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Chapter 1

Introduction

Stabilization algorithms are useful tools for perceiving the symmetries of graphs
and for recognizing whether two graphs are equivalent or not. These problems are
known as the graph automorphism and the graph isomorphism problem, respec-
tively. Both are strongly related to the problem of canonically labeling graphs.
The graph isomorphism problem, the most prominent one among the above prob-
lems, has neither been shown to be NP-complete nor to be polynomial time
solvable, but there are strong indications that it is not N'P-complete [65]. The
graph automorphism problem is polynomially time equivalent to the graph iso-
morphism problem. A polynomial algorithm for the canonical labeling problem
would solve also the isomorphism problem.

In standard approaches for solving the above problems the automorphism
partition problem plays a crucial role. The automorphism partition of a graph G
is a partition of the vertex set with the following property: two vertices are in the
same set of the partition if and only if there exists a graph automorphism which
maps one of the vertices onto the other. The sets of the automorphism partition
are the orbits of the automorphism group of G. Therefore, the automorphism
partition is also called the orbit partition of G. Finding the orbit partition is as
hard as the graph isomorphism problem.

Among other results, a stabilization procedure yields a partition of the vertex
set which is in general coarser than the automorphism partition. Nevertheless, in
many favorable cases these two partitions coincide. Stabilization procedures start
with an initial partition, refine it iteratively, and stop if no further refinement is
obtained. All stabilization procedures discussed in this thesis run in polynomial
time.

H. L. Morgan was probably the first to deal with stabilization procedures
[52]. Basically he did the following: assign to each vertex as a label the number
of its neighbors. This assignment induces a partition of the vertex set. Next
assign to each vertex the sum of the labels of its neighbors as a new label. Iterate
this procedure until the number of different labels does not increase anymore.
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H. L. Morgan invented this procedure to find a “unique machine description for
chemical structures”, i.e., he was looking for a canonical labeling of molecular
graphs.

The 1-dimensional stabilization procedure discussed in this thesis is an im-
proved version of such an algorithm. It computes a so-called equitable partition.
This notion has been introduced by H. Sachs [63, 64] and has been since then
broadly discussed in several publications, see for example [33]. Among others,
D. G. Corneil and C. C. Gotlieb [19] improved this idea of iterated vertex col-
oring further when they were seeking for an efficient algorithm for solving graph
isomorphism problems.

A new idea was introduced independently by B. J. Weisfeiler and A. A. Leman
(73, 72], and J. Hinteregger and G. Tinhofer [39]. They not only partition the set
of vertices but also the set of edges, and instead of considering neighbors only,
they consider edges and the number and type of triangles to which they belong.
This approach is called 2-dimensional stabilization.

B. J. Weisfeiler and A. A. Leman provide examples showing that their algo-
rithm is not powerful enough to solve graph isomorphism problems in polynomial
time. They show that the outcome of their 2-dimensional stabilization procedure
is the basis of a so-called coherent algebra, a notion which also has been intro-
duced and investigated independently by D. G. Higman[37].

Nowadays, coherent algebras are well studied objects in algebraic graph theory
and have many applications in various areas. Recently, results on landscape and
recombination graphs [67, 69], and recognition of circulant graphs [55] have been
obtained by exploiting features of their coherent algebras.

Furthermore, stabilization procedures can be used in a polyhedral approach
to the graph isomorphism problem, an approach introduced by G. Tinhofer [70,
71, 22].

Higher dimensional stabilization procedures have been introduced by several
authors [73, 23, 42, 14].

The 2-dimensional stabilization algorithm can be implemented to run in time
O(n®log(n)) (see [42]). The problem is that a straightforward implementation
needs O(n?®) space. In this work, an algorithm is presented which reduces the
space requirements to O(n?). An implementation based on this algorithm is very
efficient in practice. Furthermore, the ideas used in the 2-dimensional case are
applied also to the 1-dimensional case and to a new k-dimensional stabilization
algorithm.

The stabilization algorithms have several applications in chemistry, for exam-
ple for recognizing the symmetries and the structure of chemical compounds. A
new application is the reconstruction of phylogenies in chemical biology [11]. In
this context, the cells of configuration graphs are determined. These graphs have
been introduced by D. F. Robinson [59].

This thesis is structured as follows. Chapter 2 presents the basic notions and



elementary versions of the stabilization algorithms.

Chapter 3 introduces an efficient way of computing 1- and 2-stable parti-
tions. Moreover, a particular version of a k-dimensional stabilization algorithm
is presented.

In Chapter 4, several aspects of stabilization procedures are considered. We
discuss bounds on the number of steps and capabilites of k-dimensional stabi-
lization algorithms. In addition, the main invariants obtained by stabilization
procedures are summarized. This chapter ends with an introduction to pointed
k-dimensional stabilization algorithms.

Chapter 5 deals with applications. A class of graphs is investigated which
is of importance for the problem of reconstructing phylogenies. Other applica-
tions concern graph isomorphism, automorphism and canonical labeling prob-
lems. Then some graph classes are presented for which the isomorphism problem
is solvable in polynomial time. Finally, we exhibit and discuss some algorithms
used in chemistry.

In Chapter 6, some refinements of the algorithms and computational results
are given.
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Chapter 2

Basics

First, we need to fix some notations and to introduce the basic concepts. Here,
elementary definitions are given, the fundamental notions of equitable partitions
and coherent algebras are presented, and the more general concept of k-colorings
is introduced. Afterwards, the algorithmic aspects of the concepts just mentioned
are discussed.

2.1 Definitions

2.1.1 Graphs

Let G = (V, E) be a (directed) graph with vertex set V =V, := {v1,va,...,0,}
and edge set E CV xV\{(v,v) | v € V} with m := |E|. The number of vertices
n is called the size or order of G.

Two vertices v and w are adjacent if and only if (v,w) € E or (w,v) € E.
In this case, v and w are neighbors. We say a vertex u is incident with an edge
e = (v,w) if u=wv or u=w. We call v the tail and w the head of e.

An edge (u,v) € E is undirected if also (v,u) € E. Undirected edges are
denoted by [v, w]. An undirected graph is a graph where the adjacency relation is
symmetric, i.e., (v,w) € F < (w,v) € E, and thus, all edges in E are undirected.

Figure 2.1: The drawing of a directed edge between the vertices v; and vy and of
an undirected edge between v3 and vy.

The outdegree of a vertex v is the number of edges e such that v is the tail of
e. Similarly, the indegree of v is the number of edges for which v is the head. The
indegree and the outdegree of a vertex v are denoted by indeg(v) and outdeg(v),
respectively. If G is undirected, the degree of a vertex is the number of vertices
adjacent to v. An undirected graph is k-regular if all vertices have degree k. If the

5
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specific value of k is of no importance, we simply speak of regular (undirected)
graphs.

The subgraph of a graph G = (V, E) induced by a vertex set V' or an edge set
E'’ is the graph

G(V'):= (V' Ey), Ey :={(u,v)€E|u,veV'},
or
GE) = (Vg E), Veg:={veV|ueV:(uv)eFE or(v,u) € E'},

respectively.
A list of vertices p = (uq,us, ..., u;) is called a path of length t — 1 if

Vi € {1,2,. ot = 1} : (Ui,ui+1) € F.
A path is called simple if

Vi,je{l,2,...,t},i #j: u; # uj.

A path (uy,ug,...,u), t > 3, such that (uy,ug,...,u;_1) is simple and u; =
is called a cycle of length t — 1.
A graph is called strongly connected if

Vo,w € Vdpathp: p=(v=wuy,ug,...,u =w).

An undirected graph is connected if and only if it is strongly connected [20].

A forest is an undirected graph without cycles and a connected forest is a
tree.

Given a graph G, let dist(u, v) denote the distance from u to v, i.e., the length
of a shortest path from u to v in G. The maximum distance of two vertices is
called the diameter and is denoted by diam(G).

Let A(G) denote the adjacency matriz of G, i.e.,

AG) = (aij)i,j€{1,2 ..... n} € {0, 13",

and a;; = 1 if (v;,v;) € E and 0 otherwise. See Figure 2.2 for an example.
Define B _ B
Vi={(v,v)|veV}and E:=EUV.

2.1.2 Colored Graphs

A colored graph Gy = (V, E, f) is a graph together with a coloring f. A coloring
is a function f : Dy — {1,2,...,n?}, Dy CV x V. The color of a vertex v is
by definition the color of (v,v), i.e., we put f(v) := f((v,v)). We write f(u,v)
instead of f((u,v)). If it is clear from the context which f belongs to G, we
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sometimes omit f and write simply G instead of G;. A coloring with D; =V is
a vertez-coloring, one with D; = E an edge-coloring, and a complete coloring is
one with Dy =V x V. In the latter case, Gy is called completely colored. Define
Fy:= f(Dy) and let ry := |Fy| be the rank of Gy.

For a set FF CV x V', we define F* := {(v,u) | (u,v) € F}. Instead of {e},

we write e'. The elements (v,w) € V x V' \ E are the non-edges of G.

Let f, f’ be two colorings of a graph G with Dy = Dy. We say that f is
coarser than f’ ( f < f') or equivalently, f’is finer than f, if

V(u,v), (w,z) € Dy : f'(u,v) = f'(w,2) = flu,v) = flw,z2).

Two colorings f and f’ are equivalent, denoted as f ~ f' if f < f" and f' < f.
Furthermore, two vertices u, v of G are distinguished by f if f(u) # f(v).

(a) A drawing ...

0100110000
101 00 01O0O0O0
0101000100
001 0100O0O0T10
1001 0 0 O0O0O01
10000 O0O0OT1T10O0
01 000O0O0O0T171
001 001O00O0°1
0001011000
0000101100

(b) ...and its adjacency matrix

Figure 2.2: The Petersen graph
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2.1.3 Isomorphism and Automorphism

Two graphs G = (V, E) and H = (W, F) are isomorphic if and only if there exists
a bijection ¢ : V' — W such that

Vu,v € Vi (u,v) € E< (¢(u),p(v)) € F

holds. ¢ is called an isomorphism between G and H.
Similarly, two colored graphs Gy and Hy are isomorphic as colored graphs if
they are isomorphic and there exists an isomorphism ¢ : V' — W such that

V(u,v) € Dy = f(u,v) = g(¢(u), ¢(v))

holds. ¢ is called automorphism if G = H or Gy = Hg, respectively. The
automorphism partition V of the graph G is a partition of the vertex set, i.e.,

V= {‘/17‘/27"'7‘/7‘}7
Vi,j: VinVy =0 < i J,

v= U v

7:6{172,...,7‘}

with the property that two vertices u, v belong to the same set V; if and only if
there exists an automorphism which maps u onto v.

A bijection p : V — {1,2,...,n} is a labeling of the vertex set in the following
sense. It transfers a graph G into a graph

(o(V), {(p(vi), p(v;)) | (vi,05) € E}, fop™).

This graph will be denoted by p(Gy) and is called a labeled graph. By setting
p = id, every graph with vertex set {vy, vo,...,v,} can be considered as a labeled
graph.

Note that the set of automorphisms of a graph G forms a group, the so called
automorphism group of G;. A graph G is vertez-transitive if the automorphism
group acts transitively on the vertices of G, i.e., for every two vertices u, v there
exists an automorphism which maps u onto v.

2.1.4 Colorings

For the illustration of the algorithms in this treatise it is preferable to think of
colorings of graphs instead of partitions. A vertex coloring f induces a partition
V={V,Vs ..., V,,f} of the vertex set in the following way.

YweV:iveV, e f(v)=c
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Analogously, an edge coloring f defines a partition of the edge set and a complete
coloring defines a partition of V' x V. On the other hand, each partition defines a
coloring. For example, a partition £ = {Ey, Fs, ... E, } of E defines the coloring

fle)=ceecE,ce{l,2,...,rs}.

Due to this correspondence, all notions defined for colorings are applicable to par-
titions as well and vice versa. Therefore, partitions and colorings are considered
as synonyms for the same combinatorial object.

To address all edges having color ¢, we define a color-class
Cle):=fHe)={ecV xV|fle)=c}

For a compact statement of the algorithms in this thesis, it is useful to require
some properties of colorings. We assume w.l.o.g. that the coloring f fulfills the
conditions

Vede: Cle)' =C(o). (2.1)
Vo eVNDpee(VxV\V)NDs: f(v) # f(e). (2.2)

If f does not have this property, we refine f appropriately. A complete coloring
fulfilling (2.1) and (2.2) is called proper. See Section 3.4.1 for an algorithm
for computing the coarsest proper coloring from an arbitrary complete coloring.
Observe that every vertex-coloring fulfills (2.1) and (2.2).

If G is a completely colored graph, we define the color matriz of G
C(Gf) = (Cij)i,j€{1,2,...,n} € Nan’ Cij -=—= f(zaj)
If an uncolored graph is given, an initial complete coloring can be defined by

1, Ve = (u,u)
fint(e) =< 2, Yee FE

3, otherwise.

To complete a coloring of a partially colored graph Gy, we assign to the
uncolored vertices, uncolored edges and uncolored non-edges, respectively, a new
color. The algorithm for obtaining this coloring is as follows:
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=1

currentColor :=ry + 1;

if V Z Df/ then

V(v,v) € Dy« f'(v) := currentColor;
currentColor + +;

end

if & z Df/ then

V(v,w) € E\ Dy : f'(v,w) := currentColor;
currentColor + +;

end
V(v,w) € V x V\ (EUDy): f'(v,w) := currentColor;
f=1r;

This means that first all uncolored vertices obtain the smallest unused color,
then all uncolored edges obtain the next smallest unused color, and finally the
uncolored non-edges get the then smallest unused color. In this way, every graph
G turns into a completely colored graph preserving the initial partial coloring. If
initially no coloring is given, i.e., Dy = (), then this algorithm computes fi,;.

Figure 2.3: The color matrix of f;,; for the Petersen graph (vertices are blue,
edges black and the non-edges red).

2.1.5 Notation

Graphs will be denoted by G and H with vertex set V and W, respectively, and
edge set E and F, respectively. By u, v and w, we always denote vertices, e
denotes an edge, b and ¢ denote colors, and f, g, and h denote colorings.
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2.2 Structures

The key concepts introduced in this section are equitable partitions (1-stable col-
orings) and coherent algebras (2-stable or coherent colorings). We will state them
in the classical way and in terms of colorings, and introduce the generalized view
of k-stable partitions and colorings, respectively.

2.2.1 Equitable Partitions

Equitable partitions were first introduced in [63, 64, 66]. They play a crucial
role in attacking the graph automorphism and the graph isomorphism problem
(see Section 5.2 and [48]). For a general reference on equitable partitions see
[15, 18, 33, 68].

Let Gt be a colored graph and f a vertex coloring. The integers

p,:={w eV | f(w)=cand (v,w) € E}|, veV and ¢ € Fy,

are called the I-dimensional structure values of Gy, respectively, the structure
values of the corresponding vertex partition induced by f. p¢ is the number of
successors of v with color c.

Let

L'(v) = {(e,p;) | ¢ € F, iy # 0}

be the I-dimensional structure list of v and

L' (c) = {(v,p;) | v € V., p}, # 0}

be the 1-dimensional structure list of c.

In L'(v), we collect the colors of the neighbors of v together with the number
of neighbors being of the respective color. L!(c) collects vertices and their number
of neighbors with color c.

A partition V = {V}, V4, ...V} of the vertex set is called equitable if

Vie{1,2,...,r}Vo,w e V;: L*(v) = L*(w).
Similarly, a coloring f(v) of the vertex set is called equitable if and only if
Vo,we Vi f(v) = f(w) = L'(v) = L'(w).

By analogy to the term k-stable introduced later on, we frequently use the
term I-stable instead of equitable.

If f is equitable, we introduce for each color b the I1-dimensional structure
constant p; and define p§ := p¢, for some v with f(v) = b. This is well defined
since for an equitable coloring pS = const for all v € C(b). These constants pf,
b,c € Fy, are called the structure constants of f, respectively, of the equitable
partition defined by f.
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The color-classes of vertices corresponding to an equitable coloring are called
the cells of this coloring. A union of cells is called a cellular set. Analogously,
the sets defining a vertex partition are called the cells of the partition.

In the following, we will define more general notions of stability. The terms
cell and cellular set will always be used with respect to the currently used notion.

Some Properties

Given a graph Gy, there is a unique coarsest equitable coloring which is finer
than f. If f = f;., then this coarsest equitable partition is also known as the
total degree partition.

An important equitable partition of a graph G is its automorphism partition.
In general, the total degree partition is coarser than the automorphism partition,
in particular cases (for instance for trees) these two partition coincide.

Equitable partitions and their structure constants are convenient tools for
investigating the spectra of graphs. Proofs for claims which are not proven here
can be found for example in [68, 33].

The eigenvalues of a graph G are the solutions of the characteristic polynomial
of the adjacency matrix of G, i.e., A is an eigenvalue of G if it is a solution of
the equation det(A(G) — xI) = 0. The spectrum of G is the set of different
eigenvalues of G.

Let P = {V1,Va,...Vi} be an equitable partition of a graph G. Then the
quotient graph G/P is defined to be the graph having the sets V; as its vertices
and pg edges going from V; to V;, where the pg’s are the structure constants of
P. The adjacency matric of G/P is by definition the matrix (pi 1< j<k-

The following lemma is well known.

Lemma 2.1 Let P be an arbitrary equitable partition of G. Then
spec(G/P) C spec(G).

Let P;, 1 < i < k, be a sequence of partitions of GG. If for each vertex v of
G the set {v} is a cell of at least one P;, then this sequence is called a complete
sequence of partitions.

Lemma 2.2 Let P;, 1 < i < k, be a complete sequence of equitable partitions.

Then
spec(G) C U spec(G/P;)
1<i<k
holds.
We define
outdeg(v) 0o ... 0

0 outdeg(v 0 ... 0
AG) = Bl2) 0

0 0 outdeg(vy,)
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and call A(G) — A(G) the Laplacian of G. Observe that if G is k-regular then A
is an eigenvalue of GG if and only if A + £ is an eigenvalue of the Laplacian of G.
The Laplacian of a graph is used in Section 5.1.

2.2.2 Coherent Algebras

Coherent configurations, which are collections of relations on V' having some
special properties, were introduced by D. G. Higman[37]. The adjacency matrices
of the relations in a coherent configuration constitute the linear basis of a so-
called coherent algebra [38]. Coherent algebras were introduced independently
under the name cellular algebras by B. J. Weisfeiler and A. A. Leman[73]. An
important special case of coherent configurations are the so-called association
schemes [8, 12].
Let G¢ be a completely colored graph. The integers

pet = [{w e V| flu,w) = ¢, f(w,v) =d and e = (u,v)}]

are called the 2-dimensional structure values of G4. p&® is the number of triangles
with basis edge e whose non-basis edges are colored with the colors ¢ and d.

u v
e = (u,v)

Figure 2.4: Triangles counted by p&?.

Let
L*(e) == {(c,d, p2%) | po* # 0}

be the 2-dimensional structure list of e and

L?(c, d) := {(e. pg”) | p2* # 0}

be the 2-dimensional structure list of ¢ and d.

In L*(e), the numbers of triangles which contain e as basis edge are collected,
distinguished by the colors of the non-basis edges. L?(c, d) collects edges together
with the respective number of triangles whose non basis edges are colored with
the colors ¢ and d.

A complete coloring f is called 2-stable if and only if

Ve,e € V xV: fle) = f(e) & L?(e) = L*(€).
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If f is 2-stable, we introduce for each color b the 2-dimensional structure
constant pg’d defining pg’d := p>? for some e with f(e) = b. This is well defined
since p&? = const for all e € C(b). Similar to the 1-dimensional case, we define
2-stable partitions and their structure constants.

Let us define a matriz representation B(f) of a complete coloring f as B(f) :=
{E. | ¢ € F¢} where E, is the n X n matrix with (E.);; = 1 if f(v;,v;) = ¢ and
0 otherwise. Let E* denote the conjugate transpose of E, I the identity matrix,
and J the matrix which all entries are equal to 1. The representation B(f) is
called coherent if it has the following properties:

J=> E. (2.3)

cEFy
I= Z E, for some 7 C F; (2.4)
cel
Vedd : E. = E) (2.5)
Ve,d: E.Eg= Y py B, (2.6)
beFy

The following lemma states a well known fact in terms of colorings.

Lemma 2.3 A coloring is proper and 2-stable if and only if its matriz represen-

tation fulfills (2.3)-(2.6).

Proof. Given a coloring f, (2.3) holds if and only if f is complete. Similarly,
(2.4) holds if and only if vertices have colors different from the colors of edges.
Observe that (2.5) is equivalent to (2.1). Thus, f is a proper coloring if and only
if B(f) fulfills (2.3)-(2.5).

Assume that the matrix representation of f fulfills (2.6). (E.Eq4)., denotes
the number pfjv) of paths (u,w,v) with f(u,w) = ¢ and f(w,v) = d. Due to
(2.6), this number is equal for all edges with color b, namely p,f’d, and this holds
for arbitrarily chosen colors ¢ and d. Thus, the coloring is 2-stable. The opposite
direction holds with the same argumentation. 0

Let f be a 2-stable coloring. Then B(f) defines the linear base of an algebraic
structure, called coherent or cellular algebra, in the following way (see [29] and
[38] for details).

Let M, be the algebra of the complex valued n X n matrices and A o B
the Schur-Hadamard product (Ao B);j := (a;;b;;) of A = (a;;) and B=(b;;). A
subalgebra M of M, is a subset of M,, with the following properties. Given
two matrices My, My € M, and a complex scalar A. Then M; + My € Mg,
MMy € M,, and AM; € M, holds.

A coherent algebra A is a sub-algebra of M,, which is closed under conjugate
transposition and Schur-Hadamard multiplication and contains the matrices I
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and J. The span of B(f) is a coherent algebra [38]. We call it the coherent
algebra corresponding to f and denote it by A(f).

While a coherent algebra A like any matrix algebra has different linear bases,
it has exactly one base consisting only of 0 — 1 matrices, which is called the
standard base of A. For this reason, every coherent algebra is associated with
some 2-stable coloring f. Obviously, B(f) is the standard base of A(f). The
numbers pg’d are called structure constants of A(f).

The color-classes of a 2-stable coloring f constitute a system of relations on V'
which is called a coherent configuration. The matrices in B(f) are the adjacency
matrices of these relations. In this way, 2-stable colorings, coherent algebras, and
coherent configurations correspond to each other in a unique way.

Two completely colored 2-stable graphs Gy and G'f, are equivalent if

Vi7j7 k7l € {1723 .. '9”} : f(viavj) = f(vk'avl) = f,('Ug,’U‘;) = f,(vllmvl,)'

Given a completely colored graph G there is a unique coarsest 2-stable col-
oring f which is finer than f. The coherent algebra corresponding to f is called
the coherent algebra generated by Gy, respectively, by the color matrix C'(Gy) of
Gy. It is the smallest coherent algebra containing C'(G). It is an important tool
for investigating the symmetries of graphs.

2.2.3 k-stable Colorings

The notions presented in the previous two sections can be generalized to the k-
dimensional case, k € N. This has been proposed by several authors [14, 44]. In
Chapter 4 different definitions of k-stability will be discussed. Instead of coloring
vertices and edges like in the previous sections, k-tuples are colored.

A k-tuple (t1,ta, ..., 1) will be denoted by t*. A k-starlet S at w is an ordered
k-tuple of edges ((v1,w), (v2,w), ... (vg_1,w), (w,vg)). We say that S is incident
with a k-tuple v* of vertices if v¥ = (vy, vy, ..., v;). A k-tuple of vertices together
with an incident k-starlet forms a k + 1-tangle.

Figure 2.5: A (k + 1)-tangle consisting of a k-tuple and an incident k-starlet
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Two starlets S = (ey,e9,...,ex) and S" = (e}, €,,...,€}) are equally colored
if f(e;) = f(e}) for alli € {1,2,...,k}.

Up to now, colors have been assigned to 1-tuples and 2-tuples of vertices
only. A k-coloring is a partial mapping f from D; — {1,2,...,n*}, D; C V.
Implicitly, each such k-coloring defines an [-coloring for 1 < [ < k. To make this
evident, we generalize the definition of the color of vertices in the 2-dimensional
case and define

fd) = f((ug,ug, .. ug, ugy .. wy)), ub = ((ug,ug, ... ), 1<1<E.
(k—1)-times

Given an arbitrary k-tuple, we define the reduced dimension of it as the number
of different vertices in the k-tuple.
For a graph G with a complete k-coloring f, the integers

pqc)];“ = ’{’U)GV’VZG {1727"'ak_1}:f(vi7w)zci and f('lU,’Uk):CkH

are called the k-dimensional structure values of Gy.
Let

LR = {(c", p) | Pk # 0}
be the k-dimensional structure list of vFand

L) o= {(v", ) | Pl # 0}

be the k-dimensional structure list of c* .
f is called k-stable if and only if

Vol uf € VF L f(0F) = f(uF) & L") = LF(ub).

If f is k-stable, pf}’,i are the k-dimensional structure constants.
Note that a k-coloring f induces a partition of V!, 1 <1 < k, and vice versa.

2.3 Stabilization Procedures

The first goal is to describe a 1-dimensional stabilization procedure which can
be used to compute the coarsest equitable partition of a graph Gs. Afterwards,
k-dimensional stabilization algorithms for k > 2 are introduced.

2.3.1 1-dimensional Stabilization

The algorithm presented in this section computes the coarsest equitable partition
of a given graph GY.

If f is the empty coloring (D = 0), then the the algorithm starts by coloring
the vertices according to their degrees, i.e., two vertices obtain the same color
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if and only if they have the same degree. In the next step, two vertices obtain
the same color if and only if they had the same color before and, for each color
occurring in the graph, they have the same number of neighbors of this color.
Observe that the number of colors either increases or stays the same during one
step. The algorithm stops as soon as the number of colors does not increase
anymore.

If the input graph is a colored graph G, this procedure has to be adjusted
in order to respect the initial coloring. The following algorithm is stated for a
general input graph Gy. If no initial coloring is given, we may use f;,; as initial
coloring.

Algorithm 1: Coarsest Equitable Partition (1-stab)
Data : Gy = (V,E, f), f a vertex coloring
Result: A 1-stable coloring f! of G;

u fr=f;

2: repeat

3: compute L'(v) Vv € V;

4: splitcolor, i.e., fl(v) = fl(w) :& L'(v) = LY(w) and f'(v) = f'(w),
v,w eV,

5: recolor, ie., f! = f1;

until 1 did not change;

Obviously, Algorithm 1 computes an 1-stable coloring. It is well known
that, for f = fi, the algorithm computes the total degree partition [48]. For an
example see Example 1.

Lines 3-5 of Algorithm 1 are denoted by (step). The corresponding lines
in the algorithms 2-stab and k-stab, which will be introduced later on, are
denoted by (step) as well. It will always be clear from the context which (step)
is addressed. Furthermore, keywords in the algorithms which actually represent
whole procedures are marked in the text by (). For example, when referring to
line 5 in Algorithm 1, we write (recolor).

H. L. Morgan was probably the first to use the idea of vertex coloring for find-
ing a canonical graph representation [52]. Instead of considering the neighbors of
each vertex for each color separately, he looked only at the sum of the colors over
all neighbors of each vertex. In our terminology, colors are natural numbers and
in this way, the sum of colors is well defined. Among many others, D. G. Corneil
and C. C. Gotlieb published an article [19] where they stated an algorithm in a
similar manner as we did above.

We say that an algorithm A computes a coloring in a canonical way, if the re-
sulting coloring is independent of the vertex numbering. Such a coloring is called
a canonical coloring. An canonical coloring is an important graph isomorphism
invariant.
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It is easy to see that Algorithm 1 does not compute the automorphism
partition for every input graph. The most prominent class of graphs for which
the total-degree partition does not coincide with the automorphism partition are
the non-transitive regular graphs. In fact, for regular graphs Algorithm 1 does
not refine at all, i.e., no splitting of the vertex set appears. A simple example is
given in Example 2.

Example 1
Let the graph Dg = (Vg, E),

E = {[v1, va], [va, v3], [vs, va], [va; V5], [va, V6] }

be given.
(vs)
Figure 2.6: Dy N
O O
(a) After one step (b) After the second and final step

Figure 2.7: Colorings of Dg

See Section 6.2 for a detailed description of the graph class D,,. Figure 2.6
shows the graph Dg and Figure 2.7 the colorings after one and two steps of
Algorithm 1, respectively.

2.3.2 2-dimensional Stabilization

The first 2-dimensional stabilization algorithm was introduced by B. J. Weisfeiler
and A. A. Leman in 1968 [73]. The algorithm can be stated as follows.
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Algorithm 2: Weisfeiler-Leman algorithm (2-stab)
Data : Gy = (V,E, f), f proper
Result: The coarsest 2-stable coloring f? of G
L fP=
repeat
compute L*(e) Ve € V?;
splitcolor, i.e., f2(e) = f2(¢') :& L%(e) = L*(¢'), e, ¢’ € V?;

recolor, i.e., f2 = f2;

SO A2 -

until 742 did not change;

Obviously, Algorithm 2 computes a 2-stable coloring. Furthermore, it is well
known that it computes the coarsest 2-stable coloring finer than the initial color-
ing of a given colored graph. For a brief historical survey of different algorithms
for computing 2-stable colorings see Section 3.1.

In the 2-dimensional case, the analogue to regular graphs are strongly regular
graphs, i.e., for those graphs 2-stab does not refine the initial coloring f;,; at all.
A graph is strongly regular if it is regular and there are numbers A, u € N such
that two arbitrary adjacent vertices have A common neighbors and two arbitrary
non-adjacent vertices have p common neighbors. For examples of non-vertex
transitive, strongly regular graphs see [72].

Example 2
Let the graph G = (14, E),

E = ({[Ulv 'UQ]’ ['Ula ,07]7 [Ula US]’ ['U% 'U3]’ ['UQ’ ,04]7 [,037 'U4]’ ['U?n '08]7

[U4a U5]7 [U5a Uﬁ]a [057 717]7 [Uﬁa U7]7 [U67 718]})

be given.

Consider now the structure lists of e = (v, v2) and €’ = (v, v4). The structure
lists of fin: (the vertices have color 1, edges have color 2, and non-edges have color
3) are

L*(e) ={(2,3,2),(3,2,2),(3,3,2),(1,2,1),(2,1,1)}

and
LQ(e') ={(2,2,1)(2,3,1),(3,2,1),(3,3,3),(1,2,1),(2,1,1)}.

To make it more clear, pz’}g counts the paths of length 2 from v3 to v, using
only non-existing edges. These are the paths via the vertices vy, vg, v7, Similarly,
32 _
pe” = [{vs, va}l.
A drawing is given in Figure 2.8.
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(a) G
Figure 2.8:

The resulting color matrix representation after stabilization has 3 cells (diag-
onal elements) distinguished by three different shadings of yellow.

Figure 2.9: The resulting coloring

B. J. Weisfeiler and A. A. Leman state their algorithm in terms of matrix
multiplication. Instead of a colored graph, they take as input a matrix containing
non-commutative variables. In their language, a (step) is nothing but multiplying
the matrix by itself and then assigning different variables to different entries in
the resulting matrix. Furthermore, they refine the coloring in each step according
to condition (2.1). Due to the following lemma this is not necessary and thus left
out in our formulation of Algorithm 2.

Lemma 2.4 If condition (2.1) is true before some (step) of Algorithm 2 then
it 1s true throughout the rest of the algorithm.

Proof. Assume that condition (2.1) is true before (step) s. Let

L(e) - {(Cl’ dl’pghdl)? (62’ d2apg27d2)a SR (Clea dlevpgleydle)}
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be the structure list of the edge e € C(b). Since condition (2.1) holds, the structure

list of e* € C(b) looks as follows.

L(e") = (e, p ), (8,5, 0), . (@i p )}

Thus, two edges e, e’ € C(b) get the same color if and only if e, ¢’ € C(b) get the
same color and hence condition (2.1) is still true after (step) s. 0

2.3.3 k-dimensional Stabilization

Algorithm 3: k-stab
Data : Gy = (V,E, f),k > 2, f a complete k-coloring
Result: The coarsest k-stable coloring f* of G
fF=1
repeat
compute L*(v*) Vor € V¥,
splitcolor, i.e., f¥(v*) = fE(w") &= L*F(v*) = LF(w") Vor, w* € V¥,

recolor, i.e., f¥ = f*:

o s » b

until r. did not change;

If £ = 2 and the given coloring is a proper 2-coloring, Algorithm 3 computes
a coloring equivalent to a coloring computed by the Weisfeiler-Leman algorithm.
1-stab does not fit in this framework since the old color of each vertex is not
considered properly in each step.

A complete k-coloring f of a graph G is called k-stable if it does not change
if Algorithm 3 is applied to it. A graph Gy is called k-stable if f is a k-stable
coloring.

2.4 Invariants, Canonical Colorings and Canon-
ical Labelings

A canonical label is a mapping which assigns to each graph G a labeling pg,
with the following property. Given two arbitrary graphs Gy and G'f, and their
canonical labelings pg, and pcr, s respectively, Gy and G'f, are isomorphic if and
only if pg},*l o pg, defines an isomorphism from Gy to G. pg, is called a
canonical labeling of Gy. Observe that a graph can have different canonical
labelings.

A graph-invariant is a graph-theoretical property or parameter which is pre-
served by isomorphism, in other words, which does not depend on the labeling
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of the graph. Examples are the number of vertices and the number of edges, the
sorted sequence of degrees and so on.

To be more precise, an [-tnvariant ¢ is a mapping which assigns to each graph
an [-tuple of numbers having the property that for any two given isomorphic
graphs G and G’ we have ((G) = «(G"). Observe that the adjacency matrix is
not an invariant since it depends on how the graph is labeled. However, if we use
a canonical labeling for each graph, the adjacency matric becomes an invariant
(see Section 5.2.1).

An invariant ¢ is complete if two graphs G and G’ are isomorphic if and
only if «(G) = «(G"). Algorithms for computing invariants are called invariant
procedures.

It is well known that the sets of k-dimensional final structure lists of graphs
computed by the algorithms presented above define invariants [73, 48, 44]. Two
graphs are called weakly isomorphic if they have the same final 2-dimensional
structure lists.

2.5 Complexity Theory

In this section, we introduce some basic notions of complexity theory, which
enable us to speak about the “difficulty” of a problem and the “efficiency” of
an algorithm. Establishing the whole theoretical framework needed for a precise
introduction to complexity theory would exceed the scope of this chapter. Thus
we will constitute the framework on a more or less informal level. For a precise
and comprehensive introduction to complexity theory, we refer to A. V. Aho,
J. E. Hopcroft and J. D. Ullman [1], M. R. Garey and D. S. Johnson [32], or
C. Papadimitriou and K. Steiglitz [56].

For our purposes a problem is a general question to be answered which is
defined on several formal parameters (or variables) whose values are left open. To
define a problem, we need a description of all its parameters and of the properties
an (optimal) solution is required to satisfy. If all the parameters are fixed to
certain values, we get an instance of the problem.

We consider two types of problems. Decision problems, which require an an-
swer “yes” or “no”, and optimization problems whose solutions have to minimize
(or maximize) a certain objective function.

We assume that we have an encoding scheme which represents each instance
of a problem and each of its solutions as a binary string of 0’s and 1’s.

For an informal discussion it is sufficient to consider an algorithm as a com-
puter program solving a problem step by step. Solving a problem means, accept-
ing a string representing an instance of the problem and giving back a solution.
It is reasonable to measure the performance of an algorithm depending on the
“size” of the problem instances to be solved. Therefore to each instance I of a
problem, we associate a size or an encoding length which is defined as the length
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I(I) of the string representing the instance according to our encoding scheme. If
A is an algorithm for the solution of a problem P, we define its running time for
the instance I as the number of elementary steps A requires to get a solution of /.
For our purpose we consider elementary arithmetic operations such as additions,
multiplications, etc, and read/write operations as elementary steps.

Define

O(p(n)) == {a(n) [ q(n) : N — N,3C": Vpen : q(n)
Q(p(n)) :=={q(n) | ¢(n) : N = N, 3c: Voen : q(n)

Cp(n)} and
cp(n)}-

The time complexity function of an algorithm A for a problem P is a function
tA : N — N giving for each n the maximum running time required for the solution
of an instance I with [(I) < n. A is a polynomial time algorithm, if there exists
a polynomial p with ¢ 5 (n) € O(p(n)). Analogously, we define space complexity
which measures the amount of space that is required to run an algorithm.

The class of all decision problems which can be solved by a polynomial time
algorithm is denoted by P. A decision problem II is in NP if for each instance
I of IT whose solution is “yes”, there exists a structure S such that with the help
of S the correctness of the “yes” solution can be checked in polynomial time. A
decision problem is N'P-complete if it belongs to the “hardest” problems in NP
in the following sense. If there is a polynomial time algorithm to solve an N'P-
complete problem, then all problems in NP can be solved in polynomial time
using this algorithm as a subroutine, i.e., all problems in NP are polynomially
time equivalent.

Obviously P C N'P. The question whether P = NP, which is widely believed
to be false, is still, since 1971, one of the major open problems in complexity
theory.

An optimization problem is said to be N'P-hard, if it has the property that
the existence of a polynomial time algorithm for its solution would imply the
polynomial time solvability of an NP-complete problem. We want to point again
to the fact that we kept this introduction at an informal level.

<
>
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Chapter 3

Algorithmic Aspects of
Stabilization Procedures

Since the motivation of the present work is to find a fast algorithm for computing
2-stable colorings, we begin with a brief survey of the existing algorithms and
implementations. Then we introduce some necessary definitions and lemmas.

We present algorithms for computing k-stable colorings, £ = 1, k£ = 2, and
k> 2.

3.1 Discussion of Known Algorithms and Ideas

B. J. Weisfeiler and A. A. Leman in [73] did not give time or space bounds of their
algorithms for computing 2-stable colorings. Time bounds were first considered
by S. Friedland in [29]. The methods presented in both of these papers are of
high theoretical but of little practical interest. They just verify the existence of
polynomial time algorithms for the problem. In the last decade, possibly among
others, three algorithms for computing 2-stable colorings have been developed
and implemented: stabil by I. V. Chuvaeva, M. Klin and D. V. Pasechnik [7],
stabcol by L. Babel and S. Baumann [5, 6] and CC by I. N. Ponomarenko [58].

We will first discuss these algorithms briefly and then introduce some ideas
which proved useful for an improved approach to graph stabilization.

A straightforward implementation of Algorithm 2 which just computes all
structure lists in each step would have a running time of O(n°log(n)) and O(n?)
space would be needed. This is obvious since every (step) needs O(n?) time and
space for computing the structure values and O(n?log(n)) time to assign the new
colors to the edges. Recoloring can be done by sorting the edges according to a
lexicographical ordering of their structure lists and then assigning the new colors
in this order.

Such a procedure needs O(n?log(n)) comparisons of structure lists, each tak-
ing up to O(n) time. Since theoretically O(n?) steps could be necessary, this

25
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sums up to a running time of O(n®log(n)).

The only possibility to reduce the running time is to compute less than n
triangles in each (step) of Algorithm 2. We will show how this can be done
without changing the outcome of the algorithm. First, it is necessary to describe
more precisely how (recoloring) will be done.

During (recoloring), a color-class C(cy) will be split into I color-classes. The
largest class will keep the old color ¢y and the other classes will get new colors
C1,C2,...,0_1. We refer to this strategy as the LCOC rule (Largest Class Old
Color). The new colors remain new until the next recoloring.

The following two lemmas are stronger formulations of lemmas given by L. Ba-
bel in [5].

3

Lemma 3.1 [t suffices to compute only those entries in each structure list which
contain at least one new color.

Proof. Let f be the resulting coloring after the sth recoloring. Assume that the
colors ¢y and dy have been split during the sth recoloring to ¢y, cy,...c.—1 and
do,dy,...dy,—1. Let e, ¢ € C(b) after the sth recoloring. Of course

le—11g—1 le—114—1
E § ci,d;i __ § § c;,d;

pel = pe’ (31)
=0 j5=0 =0 j=0

holds. If we compute only those entries in each structure list which contain at
least one new color, then the values pc% and pco’do will not be computed. As-

e e/

sume that p2® # p«®. Due to (3.1), there is a pair (,) # (0,0) such that

d; d ) . )
pe Y #£ pZ? 7. For that reason, different colors are assigned to e and €’ in the

(s + 1)th recoloring. A similar argument holds when only one color, say cg, has
been split up (I; = 1). 0

An edge has been recently recolored if it has obtained a new color in the
preceding (step). A triangle is called necessary if at least one of its non-basis
edges has been recently recolored. The part of a structure list which contains
only structure values counting necessary triangles is called reduced structure list.

Although the above lemma eventually reduces the number of triangles which
are considered in a (step), the worst case bound on the number of triangles
considered in a single (step) is still n®. However, the total number of triangles to
be considered reduces considerably.

Lemma 3.2 When using the LCOC rule for recoloring, the overall number of
triangles which have to be considered during the entire run of the algorithm is

bounded by O(n3log(n)).

Proof. Due to the LCOC rule, each new color-class C(c1),C(ca),...C(c,—1)
has at most half of the size of the color-class it originated from. Thus, each tri-
angle can only be 2log(n?) times necessary. Since there are n? triangles in the
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graph, the proof is finished. 0

Due to the previous lemma, Algorithm 2 can be implemented to run in time
O(n®log(n)) Up to now, this is the best known time bound of an 2-dimensional
stabilization algorithm.

A canonical coloring can be obtained by sorting the elements of the structure
lists L(e) lexicographically and then assigning new colors according to the lexi-
cographic order of the structure lists. This can be combined with the recoloring
step described above to get the canonical coloring algorithm presented by L. Ba-
bel in [5]. The ideas of L. Babel were implemented in stabcol. The drawbacks
of stabcol are the space requirements of O(n?) and the bad practical running
time.

Another implementation of Algorithm 2 is the program stabil. This imple-
mentation is very efficient in practice, has a theoretical time bound of O(n") and
needs O(n?) space. The authors of stabil tried to reduce the number of structure
lists they have to store simultaneously. The idea is to compute only the structure
lists of edges having currently the same color. To start with color-classes of small
size, they perform a degree partition of the vertices and recolor edges based on
this information. Since the size of the largest color-class can still be up to Q(n?),
in a (step) of stabil only the first O(n) different structure lists of a color-class
are considered. Also this approach has two disadvantages. First, stabil does not
color canonically and, secondly, stabil might need more steps than the generic
Weisfeiler-Leman algorithm (see Section 2.3.2), although still less than O(n?) of
course.

An implementation of the generic Weisfeiler-Leman algorithm, which yields
a canonical coloring, is included in the package CC of I. N. Ponomarenko. It is
basically a smart implementation of the original algorithm in [73] with the focus
on using only little memory. It has a running time of O(n®log(n)) and needs
O(n?) space.

The problem is now to find an algorithm and an implementation combining the
advantages of all known algorithms. It should be theoretically efficient with time
complexity bound at most O(n?log(n)), require at most O(n?) space, compute a
canonical coloring and it should be fast in practice.

The main idea which leads to such an algorithm is to compute not all (re-
duced) structure lists but only parts of them at a time. This reduces the space
requirements immediately, but some work has to be done to keep the required
time bound.

B. D. McKay [48] and J. E. Hopcroft [40, 1] have presented some versions of
algorithms for the 1-dimensional case. Furthermore, N. Immerman and E. Lander
[42] were the first to recognize that k-stable colorings can be computed using ideas
analogous to the ideas presented by J. E. Hopcroft and R. Tarjan[41]. Their
approach is also used in [14] and is discussed in 4.1. In the way they state it,
the algorithm needs Q(n**1) space and is thus inferior to ours which needs only
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O(kn*) space.

3.2 Prerequisites

Loops like while and foreach will be processed in the current ordering of the
elements. We use an in situ implementation of bucket sort. To simplify the
notations, we denote colorings f!, f? and f* in this chapter by f. It is always
clear from the context which coloring is used. The algorithms presented in this
chapter for computing 1-stable and 2-stable colorings are implemented in the
programs qStab and qWeil, respectively (see Chapter 6).

3.3 1-stable Colorings

The algorithm described in this section was obtained as a special case of the
algorithm in Section 3.4. However, since this special case is much easier to state
and to understand, it serves as an introduction.

Consider Algorithm 1. In this section, we want to find a fast implementation
for lines 3-5 of that algorithm. These lines are denoted by (step). The idea of our
approach is to compute only one entry of each structure list, but for all vertices
at a time. That is, we compute the sets L(c) instead of L(v). So (step) can be
reformulated as follows.

Procedure 4: step
c f= 1
. foreach ¢ € N do
compute L(c);
splitcolor(c), i.e., split the colors in the following way:
f) = f(w) & f(v) = f(w) and p; = py,,  Vo,w € V;
end
: No= f(V \?f(V);

: recolor f =

993[\7)—‘

[<2 I

Note that the structure values p are defined with respect to f and are not
changed within a foreach loop. We refer to f as pseudo coloring of the vertices.
f immediately leads to a set of new colors N'. N is initially defined as the
set f(V) and will be recomputed directly prior to every (recolor) operation as
N = F(V)\ S(V).

Let S C V be a set of vertices. We define

N(S)={weV|FweS: (v,w)eE}.
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We write N (v) instead of N({v}). Observe that this definition differs from the
standard definition of the neighborhood of a set of vertices S, |S| > 1. Further-
more, we define

IN(S)]| =) [N(v)].

veES

We store the input graph G using adjacency lists, i.e., for every vertex, we
store a list of its neighbors, and the vertices are stored in an array of size n.
Algorithm 1 with Procedure 4 as implementation for (step) requires only
linear space (linear in m).

We are now going to prove the time bound of O(mlog(n)) for Algorithm 1
with Procedure 4 as implementation for (step). First note that Lemma 3.1 and
Lemma 3.2 are valid also for this version of the algorithm. It will be shown that
(compute L(c)), (splitcolor), and (recolor) can be implemented to run in time
O(|IN(C(e)]| + [C(e)]), O(]IN(C(e))]]), and O(|L]), respectively. Here, |L] is the

list of vertices used in Procedure 7.

To see this, it is necessary to describe the used data structure in more detail.
The color-classes are stored in an array. Each class consists of a doubly linked list
of its members. Furthermore, every vertex knows its colors, i.e., f(v) and f(v)
is available in constant time. The structure lists L(c) are also stored as doubly
linked lists. This makes it possible to carry out append, delete and update
operations in O(1).

vertices
» a

-

color classes
Figure 3.1: The color-class ¢ consists of the elements 1,3,...,4,...n, and ¢ has

the neighbors 7, k, [

To present a fast version of (splitcolor), we need some more notation. A vertex
v is called hit by cif p¢ > 0, a color-class C(b) is called hit by c if some v € C(b) is
hit by ¢. C(b).hit denotes the number of elements hit by ¢ of C(b). This number
is needed in (splitcolor) and can easily be computed in Procedure 5 (which is
done in line 7). C(b).size denotes the current size of C(b).
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Procedure 5: compute L(c)

: foreach w € C(c) do
foreach v € N(w) do
Py = 0;
end
end
4: foreach w € C(c) do
5: foreach v € N(w) do
6: if p;, = 0 then
7
8

won o

C(f(v)).hit + +;
append (v,p$) to L(c);

end
o: Py + 4
10: update the entry of (v,pS) in L(c);
end

end

We stress once more that the values p¢ are defined with respect to the old
color c¢. Obviously, the time for computing the structure list L(c), needed in
line 3 of Procedure 4, is bounded by O(||N(C(c))|| + |C(c)|) (see Procedure
5 for details). Since each vertex is recolored at most log(n) times, the sum over
the computing times of all structure lists computed during the execution of the
algorithm is bounded by O(mlog(n)).

We now turn to the analysis of Procedure 6 (splitcolor). Using bucket
sort, the sorting of L(c) by increasing values p¢ (line 1) can be bounded by
O(|L(c)| + |C(c)]). This is because the largest p¢ is not greater than |C(c)|.

In (splitcolor), the pseudo recoloring will be done in the following way. New
pseudo colors are assigned according to an increasing ordering of the values pS.
We say that a vertex v is an element of a structure list L(c), denoted by v € L(c),
if there exists a tuple (v,pS) in L(c).

In Procedure 6, we determine the smallest p$ of each color-class C(b) hit by
¢ (stored in C(b).current_p). We want vertices with the smallest p¢ to keep their
old pseudo color and the others to obtain new pseudo colors. These temporary
pseudo colors will be reassigned in (recolor). Observe that if some vertices of C(b)
are not hit by ¢, i.e., p¢ = 0, they do not appear in L(c). It is not possible to
find the smallest p$ by scanning through all elements of C(b) because C(b) or at
least the sum of the sizes of all hit color-classes might be too large to keep the
time bound. One possible solution for computing the smallest p¢ is shown inside
the loop of lines 2 — 8. These lines need the sizes of the pseudo color-classes
which are updated in lines 13 and 15. In the loop starting in line 9, the new
pseudo colors are allocated and assigned as described before. Summing up all
terms in this discussion, Procedure 6 has an (amortized) overall running time
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of O(|L(c)| +]C(c)]) = O(JN(C(c))| + |C(c)]) which equals O(mlog(n)).

Procedure 6: splitcolor(c)

1: sort L(c) by increasing values of p;
2. foreach v is first vertex in L(c) with color f(v) do
3 | b= f(v);
4: if C(b).hit < C(b).size then
5: ‘ C(b).current_p := 0
else
6: ‘ C(b).current_p := pS;
end
C(b).current_color := b;
C(b).hit := 0;
end
9: foreach v € L(c) do
10: if C(f(v)).current_p # p¢ then
11: C(f(v)).current_p := p<;
12: C(f(v)).current_color := ny + 1;
end

13: C(f(v)).size — —;

14: | f(v):=C(f(v)).current color;

15: | C(f(v)).size + +;
end

Denote by N; the set of all colors emerging from b in a specific step, i.e.,

Ny = {f(v) | f(v) =b}.

Procedure 7: recolor

1: Let L be the list of all vertices which got a new pseudo color;
: Let L' := {f(v)|v e L}

: foreach v € L do

delete v from its color-class C(f(v));

append v to C(f(v));

end
foreach b € L' do
7: find d € N}, with |C(d)] = max IC(d)];
'eN
: | if |C(d)| > |C(b)| then
9: ‘ exchange the (pseudo) colors of the color-classes C(b) and C(d);

end
end

w0: f=f;

[SAT. U

@




32 CHAPTER 3. ALGORITHMIC ASPECTS OF STABILIZATION PROCEDURES

To finish (step), we have to transform the pseudo colors assigned by (splitcolor)
into the final new coloring. This is done by Procedure 7 which is an imple-
mentation of (recolor) and ensures that the largest color-class keeps its old colors
and does the updating of the color-classes and colors in a correct way. This is
necessary for maintaining the LCOC rule.

Computing the list L (line 1) can be done by keeping track of the new colors
during each (step). In order to update our data structures, the vertices have to
be moved from their old color-class to their new one. In our data structures,
deleting an element from its color-class and appending an element to a new class
takes time O(1). Thus, lines 2-4 of procedure (recolor) take only O(|L|) time.
Since the sizes of the new color-classes are known, all executions of line 7 during
one execution of Procedure 7 take time O(|L|). Hence, lines 6-9 take time
O(|L]) as well since two colors will be exchanged if and only if the color-class of
the new color is larger than the old one. The final line of this procedure can be
implemented in time linear in |L]|.

We conclude that all statements of Procedure 7 can be executed in time

O(|L))-

Theorem 3.3 Algorithm 1 using procedure Procedure 4 has a worst-case
running time of O(mlog(n)).

Theorem 3.4 Given a graph Gy, the coarsest 1-stable coloring of G which is
finer than f can be computed in O(mlog(n)) time and O(n) space.

The algorithm presented above does not compute a canonical coloring which
is due to the fact that the ordering inside the structure lists L(c) depends on the
ordering of the vertices. But the algorithm can easily be adjusted to compute a
canonical coloring. To achieve this, sorting of L(c) by the pseudo colors of the
vertices prior to line 1 of Procedure 6 is necessary. For details see the discussion
of the analogous problem in the 2-dimensional case. Using heapsort to sort L(c),
the overall running time of (splitcolor) and thus the whole algorithm is bounded

by O(mlog®(n)).

Corollary 3.5 The coarsest canonical 1-stable coloring can be computed in time
O(mlog?(n)) and space O(n).

Due to the fact that there are at most O(nlog(n)) executions of Procedure 6,
using bucket sort instead of heapsort gives another time bound.

Corollary 3.6 The coarsest canonical 1-stable coloring can be computed in time

O(n*log(n)) and space O(n).

The latter result has also been obtained by B. D. McKay [48] for a similar
algorithm. His algorithm does not compute the complete structure lists L(c) at
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a time but only the parts for vertices having a specific color. This works well
for 1-dimensional stabilization but the approach cannot be generalized to obtain
new theoretical results for higher dimensional stabilization algorithms.

Note that Corollary 3.6 improves the time bound of B. D. McKay for sparse
graphs. For a somewhat enhanced version of B. D. McKay’s algorithm, one can
obtain the same bound as in Corollary 3.6. In such an algorithm, the computation
of structure values which are zero has do be omitted. Nevertheless, the bound of
Theorem 3.4 cannot be reached without considering all neighbors of a color-class
at a time.

It should be mentioned that B. D. McKay’s algorithm as well as the algorithm
just described needs only O(n) memory in addition to the memory needed for
storing the graph. The algorithm of J. E. Hopcroft and R. Tarjan which also has
time bound O(mlog(n)) needs O(m) additional space.

3.4 2-stable Colorings

In this section, the ideas presented in the previous section will be extended to
obtain a new algorithm for computing 2-stable colorings.

3.4.1 Proper Colorings

We want to construct an algorithm which produces in each (recoloring) a proper
coloring. As mentioned in Section 2.1.4, we can assume w.l.o.g. that the input
graph is completely colored. To turn this given coloring into a proper coloring,
we eventually have to modify it to meet the conditions (2.1) and (2.2). The
following algorithm (Algorithm 8) computes the coarsest proper coloring finer
than a given initial coloring f.

Since line 8 of Algorithm 8 is the most expensive one, the worst-case time
bound is obviously O(n?) (by using bucket sort). The algorithm requires O(n?)
memory. If the graph structure is not represented by the coloring, e.g., some edges
and non-edges have the same color, the above algorithm can be easily adjusted
to distinguish between edges and non-edges.

There exist simple examples for the fact that if the initial coloring is not
proper, the 2-dimensional stabilization algorithm not necessarily computes the
basis of a coherent algebra. Take the graph with adjacency matrix J in which
all elements of V' x V have the same color. No new colors would be introduced
during Algorithm 2 if Algorithm 8 would not be applied first. The result
would violate property (2.1).
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Algorithm 8: Proper Coloring
Data : Completely colored graph G = (V, E, f)

Result: Proper coloring f of G
: T = (;
: foreach (u,v) € V xV do
if u =v then

‘ edge := 0;

ﬁ.@l\?)—‘

else
5: ‘ edge = 1;
end

triple(u,v) = (edge, f(u,v), f(v,u));
append triple(u,v) to T}

end
8: sort T" lexicographically;
9: color := 0;
10: triple = (0,0,0);
11: foreach triple(u,v) € T do

12: if triple # triple(u,v) then
13: triple := triple(u,v);
14: color + +;
end
15: | f(u,v) = color;
end

Consider the graph with adjacency matrix depicted in Figure 3.2(a). If Al-
gorithm 8 is applied first, we obtain Figure 3.2(b), otherwise Figure 3.2(c).
Obviously, Figure 3.2(c) violates property (2.2).

Although the necessity of starting with a proper coloring is obvious, the au-
thors of some of the algorithms mentioned above probably were not aware of it
since their algorithms fail on this instance!. Figure 3.2(c)(a) was worked out
using qWeil.

As previously shown (see Lemma 2.4), a proper coloring stays proper through-
out the whole run of Algorithm 2.

stabil exits with a segmentation fault and stabcol computes Figure 3.2(c)(a)
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Figure 3.2:

3.4.2 The New Algorithm

In this section, we will show that canonical coherent colorings can be computed
in O(n?) space and O(n3log(n)) time. As done in the 1-dimensional case, we
start by considering a new (step) function.

Procedure 9: step
1: ? = f,
2: foreach (c,d) € F x F do
3: splitcolor(c, d), i.e., compute L(c, d) and split the colors in the following
way: f(e) = f(¢') = f(e) = f(¢') and p&? = p&?, Ve, e € E;
end _
4: recolor, i.e., f = f;

As mentioned before, the entries of lists (or sets) are always visited according
to the current (natural) ordering of the list (set). In Procedure 9 we suppose
entries are visited in increasing order of ¢ and d.

(splitcolor(c, d)) stores a pseudo color f at each edge. This guarantees that
the information of the previously computed structure values will be memorized.
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Finally, (recolor) overwrites the color of each edge with its current pseudo color.
Obviously, the result of this refinement procedure is the same as the one of lines
2 and 3 in the generic algorithm Algorithm 2.

Consider the lists L(c,d) in Procedure 9 again. Since every list L(c, d) has
length up to n? and there are up to n* such lists, this approach does not seem
to be very promising at first sight. But at least, it is only necessary to store the
list of one pair (¢, d) at a time and still get a canonical coloring (for details see
Procedure 11). Thus, this approach finally makes it possible to work in O(n?)
space only.

From now on, we will try to reduce the running time to O(n?log(n)) and keep
the desired space bound. To reduce the number of pairs (¢, d) to be considered,
we can apply Lemma 3.1 and replace Procedure 9 by Procedure 10. As in
Procedure 4 of Section 3.3, f is needed to define the set of new colors /. The
old colors are denoted by O := F\ N. Both, N and O, are initially, prior to the
first execution of Procedure 10, set to F.

Procedure 10: step

1 f=f;
2: foreach ¢ € N do
3: foreach d € F do
4: ‘ splitcolor(c, d);
end
end
5: foreach c e O do
6: foreach d € N do
7: ‘ splitcolor(c, d);
end
end
8 N = f(V)\ f(V); O:=F\N;
9: recolor;

To make a running time analysis of Procedure 10, we need to go into the
details of the used data structure.

We store the colored graph G as a colored matrix M, i.e., My, = f(u,v),
VYu,v € V, and the set of color-classes in an array of length n?. With each
color-class C(c), we associate doubly linked lists of a row-wise and a column-
wise encoding of the edges in that color-class (these correspond to sparse matrix
representations of E.). By row-wise and column-wise encoding, respectively, we
mean that the edges in the list appear ordered lexicographically by the tuple
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(head, tail) and (tail, head), respectively. We denote these lists by rowwise(c)
and columnwise(c), respectively.

Furthermore, we store doubly linked lists of the first edges in the rows and
columns of each color-class. These lists are called rows(c) and columns(c). The
lists L(c, d) are stored as unordered doubly linked lists and are sorted if necessary.

It takes O(n?) time to initialize this data structure. In the following, we do
not describe explicitely how and when occurring lists and variables are deleted
and reset, respectively. It always should be clear from the context how and
when this is done. For an edge set W, rowindices(W) and columnindices(W')
denote the sets of row indices and column indices of W with respect to M. If
W = {e}, we write rowindez(e) and columnindez(e) instead of rowindices({e})
and columnindices({e}) respectively.

To achieve the time bound claimed above, we also need to explain the imple-
mentations of (splitcolor(c,d)) and (recolor) in more detail. We have implemented
these functions to run in time O(n + #triangles) and O(n + ) triangles). By
#triangles, we mean the number of triangles which are considered for comput-
ing L(c,d), i.e., #triangles = ZeeL(Qd) pS?, and by > triangles, the number of
triangles which are considered in the current (step).

An edge e is called hit by (c,d) if p>® > 0, a color-class C(b) is called hit by
(¢,d) if some e € C(b) is hit by (¢, d). C(b).hit denotes the number of hit elements
of C(b). This number is needed in (splitcolor) and is computed in Procedure
12 (in line 4).

In (splitcolor) (Procedure 11), the pseudo recoloring will be done in the

following way. New pseudo colors are assigned according to an increasing ordering
of f(e) and p? to obtain a canonical coloring. Moreover, we determine the
smallest p&? of each color-class C(b) hit by (c, d) (stored in C(b).current_p) because
the edges with the smallest p&? keep their old (pseudo) color and the other ones
get new (pseudo) colors. It is not possible to do this by scanning through all
elements of C(b) because C(b) or at least the sum of the sizes of all hit color-
classes might be too large.
One possible solution for computing the smallest p¢ is shown in lines 4 — 10.
That is why we need to update the sizes of the color-classes immediately. This
is done in lines 15 and 17. In lines 11 — 17, the new pseudo colors are assigned
as described before.
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Procedure 11: splitcolor(c, d)

1: compute L(c, d); B
2: sort L(c,d) by the values f(e);
3: sort L(c,d) (in situ) by the values p&¢; B
4. foreach e with (e first edge in L(c,d) with color f(e)) do
5: b= f(e);
6: if C(b).hit < C(b).size then
7: ‘ C(b).current_p := 0
else
8: ‘ C(b).current_p := po¢;
end
9: C(b).current_color := b;
10: | C(b).hit :=0;
end

11: foreach e € L(c,d) do

12: if C(f(e)).current_p # po? then

13: C(f(e)).current_p := po%

14: C(f(e)).current_color := ny + 1;
end

15: C(f(e)).size — —;

16: f(e) :=C(f(e)).current_color;

1. | C(f(e)).size + +;

The first line of Procedure 11 is implemented in Procedure 12. It is
a special sparse matrix multiplication and can be done in the required time of
O(n + #triangles). To compute L(c,d), the matrix product E := E. - E4, which
is nothing but a matrix representation of L(c,d), has to be computed.

Procedure 12: compute L(c, d)

1: foreach w € columnindices(c) N rowindices(d) do

2 foreach e = (u,v) with (u,w) € C(c) and (w,v) € C(d) do
3: if po¢ =0 then

4 C(f(e)).hit + +;

5 append (e, p&?) to L(c,d);

end

6: pet + 4

end

end

Observe that the number of iterations of the loop in line 1 of Procedure
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12 which equals |columnindices(c)) Nrowindices(d))| is bounded by #triangles
and the computing of columnindices(c) Nrowindices(d) can be done by scanning
through the lists columns(c) and rows(d) whose lengths are bounded by n.

The inner loop needs an overall amortized time of O(#triangles) because
together with the index w, we get the first elements with column index w and
row index w of the color-classes C(c) and C(d) respectively, and have access in
time O(1) to the successors of the elements.

To analyze the running times of lines 2 and 3 in Procedure 11, we need
to explain the sorting procedure we used. Let a list L of length m be given.
Assume that each element of L consists of at most k numbers out of the interval
{1,2,...,n} (or of one natural number bounded by n*), then L can be sorted
using bucket sort in time O(k(n + m)) and space O(m +n) [1].

It follows that the sorting in line 3 in Procedure 11 can be done with bucket
sort in time O(#triangles) since the p? in L(c,d) are bounded by #triangles.
Line 2 needs time O(n+ #triangles) and thus, this procedure has a running time
of O(n + #triangles).

Since (splitcolor(c, d)) is invoked in accordance to the lexicographical order of
(¢,d) and the assignment of the new colors depends only on the structure values
and the previous coloring, the pseudo coloring is again canonical.

To finish the implementation of (step), we have to transform the pseudo colors
assigned by (splitcolor) into a new coloring according to the LCOC rule. An
appropriate updating of color-classes and colors which ensures that the largest
color-classes get the old colors is done by Procedure 13.

Denote by N. the set of all colors emerging from c¢ in one iteration of (step),

ie., No.:={f(e)| fle) = c}.
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Procedure 13: recolor

1: Let L be the list of all edges which got a new pseudo color;
: Let L' := {f(v)|v e L}

: foreach e € L do

delete e from its color-class C(f(e));

append e to C(f(e));

end
6: sort L by the tuples (rowindex(e), columnindez(e)) and generate with the
help of this ordering the row encodings of the new color-classes;
7: sort L by the tuples (columnindex(e), rowindez(e)) and generate with the
help of this ordering the column encodings of the new color-classes;
8: foreach c € L' do
find d € N, with |C(d)| = max IC(d")];

w0 | if |C(d)| > |C(c)| then

11: ‘ exchange the colors of the color-classes C(c) and C(d);

AT -

end

12: f = f;

In order to update our data structures, the edges have to be moved from their
old color-classes to their new ones. In our data structures, deleting an element
and appending an element to a new list — without any further updating of the
data structure — takes time O(1) (see lines 3 and 5).

The sorting in Procedure 13 (lines 6 and 7) can be done in time O(n +
> triangles) using bucket sort. This sorting done, the initialization of the row
and column encodings is nothing but an appending procedure and thus can be
done in time O() triangles). Lines 9-11 take time O(}_ triangles) since two
colors will be exchanged only if the new color is larger than the old color. We
conclude that Procedure 13 can be executed in time O(n + Y triangles).

An amortized cost analysis of the algorithm described so far, yields a worst
case running time for Procedure 10 of O(n®). The reason for this still bad time
bound lies in the fact that many empty structure lists are computed and that the
running time of (splitcolor) depends linearly on n.

To improve the time bound, we have to make sure that only triangles with a
combination of colors which exist in the currently colored graph are processed.
And so the multiplication will only take time O(#triangles). In addition, we
move the sorting in line 2 of Procedure 11 to Procedure 13. In this way, we
again change the implementation of (step). The result is Procedure 14, which
first computes all paths of length 2 with a color combination which actually exists
in the graph and then computes the corresponding triangles.
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Procedure 14: step
Examine triangles whose first non-basis edge was recently

colored;

1 f=f;

2: foreach c e N do

3: [/(C) = (Z),

4: foreach (u,w) € columns(c) do

5: for (v =1; v <wertices; v+ +) do

6: if (w,v) is first of its color-class in the row of M corresponding
to w then

7: ‘ append ((u,w), (w,v)) to the list L(c);
end

end

end
8: sort L(c) by the colors of the second edges;
foreach d € L(c) do

10: ‘ splitcolor(c, d);
end
11: delete L(c);
end

the same as in loop 2 has to be done for the case when the
second color is new;

recolor;

The list £(c) consists of all directed paths of length 2 whereby the first edge
has color ¢ and is the first of its color-class in some column in M and the second
edge is the first of its color-class in some row of M. Therefore, £(c) has at most
n-|columns(c)| elements. The sorting in line 8 can be done in time proportional to
O(|L(c)| +n) = O(_. triangles). Y triangles denotes the number of triangles
with the first edge colored by the color ¢ to be considered in this step, which is
at least as large as n. Since the sets columnindices(c) Nrowindices(d) are stored
in £(c), the multiplication in Procedure 12 is executed in time proportional to
the number of triangles.

To move the sorting in line 2 of Procedure 11 to Procedure 13, we need
to introduce more data structures. With each edge e, we store its parent color
parent(e), i.e., the (pseudo) color-class to which e belonged before its color was
changed the last time, and with each color-class C(c) a list of children, i.e., edges
which had color ¢ before they were recolored the last time. If a child of a color-
class C(c) is recolored, it is deleted from the list of children of C(c). During the
initialization, each edge e will be defined as child of C(f(e)). For details see
procedure Procedure 15, which differs from Procedure 11 in that in addition
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it builds up this new data structure.

Procedure 15: splitcolor(c, d)

1: compute L(c, d);
2: sort L(c,d) by the values p&¢;
3. foreach e with e first edge in L(c,d) with color f(e) do
4 | b= f(e);
5: if C(b).hit < C(b).size then
6 ‘ C(b).current_p := 0
else
7: ‘ C(b).current_p := po¢;
end
8: C(b).current_color := b;
C(b).hit := 0;
end
10: foreach e € L(c,d) do
11: if C(f(e)).current_p # po? then

12: C(f(e)).current_p := po%;

13: C(f(e)).current_color := ng + 1;
end

14: C(f(e)).size — —;

15: delete e from its parent’s children list;

16: append e to the children list of C(f(e));

17: parent(e) := C(f(e));

18: | f(e) :=C(f(e)).current_color;

19: C(f(e)).size + +;
end

Using this parent-children relationship, we are able to keep the current color-

ing canonical by inserting some appropriate lines in the procedure (recolor) (see
Procedure 16).

Observe that (splitcolor) is still implemented to run in time O(#triangles)
and the worst-case running time of (recolor) did not change. Furthermore, the
data structure for the parent-children relationship can be stored in O(n?) space.

The algorithm needs at most n? calls of (step) to compute a stable coloring.
However, the overall running time of all calls of (splitcolor) (including Procedure
12) is proportional to the number of all triangles which are considered. This
number is bounded by O(n3log(n)) because each triangle is considered at most
O(log(n)) times. The same amount of time is needed for all executions of the
remaining part of Procedure 14.
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Procedure 16: insert in Procedure 13 between line 1 and 2
1: sort L by the old colors f;

2: introduce a dummy root r;
3: foreach e € L, f(parent(e)) < ny do

4: assign e as child of r;
5: assign r as parent of e;
end

the parent-children relationship defines a tree 7' on the
color-classes in L.;

assign new colors ny +1,..., ny to the color-classes in 7" and to the edges
in L by walking through 7" in post order (or some other well defined order);

Since one execution of (recolor) takes time O(n + > triangles), the overall
running time for this part of (step) is also bounded by O(n?® + n®log(n)) =
O(n?log(n)).

Hence, we finally have obtained a running time of O(n?log(n)).

Theorem 3.7 Given a colored graph Gy, a canonical coarsest 2-stable coloring
of G which is finer than f can be computed in time O(n>log(n)) and space O(n?).

A complete version of the implementation presented here can be found in the
appendix.

3.5 k-stable Colorings

In this section, the general case of computing k-stable colorings is described.
We adopt the ideas from the 2-dimensional case to obtain an algorithm for the
k-dimensional case. Instead of coloring only vertices and edges, k-tuples are
colored. However, every k-coloring implicitly determines an [-coloring, 1 <[ < k
(see Section 2.2.3).

Instead of considering edges (2-tuples) and the triangles (3-tangles) in which
they are contained, we consider k-tuples and the (k + 1)-tangles in which they
are contained. We know from the foregoing discussions that we need to consider
only k-starlets with at least one recently colored edge.

It is possible to generalize the notion of proper colorings. Let m denote a
permutation of {1,2,... k}. A k-coloring f is proper if it is complete (i.e.,

D; = V*) and for an arbitrary 7 and two k-tuples v¥ = (v1,vq,...,v;) and
uf = (uy,us, ..., u;) the following holds:
for,v9, .. 08) = fug,ug, ... ug) <

f(vw(l), ’U7r(2), Ce ,’Uﬂ(k)) = f(uﬂ(l), UW(Q), e ,uﬂ(k)) (32)
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and

dim(v*) # dim(u®) = f(0*) # f(u®). (3.3)

Let v* and u* be two k-tuples. v* is called a permutation of u* if there exists

a permutation 7 of {1,2,..., k} such that

(Ula V2, ... 7Uk:) = (U’ﬂ(l)7 Ur(2)y - - - 7u7r(k))~

We start our algorithm with a graph being properly k-colored. To obtain
such a coloring, assume we are given a properly 2-colored graph. Note that
k-tuples of the form (u,u,u,...,u) represent vertices and that k-tuples of the
form (u,v,v,...,v) represent edges. Such k-tuples obtain the given colors of the
vertices and edges, respectively. Furthermore, permutations v* of such k-tuples
u® get the color of u*.

Let ¢y, ca,...cx_o be some unused colors. Color each [-dimensional k-tuple
with the color ¢;_5, [ > 2. In this way, we get an initial k-coloring which is
obviously proper. In the 2-dimensional case, we have observed that, if we start
with a proper coloring, this property is maintained throughout the algorithm.
The same is valid in the general case for k > 2 (see Section 2.3.3).

Lemma 3.8 If the initial coloring is proper then the coloring remains proper
throughout k-stab (Algorithm 3).

Proof. Property (3.3) is trivially valid throughout the algorithm. Consider
now the property (3.2). Assume that the coloring is proper after some step and
examine what happens in the next step. Let two k-tuples of vertices v* and u*
have the same color and dimension. Furthermore let the structure lists of v* and
u”* be denoted by L« and L, respectively, and let 7 be an arbitrary permutation
of {1,2,... k}.

Take two arbitrary equally colored starlets S,» represented in L,» and S,
represented in L,x. Then the starlets 7(S,x) and 7(S,x) are equally colored and
are contained in the structure list of 7(v*) and 7 (u*), respectively. This argument
can be generalized by considering the structure values of colored k-tuples (see 3.8
for details) and thus, the coloring remains proper after the next step. 0

Lemma 3.8 justifies that we only consider starlets where only one direction
of each edge is present. Involving the backward edges as well would not make a
difference for the final coloring.

Further, this observation enables us now to simplify the discussion by working
with k-stars instead of k-starlets. A k-star S(w) at w is an ordered k-tuple
of edges ((v1,w), (ve,w),...(vk,w)). We say that S is incident to the k-tuple
(v1, 09, ..., vg) of vertices.

Instead of writing down the k-dimensional algorithm completely, we will refer
to the 2-dimensional case and expose the differences.
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First, in an adjusted version of Procedure 14, we have to compute the k-
stars. This is done analogously to the 2-dimensional case. We choose a new color
c and a position p € {1,2,...,k}. Then we compute k-stars having an edge of
color ¢ at position p. As before, we do not compute all of them but only the ones
where the edge at position p is the first in its column having color ¢. The list
of these k-stars is denoted by S*(c,p). Assume now that we have a fixed edge
ending in w. There are n*~! possible ways to extend this edge to a k-star. Hence,
the size of S*(c, p) is bounded by O(n*).

To obtain a good time bound, we have to avoid computing k-tangles twice.
The complete procedure is shown below. To state the algorithm, we need one
more definition. Let L be a set of k-stars. Then CP(L) = {81,8,,...,8} is
the partition of L such that for all S, S’ € §; if and only if S and S’ are equally
colored.

Procedure 17: step

1 f=f;
2: foreach ¢ € N do
3: foreach p € {1,2,...,k} do
4: compute k-stars(S¥(c, p));
5: sort S¥(c, p) lexicographically;
6: foreach S € CP(S*(c,p)) do
7: ‘ splitcolor(S);
end
end
end

8: recolor;

Since S*(c, p) is sorted (in line 5), the computation of CP(S*(c, p)) is straight-
forward. By using bucketsort, it takes time O(k(n+ |S*(c,p)|). Since |S*(c,p)| is
in any case at least as large as n, this is the same as O(k|S*(c, p)|). Let S(w) =
((v1,w), (va, w), ..., (vg, w)) be a k-star at w. The assignment S(w), :=u, u € V
and p € {1,2,...,k}, means that v, in S(w) is replaced by w.

Procedure 18: compute k-stars(S*(c, p))

1: foreach (u,w) € columns(c) do
2: S(w), = u;
3: recursion(S(w), p, 1);

end
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Procedure 19: recursion(S(w), p, j)
: if j =k + 1 then

‘ append S(w) to S*(c,p);

end

3: if 7 =p then

4: ‘ recursion(S(w), p, j + 1);

k?b—‘

end
5: if p < j then
6: foreach v € V, f(v,w) # c do
7: S(w); = wv;
8: recursion(S(w), p, j + 1);
end
end
9: if p > j then
10: foreach v € V do
11: S(w); = v;
12: recursion(S(w), p, j + 1);
end
end

From the list S*(c, p), we are able to compute the remaining k-stars and the
lists L¥(c*) for each c* realized in S*(c, p) (see Procedure 12).

It is left to show that the structure lists can be computed and sorted in the
required time. The sorting can be done by bucketsort and since we have at most
O(kn*log(n)) lists S*(c,p) and at most O(kn**!log(n)) k-stars to consider, the
overall sorting time is bounded by O(k?n**11og(n)).

Assume that all k-stars in S are equally colored and let c*(S) be this k-
tuple of colors. Now the structure lists L*(c®(S)) can be computed knowing S.
Apart from a reformulation of the first three lines, (splitcolor) (Algorithm 20)
stays the same as in Section 3.4 except that it has an overall running time of
O(#k—stars).

Procedure 20: splitcolor(S)

1: Let c* = c*(S);

2. compute LF(c*));

3. sort L*(c*) by the values pf}’;;

The k-tuples are stored in an k-dimensional array analogously to the 2-
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dimensional case. But we only need to have the row-wise and column-wise en-
coding of the edges and not of all k-tuples. So Procedure 13 (recolor) can be
adopted.

Summarizing the above discussion, we obtain the following theorem.

Theorem 3.9 Given a colored graph G, a canonical coarsest k-stable coloring
of G which is finer than f can be computed in time O(k*n*T11og(n)) and space
O(kn*).

Although this algorithm reduces the memory requirements by a factor of n
compared to the algorithm presented in Chapter 4.1, this algorithm is still not
applicable to large graphs.

Therefore, we suggest another generalization of k-stability. Since storing the
colors of k-tuples is too expensive, we only color the edges but still consider k-
tuples they are contained in. A k-roof v* contains a k-tuple (vq,vs, ..., V51, ;)
of vertices together with all edges going from each vertex to all vertices having
larger index except the edge (vy,v;). v* is said to cover the edge (v, vy).

@ Vk—1

N
@y

Figure 3.3: A k-roof covering (vy, v)

In the suggested algorithm, one would distinguish edges by the different k-
roofs each edge is covered with. A coloring which is stable with respect to this
algorithm is called loosely k-stable. The algorithm coincides for k € {1,2} with
1-stab and 2-stab, respectively. This simplified approach reduces the memory
requirements to O(n?) but for k > 2 there is no known implementation which is
efficient in practice (and keeps the space bound of O(n?)).

3.6 Computing the Basis of a Coherent Algebra

To compute the basis of a coherent algebra of a given set of complex n x n
matrices {41, ..., As}, one has to compute a linear basis first. Afterwards, the
Weisfeiler-Leman algorithm can be applied. Time bounds for this procedure
have been given by S. Friedland [29] with O(sn* + n'?) and I. N. Ponomarenko
[57] O(nm?log(nm) + n°log(n)).

The up to now best time bound has been achieved by L. Babel [5].
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Lemma 3.10 /5] The basis of the linear subspace L (I,J, Ay, ..., As, A%, ..., AZ)
can be found in time O(sn?*logn).

The proof is done by giving an algorithm which computes the basis of L.
Revisiting the proof in [5] shows that this is done in a space-optimal way, i.e.,
the algorithm needs only O(s - n?) space, which is the space needed for storing
m matrices of dimension n x n. The result can be interpreted as a completely
colored graph and thus might be used as input for the 2-dimensional stabilization
algorithm presented before.

Corollary 3.11 The basis of a coherent algebra generated by Ay, As, ..., As can
be computed in O((s +n)n?log(n)) time and O(s - n?) space.



Chapter 4

Further Aspects

4.1 Another k-dimensional Approach

N. Immerman and E. Lander present in [42] a multidimensional approach to sta-
bilization of graphs which is different from the one presented in Section 3.5.
In [14], the authors refer to it as the k-dimensional Weisfeiler-Leman algo-
rithm Weisfeiler- Leman algorithm!k-dimensional.

As we will see in the following, their and our approach coincide, in the cases
k € {1,2}, for larger k their approach can yield stronger refinements. They
perform a stabilization procedure in the same way as we do, except that they
define the structure lists in a different way.

In the 1-dimensional case, N. Immerman and E. Lander define their structure
lists as follows:

1

L' (0) == (F(), {(, g o) | ¢ € F}), where
ye == |{(v,u) € E| f'(u) = c}| and
ne = |{(v,w) € E| f'(w) = c}|.
These are structure lists which contain some obvious redundant information

(note that n = y. + n, for all ¢ € F). For k > 2, they define the structure lists in
a different way, namely

—k
L7 (v*) o= {f ("), {U(f, 0", u),u € V],
where
1,0 u) = (f(0" (v /), F(WF(va/w)), ..., f(0"(up/u)))
and where for v* = (vy,vs,...,v;) and arbitrary vertex u v*(v;/u) denotes the
k-tuple (v1,ve, ..., 0i_1,U, Vg1, ..., Ug).

The algorithm of N. Immerman and E. Lander starts with an initial coloring
similar to ours. They suggest to color each k-tuple according to its isomorphism

49
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type. Starting with a proper coloring as defined in Section 3.5 would work as well
and would be less costly. Here, we call the final coloring found by their algorithm
strongly k-stable.

The authors obtain the complexity result of O(k*n*11log(n)) time and O(kn**1)
space for a canonical algorithm generalizing the results in [41, 1]. We refer to
these algorithms as il (k).

4.2 Relations Between k-dimensional Stabiliza-
tion Algorithms

It is well known that 1-stab computes a coarser vertex coloring than 2-stab.
And in general, (k + 1)-stab computes a finer k-coloring than k-stab. This can
easily be seen by the following argument. If (k + 1)-stab would only consider
(k + 1)-tuples of the form (vq,vs,. .., vk, vk), then it would compute a coloring as
fine as the coloring of k-stab.

We are now going to introduce parts of k-tuples. Consider the operation

vﬁ = (U1, V2, o, Vi1, U,y Uiy Uiy - -, k), 1€ {1,2,... k—1}.
Define PO(v*,0) := {vF},
k : k
PO(v*,p) :== {uf | " € POW*,p—1)Fi € {1,2,... .k — 1} :u" = o'},

and PO(vk) := Upei 2., dim@why PO(v*,p). PO(v*) is called the set of parts of
v* and u* € PO(v") is part of v¥. If u¥ is part of v¥ then there exist i1, s, ..., i,
p € {1,2,...,k}, such that u* = (... ((vﬁ.l)|i2) ... )li,- We associate with each
part u* of v* the reduction code of u* with respect to v*

min{(p, (i1, 2, - . -,3p)) | " = (... ((vﬁ1)|i2) o )ip )

Let two [ dimensional k-tuples v* and u* be given. Two ¢g-dimensional k-tuples
v'* and W/ k, q < I, being part of v*¥ and u*, respectively, are called corresponding
if the reduction codes with respect to v* and u*, respectively, are equal.

Lemma 4.1 Let f be a k-stable coloring of an initially properly colored graph
computed with k-stab. If two k-tuples v* and u* have the same color then two
corresponding k-tuples v'* and u'* being part of v* and u* have the same color.

Proof. From the definition of the initial coloring and the way of recoloring, this
is clear. 0
The same result holds for il(k) as well.

The best way to see the differences between the algorithms k-stab and il(k)
is to study a picture of the structure values of each of the algorithms. We will
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do so for the case k = 3. Consider an arbitrary triangle v® depicted in Figure
4.1(a) and an arbitrary vertex u.

/\

(a) A colored (b) The star
triangle ((ua vl)a (’LL, 02)7 (ua ’Ug))

(¢) The triangles (u,ve,v3), (v1,u,vs), (v1,v2, u)

Figure 4.1:

The outer curve illustrates the color of the triangle. While k-stab only con-
siders the stars (Figure 4.1(b)) and thus colors of edges, il(k) uses the colors of
the triangles (Figure 4.1(c)) (u,vs,v3), (v1,u,v3), (v1,v2,u) for the refinement.

Due to the previous theorem (two k-tuples can have the same color only if
corresponding edges included in the triangles have the same colors), the following
result holds.

Theorem 4.2 k-staband il(k) compute equivalent partitions for i € {1,2} and
il(k) might compute finer partitions than k-stab for k > 2.

It was not possible to find examples were il(k) and k-stabdiffer for k& = 3.
Due to the amount of memory needed by il(k), we were able to check graphs for
up to about 50 vertices only.

4.3 Pebbling Games

The games presented here are variants of games introduced by A. Ehrenfeucht[21]
and R. Fraissé [28]. They have been stated in this form in [14]. The authors show
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the equivalence of the second game to the k-dimensional stabilization algorithm
il(k) presented above.

Let G = (V,E) and H = (W, F) be two graphs, m,k € N, and P, :=
{p1,p2, ... pr} be k pairs of pebbles. Define the m-move Py, game to be a 2-player
game on G and H as follows. On each move, Player I chooses ani € {1,2,...,k},
picks up the pair p; and places one of the pebbles belonging to p; on one vertex
of one of the graphs. Player II must then place the other pebble belonging to p;
on a vertex of the other graph. The game starts with all pebbles outside the two
graphs. As we shall see later, a good Player I will in general try to put as many
as possible pebbles onto the graphs. Therefore, after k-moves, if the game has
not already ended, each graph will be covered by k-pebbles.

Define a k-configuration on a pair of graphs G, H to be a pair (v, w) of partial
functions,

g:P.—Vand h: P, - W

such that the domains are equal. Thus, a k-configuration is a valid position of
the Py, game on G and H in the following sense. If g(p;) = v and h(p;) = w then
one pebble belonging to p; is placed on v € V' and the other one is placed on
w € W, and if p; € domain(g) = domain(h) then the pebbles in p; are not placed
on the board. Define the mapping ¢,

¢ : image(g) — image(h),  g(p:) — h(p:)-

Let (g, h.) be the configuration of the game after move number r. Player
I wins after move r if ¢ does not define an isomorphism between G(image(g.))
and H (image(h,)). Player I wins the m-move P, game if he wins after move r,
for some r € {1,2,...,m}. Player II wins if Player I does not win. We say that
Player II has a winning strategy for the P, game on GG and H if, for all m, Player
IT has a winning strategy for the m-move P game on G and H.

Thus, Player II has a winning strategy if he can always find matching vertices
to preserve the isomorphism. Player I is trying to point out the difference between
the two graphs and Player II is trying to keep them looking the same.

A modification of the P, game is the P, game. As before, there are two
players and k pairs of pebbles. The difference is that each move has two parts.

1. Player I picks up the pair p; for some i. Then he chooses a set A of vertices
from one of the graphs. Now, Player II answers with a set B of vertices
from the other graph. B must have the same cardinality as A.

2. Player I places one of the p; pebbles on some vertex ug € B and Player II
answers by placing the other p; pebble on some uy € A.

The definition of winning is as before. J.-Y. Cai, M. Fiirer, and N. Immerman
[14] have shown that Player II has a winning strategy for the P§ game on G and
H if G and H have the same set of k-dimensional structure constants with respect

to il(k).
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4.4 k-dimensional Stabilization Does Not Suf-
fice

M. Fiirer[30] and J.-Y. Cai, M. Fiirer, and N. Immerman [14] showed that there
exist graphs which have equivalent (strongly) k-stable colorings and are not iso-
morphic.

M. Fiirer[30] gives an explicit construction of a series of pairs of graphs with
the above property. The graphs are made of the component depicted in Figure
4.2(a).

Figure 4.2: The pieces of the graph of M. Fiirerand Fj

F! consists of 2m? copies of Figure 4.2(a). We begin with putting 2m copies
side by side to form a band and then putting m copies of this band on top of each
other. The single components are glued together as depicted in Figure 4.2(c)
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for the graph Fj and in Figure 4.3 for the graph F}. The edges on the right
are identified with the corresponding edges on the left and the edges on top are
identified with the edges at the bottom.

F2 is constructed in almost the same way with the difference that at exactly
one arbitrary position in the graph, a parallel pair of edges linking two different
basic graphs is replaced by a pair of crossing edges Figure 4.2(b). In Figure
4.3 this is indicated by dotted lines.

M. Fiirer shows that F}! and F? are not isomorphic and that il(k) computes
the same set of k-dimensional structure lists for F}} and F?.

In [14] J.-Y. Cai, M. Fiirer, and N. Immerman give an alternative proof of the
fact that there exists no k& € N such that two arbitrary graphs are isomorphic if
and only if they have the same k-dimensional structure constants. The authors
use the interrelation between the functioning of the algorithm il(k), the notion
of expressibility in special first order logic languages and the winning strategies
of pebble games introduced in Section 4.3.

A separator of a graph is a minimal set of vertices such that the graph is
disconnected. The main property of the graphs they need in order to prove the
result is that they have a large separator, which applies to the graphs of M. Fiirer
as well.
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Figure 4.3: The graph F}
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4.5 Upper and Lower Bounds on the Number
of Steps

A trivial upper bound on the number of steps for a k-dimensional stabilization
procedure is n*, since the number of colors is bounded by n* and in every step
at least one new color has to be introduced.

For the 1-dimensional case, examples which need €(n) steps can be easily
constructed. We consider the path P, on n nodes. In the first step, only the end
vertices get colors different from the other nodes. In the next step, their neighbors
obtain different colors, but all the others remain in the same color-class. After

n

[ 5] steps, the algorithm stops with a 1-stable coloring having [ %] colors.

4.5.1 A Lower Bound on the Number of Steps for k = 2

In the 2-dimensional case, it is not easy to determine good bounds. M. Fiirer
[31] has contructed a sequence of graphs F*, for which he could show that the
Weisfeiler-Leman algorithm needs §2(n) steps to compute a 2-stable coloring. His
graphs consists of several copies of the simple basic graph depicted in Figure
4.4 which are glued together as shown in Figure 4.5(a)-(c).

Figure 4.4: The component of which F?,, is made of

In Table 4.1 the number of steps needed to obtain a 2-stable coloring for F*,
for small n and the computing times of qWeil on these instances are displayed.
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o7

Figure 4.5: Some instances F*,
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‘ Vertices Steps ‘ time H Vertices Steps time ‘
20 310 240 12 10.77
40 4 10.05 || 280 13 18.85
60 410.16 || 320 15 29.34
80 5104 360 17 43.62

100 6 | 0.67 || 400 19  56.05
120 6| 1.24 || 440 24 68.59
140 6] 1.94 || 480 26 93.79
160 8 12.74 || 520 28 117.83
180 8 [ 4.11 || 560 30 158.81
200 10 | 5.77 || 600 32 198.32

Table 4.1: The number of steps needed to obtain a 2-stable coloring for F?,

4.6 Classical Invariants

In this section, we discuss two important invariants and their relations to k-
dimensional stabilization procedures.

4.6.1 The Spectrum

As mentioned before, the adjacency matrix A(G) of a graph G is not an invariant.
However, the determinant |A(G) — AI| is not altered if the graph is relabeled
(which is nothing but permuting the rows and columns of A(G) in the same
way), and hence is a graph invariant. Thus, the characteristic equation of A(G)
is also a graph invariant, so is the set of its roots (i.e., the spectrum of the graph).

Two graphs are cospectral if they have the same characteristic polynomial.
Certainly, the cospectrality does not completely determine the isomorphism type
of a graph. This was first pointed out by L. Collatz and U. Sinogowitz [16], by
exhibiting two non-isomorphic cospectral trees (see [34, 36]).

The two graphs depicted in Figure 4.6 have the same characteristic polyno-
mial, namely

AXN—2X2 =223 +25 X3 — 9\ + \?
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(a) (b)

Figure 4.6: Two cospectral trees

Although the spectrum is frequently used in many algorithms for detecting
the isomorphism type of graphs, it should be stressed that it is less meaningful
than the set of 2-dimensional structure constants. In the above case even the
structure constants of 1-dimensional stabilization suffice to fix the isomorphism
type of the graphs.

In contrast to the 2-dimensional case, the set of structure constants of 1-
dimensional stabilization is in general not a stronger invariant than the charac-
teristic polynomial. Consider for example the graph G consisting of 2 cycles of
length three and the graph G’ being the cycle of length 6. For these graphs the
set of 1-dimensional structure constants reduces to a single number, the degree
of regularity, which is the same for both graphs, but they are not cospectral.

4.6.2 The Powers of the Adjacency Matrix

Other frequently used invariants are derived from the powers A(G)* of the ad-
jacency matrix A(G) of the colored graph G. It is well known, that the en-
try A(G)f; denotes the number of (not necessarily simple) paths of lengths k
from v; to v; in G. Let P = (vp,v1,...,v;) be a path in G. Then we define
Y(P) = (f(vo,v1), f(v1,v2), ..., f(vk_1,v%)) and the multi-set

P'(u,v) := {y(P) | P is a colored path of length [ from u to v}.
Further define the set of multi-sets
Pluw) = {P'(u,v) | 1 > 0}.

An invariant of G is given by LP(G) := {Pu,v) | u,v € V}. We will see that a
edge partition based on P(,,,) is coarser than a 2-stable partition.

Theorem 4.3 [73] Let f be a 2-stable coloring of G. If f(u,v) = f(u',v") then
PYu,v) = PY(u',v") for all 1 > 1.
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Proof. The proof is by induction on [. For [ = 1 there is nothing to prove
and for [ = 2 this is just the definition of 2-stable colorings. Let us assume that

Vu, v,/ 0" € Vi f(u,v) = f(u',v) = P u,v) = P (W, 0).

multi
Let |J denote the union of multi-sets. Consider now

multi

P'(u,v) = |J (" f(w,0)) | 71 € P u,w)}.

weV

By hypothesis, each of the multi-sets P'~!(u,w) depends only on the color of
(u,w). Thus,

P'(u,v) = P'(u/,0") & | J{(f(w,w), flw, o)} = [J L@ w), f(w',0)}.

wevV w'eV

The right part of the condition is just the definition of a 2-stable coloring. 0

Let d’ be the number of vertices with distance i from v in a graph G. Define
L%st(v) == {(i,d!)|d! # 0}. Use these lists to color the vertex set in the usual
way. The resulting coloring is called path stable.

Corollary 4.4 FEvery 2-stable coloring of G is path stable.

Proof. This is clear due to Theorem 4.3. 0

It is possible to generalize this approach by partitioning not only by the total
number of vertices having certain distances but by the numbers of vertices of
different colors at certain distances. Let di(c) denote the number of vertices with
color ¢ at distance ¢ from v in G.

Define L%t (v, c) := {(i,c,di(c))|d! (c) # 0}. This list can be used in Algo-
rithm 1 instead of the former lists. We call the final coloring produced in this
way totally path stable. Obviously, the total path partition is at least as fine as
the total degree partition, since 1-stab only considers vertices with distance one
and their colors.

But obviously the following corollary of Theorem 4.3 still holds.

Corollary 4.5 FEvery 2-stable coloring of G is totally path stable.

4.7 Pointed Graphs

The idea presented in this section is to improve the results of a stabilization
procedure by starting with a certain finer initial coloring. This is done by first
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constructing slightly altered graphs, applying a stabilization procedure to these
graphs and then deducing an initial coloring from the results. One common way
of alteration is to choose a vertex and to label it with a specific new color. Af-
terwards, the stabilization procedure is applied to this new colored graph. By
comparing the results (structure constants) for different vertices the vertex set
might be refined. Similarly, not only a single vertex but several vertices or edges
might be labeled with new colors at a time. This idea was first introduced by
B. J. Weisfeiler and A. A. Leman [73] and D. G. Corneil and C. C. Gotlieb
[19]. A more general approach has been studied by S. Evdokimov, M. Karpin-
ski and I. N. Ponomarenko [23] and has been elaborated by S. Evdokimov and
I. N. Ponomarenko [24, 25].

To alter a colored graph Gy = (V, E, f) in the described way, we define Gy,
as follows. Let Gy,:= (V. E, f,)) and define f, as

fo(u) :== f(u) Yu+#wv, and
fv('U) =Ty + 1.

The process of replacing f by f, will be denoted as pointing f at v.

Let L(G) be the set of structure constants computed by the stabilization
procedure under consideration.

Now, an improved algorithm can be described as follows.

Algorithm 21: pointed(k-stab,1)
foreach v € V do
‘ compute L (Gy,);

end

(recolor), i.e.,

F(u) = f(v) s F(u) = f(v) and Ly(Gy,) = Lpx(Gy), u,v € V;
perform k-stab on this colored graph;

Algorithm 21 does the following. Given a graph G; = (V, E, f), for each
v € V it computes Gy, , applies k-stab to G, and collects the invariants £ (G, ).
Afterwards it recolors G according to L;r(Gy,) and applies k-stab once more to
this intermediate coloring.

D. G. Corneil and C. C. Gotlieb [19] use this approach for the case k = 1 and
an initial 1-stable coloring f.

For the following considerations, we need an auxiliary definition. A stabi-
lization procedure is called non-switching if a color remains the same when its
color-class is not split. W.l.o.g. we may assume that the stabilization proce-
dures k-stab work in a non-switching mode and that the resulting colorings are
canonical.

Let us take a look at the relations between the algorithms pointed(k-stab,1)
and (k + 1)-stab. Assume that we want to show that pointed(k-stab,1) is
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weaker than k'-stab, k' > k. Let G be a given colored graph. We start with a
k'-stable coloring of Gy and use it to construct a k-stable coloring of Gy, .

First, we compare the cases pointed(l-stab,1) and 2-stab. Let f2 be the
coarsest 2-stable coloring of Gy and define

£ W) = fP(o,u), u e V.

Note that in the coloring f,%~" the color of v is not used for any other vertex,

since f? is a proper coloring.
w

u

Figure 4.7: Two vertices with the same color (cyan) with respect to f2~! and
with equally colored neighbors (blue, brown and magenta).

Lemma 4.6 27! defines a 1-stable coloring on G.

Proof. Since v is a color-class in 27! the coloring is 1-stable with respect
to v. Consider two equally colored vertices u and w, i.e., f27 u) = f>~1(w).
We have to show that Lj..(u) = Ljz-i(w). Due to the definition of f2~,
f?(v,u) = f*(v,w) holds such that (v,u) and (v, w) have the same structure lists
with respect to f27!. By inspection of these lists, we see that v and w have the
same structure lists with respect to f271. 0

Lemma 4.7 The vertex partition induced by {L1(Gy,) | v € V} is coarser than
the one induced by {Lsp-1(Gy) |v € V}.

Proof. Let f! be the coloring computed by 1-stab for G;,. Recall that f!
is the coarsest 1-stable coloring of G, and that the colorings f*~! are 1-stable
on Gy, for all v € V. Since f, is the coarsest 1-stable partition of Gy ,, and
271 is 1-stable and therefore at least as fine as f!, the partition induced by
{L;:1(Gy,) | v € V} coarser than the one induced by {Lp-1(v) | v € V}.
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Theorem 4.8 The vertex partition computed by pointed (1-stab,1) is coarser
than the one induced by 2-stab.

Proof. This is evident due to the previous lemma. 0

This result has been known before (see [68]) but no simple strictly graph
theoretical proof can be found in the literature.

4.8 Coarsest Non-Trivial k-stable Partitions

An interesting question asked by M. E. Muzychuk [53] is whether every regular
graph G has a coarsest non-trivial 1-stable partition and if yes, how to compute
it. The question may be asked for higher dimensional cases as well.

The easiest case seems to be to decide whether a given graph has a 1-stable
coloring with 2 colors only. Even for this case we were neither able to give a
polynomial time algorithm nor to prove NP-completeness.

4.9 Cayley Graphs

L. Babel [5] showed that coherent colorings of Cayley graphs can be computed
considerably faster than for general graphs.

Let G be a group, HC G with identity 1 ¢ ‘H. The Cayley graph G(G,H) is
defined to be the graph with vertex set G and edge set E = {(g,h) : g 'h € H}.

Theorem 4.9 [5] The coarsest 2-stabel coloring of a Cayley graph G can be
computed in time O(nlogn).
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Chapter 5

Applications

5.1 Robinson Graphs

In this section, we briefly describe the notion of landscapes which was coined in
recent publications of evolutionary biology [67, 69]. Afterwards, we investigate
the structure of special graphs, namely Robinson graphs, which are useful in this
context.

5.1.1 Landscapes

Graphs the vertices of which have an interior structure are often called config-
uration graphs. A landscape is a pair (G, w) of a configuration graph G and a
function w : ¥ — R defined on the vertex set V of G. Due to applications in
biology, w is called fitness function. Landscapes are useful mathematical models
for studying functions on a discrete set V, the elements of which are structured
objects. The configuration graph models a neighborhood relation on V', which
defines how one is able to move within ). Landscapes have a wide spectrum of
applications.

Consider for example the Traveling Salesman Problem on a complete graph
G. In this case, V is the set of all tours in G and w(7T), T € V, is simply the
length of T'. The neighborhood of a tour T' could be defined as the set of all tours
which emerge from T by exchanging two adjacent cities. Of course, also more
sophisticated neighborhoods can be defined and various local search procedures
can be modeled by a configuration graph.

Landscapes can be described by their autocorrelation functions which are
defined in terms of random walks on G and can be investigated by either using
the eigenvalues and eigenspaces of G or via equitable partitions derived from its
coherent algebra. See [68] for details.

In Section 2.2.1, we described how the eigenvalues of a graph G can be ex-
pressed in terms of the eigenvalues of graphs arising from pointed equitable par-
titions of G. As seen before in Section 4.7 equitable partitions f, can be derived

65
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from the coherent algebra of a graph very easily. Hence, the knowledge of the
coherent algebra is of interest in this context as well.

5.1.2 Genetic Trees

The configuration graphs examined here were introduced by D. F. Robinson[59].
These graphs are of interest because the reconstruction of phylogenies can be
modeled as an optimization problem on such graphs. A suitable way to state the
problem is via defining a landscape, see [11] for details.

Although we are in general not able to determine the coherent algebra induced
by a graph of so huge a size, we are at least able to determine the cell partition
(see 2.2.1) of the coherent algebra of Robinson graphs, which is an important
equitable partition.

Let T be a tree. A leaf of T is a vertex v of degree 1. All other vertices are
called inner vertices. Edges joining inner vertices are called inner edges. A tree
is called genetic if all its inner vertices have degree 3 and its leaves are colored
with the colors 1,2,...,n, whereas all inner vertices are uncolored.

(a) (b)
Figure 5.1: A genetic tree T' (a) and its inner tree T° (b)

The set of genetic trees with n leaves will be denoted by 7,,. A member of 7,
has 2n — 3 edges and n — 2 inner vertices [59]. The inner tree T° of a genetic tree
T is the subtree of T induced by the inner vertices of T. Two genetic trees are
considered equal if and only if they are isomorphic as leaf colored trees. Observe
that equal trees have isomorphic inner trees.

In Figure 5.2 the inner trees in 7,, for n up to 8 are depicted.
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O o—=o0 Oo——O0—~0
(a) (b) (c)n=5
n=3 n=4
@—i—@ O T O
O O O O
(d)n==6 (e)n="7
O T O O T O
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Figure 5.2: Inner trees of genetic trees

An inner vertex is called s-vertex if its degree with respect to the inner tree
T° is s. The number of s-vertices will be denoted by ng, s = 1,2,3. We call an
edge of the inner tree an (s : t)-edge if the end vertices of the edge are an s- and
a t-vertex.

In many considerations, the coloring of the leaves is of no matter. In such
cases, it is usually not mentioned.

With every inner edge [u,v] of a genetic tree T, we associate four subtrees
A, B,C, D as indicated in Figure 5.3(a). The subtrees A, B,C, D are the four
connected components which are obtained when deleting the edge [u,v] and the
vertices u and v from 7. Note that each of these subgraphs may consist of a
single vertex only.

Definition 5.1 The operations indicated in Figure 5.3(b) and (c) are called
p(arallel)-crossover and d(iagonal)-crossover of T (on the inner edge [u,v]).
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(a) inner edge with

subtrees
W Q) @, Q)
(b) p-crossover (c) d-crossover

Figure 5.3: Crossovers

The type of the crossover is not a graph theoretical property. It depends on
the drawing or the current ordering of the edges adjacent to some vertex. It is
only introduced to simplify the argumentation at certain points.

A crossover on [u, v] is called (s : t)-crossover if [u,v] is an (s : t)-edge. We say
that two trees are of the same type if and only if their inner trees are isomorphic.

Definition 5.2 The configuration graph (Robinson graph) I',, has vertez set 7T,
and two trees T,T' are adjacent in Ty, if and only if there exists an inner edge
e € T such that T results from T by a crossover on e. The vertices of I',, are
called the trees of T'y,.

Observe that I's consists of 1 vertex only and that I'y is the complete graph
on 3 vertices.

Remark 5.3 The configuration graph T, has [/ (2i + 1) vertices. It is (2n —
6)-regular and the number of trees with distance two from a given tree equals
2n? — 10n + 4n4, i.e., it depends only on n and the number of 1-vertices of the
inner tree. Furthermore, the numbers ny and ns depend only on n and n; in a

simple way, namely no = n; — 2 and n3 = n — 2n;. Proofs for these observations
can be found in [59].
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5.1.3 The Cell Partition of I',,

Remember that by definition the coherent configuration Ar, generated by the
graph I, is the partition of 7,, x 7, associated with the coarsest 2-stable coloring
I, starting with f;,;. This partition contains a partition of 7, the cell partition
Cr, of I';,. In the following, we are going to determine the cell partition Cr, by
analyzing the structure of a 2-stable coloring of T',,.

Let {T}, | 1 < k < K} denote the set of pairwise non-isomorphic inner trees
with n — 2 vertices. Let [T},] denote the set of genetic trees with inner tree
isomorphic to Tj. Elements of [T}] differ only by the coloring of their leaves.
Obviously, C, := {[Tk] | 1 < k < K} is a partition of 7, as well.

Definition 5.4 Let 7 be an arbitrary permutation of {1,2,...,n}. For a genetic
tree T € T, define the tree w(T) by replacing the colors 1,2, ..., n on the leaves
of T by the colors w(1),m(2),...,m(n), respectively.

Let
_<12345678910111213l415>

4392 15 8 11 14 6 13 5 7 12 10 1

and consider T' as defined in Figure 5.1. The genetic tree m(7") is depicted in
Figure 5.4.

Figure 5.4: 7(T)

Lemma 5.5 The partition C,, is at least as fine as the cell partition Cr,,.

Proof. Let 7 be an arbitrary permutation of {1,2,...,n}. This permutation
preserves the partition Cp, i.e., 7([Tx]) = [Ti], 1 < k < K. Furthermore, if 7" is a
neighbor of T" due to a crossover on an inner edge [u, v], then 7(7") is a neighbor
of m(T) due to the same crossover. Hence, 7 induces an automorphism of T',,.
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Since for any two trees T,T" € [T}], there is a 7 such that w(T) = T", we obtain
that C, is at least as fine as the automorphism partition of I',. Now, the claim
follows by the fact that the cell partition of a graph is always coarser than its
automorphism partition. 0

Lemma 5.5 shows that all genetic trees in I',, having isomorphic inner trees
belong to the same cell of Cr,. In the following, we want to prove that the other
direction is true as well. In other words: trees contained in the same cell have
isomorphic inner trees, and thus, C,, the automorphism partition of I',,, and the
cell partition of Ar, coincide. To prove this, we show that two trees having
non-isomorphic inner trees lie in different cells of Cr, .

Let U be a cellular set (a union of cells) of Ar,. In the discussion which
follows, we use the obvious fact that two vertices having a different number of
neighbors in U, cannot belong to the same cell of Cr,,.

We will start by showing that the sets defined in Definition 5.6 are cellular
sets of Ar,,.

Definition 5.6 Let 7, (i), 1 < k < 3, be the subset of T,, in which each element
has i k-vertices and T,%™(i) the subset of T,, in which each element has diameter
i.

As mentioned above in Remark 5.3, the number of trees with distance 2 from
a tree T' € 7, depends only on n and the number of 1-vertices. Due to Lemma
4.4, the following lemma holds.

Lemma 5.7 The trees in a given cell of Cr, have the same number of 1-vertices
(ny is constant on each cell).

Immediately, we get:

Lemma 5.8 The trees in a given cell of Cr, have the same number of 2-vertices
and the same number of 3-vertices.

Proof. Since ny = n — 2n; and n3 = n; — 2, the claim holds. 0

Using the Lemmas 5.7 and 5.8, we conclude:
Lemma 5.9 FEach T*(i), 1 < k < 3, defines a cellular set.

We now examine crossovers and their potential to change the diameter, i.e.,
we examine how the diameter of the resulting tree differs from the diameter of
the tree we start with.

Consider the tree T' of Figure 5.3 again. Define [4 and I to be the length
of a longest path from u to a leaf of A and B, respectively, and lc and Ip to be
the length of a longest path from v to a leaf of C' and D, respectively.
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Lemma 5.10 The diameters of a tree T and a tree T which is obtained by a
crossover on some inner edge of T can differ by at most one.

Proof. Assume without loss of generality that [4 > lo, 4 > I, and lc > Ip.
This situation can always be met by properly renaming the different parts of T
The diameter of T is

max{lA + g, la+1+ lc}.

Consider now the trees T}, and T which are the result of a p- and d-crossover,
respectively, of T on [u,v]. The diameters have the following values:

diam(7),) =max{la + 1+ 1p,la + 1+ ¢} and
diam(7Ty) =max{ls + 1+ Ip,la+ 1+ 1p,la +1c}.

The p-crossover leaves the diameter untouched or enlarges it by at most one.
Since 4 + Ip < la + l¢, diam(Ty) is at most diam(7") 4+ 1 and at least 14 + l¢
which is as least as large as diam(7") — 1. 0

An edge is incident with a path P if exactly one of the end vertices of the
edge lies on the path. A path P = (vy,vs,...v;) in a tree T, consisting of inner
vertices only, is a longest inner path if and only if k = diam(7) — 1. As an
immediate consequence of Lemma 5.10, we obtain the following lemma.

Lemma 5.11 A tree with a larger diameter is obtained if and only if a crossover
is performed on an edge incident with a longest inner path.

Proof. Recall the situation in the proof above. Consider the case where
diam(7,) = diam(7T") + 1. By simply analyzing the formulas for diam(7},) and
diam(7"), we see that this happens if and only if there is a longest inner path in
T starting in A and ending in B. [u,v] is incident to this path.

Now, assume that diam(7y) = diam(7") 4+ 1. This is true if and only if there is
a longest inner path in T starting in A and ending in B. Again, [u,v] is incident
to this path.

Lemma 5.12 The only way to obtain a tree with a smaller diameter by a crossover
is to perform the crossover on an edge which is part of all longest inner paths.

Proof. Revisit the proof of Lemma 5.10 again. The only possibility for
reducing the diameter by a crossover on [u,v] is that all longest inner paths in T
go from leaves in A to leaves in C. 0
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We are now able to prove that all trees with equal diameter define a cellular
set of Ar,. First, we will have a closer look at the trees of I',, having largest
diameter. The inner trees with the largest diameter, namely n — 3, are those
isomorphic to the path on n — 2 vertices. Note that the diameter of the inner
tree T° of a tree T is exactly diam(T") — 2.

Lemma 5.13 7" (2) = 79 (n — 1) is a cell of Cr,,.

Proof. 7,"1(2) is the set of trees whose inner trees are isomorphic to the path
on n—2 vertices. Due to Lemma 5.5 and Lemma 5.7, 7, (2) is a cell of Cr,, . 0

Lemma 5.14 All trees in a cell of Cr, have equal diameter. Thus, T,4™(i) is a
cellular set for all i.

Proof. The proof is by downward induction on the diameter of the trees.

Figure 5.5: T° and the inner trees of the neighbors of T" which result from
crossovers on [v;, ul

We have shown already that 7"*(2) is a cell of Cr,. Assume that two trees
with different diameters greater than d lie in different cells of Cr,,.

Let T be a tree with diameter d < n — 1. We will show that 7" has neighbors
with diameter d+ 1. Observe that due to Lemma 5.10, the diameter can increase
by at most 1 after executing one crossover and thus, trees with diameter d are
the only candidates for having neighbors with diameter d + 1.
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Since T' ¢ 7,7 (2), each longest inner path contains at least one 3-vertex. Let
(U1, ..., Vi1, Vi, Vi1, - - -, Ug—1) be such a longest inner path, v; a 3-vertex, and de-
note the third neighbor of v; by u (see Figure 5.5(a)). Applying the two possible
crossovers on the edge [v;, u] results in two trees with diameter d+ 1 (see Figure
5.5(b),(c)), realized by a new longest path P’ = (vy,vs, ... 05U, Vi1, ..., Vg_1)-

Hence, T has neighbors with diameter d + 1. This completes the proof. 0

Consider some longest inner path P = (vy,vg,...v4_1) in an inner tree 7°. As-
sume that the 3-vertices on P are {vy,, vy, , . .., vy, } with dist(vy, vy,) < dist(vy, vy;),
Vi < j, holds. Let u;, ¢ € {1,2,...,k}, be the vertex not on P which is adjacent
to vy,. If we perform both crossovers on [vy,, u;], a d-crossover and a p-crossover,
we obtain two different trees. Observe that although the inner trees might be
isomorphic, the resulting trees are different since they differ by the coloring of
their leaves.

We will now, for each tree, identify “largest” neighbors among all neighbors
with greater diameter. For this aim we are going to introduce an appropriate
code for genetic trees. This task requires some preliminaries.

First, define the code ¢,(T") of a tree and an inner vertex v of this tree as the
pair consisting of the length of a longest inner path from v to a leaf of 7" and
of some complete invariant of T, for example the norm-code of T' (see Section
5.2.1). We assume that codes can be compared lexicographically.

Next, define a function c¢7(P) on the set of inner paths P of a tree T. Let
P = (v1,v,...v;) be an inner path between two 1-vertices v; and v;. Assume
that the vertices {vs,, vt,, ..., vy, } are the 3-vertices on P. The subtree attached
to v, is denoted by T;, and we assume dist(vi,vy;) < dist(vr,vp,) if j < j'.
Furthermore, each T; consists of a node u; adjacent to vy, and the two subtrees
A; and B; adjacent to u;. The vertices in A; and B, adjacent to u; are denoted
by a; and b;, respectively. The situation is depicted in Figure 5.6.

O—O- +-0-O—0-

vy 2 V-1 Vij Vi1 Vi—1 v

g

Figure 5.6: The path P in T° and the subtree ;.

Let w.lo.g. cq;(Aj) > cp,(B;). Define

cr(P) = (I, ((dist(ve;, vk ), ca,; (Aj), e, (B;)) | j € {k,k—1,...,1})).
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Now we are able to introduce a suitable code for our trees. Define

c(T) = max {cp(T)},

PeP(T)

where
P(T) :={P | P is an inner path in 7'}

and where by “max” we mean the lexicographically largest value. We say that P
is responsible for the code of T' if ¢(T') = ¢y (P). Observe that if P is responsible
for the code then it is a longest inner path in 7". Obviously, given ¢(7T'), we are
able to reconstruct 7" in a unique way. A tree T' is larger than another tree T” if
¢(T) is lexicographically larger than ¢(7").

Now we examine the situation with respect to the number of 3-vertices in
more detail.

Lemma 5.15 A (3 : 3)-crossover and a (3 : 2)-crossover leave the number of
3-vertices unchanged whereas a (3 : 1)-crossover reduces the number of 3-vertices
by one.

Proof. This is easy to verify. In Figure 5.7(a), [u,v] is a (3 : 1)-edge and the
results of the two possible crossovers are shown in Figure 5.7(b) and (c).

(b) (c)

Figure 5.7: A tree and the two possible crossovers on a (3 : 1)-edge [u, v]
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(b) (¢)

Figure 5.8: A tree and the two possible crossovers on a (3 : 2)-edge [u, v]

The edge [u, v] becomes a (2 : 2)-edge. Note that the resulting inner trees are
isomorphic.

In Figure 5.8(a), [u,v] is a (3 : 2)-edge and the results of the two possible
crossovers are shown in Figure 5.8(b) and (c). The edge [u, v] remains a (3 : 2)-
edge.

Obviously, a (3 : 3)-edge remains a (3 : 3)-edge. 0

A neighbor of a tree is called longer neighbor if it has a larger diameter. A
tree is called an s-path if its inner tree is a caterpillar with s legs, i.e., is composed
of a longest inner path ) with s inner edges incident to it. () is not necessarily
unique. However, we assume that given an s-path, one of the possible longest
inner paths is selected as Q).

Oi“uiOQO

NN

Figure 5.9: The inner tree of a 3-path with two choices for @

We first consider the set of all 1-paths and the set of all 2-paths, respectively,
and show that they form cellular sets of Ar,. Afterwards, we turn to more general
trees.
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Let @ = (v1,v2,...,v4-1) be the selected longest inner path of an s-path, v;
the first and v; the last 3-vertex on ). Thus @) is the concatenation of three
subpath @1, @2, Y3, where ()1 connects the 1-vertex v; to the first 3-vertex v;,
()3 connects the last 3-vertex v; to the 1-vertex vg_;. All other vertices of ()1 and
Q3, if any, are 2-vertices. The subpaths )7 and ()3 are called the tails of @) of
length ¢+ — 1 and d — 1 — 7, respectively.

Lemma 5.16 The 1-paths build a cellular set and are distinguished in Ar, if
they have mon-isomorphic inner trees.

Proof. The 1-paths build a cellular set since they are the only trees with
diameter n — 2 and one 3-vertex and the intersection 7,"*(1) N Z,9™(n — 2) of two
cellular sets is obviously a cellular set.

The inner tree of a 1-path with only one tail having length greater than one
is isomorphic to the graph depicted below.

Trees having this inner tree are distinguished from the other 1-paths since
they are the only ones having four neighbors in 79" (n — 1). All other 1-trees
have only two such neighbors.

Assume now that the trees in question have two tails of lengths /; and [, and
that w.l.o.g. [y <lyand [; < % holds.

The proof is by induction on /3. The proof for [y = 1 just has been given.
Assume that the 1-paths with [; less than [ are distinguished if they have non-
isomorphic inner trees.

Consider now trees with [; = [. They are the only ones with [; > [ which have
neighbors having a shortest tail of length [ — 1. This completes the proof. 0

Lemma 5.17 The 2-paths build a cellular set and will be distinguished in Ar, if
they have non-isomorphic inner trees.

Proof. The 2-paths build a cellular set since they are the only trees with
diameter n — 3 and two 3-vertices, i.e., the only trees in 7,7(2) N Z,%™(n — 3). We
define [; and ls as before.

The only 2-paths which have eight longer neighbors, which obviously are 1-
paths, are trees the inner tree of which is isomorphic to the one depicted below

(ll = ZQ = ].)
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The length [; of the shortest tail of a 2-path T is determined by the code
c(T") of its largest neighbor 7", which is a 1-path. By Lemma 5.16, 2-paths with
different values of [; belong to different cells.

The remaining part of the proof is by induction on [; + l5. The case when
[y + I3 = 2 has been considered already. The 2-paths with [; + [ > [ having
neighbors where the sum of the tails is shorter than [ are graphs with [; 4+ 15 = [.

O

So far, we have proven that trees the inner trees of which are caterpillars with
at most two legs, belong to the same cell of Cr, if and only if their inner trees
are isomorphic.

Now, we treat more general classes of trees. Let T have diameter d. Assume
that there exist neighbors of T having greater diameter than 7. Let T} be a
largest (with respect to the code) neighbor among those neighbors. Assume that
the crossover on T to obtain 7} has been performed on [v;, u]. Since the diameter
of T; is greater than the diameter of T, each longest path in 7; must contain
the edge [v;,u]. Let P, = (vq,v2,...,0;_1,U, Vi, Vi1, ...,V4-1) be an inner path
responsible for the code of T;. Then P = (v, va, ..., Vi, Vis1,- .., V4-1) is a longest
inner path in 7. Obviously, v; is the rightmost 3-vertex of P. Otherwise, P, could
not be a largest neighbor.

Lemma 5.18 If the number of 3-vertices of T and T, (as defined above) is equal,
then T is determined by T} .

Proof. If T and 7; have the same number of 3-vertices, then the edge [v;, u] on
which the crossover is performed is either a (3 : 3)- or a (3 : 2)-edge.

If [v;,u] is a (3 : 3)-edge, then subtrees isomorphic to A or B are attached to
the rightmost 3-vertices (see Figure 5.10), namely u and v;, on all paths in P/
responsible for ¢(7;).

If the crossover has been performed on a (3 : 2)-edge, i.e., if in Figure 5.10
B is a single vertex, then a subtree isomorphic to A is attached to the rightmost
3-vertex on all longest paths responsible for the code ¢(77).

In both cases, the edge on which the crossover from T to 7T; has been per-
formed, is determined, namely the rightmost (3 : 3)-edge or (2 : 3)-edge, respec-
tively, on a path responsible for the code ¢(T}).
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Vd—2V4—1

Vd—2Vg—1

Figure 5.10:

Therefore, we are able to reconstruct 7° by only considering 7. 0

Note that for finding a responsible path P, we need the whole tree rather than
T° only, however, the coloring of the leaves in T" is of no matter. Thus, what we
need is the isomorphism class of T" which is uniquely defined by 7°°.

Now, let us consider the case where the largest neighbor T; of T has fewer

3-vertices than T, i.e., the crossover leading from 7' to 7} is performed on a
(3:1)-edge.

If this happens then clearly 7 looks like in Figure 5.11(a) and 77 like
in Figure 5.11(b) where the path P, = (v1,v2,... 041, Uk—1, Vs, - - -, V4—1) 18
responsible for the code of 7}. The 3-vertices of this path are {vy,, ve,, ..., v, 1}

Consider now T};, the largest neighbor of 7;. It is clear that the crossover
transforming 7; into T,; has been made on the rightmost 3-vertex of P;, namely
vy, _,. This is because all paths in 7; which are responsible for the code contain
the path from v,,_, to v4_1, since this is the only part of 7; where the length of
a path has been increased with respect to T
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Figure 5.11: T and larger neighbors
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For the same reason, this path is the right tail of all largest paths in 7;. It
cannot be the left tail, since dist(vg_1, v, _,) > dist(vy, vy, ).

There is exactly one other path in I',, of length 2 from T to T,; (by reversing
the order of the two crossovers). Denote the tree on this path by T,. Obviously,
T,; only exists if there are at least two 3-vertices on P. The situation is depicted
in Figure 5.11.

Lemma 5.19 If all largest neighbors of T have less 3-vertices than T, T° is
determined by Ty and TY,.

Proof. As we have seen, there is the unique tree 7). Since 7; has less 3-vertices
than 7', T has only one inner vertex, namely uy (see Figure 5.6). Observe that
T° is determined up to the position of v, by T}.

Assume now that there are either at least two 3-vertices on P, or a subtree
T;, j < k, has more than one inner vertex. Otherwise, the tree 7" would be a
caterpillar with at most 2 legs, for which the result is already clear due to Lemma
5.16 and Lemma 5.17.

Let P, be a path in T}, responsible for the code ¢(T). Since the distance from
the beginning of P, to the first 3-vertex in P, and of the rightmost 3-vertex on
P, are exactly as in P, a path responsible for the code ¢(T"), the position of vy,
is determined by 7. 0

Theorem 5.20 Each [T} defines a cell of Cr,.

Proof. The proofis done by a similar induction as in Lemma 5.14. From Lemma
5.13 we know that 79" (n — 1) defines a cell. In fact, we even have proved that
the sets [Tk] are cells if T}, is a 1-path or a 2-path. This result has already been
used in the proof of Lemma 5.19.

Assume that the trees with diameter larger than d lying in one cell have
isomorphic inner trees. Consider a tree T" with diameter d. As we have seen
before, T° can be determined by considering only the inner trees of some longer
trees with distance one or two of 7. To be more precise, let us consider the
situation in I',, as depicted in Figure 5.12.

If a largest neighbor of T' has the same number of 3-vertices as T' (and thus
all largest neighbors have this property), then 7° is determined only by T} (see
Lemma 5.18). Since by induction hypothesis the set [T)°] is a cell, trees having
a largest neighbor not in [7}°] are distinguished from 7". Hence, trees having a
largest neighbor with the same number of 3-vertices lie in different cells of Cr, if
and only if their inner trees are isomorphic.
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d d+1 d+ 2
T

T Ta:l
T

Figure 5.12: The crucial part of I,

The case where all largest neighbors of T" have less 3-vertices than 7' is more
involved. As proved before, we need to consider 7 together with 7} to determine
T° (see Lemma 5.19). In Ar,, the color of the edge (T, T,;) represents the set
of colored paths from 7" to Ty, (see Theorem 4.3). Hence, the color of (T',T;)
depends on the colors of T; and T, as well. Thus, T° is determined by the color
of the edge (T',T,) in Ar,,.

Therefore, all trees with diameter d lie in the same cell only if they have iso-
morphic inner trees. 0

5.1.4 Eigenvalues of the Laplacian of the Robinson Graph

Consider I',,. We were able to compute the pointed 1-stable partition for one
representative vertex of each cell in I',, for n up to nine in reasonable time (see
Table 5.1). qStab would be able to compute the pointed 1-stable partitions for
larger instances of I',, but we are currently not able to create instances for n > 9.t

Using these results, we were able to compute the eigenvalues of the Robin-
son graphs for n up to 8 very quickly. For details on the methods we used for
computing the eigenvalues and the computation times compared to a brute force
approach, see the joint paper of O. Bastert, D. Rockmore, P. F. Stadler, and
G. Tinhofer [11].

1See Section 6.1.2 for further computational results of qStab and Section 6.1.1 for some
notes on the programs we used.
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Vertex | Number of Time in secs

n |7,| || pointed cells || gStab nauty

| 4] 3] 0| 2] 0.00  0.00 |

| 5] 15 | 0] 4] 0.00 0.0 ]
6 105 2 8 0.00 0.00
6 105 0 23 0.00 0.00
7 945 2 90 0.01 0.07
7 945 0 153 0.02 0.12
8| 10395 277 158 0.23 17.61
8 | 10395 5979 880 0.24  99.29
8 | 10395 3663 888 0.26 100.66
8| 10395 10371 1606 0.25 182.36
9 | 135135 15813 1534 5.31 -
9 | 135135 60357 3610 5.91 -
9 | 135135 33292 5901 5.01 -
9 | 135135 94791 10815 5.84 -
9 | 135135 || 135111 19698 6.31 -
9 | 135135 67089 21252 6.00 -

Table 5.1: Pointed 1-stable partitions of 7,

Consider now the coloring f! computed by pointed(1-stab,1) on I',,. Obvi-
ously, the number n1 of colors of flis a lower bound on the dimension of the
coherent algebra generated by I',. We were able to show that n equals this
dimension for n € {4,5,6, 7} using qWeil and qStab.

Number of | Number of || Time in secs
n | |7, cells colors qWeil
4 3 2 0.00
5| 15 1 4 0.00
6| 105 2 31 0.78
7| 945 2 243 1832.32

Table 5.2: Data of coherent algebras of I',,

In a first version of the proof of Theorem 5.20, the proof was only based
on analyzing the neighborhood and the lengths and numbers of certain paths
in I',,. Thus, the cells of Ap, are determined by f! already. This fact and the
computational results allow us to make the following conjecture.

Conjecture 5.21 |f}(T,)| = dim(Ar, ) holds for n > 4.
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Concluding from the computational results for the eigenvalues, P. F. Stadler
claims the following:

Conjecture 5.22 The largest eigenvalue of the Laplacian of T, equals 3(n — 3).
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5.2 Graph Isomorphism, Automorphism and Ca-
nonical Labeling

In this section, we present frameworks of algorithms used for solving graph iso-
morphism, automorphism and canonical labeling problems. It will be seen that
fast algorithms for computing strong invariants are crucial for the speed of these
algorithms. In practice, most of the algorithms applicable to general graphs start
with procedures for computing equitable partitions. This is because most graphs
are easy problem instances in the sense that the total degree partition equals
the automorphism partition. It can even be shown that for almost all graphs
the canonical labeling problem and isomorphism problem can be solved in linear
time[4, 3]. However, the set of graphs for which this true does not include the
class of regular graphs or graphs with a small number of different degrees, which
for example frequently appear in chemistry.

Nevertheless, algorithms for the above problems for all graphs are needed.

It can be shown that deciding graph isomorphism and finding a set of gen-
erators for the automorphism group are polynomially time equivalent problems
and that a polynomial time algorithm for the canonical labeling problem would
imply one for the isomorphism problem. Up to now, nobody was able to prove
N P-completeness of any one these three problems. Although no polynomial time
algorithm has been found for graph isomorphism there are strong indications that
is not AN'P-complete [65].

5.2.1 Canonical Labeling

We now turn to the discussion of an algorithm for the computation of canonical
labelings. A similar algorithm can be used for computing the automorphism
partition or finding a set of generators for the automorphism group. See [48]
for details. Consider a coloring f of a graph G. A color ¢ is called singular if
|f71(c)] = 1. f is discrete if all colors are singular.

If a coloring f is discrete, it defines a vertex-labeling of the graph, namely

-V —={1,2,...,n} (5.1)
v f(v).

In this way, for a colored graph Gy, a discrete canonical coloring determines a
canonical labeling.

In our context, the norm of an adjacency matrix is defined as

1A@) = Y, 2A(G),.

i7j€{1727"'7n}



5.2. GRAPH ISOMORPHISM, AUTOMORPHISM AND CANONICAL LABELING 85

Let f be a discrete vertex coloring. We define

(Py)s; :{ L £(0) = and (5.3)

0 otherwise

A;(G) = P;A(G) P (5.4)

To obtain a complete invariant for graphs, consider the following. Every graph
G can be represented by many adjacency matrices. Take an arbitrary discrete
vertex-coloring of G, then A;(G) is the adjacency matrix of a graph isomorphic to
G. It is well known that choosing the adjacency matrix with the smallest norm
defines a complete invariant and a canonical representation of G. This value,
namely

ne(G) = min 1AL (G,

f is a discrete coloring

is called the norm-code of G.

In principle, one could compute all possible adjacency matrices of a graph
and keep the one with the smallest norm to obtain the norm-code of G. A more
intelligent approach uses a stabilization procedure to reduce the search space.
We restrict our discussion to k-stab.

The approach discussed here uses pointed canonical colorings and starts with
an arbitrary labeling which defines an initial discrete coloring fj,1,¢]- Below, we
present a framework for the computation of a discrete canonical vertex coloring
for a given colored graph G;. We refine f according to the chosen stabilization
procedure. If the refined coloring is discrete, we compare it with the currently
best coloring fiahe] and update f),1,¢] if necessary. If the coloring is not discrete,
we assign to one of the vertices v; in PossVert(i) a new color and refine again.
This is repeated until we obtain a discrete coloring which is again compared to
fabel- Then we apply some backward steps, if necessary, choose other vertices
in PossVert(i) and proceed in the same manner.
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Algorithm 22: Compute labeling
Data : Gy = (V,E, f)
Result: A discrete canonical coloring fj,pe of the graph

1:=1;

f1 = k-stab(f);
Nabel == f1;

do

if f; is discrete then
if (|47, , (G)]] > [|AL(G)]] then fiype =

else
c=smallest non-singular color of f;;

PossVert(i) == f; ! (c);

end
while PossVert(i) = ) do
1:=1—1;
if i=0 then stop(fiapel);
end

choose v; € PossVert(i);
PossVert(i) := PossVert(i) \ {vi};
fir1 =k-stab((f3),,);

=1+ 1;

loop;

The speed o