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Zentrum Mathematik

SPHERE COVERINGS, LATTICES, AND TILINGS
(in Low Dimensions)

FRANK VALLENTIN
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2.3. VORONÖI ’s Principal Domain of the First Type . . . . . . . . . . . . . . . . . . 15

2.3.1. Selling Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2. Computation of the Secondary Cone . . . . . . . . . . . . . . . . . . . . 17
2.3.3. SELLING ’s Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . . 18

2.4. Bistellar Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1.

Introduction

The main subject of this thesis is the geometry of low dimensional lattices. We concentrate on
two central problems: the lattice covering problem and the classification of polytopes that tile
space by lattice translates. The lattice covering problem asks for the most economical way to
coverd-dimensional space by equal, overlapping spheres whose centers form a lattice. Let us
look at the two most prominent plane lattices together with their coverings. It is obvious that the
covering which belongs to the square lattice is less economical than the one that belongs to the
hexagonal lattice.

The purpose of this introduction is two-fold. First, we define the rather intuitive notions
we already used. We show how our future main actors, namely Dirichlet-Voronoi polytopes of
lattices, come into the spotlight. Second, we give an outline of the thesis.

1.1. Dirichlet-Voronoi Polytopes

A latticeL is a discrete subgroup of ad-dimensional Euclidean vector space(E, (·, ·)). For any
lattice there are always linearly independent vectorsb1, . . . , bn ∈ L so that they form a lattice
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basis,L = Zb1 ⊕ · · · ⊕ Zbn. In the following we assume for simplicity and without loss of
generality thatn equalsd. The geometry of a lattice is encoded in its Dirichlet-Voronoi polytope.
This is the polytope which contains all those points lying closer to the origin than to all other
lattice points:

DV(L, (·, ·)) = {x ∈ E : for all v ∈ L we havedist(x,0) ≤ dist(x,v)}.

If it is clear which scalar product we are using, we simply writeDV(L).
Dirichlet-Voronoi polytopes are very special polytopes. They tileE by translates of the

form DV(L) + v, v ∈ L, in a face-to-face manner. They and all their facets are centrally
symmetric. If one knows the Dirichlet-Voronoi polytope of a lattice it is easy to determine ge-
ometrical information about the lattice. Its volume is the same as the lattice’s volume, i.e. the
volume of a fundamental parallelotope. A fundamental parallelotope is given by a lattice basis
{
∑

i αibi : αi ∈ [0, 1]}. The Dirichlet-Voronoi polytope’s circumsphere and the insphere give
information about covering respectively about packing properties.

1.2. Sphere Coverings and Sphere Packings

A family of subsetsK = (Ki)i∈I of Rd, I a set of indices, is called acoveringof Rd if each
point of Rd belongs to at least one of the setsKi, i.e.Rd =

⋃
i∈I Ki. A covering ofRd is a

lattice coveringif it is of the form(K+v)v∈L whereL is a lattice. In summary, lattice coverings
are those coverings which coverRd by translated copies of a single bodyK and in addition the
translates are the vectors of a latticeL.

Although the general notion of density is very intuitive, it is not easy to give a good definition
which exhibits all pathological cases (see e.g. [Kup2000]). But since we are interested only in
the case of lattice coverings, pathological cases do not exist and we are fine with the following
quite classical definitions.

LetCd(p, r) = {x ∈ Rd : maxi |xi − pi| ≤ r} = [− r
2 ,

r
2 ]d + p be a cube with side lengthr

centered atp. We say that a collectionK = (Ki)i∈I of subsets ofRd hasdensityρ(K) if the limit

lim
r→∞

∑
i∈I vol(Cd(0, r) ∩Ki)

volCd(0, r)

exists and if it equalsρ(K). Of course, there are cases where the limit does not exist and there are
even cases where the formula does not make any sense. But for lattice coverings(K+v)v∈L with
measurable bodyK there is no such problem as demonstrated in the first chapter of ROGERS’
little book [Rog1964]. There (Theorem 1.6) it is also shown that the density of a lattice covering
K = (K + v)v∈L can be expressed as simple asρ(K) = volK

volL wherevolL is the volume of a
fundamental parallelotope of the latticeL.

In the following we are only considering coverings consisting of solid spheres (balls). By
Bd(p, r) = {x ∈ Rd : dist(x,p) ≤ r} we denote thed-dimensional closed ball with centerp
and radiusr. A latticeL gives always a lattice covering of equal spheres(Bd(v, r))v∈L if the
radiusr is large enough. If we start with a lattice covering(Bd(v, r))v∈L and shrink the spheres
until they finally do not cover the space any more, then the threshold value of the shrinking
radiusr defines the least dense covering of equal spheres with covering latticeL. The threshold
value is called thecovering radiusof L

µ(L) = min{r : (Bd(v, r))v∈L is a lattice covering ofRd}.
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Thecovering densityof the lattice covering given by the latticeL is therefore

Θ(L) =
volBd(0, µ(L))

volL
=
µ(L)d

volL
volBd(0, 1).

More precise:Θ(L) is the density of the least dense lattice covering of equal spheres with cov-

ering latticeL. Sometimes, the normalized covering densityθ(L) = µ(L)d

volL gives nicer numbers
thanΘ(L).

The covering radius of a lattice can be determined geometrically as indicated in the following
picture.

The covering radius is the radius of the circumsphere of the lattice’s Dirichlet-Voronoi poly-
tope, that is the largest distance between the midpoint and the vertices of a Dirichlet-Voronoi
polytope. This requires a little proof. Letr = max{dist(x,0) : x ∈ DV(L)} be the radius
of the circumsphere ofDV(L) and letµ(L) be the covering radius ofL. We haver ≥ µ(L)
because every pointx ∈ Rd lies in a translate of the Dirichlet-Voronoi polytopex ∈ DV(L) +v
for somev ∈ L, thereforeBd(v, r) coversx: Bd(v, r) ⊇ DV(L) + v 3 {x}. We have
r ≤ µ(L) because if we would haver > µ(L) then there would exist a vertexx ∈ DV(L) with
dist(x,0) = r and thenx would not be covered by any of the ballsBd(v, µ(L)), v ∈ L, since
dist(x,v) ≥ dist(x,0) = r > µ(L). Hence,r = µ(L).

Now we are ready to define the lattice covering problem.

Definition 1.2.1. (Lattice Covering Problem)

Given: Dimensiond

Find: The valueΘd = min{Θ(L) : L is ad-dimensional lattice} together
with ad-dimensional latticeL with Θd = Θ(L).

Later we will prove that the functionΘ is continuous so that we actually can talk about
“min” in the problem above. The lattice covering problem first appeared in a paper [Ker1939] by
RICHARD KERSHNERin 1939. In contrast, the related lattice packing problem has been studied
since centuries. The lattice packing problem asks for the most dense way to packd-dimensional
space by equal non-overlapping spheres whose centers form a lattice.

A family of subsetsK = (Ki)i∈I of Rd, I a set of indices, is called apackingif no point
in Rd belongs to the interiors of two different sets, i.e.intKi ∩ intKj = ∅ wheneveri 6= j.
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A packing ofRd is a lattice packingif it is of the form (K + v)v∈L whereL is a lattice. The
valueλ(L) = max{r : (B(v, r))v∈L is a lattice packing} is called thepacking radiusof L.
Geometrically,λ(L) can be interpreted as the radius of the insphere of the Dirichlet-Voronoi
polytope ofL. Thepacking densityof the lattice packing given byL is ∆(L) = volBd(0,λ(L))

volL

and thenormalized packing densityis δ(L) = λ(L)d

volL .

Definition 1.2.2. (Lattice Packing Problem)

Given: Dimensiond

Find: The value∆d = max{∆(L) : L is ad-dimensional lattice} together
with ad-dimensional latticeL with ∆d = ∆(L).

One word about the relationship between the two problems. Currently, the lattice covering
problem has been solved for dimensionsd = 1, 2, . . . , 5, whereas the lattice packing problem
has been solved for dimensionsd = 1, 2, . . . , 8. The optimal lattice in dimension one and two
are the same for both problems:Z1 andA2 = A∗2, the hexagonal lattice. In dimension three this
is no longer the case. The body centered cubic latticeA∗3 whose Dirichlet-Voronoi polytope is
a regular truncated octahedron gives the least dense lattice covering. The face centered cubic
lattice A3 whose Dirichlet-Voronoi polytope is a regular rhombic dodecahedron gives the most
dense lattice packing. And in the dimension4, . . . , 8 the latticeA∗d, whose Dirichlet-Voronoi
polytope is a permutahedron and which gives optimal lattice coverings in dimensions up to5,
gives a better lattice covering than the latticesD4,D5,E6,E7,E8 which give the optimal lattice
packings in their dimensions. In dimension24 the Leech lattice seems to be optimal for both
problems. At the moment the relationship between the two problems is unclear and one might
wonder if there exists any independent of the dimension.

1.3. Prerequisites

In our investigations we will use methods from geometry of numbers, polytope theory, combina-
torics and optimization. We have collected some basic notation in the glossary at the end of the
thesis. The equivalence of lattices and positive definite quadratic forms is a constant source of
confusion and we did not make any effort to separate strictly between these two languages. The
confused reader should first consult the section “Lattices vs. Quadratic Forms” in the glossary.
Otherwise it might be helpful to have the books [Zie1995] (for polytopes and oriented matroids)
and [GL1987] (for geometry of numbers) at hand. It should not be necessary to read the whole
books. A quick look into the index will suffice in the most cases.

1.4. Organisation of the Thesis

Of course, the selection of the thesis’ title “Sphere Coverings, Lattices and Tilings (in Low Di-
mensions)” (and so is its contents) is influenced by the book “Sphere Packings, Lattices and
Groups” by JOHN H. CONWAY and NEIL J.A. SLOANE. There, the problem of packing spheres
in Euclidean spaces of dimensions1, 2, 3, 4, 5, . . . is studied from many different angles. Arrang-
ing the spheres so that their centers form a lattice makes the problem far more accessible. It is
an unwritten law (and an unproven statement) that lattices with many symmetries provide dense
sphere packings; many exceptional groups pop up in this context. For sphere coverings this is not
unconditionally true. The combinatorial structure of the underlying tiling by Dirichlet-Voronoi
polytopes seems to be more important.
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The suffix “(in Low Dimensions)” possesses two meanings. On the one hand, we are dealing
in explicit calculations with lattices whose dimension seldom exceeds seven. On the other hand,
the suffix also refers to the work of CONWAY and SLOANE. Starting from 1988 they published a
series of papers named “Low-Dimensional Lattices I–VII”. One of their main goals is to simplify
and systematize work of others. We will try hard to take this as a model although we frequently
present some new material.

The thesis is divided into two parts:

Voronoi Reduction and Parallelohedra: One of our main tools is a reduction theory of
positive definite quadratic forms that goes back to GEORGESF. VORONÖI. We try to
give a gentle introduction to VORONÖI ’s reduction theory that classifies positive definite
quadratic forms according to their Delone subdivisions. Our approach to the reduction
theory shows many similarities to the theory of regular subdivisions and secondary poly-
topes of finite point sets. This theory was recently developed by IZRAIL M. GEL’ FAND,
M IKHAIL M. K APRANOV and ANDREI V. ZELEVINSKY. We show that VORONÖI ’s re-
duction theory is an analogue theory for infinite but periodic point sets.

Dual to the theory of Delone triangulations is the theory of primitive parallelohedra. A
parallelohedron is ad-dimensional polytopeP that tilesd-dimensional space in a face-to-
face manner by translates of the formP + v. With help of VORONÖI ’s reduction theory
we classify all possible combinatorial types of parallelohedra up to dimension4.

As we know since ancient times, the only plane parallelohedra are quadrangles and hexa-
gons. The Russian crystallographer E.S. FEDOROV showed that there are five different
types of parallelohedra in three dimensions: cubes, hexagonal prisms, truncated octahedra,
rhombic dodecahedra and hexarhombic dodecahedra. BORIS N. DELONE tried to prove
that there are51 combinatorially non-equivalent four-dimensional parallelohedra. But he
missed one type that later was discovered by MIKHAIL I. STOGRIN. As the main result
of the first part we give a new and geometric classification working out a list of JOHN H.
CONWAY. Form the52 types there are17 zonotopes and all the other35 parallelohedra
have the24-cell as Minkowski summand. For the classification we use the vonorm/conorm
method of JOHN H. CONWAY and NEIL J.A. SLOANE. We describe how their method fits
into VORONÖI ’s reduction theory.

The complexity of parallelohedra grows enormously with their dimension. We do not give
a complete classification in dimensions5 and higher. We concentrate on characteristic
phenomena and explore interesting effects.

The Lattice Covering Problem: In the second part we give an algorithm for the solution of
the lattice covering problem. The existence of such an algorithm has only been anticipated
by RYSHKOV and BARANOVSKII . For the design of our algorithm we combine classical
methods in the geometry of numbers (going back to works of HERMANN M INKOWSKI,
GEORGESF. VORONÖI, BORIS N. DELONE, E.S. BARNES, SERGEI S. RYSHKOV, EV-
GENII P. BARANOVSKII , NIKOLAI P. DOLBILIN and MIKHAIL I. STOGRIN) with mod-
ern, numerical methods from convex optimization of the “semidefinite programming com-
munity”. Our algorithm is not only of theoretical interest. We implemented it and we
found all locally optimal lattice coverings in dimensions up to5. Thereby, we checked
(and filled a gap in) a proof of RYSHKOV and BARANOVSKII . Furthermore, we found
interesting lattice coverings in dimensions6 which are less dense than the previous known
ones. RYSHKOV asked for the lowest dimension where the latticeA∗d does not give a glob-
ally optimal lattice covering. We show thatd = 6 is the answer.
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Voronoi Reduction & Parallelohedra

In the first part, we present our main tools for investigating the geometry of lattices.
These are Delone subdivisions, parallelohedra, and Dirichlet-Voronoi polytopes.

The Dirichlet-Voronoi polytope of a lattice is the set of all those points that are
closer to the origin than to any other lattice point. Many geometric information is
encoded in a Dirichlet-Voronoi polytope, e.g. the circumradius equals the lattice’s
covering radius, and the inradius equals the lattice’s packing radius. A Dirichlet-
Voronoi polytope of a lattice is a parallelohedron, i.e. it is a polytope which admits
a face-to-face tiling of space by lattice translates. A conjecture of VORONÖI states
that every parallelohedron can be represented as a Dirichlet-Voronoi polytope. We
report on the state-of-the-art of this conjecture and give a computational criterion
to check whether a given parallelohedron can be represented as a Dirichlet-Voronoi
polytope.

A central question is: How does the Dirichlet-Voronoi polytope change if we vary
the underlying lattice? To formulate this question in mathematical terms we have
to specify the parameter space in which we want to perform the variation. The
cone of positive definite quadratic form turns out to be the right choice.

We describe VORONÖI ’s reduction theory for positive definite quadratic forms.
The discrete groupGLd(Z) acts on the cone of positive definite quadratic
forms Sd>0. VORONÖI ’s reduction theory gives a fundamental domain for
Sd>0/GLd(Z). This is a subset which behaves likeSd>0/GLd(Z) up to bound-
ary identifications, so that we have a parameter space for lattices where no two
interior points represent the same lattice. VORONÖI ’s reduction theory is based
on Delone subdivisions which are tilings dual to tilings of Dirichlet-Voronoi poly-
topes. The main theorem of VORONÖI ’s reduction theory gives us the possibil-
ity to enumerate all non-equivalent Delone subdivisions and so all non-equivalent
Dirichlet-Voronoi polytopes of a given dimension. We give a contemporary view
on this classical theory where we emphasize its relation to the theory of secondary
polytopes.

We perform this classification for dimensions≤ 4 and look at interesting effects
and phenomena in higher dimensions. Instead of giving too technical descrip-
tions involving zonotopal lattices, vonorms, conorms, etc. we gave pictures (gen-
erated withpolymake and javaview ) of Schlegel diagrams on the previous
page which show how typical four-dimensional parallelohedra look like.





Chapter 2.

VORONOÏ’s Reduction Theory

In this chapter we describe VORONÖI ’s reduction theory for positive definite quadratic forms.
The discrete groupGLd(Z) acts on the cone of positive definite quadratic formsSd>0. Reduc-
tion means giving a fundamental domain forSd>0/GLd(Z). This is a subset which behaves like
Sd>0/GLd(Z) up to boundary identifications. More precisely, there are two fundamental tasks in
the reduction theory of positive definite quadratic forms:

i) Define a reduction domain! A reduction domain is a subsetR ⊆ Sd>0 in which there is ex-
actly one (up to boundary identifications) representative for each arithmetical equivalence
class of positive quadratic forms.

ii) Describe an algorithm that for a positive definite quadratic form computes an arithmetically
equivalent positive form lying inR!

VORONÖI ’s reduction theory provides a natural and geometric answer to the first task. The
second task is much more difficult. No satisfying solution is known for any reduction theory.
For VORONÖI ’s reduction theory a solution is known for the dimensionsd = 2 andd = 3. For
dimensiond = 4 a partial solution is known but here we are faced with some inherent difficulties.

VORONÖI ’s reduction theory is based on secondary cones of Delone triangulations. The sec-
ondary cone of a fixed Delone triangulation is the set of all positive definite quadratic forms that
have this fixed Delone triangulation. First, we determine the secondary cone of a Delone trian-
gulation explicitly. It is always a full-dimensional open polyhedral cone inSd>0. Then, we show
that the coneSd>0 can be partitioned face-to-face into secondary cones of Delone triangulations.
The groupGLd(Z) is acting on this partition. Two secondary cones of Delone triangulation have
a common facet whenever the corresponding Delone triangulations differ by a bistellar operation.
Every subset of the topological closures of all non-equivalent secondary cones (after factoring
out their symmetry) is a fundamental domain ofSd>0/GLd(Z). There are only finitely many
non-equivalent secondary cones. They can be enumerated completely by an algorithm. The
boundaries of secondary cones of Delone triangulations correspond naturally to coarser Delone
subdivisions. IfQ lies on the boundary of the secondary cone of a Delone triangulationD, thenD
is a refinement ofQ’s Delone subdivision.

The aim of this chapter is to give a contemporary synopsis of the second part of VORONÖI ’s
monograph [Vor1908]. In doing so, we emphasize relations to the theory of regular triangulations
and secondary polytopes.
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2.1. Delone Subdivisions

Definition 2.1.1. LetQ ∈ Sd>0 be a positive definite quadratic form. Letv1,v2, . . . points inZd.
The polyhedronL = conv{v1,v2, . . .} is called aDelone polyhedronof Q if there exists a point
c ∈ Rd and a real numberr ∈ R with Q[vi − c] = dist(vi, c)2 = r2 for all i = 1, 2, . . . and for
all other lattice pointsv ∈ Zd\{v1,v2, . . .} we have strict inequalityQ[v − c] > r2. The set of
all Delone polyhedra

Del(Q) = {L : L is a Delone polyhedron ofQ}

is called theDelone subdivisionof Q. A Delone triangulationis a Delone subdivision that
consists of simplices only.

In other words: We viewRd as Euclidean space with inner product(x,y) = (xt)Qy. Then
a Delone polytopeL is defined by the ballBd(c, r) = {x ∈ Rd : Q[x − c] ≤ r2} as follows:
The vertices ofL are the only lattice points lying on the boundary of the ball while in the interior
of the ball there are no lattice points. The polyhedronL is a lattice polyhedron. In Figure 2.1 we
see how this construction works for the positive definite quadratic formQ =

(
2 −1
−1 2

)
. In this

Euclidean space spheres are given by ellipsoids.

Figure 2.1. Empty Ellipsoids.

The Delone subdivision of a positive definite quadratic form is a periodic polyhedral subdivi-
sion ofRd. We call two Delone polyhedraL andL′ equivalentif there is a lattice vectorv ∈ Zd
with L′ = L+ v.

In his work “Sur la sph̀ere vide” ([Del1928]) DELONE describes this construction for ar-
bitrary point sets. In [Vor1908] VORONÖI already uses it for the special point setZd. He calls
them “l’ensemble(L) de simplexes charactérsant un type de paralléloèdres primitifs” and for this
reason Delone subdivisions are sometimes calledL-partitions; he defines Delone triangulations
by dualizing tilings of so-called primitive Dirichlet-Voronoi polytopes which we treat in the next
chapter.

LetQ be a semidefinite quadratic form that is arithmetically equivalent to
(

0 0
0 Q′

)
whereQ′

is positive definite. In this case we can define a Delone subdivision forQ by taking literally
Definition 2.1.1. Then the Delone subdivision contains unbounded polyhedra. For example, the
positive semidefinite quadratic form given by the matrix( 0 0

0 1 ) fulfills the requirements above. It
has no zero-dimensional Delone polytopes. The one-dimensional Delone polyhedra are given by
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linesconv{v + ( x0 ) : x ∈ Z}, v ∈ Z2 (takec = v). The two-dimensional Delone polyhedra are
given by horizontal stripsconv{v + ( x0 ) ,v + ( x1 ) : x ∈ Z}, v ∈ Z2 (takec = v + (0, 1

2)t).
Another construction of the Delone subdivision of a positive definite quadratic form is the

lifting constructionby BROWN ([Bro79]), and by EDELSBRUNNERand SEIDEL ([ES1986]). It is
shown in Figure 2.2 forQ = ( 1 0

0 1 ). Consider the lifting mapl : Rd → R
d×R, l(x) = (x, Q[x]),

which lifts the points inRd onto a paraboloid inRd × R. If we take the convex hull of the
lifted lattice pointsconv l(Zd) and project its lower faces back down ontoRd we get the Delone
subdivision ofQ. The lower faces are those faces which can be seen from the “point”(0,−∞).
A setconvL, L ⊆ Zd, is a Delone polytope ofQ if and only if conv l(L) is a lower face of the
setconv l(Zd).

(−2,−2, 0) (2,−2, 0)

(−2,−2, 8) (2,−2, 8)

(−2, 2, 8) (2, 2, 8)

(2, 2, 0)

Figure 2.2. Lifting Construction.

The lifting construction provides an extremely useful criterion: LetL be ad-dimensional Delone
polytope ofQ and letv1, . . . ,vd+1 be vertices ofL which affinely spanRd. Define the function
χ : Rd → R by

χ(x) =

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 x

Q[v1] . . . Q[vd+1] Q[x]

∣∣∣∣∣∣ (2.1)

A lattice pointv ∈ Zd is a vertex of the Delone polytopeL if and only if χ(v) = 0. More
generally, we can use this function to decide whether a pointx ∈ Rd lies inside, on, or outside
the circumsphere ofL depending on the sign ofχ(x) and on the ordering ofv1, . . . ,vd+1.

2.2. Secondary Cones

LetQ be a positive definite quadratic form whose Delone subdivision is a triangulation ofR
d. In

this section we will determine all positive definite quadratic forms which have the same Delone
subdivision asQ.

Definition 2.2.1. LetD be a subdivision ofRd. The set

∆(D) := {Q ∈ Sd≥0 : Del(Q) = D}

is called thesecondary cone∗ of the subdivisionD.
∗In the Russian literature∆(Del(Q)),Q ∈ Sd≥0, is called theL-type domainof Q.
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Our main insight of this section will be that the secondary cone ofDel(Q) forms the interior
of a polyhedral cone inSd>0. We explicitly give a finite set of supporting hyperplanes which is
determined by the non-equivalent(d− 1)-dimensional cells of the Delone subdivision.

Let D be a Delone triangulation. We want to find the set of all positive definite quadratic
formsQ with Del(Q) = D. LetL = conv{v1,v2, . . . ,vd+1}, L′ = conv{v2,v3, . . . ,vd+2} be
twod-dimensional Delone simplices having a(d−1)-dimensional faceF = conv{v2, . . . ,vd+1}
in common. We say(L,L′) is a pair ofadjacentsimplices. If these two Delone simplices occur
in the Delone triangulation ofQ there has to be a ridge betweenl(L) andl(L′) alongl(F ). The
situation is illustrated in Figure 2.3. The condition of “having a ridge” can be expressed as a
linear inequality in the parametersqij of the matrixQ as we will see below.

v1

v2

v4

v3

l(v1)

l(v2)

l(v3)

l(v4)

Figure 2.3. Ridge Betweenl(conv{v1,v2,v3}) andl(conv{v2,v3,v4}).

The pointsv1, . . . ,vd+2 are affinely dependent. There exist real numbersα1, . . . , αd+2 with∑d+2
i=1 αi = 0 and

∑d+2
i=1 αivi = 0. Sincev1 andvd+2 lie on different sides of the affine

hyperplaneaff{v2, . . . ,vd+1} we can assume thatα1 andαd+2 are positive. Having a ridge
alongl(F ) means that in the liftingQ[vd+2] lies above the affine hyperplane

aff l(L) = aff{(v1, Q[v1]), . . . , (vd+1, Q[vd+1])}

and thatQ[v1] lies above the affine hyperplane

aff l(L′) = aff{(v2, Q[v2]), . . . , (vd+2, Q[vd+2])}.

This yields two inequalities

Q[vd+2] > − 1
αd+2

d+1∑
i=1

αiQ[vi], Q[v1] > − 1
α1

d+2∑
i=2

αiQ[vi].

Sinceα1 andαd+2 are both positive the two inequalities reduce to
∑d+2

i=1 αiQ[vi] > 0. This is a
linear condition in the entries of the matrixQ since we fixed the lattice pointsvi, i = 1, . . . , d+2.

Definition 2.2.2. Let L = conv{v1, . . . ,vd+1} and L′ = conv{v2, . . . ,vd+2} be two d-
dimensional simplices sharing the common facetF = conv{v2, . . . ,vd+1}. Let α1, . . . , αd+2

be real numbers withα1 = 1,
∑d+2

i=1 αi = 0 and
∑d+2

i=1 αivi = 0. (We could fixα1 to an arbi-
trary positive number. Thenαd+2 is positive, too.) Theregulator%(L,L′) ∈ (Sd)∗ of the pair of

adjacent simplices(L,L′) is the linear form%(L,L′)(Q) =
∑d+2

i=1 αiQ[vi].
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From the above arguments it is clear that the secondary cone ofD is bounded by the condition
%(L,L′)(Q) > 0 where(L,L′) is a pair of adjacent simplices. This gives only finitely many con-
ditions because we have for allv ∈ Zd the equality%(L+v,L′+v) = %(L,L′). Additionally,%(L,L′)

is a positive multiple of%(L′,L). On the other hand, a quadratic form satisfying all these condi-
tions is positive definite and its Delone subdivision coincides withD. The positive definiteness
follows from the conditions since they imply that the space is subdivided byboundedDelone
polytopes. That the Delone subdivision of a quadratic form satisfying the conditions coincides
with D follows by a reduction to the one-dimensional case where it is obvious. We summarize
the main result of this section:

Theorem 2.2.3.Let Q be a positive definite quadratic form whose Delone subdivision is a tri-
angulation. The secondary cone of the Delone triangulationDel(Q) is the full-dimensional open
polyhedral cone

∆(Del(Q)) = {Q′ ∈ Sd : %(L,L′)(Q′) > 0, (L,L′) pair of adjacent simplices}.

2.3. VORONOÏ’s Principal Domain of the First Type

As a first example and because of its importance in dimension2 and3 we derive the Delone
subdivision of VORONÖI ’s principal form of the first typeQ[x] = d

∑
x2
i −
∑
xixj which is as-

sociated to the latticeA∗d. The Delone subdivision ofQ which is a triangulation can be described
as follows: Lete1, . . . , ed be the standard basis vectors ofZd. We seted+1 = −e1 − · · · − ed
so that we havee1 + · · ·+ ed+1 = 0. For a permutationπ ∈ Sd+1 we define thed-dimensional
simplexLπ by

Lπ = conv{eπ(1), eπ(1) + eπ(2), . . . ,eπ(1) + · · ·+ eπ(d+1)}.

The set of simplices{Lπ + v : v ∈ Zd, π ∈ Sd+1} defines a triangulation ofRd which we
from now on denote byD1. The full-dimensional cells of the star of the origin are given byLπ,
π ∈ Sd+1. In the star two simplicesLπ andLπ′ have a facet in common if and only ifπ andπ′

differ by a single transposition of two adjacent positions. On the left side of Figure 2.4 the star
of the origin in dimension2 is illustrated, on the right side we have a “fundamental domain” of
the three-dimensional triangulation.

6
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Figure 2.4. The TriangulationD1 in Dimensiond = 2 andd = 3.
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In Section 2.3.2 we will compute the secondary cone ofD1. It is

∆(D1) = {Q ∈ Sd : qij < 0, i 6= j, and
∑

i,j qij > 0}.

Hence,Del(Q) = D1. Its topological closure∆(D1) is called VORONÖI ’s principal domain of
the first type.

Before this computation we introduce in Section 2.3.1 the so-called Selling parameters for
positive definite quadratic forms. Using these parameters it is possible to use symmetry properties
of D1 in various computations. The automorphism group ofD1 is isomorphic to the permutation
groupSd+1.

In dimension2 and3 every positive definite quadratic form is arithmetically equivalent to one
that lies in∆(D1). SELLING ’s reduction algorithm which we will present in Section 2.3.3 is a
constructive proof of this fact. But in dimension4 and higher there are positive definite quadratic
forms which are not arithmetically equivalent to one in∆(D1).

This is not everything what has to be said about VORONÖI ’s principal domain of the first type.
In Chapter 3.5.2 we will continue our studies. Other sources for information on this domain are
e.g. [CS1992] where the three-dimensional case is discussed in great detail and [Jan1998] where
the four-dimensional case is described.

2.3.1. Selling Parameters

Usually we represent a positive definite quadratic formQ by a positive definite matrixQ = (qij).
One disadvantage of this representation is that the coefficients are not of the “same type”. The
coefficients on the main diagonal are squared norms

qii = Q[ei] = sQ(ei, ei) = (ei, ei)

and all other coefficients are inner products between different vectors

qij =
1
2

(Q[ei + ej ]−Q[ei]−Q[ej ]) = sQ(ei, ej) = (ei, ej).

SELLING introduces in [Sel1874] parameters which are homogeneous: We simply forget the
coefficients on the main diagonalqii but add inner productsqi,d+1 = qd+1,i = (ei, ed+1) with
the additional vectored+1 = −e1 − · · · − ed. Then the parametersqij = (ei, ej), i 6= j,
i, j = 1, . . . , d+ 1 define the positive definite quadratic formQ completely since we getqii back
by the relation

∑d+1
j=1 qij = 0. The parametersqij , i 6= j, i, j = 1, . . . , d + 1, are traditionally

calledSelling parametersof Q. For instance VORONÖI ’s principal form of the first type

Q[x] = 3x2
1 + 3x2

2 + 3x3
3 − 2x1x2 − 2x1x3 − 2x2x3

is given

I by the positive definite matrix:

 3 −1 −1
−1 3 −1
−1 −1 3

,

I and by the Selling parameters:


−1 −1 −1

−1 −1 −1
−1 −1 −1
−1 −1 −1

 .
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By looking at the Selling parameters it is obvious that the form is invariant under the24 permu-
tationsei 7→ eπ(i), i = 1, . . . , 4, π ∈ S4.

The following formula makes use of Selling parameters and we will use it frequently in
calculations where the triangulationD1 is involved.

Proposition 2.3.1. (SELLING ’s Formula)
LetQ be a positive definite quadratic form and let(qij), 1 ≤ i, j ≤ d + 1, i 6= j, be its Selling
parameters. The squared norm (with respect toQ) of a vectorx =

∑d+1
i=1 αiei, αi ∈ R, is given

by

Q[x] = −
∑

1≤i<j≤d+1

qij(αi − αj)2.

Proof. We first consider the special caseαd+1 = 0 and reduce the general case to this special
case afterwards. By applying the equationsqi,d+1 = −

∑d
j=1 qij andqij = qji we have

−
∑

1≤i<j≤d+1

qij(αi − αj)2

= −
∑

1≤i<j≤d
qij(αi − αj)2 −

∑
1≤i≤d

qi,d+1(αi − 0)2

= −
∑

1≤i<j≤d
qijα

2
i + 2

∑
1≤i<j≤d

qijαiαj −
∑

1≤i<j≤d
qijα

2
j +

∑
1≤i,j≤d

qijα
2
i

=
∑

1≤i≤d
qiiα

2
i + 2

∑
1≤i<j≤d

qijαiαj

= Q
[∑

1≤i≤d+1
αiei

]
.

In the general case we could haveαd+1 6= 0. Then we replace

d+1∑
i=1

αiei by
d+1∑
i=1

αiei − αd+1

d+1∑
i=1

ei.

Now we can apply the formula we proved above to get the general formula

Q
[∑

1≤i≤d+1
αiei

]
= Q

[∑
1≤i≤d+1

(αi − αd+1)ei
]

= −
∑

1≤i<j≤d+1

qij((αi − αd+1)− (αj − αd+1))2 = −
∑

1≤i<j≤d+1

qij(αi − αj)2.

�

2.3.2. Computation of the Secondary Cone

Proposition 2.3.2. ([Vor1908],§102–§104)
The secondary cone of the triangulationD1 is given by the interior of VORONÖI ’s principal
domain of the first type

∆(D1) = {Q ∈ Sd : qij ≤ 0, i 6= j, and
∑

i,j qij ≥ 0}

= {Q ∈ Sd : qij ≤ 0, 1 ≤ i, j ≤ d+ 1, i 6= j}.
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Proof. Letπ, π′ ∈ Sd+1 be two permutations which differ only by a transposition of two adjacent
symbols,π′ = π (i i+1). Then the simplicesLπ andLπ′ of the triangulationD1 share a common
facet. In the following we compute the regulator%(Lπ ,Lπ′ )

. We have

Lπ = conv{eπ(1), eπ(1) + eπ(2), . . . ,eπ(1) + · · ·+ eπ(d+1)}
Lπ′ = conv{eπ(1), . . . ,eπ(1) + · · ·+ eπ(i−1), eπ(1) + · · ·+ eπ(i−1) + eπ(i+1),

eπ(1) + · · ·+ eπ(i+1), . . . , eπ(1) + · · ·+ eπ(d+1)},

so thatconv{eπ(1), . . . , eπ(1) + · · · + eπ(i−1), eπ(1) + · · · + eπ(i+1), eπ(1) + · · · + eπ(d+1)} is
the common facet ofLπ andLπ′ . The vertices that are not contained in the common facet are
vertLπ\ vertLπ′ = {eπ(1)+· · ·+eπ(i)}, vertLπ′\ vertLπ = {eπ(1)+· · ·+eπ(i−1)+eπ(i+1)}.
An affine dependence among these vertices and the vertices of the common facet is

0 = (eπ(1) + · · ·+ eπ(i)) + (eπ(1) + · · ·+ eπ(i−1) + eπ(i+1))
−(eπ(1) + · · ·+ eπ(i−1))− (eπ(1) + · · ·+ eπ(i+1)).

In the casei = 1 the sumeπ(1) + · · · + eπ(i−1) equals0 = eπ(1) + · · · + eπ(d+1). Hence, the
regulator%(Lπ ,Lπ′ )

is given by

%(Lπ ,Lπ′ )
(Q) = Q[eπ(1) + · · ·+ eπ(i)] +Q[eπ(1) + · · ·+ eπ(i−1) + eπ(i+1)]

−Q[eπ(1) + · · ·+ eπ(i−1)]−Q[eπ(1) + · · ·+ eπ(i+1)]
= −2(eπ(i), eπ(i+1))
= −2qπ(i),π(i+1).

If we consider all pairs of adjacent simplices we see by Theorem 2.2.3 that the secondary cone
ofD1 is bounded by the hyperplanesqij = 0, 1 ≤ i, j ≤ d+1, i 6= j. By the equationsqij = qji,
qi,d+1 = −

∑
j=1 qij , we can transform the given inequalities into inequalities of the space of

symmetric matricesSd. �

2.3.3. SELLING ’s Reduction Algorithm

In dimension2 and3 every positive definite quadratic form is arithmetically equivalent to one
that lies in∆(D1). Using Theorem 2.5.1 below one can give a systematic proof of this fact. Here
we present a simpler ad-hoc proof. Suppose we are a given a positive definite quadratic formQ.
Our goal is to find a transformationA ∈ GLd(Z), d = 2, 3, so that the Selling parameters which
define the formAtQA are all non-positive.

Binary Case

We consider the two-dimensional case first. Assume that one Selling parameter ofQ is positive,
for instanceq12 > 0. Then, by the unimodular transformation

(
1 0
0 −1

)
we get(

1 0
0 −1

)t(
q11 q12

q12 q22

)(
1 0
0 −1

)
=
(
q11 −q12

−q12 q22

)
=
(
q′11 q′12

q′12 q′22

)
= Q′.

The Selling parameters ofQ′ are

q′12 = −q12

q′13 = −q′11 − q′12 = −q11 + q12 = q12 + q13 + q12 = 2q12 + q13

q′23 = −q′12 − q′22 = q12 − q22 = q12 + q12 + q23 = 2q12 + q23.
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For the sum of negative Selling parameters we have the following relation betweenQ andQ′:

−q′12 − q′13 − q′23 = −3q12 − q13 − q23 < −q12 − q13 − q23.

Forq13 > 0 the transformation( 1 1
0 1 ) and forq23 > 0 the transformation

(−1 0
−1 −1

)
yield a similar

effect on the sum of negative Selling parameters. So we get a sequence of decreasing sums of
negative Selling parameters as long as one Selling parameter is positive. The sum of negative
Selling parameters−q12 − q13 − q23 equals1

2(Q[e1] +Q[e2] +Q[e3]). Since in a class of arith-
metically equivalent positive definite quadratic forms the set{Q[v] : v ∈ Zd\{0}} is bounded
from below by the homogeneous minimumλ(Q) and since the difference between two succes-
sive sums is at least12λ(Q), the sequence is finite. So we have an algorithm which constructs
the matrixA step-by-step. This algorithm is called SELLING ’s reduction algorithm. It reduces
a binary positive definite quadratic form to one lying in∆(D1). Finally, by using permutations
of the formei 7→ eπ(i), π ∈ S3 (which can be linearly extended to unimodular transformations)

we can transform a positive definite quadratic form lying in∆(D1) to one that lies in the cone
bounded by

q12 ≤ 0, q11 ≤ q22, q11 ≤ 2q12. (2.2)

This means that we can reduce a positive definite quadratic form to a canonical representative
in the class of arithmetically equivalent forms. Supplementary, SELLING proved and it is not
difficult to verify: The Selling parameters of a binary positive definite quadratic form are all
non-positive if and only if the sum of negative Selling parameters is minimal in the class of
arithmetically equivalent forms.

Ternary Case

Similar arguments can be used to define a reduction algorithm for ternary positive definite qua-

dratic form. If q12 > 0, then the unimodular transformation
(

1 0 0
1 1 −1
0 0 −1

)
gives an arithmetically

equivalent form whose sum of negative Selling parameters is smaller than the previous one. If
we haveqij > 0, then we can apply the permutationei 7→ e1 andej 7→ e2 that can be linearly
extended to a unimodular transformation to have the situationq12 > 0.

Some Geometry

We want to close the discussion of the binary case with some geometric considerations and pic-
tures. The set of two-dimensional positive semidefinite matricesS2

≥0 is bounded by HURWITZ’s
conditionsq11 ≥ 0 andq11q22 − q2

12 ≥ 0. Hence,S2
≥0 is the upper half of a three-dimensional

elliptic cone with fundamental axis( 1 0
0 1 ), ( 0 1

1 0 ),
(

1 0
0 −1

)
.

If we slice it by a hyperplane parallel toq11 + q22 = 0 (see Figure 2.5) we get the follow-
ing (projective) picture which includes all geometric information because every ray beginning
from the origin hits the hyperplane exactly once. The secondary cone of the two-dimensional
triangulationD1 is given by the inequalities

−q12 > 0, q11 + q12 > 0, q12 + q22 > 0.

So its topological closure is a polyhedral cone with extreme rays

∆(D1) = cone
{(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 −1
−1 1

)}
.
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R ( 1 0
0 0 )

R

(
1 −1
−1 1

)

R ( 0 0
0 1 )

Figure 2.5. Cone of Positive Definite Matrices Sliced withq11 + q22 = 1.

The group {(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
−1 0
−1 1

)
,

(
0 −1
1 −1

)
,

(
−1 1
−1 0

)
,

(
1 −1
0 −1

)}
leaves the polyhedral cone∆(D1) fixed and only permutes the smaller triangular cones of the
barycentric subdivision. This gives a geometric explanation of the polyhedral cone (2.2) in which
we find exactly one representative of every arithmetical equivalence class.

Notice that this reduction domain is not the “standard one” given by the inequalities

− q11

2 < q12 ≤ q11

2 , q11 ≤ q22, and0 ≤ q12 ≤ q11

2 if q11 = q22

that goes back to LAGRANGE. For historical remarks on the reduction theory of binary quadratic
forms we refer the interested reader to the book [SO1985] of SCHARLAU and OPOLKA.

The “Modulfigur” and Some History

Many mathematicians were and are interested in reduction domains of positive definite quadratic
forms. One reason is that reduction domains connect different branches of mathematics very ele-
gantly and unexpectedly. In [KF1890], page 242, KLEIN writes enthusiastically on the reduction
domain of binary positive definite quadratic forms and explains how to draw a correct picture of
it.

“Ich habe diese Figur (an die sich eine Menge weiterer geometrischer Bemer-
kungen ankn̈upfen) in meinen Vorlesungen von 1877 wiederholt zur Sprache
gebracht, weil dieselbe auch unter rein synthetischen Gesichtspunkten sehr be-
merkenswert ist. Sie giebt uns nämlich dasübersichtlichste Bild f̈ur die con-
structive Erledigung der in der synthetischen Geometrie fundamentalen Auf-
gabe, ein einf̈ormiges Grundgebilde (hier unsere Ellipse) dadurch mit unend-
lich vielen Elementen züuberdecken, dass man zu drei willkürlich gegebenen
Elementen desselben immer wieder das vierte harmonisch construiert.
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Im Herbst 1873 hatte ich mit dem verstorbenen CLIFFORD eine lebhafte Un-
terhaltung dar̈uber, dass es als Aufgabe der modernen Mathematik betrachten
müsse, die uns̈uberkommenen, getrennt neben einander stehenden mathemati-
schen Disciplinen in lebendige Wechselwirkung zu setzen; wir kamenüberein,
dass die f̈ur synthetische Geometrie und Zahlentheorie am schwierigsten sein
möchte.Die Figur (62) des Textes stellt diese Verbindung her.Man wolle in
dieser Hinsicht insbesondere die zahlentheoretischen Entwicklungen des fol-
genden Kapitels vergleichen.”

Figure 2.6. “Modulfigur” (from K LEIN and FRICKE’s book [KF1890]).

In the book [Ter1988]† — following HILBERT’s speech in memory of MINKOWSKI — TER-
RAS writes on page 113:

“Much of this section is due to MINKOWSKI, who was the first to de-
scribe a fundamental domain forGL(n,Z). We will discuss another fun-
damental domain — that of GARNIER in Section 4.4.3. [. . . ] There are
indeed many unusual flowers in these higher dimensional gardens. The
names of those who cultivated these flowers include: GAUSS, HERMITE,
M INKOWSKI, VORONÖI, SIEGEL, WEYL, WEIL, SATAKE , BAILY , BOREL,
SERRE, HARISH-CHANDRA, MOSTOW, TAMAGAWA , MUMFORD, DELONE,
RYSHKOV, . . . ”

2.4. Bistellar Neighbours

In Section 2.2 we saw that the secondary cone of all positive definite quadratic forms having
the same Delone triangulation forms the interior of a full-dimensional polyhedral cone inSd>0.
Therefore, the cone of positive definite quadratic forms is tessellated by polyhedral secondary
cones. In this section we will find out that the tessellation is a facet-to-facet tessellation. By a
theorem of GRUBER and RYSHKOV we even have a face-to-face tessellation because “facet-to-
facet implies face-to-face” ([GR1989]).

We will investigate what happens if we move a positive definite quadratic form continuously
from the interior of one secondary cone to the interior of another one while crossing a facet
of the first one. We will see that the polyhedral cones share the complete facet we crossed. It

†Its subtitle is “Revenge of the Higher Rank Symmetric Spaces and Their Fundamental Domains”. We highly
recommend it and its inspiring style!
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can exactly be described how the two Delone triangulations belonging to the polyhedral cones
differ. All (d − 1)-dimensional cells in the Delone triangulation defining a regulator that gives
the crossed facet perform a bistellar operation when the facet is transversally crossed.

Before we give the exact definitions and statements we illustrate in Figure 2.7 what happens
in the two-dimensional case when we move from the positive definite quadratic form

(
2 −1
−1 2

)
to

( 2 1
1 2 ).

(
2 −1
−1 2

) ( 1 0
0 1 )

( 2 1
1 2 )

Figure 2.7. Construction of Bistellar Neighbours.

Bistellar operations are performed in so-calledrepartitioning polytopes. Repartitioning poly-
topes ared-dimensional Delone polytopes havingd + 2 vertices. A repartitioning polytope can
be represented as convex hull of two Delone simplices having a common facet. Repartition-
ing polytopes were investigated by VORONÖI in [Vor1908], §89, and he calls them simply “un
polyèdre convexeK”. The name “repartitioning polytope” was coined by RYSHKOV and BARA-
NOVSKII in [RB1976],§9. Repartitioning polytopes are not only basic concepts in VORONÖI ’s
reduction theory. They also play an important role in the theory of hypermetric spaces where
they correspond to facets in the hypermetric cone (see Chapter 15.2.2 in [DL1997] or originally
in [AG1993]).

We summarize structural properties of repartitioning polytopes and more generally ofd-dim-
ensional polytopes withd + 2 vertices in the following proposition. For the formulation it is
convenient to use terminology from oriented matroid theory which we recall briefly. LetV ⊆ Rd
be a finite set of points inRd. Every affine relation between these points

∑
v∈V αvv = 0,∑

v∈V αv = 0, gives rise to a sign vectorX ∈ {−1, 0,+1}V , simply byXv = sgnαv. The
supportof the sign vectorX is defined byX = {v ∈ V : Xv 6= 0}. We define the sets
X+ = {v ∈ V : Xv = +1}, X− = {v ∈ V : Xv = −1} andX0 = {v ∈ V : Xv = 0}.
The setV(V ) of all sign vectors is called the set ofvectorsof the oriented matroidM(V ). A
non-trivial vector ofM(V ) which has minimal support among all vectors is called acircuit.

Proposition 2.4.1. (Repartitioning polytopes)
Let V be a set ofd + 2 points which affinely spansRd. By C we denote one of the two cir-
cuits which are defined by the one-dimensional linear subspace of affine relations onV . The
repartitioning polytopeconv V has two different types of facets:

i) |C0| facets withd+ 1 vertices:Qv0 = conv(V \{v0}),v0 ∈ C0.

ii) |C+| · |C−| facets withd vertices:Pv+,v− = conv(V \{v+,v−}), v+ ∈ C+, v− ∈ C−.

There exist exactly two triangulations ofconv V : T+(V,C) with simplicesconv(V \{v+}),
v+ ∈ C+, andT−(V,C) with simplicesconv(V \{v−}), v− ∈ C−.



2.5 Main Theorem ofVORONÖI ’s Reduction Theory 23

It is easy to prove this proposition by using the fact that the only circuits of the oriented
matroidM(V ) areC and−C. Figure 2.8 shows a two-dimensional repartitioning polytope
together with its two triangulations.

+ −

− +

T−(V,C) T+(V,C)

Figure 2.8. Two-Dimensional Repartitioning Polytope.

A bistellar operation replaces a given triangulation of a repartitioning polytope by the other
possible one.

Definition 2.4.2. Let T be a triangulation ofRd and letF be a(d − 1)-dimensional cell ofT .
Then,F is contained in two simplicesL andL′ of T . By V we denote the set of vertices
of L andL′, V = vertL ∪ vertL′. By C we denote one of the two circuits of the oriented
matroidM(V ). The(d− 1)-dimensional cellF is called aflippable facetof the triangulationT
if one of the triangulationsT+(V,C) or T−(V,C) is a subcomplex ofT . If F is a flippable
facet ofT and we replace the subcomplexT+(V,C) by T−(V,C) [respectivelyT−(V,C) by
T+(V,C)], then we get a new triangulation. This replacement is calledbistellar operationor flip.

The facets of∆(D) give the interesting bistellar operations of a Delone triangulationD. A
(d − 1)-dimensional cellL ∩ L′ ∈ D is a flippable facet whenever the corresponding regulator
%(L,L′) gives a facet-defining hyperplane of∆(D) (see [Vor1908],§87–§88). This is clear since
the repartitioning polytopeconv(L ∪ L′) is a Delone polytope of the positive definite quadratic
forms lying in the relative interior of the facet given by%(L,L′).

Let F be a facet of the polyhedral cone∆(D). We describe how the Delone triangulationD
changes if we move a positive definite quadratic form continuously. We start from the interior
of ∆(D), then we move towards a relative interior point ofF and finally we go infinitesimally
further, leaving∆(D). In every repartitioning polytopeV = conv(L ∪ L′) whereL,L′ is a
pair of adjacent simplices whose regulator definesF, i.e. lin F = {Q ∈ Sd : %(L,L′)(Q) = 0},
we perform a bistellar operation. This gives a new triangulationD′. It is a Delone triangulation
again. The two secondary cones∆(D) and∆(D′) have the complete facetF in common. We
say thatD andD′ arebistellar neighbours. In the chapter “Reconstruction de l’ensemble(L) de
simplexes en un autre ensemble(L′) de simplexes”, [Vor1908]§91–§95, VORONÖI computes the
secondary cone ofD′ explicitly and in the next paragraph he shows that∆(D′) has dimension
d(d+1)

2 .

2.5. Main Theorem of V ORONOÏ’s Reduction Theory

By constructing bistellar neighbours we could produce infinitely many Delone triangulations
starting from the Delone triangulationD1 of VORONÖI ’s principal form of the first type. But
many of these will not be essentially new. A part of the infiniteflip graph of two-dimensional
Delone triangulation is given in Figure 2.9.
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Figure 2.9. The Graph of Two-Dimensional Delone Triangulations.

If two positive definite quadratic formsQ andQ′ are arithmetically equivalent, we have
Q′ = AtQA for someA ∈ GLd(Z), then their Delone subdivisions are related by the equa-
tion Del(Q′) = ADel(Q). The groupGLd(Z) is acting on the set of Delone subdivisions by
(A,D) 7→ AD and it is acting on the set of secondary cones by(A,∆) 7→ At∆A. We are only
interested in the orbits of these group actions and there are only finitely many. VORONÖI proved
this by showing that there is a boundM depending only on the dimension so that the following
holds: For every Delone triangulation there exists an equivalent one where the (integral) coor-
dinates of the edges starting from the origin are bounded byM . Another proof was given by
DEZA, GRISHUKHIN and LAURENT (see [DL1997], Chapter 13.3). They show that in a fixed
dimension there are only finitely many Delone polytopes which are not arithmetically equivalent.

This yields the main theorem of VORONÖI ’s reduction theory.

Theorem 2.5.1.(Main Theorem ofVORONÖI ’s Reduction Theory)
The topological closures of secondary cones of Delone triangulations give a face-to-face tiling of
the cone of positive semidefinite quadratic forms. Two secondary cones share a facet if and only
if they are bistellar neighbours. The groupGLd(Z) acts on the tiling, and under this group action
there are only finitely many non-equivalent secondary cones.

By Algorithm 1 we can enumerate all non-equivalent secondary cones of Delone triangula-
tions (and thereby all non-equivalent Delone triangulations) in a given dimension.

Algorithm 1 Enumeration of all non-equivalent Delone triangulations.

Input: Dimensiond.

Output: SetR of all non-equivalentd-dimensional Delone triangulations.

T ← {D1}. R← ∅.
while there is aD ∈ T do
T ← T\{D}. R← R∪ {D}.
compute the regulators ofD.
compute the facetsF1, . . . , Fn of ∆(D).
for i = 1, . . . , n do

compute the bistellar neighbourDi of D which is defined byFi.
if Di is not equivalent to a Delone triangulation inR∪ {D1, . . . ,Di−1} then
T ← T ∪ {Di}.

end if
end for

end while
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The secondary cones of Delone triangulations the algorithm produces can be used to de-
fine a reduction domain. Two positive definite quadratic forms lying in two non-equivalent sec-
ondary cones cannot be arithmetically equivalent. The only thing we have to consider is that
secondary cones can have symmetry. LetG ⊆ GLd(Z) be the group of symmetries of a sec-
ondary cone∆. This is a finite group since∆ is a polyhedral cone. Now choose a subset
∆′ ⊆∆ such thatG∆′ = ∆ and such that we haveAt∆′A = ∆′ only if A is the identity. This
can be done by using parts of the barycentric subdivision ofD.

2.6. Refinements and Sums

Until now we have only dealt with Delonetriangulationsand their secondary cones. Let us look
at Delonesubdivisionsand find out how they fit into the theory we developed so far. Delone
subdivisions are limiting cases of triangulations: Their secondary cones occur on the boundaries
of full-dimensional secondary cones of Delone triangulations. LetD andD′ be two Delone
subdivisions. We sayD is a refinementof D′ if every Delone polytope ofD is a subset of some
Delone polytope ofD′. The following proposition shows that the relation between refinements,
secondary cones and sums of positive semidefinite quadratic forms is very natural. It is not clear
(at least not to the author) where this proposition was mentioned first. LOESCH gave it in his
thesis [Loe1990]. Later, RYSHKOV who was not aware of LOESCH’s thesis gives in [Rys1999]
a statement equivalent to the following proposition. LOESCH’s thesis is not easily available and
RYSHKOV’s paper does not contain a proof of the statement. We give the arguments in great
detail here. Figure 2.10 visualizes what happens in the two-dimensional case.

Proposition 2.6.1. LetD be a Delone triangulation.

i) A positive semidefinite quadratic formQ lies in ∆(D) if and only if D is a refinement
of Del(Q).

ii) If two positive semidefinite quadratic formsQ andQ′ both lie in∆(D), thenDel(Q+Q′)
is a common refinement ofDel(Q) andDel(Q′).

Proof. Throughout the proof we always assume that the verticesv1, . . . ,vd+1 of a Delone poly-
topeL are ordered in such a way that for a pointx ∈ Rd we have∣∣∣∣∣∣

1 . . . 1 1
v1 . . . vd+1 x

Q[v1] . . . Q[vd+1] Q[x]

∣∣∣∣∣∣ > 0

if and only ifx lies outside the circumsphere ofL (see (2.1)).

i) Suppose thatQ ∈ ∆(D). We have to show that anyd-dimensional Delone simplexL =
conv{v1, . . . ,vd+1} of D is contained in a Delone polytope ofQ. LetQ1 be a positive
definite quadratic form lying in the interior of∆(D). We consider the half-open segment
Qt = (1 − t)Q + tQ1, t ∈ (0, 1], that is completely contained in the interior of∆(D).
Thus, all these positive definite quadratic forms have the Delone triangulationD.

For everyv ∈ Zd\{v1, . . . ,vd+1} andε > 0 we have

0 <

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

Qε[v1] . . . Qε[vd] Qε[v]

∣∣∣∣∣∣
= (1− ε)

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

Q[v1] . . . Q[vd] Q[v]

∣∣∣∣∣∣+ ε

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

Q1[v1] . . . Q1[vd] Q1[v]

∣∣∣∣∣∣
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Since the right side of this inequality is an affine function inε we have∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

Q[v1] . . . Q[vd] Q[v]

∣∣∣∣∣∣ ≥ 0

if we take the limitε↘ 0. Hence,L is contained in a Delone polytope ofQ.

Conversely, letD be a refinement ofDel(Q). We define the numberε0 by

ε0 = inf{t ∈ [0, 1] : Qt ∈∆(D)}.

Assume thatε0 6= 0. LetK be ad-dimensional Delone polytope ofQε0 that is not a sim-
plex. This does exist becauseQε0 is a boundary point of∆(D). LetL be ad-dimensional
Delone simplex ofD with verticesv1, . . . ,vd+1 and withL ⊆ K. Forv ∈ vertK\ vertL
we define the function

χ(ε) =

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

Qε[v1] . . . Qε[vd] Qε[v]

∣∣∣∣∣∣
We have the inequalitiesχ(1) > 0, χ(ε0) = 0 andχ(0) ≥ 0 sinceD is a refinement
of Del(Q). This cannot happen sinceχ is an affine function andχ(0) has to be negative.
Hence,ε0 = 0 andQ ∈∆(D).

ii) Let L be a Delone polytope ofQ and letL′ be one ofQ′. We have to show that their
intersectionL ∩ L′ is a Delone polytope ofQ + Q′. We can assume thatL ∩ L′ is d-
dimensional. Letv1, . . . ,vd+2 be vertices ofL ∩ L′. Then,∣∣∣∣∣∣

1 . . . 1 1
v1 . . . vd+1 vd+2

(Q+Q′)[v1] . . . (Q+Q′)[vd+1] (Q+Q′)[vd+2]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 vd+2

Q[v1] . . . Q[vd+1] Q[vd+2]

∣∣∣∣∣∣+

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 vd+2

Q′[v1] . . . Q′[vd+1] Q′[vd+2]

∣∣∣∣∣∣
= 0 + 0.

Let v1, . . . ,vd+1 be some vertices ofL∩L′ and letv be a lattice point that is not a vertex
of L ∩ L′. Suppose thatv 6∈ vertL. Then,∣∣∣∣∣∣

1 . . . 1 1
v1 . . . vd+1 v

Q[v1] . . . Q[vd+1] Q[v]

∣∣∣∣∣∣ > 0, and

∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

Q′[v1] . . . Q′[vd+1] Q′[v]

∣∣∣∣∣∣ > 0,

and so ∣∣∣∣∣∣
1 . . . 1 1
v1 . . . vd+1 v

(Q+Q′)[v1] . . . (Q+Q′)[vd+1] (Q+Q′)[v]

∣∣∣∣∣∣ > 0.

�
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Figure 2.10. Refinements of Two-Dimensional Delone Subdivisions.

2.7. Relations to the Theory of Secondary Polytopes

Triangulations of discrete point sets have attracted many researchers in recent years. They have
many applications, e.g. in computational geometry, optimization, algebraic geometry, topology,
etc. One main tool to understand the structural behavior of triangulations of finite point sets
is the theory of secondary polytopes invented by GEL’ FAND, KAPRANOV and ZELEVINSKY

([GKZ1994]). We will describe how this theory is related to VORONÖI ’ S reduction theory. We
will find out that despite of different set-ups there are many similarities.

LetA = {a1, . . . ,an} ⊆ Rd be a finite set of points. Letw : A → R be a map that assigns to
every point inA a weight. The set of weight maps forms a vector space overR which we denote
by RA. A lifting map l : A → R

d × R, l(ai) = (ai, w(ai)) is defined byw which lifts each
pointai ∈ A on its weightw(ai). A subdivision of the convex polytopeconvA is induced byl:
We take the convex hull of the lifted pointsconv l(A) and project its lower faces as seen from
(0,−∞) back down ontoRd. A subdivision that can be obtained in this manner is calledregular
subdivision. Delone subdivisions (or more precisely Delone subdivisions of finitely many points)
are regular subdivisions since the positive semidefinite quadratic form can be used as the weight
function. We saw this already in Section 2.1.

Let T be a regular triangulation ofconvA. We may ask what are the weight functions which
defineT . What is thesecondary coneof T in the parameter spaceRA? Like in VORONÖI ’s
reduction theory it turns out that the secondary cone ofT is a full-dimensional open polyhe-
dral cone. The topological closures of the secondary cones of all regular triangulations tiles the
spaceRA face-to-face. The tiling is calledsecondary fanof A. If two secondary cones have a
facet in common, then the corresponding regular triangulations differ by a bistellar operation in
exactly one “repartitioning polytope” (in this context it is a polytope withd+ 2 vertices without
the condition of being a Delone polytope) that is defined by the facet. The faces in the secondary
fanA are in a one-to-one correspondence to regular subdivisions in the essentially the same way
we discussed in Section 2.6 for Delone subdivisions.

So far we have seen that the theory of regular subdivisions of finite point sets and the theory
of Delone subdivisions of the latticeZd can be analogously developed. But there are differences.
The parameter spaces are of completely different natures. For regular subdivisions it is the vector
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spaceRA and for Delone subdivisions we have the pointed coneSd≥0. Groups play an important
role for Delone subdivisions. The groupZd is acting on Delone subdivisions by translations. On
the set of secondary cones the groupGLd(Z) is acting.

If we order all regular subdivisions ofconvA by refinement we get a poset. This poset has
a very nice combinatorially structure as proved by GEL’ FAND, KAPRANOV and ZELEVINSKY:
There exists a polytope — thesecondary polytopeΣ(A) of A — whose normal fan equals the
secondary fan ofA. So the refinement poset is anti-isomorphic to the face lattice of the secondary
polytope. Regular triangulations are in one-to-one correspondence to the vertices, two regular
triangulations differ by a bistellar operation if and only if their vertices are connected by an edge,
etc. We do not know if there is a similar geometrical or combinatorial structure lurking behind
the refinement poset of Delone subdivisions.

Question 2.7.1.Does there exist something similar to the secondary polytope for Delone subdi-
visions?

In Chapter 4 we will compute the complete refinement poset for the2, 3 and4-dimensional
cases. Before attacking this challenging question the interested reader might find it helpful to
consult some literature. There exists a vast amount of literature on triangulations and related
topics. We can only provide some hopefully useful starting points: The construction of the
secondary polytope can be best understood in the more general set-up of “fiber polytopes” by
BILLERA and STURMFELS ([BS1992], see also Lecture 9 in [Zie1995]). In [San2002] SAN-
TOS investigates the combinatorial structure of triangulations in a framework provided by ori-
ented matroids. People with a background in algebraic geometry might benefit from the work of
ASH, MUMFORD, RAPOPORT, TAI [AMRT1975], the more elementary accounts of NAMIKAWA

[Nam1976], [Nam1980] where VORONÖI ’s reduction theory is a central issue. Finally, the recent
work of ALEXEEV [Ale2002] seems to be very relevant.

GEL’ FAND, KAPRANOV and ZELEVINSKY show a possible direction of research in the intro-
duction of their book [GKZ1994]: “A triangulation of a polytopeQ can be viewed as a discrete
analog of a Riemannian metric onQ. So Σ(A) can be seen as a kind of combinatorial Te-
ichmüller space parameterizing such metrics. This reminds us of the work of PENNER [Pen1993]
who constructed a combinatorial model of the Teichmüller space of a Riemann surface in terms
of curvilinear triangulations”.
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Parallelohedra

In the last chapter we studied Delone subdivisions. In this chapter we study tilings dual to Delone
subdivisions. A parallelohedron is a polytope which admits a face-to-face tiling of the surround-
ing space by lattice translates. The maximal-dimensional cells of the dual tiling of a Delone
subdivision are parallelohedra. They are called Dirichlet-Voronoi polytopes and can alternatively
be defined as follows: a Dirichlet-Voronoi polytope contains all those points that are closer to the
origin than to any other lattice point. It is a conjecture which goes back to VORONÖI that the class
of parallelohedra is exactly the class of Dirichlet-Voronoi polytopes. We give a computational
criterion to check whether a given parallelohedron can be represented as a Dirichlet-Voronoi
polytope.

We will explore the duality between Delone subdivisions and tilings by Dirichlet-Voronoi
polytopes further. One central question is: How does the Dirichlet-Voronoi polytope vary if we
vary the positive semidefinite quadratic form? We will see that this variation is linear in secondary
cones of Delone triangulations and piecewise linear in the cone of positive semidefinite quadratic
forms. CONWAY and SLOANE defined “vonorms” and “conorms” to parameterize this variation.
Our results will give a clear picture of this parameterization.

Consider a Delone triangulationD. A positive semidefinite quadratic form is calledrigid if
it defines an extreme ray of the secondary cone∆(D). Rigid forms are building blocks for
Dirichlet-Voronoi polytopes: Every Dirichlet-Voronoi polytope is a Minkowski sum of rigid
Dirichlet-Voronoi polytopes. Up to dimension4 all these building blocks are well-known poly-
topes: only one-dimensional line segments and the four-dimensional24-cell occur. Starting with
dimension5 the structure of rigid Dirichlet-Voronoi polytopes is getting more rich and more
complicated.

If the secondary cone of a Delone subdivision is bounded by positive semidefinite quadratic
forms of rank1 only, then the corresponding Dirichlet-Voronoi polytopes are zonotopes. We will
give a complete theory for zonotopal lattice tilings. The combinatorial theory of zonotopal lattice
tilings is equivalent to the theory of regular oriented matroids.

3.1. Definition and Basic Properties

LetV be ad-dimensional real vector space. A parallelohedronP ⊆ V is a polytope which admits
a face-to-face tiling of the spaceV by translates. In this section we give another characterization
of parallelohedra which can be used to decide whether a given polytope is a parallelohedron.
This characterization was independently found by VENKOV ([Ven1954]) and by MCMULLEN

([McM1980]).
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Definition 3.1.1. A d-dimensional polytopeP ⊆ V is calledparallelohedronif it tiles V by
translates, i.e. if there is a setL ⊆ V such that

i) V =
⋃
v∈L(P + v),

ii) for all v,w ∈ L the intersection(P +v)∩(P +w) is a common face ofP +v andP +w.

M INKOWSKI was the first who discovered some structural properties of parallelohedra. In
[Min1897] he proves that every parallelohedron is centrally symmetric, has centrally symmetric
facets and that everyd-dimensional parallelohedron has not more than2(2d − 1) facets. In this
context it is interesting that SHEPHARD showed (see [McM1976]) that ad-dimensional polytope
(d ≥ 3) is centrally symmetric whenever all its facets are centrally symmetric. Notice that not
every face of a parallelohedron has to be centrally symmetric. For instance, the four-dimensional
24-cell is a parallelohedron, its24 facets are octahedra, and the two-dimensional faces are trian-
gles.

The only two-dimensional parallelohedra are centrally symmetric quadrangles and centrally
symmetric hexagons. We can exploit this fact by projecting along the right(d− 2)-dimensional
faces to get more structural insights into higher-dimensional parallelohedra.

Definition 3.1.2. LetP be a polytope. Abeltof P is a sequence of distinct facets(F0, . . . , Fk−1)
of P such thatFi∩Fi+1 (we compute modulok) is a(d−2)-dimensional face which is a translate
of F0 ∩ F1.

Each belt of a parallelohedron has length4 or length6: We project a parallelohedron along
a (d − 2)-dimensional face of a belt onto the two-dimensional subspace that is generated by
the corresponding facet centers. This gives us a new parallelohedron in two dimensions. If it
is a quadrangle we have a belt of length4, if it is a hexagon we have a belt of length6. It is
astonishing and the proof is quite involved that the converse is also true.

Theorem 3.1.3.(VENKOV [Ven1954], MCMULLEN [McM1980])
A polytope is a parallelohedron if and only if it is a centrally symmetric polytope with centrally
symmetric facets such that each belt contains either4 or 6 facets. Furthermore, we can assume
that the set of translates forms a lattice.

3.2. VORONOÏ’s Conjecture

Let L ⊆ V be a lattice and let(·, ·) : V × V → R be an inner product. TheDirichlet-Voronoi
polytopeof the lattice(L, (·, ·)) is given by

DV(L, (·, ·)) := {x ∈ V : for all v ∈ L we havedist(x,0) ≤ dist(x,v)}.

Dirichlet-Voronoi polytopes of lattices are parallelohedra. The translatesDV(L, (·, ·)) + v,
v ∈ L, give a face-to-face tiling ofV . VORONÖI conjectured that all parallelohedra are Dirichlet-
Voronoi polytopes of lattices.

Conjecture 3.2.1. (VORONÖI ’s Conjecture)
For every parallelohedronP ⊆ V there is a latticeL ⊆ V and an inner product(·, ·) : V ×V → R

such that the Dirichlet-Voronoi polytope of(L, (·, ·)) is a translate ofP .

In [Vor1908] he proves this conjecture for primitive parallelohedra (see below). He writes that
he cannot prove it for imprimitive parallelohedra although he believes that the conjecture is
true in these cases. Originally he writes in his second monographNouvelles applications des
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param̀etres continus̀a la théorie des formes quadratiques, Deuxième Ḿemoire, Recherches sur
les paralĺelloèdres primitifs, Journal für die reine und angewandte Mathematik 134(1908), pages
210–211:

On peut envisager le problème de partition uniforme de l’espace kanalytique
à n dimension par de polỳedres convexes congruents indépendamment de la
théorie des formes quadratiques.

En appelent paralléloèdre chaque polỳedre convexe qui jouit de la propriét́e I,
je démontre le remarquable théor̀eme suivant.

En effectuant toutes les transformations linéaires possibles a l’aide du groupe
continu de substitutions

xi = ai +
n∑
k=1

αix
′
k (i = 1, 2, . . . n)

à coefficients ŕeels quelconques d’un parralléloèdre primitif, on obtient un
esemble de paralléloèdres primtifs qui est parfaitement détermińe par une
classe de formes quadratiques positiveséquivalentes,́a condition qu’on ne
consid̀ere pas comme différentes les formes quadratiquesá coefficients pro-
portionels.

En vertu de ce th́eor̀eme, le probl̀eme de partition uniforme de l’espaceà n
dimensions par de paralléloèdres primitifs congruents se ramène toujours̀a
l’ étude des paralléloèdres primitifs correspondant aux formes quadratiques po-
sitives.

Je suis port é à croire, sans pouvoir le d émontrer, que le th éor ème
énonc é est aussi vrai pour les parall élo èdres imprimitifs.

Currently the conjecture has only been proved in special cases.

Primitive parallelohedra: In [Vor1908] VORONÖI, as he mentions above, proves the conjecture
for primitive parallelohedra. These ared-dimensional parallelohedra where in each vertex
of the tiling exactly the minimal number ofd+ 1 parallelohedra meet. In this case the dual
tiling consists only of simplices. This fact also characterizes primitive parallelohedra. In
[Zhi1929] ZHITOMIRSKII relaxes the condition of primitivity. He shows that the conjec-
ture is true for tilings of parallelohedra where in the dual tiling each two-dimensional face
is a triangle (equivalently the considered parallelohedron has only belts of length6).

Low dimensions: In [Del1929] DELONE shows that the conjecture is true in dimensions up to4.
STOGRIN indicates an alternative proof in [Sto1973]. In Chapter 4 we will classify all
these parallelohedra.

Zonotopal parallelohedra:ERDAHL proves in [Erd1999] that every zonotope which tiles space
by translates is a Dirichlet-Voronoi polytope. COXETER in [Cox1962], SHEPHARD in
[She1974] and MCMULLEN in [McM1975] already anticipated a proof. In [Val2000]
another proof is given where the connection to oriented matroids is emphasized. In Chapter
3.5 we present the theory of zonotopal parallelohedra.

In what follows we only deal with parallelohedra that are given by Dirichlet-Voronoi poly-
topes of lattices. But if one runs into a parallelohedron that is not apriori given as a Dirichlet-
Voronoi polytope, then one might want to test if it can be represented as a Dirichlet-Voronoi
polytope. By studying VORONÖI ’s proof for primitive parallelohedra (one can benefit from the
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presentation in [GL1987]) we can extract the following proposition which yields a computational
criterion afterwards.

Proposition 3.2.2. Let P ⊆ V be a parallelohedron whose facet centers arev1, . . . ,v2n. The
parallelohedron is the Dirichlet-Voronoi polytope of a lattice if and only if there exist linear
functionsf1, . . . , f2n ∈ V ∗ so that the following conditions hold:

i) P =
⋂2n
i=1{x ∈ V : fi(x) ≤ fi(vi)},

ii) fi = −fn+i, i = 1, . . . , n,

iii) for every 6-belt (Fi,−Fj , Fk,−Fi, Fj ,−Fk) we havefi + fj + fk = 0, i.e. all6-belts are
balanced.

Before proving this proposition we describe how it can be used as a computational criterion:
Let P =

⋂2n
i=1{x ∈ V : gi(x) ≤ αi} be a parallelohedron given by supporting hyperplanes. By

scalinggi and reordering we can assume thatαi = gi(vi) andgi = −gn+i. The third condition
is satisfied if the polyhedron

{β ∈ R2n
≥0 : βigi + βjgj + βkgk = 0 for every6-belt (Fi,−Fj , Fk,−Fi, Fj ,−Fk)}

has an interior point, which we can decide by linear programming.

Since we do not need Proposition 3.2.2 later we only sketch a proof. An extensive account to
this and related themes is given by RYBNIKOV in [Ryb1999] where he works out the relationship
between Dirichlet-Voronoi polytopes and the theory of stresses and liftings (extending work of
CRAPO and WHITELEY on the so-called Maxwell-Cremona theory. RYBNIKOV writes: “The
problem of determining whether a given tiling of the Euclidean space can be obtained as the
projection of a convex surface has two origins – MAXWELL ’s correspondence in rigidity theory
and VORONÖI ’s generatrice in geometry of numbers and mathematical crystallography.”).

Proof. (Sketch)
If P is the Dirichlet-Voronoi polytope of a lattice, we haveP = DV(L, (·, ·)), then it is straight-
forward to show thatP satisfies the three conditions. We simply use the linear functionsfi(·) =
(vi, ·), i = 1, . . . , 2n.

Let us look at the other implication. By Theorem 3.1.3 there exists a latticeL so that the
family (P + v)v∈L is a lattice tiling. On the set of lattice points we define an infinite graph
whose vertices are the lattice points. Two verticesv andw are connected by an edge if the
corresponding parallelohedraP + v andP +w share a common facet. This graph will turn out
to be the1-skeleton of the dual Delone subdivision and we will try to find a proper lifting of this
graph.

We define a functionQ : L → R which simulates a positive definite quadratic form: Let
w1, . . . ,w2n be the lattice vectors so thatP ∩ (P +wi) is a common facet ofP andP + wi.
Then we setQ[0] = 0 andQ[v +wi] = Q[v] + fi(2v +wi), v ∈ L. Since we definedQ only
according to neighbouring relations we have to check whetherQ is well-defined, i.e. do different
paths form0 to v always lead to the same valueQ[v]? We prove this by using a technique from
combinatorial topology (“elementary homotopies”, see [Bjö1995]): Every two paths from0 to
v can be deformed into each other using only triangles and squares. Triangles belong to6-belts
which are balanced by condition (iii) and this implies thatQ is well-defined on triangles. Squares
belong to4-belt which are balanced because of the central symmetry ofP andP ’s facets and this
implies thatQ is well-defined on squares.
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Then one has to show thatQ is a positive definite quadratic form. This can be done by
showing thatQ has an associated inner productsQ(x,y) = (xt)Qy. The bilinearity ofsQ
follows directly from the definition ofQ. The symmetry is a consequence of the central symmetry
of P andP ’s facets. The positive definiteness is a consequence of the boundedness ofP . The
last step of the proof is to show thatP = DV(L, sQ) which at that point is straightforward. �

3.3. Duality

Delone subdivisions are dual to tilings of Dirichlet-Voronoi polytopes. In this section we will
explore this duality. After defining Dirichlet-Voronoi polytopes for quadratic forms we will give
an upper bound theorem, a characterization of the facets and the important structural insight that
Dirichlet-Voronoi polytopes behave linearly in secondary cones of Delone triangulations.

3.3.1. Definition

We already defined Dirichlet-Voronoi polytopes for lattices in the previous section. The following
definition of Dirichlet-Voronoi polytopes for positive definite quadratic forms emphasizes their
duality to the cells in the Delone subdivision; although it is not a direct translation of the definition
for lattices. At the end of this section we list the main advantages of this definition.

Definition 3.3.1. LetQ ∈ Sd>0 be a positive definite quadratic form. LetL = conv{v1,v2, . . .}
be a Delone polyhedron ofQ. We define theDirichlet-Voronoi polytopeofQ corresponding toL
by

DV(Q,L) = {xtQ ∈ (Rd)∗ : for v ∈ Zd, i ∈ {1, 2, . . .} we havedist(x,vi) ≤ dist(x,v)}.

We also can use the definition for positive semidefinite quadratic forms which are arithmeti-
cally equivalent to

(
0 0
0 Q′

)
whereQ′ is positive definite. For instance, let us consider again the

positive semidefinite quadratic form of the matrix( 0 0
0 1 ). The Dirichlet-Voronoi polytope corre-

sponding to the one-dimensional Delone polyhedronconv{v+ ( x0 ) : x ∈ Z} is the line segment
conv{(0, v2 + 1/2), (0, v2 − 1/2)}, and the one corresponding to the two-dimensional Delone
polyhedronconv{v + ( x0 ) ,v + ( x1 ) : x ∈ Z} is the point{(0, v2 + 1/2)}.

The following proposition states the duality relationship between the two tilings. Its proof is
straightforward.

Proposition 3.3.2. LetQ ∈ Sd≥0 be a positive semidefinite quadratic form with Delone subdivi-
sionDel(Q).

i) Let L,L′ ∈ Del(Q) Delone polyhedra ofQ. L is a face ofL′ if and only if DV(Q,L′) is
a face ofDV(Q,L).

ii) For every Delone polyhedronL ∈ Del(Q) we havedimL+ dim DV(Q,L) = d.

Definition 3.3.1 is due to NAMIKAWA ([Nam1976]). It has three important features:

i) The facet normals only depend on the Delone triangulationD and not on the positive
definite quadratic form.

ii) Dirichlet-Voronoi polytopes are always bounded polytopes, even in the semidefinite case.

iii) The Dirichlet-Voronoi polytope of a positive definite quadratic formQ corresponding to
the cell{0} and the one of an associated lattice(Zd, sQ), sQ(x,y) = xtQy, are affinely
isomorphic because

DV(Q, {0}) = (QDV(Zd, sQ(·, ·))t.
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3.3.2. Upper Bound Theorem

Using duality we easily get an upper bound for the number of vertices ofd-dimensional Dirichlet-
Voronoi polytopes: LetQ be a positive definite quadratic form whose Delone subdivision is
a triangulation. By duality every vertex ofDV(Q, {0}) is given by ad-dimensional Delone
simplex. The vertices of a Delone polytope belong to the latticeZ

d, so the volume of ad-
dimensional Delone polytope is at least1/d!. Because every fundamental domain ofZ

d has unit
volume, there are at mostd! vertices ofDV(Q, {0}) that are not translates of each other. Ifv is a
vertex ofDV(Q, {0}), then there exists a Delone simplexL = conv{0,v1, . . . ,vd} definingv.
Thed Delone simplicesL − vi, i = 1, . . . , d, define vertices ofDV(Q, {0}) that are translates
of v. Thus,DV(Q, {0}) has at most(d + 1)! vertices. This upper bound holds also for positive
definite quadratic forms whose Delone subdivision is no triangulation because they are limits of
triangulations.

In [Vor1908],§63–§68,§101, VORONÖI refines this observation to get an upper bound theo-
rem for Dirichlet-Voronoi polytopes. The Dirichlet-Voronoi polytope of VORONÖI ’s principal
form of the first type is a permutahedron. The number ofk-dimensional faces of ad-dim-
ensional permutahedron is(d − k + 1)!

{
d+1

d−k+1

}
where

{
d
k

}
are the Stirling numbers of the

second kind (the number ofk-element partitions of ad-element set). The permutahedron is
an extreme Dirichlet-Voronoi polytope, nod-dimensional Dirichlet-Voronoi polytope has more
k-dimensional faces.

d f0 f1 f2 f3 f4 f5 f6 f7
1 2 1
2 6 6 1
3 24 36 14 1
4 120 240 150 30 1
5 720 1, 800 1, 560 540 62 1
6 5, 040 15, 120 16, 800 8, 400 1, 806 126 1
7 40, 320 141, 120 191, 520 126, 000 40, 824 5, 796 254 1

Table 3.1. Extremef -Vectors ofd-Dimensional Dirichlet-Voronoi Polytopes.

3.3.3. Voronoi Vectors, Supporting Hyperplanes, and Facets

In this short section we want to characterize the facets of a Dirichlet-Voronoi polytope.

Definition 3.3.3. Let Q ∈ Sd≥0 be a positive semidefinite quadratic form with Delone subdivi-
sionDel(Q). A vectorv ∈ Zd is calledVoronoi vectorif the affine hyperplane

HQ,v = {y ∈ (Rd)∗ : yv =
1
2
vtQv} = {xtQ : dist(x,0) = dist(x,v)}

is a supporting hyperplane ofDV(Q, {0}).

Voronoi vectors are the shortest vectors in the cosetsZ
d/2Zd, more precisely:

Proposition 3.3.4. (Characterization of Voronoi Vectors)
Let Q ∈ Sd≥0 be a positive semidefinite quadratic form with Delone subdivisionDel(Q). A
vectorv ∈ Zd\{0} is a Voronoi vector if and only if it is a shortest vector (we use the seminorm
defined byQ) in the cosetv + 2Zd. The hyperplaneHQ,v defines a facet ofDV(Q, {0}) if and
only if ±v are the only shortest vectors in the cosetv + 2Zd.
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A proof of this characterization is not difficult and one can find it e.g. in [Vor1908], or in
[CS1992].

We illustrate this proposition in Figure 3.1 for the positive definite quadratic formQ = ( 1 0
0 1 ).

Here the Voronoi vectors are(±1, 0)t, (0,±1)t, and(±1,±1)t and only the four vectors(±1, 0),
(0,±1) define facet defining hyperplane.

(0,0)(-1,0)(-2,0) (1,0) (2,0)

(0,-1)(-1,-1)(-2,-1) (1,-1) (2,-1)

(0,1)(-1,1)(-2,1) (1,1) (2,1)

Figure 3.1. Voronoi Vectors of( 1 0
0 1 ).

3.3.4. Linearity and Rigidity

Now we show that Dirichlet-Voronoi polytopes behave linearly in the topological closure of the
secondary cone of a Delone triangulation. This is a major structural insight with many conse-
quences and applications.

Proposition 3.3.5. Let D be a Delone triangulation. For positive semidefinite quadratic forms
Q1, . . . , Qn ∈∆(D) and non-negative numbersα1, . . . , αn we have

DV(
n∑
i=1

αiQi, {0}) =
n∑
i=1

αi DV(Qi, {0}).

Proof. It suffices to consider only two summandsQ1 andQ2. From Proposition 2.6.1 we con-
clude that all positive semidefinite quadratic forms in∆(D) have the same set of Voronoi vectors.
We defined Dirichlet-Voronoi polytopes in such a way that the facet normals are Voronoi vectors,
and so that they only depend onD. The support function of polytopes respects Minkowski sums.
ForQ1, Q2 ∈∆(D) and a Voronoi vectorv of Q1 andQ2 we have

HQ1+Q2,v = HQ1,v +HQ2,v.

This shows that every facet ofDV(Q1+Q2, {0}) is the Minkowski sum of faces ofDV(Q1, {0})
andDV(Q2, {0}). �

This proposition is extremely useful. It shows that and how we get all Dirichlet-Voronoi
polytopes by summing up Dirichlet-Voronoi polytopes of semidefinite quadratic forms belong-
ing to extreme rays of secondary cones. We consider all those positive semidefinite quadratic
formsQ1, . . . , Qn that belong to the extreme rays of the secondary cone of the Delone triangu-
lationD. Proposition 3.3.5 says thatDV(Qi, {0}), i = 1, . . . , n, arethebuilding blocks of all
Dirichlet-Voronoi polytopes belonging to quadratic forms lying in∆(D): EveryQ ∈∆(D) can
be written as a non-negative linear combination of theQi’s (we haveQ =

∑n
i=1 αiQi, αi ≥ 0)

and by Proposition 3.3.5 the Dirichlet-Voronoi polytope can be written in exactly the same way
by taking weighted Minkowski sums (we haveDV(

∑n
i=1 αiQi, {0}) =

∑n
i=1 αi DV(Qi, {0})).
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In case that we know all non-equivalent extreme rays of a given dimension, we can generate
all Dirichlet-Voronoi polytopes by taking Minkowski sums. We will use this fact to classify
Dirichlet-Voronoi polytopes in dimensions up to4 in the next chapter.

All these considerations lead to the definition of rigid forms respectively to rigid lattices.

Definition 3.3.6. Let Q be a positive definite quadratic form. The dimension of the secondary
cone of its Delone subdivision is callednon-rigidity degreeof Q. If the non-rigidity degree ofQ
equals1, we sayQ is rigid.

Since the definition above does not depend on the choice ofQ in the class of arithmetically
equivalent positive definite quadratic forms this defines “non-rigidity degree” and “rigidity” also
for lattices. In the next chapter we will see that the only rigid lattices in dimensionsd ≤ 4 are
the one-dimensional latticeZ1 whose Dirichlet-Voronoi polytope is a line segment and the four-
dimensional latticeD4 whose Dirichlet-Voronoi polytope is the24-cell. A lattice is rigid if and
only if its Dirichlet-Voronoi polytope cannot be written as a non-trivial Minkowski sum of two
Dirichlet-Voronoi polytopes.

BARANOVSKII and GRISHUKHIN were the first who studied rigid positive definite quadratic
forms. The main result of their article [BG2001] is a formula for the computation of the non-
rigidity degree. The moral of its proof is that every affine dependency between the vertices of a
Delone polytope gives a linear dependency between the entries of the matrixQ.

Proposition 3.3.7. LetQ be a positive definite quadratic form. The non-rigidity degree ofQ is
given by d(d+1)

2 − dimS(Q), whereS(Q) is the subspace ofSd that is defined by

S(Q) :=

〈
Q′ ∈ Sd :

∑n
i=2 αiQ

′[v1 − vi] = 0,
whereL = conv{v1, . . . ,vn} is a Delone polytope ofQ,∑n

i=1 αivi = 0 is a minimal affine dependency


〉
R

.

Furthermore, the linear span of∆(Del(Q)) equalsS(Q).

We think that it is important to find a good, i.e. structural, characterization of rigid positive
definite quadratic forms. This proposition is only a first step.

Similar questions have been studied in other settings. If we formulate the question of being
rigid for Delone subdivisions, then a Delone subdivisionD belongs to a rigid positive definite
quadratic form if there is no Delone subdivision coarser thanD. In the theory of regular triangu-
lations and secondary polytopes these coarsest subdivisions are in1-to-1 correspondence to the
facets of the secondary polytope. But also in this setting no structural characterization is known
although there has been some progress (see [BGS1993], and the more recent [San2001]).

3.4. Vonorms and Conorms

CONWAY and SLOANE introduce “vonorms” and “conorms” in [CS1992] for lattices. We ex-
tend their definitions to positive semidefinite quadratic forms. This gives us the opportunity to
understand the basic properties of vonorms and conorms better. The main result of this section
is that vonorms and conorms are piecewise linear functions in the cone of positive semidefinite
quadratic forms. CONWAY and SLOANE conjecture that the vonorms and conorms of a lattice
characterize the lattice uniquely. Our main result enables us to show that this is locally true and
it enables us to check this conjecture in every given dimension algorithmically.

The vonorm map of a positive semidefinite quadratic formQ assigns to a cosetv + 2Zd

the squared norm of the shortest lattice vector in this coset. The definition is motivated by the
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characterization of Voronoi vectors in Proposition 3.3.4 where we stated that every shortest lattice
vector in a cosetv + 2Zd defines a supporting hyperplane ofDV(Q, {0}).

Definition 3.4.1. LetQ ∈ Sd≥0 be a positive semidefinite quadratic form. We define thevonorm
mapvoQ : Zd/2Zd → R as follows: For a cosetv + 2Zd ∈ Zd/2Zd we set

voQ(v + 2Zd) = min{Q[w] : w ∈ v + 2Zd}.

Let χ : Zd/2Zd → {±1} be a group homomorphism (a character of the groupZ
d/2Zd). We

define theconorm mapof Q by

coQ(χ) = − 1
2d−1

∑
v+2Zd∈Zd/2Zd

χ(v + 2Zd) voQ(v + 2Zd).

The conorm map is, apart from the scale factor− 1
2d−1 , the discrete Fourier transform of the

vonorm map. The vonorm map can be reconstructed from the conorm map by

voQ(v + 2Zd) =
∑

χ:χ(v+2Zd)=−1

coQ(χ).

This is an immediate corollary of the inversion formula for discrete Fourier transforms. For all
v+2Zd which are subsets of the totally isotropic subspaceQ−1[{0}] we havevoQ(v+2Zd) = 0.

In explicit calculations it is convenient to identify thed-dimensional vector space of group
homomorphisms{χ : Zd/2Zd → {±1}} with the space of binary row vectorsFd2 using the
canonical isomorphism. For convenience and future reference we explicitly define this canonical
isomorphism.

Let χ : Zd/2Zd → {±1} be a group homomorphism and letei be thei-th unit vector. Then
we identifyχ with x = (x1, . . . , xd) ∈ Fd2 componentwise by

xi =
{

0, if χ(ei + 2Zd) = +1
1, if χ(ei + 2Zd) = −1

Conversely, letx = (x1, . . . , xd) ∈ Fd2 be a binary vector. Then we identifyx with the group
homomorphismχ : Zd/2Zd → {±1} by

χ((v1, . . . , vd)+2Zd) = f(v1)·f(v2) · · · f(vd), wheref(vi) =
{
−1, if vi is odd andxi = 1

1, otherwise

For instance, the vector(1, 1) ∈ F2
2 gives the group homomorphismχ : Z2/2Z2 → {±1}

χ((0, 0)t + 2Z2) = 1 · 1 = 1
χ((0, 1)t + 2Z2) = 1 · (−1) = −1

χ((1, 0)t + 2Z2) = (−1) · 1 = −1
χ((1, 1)t + 2Z2) = (−1) · (−1) = 1.

Example 3.4.2. Let us compute the vonorm map and the conorm map ofQ = ( 1 0
0 1 ) whose

geometry is illustrated in Figure 3.1. Its vonorm map is given by

voQ((0, 0)t + 2Z2) = 0
voQ((0, 1)t + 2Z2) = 1

voQ((1, 0)t + 2Z2) = 1
voQ((1, 1)t + 2Z2) = 2,
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and its conorm map is given by the formula

coQ(χ) = −1
2
(
χ((0, 0)t + 2Z2) voQ((0, 0)t + 2Z2)

+ χ((0, 1)t + 2Z2) voQ((0, 1)t + 2Z2)

+ χ((1, 0))t + 2Z2) voQ((1, 0)t + 2Z2)

+χ((1, 1)t + 2Z2) voQ((1, 1)t + 2Z2)
)
,

and by the values (here we used the identification we defined above)

coQ(0, 0) = −1
2(0 + 1 + 1 + 2) = −2

coQ(0, 1) = −1
2(0− 1 + 1− 2) = 1

coQ(1, 0) = −1
2(0 + 1− 1− 2) = 1

coQ(1, 1) = −1
2(0− 1− 1 + 2) = 0.

In [CS1992] CONWAY and SLOANE state that the conorm map varies continuously with the
lattice and that this is one of its most useful properties (other useful properties are: the conorm
map is an invariant of the lattice, and all symmetries of the lattice arise from symmetries of the
conorm map). Here, we will turn this qualitative statement into a quantitative one.

Proposition 3.4.3. The vonorm map and the conorm map are piecewise linear maps if we view
them as maps fromSd≥0 to R2d . Let D be a Delone triangulation,Q1, . . . , Qn ∈ ∆(D),
andα1, . . . , αn ∈ R≥0. Then we have for allv ∈ Z

d and for all group homomorphisms
χ : Zd/2Zd → {±1}

vo∑n
i=1 αiQi

(v + 2Zd) =
n∑
i=1

αi voQi(v + 2Zd)

co∑n
i=1 αiQi

(χ) =
n∑
i=1

αi coQi(χ).

Proof. LetD be a Delone triangulation, andQ,Q′ ∈∆(D). Then, the Voronoi vectors ofQ and
Q′ coincide. For a Voronoi vectorv and non-negative numbersα, α′ we have

(αQ+ α′Q′)[v] = αQ[v] + α′Q′[v].

Hence,
voαQ+α′Q′(v + 2Zd) = α voQ(v + 2Zd) + α′ voQ′(v + 2Zd),

and the conorm map inherits this linearity. �

CONWAY and SLOANE conjecture that the vonorm map characterizes a lattice.

Conjecture 3.4.4. (CONWAY & SLOANE, [CS1992])
LetQ,Q′ be positive semidefinite quadratic forms. If their vonorm maps coincide, i.e. if we have
voQ = voQ′ , thenQ andQ′ are arithmetically equivalent.

Now we show by an easy argument that this conjecture is locally true. LetD be a Delone
triangulation. LetQ, Q′, Q 6=′ Q, be two positive semidefinite quadratic forms lying in∆(D).
Assume that they have the same vonorm map. As a result of Proposition 3.4.3 the vonorm maps
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of all forms in the segment[Q,Q′] coincide. This cannot happen because infinitesimally changes
of a positive semidefinite quadratic form changes the vonorm map.

Together with VORONÖI ’s reduction theory the preceding considerations provide an algo-
rithm which proves or disproves the conjecture of CONWAY and SLOANE in every given di-
mensiond. For two non-equivalent secondary cones ofd-dimensional Delone triangulations
∆ and∆′ we compute the extreme rays∆ = cone{Q1, . . . , Qn}, ∆′ = cone{Q′1, . . . , Q′n′}
and their vonorms. Then we check whether solutions of the system of the2d + n + n′ linear
(in-)equalities

n∑
i=1

αi voQi(v) =
n′∑
j=1

α′j voQ′j (v), v ∈ {0, 1}d,

αi ≥ 0, i = 1, . . . , n,
α′j ≥ 0, j = 1, . . . , n′,

that depends on the parametersαi, α′j defines only arithmetically equivalent boundaries of the

secondary cones∆ and∆′. The conjecture is true if and only if for all pairs of non-equivalent
secondary cones this is the case. In Chapter 4.4 we will use this approach to give a proof of
the conjecture ford = 4 (in [CS1992] CONWAY and SLOANE state that the conjecture is true in
dimensionsd ≤ 4 without providing a proof). Trivially (since there is only one non-equivalent
secondary cone), the conjecture is true in the two-dimensional and in the three-dimensional case.

3.5. Zonotopal Parallelohedra

In this section we study zonotopal parallelohedra. For zonotopal parallelohedra VORONÖI ’s
conjecture holds (see [Erd1999]). So we concentrate our attention on lattices whose Dirichlet-
Voronoi polytopes are zonotopes. The methods we present here can also be used to give a proof
of VORONÖI ’s conjecture for zonotopes (see [Val2000]). We provide a link between the theory
of (regular) oriented matroids and the theory of lattices whose Dirichlet-Voronoi polytope is a
zonotope. The main advantage of this approach is the strict separation between combinatorial and
metrical data. This approach was initiated by GERRITZEN [Ger1982] and LOESCH[Loe1990].

We suggest that readers who are familiar with the theory of oriented matroids and the tran-
sitions between oriented matroids, zonotopes, graphs and hyperplane arrangements should only
browse through this section. We use the usual connections and we only interlace the definition of
zonotopal lattices into the framework of oriented matroid theory. It will suffice to understand that
we can get Dirichlet-Voronoi polytopes of cographical lattices from the permutahedron by delet-
ing edges and that there is exactly one four-dimensional Dirichlet-Voronoi zonotope, namely the
one of the graphical latticeLK3,3 , that does not originate from the permutahedron.

And we suggest that all other readers should just read happily ahead.

3.5.1. Definition and Basic Properties

LetE be a finite set. Let(RE , (·, ·)) be a Euclidean space where the standard basis vectors form
an orthogonal basis (but not necessarily an orthonormal basis). LetL ⊆ ZE be a lattice and let
v ∈ L be a lattice vector. Thesupportof v is v := {e ∈ E : ve 6= 0}. A lattice vectorv is
calledelementaryif v ∈ {−1, 0,+1}E\{0} and if v has minimal support. Two lattice vectors
v,w are calledconformalif ve · we ≥ 0 for all e ∈ E. A latticeL is calledzonotopalif every
lattice vector ofL can be written as a sum of pairwise conformal elementary lattice vectors. The
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definition is highly motivated by TUTTE’s theory of regular chain groups. In [Tut1971] one finds
proofs of all our statements not involving the Euclidean structure. Statements that depend on the
Euclidean structure are proved e.g. in [Val2000].

WhenL ⊆ ZE is a zonotopal lattice, the set of elementary vectors are cocircuits of an ori-
ented matroid. We denote this oriented matroid byM(L). It is a regular oriented matroid. Con-
versely, for every regular oriented matroidM there is a zonotopal latticeL withM = M(L).
Let us translate the oriented matroid operations “dualization”, “contraction” and “deletion” into
the language of zonotopal lattices. LetA be a subset ofE. For a lattice vectorv ∈ ZE we define
the restrictionv|A ∈ ZA by (v|A)e = ve for e ∈ A. Let S be a subset ofE. We define the
zonotopal dualof L, thecontractionL/S, and thedeletionL\S by

L⊥ = {v ∈ ZE : we have
∑

e∈E vewe = 0 for allw ∈ L}
L/S = {v|E\S : v ∈ L andv ∩ S = ∅}
L\S = {v|E\S : v ∈ L}.

The class of zonotopal lattices is closed under these operations. For the corresponding regular
oriented matroids we have

M(L⊥) =M∗(L), M(L/S) =M(L)/S, M(L\S) =M(L)\S.

Let L be a zonotopal lattice. A lattice obtained fromL by a sequence of deletions and contrac-
tions is calledminor of L.

The Dirichlet-Voronoi polytope ofL is a zonotope because we have

DV(L, (·, ·)) = π(DV(ZE , (·, ·))) = π
(
[−1/2, 1/2]E

)
whereπ is the orthogonal projection ofRE onto the linear subspace spanned byL. In Figure 3.2
the caseL = Z(1, 1, 0)t + Z(0, 1, 1)t, (x,y) = x1y1 + x2y2 + x3y3, is demonstrated. The
elementary vectors ofL are those Voronoi vectors that define a facet ofDV(L, (·, ·)). The com-
binatorial structure of the Dirichlet-Voronoi polytope is completely determined by the oriented
matroidM(L): the face lattices of the polytopeDV(L, (·, ·)) and the one of the oriented matroid
M(L) coincide.

(0, 0, 0)

(0, 1, 1)

(1, 1, 0)

(−1, 0, 1)

(−1,−1, 0)

(0,−1,−1)
(1, 0,−1)

Figure 3.2. Dirichlet-Voronoi Polytope of a Zonotopal Lattice.
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The geometrical realization ofDV(L, (·, ·)) depends on the norms of the standard basis
vectors. We denote the standard basis vectors ofR

E by ei, i ∈ E. The edges of the zono-
topeDV(L, (·, ·)) are translates ofπ(ei) if i is contained in the support of some lattice vector.
The edge lengths are given by

‖π(ei)‖2 =
(ei, ei) det(L/{i})

detL
.

The determinant ofL is given by∑
B∈B

∏
i∈B

(ei, ei) = (ej , ej) det(L/{j}) + det(L\{j})

whereB is the set of basis ofM(L) andj ∈ E is contained in the support of some lattice vector.

3.5.2. SEYMOUR’s Decomposition Theorem

The combinatorial structure of zonotopal lattices and their Dirichlet-Voronoi polytopes is well-
understood by SEYMOUR’s decomposition theorem for regular matroids. We formulate it in
terms of zonotopal lattices.

Theorem 3.5.1.(SEYMOUR’s Decomposition Theorem, [Sey80])
Every zonotopal lattice can be decomposed into1-sums,2-sums, and3-sums of cographical
lattices, graphical lattices and lattices of typeR10.

In the following sections we will introduce the main examples of zonotopal lattices: cograph-
ical lattices, graphical lattices and lattices of typeR10. For the definitions of1-sums,2-sums,
and3-sums the interested reader is referred to SEYMOUR’s original paper, to TRÜMPER’s book
[Trü1992] that also deals with algorithmic aspects or to [Val2000] where1-sums,2-sums, and
3-sums are defined in the context of zonotopal lattices.

With help of this theorem one can classify zonotopal lattices according to their combinatorial
structure. Ad-dimensional zonotopal lattice is calledmaximal if it is not a minor of another
d-dimensional zonotopal lattice. The classification of maximal zonotopal lattices has been car-
ried out up to dimension5 by ERDAHL and RYSHKOV ([ER1994]). In [DG1999] DANILOV and
GRISHUKHIN work out the cased = 6 where they explicitly make use of SEYMOUR’s decom-
position theorem.

Cographical Lattices

Let G = (V,E) be a connected graph with directed edges. We denote the set of all oriented
minimal cuts (cocircuits) ofG by C∗(G). For every cocircuitC∗ we define a lattice vector
v(C∗) ∈ {−1, 0, 1}E by

v(C∗)e =


+1, if e is an outgoing edge of the minimal cut,
−1, if e is an ingoing edge of the minimal cut,
0, if e is not an edge of the minimal cut.

The latticeL∗G =
∑

C∗∈C∗(G) Zv(C∗) ⊆ ZE is calledcographical. Actually,L∗G describes a set
of lattices with a fixed combinatorial structure. Together with a corresponding inner productL∗G
is a zonotopal lattice of dimension|V | − 1.

The Dirichlet-Voronoi polytope of the cographical latticeL∗Kd is a(d − 1)-dimensional per-
mutahedron. We get all Dirichlet-Voronoi polytopes of(d− 1)-dimensional cographical lattices
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by deleting edges of the permutahedron which correspond to edges we deleted from the complete
graphKd. Each edge of the graph corresponds to a rigid rank-1-form whose Dirichlet-Voronoi
polytope is a one-dimensional line segment.

Exactly the lattices which are associated to the positive definite quadratic forms lying in
the topological closure of VORONÖI ’s principal domain of the first type are cographical. We
prove this using Delone graphs∗. LetQ be a positive definite quadratic form which lies in the
topological closure of VORONÖI ’s principal domain of the first type. The Selling parameters
qij , 1 ≤ i, j ≤ d + 1, i 6= j, of Q are all non-positive. We define theDelone graphof Q by
GQ = ({1, . . . , d + 1}, E) with (i, j) ∈ E wheneveri < j andqij < 0. Then, the formQ
is associated to the latticeL∗GQ . Hence, we have a convenient description of the face lattices
for Dirichlet-Voronoi polytopes of lattices associated to positive definite quadratic forms lying
in ∆(D1).

Example 3.5.2.Let us look at the two-dimensional case and the graphK3.

1

2

3

(1, 2)

(1, 3)

(2, 3)

(1, 2) (1, 3) (2, 3)
cocircuits: ±( 1 1 0 )

±( 0 1 1 )
±( 1 0 −1 )

The two vectorsb1 = (1, 1, 0)t, b2 = (0,−1,−1)t form a lattice basis of the two-dim-
ensional cographical latticeL∗K3

⊆ Z
3. The Dirichlet-Voronoi polytope ofL∗K3

is a two-
dimensional permutahedron aka a hexagon. In Figure 3.2 one finds an illustration of our con-
struction.

The inner product ofR3 is given by(ei, ei) = λi, λi > 0. The Gram matrix of the basis

(b1, b2) isG(b1,b2) =
(
λ1+λ2 −λ2
−λ2 λ2+λ3

)
. This quadratic form lies in VORONÖI ’s principal domain

of the first type. Thus we have a1-to-1 correspondence between the edges of the graph and the
rigid forms of∆(D1):

edge ofK3 rigid form

(1, 2) ↔
(

1 0
0 0

)
(1, 3) ↔

(
1 −1
−1 1

)
(2, 3) ↔

(
0 0
0 1

)
Hence, Figure 3.3 below is a dual picture of Figure 2.10. The extreme rays of the secondary

cone∆(D1) correspond to graphs with one edge and to one-dimensional cographical lattices
whose Dirichlet-Voronoi polytopes are line segments. The two-dimensional faces correspond
to graphs with two edges and to two-dimensional cographical lattices whose Dirichlet-Voronoi
polytopes are quadrangles. Finally the three-dimensional face corresponds to the complete graph
K3 and to two-dimensional cographical lattices whose Dirichlet-Voronoi polytopes are hexagons.

∗DELONE introduced these graphs when he studied 3-dimensional Bravais lattices in the context of positive definite
quadratic forms ([Del1932])
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Figure 3.3. Dirichlet-Voronoi Polytopes of Cographical Lattices.

Graphical Lattices

Not all zonotopal lattices are cographical. The minimal zonotopal lattice which is not cographical
is the graphical latticeLK3,3 whereK3,3 denotes the complete bipartite graph on3 and3 vertices.

LetG = (V,E) be a connected graph with directed edges. We denote the set of all circuits
of G by C(G). For every circuitC of G we define a lattice vectorv(C) ∈ {−1, 0, 1}E by

v(C)e =


+1, if e is a positive edge of the circuit,
−1, if e is a negative edge of the circuit,
0, if e is not an edge of the circuit.

The latticeLG =
∑

C∈C(G) Zv(C) ⊆ Z
E is calledgraphical. Actually, LG describes a set

of lattices with a fixed combinatorial structure. With a corresponding inner productLG is a
zonotopal lattice of dimension|E| − |V |+ 1.

A theorem of TUTTE ([Tut1958], [Tut1959]) characterizes graphical and cographical lattices.
A zonotopal lattice is graphical if and only if it has no minor that is combinatorially isomorphic
to the cographical latticeL∗K5

orL∗K3,3
. Conversely, a zonotopal lattice is cographical if and only

if it has no minor combinatorially isomorphic to the graphical latticesLK5 or LK3,3 . TUTTE’s
theorem is a generalization of KURATOWSKI’s prominent characterization for planar graphs.

Dirichlet-Voronoi polytopes of graphical lattices are combinatorially equivalent if the corre-
sponding graphs do have the same circuits up to ordering and sign changes. WHITNEY ’s 2-iso-
morphism theorem ([Whi1933]) says when two graphs have the same circuits (up to ordering and
sign changes). That is if one can transform the first graph byWhitney flipsinto the second graph.
There are two types ofWhitney flips: A 1-flip either glues two components by identifying two
vertices or it decomposes a component by removing an edge which corresponds to a cocircuit
whose cardinality is1. In a2-flip a graph is decomposed along a minimal cut whose support has
cardinality2. Let (v1, w1), (v2, w2) be the edges belonging to the cut. Then, the two parts are
glued together again by the edges(v1, w2), (v2, w1).
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Lattices of Type R10

Lattices of typeR10 are zonotopal lattices whose oriented matroid is isomorphic to the5-dim-
ensional latticeR10 ⊆ Z10 given by the rows of the matrix

1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1

 .

This lattice (together with the standard inner product inR10) is zonotopal. It is the smallest
zonotopal lattice that is neither cographical nor graphical.

3.5.3. Delone Subdivisions, Dicings and Zonotopal Lattices

Finally, we determine Delone subdivisions of positive semidefinite quadratic forms associated
to zonotopal lattices. One goal is to give a dictionary that translates our language of zonotopal
lattices into the language of lattice dicings by ERDAHL ([ER1994], [Erd1999]).

We already saw that face lattices of zonotopal Dirichlet-Voronoi polytopes are face lattices of
regular oriented matroids. From oriented matroid theory (see [BVSWZ1993]) we know that face
lattices of realizable oriented matroids (and regular oriented matroids are realizable by definition)
are face lattices of central hyperplane arrangements. A central hyperplane arrangement is a finite
collection of real hyperplanes inRd having the origin as common point. A central hyperplane
arrangement inRd gives a face lattice of a regular oriented matroid if the intersection ofd − 2
hyperplanes is contained in either two or three intersections ofd− 1 hyperplanes.

Let L ⊆ Z
n be ad-dimensional zonotopal lattice. LetA = (H1, . . . ,Hn) be a central

hyperplane arrangement which belongs to the regular oriented matroidM(L). We turnA into a
periodic arrangement of hyperplanes:(H1 + v1, . . . ,Hn + vn)vi∈Zd . This gives usn families
of parallel equispaced hyperplanes. By a theorem of BRYLAWSKI and LUCAS [BL1976] there
exists a linear map that transforms the periodic arrangement into alattice dicing, i.e. through
each vertex of the periodic arrangement there goes exactly one hyperplane of each family. This
subdivision ofRd is up to an affine isomorphism the Delone subdivision of a positive semidefinite
quadratic form associated to the zonotopal latticeL we started with. In Figure 3.4 (an affine
image of) this construction is illustrated.

Figure 3.4. A Lattice Dicing.
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LetD be a Delone subdivision given by a lattice dicing. Every family of parallel hyperplanes
of D is itself a Delone subdivision of a positive semidefinite quadratic form of rank1. Hence,
the secondary cone ofD is bounded by extreme rays of positive semidefinite quadratic forms
of rank1. Conversely, every Delone subdivision whose secondary cone is bounded by extreme
rays of rank1 is a lattice dicing. The corresponding Dirichlet-Voronoi polytope is a zonotope.
A theorem of KORKINE and ZOLOTAREV (in the literature it is often referred to HELLER) im-
plies that if the secondary cone of a Delone subdivision belonging to a zonotopal lattice has full
dimensiond(d+1)

2 , then it belongs to the cographical latticeL∗Kd . All other secondary cones be-
longing to zonotopal lattices do not have full dimension. For specialists: This gives a proof of
DICKSON’s Theorem ([Dic1972]).





Chapter 4.

Results in Low Dimensions

In this chapter we classify Dirichlet-Voronoi polytopes of positive definite quadratic forms using
the methods we described in the two previous chapters. The classification, which is equivalent to
the classification of Delone subdivision of positive definite quadratic forms, is performed in two
steps. First we classify all non-equivalent Delone triangulations. Then we compute the extreme
rays of every secondary cone. Let∆(D) be the secondary cone of a Delone triangulationD.
After we computed its extreme rays∆(D) = cone{R1, . . . , Rn} we find all combinatorial types
of Dirichlet-Voronoi polytope of quadratic forms lying in∆(D) among

α1 DV(R1, {0}) + · · ·+ αn DV(Rn, {0}), αi ∈ {0, 1}.

We discuss the dimensions one, two, and three only very briefly. In each of these dimensions
there only exists one non-equivalent Delone triangulation. Hence, we only have to classify co-
graphical lattices. The one-dimensional case is trivial. The two-dimensional case is known since
ancient times: only quadrangles and hexagons tile the plane by translates. The three-dimensional
case was solved by FEDEROV in 1885 who showed that there are5 three-dimensional polytopes
that tile space by translates.

We focus on the four-dimensional case. DELONE (later corrected by STOGRIN) was the first
who tried to give a classification. Here, the number of non-equivalent Delone triangulations
equals3. Using the vonorm/conorm method we succeed to give a classification of combinatori-
ally distinct four-dimensional Dirichlet-Voronoi polytopes that can be done by hand calculations.
There are52 combinatorially distinct four-dimensional Dirichlet-Voronoi polytopes. Our ap-
proach was suggested by CONWAY who gave a complete list of classification symbols without
showing its completeness and even without providing further explanations. We succeeded in the
challenge of giving a combinatorial/geometrical interpretation of CONWAY ’s list.

In the five dimensional case we only report on a computation of all non-equivalent Delone
triangulations. BARANOVSKII and RYSHKOV were the first who tried this. They found221
non-equivalent Delone triangulations. But they missed one type which was observed by ENGEL.
ENGEL and GRISHUKHIN identified the missed type. Our computations confirm their result. EN-
GEL reports that there are179, 372 combinatorially distinct five-dimensional Dirichlet-Voronoi
polytopes. In dimension6 the number of non-equivalent Delone triangulations explodes. Up to
now we found more than250, 000 non-equivalent Delone triangulations.

As a first summary we have the following table:

Dimension 1 2 3 4 5 6
# Delone triangulations 1 1 1 3 222 > 250, 000
# Dirichlet-Voronoi polytopes 1 2 5 52 179, 372 � 250, 000



48 Chapter 4 Results in Low Dimensions

4.1. Dimension 1

We include the trivial one-dimensional case only for the sake of completeness. LetQ = (q11)
be a unary positive definite quadratic form. The one-dimensional Delone simplices[0, 1] + v,
v ∈ Z1, define the Delone triangulation ofQ. The Dirichlet-Voronoi polytope of an associated
lattice is a line segment.

4.2. Dimension 2

In Chapter 2.3.3 we saw that every binary positive definite quadratic form is arithmetically equiv-
alent to a from that lies in the topological closure of VORONÖI ’s principal domain of the first type

∆(D1) = {Q ∈ S2
≥0 : q11 + q12 ≥ 0, q12 ≤ 0, q12 + q22 ≥ 0}

= cone
{

( 1 0
0 0 ) , ( 0 0

0 1 ) ,
(

1 −1
−1 1

)}
.

In Chapter 3.5.2 we proved that these forms are associated to cographical lattices and that we
can describe the combinatorial structure of the corresponding Dirichlet-Voronoi polytopes by
connected graphs with three vertices. Hence, we have the following classification. The number
d on the left side gives the dimension of the face of∆(D1) where the dual Delone subdivision is
being realized.

d Delone Graph Dirichlet-Voronoi Polytope Quadratic Form Name

3 r


JJJ
r r

K3

r
r

r

r

r
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@@
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@
@@

@
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−1 2

)
HEXAGON

2 rJJJ
r r

1 + 1
r
r
r
r (

1 0
0 1

)
SQUARE

4.3. Dimension 3

From dimension2 to dimension3 nothing spectacular happens. One reason for this is that by
Theorem 3.1.3 three-dimensional parallelohedra are zonotopes. Like in the binary case, every
ternary positive definite quadratic form is arithmetically equivalent to a form lying in VORONÖI ’s
principal domain of the first type. Hence, we only have to deal with cographical lattices and we
can classify all Dirichlet-Voronoi polytopes of three-dimensional lattice by connected graphs
with four vertices.
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d Delone Graph Polytope Form Name
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We adopted the way of drawing the five parallelohedra from [CS1992]. The procedure of
edge deletion becomes visible. First, the Russian crystallographer FEDEROV gave a complete
classification of three-dimensional parallelohedra. He and his work was extremely influential for
VORONÖI ’s memoir [Vor1908].
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4.4. Dimension 4

In [Del1929] DELONE tried to prove that there are51 different combinatorial types of Dirichlet-
Voronoi polytopes of four-dimensional lattices. But he missed one type which was found by
STOGRIN later in [Sto1973]∗. There are52 different combinatorial types. From these17 types
are zonotopes and in the other35 types the 24-cell appears as Minkowski summand.

First of all, DELONE proves in [Del1929] VORONÖI ’s conjecture for four-dimensional paral-
lelohedra by a skillful use of Schlegel diagrams. Then he tries to enumerate all Dirichlet-Voronoi
polytopes in dimension4 by investigating the faces of the secondary cones of the three non-
equivalent four-dimensional Delone triangulation.

DELONE writes in [Del1929] on page 161:

G. VORONOJa d́emontŕe dans le remarquable mémoire mentionńe plus haut
(v. l’introduction) qu’il n’existe que3 domaines de Dirichlet primitifs dans
l’espaceà 4 dimensions ; les paralléloèdres1, 2 et 3 [. . .] sont donc ces do-
maines. Il est facile de démontrer que chaque domaine de Dirichlet qui n’est
pas primitifs peut̂etre obtenu d’un domaine primitifs, si l’on fait disparaı̂tre
dans ce domaine certaines arêtes.
[. . .]
On obtiendrait ainsi 3072 paralléloèdres. Mais parmi ces paralléloèdres il peut
se trouver des paralléloèdres identiques. Cette identité ne peut pas toujourêtre
tout de suite remarquée au moyen de la comparaison des figures correspon-
dantes, parce que ces figures ne représentent que de projections et celles-ci
peuvent̂etre des projections différentes d’un m̂eme paralĺeloèdre. En me ser-
vant de quelques syḿetries particulìeres et d’autres ḿethodes particulières,
dans le d́etail desquelles je ne veux pas entrer ici, j’ai trouvé le ŕesultat final
suivant :

THÉORÈME III : «Il existe 51 et seulement 51 partitions diff érentes
de l’espace à 4 dimensions ».

The statement above points out that it will remain unclear why DELONE missed one type. Here,
we will use DELONE’s approach but we will give many details and natural representatives of the
relevant positive definite quadratic forms. At the same time we give a geometrical and combina-
torial interpretation of the classification symbols CONWAY used in [Con1997]. There he showed
how to exploit the symmetry of the conorms of four-dimensional lattices to give a complete list
of four-dimensional Dirichlet-Voronoi polytopes. But CONWAY only gave a list without proving
its completeness.

By using a method called “zone reduction” and with help of computer programs ENGEL gives
another classification of four-dimensional Dirichlet-Voronoi polytopes in [Eng1992]. At the end
of our four-dimensional journey we will compare his classification with DELONE’s and the one
we obtained.

4.4.1. Four-Dimensional Delone Triangulations

Using VORONÖI ’s algorithm (Algorithm 1 in Chapter 2.5) we can list† all three non-equivalent
Delone triangulationsD1, D2, D3 in dimension4. We start with the Delone triangulationD1 of

∗Actually, the article provides much more than just the omitted combinatorial type. It shows how one can use and
extend the theory of Dirichlet-Voronoi polytopes to understand three-dimensional crystallographic groups.

†VORONÖI performed this computation at the end of his memoir [Vor1908].
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VORONÖI ’s principal form of the first type. The triangulationD1 has ten bistellar neighbours,
all equivalent toD2. Among the bistellar neighbours ofD2 we findD1, D2 andD3. Whereas
we find among the bistellar neighbours ofD3 only D2 andD3 and no triangulation equivalent
toD1. The simplices of the Delone triangulationsD2 andD3 are listed in Chapter 8.4.2, and the
simplices ofD1 in Chapter 2.3.

With VORONÖI ’s algorithm we also get an infinite tree of secondary cones with three non-
equivalent nodes. The tree shows the combinatorial structure of the tiling ofS4

>0 by secondary
cones. It is represented by the following diagram where we factored out theGL4(Z) action.

In the diagram the black node corresponds to secondary cones equivalent to∆(D1), the grey
node corresponds to secondary cones equivalent to∆(D2) and the white node to secondary cones
equivalent to∆(D3). Two nodes are connected by an edge if and only if the secondary cones
have a facet in common (if and only if the Delone triangulations are bistellar neighbours). In the
infinite tree every black node is surrounded by ten grey nodes, every grey node is surrounded by
one black, six grey and three white nodes, and every white node is surrounded by nine grey nodes
and one white node. The groupGL4(Z) is acting on the tree.

We give an explicit description of representatives for the three non-equivalent secondary
cones. We specify these three polyhedral cones by their facet-defining hyperplanes and by their
extreme rays.

Extreme Rays

By Ri, i = 1, . . . , 12, we denote the following positive semidefinite quadratic forms that are
the extreme rays of the secondary cones∆(Di), i = 1, 2, 3. Notice that our list of extreme
rays implies that up to isomorphism there is only one rigid positive definite quadratic form in
dimension4. It is associated to the root latticeD4 whose Dirichlet-Voronoi polytope is the24-
cell. Since we only consider symmetric matrices it suffices to give the lower triangular entries.
We do this purely because of aesthetical reasons.

R1 =


1
0 0
0 0 0
0 0 0 0

 , R2 =


0
0 1
0 0 0
0 0 0 0

 , R3 =


0
0 0
0 0 1
0 0 0 0

 ,

R4 =


0
0 0
0 0 0
0 0 0 1

 , R5 =


1
−1 1
0 0 0
0 0 0 0

 , R6 =


1
0 0
−1 0 1
0 0 0 0

 ,

R7 =


1
0 0
0 0 0
−1 0 0 1

 , R8 =


0
0 1
0 −1 1
0 0 0 0

 , R9 =


0
0 1
0 0 0
0 −1 0 1

 ,

R10 =


0
0 0
0 0 1
0 0 −1 1

 , R11 =


4
2 4
−2 −2 4
−2 −2 0 4

 , R12 =


1
1 1
−1 −1 1
−1 −1 1 1

 .
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The Black Triangulation D1

The secondary cones which is represented by the big black node is given by the inequalities

q21 < 0
q31 < 0
q41 < 0
q42 < 0
q43 < 0

q11 + q21 + q31 + q41 > 0
q21 + q22 + q32 + q42 > 0
q31 + q32 + q33 + q43 > 0
q41 + q42 + q43 + q44 > 0

or equivalently by the extreme rays∆(D1) = int(cone{R1, . . . , R10}).

The Grey Delone Triangulation D2

The one which is represented by the big grey node is given by the inequalities

q21 > 0
q21 + q31 < 0
q21 + q32 < 0
q21 + q41 < 0
q21 + q42 < 0

q43 < 0
q11 + q31 + q41 > 0
q22 + q32 + q42 > 0

q31 + q32 + q33 + q43 > 0
q41 + q42 + q43 + q44 > 0

or equivalently by the extreme rays∆(D2) = int(cone{R1, . . . , R4, R6, . . . , R11}).

The White Delone Triangulation D3

The one which belongs to the big white node is given by the inequalities

q21 − q43 > 0
q21 + q31 < 0
q21 + q32 < 0
q21 + q41 < 0
q21 + q42 < 0

q43 > 0
q11 + q31 + q41 + q43 > 0
q22 + q32 + q42 + q43 > 0
q31 + q32 + q33 + q43 > 0



4.4 Dimension 4 53

q41 + q42 + q43 + q44 > 0

or equivalently by the extreme rays∆(D3) = int(cone{R1, . . . , R4, R6, . . . , R9, R11, R12}).

The Reduction Theory of C HARVE and H OFREITER

In the last section we gave a fundamental domain ofS4
>0/GL4(Z) that is divided into three poly-

hedral cones. So it is natural to distinguish between three different types of positive definite
quadratic forms in four variables. Now the following question arises: Given a positive definite
quadratic formQ ∈ S4

>0, to which of the three types doesQ belong? Using a reduction theory of
CHARVE and HOFREITERthat generalizes SELLING ’s reduction theory we can answer this ques-
tion algorithmically. We refer the interested reader to the original papers [Cha1882], [Hof1933],
and to§117 of [Vor1908].

4.4.2. Vonorms and Conorms in Dimension 4

In this section we show that the conjecture of CONWAY and SLOANE (see Chapter 3.4) is
true for quaternary positive definite quadratic forms. We show that the vonorms, respectively
the conorms, characterize the arithmetical equivalence classes of quaternary positive definite
quadratic forms.

It is more convenient to use the conorms because the conorms of the formsR1, . . . , R10, R12

differ only in one non-trivial character from zero where the character0000 is the trivial character.
We have

coR1(1000) = coR2(0100) = coR3(0010) = coR4(0001) = coR5(1100)
= coR6(1010) = coR7(1001) = coR8(0110) = coR9(0101) = coR10(0011)
= coR12(1111) = 1.

Here we only listed the non-trivial non-zero conorms. For the positive definite quadratic form
R11 which is associated to a scaled version of the root latticeD4 we have

coR11(χ) = −1, if χ ∈ {1100, 1011, 0111},
coR11(χ) = 1, otherwise.

To proof the conjecture of CONWAY and SLOANE in dimension4 we have to check the
following. Let Qi ∈ ∆(Di), Qj ∈ ∆(Dj), i 6= j be two positive definite quadratic forms
whose conorm maps coincide, then the forms coincide, too. In particular they lie on the common
boundary of∆(Di) and∆(Dj). We can consider conorms instead of vonorms since the vonorm
map can be reconstructed from the vonorm map.

We have to distinguish between three cases. We give the complete arguments for the case
i = 1, j = 2 only. The other two cases work out in the same manner. Suppose forα1, . . . , α10 ∈
R≥0, β1, . . . , β4, β6, . . . , β11 ∈ R≥0 we have

α1 coR1 + · · ·+ α10 coR10 = β1 coR1 + · · ·+ β4 coR4 +β6 coR6 + · · ·+ β11 coR11 .

When we plug inχ = 1011, the left hand side vanishes, the right hand side equals−β11. Hence,
β11 = 0. When we plug inχ = 1100, the left hand side equalsα5 and the right hand side van-
ishes. Hence,α5 = 0. This shows that every pair of positive definite quadratic forms satisfying
the equation above lies on the common boundary of∆(D1) and∆(D2).
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4.4.3. Towards a Classification

Now we are nearly ready to give a classification of all combinatorial types of four-dimensional
Dirichlet-Voronoi polytopes. The idea is very simple: For every face of the three secondary
cones given above the Dirichlet-Voronoi polytope of the associated lattices can be computed
and afterwards all of them can be put into equivalence classes according to their combinatorial
structure.

In principle we only have to consider the following (≤ 3072) quadratic forms

α1R1 + · · ·+ α10R10 ∈∆(D1), αi ∈ {0, 1},
β1R1 + · · ·+ β4R4 + β6R6 + · · ·+ β11R11 ∈∆(D2), βi ∈ {0, 1},

γ1R1 + · · ·+ γ4R4 + γ6R6 + · · ·+ γ9R9 + γ11R11 + γ12R12 ∈∆(D3), γi ∈ {0, 1}.

But among these forms many give Dirichlet-Voronoi polytopes of the same combinatorial struc-
ture. In the following we look at invariants to simplify the isomorphism tests. Then, we only
need computations which we can do by hand without using a computer. First, we are distinguish-
ing between zonotopal and non-zonotopal Dirichlet-Voronoi polytopes. The forms

∑10
i=1 αiRi,

αi ∈ {0, 1}, and the formR1 + · · ·+R4 +R6 + · · ·+R9 +R12 give zonotopal Dirichlet-Voronoi
polytopes which can be classified with method from the theory of zonotopal parallelohedra we
introduced in Chapter 3.5. The Dirichlet-Voronoi polytopes of the formsR11+δ1R1+· · · δ4R4+
δ6R6 + · · · + δ10R10 + δ12R12, δi ∈ {0, 1} have the24-cell as a Minkowski summand and so
they cannot be zonotopes. The four-dimensional non-zonotopal Dirichlet-Voronoi polytopes can
be classified by special diagrams of CONWAY. In [Con1997] CONWAY gives a list of all four-
dimensional Dirichlet-Voronoi polytopes without proving its completeness. Our computations
are inspired by his (after-)thoughts and we are using his classification symbols. In some sense
we give the geometric justification for his classification symbols. So, how does CONWAY feel
the form of a four-dimensional lattice?

4.4.4. Diagrams for Zonotopal Cases

We have seen in the last chapter that all but one four-dimensional zonotopal Dirichlet-Voronoi
polytopes are cographical and the exceptional one is the Dirichlet-Voronoi polytope of the graph-
ical latticeLK3,3 . This lattice is associated to the positive definite quadratic forms that lie in the
relative interior of the nine-dimensionalcone{R1, . . . , R4, R6, . . . , R9, R12}.

By listing all connected subgraphs of the complete graph on five verticesK5 we find all co-
graphical lattices. Sequence A001349 in SLOANE’s On-Line Encyclopedia of Integer Sequences
tells us that there are21 non-isomorphic connected graphs with five vertices. Two graphs de-
termine the same combinatorial type of Dirichlet-Voronoi polytope if and only if they have the
same set of cocircuits. The2-isomorphism theorem of WHITNEY we described in Section 3.5.2
gives a necessary and sufficient criterion for two graphs on five vertices which define the same
set of cocircuits.

So we get the following classification of the zonotopal Dirichlet-Voronoi polytopes in four
dimensions. The number on the left side is the dimension of the reduction domain’s face where
the corresponding combinatorial type is being realized.

The list of CONWAY contains an error‡: His typeK4 should be replaced byC221 + 1.

‡This fact was pointed out to me by DEZA and GRISHUKHIN
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4.4.5. Diagrams for Non-Zonotopal Cases

For the non-zonotopal cases we have to study the faces of the polyhedral cones∆(D2) and
∆(D3) which containR11. Assume that there is a unimodular transformationA ∈ GL4(Z) that
transforms one face

F1 = cone{α1R1, . . . , α4R4, α6R6, . . . , α10R10, R11, α12R12}, αi ∈ {0, 1}, α10 6= α12,

into another face

F2 = cone{β1R1, . . . , β4R4, β6R6, . . . , β10R10, R11, β12R12}, βi ∈ {0, 1}, β10 6= β12,

i.e. the facesF1 andF2 are arithmetically equivalent. Then the corresponding forms

Q1 = α1R1 + · · ·+ α4R4 + α6R6 + · · ·+ α10R10 +R11 + α12R12

Q2 = β1R1 + · · ·+ β4R4 + β6R6 + · · ·+ β10R10 +R11 + β12R12

are arithmetically equivalent because the conorm functions characterize arithmetical equivalence
classes of quaternary positive definite quadratic forms. Furthermore, the Dirichlet-Voronoi poly-
topes ofQ1 andQ2 are affinely equivalent, and the Dirichlet-Voronoi polytopes of forms lying in
F1 andF2 are combinatorially equivalent. Conversely, suppose that the formsQ1, Q2 are arith-
metically equivalent. Then the corresponding facesF1, F2 are arithmetically equivalent, too.
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Furthermore, the Dirichlet-Voronoi polytopes of quadratic forms lying inF1 andF2 are combi-
natorially equivalent. We will classify the faces of∆(D2) and∆(D3) containingR11 according
to their arithmetical equivalence classes. A priori this gives a finer classification as if we would
classify them according to the combinatorial structure of the corresponding Dirichlet-Voronoi
polytopes. Later, we will see that both relations actually coincide.

Now we are going to introduce the diagrams for the non-zonotopal cases. We arrange all
characters in the following two-dimensional array. Here we are using the representation of the
charactersχ : Z4/2Z4 → {±1} by elements ofF4

2 we introduced in Section 3.4.

0000 1100 1011 0111
1110 0010 0101 1001
1101 0001 0110 1010
0011 1111 1000 0100

In the first row we have the elements of the subspaceU = {0000, 1100, 1011, 0111}. In the
other rows we find the other cosets ofF4

2/U . Later we will see the reason for using this particular
arrangement: The automorphism group of the rigid formR11 acts on the characters and leaves
the subspaceU fixed.

For the positive definite quadratic form

Q1 = α1R1 + · · ·+ α4R4 + α6R6 + · · ·+ α10R10 +R11, αi ∈ {0, 1},

which lies in∆(D2), we determine the conorms and arrange them in the same way as the charac-
ters. In Section 4.4.2 we already determined the conorms ofR1, . . . , R12 and by Proposition 3.4.3
we only have to add them up in the right fashion. We do not care about the value ofcoQ1 of the
trivial character0000.

coQ1


0000 1100 1011 0111
1110 0010 0101 1001
1101 0001 0110 1010
0011 1111 1000 0100

 =


∗ −1 −1 −1
1 α3 + 1 α9 + 1 α7 + 1
1 α4 + 1 α8 + 1 α6 + 1

α10 + 1 1 α1 + 1 α2 + 1


For the quadratic form

Q2 = β1R1 + · · ·+ β4R4 + β6R6 + · · ·+ β9R9 +R11 + β12R12, βi ∈ {0, 1},

lying in ∆(D3) we do the same:

coQ2


0000 1100 1011 0111
1110 0010 0101 1001
1101 0001 0110 1010
0011 1111 1000 0100

 =


∗ −1 −1 −1
1 β3 + 1 β9 + 1 β7 + 1
1 β4 + 1 β8 + 1 β6 + 1
1 β12 + 1 β1 + 1 β2 + 1


We see that in these cases the conorms of1100, 1011 0111 are always−1 and the conorms
of 1110, 1101 are always1. The other non-trivial conorms are either1 or 2 according to the
following structure of rigid rank-1-forms.

R3 R9 R7

R4 R8 R6

R10 R12 R1 R2
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To represent e.g. the positive definite quadratic formQ = R1 +R2 +R4 +R6 +R7 +R11 we
will use thediagram

◦ ◦ ◦
◦ •
◦ • •

• •

The white dots indicate that the conorms of1100, 1011, 0111 are always−1 and that the conorms
of 1110, 1101 are always1. The black dots indicate that the conorms of1001, 0001, 1010, 1000,
0100 equal2 (respectively that we have the rank-1-summandsR7, R4, R6, R1, R2). All non-
trivial conorms we have not mentioned so far are1.

When do two diagrams describe arithmetically equivalent positive definite quadratic forms?
A positive definite quadratic form that is represented by a diagram has alwaysR11 as a summand.
If two diagrams represent arithmetically equivalent forms, then the form differ by a modular
transformation that leavesR11 fixed. The automorphism group ofR11 is the Weyl group of the
root systemF4 (see e.g. [Bou1968]). It has order1152 and is generated by the matrices

G1 =


0 0 0 1
0 −1 1 0
0 0 1 0
1 0 0 0

 , G2 =


−1 0 0 0
0 0 −1 1
−1 0 0 1
−1 −1 0 1

 , G3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For example, forQ′ = Gt1QG1 we have

Q′ =


6
2 5
−2 −3 6
−3 −2 −1 7

 and the corresponding diagram

◦ ◦ ◦
◦ •
◦ • •
• •

Exercise 4.4.1.WriteQ′ in the formQ′ =
∑12

i=1 αiRi and determine the conorms ofQ′.

Now we see how the diagram changes when we perform the transformationG1. We project
G1 into GL4(F2) by reducing the matrix entries modulo2. Then, we interpret the new matrix
as a linear map operating from the right on the row space of characters. We get the following
transformations of the black dots

1001 7→ 1001, 0001 7→ 1000, 1010 7→ 0011, 1000 7→ 0001.

We have to change from column space to row space because we are dealing with the conorm map
that essentially is the Fourier transform of the vonorm map. By projecting the whole automor-
phism group ofR11 into GL4(F2) by reducing the matrix entries modulo2 we get the group of
all linear transformations that leave the subspaceU = F2(1100) + F2(1011) + F2(0111) fixed.
It is easy to count that this group has order576 = 1152/2.

Lemma 4.4.2.Two diagrams describe arithmetically equivalent positive definite quadratic forms
if and only if there is a linear mapϕ : F4

2 → F
4
2 which leaves the subspaceU = F2(1100) +

F2(1011) + F2(0111) fixed and which transforms one diagram into the other one.
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Whenever the numbers of black dots differ in two diagrams, these diagrams cannot specify
arithmetically equivalent forms. We define two linear transformationsϕi : F4

2 → F
4
2, i = 1, 2, by

ϕ1 :


1100 7→ 1100
0111 7→ 0111
0010 7→ 0001
0001 7→ 0010

, ϕ2 :


1100 7→ 1100
0111 7→ 0111
0011 7→ 0001
0001 7→ 0011

.

The first map leaves the first and the last row of a diagram fixed and interchanges the second
with the third row. The second map leaves the first and second row fixed and interchanges the
third with the fourth row. In this way we can arrange the black dots so that their number does not
decrease from row to row. Letp be the number of squares without a black dot in the second row,
q be the number of squares without a black dot in the third row, andr be the number of squares
without a black dot in the last row. Then we havep ≥ q ≥ r. For (p, q, r) we have twenty
possibilities:

(4, 4, 4), (4, 4, 3), (4, 4, 2), (4, 4, 1), (4, 3, 3), (4, 3, 2), (4, 3, 1), (4, 2, 2), (4, 2, 1), (4, 1, 1),
(3, 3, 3), (3, 3, 2), (3, 3, 1), (3, 2, 2), (3, 2, 1), (3, 1, 1), (2, 2, 2), (2, 2, 1), (2, 1, 1), (1, 1, 1).

But these triples do not characterize arithmetical equivalence classes. We will decorate the triples
with +,− or primes to get symbols which characterize the classes. We introduce the decorations
by an example which is the same CONWAY used in [Con1997]. We show that the following three
diagrams of type(3, 2, 2) give three pairwise non-equivalent positive definite quadratic forms.

◦ ◦ ◦
◦ •
◦ • •
• •

◦ ◦ ◦
◦ •
◦ • •
• •

◦ ◦ ◦
◦ •
◦ • •

• •
322+ 322− 322′− = 322′

We denote the characters which belong to the squares without black dots byδ1, δ2, δ3 (for the
second row),ε1, ε2 (for the third row) andζ1, ζ2 (for the last row). There are12 different sums
of the formδi + εj + ξk. In the first diagram these12 sums are

δ1 + ε1 + ζ1 = 1110 + 1101 + 0011 = 0000
δ1 + ε1 + ζ2 = 1110 + 1101 + 0100 = 0111
δ1 + ε2 + ζ1 = 1110 + 1010 + 0011 = 0111
δ1 + ε2 + ζ2 = 1110 + 1010 + 0100 = 0000
δ2 + ε1 + ζ1 = 0101 + 1101 + 0011 = 1011
δ2 + ε1 + ζ2 = 0101 + 1101 + 0100 = 1100
δ2 + ε2 + ζ1 = 0101 + 1010 + 0011 = 1100
δ2 + ε2 + ζ2 = 0101 + 1010 + 0100 = 1011
δ3 + ε1 + ζ1 = 1001 + 1101 + 0011 = 0111
δ3 + ε1 + ζ2 = 1001 + 1101 + 0100 = 0000
δ3 + ε2 + ζ1 = 1001 + 1010 + 0011 = 0000
δ3 + ε2 + ζ2 = 1001 + 1010 + 0100 = 0111.

These sums yield4 times0000, whereas in the second diagram only2 of these sums yield0000,
namely

δ1 + ε1 + ζ1 = 1110 + 1101 + 0011 = 0000
δ1 + ε2 + ζ2 = 1110 + 1010 + 0100 = 0000.
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So the first and the second diagram cannot be isomorphic. In general, we append+ or − if
δi + εj + ζk gives more or less than the “expected” numberpqr/4 times0000. But the third
diagram is also of type322− although it is not isomorphic to the second. Notice that the rows
of the diagram are the cosets ofF4

2/(F2(1100) + F2(1011)). Hence, everyA ∈ GL4(F2) which
transforms the second diagram into the third diagram also transforms the sets

{ε1, ε2} = {1101, 1010}, {ζ1, ζ2} = {0011, 0100}

of the second diagram into the sets

{ε1, ε2} = {1101, 0110}, {ζ1, ζ2} = {0011, 1111}

of the third diagram. This is not possible because in the second diagram we haveε1 + ε2 =
ζ1 + ζ2 = 0111 and in the third one we have1011 = ε1 + ε2 6= ζ1 + ζ2 = 1100. In general,
we append a prime to a2 in the symbol if in the symbol there are at least two2’s and if the
corresponding sums of characters are different. In the last case we could reduce the symbol322′−
to 322′ without loosing the uniqueness of the symbol. In the following we will use this reduction
whenever possible. Finally we can classify all non-zonotopal Dirichlet-Voronoi polytopes in four
dimensions. We give the complete classification on the next page.
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1

◦ ◦ ◦
◦
◦

444

2

◦ ◦ ◦
◦
◦
•

443

3

◦ ◦ ◦
◦
◦
• •

◦ ◦ ◦
◦
◦ •
•

442 433

4

◦ ◦ ◦
◦
◦
• • •

◦ ◦ ◦
◦
◦ •
• •

◦ ◦ ◦
◦ •
◦ •
•

◦ ◦ ◦
◦ •
◦ •
•

441 432 333+ 333−

5

◦ ◦ ◦
◦
◦ •
• • •

◦ ◦ ◦
◦
◦ • •
• •

◦ ◦ ◦
◦
◦ • •
• •

◦ ◦ ◦
◦ •
◦ •
• •

◦ ◦ ◦
◦ •
◦ •
• •

431 422 422′ 332+ 332−

6

◦ ◦ ◦
◦
◦ • •
• • •

◦ ◦ ◦
◦ •
◦ •
• • •

◦ ◦ ◦
◦ •
◦ •
• • •

◦ ◦ ◦
◦ •
◦ • •
• •

◦ ◦ ◦
◦ •
◦ • •
• •

421 331+ 331− 322+ 322−
◦ ◦ ◦

◦ •
◦ • •

• •
322′

7

◦ ◦ ◦
◦
◦ • • •
• • •

◦ ◦ ◦
◦ •
◦ • •
• • •

◦ ◦ ◦
◦ •
◦ • •
• • •

◦ ◦ ◦
◦ • •
◦ • •
• •

◦ ◦ ◦
◦ • •
◦ • •
• •

411 321+ 321− 222′ 22′2′′

◦ ◦ ◦
◦ • •
◦ • •
• •

◦ ◦ ◦
◦ • •
◦ • •
• •

222+ 222−

8

◦ ◦ ◦
◦ •
◦ • • •
• • •

◦ ◦ ◦
◦ •
◦ • • •
• • •

◦ ◦ ◦
◦ • •
◦ • •
• • •

◦ ◦ ◦
◦ • •
◦ • •
• • •

◦ ◦ ◦
◦ • •
◦ • •
• • •

311+ 311− 22′1 221+ 221−

9

◦ ◦ ◦
◦ • •
◦ • • •
• • •

◦ ◦ ◦
◦ • •
◦ • • •
• • •

211+ 211−

10

◦ ◦ ◦
◦ • • •
◦ • • •
• • •

◦ ◦ ◦
◦ • • •
◦ • • •
• • •

111+ 111−
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4.4.6. More Data

CONWAY DELONE ENGEL f0 f1 f2 f3 group order
K5 1. 30− 2 120 240 150 30 240

K5 − 1 4. 28− 4 96 198 130 28 24
K3,3 19. 30− 1 102 216 144 30 144

K5 − 2 6. 24− 16 72 150 102 24 16
K5 − 1− 1 5. 26− 8 78 168 116 26 16
K5 − 2− 7. 24− 12 60 134 98 24 16

C2221 11. 22− 2 54 116 84 22 96
K5 − 3 10. 20− 3 54 114 80 20 16
K4 + 1 8. 16− 1 48 96 64 16 96

C222 9. 22− 1 46 108 84 22 96
C321 12. 20− 2 24 94 72 20 24
K4 13. 14− 2 36 74 52 14 32

C3 + C3 16. 12− 1 36 72 48 12 288
C5 14. 20− 1 30 70 60 20 240

C4 + 1 15. 14− 1 28 62 48 14 96
C3 + 1 + 1 17. 10− 1 24 48 34 10 96
C1+1+1+1 18. 8− 1 16 32 24 8 384

111+ 3. 30− 4 120 240 150 30 72
111− 2. 30− 3 120 240 150 30 24
211+ 21. 28− 6 104 212 136 28 8
211− 20. 28− 5 104 212 136 28 8
311+ 24. 28− 3 94 198 132 28 8
311− 23. 28− 2 94 198 132 28 24
22′1 22. 26− 10 88 184 122 26 4
221+ 26. 26− 9 88 184 122 26 16
221− 25. 26− 11 88 184 122 26 16
411 29. 28− 1 88 192 132 28 24

321+ 28. 26− 6 78 170 118 26 4
321− 27. 26− 7 78 170 118 26 4
222′ 30. 24− 18 72 156 108 24 8
22′2′′ 32. 24− 19 72 156 108 24 24
222+ 31. 24− 17 72 156 108 24 96
222− 33. 24− 20 72 156 108 24 96
421 36. 26− 5 72 164 118 26 8

331+ 45. 26− 3 68 156 114 26 24
331− 34. 26− 4 68 156 114 26 8
322+ 44. 24− 14 62 142 104 24 16
322− 39. 24− 15 62 142 104 24 16
322′ 43. 24− 13 62 142 104 24 4
431 35. 26− 2 62 150 114 26 12
422 37. 24− 11 56 136 104 24 32
422′ 38. 24− 10 56 136 104 24 16
332+ 41. 24− 8 52 128 100 24 8
332− 46. 24− 9 52 128 100 24 8
441 40. 26− 1 56 144 114 26 96
432 42. 24− 7 46 122 100 24 8

333+ 24− 6 42 114 96 24 24
333− 47. 24− 5 42 114 96 24 72
442 48. 24− 4 40 116 100 24 64
433 49. 24− 3 36 108 96 24 24
443 50. 24− 2 30 102 96 24 96
444 51. 24− 1 24 96 96 24 1152
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In the previous table we compared our classification of four-dimensional Dirichlet-Voronoi poly-
topes to the already existing classifications of DELONE and ENGEL. We summarized CONWAY ’s,
DELONE’s and ENGEL’s classification symbol together withf -vector and order of automorphism
group of every type.

By the automorphism group of a type, say311+, we mean all linear transformations that
leave the corresponding cone, herecone{R1, R2, R3, R4, R6, R8, R11, R12}, pointwise fixed.

Another problem arose: How can we distinguish e.g. the Dirichlet-Voronoi polytopes of type
111+ and111− combinatorially? This cannot be done by thef -vector alone. We have to use
finer combinatorial invariants. We looked at two-dimensional faces. Dirichlet-Voronoi polytopes
of type111+ have6 triangles,54 quadrangles,54 pentagons and36 hexagons on the boundary.
Dirichlet-Voronoi polytopes of type111− have72 quadrangles,36 pentagons and42 hexagons
on the boundary.

In DELONE’s and in ENGEL’s classification we find even more data on the four-dimensional
Dirichlet-Voronoi polytope. This also can be used to show that the types are pairwise combina-
torially distinct.

4.5. Dimension 5

RYSHKOV achieved the first step towards a classification of all non-equivalent five-dimensional
DELONE triangulations. In [Rys1973] he determines all76 non-equivalent1-skeletons of Delone
triangulations (so-called “C-types”) in dimension5. Together with BARANOVSKII he refined
this result to find221 non-equivalent Delone triangulations. They documented the calculations
in [BR1973] and in greater detail in [RB1976]. They claimed to give a complete list but it was
only almost complete. With help of a computer ENGEL showed that there are222 non-equivalent
types (see [Eng1998]). But the list of BARANOVSKII and RYSHKOV and the one of ENGEL are
not directly comparable. In [EG2002] ENGEL and GRISHUKHIN undertake the non-trivial task
to identify the missing Delone triangulation. In this article they also correct several errors in both
lists.

By an implementation inC++ of VORONÖI ’s algorithm we confirm the number of222 non-
equivalent five-dimensional Delone triangulations. On a standard Intel Pentium computer the
complete classification takes about15 minutes. However, the computation can be sped up con-
siderably because we test two Delone triangulations for being equivalent in a rather naive way.
In Chapter 8.4.3 we will show an alternative and more efficient isomorphism test.

We do not want to print our complete data here. In the near future we will make it available
on the world wide web. We only give the data of the missed Delone triangulation. As a byproduct
of our classification we confirm the list of seven rigid five-dimensional positive definite quadratic
forms given by BARANOVSKII and GRISHUKHIN in [BG2001].

In principle we could use our classification of the five-dimensional Delone triangulation to
give a classification of all combinatorial types of five-dimensional Dirichlet-Voronoi polytopes.
We could use similar methods as we did in the four-dimensional case. ENGEL ([Eng2000])
reports that there are179, 372 combinatorially distinct five-dimensional Dirichlet-Voronoi poly-
topes.

4.5.1. The Missing Delone Triangulation

In our list the missing Delone triangulation is#164. The automorphism group of the missing
Delone triangulation is nearly trivial (it has order4), so we do not give all simplices of the
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triangulation. We give the facet-defining inequalities of the secondary cone instead. To accustom
the reader to the data that we will make available on the world wide web, we give them in
the PolyhedraH-Format (Version 1997) that was defined by AVIS and FUKUDA and that is
implemented in their programslrs andcdd . Let A ∈ Zm×d be an integral matrix, and let
b ∈ Zm be a vector. The PolyhedraH-Format of the systemAx ≤ b of m inequalities ind
variablesx = (x1, x2, . . . , xd)t is

H-representation
begin
m d+ 1 integer
b −A
end

In our situation we havex = (q11, q21, q22, q31, q32, q33, . . . , q55)t.

* secondary cone #164
H-representation
begin
18 16 integer
0 0 -1 0 0 0 0 0 -1 0 0 -1 -1 -1 -1 -1
0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 -1 0
0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 1 2 1 0 0 1 1 0
0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 1 0 1 1 1 0 1 1 0 1 1 2 1 1
0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0
end

4.5.2. Rigid Forms in Dimension 5

Using a corrected list of ENGEL’s classification BARANOVSKII and GRISHUKHIN found seven
rigid five-dimensional positive definite quadratic forms. To confirm their list we computed the
extreme rays of the222 non-equivalent secondary cones. We found the same rigid forms. For
future reference we only give the Gram matrices here and refer the interested reader to the ar-
ticle [BG2001] for more details. Our numbering coincides with the one of BARANOVSKII and
GRISHUKHIN.

R1 =


2
0 2
1 −1 2
−1 0 −1 2
−1 0 −1 0 2

 R2 =


3
1 2
1 0 2
−2 −1 −1 3
−2 −1 −1 1 3
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R3 =


3
1 3
1 1 3
−1 −1 −1 3
−2 −2 −2 0 5

 R4 =


3
1 3
−1 −1 3
−1 −1 1 3
−1 −1 −1 −1 3



R5 =


5
1 3
−2 −1 5
−2 −1 2 5
−1 −1 −2 −2 5

 R6 =


5
1 5
−1 −1 5
−1 −1 1 5
−2 −2 −2 −2 6



R7 =


4
2 6
−1 −2 4
−1 −2 1 4
−2 −2 −1 −1 6


4.6. Dimension 6 and Higher

Not much is known about Delone triangulations in dimensions higher than5. Currently, there
are no realistic bounds known for the number of non-equivalent Delone triangulations in a given
dimension. With help of our computer program we found more than250, 000 non-equivalent
Delone triangulations in dimension6. Mainly due to memory limitations — we have to deal with
360 six-dimensional simplices per triangulation — we were not able to push the classification
further. Nevertheless, we think that a complete classification might be possible with up-to-date
computers. But for this a careful reexamination and reimplementation of our program would
be necessary. On the other hand, we have no hope that a classification of all non-equivalent
seven-dimensional Delone triangulations is feasible in the near future.

Even about rigid positive definite quadratic forms we do not know much. With one exception:
For the class of positive definite quadratic forms associated to root lattices (or to their duals)
DEZA and GRISHUKHIN give a complete answer in [DG2002]:

Lattice A1 = A∗1 Ad A∗d Dd D∗2d+1 D∗2d Ed E∗d
Dimensiond 1 ≥ 2 ≥ 1 ≥ 4 ≥ 2 ≥ 2 6, 7, 8 6, 7, 8
Non-rigidity deg. 1 (d+ 1) d(d+1)

2 1 2d+ 1 1 1 1
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The Lattice Covering Problem

Θ(A∗3) < Θ(A3)
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The Lattice Covering Problem

The lattice covering problem asks for the most economical way to coverd-dimensional
space by equal overlapping spheres whose centers form a lattice.
In this part, we present an algorithm which solves the lattice covering problem in any
given dimension. The proposed algorithm has two phases. The first phase generates
all non-equivalent Delone triangulations. Here, techniques form Part I are applied. In
the second phase we have to solve an optimization problem for each generated Delone
triangulation.
The optimization problem looks as follows: the set of all positive definite quadratic
forms with fixed Delone triangulation is identified with a set of lattices whose
Dirichlet-Voronoi polytopes are all combinatorially equivalent and can be transformed
into each other continuously. The covering density of a lattice covering is the vol-
ume of the Dirichlet-Voronoi polytope’s circumsphere divided by the volume of the
Dirichlet-Voronoi polytope. Since this value is invariant under scaling of the lattice,
the radius of the circumsphere can be fixed to1. Then we maximize the volume of the
Dirichlet-Voronoi polytope in order to get an economical lattice covering.

Chapter 5 “Determinant Maximization” introduces a general determinant maximiza-
tion problem which is suitable for the above approach. It is a convex programming
problem and can be transformed into a semidefinite programming problem. These
kind of problems can be solved efficiently, e.g. by interior-point algorithms for which
implementations are available. To assemble the original optimization problem into
the framework of determinant maximization problems the constraint “the radius of
the circumsphere of a Dirichlet-Voronoi polytope equals one” has to be formulated
as a so-called linear matrix (in-)equality. We do this in Chapter 6 by using Carley-
Monger determinants. Then, in Chapter 7 “Solving the Lattice Covering Problem”
the methods of the preceding chapters are fit together into an algorithm that solves the
lattice covering problem. In this context we interpret different classical results of the
theory of lattice coverings.
The number of non-equivalent Delone triangulations grows enormously with the di-
mension. Solving a single optimization problem belonging to a Delone triangulation
is time-consuming. So it is desirable to have an apriori lower bound for the covering
density for those lattice coverings associated to a given Delone triangulation. For this
purpose we introduce the method of the moments of inertia in Chapter 8.
In Chapter 9 “Results in Low Dimensions” we demonstrate that the algorithm is not
only of theoretical interest. We have implemented the algorithm. For the dimensions
up to 5 we could reproduce (check, extend, and rarely correct) all previous known
results. For dimensions6 and7 many new interesting lattice coverings were found.
For the dimensions8 to 24 we give a report on the state-of-the-art.
Following the tradition of Part I we included motivating and somehow chaotic pic-
tures on the previous page. We created the picture withpovray . They show sphere
coverings belonging to the three-dimensional latticesA∗3 andA3.





Chapter 5.

Determinant Maximization

In this chapter we introduce determinant maximization problems. Determinant maximization
problems are convex programming problems and are, in a sense, equivalent to the more popular
semidefinite programming problems. In the last years, semidefinite programming problems and
determinant maximization problems became standard problem classes in the theory of convex
optimization. For both classes efficient algorithms and implementations are available.

Later on we will see how the lattice covering problem can be formulated naturally as a finite
number of determinant maximization problems.

5.1. The Determinant Maximization Problem

Following VANDENBERGHE, BOYD, and WU ([VBW1998]) we say that adeterminant maxi-
mization problemis an optimization problem of the form

minimize ctx− log detG(x)
subject to G(x) is a positive definite matrix,

F (x) is a positive semidefinite matrix.

The optimization vector isx ∈ Rd, the row vectorct ∈ (Rd)∗ defines a linear form, the maps
G : Rd → R

m×m andF : Rd → R
n×n are affine:

G(x) = G0 + x1G1 + · · ·+ xdGd,
F (x) = F0 + x1F1 + · · ·+ xdFd,

andGi ∈ Rm×m, Fi ∈ Rn×n, i = 0, 1, . . . , d, are symmetric matrices. We will also write the
linear matrix inequalitieswhich define the constraints of the determinant maximization problem
byG(x) � 0 andF (x) � 0.

A point x ∈ Rd is a feasible solutionof the determinant maximization problem if it satisfies
the two constraints: (i) the matrixG(x) is positive definite, (ii) the matrixF (x) is positive
semidefinite. It is called astrictly feasible solutionif the matrixF (x) is positive definite.

5.2. Convexity of the Problem

In the definition of the determinant maximization problem we usedmin ctx − log detG(x)
instead of the more intuitivemax ctx+detG(x) because in the first formulation the determinant
maximization problem is a convex programming problem. In the following we will show the
convexity of the problem. We have to show that the objective functionx 7→ ctx− log detG(x)



70 Chapter 5 Determinant Maximization

is convex on the set of feasible solutions and the set of feasible solutions is also convex. This is
evident from the following arguments due to MINKOWSKI [Min1905] (see also [GL1987],§39).

The objective function is convex since it is the sum of two convex functions: the linear
functionx 7→ ctx and the composed functionx 7→ − logG(x) wherex 7→ G(x) is an affine
transformation. NowX 7→ − log detX is a strictly convex function on the set of positive definite
matrices. To prove this it suffices to show that the functionX 7→ − log detX is strictly convex on
any line segment[X,Y ] = {tX + (1− t)Y : t ∈ [0, 1], X 6= Y } in Sm>0. Therefore, we compute
the second derivative of the one-dimensional functionf(t) = − log det(tX + (1− t)Y ) and see
that it is always positive: There is a matrixA with determinant1 whose inverse simultaneously
diagonalizesX andY . Hence,X = At diag(x1, . . . , xm)A, Y = At diag(y1, . . . , ym)A and

f(t) = − log(y1 + t(x1 − y1))− · · · − log(ym + t(xm − ym)),
∂f

∂t
(t) = − x1 − y1

y1 + t(x1 − y1)
− · · · − xm − ym

ym + t(xm − ym)
,

∂2f

∂t2
(t) =

(
x1 − y1

y1 + t(x1 − y1)

)2

+ · · ·+
(

xm − ym
ym + t(xm − ym)

)2

> 0.

The set of feasible solutions is convex since it is the intersection of the two convex sets
{x ∈ Rd : F (x) is positive semidefinite} and{x ∈ Rd : G(x) is positive definite}. The first set
equalsF−1(Sn≥0) and is convex because preimages of convex sets are again convex. Additionally,
a straight forward computation shows thatSn≥0 is indeed convex. The same argument works for
the second setG−1(Sm>0).

5.3. Relation to Semidefinite Programming

If for all x ∈ Rd the matrixG(x) is the identity matrix, then a determinant maximization problem
reduces to a semidefinite programming problem. Asemidefinite programming problemis an
optimization problem of the form

minimize ctx
subject to F (x) is a positive semidefinite matrix.

In the last twenty years numerous people worked in the field of semidefinite programming
problems. It unifies standard problems in convex optimization, e.g. linear and quadratic pro-
gramming. Many problems in combinatorial optimization and engineering can be formulated
as semidefinite programming problems. Furthermore, semidefinite programming problems are
convex programming problems, they have a rich duality theory and can be solved efficiently.

Currently there exist two different types of algorithms which efficiently solve semidefinite
programming problems. These are ellipsoid and interior-point methods. Both have many variants
and the exact technical descriptions are quite complicated. They can approximate the solution of
a semidefinite programming problem within any specified accuracy and run in polynomial time if
the instances are “well-behaving”. But these theoretical results are definitely not an issue for us.
We do not want to go further into details since for our application it suffices to use the methods
more or less as a black box as long as they perform well in our instances. Instead we only want
to understand the underlying principles of the specific interior-point algorithms. Nowadays, they
are much more efficient in practice than ellipsoid methods. For more information on the exciting
topic of semidefinite programming the interested reader is referred to the vast amount of literature
which to a great extend is available on the World Wide Web. Good starting points which contain
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various points of views are [VB1996], [GLS1988], [NN1994], [Goe1997], [WSV2000], and the
web site∗ of CHRISTOPHHELMBERG.

In [NN1994] NESTEROVand NEMIROVSKY developed a framework for the design of effi-
cient interior-point algorithms for general and for specific convex programming problems. There
(§6.4.3), they also showed that the determinant maximization problem can be cast into a semidefi-
nite programming problem by a transformation which can be computed in polynomial time. Since
their transformation uses more than linear time, their result is mainly of theoretical interest. Nev-
ertheless, there exists a polynomial time algorithm which solves the determinant maximization
problem.

5.4. Algorithms for the Determinant Maximization Problem

It is faster to solve the determinant maximization problem directly than to use the transforma-
tion of NESTEROVand NEMIROVSKY. VANDENBERGHE, BOYD, WU and independently TOH

give in [VBW1998] and in [Toh1999] interior-point algorithms for the determinant maximization
problem. Both algorithms fit into the general framework of NESTEROVand NEMIROVSKY.

The key fact is that the function

ϕ(x) =
{
− log detF (x) if F (x) � 0,
+∞ otherwise,

is a barrier function for the feasible domain{x ∈ Rd : F (x) � 0}. A barrier function for a
domainC is a smooth and convex function withlim

x→∂C
ϕ(x) = +∞. Then, it is intuitively clear

that the minimumx∗(α) of the function

ϕα(x) = α(ctx− log detG(x)) + ϕ(x)

gives the minimum of the original problem asα → ∞. The minimization of the functionϕα is
anunconstrainedoptimization problem to which NEWTON’s method can be applied. Altogether
we can use a interior penalty scheme to solve our original problem. Now it is clear where the
name “interior-point method” comes from: all intermediate solutions lie in the interior of the set
of feasible solutions.

input strictly feasiblex ∈ Rd, positive numberα
repeat compute approximate minimumx∗ of ϕα by NEWTON’s method with 1. iteratex.

x← x∗.
increaseα.

until x is an approximate solution of the problem.

Two problems of the “algorithm” above are apparent: how do we increase the penalty parame-
ter α and how do we decide whetherx is an approximate solution? Both problems are highly
non-trivial and one has to work very carefully through the technicalities to get a polynomial time
algorithm. We just glimpse at the ideas.

It is a well-known fact that NEWTON’s method converges very fast if the first iterate lies near
to the minimum. In [NN1994] one can find a very detailed analysis of NEWTON’s method. The
increment of the penalty parameterα is adjusted in such a way that NEWTON’s method finds the
next minimum in a constant number of iterations.
∗http://www-user.tu-chemnitz.de/˜helmberg/semidef.html
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To certify that we have found an optimum of a determinant maximization problem we make
use of duality theory. To a determinant maximization problem we associate thedual problem

maximize log detW − trace(G0W )− trace(F0Z) +m
subject to trace(GiW ) + trace(FiZ) = ci, i = 1, . . . , d,

W is a positive definite matrix,
Z is a positive semidefinite matrix.

The optimization variables areW ∈ Rm×m andZ ∈ Rn×n. The primal determinant maximiza-
tion problem and its dual problem are connected as follows (for proofs see§3 of [VBW1998]).

Theorem 5.4.1. Let p∗ be the optimal value of the primal problem and letd∗ be the optimal
value of the dual problem. Then, we always have the inequalityp∗ ≥ d∗. If the primal problem
is strictly feasible, the optimal solution of the dual problem is achieved and vice versa. In both
cases we have equalityp∗ = d∗.

Suppose that the primal problem has a strictly feasible solution. Then, a primal feasible solu-
tion x is optimal if and only if there exists a positive semidefinite matrixZ ∈ Rn×n such that
F (x)Z = 0 and

trace(GiG(x)−1) + trace(FiZ) = ci, i = 1, . . . , d.
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Cayley-Menger Determinants

Let L be a lattice and letQ = (qij) be a positive definite quadratic form associated toL. To
express the lattice covering problem in a finite number of determinant maximization problems we
formulate the fact that the covering radius ofL is bounded by a constant, say1, in terms of linear
matrix inequalities in the parametersqij . The covering radius ofL, which is the circumsphere
of the lattice’s Dirichlet-Voronoi polytopes, is bounded by1 if and only if the circumradius of
every Delone polytope is bounded by1. So the first goal is to give a linear matrix inequality for a
simplex having a circumsphere of radius at most1. In this chapter we will achieve this by using
Cayley-Menger determinants.

6.1. Definition and Basic Properties

We define theCayley-Menger determinantof n pointsx1, . . . ,xn, where the pairwise distances
dist(xi,xj) are given, by

CM(x1, . . . ,xn) =

∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 dist(x1,x1)2 . . . dist(x1,xn)2

...
...

...
...

1 dist(xn,x1)2 . . . dist(xn,xn)2

∣∣∣∣∣∣∣∣∣ . (6.1)

Cayley-Menger determinants give universal relations between the distances of points in affine
Euclidean spaces.

Let us look at the simplest case: the case of three pointsx1,x2,x3 on the lineR1. The
Cayley-Menger determinant of these three points vanishes: By computing the determinant we
see thatCM(x1,x2,x3) factors

CM(x1,x2,x3) = (dist(x1,x2) + dist(x1,x3) + dist(x2,x3))
· (−dist(x1,x2) + dist(x1,x3) + dist(x2,x3))
· (dist(x1,x2)− dist(x1,x3) + dist(x2,x2))
· (dist(x1,x2) + dist(x1,x3)− dist(x2,x3)).

Now it is easy to see thatCM(x1,x2,x3) = 0 because one of the last three factors vanishes
since one point has to lie between the other two.

Cayley-Menger determinants and Euclidean spaces are linked concepts. Cayley-Menger de-
terminants are the “main” syzygies of the Euclidean invariants and with their help it is easy to
decide whether a distance space can be embedded into a Euclidean space (for more information
on these topics see e.g. [Blu1970], [Hav1991], [Dal1995], [DL1997]). In our account we will
follow mainly BERGER’s book [Ber1987].

The only property of Cayley-Menger determinants we need in the following is:
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Lemma 6.1.1.Givend+2 points ind-dimensional Euclidean space(E, (·, ·)), then their Cayley-
Menger determinant vanishes.

Proof. The pointsx1, . . . ,xd+2 are affinely dependent. So there exist numbersλ1, . . . , λd+2

with λ1 + · · ·+ λd+2 = 0 and
∑d+2

i=1 λixi = 0. Then, the functiony 7→
∑d+2

i=1 λi dist(xi,y)2 is
a constant function because

d+2∑
i=1

λi dist(xi,y)2 =
d+2∑
i=1

λi ((xi,xi)− 2(xi,y) + (y,y)) =
d+2∑
i=1

λi(xi,xi).

Using this fory = xi, i = 1, . . . , d+ 2, we see that the vector

(−
d+2∑
i=1

λi(xi,xi), λ1, . . . , λd+2)t

lies in the kernel of the matrix which is used in (6.1) to define the Cayley-Menger determinant,
henceCM(x1, . . . ,xd+2) = 0. �

6.2. The Radius of the Circumsphere of a Simplex

It is obvious that ad-dimensional simplex ind-dimensional Euclidean space is defined up to
Euclidean isometries by its edge lengths. Then (without knowing anything about invariant theory)
it is clear that the radius of the simplex’ circumsphere can somehow expressed by its edge lengths.
By using Cayley-Menger determinants one can find a simple formula for the circumradius.

Lemma 6.2.1. Let L = conv{v0,v1, . . . ,vd} be ad-dimensional simplex ind-dimensional
Euclidean space. Then the uniquely determined circumsphere ofL has the squared radius

R2 = −1
2
·

det
(
dist(vi,vj)2

)
0≤i,j≤d

CM(v0, . . . ,vd)
.

Proof. Let c be the center of the circumsphere ofL and letR = dist(c,vi) be the circumradius.
Due to Lemma 6.1.1 we haveCM(c,v0, . . . ,vd) = 0. Then, looking at the matrix which defines
the Cayley-Menger determinant yields the desired result:

CM(c,v0, . . . ,vd) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 0 R2 . . . R2

1 R2 dist(v0,v0)2 . . . dist(v0,vd)2

...
...

...
...

...
1 R2 dist(vd,v0)2 . . . dist(vd,vd)2

∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣

1 0 R2 . . . R2

0 1 1 . . . 1
1 R2 dist(v0,v0)2 . . . dist(v0,vd)2

...
...

...
...

...
1 R2 dist(vd,v0)2 . . . dist(vd,vd)2

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 1 R2 . . . R2

1 0 1 . . . 1
R2 1 dist(v0,v0)2 . . . dist(v0,vd)2

...
...

...
...

...
R2 1 dist(vd,v0)2 . . . dist(vd,vd)2

∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣

−R2 1 R2 . . . R2

1 0 1 . . . 1
0 1 dist(v0,v0)2 . . . dist(v0,vd)2

...
...

...
...

...
0 1 dist(vd,v0)2 . . . dist(vd,vd)2

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

−2R2 1 0 . . . 0
1 0 1 . . . 1
0 1 dist(v0,v0)2 . . . dist(v0,vd)2

...
...

...
...

...
0 1 dist(vd,v0)2 . . . dist(vd,vd)2

∣∣∣∣∣∣∣∣∣∣∣
= −2R2 CM(v0, . . . ,vd)− det

(
dist(vi,vj)2

)
0≤i,j≤d .

�

6.3. A Linear Matrix Inequality

By the previous lemma our first goal is within reach. To find a linear matrix inequality for the
fact that the circumradius of a simplex is bounded by1 we only have to transform the formula
stated in the lemma to the right form. The idea of using Cayley-Menger determinants to find the
linear matrix inequality is highly inspired by the paper [DDRS1970] of DELONE, DOLBILIN ,
RYSHKOV and STOGRIN.

Proposition 6.3.1. Let L = conv{v0,v1, . . . ,vd} ⊆ R
d with v0 = 0 be ad-dimensional

simplex. A positive definite quadratic formQ = (qij) gives the scalar product of a Euclidean
space(Rd, (·, ·)), (x,y) = xtQy, in which the radius of the circumsphere ofL is at most1 if
and only if the following linear matrix inequality (in the parametersqij) is satisfied:

BRL(Q) =


4 (v1,v1) (v2,v2) . . . (vd,vd)

(v1,v1) (v1,v1) (v1,v2) . . . (v1,vd)
(v2,v2) (v2,v1) (v2,v2) . . . (v2,vd)

...
...

...
...

...
(vd,vd) (vd,v1) (vd,v2) . . . (vd,vd)

 � 0.

Proof. As a first step transform the nominator of the formula given in the previous lemma using
the so-called covariance map, i.e. replacedist(x,y)2 by (x,x)− 2(x,y) + (y,y). This gives

det
(
dist(vi,vj)2

)
0≤i,j≤d

= det ((vi,vi)− 2(vi,vj) + (vj ,vj))0≤i,j≤d

=

∣∣∣∣∣∣∣∣∣
0 (v1,v1) . . . (vd,vd)

(v1,v1) (v1,v1)− 2(v1,v1) + (v1,v1) . . . (v1,v1)− 2(v1,vd) + (vd,vd)
...

...
...

...
(vd,vd) (vd,vd)− 2(vd,v1) + (v1,v1) . . . (vd,vd)− 2(vd,vd) + (vd,vd)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
0 (v1,v1) . . . (vd,vd)

(v1,v1) −2(v1,v1) . . . −2(v1,vd)
...

...
...

...
(vd,vd) −2(vd,v1) . . . −2(vd,vd)

∣∣∣∣∣∣∣∣∣
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=
1
4
·

∣∣∣∣∣∣∣∣∣
0 −2(v1,v1) . . . −2(vd,vd)

−2(v1,v1) −2(v1,v1) . . . −2(v1,vd)
...

...
...

...
−2(vd,vd) −2(vd,v1) . . . −2(vd,vd)

∣∣∣∣∣∣∣∣∣
=

1
4
· (−2)d+1 ·

∣∣∣∣∣∣∣∣∣
0 (v1,v1) . . . (vd,vd)

(v1,v1) (v1,v1) . . . (v1,vd)
...

...
...

...
(vd,vd) (vd,v1) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣ .
As a second step the denominator of the formula given in the previous lemma is being trans-

formed similarly which gives

CM(v0, . . . ,vd)

=

∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 (v0,v0)− 2(v0,v0) + (v0,v0) . . . (v0,v0)− 2(v0,vd) + (vd,vd)
...

...
...

...
1 (vd,vd)− 2(vd,v0) + (v0,v0) . . . (vd,vd)− 2(vd,vd) + (vd,vd)

∣∣∣∣∣∣∣∣∣
=

1
4
· (−2)d+2 ·

∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 (v0,v0) . . . (v0,vd)
...

...
...

...
1 (vd,v0) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣
=

1
4
· (−2)d+2 ·

∣∣∣∣∣∣∣∣∣
0 1 0t

1 0 vt0
...

...
...

1 0 vtd

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣
1 0 0t

0 1 0t

0 0 Q

∣∣∣∣∣∣
∣∣∣∣∣∣
1 0 . . . 0
0 1 . . . 1
0 v0 . . . vd

∣∣∣∣∣∣
=

1
4
· (−2)d+2 · (−1) ·

∣∣∣∣∣∣∣
(v1,v1) . . . (v1,vd)

...
...

...
(vd,v1) . . . (vd,vd)

∣∣∣∣∣∣∣ .
Hence,

R2 = −1
4
·

∣∣∣∣∣∣∣∣∣
0 (v1,v1) (v2,v2) . . . (vd,vd)

(v1,v1) (v1,v1) (v1,v2) . . . (v1,vd)
...

...
...

...
...

(vd,vd) (vd,v1) (vd,v2) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣
det ((vi,vj))1≤i,j≤d

. (6.2)

If R ≤ 1, then

4 · det ((vi,vj))1≤i,j≤d +

∣∣∣∣∣∣∣∣∣
0 (v1,v1) (v2,v2) . . . (vd,vd)

(v1,v1) (v1,v1) (v1,v2) . . . (v1,vd)
...

...
...

...
...

(vd,vd) (vd,v1) (vd,v2) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣ ≥ 0,

which is equivalent to∣∣∣∣∣∣∣∣∣
4 0 0 . . . 0
0 (v1,v1) (v1,v2) . . . (v1,vd)
...

...
...

...
...

0 (vd,v1) (vd,v2) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
0 (v1,v1) (v2,v2) . . . (vd,vd)

(v1,v1) (v1,v1) (v1,v2) . . . (v1,vd)
...

...
...

...
...

(vd,vd) (vd,v1) (vd,v2) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣ ≥ 0,
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therefore ∣∣∣∣∣∣∣∣∣
4 (v1,v1) (v2,v2) . . . (vd,vd)

(v1,v1) (v1,v1) (v1,v2) . . . (v1,vd)
...

...
...

...
...

(vd,vd) (vd,v1) (vd,v2) . . . (vd,vd)

∣∣∣∣∣∣∣∣∣ ≥ 0.

After reordering the columns of the above matrix (1 ↔ d + 1, 2 ↔ d, . . . ), we see that all
main minors are non-negative. Then, by the criterion of HURWITZ the matrix has to be positive
semidefinite. �





Chapter 7.

Solving the Lattice Covering
Problem

In this chapter we present an algorithm which solves the lattice covering problem in any dimen-
siond.

Our algorithm computes all locally optimal lattice coverings. These are only finitely many
because we will see that for every fixed Delone triangulationD there exists at most one positive
definite quadratic form which lies in the topological closure of the secondary cone ofD giving
a locally optimal covering density. So, we fix a Delone triangulation and try to find the posi-
tive definite quadratic form which minimizes the density function in the topological closure of
the secondary cone of the fixed Delone triangulation. We will formulate this restricted lattice
covering problem as a determinant maximization problem. RYSHKOV and BARANOVSKII an-
ticipated that an algorithm for the lattice covering problem does exist. In [RB1976] (page 115)
they write “Lemma 20.5 can be used for developing “machine” methods for finding the minima
of the functionsϕi(f); that is, these minima can be found to within a defined accuracy using a
computer”.

Algorithms which solve the dual lattice packing problem have a long history in the geometry
of numbers. The first algorithms were already proposed by MINKOWSKI in [Min1905] and by
VORONÖI in [Vor1907]. These algorithms have been successfully applied in dimensions up to7
(see [Bar1957] ford = 6, [Jaq1993] ford = 7; currently the group around MARTINET is working
on the cased = 8). For more information on this topic see [CS1988b], [Mar2003], the catalogue
of lattices∗ by NEBE and SLOANE, and the catalogue of perfect lattices† by MARTINET and
BATUT.)

7.1. A Restricted Lattice Covering Problem

Recall that the covering density of a positive definite quadratic formQ in d variables is given

by Θ(Q) =
√

volBd(0,µ(Q))
detQ whereµ(Q) = maxx∈Rd minv∈Zd Q[x − v] is the inhomogeneous

minimum ofQ. Scaling ofQ by a positive real numberα leaves the covering density function
invariant:

Θ(αQ) =

√
volBd(0, µ(αQ))

det(αQ)
=

√
volBd(0, αµ(Q))

αd detQ
=

√
αd volBd(0, µ(Q))

αd detQ
= Θ(Q).

Consequently we can restrict our attention to those positive definite quadratic formsQ with

∗http://www.research.att.com/˜njas/lattices/index.html
†http://www.math.u-bordeaux.fr/˜martinet
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µ(Q) = 1. Hence, we solve the lattice covering problem if we solve the optimization problem

maximize det(Q)
subject to Q is a positive definite matrix,

µ(Q) = 1,

where the optimization variables areqij , the entries of the symmetric matrixQ. The major
disadvantage of this optimization problem is that the second constraint is not expressible as a
convex condition in the optimization variablesqij and that the problem has many local maxima.
A locally optimal solution is also calledlocally optimal lattice covering.

We will circumvent this by splitting the original problem into a finite number of determinant
maximization problems. For every Delone triangulationD we solve the optimization problem

maximize det(Q)
subject to Q is a positive definite matrix,

Q ∈∆(D),
µ(Q) ≤ 1.

The relaxation of no longer requiringµ(Q) = 1 in the third constraint does not give more optimal
solutions because withQ also 1

µ(Q)Q satisfies the constraints. Now, we have to show that this
is indeed a determinant maximization problem. We have seen in Theorem 2.5.1 that the second
constraint can be expressed with inequalities linear inqij . The constraintµ(Q) ≤ 1 is equivalent
to the fact that the radius of the circumsphere of any full-dimensional Delone simplexL ∈ D
is at most one. For a Delone simplexL this can be expressed by a linear matrix inequality
BRL(Q) � 0 in the variablesqij as stated in Proposition 6.3.1.

A determinant maximization problem is of the form

minimize ctx− log detG(x)
subject to G(x) is a positive definite matrix,

F (x) is a positive semidefinite matrix.

In our case the optimization vectorx is given by the vector of coefficients ofQ

x = (q11, q21, q22, q31, . . . , qdd)t ∈ Rd(d+1)/2,

and the linear matrix inequalityG(x) � 0 is given by

G(x) = q11


1 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . . .

+ q22


0 0 . . . 0
0 1 . . . 0
0 0 . . . 0
. . . . . . . . . . . . .

+ · · ·+ qdd


0 . . . 0 0
. . . . . . . . . . . . .
0 . . . 0 0
0 . . . 0 1



+q21


0 1

2 0 . . . 0
1
2 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . . . .

+ q31


0 0 1

2 . . . 0
0 0 0 . . . 0
1
2 0 0 . . . 0
. . . . . . . . . . . . . . . . .

+ · · ·+ qd,d−1


0 . . . 0 0
. . . . . . . . . . . . .
0 . . . 0 1

2
0 . . . 1

2 0

 ,

such thatG(x) = Q. The two other constraintsQ ∈ ∆(Q) andµ(Q) ≤ 1 can be encoded by
two block matrices in the linear matrix inequalityF (x) � 0. Instead of struggling with indices
and notation we demonstrate the encoding in a simple two-dimensional example which differs
from the general case only by the number of subblock matrices involved.
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LetD1 be the Delone triangulation of VORONÖI ’s principal form of the first typeQ[( x1
x2 )] =

2x2
1 + 2x2

2 − 2x1x2. From Section 2.3 we know that the topological closure of the secondary
cone ofD1 is given by the linear inequalities

q11 + q21 ≥ 0
− q21 ≥ 0

q21 + q22 ≥ 0

Every matrixQ whose coefficients satisfy the above inequalities belongs to∆(D1).
As we saw in Section 2.3,D1 is given by the set of simplices{v + Lπ : v ∈ Zd, π ∈ S3}

whereLπ = conv{eπ(1), eπ(1) + eπ(2), eπ(1) + eπ(2) + eπ(3)}, ande1 = (1, 0)t, e2 = (0, 1)t,
e3 = (−1,−1)t. Every full-dimensional simplex ofD1 is either a translate ofLid or of L(13).
FurthermoreL(13) is transformed intoLid by the mapx → −x. In Figure 7.1 we show the
simplices ofD1 containing the origin.
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Figure 7.1. Delone TriangulationD1.

Thus, we haveµ(Q) ≤ 1 for aQ ∈ ∆(D1) if and only if the radius of the circumsphere of
Lid = conv{v0,v1,v2} with v0 = ( 0

0 ), v1 = ( 1
0 ), v2 = ( 1

1 ), is at most 1. This translates into
the linear matrix inequality

BRLid(Q) =

 4 (v1,v1) (v2,v2)
(v1,v1) (v1,v1) (v1,v2)
(v2,v2) (v2,v1) (v2,v2)


=

 4 q11 q11 + 2q21 + q22

q11 q11 q11 + q21

q11 + 2q21 + q22 q11 + q21 q11 + 2q21 + q22

 � 0.

A block matrix is positive semidefinite if and only if each of its blocks is positive semidefinite.
Finally, the linear matrix inequalityF (x) � 0 looks as follows

F ((q11, q21, q22)t)

=



0
0

0

4 0 0
0 0 0
0 0 0


+ q11



1
0

0

0 1 1
1 1 1
1 1 1


+
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+q21



1
−1

1

0 0 2
0 0 1
2 1 2


+ q22



0
0

1

0 0 1
0 0 0
1 0 1


.

In the general case we have for any linear inequality which is needed to describe the sec-
ondary cone one1 × 1 block matrix. For any non-equivalentd-dimensional simplexL ∈ D we
have the(d+ 1)× (d+ 1) block matrixBRL(Q).

7.2. Interpretation of “Classical” Results

We have seen above that the lattice covering problem can be split into a finite number of re-
stricted lattice covering problems. Then every restricted problem is expressible as a determinant
maximization problem. In the “classical” works on the lattice covering problem by BARNES,
DICKSON and by DELONE, DOLBILIN , RYSHKOV, and STOGRIN the restricted lattice covering
problem was also considered. There, ad hoc methods were used to find locally optimal solutions.
Many calculations were performed by hand. In the process of simplifying these a number of
interesting structural properties of locally optimal lattice coverings were found. Here, we want
to interpret these properties in the context of the determinant maximization problem.

Let D be a Delone triangulation. In [BD1967] BARNES and DICKSON show that there
is at most one positive definite quadratic formQ (together with all positive multiples) with
Del(Q) = D and giving a locally optimal lattice covering. They use analytical methods for the
proof. Another proof of this fact which is based on convexity arguments and which gives a clear
geometric picture is given in [DDRS1970] by DELONE, DOLBILIN , RYSHKOV, and STOGRIN.
We want to find a positive definite quadratic formQ with µ(Q) ≤ 1 and with maximum de-
terminant. LetL1, L2, . . . , Ln be representatives of all non-equivalent full-dimensional Delone
simplices ofD. Then we haveµ(Q) ≤ 1 if and only if for everyLi the linear matrix inequality
BRLi(Q) � 0 holds. The set of allQ ∈ Sd>0 for which the linear matrix inequalityBRLi(Q) � 0
holds is convex. Therefore, the set

{Q ∈ Sd>0 : µ(Q) ≤ 1} =
n⋂
i=1

{Q ∈ Sd>0 : BRLi(Q) � 0}

is convex, too. For every positive real numberD the determinant-D-surface

Sd>0(D) = {Q ∈ Sd>0 : detQ = D}

is strictly convex, i.e. the interior of the segment[Q1, Q2] with Q1 ∈ Sd>0(D), Q2 ∈ Sd>0(D)
lies above the surfaceSd>0(D): for everyα ∈ (0, 1) we havedet(αQ1 + (1 − α)Q2) > D (see
Section 5.2). Thus, there is exactly oneQ with µ(Q) ≤ 1 and maximum determinant.

Note that theQ above does not necessarily give a locally optimal lattice covering whenQ lies
on the boundary of∆(D). In [Dic1968] DICKSON reports that for dimensionsd ≥ 14 there is no
positive definite quadratic form giving a locally optimal lattice covering which lies in the interior
of the secondary cone∆(D2). Here the Delone triangulationD2 is the (up to equivalence) unique
bistellar neighbour of the Delone triangulationD1 belonging to VORONÖI ’s principal form of the
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first type. The positive definite quadratic formQ which gives the best lattice covering in∆(D2)
lies on the boundary of∆(D2) with ∆(D1). It does not give a locally optimal lattice covering
because VORONÖI ’s principal form of the first type which lies in the interior of∆(D1) gives
a locally optimal lattice covering in any dimension (see Theorem 8.4.1). A boundary formQ
gives a locally optimal lattice covering if and only if for every Delone triangulationD′ with
Q ∈ ∆(D′) we have for allQ′ ∈ ∆(D′) the inequalityΘ(Q) ≤ Θ(Q′). At the moment there
is no positive definite quadratic form known which lies on the boundary giving a locally optimal
lattice covering. But we strongly believe that they do exist (e.g. the positive definite quadratic
form associated to the Leech lattice).

As an immediate consequence of the uniqueness we have the following invariant property
first discovered by BARNES and DICKSON ([BD1967]): LetA ∈ GLd(Z) be a unimodular
transformation which leaves the Delone triangulationD fixed:AD = D. ThenA also leaves the
secondary cone ofD fixed: At∆(D)A = ∆(D). If Q ∈ ∆(D) gives a locally optimal lattice
covering, thenQ has to be invariant underA, otherwiseAtQA ∈ ∆(D) would give another
locally optimal lattice covering contradicting the uniqueness ofQ. Hence the automorphism
group ofD is a subgroup of the automorphism group ofQ. In [Dic1968] DICKSON shows that if
Q′ ∈ ∆(Q) gives an optimal lattice covering among allQ′ ∈ ∆(Q) with Aut(D) ⊆ Aut(Q′),
thenQ gives a locally optimal lattice covering.

In [BD1967] BARNES and DICKSON give a criterion which can be used to decide whether
a given positive definite quadratic formQ whose Delone subdivision is a triangulation gives a
locally optimal lattice covering. LetQ−1 be the positive definite quadratic form inverse toQ.
ThenQ gives a locally optimal lattice covering if and only if there exist real numbersλL ≥ 0
such thatQ−1 can be expressed as

Q−1[x] =
∑
L

λL

(
d∑
i=0

αi(vtix)2 − (ctLx)2

)
,

whereL = conv{v0, . . . ,vd} runs over alld-dimensional Delone simplices withv0 = 0, and
cL =

∑
i αivi,

∑
i αi = 1, is the center of the circumsphere of the simplexL. This criterion

can be viewed as a variant of the optimality criterion for the determinant maximization problem
given by duality theory which was stated in Theorem 5.4.1. The criterion of BARNESand DICK-
SON asks for the feasibility of a linear optimization problem. So from the computational point
of view it is much simpler than the optimality criterion for determinant maximization problems.
Moreover, it is an analogue to the so-called “eutactic” criterion for locally optimal lattice pack-
ings (see [Mar2003]). A positive definite quadratic formQ is said to beeutacticif there exist
real numbersλv > 0 such thatQ−1 can be expressed as

Q−1[x] =
∑
v

λv(vtx)2

wherev runs over all shortest vectorsv ∈ Zd of Q with Q[v] = minw∈Zd\{0}Q[w]. Shortest
vectors appear always in pairs and we take for every pair of shortest vectors(v,−v) only one.
Every positive definite quadratic form which gives a locally optimal lattice packing has to be
eutactic. VORONÖI proved this in [Vor1907].

All the investigations above have the disadvantage that they only work if the considered
positive definite quadratic form lives in the interior of the secondary cone of a Delone triangu-
lation, i.e. that its Delone subdivision is a triangulation. In [DDRS1970] DELONE, DOLBILIN ,
RYSHKOV and STOGRIN explored what can happen if the Delone subdivision of a positive defi-
nite quadratic form is not a triangulation. LetD be a Delone triangulation and letQ be the optimal



84 Chapter 7 Solving the Lattice Covering Problem

solution of the restricted lattice covering problem as given in the beginning of Section 7.1. Now
relax this problem by omitting the second constrained “Q lies in the topological closure of the
secondary cone ofD”. This relaxed problem is again a determinant maximization problem. Let
Q′ be an optimal solution. Then we can have the following three cases.

i) If Q′ lies in the interior of∆(D), thenQ′ = Q andQ gives a locally optimal lattice
covering.

ii) If Q′ lies outside∆(D), then obviouslyQ′ 6= Q, andQ lies on the boundary of∆(D).
Furthermore,Q does not give a locally optimal lattice covering.

iii) If Q′ lies on the boundary of∆(D), thenQ = Q′ andQ gives a locally optimal lattice
covering if and only ifQ gives in this way a local minimum for all neighbouring secondary
cones.



Chapter 8.

Moments of Inertia

In this section we give a simple and efficiently computable local lower bound of the covering
density function. The local lower bound does only apply to those positive definite quadratic
forms lying in the topological closure of the secondary cone of a given Delone triangulation. For
the computation of the lower bound we only need to know the coordinates of the simplices of the
considered Delone triangulation.

The method goes back to RYSHKOV and DELONE. It is called the method of the moments of
inertia because the central idea in its proof is analogous to the Parallel Axis Theorem in classical
mechanics. LetIm be the moment of inertia of a body about a fixed axis passing through the
body’s center of gravitym. Then the moment of inertiaIx about another fixed axisx parallel to
the former one can be determined byIc = Mr2 + Im whereM is the mass of the body andr is
the distance between the two axis.

The method of the moments of inertia can be applied in many different situations:

I We will use it to prove that VORONÖI ’s principal formQ[x] = d
∑
x2
i −
∑

i6=j xixj of the
first type provides the optimal lattice covering among all positive definite quadratic forms
with the same Delone triangulation asQ.

I We will apply the method to solve the lattice covering problem in dimensionsd = 2, 3, 4.

I We will use the local lower bounds as a heuristic measure to find good lattice coverings in
dimensiond = 6, 7: In these dimensions the number of non-equivalent Delone triangula-
tions starts to explode, there are more than250, 000 non-equivalent Delone triangulations
in dimension6, and it is not clear which Delone triangulation admits a good lattice cov-
ering. We encode the set of Delone triangulations as an undirected labeled graph. Every
triangulation represents a node. We connect two triangulations by an edge if they are bis-
tellar neighbours. The nodes are labeled by the local lower bound of the triangulation.
Then we try to find the nodes that give globally optimal labeling by a randomized greedy
approach.

I Finally, we will show that the local lower bounds of two equivalent Delone triangulations
coincide. This give a strong invariant.

In our account and especially in the first three sections of this chapter we mainly follow
[RB1976],§23. On a single bound for the covering density for each of theL-typen-dimensional
lattices.

8.1. The Moment of Inertia and the Circumradius of a Simplex

LetP ⊆ Rd be a finite set of points ind-dimensional Euclidean space(Rd, (·, ·)). We interpret the
points ofP as masses with unit weight. Themoment of inertiaof the points about a pointx ∈ Rd
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is defined asIx(P ) =
∑
v∈P dist(x,v)2. The centroid of P (center of gravity) is given by

m = 1
|P |
∑
v∈P v. From the equations

dist(x,v)2 = (x− v,x− v)
= (x−m,x−m) + (m− v,m− v) + 2(x−m,m− v)
= dist(x,m)2 + dist(m,v)2 + 2(x−m,m− v),

and
∑
v∈P (m−v) = 0, we derive the following formula (APOLLONIUS’ formula which relates

to the Parallel Axis Theorem in classical mechanics, see [Ber1987]§9.7.6)

Ix(P ) = |P |dist(x,m)2 + Im(P ). (8.1)

Hence, the moment of inertia about the centroidm is minimal.
If the points ofP form the vertices of ad-dimensional simplex, then (8.1) gives a relationship

between the radius of the circumsphereR, the center of the circumspherec, and the moment of
inertia about the centroidm of P :

R2 =
Ic(P )
d+ 1

= dist(c,m)2 +
Im(P )
d+ 1

.

We can computeIm(P ) using only the edge lengths of the simplexP which gives nicer
formulas and makes some computations less laboriously. For every vertexw ∈ vertP we have
by definitionIw(P ) =

∑
v∈P dist(w,v)2. Summing up and using (8.1) gives∑

w∈P
Iw(P ) =

∑
w∈P

((d+ 1) dist(w,m) + Im(P )) = 2(d+ 1)Im(P ).

So, we get

Im(P ) =
1

d+ 1

∑
{v,w}⊆P

dist(v,w)2. (8.2)

LetD be a Delone triangulation ofRd, letL1, . . . , Ln be thed-dimensional simplices of the
star of a lattice point (say e.g. the origin), and letmi be the centroid ofLi, i = 1, . . . , n. The
arithmetical mean of the moments of inertia about the centroids ofLi with respect to a positive
definite quadratic formQ is defined as

ID(Q) =
1
n

n∑
i=1

Imi(Li),

and is called thecentral moment of inertiaof D with respect toQ (note that we are now dealing
with the scalar product given byQ: dist(x,y)2 = Q[x− y]).

Proposition 8.1.1. The central moment of inertia ofD with respect toQ yields a lower bound
of the inhomogeneous minimum ofQ if D is a refinement ofDel(Q). In this case we have
µ(Q) ≥ 1

d+1ID(Q).

Proof. LetRi be the radius andci be the center of the circumsphere of the simplexLi, then

µ(Q) = max
i=1,...,n

R2
i = max

i=1,...,n

(
dist(ci,mi)2 + Imi (Li)

d+1

)
≥ max

i=1,...,n

Imi (Li)

d+1 ≥ 1
(d+1)n

n∑
i=1

Imi(Li)

= 1
d+1ID(Q).

�

If D is a Delone triangulation, the functionID can be used to find a lower bound of the cov-
ering density for all positive definite quadratic formsQ with Del(Q) ⊆ D. For this we minimize
the linear functionID over all positive definite quadratic forms with a fixed determinant.
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8.2. Linear Optimization on Equidiscriminant Surfaces

Minimizing the linear functionID over all positive definite quadratic forms with a fixed determi-
nant is computationally easy but requires some preceding mathematical work.

Definition 8.2.1. (Determinant-D-Surface/Equidiscriminant Surface)

LetD be a positive real number. The
(
d(d+1)

2 − 1
)

-dimensional submanifold ofSd>0

Sd>0(D) = {Q ∈ Sd>0 : detQ = D}

is called thedeterminant-D-surface. Obviously, we have the partitionSd>0 =
⋃
D∈R>0

Sd>0(D).

The vector spaceSd of symmetric(d × d)-matrices is equipped with the scalar product
〈F,G〉 = Trace(FG). Let f be a linear functionf onSd. Then, by identifying(Sd)∗ with Sd
using the scalar product, we can writef(·) = 〈F, ·〉 for a symmetric matrixF ∈ Sd. SupposeF
is positive definite, thenf has a unique local minimum on the determinant-D-surface which we
now explicitly compute.

Proposition 8.2.2. Let f(·) = 〈F, ·〉 ∈ (Sd)∗ be a linear function onSd, andF = (fij)1≤i,j,≤d
a positive definite matrix. Thenf has a unique local minimum on the determinant-D-surface. Its
value isd d

√
D detF and the minimum is attained at the positive definite matrixd

√
D detFF−1.

Proof. We will make use of Lagrange multipliers. Consider the Lagrangian

L(Q;λ) = f(Q) + λ(D − detQ).

The partial derivatives ofL are

∂L

∂qii
(Q;λ) = fii − λQii,

∂L

∂qij
(Q;λ) = 2fij − 2λQij ,

where theQij ’s are the cofactors of the matrixQ (the(d − 1) × (d − 1)-matrixQij is obtained
fromQ by eliminating rowi and columnj and by multiplication with(−1)i+j).

If f has a local minimum, thenλ has to fulfill the equations

fii − λQii = 0, 2(fij − λQij) = 0, (8.3)

so we getλ = fij
Qij

wheneverQij 6= 0. Using this relation we are able to computeλ in terms of

the coefficientsfij . The determinant of the matrixQ−1 is detQ−1 = 1
detQ = 1

D . By Laplacian
expansion and (8.3) we also have

detQ−1 = det
(

1
detQ

(Qij)
)

=
1
Dd

det
(
fij
λ

)
=

1
λdDd

detF.

Thus, 1
D = 1

λdDd
detF andλ = 1

D
d
√
D detF . LetQ = (qij) be a critical point, then again by

Laplacian expansion

L(Q;λ) =
∑

1≤i,j≤d
fijqij + λ(D − det(qij))

=
∑

1≤i,j≤d
λQijqij + 0

= λ

d∑
i=1

d∑
j=1

qijQij

= λdD.
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Sincef is continuous and bounded from below by0, f has a minimum. SoλdD = d d
√
D detF

is f ’s unique minimum. It is attained at the positive definite matrixd
√
D detFF−1 because

f
(
d
√
D detFF−1

)
=
〈
F,

d
√
D detFF−1

〉
= d

d
√
D detF ,

anddet
(
d
√
D detFF−1

)
= D. �

8.3. A Local Lower Bound

Now we can plug Propositions 8.1.1 and Proposition 8.2.2 together. This yields a local lower
bound for the covering density of a positive definite quadratic form. “Local” means that we
first have to fix a Delone triangulation and then the lower bound applies only for the positive
definite quadratic forms lying in the topological closure of the secondary cone of the fixed Delone
triangulation.

Proposition 8.3.1. LetD be a Delone triangulation. LetQ be a positive definite quadratic form
for whichD is a refinement ofDel(Q). Then we have a lower bound for the normalized covering
density ofQ:

θ(Q) ≥ θ∗(D) =

√(
d

d+ 1

)d
detF ,

whereF is the positive definite matrix given by the equationID(·) = 〈F, ·〉. We denote the local
lower bound for the Delone triangulationD by θ∗(D).

Proof. SinceID is a linear function there is a symmetric matrixF with ID(·) = 〈F, ·〉. For every
positive definite matrixQ we have〈F,Q〉 = ID(Q) > 0. SinceSd>0 is a self-dual cone,F is
positive definite. Now we can apply Proposition 8.2.2: On the determinant-D-surfaceID has the
unique minimumd d

√
D detF . Using this withD = detQ and using Proposition 8.1.1 we get a

lower bound forθ(Q): The normalized covering density ofQ is at least

θ(Q) =

√
µ(Q)d

detQ
≥

√(
ID(Q)
d+ 1

)d
/detQ ≥

√
dd detQdetF
(d+ 1)d detQ

=

√(
d

d+ 1

)d
detF

�

8.4. Applications

8.4.1. The Lattice Covering of A∗d

As a first application of the method we show that VORONÖI ’s principal form of the first type
Q[x] = d

∑
x2
i −

∑
i6=j xixj , which is associated to the latticeA∗d that is the dual of the

root latticeAd, gives a locally optimal lattice covering. This was independently discovered by
GAMECKII ([Gam1962], [Gam1963]) and by BLEICHER ([Ble1962]).

Let D1 = Del(Q) be the Delone triangulation ofQ. The determinant ofQ is (d + 1)d−1.
Then, there exists a unique local minimum of the covering density function in the intersection
of the topological closure ofD1’s secondary cone and the determinant-(d + 1)d−1-surface. The
minimum is attained atQ. Every binary and every ternary positive definite quadratic form can be
transformed by a unimodular integral transformation to a form which lies inD1’s secondary cone.
Hence, the following theorem solves the lattice covering problem in two and three dimensions.



8.4 Applications 89

The possibility of applying the method to VORONÖI ’s principal form of the first type is
indicated in [RB1976]§23.5 where it is worked out only for dimension 5∗.

Theorem 8.4.1.(GAMECKII , BLEICHER)
LetD1 be the Delone triangulation of VORONÖI ’s principal form of the first type. Then for every
Q ∈∆(D1) the following inequality holds

θ(Q) ≥

√(
d(d+ 2)
12(d+ 1)

)d
(d+ 1).

This inequality is tight if and only ifQ is VORONÖI ’s principal form of the first type. In other
words the latticeA∗d gives a locally optimal lattice covering in every dimension.

Proof. We have described the Delone triangulation ofQ already in Chapter 2.3. Its set ofd-
dimensional simplices consists of{v + Lπ : v ∈ Zd, π ∈ Sd+1}, whereLπ is the simplex

Lπ = conv{eπ(1), eπ(1) + eπ(2), . . . ,eπ(1) + eπ(2) + · · ·+ eπ(d+1)},

e1, . . . , ed are the standard basis vectors ofZd complemented byed+1 = −e1 − · · · − ed. With
SELLING ’s formula (Proposition 2.3.1)∥∥∥∥∑d+1

i=1
αiei

∥∥∥∥2

=
∑
k<l

−qkl(αk − αl)2, whereqkl = (ek, el), k, l = 1, . . . , d+ 1, (8.4)

it is possible to use the symmetry of the Delone triangulation in the following calculations.
First, we show that the positive definite matrixF with ID1(·) = 〈F, ·〉 is given by the

quadratic formF [x] = αd
∑

1≤i≤j≤d xixj whereαd is a positive real number. That meansF is
a scaled version of the “first perfect” quadratic form which is associated to the root latticeAd.
Next, we compute the positive scaling factorαd, so that we can apply Proposition 8.3.1.

We have

ID1(Q) = 1
(d+1)!

∑
π∈Sd+1

Imπ(Lπ)

= 1
(d+1)!

∑
π∈Sd+1

1
d+1

∑
1≤i<j≤d+1

‖eπ(i+1) + eπ(i+2) + · · ·+ eπ(j)‖2 (by (8.2))

= 1
(d+1)!(d+1)

∑
π∈Sd+1

∑
1≤i<j≤d+1

∑
1≤k,l≤d+1

−qklδπ,ij,kl (by (8.4)),

where

δπ,ij,kl =
{

1, if |{k, l} ∩ {π(i+ 1), π(i+ 2), . . . , π(j)}| = 1,
0, otherwise.

If we count the number of ones inδπ,ij,kl, π ∈ Sd+1, we find∑
π∈Sd+1

δπ,ij,kl = 2(d− 1)!(j − i)((d+ 1)− (j − i))

because

I fixing π−1(k) ∈ {i+ 1, . . . , j} andπ−1(l) ∈ {1, . . . , d+ 1}\{i+ 1, . . . , j} gives a factor
of (j − i)((d+ 1)− (j − i)),

∗“For convenience we consider the casen = 5. In the context of arbitraryn it is not extremely difficult to obtain the
estimate [. . . ] of the covering density of type I lattices . . . ”
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I after fixation ofπ−1(k) andπ−1(l) all other images of the permutationπ−1 can be chosen
arbitrarily which gives a factor of(d− 1)!,

I interchanging the roles ofk andl gives another factor of2.

So, we obtain

ID1(Q) =
1

(d+ 1)!(d+ 1)

∑
1≤k,l≤d+1

−qkl
∑

1≤i<j≤d+1

2(d− 1)!(d+ 1− (j − i))(j − i).

We simplify the sum
∑

1≤i<j≤d+1(d + 1 − (j − i))(j − i). Instead of summing overi and
j we sum overm = j − i. For fixedm a pair(i, j) with m = j − i appears exactlyd + 1 −m
times in{(i, j) : 1 ≤ i < j ≤ d+ 1}. So,

∑
1≤i<j≤d+1

(d+ 1− (j − i))(j − i) =
d+1∑
m=1

(d+ 1−m)m(d+ 1−m)

Continuing the computation gives

ID1(Q) =
2(d− 1)!

(d+ 1)!(d+ 1)

∑
1≤k,l≤d+1

−qkl
d+1∑
m=1

(d+ 1−m)2m

= αd
∑

1≤k<l≤d+1

−qkl with αd = 2(d−1)!
(d+1)!(d+1)

d+1∑
m=1

(d+ 1−m)2m

= αd
∑

1≤k<l≤d
−qkl + αd

∑
1≤k≤d

−qk,d+1

= αd
∑

1≤k<l≤d
−qkl + αd

∑
1≤k,l≤d

qkl

= αd
∑

1≤l≤k≤d
qkl

The computation forαd is an exercise in the arithmetics of sums of powers (see e.g. [GKP1994],
Chapter 6.5 “Bernoulli numbers”).

αd =
2(d− 1)!

(d+ 1)!(d+ 1)

d+1∑
m=1

(d+ 1−m)2m

=
2(d− 1)!

(d+ 1)!(d+ 1)

d∑
m=1

(m3 − 2(d+ 1)m2 + (d+ 1)2m)

=
2(d− 1)!

(d+ 1)!(d+ 1)

(
1
4

(d+ 1)4 − 1
2

(d+ 1)3 +
1
4

(d+ 1)2

− 2(d+ 1)
(

1
3

(d+ 1)3 − 1
2

(d+ 1)2 +
1
6

(d+ 1)
)

+(d+ 1)2

(
1
2

(d+ 1)2 − 1
2

(d+ 1)
))

=
2(d− 1)!

(d+ 1)!(d+ 1)

(
1
12

(d+ 1)4 − 1
12

(d+ 1)2

)
=

d+ 2
6

.
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Now we are ready to apply Proposition 8.3.1. The symmetric matrix which corresponds to
the first perfect formx 7→

∑
xi +

∑
i<j xixj has determinant(d+ 1)/2d. Hence,

detF =
(αd

2

)d
(d+ 1) =

(
d+ 2

12

)d
(d+ 1)

showing the first statement of the theorem.

To accomplish the proof we have to show that the inequality is tight for VORONÖI ’s principal
form of the first typeQ[x] = d

∑
x2
i −

∑
i6=j xixj . The centroid of the Delone simplexLid =

conv{e1, e1 + e2, . . . , e1 + · · · + ed+1} is given bymid = 1
d+1(d, d − 1, . . . , 1). We will

show that it is at the same time the center of the circumsphere ofLid. We have to verify that the
distances betweenmid and the vertices ofLid are all equal:

dist(mid, e1) = dist(mid, e1 + e2) = . . . = dist(mid, e1 + · · ·+ ed+1).

Below, it will turn out that the distances are all equal to
√

d(d+2)
12 . The norm belonging toQ is

invariant under permutation of coordinates. As a consequence we see that the circumradius of
each simplex equals

√
d(d+ 2)/12. So, the inhomogeneous minimum ofQ is µ(Q) = d(d +

2)/12. The determinant ofQ is (d + 1)d−1. This gives the desired value of the normalized
covering density ofQ:

θ(Q) =

√(
d(d+ 2)
12(d+ 1)

)d
(d+ 1).

Forn ∈ {1, . . . , d} (the casen = d + 1 equals the casen = d up to changing of signs and
permutation of coordinates) we have

dist(mid, e1 + · · ·+ en)2 =
1

(d+ 1)2
‖(−1,−2, . . . ,−n, d− n, d− n− 1, . . . , 1)‖2

=
1

(d+ 1)2
‖(−1, . . . ,−n, 1, . . . , d− n)‖2

where we again used the fact that the norm belonging toQ is invariant under permutation of
coordinates. We have to compute the following product

(−1, . . . ,−n, 1, . . . , d− n)


d −1 −1 . . . −1 −1
−1 d −1 . . . −1 −1
. . .
−1 −1 −1 . . . −1 d





−1
...
−n
1
...

d− n


.

This is a rather cumbersome computation. It did not appear in the literature but it is com-
pletely elementary. We start with the following expression wherei ∈ {1, . . . , n} respectively
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j ∈ {1, . . . , d− n} denote ani-th column respectively an(n+ j)-th column

(−1,−2, . . . ,−n, 1, . . . , d− n)



...

−di+
n∑

k=1,k 6=i
k −

d−n∑
k=1

k

...
n∑
k=1

k + dj −
d−n∑

k=1,k 6=j
k

...


=

n∑
i=1

(−i)

−di+
n∑

k=1,k 6=i
k −

d−n∑
k=1

k

+
d−n∑
j=1

j

 n∑
k=1

k + dj −
d−n∑

k=1,k 6=j
k


=

n∑
i=1

i

(
di− n(n+ 1)

2
+ i+

(d− n)(d− n+ 1)
2

)

+
d−n∑
j=1

j

(
n(n+ 1)

2
+ dj − (d− n)(d− n+ 1)

2
+ j

)

= (d+ 1)
n∑
i=1

i2 +
(

(d− n)(d− n+ 1)
2

− n(n+ 1)
2

) n∑
i=1

i

+(d+ 1)
d−n∑
j=1

j2 +
(
n(n+ 1)

2
− (d− n)(d− n+ 1)

2

) d−n∑
j=1

j

= (d+ 1)
(

1
3

(n+ 1)3 − 1
2

(n+ 1)2 +
1
6

(n+ 1)
)

+
(

(d− n)(d− n+ 1)
2

− n(n+ 1)
2

)(
1
2

(n+ 1)2 − 1
2

(n+ 1)
)

+(d+ 1)
(

1
3

(d− n+ 1)3 − 1
2

(d− n+ 1)2 +
1
6

(d− n+ 1)
)

+
(
n(n+ 1)

2
− (d− n)(d− n+ 1)

2

)(
1
2

(d− n+ 1)2 − 1
2

(d− n+ 1)
)

=
d(d+ 1)(d+ 1)(d+ 2)

12
.

Then we get the desired resultdist(mid, e1 + · · ·+ en)2 = 1
(d+1)2 · d(d+1)2(d+2)

12 = d(d+2)
12 . �

One last comment on the last part of the proof: In [Ble1962] BLEICHER went a different and
less elementary path and got some more information. LetQ be a positive definite quadratic form
which lies in the secondary cone∆(D1) whereD1 is the Delone triangulation of VORONÖI ’s
principal form of the first type. BLEICHER determined all radii of the circumspheres of the
simplices in the Delone triangulationsD1. For the Delone simplexLπ, π ∈ Sd+1, he computed

R(Lπ)2 = − 1
4 detQ

det
(

0 Yπ
Y t
π Q

)
,
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whereYπ = (y1, . . . , yd) ∈ R1×d, qk,d+1 = qkk − q1k − · · · − qk−1,k − qk+1,k − · · · − qdk, and

y1 = q1,π(2) + q1,π(3) + · · ·+ q1,π(d) + q1,π(d+1)

y2 = −q2,π(1) + q2,π(3) + · · ·+ q2,π(d) + q2,π(d+1)

...

yk = −qk,π(1) − · · · − qk,π(k−1) + qk,π(k+1) + · · ·+ qk,π(d) + qk,π(d+1)

...

yd = −qd,π(1) − · · · − qd,π(d−1) + qd,π(d+1).

The next table shows numerical values ofθ(A∗d) =

√(
d(d+2)
12(d+1)

)d
(d+ 1) up to dimension

d = 24.

dimensiond normalized covering densityθ(A∗d)
2 0.384900
3 0.349386
4 0.357771
5 0.403566
6 0.493668
7 0.647571
8 0.903205
9 1.330585
10 2.059363
11 3.333843
12 5.624446
13 9.857770
14 17.900873
15 33.600994
16 65.061343
17 129.718168
18 265.880009
19 559.436387
20 1206.788059
21 2665.722767
22 6023.337013
23 13908.241579
24 32789.139836

Table 8.1. Numerical Values of the Normalized Covering Density ofA∗d.

8.4.2. Four-dimensional Lattice Coverings

We can apply the method to solve the lattice covering problem in dimension4. In Chapter 4.4
we saw that there are three non-equivalent Delone triangulations in dimension4: D1 (“the black
node”) is the Delone triangulation of VORONÖI ’s principal form of the first type,D2 (“the grey
node”) is the only bistellar neighbour ofD1, andD3 (“the white node”) is a bistellar neighbour
of D2. Using Proposition 8.3.1 DELONE and RYSHKOV determine in [DR1963] the local lower
boundsθ∗(Di) for the normalized covering densities of lattice coverings which belong toDi, i =
1, 2, 3. They got the relationθ∗(D2) > θ∗(D3) > θ∗(D1). Thus the second part of Theorem 8.4.1
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shows thatthe latticeA∗4 gives the optimal four-dimensional lattice covering. Since the solution
only needs calculations which can easily done by hand, we do this illustrative computation here.

The lower bound forD1:

From Theorem 8.4.1 we knowθ∗(D1) ≈ 0.357771 andθ∗(D1) = θ(A∗4).

The lower bound forD2:

The Delone triangulationD2 is encoded by the following twelve simplices which we write
down in RYSHKOV’s “snake” notation

〈e1, e3, e2, e4, e5〉 = LXI

〈e1, e3, e2, e5, e4〉 = LIII

〈e1, e4, e2, e3, e5〉 = LXII

〈e1, e4, e2, e5, e3〉 = LVII

〈e1, e5, e2, e3, e4〉 = LIV

〈e1, e5, e2, e4, e3〉 = LVIIII

〈e1, e2 − e1, e1 + e3, e4, e5〉 = LII

〈e1, e2 − e1, e1 + e3, e5, e4〉 = LX

〈e1, e2 − e1, e1 + e4, e3, e5〉 = LVI

〈e1, e2 − e1, e1 + e4, e5, e3〉 = LIX

〈e1, e2 − e1, e1 + e5, e3, e4〉 = LV

〈e1, e2 − e1, e1 + e5, e4, e3〉 = LI

where the snake notation is

〈v1, . . . ,v5〉 = conv{v1,v1 + v2, . . . ,v1 + · · ·+ v5},

ande5 = −e1 − · · · − e4. The Roman numbers refers to VORONÖI ’s original number-
ing ([Vor1908], page 169). From the twelve simplices above we get all four-dimensional
simplices of the triangulation by±〈v1, . . . ,v5〉+w,w ∈ Z4. The snake notation has the
advantage that the computation ofID2(Q) is very easy. Supposem is the centroid of the
simplexL = 〈v1, . . . ,v5〉, then by (8.2) we have

Im(L) =
1
5

(Q[v2] +Q[v2 + v3] +Q[v2 + v3 + v4] +Q[v2 + v3 + v4 + v5]

+Q[v3] +Q[v3 + v4] +Q[v3 + v4 + v5]
+Q[v4] +Q[v4 + v5]
+Q[v5]).

Now, we getID2(·) = 〈F, ·〉 with

F =
10

5! · 5


60 12 30 30
12 60 30 30
30 30 60 30
30 30 30 60

 and detF =
8
25

=
23

52
,

and by Proposition 8.3.1 every lattice covering which belongs toD2 has a normalized
covering density of at least

θ∗(D2) =

√
44

54
detF =

√
211

56
=

32
125

√
2 ≈ 0.3620386719

The lower bound forD3:

As in the case ofD2, the Delone triangulationD3 is encoded by the following twelve
simplices which are written in snake notation. Again do the Roman numbers refer to
VORONÖI ’s original numbering ([Vor1908], page 173).

LI = 〈e4, e3 − e4, e2 + e4, e1 − e2, e2 + e5〉
LII = 〈e4, e2 + e3, e1 − e2, e2, e5〉
LIII = 〈e2, e3, e1, e4, e5〉
LIV = 〈e1 + e4, e3 − e4, e4, e2, e5〉
LV = 〈e1 − e2, e2, e4, e3 − e4, e2 + e4 + e5〉
LVI = 〈e2, e1 − e2, e2 + e4, e3, e5〉

LVII = 〈e3, e1, e4, e2, e5〉
LVIII = 〈e2 + e4, e3 − e4, e4, e1, e5〉
LIX = 〈e2 + e4, e1 − e2, e2, e3, e5〉
LX = 〈e2 + e3, e1 − e2, e2, e4, e5〉
LXI = 〈e1, e3, e2, e4, e5〉
LXII = 〈e1, e4, e2, e3, e5〉
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Now, we getID3(·) = 〈F, ·〉 with

F =
10

5! · 5


60 12 30 30
12 60 30 30
30 30 60 18
30 30 18 60

 and detF =
196
625

=
2272

54
,

and by Proposition 8.3.1 every lattice covering belonging toD3 has a normalized covering
density of at least

θ∗(D3) =

√
44

54
detF =

√
21072

58
=

224
625

= 0.3584

8.4.3. Invariants and Symmetry

The method of the moments of inertia is very useful in the context of symmetry detection.
LetD, D′ be two equivalent Delone triangulations. Then there exists a unimodular transfor-

mationA ∈ GLd(Z) with AD = D′. As in Proposition 8.3.1, letF , F ′ be the positive definite
matrices withID(·) = 〈F, ·〉, ID′(·) = 〈F ′, ·〉. From the definition of the functionsID, ID′ the
equalityID(AtQA) = IAD(Q) = ID′(Q) that holds for allQ ∈ Sd>0 is obvious. Hence,

〈F,AtQA〉 = trace(FAtQA) = trace(AFAtQ) = 〈AFAt, Q〉 = 〈F ′, Q〉.

andF ′ = AFAt since〈·, ·〉 is a non-degenerate scalar product. This implies the following lemma
which is extremely useful in practical computations.

Lemma 8.4.2.LetD,D′ be two equivalent Delone triangulations. As in Proposition 8.3.1 letF ,
F ′ be the positive definite matrices withID(·) = 〈F, ·〉 andID′ = 〈F ′, ·〉. Then the local lower
bounds for both Delone triangulation coincide:

θ∗(D) =

√(
d

d+ 1

)d
detF =

√(
d

d+ 1

)d
detF ′ = θ∗(D′).

The automorphism group of the Delone triangulationD is a subgroup of the automorphism group
of F , i.e.

Aut(D) = {A ∈ GLd(Z) : AD = D} ⊆ {A ∈ GLd(Z) : AtFA = F} = Aut(F ).

As an indication that the local lower bound is indeed a very strong invariant we describe
what happens for the dimensionsd = 4 andd = 5. In the four-dimensional case there are
3 non-equivalent Delone triangulations and they are completely separated by the invariant. In
the five-dimensional case there are222 non-equivalent Delone triangulations and we get the
following statistic in this case: There are212 different values for the local lower bounds. They
range from≈ 0.396911 to≈ 0.421017. In eight cases two non-equivalent Delone triangulations
yield the same local lower bound and in one case three non-equivalent Delone triangulations
yield the same local lower bound.

8.4.4. Navigating in the Graph of Delone Triangulations

We view the set of Delone triangulations as an undirected labeled graph. A node represents
a Delone triangulation and two nodes are adjacent if their Delone triangulations are bistellar
neighbours. LetD be a Delone triangulation. We label its node by the local lower boundθ∗(D).
We can use the labeling in two different ways.
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I On the one hand it is clear that if the labeling of a node is large, then the considered Delone
triangulation does not admit a good lattice covering. This was used in the last section to
solve the lattice covering problem in dimension4.

In this way the five-dimensional lattice covering problem cannot be solved. From the222
non-equivalent Delone triangulations there are20 whose local lower bound is smaller than
θ(A∗5).

In [Rys1965]† RYSHKOV shows that in the neighbourhood of the Delone triangulationD1

of VORONÖI ’s principal form of the first type the local lower bounds are higher than
θ∗(D1) = θ(A∗d) in any dimensiond ≥ 5. He shows that for the Delone triangulations
D2, D3 andD4 we have the inequalitiesθ∗(D2), θ∗(D3), θ∗(D4) > θ∗(D1). The Delone
triangulations adjacent toD1 are all equivalent toD2. The Delone triangulations adjacent
toD2 are all equivalent either toD3 or toD4.

In [BT1972] BARNES and TRENERRY investigate a Delone triangulationDBT that does
have the same automorphism group asD1. Their triangulation does exist only in every
odd dimension starting from five. By a direct computation of the locally optimal lattice
covering they show that the best lattice covering belonging to this Delone triangulation
is denser than the lattice covering given byA∗d. Our computation show that in dimen-
sion5 it gives the second best locally optimal lattice covering. It is also possible to show
θ∗(DBT) = θ∗(D1).

I On the other hand we can hope thatD admits a good lattice covering if the local lower
bound is small.

Beginning with dimensiond = 6 the number of non-equivalent Delone triangulations starts
to explode. Up to now we produced more than250, 000 of them and we think that there
are several millions.

In dimension6 the hope that good local lower bounds yield good lattice coverings is par-
tially fulfilled. We demonstrate this in a typical example (see the figure on the next page).
We start from the Delone triangulation of VORONÖI ’s principal form of the first type.
From the discussion above we know that its local lower bound gives a local minimum in
the set of node labels. We take a random walk of length50. Then, we find a node labeled
by ≈ 0.50025. From this we proceed by taking a neighbouring node having the small-
est local lower bound (In the figure, nodes which have smaller labels than the current one
are marked with green circles, the other are marked with red circles). By repeating this
greedy strategy we result in a node labeled by≈ 0.44856. At the moment this node is
interesting for several “extremeness” properties. It yields the smallest known local lower
bound and it has the largest known number of neighbours, namely130. As we will see in
the next chapter there exists a locally optimal lattice covering which belongs to this node
with normalized covering density≈ 0.477217. At present this is the second best known
6-dimensional lattice covering.

†Caution! In this paper there are several misprints. See [RB1976] for corrections.
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0.50025

0.49774
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0.49386

0.49247 0.49072
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0.48728

0.48589

0.48451

0.48244

0.48044
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0.47524

0.47305

0.47132

0.46800

0.46607

0.46212

0.45754

0.45710

0.45661

0.45616

0.45570

0.45524

0.45479

0.45434

0.45390

0.45346

0.45302
0.45258

0.45215

0.45171

0.45128

0.45085

0.45042
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0.44984

0.44999

0.44976

0.44966

0.44952

0.44947

0.44943

0.44935

0.44921

0.44904 0.44883

0.44856





Chapter 9.

Results in Low Dimensions

In the last chapters we developed an algorithm for the solution of the lattice covering problem
in any given dimension. Now we want to demonstrate that this algorithm is not purely of theo-
retical interest. We implemented the algorithm in C++. We used the packageMAXDET∗ of WU,
VANDENBERGHE and BOYD and the packagelrs † of AVIS as subroutines. The implemented
algorithm is able to solve the lattice covering problem in the dimensionsd = 1, . . . , 5, and it
produces interesting lattice coverings in the dimensionsd = 6, 7 on a usual Intel Pentium based
computer. In higher dimensions the implementation does not perform very well mainly due to
memory limitations.

Another purpose of this chapter is to present the state-of-the-art of the lattice covering prob-
lem in low dimensions together with the history of the results. Low dimension means that we
restrict our attention to lattices up to dimension 24 where the miraculous Leech lattice enters the
scene. So it is a partial update of Chapter 2.1 in CONWAY and SLOANE’s book [CS1988a].

9.1. Dimension 1

The one-dimensional case is entirely trivial. The lattice covering given by the latticeZ
1 provide

a sphere covering[−1
2 ,

1
2 ] + v, v ∈ Z1, which is at the same time a sphere packing. Hence, the

covering density equals one which cannot be improved.

9.2. Dimension 2

In the introduction we already saw that the optimal lattice covering of the plane is provided
by the hexagonal lattice. This is also the optimal sphere covering of the plane which was first
proved by KERSHNERin [Ker1939]. FEJESTÓTH gives in his book [Fej1953] different proofs
for this fact. Since for general sphere coverings new aspects come into play and since the two-
dimensional case is the only non-trivial case where the optimality of a sphere covering is proven
at the moment, it is a must for us to give at least the main arguments here.

From EULER’s formula for planar graphs it follows that the number of vertices per polygon
in a polygonal subdivision of the plane is at most six. The area of a polygon withn vertices
which can be inscribed into the unit circle is at mostn

2 sin 2π
n . The maximum is only attained for

regularn-gons.
Given a covering of the plane by unit circles(B2(vi, 1))i∈N. The Voronoi subdivision of

the discrete set of circle centers is a polygonal subdivision of the plane. Let(Pi)i∈N be the

∗http://www.stanford.edu/˜boyd/MAXDET.html
†http://cgm.cs.mcgill.ca/˜avis/C/lrs.html
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family of polygons of the Voronoi subdivision. EachPi is inscribed into the corresponding unit
circle. Hence, the area ofPi is at mostni2 sin 2π

ni
whereni is the number of vertices ofPi. Since

f(x) = x
2 sin 2π

x is a concave function we can apply JENSEN’s inequality, so that for everyn ∈ N∑n
i=1 area(Pi)

n
≤
∑n

i=1 f(ni)
n

≤ f
(∑n

i=1 ni
n

)
.

From this we see that the area of an average polygon in the Voronoi subdivision is at most
f(6) = 3

√
3

2 . The covering density of the sphere covering(B2(vi, 1))i∈N is the area of a unit
circle divided by the area of an average polygon of the Voronoi subdivision. Thus,

Θ((B2(vi, 1))i∈N) ≥ 2π√
27
.

Furthermore this lower bound is tight and the optimal sphere covering are almost unique:
FEJESTÓTH shows that the lower bound is attained only by hexagonal-like sphere coverings.

9.3. Dimension 3

VORONÖI ’s principal form of the first typeQ[x] = 3x2
1 + 3x2

2 + 3x2
3 − 2x1x2 − 2x1x3 − 2x2x3

provides the thinnest lattice covering of three-dimensional Euclidean space. We gave a proof in
Section 8.4.1. The lattice which is associated toQ is the body centered cubic latticeA∗3. The
Dirichlet-Voronoi polytope ofA∗3 is the truncated octahedron which is an Archimedian solid.

The optimality ofQ was first proven by BAMBAH in [Bam1954a]. This paper is remark-
able because there techniques like Dirichlet-Voronoi polytopes and reduction theory are used.
Although BAMBAH uses the reduction theory due to SEEBER(see [Gau1840]) which is not well-
suited for the lattice covering problem. Later, BARNES substantially simplifies BAMBAH ’s proof
in [Bar1956] where he uses VORONÖI ’s reduction theory. He also anticipates that this is the right
setup for solving the lattice covering problem in dimensions higher than three. A third proof of
the optimality ofQwas given by FEW in [Few1956]. He demonstrates that the three-dimensional
case can be solved without using reduction theory mainly by elementary means.

At the moment no attempt is known to the author to show that the optimal lattice covering also
gives the optimal sphere covering. It is probably very hard to prove this covering type “Kepler
conjecture”.

9.4. Dimension 4

VORONÖI ’s principal form of the first type

Q[x] = (x1, x2, x3, x4)


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4



x1

x2

x3

x4


gives the least dense four-dimensional lattice covering with covering densityΘ(Q) ≈ 1.765528
(θ(Q) ≈ 0.357771). In [DR1963] DELONE and RYSHKOV prove this conjecture of BAMBAH

[Bam1954b] by using the method of the moments of inertia which we described in Chapter 8.
In [BR1966] BARANOVSKII and RYSHKOV show that the positive definite quadratic form

Q[x] = (x1, x2, x3, x4)


3− γ γ −1 −1
γ 3− γ −1 −1
−1 −1 2 + 2β −β
−1 −1 −β 2 + 2β



x1

x2

x3

x4
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whereβ ≈ 0.544, γ ≈ 0.499 gives a locally optimal lattice covering. The numbersβ andγ are
roots of the polynomials

81β5 + 234β4 − 84β3 − 601β2 − 156β + 252 = 0,
γ = (18β2+39β+10)β

(β+2)(3β+14) .

Later we will demonstrate how to find polynomials which can be used to specify locally optimal
lattice coverings exactly. The Delone subdivision of the positive definite quadratic formQ cor-
responds with the triangulationD2 (“the grey node” in Chapter 4.4). The covering density of the
lattice covering provided byQ is Θ(Q) ≈ 1.883855 (θ(Q) ≈ 0.381749).

In [Bar1965] and [Bar1966] BARANOVSKII finds a third locally optimal lattice covering
which is provided by

Q[x] = (x1, x2, x3, x4)


2 α −1 −1
α 2 −1 −1
−1 −1 2 1− α
−1 −1 1− α 2



x1

x2

x3

x4


whereα = (5 −

√
13)/2. The Delone subdivision of the positive definite quadratic formQ

corresponds with the triangulationD3 (“the white node” in Chapter 4.4). The covering density is

Θ(Q) = 16(1−α)2

(2−α)3(1+α)
· volB4(0, 1) ≈ 1.928782 (θ(Q) ≈ 0.390853).

Independently does DICKSON give the locally optimal lattice covering of VORONÖI ’s third
domain in [Dic1966] and in [Dic1967] he gives a complete list of all locally optimal four-
dimensional lattice coverings. Especially the second paper is interesting because there the meth-
ods developed by BARNES and DICKSON which we described in Section 7.2 are used to give an
almost algorithmic proof.

Our implementation takes less than a second of CPU-time to yield the same result. As a
“proof” of this and to give at least one “picture” of the implementation we provide a screen shot.
There the phases of the implemented algorithm are visible:

i) estimate the covering density by the method of the moments of inertia,

ii) compute the covering density with the help of the packageMAXDET,

iii) compute the bistellar neighbours,

iv) test if the new neighbours are isomorphic to the already known ones.

[geometry16:˜/src/LatticeCovering] vallenti% time ./classify
Looking at #0 (normalized covering density >= 0.357771)
* Computing exact normalized covering density...

iters obj gap
5 -1.35e+00 7.00e+01
7 -1.80e+00 2.25e+00
9 -2.04e+00 7.26e-02

11 -2.06e+00 2.34e-03
13 -2.06e+00 7.51e-05
16 -2.06e+00 4.60e-06
19 -2.06e+00 8.25e-07

2.0000
-0.5000 2.0000
-0.5000 -0.5000 2.0000
-0.5000 -0.5000 -0.5000 2.0000
* normalized thickness = 0.357771
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* There are 10 neighbours.
* (0->1) (1=1) (2=1) (3=1) (4=1) (5=1) (6=1) (7=1) (8=1) (9=1)

Looking at #1 (normalized covering density >= 0.362039)
* Computing exact normalized covering density...

iters obj gap
7 -1.27e+00 4.71e+01

11 -1.76e+00 1.52e+00
17 -1.92e+00 5.39e-02
21 -1.93e+00 1.77e-03
26 -1.93e+00 8.25e-05
31 -1.93e+00 3.85e-06
35 -1.93e+00 6.91e-07

1.7852
0.3571 1.7852

-0.7141 -0.7141 2.2054
-0.7141 -0.7141 -0.3886 2.2054
* normalized covering density = 0.381749
* There are 10 neighbours.
* (0=1) (1=1) (2=1) (3=1) (4->2) (5=2) (6=2) (7=1) (8=0) (9=1)

Looking at #2 (normalized covering density >= 0.3584)
* Computing exact normalized covering density...

iters obj gap
6 -1.28e+00 4.73e+01

11 -1.75e+00 1.52e+00
19 -1.88e+00 6.72e-02
24 -1.88e+00 2.24e-03
30 -1.88e+00 8.84e-05
35 -1.88e+00 3.48e-06
39 -1.88e+00 6.24e-07

2.1514
0.7500 2.1514

-1.0757 -1.0757 2.1514
-1.0757 -1.0757 0.3257 2.1514
* normalized covering density = 0.390853
* There are 10 neighbours.
* (0=1) (1=1) (2=1) (3=1) (4=1) (5=1) (6=1) (7=1) (8=2) (9=1)

--
Classification completed!
There are 3 non-equivalent Delone triangulations in dimension 4.
0.730u 0.010s 0:01.49 49.6% 0+0k 0+3io 0pf+0w
[geometry16:˜/src/LatticeCovering] vallenti%

The positive definite quadratic forms found by the computer are only an approximation of
the desired local minima. But this is not a problem since the algorithm can at least in principle
approximate the solution to every given precision and since we can “beautify” the nasty numbers
to find the polynomials whose roots the “real” numbers are. We will demonstrate the “beautifica-
tion” in the case of the local optimal solution with Delone triangulationD2 where we make use
of the computational algebra systemMAGMA‡.

The automorphism group of the Delone triangulationD2 has order24. The group is generated
by 

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,


0 −1 1 0
−1 0 1 0
0 0 1 −1
0 0 1 0

 ,


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 −1

 .

‡http://magma.maths.usyd.edu.au/magma
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From Section 7.2 we know that if the locally optimal solutionQ lies in the interior of∆(D2),
thenQ has to be invariant underAut(D2), thereforeQ lies in the subspace with basis

A =


3 0 −1 −1
0 3 −1 −1
−1 −1 0 1
−1 −1 1 0

 , B =


0 3 −1 −1
3 0 −1 −1
−1 −1 0 1
−1 −1 1 0

 , C =


0 0 0 0
0 0 0 0
0 0 2 −1
0 0 −1 2

 .

The set of all non-equivalent (under the group of translations) simplices is partitioned by the
action of the groupAut(D2) into two orbits with representatives

LII = conv{(0, 0, 0, 0)t, (1,−1, 0, 0)t, (1, 0, 0, 0)t, (1, 0, 1, 0)t, (1, 0, 1, 1)t},
LXI = conv{(0, 0, 0, 0)t, (1, 0, 0, 0)t, (1, 0, 1, 0)t, (1, 1, 1, 0)t, (1, 1, 1, 1)t},

where to the orbit ofLII the simplicesLII, LX, LVI, LIX, LV, LI belong, and to the orbit ofLXI

the simplicesLXI, LIII, LXII, LVII, LIV, LVIII.
Given the positive definite quadratic form

Q̃ =


1.7852 0.3571 −0.7141 −0.7141
0.3571 1.7852 −0.7141 −0.7141
−0.7141 −0.7141 2.2054 −0.3886
−0.7141 −0.7141 −0.3886 2.2054


found by the algorithm, we computeBRL1(Q) ≈ 0.4905 > 0, BRL2(Q) ≈ −0.0002 ≈ 0. So it
is reasonable to assume that the inhomogeneous minimum of1 is only attained at the centers of
the circumspheres of the simplices which lie in the orbit ofL2.

Since the density function is invariant under scaling we can normalize the quadratic form
xA+yB+zC, x, y, z ∈ R, which lies in the invariant subspace by settingz = 1. The determinant
of Q(x, y) = xA+ yB + C is given by the polynomial

detQ(x, y) = f(x, y) = 3x4+6x3y−18x3−18x2y+27x2−6xy3+18xy2−3y4+18y3−27y2

The radius of the circumsphere around the simplexL2 is given by the rational expression (see
(6.2))

R(x, y)2 =
g(x, y)
h(x, y)

=

6x5 − 18x4y − 12x4 − 6x3y2 + 48x3y + 6x3 + 42x2y3 − 36x2y2

+114x2y − 72x2 − 48xy3 − 168xy2 − 24y5 + 48y4 + 48y3 + 72y2

3x4 + 6x3y − 18x3 − 18x2y + 27x2 − 6xy3 + 18xy2 − 3y4

+18y3 − 27y2

Now we try to find the minima of the functionθ(Q(x, y))2 = R(x, y)4/detQ(x, y) by setting
the partial derivatives to zero. The set of critical points is then given by the affine variety of the
ideal

I = 〈−∂f(x, y)
∂x

g(x, y)h(x, y) + 4f(x, y)
∂g(x, y)
∂x

h(x, y)− 4f(x, y)g(x, y)
∂h(x, y)
∂x

,

−∂f(x, y)
∂y

g(x, y)h(x, y) + 4f(x, y)
∂g(x, y)
∂y

h(x, y)− 4f(x, y)g(x, y)
∂h(x, y)
∂y

〉.

Using Gr̈obner basis techniques — decompose the radical ideal
√
I into prime ideals — we

decompose the varietyV(I) into four irreducible varieties

V(I) = V(x+ y − 3) ∪ V(x+ y) ∪ V(x− y)
∪ V(473x− 22512y4 − 70584y3 − 26351y2 + 23757y − 2421,

84y5 + 243y4 + 35y3 − 113y2 + 30y − 2).
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In this decomposition the first three subvarieties are lines and since we know that the locally
optimal solutionQ is unique they cannot giveQ. So we have to look at the last subvariety which
consists out of five points which are all real:

(x1, y1) ≈ (0.0942, 0.3188),
(x2, y2) ≈ (−1.389, 0.2552),
(x3, y3) ≈ (0.5396, 0.1080),
(x4, y4) ≈ (−0.2341,−1.0919),
(x5, y5) ≈ (−2.0951,−2.4829).

Then the point(x3, y3) gives the desired solution so thatx3A + y3B + C provides a locally
optimal lattice covering which coincides with the one computed by the algorithm after a suitable
scaling.

What is the general pattern behind this beautification process? We use the symmetry ofD
to find the subspace in whichQ lies. The simplices of the Delone triangulation which have
circumradius1 give equality constraints. Then, we maximize the determinant of the quadratic
forms lying in the subspace subject to the equality constraints. For this optimization problem,
which involves only algebraic equations, we can use Gröbner basis techniques.

9.5. Dimension 5

In a series of papers RYSHKOV and BARANOVSKII solved the five-dimensional lattice covering
problem. In [Rys1973] RYSHKOV introduces the concept of C-types. Two Delone triangulations
are of the sameC-type if their 1-skeletons (the graph consisting of vertices and edges of the
triangulation) coincide. He gives an algorithm to find all non-equivalent C-types in any given di-
mension. He computes that there are3 non-equivalent C-types in dimension4 and that there are
76 non-equivalent C-types in dimension5. Using this list BARANOVSKII and RYSHKOV enumer-
ate221 (of 222) non-equivalent5-dimensional Delone triangulations in [BR1973]. They describe
the triangulations in more detail in [BR1975]. In the last paper of the series [RB1975] they show
that the latticeA∗5 provides the least dense5-dimensional lattice covering. In their proof they do
not find all locally optimal lattice coverings. By using estimations (like the moments of inertia)
they merely show that all local minima exceed the covering density ofA∗5.

Since the papers in the series are very dense and not easy to read RYSHKOV and BARA-
NOVSKII prepared a140-pages long monograph [RB1976] based on their investigations. There
they comment on using an algorithmic approach to the lattice covering problem like ours:

I “Attempts to apply VORONÖI ’s algorithm ford > 4 have run into colossal computational
difficulties.”

I “Such an approach is extremely difficult ford = 5 (and is therefore uninteresting).”

Using our algorithm we produced a complete table of all non-equivalent locally optimal lat-
tice coverings in dimension5. The computation takes about20 minutes on a standard Intel
Pentium computer. As mentioned in Section 4.5 RYSHKOV and BARANOVSKII missed the De-
lone triangulation#164 which fortunately does not give a thinner lattice covering than the lattice
A∗5.

In the near future we will make our computations available on the world wide web. There, one
will see e.g. that there exist222 non-equivalent minima of the covering density function ranging
from ≈ 0.403566 to ≈ 0.535956. This means that all locally optimal solutions are attained in
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the interior of the secondary cones. Our list also implies that the positive definite quadratic form
of BARNES and TRENERRY ([BT1972]) yields the second best locally optimal lattice covering.
It has normalized covering density≈ 0.423671. Here we only show what happened with#164:

Looking at #164 (normalized covering density >= 0.406124)
* Computing exact normalized covering density...
iters obj gap

12 -7.61e-01 1.20e+02
17 -1.24e+00 3.03e+00
28 -1.41e+00 8.12e-02
35 -1.41e+00 2.06e-03
42 -1.41e+00 5.47e-05
47 -1.41e+00 1.45e-06
51 -1.41e+00 3.85e-08

1.9341845097
0.7956950345 1.8678576859
-0.5256981646-0.7187301788 1.6137547961
-0.6460313338-0.5359019448-0.3586190581 1.6830691309
-0.9121187120-0.8730186521 0.3479116634-0.2439723760 1.9251704528
* There are 18 neighbours.
* (0=144) (1->206) (2=204) (3=162) (4=163) (5=86) (6=204) (7=85) (8=156)

(9=161) (10=165) (11=163) (12=185) (13=86) (14=144) (15=162) (16=165)
(17=156)

9.6. Dimension 6

Up to now, we found65 non-equivalent6-dimensional lattice coverings which are locally optimal
and which are better lattice coverings than the one given by the latticeA∗6. These lattice coverings
were found by the heuristic method we explained in Section 8.4.4. We do not claim that the
list is complete in any sense. In [Rys1967] RYSHKOV raises the question of finding the first
dimensiond for which there is a better lattice covering than the one given byA∗d. Hence,d = 6
is the answer.

We haveθ(A∗6) ≈ 0.493668. We found two lattice coverings with normalized covering
density of about0.477. All other good lattice coverings found have a normalized covering density
of at least0.485. We give a detailed report on the best two lattice coverings found.

9.6.1. The best known 6-dimensional lattice covering

The best known6-dimensional lattice covering has normalized covering density of≈ 0.476962
which is some percentage less than the former best known one with≈ 0.493668. In this sec-
tion we describe some data for the new lattice covering. But at the moment we lack a good
interpretation of this result.

The Delone triangulation which belongs to the best known6-dimensional lattice covering has
100 bistellar neighbours. Its local lower bound is≈ 0.449368 which is less than its neighbours’
values. The linear automorphism group of the Delone triangulation is the groupG1 = 〈g1, g2〉
generated by the two matrices

g1 =



−1 0 0 0 −1 −1
0 0 0 0 0 1
0 0 −1 0 −1 −1
0 0 0 −1 0 0
0 −1 0 0 0 0
0 0 0 0 1 0

 , g2 =



0 −1 −1 −1 −1 0
0 0 0 0 0 −1
0 0 −1 −1 −1 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 1 1 1 1

 .
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It is a subgroup ofGL6(Z) and has order240. The set of all non-equivalent (under the group of
translations) simplices is partitioned by the action of the groupG1 into eight orbits with repre-
sentatives

L1 = conv{v0,v5,v7,v9,v10,v11,v13} L2 = conv{v0,v5,v7,v9,v10,v13,v15}
L3 = conv{v0,v1,v2,v3,v4,v13,v14} L4 = conv{v0,v7,v9,v10,v11,v13,v15}
L5 = conv{v0,v5,v6,v8,v9,v12,v14} L6 = conv{v0,v5,v8,v9,v11,v12,v14}
L7 = conv{v0,v5,v9,v11,v12,v13,v14} L8 = conv{v0,v5,v8,v11,v12,v13,v14}

where
v0 = (0, 0, 0, 0, 0, 0)t v1 = (0, 1, 0, 0, 0, 0)t

v2 = (0, 1, 0, 0,−1, 0)t v3 = (0, 1, 1, 0, 0, 1)t

v4 = (0, 1, 1, 1, 0, 0)t v5 = (1, 0, 0, 0, 0, 0)t

v6 = (1, 0, 0, 0, 0, 1)t v7 = (1, 0, 0, 0, 1, 0)t

v8 = (1, 0, 0,−1, 0, 1)t v9 = (1, 0,−1, 0, 0, 0)t

v10 = (1, 0,−1, 0, 0,−1)t v11 = (1, 0,−1,−1, 0, 0)t

v12 = (1, 0,−1,−1,−1, 0)t v13 = (1, 1, 0, 0, 0, 0)t

v14 = (1, 1, 0, 0, 0, 1)t v15 = (1, 1, 0, 1, 1, 0)t

The first four orbits have at each case length60 and the four last orbits have at each case
length120. The set of all quadratic forms which are invariant under the groupG1 is a four-
dimensional subspace with basis

1
0 0
1 0 1
−2 0 −2 4
0 0 0 0 0
0 0 0 0 0 0

 ,



0
1 0
1 0 2
−2 0 −2 4
1 −1 0 0 0
−2 1 −1 0 1 0

 ,



0
0 1
0 0 1
1 −1 0 1
0 0 0 −1 1
−1 0 −1 1 0 1

 ,



0
0 0
0 1 0
−1 −2 −3 8
0 1 1 −2 0
1 −1 0 2 −1 0


The positive definite quadratic form lying in the secondary cone of the described Delone trian-
gulation and giving a locally optimal lattice covering is

Q1
6 ≈



2.0550
−0.9424 1.9227
1.1126 −0.5773 2.0930
0.2747 −0.7681 −0.4934 1.7550
−0.9424 0.3651 −0.5773 −0.7681 1.9227
−0.6153 −0.3651 −0.9804 0.7681 −0.3651 1.9227

 .

Its normalized covering density isθ(Q1
6) ≈ 0.476962.

At least in principle we could use the techniques we have demonstrated in the four-dim-
ensional case to beautify the numbers. Actually we do not expect that it will give any insight to the
“real” nature and origin of this lattice covering. Unfortunately we do not have an interpretation
of this lattice covering.
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Question 9.6.1.
I Is there any known or nice structure related to this lattice covering?

I Is there a6-dimensional lattice covering which is better than the given one?

9.6.2. The second best known 6-dimensional lattice covering

The second best known6-dimensional lattice covering we already met in Section 8.4.4 seems
to be easier to understand than the best known one. Its Delone triangulation has130 bistellar
neighbours which is extreme at the moment. Its local lower bound is≈ 0.448561 which is
also extreme at the moment. The linear automorphism group of the Delone triangulation has
order3840 and it is

G2 =

〈


0 1 0 −1 0 0
0 −1 0 0 0 0
1 0 0 0 1 0
0 −1 −1 0 1 0
0 −1 0 0 1 0
0 −1 0 0 0 1

 ,



0 0 0 1 0 0
0 1 0 −1 0 −1
0 0 1 0 −1 0
0 1 0 0 −1 −1
0 1 1 −1 −1 0
−1 0 −1 0 0 −1


〉
.

The set of all non-equivalent (under the group of translations) simplices is partitioned by the
action of the group into three orbits with representatives

L1 = conv{v0,v1,v2,v4,v5,v8,v10}
L2 = conv{v0,v1,v2,v3,v5,v7,v11}
L3 = conv{v0,v4,v6,v8,v9,v10,v11}

where
v0 = (0, 0, 0, 0, 0, 0)t v1 = (0, 0, 0, 0, 1,−1)t

v2 = (0, 0, 0, 0, 1, 0)t v3 = (0, 0, 1, 0, 1,−1)t

v4 = (0, 1,−1, 0, 0, 1)t v5 = (0, 1, 0, 0, 1, 0)t

v6 = (1,−1,−1,−1,−1, 0)t v7 = (1,−1, 0,−1, 0,−1)t

v8 = (1, 0,−1,−1,−1, 0)t v9 = (1, 0,−1, 0,−1, 1)t

v10 = (1, 0,−1, 0, 0, 0)t v11 = (1, 0, 0, 0, 0, 0)t

In the first two orbits there are at each case320 simplices and in the last one there are80 simplices.
The lattice covering found by our algorithm is given by

Q2
6 ≈



1.9982
0.5270 1.9982
0.5270 0.5270 1.9982
−0.5270 −0.5270 −0.5270 1.9982
0.9440 −0.5270 −0.5270 −0.9440 1.9982
0.5270 −0.9440 0.5270 −0.5270 0.9440 1.9982

 .

Its normalized covering density isθ(Q2
6) ≈ 0.477217. In the following we want to beautify the

numbers. We demonstrated the technique already in Section 9.4. We report the results in a rather
telegraphic style. The positive definite quadratic formQ2

6 has to be invariant under the groupG2.
Thus it lies in the two-dimensional subspace spanned by

A =



1
0 1
0 0 1
0 0 0 1
1 0 0 −1 1
0 −1 0 0 1 1

 , B =



0
1 0
1 1 0
−1 −1 −1 0
−2 −1 −1 2 0
1 2 1 −1 −2 0

 .
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Using the approximation of the positive definite quadratic formQ2
6 given above we conclude

that BRL1(Q2
6) = 0 and BRL2(Q2

6),BRL3(Q2
6) > 0. We have to minimize the function

x 7→ R6
1

detA+xB whereR1 denotes the circumradius of the simplexL1 and find out thatx has

to be a root of thex2− 169
382x+ 9

191 . Hencex = 1
764(169+

√
1057). This also enables us to give a

nice integral approximation of the lattice covering. The integral positive definite quadratic form

19
5 19
5 5 19
−5 −5 −5 19
9 −5 −5 −9 19
5 −9 5 −5 9 19


has normalized covering density47045881

206524416 ≈ 0.477282. Some more data: The corresponding
lattice has minimum9, covering radius9/2, kissing number32 and determinant3226944 =
26 · 3 · 75. But again we lack an interpretation of this!

9.7. Dimension 7

Dimension7 is the largest dimension which our implementation can reasonably handle. Unlike
in dimension6 we had no success so far in finding a lattice covering that is thinner than the
one given byA∗7. We want to report on those lattice coverings which we found and which have
“extreme” properties at the moment.

Maximum number of neighbours

The Delone triangulationD of the positive definite quadratic form

Q =



1.904925
0.500997 1.904925
0.500997 0.500997 1.904925
−0.523372 −0.523372 −0.523372 1.711906
1.072379 −0.331548 −0.331548 −0.973369 2.141536
0.500997 −0.902931 0.500997 −0.523372 1.072379 1.904925
−0.385543 −0.385543 −0.385543 0.241082 −0.721332 −0.385543 1.439959


has 211 bistellar neighbours (θ∗(D) ≈ 0.56761, θ(Q) ≈ 0.70161).

Minimum local lower bound

The Delone triangulationD of the positive definite quadratic form

Q =



1.878537
−0.788448 2.018228
0.246709 −1.220731 2.305654
0.537635 −0.771141 0.235302 1.892539
−0.531172 0.862986 −0.340367 −0.515488 1.898709
−0.297546 −0.456190 0.735788 −0.319872 0.181170 1.093520
−0.256090 −0.242451 −0.822380 −0.271715 −1.035561 −0.574974 2.125296


has local lower boundθ∗(D) ≈ 0.56582 (130 bistellar neighbours,θ(Q) ≈ 0.65292).
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Second best known locally optimal lattice covering

The covering density of the positive definite quadratic form

Q =



1.863443
−0.777709 2.009567
0.242848 −1.217673 2.311683
0.524683 −0.764348 0.242660 1.891535
−0.522409 0.861928 −0.348180 −0.508457 1.894410
−0.299146 −0.460471 0.735739 −0.320881 0.170282 1.098942
−0.252218 −0.243976 −0.825929 −0.278885 −1.032467 −0.563856 2.122792


is θ(Q) ≈ 0.651192. The corresponding Delone triangulation has143 bistellar neighbours and
its local lower bound is≈ 0.565825.

We do not claim and do not even dare to conjecture that any of these lattice coverings are
extreme in any sense. Moreover, we leave it as a challenge to the reader to find improvements.

9.8. Dimension 8 and Higher

In our last section on the lattice covering problem we give a table of the least dense known lattice
coverings in dimensions up to24. At the same time this list gives the least dense known sphere
coverings in dimensions up to24 since there is no covering of equal spheres known which is
better than the best known lattice covering. Our Table 9.1 is an update of Table2.1 in [CS1988a].
We first give the table and comment it afterwards.

d lattice covering densityΘ normalized densityθ bound
1 Z

1 1 0.5 0.5
2 A∗2 1.209199 0.384900 0.3849
3 A∗3 1.463505 0.349386 0.3419
4 A∗4 1.765529 0.357771 0.3360
5 A∗5 2.124286 0.403566 0.3581
6 Q1

6 2.464803 0.476962 0.4087
7 A∗7 3.059621 0.647571 0.4949
8 A∗8 3.665949 0.903205 0.6319
9 A5

9 4.340185 1.315802 0.8460
10 A∗10 5.251713 2.059363 1.183
11 A4

11 5.598338 2.971353 1.721
12 A∗12 7.510113 5.624446 2.597
13 A∗13 8.976769 9.857770 4.055
14 A5

14 6.368635 10.627419 6.537
15 A∗15 12.816873 33.600994 10.86
16 A∗16 15.310927 65.061343 18.56
17 A∗17 18.287811 129.718168 32.57
18 A∗18 21.840949 265.880009 58.63
19 A∗19 26.081820 559.436387 108.1
20 A∗20 31.143448 1206.788059 204.0
21 A∗21 37.184568 2665.722767 393.5
22 Λ∗22 ≤ 27.8839 3783.2116 775.2
23 Λ∗23 ≤ 15.3218 4020.7771 1558
24 Λ24 7.903536 4096 3193

Table 9.1. Best known lattice coverings up to dimension24.
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In [Cox1951] COXETER gives a list of locally optimal lattice packings which are related to
Lie groups. One of his infinite series of locally optimal lattice packings is given byArd which is
defined by the positive definite quadratic form

d∑
i=1

x2
i + q(1− 1

r
)x2
d −

∑
1<i<j<d−1

xixj − xqxd,

whered = qr − 1 > 1 andr > 1. In [Bar1994] BARANOVSKII determines the covering density
of the lattice covering given byA5

9. The covering radius of the latticeA5
9 is µ(A5

9) =
√

3/5
and its determinant is58/226. By θ(A5

9) ≈ 1.315802 it is slightly better than the one given by
A∗9 (θ(A∗9) ≈ 1.330585). Recently, ANZIN extended BARANOVSKII ’s work. In [Anz2002] he
computes the covering densities ofA4

11 and A5
14: The covering radii areµ(A4

11) =
√

19/32,
µ(A5

14) =
√

71/100 and the determinants aredet(A4
11) = 3/213, det(A5

14) = 3/(5 · 214). In a
private communication ANZIN stated that he computed the covering densities of lattice coverings
given byArd in other dimensions. They also give better coverings than the correspondingA∗d.

It is not surprising that the Leech latticeΛ24 yields the best known lattice covering and it
is not too brave to conjecture that it does give the optimal24-dimensional sphere covering. The
covering density of the Leech lattice was computed by CONWAY, PARKER and SLOANE (Chapter
23 of [CS1988a]). Expanding this work BORCHERDS, CONWAY and QUEEN computed the
Dirichlet-Voronoi polytope ofΛ24 (Chapter 25 of [CS1988a]). It seems that as a “corollary” of
the existence of the Leech lattice the duals of the laminated latticesΛ22 andΛ23 give good lattice
coverings. Their covering densities were estimated by SMITH [Smi1988]. For the definitions of
these exceptional lattices and much more we refer to [CS1988a].

In [CFR1959] COXETER, FEW, ROGERS give a lower bound for the covering density of
general sphere coverings. This bound is sharp for the two-dimensional case only. The values of
their lower bound were copied one-to-one from [CS1988a].

There was not much activity in the last years on finding good lattice coverings in high di-
mensions. The book of ROGERS[Rog1964] contains the most recent results on the asymptotic
behavior of lattice coverings.

Finally, we list our most tantalizing questions in the theory of lattice coverings.

I Solve the lattice covering problem in dimension6!

I Find an interpretation ofQ1
6 or a better lattice covering in dimension6!

I Try to understand the lattice covering given byArd!

I Find construction methods for good lattice coverings!

I Find good sphere coverings that are not lattice coverings!

I Improve Table 9.1! Especially, improve the lower bounds!



Chapter A.

Glossary

A.1. Geometry of Numbers

Euclidean Spaces

A d-dimensionalEuclidean spaceis a pair(E, (·, ·)) consisting of ad-dimensional real vector
space and an inner product(·, ·) : E × E → R. By an inner product we mean a positive definite
symmetric bilinear form. A Euclidean space is a normed space. Its norm function is‖ · ‖ =√

(·, ·). In the case the “inner product” is only positive semidefinite,‖ · ‖ is calledseminorm. A
Euclidean space is a metric space. Its distance function isdist(x,y) = ‖x− y‖. ByBd(c, r) =
{x ∈ E : dist(x, c) ≤ r} we denote thed-dimensional closed ball with centerc ∈ E and radius
r ∈ R≥0. Let V ⊆ E be a subset ofE. By linV = {

∑n
i=1 αivi : n ∈ N, αi ∈ R,vi ∈ V } we

denote thelinear spanof V , by aff V = {
∑n

i=1 αivi : n ∈ N, αi ∈ R,
∑n

i=1 αi = 1,vi ∈ V }
we denote theaffine spanof V .

Lattices

Let (E, (·, ·)) be ad-dimensional Euclidean space. A subsetL ⊆ E is called ann-dimensional
lattice in E if there exist linearly independent vectorsb1, . . . , bn so thatL = {

∑n
i=1 αibi : αi ∈

Z}. The vectorsb1, . . . , bn are called alattice basisof L. To emphasize that our lattice live in a
Euclidean space we sometimes even write(L, (·, ·)) instead ofL. From now on we assume that
n = d. Another family of lattice vectors(b′1, . . . , b

′
n) forms a lattice basis if and only if there

exists anintegral unimodular transformationA ∈ GLn(Z) so thatA(b1, . . . , bn) = (b′1, . . . , b
′
n).

A lattice basis gives aGram matrixof L: G(L, (b1, . . . , bn)) = ((bi, bj))1≤i,j≤n. This is a
positive definite matrix. The determinant of a Gram matrix is thedeterminantof the latticeL:
detL = det((bi, bj)). Thevolumeof the latticeL is volL =

√
detL. The volume ofL equals

the volume of a fundamental parallelotopeP(b1, . . . , bn) = {
∑n

i=1 αibi : αi ∈ [0, 1]}. Two
d-dimensional latticesL,L′ ⊆ E are calledisometricif there exists anisometrybetweenL and
L′. This is a group homomorphismΦ : L→ L′ so that(Φ(v),Φ(w)) = (v,w) for all v,w ∈ L.
The set of all isometriesΦ : L→ L is called theautomorphism groupof L.

Dual Lattices

Everyd-dimensional latticeL ⊆ E in d-dimensional Euclidean space has adual latticeL∗. It is
given byL∗ = {x ∈ E : (x,v) ∈ Z for all v ∈ L}.

Special Lattices

In our investigations we will sometimes meet prominent lattices, e.g. root lattices and the Leech
lattice. We do not uncover the24-dimensional mystery Leech lattice here. The root lattices are
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defined as follows:

An = {(x0, x1, . . . , xn) ∈ Zn+1 : x0 + · · ·+ xn = 0}
Dn = {(x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn is even}
E8 = {(x1, . . . , x8) : all xi ∈ Z or all xi ∈ 1

2 + Z, x1 + · · ·+ x8 is even}
E7 = {(x1, . . . , x8) ∈ E8 : x1 + · · ·+ x8 = 0}
E6 = {(x1, . . . , x8) ∈ E8 : x1 + x8 = x2 + · · ·+ x7 = 0)}

For more information on these lattices, on the Leech lattice, and on other important lattices
consult Chapter 4 in [CS1988a].

Quadratic Forms

By Sd we denote thed(d+1)
2 -dimensional space of real symmetric(d×d)-matrices. The quadratic

form which corresponds to the symmetric matrixQ ∈ Sd is given byQ[x] = (xt)Qx, x ∈ Rd.
We do not distinguish between quadratic forms and symmetric matrices.We denote the open cone
of all positive definite quadratic forms bySd>0 = {Q ∈ Sd : Q[x] > 0 for all x ∈ Rd\{0}}, and
the closed cone of all positive semidefinite quadratic forms bySd≥0. In the context of optimization
problems we sometimes writeQ � 0 instead ofQ ∈ Sd>0 andQ � 0 instead ofQ ∈ Sd≥0.
Two quadratic formsQ,Q′ ∈ Sd are calledarithmetically equivalentif there exists an integral
unimodular transformationA ∈ GLd(Z) with Q[Ax] = Q′[x].

Lattices vs. Quadratic Forms

There is a canonical bijection between the isometry classes of lattices and the arithmetical equiv-
alence classes of positive definite quadratic forms.

A class of arithmetically equivalent positive definite quadratic forms defines an isometry class
of lattices. LetQ be a positive definite quadratic form. This is mapped to the latticeZ

d together
with the following scalar product: Forv,w ∈ Zd we havesQ(x,y) = (xt)Qy. If we don’t
expect any confusions we write simply(·, ·) instead ofsQ(·, ·). All lattices lying in the isometry
class of(Zd, sQ) are calledassociatedtoQ.

A class of isometric lattices defines an arithmetical equivalence class of positive definite
quadratic forms. LetL be ad-dimensional lattice. Let(b1, . . . , bd) be a basis ofL. Then the
Gram matrixG(L, (b1, . . . , bd)) gives a positive definite quadratic form. All positive definite
quadratic forms lying in the arithmetical equivalence class ofG(L, (b1, . . . , bd)) are calledasso-
ciatedtoL.

It turns out that the language of lattices is appropriate for discussing geometry whereas the
language of positive definite quadratic forms is appropriate for computing.

MORAL: Think in lattices, compute with quadratic forms!

Lattice Constants

lattice covering problem lattice packing problem

la
tti

ce

covering radius
µ(L) = min{r : (Bd(v, r))v is covering}
covering density
Θ(L) = volBd(0,µ(L))

volL

normalized covering density

θ(L) = µ(L)d

volL

packing radius
λ(L) = max{r : (Bd(v, r))v is packing}
packing density
∆(L) = volBd(0,λ(L))

volL

normalized packing density

δ(L) = λ(L)d

volL
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lattice covering problem lattice packing problem

qu
ad

ra
tic

fo
rm

inhomogeneous minimum
µ(Q) = maxx∈Rd minv∈Zd Q[x− v]
covering density

Θ(Q) =
√

volBd(0,µ(Q))
detQ

normalized covering density

θ(Q) =
√

µ(Q)d

detQ

homogeneous minimum
λ(Q) = minv∈Zd\{0}Q[v]
packing density

∆(Q) =
√

volBd(0,λ(Q))
detQ

normalized packing density

δ(Q) =
√

λ(Q)d

detQ

A.2. Polyhedra and Polytopes

Polyhedra and polytopes are special convex subsets of affine space. Apolyhedronis the intersec-
tion of finitely many halfspaces. Apolytopeis a bounded polyhedron. Conversely a polytope is
the convex hull of finitely many points and a polyhedron is a sum of a polytope and a polyhedral
cone.

Faces, Facets, Face Lattices

A face of a polytopeP is the intersection ofP and the boundary hyperplane of a halfspace
containingP . A facetis a face of codimension1. A ridge is a face of codimension2. An edgeis
a face of dimension1. A vertexis a face of dimension0. Caution! Face lattices are not lattices!
Face lattices are partially ordered sets. The face lattice of a polytope is the set of all its faces
ordered by set theoretic inclusion.

Complexes, Subdivisions, Triangulations

A polyhedral complexP is a set of polyhedra which satisfies the following two conditions: (i)
If a polyhedronP belongs toP, then all faces ofP are again inP. (ii) The intersection of two
polyhedraP,Q ∈ P is a face ofP andQ. Sometimes, we call the elements ofP cells. We say
that a polyhedral complex is asubdivisionor a tiling of the set

⋃
P∈P P . A polytopal complex

is a polyhedral complex that only contains polytopes. If a polytopal complex contains simplices
only we say that we have atriangulationof

⋃
P∈P P .

Zonotopes

A zonotopeis a polytope whose faces are all centrally symmetric. Equivalently, zonotopes are
those polytopes one gets by projecting higher-dimensional cubes[−1, 1]n.

A.3. (Realizable) Oriented Matroids

Basic Notation

Let V ⊆ Rd be a finite set of points. Every affine relation between these points (they are of the
form

∑
v∈V αvv = 0) gives rise to a sign vectorX ∈ {−1, 0,+1}V simply byXv = sgnαv,

v ∈ V . Thesupportof the sign vectorX is defined byX := {v ∈ V : Xv 6= 0}. Further
useful notations areX+ := {v ∈ V : Xv = +1}, X− := {v ∈ V : Xv = −1}, and
X0 := {v ∈ V : Xv = 0}.
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Circuits, Vectors

The setV(V ) of all sign vectors which come from affine relations ofV is called the set ofvectors
of theoriented matroidM(V ). A non-trivial vector ofM(V ) which has minimal support among
all these vectors is called acircuit.

Cocircuits, Covectors

For the set of pointsV we can define another set of sign vectors by the values of affine functions
{(sgn f(v))v∈V : f affine function onRd}. These are thecovectorsV∗(V ) ofM(V ) which are
dual toV(V ) by the combinatorial relation

X ⊥ Y :⇐⇒ (X ∩ Y = ∅) ∨ (∃v,w ∈ V : XvYv = +1, XwYw = −1).

A non-trivial covector ofM(V ) having minimal support among all these covectors is called a
cocircuit. We partially order the set of sign vectors by “0 < +” and “0 < −” so that the partial
ordering on the set of sign vectors is understood componentwise. The partially ordered set of
covectors is called theface latticeof an oriented matroid.

Directed Graphs

Let G = (V,E), E ⊆ V × V , be a directed graph. Acircuit C of G is a special subset of
E: C is a cycle andC is minimal with respect to inclusion having this property. Aminimal cut
C∗ of G is a special subset ofE: After removing all the edges belonging toC∗ the number of
connected components ofG increases by one andC∗ is minimal with respect to inclusion having
this property.
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