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A. INTRODUCTION 

A.1. RESEARCH CONTEXT 

The development of  engineering systems is a long, complex endeavor between the definition 
of  a market opportunity based on the actual and predicted customer’s needs, and the beginning 
of  the production [Browning 2003]. System development (SD) is a search for something 
unknown, and the result of  SD is a description of  a thing to be made, including instructions 
about how to make it [Baldwin & Clark 2000]. Thus, SD is a process of  gradually building up a 
body of  information, until it eventually provides a complete formula for manufacturing a new 
system [Smith & Reinertsen 1998]. In this process, persons, technologies and tools, resources, 
existing company practices and knowledge, etc., are utilized in a systematic manner to achieve the 
SD system objectives and generate value to the society (Figure  A.1). 

One difficulty of  today’s SD lies in the dynamics of  its environment. Between the exploration 
of  a market opportunity and the manufacturing of  the first piece of  product is a long period and 
during the course of  the project, the SD environment changes. As Figure  A.1 depicts, many 
external and internal factors influence the operation of  the SD system. Even if  project planning 
usually considers the uncertainty incorporated in the external and internal SD factors, the 
predictions are often imprecise. Furthermore, many unpredictable events happen during the 
project, which affects the value of  the final SD outcome. To avoid the consequences of  these 
unanticipated events, changes are made in the SD system during the project to increase the value 
of  its outputs [e.g., Clark & Fujimoto 1991, Fricke et al. 2000]. While modifications are only 
possible in the scope of  the available, planned resources of  the project, changes in the SD are a 
major source of  programmatic (cost and schedule) risk [e.g., Browning 1999b].  

Authors in the field of  recent systems engineering and SD literature argue that traditional SD 
philosophies (e.g., the waterfall SD model) and conventional project planning methods (e.g., 
Program Evaluation and Review Technique (PERT), Critical Path Method (CPM), Gantt chart 
techniques, etc.) are not effective in extremely dynamic SD contexts, because they do not address 
the high uncertainty and ambiguity that characterize today’s SD projects [e.g., Smith & Reinertsen 
1998, Haeckel 1999, Pall 2000, Highsmith 2000, Dove 2001, Thomke 2003]. Hence, for 
companies working in highly innovative and uncertain industry environments, the application of  
traditional SD methods is a risky decision [e.g., Takeuchi & Nonaka 1986, Clark & Fujimoto 1991, 
Eisenhardt & Tabrizi 1995]. So the quality of  the final product of  the SD project defined by the 
fulfillment of  the four key SD objectives in Figure  A.2 might be jeopardized by inappropriate 
conventional SD philosophies and planning methods. This could result in decreasing market 

 
Figure  A.1 System development system 
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success and reduced profitability, which can lead to decreasing market share in the long term. 

The main challenge of  SD organizations under highly dynamic circumstances is to enable 
efficient changes in the SD system, which increase the final value of  the product. That is, new SD 
system architecture models are required with the ability to accommodate changes without 
substantial negative impacts on the key project objectives (Figure  A.2). Furthermore, novel SD 
philosophies are required that foster the exploration and capturing of  design opportunities in a 
dynamic environment and thus contribute to the delivery of  high value products. 

A system (also an SD system) comprises a high number of  system elements that are related to 
each other [Igenbergs 2000]. Thus, a change made in one element of  the system to increase its 
value affects other related system elements, which might also require changes (i.e., a change in one 
element propagates through the system). Therefore, the cost of  a system change depends on the 
scope of  change and thus it has two main aspects: the direct cost of  change and the indirect cost caused 
by the propagation of  the change to other elements. 

Whether the scope and thus the total cost of  a change in a system is high or low depends on 
the type of  system architecture. If  a system architecture has the emergent characteristic of  low 
modification cost, the system architecture is called flexible [e.g., Ulrich 1995, Thomke 1997], 
adaptable [e.g., Rajan et al. 2004], reconfigurable [Son et al. 2000, Dove 2001, Nishinaga et al. 2003, 
Siddiqi et al. 2005], or changeable [Schulz & Fricke 1999, Fricke et al. 2000, Fricke & Schulz 2005]. 
Flexibility, adaptability, reconfigurability, and changeability are similar terms for 
describing the structural or detail complexity of  a system and thus the capability of  the 
system structure to accommodate changes easily. 

However, besides structural complexity, changes in an SD system have major effects on the 
behavioral or dynamic complexity of  the system. Many complex systems adapt or shift in 
response to changes in their context or to changes in their underlying components in the pursuit 
of  better fitness [Holland 1995, 1999]. That is, changes contribute to the operational and behavioral 
characteristics of  the system and thus affect the fitness (i.e., value) of  the SD process outputs. SD 
systems that are capable of  sensing changes in their dynamic environment, and of  
responding to them quickly by adapting their architecture to the changed conditions, are 
called adaptive [e.g., Haeckel 1999, Highsmith 2000, Pall 2000] or agile systems [e.g., 
Dove 2001, Haberfellner & De Weck 2005]. These systems are the major focus of  this thesis1. 

                                                 
1 It is difficult to clearly distinguish between the terms flexibility, agility, adaptability, and adaptiveness. Even 
authors who are native speakers define these terms differently. Thus, the author of this thesis does not attempt to 
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Figure  A.2 Four key SD objectives (adapted from [Smith & Reinertsen 1998]) 
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While adaptiveness is an emergent system characteristic, the planning, operation, and 
management of  adaptive SD systems require a holistic system view and the application of  systems 
engineering methods and principles. Furthermore, it is necessary to develop and apply novel project 
planning and control methods that support the creation of  an SD environment, where 
opportunities are sought and changes increasing the overall system value are supported, and not 
prohibited. 

The major objective of  this thesis is to provide systems engineering methods for 
effective planning and management of  adaptive SD systems. While systems engineering is a 
model-based engineering language, the basis of  adaptive systems engineering is also modeling. 
With the help of  modeling and simulation, the structure, architecture, and behavior of  the SD as 
a complex adaptive system can be understood, and adequate responses to the unpredictable 
changes in the dynamic system environment can be ensured.  

The understanding of  the system behavior in a dynamic environment is a basic step of  
adaptive SD project planning. It fosters the definition and appropriate sizing of  activities that 
must be conducted to reduce risk and seize opportunities required to achieve market success. 
Furthermore, good planning provides the decision makers with alternative ways to fulfill project 
goals even in unexpected situations. 

Thus, this thesis underlines that enhanced, systematic project planning and control are 
fundamental elements of  adaptive SD system management; because these activities assure that 
the SD system is capable of  sensing shifts in its internal and external environment through an 
adequately planned and operated feedback system. Furthermore, effective project planning is 
essential for the implementation of  flexibility in the critical parts of  the system designs (e.g., goal, 
product, process, organization, technology systems), which increases the capability of  the SD 
system to efficiently respond to the changes sensed.  

Consequently, this thesis proposes systems engineering methods to successfully deal with the 
dynamic SD system environment. First, the described, existing system engineering methods help 
model and estimate uncertainty during planning. Second, further existing and novel methods 
proposed in this thesis support the design of  flexible SD systems that are capable of  
accommodating the identified uncertainties. Third, the thesis proposes an adaptive SD 
framework, a model-based philosophy, to effectively implement and manage adaptiveness in SD 
systems. As project planning and control lies in the heart of  adaptive SD systems, two systems 
engineering methods are developed to support these two project management functions. Hence, 
fourth, a model-based adaptive project planning method is introduced that delivers a flexible SD 
project plan including every activity option required to respond to anticipated and unexpected 
situations in the adaptive SD project. Fifth, a decision-making framework for adaptive project 
control is developed in the thesis that facilitates deliberate decisions on how the flexible SD 
system should be adapted to respond to the sensed changes. Sixth, the proposed new systems 
engineering methods were validated in industry environment and feedback on their feasibility is 
gathered from industry experts. In the next part of  the Introduction, the requirements on adaptive 
SD systems are summarized. 

A.2. REQUIREMENTS ON ADAPTIVE SD SYSTEMS 

Systems engineering is the treatment of  engineering design and development as a decision-
making process [Hazelrigg 1996]. In this process, the agents of  the SD system (i.e., the 
developers) make decisions that form the behavior and improve the value of  the output of  the 

                                                                                                                                                         
put a firm stake in the ground for the precise meaning of these terms, but will use the simple distinction 
presented here. 
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SD. The decisions the agents of  the SD make, are driven by the system objectives, and 
constrained by the available SD system capability, and allocated resources. Furthermore, during 
decision-making, the developers act as elements of  the SD system. That is, the culture, the shared 
vision, and the strategic objectives of  the SD system guide their decisions, and they seek the 
solutions that mean value for the SD system [Senge 1990]. Hence, the holistic philosophy of  
adaptive SD described in this thesis only works if  it is implemented and understood at each 
hierarchy level of  the SD organization. Otherwise, system adaptations get expensive, time-
consuming, ineffective, and do not increase the value of  the system. 

SD as an adaptive system has the capability of  sensing changes in its inputs and responding 
quickly to changes by reorganizing and changing its outputs [Haeckel 1999]. Reorganizing in this 
context means that the agents of  the SD system collect feedback from the system environment, 
sense and interpret the characteristics, directions, and effects of  the changes, and respond to 
them by selecting and reconnecting the change-relevant system elements that contribute to the 
delivery of  the highest value outputs in the new SD system state.  

While conventional SD philosophies offer only a limited capability towards system changes, 
revolutionary methodologies are required which allow and drive system adaptations that 
maximize the overall value of  the project according to the stakeholders’ needs, and the enterprise 
vision and mission. A thorough review of  literature on novel SD systems provided the following 
requirements for SD adaptiveness: 

• The ultimate goal of  system adaptation is to change the SD system to move to a state 
with higher overall stakeholder value [e.g., Baldwin & Clark 2000, Browning & Honour 
2005]. Thus, core functions of  an adaptive SD system are opportunity management and innovation 
management [Dove 2001]. These functions foster effective learning and support the discovery 
and capturing of  design opportunities that contribute to the development of  superior 
products. 

• Adaptive SD system architectures must be highly flexible [e.g., Upton 1994, Ulrich 1995, 
Sanches & Mahoney 1996, Thomke 1997, Baldwin & Clark 2000, Dove 2001, MacCormack 
& Verganti 2003]. That is, changes in the system architecture have to be easy, cheap, and 
controllable. Ideally, adaptive systems consist of  reusable, fairly independent elements that are 
reconfigurable in a scalable framework [Dove 2001]. Modular systems are highly change-
tolerant and flexible, because they are composed of  independent modules and few, well-
defined interfaces. So changes remain usually “hidden” in the modules enabling independent 
module-level SD work and frequent changes [Baldwin & Clark 2000]. In addition, Schilling 
[2000] argues that the primary action of  increasing modularity in a system is to enable 
heterogeneous inputs to recombine into a variety of  heterogeneous configurations. Thus, 
flexible, adaptable systems must be basically modular. 

• The procedure of  system adaptation must follow a systematic framework (based on 
[Eisenhardt & Tabrizi 1995, Iansiti & MacCormack 1997, MacCormack et al. 2001]). This 
framework must guide the decision-makers through the necessary steps of  system adaptation, 
highlight the information requirements, and thus provide a firm basis for the evaluation of  
change options and selection of  the best one for the project. The role of  the adaptive SD 
system framework is to guide and foster effective SD work, not to constrain opportunities in 
the project. 

• System adaptation must be a collaborative decision-making process [Agile Manifesto 
Website, Senge 1990, Dove 2001]. Thus, when it comes to decisions, all the experts from 
relevant design teams, competencies, and departments (including Marketing, Sales, and 
Technology Development if  required) must be present to foster the effectiveness and 
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efficiency of  decision-making. The competencies required in the system adaptation process 
shall be determined on the basis of  the actual SD system state.  

• Decisions on system adaptation must be made on the basis of  detailed information 
about the actual state of  the SD system (i.e., characteristics of  changes) [Dove 2001]. 
Hence, in adaptive SD, project measurement and control are key systems engineering 
functions. Both endogenous (e.g., discovery of  opportunities, higher risks than anticipated, 
lower process efficiency and effectiveness, etc.) and exogenous SD factors (e.g., shifting 
customer needs, competitors’ new products, emerging technologies, new government 
regulations, etc.) have to be continuously monitored, and changes have to be sensed and 
communicated.  

• In the decision-making process on system adaptation, it is inevitable for the actors to 
be aware of  and understand the objectives, structure, and behavior of  the SD system 
(based on [Sterman 2000]). On the one hand, system modularity supports this requirement by 
reducing structural system complexity and thus allowing a manageable problem scope when it 
comes to making decisions. On the other hand, system adaptation requires an existing and 
continuously updated company-wide knowledge base and lessons learned from previous 
projects. All the information necessary for the decisions must be contained in this knowledge 
base; otherwise, the decisions will be sub-optimal leading to lower enterprise profits.  

• Effective decision-making on system adaptation requires thorough planning (based on 
[Eisenhardt & Tabrizi 1995, Iansiti & MacCormack 1997, MacCormack et al. 2001]). This 
improved planning effort has to include the identification and description of  change options 
that show how the system can respond to changes in its inputs. That is, project planning 
cannot be restricted to the definition of  one feasible SD process, but it has to consider all 
activity options that might be necessary to reduce the anticipated and unanticipated risks, and 
find and capture design opportunities during the SD project. Thus, the main task of  project 
planning in an adaptive SD is to define a flexible SD process that can be easily adapted to 
changed SD conditions.  

• System adaptations demand appropriate management reserves and resources 
otherwise they are major risk drivers in the project (based on [Browning 1999b]). As 
system adaptations are foreseen and unforeseen changes in the SD system, the resources 
allocated to the project have to be adequate to cover all required costs of  these changes.  

Based on these requirements, the next part describes the objectives of  the thesis.  

A.3. THESIS OBJECTIVES AND DELIVERABLES 

In short, this thesis attempts to show that a new way of  thinking about SD—i.e., a new, 
holistic, model-based, adaptive SD philosophy—is the key to long-term success. While the 
models we use form the way, we think and not the other way round; one goal of  this thesis is to 
propose a simple framework for adaptive SD systems that supports controlled learning under 
dynamic circumstances. Adaptive SD systems organized around this framework handle 
environmental changes effectively, which results in better products and increased stakeholder 
value.  

As the adaptive SD framework creates a new mental model for project managers and developers, 
existing methods are not feasible to implement adaptiveness successfully in the projects. Hence, 
this thesis explores and describes the main aspects of  SD in a dynamic environment, and 
provides systems engineering methods for the planning and control of  sense and response SD systems 
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according to the requirements found. A simplified model of  the adaptive SD system is depicted 
in Figure  A.3. Adaptive SD, as a system, receives inputs from its environment, which are then 
transferred into outputs inside the system. The adaptive SD system model in Figure  A.3 differs 
from conventional SD system models, because it is designed to have the capability of  sensing the 
changes in its environment, and responding to them in the form of  improved products, as 
outputs.  

Furthermore, the outputs of  the adaptive SD system generate new needs towards new 
products and technologies. That is, the SD system changes its context through its behavior 
[Schilling 2000, Sterman 2000]. The shifting market needs create new opportunities for the 
adaptive SD system that can be utilized in terms of  enhanced new versions or increments of  the 
flexible products. Hence, an adaptive SD system utilizes its capability of  effectively sensing 
changes and responding to them to generate competitive advantage from this characteristic. 
Adaptive SD systems are masters of  changes and profit from them in the form of  the development 
of  superior market products.  

This thesis recommends that two fundamental characteristics make systems migrate towards 
adaptiveness and agility: (1) the growing complexity of  SD systems and their context; and (2) the 
increasing uncertainty and ambiguity regarding the internal and external needs of  the SD. These two 
interrelated facets of  SD are the major challenges of  today’s SD projects.  

The enormously growing system complexity increases the difficulty of  the SD as a problem 
to be solved. If  the complexity of  conventional systems is no longer manageable, new types of  
system architectures are required that facilitate the effective decomposition of  the SD problem 
into individual sub-problems with controllable scope and complexity. Adaptable products 
consisting of  individual modules can be considered as systems of  systems, where independent 
modules are developed and fabricated by individual organizations that are integral parts of  the 
system of  systems enterprise. This thesis proposes that modular products with high flexibility and 
adaptability are basic building blocks of  such adaptive SD systems.  

Furthermore, modularity must be a structural characteristic of  the system, where modules 

 
Figure  A.3 Adaptive SD process 
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involve closely related system components with many intramodular and just a few clearly defined 
intermodular element interactions. Hence, modularization in an adaptive SD system aims to define 
a system structure containing independent modules that can be developed and changed 
independently and that can be easily reconnected during the system adaptation. This thesis 
includes methods for structural modularization that support this objective. 

Uncertainty, the other aspect that pushes SD systems towards adaptiveness, emerges when 
the dynamic complexity of  the SD system and its context gets so high that the future behavior of  
the overall system is no longer predictable. That is, the dynamics of  the external (e.g., market needs, 
technologies, suppliers, competitors, etc.) and internal SD characteristics (e.g., product performance, 
technology maturity, resources, etc.) that drive the system lifecycle value are not foreseeable, and the exact 
characteristics of  the system to be developed cannot be determined at the outset of  the project.   

This thesis proposes that the best instrument against uncertainty is to design response ability in 
the SD system that allows quick reactions to shifts in the SD context and thus long-term 
maximization of  the overall SD system value. Furthermore, SD has to be organized for 
collaborative and individual learning, as understanding and learning is the main driver of  
adaptiveness. Thus, the adaptive SD system framework developed in this thesis is process-
centric. Adaptive SD systems are organized around the iterative SD process characterized by 
permanent experimentation, frequent prototype releases, and continuous validation with 
the customer.  

The main deliverable of  this thesis is a systems engineering framework for the planning and 
control of  adaptive SD projects (Figure  A.4). In this framework, the SD enterprise is considered 
as a system in permanent interaction with its environment—i.e., the SD system is an element of  
the market with a close relation to other market elements (e.g., customers, competitors, 
government, suppliers, etc.). Thus, the actions of  other market elements affect the behavior and 
also the output of  the SD enterprise system. Furthermore, the SD system is internally comprised 
of  system elements as well. These system elements interact on the basis of  the system structure, 
and produce the deliverables of  the SD system.  

The goal of  systems engineering is to plan and control the work in the SD system to support 
the right development of  the right product. In a highly dynamic SD context, this requires continuous 
interaction with the SD stakeholders to follow and interpret the trends of  the quickly evolving 
needs. Systematic project planning and control are basic means to build a bridge between internal 
and external stakeholders, and synchronize SD needs and performance to achieve maximal 
stakeholders’ satisfaction.  

Consequently, the two main products of  the thesis support the effective planning and control 
of  a flexible SD process, which facilitates the fulfillment of  the requirements on adaptive SD 
defined in the previous section. Adequate planning is important, because SD plans guide the 
developers on their way from the identification of  a design opportunity to the start of  the 
production. Adaptive SD requires process plans with increased flexibility that show multiple ways 

 
Figure  A.4 Adaptive SD framework 



15  

to fulfill the requirements. These alternative ways are real options for the developers, activities that 
can be chosen in certain SD situations, but do not have to be carried out if  not required. Thus, 
SD plans in an adaptive SD system are not mere control mechanisms, but instruments that 
support deliberate decision-making by depicting the decision options for certain SD states.  

The implementation of  adaptiveness in SD systems is supported by a novel planning 
technique; the Adaptive System Development Process (ASDP), a process modeling method 
that simulates the behavior of  the adaptive SD systems, which is the first main deliverable of  the 
thesis. This process modeling method implemented in a software tool models and simulates 
decision-making in adaptive SD, and always selects the best activity for the project from a flexible 
process space. Decision-making on process adaptation in ASDP is based on the actual project 
state described by the project budget and effort spent, and the product performance achieved 
until the actual point in the project. A system of  process attributes is applied to track process 
performance during simulation, and calculate risk and opportunity values to obtain comparable 
management measures showing the overall maturity of  the design and the performance of  the 
project from different technical and business units.  

ASDP revolutionizes process modeling by simulating the behavior of  a flexible process space 
with the main objective of  stakeholder value maximization. Thus, ASDP delivers a more realistic 
SD project schedule and a set of  process options for the decisions on system adaptation during 
SD. Furthermore, using the results of  the simulation in ASDP, adequate management reserves 
can be planned that incorporate resources for foreseen and unforeseen adaptations as well.  

The second systems engineering method that supports the implementation of  adaptiveness in 
SD systems is a decision-making framework for the control of  adaptive SD projects. This 
systematic project control procedure guides the SD team towards higher system value by 
providing the decision-makers with ways to resolve the actual SD state, process options to 
improve the actual state, evaluation methods to determine the effect of  each process option on 
the overall system value, and decision rules to select the best alternative towards maximal system 
value.  

Both systems engineering methods were validated in industrial environment. The pilot 
projects at TetraPak Carton Ambient in Modena, Italy, showed that the methods are not only 
applicable in the industry, but they contribute to significant increases in process effectiveness and 
efficiency.  

A.4. THESIS STRUCTURE 

After the research context, the requirements, main objectives, and deliverables of  the thesis 
have been described, in this final section of  the Introduction, the structure of  the thesis is 
described. The structure represents the author’s systematic research approach to solve the 
problem defined in the previous sections, and deliver the products that fulfill the requirements. 
As the writing of  this dissertation was a real, adaptive SD project (i.e., an iterative journey to the 
unknown) the objectives, scope, and thus the structure of  this thesis emerged and changed until 
the last days of  the process (and would obviously change if  more resources were available). 

The product of  the dissertation writing process (i.e., the PhD thesis) is a system in itself  made 
up of  individual components. These components are organized into three functionally different 
modules depicted in Figure  A.5. The function of  the first main module of  the system is to 
introduce the concept of  adaptive SD systems, and provide a concrete theoretic fundament for 
the methods introduced and validated in the later modules. The five subsystems of  the first 
module are organized in a top-down manner, discussing the aspects of  adaptive systems 
engineering in growing detail.  
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Subsystem B in the first theoretical module presents basic systems engineering principles and 
models, which are the basic building blocks of  the description of  adaptive SD systems. As the 
author of  this thesis is a PhD student of  the Munich systems engineering school at the Institute of  
Astronautics of  the Technische Universität München, the thesis builds on the systems 
engineering concepts developed by Prof. Eduard Igenbergs and his former doctoral students. 
However, this first chapter also shows how the concepts of  Munich systems engineering fit in the 
world of  systems engineering research. Additionally, the last part of  the first chapter defines the 
meaning of  systems engineering from the author’s point of  view. 

Subsystem C of  module one reviews SD lifecycle models and philosophies presenting the way 
from the waterfall model to Agile SD. The philosophy an organization applies for SD has a basic 
influence on the behavior and output of  the SD system. This section shows that though 
conventional SD models cannot host adaptive SD principles; there is a lack of  adequate, mature 
philosophies for the adaptive development of  complex engineering systems. Nevertheless, this 
section closes with a list of  fundamental characteristics for adaptive SD systems. 

The third thesis component, Chapter D, deals with the inputs of  the SD system, and discovers 
the effects of  the dynamic system context on the system objectives. Because the system 
objectives show the developers the right direction, they must be always kept up-to-date with the 
changing system environment. Furthermore, this section introduces the term value, a measure that 
shows the fitness of  the SD system performance from the stakeholders’ point of  view. 

Chapter E focuses on the output of  the adaptive SD system and discusses the required 
architectural characteristics of  the products of  adaptive SD. This section shows that modularity is 
a main driver of  flexibility and thus a fundamental requirement for the products of  adaptive SD 
systems. Even though many other design aspects contribute to SD system adaptiveness, there is 
no effective adaptive SD without modularity and flexibility.  

The last subsystem of  the first theoretic module of  the thesis, Chapter F, analyses the 

 
Figure  A.5 PhD thesis structure 
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phenomenon uncertainty and the process-related aspects of  adaptive SD. This section discovers 
that design iteration and systematic learning are fundamental means to resolve uncertainty. Thus, 
SD project structures have to be basically iterative, built up by a hierarchic system of  
experimentation cycles between design reviews and milestones. Such a project structure ensures 
rapid experimentation (i.e., the cyclic process of  system design, verification, and evaluation) and 
prompt feedback from the customer on the prototypes delivered by the experiments. The role of  
the frequent reviews and milestones is to provide a place for informed decisions on process 
adaptation using internal and external feedbacks on the SD process deliverables. 

The second and third modules of  the thesis include the developed adaptive SD methodology 
and its validation. Even though the three chapters in the second module of  the thesis are 
functionally closely related, they do not follow one after the other in the dissertation. The reason 
is that each chapter of  the Adaptive System Management module is followed by a chapter of  the 
third, Validation module to show how the developed methods were implemented and validated at 
TetraPak Carton Ambient, in the food packaging system development industry. This rule is shown 
by the chapter numbering in Figure  A.5.  

The first subsystem of  module two, Chapter G describes the adaptive SD framework that defines 
the basic structure of  adaptive SD projects. This double loop of  learning and control is a risk- and 
opportunity-based, workstate-driven systems engineering management framework that allows the 
generation of  an emergent SD strategy. The adaptive SD strategy and process evolve together 
with the design and the knowledge in the project enabling the right development of  the right 
products. The iterative process of  learning is one main element of  this SD framework that 
follows Thomke’s four-step experimentation cycle model [Thomke 2003]. Experiments are the main 
places for learning in the SD and provide evolving representations of  the system design in a 
systematic manner. 

The second basic element of  the adaptive SD framework is the control loop. The goal of  the 
control loop is to monitor process performance by collecting actual information inside and outside 
the project, evaluate this information, and determine the actual risk and opportunity status 
regarding the main requirements and constraints of  the SD. This information provides an 
excellent basis for decision-making, because the actual risks and opportunities represent the 
probable profit losses and gains the management can anticipate without changing the project 
plans. In the final step of  the control loop, the management can decide to adapt the SD process 
to better deal with the actual SD needs, and to reduce risks and capture opportunities.  

After the introduction of  the adaptive SD framework, Chapter G focuses on the presentation 
of  the control loop. This procedure integrates project monitoring, risk management, and project 
control to process internal and external project information describing the actual state of  the SD 
to support deliberate decisions on project adaptation. 

In the subsequent part of  the thesis, in Chapter H the implementation and validation of  the 
procedure of  adaptive project control and the decision framework for system adaptation is demonstrated in a 
real industry environment through a case study. The case study at TetraPak Carton Ambient in 
Italy demonstrates how parameter-based project monitoring and risk- and opportunity-driven 
decision-making can be implemented in the food packaging industry SD processes and integrated 
with conventional SD methodologies.  

Chapter I is the first of  four chapters on process modeling, an effective tool for project 
planning. These four chapters present the way from traditional network techniques, over 
workflow-driven process modeling—representing the state-of-the-art in the industry—to 
workstate-driven methods, which might be the next generation of  project planning tools. Two 
parameter-based stochastic process modeling methods are described and validated in these four 
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chapters to illustrate the difference between conventional, workflow-driven, and the novel, 
adaptive, workstate-driven approaches for project planning. The workflow-driven VVT Process 
Modeling (VVTPM) procedure and tool is presented in Chapter I and validated in an industry 
environment in Chapter J. 

Chapter K deals with workstate-driven process modeling and presents the Adaptive System 
Development Process (ASDP) method and tool. The ASDP method implements the double loop of  
learning and control in a process modeling framework, and simulates the SD process as an 
intelligent system that evolves toward maximal stakeholder value. ASDP is validated in Chapter L 
using SD processes from TetraPak Carton Ambient. This chapter also includes a comparison of  
the results of  the VVTPM and ASDP tools to highlight the differences between workflow and 
workstate-driven process modeling. 

The final chapter of  the thesis includes the evaluation of  the case studies conducted at 
TetraPak Carton Ambient from an industrial point of  view. This chapter contains the results of  a 
questionnaire aiming to explore the feasibility of  the methods developed in the thesis and 
implemented in industry environment. This positive feedback from the industry is particularly 
important for the final evaluation of  this thesis, because it shows that the thesis findings are 
valuable and feasible for industry application.  
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B. SYSTEMS ENGINEERING FUNDAMENTALS 

B.1. CHAPTER ABSTRACT 

This first chapter gives an overview of  the history of  systems 
sciences, proposes basic definitions, and reviews system models 
that are of  great importance for the later chapters of  this thesis. 
The definitions, models, and modeling methods reviewed in this 
first chapter represent a way of  thinking about systems, and 
particularly SD systems that separates the systems engineer from the product developer. Further, 
the systems engineering theory described in this chapter involves the system elements that 
provide the fundament for the development of  the adaptive SD systems theory introduced in the 
second part of  the thesis. 

B.2.  THE ROOTS OF SYSTEMS SCIENCES 

Systems theory is the philosophy of  understanding and solving complex problems. Its 
historical roots can be traced back to ancient Greece, where Plato and his student Aristotle 
documented the first holistic thoughts around 350 BC [Negele 1998]. Besides the development 
of  holistic methods to deal with physical and biological phenomena, Aristotle formulated the 
famous basic principle of  holistic thinking in his book Metaphysica: the whole is more than the sum of  
its parts.  

This sentence shows that even the first holistic thinkers recognized that systems cannot be 
understood simply by understanding the parts, but the interactions between the parts and the 
consequences of  these interactions are equally significant. Hence, systems must be looked at in 
their entirety, recognizing that many phenomena are more than the sum of  their parts. Systems 
theory calls the system level phenomena that cannot be observed at the analysis of  the parts 
emergent properties of  the system.  

Emergence refers to the macro-level patterns arising in systems of  interacting agents. Emergent 
phenomena cannot be deduced from knowledge of  behavior of  individual parts and are not 
reducible to the parts alone. Emergent complexity is driven by a few simple patterns that 
combine to create infinite variety [Wikipedia Website]. 

Furthermore, systems theory and systems sciences argue that it does not matter how complex 
or diverse the world that we experience is; different kinds of  organizational patterns can always 
be found in it, and these patterns can be described by generic concepts and principles 
independent of  the specific domain. The specific organizational patterns that system analysts 
seek are the characteristic elements of  the system and the interactions between them. Thus, the 
systems approach distinguishes itself  from the more traditional analytic approach by emphasizing the 
interactions and connectedness of  the different components of  a system [Heylighen et al. 1999]. 

The principles that describe the characteristics and behavior of  different complex systems 
form an interdisciplinary science (i.e., systems theory) adapted for a universal application with a 
common language and area of  concepts. This approach is seen as a means of  not only 
overcoming the fragmentation of  knowledge and the isolation of  the specialist, but also finding 
new solutions to problems created by the earlier “solution of  problems”.  

Systems sciences evolved during the 1940s, 1950s and 1960s in the USA as the result of  
research conducted by various development teams in different scientific disciplines. However, 
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three main research fields are considered as the major contributors to today’s systems sciences 
(e.g., systems engineering, systems dynamics, systems thinking, etc.): 

• General systems theory 

• Cybernetics and systems dynamics 

• Systemology and operations research 

The general systems theory was proposed in the 1940s by the Hungarian biologist Ludwig von 
Bertalanffy [1968], and furthered by Ross Ashby [1956]. Von Bertalanffy was both reacting 
against reductionism and attempting to revive the unity of  science. He emphasized that real 
systems are open to, and interact with, their environments, and that they can qualitatively acquire 
new properties through emergence, resulting in continual evolution. 

Rather than reducing an entity (e.g., the human body) to the properties of  its parts or 
elements (e.g., organs or cells), systems theory focuses on the arrangement of, and relations 
between the parts, which combine them into a whole (cf., holism). This particular organization 
determines a system which is independent of  the concrete substance of  the elements (e.g., 
particles, cells, transistors, people, etc.). Thus, the same concepts and principles of  organization 
underlie the different disciplines (physics, biology, technology, sociology, etc.), providing a basis 
for their unification. Systems concepts include system-environment boundary, input, output, 
process, state, hierarchy, goal-directedness, and information [Wikipedia Website]. 

Cybernetics is a theory of  the communication and control of  regulatory feedback. The word 
cybernetics was first used by the mathematician Wiener, who adapted it from the Greek word 
kybernetes meaning “steersman” to invoke the rich interaction of  goals, predictions, actions, 
feedback, and response in systems of  all kinds [Wiener 1948]. As Ashby wrote in [1956]  

cybernetics offers a method for the scientific treatment of a system in 
which complexity is outstanding and too important to be ignored. 

Cybernetics has a threefold contribution to the evolution of  systems sciences: (1) it stresses 
information flow as a distinct system component differentiating between the activating power 
and the information signal; (2) it recognizes that similarities in the action of  control mechanisms 
involve fundamentally identical principles; and (3) it gives the basic principles of  feedback control 
a mathematical treatment [Blanchard & Fabrycky 1990]. 

In fact, cybernetics and general systems theory study essentially the same problem, that of  
organization independent of  the substrate in which it is embodied. Whereas systems theory 
focuses more on the structure of  systems and their models, cybernetics deals with how systems 
behave, i.e., how they control their actions, how they communicate with other systems or with 
their own components. Since structure and function of  a system cannot be understood 
separately, the concepts of  cybernetics and systems theory complement each other in a discipline 
that is more than the sum of  the two components. 

The concept of  feedback is also central in system dynamics, a general discipline that was 
developed by the cybernetics research group at Massachusetts Institute of  Technology (MIT). 
The fundamental idea behind system dynamics is that all systems, no matter how complex, 
consist of  networks of  positive and negative feedbacks, and all dynamics arise from the 
interaction of  these loops with one another [Sterman 2000]. Thus, the goal of  system dynamics 
is to understand the basic principles of  feedback and with the use of  these to find management 
policies and organizational structures that lead to greater success [Forrester 1961]. Furthermore, 
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feedback is also the main driver of  learning. Thus, effective decision-making and learning requires 
expanding the boundaries of  managerial and engineering mental models, and developing tools 
that foster systems thinking, i.e., the understanding of  how the structure of  complex systems 
creates their behavior [Sterman 2000]. 

Operations Research (also called the management sciences), another forerunner of  modern systems 
engineering, was developed prior to and during World War II in the USA and Great Britain with 
the pragmatic goal of  improving military operations through the use of  mathematics. The 
founders of  the field of  operations research came from diverse backgrounds, including physics, 
mathematics, engineering, and economics. These researchers teamed up to use mathematics to 
solve complex problems like logistics, precision bombing, or radar development and 
implementation. After the war, business had learned the practicality of  this discipline that made 
operations research possible to expand to commercial areas. 

By the 1970s the use of  computers for mathematic computation and modeling presented new 
opportunities for growth in operations research. The field of  operations research today is 
integrated into many disciplines, including the military, government policy, medicine, 
transportation, computer sciences, and business. Its defining characteristics are the applications 
of  mathematics, physics, and systems thinking to solve problems. 

After the short description of  traditional systems sciences, basic systems engineering 
definitions and approaches are presented in the next section. 

B.3. SYSTEMS ENGINEERING IN LITERATURE 

Systems engineering literature includes various definitions and procedures that explain the 
basic essence of  this discipline. While the models and procedures in this chapter describe the 
fundamental philosophy of  systems engineering, which is a unique way of  thinking about the 
products and processes of  engineering, it is important to present them in this early section of  
this thesis and thus provide a sound basis for the theoretical findings in the later sections.  

As the previous section showed, systems engineering is the application of  systems theory to 
the development of  engineering systems. As Blanchard & Fabrycky [1990] suggest:  

…systems engineering is a process employed in the evolution of systems 
from the point when a need is identified through production and/or 
construction and ultimate deployment of that system for consumer use. 

Hazelrigg [1996] defines systems engineering as the treatment of engineering design 
as a decision-making process. Furthermore, he compares systems engineering to the 
three-step process of  strategic planning. As Figure  B.1 depicts, systems engineering starts with the 
identification of  a need through the honest assessment of  the actual situation described by the 
extant technology. The second step of  systems engineering is the definition of  the system 
objectives, i.e., a statement where the stakeholders of  the system want to be in some time in the 
future. The third element of  the system in Figure  B.1 is the systems engineering process that 
shows the way from the current situation to the satisfaction of  the future needs. 
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Haberfellner et al. [2002] consider systems engineering a methodology for problem solving, 
where the problem is defined as the difference or gap between the actual system state and the 
targets or the system objectives describing the future system state (see also [Sterman 2000] for a 
similar definition). Furthermore, systems engineering provides the model-based methods and 
tools that help find the ways of  solution that bridge the gap between the actual and the target 
state of  the system. As Figure  B.2 depicts, the problem solving or systems engineering process is the central 
element of  the systems engineering methodology. It consists of  two separate components: (1) 
system design, the main constructive task for problem solving; and (2) project management, the 
task of  organizing and coordinating the problem solving work. On the one hand, the systems 
engineering philosophy, involving systems thinking and the systems engineering procedure in the top in Figure 
 B.1, provides guidelines to the problem solving process. On the other hand, system design and 
project management supports the problem solving process with traditional techniques and methods 
[Haberfellner et al. 2002]. 

Igenbergs [2000], as a traditional system theorist, considers systems engineering an 
independent discipline that provides model-based methods for problem-solving in general. 
Hence, the systems engineering procedure used by Igenbergs depicted in Figure  B.3 is a generic 
approach for the definition and analysis of  a model to solve a complex problem. The same 
systems engineering procedure, a basic mental model for systems engineering problem solving in 
the German-speaking systems engineering literature, can also be found in [Haberfellner et al. 
2002] 

The iterative decision-making procedure in Figure  B.3 starts with the evaluation of  the state-
of-the-art and identification and description of  the problem. In step 2, the system objectives and 
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Figure  B.2 Components of the Systems Engineering Methodology [adapted from Haberfellner et al. 2002] 

1 Determine 
problem or

state of design

1 Determine 
problem or

state of design

2 Define system 
objectives & 

evaluation criteria

2 Define system 
objectives & 

evaluation criteria

3 Model solution 
options and 

simulate behavior

3 Model solution 
options and 

simulate behavior

4 Evaluate 
solution options

4 Evaluate 
solution options

5 Choose best 
option

5 Choose best 
option

6 Implement best 
option

6 Implement best 
option  

Figure  B.3 Systems engineering procedure (adapted from [e.g., Igenbergs 2000]) 



23  

quantifiable evaluation criteria are defined to translate the problem into engineering language 
applicable at the evaluation of  the solution options. The options modeled in step 3 are alternative 
ways (systems engineering process options) to solve the problem defined in step 1 (e.g., to improve 
the inadequate aspects of  the system design). These solution options are then evaluated against 
the criteria in step 4. The best option is selected in step 5 and implemented in step 6. This generic 
iterative decision procedure is usually used to solve diverse problems at various system levels at 
different times and system maturity levels in the SD.  

Another distinguished theory for the selection of  the best option during decision-making was 
proposed in [Hazelrigg 1998]. The proposed decision analysis process is similar to the basic 
systems engineering procedure in German-speaking literature as described previously. During this 
process, the decision makers (1) clarify the problem or situation, (2) identify options for the 
solution, (3) determine the expectations on each option, (4) express values for each option, and 
(5) build a rank order of  the alternatives to choose the best option. 

The kinds and number of  options vary at each decision in the SD. While a solution to a 
simple problem can result in a yes/no answer to a design question, other more complicated 
problems require the assessment of  multiple design aspects and thus the solution has to cover all 
these aspects, i.e., it has to include an answer to all design questions that comprise the problem. 

While systems engineering can be generally considered as a discipline supporting engineering 
problem solving, technical standards provide a more detailed description of  the role of  systems 
engineering in the development process of  complex engineering systems. In the following 
sections, first of  all, the definitions for systems engineering and the term “system” in technical 
standards are listed, and then the author’s personal understanding of  this topic is described.  

B.4. SYSTEMS ENGINEERING IN TECHNICAL STANDARDS 

Technical standards agree that systems engineering deals both with the system being developed 
(the product system) and the system that does the developing (the producing system) [NASA 1995]. 
Furthermore, these standards usually divide systems engineering into two significant disciplines: 
the technical knowledge domain in which the systems engineer operates, and systems engineering 
management [DoD 2001a]. The next part of  the thesis shows how technical standards and 
guidebooks define systems engineering (for more definitions see the section Glossary of  Terms): 

• A logical sequence of activities and decisions that transforms an 
operational need into a description of system performance parameters and 
a preferred system configuration [MIL-STD-499A] 

• An interdisciplinary, collaborative approach that derives, evolves, and 
verifies a life-cycle balanced system solution which satisfies customer 
expectations and meets public acceptability [IEEE P1220]. 

• An interdisciplinary engineering management process that evolves and 
verifies an integrated, life-cycle balanced set of system solutions that 
satisfy customer needs [DoD 2001a]. 

• A robust approach to the design, creation, and operation of systems. In 
simple terms, the approach consists of identification and quantification 
of system goals, creation of alternative system design concepts, 
performance of design trades, selection and implementation of the best 
design, verification that the design is properly built and integrated, 
and post-implementation assessment of how well the system meets (or met) 
the goals. The approach is usually applied repeatedly and recursively, 
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with several increases in the resolution of the system baselines [NASA 
1995]. 

Now that the term systems engineering has been thoroughly defined, the main object of  this 
discipline, the system is introduced. 

B.5. COMMON DEFINITIONS OF SYSTEMS 

There are many different definitions for the term system in systems engineering literature and 
standards. Organizations like INCOSE, NASA, and US Deptartment of  Defense (DoD) define a 
system as follows:  

• A system is an interacting combination of elements to accomplish a 
defined objective. These include hardware, software, firmware, people, 
information, techniques, facilities, services, and other support 
elements [INCOSE 2002]. 

• A system is a set of interrelated components, which interact with one 
another in an organized fashion toward a common purpose. The components 
of a system may be quite diverse, consisting of persons, organizations, 
procedures, software, equipment, and facilities [NASA 1995]. 

• A system is a composite of equipment, subsystems, skills, and techniques 
capable of performing or supporting an operational role [MIL-STD-499A] 

General definitions in systems engineering literature are also quite similar to these. For 
example, Terry Bahill proposes a quite simple definition: a system is any process that 
converts inputs to outputs [see INCOSE 1998a]. Von Bertalanffy [1968] suggests a longer 
definition: 

The notion of a system may be seen as simply a more self-conscious and 
generic term for the dynamic interrelatedness of components. 

A system defined by Igenbergs [2000] is an object with the following four characteristics:  

• it consists of elements 

• the elements have attributes 

• the interaction between elements is described by relations 

• an element can be a system 

This last definition accounts for the structural, functional, and hierarchical characteristics of  
the system. Furthermore, this definition includes the basic rules for systems modeling, because it 
defines the fundamental modeling elements: the system components, their attributes (properties 
and functions), their interactions, and the hierarchy in the system.  

Finally, Moses [2004] provides a definition of  engineering systems analogouos to the previous 
general system definitions: 

engineering systems are systems designed by humans having some purpose 
and are composed of interacting parts. 
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B.5.1. ZOPH Model 
A more specific definition for the SD system was proposed by Negele [1998] based on earlier 

work by Patzak [1982]. As the standards listed before, Negele also divides systems involved in the 
SD into three categories: the objectives of  the SD (i.e., the goal system), the systems being 
developed (i.e., the product or the product system) and the systems that do the development. The 
developing systems are then further classified into the work to be done (i.e., the process system) and 
the persons and groups of  persons that accomplish this work (i.e., the organization system). The 
name of  this system model is ZOPH model. ZOPH is an abbreviation built up from the first 
letters of  the German terms for the four system types in the model, (i.e., Zielsystem – goal 
system; Objektsystem – product system; Prozesssystem – process system; and Handlungssystem 
– organization or agent system). Additionally, the four systems of  the ZOPH model are 
interacting with the system environment through the system boundary. 

Another similar model for the SD system was proposed by Browning et al. in [2006]. This 
model includes one additional element: the tool system, which comprises the tools and technologies 
required to develop and fabricate a product that fulfills the system objectives. In the ZOPH 
model, tools and technologies are included in the organization (or agent) system. However, it is 
sensible to define a separate system for technology, particularly if  technology development is 
divided and handled separately from SD in the organization.  

This thesis proposes the separation of  technology and system development as a key 
requirement for adaptive SD. Therefore, the SD system is modeled here as a system that is made 
up of  the five interacting components with the process system in its core (Figure  B.4). This 
modified ZOPH system (or ZOPH+T to distinguish it from Negele’s original ZOPH model) is a 
grand model of  the SD enterprise that develops diverse systems and products in a multi-project 
environment. All the different projects represented by the multiple process system arrows in the 
middle of  Figure  B.4 are run by the persons involved in the organization system of  the enterprise, 
and use technologies (methods, tools, equipment, etc.) included in the technology system. The 
technology system comprises the existing and emerging technologies from the technology 
development section of  the enterprise. Technology development employs parallel processes to 
the SD processes that deliver the technologies which are applied later in the SD. These processes 
are also included in the parallel arrows of  the process system in the middle. 

The SD processes deliver various systems (enabling and end products of  the SD) included in 
the product system. All four subsystems operate according to the organizational and strategic goals 
of  the SD enterprise represented by the goal system. The goal system, as all other subsystems as 
well, is hierarchic including enterprise- and project-level goals. The strategic goals and vision of  
the enterprise are in the top hierarchy level of  the goal system providing a sound basis for every 
decision concerning all other subsystems in the enterprise. Furthermore, all these five subsystems 
depend on and interact with the external environment of  the SD enterprise (i.e., the market, 
suppliers, government, etc.). 
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The ZOPH+T model represents an interrelated, dynamic system, where a change in one 
component might change all other components of  the system. The detailed modeling of  both 
the system components and their interactions is therefore the key for effective system 
management. The next section describes a generic approach for the modeling of  the elements of  
each ZOPH+T subsystem. 

B.5.2. IPO Notation 
A generic approach for the modeling of  systems and their components is the IPO approach 

[e.g., Negele 1998] describing the main characteristics of  a system element operating in an 
(internal or external) system environment according to the above definitions. IPO, an 
abbreviation of  input-(process, product, person or purpose)-output, is a generic, object oriented 
modeling technique applicable to any kinds of  systems. 

A system element which uses the object oriented IPO notation is depicted in Figure  B.5. 
System elements are characterized by their attributes (inputs, outputs, properties, and functions), 
and connected to other elements through element relations. These element attributes form the 
system-level characteristics of  a system, the key parameters that together express the overall value 
of  a system. Thus, modeling helps to quantify system performance and quality, and thus provides 
key information for the quantification of  the value of  the system for its stakeholders. 

The generic IPO notation includes the following main modeling elements that can be used to 
model any kinds of  systems: 

• Inputs and outputs: interfaces between the elements and their environment. Other system-
internal or -external elements influence the system element by providing the element with the 
outputs they produced, i.e., the results of  their behavior.  

• Properties: The states, effects, and behavior of  the elements are described through their 
properties. Based on the actual values of  the properties, the characteristics of  an element can 
be determined.  

• Functions: Functions describe the dependencies between the inputs, properties, and outputs of  
system elements. The results of  the functions, (i.e., the element outputs) depend on how the 
inputs influence the properties of  the element. Thus, functions describe how the element 
transforms inputs into outputs.  

• Relations: Relations are the interrelations or dependencies among system elements. Relations 
between system elements form a network of  causes and effects that describe how the system 
operates [Sterman 2000]. Hence, the network of  relations shows the underlying logic of  a 
system, i.e., the characteristics of  the causal network of  elements in a system.  

Modeling (e.g., using the IPO notation) fosters parameter-based SD. That is, the application of  
models and modeling approaches requires the qualitative, metrics-based definition of  the system 
objectives, and thus decision and success criteria for the project. These quantitative criteria are 
derived from the system requirements and support the control of  the implementation of  the 
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Figure  B.5 Generic IPO system element (adapted from [Negele 1998]) 
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system requirements in the design.  

In parameter-based SD, the same hierarchic structures of  design parameters are used to 
define objectives for the development work, verification, and validation of  the design, the 
management, and quantification of  risks incorporated in the SD, and the control of  the 
development project and valuation of  the achievements of  the SD. Furthermore, modeling and 
parameter-based SD generates reproducible development information and drives the 
understanding and reuse of  development knowledge among projects. 

The ZOPH+T model and the IPO approach are fundamental building blocks of  the adaptive 
SD theory described later in this thesis. Subsequent chapters will show how they can be tailored 
and applied to fulfill the purpose of  adaptive development. 

B.6. SYSTEMS ENGINEERING IN THIS THESIS 

Systems engineering in this thesis is considered as the discipline that applies a 
model-based approach to understand, describe, decompose and integrate the different 
dimensions of  SD in one adaptive system that permanently interacts with its 
environment and adapts to it in a controlled manner. That is, systems engineering helps 
handle the complex internal and external relations among the elements of  the SD system and its 
environment. Furthermore, systems engineering collects and analyzes feedback on the behavior 
of  the SD system in its operational environment, and provides quantitative information on its 
actual performance with regard to the system objectives. 

The major task of  systems engineering is to define a process that guides the developers through 
the complex journey of  SD. SD activities are the basic building blocks of  this process and have 
to be organized in an orderly fashion to follow the evolution of  the system design and support 
this evolution by producing the necessary information at every stage of  the SD. In addition, this 
process has to foster the timely integration of  development products delivered by the various 
groups conducting the SD. The exchange of  deliverables of  SD tasks between engineering teams 
forms an information flow in the process. This information flow (i.e., interactions among activities 

 
Figure  B.6 Dimensions and functions of a system development system 
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and thus the SD staff) creates the underlying logic and thus the structure of  every SD project. 

The different dimensions of  SD and systems engineering are depicted in Figure  B.6. The front 
of  the cube represents the most important tasks of  SD that define the final characteristics of  the 
developed system. Systems engineering employs modeling and analysis to create system-level 
representations of  the design that foster the effective fulfillment of  these tasks by showing a 
transparent, realistic picture of  the difficulties and opportunities of  the SD.  

The SD as a hierarchic system involves two basic levels: system-level and detail-level work. The 
goal of  system-level development is to define and maintain an evolving vision for the 
developers, a reference that includes the most important functions and aspects of  the design, and 
shows the right direction for the project. These system-level descriptions of  both the product 
and the process are frameworks that are continuously filled with more and more detailed and 
complex information delivered by the various disciplines of  the SD.  

The system-level design and the SD process plan show the strong and weak points of  the SD 
system and draw the attention of  the developers to the critical design aspects that might cause 
problems during their detail-level work and later during the integration of  the developed system 
components. Furthermore, the system-level design includes the exact specification of  the most 
important characteristics of  the main modules and interfaces that build up the system. These 
system-level design rules drive and bound the development at the detail-level and guarantee that the 
small puzzle pieces of  detail-level design (i.e., the components and modules of  the system) fit 
together during integration and testing.  

The top of  the cube in Figure  B.6 depicts the main functions of  systems engineering that 
foster the understanding, description, optimization, and control of  the complex process of  SD. 
Systems engineering work starts early in the SD with modeling and analyzing the main aspects of  
system-level development, and it continues until the end of  the SD. Modeling is applied during 
this process, because models are reusable knowledge bases that can be continuously updated and 
detailed as new information from the project emerges. Hence, the characteristics of  the system 
models provide a realistic picture of  the state of  the SD: the problems already encountered in the 
past and anticipated to arise in the future. 

The major functions of  systems engineering generate a network of  development knowledge 
in a systematic manner early in the project. The deliverables of  systems engineering are highly 
dependent on each other and together they form a complete set of  system-level SD information. 
These disciplines are as follows: 

• System architecting: The system architecture is the arrangement of elements 
and subsystems and the allocation of functions to meet system 
requirements. System architecting is the task that delivers the system 
architecture [INCOSE 1998a].  

Modeling and simulation: These tasks provide virtual duplication of 
products and processes, and represent those products or processes in 
readily available and operationally valid environments. Use of models 
and simulations can reduce the cost and risk of life cycle activities 
[DoD 2001a]. 

Model-based system architecting supports the understanding and thus the early generation of  
knowledge concerning each of  the five subsystems of  the ZOPH+T model. Furthermore, 
modeling and simulation support the work in all dimensions of  the SD enterprise in Figure 
 B.6. Modeling increases transparency regarding the challenges of  the SD and reduces the 
complexity of  the problems to be solved. 
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• Requirements engineering: A requirement is an essential condition that a 
system has to satisfy [ISO 2382-20]. Requirements engineering comprises the process 
of  elicitation, analysis, specification, validation/verification, and management of  
requirements.  

Requirements engineering deals with the definition of  the goal system in the ZOPH+T SD 
enterprise. Requirements are defined during the system design stage of  the SD, and provide 
the specification of  the design at every hierarchy level. Thus, requirements are one representation 
of  the design that shows the characteristics the final system has to fulfill. Requirements are 
defined, detailed, and validated gradually according to a successively refined framework of  
engineering design. 

• Validation: Ensuring that the right system is being built in the SD project, i.e., writing 
specifications and checking performance to make sure that the system does what it is 
supposed to do. 

Verification: Ensuring that the system is built right in the SD project, i.e., ensuring that the 
system correctly implements the specifications.  

Verification and validation (V&V) represents the intersection of systems 
engineering and testing. Hence, the purpose of testing is to verify 
technical performance, operational effectiveness, and suitability, and 
provide essential information to support the decision-making [DoD 2001a]. 
The key benefit of  V&V is that it reduces uncertainty in the SD by generating useful 
information about the functionality and manufacturability of  the product design. V&V 
activities are typically followed by corrective changes or rework. 

• Risk management: In the context of industrial systems engineering, risk 
management is the recognition, assessment, and control of uncertainties 
that may result in schedule delays, cost overruns, performance problems, 
adverse environmental impacts, or other undesired consequences [INCOSE 
2002].  

Hence, risk management helps understand what can go wrong in the SD, how critical are the 
risks associated with these possible failure modes, and how to handle and control these 
identified risks. Furthermore, risks represent the requirements and design aspects that 
deserve particular attention during SD, the weak points of  the system that might jeopardize 
the whole project if  not mitigated effectively. That is, risk management classifies the elements 
of  all five subsystems of  the ZOPH+T model by their criticality, proposes actions to reduce 
these risks, and controls the success of  risk mitigation actions by tracking the changing risk 
status of  each subsystem throughout the development project. 

• Configuration management: A discipline applying technical and 
administrative direction and surveillance to identify and document the 
functional and physical characteristics of configuration items; control 
changes to configuration items and their related documentation; and 
record and report change processing and implementation status. [MIL-STD-
480B] 

Configuration management defines the major states of  the SD, i.e., the required maturity of  
the main deliverables of  the most important stages of  the SD process. Configuration 
management describes how the product system of  the ZOPH+T model dynamically evolves 
during the project, and how the characteristics of  the design elements change during the 
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project. Configuration management is one important tool to handle the dynamic complexity 
of  the SD system. 

• Systems engineering measurement: The process of assigning numerical values 
to process, product, or project attributes according to defined 
criteria. This process can be based on estimation or direct measurement. 
Estimation results in planned or expected measures. Direct measurement 
results in actual measures [INCOSE 1998b]. 

Measurement is a control function of  systems engineering that collects and analyzes the 
actual status of  the major requirements (both on the technical and managerial levels) and 
provides a clear picture of  the risk status in the project. The results of  systems engineering 
measurement help “tune” the SD process by putting development efforts in the critical areas 
(i.e., high-risk areas). 

• Milestone and review planning: The systems engineer measures design progress 
and maturity by assessing its development at key event-driven points in 
the development schedule. The design is compared to pre-established exit 
criteria for the particular event to determine if the appropriate level 
of maturity has been achieved. These key events are generally known as 
Technical Reviews and Audits [DoD 2001a]. 

Milestones and reviews are the major system-level decision points in the project, where the 
design team evaluates the major deliverables (i.e., configuration items) of  the SD and the 
collected feedback from the internal and external project environment, and decides on the 
feasibility and value of  the achievements of  the development. Reviews and milestones are the 
points where systems engineering integrates its deliverables and provides a system-level 
overview on the accomplishments of  the project compared to the requirements. Thus, 
milestones and reviews are the key points to measure the performance of  the SD. 
Furthermore, the complex web of  these decision points gives its structure to the project, 
because each review and milestone is a starting and final point of  a major development stage 
or sub-process.  

It is indisputable that these systems engineering functions are vital for the final project 
success. However, different SD projects with different characteristics require different systems 
engineering efforts. The determination of  the required effort in each function of  systems 
engineering is out of  the research scope of  this thesis. Thus, in this thesis the assumption is made that 
the SD enterprise employs a sound mix of  the systems engineering functions in order to maximize the overall 
project value and thus the profitability of  the SD endeavor.  

B.7. CHAPTER SUMMARY 

Adaptiveness is an emergent system characteristic and thus, a holistic view and the application 
of  systems engineering methods are inevitable at the design and analysis of  adaptive engineering 
systems. Model-based methods, like the ZOPH+T or IPO approaches provide an effective 
means to capture the most important characteristics of  systems and their elements, and optimize 
their architecture and behavior with respect to the purpose of  the system. SD enterprises are 
considered as adaptive systems in this thesis, and systems engineering is the model-based 
philosophy that supports the effective design, creation, operation, and control of  these SD 
enterprise systems.  
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C. SYSTEM DEVELOPMENT LIFECYCLE MODELS AND 

PHILOSOPHIES 

C.1. CHAPTER ABSTRACT 

Lifecycle models represent the philosophy of  a 
company regarding the way it develops its products. Hence, 
the applied SD lifecycle models fundamentally affect the 
effectiveness and efficiency of  the SD work and the results 
of  this work in the given SD environment. In this part of  
the thesis, lifecycle models are reviewed regarding their 
applicability in dynamic SD environments, where dynamics 
means the predictable and often unpredictable behavior of  internal and external project factors. 
To be able to successfully deal with the dynamic SD context, the first step in this thesis is to 
identify appropriate SD lifecycle models and thus philosophies that account for uncertain and 
changing SD characteristics. The sequence of  lifecycle models described in this chapter 
represents the trend of  thinking about SD projects from the conventional linear or sequential 
working style to the iterative, evolutionary, or agile models of  modern SD projects. 

C.2. SYSTEM DEVELOPMENT LIFECYCLE 

SD projects are usually divided into project phases with clear objectives and deliverables to 
provide this process with a logical structure, better management control, and appropriate links to 
the ongoing operations of  the performing organization. Collectively, the project phases are 
known as the project life cycle [PMI 1996]. Ulrich & Eppinger [2004] separate SD into five major 
stages or phases: (1) Concept Development, (2) System-Level Design, (3) Detail Design, (4) 
Testing and Refinement, and (5) Production Ramp-Up. 

The phases in the generic model of  Ulrich & Eppinger represent the main system-level steps 
of  the SD project that are necessary to transform the customer’s needs into market products. 
Usually each industry segment has different lifecycle models comprising phases with different 
names. However, the basic logic behind each model is analogous to the one presented here.  

The need for such a guidance and control tool, like the lifecycle models, arose as the size and 
complexity of  the developed systems reached such a high level that project managers were unable 
to effectively manage the projects. While the decomposition of  a complex problem into sub-problems 
enhances the ability to solve this problem [e.g., Alexander 1964, von Hippel 1990], the definition of  
phases helps project managers to plan and control the project in a better way.  

Phases mean major work packages for the project team with clear goals for a manageable 
period. As major SD projects can last several years or even a decade (e.g., development of  an 
aircraft or spacecraft), it is useful to define smaller units of  work for a reasonable period for the 
people working in the development. The highest level of  such working units (i.e., the phases) 
usually deliver main working products, i.e., major steps towards the complete solution of  the 
problem in form of  representations of  the system, which conclude an important part of  the SD. 
These deliverables are evaluated at the end of  each phase to decide on the maturity of  the design 
and the feasibility of  the project plans defined at the outset of  the project.  The evolution of  systems 
engineering and design theory during the last decades affected the SD lifecycle models as well. In 
the following part of  the thesis, renowned lifecycle models and the SD philosophies are 
described.  

User needs 
and system 

concept

User needs 
and system 

concept

System 
requirements & 

architecture

System 
requirements & 

architecture

Component 
design

Component 
design

Procure, 
fabricate & 

assemble parts

Procure, 
fabricate & 

assemble parts

Component 
integration & 
verification

Component 
integration & 
verification

System 
integration & 
verification

System 
integration & 
verification

System 
demonstration 

& validation

System 
demonstration 

& validation

system validation

system 
verification

comp. 
verif.

Systems 
engineering 

domain

Component 
engineering 

domain

Source: INCOSE



32  

C.3. WATERFALL LIFECYCLE MODEL 

The first and probably most famous lifecycle model for SD is the waterfall lifecycle model 
proposed in [Royce 1970] and depicted in Figure  C.1. The SD philosophy of  the waterfall lifecycle 
follows the traditional engineering thinking, i.e., the system as a whole is developed top-down as a 
sequence of  development stages. Figure  C.1 shows the main stages and deliverables of  the 
waterfall lifecycle. The dashed lines in Figure  C.1 depict feedback relations between consecutive 
lifecycle phases that were not part of  the original model. That is, the original waterfall lifecycle 
was a strictly sequential process, where the deliverables (e.g., system requirements or 
specifications, system design, etc.) of  the single phases were frozen after the milestone decisions 
and were not changed or reworked any more in the project. This is a main deficiency of  the 
waterfall model that forces engineers to finalize development products (e.g., system specifications) 
early in the project without having a chance to prove their real validity and feasibility. 

To change this characteristic and increase the flexibility of  the SD process, the feedback 
relations shown in Figure  C.1, (i.e., the possibility of  rework on deliverables from the previous 
phase) were introduced in the model later. This improved version of  the waterfall lifecycle 
including the possibility for iteration is a more realistic representation of  the SD process, where 
changes in the design are often caused by new information in the development process, e.g., 
failures discovered during system integration or testing. 

Another characteristic of  the traditional waterfall lifecycle model is that activities within a 
phase are performed strictly sequentially, and verification and validation (V&V) activities are 
usually performed at the end of  each phase. Furthermore, the main emphasis is on system-level 
V&V in the system verification phase at the end of  the lifecycle. As a consequence, design failures 
are often found quite late in the SD project, which contributes to major rework and thus, costly 
budget and schedule overruns. If  more than one phase has to be repeated as a result of  the 
failures found during system verification, the project management might decide to terminate the 
project in spite of  the high amount of  development efforts already spent on the design. Boehm, 
the developer of  the iterative, spiral lifecycle model wrote the following about the waterfall model 
in [1986]: 

Some of its initial difficulties have been addressed by adding 
extensions to cover incremental development, parallel developments, 
program families, accommodation of evolutionary changes, formal software 
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development and verification, and stagewise validation and risk 
analysis. However, even with extensive revisions and refinements, the 
waterfall model’s basic scheme has encountered some more fundamental 
difficulties, and these have led to the formulation of alternative 
process models. 

The evolution of  software engineering and the growing importance of  software products 
brought changes in conventional SD. The specific character of  software development (i.e., the 
developing environment and the developed models, prototypes, and final product are all software 
products) requires an environment that fosters more effective and efficient SD work with regard 
to these special characteristics. In addition, the evolution of  software tools for hardware and 
embedded systems enables the introduction of  software-like SD methods and rapid, virtual 
system design that call for different SD philosophies, too.  

C.4. V LIFECYCLE MODEL 

The V model, an improvement of  the waterfall model, was originally developed to regulate the 
software development process within the German federal administration. It describes the 
activities and results that have to be produced during software development. The current version 
of  the V model is the V model XT [V-Model XT Website] which was finalized in February 2005. 

Though the V model was originally designed for software projects, it was proven to be 
suitable for SD projects including the development of  both hardware and software components. 
Hence, the V model is nowadays a widely applied lifecycle model in SD [INCOSE Website]. The 
shape of  the V model depicted in Figure  C.2 characterizes a philosophical change in SD. The left 
tail of  the V represents the system specification stream, where the system requirements and the 
system and subsystem or component designs are specified. The designed components are then 
fabricated in the bottom part. Component fabrication is followed by the testing stream in the right 
tail of  the V, where the gradually evolving and growing system is verified against the 
specifications defined in the right tail of  the V.  

A main benefit of  the V model is that it separates the disciplines of  system and component 
engineering. This way, top-down and bottom-up development approaches are integrated in the V 
model. That is, the system is specified top-down and then the subsystems are designed bottom-
up. Additionally, the definition of  distinct steps for the design at different hierarchy levels that 
appears first in the V model fosters the efforts of  decomposing the system into independent 
subsystems and components. These subsystems can be then designed and fabricated in parallel 
according to the system specifications defined in the previous phase. When it comes to the 
development of  highly complex systems, the independent, concurrent development of  
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subsystems is a great possibility to accelerate the design process, and it also supports a better 
involvement of  suppliers in the SD [Eisenhardt & Tabrizi 1995]. 

Another benefit of  the V model is that it breaks down system experimentation and V&V into 
three separate stages. These three main stages, shown in the right tail of  the V in Figure  C.2, form 
three iteration loops in the development of  the system with increasing scope and complexity. The 
first design loop is on the component or subsystem level. In case of  a modular design, the 
subsystem verification loops can be performed in parallel, independently of  each other [Baldwin 
& Clark 2000]. That is, the three phases of  component design, fabrication, and verification in the bottom 
of  the V consist of  numerous parallel Vs, as many as many subsystems build the system.  

During the development of  complex systems like aircraft or automobiles, the development of  
certain subsystems is outsourced to subcontractors. These suppliers conduct the complete design, 
development and testing of  the subsystem, and deliver the system developer the finished design. 
Thus, in these cases the development of  the subsystem can be considered as an independent SD 
project, where the customer is the contractor system developer company. 

The second loop of  system design involves system-level design verification. In this loop, the 
integrated design is verified against the system specifications delivered in the second lifecycle 
phase in the left tail of  the V. Unambiguous and robust subsystem and interface specifications, 
and a thorough subsystem-level verification facilitate “smooth” system-level verification. The 
third and last design iteration loop in the V model is the system validation loop, also called system 
qualification. The outcome of  this usually very long, expensive, and comprehensive system test 
process has the objective to prove that the developed system satisfies the customer’s needs as well 
as industry and government regulations. Major design failures found in this phase are extremely 
costly to correct, and they jeopardize the success of  the whole project. 

The main benefit of  the V model is that it introduces iterations and hierarchy in the SD. It is 
also a quite useful tool for the integration of  the system suppliers in the development project. 
However, the V model is not applicable for evolutionary SD, where the lifecycle consists of  
several small iteration cycles to foster frequent prototyping and the collection of  timely feedback 
from the customer. These aspects drive the definition of  iterative and incremental lifecycle 
models described in the next part. 

C.5. INCREMENTAL AND EVOLUTIONARY LIFECYCLE 
MODELS 

After the introduction of  the two traditional, sequential lifecycle models of  SD, this part of  
the thesis discusses four lifecycle models for incremental and evolutionary SD: (1) Boehm’s spiral 
lifecycle model, (2) Evolutionary lifecycle model, (3) Incremental lifecycle model, and (4) Agile. 

These iterative and evolutionary development approaches were developed due to the obvious 
disadvantages of  the sequential waterfall model for software and system development to deal 
with the high complexity and dynamics of  the SD environment. According to the CHAOS study 
of  the Standish Group in 1998, top failures of  23,000 analyzed projects were associated with 
waterfall development practices. One of  the report’s key conclusions was to adopt incremental 
and evolutionary SD:  

Research also indicates that smaller timeframes, with an early and 
frequent delivery of system components, will increase the success rate. 
Shorter timeframes result in an iterative process of design, prototype, 
development, test, and deployment of small elements. 
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All four models described in this section are iterative in nature and were originally developed 
for software projects, but they are also suitable for system development projects. The four SD 
philosophies are discussed in one chapter, because the fundamental concepts behind them are 
similar. That is, the development lifecycle of  a large, complex system is divided into smaller 
iteration cycles delivering systems or prototypes of  systems with evolving performance and 
capability. These evolving prototypes, versions or increments allow an early and continuous 
validation of  the system with the customer and the consideration of  the customer’s feedback in 
the next version.  

With evolutionary and incremental SD projects, prototypes, products, or product versions are 
released more often with a lower rate of  innovation between two versions than with traditional 
products. Hence, due to the frequent product release and the continuous collection of  feedback 
from the customers, design options can be kept open and incorporated in a following version in 
case of  respective positive feedback from the customers [Smith & Reinertsen 1998]. On the other 
hand, modules including disliked functionalities can be quickly upgraded or substituted by other, 
alternative modules to validate the product quickly in the market again. 

The goal of  iterative SD lifecycles is to support learning and effectively transfer knowledge 
between development projects. Evolutionary and incremental projects are considered as 
experiments [Smith & Reinertsen 1998, Thomke 2003] where rapid development cycles provide 
evolving product versions that can be tested in the market. Feedback on the released products is 
collected and incorporated in the next product release with improved functionality. Since the 
invested development effort is significantly lower than with traditional development projects, the 
risk of  lower product quality is also rather low. Furthermore, the lower product quality can be 
quickly increased by improving the weak parts of  the product and releasing a new, improved 
version at the end of  the next iteration cycle. 

Another characteristic of  iterative SD lifecycles is that they allow higher flexibility in the project 
than traditional models. One reason for higher flexibility is that the management of  such projects 
is workstate-driven [Highsmith 2000], not workflow-driven. That is, the main driver of  project 
performance with iterative development projects is the maturity and actual performance of  the 
design. This is a significant difference to traditional project management, where project 
performance is usually measured with the earned value of  the project, i.e., the programmatic 
project performance. Hence, the iterative SD approaches described next strive to maximize the 
desired performance and thus the value of  the delivered products. As the value of  the product is 
the central element of  iterative SD, not the rigorous execution of  the project schedule, the SD 
process must be flexible to allow the adaptation of  the process architecture to the actual state of  
the design. During adaptation, the SD effort in the design-critical phases is increased and 
activities and even phases that do not contribute to the actual development goals are downsized 
or even deleted.  

C.5.1. Boehm’s Spiral Model 
The “evolving, risk-driven approach for software development” or the spiral model is a lifecycle 

model (Figure  C.3) for information technology (IT) projects integrating features of  the 
prototyping model and the waterfall model, in an effort to combine advantages of  top-down and 
bottom-up concepts. The spiral model was defined by Boehm in [1986]. This model was not the 
first to discuss iteration, but it was the first model to explain why iteration matters [Wikipedia 
Website]. Additionally, this model provided an excellent management framework for the risk-
driven, iterative development of  software systems. 

The spiral model builds on the existing waterfall model and early evolutionary development 
models (e.g., prototyping model [McCracken & Jackson 1982, Gladden 1982]) to integrate them 
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into an effective lifecycle model for IT systems. The spiral approach can be used as a traditional 
waterfall model in case of  low risk and inflexible design structure, but it can also applied as an 
evolutionary development model in case of  high risk and higher design flexibility. In the first 
case, the lifecycle will be long and without much iteration, while in the latter case, the 
evolutionary characteristic of  the spiral model can be utilized, and many short iterative lifecycles 
can be performed. Boehm’s spiral model provided the basics for the definition of  modern 
evolutionary and incremental lifecycles described in the next parts. 

C.5.2. Evolutionary Lifecycle Model 
Evolutionary development is an iterative and incremental approach to software and system 

development. Instead of  creating a comprehensive artifact, such as a requirements specification 
that is reviewed and accepted before creating a comprehensive design model, the critical 
development artifacts are evolved over time in an iterative manner. The evolutionary 
development model divides the development cycle into smaller projects, using the incremental 
waterfall model in which customers are able to get access to the product at the end of  each cycle 
(Figure  C.4). The products released at the end of  each mini-project incorporate only parts of  the 
full functionality and capability of  the final product, but these products can be demonstrated to 
the customer, and feedback on the feasibility can be collected. The customers provide feedback 
on the product for the planning stage of  the next cycle and the development team responds, 
often by changing the product, plans, or process. By breaking the project into smaller, more 
manageable pieces and by increasing the visibility of  the management team in the project, project 
risks can be addressed and managed. 

Evolutionary SD is based on the regular, on-going assessment of  customer needs and 
customer feedback. Hence, in such a project, the customer needs drive the course of  
development work aiming to always maximize the overall project value. This way, the 
development system, including the development goals, product, process, and organization, can be 
continuously improved and adapted to the changing external and internal project environments. 

 
Figure  C.3 Boehm’s spiral model [adapter from Boehm 1986] 
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It must be noted though that the implementation of  the evolutionary SD model demands a 
mature, flexible design structure and the good consideration and definition of  the goals and 
objectives of  the overall development project system (i.e., the evolutionary sequence of  mini 
development projects). Otherwise, if  the design is inflexible and its adjustment to the customer’s 
needs is costly and difficult, then the evolutionary development project transforms into an on-
going rework effort aiming at implementing changes in a rigid system. 

C.5.3. Incremental Lifecycle Model 
The incremental development lifecycle shown in Figure  C.5 is an alternative to the 

evolutionary development lifecycle for highly flexible, complex systems (whereas the evolutionary 
approach is more suitable for software or systems with a lower complexity). The basic 
philosophical difference between the two approaches is how the system-level requirements and 
the system design concept are developed.  

In evolutionary SD, the requirements and the system design evolve in parallel with the 
subsystem design. Thus, this approach is not constrained by long-term plans or considerations, 
the goals, products and thus the tasks of  the project change in every cycle (i.e., mini waterfalls). 
On the contrary, with incremental SD the project team defines a grand program plan or product road 
map [Smith & Reinertsen 1998] in the beginning of  the project that includes many prototypes and 
product versions called increments, which will be released in the course of  the SD program. The 
flexible program plan is then adjusted after each major change during or after the incremental 
mini projects to adapt the plans to the actual internal and external stakeholder feedback. 

As Figure  C.5 depicts, the incremental model starts with the elaboration of  the user’s needs, to 
be followed by a thorough specification and design of  the system. In these two phases, the 
system-level specifications and a grand system architecture including the modules and interfaces 
are defined. The flexibility of  the grand system architecture is vital, because with this lifecycle 
model, the system is developed as an evolving sequence of  increments. That is, in each mini-
project of  the incremental SD program the architecture of  the design is improved by completing the 
previous version with new main functions. These new functions are usually implemented in 
independent design modules that augment the existing set of  modules or replace one or more 
existing modules. 

Hence, incremental SD allows the independent evolution of  subsystems and modules of  the 
design in fast development cycles. When a new technology is ready for implementation in a 
subsystem, the company does not have to wait for the whole, rather long waterfall SD cycle, 
which can last years, but they can integrate the new module in the existing design and launch a 
new product version or offer the customer a product extension module or a software update 
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patch. This way, new technologies and design solutions can be inexpensively validated in the 
marketplace and the high risk of  big-bang product introduction can be minimized by smaller 
technology commitments spread throughout the program [Smith & Reinertsen 1998]. 
Additionally, the continuous marketing work provides important information on the actual 
market trends and thus, supports the adjustment of  the project goals to the customer’s needs. 
This helps optimize the scheduling of  technology introduction in the different product versions 
with regard to the profitability of  the product road map. 

C.5.4. Agile 
The concept of  the Agile Enterprise originated in 1991, based on a realization that the pace of  

change in business environment was accelerating and already outpacing the abilities of  many 
established organizations [Dove 2001]. Accordingly, Agility is defined as the ability of an 
organization to thrive in a continuously changing, unpredictable business 
environment [Rigby et al. 2000]. Furthermore, an Agile organization has the capability and 
capacity to gain competitive advantage by intelligently, rapidly and proactively seizing 
opportunities and reacting to threats [Meredith & Francis 2000]. In fast changing environments, 
Agility means that the organization can respond to (anticipated or unexpected) changes in proper 
ways and due time. Additionally, Agile organizations can exploit changes and take advantage of  
changes as opportunities [Sharifi & Zhang 1999]. To sum up, the philosophy of  Agile says that 
changes are inevitable in the organizational environment and organizations that are capable of  
responding to and profiting from these changes will be successful in the long term. 

Agile is a philosophy stemming from the organizational theory, which was then transferred to 
other areas, for example manufacturing and software SD. In manufacturing, Agile is used to 
improve existing practices for flexible manufacturing [Wadhwa & Rao 2003]. Flexibility was 
introduced in manufacturing to have the capability of  producing goods and services to meet  a 
high variance of  anticipated individual customer’s needs with near mass production efficiency 
[Tseng & Jiao 1996]. A form of  flexible manufacturing is mass customization [Toffler 1971, Davis 
1987]. 

While flexibility accounts for a predictable variance in the customer’s needs (i.e., an expected 
variety of  customized products), it has limited effectiveness in the presence of  unpredictable 
changes. Hence, a new philosophy was needed that considers both foreseen and unforeseen 
uncertainty and thus supports quick system transformation to any kind of  changes in the external 
environment (i.e., market and technology).  

Agile manufacturing systems are flexible manufacturing systems capable of  quick adaptation 
to unforeseen changes in their inputs (e.g., changes in customer’s needs, product design, 
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manufacturing technology, manufacturing resources, etc.). In the heart of  these Agile systems is an 
adaptive production process including all possible elements of  the flexible manufacturing system that 
can be recombined to allow various modes of  production with different product variants as 
outputs [Cisek et al. 2002, Zäh et al. 2004]. 

Though Agile practices are effective during the planning of  the repetitive processes of  
flexible manufacturing systems, Agile and adaptive methodologies for SD systems are still rare. 
One exception is software development, where Agile has become an emerging, new development 
methodology. Because in software development every representation of  the system is virtual, the 
quite expensive and long hardware implementation and testing is missing. Thus, every release of  
the software product including the models and prototypes is an increment of  the final product 
and can be validated directly with the customer. After validation, the product can be adjusted 
according to the customer feedback, and the software can be verified and validated again. This 
iterative framework is presented in the next section. 

C.5.5. Agile Software Development 
In the last part of  this section, novel evolutionary and adaptive software development 

methodologies are described. These adaptive methodologies are collectively called Agile software 
development methodologies. Though Agile methodologies are software-specific, some basic 
aspects can be also applied for adaptive system development. Hence, the goal of  this part of  the 
thesis is to review Agile methodologies and identify development aspects applicable to adaptive 
system development. The principles of  Agile are documented in the Agile Manifesto [Agile 
Manifesto Website]: 

1. Our highest priority is to satisfy the customer through early and 
continuous delivery of valuable software.  

2. Welcome changing requirements, even late in development. Agile 
processes harness change for the customer's competitive advantage.  

3. Deliver working software frequently, from a couple of weeks to a 
couple of months, with a preference to the shorter timescale. 

4. Business people and developers must work together daily throughout 
the project.  

5. Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the job 
done.  

6. The most efficient and effective method of conveying information 
to and within a development team is face-to-face conversation.  

7. Working software is the primary measure of progress.  

8. Agile processes promote sustainable development. The sponsors, 
developers, and users should be able to maintain a constant pace 
indefinitely.  

9. Continuous attention to technical excellence and good design 
enhances agility.  

10. Simplicity—the art of maximizing the amount of work not done—is 
essential.  

11. The best architectures, requirements, and designs emerge from 
self-organizing teams.  
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12. At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly. 

Agile software development encompasses individual evolutionary and adaptive software 
development methodologies, like Evo [Gilb 2004], Scrum [Beedle et al. 2000], Adaptive Software 
Development (ASD) [Highsmith 2000], Extreme Programming (XP) [Beck 2000], Crystal [Cockburn 
2005], etc. All these methodologies are based on the above-discussed evolutionary lifecycle model. 
However, Agile software development goes beyond iterative SD by emphasizing the benefits of  
“lightweight” project structures against the traditional “heavyweight” approaches [Riehle 2005]. 
Lightweight in this context means that these methodologies reject extensive planning and paper-
based documentation or elaborate process handbooks and strive to concentrate on “real” 
development work instead (see the Agile Manifesto above). 

As a consequence, these lightweight software development methodologies tend to be not 
dogmatic with regard to when and how to apply the techniques they provide. The philosophy 
here is that the developers have to decide on the applicability of  the techniques in the actual SD 
environment and apply them only if  appropriate. Thus, these methodologies are meta-frameworks 
consisting of  a set of  methodology building blocks applicable in certain SD situations (i.e., 
software development methods). It is possible to tailor these meta-frameworks according to 
recipes or lessons learned written by practitioners based on their experience with the proposed 
methods in certain projects. 

Though Agile software development methodologies are basically successful with small 
projects with small team size and complexity, they include valuable hints for complex SD projects 
as well. For example, the central goal of  Agile is customer satisfaction similar to Lean [Womack & 
Jones 1996] or Six Sigma [Pande et al. 2000]. However, while Lean and Six Sigma are better 
applicable to stable, manufacturing processes, Agile philosophies focus on iterative SD. Thus, 
fast, iterative SD work is in the core of  Agile, which produces frequent prototypes that can be 
validated with the customer (Figure  C.6). As Agile rejects thorough project planning, projects are 
organized around product releases. A release is a piece of  development, where the customer gets 
some new software. Releases can be from 2 weeks to 6 months, but are usually 3 months long. 
Releases comprise smaller working units called timeboxes. A timebox is 1 – 6 weeks long, but 
usually 3 – 4 weeks. The most important thing about a timebox is that the delivery date is fixed. 
Meetings follow usually timeboxes, where the project goals and plan are adjusted according to the 
achievements of  the timebox.  

The SD work between two releases is iterative, e.g., following the adaptive development 
lifecycle by Highsmith [2000] depicted in Figure  C.7. The goal of  Agile and adaptive software 
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development is to include customers directly in the design cycles and collect their direct feedback 
on the achievements of  the SD. This feedback is then used to adjust the SD goals and plans and 
the design itself  to maximize project success. The more frequent the feedback arrives from the 
future users, the easier it is to capture their desires and implement them in the next release. Thus, 
Agile SD is an effective learning process, where the workstate of  the project defined by 
the customer’s feedback drives the SD work.  

In an adaptive SD culture, the definition of  detailed project structure, long-term plans, 
detailed product specifications, or design architecture is only a waste of  effort, because the 
characteristics of  SD change so quickly that all these detailed specifications would have to be 
changed every week or month. Hence, the effort the detailed planning would require is rather 
invested in direct SD work, frequent prototype releases, and validation with the user. Thus, the 
net SD work in Agile is significantly higher than in traditional projects due to the unnecessary 
documentation. Furthermore, Agile is an environment that welcomes changes, since the 
simplicity of  the product and the lack of  documentation supports cost effective, frequent, and 
even late changes.  

In spite of  the fact that Agile cannot be directly applied for long SD projects with complex 
systems as outputs, adaptability that is at the heart of  Agile shows novel ways for system 
development.  

C.6. CHAPTER SUMMARY 

Three main classes of  SD lifecycle models were presented in this part to describe the 
evolution of  SD philosophies. Which of  the described models is the most suitable for a certain 
project depends on many factors, e.g., organizational culture and flexibility, product type, 
architecture and complexity, characteristics of  technology development and transfer, project team 
type, experience, and communication, etc. However, as the high dynamics and ambiguity of  SD 
environments represent a growing problem for the SD enterprise, SD philosophies have to move 
towards adaptiveness and thus learn how to change effectively and efficiently, and achieve 
maximal profit from these changes. Basic principles of  adaptive SD systems: 

• System flexibility accommodates changes. 

• Learning and experimentation are central elements of  successful SD. 

• A short, value-driven SD with frequent product releases and prototypes allows continuous 
validation with the customer and thus reduces the risk of  changing the customer’s needs. 

• Adaptive SD is workstate-driven, not plan-driven. 

• System adaptation is a collaborative decision-making process 

Collaborate
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Figure  C.7 Adaptive development lifecycle (adapted from [Highsmith 2000]) 
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D. DYNAMIC SYSTEM DEVELOPMENT CONTEXT 

D.1. CHAPTER ABSTRACT 

The previous chapters introduced the fundamental theory of  
systems engineering and holistic thinking; and basic models about the 
way a system can be developed. Now, the following three chapters 
will discuss the main aspects of  the SD system and its environment; 
and thereby underline the demand for SD systems capable of  
effectively sensing the shifting environmental characteristics and 
responding efficiently to them.  

This first of  these three chapters deals with the agents of  the SD 
system who contribute to the SD results, and define the value of  
these results. Furthermore, this chapter shows how systems 
engineering can support the sensing and interpreting of  these stakeholders’ voices and translate them 
into engineering language. Customer centric systems engineering philosophies like Lean, which 
will be discussed in this chapter, propose to think about the SD as a value-driven system that 
attempts to maximize stakeholder value throughout its operation. Dynamic stakeholder value is 
what drives the transformations of  an adaptive SD system towards maximal system success. 

D.2. OBJECTIVES OF SYSTEM DEVELOPMENT 

SD is a process of  seeking an optimal solution to a complex problem called the engineering 
design and development of  a new system. The precise characteristics of  the design, i.e., the main 
deliverable of  the SD process, are unknown in the beginning of  the project. As documented in 
[Baldwin & Clark 2000]: 

At its core, an SD process is a search for something unknown. The 
ultimate form of the artifact is unspecified at the outset of the 
process. A search is mounted in hopes that a form (a particular set of 
parameters) may be discovered that jointly satisfies certain objectives 
(the system objectives) and takes account of certain constraints. The 
result of this search is a description of the thing to be made, 
including instructions about how to make it. 

In many cases, the customer only knows that she or he wants to have something smaller, 
better, faster, safer, more reliable, etc., than the products representing the current state of  the art, 
as soon, and as cheap as possible. In addition, these desires do not appear as products of  a 
controlled process, they depend on the complexity (i.e., structure and dynamics) of  the 
marketplace. As proposed by Vollerthun in [2001, 2002], the complexity of  the market depends 
on the characteristics and interactions of  the five main elements that construct the market system: 
(1) market segmentation, (2) market size, (3) competitors, (4) price formation, and (5) customer 
behavior. 

Besides the components and their interactions in the market system, the dynamics of  the 
market have a main effect on the success of  a product. Market dynamics describe how the 
characteristics of  the market elements change over time because of  the interactions among (1) 
the market elements, and (2) the market and its system environment. These system-internal and -
external factors drive the overall value of  the SD project and thus, the profitability of  a product 
to be introduced in the market system.  
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In the market, customers purchase products, if  these products satisfy their needs, i.e., the 
products include functionalities that are of  value for them. Hence, value means 

a capability provided to a customer at the right time at an appropriate 
price, as defined in each case by the customer [Womack & Jones 1996]. 

Customers are willing to pay more for products that they believe to be of  more value, i.e., the 
functions of  the product fulfill their needs better. However, it is not always true that higher 
product performance or functionality means higher value, since the customers pay more only for 
higher desired product performance and functionality. Hence, the collection and analysis of  
customer needs is vital for the success of  the project, because the fulfillment of  the customer 
needs defines the value of  a product and thus, the number of  product pieces the company can 
sell.  

Another factor that contributes to the value of  a product in the market is the technological 
knowledge of  the company and its environment. The available technologies define the 
capabilities of  the SD system to fulfill the identified customer’s needs in the market. While both 
technologies and market needs are dynamic, they can be represented as streams. An improved 
version of  such a model by Allen [1997] depicting the SD process in its technology and market 
environment is shown in Figure  D.1.  

The original model includes only one arrow representing input information from the market 
and technology environment and one arrow for the output product that contributes to the 
changing technology and market needs. The reason is that in conventional SD organized 
according to the waterfall model, system objectives are defined early in the project to provide 
clear goals for the developers of  the system. However, such an early definition and freeze of  the 
system requirements constrain the design space at an early development stage, where the 
knowledge of  the system and its environment is still rather low. As a result, important design 
options might be excluded due to inadequate information. In the dynamic and often 
unpredictable SD environment, the early elimination of  design options reduces the probability of  
delivering superior products to the market that mean high value for the customers.  

Another factor that affects SD is that its external environment (i.e., the market and the 
available technologies) is dynamic. Thus, both the customer needs and available technologies might 
change in the course of  a project as well. However, many engineers make the false assumption 
that Marketing provides mature and stable information on the actual and future customer’s 
desires and that the availability, maturity, and suitability of  technologies to fulfill the product 
requirements are discrete variables. This is not true indeed. Technologies and market 
characteristics are uncertain variables of  the SD that require the continuous attention of  the 
developers. Thus, due to the dynamics of  both the market and technology characteristics, a 
permanent feedback relation is required between the SD system and its environment, which 
supports the sensing of  changes and fosters adequate response from the SD. The dashed arrows 
in Figure  D.1 depict this permanent relation of  sense and response, which lies in the heart of  adaptive 
systems [Dove 2001]. 

The basic function of  systems engineering is to build bridges between different SD 

Innovation / System 
Development

Innovation / System 
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Technology
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Figure  D.1 A simple model of the innovation/SD process (modified from [Allen 1997]) 
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disciplines and departments of  the SD enterprise fostering information exchange (i.e., 
communication) between the various parties involved in SD project. Hence, a main task of  
systems engineering is to support SD by translating the customer needs into system objectives 
written in a language that is understandable for everyone in the SD organization. This language is 
part of  every organizational culture and thus “spoken” by the members of  the SD organization. 
As systems engineering is the treatment of  engineering design as a decision-making process 
[Hazelrigg 1996], the definition of  unambiguous and understandable system objectives facilitate 
the effective selection of  design options by providing clear criteria for every decision during the 
complex process of  the development of  an engineering system. 

The iterative process of  determining system objectives is shown in Figure  D.2. The original 
version of  the model [Hazelrigg 1996] depicted with the solid lines in Figure  D.2 was defined for 
a static SD environment, where the system objectives are defined in the beginning of  the project 
based on the actual customer needs and available technologies. To account for the dynamic SD 
environment, the original model was extended by an important external factor, the dynamic market 
characteristics (dashed lines in Figure  D.2), which have a major impact on both the system objectives 
and the emerging technologies.  

The system objectives in Hazelrigg’s improved model depend on two main external and some 
further project-internal factors. During the definition of  the system objectives, the feasibility of  a 
system design is assessed that depends on (1) the characteristics of  the market, (2) the available 
technologies, and (3) the capabilities of  the SD enterprise (also including the suppliers) 
summarized as “other factors” in Figure  D.2.  

SD literature includes similar approaches for the definition of  system objectives for 
Hazelrigg’s model. Ulrich and Eppinger [2004] propose a product planning process for evaluating 
single SD projects and portfolios of  projects based on their mission statements (a broader view of  
the system objectives including managerial aspects, too). In the model depicted in Figure  D.3, 
internal and external factors that influence design characteristics are considered as opportunities. 
The identification of  opportunities is part of  the process of  the customer’s needs elicitation. 
Thus, design opportunities might come from different sources, e.g., frustrations and complaints 
of  customers with regard to current products, needs, and suggestions of  lead users and other 
current customers, actual trends in lifestyles, demographics and technologies, competitive 
benchmarks, availability of  emerging technologies from internal research. Such opportunities 
emerge continuously during the projects, thus the product planning process must be an ongoing 
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Figure  D.2 Improved version of Hazelrigg’s nonlinear model for determining system objectives 
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effort to plan and update the SD project portfolio of  the company.  

The main difference in this approach compared with Hazelrigg’s is that it also accounts for 
the analysis of  multiple projects considered as future opportunities for the SD organization. That 
is, the product planning process raises the decision on the feasibility of  a single SD project to the 
enterprise level to be able to consider organizational aspects such as competitive strategy, market 
segmentation, technical trajectories, product platform planning, new product opportunities, 
resource availability, staffing, project timing, etc. in the decision as well. Hence, the output of  the 
decision process is not only the technical feasibility of  a design idea, but the overall value of  a 
project that is required to develop, manufacture, market, and sell a product with regard to the 
other elements of  the SD system. 

D.3. VALUE-DRIVEN SYSTEM DEVELOPMENT 

Systems engineering provides a means to foster effective decision-making in the SD. The goal 
of  these decisions is to steer the SD towards success. However, it is not always obvious, who are 
the persons and groups of  persons, whose satisfaction is important for the SD, what satisfies 
these people, and how their highest satisfaction can be achieved. Value engineering supports 
decision-making by gathering important information on those people with a legitimate interest in 
the project outcome (who), and valuates their desires (what) to foster the selection of  the optimal 
way to satisfy these people (how). 

Decisions in the SD are made at different levels of  the organization with the objective of  
maximizing project success. On the one hand, the success of  the project is traditionally measured 
through customer satisfaction. That is, the more the developed system satisfies the customers, the 
more pieces they will buy of  it. On the other hand, the suppliers of  an SD organization also have 
an interest in the project success, because it might mean further contracts and thus increased 
profit for them. Furthermore, as the success of  a project usually means rewards for the 
employees, the developers are directly interested in high quality project outcomes, too. However, 
the employees are also interested in good working conditions, high salaries, and realistic, 
reachable project goals. There are further parties involved in the SD, who all have expectations of  
the product and the development project as well. Together, these people are the stakeholders of  the 
project, and systems engineering summarizes their expectations in documents like the 
stakeholders’ needs, system objectives, system requirements and constraints, and system 
specifications. These documents involve information on the goals of  the project in increasing 
detail using the organizational language spoken by the different groups of  stakeholders involved 
in the development of  a complex system. This information is a main source of  decision-making 
in SD. 

In order to support the effectiveness of  the SD decisions, systems engineering derives 
evaluation criteria for every decision from the above-mentioned requirements documents. The 
notion of  the definition of  decision criteria independently from the varying complexity and 
outcomes of  SD decisions is to foster the precise definition of  the stakeholders’ expectations on each decision 
option in technical language. This way, the characteristics of  each decision option can be quantified 
using the same measurement system, e.g., a set of  hierarchic performance measures representing 
the key product requirements (Figure  D.4). Then, a decision can be made based on the proportion 
of  each option’s individual performance versus the required technical performance stated in the 
evaluation criteria. That is, using the systems engineering decision procedure described in Chapter 
 B.3, the decision makers evaluate the decision options based on the rate of  the fulfillment of  the 
product requirements. 

The system of  key parameters depicted in Figure  D.4 is an effective systems engineering tool 
to define quantitative decision criteria for each level of  SD decisions. Measures on the higher 
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levels of  the parameter tree are directly derived from the high-level system objectives. These 
measures represent the key performance and operational system characteristics, and are the most 
important project goals to fulfill. While these objectives cannot be directly used at lower level 
decisions, they are usually broken down into further system and subsystem level technical 
measures. Hence, using such a hierarchic “goal tree”, it is possible to associate the low-level SD 
results with the highest level system objectives and make a decision that increases the overall 
system value.  

However, many engineers stop at the technical level of  the decision analysis process and try 
to use the mere technical information for the decisions. While decisions usually demand 
important tradeoffs between the achievements of  various project goals, decisions are hard to 
make using only technical information. Thus, a common language is required, which can be used 
to translate different engineering measures into comparable units suitable for the purpose of  the 
evaluation. A common language usually used for such translations is the value of  each option 
expressed in monetary units. That is, after the engineer has determined the technical 
characteristics of  each option, he or she has to determine the value of  every option by answering 
the question: how much profit will I make if I choose this option [Hazelrigg 
1998]? The option with the highest value and thus highest achievable profit is then selected for 
the project. 

This question shows the fundamental objective of  engineering decision-making, i.e., to 
maximize the profit of  the SD organization. Baldwin & Clark [2000] formulate the same 
principle in their engineering design axiom: designers see and seek value in new 
designs. Thus, each decision in the SD process aims to increase value. 

However, the value of  a design, a system, or a whole project is usually difficult to quantify. 
Profitability is always the highest-level goal, but the aspects of  profitability are complex, 
depending on many factors. Marketing research teaches to listen to the voice of  the customer to be 
able to identify opportunities for products that are valuable for the different groups of  
customers. Marketing applies effective methods like conjoint analysis, voice-of-the-customer analysis, 
perceptual mapping, intention scaling, portfolio optimization, and lifecycle forecasting to determine actual and 
future customer needs that drive the value of  a product in the market [Dahan & Hauser 2000]. 
Knowing the customer preferences and their meaning in technical language is a basic requirement 
for decision-making. 

Value is also central in Lean, a systems engineering philosophy to handle complex SD projects 
[e.g., Murman et al. 2002]. Lean, as a holistic philosophy, expands the scope of  the determination 
of  the system objectives to all the stakeholders of  a system, i.e., to all the people who are somehow 
affected by the development, manufacturing, operation, maintenance, and disposal of  the system. 
Such stakeholders generally comprise the gamut of  customer acquirers, end users, consumers, 
partners, supplier, unions, the corporation, the shareholders, and the society [Murman et al. 2002]. 
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Hence, the overall success or value of  the system is defined by the global satisfaction of  the 
system stakeholders. 

The stakeholder view of  Lean includes an important system management aspect. It proposes 
that the success of  a project is not a mere measure of  the customer satisfaction and the 
profitability of  the project this satisfaction brings, but that long-term system success depends on 
the satisfaction of  everybody linked to the system. Thus, the objective of  systems engineering 
management is to maintain a long-term win-win situation for each SD stakeholder and thus, system 
success by maximizing the overall lifecycle value of  the delivered products. 

Nevertheless, the value of  a product is difficult to determine due to the diverse and 
sometimes even contradictory desires of  the various stakeholders. Furthermore, value is not a 
static variable. It depends on the (structural and behavioral) complexity of  the SD system and its 
environment. It changes during the SD lifecycle as the design itself, and its internal and external 
environment change. Thus, the determination of  the lifecycle value of  a system must be an 
ongoing activity following the SD process and considering all aspects and subsystems of  
the dynamic ZOPH+T development system. 

The determination of  the way the system lifecycle value changes during the period of  the 
project or program is essential for the definition of  realistic system objectives. Browning & 
Honour [2005] propose an iterative five-step approach to quantify the system lifecycle value 
during the whole lifecycle of  a system: (1) identify the stakeholders, (2) identify the stakeholder 
preferences for key parameters, (3) anticipate and quantify the evolution of  key parameters, (4) 
create a holistic measure of  stakeholder value, and (5) measure stakeholder value over time: 
Lifecycle Value. 

The key parameters (i.e., the managerial measures in the “goal tree” in Figure  D.4) that are the 
key drivers of  the system lifecycle value for the stakeholders comprise the most important 
characteristics and requirements regarding the development and developed systems. The term 
lifecycle value implies that value is dynamic and valuation should not end at the end of  the SD, but 
it has to track the shifting stakeholders’ needs and discover new opportunities for existing and 
new products. Furthermore, the ultimate development goal should be to maximize the profitable 
length of  the system lifecycle and thus, the lifecycle value of  the systems. This can be achieved 
through designs and design platforms that account for changing stakeholder preferences and 
products that can be adapted to the changing environment.  

The dynamic nature of  system lifecycle value is an important driver of  adaptive SD. That is, 
the goal of  SD is not simply to deliver a system that satisfies the stakeholders at one point of  

 
Figure  D.5 Lifecycle value of traditional and incremental SD outputs 

(modified from [Browning & Honour 2005]) 
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time in the future, but to aim at a moving target and hit it many times during the product lifecycle by 
releasing frequent system upgrades [Browning & Honour 2005]. This way, the lifecycle value of  
the system can be considerably increased. 

Figure  D.5 shows how system lifecycle value can be maximized in an adaptive SD system. 
Through the application of  the models for capturing dynamic system objectives discussed in the 
last section, changes in the market needs and technology characteristics can be documented and 
the system objectives can be adjusted to set the scope of  the required system adaptation. While in 
traditional SD few products incorporating a high rate of  innovation are launched (i.e., big-bang 
release), adaptive SD attempts to release many versions of  the developed systems with evolving 
maturity and value. Thus, as Figure  D.5 depicts, adaptive SD projects can manage the dynamics of  
system lifecycle value, and develop and produce high value systems continuously. 

The stakeholder centric philosophy of  Lean is an important basis for adaptive and Agile SD. 
At each step in a Lean SD, the possible outcomes of  the decisions are evaluated to quantify the 
effects on the overall system lifecycle value. This fosters the consideration of  both positive and 
negative consequences of  the SD steps and thus supports deliberate decision-making.  

D.3.1. Lean System Value 
The core principle of  Lean is that each system element individually contributes to the overall 

system value and thus has to be evaluated separately (considering their effect on the emergent 
system characteristics, as well). That is, the elements in all five subsystems of  the ZOPH+T 
development model can be evaluated, and their effects on the system value can be quantified. 
This way, requirements, design components, technology components, activities, and even persons 
that have a high contribution to the system value can be highlighted and those with low or no 
contribution can be removed from the system.  

As the ZOPH+T subsystems are interrelated, a change in one subsystem causes changes in 
others, e.g., if  a goal or requirement is removed, the related function and physical component also 
has to be removed (Figure  D.6). Furthermore, the technology planned to be used at the design of  
the certain component and the activity or sub-process implementing the design part might not be 
required any more either, which might then cause changes in the technology and process system, 
too. Hence, a Lean goal system contributes to the leanness of  all other subsystems in ZOPH+T 
and vice versa.  

Baldwin & Clark [2000] argue that there is a fundamental isomorphism between the structure of  
the product system and process system in the SD. NASA [1995] also states that the structure of  
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Figure  D.6 Eliminating waste in an isomorphic ZOPH+T system 
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the product system resembles the structure of  goal system (requirements). Furthermore, the 
organization of  the project includes persons assigned to the activities in the SD following the 
process structure. Hence, if  one block of  elements is eliminated in one of  the ZOPH+T 
subsystems, then all other subsystems have to be adjusted as well. Figure  D.6 shows this 
phenomenon, where the elimination of  one chunk of  goals affects the contributing elements in 
all other subsystems. This basic principle of  systems engineering is often neglected while doing 
changes in certain ZOPH+T subsystems during an SD project causing chaos, rework, and costly 
correction actions in the project. Hence, the propagation of  changes within and among the 
ZOPH+T subsystems is essential for efficient SD projects. 

As proposed in Lean, there are three main classes of  system elements based on their 
contribution to the overall system value [Womack & Jones 1996]. In the first class (Type I), there 
are system elements that add value. These have to be identified and categorized as core system 
components. Others in the second class (Type II) do not add value but are necessary to enable 
value production. These elements are called necessary waste in a system. System elements in the 
third class (Type III) do not contribute to the system success, i.e., these are elements that do not 
add value and thus are unnecessary for the project. Elements in the third class are called pure waste 
and have to be eliminated from the system. 

D.3.2. Lean System Development 
Lean principles were first applied to production and business processes that are repetitive in 

nature. They yield high reductions for these processes in project cost and schedule if  
redundancies and unnecessary activities are eliminated, because they only cost time and money 
without increasing the success of  the project.  

However, SD has different characteristics. Iterations in the SD process (i.e., the repetition of  
a set of  activities to improve their results) that might only mean costly project changes, rework, 
schedule overruns, and thus process waste to the managers at the first glance, are the main places 
for innovation that drives system value in the SD. Thus, if  Lean principles are strictly applied to 
the SD, it might lead to the elimination of  valuable system elements. As offensive players in a 
football team are valuable because they score the goals, the defense and the goalkeeper have the 
same value for the team, since they are the players who prevent goals scored by the opponents. 
Thus, all players in each position are necessary to achieve system (i.e., team) success.  

Browning [2003] and Browning & Ramasesh [2005] propose to measure the value of  SD 
activities based on their contribution to the reduction of  project risks, and discovering and seizing of  
design opportunities. Both risk reduction and seizing opportunities increase the overall lifecycle value 
of  the system. This view of  activities makes it possible to determine the real lifecycle value of  
activities that would be waste according to the traditional Lean principles. This theory improves 
the traditional Lean philosophy by considering how process elements contribute to the 
maximization of  stakeholder value in the actual and dynamic future SD environment. Thus, 
activity value is in this case not a mere individual, intrinsic attribute, but a parameter that is the 
function of  the activity internal and external characteristics (i.e., ZOPH+T system and its 
external environment). 

The next part discusses the role of  V&V, a typical “necessary waste” system element type 
according to traditional Lean with fundamental contribution to the final system value.  

D.3.3. Validation and Verification – The “Vital Waste” 
The determination of  the lifecycle value of  a system is a systems management task and thus 

it deals only with the desired and implemented most important high-level characteristics of  the 
system and its main modules. At lower technical levels, systems engineering breaks down these 
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high-level project goals into detailed product requirements and specifications that together give 
the full desired performance and functionality of  the system at every system level. V&V supports 
systems engineering by providing effective means for the evaluation of  the actual against the 
desired system maturity and performance and thus the determination of  the system value at the 
technical levels. As consistency is a key aspect of  system decomposition (i.e., the functionality and 
performance of  the sub-systems together provide the full system functionality and performance 
after integration), a task of  V&V is to ensure that the requirements at the lower technical levels 
are always consistent with the system-level goals. 

V&V usually starts with validation, the process of  evaluating the system objectives based on 
their relative values for the overall system at all managerial and technical system levels. Validation 
activities are coupled with design activities to analyze their deliverables (e.g., prototypes of  the 
design representing certain design aspects) and determine if  the right system is being built, i.e., if  the 
requirements (derived from the system objectives) implemented in the design mean value for the 
customers and other stakeholders. Validation is effective if  various stakeholders (e.g., the 
customer, supplier, manufacturing staff, marketing staff, etc.) join the developers during validation 
to articulate their opinion about the actual design and so, contribute to the continuous 
improvement of  it. 

Validation deals with the determination of  the value of  the developed system. During 
validation, the requirements and the system specifications derived from the stakeholders’ needs 
are evaluated to determine if  the developers’ view of  the design matches the stakeholders’ view 
of  the same design. To avoid ambiguities, misinterpretations and bias between developers and 
stakeholders, validation must start early and done continuously in the SD.  

Another form of  system evaluation is verification. During verification, the design is assessed to 
determine the quality of  the system, i.e., how the design satisfies the stated system objectives and 
stakeholder requirements. Verification methods comprise analysis, inspection and demonstration, and 
test [DoD 2001a] with the common goal to determine the quality of  the system, i.e., if  the design 
complies with the defined requirements assuming that the requirements are valid. Verification 
goes hand in hand with validation in the SD process, since these two systems engineering tasks 
ensure that the right product is built right, i.e., valid requirements are implemented in the design in 
an appropriate way.  

Both validation and verification reduce uncertainty and thus risk in the project by evaluating 
SD deliverables and comparing them to the stakeholders’ needs and project plans. Furthermore, 
V&V is a fundamental part of  experimentation cycles, where creative ideas and design options 
are implemented and tested to resolve design problems and reduce the uncertainty in the 
characteristics of  the final SD outcomes. Later parts of  the thesis deal with the role of  V&V in 
adaptive SD and show how design and V&V activities can be effectively planned to support value 
creation in the project. V&V is the main source of  information for the adaptation of  the SD 
process to the changing environment and thus a key element of  effective SD processes. 

D.4. CHAPTER SUMMARY 

This chapter found that the fundamental goal of  SD enterprise systems is the maximization of  
stakeholder value throughout the whole system lifecycle. Each element comprising the isomorphic 
subsystems of  the ZOPH+T SD enterprise system model has a contribution to the overall 
system lifecycle value. Thus, the main objective of  adaptive systems engineering is the design and 
adaptation of  the SD system to maximize value during its lifetime. Lean and Agile are systems 
engineering philosophies that accentuate the role of  early and frequent prototyping to ensure that 
the right system is built right, i.e., the system objectives represent the highest stakeholder value, and 
the SD process delivers a system according to these objectives.  
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E. SYSTEM COMPLEXITY – THE ROLE OF THE 

ARCHITECTURE IN THE SYSTEM DEVELOPMENT  

E.1. CHAPTER ABSTRACT 

The previous chapter reviewed the characteristics of  the SD system 
environment and proposed theories and methods to assure high 
stakeholder value of  the developed products. While the preceding 
chapter dealt with the inputs of  the SD system, this chapter discusses 
the SD outputs. That is, following the systems engineering way of  
problem solving, after having discussed the inputs of  the SD system in 
the last chapter, now the characteristics of  feasible outputs are defined. 

Systems in highly dynamic environments have to be capable of  
sensing the changes and responding to them by restructuring and thus 
increasing the overall system value. A main constraint to quick and 
cheap changes in a system is high system complexity, because highly complex systems cannot be 
changed easily. Hence, this chapter proposes methods that increase the flexibility and adaptability 
of  a system by reducing its complexity. Further, the chapter finds that structural modularity is a 
main driver of  system flexibility, because it allows the definition of  independent subsystems that 
can be modified without considerable effects on the emerging system properties.   

E.2. DEFINITION OF COMPLEXITY 

A fundamental characteristic of  SD is that the developers have to deal with the complexity of  
the system. It is important to discuss the problem of  complexity, because as Rechtin & Maier 
indicate [1997]: 

It is generally agreed that increasing complexity is at the heart of the 
most difficult problems facing today’s systems of architecting and 
engineering. Systems are simply growing in complexity – the biggest 
cause of cost overruns. 

The general definition for the word “complex” is related to the complicatedness of  
something, i.e., complex is a whole made up of complicated or interrelated parts 
[Merriam-Webster Online Website]. However, this definition is too general for the application in 
(systems) engineering. Fortunately, many researchers in different disciplines dealing with the 
description and analysis of  systems documented a high number of  definitions for this term. 
Naturally, these definitions are always related to the specific context and discipline of  the 
researcher or author (for a large set of  definitions of  complexity from different disciplines see 
[e.g., Negele 1998, Sussman 2003]).  

In systems engineering and systems theory, definitions classify complexity into two main 
categories: structural complexity concerning the complicatedness of  the order of  the elements in the 
system and behavioral complexity regarding the behavior of  the system over time [Sussman 2003]. 
Senge [1990] also defines two types of  complexity in: detail complexity referring to the 
characteristics of  the system elements and the interrelations between them (order or structure) 
and dynamic complexity caused by the processes of  system change (behavior). German-speaking 
systems theory also provides definitions for both kinds of  complexity [e.g., Patzak 1982, Negele 
1998, Igenbergs 2000, Wenzel 2003]:  
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Complexity is a characteristic describing the structure of the system 
that depends on the variety (diversity of elements) and the connectivity 
(diversity of relations) of the system. Furthermore, variability 
(changeability) has a main effect on system complexity. 

Hence, the structural or detail complexity of  a system is high if  the variety of  the system elements 
is high (i.e., a high number of  diverse elements compose the system) and the number and type of  
relations between system elements are high. For the latter aspect of  structural complexity, 
sometimes the measure of  relative connectivity or connectivity density is used meaning the actual 
number of  relations in the system relative to the number of  possible relations in the system. 
Connectivity density is however a rather theoretic measure that assumes that the maximum 
number of  relations between two elements of  the system is two, one in each direction between 
the elements. Thus, connectivity density is difficult to apply to real systems where usually 
numerous relations between system elements exist. According to Senge [1990],  

behavioral or dynamic complexity exists if, (1) an action has different 
consequences on the system in the short and the long term, (2) an action 
has one set of consequences locally and a different set of consequences 
in another part of the system, or (3) obvious interventions produce non-
obvious consequences in the system.  

Dynamic complexity can arise in simple systems with low structural complexity if  the system 
behavior ruled by the interactions among system elements are: (1) dynamic, (2) tightly coupled, 
(3) governed by feedback, (4) open, (5) nonlinear, (6) history-dependent, (7) self-organizing, (8) 
adaptive, (9) counterintuitive, (10) policy resistant, (11) characterized by tradeoffs, and (12) 
interdisciplinary, [Negele 1998, Sterman 2000].  

A main driver of  dynamic complexity in SD systems is long time delays between taking a 
decision and its effects on the system [Sterman 2000]. For example, long time delays reduce the 
effect of  learning in the design iteration loops in the SD process. As learning is the main driver 
of  innovation, long time delays contribute to lower effectiveness and efficiency in the SD that 
diminishes the value of  the delivered product. This characteristic of  dynamic complexity is a 
main aspect of  structural process optimization [e.g., Steward 1981a, 1981b, Browning 2001], 
experimentation planning [Thomke 2003], and V&V planning [Lévárdy et al. 2004a, Lévárdy & 
Browning 2005] 

Hence, as Senge suggests, the real leverage in most management situations lies in 
understanding dynamic, not detail complexity of  the SD project. However, most systems analysis 
tools focus on detail complexity and try to fight “complexity with complexity”. That is, the more 
complex the system gets, the more complex the analysis methods will be as well. Nevertheless, as 
Senge concludes, this is the antithesis of  real systems thinking. Thus, the clue to deal with increasing 
system complexity is not to try to improve existing analysis and design methods and tools by 
including plenty of  new features in them, but to realize the opportunities of  new theories and 
research directions that decrease complexity more effectively than before.  

This thesis provides a novel way to consider development processes and provides an effective 
method to handle both detail and dynamic complexities of  the SD system. 

E.3. TECHNIQUES TO DEAL WITH SYSTEM COMPLEXITY 

E.3.1. Modeling – Understanding System Complexity 
As most definitions propose, complexity is not an absolute, intrinsic characteristic of  the 

system, but it is an aggregated measure of  different parameters that are drivers of  system 
complexity in different disciplines [Schulz 2003]. Thus, the best way to measure system 
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complexity is to build a model of  the system that accounts for the major characteristics that 
describe complexity, analyze the model, and seek a result that unambiguously shows the 
complexity of  the system regarding the definition. 

Modeling and simulation are effective tools to determine both structural and behavioral 
complexity of  a system. The determination of  complexity requires a three-step process 
[Kreichgauer 1995]: 

1. Define the measure(s) that quantifies system complexity. The measure(s) must unambiguously reflect 
the modeler’s understanding of  complexity and provide a clear answer to the modeling 
question: “what is the complexity of  the system?” 

2. Define a representation (i.e., model) of  the system that is appropriate for the measurement of  complexity. 
That is, the model and the complexity measure(s) have to use the same modeling language. 
Otherwise, the model cannot provide a clear, unbiased answer to the modeler’s question. The 
complexity of  the model, as a representation of  the system then equals the complexity of  the system regarding 
the defined measures, i.e., the modeling question. 

3. Determine the complexity of  the model and thus, the system using the modeling components. The result of  
modeling is as exact and valid as the model and its modeling language. Thus, the selection of  
an appropriate modeling language for both the measures and the model, and the capability of  the 
modeling method to model the system have major effects on the quality, validity, and usability 
of  the results. 

Once a model of  the system is defined, the degree of  system complexity can be determined 
and models of  different systems defined in the same modeling language can be compared 
[Negele 1998]. Furthermore, analysis on the models can be conducted to determine how the 
complexity of  the actual model can be reduced in order to foster the work of  the system 
developers. 

A model is an abstraction of  the reality [e.g., Igenbergs 2000], i.e., it accounts only for a 
certain aspect, a limited scope of  the modeled system. Thus, a model is a representation of  a 
system with a definite purpose. This purpose generates requirements on the modeling process, e.g., 
modeling objective, required outcome, evaluation criteria, modeling method and procedure, 
required fidelity, economic constraints of  the modeling process, analysis methods, etc. 
Consequently, the purpose of  modeling has a main effect on the kinds and quality of  the results 
obtained during modeling and simulation. 

Another important aspect of  modeling is the placement of  the system boundaries in the 
model. The system boundaries limit the working range of  the model and thus the scope of  the 
analysis of  the modeler. Where the boundaries of  the model have to be drawn is defined by the 
framing or articulation of  the problem that is to be solved with the model. The boundaries 
describe where the system operates, which variables are required in the model to provide an 
adequate solution to the modeling problem, and the relevant time horizon for the modeling 
[Sterman 2000]. Hence, the effectiveness of  the modeling process demands that all the relevant 
system elements, variables, and cause and effect relations are included in the model, but not more 
than that, because otherwise the efficiency of  modeling suffers. The right balance between the 
required modeling information and the fidelity of  modeling outcomes drives the overall value of  
the modeling exercise. 

If  a system model is defined according to the four systems engineering modeling rules of  
Igenbergs, first, the system model will represent the order of  elements and relations in the 
modeled system. Schulz [2003] defines order as the state of  a system that characterizes the 
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system through a high number of  varying system components connected to each other. The 
order of  the system emerges naturally. 

The order of  the elements and relations in a system has a major effect on system complexity, 
because the order contributes to both the structural and behavioral characteristics. Thus, system 
complexity can be reduced by manipulating the order of  the system elements [Haberfellner et al. 
2002]. If  the order of  the system elements is modified for a certain purpose, the resulting new 
order will not be the natural order any more. This new artificial order is then called the system 
structure [Schulz 2003]. 

Manipulation of  the order of  the elements in the system model can be used to define 
different levels of  abstraction that “hide” the complexity of  the whole and allow the developers to 
focus on the details that are important and relevant to their SD tasks. As the development of  
complex systems requires the cooperation of  hundreds or thousands of  experts, abstraction 
helps define work scopes and clear objectives for these individuals and teams by reducing the 
problems to be solved to a manageable size. Dividing a larger task into smaller problems is one 
of  the most fundamental problem solving paradigms, however dividing a large problem 
effectively requires either a great deal of  insight or an insightful model [Eppinger 1991]. 

Two kinds of  abstraction are described in the next sections that help structure the related 
system elements into groups and thus support the reduction of  complexity during system 
architecting and modeling. Hierarchy in a system relates to the vertical relationship among system 
elements that is the result of  system decomposition, while modularity refers to the architecture 
type where closely related elements of  a system are grouped in clusters or chunks based on their 
horizontal interactions. 

E.3.2.  System Decomposition and Hierarchy  
Alexander [1964] proposes that in architecting, the overall designs can be improved if  they 

are made up of  subsystems that can be adjusted relatively independently. Furthermore, he argues 
that the complexity of  modern systems can be better handled if  they consist of  fairly 
independent subsystems. This way, the scope of  problem solving can be reduced and its 
effectiveness increased.  

Hence, it makes sense to decompose a system into vertical hierarchy levels if  its complexity is 
too high and thus no longer manageable for the designers. Bahill defines hierarchy as an 
ordered network of concepts or objects in which some are subordinate to 
others [INCOSE 1998a]. Thus, hierarchy is a structural characteristic of  a system representing 
an order of  the system elements in which components are ranked into levels of  subordination 
regarding their relations, attributes, and functions. System hierarchy orders the elements of  a 
system into classes, where each class represents a level of  abstraction of  the system.  

During SD, a large problem (i.e., the system to be designed and developed) is decomposed into 
smaller, related problems (i.e., subsystems of  the system) that can be studied and solved (i.e., 
designed) easier than the large problem as a whole. After the small problems are solved and the 
subsystem designs are finished they are integrated to form a complete solution for the system 
design.  

Through decomposition, a complex system like an aircraft can be broken down into main 
subsystems in the first hierarchy level (e.g., propulsion, controls, structure, support systems, etc.) 
and then the subsystems can be further decomposed into components in the second hierarchy 
level (e.g., the propulsion consists of  main components like the compressor, combustion area, 
turbine, etc.). The hierarchic decomposition of  the system can be continued until the lowest level 
contains only atomic elements, that cannot be decomposed any further. 
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Figure  E.1 shows two systems, one (A) without and another one (B) with hierarchy. The two 
systems in Figure  E.1 are depicted as tree diagrams. As the tree diagrams show, the two systems 
are different in both architecture and structure. The architecture of  a system is the 
arrangement of functional elements into physical chunks that become the 
building blocks for a product or family of products [Ulrich & Eppinger 2004]. 
Hence, the architecture of  a system shows how the system is built up by interacting subsystems 
and components whose individual functions and behaviors yield the performance of  the original 
complex system [Yassine & Braha 2003]. Thus, the architecture of  system A and B in Figure  E.1 
is different, because their subsystems and the relations between the subsystems are different. 

Furthermore, the two systems in Figure  E.1 are different in structure, as well. The structure of  a 
system is an abstraction of  the architecture. It shows which interactions or interdependencies exist 
between its subsystems without accounting for the functions or attributes that describe the 
individual characteristics of  the subsystems. That is, in case the structure of  the system is 
investigated, the properties and functions of  the system elements are ignored (i.e., they are 
considered as black boxes), only the underlying logic of  the system represented by the relations 
among system elements is studied. 

The hierarchy of  a system is one view of  the system structure. However, as Figure  E.1 shows, 
the system hierarchy, usually displayed as a tree diagram, only depicts how elements on one level 
depend on the elements on the adjacent levels, not the relations between the elements on one 
level. This is a natural effect of  top-down system design, where the system is gradually 
decomposed and detailed until each aspect of  system design is adequately defined. 

During system decomposition, the goal is to understand the design problem and define an 
optimal system hierarchy, i.e., the required levels of  abstraction for the optimal solution of  the 
problem. In case of  a simple design with low complexity, the definition of  the system at too 
many system levels creates unnecessary working effort, as the number of  system elements and 
interactions to be specified grow immensely at every level (see Figure  E.1). On the contrary, a 
design with high complexity requires numerous abstraction levels to uncover every important 
design aspect and define the characteristics of  interaction between the components even in the 
lowest level. 

Hierarchical diagrams are often applied in systems engineering to demonstrate hierarchic 
relations among elements in every subsystem of  the ZOPH+T model. Due to the fundamental 
isomorphism among the structures of  the ZOPH+T SD subsystems [Baldwin & Clark 2000, 

System B with hierarchy

Level 1 (top level)

Level 2

Level 3

Level 4

System A without hierarchy

Level 1 (top level)

Level 2

 
Figure  E.1 Two systems with different hierarchies 
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NASA 1995], the hierarchic structure of  each ZOPH+T subsystem follows the same pattern, 
that of  the goal system. This is one of  the basic purposes of  system requirements: to represent a 
hierarchical description of  the customer’s desired product system as understood by the SD team. 
As these requirements are allocated, they become inexorably linked to the system architecture and 
Product Breakdown Structure (PBS), which consists of  the hierarchy of  the system, segments, 
elements, subsystems, etc. [NASA 1995]. 

The Work Breakdown Structure (WBS) is also a tree-like structure that contains the pieces of  
work necessary to complete the project. Each task in the WBS should be traceable to one or 
more of  the system requirements, and contribute to the development of  one or more of  the 
product items in the PBS. Furthermore, each project should have an Organizational Breakdown 
Structure (OBS), which assigns personnel to perform the tasks, and a Cost Breakdown Structure 
(CBS), which depicts the cost of  the development of  the product items in the PBS including 
personnel, material, equipment, operating etc. cost. 

Breakdown structures are important input sources of  project scheduling, as they contain the 
core information about the project including the main goals and deliverables, major development 
products, every important step of  the development, the persons that do the work, and the 
estimated costs for each main stage of  the development. 

It is important to discover and understand the fundamental similarity among the breakdown 
structures representing pieces or the entirety of  the five ZOPH+T subsystems. As shown in a 
previous chapter the structures of  the subsystems and thus the breakdown structures in the 
project are isomorphic. This characteristic is a main leverage in defining system hierarchy and 
modularization. However, many engineers and project managers still do not see the isomorphism 
among the main subsystems that limits the opportunities of  optimizing the ZOPH+T SD system 
structure. 

However, the application of  hierarchical diagrams for SD also has some drawbacks. In case 
of  high complexity, the decomposition of  the system into multiple levels of  hierarchy is a 
challenging task, since all requirements have to be accounted for at each level; the design has to 
be kept consistent between the levels; and interaction among the various branches of  hierarchy 
have to be uncovered and understood. System decomposition into a clear hierarchical structure 
usually works best if  the product can be broken into modules that are relatively independent. 
Such products or systems are called modular [Crawley et al. 2004]. These modules of  the product 
can be then designed and developed concurrently, which significantly increases the efficiency of  
SD. However, if  the there is a high interaction among the branches of  the hierarchy, i.e., the 
design is integral, it needs to be designed at the highest level of  the hierarchy, or their design 
requires a lot of  coordination of  the modules at lower levels [Crawley et al. 2004]. The next part 
of  the thesis discusses hiding of  information and modularity in the system architecture. 

E.3.3.  Modularity – Hiding Information in the System 
During system decomposition, the elements of  the system design are refined at each 

hierarchy level, and the relations between system elements are determined to facilitate the later 
integration of  the elements. Systems engineering and design literature suggest four main types of  
relations or interactions between system elements [e.g., Pimmler & Eppinger 1994, Negele 1998]:  

• Spatial: associations of  physical space and alignment 

• Energy: needs for energy transfer/exchange between two elements 

• Information: needs for data or signal exchange between two elements 
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• Material: needs for material exchange between two elements 

Pimmler & Eppinger [1994] further classify interactions into a five-point scale based on their 
relative importance for the functionality of  the elements. The five categories of  interactions or 
interdependencies between system elements are: (1) required, (2) desired, (3) indifferent, (4) 
undesired, and (5) detrimental.  

Sharman & Yassine [2003] propose a modified version of  the classification of  interactions by 
Pimmler and Eppinger: a four-point scale based on the strengths of  the interactions in a physical 
system. This four-point scale offers a general measure for the importance of  interactions by 
defining the strength of  a relation as the function of  the required types of  interactions between 
two system elements (i.e., spatial, energy, information, and material). Thus, the strength of  an 
interaction is 

• High, if  it includes the significant flow of  three or more of  the interaction types 

• Medium, if  it includes two of  the above 

• Low, if  it includes one of  the above 

• Zero, if  there is no significant relationship between two elements 

The type and strength of  the interactions between system elements are key inputs for the 
system analysis activity that usually follows decomposition in the system design process. During 
system analysis, the main tasks are to understand and document the interactions between the 
elements (i.e., their integration) and analyze potential reintegration of  the elements via clustering or 
integration analysis [Pimmler & Eppinger 1994, Browning 2001]. 

Integration analysis or clustering is a method to manipulate the structure of  the system to 
recognize functionally related elements that are highly dependent on each other. These 
functionally related elements of  a physical system are called clusters or chunks in literature [e.g., 
Steward 1981a, Pimmler & Eppinger 1994, Browning 2001]. The foremost objective of  clustering is to 
maximize interactions between elements within clusters while minimizing interactions between clusters [Rechtin 
1991, Baldwin & Clark 2000]. Further goals of  clustering can be to minimize the size of  the 
clusters (i.e., the number of  elements involved in a cluster) or minimize the number of  clusters 
[Browning 2001]. 

Pahl & Beitz [1999] directly link the definition of  modules (i.e., clusters) to functionality (i.e., 
basic, auxiliary, special, and adaptive). Such a cluster is the physical realization of  a function [Sharman 
& Yassine 2003]. The goal of  clustering is slightly different in this case compared with the goal 
above, where clusters are defined based on the dependency of  system elements on each other. 
Hence, the two ways of  clustering can lead to alternative system structures that can then 
evaluated according to the complexity or other appropriate measures concerning the goal of  the 
analysis. Finally, the feasible modular architecture can be selected for the product. 

The result of  clustering based on the interactions of  the system elements is depicted in the 
second block diagram representing the architecture of  system “B” in Figure  E.2. During 
clustering, the design information (e.g., elements of  the design or design parameters representing 
the characteristics of  the system and its modules) is partitioned into two categories: visible 
information and hidden information [Baldwin & Clark 2000]. That is, part of  the interactions among 
system elements are outside the modules on the system level, and another part is limited to the 
module-level, inside the modules. If  the rate of  hidden information is high (i.e., the interactions 
among system elements are concentrated on the module-level), then the design consists of  a set 
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of  highly independent modules that interact with each other via interfaces. Hence, the above-
defined goal of  clustering can be interpreted as maximizing hidden information in the design and thus the 
independence of  the design modules.  

Visible information consists of  interactions that serve to decouple hidden information from 
visible information. These major interactions between modules, called interfaces, are main building 
blocks of  engineering systems. Interfaces are the functional and physical 
characteristics required to exist at a common boundary or connection 
between persons, or between systems, or between persons and systems [INCOSE 
1998a]. Well-defined, robust interfaces are vital for modular systems, thus the interface 
specifications are among the most important system-level design rules for complex systems.  

Hiding information is a type of  abstraction, a technique for managing system complexity 
[Baldwin & Clark 2000]. Hidden information is not visible for other parts of  the system, which 
reduces the connectivity and thus the structural complexity of  the system. Furthermore, as the 
behavior of  a system arises from its structure, information hiding and thus modularity reduces 
dynamic complexity as well. That is, the behavior of  the hidden elements in the de-coupled 
modules has significantly lower effects on the other parts of  the system than in a highly 
integrated system. This has a positive effect on the behavioral complexity of  the system.  

Level one and two of  the tree chart depicting the hierarchy of  system “B” in Figure  E.2 
represent the visible information in this model. System “B” consists of  two main modules or 
subsystems on “level 2” that are connected via an interface. This interface between the main 
modules of  the system is the only visible interaction in the system. As “level 3” of  the tree 
diagram shows, the first and second main modules are further broken down into four and two 
components respectively. These six components have only module-level interactions, i.e., they are 
hidden in their modules. Thus, the visibility of  the components in the first and second modules 
for the other parts of  the system is limited. 

To determine visibility for any element in a system, one needs to ask, “What other 
elements would need to be redesigned if this element changed?” [Sharman & 
Yassine 2003]. Therefore, if  any of  the system elements in system “B” on level three is changed, 
it has only consequences for the elements in the same module, but not for the elements in the 
other module. However, if  a change occurs on level one or two, it has consequences for every 
element in the system. The same is true for the dynamic behavior of  the hidden elements.  

System A with integrated architecture

Level 1 (top level)

Level 2
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Level 2
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tree diagram

System B with modular architecture

block diagram

tree diagram block diagramtree diagram block diagram  
Figure  E.2 Two systems with different architectures 
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E.3.3.1. Benefits of Modularity 
The previous section showed that product architectures with chunks or modules, which (1) 

implement one or a few functional elements in their entirety, and (2) comprise two or more 
components that strongly interact with each other within the cluster, and have few, well-defined 
relations to elements in other clusters are called modular architectures.  

Modularization leads to major design, manufacturing, and business benefits for the development 
enterprise [Whitney 2003]. Furthermore, Baldwin & Clark [2000] suggest a fourth aspect, the 
benefit of  modularity in use. The topic of  this section is how modularization supports these four 
aspects of  SD. 

Modularity has numerous positive effects on the design of  a system: (1) it reduces the scope of  
design changes due to the low visibility; (2) it increases product variety without adding extra 
complexity to the system, (3) it supports component standardization, which reduces 
manufacturing cost; and (4) it supports SD management by assigning concrete design tasks to 
relatively small design teams working on the detail design of  chunks or modules [Ulrich & 
Eppinger 2004]. 

Baldwin & Clark [2000] argue that modularization has three main effects on the design and 
development of  a product: (1) it makes complexity manageable by providing the developers with 
limited working scopes and clear, traceable and verifiable objectives; (2) it enables parallel work 
on the independent modules without ongoing coordination; and (3) it accommodates future 
uncertainty by enabling frequent module-level changes and improvements without affecting the 
system-level functionality of  the product.  

The first effect of  modularity proposed by Baldwin & Clark concerns information hiding and 
visibility and was discussed in the previous section. The second aspect is a direct result of  low 
visibility in the SD process. Development activities can be performed in parallel if  there is no 
information dependency between them, i.e., the deliverables of  one activity are not required to 
complete the deliverables of  the other ones. Activity dependency is particularly high if  the system 
architecture is integrated, and thus each SD step in one piece of  the system requires the 
consideration of  the achievements of  the development work in other parts of  the system. 

On the contrary, modular product designs enable independent development work on the 
main modules of  the design and thus concurrency in the development process. Even though 
communication is still vital for efficient work, it can be done in a controlled way, since the few 
clearly specified interfaces between the system modules that define the most important aspects 
of  communication are easier to handle than in a highly interrelated system. However, a basic rule 
for modularization in the SD is that the system-level design rules including the main system 
requirements, functions, modules, and interfaces cannot be changed once they have been 
specified. Without strict design rules, modularization can lead to chaos in the SD process. 

The third benefit brought by modularization of  the design according to Baldwin & Clark 
[2000] is that it allows “hidden work” on the modules and thus a later freeze of  the module-level 
specifications. Thus, modularization fosters module-level experimentation and innovation that 
opens a myriad of  new opportunities for SD. In case the system-level design rules are not 
changed (i.e., the desired system functionality and the interfaces between the modules remain the 
same), the developers can experiment freely with various module design options by changing 
parts of  the modules or implementing new technologies. This kind of  positive uncertainty in the SD 
means that the module design options can be kept open much longer than with traditional 
integrated designs enabling later commitments towards the customer at higher design maturity 
and thus higher design knowledge. In addition, enhanced module-level experimentation and 
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testing foster early failure discovery and results in reduced system-level verification and 
qualification and as an effect, significant reductions in undesired late rework. 

Ulrich [1995] discusses how manufacturing profits from modularization and finds that design 
modularity contributes to design flexibility that enables the flexible manufacturing of  a high 
variety of  products economically. Improved flexibility in manufacturing processes reduces the 
cost of  changes between the manufacturing of  different designs and thus fosters the 
implementation of  mass customization in production. Hence, modularity is an important aspect of  
Design for Manufacturing (DFM) strategies [Ulrich & Eppinger 2004]. 

The business benefits of  modularity include reduced costs through the reuse of  standard 
components and a better definition of  the opportunities for market dominance through interface 
capture [Moore 1999]. Additionally, modularity enables increased rates of  technological or social 
innovation [Baldwin & Clark 2000] and increases product value through the ability to tailor 
product architecture and thus product characteristics to customer needs [Whitney 2003]; Finally, 
modularity enables better outsourcing, permitting companies to share risk or gain access to 
knowledge and capabilities not available in-house [Fine & Whitney 1999]. 

A long-term effect of  modularization is that whole industries will operate as modular clusters. 
As the complexity of  the overall system achieves such a high level that the SD is no longer 
manageable, systems can be broken down into individual modules with lower complexity that are 
developed independently. This way, system development can be transformed into the 
development of  a system of  systems, where a modular enterprise cooperated to achieve a 
common goal.  

Baldwin & Clark [2000] show how the computer industry has grown to be a system of  
specialized clusters that deliver together the product: personal computer. The key driver of  the 
emergence of  industry clusters is the modular product architecture that enables parallel research, 
development, and production of  independent product components with standard interfaces.  

Modular products have advantages in their use as well. Modular products can be bought 
piecewise and assembled at home making it possible to define individual products from a set of  
standard components. Further benefits concern increased maintainability due to standard, plug-
and-play modules, product adaptability to changing conditions, and increased lifecycle value 
through easy product upgradeability.   

However, there are some disadvantages of  modularity, negative aspects that can easily 
diminish the described benefits if  not correctly understood and handled effectively. The next 
section describes these possible disadvantages. 

E.3.3.2. Disadvantages of Modularity 
Smith & Reinertsen [1998] argue that the cost of  modularity might be increased project cost 

due to the higher required planning effort and reduced product performance. That is, the benefits 
of  modularity defined above require a greater system-level working effort and detailed 
specification of  the system-level design. So, both the system-level design parameters and 
functions have to be defined precisely. Additionally, Smith & Reinertsen [1998] claim that design 
flexibility, a usual benefit of  modularity often comes at the expense of  design performance, i.e., 
the modular design has a lower performance than an integrated one with similar functionality [see 
also Höltta & De Weck 2005]. Nonetheless, this tradeoff  is worth it if  performance can be 
increased through frequent product upgrades enabled by the flexible architecture. 

As modular designs accommodate uncertainty [Baldwin & Clark 2000], changes often occur 
during the design and development of  modular products. Based on the predictability of  the 
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future changes in the requirements and/or the module designs, the design team has to decide 
which parts of  the system have to be robust and flexible. That is, to allow variability and 
changeability of  the designs in the long term, parts of  the design have to be built to resist 
changes (i.e., robust parts) and others to enable them (i.e., flexible parts).  

Robust modules and interfaces are defined to be resistant to changes during SD. Robustness 
is an effective strategy in case slight, foreseeable changes in the stakeholders’ needs are predicted. 
Flexibility in the design is deliberate on the other hand, if  the requirements are imprecise or even 
unknown and thus difficult to predict in the long term. In this case, modules have to be designed 
to be flexible, i.e., for easy changeability. 

However, this demands a thorough understanding of  the design and the planned 
development work. That is, the design team has to be aware of  the main technical, technology 
and market risks that might threaten the stability and validity of  the system objectives and thus 
the system-level requirements and design parameters. Therefore, the design team must account 
for possible changes in the development environment that could affect the system-level design 
and determine the required robustness and flexibility of  the system architecture to withstand and 
accommodate changes. 

Yet, robustness and flexibility are expensive. They are expensive due to the increased required 
planning effort and the high cost of  robust and flexible interfaces and modules that have to be 
developed and implemented in the design. If  there is no standardized solution for such interfaces 
or modules at a certain product, it might be risky to depend on immature components. Thus, a 
main task of  research & technology development is to develop long-term solutions for modular 
product architectures for a product family or platform. 

A benefit of  modularity is improved module-level experimentation and thus, increased 
innovation. However, the strict system-level design rules might restrict technical opportunities 
that might be hindered by the design limits of  the modules. With modular designs, where the 
rather high cost of  changing the basic architecture exceeds the benefit achievable through the 
changes, the opportunities for fundamental innovations are limited. 

Another drawback of  modularity is that not all systems can be decomposed optimally into 
modules and interfaces [Whitney 2003] and if  modularity is sub-optimal, the independent 
development work suffers from it [Sharman & Yassine 2003]. That is, modularity in theory is 
different from modularity in reality. Thus, modularization requires high design and development 
expertise and experience; otherwise, it can lead to high losses in the project. 

Even if  the modularity of  the design is optimal, projects developing modular products 
require attention from project managers and systems engineers, because the developers have to 
learn how to deal with the increased independence and flexibility. Firstly, such projects must 
include an ongoing assessment of  the compatibility of  module-level designs to the system-level 
specifications. Furthermore, the organization for communication is vital due to the increased 
concurrency in the development work. And last but not least, the developers have to discover 
how the increased product and process flexibility can be utilized effectively and how to bring their 
ideas in the development work without being afraid of  failing.  

E.3.3.3. Methods to Create Modular System Architectures 
The sections before described the advantages and disadvantages of  modularity in system 

architectures. In this section, methods will be discussed that foster modularization. Then, one 
method, the design structure method (DSM) will be described in detail, which will be applied later in 
the thesis for different purposes.  
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There are various methods in systems engineering and product design literature that support 
the identification of  modules in the system architecture. Holmqvist & Persson [2003] identify six 
basic methods in their study that are applicable for product modularization. Each of  the six 
methods is structured around three main modularization steps: decomposition, integration, and 
evaluation. However, each method applies different techniques for modularization. Furthermore, 
Sharman & Yassine [2003] collect and compare similar methods for identifying modules in a 
design. The two studies identified the following methods for designing modular products: 

1. Function Diagrams/Structures [Otto & Wood 2001] 

2. Fractal Product Design [Kahmeyer et al. 1994] 

3. Modular Product Development [Pahl & Beitz 1999] 

4. Modular Function Deployment [Erixon 1998] 

5. Axiomatic Design [Suh 1990] 

6. Graph Grammars [Siddique & Rosen 1999] 

7. Hatley/Pirbhai Method [Zakarian & Rushton 2001], 

8. Modeling the Product Modularity with Interaction Graphs [Kusiak & Huang 1996] 

9. Design Structure Matrix (DSM) [e.g., Steward 1981a, Pimmler & Eppinger 1994] 

The first seven methods are traditional design methods that provide modularized products as 
output. All seven methods describe a design procedure for the three steps: decomposition, 
integration, and evaluation that deliver the desired architectures. At each method, the function 
structure of  the product is the basis for identifying the design modules, and the goal of  
modularization is to map one or as few functions as possible to physical product components in 
the physical architecture. However, as Holmqvist & Persson [2003] argue, all seven methods work best 
if  the requirements and function structures are intrinsically modular. Furthermore, these methods are only 
effective with product designs and relatively useless with the design of  other kinds of  system 
architectures.  

The last two methods are matrix-based methods that are based on earlier work by Warfield 
[1973] and Steward [1981a]. The strength of  these design analysis methods using adjacency matrices 
is the identification of  strongly related components in a graph representing the components of  
the system and their interactions. As traditional modularizing methods use function structures as 
starting points, matrix methods identify related groups of  system elements based on the dependency between 
them. While the method by Kusiak & Huang [1996] uses binary matrices, Pimmler & Eppinger 
[1994] propose a system clustering method based on the importance of  the interactions (see 
classification of  interactions between system elements earlier in Section  E.3.3).  

In this thesis, DSM is applied for the description and manipulation of  the system structure and 
modularization due to its simplicity and general applicability (i.e., it can be applied to any kind of  
system structure, not just to products). Furthermore, the possibility to directly apply 
mathematical algorithms to rearrange and optimize the system matrix makes DSM appealing for 
system analysis. The next section deals with the DSM method. After a brief  introduction, two 
basic types of  DSM are introduced, and algorithms for DSM analysis are described. 
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E.3.3.3.1. Design Structure Matrix Method 
The design structure matrix or dependency structure matrix (DSM) is a matrix-based 

modeling method for the representation of  the order and structure of  the elements in a system. 
Hence, the purpose of  DSM is slightly different from traditional methods for system architecting 
(e.g., IPO), where the main goal of  modeling is to represent the system in its entirety and include 
all necessary attributes for the thorough understanding and description of  the system.  

DSM is one view of  the system, which considers the elements to be black boxes and describes 
only the dependencies among elements in the system. So, DSM basically does not account for the 
element-internal system attributes like inputs-outputs, functions, and properties of  the elements. 
Two views of  a system using the IPO and the DSM notations are depicted in Figure  E.3 to 
demonstrate the difference between traditional and matrix-based modeling. Though the IPO 
view includes a high amount of  information about the elements and their attributes, even a 
system with six elements and a few relations (see Figure  E.3) takes some time to understand. On 
the contrary, the DSM view contains less information, but if  someone is familiar with the 
notation (i.e., he or she can “read” the DSM), even a more complex system than the one in Figure 
 E.3 is easy to handle. Hence, DSM emerged as system complexity reached a level where the 
number of  elements and relations were so high that the transparency of  the models disappeared.  

In reality, complex systems like an automobile or an aircraft comprise tens of  thousand of  
components in various hierarchy levels. This structural complexity is no longer manageable for a 
conventional system modeling method, which is intended to depict every element with its diverse 
functions, properties, and relations. Thus, the model loses its basic function, i.e., to help the 
modeler understand the modeled system. The famous metaphor compares highly complex 
conventional system models to spaghetti with meatballs, where the meatballs are the elements and 
the spaghetti are the numerous relations among them. This metaphor can be easily understood if  
one considers what an IPO model with one hundred elements and one thousand relations would 
look like, as an IPO view of  with six elements is so complicated like the one in Figure  E.3. 
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Figure  E.3 IPO architecture and DSM structure of a system 
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As the behavior of  systems arises from their structure [Sterman 2000], the modeling and 
optimization of  the structure to foster system control is vital for the development. Furthermore, 
the greatest leverage in system architecting, process improvement and organizational planning is 
at the interfaces [Browning 2001]. Thus, the application of  matrix representations of  a system 
structure is not new in systems engineering, e.g., N2 charts are commonly used to display 
subsystem and component interactions [e.g., Grady 1994, DoD 2001a], the roofs of  the houses in 
Quality Function Deployment (QFD) depict the interactions between the system elements in the 
lower parts of  houses [e.g., Hauser & Clausing 1988], and element-element matrices were also 
proposed to show organizational dependencies in companies [Walther 1994, Igenbergs 2000]. 

The DSM method was originally defined by Steward [1981a, 1981b] and then further 
developed by Steve Eppinger and his research group at MIT [e.g., Pimmler & Eppinger 1994, 
Smith & Eppinger 1997a, 1997b, Browning 2001, Sharman & Yassine 2003]. Though different 
DSM techniques were developed to depict and analyze various types of  systems, there are four 
basic DSM types used to model the four subsystems of  the original ZOPH model2 [Browning 
1998a, Browning 2001]: 

• Component-based DSM: for modeling different representations of  products and their 
components based on component interrelationships (e.g., function architecture, physical 
architecture, etc.) 

• Team-based DSM: for modeling the organization structure based on the information flow 
between people and groups of  people 

• Activity-based DSM: for modeling the process and project schedule based on the information 
flow between activities 

• Parameter-based DSM: for modeling the design parameter structure or goal system structure, 
and low-level relationships between design decisions and parameters, systems of  equations, 
subroutine parameter exchange, etc. 

Research work inside and outside of  MIT was carried out to apply DSM for different 
purposes in the four main areas. Steward [1981a, 1981b] sees DSM as a basic system modeling 
and architecting tool, and uses it to model and analyze the system design process and systems of  
mathematic equations. Pimmler and Eppinger [1994] explored how DSMs can be applied with 
product architecting and how system modules can be identified based on component 
interactions. The breakthrough work of  Pimmler & Eppinger in the area of  matrix-based 
product architecting was followed by others, who used and improved the first DSM models for 
product modularization [e.g., Kusiak 1999, Baldwin & Clark 2000, Rushton & Zakarian 2000, 
Sharman & Yassine 2003].  

McCord & Eppinger [1993] applied DSM for the planning and optimization of  cross-
functional teams in SD. Browning [1998b, 1999c] continued this work and applied DSM to study 
organizational dependencies and support the selection of  appropriate integration mechanisms. 
Wenzel [2003] used DSM for organizational planning and team definition based on the individual 
skills of  the members of  the organization. 

                                                 
2 Note that the generic nature of DSM also allows the modeling of both the system environment (e.g., network of 
competitors or customers) and the technology system (e.g., dependencies of existing and/or emerging 
technologies or tools) introduced in the ZOPH+T model. However, the author is not aware of the application of 
DSM in these two areas. 
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The application of  task-based DSM for project scheduling, iteration modeling, and the 
implementation of  concurrent engineering are the most popular DSM-related research areas. The 
DSM approach for managing concurrent engineering proposed by Eppinger [1991] builds on 
Steward’s original work and opens a new era in matrix-based process modeling. During the last 
decade, various approaches were proposed for DSM-based modeling of  different aspects of  the 
development process, e.g., parallel, sequential and hybrid design iteration [Smith & Eppinger 
1997a, 1997b, 1998], risk-based process simulation and the modeling of  value streams in the SD 
process [Browning et al. 2002, Browning & Eppinger 2002], planning for concurrency [Denker et 
al. 2001, Yassine & Braha 2003, Yassine et al. 2003], etc.. 

The fourth DSM application area with maybe the least invested research effort: the 
parameter-based DSM. The goal of  the application of  this kind of  DSM is to understand the 
parameter relationships in the system design, and rearrange parameters and thus the design 
activities that affect them to reduce process schedule. While there are a few examples for the 
application of  parameter DSMs in industrial practice, research applications and method 
improvements are rare in literature. Rask and Sunnersjö [1998] used a parameter-based DSM to 
describe the relationships between design variables of  a robot arm and its housing. Black et al. 
[1990] applied a parameter-based DSM to automobile brake system design. Future research in 
this area is expected to concern multidisciplinary design optimization [Browning 2001].  

Finally, Schulz [2003] combined DSM with IPO in his pioneering work for the 
decomposition and optimization of  the information architecture of  the complex process of  
automobile SD. The proposed model uses a genetic algorithm to find the ideal information 
structure for a certain SD system. Schulz’s DSM approach can be considered as a fifth DSM 
category besides component-based, team-based, task-based, and parameter-based DSMs.  

E.3.3.3.2. DSM Basics 
DSM is an adjacency matrix, a matrix view of  a graph depicting the elements of  a graph and 

their relations. As shown in Figure  E.3, DSMs are square matrices, i.e., the labels of  the rows and 
columns in the DSM are identical representing the system elements. The cells of  the matrix 
depict how elements interact with other elements in the system. The diagonal in the DSM is 
usually painted black, indicating that these cells are unused, because reflexive relationships (i.e., the 
output of  an element is fed back to the input of  the same element) are not allowed in DSMs. 
Along the row, it is possible to see which other elements interact with the one in the row, while 
the marks in the columns show the other elements the element in the column depends on. That 
is, while the rows represent output relations, the columns show which elements provide inputs to 
the examined one3.  

DSMs are mainly used for visualization and tracking of  the element dependencies in complex 
structures and the identification of  elements in close interaction called chunks. Regarding the 
function of  the DSM, Browning [2001] distinguishes between static and time-based or dynamic 
DSMs.  

E.3.3.3.3. Static DSMs 
Static DSMs are used to display and analyze systems where the elements exist simultaneously, 

such as product and organizational structures. In these systems, many components interact at the 
same time, and the changes of  the system structure in time are not important for the analysis. 
The DSM analysis techniques usually applied with static structures are the clustering methods. The 

                                                 
3 Some authors use DSMs where rows represent input and columns output relations (exactly the opposite way as 
here). In these DSMs the feed forward relations are under the diagonal and feed back is over it. Otherwise the 
DSMs using both kinds of notation are identical. 
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goal of  DSM clustering is to find subsets of  DSM elements (i.e., clusters or modules) that are 
mutually exclusive or minimally interacting. In other words, clusters contain most, if  not all, of  
the internal interactions (i.e., DSM marks), and the interactions or links between separate clusters 
are eliminated or minimized [Fernandez 1998]. Clusters resulting from the DSM analysis are then 
called modules, teams, or departments that collect functionally related and thus strongly 
interacting components.  

The DSM view of  a system structure is not just simple and appealing, but it is a system 
representation in the language of  mathematics (i.e., a matrix representation of  a graph). Thus, a 
DSM model can be directly manipulated using existing and improved mathematical operators and 
algorithms. Figure  E.4 depicts a system structure before and after clustering. The resulting system 
structure after clustering shows three main, overlapping chunks that entail all elements of  the 
system, and are connected to each other via a minimal number of  interfaces. A comparison of  
the results of  clustering in Figure  E.4 and the block diagram in Figure  E.2 representing a modular 
system architecture shows the power of  DSM concerning modularization. 

As the DSM in Figure  E.4 shows, the clusters have common elements belonging to two 
clusters4. Designers do not always desire overlapping elements, thus if  a clustering algorithm shall 
seek overlapping elements, it also has to be part of  the goal of  clustering. Common clustering 
goals can be, e.g., minimum number of  extra-cluster interfaces, minimum number of  elements in 
a cluster, maximum number of  clusters, enable overlapping cluster recognition, enable bus 
recognition, enable three dimensional cluster recognition, etc. [Sharman & Yassine 2003].  

Numerous researchers have used DSM to propose architectural improvements by simple 
manipulation of  the order of  rows and columns in the matrix [e.g.., Kehat & Shacham 1973, 
Hartigan 1975, McCord & Eppinger 1993, Pimmler & Eppinger 1994, Thebeau 2001]. Fernandez 
[1998] improved these first “manual” clustering algorithms in an attempt to automate DSM 
inspection and manipulation using simulated annealing techniques. Whitfield et al. [2002] developed 
similar DSM clustering techniques using genetic algorithms. However, as Sharman [2002] showed, 
both approaches are incapable of  predicting the formation of  “good” clustering arrangements 
for complex product architectures due to the oversimplification of  the objective function utilized, 
and the frequent susceptibility of  the search algorithm used to be trapped in local optimal 
solutions. Yu et al. [2003] improved existing clustering techniques by using a genetic algorithm 
and the minimum description length principle, and validated it by comparing the results of  their 
DSM tool with manual clustering results of  experts. As their results show, they succeeded to 
improve both the outcomes of  existing algorithms and the experts’ manual clustering results. 

                                                 
4 With the DSM clustering in Figure  E.4, the algorithm using genetic algorithms proposed in [Yu et. al. 2003] 
was applied. The author thanks Professor Ali A. Yassine at University of Illinois at Urbana Champaign for 
providing access to the web-based version of the DSM clustering tool proposed in [Yu et. al. 2003]. 
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Figure  E.4 DSM clustering results 
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E.3.3.3.4. Time-Based DSMs 
Time-based DSMs depict a sequence of  system elements (i.e., a process) in time. Thus, the 

interactions among elements in the matrix show how the output product of  one element in the 
process activates another one through its input. Furthermore, time-based DSMs show the 
information needs of  the activities—i.e., which activity deliverables are required for the ideal 
operation of  an activity. In an ideal SD process, information flow is optimal among the activities 
(i.e., the right information is available at the right time and place), and thus process performance 
is maximal. However, complex SD processes are not ideal in reality. Activity deliverables do not 
always arrive on time and at the desired technical maturity. Hence, project managers usually have 
to make a tradeoff  between the effectiveness and the efficiency of  the SD process. 

If  project planning strives for process effectiveness (i.e., the goal is to produce the highest 
performance outputs from given inputs), theoretically the activities would have to wait for all 
required inputs and start only after all related upstream activities are finished and delivered the 
desired output products. This strategy can be dangerous, if  problems occur in the SD process 
that can lead to long iterations. In this case, activities depending on these deliverables have to wait 
until adequate solutions to the problems are found. This reduces process efficiency considerably 
and causes costly delays in the SD. 

However, process effectiveness is not the only planning goal. As the time factor in SD is the 
source of  major competitive advantage [Smith & Reinertsen 1998], companies try to reduce the 
duration of  the SD process and thus time-to-market as much as possible. An effective method to 
reduce SD time is to perform activities and sub-processes concurrently and overlapping. In this 
case, activities do not wait for all required input products, but start with imperfect information 
and update their results when the missing input products arrive. Nevertheless, concurrent 
engineering and activity overlapping, if  not managed well, can lead to serious oscillations in the 
process resulting in delays and schedule overruns in the project. DSM fosters planning for 
concurrency by enabling the identification of  blocks of  activities that can be performed in 
parallel without paying the high penalty of  oscillation. 

Element relations in time-based DSMs can be twofold based on their direction. Downstream 
relations between elements that are parallel with the process flow are over the diagonal and often 
called feed forward relations. Relations indicating that the product of  an element affects an 
upstream activity (i.e., an activity that was finished earlier in the process) are called feedback 
relations. The existence of  feedback relations in a process implies a possible need for iteration on 
the deliverables of  the SD that usually results in the repetition of  the activities directly and 
indirectly affected by the feedback relation. As iterations are main causes for delays in the SD 
process, an objective of  process planning is to reduce the number and scope of  iteration cycles to the 
required minimum. 

DSM sequencing or partitioning algorithms help optimize the sequence of  activities in a process by 
manipulating the process structure. During partitioning, the goal is to get the DSM in an upper-
triangular form to the highest possible extent with a minimum number of  sub-diagonal marks 
pulled as closely to the diagonal as possible and grouped in blocks [Browning 2001]. These 
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Figure  E.5 Effects of DSM partitioning on the system structure 



68  

blocks of  activities are the major iteration cycles in the SD process including only the activities 
directly involved in the design iterations. The decomposition of  the SD process into a set of  
clearly defined blocks of  highly dependent activities makes iteration cycles leaner and more 
efficient. Besides, it enables the parallel execution of  independent activity blocks. 

Figure  E.5 depicts the effects of  partitioning on the process structure. The integrated process 
of  six activities and three feedback relations in the left DSM could be transformed into a process 
with two sequential activity blocks without any need for iteration between the two blocks. The 
two activity blocks can be considered as two main stages of  the SD process with clear, 
measurable deliverables. Thus, as a result of  DSM partitioning, a complex process with high 
likelihood of  long rework cycles could be improved to a process with two activity blocks 
including short, effective iteration cycles.  

Numerous researchers developed algorithms for partitioning [e.g., Weil & Kettler 1971, 
Warfield 1973, Steward 1981b, Gebala & Eppinger 1991, Kusiak & Wang 1993, Tang et al. 2000]. 
Similarly to clustering algorithms, traditional partitioning algorithms are also different in their 
functions and outputs based on the goal of  the analysis [Whitfield et al. 2003], for example: 

• The triangularization algorithms, proposed by Kusiak & Wang [1993, 1995], attempt to reduce 
iterative blocks by minimizing the sum of  the dependencies under the diagonal (i.e., feedback 
relations) based on their weight. This algorithm does not consider the distance of  the relation 
mark from the diagonal.  

• Gebala & Eppinger [1991] developed a partitioning technique that similarly to the 
triangularization algorithms reduces the size and number of  the iterative blocks by 
minimizing the sum of  the dependencies above the leading diagonal. However, it goes further 
and multiplies the dependencies by their distance from the diagonal on the basis of  their 
weight. The focus of  Gebala & Eppinger partitioning is therefore to get as many 
dependencies either below the diagonal or, as close to it as possible.  

• A third algorithm for partitioning was proposed by Scott [1998] to improve the Gebala & 
Eppinger algorithm. The improvement in Scott’s algorithm is that he introduces an additional 
weighting factor for the dependencies based on their distance from the top right-hand corner 
of  the matrix. Thus, the goal of  partitioning here is not just to reduce the size and number of  
iterative blocks, but to move the dependencies into the right-hand corner. 

Another group of  partitioning techniques applies genetic algorithms (GAs) to achieve better 
results [e.g., Rogers 1989, 1996, McCulley & Bloebaum 1996, Whitfield et al. 2003, Zhuang & 
Yassine 2004, Meier 2005]. GAs are particularly successful in case of  high system complexity, 
where traditional partitioning and clustering algorithms are rather ineffective. 

E.3.4. System Behavior in Dynamic Environments – Robustness 
and Flexibility  

The value of  a system can be determined through its behavior. That is, the way a system 
transforms inputs into outputs (i.e., its performance) defines its value for the system environment. 
System performance is defined as those operational and support characteristics of the 
system (or method) that allow it to effectively and efficiently perform its 
assigned mission over time [DoD 2001b]. That is, performance depends on two 
characteristics (Figure  E.6): (1) efficiency implying the amount of output produced relative 
to the amount of resources (time and money) that go into the system 
[Wikipedia Website]; and (2) effectiveness meaning the extent to which the goals of the 
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system are attained, or the degree to which a system can be elected to 
achieve a set of specific mission requirements [DoD 2001b]. 

Obviously, the fundamental goal of  systems engineering is to define, design, and operate an 
SD system with maximal performance, i.e., a system that provides superior outputs at minimal 
resource consumption. Hence, an SD system with high performance delivers products with high 
market value and ensures high profitability due to cheap operation (i.e., low resource 
consumption). 

The attainment of  constantly high system performance is more difficult if  the system 
environment is dynamic and the inputs (i.e., market and technology characteristics) vary during 
the system lifecycle. To deal with a high variance of  input parameters, theories aiming to increase 
the robustness of  the system were developed (e.g., experimental design [Cochran & Cox 1957], 
robust design [Taguchi 1993]). 

Robustness (Figure  E.7) characterizes a system’s ability to be insensitive towards changing 
environments [Fricke & Schulz 2005]. Robust systems deliver their intended function under 
varying conditions without being changed [Taguchi & Clausing 1990, Taguchi 1993, Clausing 
1994]. Hence, robustness is the ability of  the system to do its basic job in unexpectedly adverse 
environments [McManus & Hastings 2005]. 

Though robust systems are capable of  delivering outputs with constant performance in the 
presence of  high input variance, changes in inputs often demand respective changes in the 
outputs. That is, shifting customer’s needs can often only be satisfied through the capability of  
the SD system to deliver a higher variance customized outputs. In this case, parts of  the SD 
system have to be adapted to the changed conditions to increase system effectiveness.  

Systems that have the ability to be modified to do jobs not originally included in the 
requirements definition are called flexible systems [McManus & Hastings 2005]. Nilsson & Nordahl 

 
Figure  E.6 Meaning of effectiveness and efficiency 

 
Figure  E.7 Different SD systems in dynamic environments 
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[1995] cite a definition of  flexibility as the ability to respond effectively to changing 
circumstances. Upton [1994] defines flexibility as the ability to change with little penalty in time, 
effort, cost or performance. Finally Rajan et al. [2004] propose that flexibility can be defined as 
the degree of  responsiveness or adaptability for any future change in a product design. 

Thomke [1997] reviews a large body of  literature dealing with the understanding of  the 
different aspects of  flexibility in manufacturing systems [Zelenovic 1982, Gerwin 1987, De Meyer et 
al. 1989, Suarez et al. 1991, Upton 1994, De Groote 1994], the economics of  firms [Jones & Ostroy 
1984, Carlsson 1989] and with competitive strategy [Garvin 1988, Ghemawat 1991]. Furthermore, 
product flexibility as a driver of  productivity and innovation in the SD was documented in [Baldwin & 
Clark 2000, Clausing 1994, Cusumano 1992, Eisenhardt & Tabrizi 1995, Iansiti 1995a, Ulrich 
1995, Fricke et al. 2000, etc.]. 

Designing flexibility into a system is a strategic decision based on three internal and external 
SD factors: (1) dynamic marketplace, (2) technological evolution, and (3) variety of  environments 
[Schulz & Fricke 1999, Fricke & Schulz 2005]. In case these three factors of  the SD are highly 
dynamic, the probability of  change is considerable and thus it is sensible to invest in 
implementing flexibility into the system architecture.  

Thomke & Reinertsen [1998] argue that flexibility should be viewed as a parameter in an 
economic tradeoff. The extra investments in the flexibility of  design aspects and system modules are 
only worthwhile if  the benefits through easy design adaptability and fast response to shifting 
needs exceed the costs committed to implement flexibility.  

However, as the notion of  flexibility implies, changes are often difficult to forecast and so, 
the gains of  the committed investments into system flexibility are also difficult to quantify. Thus, 
incorporating flexibility into systems is often considered an implementation of  options into a 
system that might but does not have to be used in the future. That is, flexibility allows the easy 
adaptation of  the system to changed needs, however if  these changes do not occur, adaptations 
are not required either. Hence, flexibility is like insurance, it makes sense to invest in it in case of  
high consequences of  a relatively likely event (e.g., high likelihood of  changes in market of  
technology characteristics).  

Options thinking is a new paradigm in engineering design based on economic options theory 
[Trigeorgis & Mason 1987, Triantis & Hodder 1990, Faulkner 1996, Amram & Kulatilaka 1999]. 
It uses economic methods to calculate the value of  flexibility in present value terms. Measures 
like Net Present Value or Discounted Cash Flow are applied to provide the designers with information 
on the current value of  the future change options they can buy through present investments into 
design flexibility [Baldwin & Clark 2000].  

A distinguished method to analyze and quantify the present value of  design flexibility is the 
theory of  Real Options. De Neufville [2003a] defines real options as elements of  a system that 
provide “rights, not obligations” to achieve some goal or activity. Generally speaking, all elements 
of  a system that provide flexibility can be considered as “real options”. Using real options 
analysis, systems designers can compare the value of  flexibility with the cost of  acquiring it, and 
they can make an informed, analytic judgment about whether this flexibility should be 
incorporated into design [De Neufville 2003b]. 

E.3.5. Modularity and Real Options 
In traditional engineering design theory, technology characteristics and market needs are 

considered to be stable or predictable during and after the SD project, and the main goal of  SD 
is to reduce technical risk to a minimum. Furthermore, in conventional projects the focus is on 
reliability and making the best decisions in risky situations. In short, conventional SD is reactive to 
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risk [De Neufville 2003a]. This way, the outcome of  the SD project will be a system meaning 
high value to the customer. In such a context, major changes are not anticipated and the cost 
invested into flexibility is unnecessary.  

On the contrary, options thinking in engineering considers the future to be unpredictable in 
its entirety. Thus, to think in terms of  options alters the way one deals with uncertainty. That is, 
changes are likely, and the product design and other subsystems of  the SD system have to be 
planned to account for changes. Uncertainty in this context is considered to be something 
positive, because it may add value to options. Hence, adaptive SD is proactive to changes and 
uncertainty, and strives to create systems that are capable of  seizing design opportunities through 
changes.  

Real options in a system mean extra investments during design that allow a higher number of  
design alternatives the SD organization can benefit from at a later point of  time in the system 
lifecycle. That is, real options do not directly contribute to the performance or operational 
characteristics of  the system, but through real options, the ability is implemented to host future 
design opportunities. Thus, the value of  real options lies in the capability of  an SD system to 
react quickly and at low cost to changes in its inputs.  

The modularization of  system architecture is an investment that increases the independence 
of  system modules. It was shown in the last section that highly modular systems accommodate 
changes by reducing their effects to the scope of  the module [Baldwin & Clark 2000]. While 
modularization might even contribute to a decrease of  system performance [Smith & Reinertsen 
1998], it is only valuable if  the gains through cheap adaptations on the module level compensate 
the likely loss on performance. Hence, modularity is profitable if  system flexibility results in a 
competitive advantage for the company in the long term.  

The capability of  a system to manage changes effectively while responding to external and 
internal needs is fundamental for an adaptive SD system. With this capability, the SD system can 
continuously collect feedback from its environment on the value of  its behavior and adapt itself  
to maximize value. Changes in the system during an adaptive SD can mean minor module-
internal adjustments or major design changes where the modular system design architecture is 
manipulated, e.g., using the six modular operators (splitting, substitution, augmentation, exclusion, 
invertion and porting) proposed by Baldwin & Clark in [2000].  

One way of  utilizing the increased flexibility of  modular systems is to develop products in 
evolving increments. Incremental SD has the strengths of  the evolutionary development lifecycle 
and improves it by allowing for the delivery of  increments of  the system with partial functionality 
at the end of  the incremental mini-projects. Between two released increments, the modules of  
the system can be developed independently and adapted according to the stakeholders’ feedback 
using the modular operators. Thus, with incremental SD, design options can be kept open until 
the maturity of  the technology achieves the required level and/or the customer is ready to pay 
for the increased functionality. This allows the SD system quick reactions at low cost. 

Figure  E.8 depicts the incremental evolution of  a flexible, modular design as an output of  an 
adaptive SD system. The architecture of  the product is developed and adapted to the market 
needs in five systematic steps during incremental SD. The product could be e.g., a mobile phone 
with a modular structure, where the first version or increment is a rather simple one, including 
the core phone module (red element), the software (light blue element), and a low-resolution 
color display as a special feature (dark blue element). The boxes with different colors represent 
the process of  adding, substituting, excluding or upgrading modules of  the same design, e.g., the 
second version could include a photo camera (new orange box), the third one a color display with 
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a higher resolution (gray element), the fourth one a new Blue Tooth interface (green element), 
and the final increment a new operating system for the software of  the phone (black box).  

However, modularity is not the only requirement for system flexibility and adaptability. 
Hiding information, a few modules with clear, closely related functions and minimal inter-
modular relations are only some of  the basic characteristics of  flexible systems. For example, to 
assure the smooth evolution of  the incremental system in Figure  E.8, it is essential to apply clearly 
defined, common, or standard interfaces and components. While changes or inconsistence in the 
interfaces between two system increments can lead to major compatibility problems, investments 
into interface standardization create important real options for the designers.  

It is also important to obey a set of  system-level design rules during modularization and 
adaptive development [Baldwin & Clark 2000]. Design rules can appear in form of  reference 
architecture for a certain product or product family containing basic guidelines and constrains for 
system design. To be able to benefit from incremental evolution, it is important that developers 
follow the basic flexible design structure, because the range of  system flexibility is not unlimited 
and changes against the design rules are quite expensive and thus not prohibited.  

Another important system characteristic is the synergistic specificity of  the system [Schilling 
2000]. Synergistic specificity is the degree to which a system achieves greater functionality as its 
components are specific to one another. This emergent system characteristic describes the 
sensitiveness of  the performance and functionality of  a system towards different system 
configurations. That is, systems with high synergistic specificity have rigid architecture and design 
rules prohibiting major changes in the system. On the contrary, low synergistic specificity implies 
high architectural flexibility, e.g., plug-and-play or mix-and-match modularity with LEGO-like 
system elements.  

Other researchers like Fricke & Schulz [2005] propose that system flexibility can be described 
through some basic and extending principles. They derive three basic principles for flexibility 
(ideality, independence, and modularity) from distinguished design methodologies like TRIZ 
[Altshuller 1984] or axiomatic design [Suh 1990], and extend these by six further principles 
(integrability, autonomy, scalability, non-hierarchical integration, decentralization, and 
redundancy). This work can be considered as a first milestone in the long research process of  
classifying and characterizing generic flexible architectures.  

E.4. CHAPTER SUMMARY 

The high complexity of  engineering systems is a main obstacle for adaptiveness in SD 
systems. This chapter showed that model-based system design fosters the definition of  alternative 
system architectures and the selection of  the best one for the system objectives. It was found that 

 
Figure  E.8 Adaptive SD delivering incrementally evolving systems 
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adaptive SD systems with the capability of  sensing changes and responding to these in form of  
reconfiguration call for a basically modular system architecture. Modularity contributes to high 
system flexibility by supporting the maximization of  hidden information in the design, and thus 
the independence of  the design modules. Flexible systems are designed to implement the 
capability of  efficiently being changed in the system components under high uncertainty or 
ambiguity. This proactive design technique to deal with the unknowns regarding the future 
proposes to invest in real options in the actual design and profit from efficient changes resulting 
in higher value designs later. Adaptable subsystems are the basic building blocks of  the adaptive 
ZOPH+T enterprise system.  
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F. UNCERTAINTY IN THE SYSTEM DEVELOPMENT – 

MANAGING THE DYNAMIC SYSTEM CONTEXT 

F.1.  CHAPTER ABSTRACT 

This third chapter in a row describes the characteristics of  modern 
SD projects and discusses the role of  uncertainty in the SD. 
Uncertainty exists in SD projects, because the information available for 
the developers at the outset and during the project about the key 
characteristics of  the SD system is often inadequate and even 
dynamically changing. That is, during the period between the 
documentation of  market needs (i.e., system inputs) and the launch of  
the first piece of  product (i.e., system output) the SD context changes, 
which affects the value of  the developed system.  

This chapter shows that adaptive SD systems are organized for learning that helps profit from 
environmental changes. Learning is the iterative process between sensing and responding that 
fosters both the effective reduction of  risks and capturing of  opportunities. Furthermore, this 
chapter proposes that the effectiveness of  learning can be improved if  conducted concurrently 
on independent subsystems. Finally, it will be underlined that learning is successful if  divided into 
a process of  focusing on the systematic generation of  inventions (technology development) and 
another process of  seeking innovations (SD). 

F.2. DEFINITION OF UNCERTAINTY 

A basic problem during SD project planning is how to deal with uncertainty and “vagueness”, 
which cause risk. Uncertainty concerns the lack of  knowledge about a problem at the point of  
time a decision on the solution of  the problem is made.  

Uncertainty is a condition, event, outcome, or circumstance of which the 
extent, value, or consequence is not predictable [INCOSE 1998a]. 

Uncertainty usually comes in two forms: foreseen and unforeseen uncertainty (or ambiguity). 
Foreseen uncertainty describes the phenomenon that the exact values of  the main characteristics 
of  the key outcomes of  the project cannot be predicted in the beginning of  the SD. That is, at 
the outset of  an SD project, the developers have only vague ideas about the future customer’s 
needs, which define the objectives of  the SD. Furthermore, they do not know exactly how to 
design, develop, and fabricate a product suitable for these unclear needs, which technologies will 
be available and effective in the product, how long it will take to develop and manufacture the 
product, and how much the total SD project will cost. Thus, they cannot predict the exact 
characteristics of  the final product.  

In decision theory, foreseen uncertainty is considered as a problem that can be modeled and 
solved using the Probability Theory. If  there is more than one element in the design space with 
nonzero probability for the outcome of  the SD, there is foreseen uncertainty [see Hazelrigg 
1996]. That is, foreseen uncertainty means that there is a variation in the possible values of  the 
performance characteristics of  the end-product, and the cost, and duration of  the SD. Hence, 
foreseen uncertainty is often referred to as representing the known unknowns in the SD, and the 
goal of  decision-making is to maximize the stakeholder utility of  the solution described by an 
objective function including all system objectives as variables.  
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A form of  uncertainty is unforeseen uncertainty or ambiguity referring to the unknown 
unknowns in the project, meaning the absence of  knowledge of  the planning team about what will 
need to be done and when. Ambiguity is more dangerous than foreseen uncertainty, because it is 
more difficult to plan. The planning team is either unaware of  an event’s possibility or considers 
it unlikely and does not bother create contingencies (or preventive actions) for it. As De Meyer et 
al. [2002] argue, ambiguity is not always caused by spectacular out-of-the-blue events, but it can 
also arise from the unanticipated interaction of  many events, each of  which might, in principle, 
be foreseeable. Thus, ambiguity is related to the behavioral or dynamic complexity of  the SD 
system, in which known or unknown agents (or subsystems) interact, and produce results that 
cannot be considered during planning, because of  the lack of  knowledge about these agents or 
their interactions. Unforeseen uncertainty can also be caused by unknown distortions, delays, 
biases, errors, and other imperfections of  calculations or measurements [Sterman 2000]. It is 
particularly dangerous if  such biases are caused by the developer’s perceptions that constrain 
their mental models, because it slows down learning and the effective reduction of  unforeseen 
uncertainty.  

De Meyer et al. [2002] further define unknowns into four categories: (1) variation, (2) foreseen 
uncertainty, (3) unforeseen uncertainty (or ambiguity or equivocality), and (4) chaos (Figure  F.1). These 
categories are defined on the basis of  their relation to project management techniques, and they 
represent a fair classification of  project uncertainty based on its criticality. Furthermore, 
according to the definitions above, both variation and foreseen uncertainty belong to the main 
category of  known unknowns (i.e., uncertainty), and unforeseen uncertainty and chaos are forms 
of  unknown unknowns (i.e., ambiguity). 

Research in other areas provides similar classifications for uncertainty in the SD. For example, 
the body of  work in organizational decision-making recognizes three types of  decisions with 
regard to uncertainty: decisions under (1) risk, (2) uncertainty, and (3) ambiguity [e.g., Daft & 
Macintosh 1981, Daft & Lengel 1986, Einhorn & Hogarth 1986]. Here, decision-making under 
risk constitutes the condition where information is not available, but a probabilistic description 
of  the missing information is available (i.e., variation at De Meyer et al. [2002]). Decision-making 
under uncertainty, in contrast, involves decisions where distributions are unknown. In this 
situation, less knowledge exists than compared with decision-making under risk (i.e., foreseen 
uncertainty). Finally, decision-making under ambiguity involves a still more profound lack of  
knowledge, meaning that the functional form is completely unknown, and often that the relevant 
input and output variables are unknown. Hence, ambiguity here refers to both kinds of  unknown 
unknowns in SD. Others distinguish merely between uncertainty and ambiguity [e.g., Sarbacker & 
Ishii 1997, Haeckel 1999, Pich et al. 2002], or uncertainty and imprecision (i.e., variation in design 
parameter values and uncertainty in design decision) [Antonsson & Otto 1995], or deal only with 
uncertainty [e.g., Hazelrigg 1996, De Laurentis & Mavris 2000, DoD 2002, Ulrich & Eppinger 
2004] as a global term for the problematic concerning the lack of  knowledge when planning, 
designing, modeling, or making decisions.  

Conventional systems engineering and design theory differentiate between two types of  
uncertainty: variation in the output of  a design or manufacturing process due to known and 

UnknownsUnknowns

Known UnknownsKnown Unknowns Unknown UnknownsUnknown Unknowns

VariationVariation Foreseen
Uncertainty
Foreseen

Uncertainty
Unforeseen 
Uncertainty

Unforeseen 
Uncertainty ChaosChaos

 
Figure  F.1 Types of unknowns (based on [De Meyer et al. 2002]) 



76  

unknown noise factors [e.g.., Taguchi & Clausing 1990, Thornton 2001], and technical uncertainty 
that causes risk in SD [e.g., NASA 1995, Shishko et al. 2004]. Both categories describe uncertainty 
regarding known, vague aspects of  the SD that are then attacked using statistical design 
methodologies (e.g., robust design [Taguchi 1993]) or standard risk management approaches.  

Thus, in engineering too often the false assumption is made that all possible problems and 
uncertainties are known at the outset of  the project, and they can be effectively handled through 
systematic design work and risk management. However, the growing system complexity often 
results in unforeseen events during SD (both in a positive and negative sense), which cannot be 
handled effectively using conventional techniques. Furthermore, sudden, unanticipated changes 
in the customers’ needs that remain undiscovered by the SD organization can result in a situation 
where the wrong system is developed right, i.e., a product is developed for invalid requirements. 
Hence, the adaptive SD framework proposed in this thesis accounts for both main categories of  
uncertainty in the SD: uncertainty and ambiguity, and explores how project management and 
systems engineering can jointly overcome these difficulties. 

F.3. TYPES OF UNCERTAINTY 

Uncertainties in a project that are the main sources of  risks—and also opportunities—can be 
classified into different categories. The following basic types of  uncertainties were collected after 
reviewing relevant literature on uncertainty and risk management [Browning 1998a, 1999a, 1999b, 
Huchzermeier & Loch 2001, Thomke 2003]: 

• Development cost uncertainty: It indicates the uncertainty in the ability of  a project to develop an 
acceptable design within a given budget. Causes can be cost attentiveness, available budget, 
quality of  budget planning, resource availability, performance uncertainty, schedule 
uncertainty, and schedule rate change [Browning 1998a] 

• Schedule uncertainty: It implies the uncertainty in the ability of  a project to develop an 
acceptable design within a span of  time. Causes of  schedule uncertainty are, e.g., number of  
intentional and unintentional iterations in the SD process, activity set completeness, activity 
flexibility, resource availability, iteration scope, durations and variations of  constituent 
activities and/or sub-processes, available time and the unknown unknowns in the project 
[Browning 1999b] 

• Performance uncertainty: It refers to the uncertainty in the ability of  a design to meet desired 
quality criteria (derived from the performance objectives of  the system). Furthermore, it is 
the uncertainty in the ability of  the activities in the SD process to deliver the desired design 
on time and within the defined budget limits. Thus, performance uncertainty comprises both 
technical and process performance uncertainties. Technical performance uncertainty usually 
arises from the exploration of  solutions that have not been used before, have not been 
combined in “this” way before, or have not been miniaturized in such a way before, etc. 
[Thomke 2003]. Additionally, Browning collects causes for both kinds of  performance 
uncertainties, e.g., inadequate design, development, and decisions; improper design evaluation; 
high product complexity; the distribution of  risks across the system; schedule uncertainty; 
technology uncertainty and development cost uncertainty [Browning 1998a].  

• Technology uncertainty: It is a subset of  performance uncertainty meaning the uncertainty in the 
capability of  a technology to provide performance benefits. Technology uncertainty can be a 
result of  uncertainty in technology maturity, technology obsolescence, technology 
effectiveness, appropriateness of  a technology for a given purpose and thus technology 
robustness, or technology capabilities [e.g., Schulz et al. 2000]. Browning [1998a] defines 
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further causes: uncertainty in e.g., technology and system coupling and sensitivity, familiarity 
of  the design personnel with the technology, reliance on technology supplier, and ease of  
regulatory approval. 

• Market uncertainty: It refers to the uncertainty in the anticipated utility or value to the market 
of  the chosen “design to” specifications. It usually stems from severe market dynamics that 
make the market characteristics unpredictable. 

• Business uncertainty: It implies the uncertainty in political, economic, labor, societal, or other 
factors in the business environment. If  the political and business environment is not stable or 
predictable, the long-term operation is usually not profitable for the SD organization in that 
environment.  

• Production uncertainty: It refers to the lack of  knowledge about the producibility of  a design. 
Some designs may work in the laboratory or even for production in small quantities, but it 
may not be feasible or cost-effective to ramp up production. 

• Need uncertainty: It refers to uncertainty concerning the quality, completeness, and validity of  
the gathered customer’s needs. Need uncertainty exists because customers are rarely able to 
articulate all their needs specifically, because they either face uncertainty themselves or cannot 
define needs on products that do not yet exist.  

These eight categories cover the possible types of  uncertainties a project manager has to 
account for during project planning and might face in the course of  the project. Figure  F.2 depicts 
the interactions between the eight categories of  uncertainties.  

Environmental factors describe the characteristics and dynamics of  the SD environment that 
affect the value of  the product and the whole SD as well. In case the environmental conditions 
are uncertain due to frequent changes, the effectiveness of  Marketing in the SD organization 
becomes vital. Furthermore, if  the environmental characteristics are ambiguous, i.e., the future 
changes are unpredictable, the SD organization has to move towards adaptive SD techniques that 
support the systematic collection of  feedback from the stakeholders and allow easy adjustment 
of  the system objectives. Since ambiguity in the market is for most SD organizations rather 
difficult to handle, the capability of  developing and producing high value products in an 
ambiguous SD environment in the long term means a great opportunity for a company and can 
lead to growing market share and increasing profit. 
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Figure  F.2 Interrelations between uncertainties 
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The internal factors of  uncertainty in Figure  F.2 can be grouped into two main classes: 
technical and programmatic factors. The bi-directional relationship between programmatic and 
technical uncertainty represents an important aspect of  project management. That is, the 
tradeoffs made in the beginning of  the project between technical and programmatic SD goals 
drive the uncertainties and thus risks and opportunities in the project. This means that projects 
with a low budget and schedule allocation have a limited space of  possible technical 
achievements. It is simply not possible to achieve ambitious technical targets without appropriate 
investments. If  project managers are not aware of  that fact, and the technical performance 
targets are kept at an “ultra-high level” with low budget and schedule, the technical factors of  
uncertainty will increase and pull the programmatic factors with them. In this case, programmatic 
uncertainty has a positive feedback effect on technical uncertainty, i.e., when programmatic 
uncertainty grows, technical uncertainty increases as well.  

F.4. EFFECTS OF UNCERTAINTY 

Uncertainty in SD means that the developers cannot accurately predict the final results of  the 
project. Uncertainty in the probable final outcomes of  the system performance is depicted in 
Figure  F.3. The x-axis in Figure  F.3 depicts system technical performance as an aggregated 
measure of  the key design aspects represented by technical performance parameters. It is used 
here to illustrate that the uncertainty in the overall system performance of  the product is a range 
of  possible outcomes. However, in parameter-based SD, PDFs for the overall system 
performance are rarely used. Usually, each design aspect is tracked individually, and only the value 
or risk of  the overall system performance is calculated. Later parts of  the thesis present the 
definition and tracking of  technical performance parameters and the derivation of  statements 
regarding the overall system performance and value. It is important though that uncertainty for 
all parameters describing the design and system technical performance can be demonstrated the 
same way as in Figure  F.3. 

The probability density function (PDF) in Figure  F.3 represents all likely outcomes of  the 
overall system performance. Thus, as Figure  F.3 shows, uncertainty can mean that the final 
outcomes are inadequate (i.e., they represent a lower performance level than the customer 
desired), but it is also possible that the performance of  the final product exceeds the 
expectations.  

The first case means possible negative events: risk, i.e., possible profit loss for the SD 
organization due to lower performance than what the customer desired. This can result in lower 
sales volumes or lower prices and thus lower profit. The second possibility concerns positive 
events i.e., if  the performance deviation is positive and thus the product is better than expected, it 
is called opportunity. Better performance can be sold better and thus opportunities mean possible 
profit gains for the company. Opportunities have to be effectively identified and captured during 
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Figure  F.3 Uncertainty in the system performance 
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the project, because they are the main drivers of  innovation and thus profit in the SD. The 
following sections deal with these two phenomena. 

F.4.1. Risk 
The goal of  SD is to define a set of  criteria that represents the customer’s preferences, and 

then design and develop a product that satisfies these criteria. Thus, every activity in SD works to 
reduce the gap between the actual and the target system performance and thus to reduce risk. Due to the 
inadequacy of  traditional top-down engineering development models (e.g., waterfall lifecycle) to 
support the organization and management of  effective and efficient development work, 
conventional SD projects are characterized by an ongoing firefighting effort to reach the system 
objectives within the least possible budget and schedule overruns. In such projects, the ultimate 
goal is to find methods that help understand the SD system and thus effectively reduce and 
control technical risks that are the main drivers of  programmatic risks. 

As Figure  F.3 depicts, the left tail of  the distribution representing unacceptable system 
performance outcomes below the target value means risk for the project. Risk is defined in 
technical standards as follows: 

Risk is a measure of the potential inability to achieve overall program 
objectives within defined cost, schedule, and technical constraints. 
Risk has two components: (1) the probability or likelihood of failing to 
achieve a particular outcome, and (2) the consequences or impacts of 
failing to achieve that outcome [DoD 2002] 

The consequences are usually expressed in monetary terms, and thus the risk of  a negative 
event is possible monetary loss. As risk is inherent in every SD project, SD can be considered as a 
process of  uncertainty reduction and risk management [Browning 1998a]. All the functions of  
systems engineering strive to reduce uncertainty in the different disciplines of  SD and decrease 
the impacts of  inadequate outcomes. Risk is usually calculated with the following equation [e.g., 
Meredith & Mantel 2003]: 

R=PI                                                         ( F-1) 

where R is the measure of  risk, P is the probability of  an inadequate outcome, and I is the impact 
of  that outcome. It is important for every engineer to understand the notion of  risk, i.e., risk is a 
product of  two independent variables: probability and impact. Thus, in case a negative outcome 
of  an event has a high impact (e.g., because it can lead to an accident with fatal consequences), 
the risk can be still medium or low if  the probability that such an event happens is low. Similarly, 
if  a negative event happens quite likely in the future, but it does not significantly affect the 
behavior of  the system (i.e., the impact is low), then the risk is not significant either. Hence, risk 
management focuses on identifying the sources of  risk (i.e., the uncertainties) and seeking ways to 
reduce either the probability or the impact (or both) of  a negative event to a level that reduces 
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Figure  F.4 Risk categories (modified from [DoD 2002]) 
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the overall risk to an acceptable level. 

The level of  risk can be ranked on the basis of  the combination of  probability and impact 
e.g., using a risk matrix depicted in Figure  F.4. Risk matrices are effective tools to understand and 
classify risks in a project. However, such matrices provide only qualitative information on the risk 
status (e.g., the risk is low, medium or high), and developers and managers usually prefer 
quantitative information (e.g., the risk might lead to a possible profit loss of  € X if  not mitigated). 

Risk can be quantified more exactly with Equation (F-1). However, experts warn that the mere 
multiplication of  uncalibrated values of  probability and impact might lead to information that 
will at best be misleading, if  not completely meaningless, resulting in erroneous risk ratings [DoD 
2002]. As this kind of  information is a main source of  ambiguity, risk calculations always have to 
be based on calibrated values of  probability and impact. One effective way is to use numbers 
between 0 and 1 for both probability and impact. This way, the product is also between 0 and 1, 
and it can be easily ranked according to a standard scale (e.g., 0 - 0.33 low; 0.34 – 0.66 medium; 
0.67 – 1.00 high). 

F.4.1.1. Technical Performance Risk Calculation 
Browning et al. propose a generic approach for risk calculation in [2002]. The proposed risk 

value method combines the basics of  Engineering Decision-making [e.g., Hazelrigg 1996], Utility Theory 
[e.g., Fishburn 1970], and Taguchi’s Quality Loss Theory [Taguchi & Wu 1980] in one effective 
method for risk estimation. The concept of  the risk value method is that the customer value lost 
due to inadequate product quality is a function of  the deviation of  the actual from the target 
product quality. Thus, the impact of  a deviation from the target value can be calculated as the 
expected stakeholder utility at the target minus the utility at the actual value. The left diagram in 
Figure  F.5 depicts a triangular PDF representing the possible outcomes of  one key technical 
performance aspect of  the design (i.e., “TPM1”) and two different kinds of  impact functions 
representing the consequences of  the differences for parameters where the larger is the better. The 
right diagram shows the related utility curves representing the customer utility of  the possible 
outcomes of  the TPM.  

Taguchi & Wu [1980] propose that the function of  quality loss due to lower performance is 
quadratic as shown in Figure  F.5 (function “A” on the left). However in reality, quadratic functions 
are often difficult to define and thus simpler, linear (“C” in Figure  F.5), or piecewise linear 
functions (“B” in Figure  F.5) are applied for the definition of  impact or utility as a function of  
system performance.  

The risk of  a possible TPM outcome can be then calculated using Equation (F-2) as the 
product of  the probability and the impact of  an outcome. In case of  more than one possible 
TPM outcome, the overall risk is calculated as the sum of  all possible outcomes, each weighted 
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Figure  F.5 Risk calculation using the possible outcomes of the system performance and impact functions  
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by its impact. 
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where RTPM1 is the risk, xTPM1 are the possible outcomes of  TPM1, where the larger is the better, 
f(xTPM1) is a discrete form of  a PDF representing the probabilities of  all xTPMi outcomes, TTPM1 is 
the target or requirement value of  TPM1, and I(xTPM1) is the impact function. In case the possible 
outcomes are represented by a PDF, the sum becomes an integral: 
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The result of  this integral is the expected value of  the impact function on the range of  the 
possible outcomes. At technical parameters, where the nominal is the best, usually symmetric 
impact functions are used, where impacts can have nonzero values on both sides of  the target 
values. Here, the ranges of  the integral are set from -∞ to ∞. The integral in Equation (F-3) is an 
application of  the von Neumann-Morgenstern Expected Utility Theorem [von Neumann & Morgenstern 
1944] for risk calculation, where risk means the expected loss in stakeholder utility due to lower 
product quality.  

The overall technical performance of  a product can rarely be described by one, single 
technical performance measure. Thus, usually a vector of  the most important performance 
parameters (e.g., TPMs) is used to capture the key dimensions of  the product that mean value to 
the customers. This vector of  most important product attributes is used for the calculation of  the 
overall technical performance risk as well. That is, the overall technical performance risk is a 
function of  the risk of  the k single TPMs: 

);...;;( 21 TPMkTPMTPMTP RRRfR =                                      ( F-4) 

This function can take various forms. For example, Hazelrigg [1996] proposes different 
forms of  the Multiattribute Utility Function (MAUT) to compute the overall value of  a thing 
described by independent attributes, e.g., linearly additive utility (or weighted average), 
multiplicative utility, log-linear utility, and lexicographic preference ordering. Browning & Hillson 
[2003] also discuss the applicability of  different methods to acquire the value of  overall technical 
performance risk (i.e., weighted average, MAUT, and geometric mean), and conclude that the 
simplicity of  the weighted average outscores the benefits of  other sophisticated methods.  

In this thesis, the weighted average of  the risks in the different areas of  technical 
performance is applied: 
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Figure  F.6 Risk calculation using the possible outcomes of project cost and impact function 



82  

∑=
k

TPMTPMTP kk
RwR                                          ( F-5) 

where RTP is the overall technical performance risk, wTPMk is the weighting showing the relative 
importance of  the TPM value for the customer, and RTPMk is the risk of  the TPMk.  

F.4.1.2. Cost and Schedule Risk 
During project planning, an SD process is defined, which is capable of  delivering a product 

that satisfies the requirements. The planning of  this process usually starts top-down, where the 
planners define the major deliverables and the cost and schedule targets for the main SD phases, 
and then decompose them into activities on various hierarchy levels. Once all activities and steps 
of  the project are defined including their deliverables and the required resources, a process model is 
built by integrating the process bottom-up, using the activities and their deliverables as building 
blocks [e.g., Browning 2002]. The result of  the bottom-up process integration is then evaluated 
against the targets and constraints set during the top-down project decomposition. Cost and 
schedule risk can be captured during planning if  the SD process delivered by the bottom-up 
planning requires more resources than defined during top-down planning. Furthermore, cost and 
schedule risk arise in the project when the actual cost and duration of  the activities exceed the 
estimated values and thus threaten the planned overall project cost and duration.  

This phenomenon is depicted in Figure  F.6, where the possible outcomes of  the SD cost 
include values above the target. As project cost and schedule are parameters where the smaller is 
the better, the outcomes that are higher than the target have an impact on the project. The impact 
of  both SD cost and schedule overruns can be significant for a company, because it reduces the 
profit due to costly extra development effort, contractual obligations, critical market launch date 
due to scarce competition, etc.  

Thus, during project planning, the three main dimensions of  SD (i.e., product performance, 
SD cost, and SD schedule), have to be balanced to achieve high system value. As the three factors 
are often conflicting, i.e., high product performance usually contradicts with low cost and 
schedule, systems engineering management has to make compromises between the SD goals and 
find a way to achieve the highest product performance at the lowest cost and schedule possible. 
Since the optimum for the system is rarely the optimum for the single parameters (i.e., the highest 
product performance is usually not the cheapest), when looking for the optimal balance for the 
project, the project team has to make many tradeoffs among the three SD dimensions. The balance 
is the place in the design trade space where the overall SD risk is the lowest. 

The overall project risk is the function of  the risks incorporated in the cost and schedule of  
the project and the technical performance of  the outcome of  the SD. A possible way to calculate 
overall SD project risk is simply to calculate the sum or the weighted average of  the risks in the 
three SD dimensions. In this thesis the latter alternative is used, i.e., the weighted average of  the 
cost, schedule and technical performance risk of  the project: 

TP
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where RPD is the overall SD risk, wS is the relative importance of  the SD schedule or duration, RS 
is the schedule risk, wC is the relative importance of  the SD cost, RC is the cost risk,  wTP is the 
relative importance of  the product technical performance, and RTP is the technical performance 
risk.  
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F.4.2. Opportunity – Design for Uncertainty 
Risk management is a central task of  every SD project. As Browning & Hillson [2003] 

remind us, project management is risk management. That is, the risks inherent in SD have 
to be identified and reduced to a level that enables the total fulfillment of  the defined customer’s 
needs. Thus, the possibility that the outcome of  the SD shows a negative deviation from the 
customer’s preferences and the impact of  this difference have to be reduced to an acceptable 
minimum by the end of  the design process. This kind of  SD project management focuses only 
on the negative side of  the distribution of  the possible outcomes, and strives to minimize the 
possible deviation meaning lower product performance than desired. 

However, due to scarce global competition, companies have to plan for changing customer’s 
needs and strive to exploit all opportunities within the available resources to maximize the overall 
lifecycle value of  the system. Thus, during design, the whole range of  possible SD outcomes has 
to be considered, i.e., the whole design space that is specified by the actually available and future 
technologies, and the available resources. As conventional engineering development attempts to 
deliver a design for a product specified by the customer’s needs, developing the product 
specifications based only on the predicted future customer’s needs limits the design space. Given 
the fact that customer preferences, market characteristics, the political and business environment, 
and the available technologies all include uncertainties and even ambiguities, limiting the 
characteristics of  the design for a set of  unclear values defined at the outset of  the project often 
leads to sub-optimal designs and thus lost profit at the end. Hence, effective SD has to consider 
all possible design options for a certain product or product family even beyond the predicted 
future market needs. Furthermore, it must be possible to make design changes if  shifts in the 
characteristics of  the SD environment cause reductions in the lifecycle value of  the actual design. 

To enable long-term SD effectiveness, a paradigm shift in engineering thinking is required, 
and a new way of  dealing with the effects of  uncertainty has to be introduced for the design and 
development of  engineering systems [De Neufville 2004]. In this new design for uncertainty 
philosophy, the goal is to design products and organize SD systems that are capable of  reacting 
to foreseen and unforeseen future changes in the SD environment by adapting to the changed 
conditions. The premise is that just as engineers need to guard against failure, they should also 
enable the exploitation of  unexpected opportunities that may be associated with the projects and 
products, those that drive innovation in the SD [De Neufville 2004]. 

An opportunity is considered to be the opposite of  a risk, and thus opportunities are possible 
positive events that lead to profit gain (and not to profit loss). Opportunity is the combination of  a 
probability, i.e., the likelihood that a positive event will happen some time in the future, and an 
impact or in this case benefit, i.e., the profit gained if  the event happens. Each source of  
uncertainty, as discussed before, incorporates opportunities, e.g., lower time-to-market or project 
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Figure  F.7 Stochastic modeling of opportunity and risk  
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duration than expected, lower SD cost, better technical product performance, better market 
situation than expected, etc. All these various opportunities increase the overall system value to a 
certain extent.  

Technical opportunity can be calculated stochastically using the same approach applied for 
the risk calculation before. If  the whole range of  outcomes is considered in the SD, and 
outcomes with higher performance than required mean value for the customer, it is deliberate to 
consider these outcomes during decision-making. Thus, beside the impact of  inadequate 
outcomes also the benefit of  outcomes that exceed the performance targets can be calculated. 
This is shown in Figure  F.7, where the target value for TPM1 is set lower than the performance 
value with the highest stakeholder utility. Such a decision can have many reasons; usually it is the 
result of  a tradeoff  between the capabilities of  the SD system, the resources that constrain the 
project, and the customer’s desires regarding the overall system performance. However, it often 
happens that characteristics of  the SD change during the project (i.e., due to emerging new 
technologies or the discovery of  novel design solutions), and it becomes possible to exploit 
design opportunities within the original project budget and schedule. As the exploitation of  
sudden opportunities demand continuous project control, quick reaction, and changes in the SD 
system, effective project management and flexibility in all ZOPH+T subsystems is required. 
Adaptive SD supports project management by continuously generating information on the 
performance of  the SD process including the actual risk status and the stakeholder value of  the 
discovered opportunities.  

Opportunities regardless of  their sources are worth capturing if  they bring enough benefits 
to the SD organization. As uncountable opportunities arise during the various projects of  a 
company, it is vital to evaluate their value and allocate resources only to the most promising ones. 
Ulrich & Eppinger [2004] propose that there are four basic perspectives that have to be 
considered during the evaluation and prioritization of  design opportunities. These four areas 
depicted in Figure  F.8 define the dimensions of  the SD strategy of  the company. Thus, every 
opportunity chosen for exploitation has to fit in this strategy space and lead the company to the 
desired direction.  

Furthermore, the value of  an opportunity for an organization depends on the company’s 
strategic flexibility as well. This aspect is depicted in Figure  F.9, where  

• the bold arrow in the middle represents the basic strategic direction of  the company. The 
direction of  the arrow is defined by the characteristics of  the four perspectives affecting the 
value of  an opportunity (Figure  F.8) that describe the multi-dimensional strategy space of  the 
company.  
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Figure  F.8 Four basic perspectives that affect the value of opportunities 
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• “α” represents the range of  the company’s strategy landscape, i.e., the range of  opportunities 
that are valuable for a company regarding its strategic direction (i.e., α is the strategic 
flexibility of  a company);  

• the arrows indicate different opportunities; 

• “β” is the difference between the direction (i.e., characteristics) of  the opportunity and the 
main strategic direction of  the company (i.e., how the opportunity fits in the company 
strategy); 

• the size of  the arrow is the absolute stakeholder value of  the opportunity; 

• vcosβ shows the relative value of  the opportunities regarding the company’s main strategic 
direction and product portfolio, i.e., the value of  the opportunity for the company. 

Thus, β is related to market uncertainty, i.e., the higher β is, the higher is the uncertainty that 
the realization of  an opportunity adds value. The parameter α in the opportunity model 
represents the strategic flexibility of  the company, i.e., the range of  uncertainty a company is 
ready to deal with in order to seize an opportunity.  

Generally, it can be stated that the larger β is, the higher is the uncertainty regarding the value 
of  the possible outcomes, because a large β means a basically new strategic direction and thus 
new markets, new customers and/or new products for the company. However, since uncertainty 
has good and bad sides with positive and negative impacts, a long v vector with large β (i.e., high 
value) can incorporate great opportunities for an SD organization. 

F.4.3. Net Present Value of Opportunities 
Besides stakeholder value, which brings benefits to the SD organization, another important 

aspect of  the evaluation of  opportunities is the determination of  the investments that are 
necessary to exploit an opportunity. Investments comprise the various costs required to design 
and implement a technology or the related product component from the discovered opportunity. 
The size of  investments required developing a product or technology from an opportunity varies 
on a large scale depending on the characteristics of  the opportunity and different aspects of  the 
SD system and its environment.  

Major design opportunities that enable the development of  products guaranteeing long-term 
customer satisfaction are sought in SD to maximize stakeholder value. These opportunities are 
the fundamental drivers of  innovation in new SD projects. However, not all SD cultures permit 
the effective discovery and exploitation of  design opportunities. As the implementation of  
innovative ideas, the main source of  design opportunities demand extra development effort and 

 
Figure  F.9 Evaluation of opportunities 
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result in possible changes in the SD process, SD project environments with high resistance to 
changes reduce the ability to exploit opportunities.  

A basic measure to estimate how much a company would gain through the exploitation of  an 
opportunity is the net present value (NPV) of  the opportunity [Wöhe 1996]. This measure is a 
powerful valuation method used in the capital markets to determine the future gains achievable 
through a present investment. The same method can be applied for design opportunities, where 
the total cost of  the project to exploit an opportunity including SD, production, marketing, 
distribution, etc. is considered as the investment. The value of  the project is then described by the 
benefits through marketing and selling the product. Thus, the measure NPV provides a means to 
quantify the future benefits of  an actual investment (i.e., decision on an investment). This is 
possible by comparing all cash outflows and inflows in the course of  the project. The NPV of  a 
design opportunity can be calculated as follows: 

∑
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where Vt
j is the present value of  all cash inflows (i.e., earnings) and It

k is the present value of  all 
cash outflows (i.e., investments) regarding an opportunity, n is the total length of  the project, t is 
the amount of  time (e.g., years), and i is the cost of  capital. Thus, the higher is the NPV of  an 
opportunity, the more profit the company can gain through investing in it5.  

Net present value of  a design opportunity can be also calculated during an SD project, in case 
the outcomes of  an SD activity, experiment, sub-process or even a whole lifecycle phase involve 
promising results. Opportunities discovered in the SD process can be seized within the scope of  
either the actual or a later project. The decision when to seize an opportunity involves many SD 
facets the project manager has to consider. The drivers of  project benefits gained through an 
opportunity are depicted in Figure  F.8 and summarized in the measure: value. The other side of  
NPV is the investment required to seize an opportunity. The aspects of  investments regarding the 
exploitation of  an opportunity are depicted in Figure  F.10. These investments are usually linked to 
the status of  the project, the culture of  the organization, and the available resources in the 
project.  

An important aspect for this decision is the organizational and decision-making culture of  the 
company, which constrains the considered decision options during decision-making. If  risk 
reduction is the major project objective, capturing opportunities has low priority, and thus it is 

                                                 
5 An alternative approach to NPV for the calculation of the future value of an opportunity is real options [e.g., 
De Neufville 2003a, 2003b, 2004, De Weck et al. 2004, Shishko et al. 2004]. An advantage of real options is 
that is accounts for uncertainty and flexibility after the project decision. However, both NPV and real options can 
be effectively used to estimate the future value of an opportunity. 

 
Figure  F.10 Aspects of opportunity evaluation regarding the required investments 
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usually moved to forthcoming projects. This philosophy might be successful for risk reduction; 
however, it reduces the chances of  developing superior products. 

Another aspect of  the in-project evaluation of  opportunities is the actual project stage. The 
basics of  the rule-of-ten [e.g., Ehrlenspiel 1995, Swift et al. 1998], the well-known principle of  
quality management, are applicable here, too: the later a change is made in the SD, the higher are 
the consequences. That is, the cost of  seizing opportunities found in a late lifecycle phase, at high 
design maturity are so high that it is not worth any more to invest in them in the scope of  the 
actual project. 

The risk status of  the project is another important decision aspect. In case of  high project 
risk, a design solution or technology that would reduce risk in the critical areas is always welcome 
and even sought by the developers, since it steers the project to the right direction. However, 
opportunities, even with high stakeholder value, that improve areas not in risk have to be 
evaluated thoroughly. On the one hand, these opportunities increase the lifecycle value of  the 
system and thus foster product superiority. On the other hand, the manager of  a project in high 
risk has to invest in risk reduction, and not in the improvement of  design aspects not in risk. If  
the product and the SD structures are modular ensuring independent module development and 
even independent module development budgets, then the decision is easier. However, the 
changes in an integral product architecture that the exploitation of  an opportunity might cause 
increase risk that is not desired in case of  a high-risk project status. 

The scope of  the change caused in the SD system by the exploitation of  a design opportunity 
is twofold. Whereas direct changes include the effort required to develop a mature product or 
technology from an opportunity, there are also indirect changes in the SD system due to this 
extra development effort, e.g., due to change propagation from the improved area to other areas.  

The direct cost of  a change depends on two major aspects: the affected design areas and the 
degree of  innovation in these areas. During the decision on investing in capturing the opportunity, 
the project manager has to make a tradeoff  between the two factors. On the one hand, a change 
affecting many areas, or basic design characteristics and rules (i.e., the design architecture); even a 
small adjustment can have enormous cost. On the other hand, if  the improvement scope 
concerning the degree of  innovation is high (i.e., due to the discovery of  a breakthrough 
innovation), it usually requires large investments. If  it also affects many design aspects and 
modules, the cost of  improvement might be too high to implement it in the actual project. This 
aspect, the affordability of  opportunities, is captured in Figure  F.11 showing how resources limit 
the scope of  changes.  

Affordability also depends on the indirect changes an improvement action causes in SD. If  a 
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Figure  F.11 Affordability as a function of change scope 
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change in one component or design aspect affects many related components or aspects due to 
high interrelatedness among system components, then the cost of  the many small adjustments 
might sum up to a rather high total improvement cost that might not be affordable in the actual 
project. Thus, the high system visibility of  the components in integral system architectures (solid 
line in Figure  F.11) increases the indirect cost and thus risk of  even slight changes. Hence, integral 
product architectures limit the scope of  the in-project exploitation of  opportunities. 

Flexibility is a characteristic of  highly modular system architectures [e.g., Baldwin & Clark 
2000]. In such systems, the affordability and controllability of  the changes due to improvement 
actions is higher, because the effects are hidden in the modules. That is, the design aspects 
affected directly or indirectly by the change are limited to the size of  the module that limits the 
risk of  undesired change propagation. High flexibility in the product architecture also allows 
increased flexibility in other ZOPH+T subsystems of  the development enterprise required to 
react quickly to foreseen and unforeseen changes in the SD. For example, high process flexibility 
driven by modular product designs enables even late, module-level changes in SD [MacCormack 
et al. 2001], which is one of  the main risk drivers for traditional SD projects developing integral 
designs. The second part of  the thesis discusses flexibility means in the different ZOPH+T 
subsystems. 

Flexibility in resource constraints and management reserves also supports innovation and 
capturing opportunities in a project. On the one hand, resource flexibility requires the openness 
of  the company management towards changes and design opportunities that increases the project 
manager’s decision scope in a certain project. On the other hand, greater investments in the 
design of  both product and process architectures foster SD flexibility [MacCormack et al. 2001]. 
Increased planning effort and the application of  improved process modeling methods delivering 
flexible processes support the allocation of  adequate management reserves to the project. Hence, 
a flexible SD process with realistic budget and schedule constraints considering design iterations 
required to achieve breakthrough SD results is fundamental to cope with changes and support 
innovative design work. 

The next section reviews SD facets that support the handling of  uncertainty and thus foster 
the effective reduction of  risk and exploitation of  opportunities in the SD. These facets comprise 
iteration and learning, experimentation, V&V and frontloading, technology development, 
concurrent engineering and overlapping, and finally SD lifecycle models. 

F.5. TECHNIQUES TO DEAL WITH UNCERTAINTY 

F.5.1. Iteration and Learning in SD 
SD is a problem-solving process [von Hippel 1990] and as such, it is fundamentally iterative in nature 

[Yassine & Braha 2003]. During the iterative SD process, the developers collect customers’ 
desires, specify a design problem, generate ideas and concepts to solve it, and analyze and 

 
Figure  F.12 Iterative SD process 



89  

evaluate these ideas against the defined problem and the customer’s desires to determine the 
quality and value of  the solutions. If  the quality is inadequate (i.e., they did not solve the problem 
right), they redesign, i.e., generate new ideas and concepts to improve the solution. In case the 
value of  the solution is too low (i.e., they did not solve the right problem), they collect feedback 
from the customers, redefine the problem, generate new solutions, etc. [Thurston & Locascio 
1994]. (Note that the basic framework of  iterative design is similar to the systems engineering 
procedure in Figure  B.3). 

Ford & Sterman [1998] define four basic activities that describe the fundamental elements of  
SD in their systems dynamics model: initial completion, quality assurance, iteration, and 
coordination. This model includes similar elements for the iterative design process in Figure  F.12. 
Initial completion is the finishing of  a design activity that provides an initial design. Quality assurance 
means the analysis and inspection of  this initial design for defects. That is, quality assurance 
evaluates the design to decide if  the right solution was found. Iteration means work on previous 
activities to improve the initial design and correct the found defects (i.e., redesign). Finally, 
coordination is the integration of  the SD project among phases, e.g.., when designers work with 
marketers to refine specifications (i.e., are we looking for the solution to the right problem?).  

During this process, the developers acquire information on the design problem, its 
description, and the possible solutions. Thus, at the end of  such a problem-solving cycle, their 
knowledge and understanding of  the problem is higher than in the beginning. That is, the 
developers learn during the process of  SD. 

Learning is fundamental in the SD, because the knowledge of  the developers about the exact 
outcomes of  their work is inadequate at the outset of  the SD project. Hence, learning is a basic 
means to resolve uncertainty and increase the confidence in the characteristics of  the final 
product. While each SD activity improves the product design, they also contribute to the 
knowledge of  the SD organization with regard to the SD problem. Thus, with the completion of  
every activity, not just the design, but also the design knowledge of  the development team 
evolves. The effectiveness of  this knowledge evolution and thus organizational learning defines 
the final value of  a project. 

Learning depends on feedback. Developers make decisions to change the “real world”, implement 
these decisions, and gather feedback on the effects of  these decisions in the “real world”. Using 
this feedback, they revise their understanding about the “real world” and the decisions they make 
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Figure  F.13 Iterative quality improvement processes 
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to bring their perception of  the state of  the system closer to its goals [Sterman 2000].  

Learning as an explicit, iterative feedback process is also the basis of  quality and process 
improvement philosophies. The PDCA (plan-do-check-act) or “Shewhart Cycle”, the WV (or 
zigzag) framework and the DMAIC (define-measure-analyze-improve-control) cycles are 
analogous methods to capture a generic framework for the improvement of  a process or system. 

The PDCA process shown in Figure  F.13 depicts the basic structure for quality and process 
improvement in the Total Quality Management (TQM) philosophy. PDCA has four key steps: (1) 
planning an improvement, (2) making the improvement, (3) checking the improvement results, 
and (4) acting and replanning if  necessary. PDCA is considered a cycle because successive 
rotations (analogous to iterations) make progress possible. Similarly, the WV framework, which is 
named after the zigzag pattern that models it, alternates between thought and data as it moves 
forward to solve a problem [Shiba et. al. 1993, Kleim & Ludin 1997].  

DMAIC is also an iterative technique for incremental process improvement using the Six 
Sigma methodology. The five steps of  DMAIC comprise: (1) define the customers, their Critical to 
Quality (CTQ) issues, and the Core Business Process involved; (2) measure the performance of  
the Core Business Process involved; (3) analyze the data collected and process map to determine 
root causes of  defects and opportunities for improvement; (4) improve the target process by 
designing creative solutions to fix and prevent problems; and (5) control the improvements to keep 
the process on the new course [I-Six Sigma Online Website]. 

An analogous model, the iterative experimentation cycle, was developed by Thomke [1998, 2003] 
to encapsulate the fundamental characteristics of  the relationship between design and test 
activities during design iteration. Similar to the other iterative cycles, this model can also applied 
at various hierarchy levels of  the project, i.e., iterations can have a small scope involving only a 
few activities, but also major SD stages or even the whole project can be considered as an 
iterative cycle. In the latter case, SD projects are viewed as experiments, where the goal is to 
capture design opportunities and develop high value products.  

Traditional iterative design and quality loops are quite effective means to reduce foreseen 
uncertainty and variation in the design, and thus improve the quality of  the system (i.e., increase 
the degree of  the fulfillment of  requirements). However, in the dynamically complex SD 
environment, high quality and high value are often different. Thus, it can happen that the final 
outcome of  the SD fully satisfies the requirements defined in the beginning of  the project, but 
the user’s preferences have crept during the project affecting the final value of  the product. That 
is, the real market situation differs from the estimated situation. This can be prevented by 
extending the learning loop by including external feedback from the SD environment that 
enables the continuous valuation of  the design. 

Sterman [2000] proposed a systems dynamics model for idealized learning shown in Figure 
 F.14 based on the theory of  double-loop learning [Argyris 1977, Argyris & Schön 1978]. Hence, the 
idealized learning process includes two major feedback loops that create a relation, one loop with 
the real world and the other with the virtual world. On the one hand, the feedback on our previous 
decision from both “worlds” lead to new decisions that are affected by the mental models of  the 
decision-makers and the organizational culture. On the other hand, in a dynamic, complex world, 
where the developers’ knowledge about certain aspects of  the design is missing or ambiguous, 
new information generated in the feedback loops also affects the developers’ mental models 
about the reality (i.e., we change the system, the system changes us). Thus, as the feedback information 
from the world changes the developers’ mental models, they change the architecture of  the 
systems and create different decision rules or strategies. 
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The model of  double loop learning provides the basic idea of  the learning or adaptive 
organization. That is, the SD organization has to collect feedback continuously from its internal 
and external environment, and react to this feedback by adapting itself  to the changing needs 
[Dove 2001]. This ability of  an organization to respond to the changes is the main driver of  
adaptiveness and agility.  

The double feedback structure in Figure  F.14 includes an important element that enhances 
learning effectiveness: the virtual world. The elements of  the virtual world are abstractions or 
models of  the real world. As the developers’ knowledge of  the final product and the future 
environment of  the SD is limited, they have to make assumptions about the unknown aspects 
during design work, and test these assumptions to see if  they were right. Modeling helps this 
learning process by providing an environment for controlled experimentation. That is, in the 
virtual world, a limited amount of  design aspects can be analyzed and proven in a controlled 
process, under realistic conditions. This way, uncertainty can be systematically reduced by 
continuously increasing the number of  design aspects (i.e., experimentation scope) analyzed 
during the iterative experimentation cycles.  

According to organizational theory, learning occurs at different levels, at multiple levels of  
abstraction [e.g., Argyris 1977, McKee 1992]. MacCormack et al. [2001] differentiate also between 
detail-level or context-specific learning and system-level or generational learning. Whereas, context-
specific learning results in knowledge that can be directly applied for the solution of  specific 
design problems within the context of  a project, generational learning comes from a longer 
process involving multiple projects and results in documented lessons learned and experienced by 

 
Figure  F.14 Idealized learning process (adapted from [Sterman 2000]) 
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developers. 

Both system-level and detail-level learning are essential to project success in uncertain and 
dynamic environments [MacCormack et al. 2001]. Thus, the SD project must provide an ideal 
environment for iterative problem solving and experimentation at all levels of  the organization. 
How structured experimentation contributes to learning will be discussed in the next section. 

F.5.2. Experimentation and V&V  
Learning involves the detection and correction of  error [Argyris & Schön 1978]. Hence, 

experimentation cycles following a trial and error working scheme are excellent means for iterative 
learning in SD. Figure  F.15 depicts the experimentation cycle proposed by Thomke [1998, 2003], 
where iterative design and evaluation steps form a closed feedback loop of  learning. In such 
loops, ideas are tested against requirements and customers’ needs to find better designs and 
correct design errors. Thus, experimentation cycles are places where context-specific learning 
occurs in the projects. Due to the scalable nature of  the experimentation cycle model, projects 
can also considered as experiments when major opportunities are captured and evaluated 
iteratively, using existing knowledge and experience from previous projects. In this sense, 
experimentation cycles also support generational learning. 

Thomke [1998, 2003] argues that experiments during the design of  a new product can be 
conducted in different modes, and the main management goal is to find the optimal switching 
points between different modes. When it comes to the decision on switching between two 
experimentation modes (e.g., from computer simulation to rapid prototyping), the effectiveness 
of  further experimentation in a certain mode is compared to the programmatic aspects of  the 
experiment. That is, after each experimentation cycle the following questions are raised: (1) Did 
the experiment deliver the required outputs in terms of  expected level of  knowledge / design 
maturity? (2) Does the design have the required level of  maturity to effectively perform the next 
planned experiment mode? (3) Are the required resources available to perform another 
experimentation cycle in the current mode? 

Modes are experiments with similar purposes, but different fidelity (i.e., number of  design 
aspects considered), cost and duration. As the design evolves during the SD process, the fidelity 
of  the consecutive experiments grows. Hence, the level of  abstraction of  the virtual world (i.e., the 
network of  controlled experiments) decreases during SD, and the overlap and similarity between 
the virtual and real worlds increases. That is, the design aspects included both in the models (or 
prototypes) and the simulated virtual world (i.e., the fidelity of  the experiments) increase towards 
the end of  the SD, result in the implementation of  the final experiments in the real world, and 
thus qualify and certify the feasibility of  the design.  

A deliberate experimentation or prototyping strategy is vital for continuous uncertainty and 
risk reduction and thus learning in the SD. Furthermore, experimentation cycles foster the 
systematic generation and testing of  innovative new ideas, and thus enable companies to create 
and refine their products and effectively capture design opportunities [Thomke 2001]. In this 
experimentation system, different modes of  experiments with growing fidelity are organized 

 
Figure  F.15 Experimentation cycle (adapted from [Thomke 2003]) 
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sequentially or parallel to maximize the effectiveness of  learning in the SD.  

The consideration of  the SD process as a network of  iteration cycles that together cover 
every important aspect of  the SD is an important element of  adaptive SD projects. The reason 
for this is that experimentation cycles are sub-processes of  the SD process with a distinct 
purpose, i.e., a clear network of  activities with measurable deliverables. The project benefits from 
this, because partitioning a process into fairly independent tasks or sub-processes reduces process 
duration [von Hippel 1990]. Furthermore, experimentation cycles transform the rather sequential 
traditional SD projects with few decision and control points at the major milestones or stage 
gates into a modular network of  problem-solving cycles with controllable, interrelated 
deliverables. So, considering SD as a chain of  experiments helps the planners break down the 
project goals into clear sub-goals that can be effectively controlled during the project.  

This phenomenon is depicted in Figure  F.16, where the difference between traditional end-of-
the-phase testing is compared to planning for fast iteration cycles. The second process in Figure 
 F.16 is the result of  DSM partitioning conducted during the first process. Hence, both 
experimentation strategies in Figure  F.16 include the same number and type of  activities; however, 
the structures of  the processes are different. While the first strategy includes long delays between 
design and testing that leads to ambiguity in the SD process [Sterman 2000], the second strategy 
ensures fast feedback to the developers on the results of  their work and prevents unnecessary 
work on erroneous designs. Thus, the second strategy helps the design team find failures right 
after they have been included in the design.  

In traditional SD, the project strategy is often to develop high quality products right at the first 
time. In such an SD project, the complete design is finished first and then evaluated through 
expensive system tests. This SD philosophy does not account for the iterative nature of  technical 
work and proposes to increase the precision of  SD work and strive to achieve zero defects [Taguchi 
& Clausing 1990]. While the philosophy of  zero defects or error-free work is applicable for 
production processes, SD cannot be done right at the first time, because sequential work reduces the 
effectiveness of  learning. Furthermore, a fundamental problem in sequential SD is that design 
failures are usually found too late in the project when changes have high consequences on the 
project schedule and budget.  

On the contrary, evolutionary SD strategies realize the importance and effect of  iterative 
learning from innovation and account for iteration during the planning of  the SD process. The 
premise of  evolutionary or experimentation-driven SD is that the effort of  reducing risk of  the 
first failure is much higher than the cost of  correction [Thomke 2003]. Hence, in such projects, 
the goal is not to eliminate these valuable iteration cycles, but to reduce their scope to the 
required minimum based on the process logic and information flow, and thus support effective 
and efficient experimentation [e.g., Denker et al. 2001, Browning 2003].  

As Figure  F.16 depicts, experimentation and iteration cycles usually comprise a set of  
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Figure  F.16 Traditional and modular process design for experimentation 
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interrelated design and V&V activities. The role of  design activities in experimentation is to 
generate innovative and creative ideas to solve the problem defined by the scope of  the 
experimentation. The V&V activities in the experimentation cycle must be then appropriate to 
effectively analyze the solution for the defined problem provided in the form of  the deliverables 
of  the design activity and provide valuable information on the feasibility, quality, and value of  the 
design solution. Furthermore, the information delivered by the V&V activities is the main source 
of  information for the decisions after the experimentation cycles. As a consequence, systematic 
experimentation does not only reduce uncertainty by increasing learning effectiveness, but it also 
does it by reducing SD complexity and fostering enhanced project control.  

Furthermore, experimentation cycles can be considered as fairly independent process 
modules of  coupled design and V&V activities. Depending on the modularity of  the product 
design, these process modules are more or less independent of  each other. In case of  high 
independence, experiments can be conducted in parallel with the modules of  the system, which 
reduces process duration significantly. 

F.5.3. Frontloading of Experiments 
Loch et al. [2001] propose that there are three basic factors that influence V&V strategies: the 

cost and duration (or feedback time) of  the V&V activities and the learning between the activities. 
Obviously, the goal of  project planning is to define a V&V strategy that maximizes the 
effectiveness of  learning and minimizes feedback time and cost. While V&V and design activities 
are closely connected in the SD process, V&V strategy planning can be only effective, if  it is 
integrated with project planning.  

In this thesis, V&V strategy planning is considered as one distinct step of  the integrated 
systems engineering planning effort conducted at the outset of  the project. The goal of  systems 
engineering planning is to provide the project with a structure that enables continuous innovation 
and learning and the timely validation and verification of  the requirements and products of  the 
SD. Further, systems engineering has to guarantee the continuous evolution of  the design by 
optimizing the information flow among SD activities and reducing the probability of  undesired 
rework in the SD process. 

Experimentation and V&V are effective problem-solving methods that are inevitable in every 
SD project. As the previous section showed, V&V and testing are most effective if  scheduled 
right after the relevant design activities, because the delay between the output and information on 
the feasibility of  the output (i.e., feedback on the result of  the design work) can be considerably 
reduced this way. The programmatic benefit of  organizing closely related design and V&V 
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Figure  F.17 Stylized impact of a separate test starting time 
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activities in experimentation cycles is depicted in Figure  F.17 showing the impact of  V&V activity 
starting time on the project budget. The best time to start a V&V activity is immediately after the 
output of  the design activity is delivered. If  V&V starts at any different point in the SD, it can 
have financial consequences.  

If  V&V is done too early, the deliverables to be evaluated are not mature enough, and the 
V&V results will be poor. This causes the repetition of  the V&V effort and thus higher project 
cost. On the other hand, late V&V provides late feedback on the design, which reduces the 
effectiveness of  learning and innovation in the SD, and increases rework probability.  

Another system-level aspect of  V&V strategy planning besides the reduction of  feedback 
delay between design and V&V activities is that the V&V strategy has to foster the effectiveness 
of  problem solving by providing the developers with the right answers in a timely manner. As 
mentioned before, in conventional SD projects the work is done in consecutive stages, and the 
main testing effort is done late in the project, mainly on the integrated physical prototype of  the 
system. For example Boehm [1981] showed in his study of  several large software projects that the 
relative cost of  correcting software errors increases significantly as a function of  the phase in 
which the corrections or changes were made. This phenomenon is often called the rule-of-ten 
referring to the observation that the cost of  solving a design problem or making a design change 
increases by the factor of  ten with each elapsed phase after the “inclusion” of  the failure. 

Many researchers realized that the erroneous experimentation philosophy of  the waterfall SD 
model is a main cause for major rework efforts in the projects that drive cost and schedule risk; 
and proposed to reengineer SD process structures and frontload problem-solving activities (V&V 
and testing) in the SD [e.g., Boehm 1981, Clark & Fujimoto 1991, Assmann 1998, Fricke et al. 
2000, Thomke & Fujimoto 2000, etc.]. Thomke & Fujimoto [2000] define frontloading as  

a strategy that seeks to improve development performance by shifting the 
identification and solving of [design] problems to earlier phases of a 
product development process. 

Frontloading strategies attempt to improve conventional SD by proposing the application of  
innovative technologies to reduce uncertainty early in the SD project. Novel experimentation 
technologies such as computer modeling, virtual prototyping, and digital mock-ups (DMU), 
computer simulation using the finite element method (FEM), rapid prototyping, etc., enable the 
cheap design and fabrication of  prototypes early in the SD. Using these technologies, low-cost, 
iterative trial-and-error learning can be conducted in the early SD stages, where uncertainty is still 
rather high.  

Hence, virtual experimentation fosters system evaluation and knowledge generation before 
key decisions on the system design are made, and it reduces technical uncertainty concerning the 
critical design aspects. With the enabling technologies of  frontloading, the development of  a 
complex engineering system receives a new dimension. That is, the architecture and behavior of  
the developed system can be completely designed and evaluated virtually and thus, most of  the 
major design failures can be captured and corrected before having built a single piece of  
hardware.  

As a consequence, frontloading triggers rapid innovation and effective failure detection by 
offering a novel experimentation environment (i.e., the virtual world), where prototypes can be 
generated quickly and at a low price. Further, while virtual prototypes do not have any material 
cost, they can be redesigned and evaluated rapidly until a feasible, mature design that guarantees 
maximal customer satisfaction has been found.  
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The achievement of  high design maturity and performance early in the SD results in better 
SD performance [Thomke 1998], and reduces SD time and cost and thus frees up resources to be 
more innovative in the marketplace [Thomke & Fujimoto 2000]. Thus, the frontloading of  
experimentation increases both the effectiveness and efficiency of  the SD process and thus the 
total value of  the SD endeavor.   

The next section discusses concurrent engineering, a project management technique to 
reduce SD cycle time.  

F.5.4. Concurrent Engineering 
A well-known technique for the compression of  cycle time and thus for the reduction of  

schedule uncertainty is the application of  concurrent engineering [Imai et al. 1985, Takeuchi & 
Nonaka 1986, Clark & Fujimoto 1991]. As the companies in different industry areas realized in 
the 1990s that time-to-market is a key source of  competitive advantage [e.g., Rosenau 1990, 
Blackburn 1991, Wheelwright & Clark 1992, Cusumano & Selby 1995, Sabbagh 1996], the search 
for methods started that help effectively shrink project duration. The date of  market launch is 
particularly important in dynamic markets with highly innovative products. Vesey [1991] showed 
in his study on high-technology SD projects that products entering the market six months later 
than their competitors, but otherwise within budget, earned 33% less in a five-year period than 
they would have if  they had entered the market on time. On the other hand, similar companies 
having entered the market on time, but 50% over budget reduced the firm’s profitability with 
regard to that product by only 4% [Eisenhardt & Tabrizi 1995]. 

Hence, low process duration is not just an important factor of  SD, but in many industries the 
source of  long-term market success and profitability. Browning & Eppinger [2002] remind us 
that process effectiveness (i.e., high value products) and efficiency (i.e., low process duration and 
budget) greatly depends on the process architecture. Industry studies also show that companies 

 
Figure  F.18 Sequential, overlapping and concurrent development activities 
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with SD processes with parallel or overlapping activities or even sub-processes achieve great 
reductions in process duration [Takeuchi & Nonaka 1986, Clark & Fujimoto 1991].  

There are three basic techniques for cycle time reduction through concurrent engineering in 
SD. These three techniques (overlapping, crashing, and parallel execution of  independent sub-
processes) are compared to the traditional, strictly sequential activity execution in Figure  F.18, 
where four different processes are depicted using Gantt-charts. The bars represent the working 
effort required to finish a certain task, the full arrows deliver complete and the empty ones 
incomplete deliverables. While the black, full parts of  the bars represent the additional activity 
durations due to activity overlapping, the grey bars show required additional working effort due 
to the compression of  activity duration. 

The principle of  sequential activity execution depicted in the first chart is that each step of  
problem solving starts only if  the logically previous step has finished its job and delivered the 
adequate information. The philosophy for strictly sequential processes is that the completion of  
one activity unequivocally means qualitatively complete deliverables. Thus, all activities wait until 
the predecessor activity is finished, because it means perfect information for the developers. 
However, this assumption is rather idealistic. In reality, fully complete information rarely arrives 
at the activities, and thus the developers have to start their work with assumptions, anyway.  

In case the outcome of  SD is not an entirely novel product, where every design aspect is 
completely new (and usually this is the case), developers can use existing knowledge from 
previous projects (generational learning), estimate parts of  missing information, and start 
activities with an incomplete set of  input products. That is, they start working with incomplete 
information and make adjustments on their work when the complete set of  data arrives from the 
finished predecessors. If  the additional working effort these adjustments require is smaller than 
the time saved through activity overlapping, than the project can benefit from reduced time-to-
market through overlapped activity execution [Krishnan et al. 1997].  

The benefits achievable through overlapping are illustrated in Figure  F.19 in case of  two 
activities. The total cycle time reduction is the function of  the degree of  overlapping. On the one 
hand, the higher the degree of  overlapping, the lower the maturity of  information provided by 
the upstream activity and thus the higher also the caused (direct and indirect) additional SD work 
(note that Figure  F.19 considers only two activities and thus only additional direct SD work). On 
the other hand, Krishnan et al. [1997] point out that a too low degree of  overlapping might also 
cause rework due to reduced process flexibility. The cause of  this quality loss is that upstream 
activities finalize their output information too early and thereby limit the scope of  possible 
changes by the downstream activity, which can also lead to rework. Hence, during project 
planning, the correct overlapping ratio has to be determined; otherwise the project suffers instead 
of  gaining from concurrent engineering. 

The third diagram in Figure  F.18 depicts crashing, a different strategy for time compression 
[Rosenau 1988, Stalk & Hout 1990, Cordero 1991, Roemer & Ahmadi 2004]. The underlying 
assumption in this strategy is that all required steps of  an SD project are known a priori, and SD 
projects can be accelerated by simply cutting the original activity durations [Eisenhardt & Tabrizi 
1995]. Crashing can even be motivating if  applied in a well-understood SD project, and if  it 
comes together with appropriate rewards for faster work. 

The fourth chart in Figure  F.18 presents two parallel, crashed sub-processes with overlapped 
activities. Since the two sub-processes do not have any information dependencies, they can be 
conducted concurrently in the project. The fifth and lowest activity in the diagram depends on 
both sub-processes and integrates the deliverables of  the concurrent process parts. The black, 
full part of  the lowest integration activity shows that overlapping in this case might cause risk in 



98  

the project. Thus, if  the activity starts working, and does not have sufficient information, the 
inputs coming irregularly from the predecessors might lead to undesired additional work, even 
beyond the reduction in process duration gained through overlapping.  

Cycle time reduction through concurrent development comes at the cost of  increased 
process and organizational complexity [e.g., Clark & Fujimoto 1989, Wheelwright & Clark 1992, 
Krishnan et al. 1995]. Additionally, concurrent methods often increase the frequency and number 
of  information transfers between project phases [Clark & Fujimoto 1989, 1991]. More tasks 
begin with incomplete or preliminary information, boosting the number of  iterations and thus 
leading to oscillations in the process [Yassine & Braha 2003]. Hence, if  concurrent engineering is 
not planned and handled appropriately, it can lead to chaos and high programmatic risk in the 
project. The next part discusses planning aspects of  concurrent engineering in SD projects. 

F.5.4.1. Characteristics of Concurrent Engineering  
The cost of  concurrent engineering is additional design iteration or rework [e.g., Ford & 

Sterman 2003]. Rework means iterative refinement of  activities to account for changes in their 
inputs [Browning 1998a]. These changes can stem from new (additional or changed) information 
and/or failure to meet design objectives [Smith & Eppinger 1997b]. The causes of  rework can be 
threefold [Browning 1998a]: (1) changes in upstream (previously worked) activity outputs as a 
result of  external changes (e.g., changes in customer’s needs); (2) concurrent activities changing 
shared assumptions; or (3) changes in downstream activity outputs due to failures and 
incompatibilities discovered during V&V.  

All three kinds of  iterations can appear in an SD process intentionally (i.e., planned iterations) 
or unintentionally (i.e., unplanned iterations) [e.g., Browning 1998a, Clausing 1994]. A main 
objective of  project management is to reduce and even eliminate unintentional iteration in the SD 
process, because it is a main source of  ambiguity and thus project risk. In this section, the 
characteristics of  SD environments are reviewed concerning the applicability of  concurrent 
engineering.  

The application of  concurrent engineering involves a calculated risk [Smith & Reinertsen 1998], 
i.e., the additional amount of  rework due to working with incomplete information. However, the 
amount of  rework generated through different techniques of  concurrent engineering differs on 
the basis of  the characteristics of  the SD project. Both crashing and overlapping of  activities are 
effective in principle with mature and stable environments [Cordero 1991, Eisenhardt & Tabrizi 
1995], since they require the thorough understanding of  the SD process and the presence of  low 

 
Figure  F.19 Stylized function of achievable benefits through activity overlapping 
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uncertainty in the SD environment. That is, in projects dealing with product upgrades or the 
development of  designs with a low degree of  innovation, the developers work in a familiar SD 
environment and thus they can complete their tasks faster or even in parallel. However, for highly 
dynamic SD environments, crashing and overlapping are rather ineffective causing a high amount 
of  rework and chaos in the project [Eisenhardt 1989].  

The effectiveness of  overlapping is also affected by other SD characteristics. First, as 
overlapping causes iterations, it is ineffective for highly complex processes due to the effect of  
change propagation in the process. That is, if  many interrelated activities overlap, the scope of  
the resulting iterations might cause chaos in the project. Hence, modular product and process 
architecture supports overlapping on the process-level by reducing process complexity and thus 
the scope of  propagating iterations. While modules in a modular design are relatively 
independent, they can be designed and developed independently, enabling parallel SD work 
[Baldwin & Clark 2000] and an increased degree of  parallel testing [Loch et al. 2001]. Thus, work 
on the modules can be conducted with overlaps or even fully in parallel without affecting the 
work on the other modules as long as the system-level design rules and requirements are obeyed.  

Second, overlapping on the activity-level (i.e., the work within the modules) can be done if  it 
yields benefits for the project. As already discussed, a tradeoff  between overlapping and the 
resulting rework has to be made during planning (Figure  F.19). The manageable overlap ratio 
depends on many aspects, e.g., SD process uncertainty, the type of  exchanged information 
[Krishnan et al. 1997, Terwiesch et al. 2002], upstream uncertainty resolution [Terwiesch & Loch 
1999], or evolution and downstream iteration sensitivity [Krishnan et al. 1995, 1997].  

The type of  exchanged information between overlapped activities is the first factor 
contributing to the effectiveness of  overlapping. An activity can have various input needs, e.g., 
customer’s needs, component specifications, virtual or physical prototypes, simulation or test 
results, etc. Parts of  this information can be exchanged in a preliminary form (e.g.., as 
assumptions) and another part of  it cannot. The task of  project managers here is twofold. First, 
they have to determine how the outputs of  the activity can be decomposed into information 
packages. Then, they have to find out which packages of  information can be estimated with high 
certainty and thus transferred preliminarily.  

There is always a degree uncertainty a priori about the exact characteristics of  the activity 
outcomes. Foreseen uncertainty can be handled by estimating the expected value of  the PDF of  
the possible outcomes. However, in the presence of  ambiguity (i.e., when the activity outcomes 
cannot be estimated), overlapping is dangerous. Thus, in highly dynamic, ambiguous SD 
environments, overlapping is not recommended [Cordero 1991, Eisenhardt & Brown 1998]. In 
such projects, effective techniques for time compression are fast iteration, short phases, and 
multiple milestones.  

 
Figure  F.20 Evolution of the final outcome of an upstream activity (adapted from [Krishnan et al. 1997]) 
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Another factor that affects overlapping effectiveness, besides the determination of  the 
preliminary information packages to be exchanged, is the amount of  iteration and rework caused 
by certain preliminary information packages. Two aspects contribute to the amount of  iteration 
caused: upstream information evolution and downstream iteration sensitivity [Krishnan et al. 1997]. Evolution 
is defined as the speed at which the interval converges to a final upstream solution. Downstream 
sensitivity is defined as the duration of  a downstream iteration to incorporate upstream changes 
associated with the narrowing of  the interval [Loch & Terwiesch 1998]. 

The information evolution of  the upstream activity depends on the characteristics of  the 
activity referring to the way uncertainty concerning the exact outcomes is resolved during the 
execution of  the activity. Figure  F.20 depicts three types of  information evolution: fast, linear, and 
slow evolution. While for fast evolution fairly certain information is obtained early in the activity, for 
linear and slow evolution uncertainty is resolved rather late. Hence, for fast information evolution 
it is possible to define a high overlapping ratio. On the contrary, the upstream activity outcomes 
for linear or slow information evolution remain uncertain and even ambiguous long after the 
beginning of  the activity.  

Downstream sensitivity means the sensitivity of  the downstream activity to changes in its 
input. Downstream sensitivity is low for computer-based design and evaluation activities in the 
first part of  the SD, because the effort of  making slight changes in computer models is rather 
low. However, later in the SD, during the implementation of  the design in hardware components, 
changes get more expensive. During this part of  the SD, the use of  existing SD experience (e.g., 
existing designs and lessons learned) is helpful to resolve uncertainty and reduce the probability 
of  major changes during overlapping. 

F.5.4.2. Planning Aspects of Concurrent Engineering  
With the above-described aspects of  activity overlapping and concurrent engineering, 

planning aspects for effective concurrent processes are identified in this part. As mentioned 
before, the logic and structure of  the SD process is a key aspect of  overlapping effectiveness. 
While product and process modularity supports information hiding in the system, it increases the 
independence of  SD sub-processes working on different modules. Thus, in modular SD 
processes, concurrency can be implemented on various levels of  the process architecture (e.g., 
system-level, module-level, component level, etc.). That is, due to the lower level of  interaction 
between sub-processes, module-level SD processes can be accomplished independently and thus 
overlapped at regular information exchange among module developer teams. 

If  the SD work is done in various hierarchy levels in the project, the exchange of  information 
among developers has to be also organized in various levels. While communication is a key aspect 
of  concurrent engineering [Clark & Fujimoto 1991, Clark & Wheelwright 1993], the task of  
systems engineering is to facilitate effective information exchange among team members by good 
project organization. That is, the task of  systems engineering is to define a hierarchic 
communication network of  developers, organize them in teams or clusters, and define 
appropriate communication channels. Due to the hierarchic nature of  SD projects, each member 
of  the development team can be assigned to various development groups relevant to their work 
areas on various hierarchy levels.  

Information exchange among developers in the various levels of  the SD project is done using 
different channels of  communication. While the closest colleagues in a design group work 
together every day, separate groups conducting overlapped design work might only meet weekly, 
and developers involved in design review teams might meet irregularly only for the major 
milestones. That is, the basic rule for communication is to define a manageable communication 
scope and frequency for each member of  the hierarchical SD organization to support effective 
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SD work. The organization and interdependence of  hierarchical milestone meetings in an SD 
project is depicted in Figure  F.21. Meetings at the lowest level might be held weekly, and higher-
level meetings only after major experimentation cycles or lifecycle phases of  the project, where 
the achievements of  the work done is compared to the planned performance to decide on the 
success of  the project. 

Meetings among team members conducting overlapped design work can be supported by 
state-of-the-art multimedia applications enabling e.g., effective communication between regionally 
separated SD sites through video conferences, real-time integration of  the results of  overlapped 
modeling teams, evaluation of  the work results, and adaptation of  the team tasks to the actual SD 
status. A successful method for such collaborate meetings and learning exercises is the design center 
approach [Shishko 2000, Wilke et al. 2000, Wilke 2003, Finkel et al. 2002, Finkel & Burazanis, 
2004].  

Design centers are collaborative working environments where the members of  
interdisciplinary design teams (IDPs) responsible for different subsystems of  a certain product 
work together and integrate their subsystem models to evaluate technical and budgetary aspects 
of  the developed product. Such SD environments foster collaborative learning and 
experimentation by enabling real-time problem solving and decision-making among the team 
members of  different disciplines. Design centers are also effective means to control the early 
experimentation with different design alternatives through the application of  virtual prototypes.  

To summarize, concurrent engineering can be highly beneficial for SD projects, however, the 
project manager has to be aware of  the characteristics of  the internal and external SD context, 
and the consequences of  concurrent engineering (i.e., increased probability of  rework). First, the 
effective application of  concurrent engineering requires an increased planning effort and greater 
investments in architectural design. Second, the success of  concurrent engineering mainly depends 
on the product design structure. While for modular designs, a high degree of  activity concurrency 
might still result in low rework, integral design architectures contribute to high activity 
interdependency on the system level and thus prohibit high overlap ratios. Third, for high 
technical uncertainty, activity overlapping and crashing increases programmatic risk in the SD 
project. Fourth, a highly flexible SD process architecture supports the implementation of  
concurrent engineering even in uncertain environments. Fifth, the utilization of  generational 
project experience fosters the selection of  the right concurrent engineering strategy and the 
decision on the optimal overlap ratio. Sixth, the definition of  data packages containing 
incomplete information to be transferred fosters the effectiveness of  overlapping and parallel 
activity execution. Seventh, enhanced communication is a basic requirement of  concurrent 
engineering. 

On the contrary, for highly dynamic SD environments and extremely innovative project goals, 
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Figure  F.21 Organization of milestone meetings for various hierarchy levels in the project 
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fast iteration cycles [Eisenhardt 1989], frontloading of  design evaluation activities [e.g., Fricke et 
al. 2000, Thomke & Fujimoto 2000], experiential SD strategy [Eisenhardt & Tabrizi 1995], and 
frequent milestones [Gersick 1988, 1994, Weick 1993, Ha & Porteus 1995] are recommended 
instead of  overlapping.  

F.5.5. Separation of Technology Development and System 
Development  

Short SD lifecycles ensure early market launch and higher profitability. Furthermore, short 
lifecycles are also effective against high market uncertainty. That is, in the presence of  high 
uncertainty and ambiguity in the market, fast reaction to the emerging market needs and 
technologies reduces the risk of  releasing products with obsolescent functions. On the contrary, 
short SD cycles often inherit high technical risk, because the developed products cannot reach 
the desired technical maturity and reliability within the reduced SD time.  

In case multiple core technologies have to be integrated in complex new products, reduced 
cycle time might drive technical risk and cause increased delays in the project [Meyer & Utterback 
1995]. Furthermore, Mansfield et al. [1972] show in their study in the pharmaceutical industry 
that firms concentrating on product performance and quality instead of  cycle time can also 
prosper even with high schedule overruns in the project. Hence, Clark & Fujimoto [1991] argue 
that simply trying to accelerate cycle time without first achieving simplicity and efficiency can be 
the road to ruin for a firm. Particularly high technical uncertainty requires managerial attention 
and the application of  effective risk reduction strategies (e.g., high degree of  experimentation 
[Meyer & Utterback 1995], frontloading of  design and testing activities [e.g., Urban & Hauser 
1980, Thomke & Fujimoto 2000], etc.). 

An effective method to deal with both high technical and market risk is to separate SD and 
Technology Development (TD) in the SD system and thus transfer a main part of  the uncertainty 
from the SD to the research teams. This reduces the scope of  the SD problem to be solved and 
provides the SD team with mature solutions for the emerging market needs. Another reason for 
separation is that SD and TD have fundamentally different characteristics. On the one hand, the 
goal of  SD is to introduce a product in a previously chosen market segment, at a fixed date of  introduction 
and thus SD is done in a disciplined style and has a tight schedule. On the contrary, TD requires a 
creative environment and sufficient time because it seeks to achieve generic improvements available for the entire 
product program. Thus, TD projects operate under highly ambiguous circumstances and with uncertain cost 
and budget constraints [Clausing 1994, Schulz et al. 2000]. 

Thus, the output of  TD is a generic product (i.e., a technology) applicable in various 
circumstances, not a solution to a specific problem or need of  the market as with SD projects. 
The outputs of  TD are flexible and robust technologies, which can be used in various products 
of  the company portfolio [Clausing 1994]. In this sense, SD is a set of  problem solving efforts 
that translate information on technological possibilities and market needs into a set of  detailed 
designs, instructions, and other information assets required for production [Iansiti 1995b]. 
Hence, technologies are enablers of  the cost efficient realization of  customer’s needs in product 
functionalities for which the customer is willing to pay money. 

The effective integration of  TD and SD projects is a key to success [Wheelwright & Clark 
1992, Iansiti 1995b, 1995c, Iansiti & West 1997]. It is even more important in adaptive SD 
projects, where the SD system frequently produces prototypes and product increments, which are 
then validated directly with the customer. The continuously evolving incremental products 
demand close interaction between SD and TD groups as well as a careful selection of  new 
technologies that will add value to new products. Additionally, the developed technologies have to 
be transferred to the SD in a timely manner and be able to be smoothly integrated in existing 
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technologies [Iansiti 1995b]. Hence, TD objectives have to be defined as part of  the corporate 
strategy and synchronized with the strategic objectives of  the product portfolio. 

Different authors proposed various frameworks for TD during the last years [e.g., Clark & 
Fujimoto 1991, Wheelwright & Clark 1992, Clausing 1994, Metz 1996, Stanke & Ulbricht 1997, 
Zehnder 1997]. One TD approach, the Total Technology Development (TTD) framework 
proposed by Schulz et al. [2000], based on earlier work by Clausing [1994], was developed 
according to the fundamental principles of  systems engineering. The TTD framework is a 
separate process for technology development with clearly defined interfaces to SD, and 
embedded into an integrated framework of  methods and tools, tailored to the needs of  TD 
providing great benefits in terms of  technology superiority, maturity, robustness, and flexibility 
[Schulz et al. 2000]. TTD is a holistic approach attempting to consider every important aspect of  
TD and to integrate them in a TD framework that provides the SD with superior, flexible 
technologies at the right time. 

The four main steps of  TTD are depicted in Figure  F.22. In the core of  the TTD framework 
is an integrated technology strategy that incorporates market-based and technology-based requirements 
for next generation technologies. Since TD delivers only the technologies that will enable future 
customer satisfaction in the long term, technology strategy planning has to deal with high 
uncertainty and ambiguity. Thus, the requirements and guidelines included in the integrated 
technology strategy delivered by the first step of  the TTD framework have to be flexible to 
accommodate future changes [Lowe 1995].  

The TD strategy represents the company’s vision concerning the functionalities of  the 
products of  the future. Furthermore, the TD strategy determines which technology areas will be 
supported by the SD system in the next period, and how the system architecture of  the future 
will look like. Flexible product platforms serving several generations of  incremental product 
versions are good reference points for a TD strategy. Platforms and reference architectures 
define rules for modules and interfaces that promote the steady evolution of  the product towards 
desired strategic goals. Thus, the reference modules of  a system support the decomposition of  
TD tasks into module-relevant sub-tasks and similarly to SD projects; technologies can be also 
developed independently for the modules of  the system. This is particularly important for 
adaptive SD systems, where high SD and TD complexity often hinders the capability of  a system 
for quick response.  

The technology strategy of  a company includes a set of  strategic directions for the SD 
system concerning the portfolio of  technologies to be developed in the future. These are the 
main inputs for the next step in TTD, where technology concepts are generated, analyzed, and 
selected to ensure competitiveness and high company profit in the future. While TD is an 
especially creative and innovative process, the output of  concept generation includes the 
concepts of  technologies that might bring market leadership to the company. However, the 
technical feasibility of  the concepts is also essential for future success. Thus, during concept 
selection superior technology concepts with a high feasibility are selected, which fit in the 
strategic direction of  the company, can be integrated with current technologies, and can be 
developed at acceptable cost and within the desired timeframe. 

In the next step of  TTD, the main goal is to develop the technology and achieve the maturity 

Integrated 
Technology 

Strategy

Integrated 
Technology 

Strategy

Concept 
Generation, 
Analysis & 

Enhancement

Concept 
Generation, 
Analysis & 

Enhancement

Robustness 
Development

& Analysis

Robustness 
Development

& Analysis

Technology 
Selection, 

Transfer, &
Integration

Technology 
Selection, 

Transfer, &
Integration

Integrated 
Technology 

Strategy

Integrated 
Technology 

Strategy

Concept 
Generation, 
Analysis & 

Enhancement

Concept 
Generation, 
Analysis & 

Enhancement

Robustness 
Development

& Analysis

Robustness 
Development

& Analysis

Technology 
Selection, 

Transfer, &
Integration

Technology 
Selection, 

Transfer, &
Integration

 
Figure  F.22 Total Technology Development framework (adapted from [Schulz et al. 2000]) 
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required by SD and the robustness that fosters its implementation for various products in 
different circumstances. The third step of  TTD is the last one done separately from the SD 
program. The exit criteria for a technology from this step are high maturity and robustness that 
allows its direct application at various SD projects. Due to the reduced technology lifecycles and 
the relatively open industrial system, the development of  technologies with a low rate of  
evolution or low robustness is not viable in the long term. Emerging technologies in these areas 
are more cost-effective to buy from outside the company, which leaves more space for TD in the 
“core competence” technology areas.  

In the last step of  TTD, developers and researchers (i.e., TD and SD teams) work together to 
select the most suitable technologies for the SD needs, and to transfer them to the SD to integrate 
them with existing technologies. Iansiti [1995b] argues that technology integration relying on a 
system-focused approach has the highest impact in product and SD performance. In a system-
focused approach generational system-level knowledge of  experts is applied to decide which 
technologies bring the highest benefits for the developed product. 

The main challenge for technology selection and integration is to decide which of  the 
technologies that properly work under laboratory conditions will also work as part of  a product. 
Furthermore, the question is how novel and existing technologies can be integrated to achieve a 
synergy that increases the value of  the product. As Figure  F.23 depicts, the decision on 
technology transfer can be integrated in design reviews and milestone meetings, where the actual 

 
Figure  F.23 Separated technology and system development processes 
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state of  the SD project is analyzed, and decisions on more effective risk reduction and 
opportunity capturing actions are made. In case TD has mature technologies that could be used 
to capture a discovered design opportunity or reduce a type of  technical risk more effectively, the 
effects of  the new technology on the design has to be evaluated and the possibility of  technology 
transfer has to be investigated promptly.  

While effective technology transfer and integration is vital for the response ability of  the 
adaptive SD system, continuous communication, and feedback on the results of  TD from the 
“customers” on the SD side have to be organized. Furthermore, the joint strategic goals of  TD 
and SD have to be understood and implemented systematically to achieve long-term system 
success. 

F.6. CHAPTER SUMMARY 

This chapter introduced the term uncertainty describing the known and unknown unknowns 
of  SD. Uncertainty is a main driver of  risk in conventional SD projects. However, as the chapter 
showed, besides the downside part of  uncertainty that means the probability of  inadequate 
product characteristics in the end product, there is also an upside part referring to system 
performance exceeding the customer’s preferences. While the ability to exceed market needs leads 
to superior products, a main challenge of  adaptive SD systems is to reconfigure their architecture 
to accommodate uncertainty and profit from the ability to sense changes and respond to them 
adequately.  

This chapter proposed that learning is the main driver of  technical uncertainty reduction. 
Learning is the application of  generational project knowledge and creativity to solve new 
problems in an SD project. Thus, learning is the main driver of  innovation. Learning is most 
effective if  the SD process is conducted iteratively. The various iterative problem-solving loops 
discussed in this chapter transform conventional waterfall SD practices into short processes of  
cyclic problem solving. The experimentation cycle, one of  the distinguished approaches, is an SD 
process framework where trial and error experimentation is the driver of  the SD work.  

Other techniques to reduce risk in the SD were also discussed in this chapter. Frontloading, 
concurrent engineering, and the separation of  TD and SD are all effective ways of  risk reduction; 
however, thorough, deliberate planning and effective project control is required to profit from 
these methods; otherwise they can be major project risk drivers.  
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G. MANAGING THE ADAPTIVE SYSTEM DEVELOPMENT 

SYSTEM 

G.1. CHAPTER ABSTRACT 

This chapter builds on the previous, theoretic chapters of  the thesis 
and proposes a framework for adaptive SD systems. This adaptive SD 
framework is a double loop of  learning and control that provides the SD process 
with a flexible structure, but ensures rigorous control at the same time. 
The core of  adaptive SD is controlled experimentation and learning 
supported by iterative SD work, continuous verification and validation, 
frequent milestones and prototypes, and risk and opportunity-driven 
decision-making. The adaptive SD framework creates a workstate-driven 
SD environment, where the actual characteristics of  the internal and external SD contexts define 
the system objectives and drive the evolution of  the SD system architecture. 

G.2. PROJECT MANAGEMENT IN ADAPTIVE SD SYSTEMS 

A project is a temporary endeavor undertaken to create a unique product or service. Project 
management is the application of  knowledge, skills, tools, and techniques to project activities in 
order to meet or exceed stakeholder needs and expectations from a project [PMI 1996]. SD 
organizations organize work in projects to develop and manufacture market products and thus 
generate value to the society.  

The success of  SD projects under dynamic circumstances lies in the capability of  sensing and 
interpreting changes in the system context, and responding to them quickly in the form of  
efficient system adaptations. The task of  project managers is twofold in this context: (1) they 
have to implement adaptability in the SD system through enhanced planning, and (2) they have to 
control the project and foster effective decision-making on system adaptation at the right time and 
place in the SD process. Hence, the management of  projects in adaptive SD systems requires an 
increased planning effort and high management attention during the projects.  

While changes in conventional SD projects with inflexible structures are undesired; the leverage 
of  adaptive SD systems lies in their capability to reorganize and profit from changes. Hence, adaptive SD 
systems are masters of  changes as they are organized to sense and respond to the shifting SD 
context. That is, the investments to implement the capability of  adaptiveness in the SD system 
are committed because architectural adaptability and quick reaction to shifting technology and 
market characteristics assure superior products and market leadership in the actual market 
environment. Furthermore, the structure of  adaptive SD systems fosters enhanced innovation 
and learning through iterative SD work. Thus, changes are not just possible, but are a natural part 
of  adaptive SD projects, and they enable the effective capturing of  design opportunities resulting 
in better products, which even exceed the customer’s preferences. That is, changes drive the generation 
of  value and maximization of  stakeholder satisfaction in adaptive SD projects. 

The difficulty of  adaptive SD management is that the project manager has to proactively plan 
for uncertainty and ambiguity in order to design an SD system architecture that has the strengths 
of  traditional SD and the additional capability of  easy restructuring to respond to environmental 
changes. This demands a good understanding of  the strategic vision of  the company; and the 
broad perception of  both the managerial and technical aspects of  the ZOPH+T subsystems and 
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their interactions. Without this comprehensive basic knowledge about the characteristics of  the 
SD system, flexibility, and adaptiveness cannot be implemented.  

Haeckel [1999] argues that the operation of  adaptive organizations is driven by an emergent 
strategy rather than a precise plan of  the future. Though the emergent strategy involves a minimal 
number of  design and decision rules, it is basically determined by the emergent behavior of  the 
system. Strategy in this sense is a design for an adaptive structure that describes the basic guidelines 
for the adaptive SD work. 

A further management challenge is to enable the sensing of  internal and external changes 
(i.e., deviations from the assumptions in the plans) and the correct interpretation of  the effects of  
changes on the SD system [Dove 2001]. This requires continuous measurement and control in the 
project and clearly defined, frequent decision points, where the project team evaluates the actual project 
state using the measured data, and makes informed decisions on the required further actions 
towards maximal stakeholder satisfaction.  

On the one hand, a major goal of  managing adaptive SD projects is to create a flexible project 
architecture, where the direction of  innovation defines the information flow in the process, and 
creative work is not constrained by strict plans and constraints. On the other hand, adaptive SD 
requires enhanced project control, because it aims to maximize value by continuously evaluating (i.e., 
verifying and validating) the SD results and thus constantly collecting feedback from its 
environment on the fitness of  its behavior. This is an obvious contradiction between free 
innovation and project flexibility on the one hand and rigorous control on the other. The successful 
management of  these conflicting project requirements demands a novel way of  management thinking about SD 
projects, where the role of  project control is not to constrain SD work, but to support the continuous adaptation of  
the flexible project plan to maximize overall project value.  

The adaptive SD framework in Figure  G.1 provides an effective means to handle this 
management problem. The double adaptive loop of  learning and control is based on existing 
adaptive lifecycle models (e.g., collaborate-speculate-learn lifecycle by Highsmith [2000], sense-interpret-
decide-act loop by Haeckel [1999], idealized learning process by Sterman [2000]), and improves them by 
providing a systems engineering construct for effective planning and control, and thus the 
successful implementation of  adaptive SD systems. Additionally, the adaptive SD framework in 
this thesis makes a clear distinction between how sensing and responding occurs at the technical 
and management levels of  the SD project.  

The adaptive SD framework is a process-centric SD model developed to support deliberate 
decisions on fast system adaptations as a response to environmental changes. To reach this goal, 
the adaptive SD framework fosters the design of  high flexibility into the SD process on the one 
hand, allowing the continuous, parallel evolution of  the product design and the SD process 
architecture with regard to the shifting characteristics of  the SD context. On the other hand, the 
adaptive SD framework is designed to facilitate the continuous collection of  internal and external 

 
Figure  G.1 Adaptive SD framework 
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feedback on the project performance, and to make informed decisions on the adaptation of  the 
flexible process architecture possible. 

The adaptive SD framework decomposes the SD work into effective process modules with 
defined working scope followed by review meetings. Hence, in adaptive SD, the goal is not to 
simply frontload testing in the SD process, but to conduct systematic V&V continuously in a network of  
experimentation cycles with growing scope and fidelity. A further goal is to complete each step of  SD with a 
verified deliverable and each major SD step with a validated prototype. This ensures continuous internal and 
external feedback on both the quality and value of  SD and thus effective project control. 

The role of  V&V as an integral part of  the experimentation cycles is not only to prove 
performance, feasibility, and reliability; but also to support learning and innovation by providing 
prompt information on the results of  the design activities. Rapid experimentations benefit from 
quick feedback on the output of  the design activities without long delays that reduce the 
effectiveness of  learning.  

The process view of  the adaptive SD framework in Figure  G.2 depicts the double adaptive 
loop of  learning and control using conventional process modeling elements (i.e., activities, 
deliverables, and milestones). During the learning stage of  adaptive SD, iterative experimentation 
cycles are conducted according to the four-step design-build-run-analyze model proposed by 
Thomke [2003]. In case the product design has a modular architecture, the experimentation 
cycles on the design modules can be executed relatively independently from each other providing 
the developers with high freedom in their module-level work. 

The deliverables of  experimentation cycles are verified models or prototypes of  the design 
representing a set of  design aspects and functions desired by the customer. The performance and 
maturity of  the process deliverables are monitored and evaluated in the second loop (i.e., in the 
control loop) conducted at the decision points in the SD process. The goals of  the control loop 
are to determine the overall quality and value of  the designed system, decide on adaptations, and 
implement them in the system.  

Hence, the notion of  the adaptive SD framework is to break down the project into a clear 
network of  decision points that are fed by verified information from the iterative learning loops 
of  design-build-run-analyze sub-processes. The decision points include quantitative decision 
criteria representing the evolving maturity of  the developed system that support continuous 
project control and deliberate decisions on the required design changes and system adaptations.  

The evolving process states assigned to decision points in the SD process provide the project 
with a basic structure. This flexible deliverable-driven process structure increases the flexibility of  
the SD project, because the decision points and their contents (deliverables and decision criteria) 
are defined at the outset of  the project and adapted constantly according to the actual process 
performance. That is, the exact specifications of  a certain experimentation cycle are kept open until 
the input information with the required maturity for the design of  the experiment is available 

 
Figure  G.2 Adaptive SD framework (process view) 
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from SD process. This moment can be as late as the start of  the experimentation.  

G.2.1. Adaptive Experimentation Cycles 
The adaptive SD framework differs from conventional SD management philosophies, 

because it supports workstate-driven [Highsmith 2000] and experimentation-driven [Thomke 
2003] project management instead of  traditional workflow-driven or plan-driven management. 
That is, as Figure  G.3 depicts, the iterative learning cycles (i.e., the experimentation cycles) 
represent a precise, result-oriented main SD task whose deliverables are evaluated to decide on 
the success of  the sub-process and thus on the required further SD steps towards maximal 
stakeholder satisfaction.  

The experimentation cycles between two decision points (milestones or decision reviews) are 
scalable process elements with clear deliverables that can be tailored and applied at any level of  
the SD process based on the required outputs. As the deliverables vary from a computer model 
for thermodynamic simulation to a full-scale physical prototype for integration test, 
experimentation cycles are perfect basic building blocks of  evolutionary and incremental SD 
projects. That is, an experimentation cycle is a flexible process pattern, where certain 
representations of  the system are designed, built, tested, and analyzed to prove definite design 
aspects and requirements. Thus, experimentation cycles generate and offer verified solutions for 
certain portions of  the SD problem. The solutions are then validated with the relevant 
stakeholders; and the effects of  the process results on the overall system value are evaluated to 
determine the actual project status.  

The model of  the experimentation cycle originally proposed by Thomke [2003] was extended 
in this thesis to include the decision on system adaptation before and after the cycles. This 
extended model is shown in Figure  G.3, where solid lines represent the original cycle, and the 
dashed lines depict the new process element “step zero: control”. The goal of  the control step is to 
monitor process performance by collecting actual information from inside and outside the project, 
evaluate this information, and determine the actual risk and opportunity status regarding the main 
requirements and constraints of  the SD. This information provides an excellent basis for decision-
making, because the actual risks and opportunities represent the probable profit losses and gains 
the management can anticipate without changing anything in the project plans. To reduce risks 
and capture opportunities the management can decide to adapt the process to better deal with the 
actual SD needs. 

 
Figure  G.3 Adaptive experimentation cycle (modified from [Thomke 2003]) 
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Adaptations aiming to change system behavior and thus improve the fitness of  the outputs 
of  the SD system can be twofold. On the one hand, adaptations can concern the actual 
experimentation cycle to reduce risk by correcting the failures found during V&V or improve the 
design to capture design opportunities discovered in the cycle, and achieve the exit criteria of  the 
sub-process. On the other hand, once the exit criteria of  the cycle have been achieved and no 
improvement options are open, the downstream part of  the process is adapted according to the 
results of  the actual sub-process. This means moving to the next experimentation cycle with a 
different scope; reconfiguring it based on the actual process state and customer feedback 
collected during the team review; and conducting the next experiment.  

In this sense, experimentation cycles in an SD process can be considered as a network of  
process steps consisting of  atomic process elements (design and V&V activities) designed to 
fulfill certain process objectives. Further, the objectives of  the consecutive experimentation cycles 
include a growing number of  design aspects with increasing target values representing the 
planned technical performance profile of  the SD process. During project planning and control, SD 
activities are assigned to these main SD process steps with attributes and functions contributing 
to the required evolution of  product performance (i.e., design and performance parameters) in 
the SD process. Since there are many ways to produce a definite SD deliverable, there is also 
more than one SD activity that can be conducted to fulfill the objectives of  a certain 
experimentation cycle. Hence, the task of  planning in adaptive SD projects is to find the possible 
SD activity options relevant to the project objectives and document these in the SD plans. These 
selected SD activities provide then the process options evaluated at the decisions on process 
adaptation. 

The next section introduces the procedure of  project decomposition that provides the 
required information for project adaptation. 

G.3. PARAMETER-BASED PROJECT DECOMPOSITION 

Parameter-based SD supports the planning and adaptation of  the SD process composed of  a 
network of  experimentation cycles. That is, during planning and adaptation, the definition of  
actual process needs and the selection of  suitable activities to fulfill these needs are done with a 
technical performance parameter system representing both the status and target values of  the 
most important project and product requirements. This section presents how parameter-based 
project decomposition works, and how it supports project planning and the decisions on process 
adaptation.   

Figure  G.4 shows an improved version of  the project decomposition procedure by Cho [2001] 
applicable to the planning of  adaptive SD projects. During this procedure, the basic process 
elements of  the adaptive SD project are defined successively. First, the main milestones of  the 
project are set, and the deliverables for each milestone are identified. Second, the various product 
representations and development products contributing to the development of  the major phase 
deliverables are specified. These products include the end and enabling products of  the SD as 
depicted in Figure  G.5.  

The goal of  the third step of  project decomposition is to model the product (i.e., the system of  
enabling and end products) as a parameter system representing every key product characteristic as 
a measure. This parameter-based product representation can then be used to specify the required 
maturity of  the deliverables for the milestones and reviews, and derive quantitative milestone 
criteria (i.e., target values) for each decision point. Conventional hierarchical measures that 
systems engineering measurement defines at the outset of  the project based on the main project 
goals (e.g., Key Performance Parameters (KPPs), Measures of  Performance (MOP), Technical 
Performance Measures (TPMs)) are applicable as decision criteria [DoD & US Army 2000].  
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The fourth step concludes the first stage of  project decomposition, where the detailed project 
control structure is defined including all technical reviews in a certain phase. The system product 
structure and the technical performance parameter system provide the main input for the 
definition of  the contents of  the decision points. 

The output of  the first stage of  project decomposition is a system of  decision points that 
breaks down the main SD objectives into a network of  deliverables with quantified performance 
requirements. The sum of  these performance requirements represents the required maturity of  
the design at each decision point of  the SD process. Furthermore, the relations among the 
decision points and deliverables show the change propagation paths; and thus define the scope of  

 
Figure  G.4 Parameter-based project decomposition during adaptive SD project planning 
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process adaptation at each decision point. That is, the network of  decision points and 
deliverables indicate which contents of  which decision points are affected by the process 
adaptation at a certain decision point. 

In the second stage of  project decomposition, once the structure of  the decision points has 
been set in the project, the required activities to reach the milestone criteria are defined. This 
starts with step five, the creation of  a list of  information pieces needed to produce each milestone 
deliverable. In parameter-based project planning, the contents of  these information pieces are 
modeled using relevant measures from the hierarchical measurement system (also used as 
milestone criteria). Fifth, causal diagrams are drawn between the information pieces to determine 
the underlying information structure of  the process. The information flow defined in this step 
shows how the parameter values representing the actual performance of  the design evolve 
between two SD process deliverables.  

Based on the information flow in the process, the activities that provide the various pieces of  
information are identified and organized in a hierarchical Work Breakdown Structure (WBS), in 
step six. Effective methods to obtain and document the effects of  SD activities on product 
properties, and thus customer desires are e.g., Quality Function Deployment (QFD) [e.g., Hauser & 
Clausing 1988], Value Analysis [Fowler 1990], or the Earned Quality Method [Paquin et al. 2000].  

The Houses of  Quality (HoQ) in QFD depict the relationships between customer 
requirements, product part characteristics (or engineering characteristics), processes and process 
control methods. This way, it is possible to analyze how changes in one part of  the HoQ (e.g., 
engineering characteristics) affect the other parts (e.g., customer requirements).  

A special application of  QFD proposed in [Chao & Ishii 2003] is shown in Figure  G.6, where 
the relationship between customer requirements, engineering metrics, and SD tasks defines the 
HoQ. This method, derived from traditional QFD, is applied to classify SD tasks based on two 
factors: (1) the type of  measures they affect with their deliverables, and (2) the severity of  the 
impact on the measures. 
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Figure  G.6 QFD to determine task – metrics relations (adapted from [Chao & Ishii 2003]) 
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According to the outputs of  QFD, the required information to fulfill certain process 
objectives can be associated with SD activities. To foster effective decision-making on adaptation, 
project planning in adaptive SD systems collects all possible SD activity options and activity modes 
that provide the pieces of  information required to produce a deliverable and organize these in an 
extended WBS. In such a WBS, the branches include all identified activity options that can be 
conducted to generate a certain kind of  information (Figure  G.4).  

Finally, in step seven, the activities in the WBS are organized into experimentation cycles based 
on their input needs and output products to define a first integrated project structure. These 
activities provide the required deliverables at the decision points in the project. While the 
deliverables and required target values clearly define the objectives, scopes and required fidelities 
of  the experimentation cycles, the best activity options from each branch of  the WBS can be 
assigned to the relevant sub-processes.  

The information generated during project decomposition is a key input to process modeling 
during adaptive SD project planning and project control. The next section discusses the 
procedure and theory of  adaptive project control. Then, a parameter-based, workflow-driven, 
stochastic process modeling method, the VVT Process Modeling method is presented in Chapter I 
and validated in Chapter  J to discuss the actual state-of-the-art in process modeling techniques. 
This thesis improves the state-of-the-art in process modeling by proposing a model for adaptive 
SD project planning in Chapter  K. This process modeling technique, the Adaptive System 
Development Process method, implements the double loop of  learning and control in a simulation 
algorithm applicable to the planning of  highly flexible, adaptive SD projects.  

G.4. PROCEDURE OF ADAPTIVE PROJECT CONTROL 

In this section, the three stages of  the procedure for adaptive project control are described. 
This procedure integrates project monitoring, risk management, and project control to process 
internal and external project information describing the actual state of  the SD to support 
deliberate decisions on project adaptation. The three stages of  the procedure are presented in this 
section in detail; and then validated in an industrial environment in the next chapter. 

G.4.1. Adaptive Project Control 
Meredith & Mantel [2003] suggest that the two fundamental objectives of  project control are: 

(1) the regulation of  results through the alteration of  alternatives; and (2) the stewardship of  
organizational assets. Hence, project control requires continuously updated information from the 
project and decision alternatives in case changes are needed.  

 
Figure  G.7 Third-order feedback system of cybernetic control (adapted from [Meredith & Mantel 2003]) 
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The third-order feedback loop of  cybernetic control by Meredith & Mantel [2003] in Figure 
 G.7 is a basic model of  adaptive system control. The model depicts an intelligent control system 
capable of  individual learning and dealing with unforeseen situations or system states. While 
conventional project control systems work according to preprogrammed response patterns (e.g., 
documented in company work policies), intelligent control systems can change both the goals 
and system architecture if  changes in the project needs are sensed. Thus, in adaptive control 
systems, the role of  the gathered actual project information from both the internal and external project 
environments is inevitable for effective system operation. Furthermore, the effective control of  
adaptive SD projects demands a highly flexible system architecture that can be modified and 
reconnected to respond to the shifts in the system environment. 

Thus, two important systems engineering disciplines have key functions in the procedure of  
adaptive project control in Figure  G.8. Systems engineering measurement collects hierarchical, internal 
SD process data, which is then transformed into input information adequate for risk calculation. 
This information is then passed on to risk management that plays the role of  the “Comparator” in 
the procedure of  adaptive project control. In the second stage, the actual risk and opportunity 
status of  the project is determined according to actual Standards (see Figure  G.7), i.e., the project 
objectives derived from the actual stakeholder needs. The output of  risk management is detailed 
information on the actual project status translated into managerial language, i.e., possible profit 
losses (i.e., risk) and gains (i.e., opportunity) by considering the consequences of  the discrepancies 
between the actual and planned SD progress. This is the main input information for the decision 
on project adaptation in the third stage. The output product of  the adaptive project control 
procedure contains the adapted project plans. 

As Figure  G.8 shows, the procedure of  adaptive project control is a risk- and opportunity-
driven decision-making procedure. Thus, the outputs of  the risk management stage are used for 
various purposes in the procedure. First, this information is applied to determine the actual 
project status, and provide the management with detailed information on the programmatic and 
technical project performance and their effects on the profitability of  the project. Second, the risk 
and opportunity values are used to define the optimal team constellation for the review meeting. 
As the risks and opportunities point to the weak and strong points of  the project, experts from 
relevant technical and managerial areas can be invited to the meetings to make deliberate 
decisions on the best next actions. Third, the risk and opportunity information is key input for the 
adaptations of  the project plans, because it represents the design aspects demanding particular 
management attention and extra SD effort. 

 
Figure  G.8 Procedure of adaptive project control  
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The procedure of  adaptive project control enhances conventional project control 
mechanisms by establishing tight relationship with systems engineering measurement and thus 
considering both technical and managerial criteria for the decisions. Furthermore, it introduces 
risk management functions in the project control procedure that provides the project control 
team with detailed information on the actual project status. Here, the basic input information for 
the decisions during project control is not the mere variance of  the actual and planned project 
performance aspects, but the variances and the consequences thereof. That is, the data provided 
by risk management provides insight into the impacts of  both technical and programmatic 
performance deficiencies on the final project success and profitability. Hence, this valuable 
information highlights areas of  improvement needs “rank ordered” according to their effects on 
stakeholder value. The next sections describe the procedure of  adaptive project control.  

G.4.2. Project Monitoring and Systems Engineering Measurement 
The first step of  adaptive project control that provides important input information for the 

decisions is systems engineering measurement. The main instrument for defining the 
expectations (i.e., milestone criteria in Figure  G.4) for a process or sub-process (e.g., an 
experimentation cycle) in a clear and transparent way is the application of  systems engineering 
measures. These measures represent the most important product requirements that are combined 
with the programmatic constraints of  the project to facilitate the identification of  critical 
technical areas; the determination of  the expected value added through the implementation of  a 
change option; and the monitoring of  available resources for the implementation. 

During systems engineering measurement, a metrics system is established that associates 
measurement data (e.g., maturity of  SD activity outputs) with the critical requirements and 
constraints of  the project. The goal of  this activity is to define measures that provide the greatest 
insight into critical product and process aspects at the lowest cost. Figure  G.9 shows how the 
system lifecycle value can be associated with system objectives and then linked to systems 
engineering measures and measurement data. 

The selection and specification of  measures that address the critical aspects of  a certain 
project is a complex task. Different measures have different application scopes, and address 
different product and process aspects. To make complexity manageable at each level of  the 
project, few global measures are defined on the system level (KPPs), which represent the major 
project objectives and can be tracked in all the system phases. These measures are then broken 
down into lower level technical measures (MOPs) that stand for the key design and performance 
aspects of  the modules and components comprising the system. Based on the degree of  system 
complexity, these key technical measures are further detailed to obtain lower-lever technical 
measures (TPMs) that can be directly measured or associated with process data.  

The basic structure of  the performance measures system applied during the decision on 
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Figure  G.9 System of key parameters as decision criteria 
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system adaptations is shown in Figure  G.9. The tree structure of  the system represents the 
hierarchic relations between the various kinds of  measures. The different measures at each level 
serve as success criteria for the experimentation cycles. In the following, the four identified 
hierarchy levels of  decision measures are described: 

• Level four: Raw process data or raw data after processing. This data is usually the direct output 
of  V&V activities. 

• Level three: Basic metrics and technical performance measures (TPMs). In some cases, these 
measures are “indivisible”, i.e., they cannot be broken down into lower level measures. These 
measures can be directly derived from the raw test data. In some cases, even the post-
processing V&V data is used as TPMs. In other cases, these TPMs can be low-level, 
aggregated measures that indicate the key characteristics of  a component or a subsystem. 
Thus, the statistical evaluation method applied for the V&V data processing has a key effect 
on the quality and usability of  the measures. 

• Level two: These aggregated measures derived from the lower hierarchy level measures 
represent the key technical characteristics or properties of  the overall system. During 
aggregation, high-level technical measures are generated from the lower level measures based 
on hard, statistical, or empirical rules. These key indicators of  product technical performance 
(also called Measures of  Performance (MOP)) are the main drivers of  system-level technical 
decisions. 

• Level one: These measures represent the critical project requirements and the highest-level 
project goals and constraints. These operational and managerial measures of  success (also 
called Key Performance Parameters (KPPs)) are closely connected to the system objectives 
and thus to the overall customer satisfaction and project value. Based on the states of  these 
measures, the management can decide on the further progress of  the project (e.g., “go – no 
go” decisions). 

The tree structure of  the decision support measures (Figure  G.9) defines the hierarchic (or 
vertical) relationship between the systems engineering measures. That is, one can depict the 
hierarchic structure of  the product requirements in a system of  measurable product parameters. 
However, one main drawback is that the measures tree does not contain horizontal relations 
between measures. While vertical relations between measures are important for the interpretation 
of  the SD activity data for requirements tracing, horizontal links foster the analysis of  the 
propagation of  the effects of  failure and performance variance through the system structure. 
That is, the consequences of  inadequate product performance in one area can be determined in 
other, related areas. 

In case of  a high number of  interlinked decision measures, it is reasonable to capture also the 
horizontal links between the measures to determine closely related groups or clusters. Figure  G.10 
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Figure  G.10 Representation of the interdependencies of measures in a DSM 
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shows a matrix representation of  level three of  the decision measure structure using a parameter-
based DSM. The matrix in Figure  G.10 showing the related blocks (or clusters) of  measures can 
be obtained through matrix manipulation using a DSM clustering algorithm. The goal of  
clustering is to find subsets of  DSM elements (i.e., clusters or modules) that are mutually 
exclusive or minimally interacting. 

The measures included in the identified clusters are closely related to each other and have 
minimal links to the measures in other modules. Thus, it usually makes sense to assign a higher-
level measure to a cluster of  TPMs that describes the actual performance of  the cluster. This 
characteristic of  the clusters can also be exploited during the evaluation of  process performance, 
because the severity and scope of  the discovered performance discrepancies can be determined by identifying the other 
affected performance requirements. Furthermore, the activities applied during failure correction actions 
(see Figure  G.18) can be selected on the basis of  their estimated effects on the design 
performance.  

The next section describes how project risk and opportunity is calculated using the 
measurement data. 

G.4.3. Determination of the Actual Risk- and Opportunity Status 
An essential task of  adaptive project control is the determination of  the actual project status, 

because the discrepancies between the actual and planned values of  the key performance 
indicators and the consequences thereof  generate the needs for system adaptation. If  the actual 
process and design performance cannot be determined precisely, critical areas requiring 
improvement efforts might be neglected reducing the value of  the change actions during the 
decisions on system adaptation.  

In order to increase the transparency and applicability of  system engineering measurement 
data, the effects of  the variances of  every lower-level measure are calculated on the overall 
system value. The question here is: what is the system-level effect of  lower product or process 
performance on the module or component level? Thus, a method is required that is capable of  
translating the discrepancies of  lower-lever technical measures into impacts on the system-level 
managerial measures.  

The hierarchical systems engineering measurement system in Figure  G.9 includes measures 
that break down the managerial and system-level technical requirements into lower-lever technical 
goals. The measures together in each level represent the overall performance of  the product in 
growing detail. Stakeholder value depends on how well the product meets the preferences for 
these measures. Hence, knowing the interrelations among measures and the stakeholders’ 
preferences for the measures, the shifting overall system value can be calculated from the positive 
or negative discrepancies between the actual and target values of  measures at any level of  the 
structure.  

In the presence of  uncertainty, the overall system performance depends on the possible 
outcomes of  the technical and managerial parameters represented by the high-level KPPs of  the 
system. Since the stakeholders’ expectations are different for each parameter, it is important for 
the decision-makers to know the effects of  the performance discrepancies of  each KPP on the 
overall stakeholder value. The goal of  decision-making at each level of  the SD project is to 
maximize the stakeholder value provided by the product by maximizing the value of  system 
performance characteristics and minimizing SD cost and duration.  

Utility functions describe how stakeholder value changes as a function of  the possible 
parameter outcomes. To support decisions during design for uncertainty, stakeholder utility is 
transformed into impact (i.e., possible profit loss through inadequate performance) and benefit 
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(i.e., possible profit gain through exceeded stakeholder preferences). Figure  G.11 depicts three 
basic types of  impact functions derived from the Kano taxonomy for customer utility [Clausing 
1994]. 

The first KPP type in Figure  G.11 represents a must-have need. Such needs are usually met by 
current technology, and every new product must satisfy these needs [Dahan & Hauser 2000]. 
Furthermore, some government and industry regulations refer to this type, and have to be 
fulfilled by the product (e.g., package sterility in food packaging discussed later in the case study). 
In case the required KPP value is not met in the product, it results in high profit loss, however 
exceeding this need does not bring any extra profit for the company.  

The second KPP stands for a more-the-better need. If  such a need arises in an industry segment, 
companies strive to focus technology development efforts to be able to increase this very 
characteristic of  product performance. Typical KPPs of  this kind are, e.g., the speed of  computer 
processors, resolution of  cameras and color density of  displays in mobiles phones, mass of  
aerospace systems, fuel consumption of  cars, etc. The limitation for maximizing such KPPs is 
usually the project budget and the resulting product unit cost. 

The third main stakeholder need represented by KPP3 is a delighter. This special class of  needs 
refers to needs which customers have difficulty articulating or rarely expect to have fulfilled 
[Dahan & Hauser 2000]. Many innovative product features that come from technology 
development are delighters aiming to provide the product with a special flair and differentiate the 
specific product from others. It is important to realize that the result of  technology push strategies is 
that delighter needs become must have needs in the market if  they are to be successful. Adaptive 
SD is capable of  exploring delighter needs and capturing opportunities through incremental 
product releases. Various safety features in automobiles (e.g., airbag, ABS, ESP), the graphical user 
interface in computer software, or Internet access in hotels, airports, airplanes, etc., started as 
delighters and became standard product features in the long term [Dahan & Hauser 2000].  

The application of  the impact-benefit functions in Figure  G.11 has multiple advantages for 
decision makers. First, it is a good basis for the evaluation of  decision alternatives by providing 
the value of  the whole range of  possible parameter outcomes. While conventional impact 
functions depict only the effects of  negative outcomes, the representation of  the benefits of  
better products opens new dimensions during decision-making towards the identification and 
capturing of  design opportunities.  

Second, the functions in Figure  G.11, which are continuously updated by Marketing, depict the 
critical areas (e.g., must have needs) that require particular attention from the developers and 
innovative design aspects that drive the stakeholder value of  the system. Third, the impact-benefit 
functions are an effective means to translate between the technical staff  and the management 
showing the expected profit variances as a function of  technical system performance.  

 
Figure  G.11 Impacts and benefits derived from customer utility based on the Kano taxonomy 
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As the actual process performance values, the measurement system, and the impact-benefit 
functions are known, the project management can determine the actual project status embodied 
by the single KPP risk and opportunity values. This information can be applied for different 
purposes: (1) the overall project risk and opportunity status can be determined using the single 
KPP risks and opportunities; (2) as the single KPPs represent the major design aspects, the 
required composition of  the review team for effective decision-making can be revealed on the 
basis of  their status; and (3) the single KPP status can be used to define the activities with the 
highest magnitude on the critical areas for the SD process adaptation.  

Monitoring charts are used to get an insight into actual versus planned performance. The cost-
schedule reconciliation chart and the earned value chart that arose from it are well-known project 
management tools to capture the earned value of  the work carried out (value completed) for the 
tasks performed in the project [Meredith & Mantel 2003]. While comparing the actual with the 
planned project performance, the difference between the two is calculated to evaluate the status 
of  the project (Figure  G.12a). Earned value charts capture the difference between planned and 
actual project performance, but they do not provide any information on the risk implied by this 
difference—often, this risk will grow as a non-linear function of  the difference. A more effective 
method for performance monitoring is to compute risks from the performance deviations and 
use the risk values for the decisions.  

Technical performance tracking charts (Figure  G.12b) are used to forecast probable outcomes 
of  the key performance aspects (i.e., KPPs or contributing TPMs), record estimates, and actual 
values, compare them to the projected ones, and calculate technical risk in a project [e.g., Pisano 
1995, INCOSE 1995, DoD 2001a]. Thus, tracking technical measures effectively supports project 
control. Furthermore, technical performance tracking assists decision-making by relating 
information from the SD process to high-level project goals, thereby providing management 
insight to the technical state of  the project. This also facilitates the adaptation of  the SD process 
to the changing internal and external needs. 

Project performance monitoring in the adaptive SD framework integrates the methodologies 
of  earned value and risk management to estimate the consequences of  performance variances on 
the overall project value. Furthermore, besides risk, opportunity is calculated to account for the 
situation, when the information from systems engineering measurement shows that for some 
aspects of  the design it might be possible to even exceed the stakeholders’ expectations, if  
adequate actions are made.  

Performance profiles like the ones in Figure  G.12 and the milestone criteria for the decision 
points assist continuous risk management by providing reference points for risk calculation. That 
is, the target values and impact functions model the stakeholders’ preferences for the product, 
which can be combined with the performance data from the project to determine the actual risk 
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Figure  G.12 Project performance monitoring charts 
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and opportunity status. This is depicted in Figure  G.13, where the actual value of  a TPM, where 
smaller is better, is illustrated by the PDF, the desired performance (i.e., target value) by the dashed 
line, and the estimated impacts / benefits of  negative / positive performance discrepancies from 
the target value is depicted by the solid line (i.e., by the impact / benefit function).  

During the evaluation of  project performance, the values of  two representative measures are 
calculated from the functions in Figure  G.13 (i.e., risk and opportunity). Risk representing the 
consequences of  negative outcomes (i.e., negative performance discrepancies) is computed with 
Equation (F-3) for KPPs, where smaller is better: 

∫
∞
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where RKPPi is the risk, xKPPi are the possible outcomes of  the KPP,  f(xKPPi) is a PDF 
representing the probabilities of  all xKPPi outcomes, TKPPi is the target or requirement value of  the 
system performance, and I(xKPPi) is the impact function.  

For the calculation of  opportunity, a similar equation is applied: 
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where OKPPi is the opportunity, and BKPPi is the benefit function (i.e., the negative side of  the 
impact function). In case of  KPPs, where larger is better, the equation applied here for risk 
calculation provides the value of  the opportunities, and Equation ( G-3) is used for risk calculation, 
respectively.  

The illustrative outputs of  the risk calculation stage are depicted in Figure  G.14. The first four 
charts are actual values of  four KPPs together with the targets and impact / benefit functions. 
While each KPP has different characteristics, the PDFs, the target values and the impacts / 
benefits are all different. Hence, the calculated risks and opportunities are the values that depict 
the real project status. While two performance aspects in Figure  G.14 inherit low risk (“KPP2” and 
“KPP3”), two others (“KPP1” and “KPP4”) are in yellow, representing moderate risk. Furthermore, 
opportunities were discovered in two areas (“KPP1” and “KPP3”); however, only one of  the two 
aspects (“KPP3”) has real potential for the project (the one in green). 

Besides technical performance, programmatic risks and opportunities are also analyzed 
during project control. However, the determination of  cost and schedule risk requires more 
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Figure  G.13 Chart for risk and opportunity calculations 
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sophisticated techniques. The goal of  programmatic project control is to take the actual project 
cost and duration, forecast the overall values for the project, and decide on the criticality. 
Meredith & Mantel [2003] review various analytic methods for project control, e.g., earned value 
analysis, benchmarking, QFD, variance analysis, trend projection, etc. Even though these methods 
are not risk-based control methods, they can be modified to provide probabilistic outputs 
applicable for stochastic risk calculation.  

The last two charts in Figure  G.14 show two examples for acquiring inputs for stochastic risk 
calculation for programmatic aspects. The first one is a modified version of  the cost-schedule 
reconciliation chart in Figure  G.12a, which has been improved to allow for risk calculation. The 
lowest dashed line in the chart is the cost target profile, and the two dashed lines above it 
represent limits obtained from historical project data. These functions are proxies for risk 
calculation that include statistical estimates for the probability of  missing the final target because 
of  the actual project status. That is, if  the actual value is above the first (target) profile and below 
the middle dashed line, the probability of  failing the cost target is low. If  the actual value is 
between the middle and the top line, the probability is moderate, and probability is high above 
the top line, respectively. These values can be associated with the right impact values to calculate 
the risk inherited in the actual project cost value.  

A better way to estimate programmatic risk is the application of  stochastic network methods 
or process modeling techniques. These methods, described later in Chapter  I and  K in detail, 
stochastically estimate the possible outcomes of  technical and programmatic process attributes. 
That is, the project manager enters the actual project status in the network or process modeling 
tools for each decision, and approximates the possible outcomes of  the performance of  the 
process attributes under the modified circumstances. The last chart in Figure  G.14 depicts how 
the output of  stochastic process analysis is applied directly for risk and opportunity calculation. 
Thus, stochastic process analysis techniques provide effective means to support the 
determination of  the actual project state during the procedure of  adaptive project control. The 
next section describes how the risk and opportunity data are utilized before and during decision-
making.  

 
Figure  G.14 Illustrative outputs of risk calculation 
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G.4.4. Project Adaptation 
The third stage of  the procedure of  adaptive project control uses the single risk and 

opportunity values as input information and first, it calculates the overall project risk, second it 
determines the optimal team constellation for the review meeting, and finally, it adapts the SD 
system to maximize value.   

G.4.4.1. Determination of the Overall Project Performance 
Status 

In the first step of  the project adaptation stage, the overall risk and opportunity values are 
calculated for the project. These numbers are representative values for the overall project status 
regarding the fulfillment of  the final project success criteria. The customers determine the overall 
value of  a project through the characteristics of  the final project output (i.e., the product). If  the 
product characteristics fulfill their previously articulated (and not defined) needs, and the product 
is available when they need it at a price they can afford, the product means value for them, and 
thus they will acquire it. 

Therefore, the ultimate task of  project management is to fulfill and exceed stakeholders’ 
needs by maximizing the effectiveness and efficiency of  the SD work, and thus deliver the best 
product at the lowest resource consumption possible. Both the stakeholder’ needs and the 
managerial objectives of  the SD project have three main dimensions: the technical performance of  
the product, the financial aspects related to the product (i.e., price of  the product, or the cost of  the 
SD project), and the timeliness of  the product introduction (i.e., time point of  product launch, 
delivery date, or project duration).  

Risk calculation in the previous stage provides the actual risk and opportunity values for each 
project measure relevant for a certain review meeting. Now, the task of  the project manager is to 
calculate one risk and one opportunity value for the overall project. Overall technical 
performance risk and opportunity are computed as the weighted average of  the risks and 
opportunities of  the single KPPs: 

      ∑=
k

KPPKPPTP kk
RwR                                           ( G-3) 

where RTP is the overall technical performance risk, wKPPk is the weighting showing the relative 
importance of  the KPP value for the customer, and RKPPk is the risk of  the KPPk.  

The overall technical performance risk is then combined with the risks in the other two 
dimensions of  project performance to acquire the overall SD project risk: 

TPTPCCSSPD RwRwRwR ++=                                ( G-4) 

where RPD is the overall SD risk, wS is the relative importance of  the SD schedule or duration, 
RS is the schedule risk, wC is the relative importance of  the SD cost, RC is the cost risk, and wTP is 
the relative importance of  the product technical performance, RTP is the technical performance 
risk. 

Overall project opportunity can be calculated the same way, using the single values and 
weightings for opportunity in Equation ( G-3) and ( G-4). Overall project risks and opportunities 
are recorded after every decision, and they are tracked throughout the project to keep the project 
management up-to-date about the SD performance.  
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Typical risk waterfall charts for the three key dimensions of  project performance are depicted 
in Figure  G.15. These charts support both context-specific and generational learning in the SD if  
documented regularly in every project. This way, the project manager can estimate performance, 
risk, and opportunity profiles during planning, and forecast the project evolution in terms of  risk 
reduction or opportunity capturing. Then, the project can be planned by assigning SD activities 
to the estimated risk reduction and opportunity capturing profiles based on the capability of  the 
activities of  moving the risk and opportunity values to the right direction. This supports process 
design for uncertainty and thus risk- and opportunity-driven project planning and decision-making 
on adaptations.  

G.4.4.2. Determination of the Optimal Team Structure 
The actual risk and opportunity status of  the project highlights the areas where improvement 

is needed to achieve the project and system objectives. These areas can be both known and 
unanticipated risk areas of  the project as well as foreseen and unforeseen opportunities emerged 
during the SD work. Now, the goal of  project management is to organize an efficient meeting 
where experts from all critical competencies make collaborative decisions on the required actions 
to maximize system lifecycle value.  

The quality of  the team structure is important for both the effectiveness and efficiency of  
decision-making. Thus, the constellation of  the review teams is defined on the basis of  the actual 
project status. The risk- and opportunity-driven set-up procedure of  a flexible review team is 
presented in Figure  G.16. The review team has an adaptable structure of  six fixed team members 
(i.e., the core team), who participate in each meeting with similar purpose; and six free slots for 
additional team members who are always invited depending on the actual project status.  

The interdisciplinary review team includes six core members from all project-relevant 
technical and business disciplines. That is, besides hardware and software development, 
manufacturing, systems engineering and testing; marketing also has a fixed seat in the meetings. 
This is important, because technical risks and opportunities can be evaluated better if  experts 
who are aware of  the customer’s voice also take part in the decisions. Though interdisciplinary 
work is difficult, because experts from each discipline have a different point of  view about the 
system and speak a slightly different language, these meetings are the best places to learn about 
the system under development, and solve system-level problems cooperatively.  

The free slots in the flexible review team structure can be filled with experts from relevant 
company SD and TD disciplines based on the actual risk and opportunity status and the 
character and experience of  the available team members. For instance, in case a technical 
opportunity is found in the SD process, experts from relevant areas of  the technology 
development are invited to decide how emerging technologies can be selected and integrated with 

 
Figure  G.15 Risk waterfall chart for the three key dimensions of project performance 
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the existing ones to capture the discovered opportunity. Furthermore, marketing experts assist 
decision-making by providing first estimates for the value of  the different design alternatives 
aiming to capture the opportunity.  

The combination of  planning interdisciplinary team structure with risk- and opportunity-
based project control assists decision-making by guaranteeing the optimal team size and quality. 
This enhances the effectiveness of  collaborative learning and problem-solving, and supports the 
elimination of  barriers among company competencies and departments. Furthermore, if  
software tools support project control and risk calculation, then meeting scheduling can be 
linked, reviews can be planned, and experts can be invited automatically, which prevents schedule 
conflicts and unnecessary misunderstandings in the SD organization. 

G.4.4.3. Adaptation of Milestone Criteria and Process 
Architecture 

After the overall project risk and opportunity status has been determined and the optimal 
team structure designed, the team analyzes the actual situation in the project and decides on the 
required next steps.  

The decision framework for system adaptation is depicted in Figure  G.17. The goal of  the 
system adaptation procedure is to evaluate the risks and opportunities with regard to the actual 
plans and objectives, and decide if  changes are required to assure final project success. During 
the decision-making procedure, all critical design areas are analyzed, the problem scopes are 
drawn, and improvement alternatives are generated aiming to increase the system lifecycle value. 
While all improvement options have both positive and negative effects, the review team has to 
make tradeoffs between the key project objectives, and find the process option (depicted by the 
small DSMs in Figure  G.17) that adds the highest stakeholder value to the project. The evaluation 

 
Figure  G.16 Risk /opportunity-based determination of a flexible review team structure 
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of  process alternatives is done on the basis of  the capability of  the SD activities to reduce risk 
and capture opportunity in the critical technical performance areas.  

Figure  G.18 shows how process adaptation works in a parameter-based SD context. As the 
arrows (1) and (4) depict, the results of  finished experimentation cycles might modify the 
objectives (i.e., target values) of  the subsequent cycles and adjust the focus of  system 
development by moving it to the critical design aspects (i.e., TPMs). The critical design aspects 
and shifting targets determine the characteristics of  the design and V&V activities required in the 
experimentation cycles (arrows (2) in Figure  G.18). 

As Figure  G.18 depicts, SD activities are required with high effects on the TPMs a, b, and c in 
the actual process state. Relevant activities are selected from the WBS and the flexible project 
plan, and the best improvement option is identified for the process following the decision 
framework for process adaptation (arrows (3) in Figure  G.18 represent the results of  the decision-
making procedure in Figure  G.17). As the SD process needs are shifting during the SD project 
according to the actual design performance and changes in the market needs, the value of  the SD 
activities for the project also changes. That is, SD activities which are quite effective in one 
process state might loose their importance for the project in a later state with changed conditions. 
Hence, the goal of  project adaptation is to continuously adjust the SD process (and product) 
design and select SD activities (and product modules) from the company knowledge base and the 
flexible plans that are the best for maximizing system lifecycle value.  

Process adjustment is particularly valuable in case of  iteration and rework in the project. 
Even though Eppinger et al. [1997] define iteration as the repetition of  tasks to improve an evolving SD 
process, in reality the same versions of  activities are seldom repeated or reworked in the SD. That 
is, during iteration, assumptions or failures of  previous activities are corrected, which usually 
means modifications in the design, but not the repeated, complete execution of  finished SD activities. The 
reason is that every activity increases the design knowledge, and thus the process state after an 
activity is different from the state before it. Hence, this different process state generates different 
process needs that can only be satisfied with different actions and not the repetition of  activities 
adequate for prior process needs.  

The term rework stems from plan-driven project management, where the parts of  the process 
already executed are repeated to account for new information coming from later parts of  the 
project. Thus, rework has a rather negative meaning referring to an undesired process failure 
mode that causes rework on tasks already completed in earlier parts of  the process. This negative 
meaning is due to the false assumption of  conventional project management that projects can be 
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Figure  G.17 Decision framework for system adaptation 
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planned completely at their outset, and that the planned activities are capable of  delivering the 
desired product right-at-the-first-time.  

On the contrary, adaptive SD projects are organized to have the capability of  adjusting the 
original direction if  unforeseen SD process states involve new information that changes the 
overall value of  the project. The discovered new information does not mean that the work done before was 
wrong, but it points out that some aspects of  the SD that require particular attention were not considered during 
planning. Thus, the scope of  the original SD problem has slightly changed, the solution (i.e., 
project plan) proposed for the original problem is no longer suitable, and the simple rework of  
the original tasks does not solve the new problem effectively and efficiently.  

Hence, the term rework does not apply to iteration cycles in adaptive SD. Here, iteration is 
considered as an innovative sub-process to improve the design areas with inadequate 
performance using SD activities that are most suitable for the purpose of  iteration. While in 
adaptive SD, the process is designed for high flexibility, the architecture of  the iteration cycles 
changes in each cycle to adjust the scope of  the SD work and re-concentrate resources on 
productive and value adding areas. 

G.5. CHAPTER SUMMARY 

Adaptive SD is process-oriented. Hence, the behavior of  the SD process and the value generated 
for the society by this behavior shape the flexible subsystems of  the ZOPH+T SD enterprise in 
the project. The adaptive SD framework presented in this chapter described how SD work could be 
organized to augment the effectiveness of  learning, and how the SD process could be controlled 
to guide the developers towards high value. While enhanced learning increases process 
effectiveness, and adaptive project control improves efficiency, the application of  the adaptive SD 
framework contributes to maximal stakeholder value in the whole system lifecycle.  

The second part of  the chapter introduced the procedure of  adaptive project control to show how 
decision-making in the control loop of  the adaptive SD framework works. Because the goal of  
system adaptation is to change the SD system to move to a state with higher overall value, the main input to 
adaptive project control comes from systems engineering measurement. Measurement tracks 
project performance against actual market needs to obtain measures for estimated stakeholder 
value (i.e., risk and opportunity values); and provide decision-making with criteria for the 
determination of  the best value adding strategy for the actual process state. 

 
Figure  G.18 Procedure of process adaptation 
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H. CASE STUDY I – DECISION-MAKING IN ADAPTIVE 

SYSTEM DEVELOPMENT AT TETRAPAK CARTON 

AMBIENT 

H.1. CHAPTER ABSTRACT 

In this chapter, the implementation and validation of  the procedure of  
adaptive project control and the decision framework for system adaptation is 
demonstrated in a real industry environment through a case study. The 
case study at TetraPak Carton Ambient in Italy demonstrates how 
parameter-based project monitoring and risk- and opportunity-driven 
decision-making can be implemented in the food packaging industry SD 
processes, and how it can be integrated with conventional SD 
methodologies.  

This chapter focuses on the validation of  the control loop, and applies data from two pilot 
projects conducted at TetraPak. The objective of  this chapter is to set up a parameter-based 
measurement system and a related decision-framework that supports deliberate decision-making 
at each level of  the SD project. After the successful implementation of  these project control 
methods, the next case study on process modeling will show how adaptable SD processes can be 
planned to enable the effective application of  the adaptive SD framework at TetraPak. 

H.2.  STRUCTURE OF THE CASE STUDIES IN THIS THESIS 

The case study was conducted in one of  the pilot projects of  the EC Fifth Framework 
project SysTest. Eight partners from different countries and industrial segments of  the EU 
gathered in the EC research project SysTest to develop a generic Verification, Validation, and 
Testing (VVT) Methodology for the whole product lifecycle. The new VVT Methodology was 
intended to revolutionize Testing and Verification & Validation (V&V) methodologies by offering 
a systems engineering framework for the VVT strategy planning and VVT planning procedures. The new 
VVT Methodology evolved from widely used industry V&V standards and methods (DoD, 
ASME, ECSS, SAE, ISO, IEEE, etc.) and merged these with current European industry practices. 

The VVT Methodology developed in SysTest supports parameter-based SD planning and 
control, proposes enhanced process modeling as a basic planning tool for SD projects, and 
fosters the strong integration of  V&V with other systems engineering disciplines (e.g., 
requirements engineering, risk management, systems engineering measurement, project planning, 
configurations management, etc.) [Lévárdy et al. 2004b]. Thus, the SysTest pilot projects, 
conducted to prove the validity of  the new VVT Methodology, provided an excellent 
environment also for the validation of  the theoretical results of  this thesis, i.e., the adaptive SD 
framework, the decision and control procedure for adaptive SD projects, the VVT Process 
Modeling procedure and the Adaptive System Development Process method discussed in the following 
chapters.  

Thus, first, a brief  overview on the implementation of  the VVT methodology in SysTest is 
given in this chapter to prepare the later, more thesis-relevant parts of  the case study. A further 
goal of  this chapter is to describe the TetraPak Carton Ambient SD environment. The SysTest 
pilot project structure conducted at TetraPak Carton Ambient (TetraPak) in Modena, Italy, is 
depicted in Figure  H.1. According to a typical research project schema, the TetraPak pilot project 
in SysTest started with the identification of  improvement needs, and the definition of  project 
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objectives based on these needs (Stage 1). These basic needs and the derived research objectives 
defined both the focus of  the research project and the tailoring needs regarding the new methods 
to be implemented. The overall goal of  TetraPak, as an SD organization, at the introduction of  
the new VVT methodology was to select the methods that are the most adequate in addressing 
the actual problems of  the company SD projects, tailor them to the company SD characteristics, 
and integrate them with the current company methodologies. These tasks were done in Stages 2 
and 3 of  the pilot project structure.  

In Stage 3, during integration, the new parts of  the tailored VVT Methodology were 
integrated with the current company V&V and SD methodologies. The goal here was to 
experiment with the new methods and evaluate their feasibility in the TetraPak SD environment. 
During this first pilot project, existing company data sources (databases, outputs of  existing SD 
and VVT methods, formalized planning and decision procedures, etc.) were analyzed to determine 
if  the input information required by the new methods is available in the current SD environment. 
Further, the links between new and exiting methods and tools were established, and channels that 
allowed gathering the missing pieces of  input information were defined.  

While the goal of  Pilot Project I conducted in Stage 3 was to implement systems engineering 
methods in V&V planning, and integrate these with the current company methodologies, Pilot 
Project II (Stages 4, 5, and 6) aimed to optimize the effectiveness of  the implemented methods and 
improve the SD project environment to increase the performance of  the new methods. During 
the Pilot Project II, effects of  V&V on SD process performance were analyzed, and methods to 
increase these effects were introduced. On the one hand, the decision-making procedure after 
V&V activities and experiments was documented and improved to define a generic framework for 
SD process adaptation. On the other hand, a process modeling method and tool (i.e., the VVT Process 
Modeling (VVTPM) procedure and tool) developed in SysTest and introduced in Pilot Project I 
was further improved and incorporated in the current TetraPak planning methodology. Stage 6, 
depicted by dashed lines in Figure  H.1, was a virtual pilot project conducted in the scope of  this 
dissertation. That is, data from Pilot Project II used to validate the VVTPM tool was applied to 
validate the Adaptive System Development Process (ASDP) method proposed in Chapter  K of  the 
thesis. Finally, the results of  Pilot Project I and II were evaluated from the industry point of  view 
to determine the overall feasibility of  the implemented systems engineering methods at TetraPak.  

Further sections of  this chapter introduce the company TetraPak Carton Ambient and 
highlight some aspects of  the Stages 1, 2, and 3. These stages are not discussed in detail, since 
they are not altogether relevant to this thesis. On the contrary, Stage 4 is the main subject of  this 
section, where the case study on the decision and control procedure for adaptive SD projects was 
conducted. The following chapter describes the role of  process modeling for adaptive SD project 
planning. The methods introduced in the next chapter were validated in Stage 5 and 6 of  the 
TetraPak pilot project. These stages and the pilot project evaluation in Stage 7 are described the 

 
Figure  H.1 Pilot project structure at TetraPak 
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last part of  the thesis. 

H.3.  TETRAPAK PILOT PROJECTS – OVERALL OBJECTIVES  

TetraPak Carton Ambient, a business unit of  TetraPak, is the world leader in the development 
and production of  packaging systems for liquid food products that can be stored at room 
temperature (Figure H.2). TetraPak Carton Ambient operates in six countries with 2,100 
employees. It is mainly situated in Lund, Sweden; and Modena, Italy; both important centers for 
SD and production. The case study was conducted at the TetraPak Carton Ambient S.p.A. 
facilities in Modena. 

The flagship product of  TetraPak is the food container package (Figure  H.3). Different types 
of  packages can differ with regard to the enclosed volume or shape. Furthermore, the same 
package can be produced with different packaging materials (there are today nearly one hundred 
different specifications available) depending on the needs of  the customer and the peculiarities 
of  the packed product. A product is usually defined by properly combining different 
configuration variables such as: filling machine system type, package volume, package type, 
package shape, opening device type (if  applicable), cooling system, headspace unit (if  applicable), 
filling machine working frequency, etc. 

Due to the specific conditions in the food packaging industry, the production of  the package 
and the filling of  the nutritional product into it are done at the same place. Consequently, the 
final product quality (i.e., the quality of  the packaged food) highly depends on the quality of  the 
overall packaging system. To assure the highest quality products, TetraPak offers packaging 
solutions covering the whole infrastructure of  the packaging process including the machinery, 
such as the packaging lines, filling machines, and downstream equipment, as well as the package 
including packaging materials, opening systems, and sales and distribution solutions. Figure  H.2 
shows a TetraPak filling machine developed and produced in Modena. 

 
Figure  H.2 TetraPak packaging line 

 
Figure  H.3 Two TetraPak packages with different volumes 
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The most important customer requirement on food containers is human health protection. Thus, 
the main properties of  the product (i.e., the package) that are relevant for the definition of  a 
proper SD process are the ones involved in the creation and maintenance of  packaged product 
sterility and in the retention of  sensory and nutritional properties during shelf  life. The sterility of  
a product can be defined as follows: a product is sterile if  it is free from all microorganisms. Since 
microorganisms multiply in accordance with the composition of  the product, it is often not 
necessary to achieve complete sterility in order to avoid spoilage.  

The more general term above can then be substituted by the term of  commercially sterile product: 
a product free from pathogens, free from toxins, and free from microorganisms which are 
capable of  multiplying inside the food during the intended shelf  life in non refrigerated 
conditions. The quality limiting factors for commercially sterile products are then chemical, not 
microbiological. A definition of  aseptic packaging can accordingly be given as a packaging 
process where microorganisms are prevented from entering the package during and after 
packaging. This definition applies irrespectively of  the packed product type, so aseptic packaging 
is possible whether the product is sterile or not. Technically speaking this definition implies that 
the packaging material, the product to be packed, and the surroundings of  the area where the 
product is packed need to be sterilized. Furthermore, the process has to ensure that the product 
is transferred to a package maintaining aseptic conditions, and that the package is tightly sealed 
after filling. Since every step in the process affects the overall package sterility, which in turn is 
related to consumers’ health safety, the complete packaging solution involved in the process is 
safety critical. 

The main quality requirements on the packaged food include the areas of  microbiological 
safety, safety from non-microbiological contaminants, commercial sterility, minimal organoleptic 
product change during packaging, minimal interaction between food and packaging material, and 
sufficient barrier properties of  the package towards external chemical agents. These basic quality 
requirements apply globally to all the developed products and fundamentally affect the SD 
methodology applied at TetraPak. 

 The main characteristics of  a typical SD project in packaging system development are shown 
in Figure  H.4 using general SD lifecycle phases and the standard V-model. The first two phases, 
where the project is defined, the customer’s needs are elicited, and the system architecture and 
defined specifications are usually performed at the system developers’ site. Then, subsystem 
development and fabrication is conducted in collaboration with various suppliers. While the 
suppliers play a critical role in the development of  the packaging system, the success of  the 
collaboration with the suppliers has major impacts on the quality of  the final product and the 
duration of  the SD project. Suppliers require unambiguous and complete specifications to deliver 

User needs and 
system concept

User needs and 
system concept

System 
requirements & 

architecture

System 
requirements & 

architecture

Component 
design

Component 
design

Procure, 
fabricate & 

assemble parts

Procure, 
fabricate & 

assemble parts

Component 
integration & 
verification

Component 
integration & 
verification

System 
integration & 
verification

System 
integration & 
verification

System 
demonstration 

& validation

System 
demonstration 

& validationSystems 
engineering 

domain

Component 
engineering 

domain

In-house 
development

Development in 
collaboration 

with suppliers

At customer’s 
site

User needs and 
system concept

User needs and 
system concept

System 
requirements & 

architecture

System 
requirements & 

architecture

Component 
design

Component 
design

Procure, 
fabricate & 

assemble parts

Procure, 
fabricate & 

assemble parts

Component 
integration & 
verification

Component 
integration & 
verification

System 
integration & 
verification

System 
integration & 
verification

System 
demonstration 

& validation

System 
demonstration 

& validationSystems 
engineering 

domain

Component 
engineering 

domain

In-house 
development

Development in 
collaboration 

with suppliers

At customer’s 
site

 
Figure  H.4 Typical lifecycle of food packaging system development projects 
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a subsystem desired by the customer. As subsystem verification is done at the suppliers’ site, a 
well-established quality control system and enhanced communication with the suppliers are 
essential for the final project success. 

Another interesting key characteristic of  SD projects in the food packaging systems industry 
is that system verification and validation are spatially separated. Whereas system verification can 
be performed in-house at the system developer’s plant, the final system validation and 
qualification has to be done at the customers’ site, sometimes at a remote location on the other 
side of  the planet. The reason for this is that the whole functionality and quality of  the developed 
technology or system can only be validated in the intended environment. This on-site validation 
phase is quite expensive, it is critical for the customer satisfaction, and delays in this part of  the 
project can have huge financial consequences. Hence, a main goal of  the TetraPak technology and 
product development projects is to achieve the highest possible technical system maturity until the end of  system 
verification to ensure a short and smooth system validation and qualification phase.  

The TetraPak SD lifecycle is simpler than the one depicted in Figure  H.4 consisting of  only 
four main lifecycle phases: Project Definition, Concept Development, Prototype Development, and Product 
Qualification. Certainly, the structure of  the SD projects at TetraPak follows the same logic, but the 
SD tasks and milestones have a slightly different structure from the generic lifecycle depicted in 
Figure  H.4.  

 Figure  H.5 shows that the bulk of  V&V activities and experiments done during a typical 
TetraPak project concerns physical testing. This means that several testing rigs are designed and 
constructed during the SD, which increases the complexity of  the projects. Additionally, the 
majority of  the V&V activities are done on physical prototypes produced at a late part of  the SD. 
Such domination of  physical testing can raise programmatic risk for the project. That is, if  major 
design deficiencies are found in the physical prototypes, the rework effort to correct these failures 
can concern the early stages of  the SD project, which makes iterations quite expensive and time-
consuming. An effective strategy to reduce technical risk early in the project is the frontloading 
of  computer modeling and simulation in the SD. This way, design failures can be found early and 
corrected at low cost before proceeding to the costly physical experiments.  

It is important to note though that in a conservative company culture with a lower rate of  
overall product change and innovation for new products, the development and application of  
computer models or rapid prototypes can be time-consuming and ineffective. Furthermore, if  
industry regulations require a high amount of  physical V&V, and the historic information from 
the V&V process is well recorded and easily accessible for the V&V teams, the impact of  the 
frontloading of  evolutionary product evaluation techniques (e.g., simulation, digital mockups, 
rapid prototyping, etc.) can decrease substantially. Thus, during project planning, a tradeoff  has to be 
made between the frontloading of  computer-based experimentation and traditional physical testing based on the 
cost-benefit ratio of  the methods. 

 
Figure  H.5 Experimentation areas at TetraPak 
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H.3.1. TetraPak Project Goals in the SysTest Pilot Project 
After the description of  the special characteristics of  TetraPak and the food packaging 

industry, this section describes the main goals of  TetraPak in the SysTest pilot projects. These 
goals concern parts of  the corporate strategy regarding the planning and control of  experiments 
and V&V activities, and the improvement areas identified for the SysTest pilot project. Thus, the 
following project goals represent SD needs that can be fulfilled through the application of  a 
systems engineering methodology for enhanced experimentation and testing. The general pilot 
project goals are [Hoppe, Lévárdy et al. 2004a]: 

• Standard food packaging system development projects are usually small or medium in size with 
low complexity. Thus, existing knowledge, historical project information stored in databases, 
and best practices can and must be utilized during project planning. Process modeling is an 
adequate method to integrate and store project plans and measured information for the long 
term. 

• TetraPak strives to standardize products and projects where tailoring requires only the adjustment 
of  specific product properties during project planning. Other project characteristics must be 
derived from the historical data of  previous projects. 

• All products are human-health critical and thus, a set of  highly procedural V&V activities 
must be applied in order to fulfill food production regulations. These activities must be integrated 
with the new V&V methods developed during SysTest. 

• An effective method to control the key product properties during SD is essential for the 
satisfaction of  the customer’s needs and the human health safety regulations. Thus, the 
implementation of  a technical performance control method that associates SD process results with the key 
product requirements is required in the pilot project. 

• Physical testing, particularly in the intended environment, is very important, but it entails 
great expenditures and is a key cost driver of  the V&V process and the project. Hence, to 
achieve considerable reductions in V&V and experimentation cost, the amount of  physical testing must be 
reduced. 

• The implementation of  simulation-based VVT activities in the early SD lifecycle phases is required to 
generate early information on the design and support later requirements verification activities 
through physical testing. Further, the information generated during simulation and early 
experimentation must be utilized better to improve the effect of  learning in the early stages of  SD. 

These high-level goals defined in Stage 1 of  the pilot project gave a good basis for selecting 
new methods and tools to strengthen the weak points of  the company SD and V&V processes.   

H.3.2. The Results of Tailoring 

H.3.2.1. Improvement of Project Planning and Control 
During Stage 2, the systems engineering VVT methodology was tailored to the company 

needs, new planning aspects, and V&V methods were introduced at TetraPak. One new, 
implemented technique was the systematic application of  systems engineering measures for the 
planning and tracking of  system technical performance and the estimation of  technical 
performance risk in the project. The method for parametric technical performance tracking could 
be integrated with the existing TQM- and Six Sigma-based quality management system of  
TetraPak to support the process and product quality control—a main element of  both 
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methodologies. Further, the collection of  relevant data and best practices from previous projects 
during tailoring showed that all the required information for the establishment of  a technical 
performance measurement system was available at the company.  

Furthermore, a thorough analysis was conducted in the tailoring stage to determine the 
difficulty of  introducing enhanced process modeling for integrated planning of  SD and V&V 
processes. The results of  the analysis showed that the necessary basis for process modeling is 
given at TetraPak, and the required input information for the effective application of  a 
parameter-based process planning approach is also available.  

H.3.2.2. Selection and Tailoring of Relevant V&V Methods 
The VVT Methodology includes a large set of  V&V methods and activities collected and 

developed during the SysTest project. Among these methods, each partner company could find 
relevant, new ones for their industry segment, and implement these after having communicated 
with SysTest partners who have experience in the application of  the given methods.  

The results of  the screening and selection of  V&V activities during tailoring is depicted in 
Table  H.1. During tailoring, the V&V activities and methods were assigned to two main classes: 

V&V Activities 

screening tailoring needs   
applicable as described 12 satisfactory 

tailoring required 1 
applicable as described 31 

already in application 
improvement required 

tailoring required 15 
applicable as described 10 required 

tailoring required 2 
applicable as described 2 recommended 

tailoring required 1 
applicable as described 3 nice to have 

tailoring required 0 

new 

not applicable 3 
Total 80 

    
V&V Methods 

Screening tailoring needs   

applicable as described 7 
already in application 

tailoring required 3 

applicable as described 3 
Required 

tailoring required 0 
applicable as described 7 

Recommended 
tailoring required 3 

applicable as described 0 
nice to have 

tailoring required 0 

new 

not applicable 8 
Total 21 

Table  H.1 Tailoring needs on V&V activities and methods at TetraPak (adapted from 
[Hoppe, Lévárdy et al 2004a]) 
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the ones that had been known and applied before at TetraPak, and the ones that were completely 
new, thus they had not been applied before in the company. In case of  the activities already in 
use, it had to be decided if  the current version of  the V&V activity was satisfactory, or whether it 
could be improved on the basis of  the activity description in the VVT Methodology. As depicted 
in Table  H.1, 59 of  80 methods part of  the VVT Methodology had already been applied at 
TetraPak in some form, and the description of  12 of  them could be applied directly in the 
company V&V processes. Further 31 activities already in use could be enhanced according to the 
descriptions, and 16 had to be tailored to the food packaging industry environment. 

The second group of  V&V activities includes the ones that had not been applied before, but 
which were desired to be used in the future. Twelve of  the remaining 21 V&V activities were 
considered to be very important for the improvement of  the company V&V processes, three 
were classified as “recommended”, medium-term options, another three as “nice to have” and finally, 
three activities were “not relevant” at all for food packaging.  

The lower part in Table  H.1 shows the same classification for V&V methods. Seven of  the ten 
methods already in use were applicable as described in the VVT Methodology, and three had to 
be tailored to the TetraPak environment. Three of  the remaining eleven new V&V methods were 
classified as “required” for the company V&V. Ten new methods were “recommended” for future 
application and eight were irrelevant for food packaging system development. According to the 
overall pilot project goals described above, most of  the V&V methods identified as relevant for 
the TetraPak SD processes were parametric experimentation planning methods (e.g., FMEA, 
DoE) or computer-based experimentation methods (e.g., methods for enhanced computer 
modeling and simulation). 

 The classification of  V&V activities and methods was done in collaboration with the core 
competence teams described in Figure  H.6. Every activity performed during the development of  
the food packaging solution can be associated with a core competence in the organizational 
structure of  TetraPak. That is, the core competencies are responsible for the development of  a 
certain subsystem of  the overall packaging system, and thus a certain part of  the SD process. 
Thus, experts involved in these core competencies plan and perform the relevant V&V activities 
in the SD process. These experts were the main stakeholders of  tailoring, and thus they were 
involved in the tailoring process to support the deliberate methodology adaptation with their 
inputs. 

Once a decision had been made on the applicability and implementation of  the V&V 

 
Figure  H.6 Core competencies at TetraPak 
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methods and activities at the company level, the required tailoring of  the VVT Methodology was 
accomplished, and the descriptions of  the V&V activities and methods were incorporated in the 
company knowledge base, which included all the necessary information to execute a TetraPak SD 
project.  

H.4. PILOT PROJECT I – INTEGRATION OF NEW METHODS 
WITH CURRENT COMPANY METHODOLOGIES 

Stage 3 of  the TetraPak pilot project structure refers to the integration of  new methods with 
the current SD and V&V methodologies. Even though this stage included the introduction and 
improvement of  various V&V and planning methods, this section only concerns the following 
planning aspects: the definition of  a systems engineering measurement system and the assignment of  milestone 
criteria and impact functions to the main milestones of  the project. The reasons for selecting these aspects 
are twofold: (1) the implementation and improvement of  parameter-based project control and 
decision-making was one main goal of  TetraPak, and (2) these aspects have high relevance for the 
methods developed in this thesis.  

The first pilot project at TetraPak focused on the upgrade of  an existing packaging line. The 
improvement of  the capabilities of  the actual packaging line was characterized by the following 
three main critical technical system objectives [Hoppe, Lévárdy et al. 2004b]: 

• The first main goal of  the pilot project was to exceed the limits of  the actual technology in terms of  
flexibility. Flexibility means that the same packaging line and in particular its core, the filling 
machine, can produce packages characterized by different shapes, volumes, and opening type.   

• The second goal was to drastically reduce the time to change production for the complete packaging line. 
The success of  the project depended on the ability of  the same packaging line to produce 
different packages characterized by TetraPak quality, and to improve the efficiency significantly 
by minimizing the time for change of  production. 

• The third goal was to minimize known weaknesses of  the packages to be introduced. Market studies 
had shown that a new appearance of  the produced packages could increase the market share 
of  the customer company. New appearance concerned the type of  the packaging material 
used and/or the form of  the package. 

As these three main project goals show, the pilot project at TetraPak was related to the 
upgrade and redesign of  an existing packaging line by the introduction of  packages with new 
volumes, and by increasing the efficiency of  the change between the productions of  similar 
volumes using the QuickChangetm technology developed by TetraPak. The possibility to introduce 
new volumes and switch quickly between the productions of  two different packages improves the 
flexibility of  the packaging solution and increases the overall lifecycle value of  the system. As the 
product design and spectrum of  the packaged food producing companies vary on a regular basis, 
flexibility in package size, form, material, and opening are key characteristics of  an appealing 
solution, and guarantees long-term customer satisfaction. Since the retail of  packaging material is 
one of  the core businesses of  TetraPak, the flexible production of  various packages on the same 
machine is a deliberate, long-term strategic decision to increase the profitability of  the company. 

The identification and communication of  the critical project goals are essential before 
starting to plan, because these goals provide the main direction for the project. In case of  
TetraPak, the pilot project was classified as a system upgrade project, i.e., the system had already been 
familiar to the project team, and the identified system weaknesses specified clear project goals 
and improvement areas. Since the introduction of  new planning and V&V methods alone had 
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already entailed a high risk in the project, it was a deliberate decision to select a project with a low 
rate of  innovation and high degree of  existing project knowledge.  

Based on the above system objectives, the planning team identified key requirement areas 
concerning the technical performance of  the packaging system. The following list includes the 
identified critical requirement areas: 

• Flexibility / adaptability of  the packaging line 

• Food safety  

• Container functionality and protection of  the food product 

• Public health 

• Maintenance of  the organoleptic properties and preservation within shelf-life 

• Environmental performance 

• Opening / closing performances 

• Efficiency  

o of  the packaging solution 

o of  the packaging line 

o of  the subgroups 

• Market appeal: convenient and attractive 

These key characteristics of  product performance have key effects on customer satisfaction, 
thus these requirements had to be satisfied by the final product in any case. Furthermore, these 
key product characteristics specified the organizational structure of  the project V&V. That is, the 
requirements indicate which core competencies had to participate in the project and to what 
extent. 

Based on the defined key performance requirements, the planning team set up a systems 
engineering measurement system to (1) associate product requirements with SD activity outputs, 
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Figure  H.7 Systems engineering measurement system defined at TetraPak in the first pilot project 
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and (2) support project control at every hierarchy level of  the project. One branch of  the systems 
engineering measurement system is depicted in Figure  H.7, where the system objective “efficiency” 
is broken down into three KPPs (“availability”, “maintainability”, and “reliability”) and further lower-
level measures. The KPP “availability” depends on three system-level performance parameters (or 
MOPs): “flexibility”, “overall equipment efficiency (OEE)”, and “supportability”. Finally, one TPM is 
depicted on the lowest level contributing to the system flexibility: “machine set-up time”. This TPM 
can be directly measured in the SD process, or it can be derived from experimentation results to 
acquire information on the status of  the SD.  

Once the planning team had set up the systems engineering measurement system, the 
measures were assigned to the various milestones in the SD project to establish quantitative 
milestone criteria for the project. That is, the experts at TetraPak collected historical data from 
previous projects to define target values for each parameter at each project milestone. These targets 
together represent the required overall design maturity at a certain milestone that has to be 
achieved to guarantee the final project success.  

Based on the kinds of  the measures, the target profiles can have different forms. For some 
measures (e.g., sterility at TetraPak) even a slight difference from the requirement value means 
high risk for the project. Thus, the target profiles of  such measures are usually constant functions 
representing the final requirement value. On the contrary, other measures contributing to the 
technical performance of  the system evolve together with the design. The target profile of  such a 
measure (i.e., machine set-up time) is depicted in Figure  H.8.  

The target profile of  “machine set-up time” in Figure  H.8 depicts a basic trait of  SD upgrade 
projects. The starting point of  the profile (1) symbolizes the state-of-the-art performance value 
of  the machine set-up time at the outset of  the project. The goal of  the Concept Development stage 
is to develop a design that fulfills the requirement for improved performance (i.e., reduced 
machine set-up time). Thus, the target value for this phase (2) is the requirement value, and the 
phase-internal targets (e.g., targets for design reviews) show a decreasing trend for the TPM value.  

The third, Prototype Development stage has an interesting characteristic, i.e., the TPM values are 
rather high in the beginning of  the phase (3), meaning deficient technical performance for the 
design. The reason for these phenomena is the switch from virtual or paper-based design during 
Concept Development to the physical implementation of  the design in hardware components during 
Prototype Development. That is, the design that works as a computer model has to be implemented 
in functioning hardware. The deficient early design performance indicates that the results of  the 
first physical experiments are usually lower than the final requirements. However, the trend shows 
that the target for the final prototype is again the requirement value (4), which can be achieved 
through iterative experimentation. 
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Figure  H.8 Target profile for machine set-up time as a TPM at TetraPak (adapted 

from [Hoppe, Lévárdy et al 2004b]) 
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After having established the target profiles for the project, the planning team at TetraPak 
defined impact functions for each milestone criterion represented by the systems engineering 
measures in Figure  H.7. Impact functions support decision-making for the milestones by 
converting the actual project performance data into managerial measures showing the estimated 
deviations from the expected company profit achievable through the project. 

The functions in Figure  H.9 depict the impacts of  inadequate technical performance for the 
four major milestones of  the TetraPak standard SD lifecycle. The x-axis in each function shows 
the final requirement value for “machine set-up time” as a TPM and two other reference values, i.e., 
the set-up time for similar, conventional machines (i.e., before the upgrade) and the set-up time 
for the whole packaging line. 

The first value is an important reference point for the developers, because the new design had 
to improve technical performance attributes compared to the similar, conventional machines, 
otherwise the investments in this design aspect do not generate any profit. The second value 
represents the set-up time of  the whole production line that increases in case the set-up time of  a 
single machine is too long. This situation had to be prevented in any case.  

The values of  the stepwise impact functions on the y-axis are assigned to these three 
representative TPM values. The impact values during Project Definition are low due to the high 
number of  open design alternatives. Developers at TetraPak attempt to keep design options open 
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Figure  H.9 Impact functions for machine set-up time as TPM at TetraPak (adapted from [Hoppe, Lévárdy et 
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as long as possible, and iteratively improve performance to prevent suboptimal design solutions. 
Thus, a lower performance value at this point of  the project does not incorporate high risk.  

The second chart shows that the impacts of  low performance increase as the project 
proceeds towards the second milestone. The values are higher here, because existing technologies 
might constrain system performance, and the development or insertion of  new technologies are 
always costly endeavors. The impacts of  the third chart referring to the consequences of  lower 
performance at the end of  Prototype Development are rather high due to the increased cost of  
rework on physical prototypes in this phase. Major rework actions in this phase can boost the 
project budget and schedule significantly. 

The last chart depicts the financial effects of  lower technical performance during Product 
Qualification. As this phase is conducted at the customer’s site, only small variances in system 
performance are acceptable that can be repaired with small adjustments on the machine. 
Extremely poor performance at this stage of  the SD has immense effects on the project, because 
in this case entire SD phases have to be repeated. Such technical problems are extremely rare at 
TetraPak.  

In the next section of  this chapter, Stage 4 of  the pilot project structure is discussed, where 
the decision and control procedure for adaptive SD projects proposed in the previous chapter is 
validated. 

H.5. PILOT PROJECT IIA – VALIDATION OF THE DECISION AND 
CONTROL PROCEDURE FOR ADAPTIVE SD PROJECTS 

The following section describes Pilot Project IIa from the TetraPak pilot project structure. In 
this pilot project, the developers at TetraPak had already been familiar with parameter based SD 
project planning and control, and process modeling. Note that the same pilot project was applied 
for the validation of  the adaptive SD project planning methods described in the following chapters. 
Thus, this section deals only with adaptive project control and decision-making.  

The project selected at TetraPak to evaluate and validate the procedure of  adaptive project 
control and the decision framework for system adaptation was an SD project from the liquid 
food industry environment. The selected project dealt with a typical industrial transformation 
process, where semi-manufactured goods fed one generic transformation process affected by 
external noises and a finished product was released (Figure  H.10). 

The critical project objectives were to evaluate the correlated effects of  raw materials, the 
transformation process, and the intrinsic variability of  the noises (i.e., variability in product and 
process characteristics) versus the nominal geometrical dimensions, the appearance defectiveness, 
and the nominal tare weight of  the container. The project goal was to reduce the variability (and 
thus increase stability) of  the parameter values and increase confidence in the characteristics of  
the final product. 

The high-level project goals represented by the KPPs in the systems engineering 
measurement system were: 

 
Figure  H.10 Generic transformation process in the food packaging industry 
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• Container tare weight 

• Container appearance defects 

• Container geometrical dimensions 

The following sections provide definitions for these measures. 

H.5.1. Container Tare Weight 
Due to the extremely high number of  produced containers, tare weight is a key cost driver in 

the food packaging industry. Hence, the variability of  this parameter is a main risk source 
concerning the fulfillment of  the final product requirements. The main causes for variability in 
the product parameters originate from the variability of  the characteristics of  the raw material 
and the filling machine. 

In case of  the development of  a new container type for liquid food, the project goal was to 
reduce the weight of  the container. That is, a new type of  light plastic bottle had to be developed 
with a capacity of  0.5 liter. A major project goal was to reduce the tare weight of  the new bottle 
from the existing 27 to 21 grams. The variance of  the container tare weight using existing 
material and technology were 18-27 grams, which meant two options for the project: (1) improve 
existing raw material and technology to reduce the variance of  the produced containers to 18-21, 
or (2) develop new raw material or technology to fulfill the requirements. 

As the tare weight of  the bottle was a critical product requirement, the characteristics of  the 
raw material and the material manufacturing technology were critical issues in the project. 

H.5.2. Container Appearance Defects 
Certainly, the lighter the container is, the more vulnerable it is, as well. Thus, it had to be 

guaranteed that the container could be produced, filled, packed, distributed, and sold without 
damages that affected the quality of  the food in the container and the appearance of  the 
container. Package appearance is a key quality parameter of  the final customer, who does not buy 
deformed containers or containers without labels. 

H.5.3. Container Geometrical Dimensions  
Besides the effects on the container appearance, the geometric dimensions of  the container 

have a major influence on the volume of  the contained food (due to industry regulations) and the 
distribution and packaging of  the container. As food containers are distributed in sales units 
(carry sleeve) and distribution units (e.g., cardboard, wrap-around boxes, film, palletizing, etc.) 
containing 10+ containers, the tolerance of  the geometrical dimensions of  the containers have to 
be limited. Otherwise, it can happen that the containers do not fit on the standard size 
distribution units. This measure is a generic requirement on all produced container types and 
measured as the standard deviation of  the dimensions of  the tested samples. 

H.5.4. Case Study Goals 
The above-described Pilot Project IIa was selected as a case study to validate the feasibility of  

the proposed procedure of  adaptive project control and the decision framework for system 
adaptation. The same project was also applied for the validation of  planning methods for 
adaptive SD projects in Pilot Project IIb described in the next chapter. Thus, the goals of  Pilot 
Project IIa related to this case study were: 
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• The definition of  a hierarchical structure of  system engineering measures for project 
monitoring.  

• The assignment of  these measures to decision points in the project to support decision-
making.  

• The development and evaluation of  a decision framework that helps keep development risks 
under control and capture design opportunities using the system of  measures. 

Figure  H.11 shows the methodological scheme of  the project. Since TetraPak applies the Six 
Sigma quality management philosophy, the terms in Figure  H.11 are part of  the standard Six 
Sigma terminology. Thus, for each term, the definition is provided from a well-known Six Sigma 
website [I-Six Sigma Online Website]. 

The goal of  Six Sigma is to increase profits by eliminating variability, defects, and waste, 
which undermine customer loyalty [I-Six Sigma Online Website]. In the first step of  the project 
schema, historical statistical data is used to determine the characteristics of  the reference 
container volumes though statistical process control (SPC). 

SPC is the application of  statistical methods to identify and control the special cause of  
variation in a process [I-Six Sigma Online Website]. This preliminary data is the main input to 
two further planning activities: (1) “Design of  Experiments (DoE)”; and (2) “repeatability study”. 
During the two analysis activities, different concepts and configurations of  the possible 
transformation process and container types are developed and assessed to determine which 
alternative is the most feasible one to achieve the project goals. 

DoE is a structured, organized method for determining the relationship between factors (Xs) 
affecting a process and the output of  that process (Y) [I-Six Sigma Online Website]. The outputs 
of  the DoE analysis in the case study project are the weighted averages and confidence levels for 
the key characteristics of  both the transformation process and container configurations. This 
information is then used to determine the acceptance criteria for the transformation and 
container configurations. These acceptance criteria can be unique or the same for each 
configuration. Using the defined acceptance criteria, the process capabilities are assessed to 
determine the quality of  each configuration. 

Process capability refers to the ability of  a process to produce a defect-free product or service in 
a controlled manner of  production or service environment. Various indicators are used, some 
address overall performance, some potential performance [I-Six Sigma Online Website]. This 
data is used together with the outputs of  the repeatability study in the next step during 
experimentation and V&V planning supported by a process model. 

Repeatability is the variation in measurements obtained when one person measures the same 
unit with the same measuring equipment [I-Six Sigma Online Website]. During the repeatability 
study, the contribution of  the estimated variability of  the tare weights of  the transformation and 
container configurations to the overall dispersion of  the process data is assessed. High dispersion 
of  the overall data means risk for the final product quality, thus it has to be minimized. 

The outputs of  the process capability analysis and the repeatability studies feed into further 
experimentation and V&V planning steps, the determination of  the hierarchical structure of  
decision support and project control measures, the definition of  the decision structure and the 
definition of  the SD process in the process modeling tool (see Pilot Project IIb). The output of  this 
complex activity is the estimated cost, schedule, and technical performance risk incorporated in 
the planned development project for volumes. 
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The last activity in the methodological schema in Figure  H.11 is where the proposed, new 
decision support methods are implemented. In the scope of  project planning, a decision support 

 
Figure  H.11 Methodological Schema of the Case Study Project 
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framework is defined to support decisions in the course of  the SD project with clear decision 
steps, success criteria, and comparable data from the experimentation cycles. The defined 
decision procedure is a tailored version of  the previously defined decision framework for system 
adaptation in Figure  G.17, and shall provide answers to the following questions in the case study 
raised by the TetraPak project management: 

• Is it possible to forecast, on the base of  the preliminary tests, if  the technical risk concerning 
the performance targets is so high that a revision of  the experimentation plans is indicated? 

• Is there an optimal point of  the change control structure that can be addressed in case of  a 
failure in the later stages of  the development? 

• Which is the optimal decision point to be addressed for certain failures in V&V activity 
results? 

 
Figure  H.12 First branch of the system of measures  
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H.5.5. Definition of the Systems Engineering Measures 
A key component and information source of  the decision framework applied in the case 

study project were the decision criteria represented by a hierarchical system of  systems 
engineering measures. The definition of  such a measurement system helps the developers collect 
and organize project data, connect the low-level raw activity data with success criteria derived 
from high-level requirements and project goals, and thus evaluate the actual state of  the project. 

Furthermore, this system of  measures supports the assignment of  experiments with product 
characteristics, and the definition of  the estimated and documented effects of  an activity on 
certain technical measures. Since TetraPak applies Six Sigma and TQM quality management 
philosophies in the SD projects, the developers were familiar with the Quality Function 
Deployment (QFD) method, where the relationships among customer’s needs, product 
requirements, design parameters and technical performance measures, and SD activities (both 
design and V&V activities at TetraPak) are defined and documented. The Houses of  Quality in 
QFD are key inputs for planning, decision-making and project control and thus the adjustment 
of  the project plans and experimentation cycles to the actual project needs. 

Using the experience from Pilot Project I, the development team at TetraPak defined a more 
detailed measurement system for Pilot Project II. The first branch of  this structure is depicted in 
Figure  H.12. The three main KPPs on the top of  the structure that represent the main system 
objectives (“container tare weight”, “container appearance defects”, and “container geometrical dimensions”) are 
broken down into further technical measures (MOPs) and these further into TPMs. Figure  H.12 

 
Figure  H.13 Second branch of the system of measures 
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shows the hierarchy of  measures for the KPP “container appearance defects”. MOPs for this measure 
are “severe” and “light damages” on the container. The likely damages in both categories had been 
documented and classified in previous company projects and thus the definition of  TPMs could 
be done using existing company data. Further, the V&V activities suitable to verify the design and 
find the certain types of  failures can be selected this way.  

The lowest hierarchy level of  the structure of  the measures is the data to be provided by the 
experiments and mainly the V&V activities in the SD process throughout the project. Since at the 
end of  each of  the four main TetraPak SD lifecycle phases the same project goals were verified, 
the success criteria at each phase were also the same. It means that the same kind of  information 
was needed from the key V&V activities in the SD process in each phase while evaluating the 
different representations of  the design in the different phases (e.g., requirements, function 
models, virtual prototypes of  the design, physical subsystem and system prototypes, and final 
system assembly) to fulfill the same phase objectives. That is, the main deliverables at the end of  
each SD phase had the same content, but were different in maturity, in the level of  detail, and in 
the type of  representation. 

 
Figure  H.14 Third branch of the system of measures 
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During project planning, the competencies had to make sure that in each phase, design and 
V&V activities with similar purpose, but different characteristics were planned to cover the same 
design aspects and ensure the required maturity of  the system delivered by the phase. This is 
indicated in Figure  H.12, where V&V activities with similar purpose, but growing fidelities are 
planned for each phase based on the technical measures and the activity data outputs. Thus, the 
measures support experimentation planning by providing an overview on the required and 
planned V&V steps to fulfill the goals of  each lifecycle phase in the project. 

The measures structure in Figure  H.13 shows the second branch of  the overall system of  
measures. The logic is similar here to the first branch; however, the measures are different. The 
examination of  the “geometrical dimensions of  the food containers” produced by the packaging line 
requires experiments and V&V activities that are different from the verification of  defects. The 
activities here involve computer modeling and the creation of  digital and physical mock-ups that 
ensure that the dimensions of  the packages are within the tight tolerances. 

The third branch of  the measures system is depicted in Figure  H.14 showing how the 
parameter “container tare” can be broken down into further measures and linked to V&V activity 
outputs. Two main aspects of  the overall container weight are the “pure tare weight” and the “weight 
of  the food” filled in the package. Both measures were verified in various representations of  the 
product including preliminary calculations and simulation, digital mock-ups, preliminary and final 
prototypes, and industrialized products. The lowest level of  the measures structure indicates the 
experiments and V&V activities required for the complete verification. 

H.5.6. Definition of Milestone Criteria 
Similarly to Pilot Project I, the step following the establishment of  the measurement system in 

Pilot Project II was the definition of  parameter based milestone criteria for each milestone. In 
order to support deliberate decision-making at the milestones, the milestone criteria included the 
target values for the relevant decision measures and the impact functions showing the 
consequences of  the deficiencies of  the actual values from the targets.  

The target values for the programmatic parameters and one main technical MOP are depicted 
in Figure  H.15. The profiles of  planned project cost and duration show that the largest amount of  
the SD work was planned for Prototype Development, where the design was implemented in 
hardware components and integrated in a functioning system. Furthermore, as the third chart 
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Figure  H.15 Target profiles in Pilot Project II 
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indicates, the package dimension “width” evolved steadily throughout the SD process, and the 
milestone targets were planned to reach the final requirement value only at the end of  the SD. 
This is usually the result of  the iterative experimentation strategy at TetraPak, where developers 
attempt to maintain continuous performance evolution even across SD phases, instead of  trying 
to reach the final values right in the beginning of  the project. They could afford this in the pilot 
project, because they were familiar with the product and they effectively utilized documented 
generational project knowledge and experts’ experiences. Further, the separated technology 
development projects delivered the SD with mature technologies that reduced technology risk. 
That is, the knowledge-driven SD system at TetraPak accommodates uncertainty and allows 
timely decisions on the key design aspects. 

The impact functions in Figure  H.16 and Figure  H.17 depict another characteristic of  the 
TetraPak pilot project. Considering the forms of  the impact functions, the results of  an SD phase 
can be assigned to three basic categories. In all three cases, the impacts refer to the cost of  
corrective actions to meet the phase targets and reduced profit due to later delivery or higher SD 
cost. 

The first case (indicated by 1. in Figure  H.16 and Figure  H.17) is when the actual performance 
met the target values, the milestone criteria was achieved without concerns, and thus the phase 
goals were fulfilled. This means green light for the project performance aspect.  

In the second case (2.), between the target value and second inflection point of  the impact 
functions, the milestone criteria were not fulfilled, but the actual values are close to the target. 
This case can have twofold consequences based on the values of  the parameters in the three 
quality areas (i.e., project cost, schedule and product technical performance). In case of  technical 
performance deficiencies, further work in the design area has to be done in either the actual or 
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Figure  H.16 Impact functions for package width in Pilot Project II 
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the next phase. If  the programmatic aspects allow it, the failures can be corrected in the actual 
phase through rework. However, if  the programmatic aspects are also in a critical state, the 
technical performance areas move to the focus of  the project, and extra resources in the next 
phase are allocated to improve the inadequate performance areas. Thus, the first parts of  the 
impact functions represent the yellow light areas of  project performance.  
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The third part of  the impact functions with a high gradient (3.) refers to a rather undesired 
situation in SD, meaning that one (or more) project performance area is (are) at high risk. If  the 
TPMs are in red, this means that some basic failures were included in the design that could not be 
caught in the previous phases. Red light in a technical performance area usually means the 
repetition of  complete phases to reduce the possible loss of  the company reputation towards the 
customers. In such cases, the only goal is to deliver the desired product with the required 
performance at any price to keep the customer. Such situations are quite rare at TetraPak. 

H.5.7. TetraPak SD Project Structure and Logic 
The structure of  V&V activities in the measures system has already indicated the logic of  

TetraPak SD projects. However, it is important to take a deeper look into it and understand this 
logic. Figure  H.18 shows the four standard TetraPak SD lifecycle phases. In the first two phases, 
the project is defined, and then the design of  the developed system is conducted on system and 
subsystem level. Due to the previously described key requirements of  the case study project, 
effective cooperation was required between raw material manufacturing and container production 
in the pilot project. Raw material manufacturing had a main contribution to the quality of  the 
final product, since the characteristics of  the raw material realized during the material 
manufacturing process significantly affected the fulfillment of  the final product requirements. 
Thus, one of  the key verification goals was to evaluate the different types of  raw materials 
suitable for the project and provide reliable information for the decision on the best material for 
the project. 

 During system design, usually different design concepts are developed and evaluated in 
parallel against the requirements represented by the defined assessment criteria. In the case study, 
the design concepts developed during Concept Development included configurations of  different 
types of  raw material and transformation processes. On the one hand, the possibilities to 
improve existing types of  raw material were to be evaluated, and their behavior with existing or 
improved transformation processes was planned to be assessed. On the other hand, the analysis 
of  the development of  new types of  raw material was planned to fulfill the improved product 
requirements. The assessment of  these new types of  raw material in the transformation process 
environment was also planned. 

During Concept Development, the main task was to generate and evaluate various design 
concepts and select the best one(s). At the end of  the second phase, at Milestone 2 (MS2), a key 
decision was to be made regarding the design of  the system. At MS2, the project team makes a 
commitment towards the stakeholders to realize the developed design in a system that satisfies 
the customer’s needs. Usually at this point of  time only one design concept exists, but in some 
cases, where more than one design is still feasible, the decision can be kept open and the team 
can continue working with two design alternatives. However, the SD team has to be sure that the 
design(s) are capable of  fulfilling the defined customer’s needs and product requirements. 

Hence, the most important task in the first part of  the SD project ending with MS2 is to 
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Figure  H.18 Generic TetraPak SD lifecycle phases 



150  

define realistic requirements that satisfy the customer’s needs, and to develop a robust design that 
is capable of  fulfilling the requirements. As Table  H.2 shows, the requirements are frozen at the 
end of  the Concept Development phase. Thus, a key V&V goal for the first part of  the project is to 
verify that it is possible to realize the defined requirements in a feasible design, and validate that 
the defined requirements fulfill the needs of  the customer. In case there is residual technical risk 
in the project after the commitment at MS2, it can lead to quite costly design changes that could 
jeopardize the outcome of  the whole project. 

Therefore, the important strategy aspects of  this case study project were (1) to reduce 
uncertainty in the first part of  the SD to the desired level through identifying suitable V&V 
activities; (2) organize these activities in effective experimentation cycles; (3) define correct 
success criteria for the experiments; and (4) implement a decision support framework that 
highlights the major design problems and helps define a way to correct them. 

One main trait of  experimentation cycles in similar TetraPak SD projects is that the sample 
sizes for the prototyping activities gradually increase in each phase. Thus, during preliminary 
testing during Concept Development, a rather small sample size of  20 is taken. At TetraPak, testing is 
often considered an exam that must be passed, and in case of  a failure (e.g., 1 incorrect result out of  
20), usually small adjustments are made on the system under experimentation, and the test is 
repeated. Due to the small sample sizes, it happens often that retesting provides a positive result 
(0/20 defects) and the SD project continues after a successful test.  

However, a main concern at TetraPak is that a small adjustment on the system during 
experimentation often does not correct the design problem, and the test results are only good 
due to the low test fidelity and the small sample size. In case, a design failure caused the errors 
during preliminary testing, the V&V activities in the experiments during Prototype Development 
might find the failure, However, in case of  an insignificant number of  defects during testing (e.g., 
2/300) it might happen that the failures disappear again after small adjustments on the tested 
system. Since experimentation and V&V are considered as examinations that the tested system 
(and the test team) has to pass, adjustments are made until the system passes the test (0/300). 
The problem becomes quite significant if  the design failure remains in the product after the 
adjustments, and it is only found in the Product Qualification phase, where 3x3000 samples are 
taken. A failure found in this part of  the project can have fatal consequences for the project.    

Hence, a main goal in the case study project was to increase the effectiveness of  learning 
during early V&V and foster the better analysis of  V&V activity results. Due to the immense 
consequences of  late failures, the effects of  failures found during preliminary testing had to be 
evaluated and the causes thoroughly analyzed. Even if  this analysis costs extra time and money, 
the effort invested in early SD is always cheaper than rework at the end. Furthermore, the success 
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criteria of  the experiments during Concept Development had to be set more strictly, so that the 
failures found became the required attention, and the correction actions were not restricted to 
small adjustments, but covered all relevant design aspects. These aspects of  the case study are 
discussed in detail in the description of  Pilot Project IIb in a later section. 

Now, after the description of  the case study and definition of  the systems engineering 
measures, the decision support framework to evaluate the data provided by the V&V activities in 
the experimentation cycles and decide on the further track of  the project is described in the next 
section.  

H.5.8. Definition of a Generic Decision Support Framework  
The previous section came to the conclusion that experimentations drive the success of  SD 

projects at TetraPak, and the results of  these experimentations can be linked to technical and 
managerial measures to control the achievements of  the projects and compare these to the plans.  

The next step of  the case study was to analyze the company decision-making procedures and 
determine how a parameter-based decision support system can be implemented at TetraPak. The 
analysis had three main findings: 

• Though at TetraPak V&V activities delivered vital inputs for decisions at different hierarchy 
levels of  the project, a standard generic decision support framework did not exist that could be tailored 
vertically to the various hierarchy levels of  decision-making and horizontally to the various phases of  the 
evolving SD process. 

• Experimentation strategy and V&V results had crucial impacts on product and process 
changes and thus rework actions during decision-making. The use of  the system of  systems 
engineering measures implemented in both Pilot Project I and II supported this decision-
making procedure by providing transparency on the state of  the development work and 
maturity of  the design. However, the analysis found a lack of  instructions or guidelines how these 
measures could be used to support decision-making. 

• Decisions after experiments could be made on the basis of  the estimation of  risks and 
opportunities calculated from the difference of  the activity outcomes from the success 
criteria (i.e., target values) and the impacts/benefits of  these differences. Systems engineering 
measures and design parameters could be used to facilitate effective decision-making, because 
the measures fostered the identification of  problem areas and the estimation of  risk and 
opportunity regarding the quality of  the product and the programmatic constraints (cost and 
schedule). Furthermore, the development of  a method was required to link design failures and their causes 
with the certain part of  the design process where the failures were committed. Such a method would have 
fostered deliberate failure correction through the identification and implementation of  
effective corrective actions. 

Based on these findings, a decision was made to apply the adaptive SD framework proposed 
in the last section and tailor it to the TetraPak SD process needs. The result, the systematic 
decision-making framework is presented here. 

H.5.8.1. Description of the Decision Support Framework 
During the case study in Pilot Project IIa, four levels of  decision-making were identified in a 

general TetraPak SD process, i.e., the Test Method level, the Project Level, the Milestone Review Team 
Level and the Toll Gate Level. These are the four hierarchy levels, where decisions in the SD 
process concerning the results of  V&V activities and experimentation cycles are made. In the 
following part, the documented and improved decision procedures are demonstrated for each 
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level, including the embedded block(s) of  the previous level(s). Furthermore, the decision scope, 
the evaluation criteria, the stakeholders, the general results, and the method of  risk assessment 
are described for each level. The described decision support framework follows the structure of  
the control loop of  the adaptive SD framework and assigns the relevant decision-making steps to 
different hierarchy levels of  the project. This way, the four single steps of  the generic control 
loop were transformed into a complex decision support procedure covering all aspects of  project 
control. 

H.5.8.1.1. Test Method Level 
This lowest level of  decision-making involves informal decisions on the validity, completeness, and 

correctness of  the results (i.e., if  the test procedure has been implemented properly and the result is 
comparable with the referenced type of  test). Decisions on this level are based on highly 
standardized procedures.  

Test Methods Level decisions are made immediately after the V&V activity by test engineers 
using raw V&V activity data or post-processed data to decide if  the experiment was performed 
correctly and if  the V&V activity was done according to the test procedure. In case of  
dissatisfactory results, mainly retesting and sometimes rework on relevant design activities is 
done. The need for failure correction and thus rework can be discovered at an early stage by 
showing the discrepancies of  the V&V results from the success criteria. The amount of  rework 
can be reduced if  V&V activities are scheduled optimally and decisions are supported by clear 
success criteria. 

The main stakeholders of  the decision are test executors, the laboratory support, and eventually 
suppliers and consultants.  

As Figure  H.19 shows, the scope of  change actions on this level is limited to the repetition of  
the V&V activity, sometimes together with the related experiment. The cause of  this rework action is 
usually the incompleteness, insufficiency, or incorrectness of  the measured raw test data, i.e., the V&V activity 
was not performed adequately or the results are not sufficient for further analysis. The main 
success criteria for good V&V results are data completeness, relevance, and comparability. That is, the 
evaluation of  the raw data is possible because enough data are gathered with the required level of  
quality. Thus, the V&V results can be forwarded or communicated to the involved stakeholders 
to make a technical decision on the maturity of  the design based on the contents of  the raw 
V&V results. 

In case a decision was made to repeat a V&V activity, adjustments are made to increase the 
quality of  the activity outcomes. These adjustments can be made on either a trial-and-error basis 
or by using the design of  experiments method (DoE). During experimentation and V&V planning, 
the suitable method to conduct the test is assigned to the V&V activity. This decision can be 

 
Figure  H.19 Decision procedure for the test method level 
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revisited here, and the method can be changed during the adjustment of  the activity. 

Systems engineering measures from level 4 (raw test data) and 3 (TPMs) are applied as success 
criteria on this decision level (see Figure  G.9 for the levels). During the definition of  the success 
criteria, historical project data is used to define the values to be achieved using statistical methods. 
If  the measured raw data (level 4) are directly applied in the decision-making procedure, the goal is 
to decide if  the evaluated product properties represented by low-level TPMs or raw V&V activity 
data are achieved / minimized / maximized, e.g., estimated mechanical efficiency of  the product 
derived from (estimated) mean time between failure (MTBF) and mean time to repair (MTTR). 

In other cases the raw V&V activity data is processed on a hard, statistical, or empirical basis 
to generate aggregated measures describing the quality of  the product, e.g., fraction of  successful 
food container openings according to the specific TPM = xx.x% with a worst case + xx.x + x.x%  
at 95% confidence level. 

This decision is made under high uncertainty, which is usually compensated by planning 
higher amounts of  resources than required. As not the quality or performance of  the design, but 
the quality of  the V&V activity results are evaluated and a decision on the fulfillment of  the 
activity exit criteria is made, it is not a risk-based decision.  

H.5.8.1.2. Project Level  
In case the success criteria in the Test Method Level are fulfilled and the data from the 

experimentation cycle is sufficient and correct, decision-making proceeds to the next level, to the 
Project Level (Figure  H.20).  

The decision on the Project Level is done by the V&V activity responsible and/or project 
manager after one or more V&V activities or a block of  strongly coupled SD activities. This kind 
of  decision is a lower level formal technical review on the performance and maturity of  the subsystem or system 
design. The goal of  such decisions is to assess the design progress at preliminarily set event-driven 
points in the system lifecycle [DoD 2001a]. Technical reviews are done after each main block of  
activities and major stage of  development to check design maturity, and review technical risk to 
decide whether and how to proceed to the next stage of  development. 

Whereas the previous decision on the Test Method Level evaluates the quality of  the activity, 
this decision assesses the performance and maturity of  the design. During the decision, a set of  
evaluated V&V activity data is compared to the requirements to determine the state of  the design 
regarding the fulfillment of  the requirements and decide if  the goals of  the sub-process (or 
experimentation cycle) are fulfilled. A decision is made on the basis of  previous project 
experience after assessment of  historical and standard project documents. 

This technical decision is limited to the verification of  a specific area of  product quality or 
technical performance. Thus, relevant measures for this decision are basic, critical (sometimes 
aggregated) TPMs from level 3 and higher-level aggregated measures from level 2 of  the 
measurement system. 

In case critical aggregated measures from level 3 are applied, the stakeholders of  the decision 
decide if  the specific property/sub-group is built right. That is, it is assessed if  the specific 
property was achieved by the design. A typical measure from level 3 is nutritional properties 
preservation, consisting of  a set of  related measures from level 4 and 3. 
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As this level of  decision evaluates a subsystem or a system, high-level technical performance 
measures from level 2 play the key role for the assessment of  the design. The state of  the critical 
high-level product requirements represented by these measures are evaluated to decide if  the 
required system performance level is attained, and thus technical risk was reduced to an 
acceptable level. Hence, the result of  this decision is a yes/no answer. The evaluation considers 
international, external, internal, and quantitative quality criteria. A typical measure used as a 
success criterion is the maximum percentage (x.xxx %) of  defective packages per test. 

The desired outcome of  this decision is the assurance that technical risk is controlled and 
mitigated and the performance measures describing the key properties of  the product (e.g., 
packaging line) are under control. 

 
Figure  H.20 Decision procedure at the Project Level 
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As Figure  H.20 depicts, the scope of  the decision is the block(s) of  activities ending with the 
technical review. If  the exit or success criteria are not fulfilled, i.e., the required design maturity 
was not achieved, the review team determines which requirements and product properties are 
affected and identifies the causes for the lower performance. In some cases, particularly during 
development of  new products, the causes are hard to find, and thus the whole design has to be 
reviewed and thorough design evaluation has to be performed to identify the problems and 
causes. Good failure documentation, product modeling and simulation, and parameter-based 
process modeling support failure tracing. 

Once the causes of  inadequate design performance have been found, the decision-makers 
determine if  the performance requirements can be achieved in the scope of  the current 
methodology, existing technologies, and resource constraints of  the project. If  it is possible to 
fulfill the exit criteria through small adjustments in the plan (e.g., through iteration and rework), 
then modifications in the plan are made and rework is done. In case major changes are required 
or the resources are insufficient for the change, a decision on the next decision level has to be 
made. The results of  this decision are well documented in a set of  standard report documents, 
which are then added to the project knowledge repository in the Intranet at TetraPak. This way 
the reports are available on-line for the competent persons and stakeholders. 

H.5.8.1.3. Milestone Review Team (MRT) Level 
The review team for the main milestones of  the project evaluates the overall quality and 

technical performance of  the system design. This decision is a preparation for the Toll Gate Level 
decision, where the management decides if  the project can continue or further rework in the 
problem areas have to be conducted. 

The MRT Level decision is a global technical decision on the overall technical performance of  the design. 
Thus, the success criteria are the full set of  level 2 measures (MOPs). Measures from lower levels 
are also considered to trace problems (deficiencies between target and measured performance in 
the key areas represented by the MOPs and TPMs) back to their roots. For example, the 
packaging solution is technically compliant with international/external and internal regulations. 
That is, it fulfils all the “basic” properties of  the design, e.g. a package contains and protects the 
product, it can be opened and closed, and it must be sold and stored on a market shelf. 

This decision is a mere risk-based decision considering the discrepancies of  the values of  the 
design parameters from the performance requirements. The overall system is analyzed, and risk 
incorporated in the quality aspects is highlighted using color indicators for the MOPs and TPMs. 
Technical performance risk (red – yellow – green; critical – intermediate – passed), based on the 
difference between the measured and the required values and consequences, is classified into the 
three categories. The three categories were discussed in detail before when the three parts of  the 
impact functions were explained.  

Red means that there is no suitable technical alternative to solve the problem with the 
achieved product maturity, thus one or more of  the previous phases have to be performed again. 
Yellow means that the design aspect is in a critical status, i.e., change in the design or technologies 
can provide a feasible solution and the problems can be corrected through rework. Green is 
assigned to a technical performance area if  the success criteria were met. Based on the 
determined risk category of  the TPMs, decisions are made on the required rework actions and 
the affected activities / activity blocks / sub-processes / phases. 
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Figure  H.21 Complete decision procedure 
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Figure  H.21 shows the MRT level decision process in the context of  the complete decision-
making procedure. The task of  the MRT is to support the highest-level decision makers at the 
toll gate with evaluated information on the technical performance and maturity of  the developed 
system. This procedure includes the evaluation of  both risks and opportunities considering the 
possible technical outcomes and resource needs of  the SD process. 

• Opportunities: In case the experimentations in the actual SD phase deliver results that exceed 
the required product performance, it is possible to utilize this opportunity and improve the 
overall value of  the system through the improved features. If  the phase results show possible 
improvements concerning the requirement values, the MRT analyzes the related technical 
opportunities. Furthermore, the benefits and costs of  the development of  a product that 
exceeds the requirements are estimated. After the thorough evaluation of  the opportunities, a 
decision on the utilization can be made at the toll gate level. Technical opportunities found in 
the early SD might be utilized in the same project, or in case of  low resources or late 
discovery, the opportunities can be transferred to R&D or technology development projects 
for further assessment. Since TetraPak performs separate technology development projects, it 
is rare that improvement opportunities are found in SD projects. However, it is also true that 
the decision culture has not yet included this kind of  design evaluation (i.e., opportunities 
were not sought before). Thus, the inclusion of  the two new tasks (with dashed lines in Figure 
 H.21) in the MRT decision procedure reduces the risk of  overlooking an improvement 
possibility, and it creates a sound environment for innovation.  

• Risks: technical risk means the inability of  the design to fulfill the stated product 
requirements. The main causes of  technical risk are insufficient design performance due to 
design failures. V&V activities support the evaluation of  the design if  it fulfills the product 
requirements and the identification of  design failures that contribute to the unsatisfactory 
quality.  

During the MRT meeting, the decision makers determine the actual risk and opportunity 
status, evaluate improvement options (including costs and benefits), and make recommendations 
on the further advance of  the project considering technical achievements and risk areas. The 
prepared alternative change proposals are the main inputs for the managerial decision during the 
toll gate level. If  none of  the change proposals is feasible, the MRT continues working until a 
feasible strategy is developed. This work involves strong communication with the project 
management, who are the stakeholders of  the recommendations of  the MRT. 

Milestone review procedures use data from both the V&V activities and previous decisions in 
the project. Thus, the systematic planning of  information flow between different decision points 
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Figure  H.22 Vertical and horizontal dependency of decision points 
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in the various hierarchy levels (Figure  H.22) and the integration of  the milestone structure with 
the experimentation strategy and the systems engineering measurement process facilitates the 
decisions in the following: 

• It provides clear traceability of  causes and effects of  technical performance discrepancies in 
the product development process. 

• It supports the identification of  the activity blocks to be repeated on the basis of  the risk 
categories of  the decision measures and the effected product characteristics and 
requirements. 

• It fosters the estimation of  the amount of  required change effort based on the parameter 
risks and effected activity blocks. 

H.5.8.1.4. Toll Gate Level 
This is the highest-level decision with the main goal to approve the decision proposed by the 

MRT based on managerial aspects. This decision, also called milestone decision in the INCOSE 
community, is made by the project management considering critical, high-level technical and 
programmatic aspects of  the project. 

The goal of  this decision is the validation of  the developed system and the examination of  
the feasibility of  the project plan. That is, the management and external stakeholders decide if  
the product will maximally fulfill the satisfaction of  the customers (i.e., if  the right product is 
built). The success criteria for these decisions are strictly formalized. The recommendations of  
the MRT have to cover every important aspect of  the criteria to facilitate the transparency during 
the decision. 

Measures that build up the success criteria are mostly from level 1. These Measures of  
Effectiveness or Key Performance Parameters represent the most critical system performance 
needs from the customer viewpoint. Further evaluation measures are project cost and duration, 
and their estimated impact on the end-product cost and profitability. Examples: (1) cost/xxxxx 
packages, (2) Overall Equipment Efficiency (OEE), (3) market segment specific KPPs. 

Typical success criteria for the measures for this decision are:  

• the packaging solution allows a reduction of  10% in cost/xxxxx packages based on the 
market request  

• the assessed OEE complies with the levels furnished by the company to the customers 

• the packaging solution is highly reliable according to the nutritional properties’ preservation 
because it is applied for infants or nutriceutical products  

The risks and opportunities concerning the global technical and management measures are 
categorized on the basis of  market-specific medium and long-term global economic estimations. 
That is, during the decision, the economic value of  the current design is estimated and compared 
to the strategic plans of  the company. The objective of  this decision is to maximize the value of  
the design based on existing and estimated, product and project related, technical and economic 
knowledge. 

According to the recommendations of  the MRT, two basic decisions are made at this level: 



159  

• Based on the achieved technical performance of  the design, the area managers decide if  the 
achieved and planned technical maturities of  the design are consistent. Based on the 
evaluations and recommendations of  the MRT, deficient technical areas requiring further 
improvement are identified and decisions on rework actions are made. The level of  risk 
indicated by the color of  the traffic light symbol assigned to the relevant design parameters 
designates criticality of  the discovered problems and the amount of  rework required. 

• If  fundamental technical problems are found, i.e., if  one or more KPPs are in red, major 
changes in the project have to be made. This usually means that the toll gate criteria were not 
achieved and the project cannot proceed to the next stage. Now, the task of  the project 
management and MRT is to find a feasible solution to the problems and save the project. In 
such situations, change proposals are generated by the MRT to focus on the problem areas 
with all available resources and reduce risks to the level that the toll gate can be passed. The 
management then evaluates the change proposals. The main goal of  the management for 
such decisions is to find the most effective and efficient solution that improves the product to 
the required performance level. 

TetraPak 
decision name Test method level Project level MRT level Toll gate level 

INCOSE 
nomenclature  

Informal reviews 
with 

standardized 
procedures 

Formal technical 
review on the 

subsystem level 

Highly formal  
technical review on the 

system level 
 Milestone decision 

Purpose 

Demonstrate 
completeness of test 
and correctness of 
results  V&V 
activity quality 

verification 

Demonstrate 
performance and 

maturity of design 
and decide on 
rework  sub-

system level 
verification 

Demonstrate overall 
design quality and 
performance and 

prepare 
recommendations for 
the toll gate  system 

level verification 

Accept / discuss 
fulfillment of  high-
level managerial and 
quality measures  

system level 
validation 

Product 

Validity, 
completeness of the 

V&V activity 
results 

Fulfillment of the 
performance 
targets of the 

evaluated block 

Global technical 
maturity of the product 

incl. identified 
technical risk areas 

Global system and 
project validation 
from managerial 

viewpoint 

Decision Retest or small 
amount of rework 

Rework on the 
evaluated block of 

activities 

Color indicators for the 
technical measures  
identification of the 

areas of improvement 
and rework need 

Go – no go decision 
on the possibility to 
proceed to the next 

project phase 

Scope V&V activity or 
experiment 

Block(s) of 
activities, sub-

system (or system) 
level of the 

product 

Lifecycle phase, 
system level of the 

product 

Overall project and 
related parallel 

projects 

Evaluation 
Criteria 

Level 3 and 4, e.g., 
fraction of 
successful 
openings, 

mechanical 
efficiency 

Level 2 and 3, e.g., 
nutritional 
properties 

preservation,  

Level 2, 3, and 4, e.g., 
number of defective 

packages  

Level 1, e.g., 
Cost/xxxxx 

packages, overall 
equipment efficiency 

Stakeholders 

V&V activity 
executors, 

laboratory support, 
suppliers, 

consultants 

V&V activity 
responsible and/or 
project manager 

Milestone Review 
Team and project 

manager 

Area  management 
and project manager 

  
Table  H.3 Summary of the characteristics of the decision levels in the decision support procedure 
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The scope of  the decision concerns the entire project considering also the state of  other, 
parallel projects. At this level of  decision, the stakeholders require a compact, high-level view on 
the state of  the system under development. Management attention has to be drawn to the main 
achievements and deficiencies in the project. The decision on further actions, including system 
change proposals can be facilitated by the evaluation of  required investments, provided benefits 
and added risk. 

The actual state of  the development process can be easily captured by highlighting the risks 
and opportunities incorporated in the development system (product, process, organization and 
goals), together with their costs and benefits. The calculation and visualization of  the value added 
through changes is an effective tool to make the effectiveness and efficiency of  further actions 
transparent and obtain management attention for these actions. 

H.6. CHAPTER SUMMARY 

This chapter introduced TetraPak Carton Ambient, a global player in the food packaging 
industry. The most important products, the SD and V&V environments, and the company 
culture were introduced to understand every important aspect of  the case studies in this thesis. 
Furthermore, this chapter showed how parameter-based project monitoring and risk- and 
opportunity-driven decision-making was implemented in Pilot Projects I and IIa. The procedure of  
adaptive project control from the previous chapter was tailored to the TetraPak SD context, and a 
decision support framework was defined that facilitates decision-making on process adaptation. Four 
levels of  project control were identified, where the decision support framework introduced a 
procedure for project control and adaptation, and described every important characteristic of  
decision-making (see Table H.3). This comprehensive decision-making model assists project 
planning for the definition of  the structure and criteria of  decision points in the project; and it 
supports project control by comprising the required aspects for and the best way to make a 
decision.  
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I. WORKFLOW-DRIVEN PROCESS MODELING – THE VVT 

PROCESS MODELING PROCEDURE AND TOOL 

I.1. CHAPTER ABSTRACT 

This is the first of  four chapters on process modeling, an 
effective tool for project planning. The four chapters present the 
way from traditional network techniques, over workflow-driven 
process modeling—representing the state-of-the-art in the 
industry—to workstate-driven methods that might be the next 
generation of  project planning tools.  

Two parameter-based stochastic process modeling methods are described and validated in the 
next four chapters to illustrate the difference between conventional, workflow-driven, and the 
novel, adaptive, workstate-driven approaches for project planning. The VVT Process Modeling 
(VVTPM) procedure and tool developed and implemented in an industry environment in the 
SysTest project is presented in this chapter. 

I.2. HISTORY OF PROCESS MODELING 

The goal of  project planning is to facilitate the accomplishment of  the project work and thus 
support the generation of  deliverables desired by the customer. The more sophisticated the 
product to be delivered as output of  the SD project is, the more important it is to support the 
smooth cooperation of  the different functions involved in the project by adequate plans.  

Project planning establishes a network among the subsystems of  the ZOPH+T enterprise 
model, associates the relevant elements of  the different areas with each other, and organizes 
these in a system that continuously receives inputs from its environment and transforms them 
into outputs that generate value to the society. This system (i.e., the SD project) represents a 
complex undertaking with a certain objective. The system objective describes a future state of  the 
world that is different from the state of  the world in the beginning of  the system operation. The 
difference between the two temporally different states of  the world is often called a problem 
[Sterman 2000, Haberfellner et al. 2002], and the job of  the project as a system is to solve this 
problem under the constraints defined by the capabilities of  the SD enterprise.  

 
Figure  I.1 Partitioning of the innovation work into activities 
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The problem-solving effort in an SD system is usually partitioned into smaller tasks to 
organize innovation work effectively and efficiently [von Hippel 1990]. The tasks or activities an 
SD project is broken down into, enable the distribution of  problem pieces among the members 
of  the SD organization to solve these in a systematic manner (Figure  I.1). The network containing 
the logical sequence of  the problem-solving tasks that produces results of  stakeholder value is 
the SD process. The activities representing smaller parts of  the process are accomplished by people 
from the organization system, using methods and tools from the technology system, and they 
produce results that give the product system according to the goal system. Thus, the SD process 
is the backbone of  the SD system, which holds it together and describes the intended behavior 
of  the system over time. 

The fitness of  the SD system behavior is described by the performance (i.e., effectiveness and 
efficiency) of  the SD process. Thus, the success of  an SD project depends on the technical 
performance of  the delivered product, and the timeliness and resource consumption of  the work 
conducted to develop the product. The elements of  a process and their pattern of  interaction 
define the process architecture [Browning & Eppinger 2002], which is an important process variable 
[von Hippel 1990]. While diverse SD process architectures consist of  different process elements 
that are organized in different patterns of  interaction, they behave differently and have different 
process characteristics (e.g., performance of  the delivered product, cost and duration). Thus, the 
main goal of  project planning is to find the SD process architecture that maximizes the fitness of  
SD system behavior. That is, the task of  project planning is to partition the innovation work into 
a network of  activities that allows the fulfillment of  the project objectives with maximal 
effectiveness and efficiency.  

The selection of  the best process alternative for given objectives requires the understanding of  
the process [Whitney 1990]. Thus, project managers need a tool that facilitates the description 
and exploration of  the SD process space and fosters the adequate definition and sizing of  the 
required SD activities and process deliverables. Process modeling supports these efforts by 
representing the SD work as a network of  SD activities that consume deliverables of  previous 
SD activities and produce deliverables for subsequent SD activities.  

The two basic building blocks of  conventional process models (i.e., process elements and 
deliverables) make it possible to describe every process. The process elements (first drawing in 
Figure  I.2) represent any package of  work that produces an output or result [Browning 2002]. To 
deliver the intended output, the process element requires inputs for its work. How inputs are 
transformed into outputs depends on the attributes and functions of  the process elements. These 
two characteristics describe the capabilities of  a certain process element.  

The deliverable elements are the inputs and outputs of  the process elements representing 
artifacts (e.g., information, documents, material, models, prototypes, drawings, decisions, etc.) that 
process elements produce as output and consume as inputs (second drawing in Figure  I.2). The 
transfer of  deliverables represents the information flow among process elements and thus defines 
the logical structure of  the process. 

The first attempts to support project (and program) management by model-based planning 
approaches that consider the project as a network of  activities and deliverables developed various 
process representations. Two of  the most common ones are the Precedence Diagramming Method 

 
Figure  I.2 Basic process representations (adapted from [Browning 2002]) 
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(PDM), also known as Activity-on-Node (AON) method, and the Arrow Diagramming Method (ADM), 
or the Activity-on-Arrow (AOA) framework depicted in Figure  I.2 [PMI 1996]. While PDM uses 
nodes to represent the activities and connects them with arrows that show the dependencies (first 
drawing in Figure  I.2), in ADM arrows stand for activities, and nodes for deliverables (second 
drawing in Figure  I.2). In both frameworks used for process sequencing or scheduling, the most 
important process attribute is activity duration denoting the time required to conduct a certain 
activity.  

Due to the restricted availability of  ADM for schedule analysis (it supports only finish-to-
start activity dependencies) and the technical difficulties with ADM modeling (it may require the 
use of  dummy activities to define all logical relationships correctly), most of  today’s process 
scheduling techniques and tools use PDM representation. Another reason for the broader 
application of  PDM is that the project management goal of  project scheduling is to transform 
the activity network into an operating timetable that supports project monitoring and controlling 
[Meredith & Mantel 2003]. In this sense, deliverables are of  secondary importance representing 
only the dependencies among activities. 

To support project scheduling, the first process modeling methods had twofold requirements: 
(1) Define the logical sequence of  activities in the SD process; and (2) determine the required 
time (i.e., process duration) to finish the SD work assuming that the modeled network of  SD 
activities delivers the product desired by the customer as final output. Based on the input 
requirements and output products, the project manager was able to determine the precedence 
relationship among SD activities from the project WBS and organize them into a network. This 
way, the decomposed project could be integrated into a network model and the key process 
characteristics could be analyzed. 

Process analysis techniques like the Critical Path Method (CPM) and the Program Evaluation 
and Review Technique (PERT) were developed and applied to identify the process elements with 
the highest contribution to the overall process duration and to compute the required time to 
finish the project. Through mathematical analysis, network methods calculate the range of  
possible start and finish dates for each SD activity. Once this is complete, the chain of  dependent 
activities which has the longest total duration is identified and designated as the critical path. Any 
activity along this path that starts late or takes longer than planned lengthens the whole project 
schedule. 

Both CPM and PERT calculate the critical path of  the project; however, while CPM works 
with deterministic process attributes, PERT requires the definition of  three point estimates for 

 
Figure  I.3 AON network diagram and Gantt chart of a project 
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the possible duration of  each process element to use these values to estimate the expected total 
duration of  the process elements on the critical path [e.g., Igenbergs 2000]. Regardless of  the kind 
of  method applied for process analysis, the results of  network techniques (i.e., the structured 
process schedule) are usually translated into a master schedule in a graphical format easy to read 
and interpret for project managers.  

The Gantt chart representation of  an activity network is the most important tool of  a project 
manager for the tracking and controlling of  the project schedule. The AON network and Gantt 
chart view of  a project is depicted in Figure  I.3. The bars in the Gantt chart represent the 
activities, where the length of  a bar is the linear function of  the activity duration. The activities in 
grey are on the critical path, so a deviation in the duration of  these activities from the planned 
value affects the total project schedule. On the contrary, the activities in white are with slack, so 
these process elements can be somewhat delayed without lengthening the project completion 
time. 

The main task of  process scheduling is to minimize the overall duration of  the project, 
thereby reducing slacks to the minimum and dispersing resources equally throughout the 
complete project length. While network diagrams and Gantt charts became model-based project 
plans, the need arose to fill the process models with more project-specific information, e.g., input 
requirements, entry criteria, output products, exit criteria, estimated cost and duration of  the 
activity, activity responsible, supporting tools, metrics, resources, etc. [e.g., Negele 1998, Pall 2000, 
Browning 2002]. Based on the purpose of  the process model, different frameworks can be 
applied hosting only relevant parts or the complete set of  this process information. 

One of  the most common workflow-driven process modeling frameworks is the input-
process-output (IPO) method [e.g., Negele 1998]. The IPO process element is constructed by 
merging the input and output products with the activity, and thus reducing all important process 
attributes except for activity relations to one process element (Figure  I.4). The notion of  IPO is to 
describe input and output deliverables linked to an activity as part of  the element and consider 
the element interactions generated by the input needs and output products as mere activity 
relations. While integrating the I/Os with the process elements supports process integration, the 
deliverables completely disappear from the process schedule moving the scope of  SD projects 
and the focus of  manager attention from fulfilling technical system objectives to accomplishing 
managerial project schedules. This is a main source of  planning problems and inadequate project 
plans that hinder effective innovation work. 

I.2.1. Modeling Design Iteration  
Most process modeling and network techniques are oriented toward production and business 

systems, where processes are repetitive without interwoven iterative loops [Browning & Eppinger 
2002]. These characteristics do not apply to SD processes, where one main goal is to provide 
proven solutions to a problem and thus to verify and validate all assumptions and concepts, and 
iteratively correct failures until a feasible result is found.  

Thus, a main problem with conventional network techniques is that they were developed to 
analyze deterministic networks and thus are not applicable to model evolving systems like an SD 

 
Figure  I.4 Generic IPO process element for workflow-driven process modeling 
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process. That is, PERT and CPM are abstractions of  the reality that do not account for the 
iterative manner of  engineering design work. Whereas an SD process architecture might provide 
the optimal process schedule according to CPM, the best process option might have completely 
different characteristics if  the possibility of  rework and design iterations are considered in the 
model. As a consequence, the best process schedule obtained using CPM or PERT is useless if  
inputs of  the activities on the critical path are delayed, because parts of  the SD work had to be 
repeated due to inadequate product performance, a process variable not considered in 
conventional network techniques. Project managers usually include time buffers in the schedule 
to account for such problems; however, the determination of  buffer sizes is often done arbitrarily 
based on the project manager’s own experience.  

To allow for iterations in process models, extensions to conventional network techniques and 
process modeling frameworks were proposed that are more suitable for modeling and analyzing 
iterative activity networks. The Graphical Evaluation and Review Technique (GERT) is an 
improved version of  PERT including probabilistic branching, rework modeling, and process 
analysis using simulation [e.g., Pritsker & Sigal 1983, Neumann 1990]. Other models use signal 
flow graphs [Eppinger et al. 1994, 1997, Andersson et al. 1998] or systems dynamics models [Ford 
& Sterman 1998] for iterations modeling. Important contributions come from research on 
concurrent engineering, where activity overlapping has main effects on rework and iteration. For 
example, Ha & Proteus [1995] proposed a model for optimal review timing to minimize total 
expected completion time. Further, Krishnan et al. [1997] developed a framework for overlapped 
sequential tasks, where the optimal overlapping strategy is based on upstream information 
evolution and downstream iteration sensitivity. Finally, Roemer et al. [2000] discussed time-cost 
tradeoffs in multiple overlapped tasks. 

A larger body of  literature on design iteration modeling applies the design structure matrix 
(DSM) method. Besides the proposed theoretic iteration models for concurrent [Smith & 
Eppinger 1997a, Ahmadi & Wang 1999], sequential [Smith & Eppinger 1997b], and hybrid 
processes [Smith & Eppinger 1998], the DSM community conducted extensive research work on 
both the analysis and optimization of  iterative SD processes. On the one hand, partitioning 
algorithms6 were developed that manipulate the process structure to reduce the scope of  rework 
and thus reduce the effects of  rework on the process schedule [e.g., Steward 1981b, Gebala & 
Eppinger 1991, Kusiak & Wang 1993, Tang et al. 2000]. On the other hand, simulation and 
optimization algorithms were proposed to account for the probabilistic modeling of  design 
iteration during process analysis [e.g., Browning 1998a, Browning & Eppinger 2002, Cho & 
Eppinger 2005, Meier 2005].  

DSM can be easily combined with an AON or IPO network where the number of  modeling 
elements is reduced to the process elements and their relations. The goal of  DSM application in 
process modeling is to obtain a mathematical form (i.e., adjacency matrix) of  the network 
structure, and manipulate it to improve the project schedule. While a process, as a kind of  
system, derives its added value from the relationship among its elements (i.e., the activities) 
[Rechtin 1991, Browning 2002], the leverage of  DSM is in its ability to improve the project 
schedule through the manipulation of  process sequence based on the activity dependencies.  

An AON with probabilistic branches, its DSM view, the partitioned DSM, and a Gantt chart 
view of  the probable project schedule including rework activities is depicted in Figure  I.5. 
Decisions on iteration are made in reality based on the comparison of  actual and desired design 
performance, and after the consideration of  available resources. Since workflow-driven project 
management and process analysis traditionally do not include product performance as process 
attribute, scholars developing process models had to find another way to account for iteration. 

                                                 
6 See Section  E.3.3.3.4 for more details on DSM partitioning  
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Because the experts could tell which activities had been the main triggers for iteration and rework 
in the projects (e.g., V&V activities), and it was possible to derive statistical probabilities for 
rework for a certain activity from existing project documents, probabilistic iteration modeling 
became a popular technique [e.g., Belhe & Kusiak 1996, Smith & Eppinger 1997b, Browning & 
Eppinger 2002, Cho & Eppinger 2005].  

The simplest way to model the decision on design iteration during process simulation is 
depicted in Figure  I.5. Here, for the contingent relations in the activity network (represented by 
the diamonds “ ” in the DSMs), the simulation algorithm decides to iterate with a probability of  
p, or continue the process with a probability of  1-p. In case of  a decision on iteration, the 
affected parts of  the process are repeated and the project schedule is modified. The Gantt chart 
in Figure  I.5 shows how the critical path creeps as a consequence of  design iterations. Activities 
“A4” and “A6”, originally critical activities (see Figure  I.3), are replaced by “A5” and the rework 
versions of  “A1” and “A2” (“rA1” and “rA2”) on the critical path. Thus, the project schedule 
accounting for iterations is not simply longer, but the criticality of  the activities shifts. 

An important step in the evolution of  design iteration models is the work conducted by 
Browning [1998a] and Browning & Eppinger [2002]. The proposed method is the first DSM-
based simulation model that analyzes design iteration in a more generalized project network than 
the previous analytical models. To allow for more realistic process modeling than e.g., the DSM in 
Figure  I.5, Browning and Eppinger propose to calculate the risk of  rework at each iteration 
branch in the process, where rework risk is a function of  the probability and its consequences. 
The DSMs in Figure  I.6 show the probabilities and impacts of  rework that are multiplied during 
simulation to obtain the risk of  rework. The basic idea behind the model by Browning and 

 
Figure  I.5 Different views of process models with probabilistic branches 
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Eppinger is based on the observation that the main cause of  iteration is that input information 
(assumptions, models, requirements, etc.) of  an activity (produced by another one) changes during 
the process. If  this happens, corrective actions (or rework) are made on the activity to account 
for changes in the input and produce adequate outputs. However, rework usually does not affect 
a single activity, but it propagates through the process in the form of  second-order rework 
causing the repetition of  activities linked to the first reworked task.  

While both the probability and scope of  rework are usually uncertain variables, they are 
considered as random variables in the model. Thus, the first DSM in Figure  I.6 representing the 
volatility of  the activity (probability of  changes in inputs), and the second DSM showing the 
sensibility of  the activity (probability of  changes if  input shifts) in case of  changes, are set up 
during modeling. The combination of  these values shows the risk of  rework for each activity. 

Another aspect of  the model by Browning & Eppinger is the consideration of  learning 
through improvement curves in the model. While rework often requires only small adjustments 
on the original output products, rework activities do not require the same effort as the original 
activities. How learning affects the cost, duration, and effectiveness of  SD activities during 
rework depends on the characteristics of  the activity.  

Thomke & Bell [2001] analyze how experimentation strategies contribute to the effectiveness 
and efficiency of  design iterations and find that both factors decrease in consecutive 
experimentation cycles. Furthermore, they show that the cost of  design iteration depending on 
the required test fidelity and the cost of  building a prototype for the experimentation can be 
relatively low for virtual prototypes and extremely high for full-fidelity physical prototypes. This 
affects iteration efficiency as well, because while physical prototypes often have to be built again 
(e.g., automotive crash tests) for retesting, computer models require only slight modification for a 
rerun of  the simulation.  

The consideration of  rework probability and impact, and the effect of  learning in the model 
by Browning & Eppinger move conventional workflow-driven iteration models towards 
adaptiveness. As the Gantt chart in Figure  I.6 shows, the process architecture is different from the 
one in Figure  I.5 in three aspects: (1) rework activities are shorter than regular ones, due to the 
effect of  learning; (2) the architecture of  the second rework loop differs from the original one, 
i.e., activity “A3” is not part of  the rework loop due to low rework risk; and thus (3) the critical 

 
Figure  I.6 DSMs for rework risk calculation and one possible project schedule 
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path crept again and now it involves “A1”, “A2”, “A4”, “A6”, “rA4”, and “rA6”.  

As the process architecture might be different in successive simulation runs, the results of  the 
simulation provide an excellent basis for project scheduling, risk analysis, and the definition of  
realistic management reserves to implement the capability in the project to effectively deal with 
the forecasted iterations.  

The next section describes the Verification, Validation and Testing Process Modeling 
(VVTPM) Tool developed at the Institute of  Astronautics of  the TU München under the 
supervision of  Markus Hoppe and the author of  the thesis. The VVTPM is an extended 
application of  the above described model of  Browning & Eppinger [2002] and the risk value 
method [Browning et al. 2002] for experimentation-driven SD process planning. 

I.3. WORKFLOW-DRIVEN PROCESS MODELING – THE VVT 
PROCESS MODELING TOOL 

I.3.1. Objectives of the VVTPM 
The VVTPM7 is a parameter-based, stochastic process modeling tool for SD project planning 

with a special focus on V&V and experimentation planning. The VVTPM is a product of  the 
SysTest project and thus, the theory behind the VVTPM is based on the VVT Methodology 
discussed before in Chapter  H. The partners in SysTest recognized that V&V in an SD project can 
be considered as a means to reduce technical uncertainty and thus risk regarding the project 
objectives. Thus, one main requirement on the VVTPM was to allow for the modeling of  the 
effects of  V&V on technical project risk and use this variable as evaluation criterion for the 
adequacy of  project plans. Obviously, the best project plan is then the one that reduces technical 
risk most effectively at minimal resource consumption. Further goals were to model design 
iteration as an expected consequence of  V&V in the SD process and provide a means to improve 
process schedule by reducing the effects of  rework on the process duration.  

 The VVTPM tool provides a planning environment, where a project plan can be generated 
in an iterative manner that guarantees the systematic and controllable implementation and 
evaluation of  system requirements in a product that maximally fulfills the customer’s 
requirements. Thus, the VVTPM approach integrates the output products of  project planning, 
risk management, systems engineering measurement, V&V planning, and configuration 
management to provide a project plan as output that considers the main aspects of  each 
discipline.  

The three dimensions of  project objectives (project cost and duration and technical product 
performance) are the process variables in the VVTPM. To support detailed planning, the desired 
overall technical performance of  the product is broken down into the most important KPPs 
representing the key technical performance aspects of  the product. Methods that successfully 
dealt with the implementation of  parameter-based process modeling, risk management, and 
project control were important inputs for the development of  the VVTPM theory. For example, 
the technical performance measurement approach [Pisano 1995, DoD 2001a] provided the basic 
model for parameter-based technical performance modeling and tracking as well as risk-driven 
decision-making and project control.  

The theory of  technical performance measurement fosters project planning and control by 
modeling product performance as a vector of  attributes with quantified target values. These 

                                                 
7 Publications of the author on the VVTPM: Lévárdy et al. 2003, Lévárdy & Hoppe 2004, Hoppe, Lévárdy et al. 
2003, Hoppe, Lévárdy et al 2004a, Hoppe, Lévárdy et al 2004b, Meier, Hoppe & Lévárdy 2004 
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technical parameters are assigned to the major decision points in the project to assist the 
measurement and control of  design evolution. Clearly, the variables project cost and duration had 
to be incorporated in the risk-driven project control theory to support deliberate decisions. 

While the basic theory of  technical performance measurement was adapted in the VVTPM 
procedure, it was modified in one important point. To account for better, integrated risk 
calculation results for all process variables and satisfy the needs of  project management, the 
original concept of  technical performance measurement was associated with the risk value 
method [Browning et al. 2002]. The risk value method considers the SD process as a value 
generating system, where the amount of  risk reduced and opportunity captured describes the 
overall system value. Thus, the most important attributes of  SD activities in this model are their 
effectiveness (capability to reduce risk and capture opportunity) and efficiency (required cost and 
duration to provide effectiveness). Furthermore, what measures the value of  the process on the 
activity level, also works on the project level, i.e., the overall value of  the SD process is a function 
of  its capability to efficiently reduce the risks and capture the opportunities required to guarantee 
maximal stakeholder satisfaction.   

Therefore, SD process options in the VVTPM procedure are evaluated on the basis of  the 
deviations of  the estimated overall process performance (cost, duration, and product technical 
performance) from the target values and the financial consequences thereof. Because alternative 
SD processes employ different kinds of  SD activities in different networks to reach the project 
objectives, the estimated programmatic and technical risks incorporated in an SD process are also 
different. Thus, the goal of  the project manager during planning is to take the evaluated process 
characteristics and choose the best one according to the corporate and project objectives. 

I.3.2. Structure of the VVTPM Procedure  
Process modeling is a systems engineering procedure to define, evaluate, and select process 

alternatives for given project objectives translated into evaluation criteria in the language of  the 
model. Hence, the basic structure of  the VVTPM procedure follows the systems engineering procedure 
in Figure  B.3 [Igenbergs 2000, Haberfellner et al. 2002]. The original five-step procedure for 
iterative, systems engineering decision-making is depicted by the main building blocks of  the 
VVTPM procedure in Figure  I.7. The following part of  the thesis describes these main steps of  

 
Figure  I.7 VVT process modeling procedure 
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the VVTPM procedure and the VVTPM tool implemented in MS Project.   

I.3.2.1. Problem Definition  
The first step of  the VVTPM procedure is the generation and collection of  relevant input 

documents from the different disciplines of  project planning. It is important to have all the 
information from project management and systems engineering, because during process 
modeling, the actual project plans are specified and implemented in a model.  

System requirements and the customer’s needs documented in various forms define the 
objectives and scope of  the project in qualitative and quantitative terms. This information is vital 
for the definition of  milestone criteria and the selection of  SD activities for the project. The 
project requirements and constraints combined with the milestones in the Project Management 
Plan (PMP) and the Systems Engineering Management Plan (SEMP) provide the basic control 
structure of  the project.  

The Risk Management Plan includes the anticipated, prioritized risks and criticalities of  the 
project that assist both the definition of  impact functions for the main milestones and the 
refinement of  the project scope regarding the main risks. Furthermore, the Risk Management 
Plan includes the planned mitigation actions to handle the identified risks and criticalities. 

The PMP contains the project WBS including the SD activities, the project management 
defined during project decomposition. The experimentation and V&V strategies contained in the 
SEMP and V&V plans include the main requirements for experimentation in the project phases 
and the proposed experimentation strategy.  

The task of  process modeling as a function of  systems engineering is to integrate the often 
separately defined tasks of  the project in one working project schedule, and establish links 
between the single groups of  developers. In addition, during process modeling, the behavior of  
the SD project is simulated and analyzed to understand the complex SD task to be accomplished. 
Thus, process modeling is a learning exercise, where the puzzle pieces of  the project are 
integrated in one picture to verify the feasibility of  the project specified in different documents. 
Process modeling also serves as a tool to specify and size the SD activities using experts’ opinions 
and existing documentation of  previously accomplished projects.  

I.3.2.2. Definition of Evaluation Criteria  
In this second step of  VVT process modeling, the SD problem to be solved is specified in 

the VVTPM tool using the language of  the model. The structure and contents of  the main 
milestones that begin and end the phases of  the project are specified in this step. The milestone 
criteria including the target profiles for each process variable (cost, duration, and TPMs) 
represent the evolving states of  the SD towards final project success.  

 
Figure  I.8 Definition of evaluation criteria in the VVTPM procedure 
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To support project planning, risk is calculated at each milestone of  the project in the VVTPM 
tool to show the actual project performance at the major decision-points. To enable risk 
calculation, in this step the project manager has to define the impact functions for each process 
variable at each relevant milestone (Figure I.8). This data is used together with the phase targets of  
the variables to evaluate the achievements of  the phases and compute risk to highlight the 
criticalities during simulation. The risk values at the major milestones serve as traffic lights showing 
the project manager if  the planned effort is adequate to fulfill the defined phase objectives. This 
information is then used to improve the plans until risk is reduced to the desired level. 

I.3.2.3. Definition of Solution Options 
The previous step provided the project with a clear structure and the process model with the 

evaluation criteria. This is the point where top-down project decomposition turns into bottom-up 
planning. Here, the components of  the project are integrated in a process model to analyze the 
feasibility of  the project plan.  

During process integration, the activities from the project WBS are organized in a network 
based on their input needs and output products. Activities in the VVTPM procedure are 
considered as information processing units in the project, which receive information from 
previous activities and pass on improved information to subsequent ones. Hence, the goal of  
project planning is to organize the activities in a network that allows that each activity starts with 
the information required for its effective operation.  

The function of  an activity in a process is to add value to the design by transforming the 
received inputs into outputs with improved characteristics. As Figure  I.9 depicts, a generic 
VVTPM element has the following attributes:  

• Method applied with the activity (m): the method or methodology applied to conduct a certain 
design or V&V activity. For example, an experimentation to design and verify the 
aerodynamic characteristics of  an aircraft can be computer-based using the finite element 
method (FEM); it can be conducted on a low scale physical prototype or on a full size 
prototype in a wind tunnel. Hence, the method applied for the activity affects all other 
activity attributes (cost, duration, fidelity, and effectiveness). 

• Performance level (p): the precision or the level of  performance with which a design or V&V 
activity is conducted. The criticality and level of  innovation of  the design aspect to be 
implemented and evaluated define the required precision of  both the design and V&V 
activities. Besides the design or V&V method applied with the activity, the level of  precision 
is the other factor that affects all other activity attributes (cost, duration, fidelity, and 

 
Figure  I.9 VVTPM element 
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effectiveness). 

• Inputs (xi): the information required to conduct an activity. Inputs are characterized by the 
type of  information (e.g., kinds of  TPMs), its value or performance level, and its precision 
(i.e., confidence or maturity).  

• Cost (c): the typical or expected cost of  the activity mode, including cost of  equipment, 
installation, execution, and analysis; alternatively, this can be a three-point estimate 
(optimistic, most likely, and pessimistic). 

• Duration (d): the typical or expected duration of  the activity mode; alternatively, this can be a 
three-point estimate (optimistic, most likely, and pessimistic).  

• Fidelity (f): the typical or expected amount of  fidelity defined as the coverage of  design 
aspects or the number of  technical parameters (i.e., TPMs) influenced through the activity.  

• Activity effectiveness (e): the expected quality of  the output related to its input. VVTPM activity 
effectiveness is measured in two ways: (1) performance improvement, represented as the 
shifting of  one or more TPM values in the direction of  improvement; or (2) uncertainty 
reduction, represented as the reduction of  the uncertainty bounds around one or more 
TPMs8. Figure  I.10 depicts the two effects of  an SD activity on a TPM (x). The two triangles 
illustrate the changing uncertainties incorporated in process states n and n+1 (i.e., the design 
performance before and after the activity) due to the activity effects. The overall activity 
effectiveness (E) can be calculated as the weighted sum of  the effects (ej) of  the activity on 
the individual TPMs: 

1   where...
1
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inTPMnTPMTPM wewewewE                ( I-1) 

where the weightings (wi) represent the relative importance of  the TPMs to the project’s 
stakeholders. There are also other, more sophisticated ways to calculate E as a function of  the 
single ejs. 

• Functions: the dependencies of  outputs on inputs. The rate of  value added by an activity to the 
overall project through its deliverable depends on the quality of  activity inputs and 
effectiveness of  the activity. 

                                                 
8 Note that the theory of orthogonal arrays in Six Sigma uses the same differentiation between activity effects on 
product quality (see [Taguchi & Clausing 1990] for more details). 

 
Figure  I.10 Activity effects on “TPM x” in stochastic, parameter-based process modeling 
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• Outputs (yj): the deliverables from the activity mode. The output of  ASDP elements is 
information leading to increased knowledge of  the product design and its level of  
performance. The quality of  the output depends on the maturity / performance level of  the 
input parameters, activity fidelity (i.e., coverage of  TPMs), and activity effectiveness. 

The quality of  information comprised by the input and output (I/O) deliverables can be 
described by various measures (e.g., maturity, accuracy, timeliness, various dimensions of  
quality, etc.). These measures can overlap with system TPMs, or they can be mapped to TPMs 
to describe a relationship. Based on this relationship, a change in the I/O parameter values 
caused by an activity can be twofold: (1) magnitude of  change and (2) direction of  the effect 
on the value of  TPMs and their uncertainties [Browning et al. 2002]. 

• Input and output relations: these model elements describe the interaction among process 
elements. The function of  activity relations is twofold in the VVTPM procedure: (1) they 
symbolize the activity precedence of  relationships, which supports activity sequencing in the 
project schedule; and (2) the relations have probabilistic attributes used in iteration modeling. 
That is, each activity relation has values for rework probability and impact as described in the 
previous section.  

The result of  the step definition of  solution options in the VVTPM is depicted in Figure  I.11. This 
process description includes all relevant aspects of  the process architecture for process analysis. 
This process model is analyzed through Monte Carlo simulation in the next step of  the VVTPM 
procedure.  

I.3.2.4. Monte Carlo Simulation 
During stochastic simulation, the behavior of  a process system is analyzed by investigating 

the possible effects of  the process elements on the process variables. To allow for better process 
performance estimation, the main activity attributes (cost, duration, and effectiveness on each 
relevant TPM) are random variables in the VVTPM procedure, and tools represented by 
triangular probability density functions (TriPDFs). Besides the process structure, these functions 
are the main inputs for the simulation algorithm.  

During stochastic Monte Carlo simulation, the algorithm generates random samples from the 
TriPDFs for every process parameter for each activity. These discrete values are then used to 
calculate the overall process performance. In conventional activity networks without iteration, the 
critical path is determined to compute project duration and the sums of  the activity values for 
every other variable. In case iteration is possible in the process model, the conventional critical 
path calculation [e.g., Igenbergs 2000] cannot be applied. To overcome this difficulty in the 
VVTPM tool implemented in MS Project, first the rework risk values are used to generate the 

 
Figure  I.11 Definition of solution options in the VVTPM procedure 



174  

actual process schedule including all iteration loops. That is, the stochastic iterative process 
architecture is transformed into a linear, discrete activity network with a sequence of  regular and 
rework activities (see the Gantt chart in Figure  I.6 for illustration). During this transformation, the 
iteration loops are unfolded using the probabilistic rework risk values. To account for learning 
and improvement in the SD process, the probability of  rework is linearly reduced in each 
consecutive iteration round. The degree to which the probability decreases after each rework loop 
is defined by the project manager based on his or her own experience and historical data.  

Learning also affects the activity characteristics during iteration (Figure  I.12). While the regular 
activities in the generated networks have the sampled values for each activity attribute, the cost, 
duration, and effectiveness of  rework activities are reduced by the learning factor. For example, the 
duration of  the regular activity “A5” in Figure  I.12 is multiplied by the factor “lDA5” to compute 
the reduced rework activity duration. The “l” factors are between 0 and 1, depending on the 
activity and process characteristics. Hence, during process modeling, the project manager can 
decide, “how much of  the activity” has to be (or usually is) repeated during rework or iteration. 
Depending on the kind of  activity this number might vary (e.g., whereas some tests have strict 
procedures, and the same activity has to be used always, for other activities rework means only a 
small adjustment—e.g., on a computer model—thus only a small part of  the original activity—
e.g., model building—has to be repeated). 

The generated linear activity networks are used to calculate the results of  the single 
simulation runs similarly to a conventional CPM network. Since the values of  the activity 
attributes and the process architecture (due to the rework risk) change in each simulation run, the 
simulation results are different in each run. These results are then summarized in PDFs after 
multiple simulation runs to provide inputs for risk calculation. 

I.3.2.5. Evaluation of Solution Options 
The goal of  project planning is to define an SD process capable of  delivering the product 

desired by the customer without risk. To assure a risk-free end product, project control sets 
regular control gates to evaluate the performance of  the major deliverables at concrete points in 
the project. VVT process modeling combines these two project management functions and 
supports the definition of  an SD process that is risk-free at the end and at the most important 
project milestones and control gates. 

Therefore, during process analysis, the milestone performance values for each process 
variable obtained through the simulation runs are organized in PDFs to estimate the possible 
outcomes of  each dimension of  process performance. The PDFs of  a TPM (TPM1) are depicted 
in Figure  I.13 together with the target profile and the final requirement value. The PDFs are used 
to calculate risk to track the estimated performance of  the process as risk reduction system.  

The process sought is the one that accomplishes its task within the available programmatic 
constraints. Thus, the ideal process is the one with acceptably low technical and programmatic 
risks for each milestone of  the project. It is highly irresponsible and unacceptable for the project 

 
Figure  I.12 Activity network generated during one simulation run in the VVTPM tool 
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management to start a project without having an adequate plan to finish it. Thus, process 
modeling as a way of  project integration serves as a verification tool for both the process and the 
project objectives. Obviously, project objectives and constraints are only changed if  there are no 
means to fulfill them. 

Project definition is done iteratively in the VVTPM procedure. Thus, once a process option 
has been defined and evaluated, the project manager identifies the weak points (medium- and 
high-risk aspects) and seeks improvement alternatives to increase process performance. As the 
different process variables have often contradictory effects on each other, actions improving one 
aspect may increase risk in another one (e.g., technical risk reduction through extra activities 
means increased process cost and duration, or increasing design reliability through redundancies 
also increases weight and fuel consumption). Thus, the project manager has to be able to make 
tradeoffs between project goals and find a process that satisfies each process performance aspect. 

The result of  the fifth step of  the VVTPM procedure is a set of  process options with 
different risk characteristics. On the one hand, the project manager can select the best of  these 
process options through the analysis of  the overall risk values in the next step. On the other 
hand, the project manager can experiment with different process architectures for possible 
process scenarios. That is, besides the best plan for given project objectives, alternative plans can 
be defined for anticipated or unexpected SD project states. The benefit of  this kind of  planning 
is that it supports quick reaction to situations the original plan does not consider. That is, in case 
the unexpected happens, the project manager can select ways to deal with the new situation from 
preliminarily prepared improvement actions.  

I.3.2.6. Simulated Process Schedule in a Gantt Chart 
A major innovation of  the VVTPM tool is the way the simulation outputs are presented in 

MS Project. To overcome the main deficiency of  existing Gantt chart representations, the 
VVTPM tool shows the simulation results including the expected rework effort in a bar chart. 
This is depicted in Figure  I.14, where Gantt chart representation of  the original DSM from Figure 
 I.12 is presented together with the simulation results. To acquire the second schedule in Figure 
 I.14, first, the simulation results (i.e., the regular and rework activities) are organized in a network. 
Then, based on the recorded (i.e., sampled) activity durations from each simulated run, the 
expected duration of  each activity in the new network is computed. That is, the rework activities are 
integrated with the regular activities in the original network, and the expected activity durations 
are calculated just as in PERT. This data is shown in Figure  I.14 in the enhanced Gantt chart view. 

 
Figure  I.13 Results of the stochastic process simulation 
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The resulting project schedule is 65 days long instead of  the original 53 days. The 12 days 
extra working effort means an app. 23% increase in project duration. Considering that the quite 
simple project only included six activities and three rework relations, the benefits of  the VVTPM 
tool are obvious. Of  course, project planning assigns management reserves to each projects to be 
able to cope with the expected rework; however, the application of  the VVTPM tool helps 
identify the critical activities and allocate the extra resources to the places with the increased 
required working effort. Furthermore, the VVTPM tool fosters the understanding of  the causes 
and effects of  schedule risk in an SD project and supports the engineering departments in their 
negotiations with the project management about their operating budget in a certain project. 

I.3.2.7. Decision 
The final step of  the VVT process modeling procedure is the selection of  the optimal project 

schedule for the SD, which is the one with the lowest overall risk. The first step in determining 
the measure of  overall risk for a certain process option is to calculate overall technical 
performance risk from the single TPM risks. Usually, Marketing can provide information on how 
the customer’s preferences can be prioritized and how weightings for each key technical 
performance can be defined. Using the weightings, overall technical performance risk is 
computed as the weighted average of  the single TPM risk values.  

Then, to obtain one representative value for each process alternative that describes the overall 
fitness of  the plans regarding the system objectives, the weighted average of  the single risk values 
in the three main dimensions of  process performance is calculated. Now, it is possible to rank the 
process options and choose the one with the lowest overall risk. 

I.4.  CHAPTER SUMMARY 

This chapter demonstrated how the VVTPM tool supported workflow-driven project planning 
at TetraPak by estimating both the programmatic and technical aspects of  process performance 
and the related risks regarding the achievement of  the project goals. The VVTPM supported 
proactive risk management during project planning by highlighting the main risk areas and 
supporting the planning of  adequate mitigation actions. Hence, the main benefit of  the 
application of  the VVTPM tool at TetraPak was during the selection and sizing of  the right 
activities for given project objectives, and the definition of  realistic buffer sizes for the iterative 
design work in the project.  
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Figure  I.14 Gantt chart with expected activity durations in the VVTPM tool 
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J. CASE STUDY II – IMPLEMENTATION OF THE VVT 

PROCESS MODELING PROCEDURE AND TOOL AT 

TETRAPAK CARTON AMBIENT 

J.1.  CHAPTER ABSTRACT 

This chapter continues the description of  the TetraPak case studies 
with a special focus on the validation of  the stochastic, parameter-based 
VVT Process Modeling tool. This workflow-driven process modeling tool 
turned out to be quite effective at TetraPak for risk-based project 
planning, since it highlights the effects of  various SD process options on 
the project risks and allows the selection of  the best SD process schedule 
for given project objectives. Furthermore, the VVTPM software 
environment creates the basis for the long-term implementation of  
workstate-driven project management and process modeling methods, like the Adaptive System 
Development Process (ASDP) method proposed in the following chapter.  

J.2.  PILOT PROJECT IIB – ENHANCED APPLICATION OF 
PROCESS MODELING DURING EXPERIMENTATION 
PLANNING 

J.2.1. Pilot Project IIb Characteristics 
The definition of  the main decision points and the decision support framework in Pilot Project 

IIa (see Chapter  H) was the first step in project planning to describe the structure and logic of  
Pilot Project II. The output of  this first planning step was a network of  decision points that broke 
down the SD into phases and sub-tasks with quantified objectives. This was the point in the 
planning process where top-down project decomposition turned into bottom-up project 
integration. That is, once the major project deliverables had been quantitatively defined and the 
decision points representing the backbone of  the project had been set, the activities required to 
proceed from one major process state (e.g., described by Milestone 1) to the next one (e.g., to 
Milestone 2) had to be selected and organized in a process that made the delivery of  the desired 
system possible. 

While there are many alternative tools supporting project integration, process modeling is one 
of  the most effective means for project planning and analysis. To obtain quantitative risk 
estimates regarding the fulfillment of  the main projects goals in the three main areas of  process 
performance (i.e., project cost and duration, and product technical performance), TetraPak chose 
to apply the VVTPM tool in the case study.  

A main goal of  TetraPak with the VVTPM tool was to estimate the risks incorporated in 
alternative SD process plans and select the best risk reduction strategy based on the weighted 
average of  the single overall risk values. Since the case studies were conducted using the VVT 
methodology, a further goal with the VVTPM tool was to analyze the effects of  V&V activities 
on technical risk reduction and gradually build up a database of  reusable project plans including 
the effects of  V&V activities on the key technical performance aspects of  TetraPak products.  

Because V&V results are one of  the main drivers of  design iteration, the evaluation of  
probabilistic iteration modeling using the DSM method in the VVTPM tool was an important 



178  

project goal in Pilot Project IIb. To support this process modeling aspect, historical project data was 
collected and analyzed to find the activities that are the main triggers of  iteration and rework, and 
statistical data was derived to define the rework probabilities and impacts for each activity. 
Furthermore, historical data was applied to estimate the effects of  SD activities on the technical 
performance attributes of  the developed packaging solution.  

The case study project concerned the production and filling of  packages in a typical industrial 
transformation process in the liquid food industry environment. Semi-manufactured goods (e.g., 
the packaging material) are the inputs for this generic transformation process affected by external 
noises, and the output is a finished product. To recall, Pilot Project II dealt with the joint 
development of  a liquid food package and the related machinery. 

The objective of  this generic type of  development process is to define a new, improved 
package solution that enhances existing packages in terms of  geometry, material, or other 
characteristics. During this transformation process, the package and sometimes its material have to 
be developed, and the machinery handling the package is adapted to the new package 
characteristics. Thus, Pilot Project II was a new SD project for the package and its material, and a 
system upgrade project for the machinery. This chapter describes how this project was planned 
using the VVTPM software environment.  

J.2.2. Pilot Project IIb Process Description 
The VVTPM procedure supports iterative systems engineering planning and the definition 

and evaluation of  multiple project plans for different scenarios. During project planning in Pilot 
Project IIb, four alternative SD processes were designed with slightly different process 
architectures. These four processes are depicted by the DSMs in Figure  J.1, where the rows and 
columns represent the different activities, and the marks in the matrix illustrate the different 
kinds of  relations among them. Regular relations are illustrated by full circles (“ ”) and 
contingent ones by diamonds (“ ”). 

The basic structures of  the four alternative strategies in Figure  J.1 are similar, i.e., the SD 
project is broken down into four consecutive phases (Project Definition, Concept Development, 
Prototype Development, and Product Qualification) ending with milestone reviews. As the DSMs depict, 
the milestones in each phase are directly connected to V&V activities that provide the decision-
makers with the main technical information. That is, at the end of  each phase, the design work 
conducted in the specific phase is assessed and compared to quantitative success criteria derived 
from the product requirements.  

As a consequence, V&V results are the major triggers of  rework in TetraPak SD projects (see 
DSMs in Figure  J.1). Hence, after the main V&V activities, decisions are made on each level of  
the decision support framework developed in Pilot Project IIa (Test Method, Project, MRT, and Toll 
Gate levels) to determine the necessity of  further design efforts (i.e., iteration or rework) in order 
to reach the phase objectives. In VVT process modeling, the effects of  test method level decisions 
(i.e., retesting) on the project budget and schedule are incorporated in the stochastic PDFs 
representing the estimated activity characteristics and thus these relations are not included in the 
DSMs. Decisions on the project level that might result in the repetition of  activity blocks within the 
actual phase are represented by the feedback relations between V&V activities and design 
activities (e.g., the relation between “4th Preliminary Verification – Tare” and “Semi Manufactured 
Choice/Design”). Finally, the effects of  decisions on the process schedule on the MRT and toll gate 
levels are depicted by the feedback relations between the milestones and the design activities in 
the DSMs (e.g., “MS4 – Formal Review” and “Sub-groups Design”). 
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Figure  J.1 Four process alternatives in Pilot Project IIb 
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As discussed before, the process models defined in Pilot Project IIb have special emphasis on 
the V&V strategy of  the project, and thus V&V activities are depicted in higher detail and 
number than design activities. However, to obtain realistic simulation data, the effects of  the 
design work on the product and process characteristics are also summarized in one or a few 
design activities in each phase.  

In parameter-based SD, the V&V activities in each phase are conducted to verify the status of  
TPMs, and thus prove that the main project goals represented by the three main project KPPs 
“container appearance defects”, “container geometrical dimensions” and “container tare weight”)9 have been 
fulfilled. Thus, the phase V&V goals and scope are similar; the various representations of  the 
evolving design generated in each phase are evaluated through different V&V activities to assess 
the achievement of  the phase objectives in the three key areas of  technical performance.  

As the four DSMs depict in Figure  J.1, the four alternative project plans differ only in the 
architecture of  the third phase. Hence, the first phase in each process model includes the same 
activities that define the system-level requirements of  the product under development and 
evaluate the feasibility of  the preliminary design studies and project plans. Thus, the most 
important V&V activities in this phase are “Preliminary Feasibility Analysis”, “Boundary Conditions 
Study”, and “QFD Analysis” using the Houses of  Quality.  

The second phase is the Concept Development, where the main focus is on the design and 
selection of  the packaging material as well as the assessment of  the characteristics of  relevant 
system designs and transformation processes through modeling and simulation. Hence, this second 
phase starts with a design activity that selects the required semi-manufactured goods (i.e., the 
packaging material) and the packaging system configurations for the analysis. At the outset of  the 
project, it was estimated to be likely that a new type of  raw material had to be developed to fulfill 
the improved package requirements. Thus, the resources allocated to the first design activity 
enable both the design and selection of  novel and existing solutions. 

Four preliminary verification activities are included in the second pilot project phase. The 
goal of  these activities is to assess quantitatively the effects of  the variations of  the semi-
manufactured material characteristics on the behavior of  the transformation processes and the 
output product properties (i.e., tare geometric dimensions and container defects). The outputs of  
the second phase are the selection and specification of  the suitable raw material, the feasible 
package design, and the specified packaging system design.  

Prototype Development is the third phase in each of  the four SD process alternatives. The main 
goal in this phase is the implementation of  the design in a feasible, physical prototype. Design 
activities in this phase comprise the bottom-up implementation of  the design into components 
and sub-groups that are then integrated in the physical system prototype. The main V&V phase 
goal is the verification of  this physical prototype and the identification and complete elimination 
of  each design failure included in the physical prototypes. Thus, this phase includes V&V 
activities from the areas of  physical testing, integration testing, and system verification. 

The four SD process options planned in Pilot Project IIb mainly differ in the way the third SD 
phase is conducted. “Strategy 1” is the basic version of  the SD process, which is capable of  
dealing with the technical risks expected at the outset of  the project. The other three process 
variants are pessimistic plans including increased SD efforts in reverse engineering, and 
repeatability and reproducibility analysis to find and correct design deficiencies in the physical 

                                                 
9 The systems engineering measures systems that depict the relations between V&V activities, TPMs and KPPs 
are shown in Figure H.12-14 in Chapter H. 
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prototype. These SD processes can be activated if  unanticipated risks arise during the first two 
phases and increased effort is required to reach the phase 3 targets.  

In “Strategy 2” and “3” two additional activities were included to tailor, apply, and verify a 
reverse engineering software tool. The main difference between the two SD process options is 
that the two additional activities are conducted in parallel in “Strategy 2” and serially in “Strategy 3” 
to the original SD activities. In “Strategy 4”, one additional V&V activity is included in the original 
“Strategy 1” network, i.e., a “Repeatability and reproducibility (R&R) analysis on the reverse engineering tool”.  

The final phase deals with the qualification of  the product at the customer’s site. The three 
main qualification activities validate the three main KPPs (package appearance and dimensions, 
and tare weight) of  the project sequentially.  

J.2.3. Process Definition in the VVTPM Tool 
During the application of  the VVTPM tool for project planning, the first steps comprise the 

definition of  project scope and the milestone criteria (TPM target values and impact functions) 
for each phase. These data were entered in the tool using the functions in Figure  H.15-17 in 
Chapter H. For simplicity and confidentiality reasons the process options defined in the VVTPM 
tool include only one TPM “package width”.  

 
Figure  J.2 Rework probabilities and impacts in Strategy 1 



182  

The following step in VVT process modeling is the process definition in the tool. The 
process architecture as well as the rework probabilities and impacts of  “Strategy 1” are depicted in 
Figure  J.2 (the charts of  the remaining three process options are included in Appendix I in Chapter 
 N). As the DSMs show, one major iteration loop is included in phases 1, 2, and 4 and two loops 
in phase 3. While the pilot project was rated as a medium to low risk project, the probability of  
iteration within the phases were set to “low (0.3)” and inter-phase iterations were rated as “very low 
(0.1)”. Also the probability of  major iterations in the final Product Qualification phase was set to 
“very low (0.1)”. 

Due to industry regulations, V&V is highly procedural and standardized at TetraPak; and 
thus, in iteration loops usually the same activities are reworked. “Strategy 2” and “3” involve one 
additional small iteration loop with “low probability (0.3)” concerning two SD activities. This 
iteration loop is conducted in parallel with the original process in “Strategy 2” and serially in 
“Strategy 3”. “Strategy 4” is with the original iteration structure; however, one more V&V activity is 
included outside the main iteration loops in phase 3.  

Each strategy includes two inter-phase rework relations starting at milestone 3 and 4 and 
ending in the previous phase. Although the probabilities that these rework loops take place are 
very low, the project management has to consider these during planning. 

The activity effects of  “Strategy 1” on the TPM “package width” are depicted in Table  J.1. The 
twofold activity effects on the TPM values and the activity performance levels are entered in the 
VVTPM tool first qualitatively for a historical project to calibrate the tool. The tool translates these 
qualitative measures into quantitative activity effects to support a better definition of  the actual 
project. Then, the user defines the actual project and the activity effects using the five qualitative 
levels (very low, low, medium, high, very high) that are now filled with quantitative values. During 
simulation, the VVTPM tool uses these quantitative effects for the calculation of  the estimation 
of  final design technical performance, and the results of  Monte Carlo sampling for the 
calculation of  project cost and schedule. Activity cost and duration values are not included in this 
thesis due to company confidentiality. 

Finally, the VVTPM tool supports the consideration of  the effect of  learning about rework 
activities during simulation. Due to the lack of  adequate data, the effect of  learning about the 
sizes of  the activities was estimated on the basis of  expert opinions. One main difference 
between SD work in virtual and real design environment is that corrections of  computer models 

Activity Performance Level
Most Likely Uncertainty

Definition of requirements MEDIUM MEDIUM VERY LOW
Preliminary feasibility LOW VERY LOW LOW

Boundary conditions study MEDIUM LOW VERY LOW
QFD I° HoQ LOW NONE NONE

MS1 - Formal review MEDIUM LOW NONE
Semi-manufactured choice/design MEDIUM LOW VERY LOW

I° Preliminary Verification - constraints assessment - noise VERY LOW VERY LOW NONE
II° Preliminary verification - semi-manufactured variability assessment MEDIUM MEDIUM LOW

III° Preliminary verification - nominal dimensions MEDIUM MEDIUM LOW
IV° Preliminary verification - tare MEDIUM NONE NONE

MS2 - Formal review MEDIUM LOW NONE
Mock-up realization LOW LOW VERY LOW

First Mock-up measures -reverse engineering MEDIUM HIGH LOW
Sub-groups design MEDIUM LOW VERY LOW

Sub-groups manufacturing LOW LOW VERY LOW
Integration testing: semi-manufactured-process MEDIUM MEDIUM LOW

Integration testing MEDIUM MEDIUM LOW
5th preliminary verification on prototypes MEDIUM HIGH MEDIUM

MS3 - Formal review MEDIUM LOW NONE
Qualification - Appearance TPMs HIGH MEDIUM MEDIUM

Qualification - Dimensions HIGH HIGH LOW
Qualification - Tare LOW LOW LOW

MS4 - Formal review HIGH MEDIUM LOW

width

 
Table  J.1 Activity effects on the TPM package width in Strategy 1 
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can be made quickly and cheaply. This is why during the repetition of  SD activities in the first 
two phases, where modeling and simulation play a critical role, the average activity efforts and 
effects are reduced to 30% of  the original values (Table  J.2).  

In the third phase, when the design is implemented in physical components, design iteration 
requires more SD work. While the scope of  rework can vary from minor adjustments of  the 
system to complete redesign, an average 50% rework rate for each activity was a realistic 
estimation. In the last phase, when the physical system is qualified, the tests are executed 
following strict procedures. However, the fixed cost of  equipment integration, installation, and 
calibration is rather high, which contributes with a 60% average activity rework effort to this final 
SD phase.  

J.2.4. Simulation Results 
Once the process alternatives have been defined in the VVTPM tool, stochastic simulations 

are conducted to obtain the effects of  the different process options on project performance. The 
risk values calculated using the results of  2000 Monte Carlo simulation runs are depicted in Figure 
 J.3. Risk in three areas was calculated for each phase and the overall project for each process 
option. As the diagrams show, the different process architectures in phase 3 contribute to 
different phase risk values. Hence, these phase 3 risks determine the feasibility of  the four 
strategies for the project.  

Table  J.3 shows the weighted averages of  the overall risk values. Technical performance has 
the highest priority followed by the duration of  the project in the ranking. Project cost has the 
lowest priority among the three project performance aspects, since deficiencies in product 
performance or delays in product delivery can lead to particularly high losses in company 
reputation and profit that must be prevented at any price. 

To illustrate the causes for the outstandingly high cost risks in “Strategies 2 – 4”, the simulation 
results were copied from the VVTPM tool to Figure  J.4. As the charts depict, the high cost risk 
values stem from the form of  the impact functions. That is, the first part of  the impact function 
(i.e., between the target value and the inflection points) contribute to low risk in the project. 
However, project cost values that pass the inflection point mean extremely high risk for the 
project. In “Strategies 1”, “3”, and “4”, the PDFs depicting the simulation results have to have 
clearly separated parts, i.e., one with lower and one with higher cost values (“Strategy 2” includes 
the same effects; however, it is not so clearly separated).  

Phases PD Work Type
Effect of 
Learning

Project Definition Modeling & Simulation 0.3
Concept Development Modeling & Simulation 0.3

Prototype Development Physical Implementation & 
Verification 0.5

Product Qualification Physical System Testing 0.6  
Table  J.2 Effect of learning on rework activities in the SD phases 

Cost Duration Width
Weigthing 0.2 0.3 0.5

STRATEGY 1 189 7 0 40 1
STRATEGY 4 1338 223 0 335 2
STRATEGY 3 1961 678 0 595 3
STRATEGY 2 7847 288 0 1655 4

OBJ RANK

 
Table  J.3 Weighted averages of the process risks 
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These two sets of  process outcomes are the results of  design iterations in the processes. Due 
to the probabilistic modeling of  iteration in the VVTPM tool, one part of  the simulated 
processes includes iteration(s) and thus has higher project cost, another part is without (or with a 
lower amount of) iteration with lower project cost. While project cost and duration usually 
correlate, the simulation results for project duration have the same characteristics.  

J.2.5. Recommendations for the Project Manager 
The VVTPM simulation results showed that technical performance risk is rather low in the 

project, and each of  the four alternative SD process options includes adequate mitigation actions 
(in form of  design and V&V activities) to reduce this risk to the required level in each lifecycle 
phase. According to the project description and the VVTPM simulation results, technical risk is 

 
Figure  J.3 Risk values concerning the four strategies 

 
Figure  J.4 Simulation results for overall project cost at the four strategies 
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expected to come in form of  uncertainty and variation concerning the final values of  the product 
properties. “Strategy 1” was found to be appropriate to deal with this kind of  technical risk within 
the limits of  the planned project constraints. Hence, the project manager can take the estimated 
project schedule in Figure  J.5 and finalize the project plan by setting the activity durations and the 
buffer sizes according to the estimated values. 

However, it is important to note that the project schedule in Figure  J.5 could be too 
optimistic, which might lead to problems during project execution. While even the best of  the 
four project plans entails considerable programmatic risk (see Figure  J.5) and the planned project 
budget is rather tight, it might be deliberate to assign higher management reserves as planned to 
the third project phase. In case of  unanticipated problems during Prototype Development, the raised 
resources would enable to switch to one of  the alternative plans with additional SD effort in the 
critical areas. Higher management reserves would also decrease the effect of  rework on 
programmatic risk in the project. 

Hence, using the VVTPM tool the need for increased process flexibility in the Prototype Development 
phase of  the project was discovered. Flexibility can be increased the traditional way, by allocating 
higher amounts of  management reserves to this phase, which can be used in case of  SD states 
with increased risk. Additionally, the consideration of  alternative plans with higher SD effort 
defined at the outset of  the project increases the possibility of  adequate reactions to situations 
where technical risk is higher than expected.  

J.3.  CHAPTER SUMMARY 

The application of  the VVTPM tool successfully supported project planning in the TetraPak 
case study. As this chapter showed, the stochastic simulation outputs provide an effective means 
for process analysis by describing the behavior of  a certain process architecture including the 
extreme outcomes. Furthermore, probabilistic iteration modeling and parametric risk assessment 
support the detection and elimination of  process failure modes during planning that lead to 
lower risk and more accurate project schedules in the long term.  

 
Figure  J.5 Estimated project schedule for Strategy 1 
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K. WORKSTATE-DRIVEN PROCESS MODELING – THE 

ADAPTIVE SYSTEM DEVELOPMENT PROCESS METHOD 

AND TOOL 

K.1. CHAPTER ABSTRACT 

The previous two chapters described the workflow-
driven VVTPM method and showed how it was 
implemented at TetraPak. However, the VVTPM method is 
not adequate for adaptive SD project planning, because it 
does not account for the modeling of  adaptive decision-
making. Hence, the VVTPM method was improved to allow for workstate-driven process 
modeling, where decisions are made on the basis of  the actual state of  the design and the 
process.  

The Adaptive System Development Process (ASDP) method presented in this chapter implements 
the double loop of  learning and control in the VVTPM procedure, and simulates the SD process as an 
intelligent system that evolves toward maximal stakeholder value.  

K.2. WORKSTATE-DRIVEN PROCESS MODELING 

Planning is an aspect of  learning [Senge 1990]. Hence, planners need methods to increase 
their knowledge of  the SD project. Process modeling supports project management by providing 
the project managers with valuable, early information on the estimated course of  the project. 
Thus, the value of  process modeling methods for project management can be measured as the 
feasibility of  the proposed project plan for the given project environment and its capability to fulfill 
the desired project goals.  

A feasible plan provides an effective and efficient means to realize stakeholders’ expectations. 
Assuming that there are numerous ways to develop a product, the goal of  project management is to 
find the best process with the highest capability to deliver the required outputs within realistic budget and time 
constraints while considering predictable and unpredictable changes. As project planning is initially 
performed at the beginning of  a project, reliable methods are needed to identify and quantify 
risks that can jeopardize the final success of  the project. The fields of  risk and opportunity 
management have much to contribute here, but the variety of  methods proposed by this area 
largely fails to integrate decision-making about project cost and schedule risks with technical 
performance risks. 

The way uncertainty and ambiguity are handled in a process modeling method has a major 
impact on the quality of  the delivered project schedule. Parameter-based, stochastic process 
modeling methods—like the risk value method [Browning et al. 2002], the VVT process modeling 
procedure already presented and validated in the previous chapters, or the Adaptive System 
Development Process (ASDP) described in this chapter—use technical measures to define the scope 
of  an SD activity and estimate its effectiveness based on the confidence in the design parameters 
during its execution. Monte Carlo simulation, used by all the above-mentioned methods, provides 
the possibility to simulate the behavior of  the process considering activity effectiveness and 
efficiency, and estimate the likely process outcomes and resource needs regarding the planned 
targets. 
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However, as process modeling frameworks depict the philosophy of  project management for 
a certain company culture, process modeling methods for workflow-driven planning and 
management—like the risk value method or the VVTPM procedure—cannot be effectively used 
for adaptive SD planning. One major deficiency of  these process modeling methods is that the 
consideration of  decision-making in the SD is limited to probabilistic modeling. Nevertheless, SD 
projects evolve and change as the knowledge of  the product and the stakeholders’ preferences 
grow, forming the SD system architecture to respond to the shifting circumstances. Furthermore, 
adaptive SD projects cannot be planned as precisely as workflow-driven stochastic process 
modeling methods would require. 

Therefore, the task of  process modeling in adaptive SD systems is to identify all possible 
process architecture options for the given uncertain and ambiguous project requirements and 
define a flexible project structure that enables both sensing changes in the project context and 
efficiently responding to these. Furthermore, adaptive process modeling accounts for managerial 
decision-making on process adaptation during simulation, based on both the programmatic and 
technical performance objectives of  the project. That is, adaptive process modeling is an intelligent tool, 
where not only the values of  the process variables vary in each simulation run, but also the 
architecture and thus behavior of  the process according to these parameter values.  

Adaptive process modeling techniques like signposting [Clarkson & Hamilton 2000, 
O’Donovan et al. 2004] and the ASDP improve traditional process modeling by accounting for 
both uncertainty and ambiguity. They do it by simulating the process definition based on a grand 
process space—a network that includes all activity options for a certain project. Adaptive activity 
selection strives to choose the best activities for the actual process by considering the state of  the 
SD process at each decision point. 

Therefore, the output of  adaptive process simulation is not just the likelihood of  the 
outcomes of  process variables (e.g., cost, time, or technical performance), but the likelihood of  
alternative process architectures delivering slightly different end-products that fulfill the 
customers needs. The difference between traditional stochastic methods and the adaptive process 
modeling can be compared to the difference between discrete and continuous simulation 
algorithms. An adaptive process modeling method, the ASDP, is proposed in the next part of  the 
thesis.  

K.3. ADAPTIVE SYSTEM DEVELOPMENT PROCESS METHOD 

K.3.1. Adaptive System Development Process Elements 
The ASDP method enhances existing methods by incorporating the decision-making steps of  

the control loop of  the adaptive SD framework into the simulation procedure. Such decisions aim to 
increase the overall project value by adding new activities or relationships, or changing existing 
ones. Thus, ASDP supports workstate-driven project management by simulating the managerial 
decisions on process adaptation based on the actual project performance.  

In ASDP, the selection of  the activities for the process is done adaptively based on activity 
attributes and the process state. An activity, modeled as a generic process element using the object-
oriented IPO notation [e.g., Negele 1998], is depicted in Figure  K.1. While IPO is a workflow-
driven process modeling technique [Pall 2000], it is important to separate two main process 
elements in the original IPO model to enable the analysis of  process workstates and the effects of  
the activities on these: (1) the input and output products defined by the actual state of  the 
process parameters (e.g., TPMs); and (2) the activities that transform the design from state n to 
n+1.  
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ASDP can be considered as an improvement of  the VVTPM method to enable the stochastic 
simulation of  the behavior of  adaptive activity networks in a flexible SD process space. Hence, 
the main activity attributes in the ASDP model include most of  the VVTPM process element 
attributes (Figure  K.1). However, some new process attributes had to be defined to support 
workstate-driven process modeling. The attributes are: 

• Activity modes: particular “versions” of  an activity with a similar purpose but different 
characteristics and performance levels (e.g., rework mode for an activity). For example, there 
may be several ways to conduct a test: a quick, rough way; a moderately thorough way; and a 
very thorough way. For instance, one might have the option of  evaluating a simulation model 
of  the product, testing a quickly fabricated prototype, or testing an actual piece of  hardware. 
Each of  these options, or activity modes, requires different inputs, has different entry criteria, 
and implies different costs and durations. Certain activity modes are only possible when their 
requisite inputs are available. Of  course, the quality of  the results varies as well. Hence, an 
activity’s mode of  execution influences all its other attributes. 

• Process states: the process workstates before and after the activity described by the performance 
level or maturity of  the design (represented by the various TPM values) in the activity input 
and output products, and the actual project cost and schedule values. Process states are 
described by the actual risk (and opportunity) status of  the project; and applied for the 
selection of  the activity with the highest improvement potential (i.e., potential for risk 
reduction or opportunity capturing) for the actual process state.  

• Entry criteria (EC): the required performance level or maturity of  the inputs to perform the 
activity in a given mode. (Entry criteria are similar to the parameter confidence levels required 
to perform an activity in the signposting approach [Clarkson & Hamilton 2000, O’Donovan 
et al. 2004].) 

• Exit Criteria (XC): the required data quality of  the outputs of  a certain activity. The required 
data quality is described by the measures validity, completeness, correctness, performance, and maturity 
of  the activity results (see Table H.3 for more measures at TetraPak). In case the exit criteria 
are not reached, the activity has to be repeated to deliver results at the required quality level.  

• Activity availability (a): a Boolean value that shows if  the activity mode can be performed given 
the state of  the process, i.e., if  the entry criteria have been achieved. If  not, then the activity 
is unavailable at this point in the process. 

 
Figure  K.1 ASDP process element 
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• Activity value (v): the value of  an activity is comprised of  two components: 

o The absolute (nominal) value of  an activity is determined by its individual effect on 
design performance and project cost and duration. This theoretic characteristic is 
independent from the project environment. 

o The relative value of  an activity means the activity’s contribution to the overall project 
value, given the project’s current status, i.e., depending on the quality of  input 
information available, whether it is ahead of  or behind schedule, over or under 
budget, etc. Wrong or inadequate quality input information due to false activity 
interdependencies reduces activity effectiveness and the value added (garbage in – 
garbage out). Additionally, input information which comes too early or too late due to 
poor project schedule also decreases the impact of  the activity deliverables on the 
overall project value. For example, a particular V&V activity may be of  great value at 
one point in a project and a waste of  time at another point. 

The adaptive process element attributes improve the VVTPM method by supporting the 
modeling of  decision-making on process adaptation. That is, these attributes facilitate in-process 
project adaptation during simulation following the decision procedure of  the control loop of  the 
adaptive SD framework.  

K.3.2. Activity Calibration and the Selection of Activity Modes 
At many SD organizations, the descriptions of  SD activities applicable in SD projects are 

stored in company databases. These activity fact sheets include the information about the SD 
activities necessary for project planning and execution. That is, a good activity description 
includes the most important facts about the activity purpose, scope, results and output products, 
input needs, average cost and duration, methods and tools, and the standard procedures applied 
during the activity. Hence, these activity descriptions show the best way to execute an activity in 
any company SD project. These company best practices can be considered as the intrinsic activity 
modes and represented by the measure absolute activity value. 

However, an optimal general solution is usually sub-optimal for a specific problem in a 
certain problem context. Thus, while activity descriptions are important sources of  information 
during planning, the intrinsic activity modes have to be tailored to the actual project context to 
maximize activity productivity [MacCormack & Verganti 2003] and provide planning with 
adequate information. Thus, SD activities can have different versions in different project 
contexts. 

During activity tailoring, the external and internal factors that affect the attributes of  an SD 
activity described as an ASDP modeling element are identified. On the one hand, the 
uncertainties in the internal and external SD project environment are important to consider 
during activity selection and tailoring. In Chapter  F.3, the sources of  uncertainty a project has to 
deal with were classified into eight main groups (i.e., SD cost, SD schedule, performance, 
technology, market, business, needs, and production uncertainties). These uncertainties affect the 
characteristics of  the project, and thus the type and size of  the activities required to apply in the 
SD process to reach final project success.  

For example, the technology or method applied with the activity has main effects on its 
effectiveness and efficiency. That is, the suitability of  the selected technology to solve the SD 
problem, the familiarity of  the SD staff  with the technology, or the technology maturity are all 
key factors contributing to the SD activity value. 
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On the other hand, there are internal tailoring factors concerning the actual project 
environment. These factors include managerial and organizational characteristics, the SD 
philosophy applied in the project, the project type (e.g., derivative, platform or breakthrough projects 
[Wheelwright & Clark 1992]), product type (e.g., test procedures applied during an activity might 
be different for different products), process type, make-or-buy decisions regarding the activity 
owners (i.e., outsourcing), etc. For example, the level of  innovation required to reach the system 
objectives, the geographical environment of  the project, or the SD team constellation (team size, 
experience and learning rate, cohesion, motivation, etc.) have an important influence on the 
effectiveness and efficiency of  the activity.  

Experienced project planners know which “screws” (i.e., activity attributes) have to be 
adjusted to improve the activity value in a certain SD environment. However, in the presence of  
uncertainty and ambiguity during planning, it often happens that the planning team cannot set 
the exact size or type of  an activity required to fulfill a certain SD goal. In such situations, the 
planners can decide to define alternative plans like in Pilot Project IIb at TetraPak, or they can 
include various activity modes in the project plan and analyze the resulting grand process space using 
the ASDP simulation algorithm.  

Planners include real options in the SD process by defining various ways to fulfill certain 
project goals, and keeping the option to choose the right activity until adequate information from 
the SD process arrives. Hence, activity modes can include activity versions with alternative design 
or test methods, different activity fidelities, and customized procedures for special purposes. For 
example, the effectiveness of  design iteration can be improved by planning activity modes with 
reduced efforts for the correction of  anticipated design failures. The investment concerning these 
new activity modes is limited to the definition and adjustment of  standard activity descriptions 
and procedures during planning. However, the benefit can be high if  the project arrives at a 
process state where high savings can be achieved through the application of  the special activity 
modes. 

K.3.3. Project Planning using Activity Modes 
In order to illustrate the philosophy of  the ASDP method, a simple example for the modeling 

of  overlapping activities is depicted in Figure  K.2. The first diagram in Figure  K.2 shows how 
conventional activity overlapping works in case of  a design and a V&V activity. The empty 
arrows represent preliminary information packages that are exchanged between the activities on a 
regular basis. Krishnan et al. [1997] argue that not all kinds of  information can be exchanged in a 
preliminary form, so they recommend the identification of  adequate information types and the 
definition of  packages with information of  increasing maturity for the process of  overlapping.  

It can be assumed that the preliminary information packages require a definite amount of  SD 
effort, which can be accomplished by a “certain part” of  the originally planned design activity. 
Furthermore, it is also likely that the completion of  the first and second information packages 

 
Figure  K.2 Activity overlapping in adaptive process modeling 
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require different SD steps. Hence, the specific part of  SD work represented by activity “design 1”, 
can be described by a network of  smaller SD tasks, e.g., by activity modes “design 11”, “12”, and 
“13”. Furthermore, the information included in the outputs of  the three design activity modes 
have to be analyzed through slightly different analysis procedures, e.g., represented by activity 
modes “V&V 21”, “22”, and “23”.  

This way, the two long overlapping SD activities can be broken down into short iterative 
design-test cycles, where the upcoming activity modes are selected according to the results of  the 
previous cycles. This enables the control and adaptation of  overlapping activities through atomic 
activity modes that can be varied and recombined on the basis of  the actual process needs. In 
case of  the process in Figure  K.2, each design activity mode is connected to a V&V activity mode 
based on the I/O characteristics of  the activities. However, the V&V activity modes can be 
followed by any of  the three design activity modes according to the actual process needs. 

K.4. SIMULATION IN THE ASDP METHOD 

K.4.1. Parameter Sampling 
The ASDP model is explored with stochastic (Monte Carlo) simulation. The main parameters 

are cost, duration, and product technical performance (represented by the main TPMs of  the 
product). These parameters are random variables in the model represented by triangular 
probability density functions (TriPDFs). During the stochastic simulation, the parameter values 
are selected randomly from the TriPDFs, changing the characteristics of  each activity and thus 
the overall process in each run. This aspect of  stochastic simulation can be utilized to select the 
best activity for the process as the project unfolds. The changing activity characteristics facilitate 
experimentation with different activity options in each simulation run and the selection of  the 
most suitable (robust, valuable) one for the final project plan. 

K.4.2. Risk and Opportunity Calculation 
The objective of  adaptive process modeling is to select the best activity for the process when 

the time comes to do it. The best activity is the one that adds the highest value to the process. 

 
Figure  K.3 Activity effects on process parameters during discrete event simulation 
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Nevertheless, the effect of  the activity on the overall project is not a static variable. It changes 
depending on the state of  the project. For example, the type and criticality of  the failures found 
during testing affect the type and amount of  iterations to be performed. 

The state of  the project can be determined based on the difference of  the planned and actual 
values of  the three key process performance areas: cost, duration, and technical performance. To 
obtain meaningful, comparable information on the effects of  these differences on the final 
project outcomes, risk and opportunity are calculated from the differences during the ASDP 
simulation. 

During risk/opportunity calculation, the probability of  failing/exceeding a certain target (e.g., 
final requirement value) is multiplied by the impact/benefit of  failing/exceeding (where 
impact/benefit is the function of  the difference between the actual and target values). To 
estimate project risk, stochastic process modeling methods like the risk value method simulate the 
process many times and record the probable outcomes of  the process variables. These probable 
outcomes are then compared to the targets, and risk is calculated from the probabilities and 
impacts of  the differences. 

Risk/opportunity calculation in ASDP has more difficult requirements than conventional 
stochastic process modeling methods. Since risk/opportunity has to be calculated after every 
activity to support the selection of  the following activity, the results of  several simulation runs 
cannot be used normally, but the discrete values of  the process parameters have to be applied. 
Further, ASDP employs different algorithms for technical performance and programmatic risk, 
because SD activities affect programmatic and technical process parameters differently.  

This phenomenon is shown in Figure  K.3. While project cost and duration is zero at project 
kick-off, and the cost and duration of  every single activity are discrete values acquired through 
sampling in each simulation run, design technical performance is different in nature. Due to high 
technical uncertainty in the beginning of  the SD project, the starting values of  the TPMs inherit 
high variance, which is then systematically reduced through the execution of  various SD 
activities. Hence, the starting values of  the TPMs are PDFs, not discrete values. Furthermore, as 
discussed before, SD activities have twofold effects on the values of  uncertain TPMs, i.e., they 
improve the most likely value and/or reduce the dispersion of  the possible outcomes.  

Activity effects on technical performance are random parameters represented by symmetric 
PDFs in ASDP (Figure  K.4). On the one hand, the mean values of  the PDFs can be obtained 
statistically after the collection of  historic project data and experts’ opinions. On the other hand, 
empirical values are used for the determination of  the variance of  outcomes in the PDFs. The 
variance of  experimentation results (i.e., the precision of  an experiment or test) is defined by the 
coefficient of  variation (cv). The coefficient of  variation is a measure for the dispersion of  the 
experimentation outcomes and calculated the following way: 

 
Figure  K.4 Stochastic activity effects on design technical performance 
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µ
σ

=vc                                                              ( K-1) 

Where σ is the standard deviation, and µ is the mean or most likely value. According to test 
experts, the value of  cv in real life experiments is 10-15% and 5% in laboratory tests10. Hence, in 
ASDP these values are applied for the PDFs for the dual activity effects on technical 
performance in Figure  K.4.  

The possible outcomes of  the TPMs after each activity are PDFs enabling the calculation of  
technical performance risk using the risk value method. However, the same risk estimation 
technique cannot be directly used for programmatic risk calculation. Hence, it had to be slightly 
modified to fulfill the requirements of  adaptive process modeling. The first modification aimed 
to allow for in-process risk calculation. That is, the actual project risk had to be calculated after 
each activity, not only at the project end. Thus, target profiles had to be used as a proxy for the 
                                                 
10 The author appreciates this valuable information stemming from Carlo Leardi of TetraPak Carton Ambient.  

 
Figure  K.5 Illustrative target profiles versus actual simulation data 
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single target values to permit the continuous evaluation of  the state of  the project. Since most 
companies record the actual cost and schedule profiles of  their projects, and the theory of  earned 
value is well known among project managers, this method was adapted for risk calculation in 
ASDP. A key goal of  ASDP is to support project management with an effective method to 
calculate project risk by using the existing data collected during earned value measurement. 

The application of  target profiles for the comparison of  actual and planned project cost and 
product technical performance are depicted in Figure  K.5. The first graph shows the nominal cost 
profile defined by the phase target values. The second graph depicts the actual versus target cost 
values during an illustrative simulation run. As the graph shows, target profiles are used for risk 
calculation until the actual value is smaller than the target value, and afterwards, the phase targets 
are the reference values. The third graph depicts the evolution of  TPM outcomes in the process, 
for a TPM where the lower is the better. Here, the target values are constants for each phase and 
gradually approach the final requirement value.  

Another difficulty of  in-process risk calculation is that the process variables are discrete 
values, not PDFs. While traditional process simulation methods organize the probable outcomes 
of  numerous simulation runs into PDFs to determine the likelihood of  each possible simulation 
result and calculate risk at the project end, ASDP applies a six-step approach to permit in-process 
risk calculation: 

1. Calculate the actual, discrete values of  the process variables based on the characteristics of  
the activities. 

2. Compare them to the target profiles. 

3. Determine the difference. 

4. Estimate the probability of  failing the final target given this difference. 

5. Determine the impact of  this difference. 

6. Calculate risk using the estimated probability and impact values. 

For example, Figure  K.6 depicts the two functions we used for project cost. Both functions 
represent estimates of  the effect of  a difference between planned and actual cost at some point 
during a project on the final project outcome. In this example in Figure  K.6, the actual cost is 
higher than expected at some point in the project, and this difference implies a moderate 
probability (0.33-0.66) that the budget will ultimately overrun, but such an outcome has a low 
impact on the project (0.00-0.33). 

Using the risk estimations for each process variable, the overall project risk is calculated with 
the following formula: 

A
TPTP

A
CC

A
SS

A
project RwRwRwR ++=                    ( K-2) 

where RA
project is the actual overall project risk, RA

S is the actual schedule risk, RA
C is the actual 

cost risk, RASDP is the actual technical performance risk, and wS, wC, and wTP are the weightings for 
each variable. These weightings represent the relative importance of  the project goals. Thus, 
these weightings are constants, defined in the beginning of  the project, and they are normalized 
to sum to one. Again, there are more sophisticated functions that could be used in lieu of  
Equation (K-2). Each of  these has advantages and disadvantages. Here the weighted average is 
applied only because of  its simplicity. 
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The outcome of  the risk calculation is a number between 0 and 1, which can then be 
classified as low, moderate, or high risk for the project. These risk values are the main drivers of  
activity selection and iteration planning in ASDP. 

K.4.3. Activity Value Determination 
ASDP calculates the relative activity value, defined earlier, as a variable representing the 

activity’s capability to increase the overall project value in the actual process state. As the ultimate 
goal of  decision-making is to maximize project value, the ASDP simulation algorithm always 
selects the activities that most effectively reduce risk, utilize opportunity, and thus increase value 
in the process. For example, many companies have standard procedures to correct typical design 
failures, including activity modes with a special focus on failure correction. The value of  such 
activities or procedures is usually low, until the special kind of  failure is detected. If  the failure is 
found, the application of  this certain activity is the best choice, because this activity was 
developed to correct this particular failure, and thus it has the best effect on the overall project 
value. 

The first step in calculating activity value is to determine the absolute activity value, i.e., the 
expected effects of  the activity on cost, schedule, and technical performance. To account for 
uncertainty, activity value is determined using the expected values of  the stochastic activity 
attributes. Since the expected value is the average of  the outcomes represented by a PDF, 
decisions are often based on this value (assuming a “risk-neutral” decision-maker). 

To obtain the real value of  the activity for the project in the changing process environment, 
the expected risk reduction achievable through the application of  the activity is determined in the 
second step of  activity value calculation. As relative activity value depends on the state of  the 
project, ASDP applies dynamic weighting factors to emphasize the need to improve performance 
in the critical areas identified during the calculation of  the actual risk in the project: 
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These weighting factors are then used in the following formula to calculate the expected 
technical performance risk reduction to be provided by an activity: 

 
Figure  K.6 ASDP risk calculation inputs for project cost and schedule 
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where RE
TP is the expected overall technical performance risk after the activity, RE

TPMi are the 
expected technical performance risk values in the key areas of  technical performance represented 
by the TPMs of  the project after the activity, and wTPMi are the dynamic weighting factors 
obtained from the actual technical performance risk levels using Equation K-3. 

The expected overall project risk after the activity can be calculated once the risks in all three 
performance areas have been determined using the following formula:  

E
TPTP

E
CC

E
SS

E
project RwRwRwR ++=                                       ( K-5) 

where RE
project is the expected overall project risk after the activity, RE

S is the expected schedule 
risk after the activity, RE

C is the expected cost risk after the activity, RE
TP is the expected technical 

performance risk after the activity, and wS, wC, and wTP are the weightings for the process variables 
used in Equation K-3. 

The relative value of  an activity for the project can now be calculated as the expected risk 
reduction provided by the activity: 

E
project

A
project

E
rel RRV −=                                             ( K-6) 

where vE
rel is the expected risk reduction, i.e., the expected difference in overall project risk 

before and after the activity. Using the determined relative activity values, the activity selection in 
ASDP is performed during process simulation instead of  before, as with traditional approaches. 

K.4.4. Activity Selection 
Process definition in ASDP is done starting from a grand process space that includes all the 

possible process states and all activity options relevant for the project. In this grand process 
space, all potential activities are included to facilitate the better handling of  ambiguity during 
process planning. For example, if  there are two modes for a certain activity with similar 
outcomes, but with different confidence levels, V&V methods, procedures, or coverage, and the 
planners cannot decide which mode to choose for the plan, both modes are included in the 
process for potential use. The DSM in Figure  K.7 depicts an illustrative grand process space. 
Diamonds in the DSM show contingent or conditional dependencies between activities, whereas 
the filled circles are the non-contingent relations. Contingency means that a certain activity or 
activity mode can be followed by various activity modes with similar goals, but different focus, 
input needs, or activity values. In case of  contingent relations, the more suitable activity (i.e., the 
better option) for the process is chosen at the point immediately before one of  the contingent 

Task Name 1 2 3 4 5 6 7 8
design 1.1 1 ♦ ♦
design 1.2 2 ●
design 1.3 3 ●
design 2.1 4 ♦ ♦
design 2.2 5 ♦ ♦

test 3.1 6 ♦ ♦ ♦ ♦ ♦ ♦
test 3.2 7 ♦ ♦ ♦ ♦ ♦ ♦

design 4.1 8

● - active relation; ♦ - active, contingent relation

Task Name 1 2 3 4 5 6 7 8
design 1.1 1 ♦ ♦
design 1.2 2 ●
design 1.3 3 ●
design 2.1 4 ♦ ♦
design 2.2 5 ♦ ♦

test 3.1 6 ♦ ♦ ♦ ♦ ♦ ♦
test 3.2 7 ♦ ♦ ♦ ♦ ♦ ♦

design 4.1 8

● - active relation; ♦ - active, contingent relation

Figure  K.7 ASDP grand process space 
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activities must begin. 

Activity selection in ASDP is a two-staged procedure. First, the availability of  all possible 
activities is determined by comparing their entry criteria to all available input information. All 
activities whose entry criteria are met are potential candidates. Second, the activity with the highest 
impact on the overall project value (the activity with the highest relative value) is chosen 
(activated) from the set of  potentials.  

K.4.5. Process-State-Based Iteration Modeling 
Another key aspect of  process modeling is the modeling of  iteration cycles. Probabilistic 

iteration models, which were discussed in Chapter  I.2.1, assumed that the risk of  rework depends 
on the probability of  change in the input of  the activity multiplied by the impact of  that change 
on the activity. However, in practice, these probabilities are difficult to determine a priori. 
Furthermore, probabilistic iteration models were designed to support workflow-driven project 
planning, and they fail to address the needs of  workstate-driven project management.  

A key reason for design iteration is that the planned performance of  the design is not 
achieved through the originally planned process. That is, technical performance risk incorporated 
in the design was not reduced to the planned level. Another characteristic of  design iteration is 
that decisions on iteration usually affect the existing process architecture. That is, new activities 
with a better focus on the discovered problems are applied instead of  just reattempting the 
activity that produced the unsatisfactory result. Consequently, risk reduction and rework 
effectiveness are key drivers of  iteration planning, which have to be considered during process 
modeling. 

When it is time to decide whether to iterate or not, the likelihood of  project success is 
assessed considering the technical status of  the project and availability of  resources. This 
process-state-based decision on iteration is modeled in ASDP using the results of  the risk 
calculations concerning the actual process variables (RA

C; RA
S; and RASDP). Figure  K.8 shows an 

example decision tree used in ASDP for iteration planning. As depicted, the satisfaction of  the 
technical performance requirements is fundamental for the project success, so technical risk 
always has the highest priority during decisions on iteration (i.e., wTP > wS > wC). In case of  high 
technical risk, rework is usually essential (unless the requirements can be eased). Conversely, lack 
of  risk diminishes the need for rework. The branch in the middle, with moderate technical risk, is 
the most usual case in SD projects. This case often leads to a more specific analysis of  the 
product and process characteristics to reach a good decision. In Figure  K.8, schedule is more 
important than cost, so it is considered next, after technical performance.  

A decision tree such as this one is dynamically formed at each step of  the process to support 
implementation of  the main aspects of  design strategy in ASDP, leading to better decisions and 
more realistic process simulation. Alternatively, a weighted average or multi-attribute utility function 
could be used to find the best decision in a one-stage decision tree. 
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Figure  K.8 Decision tree for risk-based iteration 
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K.4.6. Discrete Event Simulation Basics 
The ASDP model applies discrete event simulation to compute the distributions of  process 

duration, cost, and product technical performance based on the approach in [Browning & 
Eppinger 2002]. The ASDP simulation model improves with Browning & Eppinger’s approach in 
three areas. First, it considers product technical performance in addition to process duration and 
cost. Second, it applies adaptive activity selection to allow for continuous process improvement 
and value maximization during simulation. Third, it employs a dynamic, risk- and opportunity-
based decision on iteration, instead of  using a priori probabilities and impacts.  

The application of  discrete steps during simulation allows the incorporation of  project-state-
based decisions after each activity. That is, during each state of  the simulation, the performance 
of  the deliverables is evaluated and suitable activities are selected to adapt the process 
architecture to the dynamically changing process states. This improves process performance and 
continuously maximizes the value added. The steps of  the simulation algorithm are depicted in 
Figure  K.9. The model simulates a series of  state transitions in multiple paths using the previously 
determined activity durations as simulation steps. After each step (i.e., after each finished activity) 
the same algorithm is performed in the model to determine the state of  the project and to select 
the next activity.  

Figure  K.10 shows three states of  an illustrative process to provide some insights into how the 
ASDP simulation algorithm works. The grand process in Figure  K.10 includes both “wide scope” 
activity modes, which can be considered as general design and test activities (activities with x.1 
numbering; e.g., “design 1.1”) and rework modes focused on specific failure correction procedures 
(activities with x.2 or greater numbering; e.g., “design 1.2” and “design 1.3”). Rework activity modes 
have lower fidelity (e.g., they affect only 1-2 TPMs), cost, and duration due to their reduced 
scopes. Furthermore, the entry criteria for these activities are “higher” because they are special 
activities to correct failures; thus, a certain level of  performance is required from the design to 
perform these modes.  

The DSMs in Figure  K.10 use the following notation: solid black circles depict active activity 
relations, empty circles represent inactive relations (i.e., paths not chosen), and diamonds show yet-to-
be-determined contingent relations. Additionally, the boxes on the diagonal show the status of  
the activities during the activity selection procedure: checks ( ) depict previously performed 
activities, question marks show potential next activities, stars in the diagonal represent the activities 
selected for the next process step, and the “X” show the inactive activities not selected. 

The three states (shown on the three rows) in Figure  K.10 demonstrate the evolution of  the 

 
Figure  K.9 ASDP simulation algorithm 
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process architecture during project simulation. Each row first contains a DSM depicting the 
starting point of  the activity selection procedure. The activities with a question mark show the 
potential candidates for the next simulation step; these activities will be evaluated during the 
selection procedure. The second diagram in each row shows the evolving performance of  the 
TPMs relative to each potential activity’s entry criteria. Performance improvement is usually the 
result of  design activities, while V&V activities reduce uncertainty in the TPM values.  

The third diagram in each row shows the risk status at that point in time. In the beginning, 
the performance measures are immature and thus represent high risk, whereas the programmatic 
parameters (cost and schedule) are not. As the process unfolds, technical performance 
uncertainty and risk diminish (for “TPM1”), but programmatic risks increase (as the allocated 
resources are spent). The fourth diagram in each row shows the expected change in value 
expected from each of  the potential next steps in the process and helps to determine which 
activity should be chosen. Finally, the DSM on the far right of  each row shows the resulting 
process after the decision. 

On the one hand, the number of  potential activities grows as the performance level of  the 
design increases. On the other hand, the relative value of  each activity also changes as the risk 
changes in the project. As depicted in the last row of´Figure  K.10, the first design cycle did not 
achieve its targets; “TPM2” is still at high risk. This means iteration for the process with activities 
that have a high potential to improve the value of  TPM2. Figure  K.10 shows that “design 1.3” is the 
best option for the next process state, so the process continues with this activity. Iterations are 
continued until technical risk is reduced to an acceptable level, or until the resource expenditures 
increase the cost and schedule risk problematically. 

Process state 4: After Test 3.1

After decisionActivity valuesRiskTPM valuesBefore decision

Process state 3: After Design 2.1

Process state 2: After Design 1.1

After decisionActivity valuesRiskTPM valuesBefore decision

After decisionActivity valuesRiskTPM valuesBefore decision

Process state 4: After Test 3.1

After decisionActivity valuesRiskTPM valuesBefore decision

Process state 3: After Design 2.1

Process state 2: After Design 1.1

After decisionActivity valuesRiskTPM valuesBefore decision

After decisionActivity valuesRiskTPM valuesBefore decision
Task Name 1 2 3 4 5 6 7 8
design 1.1 1 ♦ ♦
design 2.1 2 ? ♦ ♦

test 3.1 3 ♦ ♦ ♦ ♦ ♦
design 1.2 4 ○
design 1.3 5 ○
design 2.2 6 ♦ ? ♦

test 3.2 7 ♦ ♦ ♦ ♦ ♦ ♦
design 4.1 8 TPM1 TPM2

EC2.1
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EC2.2

EC2.2
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1 2 3 4 5 6 7 8
1 ● ○
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4 ○
5 ○
6 ○ X ○
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Task Name 1 2 3 4 5 6 7 8
design 1.1 1 ● ○
design 1.2 2 ○
design 2.1 3 ♦ ♦
design 2.2 4 ♦ ♦

test 3.1 5 ♦ ♦ ♦ ♦ ? ♦ ♦
test 3.2 6 ♦ ♦ ♦ ♦ ? ♦ ♦

design 4.1 7
design 1.3 8 ○

1 2 3 4 5 6 7 8
1 ● ○
2 ○
3 ● ○
4 ○ ○
5 ♦ ♦ ♦ ♦ ♦ ♦
6 ○ ○ ○ ○ X ○ ○
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Task Name 1 2 3 4 5 6 7 8
design 1.1 1 ? ○ ○
design 1.2 2 ? ○
design 1.3 3 ? ●
design 2.1 4 ? ● ○
design 2.2 5 ? ○ ○

test 3.1 6 ♦ ♦ ♦ ♦ ♦ ♦
test 3.2 7 ○ ○ ○ ○ ○ ○

design 4.1 8 ?

1 2 3 4 5 6 7 8
1 X ○ ○
2 X ○
3 ●
4 X ○ ○
5 X ○ ○
6 ○ ○ ● ○ ○ ○
7 ○ ○ ○ ○ ○ ○
8 X

● - active relation; ○ - inactive relation; ♦ - contingent relation; – finished activity; ? – potential activity; - selected activity; X – inactive activity;
EC – entry criteria, TPM – technical performance measure
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Figure  K.10 Three states of the Discrete Event Simulation in the ASDP 
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 The DSMs on the far right show the results of  each simulation state, the activities with the 
stars that were selected for the next step, and the ones with the “X” that were not selected. The 
two DSMs in the third state illustrate the dynamic behavior of  the process elements during 
simulation. Though the activities “design 1.1” and “design 2.1” were already selected for the process 
previously, the decision on iteration changed their status. That is, these activities became potential 
activities for the next process step (iteration) and are evaluated together with the other 
candidates. Thus, the “ ” in the diagonal transformed into “?” (first DSM) and then into “X” 
(second DSM) after the decision on the next step was made.  

Figure  K.11 shows the changing cost risk status during the discrete event simulation. The area 
of  the rectangles in the z-axis dimension depicts the cost risk. Note how it grows towards the 
end of  the project. Since cost has the lowest priority among the three main project objectives, 
iterations were done to reduce technical performance risk, in spite of  the dangerous increase in 
cost risk.  

K.4.7. Adaptation of the Target Profiles 
In the example in the previous section, the assumption was made that both the programmatic 

constraints and the technical performance targets are known before the simulation starts. 
However, one major goal of  process modeling during project planning is to determine realistic 
cost and schedule targets that enable the maximal fulfillment of  the technical project goals. 
Hence, ASDP provides the possibility to apply discrete event simulation to obtain all probable 
outcomes for the process variables. These outcomes define a stochastic design space for the 
activity network (i.e., a process space). 
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Figure  K.11 Changing risk values during ASDP simulation 
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At the beginning of  the ASDP simulation, the project manager arbitrarily (or perhaps with 
customer or marketing guidance) defines the project’s cost and schedule targets and their 
probability functions (e.g., Figure  K.6B). For example, he or she calculates the total duration of  the 
regular activities (first modes) on the critical path and adds 20% buffer for iterations. 
Additionally, the probability functions for the risk calculations have to be defined similarly to the 
ones in Figure  K.6B. These values are then considered as starting values for the simulation.  

Even though Figure  K.12 shows the target profile as one linear, in reality, it is rare that target 
values of  different phases fit on one linear function. Hence, the adaptation of  the starting profile 
in the ASDP tool is done separately for each phase, and the result is then not a linear, but a 
piecewise linear function. This is an important aspect of  the ASDP simulation algorithm, since 
the application of  one single linear target profile could lead to wrong simulation results.   

Figure  K.13 depicts the results of  the ASDP simulation for project cost. The TriPDFs depict 
the probable values of  the cost profiles recorded during the discrete event simulation. These data 
are valuable information for the project manger about the possible and likely cost trajectories of  
the project. With this information, project planning can define realistic management reserves that 
provide the project with the required resource flexibility.  
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Figure  K.12 Adaptation of the starting profile to the simulation results 
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Figure  K.13 Results of the initialization of the ASDP simulation 
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K.4.8. Model Outputs 
 The goal of  ASDP is to identify a core process, a network of  activities that add the most 

overall value to the project. The core process is the one at which the highest design performance 
is achieved for the lowest process cost and duration. Since the output of  each simulation run can 
be a different process, during the evaluation of  the simulation results, those activities that 
constitute the most frequent building blocks of  the processes with the highest value can be 
identified. That is, the output of  the ASDP simulation is a network of  activities, where each 
activity is prioritized based on its contribution to the overall process value. 

Figure  K.14 shows one simulation output, a DSM. The boxes in the diagonal depict the 
priority of  the activity—i.e., how often was that activity present in the high-value processes? The 
off-diagonal cells show the frequencies of  the relations used during the simulation runs. The 
activities that add most value in most situations (those with the highest priority) build the core 
process. Using the identified core process, the expected performance of  the single activities and 
the whole core process can be calculated and compared to the project requirements and 
constraints to assess the feasibility of  the project. The off-diagonal frequencies provide potential 
inputs to probability-based iteration models such as [Browning & Eppinger, 2002]; such inputs 
may be superior to the probabilities elicited from project participants and managers. 

Another ASDP output is depicted in Figure  K.15. The estimated target profiles (see also) are 
main sources of  valuable information on the project in the planning phase. The variance of  the 
final parameter values, the diversity of  possible performance profiles, the risk incorporated in 
each process option, and the expected target values and profiles are pieces of  information that 
significantly improve the project manager’s knowledge of  the project, reduce uncertainty, and 
support the consideration of  process failure modes during planning. 

Task Name 1 2 3 4 5 6 7 8
design 1.1 1 3 0.4 0.1
design 1.2 2 2 0.35
design 1.3 3 1 0.15
design 2.1 4 3 0.35 0.05
design 2.2 5 2 0.09 0.51

test 3.1 6 0.03 0.1 0.15 0.05 0.01 3 0.05
test 3.2 7 0.02 0.2 0.2 0.04 0.05 2 0.1

design 4.1 8 3
Activity priority: 3 – high; 2 – medium; 1 – low

Relation frequency: 0 – 1 

V&V 1 
V&V 2 

Task Name 1 2 3 4 5 6 7 8
design 1.1 1 3 0.4 0.1
design 1.2 2 2 0.35
design 1.3 3 1 0.15
design 2.1 4 3 0.35 0.05
design 2.2 5 2 0.09 0.51

test 3.1 6 0.03 0.1 0.15 0.05 0.01 3 0.05
test 3.2 7 0.02 0.2 0.2 0.04 0.05 2 0.1

design 4.1 8 3
Activity priority: 3 – high; 2 – medium; 1 – low

Relation frequency: 0 – 1 

V&V 1 
V&V 2 

 
Figure  K.14 Illustrative ASDP output: Activity relation probabilities 

 
Figure  K.15 Estimated target profiles 
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K.5. CHAPTER SUMMARY 

The theory of  the workstate-driven process modeling method “Adaptive System Development 
Process (ASDP)” was introduced in this chapter. ASDP models the steps of  both loops of  the 
adaptive SD framework, and thus it simulates the process of  controlled learning in the adaptive 
SD enterprise. During the multiple discrete event simulation runs, the flexible process space is 
explored and all possible process states and scenarios are considered for given project objectives. 
The resulting process alternatives (i.e., alternative paths in the flexible process space) provide the 
planners with solutions of  the expected and unanticipated process failure modes and thus, 
support both project planning and adaptation. Further, the possible outcomes for the target 
profiles define the range of  resource needs in the project that helps adjust the buffer sizes for the 
lifecycle phases. 
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L. CASE STUDY III – ADAPTIVE PROCESS MODELING AT 

TETRAPAK CARTON AMBIENT 

L.1. CHAPTER ABSTRACT 

The validation of  the Adaptive System Development Process (ASDP) method 
and software tool is the main topic of  this chapter. Hence, the goal here is to 
prove the validity and applicability of  the ASDP concept using real industry 
data from the pilot projects at TetraPak Carton Ambient. The results of  Pilot 
Project IIc described here show how a flexible process plan could be generated 
from alterative process plans at TetraPak, and demonstrate the value of  this 
adaptive process modeling technique for workstate-driven project management. 

L.2. PILOT PROJECT IIC – IMPLEMENTATION AND 
VALIDATION OF THE ASDP METHOD 

L.2.1. Pilot Project IIc Description 
The ASDP method described in the previous chapter was implemented in a software tool 

that is based on the VVTPM software environment. This enables the transfer of  process models 
from the VVTPM to the ASDP tool, and facilitates the comparability of  the simulation results 
from the two different tools.  

As mentioned before, Pilot Project IIc was a “virtual” pilot project. That is, the validation of  the 
ASDP theory and software tool was conducted using the planning data from Pilot Project IIa and 
IIb to prove the validity of  ASDP as an alternative planning technique for the VVTPM.  

The structure of  decision points and the evaluation criteria, including the lifecycle phase 
targets for all dimensions of  process performance, as well as the impact functions were the main 
inputs for ASDP process modeling from Pilot Project IIa. This information could be imported 
from the VVTPM tool to avoid unnecessary programming and planning effort. The resulting 
target profiles for project cost and product technical performance as functions of  planned 
project duration are depicted in Figure  L.1.  

There is one main difference between the two software tools concerning process evaluation, 
i.e., the way risk is calculated in the tools. While in the VVTPM tool, risk is a measure of  
estimated profit loss in Euro (€), risk values in ASDP are between 0.00 and 1.00 to allow for the 
determination of  risk levels during process adaptation (0.00-0.33 low; 0.33-0.66-medium; 0.66-

 
Figure  L.1 Cost and technical performance profiles in Pilot Project IIc 
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1.00 high). Hence, the impact functions defined in the VVTPM tool using monetary units (€) had 
to be normalized and the impact values had to be converted into numbers between 0.00 and 1.00. 
During this procedure, the highest impact values among the monetary impact functions were 
sought and set to 1.00. Then numbers between 0.00 and 1.00 were assigned to the representative 
values of  he impact functions without changing the basic form of  the function.  

Besides the evaluation criteria, the activity network had to be defined in the ASDP tool. As 
the previous section proposed, ASDP models adaptive project management, where the leader of  
the project applies a flexible process space instead of  strict plan to guide the SD work. This flexible 

 
Figure  L.2 Grand process space in Pilot Project IIc 
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process plan drives the project towards maximal stakeholder value by enabling and even forcing 
the manager to select the best activities for the places in the SD process, where the planning team 
defined flexibility on the plan, because they could not decide on the best solution due to high 
uncertainty or ambiguity.  

Although the project management system at TetraPak has been moving towards adaptiveness 
and the decision support framework implemented in Pilot Project IIa allows effective project adaptation, 
Project Planning could not be convinced to use the ASDP tool to experiment with it. Hence, the 
process variants defined in the VVTPM in Pilot Project IIb were applied to validate the ASDP tool 
and the decision to build the ASDP tool on the VVTPM software environment instead of  
developing a new, standalone solution proved to be a good decision from the validation point of  
view.  

During process definition in the ASDP tool, a grand process space is defined involving all 
activities and activity modes relevant for the project. At TetraPak, two of  the four process 
variants in Pilot Project IIb were selected as input for process definition. One of  the two selected 
process plans, “Strategy 3”, included additional SD efforts in reverse engineering and analysis, i.e., 
two activities forming an iteration loop to be conducted sequentially in the process. In the other 
process model, in “Strategy 4”, an analysis task was included on repeatability and reproducibility 
(R&R) instead of  the iteration loop.  

The resulting grand process space is depicted in the DSM in Figure  L.2. This flexible process 
includes the following activities not part of  the basic process models described in the VVTPM 
case study (see Figure  J.2): 

• Rework modes for each activity with effect on the TPM “package width”. During the definition 
of  these activity modes, activity sizes were reduced by the learning effects defined in the 
VVTPM (i.e., 0.3 in Phase 1 and 2, 0.5 in Phase 3, and 0.6 in Phase 4). The new activity 
modes were included in the grand process architecture as phantoms of  the original ones, i.e., 
with the same relations to other activities. 

• Two activities with rework modes in Phase 3. As mentioned before, the Strategies “3” and “4” 
differed in the activity networks of  Phase 3. Hence, during the definition of  the grand 
process space for the project, the additional activities were included in the original process 
model (see Figure  J.2). As Figure  L.3 shows, three new activities and three rework modes were 
incorporated in the process space after the activity “Mock-up Realization”. So, if  the discrete 
event simulation arrives at the state after “Mock-up Realization”, it has to decide which of  the 
two alternative process paths have more improvement potential for the project, and choose 
the best of  the four respective activity modes.  

The grand process space generated this way includes all feasible activity options that were 
considered during planning. This process could now be analyzed using the ASDP simulation 
algorithm. 

 
Figure  L.3 Two alternative process paths in the ASDP grand process space 
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L.2.2. Overall Simulation Results 
To analyze the behavior of  the grand process space defined in the ASDP tool, 1000 discrete 

event simulation runs were conducted. In each run, the activity characteristics are different 
including the effects on all relevant process parameters (project cost, duration, and TPMs).  

The overall results of  the ASDP simulation regarding the three process attributes are 
depicted in Figure  L.4. As the charts present, the results do not show any positive or negative 
trend, and thus the whole range of  the simulation runs can be considered as feasible for the 
evaluation. The charts in Figure  L.4 also highlight an interesting characteristic of  the SD process, 
i.e., the form of  project cost and duration are similar and thus they correlate. This is not 
necessarily true for technical performance, even if  design iterations in ASDP are driven by the 
actual technical risk status. 

During the analysis of  the resulting process architectures after the ASDP simulation, some 
astonishing results were found. In the TetraPak grand process space, 731 different process 
schedules were detected due to the high number of  activity options. Since conventional 
workflow-driven process modeling works with only one process option, this result alone 
underlines the demand for better project scheduling methods that have the capability of  
simulating changes in the process design during process analysis. 

The simulation outcomes for project cost and duration in the last diagrams in Figure  L.4 show 
that process changes and unplanned design iteration in the SD project due to inadequate quality 
are quite likely during the project and these will lead to project cost and duration higher than the 
specified targets. Even though the simulation outcomes include many quite pessimistic process 
scenarios, the cost and duration of  the majority of  the generated process schedules exceed the 
preliminarily set targets that should be considered during planning. That is, the project plan 
intrinsically includes considerable programmatic risk that can result in higher resource 
consumption than planned.   

The next representative simulation output depicts the frequencies of  activities and likelihoods 
relations after the simulation in the TetraPak grand process space. As Figure  L.5 presents, while 
some activities were very “popular” during simulation, others were picked quite rarely by the 
ASDP algorithm. For example, in the first lifecycle phase, rework was conducted more often 
through regular activity modes than through rework modes. This information that calls for 
management attention concerning the sizing of  conventional and rework modes can be derived 
from the activity frequencies in the diagonal of  the DSM.  

 
Figure  L.4 Simulation results for the three process attributes 
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Figure  L.5 Frequencies of activities and likelihoods relations in the ASDP simulation results 
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It is also important to note that the rework modes were not only active during rework 
simulation, but they could be selected also for the first iteration loop. Though the entry criteria 
were set higher than for regular activity modes, many times they were conducted in the first loop. 
On the other hand, regular activity modes were sometimes accomplished as rework activities. The 
reason for this phenomenon can be found in the characteristics of  the process adaptation 
algorithm. The algorithm always picks the activities with the highest effect on the overall project 
value considering the actual risk status. Thus, on the one hand, in process states with high 
technical risk it selects regular modes for rework, and on the other hand, it will decide for lower 
required effort even in the first iteration loop if  technical risk is low or programmatic risk is high 
in the project.  

Another interesting result that can be obtained from Figure  L.5 refers to the success of  the 
two process branches in Phase 3. According to the activity frequencies, the iteration loop with 
reverse engineering activities (incl. regular and rework modes) outscored the R&R activities, since 

 
Figure  L.6 Actual project cost profiles after simulation 

 
Figure  L.7 Characteristics of the best process architecture (with lowest overall risk) 
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they were conducted 4395 times and the R&R activities only 12 times during the 1000 simulation 
runs.  

Furthermore, the high number shows that the iteration cycle concerning reverse engineering 
activities were conducted at an average of  4.1 times in each simulation run. The other rework 
loops were repeated with a maximum of  three (i.e., an average of  1.25 iterations in the first phase, 
app. 3 iterations in the second phase, an average of  1.65 iterations in the main loop of  phase 3, 
and app. 1 iteration in the last phase). These numbers show that the computer-based design and 
analysis activities in the second and third phases have a significant contribution to the overall 
project performance. Furthermore, design iterations in the second and third phases resolve most 
of  the technical uncertainty in the SD project and thus guarantee a smooth qualification in the 
last phase of  the project.  

The last result concerning the behavior of  the grand process space is depicted in Figure  L.6. 
The actual cost profiles here show the same result as the diagrams in Figure  L.4, i.e., the planned 
project budget will quite likely be too low for the project. Though cost has the lowest priority 
among all three dimensions of  process performance, it has considerable effects on the 
profitability and thus stakeholder value of  the project. Figure  L.5 also shows the probable 
outcomes of  project duration. This aspect is more alarming than the project cost, since delivery 
deadlines are main quality criteria at TetraPak. As the chart shows, the durations of  a large 
number of  process schedule overdrafts go beyond the original targets.  

The actual profiles show that workstate-driven process simulation provides a larger variety of  
outputs than conventional workflow-driven simulation. On the one hand, many of  the generated 
process architectures are not feasible for the project requirements describing process failure 
modes with low likelihood. On the other hand, the overall simulation results show that the results 
of  conventional process simulation are often too optimistic. The best process architecture found 
during the VVTPM simulation (“Strategy 1”) did not include the additional activities in Figure  L.2, 
and presented a “good enough” way to accomplish the project goals. However, as the overall 
ASDP simulation results depict, iterations are more likely in the SD project than estimated 

 
Figure  L.8 Process schedule with the lowest duration and the highest overall risk 
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before, which contributes to considerably higher project cost and duration. Hence, it is 
recommended to allocate more resources to the project to deal with the technical challenges and 
use effective project control to identify the best points to switch to activities that are more 
effective in solving the actual SD problems than the ones on the basic plan (“Strategy 1”). 

L.2.3. Representative Process Outcomes 
Besides the aspects that describe the overall behavior of  the grand process space, the ASDP 

simulation generates outputs that specify representative process schedules identified during 
simulation. One such process schedule is the best one, i.e., the one that incorporates the lowest 
overall risk. As Figure  L.7 depicts, the best schedule involves only one iteration in phase 2, all the 
other design problems could be solved correctly at the first time. This is the main reason for low 
or moderate programmatic risk throughout the whole project. Though technical performance 
risk represented by the risk value in the TPM “package weight” are low at the end, it can be noticed 
that the effects of  activities in phase 3 are rather low on the technical aspects. 

Two more process schedules are depicted in Figure  L.8. The first schedule is the one with the 
lowest project duration. In this process, iterations were frontloaded in the SD, resulting in early 
uncertainty and thus risk reduction. The second process schedule shows the opposite strategy, 
where long iterations were done in the product qualification phase, where SD work is most 
expensive. This is the reason for the rather high overall risk values at the end of  the process. 

L.3. CONCLUSIONS ON ASDP AND CHAPTER SUMMARY 

The case study in this chapter showed that adaptive, workstate-driven process modeling 
provides a much higher variety of  simulation results than conventional process modeling. The 
high diversity of  process architectures and process scenarios explored during ASDP simulation 
provides different inputs to project planning than project managers are used to. On the one hand, 
ASDP simulation generates an unexpectedly high number of  different process plans that can be 
analyzed during project planning. On the other hand, this huge number of  possible process 
architectures and schedules for a project is reduced by identifying the more frequent activities and 
the best schedules for different project objectives.  

Hence, ASDP is not a substitute for conventional process modeling techniques, but a tool 
that provides a large variety of  inputs to the project management about the possible future states 
of  the SD and proposes actions to deal with these situations. Thus, ASDP reduces ambiguity 
about the project during planning and helps define a project plan with increased capability to 
fulfill its mission. 
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M. CASE STUDY EVALUATION AND SUMMARY 

M.1. CHAPTER ABSTRACT 

This final chapter of  the thesis presents the evaluation of  Case Study I 
and II from the industry point of  view. The goal of  the evaluation is to 
determine the overall feasibility of  two methods implemented at TetraPak 
Carton Ambient: the decision framework for system adaptation developed to 
support the procedure of  adaptive project control, and the VVT Process 
Modeling Tool for project planning. These two methods are now in daily use at 
TetraPak and provide the basis for a possible future implementation of  the 
Adaptive System Development Process method discussed in the previous two chapters. 

The evaluation process is supported by a generic metrics system that breaks down the 
feasibility of  any methodology, method, or tool into criteria and measures that describe feasibility 
and support the detailed assessment of  the implementation success of  novel SD techniques in a 
company. The case study evaluation was carried out with Carlo Leardi, the leader and main 
supporter of  the implementation and validation of  the new methods at TetraPak Carton 
Ambient. 

M.2.  EVALUATION SYSTEM 

To assess the results of  the two pilot projects in the TetraPak case study, a generic assessment 
system was set up based on existing systems engineering evaluation frameworks [e.g., INCOSE 
1995, Fricke 1998]. Figure  M.1 depicts this assessment system that provided the fundament of  the 
evaluation process. The various levels of  the hierarchic tree structure classify the most important 
drivers of  method feasibility and thus the case study success into four main categories. These 
four main criteria are then broken down into lower hierarchy level measures that provide the 
basis for the quantification of  feasibility. To support the assessment, a questionnaire was 

 
Figure  M.1 Case study assessment system 
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generated including questions in each aspect of  feasibility. The questionnaire gave the interviewee 
three main tasks: 

• First, the level of  importance of  the factors (i.e., criteria and measures) for the company had 
to be defined (first chart in Figure  M.2). These importance levels were then used to determine 
parameter weightings for the computation of  overall method feasibility as the weighted 
average of  the four criteria. 

• After the weightings were set, the second task of  the interviewee was to choose the answers 
to each question from a five-level scale (second chart in Figure  M.2) and thus indicate the level 
of  satisfaction of  a certain evaluation aspect. The assessment questionnaire included focused 
on questions for each specific measure to support the evaluation of  the case study results. It 
was not possible to work with real company data due to high confidentiality at TetraPak.  

• As the assessment system depicts, the main criteria are broken down into three hierarchic 
levels of  measures. Whilst the measure at the highest level received weightings from the 
interviewee, measures at the two lowest levels were of  equal importance. During evaluation, 
the values for each hierarchy level were computed from the lower level measures using the 
weightings and the values of  the measures. 

• Finally, the interviewee had the possibility to explain his or her decision in form of  plain text. 
These comments were useful to understand the evaluation results and get feedback on the 
quality of  both the questionnaire and assessment system. 

The hierarchic structure of  the assessment system in Figure  M.1 was defined on the basis of  
the Goal-Question-Metric approach of  INCOSE [1995]. At the highest hierarchy level of  the 
assessment system, the main goal of  the pilot project can be found. The fulfilment rate of  this 
high-level project goal shows the overall success of  the pilot project. In case of  a method 
introduction at an organization or in a project, the feasibility of  the method to solve the critical 
problems in the intended environment is evaluated. 

The second level in the assessment system depicts, the main criteria showing the fulfilment of  
the case study goal(s). To determine the feasibility of  a method, the following four generic 
parameters were defined: (1) viability; (2) effects on performance; (3) usability; and (4) acceptance of  the 
method in the case study. These four main metrics of  the assessment system were identified after 
a review of  relevant systems engineering literature on measurement and assessment [e.g., 
INCOSE 1995, Fricke 1998, DoD & US Army 2000, etc.] and the comparison of  their findings 
with the case study goals.  

The third level of  the assessment system contains the measures whose values are defined by 
the answers in the questionnaire. These measures represent the most important quantitative and 
qualitative aspects of  feasibility. The questionnaire includes questions to determine the status of  
these measures and derive information on the overall success of  the method introduction in the 
pilot project. 

 
Figure  M.2 Levels used in the evaluation questionnaire 
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It is important to note that the assessment system describes feasibility in general. Since the 
author of  this thesis was interested to see which areas are affected by the two implemented 
methods, the whole assessment system including every measure was applied in the evaluation 
process. The reason for this is that the purpose of  the evaluation was not the mere verification of  
the feasibility, but the exploration of  the overall value of  the methods in a certain company 
environment. As the results of  the evaluation will show, some factors in the assessment system 
might be conflicting, e.g., a method that improves the effectiveness (i.e., better outcomes) of  
decision-making might contribute to reductions in decision-making efficiency (i.e., time to make a 
decision). Furthermore, a new method is usually inefficient until the users get acquainted with it.  

Therefore, if  the assessment system is applied in the industry for project evaluation and 
verification, it is important to tailor the measures to the given project goals and eliminate the 
aspects of  feasibility not relevant for the project. This way, it can be guaranteed that project 
evaluation measures the fulfilment of  the desired project goals and not the satisfaction of  general 
metrics on feasibility independent of  the actual project environment. Thus, the basic rule of  
measurement is also valid here: measure only what you are to achieve, because everything else 
only reduces the quality of  the measurement process and its outcomes. 

M.3. CASE STUDY EVALUATION RESULTS 

This section presents the evaluation results in a bottom-up approach. First, the results in the 
four main areas defined by the measurement criteria are described and then the evaluation 
outcomes for the overall feasibility are shown. Further, evaluation results for the two methods are 
presented in parallel, not sequentially, to see the difference between their values for SD projects. 

To describe the situation of  the methods at TetraPak, it must be noted that previous versions 
of  the VVTPM tool had already been implemented during the SysTest project the year before the 
case studies. Thus, the developers at TetraPak had already been familiar with the VVTPM 
software environment. In addition, steps of  the decision framework were in use before in the SD 
projects of  TetraPak; however, the current form of  the decision-making procedure described in 
this thesis had never been used before. Thus, none of  the methods were completely new for the 
developers at TetraPak, but the versions used in the pilot projects had not been known before. 

M.3.1. Viability 
The first criterion for method feasibility is viability, defined as having a reasonable chance of  

succeeding or something is financially sustainable [Merriam-Webster Online Website]. In the context of  
the case study, viability means that the introduced method brings more benefits to the company 
than the cost of  introduction, operation, and maintenance, i.e., it is viable or profitable for the 
organization to apply the method in a project. Hence, the two measures contributing to the 
viability of  the methods are the (1) implementation effort, meaning the amount of  required resources 
to implement the method in a project; and (2) implementation benefit, expressing the achievable 
benefits through the introduction of  the method. The possible benefits can be broken down into 
the estimated value of  performance improvements achievable through the method in the SD system 
(product, process, or organization) and the savings concerning the better utilization of  resources 
during operation.  

Figure  M.3 shows that both the cost and benefit side of  the implementation of  the systematic 
decision framework for adaptive project control had positive effects at TetraPak. While the cost 
of  implementation was medium, its duration was highly satisfying (i.e., the duration was low). 
Furthermore, the decision framework was estimated to have considerable (high) effect on project 
performance improvement, which means moderate benefits for the project.  
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To compute the values of  the measures implementation effort and benefits, the average of  the 
equally important third-level measures were used. Hence, for the decision framework for adaptive 
SD, both measures received 0.7 meaning high user satisfaction. As the interviewee decided that 
both implementation effort and benefits are of  the same importance for the case study, the 
overall viability of  the decision framework could be calculated to 0.7 meaning high satisfaction.  

The implementation effort related to the VVTPM tool in the pilot project was low 
contributing to high user satisfaction. There was also an agreement that the application of  the 
VVTPM tool fostered the improvement of  project performance significantly, leading to moderate 
benefits for the project.  

Using the low-level factors the main measures for viability could be calculated. These values 
showed that the application of  the VVTPM tool required lower effort (note that the developers 
had already been familiar with the tool), but the tool brought the same implementation benefits 
as the decision-making framework. Due to the required lower implementation effort, user 
satisfaction with the VVTPM tool was slightly higher than with the decision framework: 0.75 
representing high level of  satisfaction. 

M.3.2. Method Effects on SD Performance 
The second main criterion of  feasibility, the effects of  the method on SD performance, explores how 

the implemented methods contributed to the technical characteristics of  the project. Performance 
describes those operational and support characteristics of  the system (or method) that allow it to 
effectively and efficiently perform its assigned mission over time. The support characteristics of  
the system include both supportability aspects of  the design and the support elements necessary 
for system operation [DoD 2001b]. Based on this definition, performance improvements 
provided by a method for an SD system were classified into two aspects: contributions to the 
effectiveness and efficiency of  the SD system.  

Efficiency means the amount of  output produced relative to the amount of  resources (time 
and money) that go into the production [Wikipedia Website]. The concepts of  efficiency and 
productivity are related to each other. Hence, efficiency is the measure of  the resources required 
to achieve an output with a certain level of  quality. 

Effectiveness is the extent to which the goals of  the system (or method) are attained, or the 
degree to which a system can be elected to achieve a set of  specific mission requirements [DoD 
2001b]. As system effectiveness is the extent to which the goals of  the system are attained, it is 
broken down into the effectiveness of  three major SD subsystem types in the assessment system, 
i.e., method (or tool), process, and organizational effectiveness. These measures describe the effectiveness 

 
Figure  M.3 Satisfaction of the measures for the criteria method viability 
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of  the overall system. Thus, a new method implemented at a company contributes to one or 
more of  these areas. 

First, four basic lower-level measures constitute the measure method effectiveness, namely the 
improved transparency and guidance provided by the method in the project. Additionally, the reusability 
of  the results of  the method is a key aspect of  the effectiveness of  systems engineering and 
modeling methods. Reusability fosters the collection of  project experience and lesson learned 
that support the continuous system improvement efforts. The traceability of  the results to the 
original goals is the fourth measure that describes effectiveness. 

Second, process effectiveness describes the capability of  the process. The result of  deliberate project 
planning is a process with the capability to deal with predicted and unpredictable situations in the 
project. The higher the capability of  the process, the lower are the effects of  undesired rework, 
technical risk, and changes on the final process output. Process capability can be increased through 
better planning and thorough control in the project. 

Third, some methods foster the effectiveness of  the communication among team members that 
facilitates the productivity of  the teamwork. A special kind of  teamwork is decision-making done 
at various hierarchy levels of  the project, with different scopes and including diverse team 
members in the project. The quality of  decision-making has a major contribution to project 
effectiveness and the overall success of  an organization. 

M.3.2.1. Effectiveness 
After the measures of  the contribution of  the implemented method to SD performance were 

introduced, now the results of  the evaluation are presented. First, the contributions of  the 
methods to effectiveness are discussed.  

The first measure to be evaluated was method effectiveness in the questionnaire. The overall value 
of  method effectiveness determined by the four low-level measures (transparency, guidance, 
reusability, and traceability) was considered to be moderately or highly satisfying for both 
methods (see Figure  M.4). The decision framework was particularly effective in providing guidance 
for the developers during decision-making. Thus, it contributed to better decisions in the pilot 
project. Furthermore, the reusability of  the framework was high, which supported the broad 
application of  the decision-making procedure and the results in the pilot project. 

The second measure was the contribution of  the decision-framework to process effectiveness. 
While the decision framework was effective in making decisions on rework and reducing 
technical risk through the better identification of  the critical areas, it failed to reduce the number 

 
Figure  M.4 Measures of the contribution of the methods to SD effectiveness 
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of  changes in the project. This is an important lesson learned from the evaluation of  the case 
study questionnaire, i.e., effective decision-making involving the right stakeholders contributes to 
many small, but effective process changes. These small changes capture the failures at an early 
stage, and thus they do improve process effectiveness. Thus, many changes, if  small and effective, 
are much better than few major process changes. Consequently, the decision framework did 
increase process effectiveness significantly, even if  the number of  effective change actions 
increased. 

The third category of  effectiveness was the contribution of  the decision framework to 
organizational effectiveness. In this category, the decision framework was particularly successful, 
because it received the score high for improving team communication and quality of  decisions. As the 
comments showed, the reason for this success was that the right persons could be invited to the 
meetings, who were able to make the right decisions. 

The second method evaluated in the pilot projects was the VVTPM. The questions aimed to 
assess the effectiveness of  the process modeling tool during decision-making and the selection of  
the right failure correction actions. A main benefit of  the application of  a parameter-based 
process modeling tool during decision-making is its contribution to the evaluation and selection 
of  the best process option at a certain SD state. Using the VVTPM tool, it was possible to 
quickly define improvement options and analyze their effects on risk reduction. The other three 
measures (guidance, reusability, and traceability) received the grade medium – 0.6 in the assessment. 

The second measure of  effectiveness was the effect of  the VVTPM tool on process effectiveness. 
The results show that process modeling fosters decision-making by supporting the selection of  
the right rework actions and thus reduces undesired rework. Furthermore, change actions aiming 
at reducing technical risk were especially successful by identifying the right activities and 
stakeholders through process simulation. Finally, the VVTPM increased the effectiveness of  
meetings and the quality of  decisions due to the same reasons.  

Figure  M.5 depicts the effects of  the decision framework and the VVTPM tool on the three 

 
Figure  M.5 Effects of the two methods on SD effectiveness 

 
Figure  M.6 Overall results for the two main measures of SD performance 
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main measures of  SD effectiveness. Satisfaction is high in every aspect except for the contribution 
of  the decision framework to process effectiveness that was lower due to the false assumption of  
the author about the way the number of  changes affect process effectiveness. 

M.3.2.2. Efficiency 
Efficiency is the second measure defining the contribution of  the methods to SD 

performance improvements. This part of  the questionnaire brought the second lesson for the 
author. While the decision framework was quite successful at improving the effectiveness of  the 
SD decisions (i.e., the outcomes of  decision-making were of  higher quality), it had only low 
effects on the efficiency of  decision-making (Figure  M.6). Now, after the case studies, the reason 
became obvious: good decisions require time. That is, the application of  the decision-making 
framework led to better results, because the procedure of  decision-making was more thorough 
and thus additional effort was necessary. Hence, the application of  the decision framework 
requires a tradeoff  between effectiveness and efficiency; however, the resulting effectiveness is 
much higher than the required extra resources. 

The VVTPM tool on the other hand is a method that increases both the effectiveness and 
efficiency of  decision-making in the SD. The explanation for this was provided by a comment in 
the questionnaire, i.e., the VVTPM supports preventive risk assessment during the project and 
thus helps allocating resources to the critical areas before a negative event happens. Thus, timely 
meetings can be organized and informed decisions on risk prevention can be made more 
efficiently than decisions on failure corrections could be made. 

To summarize, both methods were highly satisfying for the improvement of  SD 
performance. Further, the application of  the adaptive decision-making framework requires more 
resources than conventional decision-making due to its higher information needs. On the 
contrary, the VVTPM was principally successful at improving both SD performance aspects. 

M.3.3. Usability of the Methods 
Usability is the third criterion of  method feasibility in the assessment system. Usability 

implies the ease with which a human user can obtain a required service from a system (or method) [INCOSE 
1998a]. The criterion usability is comprised of  three main measures: suitability, coverage, and 
information availability.  

Suitability is a measure of  the degree to which a system (or method) is appropriate for its 
intended use with respect to non-operational factors such as man-machine interface, training, 
safety, documentation, producibility, testability, transportability, maintainability, manpower 
availability, supportability, and disposability [INCOSE 1998a]. In case of  a method, suitability is 
the degree to which the method fulfils its purpose in the intended project environment. 

Coverage means the degree to which the solution a method provides covers the problem area. 
The usual requirement for a new method is to have at least the same coverage as the previous 
one and improve its predecessor in other aspects (e.g., effectiveness, efficiency, suitability, etc.). 

Information availability describes the rate of  available and required information needed to use a 
method effectively. If  this rate is low, i.e., a large amount of  new information has to be collected 
for a new method, usability decreases due to the required extra effort during implementation. 

As Figure  M.7 depicts, usability is a main weakness of  the decision framework. The first 
measure suitability received 0.4 points, which means low satisfaction on the five-point scale. The 
reason is that the novel method attempts to standardize decision-making procedures and 
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standard procedures are often rejected by humans. This was the case in the case studies, too. That 
is, decision-makers preferred to apply subjective analysis to the standard procedure.  

The second aspect of  usability, the coverage of  the new decision framework was measured in 
relation with existing methods. This is the reason for the relatively bad result (0.4 - low). The 
decision framework did not attempt to increase the coverage of  decision-making methods and 
procedures, but the objective was to provide a systematic procedure for the decisions.  

Information availability for the effective use of  the method was the third usability aspect. 
Here, the user was asked to estimate the degree of  information already available for the decision 
framework. Due to the novelty of  the method and the parameter-based decision-making 
methodology, information for the risk- and opportunity-driven decisions was relatively hard to 
find in the pilot project. Additionally, the collected information had to be processed to acquire 
the necessary input data for the procedure. Thus, the very low satisfaction with information 
availability relative to methodologies currently in use at TetraPak is a natural trait of  introduction 
processes of  novel systems engineering methods. This aspect of  usability will definitely improve 
with time. 

This assumption is further underlined by the evaluation results regarding the usability of  the 
VVTPM tool. Since, the process modeling tool had already been introduced a year ago, the 
sources of  input information and the methods for processing had already been revealed by the 
developers. This is the reason for the medium satisfaction concerning the information availability 
for the VVTPM tool. 

The suitability of  the VVTPM tool to solve the pilot project problem was valued high, because 
the key stakeholders of  the project were highly interested in experimenting with risk-based 
process modeling as a decision support method. Additionally, the coverage of  the process 
modeling tool was graded medium, since the VVTPM is still in the introduction phase at TetraPak, 
and the overall goal is to cover 95% of  all similar cases with the tool.  

To sum up, the novelty of  the decision framework contributed to low grades in all three areas 
of  usability. However, this was expected for the introduction of  new methods. The VVTPM 
received much better marks, but the information channels had already been discovered before; 
and the developers were familiar with the tool and more interested in the results. 

M.3.4. User Acceptance  
User acceptance is the final, fourth criterion that describes the feasibility of  the implemented 

methods. The definition of  user acceptance is derived from the Technology Acceptance Model (TAM) 
[Davis et al. 1989, Bagozzi et al. 1992], which is an information systems theory that models how 
users come to accept and use a technology (or in this cases a method). The model suggests that 

 
Figure  M.7 Three aspects of method usability 
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when users are presented with a new software package (or a method, or a tool), a number of  
factors influence their decision about how and when they will use it, notably: 

• Usefulness, implying the degree to which a person believes that using a particular system (or 
method) would enhance his or her job performance [Davis 1989] 

• Ease-of-use, meaning the degree to which a person believes that using a particular system would 
be free from effort [Davis 1989]. 

These two aspects of  user acceptance were selected as main measures in the assessment 
system, as well. The assessment of  the decision framework concerning user acceptance provided 
the best results among all four aspects of  feasibility (Figure M.8). The measure ease-of-use received 
the highest possible grade meaning maximal user satisfaction. The grade very high means in this case 
that the users had absolutely no problems with following the decision-making procedure, because 
both the sequence and meaning of  the steps are clear and easy to understand. The other measure, 
the usefulness of  the method, brought about medium satisfaction that can be explained again by 
the natural human aversion against standardization. 

Even though the decision framework outscored the VVTPM tool in this aspect, the process 
modeling software received good notes, too. The application of  the VVTPM tool was very easy 
(high satisfaction) in the case study, and the usefulness was at medium level. The reason for the 
average usefulness was the rather high pressure on the developers that reduced their motivation 
for process modeling requiring extra effort.  

To summarize, the decision framework contributed to very high and the VVTPM to high user 
satisfaction in the case study, which is an important basis for further exploitation of  the methods 
in the company. 

M.3.5. Evaluation Summary 
During the assessment process, the feasibility of  two methods developed and presented in 

 
Figure  M.8 Acceptance of the methods 

 
Figure  M.9 Four main criteria of method feasibility 
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this thesis were assessed using a systems engineering metrics system. The users of  the two 
methods evaluated the importance of  the assessment aspects for the case study, provided 
quantified answers on a five-point scale to describe their satisfaction with the methods, and 
commented their decision.  

The values of  the four main criteria calculated from the answers in the assessment 
questionnaire are depicted in Figure  M.109. The results in one aspect are dissatisfactory, i.e., the 
usability of  the decision framework was graded low. Otherwise, the two methods received 
medium to very high notes.  

Now, the overall objective of  the assessment process can be fulfilled, i.e., a statement for the 
overall feasibility of  the two methods implemented at TetraPak can be obtained. Using the 
criteria weightings defined by the user (viability – 0.2; performance – 0.2; usability – 0.3; 
acceptance – 0.3), the overall value of  method feasibility could be calculated. These values are 
depicted in Figure  M.10.  

The decision framework received 59 out of  100 points implying a medium to high user 
satisfaction with the novel decision-support procedure. Even if  the first difficulties of  the 
developers with data collection and standardization of  procedures are weaknesses of  the method, 
the overall result is promising. 

It was proven that the VVTPM is an excellent assistance in project planning and decision-
making. The scores in all areas reached the second best level indicating high user satisfaction with 
the method. While the VVTPM procedure is a stochastic, parameter-based approach that 
supports risk-driven decision-making, it can be considered as the first, main step towards 
workstate-driven project management and adaptive process modeling.  

M.4.  CHAPTER SUMMARY 

The outstanding feedback on the VVTPM tool and the satisfaction with the adaptive, risk- 
and opportunity-driven decision-making framework signalize that TetraPak is on the right way 
towards the broad implementation of  an adaptive SD philosophy in the corporate culture. Their 
efforts to implement systems engineering company-wide and improve the effectiveness of  
decision-making by translating the mere technical information into transparent measures 
understandable for everyone, will contribute to SD performance improvements and long-term 
market success.  

 

 
Figure  M.10 Feasibility of the two methods 
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N. THESIS SUMMARY 

N.1. THESIS WRITING – AN ADAPTIVE SD PROJECT 

The development process of  this thesis was a wonderful journey through the worlds of  
Systems Engineering, Project Management, Organizational Theory, and System Design and 
Development. It was a true adaptive SD project, where the system architecture (i.e., architecture of  
the thesis document) and the exact goals of  the SD work grew together with the developer’s (i.e., 
the author’s) knowledge. In the iterative learning process of  identifying research problems, 
exploring existing solutions in relevant literature, tailoring these solutions to the thesis research 
context, and verifying these resulting new methods, the thesis concepts were continuously refined 
and evolved towards a novel systems engineering framework for the adaptive development of  
engineering systems.  

This adaptive SD project of  thesis writing involved a thorough literature review and 
interviews with experts from both industry and academic domains to understand the SD problem 
and develop requirements for the thesis work. The thesis development project also contained the 
development of  concepts for both the architecture and contents of  this document. These concepts 
were verified and improved through analyses and reviews with renowned experts from academia and 
industry and demonstration at relevant technical conferences (e.g., INCOSE Annual Symposia, 
ASME-DETC Conferences, TMCE Conference, DSM Workshops, etc.). The concepts were then 
validated in the industry, at TetraPak Carton Ambient to prove the feasibility and applicability of  
the proposed theory in the European industry.  

Finally, the thesis research project involved a software development task to support the 
validation and verification of  the concepts generated in the scope of  the thesis. This part of  the 
thesis project provided the author with the particular experience of  assisting the implementation 
of  his own ideas and concepts in a real, working product. The knowledge acquired during 
software implementation, which resulted in the continuous correction and adjustment of  the 
original concept, make the proposed adaptive SD framework so valuable and the results of  the 
thesis remarkable. That is, the methods proposed in this thesis do work in reality.  

N.2. CONTRIBUTIONS TO THE SYSTEMS ENGINEERING BODY 
OF KNOWLEDGE 

Systems engineers of  many decades grew up considering the SD project as a sequential, 
stage-gate process organized according to the waterfall SD philosophy. Besides many benefits of  this 
kind of  SD paradigm, it has main weaknesses that make the waterfall model inappropriate for the 
design of  SD projects under highly dynamic circumstances. While there are many proposed 
alternative concepts to heal the illnesses of  sequential SD, there is still much to contribute here 
for academic researchers. 

One goal of  this thesis was to define a mental model, a simple framework for SD that accounts 
for frequent changes in the external and thus in the internal environments of  modern SD 
projects. This framework proposed that controlled learning is in the heart of  sense-and-respond SD 
systems. Sensing is a key element for an adaptive system, because the fitness of  system behavior is 
defined by the needs of  its environment. Learning is also vital, since it is the iterative process of  
generating adequate response to the sensed needs.  

The main benefit of  the model-based adaptive SD framework for systems engineers and 
managers is that it supports the generation of  an emergent SD strategy that is guided and bounded 
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by the growing knowledge of  the developers, and the feedback of  the system stakeholders on the 
achievements of  the SD process. Thus, instead of  attempting to precisely plan the project from 
the beginning to the end at the outset of  the project, the philosophy of  the adaptive SD 
framework is to start with a flexible project structure that is then continuously refined and 
detailed according to the actual project performance.  

However, the definition of  a new systems engineering philosophy is useless without methods 
that guide the implementation of  it in the industry. This thesis proposed model-based methods 
to support the two main functions of  adaptive systems engineering: (1) the planning of  project 
control structures for system adaptation; and (2) the planning of  the iterative learning processes 
with high capability of  innovation.  

The Procedure of  Adaptive Project Control and its tailored version, the TetraPak Decision Support 
Framework, implement risk- and opportunity-driven decision-making on project adaptation in the 
SD project. These methods take the parameter-based measurement data from Systems 
Engineering Measurement and derive estimations for the possible project success (in terms of  
possible gains and losses) from it. This information is then applied to determine both the team 
structure required for effective decision-making, and to identify and select risk reduction and 
opportunity capturing strategies to achieve maximal system lifecycle value. 

Furthermore, the dissertation introduced two parameter-based, stochastic process modeling 
methods to support adaptive SD project planning. The workflow-driven VVT Process Modeling 
(VVTPM) procedure integrates Project Management with Systems Engineering Management by 
facilitating the consideration of  both the programmatic and technical aspects of  the project in 
one planning tool. Hence, using the VVTPM tool, project plans can be design iteratively to 
maximize the effectiveness and efficiency of  the SD process in a certain project environment.  

The Adaptive System Development Process (ASDP) method is an improvement of  the VVTPM to 
account for workstate-driven project planning. During the discrete event simulation steps in the 
ASDP tool, the adaptive SD framework is simulated including the SD process of  learning and 
innovation, and the process-state-based decisions on project adaptation. This novel process 
modeling technique revolutionizes project planning by supporting the selection of  the best plan 
from a grand process space including all activity options relevant for a given project environment.  

N.3. CONCLUSION 

The adaptive systems engineering methodology in this thesis presents an SD model of  the 
future and proposes methods to implement it in the present. While the adaptiveness of  SD 
projects require a paradigm shift in engineering thinking, it will take a while until concepts like the 
adaptive SD framework can be directly implemented in the industry. However, as the case studies 
showed, there is high potential for the companies to move towards adaptiveness and increase the 
value of  the developed products through fast response to shifts in the customer’s needs. 
Adaptiveness is currently a “delighter requirement” and main source of  competitive advantage in 
many industry segments; however, it will be a “must need” in the long term.  

The value of  this thesis is that it investigates the systems engineering aspects of  adaptive SD 
and proposes validated methods to move towards adaptiveness. Hence, the findings of  this 
dissertation can be considered as a small step in the long way towards truly adaptive SD 
enterprises.   
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O. APPENDIX I – CASE STUDY II DATA IN THE VVTPM 

TOOL 

O.1. STRATEGY INPUTS 

O.1.1. DSMs 
 

 

 Figure  O.1 Rework probabilities and impacts in Strategy 2  
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Figure  O.2 Rework probabilities and impacts in Strategy 3 
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Figure  O.3 Rework probabilities and impacts in Strategy 4 
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O.1.2. Activity Values 
 
 

Activity Performance Level
Most Likely Uncertainty

Definition of requirements MEDIUM MEDIUM VERY LOW
Preliminary feasibility LOW VERY LOW LOW

Boundary conditions study MEDIUM LOW VERY LOW
QFD I° HoQ LOW NONE NONE

MS1 - Formal review MEDIUM LOW NONE
Semi-manufactured choice/design MEDIUM LOW VERY LOW

I° Preliminary Verification - constraints assessment - noise VERY LOW VERY LOW NONE
II° Preliminary verification - semi-manufactured variability assessment MEDIUM MEDIUM LOW

III° Preliminary verification - nominal dimensions MEDIUM MEDIUM LOW
IV° Preliminary verification - tare MEDIUM NONE NONE

MS2 - Formal review MEDIUM LOW NONE
Mock-up realization LOW LOW VERY LOW

Tailoring of reverse engineering tool MEDIUM MEDIUM MEDIUM
Verification of reverse engineerig results MEDIUM LOW LOW

First Mock-up measures -reverse engineering MEDIUM HIGH LOW
Sub-groups design MEDIUM LOW VERY LOW

Sub-groups manufacturing LOW LOW VERY LOW
Integration testing: semi-manufactured-process MEDIUM MEDIUM LOW

Integration testing MEDIUM MEDIUM LOW
5th preliminary verification on prototypes MEDIUM HIGH MEDIUM

MS3 - Formal review MEDIUM LOW NONE
Qualification - Appearance TPMs HIGH MEDIUM MEDIUM

Qualification - Dimensions HIGH HIGH LOW
Qualification - Tare LOW LOW LOW

MS4 - Formal review HIGH MEDIUM LOW

width

 
Figure  O.4 Activity effects on TPM package weight in Strategy 2 an Strategy 3 

 
 

Activity Performance Level
Most Likely Uncertainty

Definition of requirements MEDIUM MEDIUM VERY LOW
Preliminary feasibility LOW VERY LOW LOW

Boundary conditions study MEDIUM LOW VERY LOW
QFD I° HoQ LOW NONE NONE

MS1 - Formal review MEDIUM LOW
Semi-manufactured choice/design MEDIUM LOW VERY LOW

I° Preliminary Verification - constraints assessment - noise VERY LOW VERY LOW NONE
II° Preliminary verification - semi-manufactured variability assessment MEDIUM MEDIUM LOW

III° Preliminary verification - nominal dimensions MEDIUM MEDIUM LOW
IV° Preliminary verification - tare MEDIUM NONE NONE

MS2 - Formal review MEDIUM LOW
Mock-up realization LOW LOW VERY LOW

R&R analysis on reverse engineering tool MEDIUM LOW MEDIUM
First Mock-up measures -reverse engineering MEDIUM HIGH LOW

Sub-groups design MEDIUM LOW VERY LOW
Sub-groups manufacturing LOW LOW VERY LOW

Integration testing: semi-manufactured-process MEDIUM MEDIUM LOW
Integration testing MEDIUM MEDIUM LOW

5th preliminary verification on prototypes MEDIUM HIGH MEDIUM
MS3 - Formal review MEDIUM LOW NONE

Qualification - Appearance TPMs HIGH MEDIUM MEDIUM
Qualification - Dimensions HIGH HIGH LOW

Qualification - Tare LOW LOW LOW
MS4 - Formal review HIGH MEDIUM LOW

width

 
Figure  O.5 Activity effects on TPM package weight in Strategy 4 



228  

P. GLOSSARY OF TERMS 

A 
Acceptance see Technology Acceptance Model 
Activity modes Activity modes are particular "versions" of an activity with a similar purpose but 

different characteristics and performance levels (e.g., rework mode for an activity). 
Agility Agility refers to the ability of an organization to thrive in a continuously changing, 

unpredictable business environment [Rigby et al. 2000]. 
Ambiguity  A form of uncertainty is unforeseen uncertainty or ambiguity referring to the unknown 

unknowns in the project, meaning the absence of knowledge of the planning team 
about what will need to be done and when. Ambiguity is more dangerous than 
foreseen uncertainty, because it is more difficult to plan for it. The planning team is 
either unaware of an event’s possibility or considers it unlikely and does not bother to 
create contingencies (or preventive actions) for it [e.g., De Meyer et al. 2002]. 

C 
Clustering Integration analysis or clustering is a method for manipulating the structure of the 

system to recognize functionally related elements that are highly dependent on each 
other. These functionally related elements of a physical system are called clusters or 
chunks in literature [e.g., Steward 1981a, Pimmler & Eppinger 1994, Browning 2001]. 
The foremost objective of clustering is to maximize interactions between elements 
within clusters (chunks) while minimizing interactions between clusters [Rechtin 1991, 
Baldwin & Clark 2000]. Thus, the main goal of clustering is to maximize hidden 
information in the design and thus the independence of the design modules. 

Complexity In systems engineering and systems theory, definitions classify complexity into two 
main categories: structural complexity concerning the complicatedness of the order of 
the elements in the system and behavioral complexity regarding the behavior of the 
system over time [Sussman 2003]. 

Complexity Complexity is a feature describing the structure of the system that depends on the 
variety (diversity of elements) and the connectivity (diversity of relations) of the 
system. Furthermore, variability (changeability) has a main effect on system 
complexity [e.g., Patzak 1982, Negele 1998, Igenbergs 2000, Wenzel 2003]. 

Configuration 
Management 

Configuration Management is a discipline applying technical and administrative 
direction and surveillance to: (1) identify and document the functional and physical 
characteristics of configuration items; (2) control changes to configuration items and 
their related documentation; and (3) record and report change processing and 
implementation status. [MIL-STD-480B]. 

Coverage The coverage of a method is the degree to which the solution covers the problem 
area. 

Critical Path  In project management, a critical path is the sequence of project network terminal 
elements with the longest overall duration, determining the shortest time to complete 
the project. [Wikipedia Website]. 

Cybernetics Cybernetics is a theory of the communication and control of regulatory feedback 
[Wiener 1948]. 

D 
Decision points See Review 
Design of Experiments 
(DoE) 

DoE is a structured, organized method for determining the relationship between 
factors (Xs) affecting a process and the output of that process (Y) [I-Six Sigma Online 
Website]. 
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E 
Ease-of-use Ease-of-is is the degree to which a person believes that using a particular system 

would be free from effort [Davis 1989]. 
Effectiveness Effectiveness means the extent to which the goals of the system are attained, or the 

degree to which a system can be elected to achieve a set of specific mission 
requirements [DoD 2001b]. 

Efficiency Efficiency implies the amount of output produced relative to the amount of resources 
(time and money) that go into the system [Wikipedia Website]. 

Emergence Emergence refers to the macro-level patterns arising in systems of interacting agents. 
Emergent phenomena cannot be deduced from knowledge of behavior of individual 
parts and is not reducible to the parts alone. Emergent complexity is driven by a few 
simple patterns that combine to create infinite variety [Wikipedia Website]. 

Engineering System Engineering systems are systems designed by humans having some purpose and are 
composed of interacting parts [Moses 2004]. 

F 
Feasibility Feasibility is the degree to which the requirements, design, or plans for a system or 

component can be implemented under existing constraints [INCOSE 1998a]. 
Flexibility Flexibility is the ability to respond effectively to changing circumstances [Nilsson & 

Nordahl 1995]. 
Flexibility Flexibility is the ability to change with little penalty in time, effort, cost or performance 

[Upton 1994]. 
Flexibility Systems that have the ability to be modified to do jobs not originally included in the 

requirements definition are called flexible systems [McManus & Hastings 2005]. 
Flexibility Flexibility can be defined as the degree of responsiveness or adaptability for any 

future change in a product design [Rajan et al. 2004]. 
Foreseen uncertainty Foreseen uncertainty means that there is a variation in the possible values of the 

performance characteristics of the end product and the cost and duration of the SD. 
Hence, foreseen uncertainty is often referred to as representing the known unknowns 
in the SD [e.g., De Meyer et al. 2002]. 

Frontloading Frontloading is a strategy that seeks to improve development performance by shifting 
the identification and solving of [design] problems to earlier phases of a product 
development process [Thomke & Fujimoto 2000]. 

Functions 
(of a system / model 
element function) 

Functions describe the dependencies between the inputs, properties, and outputs of 
system elements. The results of the functions, (i.e., the element outputs) depend on 
how the inputs influence the properties of the element. Thus, functions describe how 
the element transforms inputs into outputs. Negele [1998] (see also [Patzak 1982] and 
[Ehrlenspiel 1995]) classifies functions as primary and secondary functions. While 
primary functions mainly contribute to the main purpose of the system or element, 
secondary functions are e.g., supporting, disturbing, or irrelevant functions. 

H 
Hierarchy Hierarchy is an ordered network of concepts or objects in which some are subordinate 

to others [INCOSE 1998a]. Hierarchy in a system relates to the vertical relationship 
among system elements that is the result of system decomposition. 

I 
Implementation 
benefits 

Implementation benefits are a measure that expresses the achievable benefits 
through the introduction of a new method, tool, or methodology in a project. 

Implementation effort  Implementation effort is a measure that describes the estimated amount of the 
required resources to implement a new method, tool, or methodology in a project. 
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Information availability Information availability describes the rate of available required information needed to 
effectively use a method (tool or methodology). If this rate is low, i.e., a large amount 
of information has to be collected for a new method, the usability of the new method 
decreases due to the required extra effort during implementation. 

Inputs and outputs 
(I/O) 

I/Os are interfaces between the elements and their environment [e.g., Negele 1998]. 
Other system-internal or –external elements influence the system element by 
providing the element with the outputs they produced, i.e., the results of their behavior. 
This way, elements of a system can exchange their products (e.g., information, 
material, energy). The behavior and the outputs of a system as a whole depend on the 
interaction between system elements, i.e., how certain output products of the single 
elements influence the output products of other elements. 

Input-Process-Output 
(IPO) method 

A generic approach for the modeling of systems and their components is the IPO 
approach [e.g., Negele 1998] describing the main characteristics of a system element 
operating in an (internal or external) system environment according to the above 
definitions. IPO, an abbreviation of input-(process product, person or purpose)-output, 
is a generic, object oriented modeling technique applicable to any kinds of systems. 

Interface Interfaces are the functional and physical characteristics required to exist at a 
common boundary or connection between persons, or between systems, or between 
persons and systems [INCOSE 1998a]. 

Iteration Iteration is the repetition of tasks to improve an evolving SD process [Eppinger et al. 
1997]. Iteration means work on previous activities to improve the initial design and 
correct the defects found (i.e., redesign) [Ford & Sterman 1998]. 

L 
Lifecycle 
(of a product, system, 
project) 

Projects are usually divided into project phases with clear objectives and deliverables 
to provide this process with a logical structure, better management control, and 
appropriate links to the ongoing operations of the performing organization. 
Collectively, the project phases are known as the project life cycle [PMI 1996]. 

M 
Model A model is an abstraction of the reality, a representation of a system with a purpose 

[e.g., Igenbergs 2000]. 
Modeling and 
simulation 

Modeling and simulation provide virtual duplication of products and processes, and 
represent those products or processes in readily available and operationally valid 
environments. Use of models and simulations can reduce the cost and risk of life cycle 
activities [DoD 2001a]. 

Modularity Modularity refers to the architecture type where closely related elements of a system 
are grouped in clusters or chunks based on their horizontal interactions. Thus, product 
architectures with chunks or modules that (1) implement one or a few functional 
elements in their entirety and (2) comprise two or more components that strongly 
interact with each other within the cluster, and have few, well-defined relations to 
elements in other clusters are called modular architectures. 

P 
Partitioning System partitioning using a design structure matrix (DSM) helps optimize the 

sequence of activities in a process by manipulating the process structure. During 
partitioning, the goal is to get the DSM in an upper-triangular form to the extent 
possible, with a minimum number of sub-diagonal marks pulled as close to the 
diagonal as possible and grouped in blocks [Browning 2001] 

Performance Performance is defined as those operational and support characteristics of the system 
(or method) that allow it to effectively and efficiently perform its assigned mission over 
time [DoD 2001b] 

Problem Problem is the difference or gap between the actual system state and the targets or 
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the system objectives describing the future system state [Haberfellner et al. 2002]. 
Process Process is a set of activities performed to achieve a given purpose (SEI) [INCOSE 

1998a]. 
Process Process is a set of interrelated resources and activities which transform inputs into 

outputs [ISO 8402]. 
Process A process is a network of customer-supplier relationships and commitments that drive 

activities to produce results of value [Pall 2000]. 
Process Capability Process capability refers to the ability of a process to produce a defect-free product or 

service in a controlled manner of production or service environment. Various 
indicators are used, some address overall performance, some potential performance 
[I-Six Sigma Online Website]. 

Project A project is a temporary endeavor undertaken to create a unique product or service 
[PMI 1996]. 

Project management Project management is the application of knowledge, skills, tools, and techniques to 
project activities in order to meet or exceed stakeholder needs and expectations from 
a project [PMI 1996] 

Properties ( of a 
system / model 
element) 

The states, effects, and behavior of the elements are described through their 
properties. Properties can be descriptive, quantitative, or qualitative. Based on the 
actual values of the properties, the characteristics of an element can be determined. 
Negele [1998] classifies element properties as additive – not additive; constant – 
variable; dependent – independent; discrete – continuous; deterministic – not 
deterministic. 

Q 
Quality Quality is the totality of features and characteristics of a product or service that bear 

on its ability to satisfy stated or implied needs [ISO 8402]. 
Quality Quality means conformance to requirements derived from the customer’s needs 

[Crosby 1979]. 
Quality Function 
Deployment 
(QFD) 

QFD is a process for systematically translating customer requirements into 
appropriate technical requirements during all stages of product development from the 
earliest stages of product design through production [INCOSE 1998a]. 

R 
Real options The elements of a system that provide “rights, not obligations” to achieve some goal or 

activity. Generally speaking, all elements of a system that provide flexibility can be 
considered as real options [De Neufville 2003a]. 

Relations 
(of a system / model 
element) 

Relations are the interrelations or dependencies among system elements. Relations 
between system elements form a network of causes and effects that describe how the 
system operates [Sterman 2000]. Hence, the network of relations shows the 
underlying logic of a system, i.e., the characteristics of the causal network of elements 
in a system. Relations can be classified by type, importance, or strength [Negele 
1998] 

Repeatability Repeatability is the variation in measurements obtained when one person measures 
the same unit with the same measuring equipment [I-Six Sigma Online Website]. 

Requirement A requirement is an essential condition that a system has to satisfy [ISO 2382-20]) 
Requirements 
engineering 

Requirements engineering comprises the process of elicitation, analysis, specification, 
validation/verification, and management of requirements [DoD 2001a]. 

Review Systems engineering or project management activity by which the technical and 
programmatic progress of the project is assessed relative to the project requirements 
and contstraints. Conducted at logical transition points in the PD effort to reduce risk / 
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capture opportunitites by adapting the project to the changed characteristics. Reviews 
are usually conducted at every hierarchy level of the project. 

Rework Rework or refinement implies returning to previously worked activities to account for 
changes. It can stem from new information and/or failure to meet design objectives 
[Smith & Eppinger 1997b] 

Risk Risk is a measure of the potential inability to achieve overall program objectives within 
defined cost, schedule, and technical constraints. Risk has two components: (1) the 
probability or likelihood of failing to achieve a particular outcome; and (2) the 
consequences or impacts of failing to achieve that outcome [DoD 2002]. 

Risk Management In the context of industrial systems engineering, risk management is the recognition, 
assessment, and control of uncertainties that may result in schedule delays, cost 
overruns, performance problems, adverse environmental impacts, or other undesired 
consequences [INCOSE 2002]. 

Robustness Robustness characterizes a system’s ability to be insensitive towards changing 
environments [Fricke & Schulz 2005]. Robust systems deliver their intended function 
under varying conditions without being changed [Taguchi & Clausing 1990, Taguchi 
1993, Clausing 1994]. 

Robustness Robustness is the ability of the system to do its basic job in unexpectedly adverse 
environments [McManus & Hastings 2005]. 

Rule of ten The rule of ten states that costs of failure generally increase tenfold at each phase in 
the system lifecycle where the failure is detected [Ehrlenspiel 1995]. 

S 
Schedule A schedule is the conversion of a project plan into an operating timetable [Meredith & 

Mantel 2003]. 
Sequencing See Partitioning. 
Six Sigma Six sigma is a statistical method for quantifying the degree of deviation permitted by 

parts, products, and processes that guarantees that failure will typically occur less 
than three times in a million opportunities [INCOSE 1998a]. 

Stakeholders Stakeholders are the persons who are somehow affected by the development, 
manufacturing, operation, maintenance, and disposal of the system. Stakeholders 
generally comprise the gamut of customer acquirers, end users, consumers, partners, 
supplier, unions, the corporation, the shareholders, and the society [Murman et al. 
2002]. 

Statistical process 
control (SPC) 

SPC is the application of statistical methods to identify and control the special cause 
of variation in a process [I-Six Sigma Online Website]. 

Suitability Suitability is a measure of the degree to which a system (or method) is appropriate for 
its intended use with respect to non-operational factors such as man-machine 
interface, training, safety, documentation, producibility, testability, transportability, 
maintainability, manpower availability, supportability, and disposability [INCOSE 
1998a]. 

System A system is an interacting combination of elements to accomplish a defined objective. 
These include hardware, software, firmware, people, information, techniques, facilities, 
services, and other support elements [INCOSE 2002]. 

System A system is a set of interrelated components which interact with one another in an 
organized fashion toward a common purpose. The components of a system may be 
quite diverse, consisting of persons, organizations, procedures, software, equipment, 
and facilities [NASA 1995]. 

System A system is a composite of equipment, subsystems, skills, and techniques capable of 
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performing or supporting an operational role. [MIL-STD-499A]. 
System A system is any process that converts inputs to outputs [INCOSE 1998a] 
System The notion of a system may be seen as simply a more self-conscious and generic 

term for the dynamic interrelatedness of components [von Bertalanffy 1968] 
System The four basic characteristics that describe a system: (1) it consists of elements; (2) 

the elements have attributes; (3) the interaction between elements is described by 
relations; and (4) an element can be a system [Igenbergs 2000] 

System architecture The system architecture is the arrangement of elements and subsystems and the 
allocation of functions to them to meet system requirements [INCOSE 1998a].  

System architecture The architecture of a system is the arrangement of functional elements into physical 
chunks that become the building blocks for a product or family of products [Ulrich & 
Eppinger 2004]. 

System architecture The architecture of a system shows how the system is built up by interacting 
subsystems and components whose individual functions and behaviors yield the 
performance of the original complex system [Yassine & Braha 2003]. 

System structure If the natural order of the system elements is modified on a certain purpose, the 
resulting new order will not be the natural order any more. This new artificial order is 
then called the system structure [Schulz 2003]. 

System structure The system structure shows which interactions or interdependencies exist between its 
subsystems without accounting for the functions or attributes that describe the 
individual characteristics of the subsystems. 

Systems approach The systems approach distinguishes itself from the more traditional analytic approach 
by emphasizing the interactions and connectedness of the different components of a 
system [Heylighen et al. 1999]. 

Systems engineering Systems engineering is a process employed in the evolution of systems from the point 
when a need is identified through production and/or construction and ultimate 
deployment of that system for consumer use [Blanchard & Fabrycky 1990]. 

Systems engineering Systems engineering is the treatment of engineering design as a decision-making 
process [Hazelrigg 1996]. 

Systems engineering Systems engineering is a logical sequence of activities and decisions that transforms 
an operational need into a description of system performance parameters and a 
preferred system configuration [MIL-STD-499A]. 

Systems engineering Systems engineering is an interdisciplinary approach that encompasses the entire 
technical effort, and evolves into and verifies an integrated and life cycle balanced set 
of system people, products, and process solutions that satisfy customer needs 
[EIA/IS-632]. 

Systems engineering Systems engineering is a mechanism for proceeding from interpretation of the 
customer’s requirements to an optimized product by steadily applying a wide–ranging 
attention to product requirements, extending to all details of the user’s needs, 
producibility constraints, and life cycle aspects, essentially through an organized 
concurrent engineering practice. This takes place through iteration and nesting of a 
proper routine of analysis/synthesis, typical of a comprehensive system approach, 
within and across all levels of integration and all phases of a system life cycle [ECSS–
E–10–01]. 

Systems engineering Systems engineering is an interdisciplinary engineering management process that 
evolves and verifies an integrated, life-cycle balanced set of system solutions that 
satisfy customer needs [DoD 2001a]. 

Systems engineering Systems engineering is a robust approach to the design, creation, and operation of 
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systems. In simple terms, the approach consists of identification and quantification of 
system goals, creation of alternative system design concepts, performance of design 
trades, selection and implementation of the best design, verification that the design is 
properly built and integrated, and post-implementation assessment of how well the 
system meets (or met) the goals. The approach is usually applied repeatedly and 
recursively, with several increases in the resolution of the system baselines [NASA 
1995]. 

Systems engineering 
measurement 

Systems engineering measurement is the process of assigning numerical values to 
process, product, or project attributes according to defined criteria. This process can 
be based on estimation or direct measurement. Estimation results in planned or 
expected measures. Direct measurement results in actual measures [INCOSE 1998b]. 
Measurement is a control function of system engineering that collects and analyzes 
the actual status of the major requirements (both on the technical and managerial 
levels) and provides a clear picture of the risk status in the project. 

System Development 
(SD) 

SD is a process of gradually building up a body of information, until it eventually 
provides a complete formula for manufacturing a new product [Smith & Reinertsen 
1998] 

System Development 
(SD) 

SD is a search for something unknown, and the result of SD is a description of a thing 
to be made, including instructions about how to make it [Baldwin & Clark 2000]. 

System Development 
(SD) 

SD is the process between defining a market opportunity based on the actual and 
predicted customer’s needs and the beginning of the production [Browning 2003]. 

T 
Technical Performance 
Measure 
(TPM) 

A TPM may be any function, physical characteristic, design goal, or parameter of the 
project that has been defined by the requirements of the program. TPMs are usually 
the key cost drivers of the project; they reside on the critical path schedule and 
represent high risk to the program [DoD 2001a]. 

Technical reviews and 
audits 

The systems engineer measures design progress and maturity by assessing its 
development at key event-driven points in the development schedule. The design is 
compared to pre-established exit criteria for the particular event to determine if the 
appropriate level of maturity has been achieved. These key events are generally 
known as Technical Reviews and Audits [DoD 2001a]. 

Technology 
Acceptance Model 

The Technology Acceptance Model suggests that when users are presented with a 
new software package (or a method or a tool), a number of factors influence their 
decision about how and when they will use it, notably: usefulness and ease-of-use. 

Testing The purpose of testing is to verify technical performance, operational effectiveness, 
and suitability and provide essential information to support the decision-making [DoD 
2001a]. 

Total Quality 
Management (TQM) 

TQM is a management approach of an organization, participation of all its members 
and aiming at long term success through customer satisfaction, and benefits to all 
members of the organization and to society [ISO 8402]. 

U 
Uncertainty Uncertainty is a condition, event, outcome, or circumstance of which the extent, value, 

or consequence is not predictable [INCOSE 1998a]. Uncertainty usually comes in two 
forms: foreseen and unforeseen uncertainty (or ambiguity). 

Unforeseen uncertainty See Ambiguity. 
Usability Usability is the ease with which a human user can obtain a required service from a 

system (or method) [INCOSE 1998a]. 
Usefulness Usefulness is the degree to which a person believes that using a particular system (or 

method) would enhance his or her job performance [Davis 1989]. 
V 
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Validation The purpose of validation is to ensure that the right system is being built in the SD 
project, i.e., writing specifications and checking performance to make sure that the 
system does what it is supposed to do. 

Value Value is a capability provided to a customer at the right time at an appropriate price, 
as defined in each case by the customer [Womack & Jones 1996]. 

Verification The purpose of verification is to ensure that the system is being built right in the SD 
project, i.e., ensuring that the system correctly implements the specifications. 
Verification methods comprise analysis, inspection, and demonstration and test [DoD 
2001a] with the common goal to determine the quality of the system, i.e., if the design 
complies with the defined requirements assuming that the requirements are valid. 

Verification and 
Validation (V&V) 

Verification and validation (V&V) represents the intersection of systems engineering 
and testing [DoD 2001a]. 

Viability Viability refers to having a reasonable chance of succeeding or to being financially 
sustainable [Merriam-Webster Online Website]. 

Z 
ZOPH ZOPH is an abbreviation built up from the first letters of the German terms for the four 

system types in the model, (i.e., Zielsystem – goal system; Objektsystem – product 
system; Prozesssystem – process system; and Handlungssystem – organization or 
agent system). Additionally, the four systems of the ZOPH model are interacting with 
the system environment through the system boundary [Negele 1998]. 

ZOPH+T This modified ZOPH system (or ZOPH+T to distinguish from Negele’s original ZOPH 
model) is a grand model of the SD enterprise that develops diverse products in a 
multi-project environment. All the different projects represented by the process system 
are run by the persons involved in the organization system of the enterprise and use 
technologies (methods, tools, equipment, etc.) included in the technology system. The 
SD processes deliver various products (enabling and end products of the SD) included 
in the product system. All four subsystems operate according to the organizational and 
strategic goals of the company represented by the goal system. 
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