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Chapter 1.

Introduction

The main subject of this thesis is the geometry of low dimensional lattices. We concentrate on
two central problems: the lattice covering problem and the classification of polytopes that tile
space by lattice translates. The lattice covering problem asks for the most economical way to
coverd-dimensional space by equal, overlapping spheres whose centers form a lattice. Let us
look at the two most prominent plane lattices together with their coverings. It is obvious that the

covering which belongs to the square lattice is less economical than the one that belongs to the
hexagonal lattice.

U] U] U]

The purpose of this introduction is two-fold. First, we define the rather intuitive notions
we already used. We show how our future main actors, namely Dirichlet-Voronoi polytopes of
lattices, come into the spotlight. Second, we give an outline of the thesis.

1.1. Dirichlet-Voronoi Polytopes

A lattice L is a discrete subgroup ofd&dimensional Euclidean vector spade, (-,-)). For any
lattice there are always linearly independent vectgrs. ., b, € L so that they form a lattice
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basis,L = Zby @ --- ® Zb,,. In the following we assume for simplicity and without loss of
generality thak equalsd. The geometry of a lattice is encoded in its Dirichlet-Voronoi polytope.
This is the polytope which contains all those points lying closer to the origin than to all other
lattice points:

DV(L,(-,+)) ={x € E : forallv € L we havedist(x, 0) < dist(z,v)}.

If it is clear which scalar product we are using, we simply whf€(L).
Dirichlet-Voronoi polytopes are very special polytopes. They Hleby translates of the

form DV(L) + v, v € L, in a face-to-face manner. They and all their facets are centrally
symmetric. If one knows the Dirichlet-Voronoi polytope of a lattice it is easy to determine ge-
ometrical information about the lattice. Its volume is the same as the lattice’s volume, i.e. the
volume of a fundamental parallelotope. A fundamental parallelotope is given by a lattice basis
{3, aib; : o; € [0,1]}. The Dirichlet-Voronoi polytope’s circumsphere and the insphere give
information about covering respectively about packing properties.

1.2. Sphere Coverings and Sphere Packings

A family of subsetsC = (K;);c; of R?, I a set of indices, is called @veringof R? if each
point of R belongs to at least one of the sdts, i.e. RY = (J,.; K;. A covering ofR? is a
lattice coveringf it is of the form (K + v),c1, whereL is a lattice. In summary, lattice coverings
are those coverings which covgf' by translated copies of a single bo#&yand in addition the
translates are the vectors of a lattice

Although the general notion of density is very intuitive, it is not easy to give a good definition
which exhibits all pathological cases (see e.g. [Kup2000]). But since we are interested only in
the case of lattice coverings, pathological cases do not exist and we are fine with the following
quite classical definitions.

Let Cy(p,r) = { € R? : max; |2; — p;| < r} =[5, 5]¢ + p be a cube with side length
centered ap. We say that a collectiol = (K;);c; of subsets oR? hasdensityp(K) if the limit

. Doier vol(Cy(0,7) N K;)
lim
7 —00 vol Cy(0,r)

exists and if it equalg(K). Of course, there are cases where the limit does not exist and there are
even cases where the formula does not make any sense. But for lattice cov&ring$,c;, with
measurable body there is no such problem as demonstrated in the first chapteoGERS
little book [Rog1964]. There (Theorem 1.6) it is also shown that the density of a lattice covering
K = (K + v)yer can be expressed as simplegs’) = VV%111L< wherevol L is the volume of a
fundamental parallelotope of the lattiée

In the following we are only considering coverings consisting of solid spheres (balls). By
By(p,r) = {x € R? : dist(x,p) < r} we denote thel-dimensional closed ball with centpr
and radius-. A lattice L gives always a lattice covering of equal spheBs(v, ))vcy, if the
radiusr is large enough. If we start with a lattice coverif¥,(v, r))»cz and shrink the spheres
until they finally do not cover the space any more, then the threshold value of the shrinking
radiusr defines the least dense covering of equal spheres with covering Iattitiee threshold
value is called theovering radiusof L

p(L) = min{r : (By(v,r))ver is a lattice covering oR?}.
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Thecovering densityf the lattice covering given by the lattideis therefore

vol B(0, (L)) _ p(L)"
vol L vol L

o(L) = vol B4(0,1).

More precise©(L) is the density of the least dense lattice covering of equal spheres with cov-
ering latticeL. Sometimes, the normalized covering den8ity) = ’QEJ—?; gives nicer numbers

than©(L).

The covering radius of a lattice can be determined geometrically as indicated in the following
picture.

T I T [ I T [ I T [ I r

The covering radius is the radius of the circumsphere of the lattice’s Dirichlet-Voronoi poly-
tope, that is the largest distance between the midpoint and the vertices of a Dirichlet-Voronoi
polytope. This requires a little proof. Let= max{dist(x,0) : € DV(L)} be the radius
of the circumsphere dDV (L) and letu(L) be the covering radius af. We haver > (L)
because every poiat € R lies in a translate of the Dirichlet-Voronoi polytopec DV (L) + v
for somev € L, thereforeB,(v,r) coversz: By(v,r) O DV(L) + v > {x}. We have
r < u(L) because if we would have> p(L) then there would exist a vertex e DV (L) with
dist(x,0) = r and thenz would not be covered by any of the ball (v, (L)), v € L, since
dist(x, v) > dist(x,0) = r > u(L). Hencey = pu(L).

Now we are ready to define the lattice covering problem.

Definition 1.2.1. (Lattice Covering Problem
Given: Dimensiond

Find: The value®,; = min{©(L) : L is ad-dimensional latticé together
with ad-dimensional latticd. with ©, = O(L).

Later we will prove that the functio® is continuous so that we actually can talk about
“min” in the problem above. The lattice covering problem first appeared in a paper [Ker1939] by
RICHARD KERSHNERIN 1939. In contrast, the related lattice packing problem has been studied
since centuries. The lattice packing problem asks for the most dense way td-ganknsional
space by equal non-overlapping spheres whose centers form a lattice.

A family of subsetsC = (K;);c; of RY, I a set of indices, is called packingif no point
in R? belongs to the interiors of two different sets, igt K; N int K; = () wheneveri # j.
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A packing of R? is alattice packingif it is of the form (K + v),cz WhereL is a lattice. The
value \(L) = max{r : (B(v,r))vcr is a lattice packing is called thepacking radiusof L.

Geometrically,A\(L) can be interpreted as the radius of the insphere of the Dirichlet-Voronoi
polytope of L. The packing densityf the lattice packing given by, is A(L) = Y Bu(QAL)
and thenormalized packing densitg §(L) = AV(OLI);

Definition 1.2.2. (Lattice Packing Problein
Given: Dimensiond

Find: The valueA; = max{A(L) : L is ad-dimensional latticé together
with ad-dimensional latticd. with A; = A(L).

One word about the relationship between the two problems. Currently, the lattice covering
problem has been solved for dimensiohs- 1,2,...,5, whereas the lattice packing problem
has been solved for dimensiods= 1,2,...,8. The optimal lattice in dimension one and two
are the same for both problent&! andA, = A}, the hexagonal lattice. In dimension three this
is no longer the case. The body centered cubic laticevhose Dirichlet-Voronoi polytope is
a regular truncated octahedron gives the least dense lattice covering. The face centered cubic
lattice A; whose Dirichlet-Voronoi polytope is a regular rhombic dodecahedron gives the most
dense lattice packing. And in the dimensién .., 8 the latticeA};, whose Dirichlet-Voronoi
polytope is a permutahedron and which gives optimal lattice coverings in dimensionssup to
gives a better lattice covering than the latti€®s Ds, Eg, E7, Es which give the optimal lattice
packings in their dimensions. In dimensid# the Leech lattice seems to be optimal for both
problems. At the moment the relationship between the two problems is unclear and one might
wonder if there exists any independent of the dimension.

1.3. Prerequisites

In our investigations we will use methods from geometry of numbers, polytope theory, combina-
torics and optimization. We have collected some basic notation in the glossary at the end of the
thesis. The equivalence of lattices and positive definite quadratic forms is a constant source of
confusion and we did not make any effort to separate strictly between these two languages. The
confused reader should first consult the section “Lattices vs. Quadratic Forms” in the glossary.
Otherwise it might be helpful to have the books [Zie1995] (for polytopes and oriented matroids)
and [GL1987] (for geometry of numbers) at hand. It should not be necessary to read the whole
books. A quick look into the index will suffice in the most cases.

1.4. Organisation of the Thesis

Of course, the selection of the thesis’ title “Sphere Coverings, Lattices and Tilings (in Low Di-
mensions)” (and so is its contents) is influenced by the book “Sphere Packings, Lattices and
Groups” by dHN H. CONWAY and NeIL J.A. SLOANE. There, the problem of packing spheres

in Euclidean spaces of dimensiong, 3,4, 5, . . . is studied from many different angles. Arrang-

ing the spheres so that their centers form a lattice makes the problem far more accessible. It is
an unwritten law (and an unproven statement) that lattices with many symmetries provide dense
sphere packings; many exceptional groups pop up in this context. For sphere coverings this is not
unconditionally true. The combinatorial structure of the underlying tiling by Dirichlet-Voronoi
polytopes seems to be more important.
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The suffix “(in Low Dimensions)” possesses two meanings. On the one hand, we are dealing
in explicit calculations with lattices whose dimension seldom exceeds seven. On the other hand,
the suffix also refers to the work ofdwAYy and S OANE. Starting from 1988 they published a
series of papers named “Low-Dimensional Lattices I-VI1I”. One of their main goals is to simplify
and systematize work of others. We will try hard to take this as a model although we frequently
present some new material.

The thesis is divided into two parts:

Voronoi Reduction and Parallelohedra: One of our main tools is a reduction theory of
positive definite quadratic forms that goes back te0BGESF. VORONO. We try to
give a gentle introduction to ®RONQ’s reduction theory that classifies positive definite
quadratic forms according to their Delone subdivisions. Our approach to the reduction
theory shows many similarities to the theory of regular subdivisions and secondary poly-
topes of finite point sets. This theory was recently developedzbyil. M. GEL' FAND,
MIKHAIL M. KAPRANOV and ANDREI V. ZELEVINSKY. We show that WRONO's re-
duction theory is an analogue theory for infinite but periodic point sets.

Dual to the theory of Delone triangulations is the theory of primitive parallelohedra. A
parallelohedron is d-dimensional polytopé that tilesd-dimensional space in a face-to-
face manner by translates of the foffn+ v. With help of VORONQs reduction theory

we classify all possible combinatorial types of parallelohedra up to dimedsion

As we know since ancient times, the only plane parallelohedra are quadrangles and hexa-
gons. The Russian crystallographer E.&DBRoOV showed that there are five different
types of parallelohedra in three dimensions: cubes, hexagonal prisms, truncated octahedra,
rhombic dodecahedra and hexarhombic dodecahedoasIBN. DELONE tried to prove

that there aré1 combinatorially non-equivalent four-dimensional parallelohedra. But he
missed one type that later was discovered bikIVAIL |. STOGRIN. As the main result

of the first part we give a new and geometric classification working out a lisbefiH.
CoNwaAY. Form theb2 types there aré7 zonotopes and all the oth8p parallelohedra

have the24-cell as Minkowski summand. For the classification we use the vonorm/conorm
method of ®HN H. CoNwAY and NeiL J.A. S.OANE. We describe how their method fits

into VORONQ's reduction theory.

The complexity of parallelohedra grows enormously with their dimension. We do not give
a complete classification in dimensiodsand higher. We concentrate on characteristic
phenomena and explore interesting effects.

The Lattice Covering Problem:  In the second part we give an algorithm for the solution of
the lattice covering problem. The existence of such an algorithm has only been anticipated
by RysHkov and BARANOVSKII. For the design of our algorithm we combine classical
methods in the geometry of numbers (going back to works BRHANN MINKOWSKI,
GEORGESF. VORONOI, BORISN. DELONE, E.S. BARNES, SERGEIS. RrsHKov, Ev-

GENII P. BARANOVSKII, NIKOLAI P. DOLBILIN and MIKHAIL |. STOGRIN) with mod-

ern, numerical methods from convex optimization of the “semidefinite programming com-
munity”. Our algorithm is not only of theoretical interest. We implemented it and we
found all locally optimal lattice coverings in dimensions up5to Thereby, we checked
(and filled a gap in) a proof of YsHKOV and BARANOVSKII. Furthermore, we found
interesting lattice coverings in dimensiahigvhich are less dense than the previous known
ones. RrsHKov asked for the lowest dimension where the latA¢edoes not give a glob-

ally optimal lattice covering. We show thdt= 6 is the answer.
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Voronol Reduction & Parallelohedra

In the first part, we present our main tools for investigating the geometry of lattices.
These are Delone subdivisions, parallelohedra, and Dirichlet-Voronoi polytopes.

The Dirichlet-Voronoi polytope of a lattice is the set of all those points that are
closer to the origin than to any other lattice point. Many geometric information is
encoded in a Dirichlet-Voronoi polytope, e.g. the circumradius equals the lattice’s
covering radius, and the inradius equals the lattice’s packing radius. A Dirichlet-
Voronoi polytope of a lattice is a parallelohedron, i.e. it is a polytope which admits
a face-to-face tiling of space by lattice translates. A conjectureasfONO states

that every parallelohedron can be represented as a Dirichlet-Voronoi polytope. We
report on the state-of-the-art of this conjecture and give a computational criterion
to check whether a given parallelohedron can be represented as a Dirichlet-Voronoi
polytope.

A central question is: How does the Dirichlet-Voronoi polytope change if we vary
the underlying lattice? To formulate this question in mathematical terms we have
to specify the parameter space in which we want to perform the variation. The
cone of positive definite quadratic form turns out to be the right choice.

We describe YWRONG's reduction theory for positive definite quadratic forms.
The discrete grougGL,(Z) acts on the cone of positive definite quadratic
forms S¢,. VORONGO’s reduction theory gives a fundamental domain for
84,/GL4(Z). This is a subset which behaves lil§¢,/GL4(Z) up to bound-

ary identifications, so that we have a parameter space for lattices where no two
interior points represent the same latticeORONO’s reduction theory is based

on Delone subdivisions which are tilings dual to tilings of Dirichlet-Voronoi poly-
topes. The main theorem ofdkoNa’s reduction theory gives us the possibil-

ity to enumerate all non-equivalent Delone subdivisions and so all non-equivalent
Dirichlet-Voronoi polytopes of a given dimension. We give a contemporary view
on this classical theory where we emphasize its relation to the theory of secondary
polytopes.

We perform this classification for dimensiorgs4 and look at interesting effects
and phenomena in higher dimensions. Instead of giving too technical descrip-
tions involving zonotopal lattices, vonorms, conorms, etc. we gave pictures (gen-
erated withpolymake andjavaview ) of Schlegel diagrams on the previous
page which show how typical four-dimensional parallelohedra look like.
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VORONOI’s Reduction Theory

In this chapter we describedRONO’s reduction theory for positive definite quadratic forms.
The discrete grouL,(Z) acts on the cone of positive definite quadratic forﬁi%. Reduc-

tion means giving a fundamental domain ##,/GL4(Z). This is a subset which behaves like
SiO/GLd(Z) up to boundary identifications. More precisely, there are two fundamental tasks in
the reduction theory of positive definite quadratic forms:

i) Define a reduction domain! A reduction domain is a sulidet Sgo in which there is ex-
actly one (up to boundary identifications) representative for each arithmetical equivalence
class of positive quadratic forms.

i) Describe an algorithm that for a positive definite quadratic form computes an arithmetically
equivalent positive form lying irR!

VORONQ'’s reduction theory provides a natural and geometric answer to the first task. The
second task is much more difficult. No satisfying solution is known for any reduction theory.
For VORONO's reduction theory a solution is known for the dimensidns 2 andd = 3. For
dimensiond = 4 a partial solution is known but here we are faced with some inherent difficulties.

VORONAQ'’s reduction theory is based on secondary cones of Delone triangulations. The sec-
ondary cone of a fixed Delone triangulation is the set of all positive definite quadratic forms that
have this fixed Delone triangulation. First, we determine the secondary cone of a Delone trian-
gulation explicitly. It is always a full-dimensional open polyhedral con§ila. Then, we show
that the coneS<, can be partitioned face-to-face into secondary cones of Delone triangulations.
The groupGL,4(Z) is acting on this partition. Two secondary cones of Delone triangulation have
a common facet whenever the corresponding Delone triangulations differ by a bistellar operation.
Every subset of the topological closures of all non-equivalent secondary cones (after factoring
out their symmetry) is a fundamental domain&f,/GL4(Z). There are only finitely many
non-equivalent secondary cones. They can be enumerated completely by an algorithm. The
boundaries of secondary cones of Delone triangulations correspond naturally to coarser Delone
subdivisions. IfQ lies on the boundary of the secondary cone of a Delone triangulBtitimenD
is a refinement of)’s Delone subdivision.

The aim of this chapter is to give a contemporary synopsis of the second panRafNO’s
monograph [Vor1908]. In doing so, we emphasize relations to the theory of regular triangulations
and secondary polytopes.
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2.1. Delone Subdivisions

Definition 2.1.1. LetQ € 82, be a positive definite quadratic form. Let, vs, . .. points inZ.
The polyhedrorl = conv{wvi,vs,...} is called aDelone polyhedrownf @ if there exists a point
c € R? and a real number € R with Q[v; — ¢] = dist(v;, ¢)> = r? foralli = 1,2,... and for
all other lattice pointe € Z%\ {v1, vs, ...} we have strict inequalitf)[v — ¢] > r2. The set of
all Delone polyhedra

Del(Q) = {L : L is a Delone polyhedron @)}

is called theDelone subdivisiorof ). A Delone triangulationis a Delone subdivision that
consists of simplices only.

In other words: We vieviR¢ as Euclidean space with inner prodigt y) = (x!)Qy. Then
a Delone polytopd. is defined by the balB;(c,r) = {x € R? : Q[x — ¢] < r?} as follows:
The vertices of. are the only lattice points lying on the boundary of the ball while in the interior
of the ball there are no lattice points. The polyhedfois a lattice polyhedron. In Figure 2.1 we
see how this construction works for the positive definite quadratic fgrea ( % 3'). In this
Euclidean space spheres are given by ellipsoids.

Figure 2.1. Empty Ellipsoids.

The Delone subdivision of a positive definite quadratic form is a periodic polyhedral subdivi-
sion of R¢. We call two Delone polyhedra and L’ equivalenif there is a lattice vectoo € Z¢
with L' = L + v.

In his work “Sur la spBre vide” ([Del1928]) ELONE describes this construction for ar-
bitrary point sets. In [Vor1908] WrRONG already uses it for the special point &t He calls
them “I'ensemble L) de simplexes charaatsant un type de parélbédres primitifs” and for this
reason Delone subdivisions are sometimes cdllgrartitions he defines Delone triangulations
by dualizing tilings of so-called primitive Dirichlet-Voronoi polytopes which we treat in the next
chapter.

Let () be a semidefinite quadratic form that is arithmetically equivalerﬁtgtél) whereQ’
is positive definite. In this case we can define a Delone subdivisio®fby taking literally
Definition 2.1.1. Then the Delone subdivision contains unbounded polyhedra. For example, the
positive semidefinite quadratic form given by the mati@ ) fulfills the requirements above. It
has no zero-dimensional Delone polytopes. The one-dimensional Delone polyhedra are given by
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linesconv{v + () : z € Z}, v € Z? (takec = v). The two-dimensional Delone polyhedra are
given by horizontal stripsonv{v + (§),v + ({) : € Z}, v € Z* (takec = v + (0, 3)").

Another construction of the Delone subdivision of a positive definite quadratic form is the
lifting constructionby BROWN ([Bro79]), and by BELSBRUNNERand SIDEL ([ES1986]). Itis
shown in Figure 2.2 fo) = (} {). Consider the lifting map: R? — RYx R, [(z) = (z, Q[x)),
which lifts the points inR¢ onto a paraboloid ilR? x R. If we take the convex hull of the
lifted lattice pointsconv 1(Z%) and project its lower faces back down oiit® we get the Delone
subdivision of@. The lower faces are those faces which can be seen from the “@oint'=c).

A setconv L, L C Z%, is a Delone polytope af) if and only if conv I(L) is a lower face of the
setconv (Z%).

(—2,2,8) (2,2,8)

(2,2,0)

(_27_270) (27 _270)

Figure 2.2. Lifting Construction.

The lifting construction provides an extremely useful criterion: Léte ad-dimensional Delone

polytope of@ and letvy, . .., vy, be vertices off which affinely sparR?. Define the function
x : RY — R by
1 .. 1 1
xX(x)=| v1 ... Vg1 x (2.2)

Qlvi] ... Quay] Q]

A lattice pointv € Z? is a vertex of the Delone polytopg if and only if x(v) = 0. More
generally, we can use this function to decide whether a poiatR¢? lies inside, on, or outside
the circumsphere af depending on the sign of(x) and on the ordering afy, ..., vg411.

2.2. Secondary Cones

Let Q be a positive definite quadratic form whose Delone subdivision is a triangulatidf oh
this section we will determine all positive definite quadratic forms which have the same Delone
subdivision a<).

Definition 2.2.1. Let D be a subdivision oR?. The set
A(D) :={Q € 8%, : Del(Q) = D}
is called thesecondary corieof the subdivisiorD.

*In the Russian literaturA (Del(Q)), Q € Sgo, is called thel-type domairof ).
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Our main insight of this section will be that the secondary cone«{() forms the interior
of a polyhedral cone isZ,. We explicitly give a finite set of supporting hyperplanes which is
determined by the non-equivalefat — 1)-dimensional cells of the Delone subdivision.

Let D be a Delone triangulation. We want to find the set of all positive definite quadratic
forms @ with Del(Q) = D. Let L = conv{vy,ve,...,v4s1}, L' = conv{vg, vs,...,v442} be
two d-dimensional Delone simplices having&-1)-dimensional facé” = conv{va,...,v441}
in common. We sayL, L) is a pair ofadjacentsimplices. If these two Delone simplices occur
in the Delone triangulation af) there has to be a ridge betweii) andi(L’) alongi(F'). The
situation is illustrated in Figure 2.3. The condition of “having a ridge” can be expressed as a
linear inequality in the parametegs of the matrix@ as we will see below.

l(v1) I(vs)

Vg

V2

Figure 2.3. Ridge Betweeri(conv{v, va,v3}) andi(conv{vs, vs, v4}).

The pointsvy, ..., v are affinely dependent. There exist real numhers .., a4, o with
S 20, = 0and "2 yu; = 0. Sincew; and vy, lie on different sides of the affine
hyperplaneaff{vs, ...,v411} wWe can assume that; and oo are positive. Having a ridge
alongl(F') means that in the lifting)[v 4. 2] lies above the affine hyperplane

aff I(L) = aft{(v1, Q[v1]),.- ., (War1, Qvas1])}

and that)[v;] lies above the affine hyperplane

aff (L)) = aff{(v2, Q[v2]), . . ., (vat2, Qvas2])}-
This yields two inequalities
d+1 d+2

! ZO@Q[U@'L Qlv1] > — ! Z%’Q[’Uz']-

Qd+2 = o1 =

Qvaya] > —

Sincea; andag 2 are both positive the two inequalities reduceZtﬁil2 a;Q[v;] > 0. Thisis a

linear condition in the entries of the matxxsince we fixed the lattice points,: = 1,...,d+2.
Definition 2.2.2. Let L. = conv{vy,...,v441} and L’ = conv{ws,...,v4:2} be two d-
dimensional simplices sharing the common faEet conv{wva,...,v41}. Letaq,..., agio

be real numbers with; = 1, Y42 o; = 0 and Y2 a;v; = 0. (We could fixa; to an arbi-

% =

trary positive number. Then,,» is positive, too.) Theegulator o, 1) € (S%)* of the pair of
adjacent simpliceéL, L) is the linear formo;, 1./(Q) = S92 0, Qlwy).
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From the above arguments itis clear that the secondary cdnésdfounded by the condition
o,z (Q) > 0 where(L, L') is a pair of adjacent simplices. This gives only finitely many con-
ditions because we have for alle Z? the equalityo(r,4v,1/+v) = 0(z,r)- Additionally, oz, 1.1y
is a positive multiple ofp;, 7). On the other hand, a quadratic form satisfying all these condi-
tions is positive definite and its Delone subdivision coincides ®ithThe positive definiteness
follows from the conditions since they imply that the space is subdivideddmyndedDelone
polytopes. That the Delone subdivision of a quadratic form satisfying the conditions coincides
with D follows by a reduction to the one-dimensional case where it is obvious. We summarize
the main result of this section:

Theorem 2.2.3.Let () be a positive definite quadratic form whose Delone subdivision is a tri-
angulation. The secondary cone of the Delone triangulddid(Q) is the full-dimensional open
polyhedral cone

A(Del(Q)) = {Q € S?: oL,y (Q") > 0, (L, L') pair of adjacent simplicgs

2.3. VORONOI's Principal Domain of the First Type

As a first example and because of its importance in dimen&iand3 we derive the Delone
subdivision of \ORONG's principal form of the first typ€[z] = d > 2? — " z;2; which is as-
sociated to the latticd”,. The Delone subdivision @ which is a triangulation can be described
as follows: Letey, ..., e, be the standard basis vectorsZst. We sete;, 1 = —e; — --- — eg4

so that we have; + --- + e4+1 = 0. For a permutatiom € S;.; we define thel-dimensional
simplex L, by

L, = COHV{eﬂ.(l), €r(1) + €r(2)s- -+ €n(1) + -+ eﬂ.(dJrl)}.

The set of simplice§L, + v : v € Z% © € Sy,1} defines a triangulation dk? which we

from now on denote b®,. The full-dimensional cells of the star of the origin are givenlhy

7w € Squ1. In the star two simpliceé,; and L, have a facet in common if and only4fandr’

differ by a single transposition of two adjacent positions. On the left side of Figure 2.4 the star
of the origin in dimensior is illustrated, on the right side we have a “fundamental domain” of
the three-dimensional triangulation.

001

L123) Liq

L) Li23) 000

L139)

100

Figure 2.4. The TriangulatiorD; in Dimensiond = 2 andd = 3.
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In Section 2.3.2 we will compute the secondary con®gf It is

A(D1) ={Q e 8%: q; <0,i#j,andy; ; qij > 0}.

Hence,Del(Q) = D;. Its topological closure\ (D) is called VORONQs principal domain of
the first type

Before this computation we introduce in Section 2.3.1 the so-called Selling parameters for
positive definite quadratic forms. Using these parameters itis possible to use symmetry properties
of Dy in various computations. The automorphism grou@efis isomorphic to the permutation
groupSg-1.

In dimensiork and3 every positive definite quadratic form is arithmetically equivalent to one
that lies iINA(D;). SELLING’s reduction algorithm which we will present in Section 2.3.3 is a
constructive proof of this fact. But in dimensidrand higher there are positive definite quadratic

forms which are not arithmetically equivalent to oneArD; ).

This is not everything what has to be said abooR®NA’s principal domain of the first type.
In Chapter 3.5.2 we will continue our studies. Other sources for information on this domain are
e.g. [CS1992] where the three-dimensional case is discussed in great detail and [Jan1998] where
the four-dimensional case is described.

2.3.1. Selling Parameters

Usually we represent a positive definite quadratic farioy a positive definite matrig) = (¢;;).
One disadvantage of this representation is that the coefficients are not of the “same type”. The
coefficients on the main diagonal are squared norms

Qii = Q[ei] = SQ(ei,ei) = (eiaei)

and all other coefficients are inner products between different vectors

Gij = %(Q[ei + e;] — Qlei] — Qles]) = sq(ei, e;) = (ei, €;).

SELLING introduces in [Sel1874] parameters which are homogeneous: We simply forget the
coefficients on the main diagonal but add inner productg; 411 = g4+1,; = (€, €q+1) With

the additional vectoe;,; = —e; — --- — e4. Then the parameteig; = (e;, e;), i # j,

1,7 =1,...,d+ 1 define the positive definite quadratic foghcompletely since we get; back

by the reIationZ;li} ¢i; = 0. The parameterg;;, ¢ # j,i,j = 1,...,d + 1, are traditionally
calledSelling parametersf (). For instance YARONG’s principal form of the first type

Qlx] = 32% + 323 + 323 — 22179 — 27173 — 2w913

is given
3 -1 -1
» by the positive definite matrix{ -1 3 -1,
-1 -1 3
-1 -1 -1
. —1 -1 -1
» and by the Selling parameter o 1

-1 -1 -1
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By looking at the Selling parameters it is obvious that the form is invariant undedthermu-
tationse; — ey, i =1,...,4, T € S4.

The following formula makes use of Selling parameters and we will use it frequently in
calculations where the triangulati@ is involved.

Proposition 2.3.1. (SELLING’s Formula)
Let @ be a positive definite quadratic form and (et;), 1 < i,5 < d + 1, ¢ # j, be its Selling

parameters. The squared norm (with respe@)of a vectore = dil ae;, oy € R, is given
=1
by
Qel=— > qjlas—ay)’
1<i<j<d+1

Proof. We first consider the special casg,; = 0 and reduce the general case to this special
case afterwards. By applying the equatigng; = — Z;.lzl ¢i; andg;; = q;; we have

- > aylai— )’

1<i<j<d+1
— (v )2 . . _0)2
= - %](az_aj) - Qz,d+1(az_ )

1<i<j<d 1<i<d

2 2 2

= = D woi+2 ) ooy Y agoi+ Y o]

1<i<j<d 1<i<j<d 1<i<j<d 1<i j<d

2

= Z Qo + 2 E ij iy

1<i<d 1<i<j<d

=@ [Z1§i§d+1 a"ez} '

In the general case we could havg,; # 0. Then we replace
d+1 d+1 d+1

E o;€e; by Z a;€; — Odyq Z e;.
=1 =1 =1

Now we can apply the formula we proved above to get the general formula

@ [Zlﬁgdﬂ aie’} =Q [Zlgigdﬂ(ai - Oéd+1)€z}
=— Y aillei—ag) — (g —ag)’=— Y aylai —ay)

1<i<j<d+1 1<i<j<d+1

2.3.2. Computation of the Secondary Cone

Proposition 2.3.2. ([Vor1908], §102-5104)
The secondary cone of the triangulatién is given by the interior of YWRONQs principal
domain of the first type

AD) = {Qe8%:q;<0,i+#j,andy, g, >0}
= {QeS8%:q;<0,1<i,j<d+1,i#j}.
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Proof. Letw, " € S4.1 be two permutations which differ only by a transposition of two adjacent
symbols;r’ = 7 (i i+1). Then the simpliceé . andL,. of the triangulatiorD; share acommon
facet. In the following we compute the regulatgy,, ; ). We have

Ly = conv{erny,er1)+€r2),--s€r1) +  * + €t}
Ly = conv{ern),---,era) + -+ €xiim1);€x1) T+ €xii1) + €x(it1);
ex() * T eriif1)s s €r1) Tt €narn) )
so thatconv{eﬂ(l), coslr1y T ero1y, ex(1) Tt €ex(it1)s €n(1) T eﬂ(dJrl)} is
the common facet of., and L,.. The vertices that are not contained in the common facet are

vert L\ vert Ly = {erq)y+---+erq)}, vert Ly\ vert Ly = {ex1)+---+eri_1)+eris1)}-
An affine dependence among these vertices and the vertices of the common facet is

0 = (exq)+ -+ i)+ (€r1) + + €xii—1) + €x(it1))
—(er1) + +eri—1) — (exq) + - + exit1))-

In the case = 1 the sume (1) + -+ + e;—1) €qualsd = e, ) + -+ + er(q441). HeNce, the
regulatoro(r,, 1. _,) is given by

0L, Q) = Qlexq) + -+ exp] + Qlexq) + + exii1) + ex(ity)l
—Qlera)y + -+ eri-n] — Qlex) + - + ex(iyy)]

= _2(e7r(i)7 en(i+1))

= —24r3)x(i+1)-
If we consider all pairs of adjacent simplices we see by Theorem 2.2.3 that the secondary cone
of Dy is bounded by the hyperplangs = 0,1 < i,j < d+1,1 # j. By the equations;; = ¢;;,
Gid+1 = — ijl ¢ij, we can transform the given inequalities into inequalities of the space of
symmetric matrices?. o

2.3.3. SELLING’s Reduction Algorithm

In dimension2 and3 every positive definite quadratic form is arithmetically equivalent to one

that lies inA(D;). Using Theorem 2.5.1 below one can give a systematic proof of this fact. Here
we present a simpler ad-hoc proof. Suppose we are a given a positive definite quadrar form
Our goal is to find a transformatiat € GL,4(Z), d = 2, 3, so that the Selling parameters which
define the formA’Q A are all non-positive.

Binary Case

We consider the two-dimensional case first. Assume that one Selling paramétés pbsitive,
for instancey;2 > 0. Then, by the unimodular transformati¢g °; ) we get

t
(1 0 ) <CI11 Chz) (1 0 ) _ ( q11 —CI12) _ <q/11 q’12> _
0 -1 qi2 q22) \0 —1 —q12 Q22 Qo 5o
The Selling parameters ¢}’ are

q'12 = —q12
qlls = —¢i1 —dia=—q11 +q12 = q2 + @13 + Q12 = 2q12 + Q13
Qhs = —qla— Qoo = Q12 — @22 = Q12 + Q12 + G23 = 2q12 + @23.
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For the sum of negative Selling parameters we have the following relation betvaed(’:

—q12 — 13 — Qo3 = —3q12 — 13 — 23 < —q12 — 13 — @23
Forqi3 > 0 the transformatiori  } ) and forgss > 0 the transformatiorf —; °; ) yield a similar
effect on the sum of negative Selling parameters. So we get a sequence of decreasing sums of
negative Selling parameters as long as one Selling parameter is positive. The sum of negative
Selling parameters-qi2 — q13 — g23 equalst (Q[e1] + Q[e2] + Qles]). Since in a class of arith-
metically equivalent positive definite quadratic forms the{€@f] : v € Z?\{0}} is bounded
from below by the homogeneous minimux() and since the difference between two succes-
sive sums is at Ieas%t)\(Q), the sequence is finite. So we have an algorithm which constructs
the matrix A step-by-step. This algorithm is calle&ES.ING’s reduction algorithm. It reduces
a binary positive definite quadratic form to one lyingA(D; ). Finally, by using permutations
of the forme; — e,(;, 7 € S3 (which can be linearly extended to unimodular transformations)

we can transform a positive definite quadratic form lyingAfiD; ) to one that lies in the cone
bounded by

@12 <0, qi1 < g22, q11 < 2qi12. (2.2)

This means that we can reduce a positive definite quadratic form to a canonical representative
in the class of arithmetically equivalent forms. Supplementary,L8iG proved and it is not
difficult to verify: The Selling parameters of a binary positive definite quadratic form are all
non-positive if and only if the sum of negative Selling parameters is minimal in the class of
arithmetically equivalent forms.

Ternary Case

Similar arguments can be used to define a reduction algorithm for ternary positive definite qua-
dratic form. If 1o > 0, then the unimodular transformatk(ni g :0%) gives an arithmetically
equivalent form whose sum of negative Selling parameters is smaller than the previous one. If
we haveg;; > 0, then we can apply the permutatien— e; ande; — e» that can be linearly
extended to a unimodular transformation to have the situgtipn- 0.

Some Geometry

We want to close the discussion of the binary case with some geometric considerations and pic-
tures. The set of two-dimensional positive semidefinite matd€gsis bounded by tdrRwWITZ’S
conditionsg;; > 0 andgi1ge2 — ¢35 > 0. Hence, 82, is the upper half of a three-dimensional
elliptic cone with fundamental axis} §), (94). (§ %).

If we slice it by a hyperplane parallel {9, + g22 = 0 (see Figure 2.5) we get the follow-
ing (projective) picture which includes all geometric information because every ray beginning
from the origin hits the hyperplane exactly once. The secondary cone of the two-dimensional
triangulationD; is given by the inequalities

—qi12 >0, qi11 +qi12 >0, gqi2 +go2 > 0.

So its topological closure is a polyhedral cone with extreme rays

-3 910 912 7))
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Figure 2.5. Cone of Positive Definite Matrices Sliced wigly + g2 = 1.

10 0 1 -1 0 0 —1 -1 1 1 -1
0 1/)°\1 0)’\—-1 1)’\1 —-1/)’\—-1 0/°\0 -1
leaves the polyhedral con(D;) fixed and only permutes the smaller triangular cones of the

barycentric subdivision. This gives a geometric explanation of the polyhedral cone (2.2) in which
we find exactly one representative of every arithmetical equivalence class.

The group

Notice that this reduction domain is not the “standard one” given by the inequalities

4L < qio < qi1 < gz, and0 < gip < B g1 = g2
that goes back to AGRANGE. For historical remarks on the reduction theory of binary quadratic
forms we refer the interested reader to the book [SO1985LefARLAU and QPOLKA.

The “Modulfigur” and Some History

Many mathematicians were and are interested in reduction domains of positive definite quadratic
forms. One reason is that reduction domains connect different branches of mathematics very ele-
gantly and unexpectedly. In [KF1890], page 2428\ writes enthusiastically on the reduction
domain of binary positive definite quadratic forms and explains how to draw a correct picture of
it.

“Ich habe diese Figur (an die sich eine Menge weiterer geometrischer Bemer-
kungen ankiipfen) in meinen Vorlesungen von 1877 wiederholt zur Sprache
gebracht, weil dieselbe auch unter rein synthetischen Gesichtspunkten sehr be-
merkenswert ist. Sie giebt un&mlich dasibersichtlichste Bildiir die con-
structive Erledigung der in der synthetischen Geometrie fundamentalen Auf-
gabe, ein eiriirmiges Grundgebilde (hier unsere Ellipse) dadurch mit unend-
lich vielen Elementen zuiberdecken, dass man zu drei willtkich gegebenen
Elementen desselben immer wieder das vierte harmonisch construiert.
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Im Herbst 1873 hatte ich mit dem verstorbenenrEORD eine lebhafte Un-
terhaltung ddiber, dass es als Aufgabe der modernen Mathematik betrachten
musse, die ungberkommenen, getrennt neben einander stehenden mathemati-
schen Disciplinen in lebendige Wechselwirkung zu setzen; wir kaierein,

dass diefifir synthetische Geometrie und Zahlentheorie am schwierigsten sein
mochte.Die Figur (62) des Textes stellt diese Verbindung Man wolle in
dieser Hinsicht insbesondere die zahlentheoretischen Entwicklungen des fol-
genden Kapitels vergleichen.”

Figure 2.6. “Modulfigur” (from K LEIN and FRRICKE’s book [KF1890]).

In the book [Ter1988]— following HILBERT’S speech in memory of Mikowskl — TER-
RAS writes on page 113:

2.4.

“Much of this section is due to Mikowskl, who was the first to de-
scribe a fundamental domain f@L(n,Z). We will discuss another fun-
damental domain — that of &RNIER in Section 4.4.3. [...] There are
indeed many unusual flowers in these higher dimensional gardens. The
names of those who cultivated these flowers includeaus§s, HERMITE,
MINKOWSKI, VORONO!, SIEGEL, WEYL, WEIL, SATAKE, BAILY, BOREL,
SERRE HARISH-CHANDRA, MOSTOW, TAMAGAWA , MUMFORD, DELONE,
RYSHKOV, ..."

Bistellar Neighbours

In Section 2.2 we saw that the secondary cone of all positive definite quadratic forms having
the same Delone triangulation forms the interior of a full-dimensional polyhedral cafi&,in
Therefore, the cone of positive definite quadratic forms is tessellated by polyhedral secondary
cones. In this section we will find out that the tessellation is a facet-to-facet tessellation. By a
theorem of RUBER and RrsHKOV we even have a face-to-face tessellation because “facet-to-
facet implies face-to-face” ((GR1989]).

We will investigate what happens if we move a positive definite quadratic form continuously
from the interior of one secondary cone to the interior of another one while crossing a facet
of the first one. We will see that the polyhedral cones share the complete facet we crossed. It

Tlts subtitle is “Revenge of the Higher Rank Symmetric Spaces and Their Fundamental Domains”. We highly
recommend it and its inspiring style!
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can exactly be described how the two Delone triangulations belonging to the polyhedral cones
differ. All (d — 1)-dimensional cells in the Delone triangulation defining a regulator that gives
the crossed facet perform a bistellar operation when the facet is transversally crossed.

Before we give the exact definitions and statements we illustrate in Figure 2.7 what happens
in the two-dimensional case when we move from the positive definite quadratiq f3my' ) to

(2)-

o

=}
~—

(23) (

®
—

Figure 2.7. Construction of Bistellar Neighbours.

Bistellar operations are performed in so-caltegartitioning polytopesRepartitioning poly-
topes arel-dimensional Delone polytopes havidg+ 2 vertices. A repartitioning polytope can
be represented as convex hull of two Delone simplices having a common facet. Repartition-
ing polytopes were investigated byo®oNa in [Vor1908], §89, and he calls them simply “un
polyedre convexd(”. The name “repartitioning polytope” was coined by 84kov and BARA-
NOVsKIl in [RB1976],§9. Repartitioning polytopes are not only basic conceptsdR¥NA’s
reduction theory. They also play an important role in the theory of hypermetric spaces where
they correspond to facets in the hypermetric cone (see Chapter 15.2.2 in [DL1997] or originally
in [AG1993]).

We summarize structural properties of repartitioning polytopes and more generéitiirof
ensional polytopes witld + 2 vertices in the following proposition. For the formulation it is
convenient to use terminology from oriented matroid theory which we recall briefly’ LetR?
be a finite set of points iR¢. Every affine relation between these POIMS, .\ v = 0,
> ey v = 0, gives rise to a sign vectoX € {—1,0,+1}", simply by X,, = sgna,,. The
supportof the sign vectorX is defined byX = {v € V : X,, # 0}. We define the sets
Xt ={weV:Xy=+1}, X ={veV:X,=-1}andX’ = {v e V: X, = 0}.

The setV(V) of all sign vectors is called the set wéctorsof the oriented matroidM (V). A
non-trivial vector ofM (V') which has minimal support among all vectors is callegireuit.

Proposition 2.4.1. (Repartitioning polytopas

Let V be a set ofl + 2 points which affinely spanR?. By C' we denote one of the two cir-
cuits which are defined by the one-dimensional linear subspace of affine relatidns dhe
repartitioning polytopeonv V' has two different types of facets:

) |C? facets withd + 1 vertices:Q.,, = conv(V\{vg}),vo € C°.

i) |CT|-|C~|facets withd vertices: P, = conv(V\{vq,v_}), vy €eCT,vo_eC.

U

There exist exactly two triangulations eénv V: 7, (V,C) with simplicesconv(V\{vy}),
vy € CT, and7_(V, C) with simplicesconv(V\{v_}),v_ € C~.
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It is easy to prove this proposition by using the fact that the only circuits of the oriented
matroid M (V) areC and —C. Figure 2.8 shows a two-dimensional repartitioning polytope
together with its two triangulations.

7.(V,C) + - (V. C)

Figure 2.8. Two-Dimensional Repartitioning Polytope.

A bistellar operation replaces a given triangulation of a repartitioning polytope by the other
possible one.

Definition 2.4.2. Let 7 be a triangulation oR? and letF’ be a(d — 1)-dimensional cell off".
Then, F' is contained in two simpliced and L’ of 7. By V we denote the set of vertices
of LandL’, V = vert L Uvert L’. By C we denote one of the two circuits of the oriented
matroid M (V). The(d — 1)-dimensional cel’ is called aflippable facebf the triangulatiori”
if one of the triangulationg (V,C) or 7_(V,C) is a subcomplex of . If F' is a flippable
facet of 7 and we replace the subcompl@x (V,C) by 7_(V, C) [respectivelyZ_(V,C) by
7+ (V,C)], then we get a new triangulation. This replacement is cddlstkllar operatioror flip.

The facets ofA (D) give the interesting bistellar operations of a Delone triangulaflorA
(d — 1)-dimensional cellL. N L' € D is a flippable facet whenever the corresponding regulator
o(r,1) 9ives a facet-defining hyperplane Af(D) (see [Vor1908]§87-$88). This is clear since
the repartitioning polytopeonv(L U L') is a Delone polytope of the positive definite quadratic

forms lying in the relative interior of the facet given by;, ;).

Let F be a facet of the polyhedral coa®(D). We describe how the Delone triangulatibn
changes if we move a positive definite quadratic form continuously. We start from the interior
of A(D), then we move towards a relative interior pointlbfand finally we go infinitesimally
further, leavingA (D). In every repartitioning polytop&® = conv(L U L) whereL, L’ is a
pair of adjacent simplices whose regulator defifege.linF = {Q € S?: oL,y (Q) = 0},
we perform a bistellar operation. This gives a new triangulaf¥nit is a Delone triangulation
again. The two secondary conAYD) and A(D’) have the complete fac& in common. We
say thatD andD’ arebistellar neighboursin the chapter “Reconstruction de 'ensemblg de
simplexes en un autre ensemblg) de simplexes”, [Vor1908]91-£95, VORONO computes the

secondary cone dP’ explicitly and in the next paragraph he shows thgtD’) has dimension
d(d+1)

2.5. Main Theorem of V ORONOI’s Reduction Theory

By constructing bistellar neighbours we could produce infinitely many Delone triangulations
starting from the Delone triangulatiaR; of VORONG’s principal form of the first type. But
many of these will not be essentially new. A part of the infiriligg graph of two-dimensional
Delone triangulation is given in Figure 2.9.
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Figure 2.9. The Graph of Two-Dimensional Delone Triangulations.

If two positive definite quadratic form& and Q' are arithmetically equivalent, we have

"= A'QA for someA € GLy4(Z), then their Delone subdivisions are related by the equa-
tion Del(Q') = ADel(Q). The groupGL,4(Z) is acting on the set of Delone subdivisions by
(A, D) — AD and it is acting on the set of secondary conegyA) — A'AA. We are only
interested in the orbits of these group actions and there are only finitely mamoNO proved
this by showing that there is a boudd depending only on the dimension so that the following
holds: For every Delone triangulation there exists an equivalent one where the (integral) coor-
dinates of the edges starting from the origin are bounded/byAnother proof was given by
DEezA, GRISHUKHIN and LAURENT (see [DL1997], Chapter 13.3). They show that in a fixed
dimension there are only finitely many Delone polytopes which are not arithmetically equivalent.

This yields the main theorem of&RONG'’s reduction theory.

Theorem 2.5.1.(Main Theorem ofVoRrRoNAO’s Reduction Theoly

The topological closures of secondary cones of Delone triangulations give a face-to-face tiling of
the cone of positive semidefinite quadratic forms. Two secondary cones share a facet if and only
if they are bistellar neighbours. The groG.,;(Z) acts on the tiling, and under this group action
there are only finitely many non-equivalent secondary cones.

By Algorithm 1 we can enumerate all non-equivalent secondary cones of Delone triangula-
tions (and thereby all non-equivalent Delone triangulations) in a given dimension.

Algorithm 1 Enumeration of all non-equivalent Delone triangulations.

Input: Dimensiond.
Output: SetR of all non-equivalent-dimensional Delone triangulations.

while there is @D € T do
T — T\{D}. R — RU{D}.
compute the regulators @1.
compute the facets, ..., F,, of A(D).
fori=1,...,ndo
compute the bistellar neighbof; of D which is defined by;.
if D; is not equivalent to a Delone triangulation®U {Dy, ..., D;_1} then
end if
end for
end while
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The secondary cones of Delone triangulations the algorithm produces can be used to de-
fine a reduction domain. Two positive definite quadratic forms lying in two non-equivalent sec-
ondary cones cannot be arithmetically equivalent. The only thing we have to consider is that
secondary cones can have symmetry. GeC GL,(Z) be the group of symmetries of a sec-
ondary coneA. This is a finite group sincé\ is a polyhedral cone. Now choose a subset
A’ C A suchthatiy A’ = A and such that we haué’ A’A = A’ only if A is the identity. This
can be done by using parts of the barycentric subdivisid.of

2.6. Refinements and Sums

Until now we have only dealt with Delorteiangulationsand their secondary cones. Let us look

at Delonesubdivisionsand find out how they fit into the theory we developed so far. Delone
subdivisions are limiting cases of triangulations: Their secondary cones occur on the boundaries
of full-dimensional secondary cones of Delone triangulations. 2eind D’ be two Delone
subdivisions. We sa is arefinemenbf D’ if every Delone polytope oD is a subset of some
Delone polytope of’. The following proposition shows that the relation between refinements,
secondary cones and sums of positive semidefinite quadratic forms is very natural. It is not clear
(at least not to the author) where this proposition was mentioned fiGESEH gave it in his

thesis [Loe1990]. Later, ’sSHKOV who was not aware of RESCHSs thesis gives in [Rys1999]

a statement equivalent to the following propositiorescHSs thesis is not easily available and
RYsHKOV’s paper does not contain a proof of the statement. We give the arguments in great
detail here. Figure 2.10 visualizes what happens in the two-dimensional case.

Proposition 2.6.1. Let D be a Delone triangulation.

i) A positive semidefinite quadratic for® lies in A(D) if and only if D is a refinement
of Del(Q).

i) If two positive semidefinite quadratic forntg and@’ both lie in A (D), thenDel(Q + Q')
is a common refinement @el(Q) andDel(Q").

Proof. Throughout the proof we always assume that the vertiges. . , v, 1 of a Delone poly-
topeL are ordered in such a way that for a paine R¢ we have

1 1 1
V1 Vd+1 x | >0

Qlva] ... Qvan] Q]

if and only if x lies outside the circumsphere bf(see (2.1)).

i) Suppose thaf) € A(D). We have to show that anj+dimensional Delone simplek =
conv{vy,...,v441} Of D is contained in a Delone polytope &f. Let Q; be a positive
definite quadratic form lying in the interior @k (D). We consider the half-open segment
Qr = (1 —1)Q + tQ1, t € (0,1], that is completely contained in the interior Af(D).
Thus, all these positive definite quadratic forms have the Delone triangufation

For everyv € Z%\{vy,...,vq41} ande > 0 we have
1 . 1 1
0 < V1 cee o Vg4l v
Qe ['Ul] oo Qe [Ud] Qe [U]
1 e 1 1 1 e 1 1
= (1—-¢)| v1i ... g1 v |+eE| VI ... Vg4 v

Q1] ... Qvd Q[v] Qiv1] ... Qifva] Qiv]
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Since the right side of this inequality is an affine functiom me have

1 1 1
V1 <. Vg1 v >0

Qv1] ... Q4 Qv

if we take the limitz \, 0. Hence,L is contained in a Delone polytope 6f

Conversely, leD be a refinement dbel(Q). We define the numbey, by

eo = inf{t € [0,1] : Q, € A(D)}.

Assume that, # 0. Let K be ad-dimensional Delone polytope 6., that is not a sim-
plex. This does exist becaugg, is a boundary point oA (D). Let L be ad-dimensional
Delone simplex o> with verticesvy, . .., v441 and withL C K. Forv € vert K\ vert L
we define the function

1 1 1

x(€) U1 cee Vgt v

Q] s Qe Qo)

We have the inequalitieg(1) > 0, x(g9) = 0 and x(0) > 0 sinceD is a refinement
of Del(®). This cannot happen singeis an affine function ang(0) has to be negative.
Hencegy = 0 and@ € A(D).

i) Let L be a Delone polytope af) and letL’ be one ofQ)’. We have to show that their
intersectionL. N L’ is a Delone polytope of) + @'. We can assume thdtN L' is d-

dimensional. Lew, ..., v, 2 be vertices of. N L. Then,
1 .. 1 1
V1 cee Vd+1 Vd+2
Q+ Q)] .. (@+Q)var] (Q+Q)[wars]
1 e 1 1 1 . 1 1
= V1 ce Vd+1 Vg+2 |+ | V1 ce Vd+1 Vd+2
Qv ... Qvgn] Quare]| |Q'v1] ... Qvan] Q'[vase]
= 0+0.
Letwvy,...,v4.1 be some vertices af N L' and letv be a lattice point that is not a vertex

of LN L. Suppose that ¢ vert L. Then,

1 o 1 1 1 o 1 1
v cee Vgi1 v | >0, and | v .. Vii1 v | >0,
Qvi] ... Qvgy1] Q[v] Q'v1] ... Q'lvar] Q'[v]
and so
1 .. 1 1

V1 ... Vd+1 > 0.

Q+Q)vi] ... (@+Q)wan] (Q@+Q)[v]
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Figure 2.10. Refinements of Two-Dimensional Delone Subdivisions.

2.7. Relations to the Theory of Secondary Polytopes

Triangulations of discrete point sets have attracted many researchers in recent years. They have
many applications, e.g. in computational geometry, optimization, algebraic geometry, topology,
etc. One main tool to understand the structural behavior of triangulations of finite point sets
is the theory of secondary polytopes invented byLGAND, KAPRANOV and ZELEVINSKY
([GKZ1994]). We will describe how this theory is related toNONaG’ s reduction theory. We

will find out that despite of different set-ups there are many similarities.

LetA = {ay,...,a,} C R?be afinite set of points. Let : A — R be a map that assigns to
every point in4 a weight. The set of weight maps forms a vector space Rwehich we denote
by RA. A liting mapl : A — R? x R, I(a;) = (a;, w(a;)) is defined byw which lifts each
pointa; € A on its weightw(a;). A subdivision of the convex polytop@nv A is induced by:
We take the convex hull of the lifted pointsnv ((.A) and project its lower faces as seen from
(0, —o0) back down ontd?. A subdivision that can be obtained in this manner is catgdlar
subdivision Delone subdivisions (or more precisely Delone subdivisions of finitely many points)
are regular subdivisions since the positive semidefinite quadratic form can be used as the weight
function. We saw this already in Section 2.1.

Let 7 be aregular triangulation ebnv .A. We may ask what are the weight functions which
define7. What is thesecondary conef 7 in the parameter spad@*? Like in VORONGO's
reduction theory it turns out that the secondary con& dé a full-dimensional open polyhe-
dral cone. The topological closures of the secondary cones of all regular triangulations tiles the
spaceR# face-to-face. The tiling is callesecondary farof A. If two secondary cones have a
facet in common, then the corresponding regular triangulations differ by a bistellar operation in
exactly one “repartitioning polytope” (in this context it is a polytope with 2 vertices without
the condition of being a Delone polytope) that is defined by the facet. The faces in the secondary
fan A are in a one-to-one correspondence to regular subdivisions in the essentially the same way
we discussed in Section 2.6 for Delone subdivisions.

So far we have seen that the theory of regular subdivisions of finite point sets and the theory
of Delone subdivisions of the lattic& can be analogously developed. But there are differences.
The parameter spaces are of completely different natures. For regular subdivisions itis the vector
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spaceR+ and for Delone subdivisions we have the pointed cﬁﬁ@ Groups play an important
role for Delone subdivisions. The gro@ is acting on Delone subdivisions by translations. On
the set of secondary cones the gra@sip;(Z) is acting.

If we order all regular subdivisions ebnv .4 by refinement we get a poset. This poset has
a very nice combinatorially structure as proved bgLG-AND, KAPRANOV and ZELEVINSKY:
There exists a polytope — trsecondary polytop&(.A) of A — whose normal fan equals the
secondary fan ofl. So the refinement poset is anti-isomorphic to the face lattice of the secondary
polytope. Regular triangulations are in one-to-one correspondence to the vertices, two regular
triangulations differ by a bistellar operation if and only if their vertices are connected by an edge,
etc. We do not know if there is a similar geometrical or combinatorial structure lurking behind
the refinement poset of Delone subdivisions.

Question 2.7.1.Does there exist something similar to the secondary polytope for Delone subdi-
visions?

In Chapter 4 we will compute the complete refinement poset fo tl3eand4-dimensional
cases. Before attacking this challenging question the interested reader might find it helpful to
consult some literature. There exists a vast amount of literature on triangulations and related
topics. We can only provide some hopefully useful starting points: The construction of the
secondary polytope can be best understood in the more general set-up of “fiber polytopes” by
BILLERA and STURMFELS ([BS1992], see also Lecture 9 in [Zie1995]). In [San2002NS
TOS investigates the combinatorial structure of triangulations in a framework provided by ori-
ented matroids. People with a background in algebraic geometry might benefit from the work of
AsSH, MUMFORD, RAPOPORT, TAI [AMRT1975], the more elementary accounts oM KAWA
[Nam1976], [Nam1980] where ®RONG’s reduction theory is a central issue. Finally, the recent
work of ALEXEEV [Ale2002] seems to be very relevant.

GEL'FAND, KAPRANOV and ZELEVINSKY show a possible direction of research in the intro-
duction of their book [GKZ1994]: “A triangulation of a polytogg can be viewed as a discrete
analog of a Riemannian metric @p. So 3(.A) can be seen as a kind of combinatorial Te-
ichmiller space parameterizing such metrics. This reminds us of the worknof BR [Pen1993]
who constructed a combinatorial model of the Teic#ier space of a Riemann surface in terms
of curvilinear triangulations”.



Chapter 3.

Parallelohedra

In the last chapter we studied Delone subdivisions. In this chapter we study tilings dual to Delone
subdivisions. A parallelohedron is a polytope which admits a face-to-face tiling of the surround-
ing space by lattice translates. The maximal-dimensional cells of the dual tiling of a Delone
subdivision are parallelohedra. They are called Dirichlet-Voronoi polytopes and can alternatively
be defined as follows: a Dirichlet-Voronoi polytope contains all those points that are closer to the
origin than to any other lattice point. Itis a conjecture which goes baclo®ANa that the class

of parallelohedra is exactly the class of Dirichlet-Voronoi polytopes. We give a computational
criterion to check whether a given parallelohedron can be represented as a Dirichlet-Voronoi

polytope.

We will explore the duality between Delone subdivisions and tilings by Dirichlet-Voronoi
polytopes further. One central question is: How does the Dirichlet-Voronoi polytope vary if we
vary the positive semidefinite quadratic form? We will see that this variation is linear in secondary
cones of Delone triangulations and piecewise linear in the cone of positive semidefinite quadratic
forms. GONWAY and S OANE defined “vonorms” and “conorms” to parameterize this variation.
Our results will give a clear picture of this parameterization.

Consider a Delone triangulatidd. A positive semidefinite quadratic form is calledid if
it defines an extreme ray of the secondary cdxgD). Rigid forms are building blocks for
Dirichlet-Voronoi polytopes: Every Dirichlet-Voronoi polytope is a Minkowski sum of rigid
Dirichlet-Voronoi polytopes. Up to dimensichall these building blocks are well-known poly-
topes: only one-dimensional line segments and the four-dimendéradil occur. Starting with
dimension5 the structure of rigid Dirichlet-Voronoi polytopes is getting more rich and more
complicated.

If the secondary cone of a Delone subdivision is bounded by positive semidefinite quadratic
forms of rankl only, then the corresponding Dirichlet-Voronoi polytopes are zonotopes. We will
give a complete theory for zonotopal lattice tilings. The combinatorial theory of zonotopal lattice
tilings is equivalent to the theory of regular oriented matroids.

3.1. Definition and Basic Properties

LetV be ad-dimensional real vector space. A parallelohedfofi V' is a polytope which admits

a face-to-face tiling of the spadé by translates. In this section we give another characterization
of parallelohedra which can be used to decide whether a given polytope is a parallelohedron.
This characterization was independently found tsnov ([Ven1954]) and by MM ULLEN
(McM1980]).
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Definition 3.1.1. A d-dimensional polytope® C V is calledparallelohedronif it tiles V' by
translates, i.e. if there is a sbtC V such that

) V' =Uper (P +w),
ii) forall v, w € L the intersectiofP +v)N (P +w) is a common face aP +v andP + w.

MINKOWSKI was the first who discovered some structural properties of parallelohedra. In
[Min1897] he proves that every parallelohedron is centrally symmetric, has centrally symmetric
facets and that everj-dimensional parallelohedron has not more théf — 1) facets. In this
context it is interesting thatrfEEPHARD showed (see [McM1976]) that&dimensional polytope
(d > 3) is centrally symmetric whenever all its facets are centrally symmetric. Notice that not
every face of a parallelohedron has to be centrally symmetric. For instance, the four-dimensional
24-cell is a parallelohedron, it facets are octahedra, and the two-dimensional faces are trian-
gles.

The only two-dimensional parallelohedra are centrally symmetric quadrangles and centrally
symmetric hexagons. We can exploit this fact by projecting along the (iht2)-dimensional
faces to get more structural insights into higher-dimensional parallelohedra.

Definition 3.1.2. Let P be a polytope. Aeltof P is a sequence of distinct fac€s, . .., Fj,_1)
of P such thatF; N F; 1 (we compute modulg) is a(d—2)-dimensional face which is a translate
of Fy N Fy.

Each belt of a parallelohedron has lendtbr length6: We project a parallelohedron along
a (d — 2)-dimensional face of a belt onto the two-dimensional subspace that is generated by
the corresponding facet centers. This gives us a new parallelohedron in two dimensions. If it
is a quadrangle we have a belt of lendthif it is a hexagon we have a belt of lengih It is
astonishing and the proof is quite involved that the converse is also true.

Theorem 3.1.3.(VENKOV [Ven1954], MCMULLEN [McM1980])

A polytope is a parallelohedron if and only if it is a centrally symmetric polytope with centrally
symmetric facets such that each belt contains eithar6 facets. Furthermore, we can assume
that the set of translates forms a lattice.

3.2. VORONOI's Conjecture

Let L C V be a lattice and let-,-) : V' x V' — R be an inner product. ThBirichlet-Voronoi
polytopeof the lattice(L, (-, -)) is given by

DV(L,(-,-)) :={x € V :forall v € L we havedist(x, 0) < dist(x,v)}.

Dirichlet-Voronoi polytopes of lattices are parallelohedra. The transBfé§L, (-, -)) + v,
v € L, give aface-to-face tiling df. VORONO conjectured that all parallelohedra are Dirichlet-
Voronoi polytopes of lattices.

Conjecture 3.2.1. (VORONO’s Conjecture)
For every parallelohedroR C V thereis a latticd. C V" and an inner produgt, -) : VxV — R
such that the Dirichlet-Voronoi polytope 6f, (-, -)) is a translate oP.

In [Mor1908] he proves this conjecture for primitive parallelohedra (see below). He writes that
he cannot prove it for imprimitive parallelohedra although he believes that the conjecture is
true in these cases. Originally he writes in his second monogxapivelles applications des
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paranetres continus la theorie des formes quadratiques, Detmxie Memoire, Recherches sur
les paralEllogdres primitifs Journal fiir die reine und angewandte Mathematik 134(1908), pages
210-211:

On peut envisager le praishe de partition uniforme de I'espace kanalytique

an dimension par de poBdres convexes congruents épéndamment de la

théorie des formes quadratiques.

En appelent paraloedre chaque pogdre convexe qui jouit de la propte I,
je démontre le remarquableéb®eme suivant.

En effectuant toutes les transformationshires possibles a I'aide du groupe
continu de substitutions

n
xi:a¢+2aix§€ (1=1,2,...n)
k=1

a coefficients @els quelconques d’'un parrélbedre primitif, on obtient un
esemble de paraloedres primtifs qui est parfaitemengrmire par une
classe de formes quadratiques positiggglivalentesa condition qu’'on ne
consicere pas comme défentes les formes quadratiquascoefficients pro-
portionels.

En vertu de ce thoeme, le prol@me de partition uniforme de I'espaaen
dimensions par de parélbédres primitifs congruents se rane toujoursa

I étude des parddloedres primitifs correspondant aux formes quadratiques po-
sitives.

Je suis port é a croire, sans pouvoir led émontrer, que le th éoréeme
énonc é est aussi vrai pour les parall éloédres imprimitifs.

Currently the conjecture has only been proved in special cases.

Primitive parallelohedra: In [Vor1908] VORONGO, as he mentions above, proves the conjecture
for primitive parallelohedra. These afedimensional parallelohedra where in each vertex
of the tiling exactly the minimal number df+ 1 parallelohedra meet. In this case the dual
tiling consists only of simplices. This fact also characterizes primitive parallelohedra. In
[Zhi1929] ZHITOMIRSKII relaxes the condition of primitivity. He shows that the conjec-
ture is true for tilings of parallelohedra where in the dual tiling each two-dimensional face
is a triangle (equivalently the considered parallelohedron has only belts of i&ngth

Low dimensions: In [Del1929] DELONE shows that the conjecture is true in dimensions uf to
STOGRIN indicates an alternative proof in [St01973]. In Chapter 4 we will classify all
these parallelohedra.

Zonotopal parallelohedra: ERDAHL proves in [Erd1999] that every zonotope which tiles space
by translates is a Dirichlet-Voronoi polytope. OXETER in [Cox1962], SIEPHARD in
[Shel1974] and MMULLEN in [McM1975] already anticipated a proof. In [Val2000]
another proof is given where the connection to oriented matroids is emphasized. In Chapter
3.5 we present the theory of zonotopal parallelohedra.

In what follows we only deal with parallelohedra that are given by Dirichlet-Voronoi poly-
topes of lattices. But if one runs into a parallelohedron that is not apriori given as a Dirichlet-
Voronoi polytope, then one might want to test if it can be represented as a Dirichlet-Voronoi
polytope. By studying WRONQ’s proof for primitive parallelohedra (one can benefit from the
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presentation in [GL1987]) we can extract the following proposition which yields a computational
criterion afterwards.

Proposition 3.2.2. Let P C V be a parallelohedron whose facet centerswgre. ., vs,. The
parallelohedron is the Dirichlet-Voronoi polytope of a lattice if and only if there exist linear
functionsfy, ..., fon, € V* so that the following conditions hold:

) P="{zeV: fi(z) < fi(v)},
i) fi=—forni=1,...,n,

iii) for every 6-belt (F;, —F;, Fy,, —F;, Fj, —F},) we havef; + f; + fi = 0, i.e. all6-belts are
balanced.

Before proving this proposition we describe how it can be used as a computational criterion:
LetP = ﬂfﬁl{m €V : gi(x) < o;} be a parallelohedron given by supporting hyperplanes. By
scalingg; and reordering we can assume that= g;(v;) andg; = —g,+i. The third condition
is satisfied if the polyhedron

{B € RYY : Bigi + B;g; + Brgr = 0 for every6-belt (F;, —F}, Fy,, —F;, Fj, —Fy)}

has an interior point, which we can decide by linear programming.

Since we do not need Proposition 3.2.2 later we only sketch a proof. An extensive account to
this and related themes is given by B\Ikov in [Ryb1999] where he works out the relationship
between Dirichlet-Voronoi polytopes and the theory of stresses and liftings (extending work of
CrAPO and WHITELEY on the so-called Maxwell-Cremona theoryy#NIkKov writes: “The
problem of determining whether a given tiling of the Euclidean space can be obtained as the
projection of a convex surface has two origins ARMVELL’s correspondence in rigidity theory
and VORONQ's generatrice in geometry of numbers and mathematical crystallography.”).

Proof. (Sketch

If P is the Dirichlet-Voronoi polytope of a lattice, we hat®= DV (L, (-,-)), then it is straight-
forward to show thaP satisfies the three conditions. We simply use the linear functigns=
(vi,)yi=1,...,2n.

Let us look at the other implication. By Theorem 3.1.3 there exists a laftise that the
family (P + v).cyr is a lattice tiling. On the set of lattice points we define an infinite graph
whose vertices are the lattice points. Two vertieeand w are connected by an edge if the
corresponding parallelohedfa+ v and P + w share a common facet. This graph will turn out
to be thel-skeleton of the dual Delone subdivision and we will try to find a proper lifting of this
graph.

We define a functior) : L — R which simulates a positive definite quadratic form: Let
wi, ..., ws, be the lattice vectors so th& N (P + w;) is a common facet oP and P + w;.
Then we seQ[0] = 0 andQ[v + w;] = Q[v] + fi(2v + w;), v € L. Since we defined only
according to neighbouring relations we have to check whepherwell-defined, i.e. do different
paths form0 to v always lead to the same val@gv]|? We prove this by using a technique from
combinatorial topology (“elementary homotopies”, seedfB)95]): Every two paths frord to
v can be deformed into each other using only triangles and squares. Triangles beddngjtso
which are balanced by condition (iii) and this implies thiits well-defined on triangles. Squares
belong to4-belt which are balanced because of the central symmetRyaofd P’s facets and this
implies thatQ is well-defined on squares.
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Then one has to show thél is a positive definite quadratic form. This can be done by
showing thatQ) has an associated inner produef(xz,y) = (x')Qy. The bilinearity ofsg
follows directly from the definition of). The symmetry is a consequence of the central symmetry
of P and P’s facets. The positive definiteness is a consequence of the boundedrifesd loé
last step of the proof is to show thBt= DV (L, s¢) which at that point is straightforward. o

3.3. Duality

Delone subdivisions are dual to tilings of Dirichlet-Voronoi polytopes. In this section we will
explore this duality. After defining Dirichlet-Voronoi polytopes for quadratic forms we will give

an upper bound theorem, a characterization of the facets and the important structural insight that
Dirichlet-Voronoi polytopes behave linearly in secondary cones of Delone triangulations.

3.3.1. Definition

We already defined Dirichlet-Voronoi polytopes for lattices in the previous section. The following
definition of Dirichlet-Voronoi polytopes for positive definite quadratic forms emphasizes their
duality to the cells in the Delone subdivision; although itis not a direct translation of the definition
for lattices. At the end of this section we list the main advantages of this definition.

Definition 3.3.1. LetQ € Sio be a positive definite quadratic form. LBt= conv{vi, vo,...}
be a Delone polyhedron ¢j. We define th®irichlet-Voronoi polytopeof ) corresponding td.
by

DV(Q, L) = {x'Q € (RY)* : forv € 24,7 € {1,2,...} we havedist(z, v;) < dist(x,v)}.

We also can use the definition for positive semidefinite quadratic forms which are arithmeti-
cally equivalent to(8 8/) where(’ is positive definite. For instance, let us consider again the
positive semidefinite quadratic form of the matfi? ). The Dirichlet-Voronoi polytope corre-
sponding to the one-dimensional Delone polyhedramwv{v + (§) : € Z} is the line segment
conv{(0,v2 + 1/2), (0,v2 — 1/2)}, and the one corresponding to the two-dimensional Delone
polyhedrornconv{v + (§),v + (1) : © € Z} is the point{(0, v2 + 1/2)}.

The following proposition states the duality relationship between the two tilings. Its proof is
straightforward.

Proposition 3.3.2. LetQ € Sgo be a positive semidefinite quadratic form with Delone subdivi-
sionDel(Q).

i) Let L, L' € Del(Q) Delone polyhedra of). L is a face ofL’ if and only if DV(Q, L') is
aface oDV (Q, L).

ii) For every Delone polyhedrof € Del(Q) we havedim L + dim DV (Q, L) = d.
Definition 3.3.1 is due to NMIkAwA ([Nam1976]). It has three important features:

i) The facet normals only depend on the Delone triangulafioand not on the positive
definite quadratic form.

ii) Dirichlet-Voronoi polytopes are always bounded polytopes, even in the semidefinite case.

iii) The Dirichlet-Voronoi polytope of a positive definite quadratic fofphcorresponding to
the cell{0} and the one of an associated latii@&, s,), so(z,y) = z'Qy, are affinely
isomorphic because

DV(Q,{0}) = (@DV(Z?, sq(-,-))".
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3.3.2. Upper Bound Theorem

Using duality we easily get an upper bound for the number of verticéslahensional Dirichlet-
Voronoi polytopes: Let) be a positive definite quadratic form whose Delone subdivision is
a triangulation. By duality every vertex @V (Q, {0}) is given by ad-dimensional Delone
simplex. The vertices of a Delone polytope belong to the lathiéeso the volume of ai-
dimensional Delone polytope is at leagtl!. Because every fundamental domairZdfhas unit
volume, there are at most vertices ofDV (@, {0}) that are not translates of each othew i a
vertex of DV (@, {0}), then there exists a Delone simpléx= conv{0, v1,...,v,} definingv.
Thed Delone simpliced — v;, i = 1,...,d, define vertices oDV (Q, {0}) that are translates

of v. Thus,DV(Q, {0}) has at mostd + 1)! vertices. This upper bound holds also for positive
definite quadratic forms whose Delone subdivision is no triangulation because they are limits of
triangulations.

In [Vor1908],563-§68,§101, VORONO refines this observation to get an upper bound theo-
rem for Dirichlet-Voronoi polytopes. The Dirichlet-Voronoi polytope cbRoNaQ’s principal
form of the first type is a permutahedron. The numbekafimensional faces of d-dim-
ensional permutahedron {g — k + 1)! { ;%71, } where{ ¢} are the Stirling numbers of the
second kind (the number df-element partitions of @-element set). The permutahedron is
an extreme Dirichlet-Voronoi polytope, nbdimensional Dirichlet-Voronoi polytope has more
k-dimensional faces.

d fo fi fo f3 f4 f5 fe | fr
1 2 1

2 6 6 1

3 24 36 14 1

4 120 240 150 30 1

5 720 1,800 1,560 540 62 1

6 | 5,040 | 15,120 | 16,800 8,400 1,806 126 1

7 140,320 | 141,120 | 191,520 | 126,000 | 40,824 | 5,796 | 254 | 1

Table 3.1. Extremef-Vectors ofd-Dimensional Dirichlet-Voronoi Polytopes.

3.3.3. Voronoi Vectors, Supporting Hyperplanes, and Facets

In this short section we want to characterize the facets of a Dirichlet-Voronoi polytope.

Definition 3.3.3. Let Q € Sgo be a positive semidefinite quadratic form with Delone subdivi-
sionDel(Q). A vectorv € Z% is calledVoronoi vectoiif the affine hyperplane

Hgvo={ycRY :yv = %thv} = {2'Q : dist(z, 0) = dist(z,v)}

is a supporting hyperplane 8fV(Q, {0}).
\oronoi vectors are the shortest vectors in the coEé}@Zd, more precisely:

Proposition 3.3.4. (Characterization of Voronoi Vectors

Let @ € 8¢, be a positive semidefinite quadratic form with Delone subdivided(Q). A
vectorv € Z4\ {0} is a Voronoi vector if and only if it is a shortest vector (we use the seminorm
defined byQ) in the cosew + 2Z<. The hyperplandi, ,, defines a facet dbV(Q, {0}) if and

only if +v are the only shortest vectors in the coset 27¢.
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A proof of this characterization is not difficult and one can find it e.g. in [Vor1908], or in
[CS1992].

We illustrate this proposition in Figure 3.1 for the positive definite quadratic fora ().
Here the Voronoi vectors afe-1,0)?, (0, +1)*, and(+1, +1)* and only the four vectorgt1, 0),
(0, £1) define facet defining hyperplane.

(2,1) @1
(-2.0) (2,0
(2-1) @-1)

Figure 3.1. Voronoi Vectors of( { 9).

3.3.4. Linearity and Rigidity

Now we show that Dirichlet-Voronoi polytopes behave linearly in the topological closure of the
secondary cone of a Delone triangulation. This is a major structural insight with many conse-
guences and applications.

Proposition 3.3.5. Let D be a Delone triangulation. For positive semidefinite quadratic forms
Q1,...,Q, € A(D) and non-negative numbers, . . ., a,, we have

V(O aiQi,{0}) =>  a; DV(Q;, {0}).
=1 =1

Proof. It suffices to consider only two summan€s and(,. From Proposition 2.6.1 we con-
clude that all positive semidefinite quadratic form&iD) have the same set of Voronoi vectors.
We defined Dirichlet-Voronoi polytopes in such a way that the facet normals are Voronoi vectors,
and so that they only depend @n The support function of polytopes respects Minkowski sums.
For@1,Q2 € A(D) and a Voronoi vector of ; and@, we have

HQ 4Gy = HQy v + HQy v

This shows that every facet &V (Q1+Q2, {0}) is the Minkowski sum of faces @V (Q, {0})
andDV(Q27 {O})

This proposition is extremely useful. It shows that and how we get all Dirichlet-Voronoi
polytopes by summing up Dirichlet-Voronoi polytopes of semidefinite quadratic forms belong-
ing to extreme rays of secondary cones. We consider all those positive semidefinite quadratic
formsQq, ..., Q, that belong to the extreme rays of the secondary cone of the Delone triangu-
lation D. Proposition 3.3.5 says th&tV(Q;, {0}), i = 1,...,n, arethebuilding blocks of all
Dirichlet-Voronoi polytopes belonging to quadratic forms lyingAr{D): Every@ € A(D) can
be written as a non-negative linear combination ofghis (we haveQ = > " | «iQ;, a; > 0)
and by Proposition 3.3.5 the Dirichlet-Voronoi polytope can be written in exactly the same way
by taking weighted Minkowski sums (we hal?d/(>"" | ;Q;,{0}) = >, a; DV(Q;, {0})).
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In case that we know all non-equivalent extreme rays of a given dimension, we can generate
all Dirichlet-Voronoi polytopes by taking Minkowski sums. We will use this fact to classify
Dirichlet-Voronoi polytopes in dimensions up 4an the next chapter.

All these considerations lead to the definition of rigid forms respectively to rigid lattices.

Definition 3.3.6. Let ) be a positive definite quadratic form. The dimension of the secondary
cone of its Delone subdivision is calledn-rigidity degreeof Q. If the non-rigidity degree of)
equalsl, we say(Q is rigid.

Since the definition above does not depend on the choiéginfthe class of arithmetically
equivalent positive definite quadratic forms this defines “non-rigidity degree” and “rigidity” also
for lattices. In the next chapter we will see that the only rigid lattices in dimenslonist are
the one-dimensional latticd' whose Dirichlet-Voronoi polytope is a line segment and the four-
dimensional latticdd, whose Dirichlet-Voronoi polytope is th&t-cell. A lattice is rigid if and
only if its Dirichlet-Voronoi polytope cannot be written as a non-trivial Minkowski sum of two
Dirichlet-Voronoi polytopes.

BARANOVSKII and GRISHUKHIN were the first who studied rigid positive definite quadratic
forms. The main result of their article [BG2001] is a formula for the computation of the non-
rigidity degree. The moral of its proof is that every affine dependency between the vertices of a
Delone polytope gives a linear dependency between the entries of the @atrix

Proposition 3.3.7. Let Q be a positive definite quadratic form. The non-rigidity degre®a$
given by@ — dim S(Q), whereS(Q) is the subspace @ that is defined by

Q/ S Sd 2?22 OéiQ/[’Ul - ’Ui] = 0,
S(Q) = < whereL = conv{vy,...,v,} is a Delone polytope af), >

Yo, a;v; = 0 is a minimal affine dependency R

Furthermore, the linear span &f(Del(Q)) equalsS(Q).

We think that it is important to find a good, i.e. structural, characterization of rigid positive
definite quadratic forms. This proposition is only a first step.

Similar questions have been studied in other settings. If we formulate the question of being
rigid for Delone subdivisions, then a Delone subdivisiBrbelongs to a rigid positive definite
guadratic form if there is no Delone subdivision coarser thain the theory of regular triangu-
lations and secondary polytopes these coarsest subdivisions ate-incorrespondence to the
facets of the secondary polytope. But also in this setting no structural characterization is known
although there has been some progress (see [BGS1993], and the more recent [San2001]).

3.4. Vonorms and Conorms

CoNwAY and S OANE introduce “vonorms” and “conorms” in [CS1992] for lattices. We ex-
tend their definitions to positive semidefinite quadratic forms. This gives us the opportunity to
understand the basic properties of vonorms and conorms better. The main result of this section
is that vonorms and conorms are piecewise linear functions in the cone of positive semidefinite
quadratic forms. ©ONWAY and S OANE conjecture that the vonorms and conorms of a lattice
characterize the lattice uniquely. Our main result enables us to show that this is locally true and
it enables us to check this conjecture in every given dimension algorithmically.

The vonorm map of a positive semidefinite quadratic fapnassigns to a coset + 274
the squared norm of the shortest lattice vector in this coset. The definition is motivated by the
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characterization of Voronoi vectors in Proposition 3.3.4 where we stated that every shortest lattice
vector in a coset + 274 defines a supporting hyperplaneldY (Q, {0}).

Definition 3.4.1. Let @ € Sgo be a positive semidefinite quadratic form. We definevibiegorm
mapvog : Z4/27% — R as follows: For a coset + 274 € 74 /27 we set

vog(v + 22%) = min{Q[w] : w € v + 22%}.

Let y : Z?/27Z% — {+1} be a group homomorphism (a character of the gréa@Rz?). We
define theconorm mapf Q by

1
coQ(X) = —5=7 ST x(w+ 224 vog(v + 227).
v+2Z2€Z% /272

The conorm map is, apart from the scale facie%l_—l, the discrete Fourier transform of the
vonorm map. The vonorm map can be reconstructed from the conorm map by

vog(v + 22%) = Z coQ(x)-
x:x(v+2Z4)=—1

This is an immediate corollary of the inversion formula for discrete Fourier transforms. For all
v+2Z4 which are subsets of the totally isotropic subsp@ce[{0}] we havevog (v +2Z%) = 0.

In explicit calculations it is convenient to identify thiedimensional vector space of group
homomorphismgx : Z¢/2Z¢ — {+1}} with the space of binary row vectof& using the
canonical isomorphism. For convenience and future reference we explicitly define this canonical
isomorphism.

Letx : Z¢/27¢ — {£1} be a group homomorphism and kgtbe thei-th unit vector. Then
we identify y with = (z1, ..., z4) € F4 componentwise by

i 0, if x(e; +22%) = +1
P L, if x(e; +27%) = —1

Conversely, letc = (z1,...,74) € F4 be a binary vector. Then we identify with the group
homomorphisny : Z¢/27¢ — {+1} by

—1, ifwv;isoddande; =1
X1+ va) 4227 = F(01)-f(v2) - f(va), wheref(v;) = { L othoriss
For instance, the vectdt, 1) € F3 gives the group homomorphisg: Z2/27% — {+1}

= -1
1.

x((0,0) +27%) = 1-1 =1 x((1,0)t 4 272) (=1)-1
x((0,1)+22%) = 1-(-1) = -1 x((1,D)'+22%) = (-1)-(-1)

Example 3.4.2. Let us compute the vonorm map and the conorm ma@ of () whose
geometry is illustrated in Figure 3.1. Its vonorm map is given by

vog((0,0) +2Z2) = 0 vog((1,0)! +27%) = 1
vog((0,1)' +2Z2) = 1 voq((1,1)!+27%) = 2,
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and its conorm map is given by the formula
cogx) = — (X((0,0)" +22%) voq ((0,0)' +227)
+ x((0, 1) + 2Z2) vog ((0,1)! + 27Z2)
+ x((1,0))! + 2Z%) vog ((1,0)" + 2Z2)
+x((1,1)" +2Z%) vog ((1,1)" +2Z7)) ,

and by the values (here we used the identification we defined above)

c0g(0,0) = —3(0+1+1+2) = -2
cop(0,1) = —3(0-1+1-2) = 1
cog(1,0) —Lo04+1-1-2) =1
cog(l,1) = —2(0—1—1—1—2) = 0.

In [CS1992] GNWAY and S OANE state that the conorm map varies continuously with the
lattice and that this is one of its most useful properties (other useful properties are: the conorm
map is an invariant of the lattice, and all symmetries of the lattice arise from symmetries of the
conorm map). Here, we will turn this qualitative statement into a quantitative one.

Proposition 3.4.3. The vonorm map and the conorm map are piecewise linear maps if we view
them as maps fronaﬁ‘go to R2’. Let D be a Delone triangulation®q, ..., Q, € A(D),
andai,...,an, € Rsg. Then we have for alb € Z? and for all group homomorphisms

X : Z4/27% — {£1}

n
VoS 0, (v+22%) = ) ajvog, (v + 227

=1
n

oy, mi@i(X) = D aicoq.(x):
=1

Proof. Let D be a Delone triangulation, argl, ' € A(D). Then, the Voronoi vectors @ and
Q' coincide. For a Voronoi vectar and non-negative numbers o’ we have

(0Q + o' Q)[v] = aQv] + 'Q'[v].

Hence,
VoaQ+arq (v + 2Z%) = avog(v + 2Z%) + o/ vogr (v + 2Z7),
and the conorm map inherits this linearity. o

CoNwAY and S OANE conjecture that the vonorm map characterizes a lattice.

Conjecture 3.4.4. (CONWAY & SLOANE, [CS1992])
LetQ, Q' be positive semidefinite quadratic forms. If their vonorm maps coincide, i.e. if we have
vog = vogr, then@ andQ’ are arithmetically equivalent.

Now we show by an easy argument that this conjecture is locally trueDUm a Delone
triangulation. Let), ', Q #" Q, be two positive semidefinite quadratic forms lyingA(D).
Assume that they have the same vonorm map. As a result of Proposition 3.4.3 the vonorm maps
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of all forms in the segmen), Q'] coincide. This cannot happen because infinitesimally changes
of a positive semidefinite quadratic form changes the vonorm map.

Together with \ORONGO’s reduction theory the preceding considerations provide an algo-
rithm which proves or disproves the conjecture abMivAY and S OANE in every given di-
mensiond. For two non-equivalent secondary conesdedimensional Delone triangulations
A and A’ we compute the extreme rays = cone{Q1,...,Q,}, A’ = cone{Q},...,Q",}
and their vonorms. Then we check whether solutions of the system @f'then + n’ linear
(in-)equalities

n n’
Zai vog, (v) Za; VOQ;(’U), v €{0,1}4,
i=1 j=1

a > 0, i=1,...,n,
/ . /
a =2 0, j=1,...,n,

that depends on the parametess a; defines only arithmetically equivalent boundaries of the

secondary coneA andA’. The conjecture is true if and only if for all pairs of non-equivalent
secondary cones this is the case. In Chapter 4.4 we will use this approach to give a proof of
the conjecture fod = 4 (in [CS1992] GNWwAY and S OANE state that the conjecture is true in
dimensionsi < 4 without providing a proof). Trivially (since there is only one non-equivalent
secondary cone), the conjecture is true in the two-dimensional and in the three-dimensional case.

3.5. Zonotopal Parallelohedra

In this section we study zonotopal parallelohedra. For zonotopal parallelohemkanNt’s
conjecture holds (see [Erd1999]). So we concentrate our attention on lattices whose Dirichlet-
Voronoi polytopes are zonotopes. The methods we present here can also be used to give a proof
of VORONO's conjecture for zonotopes (see [Val2000]). We provide a link between the theory

of (regular) oriented matroids and the theory of lattices whose Dirichlet-Voronoi polytope is a
zonotope. The main advantage of this approach is the strict separation between combinatorial and
metrical data. This approach was initiated bgrRITZEN [Ger1982] and IOESCH[L0e1990].

We suggest that readers who are familiar with the theory of oriented matroids and the tran-
sitions between oriented matroids, zonotopes, graphs and hyperplane arrangements should only
browse through this section. We use the usual connections and we only interlace the definition of
zonotopal lattices into the framework of oriented matroid theory. It will suffice to understand that
we can get Dirichlet-Voronoi polytopes of cographical lattices from the permutahedron by delet-
ing edges and that there is exactly one four-dimensional Dirichlet-Voronoi zonotope, namely the
one of the graphical latticEg, ,, that does not originate from the permutahedron.

And we suggest that all other readers should just read happily ahead.

3.5.1. Definition and Basic Properties

Let E be a finite set. LetR”, (-, -)) be a Euclidean space where the standard basis vectors form
an orthogonal basis (but not necessarily an orthonormal basis). LeZ” be a lattice and let

v € L be a lattice vector. Theupportof viswv := {e € E : v. # 0}. A lattice vectorv is
calledelementanjif v € {—1,0,+1}*\{0} and if v has minimal support. Two lattice vectors
v, w are calledconformalif v, - w. > 0 for all e € E. A lattice L is calledzonotopalif every
lattice vector ofL, can be written as a sum of pairwise conformal elementary lattice vectors. The
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definition is highly motivated by UTTE’s theory of regular chain groups. In [Tut1971] one finds
proofs of all our statements not involving the Euclidean structure. Statements that depend on the
Euclidean structure are proved e.g. in [Val2000].

WhenL C ZF is a zonotopal lattice, the set of elementary vectors are cocircuits of an ori-
ented matroid. We denote this oriented matroid\¥y L). It is a regular oriented matroid. Con-
versely, for every regular oriented matrold there is a zonotopal lattice with M = M(L).

Let us translate the oriented matroid operations “dualization”, “contraction” and “deletion” into
the language of zonotopal lattices. L&be a subset of. For a lattice vectov € Z” we define

the restrictionv|4 € 74 by (vja)e = ve fore € A. LetS be a subset off. We define the
zonotopal duabf L, thecontractionL /S, and thedeletionL\ S by

L+ = {veZ”:wehavel,  pv.w. =0forallwe L}
L/S = {vpms:veLandvnS =0}
L\S = {'U|E\S IV E L}.

The class of zonotopal lattices is closed under these operations. For the corresponding regular
oriented matroids we have

M(LY) = M* (L), M(L/S) = M(L)/S, M(L\S)= M(L)\S.

Let L be a zonotopal lattice. A lattice obtained frarby a sequence of deletions and contrac-
tions is calledminor of L.

The Dirichlet-Voronoi polytope of. is a zonotope because we have

wherer is the orthogonal projection & onto the linear subspace spannedbyn Figure 3.2

the casel. = Z(1,1,0)" + Z(0,1,1)t, (z,y) = x1y1 + x2y2 + x3y3, iS demonstrated. The
elementary vectors df are those Voronoi vectors that define a facebdf(L, (-, -)). The com-
binatorial structure of the Dirichlet-Voronoi polytope is completely determined by the oriented
matroid M (L): the face lattices of the polytofg@V (L, (-, -)) and the one of the oriented matroid
M(L) coincide.

_{0.11)
/ J1,0
0.4.0
—1.11.0) /
(0,=1=1) Yoz

Figure 3.2. Dirichlet-Voronoi Polytope of a Zonotopal Lattice.
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The geometrical realization dDV (L, (-,-)) depends on the norms of the standard basis
vectors. We denote the standard basis vectoR’ofoy e;, i € E. The edges of the zono-
topeDV(L, (+,-)) are translates of (e;) if ¢ is contained in the support of some lattice vector.
The edge lengths are given by

(ex.e) det(L/{i})

A2 —
(e L

The determinant of. is given by

> [1(ei e = (ej.ej) det(L/{}) + det(L\{j})

BeBieB

wherep is the set of basis o (L) andj € E is contained in the support of some lattice vector.

3.5.2. SEYMOUR’s Decomposition Theorem

The combinatorial structure of zonotopal lattices and their Dirichlet-Voronoi polytopes is well-
understood by SYMOUR’s decomposition theorem for regular matroids. We formulate it in
terms of zonotopal lattices.

Theorem 3.5.1.(SEYMOUR’s Decomposition TheorenSey80])
Every zonotopal lattice can be decomposed itsums,2-sums, and3-sums of cographical
lattices, graphical lattices and lattices of typg.

In the following sections we will introduce the main examples of zonotopal lattices: cograph-
ical lattices, graphical lattices and lattices of typg. For the definitions ofl-sums,2-sums,
and3-sums the interested reader is referred kY 8OUR’s original paper, to RUMPER'S book
[Tri1992] that also deals with algorithmic aspects or to [Val2000] whesams,2-sums, and
3-sums are defined in the context of zonotopal lattices.

With help of this theorem one can classify zonotopal lattices according to their combinatorial
structure. Ad-dimensional zonotopal lattice is calledaximalif it is not a minor of another
d-dimensional zonotopal lattice. The classification of maximal zonotopal lattices has been car-
ried out up to dimensiof by ERDAHL and RrsHkov ([ER1994]). In [DG1999] IANILOV and
GRISHUKHIN work out the case@ = 6 where they explicitly make use ofESMOUR'’S decom-
position theorem.

Cographical Lattices

Let G = (V, E) be a connected graph with directed edges. We denote the set of all oriented
minimal cuts (cocircuits) of7 by C*(G). For every cocircuitC* we define a lattice vector
v(C*) € {~1,0,1}F by

+1, if eis an outgoing edge of the minimal cut,
v(C"). =< —1, if eisaningoing edge of the minimal cut,
0, if eis not an edge of the minimal cut.

The latticeLy; = > ¢ cex(q) Zv(C*) C ZF is calledcographical Actually, L¢, describes a set
of lattices with a fixed combinatorial structure. Together with a corresponding inner prbguct
is a zonotopal lattice of dimensidi| — 1.

The Dirichlet-Voronoi polytope of the cographical lattitg is a(d — 1)-dimensional per-
mutahedron. We get all Dirichlet-Voronoi polytopes(af— 1)-dimensional cographical lattices
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by deleting edges of the permutahedron which correspond to edges we deleted from the complete
graphK,. Each edge of the graph corresponds to a rigid redsfidem whose Dirichlet-Voronoi
polytope is a one-dimensional line segment.

Exactly the lattices which are associated to the positive definite quadratic forms lying in
the topological closure of ¥rRONO’s principal domain of the first type are cographical. We
prove this using Delone graphsLet (Q be a positive definite quadratic form which lies in the
topological closure of WRONO's principal domain of the first type. The Selling parameters
gij, 1 < 1,57 <d+1,i # j, of Q are all non-positive. We define tligelone graphof @ by
Go = ({1,...,d + 1}, E) with (i,5) € E wheneveri < j andg;; < 0. Then, the formQ
is associated to the lattice7, ,. Hence, we have a convenient description of the face lattices
for Dirichlet-Voronoi polytopes of lattices associated to positive definite quadratic forms lying
in A(Dl)

Example 3.5.2.Let us look at the two-dimensional case and the gi&ph

(1,3)
(1,2) (1,3) (2,3)
cocircuits: +( 1 1 0 )
(1,2) (2,3) 0 1 1 )
+( 1 0 -1 )
2

The two vectorsh; = (1,1,0)!, by = (0,—1,—1) form a lattice basis of the two-dim-
ensional cographical latticéj,, C 7Z3. The Dirichlet-Voronoi polytope ofL7., is a two-
dimensional permutahedron aka a hexagon. In Figure 3.2 one finds an illustration of our con-
struction.

The inner product oR? is given by(e;, e;) = \;, A; > 0. The Gram matrix of the basis
(b1,b2) is G(py ) = (AlfAi? A;’r\ig). This quadratic form lies in YRONG’s principal domain
of the first type. Thus we havelato-1 correspondence between the edges of the graph and the
rigid forms of A(Dy):

edge ofK3 rigid form
10
w2y~ (5 o)
1 -1
13) =

o - ()

Hence, Figure 3.3 below is a dual picture of Figure 2.10. The extreme rays of the secondary
cone A(D;) correspond to graphs with one edge and to one-dimensional cographical lattices
whose Dirichlet-Voronoi polytopes are line segments. The two-dimensional faces correspond
to graphs with two edges and to two-dimensional cographical lattices whose Dirichlet-Voronoi
polytopes are quadrangles. Finally the three-dimensional face corresponds to the complete graph
K3 and to two-dimensional cographical lattices whose Dirichlet-Voronoi polytopes are hexagons.

*DELONE introduced these graphs when he studied 3-dimensional Bravais lattices in the context of positive definite
quadratic forms ([Del1932])
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v|Q

VO

Figure 3.3. Dirichlet-Voronoi Polytopes of Cographical Lattices.

Graphical Lattices

Not all zonotopal lattices are cographical. The minimal zonotopal lattice which is not cographical
is the graphical latticd k, , whereK; 3 denotes the complete bipartite graph3oand3 vertices.

Let G = (V, E) be a connected graph with directed edges. We denote the set of all circuits
of G by C(G). For every circuilC of G we define a lattice vectar(C) € {—1,0,1}¥ by

+1, if eis a positive edge of the circuit,
v(C). = ¢ —1, if eisanegative edge of the circuit,
0, if eis notan edge of the circuit.

The latticeLg = Y cce(q) Zv(C) € ZP is calledgraphical Actually, Lg describes a set
of lattices with a fixed combinatorial structure. With a corresponding inner prablyds a
zonotopal lattice of dimensioE| — |V| + 1.

Atheorem of TUTTE ([Tut1958], [Tut1959]) characterizes graphical and cographical lattices.
A zonotopal lattice is graphical if and only if it has no minor that is combinatorially isomorphic
to the cographical latticé  or L*K3,3' Conversely, a zonotopal lattice is cographical if and only
if it has no minor combinatorially isomorphic to the graphical lattiégg or Ly, ;. TUTTE'S
theorem is a generalization ofURATOWSKI'S prominent characterization for planar graphs.

Dirichlet-Voronoi polytopes of graphical lattices are combinatorially equivalent if the corre-
sponding graphs do have the same circuits up to ordering and sign changemneA's 2-iso-
morphism theorem ([Whi1933]) says when two graphs have the same circuits (up to ordering and
sign changes). That is if one can transform the first grapWhitney flipanto the second graph.
There are two types diVhitney flips A 1-flip either glues two components by identifying two
vertices or it decomposes a component by removing an edge which corresponds to a cocircuit
whose cardinality id. In a2-flip a graph is decomposed along a minimal cut whose support has
cardinality2. Let (v, w1), (v, w2) be the edges belonging to the cut. Then, the two parts are
glued together again by the eddes, w2), (v2, w1).
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Lattices of Type Ryg

Lattices of typeRqy are zonotopal lattices whose oriented matroid is isomorphic t&-ithen-
ensional latticeRq C Z'° given by the rows of the matrix

10000 -1 1 0 0 1
01000 1 -1 1 0 O
00100 0 1 -1 1 O
ooo0o10 0 O 1 -1 1
oo0oo0o01 1 0 0 1 -1

This lattice (together with the standard inner producRifY) is zonotopal. It is the smallest
zonotopal lattice that is neither cographical nor graphical.

3.5.3. Delone Subdivisions, Dicings and Zonotopal Lattices

Finally, we determine Delone subdivisions of positive semidefinite quadratic forms associated
to zonotopal lattices. One goal is to give a dictionary that translates our language of zonotopal
lattices into the language of lattice dicings brEaHL ([ER1994], [Erd1999]).

We already saw that face lattices of zonotopal Dirichlet-Voronoi polytopes are face lattices of
regular oriented matroids. From oriented matroid theory (see [BVSWZ1993]) we know that face
lattices of realizable oriented matroids (and regular oriented matroids are realizable by definition)
are face lattices of central hyperplane arrangements. A central hyperplane arrangementis a finite
collection of real hyperplanes iR¢ having the origin as common point. A central hyperplane
arrangement ilR¢ gives a face lattice of a regular oriented matroid if the intersectiah-of2
hyperplanes is contained in either two or three intersectiods-of hyperplanes.

Let L C Z™ be ad-dimensional zonotopal lattice. Let = (Hy,..., H,) be a central
hyperplane arrangement which belongs to the regular oriented maut6id). We turn.A into a
periodic arrangement of hyperplan€$i; + v, ..., Hy + vy),,cz¢. This gives use families
of parallel equispaced hyperplanes. By a theorem pfIB\wskKI and LUCAS [BL1976] there
exists a linear map that transforms the periodic arrangement if#tiiee dicing i.e. through
each vertex of the periodic arrangement there goes exactly one hyperplane of each family. This
subdivision ofR¢ is up to an affine isomorphism the Delone subdivision of a positive semidefinite
guadratic form associated to the zonotopal latticeve started with. In Figure 3.4 (an affine
image of) this construction is illustrated.

VARVARVARYA

ALA LA LA

Figure 3.4. A Lattice Dicing.
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Let D be a Delone subdivision given by a lattice dicing. Every family of parallel hyperplanes
of D is itself a Delone subdivision of a positive semidefinite quadratic form of dankence,
the secondary cone @ is bounded by extreme rays of positive semidefinite quadratic forms
of rank 1. Conversely, every Delone subdivision whose secondary cone is bounded by extreme
rays of rankl is a lattice dicing. The corresponding Dirichlet-Voronoi polytope is a zonotope.
A theorem of KORKINE and ZOLOTAREV (in the literature it is often referred to#HLER) im-
plies that if the secondary cone of a Delone subdivision belonging to a zonotopal lattice has full
dimensiond<d2+1), then it belongs to the cographical Iattif.ﬁd. All other secondary cones be-
longing to zonotopal lattices do not have full dimension. For specialists: This gives a proof of
DicksoON's Theorem ([Dic1972]).







Chapter 4.

Results in Low Dimensions

In this chapter we classify Dirichlet-Voronoi polytopes of positive definite quadratic forms using
the methods we described in the two previous chapters. The classification, which is equivalent to
the classification of Delone subdivision of positive definite quadratic forms, is performed in two
steps. First we classify all non-equivalent Delone triangulations. Then we compute the extreme
rays of every secondary cone. LAt(D) be the secondary cone of a Delone triangulatian

After we computed its extreme rays(D) = cone{ Ry, ..., R, } we find all combinatorial types

of Dirichlet-Voronoi polytope of quadratic forms lying i (D) among

a1 DV(Ry, {0}) + -+ + an DV(Rn, {0}), a; € {0,1}.

We discuss the dimensions one, two, and three only very briefly. In each of these dimensions
there only exists one non-equivalent Delone triangulation. Hence, we only have to classify co-
graphical lattices. The one-dimensional case is trivial. The two-dimensional case is known since
ancient times: only quadrangles and hexagons tile the plane by translates. The three-dimensional
case was solved byebEROV in 1885 who showed that there drg¢hree-dimensional polytopes
that tile space by translates.

We focus on the four-dimensional casesUIDNE (later corrected by 80GRIN) was the first
who tried to give a classification. Here, the number of non-equivalent Delone triangulations
equals3. Using the vonorm/conorm method we succeed to give a classification of combinatori-
ally distinct four-dimensional Dirichlet-Voronoi polytopes that can be done by hand calculations.
There are52 combinatorially distinct four-dimensional Dirichlet-Voronoi polytopes. Our ap-
proach was suggested byo@waAy who gave a complete list of classification symbols without
showing its completeness and even without providing further explanations. We succeeded in the
challenge of giving a combinatorial/geometrical interpretation oN@AY'’s list.

In the five dimensional case we only report on a computation of all non-equivalent Delone
triangulations. BRANOVSKIlI and RrsHkov were the first who tried this. They fourzP1
non-equivalent Delone triangulations. But they missed one type which was observedsby.E
ENGEL and GRISHUKHIN identified the missed type. Our computations confirm their resuit. E
GEL reports that there arer9, 372 combinatorially distinct five-dimensional Dirichlet-Voronoi
polytopes. In dimensiofi the number of non-equivalent Delone triangulations explodes. Up to
now we found more thap50, 000 non-equivalent Delone triangulations.

As a first summary we have the following table:

Dimension 1123 4 5 6
# Delone triangulations 111 222 > 250,000
# Dirichlet-Voronoi polytopes | 1 | 2 | 5 | 52 | 179,372 | > 250,000

—_
w
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4.1. Dimension 1

We include the trivial one-dimensional case only for the sake of completenes§) £efqi:)

be a unary positive definite quadratic form. The one-dimensional Delone simfilidést v,

v € Z', define the Delone triangulation ¢f. The Dirichlet-Voronoi polytope of an associated
lattice is a line segment.

4.2. Dimension 2

In Chapter 2.3.3 we saw that every binary positive definite quadratic form is arithmetically equiv-
alent to a from that lies in the topological closure a®oNa’s principal domain of the first type

AD) = {QeS&%:qu+aq2>0,q2<0,q2+ g2 >0}

= cone {(§8), (89, (4L}

In Chapter 3.5.2 we proved that these forms are associated to cographical lattices and that we
can describe the combinatorial structure of the corresponding Dirichlet-Voronoi polytopes by
connected graphs with three vertices. Hence, we have the following classification. The number
d on the left side gives the dimension of the faceXfD; ) where the dual Delone subdivision is
being realized.

d | Delone Graph | Dirichlet-Voronoi Polytope | Quadratic Form Name
\V% 2
3 (_1 9 > HEXAGON
Ks

2 ; (é (1)> SQUARE

1+1

4.3. Dimension 3

From dimensior2 to dimension3 nothing spectacular happens. One reason for this is that by
Theorem 3.1.3 three-dimensional parallelohedra are zonotopes. Like in the binary case, every
ternary positive definite quadratic form is arithmetically equivalent to a form lyingdrd&Na’s
principal domain of the first type. Hence, we only have to deal with cographical lattices and we
can classify all Dirichlet-Voronoi polytopes of three-dimensional lattice by connected graphs
with four vertices.



4.3 Dimension 3

d | Delone Graph Polytope Form Name
3 -1 -1
<iﬂ:>> 5 1| | TRUNCATED
OCTAHEDRON
6 1 -1 3
Ky
2 1 0
5 <iI>> 3 .| | HExa-RHOMBIC
0 s DODECAHEDRON
Ko—1
2 1 0
A <<:;> S5 _,| | rHOMBIC
DODECAHEDRON
0 -1 2
C4
2 ~1 0
A <i]\\‘ Sy 0 HEXAGONAL
0 o 1 PRISM
Ks+1
100
5 01 0 CUBE
00 1
14141

We adopted the way of drawing the five parallelohedra from [CS1992]. The procedure of
edge deletion becomes visible. First, the Russian crystallogrameHoVv gave a complete
classification of three-dimensional parallelohedra. He and his work was extremely influential for
VORONO's memoir [Vor1908].
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4.4. Dimension 4

In [Del1929] DELONE tried to prove that there afd different combinatorial types of Dirichlet-
Voronoi polytopes of four-dimensional lattices. But he missed one type which was found by
STOGRIN later in [Sto1973]. There areb2 different combinatorial types. From these types

are zonotopes and in the ott#rtypes the 24-cell appears as Minkowski summand.

First of all, DELONE proves in [Del1929] WRONQ's conjecture for four-dimensional paral-
lelohedra by a skillful use of Schlegel diagrams. Then he tries to enumerate all Dirichlet-Voronoi
polytopes in dimensiod by investigating the faces of the secondary cones of the three non-
equivalent four-dimensional Delone triangulation.

DELONE writes in [Del1929] on page 161:

G. VORONOJa cemonté dans le remarquableémoire mentiona plus haut

(v. introduction) qu’il n’existe que3 domaines de Dirichlet primitifs dans
I'espacea 4 dimensions; les pardloedresl, 2 et 3 [...] sont donc ces do-
maines. Il est facile de&@montrer que chaque domaine de Dirichlet qui n'est
pas primitifs peugtre obtenu d’un domaine primitifs, si I'on fait dispéra
dans ce domaine certaine¢tas.

[...]

On obtiendrait ainsi 3072 parélbédres. Mais parmi ces par@libedres il peut

se trouver des parélloedres identiques. Cette idegtite peut pas toujo@tre
tout de suite remard@e au moyen de la comparaison des figures correspon-
dantes, parce que ces figures ne @spntent que de projections et celles-ci
peuventétre des projections défentes d'un ri@me parakloedre. En me ser-
vant de quelques sy&iries particukres et d’autres &thodes particudires,
dans le étail desquelles je ne veux pas entrer ici, j'ai trede esultat final
suivant :

THEOREME Il : «ll existe 51 et seulement 51 partitions diff érentes
de I'espace a4 dimensions ».

The statement above points out that it will remain unclear wiy ®E missed one type. Here,

we will use DELONE's approach but we will give many details and natural representatives of the
relevant positive definite quadratic forms. At the same time we give a geometrical and combina-
torial interpretation of the classification symbole@wAyY used in [Con1997]. There he showed
how to exploit the symmetry of the conorms of four-dimensional lattices to give a complete list
of four-dimensional Dirichlet-Voronoi polytopes. Buto®wAy only gave a list without proving

its completeness.

By using a method called “zone reduction” and with help of computer programs& Egives
another classification of four-dimensional Dirichlet-Voronoi polytopes in [Eng1992]. At the end
of our four-dimensional journey we will compare his classification withLDNE's and the one
we obtained.

4.4.1. Four-Dimensional Delone Triangulations

Using VORONGs algorithm (Algorithm 1 in Chapter 2.5) we can lisill three non-equivalent
Delone triangulation®, D,, D3 in dimensiord. We start with the Delone triangulatidp, of

*Actually, the article provides much more than just the omitted combinatorial type. It shows how one can use and
extend the theory of Dirichlet-Voronoi polytopes to understand three-dimensional crystallographic groups.
tVoroNG performed this computation at the end of his memoir [Vor1908].
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VORONQ'’s principal form of the first type. The triangulatidR; has ten bistellar neighbours,
all equivalent toD,. Among the bistellar neighbours @, we find D;, D, andD3. Whereas
we find among the bistellar neighbours®f only D, andDs; and no triangulation equivalent
to D1. The simplices of the Delone triangulatiofs andD3 are listed in Chapter 8.4.2, and the
simplices ofD; in Chapter 2.3.

With VORONG’s algorithm we also get an infinite tree of secondary cones with three non-
equivalent nodes. The tree shows the combinatorial structure of the tiliﬁéoolby secondary
cones. Itis represented by the following diagram where we factored oGLtH{&) action.

In the diagram the black node corresponds to secondary cones equivale(iPt, the grey
node corresponds to secondary cones equivaleA{0,) and the white node to secondary cones
equivalent toA(Ds). Two nodes are connected by an edge if and only if the secondary cones
have a facet in common (if and only if the Delone triangulations are bistellar neighbours). In the
infinite tree every black node is surrounded by ten grey nodes, every grey node is surrounded by
one black, six grey and three white nodes, and every white node is surrounded by nine grey nodes
and one white node. The gro@h 4(Z) is acting on the tree.

We give an explicit description of representatives for the three non-equivalent secondary
cones. We specify these three polyhedral cones by their facet-defining hyperplanes and by their
extreme rays.

Extreme Rays

By R;, i = 1,...,12, we denote the following positive semidefinite quadratic forms that are
the extreme rays of the secondary codegD;), : = 1,2,3. Notice that our list of extreme
rays implies that up to isomorphism there is only one rigid positive definite quadratic form in
dimensiord. It is associated to the root lattié®, whose Dirichlet-Voronoi polytope is th#i-

cell. Since we only consider symmetric matrices it suffices to give the lower triangular entries.
We do this purely because of aesthetical reasons.

1 0 0
0 0 0 1 0 0

Bo= 19 0 o N R s =g 01 ’
00 00 00 00 0000
0 1 1
0 0 -1 1 0 0

R = 1o 0 o e » R = 1 0 1 ’
00 0 1 0 0 0 0 0 0 0 0
1 0 0
0 0 0 1 0 1

R = 0 0 0 Bs =g 1 B =g o o |0
-1 0 0 1 0 0 0 0 0 -1 0 1
0 4 1
0 0 2 4 11

Boo = 1o o 1 » B -2 -2 4 Bz -1 -1 1
0 0 —1 1 -2 -2 0 4 -1 -1 1 1
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The Black Triangulation D,

The secondary cones which is represented by the big black node is given by the inequalities

g1 < 0
g1 < 0
g < 0
Q2 < 0
g3 < 0
Q1 +qa+gnt+qgun > 0
g1+ q2+qs2+q2 > 0
31+ qs2+q33+q3 > 0
a1+ Qa2+ Qa3 +qa > 0

or equivalently by the extreme rays(D;) = int(cone{R1, ..., Rip}).

The Grey Delone Triangulation D,

The one which is represented by the big grey node is given by the inequalities

q21

Q21 + g31

q21 + 432

g21 + qa1

G21 + q42

q43

qi1 +g31 +ga

g22 + 32 + qa2

g31 + 32 + g33 + qa3
qa1 + qa2 + G43 + Qa4

vV V.V A AN NN ANV
O O 0O 0 o0 o0 o o o O

\Y

or equivalently by the extreme rays(D;) = int(cone{ Ry, ..., R4, Rg, ..., R11}).

The White Delone Triangulation Ds

The one which belongs to the big white node is given by the inequalities

g1 —q3 > 0

g1 +qn < 0

g1 +q32 < 0

g1 +qun < 0

g1 +q2 < 0

q3 > 0
q11+¢qs1+qu+aqs > 0
Q22+ q32 +qa2+qs > 0
g31+¢qs2+q33s+qs > 0
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a1 +qa2+q3+qu > 0

or equivalently by the extreme rays(Ds) = int(cone{R1, ..., R4, Rg, ..., Ry, R11, Ri2}).

The Reduction Theory of C HARVE and HOFREITER

In the last section we gave a fundamental domai&gf/GL4(Z) that is divided into three poly-
hedral cones. So it is natural to distinguish between three different types of positive definite
quadratic forms in four variables. Now the following question arises: Given a positive definite
quadratic form) < Sio, to which of the three types doésbelong? Using a reduction theory of
CHARVE and HOFREITERthat generalizesi8 LING's reduction theory we can answer this ques-
tion algorithmically. We refer the interested reader to the original papers [Chal1882], [Hof1933],
and to§117 of [Vor1908].

4.4.2. Vonorms and Conorms in Dimension 4

In this section we show that the conjecture obiGvaY and S OANE (see Chapter 3.4) is

true for quaternary positive definite quadratic forms. We show that the vonorms, respectively
the conorms, characterize the arithmetical equivalence classes of quaternary positive definite
guadratic forms.

It is more convenient to use the conorms because the conorms of theRerms, R1g, R12
differ only in one non-trivial character from zero where the charditi@o is the trivial character.
We have

cog,(1000) = cog,(0100) = cor,(0010) = cog,(0001) = cog,(1100)
= copRe(1010) = copr,(1001) = cop,(0110) = cogr,(0101) = cog,,(0011)
= COop,(1111) = 1.

Here we only listed the non-trivial non-zero conorms. For the positive definite quadratic form
R11 which is associated to a scaled version of the root lafligeve have

cor, (x) = -1, if x € {1100,1011,0111},
cog,(x) = 1, otherwise.

To proof the conjecture of @NwWAY and S OANE in dimension4 we have to check the
following. Let Q; € A(D;), Q; € A(D;), i # j be two positive definite quadratic forms
whose conorm maps coincide, then the forms coincide, too. In particular they lie on the common
boundary ofA (D;) andA(D;). We can consider conorms instead of vonorms since the vonorm
map can be reconstructed from the vonorm map.

We have to distinguish between three cases. We give the complete arguments for the case
i =1, j = 2 only. The other two cases work out in the same manner. Supposg.far., ag €

R>0, B1,---, 54,86, ..., P11 € R>o we have

Q1 COR, + -+ + Q10 COR,y = 01 CORp, +---+ 04 COR, + 056 CORg + -+ 0B11 COR,; -

When we plug iny = 1011, the left hand side vanishes, the right hand side equgls. Hence,

511 = 0. When we plug iny = 1100, the left hand side equats; and the right hand side van-
ishes. Henceys; = 0. This shows that every pair of positive definite quadratic forms satisfying
the equation above lies on the common boundamA¢P;) and A (Ds).
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4.4.3. Towards a Classification

Now we are nearly ready to give a classification of all combinatorial types of four-dimensional
Dirichlet-Voronoi polytopes. The idea is very simple: For every face of the three secondary
cones given above the Dirichlet-Voronoi polytope of the associated lattices can be computed
and afterwards all of them can be put into equivalence classes according to their combinatorial
structure.

In principle we only have to consider the following 8072) quadratic forms

a1Ry + -+ aoRi0 € A(Dy), o; € {0,1},

BiR1+ -+ BaRa+ BsRe + - - - + friR11 € A(Dq), f; €{0,1},

MR+ +yRi+v6Re + - + v9Ro + y11R11 + 712R12 € A(D3), v; € {0,1}.

But among these forms many give Dirichlet-Voronoi polytopes of the same combinatorial struc-
ture. In the following we look at invariants to simplify the isomorphism tests. Then, we only
need computations which we can do by hand without using a computer. First, we are distinguish-
ing between zonotopal and non-zonotopal Dirichlet-Voronoi polytopes. The @ﬂﬁ@ o; Ry,

a; € {0,1}, and the formR; +- - -+ Ry + Re +- - - + Ry + R12 give zonotopal Dirichlet-Voronoi
polytopes which can be classified with method from the theory of zonotopal parallelohedra we
introduced in Chapter 3.5. The Dirichlet-Voronoi polytopes of the foRnst+ 61 Ry +- - - 04 R4+

06Re + -+ - + d10R10 + d12R12, §; € {0, 1} have the24-cell as a Minkowski summand and so
they cannot be zonotopes. The four-dimensional hon-zonotopal Dirichlet-Voronoi polytopes can
be classified by special diagrams ob@wAy. In [Con1997] WNWAY gives a list of all four-
dimensional Dirichlet-Voronoi polytopes without proving its completeness. Our computations
are inspired by his (after-)thoughts and we are using his classification symbols. In some sense
we give the geometric justification for his classification symbols. So, how daasM8y feel

the form of a four-dimensional lattice?

4.4.4. Diagrams for Zonotopal Cases

We have seen in the last chapter that all but one four-dimensional zonotopal Dirichlet-Voronoi
polytopes are cographical and the exceptional one is the Dirichlet-Voronoi polytope of the graph-
ical lattice Lk, ,. This lattice is associated to the positive definite quadratic forms that lie in the
relative interior of the nine-dimensionabne{ Ry, ..., R4, R, ..., Ry, Ri2}.

By listing all connected subgraphs of the complete graph on five veltigege find all co-
graphical lattices. Sequence A001349 iro&NE’s On-Line Encyclopedia of Integer Sequences
tells us that there argl non-isomorphic connected graphs with five vertices. Two graphs de-
termine the same combinatorial type of Dirichlet-Voronoi polytope if and only if they have the
same set of cocircuits. Theisomorphism theorem of WAITNEY we described in Section 3.5.2
gives a necessary and sufficient criterion for two graphs on five vertices which define the same
set of cocircuits.

So we get the following classification of the zonotopal Dirichlet-Voronoi polytopes in four
dimensions. The number on the left side is the dimension of the reduction domain’s face where
the corresponding combinatorial type is being realized.

The list of CONWAY contains an errér His typeK, should be replaced b§so; + 1.

This fact was pointed out to me byE2A and GRISHUKHIN
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4.4.5. Diagrams for Non-Zonotopal Cases

For the non-zonotopal cases we have to study the faces of the polyhedral A¢fPe$ and

A(D3) which containR;;. Assume that there is a unimodular transformatibe GL4(Z) that
transforms one face

Fi = cone{aq Ry, ...,a4Ry,6Rs, ..., a10R10, R11,012R12}, o; € {0,1}, aj9 # ai2,
into another face

Fy = cone{B1R1,...,B1R4, B Re, - - ., Bro R0, Ra1, B12R12}, Bi € {0,1}, Bio # P2,
i.e. the face®'; andF; are arithmetically equivalent. Then the corresponding forms

Qi=a1R+ -+ Ry + agRe + - - - + aroR10 + Ri1 + a2 Ry2
Qo2 =B1R1+ -+ BaRs+ BeRe + - - - + BroR1o + Ri1 + Br2Ri2

are arithmetically equivalent because the conorm functions characterize arithmetical equivalence

classes of quaternary positive definite quadratic forms. Furthermore, the Dirichlet-Voronoi poly-
topes ofQ; and(@, are affinely equivalent, and the Dirichlet-Voronoi polytopes of forms lying in

F, andF, are combinatorially equivalent. Conversely, suppose that the fQimg), are arith-

metically equivalent. Then the corresponding fakgs F, are arithmetically equivalent, too.
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Furthermore, the Dirichlet-Voronoi polytopes of quadratic forms lyin@'inandF- are combi-
natorially equivalent. We will classify the faces &f(Dy) and A (D3) containingR;; according

to their arithmetical equivalence classes. A priori this gives a finer classification as if we would
classify them according to the combinatorial structure of the corresponding Dirichlet-Voronoi
polytopes. Later, we will see that both relations actually coincide.

Now we are going to introduce the diagrams for the non-zonotopal cases. We arrange all
characters in the following two-dimensional array. Here we are using the representation of the
charactery : Z*/27Z* — {+1} by elements ofF3 we introduced in Section 3.4.

0000 | 1100 | 1011 | O111
1110 | 0010 | 0101 | 1001
1101 | 0001 | 0110 | 1010
0011 | 1111 | 1000 | 0100

In the first row we have the elements of the subspédce- {0000,1100,1011,0111}. In the
other rows we find the other cosetsi¥f/U. Later we will see the reason for using this particular
arrangement: The automorphism group of the rigid fdgm acts on the characters and leaves
the subspac¥ fixed.

For the positive definite quadratic form

Q=R+ -+ Ry +asRe+ - -+ aioR10 + Ri1, o € {0,1},

which lies inA(Dz), we determine the conorms and arrange them in the same way as the charac-
ters. In Section 4.4.2 we already determined the conormis of. . , R12 and by Proposition 3.4.3

we only have to add them up in the right fashion. We do not care about the vatug,06f the

trivial characte0000.

0000 | 1100 | 1011 | 0111 * -1 -1 —1
o 1110 | 0010 | 0101 | 1001 _ 1 as+1|ag+1|ar+1
@ 1101 | 0001 | 0110 | 1010 1 as+1|ags+1|ag+1
0011 | 1111 | 1000 | 0100 ai +1 1 oa1+1 | ax+1

For the quadratic form

Q2= (1Ri+ -+ BaRs+ BsRe + - - - + PoRg + Ri1 + Si12Ri2, Bi € {0,1},

lying in A(D3) we do the same:

0000 | 1100 | 1011 | 0111 | —1 —1 -1
o 1110 [ 0010 [ 0101 | 1001 | | _ | | 1] B3+1 | Bo+1 | Br+1
@ | ["1101 [ 0001 | 0110 | 1010 1| Ba+1 | Bs+1]| fs+1
0011 | 1111 | 1000 | 0100 1|+l |fi+1|Ba+1

We see that in these cases the conorm$16f), 1011 0111 are always—1 and the conorms
of 1110, 1101 are alwaysl. The other non-trivial conorms are eithemor 2 according to the
following structure of rigid rankk-forms.

Rs | Ry | Ry
Ry | Rs | Rg
Rig | Ri2 | R | Ro
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To represent e.g. the positive definite quadratic fGym Ry + R + R4 + Rg + R7 + Ry we
will use thediagram

e}
(]
e e o O

The white dots indicate that the conorms 60, 1011, 0111 are always-1 and that the conorms
of 1110, 1101 are alwayd. The black dots indicate that the conormd.661, 0001, 1010, 1000,
0100 equal2 (respectively that we have the ramksummandsk;, R4, Rg, R1, Rg). All non-
trivial conorms we have not mentioned so far are

When do two diagrams describe arithmetically equivalent positive definite quadratic forms?
A positive definite quadratic form that is represented by a diagram has aRyays a summand.
If two diagrams represent arithmetically equivalent forms, then the form differ by a modular
transformation that leaveR;; fixed. The automorphism group &f;; is the Weyl group of the
root systenf, (see e.g. [Boul968]). It has order52 and is generated by the matrices

0 0 01 -1 0 0 0 1 0 0O
0 -1 1 0 0 0 -1 1 01 0O
Gi=lo 0 10" =1 0 o 1|"% {0001
1 0 00 -1 -1 0 1 0 01 0
For example, fo)’ = G{QG, we have
6 oO|O|O
Q = 2 > and the corresponding diagra *
-2 -3 6 P 9 9 ole|e
-3 -2 -1 7 ° °

Exercise 4.4.1.Write Q' in the formQ’ = 3°1? | o, R; and determine the conorms ©f.

Now we see how the diagram changes when we perform the transforndatiove project
G into GL4(FF2) by reducing the matrix entries modulo Then, we interpret the new matrix
as a linear map operating from the right on the row space of characters. We get the following
transformations of the black dots

1001 ~ 1001, 0001 ~ 1000, 1010 ~ 0011, 1000 — 0001.

We have to change from column space to row space because we are dealing with the conorm map
that essentially is the Fourier transform of the vonorm map. By projecting the whole automor-
phism group ofR;; into GL4(F2) by reducing the matrix entries modutove get the group of

all linear transformations that leave the subspéce F2(1100) 4+ Fo(1011) + F5(0111) fixed.

It is easy to count that this group has ord@éé = 1152/2.

Lemma 4.4.2. Two diagrams describe arithmetically equivalent positive definite quadratic forms
if and only if there is a linear map : F3 — F3 which leaves the subspate = Fy(1100) +
F5(1011) + F5(0111) fixed and which transforms one diagram into the other one.
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Whenever the numbers of black dots differ in two diagrams, these diagrams cannot specify
arithmetically equivalent forms. We define two linear transformationsF; — F3,i = 1,2, by

1100 — 1100 1100 — 1100
) o111 — o111 ) o111 — o111
P19 0010 — 0001 °© P27 0011 — 0001
0001 +— 0010 0001 +— 0011

The first map leaves the first and the last row of a diagram fixed and interchanges the second
with the third row. The second map leaves the first and second row fixed and interchanges the
third with the fourth row. In this way we can arrange the black dots so that their number does not
decrease from row to row. Letbe the number of squares without a black dot in the second row,

q be the number of squares without a black dot in the third row,rdoel the number of squares
without a black dot in the last row. Then we have> ¢ > r. For (p,q,r) we have twenty
possibilities:

(3,3,3),(3,3,2),(3,3,1),(3,2,2),(3,2,1),(3,1,1),(2,2,2), (2,2,1),(2,1,1), (1,1, 1).

But these triples do not characterize arithmetical equivalence classes. We will decorate the triples
with +, — or primes to get symbols which characterize the classes. We introduce the decorations
by an example which is the sam@8wAy used in [Con1997]. We show that the following three
diagrams of typ€3, 2, 2) give three pairwise non-equivalent positive definite quadratic forms.

olo|o olo|o olo|o
ole o o °
ole|e ole|e ole °

oo oo oo

322+ 322— 322 — = 322/

We denote the characters which belong to the squares without black déts &y J5 (for the
second row)gq, €9 (for the third row) and}y, (o (for the last row). There ar&2 different sums
of the formd; + €; + &. In the first diagram these2 sums are

§1+e1+¢ = 1110+ 110140011 = 0000
51 +e1+¢ = 1110+ 110140100 = 0111
81 +ex+¢ = 1110+1010+ 0011 = 0111
01 +e9+C¢ = 111041010+ 0100 = 0000

d2+e1+¢ = 0101411014 0011 = 1011

dy+e1+¢ = 0101+ 1101+ 0100 = 1100
So+e2+¢ = 0101 +1010+ 0011 = 1100
Sy +ea+¢ = 0101+ 101040100 = 1011
83 +e1+¢ = 1001 +1101+0011 = 0111
d3+e1+¢ = 1001+ 1101+ 0100 = 0000
83 +e2+¢ = 1001+ 1010+ 0011 = 0000
03 +ea+ ¢ = 1001+ 1010+ 0100 = O0111.

These sums yield times0000, whereas in the second diagram oflgf these sums yield000,
namely

01+e1+¢ = 1110+ 1101 + 0011 = 0000

0 +e9+¢ = 111041010 +0100 = 0000.
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So the first and the second diagram cannot be isomorphic. In general, we appand if

d; + ¢ + (i gives more or less than the “expected” numper/4 times0000. But the third
diagram is also of typ822— although it is not isomorphic to the second. Notice that the rows
of the diagram are the cosetsi&f/(F2(1100) + F2(1011)). Hence, everyl € GL4(FF2) which
transforms the second diagram into the third diagram also transforms the sets

{e1,e2} = {1101, 1010}, {1, (2} = {0011,0100}
of the second diagram into the sets
{1,629} = {1101,0110}, {¢1, &} = {0011,1111}

of the third diagram. This is not possible because in the second diagram wehave, =

(1 + ¢2 = 0111 and in the third one we havi®11 = e; + &2 # (1 + (2 = 1100. In general,

we append a prime to 2in the symbol if in the symbol there are at least t@ls and if the
corresponding sums of characters are different. In the last case we could reduce the3ggfmbol

to 322’ without loosing the uniqueness of the symbol. In the following we will use this reduction
whenever possible. Finally we can classify all non-zonotopal Dirichlet-Voronoi polytopes in four
dimensions. We give the complete classification on the next page.
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ololo
1
444
ololo
2
443
ololo olo|o
3
°
°
442 433
ololo olo|o olo o
4 °
° °
oo ° °
441 432 333+ 333—
ololo olo|o olo o o
5
° oo °
oo oo ° °
431 422 422’ 332+ 332—
ololo olo|o olo oo ol|o
6 ° ° °
oo ° ° oo °
oo ERK ° oo °
421 331+ 331— 322+ 322—
ololo
°
° °
oo
322
ololo ol|o o o oo
7 ° °
oo oo ° oo
° oo ° ° °
411 321+ 321— 222’ 22/2"
ololo o
oo
oo
oo °
222+ 222—
ololo oo olo oo o
8 ° ° oo °
oo oo °
oo ° oo oo °
311+ 311— 221 221+ 221—
o oo
9 °
°
° oo
211+ 211—
ololo oo
10 oo e oo
oo o oo
oo e oo
111+ 111—
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4.4.6. More Data

CONWAY DELONE | ENGEL | fy f1 fy f3 | group order
Ks 1. 30—2 | 120 | 240 | 150 | 30 240
Ks —1 4. 28 — 4 96 | 198 | 130 | 28 24
Ks 3 19. 30—1 | 102 | 216 | 144 | 30 144
Ks —2 6. 24 —16 | 72 | 150 | 102 | 24 16
Kg—1-1 5. 26 — 8 78 | 168 | 116 | 26 16
Ks —2— 7. 24 —12 | 60 | 134 | 98 | 24 16
Ca221 11. 22 — 2 54 | 116 | 84 | 22 96
Ks —3 10. 20 — 3 54 | 114 | 80 | 20 16
Ky+1 8. 16 —1 48 96 64 | 16 96
Coao 9. 22 —1 46 | 108 | 84 | 22 96
Ca21 12. 20 — 2 24 | 94 72 | 20 24
Ky 13. 14 -2 36 74 | 52 | 14 32
Cs+GCs 16. 12-1 36 72 | 48 | 12 288
Cs 14. 20 —1 30 70 60 | 20 240
Ci+1 15. 14-1 28 62 | 48 | 14 96
C3+1+1 17. 10-1 24 | 48 34 | 10 96
Cit141+41 18. 8—1 16 32 24 | 8 384
111+ 3. 30—4 | 120 | 240 | 150 | 30 72
111— 2. 30—3 | 120 | 240 | 150 | 30 24
211+ 21. 28 —6 | 104 | 212 | 136 | 28 8
211— 20. 28 —5 | 104 | 212 | 136 | 28 8
311+ 24. 28 — 3 94 | 198 | 132 | 28 8
311— 23. 28 — 2 94 | 198 | 132 | 28 24
221 22. 26— 10 | 88 | 184 | 122 | 26 4
221+ 26. 26 — 9 88 | 184 | 122 | 26 16
221— 25. 26 —11 | 88 | 184 | 122 | 26 16
411 29. 28 — 1 83 | 192 | 132 | 28 24
321+ 28. 26 — 6 78 | 170 | 118 | 26 4
321— 27. 26 — 7 78 | 170 | 118 | 26 4
222/ 30. 24 —18 | 72 | 156 | 108 | 24 8
22/2" 32. 24 —19 | 72 | 156 | 108 | 24 24
222+ 31. 24— 17| 72 | 156 | 108 | 24 96
222— 33. 24 —20 | 72 | 156 | 108 | 24 96
421 36. 26 — 5 72 | 164 | 118 | 26 8
331+ 45. 26 — 3 68 | 156 | 114 | 26 24
331— 34. 26 — 4 68 | 156 | 114 | 26 8
322+ 44. 24 —14 | 62 | 142 | 104 | 24 16
322— 39. 24 —15 | 62 | 142 | 104 | 24 16
322/ 43. 24 —13 | 62 | 142 | 104 | 24 4
431 35. 26 — 2 62 | 150 | 114 | 26 12
422 37. 24 —11 | 56 | 136 | 104 | 24 32
422/ 38. 24 —10 | 56 | 136 | 104 | 24 16
332+ 41. 24 — 8 52 | 128 | 100 | 24 8
332— 46. 24 —9 52 | 128 | 100 | 24 8
441 40. 26 — 1 56 | 144 | 114 | 26 96
432 42. 24 —7 | 46 | 122 | 100 | 24 8
333+ 24—6 | 42 | 114 | 96 | 24 24
333— 47. 24—5 | 42 | 114 | 96 | 24 72
442 48. 24 —4 | 40 | 116 | 100 | 24 64
433 49. 24 -3 36 | 108 | 96 | 24 24
443 50. 24 — 2 30 | 102 | 96 | 24 96
444 51. 24 —1 24 96 96 | 24 1152
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In the previous table we compared our classification of four-dimensional Dirichlet-Voronoi poly-
topes to the already existing classifications &DNE and ENGEL. We summarized GNWAY'’S,
DELONE's and ENGEL'’s classification symbol together witfrvector and order of automorphism
group of every type.

By the automorphism group of a type, sayl+, we mean all linear transformations that
leave the corresponding cone, heoee{ R1, Ra, R3, R4, R¢, Rs, R11, R12}, pointwise fixed.

Another problem arose: How can we distinguish e.g. the Dirichlet-Voronoi polytopes of type
111+ and111— combinatorially? This cannot be done by tfievector alone. We have to use
finer combinatorial invariants. We looked at two-dimensional faces. Dirichlet-Voronoi polytopes
of type 111+ have6 triangles,54 quadrangles;4 pentagons an86 hexagons on the boundary.
Dirichlet-Voronoi polytopes of typé11— have72 quadrangles36 pentagons and2 hexagons
on the boundary.

In DELONE's and in ENGEL'’s classification we find even more data on the four-dimensional
Dirichlet-Voronoi polytope. This also can be used to show that the types are pairwise combina-
torially distinct.

45. Dimension 5

RYsHKOV achieved the first step towards a classification of all non-equivalent five-dimensional
DELONEtriangulations. In [Rys1973] he determines@linon-equivalent -skeletons of Delone
triangulations (so-called “C-types”) in dimensién Together with BBRANOVSKII he refined

this result to find221 non-equivalent Delone triangulations. They documented the calculations
in [BR1973] and in greater detail in [RB1976]. They claimed to give a complete list but it was
only almost complete. With help of a computen&EL showed that there aB22 non-equivalent
types (see [Eng1998]). But the list oABANOVSKII and RrsHkov and the one of HGEL are

not directly comparable. In [EG2002N&EL and GRISHUKHIN undertake the non-trivial task

to identify the missing Delone triangulation. In this article they also correct several errors in both
lists.

By an implementation il€++ of VORONG’s algorithm we confirm the number @22 non-
equivalent five-dimensional Delone triangulations. On a standard Intel Pentium computer the
complete classification takes abdut minutes. However, the computation can be sped up con-
siderably because we test two Delone triangulations for being equivalent in a rather naive way.
In Chapter 8.4.3 we will show an alternative and more efficient isomorphism test.

We do not want to print our complete data here. In the near future we will make it available
on the world wide web. We only give the data of the missed Delone triangulation. As a byproduct
of our classification we confirm the list of seven rigid five-dimensional positive definite quadratic
forms given by BBRANOVSKII and GRISHUKHIN in [BG2001].

In principle we could use our classification of the five-dimensional Delone triangulation to
give a classification of all combinatorial types of five-dimensional Dirichlet-Voronoi polytopes.
We could use similar methods as we did in the four-dimensional cas&EeE ([Eng2000])
reports that there argr9, 372 combinatorially distinct five-dimensional Dirichlet-Voronoi poly-
topes.

4.5.1. The Missing Delone Triangulation

In our list the missing Delone triangulation #6164. The automorphism group of the missing
Delone triangulation is nearly trivial (it has ordé), so we do not give all simplices of the
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triangulation. We give the facet-defining inequalities of the secondary cone instead. To accustom
the reader to the data that we will make available on the world wide web, we give them in
the PolyhedraH -Format (Version 1997) that was defined byia and FUKUDA and that is
implemented in their programss andcdd. Let A € Z™*? be an integral matrix, and let

b € Z™ be a vector. The Polyhedrd-Format of the systemlz < b of m inequalities ind
variablese = (z1, 1, ...,24)tis

H-representation

begin
m d+ 1 integer
b —A
end
In our situation we have = (q11, q21, 422, 431, 432, 433, - - - ,455)"-

* secondary cone #164
H-representation

begin

18 16 integer

0 0-1

OrPrPOORRLRrOOOCOOOOCOOORF
o oo

.
1
coco®

cReR=ReReReReReReReReReReReR=R=X=)
FOOOOOO0OO0OO0OO0OO0OO0OO0OOOOO
OCO0O0OO0O0OO0OORrROOOOOOOPOO
POrRORRPROOROOOOO
coroRrocorrooooo@O00O0
coroCoocooroocoocooco@Co0o
roor®ProoroookRrRrOOOO
orrprr9ppprooorRrTooor

end

4.5.2. Rigid Forms in Dimension 5

Using a corrected list of BGEL’s classification BRANOVSKII and GRISHUKHIN found seven

rigid five-dimensional positive definite quadratic forms. To confirm their list we computed the
extreme rays of th@22 non-equivalent secondary cones. We found the same rigid forms. For
future reference we only give the Gram matrices here and refer the interested reader to the ar-
ticle [BG2001] for more details. Our numbering coincides with the one mgA\Novskil and
GRISHUKHIN.

2 3
0 2 1 2

R = 1 -1 2 Ry = 1 0 2
-1 0 -1 2 -2 -1 -1 3
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3 3
1 3 1 3

Ry = 1 1 3 Ry = -1 -1 3
-1 -1 -1 3 -1 -1 1 3
-2 -2 -2 0 5 -1 -1 -1 -1 3
5 5
1 3 1 )

R; = -2 -1 5 R = -1 -1 5
-2 -1 2 5 -1 -1 1 5
-1 -1 -2 -2 5 -2 -2 -2 -2 6
4
2 6

R; = -1 -2 4
-1 -2 1 4

-2 -2 -1 -1 6

4.6. Dimension 6 and Higher

Not much is known about Delone triangulations in dimensions higher dhaurrently, there

are no realistic bounds known for the number of non-equivalent Delone triangulations in a given
dimension. With help of our computer program we found more t¥&n 000 non-equivalent
Delone triangulations in dimensi@n Mainly due to memory limitations — we have to deal with

360 six-dimensional simplices per triangulation — we were not able to push the classification
further. Nevertheless, we think that a complete classification might be possible with up-to-date
computers. But for this a careful reexamination and reimplementation of our program would
be necessary. On the other hand, we have no hope that a classification of all non-equivalent
seven-dimensional Delone triangulations is feasible in the near future.

Even about rigid positive definite quadratic forms we do not know much. With one exception:
For the class of positive definite quadratic forms associated to root lattices (or to their duals)
DEzA and GRISHUKHIN give a complete answer in [DG2002]:

Lattice A=A [ Ay A: | Da | Disiy | D3y | Eg E;
Dimensiond 1 > 2 >1 >4 > 2 >216,7,8|6,7,8
Non-rigidity deg. 1 d+1) | D[ 1 J2d4+1] 1 1 1
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The Lattice Covering Problem

The lattice covering problem asks for the most economical way to ebdgnensional

space by equal overlapping spheres whose centers form a lattice.

In this part, we present an algorithm which solves the lattice covering problem in any
given dimension. The proposed algorithm has two phases. The first phase generates
all non-equivalent Delone triangulations. Here, techniques form Part | are applied. In
the second phase we have to solve an optimization problem for each generated Delone
triangulation.

The optimization problem looks as follows: the set of all positive definite quadratic
forms with fixed Delone triangulation is identified with a set of lattices whose
Dirichlet-Voronoi polytopes are all combinatorially equivalent and can be transformed
into each other continuously. The covering density of a lattice covering is the vol-
ume of the Dirichlet-Voronoi polytope’s circumsphere divided by the volume of the
Dirichlet-Voronoi polytope. Since this value is invariant under scaling of the lattice,
the radius of the circumsphere can be fixed.tdhen we maximize the volume of the
Dirichlet-Voronoi polytope in order to get an economical lattice covering.

Chapter 5 “Determinant Maximization” introduces a general determinant maximiza-
tion problem which is suitable for the above approach. It is a convex programming
problem and can be transformed into a semidefinite programming problem. These
kind of problems can be solved efficiently, e.g. by interior-point algorithms for which
implementations are available. To assemble the original optimization problem into
the framework of determinant maximization problems the constraint “the radius of
the circumsphere of a Dirichlet-Voronoi polytope equals one” has to be formulated
as a so-called linear matrix (in-)equality. We do this in Chapter 6 by using Carley-
Monger determinants. Then, in Chapter 7 “Solving the Lattice Covering Problem”
the methods of the preceding chapters are fit together into an algorithm that solves the
lattice covering problem. In this context we interpret different classical results of the
theory of lattice coverings.

The number of non-equivalent Delone triangulations grows enormously with the di-
mension. Solving a single optimization problem belonging to a Delone triangulation
is time-consuming. So it is desirable to have an apriori lower bound for the covering
density for those lattice coverings associated to a given Delone triangulation. For this
purpose we introduce the method of the moments of inertia in Chapter 8.

In Chapter 9 “Results in Low Dimensions” we demonstrate that the algorithm is not
only of theoretical interest. We have implemented the algorithm. For the dimensions
up to 5 we could reproduce (check, extend, and rarely correct) all previous known
results. For dimension$and7 many new interesting lattice coverings were found.
For the dimension8 to 24 we give a report on the state-of-the-art.

Following the tradition of Part | we included motivating and somehow chaotic pic-
tures on the previous page. We created the picture patlray . They show sphere
coverings belonging to the three-dimensional lattisg¢sindAs.






Chapter 5.

Determinant Maximization

In this chapter we introduce determinant maximization problems. Determinant maximization
problems are convex programming problems and are, in a sense, equivalent to the more popular
semidefinite programming problems. In the last years, semidefinite programming problems and
determinant maximization problems became standard problem classes in the theory of convex
optimization. For both classes efficient algorithms and implementations are available.

Later on we will see how the lattice covering problem can be formulated naturally as a finite
number of determinant maximization problems.

5.1. The Determinant Maximization Problem

Following VANDENBERGHE, BoyD, and WU ([VBW1998]) we say that aleterminant maxi-
mization problenis an optimization problem of the form

minimize 'z — logdet G(x)
subjectto G(x) is a positive definite matrix
F(x) is a positive semidefinite matrix

The optimization vector ig: € R<, the row vectore! € (R%)* defines a linear form, the maps
G : R — R™ ™ andF : R — R™*" are affine:

G(m) = Go+x1G1+ -+ x24Gy,
Fo+x1Fy + -+ +xqky,

=
&
|

andG; € R™*™ F; ¢ R™™", ¢ =0,1,...,d, are symmetric matrices. We will also write the
linear matrix inequalitiesvhich define the constraints of the determinant maximization problem
by G(x) = 0 andF(x) > 0.

A point z € R? is afeasible solutiorof the determinant maximization problem if it satisfies
the two constraints: (i) the matri& (x) is positive definite, (ii) the matri¥'(x) is positive
semidefinite. It is called atrictly feasible solutioiif the matrix F'(x) is positive definite.

5.2. Convexity of the Problem

In the definition of the determinant maximization problem we uséd c'z — log det G(x)
instead of the more intuitivmax c'z +det G(x) because in the first formulation the determinant
maximization problem is a convex programming problem. In the following we will show the
convexity of the problem. We have to show that the objective functien ctx — log det G(x)



70

Chapter 5 Determinant Maximization

is convex on the set of feasible solutions and the set of feasible solutions is also convex. This is
evident from the following arguments due toafkowski [Min1905] (see also [GL1987}39).

The objective function is convex since it is the sum of two convex functions: the linear
functionx — c'x and the composed functian — — log G(x) wherez — G(z) is an affine
transformation. NowX — — logdet X is a strictly convex function on the set of positive definite
matrices. To prove this it suffices to show that the funcfibr» — log det X is strictly convex on
any line segmentX, Y] = {tX + (1 —-t)Y : t € [0,1], X # Y} in SZ,. Therefore, we compute
the second derivative of the one-dimensional funcfiét) = — log det(tX + (1 —¢)Y) and see
that it is always positive: There is a mattkwith determinantt whose inverse simultaneously
diagonalizesX andY. Hence, X = A'diag(z1,...,xm)A, Y = Atdiag(y1, ..., ym)A and

f(t) = —log(yr +t(x1 —y1)) — - —10g(Ym + t(Tm — Ym)),
Oy = Tz TnYn
ot Y1+ t(‘rl - yl) Ym + t(xm - ym),

OF 1) = <x1_y1 >2+-~+( Tm I >2>0
ot? 1+ t(xl - yl) Ym + t(l‘m - ym) '
The set of feasible solutions is convex since it is the intersection of the two convex sets
{x € R?: F(x) is positive semidefiniteand{z € R? : G(z) is positive definit¢. The first set
equalsF—! (8%,) and is convex because preimages of convex sets are again convex. Additionally,

a straight forward computation shows ti##}, is indeed convex. The same argument works for
the second set 1 (S™).

5.3. Relation to Semidefinite Programming
If for all 2 € R? the matrixG (z) is the identity matrix, then a determinant maximization problem

reduces to a semidefinite programming problem.seiidefinite programming probleis an
optimization problem of the form

minimize c'z
subjectto F(x) is a positive semidefinite matrix

In the last twenty years numerous people worked in the field of semidefinite programming
problems. It unifies standard problems in convex optimization, e.g. linear and quadratic pro-
gramming. Many problems in combinatorial optimization and engineering can be formulated
as semidefinite programming problems. Furthermore, semidefinite programming problems are
convex programming problems, they have a rich duality theory and can be solved efficiently.

Currently there exist two different types of algorithms which efficiently solve semidefinite
programming problems. These are ellipsoid and interior-point methods. Both have many variants
and the exact technical descriptions are quite complicated. They can approximate the solution of
a semidefinite programming problem within any specified accuracy and run in polynomial time if
the instances are “well-behaving”. But these theoretical results are definitely not an issue for us.
We do not want to go further into details since for our application it suffices to use the methods
more or less as a black box as long as they perform well in our instances. Instead we only want
to understand the underlying principles of the specific interior-point algorithms. Nowadays, they
are much more efficient in practice than ellipsoid methods. For more information on the exciting
topic of semidefinite programming the interested reader is referred to the vast amount of literature
which to a great extend is available on the World Wide Web. Good starting points which contain



5.4 Algorithms for the Determinant Maximization Problem

various points of views are [VB1996], [GLS1988], [NN1994], [G0oel1997], [WSV2000], and the
web sité¢ of CHRISTOPHHELMBERG.

In [NN1994] NEsTEROVand NEMIROVSKY developed a framework for the design of effi-
cient interior-point algorithms for general and for specific convex programming problems. There
(§6.4.3), they also showed that the determinant maximization problem can be cast into a semidefi-
nite programming problem by a transformation which can be computed in polynomial time. Since
their transformation uses more than linear time, their result is mainly of theoretical interest. Nev-
ertheless, there exists a polynomial time algorithm which solves the determinant maximization
problem.

5.4. Algorithms for the Determinant Maximization Problem

It is faster to solve the determinant maximization problem directly than to use the transforma-
tion of NESTEROVand NEMIROVSKY. VANDENBERGHE, BoyD, Wu and independently &H
give in [VBW1998] and in [Toh1999] interior-point algorithms for the determinant maximization
problem. Both algorithms fit into the general framework afNEROvand NEMIROVSKY.

The key fact is that the function

| —logdet F(x) if F(x) > 0,
ple) = { 400 otherwise
is abarrier functionfor the feasible domaidx € R? : F(x) = 0}. A barrier function for a
domainC'is a smooth and convex function Witlﬁnalccp(w) = +o0. Then, itis intuitively clear
xr—

that the minimume*(«) of the function
va(x) = a(c'z — logdet G(x)) + p(x)

gives the minimum of the original problem as— oc. The minimization of the functiorp,, is
anunconstrainedptimization problem to which BwTON's method can be applied. Altogether

we can use a interior penalty scheme to solve our original problem. Now it is clear where the
name “interior-point method” comes from: all intermediate solutions lie in the interior of the set
of feasible solutions.

input  strictly feasiblex € R?, positive numbery

repeat compute approximate minimumi® of o, by NEwTON's method with 1. iterate:.
x — x*.
increase.

until x is an approximate solution of the problem.

Two problems of the “algorithm” above are apparent: how do we increase the penalty parame-
ter o and how do we decide whetheris an approximate solution? Both problems are highly
non-trivial and one has to work very carefully through the technicalities to get a polynomial time
algorithm. We just glimpse at the ideas.

Itis a well-known fact that BwTON's method converges very fast if the first iterate lies near
to the minimum. In [NN1994] one can find a very detailed analysis BMION's method. The
increment of the penalty parameters adjusted in such a way thaiEM/ TON's method finds the
next minimum in a constant number of iterations.

*http://www-user.tu-chemnitz.de/"helmberg/semidef.html
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To certify that we have found an optimum of a determinant maximization problem we make
use of duality theory. To a determinant maximization problem we associatiei#h@roblem

maximize logdet W — trace(GoW) — trace(FoZ) + m
subjectto trace(G;W) + trace(F;Z) = ¢;,i=1,...,d,
W is a positive definite matrix,

Z is a positive semidefinite matrix.

The optimization variables afé” € R™*™ andZ € R"*". The primal determinant maximiza-
tion problem and its dual problem are connected as follows (for proofg3sef[VBW1998]).

Theorem 5.4.1. Let p* be the optimal value of the primal problem and dé&tbe the optimal
value of the dual problem. Then, we always have the inequglity d*. If the primal problem

is strictly feasible, the optimal solution of the dual problem is achieved and vice versa. In both
cases we have equality = d*.

Suppose that the primal problem has a strictly feasible solution. Then, a primal feasible solu-
tion « is optimal if and only if there exists a positive semidefinite ma#fixx R”*" such that
F(x)Z =0and

trace(G;G(x) ™ b) + trace(FiZ) = ¢;, i =1,...,d.



Chapter 6.

Cayley-Menger Determinants

Let L be a lattice and lef) = (¢;;) be a positive definite quadratic form associated.toTo
express the lattice covering problem in a finite number of determinant maximization problems we
formulate the fact that the covering radiuslofs bounded by a constant, shyin terms of linear
matrix inequalities in the parameteys. The covering radius of, which is the circumsphere

of the lattice’s Dirichlet-Voronoi polytopes, is bounded byf and only if the circumradius of
every Delone polytope is bounded bySo the first goal is to give a linear matrix inequality for a
simplex having a circumsphere of radius at mhbsin this chapter we will achieve this by using
Cayley-Menger determinants.

6.1. Definition and Basic Properties

We define theCayley-Menger determinawf » pointsx1, ..., x,, where the pairwise distances
dist(x;, ;) are given, by
0 1 1
CM(z1, . .., %) = ! diSt(m.l’xl)2 diSt(m.l’x")Z : (6.1)
i dis‘u(:zz;“:cl)2 dist(:n;l,:cn)2

Cayley-Menger determinants give universal relations between the distances of points in affine
Euclidean spaces.

Let us look at the simplest case: the case of three paipts., 3 on the lineR!'. The
Cayley-Menger determinant of these three points vanishes: By computing the determinant we
see thaCM(zx1, 2, x3) factors

CM(z1, 2, x3) = (dist(x1,z2) + dist(x1, z3) + dist(x2, x3))
- (—dist(x1, x2) + dist(x1, x3) + dist(x2, x3))
- (dist(x1, x2) — dist(z1, x3) + dist(z2, 2))
- (dist(xy, z2) + dist(xy, x3) — dist(xz2, 3)).
Now it is easy to see thatM(x;, x2, x3) = 0 because one of the last three factors vanishes
since one point has to lie between the other two.
Cayley-Menger determinants and Euclidean spaces are linked concepts. Cayley-Menger de-
terminants are the “main” syzygies of the Euclidean invariants and with their help it is easy to
decide whether a distance space can be embedded into a Euclidean space (for more information

on these topics see e.g. [Blu1970], [Hav1991], [Dal1995], [DL1997]). In our account we will
follow mainly BERGERs book [Ber1987].

The only property of Cayley-Menger determinants we need in the following is:
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Lemma 6.1.1.Givend+2 points ind-dimensional Euclidean spacg, (-, -)), then their Cayley-
Menger determinant vanishes.

Proof. The pointsz;,...,x4.o are affinely dependent. So there exist numbers .., Ao
With A + -+ Mgy = 0 and>" 2 \jaz; = 0. Then, the functiony — %2 ), dist (e, y)? is
a constant function because

d+2 d+2 d+2

Z i dist (i, y)* = Z Ai (@i, i) — 2(zi, y) + (y,9) = Z Ai(Ti, ;).
i=1

=1 =1
Using this fory = x;,i = 1,...,d + 2, we see that the vector

d+2
(= Z Ni( @i, i) Aty o)’
i=1

lies in the kernel of the matrix which is used in (6.1) to define the Cayley-Menger determinant,
henceCM(xy, ..., x412) = 0. o

6.2. The Radius of the Circumsphere of a Simplex

It is obvious that ai-dimensional simplex inl-dimensional Euclidean space is defined up to
Euclidean isometries by its edge lengths. Then (without knowing anything about invariant theory)
it is clear that the radius of the simplex’ circumsphere can somehow expressed by its edge lengths.
By using Cayley-Menger determinants one can find a simple formula for the circumradius.

Lemma 6.2.1. Let L = conv{vy,v1,...,v4} be ad-dimensional simplex inl-dimensional
Euclidean space. Then the uniquely determined circumsphdrdias the squared radius

1 det (dist(vi, v;)?)

R2 — 0<i,j<d
2 CM(’U(),. . .,’Ud)
Proof. Let ¢ be the center of the circumsphereloéind letR = dist(c, v;) be the circumradius.
Due to Lemma 6.1.1 we ha¥éM(c, vy, . .., v4) = 0. Then, looking at the matrix which defines
the Cayley-Menger determinant yields the desired result:
0 1 1 .. 1
1 0 R? e R?
CM(e, vy, . .., vq) = |1 R? dist(vg,vg)? ... dist(vg,vg)?
1 R? dist(vg,v0)? ... dist(vg,vg)?
1 0 R? e R?
0 1 1 e 1
— _ |1 R? dist(vg,v0)? ... dist(vg,vq)?
1 R? dist(vg,v0)? ... dist(vg,vg)?
0 1 R? - R?
1 0 1 .. 1
— |R? 1 dist(vg,v0)? ... dist(vo,vq)?

R? 1 dist(vg,v0)? ... dist(vg,vq)?
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-R? 1 R? . R?
1 0 1 .. 1
—| 0 1 dist(vg,v0)® ... dist(vg,vq)?
0 1 dist(vg,v0)? ... dist(vg,vg)?
—2R* 1 0 . 0
1 0 1 .. 1
-1 0 1 dist(vg,v0)? ... dist(vg,vq)?
0 1 dist(vg,v9)? ... dist(vg,vg)?

= —2R? CM(v, ..., vq) — det (dist(v;, vj)2)0<ij<d'

6.3. A Linear Matrix Inequality

By the previous lemma our first goal is within reach. To find a linear matrix inequality for the
fact that the circumradius of a simplex is boundedlbye only have to transform the formula
stated in the lemma to the right form. The idea of using Cayley-Menger determinants to find the
linear matrix inequality is highly inspired by the paper [DDRS1970] &fLDNE, DOLBILIN,
RysHkov and STOGRIN.

Proposition 6.3.1. Let L = conv{wvg,vy,...,v4} C RY with vy = 0 be ad-dimensional
simplex. A positive definite quadratic for@ = (g;;) gives the scalar product of a Euclidean
space(R%, (+,-)), (z,y) = ='Qy, in which the radius of the circumsphere bfis at mostl if
and only if the following linear matrix inequality (in the parametetg is satisfied:

4 (vl,vl) (’02,112) (vd,vd)
(v1,v1) (v1,v1) (v1,v2) ... (v1,vq)

BR.(Q) = | (v2,02) (v2,01) (v2,02) ... (v2,04) | =0
(’Ud,l’vd) (’Ud,lvl) (Ud,.’vg) e (vd,.vd)

Proof. As a first step transform the nominator of the formula given in the previous lemma using
the so-called covariance map, i.e. repldeg(x, y)? by (z,z) — 2(x,y) + (y,y). This gives

det (dist(v;,v;)?)

0<i,j<d

= det ((v4,vi) — 2(v4,v5) + (V5,95))o<; j<a

0 (v1,v1) (vg,vq)
_ (v1,v1) (v1,v1) —2(v1,v1) + (v1,v1) ... (v1,v1) — 2(v1,vg) + (Vg,vg)
(vd,.vd) (vg,vq) — 2('vd., v1) + (v1,v1) (vg,vq) — 2('vd., vg) + (vg,v4)
0 (vi,v1) ... (vg,vq)
_ (’01,1}1) —2(1)1,’01) —2(v1,vd)
('ud,.'ud) —2(11.6;,1;1) —2(Uld,'ud)
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0 —2(v1,v1)
1 —2(v1,v1) —2(v1,v1)
4 : :
—2(vg,vq) —2(vg,v1)
0 ('01,1)1)
_ 1 (—=2)%1. (vl’_vl) (v1, v1)
4

('Uda.'vd) ('Ud;'vl)

—2(’Ud, Ud)
_2(1)1’ 'Ud)

_2(17.d7 vq)
(va,va)

(v1,v4)

(’Ud;vd)

As a second step the denominator of the formula given in the previous lemma is being trans-

formed similarly which gives

CM(’U(),...,Ud)
0 1 1
_ 1 (vo,v0) — 2(vo, vo) + (vo, Vo) (v0,v0) — 2(vo, vq) + (v4, v4)
1 (vg,vq) — 2(vg,v0) + (vo,v0) (vd,vq) — 2(vg,vq) + (V4,v4q)
0 1 1
B e
4 : :
1 (vgq,v0) (v4,vq)
010 1 0 O]t 0 0
1 0 ot
:i.(_z)dﬂ. Yo 1 oo 1 1
: ) : 0 0 Q 0 Vo OF)
1 0 vfi
(vlavl) ('Ul,’vd)
1 d+2 . i
=1 M| _
(vg,v1) (vd,vq)
Hence,
0 (v1,v1) (v2,v2) (va,vq)
(vi,v1) (vi,v1) (vi,v2) (v1,v4q)
Rgz_l (va,vq) (vg,v1) (vg,v2) (Udavd). 6.2)
det(('ui,vj))lgingd
If R <1,then
0 (v1,v1) (v2,v2) (v4,vq)
(vi,v1) (vi,v1) (vi,v2) (v1,vq)
4 - det ((vy, "’j))lgz‘,jgd + . =0,
(vg,vq) (vg,v1) (vg,v2) (va, va)
which is equivalent to
4 0 0 0 0 (vi,v1) (v2,v2) (v4,vq)
0 (vi,v1) (v1,v2) (vi,v4)| |(vi,v1) (vi,v1) (v1,v2) (v1,vq) .-
0 (vg,v1) (vg,v2) (vd,vq) (va,vq) (vg,v1) (vg,v2) (va,vq)
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therefore
4 (vi,v1) (v2,v2) ... (va,va)
(v1,v1) (v,v1) (vi,v2) ... (v1,vq)
('vd,.vd) (vd,.'ul) ('ud,lvg) . (vd,.vd)

After reordering the columns of the above matrix d + 1, 2 < d, ...), we see that all
main minors are non-negative. Then, by the criterion oRM/ITz the matrix has to be positive
semidefinite. o






Chapter 7.

Solving the Lattice Covering
Problem

In this chapter we present an algorithm which solves the lattice covering problem in any dimen-
siond.

Our algorithm computes all locally optimal lattice coverings. These are only finitely many
because we will see that for every fixed Delone triangulafioimere exists at most one positive
definite quadratic form which lies in the topological closure of the secondary coRegofing
a locally optimal covering density. So, we fix a Delone triangulation and try to find the posi-
tive definite quadratic form which minimizes the density function in the topological closure of
the secondary cone of the fixed Delone triangulation. We will formulate this restricted lattice
covering problem as a determinant maximization problemsHkov and BARANOVSKII an-
ticipated that an algorithm for the lattice covering problem does exist. In [RB1976] (page 115)
they write “Lemma 20.5 can be used for developing “machine” methods for finding the minima
of the functionsp;(f); that is, these minima can be found to within a defined accuracy using a
computer”.

Algorithms which solve the dual lattice packing problem have a long history in the geometry
of numbers. The first algorithms were already proposed byddwski in [Min1905] and by
VORONO in [Vor1907]. These algorithms have been successfully applied in dimensionsrup to
(see [Bar1957] fod = 6, [Jaq1993] fokl = 7; currently the group around MRTINET is working
on the casé@ = 8). For more information on this topic see [CS1988b], [Mar2003], the catalogue
of lattices by NEBE and S 0ANE, and the catalogue of perfect lattitdsy MARTINET and
BATUT.)

7.1. A Restricted Lattice Covering Problem

Recall that the covering density of a positive definite quadratic f@rin d variables is given

by ©(Q) = \/%O’QM(Q)) wherep(Q) = max,cgs min, 74 Q[x — v] is the inhomogeneous
minimum of Q. Scaling of@ by a positive real numbet leaves the covering density function
invariant:

= = 0(Q).

0(aQ) vol By(0, u(a@Q)) _ |vol By(0,au(Q)) _  [atvol By(0, u(Q))
N det(aQ) N addet Q addet Q

Consequently we can restrict our attention to those positive definite quadratic @owmits

*http://www.research.att.com/"njas/lattices/index.html
http:/iwww.math.u-bordeaux.fr martinet
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1(Q) = 1. Hence, we solve the lattice covering problem if we solve the optimization problem

maximize det(Q)
subjectto (@ is a positive definite matrix

w@Q) =1,

where the optimization variables agg, the entries of the symmetric matry. The major
disadvantage of this optimization problem is that the second constraint is not expressible as a
convex condition in the optimization variableg and that the problem has many local maxima.

A locally optimal solution is also calleldcally optimal lattice covering

We will circumvent this by splitting the original problem into a finite number of determinant
maximization problems. For every Delone triangulati®mve solve the optimization problem

maximize det(Q)
subjectto (@ is a positive definite matrix

Q € A(D),
n(@) < 1.

The relaxation of no longer requiring @) = 1 in the third constraint does not give more optimal
solutions because witfy also ﬁ@ satisfies the constraints. Now, we have to show that this

is indeed a determinant maximization problem. We have seen in Theorem 2.5.1 that the second
constraint can be expressed with inequalities linegg;inThe constraini(Q) < 1 is equivalent

to the fact that the radius of the circumsphere of any full-dimensional Delone simptexD

is at most one. For a Delone simpléxthis can be expressed by a linear matrix inequality
BR.(Q) = 0in the variableg;; as stated in Proposition 6.3.1.

A determinant maximization problem is of the form

minimize clzx — logdet G(x)
subjectto G(x) is a positive definite matrix
F(x) is a positive semidefinite matrix

In our case the optimization vectmris given by the vector of coefficients 6f

& = (q11,q21, 922, 431, - - -, qaa)’ € RULTD/2,

and the linear matrix inequalit#(x) > 0 is given by

1 0 0 0 0 0 0 0 0
0 0 0 0 1 o ..
G(x) = qu 0 0 0 + qo2 0 0 0 + -+ qad 0 0 0
.......................... 0 ... 01
0 30 0 00 3 0 0 ... 00
L0 0 0 000 ... 0 ...
2 .
+q21 0 0 0 0 + q31 % 0 0 0 + -+ qd,d—1 0 0 %7
.................................. 0 10

such thatG(x) = Q. The two other constraint9 € A(Q) andu(Q) < 1 can be encoded by

two block matrices in the linear matrix inequaliiy(x) >~ 0. Instead of struggling with indices

and notation we demonstrate the encoding in a simple two-dimensional example which differs
from the general case only by the number of subblock matrices involved.
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Let D, be the Delone triangulation of&RoNaG’s principal form of the first typ&)[( )] =
227 + 223 — 2w179. From Section 2.3 we know that the topological closure of the secondary
cone ofD; is given by the linear inequalities

q1 + 9 > 0
— Q2 > 0
g1 + q2 = 0

Every matrix@ whose coefficients satisfy the above inequalities belongs (D).

As we saw in Section 2.3 is given by the set of simplice + L, : v € Z%, m € S3}
whereL, = COHV{eﬂ(l), €r(1) T €x(2); €x(1) + €r(2) t eﬁ(g)}, ande; = (1,0)t, ey = (0, 1)t,
e3s = (—1,—1)". Every full-dimensional simplex aD; is either a translate af;; or of L;3).
FurthermoreL ;3 is transformed intd. ;4 by the mapz — —z. In Figure 7.1 we show the
simplices ofD; containing the origin.

L(123) Liq

L3 L23)
L139)

Figure 7.1. Delone TriangulatiorD;.

Thus, we have(Q) < 1 fora@ € A(D;) if and only if the radius of the circumsphere of
L;q = conv{vg,v1,v2} withvg = (§), v1 = (}), v2 = (1), is at most 1. This translates into
the linear matrix inequality

4 (’01,’01) (’UQ,’UQ)

BR.,(Q) = | (vi,v1) (vi,v1) (v1,v2)
(v2,v2) (v2,v1) (v2,v2)
4 q11 qi1 + 2g21 + qo2
= q11 q11 q11 + q21 = 0.

q11 +2g21 +q22  qi1 + @21 qi1 + 2g21 + o2

A block matrix is positive semidefinite if and only if each of its blocks is positive semidefinite.
Finally, the linear matrix inequality’(x) = 0 looks as follows

F((q11, 921, g22)")

[0]
[0] [0]
[0] [0]

= + q11 +
4 0 O 01 1
0 0 0 1 11
0 0 O 1 11
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+q21 + g22
0 0 2 0 0 1
0 0 1 0 0O
2 1 2 1 01

In the general case we have for any linear inequality which is needed to describe the sec-
ondary cone oné x 1 block matrix. For any non-equivaledtdimensional simplex. € D we
have the(d + 1) x (d + 1) block matrixBR(Q).

7.2. Interpretation of “Classical’ Results

We have seen above that the lattice covering problem can be split into a finite number of re-
stricted lattice covering problems. Then every restricted problem is expressible as a determinant
maximization problem. In the “classical” works on the lattice covering problem bgRNES,
DicksoN and by DELONE, DOLBILIN, RYsHKoOV, and SOGRIN the restricted lattice covering
problem was also considered. There, ad hoc methods were used to find locally optimal solutions.
Many calculations were performed by hand. In the process of simplifying these a number of
interesting structural properties of locally optimal lattice coverings were found. Here, we want
to interpret these properties in the context of the determinant maximization problem.

Let D be a Delone triangulation. In [BD1967]A&RNES and DCKSON show that there
is at most one positive definite quadratic fogh (together with all positive multiples) with
Del(Q) = D and giving a locally optimal lattice covering. They use analytical methods for the
proof. Another proof of this fact which is based on convexity arguments and which gives a clear
geometric picture is given in [DDRS1970] byeEDONE, DOLBILIN, RYSHKOV, and SOGRIN.
We want to find a positive definite quadratic fohwith (@) < 1 and with maximum de-
terminant. Letlq, Lo, ..., L, be representatives of all non-equivalent full-dimensional Delone
simplices ofD. Then we have.(Q) < 1 if and only if for everyL; the linear matrix inequality
BRz,(Q) = 0holds. The setofal) € S¢, for which the linear matrix inequalitBR,(Q) = 0
holds is convex. Therefore, the set

{Qesly: Q) <1} =({Q € 8% :BR.,(Q) = 0}

i=1
is convex, too. For every positive real numliethe determinanf>-surface
S¢y(D) ={Q € 8y : detQ = D}

is strictly convex, i.e. the interior of the segmeii;, Q2] with Q1 € S2,(D), Qs € S%,(D)
lies above the surfacg?,(D): for everya € (0,1) we havedet(aQ; + (1 — a)Q2) > D (see
Section 5.2). Thus, there is exactly oRevith 1(Q) < 1 and maximum determinant.

Note that the&) above does not necessarily give a locally optimal lattice covering \ihess
on the boundary oA (D). In [Dic1968] DICkSON reports that for dimensions> 14 there is no
positive definite quadratic form giving a locally optimal lattice covering which lies in the interior
of the secondary conA (D). Here the Delone triangulatidds is the (up to equivalence) unique

bistellar neighbour of the Delone triangulatitm belonging to \bRONG’s principal form of the
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first type. The positive definite quadratic foxghwhich gives the best lattice covering 48(Ds)

lies on the boundary oA (D5) with A(D;). It does not give a locally optimal lattice covering
because BRONQO's principal form of the first type which lies in the interior &€(D;) gives

a locally optimal lattice covering in any dimension (see Theorem 8.4.1). A boundary@orm
gives a locally optimal lattice covering if and only if for every Delone triangulati@nwith

Q € A(D’) we have for all)’ € A(D’) the inequality®©(Q) < ©(Q’). At the moment there

is no positive definite quadratic form known which lies on the boundary giving a locally optimal
lattice covering. But we strongly believe that they do exist (e.g. the positive definite quadratic

form associated to the Leech lattice).

As an immediate consequence of the uniqueness we have the following invariant property
first discovered by BRNES and DCKSON ([BD1967]): Let A € GL4(Z) be a unimodular
transformation which leaves the Delone triangulatidfixed: AD = D. ThenA also leaves the
secondary cone db fixed: A'A(D)A = A(D). If Q € A(D) gives a locally optimal lattice
covering, then) has to be invariant undet, otherwiseA!QA € A(D) would give another
locally optimal lattice covering contradicting the uniquenessjof Hence the automorphism
group ofD is a subgroup of the automorphism groupafin [Dic1968] DICKSON shows that if
Q' € A(Q) gives an optimal lattice covering among @l € A(Q) with Aut(D) C Aut(Q’),
then(@ gives a locally optimal lattice covering.

In [BD1967] BARNES and DICKSON give a criterion which can be used to decide whether
a given positive definite quadratic for@ whose Delone subdivision is a triangulation gives a
locally optimal lattice covering. Lef)~! be the positive definite quadratic form inverseQo
Then@ gives a locally optimal lattice covering if and only if there exist real numbers> 0
such that)—! can be expressed as

d
Q x| = Z)\L (Z ai(vix)? — (cth)2> ,
L =0

whereL = conv{wvy,...,vs} runs over alld-dimensional Delone simplices witly, = 0, and

cL = Y, o, » .o = 1, is the center of the circumsphere of the simplexThis criterion

can be viewed as a variant of the optimality criterion for the determinant maximization problem
given by duality theory which was stated in Theorem 5.4.1. The criteriomeiN&S and DCK-

SON asks for the feasibility of a linear optimization problem. So from the computational point

of view it is much simpler than the optimality criterion for determinant maximization problems.

Moreover, it is an analogue to the so-called “eutactic” criterion for locally optimal lattice pack-

ings (see [Mar2003]). A positive definite quadratic fo€nis said to beeutacticif there exist

real numbers\,, > 0 such that)~! can be expressed as

Q 'z =) M(v'm)?

wherew runs over all shortest vectots € Z? of Q with Q[v] = Min,,cza (o} @w]. Shortest
vectors appear always in pairs and we take for every pair of shortest véctor®) only one.
Every positive definite quadratic form which gives a locally optimal lattice packing has to be
eutactic. \ORONO proved this in [Vor1907].

All the investigations above have the disadvantage that they only work if the considered
positive definite quadratic form lives in the interior of the secondary cone of a Delone triangu-
lation, i.e. that its Delone subdivision is a triangulation. In [DDRS1978]. ONE, DOLBILIN,
RYsHKoVv and SOGRIN explored what can happen if the Delone subdivision of a positive defi-
nite quadratic form is not a triangulation. L the a Delone triangulation and I8tbe the optimal
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solution of the restricted lattice covering problem as given in the beginning of Section 7.1. Now
relax this problem by omitting the second constrainédlies in the topological closure of the
secondary cone dP”. This relaxed problem is again a determinant maximization problem. Let
@’ be an optimal solution. Then we can have the following three cases.

i) If @ lies in the interior ofA(D), then@’ = @ and(Q gives a locally optimal lattice
covering.

i) If Q' lies outsideA (D), then obviouslyQ' # @, andQ lies on the boundary ol (D).
Furthermore() does not give a locally optimal lattice covering.

i) If Q' lies on the boundary oA (D), then@ = Q' and@ gives a locally optimal lattice
covering if and only ifQ gives in this way a local minimum for all neighbouring secondary
cones.



Chapter 8.

Moments of Inertia

In this section we give a simple and efficiently computable local lower bound of the covering
density function. The local lower bound does only apply to those positive definite quadratic
forms lying in the topological closure of the secondary cone of a given Delone triangulation. For
the computation of the lower bound we only need to know the coordinates of the simplices of the
considered Delone triangulation.

The method goes back torBRHkov and DELONE. Itis called the method of the moments of
inertia because the central idea in its proof is analogous to the Parallel Axis Theorem in classical
mechanics. Lef,,, be the moment of inertia of a body about a fixed axis passing through the
body’s center of gravityn. Then the moment of inerti&, about another fixed axig parallel to
the former one can be determined Ry= Mr? + I,,, whereM is the mass of the body ands
the distance between the two axis.

The method of the moments of inertia can be applied in many different situations:

» We will use it to prove that @RONG’s principal formQ[z] = d > x? — > iz vizj of the
first type provides the optimal lattice covering among all positive definite quadratic forms
with the same Delone triangulation @s

» We will apply the method to solve the lattice covering problem in dimensioa2, 3, 4.

» We will use the local lower bounds as a heuristic measure to find good lattice coverings in
dimensiond = 6, 7: In these dimensions the number of non-equivalent Delone triangula-
tions starts to explode, there are more thaf, 000 non-equivalent Delone triangulations
in dimension6, and it is not clear which Delone triangulation admits a good lattice cov-
ering. We encode the set of Delone triangulations as an undirected labeled graph. Every
triangulation represents a node. We connect two triangulations by an edge if they are bis-
tellar neighbours. The nodes are labeled by the local lower bound of the triangulation.
Then we try to find the nodes that give globally optimal labeling by a randomized greedy
approach.

» Finally, we will show that the local lower bounds of two equivalent Delone triangulations
coincide. This give a strong invariant.

In our account and especially in the first three sections of this chapter we mainly follow
[RB1976],523. On a single bound for the covering density for each offthgpen-dimensional
lattices.

8.1. The Moment of Inertia and the Circumradius of a Simplex

Let P C R< be a finite set of points id-dimensional Euclidean spa@®?, (-, -)). We interpret the
points of P as masses with unit weight. Theoment of inertiaf the points about a poiat € R?
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is defined adl,(P) = > ,cp dist(x,v)2. The centroid of P (center of gravity) is given by
M = 17 2 ,ep v. From the equations

dist(z,v)? = (z—v,z—v)
= (z—m,x—m)+(m—-—v,m—v)+2(x—m,m—v)
= dist(z,m)? + dist(m,v)? + 2(x — m, m — v),

and)_, . p(m —v) = 0, we derive the following formula (AoLLONIUS formula which relates
to the Parallel Axis Theorem in classical mechanics, see [BerX¥87]6)

Iz(P) = |P|dist(z, m)? + I,,(P). (8.1)

Hence, the moment of inertia about the centrmeids minimal.

If the points of P form the vertices of @-dimensional simplex, then (8.1) gives a relationship
between the radius of the circumsphétgethe center of the circumspheteand the moment of
inertia about the centroich of P:

w2 _ Le(P) Iin(P).
d+1 d+1

We can computd,,,(P) using only the edge lengths of the simpl&xwhich gives nicer
formulas and makes some computations less laboriously. For every werexert P we have
by definitionI,,(P) = >, _ p dist(w, v)?. Summing up and using (8.1) gives

= dist(c,m)? +

veP

D Lu(P) =Y ((d+1)dist(w,m) + Im(P)) = 2(d + 1) In(P).

weP weP
So, we get

1 . 2
Im(P) = - > dist(v, w)?. (8.2)
{vw}CP
Let D be a Delone triangulation @&?, let L, . .., L,, be thed-dimensional simplices of the

star of a lattice point (say e.g. the origin), ands#et be the centroid of.;, i = 1,...,n. The

arithmetical mean of the moments of inertia about the centroids @fith respect to a positive
definite quadratic fornd) is defined as

1 n
Ip(Q) = - z; I, (Li),
1=
and is called theentral moment of inertiaf D with respect ta (note that we are now dealing

with the scalar product given b9: dist(z, y)? = Q[z — y]).

Proposition 8.1.1. The central moment of inertia @ with respect tay yields a lower bound
of the inhomogeneous minimum @f if D is a refinement oDel(Q). In this case we have

Q) = 771p(Q).

Proof. Let R; be the radius and; be the center of the circumsphere of the simplgxthen

Q) = z:rrllaXan = zfllaxn (dlst(cl,ml) + ﬁ>
Im;(Li) 1 n
= i:nl1axn d+1 Z (d+1)n Z I, (Li)
L i=1
= 71Ip(Q).

o

If D is a Delone triangulation, the functidi can be used to find a lower bound of the cov-
ering density for all positive definite quadratic fori@svith Del(Q) C D. For this we minimize
the linear function’ over all positive definite quadratic forms with a fixed determinant.
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8.2. Linear Optimization on Equidiscriminant Surfaces

Minimizing the linear function/p over all positive definite quadratic forms with a fixed determi-
nant is computationally easy but requires some preceding mathematical work.

Definition 8.2.1. (DeterminantD-Surface/Equidiscriminant Surface

Let D be a positive real number. THe!“t1 1)-dimensional submanifold &2,

S4(D) ={Q € 8%, : det Q = D}
is called thedeterminantD-surface Obviously, we have the partitiofi,, = Uper-, S2,(D).
The vector spac&? of symmetric(d x d)-matrices is equipped with the scalar product
(F,G) = Trace(FG). Let f be a linear functiory on S¢. Then, by identifying(S?)* with S¢
using the scalar product, we can wrjté) = (F, -) for a symmetric matrix” ¢ S¢. Suppose-

is positive definite, therf has a unique local minimum on the determinansurface which we
now explicitly compute.

Proposition 8.2.2. Let f(-) = (F,-) € (§%)* be a linear function 08, andF = (f;),<; ; <4
a positive definite matrix. Thejfihas a unique local minimum on the determinansurface. Its
value isdv/D det F' and the minimum is attained at the positive definite ma{fi® det F F'~!.

Proof. We will make use of Lagrange multipliers. Consider the Lagrangian

L(Q; ) = f(Q) + A(D — det Q).

The partial derivatives of, are
oL oL
s A) = fi — AQii,  5—

where theQ);;’s are the cofactors of the matr@ (the (d — 1) x (d — 1)-matrix @;; is obtained
from @ by eliminating rowi and columnj and by multiplication with(—1)#+7).
If f has alocal minimum, theh has to fulfill the equations

fii — AQii =0,  2(fi; — AQij) =0, (8.3)

SO we get\ = C’;JJ whenever;; # 0. Using this relation we are able to compuwtén terms of

the coefficientsf;;. The determinant of the matri@ ! isdet Q! = deilsQ = %. By Laplacian
expansion and (8.3) we also have

o) - g (B}
det @ _det<detQ(Q”) —Dddet 3 —/\dDddetF.

Thus,}; = 757 det F andA = 5 V/Ddet F. LetQ = (g;;) be a critical point, then again by

Laplacian expansion

(Q; N) = 2fi; — 22Qyy,

L@QA) = > fijgiy + MD — det(g;))
1<i,j<d
= Z AQijqij +0

1<i,j<d

d d
= AZZ%Q@'
i1 j—1

= M\dD.
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Sincef is continuous and bounded from below @yf has a minimum. Sa&dD = dv/D det F
is f's unique minimum. It is attained at the positive definite matfi® det FF~! because

f(VDaetFF™) = (F, VDdet FF™') = dV/Ddet F,
anddet (/Ddet FF~1) = D, o

8.3. A Local Lower Bound

Now we can plug Propositions 8.1.1 and Proposition 8.2.2 together. This yields a local lower
bound for the covering density of a positive definite quadratic form. “Local” means that we

first have to fix a Delone triangulation and then the lower bound applies only for the positive
definite quadratic forms lying in the topological closure of the secondary cone of the fixed Delone
triangulation.

Proposition 8.3.1. Let D be a Delone triangulation. L&) be a positive definite quadratic form
for which D is a refinement oDel(Q). Then we have a lower bound for the normalized covering

density ofQ:
d d
0(Q) > 0.(D) = (m) det F,

whereF' is the positive definite matrix given by the equatits(-) = (F, -). We denote the local
lower bound for the Delone triangulatidn by 6..(D).

Proof. Sincelp is a linear function there is a symmetric matfixwith I'n(-) = (F,-). For every
positive definite matrixQ) we have(F, Q) = Ip(Q) > 0. SinceS, is a self-dual conef’ is
positive definite. Now we can apply Proposition 8.2.2: On the determibastifacelp has the
unique minimumd /D det F. Using this withD = det @ and using Proposition 8.1.1 we get a
lower bound fo(Q): The normalized covering density 6fis at least

(@) In(Q)\* didet Qdet F d \*
9<Q>—\/detc; Z\/<d+1> /detQ = (d+1)—ddetQ_\/<d—+1> det

8.4. Applications

8.4.1. The Lattice Covering of A}

As a first application of the method we show thab®Na’s principal form of the first type
Qlx] = dY a? — >_i+; Tixj, Which is associated to the lattioE; that is the dual of the
root latticeAy, gives a locally optimal lattice covering. This was independently discovered by
GAMECKII ([Gam1962], [Gam1963]) and byLBICHER ([Ble1962]).

Let D; = Del(Q) be the Delone triangulation @. The determinant of) is (d + 1)?~!.
Then, there exists a unique local minimum of the covering density function in the intersection
of the topological closure dP;’s secondary cone and the determinéat+ 1)~ !-surface. The
minimum is attained a®). Every binary and every ternary positive definite quadratic form can be
transformed by a unimodular integral transformation to a form which lig% is secondary cone.
Hence, the following theorem solves the lattice covering problem in two and three dimensions.
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The possibility of applying the method todkoNa’s principal form of the first type is
indicated in [RB1976§23.5 where it is worked out only for dimensioh.5

Theorem 8.4.1.(GAMECKII, BLEICHER)
Let D, be the Delone triangulation of&RoNa’s principal form of the first type. Then for every

Q € A(D,) the following inequality holds

d(d+2)\*
> —_— 1).
Q) =2 \/(12(d+ 1)> (d+1)
This inequality is tight if and only i) is VORONO’s principal form of the first type. In other
words the lattice\}; gives a locally optimal lattice covering in every dimension.

Proof. We have described the Delone triangulation(bflready in Chapter 2.3. Its set df
dimensional simplices consists 6 + L, : v € Z¢, w € Sq,1}, whereL, is the simplex

L, = CODV{eﬂ(l), €r(1) T €x2),---s€x1) T Ex2) + -+ eﬂ(dJrl)},
e1,...,eq are the standard basis vectorsZdfcomplemented by, = —e; — --- — e4. With

SELLING’s formula (Proposition 2.3.1)

2
=Y —aular —)?, wheregy = (e, e), k,l=1,....d+1, (84)
k<l

it is possible to use the symmetry of the Delone triangulation in the following calculations.
First, we show that the positive definite matdx with Ip, () = (F,-) is given by the
quadratic formi[z] = ag )1 <;< <4 ¥iT; Whereay is a positive real number. That meaRss
a scaled version of the “first perfect” quadratic form which is associated to the root Iaftice
Next, we compute the positive scaling factgr, so that we can apply Proposition 8.3.1.
We have

IDl(Q) = (d-‘il)! Z Imw(LW)

TFESGH_l
= (dil)y a2 llexin +eniya T +expll® (by (8.2)
7€S01 T 1<i<j<dt1
@ 2 > —kiOrijki (by (8.4))
m€Sqs1 1<i<j<d+1 1<ki<d+1

where ]
s oL kRGN {ai+ 1,7 +2),.. w1 ()} = 1L,
™M =\ 0, otherwise.

If we count the number of ones # ;; 11, ™ € Sq1, we find

D Srigm =2(d = DG —)((d+1) - (G —1)

TES +1
because

» fixingm=1(k) e {i+1,...,j andr=() € {1,...,d+1}\{i +1,...,5} gives a factor
of (j —i)((d+1) — (j — 1)),

*“For convenience we consider the case- 5. In the context of arbitrary: it is not extremely difficult to obtain the
estimate [...] of the covering density of type | lattices ...”
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» after fixation ofr—!(k) and7—1(1) all other images of the permutatiar ! can be chosen
arbitrarily which gives a factor ofd — 1)!,

» interchanging the roles df andi gives another factor df.

So, we obtain

Q) = —— Y gy Y 2d- 1A+ (- D) ).

|
@+Dd+1) 2= w5an

We simplify the sumd_, ;4.1 (d+1— (j —9))(j — 7). Instead of summing overand
Jj we sum overn = j — 4. For fixedm a pair (i, j) with m = j — i appears exactly + 1 —m
timesin{(i,j): 1 <i<j<d+1}. So,

Y@+l -G - =D (d+1-m)md+1-m)
1<i<j<d+1 m=1
Continuing the computation gives
d+1
Ip,(Q) = —~—+— Z —Qrl Z(d-l- 1—m)“m
!
(d+D(d+1) i —
d+1
= oyq Z —qkl Wlthozd—(d+(1d71lJrl Z(d—i—l— )m
1<k<i<d+1 m=1
= 4 Z —qkl + Qg Z —Gk,d+1
1<k<I<d 1<k<d
= Qq Z —qkl + Qg Z qkl
1<k<I<d 1<k,I<d
Z Akl
1<i<k<d

The computation fory, is an exercise in the arithmetics of sums of powers (see e.g. [GKP1994],
Chapter 6.5 “Bernoulli numbers”).

d+1

O 2(d- 1)
= e 2

d

= (—Z 2(d+1)m? + (d+1)*m)
1

_ 1 4 1 3 1 2
- T (4(d+1 S(d+17°+ 2 (d+1)

(d+1)% - %(d+ D2+ = (d+ 1))

W =
| =

—2(d+1) <
+(d+1)? (—(d+ 1)2 - %(d+ 1)))

N —

2d—1) (1 1
- (d+(1)!(d)+1) (E(d+1)4_ E(d+1)2>
d+2

6
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Now we are ready to apply Proposition 8.3.1. The symmetric matrix which corresponds to

the first perfect forme — > z; + >, ;z; has determinar(d + 1)/24. Hence,

det F' = (%)d(cﬁr 1) = (%)d(cﬁr 1)

showing the first statement of the theorem.

To accomplish the proof we have to show that the inequality is tight faR®NaO’s principal
form of the first typeQ[z] = d_ 27 — >_i+j Tizj. The centroid of the Delone simpldx,; =
conv{er,e; + €y,...,€1 + -+ + eqr1} is given bym;g = 75(d,d —1,...,1). We will
show that it is at the same time the center of the circumsphekg;ofVe have to verify that the
distances betweem,; and the vertices of ;4 are all equal:

dist(mq, e1) = dist(m;q, e1 + e2) = ... = dist(myg,e1 + -+ + eq41).

Below, it will turn out that the distances are all equahﬁd@. The norm belonging t@) is
invariant under permutation of coordinates. As a consequence we see that the circumradius of
each simplex equalg/d(d + 2)/12. So, the inhomogeneous minimum @fis p(Q) = d(d +

2)/12. The determinant of) is (d + 1)¢~!. This gives the desired value of the normalized

covering density of):
|/ dd+2)\*
0(Q) = \/(m) (d+1).

Forn € {1,...,d} (the casex = d + 1 equals the case = d up to changing of signs and
permutation of coordinates) we have

1
diSt(mid,€1+"'+en)2 = m”(*l,*Q,...,77’L7d*n,d*n*1,...,1)”2
1
= ——|(-1,...,—m,1,....d— 2
L)

where we again used the fact that the norm belongin@ te invariant under permutation of
coordinates. We have to compute the following product

—1
d -1 -1 ... -1 -1
Cloiomtdem | d -1 -1 -1 fln
-1 -1 -1 -1 d ;
d—n

This is a rather cumbersome computation. It did not appear in the literature but it is com-
pletely elementary. We start with the following expression wheee {1, ...,n} respectively
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j €{1,...,d —n} denote an-th column respectively afn + j)-th column
n . d—n
—di+ Y k k
k=Lk#i k=1
(-1,-2,...,—n,1,....,d —n) :
Yk+di— >k
k=1 k=1,k#j

= Z— (dz—l— Z k— Zk>+23 (Z/Hdg Z k)

k=1,k+i k=1 k=1,k+j

- nn+1) . (d—n)(d—n+1)
= ¢ 7—&—2—1—
C )
d—

_l’_
=

- d+1) iz%( (Cé ntl) _ ”H)Zz
d+123+< n(n+1)  (d—n)( —n+1>Z]

= (d+1) (%(n+1)3—%(n+1)2+é(n+1)>
+<(d—n)(d—n+1) _n(n+1)> <1(n+1)2_%(n+1)>

(2

2 n(n+1) ) d—n)(d—n+1 .
J( d]—( )(2 )+]>
1

2 2 2

+d+1) <%(d—n+1)3—1(d—n+1)2+%(d—n+1)>

2
nn+1) (d—n)(d—n+1) 1 5 1
+< 5 5 2(d n+1) 2(d n+1)
A+ 1)(d+ 1) (d+2)
B 12 '
Then we get the desired resdlst (mig, e1 + - + e,)? = iz - L2 — A2 -

One last comment on the last part of the proof: In [Ble1962f BHER went a different and
less elementary path and got some more information(lle¢ a positive definite quadratic form
which lies in the secondary cont(D;) whereD; is the Delone triangulation of ¥RONO’S
principal form of the first type. BEICHER determined all radii of the circumspheres of the
simplices in the Delone triangulatio%,. For the Delone simpleX.., = € S4.1, he computed

s 1 0 Y
R(L;)? = 4dthet< Q),
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whereYy = (y1,...,y4) € R qrat1 = qek — Gk — ** — Q—1.6 — Qe+1.6 — -+ * — Gak, and

o= Gz ThaxE) T T Ard) T r(d+)

Y2 —Qr(1) T @x3) Tt 2rxd) T 92r(d+1)

Yk “Qkr(1) — T Qen(k—-1) T er(k+1) T Qer(d) T Dr(d+)
Yd = —Qdn1) — "~ Qdx(d—1) T dd,x(d+1)-

, . d(d+2) \? , ,
The next table shows numerical valuesioh),) = (W) (d + 1) up to dimension

d = 24.

dimensiond | normalized covering densityf(A})
2 0.384900
3 0.349386
4 0.357771
5 0.403566
6 0.493668
7 0.647571
8 0.903205
9 1.330585
10 2.059363
11 3.333843
12 5.624446
13 9.857770
14 17.900873
15 33.600994
16 65.061343
17 129.718168
18 265.880009
19 559.436387
20 1206.788059
21 2665.722767
22 6023.337013
23 13908.241579
24 32789.139836

Table 8.1. Numerical Values of the Normalized Covering DensityAgf

8.4.2.

We can apply the method to solve the lattice covering problem in dimedsiém Chapter 4.4
we saw that there are three non-equivalent Delone triangulations in dimenginn(“the black
node”) is the Delone triangulation of&RONQ’s principal form of the first typeD- (“the grey
node”) is the only bistellar neighbour @f;, andD; (“the white node”) is a bistellar neighbour
of D,. Using Proposition 8.3.1 BLONE and RrsHKoV determine in [DR1963] the local lower
boundd)..(D;) for the normalized covering densities of lattice coverings which belofy to =
1,2, 3. They got the relatiof, (D) > 6.(Ds) > 6.(D;). Thus the second part of Theorem 8.4.1

Four-dimensional Lattice Coverings
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shows thathe latticeA} gives the optimal four-dimensional lattice coverirjnce the solution
only needs calculations which can easily done by hand, we do this illustrative computation here.

The lower bound foD;:
From Theorem 8.4.1 we knot.(D;) ~ 0.357771 andf.(D;) = 6(A}).

The lower bound foDs:

The Delone triangulatio®; is encoded by the following twelve simplices which we write
down in RrsHKOV's “snake” notation

(e1,e3,e2,e4,e5) = Lxi (e1,e2 —e1,e; + ez, eq,e5) = L
(e1,e3,ez2,e5,e4) = L (e1,e2 —e1,e; + ez, es,eq) = Lx
(e1,e4,e2,€3,e5) = Lxur (e1,e2 —e1,e; + ey, e3,e5) = Lyp
(e1,e4,€2,€5,e3) = Ly (e1,e2 —ej,e; +eq,e5,e3) = Lix
(e1,es5,€e2,e3,e4) = Ly (e1,es —ey,e; +es,e3,eq) = Ly
(e1,e5,€2,e4,e3) = Ly (e1,ex —ej,e; +es,e4,e3) = Lg
where the snake notation is
(v1,...,v5) = conv{v,v1 +va,..., 01+ -+ U5},
ande; = —e; — --- — e4. The Roman numbers refers ta®oNa’s original number-
ing ([Vor1908], page 169). From the twelve simplices above we get all four-dimensional
simplices of the triangulation by (v1, . .., v5) + w, w € Z*. The snake notation has the
advantage that the computationf, (Q) is very easy. Suppose is the centroid of the
simplexL = (vy,...,vs), then by (8.2) we have
1
Im(L) = 5(@[”2] + Qv + v3] + Qvz + v3 + v4] + Qv + v3 + vy + V5]

+Q[vs] + Qv + v4] + Q[vz + v4 + 5]

+Q[v4] + Qvg + v5]

+Qlvs)).
(

Now, we getlp,(-) = (F,-) with
60 12 30 30
10 [12 60 30 30 8 23
=55 030 30 60 30| 239 detF=c-=r5,
30 30 30 60

and by Proposition 8.3.1 every lattice covering which belong®4chas a normalized
covering density of at least

B 44 - 211 32 V3~

The lower bound foDs5:

As in the case ofD,, the Delone triangulatioPs is encoded by the following twelve
simplices which are written in snake notation. Again do the Roman numbers refer to
VORONQ’s original numbering ([Vor1908], page 173).

L1 = (es,e3—es,es+es,e1—ez,ea+es) Lyt = (es er,eq,er,es5)
Lt = (es,€e2+e3,e —ez e, e5) Lvin = (ex+es,e3—ey,eq,€q,€5)
Lin (€2,e3,e1,€4,€5) Lix = (ex+esq, e —ey e e3,6€5)
Ly = (e1+es,e3—ey ey e, 6€5) Lx = (extes e —ey e eq4,€5)
Lv = (e1—egez,eq,e3—€q,ea+es+es5) Lxi = (e1,es ez, eq,€5)
Lyi = (ez,e; —ez,ex+ ey, e3,e5) Lxit1 = (e1,e4,€3,e3,€5)
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Now, we getlp,(-) = (F, -) with

60 12 30 30

10 [12 60 30 30 196 2272

F=57%5130 30 60 18| @M detF ==~
30 30 18 60

and by Proposition 8.3.1 every lattice covering belonginfpidias a normalized covering
density of at least

44 21072 224

8.4.3. Invariants and Symmetry

The method of the moments of inertia is very useful in the context of symmetry detection.
Let D, D' be two equivalent Delone triangulations. Then there exists a unimodular transfor-
mation A € GL4(Z) with AD = D’. As in Proposition 8.3.1, lef’, F’ be the positive definite
matrices withIp(-) = (F,-), Ip/(-) = (F’,-). From the definition of the functionk,, Ip' the
equalityIp(A'QA) = Iip(Q) = Ip(Q) that holds for all) € S¢ is obvious. Hence,

(F,A'QA) = trace(FA'QA) = trace(AF A'Q) = (AF A", Q) = (F', Q).

andF’ = AF A since(-, -) is a non-degenerate scalar product. This implies the following lemma
which is extremely useful in practical computations.

Lemma 8.4.2.Let D, D’ be two equivalent Delone triangulations. As in Proposition 8.3.F|et
F’ be the positive definite matrices wifly(-) = (F,-) andIp, = (F”,-). Then the local lower
bounds for both Delone triangulation coincide:

0.0 () s = (52 e =00

The automorphism group of the Delone triangulatidis a subgroup of the automorphism group
of I, i.e.

Aut(D) = {A € GLy(Z) : AD =D} C{A € GLy(Z) : A'FA = F} = Aut(F).

As an indication that the local lower bound is indeed a very strong invariant we describe
what happens for the dimensiords= 4 andd = 5. In the four-dimensional case there are
3 non-equivalent Delone triangulations and they are completely separated by the invariant. In
the five-dimensional case there &22 non-equivalent Delone triangulations and we get the
following statistic in this case: There a2é2 different values for the local lower bounds. They
range from= 0.396911 to ~ 0.421017. In eight cases two non-equivalent Delone triangulations
yield the same local lower bound and in one case three non-equivalent Delone triangulations
yield the same local lower bound.

8.4.4. Navigating in the Graph of Delone Triangulations

We view the set of Delone triangulations as an undirected labeled graph. A node represents
a Delone triangulation and two nodes are adjacent if their Delone triangulations are bistellar
neighbours. LeD be a Delone triangulation. We label its node by the local lower bau(i).

We can use the labeling in two different ways.
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» Onthe one hand itis clear that if the labeling of a node is large, then the considered Delone
triangulation does not admit a good lattice covering. This was used in the last section to
solve the lattice covering problem in dimensien

In this way the five-dimensional lattice covering problem cannot be solved. Frog22he
non-equivalent Delone triangulations there 2bavhose local lower bound is smaller than
0(A3).

In [Rys1965] RysHkov shows that in the neighbourhood of the Delone triangulafign

of VORONG’s principal form of the first type the local lower bounds are higher than
0.(D1) = 6(A}) in any dimensiond > 5. He shows that for the Delone triangulations
D3, D3 andD, we have the inequalitie®, (D2), 0..(D3), 0.(Ds) > 0.(D;1). The Delone
triangulations adjacent tP; are all equivalent t@,. The Delone triangulations adjacent
to D- are all equivalent either tbs or toD,.

In [BT1972] BARNES and TRENERRY investigate a Delone triangulatiddg that does
have the same automorphism groupZas Their triangulation does exist only in every
odd dimension starting from five. By a direct computation of the locally optimal lattice
covering they show that the best lattice covering belonging to this Delone triangulation
is denser than the lattice covering given Ay. Our computation show that in dimen-
sion’5 it gives the second best locally optimal lattice covering. It is also possible to show
0.(Dpr) = 0.(Dy).

» On the other hand we can hope tlfatadmits a good lattice covering if the local lower
bound is small.

Beginning with dimensiod = 6 the number of non-equivalent Delone triangulations starts
to explode. Up to now we produced more thHaid, 000 of them and we think that there
are several millions.

In dimension6 the hope that good local lower bounds yield good lattice coverings is par-
tially fulfilled. We demonstrate this in a typical example (see the figure on the next page).
We start from the Delone triangulation ofokoNa’s principal form of the first type.
From the discussion above we know that its local lower bound gives a local minimum in
the set of node labels. We take a random walk of lefsgthThen, we find a node labeled

by ~ 0.50025. From this we proceed by taking a neighbouring node having the small-
est local lower bound (In the figure, nodes which have smaller labels than the current one
are marked with green circles, the other are marked with red circles). By repeating this
greedy strategy we result in a hode labeled=by).44856. At the moment this node is
interesting for several “extremeness” properties. It yields the smallest known local lower
bound and it has the largest known number of neighbours, nargelyAs we will see in

the next chapter there exists a locally optimal lattice covering which belongs to this node
with normalized covering density 0.477217. At present this is the second best known
6-dimensional lattice covering.

fCaution! In this paper there are several misprints. See [RB1976] for corrections.
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Chapter 9.

Results in Low Dimensions

In the last chapters we developed an algorithm for the solution of the lattice covering problem
in any given dimension. Now we want to demonstrate that this algorithm is not purely of theo-
retical interest. We implemented the algorithm in C++. We used the padkAFOET of Wu,
VANDENBERGHE and BoyD and the packagkes ' of Avis as subroutines. The implemented
algorithm is able to solve the lattice covering problem in the dimensioas1,...,5, and it
produces interesting lattice coverings in the dimensibas6, 7 on a usual Intel Pentium based
computer. In higher dimensions the implementation does not perform very well mainly due to
memory limitations.

Another purpose of this chapter is to present the state-of-the-art of the lattice covering prob-
lem in low dimensions together with the history of the results. Low dimension means that we
restrict our attention to lattices up to dimension 24 where the miraculous Leech lattice enters the
scene. So itis a partial update of Chapter 2.1 oN@/AY and S OANE's book [CS1988a].

9.1. Dimension 1

The one-dimensional case is entirely trivial. The lattice covering given by the l&ttipeovide
a sphere covering—%, %} + v, v € Z', which is at the same time a sphere packing. Hence, the
covering density equals one which cannot be improved.

9.2. Dimension 2

In the introduction we already saw that the optimal lattice covering of the plane is provided
by the hexagonal lattice. This is also the optimal sphere covering of the plane which was first
proved by KERSHNERIN [Ker1939]. FEJESTOTH gives in his book [Fej1953] different proofs

for this fact. Since for general sphere coverings new aspects come into play and since the two-
dimensional case is the only non-trivial case where the optimality of a sphere covering is proven
at the moment, it is a must for us to give at least the main arguments here.

From EULER’s formula for planar graphs it follows that the number of vertices per polygon
in a polygonal subdivision of the plane is at most six. The area of a polygonmwitrtices
which can be inscribed into the unit circle is at mgstin %’r The maximum is only attained for
regularn-gons.

Given a covering of the plane by unit circl€Bs(v;, 1));en. The Voronoi subdivision of
the discrete set of circle centers is a polygonal subdivision of the plane(R:gty be the

*http://www.stanford.edu/"boyd/MAXDET.html
http:/lcgm.cs.megill.ca/~avis/C/lrs.html
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family of polygons of the Voronoi subdivision. Eaéh is inscribed into the corresponding unit
circle. Hence, the area @t; is at mosts sin fl—“ wheren; is the number of vertices df;. Since

f(x) = §sin 27“ is a concave function we can applgNSENS inequality, so that for every € N

Sy area(R) _ Sy f0n) _ (2;;1 ”) |

n n

From this we see that the area of an average polygon in the Voronoi subdivision is at most
f(6) = 3—\2/5 The covering density of the sphere coveriigp(v;, 1));en is the area of a unit
circle divided by the area of an average polygon of the Voronoi subdivision. Thus,

O((Ba (v, 1))ien) > %

Furthermore this lower bound is tight and the optimal sphere covering are almost unigue:
FEJESTOTH shows that the lower bound is attained only by hexagonal-like sphere coverings.

9.3. Dimension 3

VORONG's principal form of the first typ&)[x] = 323 + 323 + 323 — 27122 — 27123 — 27073
provides the thinnest lattice covering of three-dimensional Euclidean space. We gave a proof in
Section 8.4.1. The lattice which is associated)Xas the body centered cubic lattiég. The
Dirichlet-Voronoi polytope oA} is the truncated octahedron which is an Archimedian solid.

The optimality ofQ was first proven by BMBAH in [Bam1954a]. This paper is remark-
able because there techniques like Dirichlet-Voronoi polytopes and reduction theory are used.
Although BamBAH uses the reduction theory due taeEBER (see [Gaul840]) which is not well-
suited for the lattice covering problem. Laten®NES substantially simplifies BMBAH's proof
in [Bar1956] where he usesdRONO’s reduction theory. He also anticipates that this is the right
setup for solving the lattice covering problem in dimensions higher than three. A third proof of
the optimality ofQ) was given by Ew in [Few1956]. He demonstrates that the three-dimensional
case can be solved without using reduction theory mainly by elementary means.

At the moment no attempt is known to the author to show that the optimal lattice covering also
gives the optimal sphere covering. It is probably very hard to prove this covering type “Kepler
conjecture”.

9.4. Dimension 4

VORONO’s principal form of the first type

4 -1 -1 -1 T1
-1 4 -1 -1 2
-1 -1 4 -1 3
-1 -1 -1 4 T4

Qx] = (v1, 22,73, 74)

gives the least dense four-dimensional lattice covering with covering depgipy ~ 1.765528

(P(Q) =~ 0.357771). In [DR1963] DELONE and RysHKov prove this conjecture of BMBAH

[Bam1954b] by using the method of the moments of inertia which we described in Chapter 8.
In [BR1966] BARANOVSKII and RrsHKOV show that the positive definite quadratic form

3—7v v -1 -1 T1
_ ¥ 3—7 —1 —1 T2
Qle] = (zr,x2,x3,4) | 1 ' L9538 25

1 -1 -8 2+28) \a
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wheref =~ 0.544, v =~ 0.499 gives a locally optimal lattice covering. The numbgrand~ are
roots of the polynomials

8135 + 2343 — 8433 — 60132 — 1563 + 252 = 0,
_ (188%4398+10)3

7T )66+
Later we will demonstrate how to find polynomials which can be used to specify locally optimal
lattice coverings exactly. The Delone subdivision of the positive definite quadraticfocor-
responds with the triangulatidR, (“the grey node” in Chapter 4.4). The covering density of the
lattice covering provided bg) is ©(Q) ~ 1.883855 (A(Q) ~ 0.381749).

In [Bar1965] and [Bar1966] BRANOVSKII finds a third locally optimal lattice covering

which is provided by

2 o -1 -1 T

B « 2 -1 -1 To
Q[iE] — (.1'1,$2,$3,ZL'4) ~-1 -1 9 1—a T3
-1 -1 1—« 2 Ty

wherea = (5 — v/13)/2. The Delone subdivision of the positive definite quadratic fa@pm

corresponds with the triangulatidps (“the white node” in Chapter 4.4). The covering density is
O(Q) = 28l - vol By(0,1) ~ 1.928782 (9(Q) ~ 0.390853).

Independently does IBKSON give the locally optimal lattice covering of &R0ONQ’s third
domain in [Dic1966] and in [Dic1967] he gives a complete list of all locally optimal four-
dimensional lattice coverings. Especially the second paper is interesting because there the meth-
ods developed by BRNEs and DcksoN which we described in Section 7.2 are used to give an

almost algorithmic proof.

Our implementation takes less than a second of CPU-time to yield the same result. As a
“proof” of this and to give at least one “picture” of the implementation we provide a screen shot.
There the phases of the implemented algorithm are visible:

i) estimate the covering density by the method of the moments of inertia,
i) compute the covering density with the help of the packisigeXDET
iif) compute the bistellar neighbours,
iv) test if the new neighbours are isomorphic to the already known ones.
[geometry16:7/src/LatticeCovering] vallenti% time ./classify

Looking at #0 (normalized covering density >= 0.357771)
* Computing exact normalized covering density...

iters obj gap
5 -1.35e+00 7.00e+01
7 -1.80e+00 2.25e+00
9 -2.04e+00 7.26e-02
11 -2.06e+00 2.34e-03
13 -2.06e+00 7.51e-05
16 -2.06e+00 4.60e-06
19 -2.06e+00 8.25e-07
2.0000

-0.5000 2.0000

-0.5000 -0.5000 2.0000

-0.5000 -0.5000 -0.5000 2.0000
* normalized thickness = 0.357771
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* There are 10 neighbours.

* (0->1) (1=1) (2=1) (3=1) (4=1) (5=1) (6=1) (7=1) (8=1) (9-1)

Looking at #1 (normalized covering density >= 0.362039)
exact normalized covering density...

* Computing
iters

7
11
17
21
26
31
35

1.7852

obj
-1.27e+00
-1.76e+00
-1.92e+00
-1.93e+00
-1.93e+00
-1.93e+00
-1.93e+00

0.3571 1.7852

-0.7141 -0.7141 2.2054

gap
4.71e+01
1.52e+00
5.39e-02
1.77e-03
8.25e-05
3.85e-06
6.91e-07

-0.7141 -0.7141 -0.3886 2.2054
* normalized covering density = 0.381749

* There are 10 neighbours.

*(0=1) (1=1) (2=1) (3=1) (4->2) (5=2) (6=2) (7=1) (8=0) (9=1)

Looking at #2 (normalized covering density >= 0.3584)
exact normalized covering density...

* Computing
iters

6
11
19
24
30
35
39

2.1514

obj
-1.28e+00
-1.75e+00
-1.88e+00
-1.88e+00
-1.88e+00
-1.88e+00
-1.88e+00

0.7500 2.1514

-1.0757 -1.0757 2.1514

gap
4.73e+01
1.52e+00
6.72e-02
2.24e-03
8.84e-05
3.48e-06
6.24e-07

-1.0757 -1.0757 0.3257 2.1514
* normalized covering density = 0.390853

* There are 10 neighbours.

*(0=1) (1=1) (2=1) (3=1) (4=1) (5=1) (6=1) (7=1) (8=2) (9=1)

Classification completed!
There are 3 non-equivalent Delone triangulations in dimension 4.
0.730u 0.010s 0:01.49 49.6%

0+0k 0+3io Opf+Ow

[geometry16:”/src/LatticeCovering] vallenti%

The positive definite quadratic forms found by the computer are only an approximation of
the desired local minima. But this is not a problem since the algorithm can at least in principle
approximate the solution to every given precision and since we can “beautify” the nasty numbers
to find the polynomials whose roots the “real” numbers are. We will demonstrate the “beautifica-
tion” in the case of the local optimal solution with Delone triangulatidnwhere we make use
of the computational algebra systéAGMA

The automorphism group of the Delone triangulatidnhas orde4. The group is generated

by

0 0 -1 1 0
0 -1 0 1 0
ol’fo o 1 —1}"
-1 0 0 1 0

*http://magma.maths.usyd.edu.au/magma

o O O

O O = O

o = O O

-1
-1
-1
-1
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From Section 7.2 we know that if the locally optimal soluti@nlies in the interior ofA(Ds),
then@ has to be invariant undetut(D,), therefore lies in the subspace with basis

3 0 -1 -1 0o 3 -1 -1 00 0 O
0O 3 -1 -1 3 0 -1 -1 00 0 O
A= -1 -1 0 1 B = -1 -1 0 1 0= 00 2 -1
-1 -1 1 0 -1 -1 1 0 00 -1 2

The set of all non-equivalent (under the group of translations) simplices is partitioned by the
action of the group\ut (D) into two orbits with representatives

Ly = conv{(0,0,0,0)" (1,-1,0,0)",(1,0,0,0)",(1,0,1,0)" (1,0,1,1)"},
Lxi = conv{(0,0,0,0)* (1,0,0,0)% (1,0,1,0)%, (1,1,1,0)%, (1,1,1,1)"},

where to the orbit of_;; the simplicesLy, Lx, Lvi, Lix, Lv, L1 belong, and to the orbit afxy
the simplicesLxt, Ly, Lxir, Lvit, Ly, Ly
Given the positive definite quadratic form

1.7852  0.3571 —0.7141 —-0.7141

0.3571 1.7852 —0.7141 —-0.7141
—0.7141 -0.7141 2.2054 —0.3886
—0.7141 —-0.7141 —-0.3886  2.2054

found by the algorithm, we compuiR 1, (Q) ~ 0.4905 > 0, BR,(Q) ~ —0.0002 ~ 0. So it
is reasonable to assume that the inhomogeneous minimansafnly attained at the centers of
the circumspheres of the simplices which lie in the orbiLef
Since the density function is invariant under scaling we can normalize the quadratic form
rA+yB+2C, x,y, z € R, which lies in the invariant subspace by setting 1. The determinant
of Q(z,y) = zA + yB + C is given by the polynomial

Q=

det Q(z,y) = f(x,y) = 3z +623y — 1823 — 1822y 42722 — 62y + 18272 — 3y +18y3 — 27>

The radius of the circumsphere around the simglexs given by the rational expression (see

(6.2))
62° — 182y — 122* — 623y? + 4823y + 623 + 4222y3 — 3622y

R,y = 20 _ +1142%y — 722% — 48xy> — 168xy? — 24y° + 48y* + 48y° + 722
’ h(z,y) 3zt + 623y — 1823 — 1822y + 2722 — 6xy> + 18xy? — 3y*
+18y3 — 27y

Now we try to find the minima of the functiof(Q(z, y))? = R(z,y)*/det Q(x,y) by setting
the partial derivatives to zero. The set of critical points is then given by the affine variety of the
ideal

I = <—8f((;;’y)g(w,y)h(x,y)+4f(x,y)agg;’y)h(w,y)—4f(w,y)g(:c,y)8hg;y),
SO oy ) + 41 ) D) — 4 )l ) P,

Using GBbner basis techniques — decompose the radical ig€ainto prime ideals — we
decompose the variely(I) into four irreducible varieties
V(I) = V(z+y—-3) UV(xz+y) UV(z—y)
U V(4732 — 22512y% — 705843 — 2635132 + 23757y — 2421,
8435 + 243y* + 35y° — 113y + 30y — 2).
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In this decomposition the first three subvarieties are lines and since we know that the locally
optimal solution@ is unique they cannot giv@. So we have to look at the last subvariety which
consists out of five points which are all real:

(z1,91) (0.0942,0.3188),
(22, Y2) (—1.389,0.2552),
(3,Y3) (0.5396,0.1080),
(24, Y1) (—0.2341, —1.0919),
(5, 95) (—2.0951, —2.4829).

Then the point(zs, y3) gives the desired solution so thatA + y3B + C provides a locally
optimal lattice covering which coincides with the one computed by the algorithm after a suitable
scaling.

What is the general pattern behind this beautification process? We use the symnitry of
to find the subspace in whicfp lies. The simplices of the Delone triangulation which have
circumradiusl give equality constraints. Then, we maximize the determinant of the quadratic
forms lying in the subspace subject to the equality constraints. For this optimization problem,
which involves only algebraic equations, we can usél®@er basis technigues.

9.5. Dimension 5

In a series of papersY®HKOV and BARANOVSKII solved the five-dimensional lattice covering
problem. In [Rys1973] RsHKoV introduces the concept of C-types. Two Delone triangulations
are of the sam&-typeif their 1-skeletons (the graph consisting of vertices and edges of the
triangulation) coincide. He gives an algorithm to find all non-equivalent C-types in any given di-
mension. He computes that there aneon-equivalent C-types in dimensidrand that there are
76 non-equivalent C-types in dimensiénUsing this list BARANOVSKII and R¥ySHKOV enumer-
ate221 (of 222) non-equivalens-dimensional Delone triangulations in [BR1973]. They describe
the triangulations in more detail in [BR1975]. In the last paper of the series [RB1975] they show
that the latticeA; provides the least densedimensional lattice covering. In their proof they do
not find all locally optimal lattice coverings. By using estimations (like the moments of inertia)
they merely show that all local minima exceed the covering densify of

Since the papers in the series are very dense and not easy to ysagd¥ and BARA-
NOVSKII prepared d40-pages long monograph [RB1976] based on their investigations. There
they comment on using an algorithmic approach to the lattice covering problem like ours:

» “Attempts to apply \bRONO's algorithm ford > 4 have run into colossal computational
difficulties.”

» “Such an approach is extremely difficult fér= 5 (and is therefore uninteresting).”

Using our algorithm we produced a complete table of all non-equivalent locally optimal lat-
tice coverings in dimensiofi. The computation takes aboR® minutes on a standard Intel
Pentium computer. As mentioned in Section 4¥sRKOv and BARANOVSKII missed the De-
lone triangulation# 164 which fortunately does not give a thinner lattice covering than the lattice
Af.

In the near future we will make our computations available on the world wide web. There, one
will see e.g. that there exi@22 non-equivalent minima of the covering density function ranging
from ~ 0.403566 to ~ 0.535956. This means that all locally optimal solutions are attained in
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the interior of the secondary cones. Our list also implies that the positive definite quadratic form
of BARNES and TRENERRY ([BT1972]) yields the second best locally optimal lattice covering.
It has normalized covering density 0.423671. Here we only show what happened wi64:

Looking at #164 (normalized covering density >= 0.406124)
* Computing exact normalized covering density...

iters obj gap
12 -7.61e-01 1.20e+02
17 -1.24e+00 3.03e+00
28 -1.41e+00 8.12e-02
35 -1.41e+00 2.06e-03
42 -1.41e+00 5.47e-05
47 -1.41e+00 1.45e-06
51 -1.41e+00 3.85e-08

1.9341845097

0.7956950345 1.8678576859

-0.5256981646-0.7187301788 1.6137547961

-0.6460313338-0.5359019448-0.3586190581 1.6830691309

-0.9121187120-0.8730186521 0.3479116634-0.2439723760 1.9251704528

* There are 18 neighbours.

* (0=144) (1->206) (2=204) (3=162) (4=163) (5=86) (6=204) (7=85) (8=156)
(9=161) (10=165) (11=163) (12=185) (13=86) (14=144) (15=162) (16=165)
(17=156)

9.6. Dimension 6

Up to now, we found5 non-equivalené-dimensional lattice coverings which are locally optimal
and which are better lattice coverings than the one given by the laf§icEnese lattice coverings
were found by the heuristic method we explained in Section 8.4.4. We do not claim that the
list is complete in any sense. In [Rys1967Y KoV raises the question of finding the first
dimensiond for which there is a better lattice covering than the one giveAhyHence,d = 6

is the answer.

We haved(A;) ~ 0.493668. We found two lattice coverings with normalized covering
density of abou.477. All other good lattice coverings found have a normalized covering density
of at least).485. We give a detailed report on the best two lattice coverings found.

9.6.1. The best known 6-dimensional lattice covering

The best knowr-dimensional lattice covering has normalized covering density 6f476962

which is some percentage less than the former best known onesmitid93668. In this sec-

tion we describe some data for the new lattice covering. But at the moment we lack a good
interpretation of this result.

The Delone triangulation which belongs to the best knévdimensional lattice covering has
100 bistellar neighbours. Its local lower boundais0.449368 which is less than its neighbours’
values. The linear automorphism group of the Delone triangulation is the group (g1, g2)
generated by the two matrices

1 0 0 0 -1 -1 0 -1 -1 -1 -1 0
O 0 0 0 0 1 O 0 0 0 0 -1
o 0o -1 0 -1 -1 lo oo -1 -1 -1 0
=10 o o -1 0 o' ]o 0o o 1 0 o
0O -1 0 0 0 0 O 0 0 0 1 0

O 0 0 0 1 0 11 1 1 1 1
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It is a subgroup oGLg(Z) and has orde240. The set of all non-equivalent (under the group of
translations) simplices is partitioned by the action of the gr@ypnto eight orbits with repre-

sentatives
L1 = COIlV{U(),’U5,1]7,’()9,’010,’011,’013} L2 = COHV{’U(),U5,U7,’U9,’010,’013,’015}
L3 = COHV{’U(),’Ul,’1]2,’03,’04,’1]13,’1]14} L4 = COHV{’U(),1)7,’1)9,’010,’1)11,’1)13,’015}
L5 = COHV{'U(),’U5,’U6,’1)8,’Ug,’012,’014} L6 = COHV{’UQ,U5,'U8,’U9,U11,U12,U14}
L; = conv{vg,vs,vg,v11,V12,v13,v14} Lg = conv{wg,vs,vs, V11, V12, V13, V14}
where

vo = (0,0,0,0,0,0) vi; = (0,1,0,0,0,0)

ve = (0,1,0,0,—1,0)¢ vs = (0,1,1,0,0,1)

vy = (0,1,1,1,0,0) vs = (1,0,0,0,0,0)

ve = (1,0,0,0,0,1)t vy = (1,0,0,0,1,0)

vs = (1,0,0,—1,0,1)° vg = (1,0,—1,0,0,0)"

v = (1,0,— 100 Dt vy = (1,0,—1,-1,0,0)

vy = (1,0,— -1,0)! vi3 = (1,1,0,0,0,0)

vy = (110001) vis = (1,1,0,1,1,0)

The first four orbits have at each case lengthand the four last orbits have at each case
length120. The set of all quadratic forms which are invariant under the grGups a four-
dimensional subspace with basis

1 0
0 O 1 0
1 0 1 1 0 2
-2 0 -2 4 1-2 0 -2 4 ’
0 0 0 0O 1 -1 0 00
0 0 0 00O -2 1 -1 010
0 0
0 1 0 0
0 1 0 1 0
1 -1 0 1 -1 -2 -3 8
0o 0 0 -11 0 1 1 -2 0
-1 0 -1 1 01 1 -1 0 2 -10

The positive definite quadratic form lying in the secondary cone of the described Delone trian-
gulation and giving a locally optimal lattice covering is

2.0550
—0.9424  1.9227

1 | 11126 —0.5773  2.0930

Qs ~ 0.2747 —0.7681 —0.4934 1.7550
—0.9424 0.3651 —0.5773 —0.7681 1.9227
—0.6153 —0.3651 —0.9804 0.7681 —0.3651 1.9227

Its normalized covering density 8§Q¢) ~ 0.476962.

At least in principle we could use the techniques we have demonstrated in the four-dim-
ensional case to beautify the numbers. Actually we do not expect that it will give any insight to the
“real” nature and origin of this lattice covering. Unfortunately we do not have an interpretation
of this lattice covering.
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Question 9.6.1.
» Is there any known or nice structure related to this lattice covering?

» Is there &-dimensional lattice covering which is better than the given one?

9.6.2. The second best known 6-dimensional lattice covering

The second best knowsrdimensional lattice covering we already met in Section 8.4.4 seems
to be easier to understand than the best known one. Its Delone triangulatidBOhkistellar
neighbours which is extreme at the moment. Its local lower bourrd 18448561 which is

also extreme at the moment. The linear automorphism group of the Delone triangulation has
order3840 and it is

01 0 —10 0 000 1 0 0
0O -1 0 0 00 01 0 -1 0 -1

G2:<100010 0010—10>
0 -1 -1 0 10|'lo 1 0 0o -1 1|/
0 -1 0 0 10 01 1 -1 -1 0
0 -1 0 0 01/ \=10 -1 0 0 -1

The set of all non-equivalent (under the group of translations) simplices is partitioned by the
action of the group into three orbits with representatives

L = conv{vg,v1,v2,v4,V5,0s,V10}

Ly = conv{vo,'vl,UQ,U3,1J5,U7,1)11}

L3 = COIlV{U(),’124,’1)6,1)8,’09,1]10,1]11}

where

vo = (0,0,0,0,0,0) vi = (0,0,0,0,1,—1)"
vy = (0,0,0,0,1,0) vs = (0,0,1,0,1,—1)"
vy = (0,1,— 1001) vs = (0,1,0,0,1,0)
vg = (1,—1 10) vy = (1,—1,0,—1,0,—1t
(S = ( 1—1 O) Vg = (1,07—1,0,—1,1)t
vip = (1,0, 1,0,0,0) vi1 = (1,0,0,0,0,0)

In the first two orbits there are at each cage simplices and in the last one there &@esimplices.

The lattice covering found by our algorithm is given by

2
Qs ~

O R OO O =

1.9982
0.5270
0.5270
—0.5270
0.9440
0.5270

o O o

o O o

1.9982

0.5270  1.9982
—0.5270 —0.5270
—0.5270 —0.5270
—0.9440  0.5270

B:

1.9982
—0.9440 1.9982
—0.5270 0.9440 1.9982

Its normalized covering density &Q32) ~ 0.477217. In the following we want to beautify the
numbers. We demonstrated the technique already in Section 9.4. We report the results in a rather
telegraphic style. The positive definite quadratic faphas to be invariant under the groGp.

Thus it lies in the two-dimensional subspace spanned by

0
1
1
-1
-2
1

1
-1
-1

2

0
-1
-1

1

0

—1

-2

0
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Using the approximation of the positive definite quadratic fapggiven above we conclude

that BRz, (Q2) = 0 and BR,(Q3),BR.,(Q3) > 0. We have to minimize the function
6

detﬁﬁ where R; denotes the circumradius of the simpléx and find out that: has

to be aroot of the:? — 1892 + ;2-. Hencer = -1 (169+v/1057). This also enables us to give a
nice integral approximation of the lattice covering. The integral positive definite quadratic form

T —

19
5 19
5 & 19

-5 =5 =5 19
9 -5 -5 -9 19
5 -9 5 =5 9 19

has normalized covering densif2o%8L ~ 0.477282. Some more data: The corresponding
lattice has minimun®, covering radiu®/2, kissing numbe32 and determinan226944 =
26. 3. 75, But again we lack an interpretation of this!

9.7. Dimension 7

Dimension?7 is the largest dimension which our implementation can reasonably handle. Unlike
in dimension6 we had no success so far in finding a lattice covering that is thinner than the
one given byA%. We want to report on those lattice coverings which we found and which have
“extreme” properties at the moment.

Maximum number of neighbours
The Delone triangulatio® of the positive definite quadratic form

1.904925
0.500997 1.904925
0.500997 0.500997 1.904925
Q= | —0.523372 —0.523372 —0.523372  1.711906
1.072379  —0.331548 —0.331548 —0.973369  2.141536
0.500997  —0.902931  0.500997  —0.523372  1.072379 1.904925
—0.385543 —0.385543 —0.385543  0.241082 —0.721332 —0.385543 1.439959

has 211 bistellar neighbour&.(D) ~ 0.56761, 6(Q) ~ 0.70161).

Minimum local lower bound
The Delone triangulatio® of the positive definite quadratic form

1.878537
—0.788448  2.018228
0.246709  —1.220731  2.305654
Q= 0537635 —0.771141  0.235302 1.892539
—0.531172  0.862986  —0.340367 —0.515488  1.898709
—0.297546 —0.456190 0.735788  —0.319872  0.181170 1.093520
—0.256090 —0.242451 —0.822380 —0.271715 —1.035561 —0.574974 2.125296

has local lower bound..(D) ~ 0.56582 (130 bistellar neighbourg)(Q) ~ 0.65292).
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Second best known locally optimal lattice covering
The covering density of the positive definite quadratic form

1.863443
—0.777709  2.009567
0.242848  —1.217673  2.311683
Q= 0524683 —0.764348  0.242660 1.891535
—0.522409 0.861928 —0.348180 —0.508457  1.894410
—0.299146 —0.460471 0.735739 —0.320881  0.170282 1.098942
—0.252218 —0.243976 —0.825929 —0.278885 —1.032467 —0.563856 2.122792

is 0(Q) ~ 0.651192. The corresponding Delone triangulation Ha$ bistellar neighbours and
its local lower bound is= 0.565825.

We do not claim and do not even dare to conjecture that any of these lattice coverings are
extreme in any sense. Moreover, we leave it as a challenge to the reader to find improvements.

9.8. Dimension 8 and Higher

In our last section on the lattice covering problem we give a table of the least dense known lattice
coverings in dimensions up ®l. At the same time this list gives the least dense known sphere
coverings in dimensions up ! since there is no covering of equal spheres known which is
better than the best known lattice covering. Our Table 9.1 is an update of2TalgCS1988a].

We first give the table and comment it afterwards.

d | lattice covering | density® | normalized densityé | bound
1 VA 1 0.5 0.5

2 A3 1.209199 0.384900 0.3849
3 A3 1.463505 0.349386 0.3419
4 A 1.765529 0.357771 0.3360
5 AZ 2.124286 0.403566 0.3581
6 Qi 2.464803 0.476962 0.4087
7 A% 3.059621 0.647571 0.4949
8 A 3.665949 0.903205 0.6319
9 A 4.340185 1.315802 0.8460
10 Ao 5.251713 2.059363 1.183
11 AL, 5.598338 2.971353 1.721
12 A7, 7.510113 5.624446 2.597
13 Ais 8.976769 9.857770 4.055
14 A3, 6.368635 10.627419 6.537
15 Als 12.816873 33.600994 10.86
16 Als 15.310927 65.061343 18.56
17 A%, 18.287811 129.718168 32.57
18 Alg 21.840949 265.880009 58.63
19 Alg 26.081820 559.436387 108.1
20 A3, 31.143448 1206.788059 204.0
21 A3, 37.184568 2665.722767 393.5
22 Ay < 27.8839 3783.2116 775.2
23 A%s < 15.3218 4020.7771 1558
24 Aoy 7.903536 4096 3193

Table 9.1. Best known lattice coverings up to dimensidh
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In [Cox1951] GOXETER gives a list of locally optimal lattice packings which are related to
Lie groups. One of his infinite series of locally optimal lattice packings is giveA’bwhich is
defined by the positive definite quadratic form

d
1
Z x? +q(1 - ;)xfl - Z TiTj — Tglq,
i=1

1<i<j<d—1

whered = ¢gr — 1 > 1 andr > 1. In [Bar1994] BARANOVSKII determines the covering density

of the lattice covering given bj3. The covering radius of the lattick] is u(A3) = /3/5

and its determinant i5%/225. By 0(Aj) ~ 1.315802 it is slightly better than the one given by
A§ (0(AS) ~ 1.330585). Recently, AzIN extended BRANOVsKII's work. In [Anz2002] he
computes the covering densities &f, andA3,: The covering radii arg.(A},) = /19/32,
w(A%,) = 1/71/100 and the determinants adet(A$;) = 3/2'3, det(A},) = 3/(5-2'). Ina
private communication AzIN stated that he computed the covering densities of lattice coverings
given byA’; in other dimensions. They also give better coverings than the correspokigling

It is not surprising that the Leech lattide, yields the best known lattice covering and it
is not too brave to conjecture that it does give the opti2dadlimensional sphere covering. The
covering density of the Leech lattice was computed low@AyY, PARKER and S OANE (Chapter
23 of [CS1988a]). Expanding this workdRCHERDS CONWAY and QUEEN computed the
Dirichlet-Voronoi polytope ofA24 (Chapter 25 of [CS1988a]). It seems that as a “corollary” of
the existence of the Leech lattice the duals of the laminated lattigeand A»3 give good lattice
coverings. Their covering densities were estimated kayr8 [Smi1988]. For the definitions of
these exceptional lattices and much more we refer to [CS1988a].

In [CFR1959] XETER, FEW, ROGERS(give a lower bound for the covering density of
general sphere coverings. This bound is sharp for the two-dimensional case only. The values of
their lower bound were copied one-to-one from [CS1988a].

There was not much activity in the last years on finding good lattice coverings in high di-
mensions. The book of ®BEERS[R0g1964] contains the most recent results on the asymptotic
behavior of lattice coverings.

Finally, we list our most tantalizing questions in the theory of lattice coverings.

» Solve the lattice covering problem in dimensi@én

» Find an interpretation af)} or a better lattice covering in dimensiéh
» Try to understand the lattice covering given Ay

» Find construction methods for good lattice coverings!

» Find good sphere coverings that are not lattice coverings!

» Improve Table 9.1! Especially, improve the lower bounds!



Chapter A.

Glossary

A.1l. Geometry of Numbers

Euclidean Spaces

A d-dimensionalEuclidean spacés a pair(F, (-, -)) consisting of al-dimensional real vector
space and an inner produet-) : £ x E — R. By an inner product we mean a positive definite
symmetric bilinear form. A Euclidean space is a normed space. Its norm functjon|jis=
V/(+,+). In the case the “inner product” is only positive semidefirjte|| is calledseminorm A
Euclidean space is a metric space. Its distance functidistie, y) = |« — y||. By By(e,r) =

{z € E : dist(x, c) < r} we denote the-dimensional closed ball with centerc E and radius

r € R>o. LetV C Ebeasubsetaf. BylinV = {}" | a;v; : n € Nyo; € R,v; € V} we
denote thdinear spanof V, by aff V' = {>"" , ayv; : n € Nyoy € R,D " oy = 1,0; € V}
we denote thaffine sparof V.

Lattices

Let (E, (+,-)) be ad-dimensional Euclidean space. A subge€ F is called anm-dimensional
latticein E if there exist linearly independent vectdrs . .., b, sothatL = {} " , a;b; : o €
Z}. The vectord, ..., b, are called dattice basisof L. To emphasize that our lattice live in a
Euclidean space we sometimes even wite(-, -)) instead ofL. From now on we assume that
n = d. Another family of lattice vectorgb’, ..., b)) forms a lattice basis if and only if there
exists arintegral unimodular transformatiod € GL,,(Z) sothatA(by,...,b,) = (b},...,b)).

A lattice basis gives &ram matrixof L: G(L, (bi,...,b,)) = ((bi,b;))i<ij<n. Thisis a
positive definite matrix. The determinant of a Gram matrix isdeterminantof the latticeL:
det L = det((b;, b;)). Thevolumeof the latticeL is vol L = v/det L. The volume ofL equals
the volume of a fundamental parallelotopgb, ... ,b,) = {>_" ; a;b; : o; € [0,1]}. Two
d-dimensional latticed., L’ C E are calledsometricif there exists ansometrybetweenZ and
L’. Thisis a group homomorphisfn: L. — L’ so that(®(v), ®(w)) = (v, w) forallv,w € L.
The set of all isometrie® : L. — L is called theautomorphism groupf L.

Dual Lattices

Everyd-dimensional latticd. C FE in d-dimensional Euclidean space hadual lattice L*. It is
givenbyL* ={x € E: (z,v) € Zforallv € L}.

Special Lattices

In our investigations we will sometimes meet prominent lattices, e.g. root lattices and the Leech
lattice. We do not uncover thiet-dimensional mystery Leech lattice here. The root lattices are
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defined as follows:

A, = {(xo,x1,...,2p) € Z”‘H :x0+-~—|—mn:0}

D, = {(z1,...,2p) €EZ" i1+ -+ 2, is ever}

Es {(z1,...,x8) @l z; € Zor allxl € = +Z 1+ -+ xgisever}
Er = {(.%'1, ,xg) ek +- - +ag= O}

Ee¢ = {(z1,...,28)€Es:x1+as=22+---+27=0)}

For more information on these lattices, on the Leech lattice, and on other important lattices
consult Chapter 4 in [CS1988a].

Quadratic Forms

By S? we denote thg@-dimensional space of real symmettitx d)-matrices. The quadratic
form which corresponds to the symmetric matfjxc S? is given byQ[z] = (=!)Qz, € R
We do not distinguish between quadratic forms and symmetric matikedenote the open cone
of all positive definite quadratic forms £, = {Q € S : Q[z] > 0 for all z € R?\{0}}, and
the closed cone of all positive semidefinite quadratic formsi)(y. In the context of optimization
problems we sometimes wri@ - 0 instead ofQ € S¢, and@ = 0 instead ofQ € S¢,
Two quadratic forms), Q' € S? are calledarithmetically equivalenif there exists an integral
unimodular transformatiod € GL4(Z) with Q[Az] = Q'[x].

Lattices vs. Quadratic Forms

There is a canonical bijection between the isometry classes of lattices and the arithmetical equiv-
alence classes of positive definite quadratic forms.

A class of arithmetically equivalent positive definite quadratic forms defines an isometry class
of lattices. Let be a positive definite quadratic form. This is mapped to the laficwgether
with the following scalar product: Fas,w € Z¢ we havesg(z,y) = (x!)Qy. If we don't
expect any confusions we write simg(ly -) instead ofs (-, -). All lattices lying in the isometry
class of(Z4, s) are calledassociatedo Q.

A class of isometric lattices defines an arithmetical equivalence class of positive definite
quadratic forms. Lef. be ad-dimensional lattice. Letb,,...,b,) be a basis of.. Then the
Gram matrixG(L, (b1, ...,by)) gives a positive definite quadratic form. All positive definite
quadratic forms lying in the arithmetical equivalence clasS @f, (b, ..., b)) are calledasso-
ciatedto L.

It turns out that the language of lattices is appropriate for discussing geometry whereas the
language of positive definite quadratic forms is appropriate for computing.

MORAL.: Think in lattices, compute with quadratic form#!

Lattice Constants

lattice covering problem lattice packing problem
covering radius packing radius
(L) = min{r : (Bg(v,7))y is covering | A(L) = max{r : (By(v,r)), is packing
covering density packing density
g (L) = ‘1 Bul0u(L) A(L) = ¥ Bal0A(L)
& | normalized covering density normalized packing density
_ wmn)? _ !
f(L) = LN 0(L) = SoIL
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lattice covering problem lattice packing problem
inhomogeneous minimum homogeneous minimum
c 1(Q) = max pepa Ming,czq Qe — v] ANQ) = Min,e 74\ {0} Q[v]
S | covering density packing density
§ | 0@ = = A(Q) =y
-chs normalized covering density normalized packing density
> d d
5| 0(Q) = /4 5(Q) = /42

A.2. Polyhedra and Polytopes

Polyhedra and polytopes are special convex subsets of affine sppoé/hdroris the intersec-

tion of finitely many halfspaces. Aolytopeis a bounded polyhedron. Conversely a polytope is
the convex hull of finitely many points and a polyhedron is a sum of a polytope and a polyhedral
cone.

Faces, Facets, Face Lattices

A faceof a polytopeP is the intersection of? and the boundary hyperplane of a halfspace
containingP. A facetis a face of codimensioh A ridgeis a face of codimensiok An edgeis

a face of dimension. A vertexis a face of dimensiofl. Caution! Face lattices are not lattices!
Face lattices are partially ordered sets. The face lattice of a polytope is the set of all its faces
ordered by set theoretic inclusion.

Complexes, Subdivisions, Triangulations

A polyhedral comple is a set of polyhedra which satisfies the following two conditions: (i)

If a polyhedronP belongs toP, then all faces of? are again irfP. (ii) The intersection of two
polyhedraP, @ € P is a face ofP and(). Sometimes, we call the elements/fcells We say

that a polyhedral complex is subdivisionor atiling of the setl J ., P. A polytopal complex

is a polyhedral complex that only contains polytopes. If a polytopal complex contains simplices
only we say that we havetaangulationof (J,.p P.

Zonotopes

A zonotopds a polytope whose faces are all centrally symmetric. Equivalently, zonotopes are
those polytopes one gets by projecting higher-dimensional dubed ™.

A.3. (Realizable) Oriented Matroids

Basic Notation

Let V C R be a finite set of points. Every affine relation between these points (they are of the
form >,y awv = 0) gives rise to a sign vectok € {—1,0,+1}" simply by X, = sgn o,

v € V. Thesupportof the sign vectorX is defined byX := {v € V : X,, # 0}. Further
useful notations ar&X ™ := {v € V : X, = +1}, X~ == {v € V : X, = -1}, and

X0 ={veV:X,=0}.
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Circuits, Vectors

The set (V') of all sign vectors which come from affine relationsiofs called the set ofectors
of theoriented matroidM (V). A non-trivial vector ofM (V') which has minimal support among
all these vectors is calledarcuit.

Cocircuits, Covectors

For the set of point¥” we can define another set of sign vectors by the values of affine functions
{(sgn f(v))vev : f affine function orR?}. These are theovectorsy*(V') of M(V') which are
dual toV(V') by the combinatorial relation

X1Y <= XnNY =0V @v,weV:X,Y, =41, XYV =—1).

A non-trivial covector ofM (V') having minimal support among all these covectors is called a
cocircuit. We patrtially order the set of sign vectors by & +” and “0 < —" so that the partial
ordering on the set of sign vectors is understood componentwise. The partially ordered set of
covectors is called thiace latticeof an oriented matroid.

Directed Graphs

LetG = (V,E), E C V x V, be a directed graph. Aircuit C' of G is a special subset of
E: C'is a cycle and” is minimal with respect to inclusion having this propertynAnimal cut
C* of G is a special subset df: After removing all the edges belonging €& the number of
connected components @fincreases by one arfd* is minimal with respect to inclusion having
this property.
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