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Abstract

In this thesis we optimize portfolios of one riskless bond and several risky assets in the

Black-Scholes model as well as in more complicated models. As an alternative to the clas-

sical mean-variance portfolio selection we take up an idea going back to Fishburn (1977)

and Harlow (1991). They introduced so-called lower partial moments as risk measures.

The lower partial moment of order n ∈ N 0 is defined as

LPMn(x) =

∫ x

−∞
(x− r)ndF (r) , x ∈ R ,

where F is the distribution function of the portfolio return. The advantage of such lower

partial moments is that they are only based on negative deviations. Here we replace the

variance by risk measures defined by lower partial moments. The lower partial moment

of order 0 is the probability that the terminal wealth of a portfolio is below a certain

benchmark, e.g. the DAX or the Dow Jones index. The Capital-at-Risk with respect to

the expected shortfall (CaRS) is based on a lower partial moment of order 1, where we

measure risk as the difference between riskless wealth and the expected shortfall. An-

other downside risk measure we consider is the Capital-at-Risk (CaR) with respect to the

quantile, which is defined in the same way as the (CaRS), but the expected shortfall is

replaced by a low quantile. We think of the (CaR) and the (CaRS) as some capital reserve

in equity.

This thesis is organized in five parts.

After an introductory chapter we derive explicit closed form solutions for the mean-CaR

problem in a Black-Scholes market. Then we move to more general price processes like the

Black-Scholes market with jumps and the generalized inverse Gaussian diffusion, where

we develop an algorithm for the numerical solution of the mean-CaR problem, since these
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vi Abstract

problems are not analytically tractable any more.

In the third chapter we consider first the CaRS as risk measure. Since an analytic so-

lution cannot be found neither in the Black-Scholes case nor in the Black-Scholes case

with jumps, we work out upper and lower bounds for the optimal strategy and solve

the problems for some examples numerically. Then we replace the CaRS by the shortfall

probability with respect to a certain benchmark, for example a market index, and maxi-

mize the expected relative wealth of the portfolio, i.e. the expected ratio of the portfolio’s

wealth and the benchmark, instead of the expected terminal wealth of the portfolio. It

seems to be useful to maximize the wealth of the portfolio relative to the benchmark,

i.e. the ratio of the wealth of the portfolio and the benchmark, since we measure risk

depending on this benchmark. In this case we derive an explicit closed form solution.

The fourth chapter is devoted to the study of optimal portfolios when stock prices follow

an exponential Lévy process. First we calculate the moments and find out that the opti-

mal strategy in the mean-variance problem has a similar structure as in the Black-Scholes

world. For the mean-CaR optimization we approximate the CaR in this exponential Lévy

model using a method introduced by Asmussen and Rosinski (2000): under certain as-

sumptions one can approximate the small jumps of a Lévy process by a Brownian motion

with the same variance.

In the fifth chapter we model asset prices by an SDE driven by a Lévy process. There

the problem of negative asset prices occurs if the Lévy process has jumps of size lower

than -1. Taking up an idea of Eberlein and Keller (1995) we interpret such a jump as a

crash and set the price of the concerning asset equal to zero after this crash. We calculate

moments in this crash scenario and derive optimal portfolios under a variance constraint.



Zusammenfassung

In dieser Arbeit werden Portfolios aus einem risikolosen Bond und mehreren Aktien sowohl

im Black-Scholes-Modell als auch in komplizierteren Modellen optimiert. Als Alternative

zum klassischen Erwartungswert-Varianz-Ansatz wird eine Idee aufgegriffen, die auf Fish-

burn (1977) und Harlow (1991) zurückgeht. Sie haben sogenannte ,,Lower Partial Mo-

ments” als Risikomaße eingeführt. Das Lower Partial Moment der Ordnung n ∈ N 0 ist

definiert als

LPMn(x) =

∫ x

−∞
(x− r)ndF (r) , x ∈ R ,

wobei F die Verteilungsfunktion des Portfoliovermögens ist. Der Vorteil solcher Lower Par-

tial Moments ist, daß sie nur auf negativen Abweichungen basieren. Die Varianz wird hier

durch Risikomaße ersetzt, die durch Lower Partial Moments definiert werden. Das Lower

Partial Moment der Ordnung 0 ist die Wahrscheinlichkeit, daß das Portfoliovermögen

zum Endzeitpunkt unter einer bestimmten Benchmark, z.B. dem DAX oder dem Dow

Jones Index, liegt. Der Capital-at-Risk bezüglich des erwarteten Shortfalls (CaRS) basiert

auf einem Lower Partial Moment der Ordnung 1, wobei wir das Risiko als die Differenz

zwischen risikolosem Vermögen und erwartetem Shortfall messen. Ein anderes Downside

Risikomaß, das wir betrachten, ist der Capital-at-Risk (CaR) bezüglich des Quantils.

Dieses Risikomaß ist auf die gleiche Art wie der (CaRS) definiert, wobei der erwartete

Shortfall durch ein kleines Quantil ersetzt wird. (CaR) und (CaRS) kann man als Kapi-

talreserve interpretieren.

Diese Arbeit besteht aus fünf Teilen.

Nach einem einführenden Kapitel werden explizite geschlossene Lösungen für das Erwar-

tungswert-CaR-Problem im Black-Scholes-Modell hergeleitet. Dann werden allgemeinere

vii



viii Zusammenfassung

Preisprozesse wie das Black-Scholes-Modell mit Sprüngen und die verallgemeinerte in-

vers Gaußsche Diffusion behandelt, wo ein Algorithmus zur numerischen Lösung des

Erwartungswert-CaR-Problems entwickelt wird, da diese Probleme analytisch nicht mehr

lösbar sind.

Im dritten Kapitel wird zuerst der CaRS als Risikomaß betrachtet. Da eine analytische

Lösung weder im Black-Scholes-Modell noch im Black-Scholes-Modell mit Sprüngen ge-

funden werden kann, werden Ober- und Untergrenzen für die optimale Strategie erarbeitet

und das Optimierungsproblem für einige Beispiele numerisch gelöst. Dann wird der CaRS

durch die Shortfallwahrscheinlichkeit bezüglich einer Benchmark, z.B. eines Marktin-

dexes, ersetzt und das erwartete relative Portfoliovermögen, d.h. das erwartete Verhältnis

aus Portfoliovermögen und Benchmark, anstelle des erwarteten Portfoliovermögens ma-

ximiert. Es scheint sinnvoll, das Portfoliovermögen bezüglich der Benchmark, d.h. das

Verhältnis aus Portfoliovermögen und Benchmark, zu maximieren, da das Risiko in Abhän-

gigkeit von dieser Benchmark gemessen wird. In diesem Fall werden explizite geschlossene

Lösungen hergeleitet.

Das vierte Kapitel behandelt die Optimierung von Portfolios, wenn die Aktienpreise ex-

ponentiellen Lévyprozessen folgen. Zunächst werden Momente berechnet und gezeigt, daß

die optimale Strategie im Erwartungswert-Varianz-Problem eine ähnliche Struktur hat

wie im Black-Scholes-Modell. Für die Erwartungswert-CaR-Optimierung wird der CaR

im exponentiellen Lévy-Modell mit Hilfe einer Idee von Asmussen und Rosinski (2000)

approximiert: unter bestimmten Voraussetzungen kann man die kleinen Sprünge eines

Lévyprozesses durch eine Brownsche Bewegung mit der gleichen Varianz approximieren.

Im fünften Kapitel werden Aktienpreise durch eine von einem Lévyprozeß getriebene SDE

modelliert. Hier tritt das Problem von negativen Aktienkursen auf, wenn der Lévyprozeß

Sprünge niedriger als -1 hat. Nach einer Idee von Eberlein und Keller (1995) wird so

ein Sprung als Crash interpretiert und der Preis der betreffenden Aktie nach dem Crash

auf Null gesetzt. Es werden in diesem Crash-Szenario Momente berechnet und optimale

Portfolios hergeleitet.



Chapter 1

Introduction

During the last 20 years daily business at stock market exchanges has been vastly growing.

So the question of the optimal investment has become more and more important over the

last years.

The traditional method of portfolio selection was introduced by Markowitz (1959) and

Sharpe (1964) and is based on a mean-variance optimization in the classical Black-Scholes

model. Still nowadays it is very popular in risk departments of banks, since it can be

applied with basic knowledge on stochastic models. For his ideas on the mean-variance

approach Markowitz received the Nobel prize in economic sciences in 1990. The principle

can be summarized in two basic formulations of this approach:

- maximization of the expected terminal wealth of a portfolio under a constraint on

the upper bound of its variance.

- minimization of the variance given a lower bound on the expected terminal wealth.

Since the first optimization seems to be the more natural one we take up the idea for

some optimization problems in this thesis.

Another common approach to portfolio optimization is the maximization of expected util-

ity of wealth. Depending on the choice of the risk measure there exists an equivalent utility

maximization approach for certain mean-risk optimization problems (see Fishburn (1977)

and Harlow (1991)). Since for the mean-risk optimization approach the interpretation is

much easier and for a better comparability to the Markowitz approach we do not work

1



2 Chapter 1. Introduction

with utility functions in this thesis. Thus we restrict ourselves to mean-risk-optimization

problems and modify the mean-variance principle of Markowitz such that it becomes more

realistic. The variance as a risk measure shows several deficiencies. It leads to a decreasing

proportion of risky assets, when the time horizon increases, whereas it is a well-known

fact, that long term stock investment leads to an almost sure gain over locally riskless

bond investment and hence the longer the planning horizon, the more one should invest

in risky assets. This contradiction cannot be solved using the variance as risk measure.

Besides that the variance takes into account positive deviations as well as negative ones.

But for asset prices positive deviations are gains which cannot be interpreted as risk.

So better alternatives to the variance are non-symmetric risk measures, e.g. downside

risk measures which are only based on negative deviations. Wellknown examples are the

so called lower partial moments, which are investigated by Fishburn (1977) and Harlow

(1991). The lower partial moment of order n is defined as

LPMn(x) =

∫ x

−∞
(x− r)ndF (r) , x ∈ R ,

where F is the distribution function of the portfolio return.

In this thesis we consider three different downside risk measures for optimization in the

Black-Scholes model. We start with the Capital-at-Risk with respect to a quantile (CaR),

which is defined as the difference between the riskless wealth attained by a pure bond

strategy and some low quantile (typically the 5%- or 1%-quantile) of the wealth of the

portfolio; see e.g. Jorion (1997). The CaR can be interpreted as some capital reserve in

equity, which is required by the Basle accord. This risk measure provides the advantage

that one can derive explicit closed form solutions for our portfolio problem at least in a

Gaussian world.

The CaR also shows several disadvantages. Artzner, Delbaen, Eber, and Heath (1999)

argue that for the effective regulation and management of risk any risk measure should

be coherent, i.e. translation invariant, positive homogeneous, monotone, and subadditive.

But the CaR fails to be coherent, since it is not subadditive. Another deficiency of the

CaR is that it does not take into account the shape of the profit-loss distribution on the

left side of the quantile. Thus as another risk measure we investigate the Capital-at-Risk

with respect to the expected shortfall (CaRS), which is based on a lower partial moment
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of order 1. The expected shortfall is defined as the conditional expectation of the termi-

nal wealth under the condition that the terminal wealth is below a low quantile (again

typically the 5%- or 1%-quantile). Analogously to the CaR the CaRS is then defined as

the difference between the riskless wealth and the expected shortfall. In comparison to

the CaR the CaRS has the advantage to take also into account how large losses are to be

expected, if the portfolio’s wealth falls below the quantile. Unfortunately, it is not possible

to derive explicit closed form solutions for a mean-CaRS optimization even in the Black-

Scholes model. Hence we work out upper and lower bounds for the optimal strategy and

solve the problem numerically in the Black Scholes model, possibly enriched with jumps.

As we show in Chapter 2 and Chapter 3 and is also demonstrated in several figures the

replacement of the variance by the CaR or the CaRS resolves the above mentioned con-

tradiction between theory and empirical facts, since the CaR and the CaRS lead to a

higher investment in risky assets for very large time horizons. These two risk measures,

the CaR and the CaRS, only look at absolute losses of the portfolio and do not take into

account the performance of the portfolio relative to the whole situation on the capital

market. Therefore we consider a third non-symmetric risk measure, the shortfall proba-

bility, which is based on a lower partial moment of order 0. It is defined as the probability

that the terminal wealth of a portfolio is below a certain benchmark, e.g. the DAX or the

Dow Jones index. Thus this definition gives us the opportunity to measure risk relative

to the market on which the assets are traded. In this case it seems to be useful also to

maximize wealth with respect to the benchmark, i.e. the expected ratio of the wealth

of the portfolio and the benchmark. This provides also the possibility to derive explicit

closed form solutions in a Gaussian world.

In the early years of portfolio opimization most approaches proceeded from the as-

sumption of the Black-Scholes model, i.e. lognormally distributed stock prices and sta-

tionary, independent increments of their logarithms. The basic idea for this continuous

time model was already found in 1900 by Louis Ferdinand Bachelier. He modelled stock

prices as Brownian motions with drift. This, however, leads to a positive probability for

negative asset prices, which does not correspond to reality. In the Black-Scholes model this
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problem is solved, since asset prices are modelled by geometric Brownian motions, which

cannot attain negative values. Because of the normal distribution the Black-Scholes model

is mathematically easily tractable in many cases, e.g. for the mean-variance optimization

and the mean-CaR optimization as we see in Chapter 2. Nowadays it is well-known that

the normal distribution is not a realistic model for the returns of most financial assets.

One can often observe leptocurtic data, i.e. asset returns have semi-heavy tails, such that

the curtosis is higher than the curtosis of the normal distribution. Consequently, one can

improve the classical Black-Scholes model dropping the normal assumption and replacing

the Brownian motion by a general stochastic process with stationary, independent incre-

ments, i.e. a Lévy process. For example Eberlein and Keller (1995) proposed generalized

hyperbolic Lévy processes or certain subclasses as a model for the logarithmic asset price

processes and examined statistically their fit in a very convincing way. These generalized

hyperbolic distributions which model the increments of the logarithmic asset price, are a

normal mean variance mixture and were first introduced by Barndorff-Nielsen (1977), who

applied them to model grain size distributions of wind blown sands. Typical examples for

these normal mixture models which play an increasing role also in the financial industry

are the normal inverse Gaussian and the variance gamma model.

In this thesis we optimize portfolios for general exponential Lévy processes under variance

constraints as well as under CaR constraints and illustrate the results by examples, i.e.

the exponential normal inverse Gaussian Lévy processes which are a subclass of the expo-

nential generalized hyperbolic Lévy processes, the exponential Meixner Lévy process, and

the exponential variance gamma Lévy process. Calculating moments and the CaR one can

see that these models are mathematically less tractable than the Black-Scholes model. In

most cases the CaR can not be calculated explicitly. Here we use an idea of Asmussen

and Rosinski (2000) to approximate the small jumps of a Lévy process by a Brownian

motion or some other limit process. This leads to the replacement of the Lévy process by

the sum of a drift term, a simpler Lévy process, and a compound Poisson process. We

derive certain relations between a Lévy process and its stochastic exponential to apply

this result for the calculation of quantiles of the wealth process.

Besides this exponential Lévy-Black-Scholes model which is a first step in extending ge-
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ometric Brownian motion there are as well interesting alternatives dropping even the as-

sumption of stationary, independent increments. In Chapter 2 we investigate the general-

ized inverse Gaussian diffusion model, which was introduced by Borkovec and Klüppelberg

(1998) and is a formal extension of the Black-Scholes model in a different direction. This

model contains the generalized Cox-Ingersoll-Ross model as a special case.

In this thesis we also discuss another model which can be seen as a generalization of the

classical Black-Scholes model. Asset prices in the Black-Scholes model can also be written

as stochastic differential equations (SDE) driven by Brownian motion equivalently to the

approach using geometric Brownian motion. Defining a model by replacing the Brownian

motion in the SDE by a general Lévy process leads to a positive probability for negative

asset prices. The reason for this are possibly negative jumps of the driving Lévy process

with absolute size greater than one. To solve this problem we take up an idea of Eberlein

and Keller (1995) who interpret such a jump of size lower than -1 as crash and, after this

bankruptcy, all wealth invested in the crash asset is lost and its asset price is zero after-

wards. Thus, in this model asset prices are not exponential Lévy processes, but stopped

exponential Lévy processes, since the solution to the SDE is an exponential Lévy process

until crash time. Because of the independent, stationary increments of the Lévy process

such a crash appears always with the same probability independent of the actual asset

prize. This can be used for example as a realistic approach to model new economy asset

prices. Mean and variance in this model with a possible crash have very complicated forms

because of the stopping times. Hence even for the variance as risk measure, it is not possi-

ble to solve the optimization problem explicitly. We optimize such portfolios numerically

and compare the results to those of a Gaussian world.
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Chapter 2

Optimal portfolios with bounded

Capital-at-Risk

It seems to be common wisdom that long term stock investment leads to an almost sure

gain over locally riskless bond investments. In the long run stock indices are growing

faster than riskless rates, despite the repeated occurrence of stock market declines. The

conventional wisdom therefore holds that the more distant the planning horizon, the

greater should be one’s wealth in risky assets. One of our main findings presented in this

chapter will be the demonstration that there is indeed a reasonable portfolio problem with

a solution that supports this empirical observation.

Traditional portfolio selection as introduced by Markowitz (1959) and Sharpe (1964) is

based on a mean-variance analysis. This approach cannot explain the above phenomenon:

the use of the variance as a risk measure of an investment leads to a decreasing proportion

of risky assets in a portfolio, when the planning horizon increases (see Example 2.1.11).

In recent years certain variants of the classical Markowitz mean-variance portfolio

selection criterion have been suggested. Such alternatives are typically based on the notion

of downside risk concepts such as lower partial moments. The lower partial moment of

order n is defined as

LPMn(x) =

∫ x

−∞
(x− r)ndF (r) , x ∈ R , (2.0.1)

where F is the distribution function of the portfolio return. Examples can be found in

7



8 Chapter 2. Optimal portfolios with bounded Capital-at-Risk

Fishburn (1977) or Harlow (1991), who suggested for instance the shortfall probability

(n = 0), the expected target shortfall (n = 1), the target semi-variance (n = 2), and

target semi-skewness (n = 3). Harlow (1991) also discusses some practical consequences

of various downside risk measures.

In this chapter we concentrate on the Capital-at-Risk (CaR) as a replacement of the

variance in portfolio selection problems. We think of the CaR as the capital reserve in

equity. The CaR is defined via the Value-at-Risk; i.e. a low quantile (typically the 5%-

or 1%-quantile) of the profit-loss distribution of a portfolio; see e.g. Jorion (1997). The

CaR of a portfolio is then commonly defined as the difference between the mean of the

profit-loss distribution and the VaR. VaR has become the most prominent risk measure

during recent years. Even more, the importance of VaR models continues to grow since

regulators accept these models as a basis for setting capital requirements for market risk

exposure. If the profit-loss distribution of a portfolio is normal with mean µ and variance

σ2, then the CaR of the portfolio based on the α-quantile (e.g., α = 0.05 or α = 0.01) is

CaR = µ− (µ− σzα) , (2.0.2)

where zα is the α-quantile of the standard normal distribution and σ is positive. In this

chapter we will use another definition of the CaR.

The crucial point in the application of CaR models for setting capital requirement is

the determination of reliable and accurate figures for the VaR, especially for non-normal

cases. Consequently, VaR has attracted attention from a statistical point of view; e.g., see

Embrechts, Klüppelberg and Mikosch (1997) for estimation via extreme value methods

and further references, see Emmer, Klüppelberg and Trüstedt (1998) for an example.

In the context of hedging, VaR has been considered as a risk measure by Föllmer

and Leukert (1999); see also Cvitanic and Karatzas (1999). They replace the traditional

“hedge without risk” (perfect hedge) which typically only works in a complete market

setting by a “hedge with small remaining risk” (so-called quantile-hedging). This concept

can also deal with incomplete markets. In contrast to our problem, their main task consists

of approximating a given claim. Surprisingly, the existence of that target wealth makes

their problem more tractable than ours.
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In a discrete world Zagst and Kehrbaum (1998) investigate the problem of optimizing

portfolios under a limited CaR from a practical point of view, they solve the problem

by numerical approximation, and they present a case study. This work is continued in

Scheuenstuhl and Zagst (1998). Under a mean-variance and shortfall preference structure

for the investor, they obtain optimal portfolios consisting of stocks and options via an

approximation method.

One aim of this chapter is to show that a replacement of the variance by the CaR in a

continuous-time Markowitz-type model resolves exactly the above-mentioned contradic-

tion between theory and empirical facts. Furthermore, we aim at closed form solutions

and an economic interpretation of our results. In a Gaussian world, represented by a

Black-Scholes market, possibly enriched with a jump component, the mean-CaR selec-

tion procedure leads to rather explicit solutions for the optimal portfolio. It is, however,

not surprising that as soon as we move away from the Gaussian world, the optimization

problem becomes analytically untractable. This chapter is organized as follows. In Sec-

tion 2 we highlight the consequences of the introduction of the CaR as risk measure in a

simple Black-Scholes market where we can obtain explicit closed form solutions. We also

examine consequences for the investor when introducing CaR in a portfolio optimization

problem. This approach indeed supports the above-mentioned market strategy that one

should always invest in stocks for long-term investment.

Section 3 is devoted to the study of the portfolio problem for more general models

of the stock price. As prototypes of models to allow for larger fluctuations than pure

Gaussian models, we study jump diffusions and generalized inverse Gaussian diffusion

processes. This also shows how the solution of the problem becomes much more involved

when the Black-Scholes assumptions are abandoned. In particular, we show how the opti-

mal portfolio under a CaR constraint reacts to the possibility of jumps. In the generalized

inverse Gaussian diffusion setting even the problem formulation becomes questionable as

we cannot ensure a finite expected terminal wealth of the optimal portfolio. We give an

approximate solution, which allows for some interpretation, and also a numerical algo-

rithm. The optimization problems and the solution methods discussed in this chapter are

based on an idea of Ralf Korn.
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2.1 Optimal portfolios and Capital-at-Risk in the Black-

Scholes setting

In this section, we consider a standard Black-Scholes type market consisting of one riskless

bond and several risky stocks. Their respective prices (P0(t))t≥0 and (Pi(t))t≥0 for i =

1, . . . , d evolve according to the equations

dP0(t) = P0(t)rdt , P0(0) = 1 ,

dPi(t) = Pi(t)
(
bidt+

∑d
j=1 σijdWj(t)

)
, Pi(0) = pi , i = 1, . . . , d .

Here W (t) = (W1(t), . . . ,Wd(t))
′ is a standard d-dimensional Brownian motion, r ∈ R

is the riskless interest rate, b = (b1, . . . , bd)
′ the vector of stock-appreciation rates and

σ = (σij)1≤i,j≤d is the matrix of stock-volatilities. For simplicity, we assume that σ is

invertible and that bi ≥ r for i = 1, . . . , d.

Let π(t) = (π1(t), . . . , πd(t))
′ ∈ R

d be an admissible portfolio process, i.e. πi(t) is the

fraction of the wealth Xπ(t), which is invested in asset i (see Korn (1997), Section 2.1 for

relevant definitions). Denoting by (Xπ(t))t≥0 the wealth process, it follows the dynamic

dXπ(t) = Xπ(t) {((1− π(t)′1)r + π(t)′b)dt+ π(t)′σdW (t)} , Xπ(0) = x , (2.1.1)

where x ∈ R denotes the initial capital of the investor and 1 = (1, . . . , 1)′ denotes the

vector (of appropriate dimension) having unit components. The fraction of the investment

in the bond is π0(t) = 1−π(t)′1. Throughout the chapter, we restrict ourselves to constant
portfolios π(t) = π = (π1, . . . , πd) for all t ∈ [0, T ]. This means that the fractions in the

different stocks and the bond remain constant on [0, T ]. The advantage of this is two-

fold: first we obtain, at least in a Gaussian setting, explicit results; and furthermore, the

economic interpretation of the mathematical results is comparably easy. Finally, let us

mention that for many other portfolio problems the optimal portfolios are constant ones

(see Sections 3.3. and 3.4 of Korn (1997)). It is also important to point out that following

a constant portfolio process does not mean that there is no trading. As the stock prices

evolve randomly one has to trade at every time instant to keep the fractions of wealth

invested in the different securities constant. Thus, following a constant portfolio process

still means one must follow a dynamic trading strategy.
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Standard Itô integration and the fact that EesW (1) = es
2/2, s ∈ R , yield the following

explicit formulae for the wealth process for all t ∈ [0, T ] (see e.g. Korn and Korn (2000)).

Xπ(t) = x exp
(
(π′(b− r1) + r − ‖π′σ‖2/2)t+ π′σW (t)

)
, (2.1.2)

E(Xπ(t)) = x exp ((π′(b− r1) + r)t) , (2.1.3)

var(Xπ(t)) = x2 exp (2(π′(b− r1) + r)t)
(
exp(‖π′σ‖2t)− 1

)
. (2.1.4)

The norm ‖ · ‖ denotes the Euclidean norm in R
d.

Definition 2.1.1 (Capital-at-Risk)

Let x be the initial capital and T a given time horizon. Let zα be the α-quantile of the

standard normal distribution. For some portfolio π ∈ R
d and the corresponding terminal

wealth Xπ(T ), the α-quantile of Xπ(T ) is given by

ρ(x, π, T ) = x exp
(
(π′(b− r1) + r − ‖π′σ‖2/2)T + zα‖π′σ‖

√
T
)
,

i.e., ρ(x, π, T ) = inf{z ∈ R : P (Xπ(T ) ≤ z) ≥ α}. Then we define

CaR(x, π, T ) = x exp(rT )− ρ(x, π, T )

= x exp(rT )

×
(
1− exp((π′(b− r1)− ‖π′σ‖2/2)T + zα‖π′σ‖

√
T )
) (2.1.5)

the Capital-at-Risk of the portfolio π (with initial capital x and time horizon T ). �

Assumption 2.1.2 To avoid (non-relevant) subcases in some of the following results we

always assume α < 0.5 which leads to zα < 0.

Remark 2.1.3 (i) Our definition of the Capital-at-Risk limits the possibility of excess

losses over the riskless investment.

(ii) We typically want to have a positive CaR (although it can be negative in our definition

as the examples below will show) as the upper bound for the “likely losses” (in the sense

that (1−α)×100% of occurring “losses” are smaller than CaR(x, π, T )) compared to the

pure bond investment. Further, we concentrate on the actual amount of losses appearing
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at the time horizon T . This is in line with the mean-variance selection procedure enabling

us to directly compare the results of the two approaches; see below.

In the following it will be convenient to introduce the function f(π) for the exponent in

(2.1.5), that is

f(π) := zα‖π′σ‖
√
T − ‖π′σ‖2T/2 + π′(b− r1)T , π ∈ R

d . (2.1.6)

By the obvious fact that

f(π)
‖π′σ‖→∞−→ −∞

we have

sup
π∈�d

CaR(x, π, T ) = x exp(rT ) ;

i.e., the use of extremely risky strategies (in the sense of a high norm ‖π′σ‖) can lead to

a CaR which is close to the total capital. The computation of the minimal CaR is done

in the following proposition.

(iii) Note how crucial the definition of CaR depends on the assumption of a constant

portfolio process. Moving away from this assumption makes the problem untractable. In

particular, ρ(x, π, T ) is nearly impossible to obtain for a general random π(.). �

Proposition 2.1.4 Let θ = ‖σ−1(b− r1)‖.
(a) If bi = r for all i = 1, . . . , d, then f(π) attains its maximum for π∗ = 0 leading to a

minimum Capital-at-Risk of CaR(x, π∗, T ) = 0.

(b) If bi �= r for some i ∈ {1, . . . , d} and

θ
√
T < |zα| , (2.1.7)

then the minimal CaR equals zero and is only attained for the pure bond strategy.

(c) If bi �= r for some i ∈ {1, . . . , d} and

θ
√
T ≥ |zα| , (2.1.8)
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then the minimal CaR is attained for

π∗ =
(
θ − |zα|√

T

)
(σσ)−1(b− r1)

‖σ−1(b− r1)‖ (2.1.9)

with

CaR(x, π∗, T ) = x exp(rT )

(
1− exp

(
1

2
(
√
Tθ − |zα|)2

))
< 0. (2.1.10)

Proof (a) follows directly from the explicit form of f(π) under the assumption of bi = r

for all i = 1, . . . , d and the fact that σ is invertible.

(b),(c) Consider the problem of maximizing f(π) over all π which satisfy

‖π′σ‖ = ε (2.1.11)

for a fixed positive ε. Over the (boundary of the) ellipsoid defined by (2.1.11) f(π) equals

f(π) = zαε
√
T − ε2T/2 + π′(b− r1)T .

Thus, the problem is just to maximize a linear function (in π) over the boundary of an

ellipsoid. Such a problem has the explicit solution

π∗ε = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ (2.1.12)

with

f(π∗ε) = −ε2T/2 + ε
(
θT − |zα|

√
T
)
. (2.1.13)

As every π ∈ R
d satisfies relation (2.1.11) with a suitable value of ε (due to the fact that

σ is regular), we obtain the minimum CaR strategy π∗ by maximizing f(π∗ε) over all non-

negative ε. Due to the form of f(π∗ε) the optimal ε is positive if and only if the multiplier

of ε in representation (2.1.13) is positive. Thus, condition (2.1.7) implies assertion (b).

Under assumption (2.1.8) the optimal ε is given as

ε = θ − |zα|√
T
.

Inserting this into equations (2.1.12) and (2.1.13) yields the assertions (2.1.9) and (2.1.10)

(with the help of equations (2.1.5) and (2.1.6)). �
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Remark 2.1.5 (i) Part (a) of the proposition states that in a risk-neutral market the

CaR of every strategy containing stock investment is bigger than the CaR of the pure

bond strategy.

(ii) Part (c) states the (at first sight surprising) fact that the existence of at least one

stock with a mean rate of return different from the riskless rate implies the existence of

a stock and bond strategy with a negative CaR as soon as the time horizon T is large.

Thus, even if the CaR would be the only criterion to judge an investment strategy the

pure bond investment would not be optimal if the time horizon is far away. On one hand

this fact is in line with empirical results on stock and bond markets. On the other hand

this shows a remarkable difference between the behaviour of the CaR and the variance

as risk measures. Independent of the time horizon and the market coefficients, pure bond

investment would always be optimal with respect to the variance of the corresponding

wealth process.

(iii) The decomposition method to solve the optimization problem in the proof of parts

(b) and (c) of Proposition 2.1.4 will be crucial for some of the proofs later in this chapter.

Note how we use it to overcome the problem that f(π) is not differentiable in π = 0. �

The rest of this section is devoted to setting up a Markowitz mean-variance type op-

timization problem where we replace the variance constraint by a constraint on the CaR

of the terminal wealth. More precisely, we solve the following problem:

max
π∈�d

E(Xπ(T )) subject to CaR(x, π, T ) ≤ C , (2.1.14)

where C is a given constant of which we assume that it satisfies

C ≤ x exp(rT ) . (2.1.15)

Due to the explicit representations (2.1.4), (2.1.5) and a variant of the decomposition

method as applied in the proof of Proposition 2.1.4 we can solve problem (2.1.14) explicitly.
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Proposition 2.1.6 Let θ = ‖σ−1(b − r1)‖ and assume that bi �= r for at least one i ∈
{1, . . . , d}. Assume furthermore that C satisfies

0 ≤ C ≤ x exp(rT ) if θ
√
T < |zα|, (2.1.16)

x exp(rT )

(
1− exp

(
1

2
(
√
Tθ − |zα|)2

))
≤ C ≤ x exp(rT ) if θ

√
T ≥ |zα| . (2.1.17)

Then problem (2.1.14) will be solved by

π∗ = ε∗
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖

with

ε∗ = (θ + zα/
√
T ) +

√
(θ + zα/

√
T )2 − 2c/T ,

where c = ln
(
1− C

x
exp(−rT )). The corresponding maximal expected terminal wealth

under the CaR constraint equals

E
(
Xπ∗

(T )
)
= x exp

((
r + ε∗‖σ−1(b− r1)‖)T ) . (2.1.18)

Proof The requirements (2.1.16) and (2.1.17) on C ensure that the CaR constraint in

problem (2.1.14) cannot be ignored: in both cases C lies between the minimum and the

maximum value that CaR can attain (see also Proposition 2.1.4). Every admissible π for

problem (2.1.14) with ‖π′σ‖ = ε satisfies the relation

(b− r1)′πT ≥ c+
1

2
ε2T − zαε

√
T (2.1.19)

which is in this case equivalent to the CaR constraint in (2.1.14). But again, on the set

given by ‖π′σ‖ = ε the linear function (b− r1)′πT is maximized by

πε = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ . (2.1.20)

Hence, if there is an admissible π for problem (2.1.14) with ‖π′σ‖ = ε then πε must also

be admissible. Further, due to the explicit form (2.1.3) of the expected terminal wealth, πε

also maximizes the expected terminal wealth over the ellipsoid. Consequently, to obtain

π for problem (2.1.14) it suffices to consider all vectors of the form πε for all positive
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ε such that requirement (2.1.19) is satisfied. Inserting (2.1.20) into the left-hand side of

inequality (2.1.19) results in

(b− r1)′πεT = ε‖σ−1(b− r1)‖T , (2.1.21)

which is an increasing linear function in ε equalling zero in ε = 0. Therefore, we obtain

the solution of problem (2.1.14) by determining the biggest positive ε such that (2.1.19)

is still valid. But the right-hand side of (2.1.21) stays above the right-hand side of (2.1.19)

until their largest positive point of intersection which is given by

ε∗ = (θ + zα/
√
T ) +

√
(θ + zα/

√
T )2 − 2c/T ,

The remaining assertion (2.1.18) can be verified by inserting π∗ into equation (2.1.3). �

Remark 2.1.7 The principle of this proof follows an idea of Ralf Korn to optimize first

over the boundary of an ellipsoid and then to determine the optimal ellipsoid by the

condition on the risk measure. In the following chapters of this thesis we will take up this

method.

Remark 2.1.8 (i) Note that the optimal expected value only depends on the stocks via

the norm ‖σ−1(b − r1)‖. There is no explicit dependence on the number of stocks. We

therefore interpret Proposition 2.1.4 as a kind of mutual fund theorem as there is no

difference between investment in our multi-stock market and a market consisting of the

bond and just one stock with appropriate market coefficients b and σ.

(ii) Consider for a general utility function U(x) the problem of

max
π∈�d

E(U(Xπ(T ))) subject to CaR(x, π, T ) ≤ C.

The above method of solving the mean-CaR problem would still work as long asE(U(Xπ(T )))

is of the form f(x) exp(h(π)) with h a linear function. This is e.g. the case for the choice

of the HARA function U(x) = xγ/γ. It would also work for the log-utility case; i.e.

U(x) = ln x as then we would have

E(U(Xπ(T ))) = ln x+ rT + (b− r1)′πT − π′σσ′πT/2 .
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Here, instead of looking at the exponent, we can also look at

ln x+ rT − (b− r1)′πt− ε2T/2 ,

which for all π with ‖π′σ‖ = ε is a linear function in π. However, for reasons of comparison

to the Markowitz type problems below we restrict ourselves to the mean-CaR problem.

0 5 10 15 20
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00

b=0.1
b=0.15

Figure 2.1: CaR(1 000, 1, T ) of the pure stock portfolio (one risky asset only) for different appreciation

rates as a function of the planning horizon T ; 0 < T ≤ 20. The volatility is σ = 0.2. The riskless rate is

r = 0.05.

Example 2.1.9 Figure 2.1 shows the dependence of CaR on the time horizon illustrated

by CaR(1 000,1,T). Note that the CaR first increases and then decreases with time, a

behaviour which was already indicated by Proposition 2.1.4. It differs substantially from

the behaviour of the variance of the pure stock strategy, which increases with T . Figures 2.2

and 2.3 illustrate the behaviour of the optimal expected terminal wealth with varying

time horizon corresponding to the pure bond strategy and the pure stock strategy as

functions of the time horizon T . The expected terminal wealth of the optimal portfolio

even exceeds the pure stock investment. The reason for this becomes clear if we look at

the corresponding portfolios. The optimal portfolio always contains a short position in

the bond as long as this is tolerated by the CaR constraint. This is shown in Figure 2.4

where we have plotted the optimal portfolio together with the pure stock portfolio as

function of the time horizon. For b = 0.15 the optimal portfolio always contains a short
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position in the bond. For b = 0.1 and T > 5 the optimal portfolio (with the same CaR

constraint as in Figures 2.2 and 2.3) again contains a long position in both bond and stock

(with decreasing tendency of π as time increases!). This is an immediate consequence of

the increasing CaR of the stock price. For the smaller appreciation rate of the stock it

is simply not attractive enough to take the risk of a large stock investment. Figure 2.5

shows the mean-CaR efficient frontier for the above parameters with b = 0.1 and fixed

time horizon T = 5. As expected it has a similar form as a typical mean-variance efficient

frontier.

1 2 3 4 5
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00
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00

14
00

16
00

optimal
stock
bond

Figure 2.2: Expected terminal wealth of different investment strategies depending on the time horizon T ,

0 < T ≤ 5. The parameters are d = 1, r = 0.05, b = 0.1, σ = 0.2, and α = 0.05. As the upper bound C

of the CaR we used CaR(1 000, 1, 5), the CaR of the pure stock strategy with time horizon T = 5.

We will now compare the behaviour of the optimal portfolios for the mean-CaR with

solutions of a corresponding mean-variance problem. To this end we consider the following

simpler optimization problem:

max
π∈�d

E(Xπ(T )) subject to var(Xπ(T )) ≤ C . (2.1.22)

By using the explicit form (2.1.4) of the variance of the terminal wealth, we can rewrite
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Figure 2.3: Expected terminal wealth of different investment strategies depending on the time horizon T ,

0 ≤ T ≤ 20. The parameters are d = 1, r = 0.05, b = 0.1, σ = 0.2, and α = 0.05. As the upper bound

C of the CaR we used CaR(1 000, 1, 5), the CaR of the pure stock strategy with time horizon T = 5. On

the right border we have plotted the density function of the wealth for the optimal portfolio. It is always

between 0 and 0.0004.

the variance constraint in problem (2.1.22) as

(b− r1)′πT ≤ 1

2
ln

(
C

x2(exp(ε2T )− 1)

)
− rT =: h(ε), ‖π′σ‖ = ε (2.1.23)

for ε > 0. More precisely, if π ∈ R
d satisfies the constraints in (2.1.23) for one ε > 0

then it also satisfies the variance constraint in (2.1.22) and vice versa. Noting that h(ε)

is strictly decreasing in ε > 0 with

lim
ε↓0

h(ε) = ∞ lim
ε→∞

h(ε) = −∞

we see that left-hand side of (2.1.23) must be smaller than the right-hand one for small

values of ε > 0 if we plug in πε as given by equation (2.1.20). Recall that this was the

portfolio with the highest expected terminal wealth of all portfolios π satisfying ‖π′σ‖ = ε.

It even maximizes (b− r1)′πT over the set given by ‖π′σ‖ ≤ ε. If we have equality

(b− r1)′π�εT = h(ε̂) (2.1.24)

for the first time with increasing ε > 0 then this determines the optimal ε̂ > 0. To see

this, note that we have

E(Xπ(T )) ≤ E(Xπ
�ε(T )) for all π with ‖π′σ‖ ≤ ε̂ ,
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pure stock

Figure 2.4: For the same parameters as in Figure 2.2 and different appreciation rates the figure shows the

optimal portfolio and the pure stock portfolio.

and for all admissible π with ε = ‖π′σ‖ > ε̂ we obtain

(b− r1)′πT ≤ h(ε) < h(ε̂) = (b− r1)′π�εT .

By solving the non-linear equation (2.1.24) for ε̂ we have thus completely determined the

solution of problem (2.1.22):

Proposition 2.1.10 If bi �= r for at least one i ∈ {1, . . . , d}, then the optimal solution

of the mean-variance problem (2.1.22) is given by

π̂ = ε̂
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ ,

where ε̂ is the unique positive solution of the non-linear equation

‖σ−1(b− r1)‖εT − 1

2
ln

(
C

x2(exp(ε2T )− 1)

)
+ rT = 0 .

The corresponding maximal expected terminal wealth under the variance constraint equals

E(X�π(T )) = x exp
(
(r + ε̂ ‖σ−1(b− r1)‖)T ) . �

Example 2.1.11 Figure 2.6 below compares the behaviour of ε̂ and ε∗ as functions of the

time horizon. We have used the same data as in Example 2.1.9. To make the solutions of
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Figure 2.5: Mean-CaR efficient frontier with the mean on the horizontal axis and the CaR on the vertical

axis. The parameters are the same as in Figure 2.2.

problems (2.1.14) and (2.1.22) comparable we have chosen C differently for the variance

and the CaR risk measures in such a way that ε̂ and ε∗ concide for T = 5. Notice that C for

the variance problem is roughly the square of C for the CaR problem taking into account

that the variance measures an L2-distance, whereas CaR measures an L1-distance. The

(of course expected) bottom line of Figure 2.6 is that with increasing time the variance

constraint demands a smaller fraction of risky securities in the portfolio. This is also true

for the CaR constraint for small time horizons. For larger time horizon T (T ≥ 20) ε∗

increases again due to the fact that the CaR decreases. In contrast to that, ε̂ decreases

to 0, since the variance increases. �

2.2 Capital-at-Risk portfolios and more general price

processes

In this section we consider again the mean-CaR problem (2.1.14) but drop the assumption

of log-normality of the stock price process. The self-financing condition, however, will still
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Figure 2.6: ε̂ and ε∗ as functions of the time horizon; 0 < T ≤ 20. The parameters are the same as in

Figure 2.2.

manifest itself in the form of the wealth equation

dXπ(t)

Xπ(t−)
= (1− π′1)

dP0(t)

P0(t−)
+

d∑
i=1

πi
dPi(t)

Pi(t−)
, t > 0 , Xπ(0) = x ,

where Pi is the price process for stock i. Of course, the explicit form of the stochastic

process Pi is crucial for the computability of the expected terminal wealth Xπ(T ). To

concentrate on these tasks we simplify the model in assuming d = 1, a bond price given

by P0(t) = ert, t ≥ 0, as before, and a risky asset price satisfying

dP (t)

P (t−)
= bdt+ dY (t) , t > 0 , P (0) = p , (2.2.1)

where b ∈ R and Y is a semimartingale with Y (0) = 0. Under these assumptions the

choice of the portfolio π leads to the following explicit formula for the wealth process

Xπ(t) = x exp((r + π(b− r))t)E(πY (t))
= x exp((r + π(b− r))t) exp

(
πY c(t)− 1

2
π2 〈Y c〉t

)
×
∏

0<s≤t
(1 + π∆Y (s)) , t ≥ 0 ,

(2.2.2)

where Y c denotes the continuous part and ∆Y the jump part of the process Y (more

precisely, ∆Y (t) is the height of a (possible) jump at time t). This means that the wealth

process is a product of a deterministic process and the stochastic exponential E(πY ) of
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πY (see Protter (1990)). Analogously to Definition 2.1.1 we define the CaR in this more

general context.

Definition 2.2.1 Consider the market given by a riskless bond with price P0(t) = ert,

t ≥ 0, for r ∈ R and one stock with price process P satisfying (2.2.1) for b ∈ R and a

semimartingale Y with Y (0) = 0. Let x be the initial capital and T a given time horizon.

For some portfolio π ∈ R and the corresponding terminal wealth Xπ(T ) the α-quantile of

Xπ(T ) is given by

ρ̃(x, π, T ) = x exp((π(b− r) + r)T ) · z̃α ,

where z̃α is the α-quantile of E(πY (T )), i.e. z̃α = inf{z ∈ R : P (E(πY (T )) ≤ z) ≥ α}.
Then we call

CaR(x, π, T ) = x exp(rT )(1− exp(π(b− r)T ) · z̃α) (2.2.3)

the Capital-at-Risk of the portfolio π (with initial capital x and time horizon T ). �

One of our aims of this section is to explore the behaviour of the solutions to the

mean-CaR problem (2.1.14) if we model the returns of the price process by processes

having heavier tails than the Brownian motion. We present some specific examples in the

following subsections.

2.2.1 The Black-Scholes model with jumps

We consider a stock price process P , where the random fluctuations are generated by both

a Brownian motion and a compound jump process, i.e., we consider the model (2.2.1) with

dY (t) = σdW (t) +
n∑

i=1

(βidNi(t)− βiλidt) , t > 0 , Y (0) = 0 , (2.2.4)

where n ∈ N , and for i = 1, . . . , n the process Ni is a homogeneous Poisson process with

intensity λi. It counts the number of jumps of height βi of Y . In order to avoid negative

stock prices we assume

−1 < β1 < · · · < βn <∞ .
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An application of Itô’s formula results for t ≥ 0 in the explicit form

P (t) = p exp

((
b− 1

2
σ2 −

n∑
i=1

βiλi

)
t + σW (t) +

n∑
i=1

(Ni(t) ln(1 + βi))

)
.(2.2.5)

In order to avoid the possibility of negative wealth after an “unpleasant” jump we have

to restrict the portfolio π as follows

π ∈



[
− 1

βn
,− 1

β1

)
if βn > 0 > β1 ,(

−∞,− 1

β1

]
if βn < 0 ,[

− 1

βn
,∞
)

if β1 > 0 .

(2.2.6)
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Figure 2.7: Optimal portfolios for Brownian motion with and without jumps depending on the time

horizon T , 0 < T ≤ 20. The basic parameters are the same as in Figure 2.2. The possible jump size is

β = −0.1.

Under these preliminary conditions we obtain explicit representations of the expected

terminal wealth and the CaR corresponding to a portfolio π similar to the equations

(2.1.3) and (2.1.5).

Lemma 2.2.2 With a stock price given by equation (2.2.5) let Xπ be the wealth process

corresponding to the portfolio π satisfying (2.2.6). Then for initial capital x and finite

time horizon T ,
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Xπ(T ) = x exp((r + π(b− r)−
n∑

i=1

πβiλi − 1

2
π2σ2)T )

× exp(πσW (T ) +

n∑
i=1

Ni(T ) ln(1 + πβi)) ,

E(Xπ(T )) = x exp((r + π(b− r))T ),

CaR(x, π, T ) = x exp(rT )

(
1− exp

((
π(b− r)−

n∑
i=1

πβiλi − 1

2
π2σ2

)
T + z̃α

))
,

where z̃α is the α-quantile of

πσW (T ) +

n∑
i=1

(Ni(T ) ln(1 + πβi)) ,

i.e. the real number z̃α satisfying

α = P

(
πσW (T ) +

n∑
i=1

(Ni(T ) ln(1 + πβi)) ≤ z̃α

)

=
∞∑

n1,...,nn=0

(
Φ

(
1

|πσ|√T

(
z̃α −

n∑
i=1

(ni ln(1 + πβi))

))

× exp

(
−T

n∑
i=1

λi

)
n∏

i=1

(Tλi)
ni

ni!

)
.

(2.2.7)

Proof Xπ(T ) is a result of an application of Itô’s formula. To obtain the expected value

simply note that the two processes

exp

(
−1

2
σ2t + σW (t)

)
and exp

−
n∑

i=1

βiλit+

n∑
i=1

Ni(t)∑
j=1

ln(1 + βi)


are both martingales with unit expectation and that they are independent. Regarding

the representation of the CaR, only equation (2.2.7) has to be commented on. But this

is a consequence of conditioning on the number of jumps of the different jump heights in

[0, T ]. �

Unfortunately, z̃α cannot be represented in such an explicit form as in the case without

jumps. However, due to the explicit form of E(Xπ(T )), it is obvious that the corresponding

mean-CaR problem (2.1.14) will be solved by the largest π that satisfies both the CaR



26 Chapter 2. Optimal portfolios with bounded Capital-at-Risk

constraint and requirement (2.2.6). Thus for an explicit example we obtain the optimal

mean-CaR portfolio by a simple numerical iteration procedure, where we approximated

the infinite sum in (2.2.7) by the finite sum of its first 2[λT ] + 1 summands, if we set

n = 1 and λ = λ1. Comparisons of the solutions for the Brownian motion with and

without jumps are given in Figure 2.7.
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lambda=2
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pure bond
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lambda=0.3
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pure stock
pure bond

Figure 2.8: Wealth corresponding to the optimal portfolios for Brownian motion with and without jumps

depending on the time horizon T , 0 < T ≤ 5 (top) and 0 < T ≤ 20 (bottom). The parameters are the

same as in Figure 2.7. The possible jump size is again β = −0.1.

We have used the same parameters as in the examples of Section 2.1, but have included

the possibility of a jump of height β = −0.1, occuring with different intensities. For λ = 0.3

one would expect a jump approximately every three years, for λ = 2 even two jumps per
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year. Notice that the stock has the same expected terminal value in both cases! To explain

this we rewrite equation (2.2.5) as follows:

dP (t)

P (t−)
=

(
b−

n∑
i=1

βiλi

)
dt+ σW (t) +

n∑
i=1

βidNi(t) , t > 0 , P (0) = p .

Whereas a jump occurs for instance for λ = 0.3 on average only every three years, meaning

that with rather high probability there may be no jump within two years, the drift has

a permanent influence on the dynamic of the price process. Despite this additional stock

drift of −β ′λ the optimal portfolio for stock prices following a geometric Brownian motion

with jumps is always below the optimal portfolio of the geometric Brownian motion (solid

line). This means that the threat of a downwards jump of 10% leads an investor to a less

risky behaviour, and the higher λ is, the less risky is the investor‘s behaviour.

2.2.2 Generalized inverse Gaussian diffusion

Moving away from the Black-Scholes model towards more general diffusion models is

a rather obvious generalization. It is also desirable, since marginal distributions of the

log-returns of stock prices are often heavier tailed than normal. This has been shown

very convincingly, for instance, by a data analysis in Eberlein and Keller (1995). Various

models have been suggested: a simple hyperbolic model has been investigated by Bibby

and Sørensen (1997); a more general class of models has been suggested by Barndorff-

Nielsen (1998).

We consider a generalized inverse Gaussian diffusion model (for brevity we write GIG

diffusion) for the log-returns of stock prices. This class of diffusions has been introduced

in Borkovec and Klüppelberg (1998) and we refer to this source for details.

The following equations determine a general diffusion market.

dP0(t) = P0(t)rdt , P0(0) = 1 ,

dP (t) = P (t)(bdt+ dY (t)) , P (0) = p ,

Y (t) = U(t)− u , Y (0) = 0 ,

(2.2.8)

In our case we now choose U as a GIG diffusion given by the SDE

dU(t) = 1
4
σ2U2γ−2(t) (ψ + 2(2γ + λ− 1)U(t)− χU2(t)) dt

+σUγ(t)dW (t), U(0) = u > 0 ,
(2.2.9)
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where W is standard Brownian motion. The parameter space is given by σ > 0, γ ≥ 1/2,

χ, ψ ≥ 0, max(χ, ψ) > 0, and

λ ∈ R if χ, ψ > 0 ,

λ ≤ min(0, 2(1− γ)) if χ = 0, ψ > 0 ,

λ ≥ min(0, 2(1− γ)) if χ > 0, ψ = 0 .

(2.2.10)

The GIG model is a formal extension of the Black-Scholes model, which corresponds to

the choice of parameters γ = ψ = 0, λ = 1, χ = 0. It also contains the (generalized)

Cox-Ingersoll-Ross model as a special case. The advantage of our construction lies in the

structural resemblance of the resulting price process to the geometric Brownian motion

model. We can decompose the stock price into a drift term multiplied by a local martingale:

P (t) = p exp

(
bt +

1

4
σ2

∫ t

0

U2γ−2(s)
(
ψ + 2(2γ + λ− 1)U(s)− χU2(s)

)
ds

)
× exp

(
σ

∫ t

0

Uγ(s)dW (s)− 1

2
σ2

∫ t

0

U2γ(s)ds

)
, t ≥ 0 .

The following lemma shows another property of the process U that is useful, when de-

scribing the wealth process.

Lemma 2.2.3 Let U be the GIG diffusion given by (2.2.9) and π > 0. Then the process

Ũ = πU is again a GIG diffusion with Ũ(0) = πU(0) and parameters

σ̃ = σπ1−γ , ψ̃ = ψπ , χ̃ = χ/π . (2.2.11)

The parameters γ and λ remain the same.

Proof Notice first that all parameters of Ũ satisfy the necessary non-negativity assump-

tions and (2.2.9). The assertion now follows by calculating dŨ(t) = d(πU(t)) = πdU(t),

t ≥ 0. �

Remark 2.2.4 As a consequence of Lemma 2.2.3 the wealth process Xπ has a very nice

explicit form. Indeed it is of a similar form as the stock price process P :

Xπ(t) = x exp

(
(1− π)rt+ b̃t+ Ỹ (t)− 1

2
〈Ỹ 〉t

)
, t ≥ 0 , (2.2.12)
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where

b̃ = πb and Ỹ (t) = Ũ(t)− πu , t ≥ 0 ,

for any positive portfolio π. �

According to Definition 2.2.1 for the CaR(x, π, T ) we have to determine the α-quantile of

Ỹ (T ) − 1

2
〈Ỹ 〉T . Here we see one of the big advantages of the CaR as a risk measure: it

does not depend on the existence of moments. Even for an infinite mean it is well-defined.

However, if we want to solve the mean-CaR problem, we have to ensure that Xπ(T )

has a finite mean. In general, it is not always possible to easily decide if this is the case.

A natural assumption is to assume U(T ) or Ũ(T ) to have the stationary distribution of

the process U or Ũ respectively. This is certainly justified if the time horizon T is chosen

sufficiently large. As in Bibby and Sørensen (1998) we therefore make this simplifying

assumption which helps us to give a result about the existence of E(Xπ(T )).

Proposition 2.2.5 Assume that U(T ) and Ũ(T ) are GIG distributed with parameters ψ,

χ, λ and ψ̃, χ̃, λ respectively, i.e. they have the stationary distributions of the processes

U(·) and Ũ(·) respectively. Assume that π is a positive portfolio. Then Xπ(T ) has a finite

mean if χ̃ = χ/π > 2.

Proof As Ũ is always positive, we estimate

Xπ(T ) ≤ x exp
(
(1− π)rT + b̃T + Ũ(T )− πu

)
.

If E exp(Ũ(T )) <∞, then EXπ(T ) <∞. By Jørgensen (1982) we know the explicit form

of the moment generating function of the GIG distribution leading to

E
(
exp(Ũ(T ))

)
=

Kλ

(√
χψ(1− 2/χ̃)

)
Kλ

(√
χψ
)
(1− 2/χ̃)λ/2

, (2.2.13)

where Kλ(·) denotes the generalized Bessel function of the third kind. The rhs of equation

(2.2.13) is finite for χ̃ > 2. �
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Thus if the original parameters satisfy χ > 2 and π ∈ [0, 1], then also χ̃ > 2 and in this

case Xπ(T ) has a finite mean. In this case the mean-CaR problem is well-defined and can

be solved, however one cannot hope for an analytic solution. In the following example we

show how the mean-CaR problem can be solved using analytic properties of the process

as far as possible, and then present a simple simulation procedure to solve the problem

numerically.

Example 2.2.6 (Generalized Cox-Ingersoll-Ross model (GCIR))

As an example we consider the generalized Cox-Ingersoll-Ross model, i.e., the GIG market

model with parameters γ = 1, χ = 0. This results in the following explicit form for U :

U(t) = exp

(
1

2
σ2λt+ σW (t)

) {
u+

1

4
σ2ψ

∫ t

0

exp

(
−1

2
σ2λs− σW (s)

)
ds

}
, t ≥ 0 ,

which has mean

EU(t) =

 exp

(
(λ+ 1)

σ2

2
t

)(
u+

ψ

2(λ+ 1)

(
1− exp

(
−(λ + 1)

σ2

2
t

)))
if λ �= −1 ,

u+ 1
2
σ2ψt if λ = −1 ,

(see e.g. Borkovec and Klüppelberg (1998)). Further, note that we have

Y (t) = U(t)− u =
1

4
σ2ψt +

1

2
(1 + λ)σ2

∫ t

0

U(s)ds+ σ

∫ t

0

U(s)dW (s) (2.2.14)

and we obtain the same representations for Ũ(t) and Ỹ (t) if we substitute ψ by ψ̃ = πψ.

An explicit solution of the mean-CaR problem does not seem to be possible. What remains

are Monte-Carlo simulations and numerical approximations.

A simple algorithm to solve the mean-CaR problem would be the following:

For large N and i = 1, . . . , N :

• Simulate sample paths (Wi(t))t∈[0,T ] of the Brownian motion (W (t))t∈[0,T ].

• Compute realisations Ui(T ) and
∫ T

0
U2
i (t)dt of U(T ) and

∫ T

0
U2(t)dt, respectively,

from the simulated sample paths of (Wi(t))t∈[0,T ].

• For “all” π ∈ R compute

Z̃π
i (T ) = πUi(T )− 1

2
π2σ2

∫ T

0

U2
i (t)dt− πu.
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• Get estimators µ̂(π) for E(Xπ(T )) and ν̂(x, π, T ) for CaR(x, π, T ) :

µ̂(π) :=
x

N

N∑
i=1

exp
(
(r + (b− r)π)T + Z̃π

i (T )
)

ν̂(x, π, T ) := x exp(rT ) (1− exp (π(b− r)T + ẑα(π))) ,

where ẑα(π) is the α-quantile of the empirical distribution of the Z̃π
i (T ) with the

convention we already used in Definition 2.2.1.

• Choose the portfolio π with the largest value of µ̂(π) such that ν̂(x, π, T ) is below

the upper bound C for the CaR.

Of course, it is not possible to compute the quantities µ̂(π) and ẑα(π) for all π ∈ R explic-

itly. A practical method consists in choosing K = 100 values of π in a bounded interval

of interest and derive functions µ(π), zα(π) via interpolation. One then chooses that value

of π that solves the mean-CaR problem corresponding to these functions.
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Figure 2.9: Ten sample paths of (Z̃(t))0≤t≤20 for π = 1 (left) and ten sample paths of (Z̃π(20))π∈(0,1)

(right) for parameter values x = 1000, r = 0.05, b = 0.10, ψ = 4, λ = 0, σ = 0.05 and u = 5.

To give an impression of the behaviour of Z̃(t) the first diagram in Figure 2.9 shows

ten sample paths for the parameter values x = 1000, r = 0.05, b = 0.10, ψ = 4, λ = 0, σ =

0.05 and u = 5. The second diagram depicts the behaviour of Z̃(20) as a function of π.

Figure 2.10 shows a result of the simulation algorithm described above. It is the result of
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N = 100 simulations for T = 20 and the remaining parameters chosen as those of Figure

2.9. As expected, both the mean terminal wealth and the CaR increase with π. Therefore

the problem can be solved by identifying that portfolio π in the right side diagram that

corresponds to the given upper bound C for the CaR.
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Figure 2.10: Estimated expected terminal wealth (left) and the corresponding CaR (right) as functions of

the portfolio π for the GCIR model for T=20 and the same parameters as in Figure 2.9 (based on N=100

simulations). The expected terminal wealth and the CaR for the GCIR model increase for all π ∈ (0, 1).

2.3 Conclusion

We have investigated some simple portfolio problems containing an upper bound on the

CaR as an additional constraint. As long as we were able to calculate expectations and

quantiles of the stock prices in explicit form we could also solve the problems explicitly.

This can be done within a Gaussian world, but very little beyond. The Black-Scholes

model with jumps is just feasible and easily understood. As soon as one moves away

from such simple models the solution of the mean-CaR problems becomes less tractable

and Monte Carlo simulation and numerical solutions are called for. As an example we

treated the generalized Cox-Ingersoll-Ross model, which gave us a first impression of the

complexity of the problem.

In this sense this chapter should be understood as the starting point of a larger research

project. We indicate some of the problems we want to deal with in future work:
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– A deeper analysis should investigate the influence of the parameters of the generalized

inverse Gaussian; also other models should be investigated as for instance hyperbolic and

normal inverse Gaussian models (see Eberlein, Keller and Prause (1998) and Barndorff-

Nielsen (1998)).

– Investigate the optimization problem for other downside risk measures; replace for

instance the quantile in Definition 2.1.1 by the expected shortfall. Comparisons of re-

sults for the CaR with respect to the quantile and the shortfall can be found in Emmer,

Klüppelberg and Korn (2000).

– Replace the constant portfolio by a general portfolio process. Then we have to bring

in much more sophisticated techniques to deal with the quantiles of the wealth process,

and our method of solving the optimization problem explicitly will no longer work.
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Chapter 3

Optimal portfolios with bounded

lower partial moments

Lower partial moments as in (2.0.1) describe the downside risk of a portfolio, where

the concept has to be adapted to our situation and the benchmark has to be chosen

appropriately. In chapter 2 we considered a low quantile of the terminal wealth Xπ(T )

to define the risk of a portfolio by its Capital-at-Risk (CaR). The Capital-at-Risk with

respect to the quantile has several deficiencies, e.g. it is not coherent and it does not take

into account the shape of the distribution function on the left side of the quantile. Hence

we shall also consider lower partial moments order 0 and 1. In this chapter we discuss

some portfolio optimization under a constraint on the Capital-at-Risk with respect to the

expected shortfall (CaRS) and under a constraint on the shortfall probability below a

certain benchmark.

3.1 Expected shortfall portfolios in the Black-Scholes

setting

Definition 3.1.1 (Risk measures)

Let ρ be the quantile as defined in 2.1.1. For a portfolio π ∈ R
d, initial capital x > 0 and

time horizon T > 0 we define the following risk measures.

35
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(a) The expected shortfall of Xπ(T ):

ρ1(x, π, T ) = E(Xπ(T )|Xπ(T ) ≤ ρ(x, π, T )) .

(b) The semi-standard deviation of Xπ(T ):

ρ2(x, π, T ) =
√
E((Xπ(T ))2|Xπ(T ) ≤ ρ(x, π, T )) . �

Next we define the Capital-at-Risk (CaRS) with respect to the expected shortfall as

its difference to the pure bond strategy. This is different to some authors who take the

difference to the mean terminal wealth EXπ(T ) of exactly this portfolio, a quantity which

is called Earnings at Risk. Our definition has the advantage that different portfolios can

be compared with respect to their market risks.

Definition 3.1.2 (Capital-at-Risk)

We define the difference between the terminal wealth of the pure bond strategy and the

expected shortfall of Xπ(T ) as the Capital-at-Risk (CaRS) of the portfolio π with respect

to the expected shortfall (with initial capital x and time horizon T ). It is given by

CaRS(x, π, T ) = xerT − ρ1(x, π, T ) . �

Next we calculate the expected shortfall and the semi-standard deviation explicitly.

Proposition 3.1.3 Let (Xπ(t)) be the wealth process of a portfolio π in the Black-Scholes

market and ρ = ρ(x, π, t) be defined as in Definition 2.1.1. Denote by ϕ the density and

by Φ the distribution function of a standard normal random variable N(0, 1). Let T be a

fixed time horizon. Set

α∗ = Φ(zα − ‖π′σ‖
√
T ) and α∗∗ = Φ(zα − 2‖π′σ‖

√
T ) . (3.1.1)

and

a(x, π, T ) = x exp{(π′(b− r1) + r − ‖π′σ‖2/2)T} .

Then

α∗∗ < α∗ < α (3.1.2)
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and

ρ1(x, π, T ) = a(x, π, T )
α∗

α
exp

{‖π′σ‖2
2

T

}
, (3.1.3)

ρ2(x, π, T ) = a(x, π, T )

√
α∗∗

α
exp{‖π′σ‖2T}. (3.1.4)

Proof Recall the following identity in law

π′σ
‖π′σ‖

W (t)√
t

d
= N(0, 1), t > 0 , (3.1.5)

which implies

Xπ(T ) = a(x, π, T ) exp {π′σW (T )}
d
= a(x, π, T ) exp{N(0, 1)‖π′σ‖

√
T} . (3.1.6)

Furthermore, by definition, P (Xπ(T ) ≤ ρ0) = P (N(0, 1) ≤ zα) = α. Hence, for the

shortfall we obtain

ρ1(x, π, T ) =
E(Xπ(T )I(Xπ(T ) ≤ ρ0(x, π, T )))

P (Xπ(T ) ≤ ρ0(x, π, T ))

=
a(x, π, T )

α

∫ zα

−∞
exp{x‖π′σ‖

√
T}ϕ(x)dx,

where I(A) is the indicator function of the set A. We calculate the integral by change of

variables and obtain:

ρ1(x, π, T ) =
a(x, π, T )

α
exp{‖π′σ‖2T/2}Φ(zα − ‖π′σ‖

√
T ).

For the semi-standard deviation we obtain

ρ2(x, π, T ) =

√
E((Xπ(T ))2I(Xπ(T ) ≤ ρ0(x, π, T )))

P (Xπ(T ) ≤ ρ0(x, π, T ))

=

√
a2(x, π, T )

α

∫ zα

−∞
exp{2x‖π′σ‖

√
T}ϕ(x)dx

=

√
a2(x, π, T )

α
exp{2‖π′σ‖2T}Φ(zα − 2‖π′σ‖

√
T )

= a(x, π, T )

√
α∗∗

α
exp{‖π′σ‖2T}

�
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Corollary 3.1.4 ρ1(x, π, T ) ≤ ρ2(x, π, T ) ≤ ρ(x, π, T ).

Proof

ρ2(x, π, T )
2 = E((Xπ(T ))2|Xπ(T ) ≤ ρ(x, π, T )) ≤ ρ0(x, π, T )

2,

which implies ρ2(x, π, T ) ≤ ρ(x, π, T ), since ρ(x, π, T ) > 0 and ρ2(x, π, T ) > 0.

ρ2(x, π, T )
2 − ρ1(x, π, T )

2

= E((Xπ(T ))2|Xπ(T ) ≤ ρ(x, π, T ))− (E(Xπ(T )|Xπ(T ) ≤ ρ(x, π, T )))2

= E((Xπ(T )−E(Xπ(T )|Xπ(T ) ≤ ρ(x, π, T )))2|Xπ(T ) ≤ ρ(x, π, T ))

≥ 0,

which implies ρ2(x, π, T ) ≥ ρ1(x, π, T ), since ρ1(x, π, T ) > 0 and ρ2(x, π, T ) > 0. �

Now we want to analyse the behaviour of CaRS depending on the strategy π. Therefore

it will be convenient to introduce the function

f(π) = π′(b− r1)T + ln(Φ(zα − ‖π′σ‖
√
T )/α) , (3.1.7)

i.e. CaRS(x, π, T ) = xerT (1− ef(π)). Notice that

lim
‖π′σ‖→∞

f(π) = −∞ ,

hence the use of extremely risky strategies can lead to a risk which is close to the total

capital. The same is true for the measure ρ as was shown in chapter 2.

We shall frequently use the following estimate for the standard normal distribution;

see e.g. Gänssler and Stute (1977).

Lemma 3.1.5 Let x > 0. Then

(x−1 − x−3)(2π)−1/2 exp{−x2/2} ≤ 1− Φ(x) ≤ x−1(2π)−1/2 exp{−x2/2}

and
xΦ(x)

ϕ(x)
→ 1, x→ ∞
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Proposition 3.1.6 Set θ = ‖σ−1(b− r1)‖, ε = ‖π′σ‖ and α∗ = Φ(zα − ε
√
T ).

(a) If bi = r for all i = 1, . . . , d, then f(π) attains its unique maximum for π∗ = 0, i.e.

ε = 0 and CaRS(x, 0, T ) = 0. Moreover, for arbitrary ε > 0 and all π with

‖π′σ‖ = ε (3.1.8)

we have

f(π) = ln(Φ(zα − ε
√
T )/α) = ln(α∗/α) (3.1.9)

and

0 < CaRS(x, π, T ) = xerT (1− α∗/α) < xerT .

(b) If bi �= r for some i ∈ {1, . . . , d} and if
√
T ≤ ϕ(zα)

αθ
, then f(π) attains its unique

maximum only for π∗ = 0, i.e. ε = 0 and CaRS(x, 0, T ) = 0.

(c) If bi �= r for some i ∈ {1, . . . , d} and if
√
T > ϕ(zα)

αθ
and α < 0.15, i.e. zα < −1.1, then

f(π) attains its unique maximum for a strategy

π∗ = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖
such that (

2

3
θ + zα/

√
T

)+

< ε < θ + zα/
√
T . (3.1.10)

Denote by a ∨ b = max{a, b} and by a ∧ b = min{a, b}. Then

((
2

3
θ + zα/

√
T

)+

θT + ln

(
Φ(−2

3
θ
√
T ∧ zα)/α

))
∨
((
θ + zα/

√
T
)
θT + ln

(
Φ(−θ

√
T )/α

))
≤

f(π∗) ≤ (θ + zα/
√
T )θT + ln

(
Φ(−2

3
θ
√
T ∧ zα)/α

)
Let π∗ε = argmax{π∈�d:‖π′σ‖=ε}f(π).

If ε = 0, then f(π∗0) = 0 and hence CaRS(x, 0, T ) = 0.

If ε > 0, then

CaRS(x, π∗ε , T )


> 0 T <

ln(α/α∗)
εθ

< 0 T >
ln(α/α∗)

εθ

(3.1.11)
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Proof (a) If bi = r for all i = 1, . . . , d, then

f(π) = lnΦ((zα − ε
√
T )/α)

with ε = ‖π′σ‖ ≥ 0. Then the maximum over all non-negative ε is attained for ε = 0.

Due to the regularity of σ this is equivalent to π equalling zero.

(b)(c) Consider the problem of maximizing f(π) over all π which satisfy the requirement

(3.1.8) for a fixed positive ε. Over the (boundary of the) ellipsoid defined by (3.1.8) f(π)

equals

f(π) = π′(b− r1)T + ln(Φ(zα − ε
√
T )/α)

Thus the problem is just to maximise a linear function (in π) over the boundary of an

ellipsoid. This problem has the explicit solution

π∗ε = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ (3.1.12)

with

f(π∗ε) = εθT + ln(Φ(zα − ε
√
T )/α) .

As every π ∈ R
d satisfies relation (3.1.8) with a suitable value of ε (due to the fact that σ

is regular), we obtain the minimum strategy π∗ by maximizing f(π∗ε) over all non-negative

ε. Since

df(π∗ε)
dε

= θT −
√
T
ϕ(zα − ε

√
T )

Φ(zα − ε
√
T )

df(π∗ε)
dε

(0) < 0 if and only if
√
T <

ϕ(zα)

αθ
. Furthermore, using Lemma 3.1.5 we obtain

d2f(π∗ε)
dε2

= T
ϕ(zα − ε

√
T )

(Φ(zα − ε
√
T ))2

(Φ(zα − ε
√
T )(ε

√
T − zα)− ϕ(zα − ε

√
T ))

≤ T
ϕ(zα − ε

√
T )

(Φ(zα − ε
√
T ))2

(ϕ(zα − ε
√
T )− ϕ(zα − ε

√
T )) = 0 . (3.1.13)

This implies that
df(π∗ε)
dε

decreases in ε on (0,∞). Then the optimal ε is positive if and

only if
√
T > ϕ(zα)

αθ
. Thus,

√
T ≤ ϕ(zα)

αθ
implies assertion (b).

Now take
√
T > ϕ(zα)

αθ
. Then

df(π∗ε)
dε

(0) > 0 and
d2f(π∗ε)
dε2

< 0 ∀ε > 0 implies the uniqueness
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of an optimal ε. We shall derive bounds for this optimal ε. Notice that

f increases in ε ⇔ df(π∗ε)
dε

= θT −
√
T
ϕ(zα − ε

√
T )

Φ(zα − ε
√
T )

≥ 0

⇔ θ
√
TΦ(zα − ε

√
T )− ϕ(zα − ε

√
T ) ≥ 0.

Set ε1 =
2
3
θ + zα/

√
T , then

θ
√
TΦ(zα − ε1

√
T )− ϕ(zα − ε1

√
T ) = θ

√
TΦ(−2

3
θ
√
T )− ϕ(−2

3
θ
√
T ) .

Now define

P (y) =
3

2
yΦ(−y)− ϕ(−y) = 3

2
yΦ(y)− ϕ(y) , y > 0 ,

where we used the symmetry of the standard normal distribution. Taking the first deriva-

tive and using the fact that ϕ′(y) = −yϕ(y) we find that P (y) is increasing if and only

if yϕ(y)/Φ(y) < 3. Since the hazard rate ϕ(y)/Φ(y) of the standardnormal distribution

is increasing (see e.g. Gaede (1977)), yϕ(y)/Φ(y) is increasing in y > 0. Thus P (y) is

increasing till its unique maximum (where 3 = yϕ(y)/Φ(y)) and then always decreasing.

Furthermore, by l’Hospital, P (y) converges to 0 for y → ∞. Therefore, if P (y0) ≥ 0 for

some y0 > 0, then P (y) > 0 for all y > y0. But P (y) = 0 for y = 1.04. This implies that

P (
2

3
θ
√
T ) = θ

√
TΦ(−2

3
θ
√
T )− ϕ(−2

3
θ
√
T ) > 0 for θ

√
T > 1.5 · 1.04 = 1.56 .

But θ
√
T ≥ 1.56 is satisfied by condition θ

√
T ≥ ϕ(zα)

α
for α < 0.15, i.e. zα < −1.1. This

gives a lower bound ε+1 for the optimal ε.

Next we derive an upper bound. We know that

f decreases in ε ⇔ θ
√
TΦ(zα − ε

√
T )− ϕ(zα − ε

√
T ) ≤ 0. (3.1.14)

Since by Lemma 3.1.5

θ
√
TΦ(zα − ε

√
T )− ϕ(zα − ε

√
T ) ≤ ϕ(zα − ε

√
T )

(
θ
√
T

ε
√
T − zα

− 1

)

and ϕ(zα − ε
√
T ) > 0, f decreases in ε if

θ
√
T

ε
√
T − zα

− 1 ≤ 0 .
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Thus f decreases for ε ≥ ε2 := θ +
zα√
T
. Then

f(πε+1 ) ∨ f(πε2) ≤ f(π∗) ≤ ε2θT + ln(Φ(zα − ε+1
√
T )/α) ,

since

max
[ε+1 ,ε2]

εθT = ε2θT and max
[ε+1 ,ε2]

ln(Φ(zα − ε
√
T )/α) = ln(Φ(zα − ε+1

√
T )/α) .

The estimate (3.1.11) for the CaRS follows from the fact that f(π∗ε) < 0 or f(π∗ε) > 0

according as T < ln(α/α∗)/(εθ) or T > ln(α/α∗)/(εθ). �

Now we look at the problem:

max
π∈�d

E(Xπ(T )) subject to CaRS ≤ C. (3.1.15)

Proposition 3.1.7 Assume that C satisfies

0 ≤ C ≤ x exp{rT}.

If bi �= r for some i ∈ {1, . . . , d} then problem (3.1.15) will be solved by

π∗ = ε∗
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ (3.1.16)

with ε∗ between

zα − Φ−1(α exp(c− ( zα√
T
+ 2

3
θ)+θT ))

√
T

∨
(
2

3
θ +

zα√
T

)+

(3.1.17)

and

θ +
zα√
T

+

√
(θ +

zα√
T
)2 − 1

T
(z2α + 2c+ 2 ln(θ

√
2πTα)), (3.1.18)

where θ = ‖σ−1(b− r1)‖ and c = ln(1− C
x
e−rT ).

The corresponding maximal expected terminal wealth under the CaRS constraint (3.1.15)

equals

E(Xπ(T )) = x exp{(r + ε∗‖σ−1(b− r1)‖)T} (3.1.19)
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Proof Every admissible π for problem (3.1.15) with ‖π′σ‖ = ε satisfies the relation

CaRS(x, π, T ) = xerT (1− ef(π)) ≤ C (3.1.20)

which is equivalent to

f(π) ≥ c

with c = ln
(
1− C

x
exp (−rT )). On the set of portfolios given by ‖π′σ‖ = ε the linear

function (b− r1)′πT is maximised by

πε = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ . (3.1.21)

Hence, if there is an admissible π for problem (3.1.15) with ‖π′σ‖ = ε then πε must also

be admissible. Further, due to the explicit form (2.1.3) of the expected terminal wealth, πε

also maximizes the expected terminal wealth over the ellipsoid. Consequently, to obtain

an optimal π for problem (3.1.15) it is enough to consider all vectors of the form πε for all

positive ε such that requirement (3.1.20) is satisfied. Inserting (3.1.21) into the left-hand

side of inequality (3.1.20) results in

(b− r1)′πεT = ε‖σ−1(b− r1)‖T (3.1.22)

which is an increasing linear function in ε equalling zero in ε = 0. Therefore, we obtain

the solution of problem (3.1.15) by determining the biggest positive ε such that (3.1.20)

is still valid.

We shall derive bounds for this optimal ε.

Notice that for π = πε by (3.1.22)

(3.1.20) ⇔ f(π∗ε) = εθT + ln
(
Φ(zα − ε

√
T )/α

)
≥ c .

Since c < max
ε>o

f(π∗ε), by (3.1.10) we have

ε > argmaxε>0f(π
∗
ε) >

(
2

3
θ + zα/

√
T

)+

.

By (3.1.10) f(π∗ε) ≥ c is satisfied, when(
2

3
θ + zα/

√
T

)+

θT + ln
(
Φ(zα − ε

√
T )/α

)
≥ c .
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But this is equivalent to

ε ≤
(
zα − Φ−1

(
α exp

(
c−

(
2

3
θ + zα/

√
T

)+

θT

)))
/
√
T .

Thus f(π∗ε) ≥ c holds for all ε with

argmaxε>0f(π
∗
ε) < ε ≤

(
zα − Φ−1

(
α exp

(
c−

(
zα/

√
T +

2

3
θ

)+

θT

)))
/
√
T .

In (3.1.13) we have shown that f(πε) is increasing till its unique maximum and then de-

creasing. Hence we have to determine an ε > (zα−Φ−1(α exp(c−(zα/
√
T+ 2

3
θ)+θT )))/

√
T

as small as possible such that f(π∗ε) < c to find an upper bound for the optimal ε.

Since εθT + ln
(
Φ(zα − ε

√
T )/α

)
is decreasing for all ε greater than the optimal ε, we

know that

Φ(zα − ε
√
T ) ≤ ϕ(zα − ε

√
T )/(θ

√
T )

by (3.1.14). Notice that

f(π∗ε) < c⇔ eεθTΦ(zα − ε
√
T )/α < ec.

Since this implies that

eεθTΦ(zα − ε
√
T )/α ≤ eεθTϕ(zα − ε

√
T )/(θ

√
Tα),

we need to determine an ε with

exp(εθT − 1

2
(zα − ε

√
T )2)/(θ

√
2πTα) ≤ ec.

But this is equivalent to

−ε2T/2 + ε(θT + zα
√
T )− z2α/2− c− ln(θ

√
2πTα) ≤ 0

This inequality is satisfied for all

ε ≥ θ + zα/
√
T +

√
(θ + zα/

√
T )2 − (z2α + 2c+ 2 ln(θ

√
2πTα))/T .

Thus the optimal ε < θ + zα/
√
T +

√
(θ + zα/

√
T )2 − (z2α + 2c+ 2 ln(θ

√
2πTα))/T . �
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Figure 3.1: CaRS(1000, 1, T ) of the pure stock portfolio for different stock appreciation rates for 0 ≤ T ≤
20. The parameters are d = 1, r = 0.05, σ = 0.2, α = 0.05.

Example 3.1.8 Figure 3.1 describes the dependence of CaRS(x, π, T ) on time as illus-

trated by ρ̃1(1000, 1, T ) for b = 0.1 and b = 0.15. Note that for b = 0.15 the CaRS first

increases and then decreases with time, while for b = 0.1 the CaRS increases with time for

T < 20 and decreases only for very large T . The following figures illustrate the behaviour

of the optimal strategy and the maximal expected terminal wealth for varying planning

horizon T . In Figures 3.3 and 3.4 we have plotted the expected terminal wealth corre-

sponding to the different strategies as functions of the planning horizon T. For a planning

horizon T < 5 the expected terminal wealth of the optimal portfolio even exceeds the

pure stock investment. The reason for this becomes clear if we look at the corresponding

portfolios. The optimal portfolio always contains a short position in the bond as long

as this is tolerated by the CaRS constraint (see Figure 3.2). After 5 years the optimal

portfolio contains a long position in both bond and stock for b = 0.10. For b = 0.15 the

optimal portfolio contains a short position in the bond for all planning horizons. This is

due to the behaviour of CaRS of the stock price. For b = 0.10 CaRS is always much larger

than for b = 0.15 (see Figure 3.1). This leads to a smaller strategy for b = 0.10. Figure 3.5

shows the mean-CaRS efficient frontier for the above parameters with fixed tim T = 5.

As expected it has a similar form as a mean-variance efficient frontier.
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Figure 3.2: Optimal portfolios and pure stock portfolio for different stock appreciation rates. As upper

bound of the CaRS(x, π, T ) we took CaRS(1000, 1, 5, b = 0.1), the CaRS of the pure stock strategy with

time horizon T=5. All other parameters are chosen as in Figure 3.1.
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Figure 3.3: Expected terminal wealth of the optimal portfolio for b = 0.1 in comparison to the wealth of a

pure bond and a pure stock portfolio depending on the time horizon T, 0 < T ≤ 5. All other parameters

are chosen as in Figure 3.2.
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Figure 3.4: Expected terminal wealth of the optimal portfolio for b = 0.1 in comparison to the wealth of a

pure bond and a pure stock portfolio depending on the time horizon T, 0 < T ≤ 20. All other parameters

are chosen as in Figure 3.2.
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Figure 3.5: Mean-CaRS efficient frontier. The parameters are the same as in Figure 3.3.
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Figure 3.6: ε̂, ε∗ and ε∗∗ as functions of the time horizon for 0 ≤ T ≤ 20 and Ĉ = 107100, C∗∗ = 300

and C∗ = 384.

We will now compare the behaviour of the optimal portfolios for the mean-CaRS

problem with solutions of a corresponding mean-variance problem and with solutions of

a corresponding mean-CaR problem. These two corresponding problems are discussed in

chapter 2.

Example 3.1.9 Figure 3.6 compares the behaviour of ε̂, ε∗∗ and ε∗ as functions of the

time horizon, where ε̂ is the optimal ε for the mean-variance problem, ε∗∗ for the mean-

CaR problem and ε∗ for the mean-CaRS problem. We have used the same data as in

the foregoing example. To make the solutions of the three problems comparable we have

chosen C in such a way that ε̂, ε∗∗ and ε∗ coincide for T=5, i.e. for the variance C = 107100,

for the CaR of the quantile C = 384 and for the CaRS of the expected shortfall C = 300.

3.2 Expected shortfall portfolios and the Black-Scholes

model with jumps

In this section we consider again the mean-CaRS problem (3.1.15), but drop the assump-

tion of log-normality of the stock price process. We work with the Black-Scholes model

with jumps which we already introduced in section 2.2.
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Definition 3.2.1 Consider the market given by a riskless bond with price P0(t) = ert,

t ≥ 0, for r ∈ R and one stock with price process P satisfying (2.2.1) for b ∈ R and a

semimartingale Y with Y (0) = 0. Assume that the dynamic of the wealth process is given

by (2.2.2).

Let x be the initial capital and T a given time horizon. For some portfolio π ∈ R and

the corresponding terminal wealth Xπ(T ) the α-quantile ρ of Xπ(T ) is given by Definition

2.2.1. Then we call

CaRS(x, π, T ) = x exp{rT} −E(Xπ(T )|Xπ(T ) ≤ ρ(x, π, T )) (3.2.1)

the Capital-at-Risk (CaRS) with respect to the expected shortfall of the portfolio π (with

initial capital x and time horizon T ). �

The aim of this section is to explore the behaviour of the solutions to the mean-CaRS

problem (3.1.15) if we model the returns of the price process by a Brownian motion with

jumps. We present some specific examples.

Lemma 3.2.2 With a stock price given by equation (2.2.5) let (Xπ(t))t≥0 be the wealth

process corresponding to the portfolio π satisfying (2.2.6). Let ρ(x, π, T ) be the α-quantile

of Xπ(T ). Set

B(x, π, T ) = exp{(π(b− r)−
n∑

i=1

πβiλi)T}.

Then we have for some finite time horizon T:

E(Xπ(T )) = exp{(r + π(b− r))T} (3.2.2)

and

CaRS(x, π, T ) = xerT − E(Xπ(T )|Xπ(T ) ≤ ρ(x, π, T ))

= xerT

(
1− B(x, π, T )

α

∞∑
n1,...,nn=0

exp

{
n∑

i=1

ln(1 + πβi)ni − λiT

}

×
n∏

i=1

(λiT )
ni

ni!
Φ

(
1

|πσ|√T (z̃α −
n∑

i=1

ln(1 + πβi)ni − |πσ|2T )
))

.
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Here, z̃α is the α-quantile of

πσW (T ) +
n∑

i=1

ln(1 + πβi)Ni(T ),

i.e. the real number z̃α satisfying

α = P

(
πσW (T ) +

n∑
i=1

(ln(1 + πβi)Ni(T )) ≤ z̃α

)

=

∞∑
n1,...,nn=0

(
Φ

(
1

|πσ|√T

(
z̃α −

n∑
i=1

(ln(1 + πβi)ni)

))
e−T

�n
i=1 λi

n∏
i=1

(λiT )
ni

ni!

)

Proof To obtain the expected value see proof of Lemma 2.2.2. For the CaRS recall (3.1.5).

Hence for the shortfall we obtain

E(Xπ(T )|Xπ(T ) ≤ ρ(x, π, T ))

=
E(Xπ(T )I(Xπ(T ) ≤ ρ(x, π, T )))

P (Xπ(T ) ≤ ρ(x, π, T ))

=
B(x, π, T )

α
exp

{
−1

2
π2σ2T + rT

}
×

E

(
exp

{
πσW (T ) +

n∑
i=1

(Ni(T ) ln(1 + πβi))

}
I

(
πσW (T ) +

n∑
i=1

(Ni(T ) ln(1 + πβi)) ≤ z̃α

))

=
B(x, π, T )

α
exp

{
−1

2
π2σ2T + rT

} ∞∑
n1,...,nn=0

n∏
i=1

(λiT )
ni

ni!
exp

{
n∑

i=1

ni ln(1 + πβi)− λiT

}
×

1
|πσ|√T

(z̃α−
�n

i=1 ni ln(1+πβi))∫
−∞

exp{
√
T |πσ|x}ϕ(x)dx

=
B(x, π, T )

α
exp {rT}

∞∑
n1,...,nn=0

n∏
i=1

(λiT )
ni

ni!
exp

{
n∑

i=1

ni ln(1 + πβi)− λiT

}
×

Φ

(
1

|πσ|√T (z̃α −
n∑

i=1

ni ln(1 + πβi))− |πσ|
√
T

)

=
B(x, π, T )

α
exp{rT}

∞∑
n1,...,nn=0

exp

{
n∑

i=1

ni ln(1 + πβi)− λiT

}
×

Φ

(
1

|πσ|√T

(
z̃α −

n∑
i=1

(ni ln(1 + πβi))

)
− |πσ|

√
T

)
n∏

i=1

(λiT )
ni

ni!
.

�

Unfortunately, z̃α cannot be represented in such an explicit form as in the case without
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Figure 3.7: Optimal portfolios for Brownian motion with and without jumps depending on the time

horizon T, 0 ≤ T ≤ 5 for different jump parameters β = −0.1 and λ = 0.3 and λ = 2. The basic

parameters are the same as in Figure 3.3.

jumps. However, due to the explicit form of E(Xπ(T )), it is obvious that the corresponding

mean-CaRS problem will be solved by the largest π that satisfies both the CaRS constraint

and requirement (2.2.6). Thus for an explicit example we obtain the optimal mean-CaRS

portfolio by a simple numerical iteration procedure. Comparisons of the solutions for the

Brownian motion with and without jumps are given in Figure 3.7 and Figure 3.8.

Example 3.2.3 We have used the same parameters as in the examples of Section 3.1,

but have included the possibility of a jump of height β = −0.1, occuring with intensity

λ = 0.3, i.e. one would expect a jump approximately every three years, and with intensity

λ = 2, i.e. one would expect a jump twice a year. An optimal portfolio for stock prices

following a geometric Brownian motion with jumps is always below the optimal portfolio

of the geometric Brownian motion (solid line) and the higher the intensity λ the lower is

the portfolio. The reason for this is that the threat of a downwards jump of 10% leads an

investor to a less risky behaviour.
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Figure 3.8: Optimal portfolios for Brownian motion with and without jumps depending on the time

horizon T, 0 ≤ T ≤ 20 for different jump parameters β = −0.1 and λ = 0.3 and λ = 2. The basic

parameters are the same as in Figure 3.3.
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Figure 3.9: Expected terminal wealth corresponding to the optimal portfolios for Brownian motion with

and without jumps depending on the time horizon T, 0 ≤ T ≤ 5. The parameters are the same as in

Figure 3.7.
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Figure 3.10: Expected terminal wealth corresponding to the optimal portfolios for Brownian motion with

and without jumps depending on the time horizon T, 0 ≤ T ≤ 20. The parameters are the same as in

Figure 3.7.
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3.3 Shortfall probability portfolios in the Black-Scholes

setting

In Section 3.1 and 3.2 we considered lower partial moments of order one as risk measures in

different models. In this Section we consider again the Black-Scholes market explained in

Section 2.1, but move to lower partial moments of order 0 in this section, i.e. the shortfall

probability below a certain benchmark Z = Z(t)t≥0, which is defined by a stochastic

differential equation. We can think of this benchmark process as a market index, e.g.

the DAX or the Dow Jones index. This idea has the advantage that we can measure

risk relative to the behaviour of the market. Since we measure risk depending on this

benchmark, it seems to be useful to compare also the portfolio’s wealth to the benchmark.

Thus we maximize the expected ratio of the wealth of the portfolio and the benchmark

under a constraint on the shortfall probability below this benchmark. This has also the

advantage that we obtain an explicit closed form solution.

Definition 3.3.1 (Shortfall probability) Let a benchmark Z be defined as the solution

to the SDE

dZ(t) = Z(t)(µdt+ νdW (t)), t ≥ 0, Z(0) = x,

where µ > 0 is the appreciation rate, ν ∈ R
d is the volatility vector of the benchmark

and (W (t))t≥0 is the same d-dimensional Brownian motion as in (Xπ(t))t≥0. Then for a

portfolio π ∈ R
d, initial capital x > 0 and time horizon T > 0 we define the shortfall

probability of Xπ(T ) by

P (Xπ(T ) ≤ Z(T )).

Note that we modeled the correlation structure of the assets and the benchmark by linear

combinations of the same Brownian motion.

Next we calculate this shortfall probability explicitly.

Proposition 3.3.2 Let X = (Xπ(t))t≥0 be the wealth process of a portfolio π ∈ R
d in the

Black-Scholes market and (Z(t))t≥0 and the shortfall probability as in Definition 3.3.1.

Denote by Φ the df of a standard normal rv N(0,1). Let ‖π′σ − ν‖ > 0 and T be a fixed



3.3. Shortfall probability portfolios in the Black-Scholes setting 55

time horizon and set

A :=
1

2
‖π′σ − ν‖2 − π′(b− r1− σν)− r + µ− ν ′ν.

Then

P (Xπ(T ) ≤ Z(T )) = Φ

(
A
√
T

‖π′σ − ν‖

)
(3.3.1)

Proof Recall the following identity in law

(π′σ − ν)W (t)

‖π′σ − ν‖√t
d
= N(0, 1), t > 0,

and that Z and Xπ are driven by the same Brownian motion, which implies

Z(T )

Xπ(T )
= exp(AT + (ν − π′σ)W (T ))

d
= exp{AT} exp(‖π′σ − ν‖

√
TN(0, 1)) (3.3.2)

and hence by taking logarithms,

P (Xπ(T ) ≤ Z(T )) = P

(
Z(T )

Xπ(T )
≥ 1

)
= P (AT + ‖π′σ − ν‖

√
TN(0, 1) ≥ 0)

= Φ

(
A
√
T

‖π′σ − ν‖

)
�

Now we want to analyze the behaviour of the shortfall probability depending on the

strategy π. Therefore it will be convenient to introduce the function f(π) for the argument

of Φ in (3.3.1)

f(π) =

 1

2
‖π′σ − ν‖2 − π′(b− r1− σν)− r + µ− ν ′ν

‖π′σ − ν‖

√
T (3.3.3)

Since

f(π)
‖π′σ−ν‖→∞→ ∞,

we have

sup
π∈�d

P (Xπ(T ) ≤ Z(T )) = 1

In the following proposition we calculate the minimum shortfall probability.
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Proposition 3.3.3 Set θ = ‖(b− r1− σν)σ−1‖ and let ‖π′σ − ν‖ > 0.

(a) If σ′(µ− r) > ν ′(b− r1), then P (Xπ(T ) ≤ Z(T )) attains its minimum for

π∗ =
√

2(σ−1ν(b− r1)− r + µ)
(σσ′)−1(b− r1− σν)

‖(b− r1− σν)σ−1‖ + σ′−1ν (3.3.4)

with

P (Xπ∗
(T ) ≤ Z(T )) = Φ

((√
2(σ−1ν(b − r1)− r + µ)− θ

)√
T
)

(3.3.5)

(b) If σ′(µ− r) < ν(b− r1), then P (Xπ(T ) ≤ Z(T )) attains its minimum for π∗ = σ′−1ν

with P (Xπ∗
(T ) ≤ Z(T )) = 0.

Proof (a) Consider the problem of minimizing f(π) over all π which satisfy

‖π′σ − ν‖ = ε (3.3.6)

for a fixed positive ε. Over the (boundary of the) ellipsoid defined by (3.3.6) f(π) equals
√
T

ε
(
1

2
ε2 − π′(b− r1− σν)− r + µ− ν ′ν).

Thus the problem is to maximize a linear function (in π) over the boundary of an ellipsoid.

Such a problem has the explicit solution

π∗ε = σ′ν + ε
(σσ′)−1(b− r1− σν)

‖(b− r1− σν)σ−1‖ (3.3.7)

and

f(π∗ε) =
(
1

2
ε− θ +

µ− r − σ′−1ν(b − r1)

ε

)√
T . (3.3.8)

As every π ∈ R
d satisfies relation (3.3.6) with a suitable value of ε (due to the fact that σ

is regular), we obtain the minimum shortfall probability strategy π∗ by minimizing f(π∗ε)

over all non-negative ε. Due to the form of f(π∗ε) there is only a solution if µ−r−σ′−1ν(b−
r1) is positive. Under the condition σ′(µ− r) > ν ′(b− r1) the optimal ε is given as

ε =
√

2(µ− r − σ′−1ν(b− r1)). (3.3.9)

Inserting this into equations (3.3.7) and (3.3.8) yields the assertions (3.3.4) and (3.3.5)

(with the help of equations (3.3.1) and (3.3.3)).
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(b) Assertion (b) follows from fact that under the condition σ′(µ− r) < ν(b − r1) f(π∗ε)

tends to −∞ as ε tends to zero and hence the shortfall probability tends to zero. �

Since E(esW (1)) = es
2/2, s ∈ R , immediately by (3.3.2) we obtain the following explicit

formula for the expected relative terminal wealth for all T > 0.

E

(
Xπ(T )

Z(T )

)
= exp((π′(b− r1− σν) + r − µ+ ν ′ν)T ) (3.3.10)

Now we consider the following optimization problem:

max
π∈�d

E

(
Xπ(T )

Z(T )

)
subject to P (Xπ(T ) ≤ Z(T )) ≤ α ∈ [0, 1] , (3.3.11)

Due to the explicit representations (3.3.1) and (3.3.10) and we can solve the problem

explicitly.

Proposition 3.3.4 Let θ = ‖(b− r1− σν)σ−1‖ > 0. Assume that α satisfies

0 ≤ α ≤ 1 if σ′(µ− r) < ν(b− r1), (3.3.12)

Φ
((√

2(σ−1ν(b− r1)− r + µ)− θ
)√

T
)
≤ α ≤ 1 if σ′(µ− r) > ν(b− r1) .(3.3.13)

Then problem (3.3.11) has the unique solution

π∗ε = ε∗
(σσ′)−1(b− r1− σν)

‖(b− r1− σν)σ−1‖ + σ′−1ν, (3.3.14)

where

ε∗ = θ +
1√
T

(
zα +

√
(zα + θ

√
T )2 + 2T (σ′−1ν(b− r1) + r − µ)

)
> 0,

where zα is the α-quantile of the standard normal distribution.

The corresponding maximal expected relative terminal wealth under the shortfall probability

constraint equals

E

(
Xπ(T )

Z(T )

)
= exp((ε∗θ + σ−1ν ′(b− r1) + r − µ)T ). (3.3.15)
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Proof Requirements (3.3.12) and (3.3.13) ensure that the shortfall probability constraint

in problem (3.3.11) cannot be ignored: in both cases α lies between the minimum and

the maximum value the shortfall probability can attain see also Proposition 3.3.3. Every

admissible π for problem (3.3.11) with ‖π′σ − ν‖ = ε satisfies the relation

(b− r1− σν)′πT ≥ (−ν ′ν − r + µ)T +
1

2
ε2T − εzα

√
T (3.3.16)

which is in this case equivalent to the shortfall probability constraint in 3.3.11. But again,

on the set given by ‖π′σ − ν‖ = ε the linear function (b− r1− σν)′πT is maximized by

πε = σ′−1ν + ε
(σσ′)−1(b− r1− σ′ν)
‖(b− r1− σν)σ−1‖ . (3.3.17)

Hence, if there is an admissible π for problem (3.3.11) with ‖π′σ − ν‖ = ε then πε must

also be admissible. Further, due to the explicit form of the expected relative terminal

wealth (3.3.10), πε also maximizes the expected relative terminal wealth over the ellipsoid.

Consequently, to find π for problem (3.3.11) it suffices to consider all vectors of the form

πε for all positive ε such that requirement (3.3.16) is satisfied. Inserting (3.3.17) into the

left-hand side of inequality (3.3.16) results in

(b− r1− σν)′πT = σ′−1ν(b− r1− σν)T + ε‖(b− r1− σν)σ−1‖T (3.3.18)

which is an increasing function in ε equalling σ′−1ν(b− r1− σν)T in ε = 0. Therefore we

obtain the solution of problem (3.3.11) by determining the largest positive ε such that

(3.3.16) is still valid. But the right hand side of (3.3.18) stays above the right hand side

of (3.3.16) until their largest point of intersection which is given by

ε∗ = θ +
1√
T

(
zα +

√
(zα + θ

√
T )2 + 2T (σ′−1ν(b− r1) + r − µ)

)
. (3.3.19)

ε∗ > 0, since, if σ′−1ν(b−r1)+r−µ < 0,we have zα ≥
(√

2(σ−1ν(b− r1)− r + µ)− θ
)√

T

by (3.3.13) and hence
zα√
T

+ θ > 0. The remaining assertion (3.3.15) can be verified by

inserting π∗ into equation (3.3.10). �

Example 3.3.5 Figure 3.11 shows the dependence of the shortfall probability on the

time horizon. Note that the behaviour of the shortfall probability depends essentially on
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the choice of the stock parameters relative to the benchmark parameters. For d = 1 and

π = 1 the factor A in Proposition 3.3.2 reduces to
1

2
(σ2 − ν2) + µ − b. Whether the

shortfall probability is increasing or decreasing depends on the sign of A. For b = 0.7

and σ = 0.15 the factor A is positive and hence the shortfall probability is increasing

and converges to 1 for large time horizons T . For b = 0.15 and σ = 0.25 A is negative

and so the shortfall probability is decreasing and tends to 0 if the time horizon T tends

to ∞. In Figure 3.12 we have plotted the expected terminal wealth as a function of the

time horizon for the optimal, the pure stock, and the pure bond strategy for b = 0.15 and

σ = 0.25. Even the pure stock investment leads to a lower expected terminal wealth than

the optimal portfolio. The reason for this can be seen in Figure 3.13, which illustrates

the optimal portfolio with varying time horizon corresponding to the pure stock strategy

as a function of the time horizon. The optimal portfolio always contains a short position

in the bond as long as this is allowed by the shortfall probability constraint. In Figure

3.14 we have plotted the mean probability efficient frontier for the above parameters and

a fixed time horizon T = 5. As expected it has a similar form as a typical mean-variance

efficient frontier and as the mean-CaR and the mean-CaRS efficient frontiers.

0 5 10 15 20

0.
0

0.
4

0.
8

b=0.07, sigma=0.15
b=0.15, sigma=0.25

Figure 3.11: Shortfall probability of the pure stock portfolio (one risky asset only) for different appreciation

rates b and volatilities σ as a function of the planning horizon T ; 0 < T ≤ 20. The volatility of the

benchmark is ν = 0.2, its appreciation rate µ = 0.1 .
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Figure 3.12: Expected ratio of the terminal wealth of the portfolio and the benchmark for different

investment strategies depending on the time horizon T , 0 < T ≤ 20. The parameters are d = 1, r = 0.05,

µ = 0.1, ν = 0.2, b = 0.15, σ = 0.25. As upper bound for the shortfall probability we have chosen

α = 0.05.
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0
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pure stock

Figure 3.13: For the same parameters as in Figure 3.12 the figure shows the optimal portfolio and the

pure stock portfolio.
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Figure 3.14: Mean shortfall probability efficient frontier with the mean on the horizontal axis and the

shortfall probability on the vertical axis. The parameters are the same as in Figure 3.12 the planning

horizon is T = 5.
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Chapter 4

Optimal portfolios when stock prices

follow an exponential Lévy process

It is well-known that the normal distribution does not describe the behaviour of asset

returns in a very realistic way. One reason for this is that the distribution of real data

is often leptokurtic, i.e. it exhibits more small values than a normal law and has often

semi-heavy tails, in other words its curtosis is higher than the curtosis of the normal

distribution. Eberlein and Keller (1995) showed for instance the fit of the generalized

hyperbolic distribution to financial data in a very convincing way. Normal mixture models

like the normal inverse Gaussian and the variance gamma model play an increasing role

also in the financial industry. Consequently, to replace in the classical geometric Brownian

motion the Wiener process by some general Lévy process is an important improvement

of the classical Black-Scholes model.

Also certain changes to the classical Markowitz approach are called for. The traditional

risk measure has been the variance; however, it does not capture high risk sufficiently. This

has also been acknowledged by the regulatory authorities and financial institutions: the

Value-at-Risk (VaR) has been accepted as benchmark risk measure. The VaR is a low

quantile (typically the 5% or 1% quantile) of the profit-loss-distribution of a portfolio; see

e.g. Jorion (2000) for a textbook treatment.

Another deficiency of the variance is the well-known fact that the variance as a risk

measure is for exponential Lévy processes increasing with the time horizon. This is in

63
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contrast to the common wisdom of asset managers that in the long run stock investment

leads to an almost sure gain over riskless bond investment and hence the larger the

planning horizon, the greater should be the investment in risky stocks. For this reason we

also concentrate on portfolio optimization under a timely and more realistic risk constraint

based on the VaR. We replace the variance by the Capital-at-Risk (CaR) which is defined

via the Value-at-Risk (VaR). We define the CaR as the difference between the riskless

wealth and the VaR. We think of the CaR as the capital reserve in equity; see Emmer,

Klüppelberg, and Korn (2001).

In this paper we investigate some portfolio optimization problems, when the price pro-

cesses are governed by exponential Lévy processes. This large class of stochastic processes

includes the Brownian motion, but also processes with jumps. We explain some basic

theory of Lévy processes and refer to Bertoin (1996), Protter (1990) and, in particular,

Sato (1999) for relevant background.

Each infinitely divisible distribution function F on R
d generates a d-dimensional Lévy

process L by choosing F as distribution function of L(1). This can be seen immediately,

since the characteristic function of L(t) is for each t > 0 given by

E exp(isL(t)) = exp(tΨ(s)), s ∈ R
d, (4.0.1)

where Ψ has Lévy-Khintchine representation

Ψ(s) = ia′Ls−
1

2
s′β ′LβLs+

∫ ∞
−∞

(eis
′x − 1− is′x1{|x|≤1})νL(dx) , (4.0.2)

with aL ∈ R
d, β ′LβL is a non-negative definite symmetric d × d-matrix, and νL is a

measure on R
d satisfying ν({0}) = 0 and

∫
�d(|x|2 ∧ 1)ν(dx) < ∞. The term correspond-

ing to xI{|x|≤1} represents a centering without which the integral may not converge, i.e.∫∞
−∞(e

is′x − 1)νL(dx) may not be finite. The characteristic triplet (aL, β
′
LβL, νL) charac-

terizes the Lévy process. We often write (a, β ′β, ν) instead of (aL, β
′
LβL, νL), if it is clear

which Lévy process is concerned.

According to Sato (1999), Chapter 4, the following holds: for each ω in the probability

space, define ∆L(t, ω) = L(t, ω)− L(t−, ω). For each Borel set B ⊂ [0,∞)× R
d∗ (R d∗ =

R
d \ {0}) set

M(B, ω) = #{(t,∆L(t, ω)) ∈ B} . (4.0.3)
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Lévy’s theory says that M is a Poisson random measure with intensity

m(dt, dx) = dtν(dx) , (4.0.4)

where ν is the Lévy measure of the process L. Notice that m is σ-finite and M(B, ·) = ∞
a.s. when m(B) = ∞.

Take B = [a, b]× A, 0 ≤ a < b <∞, A a Borel set in R
d∗ then

M(B, ω) = #{(t,∆L(t, ω)) : a ≤ t ≤ b,∆L(t, ω) ∈ A}

counts jumps of size in A which happen in the time interval [a, b]. According to the above,

this is a Poisson random variable with mean (b− a)ν(A).

With this notation, the Lévy-Khintchine representation corresponds to the represen-

tation

L(t) = at+ βW (t) +
∑
0<s≤t

∆L(s)1{|∆L(s)|>1}

+

∫ t

0

∫
|x|≤1

x(M(dx, ds)− ν(dx)ds) , t ≥ 0 . (4.0.5)

This means that L(t) has a Brownian component βW (t) and a pure jump part with Lévy

measure ν, having the interpretation that a jump of size x occurs at rate ν(dx). This

representation reduces in the finite variation case to

L(t) = γt+ βW (t) +
∑
0<s≤t

∆L(s) , t ≥ 0 ,

where γ = a− ∫|x|≤1 xν(dx); i.e. L(t) is the independent sum of a drift term, a Brownian

component and a pure jump part.

The paper is organized as follows. In Section 2 we introduce the Lévy Black-Scholes

model and calculate the terminal wealth of a portfolio and its moments provided they exist.

In Section 3 we use these results for a portfolio optimization that consists of maximizing

the expected terminal wealth of a portfolio under some constraint on the variance. We

show different examples and demonstrate the solutions in various plots. In Section 4

we introduce the CaR, which is defined via a low quantile of the wealth process, and

discuss methods for its calculation and approximation. In Section 5 we optimize portfolios
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where we replace the variance by the CaR. We work out real life examples as the normal

inverse Gaussian and variance gamma model. Here we do not obtain closed form analytic

solutions, but solve the optimization problem by numerical algorithms. We also compare

the optimal portfolios for the mean-variance and the mean-CaR criterion. Section 6 is

devoted to the proof of the weak limit theorem which we need for the approximation

of the quantile of the wealth process. It involves some new results on the stochastic

exponential of a Lévy process.

4.1 The market model

We consider a standard Black-Scholes type market consisting of a riskless bond and several

risky stocks, which follow exponential Lévy processes. Their respective prices (P0(t))t≥0

and (Pi(t))t≥0, i = 1, . . . , d, evolve according to the equations

P0(t) = ert and Pi(t) = pi exp(bit+

d∑
j=1

σijLj(t)) , t ≥ 0 . (4.1.1)

Here (L(t))t≥0 = (L1(t), . . . , Ld(t))t≥0 is a d-dimensional Lévy process (stationary inde-

pendent increments with cadlag sample paths). We assume the Li, i = 1, . . . , d, to be

independent. L has characteristic triplet (a, β ′β, ν), where a ∈ R
d, β is an arbitrary d-

dimensional diagonal matrix. We introduce β as a diagonal matrix into the model to

allow for some extra flexibility apart from the σ = (σij)1≤i,j≤d. This also includes the

possibility of a pure jump process (for βi = 0). Since the components of βW are inde-

pendent Wiener processes with different variances possible, we allow for different scaling

factors for the Wiener process and the non-Gaussian components. By the independence

of the components we obtain for the Lévy measure ν of L and a d-dimensional rectangle

A = ×d
i=1(ai, bi] ⊂ R

d that ν(A) =
∑d

i=1 νi(ai, bi], where νi is the Lévy measure of Li for

i = 1, . . . , d; i.e. the Lévy measure is supported on the union of the coordinate axes (see

Sato (1999), E12.10, p. 67). Thus the probability that two components have a jump at the

same time point is zero; i.e. jumps of different components occur a.s. at different times.

The quantity r ∈ R is the riskless interest rate and σ = (σij)1≤i,j≤d is an invertible

matrix, b ∈ R
d can be chosen such that each stock has the desired appreciation rate. Since
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the assets are on the same market, they show some dependence structure which we model

by a linear combination of the same Lévy processes L1, . . . , Ld for each asset price. This

means the dependence structure of the market is the same as that of the Black-Scholes

market in Emmer, Klüppelberg, and Korn (2001).

We need the corresponding SDE in order to derive the wealth process. By Itô’s formula,

Pi is the solution to the SDE

dPi(t) = Pi(t−)(bidt+ dL̂i(t))

= Pi(t−)

((
bi +

1

2

d∑
j=1

(σijβjj)
2

)
dt+

d∑
j=1

σijdLj(t) (4.1.2)

+ exp(
d∑

j=1

σij∆Lj(t))− 1−
d∑

j=1

σij∆Lj(t)

)
, t > 0 , Pi(0) = pi ,

i.e. L̂i is such that exp(
∑d

j=1 σijLj(t)) = E(L̂i), where E denotes the stochastic exponential

of a process (see Protter (1990) for background on stochastic analysis).

Remark 4.1.1 We see that the formulae show some similarity to the classical Black-

Scholes model, in particular we have an additional Itô term in the drift component. But

we also recognize a big difference to the Black-Scholes model. First of all, it has jumps.

The jumps of L̂i occur at the same time as those of (σL)i =
∑d

j=1 σijLj , but they have

another size. A jump of size
∑d

j=1 σij∆Lj is replaced by one of size exp(
∑d

j=1 σij∆Lj)−1

leading to the term exp(
∑d

j=1 σij∆Lj)− 1−∑d
j=1 σij∆Lj in formula (4.1.2), whereas the

Brownian component remains the same as in (σL)i.

The following Lemma describes the relation between the characteristic triplets of a Lévy

process and its stochastic exponential, which we need in the sequel.

Lemma 4.1.2 (Goll and Kallsen (2000))

If L is a real-valued Lévy process with characteristic triplet (a, β2, ν), then also L̂ defined

by eL = E(L̂) is a Lévy process with characteristic triplet (â, β̂2, ν̂) given by

â− a =
1

2
β2 +

∫
((ex − 1)1{(|ex−1|<1} − x1{|x|<1})ν(dx)

β̂2 = β2 (4.1.3)

ν̂(Λ) = ν({x|ex − 1 ∈ Λ}) for any Borel set Λ ⊂ R
∗ .
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In the following Lemma the relation between the characteristic triplets of a d-dimensional

Lévy process L and its linear transformation π′L is given for π ∈ R
d.

Lemma 4.1.3 (Sato (1999), Prop. 11.10)

If L is a d-dimensional Lévy process with characteristic triplet (a, β ′β, ν), then π′L is for

π ∈ R
d a one-dimensional Lévy process with characteristic triplet (aπ, β

2
π, νπ) given by

aπ = π′a+
∫
πx′(1{|π′x|<1} − 1{|x|<1})ν(dx)

β2
π = ‖π′β‖2 (4.1.4)

νπ(Λ) = ν({x|π′x ∈ Λ}) for any Borel set Λ ⊂ R
∗ .

Let π(t) = (π1(t) . . . πd(t))
′ ∈ R

d be an admissible portfolio process, i.e. π(t) is the

fraction of the wealth Xπ(t), which is invested in asset i (see Korn (1997), Section 2.1 for

relevant definitions). The fraction of the investment in the bond is π0(t) = 1−π(t)1, where
1 = (1, . . . , 1)′ denotes the vector (of appropriate dimension) having unit components.

Throughout the paper, we restrict ourselves to constant portfolios; i.e. π(t) = π, t ∈ [0, T ],

for some fixed planning horizon T . This means that the fractions in the different stocks

and the bond remain constant on [0, T ]. The advantages of this restriction are discussed in

Emmer, Klüppelberg, and Korn (2001) and Sections 3.3 and 3.4 of Korn (1997). In order

to avoid negative wealth we require that π ∈ [0, 1]d, hence shortselling is not allowed in

this model. We also require π′1 ≤ 1; see Remark 4.1.4 below.

We want to indicate that it is at least not obvious how to derive a dynamic portfolio

optimization strategy. Schweizer (1984) determines a dynamic optimal portfolio for some

mean-variance optimization using a utility optimization approach. Kallsen (2000) opti-

mizes portfolios for exponential Lévy processes for different utility functions and obtains

constant optimal portfolios for power and logarithmic utility, but not for exponential util-

ity. By Fishburn (1977) and Harlow (1991), however, the mean-CaR optimization cannot

be solved using utility functions, since the corresponding utility function is not concave.

Denoting by (Xπ(t))t≥0 the wealth process, it follows the dynamic

dXπ(t) = Xπ(t−)
(
((1− π′1)r + π′b)dt+ π′dL̂(t)

)
, t > 0 , Xπ(0) = x ,
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where x ∈ R denotes the initial capital of the investor. Using Itô’s formula, this SDE has

solution

Xπ(t) = x exp(t(r + π′(b− r1)))E(π′L̂(t)) (4.1.5)

= x exp(aXt + π′σβW (t))X̃π(t) , t ≥ 0 , (4.1.6)

where aX is as in Lemma 4.1.5 and

ln X̃π(t) =

∫ t

0

∫
�d

ln(1 + π′(eσx − 1))1{| ln(1+π′(eσx−1))|>1}ML(ds, dx)

+

∫ t

0

∫
�d

ln(1 + π′(eσx − 1))1{| ln(1+π′(eσx−1))|≤1}(ML(ds, dx)− dsνL(dx)) , t ≥ 0 .

Remark 4.1.4 Note that a jump ∆L(t) of L leads to a jump ∆ lnXπ(t) of lnXπ of size

ln(1 + π′(eσ∆L(t) − 1)) and hence ∆ lnXπ(t) > ln(1− π′1), hence π′1 ≤ 1.

The wealth process is again an exponential Lévy process. We calculate the character-

istic triplet of its logarithm in the following Lemma.

Lemma 4.1.5 Consider model (4.1.1) with Lévy process L and characteristic triplet

(a, β ′β, ν). Define for the d× d-matrix σβ the vector [σβ]2 with components

[σβ]2i =

d∑
j=1

(σijβjj)
2, i = 1, . . . , d.

The process ln(Xπ/x) is a Lévy process with characteristic triplet (aX , β
2
X , νX) given by

aX = r + π′(b+ [σβ]2/2− r1 + σa)− ‖π′σβ‖2/2
+

∫
( ln(1 + π′(eσx − 1))1{| ln(1+π(eσx−1))|≤1} − π′σx1{|x|≤1})ν(dx) ,

β2
X = ‖π′σβ‖2 ,

νX(A) = ν({x| ln(1 + π(eσx − 1)) ∈ A}) for any Borel set A ⊂ R
∗ .

Proof The calculation of the characteristic triplet of E(π′L̂(t)) is an application of

Lemma 4.1.2 and Lemma 4.1.3. Then we obtain the characteristic triplet (aX , β
2
X , νX)

by equation (4.1.5). �
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For the calculation of moments of the wealth process we need the existence of the

moment generating function in some neighbourhood of 0. This corresponds to an analytic

extension of the characteristic function. The following lemma gives some condition when

this is possible.

Lemma 4.1.6 (Sato (1999), Theorem 25.17)

Let (X(t))t≥0 be a Lévy process on R
d with characteristic triplet (a, β ′β, ν). Let

C = {c ∈ R
d :

∫
|x|>1

ec
′xν(dx) <∞}.

(a) The set C is convex and contains the origin.

(b) c ∈ C if and only if Eec
′X(t) <∞ for some t > 0 or, equivalently, for every t > 0.

(c) If w ∈ C
d is such that Rew ∈ C, then

Ψ(w) = a′w +
1

2
w′β ′βw +

∫
�d

(ew
′x − 1− w′x1{|x|<1})ν(dx)

is definable, E|ew′X(t)| <∞, and E[ew
′X(t)] = etΨ(w).

Extending the characteristic function of lnXπ(t) on C as in Lemma 4.1.6 we obtain

for all k ∈ N , such that the k-th moment exists,

E[(Xπ(t))k] = xk exp((kaX + k2β2
X/2)T )E[(X̃

π(t))k], t ≥ 0

and

E[(X̃π(t))k] = exp(µ̃kt) , t ≥ 0 , (4.1.7)

where

µ̃k =

∫
�d

(
(1 + π′(eσx − 1))k − 1− k ln(1 + π′(eσx − 1))1{| ln(1+π′(eσx−1))|≤1}

)
ν(dx)

and ν is the Lévy measure of L. In particular,

E[X̃π(t)] = exp

(
t

∫
�d

(π′(eσx − 1)− ln(1 + π′(eσx − 1))1{| ln(1+π′(eσx−1))|≤1})ν(dx)
)
, t ≥ 0 .
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Proposition 4.1.7 Assume in the situation of equation (4.1.1) that L(1) has moment

generating function f̂(s) = E exp(s′L(1)) such that f̂(e′iσ) <∞ for i = 1, . . . , d, where ei

is the i-th d-dimensional unit vector. Let Xπ(t) be as in equation (4.1.5). Then

E [Xπ(t)] = x exp(t(r + π′(b− r1 + ln f̂(σ)))) , t ≥ 0 , (4.1.8)

and

var [Xπ(t)] = x2 exp(2t(r + π′(b− r1 + ln f̂(σ))))

× (exp(tπ′Aπ)− 1) , t ≥ 0 , (4.1.9)

where ln f̂(σ) = (ln f̂(e′1σ), . . . , ln f̂(e
′
dσ))

′ and A = (Aij)1≤i,j≤d with

Aij = ln f̂((ei + ej)
′σ)− ln f̂(e′iσ)− ln f̂(e′jσ) , 1 ≤ i, j ≤ d .

Proof Recall that (a, β ′β, ν) is the characteristic triplet of L. By equation (4.1.7) and

Lemma 4.1.5 we obtain for t ≥ 0:

E [Xπ(t)] =

x exp(t(r + π′(b− r1 +
1

2
[σβ]2 + σa+

∫
�d

(eσx − 1− σx1{|x|<1})ν(dx)))),(4.1.10)

var (Xπ(t)) = x2 exp

(
2t(r + π′(b− r1 +

1

2
[σβ]2 + σa +

∫
�d

(eσx − 1− σx1{|x|<1})ν(dx)))
)

×
(
exp

(
t(‖π′σβ‖2 +

∫
�d

(π′(eσx − 1))2ν(dx))

)
− 1

)
, (4.1.11)

On the other hand we calculate

f̂(e′iσ) = E exp(e′iσL(1)) = exp

(
(σa+ [σβ]2/2 +

∫
(eσx − 1− σx1{|x|<1})ν(dx))i

)
and

π′Aπ = ‖π′σβ‖2 +
∫
�d

(π′(eσx − 1))2ν(dx)).

Plugging this into (4.1.10) and (4.1.11) we obtain (4.1.8) and (4.1.9). �
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Remark 4.1.8 Note that for l = 1, . . . , d (i =
√−1)

ln f̂(e′lσ) = ln(E exp(
d∑

j=1

σljLj(1))) =
d∑

j=1

ln f̂j(σlj) = ln(E[E(L̂l)(1)]) =
d∑

j=1

Ψj(−iσlj)

by the independence of L1, . . . , Ld. This implies in particular

EE(π′L̂(t)) =
d∏

l=1

(E[E(L̂l(t))])
πl.

Remark 4.1.9 For d = 1 our portfolio consists of one bond and one stock only.

(a) Formula (4.1.9) reduces to

var(Xπ(t)) = x2 exp(2t(r + π(b− r + ln(f̂(σ))))) (4.1.12)

×
(
exp(π2t(ln(f̂(2σ))− 2 ln(f̂(σ))))− 1

)
.

Moreover, we can set w.l.o.g. σ = 1. In this case the Lévy density fX of the process lnXπ

can be calculated from the Lévy density fL of νL as

fX(x) = fL

(
ln

(
ex − 1

π
+ 1

))
ex

ex − (1− π)
1{x>ln(1−π)}, x ∈ R .

(b) In the case of a jump part of finite variation we obtain for t ≥ 0,

E [Xπ(t)] = x exp(t(r + π(b− r +
1

2
β2 + γ + µ̂))) , (4.1.13)

var (Xπ(t)) = x2 exp

(
2t(r + π(b− r + γ + µ̂+

1

2
β2))

)
× (exp (π2t(β2 + µ̂2 − 2µ̂)

)− 1
)
, (4.1.14)

for µ̂ =
∫
(ex − 1)ν(dx), µ̂2 =

∫
(e2x − 1)ν(dx), and γ = a− ∫|x|<1

xν(dx) .

4.2 Optimal portfolios under variance constraints

In this section we consider the following optimization problem using the variance as risk

measure
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max
{π∈[0,1]d|π′1≤1}

E[Xπ(T )] subject to var(Xπ(T )) ≤ C , (4.2.1)

where T is some given planning horizon and C is a given bound for the risk.

Theorem 4.2.1 Let L be a Lévy process with representation (4.0.5). Then the optimal

solution of problem (4.2.1) is given by

π∗ = ε∗(A−1(b− r1 + ln f̂(σ)))/
√
ã (4.2.2)

where

ã = (b− r1 + ln f̂(σ))′A−1(b− r1 + ln f̂(σ))

(provided π∗ ∈ [0, 1]d and π∗1 ≤ 1) where ln f̂(σ) and the matrix A are defined in Propo-

sition 4.1.7 and ε∗ is the unique positive solution of

rT +
√
ãεT +

1

2
ln

(
x2

C

(
exp(Tε2)− 1

))
= 0 . (4.2.3)

Remark 4.2.2 If the solution to (4.2.3) does not satisfy π∗ ∈ [0, 1]d and π∗1 ≤ 1, then

the problem can be solved by the Lagrange method using some numerical optimization

algorithm, for example the SQP method (sequential quadratic programming) (see e.g.

Nocedal and Wright (1999) and Boggs and Tolle (1995)). If for d = 1 the solution of

(4.2.3) leads to π∗ > 1, the optimal π∗ = 1.

Proof of Theorem 4.2.1. Following the proof of Proposition 2.9 of Emmer, Klüppelberg,

and Korn (2001), where the same optimization problem has been solved for geometric

Brownian motion, we obtain (4.2.2) as the portfolio with the highest terminal wealth over

all portfolios satisfying π′Aπ = ε2. Plugging (4.2.2) into the explicit form (4.1.11) of the

variance of the terminal wealth the constraint has the same form as in Proposition 2.9

of Emmer, Klüppelberg, and Korn (2001). Hence the result follows from a comparison of

constants. The only difference to the optimization problem in Emmer, Klüppelberg, and

Korn (2001) is the constraint π∗ ∈ [0, 1]d and π∗1 ≤ 1, which we took care of. �
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Remark 4.2.3 In the finite variation case and for d = 1 where we choose w.l.o.g. σ = 1

(4.2.3) can be rewritten in the form

rT + π

(
b− r + γ + µ̂+

1

2
β2

)
T +

1

2
ln

(
x2

C

(
exp

(
π2
(
β2 + µ̂2 − 2µ̂

)
T
)− 1

))
= 0

with µ̂, µ̂2 and γ as in Remark 4.1.9(b).

Remark 4.2.4 One can also start with a general d-dimensional Lévy process Lg with

arbitrary characteristic triplet (ag, cg, νg) and consider the model

Pi(t) = pi exp((Lg)i(t)) , t ≥ 0.

Using Lemmata 4.1.2 and 4.1.3 the characteristic triplet of ln(Xπ(t)/x) is then

aXg = r + π(ag − r + (c∆g − cgπ)/2) +

∫
(l(x)1{|l(x)|≤1} − πx1{|x|≤1})νg(dx)

cXg = π′cgπ

νXg(Λ) = νg({x ∈ R
d : l(x) ∈ Λ}),

where c∆g = (cg11, . . . , cgdd) and l(x) = ln(1 + π′(ex − 1)). Then using the same argumen-

tation as above we obtain for t ≥ 0

E(Xπ(t)) = x exp(t(r + π(ag − r1 + c∆g /2 +

∫
(ex − 1− x1{|x|≤1})νg(dx))))

and

var(Xπ(t)) = x2 exp

(
2t(r + π(ag − r1 + c∆g /2 +

∫
(ex − 1− x1{|x|≤1})νg(dx)))

)
×
(
exp

(
t(π′cgπ +

∫
(π′(ex − 1))2νg(dx))

)
− 1

)
.

The optimal portfolio for the mean-variance optimization is then

π∗ = ε∗c−1a/
√
a′c−1a,

with a := ag − r1 + c∆g /2 +
∫
(ex − 1− x1{|x|≤1})νg(dx)

and cij := cgij +
∫
(exi − 1)(exj − 1)νg(dx),

where ε∗ is the unique positive solution of

2T
√
ac−1aε+ ln

(
x2

C
(eTε2 − 1)

)
= 0.
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This solution is derived analogously to Theorem 4.2.1. We prefer, however, to work with a

linear dependence structure, since it allows for nice formulae and can also be interpreted

easily. It is a special case of the general model such that

ag = b+ σa+

∫
σx(1{|σx|≤1} − 1{|x|≤1})ν(dx

cg = (σβ)′(σβ)

νg(Λ) = ν({x ∈ R
d : σx ∈ Λ}) ∀Λ ⊂ R

d∗

and

(Lg)i(t) = bit+
∑
j

σijLj(t) = bit + (σL)i(t), t ≥ 0.

In the following we consider some examples in order to understand the influence of the

jumps on the choice of the optimal portfolio. For simplicity we take d = 1 in these examples

and hence we choose w.l.o.g. σ = 1. In the case of jumps of finite variation we choose γ

such that the expected wealth processes are equal to make the results comparable. Then

the influence of the jumps is shown in the risk measure, here the variance.

Example 4.2.5 (Exponential Brownian motion with jumps)

Let Y1, Y2, . . . be iid random variables with distribution p on R
∗ and (N(t))t≥0 a Poisson

process with intensity c > 0, independent of the Yi. Then L(t) :=
∑N(t)

i=1 Yi, t ≥ 0, defines a

compound Poisson process with Lévy measure ν(dx) = cp(dx). The Lévy process (L(t))t≥0

is taken as the sum of a Brownian motion with drift (βW (t) + γt)t≥0, and the compound

Poisson process (L(t))t≥0.

If ĝ(s) = EesY <∞, then

f̂(s) = E exp(sL(1)) = exp(c(ĝ(s)− 1)) .

If ĝ(1) resp. ĝ(2) exists, then we obtain the corresponding µ̂ resp. µ̂2 in Remark 4.1.9(b)

as

µ̂ = c(ĝ(1)− 1) and µ̂2 = c(ĝ(2)− 1) .

The drift γ = −1
2
β2− µ̂ is chosen such that the asset price has the same expectation as in

the Black-Scholes model in Emmer, Klüppelberg, and Korn (2001), Section 2. By (4.1.13)
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and (4.1.14) we obtain for t ≥ 0

Xπ(t) = x exp

(
t(r + π(b− µ̂− r)− 1

2
π2β2) + πβW (t)

)N(t)∏
i=1

(1 + π(eYi − 1)) ,

E[Xπ(t)] = x exp(t(r + π(b− r))) ,

var(Xπ(t)) = x2 exp(2t(r + π(b− r)))
(
exp(π2t(β2 + c(ĝ(2)− 2ĝ(1) + 1)))− 1

)
.

The exponential compound Poisson process (β = 0) and the exponential Brownian motion

(c = 0) are special cases of this example. Figure 4.1 shows sample paths for a jump

scenario, namely possible jumps of height -0.1, i.e. a downwards jump of 10% of the Lévy

process L, with intensity 2; i.e. we expect 2 jumps per year.

Zeit t
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00
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Figure 4.1: Ten sample paths of an asset in the exponential Black-Scholes model with compensated jumps

of height -0.1 and intensity 2, its expectation (dashed line) and standard deviation (dotted lines). The

parameters are x = 1 000, b = 0.1 and r = 0.05.

Example 4.2.6 (Exponential normal inverse Gaussian (NIG) Lévy process)

The normal inverse Gaussian Lévy process has been introduced by Barndorff-Nielsen

(1977) and investigated further in Barndorff-Nielsen and Shephard (2001). It belongs to

the class of generalized hyperbolic Lévy processes. The applicability of this class of Lévy

processes to finance is also discussed in Eberlein and Raible (2000). Their fit is empirically

convincing; see Eberlein and Keller (1995). The normal inverse Gaussian Lévy model is a
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normal variance-mean mixture model such that

L(t) = ρ+ λζ2(t) +W (ζ2(t)) , t ≥ 0

where ζ2(t) ∼ IG(t2δ2, ξ2 − λ2), W is a standard Brownian motion and ξ ≥ |λ| ≥ 0,

δ > 0, ρ ∈ R . This process is uniquely determined by the distribution of the increment

L(1) whose density is given by

nig(x; ξ, λ, ρ, δ) :=
ξ

π
exp

(
δ
√
ξ2 − λ2 + λ(x− ρ)

) K1(δξg(x− ρ))

g(x− ρ)
, x ∈ R ,

where g(x) =
√
δ2 + x2 and K1(x) =

1
2

∫∞
0

exp(−x(y + y−1)/2)dy, x > 0, is the modified

Bessel function of the third kind of order one. Note that for s > 0 the density of L(t +

s)−L(t), t ≥ 0, is given by nig(x, ξ, λ, sρ, sδ). The parameter ξ is a steepness parameter,

i.e. for larger ξ we get less large and small jumps and more jumps of middle size, δ is a

scale parameter, λ is a symmetry parameter and ρ a location parameter. For ρ = 0 and

λ = 0 (symmetry around 0) the characteristic triplet (0, 0, ν) of a NIG Lévy process is

given by

ν(dx) =
δξ

π
|x|−1K1(ξ|x|)dx , x ∈ R

∗ .

Since
∫
|x|≤1 |x|ν(dx) = ∞ the sample paths of L are a.s. of infinite variation in any finite

interval. The moment generating function of L(1) is for the NIG distribution given by

f̂(s) = E exp(sL(1)) = exp(δ(ξ −
√
ξ2 − s2)) ,

(see e.g. Raible (2000), Example 1.6). We use (4.1.5), (4.1.8), and (4.1.9) to obtain for

t ≥ 0

Xπ(t) = x exp(t(r + π(b− r)))E(πL̂(t)) ,
E [Xπ(t)] = x exp(t(r + π(b− r + δ(ξ −

√
ξ2 − 1))) ,

var (Xπ(t)) = x2 exp(2t(r + π(b− r + δ(ξ −
√
ξ2 − 1)))))

×
(
exp

(
π2t(2

√
ξ2 − 1− ξ −

√
ξ2 − 4)δ

)
− 1
)
.

To obtain the same expected wealth as in Example 4.2.5 we have to choose b such that b =

bBS − δ(ξ−
√
ξ2 − 1), where bBS is b as chosen in Example 4.2.5. Figures 4.2 show sample

paths for a geometric NIG-Lévy process with certain parameter values. For comparison to

the CaR-optimization the Figure showing the optimal portfolio can be found in Section 4.3
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Figure 4.2: Ten sample paths of the exponential NIG-Lévy process with ξ = 8 and δ = 0.32 (left) and

with ξ = 2 and δ = 0.08 (right), its expectation E(expL(T )) (dotted line) and expectation±standard

deviation (dashed lines) for x = 1 000, bBS = 0.1, and r = 0.05.

Example 4.2.7 (Exponential variance gamma (VG) Lévy process)

This normal-mean mixture model is of the same structure as the NIG model and has

been suggested by Madan and Seneta (1990). Its non-symmetric version can be found in

Madan, Carr and Chang (1998):

L(t) = µ− δζ2(t) +W (ζ2(t)) , t ≥ 0 ,

where µ, δ ∈ R , W is a standard Brownian motion and ζ2(t) is a Γ-Lévy process, i.e.

ζ2(t+ s)− ζ2(t) ∼ Γ(ξs, θ) for parameters ξ, θ > 0; i.e. ζ2(1) has density

h(x; ξ, θ) =
xξ−1

Γ(ξ)θξ
e−x/θ , x > 0 .

By conditioning on ζ2(t) we obtain the characteristic function

E exp(isL(t)) = exp(isµt)E[exp(−(isδ − s2/2)ζ2(t)]

=
exp(isµt)

(1− isθδ + s2θ/2)ξt
= etΨ(s) , t ≥ 0 ,

where Ψ(s) = iµs − ξ ln(1 − isθδ + s2θ/2). Thus µ = γ, β = 0, hence L is a pure jump

process with Lévy density

ν(dx) =
ξ

|x| exp
(
−
√

2

θ
+ δ2 |x| − δx

)
dx , x ∈ R

∗ .
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Since
∫
|x|≤1 |x|ν(dx) < ∞, the sample paths of L are a.s. of finite variation in any fi-

nite interval; furthermore, those jumps are dense in [0,∞), since ν(R ) = ∞; see Sato

(1999). The properties of this model are similar to those of the NIG model, since both are

normal-mean variance mixture models and their Lévy measures have similar properties.

An interesting empirical investigation has been conducted by Carr et al. (2001).

In order to calculate the wealth process and its mean and variance we use (4.1.5) and

Remark 4.1.9(b). We observe that E exp(isL(1)) = eΨ(s) is analytic around 0, hence

ln f̂(1) = Ψ(−i) = µ− ξ ln(1− θδ − θ/2) <∞ ,

ln f̂(2) = Ψ(−2i) = 2µ− ξ ln(1− 2θδ − 2θ) <∞ .

Next we calculate

a = γ +

∫
|x|≤1

x
ξ

|x| exp
(
−
√

2

θ
+ δ2 |x| − δx

)
dx

= µ− ξθδ + ξθ
c2
2
ec1 − ξθ

c1
2
ec2 ,

where

c1 = −
(√

2

θ
+ δ2 + δ

)
and c2 = −

(√
2

θ
− δ2 + δ

)
We obtain for t ≥ 0

Xπ(t) = x exp(t(r + π(b− r + µ)))
∏
s≤t

(1 + π(e∆L(s) − 1))

E[Xπ(t)] = x exp(t(r + π(b− r − ξ ln(1− θδ − θ/2) + µ)))

var(Xπ(t)) = x2 exp(2t(r + π(b− r − ξ ln(1− θδ − θ/2) + µ)))

× (exp (ξπ2t (2 ln(1− θδ − θ/2)− ln(1− 2θδ − 2θ))
)− 1

)
.

There are different possible choices of parameters such that the expected wealth is the

same as in Example 4.2.5. The simplest one is to choose b as in Example 4.2.5 and

µ = ξ ln(1− θδ − θ/2). Alternatively, set µ = δ = 0 such that the process L is symmetric

around 0 and choose b = bBS + ξ ln(1− θ/2), where bBS is b as chosen in Example 4.2.5.

Remark 4.2.8 Since Examples 4.2.6 and 4.2.7 have so many parameters, we can always

attain the same expectation and variance for all three examples. But the shape of the
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distributions differs as can be seen in Figure 4.8. The variance gamma distribution is

also leptokurtic as the NIG. For illustration, Figure 4.3 shows ten sample paths of the

exponential variance gamma Lévy process, its expectation and standard deviation as a

function of the planning horizon 0 < T ≤ 20 for different parameters. Expectation and

standard deviation are increasing with the planning horizon T . This leads to a decreasing

optimal portfolio in Figure 4.4, where we use the same parameters as in Figure 4.3 (left)

and the constraint var(Xπ(T )) ≤ 100 000. Note that the optimal portfolio is the same for

all Lévy processes with the same mean and variance.
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Figure 4.3: Ten sample paths of the exponential variance gamma Lévy process with ξ = 0.1, δ = 0,

θ = 0.35 and µ = −0.019 (left) and with ξ = 0.2, δ = 0, θ = 0.2 and µ = −0.022 (right), its expectation

E(expL(T )) and expectation±standard deviation for x = 1 000, b = 0.1, and r = 0.05.

Example 4.2.9 (Meixner model)

The Meixner model was introduced by Grigelionis (1999) and discussed for applications

in finance by Schoutens (2001). The distribution of the increment L(1) of the Meixner

process is the Meixner distribution (see e.g. Schoutens (2001)) given by the density

meixner(x; ξ, θ,m, δ) =
(2 cos(θ/2))2δ

2ξπΓ(2δ)
exp

(
θ(x−m)

ξ

) ∣∣∣∣Γ(δ + i(x−m)

ξ

)∣∣∣∣2 , x ∈ R ,

where ξ > 0, −π < θ < π, δ > 0, and m ∈ R . The Meixner process has no Brownian

component and
∫
|x|≤1 |x|ν(dx) = ∞, i.e. its paths are of infinite variation in any finite

interval, and γ does not exist. Its characteristic triplet is (a, 0, ν), where

a = m+ ξδ tan(θ/2)− 2δ

∫ ∞
1

sinh(θx/ξ)

sinh (πx/ξ)
dx
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Figure 4.4: Optimal portfolio in the exponential variance gamma Lévy model with ξ = 0.1, δ = 0, θ = 0.35

and µ = −0.019 for the same parameters as in Figure 4.3 (left) under the constraint var(Xπ(t)) ≤ 100 000.

and

ν(dx) = δ
exp(θx/ξ)

x sinh(πx/ξ)
dx

(see e.g. Grigelionis (1999)). By (4.1.8) and (4.1.12) we can calculate the expectation of

the wealth of the portfolio and its variance via the moment generating function of L(1),

which is for the Meixner distribution given by

f̂(s) = E exp(sL(1)) =

(
cos(θ/2)

cos(−(sξ + θ)/2)

)2δ

esm

for s �= −((2k + 1)π + θ)/ξ for all k ∈ Z . Hence we obtain

ln f̂(1) = 2δ ln

(
cos(θ/2)

cos(−(ξ + θ)/2)

)
+m,

ln f̂(2) = 2δ ln

(
cos(θ/2)

cos(−(2ξ + θ)/2)

)
+ 2m.

Plugging these results into (4.1.8) and (4.1.12) we obtain for t ≥ 0

E[Xπ(t)] = x exp(t(r + π(b− r +

(
2δ ln

(
cos(θ/2)

cos(−(ξ + θ)/2)

)
+m

)
)))

= x

(
cos(θ/2)

cos(−(ξ + θ)/2)

)2δπt

exp(t(r + π(b− r +m)))

var(Xπ(t)) = x2
(

cos(θ/2)

cos(−(ξ + θ)/2)

)4δπt

exp (2t(r + π(b− r +m)))×
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×
( (cos(−(ξ + θ)/2))2

cos(θ/2) cos(−(2ξ + θ)/2)

)2δπ2t

− 1


Figures 4.5 and 4.6 show the expectation (± standard deviation) of a Meixner Process

and the optimal portfolio in the Meixner model for certain parameters. In our examples

we have chosen

m = −2δ ln

(
cos(θ/2)

cos(−(ξ + θ)/2)

)
such that

E[Xπ(t)] = x exp((r + π(b− r))t), t ≥ 0.
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Figure 4.5: Expectation E(exp(L(T ))) and expectation±standard deviation of the exponential Meixner

process with ξ = 0.03, θ = 0.13, δ = 142.5 and m = −0.31 (left) and with ξ = 0.015, θ = −0.014, δ = 290

and m = 0.015 (right), for x = 1 000, b = 0.1, and r = 0.05.
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Figure 4.6: Optimal portfolio in the exponential Meixner Lévy model with ξ = 0.03, β = 0.13, δ = 142.5

and m = −0.31 for the same parameters as in Figure 4.5 under the constraint var(Xπ(t)) ≤ 100 000.

4.3 The Capital-at-Risk - calculation and approxima-

tion

In this section we replace the variance by the Capital-at-Risk (CaR). Before we pose

and solve the mean-CaR optimization problem, we define the CaR and indicate some

properties. We further show how it can be determined (approximated) in the case of a

general Lévy process.

Definition 4.3.1 Let x be the initial capital and T a given planning horizon. Let fur-

thermore zα be the α-quantile of the distribution of E(πL̂(T )) for some portfolio π ∈
[0, 1]d, π′1 ≤ 1, and Xπ(T ) the corresponding terminal wealth. Then the Value-at-Risk

(VaR) is given by

VaR(x, π, T ) = inf{z ∈ R : P (Xπ(T ) ≤ z) ≥ α} = xzα exp((π
′(b− r1) + r)T ) .

We define

CaR(x, π, T ) = x exp(rT )− VaR(x, π, T ) = x exp(rT ) (1− zα exp(π
′(b− r1)T ))(4.3.1)

the Capital-at-Risk (CaR) of the portfolio π (with initial capital x and time horizon T ).
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The calculation of the CaR involves the quantile zα of E(πL̂(T )), which is quite a

complicated object as we have seen in Lemma 4.1.5. To calculate its distribution explic-

itly is certainly not possible for Examples 4.2.6 and 4.2.7. One possibility would be to

calculate the characteristic function of E(πL̂(T )) using its characteristic triplet as given

in Lemma 4.1.2. From this then one could approximate its density using the inverse Fast

Fourier transform method, which is explained later in this section. However, the compli-

cated expressions of its characteristic triplet in combination with the complicated integral

in the Lévy-Khinchine formula seems to advise a different approach. As an alternative

method we suggest an approximation method based on a weak limit theorem.

For simplicity we restrict ourselves to d = 1 and invoke an idea used for instance by

Bondesson (1982) and Rydberg (1997) for simulation purposes and made mathematically

precise by Asmussen and Rosinski (2000). The intuition behind is to approximate small

jumps of absolute size smaller than ε by a simpler stochastic process, often by Brownian

motion, such that the stochastic part of the Lévy process is approximated by an indepen-

dent sum of a Brownian motion and a compound Poisson process. Before we study the

applicability of their results to approximate quantiles of the wealth process, we explain

the idea.

In a first step the small jumps with absolute size smaller than some ε > 0 are replaced

by their expectation. This leads to the process

Lε(t) = µ(ε)t+ βW (t) +N ε(t) , t ≥ 0, (4.3.2)

where µ(ε) is defined below, and

L(t)− Lε(t) =

∫ t

0

∫
|x|<ε

x(M(dx, ds)− ν(dx)ds) , t ≥ 0 .

In a second step the contribution from the variation of small jumps is also incorporated.

To this end we use the following representation

L(t) = t

(
a−

∫
ε<|x|≤1

xν(dx)

)
+ βW (t)

+
∑
0<s≤t

∆L(s)1{|∆L(s)|≥ε} +
∫ t

0

∫
|x|<ε

x(M(dx, ds)− ν(dx)ds, t ≥ 0.
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Set

µ(ε) = a−
∫
ε≤|x|≤1

xν(dx) and N ε(t) =
∑
s≤t

∆L(s)1{|∆L(s)|≥ε} .

In order to replace the small jumps by some Gaussian term, we need that for ε→ 0

σ(ε)−1(L(t)− (µ(ε)t+ βW (t) +N ε(t))) = σ(ε)−1(L(t)− Lε(t))
d→ W ′(t) , t ≥ 0,(4.3.3)

for some Brownian motion W ′, where

σ2(ε) =

∫
|x|<ε

x2ν(dx), ε > 0 . (4.3.4)

We denote by
d→ weak convergence in D[0,∞) uniformly on compacta; see Pollard (1984).

In the finite variation case (4.3.3) can be rewritten to

σ(ε)−1
(∑

0<s≤t
∆L(s)I(|∆L(s)| < ε)− E

[∑
0<s≤t

∆L(s)I(|∆L(s)| < ε)

])
d→W ′(t), t ≥ 0.

This reminds of the classical central limit theorem and the Brownian motion as limit

process. Here we can see that the standardized process of the small jumps converges to

Brownian motion as the jump size ε tends to 0. In fact, since Gaussian part and jump

part are independent, the Brownian motion W ′ is independent of W , and this justifies

the approximation in distribution

L(t) ≈ µ(ε)t+ (β2 + σ2(ε))
1
2W (t) +N ε(t) , t ≥ 0 .

Proposition 4.3.2 [Asmussen and Rosinski (2000)]

(a) A necessary and sufficient condition for (4.3.3) to hold is

lim
ε→0

σ(hσ(ε) ∧ ε)
σ(ε)

= 1 ∀h > 0 . (4.3.5)

(b) limε→0 σ(ε)/ε = ∞ implies (4.3.5). If the Lévy measure does not have atoms in some

neighbourhood of 0, then condition (4.3.5) is equivalent to limε→0 σ(ε)/ε = ∞.

We want to invoke this result to approximate quantiles of E(πL̂(T )). We do this in two

steps: firstly, we approximate E(πL̂(T )), secondly, we use that convergence of distribution
functions implies also convergence of their generalized inverses; see Proposition 0.1 of

Resnick (1987). This gives us the approximation of the quantiles.
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Lemma 4.3.3 Recall model (4.1.1) and (4.1.2) for d = 1 and σ = 1; i.e. L = ln E(L̂)
and L̂ are Lévy processes with Lévy measures ν and ν̂ respectively. Then

σ2(ε) =

∫
(−ε,ε)

x2ν(dx) =

∫
(e−ε−1,eε−1)

(ln(1 + x))2ν̂(dx) ,

σ̂2(ε) =

∫
(−ε,ε)

x2ν̂(dx) =

∫
(ln(1−ε),ln(1+ε))

(ex − 1)2ν(dx) , .

(4.3.6)

Proof The transformation from L to L̂ only affects the jumps, which are related by

∆L(s) = ln(1 + ∆L̂(s)) for s ≥ 0. We calculate

σ2(ε) = E

[∑
s≤1

(∆L(s))21{|∆L(s)|<ε}

]

= E

[∑
s≤1

(ln(1 + ∆L̂(s)))21{e−ε−1<∆�L(s)<eε−1}

]

=

∫
(e−ε−1,eε−1)

(ln(1 + x))2ν̂(dx) .

The calculation of σ̂2 is analogous.

We formulate the following main result of this section. The proof is postponed to

Section 4.5.

Theorem 4.3.4 Let Zε, ε > 0, be Lévy processes without Gaussian component and Y ε =

ln E(Zε) their logarithmic stochastic exponentials with characteristic triplets (aZ , 0, νZ)

and (aY , 0, νY ) as defined in Lemma 4.1.2; for notational convenience we suppress ε. Let

g : R → R
+ with g(ε) → 0 as ε → 0. Let V be a Lévy process. Then equivalent are as

ε→ 0,

Zε(t)

g(ε)

d→ V (t) , t ≥ 0 , (4.3.7)

Y ε(t)

g(ε)

d→ V (t) , t ≥ 0 . (4.3.8)

We apply this result to approximate ln E(πL̂) for π ∈ (0, 1] as follows:

Corollary 4.3.5 Let L be a Lévy process and Lε the process given in (4.3.2). Let fur-

thermore E←(exp(L)) = L̂ be such that EL̂ = exp(L) with characteristic triplet given in

Lemma 4.1.2. Then

σ(ε)−1(L(t)− Lε(t))
d→ V (t) , t ≥ 0 (4.3.9)
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is equivalent to

(πσ(ε))−1( ln E(πE←(exp(L(t))))− ln E(πE←(exp(Lε(t)))))
d→ V (t) , t ≥ 0. (4.3.10)

For the proof of this Corollary we need the following Lemma.

Lemma 4.3.6 Let L be a Lévy process and Lε as defined in (4.3.2). Then

ln E(πE←(exp(L(t)− Lε(t)))) = ln E(πE←(exp(L(t))))− ln E(πE←(expLε(t)))), t ≥ 0.

Proof Since

L(t)− Lε(t) =

∫ t

0

∫
|x|<ε

x(M(dx, ds)− ν(dx)ds) , t ≥ 0 ,

we obtain by Itô’s formula

ln E(πE←(exp(L(t)− Lε(t)))) =

∫ t

0

∫
|x|<ε

ln(1 + π(ex − 1))(M(dx, ds)− ν(dx)ds)

+

∫ t

0

∫
|x|<ε

(ln(1 + π(ex − 1))− πx)ν(dx)ds, t ≥ 0.

Again using Itô’s formula we calculate

ln E(πE←(exp(L(t))))
= π(a +

1

2
(1− π)β2)t+ πβW (t) +

∫ t

0

∫
|x|>1

ln(1 + π(ex − 1))M(dx, ds)

+

∫ t

0

∫
|x|≤1

ln(1 + π(ex − 1))(M(dx, ds)− ν(dx)ds)

+

∫ t

0

∫
|x|≤1

(ln(1 + π(ex − 1))− πx)ν(dx)ds , t ≥ 0 ,

and

ln E(πE←(expLε(t)))) = π(a−
∫
ε<|x|≤1

xν(dx) +
1

2
(1− π)β2)t + πβW (t)

+

∫ t

0

∫
|x|>ε

ln(1 + π(ex − 1))M(dx, ds) , t ≥ 0 . (4.3.11)

Calculating the difference of the last two terms leads to the assertion. �
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Proof of Corollary 4.3.5 Setting g(ε) := σ(ε) and Y ε := L − Lε in Theorem 4.3.4 we

obtain that (4.3.9) holds if and only if

σ(ε)−1E←(exp(L(t)− Lε(t)))
d→ V (t), t ≥ 0 (4.3.12)

where E←(exp(L) = L̂ is such that EL̂ = exp(L). Applying Theorem 4.3.4 to g(ε) := πσ(ε)

and Zε(t) := πE←(exp(L(t)− Lε(t))) leads to the equivalence of (4.3.12) and

(πσ(ε))−1 ln E(πE←(exp(L(t)− Lε(t))))
d→ V (t), t ≥ 0.

Lemma 4.3.6 leads to the assertion of the Corollary. �

From this corollary and (4.3.11) we conclude the following approximation for ln E(πL̂(t)),
which is needed for the calculation of the CaR in Definition 4.3.1.

Proposition 4.3.7

ln E(πL̂(t)) ≈ ln E(πE←(Lε(t)))) + πσ(ε)V (t)

= γεπt + πβW (t) +Mε
π(t) + πσ(ε)V (t) , t ≥ 0.

If V is a Brownian motion, then

ln E(πL̂(t))) ≈ γεπt + π(β2 + σ2(ε))1/2W (t) +Mε
π(t) , t ≥ 0.

We have the following representations

γεπ = π(µ(ε) +
1

2
β2(1− π)) ,

Mε
π(t) =

∑
s≤t

ln(1 + π(e∆L(s)1{|∆L(s)|>ε} − 1)) ;

i.e. Mε
π is a compound Poisson process with jump measure

νMε
π
(Λ) = νL({x : ln(1 + π(ex − 1)) ∈ Λ}\(−ε, ε))

for any Borel set Λ ⊂ R . Moreover, if the Lévy measure νL has a density ν ′L, the density

of the Lévy measure νM of the process Mε
π is given by

ν ′M(x) = ν ′L

(
ln

(
ex − 1

π
+ 1

))
ex

ex − (1− π)
1{x>ln(1−π)}1{| ln((ex−1)/π+1)|>ε}
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and thus the Poisson intensity of Mε
π is

∫
�
ν ′M(x)dx. The density of the jump sizes of Mε

π

is given by ν ′M(x)/
∫
ν ′M(y)dy,x ∈ R .

By Proposition 0.1 of Resnick (1987) we obtain the corresponding approximation for

the α-quantile zα of E(πL̂(T )), where T is some fixed planning horizon.

Proposition 4.3.8 With the quantities as defined in Proposition 4.3.7 we obtain

zα ≈ zεα(π) = inf{z ∈ R : P (γεπT +Mε
π(T ) + πβW (T ) + πσL(ε))V (T ) ≤ ln z) ≥ α} .

Moreover, if V is a Brownian motion, then

zα ≈ zεα(π) = inf{z ∈ R : P (γεπT +Mε
π(T ) + π(β2 + σ2

L(ε))
1/2W (T ) ≤ ln z) ≥ α} .

We obtain

VaR(x, π, T ) ≈ xzεα(π) exp((π(b− r) + r)T ) , (4.3.13)

CaR(x, π, T ) ≈ x exp(rT )(1− zεα(π) exp(π(b− r)T )) . (4.3.14)

We have now reduced the problem of the calculation of a low quantile of ln E(πL̂(T ))
and only have to determine a low quantile of the sum of the compound Poisson vari-

able Mε
π(T ), the normal distributed variable πβW (T ), and the limit variable πσ(ε)V (T ).

Therefore we calculate first the density fT of Mε
π(T ) + πβW (T ) + πσ(ε)V (T ) using the

Fast Fourier transform method, henceforth abbreviated as FFT. If hM is the Lévy density

of Mε
π we have for the characteristic function of Mε

π(1) + πβW (1) + πσ(ε)V (1)

φM+πβW+πσ(ε)V (u) =

∫ ∞
−∞

eiuxf1(x)dx = φM(u)φπβW (u)φπσ(ε)V (u),

where

φM(u) = exp(νMε
π
(R )(φY (u)− 1)) ,

φY (u) =

∫
eiuxνMε

π
(R )−1νMε

π
(dx) =

∫
eiuxνMε

π
(R )−1hM (x)dx ,

φπβW (u) = exp
(−u2π2β2/2

)
and φπσ(ε)V (u) is given by Lemma 4.1.3 and the Lévy-Khintchine formula. For g(x) =

hM(x)/νMε
π
(R ) and g(x) = f1(x) respectively we approximate the integrals in the following
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way:

choose a number n ∈ {2d|d ∈ N } of intervals and a step size ∆x; then we truncate the

integral at the points (n/2− 1)∆x and −(n/2)∆x and obtain∫ ∞
−∞

eiuxg(x)dx ≈
∫ (n/2−1)∆x

−(n/2)∆x

eiuxg(x)dx

≈
n/2−1∑
−(n/2)

eiuk∆xg(k∆x)∆x

=

n−1∑
0

eiu(k−n/2)∆xg((k − n/2)∆x)∆x

= ∆xe−iun∆x/2

n−1∑
0

eiuk∆xg((k − n/2)∆x)

For gk := g((k − n/2)∆x), k = 0, . . . , n − 1, this is the discrete Fourier transform of the

complex numbers gk and can be calculated by the FFT algorithm for uk = 2πk/(n∆x),

k = 0, . . . , n − 1, simultaneously (see e.g. Brigham (1974), Chapter 10) and we ob-

tain an approximation for φM+πβW+πσ(ε)V . By the inverse FFT we obtain the density

f1 and hence we can calculate quantiles. Because of the infinite divisibility we have

φM(T )+πβW (T )+πσ(ε)V (T )(u) = φT
M+πβW+πσ(ε)V (u) and hence we obtain fT for any T > 0.

In the normal approximation case the procedure simplifies. There we only have to de-

termine quantiles of the sum of the compound Poisson variable Mε
π(T ) and the normal

distributed variable W̃ := π(β2+σ2
L(ε))

1/2W (T ). The characteristic function simplifies to

φM+�W (u) =

∫ ∞
−∞

eiuxf1(x)dx = φM(u)φ�W (u),

where

φ�W (u) = exp

(
−u

2

2
π2(β2 + σ2

L(ε))

)
.

4.4 Optimal portfolios under CaR constraints

We consider now the following optimization problem using the Capital-at-Risk as risk

measure.
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max
π∈[0,1]

E[Xπ(T )] subject to CaR(x, π, T ) ≤ C , (4.4.1)

where T is some given planning horizon and C is a given bound for the risk.

Unfortunately, there is no analogue of Theorem 4.2.1. Due to the fact that, immediately

by (4.1.8), the mean wealth E[Xπ(T )] is increasing in π, the optimal solution of (4.4.1)

is the largest π ∈ [0, 1] that satisfies the CaR constraint.

We investigate some examples.

Example 4.4.1 (Exponential normal inverse Gaussian Lévy process)

Recall the model as defined in Example 4.2.6, where we set again λ = ρ = 0. For the

calculation of the CaR we use the approximation of Proposition 4.3.8. Setting fL(x) =

fnig(x) = ξδK1(ξ|x|)/(π|x|), x ∈ R , the Lévy density of the NIG Lévy process, the

intensity of the compound Poisson process Mε
π and the density of its jump sizes can be

calculated as explained in Proposition 4.3.7 . Plugging fnig into definition (4.3.4) we obtain

σ2(ε) =
ξδ

π

∫
|x|<ε

|x|K1(ξ|x|)dx , ε > 0 .

As shown in Asmussen and Rosinski (2000) for the normal inverse Gaussian Lévy process

the normal approximation for small jumps is allowed since σ(ε) ∼ (2δ/π)1/2ε1/2 as ε→ 0.

Since β = 0 the approximating Lévy process has a Gaussian component with variance

σ2(ε). Moreover, a = 0, hence

µ(ε) = −
∫
ε≤|x|≤1

ξδxK1(ξ|x|)
π|x| dx.

For the calculation of these integrals we use a polynomial approximation for the modified

Bessel function of the third kind (see Abramowitz and Stegun (1968), pp. 378-379). For

the FFT we use n = 210 and ∆x = 0.002.[2mm] Figure 4.7 shows the dependence of

CaR on the time horizon T illustrated by CaR(1 000,1,T) for 0 < T ≤ 22. For short

planning horizons the CaR increases, whereas for very large planning horizons the CaR is

decreasing with T . Comparison with Figure 1 of Emmer, Klüppelberg, and Korn (2001)



92 Chapter 4. Optimal portfolios with exponential Lévy processes

shows that the CaR is smaller than in the Black-Scholes case with the same variance.

The reason can be seen in Figure 4.8: the 5%-quantile is larger than the 5%-quantile for

the normal distribution with the same variance. Since the 1%-quantile is lower than the

1%-quantile for the normal distribution with the same variance, the CaR with respect to

the 1%-quantile here would be larger than in the Black-Scholes case. Here we get into the

heavier tails of the NIG density. The increasing CaR for the time horizons 0 < T ≤ 5 in

Figure 4.7 leads to a decreasing optimal portfolio in Figure 4.9 (left).

For comparison we have plotted the optimal portfolio under the contraint var ≤ 100 000

in Figure 4.9 (right). For small planning horizons the strategies look very similar, but

since the CaR in decreasing for large planning horizons, we then obtain an increasing π,

which is in contrast to the results for the variance. Figure 4.10 illustrates the behaviour

of the optimal expected terminal wealth and terminal wealth of the pure bond and of the

pure stock strategy with varying time horizon T under a constraint on the CaR (left) and

on the variance (right).

As is obvious from Figure 4.8 for the 1%-quantile investment in stock would be more

cautious for the exponential NIG Lévy process than for the exponential Brownian motion.
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Figure 4.7: CaR(1000,1,T) of a pure stock portfolio in the exponential normal inverse Gaussian Lévy

model as a function of the time horizon T , 0 < T ≤ 22. The parameters are ξ = 2, δ = 0.08, λ = ρ = 0,

x = 1 000, b = 0.1 and r = 0.05.
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Figure 4.8: Density of L(1) of the normal inverse Gaussian Lévy process with the same parameters as

in Figure 4.7, density of the standard normal distribution (dashed line) with the same variance 0.04 and

the corresponding 1%-quantiles (left vertical lines) and 5%-quantiles (right vertical lines) .

Example 4.4.2 (Exponential variance gamma (VG) Lévy process) (a) As mentioned in

Asmussen and Rosinski (2000), for the gamma process with ν(dx) = ξx−1e−x/δdx, δ, ξ >

0, x > 0 the normal approximation for small jumps fails. This is a consequence of Propo-

sition 4.3.2, since

lim
ε→0

σ2(ε)

ε2
= lim

ε→0

ξ

ε2

∫ ε

0

xe−x/δdx =
ξ

2
, (4.4.2)

using for instance l’Hospital’s rule. The limit relations of Theorem 4.3.4 hold, however,

with Lévy process V having characteristic triplet (aV , 0, νV ) where

aV = ξ(1−
√

2/ξ) ∧ 0 and νV (dy) =
ξ

y
1
(0,
√

2/ξ)
(y)dy.

Proposition 4.3.7 gives then the approximation for the small jumps.

We show that (4.3.9) holds, which corresponds to (4.3.8).

Set

Dε(t) := σ(ε)−1(L(t)− Lε(t)) , t ≥ 0 ,

By Pollard (1984), Theorem V.19, (4.3.9) is equivalent toDε(1)
d→ V (1), sinceDε are Lévy

processes. By Kallenberg (1997), Theorem 13.14 we need to show for the characteristic
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Figure 4.9: Optimal portfolio in the exponential normal inverse Gaussian Lévy model for the same pa-

rameters as in Figure 4.7 under the constraint CaR(x, π, T ) ≤ CaR(1000, 1, 0.5) (left), optimal portfolio

in the exponential NIG-Lévy model under the constraint var(Xπ(t)) ≤ 100 000 for the same parameters

(right).

triplet (aD, 0, νD) of the Lévy process Dε

lim
ε→0

νD([x, z]) = νV ([x, z]) for any 0 < x < z (4.4.3)

lim
ε→0

∫
|y|<K

y2νD(dy) =

∫
|y|<K

y2νV (dy) for each K > 0 (4.4.4)

lim
ε→0

aD = aV (4.4.5)

First we prove (4.4.3). By the proof of Theorem 2.1 of Asmussen and Rosinski (2000) for

the process Dε we have

aD = − 1

σ(ε)

∫
σ(ε)∧ε<y<ε

ξe−y/δdy

and Lévy measure νD = ν(σ(ε)B ∩ (0, ε)) for any Borel set B ⊂ R
∗.

Hence V has Lévy measure νV (B) = limε→0 ν(σ(ε)B ∩ (0, ε)). For any interval [x, z], 0 <

x < z, we calculate

lim
ε→0

νD([x, z]) = lim
ε→0

∫ ε∧σ(ε)z

ε∧σ(ε)x
ξy−1e−y/δdy = ξ ln

(
z ∧√2/ξ

x ∧√2/ξ

)
= νV ([x, z]) ,

where we have used that e−y/ξ → 1 as y → 0.

Next we prove (4.4.4). For each K > 0 we calculate
∫
|y|<K

y2νV (dy) =
ξK2

2
∧ 1 giving

with (4.4.2) ∫
|y|<K

y2νD(dy) =
σ2(Kσ(ε) ∧ ε)

σ2(ε)
→ ξK2

2
∧ 1 , ε→ 0 .
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Figure 4.10: Expected terminal wealth for different investment strategies in the exponential normal inverse

Gaussian Lévy model for the same parameters as in Figure 4.7 under a constraint on the CaR(left) and

under a constraint on the variance (right). As the upper bound C of the CaR we used CaR(1000,1,0.5),

the CaR of a pure stock strategy with time horizon T = 0.5, as the upper bound C of the variance we

used 100 000.

Similarly we calculate

aV = lim
ε→0

aD = lim
ε→0

− 1

σ(ε)

∫
σ(ε)∧ε<y<ε

ξe−y/δdy = ξ(1−
√

2/ξ)1{1−
√

2/ξ<0}

which proves (4.4.5).

(b) For the exponential variance gamma Lévy process the normal approximation for small

jumps is not possible either, since by Example 4.2.7 and e.g. l’Hospital’s rule

σ2(ε)

ε2
=

1

ε2

∫ ε

−ε
ξ
x2

|x| exp(−
√

2

θ
+ δ2|x| − δx)dx

=
ξ

ε2

∫ ε

0

x(exp(c1x) + exp(c2x))dx → ξ , ε→ 0 ,

where c1 = −
(√

2

θ
+ δ2 + δ

)
< 0 and c2 = −

(√
2

θ
+ δ2 − δ

)
< 0.

As in part (a) we show (4.4.3)-(4.4.5) and obtain a limit process V with characteristic

triplet (0, 0, νV ), where

νV (dy) =
ξ

y
1(−1/√ξ, 1/

√
ξ)(y)dy.
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4.5 Proof of Theorem 4.3.4

We first derive some auxiliary results. As usual we write

aΛ := {ax| x ∈ Λ}, eΛ := {ex| x ∈ Λ}, and Λ− 1 := {x− 1| x ∈ Λ}.

Lemma 4.5.1 Let Zε and Yε be Lévy processes with characteristic triplets as in Theo-

rem 4.3.4. Set

Eε :=
Zε

g(ε)
and Dε :=

Yε
g(ε)

Then Eε is a Lévy process with characteristic triplet (aE, 0, νE) and Dε is a Lévy process

with characteristic triplet (aD, 0, νD), which both depend on ε. They satisfy the following

relations:

aE =
1

g(ε)

(
aZ −

∫
g(ε)<|x|≤1

xνZ(dx)

)
,

νE(Λ) = νZ(g(ε)Λ) = νY ({x|(ex − 1)/g(ε) ∈ Λ}) for any Borel set Λ ⊂ R
∗,

aD =
1

g(ε)

(
aY −

∫
g(ε)<|x|≤1

xνY (dx)

)
,

νD(Λ) = νY (g(ε)Λ) = νZ(e
g(ε)Λ − 1) for any Borel set Λ ⊂ R

∗,

aD − aE =
1

g(ε)

∫
(ln(x+ 1)1{| ln(x+1)|≤g(ε)} − x1{|x|≤g(ε)})νZ(dx).

=
1

g(ε)

∫
(x1{|x|≤g(ε)} − (ex − 1)1{|ex−1|≤g(ε)})νY (dx).

Proof Since Eε and Dε have no Gaussian component, βE = βD = 0.

For any Borel set Λ ⊂ R
∗, using Lemma 4.1.2 and Lemma 4.1.3 for d = 1 and setting

π = 1/g(ε) we obtain

νE(Λ) = νZ(g(ε)Λ) = νY (x|(ex − 1)/g(ε) ∈ Λ)

and analogously,

νD(Λ) = νY (g(ε)Λ) = νZ(x| ln(x+ 1)/g(ε) ∈ Λ).

Again by Lemma 4.1.2 and Lemma 4.1.3 for d = 1 and setting π = 1/g(ε) we obtain

aE =
1

g(ε)
aZ +

∫
x

g(ε)
(1{|x|≤g(ε)} − 1{|x|≤1})νZ(dx) =

1

g(ε)

aZ −
∫

g(ε)<|x|≤1

xνZ(dx)

 .
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In a similar way we prove

aD =
1

g(ε)

aY −
∫

g(ε)<|x|≤1

xνY (dx)

 .

Using Lemma 4.1.2 we obtain

aD − aE =
1

g(ε)

aY − aZ +

∫
g(ε)<|x|≤1

x(νZ − νY )(dx)


=

1

g(ε)

∫ (
ln(x+ 1)1{| ln(x+1)|<g(ε)} − x1{|x|<g(ε)}

)
νZ(dx).

�

Lemma 4.5.2 Let K : R + → R
+ and g : R + → R

+ be such that g(ε) → 0 as ε → 0.

Then

lim
ε→0

1

g2(ε)

∫
(−hg(ε),hg(ε))

x2νZ(dx) = K(h) ∀h > 0 (4.5.1)

if and only if

lim
ε→0

1

g2(ε)

∫
Aε,h

(ln(x+ 1))2νZ(dx) = K(h) ∀h > 0 , (4.5.2)

where Aε,h := (exp(−hg(ε))− 1, exp(hg(ε))− 1) for each ε, h > 0.

Proof Set ν = νZ . Let h > 0. Since g(ε) → 0 as ε → 0, there exists some ε̃ > 0 such

that ehg(ε) < 1 for all 0 < ε < ε̃. By a Taylor expansion we have ehg(ε) − 1 = hg(ε)eθhg(ε)

for some θ ∈ (0, 1) and hence

e−1hg(ε) < hg(ε) < ehg(ε) − 1 < ehg(ε) (4.5.3)

and, analogously,

−ehg(ε) < −hg(ε) < e−hg(ε) − 1 < −e−1hg(ε) . (4.5.4)

This leads to

(−K1g(ε), K1g(ε)) ⊆ Aε,h ⊆ (−K2g(ε), K2g(ε)) (4.5.5)
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for K1 = e−1h and K2 = eh.

Assume that (4.5.1) holds. Then by a Taylor expansion around 0 we have for some θ =

theta(x) ∈ (0, 1)

ln(x+ 1) = x− x2

2(θx+ 1)2

giving

1

g2(ε)

∫
Aε,h

(ln(x+ 1))2ν(dx)

=
1

g2(ε)

∫
Aε,h

x2ν(dx)− 1

g2(ε)

∫
Aε,h

x3

(θx+ 1)2
ν(dx) +

1

g2(ε)

∫
Aε,h

x4

4(θx+ 1)4
ν(dx)

= I1(ε)− I2(ε) + I3(ε) . (4.5.6)

First note that with (4.5.5) and (4.5.1),

|I2(ε)− I3(ε)|

≤ 1

g2(ε)

(∣∣∣∣∣
∫
Aε,h

x3

(θx+ 1)2
ν(dx)

∣∣∣∣∣ +
∫
Aε,h

x4

4(θx+ 1)4
ν(dx)

)

≤ 1

g2(ε)

(∫
(−K2g(ε),K2g(ε))

∣∣∣∣ x3

(θx+ 1)2

∣∣∣∣ ν(dx) + ∫
(−K2g(ε),K2g(ε))

x4

4(θx+ 1)4
ν(dx)

)
≤

(
sup

x∈(−K2g(ε),K2g(ε))

( |x|
(θx+ 1)2

+
x2

4(θx+ 1)4

))
1

g2(ε)

∫
(−K2g(ε),K2g(ε))

x2ν(dx)

≤
(

K2g(ε)

(1−K2g(ε))2
+

(K2g(ε))
2

4(1−K2g(ε))4

)
1

g2(ε)

∫
(−K2g(ε),K2g(ε))

x2ν(dx)

→ 0 , ε→ 0. (4.5.7)

Hence

lim
ε→0

1

g2(ε)

∫
Aε,h

(ln(x+1))2ν(dx) = lim
ε→0

I1(ε) = lim
ε→0

1

g2(ε)

∫
(−hg(ε) exp(−θ1hg(ε)),hg(ε) exp(θ2hg(ε)))

x2ν(dx)

for some θ1, θ2 ∈ (0, 1) using a Taylor expansion. Thus, since θ1, θ2 ∈ (0, 1),

lim
ε→0

1

g2(ε)

∫
|x|<hg(ε) exp(−hg(ε))

x2ν(dx) ≤ lim
ε→0

I1(ε) ≤ lim
ε→0

1

g2(ε)

∫
|x|<hg(ε) exp(hg(ε))

x2ν(dx).

Since g(ε) → 0 as ε → 0, we obtain for all ε0 > 0 and ε < ε0 an upper bound for the

right-hand side

lim
ε→0

1

g2(ε)

∫
|x|<hg(ε) exp(hg(ε0))

x2ν(dx) = K(h exp(hg(ε0))) .
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Since ε0 can be chosen arbitrarily small, we obtain under condition (4.5.1)

lim
ε→0

1

g2(ε)

∫
|x|<hg(ε) exp(hg(ε))

x2ν(dx) = K(h). (4.5.8)

Similarly, we get a lower bound and hence

lim
ε→0

1

g2(ε)

∫
|x|<hg(ε) exp(−hg(ε))

x2ν(dx) = K(h)

and thus

lim
ε→0

I1(ε) = K(h).

For the converse first note that by (4.5.7)

|I2(ε)− I3(ε)|

≤ 1

g2(ε)

(∣∣∣∣∣
∫
Aε,h

x3

(θx+ 1)2
ν(dx)

∣∣∣∣∣ +
∫
Aε,h

x4

4(θx+ 1)4
ν(dx)

)

≤ 1

g2(ε)

(∫
Aε,h

∣∣∣∣ x3

(θx+ 1)2

∣∣∣∣ ν(dx) + ∫
Aε,h

x4

4(θx+ 1)4
ν(dx)

)

≤
(

sup
x∈Aε,h

( |x|
(θx+ 1)2

+
x2

4(θx+ 1)4

))
1

g2(ε)

∫
Aε,h

x2ν(dx)

≤
(
exp(g(ε)h)− 1

exp(−2g(ε)h)
+

(exp(g(ε)h)− 1)2

4 exp(−4g(ε)h)

)
I1(ε) (4.5.9)

and hence |I2(ε)− I3(ε)| ≤ T (ε)I1(ε) for some positive T (ε) → 0 as ε→ 0. So by (4.5.6)

I1(ε) ≤ 1

g2(ε)

∫
Aε,h

(ln(x+ 1))2ν(dx) + T (ε)I1(ε)

and hence

I1(ε)(1− T (ε)) ≤ 1

g2(ε)

∫
Aε,h

(ln(x+ 1))2ν(dx).

Taking limsup results in lim supε→0 I1(ε) ≤ K(h). Then by (4.5.9) |I2(ε)− I3(ε)| → 0 and

by (4.5.6) we obtain limε→0 I1(ε) = K(h) for each h > 0. Using the same argument as for

(4.5.8),

K(h) = lim
ε→0

I1(ε)

≤ lim
1

g2(ε)

∫
|x|<hg(ε) exp(hg(ε))

x2ν(dx)
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= lim
1

g2(ε)

∫
|x|<hg(ε)

x2ν(dx)

= lim
1

g2(ε)

∫
|x|<hg(ε) exp(−hg(ε))

x2ν(dx)

≤ lim
ε→0

I1(ε)

= K(h)

we obtain (4.5.1).

Lemma 4.5.3 Let K : R + → R
+ and g : R + → R

+ be such that g(ε) → 0 as ε → 0.

Then

lim
ε→0

1

g2(ε)

∫
(−hg(ε),hg(ε))

x2νY (dx) = K(h), ε→ 0 (4.5.10)

holds for each h > 0 if and only if

lim
ε→0

1

g2(ε)

∫
Bε,h

(ex − 1)2νY (dx) = K(h) , ε→ 0 , (4.5.11)

for each h > 0, where Bε,h := (ln(1− hg(ε)), ln(1 + hg(ε))) for each ε, h > 0.

Proof Set ν = νY . By (4.5.3) we obtain for ε, h > 0

e−1hg(ε) < ln(1 + hg(ε)) < hg(ε) < ehg(ε) (4.5.12)

and, analogously, by (4.5.4)

−ehg(ε) < ln(1− hg(ε)) < −hg(ε) < −e−1hg(ε) . (4.5.13)

Then we obtain for K1 = e−1h and K2 = eh

(−K1g(ε), K1g(ε)) ⊆ Bε,h ⊆ (−K2g(ε), K2g(ε)) . (4.5.14)

Assume that (4.5.10) holds. Then by a Taylor expansion around 0 we have ex − 1 = xeθx

for some θ ∈ (0, 1) and by (4.5.14) for x ∈ Bε,h,

xe−K2g(ε) ≤ ex − 1 ≤ xeK2g(ε) ,
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giving

1

g2(ε)

∫
Bε,h

(ex − 1)2ν(dx) =
1

g2(ε)

∫
Bε,h

x2ν(dx)(1 + o(1)) , ε→ 0 . (4.5.15)

By some Taylor expansion around 0 we have for some θ1, θ2 ∈ (0, 1)

Bε,h =

(
−hg(ε)− (hg(ε))2

2(−θ2hg(ε) + 1)2
, hg(ε)− (hg(ε))2

2(θ1hg(ε) + 1)2

)
and hence

{|x| < hg(ε)(1− hg(ε)

2
)} ⊂ Bε,h ⊂ {|x| < hg(ε)(1 +

hg(ε)

2(1− hg(ε))2
)}

Analogously to the proof of Lemma 4.5.2 we obtain lim
ε→0

1

(g(ε))2

∫
Bε,h

x2ν(dx) = K(h).

For the converse notice that (4.5.15) implies 1
g2(ε)

∫
Bε,h

x2ν(dx) → K(h), ε→ 0.

Thus by the proof of the other direction

K(h) = lim
ε→0

1

g2(ε)

∫
Bε,h

x2ν(dx)

≤ lim
ε→0

1

g2(ε)

∫
|x|<hg(ε)(1+

hg(ε)

2(1−hg(ε))2
)

x2ν(dx)

= lim
ε→0

1

g2(ε)

∫
|x|<hg(ε)

x2ν(dx)

= lim
ε→0

1

g2(ε)

∫
|x|<hg(ε)(1−hg(ε)

2
)

x2ν(dx)

≤ lim
ε→0

1

g2(ε)

∫
Bε,h

x2ν(dx)

= K(h)

and hence we obtain (4.5.10).

Now we can prove Theorem 4.3.4.

Proof of Theorem 4.3.4. Assume that (4.3.7) holds, i.e. Eε(t) = Zε(t)/g(ε)
d→ V (t), t ≥ 0,

as ε → 0. Since Eε are Lévy processes weak convergence of the processes is equivalent

to Eε(1)
d→ V (1) (see e.g. Pollard (1984), Theorem V.19). Let now (aE , 0, νE) be the

characteristic triplets of the Lévy processes Eε as derived in Lemma 4.5.1 (recall that they

depend on ε). Since βE = 0, according to Kallenberg (1997), Theorem 13.14, Eε(1)
d→ V (1)
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if and only if

lim
ε→0

∫
{|x|<h}

x2νE(dx) = β2
V +

∫
|x|<h

x2νV (dx) ∀h > 0 , (4.5.16)

lim
ε→0

νE({|x| ≥ c}) = νV ({|x| ≥ c}) ∀c > 0 , (4.5.17)

lim
ε→0

aE = aV . (4.5.18)

So we assume that (4.5.16)-(4.5.18) hold.

Moreover, setting Dε = Y ε/g(ε) with characteristic triplets (aD, 0, νD) (which depend on

ε), we have to show

lim
ε→0

∫
{|x|<h}

x2νD(dx) = β2
V +

∫
|x|<h

x2νV (dx) ∀h > 0 , (4.5.19)

lim
ε→0

νD({|x| ≥ c}) = νV ({|x| ≥ c}) ∀c > 0 , (4.5.20)

lim
ε→0

aD = aV . (4.5.21)

To prove (4.5.19) we consider∫
|x|<h

x2νD(dx) = E

[∑
s≤1

(∆Dε(s))
21{|∆Dε(s)|<h}

]

=
1

g2(ε)
E

[∑
s≤1

(ln(1 + ∆Zε(s)))
21{∆Zε(s)∈Aε,h}

]

=
1

g2(ε)

∫
Aε,h

(ln(x+ 1))2νZ(dx) , (4.5.22)

where Aε,h = (e−g(ε)h − 1, eg(ε)h − 1). By (4.5.16) and Lemma 4.5.2, setting K(h) =

β2
V +

∫
|x|<h

x2νV (dx) the right-hand side of (4.5.22) converges to β2
V +

∫
|x|<h

x2νV (dx) for

each h > 0.

Now we prove (4.5.20). By Lemma 4.5.1 we have

νD({|x| ≥ c}) = νZ(e
g(ε){|x|≥c} − 1)

= νZ(e
g(ε){|x|≥c} − 1 ∩ {|x| ≥ cg(ε)}) + νZ(e

g(ε){|x|≥c} − 1 ∩ {|x| < cg(ε)})

The first term converges to νV ({|x| ≥ c}), since by (4.5.17)

νZ({|x| ≥ cg(ε)}) = νE({|x| ≥ c}) → νV ({|x| ≥ c}).
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Since for any Borel set Λ ⊂ R
∗

νZ(Λ) inf
x∈Λ

(ln(x+ 1))2 ≤
∫
Λ

(ln(x+ 1))2νZ(dx)

holds, we get

νZ(e
g(ε){|x|≥c} − 1 ∩ {|x| < cg(ε)})

= νZ({|x| < cg(ε)}\(eg(ε){|x|<c} − 1))

≤ 1

(cg(ε))2

∫
{|x|<cg(ε)}\(eg(ε){|x|<c}−1)

(ln(1 + x))2νZ(dx)

=
1

(cg(ε))2

∫
{|x|<cg(ε)}

(ln(1 + x))2νZ(dx)

− 1

(cg(ε))2

∫
{|x|<cg(ε)}∩(eg(ε){|x|<c}−1)

(ln(1 + x))2νZ(dx)

→ 0, ε→ 0,

since both terms in the second last line tend toK(c)/c2, whereK(h) = β2
V+
∫
|x|<h

x2νV (dx).

This can be seen as follows. For the first term we use Taylor’s theorem in the same way

as in the proof of Lemma 4.5.2 replacing Aε,h by (−cg(ε), cg(ε)). The second term tends

to K(c)/c2 using the same Taylor expansion and since by a Taylor expansion for ex − 1

around 0

{|x| < cg(ε)} ∩ (eg(ε){|x|<c} − 1) = {|x| < cg(ε)} ∩ (−cg(ε)e−θ1cg(ε), cg(ε)eθ2cg(ε))
= (−cg(ε)e−θ1cg(ε), cg(ε))

for some θ1, θ2 ∈ (0, 1).

Now we prove (4.5.21). By (4.5.18) we know that aE → aV , hence we only need to show

|aD − aE | → 0.

By Lemma 4.5.1 and the Taylor expansion we used in (4.5.6) we obtain for some θ ∈ (0, 1)

|aD − aE | =
1

g(ε)

∣∣∣∣∫ (ln(x+ 1)1{| ln(x+1)|<g(ε)} − x1{|x|<g(ε)}
)
νZ(dx)

∣∣∣∣
=

1

g(ε)

∣∣∣∣∫ ((x− x2

2(θx+ 1)2

)
1{e−g(ε)−1<x<eg(ε)−1} − x1{|x|<g(ε)}

)
νZ(dx)

∣∣∣∣
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=
1

g(ε)

∣∣∣∣∫ (x1{e−g(ε)−1<x<eg(ε)−1} − x1{|x|<g(ε)})νZ(dx)

−
∫
(e−g(ε)−1,eg(ε)−1)

x2

2(θx+ 1)2
νZ(dx)

∣∣∣∣
Since

1

g(ε)

∫
(e−g(ε)−1,eg(ε)−1)

x2

2(θx+ 1)2
νZ(dx) → 0

because of

1

2(θx+ 1)2
<

1

2e−2g(ε)
for x ∈ (e−g(ε) − 1, eg(ε) − 1),

we obtain

lim sup
ε→0

|aD − aE|2

= lim sup
ε→0

1

(g(ε))2

∣∣∣∣∫ x(1{e−g(ε)−1<x<eg(ε)−1} − 1{|x|<g(ε)})νZ(dx)
∣∣∣∣2

= lim sup
ε→0

1

(g(ε))2

∣∣∣∣∣∣∣
∫

eg(ε){|x|<1}−1\{|x|<g(ε)}

xνZ(dx)−
∫

{|x|<g(ε)}\eg(ε){|x|<1}−1

xνZ(dx)

∣∣∣∣∣∣∣
2

≤ lim sup
ε→0

1

(g(ε))2

∫
eg(ε){|x|<1}−1\{|x|<g(ε)}

x2νZ(dx)

+ lim sup
ε→0

1

(g(ε))2

∫
{|x|<g(ε)}\eg(ε){|x|<1}−1

x2νZ(dx).

Both terms converge to 0 as follows.

1

(g(ε))2

∫
eg(ε){|x|<1}−1

x2νZ(dx) → K(1)

by the proof of Lemma (4.5.2),

1

(g(ε))2

∫
{|x|<g(ε)}

x2νZ(dx) → K(1)

by (4.5.16) for h = 1, and

1

(g(ε))2

∫
{|x|<g(ε)}∩eg(ε){|x|<1}−1

x2νZ(dx) → K(1),
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where K(h) = β2
V +

∫
|x|<h

x2νV (dx), since by a Taylor expansion for ex − 1 around 0

{|x| < g(ε)} ∩ eg(ε){|x|<1} − 1) = {|x| < g(ε)} ∩ (−g(ε)eθ1g(ε), g(ε)eθ2g(ε))
= (−g(ε)eθ1g(ε), g(ε))

for some θ1, θ2 ∈ (0, 1) and using the same argumentation as in the proof of Lemma 4.5.2.

The other direction can be proved analogously.
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Chapter 5

Optimal portfolios with possible

bankruptcy and market crash

Asset prices in the Black-Scholes model can also written as stochastic differential equa-

tions which are equivalent to the corresponding geometric Brownian motions. E.g. by

Eberlein and Keller (1995) we know that the normal distribution for asset price mod-

elling is not very realistic, since the distribution of asset prices often has semiheavy tails,

i.e. its curtosis is higher than that of the normal distribution. Thus is seems to be a nat-

ural approach to replace the Brownian motian in the stochastic differential equation by

general stochastic processes with independent stationary increments, i.e. Lévy processes.

But Lévy processes can have negative jumps with absolute size greater than one. Solving

the stochastic differential equation by Itô’s formula this leads to a positive probability for

negative asset prices, which do not accure in reality. By Eberlein and Keller (1995) such

a jump can be interpreted as a market crash, after which the asset price equals zero. Be-

cause of the independence of increments of the Lévy process, such a crash has always the

same probability, independent of the actual asset price. For example this can be used as a

realistic approach to model new economy asset prices. We optimize portfolios containing

such assets with a positive crash probability.

This chapter is organized as follows. In Section 2 we consider some portfolios consisting

of one riskless bond and several risky stocks. There prices follow an SDE driven by some

Lévy process. To avoid negative stock prices we investigate only Lévy processes with jump

107
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heights > -1. The solution of the mean variance problem has the same structure for any

price process which follows an SDE driven by a Lévy process. In Section 3 we drop the

restriction on the jump heights and use an idea of Eberlein and Keller (1995). They in-

terpret a jump leading to a negative stock price as a market crash and after this market

crash the stock price equals zero. This crash possibility leads to a much more complicated

structure of the mean variance problem.

5.1 The general market model

We consider a standard Black-Scholes type market consisting of a riskless bond and several

risky stocks, which follow SDEs driven by Lévy processes. Their respective prices (P0(t))t≥0

and (Pi(t))t≥0, i = 1, . . . , d, evolve according to the equations

dP0(t) = P0(t)rdt, P0(0) = 1 ,

dPi(t) = Pi(t−)

(
bidt+

d∑
j=1

σij

(
d∑

l=1

βljdWl(t) +
d∑

l=1

δljdL̃l(t)

))
, Pi(0) = pi .

(5.1.1)

Here L̃ = (L̃(t))t≥0 = (L̂1(t), . . . , L̂d(t)) is a d-dimensional Lévy process (stationary inde-

pendent increments with cadlag sample paths) with independent components and with-

out Gaussian part. Assets on the same market show some correlation structure, which we

model by the linear combination of independent Lévy processes. The arbitrary matrices β,

and σ and the diagonal matrix δ, δjj ∈ {0, 1}, give us the opportunity to choose different

scaling factors for the Wiener processes and the pure jump processes and even to have to

correlated assets, where only one contains jumps. For different sorts of portfolios with re-

strict this general model in different ways in the following Sections. Detailed explanations

on the rectricted models are given in these Sections.
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5.2 Optimal portfolios in the Lévy-Black-Scholes SDE

setting

If we assume in (5.1.1) δjl = 1{j=l} and β to be diagonal we obtain

dP0(t) = P0(t)rdt , P0(0) = 1 ,

dPi(t) = Pi(t−)
(
bidt+

∑d
j=1 σijdLj(t)

)
, Pi(0) = pi .

(5.2.1)

Here L = (L(t))t≥0 = (L1(t), . . . , Ld(t)) is a d-dimensional Lévy process (stationary in-

dependent increments with cadlag sample paths) with independent components (Lj(t) =

βjjWj(t) + L̃j(t) in (5.1.1) with the restrictions above). Since the assets are on the same

market, they show some correlation structure which we model by a linear combination

of the same Lévy processes L1, . . . , Ld for each asset price. We define this model analo-

gously to the Black-Scholes model in Emmer, Klüppelberg and Korn (2001), but replace

the Brownian motion W by the Lévy process L. Thus this model can be seen as a gener-

alization of the Black-Scholes model since the d-dimensional standard Brownian motion

is a Lévy process with triplet (0, Ed, 0), where Ed is the d-dimensional unit matrix. The

Lévy process L has characteristic triplet (a, β, ν), where a ∈ R
d, β is an arbitrary d-

dimensional diagonal matrix. Because of the independence of the components β has to

be diagonal. We did not define β as the unit matrix since then the model would not

include any pure jump process. So the independent Wiener processes (βW )i, i = 1, . . . , d

can have different variances and we can choose different scaling factors for the Wiener

process and the non Gaussian components. Since the components of L are independent we

obtain for the Lévy measure ν and a d-dimensional rectangle A = ×d
i=1(ai, bi] ⊂ R

d that

ν(A) =
∑d

i=1 νi(ai, bi], where νi is the Lévy measure of Li for i = 1, . . . , d, i.e. the Lévy

measure is supported on the union of the coordinate axes (see Sato (1999), E12.10, p.67).

Hence, because of independence, the jumps of the different components occur at different

times. We restrict the jump size ∆L by ∆L > −1 to avoid negative stock prizes, r ∈ R

is the riskless interest rate and (σij)i,j∈{1,...,d} is an invertible matrix with 0 ≤ σij ≤ 1 by

for 1 ≤ i, j ≤ d again in order to avoid negative stock prices. The vector b ∈ R
d can be

chosen such that each stock has a certain stock-appreciation rate.
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Let π(t) = (π1(t), . . . , πd(t)) ∈ R
d be an admissible portfolio process, i.e. π(t) is the

fraction of the wealth Xπ(t), which is invested in the risky asset i (see Korn (1997),

Section 2.1 for relevant definitions). The fraction of the investment in the bond is π0(t) =

1 − π(t)1, where 1 = (1, . . . , 1)′ denotes the vector (of appropriate dimension) having

unit components. Throughout the chapter, we restrict ourselves to constant portfolios;

i.e. π(t) = π, t ∈ [0, T ], for some fixed planning horizon T. This means that the fractions

of wealth in the different stocks and the bond remain constant on [0, T ]. Thus one has

to trade at every time instant if πi /∈ {0, 1}, for all 1 ≤ i ≤ d since stock prices evolve

randomly. In order to avoid negative wealth we require that π ∈ [0, 1]d and π′1 ≤ 1.

Denoting by (Xπ(t))t≥0 the wealth process, it follows the dynamic

dXπ(t) = Xπ(t−) {((1− π′1)r + π′b)dt+ π′σdL(t)} , Xπ(0) = x , (5.2.2)

where x ∈ R denotes the initial capital of the investor.

As L is a semimartingale, general Itô calculus leads to the following explicit formula

for the wealth process:

Xπ(t) = x exp((r + π′(b− r1))t)E(πσ′L(t))
= x exp(aXt + π′σβW (t))X̃π(t), t ≥ 0,

(5.2.3)

where E defines the stochastic exponential of a process and aX is as defined in Lemma 5.2.3

and

ln X̃π(t) =

∫ t

0

∫
�d

ln(1 + πσx)1{| ln(1+πσx)|>1}ML(dx, ds)

+

∫ t

0

∫
�d

ln(1 + πσx)1{| ln(1+πσx)|≤1}(ML(dx, ds)− νL(dx)ds), t ≥ 0.

Remark 5.2.1 Note that a jump of ∆L(t) of L leads to a jump ∆ lnXπ(t) of lnXπ of

height ln(1+π′σ∆L(t)) and hence ∆Xπ(t) > ln(1−π′1) by the restrictions on π, σij and

∆L(t); recall also that jumps of the independent components of L do not occur at the

same time.

Remark 5.2.2 The wealth process Xπ is an exponential Lévy process. We calculate the

characteristic triplet of its logarithm in the following Lemma.
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Lemma 5.2.3 Consider model (5.2.1) with Lévy process L and characteristic triplet

(a, β ′β, ν). The process lnXπ is a Lévy process with characteristic triplet (aX , βX , νX)

given by

aX = r + π(b− r + σa)− ‖π′σβ‖2/2
+

∫
(ln(1 + π′σx)1{| ln(1+π′σx)|≤1} − π′σx1{|x|≤1})νL(dx)

β2
X = ‖π′σβL‖2

νX(A) = νL(x| ln(1 + π′σx) ∈ A) for any Borel set A ⊂ R
∗.

Proof We have calculated the characteristic triplet of ln(E(πL(t))) in Lemmas 4.1.2

and 4.1.3. By equation (5.2.3) and the uniqueness of the characteristic triplet we obtain

(aX , βX , νX). �

Extending the characteristic function of ln(Xπ(t)) on C as in Lemma 4.1.6 we obtain

for all k ∈ N , such that the moment exists,

E
[
(Xπ(t))k

]
= xk exp(kt(aX + kβ2

X/2))E
[
(X̃π(t))k

]
, t ≥ 0 . (5.2.4)

and

E
[
(X̃π(t))k

]
= exp(µ̃kt), t ≥ 0

where

µ̃k =

∫
�d

(
(1 + π′σx)k − 1− k ln(1 + π′σx)1{| ln(1+π′σx)|≤1}

)
ν(dx)

and ν is the Lévy measure of L.

In particular,

E
[
X̃π(t)

]
= exp

(
t

∫
�d

(π′σx− ln(1 + π′σx)1{| ln(1+π′σx)|≤1})ν(dx)
)
.

Proposition 5.2.4 Let L be a d-dimensional Lévy process and assume that E(Li(1)) <

∞ and var(Li(1)) <∞ for all i ∈ {1, . . . , d}. Let Xπ(t) be as in equation 5.2.3. Then

E[Xπ(t)] = x exp((r + π′(b− r1 + σE[L(1)]))t)

var(Xπ(t)) = x2 exp(2(r + π′(b− r1 + σE[L(1)]))t) ((var(π′σL(1)))t)− 1)
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Proof We obtain

E[Xπ(t)] = x exp

(
t

(
r + π′(b− r1 + σa+

∫
�d

σx1{|x|≥1}ν(dx))
))

(5.2.5)

var(Xπ(t)) = x2 exp

(
2t

(
r + π′(b− r1 + σa+

∫
�d

σx1{|x|≥1}ν(dx))
))

×
(
exp

(
t(‖π′σβ‖2 +

∫
(π′σx)2ν(dx))

)
− 1

)
(5.2.6)

By Sato (1999), Example 25.12, we have

E[L(1)] = aL +

∫
|x|>1

xνL(dx)

and

var(π′σL(t)) = ‖π′σβ‖2 +
∫
�d

(π′σx)2ν(dx)

Plugging these expressions into (5.2.5) and (5.2.6) leads to the assertion. �

Remark 5.2.5 If the jump part of L has finite variation (5.2.5) and (5.2.6), can be

written as:

E[Xπ(t)] = x exp ((π(b+ γ + µ− r) + r)t) , (5.2.7)

var(Xπ(t)) = x2 exp (2(π(b+ γ + µ− r) + r)t)
(
exp(π2(β2 + µ2)t)− 1

)
, (5.2.8)

where

µ = µ1 =
∫
xν(dx) = E

[∑
0<s≤1∆L(s)

]
µ2 =

∫
x2ν(dx) = E

[∑
0<s≤1(∆L(s))

2
]
.

(5.2.9)

For a pure jump process we have µ = E[L(1)] and µ2 = var(L(1)) by Protter (1990),

Theorem I.38.

Next we consider the following classical optimization problem using the variance as

risk measure.
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max
{π∈[0,1]d|π′1≤1}

E[Xπ(T )] subject to var(x, π, T ) ≤ C , (5.2.10)

where T is some given planning horizon and C is a given bound for the risk.

The solution of this problem for the classical Black-Scholes model (geometric Brownian

motion with µ = 0) can be found in Emmer, Klüppelberg and Korn (2001).

Theorem 5.2.6 Let L be a Lévy process with Lévy-Khinchine representation (4.0.2).

Then the optimal solution of problem (5.2.10) is given by

π∗ = ε∗
((σβ)(σβ)′)−1(b− r1 + σE(L(1))

‖(σβ)−1(b− r1 + σE(L(1))‖ (5.2.11)

where ε∗ is the unique positive solution of

ε‖(σβ)−1(b− r1 + σE(L(1))‖T
+

1

2
ln

(
x2

C

(
exp

(
ε2var

(
((σβ)(σβ)′)−1(b− r1 + σE(L(1))

‖(σβ)−1(b− r1 + σE(L(1)))‖ σL(1)

)
T

)
− 1

))
+ rT = 0 . (5.2.12)

subject to π∗ ∈ [0, 1]d and π∗1 ≤ 1.

Remark 5.2.7 If the solution π∗ to (5.2.12) satisfies π∗ ∈ [0, 1]d and π∗1 ≤ 1, then π∗ is

the solution of the constraint optimization problem. If the solution to (5.2.12) does not

satisfy the constraints, then the problem can be solved by the Lagrange method using some

numerical algorithm, for example the SQP method (sequential quadratic programming)

(see e.g. Nocedal and Wright (1999) and Boggs and Tolle (1995).

If for d = 1 the solution of (5.2.12) leads to π∗ > 1, the optimal solution is π∗ = 1.

Proof Mean and variance of the portfolio’s wealth have for any exponential Lévy process

the same form as for geometric Brownian motion. In that case the optimization problem

has been solved in Proposition 2.9. in Emmer, Klüppelberg and Korn (2001). The general

result follows then just from comparison of constants. The idea behind this solution is to

find the portfolio with the highest terminal wealth over all portfolios satisfying ‖π′σβ‖ = ε,
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which is given by (5.2.11). Plugging this into the explicit form of the variance given in

Proposition 5.2.4 we obtain constraint (5.2.12). The only difference to the optimization

in Emmer, Klüppelberg and Korn (2001) is the constraint π∗ ∈ [0, 1]d and π∗1 ≤ 1. In the

following we consider some examples in order to understand the influence of the jumps

on the choice of the optimal portfolio. All examples are for the case d = 1. Hence w.l.o.g.

we choose σ = 1.

Example 5.2.8 (Brownian motion with jumps)

Let Y, Y1, Y2, . . . be iid random variables with distribution function p on R
∗ and (N(t))t≥0 a

Poisson process with parameter c > 0, independent of the Yi. Then L(t) :=
∑N(t)

i=1 Yi, t ≥ 0,

defines a compound Poisson process, a Lévy process with Lévy measure ν(dx) = cp(dx).

For µ and µ2 as defined in (5.2.9) we obtain

µ = c

∫ ∞
−∞

xp(dx) = cEY and µ2 = c

∫ ∞
−∞

x2p(dx) = cE[Y 2] .

Here the Lévy process is the sum of a Brownian motion with drift βW + γt and the

compound Poisson process L with intensity c and distribution function p as distribution

for the jump heights. For illustrative purpose we restrict this example to one coumpound

Poisson process, we could as well take different ones. The drift γ = −µ = −c ∫ xp(dx)
is chosen such that it compensates the jumps. The Lévy measure is ν(dx) = cp(dx) and

hence also µ and µ2 are as above for the compound Poisson process L. Since γ = −µ, and
by (5.2.3), (5.2.7) and (5.2.8) we obtain for t ≥ 0,

Xπ(t) = x exp (t(π(b− r + γ) + r)) exp

(
π(βW (t))− 1

2
π2β2t

)N(t)∏
i=1

(1 + πYi) ,

E[Xπ(t)] = x exp (t(π(b− r) + r)) ,

var(Xπ(t)) = x2 exp (2t(π(b− r) + r))

(
exp

(
(π2β2 + π2c

∫
x2p(dx))t

)
− 1

)
.

The compound Poisson process (β = 0) and the Brownian motion (c = 0) are special

cases of this example. Figures 5.1 and 5.2 show sample paths and the optimal portfolio

for a jump scenario, namely possible jumps of height -0.1 with intensity 2, i.e. we expect

2 jumps per year.
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Figure 5.1: Ten paths of an asset in the Black-Scholes model with compensated jumps of height -0.1 and

intensity 2, its expectation and standard deviation.The parameters are x = 1 000, b = 0.1 and r = 0.05.

5.3 Optimal portfolios in the Lévy-Black-Scholes SDE

setting with a possible crash

In this Section, we consider the same model as in Section 5.1, but include the possibility

of bankruptcy. We want to study the effect of such a bankruptcy. Consequently we restrict

ourselves to two basic portfolios: portfolio 1 consists of one riskless bond and one asset

with crash possibility. Portfolio 2 consists of two assets, one Black-Scholes asset and one

with crash possibility, but not containing a riskless bond. In (5.1.1) a jump of height

≤ −1 of L leads to a negative stock price. As suggested in Eberlein and Keller (1995)

we interpret such a jump of L as a market crash and after this crash the stock price

equals zero, what remains is the bond investment (in portfolio 1) or the Black-Scholes

investment (in portfolio 2), respectively. Thus up to this bankruptcy the wealth process

is as in Section 5.2, afterwards the fraction which was in the crash stock just before crash

time is lost and the remaining wealth stays in the bond or the Black-Scholes stock until

the end of the planning horizon.

Remark 5.3.1 Because of the independent increments of a Lévy process the crash prob-

ability does not depend on the actual stock price, i.e. if the stock price is very high a

crash is as likely as if the price is very low.
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Figure 5.2: Optimal portfolio in the Black-Scholes model with jumps of height -0.1 and intensity 2 under

the constraint var(Xπ(t) ≤ 100 000. The parameters are the same as in Figure 5.1.

We first analyse portfolio 1 (consisting of one riskless bond and one stock with crash

possibility), where we assume w.l.o.g. σ = 1. In this case the general model (5.1.1) and

the model in Section 5.2 coincide.

Let

τ = inf{t > 0 : ∆L(t) ≤ −1}

be the crash time. The wealth process is given by

Xπ
C(t) = Xπ(t)1{τ>t} + (1− π)Xπ(τ−) exp(r(t− τ))1{t≥τ} , t ≥ 0 . (5.3.1)

where Xπ is the wealth process without crash possibility as in (5.2.3). For the portfolio

optimization we have to calculate the moments (k ∈ N ) of the wealth process.

E[(Xπ
C(t))

k] = E[(Xπ(t))k1{τ>t} + ((1− π)Xπ(τ−) exp(r(t− τ)))k1{t≥τ}] , t ≥ 0 .(5.3.2)

Theorem 5.3.2 Let L be the Lévy process with characteristic triplet (aL, βL, νL). Define

L̂(t) := L(t)−
∑
s≤t

∆L(s)1{∆L(s)≤−1} , t ≥ 0 ,

and X̂π as Xπ in (5.2.3) with L replaced by L̂. Then for k ∈ N , provided the moment is

finite and E[(X̂π(t))k(1+δ)] <∞ for some δ > 0,

E[(Xπ
C(t))

k] = xk exp(krt)

(
(1− π)kν((−∞,−1))

1

ak
(exp(akt)− 1) + exp(akt)

)
, t ≥ 0 ,
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where

ak = kπ(b−r+aL)+1

2
π2β2k(k−1)+

∫
(−1,∞)

((1+πx)k−1−kπx1{|x|<1})ν(dx)−ν((−∞,−1]) .

Proof By definition of X̂π(t) we have

X̂π(t) = x exp

(
t

(
r + (b− r + aL)π − 1

2
β2π2

+

∫ (
ln(1 + πx1{x>−1}))1{| ln(1+πx)|≤1} − πx1{|x|<1}

)
νL(dx)

)
+ πβW (t)

)
×Xπ(t)

where

lnXπ(t) =

∫ t

0

∫ ∞
−1

ln(1 + πx)1{| ln(1+πx)|>1}ML(ds, dx)

+

∫ t

0

∫ ∞
−1

ln(1 + πx)1{| ln(1+πx)|≤1}(ML(ds, dx)− dsν(dx)),

By Protter (1990), Theorem I.39, the Lévy processes
∑

s≤t∆L(s)1{∆L(s)≤−1} and∑
s≤t∆L(s)1{∆L(s)>−1} are independent and by Protter (1990), Theorem II.36, E(πL)

can be written as E(πL̂)E(πL̆), where L̆ :=
∑

s≤t∆L(s)1{∆L(s)≤−1} and hence for s > t,

E[(Xπ(t))k|τ = s] = E[(X̂π(t))k(E(πL̆(t)))k|
∑

0<u≤s
1{∆L(u)≤−1} = 0]

= E[(X̂π(t))k] (5.3.3)

By (5.2.3) and (5.2.4) we get

E[(X̂π(t))k] = xk exp

(
t

(
k(r + π(b− r + aL) +

1

2
π2β2(k − 1))

+

∫
(−1,∞)

((1 + πx)k − 1− kπx1{|x|≤1})ν(dx)
))

.

By Proposition 5.2.4 EX̂π(t) increases in t, hence

sup
r<t

E[(X̂π(r))k(1+δ)] = E[(X̂π(t))k(1+δ)] <∞,

for all t > 0. Thus (X̂π(r))0≤r≤t is uniformly integrable and hence

lim
r↑t

E[(X̂π(r))k] = E[lim
r↑t

(X̂π(r))k], t > 0 (5.3.4)
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Furthermore

P (τ > t) = P

(∑
s≤t

1{∆L(s)∈(−∞,−1]} = 0

)
= exp(−ν((−∞,−1])t), t > 0.

Setting Fτ (t) = P (τ ≤ t), t > 0, we obtain by (5.3.1) and (5.3.3)

E[(Xπ
C(t))

k] =

∫ ∞
0

E[(Xπ
C(t))

k|τ = s]Fτ (ds)

=

∫ t

0

E[(Xπ
C(t))

k|τ = s]Fτ (ds) + E[(X̂π(t))k]P (τ > t)

=

∫ t

0

(1− π)kE[(Xπ(s−))k exp(kr(t− s))|τ = s]Fτ (ds) + E[(X̂π(t))k]P (τ > t).

(5.3.3) and (5.3.4) lead to

E[(Xπ
C(t))

k] =

∫ t

0

(1− π)kE[(X̂π(s−))k exp(kr(t− s))]Fτ (ds) + E[(X̂π(t))k]P (τ > t)

= (1− π)kekrt
∫ t

0

E[(X̂π(s−))k]e−krsν((−∞,−1])e−ν((−∞,−1])sds+ E[(X̂π(t))k]P (τ > t)

= (1− π)kekrtν((−∞,−1])xk
∫ t

0

exp(aks)ds+ xkekrt exp(akt)

= xkekrt
(
(1− π)kν((−∞,−1])

1

ak
(exp(akt)− 1) + exp(akt)

)
where

ak = kπ(b−r+aL)+1

2
π2β2k(k−1)+

∫
(−1,∞)

((1+πx)k−1−kπx1{|x|<1})ν(dx)−ν((−∞,−1]).

We need the following results explicitly:

E[(Xπ
C(t))] = xert

(
exp(f(π)t)

(
(1− π)ν((−∞,−1])

f(π)
+ 1

)
− (1− π)ν((−∞,−1))

f(π)

)

var[(Xπ
C(t))] = (xert)2

[
eg(π)t

(
(1− π)2ν((−∞,−1])

g(π)
+ 1

)
− (1− π)2ν((−∞,−1])

g(π)

−
(
ef(π)t

(
(1− π)ν((−∞,−1])

f(π)
+ 1

)
− (1− π)ν((−∞,−1])

f(π)

)2
]

where

f(π) = −ν((−∞,−1]) + π

b− r + aL +

∫
[1,∞)

xν(dx)





5.3. Optimal portfolios in the Lévy-B-S SDE setting with a possible crash 119

and

g(π) = −ν((−∞,−1]) + 2π

b− r + aL +

∫
[1,∞)

xν(dx)

 + π2

β2 +

∫
(−1,∞)

x2ν(dx)


Now we consider the following optimization problem

max
π∈[0,1]

E(Xπ(T )) subject to var(x, π, T ) ≤ C , (5.3.5)

As long as the risky asset has a higher expectation than the bond, the solution is the largest

π ∈ [0, 1] such that the variance constraint is fulfilled.

Example 5.3.3 (Brownian motion with jumps and crash possibility)

Let Y1, Y2, . . . be iid random variables with distribution p on R \{0} and (N(t))t≥0 a Poisson

process with parameter c > 0, independent of the Y ′i s. Then L(t) :=
∑N(t)

i=1 Yi, t ≥ 0,

defines a compound Poisson process which is a Lévy process with Lévy measure cp. Here

the Lévy process is the sum of a Brownian motion with drift βW (t)+γt and a compound

Poisson process with intensity c and p as distribution of the jump heights.

We optimize portfolios for an intensity c = 0.5, i.e. we expect one jump within two years,

and P (Yi = −0.5) = P (Yi = 0.5) = 0.4, P (Yi = −1) = P (Yi = 1) = 0.1 and β = 0.2

under the constraint var(Xπ
C(t)) ≤ 100 000.

Now we consider a portfolio consisting of one Lévy stock with crash possibility and one

Black-Scholes stock. Therefore we restrict the model introduced in Section 5.1 by δ11 = 1,

δ22 = 0, and σ = Ed. With the restrictions of Section 5.2 it is not possible to have two

correlated assets, where only one has jumps. The quantity π ∈ [0, 1] is defined as the

fraction of wealth invested in the stock with crash possibility and 1 − π the fraction

of investment in the Black-Scholes asset; there is no bond investment. Since the Black-

Scholes asset has no jump part the correlation structure of the two assets is only given by

the Brownian motion. So we model the correlation structure by the matrix β. Then the

price of the Black-Scholes asset is given by

dP2(t) = P2(t)

(
b2dt+

2∑
1

β2jdWj(t)

)
, P2(0) = p2.
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time t

P(
t)
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Figure 5.3: Ten paths of an asset in the Black-Scholes model with jumps and a possible crash, its expec-

tation and standard deviation. The parameters are x = 1 000, b = 0.1, r = 0.05, c = 0.5, P (Yi = −0.5) =

P (Yi = 0.5) = 0.4 and P (Yi = −1) = P (Yi = 1) = 0.1.

As explained before the Lévy process in the crash asset has also a jump part. So let the

price of the crash asset before crash time be given by

dP1(t) = P1(t−) (b1dt+ dL(t)) , P1(0) = p1,

where (aL, β
2
L, νL) with β

2
L = β2

11+β
2
12 is the characteristic triplet of L, i.e.

∑2
1 β1jWj(t), t ≥ 0

is its Brownian component. In terms of (5.1.1) L(t) = β11W1(t) + β12W2(t) + dL̃1. Anal-

ogously to the wealth process 5.2.2 in Section 2 the wealth process before crash time

evolves according to

Xπ(t) = x exp(aCXt+

(
π

1− π

)′
βW (t))X̃π(t), t > 0 (5.3.6)

where

aCX = b2+π(b1+aL−b2)−‖
(

π

1− π

)′
β‖2+

∫
(ln(1+πx)1{| ln(1+πx)|≤1}−πx1{|x|≤1})νL(dx)

and

ln X̃π(t) =

∫ t

0

∫
ln(1 + πx)1{| ln(1+πx)|>1}ML(dx, ds)

+

∫ t

0

∫
ln(1 + πx)1{| ln(1+πx)|≤1}(ML(dx, ds)− νL(dx)ds), t ≥ 0.
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Figure 5.4: Optimal portfolio an asset in the Black-Scholes model with jumps and a possible crash and a

bond for the same parameters as in Figure 5.3 under the constraint var(Xπ
C(t)) ≤ 100 000.

Denoting by Xπ
C the wealth process of the portfolio with crash possibility, it follows

Xπ
C(t) = 1{τ>t}Xπ(t) + 1{t≥τ}(1− π)Xπ(τ−)×

exp(b2(t− τ)− 1

2

2∑
1

β2
2j(t− τ) +

2∑
1

β2jWj(t− τ)), t ≥ 0. (5.3.7)

For the portfolio optimization we have to calculate the moments of the wealth process

E[(Xπ
C(t))

k] = E[(Xπ(t))k1{τ>t} + 1{t≥τ} ((1− π)Xπ(τ−))k (5.3.8)

× exp (k(b2(t− τ)− 1

2

2∑
1

β2
2j(t− τ) +

2∑
1

β2jWj(t− τ)))], t ≥ 0.

Theorem 5.3.4 Let (aL, βL, νL) be the characteristic triplet of the Lévy process L. Define

L̂(t) := L(t)−
∑
s≤t

∆L(s)1{∆L(s)≤−1} , t ≥ 0 ,

and define X̂π as Xπ with L replaced by L̂. Then for k ∈ N , provided the moment is finite

and E[(X̂π(t))k(1+δ)] <∞ for some δ > 0 ,

E[(Xπ
C(t))

k] = xk exp((kb2 +
1

2
(k2 − k)

2∑
1

β2
2j)t) (5.3.9)

×
(
(1− π)k

ν((−∞,−1])

ãk
(exp(ãkt)− 1) + exp(ãkt)

)
, t ≥ 0,
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where

ãk = kπ(b1 + aL − b2) +
1

2
(k2 − k)

(
‖
(

π

1− π

)′
β‖2 −

2∑
1

β2
2j

)

+

∫
(−1,∞)

((1 + πx)k − 1− kπx1{|x|<1})ν(dx)− ν((−∞,−1])

Proof With the same argumentation as in the proof of Theorem 5.3.4 we obtain

E[(X̂π(t))k] = xk exp

(
t(k(b2 + π(b1 + aL − b2) +

1

2
(k − 1)

(
‖
(

π

1− π

)′
β‖2
)
)

+

∫
(−1,∞)

((1 + πx)k − 1− kπx1{|x|<1})ν(dx))
)
.

and

E[(Xπ(t))k|
∑
s≤t

1{∆L≤−1} = 0] = E[(X̂π(t))k] (5.3.10)

Furthermore P (τ > t) = exp(−ν((−∞,−1])t) and

lim
r↑t

E((X̂π(r))k) = E(lim
r↑t

(X̂π(r))k), t > 0 (5.3.11)

for the same reasons as in Theorem 5.3.2.

Setting P (τ ≤ t) = Fτ (t), t > 0 we obtain by (5.3.6) and (5.3.10)

E[(Xπ
C(t))

k] =

∫ ∞
0

E[(Xπ
C(t))

k|τ = s]Fτ (ds)

=

∫ t

0

E[(Xπ
C(t))

k|τ = s]Fτ (ds) + E[(X̂π(t))k]P (τ > t)

=

∫ t

0

(1− π)kE[(Xπ(s−))k exp(k((b2 − 1

2

2∑
1

β2
2j)(t− s) +

2∑
1

β2jW2j(t− s)))|τ = s]Fτ (ds)

+E[(X̂π(t))k]P (τ > t)

(5.3.10) and (5.3.11) lead to

E[(Xπ
C(t))

k]

=

∫ t

0

(1− π)kE[(X̂π(s−))k]E[exp(k((b2 − 1

2

2∑
1

β2
2j)(t− s) +

2∑
1

β2jW2j(t− s)))]Fτ (ds)

+E[(X̂π(t))k]P (τ > t)

= (1− π)k exp((kb2 +
1

2
(k2 − k)

2∑
1

β2
2j)t)×
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∫ t

0

E[(X̂π(s−))k] exp(−(kb2 +
1

2
(k2 − k)

2∑
1

β2
2j)s)ν((−∞,−1])e−ν((−∞,−1])sds

+E[(X̂π(t))k]P (τ > t)

= xk(1− π)k exp((kb2 +
1

2
(k2 − k)

2∑
1

β2
2j)t)ν((−∞,−1])

∫ t

0

exp(ãks)ds+

xk exp((kb2 +
1

2
(k2 − k)

2∑
1

β2
2j)t) exp(ãkt)

= xk exp((kb2 +
1

2
(k2 − k)

2∑
1

β2
2j)t)

(
(1− π)k

ν((−∞,−1])

ãk
(exp(ãkt)− 1) + exp(ãkt)

)
We shall need the following results explicitly:

E[(Xπ
C(t))] = xeb2t

(
exp(f̃(π)t)

(
(1− π)ν((−∞,−1])

f̃(π)
+ 1

)

−(1 − π)ν((−∞,−1))

f̃(π)

)
(5.3.12)

var[(Xπ
C(t))]

= (xeb2t)2

[
exp(

2∑
1

β2
2jt)

(
e�g(π)t

(
(1− π)2ν((−∞,−1])

g̃(π)
+ 1

)
− (1− π)2ν((−∞,−1])

g̃(π)

)

−
(
e
�f(π)t

(
(1− π)ν((−∞,−1])

f̃(π)
+ 1

)
− (1− π)ν((−∞,−1])

f̃(π)

)2
 (5.3.13)

where

f̃(π) = −ν((−∞,−1]) + π

b1 − b2 + aL +

∫
[1,∞)

xν(dx)


and

g̃(π) = −ν((−∞,−1]) + 2π

b1 − b2 + aL +

∫
[1,∞)

xν(dx)

 + π2

∫
(−1,∞)

x2ν(dx)

+‖
(

π

1− π

)′
β‖2 −

2∑
1

β2
2j

Now we consider the optimization problem (5.3.5) also for the case of a portfolio of a

Black-Scholes asset and an asset with crash possibility. In this case C has to be chosen
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larger than min(var(x, π = 0, T ), var(x, π = 1, T )) to ensure that the variance constraint

can be satisfied.

If the crash asset to has a larger expectation and also a larger variance, the solution is

the largest π ∈ [0, 1] such that the variance constraint is satisfied. If the crash asset has

a larger expectation, but lower variance, the optimal portfolio is a pure crash portfolio.

Remark 5.3.5 Note that a lower variance and larger expectation of the crash stock

always leads to a pure crash investment for any planning horizon, although we know

that for large planning horizons the probability P (τ ≤ T ) = 1 − P (τ > T ) = 1 −
exp(−ν((−∞,−1])T ) of a crash within the planning horizon and hence to loose the whole

wealth becomes very large and tends to 1 for T → ∞. This is a deficiency of the variance

as a risk measure.

Example 5.3.6 Here the Lévy process is the sum of a Brownian motion
∑2

1 β1jWj(t) and

a compound Poisson process with intensity c and p as distribution of the jump heights as

explained in Example (5.3.3). We optimized portfolios for intensity c = 0.5, i.e. we expect

one jump within two years, P (Yi = −0.5) = P (Yi = 0.5) = 0.4, P (Yi = −1) = P (Yi =

1) = 0.1 and β11 = β22 = 0.1, β12 = β21 =
√
0.03, aL = 0, b1 = 0.15, b2 = 0.1 under

the constraint var(Xπ
C(t)) ≤ 600 000. Since the crash asset has larger expectation and

variance than the Black-Scholes asset in this case, the optimal π is the largest one ∈ [0, 1],

such that the variance constraint is fulfilled. Here we have to choose another bound C

for the variance than in the case of a portfolio including a riskless bond investment, since

we have only the choice between two risky assets here. For comparison we optimized

portfolios consisting of two Black-Scholes assets without crash possibility with the same

appreciation rates. If we only drop the jumps in asset 1 with the same β11 and β12 as

before, asset 1 and asset 2 have the same variance, but asset 1 has a larger expectation.

Hence the optimal portfolio is π = 1 for all panning horizons T . Thus, now we choose

β11 = 0.3 and β12 =
√
0.15 such that the variance of asset 1 without crash possibility is

the same as the variance of asset 1 before in the crash portfolio. As expected we see that

the optimal portfolios behave similar.
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Figure 5.5: Optimal portfolio for one asset in the Black-Scholes model with jumps and a possible crash

and one asset in the Black-Scholes model for the parameters aL = 0, c = 0.5, P (Yi = −0.5) = P (Yi =

0.5) = 0.4, P (Yi = −1) = P (Yi = 1) = 0.1, β11 = β22 = 0.1, β12 = β21 =
√
0.03, b1 = 0.15, b2 = 0.1

under the constraint var(Xπ
C(t)) ≤ 600 000.
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Figure 5.6: Optimal portfolio for two assets in the Black-Scholes model for the parameters aL = 0,

β11 = 0.3, β12 =
√
0.15, β21 =

√
0.03, β22 = 0.1, b1 = 0.15XS, b2 = 0.1 under the constraint var(Xπ

C(t)) ≤
600 000.
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Emmer, S. and Klüppelberg, C. (2002): Optimal portfolios when stock prices follow

an exponential Lévy process. Technical Report. Technische Universität München.

www.ma.tum.de/stat/



128 Chapter 5. Optimal portfolios with possible market crash
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of Operations Research. 51, 357-374.

Korn, E. and Korn, R. (2000): Option pricing and portfolio optimization - Modern

methods of financial mathematics. AMS.

Korn, R. (1997): Optimal Portfolios. Singapore: World Scientific.

Korn, R. and Trautmann, S. (1995): Continuous-time portfolio optimization under

terminal wealth constraints. Zeitschrift für Operations Research 42, 69-93.

Madan, D.B., Carr, P. and Chang, E. (1998): The variance gamma process and

option pricing. European Finance Review 2 79-105.

Madan, D.B. and Seneta, E. (1990): The variance gamma (VG) model for share

market returns. Journal of Business 63, 511-524.

Markowitz, H. (1959): Portfolio Selection – Efficient Diversification of Investments.

New York: Wiley.

Nocedal, J. and Wright, S. (1999) Numerical optimization. Springer, New York.

Pollard, D. (1984): Convergence of Stochastic Processes. Springer, New York.

Protter, P. (1990): Stochastic Integrals and Differential Equations. New York: Springer.
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