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ABSTRACT 
 

Steady and unsteady Euler investigation is carried out to simulate the unsteady 

flow physical phenomena on the complex geometry of two stage space 

transportation system during a separation phase. The dynamic computational grids 

and local smoothing techniques as well as the solution of unsteady Euler 

equations based on the finite explicit finite volume shock capturing method are 

used to obtain accurate unsteady flow solution. The staging path is approached 

with the one-minus-cosine function applied for the relative angle of attack and 

relative distance. The effects of numerical factors on flow solution including grid 

density and grid smoothing are investigated. The results obtained include the 

static pressure contours on symmetry plane as well as on the aerodynamic 

coefficients of the orbital and carrier stages that are compared to the 

corresponding experimental data. 

 

 

Zusammenfassung 
 

Stationäre und instationäre Euler Untersuchungen werden durchgeführt, um die 

physikalischen Phänomene der instationären Strömungen auf der komplexen 

Geometrie des zweistufigen Raumtransportsystems während der Trennungsphase 

zu simulieren. Die dynamischen Rechengitter und das lokale Glätten sowie die 

instationäre Euler Lösung, die auf der expliziten Finite Volumen Methode mit 

shock capturing basiert, werden verwendet, um genaue stationäre und instationäre 

Strömungslösungen zu erreichen. Der Lösungsweg wird mit dem “1 minus 

cosine“- Gesetz angenähert, das auf den relativen Anstellwinkel und den relativen 

Abstand angewendet wird. Die Effekte auf die Strömungslösung durch 

numerische Faktoren wie Gitterpunktdichte und Gitterglättung werden analysiert. 

Die erzielten Resultate schließen die Druck Verteilungen in der Symmetrieebene 

sowie die aerodynamischen Beiwerte der Ober- und Unterstufe ein. Sie werden 

mit entsprechenden experimentellen Daten verglichen. 
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Strain-gauge balance A device for measuring all components of 

aerodynamic forces and moments that are 

working  based on  the principle of a 

deformation (strain) in the body/ balance.  
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CHAPTER I 

INTRODUCTION 

 
1.     Overview 

In the globalization era, the growing demands on new space transportation 

systems such as Unmanned Space Vehicles (USV) and future generation 

Reusable Launch Vehicles (RLV) have pulled research activities in many 

hypersonic technological areas in many institutions all over the world 

[1][2][3]. In the United States, NASA has put the second generation RLV as 

a major program of the Integrated Space Transportation Plan (ISTP) with 

4.8 B$ spent to run this program covering the period 2001-2006 [4]. In 

Europe several system studies were conducted since the 90’s to investigate 

possible concepts for a European RLV. Some of the national programs (e.g. 

SAENGER, STAR-H, TARANIS) favour to investigate the concepts of 

Two-Stage To Orbit (TSTO) systems instead of Single-Stage To Orbit 

(SSTO) vehicles [1]. A similar program is also being performed in Japan by 

the institution of Japan Aerospace Exploration Agency (JAXA). This 

institution has conducted the High-Speed Flight Demonstrator project as the 

latest in a series of flight experiment in a research program for reusable 

space transportation systems [5]. 

 

Efforts to develop such hypersonic transportation systems until this time 

have been performed in Europe with substantial advancements in 

lightweight, high temperature structural materials, thermal protection 

systems, propulsion systems, etc. Particularly, in Germany, intensive efforts 

dealing with the key technologies for a two-stage space transportation 

system have been supported by three research centers 

(Sonderforschungsbereich, SFB), namely SFB 253 (RWTH Aachen), SFB 

255 (TU München) and SFB 259 (University of Stuttgart). In particular, 

unsteady aerodynamics has been studied and Euler and Navier-Stokes as 

well have been developed for that project at the Institute of Fluid Mechanics 

under its chair Prof. Dr. Ing. B. Laschka. At the Technische Universität 
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München the researchs efforts have been focused on Transatmospheric 

Flight Systems including fundamentals of aerothermodynamics, powerplants 

and flight Mechanics. The design concept of a fully two-stage hypersonic 

vehicle deals with a delta-winged first stage powered by airbreathing 

engines and a rocket-propelled upper stage [6], see Fig. I.1. The concept was 

initiated by the idea of E. Sänger. According to Sänger’s concept the upper 

and lower stages are designed as high lift over drag vehicles [2]. 

 

        Figure I.1: Layout of two-stage to orbit (ELAC-EOS) configuration 

 
Such a space vehicle has a flight mission consisting of three phases each of 

which showing specific characteristics as shown in Fig. I.2.  

 

 Figure I.2: A flight mission of the two stage space transportation system [Ref. 7] 
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The first phase is defined as the “Pull-up phase”, the orbital stage is 

mounted on the top of the hypersonic aircraft. It is launched horizontally to 

reach the flight speed of Mach about 6.8 at altitudes of 35 km. At this 

altitude the orbital stage is released and the “Separation process” starts as the 

second phase. The orbital stage separates from the carrier stage until the 

“Stand-alone flight” phase takes place at which no interaction occurs 

between the stages. The upper stage continues the ascent to the orbit while 

the lower stage flies back to its launch site like an aircraft. After the mission 

of the orbiter is accomplished it also returns to earth through re-entry and 

landing like the Space Shuttle [8][9]. Among the phases of the ascent flight 

mission the separation manoeuvre will be the most critical one for the 

vehicle system. In such a phase, very high dynamic pressures about 18.100 

N/m2 are subject to the space vehicle system. Under these conditions 

aerodynamic interferences occur between the stages, namely complex 

interactions of incident and reflected shockwaves and expansion waves with 

each other as well as with boundary layers. Furthermore, the separation 

process influences the position and intensity of the shockwaves and also the 

points of interaction of the reflected shockwaves which provides strong 

unsteady air-loads on both stages. This may have an impact on the stability 

of the vehicle during the separation manoeuvre causing a hazard during the 

space vehicle operation.  

 

In order to guarantee a safe separation of two-stage space transportation 

system, investigation on the configuration aerodynamics are mainly 

required, particularly to describe flow fields and to determine aerodynamic 

characteristics such as aerodynamic forces and moments for the flight 

conditions during separation. In addition, unsteady aspects of the separation 

and the amplitude and phase of aerodynamic forces should be considered. 

By this investigation the results of aerodynamic data can be of great 

importance for other fields of hypersonic research (e.g. structure mechanics, 
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flight performances, stability and controls, propulsions, thermodynamics) at 

a realization of the designed hypersonic transport system. 

 

There are three techniques be used to obtain aerodynamic data for 

hypersonic vehicles, namely flight testing, wind tunnel experiment and 

numerical computation. The aerodynamic data collection from a flight 

testing is costliest as compared to the two other techniques because of the 

necessity to build a space vehicle demonstrator with its supporting system 

facilities and operating costs. However, in November 2004, NASA has been 

just successful to fly the ummanned X-43A vehicle at Mach number of 10 

dropped from a converted B-52 bomber at an altitude of 33.5 km. This 

Hyper-X program with 41.6 M$ was intended to test the “Scramjet” engine 

in flight [10]. Morever, wind tunnel experiments for the two-stage space 

vehicle systems have been conducted in Refs. [11][12]. They were intended 

to provide the aerodynamic data base of the two-stage space transport 

systems for the steady flow state. However, unsteady flow measurements of 

the stage separation of the vehicle have not yet been accomplished due to the 

very high operational cost of the wind tunnel. Alternatively, the 

aerodynamic data for the vehicle may be obtained using a computational 

method. Such methods have been widely developed as a tool for design and 

analysis of numerous aerodynamic configurations of the space vehicles. 

However, the unsteady problems of two-stage space transportation systems 

at the separation manoeuvre still require thorough computational 

investigations, especially for complex configurations and flow phenomena.   

     

Therefore, this dissertation focuses on unsteady stage separation of the full 

two-stage space transportation configuration by means of computational 

method. This introductory chapter presents the problems and challenges of 

the unsteady aerodynamic simulations for space vehicles, the progress in 

analysis of hypersonic space transport systems, the objectives and scope of 

the problem solution and the methodology applied.  
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2. Problems and Challenges in the Computational Simulations of 

Unsteady Stage Separation of Two-Stage Space Transport Systems. 

In this investigation the computational simulations dealing with unsteady 

stage separation of two-stage space transport systems have two main 

problems, namely: 

(1) the complex geometry of the two-stage space transport systems. 

(2) the complex physical flow phenomena involving unsteady flows in 

hypersonic speed during the separation process. 

The detail descriptions of these problems are given as follows.  

 

The complexity of two-stage space transport systems is indicated by the 

presence of two vehicles at once arranged as the upper and lower stages as 

shown in Fig. I.1. Besides this, both the configurations have different 

designs for shape and size in order to fulfill the requirements of the flight 

mission [2][8]. The lower stage called as carrier stage has two and half times 

of the total length of the upper stage which is referred as an orbital stage. 

The carrier stage is designed with a sharp nose, while the orbital stage has a 

blunt nose. In turn, the carrier stage body is designed as a slender blended 

wing-body shape like a wave rider with the fixed swept winglets. And in the 

middle part of the upper surface of the carrier stage a large cavity is made to 

place the orbital stage. In addition, the lower surface of the carrier stage was 

designed as a ramp due to the placement of air breathing propulsion. 

Moreover, the orbital body was designed as a circular cross section like the 

space shuttle equipped with a delta wing and vertical stabilizer. The 

presence of some lifting surface components such as the wing tip of the 

carrier stage and the highly swept wing of the orbital stage have made some 

researchers [13][14] perform some simplifications in simulating the two-

stage space vehicle, namely by cutting off the rear part of the carrier stage 

where the wing tips are located. The wing tips cause the computational grid 

to be more complex. This problem requires appropriate building of block 

topologies in the physical domain. 
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Concerning the separation process, the orbital stage is initially placed at a 

certain incident angle and distance, lifted up using a strut mechanism from 

the carrier stage. Then, the orbital stage itself moves up along a given 

trajectory until it reaches the stand-alone condition. In the beginning of 

separation, the flow field at the region above the cavity of the carrier stage is 

accommodated with aerodynamic interferences due to the interactions of 

incident and reflected shockwaves and expansion waves with each other as 

well as with boundary layers. The flow field becomes increasingly complex 

when the down wash effects appear during the separation process. Then, the 

unsteady stage separation problems occur as seen in the change of the 

position and intensity of the shockwaves as well as the interaction points of 

the reflected shockwaves. This causes strong unsteady airloads on both 

stages.  

 

These stage separation problems have been successfully investigated using 

available solver code (FLM solver) for the configuration of two-stage space 

vehicle system with an idealized flat plate for the carrier stage [7][14][15] 

and [16]. However, for the full configuration of two-stage space vehicle the 

solver code can not be directly applied because it has been developed based 

on the global physical domain solution in which the whole grids are 

assumed to be moving.  While, in the case of unsteady stage separation on 

the full configuration of TSTO space vehicle, the part of mesh around the 

carrier stage is stationary, and the part of mesh around the orbital stage is 

moving. Therefore, to perform the calculations of the unsteady problem, a 

further development of the code is necessary to be developed. In addition, 

the improvement of grid quality in the moving region requires the local grid 

smoothing instead of the global grid smoothing which is used in the 

previous flow solver. 

 

Subsequently, flow phenomena relating to viscous effects of air occur at 

regions close to the body, namely boundary layers that are generated along 

the surfaces of the carrier and orbital stages. Such a boundary layer 
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occurring over hypersonic body has a specific behavior which is 

characterized by temperature increase. This is due to the higher kinetic 

energy of hypersonic flow dissipated by the influence of the friction within 

the boundary layer. This extreme viscous dissipation can create very high 

temperature. At higher temperature, the air viscosity coefficient increases, 

and this by itself will make the boundary layer thicker. Together with this, a 

decrease in density ρ  occurs within the boundary layer, so that in order to 

pass the required mass flow through the boundary layer at reduced density, 

the boundary-layer thickness must be larger. Both of these phenomena 

combine to make hypersonic boundary layers grow more rapidly than at 

slower speeds [18].  The thick boundary layer in hypersonic flow can exert a 

major displacement effect on the inviscid flow outside the boundary layer 

causing a given body shape to appear much thicker than it really is. Due to 

the extreme thickness of the boundary layer, the outer inviscid flow is 

changed, these changes in the inviscid flow in turn feed back to affect the 

growth of the boundary layer [19]. This viscous interaction also has 

important effects on the surface distribution, hence on lift, drag, and stability 

on the hypersonic vehicles.    

 

The other flow phenomena on associated with boundary layer may occur in 

the gap region between the stages, namely when a strong incident shock 

wave impinges on boundary layer at some downstream location. The large 

pressure rise across the shock wave acts as severe adverse pressure gradient 

imposed on the boundary layer, thus causing the boundary layer to locally 

separate from the surface. The separated boundary layer may induce a shock 

wave defined as the induced separation shock occurring at the head of the 

impingement point of the incident shock wave. Subsequently, the separated 

boundary layer turns back toward the body, reaching to the surface at a 

certain downstream location, and causing a reattachment shock. Between the 

separation and reattachment shocks, expansion waves are generated where 

the boundary layer is turning back toward the surface [18][20].  
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The accurate solution of the viscous problem requires an appropriate 

turbulent model for hypersonic flows. This last problem is not considered in 

the present investigation. 

 

3. Progress in Analysis of Unsteady Stage Separation of the Hypersonic 

Space Transport Systems 

The problems of two-stage space transport systems during separation 

manoeuvre have been investigated in numerous experimental and numerical 

studies. In 1960s, Decker and Gera have performed analysis of the 

aerodynamic performance and the aerodynamic interference effects of the 

Parallel-staged simple configurations at Mach numbers of 3 and 6 during 

separation [21], where the aerodynamic data obtained constitutes the input 

for the system of equations of dynamic motion. Then, during the Space 

Shuttle program in the 1970’s, several measurements and calculations 

dealing with the separation of the liquid-fuel tank from the shuttle orbiter 

were accomplished [22]. In addition, the experimental studies [23][24] deal 

with separation of two winged stages accomplished in the mid 1990’s. These 

results extended the knowledge on such class of complicated flows and are 

necessary for testing the numerical methods developed. The recent 

experimental measurements on the separation of two-stage space transport 

systems were carried out with the full configuration of the carrier and orbital 

stages [11][12]. These experiments provide data base of aerodynamic 

characteristics of separating models of the orbital and carrier stages 

including their interferences. 

 

Moreover, in the period between 1985 and 1990 there was significant 

increase in the application of CFD for modeling hypersonic flows [25]. For 

example, a method for calculating aerodynamic characteristics of the first 

stage (fuel tank) and the orbital stage (Buran vehicle) during separation is 

proposed in [26]. The flow field in the vicinity of the first stage is calculated 

using the McCormack scheme and used to calculate the characteristics of the 

second stage. The other examples are the computations of several flight 
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situations of the ascent flight including the separation manoeuvre. These 

were performed using the three-dimensional Euler and three-dimensional 

Navier-Stokes methods [13][14][27].  

 

However, all investigations above assume a steady flow field and, thus, 

neglect additional velocities induced from separation maneuver. Based on 

the results in [17][28] showed that the effects of unsteady flows during 

separation due to the shock interactions between the upper stage and lower 

stage are non-negligible. This indication is also supported by Cvrlje et al. 

who performed numerical simulation involving both roll and yaw 

oscillations of an orbital vehicle for different reduced frequencies [16]. 

Cvrlje also presented the effects of unsteady flows including laminar 

boundary layers on the longitudinal motions of an idealized Two-Stage 

Hypersonic vehicle during separation [15]. Although the phenomena of 

unsteady flows on the two-stages space vehicle have a significant effect on 

safety during separation maneuver few investigations exist for unsteady 

cases as presented in references [7][14][16][29]. The investigations have 

been accomplished for incomplete geometries and simple trajectories of the 

separation manoeuvre. This is due to the difficulty in generating proper 

meshes in physical domain around the complex geometry model. Also, the 

complex geometry will produce more complex flow behavior in flow field. 

Therefore, the investigation of unsteady flows for the complex configuration 

is a challenging research in order to make realistic simulation of unsteady 

flow of two-stage space transport systems during separation manouevre. 

 

4. Objectives and Scope of the Study 

From the above discussions, the objectives of the study is firstly to obtain 

numerical simulations of unsteady stage separation of two-stage space 

transport systems, and secondly to analyze the unsteady effects of the 

dynamic separation process on flow behaviours and unsteady airloads of the 

vehicle system. 
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To achieve the objectives, the scope of the present study is as follows: 

1. Further development of unsteady numerical code in order to be able to 

solve the unsteady stage separation with the complex geometry and to 

obtain efficient solution by improving the quality of grids by insuring 

orthogonality using local smoothing technique. 

2. Generating appropriate block topologies for obtaining higher quality of 

the initial grids. 

3. Performing the grid quality improvement by using the smoothing 

technique to achieve the orthogonal grids. 

4. Carrying out the steady flow calculations by the use of two carrier stage 

models, namely a flat plate for simplifying interference effects and a 

fully detailed vehicle (ELAC1C), each of which linked to the detailed 

orbital stage (EOS). The simpler configuration is used to study the 

effects of numerical factors on flow solution including grid density and 

grid smoothing. In addition, both configurations are used to validate the 

simulation method by comparing with experimental data.  

5. Performing further analysis of the influences of “separation” parameters 

at steady flow condition on the flow fields and aerodynamic 

characteristics for the idealized and full configurations.  

6. Carrying out the unsteady simulations for the full configuration and 

studying the effects of a downwash due to the orbital motion during the 

separation process on flow fields and aerodynamic characteristics of the 

overall vehicle system. 

 

5. Problem Solution and Methodology  

In order to perform stage separation simulations and to investigate the 

effects of “separation” parameters on flow behaviour and aerodynamic 

characteristics of the TSTO space transportation system, numerical 

simulations of stage separation are carried out in two ways: firstly, a stage 

separation is simulated in quasy-steady state flow by setting the 

computational model of the orbital stage at various positions relative to the 

carrier stage; secondy, the stage separation is simulated as truly unsteady 
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flow, time dependent by including the downwash effects due to the orbital 

motion. 

 

The computational simulations start with the definition of computational 

domain by generating a block topology. The proper block topology is a good 

start for obtaining high quality grid and hence accurate solution. For the 

complex region, a multi-block technique is used to provide more accurate 

solution rather than the use of only single block. This requires a good 

understanding about the detail of the geometry of the model including the 

shape and location of all lifting surface components and the flow features.  

 

After the block topology is formed, the initial (coarse) grids in the volume 

and surfaces of the blocks are generated by an interpolation technique called 

as transfinite interpolation that is based on the algebraic method. 

 

The next step is to improve the grid quality from coarse grids becoming 

finer grids. This is accomplished iteratively by solving Poisson’s equation 

[30][31]. The use of a Poisson algorithm results in smoothing the initial grid 

in order to achieve small cell deformation and continuous cell growth. The 

connection between adjacent blocks is organized by mother-child relations 

where the grids points located at block connection are allowed to move 

during the iteration process [7]. The convergence criterion for sufficient 

smoothness is fulfilled if the change in the residual is below 10-4. 

 

For a simulation of unsteady stage separation, further development of the 

solver code is performed by adding subroutine to determine the static and 

moving blocks. The moving grids are then smoothed locally to increase the 

grid orthogonalily at each time step. The local smoothing technique is 

performed based on Laplace’s solution. 

 

Furthermore, the computation of flow properties such as density, velocity, 

pressure, etc. in the computational domain requires a mathematical model as 
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governing equation of the flow motion. The unsteady Euler equations are 

considered an adequate approximate level for simulating unsteady stage 

separation of the space vehicle. This is based on wind tunnel experiments 

[11][12] that the boundary layer at Reynolds number of 50 x 106 is very thin 

and hence, viscous effects can be neglected.  The flow governing equations 

are then discritized using a numerical technique based on the method of 

lines, namely a separate discretization in space and in time [32][33]. The 

spatial discretization for the equations is carried out using finite volume 

method.  The surface integral is approximated by the sum of fluxes crossing 

individual faces of the control volumes.  

 

The evaluation of shock waves occurred in many regions especially in the 

region between the stages is carried out by a numerical scheme based on 

shock capturing approach.  The principle of the shock capturing approach is 

to allow shock waves to form within the computational domain as a 

consequence of general flow-field algorithm, without any special shock 

relations being introduced [25][34]. This approach is suitable for complex 

flow problems involving shock waves for which we do not know either the 

locations or number of shocks. This approach will smear shock wave over a 

number of grid points in the computational mesh. The drawback can be 

overcome by applying an upwind flux splitting scheme. One of the advanced 

upwind schemes which is able to obtain efficient solutions is the modified 

AUSM scheme (Advection Upstream Splitting Method) proposed by Liou 

[35][36]. 

 

Furthermore, a time marching technique based on the explicit Runge-Kutta 

intergration method is used [37]. Applying boundary conditions real 

solutions will be achieved. However, the final solutions are just obtained 

after the iterative computation reaching the given convergence criteria or 

steady state condition.  
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For unsteady flow field calculations, a dual time-stepping methodology 

proposed by Jameson is used [38]. This method employs a pseudo-time to 

redefine the unsteady flow problem into a steady flow problem, with the 

physical time derivative included in the discretized equations. Unsteady 

solutions are carried out for the number of time steps per cycle. The solution 

of each time step depends on the position of the orbital stage. The orbital 

stage motion is approached using harmonical motions simultaneously in the 

orbital stage angle of attack and separation distance stated in one-minus-

cosinus function. The unsteady flow calculation requires the steady flow 

solution as an initial input. 

 

6. Outline of the Present Analysis 

The dissertation is organized as follows: Chapter II describes the 

computational aerodynamic simulation, computational approach to physics 

of stage separation of two-stage transportation system, the mathematical 

models, physical models of two-stage transportation system and the model 

of separation manouevre path. The definitions of aerodynamic forces and 

moment are also presented. 

 

Chapter III presents grids in computational fluid simulation, the grid 

methods for stage separation of TSTO space transportation systems 

including multi-grid method, structured grid generation and elliptic grid 

smoothing techniques. The dynamic grid technique for TSTO Space vehicle 

system is presented at the end of this section. 

 

Chapter IV describes the numerical methods for solving Euler equations. 

Numerical techniques for stage separation of the TSTO space transportation 

system are discussed including finite volume discretization method, 

convective flux discretization, temporal integration, the applied boundary 

conditions and unsteady simulation technique. 
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In Chapter V the steady aerodynamic of stage separation analysis for two 

TSTO configurations, namely the EOS - flat plate and EOS - ELAC1C are 

accomplished. Firstly, the test models and conditions for experiment and 

computation are described then followed by the discussions of the 

computational procedures. The effects of grid smoothing and grid density on 

the computational efficiency and accuracy are investigated. The validation 

of the computation results with the corresponding experimental data for both 

the configurations is performed. In addition, the detail analysis related to the 

effects of separation parameters ends this chapter. 

 

Chapter VI presents the unsteady stage separation analysis of the fully two-

stage space transport system. The procedures and results of the unsteady 

simulations are discussed. The influences of “separation” parameters on the 

flow field and aerodynamic characteristics of both the stages are discussed. 

The comparison between the steady and unsteady are elaborated. 

 

Chapter VII contains the conclusions and recommendations for further 

studies. 

 

7. Research Contributions  

1. Solving the simulation problem of stage separation aerodynamics of 

two-stage space trasport system which involves complex computational 

domains due to the complex geometry of the vehicle system and time-

dependent flow due to the influence of the orbital motion during 

separation manoeuvre. The complexity of the space vehicle geometry 

has been described in the section 2. Because the orbital stage (EOS) is 

move up relatively to the carrier stage (ELAC1C), the computational 

domain at which both stages located can not be considered only as a 

single moving domain, so that a procedure of computational domain 

division is required. In this research, the computational domain division 

is proposed by separating the domain into stationary domain around the 

carrier stage (ELAC1C) and moving domain around orbital stage (EOS). 
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The way how to build block topology plays an important rule in a part of 

the success in solving of the simulation problem. This is necessary to 

carry out in the beginning of the topology definition by using O-grid 

topology tool in ICEMCFD.   

 

2. Further development code based on locally smoothing grid technique is 

carried out for unsteady flow simulation. It is noted that during the 

orbital movement from one to another physical time, the grids in the 

moving domain always changes. The change of the grid points on 

internal block boundary and inside the moving blocks must be handled 

in order to obtain the high grid quality (grid orthogonal). This is firstly 

done by adjusting and distorting with the movement orbital stage and the 

fixed outer boundary according to the movement rule. Secondly, the 

resulted grids are then smoothed locally at each block by solving         

the Laplace’s equation iteratively until the maximum grid error less than 

10-4 .   

 

3. The approximate rule of the harmonic motion, namely one-minus–

cosinus fuction is proposed in the research in order to approximate the 

real orbital trajectory during separation manoeuvre. In addition, the 

simultaneous motion in distance and agle of attack of the orbital stage is 

also introduced. For this purpose, some subroutines in the numerical 

program are necessary to modify by considering a simultaneous 

alteration in translation (distance) and rotation (angle of attack). The 

movement rule is only applied on the moving domain by specifying the 

corresponding blocks. In addition, the code is also added to have the 

capability to compute an arbitrary simultaneously harmonic motion.  

 

4. After having investigated the numerical methods for unsteady flow 

equations in the FLM numerical program and performed a literature 

study of some corresponding previous works [7][17][39][72], my 

decision is to elaborate the existing numerical methods, namely the 
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upwind method based on the modified AUSM for the flux evaluation 

and the dual time-stepping method for time integration used for solving 

the complex problem of stage separation of the space vehicle system 

which involves many time-dependent aerodynamic interferences.   



CHAPTER II 

COMPUTATIONAL AERODYNAMIC SIMULATION 
 

1       Simulation of Stage Separation of TSTO Space Transportation Systems 

As mentioned in the previous chapter, in order to perform a safe flight 

mission of two-stage space transportation systems including stage 

separation, it is essential to evaluate the whole system components such as 

structural materials, propulsion, thermal protection systems as well as 

aerodynamic performances and stability of the vehicle. This is usually done 

by testing them in the ground using either experimental simulations or 

computational simulations at the time of design phase. These simulations are 

to provide a set of database for analyzing behaviors and characteristics of the 

systems, so that their performances are well-known and system failures 

during the flight can be anticipated. Generally, simulations are carried out by 

simplifying complex real physics of the systems into scaled models with 

taking some approximation levels such as a physical scale, spatial as well as 

dynamic. In addition, simulations may include the identification of 

important parameters which have great influences on the system, the 

formulation of interaction rules between variables of the systems, and the 

construction of physical or mathematical models as well as the development 

of experimental or numerical procedures.  

 

In particular, for the computational aerodynamic simulations of two-stage 

space transportation systems, both physical and numerical are required to 

obtain efficient numerical solutions. The physics deals with the geometric 

configuration and flow features. Moreover, the numerics considers a 

determination of the optimum way to predict airflows of high interest. The 

structure of computational aerodynamic simulation is shown in Fig. II.1, 

[32]. The detail description of the computational aerodynamic simulations 

relating to the physics and numerics for unsteady stage separation of the 

space vehicle will be given in the present and two following chapters. 
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Figure II.1: Structure of computational aerodynamic simulations [Ref. 32] 
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2 Computational Approach to Physics of Stage Separation of the TSTO 

Space Vehicle System  

Physics of stage separation of the TSTO space transportation systems is very 

complex. The complexity of the stage separation process is due to the 

present of the TSTO configuration consisting of two vehicles simultaneously 

arranged as the upper and lower stages, and aerodynamic interferences 

between the stages, namely the complex interactions of the incident and 

reflected shock waves and expansion waves with each other as well as with 

boundary layers. In addition, by increasing the gap area between both stages, 

the orbital stage produces a downwash which influences the position and 

intensity of the shock waves as well as the points of inflection of the 

reflected shock waves. Thus, to obtain numerical simulations of the stage 

separation of the TSTO space transport system, appropriate definitions of 

the geometry of the model, physical flow model and the model of the stage 

separation path of the orbital stage are required.  

 

The model of the geometry of the space transport system should be defined 

as closed as possible to the real geometry of the vehicle. However, due to 

the limitations of the computation technology and the computation time and 

cost, the use of less complex geometry models are preferred to obtain 

reasonable numerical solutions at the beginning of the simulations. They 

may be obtained by simplifying a part of or the entire component surfaces of 

the TSTO vehicle system. At the beginning of the computational evaluation 

of the aerodynamics of the stage separation of the vehicle system, for 

example, the effects of the engines of both stages may not be taken into 

account, so that the air breathing propulsion on the lower surface of the 

carrier stage can be simplified as a ramp surface and rockets at the base of 

the orbital stage may be eliminated. 

 

Furthermore, in addition to the geometry of the model, the accuracy of the 

numerical solutions depends on the description of physical flow model 

which stated in mathematical models. The mathematical models can be 
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derived from the real flow system by introducing the approximation levels 

as shown in Fig. II.1. For analyzing aerodynamics of the space transport 

system which flies at the very high altitude, the proper mathematical flow 

model may be obtained with considering the “physical scale” 

approximation, namely whether the flow problem will be solved based on a 

microscopic point of view (molecular approach) or on a macroscopic 

approach. The first approach is suitable for the case of a reentry space 

vehicle moving in very rarefied atmosphere at an altitude above 92 km. At 

this condition the air density is low enough that only a few molecules impact 

the vehicle surface per unit time, and after these molecules reflect from the 

surface, they do not interact with the incoming molecules [18]. In this case, 

continuum assumptions are no longer valid, and the mathematical models 

are derived from kinetic theory. Whereas, the problem of the stage 

separation of the space transport system taking place at altitude of 35 km is 

more appropriate by using the second approach because the flow particles 

around the vehicle can be considered as a continuum [7]. For continuum 

flows, flow mathematical models can be determined based on the dynamic 

approximation which estimates the influences of the relative forces and their 

components on the flow behaviors such viscous, elastic and inertial forces. 

Using fundamental principles in mechanics, namely mass and energy and 

the fluid motion satisfy Newton’s second law and applying it to the fluid 

flow, the mathematical flow models in the various approximation levels can 

be derived as shown in Fig. II.2. The full Navier-Stokes flow model 

describes unsteady viscous compressible flows. One can obtain very 

accurate flow solutions using this flow model, but in their applications, this 

remains for the limited geometry models and requires much computational 

time. At the present time, the problem of stage separation of the TSTO space 

transport system may be solved by using the solution of Reynolds Averaged 

Navier-Stokes (RANS) with introducing a turbulence model, or the solution 

of Euler equations when viscous effects can be neglected. 
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Figure II.2: Flow approximation levels 
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3 Basic Mathematical Flow Models 

By considering the approximation levels discussed in the previous section 

led to select the appropriate mathematical models for solving the problem of 

unsteady hypersonic flow. Based on the wind tunnel experiments [11][12], 

the two-stage space vehicle was tested at Mach number of 4.04 with the unit 

Reynolds number of about 50.0 x 106.  Under this condition, the boundary 

layer thickness for a flat plate surface is very thin, δ/x = 0.017. Only small 

effects of viscous may occur on the vehicle system. The whole flow field 

can be assumed as inviscid flow and solved by Euler equations with 

neglecting the viscous effects. 

 

3.1 The unsteady Euler equations 

The unsteady Euler equations consist of two scalar equations and one vector 

equation. The first scalar equation expresses conservation of mass for the 

fluid flow. The second scalar equation expresses conservation of energy 

stated by the first law of thermodynamic. The vector equation expresses 

conservation of momentum and is obtained by applying Newtow’s second 

law to a moving finite control volume. In compact form, the Euler equations 

in a moving finite control volume Ω with  S as the boundary can be written 

as [39] 
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where q is the vector of conservative variables, f, g and h are the convective 

terms in the vector component of x, y, and z, respectively. The vector of 

conservative variables is: 
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while the convective fluxes are: 
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The system of the equations still needs supplementary relationships as there 

are now more variables, i.e. ρ, u, v, w, e and p, than the number of the 

equations, i.e. five. For a gas of a fixed composition the thermodynamic 

state principle states that the complete thermodynamic state is determined by 

two variables. The other thermodynamic variables then follow from so-

called equation of state. For air at normal temperature and pressure, the 

perfect gas relation defines a relation between the thermodynamic properties 

of the flow as given by the following thermal equation of state 

 

   Tp Rρ=       (II.4)   

  

where T is the absolute temperature and R is the gas constant. In the 

international unit system, R=287 J/kgK. For a callorically perfect gas the 

internal energy and enthalpy are unique functions of temperature, i.e.: 

 

         (II.5) Tce v=

         (II.6) Tch p=

 

where h is the enthalpy, cv and cp  are the specific heat at constant volume 

and the specific heat at constant pressure, respectively. Both cv and cp are 

constant and thus internal energy and enthalpy are linear functions of 

temperature. Using these relations, the pressure is obtained as: 

 

   ( ) ep ργ 1−=        (II.7) 

where vp cc /=γ  is the ratio of the specific heats. 
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The Euler equations have two important mathematical properties, namely 

hyperbolic character of the unsteady Euler equations and the existence of 

discontinuities allowed in the solution, i.e. shock waves, vortex sheets and 

contact discontinuity surfaces. The first property of the unsteady Euler 

equations is hyperbolic with respect to time. They are demonstrated by the 

existence of wave-like solutions in the form of [40][41]: 

 

( ) ( )txnietx ω−⋅= qq ˆ,       (II.8) 

 
where 1−=i , x is the position vector and n is a normal to the wave front 

surface (surface which separates the region which has been and the one 

which has not been influenced by the wave). Morreti and Abbett [42] show 

that the utilization of a time-marching approach on the unsteady Euler 

equations is a properly posed mathematical problem in all regions of the 

flow, and allows the solution of both subsonic and supersonic regions 

simultaneously without using two different numerical techniques. The 

second property of the unsteady Euler equations is contrary to the Navier-

Stokes equations where in principle the density, pressure and velocity fields 

are continuous due to the presence of elliptic viscosity and heat conduction 

terms. The numerical methods to solve the system of Euler equations are 

based on these mathematical properties.  

 

The Euler equations in Eq. (II.1) can be written in the form of conservative 

differential either in Cartesian coordinate system x, y, z :  
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or in Curvilinear coordinate system as follows  
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The derivations of Euler equations in Eqs. (II.9) and (II.10) can be seen in 

Appendix A. The mathematical model for the unsteady Euler equations with 

moving grid is given in Appendix B. 

 

4 Geometry Models of TSTO Space Transportation System 

As shown in Fig. I.1, the space transportation system consists of two stages, 

namely carrier stage and orbital stage. In this study, the simulations of stage 

separation of the vehicle system are carried out using two carrier stage 

models, i.e. a flat plate used as the preliminary study and a fully detailed 

vehicle (ELAC1C). In both cases, the orbital stage consists of a detailed 

configuration (EOS).  The geometry layouts for the EOS – flat plate model 

and the EOS - ELAC1C model are depicted in Figs. II.3 and II.4, 

respectively.      

 

Figure II.3: Basic geometry of EOS and flat plate [Ref. 43] 

 

Concerning the flat plate, it is a simplified model of the carrier stage with a 

flat surface. The parameter hKOS refers to the distance from axis XEOS to the 

flat plate; L is the body length of EOS. 

 

For the full TSTO space transportation system, the carrier stage was 

designed as a slender blended wing-body shape with the fixed swept 

winglets. It has a large cavity located in the middle part of the upper side of 
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the carrier stage to place the orbital stage. In addition, the present of the air 

breathing propulsion on the lower side of ELAC1C is modeled as a ramp 

surface. While, the orbital body was designed a nearly circular cross section 

equipped with a delta wing and vertical stabilizer. 

 

Figure II.4: Configuration and geometric reference values of 

the EOS-ELAC1C two-stage transportation system. 

 

The distance hKOS is between the axes XELAC and XEOS of the stages.  The 

parameter hKOS of each model is measured with a mathematical relation 

stated in each figure. The parameter of the relative distance is given by 

h/lEOS. The angle of attack (α) is measured based on the X-axis of the 

ELAC1C model, and the relative angle of attack (∆α) of the EOS model is 

calculated based on the X-axis of the flat plate or the ELAC1C model. 
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5 The model of Separation Path of the Orbital Stage 

The separation path of the orbital stage is taken from the flight mechanic 

analysis data for the TSTO space transport system as shown in Fig. II.5 [44]. 

The separation process takes place with the orbital stage relatively moving 

simultaneously in the separation distance and orbital stage angle of attack. 

The graphs of the relative angle of attack (∆α) and relative distance (h/LEOS) 

against time are shown in Fig. II.6 (a and b), respectively.  

 

Figure II.5: The trajectory of stage separation of TSTO space vehicle system 

[Ref. 44] 

Figure II.6: The parameters of stage separation of the TSTO space vehicle system 

[Ref. 45] 
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In order to perform the computational simulations of the stage separation, 

the staging path is approached with a harmonic function, namely one-minus-

cosines function that applied for the relative angle of attack and relative 

distance as follows 

 

( ) ( )( τ )ααατα kcos1
2

)( 01
0 −

∆−∆
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where 0α , , 0h 1α  and  are constants of the orbital stage angle of attack 

and separation distance at the initial position and the end position of the 

separation process, respectively. The τ is time step that the amplitude of the 

orbital stage changes at every time step. The smaller time step the more step 

number is required to the complete solution, hence it requires more 

computational time. The reduced frequency, k constitutes a number 

expressing a ratio of the angular velocity to the free-stream velocity. 

Increasing the reduced frequency provides the higher angular velocity, hence 

a downwash due to the orbital stage motion becomes greater. The non-

dimensional time step size, τ  and reduced frequency, k for unsteady flow 

are written as [15][46]: 
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6 Aerodynamic Force and Moments 

The motion of air around the vehicle system in the atmosphere produces 

pressure and velocity variations which yield aerodynamic forces and 

moments. Figure II.7 shows the force and moment components acting on the 

aerodynamic center of the space vehicle. In three dimensional flows, the 

force components can be defined either using a aerodynamic reference 

system, as lift, drag, and side force, or using a body reference system as 

normal, axial and side forces.  

 

Figure II.7: the fo
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stream dynamic pressure, reference area and length. The aerodynamic force 

and moment coefficients are expressed as follows [47]. 
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ref

D Sq
DC
∗

=
∞

              (II.15) 

 Lift coefficient : 
ref

L Sq
LC

∗
=

∞
              (II.16) 

 Pitching moment coefficient :  
µlSq

M
C

ref
m ∗∗

=
∞

                 (II.17)            

q∞ is the free-stream dynamic pressure, 
2

∞∞
∞ =

Vq ρ             (II.18) 

 and  is the reference area and  is the mean aerodynamic chord. refS µl

 

When the output aerodynamic data are extracted from the numerical 

computation, they refer to the body fixed co-ordinate system. In order to 

calculate the aerodynamic coefficients based on the wind reference system, a 

transformation from the body fixed co-ordinate system to the wind co-

ordinate system is required. The relationship between the two sets of the co-

ordinate systems with a given angle of attack, α, is given as follows; with 

the CX as the longitudinal force coefficient and CZ as the normal force 

coefficient of the body fixed system: 

 

    )sin()cos( αα ∗+∗= ZXD CCC      (II.19) 

    )cos()sin( αα ∗+∗−= ZXL CCC                 (II.20) 

 

 



CHAPTER III 

COMPUTATIONAL GRID 

 
1       Grids in Computational Fluid Simulations  

In computation fluid dynamics (CFD), grids in the computational flow 

domains play an important role in calculating flow properties. Error in the 

alignment of grid points in computational domain can lead to an inaccuracy 

of the numerical solution and apparent instability or lack convergence as 

well as an increase of the computation cost and time. Thus, the generation of 

proper grid distributions in the computational domains constitutes a great 

task in the numerical simulation.  

 

In order to generate the proper grids, some important considerations 

including the model geometry and the prevailing flow phenomena as well as 

the computation time and cost should be taken into account. Concerning the 

geometry of the model, the generated grid nodes must adequately 

approximate the original geometry that is the distance between one grid 

node to the nearest grid nodes is not be too large, expecially for the grid 

nodes at the higher curvature of the geometry of the model. However, the 

complexity of the model geometry of the TSTO space transportation system 

will require the great number of grids that cause large computational time 

and cost. On the contrary, the lack of the grid number will affect on the 

accuracies of the computation and interpolation of the solution over the 

whole region. Furthermore, related to the flow phenomena, capturing flows 

with rapid changes in the flow properties such as shock waves and boundary 

layers requires the greater number of the grid nodes, so that the 

computational time and cost increase, too. This leads to the need to carry out 

further development of grid generation to obtain the efficient simulation of 

the stage separation of the TSTO space transportation system.   
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2. Grid Generation Methods for Stage Separation of TSTO Space Systems 

 Before the grid nodes are generated in the computational domain around the 

geometry of the model, the kind of topologies for the grids must be defined 

namely, whether one block grid topology or many block grid topologies will 

be used. This leads to the selection of appropriate methodology for 

generating the grids. 

 

For the complex geometry such as the TSTO space transportation system, 

one may use adequately single block topology to cover all flow fields 

including the solid body of the vehicles by applying unstructured grids [48]. 

However, the unstructured grids require a more complicated numerical 

algorithm than the structured grids because of an inherent data management 

problem. In addition, the extra memory is needed to store the information 

about the connections between the cells of the grids. Furthermore, the 

application of unstructured grids for moving boundaries or moving internal 

surfaces of the physical complex domains is difficult.  

 

The other possiblity to generate the grids for the complex geometry is the 

use of multi-block topologies [49]. The underlying idea of the use of many 

block topologies is to reduce geometrically the complex region into several 

smaller, more manageable regions or blocks. Each block is represented 

mathematically by a number of discrete grid points, ordered in a three 

dimensional array of the constant dimensions.  There are three methods 

based on this concept, namely overset (chimera), multi-block and hybrid. 

Using the overset (chimera) method blocks are allowed to overlap which 

significantly simplifies the block problems. In fact, each block may be a 

subdomain which is associated only with a single geometry or physical 

features. In this method, the data between the blocks are communicated 

using an interpolation in overlapped areas of the blocks. This method may 

face a problem to handle the non-linear flow behaviour in the overlapped 

area of the blocks which a cell to cell on the block sometimes does not 

match. In order to eliminate the complex interpolations between the blocks 
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and to circumvent the flow field conservation problem across the boundaries 

the requirement of the cell to cell matching has to be fulfilled. The multi-

block method met this requirement because it does not require that one wall 

of a given block must match exactly with a wall of another block, but only 

that each cell on an interface wall match with a cell of an interface wall 

somewhere in the grid system as shown in Fig. III.1. So that, on the same 

block faces, it is possible to define different boundary conditions through 

segmentation [50][51]. This provides indeed some advantages in terms of 

the overall reduction of the block number. The segmentation also provides 

means to reduce the memory needed to store the information concerning the 

block relationship, as well as the computing time for the evaluation of the 

governing equations. 

 

 

Figure III.1: Block segmentation 

 

Furthermore, in order to estimate completely the domain block limit, it is 

necessary to know additional information on the significant mesh points, 

which represent in fact the closest layer mesh point situated within the 
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neighbour block. This concept is even extended with the concept of ghost/ 

dummy cells that contain the necessary information to define the relations 

between the blocks or the proximity of a physical boundary. Figure III.2 

shows the schematic connection between two blocks. 

 

Figure III.2: Schematic block connection 

 

2.1 Structured Grid Generation Techniques 

After having defined the blocks over all computational domains, further step 

is to generate the grids on the faces and inside the volume of each block. 

There are two approaches that usually use to generarate the structured grids, 

namely algebraic and partial differential equation methods [52]. The 

algebraic grid method is usually used for generating the basic structured 

grids. While, the improvement of the quality of the basic grids is performed 

by using the grid generation based on the solution of elliptic equation such 

as Poisson and Laplace equations.  
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The basic grid generation on the faces and inside the volume of the blocks is 

performed by interpolating grid points on the boundary curves of the blocks. 

Transfinite interpolation (TFI) technique proposed by Errickson [53] is the 

fast interpolation technique used in this study for generating the structured 

grids. This technique also considers the corner points of the boundary curves 

to obtain more accurate grids. The expression for a TFI grid with linear 

interpolation function is 
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where X is the position vector giving the values of the x, y, z Cartesian 

coordinates of a grid point. U, V and W are the univariate interpolation 

functions and tensor products. The detail description of the Transfinite 

interpolation technique for the structured grid generation is given in 

Appendix C.  

 

The improvement of the grid point distribution and the orthogonality 

properties of the grids for the steady and unsteady calculations is performed 

by the elliptic grid smoothing process, namely by iteratively solving the 

Laplace and Poisson equations [7][30]. The three dimensional representation 

of the Poisson’s equation can be written: 

 

                   ( ) ( ) ( ) 0332211 =+++++ ζζζηηηξξξ rRrQrrPr ggrg                (III.2) 

 

 with r is the vector of the physical coordinates that defined as [ zyx ,, ] T , 

 curvilinear coordinates, and as the contravariant metric 

coefficients with superscripts 

ςη,ξ, ijg

ji, =1,2,3. The P, Q, R are the source terms of 
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Poisson equation. Detail description of Poison and Laplace equation is given 

in appendix D or in Ref. [7]. 

 

 During the grid smoothing process, connections between the adjacent blocks 

are organized by mother-child relations where the grid points located at the 

block connection are allowed to move [7]. The source terms are determined 

at the solid body by inverting the Poisson equation. The mirror points with a 

fixed distance from the solid body wall are employed to calculate the 

derivatives at the block boundaries. The Laplace equation is used to spread 

the source terms into the computation domain. The convergence criterion for 

sufficient smoothness is fulfilled if the change in the source strength does 

not exceed 10-4. The elliptic smoothing is applied for each block. The 

mechanism described presents a stable and flexible tool avoiding cell 

singularities or overlaps. The distribution of the mesh points is performed to 

represent adequtely the geometry shape of the body and to concentrate them 

in regimes with high gradients of flow variables. 

 

2.2 Dynamic Grid Technique for TSTO Space Vehicle System 

In order to carry out unsteady calculations which involving a moving solid 

surface, a dynamic adaption of mesh to the actual body position must be 

performed for each time step in the computational domain. Concerning this, 

there are two methods for defining the moving grids [7]. The first possibility 

exists in the so-called rigid body movement. With this method the model 

together with the whole computational domain moves in the way of the 

prescribed movement. Such a movement causes the farfield boundaries 

changed with the speed resulting from the movement. The advantages of this 

method are the simple treatment of the computational grid, and the grid 

structure remains unchanged during the entire calculation. However, this 

method can not be implemented for the computational domain containing 

both the dynamic grids and stationary grids, such as the case of unsteady 

stage separation of the two-stage space transportation system as shown in 

Fig. III.3. 
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The second method, which is used in the present study, is the use of the 

deformation of the computational grid. In contrast to the rigid body 

movement, this method assumes that the edges of the outer boundaries 

remains unchanged, and only the configuration itself is moved. According to 

that the grid must be adjusted and distorted by the movement of the solid 

body and the fixed outer boundaries. Moreover it must be guaranteed that 

during this deformation the quality of the computational grid remains good. 

This can be carried out by locally smoothing the mesh by solving the 

Laplace equations.  

 

For the simulation of the stage separation of the TSTO space transportation 

vehicle, the computational domain for the moving grids is limited in given 

regions around the EOS model that was generated with the O-grid topology 

as shown in Fig. III.3. The inner boundary of the mesh at which the solid 

surface resides has to conform to the motion of the EOS surface at all times. 

The mesh outer boundary of the O-grid is free to move or is fixed. The 

velocity of the mesh as well as the deformation of the cells is considered in 

the unsteady transformation of the Euler equations. 

 

Figure III.3: Computational domain for dynamic grids 



CHAPTER IV 

NUMERICAL METHOD 

 
1       Numerical Solutions for Euler Equations 

Having obtained the unsteady Euler equations in Eq. (II.10) and the grids in 

Ch. III, this chapter presents the numerical method used for solving the 

unsteady Euler equations. Such equations have a hyperbolic character with 

respect to time and allow discontinuities in the solution.  For the first 

character, numerical solutions based on a time-marching are a properly 

posed mathematical problem in all regions of the flows. For the second 

character, the used finite volume shock capturing approach can maintain the 

conservation of flow properties in the discontinuity region. In order to offer 

the largest flexibility to apply numerical approximations for the spatial and 

temporal derivatives with different accuracy levels in solving the unsteady 

Euler Equations, the numerical method based on the separate discretization 

in space and time – the so called method of lines is considered. 

 

Based on the space discretization, numerical methods can be categorized 

into two groups, namely central difference and upwind difference schemes 

[54]. The upwind difference scheme is more suitable for flows dominated by 

a convection, such as the high speed flows around the TSTO space 

transportation system. This scheme considers physical propagation 

properties of the Euler equations that are indicated from information on the 

sign of the Jacobian eigen values. In such a scheme the introduction of the 

physical properties in the discretization process of the Euler equations can 

be done at different levels. In the first level, only information on the sign of 

the eigen values are introduced, whereby the vector of the convective fluxes 

are split and discretized directionally according to the sign of the associated 

propagation speeds. This leads to the flux-vector splitting scheme. The first 

flux vector splitting schemes were developed in the beginning of the 1980’s 

by Steger and Warming [55][56] and by Van Leer [57], respectively. The 

second level of the upwind scheme is based on the solution of locally one-

38 
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dimensional Euler equations for discontinuous states at an interface. This 

corresponds to a Riemann (shock tube) problem. The values either side of 

the interface are generally termed the left and right states. In order to reduce 

the numerical effort required for an exact solution of the Riemann problem, 

approximate Riemann solvers were developed, e.g., by Oscher et al. [58] 

and Roe [59]. They are also known as the flux difference splitting scheme. 

Another approach of the upwind scheme with the aim at preventing the 

generation of numerical oscillations around the shock discontinuities is 

based on the concept of non-linear limiters. The most popular scheme based 

on this concept is the Total Variation diminishing (TVD) schemes 

introduced by Harten [60] in 1983. The principal conditions for the TVD 

scheme are that maxima must be non-increasing, minima non-decreasing, 

and no new local extrema may be created.   

 

Furthermore, the new upwind schemes with a primary goal of maximizing 

accuracy with less computational time and cost were performed by 

improving the flux vector splitting scheme to have the characteristics like 

the flux difference splitting. These schemes decompose the flux vector into a 

convective and pressure (acoustic) parts. This idea is followed by more 

recent method like the Advection Upstream Splitting Method (AUSM) of 

Liou et al. [61][62], or the Convective Upwind Split Pressure (CUSP) 

scheme of Jameson [63]. Further similar approaches are the Low-Diffusion 

Flux-Splitting Scheme (LDFSS) introduced by Edward [64], or the Mach 

number–based Advection Pressure Splitting (MAPS) scheme of Rossow 

[65][66]. 

 

Concerning the discretization in time, the numerical methods can be grouped 

into implicit and explicit schemes. The implicit scheme can produce 

numerical solutions without any problem related to the numerical stability 

limitation [67]. However, the numerical algorithm of the implicit scheme is 

more difficult and requires a more memory space for the computation 

compared to the explicit scheme.  



 40

2 Numerical Methods for Stage Separation of TSTO Space Vehicle 

Systems 

The numerical method for solving the flow problems of stage separation of 

the TSTO space transportation system considers the finite volume shock 

capturing method for the spatial discretization and modified AUSM scheme 

for the convective fluxes evaluation. The temporal discretization uses the 

explicit scheme of the multistage Runge-Kutta [37]. For the unsteady flow 

calculations, a dual time-stepping method proposed by Jameson is used [38]. 

This method redefines the unsteady flow problem into a steady flow 

problem by introducing a pseudo-time, with the physical time derivative 

included in the discretized equations.  

 

2.1 Finite Volume Discretization Method 

The cell-centered finite volume method is used for the spatial discretization 

of the unsteady Euler equation. This discretization method assumes that the 

conservation variables are constant in infinite small control volumes (cells) 

in the computational domain. Corresponding to different time, the state 

variables inside the cell will change due to the influence of in-/out- flow of 

the neighbouring cells through the cell faces. The flow fluxes through the 

cell faces constitute the continuous values. In particular, the problem of the 

discontinuity such as shock waves can be handled by the shock capturing 

technique which allows the shock wave to form within the computational 

domain as a consequence of the numerical flow-field algorithm. 

 

Using the finite volume method, the unsteady Euler equation in Eq. II.10 can 

be discretized that written down for each control volume as: 
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where kji ,,Ω is the volume at a cell i,j,k  and ∆S is the surface area at a cell 

i,j,k. 

 

2.2 Evaluation of Convective Fluxes 

The evaluation of the convective fluxes F, G, H at each cell face in Eq. 

(IV.1) uses the modified AUSM (Advection Upstream Splitting Method) 

that developed by taking the positive values of the Flux Vector Splitting 

(FVS) and Flux Difference Splitting (FDS) upwind schemes. The FVS and 

FDS are described in detail in Appendix E. The original AUSM scheme 

proposed by Liou [68][69] treat the convective and pressure terms 

separately. The convective terms are upstream-biased using the properly 

defined cell-interface velocity, while the pressure term is strictly dealt with 

the use of acoustic waves. However, the original AUSM was found to 

generate local pressure oscillations at shocks and in cases where flow is 

aligned with computational grid. The modified AUSM suggested by 

Rediespiel et al [70] has introduced improvement to get the better shock 

solution that is by switching at the shocks to Van Leer’s scheme. 

 

The modified AUSM scheme used in this study is described in detail as 

follows: the convective flux terms , ,  in Eq. (IV.1) can be considered 

each as the convective and pressure terms. To show the discritization of the 

modified AUSM scheme, only the term corresponding to  through a cell 

surface perpendicular to x direction will be discussed. The other flux terms 

can be derived in similar way. This flux transportation about mass, 

momentum, and energy are discritized on a cell surface (i+1/2, j, k), which is 

the middle surface between cell (i, j, k) and cell (i+1, j, k), and it is written 

as: 

F G H

F

( )
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c
kjikji SS

,,2/1,,2/1,,2/1,,2/1,,2/1 +++++ +⋅=∆ pFSF   (IV.2) 

 

The term c
i

2
1+

F  is the convective term that characterized with an advective 

Mach number kjiM ,,2
1+  and a scalar dissipative term, mlk ,,2/1+Φ . 
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S is a surface vector, and its components are the projection of S on 

coordinates x, y, z. Furthermore the total enthalpy 

zyx sss ,,

ρ/)(H pe += , and a is 

the sound speed. 

 

From Liou and Steffen [61], the advective Mach number kjiM ,,2
1+  is 

determined by a combination of wave velocity ±M  on the cell (i, j, k) and 

cell (i+1, j, k). This is  

  
−
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+
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Van Leer defines the Mach number  through the “Flux Vector 

Splitting” method [57] written as follows: 
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Mach number M is defined by the velocities u, v, w and the surface vector S, 

where the velocities are evaluated on a cell, that is on cell (i, j, k) or cell 

(i+1, j, k) and the surface vector is determined on the surface (i+1/2, j, k), 
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Similarly to the advective Mach number term, the pressure is defined as  
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By a second-order weighted characteristic polynomial of velocity, the terms 

for pressure are defined. 
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For the scalar dissipative term, mlk ,,2/1+Φ  in Eq. (IV.3), Radespiel et al. [70] 

introduce it as a combination of numerical dissipation in the AUSM and 

Flux Vector Splitting method. 

 



 44

 

    .)1( mod
,,,,,,

2
1

2
1

2
1

AUSM
kji

VL
kjikji +++

Φ+Φ−=Φ ωω                (IV.11) 

 

The dissipation in the Flux Vector Splitting method is defined as 
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and the dissipation in the AUSM is written as  
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where δ~ is a small parameter 0 < δ~  ≤ 0.5 and ω  is a constant 0 <ω
 
≤ 1. 

For ω = 0 the method behaves as the classical van Leer flux vector splitting 

scheme [70]. In the case of ω = 1 and δ~ = 0 the original AUSM developed 

by Liou and Steffan is recovered [61]. The van Leer scheme is more robust 

but less accurate than the original AUSM scheme. The hybrid flux ensures 

both the clean and sharp shock resolution of the van Leer scheme and the 

low diffusive solution of the AUSM in smooth regions. This is realized by 

relating the parameterω to the second difference of the pressure,  
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kji ,,υ  and kji ,,1+υ  are two numerical dissipation parameters with α = O(5). 

The equation (IV.15) constitutes a sensor shock by checking pressure value 

in the computational domain.  The value of ω  is 1 in smooth regions and 

switches to 0 in the vicinity of shocks. 

 

Furthermore, when the state variables on (i+1/2, j, k) simply use the value on 

(i, j, k) or (i+1, j, k), then the first order accuracy of the flux is achieved. 

While, the higher-order accuracy of the flux can be obtained by defining 

flow variables on the right and left sides of the faces using the variable 

extrapolation scheme of van Leer. This higher-order flux is called the 

Monotonic Upwind Scheme for Conservation Law (MUSCL) scheme 

[71][72]. The general form of the MUSCL scheme is: 
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The forward  and backward( +∆ ( )−∆  difference operators are defined as 

and iii QQQ −=∆ ++ 1 1−− −=∆ iii QQQ . The parameter of κ controls the 

accuracy of the extrapolations, κ = -1 is the second-order fully upwind 

scheme, κ = 1/3 is the third-order upwind biased scheme, κ = 0 correspond 

to a second order, upwind-biased linear interpolation and κ = 1 constitutes 

the second order central scheme. The limiter function s is used to prevent the 

generation of non-physical oscillation of the solution in regions of high 

gradients (e.g. at shocks). At strong discontinuities, the limiter reduces the 

slope of the interpolation of flow variables to the face of a cell to be zero    

(s = 0) in order to prevent the generation of a new extremum. While, in 

smooth flow regions the limiter obtain a certain value in order to keep the 

amount of numerical dissipation as low as possible. The limiter of Albada is 

used in the computation, primarily because of its continuous behaviour 

[72][73]: 
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The small quantity ε ensures the limiter to behave properly in smooth flow 

regions.  

 

2.3 Initial and Boundary Conditions 

To obtain the real and efficient flow solution, the specification of suitable 

initial and boundary conditions are required. The initial condition determine 

the state of the fluid at the time t = 0, or, at the first step of an iterative 

process. Clearly, the better (the closer to the solution) the initial guess will 

be, the faster the final solution will be obtained. Therefore, it is important 

that the initial solution satisfied at least the governing equations and the 

additional thermodynamic relations. In common practice the initial values 

for the whole flow field is determined by prescribing the freestream values 

of pressure, density and velocity component (given as Mach number and 

angle of attack). 

 

Subsequently, the evaluation of fluxes on boundaries of the computational 

domain to obtain a well-posed problem for the Euler equations requires the 

proper definition of boundary conditions.  The information concerning the 

direction of the propagation of the waves plays a very important role in 

determining the correct boundary conditions. These directions are 

determined by evaluating the eigenvalues of the Euler equations. At the 

boundary a value associated with each wave can then be specified or 

extrapolated depending on the sign of the corresponding eigen value. 

 

There are several types of the boundary conditions in used in the present 

study, namely solid wall, farfield, symmetry and boundary between blocks. 

The boundary conditions are applied by introducing additional layers of 

dummy cells outside the physical domain [7][33]. The purpose of the 

dummy cells is to simplify the computations of the fluxes, gradients, 
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dissipations, etc. along the boundaries. This is achieved by the possibility to 

extend stencils of the spatial discretization scheme beyond the boundaries. 

Each boundary has the specific numerical treatment that requires a particular 

care to obtain the appropriate simulation of the real system. The improper 

implementation can negatively influence to the stability and convergence 

speed of the simulation. The numerical treatment of the used boundary 

conditions is given as follows: 

 

2.3.1 Body boundary condition 

The specification of the solid boundary condition is relatively 

straightforward, that is only one eigenvalue is positive so that only one 

variable may be prescribed, namely the normal velocity. The other variables 

have to be extrapolated from the interior of the flow domain to the surface. 

The normal velocity is zero at all time, since no mass or convective flux can 

penetrate into the surface. 

 

 0=⋅ nv rr  at the surface      (IV.18) 

 

where nr  denotes the unit normal vector at the surface. The application of 

the solid boundary is carried out as follows: The velocity in each dummy 

point consists of two components: the normal component which is 

determined from the corresponding mirrored value in the computational 

domain and the tangential component which is obtained from the 

extrapolation from the computational domain. Due to the vanishing normal 

velocity at the body surface, the vector of the convective fluxes equation 

(II.10) reduces to the pressure terms alone.  
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with the pbody being the body pressure.  

  

2.3.2 Farfield boundary condition 

The implementation of the farfield boundary conditions has to fulfil two 

basic requirements. First, the truncation of the domain should have no 

notable effects on the flow solution as compared to the infinite domain. 

Second, any outgoing disturbances must not be reflected back into the flow 

field [33][74]. Various methodologies were developed which are capable of 

absorbing the outgoing waves at the farfield boundaries [41][75][76].  

 

One of the methods, proposed by Whitfield and Janus [76], which based on 

the characteristic variables of the one-dimensional Euler equations (II.10) 

normal to the boundary surface pointing outward is used in the present 

study. Two basic flow situations at the farfield boundary are sketched in Fig. 

IV.1. The flow can either enter or it can leave the domain. Therefore, 

depending on the local Mach number, there are four different types of 

farfield boundary conditions: supersonic inflow and outflow, subsonic 

inflow and outflow. Only two supersonic farfield boundaries are explained 

that used in the calculations.    

Inflow Outflow 

Figure IV.1: Farfield boundary conditions 

(a2) 

Boundary surface 

d b 

Flow 
Boundary surface 

c 

(a1) 

nr  
nr  

Flow 

d c b 
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•  Supersonic Inflow and Outflow 

For supersonic inflow, all eigenvalues are negative. Since the flow is 

entering into the computation domain, the conservative variables on the 

boundary (point c in Fig. IV.1 (a1)) are set at the freestream values. Thus, 

 

  .       (IV.20) bc QQ =

 

The values are specified based on the given Mach number and two other 

flow parameters, such as pressure and temperature. While, for supersonic 

outflow all eigenvalues are positive. The flow leaves the computation 

domain and all conservative variables at the boundary must be extrapolated 

from the values inside the computation domain toward the boundary. This 

leads to the following set of the conditions [76]. 

bQ
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( ) ( )00/ appnvv cdxdc ρ−+=  

( ) ( )00/ appnww cdxdc ρ−+=  

 

where 0ρ  and  represent reference state. The reference state is set equal to 

the state at the interior point (point d in Fig. IV.1). 

0a

 

2.3.3 Symmetry boundary condition 

The first condition to be met at the symmetry boundary is that there is no 

flux across the boundary. The following gradients have to vanish: 

• gradient normal to the boundary of the scalar quantity, namely 0=∇⋅ Sn
rr  

• gradient normal to the boundary of the tangential velocity,  ( ) 0=⋅∇⋅ tvn
rrrr

• gradient along the boundary of the normal velocity , ( ) 0=⋅∇⋅ nvt rrrr
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where S stands for the scalar variable and t
r

denotes the vector tangential to 

the symmetry boundary. 

 

2.3.4 Boundary between grid blocks 

For the multiblock grid, the boundary of each block may be divided into a 

number of non-overlapping patches (see Fig. III.4). The physical solution in 

a particular block will depend on the flow in one or multiple neighboring 

blocks. The exchange of flow properties between two blocks is performed in 

two steps as sketched in Fig. IV.2. In the first step, the variables from the 

part of the domain, which is overlapped by the dummy layer of the adjacent 

patch are written to the own dummy cells or to a temporary storage (A’ and 

B’ in Fig. IV.2). This is done for all blocks. In the second step, the data in 

A’ and B’ is exchanged between both blocks. This means that A’ is written 

to the dummy layers of the block B and B’ to the dummy layers of block A. 

If the two patches have a different orientation, the data are transformed 

accordingly. In cases where the grid lines do not match at the block 

interface, further operations are required as described in detail [33][50][51]. 

 

BB’A A’

B’ A’ BA 

Figure IV.2: Exchange of flow variables between two blocks A and B 

 

2.4 Temporal Discretization  

After having determined all terms in the Right-hand side of the equation 

(IV.1) both inside of the computational domain and on the boundaries, the 
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further step is to integrate in time of the equation system. The system 

equation (IV.1), written down for all control volume Ωi,j,k can be rewritten as 

a system of coupled ordinary differential equation in time, as follows. 

 

( )
I

I

td
d RQ

−=
Ω

       (IV.22) 

 

where R is the residual and the index I denotes the particular control 

volume. The residual is a non-linear function of the conservative variable Q. 

This equation system has to be integrated in time, either to obtain a steady-

state solution (RI = 0) or to reproduce the time history of an unsteady flow.  

 

Solutions of the steady flow use a static grid so that the cell Ω can take 

outside from the equation (IV.22) resulting the time derivative as follows 
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In order to solve the system of equation given by Eq. (IV.23) the explicit 

multistage time-stepping scheme is employed. This scheme was first 

proposed Jameson et al. [37]. An m-stage of Runge-Kutta scheme are 

written as 
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with 
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and is in range of (0,1) and CFL IΩ is the volume of the cell in curvilinear 

coordinates, are characteristic values of Jacobian matrix [7]. In the 

expression of Eq. (IV.25), αk represents the stage coefficients given as 

follows 
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The scheme starts from a known solution  and employs the evaluation of 

the corresponding residual at intermediate states with the use of suitable 

boundary conditions to obtain a new solution  at time (t +  ∆t). In order 

to overcome the restricted stability of the explicit scheme, numerical 

artificial dissipation is added in the residual for a certain stage (77). In the 

present study, the calculations of steady flow use the first order Runge-Kutta 

scheme to obtain reasonable solutions with less computational time. 

nQ

1nQ +

 

In the case of moving grids for unsteady flow calculation, the new size of 

the control volume, i.e., Ωn+1 changes and has to satisfy the Geometry 

Conservation Law (see Appendix A). The solutions of the unsteady flow are 

performed by employing the dual time methodology proposed by Jameson 

[38]. The dual time-stepping approach is a second order in time that written 

as  
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where ∆t denotes the global physical time step. Equation (IV.27) employs a 

3-point backward-difference approximation of the time derivative in Eq. 

(IV.22). For the numerical calculation, this equation is approximated by 

introducing a pseudo-time variable t* and can written as  

  

 ( ) ( )*** QRQ III
n
Itd

d
−=Ω +1

* ,      (IV.28) 

 

where Q*is the approximation of Qn+1. The unsteady residual is defined as  
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All terms which are constant during the time-stepping in Eq. (IV.29) are 

gathered is a source term, i.e., 
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To solve the pseudo problem in Eq. (IV.28), the explicit multistage Runge-

Kutta scheme in Eq. (IV.24) is used by employing the pseudo-time step t* 

and , the new size of the control volume Ωn+1. The time-marching process 

is started with the values of the steady solution. Then, it is continued until 

the values of the conservative variable at the new pseudo-time level ( ) 

approximates the conservative value at t + ∆t ( ) with sufficient 

accuracy i.e. when the residual reduces by three order of magnitude. 

*
IQ
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3. Unsteady Flow Simulations 

The procedure of the calculations of the unsteady separation of the TSTO 

space transportation system follows the flowchart given in Fig IV.3. The 

computation starts with the input data of the steady flow solution. 

Subsequently, the unsteady simulations for the first time step according to a 
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given path of the orbital stage are computed by solving the unsteady Euler 

equations with the numerical method discussed in the section 2 until the 

residual reaching the convergence criteria or a given iteration number. The 

second time step and the subsequent steps can be computed with the similar 

way. Each time step, the grid distribution around the orbital stage must be 

adjusted to the movement of the orbital stage and the fixed outer boundaries. 

The improvement of the grid quality is performed by solving Laplace’s 

equation.  

 

Movement of Orbital Geometry 
based on the movement rule 

Smoothing Process of the  
Computational Grid  

Calculation of Residuum (R)  

0)(* =+
∂
∂ QRQ

mτ
  

ε
τ

<
∂
∂

m

Q
*   

maxττ =   

End 

m = m + 1

no 

no 

τ = τ + ∆τ 

Initial unsteady calculation = Steady solution 

Start 

Figure IV.3: The flow chart of the unsteady calculation [Ref: 7]. 



CHAPTER V 

STEADY AERODYNAMICS OF STAGE SEPARATION OF 

TSTO SPACE VEHICLE SYSTEM ANALYSIS 
 

In this chapter the analysis of the steady aerodynamics of stage separation of 

the TSTO space vehicle system is performed using two configurations, 

namely the EOS – flat plate and EOS - ELAC1C. The efficiency of the 

simulation method including the accuracy and computation time is 

investigated at various grid aspects on the flat plate and EOS model. The 

computational results are compared to the corresponding experimental data 

at various conditions to validate the simulation method for both the 

configurations. In addition, the effects of the parameters of quasy-steady of 

the stage separation including orbital stage angle of attack, carrier stage 

angle of attack and separation distance as well as Mach number on flow 

features and aerodynamic forces and moment of the space vehicle system 

are studied. The chapter starts with the important information about the 

experimental and computational tests. 

 

1 Experiment :  Test Models and Conditions 

Experimental data for the validation are taken from the supersonic wind 

tunnel T-313 at ITAM (Institute of Theoretical and Applied Mechanics, 

Russian Academy of Sciences, Siberian Branch), Novosibirsk for the low 

hypersonic speed [11] and Shock Tunnel TH2-D of the RWTH Aachen for 

the high hypersonic speed [12][78]. 

 

Related to the T-313 wind tunnel at the ITAM, the test models of the flat 

plate /EOS configuration and EOS /ELAC1C configurations mounted in the 

wind tunnel test section are shown Figs. V.1 and V.2, respectively. The EOS 

and ELAC1C models were manufactured at the ITAM with scale of 1:150. 

The EOS test model has a length of 192 and a height of the total body of 

63.5 mm and a wide of the wing span of 108 mm. While, an overall length 
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of the ELAC1C test model is 480 mm and a span width of 262 mm. The 

moment reference point is 0.65 of the EOS length from the EOS nose [79]. 

 

Figure V.1: The test model of the EOS - flap plate [Ref. 79] 

 

 
 

Figure V.2: The test model of the EOS - ELAC1C [Ref. 79] 
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The two-stage separation is simulated in a quasy-steady manner by 

mounting the upper stage at different vertical positions h/lEOS as well as at 

different orbital stage angles of attack ∆α relative to the lower stage. In 

addition, the experiment tests were carried out for different angles of attack 

α of the lower stage.     

 

The measurements at the wind tunnel T-313 of the ITAM include 

aerodynamic loads, a visualization of flow pattern, and pressure distribution. 

An automatic four-component mechanical balance is employed to measure 

the loads acting on the carrier stage model ELAC1C. This balance is fitted 

with an arm system to decompose the total force and moments into the 

aerodynamic components lift and drag forces as well as pitching and rolling 

moments. The instrumental error of the mechanical balance is less than 0.1% 

of the highest load. An internal six-component strain-gauge balance is used 

to acquire the loads acting on the orbital stage model EOS. The construction 

of this balance is made in the form of a tail sting measuring all components 

of aerodynamic forces and moments. The instrumental error of the strain-

gauge balance is less than 0.05% of the highest load [11]. The flow patterns 

around the separating models are visualized using a standard interfering 

shadowgraph to observe and register the density gradients of the air flow in 

the plane of the velocity vector. A specific device connects a CCD camera to 

the shadowgraph instrument through which digitized images of the Schlieren 

pictures are sampled by using frame grapplers installed in a PC. In addition, 

the measurement of pressure distribution at the flat plate was performed 

using pressure orifices made along on the line on which the EOS symmetry 

plane and flat plate intersect as shown in Fig. V.1. 

 

The test conditions in the T-313 wind tunnel are as follows:  The free-stream 

Mach number is kept constant at a value of M∞ = 4.04. The corresponding 

Reynolds number per 1 m is Rem = 50.0 x 106 and the related dynamic 

pressure is q∞= 73.5kPa. The static flow at the plenum chamber is a free- 

stream temperature, T∞ = 294 ° K and free-stream air pressure, p∞ = 6.4 kPa. 
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The angles of attack of the entire configuration are adjusted for the load 

measurements at α= 0°, 1°, 2°, 3°, 4°, 5° and 5.7°. For the tests of the quasy-

steady stage separation, the orbital stage EOS is placed at two vertical 

positions relative to the flat plate, namely at h/lEOS  = 0.150 and 0.225, and at 

three vertical positions relative to the carrier stage ELAC1C, namely at 

h/lEOS  = 0.225, 0.325 and 0.450. At each vertical station the angles of attack 

of the EOS are varied with values of ∆α = 0° and 3° relative to flat plate and 

with values of ∆α = 0°, 2°  and 5° relative to the ELAC1C [11]. 

 

While, in the Shock Tunnel TH2-D the test model of 1/100-scale of the EOS 

vehicle is used. Based on the scale, a total length of the EOS is 288 mm with 

a maximum body height of 100.6 mm, a middle height of 48.6 mm and a 

span width is of 162 mm. The size and experimental equipment for the EOS 

model are shown in Fig. V.3. The moment reference point is on the middle 

point of the body length [12]. 

 

              Figure V.3: The test model of the EOS - flat plate at  

       the Shock Tunnel TH2-D [Ref. 12] 

 

Similarly, the measurements using the Shock Tunnel TH2-D include the 

visualization of flow pattern around the model, aerodynamic loads and 

pressure distributions. As shown in Fig. V.4, the pressure orifices are located 

on the lower surface of the EOS at the interception line between the 
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underside surface of the EOS and the plane with x = 0.6 LEOS; x= 0.75 LEOS 

and y = 0 (symmetry line).   

 

Figure V.4: Pressure measurement sections at x = 0.6 l; 0.75 l, and y = 0 
[Ref. 12]. 

 

In this experiment, the test condition was set as follows: the free-stream 

Mach number is M∞ = 7.9. The corresponding Reynolds number based on 

one meter long is Rem = 7.6 x 106 free-stream temperature. The other related 

parameters include a free-stream temperature of T∞ = 180 ° K, free-steam 

velocity of V∞ = 2120 [m/s], free-stream air pressure, p∞ = 2.27 [kPa] and 

free-stream density, ρ∞ = 0.0436 [Kg/ ]. 3m

 

2 Computational Test : Facilities, Procedures and Test Cases 

2.1 Computational Facilities 

The computations of the two stage space vehicle model are performed in 

Institute of Fluid Mechanics at Technical university of Munich using the 

computational facilities including computer hardwares, such as HP Visualize 

J282 workstation and Parallel-vector computing Fujitsu VPP700. The 

workstation is used for computing the grids. The latter computer used for 

flow computations has 52 processors and the maximum memory for each 

processor is 2048 MB, and softwares of the DDN ICEM, HEXA ICEM, the 
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house developed codes based on the Euler solutions, and TECPLOT post 

processor. 

 

2.2 Computational Procedures 

2.2.1 Topology and Mesh Generation  

The generation of the block topology is initiated by defining all boundaries 

of the computational domain including the definition of the body boundary 

(geometry surface) as well as farfield and symmetry boundaries. Concerning 

the geometry surface of the TSTO space vehicle, the original surface is as a 

computer-aided design (CAD) surface, where the CAD system represents it 

with a set of structured points or patches. The CAD surface is imported and 

then converted into a non-uniform rational B-Splines (NURBS) surface 

representation using the ICEM DDN [80]. The identification of the names of 

surface for the multiblock grids is also accomplished to distinguish every 

surface of interest and to avoid a missing projected surface.  

 

The block topology model can be then generated on the underlying CAD 

geometry surface using a special tool called O-grid available in the ICEM 

HEXA to obtain five LIVE blocks and one DEAD block. The DEAD region 

is used to locate the computational model with no grid inside. In addition, 

the complex geometry which contains the wings, vertical stabilizer, 

winglets, etc, requires additional dead blocks to cover the detail geometry. 

This is done through the splitting of the existing LIVE blocks using the O- 

grid tool. As the result, the complete O-O block topology for the flat plate 

and EOS model consists of 22 LIVE blocks describing the half configuration 

as shown in Fig. V.5. While, the computational domain of the half 

configuration of the detailed ELAC1C and EOS requires 45 LIVE blocks 

arranged in the O-O topology as shown in Fig. V.6. 
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FigureV.5: Topology and blocks for the EOS – Flat Plate configuration. 

 

 

Figure V.6: Topology and blocks for the EOS – ELAC1C configuration. 



 62

Once the overall blocks are prepared, points for each block are distributed 

along the edges of the blocks. The distribution of the mesh points is 

performed to represent adequately the geometrical shape of the body and it 

is necessary to concentrate them in the regions with high gradients of the 

body contour and flow variables, such as on the leading- and trailing-edge 

sections of the main wing and the vertical tail of the EOS and fixed winglets 

of the ELAC1C, and in the wake region behind the base of both the vehicles 

as shown in Fig.V.7. In addition, the point distribution becomes denser when 

the points approaching the body surface. The generation of the grids is 

started from all the internal points on the faces by interpolating them and 

then continued to the points inside the block volumes.  

 

Figure V.7: Points distributions along the edge of the block. 

 

o study the influences of grid quality on the accuracy and computational 

 

T

time of the numerical simulation, several grid cases with differences in grid 

number and smoothness are generated on the orbital stage EOS and flat 

plate. As the result, three different grid numbers are generated for the 
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calculations, namely the first grid has 113.355 cells and 144.650 nodes 

referred to as the coarse grid, the second one referred to as the standard grid 

has 251.931 cells and 295.395 nodes, and the third one with 493.215 cells 

and 565.610 nodes referred to as the finer grid. The off-body distance of 

each grid model is about 1x 10-5. Concerning the point distribution, the first 

grid has a nearly uniform grid distribution along the middle part of the 

fuselage and the others have denser grid distributions in the same location.  

The basic grid result for the standard grid is shown in Fig. V.8. 

 

Figure V.8: The initial standard grids. 

 

elated to the grid smoothness, the grid smoothing process is performed by 

around the vehicle. 

R

the use of the Poisson algorithm (in chapter III) with the basic grid as the 

initial input. The convergence solution with a sufficient smoothness is 

fulfilled if the change in the source strength of the Poisson equation is below 

10-4. The smoothed grids of the EOS – flat plate model is shown in Figs. 

V.9. The improvement of the orthogonal grid presents in the whole domain 
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iguration 

 

AC1C 

onfiguration are shown in Figs.V 10 and 11, respectively. The grids consist 

 

Figure V.9: The smoothed grids of the EOS – flat plate conf

Furthermore, the basic and smoothed grids for the EOS and EL

c

of 1.177.630 volumes and 1.308.400 nodes. 

Figure V.10: Initial grids of the EOS and ELAC1C configuration. 
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.  

F ation. 

 

2.2.

Steady flow computations are obtained by iteratively solving the Euler 

 for solving the Euler equation is 

igure V.11: The smoothed grids of the EOS and ELAC1C configur

2 Obtaining Numerical Flow Solutions 

equations. The numerical method used

explained in chapter IV.  The computations require inputs of the physical 

and numerical parameters as well as the generated grids in the whole 

computational domain and the associated logic file containing the 

information of the block connectivity. The physical parameters include 

geometry reference, Mach number, angle of attack, side-slip angle and free-

stream flow condition. Moreover, the numerical parameters consist of CFL 

number, convergence limit and artificial viscosity. The final steady state 

solution can be obtained if the residual of the density is below 10-5. Then, 

the numerical results can be interpreted using the post-processing tools 

(TECPLOT software) as flow contours, plots of pressure distribution and 

aerodynamic force and moment coefficients, geometry and mesh pictures.   
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2.3  

 

id quality including grid orthogonality and grid 

 

Ta V.1: Co ational es for th  plate and EOS configuration. 

 

 

n the variations of angles of attack (α), orbital stage angles of attack (∆α) 

number 
h/lEOS 

(in deg.) 

oth 

Accuracy 

Number of 

Grid (103) 

Computational Test Cases 

For the flat plate and EOS configuration, totally nine test cases are computed

for studying the effects of gr

distribution on the accuracy and efficiency of the simulation method and for 

investigating the effects of the separation parameters on flow field and 

aerodynamic characteristics of the space vehicle. All computational test 

cases for the flat plate and EOS configuration are named with small 

character “a” followed by a number given in Table V.1.  

 

Mach ∆α / α Smo
Case 

a1 10  -2 113 

a2 10-3 113 

a3 3x10  -4 113 

a4 10 3-  252 

a5 

 
 

4.04 

 
 

0.150 
 

0 / 0 

10  

  

-3 493 

a6 0.225 0 / 0 10 3 493 -

a7 

 
4.04 

0.225 3 / 0 10 3 493 -

a8 0.150 0 / 0 10 3 493 6.80 -

a9 7.90 0.150 0 / 0 10 3 493 -

ble mput test cas e flat

Furthermore, for the EOS - ELAC1C configuration, the test conditions focus

o

and relative distances between the orbital stage and the carrier stage (h/lEOS). 

The free stream Mach number during the separation is determined based on 

the setting of Mach number at the experimental test. Five different test cases 

taken from the wind tunnel experiment tests at the ITAM [11] are chosen as 
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references for the computational tests. Similarly, the name of the 

computational cases for the ELAC1C and EOS configuration is initiated 

with a character “b” followed with a number. The details of the test 

conditions for the steady flow calculations of the EOS and ELAC1C space 

vehicles are given in Table V.2. 

 

Mach Relative distance Case number (h/LEOS) 
Relative angle of 
EOS (∆α) in deg. 

Angle of attack 
(α)  in deg. 

b1   0.0 0.0 

b2   3.0  

b3 4.04 0.225 2.0 0.0 

b4   5.0 0.0 

b5  0.325 0.0 0.0 
 

Table V.2: Computationa ses for the EL C and EOS con ation. 

 

eparation of the EOS – flap plate and EOS –ELAC1C configurations are 

3 

3.1 ffects of Grid Smoothing 

 smoothing effects namely cases a1, a2 and a3 

 grids with iteration numbers of 1, 50 and 500 

l test ca AC1 figur

The results of the computed aerodynamic characteristics of the steady stage 

s

given in Appendices F and G, respectively.   

 

Effects of Numerical Grids  

E

Three cases related to the grid

are compared. The smoothed

are shown in Figs V.12 (a, b and c), respectively. With increasing the 

number of iteration, the grid quality over the computational domain 

increases indicated by the decreasing grid error that is 10-2, 10-3 and 3x10-4 

for the cases a1, a2 and a3, respectively. The particular improvement on the 

grids behind the EOS is shown in Fig. 12. 



 68

 

 

(a)  grid for case a1 (b)  grid for case a2 

(c)  grid for case a3 

Figure V.12: The effect of grid smoothing on the grid quality. 
 

The effect of the grid smoothing on the efficiency of the calculations is 

shown in the convergence history in Fig. V.13. Increasing the grid quality 

due to the smoothing process causes the decreased computational time that 

required reaching at the same convergence value. The higher grid quality 

means the grids becoming orthogonal or continuous cell growth. At the 

boundary blocks, the continuous cells will decrease the computation error 

during the exchange data of the flow properties between two blocks. This 

gives a faster reduction of the residual every iteration over the whole 

computational cells where as the time per iterations and memories used for 

every time iteration as almost same for all cases as given in Table V.3.     
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Convergence history 
Mach = 4.04, ∆α = 0 deg. h/lEOS = 0.150
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Figure V.13: Convergence History of the smoothing grid effects. 

 

 

Case 
Time per iteration 

(seconds) 

Iteration number 

for convergence 

Total time 

(seconds)  

Memory 

used 

a1 10.33 14900 153917 208 

a2 10.30 8200 84706 208 

a3 10.31 3500 36085 208 

 

    Table V.3: Computational time and memory used of various smoothing grids 

 

Apart of the computation efficiency, the effect of the smoothing grid also 

improves the accuracy of the flow solution as shown by the Mach number 

contours in Fig. 14.  The flow field features around the cross section of the 

EOS body at the stations x/lEOS = 0.25; 0.45; 0.65 and 0.90 and around the 

wing section of the EOS vehicle at y/s = 0.1 show strong shockwaves 

generated by the EOS nose and wing. Increasing the grid quality gives 
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sharper shock wave lines at the above and lower the EOS wing and around 

the EOS body.  

 

(b). Mach contours around EOS wing and EOS body for case a2 

(a). Mach contours around EOS wing and EOS body for case a1 

(c). Mach contours around EOS wing and EOS body for case a3 
 

Figure V.14: Mach contours with ∆Μ /Μ∞ =  0.6 for the different smoothed 

grids at Μ∞ = 4.04, ∆α = 0.0°, h/lEOS = 0.150. 
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Consequently, the higher grid quality provides a more accurate lift 

coefficient compared to the corresponding experimental data as given in 

Table V.4. However, the drag coefficients are almost not affected by the grid 

smoothing. Compared to the experimental data, the computed drag gives 

about 10% error. This is caused by the strength of the shock wave which is 

not yet simulated properly due to inadequate grid number and the viscous 

effects not considered in the flow equation as exhibited by the pressure 

distribution on the symmetry line of the flat plate in Fig. V.15.  

 

Case CL CD CM 

 a1 (low smoothing) -0.00939 0.0269 -0.0107 

 a2 (quite smoothing) -0.01070 0.0262 -0.0109 

 a3 (high smoothing) -0.01148 0.0264 -0.0110 

Experiment -0.01150 0.0294 -0.0041 
 

Table V.4: The effect of smoothed grids on aerodynamic characteristics. 

Pressure Distribution along surface 
of flat plate at symmetry line (y= 0)
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Figure V.15: Pressure coefficient distribution on the symmetry line  

of the flat plate. 
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3.2 Effects of Grid Density 

As mentioned in the previous section, the gradient of shock waves has not 

yet be captured properly in the previous simulations due to inadequate grid 

number along streamwise, particularly in the region where the shock waves 

occurred. The effects of the grid distribution/density are accomplished by 

increasing the number of the grids along the EOS body surface. Three 

computational cases with different grid numbers, namely 113000, 252000, 

and 493000 for the cases of a2, a4 and a5, respectively are described in 

detail in Table V.1. The grid results for three different grid number cases are 

shown in Fig. V.16. Increasing the grid number the distance between two 

adjacent grids increases, and hence the grid density in the region of interest 

increases. Figures 17 (a, b, and c) show the density contours at the symmetry 

line (y/s = 0) and around the cross section of the EOS body at the stations 

x/lEOS = 0.25; 0.45; 0.65 and 0.90 for the three different grid numbers. 

Increasing the grid density improves the quality of the bow shock, reflected 

shock wave, impingement point that they become sharper.  

 

The higher required memory space and the elapse time per iteration due to 

the increased grid numbers are described in table V.5 for the solution 

convergence reaching about 1 - 2.0 x 10-4 

 

Case 
Time per iteration 

(seconds) 

Memory used Convergence 

Limit 

a2 10.30 208 1x10-4 

a4 12.15 256 2x10-4 

a5 15.06 384 1x10-4 

 

Table V.5: Computational time and memory for the different grid densities. 
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(b). Grid distribution for case a4 

(a). Grid distribution for case a2 

(c). Grid distribution for case a5 
 

Figure V.16: The layouts of three different grid densities. 
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Figure V.17: Density contours for the different grid densities at 

(b). Density contour at symmetry line and EOS body for case a4 

(a). Density contour at symmetry line and EOS body for case a2 

(c). Density contour at symmetry line and EOS body for case a5 

Μ∞ = 4.04, ∆α = 0.0°, h/lEOS = 0.150. 
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The effects of the higher grid density provides better capturing in the shock 

Figure V.18: Pressure coefficient distribution on the symmetry line of  

 

able V.6 gives the aerodynamic forces and moment for the three different 

corresponding experimental data.  

waves indicated clearly by the graph of pressure distributions along the 

symmetry line of the flat plate shown in Fig. V.18. Two peak pressures 

generated by the shock waves on the flap plate for the case a5 (finer grid) is 

the closest to the corresponding experiment result, but the second peak 

pressure behind the base of the experiment can not be captured well for all 

computational cases. 

Pressure Distribution along lower surface 
of flat plate at symmetry line (y= 0)
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the flat plate for three different grid densities. 

T

grid numbers and the corresponding experiment data for reference. The error 

of lift coefficient of the orbital stage decreases from 7 % to 3 % and the error 

of the drag coefficient reduces from 11% to 6 % compared to the 
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Case CL CD CM 

 a2 (Coarse grid) -0.01070 0.0262 -0.0109 

 a4 (Standard grid) -0.01138 0.0273 -0.0104 

 a5 (Fine grid) -0.01180 0.0277 -0.0106 

Experiment -0.01150 0.0294 -0.0041 

 

he effect of g  on aer c characteristics. 

 

4. Va

Comparison between the computational results and the corresponding 

data has been a little bit discussed in the previous section. To 

4.1 Simplified Configuration  

igure V.19 shows a Schlieren picture and contours of relative density for 

 0.0 deg. and the distance between EOS and 

 

 

 Table V.6: T rid density odynami

lidations 

experimental 

perform a more detail validation of the simulation method, comparisons 

between the numerical results and experimental data are carried out for 

various conditions of stage separations and the two different model 

geometries. The validations are performed first using the flat plate and 

orbital stage EOS for simplifying the effects of aerodynamic interferences 

between the stages. Then, for the final validation, the flat plate is exchanged 

with the detailed geometry of the Elliptical Aerodynamic configuration 

ELAC1C. 

 

F

the EOS angle of attack, ∆α =

flat plate, h/lEOS = 0.150 at a free stream Mach number of 4.04, named as the 

test case of a5. The density contours are recorded in the symmetry plane and 

plane at the station y/s = 0.1. The relative density is stated as a ratio of the 

density at a certain point of the flow field to free stream density, ρ/ρ∞ .   
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(a). Schlieren Picture 

(b). Density contours at symmetry plane 

(c). Density contours on plane at station y/s = 0.1 

 

Figure V.19: Comparison between experimental result and numerical computation 
at Μ∞ = 4.04, Rem = 50.0 x 106  (experiment), ∆α =  ∆α = 0.0°, h/lEOS = 0.150. 
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It is seen from the Schlieren picture in Fig. 19.a that the bow shock ahead of 

the blunt nose of the orbital stage is formed. The lower part of the bow 

shock hits the surface of the flat plate and immediately the shock wave are 

reflected interacting with the shock wave from the wing leading edge. 

Subsequently, the reflected shock wave hits the rear part of the EOS vehicle. 

These phenomena can be captured well in the simulation, namely the present 

of the EOS bow shock, and the reflected bow shock at symmetry plane 

shown in the Fig. 19.b and the interaction between the reflected shock wave 

and the shockwave from the wing shown clearly on the plane at the station 

of y/s = 0.1 in Fig. 19.c.  

 

However, minor differences appear dealing with quantities of the shock 

e, locations of the reflected shock 

ber of 7.9 with the relative distance h/lEOS = 

waves such as the bow shock wave angl

wave on the flat plate and the shock interaction. From the numerical 

computation, the upper bow shock angle above the EOS vehicle depicted on 

the symmetry plane gives the same value as the experimental result, namely 

20.0 deg relative to the horizontal line, but the lower bow shock gives the 

difference of 1.0 deg. lesser than the experiment. As a result, the location of 

the computed reflected shock wave and interacted point shifts rearward 

compared to the experiment. This disparity is also indicated by the static 

pressure distribution in Fig. V.18. The peak of the computed pressure 

distribution slightly shifts back compared to the experiment. The calculated 

pressure peaks caused by the impinging bow shock emanating from the 

blunt nose of the orbital stage and the wing are weaker compared to the 

experimental reference data.  

 

For the case at a Mach num

0.150 and a relative angle of attack of ∆α = 0.0 deg, the comparison 

between a Schlieren picture and density contours is depicted in Fig. 20 

which the density contours are in the symmetry plane and plane at the 

station y/s = 0.1   
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(a). Schlieren Picture  

(b). Density contours at symmetry plane 

(c). Density contours on plane at station y/s = 0.1 

 

6   

 

 

Figure V.20: Comparison between experimental result and numerical 
computation at Μ∞ = 7.9,  Rem = 7.6 x 10   (experiment), ∆α = 0.0°,  

h/lEOS = 0.150. 
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At a higher Mach number of Μ∞ = 7.9, the numerical simulation remains 

urthermore, the calculated pressure distribution on the symmetry line 

Figure V.21: Pressure coefficient distribution on the symmetry line 
of 0. 

 

capturing the main flow phenomena such as the EOS bow shock, the 

reflected bow shock and the shock wave from the wing leading edge with 

reasonable agreement compared to the experimental results. However, 

qualitatively, the computed shock wave slightly shifts backward compared 

to the experiment. 

 

F

provides good agreement compared to the measured pressure distribution as 

shown in Fig. 21, but approaching the EOS nose, the discrepancy of static 

pressure coefficient between the experiment and numerical results tend to 

increase.  

Pressure Distribution along Lower Surface of EOS
at symmetry line (y= 0)
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the lower surface of the EOS, at Μ∞ = 7.9, ∆α = 0.0°, h/lEOS = 0.15
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The comparison between the measured and computed pressure distributions 

 

Figure V.22: Pressure coefficient distribution on the cross section of the 

 

are also carried out for the stations of x/lEOS = 0.6 and 0.75 of the cross 

section of the EOS body as shown in Figs V.22 and V.23, respectively 

(sketched in Fig. V.4). At the cross sections of x/lEOS = 0.6 and x/lEOS = 

0.75, the static pressure coefficient on the lower surface of the EOS body at 

the inboard region does not show a significant change. This pressure then 

increases gradually from the root to the tip of the EOS lower surface. At the 

region closer to the outer edge of the EOS swept wing, the flow from the 

leading edge induces to increase the pressure coefficient abruptly. The 

computed pressure coefficients give good agreement to the experiment 

results. 
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lower surface at x/lEOS = 0.6, for Μ∞ = 7.9, ∆α = 0.0°, h/lEOS = 0.150. 
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Figure V.23: Pressure coefficient distribution on the cross section of the 
lower surface at x/lEOS = 0.75, for  = 7.9, ∆α = 0.0°, h/lEOS = 0.150. 

 

4.2 Fu

The presence of the detailed configuration of the carrier stage vehicle 

mic interferences of the two-

Μ∞

lly Two-Stage –to-Orbit Configuration 

ELAC1C provides the increased aerodyna

stage-to-orbit space transportation system. The flow features occurring 

typically at strong stage interference are visualized by a Schlieren picture of 

Fig. V.24. Main effects are marked and numbered from 1 to 8 [11]. Primary 

factor of the stage interference influencing the orbital stage aerodynamic 

characteristics are as follows: (i) the carrier bow shock interacting with the 

orbital stage (1), (ii) the expansion flow and shock wave caused by flow 

turning at the front of the cavity for the EOS  (2, 3), (iii) the orbital shock 

wave interacting with the expansion and shock waves (6), and it is reflected 

by the cavity surface and striking again on the orbital stage tail part, (iv) the 

expansion fan at the inflection of the surface in the lower stage cross section 
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of maximum thickness affecting the orbital stage tail part at small vertical 

distance (4).   

 

Figure V.24: Schlieren picture of flow features observed in wind tunnel test 
fo
α 

r the ELAC1C/EOS configuration at Μ∞ = 4.04, Rem = 50.0 x 106,          
° ∆α °

use turn OS.     

g along the cavity for EOS.     

6.  

e leading edges of EOS wings.     

er surface of EOS    

t 

 

 

= 0.0 , = 0.0 , h/lEOS = 0.225; 
1.  Bow shock wave of ELAC1C.     

2.  Expansion waves ca d by flow ing to the cavity for E

3.  Shock wave caused by flow turnin

4.  Expansion fan caused by flow turning in the cross section of the 
maximum thickness of ELAC1C.            

5.  Shock wave from the fin of EOS.     

Bow shock wave of EOS.    

7.  Shock wave from the inflection of th

8.  Reflected shock waves on low

9.  Weak characteristic from the nozzle/test section joining (it has no effec
on interaction of the models).  

While, ϕu  and ϕl are notations for upper and lower bow shock wave angle
of EOS, respectively. 
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The computational test results corresponding to the above experiment test, 

namely a free stream Mach number of 4.04 with α = 0.0 °, ∆α = 0.0 °, and 

Qu 4)  

can be ca 5) such 

es, expansion waves, and reflected 

 

), drag coefficient (CD) and pitch moment coefficient 

(CM) for the EOS and ELAC1C vehicles as well as the corresponding 

h/lEOS = 0.150 are plotted in the relative density contour at the symmetry 

plane shown in Fig. V.25. The relative density is stated as a ratio of the 

density at a certain point of the flow field to free stream density, ρ/ρ∞.   

 

Figure V.25: Density contour for the EOS - ELAC1C configuration at 
Μ∞ = 4.04,  α= 0.0°, ∆α = 0.0°, h/lEOS = 0.225 (case b1). 

 

alitatively, almost all flow features of the experimental result (Fig. V.2

ptured in the simulation with reasonable accuracy (Fig.V.2

as bow shock waves of both the stag

shock wave. The computation provides a small disparity in the bow shock 

angle prediction compared to the corresponding experimental results as 

given in Table V.7.  

Concerning the aerodynamic characteristics, Table V.8 provides the results 

of lift coefficient (CL
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experimental aerodynamic data as the references. The calculated lift 

coefficient of the carrier stage give more satisfactory agreement to the 

experiment results than that of the orbital stage. The less prediction of the 

EOS lift coefficient is caused that the simulation of the bow shock wave of 

the EOS does not yet capture properly indicated by the error of the bow 

shock angle about 1.0 deg. With such errors given in Table V.7, the EOS 

lower surface experiences lower pressure flow and the EOS upper surface 

subjecting to higher pressure flow, hence the lift coefficient of EOS is less 

predicted. This may be also caused by the lack of grid number in the gap 

region where the complex aerodynamic interferences occurred. 

Angle of bow shock wave Experimental 
(deg.) 

Computational 
(deg.) 

Error  
(deg.) 

 

F
• upper bow shock angle, ϕu 
• lower bow shock angle, ϕl 

23.0  22.5 
 

(-) 0.5 
(

or test case b1   

17.0 18.0 +) 1.0
 

mparison of the bow shock wave angle between numerical 
nding e ental result for the test case b1. 

 

Orbital Stage (EOS) Carrier Stage (ELAC1C) 

Table V.7: Co
computation and the correspo xperim

Aero 

Char. 
Comp Exp Comp Exp 

C  0.0292 0.0366 L -0.0504 -0.0491 

CD 0.0293 0.0337  0.0133 0.0164 

CM -0.0073 -0.0072  0.0077 0.0089 

 

Table V erodyna acterist  EOS a 1C at 4,  
Rem = 50.0 x 106 ( nt), α=  = 0.0  = 0.225 (case b1). 

 

erical simulation of the two stage EOS - 

stage angles of attack. Figure V.26 depicts the flow pattern obtained for a 

free stream Mach number of Μ∞ = 4.04, an orbital stage angle of attack of 

.8 A mic char ics of the nd ELAC Μ∞ =4.0
experime  0.0 °, ∆α °, h/lEOS

The second validation of the num

ELAC1C vehicle system are also performed by considering  different orbital 
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∆α = 2.0 °, and the distance between the orbital stage and the carrier stage of 

h/lEOS = 0.225. In addition, the experimental data are obtained at a Reynolds 

number of Rem = 50.0 x 106, and the numerical results assume that flow is 

inviscid.  

 

,          
 Figure V.26: Density contour for the EOS - ELAC1C configuration at 

Μ∞ = 4.04,  Rem = 50.0 x 106 (experiment), α = 0.0°, ∆α = 2.0°
h/lEOS = 0.225 (case b3). 

(a) Schlieren picture  

(b) Relative density contours  
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Fro e 

experi

 wave Experimental  
(deg.) 

Computational 
(deg.) 

Error  
(deg.) 

m Fig. V.26 the comparison between the Schlieren picture of th

ment and the calculated density distribution of the symmetry plane 

shows a very good agreement for the bow shocks of the EOS and ELAC1C, 

the point interaction between the EOS bow shock and expansion fan as well 

as the point of shock reflection on the carrier stage cavity middle part. A 

good comparison between numerical and experimental result is also 

indicated by the maximum error of the bow shock angle about 0.5 deg as 

given in Table V.9.  

 

angle of bow shock

For test case b3 
• upper bow shock angle, ϕu 
• l 

   

lower bow shock angle, ϕ
22.0  
16.0 

21.5 
16.5 

(-) 0.5 
(+) 0.5 

 

 Table V.9: Comparison of the bow wave angle en num
nding e ental result he test c

F  

 shock  betwe erical 
computation and the correspo xperim s for t ase b3. 
 

urther, Table V.10 shows that the aerodynamic characteristics of the

omputation for the moderate orbital stage angle of attack are agreeably to c

the experimental results. Similar to the case b1, the lift coefficient of the 

carrier stage gives more satisfactory agreement to the experiment results 

than that of the orbital stage. 

Orbital Stage (EOS) Carrier Stage (ELAC1C) Aero 

Char. 
Comp Exp Comp Exp 

C  L 0.0626 0.0747 -0.0556 -0.0538 

CD 0.0322 0.0326 0.0131 0.0164 

C  M -0.0147 -0.0069 0.0086 0.0105 

 

Table V.10 Aerodynamic cha cs of th nd ELA
∞ =4.04, m ent), °, ∆α = 2.0

h/lEOS = 0.225 (case b3). 

racteristi
6 (experim

e EOS a
α = 0.0

C1C at 
°,          Μ  Re  = 50.0 x 10
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The last v  is 

performed a

6 α = 0.0°, ∆α = 0.0°,         

EOS . 

alidation of numerical simulation for the fully two-stage configuration

t a larger separation distance, namely h/lEOS = 0.325. Comparison of 

numerical and experimental results is exhibited with the Schlieren picture and 

density contour in Fig. 27.  

 

(a) Schlieren picture  

(b) Relative density contours  

Figure V.27: Density contour for the EOS - ELAC1C configuration at 
Μ∞ = 4.04,  Rem = 50.0 x 10 (experiment), 

h/l  = 0.325 (case b5)



 89

Mo in 

the nu  

 are given in 

able V.11. The computational results of both the bow shock wave angles 

 
 
 

 bow s
nding mental resu est cas

 

st flow features showing in the Schlieren picture can be captured well 

merical simulation, except in the rear part of the gap region. With the

larger gap area the bow shock wave of the ELAC1C interacts with a lower 

part of the EOS bow shock wave. The EOS bow shock wave itself interacts 

with the expansion fan and shockwave generated by the curvature of the 

ELAC1C cavity at the middle gap region. Then, it goes through flow field in 

the gap region and strikes on the rear part of the ELAC1C as depicted in the 

Schlieren picture, but it not clearly captured in the simulation. 

 

The upper and lower bow shock angles for the test case b5

T

agree to the experimental data with an error of no more than 0.5 deg.  Table 

V.12 gives a comparison between the computed and measured aerodynamic 

characteristics for the EOS and ELAC1C. For all aerodynamic 

characteristics the comparison between the computational and experimental 

results shows a good consistence. 

 
 
 
 

Table V.11: Comparison of the
computation and the correspo

hock wave angle between num
experi

erical 
e b5. lt for t

Orbital Stage (EOS) Carrier Stage (ELAC1C) Aero 

Char. Comp Exp Comp Exp 

CL 0  .0225 0.0332 -0.0439 -0.0394 

C  D 0  0.0164 0.0287 .0317 0.0130 

CM -0.0161 -0.0137 0.0057 0.0062 

 

le V.12 amic c tics of  ELAC
Μ∞ = 4.04, m = 50.0 x 10 = 0.0 °, °, h/lEOS

(deg.) (deg.) (deg.) angle of bow shock wave Experimental Computational Error  

For test case b5 
• upper bow shock angle, ϕ  
•  

   
(u

lower bow shock angle, ϕl
22.5 
15.0 

23.0 
15.5 

+) 0.5 
(+) 0.5 

Tab
  Re

 Aerodyn
6 (experim

haracteris
ent),  α 

EOS and
∆α= 0.0 

1C at 
 = 0.325. 
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5. Detai hicle 

tion system is performed by placing the orbital stage at different 

ration” parameters, including the separation distance 

etween the stages, orbital stage angle of attack as well as Mach number, on 

5.1 tion 

5.1.1 ffects of Orbital Stage Position  

 relative to the flat plate on flow field and 

ed by choosing three different positions 

 for two 

ifferent separation distances and two orbital angles of attack at a free 

led analysis of Quasy Steady Stage Separation of TSTO ve

system 

The simulation of the quasy-steady stage separation of the TSTO space 

transporta

vertical positions, h/lEOS as well as at different angles of attack ∆α relative 

to the carrier stage.  

 

The effects of “sepa

b

flow behaviour and aerodynamic characteristics of the TSTO space 

transportation system are investigated on the configurations of the EOS - flat 

plate and EOS - ELAC1C. 

  

Flat Plate/ EOS Configura

 E
The effects of the orbital position

aerodynamic performance are studi

with varying in relative distance (h/lEOS) and relative angle of attack (∆α) 

called as cases a2, a6 and a7 with their details shown in Table V.1.  

 

Figure V.28 shows three density contours of the symmetry plane

d

stream Mach number of 4.04. With increasing separation distance showing 

in Figs V.28 (a) and (b) the bow shock wave hits the flat plate at further 

downstream. This also causes the interaction between the reflected 

shockwave and shock wave of the inflection point of the leading edge of 

EOS wings occurs at a further rear in the gap region. At the larger separation 

distance, both the shock waves moves through the rear gap region, one then 

hits a more rear part of the flat plate and the other subjects to the wake zone 

of the orbital stage.  
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(b). Density contour at symmetry plane for case a6 

(a). Density contour at symmetry plane for case a2 

(c). Density contour at symmetry plane for case a7 

 

Figure V.28: Comparison of density contours for three different EOS 
positions: (a) Μ∞ = 4.04,  ∆α = 0.0°, h/lEOS = 0.150; (b) Μ∞ = 4.04,   
∆α=0.0°, h/lEOS = 0.225; (c) Μ∞ = 4.04,  ∆α = 3.0°, h/lEOS = 0.225. 
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Concerning the orbital angle of attack change as exhibited in Figs. V.28 (b) 

and (c), the reflected shock point on the flat plate shifts downstream. A 

decrease in the area of the rear gap region causes the stronger interaction 

between the reflected shockwave and shock wave from the EOS wings. The 

second inflection point on the flat plate gives the stronger hit by the shock 

wave from the wings at higher orbital angle of attack.  

 

On the flat plate, discontinuous pressures due to the shock waves occur in 

two locations. Figure V.29 shows the static pressure distribution on the flat 

plate for the three different cases, i.e. cases a2, a6 and a7.  

 

 
Figure V.29: Pressure coefficient distribution on the symmetry line of the 

flat plate for three different EOS positions: Μ∞ = 4.04,  ∆α = 0.0°, h/lEOS = 
0.150 (case a2);  Μ∞ = 4.04, ∆α=0.0°, h/lEOS = 0.225 (case a6);  

Μ∞ = 4.04,  ∆α = 3.0°, h/lEOS = 0.225 (case a7). 
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Increasing the separation distance shown by cases a2 and a6, the level of the 

pressure peaks indicates that the bow shock subjecting to the first inflection 

point on the flat plate with its shock strength decreases, but that at the 

second inflection point due to the shock from the wing slightly increases. 

While, increasing the orbital angle of attack shown by cases a6 and a7 does 

not give a significant change in the peak pressure at the first inflection point, 

but the strength of shock waves generated by the nose and wing of EOS at 

the second inflection point increases.  

 
Figure V.30 shows three contours of Mach number in 3-D view for two 

different separation distances and two angles of attack of the orbital EOS. 

The spreading of the shock waves occurs in the flat plate and symmetry 

plane as well as in the plane located behind the orbital. In the region where 

the shock wave occurred and in the base, a Mach number of the flow 

decreases. With increasing the separation distance as shown in Fig. 30 (a 

and b) the gap area increase, hence flow velocity in the gap region slightly 

increases. This gives a suction effect on the orbital stage and flat plate 

influencing on aerodynamic performance of the orbital stage. Contrarily, an 

increase of the orbital stage angle of attack as shown in Fig. 30, the gap area 

decreases along downstream and the flow in the rear region of the gap 

subjects to a contraction. For a supersonic flow, the reduction of the gap area 

results a decrease in flow velocity, hence pressures in the rear part of the gap 

area increases. 

 

Shown in Table V.13 the effects of the increased separation distance 

provides a decrease in the EOS lift coefficient and pitching moment 

coefficient and a slightly increase in the drag coefficient.  While, increasing 

the orbital stage angle of attack results a higher increase in the EOS lift 

coefficient and drag coefficient, also the pitching moment coefficient 

becomes more negative. From the result in Table V.13, the separation of the 

orbital stage will gain a positive lift coefficient when the initial position of 

the orbital stage has a positive angle of attack. 
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(b). Mach contour in 3D view for case a6  

                       (a). Mach contour in 3D view for case a2 

                           (c). Mach contour in 3D view for case a7 

 

Figure V.30: Comparison of Mach number contours for three different EOS 
positions: (a) Μ∞ = 4.04,  ∆α = 0.0°, h/lEOS = 0.150; (b) Μ∞ = 4.04,   
∆α = 0.0°, h/lEOS = 0.225; (c) Μ∞ = 4.04,  ∆α = 3.0°, h/lEOS = 0.225. 
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The experimental data as the references are also given in Table V.13. 

Comparing to the experimental results, the computed lift coefficient gives a 

very good agreement for the cases with the zero relative angle of attack with 

the error varying from 3 to 5 %, but for the case with a positive orbital angle 

of attack the error of the computed lift coefficient increases to become about 

10 %.  The computed drag coefficient results does not signicantly change 

due to the alterations of the separation distance and angle of attack of the 

orbital stage. The computed drag coefficients agree with the experimental 

results with the error  in the range of  5 to 7 %. 

 
CL CD CM 

Case 
 comp Exp  Comp Exp  comp Exp 

a2 -0.0118 -0.0115 0.0277 0.0294 -0.0106 -0.0041 

a6 -0.0127 -0.0120 0.0277 0.0299 -0.0084 -0.0059 

a7 0.0263 0.0293 0.0283 0.0304 -0.0071 -0.0062 

 

 

 

 

 

 

 

Table V.13: Comparison of aerodynamic characteristics for three different 
EOS positions between the computation and corresponding experimental 

results. 
 

5.1.2 Effects of Mach number 

The two-stage space transportation system was designed to separate with 

Mach number of 6.8. No available experiment data is produced at this Mach 

number. However, there are experimental data tested at Mach numbers of 

4.04 and 7.9 that have been used to validate this simulation method as 

already discussed at section 4 in this chapter. The numerical computation at 

a free stream Mach number of 6.8 is carried out and it will be compared to 

the numerical results at Mach numbers of 4.04 and 7.9. From this, the effects 

of the Mach number variation on the flow field and aerodynamic 

characteristics can be studied. These computations are stated as the 

computational cases a2, a8 and a9 that described detail in Table V.1. 
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(c). Density contour at symmetry plane for case a9 

(b). Density contour at symmetry plane for case a8 

(a). Density contour at symmetry plane for case a2 

 

Figure V.31: Comparison of density contours for three different EOS 
positions: (a) Μ∞ = 4.04,  ∆α = 0.0°, h/lEOS = 0.150; (b) Μ∞ = 6.8,   
∆α = 0.0 °, h/lEOS = 0.150; (c) Μ∞ = 7.9,  ∆α = 0.0°, h/lEOS = 0.150. 
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Figure V.31 shows the density distributions on the symmetry plane for the 

three different Mach numbers with the same orbital stage position relative to 

the flat plate. To be able make the comparison of the three different cases 

the density distribution are set in the same values of the upper and lower 

limits. Increasing Mach number the bow shock angle occurred on above and 

below of the EOS body surface decreases. The lower part of the bow shock 

hits the flat plate with the inflection point shifting downward with increasing 

Mach number. Also, the strength of the shock wave decrease with increasing 

Mach number. This is indicated by a decrease of pressure peak at symmetry 

plane of the flat plate with the Mach number increase as shown in Fig. 32. 

 

Pressure Distribution along Flat Plate
at symmetry line (y= 0)
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Figure V.32: Pressure coefficient distribution on the symmetry line of the flat 
plate for three different Mach numbers with the orbital position, ∆α = 0.0°,  

h/lEOS = 0.150:  Μ∞ = 4.04 (case a2), Μ∞ = 6.8 (case a8) and Μ∞ =7.9 (case a9).  
 

Furthermore, the density distributions in the z-plane for the three different 

Mach numbers are depicted in Fig. V.33. At the Mach number of 4.04, the 

bow shock wave interacts with the shock wave from the wing in the rear 

location. With increasing Mach number, interaction points of the bow shock 

wave and the shock wave generated by the EOS swept wing shifting forward 

at the leading edge of the EOS swept wing.  
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(a). Density contour at z-plane for case a2 

(b). Density contour at z-plane for case a8 

(c). Density contour at z-plane for case a9 

 

Figure V.33: Comparison of density contours at z-plane for three different 
Mach numbers: (a) Μ∞ = 4.04,  ∆α = 0.0°, h/lEOS = 0.150; (b) Μ∞ = 6.8,  

∆α = 0.0°, h/lEOS = 0.150; (c) Μ∞ = 7.9,  ∆α = 0.0°, h/lEOS = 0.150. 
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Table V.14 shows lift, drag and pitching moment coefficients of the EOS for 

the three different Mach numbers. With increasing Mach number, the lift 

coefficient becomes more negative. This indicates the separation at higher 

Mach number requires more pay attention because the interaction between 

the orbital stage and flat plate gives more dangerous. The drag coefficient 

decreases with increasing Mach number. The Mach line angle generated by 

the bow shock decreses with increasing Mach number, hence the strength of 

the shock wave and wave drag decreases. Concerning the pitching moment, 

the magnitude of the pitching moment coefficient decreases with increasing 

Mach number. 

 

Case CL CD CM 

    a2 (Mach = 4.04) -0.01180 0.0277 -0.0106 

    a8 (Mach = 6.80) -0.01540 0.0222 -0.0093 

    a9 (Mach = 7.90) -0.01541 0.0213 -0.0091 

 

 

 

 

 

 

 
Table V.14 Comparison of aerodynamic characteristics for three cases with 
difference in Mach number at the orbital position ∆α = 0.0°, h/lEOS = 0.150. 

 
 
5.2 ELAC1C/ EOS Configuration 

5.2.1 Effects of Angle of Attack of Carrier Stage 

The separation may occur at a certain angle of attack of the carrier stage 

instead of zero angle of attack. Related to this, the effect of angle of attack 

of the carrier stage on aerodynamic interferences and aerodynamic 

performance of the carrier and orbital stage are studied.  

 

Two 3-D Mach Contours for two different carrier stage angles of attack, 

namely α = 0.0 ° (case b1) and α = 3.0 ° (case b1) are depicted in Fig. 34.   
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(a). Mach contour for test case b1 

(b). Mach contour for test case b2 

 

Figure V.34: Comparison of Mach contours for two different ELAC1C 
angles of attack: (a) Μ∞ = 4.04, α = 0.0°, ∆α = 0.0°, h/lEOS = 0.225;  

(b) Μ∞ = 4.04,  α = 3.0°, ∆α = 0.0°, h/lEOS = 0.225. 
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An increase of the carrier stage angle of attack results the change of the 

ELAC1C bow shock line. Consequently, the supersonic flows behind the 

lower part of the ELAC1C bow shock decelerates producing an increase in 

pressure on the lower surface of the ELAC1C, while the flow on the front of 

the gap region undergo an acceleration or the surface pressure of the upper 

part of the ELAC1C decreases. The upper part of the ELAC1C bow shock 

moves up and interacts with the upper part of the EOS bow shock. As the 

consequence of the increase of flow velocity in front of the gap region, the 

supersonic velocity in the gap region increases, hence both the orbital and 

carrier stages feel a suction flow. Thus, this affects on aerodynamic 

characteristics of the EOS and ELAC1C vehicles. 

 

• Lift coefficient versus angle of attack ( CL .vs. α ) 

Figure V.35 shows the graphs of lift coefficient versus angle of attack for 

the computations of the ELAC1C and EOS vehicles and a set of 

corresponding experimental data. With increasing angle of attack of the 

carrier stage, an additional lift for the carrier stage is greater than that of the 

EOS. This is caused the pressure changes due to the alteration of the bow 

shock at higher angle of attack of the ELAC1C as discussed before. 

Comparing the computational results to the experimental data, both the 

computational results of the test cases b1 and b2 for the EOS show a good 

tendency with a reasonable error, while for the ELAC1C the calculations 

give a good agreement. 

 

• Drag coefficient versus angle of attack ( CD .vs. α ) 

Concerning the effect of the carrier stage angle of attack on drag coefficient, 

the configurations of the EOS and ELAC1C give a slight decrease in drag 

coefficient with the increased angle of attack as shown the graph of drag 

coefficient versus angle of attack in Fig. V.36. Comparing to the 

experimental results, the computed drag coefficient results give a reasonable 

agreement for the EOS vehicle and excellent agreement for the ELAC1C. 

From these results, it can be concluded that the drags of the vehicles are 
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mainly contributed by the shock waves rather than the drag due to the flow 

friction. 
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Figure V.35: Graphs of computed and measured lift coefficient versus angle of 

 

attack at Μ∞ = 4.04, Rem = 50.0 x 106 (experiment),  ∆α = 0.0°, h/lEOS = 0.225. 

Figure V.36: Graphs of computed and mea
attack at Μ∞ = 4.04, Rem= 50.0 x 106 (experiment), ∆α = 0.0°, h/lEOS= 0.225. 
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•

e 

ELAC1C and EOS vehicles are shown by the graphs of pitching moment 

°, 

 

• Drag Polar ( CL .vs. CD  ) 

ment and computation of the ELAC1C 

and EOS configurations are given in Fig. V.38. At the same lift coefficient, 

 

 Pitching moment  coefficient versus angle of attack ( CM .vs. α ) 

t of thThe effect of the carrier stage angle of attack on pitching momen

coefficient versus angle of attack in Fig. V.37. The increase of angle of 

attack of the carrier stage gives a higher pitching moment increment for the 

carrier stage and a smaller pitching moment increment for the orbital stage. 

In Fig. V.37, the calculation for zero angle of attack (case b1) indicates a 

good agreement with the experimental data, while a poorer agreement 

between the computed and measured pitching moment accounted for the 

higher angle attack (case b2).     
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Figure V.37: Graphs of computed and measured pitching moment coefficient 
versus angle of attack at Μ∞ = 4.04,  Rem= 50.0 x 106 (experiment), ∆α = 0.0

h/lEOS = 0.225. 

The drag polar graphs for the experi

the carrier stage has a lower drag coefficient than the orbital stage. 
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Figure V.38: Graphs of computed and measured drag polars at Μ∞
Rem= 50.0 x 106 (experiment), ∆α = 0.0°, h/lEOS = 0.225. 

 = 4.04,  

5.2.2 E
The simu paration pr

ormed by considering 

paration distance (h/lEOS) results the larger gap region, 

s consequence flow velocity increases giving a suction effect on both the 

 

ffects of Separation Distance between the Stages  

lations of the se ocess of the two-stage ELAC1C – EOS 

vehicle system for steady flow conditions are also perf

separation distance change. The effect of the vertical distance change 

between the stages is depicted by Mach number contours in 3-D view of Fig. 

V.39 (a) and (b) for two different relative distances, namely 0.225 and 

0.325, respectively.  

 

The increase of the se

a

stages, and the Mach contours in the wake presents changes. This causes 

that the lift coefficient for the EOS slightly decreases and, contrarily the 

ELAC1C lift coefficient increases as described in the graphs of lift 

coefficient versus angle of attack in Fig. 40.  
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(a). Mach contour for test case b1 

(b). Mach contour for test case b5 

 

Figure V.39: Comparison of Mach contours for two different ELAC1C 
vertical distances: (a) Μ∞ = 4.04, α = 0.0°, ∆α = 0.0°, h/lEOS = 0.225;  

(b) Μ∞ = 4.04,  α = 0.0°, ∆α=0.0°, h/lEOS = 0.325. 
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In addition, eduction of 

separation distance at Μ  = 4.04,  Re = 50.0 x 106 (experiment), α = 0.0°,  

 

Furthermore, the value of pitching mo tage becomes a 

agreement compared to the corresponding experimental data. 

increasing the separation distance also causes the r

the strength of aerodynamic interferences between the stages. This is 

indicated by a decrease in drag coefficient for the EOS as shown in the 

graphs of drag coefficient versus angle of attack of Fig. 41, but it does not 

give a significant influence for the ELAC1C. In Figs. 40 and 41, the 

comparison of the numerical and experimental results for the lift and drag 

coefficients of the ELAC1C and EOS show a good agreement. 
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Figure V.40: Graphs of computed and measured lift coefficient versus 

∞ m
and ∆α = 0.0°. 

ment of the orbital s

positive with the increase of the separation distance between the stages as 

shown by the graphs of pitching moment coefficient versus angle of attack 

in Fig. 42. This indicates that the longitudinal stability of the orbital stage 

becomes unstable condition with increasing the separation distance. The 

pitching moment of the ELAC1C just slightly change with increasing the 

separation distance. The computed pitching moment show a very good 
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Figure V.41: Graphs of computed and measured drag coefficient versus separation 
ce at Μ∞ = 4.04,  Rem= 50.0 x 106 (experiment), α = 0.0°, and ∆α = 0.0distan °. 
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Figure V.42: Graphs of computed and measured pitching moment coefficient 
versus separation distance at Μ∞ = 4.04, Rem=50 x 106, α = 0.0°, and ∆α 
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Figure V.43 shows aerodynamic efficiency (CL/CD) of the EOS and 

distan = 0.0°. 
 

5

uring t  separation manoeuvre, apart of the change of the distance 

rform the angle of attack change 

 

 

ELAC1C vehicles. With increasing the separation distance the aerodynamic 

efficiency of the EOS vehicle slightly decreases, but the ELAC1C 

aerodynamic efficiency increases.  
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Figure V.43: Graphs of computed and measured lift over drag versus separation 
ce at Μ∞ = 4.04,  Rem= 50.0 x 106 (experiment), α = 0.0°, and ∆α 

.2.3 Effects of Orbital Stage Angle of Attack 

he  D

between the stages, the orbital stage also pe

based on the moment reference point located at 0.65 of the fuselage length 

of the EOS from its nose, while the ELAC1C stage is in a stationery. The 

change of the orbital stage angle of attack results the change in the gap 

region, hence it affects flow field pattern and aerodynamic characteristics of 

the vehicles. Figure 44 shows Mach contours of the vehicles system in 3D 

view for three different orbital stage angles of attack, namely ∆α = 0.0, 2.0 

and 5.0 degrees. 
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(a) Mach contour for test case b1 

(b) Mach contour for test case b3 
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(c) Mach contour for test case b4 

 

Figure V.44: Comparison of Mach contours for three different EOS angles 
of attack: (a) Μ∞ = 4.04, α = 0.0°, ∆α = 0.0°, h/lEOS = 0.225;  

(b) Μ∞ = 4.04,  α = 0.0°, ∆α = 2.0°, h/lEOS = 0.225;                                    
(c) Μ∞ = 4.04,  α = 0.0°, ∆α = 5.0°, h/lEOS = 0.225 

 

As shown in Fig. V.44, increasing the orbital stage angle of attack, a point 

generated by the interaction of the ELAC1C bow shock wave and EOS bow 

shock wave moves from the upper part to lower part of the EOS shock wave 

line. The increased orbital stage angle of attack obtains the EOS nose 

moving up and its tail moving down, consequently the flow in the gaps is 

subjected to a contraction. When supersonic flow experiences a contraction 

the flow velocity will decrease as shown in Figs. V.44 (b) and (c). While, in 

the region above the EOS surface the area of suction flow increases with the 

increased orbital stage angle of attack. The Mach contour in the wake region 

presents a change. In addition, the lower part of the EOS shock wave strikes 

the upper surface of the ELAC1C at a further downstream with increasing 
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angle of attack. While, the variation of the orbital stage angle of attack does 

not give a significant change in the regions of the bottom of the ELAC1C 

and in the wake. 

 

The effects of the orbital stage angle of attack on aerodynamic 

characteristics of the EOS and ELAC1C vehicles are shown in Figs. V.45 – 

V.47. In Fig. V.45 the graphs of lift coefficient versus the orbital stage angle 

of attack shows that an increase of the orbital stage angle of attack provides 

an increment of the EOS lift coefficient and a decrement of the ELAC1C lift 

coefficient. This is caused a flow deceleration in the gap region due to the 

increased orbital angle of attack that results a pressure increase subjecting on 

both the stages. Concerning the comparison between the computational 

results and the experimental data, the calculated lift coefficient for the EOS 

vehicle presents an under estimation, while the calculated lift coefficient of 

the ELAC1C provides a good agreement with the experimental data. 
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Figure V.45: Graphs of computed and measured lift coefficient versus orbital 
stage angle of attack at Μ∞ = 4.04,  Rem= 50.0 x 106 (experiment), α = 0.0°, 

h/lEOS = 0.225. 
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The graphs of drag coefficient versus orbital angle of angle of attack of the 

experimental and computational results for the EOS and ELAC1C are 

depicted in Fig. V.46. There is contradiction results between the computed 

and measured EOS drag related to the effect of the orbital angle of attack. 

The computed drag coefficient increases, but the measured drag coefficient 

decreases with increasing orbital angle of attack. This may due to the 

computation result is very sensitive to the location of interaction between the 

upper part of the ELAC bow shock wave and EOS bow shock wave. When 

the upper part of the ELAC bow shock wave hits the EOS bow shock wave 

just in the front of the EOS nose (as shown in Fig. V.44.b for test case b3), 

the calculated EOS drag coefficient provides a good agreement with the 

experimental data, but when the upper part of the ELAC1C bow shock 

strikes on the upper EOS bow shock wave (as shown in Fig. V.44.a for the 

test case b1) the calculated EOS drag coefficient presents an under 

estimation, and contrarily, when it hits the lower EOS bow shock wave (as 

shown in Fig. V.44.c for the test case b4) the computed drag coefficient 

shows an over estimation. In addition, the calculated lift coefficient for 

ELAC1C shows a good agreement with the experimental data for various 

orbital stage angles of attack.   

 

Figure V.47. shows the graph of calculated and measured pitching moment 

coefficient versus orbital stage angle of attack for the EOS and ELAC1C. 

For all orbital stage angles of attack (∆α), the orbital stage (EOS) provides a 

negative pitching moment coefficient, while the carrier stage (ELAC1C) 

presents positive pitching moment. With the increase of orbital stage angle 

of attack the carrier stage obtains an additional pitching moment coefficient, 

while, the EOS pitching moment coefficient decreases. The prediction of the 

pitching moment coefficient of the ELAC1C gives a good agreement with 

the experimental data for all orbital stage angles of attack, but the pitching 

moment prediction of the EOS only produces a good agreement with the 

experimental data when the relative angle of attack is 0.0 deg.  
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Figure V.46: Graphs of computed and measured drag coefficient versus orbital 
stage angle of attack at Μ∞ = 4.04,  Rem= 50.0 x 106 (experiment), α = 0°, and 

ted and measured

h/lEOS = 0.225. 

Figure V.47: Graphs of compu  pitching moment coefficient 
versus orbital stage angle of attack at Μ∞ = 4.04,  Rem= 50.0 x 106 

(experiment), α = 0.0°, and h/lEOS = 0.225. 
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CHAPTER VI 

ANALYSIS OF UNSTEADY AERODYNAMICS OF STAGE 

SEPARATION OF TSTO SPACE VEHICLE SYSTEM 

 
In chapter V the simulations of stage separation of the TSTO space 

transportation system in the steady flow state have been discussed in detail 

including the effects of angle of attack, relative angle of attack and relative 

distance. Yet, these simulations have not included effects of a downwash 

due to the orbital stage motion during the separation manoeuvre. In order to 

simulate real flows during the separation manoeuvre, the downwash effects 

should be considered in the computation. The downwash is produced by the 

influence of the vehicle motion during the separation changing with time 

that influences on flow features and aerodynamic characteristics of the 

vehicle system. 

 

1. Computational Test 

The computations of the unsteady stage separation are performed on the 

fully two-stage-to-orbit configuration (EOS and ELAC1C). In the simulation 

of the unsteady stage separation, the orbital stage discards from a position 

closed to the orbital stage to a position that the interaction between the 

stages becoming vanish. Such a simulation requires the determination of the 

initial and end conditions as well as reduced frequency. For the initial 

condition the steady state solution is used as the input. For this study, the 

steady state solution is computed at a free stream Mach number of 4.0 with 

the orbital stage angle of attack, ∆α = 2.0 deg. and the separation distance 

between the stages,  h/lEOS = 0.125. In addition, the end position of the 

orbital stage is ∆α = 6.0 deg. and h/lEOS = 0.325. The separation motion uses 

a rotation center of 0.65 from the nose of the EOS stage. In order to describe 

a speed of the vertical motion of the orbital stage or a downwash, the 

reduced frequency value has to be specified. This is non dimensional 

number expressing a ratio of the angular velocity to the free-stream velocity. 

114 
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The simulations of the unsteady stage separation are carried out for three 

reduced frequencies with the detail computation tests given in Table VI.1. 

 

Case Mach 
number 

Relative 
distance 
(h/lEOS) 

Relative angle 
of EOS  

(∆α) in deg. 

Angle of 
attack (α) 

in deg. 

Reduced 
frequency

 (kred) 

b6     0.22 

b7 4.04 0.125 – 0.325 2.0 – 6.0 0.0 0.5 

b8     1.0 

      Table VI.1: Unsteady state test cases for the ELAC1C and EOS configuration. 
 

In general, the alteration of distance between the stages, orbital angle of 

attack as well as pitch rate and separation occurs continuously during 

separation manoeuvre. However, in the numerical simulations the staging 

path of the orbital stage is approached with the number of steps. This is 

intended to reduce the computational cost while considering the accuracy of 

the solutions. In addition, the separation trajectory which takes place from 

the lower to upper positions is approached using a one-minus-cosines 

function is aimed at generating harmonically motion simultaneously in 

separation distance and angle of attack of the orbital stage as given in Eqs. 

(II.11) and (II.12). 

 

The unsteady calculations start with the use of the input of the steady state 

solution. Then, the unsteady solution for each time step is obtained by 

solving the unsteady Euler equations using the dual time-stepping method.  

Every time step the orbital stage body changes its position inducing mesh 

deformation near the orbital stage surface. This requires a dynamic grid 

adaptation generated by locally grid smoothing using the Laplace algorithm. 

The unsteady transformation of the Euler equations takes into account the 

velocity of the mesh as well as the deformation of the cells. The result of the 

moving grids for the prescribed trajectory is shown in Fig. VI.1. 
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      a) ∆α = 2.0°, h/lEOS = 0.125                     b) ∆α = 2.4° , h/lEOS = 0.144 
 

 

   c) ∆α = 3.4° , h/lEOS = 0.194                    d) ∆α = 4.6° , h/lEOS = 0.256 

   

    e) ∆α = 5.6° , h/lEOS = 0.306                            f) ∆α = 6.0° , h/lEOS = 0.325 

Figure VI.1: Dynamic grids of the EOS and ELAC 1C vehicle for several  
           relative incidences ∆α and vertical distances h/lEOS. 
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The mesh deformation occurs only in limited regions around the EOS model 

that was generated with the O-grid topology. The mesh closed to the solid 

surface conforms to the motion of the EOS surface at all times. The 

remaining meshes outside the moving regions keep to be fixed. 

 
2.  Simulation Results of Unsteady Stage Separation of Fully Two-Stage-to-

Orbit Configuration 

The computation are carried out for one cycle consisting of 40 time steps, 

that is from the initial position and back to the initial position again. The 

convergence solution for each time step of the simulation is resulted if the 

residual of relative density does not exceed 5 x 10-4. The accurate unsteady 

flow results are then obtained by calculating from the lower position to the 

upper position of the second cycle.  

 

2.1 Aerodynamic Characteristics of Unsteady Stage Separation 

Figures VI.2 - VI.4 show the complete cycle of unsteady aerodynamic 

characteristics of the stage separation including lift, drag and pitching 

moment coefficients for three different reduced frequencies, namely        

kred = 0.22, 0.5 and 1.0, respectively. The results of the aerodynamic 

characteristics at the start points of the first cycle and the second cycle show 

discrepancy. The discrepancy increases with increasing the reduced 

frequency. This is caused the values of the aerodynamic coefficients at the 

start point of the first cycle are almost the same with the values of the 

aerodynamic coefficients at the steady state which does not take into account 

the downwash accurately. While, the solutions at the second cycle 

considering downwash gives more accurate that they are taken as the final 

results of the simulation.  

 

Concerning unsteady aerodynamic coefficients as shown in Figs. VI.2 - 

VI.4, the computation at each reduced frequency obtains the different 

profiles of unsteady aerodynamic coefficient. At the lower reduced 

frequency, for example, the downwash contributes only small additional lift 



 118

of the orbital stage. Increasing the amplitude of the stage separation provides 

an increase of the EOS lift coefficient, except at beginning of the separation 

the lift coefficient slightly decreases. While, at the higher reduced 

frequency, the effect of downwash gives much influence on the orbital stage 

lift coefficient. The orbital stage experiences a large amount decrease in lift 

coefficient with increasing the amplitude until the minimum lift coefficient 

is reached. Further an increase of the amplitude gives a higher increase of 

the lift coefficient of the EOS. The drag coefficient profiles at various 

reduced frequencies have the similar characteristics to the lift coefficient 

profiles, but the magnitude of drag increment is only small values. However, 

the profiles of pitching moment coefficient of the EOS show an opposite 

characteristic compared to the lift coefficient profiles. The pitching moment 

coefficient becomes less negative with increasing the amplitude of the stage 

separation until at the further steps of the amplitude at which the gradient of 

pitching moment coefficient changes. The detail aerodynamic characteristics 

of unsteady stage separation of EOS vehicle are provides in Appendix H.  

 

 
 

Fig. VI.2 Aerodynamic characteristics of unsteady stage separation for the 
reduced frequency, kred = 0.22 at M   = 4.04; α = 0.0°; ∆α =2.0° - 6.0°;        

h/lEOS = 0.125 - 0.325. 
∞
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α = 0.0°; ∆α =2.0° - 6.0°; 
h/lEOS = 0.125 - 0.325 

 

 - 6.0°; 

Fig. VI.3 Aerodynamic characteristics of unsteady stage separation for the 
reduced frequency, kred = 0.5 at M∞  = 4.04; 

Fig. VI.4 Aerodynamic characteristics of unsteady stage separation for the 
reduced frequency, kred = 1.0 at M∞  = 4.04; α = 0.0°; ∆α =2.0°

h/lEOS = 0.125 - 0.325. 
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2.2 Instantaneous Flow Features of Stage Separation 

I  

the er 

low for three different 

 

2.2.1

es of instantaneous density and Mach 

number contours at the reduced frequency of 0.22, respectively. At this 

 to the upper 

oves to the front of the EOS nose. The line of the bow shock wave of the 

 

 

nstantaneous flow features of the EOS and ELAC1C configuration during

 separation manoeuvre presented in density contours and Mach numb

contours are analyzed. The results of the unsteady f

reduced frequencies are given below.  

 Instantaneous Flow Features at reduced frequency of 0.22 

Figures VI.5 and VI.6 show the pictur

condition a required time for staging from the lower condition

condition is 0.262 second. The speed of downwash is lower that only gives 

slightly effects on the flow features of the EOS and ELAC1C. At the time of 

0.0 second where the separation distance of 0.125 and the orbital angle of 

attack of 2.0 deg. the density contours at the symmetry plane in Fig. VI.5 

shows that the flow features including bow shock waves of ELAC1C and 

EOS, expansion wave, reflected shock waves as well as the interaction 

points is almost not affected by the downwash.  

 

At a time of 0.052 sec which the relative distance is of 0.144 and the relative 

angle of attack of 2.4 deg. the bow shock wave of the ELAC1C slightly 

m

ELAC1C before hitting the EOS bow shock wave subjects to a few bending 

due to an induced flow of downwash. The upper bow shock angle seems 

increase when closer to the upper condition. At the same time the location of 

interaction point of the bow shock wave of the EOS and the shock wave 

generated by the curvature of the ELAC1C cavity travels to downstream in 

the middle gap. The reflected shock wave on the rear of the lower surface of 

the EOS also shifts a further rear. In addition, the effect of the induced flow 

does not give a significant impact to the flow under the ELAC1C vehicle. 
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time = 0.000 sec. time = 0.052 sec. 

time = 0.105 sec. time = 0.157 sec. 

time = 0.209 sec. time = 0.262 sec. 

Figure VI.5: Instantaneous density contours at six different time levels during separation  
at M∞  = 4.04; α = 0.0°; ∆α =2.0° - 6.0° deg.; h/lEOS = 0.125-0.325; kred = 0.22. 
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Subsequently at the time of 0.105 sec. which a relative distance is of 0.194 

and a relative angle of attack of 3.4 deg. the bow shock wave of the 

ELAC1C slightly moves to the lower surface of the EOS. The line of the 

bow shock wave of the ELAC1C becomes a more bent before hitting the 

EOS bow shock wave due to the down wash effect. Also, the upper bow 

shock angle increases and the location of interaction point of the bow shock 

waves go a further rear. However, no reflected shock wave occurs on the 

rear of the lower surface of the EOS. Again, no change of flow occurs under 

the ELAC vehicle due to the induced flow. 

 

Further the increase of separation times, namely 0.157 sec., 0.209 sec. and 

0.262 sec. shown in Fig. VI.5 with which the corresponding relative 

distances of 0.256, 0.306 and 0.325., and the corresponding relative angles 

of attack of 4.6 deg. 5.6 deg. and 6.0 deg. the bow shock wave of the 

ELAC1C hits on the further rear of the lower bow shock wave of the EOS 

corresponding to the orbital stage motion. The upper bow shock angles 

gradually further increase and the locations of the interaction points of the 

bow shock wave of the EOS and the shock wave shift further downstream. 

In addition, at the trailing edge of the EOS lower surface expansion flow 

occurs. 

 

The 3D flow views of the unsteady flow in Mach number contours are 

depicted in Fig. VI.6.  At the separation time of 0.0 sec. the flow with lower 

Mach number or higher static pressure subjects to a front part of the upper 

surface of the EOS body. While, the rear part of the upper surface 

experiences the higher Mach number or lower static pressure flow. The 

upper surface condition only experiences a slightly change with increasing 

the separation time.  On the other hand, a large change in Mach number 

distribution occurs on the lower surface of the EOS body and in the gap 

region between the stages.  
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time = 0.157 sec. time = 0.105 sec. 

time = 0.052 sec. time = 0.000 sec. 

time = 0.209 sec. time = 0.262 sec. 

Figure VI.6: Instantaneous Mach contours at six different time levels during separation 
at M∞  = 4.04; α = 0.0°; ∆α =2.0° - 6.0°; h/lEOS = 0.125-0.325; kred = 0.22. 
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At the separation time of 0.052 sec. the front and rear parts of the lower 

surface of the EOS body undergo the lower Mach number or higher static 

pressure flow, but on the middle part accommodates the higher Mach 

number flow due to the effects of expansion wave from the cavity of the 

ELAC1C as shown in Fig. VI.6. Increasing the separation time to be 0.105 

sec. the bow shock of the ELAC1C slightly moves to down close to the EOS 

nose. Consequently, the expansion waves from the cavity still give more 

impact on the rear part of the lower surface of the EOS. Further increase of 

the separation time until reach the maximum separation process provides no 

longer impact on the lower surface of the EOS, but on the wake region. The 

lower surface is then wetted by the lower Mach number flow.  

 

2.2.2 Instantaneous Flow Contours at reduced frequency of 0.50 

The instantaneous density and Mach number contours for the reduced 

frequency of 0.50 are given in figure VI.7 and VI.8. The required time to 

reach the upper condition from the lower condition is 0.115 second standing 

for that the angular motion of the EOS for this reduced frequency is faster 

than that of the reduced frequency of 0.22. Consequently, the down wash 

corresponding to the EOS motion gives a higher impact on the flow around 

the EOS vehicle. Further, compared to the lower reduced frequency, the 

locations of shock waves, expansion waves, reflected shock waves and 

inflection points for the reduced frequency of 0.5 are nearly same as shown 

in Fig. VI.7. However, the change of flow density in the gap region 

decreases faster for the reduced frequency of 0.5 compared to that for the 

reduced frequency of 0.22. In addition, the bow shock wave of the ELAC1C 

for the reduced frequency of 0.5 is a bit more bent before hitting the EOS 

bow shock wave compared to that for the lower reduced frequency.  

 

The downwash generated by the EOS motion at the reduced frequency of 

0.50 shown in Fig. VI.8 affects flow in the gap region. At the separation 

time of 0.0 sec. the downwash gives an increase in Mach number compared 

to the case of reduced frequency of 0.22 in Fig. VI.6.  
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time = 0.069 sec. time = 0.046 sec. 

time = 0.023 sec. time = 0.000 sec. 

time = 0.115 sec. time = 0.092 sec. 

Figure VI.7: Instantaneous density contours at six different time levels during separation 
at M∞ = 4.04; α = 0.0°; ∆α =2.0° - 6.0° deg.; h/lEOS = 0.125-0.325; kred = 0.50. 
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time = 0.069 sec. time = 0.046 sec. 

time = 0.023 sec. time = 0.000 sec. 

time = 0.115 sec. time = 0.092 sec. 

                            

Figure VI.8: Instantaneous Mach contours at six different time levels during separation 
at M∞ = 4.04; α = 0.0°; ∆α =2.0° - 6.0° deg.; h/lEOS = 0.125-0.325; kred = 0.50. 
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At the separation times of 0.023 to 0.046, the vertical motion of the EOS for 

the reduced frequency of 0.5 produce higher downwash affecting the higher 

increase in Mach number compared to the lower reduced frequency. This 

gives a higher suction on both the stages causing a decrease in lift 

coefficient of the EOS and an increase in lift coefficient of the ELAC1C. 

However, at the higher amplitudes the Mach number in the gap region 

decreases, but it still higher compared to that of the reduced frequency of 

0.22. As a results, the EOS lift coefficient for a reduced frequency of 0.5 at 

the end position of the separation shown in Fig. VI.3 is slightly higher than 

that for the lower reduced frequency shown in Fig VI. 2. 

 
2.2.3 Instantaneous Flow Contours at reduced frequency of 1.0 

The instantaneous density and Mach number contours for a reduced 

frequency of 1.00 are shown in Figs. VI.9 and VI.10, respectively. This is 

the fastest separation manoeuvre simulation with the required time is 0.057 

second. Using the same upper and lower limits of the density contour as the 

previous simulations, the separation at a reduced frequency of 1.00 provides 

the highest decrease in density compared to the other studied reduced 

frequencies. The change of the flow density occurs in many regions 

including the region above the EOS vehicle, in the gap region and the wake 

region. Again, increasing the reduced frequency does not significantly alter 

the locations of shock waves, expansion waves, reflected shock waves and 

inflection points.  The curvature of the bow shock wave of the ELAC1C 

before hitting the EOS bow shock wave highly bent due to an induced flow 

especially during the middle separation process as shown in Fig. VI.9. 

 
The 3D Mach number contours at a reduced frequency of 1.0 as shown in 

Fig. VI.10 show increasingly effect of the downwash on the flow field. Such 

a downwash at the lower amplitudes obtains lower Mach number flow, 

hence the higher lift coefficient of the EOS is resulted. However, an increase 

in the amplitude of the separation provides the higher Mach number flow or 

higher suction flow in the gap region, so that the EOS vehicle subjects to a 

large amount decrease in the lift coefficient. 
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time = 0.039 sec. time = 0.026 sec. 

time = 0.013 sec. time = 0.000 sec. 

time = 0.052 sec. time = 0.064 sec. 

F   igure VI.9: Instantaneous density contours at six different time levels during separation at
M∞ = 4.04; α = 0.0°; ∆α =2.0° - 6.0°; h/lEOS = 0.125-0.325; kred =1.00. 

 
 



 129

time = 0.039 sec. time = 0.026 sec. 

time = 0.013 sec. time = 0.000 sec. 

time = 0.064 sec. time = 0.052 sec. 

Figure VI.10: Instantaneous Mach contours at six different time levels during separation at  
M∞ = 4.04; α = 0.0°; ∆α =2.0° - 6.0°.; h/lEOS = 0.125-0.325; kred = 1.00. 
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The further increase amplitude to the end position, the Mach number 

generated by the expansion wave from the cavity of the ELAC1C vehicle 

slightly decreases.  

 

2.3 Comparison between the Steady and Unsteady State Solution 

Figures VI.11 show the comparison of aerodynamic characteristics for the 

various reduced frequencies at a free stream Mach number, Μ∞ = 4.04 with 

angle of attack of the ELAC1C, α = 0.0 deg, the orbital stage angle of 

attack, ∆α = 0.0 deg. and the separation distance, h/lEOS = 0.225. The 

reduced frequency equal to zero describes that the flow is alike the steady 

condition because the downwash is equal to zero. 

 

Figure VI.11: Comparison of aerodynamic characteristics of 
steady and unsteady flows for various reduced frequencies at  

Μ∞ = 4.04,  α= 0.0°,  ∆α = 4 .0°, and h/lEOS = 0.225. 
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Increasing the reduced frequency gives the decreased lift coefficient of the 

EOS at the middle position of the separation. Compared to the steady state 

solution, the lift coefficient at the highest reduced frequency, namely kred = 

1.00 decreases from 0.1 to 0.039. At the higher reduced frequency, the 

decrease of the EOS lift during the separation manoeuvre should be taken 

into account. The down wash effect does not significantly affect on the drag 

coefficient. The drag coefficient of EOS at a reduced frequency of 1.0 is 

almost same as the drag coefficient of the steady state solution. Increasing 

the reduced frequency of the EOS yields the significant decrease in the 

magnitude of the pitching moment. 

 

Figures VI.12 show the contours of density for the steady and unsteady 

cases at various reduced frequencies, namely kred = 0.0, 0.22, 0.5, and 1.0. 

 

 
Figure VI.12: Comparison of density ntours of steady and unsteady flows 

at Μ∞ = 4.04,  α = 0.0°, ∆α = 4.0°, h/lEOS = 0.225. 

(d) Unsteady flow, kred = 1.00  (c) Unsteady flow, kred = 0.50  

(b) Unsteady flow, kred = 0.22  (a) Steady flow 

co
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Compared to the steady solution, the effect of downwash is clearly indicated 

ing line of the bow shock wave. It also affects flowby the bend  features in 

 
uced 

frequencies, namely k  = 0.0, 0.22, 0.5, and 1.0 are shown in Fig. VI.13 

region. This gives a suction effect on both the vehicle stages. However, the 

 

Fi umb y 
flows at Μ∞ = 4.04,  α = 0.0 , ∆α = 4.0°, h/lEOS = 0.225. 

the region above of EOS and in the gap region as shown in Fig. VI.12.  

Mach contours for the steady and unsteady cases at various red

red

The effect of the downwash provides an increase of flow speed in the gap 

effect of induced flow does not give a significant impact to the flow under 

the ELAC vehicle. 

(a) Steady flow (b) Unsteady flow, kred = 0.22  

(c) Unsteady flow, kred = 0.50  (d) Unsteady flow, kred = 1.00  

 
gure VI.13: Comparison of Mach n er contours of steady and unstead

°
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• Lift coefficient versus amplitude of s 

 

ompared to the steady state solution, at the lower position, the effect of 

 

                       reduced frequencies (M∞ = 4.04; α = 0.0°) 

steady and unsteady state solution

Figure VI.14 shows the graphs of lift coefficient versus amplitude for the

steady and unsteady flows of the EOS vehicle. The amplitude includes the 

orbital stage angle of attack and separation distance between the stages 

which change simultaneously. In this figure, the steady flow solutions are 

computed for three different conditions including the lower, middle, and 

upper positions.  

 

C

downwash provides the additional lift of the EOS. This is caused the 

downwash inducing a deceleration of the flow in the gap region as shown in 

Fig VI.10. But, at the moderate and higher amplitudes the downwash cause a 

decrease in lift coefficient of the EOS. This may due to at the larger gap the 

downwash gives reciprocal effects on expansion waves generated by the 

cavity of the ELAC1C vehicle. In addition, the lift coefficient at the lower 

reduced frequencies is closer to the steady state solution. 

Figure VI.14: Graphs of lift coefficient versus amplitude for various  
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• Drag c e solutions 

 

 

Figure VI.15: Graphs of drag coeff
          reduced frequencies (M∞ = 4.04, α = 0.0°.). 

oefficient versus amplitude of steady and unsteady stat

The graphs of drag coefficient versus amplitudes for the steady and unsteady 

flows of the EOS vehicle at the various reduced frequencies are depicted in 

Fig. VI.15. The vehicle drag is mainly contributed by shock waves occurred 

in the flow field. The unsteady drag coefficient at the same reduced 

frequency has the similar trend to the unsteady lift coefficient. At the lower 

position, the downwash effect contributes an additional drag coefficient. The 

extra drag coefficient becomes higher with increasing the reduced 

frequency. However, at the moderate and higher amplitudes, the downwash 

cause a decrease in the drag coefficient. This is due to the contribution of the 

expansion wave generated by the cavity of the ELAC1C vehicle increases 

and the reflected shock wave decreases. Further increase of amplitude the 

effect of the bow shock of the EOS increases, hence the drag increase again 

as shown in Fig. VI.15. In addition, the drag coefficient for the lower 

reduced frequencies is closer to the steady state solution. 

 
icient versus amplitude for various  
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• Pit

The comparis fficients are 

oment 

 

for various reduced frequencies (M∞ = 4.04, α = 0.0°). 

 
At the lower position, the downwash causes the EOS pitching moment 

coefficient becomes more negative. At higher reduced frequency the 

 

 

ching moment coefficient versus amplitude 

on of the steady and unsteady pitching moment coe

shown in the graph of Fig.VI.16. The values of the pitching m

coefficients for all amplitudes of the separation are negative. The pitching 

moment coefficient becomes less negative with the increased amplitude and 

then before reaching the middle position the pitching moment coefficient 

becomes more negative with a further increase in the amplitude.   

 
Figure VI.16: Graphs of pitching moment coefficient versus amplitude  

 

pitching moment of EOS increases in a negative value. While, the pitching 

moment coefficient becomes less negative due to the downwash contribution 

at the moderate and higher amplitudes.  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 
The main age separation 

manoeuvre on aerodynamics of a TSTO space transportation system using 

 

 the 

grid quality and obtaining the flow solution are conducted. Also for the 

 goal of this research is to investigate effects of the st

computational method. For this purpose, two different space configurations, 

namely a simplified (flat plate) and full carrier stage (ELAC 1C) each linked 

to the orbital stage (EOS) have been employed. To acquire flow solutions in 

the flow field around the configurations, the three-dimensional unsteady 

Euler equations are solved using the finite volume method for spatial 

discretization and the explicit scheme of the first order Runge-Kutta scheme 

for the temporal discretization. The flux vectors between volumes are 

computed using the modified AUSM method combined with the MUSLE 

approach to guarantee higher order accuracy in the spatial domain. The 

computation accuracy and efficiency are examined by studying the effects of 

numerical factors including grid density and grid smoothing on flow 

solution in steady state using the simpler configuration, namely the EOS - 

flat plate. For the validation of the simulation method, the computational 

results are compared to the corresponding experimental data at various 

conditions for both the configuration. As a core research, the calculations of 

the unsteady stage separation are conducted to simulate the real flow 

phenomena during the separation manoeuvre for the full configuration.  

The calculation steps, namely generating topology and mesh, improving

unsteady simulation, moving grids corresponding to the motion of the orbital 

stage are generated using the dynamic mesh generator. For the initial mesh 

generation, multi block structured meshes are obtained using the algebraic 

transfinite interpolation method in the ICEMCFD. The improvement of the 

grid quality is then performed to achieve orthogonal grids using the solution 

of Poisson and Laplace equations.  
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In total, for all computed configuration models, 14 steady state cases are 

he effects of the grid smoothing improves the grid quality to be orthogonal 

he simulations for both the configurations can be accomplished with good 

ubstantiated by the unsteady aerodynamic characteristics, unsteadiness 

analyzed due to the variations of Mach number, angle of attack, the orbital 

stage angle of attack and separation distance between stages. In addition, 3 

unsteady cases are evaluated due to the variations of reduced frequency 

changing simultaneously the separation distance between the carrier and 

orbital stage and the orbital stage angle of attack.  

 

T

that yields a more fast convergent solution (higher computation efficiency) 

and provides a more sharper shock wave line (more accurate solution). In 

addition, the further improvement of the solution accuracy can be obtained 

by increasing the grid density, but it must be taken into account for the 

memory space and computational time.   

 

T

to excellent agreement to the experimental values. The quality of smoothed 

meshes is good and fit to the Euler solver (FLMEu solver), and this solver 

has been proved to be very stable in simulating the separation problem. The 

comparison of the computational results to the experimental results indicates 

that the flow solver can provide simulations of the hypersonic space 

transportation system aerodynamics on reasonable to high accuracy level.    

 

S

must be carefully considered in the beginning of the separation manoeuvre 

when the orbital stage lift decreases. In addition, the drag coefficient of the 

orbital stage slightly decreases with increasing the separation distance from 

the carrier stage. The pitching moment coefficient decreases followed by an 

increase of nose down magnitude with increasing distance and the orbital 

stage angle of attack which has to be carefully addressed in the flight control 

system.  
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For future research, further investigation of the separation process of the 

space transportation system considers a supporting mechanism to elevate the 

orbital stage from a position closer to the carrier stage into a position of a 

full stand of the mechanism. It is intended to initially shift the orbital stage 

to a position that the separation process progresses safely and efficiently. In 

addition, when the distance between the orbital and carrier stages is closed 

the viscous effects in the gap region can not be ignored again. Therefore, the 

simulation of unsteady viscous of the TSTO space transportation system 

also becomes a more interest topic. For this, the solution of Navier-Stokes 

equations, such as Reynolds Averaged Navier-Stokes (RANS) with 

employing an appropriate turbulent model for the hypersonic flow is 

necessary to investigate.  
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APPENDIX A 

CONSERVATIVE DIFFERENTIAL FORM OF EULER EQUATION 

 
 

The Euler equations in a moving finite control volume Ω with S as the 

boundary can be written as 

 

  [ ] 0=⋅+⋅+⋅+Ω
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zyx hgfq   (A.1) 

 

In order to obtain differential form of the Euler equation, all variables in the 

first and second terms of Eq. (A.1) are first taken inside the integral. For the 

first term of Eq. (A.1), by assuming the volume integration is fixed in space 

the time derivative can be moved inside the integral, that is 
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Further, the surface integral in the second term of Eq. (A.1) can be converted 

into a volume integral by applying Gauss’s theorem as follows 
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Substituting Eqs. (A.2) and (A.3) into Eq. (A.1), the conservative integral 

form of the Euler equations in Cartesian coordinate x, y, z can be written as : 
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Since the finite control volume is arbitrarily drawn in space, the only way 

for the integral in Eq. (A.5) to equal zero is for the integrand to be zero at 

every point within the control volume. Hence, the Euler equations can be 

written the conservative differential form in Cartesian coordinate system as 

follows:  
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Furthermore, to obtain the conservative differential of Euler equations in 

Curvilinear coordinate used in the flow solver of this study, a coordinate 

transformation from the Cartesian coordinate system x, y and z to  the 

curvilinear coordinate system  ξ, η, and ζ , called as Jacobian transformation 

is required. The time and space derivatives based on the Cartesian 

coordinate system can be defined as derivatives in the curvilinear system as 

follows: 
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Substituting Eqs. (A.7) to (A.10) into Eq. (A.6), the Euler equation in 

curvilinear coordinate system can be written as:  
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All space and time derivative terms in Eq. (A.11) are now in curvilinear 

coordinate system, but there are metrics still stated in the Cartesian 

coordinate system.  The following metric transformations are required: 
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          (A.12) 

 

and J  is the determinant of the Jacobian of the coordinate transformation: 
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By first multiplying the conservative of Euler equations in Eq. (A.11) with 

Jacobian determinant, J the compact conservative differential form of the 

Euler equations can be obtained: 
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         ( )[ ] 0=+++
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∂ hgfq zyxtJ ζζζζ
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 149

The Eq. (A.14) also can be written as    
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+
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∂
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HGFQ      (A.15) 

 
with the vector of conservative variables Q = J (ρ, ρu, ρv, ρw, e )T . The 

inviscid fluxes GF, and H  in the ξ-, η- and ζ- direction, respectively:  
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The velocities in curvilinear coordinate (the contravariant velocities) are 

states 
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APPENDIX B 

EULER EQUATIONS FORMULATED FOR MOVING GRIDS 
 

In the cases of the unsteady stage separation of the two-stage space vehicle, 

it is necessary to solve the governing equations on a moving grid. The most 

popular methodologies used to tackle such a problem, are the Arbritary 

Lagrangian Eulerian (ALE) formulation [81][82] and the dynamic grids 

[83][84][85]. Both approaches are closely related and lead to the same 

modified form of the governing equations which accounts for the relative 

motion of the grid with respect to the fluid. In the present study, the dynamic 

grid approach is utilized.  

 

Written in time-dependent integral form for a moving and /or deforming 

control volume with a surface element dS, the Euler Eq. (II.1) read  

 

( ) ( ) ( )[ ] 0=⋅+⋅+⋅+Ω
∂
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zyx
MMM hgfq  (B.1) 

 

The vector of the conservative variables q has the following components 
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where ρ, u, v, w, e, and p denote the density, the Cartesian velocity 

components and the internal energy, respectively. The velocity of the 

deformation of cells is considered in the unsteady Euler Equation as follows 
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with x& , y&  and z&  being the contravariant velocity components of the face of 

the control volume 

  

  

t
z
t
y
t
x

∂
∂

=

∂
∂

=

∂
∂

=

z

y

x

&

&

&

       (B.4) 

 
The contravariant velocities in curvilinear coordinate for the Euler equations 

in Eq. (II.10) can be written as 
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It was first pointed out by Thomas and Lombard [86] that besides the 

conservation of mass, momentum and energy, the so called Geometric 

Conservation Law (GCL) must be satisfied in order to avoid errors induced 

by deformation of control volumes [87][88][89]. The integral form of the 

GCL are written as 

 

  [ ] 0=⋅+⋅+⋅−
∂
∂

∫∫∫ dSnnnd
t S

zyx zyx &&&
Ω

Ω    (B.6) 

 
The computation of the control volumes of the grid velocities must be 

performed in such a way that the resulting numerical scheme preserves the 

state of a uniform flow, independently of the deformation of the grid [87]. 

The GCL is automatically satisfied for such moving grids, where the shapes 

of the control volumes do not changes in time.  
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APPENDIX C 

Transfinite Interpolation Algorithms for Grid Generation 
 

Transfinite interpolation (TFI) is an interpolation procedure applied for 

algebraic grid generation to provide complete conformity of grids to 

boundaries in physical domains. It transforms from a rectangular 

computational domain to an arbitrarily shape physical domain which a 

physical grid is constrained to lie on or within specified boundaries. In 

addition, the grid spacing can be controlled directly. The transfinite 

interpolation was first introduced by William Gordon in 1973 [90] and was 

used by Lars Eriksson for application to grid generation for computational 

fluid dynamics (CFD) [53]. 

 

The essence of TFI is the specification of univariate interpolation in each of 

the computational coordinate directions, the forming of the tensor products 

of the interpolations and finally the summation of Boolean [91]. The 

univariate interpolations are a linear combination of known information in 

the physical domain including position and derivatives of the computational 

coordinate and coefficients. In addition, The blending functions of the 

coefficients has independent variable specified by the computaional 

coordinate. The general expressions of the univariate interpolations for three 

dimensions are 
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Conditions on the blending functions are 
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 Li ,,2,1 L=   Mj ,,2,1 L=   Nk ,,2,1 L=  
 Pn ,,2,1 L=   Qm ,,2,1 L=   Rl ,,2,1 L=  

 

The forming of the tensor product of the univariate interpolations are 

performed as follows: 
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The boolean sum of the three insterpolations is  

 

 ( ) UVWVW-UW-UV-WVUWVU,,X +++=⊕⊕=ζηξ   

(C.4) 

 
The simple TFI can be derived from the Eqs. (C.1) – (C.4) using linear 

interpolation functions for all coordinate directions and specify the 

positional data of the six bounding surfaces, namely taking 0=== RQP  

and 2=== NML  in Eq. (C.1). The linear blending functions that satisfy 

the δ function condtions in Eq. (C.2) are 

 
 ( ) ξξα −= 10

1  

 ( ) ξξα =0
2  

 ( ) ηηβ −= 10
1         (C.5) 

 ( ) ηηβ =0
2  
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 ( ) ζζγ −= 10
1  

 ( ) ζζγ =0
2  

 

The univariate interpolations and tensor products are 

 
 U(ξI, ηJ, ζ K ) = (1-ξI ) X(0, ηJ, ζ K ) + ξI  X(1, ηJ, ζ K ) 

V(ξI, ηJ, ζ K ) = (1-ηJ ) X(ξI , 0, ζ K ) + ηJ X(ξI ,1, ζ K ) 

 W(ξI, ηJ, ζ K ) = (1-ζ K ) X(ξI , ηJ, 0) + ζ K X(ξI , ηJ, 1 ) 

 UW(ξI, ηJ, ζ K ) = (1-ξI )(1-ζ K ) X(0, ηJ, 0) + (1-ξI ζ K ) X(0, ηJ, 1 ) 

        + ξI (1-ζ K ) X(1, ηJ, 0) + ξI ζ K  X(1, ηJ, 1) 

UV(ξI, ηJ, ζ K ) = (1-ξI )(1-ηJ ) X(0, 0, ζ K ) + (1-ξI )ηJ X(0 ,1, ζ K ) 

       + ξI (1-ηJ ) X(1, 0, ζ K ) + ξI ηJ  X(1, 1, ζ K )  

 VW(ξI, ηJ, ζ K ) = (1-ηJ )(1-ζ K ) X(ξI , 0, 0) + (1-ηJ )ζ K X(ξI , 1, 0 ) 

        + ηJ (1-ζ K ) X(ξI , 0, 1) + ηJ ζ K  X(ξI , 1, 1) 

 UVW(ξI, ηJ, ζ K ) = (1-ξI )(1-ηJ )(1-ζ K ) X(0,0, 0) +  

                                         + (1-ξI )(1-ηJ )ζ K X(0,0,1 ) + (1-ξI )ηJ (1-ζ K ) X(0,1,0) 

        + ξI (1-ηJ )(1-ζ K ) X(1,0, 0) + (1-ξI )ηJ ζ K X(0,1,1) 

                                         + ξI (1-ηJ )ζ K X(1,0,1 ) + ξI ηJ (1-ζ K ) X(1,1, 0) 

                                         + ξI ηJ ζ K  X(1,1, 1) 

        (C.6) 

 

Using, the Boolean sum in Eq. (C.4), the expression for a transfinite 

interpolation grid ( I = 1, ....., Î ,   J= 1, ....., Ĵ ,   K = 1, ....., K̂  ) with linear 

interpolation functions can be written as: 

 

X(ξI, ηJ, ζ K ) =  U(ξI, ηJ, ζ K ) + V(ξI, ηJ, ζ K ) + W(ξI, ηJ, ζ K )  

                        - UW(ξI, ηJ, ζ K ) - UV(ξI, ηJ, ζ K )      

- VW(ξI, ηJ, ζ K ) + UVW(ξI, ηJ, ζ K )  (C.7) 



 155

APPENDIX D 

Poisson and Laplace Algorithms for Grid Generation 
 

The grid generation system of elliptic second-order partial differential 

equations are so-called Poisson systems with control functions to be 

specified producing the best possible grids in the sense of smoothness and 

grid point distribution [30]. The complete three dimensional representation 

of the Poisson’s equation can be written [7]: 
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++++++
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               (D.1) 

 

By assuming orthogonal at the boundary, the contravariant metric 

coefficients ijg  with i ≠ j can be set be equal to zero, thus the term with the 

mixed partial derivatives in Eq. (D.1) can be cancelled away:  

 

( ) ( ) ( ) 0332211 =+++++ ζζζηηηξξξ rRrQrrPr ggrg   (D.2) 

 

The contravariant metric coefficients in Eq. (D.1) can be expressed in the 

covariant metric ones, namely: 
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where 
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The derivatives with respect to the curvilinear coordinated are represented 

by second order finite difference as follows 
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By rearranging the differential equation of Poisson in Eq. (D.2) and applying 

the derivatives in Eq. (D.4), the iterative solution for obtaining physical grid 

points can be expressed as: 
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 (D.5) 

 

The source terms P, Q, R are responsible for the motion of the grid lines and 

provide the control of grid point spacing and distribution. The source terms 

are at first calculated on the surfaces of every block by using orthogonal 

regularities obtained by inverting the Laplace’s equation system. The 

Laplace’s equation can be written as [7][30] :  
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and the inverted equation can be expressed as: 
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with  
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and the determinant D, by analogy to the Jaconian Matrix, can be 

determined as follows: 
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     (D.9) 

 

On the surface of solid and far field mirror points the first off-body points 

are used to determine differentials which are used in calculating the source 

terms on the surface. Then, these surface source terms are smoothly 

distributed into inner points of every block by a Laplace algorithm. Finally, 

the point distribution in the whole computing region will be calculated using 

the algorithm of the Poisson in Eq. (D.5) iteratively until reaching a given 

convergence value.   
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APPENDIX E 

UPWIND DISCRETIZATION SCHEME  

E.1 Flux Vector Splitting  
 

Flux Vector Splitting (FVS) is a method to split the inviscid flux into 

positive into positive and negative contributions. The first Flux Vector 

Splitting method was proposed by Steger [55]. In this method, the inviscid 

flux is split by separating the velocity a into a positive and a negative 

component as: 

 a = a+ + a-        (E.1) 

where ( )aaa +=+
2
1  and ( )aaa −=−

2
1  and discretize them using a 

backward and forward differencing, respectively. Although the method 

becomes popular, it contained a lack of differentiability of the flux at sonic 

and shock points causing a problem in the flow variables. 

 

An ingenious direct solution of the discontinuity problem of Steger’s 

splitting was introduced by van Leer. He splits the flux based on polynomial 

expansions in Mach number for which the requirement is put, amongst 

others, that no discontinuities are present. The mass flux, for example, may 

be written as function of Mach number as: 

 

 aMU ξρρ ==mF , where 
a
UM =ξ     (E.2) 

 
where a is the speed of sound. With the conditions that −+ += FFF and that 

F  be continuous at 1±=M  the proper choice would be: 

 

 ( )21
4

±±=±
ξ

ρ Ma
mF        (E.3) 

 

The detailed description of the van Leer may be found in the original paper 

of van Leer [57] and in [41] and for applications with moving meshes it is 
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described in [82][84]. In the moving mesh case the Mach number defined in 

Eq. (IV.4) is the Mach number relative to the speed of the cell face, 

( ) ( ) ( )[ ] azwyvxuM zyx /ξξξξ &&& −+−+−= . The convective flux can be 

written as a function of ξM as follows: 
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Following the approach of the van Leer flux for ξM < 1 is 

 

 
( )
( )
( )

( )( )( ) ( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−+−+−−+
+±−
+±−
+±−

∇= ±

kaaUU
waU
vaU
uaU

J

t

z

y

x

1/21/21
/2
/2
/2

1

22 γγγξγ
γξ
γξ
γξ

ξ mFF  

          (E.5) 

 
where the mass flux ±

mF  is taken from Eq. (E.3) and k is the kinetic energy 

per unit mass. For supersonic flow condition the flux return to its unsplit 

form: 
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Unfortunately the superiority of van Leer’s splitting in capturing shock 

discontinuities does not extend to its performance in capturing contact 

discontinuities. This is due to the convective term which does not vanish 

when the contact discontinuity is at rest.  
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E.2 Flux Difference Splitting  

 
Furthermore a more complicated concept than the flux vector splitting is the 

flux difference splitting. This obtains a very good performance in capturing 

the contact discontinuities. The first Flux Difference Splitting method was 

proposed by Gudonov [92]. The original Gudonov method is a semi-

analytical method. In the Gudonov method, the fundamental solution is the 

Riemann problem solution of the flow in a shock tube, see Fig. E.1. At rest, t 

≤ 0, the pressure on the right side of the diaphragm is lower than the one on 

the left side. After the diaphragm breaks, a shock wave moves to the right, a 

contact discontinuity also moves to the right with different (lower) speed 

and an expansion fan moves to the left. The state at time t > 0 is a function 

of the initial state at t = 0, namely QL and QR.  For a more detailed 

discussion about the Riemann problem is given in Ref. [25]. 

 

 

Figure E.1:  Riemann’s problem, shock tubes at rest and 

 after the diaphragm has broken 

 

The Gudonov method for solving a hyperbolic equation proceeds as follows. 

At a certain time level the discontinuous state of the flow is replaced by a 

piecewise constant distribution, see Fig. E.2. The state in a cell is obtained 

by averaging the values in a cell as: 
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,1        (E.7) 
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Figure E.2: Definition of discontinuity at cell faces in Gudonov’s method 

 
Consequently the outcome is a discontinuity at every cell face. These 

discontinuities are then considered as a Riemann problem with the cell faces 

as the diaphragm of a shock tube and the current time level as t = 0. For 

example: at cell face 2
1+i  the states are QL = Qi and QR= Qi+1. The state at 

the next time level is obtained by solving the Riemann problem at time         

t = Δt. This step is the physical step of the Gudonov method. After solving 

the Riemann problem, the state in a cell will obtain contributions from two 

neighboring cells. The state at the next time level in a cell is obtained by 

averaging these contributions. The averaging processes, the first and the 

third stage, are of numerical nature. They can be considered to be 

independent from the physical stage. 

 

The exact solution of Riemann’s problem for the Euler equations requires 

the solution of a set of nonlinear algebraic equations [33]. This is considered 

to be time consuming because it has to be done for each cell face. Hence, an 

approximate Riemann solver is usually applied which should be able to 

represent the important features of the problem, but less computational 

effort. This approach is also justified because even when using the exact 

Riemann solver, the solution is averaged in the cell. Up to now, the 

approximate Riemann solver which are considered to be the best and 

simplest are Roe’s approximate Riemann solver [59]. 

Q(x) 

i –1    i     i + 1
x

Qi

i –1    i     i + 1 
x
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APPENDIX F 
Aerodynamic Force and Moment Coefficients Data Set for Steady 
Flows of Two-Stage Space Transport System with the Idealized 
Flat Plate 
 

 

Aerodynamic Characteristics Data Set 

CL CD Cm Mach = 4.04 
α / Δα  =    0/0 
h/lEOS = 0.150 exp comp exp comp exp comp 

accuracy Grid (103) EOS vehicle  

10-2 113 -0.00939 0.0269 -0.0107 

10-3 113 -0.01070 0.0262 -0.0109 

3 x 10-4 113 -0.01148 0.0264 -0.0110 

10-3 252 -0.01138 0.0273 -0.0104 

10-3 493 

-0.0115 

-0.01180

0.0294 

0.0277 

-0.0041 

-0.0106 

CL CD Cm Mach = 4.04 
Accuracy =    10-3 
Grid =  493 x 103 exp comp exp comp exp comp 

α Δα h/lEOS EOS vehicle 

0 0 0.225 -0.0120 -0.0127 0.0299 0.0277 -0.0059 -0.0084 

0 3 0.225 0.0293 0.0263 0.0304 0.0283 -0.0062 -0.0071 

CL CD Cm α/Δα = 0/0 
Accuracy =    10-3 
Grid =  493 x 103 exp comp exp comp exp comp 

Mach h/lEOS EOS vehicle 

6.80 0.150 - -0.01540 - 0.0222 - -0.0093 

7.90 0.150 - -0.01541 - 0.0213 - -0.0091 
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APPENDIX G 
Aerodynamic Force and Moment Coefficients Data Set for Steady 
Flows of Full Configuration of Two-Stage Space Transport 
System 
 

 
 
 
 
 
 
 
 
 

Aerodynamic Characteristics Data Set 

CL CD Cm 
Mach = 4.04 

exp comp exp comp exp comp 

α Δα h/lEOS EOS vehicle  

0 0 0.225 0.0366 0.0292 0.0337 0.0293 -0.0072 -0.0073 

3 0 0.225 0.0449 0.0398 0.0304 0.0308 -0.0057 -0.0095 

0 2 0.225 0.0747 0.0626 0.0326 0.0322 -0.0069 -0.0147 

0 5 0.225 0.1311 0.1104 0.0304 0.0368 -0.0082 -0.0259 

0 0 0.325 0.0332 0.0225 0.0317 0.0287 -0.0137 -0.0161 

α Δα h/lEOS ELAC 1C vehicle  

0 0 0.225 -0.0491 -0.0504 0.0164 0.0133 0.0089 0.0077 

3 0 0.225 -0.0026 -0.0061 0.014 0.0106 0.0145 0.0123 

0 2 0.225 -0.0538 -0.0556 0.0164 0.0131 0.0105 0.0086 

0 5 0.225 -0.0623 -0.0628 0.0163 0.0131 0.0133 0.0105 

0 0 0.325 -0.0394 -0.0439 0.0164 0.013 0.0062 0.0057 
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APPENDIX H 
Aerodynamic Force and Moment Coefficients of the 
Computational Data Set for Unsteady Flows 
 

Computational Aerodynamic Characteristics Data Set 

EOS vehicle Ma = 4.04, α = 0.0 deg., kred = 0.22 

Time (s) Δα (deg.) h/lEOS CL CD Cm 

0.000 2.000 0.125 0.0508 0.0341 -0.0122 

0.017 2.025 0.126 0.0487 0.0338 -0.0124 

0.033 2.098 0.130 0.0484 0.0337 -0.0123 

0.050 2.218 0.136 0.0448 0.0334 -0.0115 

0.066 2.382 0.144 0.0438 0.0335 -0.0102 

0.083 2.586 0.154 0.0448 0.0336 -0.0088 

0.099 2.824 0.166 0.0492 0.0338 -0.0084 

0.116 3.092 0.180 0.0552 0.0340 -0.0086 

0.132 3.382 0.194 0.0624 0.0342 -0.0093 

0.149 3.687 0.209 0.0696 0.0345 -0.0101 

0.165 4.000 0.225 0.0771 0.0348 -0.0117 

0.182 4.313 0.241 0.0838 0.0352 -0.0130 

0.198 4.618 0.256 0.0898 0.0356 -0.0144 

0.215 4.908 0.270 0.0956 0.0363 -0.0154 

0.231 5.176 0.284 0.1003 0.0368 -0.0164 

0.248 5.414 0.296 0.1042 0.0373 -0.0177 

0.264 5.618 0.306 0.1074 0.0378 -0.0187 

0.281 5.782 0.314 0.1099 0.0382 -0.0193 

0.297 5.902 0.320 0.1121 0.0385 -0.0198 

0.314 5.975 0.324 0.1132 0.0387 -0.0199 

0.330 6.000 0.325 0.1137 0.0388 -0.0200 
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Computational Aerodynamic Characteristics Data Set 

EOS vehicle Ma = 4.04, α = 0.0 deg., kred = 0.50 

Time (s) Δα (deg.) h/lEOS CL CD Cm 

0.000 2.000 0.125 0.0607 0.0346 -0.0136 

0.007 2.025 0.126 0.0577 0.0342 -0.0136 

0.014 2.098 0.130 0.0494 0.0335 -0.0127 

0.022 2.218 0.136 0.0448 0.0333 -0.0118 

0.029 2.382 0.144 0.0416 0.0331 -0.0107 

0.036 2.586 0.154 0.0394 0.0330 -0.0092 

0.043 2.824 0.166 0.0399 0.0330 -0.0080 

0.051 3.092 0.180 0.0435 0.0331 -0.0075 

0.058 3.382 0.194 0.0487 0.0332 -0.0077 

0.065 3.687 0.209 0.0549 0.0334 -0.0082 

0.072 4.000 0.225 0.0609 0.0338 -0.0086 

0.080 4.313 0.241 0.0678 0.0341 -0.0101 

0.087 4.618 0.256 0.0745 0.0346 -0.0112 

0.094 4.908 0.270 0.0806 0.0351 -0.0124 

0.101 5.176 0.284 0.0861 0.0356 -0.0136 

0.109 5.414 0.296 0.0912 0.0362 -0.0148 

0.116 5.618 0.306 0.0957 0.0367 -0.0160 

0.123 5.782 0.314 0.0995 0.0372 -0.0170 

0.130 5.902 0.320 0.1029 0.0376 -0.0179 

0.138 5.975 0.324 0.1055 0.0379 -0.0186 

0.145 6.000 0.325 0.1077 0.0381 -0.0193 
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Computational Aerodynamic Characteristics Data Set 

EOS vehicle Ma = 4.04, α = 0.0 deg., kred = 1.00 

Time (s) Δα (deg.) h/lEOS CL CD Cm 

0.000 2.000 0.125 0.0915 0.0362 -0.0174 

0.004 2.025 0.126 0.0788 0.0353 -0.0163 

0.007 2.098 0.130 0.0662 0.0344 -0.0149 

0.011 2.218 0.136 0.0553 0.0336 -0.0135 

0.014 2.382 0.144 0.0466 0.0330 -0.0121 

0.018 2.586 0.154 0.0402 0.0326 -0.0106 

0.022 2.824 0.166 0.0360 0.0323 -0.0092 

0.025 3.092 0.180 0.0341 0.0321 -0.0079 

0.029 3.382 0.194 0.0343 0.0319 -0.0070 

0.033 3.687 0.209 0.0367 0.0320 -0.0065 

0.036 4.000 0.225 0.0405 0.0321 -0.0063 

0.040 4.313 0.241 0.0454 0.0323 -0.0066 

0.043 4.618 0.256 0.0506 0.0327 -0.0070 

0.047 4.908 0.270 0.0565 0.0331 -0.0079 

0.051 5.176 0.284 0.0624 0.0336 -0.0091 

0.054 5.414 0.296 0.0681 0.0341 -0.0102 

0.058 5.618 0.306 0.0734 0.0347 -0.0113 

0.062 5.782 0.314 0.0785 0.0352 -0.0124 

0.065 5.902 0.320 0.0833 0.0358 -0.0135 

0.069 5.975 0.324 0.0876 0.0362 -0.0145 

0.072 6.000 0.325 0.0913 0.0366 -0.0155 
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