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Abstract

The thesis is divided into two parts:

The first part deals with modelling long-range dependence in asset returns. Certain long-range

dependence models, which have been suggested for financial modelling, fall outside the semi-

martingale set-up. We suggest Poisson shot noise processes as a skeleton of a long-range de-

pendence model which provides an economic reasoning for long memory. We study weak con-

vergence to a fractional Brownian motion. Whereas fractional Brownian motion allows for ar-

bitrage, the shot noise processes themselves can be chosen arbitrage-free.

As complement we also investigate shot noise processes which consist of shots with finite

limits. They converge to a Brownian motion, i.e. they have the same asymptotic behaviour as

compound Poisson processes.

In the second part of the thesis we analyze American options and so-called “game options”

in a general semimartingale setting. Game options naturally generalize American options by

giving both counterparties the right to cancel the contract prematurely.

Whereas in recent years various suggestions have been made how to price European-type

contingent claims in incomplete markets, up to now there is only little corresponding literature

dealing with American options. Pricing the latter is conceptually more involved: in addition to

the uncertainty caused by the underlyings, one has to take the seller’s ignorance of the buyer’s

exercise strategy into account.

We generalize the “neutral derivative pricing” approach to American and game options

which leads to unique “neutral” derivative price processes in incomplete markets.

An alternative approach is “utility-based indifference pricing” which was firstly suggested

by Hodges and Neuberger (HN89) and which is by now a standard concept to valuate European

vii
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style derivatives in incomplete markets. We generalize this concept to American options and so-

called “chooser options”. It leads to a quite surprising result concerning the exponential utility

function.



Chapter 1

Introduction

1.1 Mathematical Finance - from modelling financial mar-

kets to hedging and pricing derivatives

Bachelier (Bac00) proposed to describe fluctuations in the price of a stock by a Brownian mo-

tion. Samuelson (Sam65) advocated a framework where the stock price is modeled by a ge-

ometric Brownian motion, which has the advantage that it does not generate negative prices.

In this framework Black and Scholes (BS73) and Merton (Mer73) derived their celebrated for-

mula for the price of a European call option. Their key discovery was that the option payoff can

be replicated by a dynamic trading strategy holding positions in the underlying stock and the

riskless bond. Consequently, all risk can be removed and the replication cost is the unique no-

arbitrage price of the option, i.e. for every other option price either the seller or the buyer can

make a riskless gain. Mathematically this is based on a representation theorem for Brownian

martingales.

A serious disadvantage of this model is that it does not fit financial data very well. Nowa-

days it is well-known that the normal distribution is not a realistic model for the returns of most

financial assets. One can often observe leptokurtic data, i.e. the increments of logarithmic prices

have semi-heavy tails, such that the curtosis is higher than the curtosis of the normal distribu-

tion. In consequence of this, in recent years Lévy processes became important in modelling

financial data. The distribution of the logarithmic prices generalizes from a normal distribution

1



2 CHAPTER 1. INTRODUCTION

to an arbitrary infinitely divisible one. For example, Eberlein and Keller (EK95) proposed gen-

eralized hyperbolic Lévy processes resp. certain subclasses as a model for the logarithmic asset

price processes and examined statistically their fit in a quite convincing way. These generalized

hyperbolic distributions which model the increments of the logarithmic asset price, are a normal

mean variance mixture. They were first introduced by Barndorff-Nielsen (BN77), who applied

them to model grain size distributions of wind blown sands. Typical examples for these nor-

mal mixture models which play an increasing role also in the financial industry are the normal

inverse Gaussian and the variance gamma model.

With the generalization from Brownian motion to general Lévy processes there arises the

conceptual problem that financial models become incomplete, i.e. not every claim an be repli-

cated. This has the consequence that simple no-arbitrage arguments alone are not sufficient to

determine unique derivative prices. Consider a financial market consisting of two tradable secu-

rities: one risky asset modeled by a Lévy process and one riskless bond. Then, besides Brownian

motion, Lévy processes with constant jump size, i.e. the sum of a multiple of a Poisson process

and a linear drift, are the only examples where the market is complete, cf. Cox and Ross (CR76).

This illustrates that complete markets are very special cases and incomplete markets is what we

should expect.

There are, of course, various further generalizations, taking some dependency for the asset

returns into account, as e.g. stochastic volatility models. The question arises what stochastic pro-

cesses can be used to model asset prices. A limit is given in Delbaen and Schachermayer (DS94).

It is shown that every adapted càdlàg locally bounded process that satisfies the no free lunch with

vanishing risk (NFLVR) property for simple integrands is already a semimartingale. So, semi-

martingales are the most general “reasonable” stochastic processes to model asset prices. How-

ever, this arbitrage-argument is based on many idealized assumptions, as e.g. that investors are

price-takers and there are no transaction costs. Dropping these assumptions one can of course

think of more general stochastic processes than semimartingales.
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1.2 European-type and American-type derivatives

In recent years various suggestions have been made how to price European-type contingent

claims in incomplete markets (see Section 1.3). We think that by contrast there is only little

corresponding literature dealing with American options. Pricing the latter is conceptually more

involved: in addition to the uncertainty caused by the underlyings, one has to take the seller’s

ignorance of the buyer’s exercise strategy into account.

Thus, one important issue of this thesis is the analysis of American options and their gen-

eralizations, so-called “game options” in a general semimartingale setting. Game options natu-

rally generalize American options by giving both counterparties the right to cancel the contract

prematurely.

Let us point out the main difference between European-type and American-type contingent

claims. European-type claims can be characterized by a single random variable
�

being the

(discounted) amount the seller has to pay to the buyer at maturity � . In this case we have a

symmetric situation: one can interchange the roles of the seller and the buyer just by substitut-

ing
�

by � � . Examples are European call and put but also path-dependent options like Asian

or lookback options. For a survey of exotic options we refer to Hull (Hul00), Chapter 18. Fur-

thermore, in a frictionless financial market with a tradeable numeraire, expressing everything

as multiples of this numeraire, it makes in principle no difference if the payoff takes place at

time � or prematurely. So further examples are barrier options where the payoff takes place at

a stopping time (which depends on the evolution of the underlying stock price and cannot be

affected by the option buyer).

By contrast, for American style derivatives the buyer can choose her exercise time. There

is an asymmetric situation. The seller does not know the exercise strategy of the buyer. Thus,

American contingent claims are described by a stochastic process �������
	���	��� ��� ��� instead of a

single random variable
�

. If the buyer exercises the claim at time � the payoff is �
	 . Of course,

European claims can be interpreted as special cases of American claims by setting ��	������
for �����! #"$��� and �%�&� �

.

Note however, in a complete market a rational buyer chooses her exercise strategy in such a

way that she maximizes her expected (discounted) payoff under the unique equivalent martin-
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gale measure – independently of her utility function.

In incomplete markets the optimal exercise strategy of a rational buyer is not unique, a

criterion may be provided by a utility function. Thus, one has also to take into consideration

that the buyer can resell the option to another investor (with other preferences) on the market.

In addition, one has to see that the “best” exercise strategy of the option buyer need not coincide

with the “least favorable strategy” from the viewpoint of the option seller (as it is the case for

complete markets). At this place we just want to outline that such considerations make the

analysis of such contracts in the context of incomplete markets quite complicated.

In the context of utility-based indifference pricing we define a “still fair premium” for Amer-

ican claims by a worst case consideration, see Chapter 4. Worst case analysis means that the

seller has to take all “possible” exercise strategies of the buyer into account. The advantage of

this approach is that the seller need not know anything about the preferences of the buyer. The

drawback is that it appears to be a quite pessimistic criterion and therefore it leads to quite high

premiums.

Fortunately, in the context of “neutral derivative pricing” we can price American options

(and even game options) without any worst case considerations, see Chapter 3.

1.3 On valuating and hedging of derivatives in incomplete

markets

In the following we discuss several approaches for valuating and hedging in incomplete markets.

1.3.1 Super-replication

The (super-)hedging price is the smallest initial capital � that allows the seller of the claim to

construct a portfolio which dominates the payoff process of the option. For a European style

claim, which is given by a single payoff
�

paid out at maturity � , there exists an admissible

strategy � such that

��� � �� �����
	��� ���
(3.2)
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It turns out that

� � ������ ��	�

 � � � � " (3.3)

where �� is the set of all equivalent local martingale measures (cf. El Karoui and

Quenez (EKQ95)). In Karatzas and Shreve (KS98) � is called the upper-hedging price of the

claim
�

. Analogously one can define the lower-hedging price � as the highest price the buyer

can afford to pay for the contingent claim and still be sure that by investment in the underlyings

she can be guaranteed to have nonnegative wealth at � , once the payoff of the contingent claim

has been received. We have

� � ������ �� �

 � � � � � (3.4)

For an American claim, given by a stochastic process � , the quantity � is the minimal

amount such that

� � � 	� ����� 	�� � � 	 " �����! #"$����" (3.5)

for an admissible strategy � . Notice that in this definition of a superhedging price no stopping

time is involved. So all exercise strategies of the option holder are allowed. Only the filtration

of the option seller enters (3.5) (as � has to be predictable with respect to the seller’s filtration)

One obtains – as analogue to (3.3) – that

� �������� �� ������ �� �

 � � � � � " (3.6)

where � is the set of stopping times (cf. Karatzas and Kou (KK98), Kramkov (Kra96), Föllmer

and Kabanov (FK98), and Föllmer and Kramkov (FK97)). An advantage of superhedging is

that it is a quite intuitive concept: the superhedging-price is the smallest price leaving no risk

to the hedger. It is at least an important reference point for the maximum price. Unfortunately,

it yields only trivial upper bounds in many models of practical importance (cf. e.g. Eberlein

and Jacod (EJ97), Frey and Sin (FS99), Cvitanić et al. (CPT99)). E.g., for a European call

option with payoff
� � � 	 � ��� ��� one obtains in many models that � � 	 � , and the (static)

superhedging strategy just consists in buying one stock at  and holding it until � .
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1.3.2 Neutral derivative pricing

Davis (Dav97) defines the fair price at time  of a claim
�

paid out at maturity � as the price

which makes investors indifferent between investing “a little of their funds” in the contract and

not investing in the contract at all. A similar idea is followed up by Kallsen (Kal01), but in a

more general setting allowing for intermediate trades also in the derivatives. Kallsen (Kal01)

obtained a whole neutral price process for a European contingent claim. In this dynamic setting

it is also possible to deal with American and game options – as we will see in Chapter 3 of

this thesis. Let us explain the main idea of Kallsen (Kal01). As usual in derivative pricing, it

is assumed that the stochastic processes describing the fluctuations in the underlying prices are

given – by a semimartingale 	�� – whereas the derivative price process 	 � is to determine. A

neutral derivative price process 	 � has essentially to satisfy two conditions. First the terminal

condition 	 �� � �
. Secondly, it is assumed that there is a representative agent maximizing her

expected utility by choosing a dynamic portfolio � ��� " � � � in the extended market � 	�� " 	 � � , and

in the optimum her demand for the derivative 	 � should vanish during the whole period �  #"�� � ,
i.e. � � �  . The idea behind the second condition is that derivative supply and demand has to

be balanced as derivative securities have no counterpart in the world of commodities. In other

words, if someone has a long position in a derivative somebody else has to be short. Obviously,

this is in contrast to stocks. In the world of a representative agent (that means, all agents have the

same utility function) this implies that the demand for derivatives of each agent has to be zero.

More precisely, there has to exist an optimal strategy � � � " � � � with � � �� . It turns out that these

two conditions uniquely determine a “neutral derivative price process” which can be represented

as the conditional expectation of the final payoff
�

with respect to a special martingale measure
���

, i.e. 	 �	 � 
��
	 � ���  	 � . ��� depends on the stock market, i.e. on the stochastic law of 	�� , but

for every claim
�

it is the same. So, one chooses one
���

from the set of equivalent martingale

measures to price all derivatives. Summing up, in this model derivatives are tradeable assets like

their underlyings with the only difference that the cumulative demand for it has to vanish.
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1.3.3 Utility-based indifference pricing

At a first glance this concept seems to be quite similar to the previous one. Here, one takes

the perspective of a particular counterparty and fixes the number of shares of the claim (say, �

for an option buyer or ��� for an option seller). The indifference premium is a price such that

the optimal expected utility among all portfolios containing the prespecified number of options

coincides with the optimal expected utility among all portfolios without options. Put differently,

the investor is indifferent to including the option into the portfolio, cf. equation (1.1) in Chapter

4 for an exact definition. This approach was firstly suggested by Hodges and Neuberger (HN89)

and is by now a standard concept to valuate European style derivatives in incomplete markets.

Both, utility-based indifference pricing and neutral pricing rely on expected utility maxi-

mization and indifference to trading the option. Let us point out the differences between the

two concepts. Indifference pricing takes an asymmetric point of view. Moreover, it depends

decisively on the fixed number of claims under consideration. As far as options are concerned,

intermediate trades are not allowed. Therefore, this approach is particularly well-suited for over-

the-counter trades: Suppose that the buyer wants to purchase a specific contingent claim. Then

she has to pay the seller at least the latter’s indifference price in order to prompt her to en-

ter the contract. This concept is also especially useful for insurance applications, see also the

introduction of Chapter 4. It is a generalization of the classical zero-utility premium calcula-

tion principle in insurance mathematics where a random payoff is valuated without considering

the possibility to hedge against it. For the classical approach see Gerber (Ger79) and for the

financial generalization Schweizer (Sch01c).

An advantage of the indifference pricing approach is that one obtains not only prices but

also hedging strategies. By contrast, neutral prices just lead to vanishing demand for derivatives

and consequently there is nothing that can be interpreted as hedging strategy. On the other hand,

the neutral prices are easier to compute as they are linear.

1.3.4 Quadratic approaches

This class of approaches consists of the so-called quadratic methods, see Schweizer (Sch01d)

for a survey. We can divide this class of approaches into (local) risk-minimization approaches,
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proposed by Föllmer and Sondermann (FS86) for the case where the asset price process 	
is a martingale and generalized to semimartingales by Schweizer (Sch88; Sch91), and mean-

variance hedging approaches, proposed by Bouleau and Lamberton (BL89) and Duffie and

Richardson (DR91).

This approach has the big advantage that hedging strategies can be obtained quite explicitly.

In addition, the quadratic approach can be embedded in the utility-indifference approach for an

investor having mean/variance preferences, see Schweizer (Sch01c).

1.3.5 Quantile hedging and shortfall risk minimization

An undesirable feature of the quadratic approaches is the fact that they punish losses and

gains equally. A way out of this is quantile hedging (see Föllmer and Leukert (FL99) and Spi-

vak and Cvitanić (SC99)) or efficient hedging (see Föllmer and Leukert (FL00), Cvitanić and

Karatzas (CK99), and Cvitanić (Cvi00)).

The seller minimizes the expected shortfall risk (or, more general, some lower partial mo-

ments) subjected to a given initial capital.

Let ����� � ��� � � be her loss function which is an increasing convex function with � �� ���
 . She has to minimize


�� � � � � �#� � �
	 "
over all strategies � , where � 	 ��� �� 	� ����� 	�� , �����! #"$��� , is her wealth process and � her given

initial capital. In this approach only losses are punished. However, gains are not rewarded.

1.4 Contribution of this thesis

The first part of this thesis, namely Chapter 2, deals with shot noise processes. Section 2.1 and

2.2, which coincide with Klüppelberg and Kühn (KK02b), are about modelling long-range de-

pendence in asset returns. Certain long-range dependence models, which have been suggested

for financial modelling, fall outside the semimartingale set-up. We suggest Poisson shot noise

processes as a skeleton of a long-range dependence model which provides an economic reason-

ing for long memory. We study weak convergence to a fractional Brownian motion. Whereas
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fractional Brownian motion allows for arbitrage, the shot noise processes themselves can be

chosen arbitrage-free.

In Section 2.3 we investigate – as complement to Section 2.1 and 2.2 – shot noise processes

with finite shots, i.e. shots which possess finite and non-degenerated limits, when time tends

to infinity. Such processes have already been analyzed in Klüppelberg and Mikosch (KM95b).

We state limiting results for these kind of processes. It turns out that they converge to a Brow-

nian motion, i.e. they have the same asymptotic behaviour as a compound Poisson process. So

information with finite expansion cannot produce dependency in the limiting process.

Further in this thesis we analyze American options and so-called “game options” in a general

semimartingale setting. Game options naturally generalize American options by giving both

counterparties the right to cancel the contract prematurely.

In Chapter 3, which is submitted for publication in the form of Kallsen and Kühn (KK02a),

we adapt the “neutral derivative pricing” approach as suggested by Kallsen (Kal01) to American

and game options which leads to unique “neutral” derivative price processes in incomplete

markets. This is also a generalization of the “marginal substitution value” approach for pricing

European contingent claims as suggested in Davis (Dav97), cf. Subsection 1.3.2.

Chapter 4, which will appear in slightly different form as Kühn (Küh02), deals with an

alternative approach called “utility-based indifference pricing” which was firstly suggested by

Hodges and Neuberger (HN89) and which is by now a standard concept to valuate European

style derivatives in incomplete markets. We generalize this concept to American and so-called

“chooser options”. It leads to a quite surprising result concerning the exponential utility func-

tion.

Chapter 5 coincides with Kühn (Küh01). Like Chapter 3 it deals with game options. But, the

economic model is different. We assume that there is solely one option buyer/holder and one

seller/writer and model the exercising of the option as a non-zero-sum stopping game taking

trading possibilities in the underlyings explicitly into consideration. This corresponds to a game

option which is not traded on a liquid market.
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Chapter 2

Shot Noise Processes in Finance

Section 2.1 and 2.2 are an adapted version of Klüppelberg and Kühn (KK02b).

2.1 Introduction to shot noise processes

Whereas Lévy processes and stochastic volatility models are by now standard instruments to

model stock prices, more recently long memory processes like fractional Brownian motion

(FBM) have also attracted attention by stochastic analysts and mathematical finance researchers,

cf. e.g., Hu and Øksendal (HØ99) and the references therein. For an introduction to FBM see

Samorodnitsky and Taqqu (ST94). Certain financial time series show long memory properties

as observed since the 1980s; see Granger (Gra80), resp. Granger and Joyeux (GJ80), and Man-

delbrot (Man97). Such observation has led to an ongoing debate among econometricians and

statisticians. It is obvious that any deterministic component like a small trend or business cy-

cle can cause a fictitious long memory effect in a time series and it has been shown recently

that also changepoints in a time series can exhibit such a long memory effect (Mikosch and

Stărică (MS99)). More recently, Brody, Syroka, and Zervos (BSZ01) have investigated weather

derivatives written on temperature-based indices, whose dynamics show long memory and can

be modelled by fractional Ornstein-Uhlenbeck processes.

From the point of view of stochastic analysis FBM has the distinct disadvantage that it is not

a semimartingale and allows for arbitrage; explicit arbitrage strategies have been found for FBM

by Rogers (Rog97) and for geometric FBM by Cheridito (Che01a). But, as already mentioned

11
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there, the existence of an arbitrage possibility is no inherent property of long memory processes.

It is rather a consequence of the local behaviour of FBM that is inconsistent with the properties

of a semimartingale, whereas long-range dependence is a property of the long-run behaviour of

a process.

In this chapter we answer the natural question for a possible economic explanation of

logarithmic stock price processes to follow FBM. For instance, Brownian motion appears as

Donsker limit of a random walk for relative price changes, as do Lévy processes in general.

Stochastic volatility models have the obvious economic interpretation of a volatility changing

in time depending on past prices, past volatilities and market conditions.

A first idea is to find a discrete skeleton, the most obvious one is a long memory linear

model, more precisely an ARIMA(� " � "�� ) process with autoregressive part of order � , mov-

ing average part of order � and fractional difference parameter � � �� "  ��� � ; for more details

see Brockwell and Davis (BD87). Such models converge in a Donsker sense to FBM. Sotti-

nen (Sot01) shows convergence of a special binary market model to FBM.

However, all this does not provide an economic reason, why to consider FBM or geometric

FBM as a price model. Much more promising to us seems an idea by Stute (Stu00) who sug-

gested geometric Brownian motion as price process, enriched by a geometric shot noise part.

His model is given by

� � �$� ����� �
	�� � �$� � 	 � �$���" � �  #" (1.1)

where ��� � �$��� 	�� � is a Brownian motion and � 	 � �$��� 	�� � is a shot noise model, which we define in

a slight modification by

	 � �$� �
��� 	��� �
� �
� � � � � �

�
� ������� � � �

� �
�
� � � �

�
�%� � � � � �

�
� � " � �  � (1.2)

Here
� � � � �

�
� �$����	��� ,  ��!#"$	  � , are i.i.d. stochastic processes on � such that

� � � �$� �  
for �&%  , independent of the two-sided homogeneous Poisson process ' with rate (*)� and

points
� � � % � � � % � � � % � � % � � % � � � .

The shot noise model 	 is interpreted as a model for information provided by various sources

which enters the price at random Poisson times. The arrival of information acts like a shock to

the market which may change the price quite drastically and may also have some influence on
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the future price movements. The reason for this is that a new piece of information that is relevant

for the stock price of a firm (e.g. a political decision or some rumor concerning a merger) needs

some time to spread among the market participants. That means some traders have information

earlier than others (think for example of insider-trading). Therefore it needs some time until the

news reaches its maximum effect. Later on, some effects may fade away again, but it may as

well happen that certain information has a long lasting influence on the price. In this way long

memory is introduced into the economic model.

We obtain convergence to FBM. Moreover, we show that the model (1.2) itself can be chosen

arbitrage-free (by the right choice of
� �

near  ), only its limit model FBM allows for arbitrage.

Shot noise processes were used in various branches of stochastic modelling; references can

be found in Klüppelberg and Mikosch (KM95b) and Klüppelberg, Mikosch, and Schärf (KTS01).

Whereas in those papers limits for non-stationary shot noise models of the form 	 � �$� �
� ��� 	���

� � �
�
� � � �

�
� , � �  , were investigated with a view towards applications in insurance,

in Section 2.2 we work with a version of the process possessing stationary increments, which

requires the introduction of the second sum in (1.2).

This chapter is organized as follows. First we investigate some properties of the restricted

process 	��� � ��� 	 � which are important for applications in mathematical finance. In particular, we

show how to construct an equivalent martingale measure. Hence, our model does not allow for

arbitrage. In Subsection 2.2.2 we show weak convergence of a rescaled process to a FBM when

the time horizon tends to infinity.

2.2 Long-range dependence

It is straightforward to see that 	 according to (1.2) has stationary increments. In Section 2.2,

we restrict ourselves to the special case of multiplicative shots: for all  � ! " 	   ,
� � ��� � ��� ��� �	�

�
" � �  #" (2.1)

where � � � � � � � is a normalised regularly varying function in � with index 
 ��� �������" ������ ,
i.e. � is continuously differentiable and � ��� ��� � ����� ��� ����� ��� � ��
 , cf. Bingham, Goldie, and

Teugels (BGT87). The �
�

are i.i.d. innovations with

 � � �  and


 � �� ���� #" � � .
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Example 2.2.1. Examples are � ��� � � ��� � � ��� , � �  #" 
 � � �������" ������ , as well as

� ��� � � ��� � � � � � � � � � � � or � ��� � � ��� � � � � � � � � ��� � � .

Remark 2.2.2. Notice, that for 
 )  the innovations that enter 	 are not absolutely summable.

However, we show that for every � �� the limit in (1.2) exists almost surely and there exists a

càdlàg version of 	 .

Lemma 2.2.3. For � "����  , we have



� ����� � � �

� ����  � � � ��� � � �
	 � ��� � � � � ��� � �
�� % � �

Proof. As ��� � � � � � � � ��� ����� ��� �
� 
 it is straightforward to see that � � is regularly varying with

index 
 � � . Therefore, for every �$)  there exists a � �&)  s.t.

� � � ��� � ��� � � � � ��� " ��� ��� � � (2.2)

For � "����  , we have



� ����� � � �

� ���� �� � � ����� � �
	 � ��� � � � � ��� � �
� 

� � ������ � � � � � � ��� � �
� ����� � � �

��� � � � � %�� � � �  �
 (�� � ����� � � �

� �  �
 (��

� � � � � ��� � � � � % � �

The finiteness of the first sum in � can be derived from general results for random walks with

drift (see e.g. Theorem 3.3 in Chapter 3 of Gut (Gut88)) applied to the random walk � � �
�
� �

�  � � �  ( �$�
�
� � � � � � �"!"!"! (which has a positive drift and its increments are bounded from below).

Proposition 2.2.4. The process 	 as defined in (1.2) with (2.1) possesses a càdlàg version and

has finite variation. Therefore, it is a semimartingale with respect to its natural filtration.

Proof. For fixed � the existence of 	 � �$� can be derived from Theorem 1 in Westcott (Wes76).

For the following, it is sufficient to consider the sum

#	 � �$� � � ����� � � �
�
�
� � � � � �

�
�%� � � � �

�
� � " � �  � (2.3)
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For � "����  , we have


���� #	 ��� � � �%� #	 ��� ��� ���
� 
 � ��



� ����� � � �

� � ��� � � � � � �%� � ��� � �
�
� �
� 

� 
 � �� � � 

� ����� � � �

� � � �	� � � � � � 
 � �� � � � % � � (2.4)

where � � � ��� � �
�
" � � � � � � � . The inequalities hold due to Lemma 2.2.3.

Thus, Kolmogorov’s continuity theorem ensures the existence of a continuous version of
#	

(resp. a càdlàg version of 	 ). We can approximate the variation of the process
#	 by its variation

on the dual grid 	   ��
 � �  �� #" � � � "  
  . Using Jensen’s inequality and again (2.4) yields



� �� � �� �
� � ���

#	 ����� � � �	 ��
 �$� � #	 ���  ��
 �$� ��� �  
 
�� � #	 �  ��
 �$� � #	 �� � � ���� ��� 
 � �� � % � � (2.5)

Due to monotone convergence, we get the assertion by letting � � � .

Remark 2.2.5. The proof of Proposition 2.2.4 is based on the fact that
� �
�
�
grows with the same

order as
�  � , and the increments are nonnegative. So, it is also valid for renewal processes other

than the Poisson process.

From now on, we work with the completed stochastic basis of ����"  	 " �  � � ��� � ��	 " � � , where

 � ����� ��� � � � ���� " � � � � � ���� " � 	 ��� �$� ��� ��� �! � (2.6)

Define " as càglàd modification of the process

�$#� ����� � ��� � � �
�
� � ��� � �

�
� � (2.7)

Similar to (2.4), by Kolmogorov’s continuity theorem, there exists a continuous version of� � ���
�
� � � �

�
��� ��� � �

�
�  � � � , we call it

#" . In addition, we define% � �$� � � � �� �
� � 	��� �
� � �

�
" � �  � (2.8)
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Lemma 2.2.6. With the quantities as defined above, 	 satisfies the stochastic differential equa-

tion

� 	 � �$� � � % � �$� � " � �$� � � " � �  � (2.9)

Proof. Step 1: First of all we have to show that we can interchange integration and summation,

i.e.

����� � � �
�
�
� � � � � � � � � �%� � � � � �

�
� � �

� 	 �
	
	

#" ��� � � � �
-a.s. " � � "�� �  � (2.10)

Remember that the addends entering the sums in (2.10) are not absolutely summable.

On the grid points 	 ����� �  ��
 � � ��� " � � � " � � � "  
  we have pointwise convergence

by the martingale convergence theorem, i.e.

� ��� � � �
�
�
� � � � � � �  ��
 � �

�
� � #" � � � � �  ��
 � �

-a.s. " � � � � (2.11)

Then, we want to estimate the approximation error

� ��� " � � � � � ��� � � �
�
�
� � 
 �
�
� � � ��� � � �

�
� � �  ��


���
	 � � � � � � � � �  ��
 � �

�
�%�*	 � � � � � � � � � ��� � �%� �

�
�   �

As ��� is continuous we have for all  � ! � that � � 
 �
�
�  � -a.s., as � � � . On the other

hand

� � � 
 �
�
� �  � ������  � 	 � ��� � 	 �
	 � �����

� � � ��� � � � � �
�
" (2.12)

and from Lemma 2.2.3 we obtain that

 � � ���

�
� � �

� �
�
	 % � and thus


�
 � ���
�
� � � �

� � 
 �
�
� �� �  ,

as � � � . Therefore, for fixed � ��� the sequence � � ��� " � �$� � �� has a limit
� � ��"�� � , both

�
-a.s. and in � � � � � (the former is due to martingale convergence and the latter by the Cauchy

criterion). We have

 � � ��" � � � � 
�
 � ���

�
� � � �

� � 
 �
�
� � � �  , as � � � . Thus,

� ����" � � tends to

zero in probability for � � � .

Now, we are ready to proof Equation (2.10). Let � )  and � ��� be given (outside

excluded null sets: in the whole verification, we use
�

-a.s. arguments only for countably many

objects, due to completeness of the � -algebra
 	 we can throw away all

�
-null sets that make
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problems). As
#" is continuous the integral  	 �
		

#" ��� � � � can be approximated ( � -wise) by the

Riemann sums �  ��
 � � �	 � � #" � � � � �  ��
 � , � � � , i.e. there exists an � � s.t. for � � � �
�����
�  ��


���
	 � �

#"%� � � � �  ��
 �%� � 	 �
		
#" ��� � ��� ����� ���

�
�

(2.13)

Since
� ����" � � ��  as � � � we have

� 	 � � ��" � � � ����� infinitely often  � � �

And as
� ��� " � � � � � ��"�� � when � � � , we can find a � � � � � and � � � � such that for

all � � � �
� � ��� "�� � � � � �

�
�

(2.14)

For this � � we use (2.11), i.e. the convergence on the grid 	 ����� �  ��
 � � � � � " � � � "  
 �  , and

we get for � � � �

�����
� ��� � � �

�
� �  ��
 �

� � ��
	 � � � � � � � � �  ��
 � � �

�
�%� �  ��
 �

� � ��
	 � �

#" � � � � �  ��
 � � �����
� �����

�  ��
 �
� � ��
	 � � �

���
� � �

�
�
� � � � � � �  ��
 � � �

�
�%� �  ��
 �

� � ��
	 � �

#" � � � � �  ��
 � � ����� � �
�
�

(2.15)

Putting (2.13), (2.14), and (2.15) together, we get that for � � � � � � �
�����
� ��� � � �

�
�
� � � � � � � � � �%� � � � � �

�
� � �

� 	 �
	
	

#" ��� � ��� ����� � � (2.16)

and therefore (2.10) holds.
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Step 2: Using (2.10) Equation (2.9) follows just from the calculation:

	 � � � � �%� 	 � �$�
�

��� 	 �
	 ���
� � � 	�� � � �

�
� � � � � � � � � � ����� � ��� 	�� �

�
� � � � � � � � � �%��� � �%� �

�
� �

��� �� �
� � 	 �
	 ���
� ��� 	�� � � �

�
�

��� 	 �
	 ���
� � � 	�� � � �

�
� � � � � � � � � �%� � �� � �
� ����� � ��� 	�� �

�
� � � � � � � � � �%� � � � � �

�
� �

��� �� �
� � 	 �
	 ���
� ��� 	�� � � �

�
�

��� 	 �
	 ���
� � � 	�� � � �

� � 	 �
	
��� � � ��� � �

�
� � � � � 	 �
	

	 ����� � � � 	�� �
�
� � ��� � �

�
� ���

��� �� �
� � 	 �
	 ���
� ��� 	�� � � �

�
� � 	 �
	

	

� � � ���
� ��� 	�� � � �

�
� � ��� � �

�
� � � � � 	 �
		 ����� � ��� 	�� �

�
� � ��� � �

�
� � �

� % � � � � �%� % � �$� � � 	 �
		 " ��� � ��� � (2.17)

2.2.1 Girsanov Theorem

Theorem 2.2.7. If � �� �$)  , then there exists a probability measure ��� �
such that 	 is a

local martingale with respect to � .

Proof. Step 1: Construction of a possible � : under � , the process
%

should be a point process

whose stochastic compensator has rate � " . Then by (2.9) 	 becomes a local martingale. This

can be achieved by applying Girsanov’s theorem for point processes, cf. Theorem T10 p. 241 in

Brémaud (Bré81). Translated to our notation the theorem says: choose a
#�

-measurable function� )  (
#� � ����� � ��� whereas

�
is the


-predictable � -algebra on ��	 � � and

� � ��� is the

Borel � -algebra on � ) satisfying� 	
�
�
� � ��� "�
 � ( � � � � � ��
 � � � % � � � a.s., (2.18)

and define for � ���! #"$� �
� � � � ��� �  � �

�
�
� ����� � ��� "�
 ��� � � � " ��
 ���

� �
�
�
� � � � � ��� "�
 �$� ( � � � � � ��
 � � ���&" (2.19)

or, equivalently,

��� � � � � � � � � ��� "�
 �%� � � 	�� � � � " ��
 � �#( � ��� � � ��
 � � �  " � ��� � " (2.20)
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where

� � � � � ��� " � � � " �  #"�� � 	 � � � � �
��� � � � � � � �

�
� ��� � (2.21)

If

 � 	 � � , then there is a � � � defined by

� �� � ��� 	 " (2.22)

such that under � the process
%

is a point process with rate

� � ��� " ��
 � � � ��� "�
 � ( � � � � � ��
 � " � �  #"�
 � � � (2.23)

To make 	 a local martingale we need that

� �� �
�
� 
 � � ��� " ��
 � � � " ��� � " � �  � (2.24)

This can be achieved by setting

� ��� "�
 � � �
��������� ��������

� � "%��� � %  and 
 %  
� � " ��� �( � �  � 
 � �� � "%��� � %  and 
 �  
� � " ��� �( � �� � 
 � �� � "%��� � �  and 
 %  
� � "%��� � �  and 
 �  

(2.25)

�
is

#�
-measurable and strictly positive. ��� � � ��� � ��	 is a local

�
-martingale and, due to positivity,

a
�

-supermartingale, i.e.

 � 	 � � . To verify


 � 	
� � we make a localization: as " is càglàd

we can define by � 
 � � � � ��	 � �  � � " ��� � � � ) �  a sequence of stopping times with
� " � � ��� �

and obtain due to
� � � ��� � �� ��� 	 � � " ��� � � % �  � � that

� ��� 
 � �$� � � as ��� � . Define� 
 � � �
��� ��� � � � � � � � � � 	 � . For the corresponding density processes ��� 
 � � �  � ��� 	 � and � � 
 � � � � � 
	

we have indeed

 � 
	 � � (cf. Theorem T11 p. 242 in Brémaud (Bré81)) and therefore

� � 
 � � 
	 � � 
 � � 	 �
	 � � ��	��  � 
 � � 
	 �
	 � � ��	��  � 
 � � 	 �	 � � ��	��  � � 
 ��� 
 % �$� � (2.26)

Thus, it remains to show that � 
 ��� 
 % �$� �  , as � � � .

Step 2: In this step we show the non-explosiveness of a special point process
#' . In step 3

we derive from this that � 
 ��� 
 % �$� �  , as � � � .
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First of all we have to redefine our model on a new probability space �
#� " # " #� � , where#� �

#� � 	 #� � 	 #��� , # �
#
�
� # � � # � , and

#� �
#�
�
� #� � � #� � .

On
#� � we define three i.i.d. sequences � � �

�
�
�
�� , � � �

�
�
�
�� , and � � � � � ��� �  � . They are mutu-

ally independent.
� �
�
,
� �
�

are uniformly distributed on �� #" � � and the events � � have probabilty#�
� � �

�
� � � � �����
�� � , where ��� is the given distribution function of the jumps under the

objective probability measure. We define �
�

by

�
�
� � � � � � ���	�� � � ��� � � � � � �

�
� � � � ��
� ����� � � � �

�
� " (2.27)

where � �� is the generalized inverse of ��� . Obviously, � � has under
#�
� the distribution function

��� . The aim of this construction is the following: under the new measure
#� 
 , which we will

obtain, as in the previous step, from
#�

by the density � 
	 , the random variables
� �
�
" � �
�
"& �

� "  " � � � remain independent and uniformly distributed on �� #" � � . Only the distribution of
� � � � �

changes.

In addition,
#� � covers the independent random variable � � , which has under

#�
� the same

distribution as � ��� �  � ��� 	 � �� � ���
�
� � � �

�
��� ��� � � � � �� under

�
. Since the paths � #� � ���

�
� � � �

�
� ����� � � � �

are bounded on �  #"�� � � -a.s., we have
#�
� ��� � % � � � � .#� � covers an increasing sequence � �
�
�
�
�� . The increments of � �

�
�
�
�� are independent and

exponentially-distributed with parameter ( . They correspond to the jump times in the original

model.#��� covers an increasing sequence �
�
�
�
�
�
�� . The increments of �

�
�
�
�
�
�� are independent and

exponentially-distributed with parameter � .

Now we construct further quantities on these spaces.

We define on
#� � a sequence �

#
�
�
�
�
�� of nonnegative random variables by#

�
�
� ���	�� � � � � � � � � � �

�
� � � ����� � � � �

�
��� �

Notice that
#
�
�
� � �

�
�
.

Let � � � � � ��� �  � ��� 	 � � � � ��� � � , and ��� � � � � �  � � 
�� � ��
� 
�� � �� � � � � . On

#��� we define a new

increasing sequence �
#
�
�
�
�
�� by #

� � � �
�
� �( � ����� � "
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#
� 
 � � � � #

� 
 �
�
� 
 � � � �

� 
( � ��� ��� � � � � � 

�
� � #�

�
� " � � ��"  " � � � �#' denotes the counting process of �

#
�
�
�
�
�� . Let

#" ��� � � � � � � �
���� � �� �
� �

#
�
�
" � � �  #"

#
� � �

�
(2.28)

By construction,
#' ��� � possesses the rate ( � � � #"%��� ��� . We want to show that

#' is nonexplosive

on �  #"�� � , i.e.
#� � #� 
 � � � � � for � � � . That implies

������ �� ��� 	 � #" ��� � � #"%� �$� % ��"
#�

-a.s. (2.29)

Therefore, define
# � � � � #� 	 " � �� #" � � � "  � � � � � � " � #� 	 � 	  � � ,  ��� #" � " � � � , with the con-

vention
#
� � � �  .

As an easy consequence from the law of large numbers, we have


� � � �
#
�
� � � � �%" � � � � " #�

� -a.s. " (2.30)

where � � is an
# � -measurable real valued random variable. (2.30) yield that

�
#" � �������� � � � � � � � � �  , #�

-a.s., for all  ��� , and consequently the rate of
#' is bounded

on �  #"
#
�
�
� � � by ( � ��� � � � � � � � �  �� � � � �� � � ��  . Hence, for nonnegative

# � -measurable real

valued random variables �
�

we have that#� � #� � � � � #
�
�
) �

�
� # � � � ��� �
	�� �

�
� � �� � � ��  �� �" #�

-a.s. (2.31)

Notice that
#
�
�
� � �

#
�
�
is independent of

#
�
�
� � "

#
�
�
� � "
� � �

. Choosing �
�
����� �� � � �� � � ��  �� we obtain#� � #� � � � � #

�
�
) ��� 
� �� � � ��  

� # � � � ���� " #�
-a.s. (2.32)

Furthermore, we have#
� 
 � 
 � �� �

� � �
#
�
�
� � �

#
�
�
� � 
�� �� �

� � � � #� � � � � #
�
�
) � � 
� �� � � ��  � ��� 

� �� � � ��  " (2.33)

and #� � �� � � � � � 
� �� � � ��  ��� � # ��� � � "

#�
-a.s. (2.34)
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Putting (2.33), (2.34), and (2.32) together we arrive in view of Lemma A1.2 at

#� � �� � � � �
#
�
�
� � �

#
�
�
� � � � # � �

� #� � �� � � � � � #� � � � � #
�
�
) � � 
� �� � � ��  � ��� 

� �� � � ��  � � � # � � � � "
#�

-a.s. " (2.35)

i.e., by Fubini’s theorem,
#
� 
 � � as � � � ,

#�
-a.s., and hence we obtain (2.29).

Step 3: On the new space define " analogously to (2.7), and let again � 
 � � � � ��	 � �  �
� "%��� � � � ) �  . By some “monotonicity arguments” we want to show that (2.29) implies that� 
 ��� 
 % �$� �  , as � � � .#� 
 is defined with respect to

#�
by the density � 
	 , as in the previous step. By comparing the#�

-rate of
#' with the

#� 
 -rate of ' on the stochastic intervals �
#
� � " #� � � � ��� �! #"$� � and � � � "$� � � � ���

�  #"�� � , resp., we obtain for all positive � � � �� " � �� "  � � " � � � -measurable random variables � and

for all � � "
� � � "�� � � � � � � �

#� � #� � � � ) �
#
� � � � � � � � #� � ��� � "

� � � " #� � � #
� � � � ��� �	� � � � �� " � �� "  � � " � � ��� (2.36)� #� 
 � � � � � ) � � � � � � � � � � � ��� � "

� � � "$� � � � � � � ��� �
� � � � �� " � �� "  � � " � � �$� "
#�

-a.s. This holds as
#
� � � � �

#
� � is

#�
-independent of � � � �� " � �� "  ��� � � " � �  " � � � � and

� � � � ��� � is
#� 
 -independent of � � � �� " � �� "  &� � � � "� �  " � � � � . Whereas the former

independence is trivial, the latter independence is due to the special form of
�

in (2.25) and the

construction of �
�

in (2.27). In view of Lemma A1.1, (2.36) implies that

#� � #� � ) � � � � � �� " � �� "  � � "�� � ��� � #� 
 � � � ) � � � � � �� " � �� "  � � "�� � �  " #�
-a.s.(2.37)
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Let us show that #� 
 ��� 
 % �$�� #� 

��
� � � � ����  � ��� 	 � ������

� � � �� �
� � � � ��� � �

�
�	�
� ������
) ����

� #� 

��
� � � � �

� � 	��� �
� �
� �
�
� ) ����

�
#� 


�� #� 

��
� � � � �

��� 	��� �
� �
� �
�
� ) � � � � � �� " � �� "  � � "�� � �������

�
#� �� #� 


��
� � � � �

��� 	��� �
� �
� �
�
� ) � � � � � �� " � �� "  � � "�� � � �� ��

� #� �� #� 

��
� � � � �

� � 	��� �
� �

#
�
�
) � � � � � �� " � �� "  � � "�� � ���� ��

� #� �� #� ��
� � � � �

���� 	��� �
� �

#
�
�
) � � � � � �� " � �� "  � � "�� � ����	��

�
#� � #"%� �$� ) � � � (2.38)

The first two inequalities are trivial estimations. The second equality holds as � � �
�
� , � � �

�
� , and � �

have under
#� 
 the same distribution as under

#�
. For the third inequality we use that

� �
�
� � #

�
�
.

The fourth inequality holds by (2.37). As by (2.29)
#� � #"%� �$� ) � � �  for � � � , (2.38) yields

the assertion.

Remark 2.2.8. An alternative way to proof this theorem is to use Theorem 3.6 in Jacod (Jac75)

which guarantees the existence of a measure � such that � � 
 " � 
 � 
 �� is under � a (possibly

exploding) marked point process with rate

� � ��� " ��
 � �
���������� ���������

( � � � � � ��
 � � " ��� � %  and 
 %  #"
( � � � � � ��
 � � � � " ��� �( � �  � 
 � �� � � " ��� � %  and 
 �  "

( � � � � � ��
 � � � � " ��� �( � �� � 
 � �� � � " ��� � �  and 
 %  "
( � � � � � ��
 � � " ��� � �  and 
 �  #"

on the whole interval �! #"$� ��� �  #"�� � � . In contrast to step 1 in our proof it is not necessary to make

a localization. To obtain � � � it is (also) to verify that � � 
 � 
  � is not exploding under � .
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Remark 2.2.9. A heuristic explanation why 	 is arbitrage-free is that though an investor could

profit by the stochastic drift " ��� � � � , there remains the risk � % � that consists of jumps. There-

fore, it cannot be controlled as effective as for FBM which has continuous sample paths. In

contrast, the fractional binary market model in Sottinen (Sot01) obviously allows for arbitrage

as - given the history of the process - it can happen that the discounted stock price increases

with probability one. The same phenomena occurs in our model when setting � �� � �� .

Remark 2.2.10. � is obviously not unique. The unities in (2.25) can be replaced by every other

element of � � " 	   .
We add to 	 an independent Brownian motion � � , � �  . To transfer an additive to a

geometric model, there are two common approaches in mathematical finance: the Doléans Dade

exponential and the ordinary exponential of the process 	 . In the first case the price process of

the asset satisfies the following SDE

� � � �$� � � � � ��� � �
	 � �$� � � � � � �$�$� " � �  #" � �� � � � � )  � (2.39)

� 	 ��� � � � � ��� ��� � �� ��� 	 � is a local � -martingale and hence � � ��� ��� �  � ��� 	 � , cf. e.g. Theorem 17 of

Chapter III in Protter (Pro92). If � 	#) ��� � � ��� ��� � �� ��� 	 � is positive.

In the second case, i.e. setting#� � �$� �#� � ��� �  	 � �$� � � � � �$�%� � �
 � � " � �  " (2.40)

we have by Itô’s formula

� #� � �$� � #� � � ��� � �
	 � �$� �������
� 	�� � � ��� 	 � �$� � � � � � �$�  " � �  #" (2.41)

and by (2.9)

� #� � �$� � #� � � � � �����
	 � 	�� � � � �!" � �$� � � � � � �$�  " � �  � � (2.42)

Thus, condition (2.24) has to be replaced by

�
� ����� � � �� � �  � � ��� " ��
 � � � "%��� � " � �  � (2.43)
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This can be achieved by setting

#� ��� "�
 � � �
������������� ������������

� � " ��� � %  and 
 %  
� � 
 � � � � � � �

��

 � � � � � � �� � � � " ��� �( � 
 ��� � � � � �� � � � � " ��� � %  and 
 �  

� � " ��� �( �
� � 
 � � � � � � �

�� � � " ��� � �  and 
 %  

� � 
 � � � � � � �
��


 ��� � � � � �� � � � " ��� � �  and 
 �  

(2.44)

With the same arguments as in the proof of Theorem 2.2.7 one verifies that by plugging
#�

into

(2.19) one obtains a measure
#� , equivalent to

�
, under which

#�
becomes a local martingale.

2.2.2 Asymptotic theory

Now, we introduce for � )  the rescaled process

	  � �$� � 	 � 
 �$�� � �$� " 
 � �  #" � � " (2.45)

where � � � �$� � ����� � 	 � �$��� and show weak convergence to a FBM.

Theorem 2.2.11. Let �
�

be a FBM with Hurst parameter
� � 
 � � �� for 
 � �  " ���� � . Then

	 . � �$�
�
� �

� " � � ��" (2.46)

where the convergence holds in
� �  #" � � equipped with the metric of uniform convergence on

compacta and the projection � -algebra.

Remark 2.2.12. If 
 � � � ���  "  � we still have the convergence of the finite-dimensional dis-

tributions. This follows from Steps 1-2 in the proof of Theorem 2.2.11, which go through for


 � � � � ���" ���� � .

Proof. Since the limit process has continuous sample paths we can equivalently consider weak

convergence with respect to the Skorohod 	 � -metric on
� �! #" � � , see e.g. (16.4) in Billings-

ley (Bil99). By Billingsley (Bil99), Theorem 16.7 and Theorem 13.1, we have to show weak

convergence of the finite-dimensional distributions and tightness of � 	 . � �$� � � ��� 
 �  	��� � for each
� � � � .
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Step 1: By Campbell’s theorem (cf. Daley and Vere-Jones (DVJ88)) we have for  � � � �
� � � � 	 ��� � " 	 � �$�$� � ( � �

�

 �

� ��� �
�
� ��� ��� � � � � �

� ( � �� 
 � � � ��� � � � � �
� ��� � ���

�
� � � � � �%� �

� ��� � � � � " (2.47)

and obtain for  � 
 ���

� � � � 	 � 
 �$� " 	 � � �$���� � � �$� �  � �
� � 	�� � � � � ��� � �� 	���

� 	�� � � ��  �� � � ���  � � � 	�� � � � � 	�� � � � � � � � � � 	�� � � � � 	�� ��
� 	�� � ���

 �� �
� � 	�� �
�
� 	�� � � � �  �� � � � � � � � � 	�� � � � � 	�� �

�

�
� 	�� � � �

�
(2.48)

We show that the r.h.s. of (2.48) converges when � tends to infinity to

 � � � ��� � � � 
 � � ����  �� � � 
 � � � � � � � � � � � � � � � � � � ��� �
�� � � � �  �� � � � � � � � � � � � � � � " (2.49)

which is the covariance function of � � � ��� � (it is sufficient to verify it for 
 � �
as the increments

of the processes are stationary). For fixed � � � � " 	   convergence is obvious. By Potter

bounds the integral on compacta converges. But, for the integral on �  #" � � we need an integrable

dominating function for

����
� � ��� 
� � ���$�%� � ��� �$� � � � �$� � � � � �$�%� � ��� �$� �

� � � �$�
����
�

(2.50)

We have for a � � ��� "�
 � � �
����
� ��� 
 � � � �$�%� � ��� �$�

� � �$�
����
� ����


 � ��� � ���$�� � �$�
����
� ����


 � ��� � �$�� � �$�
��� � ���$�
� � � �$�

����
�  
 � 
 � � � � � " � � � "�� � � � "

where the last inequality holds as � is normalised regularly varying with index 
 and ����� � �$����� � � �$�
converges to

� � � � uniformly in
� � � ��" � � , when ��� � , cf. Bingham, Goldie, and Teugels (BGT87),

Theorem 1.5.2. As 
 % ���� we have the required integrable dominating function. Hence we

have shown that
� � � � 	 � 
 �$� " 	 � � �$���� � � �$� � � � � � � � � ��� � � 
 � " � � � ��� � � � ��� " � � � � (2.51)

Let
� � � � ,  � � " � � � " � � � ,  � 
 � % � � � % 
 � % � , and consider% � �$� � � �� �

� �
� � 	 �� � �$� " � �  #" (2.52)

By (2.51) the variance of
% � �$� converges to those of

� �
�
� � �

�
� � � ��� � � 
 � � .
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Step 2: Now we verify a condition (which is very similar to the Lindeberg condition) for% � �$� to ensure that it converges to a normal limit.
% � �$� has zero mean and if not all

� �
vanish,

����� � % � �$�$� � � as � � � , for a � )  . Hence by Theorem 3 in Lane (Lan84) we have to show

that for every �$)  

� � �$� � � � ���� � 	�� �
� � �� 	
�

�
� ����� � �

�� �
� �

� � � � 
 � � � � � �����
) � � � �

� � �� �
� ����� � �

�� �
� �

� � ��� ���� 
 � �$� � � ��� ��� �����
) � � � �  � � �  " � � � �

It is sufficient to verify that for every
�

, � )  

� � �$� � � � ���� � 	�� �
� �� � � � � � � ��� ���� �$�%� � ��� �$� � ) � � � � � � �  #" � � ��" and (2.53)

� � �$� � � � ���� � 	�� �
� 	
�
� � � � � � � ��� � � ) � � � � � � �  #" � � � � (2.54)

Ad (2.53): we have

� � �$� � � � ���� � 	�� �
� �� � � � � � � ��� ��� ���$�%� � ��� ��� � ) � � � � � �

��� � �$� � � � ��
� ���� � 	�� � � � � � � � ��� ���� �$�%� � ��� �$� � ) � � � � � �

� �
 � � �$� � � � �� 
 � � � � � � ��� ��� ���$�%� � ��� ��� � � � � � �$�$� �  � ���

� �
 � � �$� � � � � � �$� � � �� 


� � � ����
� �
� ����� � � ���$�%� � ��� �$�

� � �$�
����
� � � � �$�� � �$��� � �

�
� � � (2.55)

Since

� �� 
 � � � � � �$���� � ���$�%� � ��� �$�
� � �$� �

�
� � � � � 
 � ��

� �� � � ����� � � ���$�%� � ��� �$�
� � �$� �

�
� � % ��"

we have an integrable function that dominates the integrand in the last line of (2.55). With (2.47)

in mind it is easy to see that � � � �$� � � � � �$� � � � � ���#� � ��� , � )  , � � � . Therefore, dominated

convergence implies that the last line of (2.55) converges to zero as � � � . (2.54) can be proven

in a similar way. Thus
% � �$� �

� � �
�
� � �

�
� � � ��� � � 
 � � , � � � , and the Cramér-Wold device yields

the convergence of the finite-dimensional distributions.
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Step 3: Finally, we check tightness. The family of processes

���	� � �$� � � � �� � � ����� 	���
� � �

�
� � � ��� 
 � � 	��� � is obviously tight. Thus we can replace � by

# � � � � � �  � .
Since the increments of 	 are stationary we have


 � 	 � � �$�%� 	  � �$���
�
� � � �$� � � 
 � �$�� � � �$� �

(2.56)

Due to (2.51) � � is regular varying with index � � �
 . Therefore, � ��� � � � � � ��� �	� � � � � is regular

varying with index 
 )  , and due to

� � ��� � � 
 � ��
 � �
�
# � � ��� � � � � � �� � # � ��� � � �%� # � ��� � � � � � �

� 
 � ��

� � �
�

� � �
�

# � � ��� � ��� � � � �� � � � �� � ���� � � � # � � �	� � � � � ���� 
 � ��

�
� � � � ������ � � � �

# � � ��� � � � � � � � �� � ���� � � � # � � �	� � � � � ��� " (2.57)

� is bounded near zero. Therefore, � �$� � � 
 ���$��� � � �$� converges to � � � 
 � � for � � � , uniformly

in 
 % �
on compact subsets of � � , cf. Bingham, Goldie, and Teugels (BGT87), Theorem 1.5.2.

This implies that for each
� )  and � � � 
� � ��� � � 
 ���$�� � � �$� � #� � � 
 � � � � " �  � 
 % � � � �

(2.58)

This (together with Cauchy-Schwarz’s inequality) ensures the tightness condition (13.14) in

Billingsley (Bil99) (recall that 
 )  ).

2.2.3 Conclusion

We have constructed Poisson shot noise processes whose finite-dimensional distributions are

close to those of FBM, but which lead to arbitrage-free models for stock prices. By way of

contrast, if the shots � �
�
�
�
��
	 	 � � have no jumps at zero and there is no additional Brownian

noise � � in (2.39) and (2.40) respectively, our model obviously allows for arbitrage, even with

so-called “simple” trading strategies.

These results can also be considered as supplements to recent work of Cheridito (Che00;

Che01b). He has excluded arbitrage from FBM by changing slightly the convolution kernel in

the

Mandelbrot-Van Ness representation of FBM or, alternatively, he considered, for
� � � � ��� " � � ,
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the process �
� � � � ��� � ( � )  arbitrary small) instead of just �

�
. This leads to complete

models whereas our models are incomplete.

2.3 Finite shots

In this section we want to investigate shot noise processes with finite, non-degenerated shots,

i.e.
� � ��� � ,  � � , possess finite limits

� � ��� ����  for � � � . Define

	 � �$� �
��� 	��� �
� �
� � � �%� �

�
� " � �  " (3.1)

where � �
�
��� �$� � �� ,  � � are i.i.d. copies of a stochastic process � � ��� �$� � �� which are indepen-

dent of the homogeneous Poisson process ' . Let
� ��� � �� for � %  . In general the increments

of 	 are neither independent nor stationary.

An important application of (3.1) is the modelling of delay in claim settlement in insurance

portfolios. In that case 	 � �$� is interpreted as the total claim amount in an insurance portfo-

lio and the process
� � ��� � �

�
� describes the pay-off procedure of the  th individual claim. If

� ) �
�

claim  is already occured and
� � ��� � � � � � � � �

�
� can be interpreted as its amount

which is not yet reported to the insurance company. For more details see Klüppelberg and

Mikosch (KM95b),(KM95a) and Klüppelberg and Severin (KS02b).

Consider for � )  the rescaled processes

	 �� �$� � � 	 � 
 �$� � � � 
 �$�� � �$� " 
 � �! " � � " (3.2)

where � � �$� � 
 	 � �$� and � � � �$� � ����� � 	 � �$��� .
In this section we state some limiting results for (3.2).

Proposition 2.3.1. Suppose that
� ��� � � � � � � � -a.s. as � � � with


 � � � � � )  and

 � � ��� ��� � � � � � ��� �  % � , then the finite-dimensional distributions of the process 	 . � �$� con-

verge to those of � , where � is a standard Brownian motion on �  #" � � .

Remark 2.3.2. Proposition 2.3.1 states that 	 . � �$� has the same asymptotic behaviour as

� ���  	���
� � � � ��� �%�#( 
 � 
 � � � �� ����� � � � � �
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It is a result similar to Proposition 3.4 in Klüppelberg and Mikosch (KM95b). But it requires

no monotonicity of the sample paths
� ��� � and – more interesting –

� ��� � may approach
� � � �

arbitrary slowly. On the other hand, for functional convergence we need additional assumptions

to ensure tightness. This is formulated in Theorem 2.3.4. Proposition 2.3.1 in itself can also be

interpreted as a negative result: if
� ��� � has a finite limit, then 	 . � �$� can converge (weakly) to

nothing else than Brownian motion.

Proof of Proposition 2.3.1. Step 1: First, we notice that due to Campbell’s theorem (cf. Daley

and Vere-Jones (DVJ88)) we have � � � �$� � (  	� 
 � � ��� � � � , and as a simple consequence of

the assumptions

� � � �$� � ( � 
 � � � � � � � ���#� � ��� " � � � �

Let 
 � �  #" � � . We decompose 	  � �$� in the following way:

	  � �$� � � � � � �$�
�� � ���  	��� �
� �

� � � 
 �%� � � �%� � � 
 �$�
���
�

� � ( � 
 � � ��� � 	 � ��� � � � � � � � �$�

	 �� � �  	��� �
� � 	

� � � 
 �%� � � � � � � � � �%� 
 � � � 
 �%� � � � � � � � � 
 � ��� ��
�

� �  	��� �
� � 	


 � � � 
 �%� � � � � � � �%� 
 � � � �� � ( �  	
� 	 
 � ��� � � 
 � � � �  � �

�
� �  	��� �
� �

� � � � �%�#( 
 � 
 � ��� ����
� �

� � 
 � � � � � 
 � � � � � 
 � � (3.3)

In Step 2 and Step 3 resp. we show by � � -arguments that for a fixed 
 � �  #" � � �
� � 
 � �

�  
and

� � � 
 � �
�  resp., for � � � . This and an application of the continuous mapping theorem

results in the assertion, as the finite-dimensional distributions of the standard compound Poisson

process
� � � 
 � converges to � , cf. Klüppelberg and Mikosch (KM95b) or Gut (Gut88).

Step 2: Ad
�
� � 
 � : We introduce the normalized shots#� � ��� � � � � � ��� �%� 
 � ��� � � (3.4)



31

Let � )  be given. Due to the assumptions there exists a � � � � � s.t.


 � � ������ � � � �
� #� ��� � �

#� ��� � � � � � 
 � � � � � �
 
 �

(3.5)

As we consider for fixed � )  the limit for � � � we can assume w.l.o.g. that 
 � ��� � )� .
We have

� � � � � � ��� 
 � �
� � �( � 
 � � ��� �



�� ���  	��� �

� �
� #� � � 
 �%� � � �%� #� � � � ������ �

� �( � 
 � � ��� �


�� ���  	 � � � �� �

� �
� #� � � 
 � � � � �%� #� � ��� � � �� �

� �( � 
 � � ��� �


�� ���  	����
� ���  	 � � � � � �

� #� � � 
 � � � � �%� #� � ��� ��� �� �
� 	 � � 	 � �

	 � � �( � 
 � � � � � �� � � � � � ' � 
 �%� � � � � � �
	

�
� �
� �

 � 
 � � #� � � � � ��� 
 � � � � � �

�
�%�

#� � � � ��� � � � � � � "
where the

�
�

are uniformly distributed on �  #" � � and stochastically independent of
#� �

. This is

due to the well-known “order-statistic property” of Poisson arrival times: given ' ��� � � � the

random vector � � � "
� � � �

�
� has the same distribution as the order statistics of a sample of � i.i.d.

random variables with uniform distribution on �  #" � � .
Together with (3.5) it implies

	 �
� �( � 
 � � � � � �� � � � � � ' � 
 �%�� � � � � ��� 
 � � ��� ���

 
 � (�� 
 �%� � � �( � �
 
 � �


�

Now, as 	 � ��� � � � �$� , � � � (for fixed � � ), for � big enough it is smaller than � �� , thus

	 � � 	 � � � . Therefore
�
� � 
 � �

�  , � � � .

Step 3: Ad
� � � 
 � : Let � )  be given. Analogue to (3.5) there exists a real number, again

called � � , s.t.


 � ������ � � � � � �
� ��� � � � ��� ���

� � � 
 � � ��� ���
 
 " (3.6)
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and 
 �%�� � )  . Again, separate the jumps “shortly” before 
 � from the others.

� � ���#� � ��� � �
� �� ( � 
 � � � � �

	 �� � �  	 � ��� �� �
� � 	 
 � � � 
 � � � � � � � � �%� 
 � � � �� �#( �  	

� � 	 
 � ��� � � 
 � � � �  � �
�

���  	����
� ���  	 � ��� � � �


 � � � 
 � � � � � � � � �%�#( � ���� 	 
 � ��� �%� 
 � � � �  � � ��
�

#
	 � �

#
	 � �#

	 � and
#
	 � are stochastically independent and have expectation equal to zero. Furthermore, again

by the “order-statistic property” of Poisson arrival times, we obtain for
#
	 � that


 #
	
�
� � �( � 
 � � � � � �� 
 �� ���  	 � ��� �� �

� � 	 
 � � � 
 �%� � � � � � � �%� 
 � ��� �� �� �
�&( � � �  	

� � 	 
 � ��� � � 
 � ��� ����� � � 
� �( � 
 � � � � �

	 �� �� � � � � � ' � 
 � � � � � � � � 
 � �
� �
� � 	


 � � � � � � � 
 � � � � � �
�
� � �

�
�%� 
 � � � �  � �

�&( � � �  	
��� 	 
 � ��� � � 
 � ��� ����� � � 

� �( � 
 � � � � �

	 � �� � � � � � ' � 
 � � � � � � � ��� � 
 � 
 � � � � � ��� 
 �%�� � � � � � � � � �%� 
 � � � ���
�

� � ��� � � � � 
 � � � � � � � 
 �%�� � � � � ���%� 
 � ��� � �
���

�&( � � �  	
��� 	 
 � ��� � � 
 � ��� ����� � � 

� �( � 
 � � � � �

	 � �� � � � � � ' � 
 � � � � � � � ��� 
 � 
 � � � � � ��� 
 �%� � � � � � � � � � �%� 
 � � � ���
� 
" (3.7)
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where the
�
�

are i.i.d., uniformly distributed on �  #" � � and stochastically independent of
� �

. For

the last equality we have used that

�� � � � � � ' � 
 � � � � � � � ��� � � � � � � ( � � 
 �%� � � � �
and


 � � � � � ��� 
 � � � � � � � �$� � �
 � � � �
�  	
� � 
 � ��� � � � �

Putting (3.7) and (3.6) together we arrive at


 #
	
�
�
� �( � 
 � � ��� � �� � � � � � ' � 
 � � � � � � � ��� 
 � � � � � �

 
 � (�� 
 �%� � � �( � �
 
 � �


�

Now, as

 #
	
�� � � � ��� �$� , � � � (for fixed � � ), for � big enough it is smaller than � �� , thus

� � ���#� � ��� 
 � �� � 
 #
� �� � 
 #

� �� � � . Therefore
� � � 
 � �

�  , � � � .

Remark 2.3.3. In comparison to the proof of Proposition 3.4 in Klüppelberg and Mikosch (KM95b)

we make in (3.3) a sharper estimation of the difference

	 � 
 �$� � � � 
 �$�� � �$� �
� � �  	���

� � � � � � �%�#( 
 � 
 � ��� �� ����� � ��� ���
�

By this we need no additional restrictions concerning the rate with which
� ��� � converges to� ��� � , as � � � . But, this comes at the price that our arguments only work for fixed 
 )  .

Thus we have only proved convergence of the finite-dimensional distributions. To obtain weak

convergence in a functional sense we additionally need that � 	 . � �$� � � ��� 
 �  	��� � is tight for each
� � � � . In Theorem 2.3.4 we give some extra conditions that ensure this.

Since the limit process has continuous sample paths we can equivalently consider weak

convergence with respect to the Skorohod 	 � -metric on
� �! #" � � , see e.g. (16.4) in Billings-

ley (Bil99). By Billingsley (Bil99), Theorem 16.7 and Theorem 13.1, we have to show weak

convergence of the finite-dimensional distributions and tightness of � 	 . � �$� � � ��� 
 �  	��� � for each
� � � � .

In the following, we already start with shots having expectations equal to zero, i.e.

 � � ��� � �

 , for all � � � ,  � � . Thus
� � defined in (3.3) vanishes.



34 CHAPTER 2.3. FINITE SHOTS

Theorem 2.3.4. Let the assumptions of Proposition 2.3.1 be satisfied. If in addition the total

variation of
�

on �� #" � � has finite fourth moment and there exists a � )  s.t.


 � � ���� �� � #� ��� � � �%� #� ��� � � � � ��� � ���  " � �  " (3.8)

then 	 . � �$� converges weakly to � , as � � � , where the convergence holds in
� �  #" � � equipped

with the metric of uniform convergence on compacta and the projection � -algebra.

Remark 2.3.5. Condition (3.8) is satisfied if
#�

is Hölder continuous with exponent � )  , not

necessarily uniformly in � � � , but the bound must possess a fourth moment.

Remark 2.3.6. As the limit has continuous paths it is equivalent to convergence with respect to

the Skorohod 	 � -topology.

Proof. In consideration of Proposition 2.3.1, it remains to show that
�
� in (3.3) is tight. For this

it is sufficient to verify tightness of

#�
� � 
 � � � �� �

���  	��� �
� �

#� � � 
 � � � � � "
as for � � ��� � �

���  	���
� � #� � ��� � tightness is obvious due to independent increments.

We apply an appropriate condition on the moments of the increments of 	 . � �$� , cf. Billingsley
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(Bil99) (13.14) with � � � . Let  � 
 � � 
 � � 
 � � �
. We have


 � #�
� � 
 � � � #�

� � 
 � � � � � #� � � 
 � �%� #�
� � 
 � � � �

� �
� �


�� ��� �� 	��� �

� �
#� � � 
 �$� � � � �%� � �  � 	��� �

� �
#� � � 
 � �%� � � ���� �

	
�� ���  � 	��� �

� �
#� � � 
 � � � � � �%� ���  � 	��� �

� �
#� � � 
 � �%� �

�
���� �

� �
� �

 �� � � ���	���� � � � � � 	 � � 	 � � � �

#� � � � 
 ��� � � � � �%� #� � � � 
 � � � � � � � � � #� � � � 
 � �%� � � � � � #� � � � 
 � � � � � � � �
	 � #� 	 � � 
 � �%� � 	 � �%� #� 	 � � 
 � � � � 	 � ��� � #� 	 � � 
 � � � � 	 � �%� #� 	 � � 
 � �%� � 	 � ��� �
� �
� �

 �� ���  � 	��� �

�� 	 � #� � � 
 � �%� � � �%� #� � � 
 � � � � � � � � � #� 	 � 
 � �%� � 	 �%� #� 	 � 
 � � � � 	 � � � ��
� 
� �

 �� � � ���	���� � �� � � � #� � � � 
 � � � � � � �%� #� � � � 
 � � � � � � � � � #� � � � 
 � �%� � � � �%� #� � � � 
 � � � �

� � � �
	 � #� � � � 
 � � � � � � �%� #� � � � 
 � �%� � � � � � � #� � � � 
 � � � � � � �%� #� � � � 
 � � � �

�
� � � �

� �� � 
 �� � � ���	��� �
� �

� #� � � 
 ���%� � � �%� #� � � 
 � � � � � � � � � #� � � 
 � � � � � �%� #� � � 
 � � � �
�
� � � ��

� � 	 � � 	 � � 	 � (3.9)

The second equality holds as the
#� �

are equal to zero on the negative half-line. The third equality

is due to the fact that every addend containing a single index drops out as

 #� � ��� � �  for all

� � � . We get

	 �
� �	 �

� ��� �� 	���
� � � � ' � 
 � �$� � � � � ��� � � �	 
 � #�
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� � 
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� �%�

#�
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� � � �
� ( � 
 �� 
 � #�

� � 
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� �%�

#�
� � 
 � �%� �

� ��� � 
 � #�
� � 
 � � � �

� �%�
#�
� � 
 � �%� �

� ��� �
(3.10)

where
�
� is uniformly distributed on �� "�
 � �$� and independent of

#�
� .

Consequently there is a constant � s.t.

	 �
� 
 �� � � (3.11)
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But, for the case that 
 � is not so small but rather the difference 
 � � 
 � we need a tougher

estimation: for  � 
 � % 
 � we have
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where � ��" � � � denotes the total variation of the function " on the interval
�
. By using the fact

that � � " � � � � � � � �
�
� � " � � � � for disjunctive intervals � �

�
� , we go on with


 � #�
� � 
 � � � �

� �%�
#�
� � 
 � �%� �

� � � �
� �
 ��

�� �  �
�

���� ���
�

� � �
�
� �
�
� ���

� � ���
� 
 �

�� #�
� �
��
�  �  � 
 � �
 ��

�� �  �
� "� 
 � �
 ��

�� �  �
� �� �� �

�
�

� � �
�
� �
�
� ���

� � ���
� 
 �

�� #�
� �
��
�  � �� 
 ���
 ��

�� �  �
� "  
 � �
 ��

�� �  �
� �� �� � � ���

���� 
 ��
�� �  �

� 
 � � #�
� � �  #"�
 ��� � � �� 
  �

 � �  �
� 
 � � #�

� � �  #" � ��� �
�  � 
 �
� 
 � �
 � 
 � � #�

� � �� #" � ��� � � (3.12)

In the same way, we get
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and thus there is another constant
#
� � � s.t.

	 �
� 
 �� � 
 � � 
 � � �
 � �

#
� � (3.13)

Putting (3.11) and (3.13) together implies that for all  � 
 � � 
 � � �

	 �
� � � �
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where the second inequality in (3.14) can easily be verified by a case differentiation 
 � � 
 � ��
and 
 � ) 
 � �� .

	 � can be treated in an analogue way, as in each addent enter two different (and therefore

independent) shots. As an analogue to (3.10) we obtain
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where
�
� is again uniformly distributed on �  #"�
 � �$� and independent of

#�
� . Thus by the argu-

ments leading to (3.14) we arrive at
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By contrast, for 	 � we need the additional assumption (3.8) as in each addent only a single

shot enters and we have in general no product of independent random variables. The argumen-

tation is quite similar but although not the same as for 	 � and 	 � . We obtain
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where
�
� is uniformly distributed on �� "�
 � �$� and independent of

#�
� . We have
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where the last inequality holds for a � � � � , due to (3.8) and the finiteness of
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Thus, we obtain for � big enough (as w.l.o.g. � % � )
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(3.18)

But again, for the case that 
 � is not so small but rather the difference 
 � � 
 � we need a tougher

estimation. For  � 
 � % 
 � we have
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where � � " � � � is the total variation of the function " on the interval

�
. We go on by applying
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Cauchy-Schwarz’s inequality
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The second inequality in (3.19) is by the same argument leading to (3.12). In the same manner,

we get
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Putting (3.17), (3.19), and (3.20) together, we obtain that there is a constant
#
� � � s.t.
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for � big enough. (3.18), (3.21) imply that for all  � 
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where the second inequality in (3.14) can easily be verified by a case differentiation 
 � � 
 � ��
and 
 � ) 
 � �� .

Putting (3.14), (3.16), and (3.22) together yields in view of (3.9)
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for � big enough and therfore the assertion.
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Chapter 3

Neutral Pricing of American and Game

Type Derivatives

This chapter is an adapted version of Kallsen and Kühn (KK02a).

3.1 Introduction

In recent years various suggestions have been made how to price European-type contingent

claims in incomplete markets. By contrast, there is only little corresponding literature deal-

ing with American options. Pricing the latter is conceptually more involved: In addition to the

uncertainty caused by the underlyings, one has to take the seller’s ignorance of the buyer’s exer-

cise strategy into account. If we fix a stopping time as exercise time, then the American option

reduces to a European claim. It is obvious that the American option should be worth at least

as much as the most valuable of these implied European claims. In the financial literature the

price of an American option is often just defined as the supremum of all European style claims

corresponding to arbitrary stopping times of the buyer. Consequently, the problem of pricing

American options is reduced to the simpler problem of pricing European contingent claims.

However, this concept already implies by definition that an American option is not worth more

than the highest priced of its implied European-style derivatives, i.e. the right to choose the

exercise time has no value in itself. To us, this is not entirely obvious because in the American

case the seller faces the disadvantage not to know the preferred stopping time of the buyer.

41
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In complete markets, arbitrage arguments suffice to derive unique prices for American con-

tingent claims. Here, it turns out that the fair price is indeed the supremum of the implied

European option values (cf. Bensoussan (Ben84) and Karatzas (Kar88)). Analogous results are

shown in varying degrees of generality for the superhedging price in incomplete markets (cf.

Karatzas and Kou (KK98), Kramkov (Kra96), Föllmer and Kabanov (FK98), and Föllmer and

Kramkov (FK97)). This price denotes the smallest initial capital that allows to construct a port-

folio which dominates the payoff process of the option. Although superhedging is an interesting

concept from a theoretical point of view, it yields only trivial upper bounds in many models

of practical importance (cf. e.g. Eberlein and Jacod (EJ97), Frey and Sin (FS99), Cvitanic et

al. (CPT99)). This is somewhat unsatisfactory.

Utility-based indifference pricing is a concept which has been applied explicitly to Ameri-

can options. Here, one takes the perspective of a particular counterparty and fixes the number

of shares of the claim (say, � for an option buyer or ��� for an option seller). The indifference

premium is a price such that the optimal expected utility among all portfolios containing the

prespecified number of options coincides with the optimal expected utility among all portfo-

lios without option. Put differently, the investor is indifferent to including the option into the

portfolio. Taking the perspective of the option buyer, it turns out that the indifference price is

indeed the supremum of the indifference prices of the implied European claims (cf. Davis and

Zariphopoulou (DZ95)). Surprisingly, this is not true for the option seller: Unless exponential

utility is chosen, it may happen that a reasonable indifference premium for an American option

exceeds the indifference price of all implied European claims (cf. Kühn (Küh02) and Proposi-

tion 4.2.11 in this thesis, resp.).

In this chapter we show that the concept of neutral derivative pricing, as suggested in

Kallsen (Kal01), can be adapted quite naturally to American options. Neutral prices occur if

traders maximize their expected utility and if derivative supply and demand are balanced. More

precisely, a derivative price process is called neutral if the optimal portfolio contains no contin-

gent claim. We will see that the neutral price of an American option coincides as in the complete

case with the supremum of the neutral prices of all implied European claims.

Both utility-based indifference pricing and neutral pricing rely on expected utility maxi-

mization and indifference to trading the option. Let us point out the differences between the
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two concepts. Indifference pricing takes an asymmetric point of view. Moreover, it depends

decisively on the fixed number of claims under consideration. As far as options are concerned,

intermediate trades are not allowed. Therfore, this approach is particularly well suited for over-

the-counter trades: Suppose that the buyer wants to purchase a specific contingent claim. Then

he has to pay the seller at least her indifference price in order to prompt her to enter the contract.

The concept of neutral pricing, on the other hand, takes a symmetric point of view. It as-

sumes that options are traded in arbitrary positive and negative amounts. It tries to mimic the

economic reasoning in complete markets by substituting utility maximizers for arbitrage traders.

Neutral prices are the unique prices such that neither buyer nor seller takes advantage from trad-

ing the claim. For motivation of neutral derivative pricing, references, and connections to other

approaches in the literature we refer the reader to Kallsen (Kal01).

As mentioned above, neutral pricing relies on utility maximization for portfolios containing

derivatives. This is a non-trivial issue in the presence of American-type contingent claims. The

point is that short positions in the claim may suddenly be terminated if the buyer exercises

the option. Therefore, investment in American claims corresponds to investment under specific

short-selling constraints (cf. Section 3.3).

In the present chapter, American options are treated as special cases of game contingent

claims. The latter naturally generalize American contingent claims by giving both counterpar-

ties the right to cancel the contract prematurely. This generalization requires some mathemati-

cal but no additional conceptual efforts. By contrast, it makes the neutral pricing approach even

more transparent.

A game contingent claim (GCC), as introduced in Kifer (Kif00), is a contract between a

seller � and a buyer � which can be terminated by � and exercised by � at any time ��� �  #"�� �
up to a maturity date � when the contract is terminated anyway. More precisely, the contract

may be specified in terms of stochastic processes � � 	�� 	� � ��� ��� , � � 	�� 	� � ��� ��� with � 	 � � 	 for � �
�  #"�� � and � � � � � . If � terminates the contract at time � before it is exercised by � , she has to

pay � the amount
� 	 . If � exercises the option before it is terminated by � , he is paid � 	 . For

motivation and examples for this kind of derivatives we refer the reader to (Kif00).

With American options the right to terminate the contract is restricted to the buyer � . For-

mally, they can be interpreted as game contingent claims by setting
� 	 � � � for � � �  #"�� � ,
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where � ����� 	 �  exceeds the maximal payoff of the American option, e.g. � � � in the

unbounded case. This allows us to consider both kinds of options in a common framework.

Similarly as American options correspond to optimal stopping problems, GCC’s incorporate

a Dynkin game: If seller � selects stopping time � � as cancellation time and buyer � chooses

stopping time � � as exercise time, then � pledges to pay � at time � � � � � the amount

� ��� � " � � � ��� ��� � 	 ��� � ��� � � � ��� � 	 ��� � ��� � �
In complete markets with a unique equivalent martingale measure

� �
, the random payoff

� ��� � " � � � has the unique fair value

 �
	 � � ��� � " � � �$� at time 0. In analogy to American options,

the buyer may want to choose his stopping time so as to maximize

��
	 � � ��� � " � � ��� whereas

the seller tries to minimize the same value. This is precisely the situation of a zero-sum Dynkin

stopping game. It is well-known that such a game has a unique value in the sense that

� ��� ��� � ��� �	� 
 �
	 � � ��� � " � � �$� ��� ��� �	� ����� ��� 
 �
	 � � ��� � " � � ��� (1.1)

(cf. Lepeltier and Maingueneau (LM84)). Kifer (Kif00) shows by hedging arguments that this

value is in fact the unique no-arbitrage price of the GCC.

In incomplete markets these arguments fail because perfect replication is usually impossible.

But it turns out that the price process of a GCC corresponds again to the value of a Dynkin game

if we apply the neutral pricing approach. The unique equivalent martingale measure in Equation

(1.1) is replaced with a properly chosen neutral pricing measure.

The chapter is organized as follows. Section 3.2 summarizes and states some facts on utility

maximization. These are needed in the subsequent section to address the derivative pricing prob-

lem for game contingent claims. The appendix contains some auxiliary results from stochastic

calculus.

Throughout, we use the notation of Jacod and Shiryaev (JS87) (henceforth JS) and Ja-

cod (Jac79), (Jac80). The components of a vector 
 are denoted by superscripts. Increasing

processes are identified with their corresponding Lebesgue-Stieltjes measure. Stochastic inte-

grals are written in dot notation, i.e. � � 	 	 means  	� � � � 	 � .
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3.2 Utility maximization

The derivative pricing approach in Section 3.3 relies on assumptions concerning investors who

maximize their expected utility. Therefore, we discuss two kinds of portfolio optimization prob-

lems in this section, based on the classical utility of terminal wealth and on local utility as in

Kallsen (Kal99), respectively.

Our mathematical framework for a frictionless market model is as follows: Fix a terminal

time � � � � and a filtered probability space ����"�� " ��� 	�� 	� � ��� � � " � � in the sense of JS, I.1.2. In

this section we consider traded securities � " � � � " � whose price processes are expressed in terms

of multiples of a numeraire security  . Put differently, these securities are modelled by their

discounted price process 	 � � � 	�� " � � � " 	 � � . We assume that 	 is a � � -valued semimartingale.

3.2.1 Utility of terminal wealth

In this subsection we consider an investor who tries to maximize utility from terminal wealth.

Her initial endowment is denoted by � � �  #" � � . Trading strategies are modelled by � � -valued,

predictable stochastic processes � � � � � " � � � " � � � � � � 	 � , where �
�
	 denotes the number of

shares of security  in the investor’s portfolio at time � . A strategy � belongs to the set � of

all admissible strategies if its discounted wealth process � � � � � � � � � � 	 is nonnegative (no

debts allowed).

Trading constraints are expressed in terms of subsets of the set of all trading strategies.

More specifically, we consider a process � whose values are convex cones in � � . The con-

strained set of trading strategies � ��� � is the subset of admissible strategies � which satisfy

� � � " � � � " � � ��	���� 	 pointwise on ��	 �! "�� � . Important examples are � � � � � (no constraints)

and � � � � � � �
�

(no short sales).

The investor’s preferences are modelled by a strictly concave utility function

� � � � � � � 	����  which is continuously differentiable on �� #" � � and satisfies

� ���  � � � � � 
 �&� � , � ���  � � � � � 
 � �  , and � ��� � ���  � � 
 � � � 
 ��� � � 
 � % � (i.e. it is of rea-

sonable asymptotic elasticity in the sense of Kramkov and Schachermayer (KS99), Definition

2.2). Her aim is to make the best out of her money in the following sense:

Definition 3.2.1. We say that � ��� ��� � is an optimal strategy for terminal wealth under the
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constraints � if it maximizes
#� #� 
 ��� � � �%� #� ���$� over all

#� � � ��� � . (By convention, we set

 ��� � �#� � #� �$��� � � � � if


 � � � � �#� � #� �$� �  � � � .)

Optimal portfolios are characterized by the following result. Many references to related

statements in the literature can be found in Kallsen (Kal01), Section 2.2 and Schachermayer (Sch01a).

Lemma 3.2.2. Let ��� �&� � � with finite expected utility. Then we have equivalence between:

(i) � is optimal for terminal wealth under the constraints � .

(ii) ��� � � �%� � ��� ��� � � � � � 	 � � is integrable and has non-positive expectation for any
� � � ��� �

with

 ��� � �#�%� � ����� )���� .

PROOF. 2 � 1: Let
� � �&��� � with


 ��� � � � � � �$��� ) � � . Since � is concave, we have


 ��� � � � � � 	 � ��� � 
 ���%� � � � � 	 � ��� � 
 ��� � � � � � � 	 � � �$� � � �%� � 	 � ���� 
 ���%� � � � � 	 � ��� "
which yields the assertion.

1 � 2: Let
� � �&� � � with


 ��� � � � � � ����� ) � � . Define
#� � � � � �� � � � �%� and

� ��� � � � � � � � � � �%� for
� � �! " � � . Since �&��� � is convex and � is concave, we have that#� � � ��� � and


 ���%� � � � #� �$��� )�� � . From

� � % 
 ��� � � � � � 	 � �$�� 
 ��� � � � � � 	 � ��� � 
 ��� � � � � � � 	 � � ��� � � � � � 	 � ���
and


 ��� � �#� � �%����� % � it follows that

 ����� � � � � � � 	 � � ��� � � � � � 	 � �$� � � % � . Similarly,

��� % 
 ��� � � � � � 	 � ���� 
 ��� � � � #� � 	 � ��� � � 
 ��� � � � � #� � 	 � � ��� � � � � � 	 � ���
implies that


 �$��� ��� � � #� � 	 � � ��� � � � � � 	 � �$� � � % � .

Let
� ���� #" �� � . By optimality of � , we have

 � 
 ��� � � � � ��� � � 	 � ���%� 
 ��� � � � � � 	 � ��� "
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which equals
� 
 �	� ��� � ��� � � � � � 	 � �$� for some random variable � ��� � with values in

� � � � � � � � 	 � � "�� � � � � #� � 	 � � � or � � � � � � #� � 	 � � " � � � � � � � 	 � � � , respectively. Note that

� � ��� � ��� � � � � � 	 � ��� �� ��� � � � � � � 	 � � �$� � � � � � 	 � ��� � ����� � � � � #� � 	 � � ��� � � � � � 	 � ��� � "
where the latter sum is in ��� � � � .

Since
� ��� � � � 	 � � � � 	 � , we have that � ��� � � ��� � � � � � 	 � � a.s. for

� �  . Fatou’s lemma

yields

 ����� � � � � � 	 � � �$� � � �%� �
	 � ��� � � ��� � ��� � � � 
 �	� ��� � ��� � � �%� �
	 � ��� . It follows that


 ����� � � � � � 	 � � ��� � � � � � 	 � �$� �  as claimed. �

Suppose that � is an optimal strategy for terminal wealth without constraints (i.e. for

� � � � ). If the probability space is finite, then

����� �#�%� � �$�
 ��� � � �#�%� � �$���
is the density of some equivalent martingale measure (EMM)

� �
(cf. (Kal01), Corollary 2.7).

In addition, this measure solves some dual minimization problem (cf. Schachermayer (Sch01a),

Theorem 2.3). In general markets, the density process of
� �

is replaced with a supermartingale

which may not be the density process of a probability measure, let alone an EMM (cf. Kramkov

and Schachermayer (KS99), Section 5). Nevertheless, in many models of practical importance

the dual measure
� �

exists and it is at least a � -martingale measure, i.e. 	 � " � � � " 	 � are � -

martingales relative to
� �

. Since it plays a key role in the neutral pricing approach, we call
� �

neutral pricing measure for terminal wealth.

Definition 3.2.3. Suppose that � is an optimal strategy for terminal wealth without constraints

(i.e. for � � � � ) and, moreover, has finite expected utility. If � � � �#�%� � �$��� 
 ������� �#�%� � �$��� is the

density of some � -martingale measure
� �

, we call
���

dual measure or neutral pricing measure

for terminal wealth.

In some cases the neutral pricing measure for terminal wealth can be computed explicitly:

Example 3.2.4. Suppose that 	�� " � � � " 	 � are positive processes of the form 	
�
� 	

�
��� ���

�
� for

 � � " � � � " � , where � is a � � -valued Lévy process with characteristic triplet ��� " � "�� � relative
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to some truncation function � � � � � � � (i.e. a PIIS in the sense of JS, II.4.1). In the last

couple of years, processes of this type have become popular for securities models, since they

are mathematically tractable and provide a good fit to real data (cf. Eberlein and Keller (EK95),

Eberlein et al. (EKP98), Madan and Seneta (MS90), Barndorff-Nielsen (BN98)). Suppose that

� is of power or logarithmic type, i.e. � � 
 � � 
 � � � �#� � � � � for some � � � � " 	  " �  or

� � 
 � � ����� 
 , which corresponds to the case � � � . Assume that there exists some 
 � � � such

that

� � 	�
 � � � � � � 
 
 �  � � �� #"
� � 


� � � 
 
 � � � � � 
 � � � � ��
 � % ��"

and

�
� � � 
 � � � 

� � � 
 
 � � � � � 
 � � � � ��
 � �� �

Let
% � � � � ��� 
 � � � �$� �
� 
 
 � � � � � ��� � � � ��� � �$� , where � � denotes the continuous martingale

part of � and � � "�� � the random measure of jumps of � and its compensator. In the proof of

Kallsen (Kal00), Theorem 3.2 it is shown that
%

is the density process of the dual measure
� �

, which is even an equivalent martingale measure in this case. Relative to
� �

, � is a Lévy

process with characteristic triplet ��� � " � "�� � � , where � � � � � � � � � 
 � � � � � 
 
 � � � and � � �
�  � 
 � � � 
 ����� � � ��
 � .
Example 3.2.5. In the case of logarithmic utility �%� 
 � � � � � 
 , the neutral pricing measure for

terminal wealth can be calculated explicitly for a large number of semimartingale models (cf.

Goll and Kallsen (GK01), Section 6).

3.2.2 Local utility

Secondly, we turn to portfolio optimization based on local utility. We assume that 	 is a � � -

valued special semimartingale. Denote by � � " � "�� " � � differential characteristics of 	 in the

sense of Definition A2.1, but relative to the truncation function � � 
 � � 
 . This choice of trun-

cation function is possible because 	 is special. It is typically straightforward to obtain the

differential characteristics from other local descriptions of 	 e.g. in terms of stochastic differ-

ential equations or one-step transition densities in the discrete-time case.
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In this subsection, the family of trading strategies under consideration is the set � � of all

predictable � � -valued processes � � � � � " � � � " � � � satisfying the integrability condition


 � � � � � � � � � � � � �$� � 
 � � � � � 
 � ��� � ��
 � � � � � � % � �

Similarly to above, we denote by � � � � � the set of all trading strategies in � � meeting the cone

constraints � . In order to avoid technical proofs, we assume that there exist polyhedral cones

� � "
� � � " � 
 � � � and predictable sets

�
� "
� � � " � 
 such that � 	$� ��� � � 	

�
 	 � �"!"!"! � 
 ��� ��� � 	����� � � �

�
for � � "��$� � � 	 �  #"�� � . The utility function � � � � � is assumed to satisfy the follow-

ing conditions: � is twice continuously differentiable, the derivatives � � " � � � are bounded with

� ���  � � � � � 
 � �  , moreover � �� � �  , � � �  � � � , � � � 
 � )  and � � � � 
 � %  for any 
 � � . For

any
� � � � , ��� � � the random variable


�	$� � � � � � � 	 � � � � �� �


� � 	 � � � ���%� � 
 �%� � 
 ��� 	$� ��
 �
is termed local utility of

�
in � .

Definition 3.2.6. We call a strategy � � � � ��� � locally optimal under the constraints � if


 ��
%� � � � � � � � 
 � 
%� � � � � � �
for any

� � � � ��� � .

For motivation of local optimality we refer the reader to Kallsen (Kal99). Intuitively, a lo-

cally optimal strategy maximizes the expected utility of the gains over infinitesimal time inter-

vals, or put differently, the expected utility of consumption among all strategies whose financial

gains are immediately consumed.

Locally optimal portfolios can be determined by pointwise solution of equations in � � :

Theorem 3.2.7. A trading strategy ��� � � � � � is locally optimal under the constraints � if and

only if

� 	 � � � � �� � � 	 � 	 � � 
 ��� � � � 	 
 �%� � ��� 	$� ��
 ��� ���	 (2.2)

� � � -a.e., where � �	 � � 	 � � � � ��
 � �  for any 
 � � 	  denotes the polar cone of � 	 .
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Proof. In view of Farkas’ lemma (cf. Rockafellar and Wets (RW98), Lemma 6.45), Theorem

3.2.7 follows from Kallsen (Kal99), Theorem 3.5. Strictly speaking, Kallsen (Kal99) considers

a narrower set-up where � and � are deterministic. As is pointed out in Kallsen (Kal02), the

statements in Kallsen (Kal99) remain valid for � ��� ������ . Moreover, a careful inspection of

the proofs of Proposition 3.10 and Theorem 3.5 in that paper reveals that these results hold for

random constraints of the above type as well.

Neutral pricing of European contingent claims is discussed in Kallsen (Kal02) in the context

of local utility. A key role is played by the corresponding neutral pricing measure, which is

defined as follows:

Definition 3.2.8. Suppose that there exists a locally optimal strategy � � � � without constraints

(i.e. for � � � � ). Moreover, assume that the local martingale% � � � ��� � � �� � � � 	 � � � � � � 
 �%� �
� � � � � ��� � � � �$�

is a martingale, where � � "�� � are the random measure of jumps of 	 and its compensator,

� 	 � �  ����� � � 	 
 � � � � � � � 	 �  	 ��
 � for ��� �! "�� � , and 	 � denotes the continuous local martingale

part of 	 . Then the probability measure
� � � �

defined by � � � � � � � % � is called neutral

pricing measure for local utility.

Since the determination of the optimal strategy � reduces to solving Equation (2.2) with

� �	 � 	  � , the neutral pricing measure for local utility is often easier to obtain than the neutral

pricing measure for terminal wealth. For concrete examples cf. Kallsen (Kal02), Section 5.

3.3 Neutral pricing

In this section we turn to the valuation of game contingent claims. Let us briefly review the

idea of neutral pricing. For references and connections to similar approaches in the literature

we refer the reader to Kallsen (Kal01).

In complete models there exist unique arbitrage-free derivative values. The assertion that

real market prices have to coincide with these values can be easily justified. It suffices to assume

the existence of traders (from now on called derivative speculators) who exploit favourable
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market conditions once they detect them. The existence of derivative speculators explains why

the market price cannot deviate too strongly from the right value: If it did, the huge demand for

(resp. supply of) the mispriced security would push its price immediately closer to the rational

value. The only assumption on the preferences of the speculators is that they do not reject

riskless profits – which most people may agree on. The elegance of this approach comes at a

price. It only works in complete models, or more exactly, for attainable claims.

We extend this reasoning to incomplete markets by imposing stronger assumptions on the

preferences of derivative speculators. We suppose that they trade by maximizing a specific kind

of utility. The role of the unique arbitrage-free price will now be played by the neutral derivative

value. This is the unique price such that the speculators’ optimal portfolio contains no contingent

claim. Similarly as in the complete case we argue that the speculators’ presence should prevent

the market price from deviating too strongly from the neutral value.

The general setting is as in the previous section. We distinguish two kinds of securities:

underlyings � " � � � " � and derivatives � � � " � � � " � � � . We assume that the derivatives are

game contingent claims with discounted exercise process �

�
and discounted cancellation pro-

cess
�
�
, where �

�
and

�
�

are semimartingales with �

�
% �

�
as well as �

�
� % �

�
� on �! "�� � and

�

�
� � �

�
� for  � � � � " � � � "� � � . European and American options are treated as special

cases of game contingent claims as it is explained in Remark 2 below. We call semimartingales

	 � � � " � � � " 	 � � 
 derivative price processes if �

� � 	
� � �

�
for  � � � ��" � � � " � � � . As noted

above, we are interested in derivative price processes that have a neutral effect on the market

in the sense that they do not cause supply of or demand for contingent claims by derivative

speculators.

Speculators may not be able to hold arbitrary amounts of game contingent claims because

these contracts can be cancelled. If the market price approaches the upper cancellation value
�

�
,

it may happen that all options vanish from the market because they are terminated by the sellers.

So a long position in the option is no longer feasible. Conversely, all derivative contracts may

be exercised by the claim holders if the market price coincides with the exercise value �

�
. This

terminates short positions in the claim. However, as long as the derivative price stays above the

exercise value, nobody will exercise the option because selling it on the market yields a higher

reward. Similarly, there is no danger that the seller of a GCC cancels the contract as long as the
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cancellation value exceeds the market price. Summing up, the derivative speculators are facing

trading constraints � given by

� 	 � � 	�
 � � � � 
 � for  � � � � " � � � "� � � we have 

�
�  if 	

�
	 � ���

�
	 �

and 

� �  if 	

�
	 � �

�

�
	 � 
�

(3.1)

In the following subsections, we treat neutral pricing separately for utility of terminal wealth

and for local utility, respectively.

3.3.1 Terminal wealth

We start by assuming that derivative speculators are identical investors trying to maximize ex-

pected utility from terminal wealth. Moreover, we suppose that the neutral pricing measure

for terminal wealth
���

in the sense of Definition 3.2.3 exists for the underlyings’ market

	 � " � � � " 	 � . As explained above, we look for neutral derivative prices in the following sense:

Definition 3.3.1. We call derivative price processes 	 � � � " � � � " 	 � � 
 neutral for terminal

wealth if there exists a strategy � in the extended market 	�� " � � � " 	 � � 
 which is optimal for

terminal wealth under the constraints � and satisfies � � � � � � � ��� � � � 
 �� .

The following main result of this chapter treats existence and uniqueness of neutral deriva-

tive price processes. Moreover, it shows that they are recovered as the value of a Dynkin game

relative to the neutral pricing measure
� �

.

Theorem 3.3.2. Suppose that � � � � " � � � " � � � 
 and
� � � � " � � � " � � � 
 are bounded. Then there

exist unique neutral derivative price processes. These are given by

	
�
	 � ��� � ����� ��� ���� � ��� � ��� ��� ���� 
 � � �

�
��� � " � � � � � 	 �

� ��� � ����� ��� ���� ��� � ����� � � ���� 
 � � �
�
��� � " � � � � � 	 � (3.2)

for � � �  #"�� � ,  � � � � " � � � "� � � , where
� 	 denotes the set of � � "�� � -valued stopping times

and

�

�
��� � " � � � � �

�� � �

�
��� if � � � � �
�
�
��� otherwise.

Moreover, the extended market 	�� " � � � " 	 � � 
 satisfies condition NFLVR in the sense of
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Definition 3.3.3. We say that the market 	 � � 	 � " � � � " 	 � � 
 � satisfies the condition no free

lunch with vanishing risk (NFLVR) if 0 is the only non-negative element of the � � � � � -closure

of the set � � � 	 " � � � � � � � " � � � 	 � for some
� � �&� � �� . (Note that this is a straightfor-

ward extension of the usual NFLVR condition in Delbaen and Schachermayer (DS94), Defini-

tion 2.8 to markets containing game contingent claims.)

Proof of Theorem 3.3.2. Step 1: By Lepeltier and Maingueneau (LM84), Théorème 9 and Corol-

laire 12, there exist right-continuous adapted processes 	 � � � " � � � " 	 � � 
 satisfying Equation

(3.2). Fix  � 	 � � ��" � � � " � � �  . Define stopping times �

�
� � ��������	 ��� � � �
	

�
	 � �

�
	 � � � � 

for any � � � and � � � � � ���
�
 � �

�
� . By Lepeltier and Maingueneau (LM84), Théorème 11 and

Dellacherie and Meyer (DM82), Theorem VI.3, � 	
�
� ���� is a

� �
-supermartingale for any � � � .

Obviously, � 	
�
� �� � � �� converges for � � � � �

-a.s. to

� � � � � � ���
����� 	 ���� � � � � � � � � � ��� �	�
� 	 ���� � � � � �

Define an adpated right-continuous process 	
�

by

	
�
	 � �

����� ����
	
�
	 " if � % � � or � �� "
� � � � " if  �� � � � � and �

�
� % � � for any � � � "

� � � " if  �� � � � � and �

�
� � � � for some � � � "

i.e. 	
�
� �

�
 � � 	

�
� ���� � � � � � �� � ���� � � �

� � �
����� � ��� ���� � ��� (with the convention � � � �� "�� �� � � � � � �� � ).

Let � "�� � �! #"$��� with � � � . If � � � �
�
 � �! "��

�
� ��� 
 , then 	

�
� � � � 	

�
	 and hence


 � � 	
�
	 � � � � � 	

�
� . Now, let � � � �

�
� �� "��

�
� � for some � � � . Then

	
�
� � � 	

�
� ���� � 
 � �$� 	

�
� ���	 � � � � � 
 � � 	

�
����� 	 � � � �

for � � � . Moreover, dominated convergence yields that

 � � 	

�
� � � 	 � � � � � 
 � � 	

�
	 � � � � in mea-

sure for � � � . Hence 	
�
� � 
 � � 	

�
	 � � � � . Altogether, it follows that 	

�
is a

� �
-supermartingale.

Hence, � 	
�
� � � is a semimartingale.

For � � � "$	  #" �  define ��� � � � ���
�
 � �

�
� where �

�
� � � � ����	 �� ��� � � � 	

�
	 � �

�
	 � � � � 

for � �  " � " � " � � � and �

�
� � � ������	 � � ��� � � � 	

�
	 � �

�
	 � ��� �  for � � � " � " � " � � � Similarly to

above, one shows by induction that � 	
�
� �  is a semimartingale for any �%� � .

Step 2: We keep the notation from the previous step. Fix ��� � . For � � � �  #"�� � and � ���
define stopping times � 	����

�
� � ������	 � � � � ��� 	

�
� � 	 � � �

�
� � 	 � ��� �  � � . From Lepeltier and
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Maingueneau (LM84), Théorème 11 it follows that � � 	�� � � � ��� � � � � 	
�
� �  is a

� �
-submartingale for

any � � � �  #"�� � , � � � . In particular, we have

� � � � � 
 � � � 
 ����� � � ��
 � �  (3.3)

� � � -a.e. on � � � " � 	����
�
� (cf. Lemma A2.3), where ��� � " � � "�� � " ��� denote

� �
-differential charac-

teristics of the semimartingale � 	
�
� �  in the sense of Definition A2.1. Since

	 ���
�
� � � % � 	

�
� � �  � �  #"�� � � � 	��  � � � ��� ��� �

�
�� � � � " � 	����

�
��"

it follows that Equation (3.3) holds
� � � -a.e. on 	 � �

�
� � � % � 	

�
� � �  . Therefore,

� 	 � � � ���	� � � � � ���	� � � � 	
�
� �  is a

� �
- � -submartingale (cf. Kallsen and Shiryaev (KS01), Lemma 2.5

and Lemma A2.3). Analogously, it follows that � 	 � � � � � � � � � � � � � � � � 	
�
� �  is a

���
- � -supermartingale,

and hence � 	 � � � � �	� � � � � � �	� � � � � � ��� � � � 	
�
� �  is a

���
- � -martingale.

Step 3: We keep the notation from the previous steps. Let � � � � � � � � � � ��� . Since �

�
" �
�

are
���

-special semimartingales with integrable �

�
� " �

�
� , they are locally in class � � in the sense

of Definition A2.4 and relative to
� �

(cf. Dellacherie and Meyer (DM82), VII.99). Denote

by � � � � � �� a corresponding localizing sequence. Fix � � � . By Proposition A2.6, applied to

���

�
� �  � � � , � 	

�
� �  � � � , and � �

�
� �  � � � , it follows that � ��� � ���� � 	

�
� �  � � � �
	 � %�� , which in turn

implies that � 	
�
� ��� � � � is a semimartingale (cf. Proposition A2.7). Therefore, � 	

�
� �� is a local

semimartingale and hence a semimartingale. In particular, it has left-hand limits at � � . Since

�

�
	 � %

�
�
	 � for � % � , this is only possible if � � � � . Consequently, 	

�
is a semimartingale.

Step 4: Let
%

denote the density process of
���

and � an optimal strategy for terminal wealth

in the market 	 � " � � � " 	 � . We want to show that the � � � 
 -valued process � � � � �
"  ��� �&� � �
is an optimal strategy for terminal wealth under the constraints � , now referring to the ex-

tended market 	 � � � 	 � " � � � " 	 � � 
 � . Since
% 
 ��� � � �#�%� �%����� coincides with the optimal solution

�
� � � � to the dual problem in Kramkov and Schachermayer (KS99), Theorem 2.2, we have that

� � ��� 	 � " � � � " 	 � �$� % is a martingale. This implies that � � 	 � � ��� 	�� " � � � " 	 � � is a
���

-martingale

(cf. JS, III.3.8).

Consider a strategy
� � � ��� � in the extended market. Let � � � " � � "�� � " � � be

���
-differential

characteristics of 	 in the sense of Definition A2.1. The same argument as in Step 2 shows that

� � �
�
� � � 


�
� �

�
� 
 �$��� � � ��
 � �  
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� � � -a.e. on 	 �
�
� % 	

�
�  and

�  on 	 	
�
� %

�

�
�  for  %� ��� ��" � � � " ��� � . Since 	 � " � � � " 	 �

are
� �

- � -martingales, we have

� � �
�
� � � 


�
� �

�
� 
 ����� � � ��
 � �� 

for  � � " � � � "� . From the form of the constraints � it follows that

�

�
��� � �

�
� � � 


�
� �

�
� 
 ����� � � ��
 �$� �  

for  � � � � " � � � " � � � , which yields that

� � � � � � � 
 � � � 
 �$��� � � ��
 ��� �  � � � � a.e.

In view of Kallsen and Shiryaev (KS01), Lemma 2.5 and Lemma A2.3, this implies that
� � 	 is

a
���

- � -supermartingale. By Goll and Kallsen (GK01), Proposition 7.9, this process and hence

also � � � � � � 	 is even a
���

-supermartingale. In particular, we have


 ��� � � � �%� � ��� ��� � � � � � 	 ��� � 
 ��� � � �#�%� � �$��� 
 � ��� � � � � � 	 � �  �

Due to Lemma 3.2.2, � is an optimal strategy for terminal wealth under the constraints � .

Hence, 	 � � � " � � � " 	 � � 
 are neutral price processes for terminal wealth.

Step 5: For the uniqueness part assume that
#	 � � � " � � � " #	 � � 
 are neutral derivative price

processes corresponding to some optimal strategy
#� ��� #��� " � � � " #� � "  #" � � � "  � in the extended

market
#	 � � � 	�� " � � � " 	 � " #	 � � � " � � � " #	 � � 
 � . Since

#� does not contain any derivative, we have

that � #� � " � � � " #� � � is an optimal strategy for the small market 	�� " � � � " 	 � with the same expected

utility. Similarly, the expected utility of � in the small market and of � � � �
"  � in the extended

market
#	 tally. Since � is optimal in the small market 	 � " � � � " 	 � , it follows that � � � � ��� � is

optimal in the extended market
#	 under the constraints � . Hence we may w.l.o.g. assume that#� � � .

Fix  � 	 � � � " � � � " � � �  . Firstly, we show that � � �
#	
�

is a
���

- � -submartingale for

any predictable subset
�

of 	 �
�
� % #	

�
�  . Since

#	
�

is bounded, we have that � � �
#	
�

is lo-

cally bounded. Hence, there exists an increasing sequence � �
�
�
�
 � of stopping times with

��� � �
�
� � � � � and � ��� 	� � ��� ��� � � ��� �

#	
�
� � �	 � � � . Fix � � � , � "$� � �  #"�� � with � � � , and

� � � � . Define an admissible strategy
� � � ��� � in the market



56 CHAPTER 3.3. NEUTRAL PRICING#	 � � � 	 � " � � � " 	 � " #	 � � � " � � � " #	 � � 
 � by
� 	 � �  for

� ��  and

�

�
� � ���� � � � � ��� � � � � ����� � � � 	 � � �

Lemma 3.2.2 and the fact that � �
#	 � � ��� 	 � " � � � " 	 � � is a

� �
-martingale yield that

� ���� 
 � �$��� ��� �
#	
�
� � �	 � � ��� �

#	
�
� � �� � � � �

� 
 � ��� � � � � � #	 � � � 
 � � � �
#	 � �

� � 
 ��� � � �#�%� � �$���$� � � 
 ��� � � � �%� �%��� ��� � � � � � #	 � �$��  �

Therefore, � � � �
#	
�
� � � is a

� �
-submartingale, which implies that � � �

#	
�
is a local

� �
-submartingale.

Similarly, it follows that � � �
#	
�

is a
���

- � -supermartingale for any predictable subset
�

of

	 #	
�
� %

�

�
�  .Define stopping times � 	 � �

�
� � � ����	 � � � � � 	

�
	 � #	

�
	 � ��� �  for any � � � �  #"�� � , � � � . Note

that 	 	
�
� )

#	
�
�  �	�  #"�� � � �%	��  � � � ��� ��� �

�
�� � � � " � 	����

�
� . Fix � � � �  #"�� � , � � � . Since

	 �
�
� % 	

�
�  � 	 #	

�
� %

�

�
� �� 	 	

�
� )

#	
�
� �"

we have that � � 	 � � � � � � � � � 	
�
and hence also ��� 	

�
� � � � � �	 � 	��� 	 � � ��� is a

���
- � -submartingale. By Goll and

Kallsen (GK01), Proposition 7.9, this process is even a
� �

-submartingale. Similarly, it follows

that ���
#	
�
� � � � � �	 � 	� � 	���� ��� is a

� �
-supermartingale. Since � 	

�
� � � ��� �� � �

#	
�
� � � ��� �� � � � � , we have that

� 	
�
� � � ��� �	�� � �

#	
�
� � � ��� �	�� � ��� � � -a.s. for any � � � . Consequently, 	

�
	�� � #	

�
	�� � -a.s.. Since this

holds for any � � ��� � �  #"�� � , we have that 	
� � #	

�
by right-continuity. Similarly, it is shown that

	 	
�
% #	

�
 is evanescent, which yields the uniqueness of neutral price processes for terminal

wealth.

Step 6: The NFLVR property of the price process 	 is shown in the usual way: Let
� � �&��� � . In Step 4 it is shown that

� � 	 is a
���

-supermartingale and hence

�� � " � �  

for any " � � . Since
��� � � , this is also true for any " in the � � � � � -closure of � . Therefore" �� � -a.s. for any such " with " �  .
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Remarks.

(i) If ����� 	��� ��� ��� � �

�
	 � and � ��� 	� � ��� ��� � �

�
	 � are

���
-integrable instead of bounded for

 � � � � " � � � " � � � , we still have the existence of neutral derivative prices for terminal

wealth. As Kifer (Kif00) points out, the results of Lepeltier and Maingueneau (LM84)

hold also if �

�
" �
�

satisfy the above integrability conditions. The existence follows now

from Steps 1–4 in the proof of Theorem 3.3.2.

(ii) European options with bounded discounted terminal payoff
�

�
at time � may be consid-

ered as special cases of game contingent claims by letting

�

�
	 � �

�� � � � �	� ��� �
�
� � if � % �

�

�
if � � �

and

�

�
	 � �

�� � � � �	� ��� �
�
� � if � % �

�

�
if � � � �

If we assume the absence of arbitrage, the price of the European claim will never leave

the interval � � ��� � ��� �
�
"�� � �	� ��� �

�
� . Therefore, the additional right to cancel the contract

prematurely is worthless. Equation (3.2) reduces to

	
�
	 � 
 � � �

�
� � 	��

for European options.

American options with bounded exercise process �

�
and final payoff �

�
� are treated simi-

larly by defining

�

�
	 � �

�� � � ��� � ���&� � ��� 	��� ��� ��� �
�
	 � � � if � % �

�

�
� if � � � �

The neutral price process 	
�

in Equation (3.2) now has the form of a Snell envelope:

	
�
	 ��� ��� � ��� � ���� 
 � � �

�
� � � 	 � �

Moreover, an inspection of the proof reveals that we can slightly weaken the conditions

on �

�
in the American option case. It is enough to assume that �

�
is a càdlàg, adapted

process instead of a semimartingale.
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(iii) In general, neutral derivative prices for terminal wealth depend on the utility function � ,

the time horizon � , the initial endowment � , and the numeraire. In the setting of Example

3.2.4, the density process of
���

does not depend on � and � . Therefore, neutral prices do

not depend on the time horizon and the initial endowment of derivative speculators in this

case.

Logarithmic utility is even more agreeable in this respect: As it is discussed in Goll and

Kallsen (GK01), Section 6, the neutral prices relative to
� �

depend neither on � , � , nor

on the chosen numeraire. Moreover, the density process of
� �

can be calculated explicitly

even in very complex models.

3.3.2 Local utility

In this subsection, we suppose that derivative speculators maximize their local utility. Simi-

larly to above, we assume that the neutral pricing measure for local utility
� �

exists for the

underlyings’ market 	�� " � � � 	 � (cf. Definition 3.2.8).

Definition 3.3.4. We call derivative price processes 	 � � � " � � � " 	 � � 
 neutral for local utility if

there exists a strategy � in the extended market 	�� " � � � " 	 � � 
 which is locally optimal under

the constraints � and satisfies � � � � � � � ��� � � � 
 �  .

The following result corresponds to Theorem 3.3.2 in the local utility setting.

Theorem 3.3.5. Suppose that �

�
" �
�

are special semimartingales and that ����� 	��� ��� ��� � �

�
	 � and

� ��� 	��� ��� ��� � �
�
	 � are

���
-integrable for  � � � � " � � � " � � � . Then there exist unique neutral

derivative price processes. These are given by

	
�
	 � ��� � ����� ��� ���� � ��� � ��� ��� ���� 
 � � �

�
��� � " � � � � � 	 �

� ��� � ����� ��� ���� ��� � ����� � � ���� 
 � � �
�
��� � " � � � � � 	 �

for � � � � ,  � � � � " � � � " � � � , where
� 	 and

�

�
��� � " � � � are defined as in Theorem

3.3.2. Moreover, the extended market 	 � " � � � " 	 � � 
 satisfies condition NFLVR in the sense of

Definition 3.3.3.
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Proof. Steps 1–3 and 6 are shown literally as in the proof of Theorem 3.3.2. Only Steps 4 and

5 have to be modified slightly.

Step 4: Since �

� � 	
� � �

�
, we have that 	

�
is a special semimartingale for

 � � � � " � � � " � � � (cf. Kallsen (Kal02), Proposition 3.7). Similarly as in Step 4 of the

proof of Theorem 3.3.2 we want to show that � � � � �
"  ��� � � ��� � is a locally optimal strategy

for 	 � � 	 � " � � � " 	 � � 
 � , where � denotes an optimal strategy in the small market 	�� " � � � " 	 � .

Denote by ��� " � "�� " ��� the
�

-differential characteristics of 	 relative to � � 
 � � 
 . In view of

Theorem 3.2.7 we have to show that

� � � � � �  � � � � � 
 ��� � � ��
 � � � ��� � ��
 ��� � � � (3.4)

Note that � �	 � 	 � � 	  � � 	 � 
 � For  � � � ��" � � � " � ��� we have
�
�
�  if �

�
	 � % 	

�
	 �and

�
� �  if 	

�
	 � % �

�
	 �  . From the Girsanov-Jacod-Mémin theorem it follows that the

� �
-

differential characteristics ��� � " � � "�� � " ��� of 	 relative to some truncation function� � � � � 
 � � � � 
 satisfy the equation

�
� �
�
	 � � � 


�
� �

�
� 
 ����� �	 � ��
 � � �

�
	 � � � � �� � �

� �
	 � 	 �

� 

� � ��� � � 	 
 �
� � � 	 � � � � 	 � ��
 �

� �
� � � 	 � �

�
	 � � � � �� � �

� �
	 � 	 �

� 

�
��� � � � 	 
 � � � ��� 	 � ��
 � � (3.5)

for  � � " � � � "� � � , where � 	 is defined as in Definition 3.2.8 (cf. Kallsen (Kal02), Steps 3

and 4 on page 122 for the arguments in detail). Since � is optimal in the small market, Theorem

3.2.7 yields that expression (3.5) equals 0 for  %� � " � � � "� . The same argument as in Step 2 of

the proof of Theorem 3.3.2 shows that the left-hand side of Equation (3.5) is non-negative on

	 �
�
	 � %�	

�
	 �  (resp. non-positive on 	 	

�
	 � %

�
�
	 �  ) for  � � " � � � " � � � . Together, it follows that

Condition (3.4) holds. Therefore, 	 � � � " � � � " 	 � � 
 are neutral price processes for local utility.

Step 5: For the uniqueness part assume that
#	 � � � " � � � " #	 � � 
 are neutral derivative price

processes corresponding to some locally optimal strategy
#� � � #� � " � � � " #� � "  #" � � � "  � in the

extended market
#	 � � � 	 � " � � � " 	 � " #	 � � � " � � � " #	 � � 
 � . As in Step 5 of the proof of Theorem

3.3.2 we may w.l.o.g. assume that
#� � � .

In this step, we denote by � � " � "�� " ��� the
�

-differential characteristics of
#	 relative to� � 
 � � 
 . Since � is an optimal strategy, Theorem 3.2.7 yields that Condition (3.4) holds

� � � -a.e. As in the previous step, we express this condition in terms of the
� �

-differential
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characteristics � � � " � � "�� � " ��� of
#	 relative to some truncation function � � � � � 
 � � � � 
 . Fix

 � 	 � � � " � � � " � � �  . Then the
� �

-drift � � �
�
�  � 


�
� �

�
� 
 ����� � � ��
 � of

#	
�
it is non-negative on

	 �
�
	 � %

#	
�
	 �  resp. non-positive on 	 #	

�
	 � %

�
�
	 �  . Due to Kallsen and Shiryaev (KS01), Lemma

2.5 and Lemma A2.3, this means that � � �
#	
�

is a
���

- � -submartingale for any predictable sub-

set
�

of 	 �
�
	 � % #	

�
	 �  and ��� �

#	
�

is a
���

- � -supermartingale for any predictable subset
�

of

	 #	
�
	 � % �

�
	 �  . The uniqueness of neutral price processes follows now as in the second half of

Step 5 in the proof of Theorem 3.3.2.

Remark 2 following Theorem 3.3.2 holds accordingly in this setting.

3.4 Some supplementing considerations

In section 3.3 we have argued that by choosing their trading strategies under the constraints �
as defined in (3.1) the derivative speculators are not disturbed by possible terminations of their

counterparties. Thus the set � is small enough for the optimisation problem that is behind the

definition of neutral derivative prices (Def. 3.3.1). The other way round, in this section we give

reasons why � is actually big enough.

Therefore, let
�

�
� and

�

�
� resp. be predictable subsets of 	 	

�
� � �

�
�  and 	 	

�
� �

�

�
�  resp.,

 � � � ��" � � � "� � � . Assume derivative speculators are facing trading constraints
#
� (instead

of � ) given by#
� � � 	 � � 	�
 � � � � 
 � for  � � � � " � � � "� � � we have 


�
�  if � � "��$��� �

�
�

and 

� �  if � � "��$��� �

�
� �" � � "��$��� � 	 �  #"�� � "

with the corresponding constrained set of trading strategies �&�
#
� � defined in subsection 3.2.1.

Corollary 3.4.1. Suppose that � � � � " � � � " � � � 
 and
� � � � " � � � " � � � 
 are bounded and#	 � � � " � � � " #	 � � 
 are neutral derivative price processes in the sense of Definition 3.3.1 but with

respect to �&�
#
� � instead of �&� � � . Then

#	
�
� 	

�
up to evanescence, for  � � � ��" � � � "� � � ,

where 	
�

are defined in (3.2).

Proof. Assume that
#	 � � � " � � � " #	 � � 
 are neutral derivative price processes with respect to �&�

#
� � ,

i.e. there is some strategy
#� � � #� � " � � � " #� � "  " � � � "  � , which is optimal in the extended market



61#	 � ��� 	 � " � � � " 	 � " #	 � � � " � � � " #	 � � 
 � under the constraint
#
� . As

#� � � ��� � and �&� � � � �&�
#
� �#� is also an optimal strategy under � ��� � , i.e.

#	 � � � " � � � " #	 � � 
 are neutral price processes in

the sense of Definition 3.3.1 (i.e. with � ��� � ). Therefore the assertions follows from step 5

in the proof of Theorem 3.3.2. Notice that in this step we do not make use of the fact that

	 � � � " � � � " 	 � � 
 are neutral price processes in that context.

Remark 3.4.2. However, in general the existence of neutral prices gets lost: just take
� �� ���

(i.e. short positions in the derivative are always allowed) and ���	 � � � � , for � � �  #"�� � . Then,

we have for the � � � ����� - ��� � ����� -process 	�� � ��� , which is obviously no neutral price process:

it is decreasing with probability one and therefore short positions in it are worthwhile for every

agent with increasing utility function.

Nethertheless, 	
�
,  � 	 � � ��" � � � " � � �  , as defined in (3.2), are the only candidates

for neutral price processes. So, it makes sense to define
�

�
� and

�

�
� depending on 	

�
and show

under which conditions the existence in Theorem 3.3.2 remains valid.

Let ��� � " � � " � � "�� � be
���

-differential characteristics of 	 in the sense of Definition A2.1.

Take e.g. the lower bound: on 	 	
�
� ���

�
�  we have that

� � �
�
� � � 


�
� �

�
� 
 �$��� � � ��
 � �  

� � � -a.e. (see step 4 of Theorem 3.3.2). It turns out that on 	 � � �
�
�  � 


�
� �

�
� 
 ����� � � ��
 � �� �

we can allow for short positions in asset  , but on 	 � � �
�
�  � 


�
� �

�
� 
 ����� � � ��
 � %  � we have to

rule it out. Analogously the upper bound can be devided in two. We state this in the following

Corollary 3.4.3. Suppose that � � � � " � � � " � � � 
 and
� � � � " � � � " � � � 
 are bounded. 	

�
is the

neutral derivative price process with respect to � �
#
� � iff

	 � � �
�
� � � 


�
� �

�
� 
 ����� � � ��
 � %  � � �

�
� � � � � a.e.

and

	 � � �
�
� � � 


�
� �

�
� 
 ����� � � ��
 � )  � � �

�
� � � � � a.e.

Remark 3.4.4. Again, for the “if-part” we only need that for  � � � ��" � � � " � � � � ��� 	� � ��� � � � �
�
	 �

and ����� 	��� ��� ��� � �
�
	 � are

���
-integrable instead of bounded.
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Remark 3.4.5. Remember from step 4 in the proof of Theorem 3.3.2 that we have that

� � �
�
� � � 


�
� �

�
� 
 �$��� � � ��
 � �  

� � � -a.e. on 	 �
�
� % 	

�
�  and

�  on 	 	
�
� %

�
�
�  for  � � � � " � � � "� � � .

Proof. Sufficiency: Consider a strategy
� � �&�

#
� � from the extended market. From the assump-

tion for the constraints
#
� it follows that

�

�
��� � �

�
� � � 


�
� �

�
� 
 ����� � � ��
 �$� �  

for  � ��� � " � � � "��� � ,
� � � -a.e. and we can proceed as in step 4 of Theorem 3.3.2 to show

that � � � �
"  � is an optimal strategy for terminal wealth.

Necessarity: Assume that 	
�
,  � � � � " � � � " � ��� is a neutral derivative price process.

By the same arguments as in step 5 in the proof of Theorem 3.3.2 we have that � � � �� � � � 	
�

is a
���

- � -submartingale. With Lemma A.2 this implies that � � �
�
�  � 


�
� �

�
� 
 ����� � � ��
 � �  

� � � -a.e. on � �
�
� � 
 . As the analogous assertion holds for

�

�
� we are ready.

Remark 3.4.6. All the previous considerations hold also in the context of local utility maxi-

mization.

After this formal treatment let us interprete the results economically.

Assume that the speculator has no trading constraints. Then, roughly speaking, the postula-

tion that under a derivative price process 	
�
her optimal portfolio contains no derivatives ensures

that the option price is neither too high nor too low, in the sense that there is neither a negative

nor a positive demand. Making a priori the restriction of no short sales, as e.g. at the lower

bound 	
�
� � �

�
� , the speculator may invest in the option, but does not do it at the optimum.

From this one can (only) conclude that the price 	
�
� is at least not too low. On the other hand,

at 	
�
� � �

�
� it is merely the exercise value. So, a lower price 	

�
� % �

�
� is definitively too low.

It allows for arbitrage, resp. the optimal demand is �
�
� � � (buying an option and exercising

it immediately yields the riskless gain �

�
� � 	

�
� )  ). By contrast, for 	

�
� ���

�
� we cannot

exclude that 	
�

is too high in the sense that an optimal �
�

from an unconstrained strategy set

would be strictly negative. Summing up, at 	
�
� � �

�
� we can say that a lower price would be

too low, but we cannot exclude that 	
�
� � �

�
� is too high. At 	

�
� �

�
�
� we can argue the oppo-

site way round. This interpretation corresponds somehow to the nonexistence of a neutral price
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process, whereas in the case of existence the price process is unique, cf. Corrolary 3.4.1 and the

following remark.

Corrolary 3.4.3 tells us that the bounds 	
�
� � �

�
� and 	

�
� � �

�
� , resp., can be devided in

two, resp. Whereas on 	 � � �
�
�  � 


�
� �

�
� 
 ����� � � ��
 � �� there is an indifference situation in our

economy at 	 � � �
�
�  � 


�
� �

�
� 
 ����� � � ��
 � %  and 	 � � �

�
�  � 


�
� �

�
� 
 �$��� � � ��
 � )  , resp., the

option has to be exercised and bought back, resp.
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Chapter 4

Valuation of Contingent Claims with

Embedded Options in Incomplete Markets

This chapter is an adapted version of Kühn (Küh02).

4.1 Introduction to utility based valuation

We are interested in options where the holder purchases the right to choose (in a predefined

way) among several random payoffs offered by the seller. Such options could be a chooser

option having the feature that, after a specified period of time, the holder can choose whether

the option is a call or a put (cf. for example Hull (Hul00)), or an American option that can be

exercised at any time up to the expiration date (and so the discounted payoff depends on the

stopping time). Another example is an installment option, i.e. an European option in which the

premium is paid in a series of installments and the holder has the right to terminate payments at

any payment date, but then the option matures automatically (cf. Karsenty and Sikorav (KS96)).

In an insurance context, it could be a pension scheme where the policy-holder reaching a special

age can swap his right to a pension for a single payment. Such choices offered by an insurance

contract are called “embedded options”. Many examples for such “options” are given in Held

(Hel99).

In all these cases the insurer (writer of the option) has the problem that he does not know at

time  which random payoff the insured (holder of the option) is going to choose.

65
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In the spirit of Schweizer (Sch01c), we consider a general model combining financial market

risk and traditional actuarial risk. Hereafter, we just call the insurer/writer “she” and the

insured/holder “he”.

Let � ��"  " � " �  	 ��	��� ��� ��� � be a filtered probability space satisfying the usual conditions of

right-continuity and completeness, and let the � � -valued semimartingale 	 � � 	 	�� 	� � ��� ��� model

the discounted price processes of the � risky assets available for trade. � is a suitable space of

admissible trading strategies to be specified later.

Definition 4.1.1. Let � be her utility function. It is a mapping from the set of random variables

into � that is monotone in the sense that
� � � � -a.s. implies �%� � � � � � � � .

The classical actuarial variance principle would correspond to � � � � � 
�� � � � � �
Var � � � ,� )  , but it is known not to be monotone. The monotonicity is necessary for our valuation

principle to be consistent with no-arbitrage.

For pricing random payoffs in incomplete markets Schweizer (Sch01c) introduces – in the

most general form – an indifference principle in the framework of financial markets. The idea

is as follows: she can decide whether she insures a risk � , an
 � -measurable random variable,

for a premium � or not. The utility-indifference premium is defined as the premium which

makes her indifferent with regard to this decision. She also takes into consideration that she can

perhaps (partly) hedge the risk.

Definition 4.1.2. � is called a “utility-indifference premium” if it satisfies

������ �� �
� � � � � � � � ��

� 	 �
	 	 � � � ���� �� �
� � � � �� � 	 �
	 	 � " (1.1)

where � is her initial capital.

For the variance and the standard derivation principle, closed-form valuations for many prac-

tically relevant products combining financial and actuarial risk, as for example unit-linked life

insurance contracts or so-called financial stop-loss reinsurance contracts, are given by Møller

(Møl00), using general results of Schweizer (Sch01c). For the exponential utility function, more

recently, Becherer (Bec01), see Theorem 2.4.1, derives a recursive computation formula for the

premium considering a model which consists of a complete financial market and additional

independent actuarial risk observed at discrete points of time.
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The aim of this chapter is to generalize this concept to situations where the random payment

is not fixed at the beginning, but during the policy term the holder can choose in a contractually

predefined way between several scenarios.

In the first instance, we consider a model with only one predefined decision time at which

the holder can choose among a finite number of payoffs (Section 4.2). In Section 4.3, we deal

with American style contingent claims where the holder can stop the contract before maturity

� . More technical lemmas are left to the appendix.

4.2 Choice among a finite number of payoffs

Let
� � 	 � � " � � � "��

�
 be a set of contingent claims, i.e. each �

�
is an

 � measurable positive

random variable. He can choose among these � different payoffs at the predefined stopping time

� (using the information
 � ). This means that there is a set of permissible decision rules

� � 	 � ��� � 	 � " � � � " � �"  � � measurable  �
The final payment depending on � is then

� � �

�
� �
� �
� � � �  � �

� �
(2.2)

We call � � � � � �� a general claim.

Example 4.2.1 (Chooser option). At a fixed time ��� ���� #"�� � the holder of a chooser option

can decide whether the option is a call or a put (here, with the same strike price � ), i.e. � � �
� 	 � � �� � � ��� , � � � � � � 	 � � �� ��� , and � � ��� � �� #"$��� .

Our generalization of the utility-indifference principle is as follows:

We suggest to determine the premium as the minimal amount she must receive at time  such

that for all possible decision functions � (he could hypothetically have) her utility is at least as

big as the utility she would have if she did not offer this contingent claim.

This means, she will be on the safe side even if she knows nothing about his preferences/decision

function. Such a premium is reasonable in the following sense: if the premium was smaller she

would offer him a decision possibility that decreases her utility. For a single decision function �
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the random payoff � � is uniquely determined. Therefore, in the case of no financial market the

premium described above would simply be the supremum over all utility-indifference premiums

– according to (1.1) – related to all possible � � (Theorem 4.2.9 case (i)).

But the existence of a financial market makes things more complicated: she can (partially)

hedge the risk carried by the claim. The crucial point about this is that she does not know his

decision function � , and therefore she must choose her trading strategy independently of it. Only

from time � � ��� on she can choose a strategy depending on her information � � ��� . We formalize

this in the following way:

Definition 4.2.2. We call � a “still fair premium” if

������ � � � � �"!"!"! � � � ���� � � � ������  � � � � � � � � ��� � ��
� �	 �
	 	 � �������� �� �

� � � � �� � 	 �
	 	 � " (2.3)

where

� �	 � ��� � �
�� � � 	$� ��� � � � � � ��� "�

� 	$� ��� � � ) � � ��� and �#� ��� �  � (2.4)

As � is a stopping time, it can be shown by standard arguments that
�
� is predictable if

�

and

�
�

are predictable.

Remark 4.2.3. Definition 4.2.2 takes into account that from time � � ��� on she knows his ef-

fective decision � � ��� . This is a priori not the same as if she received at time � � ��� his whole

decision function � ��� � 	 ��" � � � " �  . In the latter case one would replace the lhs of (2.3) by

� ���� �� � � �
� ��

������� �� � � � � � � � ��� � �
�

� 	 �
	 	 � � ��
#� 	 �
	 	 � "

at which she could choose an optimal
#�

depending on � . But, it turns out that these two concepts

are equivalent under all expected utility functions � ��� � � 
�� � � � � ��� , see Lemma A3.2.

The strategy space � has to satisfy the

Assumption 4.2.4. All elements of � are �  	 � 	��� ��� ��� -predictable and 	 -integrable, i.e. � �

� � 	 � . � is linear, and for all � � � the following implication is valid:

If
� "

�
� � � ,  � � " � � � " � , then the compound strategy

�
� is also an element of � .
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The latter is essential: a strategy
�

is admissible if and only if its restriction to �� #" ��� and its

restriction to ���#"�� � are both admissible. Therefore, it allows us to verify the admissibility of a

strategy seperately on �� #" ��� and ���#"�� � . So, it is a quite natural assumption. But unfortunately, it

is not as harmless as it looks like. For example, the set of all predictable trading strategies such

that the discounted gain process  	� � � �
	�� is bounded from below (but not necessarily from

above) does obviously not satisfy Assumption 4.2.4, as the insurer’s credit limit for the second

period is determined through her trading gains in the first period.

As � � 	 � is linear an example satisfying Assumption 4.2.4 is

� � �

� � � � 	 � ����

� 	
�

� � �
	�� is bounded uniformly in � and � � � (2.5)

� � is rather small, but in Delbaen et al. (DGR � 02) resp. Kabanov and Stricker (KS02a) it

is shown that under some restrictions (in particular the standing assumption that 	 is locally

bounded) for exponential utility the maximization problem (1.1) with � � � � has the same

value as for much bigger � . Another choice satisfying Assumption 4.2.4 is

� � �

� � � � 	 � ����

� 	
�

� � �
	�� is a martingale resp. a special set of martingale measures � �
Remark 4.2.5. A complementary approach would consist in defining the premium – similarly

to Davis and Zariphopoulou (DZ95) – from his point of view: the maximum premium he is

prepared to pay for the claim. As he determines the decision, for him � is not uncertain but he

can maximize over it. The “utility-indifference premium” � � would then be determined by

� ���� �� ������  �
� � � � � � � � � ��� � ��

� 	 � 	 	 � � � ���� �� �
� � � � � �� � 	 �
	 	 � "

where � � is his initial capital. But, in actuarial mathematics the zero utility principle is tra-

ditionally considered from the insurer’s viewpoint. That makes economically more sense as

“utility-indifference” assumes perfect competition (and therefore homogeneous preferences)

that is more likely between insurance companies than between the insureds. Moreover, we are

interested in hedging strategies for the insurer against the risk carried by the claim. With (2.3)

one can obtain a minimax strategy.

First we show that � solving (2.3) is consistent with no-arbitrage. We take over the concept

of Definition 4.2 in Karatzas and Kou (KK98):
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Definition 4.2.6. Suppose that � � is the price of the general claim � � � � �  � defined in (2.2). We

say that there is an arbitrage opportunity, if there exists either

(i) some compound strategy
�� �

- according to (2.4) - that satisfies


 � � �� �� �	 �
	 	�� � � �
-a.s. � � � �

for some 
 %�� � , or

(ii) some
�
� � � and some

�� � � such that

� 
 � � �� �� 	 �
	 	 � �
�

� �  �
-a.s.

for some 
 )�� � .
Theorem 4.2.7. Let (2.3) have a unique solution � . Then, for � � � � neither she (case (i)) nor

he (case (ii)) has an arbitrage opportunity.

Proof. (i) Suppose that (i) is satisfied for ��� � � . Due to the linearity of � , the mapping
�
� #�

�
� � �� � is a bijection of the set of permissible compound trading strategies into itself. This (first

equality) and the monotonicity of � (first inequality) yield:

������ � � � � �"!"!"! � � � � �� � ��� � ����  � � � � � 
 � � ��� � ��
� �	 � 	 	 �

� � ���� � � � � �"!"!"! � � � ���� � ��� � ���� �� � � � � 
 � � ��� � ��
�� �	 �
	 	 �

� �
�

� �	 �
	 	 �
� ������ � � � � �"!"!"! � � � � �� � ��� ������  � � � � � � �� � �	 �
	 	 �
��� ���� �� �

� � � � �� � 	 �
	 	 � � (2.6)

The last equality holds due to Assumption 4.2.4. On the other hand, we have by monotonicity

of � and the uniqueness of � :

� ���� � � � � �"!"!"! � � � ���� � � � ������ �� � � � � 
 � � ��� � ��
� �	 �
	 	 � % ������ �� �

� � � � �� � 	 �
	 	 � " (2.7)

i.e. a contradiction to (2.6).

(ii) For similar reasons (ii) cannot be satisfied for � � � � .
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Theorem 4.2.8. Assume that for every � � � there exists a unique utility-indifference premium� � for the claim � � , i.e. � � solves equation (1.1) with � � � � . If � solves (2.3), then � �
� ��� � �� � � .
Proof. Let us first show that for all � � � � :

� ���� � � � � �"!"!"! � � � ���� � � � � � �� �� � � � � � � � ��� � ��
� �	 �
	 	 �� ������ �� � ����  �

� ����� �� � � � � � � � � � � �
�

� 	 �
	 	 � � ��
#� 	 �
	 	 �� �����

�  �
������ �� �

� � � � � � � � � ��
� 	 �
	 	 �� ������ �� �

� � � � � � � � � � ��
� 	 � 	 	 � � (2.8)

The first inequality is valid as in the second term, for every � � �
, we can choose

#� �
�
��
� � � � � �  $"�� ) � �

�
� 	�� � , by Assumption 4.2.4. The second inequality holds since, again

by Assumption 4.2.4,

� "
#� � � � �

� � � � � � � � � � � ) � � #� � � �

On the other hand, we have by the definitions of � and � � �
� ���� � � � � �"!"!"! � � � ���� � ��� � ���� �� � � � � � � � � � � ��

� �	 �
	 	 �
�������� �� �

� � � � �� � 	 �
	 	 �
�������� �� �

� � � � � � � � � � � � ��
� 	 �
	 	 � (2.9)

for all � � � � . Putting (2.8) and (2.9) together, we get

� ���� �� �
� � � � � � � � � � ��

� 	 �
	 	 �
� � ���� �� �

� � � � � � � � � � � � ��
� 	 �
	 	 � � � � � � "

and, due to monotonicity of � and uniqueness of � � � , this implies � ��� � � for all � � � �
and

therefore the assertion.
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Theorem 4.2.9. Assume that for every � � � there exists a unique utility-indifference premium� � for the claim � � , i.e. � � solves equation (1.1) with ��� � � , and let � be a unique solution

of (2.3). If one of the following conditions holds:

(i) there is no financial market, i.e. ��� 	  � ,
(ii) the financial market is complete, i.e. there is a unique equivalent martingale measure � ,

� � � � , and every �

�
� � � � ��"  " � � , or

(iii) u is the expected exponential utility function, i.e.

� � � � � 
 � � � ��� � � � ( � � ��" (2.10)

for some risk aversion parameter ( )  , and
� �
�
� � 	 � � � � � ��"  " � � ,

then we have � � ����� �  � � � .
Proof. (i) obvious.

(ii) Define

������� � ��� � � � ��
� � �"!"!"! �

� 	 
 � � � � �  � � �" (2.11)

using arbitrary versions of the conditional expectations. It is evident that ������� is
 � -measurable.

Theorem 4.2.7 implies that � � �	��
 according to (1.1) is the unique no-arbitrage price for the

attainable claim � � �	��
 , i.e. � � �	��
 � 
 � � � � �	��
  . Due to completeness (cf. e.g. Jacka (Jac92))

and the optional stopping theorem there exists a permissible strategy
��

such that


 � � � � �	��
 �  � 	 � � � �	��
 � � �
�
�� 	 � 	 	 �

-a.s.

Furthermore, there are permissible strategies

�
��

such that

�

�
� 
 � � �

�
�  � �
� � ��

�
�� 	 � 	 	 �

-a.s.,  � � " � � � " � �
Therefore, starting with initial capital � � �	��
 and choosing the compound strategy

��
� , according

to (2.4), we can superhedge all claims � � � � �  � :

� � �	��
 � � �� �� �	 �
	 	 � � ��� 
 � � � � �	��
 �  � 	 � 
 � � � � �  � 	 � � � �
-a.s.
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So, � � �	��
 is the unique no-arbitrage price of the general claim � � � � � �� . Due to Theorem 4.2.7,

this implies � � � � �	��
 .
(iii) We set

������� � ��� � � � ��
� � �"!"!"! �

�  ��� � ������ ��

 � � ��� � � ( �

�

�
�
� �
�

� 	 �
	 	 � � �  � � � " (2.12)

using arbitrary versions of the essential infima. By Assumption 4.2.4, the first supremum in

(2.13) below can be split into two parts. Then, as � � �	��
 exists and
�
�

�
� � 	 � � � � � ��"  " � � ,

Lemma A3.1 can be applied. The last equality is the assertion of Lemma A3.2:

� ���� �� �
� � � � � � � �	��
 � � ��

� 	 �
	 	 �
� ������ �� � ����� �� � � � � � � � � �	��
 � � �

�
� 	 �
	 	 � � ��

#� 	 �
	 	 �
� ������ �� � ���� ��

� ����� �� � � � � � � � ��� � �
�

� 	 �
	 	 � � ��
#� 	 �
	 	 �

� � ���� � � � � �"!"!"! � � � ���� � � � � � �� �� � � � � � � � ��� � ��
� �	 �
	 	 � � (2.13)

Altogether, we obtain � � � � �	��
 .
Remark 4.2.10. We have some kind of minimax-principle:

� ���� �� ������  �
� � � � � � � � � � ��

� 	 �
	 	 �� � ���� � � � � �"!"!"! � � � � �� � ��� � ���� �� � � � � � � � ��� � ��
� �	 � 	 	 �� � ���� �� ������  �

������� �� � � � � � � � � � � �
�

� 	 � 	 	 � � ��
#� 	 � 	 	 �� � � �

� ��
������ �� �

� � � � � � � � � ��
� 	 �
	 	 � �

By Theorem 4.2.9, in the case of exponential utility, the last two inequalities are equalities. The

first inequality, however, can still be strict.

Proposition 4.2.11. Let
� � � � � � " � � be a utility function with

� � )  , � � � %  , and � � � � �

 � � � � � � � . If

�
is not of the form

� � � � � � � � � � ��� �
	��&( �  , � � � � , � � " ( )  , then there exists

a general claim � � � � � �� such that � ) � ��� � �� � � .
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Remark 4.2.12. (a) Proposition 4.2.11 has a nice economical interpretation: for each utility

function
�

with varying risk aversion � � � � � � � � � � � � ��� � � � � � , one can construct a coun-

terexample with � ) � ��� �  � . In this case there need not exist a least favorable decision

function ������� , as in (2.12), which does not depend on her wealth � � � �  �� � 	 �
	 	 at time

� and therefore on her strategy
�

until time � . We will illustrate this in Example 4.2.13.

(b) This is an interesting analogy to the assertion in Gerber (Ger79), p. 77, concerning pre-

mium calculation principles which is also caused by the (non)constancy of the risk aver-

sion of the utility function: “A principle of zero utility is iterative, if and only if it is an

exponential principle or the net premium principle.”

Proof. To construct a counterexample it is sufficient to look at a simple discrete two-period

binomial model. She has initial capital � . There are a riskless bond identical � , a tradeable risky

asset with 	 ��� � and for some � � � �
	 � � 	 � �

�� � � � � with probability ����
 � with probability ����

(so trading in the second period can be ignored), and another random variable � , stochastically

independent of 	 , with

� �
�� � � � � with probability ����
 � with probability ����

for some
� � � � . At time � � � , having the information 	 � , the holder can choose between two

payoffs at time  , a constant payoff � �
� 
 � � � and � � � � . As 	 � can take two different

values, there are four possible decision functions
� � 	 � � � " � � � " � � � " � � �  (where �

�
	

means that

he decides for �

�
if 	 � � �

and for � 	 if 	 � �  ). We have four free parameters, namely � , � � ,
� � , and 
 � to construct a counterexample.

For each � 
 " � ��� � � 	 � let
� � � � 
 " � � be the unique solution of

� � ��� 
 � � �
 �
� � � ��� � � ��� � � ��" � � � 
 "  
 � � (2.14)

It is given by

� � 
 " � � ����� � � � �  � � ��� 
 �%� � � � ��� "
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and for the partial derivative with respect to � we have

�
� � 
 " � � � � � � � � � � � � ��� � � 
 " � �$�%�  � � � ��� 
 �� � � �
� � � 
 " � ��� �

(2.15)

Taking in equation (2.14) the first and second partial derivative with respect to 
 , respectively,

and then setting 
 �  , one obtains (note
� �  #" � � �� )

�  �� " � � �  and
�  ��  #" � � �  � � � � � �� � � � � � �  �#� � � " ����� � �

By the Taylor expansion

� � 
 " � � �  
 � � � � � 
 � � 
 � � �� � � �  ��$� � � � � 
 " � �%� �   �  #" � � � � � "
and due to

� � � � � � " ��� , we obtain

�
� � 
 " � � � � � � � � � � ���#� � ��� 
 � " 
 �  #" (2.16)

where the convergence holds uniformly on compacta in � . As
�

is neither linear nor of expo-

nential type, we have � � ��  . Thus, there exist some � � � � and � )  s.t. w.l.o.g.

� � � � � %  #" ����� � � � � � " � � � � � (2.17)

and therefore, due to (2.16) and the continuity of ��� , there exists 
 � )  arbitrary small s.t.

�
� � 
 � " � � )  ����� � � � � � " � � � � � � (2.18)

We want to lead this to a contradiction to � � � ��� �  � � � or, equivalently, to

� ���� �� � � �� � �


 � 
 � � � � � � � 	 � � 	 � �%� � �
� � � � �������

�
� � ������ �� 
�� 
 � � � � � � � 	 � � 	 � �%� � �

� � � � �(2.19)

First of all, choose ��� � � and � � )  , but close to  (i.e.

�� � 	 � � 	 � �

�

�  ) such that for fixed

� � 	 � � � " � � � " � � � " � � �  the maximization problem possesses a maximizer
�
�
	

(which is then, due

to the strict concavity of
�

, unique).
�
�
	

should be positive but not too big, more precisely,

� � � � % � � � �

�
	 % � � � �

�
	 ��� � � � � % � � � �  $" � � ��"  �

This is possible as
� � � � � � � %  , 
�� � 	 � � 	 � � )  , and 
 � resp.

� � � � 
 � "  
 � � are arbitrarily

small. Then, choose
� � � � 
 � "  
 � � such that


 � � � � � � � � � � � 	 � � 	 � �%� � �
� � � � 
 � � � � � � � � � � � 	 � � 	 � � � � � � � � � � � �
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This implies that
� � � � � 
 � " � � � � � � � but

� � � � � 
 � " � � � � � � � . As
� � 
 � " � � is increasing we

obtain �  % � � � � � � � � and
� � % � ��� 	 � � 
 � " � � � � � � ��� � � � ��� " � � 
 � " � � � � � � ��� � � � �$�� . We

arrive at

� % � ��� � 
 � � � � � � � � � � � 	 � � 	 � �%� �
� � � ��" 
�� � � � � � � � � � � 	 � � 	 � �%� �

� � � �
�

� � ��� � 
 � � � � � � � � � � � 	 � � 	 � �%� �
� � � ��" 
�� � � � � � � � � � � 	 � � 	 � �%� �

� � � �
�
"

i.e. � � � and � � � are indeed the least favorable decision functions.

To disprove (2.19) it is enough to show that
� � � �� � � � (as maximizers are unique). Assume

that
� � � � � � � � � � ����� . This implies

� ��� � � 
 � " � � � � ����� � . On the one hand we have


 � � � � � � � � � 	 � � 	 � �%� � �
� � � � 
�� � � � � � � � � 	 � � 	 � �%� � � � � � � �#� � � � ����� � " � � � ����� "

as both expectations take their maximum in
� �����

. On the other hand we have by (2.15) and

(2.18)


 � � � � � � � � � 	 � � 	 � �%� � �
� � � � 
 � � � � � � � � � 	 � � 	 � �%� � � � � �

� �� � � � �
� � � � �� � � � � � � � � � 
 � " � � � � ����� ���%� �
� � � �
� � � 
 � �

� � �� � � � � � � � ����� � � �� � � � � � � � ����� � � � 
 � " � � � � ����� ���

� �
� � � � � � � ����� � 
 � � � � � � �

�
� � ����� � � �

� �� �� � � � 
 � " � � � � ����� � � � � � � � � ����� � � � 
 � " � � � � ����� �$�� ��� 	
� �

� �#� � � �� � � ����� � � � " � � � ����� �

But this is a contradiction.

Example 4.2.13. We want to illustrate the different situations for exponential utility in contrast

to other utility functions. Therefore we take the example above with
� � ����� . She has initial

capital � � � � and � � � �
, 
 � � � . The optimal amount

�
of assets she has to buy at time  

depends on � but she must find a joint strategy
�

. By choosing
� � in such a way that the optimal

utilities for � � � and � � � are the same and smaller than the utilities for �
� � , � � � . That is the case

for
� � �

� � �
� 
 (cf. Figure 4.1). Then � � � � � � � � � � � . But as

� � � �� � � � there exists no joint
�

which brings in at least that utility. Therefore � ) ����� � �� � � � � . In Figure 4.2 the same

situation is plotted, but with exponential utility. Here, there is always a least favorable decison
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function ������� (as defined in (2.12), in the example it is �
� �

). It brings in the smallest expected

utility for all strategies
�

.
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Figure 4.1: The writer’s expected logarithmic utility as a function of her strategy, plotted for the four

different random payoffs � � .
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Figure 4.2: Same situation as in Figure 4.1, but with expected exponential utility ( ����� ). � �
� �

is least

favorable for every strategy ���
	 (cf. (A.1)).
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4.3 American style contingent claims

An American contingent claim is a financial instrument modeled by an �  	 � 	� � ��� ��� -adapted pro-

cess � " 	�� 	� � ��� � � . If he exercises the claim at time � he gets a payoff with discounted value " 	 . We

assume a deterministic riskless interest rate � � 	�� 	��� ��� ��� . Then, it makes no difference whether he

is paid off at time � or at time � with interest. So, in our model we can assume that the paying

off takes place at time � (but of course the amount is known at the exercise time � ). Here, the

claim can only be exercised at  � �$� % � � % � � � % �
�
� � .

Definition 4.3.1. Let � be the set of stopping times resp. �  	 � 	� � ��� ��� with values in 	 � � � � � "��
�
 .

In the framework of complete financial markets American contingent claims have - due to

a superhedging opportunity (for a proof in continuous time cf. Karatzas (Kar88)) - a unique

no-arbitrage price. In the presence of constraints on portfolios, Karatzas and Kou (KK98) give

intervals of no-arbitrage prices.

Example 4.3.2 (Surrender option in unit-linked life insurance contract). Consider a pure

endowment life insurance contract that is linked to an equity index � 	 � � �	 � 	� � ��� ��� . At time �
the amount � � � 	 	 � � �� " �  is paid contingent on survival of the policy-holder. Let � � be the

remaining lifetime of the insured at time  . Then " � � � � � � ) � � � � � 	 	 � � �� " �  	
� �

� ������ � � . But, the policy holder has the right to terminate the contract at � � "$� � "
� � � "$�

�
� � . Then

he gets a payoff depending on 	 � � �	 � and �
�

that is predefined in the contract. So, " 	 � � � � � )
�$� � � 	 � � �	 "��$� � �

� �
��� �

� �
. Notice that, if the policy-holder dies before the payoff time � , his following

decision would be irrelevant as the payoff is then always  .

Grosen and Jørgensen (GJ97) describe the practical importance of this example and price

such contracts in the context of complete financial markets, not considering mortality risk (as

in Example 4.3.2).

Analogous to Definition 2.3 we define :

Definition 4.3.3. We call � a “still fair premium” if

� ���� � � � � �"!"!"! � � � � � ���� � � � ������ �� � � � � � � " � � � �� � �	 �
	 	 � � � ���� �� �
� � � � �� � 	 � 	 	 � " (3.1)
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where

� �	 � ��� � �
�� � � 	$� ��� � � � � � ��� "�

� 	$� ��� � � ) � � ��� and � � ��� � �
�
"

(3.2)

and � � � is his stopping time.

The interpretation is as follows : until the exercise time � � ��� she does only know that � � ��� )
� and therefore she has to choose a strategy

�
independently of � that comes into effect till � � ��� .

From � � ��� on she can choose a strategy depending on � � ��� (the information she has). Define

for  � � �&% � � % � � � % �
�
� � recursively :

������� � �
�
� � �

�
" (3.3)

������� � �
�
� � � � �

�� � �
�
� � � � � � � � � "������� � �

�
� � otherwise "

(3.4)

where

� � � � �

���

� � � � � � � � � ���� ��

 � � ��� � � �&( � �	 � � � � 	 �
	 	 � �  	 � � � �

� � ��� � ���� ��

 � � ��� � � ( � " � �	��
 � 	 � � � � �	 � � � � 	 �
	 	 ��� �  	 � � � � � �

Theorem 4.3.4. Assume that for every �&� � there exists a unique utility-indifference premium� � for the claim " � , i.e. � � solves equation (1.1) with � � " � , and let � solve (3.1). Then we

have

(a) � � ����� �  � � � and

(b) if in addition one of the conditions (i), (ii), (iii) of Theorem 4.2.9 with "�	 � instead of �

�
is

satisfied and " is bounded, we have � ������� �  � � � .
Proof. Part (a) is analog to the proof of Theorem 4.2.8. In part (b), case (i) is evident and (ii) is

standard (cf. e.g. Elliott and Kopp (EK99)). So, we restrict ourselves to case (iii).

Recall the proof of Theorem 4.2.9(iii): there was only one decision time � and – roughly

speaking – it was based on the fact that at time � the claim � � �	��
 is less favorable for her than

each other � � , in the sense of (A.1). Now, the payoff " � �	��
 � 	�� � is least favorable, but necessarily

only at � � . But as until � a joint strategy
�

comes into effect, we cannot argue as simple as in
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the proof of Theorem 4.2.9. But we know that at � � " � �	��
 � 	 � � is less favorable than all " � with

��� � � , etc. (cf. Lemma A3.3). So, we can argue successively till �
�
� � :

For every � )  , we take strategies
� � � � " � � � " � �

�
� that are “ � -optimal” for " � �	��
 � 	 � � " � � � "" � �	��
 � 	 � � and let them come into effect (depending on �&� � ) on the stochastic intervals

�� " � � � � ��" ��� � � � " � � � � ��" � � � ��� � �
�
� � " ����"

where � � " � � � � � . Each time the approximation error is smaller than � , uniformly in � � � (cf.

Lemma A3.6). With that and by applying Lemma A3.3, we obtain

������� �� � � � � � � " � �	��
 � 	�� � � � �� #� 	 � 	 	 �
� !�� ��! �� ������� �� � � � � � � � � ��� � � � ��" � � � ��� ) � � ��" � �	��
 � 	 � � 	 � � �� #� 	 �
	 	 �
� !�� ��! �� ������� �� � � � � � � � � ��� � � � ��" � � � ��� ) � � ��" � �	��
 � 	 � � 	 � � � � 	 �

�
� � � �	 �
	 	

� � �� � 	 � #� 	 � 	 	 � � �
� !�� ��! �� ������� �� � � � � � � � � ��� � � � ��" � � � ��� ) � � ��" � �	��
 � 	 � � 	 � � � � 	 �

�
� � � �	 �
	 	

� � �� � 	 � #� 	 � 	 	 � � �
� !�� ��! �� ������� �� � � � � � � � � ��� � � � ��" � � � ��� ) � � ��" � �	��
 � 	 � � 	 � � � � 	 �

�
� � � �	 �
	 	

� � � � 	 �
� � 	 � � � � �	 �
	 	 � � �� � 	 �

#� 	 � 	 	 � �  �
...� ������� �� � � � � � � " � � � � � 	 �

�
� � � �	 �
	 	 � � � � 	 �

� � 	 � � � � �	 �
	 	
� � � � � � �

� � 	 � � � � �
�
�	 �
	 	 � � ��

#� 	 � 	 	 � � � � �
By setting

�� 	 � � �
�
�	 " if �

�
� � % � � �

�
,
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and taking the infimum over all � � � , we get

������ �� �
� � � � � " � �	��
 � 	�� � � � �� � 	 �
	 	 �� � ���� �� ������� �� � � � � � � " � � � �

�
�� 	 � 	 	 � � ��

#� 	 �
	 	 � � � �
� ������ �� � � ��  � � ����� �� � � � � � � " � � � �

�
� 	 �
	 	 � � ��

#� 	 �
	 	 � � � � �
As � can be choosen arbitrary small, this implies

� ���� �� �
� � � � � " � �	��
 � 	�� � � � �� � 	 �
	 	 �� � ���� �� � ���� �� ������� �� � � � � � � " � � � �

�
� 	 �
	 	 � � ��

#� 	 �
	 	 � � (3.5)

Putting (3.5) and Lemma A3.4 together yields

������ �� �
� � � � � " � �	��
 � 	�� � � � �� � 	 �
	 	 �� ������ �� � ����� �� ������ �� � � � � � � " � � � �

�
� 	 �
	 	 � � ��

#� 	 � 	 	 �� � ���� � � � � �"!"!"! � � � � � ���� � � � � ���� �� � � � � � � " � � � �� � �	 �
	 	 � "

and therefore, due to monotonicity of � and uniqueness of � � �	��
 � 	 � � , � � � � �	��
 � 	 � � . This com-

pletes the proof of Theorem 4.3.4.

Remark 4.3.5. (a) If the denominator in (3.6) below does not vanish with positive probabil-

ity, we can recursively define the “still fair conditional time �
�

premium”
� 	 � of the American

contingent claim :

� 	 � � " 	 � "
� 	 � � � � � � �

��� �� " 	 � � � " �( � �
� � � � ���� ��


 � 
 ����� � ( � � 	 � �  �	 � � � � 	 �
	 	 � � �  	 � � � �
� � � � ���� ��


 � 
 ����� � �&(  �	 � � � � 	 �
	 		� �  	 � � � �
� ��
�� " (3.6)

for  � � " � � � " � . If the financial market is complete � � 	 � � � � ���"!"!"! � � coincides with the Snell enve-

lope of the discrete process � " 	 ��� � � ���"!"!"! � � .
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(b) The denominator in (3.6) can vanish even if we assume the existence of an equivalent (lo-

cal) martingale measure, let 	 be locally bounded, and take the rather small set of strategies

� � , defined in (2.5). This shows the example in Lemma 3.8 of Schachermayer (Sch01b). But, if

we have in addition an equivalent local martingal measure with finite relative entropy it follows

from Theorem 1 in Delbaen et al. (DGR � 02) that the denominator in (3.6) is
�

-a.s. positive.

4.4 Conclusions

In this chapter, we have studied the following questions: can the possibility for the holder to

choose have a value in itself and how can the writer of a claim hedge simultaneously against

different risks related to different decision functions of the holder.

It turns out that in the case of exponential utility the utility-indifference premium which cov-

ers the claim related to the least favorable decision function is sufficient for all other decision

functions the holder could hypothetically take.

An important application is a unit-linked life insurance contract that can be terminated by

the policy-holder (cf. Example 4.3.2). Working with exponential utility, it would be reasonable

to define the payoff, the holder gets if he terminates the contract, as the current conditional

premium for the final payoff. Then, the optimal hedging strategies for all possible stopping

times coincide until the termination time.



Chapter 5

Game Contingent Claims in Complete and

Incomplete Markets

This chapter is an adapted version of Kühn (Küh01).

5.1 Introduction to game contingent claims

A game contingent claim (GCC) is a contract between a seller � and a buyer � which enables� to terminate it and � to exercise it at any time � � 	 �$� " � � � "$�
�
 up to a maturity date �����

�
when the contract is terminated anyway.

More precisely, let ����"  " � " �  	�� 	� � ��� � � � be a filtered probability space satisfying the usual

conditions of right-continuity and completeness, and let � � 	 ��� � � ���"!"!"! � � , ��� 	 ��� � � ���"!"!"! � � , � � 	 ��� � � ���"!"!"! � �
be sequences of real-valued random variables adapted to �  	 � � � � ���"!"!"! � � with � 	 � � � 	 � � � 	 �
for  �� #" � � � " � � � and � 	 � �

� 	 � �
� 	 � . If � terminates the contract at time �

�
before �

exercises then � should pay � the amount
� 	 � . The other way around, � should pay � only � 	 � .

If � terminates and � exercises at the same time, then � pays � the amount
� 	 � .

Definition 5.1.1. Let �
�
,  �  " � � � " � , be the sets of all stopping times resp. �  	 � 	� � ��� ��� with

values in 	 �
�
" � � � "��

�
 .

The above contract can be formulated as follows. If � selects a cancellation time � � � �

83
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and � selects an exercise time �&� � � , then � pledges to pay � at time � � � the amount

� � � " � � � �
�
� �	� % � � � � � � ��� % � � � � � � ��� � � � �

The frictionless financial market consists of � risky assets whose discounted price processes

are modeled by the � � -valued semimartingale 	 and one riskless asset with discounted price

process equal to � . We denote by � a suitable space of admissible trading strategies to be

specified later.

Example 5.1.2 (Israeli call option). An American style call option with strike price � where

also the seller can terminate the contract, but at the expense of a penalty � 	 ��� , i.e. � 	 � �
� 	 � � �	 � � � ��� ,

� 	 � � � 	 � � �	 � � � ��� � � 	 � , and
� 	 � � � 	 � � �	 � � � ��� � � 	 � �� .

Such a game version of an American option is safer for an investment company which

issues it, and so it can be sold cheaper than the corresponding American option. As pointed

out in Kifer (Kif00), essentially any contract in modern life presumes explicitly or implicitly

a cancellation option by each side which then has to pay some penalty, and so it is natural to

introduce a buyback option to contingent claims, as well. An example which has already been

traded on real markets is a Liquid Yield Option Note (LYON). It is discussed in McConnell

and Schwarz (MS86) - on a rather heuristical level without indicating a connection to a Dynkin

game.

In a complete market (i.e. � " � " � are replicable by trading in 	 ) one can solve our problem

without letting enter the agents’ preferences: � just wants to minimize

 � � � � � " � �$� whereas �

wants to maximize the same expression ( � is the unique equivalent martingale measure). Thus,

we have a zero-sum Dynkin stopping game. It is well-known that such a game has a unique

value, cf. Ohtsubo (Oht86). Kifer (Kif00) shows by hedging-arguments that this value is also

the unique no-arbitrage price of the GCC. In other words, the expectation of the (discounted)

payoff under the unique equivalent martingale measure is the variable to be maximized resp.

minimized, and this ensures consistency with the principle of no-arbitrage. Consequently, one

has to solve a classical Dynkin game.

In incomplete markets this argument fails because there is more than one equivalent martin-

gale measure. It is possible to superhedge the claim and get an interval of no-arbitrage prices,
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but then the feature of a stochastic game gets lost.

We suggest a utility maximization approach that takes trading possibilities explicitly into

consideration. This approach is very popular for valuating European style contingent claims

in the context of incomplete markets; see e.g. Hodges and Neuberger (HN89), Delbaen et

al. (DGR � 02), or Davis (Dav97). For American style contingent claims see Davis and Za-

riphopoulou (DZ95).

Let � � " � � � � �
� � be nondecreasing and concave; they are the utility functions of the

seller resp. the buyer. Each “player” chooses a stopping time � � � � (resp. � � � � ) and a

trading strategy
� � � , whose  -th component

�
�
	 ,  � � " � � � " � , represents the number of shares

of asset  held in the portfolio at time ��� �! "�� � . The seller wants to maximize


 � � � � � � � � � � � " � � � � �� � 	 �
	 	 ��� " (1.1)

while the buyer wants to maximize


 � � � � � � � � � � � " � � � � �� � 	 � 	 	 ��� � (1.2)

So, the agents are solely interested in terminal wealth. The rv �

�
�  � (  � ��"  ) is the exoge-

nous endowment of the  -th player. This randomness especially makes sense for the buyer, who

perhaps buys the claim to hedge against another risk in his portfolio.

In the whole chapter, the space � of admissible trading strategies has to satisfy the

Assumption 5.1.3. All elements of � are �  	 � -predictable and 	 -integrable. � is linear, and

for all �
�
� 	 � � " � � � "��

�
� �  , � �  	 � the following implication is valid:

If
� � � � " � � � � " � � � � � � , then the compound strategy

� 	 � �

����� ����
� � � �	 � � � �

�
"

� � � �	 � � ) �
�

and � � � "
� � � �	 � � ) �

�
and � �� � � (1.3)

is also an element of � .

The latter is essential as it allows a successive optimization, first over all stategies � � 	 � 	� � 	 � � ���
(fixing one strategy � � 	���	� � ��� 	 � � ), and then over all � � 	���	� � ��� 	 � � . So, it is a quite natural assumption.

But unfortunately, it is not as harmless as it looks like. For example, the set of all predictable
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trading strategies such that the discounted gain process  	� � � �
	�� is bounded from below (but

not necessarily from above) does obviously not satisfy Assumption 5.1.3.

A permissible choice of � is for example

� � �

� � � � 	 � ����

� 	
�

� � �
	�� is bounded uniformly in � and � � � (1.4)

� � is rather small, but in Delbaen et al. (DGR � 02) resp. Kabanov and Stricker (KS02a) it is

shown for exponential utility that under the assumption that 	 is locally bounded and admits an

equivalent local martingale measure with finite entropy the maximization problems (1.1) and

(1.2) with ��� � � have the same values as for much bigger � . Another permissible choice is

� � �

� � � � 	 � � � 	

�
� � �
	�� is a martingale w.r.t. a special set

�
of absolutely

continuous local martingale measures � �
Remark 5.1.4. Analogously to Kühn (Küh02), one can define from the seller’s point of view a

“still fair premium” for the GCC which coincides with the unique no-arbitrage price if the mar-

ket is complete. But the main aim of this chapter is not to determine a “premium” or “price” for

the claim, but rather to describe the “game”, defined above, that takes place after the premium

has been paid till maturity - and compare the situations of complete and incomplete markets.

Definition 5.1.5. We say that a pair � � � " � � � � � � 	 � � is a Nash (or a non-cooperative)

equilibrium point, if for all �	� " � � � � � 	 � �
� ���� ��


 � � � � � � � � � � � � " � � � � � �� � 	 �
	 	 � � � � ���� ��

 � � � � � � � � � � � " � � � � � �� � 	 �
	 	 ��� "

and

� ���� ��

 � � � � � � � � � �	� � " � � � � � �� � 	 �
	 	 � � � � ���� ��


 � � � � � � � � � �	� � " � � � � �� � 	 �
	 	 � � �
Remark 5.1.6. To simplify the notation and to stress the point that the interdependence between

the agents’ decisions only takes place through the stopping times and not through the trading

strategies, we have not explicitly taken the chosen trading strategies into the definition of a Nash

equilibrium. But of course, the outcome would be the same.
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Without a financial market, i.e. � � 	  � , we have a nonzero-sum extension of a Dynkin

game. This has been thoroughly investigated by many authors, firstly and independently of each

other by Ohtsubo (Oht87) and Morimoto (Mor86) for a discrete time space. Their results can be

directly transfered to our model (1.1)/(1.2), when ��� 	  � , and ensure the existence of equilib-

rium points. Nevertheless, the existence of a financial market makes things more complicated.

5.2 The case of exponential utility

In this section, we assume that both seller and buyer have an exponential utility function, i.e.

� � � 
 � � � ��� � � �  " (2.5)

� � � 
 � � � ��� � � �  " (2.6)

for some risk aversion parameters ( � " ( � )  . Now, we define stopping times � � � " � � � � � � 	 � �
that will turn out to be equilibrium points.

Define, for  � � � % � � % � � � % �
�
� � recursively (in reverse order of time):

� � � �
�
" �

�
� �

�
" (2.7)

� � � � � �
�� � �

�
� � � � � � � � � "� � � otherwise "

(2.8)

�
�
� � � �

�� � �
�
� � � � ���

�
� � "�

�
� otherwise "

(2.9)

where � � � � and �

�
� � have to satisfy

� � � � �

� � � � � � � � � ��� � ���� ��


 � � � � � � � 
 � � ��� � � � � � ��� � � � � ��� ��  	 � � � �� ��� � ������ ��

�� � � � � � � 
 � � � � � � � � ��� � � � � � � � � ��� � � � � � � ��  	 � � � � � " �

�
� � " (2.10)

and

�

�
� � �


� � � � � � � � � ��� � � ���� ��


 � � � � � � � 
 � � � � � � � � � ��� � � � � � � ��  	 � � � �� ��� � ������ ��

�� � � � � � � 
 � � � � � � � � � � � �	� � � � � � ��� � � � � � � ��  	 � � � � � " �

�
� �
�

(2.11)
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Remark 5.2.1. We have � � � � � �

�
� � � � (i.e. the players never stop at the same time) and the

system (2.10)/(2.11) has at least one solution.

Remark 5.2.2. Due to � 	 � � � � � 	 � � � , for the seller it would be better that the buyer would

stop the game as if he did it himself (and vice versa). This tends to result in a negative attitude

towards stopping.

Theorem 5.2.3. Let � � , � � be the exponential utility functions (2.5) resp. (2.6), �
	 � " � 	 � �
� � ����"  " � � ,  %�  #" � � � " � , and


 � � � � � � � � � �� � � � �	 �
	 	 � � ) ����" (2.12)

resp.


 � � � � � � � � � �� � � � �	 �
	 	 � � ) ����" (2.13)

for some strategies
� � � � " � � � � � � . Then, each pair �	� � " � � � � � � 	 � � satisfying (2.7)-(2.11) is

a Nash equilibrium in the sense of Definition 5.1.5.

Proof. Let � � � � � � ���"!"!"! � � and ���
�
�
�
� ���"!"!"! � � satisfy (2.7)-(2.11). To proof the optimality of � � (for

� � the argumentation is analogous and therefore omitted) it is sufficient to show that for all

 �  #" � � � " � and � � � � � -a.s.

� ��� � � �� ��

�� � � � � � � 
 � � � � � � � � ��� � � � � � � ��� � � � � � � �  	 � � � � ��� � � �� ��


�� � � � � � � 
 � � � � � � � � � � � � � � � ��� � � � � � � �  	 � � �
This is done by backward induction: for  � � we have � � �

�
� � � .  ��  � � : for all � �  	 � � �
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we have by definition of �
�
� � and � � � ��

�

� ��� � � �� ��

 � � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � ��  	 � � � � � �

�
�

� � 	 � � � � � 	 � � � � � ��� � ���� ��

 � � � � � � � 
 � � � � � � � � � � � � � � ��� � � � � � � ��  	 � � � � � �

� �
� � 	 � � � � � 	 � � � � � � �

 ��� � ������ ��

�� � � � � � � 
 � � � � � � � � �	� � � � � � ��� � � � � � � ��  	 � � � � "

��� � ������ ��

�� � � � � � � 
 � � � � � � � � ��� � � � � � � � � ��� � � � � � � ��  	 � � � � � � �� �

� � 	 � � � � � 	 � � � � ��� � ������ ��

 � � � � � � � 
 � � � � � � � � � � � � � � � ��� � � � � � � ��  	 � � � � � � (2.14)

� �
� � 	 � � � � � 	 � � � � � 	

�
� 	 � � � � � ��� � � �� ��


 � � � � � � � 
 � � � � � � � � � � � � � � ��� � � � � � � ��  	 � � � � � �

� �
� � 	 � � � � � 	 � � � � � 	

�
� 	 � � � � � ��� � � �� ��


 � � � � � � � 
 � � � � � � � � � � � � � � � � � � ��� � � � � � � ��  	 � � � � � � �

Furthermore, due to (2.12) and as
� � � � " � � � is bounded, we can apply Theorem A4.2 and obtain

��� � ������ ��

�� � � � � � � 
 � � � � � � � � � � � � � � � � � � ��� � � � � � � ��  	 � � � � (2.15)

� ��� � ������ ����

 � � � � � � �	� � � � � � � � � � � � � � � ��� � ����� ��


 � � � � � � � 
 � � � � � � � � ��� � �	� � � � ��� �� � � � � � �  	 � � ��
 	 � � � �

�
-a.s., where

� � �

� � � ����


�� � � � � � � 
 � � � � � � � � � ��� � � � � � � ��  	 � � � � % � �
-a.s. � �

We can now apply the induction assumption for � �#� � � � � � � � to the last expression in (2.14).

Then, we again make use of (2.15) for � � instead of � � . Finally, we obtain as � 	 � � � � � 	 � � � that

�
�

��� � � ���� ��

 � � � � � � � 
 � � � � � � � � � � � � � � � �	� � � � � � ��� � � � � � � ��  	 � � � � � �

� �
�

��� � ������ ��

 � � � � � � � 
 � � � � � � � � � � � � ��� � � � � � ��� � � � � � � ��  	 � � � � � � �
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Remark 5.2.4. We want to construct an example for which no Nash equilibrium exists. We take

logarithmic utility functions, i.e. �
�
� ����� (i=1,2), and a discrete two-period binomial model.

There are a riskless bond with value identical to � , a tradeable risky asset with 	 ��� � and

	 � � 	 � �
�� � � � with probability ��� 
 � with probability ��� 

(so trading in the second period can be ignored and the trading strategy consists of the number
� � � of risky assets held in the first period), and another random source

�
, stochastically

independent of 	 , with

� �
�� � � � � � � � with probability ����
 � with probability ����

� � � � � � �
is the final payoff. If � cancels at time � before � he has to pay a constant

amount
�
� � � and vice versa � gets the smaller constant payoff � � �  ��� (stopping at time  

is excluded by prohibitive disadvantageous payoffs). � has initial capital � � �
�

whereas � has

the random endowment � � � �  � � �  � �
.

At time � , having the information 	 � , both players can decide whether to stop or not. As

	 � can take two different values, each player can choose between four possible stopping times,

symbolized by 	 � � � " � � � " � � � " � � �  resp. 	 � � � "�� � � "�� � � "�� � �  (where “  � ” means: stopping at time

 if 	 � � �
and at time

�
if 	 � �  ).

The example is constructed in such a way that no stopping-strategy �

�
	
,  $" � � � "  can be

part of an equilibrium: given �

�
	
, there are uniquely determined optimal responses �

�
� 	 �

and �

�
� � 	 � �

.

And, we always have �

�
	 �� �

�
� � 	 � � , indeed:

� � � � � � � � �
� � " � � � � � � � � �

� � " � � � � � � � � �
� � " � � � � � � � � �

� � �

Remark 5.2.5. Why does Theorem 5.2.3 fail in Remark 5.2.4 ?

The exponential utility function has for every initial capital 
 � � the same risk aversion

( � � ��� � � 
 �	� ��� � 
 � . Therefore, for each player there exists - given the “state of the world” at

time � (here: 	 � � �
resp. 	 � �  ) and the chosen stopping decision of the other player - an

optimal stopping decision that is independent of the capital
� � 	 � � 	 � � gained until � , and thus

independent of his trading strategy
� � � . As a consequence, the optimal stopping decision for
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one “state of the world” does not depend on things that happen on other “states of the world”.

That is in contrast to other utility functions: due to the varying risk aversion the interdependence

arises through the choice of
�

.

To construct a Nash equilibrium for exponential utility let (for example) the seller determine

his optimal cancellation strategy assuming that the buyer never stops. Then, on the set � � where

the seller cancels the optimal responding buyer does not terminate (as
�
�
� �

� ). Here the

seller’s hypothesis is self-fulfilling. On the set � " � � where the seller does not cancel the

optimal responding buyer can terminate (cross the seller’s hypothesis), but as
�
� � � � this

does not motivate the seller to change his initial strategy and to stop on this set, as well. As

for the exponential utility the optimal decision for one “state of the world” does not depend

on things that happen on other “states of the world”, this “state-wise” argumentation is valid.

Therefore, the seller need not change his stopping strategy at all and we have an equilibrium.

For over utility function this “state-wise” argumentation fails and the seller could change his

stopping-stategy on another state where his hypothesis was actually right. This is visible in

Remark 5.2.4:

� � � � �
� � � � � � � �

� � �

5.3 The case of a complete market

If the financial market is complete, i.e. there exists a unique equivalent martingale measure � ,

we get for general utility functions a result similar to Theorem 5.2.3. In addition, the values

of the game for seller and buyer are unique. So, we have a similar property as in a zero-sum

stopping game.

We can define a corresponding zero-sum stopping game which has the unique value � �
� ��� �����

�
�� � � ����  � �


 � � � �	� " � ��� � ������ �� � ������
 � �


 � � � �	� " � ��� � (3.1)

Analogously to Kifer (Kif00), it turns out that �	� � " � � ��� � � 	 � � , defined as in (2.7)-(2.11), but

taking

� � � � � � � 	 � � � � 
 � � � � � � " � � � ��  	 � � �  � " (3.2)
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and

�

�
� � � ��� 	 � � � � 
 � � � � � � " � � � ��  	 � � �  � " (3.3)

is a saddlepoint of (3.1).

Lemma 5.3.1. Let � � � � with
� � 	 �  , let � be a utility function,

� � ��� � ��"  " � � , and

� �  � , then we have

� ���� ��

 � � � � ��� � � � ��

� 	 �
	 	 � � � ������ ��

�� � � � � � 
 � � � � � � ��

� 	 �
	 	 ��� �
Proof. Due to the completeness (cf. e.g. Jacka (Jac92)),

�
can be represented by a constant

plus a stochastic integral, i.e. there exists a
�� � � such that

�
-a.s.

� � 
 � � � � � � � ��� ���
�� 	 �
	 	�"

and due to the linearity of � , the mapping
� #� � � ��

is a bijection of � into itself.

Theorem 5.3.2. Let � 	 � " � 	 �%� ��� � ��"  " � � , i=0,
� � �

,k, and � � � � with
� � 	 �  . Then

(i) the pair �	� � " � � � according to (3.2)/(3.3) is a Nash equilibrium in the sense of Definition

5.1.5, and

(ii) if in addition

� � % � ���� ��

 � � � � � � � � � � � � �� � 	 �
	 	 � � % � � � � � " (3.4)

and

� � % � ���� ��

 � � � � � � � � � � � � �� � 	 �
	 	 � � % � � � � � " (3.5)

then all other Nash equilibria � � � " � � � have the same pair of values, i.e.

� ���� ��

 � � � � � � � � � � � � " � � � � � �� � 	 �
	 	 � � ��� ���� ��


 � � � � � � � � � � � � " � � � � � �� � 	 �
	 	 � � "

and

� ���� ��

 � � � � � � � � � �	� � " � � � � � �� � 	 �
	 	 � � �������� ��


�� � � � � � � � � � � � " � � � � � �� � 	 �
	 	 � � �
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Proof. (i) follows immediately from the respective assertions for the zero-sum game (3.1) and

Lemma 5.3.1. For (ii) one needs in addition the fact that the mappings#� � � � � � � � 	�� � �" 
 #� � ���� ��

 � � � � � � � � 
 � � �� � 	 �
	 	 ��� "  � � "  "

satisfy
#� � � 
 � % # � � � � � � � , for 
�%�� � � , resp.

#� � � 
 � % #� � � � � � , for 
 % � � . So �	� � " � � � is an

equilibrium for (1.1)/(1.2) if and only if it is an equilibrium for (3.1).

This strict monotonicity can be derived as follows: the monotonicity and concavity of �
�
im-

ply the respective properties of
#� � (for the latter implication one makes use of the fact that a con-

vex combination of admissible strategies is again an admissible strategy). By
# � � � � � � � ) ���

resp.
#� � � � � � )���� and dominated convergence we conclude that

#� � ��� � � �
�
� � � . Therefore,

(3.4) resp. (3.5) implies the required strict monotonicity.

Remark 5.3.3. The uniqueness of the values is due to the fact that in the complete market

there is never an incentive for both players to stop. Only if both � and � are indifferent, i.e.

on 	 � 	 � � � � 
 � � � �	� � " � � � �  	 � � �  � � 	 � � �� the behaviour can be different for different Nash

equilibria, but that has no influence on the expected utility.

So, we have a characteristic of a zero-sum game. In a certain sense, this gives a different

argument for Kifer’s approach in (Kif00).
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Appendix

A1 Some auxiliary results

Lemma A1.1. Let � � � 
 � � � be semi-continuous from below, (component-wise) monotone,

and bounded, and let � ,
�

be distribution functions on � 
 . Denote by �

�
and

�
�
, resp., the  th

marginal distribution function of � and
�

, resp. Suppose that

� � � 
 � � � �
� � 
 � � " � 
 � � � "

and for  �  " � � � "��
�

�
� 
 � � 
 � " � � � "�


�
� � � �

�
�
� 
 � � 
 � " � � � "�


�
� � � " � 
 � " � � � "�


�
� � �

Then

�
� � � � 
 � " � � � "�
 
 ��� � ��
 � " � � � " ��
 
 � �

�
� � � � 
 � " � � � "�
 
 � � � ��
 � " � � � " ��
 
 � �

Proof. Step 1: For � � � we have due to the semi-continuity of � from below that � � 
 � � ) ���
 � ) � � � �$� , where � � is the generalized inverse of � defined as � � � �$� � � � � ��	�
 � � � � � 
 � )
�  . Therefore we obtain

�
� � � 
 � ��� � ��
 � � �

�
� � � � � � � � � � �$�$� � � "

and the assertion holds for � � � .
Step 2: Rewrite the intregral over � 
 as iterated integrals over � with respect to the condi-
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tional marginal distribution functions. Then, by using step 1, we can estimate iteratively:�
� � � � 
 � " � � � "�
 
 ��� � ��
 � " � � � " ��
 
 �
�
�
� � � �

�
� � � 
 � " � � � "�
 
 ��� 
 � ��
 
 � 
 � " � � � "�
 
�� � � � � � � � � ��
 � �step �� �

� � � �
�
� � � 
 � " � � � "�
 
 � � 
 � ��
 
 � 
 � " � � � "�
 
 � � � � � � � � � ��
 � �...

step �� �
� � � �

�
� � � 
 � " � � � "�
 
 � � 
 � ��
 
 � 
 � " � � � "�
 
 � � � � � �$� � � ��
 � �

�
�
� � � � 
 � " � � � "�
 
 � � � ��
 � " � � � " ��
 
 � �

Lemma A1.2. Let � �
�
�
�
�� be a sequence of positive real numbers with

� �
�
� � �

�
� � , � )  ,

and � � � � �  � a sequence of events with
� � � � � � � � � � � " � � � " �

�
��� � � ,

�
-a.s. for all � � � .

Then
� �
�
� � �

� � � � � � � � ,
�

-a.s.

Proof. Define
� 
 � � � 


�
� � �

� � � � � � and
#� 
 � � � 


�
� � �

� � � #� � � , where �
#� � � � �� is an i.i.d.

sequence with
� �

#� � � ��� . By Kolmogorov’s “three-series theorem”, cf. e.g. Theorem IX.9.3

in Feller (Fel71),
#� 
 � � for � � � ,

�
-a.s.. Forthermore, we obtain for each � � � and� � � � by Lemma A1.1, applied to � � 
 � " � � � "�
 
 � � � � � 


�
� � �

�


�
) � � , that

� �
#� 
 ) � � �

� � � 
 ) � � . Thus
� 
 � � in probability and due to monotonicity also almost-surely.

A2 Some results from stochastic calculus

In this part of the appendix we state some auxiliary results from stochastic calculus. Firstly, we

consider the � -supermartingale property in terms of semimartingale characteristics. Secondly,

we turn to the � � -norm of semimartingales.

Definition A2.1. Let
�

be a � � -valued semimartingale with characteristics � � " � "��#� relative

to some truncation function � ��� � � � � . By JS, II.2.9 there exists some predictable process� � � ���� � , some predictable � � � � -valued process � , whose values are non-negative, symmetric

matrices, and some transition kernel � from � � 	 � � " � � into � � � "�� � � such that

� � 	 � � 	 � � 	 " � ��	 ��� 	 � � 	 " � � � � " ��
 � � � � � " ��
 � � � 	 �
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We call � � " � "�� " � � differential characteristics of
�

.

Remark A2.2. Usually, in the stochastic analysis, a semimartingale is associated with a triplet

of predictable characteristics � � "�� "�� � . However, for various purposes it seems reasonable to

desintegrate the chosen characteristics, cf. Kabanov (Kab97).

One should observe that the differential characteristics are not unique: E.g. �  � "  � "  � " �� ���
yields another version. Typical choices for � are ��	 � � � (e.g. for Lévy processes, diffusions,

Itô processes etc.) and � 	 � � � � ��	 � � 	 	 � � ��� � (discrete-time processes). Especially for ��	
� � ,
one can interpret � 	 or rather � 	 �  � 
�� � � 
 ����� 	$� ��
 � as a drift rate, � 	 as a diffusion co-

efficient, and � 	 as a local jump measure. As the following result shows, a non-positive or

vanishing drift corresponds to a � -supermartingale or � -martingale, respectively. These pro-

cesses play an important role in the context of fundamental theorems of asset pricing (cf. Del-

baen and Schachermayer (DS98), Kabanov (Kab97), Cherny and Shiryaev (CS01)). For back-

ground on � -localization and the related classes of processes we refer the reader to Goll and

Kallsen (GK01).

Lemma A2.3. Let
�

be a semimartingale in � � with differential characteristics � � " � "�� " � � .
Fix  � 	 � " � � � " �  . Then

�
�

is a � -supermartingale iff  � 

�
� �

�
� 
 � � � � ��
 � % � and

�

�
� � � 


�
� �

�
� 
 ����� � ��
 � �  � � � ��� � a.e.

If we replace
�  with �  or �  , we obtain corresponding statements for � -martingales and� -submartingales, respectively.

Proof. We use the notation of Goll and Kallsen (GK01), Section 7 (henceforth GK).

� : This is shown in the first part of the proof of GK, Proposition 7.9.
� : From JS, II.2.29, II.2.13, I.3.10 it follows that

�
is a local supermartingale if we have,

in addition,  � 

�
� �

�
� 
 � � � � ��
 ��� � � ��� , i.e. if

� ��� ��� � . Since
� ���

�
(cf. GK, Lemma 7.6),�

belongs to the � -localized class of the set of local supermartingales, which coincides with

the set of � -supermartingales (cf. GK, Lemma 7.4).

In the proof of Theorem 3.3.2 we make use of the � � -norm in the sense of Emery (Eme78),

Protter (Pro77), (Pro78), (Pro92), Dellacherie and Meyer (DM82). Note that we treat the value
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� � differently from e.g. Dellacherie and Meyer (DM82) because we use the conventions of JS

as far as starting values of � � " � � , � � etc. are concerned.

Definition A2.4. For any real-valued semimartingale
�

we define

� � �
	 � � � �����
 
 � � � � � ��� ��� � � � � �

�
� � " � � � � �� � � � � � � � with

� ��� ��� � " � ��� � "
where � ��� � � � denotes the variation process of � . By � � we denote the set of all real-valued

semimartingales
�

with � � � 	 � % � .

Proposition A2.5. Let
�

be a non-negative semimartingale. Then � 	�� � � � � � � ��� � .

Proof. This is shown by applying the Itô-Meyer formula to
� � � � � � �  � . Indeed, since� � �  , Jacod (Jac79), (5.49) yields that

 � � � � 	�� � � � � � � � � � � �
�
	 � � � � 	�� � � � � � � 	�"

where � � denotes the local time of
�

in 0 in the sense of Jacod (Jac79), (5.47). Since � � is

increasing and � � �  on 	 � � �  � , it follows that � 	�� � � � � � � is increasing as well.

Proposition A2.6. Let � " � " � be real-valued semimartingales with � �*� ���
and such that

� 	 � � � � � � � � is a � -submartingale and � 	�� � � � � � � � is a � -supermartingale. Then

� � � 	 � � � � � � � 	 � � � � � 	 � �
for some � � � � which is independent of � " � " � .

Proof. In this proof, we write � �� � ������� 	��� � � � 	 � for any semimartingale � and � ��� � � � for the

variation process of any � ��� .

Step 1: W.l.o.g. � " � are special because otherwise � � � 	 � � � or � � �
	 � � � (cf. JS,

I.4.23). By Kallsen (Kal02), Proposition 3.7,
�

is special as well. Denote by
� � � � � � � �� � ,

� � � � � � � � � � , � � � � � � � � � � the canonical decompositions of the special

semimartingales
� " � " � into a local martingale and a process of finite variation, respectively.

Step 2: By JS, I.3.13, there exist predictable processes
� � " � � " � �

such that � � � � � � � ,� � � � � � � , � � � � � � � , where � � ��� ��� � � � � �	� ��� � � � � �
� ��� � � � ����� � is predictable.
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Since �
	 � � � � � � � � � �	 � � � � � � � � � � � �
	 � � � � � � � � � ��� is a � -submartingale, we have

that
� � �  � � � � � -almost everywhere on 	 � � % �

�  . Similarly, it follows that
� � �  

� ��� � � -almost everywhere on 	 � � %
�

�  . Proposition A2.5 yields that

� 	 � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � �$� � � � � 	 � � � � � � � � � � � ����� � �
From JS, I.3.17 and the uniqueness of the special semimartingale decomposition it follows that

� � 	 � � � � � � � � � � � � �$� � � � � � , which implies that
� � � � � � � � ��� -almost everywhere

on 	 � � �
�
�  . Similarly, we have

� � � � � � � � ��� -almost everywhere on 	 � � �
�

�  .Altogether, it follows that
� � � ��� � � � � � � � � � � � � � � -almost everywhere. Consequently, we

have

� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � ��� � � � � �
Step 3: Since

� � � � � � � � � � � � � � � � � ��� � � � � ��� � � � � � � � �

and
� � � � � � � � � � � � � � � � � "

we have that

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

and hence by Step 2

� � �
��
� � � � � � � � � � �  � ��� � � � � � �  � ��� � � � � � � � � �

�� � � � �
��
�

By the Burkhölder-Davis-Gundy inequality (cf. Jacod (Jac79), (2.34)), it follows that there

exists some constant � � �  such that

 � � � �

�� � � � � 
 � � � � � " � � � � � and likewise for
�

. By

(DM82), VII.98, there exists some constant � � � � such that


 � � � � � � � ��� � � � � � �
�
� � � " � � � � �

� � � � � � 	 �
and likewise for

�
. Together, it follows that


 � � � � �� � � � � � � � � � � 	 � � � � � 	 � � .
Step 4: From Step 2 we conclude that

� � � � � � ��� � � � � � � � � � ��� ��� � � � � � � � � � ��� ��� � � � � "
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which implies that


 � � � � � ��� ��� � � � � � � � � � � � � � 	 � � � � � 	 � � �
By the Burkhölder-Davis-Gundy inequality (cf. Jacod (Jac79), (2.34)), there exists some con-

stant ��� � � such that

 �

�
� � � " � � � � �

� � � 
 � � � � �� � �
Altogether, it follows that

� � � 	 � � 
 � � � � � � � ��� � � � � � �
�
� � � " � � � � �

� � � � � � � � � � � � � � � � 	 � � � � � 	 � � �
Proposition A2.7. Let

�
be an adapted real-valued process and � � 
 � 
  � an increasing se-

quence of stopping times such that
� � � is a semimartingale for any � � � . If we have

� ��� 
 �� � � � � � 	 � % � , then
� � � is a semimartingale, where � � � � � ��� 
 �� � 
 .

Proof. It is easy to see that � � � � � 
 �� is a Cauchy sequence in � � . Due to completeness (cf.

Dellacherie and Meyer (DM82), VII.98) there is a limit in � � which coincides with
�

on the

set �  #"�� � � .
A3 Auxiliary results for the proof of Theorems 4.2.9 and 4.3.4

Lemma A3.1. Let
%

be an
 � -measurable random variable and � the expected exponential

utility function, defined in Chapter 4 Equation (2.10). If ����� � �� � � % � �

�
�  �� � 	 �
	 	 � )

� � for  %� � " � � � " � then we have for all � � �

������ �� �
� % � � � �	��
 � � �� � 	 �
	 	 � � � ���� �� �

� % � � ��� � �� � 	 �
	 	 � " (A.1)

where ������� is defined in Chapter 4 Equation (2.12).

Proof. Let us first show that infimum and integral can be interchanged, i.e.

������ ��

�� � ��� � � ( � � % � � � �

� �
�

� 	 �
	 	 ��� �
� 
 � � � � � 	 � ��� � ���� ��


 � � ����� � ( �
� � �

� �
�

� 	 �
	 	 � � �  � � � � (A.2)
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General properties of the essential infimum (cf. e.g. Karatzas and Shreve (KS98)) guarantee that

there exists a sequence � � 
 � 
  � of admissible strategies such that

� � �
 ��

 � � ��� � � ( �

� � �
� �
�

� 
	 � 	 	 ��� �  � � � � � � � ���� ��

 � � ��� � � ( �

� � �
� �
�

� 	 �
	 	 � � �  � � �
For two strategies

� � � � " � � � � � � define

� � � �	 �

����� ����
� � � ) � � � � � �	 � 
 � 
 ��� � � ( �

� � �  �� � � � �� � 	 � � � �  � �� 
 � 
 ��� � � ( �
� � �  �� � � � �� � 	 � � � �  � � "

� � � ) � � � � � �	 � otherwise
�

We have
� � � � � � ,


�� � ��� � � ( � � � � � �� � � � �	 �
	 	 � � �  � �
� � � �

 
 � � ����� � ( �
� � �

� �
�

� � � �	 �
	 	 ��� �  � � " 
 � � ��� � � ( �
� � �

� �
�

� � � �	 �
	 	 ��� �  � � �
and therefore inf-stability. Hence, there exists a sequence � � 
 � 
 �� � � such that

� � � 	 
 � � ��� � � ( �
� � �

� �
�

� 
	 � 	 	 ��� �  � �
� � � � 	 � � � � ���� ��


 � � ����� � ( � � � � � �� � 	 �
	 	 � � �  � � " � � ��" (A.3)

and the left-hand side is dominated by the integrable random variable

� � � 	 
�� 
 ��� � � ( � � � �  �� � �	 �
	 		� � �  � � . So, (A.2) holds due to the dominated convergence

theorem. The result follows immediately from the definition of � and the fact that for all � � �

� ��� � � �� ��

�� � ��� � � ( �

� � �	��
 �
� �
�

� 	 � 	 	 � � �  � � � ��� � ������ ��

�� � ��� � � ( �

� � �
� �
�

� 	 �
	 	 � � �  � � �
Lemma A3.2. Let

� � � � � be a monotone utility function and � ��� � � 
�� � � ��� � � . If

� ��� � � � � � �"!"!"! � � � � �� � ��� ����� � �� � � � � � � � � �  �� �
�	 �
	 		� ) � � then

� ���� �� ������  �
� ����� �� � � � � � � � � � � �

�
� 	 �
	 	 � � ��

#� 	 � 	 	 �
� � ���� � � � � �"!"!"! � � � ���� � ��� � ���� �� � � � � � � � ��� � ��

� �	 �
	 	 � "

where
�
� is defined in Chapter 4 Equation (2.4).
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Proof. Let us show that

� ���� �� � � �� ��
������� �� 
 � � � � � � � � � ��� � �

�
� 	 �
	 	 � � ��

#� 	 �
	 	 � �
� � ���� �� � � �� ��


 �
� � ��� � ����� �� 
 � � � � � � � � � � � � �

�
� 	 � 	 	 � � ��

#� 	 �
	 	 � �  � � 
� � ���� �� � � �� ��


 �
� � ��� � ����� ��

�
� �
� �
� � � �  � 
 � � � � � � � � �

�
� � �

�
� 	 �
	 	 � � ��

#� 	 � 	 	 � �  � � 
� � ���� �� � � �� ��


 �
� �
� �
� �
� � � �  � ��� � � ����� �� 
 � � � � � � � � �

�
� � �

�
� 	 �
	 	 � � ��

#� 	 � 	 	 � �  � � 
� � ���� ��


 �
�
� ���
�
� � �"!"!"! �

� � ��� ������ � �� 
 � � � � � � � � �

�
� � �

�
� 	 �
	 	 � � ��

#� 	 � 	 	 � �  � � 
� � ���� �� ������ � � �"!"!"! � � � ���� � 
 � � � � ��

� � �"!"!"! �
� 
 � � � � � � � � �

�
� � �

�
� 	 �
	 	 � � ��

�
� 	 �
	 	 � �  � � �

� ������ � � � � �"!"!"! � � � � �� � ��� ������  � 
��
� �
� �
� �

� � ���  �� � � � � � � �

�
� � �

�
� 	 �
	 	 � � ��

�
� 	 �
	 	 �  (A.4)

The first equality holds by a similar argument leading to (A.2), the third by Assumption 4.2.4.

For the fourth equality, we use the fact that the infimum is attained in

��� ��� � � � �
�
� � �"!"!"! �

� � ��� � � ����� �� 
 � � � � � � � � �

�
� � �

�
� 	 �
	 	 � � ��

#� 	 � 	 	 � �  � � � �
The crucial fifth equality in (A.4) holds by the dominated convergence theorem and the ar-

gument leading to (A.3). In addition, we use the obvious fact that for sequences of random

variables � %
�

 � 
 �� if

% �
 � % �
as � � � for  � ��" � � � " � then also � ��� 	 % �
 " � � � " %

�

  �

� � � 	 % � " � � � " %
�
 as � � � .

Lemma A3.3. Let
#�&� � , � �  �� , % be an

 �� -measurable random variable and � the expected

exponential utility function (2.10). If � ��� � �� � � % � " � �  ��� � 	 �
	 	 � ) � � for  �  #" � � � " � ,

then we have for all �&� � with ��� #� :

� ���� �� �
� % � " � �	��
 � �� � � � � " � ��� 	 � � � ��� � 	 �
	 	 � � � ���� �� �

� % � " � � � ��� � 	 �
	 	 � "

where ������� is defined in Chapter 4, (3.3)/(3.4).
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Proof. Using (A.2) it remains to show that for all ��� #�
� ��� � � �� ��


 � � ��� � � ( � " � �	��
 � �� � � � ��� � 	 �
	 	 � � �  �� �
� � ��� � � �� ��


 � � ��� � � ( � " � � � ��� � 	 �
	 	 ��� �  �� � � (A.5)

In addition, it is sufficient to proof (A.5) for deterministic stopping times
# � � �

�
. This is done

by induction (in reverse order of time): for  � � we have � � �
�
� � ������� �

�
� .  �  � � : for all� �  	 � � � we have per definition of � ����� � �

�
� � ��

�

� ��� � � �� ��

 � � ��� � � ( � " � �	��
 � 	 � � � � � � �	 � � � � 	 �
	 	 � � �  	 � � � � � �

�
�
�

� � �  � � � � ���� ��

 � � ����� � ( � " 	 � � � � � �	 � � � � 	 �
	 	 � � �  	 � � � � "

��� � ������ ��

�� � ��� � � ( � " � �	��
 � 	 � � � � �	 � � � � 	 � 	 	 � � �  	 � � � � � � �

� �
� � 	 � � 	 � � � � � ��� � � �� ��


 � � ��� � � ( � " 	 � � � � � �	 � � � � 	 �
	 	 ��� �  	 � � � � � �
� �
� � 	 � � 	 � � � � ��� � � ���� ��


 � � ��� � � ( � " � �	��
 � 	 � � � � �	 � � � � 	 �
	 	 � � �  	 � � � � � � � (A.6)

Furthermore, as " is bounded, we can apply Theorem A4.2 and obtain

� ��� � � �� ��

 � � ��� � � ( � " � �	��
 � 	 ��� � � �	 � � � � 	 �
	 	 � � �  	 � � � �

� ��� � � � �� ����

 � � ����� � �&( � 	 �	 � � � � 	 �
	 	 �

	 � � � � ����� �� 
 � � ��� � � ( � " � �	��
 � 	 � � � � �	 � #� 	 �
	 	 � � �  	 � � �  	 � � � � �
-a.s. " (A.7)

where

� � �

� � � ����


�� � ��� � � � ( � �	 � � � � 	 �
	 	 � ��
 	 � � � � % � �

-a.s. � �
We can now apply the induction assumption for ��� � � � � � to the last expression in (A.6). Then,

we again make use of (A.7) for � � instead of � ����� � �
�
� and obtain�

�

��� � ������ ��

 � � ��� � � ( � " � �	��
 � 	 � � � � � � �	 � � � � 	 �
	 	 � � �  	 � � � � � �

� �
�

��� � ������ ��

 � � ��� � � ( � " � � � �	 � � � � 	 �
	 	 � � �  	 � � � � � � �
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Lemma A3.4. Let � be the expected exponential utility function defined in Chapter 4 Equation

(2.10). If

� ���� �� ������� �� � ����  � � � � � � � " � � � �
�

� 	 �
	 	 � � ��
#� 	 �
	 	 � )�� ��"

then

� ���� �� � ���� �� � ����� �� � � � � � � " � � � �
�

� 	 �
	 	 � � ��
#� 	 �
	 	 �

��� ���� �� ������� �� ������  � � � � � � � " � � � �
�

� 	 � 	 	 � � ��
#� 	 � 	 	 � �

Proof. We have to show that

������ �� � ����  � � ����� �� 
 � � ����� � ( � " � � � �
�

� 	 � 	 	 � � ��
#� 	 �
	 	 � � �

� � ���� �� � ����� �� ������ �� 
 � � ��� � � ( � " � � � �
�

� 	 �
	 	 � � ��
#� 	 �
	 	 ��� � �

Therefore, it suffices to show that for every fixed
� � �

� ����  � � ����� �� 
 � � ����� � ( � " � � � �
�

� 	 � 	 	 � � ��
#� 	 �
	 	 ��� �

� � ����� �� ������ �� 
�� � ��� � � ( � " � � � �
�

� 	 �
	 	 � � ��
#� 	 � 	 	 ��� � � (A.8)

Of course, the right-hand side is at least as big as the left-hand side. For the converse, we use

the fact (cf. Lemma A3.5) that there exists a sequence of strategies �
#� 
 � 
  � � � such that for

all  �� #" � � � " � � �

�� � ��� � � �&( � �	 � #� 
	 �
	 	 � �  	 � � � � � � � ����� �� 
 � � ��� � � �&( � �	 � #� 	 �
	 	 � �  	 � � � (A.9)
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With this special sequence we want to approximate the left-hand side of (A.8) from above:

� ����  �

 � � ��� � � ( � " � � � �

�
� 	 � 	 	 � � ��

#� 
	 � 	 	 � � �
� � ����  � � ����� �� 
 � � ����� � ( � " � � � �

�
� 	 � 	 	 � � ��

#� 	 �
	 	 � � �� � ����  �
 
 � � ����� � ( � " � � � �

�
� 	 � 	 	 � � ��

#� 
	 � 	 	 � � �
��������� �� 
�� � ��� � � ( � " � � � �

�
� 	 �
	 	 � � ��

#� 	 �
	 	 � � � �
��� ���� ��

�
� �
� �

 
 � � � ��� � �
�
� ��� � � ( � " 	 � � � 	 �

�
� 	 �
	 	 � � �	 � #� 
	 �
	 	 ��� �

� 
 � � � ��� � �
�
� ��� � � ( � " 	 � � � 	 �� � 	 �
	 	 ��� � � � � ����� �� 
 � � ��� � � �&( � �	 � #� 	 �
	 	 � �  	 � � � �

��� ���� ��

�
� �
� � 
 � � � ��� � �

�
� ��� � � ( � " 	 � � � 	 �� � 	 �
	 	 ���

	  
 � � ��� � � �&( � �	 � #� 
	 �
	 	 � �  	 � � � ��� � ������� �� 
 � � ��� � � �&( � �	 � #� 	 �
	 	 � �  	 � � �� ��� 	� � � -a.s.

���
�
��

�
�
� �
� � 
�� � ��� � � ( � " 	 � � � 	 �

�
� 	 �
	 	 � �

	  
 � � ����� � �&( � �	 � #� 
	 � 	 	 � �  	 � � � � � � � ����� �� 
 � � ��� � � �&( � �	 � #� 	 �
	 	 � �  	 � � � � �
Due to (A.9) and the dominated convergence theorem, the last term tends to zero as � tends to

infinity.

Lemma A3.5. There exists a sequence of strategies � � 
 � 
 �� � � such that for all

 �  #" � � � " � � �

�� � ��� � � �&( � �	 � � 
	 �
	 	 � �  	 � � � � � � � ���� ��


 � � ��� � � �&( � �	 � � 	 �
	 	 � �  	 � � �
-a.s.(A.10)

Proof. General properties of the essential infimum guarantee that for each  �  #" � � � " � � �
there exists a sequence � � 
 �

�
� 
  � � � satisfying (A.10). It remains to show that there is a

joint sequence. We define such a joint sequence �
�� 
 � 
 �� � � recursively on the intervals
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� �
�
� � "�� � " � �

�
� � "��

�
� � ��"

� � � " �� #"$� � � : For ��� � �
�
� � "�� � we set :

�� 
	 � � 
 � � 		 " where
� � � ��� � � � �	 � ���"!"!"! � � � �

�

��

� ��� � �
� ( � �	 � � � � 
 � 		 �
	 	 � �  	 � � �  � "

and for ��� � �
�
� � "$�

�
�

�� 
	 � � 
 � � 		 " where
� � � ��� � � � �	 � ���"!"!"! � � � �

 
�� � ��� � � � ( � � 	 �
	 � � � � 
 � 		 �
	 	 � � �	 � �� 
	 �
	 	 � � �  	 � � � � � �

It is obvious that for all � � � ,  %�  #" � � � " � � �

 � � ��� � � �&( � �	 � �� 
	 �
	 	 � �  	 � � � 
 � � ��� � � �&( � �	 � � 
 �

�
	 �
	 	 � �  	 � � �

That implies the assertion.

Lemma A3.6. Under the conditions of Theorem 4.3.4(b) case (iii), for every � )� there exist
� � � � � � ,  %� � " � � � " � such that for all � � � ,  � � " � � � " �

� ����� �� � � � � � � � � ��� � �
�
� � ��" � � � ��� ) �

�
� � ��" � �	��
 � 	 � � 	 �

� � � 	 �
�

� � � �	 �
	 	 � � � �

� � � � 	 � � �
� � 	 � � � � �

�
� � �	 � 	 	 � � �� � 	 � � � #� 	 �
	 	 �� � ����� �� � � � � � � � � ��� � �

�
� � ��" � � � ��� ) �

�
� � ��" � �	��
 � 	 � � 	 �

� � � 	 �
�

� � � �	 �
	 	 � � � �

� � � � 	 � � �
� � 	 � � � � �

�
� � �	 � 	 	 � � � � 	 �

� � 	 � � � � �
�
�	 � 	 	 � � �� � 	 � #� 	 �
	 	 � � � � (A.11)

Proof. In the first expression, the supremum over all strategies �
#� � 	� � � � 	 � � � � ��� can be split into

two suprema : one over all �
#� ��	� � � � 	 � � �$� � � 	 � � and the other over all �

#� � 	� � � � 	 � � ��� . So, it remains to

show that
� �
�
� in (A.11) can be chosen independent of � � � . By putting in the definition of �

and interchanging infimum and expectation, one can see that the set 	� � �
�
� �  does not have

any influence on the difference between the two suprema in (A.11) as ��� � �
�
� � " �

� �
�
� � � on
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the set 	� � �
�
� �  . Therefore, we only consider the set 	� ) �

�
� �  :

� ����� �� 
 � � � ��� ) �
�
� � � ��� �

 ( � " � �	��
 � 	 � � � � � � � � � � 	 �
	 � � � � �

�
�	 �
	 	 � � �� � 	 � #� 	 �
	 	 � � �

� � ����� �� 
 � � � ��� ) �
�
� � � ��� �

� ( � " � �	��
 � 	 ��� � � � � � � 	 � � �
	 � � � � �

�
� � �	 �
	 	 � � �	 � � � #� 	 � 	 	 ��� �� � ����� �� 
 � � � ��� ) �

�
� � � ��� �

� ( � " � �	��
 � 	 ��� � � � � � � 	 �
	 � � � � �

�
�	 � 	 	 � � �	 � #� 	 �
	 	 ��� �

� � ����� �� 
 � � � ��� ) �
�
� � � ��� �

� ( � " � �	��
 � 	 ��� � � � � � � 	 � � �
	 � � � � �

�
� � �	 �
	 	 � � �	 � � � #� 	 � 	 	 ��� �

� 
 � � � ��� ) �
�
� � � ��� �

� �&( � � 	 �
�

� � � �	 �
	 	 � � � � � � 	 � � �
	 � � � � �

�
� � �	 � 	 	 ���

	  ��� � ������� �� 
�� � ��� � � ( � " � �	��
 � 	 � � � � 	 �	 � � � � �
�
�	 �
	 	 � � �	 � #� 	 �
	 	 � � �  	 � � � �

� � ��� � ����� �� 
 � � ����� � ( � " � �	��
 � 	 � � � � �	 � � � #� 	 �
	 	 � � �  	 � � � � � �� 
 � � ��� � � �&( � � 	 �
�

� � � �	 �
	 	 � � � � � � 	 � � �	 � � � � �
�
� � �	 �
	 	 � �

	  ��� � ������� �� 
�� � ��� � � ( � " � �	��
 � 	 � � � � 	 �	 � � � � �
�
�	 �
	 	 � � �	 � #� 	 �
	 	 � � �  	 � � � �

� � ��� � ����� �� 
 � � ����� � ( � " � �	��
 � 	 � � � � �	 � � � #� 	 �
	 	 � � �  	 � � � � � �
� � ����� �� 
 � � � � � ��� �	��
 � � � � � � � �� � � � �

�
�
� � � !"!"! � � � �� � � � � � � �� �

� � �
� �� � �� � � � � � �

� � ���� �� � ����� �� 
 � � ��� � � ( � " � �	��
 � 	 � � � � 	 �� � � � �	 �
	 	
� � � � � � 	 � � �

	 � � � � �
�
� � �	 �
	 	 � � 	 �

	 � � � � 	 � 	 	 � � �	 � #� 	 �
	 	 � � � �
The last term does not depend on � any more, and by suitable choice of

� � � � it can be made

arbitrary small.

A4 Iterative application of the essential infimum

We want to give full details about the iterative application of the essential infimum in Equation

(2.15) of Chapter 5 and in Equation (A.7) in the Appendix A3, resp.

Definition A4.1. Let ����"  " � � be a probability space and let
�

be a nonempty family of ran-
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dom variables defined on ����"  " � � . The essential infimum of
�

, denoted by � ��� � ��� � , is a

random variable
�
� satisfying

(i) � � � �
,
�
�
�*� �

-a.s., and

(ii) if � is a random variable satisfying � �*� �
-a.s. for all

� � �
, then � �*�

�
�

-a.s.

The essential infimum exists (for a proof see Gihman and Skorohod (GS79)) and is obvi-

ously unique
�

-a.s.

Theorem A4.2. Let � be an
 � -measurable random variable and assume that

� � � �

� � � ����


 � � � � � � 
 � �	� � � � � � ��� � � � � � � ��  	 � � � � % � �
-a.s. � �� � �

Then we have

��� � ������ ��

�� � � � � � 
 � � � � � � � � ��� � � � � � � ��  	 � � � � (A.1)

��� � � ������ �� �

�� � � � � ��� � � � � � � � � � � � � � � ��� � � ��� �� 
 � � � � � � 
 � ��� � � � ��� �� � � � � � �  	 � � ��

 	 � � � � " �
-a.s.

Proof. Due to Assumption 5.1.3 one can rewrite � as a product space consisting of strategies
� � � coming into effect on � �

�
� � "��

�
� and strategies

#� � � coming into effect on � �
�
"�� � , i.e.

� ��� � � �� ��

 � � � � � � 
 � � � � � � � � ��� � � � � � � ��  	 � � � � (A.2)

� ��� � � ���� � � �� � �� � � 
 � � � � � � 
 � �	� � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � �
-a.s.

Then, one can split the essential infimum over the product space into two essential infima (using

the same arguments as for the infimum in � ):

� ��� ������ � � �� ���� � � 
 � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � (A.3)

� ��� � ������ �� � ��� � ����� �� 
 � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � �
-a.s.

For every fixed strategy
�� � � we have of course that


 � � � � � � 
 � � � � � � ��� �� � � � � � �  	 � � � ��� � ������� �� 
�� � � � � � 
 � � � � � � ��� �� � � � � � �  	 � �
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�
-a.s., and general properties of the essential infimum (cf. e.g. Gihman and Skorohod (GS79))

guarantee that the essential infimum can be approximated by a countable set of elements of � ,

i.e. there exists a sequence �
#� � 
 � � 
 �� � � s.t.

�����
  �

�� � � � � � 
 � � � � � � ��� ��

� � �
�

�
� � � �  	 � �

� � � � � ����� �� 
 � � � � � � 
 � ��� � � � ��� �� � � � � � �  	 � � �
-a.s. "

where the � ��� is understood pointwise. For two strategies
#� � � � " #� � � � � � define

#� � � �	 �

������� ������
� � � ) �

�
�
#� � � �	 � 
 � � � � � � 
 � � � � � � ��� ��

� � �
�
�
� � � �  	 � �� 
 � � � � � � 
 � �	� � � � ��� ��
� � �
�
�
� � � �  	 � � "

� � � ) �
�
�
#� � � �	 � otherwise

�
Due to Assumption 5.1.3 we have

#� � � � � � , and in addition


�� � � � � � 
 � � � � � � ��� ��
� � �
�
�
� � � �  	 � �

� � ���
 
 � � � � � � 
 � � � � � � ��� ��

� � �
�
�
� � � �  	 � � " 
 � � � � � � 
 � �	� � � � ��� ��

� � �
�
�
� � � �  	 � � � "

and therefore inf-stability. Hence, there exists a sequence �
#� 
 � 
 �� � � such that


 � � � � � � 
 � � � � � � ��� ��
� � �
� �

� � � �  	 � � (A.4)

� � � � � ����� �� 
 � � � � � � 
 � � � � � � ��� �� � � � � ���  	 � � �
-a.s., � � � �

Take a
� � � � . (A.4) implies

� � �
� �
� � � � � � � � � � � � � � ���  
�� � � � � � 
 � � � � � � ��� ��

� � �
�

�
� � � �  	 � � "


�� � � � � � 
 � ��� � � � ��� � � � � � � �  	 � � �
� � � �

� �
� � � � � � � � � � � � � ��� � ������� �� 
 � � � � � � 
 � � � � � � ��� �� � � � � � �  	 � � �

-a.s. " (A.5)

as � � � . The sequence in (A.5) is dominated by the random variable


 � � � � � � 
 � � � � � � � � ��� � � � � � � �  	 � � "
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which has
� � � � � � finite

� ��� ��  	 � � �  -expectation. So, we can apply the dominated convergence

theorem for conditional expectations to (A.5). Then, we take the essential infimum over all
� � � � on both sides:

��� � ������ ���� � � � � ����� �� 
 � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � (A.6)

��� ��� � ���� ����

�� � � � � � � � � � � � � � � � � � � � ��� � ������� �� 
�� � � � � � 
 � �	� � � � ��� �� � � � � � �  	 � � ��

 	 � � � �
�

-a.s. It remains to show that it makes no difference whether the essential infimum in the first

expression of (A.6) is taken over all
� � � or only over all

� � � � . Take at first an arbitrary
� � � and define

� �
 � ��� � � ��� �� 
 � � � � � � 
 � �	� � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � % � � (A.7)

The essential infimum in (A.7) can be monotonously approximated by a sequence

�
#� � 
 � � 
 �� � � . That implies

� � 
 � � �  
 � � � � � � 
 � �	� � � � � � � � � � � � � � � � � � � � ��� �� � � �� �
� � � ��

 	 � � � � % � � � � �
-a.s. "

as � � � . Let
�� � � � �� � and define

� � 
 �	 � �

����� ����
� 	 � � � �

�
and � � � � 
 � "#� � 
 �	 � � ) �

�
and � � � � 
 � "�� 	 � otherwise
�

� � 
 � are by construction elements of � � . Furthermore, � � 
 � � ��� " � � � � ,
�

-a.s., as � � � ,

and on � � 
 � � � � " � � we have

� ��� � � ��� �� 
 � � � � � � 
 � �	� � � � � � � � � � � � �� �
� � �

�	�
� � � ��� �� � � � � � ��  	 � � � �� � ��� � � ��� �� 
 � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � �

Therefore,

� ��� � ���� ���� � ��� � � ��� �� 
�� � � � � � 
 � �	� � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � (A.8)

� ��� � ������ �� � ��� � ����� �� 
 � � � � � � 
 � �	� � � � � � � � � � � � � � � � � � � � ��� �� � � � � � ��  	 � � � � �
-a.s.

Putting (A.2), (A.3), (A.6), and (A.8) together, this implies the assertion.
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