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Zusammenfassung

Zunachst wird ein neues, gitterfreies Verfahren zur numerischen Losung nicht-
linearer Transportgleichungen entwickelt. Das Verfahren kombiniert eine
adaptive semi-Lagrange Methode mit einer lokalen Interpolation unter Ver-
wendung von radialen Basisfunktionen. Die vorgestellte Partikelmethode
verwendet eine Menge beliebig verteilter Punkte, wodurch kein Gitter zur
Diskretisierung benotigt wird. Im weiteren wird dieses semi-Lagrange Ver-
fahren erweitert, so daf} fiir lineare Advektionsprobleme exakte Massenerhal-
tung erlangt wird. Dazu werden adaptive Voronoi-Diagramme verwendet,
um die Flexibilitédt einer Partikelmethode beizubehalten. Abschlielend wird
eine neuartige, gitterbasierte Methode (ADER-Methode) auf adaptive, un-
strukturierte Triangulierungen erweitert, die exakte Massenerhaltung auch
fiir nichtlineare Transportprobleme liefert. Insbesondere unterliegt die Kon-
vergenzordnung solcher ADER-Methoden keiner Beschrankung und wird bis
zu Verfahren vierter Ordnung untersucht.

Fiir alle behandelten Methoden werden sowohl die Fehlerschatzer und die
Adaptionsroutinen zur Verfeinerung oder Vergroberung der Partikel bzw. des
Gitters ausfiihrlich diskutiert, als auch die Leistungsfahigkeit dieser adap-
tiven Verfahren anhand numerischer Beispiele unterstrichen. Insbesondere
wird auf ein Anwendungsbeispiel aus dem Bereich der Reservoir Simula-
tion eingegangen, das vor allem in der Erdélindustrie zur Modellierung von
Fliissigkeitstransport in Lagerstatten von groflem Interesse ist.



Abstract

At first a new meshfree advection scheme for numerically solving nonlin-
ear transport equations is developed. The scheme, being a combination of
an adaptive semi-Lagrangian method and local radial basis function inter-
polation, is essentially a method of backward characteristics. The proposed
particle method works with an unstructured set of nodes, such that no mesh is
necessary for the discretization. Furthermore, this semi-Lagrangian method
is modified in order to achieve exact mass conservation for linear advection
problems. Voronoi diagrams are used to retain the flexibility of the particle
method. Finally, a new conservative scheme (ADER-scheme) is extended to
adaptive unstructured triangulations in order to treat nonlinear transport
problems. In particular, ADER schemes can be constructed up to an arbi-
trary high order of convergence and are investigated in detail up to order
four.

For all methods the error estimation and the strategy of the adaption rules
for the refinement or coarsening of particles or meshes are discussed in detail.
The good performance of the resulting methods is confirmed by numerical
examples. In particular, a test case from the oil industry is addressed, which
plays an important role in the modelling of fluid flow in petroleum reservoirs.
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Introduction

Hyperbolic conservation laws constitute the governing equations for many
important and powerful mathematical models of a wide variety of physical
phenomena. In particular, they are used to describe advective transport
processes in gas dynamics, geophysical fluid dynamics, meteorology, astro-
physics, multi-phase flow in porous media, convection dominated flow, elas-
todynamics and many others.

Historically, many of the fundamental numerical techniques were first devel-
oped for the special case of the Euler equations in gas dynamics, where the
nonlinearity of the conservation law causes discontinuities in the solutions,
the so-called shocks. The treatment of these discontinuities poses many of the
computational challenges, that motivated the development of various numer-
ical methods. To this end, the study of model equations, such as the popular
Burgers equation, has played an important role in the development of such
numerical methods. Usually, the design of new numerical schemes requires
a close interplay between numerical analysis, physical modelling, numerical
simulation and visualisation.

One century ago, in 1904, Vilhelm Bjerknes firstly suggested the possibility
of deterministic weather prediction in [13], before Lewis Richardson in [69]
actually attempted to produce such a forecast by manually integrating a fi-
nite difference approximation to the governing partial differential equations
describing atmospheric motion. Unfortunately, his results were disappointing
and the amount of human labour required to do the calculations were so im-
mense, that deterministic weather prediction had to await the introduction
of computers. However, his work marked the beginning of Computational
Fluid Dynamics (CED).

In 1950, researchers under the direction of Jule Charney and John von Neu-
mann managed to produce the first computer-generated weather forecast and
their surprisingly good results, reported in [18], led to the rapid growth in
a new discipline, numerical weather prediction. Since that, computers have
developed with tremendous speed, and the use of numerical models has sub-
sequently expanded into almost all areas of current research and consequently
often led to fruitful interdisciplinary collaborations between numerical ana-
lysts and scientists of various application fields.
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During the past few years, the interest has grown especially to construct ef-
ficient, robust and high order accurate numerical schemes in order to treat
conservation laws.

The problem considered is the homogeneous, scalar, first order time-dependent
partial differential equation

2u(t, z)+ V- f<u(t,x)> =0,
ot

where © : R x R? — R is the unknown function depending on time ¢ and the
two space variables © = (z1,x9), and f(u) = (fi(u), f2(u)) denotes the flux
vector. Many physically relevant problems give rise to nonlinear conservation
laws, in which the flux f(u) is a nonlinear function of the conserved quantity
u. A fundamental feature of these nonlinear conservation laws is that their
solution can develop discontinuities, even from smooth initial data, which
have to be dealt with mathematically and computationally.

This work proposes adaptive numerical schemes in order to solve both lin-
ear and nonlinear conservation laws. At first we introduce a new meshless
semi-Lagrangian advection scheme, which is based on a set of particles in
order to discretise the problem in the computational domain € C R2. In the
following, we construct a conservative semi-Lagrangian finite volume method
that relies on Voronoi tessellations of 2 and the concept of backward char-
acteristics. Finally, we propose an adaptive ADER scheme using Arbitrary
high order DERivatives of the approximated unknown function u in order
to design finite volume methods of arbitrary high order of accuracy.

In this application-oriented work, we test the feasibility and performance
of the resulting schemes by solving scalar conservation laws describing linear
and nonlinear transport processes. Thereby, the main focus for all introduced
methods lies on their adaptivity. In order to optimize the computing time as
well as the use of storage, the design of self-adaptive numerical schemes based
on locally refined discretisations is essential. Adaptivity, however, requires
reliable error estimators.

For elliptic and parabolic problems there is already a well-known theory
about a posteriori error estimators, e.g. [20, 27], and also for linear hyperbolic
systems results for error estimators are available in [33, 80]. Unfortunately,
there are only very few theoretical results for a posteriori error estimates for
nonlinear conservation laws, e.g. [61]. Therefore, we use a new, more heuris-
tic error indicator in order to identify regions, where shocks or large gradients
occur. The spatial discretisation in these regions is then locally refined by
new and robust adaption rules in order to improve the local resolution and
enhance the approximation quality. The proposed error indicator is based on
the idea of detecting discontinuities in scattered data [35] and relies on local
interpolations using radial basis functions.
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Equipped with this modern and effective error indicator, we assign a signifi-
cance value to each node or cell (depending on the numerical method used) of
a discretisation, which flags them for refinement or coarsening. The accord-
ing adaption rules for the local refinement or coarsening of the discretisation,
which are fundametal for the substantial progress of adaptive schemes, are
simple, robust and efficient, as confirmed by various model applications in
this work.

Our major interest lies in the solution of a nonlinear conservation law in-
troduced by Buckley and Leverett in [16]. This so-called Buckley-Leverett
equation describes the two-phase flow in a porous medium. Generally, the
two different immiscible liquids move through the porous medium driven by
a pressure gradient. The solution of this model problem typically develops
a shock followed by a rarefaction wave, which is particularly challenging for
high order accurate numerical methods.

Solving the Buckley-Leverett equation accurately and especially predict the
propagation of the moving shock with high resolution is of major importance
in oil reservoir simulation. In the area of petroleum reservoir simulation
and engineering waterflooding is a well established technique of enhanced
oil recovery, where the displacement of oil in the pores of a reservoir rock
by injected water can be modelled by the Buckley-Leverett equation. As
demonstrated by our numerical results our modern adaptive strategy, es-
pecially when combined with the new high order accurate ADER schemes,
constitutes a very progressive approach compared to industrial standards.
Furthermore, the past few years have shown, that results of large, detailed
reservoir simulations have an increasing impact on reservoir management de-
cisions.

The present work is subdivided into four major parts, which concentrate on
the application-oriented discussion of the three new numerical approaches
and the application to the real-world problem of the Buckley-Leverett equa-
tion.

Therefore, the work is arranged as follows:

In Chapter 1 we introduce a new adaptive meshfree advection scheme, as
proposed for numerically solving linear transport equations in previous work
[9, 11], is extended to nonlinear transport equations. Meshless methods
represent a very recent technology for solving partial differential equations
and became very popular in structural mechanics as an alternative to mesh-
based techniques as Finite Elements or Finite Volumes. Therefore, a general
overview of state-of-the-art approaches is given primarily. Our proposed
scheme, being a combination of an adaptive semi-Lagrangian method and
local radial basis function interpolation, is essentially a particle method or a
method of backward characteristics. Our aim is to transfer the advantages of
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a meshless method from mechanics to fluid flow problems. The adaptivity of
the meshfree advection scheme relies on customized rules for the refinement
and coarsening of scattered nodes. In order to be able to model shock prop-
agation, an artificial viscosity term is added to the scheme. Moreover, the
local interpolation method and the node adaption rules in [9, 11] are modi-
fied accordingly. The performance of the resulting method is finally shown in
numerical examples by using two specific nonlinear model problems: Burgers
equation and the Buckley-Leverett equation.

In Chapter 2 we design a conservative semi-Lagrangian advection scheme
overcoming the problems of our pure particle method in Chapter 1, which
is not conservative. Considerable effort has been made recently in order
to construct conservative semi-Lagrangian methods [47, 66, 67|, in partic-
ular Phillips and Williams [64] developed an attractive conservative semi-
Lagrangian Finite Volume scheme. Their formulation of the discrete problem
is based on satisfying a physical conservation constraint in a way that con-
servation is satisfied by construction. However, the main weekness of their
approach is, that they have to use a fixed Cartesian mesh. In contrast, our
new semi-Lagrangian scheme works with finite volumes on an unstructured
mesh, which is given by a Voronoi diagram. Moreover, in our modern ap-
proach the mesh is subject to adaptive modifications during the simulation,
which serves to effectively combine good approximation quality with small
computational costs. The required adaption rules for the refinement and the
coarsening of the mesh rely on our introduced customized error indicator and
the efficient adaption rules. Additionally, we develop a technology for the
effective implementation of boundary conditions. Finally, numerical results
confirm the good performance of the proposed conservative and adaptive ad-
vection scheme, especially when long simulation times are desired.

In Chapter 3 the further development of modern ADER schemes is pre-
sented. The ADER approach introduced by Toro, Millington, and Nejad in
[84], and advanced by Titarev in [81, 83] represents a finite volume scheme of
Arbitrary high order using high order DERivatives of piecewise polynomial
reconstructions. We extend their recent approach in order to solve linear
as well as nonlinear scalar conservation laws on adaptive unstructured tri-
angulations. Firstly, a general overview of the development of the weighted
essentially non-oscillatory (WENO) reconstruction technique and the devel-
opment high order Finite Volume schemes is given. ADER schemes can be
interpreted as high order generalizations of the classical Godunov scheme,
which lead to an arbitrary order of accuracy in both, space and time. The
proposed scheme is conservative and combines high order WENO reconstruc-
tion techniques with a high order flux evaluation method to update cell av-
erage values. To this end, we solve generalized Riemann problems across cell
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interfaces by transforming them into a series of conventional Riemann prob-
lems. Moreover, the underlying mesh can be unstructured and is adaptively
modified during the simulation to effectively combine high order accuracy
with high resolution at small computational costs. The required adaption
rules for the refinement and coarsening of the triangular mesh rely again on
the error indicator explained in the previous chapters. The implementation
of inflow and outflow boundaries is addressed as well as the use of periodic
boundaries. Finally, numerical experiments confirm the expected orders of
accuracy and the good performance of the proposed scheme for linear and
nonlinear problems.

In Chapter 4 the newly developed adaptive ADER schemes are applied to
a well-established standard test case [2] in the area of reservoir simulation,
the five-spot problem. Here, one oil production well in the center of the com-
putational domain is surrounded by four water injection wells. Due to the
pressure gradient between the wells the water is forced to move towards the
production well displacing part of the oil in the porous reservoir rock. The so-
lution of the five-spot problem is computed with adaptive ADER schemes of
different order and the results are compared to reference solutions, which are
obtained by two of the standard reservoir simulation software-packages in the
oil industry. The numerical results and the comparison with the reference
solutions demonstrate that the combination of high order ADER schemes
and adaptive mesh refinement can provide high accuracy and high resolution
while dramatically reducing the required number of mesh cells.

As the numerical methods discussed in this work differ in their performances
and demonstrate their individual advantages and disadvantages, each Chap-
ter is summarized in a separate conclusion. Considerations concerning open
problems and ideas for future research are finally addressed in the Outlook.

In order to keep this work widely self-contained we explain the fundamental
ideas of O’Rourke’s intersection algorithm for convex polygons [63] in Ap-
pendix A. Furthermore, a brief overview of the isotropic mesh refinement
strategy of Hempel [39] is given in Appendix B together with preliminary
results, that have been obtained by combining his approach with ADER
schemes. Finally, Appendix C provides a list of Gaussian integration rules
on triangles that are exact for polynomials of degree < 7.






Chapter 1

Adaptive Meshfree Advection

In this chapter a new, adaptive meshfree advection scheme, as proposed for
numerically solving linear transport equations in previous work [9, 11], is
extended to nonlinear transport equations!. The scheme, being a combina-
tion of an adaptive semi-Lagrangian method and local radial basis function
interpolation, is essentially a method of backward characteristics. The adap-
tivity of the meshfree advection scheme relies on customized rules for the
refinement and coarsening of scattered nodes. In order to be able to model
shock propagation, an artificial viscosity term is added to the scheme. More-
over, the local interpolation method and the node adaption rules in [9, 11]
are modified accordingly. The performance of the resulting method is finally
shown in numerical examples by using two specific nonlinear model problems:
Burgers equation and the Buckley-Leverett equation.

1.1 General Overview

Currently, Finite Element Methods (FEM) [15, 74, 90] and Finite Volume
Methods (FVM) [40, 85] are well-established numerical techniques to solve
problems in computational fluid dynamics. Their main advantage is their ca-
pability of handling complicated domain geometries and their local approxi-
mation character. However, both methods are based on the decomposition of
the computational domain into non-overlapping subdomains, called elements
or cells, and therefore rely on a mesh. It is widely acknowledged that espe-
cially in 3-D or higher dimensions, mesh generation is still a big challenge
and often is the bottleneck in large scale industrial applications. In fact, it
can be more costly than the numerical solution of the discretized problem
itself. Although complicated domains in 3-D can already be discretized au-
tomatically with tetrahedral elements, local mesh refinement and coarsening
often require rather sophisticated strategies mainly in order to avoid hanging

!This is joined work with J. Behrens and A. Iske and is already published in [10].
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nodes or other mesh degeneracies, which would have to be treated separately.
During the last decade considerable effort was put into the investigation of
so-called meshless or grid-free methods. These methods require a set of com-
putational nodes distributed throughout the domain, but they do not neces-
sarily require a specific connectivity of the nodes as in traditional meshing.
Generally, the objective of meshless methods is to eliminate at least part of
the mesh structure by constructing approximations entirely on nodes often
referred to as points or particles. However, in many meshless techniques an
auxiliary background-mesh is used in parts of the method. Nevertheless, it
becomes possible to solve large classes of problems without remeshing and
therefore with minor computational costs.

One of the first approaches was the generalization of Finite-Difference Meth-
ods (FDM) working on arbitrary, irregular grids [52]. Here, the star-concept
was introduced to derive an approximation for each central node by using
local, truncated Taylor series expansions. This usually leads to an overdeter-
mined set of linear equations and the solution is obtained by a least square
approximation. In recent work [59], weighted least squares (WLS) and mov-
ing least squares (MLS) interpolation methods with simple point collocation
techniques have been used for the numerical solution of a wide range of prob-
lems in computational mechanics and are generally referred to as Finite Point
Methods (FPM).

An alternative approach is the method of Smooth Particle Hydrodynamics
(SPH), also called the Free Lagrange method, which only depends on a set
of scattered particles and achieved considerable popularity in computational
physics and astrophysics [56, 68]. The foundation of SPH is interpolation
theory. Since there is no mesh involved, the method can handle large defor-
mations of the computational domain and is particularly suited for problems
with free or moving boundaries. On the other hand, its accuracy compared
to other methods is rather low.

Later, a parallel path of constructing meshless methods has been investi-
gated, where MLS approximations are used in a Galerkin method and called
the Diffusive Element Method (DEM) [60]. An extension of this method
has been proposed in [12], and named the Element-Free Galerkin (EFG)
method. Both methods require a regular cell structure as auxiliary mesh and
their computational cost is substantially more expensive than that for SPH.
A further approach of meshless methods is the Finite Mass Method (FMM)
[31], a Lagrangian method based on a discretization of mass, not of space.
Mass is subdivided into small packets of finite extension, which are moved
and deformed under the influence of internal and external forces and the laws
of thermodynamics.

A comparative study of many of these methods can be found in the overview
article of Duarte [24] or the comprehensive book of Liu [53].



1.2. INTRODUCTION 9

1.2 Introduction

Many physical phenomena in transport processes are described by time-
dependent hyperbolic conservation laws. The governing scalar equation for
multi-dimensional problems has the form

ou

—+V =0 1.1

s (1)
where for some domain @ C R? d > 1, and a compact time interval
I =[0,7T], T > 0, the function u : I x @ — R is unknown. Moreover,
fu) = (fi(u),..., fa(u))” denotes the fluz vector. In this paper, we consider
numerically solving (1.1) on given initial conditions

u(0,2) = ug(z), forz € Q=R (1.2)

and for nonlinear flux functions f.
In previous work [9, 11], a new adaptive meshfree advection scheme has been
proposed for numerically solving (1.1) for the special case, where

flu)=a-u, (1.3)
in which case we obtain the linear (passive) advection equation

ou

provided that the given velocity field
a=a(t,r) € R tel, x e,

is divergence-free.

The method in [9, 11] is a combination of an adaptive semi-Lagrangian
method (ASLM) [7, 8] and the meshfree radial basis function interpolation.
The resulting advection scheme is used for the simulation of tracer trans-
portation in the arctic stratosphere [11]. We remark that the scheme in
9, 11] is a method of characteristics, see [21, 34]. Indeed, the characteristic
curves of (1.4) coincide with the trajectories of fluid particles, and the mesh-
free ASLM in [9, 11] captures the flow of particles along their characteristic
curves. This is accomplished by computing backward trajectories for a finite
set of current particles at each time step, whereas the node set is adaptively
modified during the simulation.

Here an adaptive meshfree method of backward characteristics is designed for
the purpose of numerically solving nonlinear equations of the form (1.1). In
contrast to the linear case, a nonlinear flux function f usually leads to discon-
tinuities in the solution u even if the initial condition (1.2) is smooth. These
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shocks are observed in many relevant applications in fluid dynamics, meteo-
rology, astrophysics, petroleum reservoir simulation, etc. The characteristics-
based method in [9, 11] becomes unwieldy or impossible in nonlinear problems
where the evolution of the flow along the characteristic curves may be much
more complicated or characteristic curves may even be not defined, cf. [26],
Subsection 6.3.1. Therefore, we apply a vanishing viscosity approach yielding
the modified advection-diffusion equation

6)—uvLVf(u):os-Au, (1.5)
ot
with € > 0 being the artificial diffusion coefficient.
When it comes to extending the advection scheme of [9, 11], the local interpo-
lation scheme is to be modified accordingly. The extension of the advection
scheme is subject of the discussion in Section 1.3. The two remaining major
ingredients, local thin plate spline interpolation, and the customized adap-
tion rules, are then explained in the Sections 1.4 and 1.5.
Finally, the good performance of the resulting adaptive and meshfree method
of backward characteristics is shown by numerical results in Section 1.6,
where we consider using two different nonlinear model problems: Burgers
equation, a standard test case, where

Fu) = %u2 o (1.6)

with flow direction r € R?, and the Buckley-Leverett equation, whose flux
function has the form

2

flu) = R T e (1.7)

The Buckley-Leverett equation models the saturation of a two-phase flow in
a porous medium when neglecting gravitational forces or capillary effects. In
this case, the value of p in (1.7) is the ratio of the two different fluid viscosi-
ties. This model problem is typically encountered in oil reservoir modelling.
Details on this particular application are explained in Section 1.6 and the
final Chapter 4.

1.3 Meshfree Method of Backward
Characteristics

For the special case of passive advection (1.3), the scalar function w is con-
stant along trajectories (streamlines) whose shapes are entirely and uniquely
determined by the given velocity field a = a(t, z). Likewise, in the nonlinear
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case the solution wu is constant along trajectories of fluid particles, charac-
teristic curves. In contrast to the linear case of passive advection, these
characteristic curves do, however, depend on u.

In order to numerically solve the modified equation (1.5), the adaptive mesh-
free semi-Lagrangian method of [9, 11] is extended as follows. At each time
step t — t+ 7, with 7 > 0 being the time step size, the values u(t+7,§) at a
current finite set = of nodes, each of which corresponding to a flow particle,
are computed from the previous values u(t, &), € € Z. Initially, the set =° is
randomly chosen in the computational domain 2.

Starting point of the method is the Lagrangian form of (1.5),

é—?ze-Au,

where ‘;—7: = % + Vf(u) is the material derivative. This leads us to the

discretization
u(t+7,8) —ult,z™)

T

= eAu(t,z7),

where x= = x7(&) is the upstream location of the node £. Note that a particle
located at the upstream point = at time ¢ moves along its trajectory and
arrives at £ at time ¢ + 7. Having computed x~ for any £ € =, the desired
approximation of u(t + 7,£) would thus be given explicitly by

u(t+7,8) =u(t,z”) + 7 eAu(t,z™), for &€=, (1.8)

But on given ¢ € =, the exact location of the upstream point x~ is usually
not known. A linearized approximation of x~ is given by

= 6 - 57
where § = 7v and v = agiu) is the advection velocity, i.e.
dx
trx)=1=—. 1.9
ot7) =i =" (19

In order to compute Z, we need to solve the ordinary differential equation
(ODE) in (1.9). Figure 1.1 displays the backward trajectory of a node £ € =,
its corresponding upstream point x~, along with a linear approximation of
the trajectory, leading to 7 ~ z~.

For computing z, our implementation utilizes a fixed point iteration, based
on the midpoint rule, already used in the seminal paper on semi-Lagrangian
discretization by Robert [70]:

()
Bk+1) :T.U(H%,g—%). (1.10)
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Figure 1.1: Upstream point x~ of the node £ € =, and its linearized approx-
imation T ~ x~.

Note that the above iteration (1.10) relies on the evaluation of v at the
intermediate time ¢ + 7. In the situation of passive advection, this can be
accomplished by the evaluation of the given wind field ¢ = v. But in the
nonlinear case, the velocity v does also depend on the solution u. In order to

compute v (t + 5,6 — @) we employ the following extrapolation scheme.

3 1
U<t+g,'> 250(757')—5“(75—77')- (1.11)
Initially, in order to obtain the required values of u(7,-) from the given ini-

tial conditions (1.2), we use a generalized two-level Lax-Friedrich scheme on

=0 — =7
o =40,

Having computed the values u(t + 7,§), for all £ € =, via (1.8), the current
node set = = Z' (at time ¢) is finally modified by the removal (coarsening),
and the insertion (refinement) of nodes, yielding a new node set = = Z'*7
(at time t4 7). The adaption of the nodes relies on a customized a posteriori
error indicator, to be explained in Section 1.5.

We finally remark that the characteristics-based discretization scheme, as in-
troduced in this section, has been theoretically analyzed by Falcone and Fer-
retti [28]. Their concise convergence analysis shows that the semi-Lagrangian
method is of second order in time and space, provided that the interpolation
method is of second order.

1.4 Interpolation using Thin Plate Splines

In this section, we are concerned with computing approximations for the val-
ues u(t,-), Au(t,-) in the advection step (1.8), and wv(t,-),v(t — 7,-) in the
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extrapolation (1.11). To this end, we work with a local interpolation scheme,
which first collects on given x € Q a set N, = N of current neighbours (at
time ¢) in the local neighbourhood of x, before the (known) function values of
u at these neighbouring points are used for computing the approximations of
u(t,-), Au(t,-),v(t, ), v(t —7,-). But this requires some preparations. There-
fore, we defer details to later in this section.

As already observed in [9, 11], the interpolation is critical for the advection
method’s performance in terms of its efficiency and approximation quality.
Indeed, the interpolation scheme does not only affect the evaluation of the
model u(x) = u(t, x), but also the adaption rules, to be explained in the fol-
lowing Section 1.5, do heavily rely on the interpolation. Altogether, a reliable
and robust interpolation scheme of good approximation quality is required.

As explained in the previous work [9, 11], thin plate splines provide suitable
and powerful meshfree methods for scattered data interpolation. But the
setting in [9, 11] needs to be extended here. According to the general frame-
work of thin plate spline interpolation, dating back to Duchon [25], we work
with interpolants of the form

st) =D Monllly —vID) + Y may®, (1.12)

veN, || <k
in order to solve interpolation problems of the form
s(v) =u(v), forallveN,. (1.13)

In (1.12), the radial basis function ¢i(r) = r*log(r), k > 1, is referred
to as thin plate spline, and | - || is the Euclidean norm on R?. Moreover,
a = (aq,...,aq) in (1.12) is a multi-index, a d-tuple of non-negative integers,
with absolute value || = a3 + ...+ ay, and where

yr=yiteyst fory = (y1,...,ya)" €R%

The above N = #M, interpolation conditions in (1.13) constitute a linear
system of N equations with N 4+ ) unknowns in the coefficient vectors A =
(A)ven, € RY of the major part and p = (pta)jaj<k € RY of the polynomial
part of s in (1.12), where @) = (kzd) is the dimension of the linear space IT¢
of all real-valued polynomials in d variables and of degree at most k.

In order to eliminate the ) additional degrees of freedom, the coefficients \,

in (1.12) are subject to the additional () side conditions

Z Av® =0, forall |of <Ek. (1.14)
veN,

Altogether, solving (1.13) under constraints (1.14) leads us to the linear

system
. = ) (1.15)
W 0

Pﬁ}w 0
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where
An, = (@r(lv = V'D))yuren, € RYY and Py, = (v*) cpr,jar<r € RV,

As to the well-posedness of thin plate spline interpolation, we remark that
there always exists an interpolant s of the form (1.12) satisfying (1.13). More-
over, s is unique provided that the points in A, are [I¢-unisolvent, i.e.

p(v)=0 forall veWN, = p=0 (1.16)

for p € I1{. In this case, the linear system (1.15) has a unique solution, and
thus the thin plate spline interpolation scheme achieves to reconstruct poly-
nomials in TI{ exactly. Note that (1.16) is a very mild side condition. E.g.,
for k = 1 this requires that the points in A, must not all lie on a straight
line.

For further details on thin plate spline interpolation, including their optimal-
ity properties, and alternative choices for radial basis functions ¢, we refer
to the recent tutorial paper [42].

Now let us finally turn to the approximation of the values u(t,-), Au(t, ),
v(t,-),v(t — 7,-). In order to compute an approximation for v(¢,x), on given
x € (2, we first consider solving the interpolation problem

s(v) =w(t,v), forallve N,

by using the ansatz (1.12) for s and with & = 1. This then gives us by
s(x) the desired approximation of v(t,z), i.e. s(z) = v(t,x). Likewise, the
approximation of v(¢ — 7,-) is computed by solving

s(v)y=v(t—1,v), forallve N/,

using exactly the same approach, but for the previous set N~7 of neighbours.
As to the approximation of Au(t, Z), this requires using a smoother instance
of ¢ in (1.12), i.e. with k > 1, since A¢;(||z||) has a singularity at zero.
We prefer to work with ¢o(r) = r*log(r), whose Laplacian Agy(||z||) is well-
defined on all of R?. This amounts to first solving the interpolation problem

s(v) =u(t,v), forallve N},

using the ansatz (1.12) with & = 2, which provides by

As(y) = Y MAG(lly — vl) + 2 (10,0 + 1h,..02)
veN}

the desired approximation As(Z) ~ Au(t,z). Moreover, s(Z) ~ u(t,z). In
our numerical examples, however, we kept on using the basis function ¢
for computing an approximation of w(t,z). This helps to avoid undesired
oscillations near the shocks.
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1.5 Adaption Rules

1.5.1 Error Indication

An effective strategy for the adaptive modification of the nodes requires well-
motivated refinement and coarsening rules as well as a customized error in-
dicator. We understand the error indicator n : £ — [0, 00) as a function of
the current node set = = =" (at time ¢) which serves to assign a significance
value n(§) to each £ € Z. The value 7(&) is required to reflect the local
approximation quality of the interpolation around £ € =. The significances
n(€), & € Z, are then used in order to flag single nodes £ € = as “to be
refined” or “to be coarsened” according to the following criteria.

Definition 1 Let n* = maxeczn(€), and let 0., Orer be two tolerance values
satisfying 0 < O.s < O < 1. We say that a node £ € = is to be refined,
iff n(€) > Orer - ", and € is to be coarsened, iff n(§) < Ous - 1"

In our numerical examples typical choices for the relative tolerance values
are 0, = 0.001 and 0., = 0.2. Note that a node £ cannot be refined and
be coarsened at the same time; in fact, it may neither be refined nor be
coarsened.

Now let us turn to the definition of the error indicator . We follow along
the lines of [35], where a local scheme for the detection of discontinuities of
a surface from scattered data was developed, and we let

(&) = [u(§) — s(§)],

where the thin plate spline interpolant s = sy matches current values of
u = u(t,-) at a neighbouring set N' = N(£) C =\ {£} of current nodes,
i.e. s(v) = u(v) for all v € N. In our numerical examples, we preferred to
use the thin plate spline ¢1(r) = r?log(r), and thus the ansatz (1.12) with
k = 1. This particular interpolation scheme achieves to reconstruct linear
polynomials. In this case, the value 7(€) vanishes whenever u is linear around
&. Moreover, the value n(§) is small whenever the reproduction quality of u
by s around ¢ is good. In contrast, a high value of n(§) typically indicates
that u is subject to strong variation locally around &.

1.5.2 Coarsening and Refinement

In order to balance the approximation quality of the model against the re-
quired computational complexity we insert new nodes into regions where the
value of 7 is high (refinement), whereas we remove nodes from = in regions
where the value of 7 is small (coarsening).

To avoid additional computational overhead and complicated data structures,
effective adaption rules are required to be as simple as possible. In particular,
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these rules ought to be given by local operations on the current node set =.
The following coarsening rule is in fact very easy and, in combination with
the refinement, it turned out to be very effective as well.

Coarsening. A node £ € = is coarsened by its removal from the current
node set =, i.e. = is modified by replacing = with =\ {¢}.

As to the refinement of a node ¢ € =, we follow along the lines of the
previous paper [11], where the effective refinement rules were motivated on
the basis of available local error estimates for radial basis function interpo-
lation. For the special case of thin plate spline interpolation, the local error
estimate at x € {2 is according to Wu and Schaback [87] of the form

u(z) — s(x)] < C - W () (1.17)
where C' > 0 is a constant depending on u, and (for some radius ¢ > 0)

hao(z) = sup dy(y)

ly—zl<e

is the local fill distance of N around x, with
dy(y) = min ||y — ||

being the Euclidean distance between the point y and the set N'. We remark
that for the special case £k = 1,d = 2, the thin plate spline interpolation
scheme is due to [35] locally of second order accuracy.

As suggested in [11], the reduction of the local error (1.17) around any £ € =
is accomplished by reducing the distance function dy = min,ecp || - —v|| in a
local neighbourhood of €.

Now recall that for a fixed node set = C R? and any & € =, the Voronoi tile

Ve={zeR?: dz=(z) = |z — ¢||} C R

of ¢ w.r.t. = contains all points in R? whose nearest point in = is £&. The
tile Ve is a convex polytope, whose vertices are referred to as the Voronoi
points, forming a finite point set Ve in the neighbourhood of {. Figure 1.2
shows the Voronoi tile V; of a point £ along with the set Vg of its Voronoi
points. For more details on Voronoi diagrams, we refer to [65]. Observe, that
for £ € N the distance function dyr is convex on V. Moreover, it has local
maxima at the Voronoi points in V. Altogether, this gives rise to define the
local refinement of nodes as follows.

Refinement. A node ¢ € = is refined by the insertion of its Voronoi points
into the current node set =, i.e. = is modified by replacing = with ZU V.
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Figure 1.2: Refinement of the node £. The Voronoi points (¢) are inserted.

1.6 Numerical Results

We have implemented the proposed advection scheme for the special case of
two dimensions, i.e. d = 2. In this section, the performance of the method
on nonlinear equations (1.5) is shown. To this end, we considered using two
model problems: Burgers equation, where the flux function is given by (1.6),
and the Buckley-Leverett equation, whose flux function is (1.7).

1.6.1 Burgers Equation

Burgers [17] introduced the nonlinear flux function (1.6) in the hyperbolic
conservation law (1.1) as a mathematical model of free turbulence in fluid dy-
namics. Burgers equation is nowadays a standard test case, popular mainly
for the following reasons: (a) it contains the simplest form of a nonlinear
advection term u - Vu simulating the physical phenomenon of wave motion,
and (b) for its shock wave behaviour: As soon as the shock front occurs,
there is no classical solution of the PDE and its weak solution becomes dis-
continuous.

In the test case, the following initial condition is used.

lz—c||? )
ex for ||z —¢|| < R
up(z) = P (”“CHLRQ | |

0 otherwise

with R = 0.25, ¢ = (0.3,0.3)7, and we let the unit square Q = [0,1]*> € Q =
R? be the computational domain, cf. [30]. Moreover, we selected the value
e = 2% 1072 for the diffusion coefficient in (1.5), and we let » = (1,1)7 in

(1.6), yielding a flow field along the diagonal of €.
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solution w for four different

time steps, t = tg, t2, tso, t160 (left), and the corresponding node distribution
(right).
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Figure 1.4: Burgers equation: Number of nodes per time step.

Initially, ug is sampled at 4446 randomly chosen points in the unit square,
yielding the initial node set Z° C Q. Moreover, a constant time step size
7 = 0.0075 has been selected. A plot of the solution u at the three time steps
ty =2-7,tgg = 80 - 7, and t150 = 160 - 7 is shown in Figure 1.3.

Observe that the node adaption scheme achieves to localize the support of
the solution u very effectively. Moreover, the shock front propagation is rea-
sonably well resolved by the distribution of the current nodes, cf. the time
steps t = tgg, t1g0 in Figure 1.3. As already observed in the numerical exam-
ples of the previous paper [11], where we studied passive (linear) advection,
this confirms the utility of the customized adaption rules yet once more.
Figure 1.4 shows a plot of the number of nodes per time step. The num-
ber of nodes, initially #=° = #Z" = 4446, immediately drops down to
#=% = 1484. This is due to adaptivity, starting at time ¢ = t5. Then, the
number of nodes remains roughly constant for a while. Due to the growing
support of u, a moderate increase of the number of nodes can be observed in
the second half of the simulation, resulting in #2160 = 1841 after the final
time step ¢ = t140-

1.6.2 Buckley-Leverett Equation

Buckley and Leverett [16] introduced the flux function (1.7) in hyperbolic
conservation laws of the form (1.1) in order to describe the flow of two differ-
ent liquids in a porous medium. This two-phase flow problem is typically en-
countered in applications of o0il reservoir modelling, where specific enhanced
oil recovery processes are simulated. When an oil reservoir is tapped, a cer-
tain amount of oil flows out on its own due to the high reservoir pressure.
After the flow has stopped, there is usually still a large amount of oil in



20 CHAPTER 1. ADAPTIVE MESHFREE ADVECTION

the reservoir pores. A standard method like waterflooding can now be used,
where a fluid (e.g. water) is injected into a well in a reservoir to displace
the contained hydrocarbons (e.g. oil) and produce them from another well.
If gravity effects and capillary forces are neglected and the fluzx field (total
velocity field) is known, the two-phase flow can be approximated by the sat-
uration equation only, namely the Buckley-Leverett equation. Further details
are explained in the final Chapter 4.

In our test case, we assume a single water injection well in the center of a
100% oil saturated, homogeneous, porous medium (reservoir rock) defined
on the unit square. We allow open boundaries, so that the displaced oil can
leave the computational domain Q = [0,1]2 € Q@ = R2. Here, the function v
quantifies the saturation of water in the reservoir pores. The values of u lie
between 0 and 1, where © = 1 denotes pure water and u = 0 pure oil. In this
case, the initial condition (1.2) is given by

1 for [z —¢|| < R
up(r) = .
0 otherwise

with the injection well centered at ¢ = (0.5,0.5)7 and with radius R = 0.05.
Thus, initially the water saturation u inside the injection well is 1 and outside
the well it is 0. A radial total velocity field r = (z — ¢)/||z — ¢|| in (1.7) is
assumed, so that the injected water should displace the oil radially. We
remark, that any near borehole effects are neglected. We decided to select
a constant time step size 7 = 0.001, and the simulation comprises 264 time
steps. Moreover, we let ¢ = 4 % 1073 for the diffusion coefficient in (1.5).
Finally, we selected the value p = 0.5 for the viscosity ratio of water and oil,
appearing in the flux function (1.7).

The evolution of the oil’s displacement by water is shown in Figure 1.5 (3D
view and top view) and Figure 1.6 (side view) for four different times ¢ =
to, ta, t132, tags. Initially, the function ug is sampled at a set =0 of #=° = 4446
of randomly distributed nodes.

Already after the second time step, the nodes are adapted to the vicinity of
the well, and the number of nodes immediately drops down to #Z=% = 128,
see Figure 1.7. As soon as water flows into the well, a shock wave is formed,
and a discontinuity in uw can be observed, cf. Figures 1.5 and 1.6. In this
case, a certain amount of oil is displaced immediately, whereas beyond the
shock front there is a mixture of oil and water, with less oil at proceeding
time. This phenomenon is referred to as the rarefaction wave.

Figures 1.5 and 1.6 also show a comparison of the numerical and the analytic
solution, the latter determined by Welge’s tangent method [86]. It can be
observed, that the adaptive distribution of nodes achieves to capture the
propagating shock front (the solid line in Figure 1.6) well. This helps to
reduce the required computational costs while maintaining the accuracy, due
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Figure 1.5: Buckley-Leverett equation: The saturation u (3D view, left col-
umn; top view, right column), and the analytic solution (solid line, right
column) for four different time steps t = to, to, t132, tags (left).
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Figure 1.6: Buckley-Leverett equation: The saturation u (nodes), and the
analytic solution (solid line) for four different time steps t = to, to, t132, toe4,
side view.
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Figure 1.7: Buckley-Leverett equation: Number of nodes per time step.

to higher resolution around the shock. Note that since the radius of the
propagating shock front increases linearly with time, the number of nodes
increases linearly at proceeding time, ending up with #2264 = 1967 at the
final time step ¢ = ty44 of the simulation, see Figure 1.7 .

1.7 Conclusion

The meshfree method of backward characteristics for linear (passive) advec-
tion from the previous work [9, 11] has been extended for solving nonlinear
transport problems. In order to avoid degeneration of characteristic curves, a
vanishing viscosity approach has been added to the advection scheme. More-
over, the local interpolation scheme, using thin plate splines, has been mod-
ified accordingly. An error indicator derived from the interpolation scheme
yields in combination with customized adaption rules an effective distribution
of nodes during the simulation. Numerical examples on nonlinear advection-
dominated PDEs confirm the good performance of the proposed method.
We finally remark that the proposed method is potentially useful for higher
dimensional problems. Note, that our approach poses no principal restric-
tions to enhancements in higher dimensions. However, the implementation
of the scheme is not yet extended to dimensions d > 2.

We also point out, that the vanishing viscosity approach, i.e. the introduction
of the Laplacian Au, imposes a time step restriction to the proposed explicit
method due to stability requirements. An implicit version of the scheme
would necessitate the solution of a large system of nonlinear equations. The
implementation of an efficient technique solving this kind of problem was not
considered, yet.
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Furthermore, the proposed meshfree method is not conservative in the clas-
sical sense, cf. Section 4.1 in [50]. In fact, it is unclear how to measure the
mass, as each particle carries a concentration value, which is representative
for some region around it. The size of that region should depend on the
density of nodes in the surrounding region.

As many relevant applications, however, require the conservation of mass,
momentum, or energy, constituting the fundamental laws of physics, this
property should also be satisfied by the numerical scheme. Therefore, the
following Chapter 2 focuses on the development of a conservative, adaptive
advection schemes.



Chapter 2

Adaptive Conservative
Advection

In this Chapter a conservative semi-Lagrangian advection scheme is designed
in order to solve linear advection equations in two space variables. The pro-
posed method works with a combination of finite volumes on an unstruc-
tured mesh, which is given by a Voronoi diagram, and the semi-Lagrangian
approach for time evolution as introduced in Chapter 1. Moreover, the mesh
is subject to adaptive modifications during the simulation, which serves to
effectively combine good approximation quality with small computational
costs. The required adaption rules for the refinement and the coarsening of
the mesh rely on a customized error indicator similar to the rules explained in
Section 1.5 of Chapter 1. Additionally, the implementation of boundary con-
ditions is addressed. Numerical results finally confirm the good performance
of the proposed conservative and adaptive advection scheme.

2.1 General Overview

Finite volume schemes provide well-established conservative methods for
solving the governing equations of advection problems. However, explicit,
standard finite volume methods possess time step restrictions for the sake of
their stability. In contrast to Eulerian schemes, Lagrangian particle methods
require often less restrictive conditions on the time step.

Here, a set of particles is followed through space and time. However, the dis-
advantage of Lagrangian schemes is, that the set of initial distribution of par-
ticles may become greatly changed and rendered unsuitable to approximate
the solution of the problem. To overcome this problem, a semi-Lagrangian
approach can be used, in which the paths of particles are followed, that pass
through given positions. In other words, the particles are traced back over
one time step to determine their upstream locations at the previous time
level. The solution values carried by the particles at the upstream loca-

25



26 CHAPTER 2. ADAPTIVE CONSERVATIVE ADVECTION

tions are usually determined by some interpolation as shown for a meshless
method in Chapter 1. The advantage of the semi-Lagrangian approach is,
that it combines the less restrictive stability requirement of particle methods
with the Eulerian idea of fixed nodes, where particles have to pass through.
The main difficulty of semi-Lagrangian methods is the satisfaction of discrete
conservation, i.e. Lagrangian methods are usually not conservative. A more
comprehensive discussion on these and related aspects concerning Eulerian
versus Lagrangian schemes for hyperbolic conservation laws is offered in the
textbooks [26, 50, 57].

Considerable effort has been made recently in order to construct conserva-
tive semi-Lagrangian methods [47, 66, 67]. More recently, conservative semi-
Lagrangian Finite Volume schemes have been developed in [64, 75]. Their
formulation of the discrete problem is based on satisfying a physical con-
servation constraint in away that conservation is satisfied by construction.
With their approach, higher order schemes can be developed in a straight-
forward manner. The main weaknesses of their advection schemes are, that
they work on Cartesian meshes and they are not adaptive. In fact, these
papers’ methods work with a rectangular grid, respectively, which is fixed
throughout a simulation. In our opinion, however, adaptivity is an essential
requirement, especially when modelling multiscale phenomena, in order to
effectively balance a methods approximation quality and its computational
costs.

2.2 Introduction

A second order accurate semi-Lagrangian finite volume method is proposed
for passive advection, which is both conservative and adaptive. To this end,
the method works with control volumes of an unstructured adaptive mesh,
which is given by the Voronoi diagram of current nodes (particles). The node
set is corresponding to a set of moving particles. Moreover, the node set is
subject to adaptive modifications during the simulation, and so is the Voronoi
diagram to be updated accordingly. This requires customized adaption rules
for the dynamic refinement and coarsening of the node set as discussed in
Chapter 1. The adaption rules rely on available local error estimates at the
current nodes as discussed in Section 1.5.

We remark that the proposed method can be viewed as an extension of the
previous conservative but non-adaptive advection schemes by Scroggs & Se-
mazzi [75] and by Phillips & Williams [64]. Indeed, adaptivity is one crucial
feature of our method. It enhances the method’s accuracy and allows us to
capture discontinuities of the solution with high resolution.

Additionally, the proposed scheme is highly flexible by using the Voronoi
diagram of the current nodes. Therefore, there is no restriction on the dis-
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tribution of the nodes in the computational domain.
Consider the passive advection equations, given by a scalar time-dependent
hyperbolic conservation law of the form
ou
— + Vau =0, 2.1
o " (2.1)
where for a compact time interval I = [0,7] C R, T' > 0, and the computa-
tional domain Q = R2, the velocity field

a=a(t,x), tel, x e,

is assumed to be given. In this case, the scalar solution u : I X — R of (2.1)
usually corresponds to a physical quantity, such as density or concentration.
Especially when modelling physical phenomena in relevant applications, such
as chemical tracer transportation, mass conservation, i.e.,

d

— t,z)dxr =0
G | utayr=o.

is always an important requirement.
Here, we consider solving (2.1) numerically, on the given initial condition

u(0,z) = ug(x), for x € Q. (2.2)

To this end, we work with a conservative semi-Lagrangian adaptive advection
scheme, whose construction is subject of the discussion in this Chapter. For
the moment of the following discussion, we wish to avoid boundary condi-
tions. To this end, we assume that the computational domain is the whole
plane, i.e., Q = R2. But later in Subsection 2.4.3, where the implementation
of boundary conditions is explained, we drop this assumption.

The following construction of our method combines the particle-based semi-
Lagrangian approach of the previous papers [9, 10, 11] with a finite volume
scheme on adaptive unstructured meshes. We remark that the particle-based
scheme of [9] is applied in [11] on a real-world test case scenario concerning
chemical tracer transportation over the arctic stratosphere. However, none of
the meshfree particle schemes in [9, 10, 11] is conservative, which is a severe
drawback in several relevant applications, such as the abovementioned tracer
advection simulation.

Before we expand all relevant ingredients of our method in detail, let us
briefly explain the basic ideas for the construction of the proposed conserva-
tive scheme. Similar to the scheme discussed in Chapter 1 the discretization
works with a finite set = C 2 of nodes, each of which corresponds to one flow
particle at a time ¢ € I. Any current node set = defines a unique Voronoi
diagram V=, which yields a partitioning of the computational domain Q = R?
into #= finite control volumes, Voronoi cells, so that each cell in V= contains
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exactly one node from =. Given the cell average values over the current
Voronoi cells at time ¢, initially given by using a suitable node set = along
with the initial condition (2.2), the advection step ¢ — ¢ 4+ 7 in our scheme
is accomplished as follows.

For each current Voronoi cell V' € V=, a corresponding upstream cell U C ()
is constructed. The upstream cell U contains at time t the proportion of
mass which is advected into the cell V' during the time step ¢t — ¢ + 7. This
duality relation between U and V is used in order to establish (local) mass
conservation by

/Uuh(t,x)dx:/vuh(t—i—T,x)dx, (2.3)

where uj, /= u is an approximation to the solution u of the Cauchy problem
(2.1), (2.2). Details on the construction of the upstream cells are discussed
in Section 2.3.

Moreover, be it sufficient for the moment to remark that, in our second order
advection scheme, uy, in (2.3) is a piecewise linear function over the current
Voronoi diagram V=. Details on the construction of u; are explained in Sub-
sections 2.4.1 and 2.4.2, whereas the implementation of boundary conditions
is explained in Subsection 2.4.3. The adaption rules for the nodes in = are
similar to those discussed in Section 1.5 and are only reviewed briefly in Sec-
tion 2.5. Finally, numerical results are shown for the two test case scenarios
of Section 2.6, where the good performance of the proposed conservative ad-
vection scheme is illustrated.

2.3 Semi-Lagrangian Advection on Voronoi
Cells

In this section, the construction of the abovementioned upstream cells is
discussed. To this end, let us first recall some relevant ingredients from com-
putational geometry, in particular Voronoi diagrams (see the textbook [65]
for more details on Voronoi diagrams). For a fixed finite node set = C R?,
the Voronoi diagram Vz = {V¢}eez of = is a planar graph, which yields a

partitioning
R*= (Vi
¢eE

of the plane into Voronoi cells of the form
Ve {oe® s minfo— ¢l = o -el} c R
SS)

Figure 2.1 shows the Voronoi diagram V= of a planar node set Z. For any
§ € £, its corresponding Voronoi cell Ve is a convex polytope containing all
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points in the plane whose nearest point in = is {. The vertices of V¢ are said
to be the Voronoi vertices of Ve. The nodes in = whose Voronoi cells are
adjacent to the Voronoi cell V¢ are said to be the Voronoi neighbours of .

Figure 2.1: Voronoi diagram V= of a node set =.

2.3.1 Computation of Upstream Vertices

The construction of any upstream cell U relies on the construction of its up-
stream vertices. In order to explain the construction of the upstream vertices,
let V= V¢ be the Voronoi cell of any node § € Z. Moreover, let vi,...,v,
denote the n Voronoi vertices of V', labelled in a counter-clockwise ordering.
For the purpose of constructing the upstream cell U corresponding to V', we
first approximate the upstream positions of the Voronoi vertices vy, ..., v, of
V. This is accomplished in a similar way explained in Section 1.3. However,
instead of tracing backwards the node £ € = itself, we now trace backwards
the n Voronoi vertices of the it’s Voronoi cell V.

Let u™ be the exact upstream position of any vertex v of V satisfying
u(t,u”) = u(t + 7,v). The upstream position u~ of v can be viewed as
the location of a flow particle at time ¢, which by traversing along its tra-
jectory arrives at the vertex v at time ¢ + 7, see Figure 2.2. In case of
passive advection, the shape of the particles’ flow trajectories are entirely
and uniquely determined by the given velocity field a = a(t,z). Note that
the exact upstream position u™ of v is usually unknown. In order to compute
an approximation u to the upstream point u™, this amounts to numerically
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Figure 2.2: The backward trajectory from the Voronoi vertex v € Vg to its
upstream point u~, and its linear approximation, leading to u.

solving the ODE

. dx

&= = a(t, x), (2.4)
with initial condition (¢t 4+ 7) = v, so that the solution x of the initial value
problem satisfies z(t) = u~, cf. (1.9).
Adopting some standard notation from dynamic systems [23], we express the

upstream position u~ of the vertex v as
u = ey, (2.5)

where 57 O — Q denotes the continuous evolution of the (backward)
flow of (2.4). An equivalent formulation for (2.5) is given by v = ®+7tu~,
since ®*7 is the inverse of LT,

Likewise, for the sake of notational simplicity in the following of this text, it
is convenient to express the approximation u of u™ as

u= Uty (2.6)

where UHF7T : Q) — Q is the discrete evolution of the flow. Note that the
operator W' is usually given by any suitable numerical method for solving
the above ODE (2.4). This, however, is only a generic definition for W5+,
In order to be more concrete on the upstream point approximation, we re-
mark that our implementation works with the fixed point iteration

(k)
ﬁ(kJrl):T‘a(t_"%;V_%)a ]{52071,2,..., (27)
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where we let 3 = 0, cf. (1.10). This yields after merely a few iterations a
sufficiently accurate linear approximation (3 of the backward trajectory at v.
In this case, the desired approximation to the upstream point u™ is given by

u=v—ﬁ,

see Figure 2.2, cf. Figure 2.1. We remark that the iteration (2.7) has already
been recommended in the seminal paper on semi-Lagrangian methods by
Robert [70], see also [57, equation (7.66a)].

2.3.2 Construction of Upstream Cells

Recall the generic notation of the discrete evolution U»**7 in (2.6). Note
that for any Voronoi vertex v;, 1 < j < n, of a cell V€ V= we obtain an
approximation to its corresponding upstream point by

u; = \I/t’t—H—V i

s I<j<n.

By connecting the sequence uy, us, ..., u,,u; of consecutive upstream point
approximations we obtain a closed polygon, denoted by U. This defines
the upstream cell of the (bounded) Voronoi cell V. Again, for the sake of
notational simplicity, it is convenient to use the notation

U= yhtry, for V € V. (2.8)

Figure 2.3 shows an example for an upstream cell U = Ug, corresponding to
a Voronoi cell V=V, £ € =.

In order to be able to facilitate the following computations, we require that
every upstream cell U is convex and nondegenerate (details on this are ex-
plained in Subsection 2.4.2). We achieve this by introducing a time step
restriction on 7, similar to the one suggested in [64, 75]. To be more pre-
cise, we first select one initial value 7y > 0, which is gradually reduced by
letting 7411 = 7/2, k > 0, whenever at least one non-convex or degenerate
upstream cell occurs. In our numerical experiments, where we let 75 = 0.1,
this iteration requires only at most four steps. Note that by using this time
step restriction, the duality relation (2.8) is well-defined.

We remark that our condition on the time step 7 is, when compared with
Eulerian schemes, much less restrictive. Indeed, the stability of explicit Eu-
lerian methods is typically dominated by rather restrictive CFL conditions,
which in turn leads to very small time steps, especially when working with
adaptive meshes containing very small finest control volumes [50].
According to the construction of the upstream cells, and in view of mass con-
servation, any upstream cell U is supposed to contain the proportion of mass,
which is to be advected into its corresponding Voronoi cell V' = W at the
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Figure 2.3: Voronoi cell V¢ of the node § € E, and its upstream cell Uk.

(current) time step t — ¢ + 7. This requirement is accommodated by (2.3).
Yet it remains to determine the total mass

my = my(t) = /Uuh(t,x) dx

contained in any single upstream cell U, at time ¢, from the given mass
distribution in the current Voronoi diagram V=. To this end, we compute the
intersections of U with its overlapping Voronoi cells in V=. Further details
on this are discussed in the following section.

2.4 Mass Conservation by Construction

Given the current Voronoi diagram Ve, at time ¢, let Uz = {Ug }ee= denote
the corresponding set of current upstream cells, each of which is given by the
duality relation (2.8). Note that the collection Uz of upstream cells yields
(besides the Voronoi diagram V=) yet another partitioning of the plane, so

that we have
R = | J Ue.

£e=

We make use of the duality (2.8) between the Voronoi cells and the upstream
cells in order to design an advection scheme which is mass conservative by
construction.
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2.4.1 Reconstruction from Cell Average Values

The modelling taken in this approach works with piecewise linear functions
over the Voronoi diagram V=, so that we obtain a second order finite volume
scheme. In order to be more precise on this, the current approximation uy,
to the solution u of the Cauchy problem (2.1), (2.2) is, at any time ¢, an
element of the linear function space

S1(Vz) = {un : @ = R:uy|ynq linear; for all V e V=}

containing all piecewise linear functions on V= N Q.
Starting point for computing the numerical solution wuy(t,-) € S1(V=), at a
time ¢, are known cell average values

1
uy(t) ~ m/vu(t,x) dz, for all V € Vg,

over the current Voronoi diagram V=, where |V| denotes the volume of V' in
R?. Initially, for a suitable set Z of nodes, we let @iy, (0) = uo(§) for all £ € 2,
by using the initial condition (2.2).

Given {uy(t)}vey-, we wish to determine up(t,) € S;(Vz) from the cell
averages, such that

1
uy(t) = ] /Vuh(t, x)dz, for all V € V=, (2.9)

holds. This is accomplished as follows.
For any Voronoi cell V; € V=, we first determine the best approximation
u* € Py satisfying

min S [, — (@) = 3 Ja — ()

veN veN

Here, P; is the space of all linear bivariate polynomials, and N denotes the
set of Voronoi neighbours of £. Hence, the function u* is the least squares fit
of the cell average values @, v € N, in the neighbourhood of V¢.

Next, we determine a constant ¢ such that the function u, = u* + ¢ € P,
satisfies (2.9). This is achieved by letting

c= ﬁ : (mv - /Vu d:c) : (2.10)

where my = |V - wy(t) is the total mass in the cell V. In other words, the
constant ¢ in (2.10) adjusts the linear least square fit u* in order to guarantee
mass conservation (2.9) locally.
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Additionally, we constrain the slopes of the linear approximation u, by re-
quiring the two conditions

minuEN au
maxyen Uy,

mingey up ()

max,cy Uy () (2.11)

>
<

which can be viewed as a slope limiter. Slope limiters are typically employed
in TVD (Total Variation Diminishing) schemes in order to avoid spurious
oscillations of the solution. In order to match the restrictions (2.11), this
needs merely a local correction of uy, so that the resulting modification of
up, continues to satisfy (2.9). To this end, we follow along the lines of the
construction in [82].

2.4.2 Conservative Advection of Cell Average Values

Having computed wuy(t, -) from the current cell averages {uy (t)}v ey, we are
in a position to compute, for any upstream cell U, its total mass

mU:/uh(t,x) dx
U

which is advected into the corresponding Voronoi cell V' = W™/ To this
end, we first decompose U into smaller tiles by computing the intersections
between U and its overlapping Voronoi cells in Vz (see Figure 2.4).
In order to be able to facilitate the computation of these intersections, the
upstream cell U is supposed to be conver, which explains the time step re-
striction suggested in the previous Section 2.3.2. With assuming convexity
for U, this namely allows us to use the efficient intersection algorithm pro-
posed in [63]. The algorithm in [63] requires merely O(p + ¢) operations for
the intersection of two convex polygons with p and ¢ vertices, respectively,
and is explained in Appendix A. In contrast, computing the intersection of
two non-convez polygons would cost O(p - q) operations. For further details
on this, see [63].
Now, the intersections between U and the cells in the Voronoi diagram V=
yield by

v=J wnv)

Vevs

a partitioning of U into merely a small number of tiles, which requires only
local computations. Indeed, this tiling for U is given by all non-empty inter-
sections between U and Voronoi cells in Vz=. Figure 2.4 shows one example,
where one upstream cell U is decomposed into four tiles, Uy, Us, Us, Uy, so
that U:U1UU2UU3UU4.

The current approximation (¢, ) € S1(Vz) to the solution v in (2.1) is now
used in order to determine the total mass my in U. This is done as follows.



2.4. MASS CONSERVATION BY CONSTRUCTION 35

Ul
U
zv,é_hl. V
=, Y,

Figure 2.4: The decomposition of an upstream cell U into four tiles, Uy, Uy, Us
and Uy,.

Note that the restriction of wup(t,-) to any Voronoi cell V' € Vz is a linear
function by definition. So, in particular the restriction of uy(t, ) to any non-
empty tile U NV is linear. This allows us to compute, for any V' € Vz, at
time ¢, the current mass

muny = / up(t, z) dx, for V€ V=, (2.12)
unv

of the linear function u; over the tile U NV exactly. If U NV is empty, then
we have myny = 0. This in turn yields the total mass

my = Z muynv (213)
Vevs

in the upstream cell U at time ¢. In the advection step t — t 4+ 7, the total
mass my is advected from the upstream cell U into the Voronoi cell V. We
establish this local mass conservation by replacing the current cell average
values @y (t) in (2.9) by the updates

1
ﬂv(t + 7') = m my, forall V e VE. (214)

Altogether, we obtain a conservative semi-Lagrangian advection scheme, each
of whose time steps t — t + 7 is given by the following algorithm.
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Algorithm 1 (Conservative Semi-Lagrangian Advection).

INPUT: Time step size 7 > 0, node set = C §2, Voronoi diagram V=, and
cell average values uy (t) for all V € V=.

e Compute piecewise linear up(t,-) € S1(V=) satisfying (2.9) and (2.11).
e FOR cach V € V= DO

— Compute upstream cell U = UHHTV ;

— Compute the total mass my over the upstream cell via (2.12),
(2.13);

— Update cell average values uy (t + 7) using (2.14);
OUTPUT: Updated cell average values uy (t + 1) for all V € Vz.

2.4.3 Implementation of Boundary Conditions

Now let us finally turn to the implementation of boundary conditions. In
the above discussion until now, we have considered the special case where
the computational domain 2 is the whole plane, ie., Q = R2. However,
in specific applications of interest, {2 is bounded, and, moreover, boundary
conditions are of relevance. Therefore, suppose from now that 2 is bounded.
Recall that our proposed scheme works with a partitioning of the plane by
using Voronoi cells, given by the Voronoi diagram V= of the current node set
=. In the situation of a bounded domain 2 C R2, we work with restricted
Voronoi cells of the form V = V N Q, which yields a decomposition of by

0= U V.
Vevs

Note that V = V for V C €, so that this restriction is only relevant for
Voronoi cells which intersect the boundary 9 of the domain €2, in which
case V' # V (see Figure 2.5 for illustration). Now the collection {Ug}¢cz of

all upstream cells, Uz = UH*7V;, yields by their union
0 =JU
ge=
an upstream domain 2~ C R2. This gives rise to define the two sets
Qu=0"\Q and Quu=0\Q".

The set €2, corresponds to a region outside of €2 through which mass is
advected into §2 across its boundary 0f), whereas {2, contains the mass
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Figure 2.5: The upstream cell U of the Voronoi cell V' intersects the boundary
0N of the domain Q. A boundary value my, is assigned to the tile U,.

which is advected from €2 to the exterior of 2 across 0€2. More precisely, we
can explain this as follows.

Note that an upstream cell U may partly or entirely lie outside the domain 2.
Figure 2.5 shows an upstream cell U, which intersects the boundary 0€2. This
leads to a tiling of U as before, but where at least one tile lies entirely outside
of the domain 2. In the situation of Figure 2.5, this is the tile U;. Now in
order to implement boundary conditions concerning the incoming flow, we
assign a boundary value to each such tile of €;,, such as Uy € €);,. This
boundary value, say my,, determines the mass which is advected through
the tile U, into the domain €.

As regards outgoing flow, we remark that the upstream domain 2~ may not
cover the entire domain 2, in which case the set €2, is non-empty. The mass
contained in ., is advected into regions outside of the domain 2.

2.5 Adaption Rules

One important feature of our advection schemes is its adaptivity. Adaptivity
requires the modification of the node set = after each time step t — t+7 of the
above Algorithm 1. This is in order to be able to balance the two conflicting
requirements of good approximation quality and small computational costs.
In fact, for the sake of reducing the computational complexity we wish to
reduce the size of the node set =, whereas for the sake of good approximation
quality we prefer to increase the density (and thus the size) of the node set
= in Q.
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We have combined the proposed conservative advection scheme with the ideas
of the adaption strategy discussed in Section 1.5 and in [9, 10, 11], in order
to obtain an adaptive and conservative semi-Lagrangian advection method.
In the following, we briefly review the basic ideas of the adaption strategy
and point out the modifications required to guarantee a conservative scheme.

2.5.1 Error Indication

As described in Section 1.5 we use a customized error indicator in order to
adaptively modify the node set Z. A significance value n(&) for each £ € = is
required to reflect the local approximation quality of the cell average @y, (t)
around £ € =. These significances n(§), £ € Z, are again used in order to flag
single nodes £ € = as “to be refined” or “to be coarsened”.

Definition 1 in Section 1.5 can be carried forward to our conservative advec-
tion scheme, whereas the relative tolerance values 6. and 6. are slightly
modified. To be precise, we let 0.5 = 0.05 and 0, = 0.2 in our numerical
experiments.

Following along the lines of [35], the error indicator is now given by

(&) = luve (t) = s(&)]; (2.15)

where for a set NV C Z\ {¢} of neighbouring nodes of &, the thin plate
spline interpolant s = sy in (2.15), satisfying the interpolation conditions
s(v) = ay, (t) for all v € N, is of the form

5= all-—v|Plog(l| - —vIl) +p

(cf. Section 1.4). Here, p is a linear polynomial in two variables and || - ||
denotes the FEuclidean norm. For more details concerning thin plate spline
interpolation, due to Duchon [25], and related interpolation methods, the
reader is referred to the recent tutorial [42].

Hence, the thin plate spline interpolant s in (2.15) matches current cell av-
erage values of uy, (t) in the neighbourhood of the Voronoi cell Vg, but not
at Vg itself, i.e., we have @y, (t) # s(§) in general. Now the error indication
n(§) for the node ¢ is small whenever the reproduction quality of u by s
around ¢ is good. In contrast, a high value of n(§) typically indicates that u
is subject to strong variation locally around £. Indeed, this observation relies
on available local error estimates for thin plate spline interpolation (see the
corresponding discussion on this in [9, 11, 10]). We remark that the error
indicator allows us to locate discontinuities of the solution u quite effectively.
This is supported by the numerical results in the following Section 2.6.
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2.5.2 Coarsening and Refinement

Similarly to the adaption rules of the meshless advection scheme discussed
in Section 1.5.2, we can balance the approximation quality of the solution
against the required computational complexity by inserting new nodes into
regions where the value of 7 is high (refinement), whereas we remove nodes
from = in regions where the value of 7 is small (coarsening).

—_
—

Coarsening. A node £ € = is coarsened by its removal from the current
node set Z. Le., in this case we let = = =\ £, and the Voronoi diagram Vz is
updated accordingly in order to obtain the modified Voronoi diagram Vz\e.

—

Refinement. A node £ € = is refined by the insertion of the n Voronoi

vertices vy, ..., Vv, of its corresponding Voronoi cell V¢. Le., in this case we
let = = Z2U{vy,...,v,}, and the current Voronoi diagram Vg is updated
accordingly.

2.6 Numerical Results

In this section, the performance of our advection scheme is evaluated by
using two numerical experiments. In the first experiment, the accuracy and
convergence is analyzed. This is done by considering the test case suggested
by Phillips & Williams in [64], which allows us to compare our numerical
results with those in [64] directly. In the second experiment, we apply our
advection scheme to the slotted cylinder, a well-known test case suggested
by Zalesak [89]. This illustrates the efficacy of the chosen adaption strategy,
and, moreover, it confirms that our method is conservative.

The numerical experiments were prepared on a personal computer, model
IBM 236623G (Genuintel Pentium(R) 4 1600MHz processor, 256 MB physical
memory). The algorithms were implemented by using MATLAB, Version 6.5,
Release 13.

2.6.1 Experiment 1

According to the numerical experiment suggested in [64], we consider solving
the hyperbolic equation (2.1) on the computational domain Q = [1,2]? C R2.
As shown in Figure 2.6 (a), we let a(z) = (z1, —x2), © = (21, 23), for the
velocity field. The initial condition suggested in [64] is given by

u(0,z) =0, for x € (1,2] x [1,2).
For the boundary conditions at the two inflow boundaries, we let
u(t,r) = 1+ 22, for 1 =1, 29 € [1,2], t > 0,

(2.16)
u(t,r) = 1+ 4z3 for xg =2, 21 € [1,2],t > 0.
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Figure 2.6: (a) Velocity field and (b) steady state solution u on §2.

This condition (2.16) determines the boundary values of the incoming flow.
We remark that in this model problem, the solution of (1.4) converges to the
steady state solution

u(r) =1+ (2172)%, x €, (2.17)

as displayed in Figure 2.6 (b). In order to compare our results with those of
Phillips & Williams [64], we proceed as follows.

We first create a nested sequence of four different node sets =, C 2, such
that each corresponding Voronoi diagram V=, yields a regular mesh with
mesh size h. The sequence of these four meshes is displayed in Figure 2.7.
In order to make a fair comparison with the results in [64], we keep the node
set =5, fixed throughout each simulation. Moreover, we also let 7 = 0.01
fixed, which leads to convex and nondegenerate upstream cells during the
simulation.

According to [64], the simulation terminates, as soon as the stopping criterion

Hﬂv(t + 7') - ﬂv(t)

o <1077, for all V € V=

=R

(2.18)

is satisfied. In this case, the numerical solution has reached the steady state
approximatively.

In order to measure accuracy and convergence order, let 4, ~ u denote this
final approximation to the steady state u in (2.17), on a mesh of width h.
The accuracy of 4y, is measured by using the relative error

o Ju — ah”p

E,(h) = — : (2.19)
[t I
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Figure 2.7: A sequence of four regular Voronoi diagrams V=, with mesh
widths (a) h = 0.25, (b) h = 0.125, (c) h = 0.0625, (d) h = 0.03125.

where we let p = 1,2 or p = oo for the corresponding norm. Furthermore,
the expression

 log(By(h)/ By(h/2))
o log(2) ’

yields an estimate for the convergence order, where E,(h) and E,(h/2) are
the errors (w.r.t. the selected norm p = 1,2, 00) observed on two subsequent
meshes (see Figure 2.7).

Table 2.1 shows the dependence of the error E,(h) in (2.19) on the mesh
width A for the norms || -1, || - |2, and || - ||, together with the correspond-
ing convergence orders k, in (2.20). The results agree very well with those of
Phillips & Williams in [64]. In fact, our scheme reaches the expected order
of 2 in all three norms. In [64] four different schemes, denoted as A, B, C,

(2.20)
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Figure 2.8: A sequence of four irregular Voronoi diagrams V=, with mesh
widths (a) h = 0.25, (b) h = 0.125, (c) h = 0.0625, (d) h = 0.03125.

and D, are introduced. In comparison with the schemes A, C, and D, our
method is more accurate. We can explain this as follows. Firstly, in contrast
to the schemes A and C in [64], our scheme is based on a centered recon-
struction stencil, i.e., on each cell Ve we use all Voronoi neighbours of the
node £ in order to reconstruct the piecewise linear u,. Secondly, our slope
limiter in (2.11) is less restrictive than the one used in scheme D of [64].
But the scheme B in [64] yields more accurate results in terms of approxi-
mation errors and convergence orders. This is because centered differences
without any slope limiter are used in the scheme B of [64]. The absence of
the slope limiter, however, often leads to an oscillatory solution uj, which is
considered to be a severe drawback in many relevant applications.

In the following of this experiment, we now investigate the influence of mesh
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h Eq(h) ky Es(h) ks Ew(h) koo
0.25 3.962 - 1072 - 4.653 - 1072 - 7.230 - 1072 -
0.125 9.598-107% 2.05|1.178-10"2 1.98 | 2.441-10"2 1.57
0.0625 | 1.872-1073 2.36 | 2.228-1073 2.37 | 6.471-1073 1.91
0.03125 | 2.789-10~* 2.74 | 3.391-10~* 2.75 | 1.452-1073 2.16

Table 2.1: Convergence results for regular Voronoi diagrams Vs, (Figure 2.7).

h Ey(h) kq Esy(h) ko Eoo(h) Foo
0.25 1.999 - 102 - 2.749 - 1072 - 4.734 - 1072 -

0.125 7.308-107% 1.451]9.569-10"3% 1.52 | 1.706 - 10~2 1.47
0.0625 | 2.065-1073 1.82[2.483-10"% 1.95|5.362-102% 1.67
0.03125 | 5.491-10~* 1.91 | 6.432-10* 1.95| 1.469-10~2 1.87

Table 2.2: Convergence results for drregular Voronoi diagrams Vg, (Fig-
ure 2.8).

irregularity on the accuracy of our scheme. To this end, we work with a se-
quence of four irregular meshes V=, (displayed in Figure 2.8) comprising the
same number #=;, of cells as in the regular case (see Table 2.3). In this irreg-
ular case, h is considered as a measure of an average mesh width. Table 2.2
shows the approximation errors and convergence orders which were obtained
by using the same model problem as discussed above, but with using the
mesh sequence in Figure 2.8 instead of the one in Figure 2.7. We observe
that the errors E,(h) are of the same magnitude as in the regular case, but
the convergence orders k), are slightly lower.
We remark that a higher number of time steps, and thus more CPU seconds,
are necessary for the irregular meshes in order to reach the steady state
satisfying the stopping criterion (2.18). This is shown in Table 2.3. Note also
from Table 2.3 that the advection scheme converges with a fewer number of
time steps (for both cases, regular and irregular), as the mesh width h is
reduced. This confirms the utility of semi-Lagrangian schemes. In contrast,
Eulerian schemes typically require smaller time steps when the mesh is re-
fined, which in turn leads to an increasing number of necessary time steps.
In order to investigate, how much CPU time is used by the different parts
of the proposed semi-Lagrangian scheme (see Algorithm 1 in Section 2.4.2),
we register the CPU seconds needed to compute one time step on the finest
regular and irregular mesh (h = 0.03125, #= = 1024). The results are
presented in Table 2.4, where ¢, is the average time used to compute the
piecewise linear reconstruction function wuy, t, is the average time used to
compute the upstream cells Ug, § € =, and t,,, is the time used to compute
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regular mesh irregular mesh
h #=, || time steps | CPU seconds | time steps | CPU seconds
0.25 16 189 1.442 202 1.926
0.125 64 129 4.356 157 6.520
0.0625 256 108 12.016 125 17.245
0.03125 | 1024 95 30.424 99 39.314

Table 2.3: Time steps and CPU seconds required to reach the steady state
Up,.

the total mass in each upstream cell and to update the cell averages uy. We
also give the percentage for each step in Algorithm 1 in Table 2.4, which
clearly demonstrates, that the computation of the total mass based on the
intersection of overlapping Voronoi cells uses 72% to 73% of the total CPU
time t;,; in each time step. Table 2.4 also shows, that the CPU times for the
different steps are independent of the irregularity of the mesh.

regular mesh irregular mesh
CPU seconds | % | CPU seconds | %
t, 0.049 | 15 0.059 | 15
ty 0.040 | 13 0.047 | 12
tm 0.231 | 72 0.293 | 73
tiot 0.320 | 100 0.399 | 100

Table 2.4: CPU seconds for the different computational steps of the conser-
vative semi-Lagrangian scheme.

In conclusion, this numerical experiment shows that our semi-Lagrangian
scheme reaches second order accuracy on both structured and unstructured
Voronoi diagrams (see Tables 2.1 and 2.2). This provides high flexibility,
especially in view of more complicated geometries. In the following exper-
iment, we investigate the conservation properties of our advection scheme.
Moreover, we combine the enhanced flexibility of unstructured meshes with
local mesh adaption.



2.6. NUMERICAL RESULTS 45

2.6.2 Experiment 2

In this experiment we consider the rotating slotted cylinder, a popular test
case suggested by Zalesak [89]. Here, Q = [—0.5,0.5]> C R? and the initial
condition is given by

1 forze D,
u(0,7) = { 0 otherwise, (2.21)

where D C Q is the slotted disc of radius r = 0.15, centered at (0,0.25) with
slot width 0.06 and length 0.22, see Figure 2.9 (a).
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Figure 2.9: The slotted cylinder. (a) Initial condition and (b) velocity field.

In the original test case of Zalesak, the slotted cylinder is rotated by a steady
flow field a(z) ~ (x9, —x1), where x = (x1,22). We decided to replace this
velocity field by

ssin(2¢(x) — 5) + 32 for 25 <0,
? 2 (2.22)

1 for z9 > 0,

a(z) = (12, —11) {

whose azimuth angle is given by
arctan(—wy /1) for z; > 0,
p(r) =
arctan(xy/ze) + 5 for z; <0.

This velocity field rotates the slotted cylinder clockwise with constant an-
gular velocity in the first and second quadrant, whereas the cylinder is ac-
celerated in the fourth quadrant, and decelerated in the third quadrant, see
Figure 2.9 (b). The maximum angular velocity w = 2 is attained in the lower
half of the coordinate system, namely at the points on the vertical line

{z = (21,29) 121 = 0,29 < 0}.
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The slotted cylinder is stretched when passing through the acceleration part
of the velocity field in the fourth quadrant, whereas it is squashed in the
deceleration part of the third quadrant in order to recover its original shape
of the initial condition at each full revolution.

Initially, a set = C € of 1500 randomly distributed nodes is chosen. The
initial condition (2.21) is used in order to assign a cell average value wy (0)
in (2.9) to each Voronoi cell V' € V= of the initial Voronoi diagram V=. The
initial nodes are automatically adapted to the discontinuities of the initial
condition wug, by using the adaption strategy discussed in the previous Sec-
tion 2.5, see Figures 2.10 (b),(c).

At each revolution of the slotted cylinder, the cell average values uy are
decreasing, as soon as the cylinder enters the acceleration part of the velocity
field, see Figure 2.11. This behaviour is due to the mass conservation of
the scheme. In contrast to this, in the deceleration part, the cell average
values uy are increasing. Moreover, in this region, the initial shape of slotted
cylinder is gradually recovered, see the Figures 2.11, 2.12, and 2.13. Our
simulation of this model problem comprises six full revolutions of the slotted
cylinder. During the simulation, we have recorded the number of current
nodes, the variation of the time step size 7, and the ratio of the first mass

moment
Z ﬂv(t> — min(t) + mout<t>

RFM(t) = 125 : (2.23)

Z uy (0)

Veves

where my, (t) is the total mass of the incoming flow and m.(t) is the total
mass of the outgoing flow, during time [0,¢], respectively. Our numerical
results are reflected by Figure 2.14. Let us provide a few comments on the
three graphs of this figure.

The number of nodes is increasing, whenever the slotted cylinder passes
through the accelerating part of the velocity field (2.22). In this case, the
cylinder is stretched, and so more nodes are needed in order to adaptively
resolve the elongated edges of the cylinder. We remark that the moderate
increase in numbers of nodes at the beginning of the simulation is due to
numerical diffusion. In contrast to this, the number of nodes is decreasing,
whenever the cylinder enters the decelerating part of the velocity field. In
this case, the cylinder is gradually squashed back to its original shape, and
so fewer nodes are needed in order to adaptively resolve the cylinder’s edges.
Altogether, this explains the periodic behaviour of the graph concerning the
number of nodes in Figure 2.14, first row.

Figure 2.14 shows also the variation of the time step 7 in its second row. As
mentioned in Subsection 2.3.2, the time step size is determined, such that
all upstream cells are convex. Not surprisingly, this leads to an acceleration
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Figure 2.10: The slotted cylinder. (a) 3D view, (b) node distribution, and
(c) Voronoi diagram of the initial condition (left column), and after six rev-
olutions (right column), (d),(e),(f).



48 CHAPTER 2. ADAPTIVE CONSERVATIVE ADVECTION

L]

Figure 2.11: The slotted cylinder. 3D view on the evolution of uy (¢) at four
different times, (a) t = t53; (b) t = t70; (c) t = t102; (d) t = 180, during the
first revolution.
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Figure 2.12: The slotted cylinder. Node distribution during the simulation
at four different times, (a) ¢ = t53; (b) t = t7; (c) t = tio2; (d) t = t1s0,

during the first revolution.
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(a) (b)

(c) (d)

Figure 2.13: The slotted cylinder. Voronoi diagram V= during the simulation
at four different times, (a) ¢t = t53; (b) t = t70; (¢) t = t102; (d) t = t1s0,
during the first revolution.
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Figure 2.14: The slotted cylinder. Number of nodes, time step size 7, and
ratio of the first mass moment (REM).

(long time steps), whenever the cylinder passes through the accelerating part
of the velocity field, whereas a slow down of the cylinder (short time steps)
is observed in its decelerating part. Altogether, this explains the correlation
between the time step size 7 and the number of nodes, as shown in Fig-
ure 2.14.

As to mass conservation, we have implemented boundary conditions, as ex-
plained in Subsection 2.4.3. We let my = 0 for all tiles U € €);,, and so we
have my,(t) = 0, for all ¢ € [r,T], for the total mass of the incoming flow.
Figure 2.14, third row, shows the ratio of the first mass moment, RFM(t) in
(2.23). Note that

RFM(t) =1, forallt e [0,T],

and so this confirms that our proposed advection scheme is conservative.
Figure 2.10 shows the 3D view of the cell averages uy, the node distribution,
and the Voronoi diagram of the initial condition (2.21) in the left column,
in comparison to the corresponding numerical result after six full revolutions
(right column). Observe that the shape of the cylinder is accurately main-
tained during the simulation, and numerical diffusion is widely suppressed.
Finally, the employed TVD slope limiter helps to avoid spurious oscillations
of the numerical solution u,. In fact, the slope limiter serves to guarantee
the non-negativity of the cell averages throughout the entire simulation, i.e.,
ay(t)>0foralltel,V e Vs
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2.7 Conclusion

We have proposed a conservative and adaptive advection scheme for linear
hyperbolic conservation laws. This semi-Lagrangian method works with fi-
nite volumes of an unstructured mesh, given by the Voronoi diagram of a
current node set. The nodes, and so the Voronoi diagram, are subject to
adaptive modifications during the simulation. These modifications are done
according to customized adaption rules, which rely on available error esti-
mates based on scattered data interpolation. This adaptive approach helps to
reduce the required computational costs while maintaining the accuracy, due
to higher resolution around discontinuities in the solution. The implementa-
tion of boundary conditions is considered in order to control mass flow into
or out of the computational domain. As confirmed in two different numerical
experiments, the proposed advection scheme is of second order. The scheme
avoids spurious oscillations of the solution by using a TVD slope limiter in
the reconstruction of linear polynomials. Altogether, the numerical results
confirm the good performance of the proposed conservative advection scheme.

However, we remark that the proposed conservative semi-Lagrangian ap-
proach cannot be extended to nonlinear advection equations in a straight
forward manner. This is mainly due to the computation of the upstream cells
using backward trajectories, as they cannot be determined by the algorithms
suggested in this Chapter. In fact, the simulation of nonlinear transport pro-
cesses requires additional sophisticated techniques, especially for modelling
shock front propagation. The construction of conservative methods for non-
linear transport equations is currently an active research area. Promising
approaches include high order accurate ADER schemes (Arbitrary high or-
der schemes using high order DERivatives), which were recently introduced
in [81, 84]. However, they belong to the class of finite volume schemes and
therefore are subject to more severe time step restrictions due to stability
requirements. Therefore, the idea of a semi-Lagrangian approach is dropped
in the following Chapter 3, where we combine conservative ADER schemes
on unstructured meshes with our powerful and robust adaption strategy in
order to accurately model moving discontinuities.



Chapter 3
Adaptive ADER Schemes

In this work an extension of ADER schemes is presented in order to solve both
linear and nonlinear scalar conservation laws on unstructured triangulations.
The proposed scheme is conservative and belongs to the class of finite volume
schemes. It combines high order reconstruction techniques with a high order
flux evaluation method to update cell average values through fluxes across cell
interfaces. The ADER approach results in an explicit, one-step scheme based
on the solution of generalized Riemann problems via Taylor series expansion
of the solution and the solution of conventional Riemann problems for the
state and the derivatives. Moreover, the triangulation is adaptively modified
during the simulation to effectively combine high order accuracy with locally
refined meshes and therefore reduce the computational costs. The required
adaption rules for the refinement and coarsening of the triangular mesh rely
on a customized error indicator. Numerical experiments confirm the expected
orders of accuracy and show the good performance of the proposed scheme
for linear and nonlinear problems. Finally, the adaptive ADER schemes are
applied to a test case from the oil industry, which plays an important role in
the modelling of fluid flow in petroleum reservoirs.

3.1 General Overview

Modern approaches of constructing conservative, very high order numeri-
cal methods for hyperbolic conservation laws are typically based on the Fi-
nite Volume approach combined with essentially non-oscillatory (ENO) or
weighted essentially non-oscillatory (WENO) techniques. Harten, Engquist,
Osher, and Chakravarthy [38] introduced a one-dimensional cell average ver-
sion of the original ENO schemes. Later, Harten and Chakravarthy [37],
Abgrall [1], and Sonar [79] extended the finite volume formulation of ENO
schemes to unstructured triangular meshes. The central idea of ENO schemes
is to select the smoothest stencil out of several possible ones and then recon-
struct the solution from cell averages with high order accuracy, e.g. by using

53
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high order polynomials. This way, the growth of spurious oscillations can
successfully be avoided. The more advanced WENO schemes were first sug-
gested by Liu, Osher, and Chan [54] and Jiang and Shu [44]. Very recently,
Friedrich [29] constructed WENO schemes on unstructured meshes based on
the dual mesh of a triangulation. In the WENO approach, a set of different
possible reconstruction polynomials is used in order to construct a specific
weighted sum of polynomials. In contrast to ENO schemes the major advan-
tages of WENO schemes are the better convergence to steady-state solutions
and the increased accuracy, especially in smooth regions of the solution.
High order accuracy in time is typically achieved through multi-stage Runge-
Kutta methods. However, to retain the monotonicity properties of the space
discretisation the chosen time discretisation requires to be total variation di-
minishing (TVD) as observed by Shu [77] and Shu and Osher [78]. Ruuth
and Spiteri [71] recently showed, that using such TVD Runge-Kutta methods
constitutes barriers to the order of time accuracy and consequently to the
order of the entire scheme. Thus, in most practical implementations a third
order TVD Runge-Kutta method is used even for very high order WENO
schemes, i.e. the spatial order of accuracy is much larger than three.

A new approach introduced by Toro, Millington, and Nejad in [84] and fur-
ther developed by Titarev in [81, 83] is the so-called ADER approach, which
is an explicit one-step finite volume scheme of Arbitrary high order using high
order DERivatives of piecewise polynomial reconstructions. In [81, 84, 83] a
very high order version of the classical Godunov scheme [32] is constructed,
which leads to an arbitrary high order of accuracy in both, space and time. In
fact, ADER schemes can be interpreted as high order generalizations of the
classical Godunov scheme. In the last few years, the use of ADER schemes
has gained considerable popularity in the field of gas and aerodynamics,
e.g. [72, 73], especially for linear advection problems, and currently consti-
tutes a very active research area, also for nonlinear problems and systems of
hyperbolic equations.

3.2 Introduction

In this paper, high order WENO schemes on unstructured triangulations are
combined with the ADER approach introduced in [84] to solve scalar, linear
and nonlinear conservation laws of the form

Ju

—+V =0 3.1
where for some domain 2 C R? and a compact time interval I = [0,T],
T > 0, the function u : I x Q — R is unknown and f(u) = (fi(u), fo(u))”
denotes the flur tensor. Furthermore, adaptive mesh refinement is included to
balance computational cost and approximation quality. This is important, in
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particular, in the vicinity of discontinuities, that typically occur in solutions
of hyperbolic problems and can be accurately resolved by locally refined
meshes. Therefore, our aim is to combine the ADER approach with adaptive
mesh refinement in order to obtain highly accurate results at reasonable
computational costs.

In general, a high order extension of the classical scheme of Godunov [32]
consists of the three basic operations:

e polynomial reconstruction of the solution from cell average values,
e evaluation of fluxes across interfaces between adjacent cells,
e update (evolution) of cell average values in each cell.

The present paper is arranged by following these main steps. An introduc-
tion to the reconstruction of high order polynomials from cell average values
on unstructured triangulations is given in Section 3.3. The corresponding
WENO reconstruction is addressed and followed by a detailed description of
the stencil selection algorithm. The finite volume formulation of the govern-
ing equation (3.1) on unstructured triangulations is outlined in Section 3.4
together with the presentation of the high order flux evaluation technique us-
ing the ADER approach. The remaining update of the cell average values is
discussed in Section 3.5. The treatment of boundary conditions is addressed
in Section 3.6 before the accuracy of the proposed scheme is evaluated in Sec-
tion 3.7. The brief discussion of the error estimation in Section 3.8 is based
on the ideas presented in Sections 1.5 and 2.5, but the adaption rules and
the corresponding refinement and coarsening strategy have to be modified
accordingly. Finally, the good performance of an adaptive high order ADER
scheme is confirmed by numerical experiments in Section 3.9.

3.3 Reconstruction of High Order
Polynomials

The reconstruction of high order polynomials on unstructured triangulations
is much more difficult than the reconstruction on one-dimensional intervals
or multi-dimensional Cartesian grids. In fact, polynomial reconstruction on
scattered data requires the solution of multi-dimensional interpolation prob-
lems, which typically tend to be ill-conditioned. This problem becomes even
more critical with increasing order of the reconstruction.

To keep the notation short we use multi-indices, i.e. « = (ag, @) with
a; € {0,1,2,..}, i = 1,2, and # = (vy,75) € R? Moreover, we let

la] = oy + ag and 2% = x(@102) = 291252, In the following, let P, denote
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the set of bivariate polynomials of degree at most n. Then, the standard
expansion of any polynomial p € P, is given by

pa) = 3 anle—0)", (3.2)

la|<n

where the a, € R are the coefficients of the Taylor series expansion of p
around b and b = (b1, by) is any point in R?. The set P, is a vector space of
dimension N(n) = 3(n+1)(n+2), and {(- —b)*} 4/, constitutes a basis of
P,.. We remark, that the expansion (3.2) is not a suitable basis for practical
computations. However, we want to keep the notation short for the moment.
Let us assume, that the computational domain € C R? is discretized by
a conforming triangulation 7 (cf. Section 3.3.1 in [55]), formed by the set
T = {1y}, of triangles T, C Q, ¢ = 1,...,#7 . In the finite volume framework
each triangle (cell, control volume) T, carries a cell average value

1
Uy = — | u(x)dzx, 3.3
Ty 39

where |T}| is the area of triangle 7, and u is the solution of (3.1).
Now, in the reconstruction we consider solving the following problem:

Given the polynomial degree m and cell average values u,,, k = 1,...,N,
N =dim P, of the function u on each control volume Ty, , find a polynomial
p € P,, that satisfies

pfl == 17’51 )
ﬁé = ﬂé )

’ ? (3.4)
Doy = Uy -

The linear system (3.4) has a unique solution, iff the Vandermonde matrix

M, — ( T _pe > :

= S 1<k<N, fal<n (3:5)
is non-singular. In this case, we call the set S = {7}, }1<k<n of triangles a
P,-unisolvent or admissible stencil . Note that the matrix M, in (3.5) may
be ill-conditioned due to the following reasons:

e Firstly, as Abgrall has shown in [1], the condition number of the above
system matrix is O(h™"), where h = /|Ty| is a measure for the local
mesh width and n the degree of the polynomial space.

e Secondly, the matrix can be badly conditioned due to the geometry of
the chosen stencil.



3.3. RECONSTRUCTION OF HIGH ORDER POLYNOMIALS 57

The first problem has been considered by Friedrich in [29], who introduces a
scaling factor s = (/|Ty|)~! to obtain a condition number independent from
h.

Therefore, the standard representation (3.2) of a polynomial is changed to

p(x) = Z sllag (z — b)*, (3.6)

laj<n

where a, are the scaled coefficients of p. Therefore, by using the scaled poly-
nomial expansion (3.6), the condition number of the system matrix M, does
not depend on the mesh width h. However, it is still unclear, if this expan-
sion is sufficient to provide a robust reconstruction procedure for strongly
distorted, unisotropic meshes. For this reason, Abgrall suggests in [1] to use
a polynomial expansion based on barycentric coordinates . For simplicity, let
S, = {Th,Ts,....,Tn},n > 3, be an admissible stencil. Then at least one
subset of three elements, say {71, T3, T3}, is an admissible stencil for n = 1.
Then the three linear polynomials A;, i = 1,2, 3, defined by

3
=0/, 1<ij<3  with Y Aj=1 (3.7)
=1

are the barycentric coordinates of the triangle constructed on the barycenters
of T}, Ty, and T3. The polynomial expansion is now given by

plz) = ) adA5AS? (3.8)

la|<n

where a, are the new coefficients and Ay, A3 are two barycentric coordinates
from (3.7). Especially with respect to adaptive mesh refinement, we use the
polynomial expansion (3.8), which is independent of the local mesh width A
as shown in [1] and turns out to be very robust even for strongly distorted
meshes.

The second problem was already considered in previous work [4, 62|, and
can be overcome using overdetermined systems. Instead of using exactly
N neighbouring cells, we work with a slightly larger stencil to enhance the
robustness of our reconstruction procedure. In our computations we typically
use 4 cells for linear, 8 cells for quadratic, and 13 cells for cubic reconstruction.
To guarantee a conservative scheme we need to satisfy

Pe = Uy (3.9)

on the cell T, on which the polynomial p is computed. Therefore, the overde-
termined system (3.4) states a linear least-squares problem with the linear
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equality constraint (3.9), which can be solved (cf. Chapter 21 in [48]). Fi-
nally, we remark, that the entries of the system matrix M,, ¢ = 1,...,#7,
in (3.5) can be computed by using quadrature rules for triangles, that are
exact for the desired polynomial degree n. A detailed list of quadrature rules
for triangles is given in Appendix C.

3.3.1 WENO Reconstruction

WENO methods have been extensively used for one-dimensional problems
in the last decade and also have gained popularity for problems on multi-
dimensional Cartesian grids. The general idea of ENO and WENO schemes
is to chose several stencils S;, ¢ = 1,...,k, where k£ denotes the number of
stencils, and to compute the corresponding reconstruction polynomials p;.
The ENO approach only uses the one polynomial with the least oscillating
behaviour. In contrast, WENO methods work with a weighted sum

p(x) = 3 wpi(x), (3.10)

where the w; are positive, data-dependent, and normalized weights, such that
Zle w; = 1. Originally introduced in [44, 54], the WENO approach was ex-
tended to unstructured meshes in [29, 19]. In order to compute the weights
w; in (3.10), we have to clarify how the oscillation of the corresponding poly-
nomial p; is measured. Numerical tests in [29, 19] have demonstrated, that
a suitable oscillation indicator for a polynomial p on a triangular cell T is

given by
2
=% / 7)1 (D)) dr, (3.11)
1<|a|<n VT
where D = LQ‘QQ is the a-th partial derivative operator with respect to

890(1118:52
x1 and xy. The factor |T|!®I=! eliminates effects due to the local mesh width.
Then, the weights w; can be calculated through

.~
D i1 Wi

Here € is a small positive number to avoid the division by zero. Usually,
numerical results are not very sensitive to the choice of €. In general, how-
ever, larger € are better suited for smooth problems but may generate small
oscillations near shocks, whereas smaller € are better suited for discontinuous
problems. In the literature, typically values of € € [1075 1072] are chosen.
In our computations, we let ¢ = 1075. The positive integer r in (3.12) is
a measure of the sensitivity of the weights with respect to the oscillation
indicator of (3.11). As r tends to infinity, the WENO scheme behaves like a

Ww; =
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classical ENO scheme. On the other hand, if r tends to zero, the oscillation
indicator has almost no effect on the weights, which means that the scheme
becomes an oscillatory, or even unstable scheme. In most applications we
find r € [2,8], and in our implementation we chose r = 4, which turns out
to be large enough to essentially avoid oscillations near discontinuities, but
small enough to improve upon the classical ENO scheme.

3.3.2 Stencil Selection Algorithm

So far, we have assumed to have admissible stencils. However, as shown
in Section 3.6.1 of [55], selecting a small number of reasonable, admissible
stencils on unstructured triangulations is not a trivial task as there is a large
number of possible stencils to choose from. Furthermore, for polynomials of
degree greater than 1 it is unknown, if there is a geometrical property on
unstructured meshes indicating if a chosen stencil is admissible or not.
However, some major aspects for selecting a stencil have to be taken into
account:

e the stencils should be local,

e the number of stencils should be small to keep computational costs
small,

e in smooth regions it is necessary that the stencil is well centered with
respect to the cell T, to obtain a good approximation quality,

e in non-smooth regions one-sided stencils have to be selected to avoid
interpolation across discontinuities leading to oscillations.

Considering the construction of stencils on unstructured triangulations, it is
convenient to define the neighbourhood of adjacent triangles as introduced
in [79].

Definition 2 Let T be a conforming triangulation. Then for any triangle
T, € T the set
KG(T) ={T €T : TNT, isedge of Ty, and T # T}}

is called the von Neumann neighbourhood of Ty and all triangles T € K(Ty)
are level-0 von Neumann neighbours of 7.
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Figure 3.1: A triangle (dark shaded) with (a) level-0 von Neumann neigh-
bours (light shaded) and (b) additional level-1 von Neumann neighbours.

An extended von Neumann neighbourhood of level-1 can be constructed by
merging von Neumann neighbourhoods of the original level-0 von Neumann
neighbours, i.e.

Kv@ = U K@ |\T,

TeKY, (1)

as shown in Figure 3.1(a) and (b). This way, we can extend the von Neu-
mann neighbourhoods level by level, until a desired number of cells, i.e. a
desired size of a stencil for the polynomial reconstruction is reached. Note,
that this procedure typically leads to centered stencils as shown in the top
row of Figure 3.4. In order to construct one-sided stencils in the vicinity of
discontinuous data, we follow the idea of Harten and Chakravarthy in [37]
and use a sectoral search algorithm. Their basic idea is to include only von
Neumann neighbours, whose barycenters lie in specified sectors.

Definition 3 Let T, € T be a triangle with counter-clockwise ordered ver-
tices v1, Ve, v3 € R? and Ji1 = va—v1, fi2 = v3—v1, for = v3—v2, for = V11—V
and f31 = v; — v3, f3o = vy — v3 the vector pairs representing the oriented
triangle edges. Then the sets

Fi={x=vj+nfi1+vfi2: m,72>0}, j=1,2,3 (3.13)
are called the forward sectors of triangle T, (see Figure 3.2).

However, our numerical tests have shown, that the three sectors defined
by (3.13) not always provide stencils with smooth data. Therefore, we intro-
duce additional sectors in order to to cover neighbouring regions of a trian-
gular cell T, that are not covered by the three forward sectors F;, j = 1,2, 3.
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F» v,

Figure 3.3: The three backward sectors of triangle 7.

Definition 4 Let T, € T be a triangle with mi, my, ms € R? denoting the
midpoints of the triangle edges and by; = mo — mq, big = m3 — myq, by =
msz — Mo, boo = m1 — Mo and b3y = my — mgz, bss = mo — mg the vector pairs
representing the oriented lines parallel to the triangle edges. Then the sets

B = {x=mj+mbji +7bp : 11,72 >0}, j=1,2,3 (3.14)
are called the backward sectors of triangle Ty (see Figure 3.3).

The second and third row in Figure 3.4 show stencils of size 6 constructed by
successive von Neumann neighbours with barycenters inside the three differ-
ent forward sectors F; from (3.13) and backward sectors B; from (3.14). We
remark, that the shape of the selected stencils strongly depends on the local
geometry of the mesh. Especially for high order reconstruction, as mentioned
above, a chosen stencil might turn out to be non-admissible in the sense,
that the resulting reconstruction problem has no unique solution. In this
case, such stencils are detected and ignored. However, we remark, that we
never encountered an inadmissible stencil in our computations when we use
the approach in [4, 62], where slightly larger stencils lead to overdetermined
systems.



62 CHAPTER 3. ADAPTIVE ADER SCHEMES

rey

Ve e
4 N Y
P NN
W N SR

ey Bg < |/ 4+
XK R A

Figure 3.4: Example of nine stencils of size 6 constructed by combining
successive von Neumann neighbours an d a sectoral searc h.
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3.4 Finite Volume Formulation

Consider a two-dimensional, scalar conservation law of the form (3.1) with
solution u(t, z). Within the finite volume framework , each discrete value of
the function wu is viewed as a cell average u, over a cell T, . The advantage
of the finite volume approach is, that any kind of mesh can be used, i.e. the
shape of the control volume can be chosen arbitrarily. Here, we work with a
conforming triangulation 7 with cells T, € 7, ¢ = 1, ..., #7, for which the
integral form of the conservation law in (3.1) has the form

d _,
—/u(t,x) dx+/ F(t,s)-7i(s)ds =0, (3.15)
dt Jr or

with the outer normal vector 7i(s) and the flux

) £ (ult,
F(ts) = ( folu(t,

where the boundary 0T of the triangle T is parameterized by arclength s
(cf. Chapter 23 in [50]). Integrating (3.15) over the time interval [t", "],
where 7 = t"*1 — ¢" is the time step length, and using the definition of cell
averages in (3.3), we derive a finite volume scheme of the form

»w O»
— —
N—
S—
SN—

3
—n+l _ —n T rmn
Up = Up — 17 ; AR (3.16)

where the numerical fluzx ang across each cell boundary 07y, j = 1,2,3, of
the cell T, during the time interval [t",¢""!] is the time-averaged physical
flux given by

N i Lo
Fyy = ;/ (/ F(t",s) - 7ig; ds> dt . (3.17)
tn aTy

The time integral and the integral along the j-th edge of triangle T} in (3.17)
can be computed exactly by using a suitable Gaussian quadrature rule.
Therefore, the numerical flux can be computed through the weighted sum

Ny Ny
FZJ = Z Ozk|aTg7j| ZﬂhF(UJ(tGk, JIGh)) . ﬁg’j s (318)
k=1 h=1

where «aj, and 3, are the weights of the Gaussian quadrature rule and tq,
and zg, are the corresponding integration points with respect to time and
space. Ny and N, are the numbers of integration points. The situation for
a third order approximation using two Gaussian integration points in time



64 CHAPTER 3. ADAPTIVE ADER SCHEMES

Figure 3.5: Example of a third order accurate flux evaluation across a triangle
edge from time " to t"*! using two Gaussian integration point in space and
time each.

and space is illustrated in Figure 3.5. It is clear, that in order to evaluate the
flux function F at a particular Gaussian integration point we have to find
the function value u(tg,,zq, ), the so-called state of the solution by solving
a Riemann problem at this point. This is accomplished through the ADER
approach, which is extended to unstructured meshes and discussed in detail
in the following section.

3.4.1 Flux Evaluation via ADER

Originally, Toro, Millington, and Nejad introduced a method in [84] termed
ADER to construct arbitrary high order finite volume schemes for scalar,
linear conservation laws utilizing high order derivatives. Just very recently,
these schemes were extended to scalar, nonlinear conservation laws in one
dimension by Titarev and Toro in [81, 83] and were applied to problems
on multi-dimensional, Cartesian grids by Schwartzkopff, Munz and Toro
in [72, 73]. A first attempt to extend ADER schemes for linear conserva-
tion laws from structured grids to unstructured triangulations was taken in
a preliminary, unpublished note by Munz and Schneider [58].

The main ingredients of the proposed ADER scheme are:

e a WENO technique to reconstruct high order polynomials without cre-
ating spurious oscillations,

e a high order flux evaluation based on a Taylor series expansion in time
leading to an explicit one-step method to evolve cell averages,

e a Lax-Wendroff procedure to replace time derivatives by spatial deriva-
tives through extensively using the information of the governing PDE,

e the solution of generalized Riemann problems across cell interfaces.
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Figure 3.6: The generalized Riemann problem along the outward pointing
unit vector with reconstructed polynomials p;,(z) and py.(x) approximating
the solution wu.

In the following, we discuss in detail the construction of ADER schemes
for linear and nonlinear problems. According to the WENO reconstruction
procedure in Section 3.3, the solution u(t,x) at the discrete time ¢ = " is
represented by polynomials py, £ = 1,...,#7, on each triangular cell T, € 7.
In general, these polynomials are different on each cell, leading to a piece-
wise polynomial approximation of u(t,z) with discontinuities across the cell
interfaces. The situation of having two constant functions separated by a
discontinuity is usually called a conventional Riemann problem (RP). The
solution of a RP is a fundamental tool in the development of finite volume
methods and is discussed in many textbooks, e.g. [50, 82]. In general, a RP
is defined by the governing hyperbolic equation together with a particular
initial condition (IC). As mentioned above this IC is usually given by two con-
stant functions and the solution of the RP can be computed through various
techniques [50, 82]. However, as our functions p,, which are separated by the
cell interfaces, are not necessarily constant, the situation is more difficult and
is called the generalized Riemann problem (GRP). Depending on the order m
of the designed ADER scheme we will call these schemes ADERm schemes .
Therefore, the ADER1 scheme is the classical Godunov scheme [32] of first
order (m=1). We remark, that the degree of the reconstruction polynomials
for an ADERm scheme is m — 1. Denoting the corresponding GRP more
precisely, we have to solve a GRP,,_; at the cells interfaces when using an
ADERm scheme!.

In order to apply the ideas in [81, 83|, we reduce the multi-dimensional GRP
at the Gaussian integration points x¢, of a cell interface (see Figure 3.5) to
a one-dimensional GRP oriented perpendicularly to the interface, i.e. along
the outer normal 77 as displayed in Figure 3.6. The GRP is described by the

LGRPy denotes the conventional Riemann Problem (RP) with two constant functions
as initial condition.
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governing PDE and the IC of u(¢, x) at the local time t = 0 by

PDE: % LV f(u) =0, (3.19)
pin(x), for =z, <0,

IC:  u(0,2) = (3.20)
Pout(z), for =z, >0,

where x,, is a local coordinate oriented along the outer normal 77 with the
origin at the Gaussian integration point z¢,. The two polynomials belonging
to the actual cell and the adjacent cell are indicated by p;, and p,.:, respec-
tively.

Recalling equation (3.18) and Figure 3.5, we are looking for the solution of
the one-dimensional GRP at a Gaussian integration point ¢¢, in time, i.e. for
u(t,-) at an intermediate time ¢ € [t",t"*!]. Now, one of the central ideas of
the ADER approach is to approximate this solution at m-th order accuracy
at the cell interface x,, = 0 via the Taylor series expansion in time around
the initial time ¢ = 0 given through

m—1 tk 8’“
u(t,0) = u(0,0)+ > 21 o t(0:0). (3.21)
k=1

The time derivatives in (3.21) can be replaced by space derivatives by apply-
ing the Laz-Wendroff (Cauchy-Kowalewski) procedure in order to make the
maximum use of the information given by the governing PDE in (3.19).

3.4.2 The Lax-Wendroff Procedure

Originally, this technique of substituting time by space derivatives using the
governing PDE (3.19) itself was considered in [49]. We remark that for
nonlinear problems this procedure can become quite tedious in contrast to the
linear case, as the number of terms required to express the time derivatives
grows rapidly with the order of the derivative. However, as shown in [83],
these terms are necessary in order to guarantee the desired order of accuracy
of the designed ADERm scheme. To be more precise, let the characteristic
speeds with respect to the space dimensions z; and z5 be given by

0 0
A (u) = J;liu) and  Ao(u) = J:;iu) : (3.22)
Using the notation \;(u) = —8A5£“)7 A (u) = —an‘ig“) etc., i =1,2, and u; = %,
Uy = %, Uy, = g—;, etc., we can write the governing PDE (3.19) in two

dimensions as
up + A (w)ug, + Ao(uw)ug, =0. (3.23)
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Therefore, to replace the first order time derivative in (3.21) by space deriva-
tives using the Lax-Wendroff procedure, we simply have to solve (3.23) for
uy leading to

wp = — A (w)ug, — Ao(u)uy, . (3.24)

The higher order time derivatives of u can now be computed successively by
partial differentiation of (3.24) with respect to t. For example, an ADER4
scheme requires time derivatives up to order 3 in (3.21) given by

U = =N (WU, — M (W) Uz, — Ny (W) Uiy — Ag(W)Utzy ,  (3.25)

ue = —N(Wujug, — N (u) <uttux1 + 2utum> — M1 (U) Uy

— Ny (u)utug, — Ny (u) (uttum + 2utut$2) — Ao (U)Ugtey - (3.26)

Note, that the above expressions for the time derivatives include mixed
derivatives with respect to time and space. These can also be expressed
by space derivatives by successively differentiating (3.24) with respect to x;
and x5. For example, for the ADER4 scheme we get

Utz = _)\/1 (u)uil - Al(u)uﬁtlxl - AIQ(U)umum - )‘2<u)ufml‘2 )
Utzy = _)‘/1 (u)uﬂcluwz - Al(u)uﬁﬁwz - )\IZ(U)U?EQ - )‘2(u>u$29€2 )
Utz = _/\/ll(u) — 3] (u)umuﬂwl - )‘l(u)uwlmm
_/\/2/(u) 1 Uzy — >‘ (umwlum + 2uﬂﬂlumﬂm) u)uwlmlrz )
Utzimg = _/\lll(u) L Uzy — (Ummum + 2“%‘1“%‘1@’2) — A1 (U)Ugy 2y 2
_)‘/2/( )ul‘l a:z (uﬂcluﬂwxz + 2u1‘2uu’v1$2> U) Uz oy
Utzory — _)‘Ill(u)uxlu:?sg - Xl <u> (uwluwzxz + 2u$2u$112> u)“’l“lﬂczxz
_)‘IZI(U)U:?::Q - 3)‘/2(u)u$2uw212 - )‘Q(U)ummwz )
Upy, = —X{(u)utuil — N (u) (utumlxl + 2um1utzl> — A (U)W

_Ag(u)utuamuxg - )\IQ(U) (utzluwz + uwlutxz + ut“aq:vg) - )\2<u)utx1w2 )

" /
Uttzy = _Al(u)utumuxz - )‘1 (u) (utmum + Ugy Utz + utumxz) - )‘1 (u)utmm

_A’Q’(u)utui,z — My (u) (utuxm + 2u22um2> — Ao (U) Uty -
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The problem remaining is to determine the space derivatives at the quadra-
ture points at the cell interface, i.e. to solve the one-dimensional GRP illus-
trated in Figure 3.6. In [83], Toro and Titarev suggest to use the boundary
extrapolated values

w = lm p,(z), (3.27)
a:—mcah

u = lm poy(x), (3.28)
xg’ﬁGh

which represent the values obtained by evaluating the polynomials recon-
structed inside and outside the actual cell interface at a Gaussian quadrature
point x¢,. We remark, that according to the one-dimensional representation
in Figure 3.6 the inside and outside of a cell are referred to as left and right
respectively. Therefore, we obtain a conventional Riemann problem GRP,
with constant functions u; and w, of the form
ou

PDE: N +Vf(u)=0, (3.29)

w; for =z, <0
IC:  w(0,2) = (3.30)

u, for x, >0.

The solution of the above GRP (3.29),(3.30) is described in many text books,
e.g. [50, 82], and its solution u* is usually called the Godunov state . With
this state u* the characteristic speeds in (3.22) can be evaluated and used
to linearize the governing equation (3.23). As shown in [84], the linearized
equation (3.23) also holds for all space derivatives ¢* = D%, |a| < m — 1,
where D = % is the a-th partial derivative operator. Similar to (3.27)
and (3.28), boundary extrapolated values for the derivatives can be defined
by

g = lim D%y (z) (3.31)
x—»xah

g7 = lm D% () (3.32)
$—>$Gh

and we can formulate a series of linear conventional Riemann problems of
the form

0 0 0
PDE: —q“ *)=—q“ )—q* = .
atq + )\1(U )a$1q + )\Q(U )axQQ 0, (3 33)

q for =z, <0
IC: ¢*(0,2) = (3.34)
qe for =z, >0,
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with constant functions ¢f* and ¢% given by (3.31) and (3.32). The solution of
these linear Riemann problems (3.33),(3.34) is obvious and thus all terms on
the right hand side of (3.21) are determined. Therefore, the state u(tq,, zq, )
can be computed through the expansion (3.21) for any local integration point
(te,s *a,) in space and time as indicated in Figure 3.5. Note, that one of
the fundamental ideas of using an ADERm scheme is to solve an GRP,,_;
by solving one RP, which is linear or nonlinear depending on the governing
equation, and a series of linear RPs. The number of these linear RPs is
m — 1 for one-dimensional problems and %m(m +1) — 1 for two-dimensional
problems. We remark, that the leading term in the computation of the
ADER state in (3.21) is the classical Godunov state u* itself. The remaining
terms in (3.21) are the corrective terms to enhance the approximation quality.
Therefore, ADER schemes can be interpreted as high order generalizations
of the classical Godunov scheme in [32]. In fact, ADER schemes enable us
to evaluate the flux in (3.18) with arbitrary high order accuracy by using
an arbitrary high order accurate state u given by (3.21) at the cell interface.
Finally, this flux is the information we need in order to update the cell average
values as summarized in the following Section.

3.5 Update of Cell Average Values

Recalling the numerical scheme in (3.16) we see, that given the fluxes across
all cell boundaries, we can update the cell average values ﬂz,‘“ for time
t = t"*! via a one step explicit scheme. In contrast to multi-stage TVD
Runge-Kutta schemes, typically used in combination with high order WENO
techniques as presented in [19], we do not need the intermediate stages.
Therefore, we can reduce the required computational costs quite significantly,
as we have to go through the reconstruction procedure only once. We remark
that in multi-stage TVD Runge-Kutta schemes one reconstruction step is
necessary for each intermediate stage. Furthermore, Ruuth and Spiteri have
just shown recently in [71], that TVD Runge-Kutta of arbitrary high order
cannot be constructed in a straight forward manner. In contrast, ADER
schemes can be extended to arbitrary high order by simply adding higher
order terms in (3.21) and therefore the order of accuracy is basically limited
by the available computing power.

It is well known, that explicit time discretization schemes, such as the pro-
posed ADER scheme, have to satisfy rather severe restrictions on the time
step 7 due to the Courant-Friedrich-Levy (CFL) condition?. Generally speak-
ing, information from one cell must not interact with information coming
from other cells.

2CFL conditions on TVD Runge-Kutta schemes can even be more severe [71].
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Let py be the radius of the inscribed circle of a triangular cell T} serving as
a measure of its diameter (see Figure 3.7). And let

)\(maa:) _ 1Sr§12}3(Nz |)\1,j (u) SN + )\2,]’ (U) . nz,j|

be the maximum normal characteristic speed appearing at the 3N, Gaussian
integration points along the cell interfaces. As shown in previous work [81,
84, 83] ADER schemes are stable up to a CFL-number of 1 for structured,
Cartesian grids. Therefore, we restrict the time step size 7 in our computa-
tions by a similar CFL-condition

7 < min L, (3.35)

for unstructured triangulations. This is similar to the idea in Section 3.4.1
of [55].

Altogether, the different computational steps discussed in the previous Sec-
tions 3.3 and 3.4 are combined in order to construct a conservative ADERm
scheme, that can be used to solve linear and nonlinear conservation laws. For
each time step t — t + 7 we can formulate the following algorithm:

Algorithm 2 (Conservative ADERm scheme).

INPUT: Triangulation T with cell average values u,(t), { = 1,...,#7T, time
step size T > 0 satisfying (3.35), and the desired order m.

o Compute polynomial functions py of degree m—1 from cell average values
uy(t) satisfying (3.4) by the WENO approach (3.10), (3.12).

e FOR each T, € T DO
— Use Laz- Wendroff procedure (3.24) - (3.26) to replace time deriva-

tives by space derivatives in (3.21).

— Solve one-dimensional GRP,,—1 in (3.19), (3.20) at Gaussian in-
tegration points v, at cell edges.

— FEvaluate the solution u at Gaussian integration points tg, in time
via (3.21).

— Compute numerical fluzes Fg,j, j=1,2,3, via (3.18).
— Update cell average values t,(t + 7) using (3.16).

OUTPUT: Updated cell average values u,(t + 1) for all T, € T.
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X

Figure 3.7: The radius p of the inscribed circle of a triangular cell together
with its N, = 2 integration points per edge, where the maximum character-
istic speed normal to each edge is evaluated.

3.6 Boundary Conditions

Boundary conditions are an important issue, when designing a numerical
method. In practice, the computations are carried out on a finite set of cells
Ty, 0 =1,...,#T, covering the bounded domain Q C R2. Therefore, cells at
the boundary of 2 may not have the required neighbours in order to recon-
struct the required polynomials for the computation of the intercell fluxes.
In general, there are various possibilities to handle this problem.

Due to some physical boundary condition, the fluxes at the Gaussian integra-
tion points z, can be specified directly. However, a more common approach
is to extend the computational domain €2 and include a few additional cells,
so-called ghost cells, outside the original boundary, whose cell average values
have to be set at the beginning of each time step. This way, the reconstruc-
tion and updating of cell averages is exactly the same for all interior cells
and there is no need to develop special methods for boundary data. Instead
we only have to decide, how to set the cell average values of the ghost cells,
which is entirely independent of the choice of the applied numerical method.

3.6.1 Periodic Boundaries

Periodic boundary conditions usually are easy to apply by copying cell aver-
age data from one side of the computational mesh to the cells on the opposite
side. The number of necessary ghost cells with their corresponding average
values from the opposite side depends on the size of the stencil. The required
stencil size, in turn depends on the desired order of the scheme. We remark,
that periodic boundary conditions on unstructured triangulations must be
handled with particular care, as the same number of cell edges must occur
on opposite sides of the triangulation. In our examples, we usually work
with a computational domain €2, that is bounded by a rectangular. However,
we point out that this is not necessarily required and boundaries with any
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Figure 3.8: Domains with polygonal boundaries, that periodically match on
opposite sides.

polygonal shape can be used as long as the opposite sides of the mesh fit
together in a periodic manner as schematically displayed in Figure 3.8.

3.6.2 Inflow Boundaries

The treatment of inflow boundary conditions for one-dimensional problems
is discussed in detail in Chapter 7 of [50]. In order to handle inflow boundary
conditions for unstructured triangulations, the use of ghost cells can become
very sophisticated. In fact, standard methods of evaluating cell average val-
ues on these ghost cells through dimensional splitting as normally used on
Cartesian meshes are not carried over in a straight forward manner. There-
fore, for a given boundary condition

u(s,t) = b(s,t),

where s parameterizes the boundary, we suggest to evaluate the function b
at the Gaussian integration points along the boundary s and compute the
numerical flux in (3.16) directly, i.e. F}; = f(b(s,t")).

3.6.3 Outflow Boundaries

As problems have to be solved on a bounded domain 2 C R?, we create arti-
ficial computational boundaries, that do not exist in physical space. There-
fore, we often want to have no incoming flow, though there may be outgoing
flow that should leave the domain cleanly without any disturbance at these
boundaries. As discussed in [50, 82|, ghost cells, whose cell average values
can be obtained by extrapolation from the interior solution, are again used
in order to implement outflow boundary conditions for Cartesian meshes.

In the case of unstructured triangular meshes, we accomplish similar outflow
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boundaries in a slightly different way. First we detect all Gaussian integra-
tion points z¢, , where flow is leaving the domain. At these integration points
we set the boundary extrapolated value u,, that cannot be obtained from a
polynomial of the outside of the cell at the boundary, equal to u;, the bound-
ary extrapolated value from the inside. Therefore, we have to solve a trivial
Riemann problem with u; = w,, which does not produce any flow inside the
domain. In the literature, such outflow boundaries are often called trans-
missive or open boundaries and work quite effectively. For further details on
different boundary conditions see for example [6, 26].

3.7 Performance of ADER schemes

In the last few years, ADER schemes were developed and analysed mainly
for one-dimensional linear and nonlinear problems [81, 84, 83] and applied
to multi-dimensional problems on fixed rectangular Cartesian meshes, e.g.
in [73, 72]. Here we investigate the performance of the proposed ADER
schemes for linear and nonlinear problems on unstructured triangulations
by determining their convergence properties numerically. Furthermore, we
consider their efficiency with respect to computational cost depending on the
order of the scheme.

3.7.1 Experimental Orders of Convergence

In this section, the experimental order of convergence of the proposed ADER
schemes on two-dimensional linear and nonlinear advection problems are de-
termined numerically in order to compare them with the theoretically ex-
pected orders.

Linear Advection: For the linear problem we solve the two-dimensional
equation
Up + Uy + Ugpy, =0, (3.36)

a linear example of the general equation (3.1) with the initial condition
up(z) = u(0,x) = sin (27T(JJ1 + xg)) (3.37)

on the computational domain Q = [-0.5,0.5] x [-0.5,0.5]. The computa-
tions are carried out for the time interval I = [0, 1]. We remark, that we use
periodic boundary conditions, such that the reference solution @(1, z) at the
end of the simulation time ¢ = 1, is identical to the initial condition (3.37),
ie. uo(x) =u(l,z).

In order to study the influence of the mesh irregularity, i.e. the distortion of
the mesh on the accuracy of the numerical results, we compute the solution
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The sequence of the four regular meshes with their mesh widths

Figure 3.9

(a) Ao (h = 0.125), (b) A, (h = 0.0625), (c) As (h = 0.03125), (d) A,

(h

0.015625).

of (3.36) on sequences of three different triangular meshes. Mesh A is a regu-

lar mesh obtained by adding the diagonal line in each square (see Figure 3.9),

mesh B is an irregular mesh (see Figure 3.10) obtained by slightly distorting

mesh A, and mesh C is a strongly distorted irregular mesh (see Figure 3.11).

All sequences of the three meshes consist of five successive refinement lev-

els and are constructed by uniformly refining the coarsest mesh, namely by

subdividing each triangular cells into four s

lar smaller ones. The refine-

11m1

ment level of a particular mesh is indicated by subscripts, e.g. Ay denotes
the original mesh A, whereas Cj indicates the third refinement of mesh C,
as displayed in Figures 3.9, 3.10, and 3.11. for the first four refinement levels.

Note, that only for the regular mesh A the mesh spacing h is representative
for the entire mesh, whereas h can only be a rough indicator of the mesh
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Figure 3.10: The sequence of the four slightly irregular meshes with their
mesh widths (a) By (h = 0.125), (b) B; (h = 0.0625), (c) B2 (h = 0.03125),
(d) B3 (h = 0.015625).

width for meshes B and C. However, all meshes consist of the same number
of cells in the corresponding refinement level in order to keep the computa-
tional cost independent of the the mesh irregularity.

All computations are carried out for ADER2, ADER3, and ADER4 schemes,
where we use nine stencils as constructed by the WENO reconstruction pro-
cedure of Section 3.3.2 | i.e. three centered stencils, three stencils in the for-
wards sectors F; (see Figure 3.2), and three in the backwards sectors B, (see
Figure 3.3). The stencils consist of 4, 8, or 13 cells for the ADER2, ADER3,
or ADER4 schemes, respectively. The time step 7 is set to 7 = 0.025 for the
computations on meshes Ay and By and to 7 = 0.0125 on mesh C,. With
successive refinement levels the time step 7 is halfed accordingly.
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Figure 3.11: The sequence of the four strongly irregular meshes with their
mesh widths (a) Cy (h = 0.125), (b) C; (h = 0.0625), (c) Cs (h = 0.03125),
(d) C3 (h =0.015625).

We remark, that the errors presented are those of the cell averages u of the
solution u and the reference solution @, which are computed by a 7-points
quadrature rule for triangles (see Appendix C).

Table 3.1 shows the results for the errors

Ep(h) = [lu—all,, (3.38)

for the norms || - [|1, || - ||2, and || - ||co, Where @ is the reference solution,
together with the corresponding convergence orders £,

log (E,(h) / Ey(h/2))
" log(2) ’
obtained by ADER2, ADER3, and ADER4 schemes on the sequence of reg-
ular meshes Ay to Ay.

(3.39)
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h E1(h) ey Es(h) ks E(h) oo
1/8 [31024-100 — |[35613-100° — |5.0293-10% —
1/16 | 8.9463-10"2 1.79 | 9.9535- 102 1.84 | 1.4043-10~! 1.84
1/32 | 2.2632-1072 1.98 | 2.5127-102 1.99 | 3.5492-10~2 1.98
1/64 | 5.6576-10~% 2.00 | 6.2828- 103 2.00 | 8.8815-10~3 2.00
1/128 | 1.4139-10~% 2.00 | 1.5703 - 103 2.00 | 2.2205-10~3 2.00

(a)
h E1(h) oy Es(h) ks Ex(h) oo
1/8 |34715-1000 — |4.0503-10°° — |5.8055-101 —
1/16 | 5.0290-10"2 2.79 | 5.7626 - 102 2.81 | 8.1474-10"2 2.83
1/32 | 6.1105-10~% 3.04 | 6.7352- 103 3.10 | 9.1247-10~3 3.16
1/64 | 6.1757-10~* 3.31 | 6.8527-10~% 3.30 | 9.5297 - 10~* 3.26
1/128 | 7.1885-10~° 3.10 | 7.9826- 105 3.10 | 1.1223-10~* 3.09

(b)
h E1(h) ey Es(h) ks Eo(h) oo
1/8 | 11148-10°7 — |1.3002-10°T — |1.9584-10% —
1/16 | 3.9053-10~% 4.84 | 4.4563-1073 4.87 | 8.8605-10~% 4.47
1/32 | 2.2444-10~* 4.12 | 2.4633-10~% 4.18 | 3.4535-10~* 4.68
1/64 | 1.4011-10~° 4.00 | 1.5064 - 10~5 4.03 | 2.0771-10~° 4.06
1/128 | 8.2222-10~7 4.09 | 9.1268 - 107 4.04 | 1.3338- 10~ 3.96

(c)

Table 3.1: Results for the linear advection obtained by (a) ADER2, (b)

ADER3, and (c) ADER4 schemes on the regular meshes Ay to Aj.
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h Eq(h) ky Es(h) ks Es(h) koo
1/8 | 11265 107 — |1.2826-10° — |2.7656-10 1 —

1/16 | 4.2780-1072 1.40 | 4.8948-107% 1.39 | 1.0326 - 10! 1.42
1/32 | 1.1288-1072 1.92 | 1.2915-10"2 1.92 | 2.6589- 1072 1.96
1/64 |2.6513-1073 2.42 | 3.0153-107% 2.43|1.1444-107% 1.41
1/128 | 6.3234 - 107* 2.13 | 7.1838-107* 2.14 | 3.7882-103 1.65

(a)
h E(h) kr Ex(R) k2 Eoo(h) Koo
1/8 [14226-10° — |1.6078-10 % — |27919-10 % —

1/16 | 1.6160-1072 3.14 | 1.8617-1072 3.11 | 3.9276-10~% 2.83
1/32 | 1.5446 - 1073 3.39 | 1.8346- 1073 3.34 | 4.2469 - 1072 3.21
1/64 | 2.0259-107* 3.40 | 2.2524-10"* 3.51 | 4.2128-10~* 3.87
1/128 | 2.4139-10° 3.17 | 2.6835-107° 3.17 | 5.1008 - 10> 3.14

(b)
h B (h) ko Eo(h) ks Eoo(h) Koo
1/8 | 2.9912- 102 3.4907-102 — | 7.2935-102

1/16 | 1.1801-107* 4.66 | 1.5787 - 1073 4.47 | 5.2470-107% 3.80
1/32 1695191075 4.09 | 8.9930-107° 4.13 | 3.2150 - 10~* 4.03
1/64 | 6.4714-107% 3.97 | 8.0984-107% 4.03 | 3.1137-107° 3.91
1/128 | 4.4070 - 1077 4.00 | 5.5669 - 10~" 3.99 | 2.2974-107¢ 3.88

(c)

Table 3.2: Results for the linear advection obtained by (a) ADER2, (b)
ADERS3, and (c¢) ADER4 schemes on the slightly irregular meshes By to By.
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h E\(h) oy Es(h) ks Eoo () oo
1/8 [1.3924-10°7 — |[1.6233-10° — [3.9986-10 1 —
1/16 |3.2158-10"2 2.11 | 3.8800-1072 2.06 | 1.4476- 10~ 1.47
1/32 | 6.8809-10~% 222 | 8.3858 1073 2.21 | 3.9424-10"2 1.88
1/64 | 1.6080-10~% 2.10 | 1.9787-1073 2.08 | 1.0345-10"2 1.93
1/128 | 3.8924-10~* 2.05 | 4.8469- 104 2.03 | 3.1769-10~3 1.70

(a)
h Eq(h) oy Es(h) ks Eoo () oo
1/8 [27500-10°F — |3.0955-10 1 — |49177-10% —
1/16 |3.8493-10"2 2.84 | 4.4821-1072 2.79 | 9.5172- 1072 2.37
1/32 | 4.5424-10"% 3.08 | 5.3011-103 3.08 | 1.1456- 1072 3.05
1/64 |5.2333-107* 3.12|6.0649-10~% 3.13 | 1.2106- 1073 3.24
1/128 | 6.1609 - 10~° 3.09 | 7.1088 - 105 3.09 | 1.4629-10~* 3.05

(b)
h E(h) oy Es(h) ks Eoo(R) oo
1/8 [6.6326-102 — |79679-102 — |1.5932-10° —
1/16 |3.9170-10~% 4.08 | 52793103 3.92 | 1.3527- 1072 3.56
1/32 | 2.0676-107* 4.24 | 2.7034-10~* 4.29 | 8.8686-10~* 3.93
1/64 | 1.3002-10"° 3.99 | 15726105 4.10 | 5.3229-10~° 4.06
1/128 | 7.7907- 107 4.06 | 9.5160 - 107 4.05 | 3.7559 - 1076 3.82

(c)

Table 3.3: Results for the linear advection obtained by (a) ADER2, (b)
ADERS3, and (c) ADER4 schemes on the strongly irregular meshes Cgy to

C,.
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Tables 3.2 and 3.3 show the corresponding results obtained on the sequences
of the slightly and strongly irregular meshes B and C.

Note, that the ADER schemes reach the expected orders of convergence k,
in (3.39) in all norms and on all meshes. However, a closer look at the errors
E,(h) from (3.38) shows, that the slightly irregular meshes in Table 3.2 give
the best results. We think, that this is due to the fact, that many of the
triangles of the mesh sequence By to B4 are closer to being equilateral than
in the other cases of meshes A and C. As shown in [5, 45], the shape of
triangular cells plays an important role for the accuracy in the sense that
simulation results obtained on triangular meshes of equilateral triangles are
more accurate than those obtained on other non-equilateral cells. We re-
mark, that these results are confirmed by our tests on ADER schemes.

On the other hand, it is obvious that the even for the strongly distorted
mesh C in Figure 3.11 we still get very satisfying results, indicating that the
proposed ADER scheme combined with the discussed WENO reconstruction
technique seems to be very useful and robust approach applicable to strongly
distorted unisotropic meshes.

Nonlinear Advection: The nonlinear problem is constituted by the two-
dimensional Burgers equation

1 1
up + (§U2>x1 + <§u2) - 0, (3.40)

a nonlinear example of equation (3.1) with the initial condition
up(z) = u(0,2) = 0.3+ 0.7 sin<27r(x1 + {L‘Q)) (3.41)

on the computational domain € = [—0.5,0.5] x[—0.5,0.5]. The computations
are carried out for the time interval I = |0, ﬁ}, such that no discontinuity
has developed yet, i.e. the solution is still smooth at the end of the simulation
time. Again, periodic boundary conditions are used. Note, that the initial
condition (3.41) leads to a transonic rarefaction.

Then, the same sequences of meshes A, B, and C as shown in Figure 3.9, 3.10,
and 3.11 are used similar to the linear case. The cell averages of reference
solution @ are calculated via the 7-points quadrature rule (see Appendix C),

where the value at each quadrature point is calculated via Newton’s method.

Analogously to the linear case, Tables 3.4, 3.5, and 3.6 show the errors E,(h)
from (3.38) of the cell averages at the end of the simulation together with
the experimental orders of convergence k, in (3.39) for the ADER2, ADERS3,
and ADER4 schemes on the meshes Ay to Ay, By to By, and Cj to Cy,
respectively.
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h E1(h) ey Es(h) ks Eoo(h) oo
1/8 | 1.3523-102 — |15406-102 — |4.5874-102 —
1/16 | 3.4015-10~% 1.99 | 4.2354-103 1.86 | 9.9464 - 1073 2.21
1/32 | 8.1563-10~* 2.06 | 1.0681-10~3 1.99 | 2.6907 - 10~3 1.89
1/64 | 1.9851-10~* 2.04 | 2.6442-10~% 2.01 | 6.7492-10~* 2.00
1/128 | 4.8844-10~° 2.02 | 6.5561- 1075 2.01 | 1.6728-10~* 2.01

(a)
h E1(h) oy Es(h) ks Eoo(h) oo
1/8 | 24460-102 — |2.6815-102 — |4.6138-102 —
1/16 | 3.2812-10~% 2.90 | 3.9929 - 1073 2.75 | 8.3484 - 10~% 2.47
1/32 | 3.2445-10~* 3.34 | 4.4015-10~% 3.18 | 1.0869 - 10~% 2.94
1/64 | 3.3403-10~° 3.28 | 4.6285-105 3.25 | 1.2003 - 10~* 3.18
1/128 | 3.9009 - 10~ 3.10 | 5.4216- 106 3.09 | 1.4117-10~> 3.09

(b)
h E1(h) ey Es(h) ks Eoo(h) oo
1/8 | 6.4417-10° — |85263-10° — |2.1361-102 —
1/16 | 3.2915-10~* 4.29 | 4.9585-10~* 4.10 | 1.3426-10~3 3.9
1/32 | 2.0740-10~° 3.99 | 3.5896- 105 3.79 | 1.2353-10~* 3.44
1/64 | 1.6025-10~6 3.69 | 2.6907- 106 3.74 | 9.0486 - 10~ 3.77
1/128 | 1.1391-10~7 3.81 | 1.8737-10~7 3.84 | 5.7273-10~7 3.98

(c)

Table 3.4: Results for Burgers equation obtained by (a) ADER2, (b)

ADER3, and (c) ADER4 schemes on the regular meshes Ay to Aj.
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h Eq(h) ky Es(h) ks Es(h) koo
1/8 | 14816-10° — |21592.107 — |89534-102 —

1/16 | 5.0152-107% 1.56 | 6.8720- 1073 1.65 | 3.2865- 1072 1.45
1/32 | 1.3421-107% 1.90 | 1.8877-107% 1.86 | 1.0561 - 1072 1.64
1/64 | 3.4067 - 107* 1.98 | 4.8618-107* 1.96 | 2.7014-10~3 1.97
1/128 | 8.3667-107° 2.03 | 1.2018 - 10~* 2.02 | 7.0141-10~* 1.95

(a)
h B, (h) ko Eo(h) k2 Eoo(h) Foo
1/8 | 1.2429 102 1.5481-102 — |47784-102 —

1/16 | 1.6329-1072 2.93 | 2.2922-107% 2.76 | 1.0174- 1072 2.23
1/32 | 1.9838-107* 3.04 | 3.0528 - 10~ 2.91 | 2.1328 - 1073 2.25
1/64 | 2.7484-107° 3.31 | 4.0679-107° 3.37 | 2.8764-10~* 3.35
1/128 | 3.5762-107% 3.04 | 5.1999-10"% 3.06 | 4.9262-107° 2.63

(b)
h E(h) kr Ex(h) k2 Eoo(h) Koo
1/8 [29430-10° — |3.9772-10° 1.6612 - 10 2

1/16 | 2.2322-107* 3.72 | 3.5916-10~* 3.47 | 1.5177- 1073 3.45
1/32 | 1.9599-107° 3.51 | 3.7513-107° 3.26 | 2.7872-107* 2.44
1/64 | 1.7003-1075% 4.09 | 2.9834-107% 4.24 | 2.9170-10~° 3.78
1/128 | 1.3478 - 1077 3.78 | 2.4466 - 10~ 3.72 | 2.6691 - 1076 3.56

(c)

Table 3.5: Results for Burgers equation obtained by (a) ADER2, (b)
ADERS3, and (c) ADER4 schemes on the regular meshes By to By.
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h Ey(h) oy Es(h) = Eoo () Foe
1/8 | 24789-102 — |35598-102 — |1.2987-10' ~—
1/16 | 8.1998-10~% 1.60 | 1.1486- 1072 1.63 | 6.5593- 1072 0.99
1/32 | 2.2506-10~% 1.87 [ 3.2835-103 1.81 | 2.7181-1072 1.27
1/64 |5.5952-10~* 2.01 | 8.4517-10~% 1.96 | 9.1484- 1073 1.57
1/128 | 1.3480-10~%  2.05 | 2.0520- 104 2.04 | 2.5284-10~3 1.86

(a)
h Ey(h) oy Es(h) = Eoo(h) Fioe
1/8 | 21345-10%2 — |27487-102 — |8.6973-102 —
1/16 | 3.0335-10"% 2.81 | 4.4508-1073 2.63 | 1.9878-10"2 2.13
1/32 | 3.8506-10~* 2.98 | 6.4792-10% 2.78 | 5.4981-10~3 1.85
1/64 | 4.5916-10=° 3.07 | 7.6192-10° 3.09 | 6.2541-10~% 3.14
1/128 | 5.5909 - 106 3.04 | 9.2328-107% 3.04 | 8.5906 - 10~° 2.86

(b)
h Ey(h) oy Es(h) = Eoo () Foe
1/8 |56973-10° — |8.1636-10° — |4.3144-102 —
1/16 | 5.1513-10~* 3.47 [ 9.2607-10~* 3.14 | 5.0294- 1073 3.10
1/32 | 3.9238-10~° 3.71 | 7.8427-1075 3.56 | 6.1687-10~* 3.03
1/64 | 2.7966-10"° 3.81 | 6.0176-107% 3.70 | 5.2142-10~° 3.56
1/128 | 1.8851-107 3.89 | 4.4105-10~7 3.77 | 5.6319-10~% 3.21

(c)

Table 3.6: Results for Burgers equation obtained by (a) ADER2, (b)

ADER3, and (c) ADER4 schemes on the regular meshes Cy to Cy.
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In analogy to the results for the linear problem the considered ADER schemes
achieve the expected orders of convergence. Only the orders k., of the
ADER4 scheme on the strongly distorted mesh sequence C, to C; seem
not to reach the expected order of 4 (see Table 3.6(c)).

In our opinion, the reason for that might be, that the appearance of thin,
stretched triangles can lead to reconstruction polynomials of rather poor ap-
proximation quality due to degenerated one-sided stencils. The stencil con-
struction discussed in Section 3.3.2 uses a sectoral search of subsequent von
Neumann neighbours of increasing levels. Therefore, a very thin triangular
cell with a very small angle leads to a very narrow sectors F; and B;, which
in turn result in very elongated stencils with shapes preferring a particular
direction. The resulting reconstruction of rather low approximation quality
then influences the computation of the fluxes and finally causes errors that
appear especially in the || - ||oo norm.

This effect, however, was not seen in the linear case. We believe, that in the
linear case, the applied mesh sequences were fine enough to discretise the
smooth solution u to reach the expected convergence orders. In the nonlin-
ear example, the simulation time 7" = ﬁ was chosen to keep the solution
u smooth, however, gradients have already steepened. We think, that these
gradients are not sufficiently fine resolved by the mesh sequence Cy to C, and
therefore, the expected order is not quite reached. Further mesh refinement
should help to eliminate this effect.

3.7.2 Computational Efficiency

An important consideration, when applying numerical schemes to particular
problems is their computational efficiency, which is a measure of reaching a
desired accuracy in a particular computing time. In general, there are two
possibilities to enhance the accuracy of a given scheme.

First, the same scheme can be used on a finer discretisation, i.e. on smaller
cells, or secondly a higher order version of the scheme can be used. FEi-
ther possibility leads to an increase in computation time. Therefore, it is
important to investigate which option provides the desired accuracy in less
computational time. In other words the following question has to be an-
swered: Is it more efficient to use a simple and fast low-order scheme on fine
meshes or to use a more sophisticated and slower scheme of higher order on
rather coarse meshes?

In this section we numerically evaluate the proposed ADER schemes with re-
spect to computing time and achieved accuracy which should help to answer
the above question. Therefore, we record the CPU time used by the different
ADER schemes in order to compute the various steps necessary to complete
one time step. As an example we choose the computation of the solution of
the nonlinear advection equation (3.40) with the four ADER schemes on the
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slightly irregular mesh By shown in Figure 3.10(c), which consists of 2048
fixed cells. We remark, that all computations have been carried out with
MATLAB 6 Release 13 on a PC (model: IBM 236623G) with processor type
Intel Pentium(R) 4 1600MHz.

Table 3.7 shows the CPU times in seconds needed to complete the different
steps of each ADERm scheme, m = 1,...,4. Here, t, denotes the time in
CPU seconds required to construct the stencils, ¢, is the time to compute
the reconstruction polynomials , and %, is the time required for all other com-
putations, such as the flux evaluation and the update of cell averages. Note,
that ¢, also includes the Lax-Wendroft procedure described in Section 3.4.2
to replace the time derivatives by space derivatives. The total time ¢;, in-
dicates the required CPU seconds in order to complete one time step. It

ADER1 ADER2 ADER3 ADERA4
CPUsec| % || CPUsec| % | CPUsec| % | CPUsec| %
ts 0 0 0.058 2 0.208 6 0.467 9
t, 0 0 2.429 | 83 2.948 82 4.001 81
to 0.426 | 100 0.430 15 0.448 12 0.481 10
tiot 0.426 | 100 2.917 | 100 3.604 | 100 4.949 | 100

Table 3.7: CPU seconds for the different computational step of ADER
schemes.

ADERI1 || ADER2 || ADER3 | ADER4
1 6.8 8.5 11.6
1 1.2 1.7
1 1.4

Table 3.8: Factors indicating the slowdown of ADER schemes.

is obvious, that with increasing order of accuracy m an ADERm scheme be-
comes more expensive. Note, that the main contribution to the increasing
total CPU times t;,; is caused by t, for the stencil construction and ¢, for the
reconstruction, whereas is increase in t, is almost negligible.

Table 3.8 shows the factors the indicate the slowdown of an ADER scheme,
when increasing the order of accuracy. The factors represent the ratios of
the times t;,; normalized to ADERI (first row), ADER2 (second row), or
ADERS3 (third row). For example, we can read from Table 3.8 that the CPU
time for an ADER4 scheme is 11.6 times than that of an ADER1 scheme, or
1.7 times larger than that of an ADER2 scheme, etc.
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However, due to the higher order of accuracy, the higher order ADER schemes
can be applied to much coarser meshes, which reduces the computational time
as discussed below.

Figure 3.12 displays, how the error E;(h) obtained by the four different
ADER schemes decreases with decreasing mesh width h. The plot also shows,
that for ADER schemes of higher order the errors decrease very rapidly, if
the mesh is refined. Recall, that the number N of required mesh cells for a
two-dimensional problem is N ~ h~2. The time to compute new cell averages
at the next time step depends linearly on N, i.e. t;; ~ N.

To give an example, let us look at an error of E1(h) = 1073 in Figure 3.12,
where the ADER2, ADER3, and ADER4 schemes require h =~ 0.028, h ~
0.055 and h ~ 0.1 to reach the desired accuracy. Therefore, the ADER2
scheme needs about (0.1/0.028)% ~ 12 times more cells and the ADER3 re-
quires about (0.1/0.055)% & 3 times more cells as ADER4. Now, as the CPU
time for one time step for the ADER4 scheme is only 1.7 times larger than
for ADER2 and only 1.4 times larger than for ADER3 (see Table 3.8), the
ADERA4 turn out to be much more efficient.

In other words, we have to combine the results of Figure 3.12 with those in
Table 3.7 to decide, which scheme gives the desired accuracy at the lowest
overall computational time.

The corresponding results are shown in Figure 3.13. The CPU time is nor-
malized by the CPU time of the ADERI1 scheme on the coarsest mesh By.
Coming back to the above example of E; = 10~® Figure 3.13 indicates, that
the ADER2, ADER3, and ADER4 schemes require CPU times of about 150,
50, and 20, respectively. Note, that extrapolating the results the ADER1
scheme would require a CPU time larger than 10 to reach the desired error
of By =1073.

We remark, that for results of low accuracy, i.e. of a rather large error
E, ~ 1072, ADERI1, ADER2, and ADERS require roughly the same CPU
time. There, the saving of mesh cells just balances the additional time used
per time step.

In general, our results in Figure 3.13 show, that for problems with smooth
solutions higher order schemes are more efficient than low order schemes
with globally refined meshes, especially when highly accurate results are de-
sired. In order to enhance the accuracy of the proposed ADER schemes even
more, especially with respect to solutions with discontinuities, we combine
the ADER schemes with the ideas of adaptive mesh refinement in order to re-
duce numerical smearing. Details of our adaptive mesh strategy are discussed
below.
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3.8 Adaption Rules

One important feature of our ADER schemes on unstructured triangulations
is the time dependent adaptive mesh. Adaptivity requires the modification
of the triangulation 7 during the simulation in order to be able to balance
the two conflicting requirements of good approximation quality and small
computational costs. In fact, for the sake of reducing the computational
complexity we wish to reduce the number of cells, whereas for the sake of
good approximation quality we prefer to use a fine mesh and therefore in-
crease the number of cells.

We have combined the proposed ADER schemes with the ideas of the adap-
tion strategy, that has been discussed in previous work [10, 11, 43] and has
proved to be efficient and robust. In analogy to Sections 1.5 and 2.5 we
work with an error indicator based on local interpolation with radial basis
functions. However, the adaption rules for a triangular mesh are modified
accordingly.

3.8.1 Error Indication

As described in [10, 11] we use a customized error indicator in order to adap-
tively modify the triangulation 7. A significance value 7, for each cell T' € T
is required to reflect the local approximation quality of the cell average .
These significances n,, £ = 1,...,#7, are used in order to flag single triangles
as “to be refined” or “to be coarsened”.

Definition 5 Let n* = maxi<p<u7 10, and let O, Orer be two tolerance values
satisfying 0 < Ous < Oror < 1. We say that a cell T € T is to be refined,
iff ne > Ores - m*, and T is to be coarsened, iff Ny < Ous - 0™

To be precise, we let 0., = 0.01 and #,.f = 0.05 in our numerical experiments.
Note that a node & cannot be refined and be coarsened at the same time; in
fact, it may neither be refined nor be coarsened.
In order to define the error indicator 7, we first need to specify a set of
neighbouring cells for each triangular cell T' € 7.

Definition 6 Let T be a conforming triangulation. Then for any triangle
Ty € T the set

Ky(T,)) ={T €T : TNT, is edge of T, or node of T, and T # Ty}

is called Moore neighbourhood of Ty and all triangles T € Ky (T;) are Moore
neighbours of Tj.
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Figure 3.14: A triangle T' (dark shaded) with it’s Moore neighbours (light
shaded).

An example of a Moore neighbourhood is displayed in Figure 3.14.
Following along the lines of [35], and assuming that each cell average value i,
is assigned to the barycenter &, of cell Tj, i.e. u, = u(&), the error indicator
is then given by

ne = la(&e) = s(&0)l, (3.42)

where for the Moore neighbourhood Cy;(T}) of T, the thin plate spline inter-
polant s = si,, in (3.42), satisfying the interpolation conditions s(§,) = u(&,)
for all T, € Kp(Ty), is of the form

s= 3 al-—&lPlog(ll - ~& 1) +p-

T, ek

Here, p is a linear polynomial in two variables and || - || denotes the Euclidean
norm. For more details concerning thin plate spline interpolation, due to
Duchon [25], and related interpolation methods, the reader is referred to the
recent tutorial [42].

Hence, the thin plate spline interpolant s in (3.42) matches current cell av-
erage values of u, in the Moore neighbourhood of the cell T,, but not at
Ty itself, i.e. we have u(&,) # s(&) in general. Now the error indication 7,
for the cell T, is small whenever the reproduction quality of @, by s around
cell Ty is good. In contrast, a high value of n, typically indicates that u, is
subject to strong variation locally around 7}. Indeed, this observation relies
on available local error estimates for thin plate spline interpolation (see the
corresponding discussion on this in [10, 11]). We remark that the error in-
dicator allows us to locate discontinuities of the solution u quite effectively.
This is supported by the numerical results in the following Section 3.9.

3.8.2 Coarsening and Refinement

We can balance the approximation quality of the solution against the required
computational complexity by inserting the barycenter of the triangle T, as a
new node in the triangulation 7 where the value of 7 is high (refinement),
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whereas we remove nodes from the triangulation 7 in regions where the value
of n is small (coarsening).

Coarsening. A cell T, € 7 is coarsened by the removal of its vertices (nodes)
from the current triangulation 7. All cells sharing a node in 7 have to be
flagged as to be coarsened to actually remove that particular node from
the triangulation 7. Afterwards, the triangulation is updated in the sense of
a local Delaunay re-triangulation.

Refinement. A cell T, € 7 is refined by the insertion of its barycenter
& and a local re-triangulation according to the Delaunay criterion, which
means that the number of nodes in the triangulation 7 is increased by 1 and
the triangulation is updated accordingly.

Recall the results of Section 3.7 and previous work [5, 45], where a depen-
dency of the accuracy of numerical schemes on the degree of the mesh dis-
torting was observed.

We remark, that our refinement strategy may lead to rather long and thin
triangles especially in transition zones between regions of very fine and very
coarse meshes as shown by our numerical examples in the following Sec-
tion 3.9. Even though our algorithm is capable of handling such triangular
meshes, we suggest to consider a refinement strategy introduced by Hempel
in [39] in order to avoid these mesh degeneracies, such as very long and
thin triangles. A brief discussion of this isotropic mesh refinement technique
together with some preliminary results is given in Appendix B.

3.8.3 Conservativity

The conservative ADER schemes belong to the class of finite volume methods
and therefore physical data, e.g. density or saturation, is represented by cell
averages in each control volume as given by (3.3).

The adaptive algorithm, where data is transferred from an input triangula-
tion 7" onto a modified output triangulation 7"+, must respect the con-
servation property of the underlying scheme (3.16). To this end, we have
to redistribute new cell average values to the new cells T € 7", This is
accomplished by using the intersection algorithm of O’Rourke [63], which is
outlined in Appendix A. Knowing the cell average values on 7", we get the
new cell averages on 7"+ by computing the intersections of triangles similar
to the technique discussed in Section 2.4.2.

In order to redistribute new cell average values on 7" with m-th order
accuracy, when using an ADERm scheme, we need to use an appropriate
Gaussian quadrature rule for triangles (see Appendix C), which is exact for
polynomials of degree m — 1.
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3.9 Numerical Results

In this section, we apply the proposed adaptive ADER4 schemes to two
numerical model problems. The first problem is the rotating slotted cylinder,
a linear problem with variable coefficients as suggested by Zalesak in [89]
and already discussed in Section 2.6. The second problem is the Burgers
equation [17] a popular nonlinear test problem as used in Section 1.6. The
results illustrate the performance of the adaptive scheme, in particular the
essentially non-oscillatory behaviour of the solution with discontinuities.

3.9.1 Slotted Cylinder

During the last few years, various numerical methods have been developed
to treat shocks, that arise in many nonlinear problems, with satisfactory suc-
cess. This is mainly due to the self-sharpening properties of these nonlinear
shocks. In our opinion, the accurate representation and sharp resolution of
the evolution of discontinuities in linear problems, still seems to be a chal-
lenge.

Therefore, we choose the linear problem of the rotating slotted cylinder sug-
gested by Zalesak [89]. Similar to Experiment 2 in Section 2.6.2, we let

the computational domain ©Q = [—0.5,0.5]> C R? and use the initial condi-
tion (2.21), where D C Q is the slotted disc as shown in Figure 2.9(a).
The simulation time is set to I = [0,6]. The rotational flow field of con-

stant angular velocity w = 1 is given by a(x) = (z9, —x1), with z = (x1, x2).
Therefore, the disc D completes six full rotations around the center (0,0) of
the domain €.

Initially, the computational domain is discretised by a slightly irregular mesh
of 200 triangular cells and the initial condition (2.21) is applied. The adap-
tion algorithm then refines the triangles in the vicinity of the discontinuities
of the initial function @(0, ), such that after only a few iterations, the disc
D is resolved sharply as shown in Figure 3.15(a), (b).

Figure 3.16 displays the solution u(t,z) at four different times during the
first revolution. The corresponding triangular mesh is adaptively modified
during the simulation in order to capture the moving discontinuity by locally
refined cells as shown in Figure 3.17.

Due to the combination of the adaptive mesh refinement and the highly ac-
curate ADER4 scheme the shape of the slotted cylinder can be preserved
even after six full revolutions (see Figure 3.15(c),(d)). Comparing our re-
sults with those in [73] shows a significant improvement of the method due
to the successful reduction of the numerical diffusion by an adaptive ADER4
scheme. However, numerical diffusion still remains a problem for very long
simulation times. The solution in Figure 3.15(c) and the corresponding mesh
in Figure 3.17(d) already show the smearing of the discontinuity.
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Figure 3.15: The slotted cylinder. (a) 3D view and (b) cell distribution, of
the initial condition (left column), and after six revolutions (right column),

(c),(d).

Instead of increasing the order of the applied ADER scheme or increasing the
resolution of the mesh by using even finer locally refined meshes an alternative
is to use the method of artificial compression as introduced in [36, 88]. How-
ever, artificial compression still is a field of active research and is susceptible
to various technical pitfalls as shown in [51], especially for reconstructions of
polynomials of degree d > 1.

Similar to the numerical Experiment 2 in Section 2.6 we analyse the perfor-
mance of the adaptive ADER4 scheme for the slotted cylinder problem by
recording the number of cells, the variation of the time step size 7, and the
ratio of the first mass moment

H#T #T
REM(t) =Y u(t) / Y 1(0) (3.43)
/=1 /=1

with cell averages 4, of the triangular cells T, € 7, during the simulation.
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Figure 3.16: The slotted cylinder. 3D view on the evolution of u(t) at four
different times, (a) t= t460; (b) t= tgzo; (C) t = tlggo; (d) t= t1840, dllI'il’lg
the first revolution.

The results are reflected by Figure 3.18. In the first graph the number of
cells is displayed for the six revolutions. The increasing number of cells at
the beginning of the simulation is due to numerical diffusion, but levels off
at about 8000 cells. The very slight decrease in cells towards the end of
the simulation is also an effect caused by numerical diffusion, that gradually
smears the initial discontinuity. In fact, for later times the discontinuity is
represented by a very step gradient of the solution.

Recall that our a posteriori error estimator is based on the local interpolation
using Thin Plate Splines as radial basis functions (see Sections 1.4 and 1.5).
Therefore, linear functions can be approximated exactly leading to very small
errors, i.e. very small significance values.

Now, the steep gradients representing the smeared discontinuities especially
towards the end of the simulation, can be considered as linear functions and
therefore result in rather small significance values. This in turn lead to the
coarsening and slight reduction of cells, where the gradients are close to linear
functions.
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Figure 3.17: The slotted cylinder. Adaptive triangulation during the simu-
lation at four different times, () t = t460; (D) t = to20; () t = t1380; (d)
t = ti840, during the first revolution.

This effect can also be seen in Figure 3.15(c) and (d), where the coarsening
of the locally refined mesh becomes obvious in areas of steep gradients.

The second graph in Figure 3.18 shows the variation of the time step 7.
As discussed in Section 3.5 the proposed ADER schemes are explicit and,
for stability reasons, the time step 7 is restricted by a CFL condition given
in (3.35). Here, 7 depends on the radius p, of the inscribed circle of the
cells Ty, £ = 1,...,#7, and therefore is chosen adaptively in each time step.
The graph indicates, that during the simulation smallest accepted cells can
occur, that reduce the time step size 7 accordingly. Choosing a global 7
small enough to satisfy (3.35) for the entire simulation would necessitate a
dramatically increased number of time steps to compute.

The third graph in Figure 3.18 displays the RFM in (3.43). As we avoid
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Figure 3.18: The slotted cylinder. Number of nodes, time step size 7, and
ratio of the first mass moment (RFM).

fluxes across the boundaries of €2 for the slotted cylinder example and use
the conservative formulation (3.16) for the proposed ADER schemes, it is no
surprise, that mass conservation is satisfied exactly.

3.9.2 Burgers equation

As discussed in Section 1.6 Burgers equation (3.40) represents a standard test
case of a nonlinear conservation law because of it shock wave behaviour. Even
for smooth initial data the solutions typically develop shock fronts. Similar
to the example in Section 1.6, we solve (3.40) with the initial condition

[z —c]? )
ex for ||z —¢|| < R
up(z) = P (”"’E*CHLH"2 | |

0 otherwise

(3.44)

with R = 0.15, ¢ = (—=0.2,—-0.2)" on the two-dimensional computational
domain Q = [-0.5,0.5]*> C R? (cf. [30]).

Initially, €2 is discretised by a triangular mesh of 200 cells, which are suc-
cessively adapted to the initial condition within a few iterations using our
customized adaption rules of Section 3.8.

Plots of the solution u at four different time steps t = tg, t = t199, t = t300,
and t = t799 are shown in Figure 3.19. Note, that the error indicator local-
izes the support of the initial function uq effectively and locally refines the
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Figure 3.19: Burgers equation. 3D view on the evolution of u(t) at four
different times, (a) t= to, (b) t= thO; (C) t= tg()o; (d) t= t700.
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Figure 3.20: Burgers equation. Adaptive triangulation during the simulation

at four different times, (a) t = to; (b) t = t100; (c) t = t300; (d) t = t700-
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Figure 3.21: Burgers equation. Number of nodes, time step size 7, and ratio
of the first mass moment (RFM).

mesh. Furthermore, after the shock formation its propagation through the
computational domain € is well resolved by the adaptively modified mesh
during the simulation. We also remark, that in regions, where the solution
is rather smooth, the mesh is coarsened to keep the computational cost low
(see Figure 3.20). Therefore, the utility of the customized adaption rules is
confirmed once more.

We remark, that we solve the same model problem of Burgers equation with
an alternative, isotropic mesh adaption strategy addressed in Section 3.8.2.
See Appendix B for further details.

The graphs of Figure 3.21 display the results recorded during the simulation.
The first plot shows the evolution of the number of cells. At the beginning,
we see a slight decrease of cells. The initial function ug is tilting in the di-
rection of the velocity field a(z) = (1,1) leading to a shock formation in the
front followed by a rarefaction. As the solution becomes rather smooth in
the region of the rarefaction, the mesh is gradually coarsened due to small
significance values of the error estimator. As this happens before the shock
is formed and to propagates along the diagonal of 2, the number of cells is
initially reduced.

The effects of coarsening the mesh in the region of the rarefaction and refin-
ing the mesh at the propagating shock balance each other until time step 200.
Afterwards, the refinement of the mesh around the propagating shock domi-
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nates and the number of mesh cells increases. Due to the growing support of
the solution u and the corresponding growth of the length of the shock front
causes a moderate but steady increase of the number of cells.

The second graph of Figure 3.21 displays the variation of the time step 7
during the computations. Again through the CFL condition (3.35) the time
step 7 depends on the smallest triangular cell occurring in the current mesh.
However, in contrast to the previous example of the slotted cylinder, periods
of constant time step sizes can be observed. This indicates that during these
periods the smallest triangle remains in the adaptive mesh and determines
the time step 7.

In the third graph of Figure 3.21 we again plot the RFM of (3.43) to check
the conservation property of our scheme. This time, periodic boundary con-
ditions are applied and we observe the expected exact mass conservation of
the proposed adaptive ADER scheme.

3.10 Conclusion

We presented an extension of the new ADER schemes on adaptive, unstruc-
tured triangulations in order to solve linear and nonlinear scalar conservation
laws. Originally, the ADER approach based on Arbitrary high order DERiva-
tives was introduced by Toro, Millington and Nejad in [84] for linear problems
on Cartesian meshes and further expanded by Toro and Titarev to nonlinear
problems in [81, 83]. As ADER schemes belong to the class of finite volume
methods, we discuss in detail the reconstruction of high order polynomials
from cell average values on unstructured triangular meshes. We apply the
WENO reconstruction technique in order to achieve a high order approxima-
tion quality while avoiding spurious oscillations of the solution. To this end
an elaborate stencil selection algorithm is introduced that relies on the idea
of a sectoral search. The resulting piecewise polynomial approximation of
the solution provides generalized Riemann problems at the cells interfaces,
which can be solved by reducing them to a series of conventional Riemann
problems. Furthermore, the Lax-Wendroff procedure uses the solutions of
these Riemann problems in order to determine high order fluxes across the
cell interfaces and update the cell average values for each time step.

The performance of the proposed ADER schemes is evaluated with respect to
experimental orders of convergence and their computational efficiency. The
results show, that using higher order ADER schemes, although increasing the
computational costs per time step, finally pay off due to the tremendous re-
duction in mesh cells required to reach a desired accuracy. We then optimize
the computational efficiency by combining the high order ADER approach
with the strategy of adaptive mesh refinement. Therefore, the according er-
ror estimator and the customized adaption rules for refining and coarsening
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the triangular mesh are explained in detail. Finally, we demonstrate the
good performance of the proposed adaptive ADER schemes in two numerical
experiments by solving linear and nonlinear conservation laws.

Our main interest, however, is the solution of the Buckley-Leverett equation,
which describes the flow of two fluids through a porous medium. In par-
ticular, such problems are relevant for the oil industry. Therefore, we apply
the introduced adaptive ADER schemes on a well-established model problem
from reservoir simulation in the following Chapter 4.



Chapter 4

Two-phase Flow in Porous
Media

4.1 Introduction

The exploration and production of hydrocarbon reservoirs is still the most
important technology to deploy natural energy sources. Thereby, fluid flow
simulators play a key role in order to help oil companies to make effective
use of expensive data collected through field measurements, data processing
and interpretation. In fact, simulation is one of the few tools available for
modelling changes in a reservoir over time. Combined with other measure-
ments it improves the degree of confidence in the understanding of reservoirs
and heavily influences reservoir management decisions.

A central problem in petroleum reservoir simulation is to model the displace-
ment of one fluid by another within a porous medium. A typical problem is
characterized by the injection of a wetting fluid (e.g. water) into the reservoir
at a particular location displacing the non-wetting fluid (e.g. oil), which is
extracted or produced at another location. The nature of the front between
the water and the oil is of primary importance and the goal is to withdraw
as much oil as possible before water reaches the production location.

The physical phenomena that govern these enhanced oil recovery processes
typically have important local properties. Thus, numerical schemes used
to simulate these effects must be able to resolve such critical local features
with high accuracy. In addition, to be useful for large scale simulations, the
schemes should be efficient and therefore adaptive. The interaction between
the two fluids water and oil typically results in a moving shock front, whose
shape and movement is required to be predicted numerically. In our opinion,
the use of adaptive mesh refinement in combination with ADER schemes
on arbitrary triangulations seems to be a promising approach to accurately
capture such shock fronts.

101
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4.1.1 Reservoir Flow Formulation

Some general aspects of the reservoir flow problem and the corresponding
fundamental equations of reservoir flow are reviewed briefly. A detailed dis-
cussion of the governing equations and their derivation from physical con-
straints is given in the renowned text book of Aziz and Settari [3]. Petroleum
reservoirs consist of hydrocarbons and other chemicals trapped in the pores
of a rock. If the rock permits and if the fluid is sufficiently forced, the fluid
can flow from one location to another inside a reservoir. By the injection of
additional fluids and the release of pressure during the production phase the
flow rates and even the mixture of chemicals can be modified by petroleum
engineers.

A simplified, but realistic model problem is given by the two-phase Buckley-
Leverett model [16]. This model considers reservoirs containing some mixture
of water and oil, which both are incompressible. Diffusive effects, such as cap-
illary pressure or the physical mixing of fluids (as a result of flow through a
large number of randomly connected rock pores) are ignored. Furthermore,
gravitational forces are neglected.

As each fluid phase is conserved, their behaviour can be modelled be the
following equations:

Mass conservation of water:

<b(x)%uw(t,x) + Vay,(t,z) =0. (4.1)
Mass conservation of oil:
0
¢($)§Uo(t, x) + Va,(t,x) = 0. (4.2)

Here, the scalar field ¢(x) describes the porosity of the rock, the vector fields
ay(t,x) and a,(t,x) are the phase velocities, and u,(t,z) and wu,(t, x) are
the saturations of water and oil, respectively. Note, that u,, and u, are the
fractions of the pore space, that are filled with water or oil, i.e. 0 < u,,, < 1.
Equations (4.1) and (4.2) indicate, that a change of mass for each phase in
a given region of a reservoir is equal to the net flux of the phase across the
boundary of that region. Therefore, the class of finite volume schemes, such
as the proposed ADER schemes, obviously are a natural choice of available
numerical methods to solve such problems.

By definition, the saturations u,, and u, must fulfill the condition

Uy (t, ) +uo(t,z) =1, (4.3)

as the pore space is assumed to be entirely filled with a mixture of water and
oil.
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The phase velocities are determined by Darcy’s law
ay(t,z) = —-K(x)———=
a,(t,z) = —-K(x)——=

where K(z) is the permeability tensor of the porous rock and kr,(u,) and
kr,(u,) are the relative permeabilities of the water and oil phase. The perme-
ability tensor K(x) of a rock describes its ability to transmit fluids, whereas
the relative permeabilities depend on the actual saturation of the rock of the
according phase. The variables u,, and u, denote the viscosities of the two
fluids and p(t, ) is the reservoir pressure. The required values for permeabil-
ities and viscosities are typically determined by laboratory measurements of
core samples, whereas the reservoir pressure can be estimated from in situ
down-hole measurements in the field. Here, the ratios

kv (ty) ~ My(u,) and kro(u,)

= M,(uo)
Haw Ho

usually are termed the phase mobilities providing the total mobility M =
M, + M,. Adding equations (4.1) and (4.2) and use the relation (4.3), leads
to

Y (aw(t,x) + ao(t,x)> =V-a(t,z)=0,

stating that the total fluid velocity a(¢, z) is divergence free. Now, the phase
velocity, e.g. of water, can be expressed by

ay(t,z) =alt, ) - fu(uy),
where f,,(u,) is the flux tensor and is defined by

My ()
M (uy)

fu(tw) = (4.4)

the ratio of the phase mobility M, (u,,) and the total mobility M. We remark,
that in the field of reservoir simulation and engineering, the flux tensor f,,(u,)

usually is called the fractional flow of the water phase. Therefore, we let
u = uy, and f(u) = f,(uy) in order to simplify the notation.
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Then the equations describing two-phase flow in a reservoir are

a(t,z) = —K(x)M(u)Vp(t,z), (4.5)
V-a(t,z) = 0,
2u—i—a~Vf(u) = 0, (4.7)

ot

where 0 < u < 1 has to be satisfied. The above equations are known
as Darcy’s law (4.5), the incompressibility relation (4.6), and the Buckley-
Leverett equation (4.7).

In reservoir modelling the function f: u — f(u) is monotonic increasing
and satisfies 0 < f(u) <1 for all u € [0,1]. In the following applications, all
computations are based on the Corey model (cf. [3]) with quadratic relative
permeabilities of the form

kry(u) = u?, kro(uo) = (1 —u)?,

which yield the total mobility

and a fractional flow in (4.4) of the form

= ) 4.8
Note, that f in (4.8) is also called the Buckley-Leverett flux already intro-
duced by (1.7) in Chapter 1 and is used to model the displacement of oil by

water.

4.1.2 The Five-Spot-Problem

In the following, the computational domain Q = [—0.5,0.5] x [—0.5,0.5]
represents a homogeneous medium with ¢(z) = ¢ = 1 and K(z) = 1 for
x € Q. Furthermore, we assume M (u) = 1 in (4.5) and keep the reservoir
pressure constant in time, i.e. p(t,x) = p(x). Therefore, the total velocity
field a(t,z) in (4.5) has to be computed only once at the beginning of a
simulation and is then independent of time, i.e. a(t,z) = a(x).

In general, the total velocity field will change during the simulation as the
mobility M (u) depends on the changes in the saturation u. Substituting
equation (4.5) in (4.6) yields an elliptic equations, that would have to be
solved for the pressure, which in turn provides an updated total velocity

field a(t,x) through (4.5).
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Figure 4.1: A model of the five-spot-problem with one production well in the
center and four injection wells at the corners.

However, as we are focussing on solving the nonlinear conservation law (4.7)
we separate the coupled differential equations for saturation and pressure
and neglect the pressure equation. This can be justified by the fact, that for
the chosen five-spot-problem the pressure changes have rather small effects
on the solution !. The main idea of using this approximation is to test the
performance of the proposed ADER schemes of Chapter 3 as adaptive un-
structured saturation solvers. Our aim is to obtain qualitatively reasonable
results to investigate how the adaptive ADER schemes cope with velocity
fields that typically arise in reservoir simulations.

Now, let us consider the standard test case of the five-spot-problem. Here,
one production well P in the center of the computational domain € is sur-
rounded by four injection wells I;, j = 1, ..., 4, located at the corners of the
model as displayed in Fig. 4.1. Assume a thin oil bearing layer trapped be-
tween two sealing layers as shown in Fig. 4.1, which allows us to reduce the
problem to two-dimensions by taking a (z1-z9)-slice (see Figure 4.2) of the
model at the depth of the oil bearing layer.

The distances between a particular location = (21, x2) in the computational
domain €2 and the wells are given by

@) = o —m) (@ =), G=14 (49)

rp(r) = \/(951 —x1p)?+ (v2 —22p)?, (4.10)

for the four injection wells /; and the production well P.

'Even in sophisticated, full reservoir simulators the pressure field and therefore the
velocity field are recomputed infrequently compared to the saturation.
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With the distances (4.9), (4.10) we define a scalar reservoir pressure field
through

plx) = log(rp(x) ) - Z log (1, (2)) (4.11)

as displayed in Figures 4.2(a), (b). We then use Darcy’s law (4.5) and the
assumptions discussed above in order to derive the total velocity field from
the pressure (4.11). Figures 4.2 represents the velocity field via streamlines
in (c), (d) and via velocity vectors in (e), (f). Note, that the direction
of flow is always along the pressure gradient and therefore perpendicular to
the pressure contours. To be precise, the components of the velocity field

a(x) = a(xy,z3) = (a1(z1,x2),a2(x1,x2)) are given by
_ T1—x1,P 4 T1—x1,1;
a1 ($1, x2) T (m1—z1,p)2+(z2—22,p)2 + Zj:l ($1—$1,1j)2+($2j—f62,1j)2 419
o T2—2X2 P 4 C':27I2,Ij ( . )
a2<x1’ x2) T (w1—z1,p) 2+ (z2—20,p)2 + Zj:l (xl—ﬂﬁ1,1j)2+(:62—962,1j)2 )

It can be shown by differentiation, that this velocity field a(z) in (4.12) is
divergence free as required by equation (4.6). Note, that it is not uncommon
to have orders of magnitudes difference in the absolute values of the total
velocity a, with high velocities near the wells and lower velocities in places
between the wells.

4.2 Numerical Results

In the following, we solve the Buckley-Leverett equation (4.7) with the total
velocity field a given in (4.12) and the fractional flow specified in (4.8) by
using the proposed ADERm schemes, m = 1,...,4, of Chapter 3. Then we
solve the same model problem with two standard reservoir simulator well-
established in the oil industry.

4.2.1 Adaptive ADER Schemes

Using an arbitrary triangulation, we can easily adapt the triangular cells to
the injection wells. We set the radius of the injection wells to R = 0.04 and
use the initial condition

1 for |z — ¢ <R, j=1,..4
up(z) =

(4.13)
0 otherwise,

where the ¢; are the centers of the four injection wells. This way, the initial
condition (4.13) mimics the situation of pure water injection into an initially
100% oil saturated reservoir.
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water saturation

water saturation
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Figure 4.3: Five spot problem computed with ADER1. Color plots indicating
the injection of water during the simulation at six different times, (a) ¢t = to;

(b) t = t120; () t = tas0; (d) t = tze0; (€) t = tuso; and (f) t = te00; -

water saturation
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water saturation

water saturation
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Figure 4.5: Five spot problem computed with ADER4. Color plots indicating
the injection of water during the simulation at six different times, (a) ¢t = to;

(b) t = t120; () t = taso; (d) t = tze0; (€) t = tuso; and (f) t = te00; -
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Figure 4.7: The number of cells during the simulation for four different ADER
schemes.

In order to see the differences between low and high order ADER schemes,
we first show the color-coded water saturation obtained with an adaptive
ADERI1 scheme in Fig. 4.3. The shocks representing the interface between
pure oil and a mixture of oil and water are moving from the corners of the
model reservoir towards its center. This way, oil in the porous medium is
displaced by water, i.e. it is effectively pushed towards the production well.
Before the shocks actually reach the production well at the center, the sucking
effect of the production well becomes obvious, which is due to the increasing
total velocity resulting from the pressure drop at the production well. We
remark, that the event, when the shock front arrives at the production well,
is called the breakthrough.

The underlying adaptive mesh is displayed in Fig. 4.4 and clearly shows, how
the locally refined mesh adaptively captures the shocks. After a shock has
passed a particular locations, the mesh is coarsened, if the error indicator al-
lows, in order to reduce the computational costs. However, the mesh behind
the shocks remains finer than it was originally, which is due to the rarefaction
following the moving shock, where the saturation of water slowly increases.
In fact, in the zones of the rarefactions in Fig. 4.3 one can recognise the
shapes of some triangular cells emerged from the recoarsening.

In Fig. 4.5 we show the results of the same model problem obtained by an
adaptive ADER4 scheme. The shocks appear sharper in this case compared
to the ADERI results of Fig. 4.3. Also the rarefaction is much smoother, as
the structure of an underlying triangular mesh disappears.
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However, if we look at the corresponding adaptive mesh in Fig. 4.6, we see
that there is even a coarser mesh in the areas of the rarefactions. In fact,
behind the shocks the error indicator allows to recoarsen the mesh to is orig-
inal coarsest level. This is due to the increased approximation quality of the
higher order ADER4 scheme, which uses piecewise cubic polynomials instead
of piecewise constant functions to reconstruct the water saturation function
u. Therefore, coarser meshes can be used without losing accuracy.

In Fig. 4.7 the number of cells of the adaptive mesh is plotted versus time
for the four different ADERm schemes, m = 1,...,4. Clearly, if the order
of the ADERm scheme is increased, the number of required cells is reduced.
Note, that the reduction in mesh cells going from an ADER1 to an ADER2
scheme is significant, whereas by going to higher order ADER schemes this
reduction is not very remarkable. This is due to the fact, that the shock
is always resolved with a very fine mesh, whereas in the the regions of the
rarefaction wave the error estimator already allows an ADER2 scheme to
recoarsen the mesh almost to its initial state.

4.2.2 Comparison with Reference Solutions

In order to confirm the performance of the proposed ADER schemes and the
obtained results, we compute the solution of the discussed five-spot-problem
with two different reservoir simulators and use these results as reference so-
lutions. The chosen simulators ECLIPSE and FRONTSIM are two commercial
software packages used by the majority of reservoir simulations groups in the
oil industry. We remark, that these simulators solve the coupled system of
the pressure and saturation equations (4.5)-(4.7) and therefore consider the
effect of pressure changes due to changes in saturation.

This in turn typically causes changes in the total velocity field, but as con-
firmed by the following results, these effects can be neglected for the homo-
geneous five-spot-problem. The reference solutions are both computed on
a two-dimensional Cartesian mesh consisting of 100 x 100 rectangular cells,
which are fixed throughout the simulation.

Figure 4.8 shows the water saturation as obtained with the simulator ECLIPSE.
It is obvious, that the moving shocks are much more smeared than in the
case of the ADER schemes. On the other hand, the general behaviour of the
solutions is very similar as well as the size of the discontinuity.

The results obtained by the simulator FRONTSIM are displayed in Fig. 4.9.
Here, one can see, that the numerical diffusion is extremely small and the
interface at the oil-water contact is resolved very sharply.

In order to get a better comparison of results of the different ADER schemes
and the reference solutions of ECLIPSE and FRONTSIM, we look at a cross

section of the water saturation w.



114 CHAPTER 4. POROUS MEDIA FLOW

water saturation

water saturation

(©) (d

05

water saturation

(e) (®)

Figure 4.8: Five spot problem computed with ECLIPSE. Color plots indicat-
ing the injection of water during the simulation at six different times, (a)
t= to, (b) t= tlgo; (C) t= t240; (d) t= t360; (e) t= t480; and (f) t= t600; .
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Figure 4.9: Five spot problem computed with FRONTSIM. Color plots indi-
cating the injection of water during the simulation at six different times, (a)

t =to; (b) t =t120; () t = toso; (d) t = t360; (€) t = tuso; and (f) ¢ = teo0; -
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Figure 4.10: A comparison of saturation profiles obtained by different ADER
schemes together with the reference solutions computed with ECLIPSE and
FRONTSIM.
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Figure 4.10 shows the water saturation profile taken at the time step t = t34
along the line z; € [—0.5,0.5] cutting through the computational domain €2
at x5 = 0.45. The plot in Fig. 4.10(a) displays an overlay of all saturation
profiles obtained by the schemes for ADERm schemes, m = 1, ..., 4, together
with the two reference solutions. In addition, the theoretical expected size
of the shock is drawn as dotted line.

We observe, that all methods lead to very similar results and the expected
jump at the oil-water contact is more or less reproduced by all schemes. To
see the differences between the chosen methods in more detail, we zoom in
at an area around the left shock as indicated in Fig. 4.10(a) and show the
magnified plot in Fig. 4.10(b). Here, it becomes obvious, that the reference
solution computed by ECLIPSE heavily smeared by numerical diffusion. The
reason is, that ECLIPSE is based on a finite volume scheme of order 1.

A clear improvement is achieved by using the adaptive ADER1 scheme, which
is also only first order, but resolves the shock much better due to the local
mesh refinement in the vicinity of the shock. Furthermore, the number of
mesh cells used by the ADER schemes (see Figure 4.7) can dramatically be
reduced compared to the ECLIPSE and FRONTSIM, which both work with
100 x 100 Cartesian mesh. Increasing the order of the ADER schemes, the
shock becomes sharper (see ADER2, ADER3 and ADER4 in Fig. 4.10(b)),
whereas the number of required cells is even lower (see Figure 4.7).
However, the highest resolution of the shock is obtained by FRONTSIM,
which is based on a front tracking scheme (see [41]) that are well known for
their small numerical diffusion. Nevertheless, the saturation profile obtained
by ADER4, which belongs to the class of front capturing schemes, is already
very close to the results of FRONTSIM.

A fair comparison with respect to CPU times between our ADER schemes
and the ECLIPSE or FRONTSIM software is difficult, as our simulations are
carried out with MATLAB 6 Release 13 on a PC (model: IBM 236623G)
with processor type Intel Pentium(R) 4 1600MHz, whereas ECLIPSE and
FRONTSIM run as an optimized FORTRAN code on a UNIX system.

4.3 Conclusion

We applied the new ADER schemes on adaptive, unstructured triangula-
tions on the nonlinear Buckley-Leverett equation. To this end, we choose
the five-spot problem, that serves as a standard model problem for reservoir
simulators in the oil industry. Simplifying assumptions justify the neglect of
pressure changes during the simulation and therefore do not require a pres-
sure solver for adaptive triangulations. Comparisons with reference solutions
obtained by two commercial reservoir simulators also justify our simplifica-
tions.
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The results demonstrate, that the adaptive ADER schemes capture the mov-
ing discontinuities with high resolution and produce sharp shock fronts due to
the local mesh refinement. The robustness of the proposed high order ADER
schemes in combination with WENO reconstruction techniques is confirmed
through the fact, that no spurious oscillations are observed. Furthermore,
the adaptive ADER schemes allow us to reduce the number of required cells
dramatically compared to the commercial software based on fixed Cartesian
meshes.

Further research and development is, of course, necessary in order to de-
sign a new adaptive reservoir simulator, which is able to handle real-world
reservoirs. However, our encouraging results may serve as a trend-setting
approach in order to construct such adaptive and therefore highly accurate
and conservative simulators, that are able to handle complicated geometries
easily.



Outlook

This work has shown, that adaptivity can constitute a crucial property of a
numerical scheme. Especially for hyperbolic conservation laws, whose solu-
tions may develop discontinuities, adaptive methods can effectively capture
these critical features with high resolution and accuracy. We have also shown,
that the number of mesh cells is hereby kept to a minimum, as regions with
smooth parts of the solution are discretised with a rather coarse mesh.
However, each of our proposed methods have their particular weaknesses in-
dependent of their adaptivity.

The meshless approach of Chapter 1 turns out to be problematic, as it is not
conservative. In fact, it is difficult to measure the mass represented by one
particle as the particles carry concentration or density values. Therefore, the
size of the region, that is represented by this particle plays an important role
in the evaluation of the corresponding mass. We remark, that this problem
is subject of current research.

Furthermore, the use of the artificial viscosity adds diffusion, which avoids
the development of real shocks. Instead, we obtain steep gradients and the
amount of added diffusion seems to be problem-dependent. We have shown,
that it is possible to choose a viscosity term, that produces very promising
results. However, the use of artificial viscosity also influences the stability
of the numerical scheme. Therefore, the advantage of the semi-Lagrangian
approach, namely the use of large time steps, is partly lost. A detailed inves-
tigation of how to determine the sufficient and necessary amount of artificial
viscosity for various problems and defining the according time step criterion
for arbitrary point clouds is still an open problem.

Our conservative semi-Lagrangian approach of Chapter 2 has shown, that for
linear problems with variable coefficients, the proposed adaptive advection
scheme is a very powerful tool. Due to its adaptivity and the capability of
using rather large time steps, the method is very attractive for problems that
require long simulation times. The numerical diffusion of the scheme is very
small, such that initial discontinuities in the solution remain sharp even after
long simulation times.

We remark, that there is a potential of increasing the order of the proposed
second order scheme by replacing the linear reconstruction polynomials on
the Voronoi cells by polynomials of higher order. Additionally, the compu-
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tation of backward trajectories for the construction of upstream cells can
be replaced by a more accurate ODE solver. However, either approach to
enhance the accuracy of the proposed scheme will consequently increase the
computational costs.

A further extension of the proposed advection scheme can be achieved by
allowing for non-convex upstream cells. This way, ever larger time steps
could be used. However, a more costly algorithm for the computation of the
intersection of non-convex polygons is then necessary.

The major problem, in our opinion, is the extension of the proposed conser-
vative semi-Lagrangian scheme from linear to nonlinear problems.

The ADER schemes of Chapter 3 turned out to be more suitable for the
treatment of nonlinear problems. As ADER schemes belong to the class of
explicit finite volume methods, the time step is restricted by a CFL crite-
rion. Due to the local mesh refinement, the allowed time step may be quite
small according to the smallest mesh cell. The large number of time steps
and therefore updates of cell average values usually causes numerical diffu-
sion, which reduces the high resolution properties of the adaptive high order
ADER scheme. Therefore, artificial compression techniques [51, 88] could be
incorporated in order to reduce numerical smearing to a minimum.

A significant improvement in accuracy and resolution may also be achieved
by using elaborate mesh adaption methods, that work with isotropic refine-
ment strategies as demonstrated in the preliminary results of Appendix B.
Furthermore, one could think of mesh alignment methods in combination
with mesh adaption, where edges of particular cells are aligned parallel to
the orientation of a shock front. Encouraging results of such mesh alignment
approaches are shown in [46].

Coupling the mesh adaptivity with time adaptivity may be a further issue
to use small time steps only for small cells and allow for larger time steps in
larger cells in order to reduce numerical diffusion.

Especially with respect to multi-phase flow in porous media and petroleum
reservoir simulation, the modern adaptive ADER schemes have to be coupled
with a pressure solver for adaptive unstructured meshes in order to handle
more sophisticated real-world reservoirs. To this end, gravitational and cap-
illary effects should also be considered.

Finally, we conclude that since the first successful attempts in computational
fluid dynamics in 1950 a wide variety of numerical schemes has been devel-
oped. However, the past few years have shown, that the interest in efficient,
robust and high order accurate numerical schemes has grown in many appli-
cation fields. In our opinion, combining high order methods with customized
adaption strategies definitely is a trend-setting approach for future research.



Appendix A

Intersection Algorithm

A.1 Intersection of Convex Polygons

It is know from [76], that the intersection of convex polygons with n and
m vertices has linear complexity O(n + m). Computing the intersection of
convex polygons is a key component in the numerical schemes developed in
this work. In the following, the linear algorithm presented in [63] is outlined
briefly.

Assume the boundaries of two convex polygons P and ). The algorithm
in [63] advances the edges of P and @) around the polygons such that they
chase one another searching for an intersection point. In [63] it is proved,
that all such intersection points can be found within two cycles around the
polygons and therefore the algorithm achieves linear complexity.

Notation and Definitions. Let P and ) be two convex polygons with
vertices p and ¢ oriented counterclockwise. The next and previous vertices
with respect to p are denoted by p, and p_, respectively. Furthermore, let p’
and ¢ be the directed edges (vectors) on each polygon, such that the inside
of the polygon is always on the left. Vertex p is called head of p'and similarly
q is called head of ¢.

The half-plane, including the half-plane edge, determined by the edge vector
p is defined as

H(p) ={x:px (x—p-) =0}

where x is an arbitrary points in the plane.

Advance Rules. The algorithm is mainly based on a set of advance rules,
discussed below. If ¢ points towards the line containing p' but does not cross
it, then advance ¢ to approach a possible intersection with p. If both vectors
point towards each other, either one may be advanced. If neither p nor ¢
point towards the other, advance whichever is outside the half-plane of the
other, or advance either of them, if they are both outside. This, in fact, is
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p X ¢ | half-plane condition | advance
>0 q € H(p) I
>0 q & H(p) 7
<0 p € H(Q) q
<0 p & H(9) P

Table A.1: Advance rules.

the essence of the advance rules. In the following, p'x ¢ > 0 means, that the
z-coordinate of the cross product of p'and ¢'is > 0. All possible cases can be
reduced to the four cases as displayed in Table A.1.

A.2 The Algorithm

These advance rules are embedded in a loop, as indicated in Algorithm 3.
Here the flag inside is used to denote of the head of a particular edge vector
lies inside the other polygon. In each iteration, two edges (of P and @
respectively) are checked for intersection and a vertex is output. After the
loop has finished, all the vertices of the polygon P N () have been output in
counterclockwise order. Of course, if P and ) do not intersect no vertex is
delivered and the special case has to be treated separately.

Also note, that Algorithm 3 uses a subroutine, called advance of the form:

advance p:
output p
IF inside ==“P”
P =D+

advance ¢:
output ¢
IF inside ==“Q”
q < g+

This subroutine outputs a specified vertex of the corresponding polygon.
Additionally, the current vertex is advanced along the edge of the polygon,
if the current vertex is flagged as an inside vertex.

Note, that there are three types of degenerate intersections, that may occur:
(a) a vertex of P may lie on an edge of @), (b) a vertex of P may coincide
with a vertex of @, and (c) an edge of P may be parallel to and overlap an
edge of Q). For details on these cases the reader is referred to [63], where a
more comprehensive investigation of the algorithm is provided.
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Algorithm 3 (Convex Polygon Intersection).

INPUT: n vertices p and m vertices q of convex polygons P and ().

Choose p and q arbitrarily.

DO
IF p and ¢ intersect
IF this intersection is the same as the first one
BREAK
ELSE
output point of intersection
IF pe H(q)
inside «— “P”
ELSE
inside «— “Q)”
IF pxg<0
IF p e H(q)
advance ¢
ELSE
advance p
ELSE
IF ¢ € H(p)
advance p
ELSE
advance ¢
WHILE loop has executed < 2(n +m) times

Treat special cases, i.e. if PNQ =0, or PCQ, orQ C P.
Choose p and q arbitrarily.

IF pe@

output vertices of P
ELSEIF g€ P

output vertices of Q)
ELSE

output ()

OUTPUT: Vertices of PN Q.






Appendix B

Isotropic Mesh Adaption

Here we briefly describe a mesh adaption strategy in order to refine and
coarsen a triangular mesh isotropically. The ideas for the adaption proce-
dure are essentially taken from the report of Hempel [39]. The aim is to refine
and recoarsen conforming triangulations by dividing triangles into subtrian-
gles, so-called daughters, of a common mother, or we unify daughters of a
common mother, the so-called sisters and restore their mother. Therefore,
it is possible to recoarsen a refined triangulation up to its initial state. We
remark, that this type of recoarsening can also be extended to tetrahedral
meshes, which are refined by the isotropic refinement algorithm in [14].

B.1 Input Parameters

The adaption procedure need three input parameters.

1. A conforming triangulation containing a set of triangles and a set of
vertices,

2. a vector of integers (flags), that specifies for each triangle whether it
has to be refined or to be coarsened or neither of both,

3. an array, that describes for each triangle the history of refinements that
led to this triangle.

B.2 Red-Green-Refinement

This refinement procedure subdivides triangles in two different ways. The
red refinement inserts the three midpoints of the triangle’s edges as new
vertices and creates four similar subtriangles as shown in Figure B.1. To avoid
triangles with non-conforming nodes the green refinement is used. To this

125



126 APPENDIX B. ISOTROPIC MESH ADAPTION

Figure B.1: An initial triangle and its red refinement and green refinement.

end, we divide a triangle with one non-conforming node into two subtriangles,
the so-called green triangles along the median of the edge with the non-
conforming node (see Figure B.1). All triangles, that have more than one
non-conforming node are refined by red refinement. If a green triangle has
to be refined, its mother is restored and then refined by red refinement.
Therefore, the resulting triangulation will always be conforming. Further-
more, the inner angles of the triangles are always limited from below for each
adaption step and only depend on the initial triangulation.

B.3 Data Structure

In order to restore mothers of triangles, we need the information, which tri-
angles are children of a particular mother. A suitable data structure for the
book-keeping of triangle refinements can be created as described below.
Each triangle is assigned a data structure called history and has the follow-
ing members:

bool is_green specifies, if a triangle is the result of a green refinement,

integer green sister specifies the location of the sister, e.g. 0, 1, or 2 to
determine, which of the neighbours the sister is,

integer red refinements specifies the number of red refinements that led
to a triangle

stack red history contains for each red refinement the number of the child

For a red refined triangle the children are enumerated by 0, 1, 2, and 3 where
child 0 is located at vertex 0 of the mother, child 1 at vertex 1 of the mother,
etc. Child 3 is the inner triangle of a red refinement. The stack red history
contains for each red refinement the number of the child, where each daughter
inherits this stack from her mother and puts her own number on top of this
stack. With this information all ancestors of triangles can be restored. For
full details see [39, 55].
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B.4 Recoarsening

The recoarsening for this type of adaption algorithm is more involved than
the refinement. In fact, a detailed description of the recoarsening algorithm
requires several definition of a simply red triangle, a thread or a resolvable
patch. However, this is beyond the scope of that brief appendix and the
reader is referred to [39, 55| for details. In summary, the recoarsening strategy
produces a conforming triangulation by restoring previously refined triangles.
With a sequence of recoarsening steps it is possible to restore the state of the
initial triangulation. The results of the following Section B.5 demonstrate
the feasibility and performance of the isotropic refinement strategy.

B.5 Preliminary Results

In Section 3.9 we solve the Burgers equation (3.40) with initial condition 3.44
with an adaptive ADER4 scheme. The refinement rule used in this simulation
inserts the barycenter of a triangle as a new node into the current triangu-
lation for each triangle, that is flagged to be refined. At the end of this
refinement procedure, the nodes are retriangulated according to the Delau-
nay criterion. As this refinement strategy may produce degenerate, i.e. long
and thin, triangles (see Figure 3.20), which affect the local accuracy, we here
solve the same problem with the discussed isotropic mesh refinement strat-
egy.

Initially, €2 is discretised by the same triangular mesh of 200 cells, which
are successively adapted to the initial condition within a few iterations as
shown in Figure B.2(a). Here, the long and thin triangles at the transi-
tion zone between the coarse and fine discretisation are avoided compared
to Figure 3.20(a). In fact, the mesh gradually changes from coarse to fine
triangular cells. As shown in Figure B.2(b),(c),(d) the discontinuity in the
solution is well captured by the locally refined triangulation while degenerate
triangles are avoided. The smallest inner angle is bounded from below due
to the red-green refinement and is determined by the initial triangulation.
However, the locally refined parts of the mesh in Figure B.2 are not as uni-
formly refined as in Figure 3.20, where Delaunay triangulations are used.
Plots of the solution u at the four different time steps t = to, t = t100, t = t300,
and t = t7g9 interpolated onto a regular 100 x 100 mesh are shown in Fig-
ure B.3. Especially at the discontinuities, we observe a major improvement
(compare Figure 3.19). Encouraged by these promising results, the imple-
mentation of a fast and robust isotropic adaption algorithm is subject to
current work.
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Figure B.2: Burgers equation. Adaptive triangulation during the simulation
at four different times, (a) t = to; (b) t = t100; (¢) t = t300; (d) t = t700-
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05
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Figure B.3: Burgers equation. 3D view on the evolution of @(t) at four
different times, (a) t= to, (b) t= tlgo; (C) t= t300; (d) t= t700.






Appendix C

Numerical Integration

C.1 Quadrature Rules for Triangles

In this work, triangular and polygonal cells (Voronoi cells), which can always
be broken down into a set of triangular subcells, are used extensively. In order
to numerically compute the integral of a polynomial p(z) over a triangle T’
with area |T'|, there are exact quadrature formulas, such that

/TP(ZE) dr = ij p(&;),

where wj, j =1, ..., k are certain weights and &; are the corresponding points
inside the triangle T

A list of the fundamental quadrature rules is given, where ¢ indicates the
maximum degree of the polynomial for which the formula is exact. We let
v;,7 = 1,2,3 be the vertices of the triangle T', then the locations §; of the
quadrature points in the triangle are given by &; = ;v + 3;va +;vs, where
«, 3, and v are the so-called triangular coordinates. Because of the trian-
gular symmetry of the quadrature formulas all quadrature points occur in
groups of either one, three, or six. Thus, if a quadrature point has triangular
coordinates (%, %, %) a single quadrature point occurs at the centroid of the
triangle. If two triangular coordinates are equal, for example (a,b,b), then
two further members of the same group occur with triangular coordinates
(b,a,b) and (b, b, a) having the same weight. If none of the triangular coordi-
nates is equal, i.e. (a,b,c), then there are five additional quadrature points
of this group with triangular coordinates (a,c,b), (b,a,c), (b,¢c,a), (¢, a,b),
(¢,b,a) with the same weight.

In Tables C.1 and C.2 only one point per group is given and the column
multiplicity indicates, whether the point belongs to a group of one, three or
six points. Details on the computation of the weights w; and the triangular
coordinates «, (3, v are given in [22].
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Table C.1: Quadrature rules for triangles
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Table C.2: Quadrature rules for triangles (continued)
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