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Chapter 1

Introduction

Stabilization algorithms are useful tools for perceiving the symmetries of graphs
and for recognizing whether two graphs are equivalent or not. These problems are
known as the graph automorphism and the graph isomorphism problem, respec-
tively. Both are strongly related to the problem of canonically labeling graphs.
The graph isomorphism problem, the most prominent one among the above prob-
lems, has neither been shown to be NP-complete nor to be polynomial time
solvable, but there are strong indications that it is not NP-complete [65]. The
graph automorphism problem is polynomially time equivalent to the graph iso-
morphism problem. A polynomial algorithm for the canonical labeling problem
would solve also the isomorphism problem.

In standard approaches for solving the above problems the automorphism
partition problem plays a crucial role. The automorphism partition of a graph G
is a partition of the vertex set with the following property: two vertices are in the
same set of the partition if and only if there exists a graph automorphism which
maps one of the vertices onto the other. The sets of the automorphism partition
are the orbits of the automorphism group of G. Therefore, the automorphism
partition is also called the orbit partition of G. Finding the orbit partition is as
hard as the graph isomorphism problem.

Among other results, a stabilization procedure yields a partition of the vertex
set which is in general coarser than the automorphism partition. Nevertheless, in
many favorable cases these two partitions coincide. Stabilization procedures start
with an initial partition, refine it iteratively, and stop if no further refinement is
obtained. All stabilization procedures discussed in this thesis run in polynomial
time.

H. L. Morgan was probably the first to deal with stabilization procedures
[52]. Basically he did the following: assign to each vertex as a label the number
of its neighbors. This assignment induces a partition of the vertex set. Next
assign to each vertex the sum of the labels of its neighbors as a new label. Iterate
this procedure until the number of different labels does not increase anymore.

1



2 Chapter 1. Introduction

H. L. Morgan invented this procedure to find a “unique machine description for
chemical structures”, i.e., he was looking for a canonical labeling of molecular
graphs.

The 1-dimensional stabilization procedure discussed in this thesis is an im-
proved version of such an algorithm. It computes a so-called equitable partition.
This notion has been introduced by H. Sachs [63, 64] and has been since then
broadly discussed in several publications, see for example [33]. Among others,
D. G. Corneil and C. C. Gotlieb [19] improved this idea of iterated vertex col-
oring further when they were seeking for an efficient algorithm for solving graph
isomorphism problems.

A new idea was introduced independently by B. J. Weisfeiler and A. A. Leman
[73, 72], and J. Hinteregger and G. Tinhofer [39]. They not only partition the set
of vertices but also the set of edges, and instead of considering neighbors only,
they consider edges and the number and type of triangles to which they belong.
This approach is called 2-dimensional stabilization.

B. J. Weisfeiler and A. A. Leman provide examples showing that their algo-
rithm is not powerful enough to solve graph isomorphism problems in polynomial
time. They show that the outcome of their 2-dimensional stabilization procedure
is the basis of a so-called coherent algebra, a notion which also has been intro-
duced and investigated independently by D. G. Higman[37].

Nowadays, coherent algebras are well studied objects in algebraic graph theory
and have many applications in various areas. Recently, results on landscape and
recombination graphs [67, 69], and recognition of circulant graphs [55] have been
obtained by exploiting features of their coherent algebras.

Furthermore, stabilization procedures can be used in a polyhedral approach
to the graph isomorphism problem, an approach introduced by G. Tinhofer [70,
71, 22].

Higher dimensional stabilization procedures have been introduced by several
authors [73, 23, 42, 14].

The 2-dimensional stabilization algorithm can be implemented to run in time
O(n3 log(n)) (see [42]). The problem is that a straightforward implementation
needs O(n3) space. In this work, an algorithm is presented which reduces the
space requirements to O(n2). An implementation based on this algorithm is very
efficient in practice. Furthermore, the ideas used in the 2-dimensional case are
applied also to the 1-dimensional case and to a new k-dimensional stabilization
algorithm.

The stabilization algorithms have several applications in chemistry, for exam-
ple for recognizing the symmetries and the structure of chemical compounds. A
new application is the reconstruction of phylogenies in chemical biology [11]. In
this context, the cells of configuration graphs are determined. These graphs have
been introduced by D. F. Robinson [59].

This thesis is structured as follows. Chapter 2 presents the basic notions and



3

elementary versions of the stabilization algorithms.
Chapter 3 introduces an efficient way of computing 1- and 2-stable parti-

tions. Moreover, a particular version of a k-dimensional stabilization algorithm
is presented.

In Chapter 4, several aspects of stabilization procedures are considered. We
discuss bounds on the number of steps and capabilites of k-dimensional stabi-
lization algorithms. In addition, the main invariants obtained by stabilization
procedures are summarized. This chapter ends with an introduction to pointed
k-dimensional stabilization algorithms.

Chapter 5 deals with applications. A class of graphs is investigated which
is of importance for the problem of reconstructing phylogenies. Other applica-
tions concern graph isomorphism, automorphism and canonical labeling prob-
lems. Then some graph classes are presented for which the isomorphism problem
is solvable in polynomial time. Finally, we exhibit and discuss some algorithms
used in chemistry.

In Chapter 6, some refinements of the algorithms and computational results
are given.
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Chapter 2

Basics

First, we need to fix some notations and to introduce the basic concepts. Here,
elementary definitions are given, the fundamental notions of equitable partitions
and coherent algebras are presented, and the more general concept of k-colorings
is introduced. Afterwards, the algorithmic aspects of the concepts just mentioned
are discussed.

2.1 Definitions

2.1.1 Graphs

Let G = (V,E) be a (directed) graph with vertex set V = Vn := {v1, v2, . . . , vn}
and edge set E ⊆ V ×V \{(v, v) | v ∈ V } with m := |E|. The number of vertices
n is called the size or order of G.

Two vertices v and w are adjacent if and only if (v, w) ∈ E or (w, v) ∈ E.
In this case, v and w are neighbors. We say a vertex u is incident with an edge
e = (v, w) if u = v or u = w. We call v the tail and w the head of e.

An edge (u, v) ∈ E is undirected if also (v, u) ∈ E. Undirected edges are
denoted by [v, w]. An undirected graph is a graph where the adjacency relation is
symmetric, i.e., (v, w) ∈ E ⇔ (w, v) ∈ E, and thus, all edges in E are undirected.

PSfrag replacements

v1 v2 v3 v4

Figure 2.1: The drawing of a directed edge between the vertices v1 and v2 and of
an undirected edge between v3 and v4.

The outdegree of a vertex v is the number of edges e such that v is the tail of
e. Similarly, the indegree of v is the number of edges for which v is the head. The
indegree and the outdegree of a vertex v are denoted by indeg(v) and outdeg(v),
respectively. If G is undirected, the degree of a vertex is the number of vertices
adjacent to v. An undirected graph is k-regular if all vertices have degree k. If the

5



6 Chapter 2. Basics

specific value of k is of no importance, we simply speak of regular (undirected)
graphs.

The subgraph of a graph G = (V,E) induced by a vertex set V ′ or an edge set
E ′ is the graph

G(V ′) := (V ′, EV ′), EV ′ := {(u, v) ∈ E | u, v ∈ V ′},

or

G(E ′) := (VE′, E ′), VE′ := {v ∈ V | ∃u ∈ V : (u, v) ∈ E ′ or (v, u) ∈ E ′},

respectively.
A list of vertices p = (u1, u2, . . . , ut) is called a path of length t− 1 if

∀i ∈ {1, 2, . . . , t− 1} : (ui, ui+1) ∈ E.

A path is called simple if

∀i, j ∈ {1, 2, . . . , t}, i 6= j : ui 6= uj.

A path (u1, u2, . . . , ut), t ≥ 3, such that (u1, u2, . . . , ut−1) is simple and u1 = ut

is called a cycle of length t− 1.
A graph is called strongly connected if

∀v, w ∈ V ∃path p : p = (v = u1, u2, . . . , ut = w).

An undirected graph is connected if and only if it is strongly connected [20].
A forest is an undirected graph without cycles and a connected forest is a

tree.
Given a graph G, let dist(u, v) denote the distance from u to v, i.e., the length

of a shortest path from u to v in G. The maximum distance of two vertices is
called the diameter and is denoted by diam(G).

Let A(G) denote the adjacency matrix of G, i.e.,

A(G) = (aij)i,j∈{1,2,...,n} ∈ {0, 1}n×n,

and aij = 1 if (vi, vj) ∈ E and 0 otherwise. See Figure 2.2 for an example.
Define

V := {(v, v) | v ∈ V } and E := E ∪ V .

2.1.2 Colored Graphs

A colored graph Gf = (V,E, f) is a graph together with a coloring f . A coloring
is a function f : Df −→ {1, 2, . . . , n2}, Df ⊆ V × V . The color of a vertex v is
by definition the color of (v, v), i.e., we put f(v) := f((v, v)). We write f(u, v)
instead of f((u, v)). If it is clear from the context which f belongs to G, we
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sometimes omit f and write simply G instead of Gf . A coloring with Df = V is
a vertex-coloring , one with Df = E an edge-coloring , and a complete coloring is
one with Df = V × V . In the latter case, Gf is called completely colored. Define
Ff := f(Df) and let rf := |Ff | be the rank of Gf .

For a set F ⊆ V × V , we define F t := {(v, u) | (u, v) ∈ F}. Instead of {e}t,
we write et. The elements (v, w) ∈ V × V \ E are the non-edges of G.

Let f , f ′ be two colorings of a graph G with Df = Df ′. We say that f is
coarser than f ′ ( f � f ′) or equivalently, f ′ is finer than f , if

∀(u, v), (w, z) ∈ Df : f ′(u, v) = f ′(w, z) ⇒ f(u, v) = f(w, z).

Two colorings f and f ′ are equivalent , denoted as f ' f ′, if f � f ′ and f ′ � f .
Furthermore, two vertices u, v of G are distinguished by f if f(u) 6= f(v).

PSfrag replacements
v1

v2

v3v4

v5

v6

v7

v8v9

v10

(a) A drawing . . .


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



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

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

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0



















(b) . . . and its adjacency matrix

Figure 2.2: The Petersen graph
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2.1.3 Isomorphism and Automorphism

Two graphs G = (V,E) and H = (W,F ) are isomorphic if and only if there exists
a bijection φ : V → W such that

∀u, v ∈ V : (u, v) ∈ E ⇔ (φ(u), φ(v)) ∈ F

holds. φ is called an isomorphism between G and H.
Similarly, two colored graphs Gf and Hg are isomorphic as colored graphs if

they are isomorphic and there exists an isomorphism φ : V → W such that

∀(u, v) ∈ Df : f(u, v) = g(φ(u), φ(v))

holds. φ is called automorphism if G = H or Gf = Hg, respectively. The
automorphism partition V of the graph G is a partition of the vertex set, i.e.,

V := {V1, V2, . . . , Vr},

∀i, j : Vi ∩ Vj = ∅ ⇔ i 6= j,

V =
⋃

i∈{1,2,...,r}

Vi,

with the property that two vertices u, v belong to the same set Vi if and only if
there exists an automorphism which maps u onto v.

A bijection ρ : V → {1, 2, . . . , n} is a labeling of the vertex set in the following
sense. It transfers a graph Gf into a graph

(ρ(V ), {(ρ(vi), ρ(vj)) | (vi, vj) ∈ E}, f ◦ ρ−1).

This graph will be denoted by ρ(Gf) and is called a labeled graph. By setting
ρ = id, every graph with vertex set {v1, v2, . . . , vn} can be considered as a labeled
graph.

Note that the set of automorphisms of a graph Gf forms a group, the so called
automorphism group of Gf . A graph G is vertex-transitive if the automorphism
group acts transitively on the vertices of G, i.e., for every two vertices u, v there
exists an automorphism which maps u onto v.

2.1.4 Colorings

For the illustration of the algorithms in this treatise it is preferable to think of
colorings of graphs instead of partitions. A vertex coloring f induces a partition
V = {V1, V2, . . . , Vrf} of the vertex set in the following way.

∀v ∈ V : v ∈ Vc ⇔ f(v) = c.
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Analogously, an edge coloring f defines a partition of the edge set and a complete
coloring defines a partition of V ×V . On the other hand, each partition defines a
coloring. For example, a partition E = {E1, E2, . . . Erf} of E defines the coloring

f(e) := c ⇔ e ∈ Ec, c ∈ {1, 2, . . . , rf}.

Due to this correspondence, all notions defined for colorings are applicable to par-
titions as well and vice versa. Therefore, partitions and colorings are considered
as synonyms for the same combinatorial object.

To address all edges having color c, we define a color-class

C(c) := f−1(c) = {e ∈ V × V | f(e) = c}.

For a compact statement of the algorithms in this thesis, it is useful to require
some properties of colorings. We assume w.l.o.g. that the coloring f fulfills the
conditions

∀c ∃c : C(c)t = C(c). (2.1)

∀v ∈ V ∩Df , e ∈ (V × V \ V ) ∩Df : f(v) 6= f(e). (2.2)

If f does not have this property, we refine f appropriately. A complete coloring
fulfilling (2.1) and (2.2) is called proper . See Section 3.4.1 for an algorithm
for computing the coarsest proper coloring from an arbitrary complete coloring.
Observe that every vertex-coloring fulfills (2.1) and (2.2).

If Gf is a completely colored graph, we define the color matrix of Gf

C(Gf) = (cij)i,j∈{1,2,...,n} ∈ N
n×n, cij := f(i, j).

If an uncolored graph is given, an initial complete coloring can be defined by

fint(e) =







1, ∀e = (u, u)
2, ∀e ∈ E
3, otherwise.

To complete a coloring of a partially colored graph Gf , we assign to the
uncolored vertices, uncolored edges and uncolored non-edges, respectively, a new
color. The algorithm for obtaining this coloring is as follows:
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f ′ ≡ f ;
currentColor := rf + 1;
if V 6⊆ Df ′ then

∀(v, v) 6∈ Df ′ : f ′(v) := currentColor;
currentColor ++;

end
if E 6⊆ Df ′ then

∀(v, w) ∈ E \ Df ′ : f ′(v, w) := currentColor;
currentColor ++;

end
∀(v, w) ∈ V × V \ (E ∪Df ′) : f ′(v, w) := currentColor;
f ≡ f ′;

This means that first all uncolored vertices obtain the smallest unused color,
then all uncolored edges obtain the next smallest unused color, and finally the
uncolored non-edges get the then smallest unused color. In this way, every graph
G turns into a completely colored graph preserving the initial partial coloring. If
initially no coloring is given, i.e., Df = ∅, then this algorithm computes fint.

Figure 2.3: The color matrix of fint for the Petersen graph (vertices are blue,
edges black and the non-edges red).

2.1.5 Notation

Graphs will be denoted by G and H with vertex set V and W , respectively, and
edge set E and F , respectively. By u, v and w, we always denote vertices, e
denotes an edge, b and c denote colors, and f , g, and h denote colorings.
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2.2 Structures

The key concepts introduced in this section are equitable partitions (1-stable col-
orings) and coherent algebras (2-stable or coherent colorings). We will state them
in the classical way and in terms of colorings, and introduce the generalized view
of k-stable partitions and colorings, respectively.

2.2.1 Equitable Partitions

Equitable partitions were first introduced in [63, 64, 66]. They play a crucial
role in attacking the graph automorphism and the graph isomorphism problem
(see Section 5.2 and [48]). For a general reference on equitable partitions see
[15, 18, 33, 68].

Let Gf be a colored graph and f a vertex coloring. The integers

pcv := |{w ∈ V | f(w) = c and (v, w) ∈ E}|, v ∈ V and c ∈ Ff ,

are called the 1-dimensional structure values of Gf , respectively, the structure
values of the corresponding vertex partition induced by f . pcv is the number of
successors of v with color c.

Let
L1(v) := {(c, pcv) | c ∈ Ff , p

c
v 6= 0}

be the 1-dimensional structure list of v and

L1(c) := {(v, pcv) | v ∈ V, pcv 6= 0}

be the 1-dimensional structure list of c.
In L1(v), we collect the colors of the neighbors of v together with the number

of neighbors being of the respective color. L1(c) collects vertices and their number
of neighbors with color c.

A partition V = {V1, V2, . . . Vr} of the vertex set is called equitable if

∀i ∈ {1, 2, . . . , r} ∀v, w ∈ Vi : L1(v) = L1(w).

Similarly, a coloring f(v) of the vertex set is called equitable if and only if

∀v, w ∈ V : f(v) = f(w) ⇒ L1(v) = L1(w).

By analogy to the term k-stable introduced later on, we frequently use the
term 1-stable instead of equitable.

If f is equitable, we introduce for each color b the 1-dimensional structure
constant pcb and define pcb := pcv, for some v with f(v) = b. This is well defined
since for an equitable coloring pcv ≡ const for all v ∈ C(b). These constants pcb,
b, c ∈ Ff , are called the structure constants of f , respectively, of the equitable
partition defined by f .
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The color-classes of vertices corresponding to an equitable coloring are called
the cells of this coloring. A union of cells is called a cellular set . Analogously,
the sets defining a vertex partition are called the cells of the partition.

In the following, we will define more general notions of stability. The terms
cell and cellular set will always be used with respect to the currently used notion.

Some Properties

Given a graph Gf , there is a unique coarsest equitable coloring which is finer
than f . If f ≡ fint, then this coarsest equitable partition is also known as the
total degree partition.

An important equitable partition of a graph Gf is its automorphism partition.
In general, the total degree partition is coarser than the automorphism partition,
in particular cases (for instance for trees) these two partition coincide.

Equitable partitions and their structure constants are convenient tools for
investigating the spectra of graphs. Proofs for claims which are not proven here
can be found for example in [68, 33].

The eigenvalues of a graphG are the solutions of the characteristic polynomial
of the adjacency matrix of G, i.e., λ is an eigenvalue of G if it is a solution of
the equation det(A(G) − xI) = 0. The spectrum of G is the set of different
eigenvalues of G.

Let P = {V1, V2, . . . Vk} be an equitable partition of a graph G. Then the
quotient graph G/P is defined to be the graph having the sets Vi as its vertices
and pji edges going from Vi to Vj, where the pji ’s are the structure constants of
P. The adjacency matric of G/P is by definition the matrix (pji )1≤i,j≤k.

The following lemma is well known.

Lemma 2.1 Let P be an arbitrary equitable partition of G. Then

spec(G/P) ⊆ spec(G).

Let Pi, 1 ≤ i ≤ k, be a sequence of partitions of G. If for each vertex v of
G the set {v} is a cell of at least one Pi, then this sequence is called a complete
sequence of partitions.

Lemma 2.2 Let Pi, 1 ≤ i ≤ k, be a complete sequence of equitable partitions.
Then

spec(G) ⊆
⋃

1≤i≤k

spec(G/Pi)

holds.

We define

∆(G) :=








outdeg(v1) 0 . . . . . . 0
0 outdeg(v2) 0 . . . 0

. . .

0 . . . . . . . . . . . . . 0 outdeg(vn)







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and call A(G)−∆(G) the Laplacian of G. Observe that if G is k-regular then λ
is an eigenvalue of G if and only if λ+ k is an eigenvalue of the Laplacian of G.
The Laplacian of a graph is used in Section 5.1.

2.2.2 Coherent Algebras

Coherent configurations, which are collections of relations on V having some
special properties, were introduced by D. G. Higman[37]. The adjacency matrices
of the relations in a coherent configuration constitute the linear basis of a so-
called coherent algebra [38]. Coherent algebras were introduced independently
under the name cellular algebras by B. J. Weisfeiler and A. A. Leman[73]. An
important special case of coherent configurations are the so-called association
schemes [8, 12].

Let Gf be a completely colored graph. The integers

pc,de := |{w ∈ V | f(u, w) = c, f(w, v) = d and e = (u, v)}|

are called the 2-dimensional structure values of Gf . p
c,d
e is the number of triangles

with basis edge e whose non-basis edges are colored with the colors c and d.

PSfrag replacements
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w

e = (u, v)
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Figure 2.4: Triangles counted by pc,de .

Let
L2(e) := {(c, d, pc,de ) | pc,de 6= 0}

be the 2-dimensional structure list of e and

L2(c, d) := {(e, pc,de ) | pc,de 6= 0}

be the 2-dimensional structure list of c and d.
In L2(e), the numbers of triangles which contain e as basis edge are collected,

distinguished by the colors of the non-basis edges. L2(c, d) collects edges together
with the respective number of triangles whose non basis edges are colored with
the colors c and d.

A complete coloring f is called 2-stable if and only if

∀e, e′ ∈ V × V : f(e) = f(e′) ⇔ L2(e) = L2(e′).
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If f is 2-stable, we introduce for each color b the 2-dimensional structure
constant pc,db defining pc,db := pc,de for some e with f(e) = b. This is well defined
since pc,de ≡ const for all e ∈ C(b). Similar to the 1-dimensional case, we define
2-stable partitions and their structure constants.

Let us define a matrix representation B(f) of a complete coloring f as B(f) :=
{Ec | c ∈ Ff} where Ec is the n × n matrix with (Ec)ij = 1 if f(vi, vj) = c and
0 otherwise. Let E∗ denote the conjugate transpose of E, I the identity matrix,
and J the matrix which all entries are equal to 1. The representation B(f) is
called coherent if it has the following properties:

J =
∑

c∈Ff

Ec (2.3)

I =
∑

c∈I

Ec for some I ⊂ Ff (2.4)

∀c∃d : Ec = E∗
d (2.5)

∀c, d : EcEd =
∑

b∈Ff

pc,db Eb (2.6)

The following lemma states a well known fact in terms of colorings.

Lemma 2.3 A coloring is proper and 2-stable if and only if its matrix represen-
tation fulfills (2.3)-(2.6).

Proof. Given a coloring f , (2.3) holds if and only if f is complete. Similarly,
(2.4) holds if and only if vertices have colors different from the colors of edges.
Observe that (2.5) is equivalent to (2.1). Thus, f is a proper coloring if and only
if B(f) fulfills (2.3)-(2.5).

Assume that the matrix representation of f fulfills (2.6). (EcEd)uv denotes
the number pc,d(u,v) of paths (u,w,v) with f(u, w) = c and f(w, v) = d. Due to

(2.6), this number is equal for all edges with color b, namely pc,db , and this holds
for arbitrarily chosen colors c and d. Thus, the coloring is 2-stable. The opposite
direction holds with the same argumentation.

Let f be a 2-stable coloring. Then B(f) defines the linear base of an algebraic
structure, called coherent or cellular algebra, in the following way (see [29] and
[38] for details).

Let Mn be the algebra of the complex valued n × n matrices and A ◦ B
the Schur-Hadamard product (A ◦ B)ij := (aijbij) of A = (aij) and B=(bij). A
subalgebra Ms of Mn is a subset of Mn with the following properties. Given
two matrices M1,M2 ∈ Ms and a complex scalar λ. Then M1 + M2 ∈ Ms,
M1M2 ∈ Ms, and λM1 ∈ Ms holds.

A coherent algebra A is a sub-algebra of Mn which is closed under conjugate
transposition and Schur-Hadamard multiplication and contains the matrices I
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and J. The span of B(f) is a coherent algebra [38]. We call it the coherent
algebra corresponding to f and denote it by A(f).

While a coherent algebra A like any matrix algebra has different linear bases,
it has exactly one base consisting only of 0 − 1 matrices, which is called the
standard base of A. For this reason, every coherent algebra is associated with
some 2-stable coloring f . Obviously, B(f) is the standard base of A(f). The
numbers pc,db are called structure constants of A(f).

The color-classes of a 2-stable coloring f constitute a system of relations on V
which is called a coherent configuration. The matrices in B(f) are the adjacency
matrices of these relations. In this way, 2-stable colorings, coherent algebras, and
coherent configurations correspond to each other in a unique way.

Two completely colored 2-stable graphs Gf and G′
f ′ are equivalent if

∀i, j, k, l ∈ {1, 2, . . . , n} : f(vi, vj) = f(vk, vl) ⇔ f ′(v′i, v
′
j) = f ′(v′k, v

′
l).

Given a completely colored graph Gf there is a unique coarsest 2-stable col-
oring f̃ which is finer than f . The coherent algebra corresponding to f̃ is called
the coherent algebra generated by Gf , respectively, by the color matrix C(Gf) of
Gf . It is the smallest coherent algebra containing C(Gf). It is an important tool
for investigating the symmetries of graphs.

2.2.3 k-stable Colorings

The notions presented in the previous two sections can be generalized to the k-
dimensional case, k ∈ N. This has been proposed by several authors [14, 44]. In
Chapter 4 different definitions of k-stability will be discussed. Instead of coloring
vertices and edges like in the previous sections, k-tuples are colored.

A k-tuple (t1, t2, . . . , tk) will be denoted by tk. A k-starlet S at w is an ordered
k-tuple of edges ((v1, w), (v2, w), . . . (vk−1, w), (w, vk)). We say that S is incident
with a k-tuple vk of vertices if vk = (v1, v2, . . . , vk). A k-tuple of vertices together
with an incident k-starlet forms a k + 1-tangle.

. . .PSfrag replacements

v2

v1

vk−1

vk

w

Figure 2.5: A (k + 1)-tangle consisting of a k-tuple and an incident k-starlet
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Two starlets S = (e1, e2, . . . , ek) and S ′ = (e′1, e
′
2, . . . , e

′
k) are equally colored

if f(ei) = f(e′i) for all i ∈ {1, 2, . . . , k}.
Up to now, colors have been assigned to 1-tuples and 2-tuples of vertices

only. A k-coloring is a partial mapping f from Df → {1, 2, . . . , nk}, Df ⊆ V k.
Implicitly, each such k-coloring defines an l-coloring for 1 ≤ l ≤ k. To make this
evident, we generalize the definition of the color of vertices in the 2-dimensional
case and define

f(ul) := f((u1, u2, . . . , ul, ul, . . . , ul
︸ ︷︷ ︸

(k−l)-times

)), ul = ((u1, u2, . . . , ul), 1 ≤ l ≤ k.

Given an arbitrary k-tuple, we define the reduced dimension of it as the number
of different vertices in the k-tuple.

For a graph Gf with a complete k-coloring f , the integers

pc
k

vk := |{w ∈ V | ∀i ∈ {1, 2, . . . , k − 1} : f(vi, w) = ci and f(w, vk) = ck|}

are called the k-dimensional structure values of Gf .
Let

Lk(vk) := {(ck, pckvk) | pc
k

vk 6= 0}
be the k-dimensional structure list of vkand

Lk(ck) := {(vk, pckvk) | pc
k

vk 6= 0}

be the k-dimensional structure list of ck .
f is called k-stable if and only if

∀vk, uk ∈ V k : f(vk) = f(uk) ⇔ Lk(vk) = Lk(uk).

If f is k-stable, pc
k

vk
are the k-dimensional structure constants.

Note that a k-coloring f induces a partition of V l, 1 ≤ l ≤ k, and vice versa.

2.3 Stabilization Procedures

The first goal is to describe a 1-dimensional stabilization procedure which can
be used to compute the coarsest equitable partition of a graph Gf . Afterwards,
k-dimensional stabilization algorithms for k ≥ 2 are introduced.

2.3.1 1-dimensional Stabilization

The algorithm presented in this section computes the coarsest equitable partition
of a given graph Gf .

If f is the empty coloring (Df = ∅), then the the algorithm starts by coloring
the vertices according to their degrees, i.e., two vertices obtain the same color
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if and only if they have the same degree. In the next step, two vertices obtain
the same color if and only if they had the same color before and, for each color
occurring in the graph, they have the same number of neighbors of this color.
Observe that the number of colors either increases or stays the same during one
step. The algorithm stops as soon as the number of colors does not increase
anymore.

If the input graph is a colored graph Gf , this procedure has to be adjusted
in order to respect the initial coloring. The following algorithm is stated for a
general input graph Gf . If no initial coloring is given, we may use fint as initial
coloring.

Algorithm 1: Coarsest Equitable Partition (1-stab)

Data : Gf = (V,E, f), f a vertex coloring

Result: A 1-stable coloring f 1 of Gf

1: f 1 ≡ f ;
2: repeat
3: compute L1(v) ∀v ∈ V ;
4: splitcolor, i.e., f 1(v) = f 1(w) :⇔ L1(v) = L1(w) and f 1(v) = f 1(w),

v, w ∈ V ;
5: recolor, i.e., f 1 ≡ f 1;

until rf1 did not change;

Obviously, Algorithm 1 computes an 1-stable coloring. It is well known
that, for f = fint, the algorithm computes the total degree partition [48]. For an
example see Example 1.

Lines 3-5 of Algorithm 1 are denoted by 〈step〉. The corresponding lines
in the algorithms 2-stab and k-stab, which will be introduced later on, are
denoted by 〈step〉 as well. It will always be clear from the context which 〈step〉
is addressed. Furthermore, keywords in the algorithms which actually represent
whole procedures are marked in the text by 〈〉. For example, when referring to
line 5 in Algorithm 1, we write 〈recolor〉.

H. L. Morgan was probably the first to use the idea of vertex coloring for find-
ing a canonical graph representation [52]. Instead of considering the neighbors of
each vertex for each color separately, he looked only at the sum of the colors over
all neighbors of each vertex. In our terminology, colors are natural numbers and
in this way, the sum of colors is well defined. Among many others, D. G. Corneil
and C. C. Gotlieb published an article [19] where they stated an algorithm in a
similar manner as we did above.

We say that an algorithm A computes a coloring in a canonical way , if the re-
sulting coloring is independent of the vertex numbering. Such a coloring is called
a canonical coloring. An canonical coloring is an important graph isomorphism
invariant.
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It is easy to see that Algorithm 1 does not compute the automorphism
partition for every input graph. The most prominent class of graphs for which
the total-degree partition does not coincide with the automorphism partition are
the non-transitive regular graphs. In fact, for regular graphs Algorithm 1 does
not refine at all, i.e., no splitting of the vertex set appears. A simple example is
given in Example 2.

Example 1

Let the graph D6 = (V6, E),

E = {[v1, v2], [v2, v3], [v3, v4], [v4, v5], [v4, v6]}

be given.
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Figure 2.7: Colorings of D6

See Section 6.2 for a detailed description of the graph class Dn. Figure 2.6
shows the graph D6 and Figure 2.7 the colorings after one and two steps of
Algorithm 1, respectively.

2.3.2 2-dimensional Stabilization

The first 2-dimensional stabilization algorithm was introduced by B. J. Weisfeiler
and A. A. Leman in 1968 [73]. The algorithm can be stated as follows.
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Algorithm 2: Weisfeiler-Leman algorithm (2-stab)

Data : Gf = (V,E, f), f proper

Result: The coarsest 2-stable coloring f 2 of Gf

1: f 2 ≡ f ;
2: repeat
3: compute L2(e) ∀e ∈ V 2;
4: splitcolor, i.e., f 2(e) = f 2(e′) :⇔ L2(e) = L2(e′), e, e′ ∈ V 2;
5: recolor, i.e., f 2 ≡ f 2;

until rf2 did not change;

Obviously, Algorithm 2 computes a 2-stable coloring. Furthermore, it is well
known that it computes the coarsest 2-stable coloring finer than the initial color-
ing of a given colored graph. For a brief historical survey of different algorithms
for computing 2-stable colorings see Section 3.1.

In the 2-dimensional case, the analogue to regular graphs are strongly regular
graphs, i.e., for those graphs 2-stab does not refine the initial coloring fint at all.
A graph is strongly regular if it is regular and there are numbers λ, µ ∈ N such
that two arbitrary adjacent vertices have λ common neighbors and two arbitrary
non-adjacent vertices have µ common neighbors. For examples of non-vertex
transitive, strongly regular graphs see [72].

Example 2

Let the graph G = (V8, E),

E = ({[v1, v2], [v1, v7], [v1, v8], [v2, v3], [v2, v4], [v3, v4], [v3, v8],
[v4, v5], [v5, v6], [v5, v7], [v6, v7], [v6, v8]})

be given.

Consider now the structure lists of e = (v1, v2) and e′ = (v3, v4). The structure
lists of fint (the vertices have color 1, edges have color 2, and non-edges have color
3) are

L2(e) = {(2, 3, 2), (3, 2, 2), (3, 3, 2), (1, 2, 1), (2, 1, 1)}

and

L2(e′) = {(2, 2, 1)(2, 3, 1), (3, 2, 1), (3, 3, 3), (1, 2, 1), (2, 1, 1)}.

To make it more clear, p3,3e′ counts the paths of length 2 from v3 to v4 using
only non-existing edges. These are the paths via the vertices v1, v6, v7, Similarly,
p3,2e = |{v3, v4}|.

A drawing is given in Figure 2.8.
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The resulting color matrix representation after stabilization has 3 cells (diag-
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Figure 2.9: The resulting coloring

B. J. Weisfeiler and A. A. Leman state their algorithm in terms of matrix
multiplication. Instead of a colored graph, they take as input a matrix containing
non-commutative variables. In their language, a 〈step〉 is nothing but multiplying
the matrix by itself and then assigning different variables to different entries in
the resulting matrix. Furthermore, they refine the coloring in each step according
to condition (2.1). Due to the following lemma this is not necessary and thus left
out in our formulation of Algorithm 2.

Lemma 2.4 If condition (2.1) is true before some 〈step〉 of Algorithm 2 then
it is true throughout the rest of the algorithm.

Proof. Assume that condition (2.1) is true before 〈step〉 s. Let

L(e) = {(c1, d1, pc1,d1e ), (c2, d2, p
c2,d2
e ), . . . , (cle , dle, p

cle ,dle
e )}
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be the structure list of the edge e ∈ C(b). Since condition (2.1) holds, the structure
list of et ∈ C(b) looks as follows.

L(et) = {(d1, c1, pc1,d1e ), (d2, c2, p
c2,d2
e ), . . . , (dle, cle, p

cle ,dle
e )}

Thus, two edges e, e′ ∈ C(b) get the same color if and only if et, e′t ∈ C(b) get the
same color and hence condition (2.1) is still true after 〈step〉 s.

2.3.3 k-dimensional Stabilization

Algorithm 3: k-stab

Data : Gf = (V,E, f), k ≥ 2, f a complete k-coloring

Result: The coarsest k-stable coloring f k of Gf

1: f k ≡ f ;
2: repeat
3: compute Lk(vk) ∀vk ∈ V k;
4: splitcolor, i.e., f k(vk) = f k(wk) :⇔ Lk(vk) = Lk(wk) ∀vk, wk ∈ V k;
5: recolor, i.e., f k ≡ f k;

until rfk did not change;

If k = 2 and the given coloring is a proper 2-coloring, Algorithm 3 computes
a coloring equivalent to a coloring computed by the Weisfeiler-Leman algorithm.
1-stab does not fit in this framework since the old color of each vertex is not
considered properly in each step.

A complete k-coloring f of a graph G is called k-stable if it does not change
if Algorithm 3 is applied to it. A graph Gf is called k-stable if f is a k-stable
coloring.

2.4 Invariants, Canonical Colorings and Canon-

ical Labelings

A canonical label is a mapping which assigns to each graph Gf a labeling ρGf

with the following property. Given two arbitrary graphs Gf and G′
f ′ and their

canonical labelings ρGf
and ρG′

f ′
, respectively, Gf and G′

f ′ are isomorphic if and

only if ρG′

f ′

−1 ◦ ρGf
defines an isomorphism from Gf to G′

f ′. ρGf
is called a

canonical labeling of Gf . Observe that a graph can have different canonical
labelings.

A graph-invariant is a graph-theoretical property or parameter which is pre-
served by isomorphism, in other words, which does not depend on the labeling
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of the graph. Examples are the number of vertices and the number of edges, the
sorted sequence of degrees and so on.

To be more precise, an l-invariant ι is a mapping which assigns to each graph
an l-tuple of numbers having the property that for any two given isomorphic
graphs G and G′ we have ι(G) = ι(G′). Observe that the adjacency matrix is
not an invariant since it depends on how the graph is labeled. However, if we use
a canonical labeling for each graph, the adjacency matric becomes an invariant
(see Section 5.2.1).

An invariant ι is complete if two graphs G and G′ are isomorphic if and
only if ι(G) = ι(G′). Algorithms for computing invariants are called invariant
procedures.

It is well known that the sets of k-dimensional final structure lists of graphs
computed by the algorithms presented above define invariants [73, 48, 44]. Two
graphs are called weakly isomorphic if they have the same final 2-dimensional
structure lists.

2.5 Complexity Theory

In this section, we introduce some basic notions of complexity theory, which
enable us to speak about the “difficulty” of a problem and the “efficiency” of
an algorithm. Establishing the whole theoretical framework needed for a precise
introduction to complexity theory would exceed the scope of this chapter. Thus
we will constitute the framework on a more or less informal level. For a precise
and comprehensive introduction to complexity theory, we refer to A. V. Aho,
J. E. Hopcroft and J. D. Ullman [1], M. R. Garey and D. S. Johnson [32], or
C. Papadimitriou and K. Steiglitz [56].

For our purposes a problem is a general question to be answered which is
defined on several formal parameters (or variables) whose values are left open. To
define a problem, we need a description of all its parameters and of the properties
an (optimal) solution is required to satisfy. If all the parameters are fixed to
certain values, we get an instance of the problem.

We consider two types of problems. Decision problems, which require an an-
swer “yes” or “no”, and optimization problems whose solutions have to minimize
(or maximize) a certain objective function.

We assume that we have an encoding scheme which represents each instance
of a problem and each of its solutions as a binary string of 0’s and 1’s.

For an informal discussion it is sufficient to consider an algorithm as a com-
puter program solving a problem step by step. Solving a problem means, accept-
ing a string representing an instance of the problem and giving back a solution.
It is reasonable to measure the performance of an algorithm depending on the
“size” of the problem instances to be solved. Therefore to each instance I of a
problem, we associate a size or an encoding length which is defined as the length
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l(I) of the string representing the instance according to our encoding scheme. If
A is an algorithm for the solution of a problem P , we define its running time for
the instance I as the number of elementary steps A requires to get a solution of I.
For our purpose we consider elementary arithmetic operations such as additions,
multiplications, etc, and read/write operations as elementary steps.

Define

O(p(n)) := {q(n) | q(n) : N → N, ∃C : ∀n∈
� : q(n) ≤ Cp(n)} and

Ω(p(n)) := {q(n) | q(n) : N → N, ∃c : ∀n∈
� : q(n) ≥ cp(n)}.

The time complexity function of an algorithm A for a problem P is a function
tA : N → N giving for each n the maximum running time required for the solution
of an instance I with l(I) ≤ n. A is a polynomial time algorithm, if there exists
a polynomial p with tA(n) ∈ O(p(n)). Analogously, we define space complexity
which measures the amount of space that is required to run an algorithm.

The class of all decision problems which can be solved by a polynomial time
algorithm is denoted by P. A decision problem Π is in NP if for each instance
I of Π whose solution is “yes”, there exists a structure S such that with the help
of S the correctness of the “yes” solution can be checked in polynomial time. A
decision problem is NP-complete if it belongs to the “hardest” problems in NP
in the following sense. If there is a polynomial time algorithm to solve an NP-
complete problem, then all problems in NP can be solved in polynomial time
using this algorithm as a subroutine, i.e., all problems in NP are polynomially
time equivalent .

Obviously P ⊆ NP. The question whether P = NP, which is widely believed
to be false, is still, since 1971, one of the major open problems in complexity
theory.

An optimization problem is said to be NP-hard , if it has the property that
the existence of a polynomial time algorithm for its solution would imply the
polynomial time solvability of an NP-complete problem. We want to point again
to the fact that we kept this introduction at an informal level.
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Chapter 3

Algorithmic Aspects of
Stabilization Procedures

Since the motivation of the present work is to find a fast algorithm for computing
2-stable colorings, we begin with a brief survey of the existing algorithms and
implementations. Then we introduce some necessary definitions and lemmas.

We present algorithms for computing k-stable colorings, k = 1, k = 2, and
k ≥ 2.

3.1 Discussion of Known Algorithms and Ideas

B. J. Weisfeiler and A. A. Leman in [73] did not give time or space bounds of their
algorithms for computing 2-stable colorings. Time bounds were first considered
by S. Friedland in [29]. The methods presented in both of these papers are of
high theoretical but of little practical interest. They just verify the existence of
polynomial time algorithms for the problem. In the last decade, possibly among
others, three algorithms for computing 2-stable colorings have been developed
and implemented: stabil by I. V. Chuvaeva, M. Klin and D. V. Pasechnik [7],
stabcol by L. Babel and S. Baumann [5, 6] and CC by I. N. Ponomarenko [58].

We will first discuss these algorithms briefly and then introduce some ideas
which proved useful for an improved approach to graph stabilization.

A straightforward implementation of Algorithm 2 which just computes all
structure lists in each step would have a running time of O(n5 log(n)) and O(n3)
space would be needed. This is obvious since every 〈step〉 needs O(n3) time and
space for computing the structure values and O(n3 log(n)) time to assign the new
colors to the edges. Recoloring can be done by sorting the edges according to a
lexicographical ordering of their structure lists and then assigning the new colors
in this order.

Such a procedure needs O(n2 log(n)) comparisons of structure lists, each tak-
ing up to O(n) time. Since theoretically O(n2) steps could be necessary, this

25
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sums up to a running time of O(n5 log(n)).
The only possibility to reduce the running time is to compute less than n3

triangles in each 〈step〉 of Algorithm 2. We will show how this can be done
without changing the outcome of the algorithm. First, it is necessary to describe
more precisely how 〈recoloring〉 will be done.

During 〈recoloring〉, a color-class C(c0) will be split into l color-classes. The
largest class will keep the old color c0 and the other classes will get new colors
c1, c2, . . . , cl−1. We refer to this strategy as the LCOC rule (Largest Class Old
Color). The new colors remain new until the next recoloring.

The following two lemmas are stronger formulations of lemmas given by L. Ba-
bel in [5].

Lemma 3.1 It suffices to compute only those entries in each structure list which
contain at least one new color.

Proof. Let f be the resulting coloring after the sth recoloring. Assume that the
colors c0 and d0 have been split during the sth recoloring to c0, c1, . . . clc−1 and
d0, d1, . . . dld−1. Let e, e

′ ∈ C(b) after the sth recoloring. Of course

lc−1∑

i=0

ld−1∑

j=0

pci,dje =
lc−1∑

i=0

ld−1∑

j=0

p
ci,dj
e′ (3.1)

holds. If we compute only those entries in each structure list which contain at
least one new color, then the values pc0,d0e and pc0,d0e′ will not be computed. As-

sume that pc0,d0e 6= pc0,d0e′ . Due to (3.1), there is a pair (i, j) 6= (0, 0) such that

p
ci,dj
e 6= p

ci,dj
e′ . For that reason, different colors are assigned to e and e′ in the

(s + 1)th recoloring. A similar argument holds when only one color, say c0, has
been split up (ld = 1).

An edge has been recently recolored if it has obtained a new color in the
preceding 〈step〉. A triangle is called necessary if at least one of its non-basis
edges has been recently recolored. The part of a structure list which contains
only structure values counting necessary triangles is called reduced structure list .

Although the above lemma eventually reduces the number of triangles which
are considered in a 〈step〉, the worst case bound on the number of triangles
considered in a single 〈step〉 is still n3. However, the total number of triangles to
be considered reduces considerably.

Lemma 3.2 When using the LCOC rule for recoloring, the overall number of
triangles which have to be considered during the entire run of the algorithm is
bounded by O(n3 log(n)).

Proof. Due to the LCOC rule, each new color-class C(c1), C(c2), . . .C(clc−1)
has at most half of the size of the color-class it originated from. Thus, each tri-
angle can only be 2 log(n2) times necessary. Since there are n3 triangles in the
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graph, the proof is finished.

Due to the previous lemma, Algorithm 2 can be implemented to run in time
O(n3 log(n)) Up to now, this is the best known time bound of an 2-dimensional
stabilization algorithm.

A canonical coloring can be obtained by sorting the elements of the structure
lists L(e) lexicographically and then assigning new colors according to the lexi-
cographic order of the structure lists. This can be combined with the recoloring
step described above to get the canonical coloring algorithm presented by L. Ba-
bel in [5]. The ideas of L. Babel were implemented in stabcol. The drawbacks
of stabcol are the space requirements of O(n3) and the bad practical running
time.

Another implementation of Algorithm 2 is the program stabil. This imple-
mentation is very efficient in practice, has a theoretical time bound of O(n7) and
needs O(n2) space. The authors of stabil tried to reduce the number of structure
lists they have to store simultaneously. The idea is to compute only the structure
lists of edges having currently the same color. To start with color-classes of small
size, they perform a degree partition of the vertices and recolor edges based on
this information. Since the size of the largest color-class can still be up to Ω(n2),
in a 〈step〉 of stabil only the first O(n) different structure lists of a color-class
are considered. Also this approach has two disadvantages. First, stabil does not
color canonically and, secondly, stabil might need more steps than the generic
Weisfeiler-Leman algorithm (see Section 2.3.2), although still less than O(n2) of
course.

An implementation of the generic Weisfeiler-Leman algorithm, which yields
a canonical coloring, is included in the package CC of I. N. Ponomarenko. It is
basically a smart implementation of the original algorithm in [73] with the focus
on using only little memory. It has a running time of O(n5 log(n)) and needs
O(n2) space.

The problem is now to find an algorithm and an implementation combining the
advantages of all known algorithms. It should be theoretically efficient with time
complexity bound at most O(n3 log(n)), require at most O(n2) space, compute a
canonical coloring and it should be fast in practice.

The main idea which leads to such an algorithm is to compute not all (re-
duced) structure lists but only parts of them at a time. This reduces the space
requirements immediately, but some work has to be done to keep the required
time bound.

B. D. McKay [48] and J. E. Hopcroft [40, 1] have presented some versions of
algorithms for the 1-dimensional case. Furthermore, N. Immerman and E. Lander
[42] were the first to recognize that k-stable colorings can be computed using ideas
analogous to the ideas presented by J. E. Hopcroft and R. Tarjan[41]. Their
approach is also used in [14] and is discussed in 4.1. In the way they state it,
the algorithm needs Ω(nk+1) space and is thus inferior to ours which needs only
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O(knk) space.

3.2 Prerequisites

Loops like while and foreach will be processed in the current ordering of the
elements. We use an in situ implementation of bucket sort. To simplify the
notations, we denote colorings f 1, f 2 and f k in this chapter by f . It is always
clear from the context which coloring is used. The algorithms presented in this
chapter for computing 1-stable and 2-stable colorings are implemented in the
programs qStab and qWeil, respectively (see Chapter 6).

3.3 1-stable Colorings

The algorithm described in this section was obtained as a special case of the
algorithm in Section 3.4. However, since this special case is much easier to state
and to understand, it serves as an introduction.

Consider Algorithm 1. In this section, we want to find a fast implementation
for lines 3-5 of that algorithm. These lines are denoted by 〈step〉. The idea of our
approach is to compute only one entry of each structure list, but for all vertices
at a time. That is, we compute the sets L(c) instead of L(v). So 〈step〉 can be
reformulated as follows.

Procedure 4: step

1: f ≡ f ;
2: foreach c ∈ N do
3: compute L(c);
4: splitcolor(c), i.e., split the colors in the following way:

f(v) = f(w) :⇔ f(v) = f(w) and pcv = pcw, ∀v, w ∈ V ;

end
5: N := f(V ) \ f(V );
6: recolor f ≡ f ;

Note that the structure values pcv are defined with respect to f and are not
changed within a foreach loop. We refer to f as pseudo coloring of the vertices.
f immediately leads to a set of new colors N . N is initially defined as the
set f(V ) and will be recomputed directly prior to every 〈recolor〉 operation as
N := f(V ) \ f(V ).

Let S ⊆ V be a set of vertices. We define

N(S) := {w ∈ V | ∃v ∈ S : (v, w) ∈ E}.
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We write N(v) instead of N({v}). Observe that this definition differs from the
standard definition of the neighborhood of a set of vertices S, |S| > 1. Further-
more, we define

||N(S)|| :=
∑

v∈S

|N(v)|.

We store the input graph G using adjacency lists, i.e., for every vertex, we
store a list of its neighbors, and the vertices are stored in an array of size n.
Algorithm 1 with Procedure 4 as implementation for 〈step〉 requires only
linear space (linear in m).

We are now going to prove the time bound of O(m log(n)) for Algorithm 1
with Procedure 4 as implementation for 〈step〉. First note that Lemma 3.1 and
Lemma 3.2 are valid also for this version of the algorithm. It will be shown that
〈compute L(c)〉, 〈splitcolor〉, and 〈recolor〉 can be implemented to run in time
O(||N(C(c))||+ |C(c)|), O(||N(C(c))||), and O(|L|), respectively. Here, |L| is the
list of vertices used in Procedure 7.

To see this, it is necessary to describe the used data structure in more detail.
The color-classes are stored in an array. Each class consists of a doubly linked list
of its members. Furthermore, every vertex knows its colors, i.e., f(v) and f(v)
is available in constant time. The structure lists L(c) are also stored as doubly
linked lists. This makes it possible to carry out append, delete and update
operations in O(1).

1 2 3 f

1 2 3 4 5 i-1 i+1 n-1 n

vertices

color classes

i... ...

...... c

j k lneighbors

n-1

cc c c

f
n

Figure 3.1: The color-class c consists of the elements 1, 3, . . . , i, . . . n, and i has
the neighbors j, k, l

To present a fast version of 〈splitcolor〉, we need some more notation. A vertex
v is called hit by c if pcv > 0, a color-class C(b) is called hit by c if some v ∈ C(b) is
hit by c. C(b).hit denotes the number of elements hit by c of C(b). This number
is needed in 〈splitcolor〉 and can easily be computed in Procedure 5 (which is
done in line 7). C(b).size denotes the current size of C(b).
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Procedure 5: compute L(c)

1: foreach w ∈ C(c) do
2: foreach v ∈ N(w) do
3: pcv := 0;

end
end

4: foreach w ∈ C(c) do
5: foreach v ∈ N(w) do
6: if pcv = 0 then
7: C(f(v)).hit ++;
8: append (v, pcv) to L(c);

end
9: pcv ++;

10: update the entry of (v, pcv) in L(c);

end
end

We stress once more that the values pcv are defined with respect to the old
color c. Obviously, the time for computing the structure list L(c), needed in
line 3 of Procedure 4, is bounded by O(||N(C(c))|| + |C(c)|) (see Procedure
5 for details). Since each vertex is recolored at most log(n) times, the sum over
the computing times of all structure lists computed during the execution of the
algorithm is bounded by O(m log(n)).

We now turn to the analysis of Procedure 6 〈splitcolor〉. Using bucket
sort, the sorting of L(c) by increasing values pcv (line 1) can be bounded by
O(|L(c)|+ |C(c)|). This is because the largest pcv is not greater than |C(c)|.

In 〈splitcolor〉, the pseudo recoloring will be done in the following way. New
pseudo colors are assigned according to an increasing ordering of the values pcv.
We say that a vertex v is an element of a structure list L(c), denoted by v ∈ L(c),
if there exists a tuple (v, pcv) in L(c).

In Procedure 6, we determine the smallest pcv of each color-class C(b) hit by
c (stored in C(b).current p). We want vertices with the smallest pcv to keep their
old pseudo color and the others to obtain new pseudo colors. These temporary
pseudo colors will be reassigned in 〈recolor〉. Observe that if some vertices of C(b)
are not hit by c, i.e., pcv = 0, they do not appear in L(c). It is not possible to
find the smallest pcv by scanning through all elements of C(b) because C(b) or at
least the sum of the sizes of all hit color-classes might be too large to keep the
time bound. One possible solution for computing the smallest pcv is shown inside
the loop of lines 2 − 8. These lines need the sizes of the pseudo color-classes
which are updated in lines 13 and 15. In the loop starting in line 9, the new
pseudo colors are allocated and assigned as described before. Summing up all
terms in this discussion, Procedure 6 has an (amortized) overall running time
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of O(|L(c)|+ |C(c)|) = O(|N(C(c))|+ |C(c)|) which equals O(m log(n)).

Procedure 6: splitcolor(c)

1: sort L(c) by increasing values of pcv;
2: foreach v is first vertex in L(c) with color f(v) do
3: b = f(v);
4: if C(b).hit < C(b).size then
5: C(b).current p := 0;

else
6: C(b).current p := pcv;

end
7: C(b).current color := b;
8: C(b).hit := 0;

end
9: foreach v ∈ L(c) do

10: if C(f(v)).current p 6= pcv then
11: C(f(v)).current p := pcv;
12: C(f(v)).current color := nf + 1;

end
13: C(f(v)).size−−;
14: f(v) := C(f(v)).current color;
15: C(f(v)).size ++;

end

Denote by Nb the set of all colors emerging from b in a specific step, i.e.,
Nb := {f(v) | f(v) = b}.

Procedure 7: recolor
1: Let L be the list of all vertices which got a new pseudo color;
2: Let L′ := {f(v)|v ∈ L};
3: foreach v ∈ L do
4: delete v from its color-class C(f(v));
5: append v to C(f(v));

end
6: foreach b ∈ L′ do
7: find d ∈ Nb with |C(d)| = max

d′∈Nb

|C(d′)|;
8: if |C(d)| > |C(b)| then
9: exchange the (pseudo) colors of the color-classes C(b) and C(d);

end
end

10: f ≡ f ;
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To finish 〈step〉, we have to transform the pseudo colors assigned by 〈splitcolor〉
into the final new coloring. This is done by Procedure 7 which is an imple-
mentation of 〈recolor〉 and ensures that the largest color-class keeps its old colors
and does the updating of the color-classes and colors in a correct way. This is
necessary for maintaining the LCOC rule.

Computing the list L (line 1) can be done by keeping track of the new colors
during each 〈step〉. In order to update our data structures, the vertices have to
be moved from their old color-class to their new one. In our data structures,
deleting an element from its color-class and appending an element to a new class
takes time O(1). Thus, lines 2-4 of procedure 〈recolor〉 take only O(|L|) time.
Since the sizes of the new color-classes are known, all executions of line 7 during
one execution of Procedure 7 take time O(|L|). Hence, lines 6-9 take time
O(|L|) as well since two colors will be exchanged if and only if the color-class of
the new color is larger than the old one. The final line of this procedure can be
implemented in time linear in |L|.

We conclude that all statements of Procedure 7 can be executed in time
O(|L|).

Theorem 3.3 Algorithm 1 using procedure Procedure 4 has a worst-case
running time of O(m log(n)).

Theorem 3.4 Given a graph Gf , the coarsest 1-stable coloring of G which is
finer than f can be computed in O(m log(n)) time and O(n) space.

The algorithm presented above does not compute a canonical coloring which
is due to the fact that the ordering inside the structure lists L(c) depends on the
ordering of the vertices. But the algorithm can easily be adjusted to compute a
canonical coloring. To achieve this, sorting of L(c) by the pseudo colors of the
vertices prior to line 1 of Procedure 6 is necessary. For details see the discussion
of the analogous problem in the 2-dimensional case. Using heapsort to sort L(c),
the overall running time of 〈splitcolor〉 and thus the whole algorithm is bounded
by O(m log2(n)).

Corollary 3.5 The coarsest canonical 1-stable coloring can be computed in time
O(m log2(n)) and space O(n).

Due to the fact that there are at most O(n log(n)) executions of Procedure 6,
using bucket sort instead of heapsort gives another time bound.

Corollary 3.6 The coarsest canonical 1-stable coloring can be computed in time
O(n2 log(n)) and space O(n).

The latter result has also been obtained by B. D. McKay [48] for a similar
algorithm. His algorithm does not compute the complete structure lists L(c) at
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a time but only the parts for vertices having a specific color. This works well
for 1-dimensional stabilization but the approach cannot be generalized to obtain
new theoretical results for higher dimensional stabilization algorithms.

Note that Corollary 3.6 improves the time bound of B. D. McKay for sparse
graphs. For a somewhat enhanced version of B. D. McKay’s algorithm, one can
obtain the same bound as in Corollary 3.6. In such an algorithm, the computation
of structure values which are zero has do be omitted. Nevertheless, the bound of
Theorem 3.4 cannot be reached without considering all neighbors of a color-class
at a time.

It should be mentioned that B. D. McKay’s algorithm as well as the algorithm
just described needs only O(n) memory in addition to the memory needed for
storing the graph. The algorithm of J. E. Hopcroft and R. Tarjan which also has
time bound O(m log(n)) needs O(m) additional space.

3.4 2-stable Colorings

In this section, the ideas presented in the previous section will be extended to
obtain a new algorithm for computing 2-stable colorings.

3.4.1 Proper Colorings

We want to construct an algorithm which produces in each 〈recoloring〉 a proper
coloring. As mentioned in Section 2.1.4, we can assume w.l.o.g. that the input
graph is completely colored. To turn this given coloring into a proper coloring,
we eventually have to modify it to meet the conditions (2.1) and (2.2). The
following algorithm (Algorithm 8) computes the coarsest proper coloring finer
than a given initial coloring f .

Since line 8 of Algorithm 8 is the most expensive one, the worst-case time
bound is obviously O(n2) (by using bucket sort). The algorithm requires O(n2)
memory. If the graph structure is not represented by the coloring, e.g., some edges
and non-edges have the same color, the above algorithm can be easily adjusted
to distinguish between edges and non-edges.

There exist simple examples for the fact that if the initial coloring is not
proper, the 2-dimensional stabilization algorithm not necessarily computes the
basis of a coherent algebra. Take the graph with adjacency matrix J in which
all elements of V × V have the same color. No new colors would be introduced
during Algorithm 2 if Algorithm 8 would not be applied first. The result
would violate property (2.1).
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Algorithm 8: Proper Coloring

Data : Completely colored graph G = (V,E, f)

Result: Proper coloring f of G

1: T := ∅;
2: foreach (u, v) ∈ V × V do
3: if u = v then
4: edge := 0;

else
5: edge := 1;

end
6: triple(u, v) = (edge, f(u, v), f(v, u));
7: append triple(u, v) to T ;

end
8: sort T lexicographically;
9: color := 0;

10: triple = (0, 0, 0);
11: foreach triple(u, v) ∈ T do
12: if triple 6= triple(u, v) then
13: triple := triple(u, v);
14: color ++;

end
15: f(u, v) = color;

end

Consider the graph with adjacency matrix depicted in Figure 3.2(a). If Al-
gorithm 8 is applied first, we obtain Figure 3.2(b), otherwise Figure 3.2(c).
Obviously, Figure 3.2(c) violates property (2.2).

Although the necessity of starting with a proper coloring is obvious, the au-
thors of some of the algorithms mentioned above probably were not aware of it
since their algorithms fail on this instance1. Figure 3.2(c)(a) was worked out
using qWeil.

As previously shown (see Lemma 2.4), a proper coloring stays proper through-
out the whole run of Algorithm 2.

1stabil exits with a segmentation fault and stabcol computes Figure 3.2(c)(a)



3.4. 2-stable Colorings 35

(a)

(b) (c)

Figure 3.2:

3.4.2 The New Algorithm

In this section, we will show that canonical coherent colorings can be computed
in O(n2) space and O(n3 log(n)) time. As done in the 1-dimensional case, we
start by considering a new 〈step〉 function.

Procedure 9: step

1: f ≡ f ;
2: foreach (c, d) ∈ F × F do
3: splitcolor(c, d), i.e., compute L(c, d) and split the colors in the following

way: f(e) = f(e′) :⇔ f(e) = f(e′) and pc,de = pc,de′ , ∀e, e′ ∈ E;

end
4: recolor, i.e., f ≡ f ;

As mentioned before, the entries of lists (or sets) are always visited according
to the current (natural) ordering of the list (set). In Procedure 9 we suppose
entries are visited in increasing order of c and d.

〈splitcolor(c, d)〉 stores a pseudo color f at each edge. This guarantees that
the information of the previously computed structure values will be memorized.



36 Chapter 3. Algorithmic Aspects of Stabilization Procedures

Finally, 〈recolor〉 overwrites the color of each edge with its current pseudo color.
Obviously, the result of this refinement procedure is the same as the one of lines
2 and 3 in the generic algorithm Algorithm 2.

Consider the lists L(c, d) in Procedure 9 again. Since every list L(c, d) has
length up to n2 and there are up to n4 such lists, this approach does not seem
to be very promising at first sight. But at least, it is only necessary to store the
list of one pair (c, d) at a time and still get a canonical coloring (for details see
Procedure 11). Thus, this approach finally makes it possible to work in O(n2)
space only.

From now on, we will try to reduce the running time to O(n3 log(n)) and keep
the desired space bound. To reduce the number of pairs (c, d) to be considered,
we can apply Lemma 3.1 and replace Procedure 9 by Procedure 10. As in
Procedure 4 of Section 3.3, f is needed to define the set of new colors N . The
old colors are denoted by O := F \N . Both, N and O, are initially, prior to the
first execution of Procedure 10, set to F .

Procedure 10: step

1: f ≡ f ;
2: foreach c ∈ N do
3: foreach d ∈ F do
4: splitcolor(c, d);

end
end

5: foreach c ∈ O do
6: foreach d ∈ N do
7: splitcolor(c, d);

end
end

8: N := f(V ) \ f(V ); O := F \ N ;
9: recolor;

To make a running time analysis of Procedure 10, we need to go into the
details of the used data structure.

We store the colored graph G as a colored matrix M , i.e., Muv = f(u, v),
∀u, v ∈ V , and the set of color-classes in an array of length n2. With each
color-class C(c), we associate doubly linked lists of a row-wise and a column-
wise encoding of the edges in that color-class (these correspond to sparse matrix
representations of Ec). By row-wise and column-wise encoding, respectively, we
mean that the edges in the list appear ordered lexicographically by the tuple
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(head, tail) and (tail, head), respectively. We denote these lists by rowwise(c)
and columnwise(c), respectively.
Furthermore, we store doubly linked lists of the first edges in the rows and
columns of each color-class. These lists are called rows(c) and columns(c). The
lists L(c, d) are stored as unordered doubly linked lists and are sorted if necessary.

It takes O(n2) time to initialize this data structure. In the following, we do
not describe explicitely how and when occurring lists and variables are deleted
and reset, respectively. It always should be clear from the context how and
when this is done. For an edge set W , rowindices(W ) and columnindices(W )
denote the sets of row indices and column indices of W with respect to M . If
W = {e}, we write rowindex(e) and columnindex(e) instead of rowindices({e})
and columnindices({e}) respectively.

To achieve the time bound claimed above, we also need to explain the imple-
mentations of 〈splitcolor(c,d)〉 and 〈recolor〉 in more detail. We have implemented
these functions to run in time O(n + #triangles) and O(n +

∑
triangles). By

#triangles, we mean the number of triangles which are considered for comput-
ing L(c, d), i.e., #triangles =

∑

e∈L(c,d) p
c,d
e , and by

∑
triangles, the number of

triangles which are considered in the current 〈step〉.

An edge e is called hit by (c, d) if pc,de > 0, a color-class C(b) is called hit by
(c, d) if some e ∈ C(b) is hit by (c, d). C(b).hit denotes the number of hit elements
of C(b). This number is needed in 〈splitcolor〉 and is computed in Procedure
12 (in line 4).

In 〈splitcolor〉 (Procedure 11), the pseudo recoloring will be done in the
following way. New pseudo colors are assigned according to an increasing ordering
of f(e) and pc,de to obtain a canonical coloring. Moreover, we determine the
smallest pc,de of each color-class C(b) hit by (c, d) (stored in C(b).current p) because
the edges with the smallest pc,de keep their old (pseudo) color and the other ones
get new (pseudo) colors. It is not possible to do this by scanning through all
elements of C(b) because C(b) or at least the sum of the sizes of all hit color-
classes might be too large.
One possible solution for computing the smallest pc,de is shown in lines 4 − 10.
That is why we need to update the sizes of the color-classes immediately. This
is done in lines 15 and 17. In lines 11 − 17, the new pseudo colors are assigned
as described before.
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Procedure 11: splitcolor(c, d)

1: compute L(c, d);
2: sort L(c, d) by the values f(e);
3: sort L(c, d) (in situ) by the values pc,de ;
4: foreach e with (e first edge in L(c, d) with color f(e)) do
5: b = f(e);
6: if C(b).hit < C(b).size then
7: C(b).current p := 0;

else
8: C(b).current p := pc,de ;

end
9: C(b).current color := b;

10: C(b).hit := 0;

end
11: foreach e ∈ L(c, d) do
12: if C(f(e)).current p 6= pc,de then
13: C(f(e)).current p := pc,de ;
14: C(f(e)).current color := nf + 1;

end
15: C(f(e)).size−−;
16: f(e) := C(f(e)).current color;
17: C(f(e)).size ++;

end

The first line of Procedure 11 is implemented in Procedure 12. It is
a special sparse matrix multiplication and can be done in the required time of
O(n+#triangles). To compute L(c, d), the matrix product E := Ec ·Ed, which
is nothing but a matrix representation of L(c, d), has to be computed.

Procedure 12: compute L(c, d)

1: foreach w ∈ columnindices(c) ∩ rowindices(d) do
2: foreach e = (u, v) with (u, w) ∈ C(c) and (w, v) ∈ C(d) do
3: if pc,de = 0 then
4: C(f(e)).hit ++;
5: append (e, pc,de ) to L(c, d);

end
6: pc,de ++;

end
end

Observe that the number of iterations of the loop in line 1 of Procedure
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12 which equals |columnindices(c))∩ rowindices(d))| is bounded by #triangles
and the computing of columnindices(c)∩rowindices(d) can be done by scanning
through the lists columns(c) and rows(d) whose lengths are bounded by n.

The inner loop needs an overall amortized time of O(#triangles) because
together with the index w, we get the first elements with column index w and
row index w of the color-classes C(c) and C(d) respectively, and have access in
time O(1) to the successors of the elements.

To analyze the running times of lines 2 and 3 in Procedure 11, we need
to explain the sorting procedure we used. Let a list L of length m be given.
Assume that each element of L consists of at most k numbers out of the interval
{1, 2, . . . , n} (or of one natural number bounded by nk), then L can be sorted
using bucket sort in time O(k(n+m)) and space O(m+ n) [1].

It follows that the sorting in line 3 in Procedure 11 can be done with bucket
sort in time O(#triangles) since the pc,de in L(c, d) are bounded by #triangles.
Line 2 needs time O(n+#triangles) and thus, this procedure has a running time
of O(n+#triangles).

Since 〈splitcolor(c, d)〉 is invoked in accordance to the lexicographical order of
(c, d) and the assignment of the new colors depends only on the structure values
and the previous coloring, the pseudo coloring is again canonical.

To finish the implementation of 〈step〉, we have to transform the pseudo colors
assigned by 〈splitcolor〉 into a new coloring according to the LCOC rule. An
appropriate updating of color-classes and colors which ensures that the largest
color-classes get the old colors is done by Procedure 13.

Denote by Nc the set of all colors emerging from c in one iteration of 〈step〉,
i.e., Nc := {f(e) | f(e) = c}.
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Procedure 13: recolor
1: Let L be the list of all edges which got a new pseudo color;
2: Let L′ := {f(v)|v ∈ L};
3: foreach e ∈ L do
4: delete e from its color-class C(f(e));
5: append e to C(f(e));

end
6: sort L by the tuples (rowindex(e), columnindex(e)) and generate with the

help of this ordering the row encodings of the new color-classes;
7: sort L by the tuples (columnindex(e), rowindex(e)) and generate with the

help of this ordering the column encodings of the new color-classes;
8: foreach c ∈ L′ do
9: find d ∈ Nc with |C(d)| = max

d′∈Nc

|C(d′)|;
10: if |C(d)| > |C(c)| then
11: exchange the colors of the color-classes C(c) and C(d);

end
end

12: f ≡ f ;

In order to update our data structures, the edges have to be moved from their
old color-classes to their new ones. In our data structures, deleting an element
and appending an element to a new list – without any further updating of the
data structure – takes time O(1) (see lines 3 and 5).

The sorting in Procedure 13 (lines 6 and 7) can be done in time O(n +
∑

triangles) using bucket sort. This sorting done, the initialization of the row
and column encodings is nothing but an appending procedure and thus can be
done in time O(

∑
triangles). Lines 9-11 take time O(

∑
triangles) since two

colors will be exchanged only if the new color is larger than the old color. We
conclude that Procedure 13 can be executed in time O(n+

∑
triangles).

An amortized cost analysis of the algorithm described so far, yields a worst
case running time for Procedure 10 of O(n5). The reason for this still bad time
bound lies in the fact that many empty structure lists are computed and that the
running time of 〈splitcolor〉 depends linearly on n.

To improve the time bound, we have to make sure that only triangles with a
combination of colors which exist in the currently colored graph are processed.
And so the multiplication will only take time O(#triangles). In addition, we
move the sorting in line 2 of Procedure 11 to Procedure 13. In this way, we
again change the implementation of 〈step〉. The result is Procedure 14, which
first computes all paths of length 2 with a color combination which actually exists
in the graph and then computes the corresponding triangles.
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Procedure 14: step
Examine triangles whose first non-basis edge was recently

colored;
1: f ≡ f ;
2: foreach c ∈ N do
3: L(c) = ∅;
4: foreach (u, w) ∈ columns(c) do
5: for (v = 1; v ≤ vertices; v ++) do
6: if (w, v) is first of its color-class in the row of M corresponding

to w then
7: append ((u, w), (w, v)) to the list L(c);

end
end

end
8: sort L(c) by the colors of the second edges;
9: foreach d ∈ L(c) do

10: splitcolor(c, d);

end
11: delete L(c);

end
the same as in loop 2 has to be done for the case when the

second color is new;
. . .
recolor;

The list L(c) consists of all directed paths of length 2 whereby the first edge
has color c and is the first of its color-class in some column in M and the second
edge is the first of its color-class in some row of M . Therefore, L(c) has at most
n·|columns(c)| elements. The sorting in line 8 can be done in time proportional to
O(|L(c)|+ n) = O(

∑

c triangles).
∑

c triangles denotes the number of triangles
with the first edge colored by the color c to be considered in this step, which is
at least as large as n. Since the sets columnindices(c)∩ rowindices(d) are stored
in L(c), the multiplication in Procedure 12 is executed in time proportional to
the number of triangles.

To move the sorting in line 2 of Procedure 11 to Procedure 13, we need
to introduce more data structures. With each edge e, we store its parent color
parent(e), i.e., the (pseudo) color-class to which e belonged before its color was
changed the last time, and with each color-class C(c) a list of children, i.e., edges
which had color c before they were recolored the last time. If a child of a color-
class C(c) is recolored, it is deleted from the list of children of C(c). During the
initialization, each edge e will be defined as child of C(f(e)). For details see
procedure Procedure 15, which differs from Procedure 11 in that in addition
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it builds up this new data structure.

Procedure 15: splitcolor(c, d)

1: compute L(c, d);
2: sort L(c, d) by the values pc,de ;
3: foreach e with e first edge in L(c, d) with color f(e) do
4: b := f(e);
5: if C(b).hit < C(b).size then
6: C(b).current p := 0;

else
7: C(b).current p := pc,de ;

end
8: C(b).current color := b;
9: C(b).hit := 0;

end
10: foreach e ∈ L(c, d) do
11: if C(f(e)).current p 6= pc,de then
12: C(f(e)).current p := pc,de ;
13: C(f(e)).current color := nf + 1;

end
14: C(f(e)).size−−;
15: delete e from its parent’s children list;
16: append e to the children list of C(f(e));
17: parent(e) := C(f(e));
18: f(e) := C(f(e)).current color;
19: C(f(e)).size ++;

end

Using this parent-children relationship, we are able to keep the current color-
ing canonical by inserting some appropriate lines in the procedure 〈recolor〉 (see
Procedure 16).

Observe that 〈splitcolor〉 is still implemented to run in time O(#triangles)
and the worst-case running time of 〈recolor〉 did not change. Furthermore, the
data structure for the parent-children relationship can be stored in O(n2) space.

The algorithm needs at most n2 calls of 〈step〉 to compute a stable coloring.
However, the overall running time of all calls of 〈splitcolor〉 (including Procedure
12) is proportional to the number of all triangles which are considered. This
number is bounded by O(n3 log(n)) because each triangle is considered at most
O(log(n)) times. The same amount of time is needed for all executions of the
remaining part of Procedure 14.
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Procedure 16: insert in Procedure 13 between line 1 and 2
1: sort L by the old colors f ;
2: introduce a dummy root r;
3: foreach e ∈ L, f(parent(e)) ≤ nf do
4: assign e as child of r;
5: assign r as parent of e;

end
the parent-children relationship defines a tree T on the

color-classes in L.;
assign new colors nf + 1, . . . , nf to the color-classes in T and to the edges
in L by walking through T in post order (or some other well defined order);

Since one execution of 〈recolor〉 takes time O(n +
∑

triangles), the overall
running time for this part of 〈step〉 is also bounded by O(n3 + n3 log(n)) =
O(n3 log(n)).

Hence, we finally have obtained a running time of O(n3 log(n)).

Theorem 3.7 Given a colored graph Gf , a canonical coarsest 2-stable coloring
of G which is finer than f can be computed in time O(n3 log(n)) and space O(n2).

A complete version of the implementation presented here can be found in the
appendix.

3.5 k-stable Colorings

In this section, the general case of computing k-stable colorings is described.
We adopt the ideas from the 2-dimensional case to obtain an algorithm for the
k-dimensional case. Instead of coloring only vertices and edges, k-tuples are
colored. However, every k-coloring implicitly determines an l-coloring, 1 ≤ l ≤ k
(see Section 2.2.3).

Instead of considering edges (2-tuples) and the triangles (3-tangles) in which
they are contained, we consider k-tuples and the (k + 1)-tangles in which they
are contained. We know from the foregoing discussions that we need to consider
only k-starlets with at least one recently colored edge.

It is possible to generalize the notion of proper colorings. Let π denote a
permutation of {1, 2, . . . , k}. A k-coloring f is proper if it is complete (i.e.,
Df = V k) and for an arbitrary π and two k-tuples vk = (v1, v2, . . . , vk) and
uk = (u1, u2, . . . , uk) the following holds:

f(v1, v2, . . . , vk) = f(u1, u2, . . . , uk) ⇔
f(vπ(1), vπ(2), . . . , vπ(k)) = f(uπ(1), uπ(2), . . . , uπ(k)) (3.2)
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and

dim(vk) 6= dim(uk) ⇒ f(vk) 6= f(uk). (3.3)

Let vk and uk be two k-tuples. vk is called a permutation of uk if there exists
a permutation π of {1, 2, . . . , k} such that

(v1, v2, . . . , vk) = (uπ(1), uπ(2), . . . , uπ(k)).

We start our algorithm with a graph being properly k-colored. To obtain
such a coloring, assume we are given a properly 2-colored graph. Note that
k-tuples of the form (u, u, u, . . . , u) represent vertices and that k-tuples of the
form (u, v, v, . . . , v) represent edges. Such k-tuples obtain the given colors of the
vertices and edges, respectively. Furthermore, permutations vk of such k-tuples
uk get the color of uk.

Let c1, c2, . . . ck−2 be some unused colors. Color each l-dimensional k-tuple
with the color cl−2, l > 2. In this way, we get an initial k-coloring which is
obviously proper. In the 2-dimensional case, we have observed that, if we start
with a proper coloring, this property is maintained throughout the algorithm.
The same is valid in the general case for k > 2 (see Section 2.3.3).

Lemma 3.8 If the initial coloring is proper then the coloring remains proper
throughout k-stab (Algorithm 3).

Proof. Property (3.3) is trivially valid throughout the algorithm. Consider
now the property (3.2). Assume that the coloring is proper after some step and
examine what happens in the next step. Let two k-tuples of vertices vk and uk

have the same color and dimension. Furthermore let the structure lists of vk and
uk be denoted by Lvk and Luk , respectively, and let π be an arbitrary permutation
of {1, 2, . . . , k}.

Take two arbitrary equally colored starlets Svk represented in Lvk and Suk

represented in Luk . Then the starlets π(Svk) and π(Suk) are equally colored and
are contained in the structure list of π(vk) and π(uk), respectively. This argument
can be generalized by considering the structure values of colored k-tuples (see 3.8
for details) and thus, the coloring remains proper after the next step.

Lemma 3.8 justifies that we only consider starlets where only one direction
of each edge is present. Involving the backward edges as well would not make a
difference for the final coloring.

Further, this observation enables us now to simplify the discussion by working
with k-stars instead of k-starlets. A k-star S(w) at w is an ordered k-tuple
of edges ((v1, w), (v2, w), . . . (vk, w)). We say that S is incident to the k-tuple
(v1, v2, . . . , vk) of vertices.

Instead of writing down the k-dimensional algorithm completely, we will refer
to the 2-dimensional case and expose the differences.
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First, in an adjusted version of Procedure 14, we have to compute the k-
stars. This is done analogously to the 2-dimensional case. We choose a new color
c and a position p ∈ {1, 2, . . . , k}. Then we compute k-stars having an edge of
color c at position p. As before, we do not compute all of them but only the ones
where the edge at position p is the first in its column having color c. The list
of these k-stars is denoted by Sk(c, p). Assume now that we have a fixed edge
ending in w. There are nk−1 possible ways to extend this edge to a k-star. Hence,
the size of Sk(c, p) is bounded by O(nk).

To obtain a good time bound, we have to avoid computing k-tangles twice.
The complete procedure is shown below. To state the algorithm, we need one
more definition. Let L be a set of k-stars. Then CP(L) = {S1,S2, . . . ,Sl} is
the partition of L such that for all S, S ′ ∈ Si if and only if S and S ′ are equally
colored.

Procedure 17: step

1: f ≡ f ;
2: foreach c ∈ N do
3: foreach p ∈ {1, 2, . . . , k} do
4: compute k-stars(Sk(c, p));
5: sort Sk(c, p) lexicographically;
6: foreach S ∈ CP(Sk(c, p)) do
7: splitcolor(S);

end
end

end
8: recolor;

Since Sk(c, p) is sorted (in line 5), the computation of CP(Sk(c, p)) is straight-
forward. By using bucketsort, it takes time O(k(n+ |Sk(c, p)|). Since |Sk(c, p)| is
in any case at least as large as n, this is the same as O(k|Sk(c, p)|). Let S(w) =
((v1, w), (v2, w), . . . , (vk, w)) be a k-star at w. The assignment S(w)p := u, u ∈ V
and p ∈ {1, 2, . . . , k}, means that vp in S(w) is replaced by u.

Procedure 18: compute k-stars(Sk(c, p))

1: foreach (u, w) ∈ columns(c) do
2: S(w)p := u;
3: recursion(S(w), p, 1);

end
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Procedure 19: recursion(S(w), p, j)

1: if j = k + 1 then
2: append S(w) to Sk(c, p);

end
3: if j = p then
4: recursion(S(w), p, j + 1);

end
5: if p < j then
6: foreach v ∈ V , f(v, w) 6= c do
7: S(w)j := v;
8: recursion(S(w), p, j + 1);

end
end

9: if p > j then
10: foreach v ∈ V do
11: S(w)j := v;
12: recursion(S(w), p, j + 1);

end
end

From the list Sk(c, p), we are able to compute the remaining k-stars and the
lists Lk(ck) for each ck realized in Sk(c, p) (see Procedure 12).

It is left to show that the structure lists can be computed and sorted in the
required time. The sorting can be done by bucketsort and since we have at most
O(knk log(n)) lists Sk(c, p) and at most O(knk+1 log(n)) k-stars to consider, the
overall sorting time is bounded by O(k2nk+1 log(n)).

Assume that all k-stars in S are equally colored and let ck(S) be this k-
tuple of colors. Now the structure lists Lk(ck(S)) can be computed knowing S.
Apart from a reformulation of the first three lines, 〈splitcolor〉 (Algorithm 20)
stays the same as in Section 3.4 except that it has an overall running time of
O(#k−stars).

Procedure 20: splitcolor(S)
1: Let ck = ck(S);
2: compute Lk(ck));
3: sort Lk(ck) by the values pc

k

vk
;

.

.

.

The k-tuples are stored in an k-dimensional array analogously to the 2-
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dimensional case. But we only need to have the row-wise and column-wise en-
coding of the edges and not of all k-tuples. So Procedure 13 〈recolor〉 can be
adopted.

Summarizing the above discussion, we obtain the following theorem.

Theorem 3.9 Given a colored graph Gf , a canonical coarsest k-stable coloring
of G which is finer than f can be computed in time O(k2nk+1 log(n)) and space
O(knk).

Although this algorithm reduces the memory requirements by a factor of n
compared to the algorithm presented in Chapter 4.1, this algorithm is still not
applicable to large graphs.

Therefore, we suggest another generalization of k-stability. Since storing the
colors of k-tuples is too expensive, we only color the edges but still consider k-
tuples they are contained in. A k-roof vk contains a k-tuple (v1, v2, . . . , vk−1, vk)
of vertices together with all edges going from each vertex to all vertices having
larger index except the edge (v1, vk). v

k is said to cover the edge (v1, vk).

. . .
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Figure 3.3: A k-roof covering (v1, vk)

In the suggested algorithm, one would distinguish edges by the different k-
roofs each edge is covered with. A coloring which is stable with respect to this
algorithm is called loosely k-stable. The algorithm coincides for k ∈ {1, 2} with
1-stab and 2-stab, respectively. This simplified approach reduces the memory
requirements to O(n2) but for k > 2 there is no known implementation which is
efficient in practice (and keeps the space bound of O(n2)).

3.6 Computing the Basis of a Coherent Algebra

To compute the basis of a coherent algebra of a given set of complex n × n
matrices {A1, ..., As}, one has to compute a linear basis first. Afterwards, the
Weisfeiler-Leman algorithm can be applied. Time bounds for this procedure
have been given by S. Friedland [29] with O(sn4 + n10) and I. N. Ponomarenko
[57] O(n3m2 log(nm) + n5 log(n)).

The up to now best time bound has been achieved by L. Babel [5].
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Lemma 3.10 [5] The basis of the linear subspace L (I, J, A1, . . . , As, A
∗
1, . . . , A

∗
s)

can be found in time O(sn2log n).

The proof is done by giving an algorithm which computes the basis of L.
Revisiting the proof in [5] shows that this is done in a space-optimal way, i.e.,
the algorithm needs only O(s · n2) space, which is the space needed for storing
m matrices of dimension n × n. The result can be interpreted as a completely
colored graph and thus might be used as input for the 2-dimensional stabilization
algorithm presented before.

Corollary 3.11 The basis of a coherent algebra generated by A1, A2, . . . , As can
be computed in O((s+ n)n2 log(n)) time and O(s · n2) space.



Chapter 4

Further Aspects

4.1 Another k-dimensional Approach

N. Immerman and E. Lander present in [42] a multidimensional approach to sta-
bilization of graphs which is different from the one presented in Section 3.5.
In [14], the authors refer to it as the k-dimensional Weisfeiler-Leman algo-
rithmWeisfeiler-Leman algorithm!k-dimensional .

As we will see in the following, their and our approach coincide, in the cases
k ∈ {1, 2}, for larger k their approach can yield stronger refinements. They
perform a stabilization procedure in the same way as we do, except that they
define the structure lists in a different way.

In the 1-dimensional case, N. Immerman and E. Lander define their structure
lists as follows:

L
1
(v) := (f(v), {(c, yc, nc) | c ∈ F}), where

yc := |{(v, u) ∈ E | f 1(u) = c}| and
nc := |{(v, w) 6∈ E | f 1(w) = c}|.

These are structure lists which contain some obvious redundant information
(note that n = yc +nc for all c ∈ F). For k ≥ 2, they define the structure lists in
a different way, namely

L
k
(vk) := {f(vk), {l(f, vk, u), u ∈ V },

where

l(f, vk, u) := (f(vk(v1/u)), f(v
k(v2/u)), . . . , f(v

k(vk/u)))

and where for vk = (v1, v2, . . . , vk) and arbitrary vertex u vk(vi/u) denotes the
k-tuple (v1, v2, . . . , vi−1, u, vi+1, . . . , vk).

The algorithm of N. Immerman and E. Lander starts with an initial coloring
similar to ours. They suggest to color each k-tuple according to its isomorphism

49



50 Chapter 4. Further Aspects

type. Starting with a proper coloring as defined in Section 3.5 would work as well
and would be less costly. Here, we call the final coloring found by their algorithm
strongly k-stable.

The authors obtain the complexity result ofO(k2nk+1 log(n)) time andO(knk+1)
space for a canonical algorithm generalizing the results in [41, 1]. We refer to
these algorithms as il(k).

4.2 Relations Between k-dimensional Stabiliza-

tion Algorithms

It is well known that 1-stab computes a coarser vertex coloring than 2-stab.
And in general, (k + 1)-stab computes a finer k-coloring than k-stab. This can
easily be seen by the following argument. If (k + 1)-stab would only consider
(k+1)-tuples of the form (v1, v2, . . . , vk, vk), then it would compute a coloring as
fine as the coloring of k-stab.

We are now going to introduce parts of k-tuples. Consider the operation

vk|i := (v1, v2, . . . , vi−1, vi, vi, vi+2, . . . , vk), i ∈ {1, 2, . . . , k − 1}.

Define PO(vk, 0) := {vk},

PO(vk, p) := {uk | ∃v′k ∈ PO(vk, p− 1)∃i ∈ {1, 2, . . . , k − 1} : uk = v′
k
|i},

and PO(vk) :=
⋃

p∈{1,2,...,dim(vk)} PO(vk, p). PO(vk) is called the set of parts of

vk and uk ∈ PO(vk) is part of vk. If uk is part of vk then there exist i1, i2, . . . , ip,
p ∈ {1, 2, . . . , k}, such that uk = (. . . ((vk|i1)|i2) . . . )|ip. We associate with each

part uk of vk the reduction code of uk with respect to vk

min{(p, (i1, i2, . . . , ip)) | uk = (. . . ((vk|i1)|i2) . . . )|ip}.

Let two l dimensional k-tuples vk and uk be given. Two q-dimensional k-tuples
v′k and u′k, q < l, being part of vk and uk, respectively, are called corresponding
if the reduction codes with respect to vk and uk, respectively, are equal.

Lemma 4.1 Let f be a k-stable coloring of an initially properly colored graph
computed with k-stab. If two k-tuples vk and uk have the same color then two
corresponding k-tuples v′k and u′k being part of vk and uk have the same color.

Proof. From the definition of the initial coloring and the way of recoloring, this
is clear.
The same result holds for il(k) as well.

The best way to see the differences between the algorithms k-stab and il(k)
is to study a picture of the structure values of each of the algorithms. We will
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do so for the case k = 3. Consider an arbitrary triangle v3 depicted in Figure
4.1(a) and an arbitrary vertex u.
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Figure 4.1:

The outer curve illustrates the color of the triangle. While k-stab only con-
siders the stars (Figure 4.1(b)) and thus colors of edges, il(k) uses the colors of
the triangles (Figure 4.1(c)) (u, v2, v3), (v1, u, v3), (v1, v2, u) for the refinement.

Due to the previous theorem (two k-tuples can have the same color only if
corresponding edges included in the triangles have the same colors), the following
result holds.

Theorem 4.2 k-staband il(k) compute equivalent partitions for i ∈ {1, 2} and
il(k) might compute finer partitions than k-stab for k > 2.

It was not possible to find examples were il(k) and k-stabdiffer for k = 3.
Due to the amount of memory needed by il(k), we were able to check graphs for
up to about 50 vertices only.

4.3 Pebbling Games

The games presented here are variants of games introduced by A. Ehrenfeucht[21]
and R. Fraissé [28]. They have been stated in this form in [14]. The authors show
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the equivalence of the second game to the k-dimensional stabilization algorithm
il(k) presented above.

Let G = (V,E) and H = (W,F ) be two graphs, m, k ∈ N, and Pk :=
{p1, p2, . . . pk} be k pairs of pebbles. Define the m-move Pk game to be a 2-player
game on G and H as follows. On each move, Player I chooses an i ∈ {1, 2, . . . , k},
picks up the pair pi and places one of the pebbles belonging to pi on one vertex
of one of the graphs. Player II must then place the other pebble belonging to pi
on a vertex of the other graph. The game starts with all pebbles outside the two
graphs. As we shall see later, a good Player I will in general try to put as many
as possible pebbles onto the graphs. Therefore, after k-moves, if the game has
not already ended, each graph will be covered by k-pebbles.

Define a k-configuration on a pair of graphs G, H to be a pair (v, w) of partial
functions,

g : Pk → V and h : Pk → W

such that the domains are equal. Thus, a k-configuration is a valid position of
the Pk game on G and H in the following sense. If g(pi) = v and h(pi) = w then
one pebble belonging to pi is placed on v ∈ V and the other one is placed on
w ∈ W , and if pi 6∈ domain(g) = domain(h) then the pebbles in pi are not placed
on the board. Define the mapping φ,

φ : image(g) → image(h), g(pi) → h(pi).

Let (gr, hr) be the configuration of the game after move number r. Player
I wins after move r if φ does not define an isomorphism between G(image(gr))
and H(image(hr)). Player I wins the m-move Pk game if he wins after move r,
for some r ∈ {1, 2, . . . , m}. Player II wins if Player I does not win. We say that
Player II has a winning strategy for the Pk game on G and H if, for all m, Player
II has a winning strategy for the m-move Pk game on G and H.

Thus, Player II has a winning strategy if he can always find matching vertices
to preserve the isomorphism. Player I is trying to point out the difference between
the two graphs and Player II is trying to keep them looking the same.

A modification of the Pk game is the Pc
k game. As before, there are two

players and k pairs of pebbles. The difference is that each move has two parts.

1. Player I picks up the pair pi for some i. Then he chooses a set A of vertices
from one of the graphs. Now, Player II answers with a set B of vertices
from the other graph. B must have the same cardinality as A.

2. Player I places one of the pi pebbles on some vertex uB ∈ B and Player II
answers by placing the other pi pebble on some uA ∈ A.

The definition of winning is as before. J.-Y. Cai, M. Fürer, and N. Immerman
[14] have shown that Player II has a winning strategy for the P c

k game on G and
H if G and H have the same set of k-dimensional structure constants with respect
to il(k).
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4.4 k-dimensional Stabilization Does Not Suf-

fice

M. Fürer[30] and J.-Y. Cai, M. Fürer, and N. Immerman [14] showed that there
exist graphs which have equivalent (strongly) k-stable colorings and are not iso-
morphic.

M. Fürer[30] gives an explicit construction of a series of pairs of graphs with
the above property. The graphs are made of the component depicted in Figure
4.2(a).

(a) (b)

(c)

Figure 4.2: The pieces of the graph of M. Fürerand F 1
2

F 1
m consists of 2m2 copies of Figure 4.2(a). We begin with putting 2m copies

side by side to form a band and then putting m copies of this band on top of each
other. The single components are glued together as depicted in Figure 4.2(c)
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for the graph F 1
2 and in Figure 4.3 for the graph F 1

4 . The edges on the right
are identified with the corresponding edges on the left and the edges on top are
identified with the edges at the bottom.

F 2
m is constructed in almost the same way with the difference that at exactly

one arbitrary position in the graph, a parallel pair of edges linking two different
basic graphs is replaced by a pair of crossing edges Figure 4.2(b). In Figure
4.3 this is indicated by dotted lines.

M. Fürer shows that F 1
k and F 2

k are not isomorphic and that il(k) computes
the same set of k-dimensional structure lists for F 1

k and F 2
k .

In [14] J.-Y. Cai, M. Fürer, and N. Immerman give an alternative proof of the
fact that there exists no k ∈ N such that two arbitrary graphs are isomorphic if
and only if they have the same k-dimensional structure constants. The authors
use the interrelation between the functioning of the algorithm il(k), the notion
of expressibility in special first order logic languages and the winning strategies
of pebble games introduced in Section 4.3.

A separator of a graph is a minimal set of vertices such that the graph is
disconnected. The main property of the graphs they need in order to prove the
result is that they have a large separator, which applies to the graphs of M. Fürer
as well.
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Figure 4.3: The graph F 1
4
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4.5 Upper and Lower Bounds on the Number

of Steps

A trivial upper bound on the number of steps for a k-dimensional stabilization
procedure is nk, since the number of colors is bounded by nk and in every step
at least one new color has to be introduced.

For the 1-dimensional case, examples which need Ω(n) steps can be easily
constructed. We consider the path Pn on n nodes. In the first step, only the end
vertices get colors different from the other nodes. In the next step, their neighbors
obtain different colors, but all the others remain in the same color-class. After
dn
2
e steps, the algorithm stops with a 1-stable coloring having dn

2
e colors.

4.5.1 A Lower Bound on the Number of Steps for k = 2

In the 2-dimensional case, it is not easy to determine good bounds. M. Fürer
[31] has contructed a sequence of graphs F s

n for which he could show that the
Weisfeiler-Leman algorithm needs Ω(n) steps to compute a 2-stable coloring. His
graphs consists of several copies of the simple basic graph depicted in Figure
4.4 which are glued together as shown in Figure 4.5(a)-(c).

Figure 4.4: The component of which F s
n is made of

In Table 4.1 the number of steps needed to obtain a 2-stable coloring for F s
n

for small n and the computing times of qWeil on these instances are displayed.
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(a) Fs
1 (b) Fs

2

(c) Fs
4

Figure 4.5: Some instances F s
n
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Vertices Steps time

20 3 0
40 4 0.05
60 4 0.16
80 5 0.4
100 6 0.67
120 6 1.24
140 6 1.94
160 8 2.74
180 8 4.11
200 10 5.77

Vertices Steps time

240 12 10.77
280 13 18.85
320 15 29.34
360 17 43.62
400 19 56.05
440 24 68.59
480 26 93.79
520 28 117.83
560 30 158.81
600 32 198.32

Table 4.1: The number of steps needed to obtain a 2-stable coloring for F s
n

4.6 Classical Invariants

In this section, we discuss two important invariants and their relations to k-
dimensional stabilization procedures.

4.6.1 The Spectrum

As mentioned before, the adjacency matrix A(G) of a graph G is not an invariant.
However, the determinant |A(G) − λI| is not altered if the graph is relabeled
(which is nothing but permuting the rows and columns of A(G) in the same
way), and hence is a graph invariant. Thus, the characteristic equation of A(G)
is also a graph invariant, so is the set of its roots (i.e., the spectrum of the graph).

Two graphs are cospectral if they have the same characteristic polynomial.
Certainly, the cospectrality does not completely determine the isomorphism type
of a graph. This was first pointed out by L. Collatz and U. Sinogowitz [16], by
exhibiting two non-isomorphic cospectral trees (see [34, 36]).

The two graphs depicted in Figure 4.6 have the same characteristic polyno-
mial, namely

4λ− 2λ2 − 22λ3 + 25λ5 − 9λ7 + λ9
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(a) (b)

Figure 4.6: Two cospectral trees

Although the spectrum is frequently used in many algorithms for detecting
the isomorphism type of graphs, it should be stressed that it is less meaningful
than the set of 2-dimensional structure constants. In the above case even the
structure constants of 1-dimensional stabilization suffice to fix the isomorphism
type of the graphs.

In contrast to the 2-dimensional case, the set of structure constants of 1-
dimensional stabilization is in general not a stronger invariant than the charac-
teristic polynomial. Consider for example the graph G consisting of 2 cycles of
length three and the graph G′ being the cycle of length 6. For these graphs the
set of 1-dimensional structure constants reduces to a single number, the degree
of regularity, which is the same for both graphs, but they are not cospectral.

4.6.2 The Powers of the Adjacency Matrix

Other frequently used invariants are derived from the powers A(G)k of the ad-
jacency matrix A(G) of the colored graph G. It is well known, that the en-
try A(G)kij denotes the number of (not necessarily simple) paths of lengths k
from vi to vj in G. Let P = (v0, v1, . . . , vl) be a path in G. Then we define
γ(P ) := (f(v0, v1), f(v1, v2), . . . , f(vk−1, vk)) and the multi-set

P l(u, v) := {γ(P ) | P is a colored path of length l from u to v}.

Further define the set of multi-sets

P(u,v) := {P l(u, v) | l > 0}.

An invariant of G is given by Lp(G) := {P(u,v) | u, v ∈ V }. We will see that a
edge partition based on P(u,v) is coarser than a 2-stable partition.

Theorem 4.3 [73] Let f be a 2-stable coloring of G. If f(u, v) = f(u′, v′) then
P l(u, v) = P l(u′, v′) for all l ≥ 1.
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Proof. The proof is by induction on l. For l = 1 there is nothing to prove
and for l = 2 this is just the definition of 2-stable colorings. Let us assume that

∀u, v, u′, v′ ∈ V : f(u, v) = f(u′, v′) ⇒ P l−1(u, v) = P l−1(u′, v′).

Let
multi⋃

denote the union of multi-sets. Consider now

P l(u, v) =
multi⋃

w∈V

{(cl−1, f(w, v)) | cl−1 ∈ P l−1(u, w)}.

By hypothesis, each of the multi-sets P l−1(u, w) depends only on the color of
(u, w). Thus,

P l(u, v) = P l(u′, v′) ⇔
⋃

w∈V

{(f(u, w), f(w, v))} =
⋃

w′∈V

{(f(u′, w′), f(w′, v′))}.

The right part of the condition is just the definition of a 2-stable coloring.

Let div be the number of vertices with distance i from v in a graph G. Define
Ldist(v) := {(i, div)|div 6= 0}. Use these lists to color the vertex set in the usual
way. The resulting coloring is called path stable.

Corollary 4.4 Every 2-stable coloring of G is path stable.

Proof. This is clear due to Theorem 4.3.

It is possible to generalize this approach by partitioning not only by the total
number of vertices having certain distances but by the numbers of vertices of
different colors at certain distances. Let div(c) denote the number of vertices with
color c at distance i from v in G.

Define Ldist(v, c) := {(i, c, div(c))|div(c) 6= 0}. This list can be used in Algo-
rithm 1 instead of the former lists. We call the final coloring produced in this
way totally path stable. Obviously, the total path partition is at least as fine as
the total degree partition, since 1-stab only considers vertices with distance one
and their colors.

But obviously the following corollary of Theorem 4.3 still holds.

Corollary 4.5 Every 2-stable coloring of G is totally path stable.

4.7 Pointed Graphs

The idea presented in this section is to improve the results of a stabilization
procedure by starting with a certain finer initial coloring. This is done by first
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constructing slightly altered graphs, applying a stabilization procedure to these
graphs and then deducing an initial coloring from the results. One common way
of alteration is to choose a vertex and to label it with a specific new color. Af-
terwards, the stabilization procedure is applied to this new colored graph. By
comparing the results (structure constants) for different vertices the vertex set
might be refined. Similarly, not only a single vertex but several vertices or edges
might be labeled with new colors at a time. This idea was first introduced by
B. J. Weisfeiler and A. A. Leman [73] and D. G. Corneil and C. C. Gotlieb
[19]. A more general approach has been studied by S. Evdokimov, M. Karpin-
ski and I. N. Ponomarenko [23] and has been elaborated by S. Evdokimov and
I. N. Ponomarenko [24, 25].

To alter a colored graph Gf = (V,E, f) in the described way, we define Gfv

as follows. Let Gfv := (V,E, fv) and define fv as

fv(u) := f(u) ∀u 6= v, and

fv(v) := rf + 1.

The process of replacing f by fv will be denoted as pointing f at v.
Let Lfk(G) be the set of structure constants computed by the stabilization

procedure under consideration.
Now, an improved algorithm can be described as follows.

Algorithm 21: pointed(k-stab,1)

foreach v ∈ V do
compute Lfk(Gfv);

end
〈recolor〉, i.e.,
f(u) = f(v) :⇔ f(u) = f(v) and Lfk(Gfu) = Lfk(Gfv), u, v ∈ V ;
perform k-stab on this colored graph;

Algorithm 21 does the following. Given a graph Gf = (V,E, f), for each
v ∈ V it computes Gfv , applies k-stab toGfv and collects the invariants Lfk(Gfv).
Afterwards it recolors G according to Lfk(Gfv) and applies k-stab once more to
this intermediate coloring.

D. G. Corneil and C. C. Gotlieb [19] use this approach for the case k = 1 and
an initial 1-stable coloring f .

For the following considerations, we need an auxiliary definition. A stabi-
lization procedure is called non-switching if a color remains the same when its
color-class is not split. W.l.o.g. we may assume that the stabilization proce-
dures k-stab work in a non-switching mode and that the resulting colorings are
canonical.

Let us take a look at the relations between the algorithms pointed(k-stab,1)
and (k + 1)-stab. Assume that we want to show that pointed(k-stab,1) is
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weaker than k′-stab, k′ > k. Let Gf be a given colored graph. We start with a
k′-stable coloring of Gf and use it to construct a k-stable coloring of Gfv .

First, we compare the cases pointed(1-stab,1) and 2-stab. Let f 2 be the
coarsest 2-stable coloring of Gf and define

fv
2→1(u) := f 2(v, u), u ∈ V.

Note that in the coloring fv
2→1 the color of v is not used for any other vertex,

since f 2 is a proper coloring.
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Figure 4.7: Two vertices with the same color (cyan) with respect to f 2→1
v and

with equally colored neighbors (blue, brown and magenta).

Lemma 4.6 f 2→1
v defines a 1-stable coloring on G.

Proof. Since v is a color-class in f 2→1
v , the coloring is 1-stable with respect

to v. Consider two equally colored vertices u and w, i.e., f 2→1
v (u) = f 2→1

v (w).
We have to show that L1

f2→1
v

(u) = L1
f2→1
v

(w). Due to the definition of f 2→1
v ,

f 2(v, u) = f 2(v, w) holds such that (v, u) and (v, w) have the same structure lists
with respect to f 2→1

v . By inspection of these lists, we see that u and w have the
same structure lists with respect to f 2→1

v .

Lemma 4.7 The vertex partition induced by {Lf1
v
(Gfv) | v ∈ V } is coarser than

the one induced by {Lf2→1
v

(Gf) | v ∈ V }.
Proof. Let f 1

v be the coloring computed by 1-stab for Gfv . Recall that f 1

is the coarsest 1-stable coloring of Gfv and that the colorings f 2→1
v are 1-stable

on Gfv for all v ∈ V . Since f 1
v is the coarsest 1-stable partition of Gfv , and

f 2→1
v is 1-stable and therefore at least as fine as f 1

v , the partition induced by
{Lf1

v
(Gfv) | v ∈ V } coarser than the one induced by {Lf2→1(v) | v ∈ V }.
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Theorem 4.8 The vertex partition computed by pointed(1-stab,1) is coarser
than the one induced by 2-stab.

Proof. This is evident due to the previous lemma.

This result has been known before (see [68]) but no simple strictly graph
theoretical proof can be found in the literature.

4.8 Coarsest Non-Trivial k-stable Partitions

An interesting question asked by M. E. Muzychuk [53] is whether every regular
graph G has a coarsest non-trivial 1-stable partition and if yes, how to compute
it. The question may be asked for higher dimensional cases as well.

The easiest case seems to be to decide whether a given graph has a 1-stable
coloring with 2 colors only. Even for this case we were neither able to give a
polynomial time algorithm nor to prove NP-completeness.

4.9 Cayley Graphs

L. Babel [5] showed that coherent colorings of Cayley graphs can be computed
considerably faster than for general graphs.

Let G be a group, H⊆ G with identity 1 6∈ H. The Cayley graph G(G,H) is
defined to be the graph with vertex set G and edge set E = {(g, h) : g−1h ∈ H}.

Theorem 4.9 [5] The coarsest 2-stabel coloring of a Cayley graph G can be
computed in time O(n2log n).
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Chapter 5

Applications

5.1 Robinson Graphs

In this section, we briefly describe the notion of landscapes which was coined in
recent publications of evolutionary biology [67, 69]. Afterwards, we investigate
the structure of special graphs, namely Robinson graphs, which are useful in this
context.

5.1.1 Landscapes

Graphs the vertices of which have an interior structure are often called config-
uration graphs. A landscape is a pair (G, w) of a configuration graph G and a
function w : V −→ R defined on the vertex set V of G. Due to applications in
biology, w is called fitness function. Landscapes are useful mathematical models
for studying functions on a discrete set V, the elements of which are structured
objects. The configuration graph models a neighborhood relation on V , which
defines how one is able to move within V. Landscapes have a wide spectrum of
applications.

Consider for example the Traveling Salesman Problem on a complete graph
G. In this case, V is the set of all tours in G and w(T ), T ∈ V, is simply the
length of T . The neighborhood of a tour T could be defined as the set of all tours
which emerge from T by exchanging two adjacent cities. Of course, also more
sophisticated neighborhoods can be defined and various local search procedures
can be modeled by a configuration graph.

Landscapes can be described by their autocorrelation functions which are
defined in terms of random walks on G and can be investigated by either using
the eigenvalues and eigenspaces of G or via equitable partitions derived from its
coherent algebra. See [68] for details.

In Section 2.2.1, we described how the eigenvalues of a graph G can be ex-
pressed in terms of the eigenvalues of graphs arising from pointed equitable par-
titions of G. As seen before in Section 4.7 equitable partitions fv can be derived

65
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from the coherent algebra of a graph very easily. Hence, the knowledge of the
coherent algebra is of interest in this context as well.

5.1.2 Genetic Trees

The configuration graphs examined here were introduced by D. F. Robinson[59].
These graphs are of interest because the reconstruction of phylogenies can be
modeled as an optimization problem on such graphs. A suitable way to state the
problem is via defining a landscape, see [11] for details.

Although we are in general not able to determine the coherent algebra induced
by a graph of so huge a size, we are at least able to determine the cell partition
(see 2.2.1) of the coherent algebra of Robinson graphs, which is an important
equitable partition.

Let T be a tree. A leaf of T is a vertex v of degree 1. All other vertices are
called inner vertices. Edges joining inner vertices are called inner edges. A tree
is called genetic if all its inner vertices have degree 3 and its leaves are colored
with the colors 1, 2, . . . , n, whereas all inner vertices are uncolored.
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Figure 5.1: A genetic tree T (a) and its inner tree T ◦ (b)

The set of genetic trees with n leaves will be denoted by Tn. A member of Tn

has 2n− 3 edges and n− 2 inner vertices [59]. The inner tree T ◦ of a genetic tree
T is the subtree of T induced by the inner vertices of T . Two genetic trees are
considered equal if and only if they are isomorphic as leaf colored trees. Observe
that equal trees have isomorphic inner trees.

In Figure 5.2 the inner trees in Tn for n up to 8 are depicted.
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Figure 5.2: Inner trees of genetic trees

An inner vertex is called s-vertex if its degree with respect to the inner tree
T ◦ is s. The number of s-vertices will be denoted by ns, s = 1, 2, 3. We call an
edge of the inner tree an (s : t)-edge if the end vertices of the edge are an s- and
a t-vertex.

In many considerations, the coloring of the leaves is of no matter. In such
cases, it is usually not mentioned.

With every inner edge [u, v] of a genetic tree T , we associate four subtrees
A,B,C,D as indicated in Figure 5.3(a). The subtrees A,B,C,D are the four
connected components which are obtained when deleting the edge [u, v] and the
vertices u and v from T . Note that each of these subgraphs may consist of a
single vertex only.

Definition 5.1 The operations indicated in Figure 5.3(b) and (c) are called
p(arallel)-crossover and d(iagonal)-crossover of T (on the inner edge [u, v]).
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Figure 5.3: Crossovers

The type of the crossover is not a graph theoretical property. It depends on
the drawing or the current ordering of the edges adjacent to some vertex. It is
only introduced to simplify the argumentation at certain points.

A crossover on [u, v] is called (s : t)-crossover if [u, v] is an (s : t)-edge. We say
that two trees are of the same type if and only if their inner trees are isomorphic.

Definition 5.2 The configuration graph (Robinson graph) Γn has vertex set Tn

and two trees T, T ′ are adjacent in Γn if and only if there exists an inner edge
e ∈ T such that T ′ results from T by a crossover on e. The vertices of Γn are
called the trees of Γn.

Observe that Γ3 consists of 1 vertex only and that Γ4 is the complete graph
on 3 vertices.

Remark 5.3 The configuration graph Γn has
∏n−3

i=0 (2i+ 1) vertices. It is (2n−
6)-regular and the number of trees with distance two from a given tree equals
2n2 − 10n + 4n1, i.e., it depends only on n and the number of 1-vertices of the
inner tree. Furthermore, the numbers n2 and n3 depend only on n and n1 in a
simple way, namely n2 = n1 − 2 and n3 = n− 2n1. Proofs for these observations
can be found in [59].
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5.1.3 The Cell Partition of Γn

Remember that by definition the coherent configuration AΓn generated by the
graph Γn is the partition of Tn×Tn associated with the coarsest 2-stable coloring
Γn starting with fint. This partition contains a partition of Tn, the cell partition
CΓn of Γn. In the following, we are going to determine the cell partition CΓn by
analyzing the structure of a 2-stable coloring of Γn.

Let {T̃k | 1 ≤ k ≤ K} denote the set of pairwise non-isomorphic inner trees
with n − 2 vertices. Let [T̃k] denote the set of genetic trees with inner tree
isomorphic to T̃k. Elements of [T̃k] differ only by the coloring of their leaves.
Obviously, Cn := {[T̃k] | 1 ≤ k ≤ K} is a partition of Tn as well.

Definition 5.4 Let π be an arbitrary permutation of {1, 2, . . . , n}. For a genetic
tree T ∈ Tn define the tree π(T ) by replacing the colors 1, 2, . . . , n on the leaves
of T by the colors π(1), π(2), . . . , π(n), respectively.

Let

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 3 9 2 15 8 11 14 6 13 5 7 12 10 1

)

and consider T as defined in Figure 5.1. The genetic tree π(T ) is depicted in
Figure 5.4.
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Figure 5.4: π(T )

Lemma 5.5 The partition Cn is at least as fine as the cell partition CΓn .

Proof. Let π be an arbitrary permutation of {1, 2, . . . , n}. This permutation
preserves the partition Cn, i.e., π([T̃k]) = [T̃k], 1 ≤ k ≤ K. Furthermore, if T ′ is a
neighbor of T due to a crossover on an inner edge [u, v], then π(T ′) is a neighbor
of π(T ) due to the same crossover. Hence, π induces an automorphism of Γn.
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Since for any two trees T, T ′ ∈ [T̃k], there is a π such that π(T ) = T ′, we obtain
that Cn is at least as fine as the automorphism partition of Γn. Now, the claim
follows by the fact that the cell partition of a graph is always coarser than its
automorphism partition.

Lemma 5.5 shows that all genetic trees in Γn having isomorphic inner trees
belong to the same cell of CΓn . In the following, we want to prove that the other
direction is true as well. In other words: trees contained in the same cell have
isomorphic inner trees, and thus, Cn, the automorphism partition of Γn, and the
cell partition of AΓn coincide. To prove this, we show that two trees having
non-isomorphic inner trees lie in different cells of CΓn .

Let U be a cellular set (a union of cells) of AΓn . In the discussion which
follows, we use the obvious fact that two vertices having a different number of
neighbors in U , cannot belong to the same cell of CΓn .

We will start by showing that the sets defined in Definition 5.6 are cellular
sets of AΓn.

Definition 5.6 Let T nk
n (i), 1 ≤ k ≤ 3, be the subset of Tn in which each element

has i k-vertices and T dm
n (i) the subset of Tn in which each element has diameter

i.

As mentioned above in Remark 5.3, the number of trees with distance 2 from
a tree T ∈ Tn depends only on n and the number of 1-vertices. Due to Lemma
4.4, the following lemma holds.

Lemma 5.7 The trees in a given cell of CΓn have the same number of 1-vertices
(n1 is constant on each cell).

Immediately, we get:

Lemma 5.8 The trees in a given cell of CΓn have the same number of 2-vertices
and the same number of 3-vertices.

Proof. Since n2 = n− 2n1 and n3 = n1 − 2, the claim holds.

Using the Lemmas 5.7 and 5.8, we conclude:

Lemma 5.9 Each T nk
n (i), 1 ≤ k ≤ 3, defines a cellular set.

We now examine crossovers and their potential to change the diameter, i.e.,
we examine how the diameter of the resulting tree differs from the diameter of
the tree we start with.

Consider the tree T of Figure 5.3 again. Define lA and lB to be the length
of a longest path from u to a leaf of A and B, respectively, and lC and lD to be
the length of a longest path from v to a leaf of C and D, respectively.
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Lemma 5.10 The diameters of a tree T and a tree T ′ which is obtained by a
crossover on some inner edge of T can differ by at most one.

Proof. Assume without loss of generality that lA ≥ lC , lA ≥ lB, and lC ≥ lD.
This situation can always be met by properly renaming the different parts of T .

The diameter of T is

max{lA + lB, lA + 1 + lC}.

Consider now the trees Tp and Td which are the result of a p- and d-crossover,
respectively, of T on [u, v]. The diameters have the following values:

diam(Tp) =max{lA + 1 + lB, lA + 1 + lC} and

diam(Td) =max{lA + 1 + lB, lA + 1 + lD, lA + lC}.

The p-crossover leaves the diameter untouched or enlarges it by at most one.
Since lA + lD ≤ lA + lC , diam(Td) is at most diam(T ) + 1 and at least lA + lC
which is as least as large as diam(T )− 1.

An edge is incident with a path P if exactly one of the end vertices of the
edge lies on the path. A path P = (v1, v2, . . . vk) in a tree T , consisting of inner
vertices only, is a longest inner path if and only if k = diam(T ) − 1. As an
immediate consequence of Lemma 5.10, we obtain the following lemma.

Lemma 5.11 A tree with a larger diameter is obtained if and only if a crossover
is performed on an edge incident with a longest inner path.

Proof. Recall the situation in the proof above. Consider the case where
diam(Tp) = diam(T ) + 1. By simply analyzing the formulas for diam(Tp) and
diam(T ), we see that this happens if and only if there is a longest inner path in
T starting in A and ending in B. [u, v] is incident to this path.

Now, assume that diam(Td) = diam(T )+1. This is true if and only if there is
a longest inner path in T starting in A and ending in B. Again, [u, v] is incident
to this path.

Lemma 5.12 The only way to obtain a tree with a smaller diameter by a crossover
is to perform the crossover on an edge which is part of all longest inner paths.

Proof. Revisit the proof of Lemma 5.10 again. The only possibility for
reducing the diameter by a crossover on [u, v] is that all longest inner paths in T
go from leaves in A to leaves in C.
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We are now able to prove that all trees with equal diameter define a cellular
set of AΓn . First, we will have a closer look at the trees of Γn having largest
diameter. The inner trees with the largest diameter, namely n − 3, are those
isomorphic to the path on n − 2 vertices. Note that the diameter of the inner
tree T ◦ of a tree T is exactly diam(T )− 2.

Lemma 5.13 T n1
n (2) = T dm

n (n− 1) is a cell of CΓn .

Proof. T n1
n (2) is the set of trees whose inner trees are isomorphic to the path

on n−2 vertices. Due to Lemma 5.5 and Lemma 5.7, T n1
n (2) is a cell of CΓn .

Lemma 5.14 All trees in a cell of CΓn have equal diameter. Thus, T dm
n (i) is a

cellular set for all i.

Proof. The proof is by downward induction on the diameter of the trees.
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Figure 5.5: T ◦ and the inner trees of the neighbors of T which result from
crossovers on [vi, u]

We have shown already that T n1
n (2) is a cell of CΓn . Assume that two trees

with different diameters greater than d lie in different cells of CΓn .
Let T be a tree with diameter d < n− 1. We will show that T has neighbors

with diameter d+1. Observe that due to Lemma 5.10, the diameter can increase
by at most 1 after executing one crossover and thus, trees with diameter d are
the only candidates for having neighbors with diameter d+ 1.
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Since T 6∈ T n1
n (2), each longest inner path contains at least one 3-vertex. Let

(v1, . . . , vi−1, vi, vi+1, . . . , vd−1) be such a longest inner path, vi a 3-vertex, and de-
note the third neighbor of vi by u (see Figure 5.5(a)). Applying the two possible
crossovers on the edge [vi, u] results in two trees with diameter d+1 (see Figure
5.5(b),(c)), realized by a new longest path P ′ = (v1, v2, . . . vi, u, vi+1, . . . , vd−1).

Hence, T has neighbors with diameter d+1. This completes the proof.

Consider some longest inner path P = (v1, v2, . . . vd−1) in an inner tree T ◦. As-
sume that the 3-vertices on P are {vt1 , vt2 , . . . , vtk} with dist(v1, vti) < dist(v1, vtj ),
∀i < j, holds. Let ui, i ∈ {1, 2, . . . , k}, be the vertex not on P which is adjacent
to vti . If we perform both crossovers on [vti , ui], a d-crossover and a p-crossover,
we obtain two different trees. Observe that although the inner trees might be
isomorphic, the resulting trees are different since they differ by the coloring of
their leaves.

We will now, for each tree, identify “largest” neighbors among all neighbors
with greater diameter. For this aim we are going to introduce an appropriate
code for genetic trees. This task requires some preliminaries.

First, define the code cv(T ) of a tree and an inner vertex v of this tree as the
pair consisting of the length of a longest inner path from v to a leaf of T and
of some complete invariant of T , for example the norm-code of T (see Section
5.2.1). We assume that codes can be compared lexicographically.

Next, define a function cT (P ) on the set of inner paths P of a tree T . Let
P = (v1, v2, . . . vl) be an inner path between two 1-vertices v1 and vl. Assume
that the vertices {vt1 , vt2 , . . . , vtk} are the 3-vertices on P . The subtree attached
to vtj is denoted by Υj, and we assume dist(v1, vtj ) < dist(v1, vtj′ ) if j < j ′.
Furthermore, each Υj consists of a node uj adjacent to vtj , and the two subtrees
Aj and Bj adjacent to uj. The vertices in Aj and Bj adjacent to uj are denoted
by aj and bj, respectively. The situation is depicted in Figure 5.6.
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Figure 5.6: The path P in T ◦ and the subtree Υj.

Let w.l.o.g. caj (Aj) ≥ cbj(Bj). Define

cT (P ) := (l, ((dist(vtj , vk), caj (Aj), cbj (Bj)) | j ∈ {k, k − 1, . . . , 1})).
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Now we are able to introduce a suitable code for our trees. Define

c(T ) = max
P∈P(T )

{cP (T )},

where

P(T ) := {P | P is an inner path in T}
and where by “max” we mean the lexicographically largest value. We say that P
is responsible for the code of T if c(T ) = cT (P ). Observe that if P is responsible
for the code then it is a longest inner path in T . Obviously, given c(T ), we are
able to reconstruct T in a unique way. A tree T is larger than another tree T ′ if
c(T ) is lexicographically larger than c(T ′).

Now we examine the situation with respect to the number of 3-vertices in
more detail.

Lemma 5.15 A (3 : 3)-crossover and a (3 : 2)-crossover leave the number of
3-vertices unchanged whereas a (3 : 1)-crossover reduces the number of 3-vertices
by one.

Proof. This is easy to verify. In Figure 5.7(a), [u, v] is a (3 : 1)-edge and the
results of the two possible crossovers are shown in Figure 5.7(b) and (c).
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Figure 5.7: A tree and the two possible crossovers on a (3 : 1)-edge [u, v]
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Figure 5.8: A tree and the two possible crossovers on a (3 : 2)-edge [u, v]

The edge [u, v] becomes a (2 : 2)-edge. Note that the resulting inner trees are
isomorphic.

In Figure 5.8(a), [u, v] is a (3 : 2)-edge and the results of the two possible
crossovers are shown in Figure 5.8(b) and (c). The edge [u, v] remains a (3 : 2)-
edge.

Obviously, a (3 : 3)-edge remains a (3 : 3)-edge.

A neighbor of a tree is called longer neighbor if it has a larger diameter. A
tree is called an s-path if its inner tree is a caterpillar with s legs, i.e., is composed
of a longest inner path Q with s inner edges incident to it. Q is not necessarily
unique. However, we assume that given an s-path, one of the possible longest
inner paths is selected as Q.
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Figure 5.9: The inner tree of a 3-path with two choices for Q

We first consider the set of all 1-paths and the set of all 2-paths, respectively,
and show that they form cellular sets ofAΓn . Afterwards, we turn to more general
trees.
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Let Q = (v1, v2, . . . , vd−1) be the selected longest inner path of an s-path, vi
the first and vj the last 3-vertex on Q. Thus Q is the concatenation of three
subpath Q1, Q2, Q3, where Q1 connects the 1-vertex v1 to the first 3-vertex vi,
Q3 connects the last 3-vertex vj to the 1-vertex vd−1. All other vertices of Q1 and
Q3, if any, are 2-vertices. The subpaths Q1 and Q3 are called the tails of Q of
length i− 1 and d− 1− j, respectively.

Lemma 5.16 The 1-paths build a cellular set and are distinguished in AΓn if
they have non-isomorphic inner trees.

Proof. The 1-paths build a cellular set since they are the only trees with
diameter n− 2 and one 3-vertex and the intersection T n3

n (1)∩ T dm
n (n− 2) of two

cellular sets is obviously a cellular set.
The inner tree of a 1-path with only one tail having length greater than one

is isomorphic to the graph depicted below.

. . .
PSfrag replacements

Trees having this inner tree are distinguished from the other 1-paths since
they are the only ones having four neighbors in T dm(n − 1). All other 1-trees
have only two such neighbors.

Assume now that the trees in question have two tails of lengths l1 and l2, and
that w.l.o.g. l1 ≤ l2 and l1 ≤ d−1

2
holds.

The proof is by induction on l1. The proof for l1 = 1 just has been given.
Assume that the 1-paths with l1 less than l are distinguished if they have non-
isomorphic inner trees.

Consider now trees with l1 = l. They are the only ones with l1 ≥ l which have
neighbors having a shortest tail of length l − 1. This completes the proof.

Lemma 5.17 The 2-paths build a cellular set and will be distinguished in AΓn if
they have non-isomorphic inner trees.

Proof. The 2-paths build a cellular set since they are the only trees with
diameter n−3 and two 3-vertices, i.e., the only trees in T n3

n (2)∩T dm
n (n−3). We

define l1 and l2 as before.
The only 2-paths which have eight longer neighbors, which obviously are 1-

paths, are trees the inner tree of which is isomorphic to the one depicted below
(l1 = l2 = 1).

. . .
PSfrag replacements
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The length l1 of the shortest tail of a 2-path T is determined by the code
c(T ′) of its largest neighbor T ′, which is a 1-path. By Lemma 5.16, 2-paths with
different values of l1 belong to different cells.

The remaining part of the proof is by induction on l1 + l2. The case when
l1 + l2 = 2 has been considered already. The 2-paths with l1 + l2 ≥ l having
neighbors where the sum of the tails is shorter than l are graphs with l1 + l2 = l.

So far, we have proven that trees the inner trees of which are caterpillars with
at most two legs, belong to the same cell of CΓn if and only if their inner trees
are isomorphic.

Now, we treat more general classes of trees. Let T have diameter d. Assume
that there exist neighbors of T having greater diameter than T . Let Tl be a
largest (with respect to the code) neighbor among those neighbors. Assume that
the crossover on T to obtain Tl has been performed on [vi, u]. Since the diameter
of Tl is greater than the diameter of T , each longest path in Tl must contain
the edge [vi, u]. Let Pl = (v1, v2, . . . , vi−1, u, vi, vi+1, . . . , vd−1) be an inner path
responsible for the code of Tl. Then P = (v1, v2, . . . , vi, vi+1, . . . , vd−1) is a longest
inner path in T . Obviously, vi is the rightmost 3-vertex of P . Otherwise, Pl could
not be a largest neighbor.

Lemma 5.18 If the number of 3-vertices of T and Tl (as defined above) is equal,
then T ◦ is determined by T ◦

l .

Proof. If T and Tl have the same number of 3-vertices, then the edge [vi, u] on
which the crossover is performed is either a (3 : 3)- or a (3 : 2)-edge.

If [vi, u] is a (3 : 3)-edge, then subtrees isomorphic to A or B are attached to
the rightmost 3-vertices (see Figure 5.10), namely u and vi, on all paths in P ′

l

responsible for c(Tl).

If the crossover has been performed on a (3 : 2)-edge, i.e., if in Figure 5.10
B is a single vertex, then a subtree isomorphic to A is attached to the rightmost
3-vertex on all longest paths responsible for the code c(Tl).

In both cases, the edge on which the crossover from T to Tl has been per-
formed, is determined, namely the rightmost (3 : 3)-edge or (2 : 3)-edge, respec-
tively, on a path responsible for the code c(Tl).
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Figure 5.10:

Therefore, we are able to reconstruct T ◦ by only considering T ◦
l .

Note that for finding a responsible path P , we need the whole tree rather than
T ◦ only, however, the coloring of the leaves in T is of no matter. Thus, what we
need is the isomorphism class of T which is uniquely defined by T ◦.

Now, let us consider the case where the largest neighbor Tl of T has fewer
3-vertices than T , i.e., the crossover leading from T to Tl is performed on a
(3 : 1)-edge.

If this happens then clearly T ◦ looks like in Figure 5.11(a) and T ◦
l like

in Figure 5.11(b) where the path Pl = (v1, v2, . . . vtk−1, uk−1, vtk , . . . , vd−1) is
responsible for the code of Tl. The 3-vertices of this path are {vt1 , vt2 , . . . , vtk−1}.

Consider now Txl, the largest neighbor of Tl. It is clear that the crossover
transforming Tl into Txl has been made on the rightmost 3-vertex of Pl, namely
vtk−1

. This is because all paths in Tl which are responsible for the code contain
the path from vtk−1

to vd−1, since this is the only part of Tl where the length of
a path has been increased with respect to T .
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For the same reason, this path is the right tail of all largest paths in Tl. It
cannot be the left tail, since dist(vd−1, vtk−1

) > dist(v1, vt1).

There is exactly one other path in Γn of length 2 from T to Txl (by reversing
the order of the two crossovers). Denote the tree on this path by Tx. Obviously,
Txl only exists if there are at least two 3-vertices on P . The situation is depicted
in Figure 5.11.

Lemma 5.19 If all largest neighbors of T have less 3-vertices than T , T ◦ is
determined by T ◦

l and T ◦
xl.

Proof. As we have seen, there is the unique tree Tx. Since Tl has less 3-vertices
than T , Υk has only one inner vertex, namely uk (see Figure 5.6). Observe that
T ◦ is determined up to the position of vtk by T ◦

l .

Assume now that there are either at least two 3-vertices on Pl or a subtree
Υj, j < k, has more than one inner vertex. Otherwise, the tree T would be a
caterpillar with at most 2 legs, for which the result is already clear due to Lemma
5.16 and Lemma 5.17.

Let Px be a path in Tx responsible for the code c(Tx). Since the distance from
the beginning of Px to the first 3-vertex in Px and of the rightmost 3-vertex on
Px are exactly as in P , a path responsible for the code c(T ), the position of vtk
is determined by T ◦

x .

Theorem 5.20 Each [T̃k] defines a cell of CΓn .

Proof. The proof is done by a similar induction as in Lemma 5.14. From Lemma
5.13 we know that T dm(n − 1) defines a cell. In fact, we even have proved that
the sets [T̃k] are cells if T̃k is a 1-path or a 2-path. This result has already been
used in the proof of Lemma 5.19.

Assume that the trees with diameter larger than d lying in one cell have
isomorphic inner trees. Consider a tree T with diameter d. As we have seen
before, T ◦ can be determined by considering only the inner trees of some longer
trees with distance one or two of T . To be more precise, let us consider the
situation in Γn as depicted in Figure 5.12.

If a largest neighbor of T has the same number of 3-vertices as T (and thus
all largest neighbors have this property), then T ◦ is determined only by T ◦

l (see
Lemma 5.18). Since by induction hypothesis the set [T ◦

l ] is a cell, trees having
a largest neighbor not in [T ◦

l ] are distinguished from T . Hence, trees having a
largest neighbor with the same number of 3-vertices lie in different cells of CΓn if
and only if their inner trees are isomorphic.
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The case where all largest neighbors of T have less 3-vertices than T is more
involved. As proved before, we need to consider T ◦

x together with T ◦
l to determine

T ◦ (see Lemma 5.19). In AΓn , the color of the edge (T, Txl) represents the set
of colored paths from T to Txl (see Theorem 4.3). Hence, the color of (T, Txl)
depends on the colors of Tl and Tx as well. Thus, T ◦ is determined by the color
of the edge (T, Txl) in AΓn .

Therefore, all trees with diameter d lie in the same cell only if they have iso-
morphic inner trees.

5.1.4 Eigenvalues of the Laplacian of the Robinson Graph

Consider Γn. We were able to compute the pointed 1-stable partition for one
representative vertex of each cell in Γn for n up to nine in reasonable time (see
Table 5.1). qStab would be able to compute the pointed 1-stable partitions for
larger instances of Γn but we are currently not able to create instances for n > 9.1

Using these results, we were able to compute the eigenvalues of the Robin-
son graphs for n up to 8 very quickly. For details on the methods we used for
computing the eigenvalues and the computation times compared to a brute force
approach, see the joint paper of O. Bastert, D. Rockmore, P. F. Stadler, and
G. Tinhofer [11].

1See Section 6.1.2 for further computational results of qStab and Section 6.1.1 for some
notes on the programs we used.
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Vertex Number of Time in secs
n |Tn| pointed cells qStab nauty

4 3 0 2 0.00 0.00

5 15 0 4 0.00 0.00

6 105 2 8 0.00 0.00
6 105 0 23 0.00 0.00

7 945 2 90 0.01 0.07
7 945 0 153 0.02 0.12

8 10395 277 158 0.23 17.61
8 10395 5979 880 0.24 99.29
8 10395 3663 888 0.26 100.66
8 10395 10371 1606 0.25 182.36

9 135135 15813 1534 5.31 -
9 135135 60357 3610 5.91 -
9 135135 33292 5901 5.51 -
9 135135 94791 10815 5.84 -
9 135135 135111 19698 6.31 -
9 135135 67089 21252 6.00 -

Table 5.1: Pointed 1-stable partitions of Tn

Consider now the coloring f 1
◦ computed by pointed(1-stab,1) on Γn. Obvi-

ously, the number nf1
◦
of colors of f 1

◦ is a lower bound on the dimension of the
coherent algebra generated by Γn. We were able to show that nf1

◦
equals this

dimension for n ∈ {4, 5, 6, 7} using qWeil and qStab.

Number of Number of Time in secs
n |Tn| cells colors qWeil

4 3 1 2 0.00
5 15 1 4 0.00
6 105 2 31 0.78
7 945 2 243 1832.32

Table 5.2: Data of coherent algebras of Γn

In a first version of the proof of Theorem 5.20, the proof was only based
on analyzing the neighborhood and the lengths and numbers of certain paths
in Γn. Thus, the cells of AΓn are determined by f 1

◦ already. This fact and the
computational results allow us to make the following conjecture.

Conjecture 5.21 |f 1
◦ (Γn)| = dim(AΓn) holds for n ≥ 4.
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Concluding from the computational results for the eigenvalues, P. F. Stadler
claims the following:

Conjecture 5.22 The largest eigenvalue of the Laplacian of Γn equals 3(n− 3).
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5.2 Graph Isomorphism, Automorphism and Ca-

nonical Labeling

In this section, we present frameworks of algorithms used for solving graph iso-
morphism, automorphism and canonical labeling problems. It will be seen that
fast algorithms for computing strong invariants are crucial for the speed of these
algorithms. In practice, most of the algorithms applicable to general graphs start
with procedures for computing equitable partitions. This is because most graphs
are easy problem instances in the sense that the total degree partition equals
the automorphism partition. It can even be shown that for almost all graphs
the canonical labeling problem and isomorphism problem can be solved in linear
time[4, 3]. However, the set of graphs for which this true does not include the
class of regular graphs or graphs with a small number of different degrees, which
for example frequently appear in chemistry.

Nevertheless, algorithms for the above problems for all graphs are needed.

It can be shown that deciding graph isomorphism and finding a set of gen-
erators for the automorphism group are polynomially time equivalent problems
and that a polynomial time algorithm for the canonical labeling problem would
imply one for the isomorphism problem. Up to now, nobody was able to prove
NP-completeness of any one these three problems. Although no polynomial time
algorithm has been found for graph isomorphism there are strong indications that
is not NP-complete [65].

5.2.1 Canonical Labeling

We now turn to the discussion of an algorithm for the computation of canonical
labelings. A similar algorithm can be used for computing the automorphism
partition or finding a set of generators for the automorphism group. See [48]
for details. Consider a coloring f of a graph G. A color c is called singular if
|f−1(c)| = 1. f is discrete if all colors are singular.

If a coloring f is discrete, it defines a vertex-labeling of the graph, namely

l : V → {1, 2, . . . , n} (5.1)

v 7→ f(v). (5.2)

In this way, for a colored graph Gf , a discrete canonical coloring determines a
canonical labeling.

In our context, the norm of an adjacency matrix is defined as

||A(G)|| :=
∑

i,j∈{1,2,...,n}

2n(i−1)+(j−1)(A(G))ij.
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Let f be a discrete vertex coloring. We define

(Pf)ij =

{
1 if f(i) = j
0 otherwise

and (5.3)

Af (G) = PfA(G)P t
f . (5.4)

To obtain a complete invariant for graphs, consider the following. Every graph
G can be represented by many adjacency matrices. Take an arbitrary discrete
vertex-coloring of G, then Af (G) is the adjacency matrix of a graph isomorphic to
G. It is well known that choosing the adjacency matrix with the smallest norm
defines a complete invariant and a canonical representation of G. This value,
namely

nc(G) := min
f is a discrete coloring

||Af(G)||,

is called the norm-code of G.

In principle, one could compute all possible adjacency matrices of a graph
and keep the one with the smallest norm to obtain the norm-code of G. A more
intelligent approach uses a stabilization procedure to reduce the search space.
We restrict our discussion to k-stab.

The approach discussed here uses pointed canonical colorings and starts with
an arbitrary labeling which defines an initial discrete coloring flabel. Below, we
present a framework for the computation of a discrete canonical vertex coloring
for a given colored graph Gf . We refine f according to the chosen stabilization
procedure. If the refined coloring is discrete, we compare it with the currently
best coloring flabel and update flabel if necessary. If the coloring is not discrete,
we assign to one of the vertices vi in PossV ert(i) a new color and refine again.
This is repeated until we obtain a discrete coloring which is again compared to
flabel. Then we apply some backward steps, if necessary, choose other vertices
in PossV ert(i) and proceed in the same manner.
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Algorithm 22: Compute labeling

Data : Gf = (V,E, f)

Result: A discrete canonical coloring flabel of the graph

i := 1;
f1 ≡ k-stab(f);
flabel := f1;
do

if fi is discrete then
if ||Af

label
(G)|| > ||Afi(G)|| then flabel := fi;

else
c=smallest non-singular color of fi;
PossV ert(i) := f−1

i (c);

end
while PossV ert(i) = ∅ do

i := i− 1;
if i=0 then stop(flabel);

end
choose vi ∈ PossV ert(i);
PossV ert(i) := PossV ert(i) \ {vi};
fi+1 ≡k-stab((fi)vi);
i := i+ 1;

loop;

The speed of Algorithm 22 depends on the chosen k-stab procedure and
can be improved by techniques for recognizing colorings which do not have to be
considered or refined anymore. See [48] for details.

5.2.2 Isomorphism Testing

We describe an algorithm for deciding whether two graphs Gf and G′
f ′ are iso-

morphic or not.
A simple solution for solving graph isomorphism problems would be to enu-

merate the possible bijections from vertices of Gf to vertices of G
′
f ′ , i.e., bijections

V → V ′, and check whether one of them describes an isomorphism or not.
In a more efficient version, one would try to exclude some of the bijections by

using stabilization procedures. The framework described in the following can be
used with every canonical stabilization procedure.

The algorithm works as follows. Instead of checking a bijection from all ver-
tices of the first graph onto the vertices of the second, it starts with no mapping
at all and computes the structure constants with respect to the chosen k-stab
procedure for both graphs Gf and G′

f ′ . If they are not equal, the algorithm
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terminates. In this case, the two graphs cannot be isomorphic. Otherwise, the
algorithm selects two vertices vi ∈ V and v′i ∈ V ′ having the same color and
assigns v′i to vi. Afterwards, the current colorings of Gf and G′

f ′ will be modified
by pointing at vi and v′i, respectively. In these pointed colorings, vi and v′i have
the same color. Now, another run of k-stab is performed.

We have to consider three cases: the algorithm observes that the assignments
made so far cannot be extended to an isomorphism (by comparing the structure
constants), the colorings computed so far are discrete (line 6), or another pair
of vertices is selected and a the next assignment is made. In the first case,
a backward step is performed, i.e., the last assignment is revoked and other
assignments are tried out.

To make things work, we store lists of assignments which proved false and
name them ForbiddenPerms(i). In another list, called PossiblePerms, we store
assignments which still have to be tested.

Algorithm 23: Test isomorphism

Data : Gf , G
′
f ′

Result: “yes” if G ' G′ and “no” otherwise

1: ∀i∈{1,2,...,n} : ForbiddenPerms := ∅;
2: i := 1;
3: fi := f ;
4: do
5: if k-stab(Gf) = k-stab(G′

f ′) then

6: if ∀c ∈ F : f−1
i (c) = 1 then

7: stop(“yes”);

end
else

8: backwardStep;

end
9: Choose some color c with |f−1

i (c)| > 1;
10: PossiblePerms := ∅;
11: while PossiblePerms = ∅ do
12: PossiblePerms := {(u, u′) | u ∈ f−1

i (c) and u′ ∈ f ′
i
−1(c)} \

⋃

j∈{1,2,...,i}

ForbiddenPerms(j);

13: if PossiblePerms = ∅ then
14: backwardStep;

end
end

15: forwardStep;

loop;
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Procedure 24: backwardStep

1: if i=1 then
2: stop(“no”);

else
3: ForbiddenPerms(i) := ∅;
4: i−−;
5: ForbiddenPerms(i) := ForbiddenPerms(i) ∪ (vi, v

′
i);

6: fi(vi) := f ′
i(v

′
i) := ci;

end

Procedure 25: forwardStep

1: Select (vi, v
′
i) ∈ PossiblePerms;

2: ci := fi(vi);
3: fi(vi) := f ′

i(v
′
i) := nfi + 1;

4: i ++;

The above framework for testing isomorphism of graphs is well known among
experts. Obviously, the algorithm has at most exponential running time. De-
pending on the chosen k-stab procedure and the graph class, the algorithm may
run in polynomial time. Examples will be given in Section 5.3.1. If no k-stab
procedure is chosen, the above algorithm performs complete enumeration. In
this case, once a complete assignment is made, one has to check explicitely if this
assignment is a graph isomorphism.

5.2.3 Computations

As seen before, fast and strong k-stab procedures are of great importance. The
certainly most prominent code for solving isomorphism, automorphism and label-
ing problems is the package nauty (no automorphism, yes?) by B. D. McKay
[49] which uses a 1-dimensional stabilization procedure in the above framework.
Since nauty allows to implement user defined refinement procedures, it was rel-
atively simple to test the algorithm for computing equitable partitions imple-
mented in nauty against our implementation. The version of nauty using the
implementation qStab of the algorithm presented in Section 3.3 for computing
the equitable partitions is denoted by qNauty.

B. D. McKay maintains a list of interesting instances for the graph automor-
phism problem [50]. For our comparison, we have chosen a subset of instances
out of this list, thereby selecting only instances which could be solved in less than
one hour.

Since most part of the running time of nauty is needed for computing the
equitable partitions (� 99%), in the tables below only this part of the running
time is reported.
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Name n Orbits qNauty nauty #EqPart

10cube 1024 1 1.79 4.29 45
11cube 2048 1 6.70 36.99 57
a52 52 4 4.11 0.13 1118
a60 60 8 25.73 0.34 4793
a72 72 36 155.56 2.70 21460
b171 1 171 5 103.88 23.56 12626
b52 52 8 12.97 0.21 3412
b60 60 18 51.51 0.81 9647
b72 72 36 155.64 2.59 21460
c72 72 36 155.95 3.12 21460
cub100 cifa 1000 400 22.75 3.15 1123
cub100 cifb 1000 400 22.87 3.26 1123
cub200 cifa 2000 800 198.98 47.71 3342
cub200 cifb 2000 800 189.03 43.05 3342
cub300 300 300 2.99 2.97 301
cub400 400 400 5.98 7.20 401
cub500 500 500 10.38 15.00 501
cub600 600 600 16.08 27.19 601
cub700 700 700 23.67 44.86 701
cub800 800 800 32.01 69.80 801
d72 72 36 155.20 3.15 21460
had112 1 112 6 384.87 33.04 34033
had112 2 112 6 189.92 17.49 17122
had96 1 96 2 298.22 18.15 38088
hanani 525 3 72.75 3.70 282
lk30 435 1 23.22 1.21 462
mols 271 17 127.94 49.20 9905
nice 7 3 3 1029 1 10.78 8.15 151
prim 5 11 275 1 4.02 0.32 550
rees 2312 28 8.28 17.90 23
sts117 1 117 117 62.23 2.28 4330
sts155 1 155 155 147.73 5.70 6666
tasty 125 5 625 1 148.94 3.85 5251
tasty 81 3 243 1 11.29 0.12 1594
trouble 174 11 10.27 0.06 258
trouble2 174 11 10.38 0.07 263
trouble3 174 94 7.12 0.03 171

Table 5.3: Results on interesting graphs for computing automorphisms

Table 5.3 shows that in most cases nauty is faster than qNauty however,
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there are instances on which qNauty is faster. This seems to happen in particular
on sparse and on large graphs. To obtain more evidence for this phenomenon,
we tested the algorithms on some instances reported by D. Mathon [47] and on
the instances considered by M. Fürer[31]. D. Mathon presents graphs which are
difficult for the isomorphism testing and describes an operation called doubling
to obtain larger graphs having similar properties.

Table 5.4 shows results for one of these graphs on 25 vertices and for graphs
derived from it by doubling operations. The graphs obtained by this procedure
are dense with about half of the possible edges present.

n Degree Orbits #EqPart qNauty nauty

25 4,6 4 16 0.00 0.00
52 25 5 30 0.06 0.00
106 52 6 41 0.28 0.02
214 106 7 54 1.49 0.08
430 214 8 69 7.03 0.64
862 430 9 86 34.11 4.76
1726 862 10 105 160.52 36.78
3454 1726 11 126 752.07 314.90
6910 3454 12 149 3372.08 3406.66
13822 6910 13 174 19273.87 30230.10

Table 5.4: Results for graphs obtained by doubling from a25

The instances by M. Fürer are described in Section 4.5.1 are sparse (3-regular).

n Orbits qNauty nauty #EqPart

100 10 0.07 0.04 62
200 19 0.47 0.33 147
400 39 2.43 5.27 392
800 79 16.23 72.38 1182
1000 99 28.27 184.38 1727
1200 119 46.37 388.51 2372

Table 5.5: Results for the instances step

In a private discussion, B. D. McKay conjectured that the reason for the better
running time of qStab on several instances can be explained by the different
representations of the graph structure [50]. nauty stores edges as bit arrays
while qStab uses adjacency lists. He concludes that qStab is more advantages
on large and sparse graphs. B. D. McKay proved a worst-case time bound of
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only O(n3), for his code for computing the equitable partitions. On the other
hand, for our code we have proved the time bound of O(m log2(n)). Since this is
a bound involving the number of edges rather than the number of vertices only,
it may help to explain the fact that qStab is in fact faster for sparse graphs.
Further, the better theoretical time bound, as it is often the case, pays off not
for small but only for large instances.
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5.3 Polynomial Time Solvable Cases

In this section, we give examples of graph classes for which the recognition prob-
lem or the isomorphism problem is solvable in polynomial time using stabilization
procedures.

5.3.1 Compact and Weakly Compact Graphs

We start by defining the graph automorphism problem with the help of a system
of equalities.

Let A be the adjacency matrix of some graph G and Πn the set of all permu-
tation matrices of degree n. A matrix P ∈ Πn represents an automorphism of G
if and only if P commutes with A, i.e.,

PA = AP.

Using this, we can represent the automorphism group of G by

Aut(A) ={P ∈ Πn|PA = AP}. (5.5)

This representation can be used to formulate a polyhedral approach to the
graph automorphism problem. Let Σn denote the set of all doubly stochastic
matrices S of degree n. Each S ∈ Σn can be considered as a point in the space
Rn×n. It is well known that Σn = conv(Πn), where conv(Πn) denotes the convex
hull of Πn. Hence, Σn is a polytope.

Denote by DS(A) the set of doubly stochastic matrices commuting with A,
i.e.,

DS(A) := {S ∈ Σn|SA = AS}.
Note that DS(A) is equal to the set of solutions of (e = (1, 1, . . . , 1)T ):

SA− AS =0

Se = e

Ste = e

S ≥ 0

The automorphisms ofG are exactly the integral solution of the above equality-
system. Clearly, they are vertices (extreme points) of the polytope DS(A). In
some favorable cases, all vertices of this polytope are integral and hence auto-
morphisms of G. In such cases, we are able to find non-trivial automorphisms in
polynomial time [70, 71]. Graphs for which DS(A) is integral are called compact ,
i.e, G is compact if and only if

DS(A) = conv(Aut(A)).
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The notion of compactness has been introduced by G. Tinhofer in [70], in order
to create a tool for studying the complexity of a simpler variant of Algorithm 23.
In that paper, compact graphs have been called Birkhoff graphs. The notation
compact has been introduced by R. A. Brualdi in [13]. The importance of the
notion of compactness is based on the fact that for two graphs G and G′, if at
least one of them is compact, Algorithm 23 with 1-stab as k-stab does not
make any backward steps and hence correctly solves the isomorphism problem
for G and G′ in polynomial time.

Instead of considering the adjacency matrix, we could also use the information
of the coherent algebra A generated by A.

A permutation matrix P is called a strong automorphism of A if and only if
P commutes with every matrix in A, i.e.,

B ∈ A =⇒ PB = BP.

Let Aut(A) be the group of strong automorphisms of A. It is well known that
Aut(A) = Aut(A).

Analogous to the definition of DS(A), let DS(A) be the polytope of doubly
stochastic matrices which commute with every matrix in A. In general, DS(A)
is a subset of DS(A).

The algebra A is called compact if and only if

DS(A) = conv(Aut(A)).

G is called weakly compact if its algebra A is compact.
Compactness of a graph implies its weak compactness, the converse statement

is not always true [22].
Note that if a graph is compact then 1-stab computes the automorphism

partition and likewise, if it is weakly compact, then 2-stab computes the auto-
morphism partition.

Weak compactness has been introduced by S. Evdokimov, M. Karpinski and
I. N. Ponomarenko in [22]. For the purpose of efficiently testing graph isomor-
phism, weak compactness is not worse than compactness. It can be shown that
isomorphism testing of two graphs can be done in polynomial time if at least
one of them is weakly compact [71, 22]. Again, this is done by showing that
Algorithm 23 does not make any backward steps if at least one of two given
graphs is compact and 2-stab is chosen as k-stab.

The up to now largest class of weakly compact graphs is the class of algebraic
forests [26] which includes forests, cographs and tree-cographs, rooted-directed-
path graphs, and interval graphs.

5.3.2 Higher Dimensions

Very recently, M. Grohe [35] has proven that for every graphG there is a k = k(G)
which is linear in the genus of G such that il(k) decides isomorphism of G and
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any other candidate G′.

5.3.3 Recognition

In certain cases, the membership problem for graph classes can be tested in poly-
nomial time using the coherent algebra approach. One example is given by the
class of algebraic forests [26] which allow a membership test in O(n3 log(n)). The
time needed for computing the coherent algebra is the dominating factor. If the
coherent algebra is already known, the membership can be tested in O(n2 log(n)).
Another graph class which allows polynomial time membership testing using co-
herent algebras are circulant graphs of prime order [55], and as it has been recently
shown, so-called geometric circulants [54].



5.4. Stabilization Procedures in Chemistry 95

5.4 Stabilization Procedures in Chemistry

There are several applications in chemistry which are related to the graph auto-
morphism and the canonical labeling problem.

To retrieve chemical structures in a database or to automatically assign names
(reference codes) to them, it is necessary to obtain a canonical form of a molecule,
that is to obtain a canonical labeling.

The coding of a molecule M with n atoms {a1, a2, . . . , an} as a colored graph
G = ({v1, v2, . . . , vn}, E, f) works as follows. The atoms correspond to colored
vertices and the bonds to colored edges of G. Edges between two vertices vi
and vj are present if and only if there is a chemical bond between the atoms ai
and aj. Colors of vertices represent different types of atoms. Colors of edges
represent different types of bonds. Two vertices vi and vj have the same color
if the corresponding atoms ai and aj are of the same type and two edges (vi, vj)
and (vi′ , vj′) have the same color if they correspond to the same type of bond.
The resulting colored graph is called a molecular graph.

Chemists are interested in classifying atoms according to their function within
the molecule, roughly speaking, two atoms play identical roles if they can be
mapped onto each other by a certain automorphism of the molecular graph.
For this reason the automorphism partition of molecular graphs is of interest.
Moreover, also bonds have to be classified in this way, therefore, the notion of
2-orbits of the automorphism group of the molecular graph becomes important.
The 2-orbits of V × V with respect to a group acting on V are the orbits of this
group considered as a permutation group of V × V .

Stabilization algorithms are widely used in chemistry to solve the tasks de-
scribed above. Below, we give some examples.

T. Laidboeur, D. Cabrol-Bass and O. Ivanciuc [45] incorporate not only the
information of the molecular graph but also the lengths of bonds into their ap-
proach to the structure analysis to obtain quantitative geometrical symmetry
information. They perform a geometrical distance partition of the vertex set, i.e,
for each atom they count the numbers of atoms at certain distances in space.
All this information is encoded by an initial coloring. Additionally, they perform
a 1-dimensional stabilization to split the set of vertices further and compute a
canonical labeling of the graph by enumeration. Their method is a slim version
of Algorithm 22, as far as they apply a stabilization procedure in the beginning
and then continue by complete enumeration. This labeling distinguishes isomers
of chemical compounds even if the underlying molecular graphs are isomorphic.

J. Faulon in [27] presents an algorithm implementing a decomposition method
for planar molecular graphs which is based on 1-dimensional stabilization. He
obtains a new algorithm for canonically labeling planar graphs.

In addition, the spectra of graphs are widely used to determine a vertex par-
tition, see for example [46]. However, as discussed in Section 4.6.1, this criterion
is not sufficient to distinguish non-isomorphic graphs and further, 2-stab yields
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stronger results. In addition, since stabilization methods work with small inte-
gers only, no numerical problems can occur as it may happen with the eigenvalue
approach.

5.4.1 The Algorithm of G. Rücker and Ch. Rücker

Here an algorithm is discussed in more detail which uses an approach similar
to 2-dimensional stabilization and simultaneous pointing of colorings at several
vertices.

It is one of the algorithms presented in a series of papers [61, 62, 60]. We start
by stating the algorithm presented in [61] and add improvements in the following
paragraphs.

As for graphs, we can define colors, structure values and structure lists for a
matrix A. Define the colors F(A) as

F(A) := {c ∈ N | ∃i, j : Ai,j = c}

and define structure values

pcv(A) := |{w ∈ V | A(v,w) = c}|,

pcv(A) := |{w ∈ V | A(v,w) = c, (v, w) ∈ E}|

and structure lists

L(v, A) := {(c, pcv(A)) | c ∈ F(A), pcv(A) 6= 0} and

L(v, A) := {(c, pcv(A)) | c ∈ F(A), pcv(A) 6= 0}.

Two vertices v and w are equivalent or neighborhood equivalent with respect to
A if and only if L(v, A) = L(w,A) or L(v, A) = L(w,A), respectively. Two edges
(v, w) and (v′, w′) are equivalent if and only if {f(v), f(w)} = {f(v ′), f(w′)}.

G. Rücker and Ch. Rücker start with a coloring in which all edges are equally
colored.
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Algorithm 26: Improved Degree Partition rücker(0)

Data : A colored graph Gf = (V,E, f)

Result: A Rücker coloring of the graph

1: A := A(Gf);
2: steps:= 0;
3: repeat
4: steps++;
5: perform an out-degree partition on the vertices and recolor;

recolor the vertex set: f(v) = f(w) :⇔ L(v, Asteps) = L(w,Asteps),
L(v, Asteps) = L(w,Asteps), and f(v) = f(w), v, w ∈ V ;

6: recolor the edge set: f(v, w) = f(v′, w′) :⇔ Asteps
v,w = Asteps

v′,w′ and
f(v, w) = f(v′, w′), v, w ∈ V ;

until nf did not change and at least diam(Gf) steps are performed ;
7: f(v, w) = f(v′, w′) :⇔ {v, w} and {v′, w′} are equivalent and f(v, w) =

f(v′, w′), (v, w), (v′, w′) ∈ E;

The running time of the implementation of Algorithm 26 given by G. Rücker
and Ch. Rücker can roughly be estimated as follows. The most important factor is
the calculation of the powers of A and the comparison of the structure values. The
computations of the powers of A take time O(n3) and the comparison between
the structure lists is done by a simple algorithm taking time O(n4). This, of
course, could be done using bucketsort in time O(n2). Since up to n2 steps
have to be repeated, the overall running time obtained is O(n6). This could be
lowered to O(n4.376) since matrix multiplication can be implemented to take time
O(n2.376) [17] only. As we have seen in Section 4.6, it is more useful to perform
2-dimensional stabilization than to consider only the powers of the adjacency
matrix.

We immediately obtain.

Theorem 5.23 rücker(0) is weaker than 2-dimensional stabilization.

In an improved version, the algorithm of G. Rücker and Ch. Rücker chooses a
pair of different vertices and introduces a new (possibly additional) edge between
them (rücker(2)). Then Algorithm 26 is applied to this altered graph and the
number of colors is stored. This is done for every pair of vertices and the result
is used to obtain an initial partition of the vertex set and of the edge set. Then
Algorithm 26 is applied to this pre-colored graph. Instead of a pair, choosing
a triple of pairwise different vertices and introducing edges between them is also
considered (rücker(3)). This approach is similar to the one introduced in Section
4.7.

For the description of rücker(2) and rücker(3) the definition of more general
structure values is needed. For k ∈ N, let

C = (Ci1,i2,...,ik)i1,i2,...,ik∈{1,2,...,n}, Ci1,i2,...,ik ∈ N
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and
pc(u,w)(C) := |{vk−2 ∈ V k−2 | C(u,w,vk−2) = c}|

and define the structure lists in the usual way. Then the algorithm rücker(k),
k ≥ 2, reads as follows.

Algorithm 27: rücker(k), k ≥ 2

1: Data : Gf = (V,E, f)

2: Result: A k-Rücker coloring of the graph

3: foreach k-tuple vk of pairwise different vertices do
4: G′

f ′ = Gf ;
5: add to G′

f ′ edges between each vi and vj, i, j ∈ {1, 2, . . . , k}, i 6= j;
6: perform rücker(0) on G′

f ′ and store the number of colors in Cv1,v2,...,vk ;

end
Split the colors of vertices and the edges set of the original graph according
to the structure lists regarding C;
Perform rücker(0) on the resulting colored graph;

Analogously, we define rücker(1) where we add loops (we point colors at
vertices) to obtain the graph G′

f ′ .
The implementations of algorithm rücker(k), k = 2, 3, presented by G. Rücker

and Ch. Rücker run in time O(nk+5).

Corollary 5.24 rücker(1) is weaker than pointed(2,1).

Proof. This follows immediately from the theorem above.

5.4.2 Computational Experiments

Computational experiments support our theorem that 2-dimensional stabiliza-
tion, and therefore of course also pointed(2,1), is stronger than rücker(0). For
this reason, qWeil is preferable and could be used in rücker(2) and rücker(3)
as refinement procedure as well. qWeil and pointed(2,1) often yield finer re-
finements of the edge partition than rücker(2) and rücker(3). But no examples
have been found on which they yield finer refinements of the vertex set. The
vertex partition computed by rücker(2) and rücker(3), at the cost of much
longer running time, is often much finer than the one computed by qWeil and
pointed(2,1).

The computational results given in Tables 5.6 and 5.7 show impressively the
power of pointing colorings at vertices and on sets of vertices. Again, we choose
for testing purposes the test instances used by B. D. McKay. Their names are
listed in the first column. n is the instance size, sf denotes the number of different
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vertex colors, rf the total number of different colors and the entries in the columns
for algorithms represent the CPU time in seconds.

Name n qWeil sf rf pointed(2,1) sf rf rücker(0) sf rf rücker(2) sf rf

C3903 58 0.45 30 1684 24.53 30 1684 0.86 30 871 1186.06 30 871
C3905 58 0.28 10 323 37.07 10 323 0.60 10 181 1186.75 10 181
b25 25 0.01 2 9 1.06 5 43 0.03 2 7 6.89 5 29
b251 25 0 1 3 1.79 1 3 0.02 1 3 5.77 25 325
b291 29 0.01 1 3 3.23 1 3 0.03 1 3 12.64 29 435
b35 35 0.01 1 3 6.19 1 3 0.06 1 3 33.42 35 630
b50 50 0.04 2 9 22.69 2 9 0.22 2 7 355.47 50 1275
b52 25 0 1 3 1.79 1 3 0.02 1 3 5.77 25 325
b60 29 0.01 1 3 3.23 1 3 0.03 1 3 12.65 29 435
b72 35 0.01 1 3 6.19 1 3 0.06 1 3 33.38 35 630
cage 1 58 0.36 20 882 28.94 20 882 0.70 20 470 1183.37 20 470
cage 2 58 0.45 31 1690 24.68 31 1690 0.87 31 874 1184.49 31 874
cage 3 58 0.25 5 150 35.63 5 150 0.56 5 88 1190.35 5 88
cage 4 58 0.6 16 846 26.77 16 846 0.75 16 452 1182.31 16 452
cheryl 57 0.11 1 12 21.38 1 12 0.22 1 8 405.50 1 8
cuddly 2 16 0 1 7 0.15 1 7 0.01 1 7 0.62 1 7
cuddly 3 81 0.43 1 45 82.65 1 45 0.84 1 18 3236.96 1 23
cute 3 13 78 0.36 1 42 57.21 1 42 1.01 1 22 4672.84 1 22
cute 3 7 42 0.06 1 15 7.19 1 15 0.14 1 11 156.23 1 11
d35 35 0.01 1 3 6.45 1 3 0.05 1 3 36.27 35 630
d72 35 0.01 1 3 6.46 1 3 0.06 1 3 36.31 35 630
danwell 70 0.24 2 26 41.42 2 26 0.83 2 19 3533.82 2 19
j4j7 27 0 1 3 0.48 1 3 0.03 1 3 9.42 1 3
latin 28 0.06 18 424 1.53 18 424 0.09 18 226 20.86 18 226
latin1 28 0.05 18 424 1.52 18 424 0.09 18 226 20.79 18 226
nc3 18 0 1 8 0.28 1 8 0.01 1 7 1.05 1 7
nc4 32 0.03 1 18 2.68 1 18 0.06 1 15 27.83 1 15
nc42 1 42 0.06 1 9 5.91 1 9 0.18 1 8 189.24 1 8
nc5 50 0.11 1 26 20.67 1 26 0.22 1 20 308.32 1 20
nc6 72 0.33 1 40 84.6 1 40 0.83 1 31 2874.89 1 31
nc7 98 0.81 1 50 295.81 1 50 1.82 1 38 15010.73 1 38
r147 18 0 1 10 0.4 1 10 0.01 1 8 0.96 1 8
simple 8 0 2 11 0.01 2 11 0.00 2 9 0.03 2 9
sr81a 81 0.11 1 3 134.23 9 321 0.67 1 3 3538.02 9 185
sr81b 81 0.11 1 3 132.5 9 321 0.68 1 3 3569.58 9 185
youden 29 0.05 13 297 1.92 13 297 0.06 13 155 12.19 13 155

Table 5.6: Comparison of qWeil, pointed(2,1), rücker(0), and rücker(2)
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Name n qWeil sf rf pointed(2,1) sf rf rücker(3) sf rf

had96 10 96 0.21 1 5 34.07 1 5 409484.07 8 165
had96 11 96 0.21 1 5 34.24 1 5 414051.91 6 84
had96 6 96 0.21 1 5 34.09 1 5 420123.59 2 8
had96 7 96 0.22 1 5 34.6 1 5 409314.11 2 7
had96 8 96 0.22 1 5 34.19 1 5 410756.48 5 65
had96 9 96 0.22 1 5 34.29 1 5 412873.92 5 77
nc6 72 0.33 1 40 84.6 1 40 64372.87 1 31
nc7 98 0.81 1 50 295.81 1 50 447997.33 1 38
nice 19 1 3 57 0.11 3 36 20.77 3 36 5968.26 3 24
prim 2 3 12 0 1 5 0.06 1 5 0.77 1 5
prim 2 4 16 0 1 5 0.12 1 5 5.41 1 5
prim 3 11 99 0.3 1 9 50 1 9 467345.29 1 8
prim 3 5 45 0.03 1 6 3.42 1 6 2896.52 1 6
prim 3 7 63 0.09 1 7 10.46 1 7 27109.53 1 7
prim 5 3 75 0.12 1 5 17.51 1 5 67235.18 1 5
r147 18 0 1 10 0.4 1 10 6.19 1 8
ramsey3 8 26 26 0.04 10 228 1.76 10 228 71.99 10 119
ramsey 36a 17 0.01 9 145 0.23 9 145 5.79 9 81
ramsey 36b 17 0.01 9 145 0.23 9 145 5.77 9 81
ramsey 36c 17 0.01 10 149 0.23 10 149 5.73 10 83
ramsey 36d 17 0.01 9 145 0.23 9 145 5.54 9 81
ramsey 36e 17 0.01 17 289 36.19 17 289 5.51 17 153
ramsey 36f 17 0.01 4 47 0.34 4 47 4.21 4 28
ramsey 36g 17 0.01 9 145 0.23 9 145 4.23 9 81
simple 8 0 2 11 0.01 2 11 0.09 2 9
sr81a 81 0.11 1 3 134.23 9 321 79939.74 9 185
sr81b 81 0.11 1 3 132.5 9 321 80159.68 9 185

Table 5.7: Comparison of qWeil, pointed(2,1) and rücker(3)



Chapter 6

Implementation Details and
Computations

First, some ideas will be discussed which can be used to decrease the running
time of the stabilization procedures considerably.

Instead of refining the coloring by considering all necessary colors c and then
recoloring only once per step, we refine colorings permanently by considering
single colors and recoloring immediately. This results in much more 〈recolor〉
operations and blasts the theoretical time bound but reduces the sizes of the
color classes very quickly. Applying such a strategy leads to a practically much
more efficient algorithm. Note that this method still colors canonically.

In practice it turns out that many structure lists of colors L(ck) do not yield
a refinement of the coloring. It is easy to check whether a color class C(b) will be
split by a structure list L(ck) or not. C(b) will not be split by L(ck) if and only
if pc

k

vk
is constant on vk ∈ C(b). This is the case when

max{pckvk | vk ∈ C(b)} · |C(b)| =
∑

vk∈C(b)

pc
k

vk ,

holds. The values max{pck
vk

| vk ∈ C(b)} and
∑

vk∈C(b)

pc
k

vk
can be easily updated

during the execution of 〈splitcolor〉. A structure list which refines the coloring is
called useful . If we check this condition after having computed the structure list
and then reduce the structure list if possible, the running time decreases.

6.1 Computations

6.1.1 2-stable Colorings

Due to the above considerations, it does not make sense to maintain the list L(c)
throughout the execution of 〈step〉. L(c) may change after every recoloring. In

101
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our implementation, we just store colors in L(c) and do not do any updating with
L(c). This may cause the calculation of triangles which do not exist and thus
enlarge the theoretical running time but it proves to be efficient in practice. For a
better understanding, the implemented procedure is given below (see Procedure
28).

Procedure 28: step
Examine triangles whose first non-basis edge was recently

colored;
1: foreach c ∈ N do
2: foreach (u, w) ∈ colums(c) do
3: for v ∈ {1, 2, . . . , n} do
4: append f(w, v) to the list L(c);

end
end

5: sort L(c) and delete duplicates;
6: foreach d ∈ L(c) do
7: splitcolor(c, d);
8: recolor;

end
9: delete L(c);

end
Treat the case were the second color is new analogously;

Algorithm 2-stab with the above extensions is implemented in a program
called qWeil. This program uses Procedure 28 as implementation of 〈step〉
and Procedure 11 as implementation of 〈splitcolor〉. The remaining procedures
are implemented as discussed in Section 3.4. The implementation of 2-stab
described in Chapter 3, which has been proven to be time and space optimal, is
denoted by ts. Both implementations have been tested on typical test instances
and have been compared to the implementations stabil, CC and stabcol. Due
to memory restrictions, we have not been able to test stabcol on instances with
more than 200 nodes. The results of comprehensive tests are reported in Tables
6.1-6.5.

Each line of a table represents a test instance. It consists of the name of the
instance and its number of vertices, the number of colors of the resulting 2-stable
coloring and the running times of the different algorithms. The times are given
in seconds and the bold entries mark the fastest algorithm for each instance. By
ratio, we mean the running time compared to the running time of the leftmost
algorithm. For a description of the test instances and the test environment see
Section 6.2 and 6.3, respectively.

Table 6.1 shows that qWeil is by far the fastest canonical implementation.
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On all instances, including the small ones, qWeil is faster than CC and stabcol.
Table 6.2 shows that ts is faster than stabcol and thus the fastest implementation
of an algorithm for computing coherent algebras with a theoretical time bound
of O(n3 log(n)) up to our knowledge.

We have implemented also a non-canonical version of qWeil by just skip-
ping the sorting at certain points in the algorithm. We denote this variant by
¬canonical. On small instances both, qWeil and ¬canonical, are often slower
than stabil. However, on the large instances, ¬canonical and even qWeil prove
to be much faster than stabil (see Table 6.2). Observe that the differences be-
tween the running times of qWeil and stabil increase with increasing values of
# colors

n
.

In Table 6.3, some more variants of qWeil are listed. Algorithm ¬ir denotes
the algorithm which recolors only once per step, algorithm ¬useful does not
delete useless structure lists. Table 6.3 shows that the ideas presented at the
beginning of this section are responsible for the good practical running time of
qWeil. Observe that if we refrain from immediate recoloring, qWeil computes
in each step the same number of new colors as the Weisfeiler-Leman algorithm
and thus needs the same number of steps.

In Table 6.4, we compare the number of computed structure lists with the
number of useful structure lists. It turns out that only very few structure lists
are useful. This observation insinuates the design of algorithms which compute
only few structure lists per step. Since we do not know which structure lists are
useful, we implemented a randomized version of our algorithm which computes
only few randomly chosen structure lists. Although, we have only little experience
in this direction, the few results obtained so far are very promising. However, the
major problem is that up to now we are not able to check reasonably fast whether
the resulting coloring is stable or not. That means checking a given coloring for
being 2-stable needs about the time as constructing the coloring from scratch.

Good results have been obtained with the two following randomized step
procedures. The number of iterations of 〈step〉 is denoted by i. The function
〈randint(k)〉 chooses uniformly distributed an integer value out of the interval
[1, k].
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Procedure 29: random step 1

1: f ≡ f ;
2: if first time in this procedure then
3: max tries := n;
4: tries := 5;

end
5: foreach k ∈ {1, 2, . . . , tries} do
6: splitcolor(randint(rf ),randint(rf));

end
7: tries := min{rf · i+ 3, max tries};
8: recolor;

Procedure 30: random step 2

1: f ≡ f ;
2: if first time in this procedure then
3: max tries := n · (b√nc + 1);
4: tries := min{rf · 2 + 10, max tries};

end
5: foreach k ∈ {1, 2, . . . , tries} do
6: foreach h ∈ {1, 2, . . . , n} do

splitcolor(f(randint(n),h), f(h,randint(n)));

end
end

7: tries := min{drf/n+ ne,max tries};
8: recolor;

The versions of qWeil using Procedure 29 andProcedure 30 instead of the
standard step procedure are denoted by random 1 and random 2, respectively.

In Table 6.5, these two step procedures are compared with the standard step
procedure. random 1 does not compute the correct results for the instances
dynkin. In most of the cases, the randomized step procedure speed up the
computation of a coloring. But there exist examples where the versions presented
here slow the algorithm down quite a bit.



6.1. Computations 105

Name n Colors Cells qWeil CC stabcol ts
time time ratio time ratio time ratio

benzene 18 36 3 0 0.01 - 0.02 - 0.05 -
benzene 36 144 6 0.06 0.09 1.500 0.23 3.833 0.56 9.333
benzene 54 324 9 0.18 0.28 1.556 0.87 4.833 5.39 29.944
benzene 72 576 12 0.43 0.74 1.721 2.62 6.093 14.84 34.512
benzene 90 900 15 0.85 1.45 1.706 5.59 6.576 31.78 37.388
benzene 108 1296 18 1.4 2.58 1.843 12.13 8.664 58.11 41.507
benzene 126 1764 21 2.25 4.26 1.893 20.10 8.933 97.96 43.538
benzene 144 2304 24 3.29 6.95 2.112 30.51 9.274 153.35 46.611
benzene 162 2916 27 4.62 9.64 2.087 45.20 9.784 224.03 48.491
benzene 180 3600 30 6.59 13.65 2.071 64.47 9.783 312.25 47.382
benzene 198 4356 33 8.92 18.97 2.127 92.98 10.424 448.82 50.316
benzene 204 4624 34 9.97 21.17 2.123 104.77 10.509
benzene 240 6400 40 18.55 38.75 2.089 219.42 11.829
benzene 276 8464 46 30.59 67.42 2.204 449.63 14.699
benzene 312 10816 52 45.71 112.78 2.467 712.31 15.583
benzene 348 13456 58 66.04 167.74 2.540 1061.62 16.075
benzene 384 16384 64 92.39 245.72 2.660 1426.21 15.437
benzene 402 17956 67 102.09 277.87 2.722 1625.96 15.927
benzene 420 19600 70 120.14 329.2 2.740 1877.93 15.631
benzene 456 23104 76 146.73 427.63 2.914 2390.23 16.290
benzene 480 25600 80 173.42 531.74 3.066 2938.09 16.942
benzene 492 26896 82 191.3 564.01 2.948 3295.12 17.225
benzene 528 30976 88 268.83 751.64 2.796 4692.07 17.454
benzene 558 34596 93 316.9 861.22 2.718 6524.80 20.589
benzene 564 35344 94 308.62 868.15 2.813 7025.28 22.764

dynkin 20 362 19 0.03 0.03 1.000 0.03 1.000 0.08 2.667
dynkin 40 1522 39 0.23 0.27 1.174 0.35 1.522 0.98 4.261
dynkin 60 3482 59 0.75 0.94 1.253 1.48 1.973 7.61 10.147
dynkin 80 6242 79 1.95 2.4 1.231 4.98 2.554 21.00 10.769
dynkin 100 9802 99 3.8 5.02 1.321 11.94 3.142 45.66 12.016
dynkin 120 14162 119 7.04 9.41 1.337 22.99 3.266 82.02 11.651
dynkin 140 19322 139 12.54 15.12 1.206 42.71 3.406 134.90 10.758
dynkin 160 25282 159 18.97 25.08 1.322 90.87 4.790 214.98 11.333
dynkin 180 32042 179 29.18 38.59 1.322 205.74 7.051 312.77 10.719
dynkin 200 39602 199 42.69 56.25 1.318 377.42 8.841 473.09 11.082
dynkin 240 57122 239 77.43 110.03 1.421 829.46 10.712
dynkin 280 77842 279 123.57 194.86 1.577 1526.92 12.357
dynkin 320 101762 319 214.72 332.43 1.548 2675.14 12.459
dynkin 360 128882 359 334.43 533.28 1.595 4977.54 14.884
dynkin 400 159202 399 430.75 759.08 1.762 9972.96 23.153
dynkin 440 192722 439 708.88 1168.42 1.648 20523.56 28.952
dynkin 480 229442 479 889.61 1405.94 1.580 41066.38 46.162
dynkin 520 269362 519 1278.53 1819.9 1.423 76118.69 59.536
dynkin 560 312482 559 1218.98 2572.28 2.110 105627.68 86.653

continued on next page
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continued from previous page
Name n Colors Cells qWeil ts CC stabcol

time time ratio time ratio time ratio

moebius 20 11 1 0 0.01 - 0.03 - 0.06 -
moebius 40 21 1 0.05 0.09 1.800 0.39 7.800 0.78 15.600
moebius 60 31 1 0.16 0.31 1.938 1.41 8.812 5.54 34.625
moebius 80 41 1 0.39 0.83 2.128 4.26 10.923 16.57 42.487
moebius 100 51 1 0.73 1.63 2.233 8.62 11.808 34.98 47.918
moebius 120 61 1 1.23 2.88 2.341 15.21 12.366 76.39 62.106
moebius 140 71 1 2.01 4.8 2.388 28.99 14.423 102.49 50.990
moebius 160 81 1 2.98 7.67 2.574 44.95 15.084 170.20 57.114
moebius 180 91 1 5.05 11.79 2.335 65.52 12.974 237.80 47.089
moebius 200 101 1 7.95 18.16 2.284 90.49 11.382 332.25 41.792
moebius 240 121 1 14.95 37.13 2.484 160.15 10.712
moebius 280 141 1 30.8 71.71 2.328 299.77 9.733
moebius 320 161 1 53.05 140.95 2.657 465.53 8.775
moebius 360 181 1 78.46 192.7 2.456 676.78 8.626
moebius 400 201 1 111.63 280.15 2.510 934.81 8.374
moebius 440 221 1 158.66 392.95 2.477 1258.45 7.932
moebius 480 241 1 225.71 500.15 2.216 1651.00 7.315
moebius 520 261 1 371.14 688.26 1.854 2385.57 6.428
moebius 560 281 1 450.86 3057.44 6.781

step 20 18 2 0 0.01 - 0.03 - 0.08 -
step 40 62 3 0.05 0.09 1.800 0.38 7.600 0.85 17.000
step 60 154 6 0.17 0.27 1.588 1.40 8.235 6.15 36.176
step 80 262 7 0.41 0.7 1.707 3.76 9.171 18.17 44.317
step 100 418 10 0.76 1.4 1.842 9.96 13.105 40.26 52.974
step 120 590 11 1.29 2.47 1.915 19.10 14.806 73.70 57.132
step 140 810 14 2.05 3.79 1.849 32.02 15.620 136.53 66.600
step 160 1046 15 2.89 5.68 1.965 55.13 19.076 208.88 72.277
step 180 1330 18 4.29 8.44 1.967 79.83 18.608 288.13 67.163
step 200 1630 19 5.71 12.21 2.138 122.65 21.480 404.97 70.923
step 240 2342 23 10.79 24.17 2.240 237.74 22.033
step 280 3182 27 18.62 46.5 2.497 423.44 22.741
step 320 4150 31 30.08 77.07 2.562 711.77 23.663
step 360 5246 35 45.02 120.3 2.672 1138.03 25.278
step 400 6470 39 58.2 151.4 2.601 1735.95 29.827
step 440 7822 43 75.81 204.87 2.702 2554.46 33.696
step 480 9302 47 110.98 301.18 2.714 3613.48 32.560
step 520 10910 51 130.73 417.94 3.197 4969.97 38.017
step 560 12646 55 184.77 548.76 2.970 6759.82 36.585

Table 6.1: Canonical Implementations
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Name Vertices Colors Cells ¬canonical stabil qWeil
time time ratio time ratio

benzene 18 36 3 0 0.00 - 0 -
benzene 36 144 6 0.05 0.05 1.000 0.06 1.200
benzene 54 324 9 0.15 0.22 1.467 0.18 1.200
benzene 72 576 12 0.37 0.63 1.703 0.43 1.162
benzene 90 900 15 0.75 1.38 1.840 0.85 1.133
benzene 108 1296 18 1.22 2.72 2.230 1.4 1.148
benzene 126 1764 21 1.88 4.80 2.553 2.25 1.197
benzene 144 2304 24 2.87 7.95 2.770 3.29 1.146
benzene 162 2916 27 4.02 12.14 3.020 4.62 1.149
benzene 180 3600 30 5.46 18.65 3.416 6.59 1.207
benzene 198 4356 33 7.98 26.12 3.273 8.92 1.118
benzene 204 4624 34 8.62 29.78 3.455 9.97 1.157
benzene 240 6400 40 15.66 55.68 3.556 18.55 1.185
benzene 276 8464 46 25.45 95.57 3.755 30.59 1.202
benzene 312 10816 52 38.05 153.96 4.046 45.71 1.201
benzene 348 13456 58 55.5 236.15 4.255 66.04 1.190
benzene 384 16384 64 80.02 348.99 4.361 92.39 1.155
benzene 402 17956 67 90.21 411.88 4.566 102.09 1.132
benzene 420 19600 70 106.02 501.89 4.734 120.14 1.133
benzene 456 23104 76 137.35 693.30 5.048 146.73 1.068
benzene 480 25600 80 162.76 854.67 5.251 173.42 1.065
benzene 492 26896 82 178.99 927.07 5.179 191.3 1.069
benzene 528 30976 88 221.69 1237.62 5.583 268.83 1.213
benzene 558 34596 93 260.08 1503.83 5.782 316.9 1.218
benzene 564 35344 94 257.42 1593.04 6.188 308.62 1.199

dynkin 20 362 19 0.02 0.01 0.500 0.03 1.500
dynkin 40 1522 39 0.13 0.09 0.692 0.23 1.769
dynkin 60 3482 59 0.43 0.41 0.953 0.75 1.744
dynkin 80 6242 79 1.02 1.20 1.176 1.95 1.912
dynkin 100 9802 99 1.99 2.73 1.372 3.8 1.910
dynkin 120 14162 119 4.47 5.61 1.255 7.04 1.575
dynkin 140 19322 139 7.73 11.37 1.471 12.54 1.622
dynkin 160 25282 159 13.45 21.94 1.631 18.97 1.410
dynkin 180 32042 179 19.68 40.61 2.064 29.18 1.483
dynkin 200 39602 199 29.85 71.88 2.408 42.69 1.430
dynkin 240 57122 239 58.3 203.19 3.485 77.43 1.328
dynkin 280 77842 279 78.37 555.00 7.082 123.57 1.577
dynkin 320 101762 319 126.74 1526.98 12.048 214.72 1.694
dynkin 360 128882 359 193.61 3953.94 20.422 334.43 1.727
dynkin 400 159202 399 271.38 9337.60 34.408 430.75 1.587
dynkin 440 192722 439 370.03 20478.01 55.341 708.88 1.916
dynkin 480 229442 479 481.42 889.61 1.848
dynkin 520 269362 519 642.68 1278.53 1.989
dynkin 560 312482 559 833.66 1218.98 1.462

continued on next page
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continued from previous page
Name Vertices Colors Cells ¬canonical stabil qWeil

time time ratio time ratio

moebius 20 11 1 0 0.00 - 0 -
moebius 40 21 1 0.05 0.06 1.200 0.05 1.000
moebius 60 31 1 0.15 0.22 1.467 0.16 1.067
moebius 80 41 1 0.36 0.57 1.583 0.39 1.083
moebius 100 51 1 0.68 1.18 1.735 0.73 1.074
moebius 120 61 1 1.17 2.12 1.812 1.23 1.051
moebius 140 71 1 1.91 3.51 1.838 2.01 1.052
moebius 160 81 1 2.89 5.46 1.889 2.98 1.031
moebius 180 91 1 4.88 8.43 1.727 5.05 1.035
moebius 200 101 1 7.25 11.52 1.589 7.95 1.097
moebius 240 121 1 14.62 21.19 1.449 14.95 1.023
moebius 280 141 1 29.28 35.57 1.215 30.8 1.052
moebius 320 161 1 54.1 56.80 1.050 53.05 0.981
moebius 360 181 1 80.31 84.50 1.052 78.46 0.977
moebius 400 201 1 103.98 122.96 1.183 111.63 1.074
moebius 440 221 1 145.06 172.89 1.192 158.66 1.094
moebius 480 241 1 211.02 234.10 1.109 225.71 1.070
moebius 520 261 1 244.81 305.05 1.246 371.14 1.516
moebius 560 281 1 280.32 396.25 1.414 450.86 1.608

step 20 18 2 0 0.00 - 0 -
step 40 62 3 0.05 0.06 1.200 0.05 1.000
step 60 154 6 0.16 0.23 1.438 0.17 1.062
step 80 262 7 0.4 0.59 1.475 0.41 1.025
step 100 418 10 0.67 1.24 1.851 0.76 1.134
step 120 590 11 1.24 2.28 1.839 1.29 1.040
step 140 810 14 1.94 3.92 2.021 2.05 1.057
step 160 1046 15 2.74 6.18 2.255 2.89 1.055
step 180 1330 18 4.11 9.66 2.350 4.29 1.044
step 200 1630 19 5.77 16.62 2.880 5.71 0.990
step 240 2342 23 10.77 37.85 3.514 10.79 1.002
step 280 3182 27 18.85 66.01 3.502 18.62 0.988
step 320 4150 31 29.34 126.42 4.309 30.08 1.025
step 360 5246 35 43.62 222.46 5.100 45.02 1.032
step 400 6470 39 56.05 374.60 6.683 58.2 1.038
step 440 7822 43 68.59 597.37 8.709 75.81 1.105
step 480 9302 47 93.79 917.41 9.782 110.98 1.183
step 520 10910 51 117.83 1380.94 11.720 130.73 1.109
step 560 12646 55 158.81 1982.39 12.483 184.77 1.163

Table 6.2: Non Canonical Implementations



6.1. Computations 109

Name n Colors Cells qWeil ¬useful ¬ir ¬ir ¬useful
time time ratio time ratio time ratio

benzene 18 36 3 0 0.01 - 0.01 - 0.02 -
benzene 36 144 6 0.06 0.14 2.333 0.09 1.500 0.19 3.167
benzene 54 324 9 0.18 0.44 2.444 0.28 1.556 0.64 3.556
benzene 72 576 12 0.43 1.03 2.395 0.74 1.721 1.67 3.884
benzene 90 900 15 0.85 2.08 2.447 1.45 1.706 3.33 3.918
benzene 108 1296 18 1.4 3.45 2.464 2.58 1.843 5.85 4.179
benzene 126 1764 21 2.25 5.48 2.436 4.26 1.893 9.73 4.324
benzene 144 2304 24 3.29 8.03 2.441 6.95 2.112 15.41 4.684
benzene 162 2916 27 4.62 11.45 2.478 9.64 2.087 21.73 4.703
benzene 180 3600 30 6.59 15.98 2.425 13.65 2.071 30.63 4.648
benzene 198 4356 33 8.92 21.49 2.409 18.97 2.127 42.5 4.765
benzene 204 4624 34 9.97 23.81 2.388 21.17 2.123 46.63 4.677
benzene 240 6400 40 18.55 43.41 2.340 38.75 2.089 85.38 4.603
benzene 276 8464 46 30.59 70.46 2.303 67.42 2.204 138.32 4.522
benzene 312 10816 52 45.71 103.49 2.264 112.78 2.467 220.41 4.822
benzene 348 13456 58 66.04 147.84 2.239 167.74 2.540 329.43 4.988
benzene 384 16384 64 92.39 197.12 2.134 245.72 2.660 479.6 5.191
benzene 402 17956 67 102.09 225.09 2.205 277.87 2.722 538.24 5.272
benzene 420 19600 70 120.14 258.76 2.154 329.2 2.740 632.96 5.269
benzene 456 23104 76 146.73 322.48 2.198 427.63 2.914 835.54 5.694
benzene 480 25600 80 173.42 376.35 2.170 531.74 3.066 989.37 5.705
benzene 492 26896 82 191.3 408.34 2.135 564.01 2.948 1113.59 5.821
benzene 528 30976 88 268.83 573.3 2.133 751.64 2.796 1367.24 5.086
benzene 558 34596 93 316.9 650.51 2.053 861.22 2.718 1649.49 5.205
benzene 564 35344 94 308.62 667.28 2.162 868.15 2.813 1713.07 5.551

dynkin 20 362 19 0.03 0.05 1.667 0.03 1.000 0.06 2.000
dynkin 40 1522 39 0.23 0.42 1.826 0.27 1.174 0.54 2.348
dynkin 60 3482 59 0.75 1.41 1.880 0.94 1.253 1.92 2.560
dynkin 80 6242 79 1.95 3.63 1.862 2.4 1.231 4.69 2.405
dynkin 100 9802 99 3.8 7.37 1.939 5.02 1.321 9.91 2.608
dynkin 120 14162 119 7.04 13.32 1.892 9.41 1.337 17.65 2.507
dynkin 140 19322 139 12.54 23.55 1.878 15.12 1.206 28.3 2.257
dynkin 160 25282 159 18.97 36.05 1.900 25.08 1.322 45.75 2.412
dynkin 180 32042 179 29.18 53.68 1.840 38.59 1.322 70.76 2.425
dynkin 200 39602 199 42.69 80.44 1.884 56.25 1.318 104.25 2.442
dynkin 240 57122 239 77.43 137.5 1.776 110.03 1.421 195.37 2.523
dynkin 280 77842 279 123.57 199.5 1.614 194.86 1.577 331.71 2.684
dynkin 320 101762 319 214.72 407.25 1.897 332.43 1.548 569.92 2.654
dynkin 360 128882 359 334.43 581.46 1.739 533.28 1.595 888.35 2.656
dynkin 400 159202 399 430.75 759.13 1.762 759.08 1.762 1266.08 2.939
dynkin 440 192722 439 708.88 1200.59 1.694 1168.42 1.648 1828.28 2.579
dynkin 480 229442 479 889.61 1414.33 1.590 1405.94 1.580 2278.56 2.561
dynkin 520 269362 519 1278.53 2145.43 1.678 1819.9 1.423 2938.52 2.298
dynkin 560 312482 559 1218.98 1971.99 1.618 2572.28 2.110 3964.8 3.253

continued on next page
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continued from previous page
Name n Colors Cells qWeil ¬useful ¬ir ¬ir ¬useful

time time ratio time ratio time ratio

moebius 20 11 1 0 0.01 - 0.01 - 0.02 -
moebius 40 21 1 0.05 0.13 2.600 0.09 1.800 0.24 4.800
moebius 60 31 1 0.16 0.45 2.812 0.31 1.938 0.84 5.250
moebius 80 41 1 0.39 1.14 2.923 0.83 2.128 2.24 5.744
moebius 100 51 1 0.73 2.25 3.082 1.63 2.233 4.5 6.164
moebius 120 61 1 1.23 4 3.252 2.88 2.341 7.71 6.268
moebius 140 71 1 2.01 6.65 3.308 4.8 2.388 13 6.468
moebius 160 81 1 2.98 9.91 3.326 7.67 2.574 21.65 7.265
moebius 180 91 1 5.05 15.29 3.028 11.79 2.335 32.46 6.428
moebius 200 101 1 7.95 27.01 3.397 18.16 2.284 52.56 6.611
moebius 240 121 1 14.95 52.05 3.482 37.13 2.484 97.79 6.541
moebius 280 141 1 30.8 90.51 2.939 71.71 2.328 191.04 6.203
moebius 320 161 1 53.05 165.82 3.126 140.95 2.657 284.97 5.372
moebius 360 181 1 78.46 242.58 3.092 192.7 2.456 447.23 5.700
moebius 400 201 1 111.63 340.48 3.050 280.15 2.510 685.23 6.138
moebius 440 221 1 158.66 502.07 3.164 392.95 2.477 919.7 5.797
moebius 480 241 1 225.71 816.58 3.618 500.15 2.216 1469.16 6.509
moebius 520 261 1 371.14 1001.24 2.698 688.26 1.854 1903.12 5.128

step 20 18 2 0 0.01 - 0.01 - 0.02 -
step 40 62 3 0.05 0.11 2.200 0.09 1.800 0.2 4.000
step 60 154 6 0.17 0.4 2.353 0.27 1.588 0.63 3.706
step 80 262 7 0.41 0.94 2.293 0.7 1.707 1.53 3.732
step 100 418 10 0.76 1.61 2.118 1.4 1.842 2.99 3.934
step 120 590 11 1.29 2.88 2.233 2.47 1.915 5.23 4.054
step 140 810 14 2.05 4.47 2.180 3.79 1.849 7.73 3.771
step 160 1046 15 2.89 6.37 2.204 5.68 1.965 11.47 3.969
step 180 1330 18 4.29 9.15 2.133 8.44 1.967 16.76 3.907
step 200 1630 19 5.71 12.29 2.152 12.21 2.138 24.52 4.294
step 240 2342 23 10.79 22.3 2.067 24.17 2.240 46.55 4.314
step 280 3182 27 18.62 36.89 1.981 46.5 2.497 85.18 4.575
step 320 4150 31 30.08 60.3 2.005 77.07 2.562 136.44 4.536
step 360 5246 35 45.02 86.98 1.932 120.3 2.672 186.9 4.151
step 400 6470 39 58.2 115.32 1.981 151.4 2.601 268.55 4.614
step 440 7822 43 75.81 148.01 1.952 204.87 2.702 362.92 4.787
step 480 9302 47 110.98 217.03 1.956 301.18 2.714 539.93 4.865
step 520 10910 51 130.73 259.77 1.987 417.94 3.197 693.9 5.308
step 560 12646 55 184.77 363.79 1.969 548.76 2.970 957.16 5.180

Table 6.3: Variants of qWeil
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Name Vertices Colors Structure Lists
overall useful %

benzene 18 36 511 21 4.110
benzene 60 400 18754 287 1.530
benzene 96 1024 75868 757 0.998
benzene 198 4356 649837 3112 0.479
benzene 300 10000 2477605 7560 0.305
benzene 396 17424 5375700 14242 0.265

dynkin 20 362 8808 266 3.020
dynkin 60 3482 253185 3145 1.242
dynkin 100 9802 1215970 9129 0.751
dynkin 200 39602 9795498 37832 0.386
dynkin 300 89402 33462760 83709 0.250
dynkin 400 159202 75681945 152072 0.201

moebius 20 11 120 6 5.000
moebius 60 31 960 26 2.708
moebius 100 51 2600 46 1.769
moebius 200 101 10200 95 0.931
moebius 300 151 22800 141 0.618
moebius 400 201 40400 187 0.463

path 20 200 4858 160 3.294
path 60 1800 129139 1254 0.971
path 100 5000 582057 4076 0.700
path 200 20000 4520545 18322 0.405
path 300 45000 16399733 35839 0.219
path 400 80000 36016087 67137 0.186

step 20 18 323 10 3.096
step 60 154 5084 97 1.908
step 100 418 27342 287 1.050
step 200 1630 163646 1336 0.816
step 300 3658 534460 2969 0.556
step 400 6470 1281129 5666 0.442

Table 6.4: Structure Lists Statistics
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Name Vertices Colors Cells qWeil random 2
ratio time ratio

dynkin 20 362 19 0.02 0.01 0.500
dynkin 40 1522 39 0.13 0.07 0.538
dynkin 60 3482 59 0.43 0.21 0.488
dynkin 80 6242 79 0.99 0.47 0.475
dynkin 100 9802 99 1.96 0.98 0.500
dynkin 120 14162 119 4.35 1.92 0.441
dynkin 140 19322 139 7.57 3.06 0.404
dynkin 160 25282 159 13.8 4.57 0.331
dynkin 180 32042 179 21.22 7.85 0.370
dynkin 200 39602 199 32.37 10.58 0.327
dynkin 240 57122 239 62.6 18.35 0.293
dynkin 280 77842 279 84.93 31.04 0.365
dynkin 320 101762 319 121.38 51.54 0.425
dynkin 360 128882 359 189.6 103.72 0.547
dynkin 400 159202 399 271.65 136.7 0.503
dynkin 440 192722 439 351.13 172.02 0.490
dynkin 480 229442 479 518.1 237.41 0.458
dynkin 520 269362 519 780.15 325.83 0.418
dynkin 560 312482 559 954.54 437.37 0.458

Name Vertices Colors Cells qWeil random 1 random 2
time time ratio time ratio

moebius 20 11 1 0 0 - 0.02 -
moebius 40 21 1 0.05 0.03 0.600 0.21 4.200
moebius 60 31 1 0.15 0.06 0.400 0.7 4.667
moebius 80 41 1 0.36 0.15 0.417 1.79 4.972
moebius 100 51 1 0.69 0.26 0.377 3.2 4.638
moebius 120 61 1 1.18 0.39 0.331 5.64 4.780
moebius 140 71 1 1.92 0.56 0.292 9.16 4.771
moebius 160 81 1 2.89 0.86 0.298 14.25 4.931
moebius 180 91 1 4.86 1.44 0.296 34.65 7.130
moebius 200 101 1 8.16 1.73 0.212 39.63 4.857
moebius 240 121 1 17.63 3.92 0.222 128.59 7.294
moebius 280 141 1 27.01 4.97 0.184 178.25 6.599
moebius 320 161 1 46.48 7.64 0.164 357.91 7.700
moebius 360 181 1 86.77 16.74 0.193 700.75 8.076
moebius 400 201 1 120.55 16.09 0.133 772.51 6.408
moebius 440 221 1 206.04 26.88 0.130 1415.15 6.868
moebius 480 241 1 212.37 22.9 0.108 1402.52 6.604
moebius 520 261 1 390.4 38.81 0.099 1964.23 5.031
moebius 560 281 1 524.02 38.05 0.073 2764.23 5.275

Table 6.5: Random step procedures



6.1. Computations 113

6.1.2 1-stable Colorings

To give an idea of the performance of the implementation of 1-stab, denoted by
qStab, we have tested it on several graph classes which have been already used as
test objects above. Table 6.6 shows the number of colors of the coarsest 1-stable
partition for each instance and compares the running times of the non-canonical
and canonical algorithms implemented in qStab. The CPU times are given in
seconds.

qStab
¬ canonical canonical

Name Vertices Colors
time time ratio

benzene 1602 267 0.01 0.02 2.000
benzene 2400 400 0.01 0.02 2.000
benzene 3198 533 0.01 0.02 2.000
benzene 3996 666 0.02 0.03 1.500
benzene 4002 667 0.02 0.03 1.500
benzene 12000 2000 0.06 0.14 2.333
benzene 19998 3333 0.11 0.37 3.364
benzene 27996 4666 0.15 0.66 4.400
benzene 40002 6667 0.22 1.25 5.682
benzene 120000 20000 0.73 9.77 13.384
benzene 199998 33333 1.25 25.97 20.776

dynkin 1600 1599 0.01 0.06 6.000
dynkin 2400 2399 0.01 0.13 13.000
dynkin 3200 3199 0.02 0.23 11.500
dynkin 4000 3999 0.03 0.37 12.333
dynkin 12000 11999 0.09 3.25 36.111
dynkin 20000 19999 0.15 8.93 59.533
dynkin 28000 27999 0.2 17.41 87.050
dynkin 36000 35999 0.26 28.72 110.462
dynkin 40000 39999 0.3 35.42 118.067
dynkin 120000 119999 0.96 395.06 411.521
dynkin 200000 199999 1.6 2225.59 1390.994

Table 6.6: Comparison of running times of a canonical and non-canonical version
of qStab

Besides on the number of vertices, the computation time depends highly on the
number of colors of the resulting partitions. Again the canonical implementation
is slower than the non-canonical one.

For a comparison of qStab to the algorithm implemented in nauty, see Sec-
tions 5.2.3 and 5.1.4. nauty cannot handle graphs with vertex number larger
than about 100000.
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6.2 The Test Instances

The instances benzene, moebius and dynkin have been suggested in [7] and are
described below. step denotes the instances given by Fürer [31] for which 2-stab
requires a number of steps proportional to n and which have been described in
Section 4.5.1. path and cycle denote the instances which are paths and cycles,
respectively.

Path and Cycle

Pn is the path on n vertices, i.e,

Pn = (Vn, {[vi, vi+1] | i ∈ {1, 2, . . . , n− 1}})

and Cn is the simple cycle on n vertices, i.e.,

Cn = (Vn, {[vi, v(i+1 mod n)] | i ∈ {1, 2, . . . , n− 1}} ∪ {[v1, vn]}).

Dynkin Graphs

Dn is the so called Dynkin graph on n vertices (see Figure 6.1), i.e.,

Dn = (Vn, {[vi, vi+1] | i ∈ {1, 2, . . . , n− 2}} ∪ {[vn−2, vn]}).

Figure 6.1: The dynkin graph with 10 vertices

Benzene Stacks

Bn is the benzene stack on n vertices (see Figure 6.2). Bn is only defined for n
divisible by 6. Let Cj = [vi+j, v(i+(j+1 mod 6))], Lj = [vj, vj+6], and c = n

6
.

Bn = (Vn,
⋃

j∈{0,6,12,...,n−6}

Cj ∪
⋃

j∈{1,2,...,n−6}

Lj)
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Figure 6.2: The benzene stack with 18 vertices

Möbius

We denote by Mn the Möbius graph on n vertices (see Figure 6.3). Mn is only
defined for even numbers.

Mn = (Vn, {{vi, vj} | j − i ≡ k (mod n), k ∈ {1, n/2, n− 1}})

(a) (b)

Figure 6.3: Two drawings of the Möbius ladder with 12 vertices

6.3 Testing Environment

I am grateful to all those who provided me with their programs for the aims of
comparison to my programs. Furthermore, I used some libraries and compilers
from the open source community. I thank the respective authors for writing great
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software. Some of the packages mentioned in this section are available directly
in the world wide web. If applicable, we give the address.

The results have been obtained on an SGI IP27, 1 GB memory using the NCC
compiler version 7.3.1.1m with optimization switched on, except for the program
rücker by G. Rücker and Ch. Rücker where we used g77, version 2.7.2.2.

6.3.1 qStab and qWeil

The algorithms presented in this thesis and implemented in the programs qStab
and qWeil are written in C++. The programs are available at http://www-m9.
mathematik.tu-muenchen.de/~bastert.

All parameters of qStab are defined via command line parameters. To visu-
alize the results, an elementary graphical user interface was written making use
of the Qt library (http://www.troll.no) by troll tech.

(a) The colored matrix (b) and the colored graph

Figure 6.4: The colored instance step 80 after 3 iterations of qWeil

6.3.2 Other Programs

The previously mentioned programs stabcol and stabil [6, 7] are available at
http://www-m9.mathematik.tu-muenchen.de/~bastert/wl.html. The program
CC [58] can be obtained directly from the author (inp@pdmi.ras.ru)

The program rücker [61, 62] is available from the authors (cruecker@orgmail.
chemie.uni-freiburg.de) on request.
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nauty is a very impressive program package for solving graph isomorphism,
automorphism and canonical labeling problems (http://cs.anu.edu.au/people/
bdm/nauty/), written by B. D. McKay [49].

During the development of the algorithms, we made use of LEDA [51] (http:
//www.mpi-sb.mpg.de/LEDA/), a library of efficient data structures. In the cur-
rent versions, LEDA is not used anymore. All the development work has been
made on a computer powered by Linux. The pictures are drawn in xfig and the
typesetting is made in LATEX2e.
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Chapter 7

Conclusions

We have presented a new canonical algorithm for computing coherent colorings
which is the first one to satisfy the best known time and space bound simultane-
ously. Furthermore, we have shown that our implementation is by far the fastest
known for computing coherent colorings. In addition, the algorithm for comput-
ing the coarsest 1-stable partition is competitive and is in particular fast on large
instances. We have introduced new k-dimensional stabilization algorithms which
can be implemented more efficiently than the known ones.

The algorithm for computing the coarsest 1-stable partition was designed
to tackle eigenvalue problems of large graphs. It was used in a framework for
computing the eigenvalues of Robinson graphs which play an important role in
the reconstruction of phylogenies.

As a contribution to the structural analysis of Robinson graphs, we determined
the cells of the coherent algebra generated by Robinson graphs.

We discussed several variations of stabilization procedures. In particular, we
examined one algorithm used in chemistry in more detail.

From an algorithmic point of view, two open questions are of particular in-
terest. M. E. Muzychuk raised the question how to compute coarsest non-trivial
equitable partitions of regular graphs. There is a lower bound on the maximum
number of iterations in 2-stab of Ω(n) and no upper bound, except the trivial
one of O(n2). It would be interesting to close this gap.

119
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Appendix A

The Complete Algorithm

In this section, we state the space optimal algorithm for 2-dimensional stabiliza-
tion with time bound O(n3 log(n)) (ts) presented in Section 3.4 as a whole.

121
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Algorithm 31: 2-stab (ts)

Data : Gf = (V,E, f), f proper

Result: The coarsest 2-stable coloring f 2 of Gf

1: f 2 ≡ f ;
2: repeat
3: f ≡ f 2;
4: foreach c ∈ N do
5: L(c) = ∅;
6: foreach (u, w) ∈ columns(c) do
7: for (v = 1; v ≤ vertices; v ++) do
8: if (w, v) is first of its color-class in the row of M corre-

sponding to w then
9: append ((u, w), (w, v)) to the list L(c);

end
end

end
10: sort L(c) by the colors of the second edges;
11: foreach d ∈ L(c) do
12: splitcolor(c, d);

end
13: delete L(c);

end
14: foreach d ∈ N do
15: L(d) = ∅;
16: foreach (w, v) ∈ rows(c) do
17: for (u = 1; v ≤ vertices; u++) do
18: if (u, w) is first of its color-class in the row of M corre-

sponding to w and f(u, w) ∈ O then
19: append ((u, w), (w, v)) to the list L(d);

end
end

end
20: sort L(d) by the colors of the first edges;
21: foreach c ∈ L(d) do
22: splitcolor(c, d);

end
23: delete L(d);

end
24: recolor;

until rf2 did not change;
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Procedure 32: splitcolor(c, d)

1: compute L(c, d);
2: sort L(c, d) by the values pc,de ;
3: foreach e with e first edge in L(c, d) with color f(e) do
4: b := f(e);
5: if C(b).hit < C(b).size then
6: C(b).current p := 0;

else
7: C(b).current p := pc,de ;

end
8: C(b).current color := b;
9: C(b).hit := 0;

end
10: foreach e ∈ L(c, d) do
11: if C(f(e)).current p 6= pc,de then
12: C(f(e)).current p := pc,de ;
13: C(f(e)).current color := nf + 1;

end
14: C(f(e)).size−−;
15: delete e from its parent’s children list;
16: append e to the children list of C(f(e));
17: parent(e) := C(f(e));
18: f(e) := C(f(e)).current color;
19: C(f(e)).size ++;

end

Procedure 33: compute L(c, d)

1: foreach w ∈ columnindices(c) ∩ rowindices(d) do
2: foreach e = (u, v) with (u, w) ∈ C(c) and (w, v) ∈ C(d) do
3: if pc,de = 0 then
4: C(f(e)).hit ++;
5: append (e, pc,de ) to L(c, d);

end
6: pc,de ++;

end
end
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Procedure 34: recolor
1: Let L be the list of all edges which got a new pseudo color;
2: sort L by the old colors f ;
3: introduce a dummy root r;
4: foreach e ∈ L, f(parent(e)) ≤ nf do
5: assign e as child of r;
6: assign r as parent of e;

end
7: Let L′ := {f(v)|v ∈ L};

the parent-children relationship defines a tree T on the

color-classes in L.;
assign new colors nf + 1, . . . , nf to the color-classes in T and to the edges
in L by walking through T in post order (or some other well defined order);

8: foreach e ∈ L (pass though L in the described order) do
9: delete e from its color-class C(f(e));

10: append e to C(f(e));
end

11: sort L by the tuples (rowindex(e), columnindex(e)) and generate with the
help of this ordering the row encodings of the new color-classes;

12: sort L by the tuples (columnindex(e), rowindex(e)) and generate with the
help of this ordering the column encodings of the new color-classes;

13: foreach c ∈ L′ do
14: find d ∈ Nc with |C(d)| = max

d′∈Nc

|C(d′)|;
15: if |C(d)| > |C(c)| then
16: exchange the colors of the color-classes C(c) and C(d);

end
end

17: f 2 ≡ f ;
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[63] H. Sachs. Über Teiler, Faktoren und charakteristische Polynome von
Graphen I. Wiss. Z., 12:7–12, 1966.
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1-dimensional stabilization, 16
1-dimensional structure constant, 11
1-dimensional structure list, 11
1-dimensional structure value, 11
1-stable coloring, 11
2-dimensional structure constant, 14
2-dimensional structure list, 13
2-dimensional structure value, 13
2-stable coloring, 11, 13

A(G), 6
adjacency matrix, 6
adjacent, 5
AΓn, 69
algorithm, 22
association scheme, 13
automorphism, 8
automorphism group, 1, 8
automorphism partition, 1, 8
automorphism partition problem, 1

basis edge, 13
Birkhoff graphs, 93

canonical, 17
canonical label, 21
canonical labeling, 21
canonical way, 17
canonically labeling, 1
Cayley graph, 63
cell, 12
cellular algebra, 13, 14
cellular set, 12
coarser, 7
coherent, 14
coherent algebra, 2, 5, 11, 13, 14

coherent algebra corresponding to f ,
15

coherent algebras, 11
coherent coloring, 11
coherent configuration, 15
color matrix, 9
color-class, 9
colored graph, 6

isomorphic, 8
coloring, 6, 7

k-stable, 11, 21
1-stable, 11
2-stable, 11
coarser, 7
coherent, 11
complete, 7
edge, 7
equitable, 11
equivalent, 7
finer, 7
vertex-, 7

compact, 92, 93
complete, 22
complete coloring, 7
complete sequence of partitions, 12
configuration graph, 65, 68
connected, 6

strongly, 6
corresponding, 50
cospectral, 58
cover, 47
CP(L), 45
crossover

(s : t)-, 68
cT (P ), 73
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cv(T ), 73
cycle, 6

∆(G), 12
d(iagonal)-crossover, 67
degree, 5
diameter, 6
diam(G), 6
directed, 5
discrete, 84
dist(u, v), 6
distinguished, 7
doubling, 90

E, 5
edge

basis, 13
non-basis, 13
undirected, 5

edge set, 5
edge-coloring, 7
edges

non-, 7
eigenvalue, 12
encoding length, 22
equal, 66
equally colored, 16
equitable coloring, 11
equitable partition, 2, 11
equitable partitions, 5, 11
equivalent, 7, 15, 96

f , 7
finer, 7
fitness function, 65
forest, 6
fv

2→1, 62

G, 5
genetic, 66
Gfv , 61
graph, 5

k-stable, 21
automorphism, 8

colored, 6
connected, 6
diameter, 6
equivalent, 15
induced, 6
isomorphism, 8
labeled, 8
order of a, 5
regular, 6
size of a, 5
strongly connected, 6
undirected, 5

graph automorphism, 1
graph isomorphism, 1

head, 5
hit, 29, 37

il(k), 50
incident, 5, 15, 44, 71
indeg(v), 5
indegree, 5
induced, 6
inner edge, 66
inner tree, 66
inner vertex, 66
instance, 22
invariant procedures, 22
isomorphic, 8
isomorphism, 8

k-coloring, 5, 16
k-configuration, 52
k-dimensional Weisfeiler-Leman algo-

rithm, 49
k-dimensional stabilization, 16
k-dimensional structure list of vk, 16
k-dimensional structure list ofck, 16
k-dimensional structure value, 16
k-roof, 47
k-stable, 16, 21

loosely, 47
strongly, 50

k-stable coloring, 11
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k-stable graph, 21
k-stable partition, 11
k-stable coloring, 21
k-star, 44
k-starlet, 15
k-tuple, 15

L1, 11
L2, 13
labeled graph, 8
labeling, 8
Laplacian, 13
larger, 74
LCOC rule, 26
leaf, 66
length, 6
Lfk(G), 61
l-invariant, 22
Lk, 16
longer neighbor, 75
longest inner path, 71
loosely k-stable, 47

m, 5
matrix representation, 14
m-move Pk game, 52
molecular graph, 95

n, 5
nauty, 88
necessary, 26
neighborhood equivalent, 96
neighbors, 5
new, 26
new colors, 26, 28
non-basis edge, 13
non-edges, 7
non-switching, 61
norm, 84
norm-code, 85
NP-complete, 23
NP-hard, 23

old color, 26

orbit partition, 1
orbits, 1
order, 5
outdeg(v), 5
outdegree, 5

p(arallel)-crossover, 67
part, 50

set of, 50
partition

automorphism, 8
complete sequence of, 12
equitable, 11

path, 6
length, 6
length of a, 6
simple, 6

path stable, 60
permutation, 44
π(T ), 69
Pk game, 52
pointing f at v, 61
polynomial, 23
polynomially time equivalent, 23
problem, 22
proper, 9, 43
pseudo coloring, 28
pcv, 11

qStab, 28
quotient graph, 12
qWeil, 28

rank, 7
recently recolored, 26
reduced dimension, 16
reduced structure list, 26
reduction code, 50
regular, 6
responsible, 74
Robinson graph, 68
running time, 23

Schur-Hadamard product, 14
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separator, 54
set of parts, 50
simple, 6
singular, 84
size, 5, 22
Solving, 22
s-path, 75
spectrum, 58
stabilization

k-dimensional, 16
1-dimensional, 16

stabilization procedure, 1
standard base, 15
(s : t)-crossover, 68
strong automorphism, 93
strongly k-stable, 50
strongly connected, 6
strongly regular, 19
structure constant, 15

1-dimensional, 11
2-dimensional, 14

structure constants, 11
structure list

1-dimensional, 11
2-dimensional, 13

structure value, 11
k-dimensional, 16
1-dimensional, 11
2-dimensional, 13

subgraph, 6
s-vertex, 67

tail, 5, 76
time complexity function, 23
Tn, 66
T dm
n (i), 70

T nk
n (i), 70

total degree partition, 12
totally path stable, 60
tree, 6
trees of Γn, 68
type, 68

undirected edge, 5

undirected graph, 5
useful, 101

V , 5
vertex

degree, 5
indegree, 5
outdegree, 5

vertex set, 5
vertex-coloring, 7
vertex-transitive, 8

weakly compact, 93
weakly isomorphic, 22
Weisfeiler-Leman algorithm, 19

k-dimensional, 49
wins, 52


