

∣∣∣∣ > εT

}
.

The LLN (Mikosch [111], Theorem 2.2.4) gives limT→∞ P(AT ) = limT→∞ P(BT ) = 0.

From this

P(ηT (I) 6= η̃T (I)) ≤ P(AT ) + P(BT ) + 2ε TP(Y > uT )
T→∞
−→ 0 (1.2.11)

follows. If sk ≤ tT ≤ sk+1, then Γk−1 + α ≤ sk ≤ tT ≤ sk+1 ≤ Γk+2 + α. Hence

P(η̃T (I) 6= κT (I)) ≤ 2P(Y > uT ) + 2P(Y > uT )
T→∞
−→ 0. (1.2.12)

From (1.2.10)-(1.2.12) we conclude limT→∞ P(ζT (I) 6= κT (I)) = 0. �
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Proof of Corollary 1.2.2.

A consequence of Theorem 1.2.1 is limT→∞ P(ζT (I) 6= κ̃T (I)) = 0. Applying

Lemma 1.2.4 we conclude limT→∞ P(ζT (I) 6= κT (I)) = 0. Thus

lim
T→∞

P(κ̃T (I) 6= κT (I)) = 0.

As κ̃T =⇒ κ for T → ∞ and using Lemma 3.3 of Rootzén [131] we conclude κT =⇒ κ

for T → ∞.

In the case Z i. i. d, like in the proof of Theorem 4.2 of Hsing and Teugels [78] on

the one hand

P(κ̃bT c(I) 6= κ̃T (I)) ≤ (tT − btT c + sT − bsT c)P(Z1 > uT )
T→∞
−→ 0

and on the other hand κ̃n
n→∞
=⇒ κ. Thus κ̃T

T→∞
=⇒ κ and κT

T→∞
=⇒ κ. �

The last Proposition 1.2.5 of this section regards point processes of independent

subexponential sequences. It is a generalization of Goldie and Resnick [72], Theo-

rem 2.3, who study the case of i. i. d. sequences.

Proposition 1.2.5

For i = 1, 2, let {Z
(i)
k }k∈N be identically distributed r. v. s with Z

(i)
k ∈ S ∩ MDA(Λ)

satisfying Z
(1)
k is independent of Z

(2)
k for k ∈ N. Suppose there exist constants aT > 0,

bT ∈ R such that for uT = aTx+ bT with x ∈ R,

lim
T→∞

TP(Z
(i)
1 > uT ) = Ki exp(−x) for some Ki > 0. (1.2.13)

For T > 0 denote by

κ
(i)
T =

∞∑

k=1

ε(
k/T,a−1

T (Z
(i)
k −bT )

) and κT =
∞∑

k=1

ε(
k/T,a−1

T (Z
(1)
k +Z

(2)
k −bT )

)

point processes in MP (S), where κ
(1)
T + κ

(2)
T

T→∞
=⇒ κ(1) + κ

(2)
T for some point processes

κ(i) with κ(i)([s, t) × {x}) = 0 a. s.. Suppose I = [s, t) × (x,∞) ⊆ S. Then

lim
T→∞

P(κT (I) 6= κ
(1)
T (I) + κ

(2)
T (I)) = 0

and κT
T→∞
=⇒ κ(1) + κ(2).
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Proof.

For ε > 0 set vT = aT ε and Iε = [s, t) × [x− ε, x+ ε). Then

{κT (I) 6= κ
(1)
T (I) + κ

(2)
T (I)} (1.2.14)

⊆ {κ
(1)
T (Iε) > 0} ∪ {κ

(2)
T (Iε) > 0}⋃

k∈[Ts,T t)

{Z
(1)
k + Z

(2)
k > uT , Z

(1)
k ≤ uT − vT , Z

(2)
k ≤ uT − vT}

∪{Z
(1)
k + Z

(2)
k < uT , Z

(1)
k > uT + vT} ∪ {Z

(1)
k + Z

(2)
k < uT , Z

(2)
k > uT + vT}

∪{Z
(1)
k > uT , Z

(2)
k > uT}.

So by Lemma 1.2.3 (c) we have

P


 ⋃

k∈[Ts,T t)

{Z
(1)
k + Z

(2)
k > uT , Z

(1)
k ≤ uT − vT , Z

(2)
k ≤ uT − vT}


 (1.2.15)

≤ T (t− s)P(Z
(1)
1 + Z

(2)
1 > uT , Z

(1)
1 ≤ uT − vT , Z

(2)
1 ≤ uT − vT )

T→∞
−→ 0.

On the other hand, by (1.2.13)

P(
⋃

k∈[Ts,T t)

{Z
(1)
k > uT , Z

(2)
k > uT})≤ T (t− s)P(Z

(1)
1 > uT )P(Z

(2)
1 > uT )

T→∞
−→ 0. (1.2.16)

Finally,

P


 ⋃

k∈[Ts,T t)

{Z
(1)
k + Z

(2)
k < uT , Z

(1)
k > uT + vT}




≤ T (t− s)P(Z
(1)
1 + Z

(2)
1 < uT , Z

(1)
1 > uT + vT )

≤ T (t− s)P(Z
(1)
1 > uT + vT , Z

(2)
1 < −vT )

= T (t− s) P(Z
(1)
1 > uT + vT )P(Z

(2)
1 < −vT )

T→∞
−→ 0. (1.2.17)

Furthermore limε→0 limT→∞ P(κ
(i)
T (Iε) > 0) = 0 for i = 1, 2. Using additionally

(1.2.14)-(1.2.17) yields

lim
T→∞

P(κT (I) 6= κ
(1)
T (I) + κ

(2)
T (I)) = 0. (1.2.18)

Thus by (1.2.18) and Rootzén [131], Lemma 3.3, also κT
T→∞
=⇒ κ(1) + κ(2). �

Note Z(1), Z(2) and κ(1), κ(2) independent imply κ
(1)
T , κ

(2)
T independent and thus we

get from κ
(i)
T

T→∞
=⇒ κ(i), i = 1, 2, also κ

(1)
T + κ

(2)
T

T→∞
=⇒ κ(1) + κ(2).
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Example 1.2.6 (Continuation of Example 1.1.10)

Assume ξ1 ∈ S∩MDA(Λ) with limx→∞ P(ξ1 < −x)/P(ξ1 > x) = (1−p)/p, p ∈ (0, 1]

and
∑∞

k=−∞ |ck|
δ <∞ for some δ ∈ (0, 1). Without loss of generality we assume

c1 = . . . = cP (1) = c+, c−P (2)+1 = . . . = c0 = −c+

and |ck| < c+ < ∞ for k ≤ −P (2), k ≥ P (1) + 1, P (1) ∈ N, P (2) ∈ N0. In the case

p = 0 set P (2) := 0. Let aT > 0, bT ∈ R and uT = aTx+ bT for x ∈ R such that

lim
T→∞

TP(c+ξ1 > uT ) = exp(−x).

For k ∈ Z define the stationary processes

ξk := −ξk−P (2)+1 − . . .− ξk + ξk+1 + . . .+ ξk+P (1) and θk := Yk − c+ξk.

Let κ(1), κ(2) be independent PRM(ϑi), i = 1, 2, with ϑ1(dt × dx) = dt × e−x dx,

ϑ2(dt × dx) = dt × (1 − p)/p e−x dx, respectively. By by similar arguments as in

Proposition 1.2.5

∞∑

k=1

ε( k
T

,a−1
T (c+ξk−bT ))

T→∞
=⇒ P (1)κ(1) + P (2)κ(2). (1.2.19)

Furthermore P(θk > x) = o(P(c+ξk > x)) and P(θk < −x) = o(P(c+ξk > x)) for

x→ ∞. Hence by Theorem 1.2.1

P

(
∞∑

k=1

ε( k
T

,a−1
T (Yk−bT ))(I) 6=

∞∑

k=1

ε( k
T

,a−1
T (c+ξk−bT ))(I)

)
T→∞
−→ 0, (1.2.20)

and by (1.2.19)

∞∑

k=1

ε( k
T

,a−1
T (Yk−bT ))

T→∞
=⇒ P (1)κ(1) + P (2)κ(2).

This result has been proven by Davis and Resnick [55], Theorem 3.3 with completely

different methods. �

1.2.2 Marks

In the last section we have proven point process convergence of a discrete-time

subexponential sequence. In the continuous-time setting, we choose the discrete-

time points of the point process properly to capture large jumps of the Lévy process
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and extremes of the kernel function. Now, also the behavior of the continuous-time

process between the discrete-time skeleton matters. The question arises how long the

sample path of the continuous-time process stays on a high level, and how it reverts

to its mean, if a high level exceedance at a certain time point occurs. The sample

path behavior near high level excursions will be modelled by marks. The mark is the

stochastic process Y under the conditional probability that Y (α) > uT . We shall see

in Section 1.4 that our discrete-time skeleton captures fully the extremal behavior

of Y .

Lemma 1.2.7

Let Y = {Y (t)}t∈R be a stochastic process in R, which is a. s. bounded on every

compact set and has the decomposition

Y (t) = f(t)Z + Ỹ (t) for t ∈ R,

where f : R → R is a deterministic function with f+ <∞ and Z ∈ S∩MDA(Λ) is a

r. v. independent of the stochastic process Ỹ = {Ỹ (t)}t∈R, which is also a. s. bounded

on every compact set. Assume furthermore that there exist constants aT > 0, bT ∈ R

and uT = aTx+ bT for x ∈ R such that

lim
T→∞

TP(f+Z > uT ) = exp(−x).

Let τ = f+Z + θ with

P(θ > x) = o(P(f+Z > x)) for x→ ∞. (1.2.21)

For ε > 0 arbitrary the following assertions hold:

(a) Let m > 0 be fixed, then lim
T→∞

P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε

∣∣∣∣ τ > uT

)
= 0.

(b) Let O = {α1, . . . , αP} be a finite set in R such that f(t) = f+ for t ∈ O. For

y1, . . . , yP ∈ R, and y = max{0, y1, . . . , yP} we have

lim
T→∞

P (Y (α1) > uT + aTy1, . . . , Y (αP ) > uT + aTyP | τ > uT ) = exp(−y).

(c) Let |f(t)| < f+ and P(Ỹ (t) > x) = o(P(f+Z > x)) for x→ ∞. Then

lim
T→∞

P (Y (t) > uT + aTy| τ > uT ) = 0 for y ∈ R.
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Remark 1.2.8

(i) Let α ∈ R with f(α) = f+, P(Ỹ (α) > x) = o(P(f+Z > x)) for x → ∞ and

τ = Y (α), where Y and Ỹ are a. s. bounded on every compact set. Then, Lemma 1.2.7

describes the sample path behavior of Y , if it has an exceedance over the threshold

uT at time point α. Let XT for T > 0 be processes in some measurable metric space

(D,D), where uniform convergence on compacta is sufficient for convergence. The

process XT with distribution

P(XT ∈ D) = P(Y ∈ D|Y (α) > uT ) for D ∈ D

is defined as a mark on Y . Lemma 1.2.7 (a) then states that the normalized marks

converge weakly to the deterministic function f/f+. Moreover, Lemma 1.2.7 (b) and

(c) give the distributional limit of the scaled excess over threshold. For P = 1, the

exponential limit in (b) corresponds to the limiting generalized Pareto distribution

for scaled excesses in MDA(Λ).

(ii) If f(α±) = f+ or f(αl±) = f+ for l ∈ {1, . . . , P} and Ỹ is a. s. continuous

in α or αl, respectively, with P(Ỹ (α) > x) = o(P(f+Z > x)) for x → ∞, then

Lemma 1.2.7 also holds by replacing τ or Y (αl) by Y (α±) or Y (αl±), respectively.

�

Proof of Lemma 1.2.7.

Let ε > 0 be arbitrary.

(a) We decompose the probability:

P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε

∣∣∣∣ τ > uT

)
(1.2.22)

= P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε, |f+Z − uT | > aTA

∣∣∣∣ τ > uT

)

+P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε, |f+Z − uT | ≤ aTA

∣∣∣∣ τ > uT

)
.

The first term in (1.2.22) satisfies the inequality

P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε, |f+Z − uT | > aTA

∣∣∣∣ τ > uT

)

≤
P (|f+Z − uT | > aTA, τ > uT )

P(τ > uT )
. (1.2.23)
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Furthermore, by (1.2.21) and Proposition 1.1.2 (iii),

lim
T→∞

TP(τ > uT ) = lim
T→∞

TP(f+Z + θ > uT ) = exp(−x). (1.2.24)

Then, by using Lemma 1.2.3 (a) we conclude

lim
A↑∞

lim
T→∞

P (|f+Z − uT | > aTA, τ > uT )

P(τ > uT )
= 0. (1.2.25)

For the second term in (1.2.22) we have

P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε, |f+Z − uT | ≤ aTA

)

≤ P

(
sup

−m≤t≤m
|Y (t) − f(t)Z| > bT ε− aT (A+ x), |f+Z − uT | ≤ aTA

)

= P

(
sup

−m≤t≤m
|Ỹ (t)| > bT ε− aT (A+ x)

)
P
(∣∣f+Z − uT

∣∣ ≤ aTA
)
, (1.2.26)

where we used the independence of Ỹ and Z in the last step. Furthermore, for

T → ∞, on the one hand bT ε− aT (A+ x) → ∞ holds and on the other hand

P
(∣∣f+Z − uT

∣∣ ≤ aTA
)
≤ P

(
f+Z > uT − aTA

)
= O

(
T−1

)
. (1.2.27)

Thus by (1.2.26) and (1.2.27) for T → ∞,

P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε, |f+Z − uT | ≤ aTA

)
= o

(
T−1

)

and by (1.2.24)

P

(
sup

−m≤t≤m

∣∣∣∣
Y (t)

bT
−
f(t)

f+

∣∣∣∣ > ε, |f+Z − uT | ≤ aTA

∣∣∣∣ τ > uT

)
T→∞
−→ 0. (1.2.28)

Combining (1.2.22), (1.2.23), (1.2.25) and (1.2.28) yields the assertion.

(b) First we show

lim
T→∞

P

(
sup
t∈O

|Y (t) − τ | > aT ε

∣∣∣∣ τ > uT

)
= 0. (1.2.29)

Define vT = aT ε. We proceed as in (a) and decompose the probability

P

(
sup
t∈O

|Y (t) − τ | > aT ε

∣∣∣∣ τ > uT

)
(1.2.30)

= P

(
sup
t∈O

|Ỹ (t) − θ| > aT ε, f
+Z > uT − vT

∣∣∣∣ τ > uT

)

+P

(
sup
t∈O

|Ỹ (t) − θ| > aT ε, f
+Z ≤ uT − vT

∣∣∣∣ τ > uT

)
.
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For the first summand of (1.2.30) we get

P

(
sup
t∈O

|Ỹ (t) − θ| > aT ε, f
+Z > uT − vT

∣∣∣∣ τ > uT

)
(1.2.31)

≤
P

(
supt∈O |Ỹ (t) − θ| > aT ε, f

+Z > uT − vT

)

P(τ > uT )

=
P

(
supt∈O |Ỹ (t) − θ| > aT ε

)
P (f+Z > uT − vT )

P(τ > uT )

T→∞
−→ 0

by the independence of Ỹ − θ and Z. The last term tends to zero, since aT → ∞,

TP(f+Z > uT − vT ) → exp(−x+ ε) for T → ∞ and (1.2.24) holds.

Using Lemma 1.2.3 (a) and (1.2.24) we get for the second summand of (1.2.30)

P

(
sup
t∈O

|Y (t) − τ | > aT ε, f
+Z ≤ uT − vT

∣∣∣∣ τ > uT

)

≤
P (τ > uT , f

+Z ≤ uT − vT )

P (τ > uT )

T→∞
−→ 0. (1.2.32)

Therefore (1.2.29) is proven by (1.2.30)-(1.2.32). Invoking again (1.2.24) we see that

P (τ > uT + aTyi| τ > uT ) =
P (τ > aT max{x, x+ yi} + bT )

P (τ > aTx+ bT )
T→∞
−→ exp(−max{yi, 0}). (1.2.33)

Taking (1.2.29) into account we obtain the second statement of (b).

(c) By considering (1.2.24) and the fact that for |f(t)| < f+

P (Y (t) > aT (x+ y) + bT ) = o
(
P
(
f+Z > aT (x+ y) + bT

))
for T → ∞,

by Proposition 1.1.2 (iii) we conclude

P (Y (t) > uT + aTy| τ > uT )

≤
P (Y (t) > aT (x+ y) + bT )

P (τ > aTx+ bT )

=
P(Y (t) > aT (x+ y) + bT )

P(τ > aT (x+ y) + bT )

P (τ > aT (x+ y) + bT )

P (τ > aTx+ bT )

T→∞
−→ 0.

�
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Example 1.2.9 (Continuation of Example 1.2.6)

Suppose P (1) = 1 and P (2) = 0. Let k ∈ Z be fixed. Define the discrete-time pro-

cess Y (n) := Yn, f(n) := cn−k for n ∈ Z and Z := ξk. Let XT be a stochastic

process with P(XT ∈ D) = P(Y/bT ∈ D|Yk > uT ) for D ∈ B(RZ). Then we get

XT
T→∞
=⇒ {cn−k/c

+}n∈Z by Lemma 1.2.7 (a). For a subclass of the extended heavy

tailed Weibull distribution, Example 1.1.4, this result can be found in Rootzén [131],

Theorem 8.6. �

1.2.3 Marked point processes

In this section we introduce marked point processes, aiming at a description of the

point process of high level exceedances and at the same time the excursion following

an exceedance. First we define the proper sample path space. We use the notation

of Section 1.2.1.

Let D (R) denote the space of functions on R which are right continuous and have

left-hand limits. The space D (R) is provided with a metric d that generates the

Skorohod topology, such that D (R) is separable and complete (see Billingsley [28],

Section 16). Convergence with respect to d is equivalent to convergence of the re-

striction on every compact set [−m,m] in D[−m,m] with metric dm, which also

generates the Skorohod topology in D[−m,m], since

d(x, y) =
∞∑

m=1

2−m min{1, dm(x|[−m,m], y|[−m,m])} for x, y ∈ D(R).

Let D be the Borel σ-field in D(R). Sufficient for convergence in D (R) is uniform

convergence on compacta. Denote S0 = MP (S), d̃0 = ρ and Sk = D (R), d̃k = d for

k ∈ N. Then for every k ∈ N0 the metric space (Sk, d̃k) is separable and complete.

Consider the infinite Cartesian product E = S0 × S1 × S2 × · · · . A random element

η = (κ,X1, X2, . . .) in E is called a marked point process. It is clear that E provided

with the product metric

d̃(x, y) =
∞∑

k=0

2−k min{1, d̃k(xk, yk)} for x, y ∈ E

of coordinatewise convergence is complete and separable. Convergence of random el-

ements in E is described by weak convergence. For further details see Billingsley [28],
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Pollard [120] or Lindvall [100]. We need the following criteria for weak convergence

in E, which is a modification of Billingsley [28], Theorem 3.1.

Lemma 1.2.10

Assume that ζ̃T = (κ̃T , X̃1,T , X̃2,T , . . .), ζT = (κT , X1,T , X2,T , . . .) and ζ are random

elements in (E, d̃) satisfying ζ̃T
T→∞
=⇒ ζ in E. Assume furthermore that, for any ε > 0,

k,m ∈ N,

lim
T→∞

P (ρ(κT , κ̃T ) > ε) = 0 and lim
T→∞

P

(
sup

−m≤t≤m
|Xk,T (t) − X̃k,T (t)| > ε

)
= 0.

Then

ζT
T→∞
=⇒ ζ in E.

Proof.

Sufficient for convergence in D(R) is uniform convergence with respect to the supre-

mum norm on every set [−m,m] for m ∈ N. Hence the assumption implies

lim
T→∞

P

(
dm

(
Xk,T |[−m,m], X̃k,T |[−m,m]

)
> ε
)

= 0. (1.2.34)

For a given ε > 0 choose i ∈ N such that 2−i < ε/2, then

∞∑

m=i+1

2−m <
ε

2
.

Moreover,

P(d(Xk,T , X̃k,T ) > ε) ≤
i∑

m=0

P

(
dm(Xk,T |[−m,m], X̃k,T |[−m,m]) >

ε

2(i+ 1)

)
T→∞
−→ 0,

where we applied (1.2.34). Similarly we get

P(d̃(ζT , ζ̃T ) > ε) ≤ P

(
ρ (κT , κ̃T ) >

ε

2(i+ 1)

)
+

i∑

k=1

P

(
d(Xk,T , X̃k,T ) >

ε

2(i+ 1)

)
,

which tends to zero for T → ∞. The assertion is now a consequence of Theorem 3.1

of Billingsley [28]. �

Now we formulate the main result of this section.

Theorem 1.2.11

For k ∈ N let Yk = {Yk(t)}t∈R be stochastic processes in (D(R),D) with the decom-

position

Yk(t) = fk(t)Zk + Ỹk(t) for t ∈ R,
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where fk : R → R is a deterministic function in D(R) with f+
k < ∞, fk(αk) = f+

k

for some αk ∈ R and Zk ∈ S ∩ MDA(Λ) is a r. v. independent of Ỹk = {Ỹk(t)}t∈R

in D(R). Let ak,T > 0, bk,T ∈ R, k ∈ N, T > 0, be constants such that for

uk,T = ak,Tx+ bk,T with x ∈ R,

lim
T→∞

TP(f+
k Zk > uk,T ) = exp(−x)

holds. Furthermore for k ∈ N, let τk = f+
k Zk + θk, where

P(θk > x) = o(P(f+
k Zk > x)) for x→ ∞,

and Xk,T be a random element in D(R) with distribution given by

P (Xk,T ∈ D) = P (Yk ∈ D| τk > uk,T ) for D ∈ D.

Finally, let κT and κ be point processes in MP (S) with κT
T→∞
=⇒ κ and

ηT =

(
κT ,

X1,T

b1,T

,
X1,T

X1,T (α1)
,
X2,T

b2,T

,
X2,T

X2,T (α2)
, . . .

)
, η =

(
κ,
f1

f+
1

,
f1

f+
1

,
f2

f+
2

,
f2

f+
2

, . . .

)

be marked point processes in E. Then

ηT
T→∞
=⇒ η in E.

The normalized marks Xk,T/bk,T characterize the normalized behavior of the process

after an exceedance and Xk,T/Xk,T (αk) the relative behavior.

Proof.

Define the continuous mapping h1 : MP (S) → E with

h1(y) :=

(
y,
f1

f+
1

,
f1

f+
1

,
f2

f+
2

,
f2

f+
2

, . . .

)

and the marked point process

ζT :=

(
κT ,

X1,T

b1,T

,
X1,T

b1,T

,
X2,T

b2,T

,
X2,T

b2,T

, . . .

)

in E. Applying the continuous mapping theorem, Billingsley [28], Theorem 2.7, we

obtain

ζ̃T := h1(κT )
T→∞
=⇒ h1(κ) = η. (1.2.35)
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Define the set D = {g ∈ D(R) : sup−m≤t≤m |g(t) − fk(t)/f
+
k | > ε} ∈ D, then by

Lemma 1.2.7 (a) we know

lim
T→∞

P

(
sup

−m≤t≤m

∣∣∣∣
Xk,T (t)

bk,T

−
fk(t)

f+
k

∣∣∣∣ > ε

)

= lim
T→∞

P

(
Xk,T

bk,T

∈ D

)

= lim
T→∞

P

(
sup

−m≤t≤m

∣∣∣∣
Yk(t)

bk,T

−
fk(t)

f+
k

∣∣∣∣ > ε

∣∣∣∣ τk > uk,T

)
= 0. (1.2.36)

The limit relations (1.2.35) and (1.2.36) ensure that the assumptions of Lemma 1.2.10

are satisfied and we get ζT
T→∞
=⇒ η in E. There also exists a measurable and a. s. con-

tinuous mapping h2 : E → E with h2(ζT ) = ηT regarding to the probability measure

of η. Applying the continuous mapping theorem, Billingsley [28], Theorem 2.7, again

we obtain ηT = h2(ζT )
T→∞
=⇒ h2(η) = η. �

1.3 Tail behavior

In this section we estimate the tail behavior of a subexponential Lévy driven MA

process Y given in (1.0.1). As one would expect any marginal distribution of a MA

process with a kernel function, which has a finite number of local extremes, has

a lighter tail than of f+L(1). In addition to prove this, we will present sufficient

conditions for Y (0) to be subexponential.

Note, that the Lévy measure of Y (0) is by (1.1.6) for x > f+ as given by

νY [x,∞) =

∫

f+(s)>0

ν1

[
x

f+(s)
,∞

)
ds+

∫

f−(s)>0

ν2

(
−∞,−

x

f−(s)

]
ds (1.3.1)

and hence, coincides with the Lévy measure of
∫∞

−∞
f+(s) dL1(s)+

∫∞

−∞
f−(s) dL2(s).

By the tail-equivalence of the Lévy measure and its corresponding probability dis-

tribution, in the case of subexponential distributions (Proposition 1.1.2 (v)), we

immediately see that small jumps of the Lévy process have no influence on the

tail behavior of Y (0). Thus L3 is negligible for the tail of Y (0). We will also use

that
∫∞

−∞
f+(s) dL1(s) as well as

∫∞

−∞
f−(s) dL2(s) are positive Poisson shot noise

processes.
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1.3.1 The Poisson shot noise process

As an important special case we calculate the tail behavior of the positive Poisson

shot noise process given in (1.1.11), whose jump sizes are subexponential.

Proposition 1.3.1

Let Y be a positive Poisson shot noise process as given by (1.1.11) satisfying (L1)

and (K1). Suppose U is an uniform r. v. on (−1, 1), independent of L. Then holds

Y (0) ∈ S and there exists a t0 > 0 such that for all t ≥ t0

P(Y (0) > x) ∼ 2tP(f(tU)L(1) > x) for x→ ∞.

The following Lemma gives an useful representation of a shot noise process. We

include the proof here since (to our knowledge) it has not appeared in this generality

elsewhere.

Lemma 1.3.2

Let L be a positive compound Poisson process given by (1.1.10), f : R → R be

measurable, bounded and
∫ t

−t
f(s) dL(s) be i. d. for some t > 0. Suppose {Uk}k∈N, U

are i. i. d. uniform r. v. s on (−1, 1), independent of L. Then for any t > 0,

∫ t

−t

f(s) dL(s)
d
=

N(2t)∑

k=1

f(tUk)Zk.

Moreover,
∫ t

−t
f(s) dL(s) ∈ S if and only if f(tU)Z1 ∈ S. In this case

P

(∫ t

−t

f(s) dL(s) > x

)
∼ 2µtP(f(tU)Z1 > x) for x→ ∞.

Proof.

Define for x > 0 the set

M = {(s, y) ∈ (−t, t] × R+ : f(s)y ∈ (x,∞)}.

The generating triplet (νX , σ
2
X ,mX) of the i. d. r. v. X =

∫ t

−t
f(s)L(s) is by (1.1.6)

given as

νX(x,∞) =

∫ t

−t

∫ ∞

−∞

1M(s, y)ν(dy) ds = µ

∫ t

−t

P({Z1 : (s, Z1) ∈M}) ds,
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σX = 0 and mX =
∫∞

−∞
κ(x) νX(dx). On the other hand, the generating triplet

(νX̃ , σ
2
X̃
,mX̃) of the i. d. r. v. X̃ =

∑N(2t)
k=1 f(tUk)Zk, which is a compound Pois-

son r. v., is νX̃(x,∞) = 2µtP(f(tU)Z1 > x) for x > 0, mX̃ =
∫∞

−∞
κ(x) νX̃(dx) and

σ2
X̃

= 0. Recalling that an uniform r. v. on (−t, t) has a density u satisfying

ds = 2tu(ds) yields

νX̃(x,∞) = 2µtP(f(tU1)Z1 > x) = 2µt

∫ t

−t

P({Z1 : (s, Z1) ∈M})u(ds)

= µ

∫ t

−t

P({Z1 : (s, Z1) ∈M})ds = νX(x,∞).

Thus the generating triplet of X and X̃ are identical and the first statement holds.

Taking into account that f(tU) is a bounded r. v. and Z1 ∈ S, then we have

f(tU)Z1 ∈ S by Proposition 1.1.2 (vi). Finally, by applying Proposition 1.1.2 (v)

we obtain X ∈ S if and only if f(tU1)Z1 ∈ S. In this case

P(X > x) ∼ νX(x,∞) = 2µtP(f(tU)Z1 > x) for x→ ∞.

�

Proof of Proposition 1.3.1.

Note that f : R → R+ and Z1 has only support on the positive real line. By condition

(K1) f is bounded and the set D of discontinuities of f is at most countable. If

f(x) = 0 for every x ∈ Dc, then f(x) 6= 0 only on a set with Lebesgue measure zero;

hence Y (0) = 0 a. s.. Otherwise there exists an x∗ ∈ Dc with f(x∗) > 0. Since f is

continuous in x∗, there exist a x1, x2 ∈ R with x1 < x∗ < x2 such that

f(x) > f(x∗)/2 =: f̃ for x ∈ (x1, x2). (1.3.2)

Let define the positive sequence cn = supt∈[n−1,n) f(t) for n ∈ N. From (K1) we

conclude

∞∑

k=−∞

cδk <∞. (1.3.3)

Furthermore, define the kernel function

f(t) =
∞∑

k=−∞

ck 1[k−1,k)(t) for t ∈ R.
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Then f(t) ≤ f(t) for t ∈ R. From (1.3.3) we know that ck → 0 for k → ±∞. Thus

there exists a t0 > max{|x1|, |x2|} such that

f(t) ≤ f(t) ≤ f̃/4 for |t| ≥ t0. (1.3.4)

Using the notation
∫ b

a
f(t− s) dL(s) for

∫
(a,b]

f(t− s) dL(s) we define the following

positive r. v. s with kernel function f and f , respectively,

X0 :=

−t0∫

−∞

f(s) dL(s) +

∞∫

t0

f(s) dL(s) =
∑

|k|≥t0

ck[L(k) − L(k − 1)],

X1 :=

x1∫

−t0

f(s) dL(s), X2 :=

x2∫

x1

f(s) dL(s), X3 :=

t0∫

x2

f(s) dL(s).

If we write c∗ for max|k|>t0 ck, which is by (1.3.4) less than f̃/4, and

P ∗ = #{k : |k| ≥ t0, ck = c∗},

then we get using Proposition 1.3 in Davis and Resnick [55],

P(X0 > x) ∼ P ∗
P(c∗L(1) > x) for x→ ∞.

Thus, by L(1) ∈ R−∞ and (1.3.4)

P(X0 > x) = o(P(L(1) > 2x/f̃)) for x→ ∞. (1.3.5)

Moreover, we obtain X1 +X2 +X3, X2 ∈ S and for x→ ∞

P(X1 +X2 +X3 > x) = P




t0∫

−t0

f(s) dL(s) > x


 ∼ 2t0P(f(t0U)L(1) > x), (1.3.6)

P(X2 > x) ∼ 2
x2 − x1

2
P

(
f

(
x1 + x2

2
+
x2 − x1

2
U

)
L(1) > x

)
(1.3.7)

by Lemma 1.3.2. Taking (1.3.2), (1.3.7) and P(X2 > x) ≤ P(X1 +X2 +X3 > x) for

x ∈ R into account

lim sup
x→∞

P(L(1) > 2x/f̃)

P(X1 +X2 +X3 > x)
≤ 1. (1.3.8)
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Considering (1.3.5) and (1.3.8) we get

P(X0 > x) = o(P(X1 +X2 +X3 > x)) for x→ ∞. (1.3.9)

Applying (1.3.6), (1.3.9) and Proposition 1.1.2 (iii) gives Y (0) ∈ S and for x→ ∞

P(Y (0) > x) ∼ P(X1 +X2 +X3 > x) ∼ 2t0P(f(t0U)L(1) > x).

The result also holds if we replace t0 by some t ≥ t0. �

1.3.2 The general MA process

Invoking the results for the positive Poisson shot noise process in the last section

we can now derive results on the tail behavior of subexponential Lévy driven MA

processes.

Theorem 1.3.3

Let Y be a stationary MA process as given in (1.0.1) satisfying conditions (K1) and

(L1). If f is also negative we additionally assume (L2). Suppose U is a uniform r. v.

on (−1, 1) and independent of L. Then there exists a t0 > 0 such that Y (0) ∈ S if

and only if f(tU)L(1) ∈ S for every t ≥ t0. In this case

P(Y (0) > x) ∼ 2tP(f(tU)L(1) > x) for x→ ∞.

Note that |f(t)| < f+ for t ≥ t0. For the proof we need the following Lemma.

Lemma 1.3.4

Let Xi, Zi, Z̃i, be independent r. v. s, i = 1, 2, where Xi has bounded support on

R+. Suppose P(Zi > x)/P(Z̃i > x)
x→∞
−→ q ∈ [0,∞]. Then

lim
x→∞

P(X1Z1 > x) + P(X2Z2 > x)

P(X1Z̃1 > x) + P(X2Z̃2 > x)
= q.

Proof.

Let ε > 0 be arbitrary. Since P(Zi > x)/P(Z̃i > x)
x→∞
−→ q there exists an x0 > 0

such that q − ε < P(Zi > x)/P(Z̃i > x) < q + ε for x > x0. Denote by FXi
the d. f.
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of Xi, which has support on [0, ci] for ci > 0. Then for x > max{c1, c2}x0,

P(X1Z1 > x) + P(X2Z2 > x) =

∫ c1

0

P

(
Z1 >

x

u

)
FX1(du) +

∫ c2

0

P

(
Z2 >

x

u

)
FX2(du)

≤ (q + ε)

∫ c1

0

P

(
Z̃1 >

x

u

)
FX1(du) + (q + ε)

∫ c2

0

P

(
Z̃2 >

x

u

)
FX2(du)

= (q + ε)[P(X1Z̃1 > x) + P(X2Z̃2 > x)]

and, similarly, (q − ε)[P(X1Z̃1 > x) + P(X2Z̃2 > x)] ≤ P(X1Z1 > x) + P(X2Z2 > x)

for x > max{c1, c2}x0. �

Proof of Theorem 1.3.3.

We use the decompositions L = L1−L2+L3 as given on p. 16. Let U1, U2 be indepen-

dent uniform r. v. s on (−1, 1). Then L1(1), L2(1), f+(tU1)L1(1), f−(tU2)L2(1) ∈ S

by Proposition 1.3.1 (vi). Taking Proposition 1.3.1 with some t > t0, Proposi-

tion 1.1.2 (v) and Lemma 1.3.4 into account, we obtain Y (0) ∈ S if and only if

for x→ ∞

P (Y (0) > x) ∼ νY (x,∞) = νY1(x,∞) + νY2(x,∞) (1.3.10)

∼ 2tP(f+(tU1)L1(1) > x) + 2tP(f−(tU2)L2(1) > x).

Let p > 0. Since L(1),−L(1) ∈ S, we get P(L+(1) > x) ∼ P(L1(1) > x) and

P(L(1)− > x) ∼ P(L2(1) > x) for x → ∞ by Proposition 1.1.2 (v). Then with

Lemma 1.3.4 we have for x→ ∞

P(f(tU)L(1) > x) = P(f+(tU)L+(1) > x) + P(f−(tU)L−(1) > x)

∼ P(f+(tU)L1(1) > x) + P(f−(tU)L2(1) > x). (1.3.11)

Thus by (1.3.10)-(1.3.11) Y (0) ∈ S if and only if P(Y (0) > x) ∼ 2tP(f(tU)L(1) > x)

for x→ ∞. In the case p = 0 the Lévy measure of f−(tU)L2(1) has bounded support

and hence also the d. f.. �

We shall give some sufficient conditions for f(tU)L(1) ∈ S and hence Y (0) ∈ S.

Remark 1.3.5

Let Y be a stationary MA process as given in (1.0.1) satisfying (K1), (L1) and has

decomposition as given in (1.0.3). Taking f+(tU)L1(1), f−(tU)L2(1) ∈ S, Proposi-

tion 1.1.2 (iii) and (1.3.11) into account a sufficient condition for f(tU)L(1) to be
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subexponential is

P(f−(tU)L2(1) > x)

P(f+(tU)L1(1) > x)

x→∞
−→ q ≥ 0. (1.3.12)

The following examples satisfy (1.3.12):

(a) f(x) = −f(−x) for x ∈ R and condition (L2) is satisfied.

(b) f ≥ 0.

(c) L = L1 + L3.

(d) f is right or left continuous in some α with f(α) = f+ and f− < f+.

(e) f is a step function and condition (L2) is satisfied.

�

Remark 1.3.6

In the case of a discrete-time MA process as given in Example 1.2.6, let L(1) =

ξ1 ∈ S satisfies the tail balance condition in (L2). This is sufficient for Yn to be

subexponential. Then

P(Yn > x) ∼

(
P (1) +

1 − p

p
P (2)

)
P(c+L(1) > x) for x→ ∞.

In this case the additional assumption that either ν(−∞,−1) = 0 or −L(1) ∈ S is

not necessary since the tails of
∫∞

−∞
f−(s) dL2(s) and

∫∞

−∞
f+(s) dL1(s) are by

lim
x→∞

P

(∫∞

−∞
f−(s) dL2(s) > x

)

P

(∫∞

−∞
f+(s) dL1(s) > x

) =
1

p

P (2)

P (1)

comparable. �

Corollary 1.3.7

Let Y be a stationary MA process as given in (1.0.1) satisfying (K1) and (L1). If

f is also negative assume additionally (L2). In addition, let L̃ be a Lévy process

satisfying for x→ ∞,

P(L̃(1) > x) ∼ P(L(1) > x) and P(L̃(1) < −x) ∼ P(L(1) < −x).
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Define Ỹ (t) =
∫∞

−∞
f(t− s) dL̃(s) for t ∈ R. Then Y (0) ∈ S if and only if Ỹ (0) ∈ S

and in this case

P(Y (0) > x) ∼ P(Ỹ (0) > x) for x→ ∞.

Proof.

By Theorem 1.3.3 holds Y (0) ∈ S if and only if f(tU)L(1) ∈ S and similarly holds

Ỹ (0) ∈ S holds if and only if f(tU)L̃(1) ∈ S. If we apply Lemma 1.3.4 and (1.3.11)

we get that f(tU)L(1) and f(tU)L̃(1) are tail-equivalent. �

The next corollary shows that the assumption Y (0) ∈ S is not necessary for the

right tail of Y (0) to be lighter than the tail of f+L(1).

Corollary 1.3.8

Let Y be a stationary MA process as given in (1.0.1) satisfying (K1), (K2) and (L1).

If f is also negative assume additionally (L2). Then for x→ ∞,

P(Y (0) > x) = o(P(f+L(1) > x)) and P(Y (0) < −x) = o(P(f+L(1) > x)).

Proof.

Let U be a uniform r. v. on (−1, 1). Without loss of generality we assume P (1) = 1

and f(α) = f+. Let ε > 0 be arbitrary. Then

f̃ := sup
t≤α−ε

|f(t)| ∨ sup
t≥α+ε

|f(t)| < sup
t∈R

|f(t)| = f+.

On the one hand
P(f(tU)L1(1) > x| |tU − α| ≤ ε)

P(f+L1(1) > x)
≤ 1

and on the other hand, taking into account that the tail of L1(1) ∈ R−∞, then

P(f(tU)L1(1) > x||tU − α| > ε)

P(f+L1(1) > x)
≤

P(f̃L1(1) > x)

P(f+L1(1) > x)

x→∞
−→ 0.

Thus

P(f(tU)L1(1) > x)

P(f+L1(1) > x)

≤
ε

t
+
(
1 −

ε

t

)
P(f(tU)L1(1) > x| |tU − α| > ε)

P(f+L1(1) > x)

x→∞
−→

ε

t
.

Regarding on the one hand P(f+[L1(1) + L3(1)] > x) ∼ P(f+L(1) > x) and on the

other hand P(f(tU)[L1(1) + L3(1)] > x) ∼ P(f(tU)L1(1) > x) for x→ ∞ also

P(f(tU)[L1(1) + L3(1)] > x) = o(P(f+L(1) > x)) for x→ ∞.
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Applying Remark 1.3.5 (d) then Y1(0) + Y3(0) ∈ S and

P(Y1(0) + Y3(0) > x) ∼ P (f(tU)[L1(1) + L3(1)]) = o(P(f+L(1) > x)) for x→ ∞.

Similarly Y2(0) ∈ S and P(Y2(0) > x) = o(P(f+L(1) > x)) for x → ∞. Taking

Proposition 1.1.2 (iii) into account, then we get for x→ ∞,

P(Y (0) > x) = P([Y1(0) + Y3(0)] + Y2(0) > x) = o(P(f+L(1) > x)).

We obtain the second statement of Corollary 1.3.8 by choosing −f as kernel function

and applying the first statement. The assumption f− ≤ f+ has no influence on the

proof. �

1.3.3 Tail behavior of M(h) and M(Γk)

We now investigate the extreme behavior of the MA process Y with a. s. sample

paths in D(R). We first study the local maxima of the process, i. e. maxima over

an interval of fixed or random length. Define M(h) = sup0≤t≤h Y (t) for h > 0. Our

first result is in the spirit of Rosinski and Samorodnitsky [132], Theorem 2.1. They

study the tail behavior of subexponential r. v. s, which are functionals of stochastic

processes.

Theorem 1.3.9

Let Y be a stationary MA process as given in (1.0.1) with a. s. sample path in D(R)

and f ∈ D(R). Define for h > 0, t ∈ R,

f+
h (s) = sup

0≤t≤h
f+(t+ s), E+

h = {t ∈ R : f+
h (t±) = f+},

f−
h (s) = sup

0≤t≤h
f−(t+ s), E−

h = {t ∈ R : f−
h (t±) = f+}.

(a) Let h > 0 be fixed. Define for x > 1

νY (x,∞) =

∫

f+
h (s)>0

ν

(
x

f+
h (s)

,∞

)
ds+

∫

f−
h (s)>0

ν

(
−∞,

−x

f−
h (s)

)
ds.

Suppose νY (·,∞)/νY (1,∞) ∈ S. Then M(h) ∈ S and

P(M(h) > x) ∼ νY (x,∞) for x→ ∞.

Furthermore, if

Y (t) =

∫ ∞

−∞

f+
h (t− s) dL1(s) +

∫ ∞

−∞

f−
h (t− s) dL2(s)
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is a well-defined, stationary i. d. process, then P(M(h) > x) ∼ P(Y (0) > x)

for x→ ∞.

(b) Assume L(1) satisfies conditions (L1), (L2) and f satisfies conditions (K1),

(K2). Denote by λ the Lebesgue measure on R.

(b1) Then M(h) ∈ S and

P(M(h) > x) ∼

(
λ(E+

h ) +
1 − p

p
λ(E−

h )

)
P(f+L(1) > x) for x→ ∞.

(b2) Let τ be a positive r. v. on the same probability space than Y . Further-

more, τ is independent of Y with Eτ <∞, then also M(τ) ∈ S and with

K :=
∫∞

0
λ(E+

h ) + 1−p
p
λ(E−

h )Fτ (dh) holds

P(M(τ) > x) ∼ KP(f+L(1) > x) for x→ ∞.

Remark 1.3.10

(i) Note that (a) links the tail behavior of M(h) and νY under subexponentiality.

No assumption is made concerning the maximum domain of attraction.

(ii) If h is less than the smallest distance between successive extrema, we obtain

λ(E+
h ) = P (1)h and λ(E−

h ) = P (2)h. �

For the proof of Theorem 1.3.9 we need the following Lemma.

Lemma 1.3.11

Let Y be a separable stationary MA process as given in (1.0.1) satisfying f ∈ D(R)

and

P( sup
0≤t≤h

|Y (t)| <∞) = 1 for h > 0.

Assume that the Lévy measure ν of L has only support on [−c, c] for some c > 0.

Then, for every ε > 0 there exists a C > 0 such that

P(M(h) > x) ≤ P( sup
0≤t≤h

|Y (t)| > x) ≤ Ce−εx for x > 0.

Proof.

Let νh be the Lévy measure of the i. d. process {Y (t)}0≤t≤h, i. e. νh is the Lévy

measure corresponding to the finite dimensional distributions of {Y (t)}0≤t≤h (see
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Maruyama [106]). Denote by F = λ × ν the product measure of λ and ν on R
2.

Define also the function V : R
2 → R

Q by

V (s, x) = {xf(t− s)} 0≤t≤h
t∈Q

. (1.3.13)

Then νh = F ◦ V −1 and we calculate

νh





α ∈ R

[0,h] : sup
0≤t≤h

t∈Q

|α(t)| > f+c






 (1.3.14)

= F ◦ V −1





α ∈ R

[0,h] : sup
0≤t≤h

t∈Q

|α(t)| > f+c








=

∫

sup
0≤t≤h

|f(t−s)|6=0

ν


 f+c

sup
0≤t≤h

|f(t− s)|
,∞


+ ν


−∞,

−f+c

sup
0≤t≤h

|f(t− s)|


 ds = 0.

Thus the assumptions of Braverman and Samorodnitsky [33], Lemma 2.1, are satis-

fied and

C := E exp(ε sup
0≤t≤h

|Y (t)|) = E exp(ε sup
0≤t≤h

t∈Q

|Y (t)|) <∞ for every ε > 0.

Using the Markov inequality we obtain for every x > 0

P(M(h) > x) ≤ P( sup
0≤t≤h

|Y (t)| > x) ≤ e−εx
E exp(ε sup

0≤t≤h
|Y (t)|) = Ce−εx. (1.3.15)

�

Proof of Theorem 1.3.9.

(a) Step 1. Assume L = L1 − L2.

We have νY is the Lévy measure of Y (t). Applying Proposition 1.1.2 (v) the Lévy

measure and the probability measure of Y (t) are tail-equivalent. Denote by F = λ×ν

the product measure of λ and ν on R
2 and let the function V as be given in (1.3.13),

such that the Lévy measure νh of {Y (t)}0≤t≤h is F ◦V −1. Thus, similarly to (1.3.14),

H(x) = νh





α ∈ R

[0,h] : sup
0≤t≤h

t∈Q

α(t) > x








=

∫

sup
0≤t≤h

f+(t−s)>0

ν


 x

sup
0≤t≤h

f+(t− s)
,∞


 ds+

∫

sup
0≤t≤h

f−(t−s)>0

ν


−∞,

−x

sup
0≤t≤h

f−(t− s)


 ds

= νY (x,∞) ∈ S.
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Since Y has a. s. sample paths in D(R) we have P(sup0≤t≤h |Y (t)| < ∞) = 1 and

M(h) = sup 0≤t≤h
t∈Q

Y (t). Therefore the assumptions of Rosinski and Samorodnit-

sky [132], Theorem 2.1, are satisfied and hence M(h) ∈ S and

P (M(h) > x) ∼ νY [x,∞) for x→ ∞.

Step 2. Assume L = L1 − L2 + L3.

We decompose L into two independent Lévy processes L̃, L3, such that L = L̃+L3,

where L̃ = L1 − L2. Since Y and
∫∞

−∞
f(t − s) dL̃(s) has a. s. sample path in D(R)

also
∫∞

−∞
f(t− s) dL3(s) has a. s. sample path in D(R). Then by Lemma 1.3.11 and

Proposition 1.1.2 (i),

P

(
sup

0≤t≤h

∣∣∣∣
∫ ∞

−∞

f(t− s) dL3(s)

∣∣∣∣ > x

)
= o(νY (x,∞)) for x→ ∞.

Applying Step 1 and Proposition 1.1.2 (iii) we obtain for x→ ∞,

P(M(h) > x) ≤ P

(
sup

0≤t≤h

∫ ∞

−∞

f(t− s) dL̃(s) + sup
0≤t≤h

∣∣∣∣
∫ ∞

−∞

f(t− s) dL3(s)

∣∣∣∣ > x

)

∼ P

(
sup

0≤t≤h

∫ ∞

−∞

f(t− s) dL̃(s) > x

)
∼ νY (x,∞).

Similarly, by symmetry we have for x→ ∞

P(M(h) > x) ≥ P

(
sup

0≤t≤h

∫ ∞

−∞

f(t− s) dL̃(s) − sup
0≤t≤h

∣∣∣∣
∫ ∞

−∞

f(t− s) dL3(s)

∣∣∣∣ > x

)

∼ νY (x,∞).

Thus, P(M(h) > x) ∼ νY (x,∞) for x→ ∞ and hence we obtain M(h) ∈ S.

(b1) Here Y is a well-defined stationary i. d. process. W. l. o. g. we assume f ≥ 0

and α
(1)
j − α

(1)
j−1 ≥ 1 for j = 2, . . . , P (1). Define gh(t) = f+

h (t)1R\E+
h
(t) for t ∈ R,

Y 1(t) :=

∫ ∞

−∞

gh(t− s) dL(s), Y 2(t) := Y (t) − Y 1(t).

The MA process Y 1 = {Y 1(t)}t∈R satisfies the assumptions of Corollary 1.3.8, thus

P(Y 1(0) > x) = o(P(f+L(1) > x)) for x→ ∞.

Moreover, let t1 = h, tj = min{h, α
(1)
j − α

(1)
j−1} for j = 2, . . . , P (1), such that

∑P (1)

j=1 tj = λ(E+
h ) and Y 2(0) = f+

∑P (1)

j=1 [L(α
(1)
j ) − L(α

(1)
j − tj)]. Thus by Propo-

sition 1.1.2 (iii),

P(Y 2(0) > x) ∼ λ(E+
h )P(f+L(1) > x) for x→ ∞.
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Applying (a) and Proposition 1.1.2 (iii) again yields for x→ ∞,

P(M(h) > x) ∼ P(Y (0) > x) = P(Y 1(0) + Y 2(0) > x)

∼ λ(E+
h )P(f+L(1) > x). (1.3.16)

(b2) The sequence Mk = supk−1≤t≤k Y (t) is stationary such that for x ≥ 0,

P(M(s) > x) ≤ P




dse⋃

k=1

{Mk > x}


 ≤ (s+ 1)P(M(1) > x).

Denote by Fτ the d. f. of τ . Then we have an uniform bound

P(M(τ) > x)

P(M(1) > x)
=

∫ ∞

0

P(M(h) > x)

P(M(1) > x)
Fτ (dh) ≤

∫ ∞

0

(h+ 1)Fτ (dh) = Eτ + 1 (1.3.17)

for any x > 0. Regarding α
(1)
j − α

(1)
j−1 ≥ 1 for j = 2, . . . , P (1), (1.3.16) and Re-

mark 1.3.10 (ii), we get

P(M(h) > x) ∼
λ(E+

h )

hP (1)
P(M(1) > x) for x→ ∞,

and thus we obtain by dominated convergence

lim
x→∞

P(M(τ) > x)

P(f+L(1) > x)
= hP (1) lim

x→∞

P(M(τ) > x)

P(M(1) > x)

= hP (1) lim
x→∞

∫ ∞

0

P(M(h) > x)

P(M(1) > x)
Fτ (dh)

=

∫ ∞

0

λ(E+
h )Fτ (dh) <∞.

�

1.4 Extremal behavior

1.4.1 The marked point process at a discrete-time skeleton

We start with a short motivation why it makes sense to investigate the continuous-

time process Y at a discrete-time skeleton {Y (tn)}n∈N where {tn}n∈N are chosen

properly to capture the times where big jumps of the Lévy process and extremes of
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the kernel function occur. Consider the Poisson shot noise process given in (1.1.11)

with

Y (Γk + t) = f(t)Zk +
∞∑

j=−∞
j 6=k,0

f(Γk − Γj + t)Zj for k ∈ N, t ∈ R,

and assume that f satisfies condition (K2). If Zk is really large in comparison to

{Zj}j∈Z\{0,k}, then Y (Γk + t) behaves like f(t)Zk, and hence Y (Γk + t)/Y (Γk +α
(1)
l )

behaves like f(t)/f+. Since in the case of positive jumps, the process {f(t)Zk}t∈R

achieves local suprema if and only if f achieves local suprema in α
(1)
1 , . . . , α

(1)

P (1) , the

points Y (Γk +α
(1)
l ), k ∈ N, l = 1, . . . , P (1) are significant. In contrast to the negative

jumps the points, where Y (Γk + α
(2)
l ), k ∈ N, l = 1, . . . , P (2) are significant.

We come back to the decomposition of L = L1 − L2 + L3, where Li, i = 1, 2, are

positive compound Poisson processes with jumps larger than 1 and generating triplet

(0, 0, νi). Hence, for i = 1, 2, they have the representations

Li(t) =

Ni(t)∑

j=1

Z
(i)
j for t ≥ 0 and Li(t) =

−Ni(t−)∑

j=1

Z
(i)
−j for t ≤ 0, (1.4.1)

where Ni = {Ni(t)}t∈R is a Poisson process with intensities µi = νi(R), and jump

times Γ(i) = {Γ
(i)
k }k∈Z\{0}, Γ

(i)
−1 ≤ 0 < Γ

(i)
1 , Γ

(i)
k < Γ

(i)
k+1, k ∈ Z\{−1, 0}. The se-

quences Z(i) = {Z
(i)
k }k∈Z consist of i. i. d. r. v. s with d. f. s νi (−∞, x] /µi for x ∈ R.

Furthermore, N1, N2, Z
(1) and Z(2) are independent.

In the setup of a subexponential Lévy driven MA process we consider on the one hand

large positive jumps of the Lévy process in cooperation with suprema of f , i. e. the

sequence Y (Γ
(1)
k +α

(1)
l ), k ∈ N, l = 1, . . . , P (1), and on the other hand large negative

jumps in cooperation with local infima of f , i. e. Y (Γ
(2)
k +α

(2)
l ), k ∈ N, l = 1, . . . , P (2).

First we compute the point process behavior of the discrete-time skeleton {Y (tn)}n∈N

with tn ∈ {Γ
(i)
k + α

(i)
l : k ∈ N, l = 1, . . . , P (i), i = 1, 2}. After that we study the

behavior of the continuous-time process Y , if Y (tn) exceeds a large threshold, i. e.

we consider marked point processes.

Theorem 1.4.1

Let Y be a stationary MA process as given by (1.0.1) satisfying conditions (K1) and

(K2), where L has the decomposition given in (1.4.1). Suppose L(1) ∈ S ∩MDA(Λ)

with aT > 0, bT ∈ R, uT = aTx+ bT for x ∈ R such that

lim
T→∞

TP(f+L(1) > uT ) = exp(−x).
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If f is also negative, we additionally assume (L2). For i = 1, 2, l = 1, . . . , P (i) define

the corresponding point processes in S by

κ
(i,l)
T =

∞∑
k=0

ε(
(Γ

(i)
k +α

(i)
l )/T,a−1

T (Y (Γ
(i)
k +α

(i)
l )−bT )

), κ̃
(i)
T =

∞∑
k=0

ε(
k/(Tµi),a

−1
T (f+Z

(i)
k −bT )

).

Let κ(i) be a PRM(ϑi), i = 1, 2, with mean measure ϑ1(dt × dx) = dt × e−x dx

and ϑ2(dt × dx) = dt × (1 − p)/p e−x dx, respectively. Suppose κ(1) and κ(2) are

independent. Furthermore, if p > 0, define the point processes

κT =
P (1)∑

l=1

κ
(1,l)
T +

P (2)∑

l=1

κ
(2,l)
T , κ̃T = P (1)κ̃

(1)
T + P (2)κ̃

(2)
T and κ = P (1)κ(1) + P (2)κ(2).

For p = 0, define κT =
∑P (1)

l=1 κ
(1,l)
T , κ̃T = P (1)κ̃

(1)
T and κ = P (1)κ(1). Suppose

I = [s, t) × (x,∞) ⊆ S. Then for i = 1, 2, l = 1, . . . , P (i), it holds

lim
T→∞

P(κ
(i,l)
T (I) 6= κ̃

(i)
T (I)) = 0

and κT
T→∞
=⇒ κ.

Theorem 1.4.1 states that exceedances of {Y (Γ
(i)
k +α

(i)
l )}k∈N above a high threshold

behave like {f+Z
(i)
k }k∈Z, this are the extremes of f times the i. i. d. sequence of jump

sizes. Hence, the influence of small jumps of the Lévy process is negligible. We notice

that the limit process of the point process of exceedances κT (· × (x,∞)), x > 0 be

fixed, is the sum of two independent compound Poisson processes with constant

cluster sizes P (1), P (2). The following corollary describes the behavior of the marked

point process and the excess over threshold distribution function.

Corollary 1.4.2

Assume that the conditions of Theorem 1.4.1 holds and Y has a. s. sample paths in

D(R). Then the following statements hold:

(a) Let Xk,T , k ∈ N, T > 0, be random elements in D(R) with distributions given

by

P (X2k−1,T ∈ D) = P

(
Y (Γ

(1)
k + ·) ∈ D

∣∣∣Y (Γ
(1)
k + α

(1)
1 ) > uT

)
,

P (X2k,T ∈ D) = P

(
Y (Γ

(2)
k + ·) ∈ D

∣∣∣Y (Γ
(2)
k + α

(2)
1 ) > uT

)
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for D ∈ D. The point processes κT , κ are defined as in Theorem 1.4.1,

ηT :=

(
κT ,

X1,T

bT
,

X1,T

X1,T (α
(1)
1 )

,
X2,T

bT
,

X2,T

X2,T (α
(2)
1 )

, . . .

)
and

η :=

(
κ,

f

f+
,
f

f+
,
−f

f+
,
−f

f+
, . . .

)

are marked point processes in E. Then

ηT
T→∞
=⇒ η in E.

(b) Let i ∈ {1, 2} be fixed. Define P = P (i), αl = Γ
(i)
k + α

(i)
l , l = 1, . . . , P and

α = Γ
(i)
k + α

(i)
1 . For y1, . . . , yP ∈ R, and y = max{0, y1, . . . , yP} we have

lim
T→∞

P (Y (α1) > uT + aTy1, . . . , Y (αP ) > uT + aTyP |Y (α) > uT ) = exp(−y).

(c) Let i ∈ {1, 2} be fixed, t /∈ Oi and y ∈ R. Then

lim
T→∞

P

(
Y (Γ

(i)
k + t) > uT + aTy

∣∣∣Y (Γ
(i)
k + α

(i)
1 ) > uT

)
= 0.

(d) Let

KT =
∞∑

k=0

ε(
(Γ

(1)
k +α

(1)
1 )/T,a−1

T (Y (Γ
(1)
k +α

(1)
l )−bT ),{a−1

T (Y (Γ
(1)
k +ti)−bT )}i=1,...m

) and

K =
∞∑

k=0

ε(sk,Pk,{Pk 1{f(ti)=f+}}i=1,...,m)

be point processes in MP ([0,∞) × R
m+1) for any t1, . . . , tm ∈ R. Then

KT
T→∞
=⇒ K.

(e) Let

KT =
∞∑

k=0

ε(
(Γ

(1)
k +α

(1)
1 )/T,a−1

T (Y (Γ
(1)
k +α

(1)
l )−bT ),{Y (Γ

(1)
k +ti)/bT }i=1,...m

) and

K =
∞∑

k=0

ε(sk,Pk,{f(ti)/f+}i=1,...,m)

be point processes in MP ([0,∞) × R
m+1) for any t1, . . . , tm ∈ R. Then

KT
T→∞
=⇒ K.
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Remark 1.4.3

(i) Marks can be chosen at any extremum of the kernel function f in combination

with a large jump of the Lévy process, i. e. it is possible to take the conditional

probability on any of the events {Y (Γ
(i)
k + α

(i)
l ) > uT} for α

(i)
l ∈ Oi. It is also pos-

sible to take the conditional probability under f+Z
(i)
k . Then the normalized process

Xk,T/bT ∈ D(R), where

P(Xk,T ∈ D) = P(Y (Γ
(i)
k + ·) ∈ D|f+Z

(i)
k > uT ) for D ∈ D,

converges weakly to the deterministic function f/f+ or −f/f+, respectively. Thus

we see, that large jumps of the Lévy process cause extremes of Y if and only if the

time is properly chosen with an extreme of f . Hence (b) is no surprise, since

lim
T→∞

P

(
f+Z

(i)
k > uT + aTy1, . . . , f

+Z
(i)
k > uT + aTyP

∣∣∣ f+Z
(i)
k > uT

)
= exp(−y).

For P (1) = 1 we obtain the generalized Pareto distribution. This result is also con-

firmed by the point process convergence.

(ii) Note the similarities of the extreme behavior of the continuous-time MA process

and the discrete-time MA process, see Example 1.2.6, 1.2.9. In the case of a Poisson

shot noise process this is no surprise since a shot noise process is a MA process with

random coefficients.

(iii) Assume Y has a. s. sample paths in D(R). In (d) we can also replace the mark{
a−1

T (Y (Γ
(1)
k + ti) − bT )

}
i=1,...m

in R
m by {a−1

T (Y (Γ
(1)
k + t)− bT )}t∈I in D(I) for any

compact set I ⊆ R. Instead of weak convergence, we have to use ω̂-convergence,

introduced by Daley and Vere-Jones [50], Section A.2.6, since D(I) is not locally

compact. The same holds for (e). �

We shall use an important standard result of probability theory. If τ is a r. v. with

d. f. Fτ independent of the stationary process X, then we get for x ∈ R,

P(X(τ) > x) =

∫
P(X(t) > x)Fτ (dt) =

∫
P(X(0) > x)Fτ (dt)

= P(X(0) > x). (1.4.2)

Since Y, Yi are not independent of Γ(i), it is no surprise, that the distributions of

Y (Γ
(i)
k + t) and Yi(Γ

(i)
k + t), t ≥ 0, differ with those of Y (0) and Yi(0), respectively.
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But in contrast to this, Y3−i, Y3 are independent of Γ(i), i = 1, 2, and thus for x ∈ R,

P(Yj(Γ
(i)
k + t) > x) = P(Yj(0) > x) for x ∈ R, j = 3 − i, 3.

In our situation, however, we are confronted with jump times Γ(i) which influ-

ence the process Y directly. We shall decouple this dependence by using proper-

ties of the kernel function f in combination with the decomposition Y = Y1 −

Y2 + Y3 in independent components. Most important for the extremal behavior of

{Y (Γ
(1)
k + α

(1)
l )}k∈N will be the Poisson shot noise process Y1; the remaining part

−Y2 + Y3 will be negligible.

For the proofs of Theorem 1.4.1 and Corollary 1.4.2 we first show the following

Lemma.

Lemma 1.4.4

Suppose the assumptions of Theorem 1.4.1 hold. Then for i = 1, 2, α ∈ Oi and

x→ ∞, we can find r. v. s Θ(i), Θ̃(i) such that for x ∈ R

P(Y (Γ
(i)
k + α) − f+Z

(i)
k > x) ≤ P(Θ(i) > x),

P(Y (Γ
(i)
k + α) − f+Z

(i)
k < −x) ≤ P(Θ̃(i) > x)

(1.4.3)

and

P(Θ(i) > x) = o(P(f+Z
(i)
k > x)) and P(Θ̃(i) > x) = o(P(f+Z

(i)
k > x)) for x→ ∞.

Moreover, the r. v. Y (Γ
(i)
k + α) − f+Z

(i)
k is independent of Z

(i)
k . If Y (0) ∈ S and

t /∈ Oi, then

P(Y (Γ
(i)
k + t) > x) = o(P(f+Z

(i)
1 > x)) for x→ ∞

holds.

Proof.

Step 1. Assume L is a compound Poisson process as given in (1.1.10).

Choose k > 0 be fixed and define a shifted compound Poisson process L̃ = {L̃(t)}t∈R

with jump times

Γ̃j =

{
Γk for j = k,

Γk − Γk−j for j 6= k,
for j ∈ Z,
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corresponding jump sizes Zk−j at Γ̃j and intensity µ. Define Γ̃0 := 0. Without loss

of generality the support of f can be set to R. Then

Y (Γk + t) =

∫ ∞

−∞

f(Γk + t− s) dL(s) =
∞∑

m=−∞
m6=0

f(t+ Γ̃k−m)Zm

=
∞∑

j=−∞

f(t+ Γ̃j)Zk−j − f(t+ Γk)Z0 for all t ∈ R a. s..

As this equality is a. s., we obtain

Y (Γk + t) + f(t+ Γk)Z0 =
∞∑

j=−∞
j 6=0

f(t+ Γ̃j)Zk−j + f(t)Zk (1.4.4)

=

∫ ∞

−∞

f(t+ s) dL̃(s) + f(t)Zk = Ỹ (t) + f(t)Zk

a. s., where Ỹ (t) =
∫∞

−∞
f(t+ s) dL̃(s)

d
= Y (t).

Step 2. Assume L is a Lévy process.

For j = 1, 2, 3, denote by Y +
j = {Y +

j (t)}t∈R and Y −
j = {Y −

j (t)}t∈R processes with

representation

Y +
j (t) =

∫ ∞

−∞

f+(t− s) dLj(s), Y −
j (t) =

∫ ∞

−∞

f−(t− s) dLj(s) for t ∈ R,

which are well-defined by Proposition 1.1.7. We prove the case i = 1.

Step 2.1. Determination of Θ(1).

By (1.4.4) we have

f+Z
(1)
k ≤ Y +

1 (Γ
(1)
k + α) ≤ f+Z

(1)
k + Ỹ +

1 (α) a. s.,

where Ỹ +
1 (α)

d
= Y +

1 (0). We can estimate Y (Γ
(1)
k + α) from above by

Y (Γ
(1)
k + α) ≤ Y +

1 (Γ
(1)
k + α) + Y −

2 (Γ
(1)
k + α) + Y3(Γ

(1)
k + α)

≤ f+Z
(1)
k + Ỹ +

1 (α) + Y −
2 (Γ

(1)
k + α) + Y3(Γ

(1)
k + α) a. s.. (1.4.5)

Choose

Θ(1) := Y +
1 (0) + Y −

2 (0) + Y3(0).

By the independence of Γ(1), Y −
2 and Y3 as well as the stationarity of Ỹ +

1 , Y
−
2 and

Y3 we obtain, similarly to (1.4.2), for x ∈ R,

P(Ỹ +
1 (α) + Y −

2 (Γ
(1)
k + α) + Y3(Γ

(1)
k + α) > x) = P(Θ(1) > x). (1.4.6)
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Thus by (1.4.5) and (1.4.6) for x ∈ R,

P(Y (Γ
(1)
k + α) − f+Z

(1)
k > x) ≤ P(Θ(1) > x).

Taking Remark 1.3.5 into account, we have Y −
2 (0), Y +

1 (0) + Y3(0) ∈ S and, by

Corollary 1.3.8, for x→ ∞,

P(Y +
1 (0) + Y3(0) > x) = o(P(f+Z

(1)
1 > x)),

P(Y −
2 (0) > x) = o(P(f−Z

(2)
1 > x)).

Hence with Proposition 1.1.2 (iii), the subexponentiality and (L2) we obtain

P(Θ(1) > x) = o(P(f+Z
(1)
1 > x)) for x→ ∞. (1.4.7)

Step 2.2. Determination of Θ̃(1).

A lower bound of Y (Γ
(1)
k + α) − f+Z

(1)
k can be obtained as follows:

f+Z
(1)
k − Y −

1 (Γ
(1)
k + α) − Y +

2 (Γ
(1)
k + α) + Y3(Γ

(1)
k + α) ≤ Y (Γ

(1)
k + α).

We choose

Θ̃(1) := Y −
1 (0) + Y +

2 (0) − Y3(0).

Then we estimate similarly to Step 2.1

P(Y (Γ
(1)
k + α) − f+Z

(1)
k < −x)

≤ P(−Y −
1 (Γ

(1)
k + α) − Y +

2 (Γ
(1)
k + α) + Y3(Γ

(1)
k + α) < −x)

= P(Θ̃(1) > x) = o(P(f+Z
(1)
1 > x)) for x→ ∞.

Step 2.3. We show: if Y (0) ∈ S and t /∈ O1 then

P(Y (Γ
(1)
k + t) > x) = o(P(f+Z

(1)
1 > x)) for x→ ∞.

Y (0) ∈ S if and only if Θ(1) = Y +
1 (0) + Y −

2 (0) + Y3(0) ∈ S since by (1.3.1) the Lévy

measures of Y (0) and Θ(1) coincide on [f+,∞). Consequently, by (1.4.5), (1.4.7),

P(f(t)Z
(1)
k > x) = o(P(f+Z

(1)
1 > x)) for x→ ∞ and Proposition 1.1.2 (iii) it follows

that

P(Y (Γ
(1)
k + t) > x) ≤ P(f(t)Z

(1)
k + Θ(1) > x) = o(P(f+Z

(1)
1 > x)) for x→ ∞. �
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Proof of Theorem 1.4.1.

Recall that by (1.1.18) the normalizing constants of Z
(1)
k are aT/µ1 , bT/µ1 and the

normalizing constants of Z
(2)
k are aT/µ2 , bT/µ2 . On the basis of Lemma 1.4.4 the

conditions of Corollary 1.2.2 are satisfied and thus

lim
T→∞

P(κ
(1,l)
T/µ1

(I) 6= κ̃
(1)
T/µ1

(I)) = lim
T→∞

P(κ
(2,l)
T/µ2

(I) 6= κ̃
(2)
T/µ2

(I)) = 0.

Hence

P(κT (I) 6= κ̃T (I))

≤
P (1)∑

l=1

P(κ
(1,l)
T (I) 6= κ̃

(1)
T (I)) +

P (2)∑

l=1

P(κ
(2,l)
T (I) 6= κ̃

(2)
T (I))

T→∞
−→ 0.

By the independence of κ
(1)
T , κ

(2)
T and κ(1), κ(2) also κ̃T

T→∞
=⇒ κ. A conclusion of

Rootzén [131], Lemma 3.3 is κT
T→∞
=⇒ κ. �

Proof of Corollary 1.4.2.

Define for k ∈ N,

Y2k−1(t) := Y (Γ
(1)
k + t) = f2k−1(t)Z2k−1 + Ỹ2k−1(t), τ2k−1 := Y (Γ

(1)
k + α

(1)
1 ),

Y2k(t) := Y (Γ
(2)
k + t) = f2k(t)Z2k + Ỹ2k(t), τ2k := Y (Γ

(2)
k + α

(2)
1 ),

where f2k−1(t) := f(t), f2k(t) := −f(t), Z2k−1 := Z
(1)
k , Z2k := Z

(2)
k and

Ỹ2k−1(t) := Y (Γ
(1)
k + t) − f(t)Z

(1)
k , Ỹ2k(t) := Y (Γ

(2)
k + t) − f(t)Z

(2)
k .

Let α2k−1 be α
(1)
1 and α2k be α

(2)
1 for k ∈ N. The proof of (a)-(c) follows then by

Lemma 1.2.7, Theorem 1.2.11, Theorem 1.4.1 and Lemma 1.4.4. Claims (d)-(e) are

conclusions of (a)-(c), so we shall only sketch the proof.

Without loss of generality we assume m = 1. Let I = [s, t) × (x,∞) × (y1, y2] and

Iε = [s, t) × (x,∞) × (y1 − ε, y1 + ε] ∪ [s, t) × (x,∞) × (y2 − ε, y2 + ε]. We define

K̃T =
∞∑

k=0

ε(
(Γ

(1)
k +α

(1)
1 )/T,a−1

T (Y (Γ
(1)
k +α

(1)
l )−bT ),a−1

T (Y (Γ
(1)
k +α

(1)
l )−bT )1{f(t1)=f+}

).

By (a) we obtain K̃T
T→∞
=⇒ K. But

P(K̃T (I) 6= KT (I))

≤ P(K̃T (Iε) > 0) +
∑

k∈[Ts,T t)

P(a−1
T (Y (Γ

(1)
k + α

(1)
l ) − bT ) > x,

|a−1
T (Y (Γ

(1)
k + α

(1)
l ) − bT )1{f(t1)=f+} −a

−1
T (Y (Γ

(1)
k + t1) − bT )| > ε).
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If {(Y (Γ
(1)
k + α

(1)
l ), Y (Γk + ti))}k∈Z had been stationary, then the result would have

followed in the case f(t1) = f+ by (1.2.29) and in the case f(t1) 6= f+ by (c).

Analogously to Lemma 1.4.4 we can find an upper bound for the last inequality,

which converges to zero as T → ∞. �

1.4.2 The point process of local maxima

In this section we restrict ourselves to MA processes, where P (1) = 1, P (2) = 0, i. e. f

has an unique extremum with f+ = f(α). Consider for instance the positive Poisson

shot noise process as given in Example 1.1.9 with non-increasing kernel function f ,

whose support is R+. Then Y is non-increasing between consecutive jumps. Thus

the process has a local supremum at point t if and only if t ∈ Γ. In some sense,

this property is also valid for the subexponential Lévy driven MA processes of this

section. Given a high threshold uT , the asymptotic behavior of the supremum of Y

in some neighborhood of Γk + α being larger than uT is caused by Y (Γk + α) being

above uT . In the last section we have only shown the converse (cf. Corollary 1.4.2

and Remark 1.4.3): if Y (Γk + α) is asymptotically larger than uT , then it is also a

local supremum of Y . In this simpler model we can also prove the necessity of this

condition.

Theorem 1.4.5

Let Y be the stationary MA process as given in (1.0.1) satisfying conditions (K1),

(K2) with P (1) = 1, P (2) = 0, O1 = {α} and a. s. sample paths in D(R), where L

has the decomposition as given in (1.4.1). Further assume f : R → R+ with

f(t) = sup
−∞<s<t

f+(s)1(−∞,α)(t) + sup
t≤s<∞

f+(s)1[α,∞)(t) , t ∈ R

satisfies (K1). Suppose L(1) ∈ S ∩MDA(Λ) with aT > 0, bT ∈ R, uT = aTx+ bT for

x ∈ R such that

lim
T→∞

TP(f+L(1) > uT ) = exp(−x).

If f takes also negative values, we assume additionally (L2). Define

Ik =

[
Γ

(1)
k−1 + Γ

(1)
k

2
+ α,

Γ
(1)
k + Γ

(1)
k+1

2
+ α

)
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and Mk = supt∈Ik
Y (t) for k ∈ N. For T > 0 denote the corresponding point

processes by

κM
T =

∞∑

k=0

ε(sk/T,a−1
T (Mk−bT )), κT =

∞∑

k=0

ε(
(Γ

(1)
k +α)/T,a−1

T (Y (Γ
(1)
k +α)−bT )

),

where sk is a point in Ik ∪{(Γ
(1)
k +Γ

(1)
k+1)/2+α} satisfying Y (sk) = Mk. Denote by κ

a PRM(ϑ) with mean measure ϑ(dt×dx) = dt ×e−x dx. Let I = [s, t)× (x,∞) ⊆ S.

Then limT→∞ P(κM
T (I) 6= κT (I)) = 0 and

κM
T

T→∞
=⇒ κ.

The marked point processes exhibit the same behavior as described in Corollary 1.4.2.

Exceedances of Y are only caused by large positive jumps of the Lévy process. The

size of an excess behaves like f+ times the jump size of the driving Lévy pro-

cess. Consider a positive Poisson shot noise process as given in Example 1.1.3 with

non-increasing kernel function. Then Mk = Y (Γk) and thus Theorem 1.4.1 and The-

orem 1.4.5 coincide. The proof of an analogous result for P (1) > 1 is much more

involved as it is not possible to choose disjoint intervals Ik, whose length are iden-

tically distributed, as easily (see also Corollary 1.4.11).

Corollary 1.4.6

Let the assumptions and notations of Theorem 1.4.5 hold. Define M(T ) = sup
0≤t≤T

Y (t)

for T > 0. Then

lim
T→∞

P
(
a−1

T (M(T ) − bT ) ≤ x
)

= exp(−e−x) for x ∈ R.

Proof.

Applying Theorem 1.4.5 yields

P
(
a−1

T (M(T ) − bT ) ≤ x
)

= P(κM
T ((0, 1) × (x,∞)) = 0)

T→∞
−→ P(κ((0, 1) × (x,∞)) = 0)

= exp(ϑ((0, 1) × (x,∞)))

= exp(−e−x).

�

Essential for the proof of Theorem 1.4.5 is the following Lemma.
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Lemma 1.4.7

Let the assumptions of Theorem 1.4.5 hold. Then we can find r. v. s Θ, Θ̃ such that

for x ∈ R

P(Mk − f+Z
(1)
k > x) ≤ P(Θ > x),

P(Mk − f+Z
(1)
k < −x) ≤ P(Θ̃ > x).

(1.4.8)

Furthermore,

P(Θ > x) = o(P(f+Z
(1)
1 > x)) and P(Θ̃ > x) = o(P(f+Z

(1)
1 > x)) for x→ ∞.

Moreover, the r. v. Mk − f+Z
(1)
k is independent of Z

(1)
k .

Proof.

W. l. o. g. we assume f has support on R.

Step 1. We first show that the Lemma is valid for the MA process Y1.

Let {ek}k∈Z be an i. i. d. sequence of exponential r. v. s such that the jump times of

L1 are Γ
(1)
k =

∑k
j=1 ej, Γ

(1)
−k =

∑k
j=1 e−j for k ∈ N; recall Ee1 = 1/µ1. Note that

supt∈R f(t) = f(α) = f+ and f is non-decreasing on (−∞, α) and non-increasing

on (α,∞). Hence, by (K1) for f and Proposition 1.1.7, Y (t) =
∫∞

−∞
f(t− s) dL1(s),

t ∈ R, is a well-defined stationary i. d. process. Define now the kernel functions

f1(t) = f(t)1[α,∞)(t), f2(t) = f(t)1(−∞,α)(t) for t ∈ R (1.4.9)

and the corresponding MA processes

Y 1(t) =

∫ ∞

−∞

f1(t− s) dL1(s) =
∑

Γ
(1)
j ≤t−α

f(t− Γ
(1)
j )Z

(1)
j ,

Y 2(t) =

∫ ∞

−∞

f2(t− s) dL1(s) =
∑

t−α<Γ
(1)
j

f(t− Γ
(1)
j )Z

(1)
j , ∀t ∈ R a. s..

If f(t) = 0 for t < α then Y 2 ≡ 0. Let k > 0 be fixed. Then for t ∈ Ik we have

t− α ∈
[
Γ

(1)
k−1,Γ

(1)
k+1

)
. Moreover,

Y (t) =
∑

j≤k−2

f(t− Γ
(1)
j )Z

(1)
j + f(t− Γ

(1)
k−1)Z

(1)
k−1 (1.4.10)

+f(t− Γ
(1)
k )Z

(1)
k + f(t− Γ

(1)
k+1)Z

(1)
k+1 +

∑

k+2≤j

f(t− Γ
(1)
j )Z

(1)
j ∀t ∈ R a. s..
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Now, we find an upper bound for all terms on the right hand side. At first,

f(t− Γ
(1)
k )Z

(1)
k ≤ f+Z

(1)
k . (1.4.11)

The function f : [α,∞) → R+ is non-increasing and Y 1 has a. s. sample paths in

D(R), so we have for t ∈ Ik,

∑

j≤k−2

f(t− Γ
(1)
j )Z

(1)
j ≤

∑

j<k−1

f(α+ Γ
(1)
k−1 − Γ

(1)
j )Z

(1)
j = Y 1(α+ Γ

(1)
k−1−)

=
∑

j≤k−2

f

(
α+

k−1∑

l=j+1

el

)
Z

(1)
j . (1.4.12)

Since f : (−∞, α) → R+ is non-decreasing, it holds for t ∈ Ik,

∑

k+2≤j

f(t− Γ
(1)
j )Z

(1)
j ≤

∑

k+2≤j

f
(
α+ Γ

(1)
k+1 − Γ

(1)
j

)
Z

(1)
j = Y 2(α+ Γ

(1)
k+1)

=
∑

k+2≤j

f

(
α−

j∑

l=k+2

el

)
Z

(1)
j . (1.4.13)

For the two remaining terms of (1.4.10) we need a finer upper bound than those

derived in (1.4.11)-(1.4.13). By monotonicity of f for t ∈ Ik we estimate

f(t− Γ
(1)
k−1)Z

(1)
k−1 ≤ f

(
α+

Γ
(1)
k−1+Γ

(1)
k

2
− Γ

(1)
k−1

)
Z

(1)
k−1 = f

(
α+ ek

2

)
Z

(1)
k−1,

f(t− Γ
(1)
k+1)Z

(1)
k+1 ≤ f

(
α+

Γ
(1)
k +Γ

(1)
k+1

2
− Γ

(1)
k+1

)
Z

(1)
k+1 = f

(
α− ek+1

2

)
Z

(1)
k+1.

(1.4.14)

If we now define

θ
(1)
k := Y 1(α+ Γ

(1)
k−1−) + f

(
α+

ek

2

)
Z

(1)
k−1 + f

(
α−

ek+1

2

)
Z

(1)
k+1 + Y 2(α+ Γ

(1)
k+1),

then we conclude by (1.4.10)-(1.4.14) that

M
(1)
k := sup

t∈Ik

Y1(t) ≤ sup
t∈Ik

Y (t) ≤ f+Z
(1)
k + θ

(1)
k , (1.4.15)

and the two r. v. s on the right hand side are independent. We calculate now an

upper bound in distribution of θ
(1)
k , which is independent of k. Observing (1.4.9)

and using (1.4.4) we obtain

Y 2(α+ Γ
(1)
k+1) = Y 2(α+ Γ

(1)
k+1) + f2(α+ Γ

(1)
k+1)Z

(1)
0

d
= Y 2(0) + f2(α)Z

(1)
k = Y 2(0),

Y 1(α+ Γ
(1)
k−1−) + f1(α+ Γ

(1)
k−1−)Z

(1)
0

d
= Y 1(0) + f1(α−)Z

(1)
k = Y 1(0). (1.4.16)



78 1 Extremes of subexponential Lévy driven MA processes

Define Ỹ (t) =
∫∞

−∞
f(α+ t− s) dL̃(s), where L̃ is a compound Poisson process with

Lévy measure 2µ1P(Z
(1)
1 > x) for x ∈ R such that

f
(
α+

ek

2

)
Z

(1)
k−1 + f

(
α−

ek+1

2

)
Z

(1)
k+1 ≤ Ỹ (0) (1.4.17)

and Ỹ (0) is independent of Y 1(α+Γ
(1)
k−1−) and Y 2(α+Γ

(1)
k+1). From Proposition 1.3.1

we know that Ỹ (0) ∈ S with

P(Ỹ (0) > x) ∼ 2P(Y (0) > x) for x→ ∞.

Define Θ1 = Y +
˜̃
Y , where Y ,

˜̃
Y are independent with Y

d
= Y (0) and

˜̃
Y

d
= Ỹ (0). By

Proposition 1.1.2 (iii) we have Θ1 ∈ S with tail behavior P(Θ1 > x) ∼ 3P(Y (0) > x)

for x→ ∞. Taking Corollary 1.3.8 into account we conclude

P(Θ1 > x) = o(P(f+Z
(1)
1 > x)) for x→ ∞. (1.4.18)

Having (1.4.16) and (1.4.17) in mind we obtain

P(θ
(1)
k > x) ≤ P(Y 1(0) + Y 2(0) +

˜̃
Y > x) = P(Θ1 > x) for x ∈ R.

Hence by (1.4.15) and (1.4.18) we get for x→ ∞,

P(M
(1)
k − f+Z

(1)
k > x) ≤ P(θ

(1)
k > x) ≤ P(Θ1 > x) = o(P(f+Z

(1)
1 > x)). (1.4.19)

Step 2. For arbitrary Y we use the decomposition (1.0.3).

Step 2.1. Determination of Θ.

By (1.4.15) we have

Mk ≤M
(1)
k + sup

t∈Ik

[Y2(t) + Y3(t)] ≤ f+Z
(1)
k + θ

(1)
k + sup

t∈Ik

[Y2(t) + Y3(t)]. (1.4.20)

Further, we set θk := θ
(1)
k + supt∈Ik

[Y2(t) + Y3(t)] for k ∈ N. Writing the interval Ik

as
[
α+ Γ

(1)
k−1 + 1/2ek , α+ Γ

(1)
k−1 + ek + 1/2ek+1

)
, we see that the dependence of the

two quantities on the right hand side is only given by ek and ek+1. As Y2 + Y3 is a

stationary process independent of Γ(1), we conclude that

θk
d
= θ

(1)
k + sup

0≤t<
ek+ek+1

2

[Y2(t) + Y3(t)].

For k ∈ N define the r. v. s

Wk = θ
(1)
k − f

(
α+

ek

2

)
Z

(1)
k−1 − f

(
α−

ek+1

2

)
Z

(1)
k+1
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independent of ek and ek+1. Let ε > 0 be arbitrary. We shall show that

P(θk > x) = P(θk > x, ek ≤ ε, ek+1 ≤ ε) + P(θk > x, ek > ε, ek+1 ≤ ε)

+P(θk > x, ek ≤ ε, ek+1 > ε) + P(θk > x, ek > ε, ek+1 > ε)

≤ P(Θ > x) = o(P(f+Z
(1)
1 > x)) for x→ ∞. (1.4.21)

To this end, note that the first term on the right hand side satisfies the inequality

P(θk > x, ek ≤ ε, ek+1 ≤ ε) ≤ P(θ
(1)
k + sup

0≤t≤ε
[Y2(t) + Y3(t)] ≥ x)

≤ P(Θ1 + sup
0≤t≤ε

[Y2(t) + Y3(t)] ≥ x), (1.4.22)

where (1.4.19) was used. Using Theorem 1.3.9 (b), if ν (−∞,−1] > 0, we conclude

that sup0≤t≤ε[Y2(t) + Y3(t)] ∈ S, and as f− < f+ for x→ ∞,

P( sup
0≤t≤ε

[Y2(t) + Y3(t)] > x) = O(P(f−L2(1) > x)) = o(P(f+Z
(1)
1 > x)).

If ν (−∞,−1] = 0 this holds by Lemma 1.3.11. Since (1.4.18) holds, as a consequence

of (1.4.22) and Proposition 1.1.2 (iii) we obtain

P(θk > x, ek ≤ ε, ek+1 ≤ ε) = o(P(f+Z
(1)
1 > x)) for x→ ∞. (1.4.23)

Next we estimate the second term of (1.4.21):

P(θk > x, ek > ε, ek+1 ≤ ε)

≤ P

(
Wk + f

(
α+

ε

2

)
Z

(1)
k−1 + f

(
α−

ek+1

2

)
Z

(1)
k+1 + sup

0≤t≤(ε+ek)/2

[Y2(t) + Y3(t)] > x

)
.

Using again Theorem 1.3.9 (b) in the case ν (−∞,−1] > 0 we have sup0≤t≤(ε+ek)/2[Y2(t)+

Y3(t)] ∈ S and

P

(
sup

0≤t≤(ε+ek)/2

[Y2(t) + Y3(t)] > x

)
= O(P(f−L2(1) > x)) for x→ ∞.

Hence by Proposition 1.1.2 (iii) f
(
α+ ε

2

)
Z

(1)
k−1 + sup0≤t≤(ε+ek)/2[Y2(t) + Y3(t)] ∈ S

and taking f+ > max{f(α−ε/2), f(α+ε/2), f−} into account we obtain for x→ ∞,

P

(
f
(
α+

ε

2

)
Z

(1)
k−1 + sup

0≤t≤(ε+ek)/2

[Y2(t) + Y3(t)] > x

)
= o(P(f+Z

(1)
1 > x)).
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Note, that P(Wk + f
(
α− ek+1

2

)
> x) ≤ P(Θ1 > x), which is also independent of k.

Thus again by Proposition 1.1.2 (iii) we obtain for x→ ∞,

P(θk > x, ek > ε, ek+1 ≤ ε) = o(P(f+Z
(1)
1 > x)). (1.4.24)

By symmetry also the third term of (1.4.21) satisfies for x→ ∞

P(θk > x, ek ≤ ε, ek+1 > ε) = o(P(f+Z
(1)
1 > x)). (1.4.25)

In order to compute an upper bound for the last term of (1.4.21) we decouple the

dependence using the monotonicity of f and making this part independent of ek and

ek+1. Then we use (ek + ek+1)/2
d
= ek and the same argumentation as above to show

P(θk > x, ek > ε, ek+1 > ε)

≤ P

(
Wk + f

(
α+

ε

2

)
Z

(1)
k−1 + f

(
α−

ε

2

)
Z

(1)
k+1 + sup

0≤t≤(ek+ek+1)/2

[Y2(t) + Y3(t)] > x

)

= o(P(f+Z
(1)
1 > x)) for x→ ∞. (1.4.26)

Combining the results (1.4.23)-(1.4.26) proves (1.4.21). Then, by (1.4.20) and (1.4.21)

there exists a r. v. Θ, independent of k, such that for x→ ∞

P(Mk − f+Z
(1)
k > x) ≤ P(θk > x) ≤ P(Θ > x) = o(P(f+Z

(1)
1 > x)).

Step 2.2. Determination of Θ̃.

Using Γ
(1)
k + α ∈ Ik, Lemma 1.4.4 and the notation there we get

P(Mk − f+Z
(1)
k < −x) ≤ P(Y (Γ

(1)
k + α) − f+Z

(1)
k < −x) ≤ P(Θ̃(1) > x),

where P(Θ̃(1) > x) = o(P(f+Z
(1)
1 > x)) for x→ ∞. Thus we choose Θ̃ := Θ̃(1). �

Proof of Theorem 1.4.5.

Denote by κ̃
(1)
T the point process of Theorem 1.4.1. The result κM

T
T→∞
=⇒ κ and

limT→∞ P(κM
T (I) 6= κ̃

(1)
T (I)) = 0 is a conclusion of Lemma 1.4.7 and Corollary 1.2.2.

Thus by Theorem 1.4.1

P(κM
T (I) 6= κT (I)) ≤ P(κM

T (I) 6= κ̃
(1)
T (I)) + P(κ̃

(1)
T (I) 6= κT (I))

T→∞
−→ 0.

�
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1.4.3 Normalizing constants of running maxima

In this section we shall calculate the normalizing constants of running maxima of

a subexponential Lévy driven MA process in MDA(Λ). For a Poisson shot noise

process with non-negative, non-increasing kernel function, they have been calculated

by Lebedev [98] (see also Corollary 1.4.6).

Theorem 1.4.8

Let Y be the stationary MA process given in (1.0.1) satisfying the conditions (K1)

and (K2) with a. s. sample paths in D(R). Suppose L(1) ∈ S∩MDA(Λ) with aT > 0,

bT ∈ R, uT = aTx+ bT for x ∈ R such that

lim
T→∞

TP(f+L(1) > uT ) = exp(−x).

If f takes negative values, we assume additionally (L2). For T > 0 let be

M(T ) = sup0≤t≤T Y (t). Then

lim
T→∞

P
(
a−1

T (M(T ) − bT ) ≤ x
)

= exp[−(1 + (1 − p)/p1{f− = f+}) e−x] for x ∈ R.

Proof.

Let cn = sup
t∈[n−1,n+1)

f+(t) and dn = sup
t∈[n−1,n+1)

f−(t) for n ∈ Z. From (K1) we conclude

∑∞
n=−∞ cδn <∞ and

∑∞
n=−∞ dδ

n <∞. Define the kernel functions

f(t) =
∞∑

k=−∞

sup
t∈[k−1,k)

f+(t)1[k−1,k)(t), f(t) =
∞∑

k=−∞

sup
t∈[k−1,k)

f−(t)1[k−1,k)(t)

for t ∈ R and the discrete-time MA processes

X(1)
n =

∞∑

k=−∞

cn−k[L1(k) − L1(k − 1)] =
∞∑

k=−∞

cn−kξ
(1)
k ,

X(2)
n =

∞∑

k=−∞

dn−k[L2(k) − L2(k − 1)] =
∞∑

k=−∞

dn−kξ
(2)
k

for n ∈ N, where ξ
(i)
k = Li(k) − Li(k − 1) for k ∈ Z, i = 1, 2. Let

X(3)
n = sup

t∈[n−1,n)

∫ ∞

−∞

f(t− s) dL3(s),

and Mn = supt∈[n−1,n) Y (t) for n ∈ N. Both X
(1)
n , X

(2)
n , X

(3)
n and Mn are finite a. s.,

since Y has a. s. sample path in D(R) and Proposition 1.1.7. As L1, L2 are increasing,

f(t) ≤ f(t) and − f(t) ≤ f(t) for all t ∈ R,
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we have for t ∈ [n− 1, n)

Y (t) ≤

∫ ∞

−∞

f(t− s) dL1(s) +

∫ ∞

∞

f(t− s) dL2(s) +X(3)
n

=
∞∑

k=−∞

sup
s∈[k−1,k)

f+(s)[L1(t− (k − 1)) − L1(t− k)]

+
∞∑

k=−∞

sup
s∈[k−1,k)

f−(s)[L2(t− (k − 1)) − L2(t− k)] +X(3)
n

≤ X(1)
n +X(2)

n +X(3)
n =: Xn, (1.4.27)

i. e. Mn ≤ Xn. Since {ξ
(i)
k }k∈N is an i. i. d. sequence with ξ

(i)
k

d
= Li(1) and

X(i) = {X
(i)
n }n∈N is a discrete-time MA process, which satisfies the assumptions

of Example 1.2.6, we obtain for i = 1, 2

κ
(i)
T =

∞∑

k=1

ε(
k/T,a−1

T (X
(i)
k −bT )

) T→∞
=⇒ P̃ (i)κ(i)

with κ(i) as given in Theorem 1.4.1. Furthermore, P̃ (1) = card{k : ck = f+} < ∞

and P̃ (2) = card{k : dk = f+} < ∞. The processes X(1), X(2) are independent.

The fact that P(X
(i)
n > x) ∼ P̃ (i)

P(f+Li(1) > x) for x → ∞, Proposition 1.2.5 (if

f− = f+) and Theorem 1.2.1 (if f− < f+) we conclude

∞∑

k=1

ε(
k/T,a−1

T (X
(1)
k +X

(2)
k −bT )

) T→∞
=⇒ P̃ (1)κ(1) + P̃ (2)κ(2).

Using Lemma 1.3.11 and Proposition 1.1.2 (i) we also have for x→ ∞

P(X
(3)
k > x) = o(P(f+L(1) > x)) and P(X

(3)
k < −x) = o(P(f+L(1) > x)).

Applying Theorem 1.2.1 yields

∞∑

k=1

ε(
k/T,a−1

T (X
(1)
k +X

(2)
k +X

(3)
k −bT )

) T→∞
=⇒ P̃ (1)κ(1) + P̃ (2)κ(2).

Thus, for I = (0, 1] × (x,∞) we have on the one hand with (1.4.27)

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) ≥ lim

T→∞
P

(
∞∑

k=1

ε(
k/T,a−1

T (X
(1)
k +X

(2)
k +X

(3)
k −bT )

)(I) = 0

)

= P(P̃ (1)κ(1)(I) + P̃ (2)κ(2)(I) = 0) (1.4.28)

= P(κ(1)(I) = 0)[1{f−<f+} +1{f−=f+} P(κ(2)(I) = 0)].



1.4 Extremal behavior 83

On the other hand, Theorem 1.4.1 gives

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) ≤ lim

T→∞
P(κT (I) = 0)

= P(P (1)κ(1)(I) + P (2)κ(2)(I) = 0) (1.4.29)

= P(κ(1)(I) = 0)[1{f−<f+} +1{f−=f+} P(κ(2)(I) = 0)].

Taking

P(κ(1)(I) = 0)[1{f−<f+} +1{f−=f+} P(κ(2)(I) = 0)]

= exp[−(1 + (1 − p)/p1{f− = f+}) e−x]

into account we obtain by (1.4.28) and (1.4.29) the result. �

Remark 1.4.9

If f is flat in its maximum and either f− < f+ or f is also flat in its minimum

−f+, the convergence of running maxima of Y is also ensured. Following the proof

of Theorem 1.4.8 line by line and replacing the suprema in X
(i)
n by the infima, a

lower bound of Mn can be found, without using Theorem 1.4.1. �

1.4.4 Extremal index function

The question arises, what influence the dependence structure of a stochastic process

has to its extremal behavior. In the case of an i. i. d. sequence {Yk}k∈Z there is the

well known result about Poisson approximation (cf. Leadbetter et al. [94], Theo-

rem 1.5.1), i. e. for some 0 ≤ τ ≤ ∞ and a sequence of constants {un}n∈N in R we

have limn→∞ nF (un) = τ if and only if

lim
n→∞

P( max
k=1,...,n

Yk ≤ un) = exp(−τ).

This also holds for weakly dependent data. Weak dependence is then expressed in

the D(un) and D′(un) condition (Definition A.3.1). Strong dependence may result in

clustering within short time intervals. A measure for the dependence in the extremes

of a discrete-time process is the extremal index θ (Definition A.1.9, a detailed discus-

sion about the extremal index can be found in Leadbetter et al. [94], pp. 67). In the

case of an i. i. d. sequence or when the process is weakly dependent the extremal in-

dex is one (Leadbetter et al. [94], Theorem 3.5.2). These holds for Gaussian processes
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whose covariance function γ satisfies the Berman’s condition limh→∞ log(h)γ(h) = 0

(Leadbetter et al. [95], Theorem 4.3.3). The extremal index can only take values in

[0, 1]. If θ ∈ (0, 1], then the normalized maxima of the stationary sequence and the

normalized maxima of the associated i. i. d. sequence have the same limiting distri-

bution. The case θ = 0 is degenerate, where both normalized maxima can not have

the same limiting distribution. The extremal index is a quantity, which allows us to

characterize the relationship between the dependence structure of the data and their

extremal behavior. The extremal index can be interpreted as the reciprocal of the

mean cluster size of the limit process of point processes of exceedances. The value

θ < 1 indicates that the limit is a compound Poisson process, i. e. exceedances over

high thresholds tend to occur in clusters; θ = 1 meets a Poisson process. A summary

about the extremal index and its estimation can be found in Embrechts et al. [60],

Section 8.1.

Continuous-time processes are highly dependent in small time intervals by the con-

tinuity of the process. Thus it is not adequate to adopt the notation of an extremal

index of a discrete-time process. As a more appropriate object to capture the ex-

treme dependence structure of a continuous-time process we define a function with

similar properties.

Definition 1.4.10

Let {Y (t)}t≥0 be a stationary process. Define the r. v. s M
(h)
k = sup(k−1)h≤t≤kh Y (t)

for k ∈ N, h > 0. Let θ(h) be the extremal index of the sequence {M (h)
k }k∈N. Then

we call the function θ : R+ → [0, 1] extremal index function.

Dividing the positive real line into blocks of length h, the extremal index function is

a measure for the expected cluster sizes of such blocks. By building these blocks, on

the one hand the natural dependence of a continuous-time process in small intervals

is neglected. On the other hand we can choose the blocks arbitrarily small. Gaussian

processes, whose covariance function satisfies the Berman’s condition have θ(h) ≡ 1

(Leadbetter et al. [95], Theorem 12.2.9 and Theorem 12.3.4), e. g. Gaussian CARMA

processes.

Corollary 1.4.11

Let Y be a stationary MA process given by (1.0.1) satisfying the assumptions of

Theorem 1.4.8. Denote by di = α
(i)

P (i) − α
(i)
1 for i = 1, 2. Then the extremal index
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function is

θ(h) = h
1 + (1 − p)/p1{f− = f+}

[h+ d1] + (1 − p)/p1{f− = f+}[h+ d2]
for h > max{d1, d2},

where limh→∞ θ(h) = 1.

Proof.

For h > 0 let M
(h)
k = sup(k−1)h≤t≤kh Y (t) for k ∈ N. On the one hand Theo-

rem 1.3.9 (b1) and Remark 1.3.10 yields for n→ ∞

nP(M(h) > unh) ∼ exp (−x)
[
[h+ d1] + (1 − p)/p1{f− = f+}[h+ d2]

]
/h.

On the other hand we get by Theorem 1.4.8

lim
n→∞

P( max
k=1,...,n

M
(h)
k ≤ unh) = lim

n→∞
P(a−1

nh(M(nh) − bnh) ≤ x)

= exp[−e−x(1 + (1 − p)/p1{f− = f+})]. �

If the kernel function has only one maximum and at most one minimum with value

f+, then the extremal index function is constant one. Dividing the positive real line

into blocks of the same length, results in no clusters of exceedances of these blocks.

In contrast to this, if there is more than one maximum or minimum, then θ(h) < 1

for every h > max{d1, d2}. Thus the dependence of the process results in clusters of

exceedances of blocks, where the mean cluster size tends to 1, as h tends to ∞. This

is obvious as cluster sizes will be smaller, because more data are condensed into one

block. This result is also in analogy to discrete-time MA processes, where clusters

only occur, when the kernel function has more than one maximum or minimum with

value f+ (Example 1.2.6).

We shall give an intuitive explanation. A large positive jump of the Lévy process

in Γ
(1)
k results in large values of Y (Γ

(1)
k + α

(1)
i ), i = 1, . . . , P (1). Thus the process

{sup0≤s≤h Y (t + s)}t≥0 achieves in J =
⋃P (1)

i=1 [Γ
(1)
k + α

(1)
i − h,Γ

(1)
k + α

(1)
i ] a large

value. If h > d1, then the length of the interval J is h + d1. Since the length of a

block h is less than h + d1, the interval J intersects at least two blocks. Thus we

obtain clusters of exceedances of the stationary sequence {M
(h)
k }. If there is only

one maximum of the kernel function (d1 = 0), then the length of J is equal to

the length of a block, which induces no clusters. Analogously is the explanation for

negative jumps in combination with minima. Positive and negative jumps of the
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Lévy process are independent, so that there may be at most one maximum and

minimum to obtain still no clusters among the blocks.

Exceedances over thresholds are the natural events to be studied in discrete-time.

A similar role are in continuous-time upcrossings above thresholds. For an a. s.

continuous-time process Y an upcrossing of level u is a point t0 for which Y (t) < u

when t ∈ (t0 − ε, t0) and Y (t) ≥ u when t ∈ (t0, t0 + ε) for some ε > 0. Note, how-

ever, that in a finite interval there may be infinitely many upcrossings. Examples

include not mean square differentiable Gaussian processes (Leadbetter et al. [95],

p. 152). A related concept are point processes of ε-upcrossings. Poisson convergence

of the point process of ε-upcrossings may be obtained (Leadbetter et al. [95], The-

orem 12.4.2). For an a. s. continuous process Y an ε-upcrossing of level u is a point

t0 with Y (t) < u when t ∈ (t0 − ε, t0) and Y (t0) = u. Every ε-upcrossing is an

upcrossing, while obviously an upcrossing need not to be an ε-upcrossing.

If the assumption of Theorem 1.4.5 holds, so that P (1) = 1 and P (2) = 0, the kernel

function f is non-increasing, and the driving Lévy process is a positive compound

Poisson process, then also the point process of upcrossings and ε-upcrossings con-

verges to a Poisson process since upcrossings and ε-upcrossings occur only at positive

jump times of the Lévy process in combination with the supremum of the kernel

function (Theorem 1.4.5, Corollary 1.4.2). In contrast, if the kernel function has

more than one extremum, then the point process of upcrossings and ε-upcrossings

converges to a cluster Poisson process.



Chapter 2

Extremes of regularly varying Lévy

driven mixed MA processes

In this chapter we investigate the extremal behavior of a stationary continuous-time

mixed moving average (MA) process of the form

Y (t) =

∫

R+×R

f(r, t− s) dΛ(r, s) for t ∈ R , (2.0.1)

where f : R+ × R → R, called kernel function, is measurable and Λ is an infinitely

divisible independently scattered random measure (i. d. i. s. r. m.). We recall the defini-

tion of an i. d. i. s. r. m. on R+×R: let A be a δ-ring (i. e. a ring which is closed under

countable intersections) of R+ × R such that there exists an increasing sequence

{Sn}n∈N of sets in A with
⋃∞

n=1 Sn = R+ × R. Moreover, let Λ = {Λ(A) : A ∈ A}

be a real valued stochastic process defined on some probability space. We call Λ an

independently scattered random measure, if for every sequence {An}n∈N of disjoint

sets in A, the random variables (r. v. s) Λ(An), n ∈ N, are independent, and, if⋃∞
n=1An ∈ A, then we also have

Λ

(
∞⋃

n=1

An

)
=

∞∑

n=1

Λ(An) a. s.,

where the sum on the right hand side is assumed to converge almost surely (a. s.).

In addition, if Λ(A) is a symmetric random variable (r. v.) for every A ∈ A, then we

call Λ a symmetric random measure. We call a random measure infinitely divisible

(i. d.), if Λ(A) is i. d. for every A ∈ A. The reader is referred to Rajput and Rosin-

87
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ski [121], Urbanik [140,141] and Kwapieǹ and Woyczyzǹski [92] for more details on

i. d. i. s. r. m. and integrals as given in (2.0.1).

In the following we consider only i. d. i. s. r. m., where the characteristic function of

Λ(A) has the representation E[exp (iuΛ(A))] = exp(ψA(u)) for u ∈ R, A ∈ A with

ψA(u) = iuM(A) −
1

2
u2Σ2(A) +

∫

R

(
eiux − 1 − iuκ(x)

)
QA(dx) ,

κ(x) = 1[−1,1](x) and 1A denotes the indicator function of the set A. The quantities

(M,Σ2, Q) are called generating triplet, where M : A → R is a signed measure,

Σ2 : A → [0,∞) is a positive measure and QA is a Lévy measure on R for every

A ∈ A.

Here we consider i. d. i. s. r. m. with cumulant generating function of the form

ψA(u) = λ(A)ψ(u) where ψ is the cumulant generating function of a Lévy process

ψ(u) = ium−
1

2
u2σ2 +

∫

R

(
eiux − 1 − iuκ(x)

)
ν(dx) for u ∈ R (2.0.2)

with a Lévy measure ν on R, λ(dω) = π(dr) × dt for ω = (r, t) ∈ R+ × R and a

probability measure π on R+. We denote the generating quadruple by (m,σ2, ν, π)

and by L the Lévy process corresponding to the generating triplet (m,σ2, ν). Typ-

ical examples for mixed MA processes are superpositions of Ornstein-Uhlenbeck

(supOU) processes (Example 2.2.10) or Lévy driven MA processes, which are often

used for stochastic volatility models (Chapter 3). If f(r, s) is independent of r, i. e.

f(r, s) = f̃(s) for every r ∈ R+, s ∈ R and f̃ : R → R measurable, then Y given by

(2.0.1) is the classical Lévy driven MA process

Y (t) =

∫

R

f(t− s) dL(s) for t ∈ R, (2.0.3)

where we used the same symbol f for the kernel function f̃ .

We shall decompose Λ into two independent i. d. i. s. r. m. according to the jump sizes

of the underlying Lévy process L, which are represented by ν:

Λ = Λ1 + Λ2 and Λ1(A) =

∫

A

∫

R

x dÑ1(ω, x) for A ∈ A (2.0.4)

where Ñ1 is a Poisson random measure with intensity

ϑ(dr × dt× dx) = π(dr) × dt× ν1(dx),
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denoted by PRM(ϑ), and ν1 is the Lévy measure

ν1 (A) = ν(A ∩ (1,∞)) + ν(A ∩ (−∞,−1)) for A ∈ B(R).

The generating quadruple of Λ1 is (0, 0, ν1, π). Furthermore, Λ1 is called compound

Poisson random measure. The i. d. i. s. r. m. Λ2 has the generating quadruple

(m,σ2, ν2, π) with Lévy measure

ν2(A) = ν(A ∩ [−1, 1]) for A ∈ B(R),

i. e. it has finite support. We refer to Pedersen [117] for the Lévy-Ito decomposition

of i. d. i. s. r. m. s.

Hence, the Lévy process L1 with generating triplet (0, 0, ν1) has jumps with absolute

value larger than one, and the Lévy process L2 with generating triplet (m,σ2, ν2)

has jumps with modulus strictly smaller than one. Furthermore Ñ1 has the repre-

sentation

Ñ1 =
∞∑

k=−∞

ε(Rk,Γk,Zk), (2.0.5)

where −∞ < . . . < Γ−1 < Γ0 ≤ 0 < Γ1 < . . . < ∞ are the jump times of a Poisson

process N = {N(t)}t∈R with intensity µ = ν1(R) > 0, Z = {Zk}k∈Z is an i. i. d.

sequence with distribution function (d. f.) P(Z1 ≤ x) = ν1 (−∞, x] /µ for x ∈ R

and R = {Rk}k∈Z is an i. i. d. sequence with d. f. π. The processes N,Z and R are

independent. It is also possible to choose a different decomposition in (2.0.4) by a

Poisson random measure and an i. d. i. s. r. m., whose underlying Lévy process has

bounded support in an environment of the origin.

This decomposition of Λ induces a decomposition of Y as given in (2.0.1) by

Y = Y1 + Y2, where, for i = 1, 2,

Yi(t) =

∫

R+×R

f(r, t− s) dΛi(r, s) , t ∈ R (2.0.6)

are independent mixed MA processes. The extremal behavior of a mixed MA process

Y driven by a subexponential Lévy process is completely determined by extremes

of the mixed Poisson shot noise process

Y1(t) =
∞∑

k=−∞

f(Rk, t− Γk)Zk, (2.0.7)
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which plays a crucial role in this chapter. A mixed MA process driven by a compound

Poisson random measure is called a mixed Poisson shot noise process. Subexponen-

tial models are typical models for situations, where extremely large values are likely

to occur in comparison to the mean size of the data. The large jumps affect the

mixed MA process as large jumps of the Lévy process are carried on in time by the

kernel function causing long high level excursions of the process Y . The mixed MA

process Y2 has no influence on the extremal behavior. Extremes of subexponential

Lévy driven MA processes, which are in the maximum domain of attraction of the

Gumbel distribution have been studied in Chapter 1. In this chapter we investigate

subexponential Lévy driven mixed MA processes in the maximum domain of attrac-

tion of the Fréchet distribution, i. e. with regularly varying tails (Definition 2.1.1).

They include, in particular, stable, Pareto, lognormal and Burr distribution. We

present the precise conditions for the Lévy process L below. First, we give some

notations: R = R ∪ {−∞} ∪ {∞},
w

=⇒ denotes weak convergence and
υ

=⇒ denotes

vague convergence.

Condition (L1).

The marginal distribution L(1) of the Lévy process L is regularly varying of index

−α for some α > 0, i.e there exists a sequence 0 < an ↑ ∞ of constants such that

nP(a−1
n L(1) ∈ ·)

υ
=⇒ σ(·) on B(R\{0}) for n→ ∞, (2.0.8)

where

σ(dx) = pαx−α−1 1(0,∞)(x) dx+ qα(−x)−α−1 1(−∞,0)(x) dx (2.0.9)

for some p ∈ [0, 1] and q = 1 − p.

Applying Karamata’s Theorem (Bingham et al. [29], Theorem 1.11), we get

∫

|x|>1

|x|δ ν(dx) <∞ for δ < α and

∫

|x|>1

|x|δ ν(dx) = ∞ for δ > α. (2.0.10)

Thus, by Sato [138], Corollary 25.8, we obtain

E|L(1)|δ

{
<∞ for δ < α

= ∞ for δ > α
. (2.0.11)

Extreme value theory for stable MA processes was derived in Rootzén [130]. To our

knowledge Rootzén’s work on stable MA processes in [130] is the only investigation
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on the extremal behavior of regularly varying MA processes in continuous-time. We

extend Rootzén’s results for the larger class of regularly varying mixed MA processes.

Furthermore, we weaken his assumptions on the kernel function. This includes also

heavy tailed, long memory processes like FICARMA processes, Examples 2.2.9, and

supOU processes, Example 2.2.10.

Throughout the chapter we shall assume the following condition on the mixed MA

process. Therefore we define

L
δ(π) :=

{
f : R+ × R → R measurable,

∫

R+

∫

R

|f(r, s)|δ ds π(dr) <∞

}

for δ > 0. If f(r, s) is independent of r we write f ∈ L
δ instead of f ∈ L

δ(π).

Condition (M1).

Let Y be a mixed MA process as given in (2.0.1). We assume the Lévy process

L satisfies (L1). Furthermore, the kernel function f : R+ × R → R is in L
δ(π)

for some δ < α or L(1) is α-stable and f : R → R belongs to L
α(π). Suppose

f+ = sup(r,t)∈R+×R f
+(r, t) <∞ and f− = sup(r,t)∈R+×R f

−(r, t) ≤ f+ with f+(r, t) =

max{f(r, t), 0}, f−(r, t) = max{−f(r, t), 0}. Furthermore, we assume Y, Y1 and Y2

are stationary i. d. processes.

We will give sufficient conditions for Y to be a stationary i. d. process and also regu-

larly varying of index −α (Proposition 2.2.3, Proposition 2.2.7). For later reference

we formulate an additional assumption.

Condition (M2).

Let Y be a mixed MA process given by (2.0.1) satisfying (M1) with a. s. sample

paths in D(R). We assume that there exists an η(1) ∈ R with f(r, η(1)) = f+ ≥ f−

for every r ∈ supp(π). Define

g(r, t) := sup
s∈(−∞,t]

|f(r, s)|1(−∞,η(1)](t) + sup
s∈(t,∞)

|f(r, s)|1(η(1),∞)(t), (2.0.12)

then we suppose g ∈ L
δ(π) and

{∑∞
k=−∞ g(Rk, t− Γk)|Zk|

}
t∈R

is a stationary i. d.

process.

Our investigation on the extremal behavior of Y is based on a partition of the real

line into intervals Ik, each containing exactly one time point {Γk + η(1)}k∈N. We

consider the marked point process formed by the coordinates

(sup
h∈Ik

Y (h), Y (Γk + η(1)), Y (Γk + η(2)), Y (Γk + t1), . . . , Y (Γk + td))
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for k ∈ Z, f(η(2)) = −f− and any t1, . . . , td ∈ R. We investigate its limit behavior,

which is a marked cluster Poisson random measure. We will see that exceedances of Y

are caused by extreme jumps of the Lévy process, such that extremes of Y above high

levels occur at large jump times of the Lévy process in combination with extremes

of the kernel function. In the neighborhood of such an extreme the behavior of the

process in relation to this extreme is like the kernel function. Moreover, exceedances

over high thresholds are carried on in time by the kernel function. In contrast to

Lévy processes in S ∩ MDA(Λ) (Chapter 1) cluster sizes are randomly distributed.

The results are applied in particular to supOU processes. As an important subclass

of mixed MA processes we obtain not only the extremal behavior of heavy tailed

Poisson shot noise processes, but also of stationary renewal shot noise processes.

This chapter is organized as follows: we start with a short introduction of multi-

variate regular variation in Section 2.1 followed in Section 2.2 by an investigation

of heavy tailed mixed MA processes. This includes, on the one hand sufficient con-

ditions for (M1) in Section 2.2.1, on the other hand the tail behavior of a mixed

MA process Y satisfying (M1) as well as the tail behavior of M(h) = supt∈[0,h] Y (t)

for h > 0 in Section 2.2.2. Finally, Section 2.2.3 gives, with FICARMA and supOU

processes, examples for heavy tailed mixed MA processes which exhibit long range

dependence. In Section 2.3 we obtain analogous results as for regularly varying mixed

MA processes for regularly varying renewal shot noise processes.

Section 2.4 is concerned with the point process behavior of multivariate regularly

varying stationary sequences. Moreover, Davis and Mikosch [53] generalize results

of Davis and Hsing [52] on the point process behavior of stationary processes with

regularly varying tails to a multivariate setting. We give an overview of their results,

which are then applied in Section 2.5. First, we study the asymptotic behavior of the

embedded marked point process of local maxima of Y in Section 2.5.1. Afterwards,

in Section 2.5.2, we present under less restrictive assumptions than in Section 2.5.1

a marked point process result, which also includes the behavior of large infima of

Y . Moreover, we obtain the limit distribution of running maxima of the mixed MA

process Y in Section 2.5.3, and compute the extremal index function in Section 2.5.4.

The mixed MA process exhibits clusters in extremes. The results are in particular

valid for stationary renewal shot noise processes.

Throughout the chapter we use the following notation:

Let η(1), η(2) ∈ R with f(r, η(1)) = f+, f(r, η(2)) = −f− for every r ∈ supp(π),
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t1, . . . , td ∈ R for d ∈ N0, then

f(r, t) = (f(r, t+ t1), . . . , f(r, t+ td), f(r, t+ η(1)), f(r, t+ η(2))) (2.0.13)

and

Y(t) = (Y (t+ t1), . . . , Y (t+ td), Y (t+ η(1)), Y (t+ η(2))) for t ∈ R. (2.0.14)

In the case that the assumption f(r, η(2)) = −f− is not needed, we always assume

η(2) ∈ R.

We write F = 1 − F for the right tail of the d. f. F , F 2∗ for the convolution F ∗ F

and F 2∗ = 1 − F 2∗. For any r. v. Z on R we write Z+ = Z ∨ 0 and Z− = −Z ∨ 0;

X
d
= Y , if the distributions of the r. v. s X and Y coincide. For real functions g and

h we abbreviate g(t) ∼ h(t) for t → ∞, if g(t)/h(t)
t→∞
−→ 1, g+(t) = max{0, g(t)},

g−(t) = max{0,−g(t)}, g+ = supt∈R g
+(t) and g− = supt∈R g

−(t). For a vector

x ∈ R
r we denote by xt the transposed of x and by |x| = max{|x1|, . . . , |xr|} the

maximum norm. For a matrix A ∈ R
d×r we denote by ‖A‖ the row-sum-norm.

Further,
∑0

k=1 := 0 and
∨0

k=1 := 0.

2.1 Multivariate regular variation

By considering the multidimensional stationary process {Y(t)}t∈R, whose marginal

is a multivariate distribution, we need the definition of regular variation for a mul-

tivariate distribution:

Definition 2.1.1 (Multivariate regular variation)

A random vector X = (X1, . . . , Xd) on R
d is said to be regularly varying with in-

dex −α, α > 0, if there exists a random vector Θ with values on the unit sphere

S
d−1 = {x ∈ R

d : |x| = 1} such that for every x > 0

P(|X| > ux,X/|X| ∈ ·)

P(|X| > u)

w
=⇒ x−α

P(Θ ∈ ·) on B(Sd−1) for u→ ∞. (2.1.1)

The distribution of Θ is referred to as the spectral measure of X. It describes in

which direction we are likely to find extreme realizations of X. This definition of

regular variation is equivalent to the following (Lindskøg [99], Theorem 1.15):

There exists a Radon measure σ(·) on R
d
\{0}, which is defined to be finite on

compact sets, with σ(R
d
\Rd) = 0 and σ(E) > 0 for at least one relative compact set
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E ⊆ R
d
\{0}, where 0 = (0, . . . , 0) ∈ R

d, and a sequence 0 < an ↑ ∞ of constants

such that

nP(a−1
n X ∈ ·)

υ
=⇒ σ(·) on B(R

d
\{0}) for n→ ∞. (2.1.2)

More about multivariate regular variation can be found in Resnick [125], Chapter 5,

Basrak et al. [19], Lindskøg [99], Mikosch [110] and in the references of Bingham et

al. [29].

The following Lemma is a multivariate extension of Breiman’s [34] classical result

on regular variation of products.

Lemma 2.1.2 (Basrak et al. [20], Proposition A.1)

Let X be a regularly varying random vector of index −α on R
r, r ∈ N, in the sense

of (2.1.2) and A be a random d × r-matrix, independent of X. If 0 < E‖A‖γ < ∞

for some γ > α, then AX is regularly varying of index −α and

nP(a−1
n AX ∈ ·)

υ
=⇒ E

(
σ ◦ A−1(·)

)
on B(R

d
\{0}) for n→ ∞, (2.1.3)

where A−1 is the inverse image of A.

We need the following special case of Lemma 2.1.2.

Lemma 2.1.3

Let Z = (Z1, . . . , Zr) be a vector of independent r. v. s, which are regularly varying

in the sense of (2.1.2) such that for j = 1, . . . , r,

nP(a−1
n Zj ∈ ·)

υ
=⇒ σj(·) on B(R\{0}) for n→ ∞,

where

σj(dx) = pjαx
−α−1 1(0,∞)(x) dx+ qjα(−x)−α−1 1(−∞,0)(x) dx (2.1.4)

with pj, qj ≥ 0, pj + qj > 0. Furthermore, let A = (a1, . . . , ar) be a random d × r-

matrix, independent of Z. If 0 < E‖A‖γ < ∞ for some γ > α, then Y = AZ is

regularly varying of index −α and has spectral measure with respect to an

P(Θ ∈ ·) =

∑r
j=1

[
pjE(|aj|

α 1{aj/|aj |∈·}) + qjE(|aj|
α 1{−aj/|aj |∈·})

]
∑r

j=1(pj + qj)E|aj|α
. (2.1.5)

For x > 0

lim
n→∞

nP(|Y| > anx) = x−α

r∑

j=1

(pj + qj)E|aj|
α, (2.1.6)
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and in the case d = 1,

lim
n→∞

nP(Y > anx) = x−α

r∑

j=1

[pjEa
+ α
j + qjEa

−α
j ]. (2.1.7)

Proof.

Write ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
r, where in the jth coordinate is one, and

Ej = {cej : c ∈ R}. The map prj : R
r → R is the projection on the jth coordi-

nate, x = (x1, . . . , xr) 7→ xj, j = 1, . . . , r. We apply Lemma 2.1.2 and obtain that

Y is multivariate regularly varying of index −α with

nP(a−1
n Y ∈ ·)

υ
=⇒ E[σ ◦ A−1(·)] on B(R

d
\{0}) for n→ ∞, (2.1.8)

where

σ(·) =
r∑

j=1

σj ◦ prj(Ej ∩ ·). (2.1.9)

For a set S̃ ∈ B(Sd−1) we define the set

Bx(S̃) :=
{
x ∈ R

d : |x| > x,x/|x| ∈ S̃
}

(2.1.10)

for x > 0. Note, that aj = Aej for j = 1, . . . , r. Then

Ej ∩ A−1Bx(S̃)

= {cej ∈ R
r : c|aj| > x}1{aj/|aj |∈S̃} +{cej ∈ R

r : −c|aj| > x}1{−aj/|aj |∈S̃}

and, in particular, by (2.1.4) we obtain

E[σj ◦ prj(Ej ∩ A−1Bx(S̃))]

= E[σj(x/|aj|,∞)1{aj/|aj |∈S̃}] + E[σj(−∞,−x/|aj|)1{−aj/|aj |∈S̃}]

= x−α(pjE[|aj|
α 1{aj/|aj |∈S̃}] + qjE[|aj|

α 1{−aj/|aj |∈S̃}]). (2.1.11)

Taking (2.1.8)-(2.1.11) into account, we obtain

P(Θ ∈ ·) =
E[σ ◦ A−1(B1(·))]

E[σ ◦ A−1(B1(Sd−1))]
(2.1.12)

=
r∑

j=1

[
pjE(|aj|

α 1{aj/|aj |∈·}) + qjE(|aj|
α 1{−aj/|aj |∈·})

]
/

r∑

j=1

(pj + qj)E|aj|
α
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and

lim
n→∞

nP(|Y| > anx) = E[σ ◦ A−1(Bx(S
d−1))] = x−α

r∑

j=1

(pj + qj)E|aj|
α. (2.1.13)

In the case d = 1, aj/|aj| ∈ {−1, 1} so that by (2.1.12) we have

lim
n→∞

nP(Y > anx) = x−α
P(Θ = 1) = x−α

r∑

j=1

[pjEa
+ α
j + qjEa

−α
j ]. �

Remark 2.1.4

Let A be a deterministic matrix and ρ =
∑r

j=1(pj + qj)E|aj|
α. An interpretation of

Lemma 2.1.3 is that the spectral measure Θ reaches the value aj/|aj| with proba-

bility pj|aj|
α/ρ and −aj/|aj| with probability qj|aj|

α/ρ. Thus only in the directions

aj/|aj|, −aj/|aj|, j = 1, . . . , r, extremes are likely to occur. �

2.2 Regularly varying mixed MA processes

This chapter is concerned with extremes of regularly varying mixed MA processes

Y as given in (2.0.1). This means that the underlying Lévy process of the driving

i. d. i. s. r. m. Λ as given in (2.0.2) is regularly varying. The question arises on the

existence of such mixed MA processes. On the one hand we will give in Section 2.2.1

sufficient conditions on the existence of stationary mixed MA processes and on

the other hand, in Section 2.2.2, we show that also the stationary distribution is

regularly varying. Further we compute the tail behavior of the stationary distribution

explicitly.

2.2.1 Existence of heavy tailed mixed MA processes

Let Y be a mixed MA process as given in (2.0.1). Under certain conditions Y (t) is

well-defined as a limit in probability of integrals of step functions approximating f

and moreover, Y is stationary. This has been shown by Rajput and Rosinski [121]

(see also Kwapieǹ and Woyczyzǹski [92]), who also give conditions for Y (0) to be i. d..

The conditions are formulated in terms of the kernel function f and the generating

quadruple (m,σ2, ν, π) of the i. d. i. s. r. m. Λ.
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Proposition 2.2.1 (Rajput and Rosinski [121], Theorem 2.7)

Let Λ be an i. d. i. s. r. m. with generating quadruple (m,σ2, ν, π). Then Y (0) given

in (2.0.1) is well-defined and i. d. if and only if

∫

R+

[∫

R

∣∣∣∣mf(r, s) +

∫

R

(κ(xf(r, s)) − f(r, s)κ(x)) ν(dx)

∣∣∣∣ ds
]
π(dr) <∞,

∫

R+

[∫

R

|σ2f(r, s)|2 ds

]
π(dr) <∞, (2.2.1)

∫

R+

[∫

R

[∫

R

min{1, |f(r, s)x|2} ν(dx)

]
ds

]
π(dr) <∞,

where κ(x) = x1[−1,1](x). The generating triplet of Y is (mY , σ
2
Y , νY ), where

mY =

∫

R+

[∫

R

mf(r, s) +

∫ ∞

−∞

(κ(xf(r, s)) − f(r, s)κ(x)) ν(dx)

]
ds π(dr),

σ2
Y = σ2

∫

R+

[∫

R

f 2(r, s) ds

]
π(dr), (2.2.2)

νY [x,∞) =

∫

f(r,s)>0

ν

[
x

f(r, s)
,∞

)
ds π(dr) +

∫

f(r,s)<0

ν

(
−∞,

x

f(r, s)

]
ds π(dr)

for x > 0.

Typical examples for regularly varying mixed MA processes are mixed MA processes

driven by a stable Lévy process. They are very well known and have been thoroughly

investigated by Samorodnitsky and Taqqu [137].

Example 2.2.2

Let L(1) be α-stable with α ∈ (0, 2), α 6= 1 , c ≥ 0, β ∈ [−1, 1], τ ∈ R, (we write

L(1) ∼ Sα(c1/α, β, τ)). The cumulant generating function (2.0.2) is

ψ(u) = exp{−c|u|α[1 − iβ tan (πα/2) sign(u)] + iuτ}.

We define Cα := [cos(πα/2)Γ(1 − α)]−1 and take

∫∞

0
x−α sin(ux) dx = cos (πα/2) Γ(1 − u)uα−1 for α ∈ (0, 2),∫∞

0
x−α+1 sin(ux) dx = uα−2 tan (πα/2) (1 − α)Cα for α ∈ (1, 2)

into account to obtain the generating triplet (m,σ2, ν) of L as

m = α
c1 − c2
1 − α

+τ, σ2 = 0 and ν(dx) = α
(
c1 1(−∞,0)(x) + c2 1(0,∞)(x)

)
|x|−(α+1) dx,
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with c1 = cCα(1 − β)/2 and c2 = cCα(1 + β)/2. Then

∫

R+

[∫

R

∣∣∣∣mf(r, s) +

∫

R

(κ(xf(r, s)) − f(r, s)κ(x)) ν(dx)

∣∣∣∣ ds
]
π(dr)

= α
|c1 − c2|

1 − α

∫

R+

∫

R

|f(r, s)|α dsπ(dr),

∫

R+

[∫

R

[∫

R

min{1, |f(r, s)x|2} ν(dx)

]
ds

]
π(dr)

= α(c1 + c2)

(
1

2 − α
+

1

α

)∫

R+

[∫

R

|f(r, s)|α ds

]
π(dr).

This means, by Proposition 2.2.1, that the stable mixed MA process Y is stationary

and the marginal distribution is i. d. if and only if f ∈ L
α(π). �

In the following we give sufficient conditions for (2.2.1) in the case of mixed MA

processes with a regularly varying Lévy measure. Apart from the stable case and

some special regularly varying Lévy measures there seem to be no simple equivalent

conditions to (2.2.1).

Proposition 2.2.3

Let Λ be an i. d. i. s. r. m. with generating quadruple (m, 0, ν, π) and ν be a regularly

varying function of index −α, α > 0. Assume f : R+ ×R → R to be bounded. Then

Y (0) given by (2.0.1) is well-defined, i. d. and Y is stationary, if one of the following

conditions is satisfied:

(a) L(1) is α-stable, α 6= 1, and f ∈ L
α(π).

(b) f ∈ L
δ(π) for some δ < α, δ ≤ 1.

(c) EL(1) = 0, α > 1 and f ∈ L
δ(π) for some δ < α, δ ≤ 2.

Proof.

For the proof of (a) see Example 2.2.2. W. l. o. g. sup
(r,s)∈R+×R

|f(r, s)| = f+ ≤ 1. The
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conditions (2.2.1) of Proposition 2.2.1 are equivalent to

I1 =

∫

R+

[∫

R

∣∣∣∣mf(r, s) +

∫

|x|>1

f(r, s)x1{|f(r,s)x|≤1} ν(dx)

∣∣∣∣ ds
]
π(dr) <∞, (2.2.3)

I2 =

∫

R+

[∫

R

ν

(
1

|f(r, s)|
,∞

)
+ ν

(
−∞,−

1

|f(r, s)|

)
ds

]
π(dr) <∞, (2.2.4)

I3 =

∫

R+

[∫

R

∫

|x|>1

f(r, s)2x2 1{|f(r,s)x|≤1} ν(dx) ds

]
π(dr) <∞. (2.2.5)

First we show that f ∈ L
δ(π) for some δ < α, δ ≤ 2 is a sufficient condition for

(2.2.4) and (2.2.5). For the proof of (2.2.3) we need the additional assumptions

(b)-(c).

On the one hand, we obtain (2.2.5) by

I3 ≤

∫

R+

[∫

R

|f(r, s)|δ ds

]
π(dr)

∫

|x|>1

|x|δ ν(dx) <∞,

where (2.0.10) was used.

On the other hand, ν (·,∞) : [1/f+,∞) → (0, ν(1/f+,∞)] is non-increasing and

bounded away from 0 and ∞ on every compact subset of [1/f+,∞). Applying Pot-

ter’s Theorem A.1.10 (iv), we find a K > 0 such that

I2 ≤ K

∫

R+

∫

R

[
ν

(
1

f+
,∞

) ∣∣∣∣
f(r, s)

f+

∣∣∣∣
δ

+ ν

(
−∞,−

1

f+

) ∣∣∣∣
f(r, s)

f+

∣∣∣∣
δ
]
ds π(dr) (2.2.6)

is finite for f ∈ L
δ(π). This is (2.2.4).

We prove (2.2.3) under the different assumptions (b)-(c):

(b) The integral in (2.2.3) can be bounded above by

I1 ≤

∫

R+

∫

R

[
|f(r, s)|δ ds

]
π(dr)

[
mf+(1−δ) +

∫

|x|>1

|x|δ ν(dx)

]
<∞,

where we used (2.0.10).

(c) Since EL(1) = 0 by Sato [138], Example 25.11, we have m = −
∫
|x|>1

x ν(dx).

Thus (2.2.3) is equivalent to

∫

R+

[∫

R

∣∣∣∣
∫

|x|>1

f(r, s)x1{|f(r,s)x|>1} ν(dx)

∣∣∣∣ ds
]
π(dr) <∞. (2.2.7)



100 2 Extremes of regularly varying Lévy driven mixed MA processes

W. l. o. g. we assume that ν|(−∞,−1)∪(1,∞) is a probability measure and Z has d. f.

ν|(−∞,−1)∪(1,∞) . Since α > 1 we have E|Z| <∞ by (2.0.11). Furthermore,

∫

R+

[∫

R

∣∣∣∣
∫

|x|>1

f(r, s)x1{|f(r,s)x|>1} ν(dx)

∣∣∣∣ ds
]
π(dr)

=

∫

R+

[∫

R

∣∣E(f(r, s)Z 1{|f(r,s)Z|>1})
∣∣ ds

]
π(dr)

≤

∫

R+

∫

R

[
P(|f(r, s)Z| > 1) +

∫ ∞

1

P(|f(r, s)Z| > x) dx

]
ds π(dr).

Again, by Potter’s Theorem A.1.10, analog to (2.2.6), the r. h. s. is bounded by

K

∫

R+

∫

R

[
P(|Z| > 1)|f(r, s)|δ + |f(r, s)|δ

∫ ∞

1

P(|Z| > x) dx

]
ds π(dr)

= KE[|Z 1{|Z|>1} |]

∫

R+

[∫

R

|f(r, s)|δ ds

]
π(dr), (2.2.8)

which is finite for f ∈ L
δ(π) and E|Z| <∞.

The proof of the stationarity of Y is analog to the proof in Proposition 1.1.7. �

Remark 2.2.4

For a Lévy driven MA process given by (2.0.3), Proposition 2.2.3 provides sufficient

conditions to be stationary and the marginal distribution to be i. d.. Then L
δ(π) can

be replaced by L
δ. Typical examples for functions in L

δ are bounded functions f with

f(t) ∼ K1t
−δ+ε, f(−t) ∼ K2t

−δ+ε for t → ∞ and for some ε ∈ (0, δ), K1, K2 ∈ R.

�

The conditions in Proposition 2.2.3 are nearly necessary, which is shown in the

following Lemma.

Lemma 2.2.5

Let Y be a stationary mixed MA process given by (2.0.1) with kernel function f

and generating quadruple (m, 0, ν, π) of the i. d. i. s. r. m. Λ. Then f ∈ L
α+ε(π) for

any ε > 0.
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Proof.

By Proposition 2.2.1 we get I2 given in (2.2.4) is finite. Using analog techniques

as in (2.2.6) we apply Potter’s Theorem A.1.10 on ν(1/f+,∞)/ν(1/f(r, s),∞) and

obtain that there exists, for all ε > 0, a K(ε) > 0 such that

I2 ≥ K(ε)

∫

R+

∫

R

[
ν

(
1

f+
,∞

) ∣∣∣∣
f(r, s)

f+

∣∣∣∣
α+ε

+ ν

(
−∞,−

1

f+

) ∣∣∣∣
f(r, s)

f+

∣∣∣∣
α+ε
]
ds π(dr).

The result follows by the finiteness of I2. �

Lemma 2.2.5 says that a MA processes driven by a regularly varying Lévy process

with index −α, α ≤ 1, and bounded function f satisfies f ∈ L.

Let Y given by (2.0.1) be stationary, i. d. and E|Y (0)|2 < ∞ with E|L(1)|2 < ∞.

Analog to Remark 1.1.8 we obtain

γ(h) = Cov(Y (0), Y (h)) =

∫

R+×R

f(r, s)f(r, s+ h) ds π(dr). (2.2.9)

The standard definition of a long range dependent (long memory) process Y is∫
R
γ(h) dh = ∞. The process Y has short memory, if

∫
R
γ(h) dh < ∞. Then∫

R
γ(h) dh =

∫
R+

[∫
R
f(r, s) ds

]2
π(dr). For regularly varying distributions of index

−α, α < 2, the definition of long memory is meaningless, since the second moments

are infinite. For stable MA processes long memory was introduced in Samorodnit-

sky [133, 134]. The class of processes we are studying are, in his definition, short

memory processes. But for α ≥ 2, Proposition 2.2.3 gives sufficient conditions for

the existence of mixed MA processes having long memory. Note, that we assume

EL(1) = 0, which is not offhand negligible. This shows the following Remark.

Remark 2.2.6

Let Y be a stationary mixed MA process given by (2.0.1) and L(1) be regularly

varying of index −α, α ≥ 1, and f ∈ L
δ(π) positive with δ < α. The additional

assumption EL(1) = 0 in Proposition 2.2.3 (c) can not be dispensed.

This is manifested by the following example:

We assume that L(1) is a subordinator with cumulant generating function given

by (2.0.2) of the form ψ(u) = exp(
∫∞

0
(eiux − 1) ν(dx)), i. e.

∫
(−∞,0)

ν(dx) = 0,
∫

(0,1]
x ν(dx) <∞. Then m =

∫ 1

0
xν(dx). We show that f ∈ L(π) is necessary for Y

to be stationary and i. d.. We treat the two cases m > 0 and m = 0 separately.
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If m = 0, then ν (0, 1] = 0 and L is a compound Poisson process. Taking (2.2.3) into

account we get

∫

R+

∫

R

[∫ ∞

0

xf(r, s)1{|xf(r,s)|≤1} ν(dx)

]
ds π(dr)

=

∫

R+

∫

R

[∫ ∞

1

xf(r, s)1{|xf(r,s)|≤1} ν(dx)

]
ds π(dr) <∞. (2.2.10)

On the other hand, with (2.2.8),

∫

R+

[∫

R

∣∣∣∣
∫ ∞

0

f(r, s)x1{|f(s)x|>1} ν(dx)

∣∣∣∣ ds
]
π(dr) <∞. (2.2.11)

By (2.2.10)-(2.2.11) and
∫∞

0
x ν(dx) <∞ we obtain f ∈ L(π).

If m > 0, then by (2.2.1),

m

[∫

R+

∫ ∞

−∞

|f(r, s)| ds

]
π(dr)

≤

∫

R+

[∫

R

∣∣∣∣mf(r, s) +

∫ ∞

0

(κ(xf(r, s)) − f(r, s)κ(x)) ν(dx)

∣∣∣∣ ds
]
π(dr) <∞

and thus f ∈ L(π). �

2.2.2 Tail behavior of heavy tailed mixed MA processes

Let Y be a stationary mixed MA process given by (2.0.1). We assume that the

underlying Lévy process L of the i. d. i. s. r. m. Λ is regularly varying of index −α,

α > 0 such that for the sequence 0 < an ↑ ∞ of constants, p, q ∈ [0, 1], p + q = 1,

the following holds:

lim
n→∞

nP(L(1) > anx) = px−α and lim
n→∞

nP(L(1) < −anx) = qx−α for x > 0.

Proposition 2.2.7

Let Y be a stationary mixed MA process given by (2.0.1) satisfying (M1) and x > 0.

If pf+ + qf− > 0, then

lim
n→∞

nP(Y (0) > anx) =

[∫

R+

∫

R

p(f+ (r, s))α + q(f−(r, s))α ds π(dr)

]
. (2.2.12)
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Similarly, if pf− + qf+ > 0 we obtain

lim
n→∞

nP(Y (0) < −anx) =

[∫

R+

∫

R

q(f+(r, s))α + p(f−(r, s))α ds π(dr)

]
. (2.2.13)

Then Y is regularly varying of index −α in the sense of (2.1.2). Especially for ti ∈ R,

i = 1, . . . , k,

lim
n→∞

nP( max
i=1,...,k

|Y (ti)| > anx) =

∫

R+

∫

R

max
i=1,...,k

|f(r, ti − s)|α ds π(dr). (2.2.14)

Furthermore, let Y has a. s. sample paths in D(R) and define M(h) = supt∈[0,h] Y (t).

Then

lim
n→∞

nP(M(h) > anx) (2.2.15)

∼

[∫

R+

∫

R

p sup
t∈[0,h]

(f+(r, t+ s))α + q sup
t∈[0,h]

(f−(r, t+ s))α ds π(dr)

]
.

Proof.

By Proposition 2.2.1 the Lévy measure of Y is

νY (x,∞) =

∫

f(r,s)>0

ν

(
x

f(r, s)
,∞

)
ds π(dr) +

∫

f(r,s)<0

ν

(
−∞,

x

f(r, s)

)
ds π(dr)

for x > 0. Using Potter’s Theorem A.1.10 there exists for every x > 0, K > 1 an

n0(x) ∈ N such that ν(anxy,∞)/ν(anx,∞) ≤ Ky−δ for y ≥ 1, n ≥ n0. Taking

f ∈ L
δ(π) into account, dominated convergence and the boundedness of f yields for

n→ ∞

νY (anx,∞)

ν(anx,∞)
=

∫

f+(r,s)>0

ν (anx/f
+(r, s),∞)

ν(anx,∞)
ds π(dr)

+

∫

f−(r,s)<0

ν (−∞, anx/f
−(r, s))

ν(anx,∞)
ds π(dr)

∼

[∫

R+

∫

R

p(f+ (r, s))α + q(f−(r, s))α ds π(dr)

]
.

The result (2.2.12) follows then by Proposition 1.1.2 (v). The proof of (2.2.13) is ana-

log. Statement (2.2.14) follows by Rosinski and Samorodnitsky [132], Theorem 3.1

and similar arguments as above. An application of Theorem 1.3.9 (a), which also

holds for mixed MA processes, and (2.2.12) yields to (2.2.15). �

From (2.2.12)-(2.2.13) we see that Y (t) is again regularly varying in the sense of

(2.1.2). The following Lemma is an application of Lemma 2.1.3 and Lemma A.4.1.
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Lemma 2.2.8

Let Y be a stationary mixed Poisson shot noise process with representation (2.0.7)

satisfying (M1). Suppose I ⊆ Z is finite, or Ic is finite, and define the sequence of

random vectors Yk :=
∑

k∈I f(Rk,Γk)Zk := (Y1, . . . , Yd) on R
d. Then

lim
n→∞

nP (|Yk| > anx) = x−α/µ
∑

k∈I

E|f(Rk,Γk)|
α, (2.2.16)

and

lim
n→∞

nP

(
d∨

i=1

Yi > anx

)
= x−α/µ

∑

k∈I

pE(|f+(Rk,Γk)|
α 1{|f+(Rk,Γk)|≥|f−(Rk,Γk)|})

+qE(|f−(Rk,Γk)|
α 1{|f+(Rk,Γk)|≤|f−(Rk,Γk)|}). (2.2.17)

Note, that for the mixed Poisson shot noise process Y given by (2.0.7) and an given

by Lemma 2.2.8 we obtain from (2.2.17)

lim
n→∞

nP (Y (t) > anx) = x−α/µ
∞∑

k=−∞

pE(f+(Rk,Γk))
α + qE(f−(Rk,Γk))

α

= x−α/µE

[∫
p(f+(r, s))α + q(f−(r, s))α dΛ(s, r)

]

= x−α

[∫

R+

∫

R

p(f+ (r, s))α + q(f−(r, s))α ds π(dr)

]
,

which is (2.2.12), since P(L(1) > x) ∼ µP(Z1 > x) for x → ∞ by Proposi-

tion 1.1.2 (v).

2.2.3 Examples

We will give some typical examples for regularly varying mixed MA processes, which

are applied as stochastic volatility models.

Example 2.2.9 (CARMA, FICARMA process)

Let Y be a CARMA(p, q) process with kernel function f as given in Example 1.1.11.

We obtain f ∈ L
δ for every δ > 0, as it is bounded and eventually exponential

decreasing in ±∞. By Proposition 2.2.3 and (2.2.12) for every α > 0 there exists an

CARMA process, which is regularly varying of index −α.

The fractionally integrated CARMA(p, q) (FICARMA(p, d, q)) process with

d ∈ (0, 0.5) was investigated by Brockwell and Marquardt [39]. Let f be the kernel
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function of a CARMA(p, q) process with a, b given by (1.1.13). Then the kernel

function fd of the FICARMA(p, d, q) process is defined by the convolution of f with

h(t) = td−1/Γ(d)1(0,∞)(t), t ∈ R, which results in

fd(t) =
1

2π

∫ ∞

−∞

eitω(iω)−d b(iω)

a(iω)
dω for t ∈ R.

Note, that fd is bounded and fd(t) ∼ td−1/Γ(d)b(0)/a(0) as t→ ∞, implying fd ∈ L
δ

for δ > (1− d)−1. Taking (1− d)−1 ∈ (1, 2) into account, by Lemma 2.2.5 we obtain

that there is no FICARMA process with regularly varying tails of index −α, α ≤ 1.

�

Example 2.2.10 (supOU processes)

We consider the mixed MA process as given in (2.0.1), where the i. d. i. s. r. m. Λ has

generating quadruple (m,σ2, ν, π) and the kernel function is f(r, s) = 1[0,∞)(s)e
−rs

for r ∈ R+, s ∈ R. Then

Y (t) =

∫

R+×R

1[0,∞)(t− s)e−r(t−s) dΛ(s, r) for t ∈ R. (2.2.18)

An important special case of (2.2.18) is the so called Ornstein-Uhlenbeck (OU)

process, for which π has only support in some λ > 0, i. e. π(λ) = 1. For some α > 0

we have f ∈ L
δ(π) if and only if

∫ ∞

0

∫ ∞

0

e−rsδ dsπ(dr) =

∫ ∞

0

r−δ π(dr) <∞.

We assume in the following that
∫

R+
r−1 π(dr) <∞ and write 1/λ =

∫
R+
r−1 π(dr).

Hence, f ∈ L
δ(π) for δ ≤ 1. Then Y (0) is i. d. and Y is stationary if and only if∫

|x|>2
log |x| ν(dx) <∞. We sketch a short proof: Necessary and sufficient conditions

for Y (0) to be i. d. are given by Proposition 2.2.1. Inserting in (2.2.1) the kernel

function f(r, s) = 1[0,∞)(s)e
−rs and substituting rs by u leads to the necessary and

sufficient conditions of an OU process with parameter λ to be i. d.. By Sato [138],

Theorem 17.5, an OU process exists if and only if
∫
|x|>2

log |x| ν(dx) <∞. �

The generating triplet is then

mY =
1

λ

[
m+

∫

|y|>1

y

|y|
ν(dy)

]
,

σ2
Y = σ2/(2λ), (2.2.19)

νY [x,∞) =

∫ ∞

x

ν [y,∞)

λy
dy , x > 0.
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Note, that the marginal distribution of Y (0) coincides with the marginal distribution

of an OU process with parameter λ. Furthermore, for any regularly varying Lévy

processes Y is stationary.

Define the probability measure π(dr) := λ/rπ(dr) and the i. d. i. s. r. m. Λ with

generating quadruple (m/λ, σ2/λ, ν/λ, π). Then the finite dimensional distributions

of the stochastic process

X(t) =

∫ ∞

−∞

e−rt

∫ rt

−∞

es dΛ(r, s) for t ∈ R (2.2.20)

coincide with those of Y , i. e. X
d
= Y (Barndorff-Nielsen [13], Theorem 3.1). X is

called superposition of Ornstein-Uhlenbeck type (supOU) processes, since

dX(t) =

∫

R+

{−rX(t, dr) dt+ dΛ(t, r)}

with X(t, B) =
∫

B
ert
∫ rt

−∞
es dΛ(r, s) for t ∈ R, B ∈ B(R) and analog for Y . By

(2.2.9) they have the covariance function

γ(h) = Cov(Y (0), Y (h)) =

∫

R+

1

2r
e−rh π(dr) =

1

2λ

∫

R+

e−rh π(dr) for h ∈ R

and the correlation function

ρ(h) = λ

∫

R+

1

r
e−rh π(dr) =

∫

R+

e−rh π(dr) for h ∈ R. (2.2.21)

The class of achievable correlation functions is very large and includes covariance

functions of long memory processes, e. g. π is a Γ(2H+1, 1) d. f. with H > 0. Recall

that the density of a Γ(µ, γ) distribution, µ > 1, γ > 0 is pγ,µ(r) = γµ/Γ(µ)rµ−1e−γr

for r ≥ 0. Then π is Γ(2H, 1). Thus the correlation function is

ρ(h) =

∫ ∞

0

e−rhp2H,1(r) dr =

∫ ∞

0

r2H−1

Γ(2H)
e−r(h+1) dr

= (h+ 1)−2H

∫ ∞

0

p2H,h+1(r) dr = (h+ 1)−2H for h ∈ R,

which implies that Y is long range dependent.

The class of selfdecomposable distributions plays, in this context, a very important

role. A review about selfdecomposable distributions is given in the monograph of

Sato [138]. A probability distribution µ with characteristic function ϕµ is called
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selfdecomposable, if for every b > 1, there is a probability distribution ρb with char-

acteristic function φb such that ϕµ(u) = ϕµ(b−1u)φb(u) for u ∈ R. The distribution ρb

is unique and i. d.. Moreover, µ is i. d. with generating triplet (mµ, σ
2
µ, νµ). Lévy pro-

cesses corresponding to selfdecomposable distributions are called selfdecomposable

processes. Typical examples for selfdecomposable distributions are stable, exponen-

tial, Pareto, lognormal, logistic and GIG distributions (see Chapter 3).

If the r. v. V with distribution µ is selfdecomposable, then there exists a Lévy process

L with generating triplet (m,σ2, ν) such that for some λ > 0

V
d
=

∫ ∞

0

e−λs dL(s). (2.2.22)

By (2.2.2) the generating triplet of V and L are related to each other via

mµ =
1

λ
m+

1

λ

∫

|y|>1

y

|y|
ν(dy), σ2

µ =
1

2λ
σ2, νµ [x,∞) =

1

λ

∫ ∞

x

ν [y,∞)

y
dy.

In particular, νµ has a Lebesgue density given by

νµ(dx) =
ν [x,∞)

λx
dx for x > 0, νµ(dx) =

ν (−∞, x]

λ|x|
dx for x < 0.

Because of (2.2.19) we know, that there exists a supOU process with the same

marginal distribution as V .

If the marginal distribution µ with generating triplet (mµ, σ
2
µ, νµ) and λ are known,

the generating triplet of L is unique. We denote by ν ′µ the Lévy density of νµ and

assume that it is differentiable. Then

m = λmµ −

∫

|y|>1

y

|y|
[−λν ′µ(y) − λyν ′′µ(y)] dy, σ2 = 2λσ2

µ, ν [x,∞) = λxν ′µ(x).(2.2.23)

Using instead of the Lévy process L the Lévy process L = {L(t/λ)}t∈R, which has

generating triplet (mL, σ
2
L
, νL) = (m/λ, σ2/λ, ν/λ), (2.2.23) leads to

mL = mµ −

∫

|y|>1

y

|y|
[−ν ′µ(y) − yν ′′µ(y)] dy, σ2

L
= 2σ2

µ, νL [x,∞) = xν ′µ(x) (2.2.24)

and V
d
=
∫∞

0
e−s dL(s), which is independent of the parameter λ. Changing L to L

is equivalent to changing Λ to Λ.

Estimating the correlation function of data yields, by (2.2.21), to an estimate for

π. Thus, we can model data by a supOU process considering the selfdecomposable

marginal distribution and the correlation function. More about supOU models and

applications to financial data can be found in Barndorff-Nielsen and Shephard [14,

15]. �
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2.3 Regularly varying shot noise processes

Let N be a point process with jump times Γ = {Γk}k∈Z labelled such that

−∞ < . . . < Γ−1 < Γ0 ≤ 0 < Γ1 < . . . <∞.

If the inter-arrival times {Γk+1 − Γk}k∈Z\{0} are i. i. d. the counting process N is

said to be a renewal process. We are concerned with a stationary renewal process

with intensity µ. This means that {Γk+1 − Γk}k∈Z\{0} is i. i. d. positive with d. f. H,

H(0+) = 0, independent of Γ1 − Γ0, P(Γ0 < −x,Γ1 > y) = µ
∫∞

x+y
(1 −H(s)) ds for

x, y ≥ 0 and 1/µ = E(Γ2 − Γ1). The name stationary arises since for all h ∈ R,

n ∈ N, −∞ < t1 < . . . < tn <∞, hi > 0, si = ti + hi, i = 1, . . . , n,

(N (t1 + h, s1 + h] , . . . , N (tn + h, sn + h])
d
= (N (t1, s1] , . . . , N (tn, sn]).

Furthermore, the renewal function EN (t1, t2] has value µ(t2−t1) for t2−t1 ≥ 0. More

about stationary renewal processes on R+ can be found in Resnick [126], Section 3.9,

and on R in Karlin and Taylor [82], Chapter 9, Theorem 9.1.

Suppose {Zk}k∈Z is an i. i. d. sequence of r. v. s and f : R → R is a measurable

function. Then

Y (t) =
∞∑

j=−∞

f(t− Γj)Zj for t ∈ R (2.3.1)

is called a renewal shot noise process. Often f and Z have support only on the

positive real line. We will show in Proposition 2.3.2 that, if Γ is a stationary renewal

process, then Y is stationary, too. In this case, we call Y a stationary renewal shot

noise process. An important special case of a stationary renewal shot noise process

is a Poisson shot noise process, i. e. a MA process driven by a compound Poisson

process. More about Poisson shot noise processes can be found in Example 1.1.9.

Necessary and sufficient conditions for the existence of a Poisson shot noise process

are given by Proposition 2.2.1. They are satisfied if and only if

Ĩ1 =

∫ ∞

−∞

∣∣E(f(s)Z 1{|f(s)Z|≤1})
∣∣ ds <∞,

Ĩ2 =

∫ ∞

−∞

E(f(s)2Z2 1{|f(s)Z|≤1}) ds <∞, (2.3.2)

Ĩ3 =

∫ ∞

−∞

P(|f(s)Z| > 1) ds <∞.
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These are analog conditions to the three-series theorem (cf. Billingsley [28], Theo-

rem 22.8). Similar conditions are also sufficient for a stationary renewal shot noise

process. The assumptions of the following Proposition are analogous to the discrete-

time MA processes (Mikosch and Samorodnitsky [112], Lemma A.3). However,

Resnick and Willekens [123] have similar conditions for the multivariate case.

Proposition 2.3.1

Let Z = {Zk}k∈Z be an i. i. d. sequence of regularly varying r. v. s of index −α, α > 0,

in the sense of (2.1.2) with measure σ given by (2.0.9) and ξ = {ξk}k∈Z be a sequence

of uniformly bounded r. v. s independent of Z satisfying

∞∑

k=−∞

E|ξk|
δ <∞ for some δ < α. (2.3.3)

Assume that one of the following conditions hold:

(a) α ∈ (0, 1] and δ < α .

(b) α ∈ (1, 2) and δ ≤ 1.

(c) α ∈ (1, 2), δ < α, δ ∈ (1, 2) and Z1 is symmetric.

Then
∑∞

k=−∞ ξkZk exists a. s. and

lim
n→∞

nP

(
∞∑

k=−∞

ξkZk > anx

)
= x−α

∞∑

k=−∞

[
pEξ+ α

k + qEξ−α
k

]
. (2.3.4)

Proof.

Step 1. We show
∑∞

k=−∞ ξkZk <∞ a. s..

Let δ ≤ 1. Then

E

[
∞∑

k=−∞

|ξkZk|
δ

]
= E|Z1|

δ

∞∑

k=−∞

E|ξk|
δ <∞,

where we used monotone convergence, (2.0.11) and the independence of ξ and Z.

Thus,
∑∞

k=−∞ |ξkZk|
δ < ∞ a. s.. By Jensen’s-inequality for sequences we obtain∑∞

k=−∞ |ξkZk| ≤ (
∑∞

k=−∞ |ξkZk|
δ)1/δ < ∞ a. s., which is the existence in (a) and

(b).
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In the case (c), where δ ∈ (1, 2), we use the same techniques as Chatterji [42]. Let

c = supx∈R{(|1 + x| − 1 − δx)/|x|δ} ≤ 22−δ. Then

|x+ y|δ = |y|δ
|x|δ

|y|δ

[∣∣∣1 +
y

x

∣∣∣
δ

− 1 − δ
y

x

]
+ |x|δ + δ|x|δ

y

x

≤ 22−δ|y|δ + |x|δ + δ|x|δ−1sign(x)y.

By induction and
∑n

k=n+1 := 0 we obtain for n > m ≥ 1

∣∣∣∣∣

n∑

k=m

ξkZk

∣∣∣∣∣

δ

≤
n∑

k=m


22−δ|ξkZk|

δ + δ

∣∣∣∣∣

n∑

j=k+1

ξjZj

∣∣∣∣∣

δ−1

sign

(
n∑

j=k+1

ξjZj

)
ξkZk


 . (2.3.5)

Taking the independence of Zk and |
∑n

j=k+1 ξjZj|
δ−1sign

(∑n
j=k+1 ξjZj

)
ξk as well

as EZk = 0 into account and applying (2.3.5) we get

E

∣∣∣∣∣

n∑

k=m

ξkZk

∣∣∣∣∣

δ

≤ 22−δ
E|Z1|

δ

n∑

k=m

E|ξk|
δ.

Hence, from (2.3.3) follows that {
∑n

k=1 ξkZk}n∈N is a Cauchy sequence in L
δ. The

space L
δ is complete for δ > 1, which implies E|

∑∞
k=1 ξkZk|

δ <∞. Consequently in

(c) we have
∑∞

k=−∞ ξkZk <∞ a. s., too.

Step 2. We compute the tail behavior in (2.3.4).

We show that there exist a K, y0 > 0 such that for y ≥ y0

P

(∣∣∣∣∣

∞∑

k=−∞

ξkZk

∣∣∣∣∣ > y

)
≤ KP

(
|Z1| > y/f+

) ∞∑

k=−∞

E|ξk|
δ. (2.3.6)

Then we have on the one hand

lim
m→∞

lim
n→∞

nP



∣∣∣∣∣∣

∞∑

|k|>m

ξkZk

∣∣∣∣∣∣
> anx


 (2.3.7)

≤ K lim
n→∞

nP
(
|Z1| > anx/f

+
)

lim
m→∞

∑

|k|>m

E|ξk|
δ = 0.

On the other hand, applying (2.1.7) yields, for n→ ∞, to

lim
n→∞

nP

(
m∑

k=−m

ξkZk > anx

)
= x−α

m∑

k=−m

[
pEξ+ α

k + qEξ−α
k

]
. (2.3.8)
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Combining (2.3.7) and (2.3.8) results in (2.3.4); for details see Kokoszka and

Taqqu [91], proof of Theorem 2.2.

First, note that

P

(∣∣∣∣∣

∞∑

k=−∞

ξkZk

∣∣∣∣∣ > y

)
= P

(∣∣∣∣∣

∞∑

k=−∞

ξkZk

∣∣∣∣∣ > y,

∞∨

j=−∞

|ξjZj| > y

)

+P

(∣∣∣∣∣

∞∑

k=−∞

ξkZk

∣∣∣∣∣ > y,

∞∨

j=−∞

|ξjZj| ≤ y

)
(2.3.9)

≤
∞∑

k=−∞

P (|ξkZk| > y) + P

(∣∣∣∣∣

∞∑

k=−∞

ξkZk 1{|ξkZk|≤y}

∣∣∣∣∣ > y

)
.

Let Gk be the d. f. of ξk, which has bounded support as |ξk| ≤ f+ for k ∈ Z and

recall that ξk is independent of Zk. By Potter’s Theorem A.1.10 (iv) there exists a

K1 > 1 such that the first summand of the r. h. s. of (2.3.9) has the upper bound

∞∑

k=−∞

P (|ξkZk| > y) =
∞∑

k=−∞

∫ f+

−f+

P (|uZk| > y) dGk(u) (2.3.10)

≤ K1P
(
|Zk| > |y|/f+

) ∞∑

k=−∞

∫ f+

−f+

|u|δ dGk(u)

= K1P
(
|Zk| > |y|/f+

) ∞∑

k=−∞

E|ξk|
δ.

To obtain an upper bound of the second summand of (2.3.9), we will first consider

the case where Zk is symmetric and extend the results afterwards.

Step 2.1. Suppose Zk is symmetric.

By Markov’s inequality and Lemma of Fatou,

P

(∣∣∣∣∣

∞∑

k=−∞

ξkZk 1{|ξkZk|≤y}

∣∣∣∣∣ > y

)
≤

1

y2
E

∣∣∣∣∣

∞∑

k=−∞

ξkZk 1{|ξkZk|≤y}

∣∣∣∣∣

2

(2.3.11)

≤
1

y2

∞∑

k=−∞

E[ξ2
kZ

2
k 1{|ξkZk|≤y}] +

1

y2

∞∑

k,j=−∞
k 6=0

E[ξkZk 1{|ξkZk|≤y} ξjZj 1{|ξjZj |≤y}].

By symmetry and independence, the second summand is 0. By the independence of

ξk and Zk we have

E[ξ2
kZ

2
k 1{|ξkZk|≤y}] =

∫ f+

−f+

E[u2Z2
1 1{|uZ1|≤y}] dGk(u). (2.3.12)
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Taking α ∈ (0, 2) into account and applying Theorem 1, (9.5) of Feller [65], VIII.9,

reveals that for fixed u the map (y 7→ E[u2Z2
1 1{|uZ1|≤y}]) is a regularly varying

function of index 2 − α such that

E[u2Z2
1 1{|uZ1|≤y}] ∼

2

2 − α
y2

P (|uZ1| > |y|) for y → ∞.

Applying again Potter’s Theorem A.1.10, there exists a K2 > 1 such that

E[u2Z2
1 1{|uZ1|≤y}] ≤ K2y

2|u|δP
(
|Z1| > y/f+

)
for every u ∈ [−f+, f+], y > 0.

Together with (2.3.12) we obtain

∞∑

k=−∞

E[ξ2
kZ

2
k 1{|ξkZk|≤y}] ≤ K2y

2
P
(
|Z1| > y/f+

) ∞∑

k=−∞

E|ξk|
δ. (2.3.13)

Thus, from (2.3.11) and (2.3.13) the inequality (2.3.6) follows.

Step 2.2. Let {Zk}k∈Z and {ξk}k∈Z be positive sequences and δ ≤ 1, i. e. p = 1 and

q = 0 in (2.0.9). We apply a technique used by Mikosch and Samorodnitsky [112],

Lemma A.3:

Define Xm =
∑

|k|>m ξkZk for m ∈ Z. Since Xm → 0 as m → ∞ a. s. by Step 1

the family of r. v. s {Xm}m∈N is tight. Therefore there exists an N > 0 such that

P(Xm ≤ N) ≥ 1/2 for every m ∈ N. Let X̃m =
∑

|k|>m ξ̃kZ̃k be an independent

copy of Xm, such that {Z̃k}k∈Z, {ξ̃k}k∈Z are independent copies of {Zk}k∈Z, {ξk}k∈Z.

Then for some ε ∈ (0, x)

1

2
P(Xm > anx) ≤ P

(
X̃m ≤ N,Xm > anx

)

= P


X̃m ≤ N,Xm > anx,

∑

|k|>m

ξ̃kZk > anε




+P


X̃m ≤ N,Xm > anx,

∑

|k|>m

ξ̃kZk ≤ anε


 . (2.3.14)

For the first summand of (2.3.14) we obtain the estimate

P


X̃m ≤ N,Xm > anx,

∑

|k|>m

ξ̃kZk > anε




≤ P


∑

|k|>m

ξ̃k(Zk − Z̃k) > anε−N


 . (2.3.15)
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The second summand of (2.3.14) has the upper bound

P


X̃m ≤ N,Xm > anx,

∑

|k|>m

ξ̃kZk ≤ anε




≤ P


∑

|k|>m

(ξ̃k − ξk)Z̃k ≤ N,Xm > anx,
∑

|k|>m

ξ̃kZk ≤ anε




≤ P


∑

|k|>m

(ξk − ξ̃k)(Zk − Z̃k) > an(x− ε) −N


 , (2.3.16)

where we used in the second inequality the positivity of ξk, Z̃k. Furthermore,

{Zk − Z̃k}k∈Z is symmetric and regularly varying of index −α such that for n→ ∞

nP(a−1
n (Zk − Z̃k) ∈ ·)

υ
=⇒ σ̃(·),

where σ̃(·) = α|x|−α−1 dx. Recall that

∑

|k|>m

E|ξ̃k − ξk|
δ ≤ 2δ+1

∑

|k|>m

E|ξk|
δ <∞.

Then
∑

|k|>m(ξ̃k − ξk)(Zk − Z̃k) satisfies the assumptions of Step 2.1, such that by

Definition 1.1.1 (i)

lim
n→∞

nP


∑

|k|>m

(ξ̃k − ξk)(Zk − Z̃k) > an(x− ε) −N




≤ K(x− ε)−α
∑

|k|>m

E|ξk − ξ̃k|
δ m→∞
−→ 0. (2.3.17)

Similarly we obtain in (2.3.15)

lim
n→∞

nP


∑

|k|>m

ξ̃k(Zk − Z̃k) > anε−N


 ≤ Kε−α

∑

|k|>m

E|ξk|
δ m→∞
−→ 0. (2.3.18)

Hence by (2.3.14)-(2.3.18) the relation (2.3.7)

lim
m→∞

lim
n→∞

P(|Xm| > anx) = lim
m→∞

lim
n→∞

nP


∑

|k|>m

ξkZk > anx


 = 0

holds.
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Step 2.3. Let {Zk}k∈Z, {ξk}k∈Z be arbitrary and δ ≤ 1. Then X
m

=
∑

|k|>m |ξk||Zk|

satisfies the assumption of Step 2.2 leading to

lim
m→∞

lim
n→∞

nP



∣∣∣∣∣∣

∑

|k|>m

ξkZk

∣∣∣∣∣∣
> anx


 ≤ lim

m→∞
lim

n→∞
nP(X

m
> anx) = 0. �

With this result we can pose necessary conditions for the existence of stationary

regularly varying renewal shot noise processes, which are also regularly varying. The

result is very similarly to the existence and tail behavior of mixed MA processes in

Proposition 2.2.3.

Proposition 2.3.2

Let Y be a shot noise process given by (2.3.1), where Γ = {Γk}k∈Z is a stationary

renewal process with intensity µ and Z = {Zk}k∈Z is an i. i. d. sequence, which is

regularly varying of index −α, α > 0, in the sense of (2.1.2). Furthermore we assume

one of the following conditions to hold:

(a) α ∈ (0, 1] and f ∈ L
δ for some δ < α.

(b) α ∈ (1, 2) and f ∈ L
δ for some δ ≤ 1.

(c) α ∈ (1, 2), f ∈ L
δ for some δ < α and Z1 symmetric.

Then Y is well defined and stationary with

lim
n→∞

nP (Y (0) > anx) = µx−α

∫ ∞

−∞

[
p(f+(s))α + q(f−(s))α

]
ds. (2.3.19)

The process Y is called stationary renewal shot noise process.

Proof.

Define ξk := f(Γk) for k ∈ Z. For the stationary renewal process Γ and the point

process κ =
∑∞

k=−∞ εΓk
in R holds

∞∑

k=−∞

E|ξk|
δ = E

[
∞∑

k=−∞

|f(Γk)|
δ

]
= E

[∫ ∞

−∞

|f(s)|δ dκ(s)

]
= µ

∫ ∞

−∞

|f(s)|δ ds.

Then the existence and (2.3.19) follow by Proposition 2.3.1.

It remains to show that Y is stationary: Let h > 0 be fixed. Define Γ̃k := Γk+N(h)−h

and Z̃k = Zk+N(h) for k ∈ Z. Then {Γk}k∈Z
d
= {Γ̃k}k∈Z and {Zk}k∈Z

d
= {Z̃k}k∈Z. We



2.3 Regularly varying shot noise processes 115

obtain

Y (t) =
∞∑

k=−∞

f(t− Γk)Zk
d
=

∞∑

k=−∞

f(t− Γ̃k)Z̃k =
∞∑

k=−∞

f(t+ h− Γk+N(h))Zk+N(h)

=
∞∑

k=−∞

f(t+ h− Γk)Zk = Y (t+ h).

Analogously we receive for the finite dimensional distribution

(Y (t1), . . . , Y (tn))
d
= (Y (t1 + h), . . . , Y (tn + h)). �

Similarly to condition (M1) and (M2) for mixed MA processes we state the condi-

tions for the stationary renewal shot noise processes.

Condition (R1).

Let Y with Y (t) =
∑∞

k=−∞ f(t − Γk)Zk, k ∈ Z, be a stationary renewal shot noise

process as given in (2.3.1), where the stationary renewal process N with jumps

Γ = {Γk}k∈Z has intensity µ and Z = {Zk}k∈Z is an i. i. d. sequence, which is

regularly varying of index −α, α > 0, such that there exists a sequence 0 < an ↑ ∞

of constants with

nP(a−1
n Zk ∈ ·)

υ
=⇒ σ(·)/µ on B(R\{0}) for n→ ∞,

where σ(dx) = pαx−α−1 1(0,∞)(x) dx+ qα(−x)−α−1 1(−∞,0)(x) dx for some p ∈ [0, 1],

q = 1−p. Furthermore, f : R → R is bounded with f+ = supt∈R f
+(t) = f(η(1)) <∞

and f− = supt∈R f
−(t) = f(η(2)) ≤ f+. Assume that one of the following conditions

hold:

(a) α ∈ (0, 1] and f ∈ L
δ for some δ < α.

(b) α ∈ (1, 2) and f ∈ L
δ for some δ ≤ 1.

(c) α ∈ (1, 2), f ∈ L
δ for some δ < α and Z1 symmetric.

Condition (R2).

Let Y be a stationary renewal shot noise process given by (2.3.1) satisfying (R1)

with a. s. sample paths in D(R). Define

g(t) := sup
s∈(−∞,t]

|f(s)|1(−∞,η(1)](t) + sup
s∈(t,∞)

|f(s)|1(η(1),∞)(t), (2.3.20)

then we suppose g ∈ L
δ for some δ < min{1, α}.
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2.4 Point process convergence

We follow Resnick [124,125] and introduce point processes to describe precisely the

extremal behavior of Y . In order to achieve a distributional stability of a sequence of

point processes, it is necessary to allow a build up of infinite mass at [s, t)×{0}. This

is handled, for our problem, by defining the state space S = [0,∞) × R
d
\{0}. The

space S can be metricized as a locally compact, complete and separable Hausdorff

space (cf. Lindskøg [99], Theorem 1.5; note that (0,∞] equipped with the metric

d(x, y) = |1/x− 1/y| is complete and separable). Compact sets in S are closed sets,

which are bounded away from 0 and ±∞. Furthermore B(S) denotes the Borel σ-

field and MP (S) the class of point measures on S, where MP (S) is equipped with the

metric ρ that generates the topology of vague convergence. The space (MP (S), ρ) is

a complete and separable metric space with Borel σ-field MP (S). The zero measure

is denoted by 0. A point process in S is a random element in (MP (S),MP (S)), i. e. a

measurable map from a probability space (Ω,A,P) into (MP (S),MP (S)). A typical

example for a point process in extreme value theory is a Poisson random measure,

i. e. given a Radon measure ϑ on B(S), a point process κ is called Poisson random

measure with mean measure (or intensity measure) ϑ, denoted by PRM(ϑ), if

(a) κ(A) is Poisson distributed with mean ϑ(A) for every A ∈ B(S),

(b) for mutually disjoint sets A1, . . . , An ∈ B(S), n ∈ N, the r. v. s κ(A1), . . . , κ(An)

are independent.

More about point processes can be found in Daley and Vere-Jones [50] and Kallen-

berg [81].

For a thorough understanding of the structural behavior of extremes of the con-

tinuous-time processes, the knowledge of point processes is desirable. Therefore the

results of Davis and Hsing [52] about the point process behavior of a stationary se-

quence of regularly varying r. v. s under weak dependence are of vitally importance

for our studies. Those results were generalized by Davis and Mikosch [53] to mul-

tidimensional regularly varying stationary processes. Weak dependence is described

by the following mixing condition.

Condition A(an).

Let Y = {Yk}k∈Z be a strictly stationary sequence of regularly varying random
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vectors and 0 < an ↑ ∞ a sequence of constants satisfying

lim
n→∞

nP(|Y1| > an) = 1. (2.4.1)

There exists a set of positive integers {rn}n∈N such that rn → ∞, rn/n → 0 as

n→ ∞ and

E exp

(
−

n∑

j=1

f(Yj/an)

)
−

[
E exp

(
−

rn∑

j=1

f(Yj/an)

)]bn/rnc

n→∞
−→ 0 for all f ∈ Fs,

where Fs is the collection of bounded non negative step functions on R
d
\{0} with

bounded support.

The meaning of this condition is that, if {N
(n)

k }k∈N is an i. i. d. sequence of point

processes with the same distribution as
∑rn

k=1 εYk/an and Nn =
∑n

k=1 εYk/an , then

the Laplace functional (Embrechts et al. [60], Theorem 5.2.3) of Nn and
∑bn/rnc

k=1 N
(n)

k

have the same limit behavior, i. e.

E exp

[
−

∫
f(s) dNn(s)

]
−

[
E exp

(
−

∫
f(s) dN

(n)

1 (s)

)]bn/rnc
n→∞
−→ 0.

This is equivalent to

bn/rnc∑

k=1

N
(n)

k
w

=⇒ κ ⇐⇒ Nn
w

=⇒ κ

for n → ∞ and some point process κ in MP (R
d
\{0}). Condition A(an) is a weak

mixing condition and holds, e. g. for a sequence of regularly varying random vectors

satisfying the strong mixing condition (Basrak [18], Lemma 2.3.9). It is independent

of the particular choice of an. The condition is very similar to the ∆(an) condition

often used in extreme value theory (cf. Leadbetter and Rootzén [97], Lemma 2.4.2).

For stationary sequences of multivariate regularly varying random vectors satisfying

condition A(an) Davis and Mikosch [53] formulate the following point process result.

Theorem 2.4.1 (Davis and Mikosch [53], Theorem 2.8 and Corollary 2.4)

Let Y = {Yk}k∈Z be a strictly stationary sequence of random vectors on R
d sat-

isfying condition A(an). Assume that all finite-dimensional distributions of Y are

jointly regularly varying with index −α, α > 0, such that for every l > 0 with



118 2 Extremes of regularly varying Lévy driven mixed MA processes

Ỹ(l) = (Yt
−l, . . . ,Y

t
l ) there exists a random vector Θ(l) with values on the unit

sphere S
(2l+1)d−1 = {x ∈ R

(2l+1)d : |x| = 1} such that for every x > 0 and u→ ∞,

P(|Ỹ(l)| > ux, Ỹ(l)/|Ỹ(l)| ∈ ·)

P(|Ỹ(l)| > u)

υ
=⇒ x−α

P(Θ(l) ∈ ·) on B(S(2l+1)d−1). (2.4.2)

Assume that

lim
l→∞

lim
n→∞

P


 ∨

l≤|k|≤rn

|Yk| > anx

∣∣∣∣∣∣
|Y0| > anx


 = 0 for x > 0. (2.4.3)

Define the point processes Nn =
∑n

k=1 εYk/an on MP (R
d
\{0}). Then the limit

θ = lim
l→∞

E

(
|Θ

(l)
0 |α −

l∨

j=1

|Θ
(l)
j |α

)+/
E|Θ

(l)
0 |α (2.4.4)

exists. If θ = 0 then Nn
w

=⇒ 0 for n→ ∞. Else, if θ > 0, then for l → ∞

E

([
|Θ

(l)
0 |α −

∨l
j=1 |Θ

(l)
j |α

]+
1
{∑

|j|≤l εΘ
(l)
j

∈ ·
})

E

(
|Θ

(l)
0 |α −

∨l
j=1 |Θ

(l)
j |α

)+

w
=⇒ Q(·), (2.4.5)

where Q is a Radon counting measure on the set

{µ Radon counting measure on R
d
\{0}, µ(Sd−1) > 0, µ{(x ∈ R

d : |x| > 1)} = 0}.

Furthermore, for n→ ∞,

Nn
w

=⇒
∞∑

k=1

∞∑

j=1

εP̃kQkj
,

where
∑∞

k=1 εP̃k
is a PRM(ϑ̃) on R+ with ϑ̃(dx) = θα x−α−1 1(0,∞)(x) dx and∑∞

j=1 εQkj
for k ∈ N are point processes with the same distribution as Q. All point

processes are mutually independent.

Note that θ is the extremal index (Definition A.1.9) of {|Yk|}k∈Z. Condition (2.4.3)

is an anti-clustering condition which, roughly speaking, ensures that high level ex-

ceedances have not too much dependence on any short time horizon. In comparison

to the D′(un) condition, Definition A.3.1, we have the rate rn instead of n. Long

range dependence has already been excluded by the condition A(an). The indepen-

dence of P̃k and the Qkj is a consequence of the multivariate regular variation.
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There exist further results on the point process behavior of regularly varying random

vectors. The following Lemma shows that adding a small random vector to a mul-

tivariate regularly varying sequence has no influence on the point process behavior.

The meaning of small is that the tail of the absolute value decreases faster than the

tail of the absolute value of the multivariate sequence.

Lemma 2.4.2

Let Z = {Zk}k∈N, Ψ = {Ψk}k∈N be sequences of random vectors in R
d. Furthermore,

let {Γk}k∈N be the jump times of a stationary renewal processN with intensity µ > 0,

h ∈ R be arbitrary and sk ∈ [Γk−1 + h,Γk+1 + h) for k ∈ N, setting Γ0 := 0. Denote

by 0 < an ↑ ∞ a sequence of constants and by

κ̃n =
∞∑

k=1

ε(k/n,Zk/an) and κn =
∞∑

k=1

ε(skµ/n,(Zk+Ψk)/an)

point processes in MP (S) for n ∈ N. Suppose there exists a point process κ in MP (S)

with κ ([s, t) × {x}) = 0 a. s. for x ∈ R
d
\{0}, t > s ≥ 0, such that κ̃n

w
=⇒ κ for

n→ ∞. Furthermore assume that for every ε, t > 0,

bntc∑

k=1

P(|Ψk| > anε)
n→∞
−→ 0. (2.4.6)

We suppose that there exists a r. v. W such that

P(|Zk + Ψk| > x) ≤ P(W > x) for x > 0 and P(W > anx) = O(1/n) for n→ ∞.

Let I = [s, t) ×
∏d

i=1 (ci, di] ⊆ S. Then

lim
n→∞

P(κn(I) 6= κ̃n(I)) = 0

and κn
w

=⇒ κ for n→ ∞.

Proof.

Let ε > 0 be arbitrary. Denote by ζn :=
∑∞

k=1 ε(k/n,a−1
n (Zk+Ψk)) a point process in

MP (S) for n ∈ N. Define the sets I
(1)
ε =

d∏
i=1

(ci − ε, di + ε], I
(2)
ε =

d∏
i=1

(ci + ε, di − ε]

and Iε = I
(1)
ε \I

(2)
ε . We obtain

{κ̃n(I) 6= ζn(I)} ⊆ {κ̃n(Iε) > 0} (2.4.7)
⋃

k∈(ns,nt]

{
a−1

n (Zk + Ψk) ∈ I, a−1
n Zk ∈ I(1) c

ε

}

⋃

k∈(ns,nt]

{
a−1

n (Zk + Ψk) ∈ Ic, a−1
n Zk ∈ I(2)

ε

}
.
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On the one hand,

∑

k∈(ns,nt]

P
(
a−1

n (Zk + Ψk) ∈ I, a−1
n Zk ∈ I(1) c

ε

)
≤

∑

k∈(ns,nt]

P(|Ψk| > anε)
n→∞
−→ 0, (2.4.8)

∑

k∈(ns,nt]

P
(
a−1

n (Zk + Ψk) ∈ Ic, a−1
n Zk ∈ I(2)

ε

)
≤

∑

k∈(ns,nt]

P(|Ψk| > anε)
n→∞
−→ 0, (2.4.9)

and on the other hand,

lim
ε↓0

lim
n→∞

P(κ̃n(Iε) > 0) = lim
ε↓0

P(κ(Iε) > 0) = 0. (2.4.10)

Thus, by (2.4.7)-(2.4.10) we get lim
n→∞

P(κ̃n(I) 6= ζn(I)) = 0. Applying Rootzén [131],

Lemma 3.3, we end with ζn
w

=⇒ κ as n→ ∞.

The rest of this proof is an analogon to the proof of Lemma 1.2.4 and therefore we

only sketch it.

Since I is bounded away from 0, there exists an x > 0 such that

P(a−1
n (Zk + Ψk) ∈ I) ≤ P(|Zk + Ψk| > anx) ≤ P(W > anx). (2.4.11)

Furthermore,

Γ1 − (ΓN(t)+1 − ΓN(t))

N(t)
+

∑N(t)
k=1 (Γk+1 − Γk)

N(t)
≤

t

N(t)
≤

Γ1

N(t)
+

∑N(t)
k=1 (Γk+1 − Γk)

N(t)
.

Regarding that {Γk+1 − Γk}k∈N is i. i. d. with mean 1/µ by the LLN we obtain

N(t)/t→ µ for n→ ∞ a. s.. (2.4.12)

For a detailed proof of the LLN for renewal processes we refer to Mikosch [111],

Theorem 2.2.4. Using (2.4.11) and (2.4.12) the rest of the proof follows along the

lines of Lemma 1.2.4. �

Lemma 2.4.2 is an analog result to Theorem 1.2.1 for subexponential distributions

in the maximum domain of attraction of the Gumbel distribution. We will give some

examples for random vectors {Ψk}k∈N to satisfy (2.4.6):

Example 2.4.3

(a) Suppose there exists a r. v. ψ such that for some x0 ∈ R and every ε > 0, k ∈ N,

P(|Ψk| > x) ≤ P(ψ > x) for x ≥ x0 and P(ψ > anε) = o(1/n) for n→ ∞,
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then the assumption (2.4.6) is satisfied.

(b) Let {Z̃k}k∈Z be a sequence of identically distributed r. v. s, which are regularly

varying of index −α in the sense of (2.1.2) and with the same an as Z1. Suppose

{Z̃k}k∈Z are independent of the sequence of random vectors {Ψ̃k}k∈Z in R
d, which

have support on [−f+, f+]d. Define Ψk := Ψ̃kZ̃k and assume there exists a δ∗ > 0

with α− δ∗ > 0 such that

∞∑

k=−∞

E|Ψ̃k|
α−δ∗ <∞. (2.4.13)

Denote by Fk the d. f. of Ψ̃k. By Potter’s Theorem A.1.10 (iii) there exists an

n0 > 0, K > 1 such that

P(f+|Z1| > any)/P(f+|Z1| > an) ≤ Ky−α+δ∗ for y ≥ 1, n ≥ n0.

Then we have for n ≥ n0

P(|Ψ̃kZ̃k| > anε) =

∫

R
d
\{0}

P(f+|Z̃k| > anεf
+/|t|)Fk(dt)

≤ KP(f+|Z̃k| > anε)f
+ δ∗−α

∫

R
d
\{0}

|t|α−δ∗Fk(dt)

= KP(f+|Z̃1| > anε)f
+ δ∗−α

E|Ψ̃k|
α−δ∗ . (2.4.14)

Regarding (2.4.14) and an → ∞ as n→ ∞, we obtain

lim
n→∞

bntc∑

k=1

P(|Ψk| > anε) ≤ Kf+ δ∗−α lim
n→∞

P(f+|Z̃1| > anε)
∞∑

k=1

E|Ψ̃k|
α−δ∗ = 0.

Thus, also {Ψk}k∈Z satisfies the assumption (2.4.6). �

The last Lemma of this section regards on point processes of independent regu-

larly varying sequences. It is analogously to Proposition 1.2.5 for subexponential

sequences in the maximum domain of attraction of the Gumbel distribution.

Lemma 2.4.4

For i = 1, 2, let Z(i) = {Z
(i)
k }k∈N be sequences of identically distributed r. v. s, which

are regularly varying of index −α, α > 0, in the sense of (2.1.2), such that for a

sequence 0 < an ↑ ∞ of constants and s = 1, 2,

lim
n→∞

nP(|Z
(s)
1 | > anx) = csx

−α for x > 0,
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where cs ≥ 0. Assume Z(1) and Z(2) are independent. For n ∈ N denote by

κ(i)
n =

∞∑

k=1

ε(
k/n,Z

(i)
k /an

) and κn =
∞∑

k=1

ε(
k/n,(Z

(1)
k +Z

(2)
k )/an

)

point processes in MP (S). Suppose κ
(i)
n

w
=⇒ κ(i) as n → ∞ for some point process

κ(i) with κ(i)([s, t)×{x}) = 0 a. s. for x ∈ R\{0}, t > s ≥ 0, and κ(1) is independent

of κ(2). Let I = [s, t) × (c, d] ⊆ S. Then

lim
n→∞

P(κn(I) 6= κ(1)
n (I) + κ(2)

n (I)) = 0

and κn
w

=⇒ κ(1) + κ(2) as n→ ∞.

Proof.

Let ε > 0 be fixed and Iε = [s, t) × [c− ε, c+ ε) ∪ [s, t) × [d− ε, d+ ε). Then

{κn(I) 6= κ(1)
n (I) + κ(2)

n (I)} ⊆ {κ(1)
n (Iε) > 0} ∪ {κ(2)

n (Iε) > 0}
⋃

k∈[ns,nt)

{a−1
n (Z

(1)
k + Z

(2)
k ) ∈ I, a−1

n Z
(1)
k ∈ I\Iε, a

−1
n Z

(2)
k ∈ I\Iε}

∪{a−1
n (Z

(1)
k + Z

(2)
k ) ∈ I, a−1

n Z
(1)
k ∈ Ic\Iε, a

−1
n Z

(2)
k ∈ Ic\Iε}

∪{a−1
n (Z

(1)
k + Z

(2)
k ) ∈ Ic, a−1

n Z
(1)
k ∈ I\Iε}

∪{a−1
n (Z

(1)
k + Z

(2)
k ) ∈ Ic, a−1

n Z
(2)
k ∈ I\Iε}.

Thus, by the independence of Z(1) and Z(2) we obtain

P(κn(I) 6= κ(1)
n (I) + κ(2)

n (I))

≤ P(κ(1)
n (Iε) > 0) + P(κ(2)

n (Iε) > 0)

+n(t− s)[P(a−1
n Z

(1)
1 ∈ I\Iε)P(a−1

n Z
(2)
1 ∈ I\Iε) + P(|Z

(1)
1 | > anε)P(|Z

(2)
1 | > anε)]

+n(t− s)[P(|Z
(1)
1 | > anε)P(a−1

n Z
(2)
1 ∈ I\Iε) + P(|Z

(2)
1 | > anε)P(a−1

n Z
(1)
1 ∈ I\Iε)]

n→∞
−→ P(κ(1)(Iε) > 0) + P(κ(2)(Iε) > 0)

ε→0
−→ 0. (2.4.15)

Taking the independence of κ
(1)
n , κ

(2)
n and κ(1), κ(2) into account, we get also

κ
(1)
n + κ

(2)
n

w
=⇒ κ(1) + κ(2) for n → ∞. Thus by Rootzén [131], Lemma 3.3, and

(2.4.15) we have κn
w

=⇒ κ(1) + κ(2) for n→ ∞. �

2.5 Extremal behavior

In this section we study the extremal behavior of a regularly varying mixed MA

process Y given as in (2.0.1). Therefore we use, similarly to subexponential MA
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processes in the maximum domain of attraction of the Gumbel distribution (Sec-

tion 1.4), a discrete-time skeleton. This means we investigate the extremal behavior

of the discrete-time sequence {Y (tn)}n∈N, where the discrete-time sequence {tn}n∈N

is chosen properly by the extremes of the kernel function and the jump times of

the Lévy process. The extremes of {Y (tn)}n∈N coincide with the extremes of Y . We

would like to give a short motivation for this:

Consider the mixed Poisson shot noise process Y (t) =
∑∞

k=−∞ f(Rk, t − Γk)Zk for

t ∈ R, then

Y (Γk + t) = f(Rk, t)Zk +
∞∑

j=−∞
j 6=k

f(Rj, t+ Γk − Γj)Zj for k ∈ N, t ∈ R.

In the case that the {Zk}k∈Z are regularly varying it happens, that one Zk is really

large in comparison to {Zj}j∈Z\{k}. Then Y (Γk + t) behaves like f(Rk, t)Zk. The

process {f(Rk, t)Zk}t≥0 achieves its supremum in η(1), where f(Rk, η
(1)) = f+. Sim-

ilar results hold for large negative jumps and the infimum of the kernel function η(2)

with f(Rk, η
(2)) = −f−. This suggests that {Y (tn)}n∈N with

tn ∈ {Γk + η(1) : k ∈ N} ∪ {Γk + η(2) : k ∈ N}

describes completely the extremes of Y . Clusters of high level exceedances of Y are

caused by large jumps of the Lévy process in combination with extremes of the

kernel function.

In general we consider a mixed MA process Y as given in (2.0.1). We come back

to the decomposition of the i. d. i. s. r. m. Λ = Λ1 + Λ2 as given in (2.0.4), where Λ1

is a compound Poisson random measure with generating quadruple (0, 0, ν1, π) and

Λ2 is an i. d. i. s. r. m. with generating quadruple (m,σ2, ν2, π). The support of ν2 is

bounded, so that the jump sizes of the underlying Lévy process are bounded, too.

The compound Poisson random measure Λ1 has representation

Λ1(A) =

∫

A

∫

R

x dÑ1(ω, x) and Ñ1 =
∞∑

k=−∞

ε(Rk,Γk,Zk),

where −∞ < . . . < Γ−1 < Γ0 ≤ 0 < Γ1 < . . . < ∞ are the jump times of a Poisson

process N with intensity µ = ν1(R). Furthermore, Z is an i. i. d. sequence with d. f.

P(Z1 ≤ x) = ν1 (−∞, x] /µ for x ∈ R independent of R an i. i. d. sequence with

d. f. π. In this section we consider regularly varying mixed MA processes Y as given
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in (2.0.1), so that we assume (M1) is satisfied. Hence, by Proposition 1.1.2 (v) the

sequence 0 < an ↑ ∞ of constants satisfies

nP(a−1
n Z1 ∈ ·)

υ
=⇒ σ(·)/µ on B(R\{0}) for n→ ∞, (2.5.1)

where σ(dx) = pαx−α−1 1(0,∞)(x) dx + qα(−x)−α−1 1(−∞,0)(x) dx, p, q ∈ [0, 1],

p+q = 1. This decomposition of Λ induces also a decomposition of Y in Y = Y1 +Y2

as given in (2.0.6), where

Y1(t) =
∞∑

k=−∞

f(Rk, t− Γk)Zk for t ∈ R a. s.. (2.5.2)

We show that the mixed MA process Y2 has no influence on the extremal behavior

of Y , since the driving Lévy process has only small jumps. Throughout this section

the support of f in the second coordinate is of the form [a, b], (−∞, a], [a,∞), a < b.

Furthermore, f is in the second coordinate continuous in the interior of its support

and right respectively left continuous at the boundary.

The second model we pay attention to are stationary renewal shot noise processes

Y as given in (2.3.1) with

Y (t) =
∞∑

j=−∞

f(t− Γj)Zj for t ∈ R, (2.5.3)

where Γ = {Γk}k∈Z are the jump times of a stationary renewal process N with inten-

sity µ independent of the regularly varying i. i. d. sequence Z. This class of processes

is a generalization of Poisson shot noise processes. Here we assume condition (R1)

is satisfied. Hence, the sequence 0 < an ↑ ∞ of constants satisfies

nP(a−1
n Z1 ∈ ·)

υ
=⇒ σ(·)/µ on B(R\{0}) for n→ ∞.

The extremal behavior for the stationary mixed MA process and the stationary

renewal shot noise process are the same, by the identical structure of the Poisson

shot noise process Y1 given by (2.5.2) and the stationary renewal shot noise process

given by (2.5.3). Similar results hold for the discrete-time MA processes, which

have been investigated by Davis and Resnick [54] and Rootzén [130]. The extremal

behavior of heavy tailed shot noise processes, where f : [0, 1] → [0, 1] is strictly

decreasing and the jump sizes Z are positive, has been thoroughly investigated by

McCormick [108,107]. We generalize his result such that f is no longer bounded and

positive.
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In this section we need the definition of the renewal process Ñ with jump times

T = {Tk}k∈Z where

Tk := Γk+1 − Γ1 and T−k := Γ−k − Γ0 for k ∈ N0. (2.5.4)

2.5.1 The point process of local maxima

Let Y be given as in (2.0.14), where Y is either a stationary mixed MA process or

a stationary renewal shot noise process and define for k ∈ Z the disjoint intervals

Ik =
[
η(1) + (Γk−1 + Γk)/2, η

(1) + (Γk + Γk+1)/2
)
. (2.5.5)

The extremal behavior of the mixed MA process Y as given in (2.0.1) is described

by the multivariate point process

κn =
∞∑

k=1

ε(Γk/n,suph∈Ik
Y (h)/an,Y(Γk)/an) in [0,∞) × [0,∞]d+3\{0}. (2.5.6)

This point process can be interpreted as a marked point process (Daley and Vere-

Jones [50], Section 6.4). Let

Ỹk = (sup
h∈Ik

Y (h),Y(Γk)), (2.5.7)

where Ỹk,h, h ∈ {1, . . . , d+3} is the hth coordinate of Ỹk. Marked point process means

that we consider the point process behavior of
∑∞

k=1 ε(Γk/n,Ỹk,h/an) for some fixed h,

and the remaining coordinates of Ỹk in κn describe the behavior of the process,

when an excess of Yk,h over a high threshold occurs. In our setting Y(Γk)/an are the

marks, which describe the sample path behavior of the continuous-time process Y ,

if an extreme occur. They characterize clearly the location of extremes. By adding

this mark we obtain complete information about the extremal behavior of Y .

Theorem 2.5.1

Let Y be either a stationary mixed MA process as given in (2.0.1) satisfying (M2)

or a stationary renewal shot noise process as given in (2.3.1) satisfying (R2) with

pf+ > 0. If qf− > 0 assume furthermore Zk has the decomposition Zk = Z
(1)
k −Z

(2)
k ,

where {Z
(1)
k }k∈Z, {Z

(2)
k }k∈Z are independent sequences and for s = 1, 2, {Z

(s)
k }k∈Z is

a sequence of i. i. d. positive r. v. s with

P(Z
(1)
1 > x) ∼ P(Z1 > x), P(Z

(2)
1 > x) ∼ P(Z1 < −x) for x→ ∞. (2.5.8)
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Let
∑∞

k=1 ε(sk,Pk) be a PRM(ϑ) with ϑ(dt × dx) = dt × αx−α−1 1(0,∞)(x) dx. The

sequences T (k) = {Tk,j}j∈Z are i. i. d. with T (k) d
= T , where T is given by (2.5.4),

independent of R = {Rk}k∈N an i. i. d. sequence with d. f. π. Let χ = {χk}k∈N be an

i. i. d. sequence with d. f. P(χk = 1) = p and P(χk = −1) = q. The random elements∑∞
k=1 ε(sk,Pk), {T

(k)}k∈N, χ, R are independent. Furthermore, define for k ∈ N, j ∈ Z,

I
(k)
j =

[
η(1) + (Tk,j−1 + Tk,j)/2, η

(1) + (Tk,j + Tk,j+1)/2
)
.

Then for κn as given in (2.5.6) and n→ ∞,

κn
w

=⇒
∞∑

k=1

∞∑

j=−∞

ε(
sk,sup

h∈I
(k)
j

{f(Rk,h)χkPk},f(Rk,Tk,j)χkPk

) =: κ

in MP ([0,∞) × [0,∞]d+3 \{0}).

Proof.

We define for k ∈ Z

Ĩk =
[
η(1) + (Tk−1 + Tk)/2, η

(1) + (Tk + Tk+1)/2
)

with Tk given by (2.5.4) and the random functions

f̃
(1)
k (r, t) := (suph∈Ĩk

f(r, h+ t), f(r, Tk + t)) for k ∈ Z, r ∈ R+, t ∈ R,

f̃
(2)
k (r, t) := (suph∈Ĩk

−f(r, h+ t),−f(r, Tk + t)) for k ∈ Z, r ∈ R+, t ∈ R,

with values in R
d′ , where d′ = d+ 3 and f is given by (2.0.13). Note that

f̃
(s)
k (Rj,−Tj)

d
= f̃

(s)
k−j(R1, 0) (2.5.9)

for s = 1, 2. We use the decomposition (2.0.6) of Y = Y1+Y2 and restrict, at first, our

attention to the mixed Poisson shot noise process Y1(t) =
∑∞

k=−∞ f(Rk, t − Γk)Zk

for t ∈ R a. s. given as in (2.0.7), which is well-defined by (M2), (R2), respectively.

In the case qf− = 0 define Z
(1)
k = Zk and Z

(2)
k = 0 for k ∈ Z.

Step 1. For fixed m > 0 we study the extremal behavior of

Ỹ
(m)
k =

k+m∑

j=k−m

f̃
(1)
k (Rj,−Tj)Z

(1)
j +

k+m∑

j=k−m

f̃
(2)
k (Rj,−Tj)Z

(2)
j for k ∈ Z.

We show that {Ỹ
(m)
k }k∈Z satisfies the assumptions of Theorem 2.4.1.
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Regarding (2.5.1) and (2.5.8) we apply Lemma 2.1.3 and (2.5.9) to end with

lim
n→∞

nP(|Ỹm
k | > anx)

=
p

µ

k+m∑

j=k−m

E|̃f
(1)
k (Rj,−Tj)|

α +
q

µ

k+m∑

j=k−m

E|̃f
(2)
k (Rj,−Tj)|

α

=
p

µ

m∑

j=−m

E|̃f
(1)
j (R1, 0)|α +

q

µ

m∑

j=−m

E|̃f
(2)
j (R1, 0)|α =: ρm. (2.5.10)

Observing that {Ỹ
(m)
k }k∈Z is (2m+ 1)-dependent and taking Lemma 2.4.2 in Lead-

better and Rootzén [97] into account, condition A(anρ
1/α
m ) holds for {Ỹ

(m)
k }k∈Z. Also

by the (2m + 1)-dependence of {Ỹ
(m)
k }k∈Z, (2.5.10) and rn = o(n) for n → ∞ of

condition A(anρ
1/α
m ), we obtain for l > 2m+ 1

P


 ∨

l≤|k|≤rn

|Ỹ
(m)
k | > anx

∣∣∣∣∣∣
|Ỹ

(m)
0 | > anx


 ≤ rnP(|Ỹ

(m)
k | > anx)

n→∞
−→ 0.

Define for s = 1, 2 the random vectors Z(l,s) := (Z
(s)
−l−m, . . . , Z

(s)
l+m) ∈ R

2(l+m)+1,

l ∈ N, and the random matrices

A(l,s) :=




A
(l,s)
−l
...

A
(l,s)
l


 ∈ R

(2l+1)d′×(2(l+m)+1),

where A
(l,s)
k ∈ R

d′×(2(l+m)+1) for k = −l, . . . , l, has entries (A
(l,s)
k )i,j in the ith row

and jth column with values

(A
(l,1)
k )1,j = sup

h∈Ĩk

f(Rj, h− Tj),

(A
(l,1)
k )i+1,j = f(Rj, Tk − Tj + ti)

for j = k − m, . . . , k + m, i = 1, . . . , d′ − 1, k = −l, . . . , l, where td+1 := η(1),

td+2 := η(2). Furthermore, (A
(l,1)
k )i,j = 0 for |k − j| > m, j = −l − m, . . . , l + m,

i = 1, . . . , d′ and k = −l, . . . , l. This means A
(l,1)
k has the representation
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A
(l,1)
k =




0 0 sup
h∈Ĩk

f(h− Tk−m) f+ sup
h∈Ĩk

f(h− Tk+m) 0 0

f(Tk − Tk−m + t1) f(Tk − Tk+m + t1)

0 0

f(Tk − Tk−m + η(1)) f+ f(Tk − Tk+m + η(1))

↑
−l−m

0
↑

k−m−1

0

‖

f̃
(1)
k (−Γk−m)

f(Tk − Tk−m + η(2))

‖

f̃
(1)
k (−Tk)

− f−

‖

f̃
(1)
k (−Γk+m)

f(Tk − Tk+m + η(2))
↑

k+m+1

0
↑

l+m

0




such that, e. g. for l = 4, m = 1, d′ = 2 : A(l,1) =




A
(4,1)
−4

A
(4,1)
−3

A
(4,1)
−2

A
(4,1)
−1

A
(4,1)
0

A
(4,1)
1

A
(4,1)
2

A
(4,1)
3

A
(4,1)
4

,




where the white area marks entries with values 0. The sequence of random matri-

ces (A
(l,1)
k )k∈Z is (2m + 1)-dependent. Similarly to A(l,1), we define A(l,2) by just

changing the kernel function from f to −f . Then define A(l) := (A(l,1),A(l,2)) ∈

R
(2l+1)d′×2(2(l+m)+1) and Z(l) := (Z(l,1),Z(l,2))t ∈ R

2(2(l+m)+1). Thus we have

Ỹ(l) = A(l)Z(l) ∈ R
(2l+1)d′ .

The matrix A(l) has at most 2(2m+ 1) entries in a row and d′(2m+ 1) in a column.

Since f+ ≤ ‖A(l)‖ ≤ 2(2m + 1)f+ we can apply Lemma 2.1.3 and conclude that

Ỹ(l) is multivariate regularly varying of index −α with spectral measure

P(Θ(l) ∈ ·) (2.5.11)

=
l+m∑

j=−l−m

p

µρ̃m

E

(
|a

(l,1)
j |α 1{

a
(l,1)
j /|a

(l,1)
j |∈·

}
)

+
q

µρ̃m

E

(
|a

(l,2)
j |α 1{

a
(l,2)
j /|a

(l,2)
j |∈·

}
)
,
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where a
(l,s)
j = A(l,s)ej with the jth unit vector ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ R

2(l+m)+1

and

ρ̃m =
l+m∑

j=−l−m

p

µ
E(|a

(l,1)
j |α) +

q

µ
E(|a

(l,2)
j |α).

We consider the case l > m. Without loss of generality we assume Zk = Z
(1)
k , i. e.

p = 1 and q = 0, since the results (2.5.12)-(2.5.15) remain the same by the structure

of A(l). We write A(l) = A(l,1), f̃k = f̃
(1)
k , a

(l)
j = a

(l,1)
j for k ∈ Z, j = −l−m, . . . , l+m.

We obtain for j = −m, . . . ,m,

l∨

k=0

d′∨

i=1

|(A
(l)
k )i,j|

α −
l∨

k=1

d′∨

i=1

|(A
(l)
k )i,j|

α =

j+m∨

k=0

|̃fk(−Tj)|
α −

j+m∨

k=1

|̃fk(−Tj)|
α,

l∨

k=0

d′∨

i=1

|(A
(l)
k )i,j|

α −
l∨

k=1

d′∨

i=1

|(A
(l)
k )i,j|

α = 0 for m < |j| ≤ l +m, (2.5.12)

where we used
∨l

k=0

∨d′

i=1 |(A
(l)
k )i,j|

α =
∨l

k=1

∨d′

i=1 |(A
(l)
k )i,j|

α for j > m and∨l
k=0

∨d′

i=1 |(A
(l)
k )i,j|

α = 0 for j < −m. Furthermore for j = −m, . . . ,m,

l∨

k=−l

d′∨

i=1

|(A
(l)
k )i,j| = |a

(l)
j | =

j+m∨

k=j−m

|̃fk(−Tj)| = f+. (2.5.13)

By taking the conditional probability under Γk, Rk, k = −l − m, . . . , l + m and

Remark 2.1.4, we can calculate with deterministic quantities and invoke. We apply

(2.5.11) to compute

E

(
l∨

k=0

|Θ
(l)
k |α −

l∨

k=1

|Θ
(l)
k |α

)

=
1

µρ̃m

l+m∑

j=−l−m

E

(
|a

(l)
j |α

[
l∨

k=0

d′∨

i=1

|(A(l)
k )i,j|

α

|a
(l)
j |α

−
l∨

k=1

d′∨

i=1

|(A(l)
k )i,j|

α

|a
(l)
j |α

])
.

Taking (2.5.9) and (2.5.12) into account we receive that the r. h. s. is equal to

1

µρ̃m

[
m∑

j=−m

E

(
j+m∨

k=0

|̃fk(Rj,−Tj)|
α

)
−

m∑

j=−m+1

E

(
j+m∨

k=1

|̃fk(Rj,−Tj)|
α

)]

=
1

µρ̃m

[
m∑

j=−m

E

(
m∨

k=−j

|̃fk(R1, 0)|α

)
−

m∑

j=−m+1

E

(
m∨

k=−j+1

|̃fk(R1, 0)|α

)]

=
1

µρ̃m

E

(
m∨

k=−m

|̃fk(R1, 0)|α

)
=
f+ α

µρ̃m

. (2.5.14)
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Similarly, as
∨d′

i=1 |(A
(l)
0 )i,j|

α = 0 for |j| > m, we have by (2.5.10)

E|Θ
(l)
0 |α =

1

µρ̃m

E

(
l+m∑

j=−l−m

|a
(l)
j |α

d′∨

i=1

|(A(l)
0 )i,j|

α

|a
(l)
j |α

)
=

1

µρ̃m

E

(
m∑

j=−m

|̃fj(R1, 0)|α

)

=
1

µρ̃m

µρm =
ρm

ρ̃m

. (2.5.15)

By (2.5.14) and (2.5.15) we obtain for the extremal index in (2.4.4)

θm := f+α/(µρm). (2.5.16)

In the last step we have to distinguish between the Z(1) and Z(2). Following the

proof of (2.5.14) and taking l > m and (2.5.13) into account we get for s = 1, 2,

j = −m, . . . ,m,

E


|a

(l,s)
j |α




l∨

k=0

d′∨

i=1

|(A
(l,s)
k )i,j|

α

|a
(l,s)
j |α

1




∑

|k|≤l

ε
(A

(l,s)
k )·,j/|a

(l,s)
j |

∈ ·










= E




m∨

k=−j

|̃f
(s)
k (R1, 0)|α 1




∑

|k|≤m

ε
f̃
(s)
k (R1,0)/f+ ∈ ·






 .

Then analog the lines of (2.5.14) we obtain

E



[
|Θ

(l)
0 |α −

l∨

j=1

|Θ
(l)
j |α

]+

1




∑

|j|≤l

ε
Θ

(l)
j

∈ ·








=
f+ α

ρ̃m


 p
µ

E


1




∑

|j|≤m

ε
f̃
(1)
j (R1,0)/f+ ∈ ·






+

q

µ
E


1




∑

|j|≤m

ε
f̃
(2)
j (R1,0)/f+ ∈ ·










=
f+ α

µρ̃m

E


1




∑

|j|<m

ε(sup
h∈Ĩj

{f(R1,h)χ1},f(R1,Tj)χ1)/f+ ∈ ·






 . (2.5.17)

Hence by (2.5.14) and (2.5.17) the measure Q of (2.4.5) is

Q(·) = P

(
m∑

j=−m

ε(sup
h∈Ĩj

{f(R1,h)χ1}/f+,f(R1,Tj)χ1/f+) ∈ ·

)
.

Regarding (2.5.16) we choose in Theorem 2.4.1,

ϑ̃(dx) := θmαx
−α−1 1(0,∞)(x) dx = αf+ α/(µρm)x−α−1 1(0,∞)(x) dx.
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Taking (2.5.10) into account, we apply Theorem 2.4.1 and obtain for n→ ∞

n∑

k=1

ε(
ρ
1/α
m Ỹ

(m)
k /an

) w
=⇒

∞∑

k=1

m∑

j=−m

ε((sup
h∈Ĩ

(k)
j

{f(Rk,h)χk},f(Rk,Tk,j)χk)P̃k/f+),

where
∑∞

k=1 εP̃k
is PRM(ϑ̃) inMP (R

d′

\{0}). By Hsing [77], Lemma 4.1.2, the conver-

gence of the sequence of point processes κn((0, 1]×·) is equivalent to the convergence

of κn, if the so called ∆(an) condition is satisfied, which is similar to condition A(an).

Note, that by the (2m+1)-dependence of {Ỹ
(m)
k }k∈Z the ∆(an) condition holds. This

implies, changing ϑ̃ by ϑ, and {P̃k}k∈N by {Pk}k∈N, respectively, that

∞∑

k=1

ε(
k/(nµ),Ỹ

(m)
k /an

) w
=⇒

∞∑

k=1

m∑

j=−m

ε(sk,(sup
h∈Ĩ

(k)
j

{f(Rk,h)χk},f(Rk,Tk,j)χk)Pk). (2.5.18)

Step 2. For fixed m > 0 we study the extremal behavior of

Y
(m)
k =

k+m∑

j=k−m

f
(1)
k (Rj,−Γj)Z

(1)
j +

k+m∑

j=k−m

f
(2)
k (Rj,−Γj)Z

(2)
j for k ∈ Z,

where

f
(1)
k (r, t) := (suph∈Ik

f(r, h+ t), f(r,Γk + t)) for k ∈ Z, r ∈ R+, t ∈ R,

f
(2)
k (r, t) := (suph∈Ik

−f(r, h+ t),−f(r,Γk + t)) for k ∈ Z, r ∈ R+, t ∈ R.

Note that f̃
(s)
k (Rj,−Tj) = f

(s)
k+1(Rj,−Γj+1) for k, j ∈ N0 by (2.5.4). Then also

{Ỹ(m)
k }k≥m

d
= {Y(m)

k+1}k≥m, although {Y(m)
k+1}k∈Z is not stationary. Thus, the asymp-

totic point process behavior of {Ỹ
(m)
k }k∈N and {Y

(m)
k }k∈N are the same. Regarding

(2.5.18) we obtain

∞∑

k=1

ε(
k/(nµ),Y

(m)
k /an

) w
=⇒

∞∑

k=1

m∑

j=−m

ε(sk,sup
h∈I

(k)
j

{f(Rk,h)χk}Pk,f(Rk,Tk,j)χkPk). (2.5.19)

Step 3. We study the extremal behavior of {Yk}k∈Z given by

Yk =
∞∑

j=−∞

f
(1)
k (Rj,−Γj)Z

(1)
j +

∞∑

j=−∞

f
(2)
k (Rj,−Γj)Z

(2)
j ,

which are well-defined by (M2), (R2), respectively. We have to attend to the non-

stationarity of the sequences {Yk}k∈Z, {Y
(m)
k }k∈Z and {Yk−Y

(m)
k }k∈Z (if we replace

Γ by T then we obtain stationary sequences, cf. Lemma 3.2.11).
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With g as in (2.0.12), (2.3.20), respectively, and (2.5.4) we have

P

(
n∨

k=m+1

|Yk − Y
(m)
k | > anx

)
≤

d′∑

i=1

n∑

k=1

P


 ∑

|k−j|>m

g(Rj,Γk − Γj + ti)|Zj| > anx




=
d′∑

i=1

n∑

k=1

P

(
−m−1∑

j=−∞

g(Rj, Tj + ti)|Zj| +
k−1∑

j=m+1

g(Rj, Tj + ti)|Zj|

+
∞∑

j=k−1

g(Rj, Tj + Γ1 − Γ0 + ti)|Zj+1| > anx

)
(2.5.20)

with td′ = η(1). Define

ck,i :=
−m−1∑

j=−∞

E|g(Rj, Tj+ti)|
δ+

k−1∑

j=m+1

E|g(Rj, Tj+ti)|
δ+

∞∑

j=k−1

E|g(Rj, Tj+Γ1−Γ0+ti)|
δ.

Then ck,i →
∑

|j|>m E|g(Rj, Tj + ti)|
δ for k → ∞. If Γ is the stationary renewal

process we apply in the next inequality (2.3.6) and, else, if Γ are the jump times of

the Poisson process we apply Lemma A.4.1. Then there exists an n0 ∈ N, K > 1

such that for n ≥ n0

P

(
n∨

k=1

|Yk − Y
(m)
k | > anx

)

≤ KnP(|Z1| > anx)
d′∑

i=1

[
1

n

n∑

k=1

ck,i

]
+

m∑

k=1

P

(
|Yk − Y

(m)
k | > anx

)

n→∞
−→ Kx−α

d′∑

i=1

∑

|j|>m

E|g(Rj, Tj + ti)|
δ m→∞
−→ 0.

Then following the proof of Resnick [125], Proposition 4.2.7, along the lines gives

for n→ ∞,

∞∑

k=1

ε(k/(nµ),Yk/an)
w

=⇒ κ. (2.5.21)

Step 4. The point process behavior of κn.

Let Yk =
∑∞

j=−∞ f(Rj,Γk − Γj)Zj for k ∈ Z and I = [s, t) ×
∏d′

i=1 (ci, di] ⊆ S. By

Lemma A.4.2 we have, similarly to the proof of Lemma 2.4.4,

lim
n→∞

P

(
∞∑

k=1

ε(k/(nµ),Yk/an)(I) 6=
∞∑

k=1

ε(k/(nµ),(suph∈Ik
Y (h),Yk)/an)(I)

)
= 0.
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Hence, by (2.5.21) and Rootzén [131], Lemma 3.3, for n→ ∞,

∞∑

k=1

ε(k/(nµ),(suph∈Ik
Y (h),Yk)/an)

w
=⇒ κ. (2.5.22)

In the case of a Lévy driven mixed MA process we need to invoke the decomposition

(2.0.6) in Y(t) = Y1(t) + Y2(t) for t ∈ R. Then

Y(Γk) = Yk + Y2(Γk) for k ∈ Z. (2.5.23)

Recall that Ỹk = (suph∈Ik
Y (h),Y(Γk)). Similarly as (2.5.20) we have for 0 < ε < x,

P(|Ỹk| > anx) ≤
d′∑

i=1

[
P

(
∞∑

j=−∞

g(Rj,Γk − Γj + ti)|Zj| > an(x− ε)

)

+P(sup
h∈Ik

|Y2(h)| > anε)

]
. (2.5.24)

The Lévy measure of Y2(t) has bounded support by Proposition 2.2.1. Using (1.3.15),

(1.3.17) and the independence of Ik and Y2 yields to

P(sup
h∈Ik

|Y2(h)| > anε) ≤ d′(1/µ+ 1)P( sup
0≤h≤1

|Y2(t)| > anε) (2.5.25)

≤ d′(1/µ+ 1)e−anx
E exp( sup

0≤h≤1
|Y2(t)|) = o(1/n)

for n → ∞. Regarding Lemma 2.2.8, (2.3.6), respectively, (2.5.24) and (2.5.25) we

obtain that there exists a r.v. W such that

P(|Ỹk| > anx) ≤ P(W > anx) = O(1/n) for n→ ∞.

Thus, by Lemma 2.4.2 and Example 2.4.3 (a) the point process behavior of the

sequence {Ỹk}k∈Z is the same as that of {(suph∈Ik
Y (h),Yk)}k∈Z. Furthermore we

can shift the time scale. This together with (2.5.22) completes the proof. �

Notice that condition (M2) excludes MA processes with the long memory property.

This result shows by considering suph∈Ik
Y (h) with marks Y (Γk + η(1)),

Y (Γk + η(2)) that clusters of long high level exceedances of the continuous-time

process only occur, if an exceedance of the Lévy process meets an extreme value of

the kernel function. The properly chosen discrete-time points, where exceedances of

the Lévy process occur in combination with extremes of the kernel function, result in

exceedances of the mixed MA process. These exceedances are carried on in time by
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the kernel function and result in the limiting process in clusters of exceedances. Ex-

tremes on high levels only appear at this properly chosen discrete-time skeleton. See

also Section 3.2.1 for the comparison of subexponential Lévy driven OU processes

in the domain of attraction of the Gumbel distribution and Fréchet distribution.

Remark 2.5.2

We conjecture that we can transform our results of Theorem 2.5.1 to an infinite-

dimensional setting, where we use as marks the stochastic processes {Y (Γk+t)}t∈[0,1]

in D[0, 1] instead of multi-dimensional random vectors Y(Γk) ∈ R
d+2 for k ∈ N. By

choosing this marks we would obtain complete information about the sample path

behavior of the continuous-time process near extremes. We will give the key aspects

to which attention should be paid by this consideration.

(i) Investigating the stochastic processes {Y (Γk + t)}t∈[0,1] with a. s. sample paths

in D(R) for k ∈ N as marks, requires a definition of regular variation for stochastic

processes in Dd[0, 1], the space of functions h : [0, 1] → R
d, which are right continuous

with left hand limits. This definition was introduced by Hult and Lindskøg [79] and

is an analog to the Definition 2.1.1 of multivariate regular variation. Define the

space Dd[0, 1] = (0,∞] × Dd[0, 1]. A nonzero function h ∈ Dd[0, 1] is associated

with the element (supt∈[0,1] |h(t)|, h/ supt∈[0,1] |h(t)|) ∈ Dd[0, 1]. A stochastic process

X = {Xt}t∈[0,1] with sample path in Dd[0, 1] is said to be regularly varying, if there

exist a sequence 0 < an ↑ ∞ of constants, and a nonzero boundedly finite measure

σ on B(Dd[0, 1]) with σ(Dd[0, 1]\Dd[0, 1]) = 0 such that as n→ ∞

nP(a−1
n X ∈ ·)

ω̂
=⇒ σ(·) on B(Dd[0, 1]),

where ω̂-convergence is the convergence on bounded Borel sets; see Daley and Vere-

Jones [50], Section A.2.6 for the definition of ω̂-convergence.

(ii) Note, that the space Dd[0, 1] provided with the Skorohod topology is separable

and complete (see Billingsley [28], Section 16). But Dd[0, 1] is not locally compact

such that the classical results of vague convergence of point processes, which is in

MP (R
d
\{0}) equivalent to weak convergence, in the space MP (R\{0}×Dd[0, 1]) do

not apply. Instead of vague convergence of point processes we will use ω̂-convergence

in MP (R\{0} × Dd[0, 1]).

We sketch the main steps of the proof in the following:

(a) As mentioned in Remark 2.9 of Davis and Mikosch [53], Theorem 2.4.1 holds

also for stationary sequences in a separable locally compact Banach space. We have



2.5 Extremal behavior 135

to proof that Theorem 2.4.1 also holds for point processes in MP (R\{0} × Dd[0, 1])

with the ω̂-convergence.

(b) We need a similar result as Lemma 2.1.2 for regularly varying functions in

Dd[0, 1]. Therefore define Yk(t) :=
∑r

j=1 fk,j(t)Zj for t ∈ [0, 1], with fk,j ∈ D[0, 1]

bounded for j = 1, . . . , r, k = 1, . . . , d, and Z = (Z1, . . . , Zr) given as in Lemma 2.1.2.

Let aj = (f1,j, . . . , fr,j) ∈ Dr[0, 1]. Then the process Y (t) = (Y1(t), . . . , Yd(t)) for

t ∈ [0, 1] in Dd[0, 1] is regularly varying with the corresponding spectral measure as

given in (2.1.5).

Regarding (a) and (b) the proof of Theorem 2.5.1 goes line by line. �

2.5.2 The marked point process at a discrete-time skeleton

In this section we investigate the point process behavior of the continuous-time pro-

cess Y as given in (2.0.14) under less restrictive assumptions than in Theorem 2.5.1.

Therefore we do not look at local maxima in this section.

Theorem 2.5.3

Let Y be either a stationary mixed MA process as given in (2.0.1) satisfying (M1) or

a stationary renewal shot noise process as given in (2.3.1) satisfying (R1). Further

assume that the kernel function f satisfies f(r, η(1)) = f+ ≥ f− for all r ∈ supp(π).

Then with the notation of Theorem 2.5.1,

∞∑

k=1

ε(Γk/n,Y(Γk)/an)
w

=⇒
∞∑

k=1

∞∑

j=−∞

ε(sk,f(Tk,j)χkPk) in MP ([0,∞) × R
d+2

\{0}).

In particular, for every t ∈ R,

∞∑

k=1

ε(Γk/n,Y (Γk+t)/an)
w

=⇒
∞∑

k=1

∞∑

j=−∞

ε(sk,f(Tk,j+t)χkPk) in MP ([0,∞) × R\{0}).

The proof is analogous to the proof of Theorem 2.5.1. The additional assumption

(M2) in Theorem 2.5.1 was only necessary for the investigation of the local maxima

and to apply Lemma A.4.2. Furthermore we need not the decomposition of Y1 in

a mixed MA process driven by a positive and a negative Lévy process such that

f ∈ L
1 is not necessary. In contrast to Theorem 2.5.1 we obtain in Theorem 2.5.3
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information also about large minima of the continuous-time process Y , since the

point process convergence is in MP ([0,∞)×R
d+2

\{0}). The interpretation of large

minima is analog to large maxima. They occur in clusters and are caused by large

jumps of the Lévy process.

2.5.3 Normalizing constants of running maxima

With the results of the previous section we calculate the normalizing constants of

running maxima.

Theorem 2.5.4

Let Y either satisfies the assumptions of Theorem 2.5.1 with f(r, η(1)) = f+ and

f(r, η(2)) = −f− for all r ∈ supp(π) or Y is a stationary MA process satisfying (M1)

with
∫∞

−∞
sup0≤s≤1 |f(s+ t)|δ dt <∞ for some δ < min{1, α} with f(η(1)) = f+ and

f(η(2)) = −f−. Suppose pf+ > 0. Define aT := abT c and M(T ) := supt∈[0,T ] Y (t) for

T > 0. Then for x > 0

lim
T→∞

P
(
a−1

T M(T ) ≤ x
)

= exp
(
−x−α

[
pf+ α + qf−α

])
.

Proof.

In the case of Y a stationary MA process the proof follows with the same methods as

those of Theorem 1.4.8, where we calculated the normalizing constants for subexpo-

nential Lévy driven MA processes in MDA(Λ). The only difference is that the point

process results for regularly varying processes are here applied, i. e. Theorem 2.5.3

and the results for discrete-time MA processes (see Example 2.5.7). We include the

proof only for the case, where the assumption of Theorem 2.5.1 are satisfied. Re-

placing the discrete-time index n by the continuous-time index T in the definition of

κn in Theorem 2.5.1, then κT
w

=⇒ κ for T → ∞. Applying Theorem 2.5.1 we obtain

for x > 0 and I = [0, 1) × (x,∞)d+3

lim
T→∞

P(a−1
T M(T ) ≤ x) = lim

T→∞
P(κT (I) = 0)

= P(κ(I) = 0)

= P

(
∞∑

k=1

ε(sk,([f+ 1 {χk=1}+f− 1 {χk=−1}]Pk))([0, 1) × (x,∞)) = 0

)

= exp
(
−xα

[
pf+ α + qf−α

])
. �
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Notice that this result rules out MA processes, which exhibits long range dependence,

only the case of mixed MA processes with long range dependence is included. In this

case the long range dependence is caused by the distribution of π instead of the kernel

function.

Theorem 2.5.4 holds only for pf+ + qf− > 0. More about the extremal behavior of

totally skewed α-stable MA processes, which satisfy pf+ + qf− = 0, can be found

in Albin [7, 5]. Already Lebedev [98] calculated the limit distribution of running

maxima of subexponential positive shot noise processes restricting his attention to

non-decreasing kernel functions with unbounded support. In our result the assump-

tion of a positive process with non-increasing kernel function is not necessary.

2.5.4 Extremal index function

In Section 1.4.4 we defined the extremal index function (Definition 1.4.10) as a

measure for dependence in extremes. In the following we calculate the extremal

index function for regularly varying mixed MA processes.

Corollary 2.5.5 (Extremal index function)

Let Y be a stationary mixed MA process satisfying the assumptions of Theo-

rem 2.5.4. Then Y has extremal index function

θ(h) =
h[pf+ α + qf−α]

p
∫

R+×R
sup

t∈[0,h]

(f+(r, t+ s))α ds π(dr) + q
∫

R+×R
sup

t∈[0,h]

(f− (r, t+ s))α ds π(dr)
.

If additionally (M2) holds, then limh→∞ θ(h) = 1.

Proof.

For h > 0 define the sequence M
(h)
k := sup(k−1)h≤t≤kh Y (t) for k ∈ N. On the one

hand we have by (2.2.15) for n→ ∞

nP(M(h) > anx) ∼ x−αh[pf+ α + qf−α]/θ(h). (2.5.26)

On the other hand, by Theorem 2.5.4 and the extremal types Theorem

lim
n→∞

P( max
k=1,...,n

M
(h)
k ≤ anx) = lim

n→∞
P(a−1

n M(nh) ≤ x)

= lim
n→∞

P(a−1
nhM(nh) ≤ xh−1/α)

= exp(−x−αh[pf+ α + qf−α]). (2.5.27)
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Statements (2.5.26), (2.5.27) and Definition 1.4.10 give the form of θ(h). Now assume

that (M2) holds. Write

ϕh = p

∫

R+×R

sup
t∈[0,h]

(f+(r, t+ s))α ds π(dr) + q

∫

R+×R

sup
t∈[0,h]

(f−(r, t+ s))α ds π(dr).

Then we obtain

ϕh ≥ p

∫ ∞

0

∫ η(1)

η(1)−h

sup
t∈[0,h]

(f+(r, t+ s))α ds π(dr)

+q

∫ ∞

0

∫ η(2)

η(2)−h

sup
t∈[0,h]

(f−(r, t+ s))α ds π(dr)

= h[pf+ α + qf−α] (2.5.28)

and with g as in (2.0.12), (2.3.20), respectively,

ϕh ≤ h[pf+ α + qf−α] +

∫

R+×R

g(r, s)α ds π(dr). (2.5.29)

Thus, we conclude by (2.5.28), (2.5.29),

lim
h→∞

ϕh/h = pf+ α + qf−α.

�

The extremal index function θ(h) < 1 for every h > 0. This result can be interpreted

that in short time intervals, exceedances of {M
(h)
k }k∈N occur in clusters, where the

mean cluster size tends to 1, as h tends to ∞. This is obvious as cluster sizes will

be smaller, because more data are condensed into one block.

Another possibility of building blocks is to divide the positive real line into intervals

Ik given by (2.5.5). Then we can also measure cluster sizes.

Corollary 2.5.6 (Point process of exceedances)

Let Y be given as in Theorem 2.5.1 with f+ ≤ 1. Suppose {s̃k}k∈N are the jump

times of a Poisson process with intensity x−α, x > 0 be fixed, independent of the

i. i. d. sequence {ζk}k∈Z with d. f.

πk = P(ζ1 = k) = p
[
Ef

(1) α
k − Ef

(1) α
k+1

]
− (1 − p)

[
Ef

(2) α
k − Ef

(2) α
k+1

]
for k ∈ N,

where f+ = f
(1)
1 > f

(1)
2 > . . . are the order statistics of {sup

h∈I
(1)
j
{f+(R1, h)}}j∈Z

and f
(2)
1 > f

(2)
2 > . . . are the order statistics of {sup

h∈I
(1)
j
{−f−(R1, h)}}j∈Z. Then

∞∑

k=1

ε(Γk/n,suph∈Ik
Y (h)/an)(· × (x,∞))

w
=⇒

∞∑

k=1

ζkεs̃k
.
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Proof.

Note, that

∞∑

k=1

ε(sk,f+Pk)(· ∩ [0,∞) × (x,∞))
d
=

∞∑

k=1

ε(s̃k,f+Jk), (2.5.30)

where {Jk}k∈N are i. i. d. with d. f. F (y) = 1 − y−αxα for y > x, independent of

{s̃k}k∈N. By Theorem 2.5.1 and (2.5.30)

∞∑

k=1

ε(Γk/n,suph∈Ik
Y (h)/an)(· × (x,∞))

w
=⇒

∞∑

k=1

∞∑

j=−∞

ε(s̃k,sup
h∈I

(k)
j

{f(Rk,h)χkJk})(· × (x,∞)) =
∞∑

k=1

ζkεs̃k
,

with ζk = card{j : sup
h∈I

(k)
j
{f(Rk, h)χkJk} > x}. It remains to show that ζk has

d. f. π. Then for k ∈ N

πk = P(ζ1 = k)

= p
[
P(f

(1)
k J1 > x) − P(f

(1)
k+1J1 > x)

]
+ (1 − p)

[
P(f

(2)
k J1 > x) − P(f

(2)
k+1J1 > x)

]

= p
[
Ef

(1) α
k − Ef

(1) α
k+1

]
− (1 − p)

[
Ef

(2) α
k − Ef

(2) α
k+1

]

and π0 = P(ζ1 = 0) = 1 − pf+ α − (1 − p)Ef
(2) α
1 . �

In the case of a positive shot noise process with non-increasing kernel function, the

last result represents the cluster intensities among local extremes of the process.

2.5.5 Examples

Example 2.5.7 (Discrete-time MA process)

Let ξ = {ξk}k∈Z be an i. i. d. sequence of r. v. s, which are regularly varying in the

sense of (2.1.2) with measure σ given by (2.0.9), and let {ck}k∈Z be a sequence of

real constants. Define the discrete-time MA process

Yn =
∞∑

k=−∞

cn−kξk for n ∈ Z.

Suppose
∑∞

k=−∞ |ck|
δ <∞ for δ < α with either δ < 1 or α > 1 and Eξk = 0. Then

Y is a stationary, regularly varying process (similar to Proposition 2.3.1). As in the
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proof of Theorem 2.5.1 we have for n→ ∞

∞∑

k=1

ε(k/n,a−1
n Yk)

w
=⇒

∞∑

k=1

∞∑

j=−∞

ε(sk,cjPk). (2.5.31)

This is the well known result of Davis and Resnick [54], Theorem 2.4, which by

our results also hold for long memory processes. If ξ1 is i. d., this model can be

considered as a special case of a Lévy driven MA process Y as in (2.0.3): let

f(t) =
∑∞

k=−∞ ck 1[k−1,k)(t) for t ∈ R and L(1)
d
= ξ1. Then the continuous-time

MA process Y at discrete-time points in Z is given by

Y (n) =
∞∑

k=−∞

cn−k[L(k + 1) − L(k)] for n ∈ Z.

It coincides in distribution with the discrete-time MA process {Yn}n∈N. Hence we can

reformulate the conditions of the existence of a stationary version, tail behavior and

extremal behavior of {Yn}n∈N on this of the continuous-time MA process {Y (t)}t∈R

and obtain with long memory processes a larger class of discrete-time MA processes

than Davis and Resnick [54]. �

Example 2.5.8 (supOU process, Continuation of Example 2.2.10)

We investigate the extremal behavior of the supOU process Y given by (2.2.18) with

kernel function f(r, s) = 1[0,∞)(s)e
−rs driven by an i. d. i. s. r. m. Λ with generating

quadruple (m, 0, ν, π), where
∫
r−1 π(dr) <∞ and (m, 0, ν) is the generating triplet

of the Lévy process L. Suppose L(1) is regularly varying of index −α, α > 0 such

that for a sequence 0 < an ↑ ∞ of constants

nP(a−1
n L(1) ∈ ·)

υ
=⇒ σ(·) on B(R\{0}) for n→ ∞,

with σ(dx) = pαx−α−1 1(0,∞)(x) dx + qα(−x)−α−1 1(−∞,0)(x) dx for some p ∈ (0, 1]

and q = 1 − p. Let 0 = t0 < t1 < · · · < td. Then holds by Theorem 2.5.3

∞∑

k=1

ε(Γk/n,{Y (Γk+ti)/an}i=0,...,d)
w

=⇒
∞∑

k=1

∞∑

j=0

ε(sk,{exp(−Rk(Tk,j+ti))χkPk}i=0,...,d).

Thus, if an exceedance over a high level at the discrete-time skeleton

{Γk + ti : k ∈ N, i = 0, . . . , d} occurs, then we have an extreme at Y (Γk) for

some k ∈ N. This exceedance is carried on by the exponential decreasing function

e(−Rk·). Furthermore, if Y has a. s. sample path in D(R), e. g.
∫∞

−∞
1∧ |x| ν(dx) <∞,
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then the running maxima are in the maximum domain of attraction of the Fréchet

distribution with

lim
T→∞

P(a−1
T M(T ) ≤ x) = exp(−x−α) for x > 0,

by Theorem 2.5.4. We obtain by Corollary 2.5.5 the extremal index function θ(h) =

hλ/(h+ λ) < 1 for h > 0. Thus extremes occur in clusters. �

Remark 2.5.9

The results of this chapter can be extended to mixed MA processes driven by an

i. d. i. s. r. m. Λ in R
d
+×R, whose stationary distribution has the cumulant generating

function ψA(u) = λ(A)ψ(u), where ψ is the cumulant generating function of a Lévy

process and λ(dω) = π1(dr1) × · · · × πd(drd) × dt for ω = (r1, . . . , rd, t) ∈ R
d
+ × R

and πi, i = 1, . . . , d, are probability measures on R+. �





Chapter 3

Extremal behavior of stochastic

volatility models

The classical pricing model is the Black-Scholes model given by the SDE

dSt = rSt dt+ σSt dBt , S0 = x ∈ R , (3.0.1)

where r ∈ R is the stock-appreciation rate, σ > 0 is the volatility and B is the

standard Brownian motion. The Black-Scholes model is based on the assumption

that the relative price changes of the asset form a Gaussian process with stationary

and independent increments. The crucial parameter is the volatility σ, which is in

this model assumed to be constant. However, empirical analysis of stock volatility

has already shown in the 1970ies that volatility is not constant, quite the contrary,

it is itself stochastic and varies in time.

This observation has led to a vast number of volatility models in discrete-time as well

as in continuous-time. In this chapter we concentrate on continuous-time volatility

models. Moreover, we are concerned with the so-called stylized facts of volatility as

e. g.

• volatility changes in time,

• volatility is random,

• volatility has heavy tails,

• volatility clusters on high levels.

143
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Introducing a stochastic volatility extends the Black-Scholes model to

dSt = rStdt+
√
VtSt dBt ,

where V can in principle be any positive stationary stochastic process.

Within the framework of SDEs quite natural models are easily defined. Common

examples are the Ornstein-Uhlenbeck (OU) process

dVt = −λVtdt+ σdZt , (3.0.2)

where λ, σ > 0 and Z is a driving process, often a second Brownian motion, inde-

pendent of B. As this is a Gaussian model, it is not a positive process. Alternatively,

a Cox-Ingersoll-Ross (CIR) model has been suggested as a volatility model, defined

by

dVt = λ(a− Vt)dt+ σ
√
VtdZt , (3.0.3)

where λ, a, σ > 0 and λa ≥ σ2/2. The parameter a is the long-term mean of the

process and λ the rate of mean reversion. Again in the classical model Z is a standard

Brownian motion, independent of B.

Apart from the fact that Gaussian OU processes are not positive, another stylized

fact is also violated: empirical volatility exhibits heavy tails, consequently, again the

OU model as a Gaussian model seems not very appropriate. Changing the constant

σ to a time dependent diffusion coefficient σV γ
t for γ ∈ [1/2,∞) and including a

linear drift yields to positive stationary models with arbitrarily heavy tails. This has

been shown in Borkovec and Klüppelberg [32]. Such models are called generalized

Cox-Ingersoll-Ross models, the parameter γ = 1/2 corresponds to the classical CIR

model of (3.0.3).

On the other hand, a constant σ is attractive and an alternative way to generate

heavy tails in the volatility is to replace the driving Gaussian process in (3.0.2) by

a Lévy process with heavier tailed increments. Furthermore, the upward jumps of-

ten observed in empirical volatility cannot be modelled by a continuous process. So

Lévy processes with jumps as driving processes seem to be quite natural. Such

an OU process is positive, provided the driving Lévy process has only positive

increments and no Gaussian component; i. e. it is a subordinator. This is exactly

what Barndorff-Nielsen and Shephard [15,16] have suggested, modelling the (right-
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continuous) volatility process as a Lévy-OU process. Their stochastic volatility pric-

ing model is given by

dSt = (a+ bVt)dt+
√
Vt dBt ,

dVt = −λVtdt+ σdLλt , (3.0.4)

where a, b ∈ R, λ > 0 and L is a subordinator, called the background driving Lévy

process (BDLP), independent of the Brownian motion B.

A completely different approach to obtain continuous-time volatility models starts

with a GARCH model and derives from this discrete-time model a continuous-time

model. A natural idea is a diffusion approximation; see e. g. Drost and Werker [59]

and the references therein. This approach leads to stochastic volatility models of the

type

dSt =
√
Vt dB

(1)
t ,

dVt = λ(a− Vt)dt+ σVtdB
(2)
t , (3.0.5)

i. e. V is a generalized CIR model with parameter γ = 1. The two processes B(1), B(2)

are independent Brownian motions.

A different approach has been considered by Klüppelberg et al. [87], who started

with a discrete-time GARCH(1,1) model and replaced the noise variables by a Lévy

process L with jumps ∆Lt = Lt − Lt−, t ≥ 0. This yields to a stochastic volatility

model of the type

dSt =
√
Vt dLt , (3.0.6)

dVt+ = βdt+ Vte
Xt−d(e−Xt) ,

where β > 0 and V is left-continuous. The auxiliary càdlàg process X is defined by

Xt = t log η −
∑

0<s≤t

log(1 + λη(∆Ls)
2) , (3.0.7)

for η > 1 and λ ≥ 0. This continuous-time GARCH(1,1) model is called a

COGARCH(1,1) model.

Our chapter focuses on the extremal behavior of stationary continuous-time stochas-

tic volatility models. This can be described by the tail behavior of the stationary

distribution and by the behavior of the process above high thresholds.
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The tail behavior models the size of the fluctuations of V and determines the maxi-

mum domain of attraction (MDA) of the model. The notation of MDA is defined in

Fisher-Tippett’s theorem; see Theorem A.1.5. We distinguish MDA(Φα), MDA(Λ)

and MDA(Ψα), for α > 0, respectively. Distribution functions in MDA(Φα) have

regularly varying tails: they are heavy-tailed in the sense that not all moments are

finite; see Definition A.1.1. Distribution functions in MDA(Λ) have tails ranging

from semi-heavy tails to very light tails. Distribution functions in MDA(Ψα) have

support bounded to the right. Financial risk is usually considered as having un-

bounded support above, hence MDA(Ψα) is inappropriate in our context and will

play no further role in this chapter.

The description of a continuous-time process above a high threshold depends on

the sample path behavior of the process. When classical volatility models, driven

by Brownian motion, have continuous sample paths with infinite variation, some

discrete-time skeleton is introduced. A standard concept is based on so-called ε-

upcrossings, see Definition 3.1.4, which is only valid for processes with continuous

sample paths.

For Lévy driven models large jumps (for instance larger than one) constitute a

natural discrete-time skeleton, which can be utilized. One denotes by (Γk)k∈N the

random time points on [0,∞), where the driving Lévy process jumps and exceeds

a given threshold. The bivariate process (Γk, VΓk
)k∈N is interpreted as the coordi-

nates of a point process in [0,∞) × R+. As usual we define point processes via

Dirac measures. Recall that for any Borel sets A × B ⊆ [0,∞) × R+ the measure∑∞
k=1 ε{Γk, VΓk

}(A×B) counts how often Γk ∈ A and VΓk
∈ B.

After appropriate normalization in time and space these point processes may con-

verge and the limit process may allow for an interpretation, thus providing a de-

scription of the extreme behavior of the volatility process. Under weak dependence

in the data we obtain as limit a Poisson random measure with mean measure ϑ

(PRM(ϑ)); see Definition A.3.5. Moreover, the two components of ϑ are indepen-

dent and consist of the Poisson measure in time and the negative logarithm of an

extreme value distribution in space. Under strong dependence the limit is a cluster

Poisson random measure. All these considerations concern the discrete-time skeleton

only and ignore the fact that we deal with continuous-time processes.

In the case of a driving Lévy process with jumps, in principle also the small jumps

can influence the extreme behavior. In a very close neighborhood of a jump time Γk
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infinitely many small jumps can happen; they may contribute to the extreme behav-

ior around Γk. To investigate the influence of these small jumps and the Gaussian

component we consider the process V at each point Γk in a surrounding interval Ik.

Finally, in certain situations we investigate also the process V after it has reached a

local supremum. With each point Γk an excursion of V over a high threshold starts.

Interesting questions concern the length of the excursion, the rate of “decrease” after

Γk. We answer these questions at least for some models considered in this chapter.

This is done by attaching marks to the point process (Γk, VΓk
)k∈N. For our model

marks are a vector of values of the process V after Γk, hence it describes the finite

dimensional distributions of V after Γk. The limit process turns out to be different

in different regimes.

This chapter is organized as follows. In Section 3.1 we review the extremal behavior

of the generalized CIR model, which can belong to different maximum domain of

attractions; i. e. such models can have arbitrary tails. Unfortunately, they are not

appropriate models in the case of high level volatility clusters in the data.

Section 3.2 deals with Lévy-OU volatility models. Their extremal behavior is char-

acterized by the extremal behavior of the driving Lévy process, so that we have to

distinguish between different classes of BDLPes. In Section 3.2.1 this is done for

subexponential Lévy processes L = (Lt)t≥0. According to whether L1 ∈ MDA(Φα)

for some α > 0 or L1 ∈ MDA(Λ), the extremal behavior of the Lévy-OU process

is quite different. Then, in Section 3.2.2 we study OU processes with exponential

tails. As a prominent example we investigate the Γ-OU process, i. e. the stationary

volatility is gamma distributed. As an important larger class we study OU processes,

whose BDLP belongs to S(γ) for γ > 0. This class extend subexponential Lévy pro-

cesses in a natural way; see Definition A.1.3. It turns out that for all OU processes

in Section 3.2, high level volatility clusters are exhibited only in the case of regularly

varying BDLPes.

The last class of models reviewed in this chapter concerns the COGARCH process in

Section 3.3. In contrast to the Lévy-OU processes considered earlier, the COGARCH

volatility has heavy tails under quite general conditions on the driving Lévy process

L. Furthermore, the COGARCH exhibits high level volatility clusters.

Finally, a short conclusion is given in Section 3.4. Here we compare the models

introduced in the different sections before. It turns out that there is a striking

similarity concerning the extremal behavior of models with the same stationary
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distribution. Here we discuss briefly some further empirical facts of volatility.

As not to disturb the flow of arguments we postpone classical definitions and con-

cepts to an Appendix. Throughout this chapter we shall use the following notation:

We abbreviate distribution function by d. f. and random variable by r. v. For any

d. f. F we denote its tail F = 1−F . For two r. v. s X and Y with d. f. s F and G we

write X
d
= Y if F = G, and by

T→∞
=⇒ we denote weak convergence as T → ∞. For two

functions f and g we write f(x) ∼ g(x) as x→ ∞, if limx→∞ f(x)/g(x) = 1. We also

denote R+ = (0,∞). For x ∈ R, let x+ = max{x, 0} and log+(x) = log(max{x, 1}).

Integrals of the form
∫ b

a
will be interpreted as the integral taken over the interval

(a, b].

3.1 Extremal behavior of generalized Cox-Ingersoll-

Ross models

In this section we summarize some well-known results on classical volatility models

as defined in (3.0.3) and (3.0.5) driven by a standard Brownian motion. This section

is based on Borkovec and Klüppelberg [32]; for a review see [84], Section 3.

As all models above fall into the framework of generalized Cox-Ingersoll-Ross models

(GCIR) models, we restrict ourselves to stationary solutions of the SDE

dVt = λ(a− Vt)dt+ σV γ
t dBt , (3.1.1)

where γ ∈
[

1
2
,∞
)
. For λ, a, σ > 0 (in the case γ = 1/2 additionally λa ≥ σ2/2 is

needed) these models are ergodic with state space R+ and have a stationary density.

Associated with the diffusion (3.1.1) is the scale function s and the speed measure

m. The scale function is defined as

s(x) =

∫ x

z

exp

(
−

2λ

σ2

∫ y

z

a− t

t2γ
dt

)
dy for x ∈ R+ , (3.1.2)

where z is any interior point of R+ whose choice does not affect the extremal behav-

ior. For the speed measure m we know that it is finite for the GCIR model. Moreover,

m is absolutely continuous with Lebesgue density

m′(x) =
2

σ2x2γs′(x)
for x ∈ R+ ,



3.1 Extremal behavior of generalized Cox-Ingersoll-Ross models 149

where s′ is the Lebesgue density of s. Then the stationary density of V is given by

f(x) = m′(x)/m(R+) for x ∈ R+ . (3.1.3)

Proposition 3.1.1

Let V be a GCIR model given by equation (3.1.1) and define M(T ) = supt∈[0,T ] Vt

for T > 0. Then for any initial value V0 = y ∈ R+ and any uT ↑ ∞,

lim
T→∞

|Py(M(T ) ≤ uT ) −HT (uT )| = 0 ,

where H is a d. f., defined for any z ∈ R+ by

H(x) = exp

(
−

1

m(R+)s(x)

)
for x > z . (3.1.4)

The function s and the quantity m(R+) depend on the choice of z. �

Corollary 3.1.2 (Running maxima)

Let the assumptions of Proposition 3.1.1 hold. Assume further that H ∈ MDA(G)

for G ∈ {Φα, α > 0,Λ} with norming constants aT > 0, bT ∈ R. Then

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) = G(x) , x ∈ R .

It is clear that the d. f. H decides about the extremal behavior of V . We present

four cases.

Example 3.1.3 (Tail behavior of GCIR models)

Let V be a stationary GCIR model given by equation (3.1.1) with stationary den-

sity f , corresponding d. f. F , and d. f. H as given in (3.1.4). Recall that a Γ(µ, γ)

distributed r. v. has probability density

p(x) =
γµ

Γ(µ)
xµ−1e−γx for x > 0 , (3.1.5)

µ > 1 and γ > 0.

(1) γ = 1
2
: The stationary density of V is Γ

(
2λa
σ2 ,

2λ
σ2

)
. The tail of H behaves like

H(x) ∼
2λ2a

σ2
xF (x) for x→ ∞,

so that the tail of H is that of a Γ
(

2λa
σ2 + 1, 2λ

σ2

)
distribution. Hence H ∈ MDA(Λ)

with norming constants

aT =
σ2

2λ
and bT =

σ2

2λ

[
log T +

2λa

σ2
log log T − log

(
λ

Γ(2λa/σ2)

)]
.
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(2) 1
2
< γ < 1: The stationary density of V is given by

f(x) =
2

Aσ2
x−2γ exp

(
−

2

σ2

(
λa

2γ − 1
x−(2γ−1) +

λ

2 − 2γ
x2−2γ

))
for x > 0,

with some normalizing factor A > 0. The d. f. H has tail

H(x) ∼ Bx2(1−γ)F (x) for x→ ∞, (3.1.6)

where B > 0. Hence H ∈ MDA(Λ) with norming constants

aT =
σ2

2λ

(
σ2(1 − γ)

λ
log T

) 2γ−1
2−2γ

,

bT =

(
σ2(1 − γ)

λ
log T

) 1
(2−2γ)


1 −

2γ − 1

(2 − 2γ)2

log
(

σ2(1−γ)
λ

log T
)

log T


+ aT log

(
2λ

Aσ2

)
.

(3) γ = 1: The stationary density of V is inverse gamma, i. e.

f(x) =

(
σ2

2λa

)− 2λ
σ2 −1(

Γ

(
2λ

σ2
+ 1

))−1

x−
2λ
σ2 −2 exp

(
−

2λa

σ2
x−1

)
for x > 0,

so that V0 ∈ R−2λ/σ2−1. In this case H(x) ∼ cx−2λ/σ2−1 for x → ∞ and for

some c > 0. Hence H ∈ MDA(Φα) for α = 2λ/σ2 + 1 with norming constants

aT = (cT )σ2/(2λ+σ2) and bT = 0.

(4) γ > 1: The stationary density f of V has the same form as in (2), but is regularly

varying of index −2γ + 1. Now the tail of H becomes very extreme: H(x) ∼ cx−1.

Hence H ∈ MDA(Φ1) with aT = cT and bT = 0. �

Since all models (3.1.1) are driven by a Brownian motion, they have continuous

sample paths; i. e. there is no natural discrete-time skeleton. We follow the standard

approach to create a discrete-time skeleton of the process; see e. g. Leadbetter et

al. [95], Chapter 12. This allows for a more profound extreme value analysis of V .

Definition 3.1.4

Let V be a stationary version of the diffusion given by (3.1.1). V is said to have an

ε-upcrossing of the level u at a point Γ > 0 if

Vt < u for t ∈ (Γ − ε,Γ) and VΓ = u .
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With this definition we can formulate a further result describing the extreme behav-

ior of a stationary GCIR model.

Theorem 3.1.5 (Point process of ε-upcrossings)

Let V be a stationary version of the diffusion given by (3.1.1) with d. f. H as in

(3.1.4). Let aT > 0, bT ∈ R be the norming constants as given in Example 3.1.3.

Let (ΓT,k)k∈N be the time points on R+, where the ε-upcrossings of V of the level

aTx + bT occur. Let (jk)k∈N be the jump times of a Poisson process with intensity

e−x if γ ∈ [1/2, 1), and x−α with α = 2λ/σ2 + 1 if γ = 1 and α = 1 if γ > 1. Then

∞∑

k=1

ε {ΓT,k/T}
T→∞
=⇒

∞∑

k=1

ε{jk} .

As is obvious from this result ε-upcrossings of V for high levels behave like of

i. i. d. data, i. e. such models do not exhibit volatility clusters. They can, however,

model heavy tails as the running maxima depend on the d. f. H.

3.2 Extremal behavior of Lévy-OU volatility

models

We start with a precise definition of a positive Lévy-OU process as a solution of

(3.0.4). For more information on Lévy processes we refer to the excellent monographs

by Sato [138], Bertoin [27] and Cont and Tankov [47]. Let L be a subordinator;

i. e. L is a Lévy process with increasing sample paths, hence they are of bounded

variation, and we assume that they are càdlàg. The Laplace transform is then the

natural transform and has for all t ≥ 0 the representation

E exp(−λLt) = exp(−tΨ(λ)) for λ ≥ 0 .

The Laplace exponent Ψ has representation

Ψ(λ) = mλ+

∫

(0,∞)

(1 − e−λx) ν(dx) .

As there is no Gaussian component the characteristic triplet of arbitrary Lévy pro-

cesses reduces to a pair (m, ν), where m > 0 is the drift and the Lévy measure ν

has support on R+ and satisfies
∫

(0,∞)

(1 ∧ x) ν(dx) <∞ .
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Let λ > 0. We denote by

Vt = e−λtV0 +

∫ t

0

e−λ(t−s) dLλs for t ∈ R (3.2.1)

the solution to the SDE (3.0.4). Then V becomes a càdlàg process, which is used in

this section.

A stationary solution of (3.0.4) exists if and only if
∫

x>2
log x ν(dx) < ∞. Note

that this condition is only violated for Lévy measures with extremely heavy tails;

more precisely ν needs to have slowly varying tails. As all models considered in this

chapter have tails which are regularly varying of some negative index or lighter, all

our models satisfy this stationarity condition. Stationarity is then achieved, if V0 is

taken to be independent of the driving Lévy process L and has distribution

V0
d
=

∫ ∞

0

e−s dLs .

A convenient representation for the stationary version is

Vt = e−λt

∫ t

−∞

eλs dLλs for t ≥ 0. (3.2.2)

In this representation, L is extended to a Lévy process on the whole real line, by

letting L̃ = (L̃t)t≥0 be an independent copy of (Lt)t≥0, and defining Lt := −L̃−t−

for t < 0. The parameter λ in the process L in (3.2.1) ensures that the stationary

marginal distribution of V is independent of λ; indeed it is given by (3.2.2).

The r. v. V0 is infinitely divisible with the characteristic pair (mV , νV ), where

mV = m and

νV [x,∞) =

∫ ∞

x

u−1ν [u,∞) du for x > 0 . (3.2.3)

We are concerned with Lévy processes L, which are heavy or semi-heavy tailed;

i. e. whose tails decrease not faster than exponentially. As indicated in (3.2.7) and

(3.2.10) this induces a similar tail behavior on V , which is in accordance with em-

pirical findings.

The structure of a Lévy-OU volatility process can be best understood when consid-

ering the following example.
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Example 3.2.1 (Positive Poisson shot noise process)

Let L be a positive compound Poisson process with characteristic pair (0, µPF ),

where µ > 0 and PF is a probability measure on R+ with corresponding d. f. F .

Then L has the representation

Lt =
Nt∑

j=1

ξj for t > 0 , (3.2.4)

where (Nt)t≥0 is a Poisson process on R+ with intensity µ > 0 and jump times

(Γk)k∈N. The process N is independent of the i. i. d. sequence of positive r. v. s (ξk)k∈N

with d. f. F .

The resulting volatility process is then the positive shot noise process

Vt = e−λtV0 +

∫ t

0

e−λ(t−s) dLλs = e−λtV0 +

Nλt∑

j=1

e−λt+Γj ξj for t ≥ 0 ,

and from (3.2.3) we get

νV [x,∞) = µ

∫ ∞

x

u−1F (u) du for x > 0.

If E log(1+ ξ1) <∞, a stationary solution exists in which case V can be represented

as

Vt = e−λt

Nλt∑

j=−∞
j 6=0

eΓjξj for t > 0. (3.2.5)

Here, we let (ξk)k∈−N0 and (Γk)k∈−N0 be sequences of r. v. s such that (ξk)k∈Z and

(Γk)k∈Z are independent. Furthermore, (ξk)k∈Z is an i. i. d. sequence and (−Γk)k∈−N

are the jump times of a Poisson process on R+ with intensity µ, independent of

(Γk)k∈N; further, we define Γ0 := 0.

The qualitative extreme behavior of this volatility process can be seen in Figure 3.1.

The volatility jumps upwards, whenever (Nλt)t≥0 jumps and decreases exponentially

fast between two jumps. This means in particular that V has local suprema exactly

at the jump times Γk/λ (and t = 0), i.e

Vt = VΓk/λe
−λt+Γk for t ∈ [Γk/λ,Γk+1/λ) .

Consequently, it is the discrete-time skeleton of V at points Γk/λ that determines

the extreme behavior of the volatility process. �
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Figure 3.1: Sample path of a Weibull-OU process as given in Example 3.2.3 with

λ = 1 and p = 1/2.

For a general subordinator L we decompose

L = L(1) + L(2) (3.2.6)

into two independent Lévy processes, where L(1) has characteristic pair (0, ν1)

with ν1(x,∞) = ν(x,∞)1(1,∞)(x) and L(2) has characteristic pair (m, ν2) with

ν2(x,∞) = ν (x, 1]1(0,1](x). Then again L(1) is a compound Poisson process with

intensity ν(1,∞) and jump sizes with d. f. ν1/ν(1,∞). All the small jumps and the

drift are summarized in L(2).

What is needed, however, are the precise asymptotic links between the tails of V , L

and the tail of the Lévy measure ν(·,∞). This implies immediately that we have to

distinguish different regimes defined by the link between L and ν(·,∞).

Any infinitely divisible distribution is asymptotically tail-equivalent to its Lévy mea-

sure, whenever it is convolution equivalent; see Definitions A.1.3, A.1.7, and Theo-

rem A.1.4.

The class S(0) = S of subexponential d. f. s contains all d. f. s with regularly varying

tails, but is much larger. Subexponential distributions can be in two different maxi-

mum domain of attractions; see Theorem A.1.5. All d. f. s with regularly varying tail

(Definition A.1.1) are subexponential and belong to MDA(Φα). Other subexponen-

tial d. f. s, as for instance the lognormal and the semi-heavy tailed Weibull d. f. s (see

Example 3.2.3), belong to MDA(Λ). On the other hand, d. f. s as the gamma dis-

tribution or d. f. s in S(γ) for γ > 0 belong to MDA(Λ), but are lighter tailed than
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any subexponential distribution. Consequently, we also consider such exponential

models below.

3.2.1 Lévy-OU processes with subexponential tails

In this section we are concerned with the Lévy-OU process given by (3.2.1), whose

BDLP is subexponential. This section is based on Chapter 1, Chapter 2.

Proposition 3.2.2 (Tail behavior of subexponential models)

Let V be a stationary version of the Lévy-OU process given by (3.2.1) and define

M(h) = supt∈[0,h] Vt for h > 0.

(a) If L1 ∈ S ∩ MDA(Φα) = R−α, then also V0 ∈ R−α and

P(V0 > x) ∼ α−1
P(L1 > x) for x→ ∞ . (3.2.7)

Moreover,

P(M(h) > x) ∼
[
λh+ α−1

]
P(L1 > x) for x→ ∞ . (3.2.8)

(b) If L1 ∈ S ∩ MDA(Λ), then also V0 ∈ S ∩ MDA(Λ) and

P(V0 > x) ∼ P(exp(−U)L1 > x) for x→ ∞ , (3.2.9)

where U is a uniform r. v. on (0, 1), independent of L. In particular,

P(V0 > x) = o(P(L1 > x)) as x→ ∞. More precisely,

P(V0 > x) ∼
a(x)

x
P(L1 > x) for x→ ∞ , (3.2.10)

where a is the function from the representation (A.1.1):

P(L1 > x) ∼ c exp

[
−

∫ x

0

1

a(y)
dy

]
for x→ ∞ ,

for some c > 0 and a : R+ → R+ absolutely continuous with limx→∞ a′(x) = 0 and

limx→∞ a(x) = ∞. Finally,

P(M(h) > x) ∼ λhP(L1 > x) for x→ ∞ . (3.2.11)
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Proof.

By (3.2.3) we have

νV (x,∞)

ν(x,∞)
=

∫∞

x
u−1ν(u,∞)du

ν(x,∞)
for x > 0 . (3.2.12)

Assume that L1 ∈ R−α for some α > 0. Then by Theorem A.1.4 (i) we have

ν(·,∞)/ν(1,∞) ∈ R−α. By Karamata’s theorem (e. g. Embrechts et al. [60], Theo-

rem A 3.6) we obtain

lim
x→∞

νV (x,∞)

ν(x,∞)
=

1

α
.

This implies in particular that also νV (·,∞)/νV (1,∞) ∈ R−α and hence, again by

Theorem A.1.4 (i), V0 ∈ R−α and (3.2.7) holds.

If L1 ∈ MDA(Λ) ∩ S we can only conclude from (3.2.12) that the right hand side

tends to 0. To obtain a precise result we proceed as follows. Denote by ξ1 the

jump distribution of the compound Poisson process L(1) as given in (3.2.6). Taking

ν (·,∞) /ν(1,∞) ∈ R−∞ into account and applying l’Hospital’s rule yields

νV (x,∞)

ν(1,∞)P(exp(−U)ξ1 > x)
=

∫∞

x
u−1ν(u,∞) du

∫ 1

0
ν (esx,∞) ds

=

∫∞

x
u−1ν (u,∞) du∫ xe

x
u−1ν (u,∞) du

∼

[
1 −

ν (ex,∞)

ν (x,∞)

]−1
x→∞
−→ 1.

The tail-equivalence (3.2.9) follows then from the fact that

ν(1,∞)P(exp(−U)ξ1 > x) ∼ P(exp(−U)L1 > x) for x→ ∞

and Theorem A.1.4 (i).

For proving (3.2.10), by Theorem A.1.4 (i) we may assume without loss of generality

that there exists a x0 > 0 such that

ν(x,∞) = c exp

[
−

∫ x

x0

1

a(y)
dy

]
for x ≥ x0.

Then ν(dx) = (a(x))−1ν(x,∞) dx and an application of l’Hospital’s rule shows that

νV (x,∞)

ν(x,∞) a(x)/x
∼

−ν(x,∞)/x

ν(x,∞)[a′(x) − a(x)/x]/x− (ν(x,∞)/a(x))a(x)/x

= [−a′(x) + a(x)/x+ 1]−1

x→∞
−→ 1,
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since a(x)/x ∼ a′(x) and a′(x) → 0 as x→ ∞. Theorem A.1.4 (i) then gives (3.2.10).

The results for M(h) are based on Theorem 2.1 of Rosinski and Samorodnitsky [132].

They show that for Lλh + V0 ∈ S

P(M(h) > x) ∼ νLλh+V0(x,∞) for x→ ∞ ,

implying the result by Theorem A.1.4 (i) . �

Example 3.2.3 (Semi-heavy tailed Weibull distribution)

Let L1 have distribution tail

P(L1 > x) ∼ K exp(−xp) for x→ ∞ ,

for some K > 0 and p ∈ (0, 1). As a(x) = x1−p/p, we obtain from (3.2.10) immedi-

ately

P(V0 > x) ∼
K

p
x−p exp(−xp) for x→ ∞ . �

Proposition 3.2.2 shows that in the regularly varying regime the tail of V0 is equiv-

alent to the tail of L1. In contrast to that, in the S ∩ MDA(Λ) case, the tail of V0

becomes lighter, due to the influence of exp(−U). But in both cases V0 is subex-

ponential and the tail of M(h) is determined by the tail of L1, only the constants

differ.

The following result gives a complete account of the extreme behavior of the volatility

process V for a subexponential BDLP L. There are three components considered in

(3.2.14) and (3.2.15). The first one is the scaled jump time process of (Lλt)t≥0, where

only jumps larger than 1 are included. The second component is the normalized local

supremum near that jump, and the third component is a vector of normalized values

of V after the jump.

Theorem 3.2.4 (Marked point process behavior of models in S)

Let V be a stationary version of the Lévy-OU process given by (3.2.1). Suppose

Γ = (Γk)k∈N are the jump times of L(1) given by (3.2.6) and I = (Ik)k∈N, where

Ik = 1
2λ

[Γk−1 + Γk,Γk + Γk+1), Γ0 := 0. For m ∈ N let 0 = t0 < t1 < · · · < tm.

(a) Assume that L1 ∈ S ∩ MDA(Φα) with norming constants aT > 0 such that

lim
T→∞

TP(L1 > aTx) = x−α for x > 0. (3.2.13)
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Take Γ(k) = (Γk,i)i∈N, k ∈ N, as i. i. d. copies of the sequence Γ and set Γk,0 := 0,

Γk,−1 := 0 for all k ∈ N. Let
∑∞

k=1 ε{sk, Pk} be a PRM(ϑ) with mean measure

ϑ(dt× dx) = dt× αx−α 1(0,∞)(x) dx, independent of the sequences (Γ(k))k∈N. Then

∞∑

k=1

ε

{
Γk

λT
, a−1

λT sup
s∈Ik

Vs, {a
−1
λTVΓk/λ+ti}i=0,...,m

}

T→∞
=⇒

∞∑

k=1

∞∑

j=0

ε
{
sk, Pke

−(Γk,j−1+Γk,j)/2, {Pke
−λti−Γk,j}i=0,...,m

}
. (3.2.14)

(b) Assume that L1 ∈ S ∩ MDA(Λ) with norming constants aT > 0, bT ∈ R such

that

lim
T→∞

TP(L1 > aTx+ bT ) = exp(−x) for x ∈ R .

Let
∑∞

k=1 ε {sk, Pk} be a PRM(ϑ) with mean measure ϑ(dt × dx) = dt × e−x dx.

Then

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT ), {a−1
λT (VΓk/λ+ti − bλT )}i=0,...,m

}

T→∞
=⇒

∞∑

k=1

ε {sk, Pk, (Pk, 0, . . . , 0)} . (3.2.15)

Moreover,

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT ), {b−1
λTVΓk/λ+ti}i=0,...,m

}
(3.2.16)

T→∞
=⇒

∞∑

k=1

ε {sk, Pk, {exp(−λti)}i=0,...,m} .

We first give an interpretation of (3.2.15). The limit relations of the first two com-

ponents show that the local suprema of V around the Γk/λ, normalized with the

constants determined via Lλ, converge weakly to the same extreme value distribu-

tion as Lλ. Moreover, the third component indicates that for t0 = 0 the second and

third component have the same limiting behavior; i. e. the sups∈Ik
Vs behaves like

VΓk/λ. For all ti > 0 the last component is negligible, i. e. the process is considerably

smaller away from VΓk/λ.

In the second and third component of (3.2.14) all points Γk,j and not only Γk,0 = 0

like in (3.2.15) may influence the limit. This phenomenon has certainly its origin
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in the very large jumps caused by regular variation. Even though the volatility

decreases between the jumps exponentially fast, huge jumps can have a long lasting

influence on excursions above high thresholds. This is in contrast to the semi-heavy

tailed case, where L is subexponential, but in MDA(Λ).

Both relations (3.2.14) and (3.2.16) exhibit, however, a common effect in the third

component: if the Lévy process L has an exceedance over a high threshold, then the

OU process decreases after this event exponentially fast.

Corollary 3.2.5 (Point process of exceedances)

Let the assumptions of Theorem 3.2.4 hold.

(a) Assume that L1 ∈ S ∩ MDA(Φα). Let (jk)k∈N be the jump times of a Poisson

process with intensity x−α, x > 0 being fixed. Let (ζk)k∈Z be i. i. d. discrete r. v. s,

independent of (jk)k∈N, with probability distribution

πk = P(ζ1 = k) = E exp(−α(Γk−1 + Γk)/2) − E exp(−α(Γk + Γk+1)/2) , k ∈ N .

Then

∞∑

k=1

ε

{
Γk

λT
, a−1

λT sup
s∈Ik

Vs

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ζkε{jk} .

(b) Assume that L1 ∈ S ∩ MDA(Λ). Let (jk)k∈N be the jump times of a Poisson

process with intensity e−x, x ∈ R being fixed. Then

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ε{jk} .

Again the qualitative difference of the two regimes is obvious. In the case of a

regularly varying BDLP L the limiting process is a compound Poisson process, where

at each Poisson point a cluster appears, whose size is random with distribution

(πk)k∈N. In contrast to this, in the MDA(Λ) case, the limit process is simply a

homogeneous Poisson process; no clusters appear in the limit.

As the next result shows, the running maxima of the volatility process V have the

same behavior as that of an i. i. d. sequence of copies of Lλ.

Corollary 3.2.6 (Running maxima)

Let V be a stationary version of the Lévy-OU process given by (3.2.1), and define

M(T ) = supt∈[0,T ] Vt for T > 0.
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(a) Assume that L1 ∈ S ∩ MDA(Φα) with norming constants aT > 0 given by

(3.2.13). Then

lim
T→∞

P
(
a−1

λTM(T ) ≤ x
)

= exp(−x−α) for x > 0 .

(b) Assume that L1 ∈ S ∩ MDA(Λ) with norming constants aT > 0, bT ∈ R given

by (3.2.15). Then

lim
T→∞

P
(
a−1

λT (M(T ) − bλT ) ≤ x
)

= exp(−e−x) for x ∈ R .

Finally, we investigate the possibility of volatility clusters in the Lévy-OU process. As

the concept of ε-upcrossings is only defined for continuous-time processes, which does

not fit into our framework, we shall introduce an appropriate method for describing

clusters in continuous-time processes with jumps.

As our method will be motivated by the discrete-time skeleton of V , we recall that in

a discrete-time process clusters are usually described by the extremal index θ ∈ (0, 1];

see Definition A.1.9. However, continuous-time processes are by nature dependent in

small time intervals by the continuity and the structure of the process. Thus it is not

adequate to adopt the extremal index concept for stochastic sequences to describe

the dependence structure of the continuous-time process on a high level.
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Figure 3.2: Sample path of a

Weibull-OU process as given in Ex-

ample 3.2.3 with λ = 1 and p =

1/2.
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Figure 3.3: Sample path of a 3/2-

stable-OU process with λ = 1

We recall the definition of an extremal index function.
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Definition 3.2.7

Let (Vt)t≥0 be a stationary process. Define the sequence Mk(h) = sup(k−1)h≤t≤kh Vt,

k ∈ N, for h > 0. Let θ(h) be the extremal index of the sequence (Mk(h))k∈N. Then

we call the function θ : (0,∞) → [0, 1] extremal index function.

The idea is to divide the positive real line into blocks of length h. By taking local

suprema of the process over these blocks the natural dependence of the continuous-

time process is weakened, in certain cases it even disappears. However, for fixed h

the extremal index function is a measure for the expected cluster sizes among these

blocks. For an extended discussion on the extremal index in the context of discrete-

and continuous-time processes see pp. 83.

Corollary 3.2.8 (Extremal index function)

(a) If L1 ∈ S ∩ MDA(Φα), then θ(h) = hα/(hα + 1) for h > 0.

(b) If L1 ∈ S ∩ MDA(Λ), then θ(h) = 1 for h > 0.

Regularly varying Lévy-OU processes exhibit clusters among blocks, since θ(h) < 1.

For increasing h the cluster probabilities tends to 0. So they have the potential to

model both volatility features: heavy tails and high level clusters. This is in contrast

to Lévy-OU processes in S ∩ MDA(Λ), where no clusters occur.

3.2.2 Lévy-OU processes with exponential tails

In this section we investigate Lévy-OU models having exponential tails, hence are

lighter tailed than those considered in the previous section. More precisely, we will

concentrate on two classes of models in L(γ), γ > 0; see Definition A.1.2. The

first class concerns the class of convolution equivalent distributions S(γ), γ > 0

(Definition A.1.3). Here Theorem A.1.4 provides the necessary relationship between

the tails of the infinitely divisible d. f. and of its Lévy measure, which leads to a

comparison between the distribution tail of the stationary r. v. V0 and the increment

L1 of the BDLP. An important family in S(γ) are d. f. s with tail

F (x) ∼ x−βl(x)e−γx−cxp

for x→ ∞,

where γ, c ≥ 0, p < 1, l(·) is normalized slowly varying, and if c = 0, β > 1 or β = 1

and
∫∞

1
l(x)/x dx <∞, are in S(γ) (Klüppelberg [83], Theorem 2.1, or Pakes [115],



162 3 Extremal behavior of stochastic volatility models

Lemma 2.3). The generalized inverse Gaussian distribution (GIGD) with probability

density

p(x) = Kxβ−1 exp
(
−
(
δ2x−1 + γ2x

)
/2
)

for x > 0 ,

where K is a normalizing constant, β < 0 and δ2 > 0, is a prominent example in

S (γ2/2). Further examples for distributions in S(γ) can be found e. g. in Cline [45].

The second class of processes with exponential tails, which we investigate in this

section, are Γ-OU processes. These are defined as stationary Lévy-OU processes,

where V0 is Γ(µ, γ) distributed with probability density as defined in (3.1.5) for

µ > 1 and γ > 0. The gamma distribution is infinitely divisible with absolutely

continuous Lévy measure given by its density

νV (dx) = µx−1e−γxdx for x > 0 .

Hence, by (3.2.3) the BDLP L has Lévy density

ν(dx) = µγe−γxdx for x > 0 .

Except for the factor µ this is the probability density of an exponential d. f.. Hence

L is a positive compound Poisson process with Poisson rate µ > 0 and exponential

jumps; for details see Barndorff-Nielsen and Shephard [12]. The exponential and

gamma laws with scale parameter γ > 0 belong to L(γ) but not to S(γ).

In analogy to the Γ-OU process, also for S(γ)-OU processes with γ > 0 we restrict

our attention to positive compound Poisson processes as BDLPs; i. e. we work in

the framework of positive Poisson shot noise processes as defined in Example 3.2.1.

Note that all d. f. s in L(γ) for γ > 0 belong to MDA(Λ).

Some of the results in this section can be found in Albin [1], who studies the extremal

behavior for a larger class of Lévy-OU-processes by purely analytic methods.

For BDLPs in S(γ) for γ > 0 the relation of the tail of the stationary d. f. and its

Lévy measure are stated in the following proposition.

Proposition 3.2.9 (Tail behavior of S(γ)-OU models for γ > 0)

Let V be a stationary version of the Lévy-OU process given by (3.2.1).

(a) Suppose ν (1, ·] /ν(1,∞) ∈ L(γ), γ > 0. Then νV (1, ·] /νV (1,∞) ∈ L(γ) with

νV (x,∞) ∼
1

γx
ν(x,∞) for x→ ∞ .
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(b) Suppose L1 ∈ S(γ), γ > 0. Then also V0 ∈ S(γ), and

P(V0 > x) ∼
EeγV0

EeγL1

1

γx
P(L1 > x) for x→ ∞ .

In particular, P(V0 > x) = o(P(L1 > x)) as x→ ∞.

Proof.

(a) By (A.1.1) the Lévy measure ν has representation

ν(x,∞) = c(x) exp

[
−

∫ x

1

1

a(y)
dy

]
for x ≥ 1, (3.2.17)

for functions a, c : [1,∞) → R+ with limx→∞ c(x) = c > 0, limx→∞ a(x) = 1/γ,

and limx→∞ a′(x) = 0. Since we are only interested in the tail behavior we may

assume without loss of generality that ν is absolutely continuous and c(·) ≡ c.

Recall from (3.2.3) that νV (dx) = x−1ν (x,∞) dx and let ν(dx) = ν ′(x) dx. Part (a)

follows by an application of l’Hospital’s rule, since

νV (x,∞)

ν(x,∞)/(γx)
∼

ν(x,∞)/x

[ν ′(x)x+ ν(x,∞)]/(γx2)
= γ

[
1

a(x)
+

1

x

]−1
x→∞
−→ 1.

(b) We first show that V0 ∈ S(γ). By Theorem A.1.4 (i) it suffices to show that

νV (1, ·] /ν(1,∞) ∈ S(γ). Again, we can assume without loss of generality that ν is

absolutely continuous and has the representation (3.2.17) with constant c(·) ≡ c.

For simplicity, we further assume that c = 1 and ν(1,∞) = 1; the general case

follows by a simple dilation. As in part (a) we use that νV (dx) = x−1ν (x,∞) dx.

An application of l’Hospital’s rule shows that

νV (x− y,∞)

νV (x,∞)
∼

ν(x− y,∞) x

ν(x,∞) (x− y)
→ eγy for x→ ∞,

implying νV (1, ·] ∈ L(γ). Denote by ν2∗
V the convolution of νV restricted to (1,∞)

with itself. Then for 1 < y′ < x/2 we use the usual decomposition of the convolution

integral

ν2∗
V (dx)

dx
=

∫ x

1

ν (u,∞)

u

ν (x− u,∞)

x− u
du (3.2.18)

=2

∫ y′

1

ν (u,∞)

u

ν (x− u,∞)

x− u
du+

∫ x−y′

y′

ν (u,∞)

u

ν (x− u,∞)

x− u
du .

In order to show that νV (1, ·] ∈ S(γ), we calculate the limit ratio of the densities

of ν2∗
V and νV . Observe that on every compact set ν (x− u,∞) /ν (x,∞) converges



164 3 Extremal behavior of stochastic volatility models

uniformly in u to exp(γu) as x → ∞. For the first summand of (3.2.18) we thus

obtain

lim
x→∞

2

∫ y′

1

x

x− u

ν (x− u,∞)

ν (x,∞)

ν (u,∞)

u
du = 2

∫ y′

1

eγuν (u,∞)

u
du

= 2

∫ y′

1

eγu νV (du) < ∞ . (3.2.19)

For the second summand in (3.2.18) we estimate

∫ x−y′

y′

xν (u,∞) ν (x− u,∞)

u(x− u) ν (x,∞)
du

≤
x

y′(x− y′)

∫ x−y′

y′

ν (x− u,∞)

ν (x,∞)
ν (u,∞) du. (3.2.20)

Furthermore, since

ν (x,∞) /ν ′(x) = a(x) −→ 1/γ for x→ ∞ ,

there exist constants K,x0 > 0 such that ν (x,∞) ≤ Kν ′(x) for x ≥ x0. We obtain

for y′ > x0

x

y′(x− y′)

∫ x−y′

y′

ν (x− u,∞) ν (u,∞)

ν (x,∞)
du

≤
Kx

y′(x− y′)

∫ x−y′

y′

ν (x− u,∞)

ν (x,∞)
ν(du). (3.2.21)

Since ν (1, ·] ∈ S(γ), the same decomposition as in (3.2.18) yields (for details see

e. g. Pakes [115], Lemma 5.5)

lim
y′→∞

lim
x→∞

∫ x−y′

y′

ν (x− u,∞)

ν (x,∞)
ν(du) = 0. (3.2.22)

Furthermore, limy′→∞ limx→∞ x/[y′(x−y′)] = limy′→∞ 1/y′ = 0. By (3.2.18)-(3.2.22)

we now obtain ν2∗
V (dx) ∼ (2

∫∞

1
eγu ν(du)) νV (dx) for x → ∞, showing that νV (1, ·]

and hence V0 are in S(γ). The assertion on the tail behavior now follows from (a)

and Theorem A.1.4 (i). �

The following result is an analogon to Theorem 3.2.4 and describes the extremal

behavior of V completely.
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Theorem 3.2.10 (Point process of exceedances of exponential models)

Let V be a stationary version of the Lévy-OU process given by (3.2.1) with L

a positive compound Poisson process as in (3.2.4). Denote by (Γk)k∈N the jump

times of the positive compound Poisson process L given by (3.2.4) and define

Ik = 1
λ

[Γk,Γk+1) for k ∈ N. Let
∑∞

k=1 ε{sk, Pk} be PRM(ϑ) with mean measure

ϑ(dt× dx) = dt× e−x dx.

(a) Assume L1 ∈ S(γ), γ > 0, with norming constants aT > 0, bT ∈ R such that

lim
T→∞

TP(L1 > aTx+ bT ) =
EeγL1

EeγV0
exp(−x) for x ∈ R . (3.2.23)

Then
∞∑

k=0

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
T→∞
=⇒

∞∑

k=1

ε {sk, Pk} . (3.2.24)

(b) Assume V is the Γ(µ, γ)-OU process. Let aT > 0, bT ∈ R be the norming

constants of a Γ(µ+ 1, γ) distributed r. v. W , such that

lim
T→∞

TP(W > aTx+ bT ) = µ−1 exp(−x) for x ∈ R. (3.2.25)

Then
∞∑

k=0

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
T→∞
=⇒

∞∑

k=1

ε {sk, Pk} . (3.2.26)

The proof is divided into several steps. We shall utilize classical results for ex-

treme value theory of stationary discrete-time processes. As a discrete-time skeleton

(VΓk/λ)k∈Z seems to be a good candidate. However, VΓk/λ =
∑k

j=−∞
j 6=0

e−(Γk−Γj)ξj,

k ∈ N, is not stationary. As we will show in Lemma 3.2.11 the process

Ṽk =
k∑

j=−∞

e−(Γk−Γj)ξj = VΓk/λ + e−Γkξ0 for k ∈ N , (3.2.27)

is stationary, where Γ0 := 0. For increasing k the process e−Γkξ0 tends to 0. Thus

it has no influence on the extremal behavior. We shall show that the point process

behavior is the same for (VΓk/λ)k∈N and for (Ṽk)k∈N. For the proof we also need that

the D and D′ conditions hold for (Ṽk)k∈N. The highly technical Lemma A.3.2, where

this is confirmed, is postponed to the Appendix.

Lemma 3.2.11

Let V be a stationary version of the Lévy-OU process given by (3.2.1) with L a

positive compound Poisson process as in (3.2.4). Then (Ṽk)k∈Z as defined in (3.2.27)

is stationary.
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Proof.

Let h ∈ R be fixed. Note that (Γh+j − Γh)j∈Z
d
= (Γj)j∈Z. Then

Ṽk+h =
k+h∑

j=−∞

e−(Γk+h−Γj)ξj =
k+h∑

j=−∞

e−(Γk+h−Γh−(Γj−Γh))ξj
d
=

k+h∑

j=−∞

e−(Γk−Γj−h)ξj

=
k∑

j=−∞

e−(Γk−Γj)ξj+h
d
=

k∑

j=−∞

e−(Γk−Γj)ξj = Ṽk.

Similarly, for l ∈ N we obtain (Ṽk1+h, . . . , Ṽkl+h)
d
= (Ṽk1 , . . . , Ṽkl

), k1, . . . , kl ∈ N. �

Proof of Theorem 3.2.10.

Since V is decreasing between jumps, it follows that sups∈Ik
Vs = VΓk/λ. Recall that

Ṽk = VΓk/λ + e−Γkξ0
d
= V0 + ξ1 and that (Ṽk)k∈N is stationary. We show first that the

norming constants an > 0, bn ∈ R given by (3.2.23) and (3.2.25) satisfy

lim
n→∞

nP(Ṽk > anx+ bn) = µ−1 exp(−x) for x ∈ R. (3.2.28)

To show this in case (a), observe that P(V0 > x) = o(P(ξ1 > x)) for x → ∞ by

Proposition 3.2.9 (b), so that Theorem A.1.4 (i,ii) yields

P(Ṽk > x) ∼ EeγV0P(ξ1 > x) ∼ EeγV0 [EeγL1 ]−1µ−1
P(L1 > x) for x→ ∞.

(3.2.29)

From this (3.2.28) follows immediately, and further we see that Ṽk ∈ S(γ).

In case (b), Ṽk is Γ(µ+ 1, γ) distributed as an independent sum of a Γ(µ, γ) and an

Exp(γ) r. v., and (3.2.28) is immediate. The norming constants of a Γ distribution

can be found in Table 3.4.4 of Embrechts et al. [60].

Note that in both cases (a) and (b), we have Ṽk ∈ L(γ). Thus, by Lemma A.3.2 and

Leadbetter et al. [95], Theorem 5.5.1,

∞∑

k=0

ε
{
k/(µn), a−1

n (Ṽk − bn)
}

n→∞
=⇒

∞∑

k=1

ε {sk, Pk} . (3.2.30)

Define the point processes

κ̃n =
∞∑

k=0

ε
{
k/(µn), a−1

n (Ṽk − bn)
}

and κn =
∞∑

k=0

ε
{
k/(µn), a−1

n (VΓk/λ − bn)
}
.

For ε > 0 and I = [s, t)× (x,∞) ⊆ R+ ×R define Iε = [s, t)× (x, x+ ε]. Taking into

account that VΓk/λ ≤ Ṽk we have for δ ∈ (0, 1)
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P(κn(I) 6= κ̃n(I))

≤ P(κ̃n(Iε) > 0) +
∑

k∈[snµ,tnµ)

P(Ṽk > un + ε an, VΓk/λ ≤ un)

≤ P(κ̃n(Iε) > 0) +
∑

k∈[0,nδtµ)

P(Ṽk > un + ε an) +
∑

k∈[nδtµ,ntµ)

P(e−Γkξ0 > ε an).

We shall show below that

lim
n→∞

P(κn(I) 6= κ̃n(I)) = 0. (3.2.31)

Then by Rootzén [131], Lemma 3.3, the limit behavior of κ̃n and κn is the same.

Relation (3.2.26) then follows by transforming the time scale as in Lemma 1.2.4.

To show (3.2.31), observe that by (3.2.30) we have

lim
n→∞

P(κ̃n(Iε) > 0) = 1 − exp[(t− s)(exp(−x) − exp(−(x+ ε)))]
ε↓0
−→ 0.

Furthermore, since δ < 1, we have by (3.2.28)

lim
n→∞

∑

k∈[0,nδtµ)

P(Ṽk > un + ε an) ≤ lim
n→∞

nδtµP(Ṽk > an(x+ ε) + bn) = 0.

Applying (A.3.4) we obtain
∑

k∈[nδtµ,ntµ)

P(e−Γkξ0 > ε an)

≤
∑

k∈[nδtµ,ntµ)

(
P
(
e−Γkξ0 > ε an,Γk ≥ k/(2µ)

)
+ P

(
e−Γkξ0 > ε an,Γk < k/(2µ)

))

≤
∑

k∈[nδtµ,ntµ)

P(e−k/(2µ)ξ0 > ε an) +
∑

k∈[nδtµ,ntµ)

K/k2.

The last summand tends to 0 as n → ∞, since
∑∞

k=1 1/k2 < ∞. Moreover, there

exists an n0 ∈ N such that an ≥ 1/(2γ) and ke−k/(2µ) ≤ 1/2 for n, k ≥ n0. Then the

first exponential moment of γke−k/(2µ)ξ0 exists, and for nδtµ, n ≥ n0 we obtain
∑

k∈[nδtµ,ntµ)

P(e−k/(2µ)ξ0 > ε an) ≤
∑

k∈[nδtµ,ntµ)

E[exp(γke−k/(2µ))ξ0]e
−kγε an

≤ E[exp(γξ0/2)]
∞∑

k=bnδtµc

e−kε/2 n→∞
−→ 0,

since
∑∞

k=1 e−kε/2 <∞. This shows (3.2.31). �
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Results (3.2.24) and (3.2.26) show that local extremes of such exponential models

have no cluster behavior on high levels. The following two corollaries are immediate

from Theorem 3.2.10.

Corollary 3.2.12 (Point process of local maxima)

Let the assumptions of Theorem 3.2.10 hold. Denote by (jk)k∈N the jump times of

a Poisson process with intensity e−x for fixed x ∈ R. Then

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ε{jk} .

Corollary 3.2.13 (Running maxima)

Let V be a stationary version of the Lévy-OU process (3.2.1), where L is a positive,

compound Poisson process as in (3.2.4). Define M(T ) = sup0≤t≤T Vt for T > 0.

(a) Assume L1 ∈ S(γ), γ > 0, with norming constants given by (3.2.23). Then

lim
T→∞

P(a−1
λT (M(T ) − bλT ) ≤ x) = exp(−e−x) for x ∈ R.

(b) Assume V is the Γ(µ, γ)-OU process with norming constants given by (3.2.25).

Then

lim
T→∞

P(a−1
λT (M(T ) − bλT ) ≤ x) = exp(−e−x) for x ∈ R. (3.2.32)

For a subexponential Lévy-OU process the r. v. M(h) = sup0≤t≤h Vt, h > 0 be fixed,

is tail-equivalent to the increment of the Lévy process; cf. (3.2.8) and (3.2.11). In

the class S(γ), γ > 0, this is much more involved; see Braverman and Samorodnit-

sky [33]. Although the large jumps of the Lévy process determine the tail behavior,

small jumps also have a non-negligible influence. For any h > 0, the tail of M(h)

is of the same order of magnitude as the tail of the increment of the BDLP, but in

general it is only possible to give upper and lower bounds on the asymptotic ratio

of the two tails. Using Corollary 3.2.13 one can calculate this constant for Lévy-OU

processes explicitly.

Corollary 3.2.14 (Extremal index function)

Let V be a stationary version of the Lévy-OU process given by (3.2.1), where L is

a positive compound Poisson process as in (3.2.4). Define M(h) = sup0≤t≤h Vt for

h > 0.

(a) Let L1 ∈ S(γ), γ > 0. Then M(h) ∈ L(γ) if and only if

P(M(h) > x) ∼ λhEeγV0 [EeγL1 ]−1
P(L1 > x) for x→ ∞ . (3.2.33)
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Figure 3.4: Sample path of a Γ-OU process with γ = 3, µ = 8.5 and λ = 0.01.

In that case M(h) ∈ S(γ) and θ(·) ≡ 1.

(b) Let V be the Γ(µ, γ)-OU process with norming constants given by (3.2.25) and

let W be a Γ(µ+ 1, γ) r. v.. Then θ(·) ≡ 1 and

P(M(h) > x) ∼ λhµP(W > x) for x→ ∞ . (3.2.34)

Proof.

(a) First we assume M(h) ∈ L(γ). Let ãn > 0, b̃n ∈ R and ũn = ãnx + b̃n be

constants such that

lim
n→∞

nP(M(h) > ũn) = exp(−x).

Denote by M̃k an i. i. d. sequence of copies of M(h). Then we obtain by

Lemma A.3.2 (b) and Leadbetter et al. [95], Theorem 3.5.1, for x ∈ R,

lim
n→∞

P(ã−1
n (M(nh) − b̃n) ≤ x) = lim

n→∞
P(ã−1

n ( max
k=1,...,n

M̃k − b̃n) ≤ x) = exp(−e−x),

showing in particular that θ(h) = 1. On the other hand, by Corollary 3.2.13,

lim
n→∞

P(a−1
λnh(M(nh) − bλnh) ≤ x) = exp(−e−x) for x ∈ R.
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Then by the convergence to types theorem (see e. g. Theorem A 1.5 of Embrechts

et al. [60]), ãn/aλnh
x→∞
−→ 1 and b̃n − bλnh

x→∞
−→ 0. Applying the convergence to types

theorem a second time yields

lim
n→∞

P(a−1
λnh( max

k=1,...,n
M̃k − bλnh) ≤ x) = exp(−e−x) for x ∈ R.

This implies by Leadbetter et al. [95], Theorem 1.5.1 that

lim
n→∞

nP(M(h) > uλnh) = exp(−x),

with uλnh = aλnhx+bλnh. By (3.2.28) also limn→∞ nP(Ṽk > uλnh) = exp(−x)/(λµh).

Hence P(M(h) > x) ∼ hλµP(Ṽk > x) for x→ ∞, and (3.2.33) follows from (3.2.29).

Conversely, if (3.2.33) holds, then it is clear that L1 ∈ S(γ) ⊆ L(γ) implies

M(h) ∈ L(γ) by tail-equivalence. By Lemma A.3.2 (b) follows θ(h) = 1.

(b) We refer to Albin [1], Theorem 3, for (3.2.34). That θ(h) = 1 follows then

from (3.2.25), (3.2.32) and (3.2.34). �

Remark 3.2.15

For OU processes with BDLP in S(γ), γ > 0, S ∩ MDA(Λ) and the Γ-OU process

P(M(h) > x) ∼ hλµP(Ṽk > x) for x→ ∞.

�

In both cases the extremal index function is equal to one, so that for any h > 0 the

sequence Mk = sup(k−1)h≤t≤kh Vt behaves like i. i. d. data. Hence such models cannot

explain volatility clusters on high levels.

3.3 Extremal behavior of the COGARCH model

The volatility of the COGARCH process as introduced in (3.0.6) is the (càdlàg)

solution to the SDE (3.0.7), which is given by

Vt = V0 + βt− log η

∫ t

0

Vs ds+ λη
∑

0<s<t

Vs(∆Ls)
2 for t ≥ 0, (3.3.1)
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given for η > 1, λ ≥ 0, β > 0, see Klüppelberg et al. [87,88] for details. An essential

feature of the COGARCH model is that the same Lévy process drives the price

process S and the volatility process V . Denote by ν the Lévy measure of L. There

exists a stationary version of the volatility process V (i. e. V0 independent of L can

be chosen such that V is stationary) if and only if
∫

R

log(1 + ληy2) ν(dy) < log η. (3.3.2)

With the auxiliary càdlàg process (Xt)t≥0 defined in (3.0.7) by

Xt = t log η −
∑

0<s≤t

log(1 + λη(∆Ls)
2) for t ≥ 0 , (3.3.3)

the stationary volatility process has representation

Vt =

(
β

∫ t

0

eXsds+ V0

)
e−Xt− for t ≥ 0 , (3.3.4)

and V0
d
= β

∫∞

0
e−Xtdt, independent of L. The auxiliary process (Xt)t≥0 itself is a

spectrally negative Lévy process of bounded variation with drift γX = log η, no

Gaussian component, and Lévy measure νX given by

νX [0,∞) = 0, νX (−∞,−x] = ν
(
{y ∈ R : |y| ≥

√
(ex − 1)x/(λη)}

)
for x > 0.

We work with the Laplace transform Ee−sXt = etΨ(s), where the Laplace exponent

is

Ψ(s) = −s log η +

∫

R

((1 + ληy2)s − 1) ν(dy) for s ≥ 0 . (3.3.5)

For fixed s ≥ 0, Ee−sXt exists (i. e. is finite) for one and hence all t > 0, if and

only if the integral appearing in (3.3.5) is finite. This is equivalent to E|L1|
2s < ∞.

Further, if there exists some s > 0 such that Ψ(s) ≤ 0, then (3.3.2) holds, and hence

a stationary version of the volatility process exists.

The qualitative extreme behavior of this volatility process can be seen in Figures 3.5,

3.6, where the driving Lévy process is a compound Poisson process. As in the case of

a Lévy OU process the volatility jumps upwards, whenever the driving Lévy process

L jumps and decreases exponentially fast between two jumps.

The next Theorem (cf. Klüppelberg et al. [88], Theorem 6) shows that, under weak

conditions on the moments of L, the volatility process has Pareto like tails. Since

we shall apply a similar argument in the proof of Theorem 3.3.3, we sketch the idea

of the proof.
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Figure 3.5: Sample path of a compound Poisson driving process with rate 1 and

normal jumps with mean 0 and variance 1 (top) and corresponding sample path of

the COGARCH process driven by this Lévy process with COGARCH parameters

β = 1, λ = 0.04 and η = 1.064 (bottom).

Theorem 3.3.1 (Pareto tail behavior of COGARCH models)

Suppose there exists α > 0 such that

E|L1|
2α log+ |L1| <∞ and Ψ(α) = 0. (3.3.6)

Let V be a stationary version of the volatility process given by (3.3.1). Then for

some constant C > 0 we have

lim
x→∞

xα
P(V0 > x) = C. (3.3.7)

Proof.

From (3.3.4) it is seen that the stationary volatility process V satisfies

Vt = e−Xt−V0 + β

∫ t

0

eXs−Xt− ds for t > 0,

where V0 is independent of (e−Xt− , β
∫ t

0
eXs−Xt− ds)t≥0. Thus the stationary solution

V0 satisfies for every t > 0 the distributional fix point equation

V0
d
= AtV0 +Bt,



3.3 Extremal behavior of the COGARCH model 173

L

0 50 100 150 200

−
15

−
5

0
5

10

si
gm

a

0 50 100 150 200

6
7

8
9

10

Figure 3.6: First 2500 observations of the sample paths of Figure 3.5 indicating the

micro behavior of the COGARCH model.

where V0 is independent of (At, Bt)t≥0 and

At
d
= e−Xt−, Bt

d
= β

∫ t

0

eXs−Xt− ds.

The result now follows from Theorem A.2.1, by choosing t such that (At, Bt) sat-

isfies the assumptions. This is possible because of the structure of the process and

condition (3.3.6), for details see Klüppelberg et al. [88], Theorem 6. �

The following remark gives a simple sufficient condition for (3.3.6) to hold.

Remark 3.3.2

Let D := {d ∈ [0,∞) : E|L1|
2d <∞} and d0 := supD ∈ [0,∞]. Suppose d0 6∈ D, or

that there exists an s0 > 0 such that 0 < Ψ(s0) <∞. Further suppose that (Vt)t≥0 is

strictly stationary. Then (3.3.6) and hence (3.3.7) hold (cf. Klüppelberg et al. [88],

Proposition 5). �

We aim at a precise asymptotic description of the COGARCH model above a high
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threshold like in Section 3.2. It is, however, clear from the definition of V that the

influence of the spectrally negative Lévy process X is hard to analyze. In particular,

the influence of the small jumps of L to V needs special treatment. We shall restrict

ourselves again to the case of a compound Poisson driving process L as given in

(3.2.4) by Lt =
∑Nt

j=1 ξj for t ≥ 0. Here, however, ξ has support on R.

In this case the auxiliary process X simplifies to

Xt = t log η −
Nt∑

k=1

log(1 + ληξ2
k) for t ≥ 0 , (3.3.8)

and the Laplace exponent becomes

Ψ(s) = −(s log η + µ) + µE(1 + ληξ2
1)

s . (3.3.9)

In the stationary volatility model we know that Vt ≥ β/ log η a. s. and V jumps

if and only if L jumps (cf. Klüppelberg et al. [88], Proposition 2 (a)). The jump

sizes are positive and depend on the level of the process at that time. As shown in

Proposition 2 (b) and (c) of Klüppelberg et al. [88],

VΓk+ − VΓk
= ληVΓk

ξ2
k for k ∈ N , (3.3.10)

and the process decreases exponentially in between jumps:

Vt =
β

log η
+

(
VΓk+ −

β

log η

)
e−(t−Γk) log η for t ∈ (Γk,Γk+1] . (3.3.11)

As described in Example 3.2.1, the compound Poisson driven volatility process V

achieves local suprema only at its right limits at the jump times (and at t = 0).

This indicates that the discrete-time sequence (VΓk+)k∈N in combination with the

deterministic behavior of V between jumps suffices to describe the extremal behavior

of the COGARCH process. Consequently, we investigate the discrete-time skeleton

Ṽk := VΓk+ for k ∈ N . (3.3.12)

Using (3.3.10) and (3.3.11) we obtain

Ṽk+1 = Ṽk (1 + ληξ2
k+1)e

−(Γk+1−Γk) log η +
β

log η

(
1 + ληξ2

k+1

) (
1 − e−(Γk+1−Γk) log η

)
,

and we see that (Ṽk)k∈N satisfies the stochastic recurrence equation

Ṽk = ÃkṼk−1 + B̃k for k ∈ N , (3.3.13)
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with Ṽ0 = V0, where

Ãk = (1 + ληξ2
k)e

−(Γk−Γk−1) log η , (3.3.14)

B̃k =
β

log η
(1 + ληξ2

k)
(
1 − e−(Γk−Γk−1) log η

)
, (3.3.15)

and ((Ãk, B̃k))k∈N is an i. i. d. sequence. It is an interesting observation that by

(3.3.14)

log
k∏

j=1

Ãj =
k∑

j=1

log Ãj = −Γk log η +
k∑

j=1

log(1 + ληξ2
j ) = −XΓk

. (3.3.16)

On the other hand, by (3.3.15) and Xs − XΓk
= log(1 + ληξ2

k) + (s − Γk) log η for

s ∈ (Γk,Γk+1),

B̃k = β

∫ Γk

Γk−1

eXs−XΓk ds.

Denote by (Ã, B̃) a copy of (Ã1, B̃1) independent of L. Then it follows that

Ã
d
= Ãk

d
= e−XΓ1 and B̃

d
= B̃k

d
= βe−XΓ1

∫ Γ1

0

eXsds for k ∈ N. (3.3.17)

Moreover,

Ṽk = Ṽ0

k∏

j=1

Ãj +
k∑

i=1

B̃i

k∏

j=i+1

Ãj = e−XΓk

[
Ṽ0 +

k∑

i=1

B̃ie
XΓi

]
for k ∈ N .

We are now ready to present the analogue of Theorem 3.3.1 for the sequence (Ṽk)k∈N.

As can be seen from (3.3.8), the process (XΓk
)k∈N is a random walk with increments

XΓk
−XΓk−1

= (Γk − Γk−1) log η − log(1 + ληξ2
k) for k ∈ N.

Theorem 3.3.3 (Pareto tail behavior of Ṽ)

Suppose there exists some α > 0 such that

E|L1|
2α log+ |L1| <∞ and Ψ(α) = 0. (3.3.18)

Then a stationary solution (Ṽk)k∈N of (3.3.13) exists. Its marginal stationary distri-

bution Ṽ∞
d
= Ṽ1 is the unique solution of the random fix point equation

Ṽ∞
d
= ÃṼ∞ + B̃,



176 3 Extremal behavior of stochastic volatility models

where (Ã, B̃) is given by (3.3.17) and is independent of L. Furthermore,

P(Ṽ∞ > x) ∼ C̃x−α for x→ ∞ ,

where

C̃ =
E

[
(ÃṼ∞ + B̃)α − (ÃṼ∞)α

]

αE|Ã|α log+ |Ã|
> 0 . (3.3.19)

Proof.

We shall show that conditions (i)-(iv) of Theorem A.2.1 are satisfied: by definition,

log Ã
d
= −Γ1 log η + log(1 + ληξ2

1), where Γ1 is exponentially distributed. Conse-

quently, (i) follows.

To show (ii) note that by the independence of Γ1 and ξ1, for α > 0 we have by

(3.3.9)

E|Ã|α = Ee−Γ1α log η
E(1 + ληξ2

1)
α

=
µ

µ+ α log η

µ+ α log η + Ψ(α)

µ

= 1 +
1

µ+ α log η
Ψ(α) = 1 ,

by the second assumption in (3.3.18).

In order to prove (iii) note that

E|Ã|α log+ |Ã| ≤ E|1 + ληξ2
1 |

α log+
(
1 + ληξ2

1

)
<∞ ,

if and only if the first assumption in (3.3.18) holds, see Sato [138], Theorem 25.3.

Finally, (iv) follows from

E|B̃|α ≤ (β/ log η)α
E|1 + ληξ2

1 |
α <∞ .

That the constant C̃ is indeed strictly positive follows from the fact that Ã, B̃ and

Ṽ∞ are strictly positive, almost surely. �

Remark 3.3.4

(i) XΓk
tends almost surely to ∞ if and only if EXΓ1 > 0 or, equivalently,

µE log(1+ληξ2
1) < log η. Notice that for this model the stationarity condition (3.3.2)

is equivalent to EXΓ1 > 0.
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(ii) In a sense it is remarkable that the tail of the stationary r. v. of the continuous-

time model V∞ and of the discrete-time skeleton Ṽ∞ are so similar. As the discrete-

time skeleton considers only local suprema of the process, one expects Ṽ∞ to be

stochastically larger. As the Pareto index α is the same for both models, any dif-

ference can only appear in the constants C and C̃. Brockwell, Chadraa and Lind-

ner [37] have established a precise relationship between the distributions of V∞ and

Ṽ∞, showing that

(
V∞ −

β

log η

)
d
= e−(log η)Γ

(
Ṽ∞ −

β

log η

)
,

where Γ
d
= Γ1 is exponentially distributed with parameter µ and independent of Ṽ∞.

Using a result of Breiman [34], it then follows that

C = E
(
e−(log η)Γ

)α
C̃ =

µ

µ+ α log η
C̃ =

1

E(1 + ληξ2
1)

α
C̃, (3.3.20)

where the last equation follows from (3.3.9). �

The extremal behavior of solutions of stochastic recurrence equations is studied in de

Haan et al. [57]. Their results can be applied to the stationary discrete-time skeleton

of the volatility process (Ṽk)k∈N as defined in (3.3.12).

Theorem 3.3.5 (Extremal behavior of the COGARCH model)

Let V be a stationary version of the volatility process given by (3.3.1) and define

M(T ) = sup0≤t≤T Vt for T > 0. Suppose there exists some α > 0 such that

E|L1|
2α log+ |L1| <∞ and Ψ(α) = 0.

Let C̃ be the constant in (3.3.19) and define aT := (µT )1/α for T > 0. Then

lim
T→∞

P(a−1
T M(T ) ≤ x) = exp(−C̃θx−α) for x > 0,

where θ = 1−E

[
supt≥Γ1

{e−αX+
t }
]
∈ (0, 1). Denote by (Γk)k∈N the jump times of the

compound Poisson process L given by (3.2.4) and define Ik = (Γk,Γk+1] for k ∈ N.

Let (jk)k∈N be the jump times of a Poisson process with intensity C̃θx−α. Let (ζk)k∈N

be i. i. d. discrete r. v. s, independent of (jk)k∈N, with probability distribution

πk = P(ζ1 = k) = (θk − θk+1)/θ for k ∈ N.
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Then for x > 0,
∞∑

k=1

ε

{
Γk

T
, a−1

T sup
s∈Ik

Vs

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ζkε{jk}. (3.3.21)

Here

θk := E [exp(αmin{Tk−1, 0}) − exp(αmin{Tk, 0})]

=

∫ 1

0

P

(
card

{
j ∈ N : e−αXΓj > y

}
= k − 1

)
dy,

where ∞ = T0 ≥ T1 ≥ . . . are the ordered values of the sequence (−XΓk
)k∈N and

θ = θ1.

Proof.

Since sups∈Ik
Vs = Ṽk, Theorem 3.3.3 and de Haan et al. [57], Theorem 2.1, show

that
∞∑

k=1

ε

{
k

µn
, a−1

n Ṽk

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ζkε{jk}

and that (Ṽk)k∈N has extremal index θ ∈ (0, 1), given by

θ = α

∫ ∞

1

P

(
∞∨

j=1

j∏

k=1

Ãk ≤ y−1

)
y−α−1 dy

= α

∫ ∞

1

P

(
∞∨

j=1

exp(−XΓj
) ≤ y−1

)
y−α−1 dy

=

∫ 1

0

P

(
sup
t≥Γ1

{e−αXt} ≤ z

)
dz

= 1 − E

[
min

{
1, sup

t≥Γ1

{e−αXt}

}]
.

For the first expression for θk, see de Haan et al. [57], and the second expression

follows by a similar calculation as above. By an application of Lemma 1.2.4 we

transform the time scale, such that (3.3.21) holds. Then we obtain

lim
T→∞

P(a−1
T M(T ) ≤ x) = lim

T→∞
P

(
∞∑

k=1

ε

{
Γk

T
, a−1

T sup
s∈Ik

Vs

}
((0, 1) × (x,∞)) = 0

)

= P

(
∞∑

k=1

ζkε{jk}((0, 1)) = 0

)
= exp(−C̃θx−α).

�
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Remark 3.3.6

(i) By the Poisson result (3.3.21) we observe clusters in local extremes of the

continuous-time process. So the COGARCH is a suitable model for heavy tailed

volatility models with clusters on high levels.

(ii) Note that we have shown in the proof above that θ is the extremal index of

(Ṽk)k∈N. �

3.4 Conclusion

In this chapter we have investigated the extremal behavior of the most popular

continuous-time volatility models. We have concentrated on models with tails rang-

ing from exponential to regularly varying; i. e. tails as they are found in empirical

volatilities. The stochastic quantities derived for such models include

• the tail of the stationary volatility V0 and the relation to the tail of the distri-

bution governing the extreme behavior,

• the asymptotic distribution of the running maxima, i. e. their MDA and the

norming constants,

• the cluster behavior of the model on high levels.

We found interesting similarities in the extremal behavior of certain models, which

was quite unexpected.

Recall the GCIR model of Example 3.1.3, where the tail of the stationary distribution

F of V0 is compared to the tail of H, the d. f. describing the extreme behavior.

Example 3.1.3 (2) belongs to S ∩ MDA(Λ), it has stationary distribution with a

semi-heavy Weibull like tail. Relation (3.2.10) is mimicked by the fact that (3.1.6)

can be rewritten to

F (x) ∼
a(x)

x
H(x) for x→ ∞ .

Moreover, as the norming constants in the GCIR examples are calculated based on

the d. f. H, analogously, by the above Corollary 3.2.6, for the Lévy-OU process in

MDA(Λ), the norming constants are derived from L1 and M(1), respectively, and

not from the stationary distribution of the process V .
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Analogous results hold for Example 3.1.3 (3), which belongs to S ∩ MDA(Φα) for

some α > 0. Here the tails of F and H are both regularly varying of the same index;

this corresponds to (3.2.8).

Also in the case, where V0 is gamma distributed, the behavior of the running maxima

of the GCIR model in Example 3.1.3 (1) and of the Γ-OU process as given in (3.2.25)

and (3.2.32), respectively, are identical.

This means also that, if the stationary distribution of a GCIR model coincides with

the stationary distribution of a Lévy-OU model, then also the norming constants

and the behavior of the running maxima coincide. The role of M(h) for L1 ∈ S(γ),

γ ≥ 0 corresponds for the GCIR models to the d. f. H; the influence of the driving

Brownian motion plays no role whatsoever for the extreme behavior.

Concerning volatility clusters, no OU process in MDA(Λ) presented in this chapter

can model such clusters on high levels. Whereas regularly varying Lévy-OU models

have the potential to model them. A way to introduce clusters into subexponential

models in MDA(Λ) is to replace the the exponentially decreasing kernel function by

a kernel function with more than one maxima (Theorem 1.4.1, Corollary 1.4.11).

The COGARCH model resembles the GCIR models only in the sense that heavy

tails occur, although the driving process can be very light tailed; the difference being

that the COGARCH model always has heavy tails. There is no obvious relationship

between the tail behavior of the stationary r. v. V0 and L1; the heavy tails occur by

the very intrinsic dependence structure of the model.

With respect to volatility clusters, only regularly varying OU processes and COG-

ARCH processes exhibit volatility clusters on high levels, which can be described

quite precisely by the distribution of the cluster sizes; see Corollary 3.2.5 and The-

orem 3.3.5.

In this chapter we have refrained from discussing another important stylized fact

of empirical volatility: it exhibits often long memory in the sense that the autoco-

variance function decreases very slowly. This phenomenon can have various reasons,

as for instance discussed in Mikosch and Stărică [113]. On the other hand, it is an

important fact, which should not be completely ignored. All models presented in this

chapter have an exponentially decreasing covariance functions, which only exhibit

some visual long memory, when the process is close to non-stationarity.
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For diffusion models like the GCIR models, a remedy, which introduces long range

dependence in such models, is to replace the driving Brownian motion by a fractional

Brownian motion. This generates a new class of stationary long memory models.

Such models have been suggested and analyzed in [41,40].

For the OU process the exponentially decreasing covariance function is due to the

exponential kernel function; see (3.2.2). The often observed long-range dependence

effect in the empirical volatility cannot be modelled this way. There are two ways

to introduce long memory into such models. The first one is to replace the expo-

nential kernel function by a hyperbolic kernel function of the form f(x) ∼ |x|−β for

|x| → ∞ and some β ∈ (0.5, 1). This introduces long memory into the model. This

can be modelled by the regularly varying Lévy driven MA processes of Chapter 2.

The second method has been suggested by Barndorff-Nielsen and Shephard [14]:

a superposition of several regularly varying Lévy-OU processes also creates long

memory; Example 2.5.8 shows that they also exhibit volatility clusters.
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Appendix

A.1 Basic notation and definition

In this Appendix we summarize some definitions and concepts used throughout the

thesis.

For details and further references see Embrechts et al. [60].

Definition A.1.1

A positive measurable function u : R → R+ is regularly varying with index α,

denoted by u ∈ Rα for α ∈ R, if

lim
t→∞

u(tx)

u(t)
= xα for x > 0 .

The function u is said to be slowly varying if α = 0, and rapidly varying, denoted

by u ∈ R−∞, if the above limit is equal to 0 for x > 1 and to ∞ for 0 < x < 1.

Definition A.1.2

A d. f. F belongs to the class L(γ), γ ≥ 0 if for every y ∈ R,

lim
x→∞

F (x− y)/F (x) = eγy .

The class L(γ) is related to the class R−γ by the fact that

F ∈ L(γ) if and only if F ◦ log ∈ R−γ.
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Thus the convergence of F (x − y)/F (x) in Definition A.1.2 is uniform on compact

y-intervals. For an excellent monograph on regular variation we refer to Bingham et

al. [29].

Applying Karamata’s representation for regularly varying functions to the class L(γ)

we obtain for F ∈ L(γ), γ ≥ 0, the representation

F (x) = c(x) exp

[
−

∫ x

0

1

a(y)
dy

]
for x > 0, (A.1.1)

where a, c : R+ → R+ and limx→∞ c(x) = c > 0 and a is absolutely continuous with

limx→∞ a(x) = 1/γ and limx→∞ a′(x) = 0.

Definition A.1.3 (Convolution equivalent distributions)

Let γ ≥ 0 and X have d. f. F . We say that F or X belongs to the class S(γ), if the

following properties hold.

(i) F ∈ L(γ),

(ii) lim
x→∞

F ∗2(x)

F (x)
= 2f̂(γ) <∞ ,

where f̂(γ) = EeγX is the moment generating function ofX at γ. The class S := S(0)

is called the class of subexponential distributions.

Theorem A.1.4

(i) Let F be infinitely divisible with Lévy measure ν and γ ≥ 0. Then

F ∈ S(γ) ⇔ ν (1, ·] /ν(1,∞) ∈ S(γ) ⇔ lim
x→∞

F (x)/ν(x,∞) = f̂(γ) .

(ii) Suppose F ∈ S(γ), limx→∞ Fi(x)/F (x) = qi ≥ 0 and f̂i(γ) < ∞ for i = 1, 2.

Then

lim
x→∞

F1 ∗ F2(x)

F (x)
= q1f̂2(γ) + q2f̂1(γ).

If qi > 0 for some i ∈ {1, 2}, then also Fi, F1 ∗ F2 ∈ S(γ).

(iii) Let N be a Poisson r. v. with mean µ and (Xk)k∈N be an i. i. d. sequence with

d. f. F ∈ S(γ). The r. v. Y =
∑N

k=1Xk has d. f. G = e−µ
∑∞

n=0
µn

n!
F ∗n. Then

G ∈ S(γ) and

G(x) ∼ µf̂(γ)F (x) for x→ ∞.
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The following is the fundamental theorem in extreme value theory.

Theorem A.1.5 (Fisher-Tippett Theorem)

Suppose we can find sequences of real numbers an > 0 and bn ∈ R such that

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = lim

n→∞
F n(anx+ bn) = G(x) for x ∈ R , (A.1.2)

for some non-degenerate d. f. G (we say F is in the maximum domain of attraction

of G and write F ∈ MDA(G)). Then there are a > 0, b ∈ R such that x 7→ G(ax+b)

is one of the following three extreme value d. f. s:

• Fréchet Φα(x) =

{
0, x ≤ 0,

exp (−x−α) , x > 0,
for α > 0.

• Gumbel Λ(x) = exp (−e−x) , x ∈ R .

• Weibull Ψα(x) =

{
exp (− (−x)α) , x ≤ 0,

1, x > 0,
for α > 0 .

We summarize some well-known facts related to domains of attraction.

Proposition A.1.6

(a) The following Poisson characterization holds: F ∈ MDA(G) if and only if

an > 0, bn ∈ R exist such that

lim
n→∞

nF (anx+ bn) = − logG(x) for x ∈ R. (A.1.3)

(b) If F ∈ L(γ) for γ > 0, then F ∈ MDA(Λ) with an → 1/γ as n → ∞ and

ebn ∈ R1/γ .

(c) If F ∈ S ∩ MDA(Λ), then bn → ∞, an → ∞ and bn/an → ∞ as n→ ∞.

(d) If F ∈ MDA(Φα) = R−α for α > 0, then bn = 0, an ∈ R1/α and an → ∞ as

n→ ∞.

The following concept has proved useful in comparing tails.

Definition A.1.7 (Tail-equivalence)

Two d. f. s F and G (or two measures µ and ν) are called tail-equivalent if both have

support unbounded to the right and there exists some c > 0 such that

lim
x→∞

F (x)/G(x) = c or lim
x→∞

ν(x,∞)/µ(x,∞) = c .
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Important in the context of our chapter is that all the following classes are closed

with respect to tail-equivalence: MDA(G) for G ∈ {Φα, α > 0,Λ}, R−α for

α ∈ [0,∞), L(γ) for γ ≥ 0, S(γ) for γ ≥ 0. Moreover, for two tail-equivalent

d. f. s in some MDA(G) one can choose the same norming constants.

Definition A.1.8 (Poisson random measure)

Let (A,A, ϑ) be a measurable space, where ϑ is σ-finite, and (Ω,F ,P) be a probabil-

ity space. A Poisson random measure N with mean measure ϑ, denoted by PRM(ϑ),

is a collection of r. v. s (N(A))A∈A with N(∅) = 0, such that:

(a) Given any sequence (An)n∈N of mutually disjoint sets in A:

N
(⋃

n∈NAn

)
=
∑

n∈NN(An) a.s..

(b) N(A) is Poisson distributed with mean ϑ(A) for every A ∈ A.

(c) For mutually disjoint sets A1, . . . , An ∈ A, n ∈ N, the r. v. s N(A1), . . . , N(An)

are independent.

Definition A.1.9 (Extremal index)

Let X = (Xn)n∈Z be a strictly stationary sequence and θ ≥ 0. If for every τ > 0

there exists a sequence un(τ) with

lim
n→∞

nP(X1 > un(τ)) = τ and lim
n→∞

P( max
k=1,...,n

Xk ≤ un(τ)) = e−θτ ,

then θ is called the extremal index of X and has value in [0, 1].

Theorem A.1.10 (Potter’s Theorem, Bingham et al. [29], Theorem 1.5.6)

(i) If l is slowly varying then for any chosen constants A > 1, δ > 0 there exists

a X(δ, A) such that

l(y)/l(x) ≤ Amax{(y/x)δ, (y/x)−δ} for x, y ≥ X(δ, A).

(ii) If, further, l is bounded away from 0 and ∞ on every compact subset of [0,∞),

then for every δ > 0 there exists an A(δ) > 1 such that

l(y)/l(x) ≤ A(δ) max{(y/x)δ, (y/x)−δ} for x, y > 0.

(iii) If f is regularly varying of index α then for any chosen A > 1, δ > 0 there

exists an X(A, δ) such that

f(y)/f(x) ≤ Amax{(y/x)α+δ, (y/x)α−δ} for x, y ≥ X(δ, A).

(iv) If, further, f is regularly varying of index α and bounded away from 0 and

∞ on every compact subset of [0,∞), then for every δ > 0 there exists an

A(δ) > 1 such that

f(y)/f(x) ≤ A(δ) max{(y/x)α+δ, (y/x)α−δ} for x, y > 0.
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A.2 Stationary solution of a random recurrence

equation

The following result is the central result for proving stationarity and the tail behavior

of a stochastic process defined by a random recurrence equation.

Theorem A.2.1 (Vervaat [142], Goldie [69], Theorem 4.1, Lemma 2.2)

Let (Yk)k∈N be a stochastic process defined by Yk = AkYk−1+Bk, where ((Ak, Bk))k∈N,

(A,B) are i. i. d. sequences. Assume that the following conditions are satisfied:

(i) The law of log |A|, given |A| 6= 0, is not concentrated on a lattice −∞∩ rZ for

any r > 0.

(ii) E|A|α = 1.

(iii) E|A|α log+ |A| <∞.

(iv) E|B|α <∞.

Then the equation Y∞
d
= AY∞ + B, where Y∞ is independent of (A,B), has the

solution unique in distribution

Y∞
d
=

∞∑

m=1

Bm

m∏

k=1

Ak.

The process (Yk)k∈N with Y0
d
= Y∞ is stationary and has tails

P(Y∞ > x) ∼
E [((AY∞ +B)+)α − ((AY∞)+)α]

αE|A|α log+ |A|
x−α for x→ ∞ .

A.3 The conditions Dr(un) and D′(un)

Classical results for the extremal behavior of weakly stationary sequences are based

on two conditions: the first one is a specific type of asymptotic dependence, and the

second is an anti-clustering condition.

Definition A.3.1

Let X = (Xn)n∈N be a strictly stationary sequence, such that for m = 1, . . . , r,

the sequences of constants (u
(m)
n )n∈N and (un)n∈N satisfies lim

n→∞
nF (u

(m)
n ) = τ (m) and

lim
n→∞

nF (un) = τ .
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(a) For any integers p, q and n let

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n

such that j1 − ip ≥ l and vn = (v
(1)
n , . . . , v

(p)
n ), wn = (w

(1)
n , . . . , w

(q)
n ) with

v
(l)
n , w

(s)
n ∈ {u

(1)
n , . . . , u

(r)
n }. Write I = {i1, . . . , ip}, J = {j1, . . . , jq}, XI =

(Xi1 , . . . , Xip) and XJ = (Xj1 , . . . , Xjq). If for each choice of indices I, J

|P (XI ≤ vn,XJ ≤ wn) − P (XI ≤ vn) P (XJ ≤ wn)| ≤ αn,l,

where αn,ln → 0 as n → ∞ for some sequence ln = o(n), then X satisfies the

condition Dr(un).

(b) X satisfies the condition D′(un), if

lim
k→∞

lim sup
n→∞

n

bn/kc∑

j=2

P(X1 > un , Xj > un) = 0 .

We show that (Ṽk)k∈Z satisfies the Dr(un) and D′(un) conditions. The result is an

analogon for discrete-time MA processes given in Rootzén [131], Lemma 3.2.

Lemma A.3.2

Let V be a stationary version of the Lévy-OU process given by (3.2.5) with L a

positive, compound Poisson process as in (3.2.4).

(a) Assume Ṽk = VΓk/λ + e−Γkξ0 ∈ L(γ), γ > 0, such that for an > 0, bn ∈ R and

un = anx+ bn,

lim
n→∞

nP(Ṽk > un) = e−x for x ∈ R. (A.3.1)

For r ∈ N and x = (x1, . . . , xr) let un = (anx1 + bn, . . . , anxr + bn). Then

(Ṽk)k∈N satisfies the Dr(un) and D′(un) conditions.

(b) Let L1 be in S(γ), γ > 0. Define Mk = sup(k−1)h≤t≤kh Vt for h > 0, k ∈ N.

Suppose M1 ∈ L(γ) such that for an > 0, bn ∈ R and un = anx+ bn,

lim
n→∞

nP(Mk > un) = e−x for x ∈ R. (A.3.2)

For r ∈ N and x = (x1, . . . , xr) let un = (anx1 + bn, . . . , anxr + bn). Then

(Mk)k∈N satisfies the Dr(un) and D′(un) conditions.
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Proof.

(a) To show the Dr(un) condition, let u
(m)
n = anxm + bn, xm ∈ R, m = 1, . . . , r.

Let vn = (v
(1)
n , . . . , v

(p)
n ), wn = (w

(1)
n , . . . , w

(q)
n ) with v

(l)
n , w

(s)
n ∈ {u

(1)
n , . . . , u

(r)
n }. Let

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n. Define V n
k =

∑k
j=k−n e−(Γk−Γj)ξj for

k, n ∈ N, VI = (Ṽi1 , . . . , Ṽip), Vn
I = (V n

i1
, . . . , V n

ip ), and similarly VJ = (Ṽj1 , . . . , Ṽjq),

Vn
J = (V n

j1
, . . . , V n

jq
). Then (V n

k )k∈Z is stationary and V
bnδc
I is independent of V

bnδc
J

for j1 − ip > bnδc, δ > 0. Since P(ξk < 0) = 0, we obtain Vn
I ≤ VI . Here,

x = (x1, . . . , xp) ≤ y = (y1, . . . , yp) means that xi ≤ yi for all i = 1, . . . , p. It

now follows that for any ε > 0,

P (VI ≤ vn,VJ ≤ wn) ≤ P

(
V

bnδc
I ≤ vn,V

bnδc
J ≤ wn

)

= P

(
V

bnδc
I ≤ vn

)
P

(
V

bnδc
J ≤ wn

)

≤ P (VI ≤ vn + ε(an, . . . , an)) P (VJ ≤ wn + ε(an, . . . , an))

+nP

(
|Ṽ1 − V

bnδc
1 | > εan

)

≤ P (VI ≤ vn) P (VJ ≤ wn) + nP

(
|Ṽ1 − V

bnδc
1 | > εan

)

+
r∑

m=1

nP(u(m)
n ≤ Ṽ1 ≤ u(m)

n + εan).

Similarly, we can find a lower bound, such that for j1 − ip > bnδc,

αn,bnδc := |P (VI ≤ vn,VJ ≤ wn) − P (VI ≤ vn) P (VJ ≤ wn)|

≤ nP(|Ṽ1 − V
bnδc
1 | > εan) +

r∑

m=1

nP(u(m)
n − εan ≤ Ṽ1 ≤ u(m)

n + εan)

=: α̃n,bnδc,ε. (A.3.3)

Let Xi := Γi − Γi−1 − 1/µ, i ∈ N. Then (Xi)i∈N is a centered i. i. d. sequence such

that
∑n

i=1Xi = Γn − n/µ. It follows that there exists a constant K > 0, such that

for every n ∈ N,

E(Γn − n/µ)6 = nEX6
1 +

(n
3

)(6

2

)(
4

2

)
(EX2

1 )3

+
(n

2

)(6

3

)
(EX3

1 )2 +
(n

2

)(6

2

)
(EX2

1 )(EX4
1 )

≤ n3K.

Hence, by Markov’s inequality there is a constant K̃ > 0 such that for all n ∈ N,

P(Γn < n/(2µ)) ≤ P(|Γn − n/µ| > n/(2µ)) ≤ (2µ/n)6
E(Γn − n/µ)6 ≤ K̃/n3.(A.3.4)
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Thus we obtain for n ∈ N,

nP(|Ṽ1 − V
bnδc
1 | > εan) = nP


e−Γbnδc

−bnδc−1∑

j=−∞

e(Γbnδc+Γj)ξj > εan




≤ nP

(
e−bnδc/(2µ)Ṽ1 > εan

)
+ K̃/n2. (A.3.5)

Note, that the first exponential moment of γβe−bnδc/(2µ)Ṽ1 exists for

βe−bnδc/(2µ) < 1. Choose βn = 2/(ε(1 − ε)) log n. There exists n0 = n0(δ, ε) ∈ N

such that βne−bnδc/(2µ) < (1− ε) and an ≥ (1− ε)/γ for n ≥ n0. The first term of the

right hand side of (A.3.5) is by Markov’s inequality for n ≥ n0 bounded above by

nE exp
[
βnγ

(
e−bδnc/(2µ)Ṽ1

)]
e−βnεγan ≤ nE exp

[
(1 − ε)γṼ1

]
e−2 log n, (A.3.6)

which converges to 0 as n → ∞. Together with (A.3.1), (A.3.3) and (A.3.5) this

gives

lim
n→∞

α̃n,bnδc,ε =
r∑

m=1

[e−(xm−ε) − e−(xm+ε)],

so that

lim
n→∞

αn,bnδc ≤ lim
ε↓0

lim
n→∞

α̃n,bnδc,ε = 0,

which implies the Dr(un) condition by Lemma 3.2.1 in Leadbetter et al. [95].

To show the D′(un) condition, let ε > 0. Then there exists an x0 > 0 such that

P(Γ2−Γ1 < x0) = ε. Since (Γi+1−Γi)i∈N is a positive i. i. d. sequence, it follows that

P(Γj − Γ1 < x0) ≤ P(Γj − Γj−1 < x0, . . . ,Γ2 − Γ1 < x0) = εj−1, j ≥ 2.

Now choose β such that 1/2 < β < (1 + e−x0)−1 and δ > 0 such that 1 + δ < 2β.

Then, for any k, n ∈ N,

bn/kc∑

j=2

P(Ṽ1 > un, Ṽj > un) =

bnδc∑

j=2

P(Ṽ1 > un, Ṽj > un) +

bn/kc∑

j=bnδc+1

P(Ṽ1 > un, Ṽj > un).(A.3.7)

We first show that the first summand, when multiplied by n, tends to 0 as n→ ∞.

Note that by the independence of Ṽ1 and Γj − Γ1,

P(Ṽ1 > un, Ṽj > un) ≤ εj−1
P(Ṽ1 > un) + P(Ṽ1 + Ṽj > 2un,Γj − Γ1 ≥ x0). (A.3.8)
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Let Ṽ ′
1 be an independent copy of Ṽ1. Then

P

(
Ṽ1 + Ṽj > 2un,Γj − Γ1 ≥ x0

)

= P

(
(1 + e−(Γj−Γ1))Ṽ1 +

j∑

k=2

e−(Γj−Γk)ξk > 2un,Γj − Γ1 ≥ x0

)

≤ P

(
(1 + e−x0)Ṽ1 +

j∑

k=2

e−(Γj−Γk)ξk > 2un

)

≤ P

(
(1 + e−x0)Ṽ1 + Ṽ ′

1 > 2un

)
. (A.3.9)

Since the first exponential moment of βγ((1+e−x0)Ṽ1 + Ṽ ′
1) exists if β(1+e−x0) < 1,

the last expression is bounded above by

E exp
[
βγ((1 + e−x0)Ṽ1 + Ṽ ′

1)
]
e−2βγun (A.3.10)

by the Markov inequality. Since
(
n 7→ e−2βγun

)
∈ R−2β for fixed x, it follows that(

n 7→ n1+δe−2βγun
)
∈ R(1+δ)−2β, where 1 + δ − 2β < 0. We then obtain by (A.3.1),

(A.3.8)-(A.3.10) and Bingham et al. [29], Proposition 1.5.1, that

n

bnδc∑

j=2

P(Ṽ1 > un, Ṽj > un) (A.3.11)

≤ nP(Ṽ1 > un)

bnδc∑

j=2

εj−1 + E[βγ((1 + e−x0)Ṽ1 + Ṽ ′
1)]n

1+δe−2βγun

n→∞
−→ e−x ε

1 − ε
.

For the second term in (A.3.7), using the independence of V
bnδc
j and V

bnδc
1 for

j > bnδc, we obtain

n

bn/kc∑

j=bnδc+1

P(Ṽ1 > un, Ṽj > un)

≤ n

bn/kc∑

j=bnδc+1

P(V
bnδc
1 > un − ε an, V

bnδc
j > un − ε an) + 2n2

P(|Ṽ1 − V
bnδc
1 | > ε an)

= n

bn/kc∑

j=bnδc+1

P(V
bnδc
1 > un − ε an)P(V

bnδc
j > un − ε an) + 2n2

P(|Ṽ1 − V
bnδc
1 | > ε an)

≤ (n2/k) P(Ṽ1 > un − ε an)2 + 2n2
P(|Ṽ1 − V

bnδc
1 | > ε an). (A.3.12)
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Analogously to (A.3.5) and (A.3.6), with βn = 3/(ε(1 − ε)) log n, we have

n2
P(|Ṽ1 − V

bnδc
1 | > ε an) → 0 as n→ ∞. Using (A.3.1), we also have

lim
n→∞

(n2/k) P(Ṽ1 > un − ε an)2 = exp(−2(x− ε))/k, (A.3.13)

which converges to 0 as k → ∞. Then by (A.3.7), (A.3.11)-(A.3.13), and letting

ε ↓ 0, the D′(un) condition holds.

(b) To prove condition Dr(un), we replace V n
k in (a) by

Mn
k := sup

(k−1)h≤t≤kh

∫ t

t−nh

e−λ(t−s) dLλs.

We then obtain an analogue result to (A.3.3). Further, since

|Mk −Mn
k | ≤ sup

(k−1)h≤t≤kh

∫ t−nh

−∞

e−λ(t−s) dLλs

d
= e−λnh sup

(k−1)h≤t≤kh

∫ t

−∞

e−λ(t−s) dLλs = e−λnhMk,

we obtain for any δ > 0 that

nP(|Mk −M
bnδc
k | > ε an) ≤ nP(e−λbnδchMk > ε an). (A.3.14)

Since the first exponential moment of βγe−λbnδchMk exists for βe−λbnδch < 1, similar

reasoning as in (A.3.5) and (A.3.6) shows that limn→∞ nP(|Mk−M
bnδc
k | > ε an) = 0.

As in the proof of (a) we then conclude that the Dr(un) condition holds.

For the proof of the D′(un) condition we use

Mk ≤

∫ ∞

−∞

sup
(k−1)h≤t≤kh

e−λ(t−s) 1(−∞,t](s) dLλs

= Lλkh − Lλ(k−1)h +

∫ (k−1)h

−∞

e−λ((k−1)h−s) dLλs =: V k.
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Let j ≥ 3. Then we have the upper bound

V j = Lλjh − Lλ(j−1)h + e−λ(j−1)h

∫ 0

−∞

eλs dLλs

+e−λ(j−2)h

∫ h

0

e−λ(h−s) dLλs +

∫ (j−1)h

h

e−λ((j−1)h−s) dLλs

≤ Lλjh − Lλ(j−1)h + e−λ(j−2)h

∫ 0

−∞

eλs dLλs

+e−λ(j−2)hLλh +

∫ (j−1)h

h

e−λ((j−1)h−s) dLλs

≤ Lλjh − Lλ(j−1)h + e−λhV 1 +

∫ (j−1)h

h

e−λ((j−1)h−s) dLλs.

Let V
′

1 be an independent copy of V 1. Then

n

bnδc∑

j=3

P(M1 > un,Mj > un) ≤ n

bnδc∑

j=3

P(V 1 > un, V j > un) (A.3.15)

≤ n

bnδc∑

j=3

P(V 1 + V j > 2un)

≤ n1+δ
P((1 + e−λh)V 1 + V

′

1 > 2un).

The tail of V 1 behaves by Proposition 3.2.9 (b) and Theorem A.1.4 (ii) like

P(V 1 > x) = P(Lλh + V0 > x) ∼ EeγV0P(Lλh > x) for x→ ∞,

so that V 1 ∈ S(γ). An analogue result to (A.3.10) gives

lim
n→∞

n1+δ
P((1 + e−λh)V 1 + V

′

1 > 2un) = 0,

and, arguing similarly as in (A.3.12) and (A.3.13), we obtain

lim
k→∞

lim sup
n→∞

n

bn/kc∑

j=3

P(M1 > un,Mj > un) = 0.

It remains to show that

lim
n→∞

nP(M1 > un,M2 > un) = 0. (A.3.16)

Note that

P(M1 > un) = P(M1 > un, Nλh > 0) + P(M1 > un, Nλh = 0)

≥ P(VΓ1/λ > un, Nλh > 0)

≥ P(ξ1 > un)P(Nλh > 0),
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so that

nP(M1 > un,M2 > un) ≤
nP(M1 > un)

P(Nλh > 0)

P(M1 > un,M2 > un)

P(ξ1 > un)
. (A.3.17)

Furthermore, we have the upper bound

P(M1 > un,M2 > un) ≤ P(V 1 + V 2 > 2un)

≤ P

(
L2λh − Lλh

2
+

1 + e−λh

2

∫ 0

−∞

eλs dLλs +
1

2

∫ h

0

(1 + e−λh+λs) dLλs > un

)
.

The three summands are independent, and we shall show that for each of them the

probability to be greater than un is of order o(P(ξ1 > un)) for n → ∞, so that by

Theorem A.1.4 (ii) (analog to Proposition 1.1.2 (iii))

lim
n→∞

P(M1 > un,M2 > un)/P(ξ1 > un) = 0. (A.3.18)

Equation (A.3.16) and hence condition D′(un) then follow from (A.3.2), (A.3.17)

and (A.3.18).

The rapidly varying tails and Theorem A.1.4 (i) give

lim
x→∞

P(L2λh − Lλh > 2x)

P(ξ1 > x)
= lim

x→∞
µ

P(Lλh > x)

ν(x,∞)

P(Lλh > 2x)

P(Lλh > x)
= 0,

which is the assertion for the first summand. Further, also by the rapidly varying

tails, Proposition 3.2.9 (b) and Theorem A.1.4 (i),

P

(
(1 + e−λh)

∫ 0

−∞
eλs dLλs > 2x

)

P(ξ1 > x)
=

P
(
(1 + e−λh)V0 > 2x

)

P(V0 > x)

µP(V0 > x)

ν(x,∞)

x→∞
−→ 0.

For the last summand we use that

X :=

∫ h

0

(1 + e−λh eλs) dLλs
d
=

Nλh∑

i=1

(1 + e−λheλhUi)ξi
d
=

Nλh∑

i=1

(1 + e−λhUi)ξi,

where (Ui)i∈N, U are i. i. d. uniform on (0, 1) and independent of L (cf. Lemma 1.3.2).

From Theorem A.1.4 (iii) then follows

P

(∫ h

0
(1 + e−λs) dLλs > 2x

)

P(ξ1 > x)
∼ µλhEeγX P

(
ξ1(1 + e−λhU)/2 > x

)

P(ξ1 > x)

x→∞
−→ 0.

�



A.4 Auxiliary results 195

A.4 Auxiliary results

Lemma A.4.1

Let Y with Y (t) =
∑∞

k=−∞ f(Rk, t− Γk)Zk for t ∈ R be a stationary mixed Poisson

shot noise process satisfying the condition (M1) and the sequence 0 < an ↑ ∞ of

constants is given by (2.0.8). Then

lim
m→∞

lim
n→∞

nP



∣∣∣∣∣∣

∑

|k|>m

f(Rk,Γk)Zk

∣∣∣∣∣∣
> anx


 = 0.

Proof.

Let l > 0 be fixed. Define Ω = R+ × R, Ω(l) = {(r, s) ∈ R+ × R : |s| > l} and

fl(r, t) = f(r, t)1[−l,l](t) for t ∈ R, r ∈ R+. We decompose the probability

P



∣∣∣∣∣∣

∑

|k|>m

f(Rk,Γk)Zk

∣∣∣∣∣∣
> 3anx


 ≤ P

(∣∣∣∣
∫

Ω(l)

f(r, s) dΛ1(r, s)

∣∣∣∣ > anx

)

+P

(∣∣∣∣∣

∫

Ω\Ω(l)

f(r, s) dΛ1(r, s) −
m∑

k=−m

fl(Rk,Γk)Zk

∣∣∣∣∣ > anx

)

+P

(∣∣∣∣∣

m∑

k=−m

fl(Rk,Γk)Zk −
m∑

k=−m

f(Rk,Γk)Zk

∣∣∣∣∣ > anx

)
. (A.4.1)

Step 1. For the first summand of (A.4.1) we obtain by an application of (2.2.14)

lim
n→∞

nP

(∣∣∣∣
∫

Ω(l)

f(r, s) dΛ1(r, s)

∣∣∣∣ > anx

)
= x−α

∫

Ω(l)

|f(r, s)|α π(dr) ds
l→∞
−→ 0. (A.4.2)

Step 2. The second summand of (A.4.1) has the upper bound

P



∣∣∣∣∣∣

∫

Ω\Ω(l)

f(r, s) dΛ1(r, s) −
m∑

k=−m

fl(Rk,Γk)Zk

∣∣∣∣∣∣
> anx




=
∑

i,j≥m+1

P

(∣∣∣∣∣

i∑

k=m+1

f(Rk,Γk)Zk +
−m−1∑

k=−j

f(Rk,Γk)Zk

∣∣∣∣∣ > anx

∣∣∣∣∣N(l) = i, N(−l) = −j

)

×P(N(l) = i, N(−l) = −j)

≤
∞∑

i=m+1

∞∑

j=m+1

P

(
f+

i+j∑

k=1

|Zk| > anx

)
P(N(l) = i)P(N(−l) = −j).
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Regarding (2.10) in Chover et al. [43], for any ε > 0 there exists a K > 0 such that

P

(
f+

i+j∑

k=1

|Zk| > anx

)
≤ P

(
f+|Zk| > anx

)
K(1 + ε)i+j for n, i, j ∈ N.

Applying dominated convergence we obtain

lim
n→∞

nP

(∣∣∣∣∣

∫

Ω\Ω(l)

f(r, s) dΛ1(r, s) −
m∑

k=−m

fl(Rk,Γk)Zk

∣∣∣∣∣ > anx

)
(A.4.3)

≤ x−αK

[
∞∑

i=m+1

(1 + ε)i
P(N(l) = i)

]2

m→∞
−→ 0.

Step 3. Considering the last summand of (A.4.1) we obtain by Lemma 2.1.3

lim
n→∞

nP

(∣∣∣∣∣

m∑

k=−m

f(Rk,Γk)Zk −
m∑

k=−m

fl(Rk,Γk)Zk

∣∣∣∣∣ > anx

)

= x−α

m∑

k=−m

E|f(Rk,Γk) − fl(Rk,Γk)|
α

m→∞
−→ x−α

∞∑

k=−∞

E|f(Rk,Γk) − fl(Rk,Γk)|
α. (A.4.4)

Since E|f(Rk,Γk) − fl(Rk,Γk)|
α ≤ E|f(Rk,Γk)|

α dominated convergence yields

∞∑

k=−∞

E|f(Rk,Γk) − fl(Rk,Γk)|
α−→0 for l → ∞. (A.4.5)

Thus we get by (A.4.4) and (A.4.5)

lim
l→∞

lim
m→∞

lim
n→∞

nP

(∣∣∣∣∣

m∑

k=−m

f(Rk,Γk)Zk −
m∑

k=−m

fl(Rk,Γk)Zk

∣∣∣∣∣ > anx

)
= 0. (A.4.6)

Hence, by (A.4.1)-(A.4.3) and (A.4.6) the result follows. �
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Lemma A.4.2

Let either of the following two conditions hold:

(a) Let Y be a stationary mixed MA process given by (2.0.1) satisfying condition

(M2). Moreover, Y has decomposition Y = Y1 + Y2 as given in (2.0.6) with

Y1(t) =
∑∞

k=−∞ f(Rk, t− Γk)Zk for t ∈ R.

(b) Let Y be a stationary renewal shot noise process given by (2.3.1) satisfying

condition (R2) such that Y (t) =
∑∞

k=−∞ f(t− Γk)Zk for t ∈ R.

Then the sequence 0 < an ↑ ∞ of constants satisfies

nP(a−1
n Z1 ∈ ·)

υ
=⇒ 1/µσ(·) on B(R\{0}), (A.4.7)

where σ(dx) = pαx−α−1 1(0,∞)(x) dx+ (1 − p)α(−x)−α−1 1(−∞,0)(x) dx for some p ∈

(0, 1]. For some η ∈ R define

Ik = [η + (Γk−1 + Γk)/2, η + (Γk + Γk+1)/2) for k ∈ N.

If (1 − p)f− > 0 assume furthermore there exist independent sequences of i. i. d.

positive r. v. s {Z(s)
k }k∈Z for s = 1, 2, such that Zk = Z

(1)
k − Z

(2)
k ,

P(Zk > x) ∼ P(Z
(1)
k > x) and P(Zk < x) ∼ P(Z

(2)
k > x) for x→ ∞.

In the case (1 − p)f− = 0 define Z
(1)
k = Zk and Z

(2)
k = 0. For k ∈ Z let be

Y
(1)
k =

∞∑
j=−∞

sup
h∈Ik

{f(h− Γj)}Z
(1)
j , Y

(2)
k =

∞∑
j=−∞

sup
h∈Ik

{−f(h− Γj)}Z
(2)
j .

Then holds for x > 0:

(i) lim
n→∞

nP

(
sup
h∈Ik

Y (h) ≤ an(x− ε), Y
(1)
k + Y

(2)
k > an(x+ ε)

)
= 0.

(ii) lim
n→∞

nP

(
sup
h∈Ik

Y (h) > an(x+ ε), Y
(1)
k + Y

(2)
k ≤ an(x− ε)

)
= 0.

Proof.

Define Yk = suph∈Ik

∑∞
j=−∞ f(h− Γj)Zj for k ∈ Z. First we show for x > 0

lim
n→∞

nP

(
Yk ≤ an(x− ε), Y

(1)
k + Y

(2)
k > an(x+ ε)

)
= 0. (A.4.8)
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We define

ψ2j−1 = suph∈Ik
{f(Rj, h− Γj)}, ψ2j = suph∈Ik

{−f(Rj, h− Γj)},

ψ̃2j−1(t) = f(Rj, t− Γj), ψ̃2j(t) = −f(Rj, t− Γj),

Z̃2j−1 = Z
(1)
j , Z̃2j = Z

(2)
j for j ∈ Z. Let x > 0 be fixed. We have the inequality

nP

(
∞∑

j=−∞

ψjZ̃j > an(x+ 2ε), sup
h∈Ik

∞∑

j=−∞

ψ̃j(h)Z̃j ≤ an(x− 2ε)

)

≤ nP


∑

|j|>m

ψ2j−1Z
(1)
j > anε/2


+ nP


∑

|j|>m

ψ2jZ
(2)
j > anε/2




+nP


sup

h∈Ik

∑

j>2m
j<−2m−1

ψ̃j(h)Z̃j < −anε


 (A.4.9)

+nP

(
2m∑

j=−2m−1

ψjZ̃j > an(x+ ε), sup
h∈Ik

2m∑

j=−2m−1

ψ̃j(h)Z̃j ≤ an(x− ε)

)
.

The first three summands tend to 0 as n,m → ∞ by Lemma A.4.1, where for the

third summand we used additionally

∑

j>2m
j<−2m−1

ψ̃j(Γk)Z̃j ≤ sup
h∈Ik

∑

j>2m
j<−2m−1

ψ̃j(h)Z̃j.

We shall show that also the last summand of (A.4.9) tends to 0 as n tends to ∞.

Note first that ψ̃l(hk) = ψl for some hk in the closure of Ik, and |ψ̃j(h)| ≤ f+ for

every h ∈ R. Then

P

(
2m∨

l=−2m−1

ψlZ̃l > anx, sup
h∈Ik

2m∑

j=−2m−1

ψ̃j(h)Z̃j ≤ an(x− ε)

)
(A.4.10)

≤
2m∑

l=−2m−1

P


ψlZ̃l > anx,

2m∑

j=−2m−1
j 6=l

ψ̃j(hk)Z̃j + ψlZ̃l ≤ an(x− ε)




≤
2m∑

l=−2m−1

P


ψlZ̃l > anx,

2m∑

j=−2m−1
j 6=l

−f+|Z̃j| < −anε




≤
2m∑

l=−2m−1

P

(
f+|Z̃l| > anx

)
P




2m∑

j=−2m−1
j 6=l

f+|Z̃j| > εan


 ,
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where the last inequality follows by independence of Z̃. We conclude by (A.4.7) and

(A.4.10)

lim
n→∞

nP

(
2m∨

l=−2m−1

ψlZ̃l > anx, sup
h∈Ik

2m∑

j=−2m−1

ψ̃j(h)Z̃j ≤ an(x− ε)

)
= 0. (A.4.11)

Moreover, since |ψj| ≤ f+ for j ∈ Z,

P

(
2m∨

l=−2m−1

ψlZ̃l ≤ anx,
2m∑

j=−2m−1

ψjZ̃j > an(x+ ε)

)

≤
2m∑

l=−2m−1

P




2m∑

j=−2m−1
j 6=k

min{ψjZ̃j, ψlZ̃l} > anε




≤
2m∑

l=−2m−1

P


f+

2m∑

j=−2m−1
j 6=l

min{|Z̃j|, |Z̃l|} > anε


 . (A.4.12)

By the independence of Z̃j and Z̃k the r. h. s. is bounded above by

2m∑

l=−2m−1

2m∑

j=−2m−1
j 6=l

P

(
|Z̃j| >

anε

4m+ 2

)
P

(
|Z̃l| >

anε

4m+ 2

)
= o

(
1

n

)
(A.4.13)

for n→ ∞, where we used (A.4.7). Then (A.4.8) follows from (A.4.9)-(A.4.13).

Let Y2(t) =
∫

R×R+
f(t − s) dΛ2(r, s) and M (2)(h) = sup0≤t≤h |Y2(t)|. The sequence

Mk = supk−1≤t≤k |Y2(t)| is stationary, such that for x ≥ 0,

P(M (2)(h) > x) ≤ P




dhe⋃

k=1

{Mk > x}


 ≤ (h+ 1)P(M (2)(1) > x).

Denote by FΓ the d. f. of Γ1. Then we have an uniform bound:

P(M (2)(Γ) > x)

P(M (2)(1) > x)
=

∫ ∞

0

P(M (2)(h) > x)

P(M (2)(1) > x)
FΓ(dh)≤

∫ ∞

0

(h+ 1)FΓ(dh)=
1

µ
+ 1 (A.4.14)

for all x > 0. Taking (1.3.15) into account there exists a C > 0, such that

P( sup
0≤t≤1

|Y2(t)| > x) ≤ Ce−x for x > 0. (A.4.15)
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Note that (1.3.15) holds also for mixed MA processes, since the Lévy measure of

Y2(t) has bounded support. By the independence of Γ and Λ2 we obtain by (A.4.14)

and (A.4.15)

nP

(
sup
t∈Ik

|Y2(t)| > anε

)
≤ 2nC (1/µ+ 1) e−anε n→∞

−→ 0. (A.4.16)

Using decomposition (2.0.4) we have

Yk − sup
t∈Ik

(−Y2(t)) ≤ sup
t∈Ik

Y (t) ≤ Yk + sup
t∈Ik

Y2(t). (A.4.17)

For the proof of (i) we apply (A.4.8), (A.4.16) and (A.4.17) such that

nP

(
sup
t∈Ik

Y (t) ≤ an(x− ε), Y
(1)
k + Y

(2)
k > an(x+ ε)

)

≤ nP

(
sup
t∈Ik

|Y2(t)|> anε

)
+ nP

(
Yk ≤ anx, Y

(1)
k + Y

(2)
k > an(x+ ε)

)
n→∞
−→ 0.

In (ii) we have by (A.4.17)

nP

(
sup
t∈Ik

Y (t) > an(x+ ε), Y
(1)
k + Y

(2)
k ≤ an(x− ε)

)

≤ nP

(
sup
t∈Ik

|Y2(t)| > anε

)
+ nP(Y

(1)
k + Y

(2)
k ≤ an(x− ε), Yk > anx). (A.4.18)

In the case (1−p)f+ > 0 the second summand of (A.4.18) is 0, such that by (A.4.16)

statement (ii) holds. In the case (1−p)f+ = 0 we have with g as in (2.0.12), (2.3.20),

respectively,

P(Y
(1)
k ≤ an(x− ε), Yk > anx) ≤ P

(
∞∑

k=−∞

g(Γk)Z
−
k > anε

)
= o(1/n) for n→ ∞.

Hence also the second summand of (A.4.18) tends to 0. �
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Notation

The notation follows the usual conventions, nevertheless some standard abbrevia-

tions are gathered in the first table. General mathematical symbols that are used are

presented in the second table. The third table summarizes frequently used quantities

from the text.

Abbreviations

a. s. almost surely

ARMA process autoregressive moving average process

BDLP background driving Lévy process

CARMA process continuous time ARMA process

d. f. distribution function

d. f. s distribution functions

e. g. for example (exempli gratia)

FICARMA process fractional integrated CARMA process

GCIR model generalized Cox-Ingersoll-Ross model

i. d. infinitely divisible

i. d. i. s. r. m. infinitely divisible independently scattered random mea-

sure

i. e. that is (id est)

i. i. d independent identical distributed

LLN law of large numbers

MA process moving average process

OU process Ornstein-Uhlenbeck process

r. h. s. right hand side

r. v. random variable

r. v. s random variables
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216 Notation

SDDE stochastic delay differential equation

SDE stochastic differential equation

supOU superposition of Ornstein-Uhlenbeck processes

w. l. o. g. without loss of generality

General Symbols

A := B A is defined by B

[a, b], (a, b), (a, b] , [a, b) closed, open, half-open interval from a to b

N, N0, Z {1, 2, . . .}, {0, 1, 2, . . .}, {. . . ,−1, 0, 1, . . .}

R, R+, R−, R (−∞,∞), [0,∞) , (−∞, 0] , [−∞,∞]

C complex numbers

<(z), =(z) real part and imaginary of z ∈ C

bxc largest integer smaller or equal to x ∈ R

dxe smallest integer larger or equal to x ∈ R

a ∨ b, a ∧ b maximum, minimum of a and b

a+ a+ = 0 ∨ a

a− a− = 0 ∨ −a

log+(a) log+(a) = log(max{a, 1})

a� b, a ≈ b a is much smaller than, approximately equal to b

|x| Euclidean norm of x ∈ R
d

card(S) cardinality of the set S

supp(f) support of f

A ⊆ B A is contained in B or A = B

∂A boundary of the set A

f ′, f ′′, f (m) first, second, m-fold derivative of f

f |A function f restricted to the set A

1A indicator function of the set A

log, exp natural logarithm, exponential function

P, E, Var, Cov probability, expected value, variance and covariance

0 (0, . . . , 0) ∈ R
d

ej the jth unit vector

xt the transposed of the vector x

‖A‖ row-sum norm of matrix A

εx Dirac measure at x

S
d−1 {x ∈ R

d : |x| = 1}

L
δ space of δ-integrable functions
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L
δ(π) space of functions f : R+ × R → R measurable with∫

R+×R
|f(r, s)|δds π(dr) <∞

C(I) space of continuous functions f : I → R

Cc(I) space of continuous functions f : I → R with compact

support

C1(I) space of continuous differentiable functions f : I → R

D(I) space of function f : I → R, which are right continuous

with left hand limits

S
d−1 unit sphere in R

d

Specific Symbols

X
d
= Y the distribution of X coincides with the distribution of Y

B = {B(t)}t≥0 Brownian motion

D differential operator

F right tail of the distribution function F

F ∗2 convolution F ∗ F of the distribution function F

FZ distribution function of random variable Z
υ

=⇒ vague convergence
w

=⇒ weak convergence
n→∞
=⇒ weak convergence for n→ ∞

Fs collection of bounded non negative step functions with

bounded support on R
d
\{0}

g(t) ∼ h(t) g(t)/h(t)
t→∞
−→ 1∑

εxk
point process

L(γ) class of long tailed distributions

L = {L(t)}t≥0 Lévy process

(m,σ2, ν) generating triplet of a Lévy process

(m,σ2, ν, π) generating quadruple of an i. d. i. s. r. m.

MDA(G) maximum domain of attraction of G

M(T ) M(T ) = sup0≤t≤T Y (t) for a stochastic process {Y (t)}t≥0

Mn Mn = maxk=1,...,nXk for a stochastic process {Xk}k∈N

MP (S) class of integer-valued Radon measures on S

PRM(ϑ) Poisson random measure with mean measure ϑ

R−∞ space of rapidly varying functions

Rα space of regularly varying functions of index α

S class of subexponential distributions
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S(γ) class of convolution equivalent tails

Sα(c, β, τ) α-stable distribution with dispersion c, skewness β and lo-

cation τ

ν(A) Lévy measure of the set A
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