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Abstract

DNS and LES of �ow around a circular cylinder at subcritical Reynolds
numbers are performed using a novel immersed boundary technique which
allows the computation of �ow around arbitrary bodies with cartesian grids�
Results for transitional and turbulent �ows agree well with experimental and
numerical data of other authors� con�rming the reliability of the method�
New light is shed on the two quasi� statistically stable states of the mean
streamwise velocity in the near wake� At high subcritical Reynolds numbers�
the cross�ow in the wake exhibits unexpectedly high levels of �uctuations�
leaving room for extensive further research�

Zusammenfassung

Bei subkritischen Reynoldszahlen sind die Grenzschichten am queran�
gestr�omten Kreiszylinder laminar� und der Umschlag zur Turbulenz er�
folgt in der abgel�osten Scherschicht� Zur Vorhersage solcher Str�omun�
gen werden die inkompressiblen Navier�Stokes NS��Gleichungen� bzw� die
tiefpass�ge�lterten NS�Gleichungen direkt numerisch integriert� Dies ge�
schieht auf kartesischen Gittern durch spezielle Randbehandlung� Verglei�
che mit Messdaten best�atigen die Zuverl�assigkeit der Methode� Momenta�
ne und statistische Str�omungsgr�o�en werfen neues Licht auf die Struktur
der k�orpernahen� rezirkulierenden Nachlaufstr�omung� Sie ist u�a� durch sehr
hohe Quergeschwindigkeiten� vergleichbar der Anstr�omgeschwindigkeit� ge�
kennzeichnet�
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�� Introduction

��� Basic concepts

����� De�nition of turbulence

Fluid �ows are encountered in many engineering applications� Most of the
time� the �uid is in a state called turbulence� A de�nition of turbulence was
tentatively proposed by Lesieur in ���� and reads �

� A turbulent �ow is unpredictable� in the sense that a small uncertainty
as to its knowledge at a given initial time will amplify so as to render
impossible a precise deterministic prediction of its evolution�

� It increases mixing properties when compared to a �ow in which only
the molecular di�usion processes are present�

� It involves a wide range of spatial and temporal scales�

Let us have a closer look at this de�nition� Although all �uid �ows corre�
spond to fully deterministic phenomena� a particular characteristic of the
state called turbulence is its exponential ampli�cation of small perturba�
tions caused by the non�linearity of the governing equations� Predicting a
turbulent �ow like in the atmosphere� for example� thus requires a perfect
knowledge of its detailed state at an initial time� If we chose to consider
the �ow isolated from its surroundings� perfect knowledge of the conditions
prevailing on its boundaries is also required� In the case of the �ow in the
atmosphere� it means for example that the energy input from the sun would
have to be known for all instants� The sun being itself under the in�uence of
its surroundings� we can continue this reasoning until we �nally come to the
conclusion that for a deterministic prediction of the atmospheric �ow� perfect
knowledge of the Universe would be required� It is very clear that this is not
possible� Although predicting turbulence exactly is hopeless� it doesn"t mean
that science cannot extract useful information from turbulent �ows given all
uncertainties� An often cited metaphor is the so�called butter�y e�ect in
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which a butter�y �ying in Japan can cause a hurricane to devastate the Car�
ribeans� This is very unlikely to happen in reality� Small perturbations� given
enough time to amplify� might render a fully deterministic description in the
time domain of turbulence impossible� but they leave mostly unchanged its
dominating time and spatial length scales and its statistical description� This
demonstrates that even in the presence of small uncertainties� relevant in�
formations to engineering processes can be extracted from our predictions of
turbulence�

The enhanced mixing properties of turbulence can easily be observed when
pouring cream into a stirred cup of co�ee� Proper mixing of chemical reagents
is of capital importance for many engineering applications� For example�
when fuel is injected into the combustion chamber of an airplane engine�
mixing with air occurs and its e�ciency determines the e�ciency of the
combustion process�

The last part of the de�nition mentions that in turbulent �ows� a wide range
of spatial and temporal scales is observed� Turbulence� although chaotic� is
not a random process� but is organized in coherent structures which vary
in size continuously from large to small� In the mean� kinetic energy is
transferred from large to small scales by the break�up of the large structures�
At the smallest scales� kinetic energy in transformed into heat by viscous
dissipation�

����� Governing equations

The equations that describe the spatial and temporal evolution of a �uid
�ow have been known for a long time� In the case of a Newtonian �uid�
characterized by a linear stress�strain relation and Fourier"s heat conduction
law they are called the Navier�Stokes equations� These equations consist
of conservation laws for mass� momentum and energy� In this thesis� we
consider only isothermal and incompressible �uids� Under these conditions�
the Navier�Stokes equations are expressed as�

r � �u � 	 ����

��u

�t
� �u � r�u � ��

�
rp� �r��u ����

with �u the velocity vector� � the �uid density� p the pressure and � the
kinematic viscosity�
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����� Numerical simulation techniques

Since the governing equations for Newtonian �uid �ows are well de�ned and
their validity to describe high Reynolds number continuum �ows is no longer
a subject of serious debate in the community� one could think that the prob�
lem is now solved� Up to now� no mathematical tool can provide an analytical
solution to this non�linear system of equations for turbulent �ows� We must
thus resort to numerical solutions in these cases� This generally means that
the exact solution will not be known for all points in time and space� but
rather on a set of discrete points that we call a grid and for certain discrete
instants in time�

Direct Numerical Simulation

Let us call �x and �t the distance between to points in space and time in
which the �ow evolves� A Direct Numerical Simulation DNS� is a computa�
tion in which �x and �t are comparable to the smallest scales present in the
�ow� Following dimensional analysis� we obtain the following relations for
the length scale 
� the velocity scale vK and the time scale  of the smallest
turbulent structures which are known as the Kolmogorov scales �




lref
� Re�

�

� ����

vK
uref

� Re�
�

� ����



lref�uref
� Re�

�

� ����

with the Reynolds number de�ned as

Re �
lrefuref

�
����

where l and u are characteristic of the largest length and velocity scales of
the �ow considered and � is the kinematic viscosity� From this consideration�
it follows that the number of points in space needed for DNS of a turbulent
�ow is growing at a rate proportional to Re

�

� when considering the three
directions� The total number of time steps increases proportionally to Re

�

� �
This makes the cost of performing a simulation increase with a factor of
roughly Re�� Even when using the most powerful computers available today�
only modest Reynolds numbers can be attained� Spalart ���� tried to eval�
uate when it will be possible to achieve a Reynolds number of engineering
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interest� By considering a computational power increase by a factor of �
every � years� we will have to wait �	 years before such a �ow can be solved
as a �Grand Challenge Problem� and some more years before it becomes a
routinely performed computation� Some alternatives are thus needed in the
mean time�

Large Eddy Simulation

One way to overcome the high cost of DNS is to solve only for the largest
scales of the �ow and to model the smallest ones� The small scales are
thought to behave in a more or less universal way� giving hope for deriving a
simple and widely applicable model� Large Eddy Simulation LES� is based
on the de�nition of a �ltering operation � a �ltered or large scale� variable�
denoted by an overbar� is de�ned as

�fx� �

Z
fx�Gx� x��dx� ����

where G is a low�pass �lter function� As long as turbulent �ows are domi�
nated by convective phenomena and are not in�uenced by the input of exter�
nal energy at high frequency and low wavenumber e�g� wall oscillations at
high frequency�� a spatial �lter is su�cient to remove also the small temporal
scales� If the �ltering operation ���� is applied to the governing equations�
and �ltering commutes with di�erentiation� one obtains the �ltered equations
of motion in the following form�

��ui
�xi

� 	 ����

��ui
�t
�

�

�xj
�ui�uj� � ��

�

��p

�xi
� �ij

�xj
� �

���ui
�xj�xj

��
�

The e�ect of the small scales appears through a subgrid scale SGS� stress
term

ij � uiuj � �ui�uj ���	�

that must be modeled� Although much cheaper than DNS� large eddy sim�
ulations still require an important number of grid points and time steps and
are thus limited to moderate Reynolds numbers� SGS modeling is the subject
of extensive research in the turbulence community� A popular SGS model
was proposed by Smagorinsky ����� It takes the following form �

ij � ���T �Sij � �
�
kk�ij �����
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where �T is the eddy viscosity and �Sij is the �ltered strain rate

�Sij �
�

�

� �ui
�xj

�
� �uj
�xi

� �����

The value of �T is de�ned as�

�T � Cs�
�jSj �����

where jSj � �SklSkl���� and � is a �lter width� usually related to the un�
derlying grid� In our computations� we used � � �x�y�z�

��� with �x� �y

and �z the grid spacings in the x� y and z directions respectively� We set
Cs � 	��� Eddy viscosity based models assume that in the mean� turbulence
dissipates energy through a cascade process and thus acts like additional vis�
cosity� It is well known that the instantaneous cascade of energy is not a
one�way process and that locally in time and space� backscatter e�ects occur
which transfer energy from small to large scales� Although considerable ef�
forts have been made to design more realistic SGS models� none has proved
more resilient than the Smagorinsky model� Its low computational cost and
bene�cial properties of numerical stability are certainly partly responsible for
its success� The fundamental challenge of SGS modeling is to provide infor�
mation concerning the unresolved scales� which by de�nition is not contained
in the resolved scales� However� the most important interactions between re�
solved and subgrid scales occur near the cuto� and a good estimate can be
obtained from the smallest resolved scales�

Germano ���� proposed a technique to adjust locally in time and space the
constant Cs found in the Smagorinsky model� Dynamic determination of the
constant has proved bene�cial by allowing the model to be more sensitive
to the state of the �ow� Better predictions can be obtained in regions of
transition and re�laminarization for example� Better behavior in the near�
wall region is also achieved� The starting point of the dynamic procedure is
the following identity �

Lij � Tij � #ij �����

which provides a relation among the resolved turbulent stresses Lij � #uiuj�
#�ui #�uj� It is called the Leonard term and can be used to compute the subgrid
scale stresses ij from the subtest stresses Tij obtained by applying an explicit
test��lter to the Navier�Stokes equations� The hat is used for test��ltered
variables� In our computation using the dynamic procedure� we applied a
top�hat test��lter at twice the mesh size in the homogeneous y�direction� By
using equation ����� and the test �lter�

#ij � ��CDyn�
�jSj �Sij�#� �

�
#kk�ij �����
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Tij � ��CDyn
#�� #jSj #�Sij � �

�
Tkk�ij �����

The operation �����# denotes a �ltering procedure applied to the whole ex�
pression� Forming the expression

Lij � �
�
Lkk�ij � ��CDyn

#�� #jSj #�Sij � �CDyn�
�jSj �Sij�# �����

shows that it cannot directly be used to compute the coe�cient CDyn�
It forms an overdetermined system of equations� namely � with only one
unknown� Lilly ���� proposed to solve this problem by minimizing the
square of the error EijEij where Eij � Lij � �

�
Lkk�ij � CDynMij and

Mij � � #�� #jSj #�Sij � ���jSj �Sij�#� This gives a value for the constant �

CDyn �
�

�

LijMij

MijMij
�����

When used this way� the model can provide negative values for CDyn which
account for energy transfer from small to large scales� However� in LES this
can cause undesirable instabilities� To overcome this problem� it is preferable
to use homogeneous directions of the �ow for averaging� The value of the
constant then becomes�

CDyn �
�

�

� LijMij �

� MijMij �
���
�

where the brackets denote averaging in one or more homogeneous directions�
Although the constant now behaves more smoothly in time and space� it
can still produce negative values that we clip� i�e� we do not allow the eddy
viscosity to become negative� More details about these models are found in
Sagaut ��
�� Further applications of these models are reported in Friedrich
$ Rodi �����

Statistical models

To further reduce the cost of computing turbulent �ows� one can analyze
them through a statistical approach� Only the average e�ects are consid�
ered� i�e� the wavenumber information about the �ow is lost� The �ow to be
solved can still be unsteady� on a timescale larger than the integral timescale
of the turbulence spectrum� but it requires a much lower spatial and tem�
poral resolution� The statistical approach implies the so�called Reynolds
decomposition in which the variables are decomposed into mean and �uctu�
ating parts� The Navier�Stokes equations are then ensemble averaged and
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one obtains transport equations for the mean quantities which are similar
to the Navier�Stokes equations� with the exception that additional terms are
present� the Reynolds stresses� The modeling of these terms has been a sub�
ject of study for many decades and it is not within the scope of this thesis
to give an extensive review of the di�erent strategies employed� the reader
can refer to ��� for a good review� We will only mention that the modeling
of these terms has proved very challenging since not much information is
contained in the resolved �ow� and the tremendous loss of information has
to be compensated by intelligent models�

Recently� Spalart ���� proposed a new approach to bridge the gap between
RANS and LES� The observation that RANS modeling can predict boundary
layers with roughly the same accuracy as LES whatever the SGS model
used� but at a much lower cost� led him to propose the DES Detached Eddy
Simulation� technique� In a DES� the attached boundary layers are solved
using RANS models while in the separated �ow regions LES is used� owing
to its clear advantages in such regions over classical RANS methods� DES
is a promising concept that could enable full scale engineering applications
at high Reynolds number to be computed whithin the ressources available
today or in the near future�

��� Motivation

The objective of this work is twofold� �rstly to derive an e�cient numerical
method to compute turbulent �ows in complex geometries ����� Most of the
codes in use today are written for body��tted coordinate systems� The fea�
sibility to compute �ows over arbitrarily shaped bodies with cartesian grids
is very attractive and of great practical importance since typically a carte�
sian code is anywhere between �	 and �	 times more economical in terms of
both CPU time and memory requirements than a code solving the Navier�
Stokes equations in curvilinear coordinates ����� One can thus a�ord to do
a computation with more grid points and still achieve appreciable savings in
computational resources� Another important aspect is the complete elimi�
nation of the need to produce a body��tted grid� a task that is not trivial
and can consume an important amount of time� In the wake of a blu� body�
cartesian cells are highly desirable because of the lower discretization errors
compared to those introduced by non�orthogonal and sometimes misaligned
cells with respect to the �ow direction in body��tted grids�

The most straightforward method to represent the no�slip condition on an
immersed body surface within a cartesian grid is to apply zero velocity at
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the cell�face which is the closest to the surface of the body� The di�erence
between the actual and exact body geometry is at most half a cell� This
was the method employed by Manhart and Wengle ��
� among others� The
drawback of this method is that it is only �rst order accurate� This drawback
can be removed by modifying the discretization near the body in order to
take into account the cells which are cut� While more accurate schemes were
obtained in ���� for two�dimensional �ows� the extension of the methods to �D
geometries is not easy because a cell can be cut in many di�erent ways� Other
researchers ��	������������ make e�orts to preserve the same discretization in
all the domain� even including the cells inside the body� Forcing is applied
at the location of the body in order to represent its e�ect on the �uid� A
major issue encountered is the interpolation of the forcing over the grid that
determines the accuracy of the scheme� Another approach ���� is called
diagonal cartesian method on staggered grids� It is quite similar to the
present approach� discussed in Chapter �� where Dirichlet velocity boundary
conditions are applied on each cell face located in the immediate vicinity of
the body surface� The boundary conditions are applied in such a way that
the physical location of the surface and its velocity are best represented� The
cells beyond the body surface are excluded from the computation by using
a masking array� The discretization remains the same for all cells� A similar
approach was derived independently by Gullbrand et al� ����� but in the
context of �nite di�erencing on regular grids�

The second objective is to study the �ow over a circular cylinder at subcritical
Reynolds numbers� The recent publications by several authors of numerical
simulations of the cylinder �ow at Re � �
		 led us to chose this case
for the validation of our immersed boundary method� preliminary results
are published in ���� and ����� Moreover� the ongoing controversy about U�
shape or V�shape velocity pro�les in the near wake made such simulations
certainly desirable to further clarify this issue� Another discrepancy observed
between numerical and experimental data remains unexplained so far by
previous work on this case� A plateau in the mean streamwise velocity in
the symmetry plane of the near wake is measured experimentally over a wide
range of Reynolds numbers while it is remarkably absent from all the previous
numerical simulations� More clari�cations are thus needed on this point�

Flow at higher subcritical Reynolds number� namely Re � ��				� is also
investigated ��
� in the light of results obtained using DES ���� and LES
��� techniques� These results raised new questions about the e�ects of grid
re�nement� On coarse grids� typical for DES� an important overprediction of
the mean recirculating region was noted� In the LES simulations of Breuer
���� �an astonishing outcome was that grid re�nement did not automatically
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lead to improved results for all quantities� where improvement is de�ned in
this context in the sense of a better agreement with experiments�� Given the
recent results of �ow around a circular cylinder at this regime� some more
numerical experiments are highly useful�

��� Flow around a circular cylinder

Flow across a circular cylinder is one of the classical �ow problems which are
not understood in all details even after being subjet of research for several
decades� Such �ows exhibit many interesting phenomena� They are com�
posed of three fundamental shear �ows� namely a boundary layer� separated
shear layers and a wake� An excellent review of the �ow over cylinders can
be found in �����

����� Overview of the vortex shedding regimes

A suitable way to characterize the di�erent modes appearing in cylinder �ows
is to refer to Figure ��� which plots the base pressure coe�cient taken at
the back of the cylinder� against the Reynolds number� This �gure is taken
from ����� The base pressure coe�cient is de�ned as

CPB �
PB � P�
�

�
�U�

�
���	�

where PB is the pressure at the back of the cylinder� P� is the reference
pressure� U� the reference velocity and �nally � is the mass density of the
�uid�

Laminar steady regime 	Re � �



This regime extends until point A in Figure ���� The wake shows a steady
recirculation region composed of a pair of counter�rotating vortices� The
recirculation length increases linearly with the Reynolds number� decreasing
at the same time the base pressure coe�cient�

Laminar vortex shedding

This mode spans in Figure ��� from point A up to B� The Reynolds number
varies from �
 up to a value of ��	��
�� The base pressure coe�cient shows
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a strong deviation from the previous regime� Initially� an instability develops
from the downstream region of the bubble� According to Monkewitz ����� the
wake becomes absolutely unstable following a local linear parallel stability
analysis at Re � ��� Di�erent authors observed vortex shedding� however at
critical Reynolds number between �	 and �	 only� The characteristic shed�
ding frequency� the Strouhal number� increases with the Reynolds number�
The time�averaged recirculation length is reduced and there is a consistent
increase in the base pressure coe�cient� The upper limit of this regime has
a remarkable spreading in the literature ��	 to �
��� Recent results place
the critical Reynolds number where three�dimensionality of the wake sets in�
close to �
��

�D wake transition regime

This regime encompasses the region between points B and C of Figure ����
It shows two discontinuous changes in the base pressure coe�cient as the
Reynolds number increases� At the �rst discontinuity Re���	��
��� for�
mation of pairs of streamwise vortices is observed� The size of this pair of
vortices is about ��� diameters� This is the so�called mode A instability�
At a higher Reynolds number ��	���	� the �ow gradually transfers its en�
ergy from mode A to mode B shedding� which is characterized by the same
streamwise vortices� but with a wavelength of about � cylinder diameter� In
both cases modes A and B� local shedding phase dislocation along the span
is observed�

Increasing disorder in �D �ne scales

From points C�D in Fig���� increasing disorder is observed in the �ne �D
scales� This appears to produce a longer recirculation length and the conse�
quent decrease of the base pressure coe�cient�

Shear layer transition regime 	D�E


Between Reynolds number from �			 to �					� the base pressure coe�cient
increases again� the Strouhal number gradually decreases and the mean re�
circulation region is reduced� The transition to turbulence of the detached
shear layers is caused by a Kelvin�Helmholtz instability� which is principally
��dimensional ���� The transition point moves upstream as the Reynolds
number is increased� Three�dimensionality of the K�arm�an vortices appears�
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It is important to note that the Reynolds number range up to Re � � � �	�
is called the sub�critical range since the �ow around the entire periphery of
the cylinder is laminar� and the transition to turbulence occurs only in the
separated shear layers and in the wake�

Asymmetric reattachment regime 	E�G


In this regime� the base pressure and the drag coe�cient are reduced dra�
matically� This is associated with a reattachment of the boundary layer after
the �rst separation and the �nal turbulent separation which occurs much
further downstream� This produces a reduced width of the wake� hence re�
duced drag� An interesting phenomenon occurs at point F of Figure ��� �
the reattachment is observed at only one side of the cylinder� causing a high
lift force�

Symmetric reattachment or supercritical regime 	G�H


In this regime� the �ow is symmetric with a separation�reattachment bubble
on each side of the cylinder� The base pressure coe�cient reaches its small�
est negative value� The �ow is very sensitive to disturbances� Interesting
experimental investigations in this region have been made by Schewe �����

Boundary layer transition regime or post critical regime 	H�J


Following the appearence of turbulence in the wake and the separated free
shear layers� the �nal stage is the transition to turbulence of the boundary
layer at the surface of the cylinder itself� The transition point is moved
further upstream as the Reynolds number is increased�

����� Previous numerical experiments

The �ow over a circular cylinder has been extensively studied numerically�
Two�dimensional computations are routinely carried out in order to vali�
date new numerical schemes and the present study makes no exception to
this rule� as will be discussed later� At a Reynolds number larger than
around ��	� it has long been recognized that two�dimensional computations
are no longer capable of providing physically adequate values of the �ow
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Fig� ���� Variation of base suction coe�cient ��CPB	 over a large range of
Reynolds numbers
 Symbols show experimental data obtained by dif�
ferent researchers
 Reproduced from ��

parameters� As discussed in the previous section� the �ow becomes three�
dimensional and must be computed as such� Many three�dimensional stud�
ies of the cylinder �ow have been carried out and for the sake of brevity�
only the most important ones will be mentioned� High order spectral ele�
ments were used by Thompson et al������ Both the modes A and B of the
wake transition regime were detected� Karniadakis and Triantafyllou ��
�
investigated the �ow around a circular cylinder for Reynolds numbers in
the range from ��� to �		 using spectral�hp�element methods� The impor�
tance of the three�dimensional e�ects was demonstrated� Since a few years�
investigations of the cylinder �ow at higher Reynolds number have been per�
formed� Beaudan and Moin ��� computed several LES at Re � �
		 with
di�erent grid resolutions and SGS models� They used O�type grids and high�
order upwind�biased numerical schemes for the simulation of the compressible
Navier�Stokes equations� The results were generally in good agreement with
the experiments of Lourenco and Shi ���� and those of Ong and Wallace �����
but the Reynolds stresses were under�predicted a few diameters downstream
and the one�dimensional power spectra of velocity �uctuations were heavily
damped at high wave numbers� Also worth mentioning is the di�erence ob�
served in the pro�le of the mean streamwise velocity in the very near�wake
region� In their study� Beaudan and Moin did not notice important e�ects
due to the SGS model applied� Mittal and Moin ��	� used a second�order
conservative central scheme and performed several LES of the �ow past a cir�
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cular cylinder at Re � �
		� In the spanwise direction� a spectral scheme was
used� The results were generally in good agreement with those of Beaudan
and Moin� Higher levels of the Reynolds stresses were� however� observed in
��	� in the region downstream and more energy was contained at the high
wavenumbers of the one�dimensional power spectra of the velocity �uctua�
tions� It was concluded that the use of non�dissipative numerical schemes is
a need for LES� In the very near�wake region� the results of Mittal and Moin
con�rmed those of Beaudan and Moin� but di�ered from the experiment of
Lourenco and Shi� LES of the �ow past a circular cylinder at Re � �
		
were also performed by Breuer ��� and Fr�ohlich et al����� using the same code�
LESOCC� based on a �nite volume formulation with collocated variable ar�
rangement� The �uxes are discretized using second order central schemes�
The study made by Breuer was more extended and included the use of dif�
ferent discretizations� most notably for the convective terms� Computations
were performed without a model� with the Smagorinsky model and with the
dynamic formulation of the Smagorinsky model� It was again shown that
non�dissipative schemes were better for LES� The best results were obtained
using the dynamic model in ���� although the in�uence of the SGS model
was weak� In this study� it was reported that doubling the spanwise domain
size while keeping the same resolution thus doubling the number of grid
points in this direction� did not a�ect the solution signi�cantly� Kravchenko
and Moin ��	� revisited the �ow around a circular cylinder at Re � �
		
with high order accurate numerical schemes based on B�splines� LES were
performed for di�erent grid resolutions with the dynamic SGS model� Their
results were in good agreement with the previous studies in the very near
wake� In the region downstream of � to �	 diameters� Kravchenko and Moin
��	� obtained better agreement with the experimental data of Ong and Wal�
lace ����� Most notably� the �ne turbulent scales were more energetic in the
region downstream� Ma et al� ���� were able to perform a detailed study of
the same case� Both DNS and LES were performed using spectral elements�
Excellent agreement with the experimental data was obtained� Two distinct
statistically converged states were observed in the very near wake region�
corresponding to a U� and V� shape of the mean streamwise velocity pro�
�le� All previous studies converged to the �rst state mentioned above� while
the experiment of Lourenco and Shi ���� showed the V�shape of the mean
streamwise velocity pro�le� In Ma et al����� it is argued that this di�erence
could be attributed to the extent of the spanwise �ow domain chosen in the
simulation� They got this idea when one of their computations using a span�
wise length of �D converged to the U�shape and another computation using
a spanwise length of ��D converged to the V�shape� Most previous authors
had used �D as the spanwise length� apart from Breuer ��� who obtained very
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similar results with a spanwise domain size of �D and ��D� but on coarse
grids�

In the LES studies of the �ow around a cylinder at Re � �
		� the in�uence
of the SGS model was found to be weak in comparison to the e�ect of the
numerical schemes or the grid used� Higher Reynolds number simulations are
needed to study the impact of SGS models� The Reynolds number ��				
appears to be a good candidate due to the availability of experimental data
from Cantwell and Coles ���� Wang et al����� performed LES of several blu�
body wakes� including the circular cylinder� They used a QUICK scheme
and very few grid points less than �	��� Although the mean drag coe�cient
and the Strouhal number were in fair agreement with the data of Cantwell
and Coles� the mean velocity pro�les and RMS of velocity �uctuations had
signi�cant deviations� Fr�ohlich et al����� performed an LES of the cylinder
�ow at Re � ��				 using the Smagorinsky SGS model� Fair agreement
was obtained for the drag coe�cient� back pressure coe�cient� recirculation
length� mean streamwise velocity and resolved shear stress in the very near
wake region � diameter behind the cylinder�� No results were presented for
the region further downstream� A more detailed investigation was carried
out recently by Breuer ���� The dynamic and Smagorinsky SGS models were
used along with di�erent grid resolutions� Again in this study� no clear trend
showing the superiority of one SGS model was found� Although in ��� the
impact of the SGS model was stronger when compared to the same �ow at
Re � �
		� the e�ects of the grid spacing were shown to be much more
important� Finer resolution did not lead automatically to improved results
when compared to the experiment of ���� This e�ect was also reported in
the DES of Travin et al� ����� but not much con�dence can be accorded
to their results because of their gross overestimation � to � times� of the
recirculation length reported by Cantwell and Coles ����



�� Numerical method and validation tests

In this chapter we describe the numerical schemes employed to discretize
the Navier�Stokes equations in time and space� The immersed boundary
technique implemented in the code MGLET is discussed� Validation tests
are conducted on well established �ow problems in order to demonstrate the
accuracy of the technique�

��� Characteristics of the Navier�Stokes code MGLET

We now present the numerical schemes that have been used in the work pre�
sented here� The code MGLET� used for all our computations� is a parallel
�nite volume solver for the incompressible Navier�Stokes equations on stag�
gered cartesian non�equidistant grids� The pressure equation is derived by
the projection method of Chorin ���� The code MGLET has a long tradition
in Large�Eddy�Simulation LES� and Direct Numerical Simulation DNS�
see eg� Werner and Wengle ����� Manhart and Wengle ��
� and Manhart et
al� ������ A method to represent arbitrarily shaped bodies within cartesian
grids has been developed and implemented in the code MGLET� It will be
presented in details in the next section� The basic discretization schemes are
now discussed�

����� Spatial discretization

The �nite volume formulation starts from the integral form of the Navier�
Stokes equations for incompressible �uids�

�

�t

Z
�

�uid! �

Z
S

�ui�u � �ndS �
Z
S

� grad ui � p��ii � �ndS � 	 ����

Over one control volume cell�� the volume and surface integrals are ap�
proximated numerically by the mid�point rule� The variables� velocities and
pressure� are de�ned on a non�equidistant cartesian grid in staggered ar�
rangement� see Figure ���� The control volumes surrounding the individual
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p(i,j) u(i,j)

v(i,j)

Fig� ���� Staggered variable arrangement used in the code MGLET

variables are thus di�erent for each variable� The interpolation required for
the convective terms are done by central approximation of second order accu�
racy� The �rst derivatives which are used in the di�usive terms are formulated
by a second order central approximation�

����� Time integration

For the time advancement of the momentum equations� an explicit second�
order leap�frog� time step is used which is central with respect to the con�
vective terms�

un�� � un�� � ��t
�
C un� �D

�
un��

��G
�
pn��

��
����

where C� D and G represent the discrete convection� di�usion and gradient
operators in a symbolic way�

The leap�frog time step in combination with central spatial discretizations
is unstable for the �D convection�di�usion equation� Therefore� the di�usive
term is taken at time level n� � Euler time step�� Nevertheless� oscillations
with a period ��t can still appear and have to be damped by an averaging
step every �� time steps� The advantages of the leap�frog time stepping in
comparison to the Adams�Bashforth scheme consist in its e�ciency in terms
of lower number of operations and its larger domain of stability �����
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����� Solution of the Poisson equation

The pressure at the new time level pn�� is evaluated by solving the Poisson
equation

Div
�
G
�
pn��

��
�

�

��t
Div u�� ����

where u� is an intermediate velocity �eld� calculated by omitting the pressure
term in equation ���� By applying the velocity correction

un�� � u� � ��tG �pn��� ����

we arrive at the divergence�free velocity �eld un�� at the new time level�

The solution of the Poisson equation is done either in a direct way or iter�
atively when there is only � or no homogeneous direction to the �ow� All
the test cases in the present thesis used the iterative solver� It is based
on the algorithm described in Hirt et al� ����� Using the iteration counter
i� the following � steps are performed for each control volume within the
computational domain�

�pi�� � !
�

��t
Divu���i � �

���x� � ���y� � ���z�
����

uj
i�� � uj

i ��pi��
��t

��xj
����

pi�� � pi ��pi�� ����

the initial solution is u	 � u� and p	 � pn� If equations ���� to ���� are
applied to one cell� this cell then becomes divergence�free until its neighbours
are treated� After sweeping through all the cells� the overall divergence is
reduced and we can procede with the iteration i � �� In order to speed up
the convergence� a relaxation factor ! is introduced in equation ���� which
has a value of ��� to ����

The advantage of this procedure over a Gauss�Seidl solver consists in the sim�
ple formulation of the boundary conditions which are required only for the
velocities� The boundary conditions for the pressure follow implicitly from
the boundary conditions for the velocities� All other properties like conver�
gence and smoothing properties are similar to the Gauss�Seidl algorithm used
in conjunction with successive over�relaxation�
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��� Handling of arbitrarily shaped bodies

The �rst step is to obtain a representation of the surface of interest� A very
versatile way of doing it is by using an unstructured mesh made of triangles�
All geometries can be represented this way� Once the body is available� a
preprocessing step is done� During this phase a masking array is initialized�
which has values of one for cells within the �ow and zero for cells belonging
to the body� This array is used to block the pressure cells inside the body
considered so that they do not contribute to the computation� Boundary
conditions have to be applied to the velocity components at the interface
between masked and unmasked pressure cells in order to have a well de�ned
problem� In the second phase of the preprocessing step� these boundary con�
ditions are de�ned as a linear function of the velocities computed within the
domain� The coe�cients weighting the computed velocities are determined
and need no longer to be updated during the run�

����� Masking the pressure cells

Blocking pressure cells depends on whether the intersection between compu�
tational cells and triangles� representing the body surface� satis�es certain
conditions which are described below� These conditions have to be simple
and unique� We start specifying a triangle by its � vertex points see Figure
���� �

�P� � x�� y�� z�� � �P� � x�� y�� z�� � �P� � x�� y�� z��

They de�ne a plane in which a point P lies� that is given by its position
vector �P � x� y� z� and satis�es�

�
�P � �P�

�
�
��

�P� � �P�
�
�
�
�P� � �P�

��
� 	 ����

From eq������ we get the equation of the plane

a x� x�� � b y � y�� � c z � z�� � 	 ��
�

where
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a � y� � y�� z� � z��� z� � z�� y� � y��

b � z� � z�� x� � x��� x� � x�� z� � z��

c � x� � x�� y� � y��� y� � y�� x� � x��

This plane may have up to three intersection points with coordinate lines
passing through the cell center C the pressure point� and these points may
lie inside or outside the cell volume� see Figure ���� We call D�� D� and
D� the intersection points with the x�y�z��directions� respectively� Their
coordinates are �

D� �

��b yc � y��� c zc � z��

a
� x�� yc� zc

�

D� �

�
xc�

�a xc � x��� c zc � z��

b
� y�� zc

�

D� �

�
xc� yc�

�a xc � x��� b yc � y��

c
� z�

�

where C � xc� yc� zc� is the cell center� If one of these � points lies within
the pressure cell and within the triangle� then this pressure cell is blocked
out of the computational domain and does not contribute to the numerical
solution� Verifying if a point lies in a triangle is done in the following way�
Let us consider a point D that has been found to lie on the plane de�ned by
a triangle see Figure ����� The corresponding criterion implies the normal
vectors�

�n� �
�

�P�P� � �P�P�
�
� �P�P�

�n� �
�

�P�P� � �P�P�

�
� �P�P�

�n� �
�

�P�P� � �P�P�
�
� �P�P�

The point D is inside the triangle if
�
�n� � �d�

�
�
�
�n� � �d�

�
and

�
�n� � �d�

�
� 	�

Once all the cells have been checked� we obtain a thin layer of blocked cells
along the surface of the body� The interior of the body must also be blocked�
This is easily done by a %painting� algorithm� i�e� the user speci�es one
cell which is in the �ow �eld open cell�� and by iteratively marking the
neighbours of the open cells unless they are blocked� we can paint the exterior
of the body and thus the interior is easily identi�ed�
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����� Determining Dirichlet velocity boundary conditions

Once we have obtained the blocking array of the pressure cells� the blocking
arrays of the velocities can be deduced in a straightforward manner� Each
velocity component belonging to a blocked pressure cell is also blocked� In
order to represent the e�ect of the body on the surrounding �ow� a few
layers enough to have a complete stencil of the discretization at the �rst
open cell� of blocked velocities are interpolated�extrapolated using the no�
slip condition that prevails at the surface of the body� We use third order
Lagrangian polynomials to achieve this goal�

In Figure ���� xp is the location of the point to obtain an extrapolated vari�
able� x� is the location of the surface of the body and x�� x�� x
 are the
positions of the neighbouring points� �p is the variable to be extrapolated
say a velocity component�� �� is the value at the wall which should be zero
in case of a no�slip condition� ��� ��� �
 are the values taken from the neigh�
bouring points�
The value of the extrapolated variable will be �

�p �

X

i��

�i�i

where

�i �

Y

j���j ��i

xp � xj�

xi � xj�

We can de�ne the distance �k from the extrapolated point to the wall as
�� � jxp�x�j� e�g�� If the variable at a point can be extrapolated from more
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than one direction� each direction is weighted by a multiplication factor �dir�

�dir �
�dirPNdir
k�� �k

where

�dir �

QNdir
k���k ��dir�k

�dir

This formulation ensures that if a point is exactly on a wall� it will have the
wall value� Also� the sum of the multiplication factors is always �� From
these simple formulas� all the coe�cients needed to set the velocities at the
surface of the body are determined and used during the actual computation�

����� Implementation in MGLET

To keep the number of indispensable modi�cations to the original version of
MGLET to a minimum and to favor portability of the method eventually to
other codes� we have adopted the following strategy� In the preprocessing
step mentioned above� MGLET provides a grid along with an identi�cation
number related to it� The cartesian library then reads a geometry �le con�
taining an unstructured surface mesh describing the body considered� The
blocking array and the interpolation�extrapolation stencils are then gener�
ated as described above� This information is accessible to MGLET via its
identi�cation number� allowing for computations on multiple grid like for
example when using domain decomposition for parallelization�
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The explicit time marching scheme makes it simple to implement Dirichlet
boundary conditions for velocities� All the cells are treated in the same man�
ner and once all the cells have been updated� the new boundary conditions
are recomputed at the surface of the immersed boundary� The new Poisson
equation solved now reads

Div
�
G
�
pn��

��
�

�

��t
Div u��B ���	�

where B is the blocking array� containing only 	 or � depending on whether
a cell is blocked or within the �ow respectively� The velocity correction step
is now

un�� � u� � ��tG �pn���B �����

which ensures that blocked velocities will not be modi�ed� After each time
step� new velocity boundary conditions are recomputed and we can proceed
with the next time step�

��� Validation tests

Validation tests were conducted in order to answer the following questions�

� Does the immersed boundary method presented above preserve second
order numerical accuracy&

� Does it provide results comparable in accuracy to that of other codes
in steady and unsteady laminar �ows&

� Can it be used to predict complex �D turbulent �ows&

The following results provide an answer to these questions�

����� Cylindrical Couette �ow

This test case was performed in order to evaluate whether the method
preserves the second order accuracy of the code MGLET� This test case
also demonstrates the possibility of handling surfaces with non�zero velocity
boundary conditions� In this particular con�guration� the inner cylinder has
a diameter of � meter and is rotating while the outer one has a diameter of �
meters and is kept at rest� The Reynolds number based on the rotation veloc�
ity of the inner cylinder is equal to ��	� Four di�erent equidistant grids were
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used to compute the cylindrical Couette �ow which is a one�dimensional
�ow problem at low Reynolds numbers�� the grid spacing �xi � ri � ri��
was varied from 	��m to 	�	��m�

The analytical solution for the tangential velocity vt is given by ��	�

vt �
A

r
�Br �����

The pressure p is

p

�
�
�A�

�

�

r�
� �ABlogr �

B�

�
r� �D �����

where A�B and D are constants to be determined using the boundary condi�
tions� � is the density of the �uid and r the radial position�

The boundary conditions are

at r � r� � vt� � ��r� �����

at r � r� � vt� � ��r� �����

�����

where �i is the angular velocity of the cylinder�

We have set

r� � 	�� m �����

r� � ��	 m �����

�� � 	��� ��s ���
�

�� � 	�	 ��s ���	�

� � ��	 kg�m� �����

for which we �nd

A �
���r��r��
r�� � r��

�����

B �
��r

�
�

r�� � r��
�����

The constant D in eq� ����� is an arbitrary o�set for the pressure level that
we set to 	�

The error 	 at a position ri is de�ned as

	vri� � vtri�� v�t ri� �����
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for the tangential velocity and

	pri� � pri�� p�ri� �����

for the pressure where v�t and p
� are the numerical solutions� The RMS value

of the error is de�ned as

	�vrms
�
�

N

NX
i��

	v
�ri� �����

for the tangential velocity and

	�prms
�
�

N

NX
i��

	p
�ri� �����

for the pressure� N is the number of points in the numerical simulation� It
is convenient to use the relative errors de�ned as

	vrel �
	vrms

vt
�����

and

	prel �
	prms

p
���
�

where vt and p are respectively the mean tangential velocity and mean pres�
sure�

vt �
�

N

NX
i��

vtri� ���	�

p �
�

N

NX
i��

pri� �����

Figures ��� and ��� show the radial distributions of the tangential velocity
and the pressure� Very good agreement with the exact solution is obtained
on the �ner meshes while only a slight discrepancy is noted on the coarsest
mesh� This shows that su�ciently accurate solutions can be obtained� and
that the method is suited for surfaces having non�zero velocity�

Figure ��� shows the variation of the relative errors 	vrel and 	prel as a function
of the grid spacing� For a method to be second order accurate� the error has
to be proportional to the square of the grid spacing� which is the case in this
con�guration�
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����� Circular cylinder between parallel plates

The next step is to compare our own results to those obtained by other au�
thors� A steady and an unsteady laminar �D test case have been computed�
The con�guration chosen is a cylinder with a circular cross�section mounted
between � parallel plates with no�slip conditions on the plate and cylinder
surfaces� The in�ow condition for the velocities corresponds to fully devel�
oped laminar channel �ow� A sketch of the geometry can be seen in Figure
��
� The cylinder is not exactly centered between the plates� so that lift
is produced� This con�guration was studied by Sch�afer et al���	�� In their
study� several codes using a wide variety of discretization schemes were em�
ployed to compute a steady state �ow at Re � �	 and the unsteady �ow at
Re � �		�

The density � is set to ��	 kg�m� and the viscosity � � 	�		� m��s� H is the
height of the channel 	���m�� The in�ow velocity pro�le is set to

Uy� � �UmyH � y��H� �����

and

V y� � 	 �����
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where y varies from 	 to H� and Um is the velocity in the center of the channel�

The Reynolds number is de�ned as

Re �
UD

�
�����

where D � 	��m is the diameter of the cylinder and U is the mean in�ow
velocity U � �Um���

The following parameters were computed by contributors to ��	�� The values
found were scattered between a lower and an upper bound� They are used
for comparison with the present results�

CD �
�FD

�U
�
D

�����

is the drag coe�cient with FD de�ned as

FD �

Z
S

�
�vt
�n

ny � Pnx�dS �����

The lift coe�cient is de�ned as

CL �
�FL

�U
�
D

�����

FL is de�ned as

FL � �
Z
S

�
�vt
�n

nx � Pny�dS �����

S is the surface of the cylinder� n its unit normal vector pointing outward�
with x�component nx and y�component ny� vt is the tangential velocity to
the cylinder surface�

�P � Pf � Pb ���
�

is the pressure di�erence between the front pressure Pf � and the back pres�
sure Pb� of the cylinder�

Speci�c to the steady case� the recirculation length Lr is computed� It corre�
sponds to the position where the streamwise velocity changes sign along the
symmetry line behind the cylinder� In the unsteady case Re � �		�� the
lift� drag and pressure di�erence vary in time due to the vortex shedding�
We present the maximum values achieved� The Strouhal number is de�ned
as
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St �
�stD

U
���	�

where �st is the frequency of the vortex shedding�

For the steady case� we used � di�erent grids� The grids have equidistant
spacings in the direction normal to the channel plates� with respectively �	�
�	 and �	 cells per diameter of the cylinder� In the streamwise direction� the
grids were slightly stretched in the front and in the back of the cylinder� but
kept equidistant across the cylinder with the same spacings as their respective
normal direction�

The results are presented in Table ���� We note the asymptotic convergence
of the solution toward the results found in ��	� as we increase the resolution
around the cylinder�

We also used � grids to compute the unsteady �ow at Re � �		� The same
approach as for the steady �ow was used to generate the �rst two grids� while
the last one used stretching in both directions to achieve better resolution
near the cylinder with fewer cells� We used �	� �	 and �	 cells to discretize
the diameter of the cylinder� The results are presented in Table ���� We note
again the asymptotic convergence of our solution towards the accepted lower
and upper bounds found in ��	� with the use of smaller grid spacing across
the cylinder�

From these two validation tests� we conclude that our results are in good
agreement with computations done with other codes and methods� the re�
sults of which were scattered between the lower and upper bounds and often
beyond the limits�
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Dimensions Cells CD CL Lr �P

��	x�� �� ��	 ����� 	�	��� 	�	��� 	�����
��	x��� �	 �
	 ����� 	�	�	
 	�	��
 	����	
��	x��� �� ��	 ����	 	�	�	
 	�	��� 	�����

lower bound ���� 	�	�	� 	�	��� 	�����
upper bound ���
 	�	��	 	�	��� 	�����

Tab� ���� Parameters for the steady �ow over a cylinder between parallel plates
�Re � ��	

Dimensions Cells CDmax CLmax St �Pmax

��	x�� �� 	�	 ���� 	����	 	��

 �����
��	x��� ��� ��	 ���� 	�
�� 	��	� �����
�		x�		 ��	 			 ���� ��			 	��	� ���
�

lower bound ����	 	�

		 	��
�	 ����	
upper bound ����	 ��	�		 	��	�	 ���		

Tab� ���� Parameters for the unsteady �ow over a cylinder between parallel plates
�Re � ���	

����� Turbulent pipe �ow

In order to demonstrate the applicability of the method to �D turbulent
�ows� we computed the fully developed �ow in a circular pipe at Re� � ��	
directly� resolving all turbulent scales� We compare our results to the results
obtained using a code ���� for helical as well as cylindrical coordinates� The
grid was chosen so that the closest point is at around y� � 	�� away from the
wall and that there are approximatively �	 points below y� � �	 at a position
with the coarsest resolution� located at  � �� degrees� In the middle of the
pipe� the grid spacing is �y� � ��	� The grid can be seen in Figure ���	�
only one quarter of the pipe is shown� Our conservative decisions give rise to
a grid which has ���x��� points in a cross section normal to the pipe axis�
In the streamwise direction� the grid spacing is �x� � ��	 and ��� points
are used�

No slip is applied by our immersed boundary technique at the surface of the
pipe and periodicity is used in the streamwise direction� The simulation was
started from an initial uniform streamwise velocity with superposed random
�uctuations in all velocities� After an initial transient period� statistics were
gathered for Tu��R � �	� where u� is the friction velocity and R is the radius
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Fig� ���� Grid used for the computation of turbulent pipe �ow� only one quarter
of the pipe shown

of the pipe� The streamwise direction is the only homogeneous direction that
can be used to enhance the statistical sampling�

The mean streamwise velocity pro�le is presented in Figure ����� Our results
are in excellent agreement with those of ����� The RMS values of velocity
�uctuations are presented in Figures ���� and ����� Near the wall� our results
show no artefacts resulting from our treatment of the boundary� A slight
di�erence is noted in the magnitude of the peaks� The di�erence is overall
small and can be partly attributed to a lack of statistical samples� In our case�
we did not bene�t from the circumferential direction� which is homogeneous
in a cylindrical� but not in a cartesian coordinate system� to enhance the
statistics� On the other hand� using a cartesian grid removes the singularity
at the centreline associated with a cylindrical coordinate system�

We must confess that the method works more e�ciently in �ow situations
around bodies� since there is less overhead of blocked cells e�g� �ow around
a circular cylinder or an airfoil�� In our computation of the pipe �ow one
can notice in Figure ���	 that the regions where the grid is most re�ned lie
outside of the computational domain� In any case� the DNS results obtained
with the present method are in good agreement with previous DNS data�
which con�rms the suitability of the present technique for DNS of turbulent
�ows�
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�� DNS of the �ow around a circular cylinder at

Re � ����

In this chapter� a DNS of the �ow around a circular cylinder at Re � �
		
is presented� Results are compared to numerical and experimental data ob�
tained by other authors�

��� Computational details

����� Resolution issues

Our computational domain is shown in Figure ���� It extends over �	 diame�
ters D in the streamwise x�direction� with the center of the cylinder being �D
downstream of the in�ow plane� In the normal y�direction� the domain size
is also �	D� The spanwise extent of the domain was chosen to be Lz � �D�
which corresponds to the size used by most previous authors� The boundary
conditions prescribed in the present simulation are a uniform unperturbed
in�ow velocity U� and periodicity of the velocity components in the spanwise
direction� A zero�gradient out�ow condition holds at x � ��D� Instead of
using uniform in�ow velocity� Kravchenko and Moin ���� prescribed poten�
tial �ow velocities� The streamwise potential �ow velocity in the symmetry
plane at x�D � �� di�ers from U� by only �'� We presume this di�erence
to have a negligible e�ect on the overall �ow structure� On the horizontal
planes� i�e y � ��	D and y � ��	D� periodicity in y�direction is enforced�
We will see later that this boundary condition has a minor impact on the
solution in the form of a slight blockage e�ect� The initial conditions for the
velocities are a uniform streamwise �ow with no perturbation in the other
directions� The pressure is set to zero in the whole domain at the initial time�
The total number of cells Nx� Ny� Nz in x�y�z��directions is �	�x�
�x����
In the attached boundary layer on the cylinder� a minimum grid spacing of
	�		�D was used to ensure a proper resolution� In the square DxD which
contains the cylinder ��	x�
	 cells were used in the streamwise and the nor�
mal directions� respectively� Figures ��� and ��� show the grid spacing used
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as a function of the position in the computational domain in the streamwise
x�direction and the vertical y�direction� respectively� On Figure ��� only the
upper half is shown� the lower half is symmetric� Coarse grids can be used
in the regions in front and in the y�direction away from the cylinder where
the �ow is quasi�uniform and no gradients need to be resolved� The grid in
the neighbourhood of the cylinder has been chosen in such a way that the
laminar boundary layer is properly resolved� An estimate of the boundary
layer thickness is obtained� adopting the �at plate boundary formula

���
x
� ��	p

Rex
����

Rex �
u�x

�
����

and assuming curvature e�ects small� With x � �D��� the boundary layer
thickness at the zenith of the cylinder is�

���
D

� 	�� ����

According to �gures ��� and ���� there are at least �	 grid points within the
boundary layer at  � �� degrees� measured from the front stagnation point�
This seems us to form an adequate resolution�

����� Statistical sampling and computational costs

The simulation was run with a constant time step size of �t � 	�		�D�U�
which ensured that the maximum Courant number is small enough
CFL�	���� to guarantee a stable computation� It is not always advan�
tageous to chose the largest time step allowed by the numerical schemes�
The iterative Poisson solver used in the code MGLET needs larger number
of iterations to converge when the initial guess is further away from the de�
sired solution� This means that when the time step size is increased� it takes
longer to advance the complete �elds over one time step� On the other hand�
setting a very small time step size reduces the CPU time required for one
time step� but in terms of physical time duration T � D�U�� it takes more
time steps and thus more CPU time� In between� there exists an optimal
time step that provides the most physical time TU��D for a given CPU
e�ort� Our time step was chosen according to this consideration�

After about T � ��D�U� problem times� the vortices behind the cylinder
started to be shed downstream� We waited for an additional T � ��D�U�
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or about �� shedding cycles before starting the statistical averaging� The
variables were spanwise and time averaged during a period of T � �		D�U��
or about �	 shedding cycles� One sample was taken every �	 time steps� The
components of the Reynolds stress tensor were computed from the relation�

� u�iu
�
j ��� uiuj � � � ui �� uj � ����

where the brackets denote time and spanwise averaging�

The computations were performed on the Fujitsu VPP�		 of the Leibniz
Rechenzentrum LRZ� in Munich� The architecture of the VPP�		 allows
two levels of code optimization� The �ner level is the use of the vector unit
of the processors� The most inner loop should not contain any recursive ref�
erence of the variables� This translates for example in the use of a red�black
algorithm within the iterative Poisson solver in the code MGLET which is
similar in principle to the Gauss�Seidl algorithm� The coarser level of opti�
mization is the use of domain decomposition with inter�node communication�
� nodes were used in parallel with domain decomposition in the spanwise di�
rection� MPI communication was used to exchange the variables located on
the boundaries of the domain"s partitions� The average total performance
was about ��� G�ops or ��	 M�ops per node� The total memory consump�
tion reached about 
�� GBytes� �	 seconds were needed to perform one time
step� The total number of time steps was � � �	�� �
		 CPU hours were
needed to carry out the whole simulation� all � nodes summed together� or
�� computing days in wall clock time�
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��� Instantaneous �ow �eld

Based on �ow visualization results� Perry et al����� had suggested a mecha�
nism for the K�arm�an vortex street formation in the near wake region� They
also pointed out� consistently with Cantwell and Coles" �ndings ���� that the
vortex shedding process is Reynolds number independent� The present re�
sults con�rm the vortex formation mechanism and demonstrate it with the
help of the Q�criterion� Q is de�ned in eq� ���� and represents the second
invariant of the velocity gradient tensor� It is also related to the Laplacian of
the pressure� Figure ��� shows the time evolution of the vortex street forma�
tion and the vortex shedding phenomenon� At the initial time upper left��
a vortex is formed in the upper half of the wake� While it propagates down�
stream t � T����T���� it draws the shear layer on the lower half across the
wake� This gives rise to a new vortex on the lower side t � �T�� � �T���
which becomes stronger and travels downstream and in turn draws the upper
free shear layer into the wake t � �T��� �T��� to complete the cycle with
the generation of a vortex in the upper part of the wake�

Figures ���� ��� and ��� show isosurfaces of constant pressure �uctuations�
Large vortical structures are easily identi�ed� A complex arrangement of
streamwise vortices braids� links the K�arm�an vortices shed from successive
cycles together� The spanwise spacing of these streamwise vortices is of the
order of one cylinder diameter� in agreement with the B�mode secondary
instability of the K�arm�an vortex street ����� Stretching of the streamwise
vortices occurs between the counter�rotating pair of newly formed primary
K�arm�an� vortices which enhance their strength� A self�sustainable cycle of
formation of streamwise vortices is created by this mechanism� Also worth
mentioning is the presence of vortices in the free shear layers� as seen in Figure
��� in the top shear layer� These Kelvin�Helmholtz vortices result from the
instability of the shear layer which leads to transition to turbulence�

Figures ��� and ��
 show isosurfaces of constant positive and negative span�
wise velocity �uctuations� The highly three�dimensional nature of the wake
is well illustrated� Streamwise bands of spanwise velocity �uctuations of op�
posite sign indicate the presence of the aforementioned streamwise vortices�
The general shape of the K�arm�an street can be nicely observed on the side
view� Figure ��
�

Small vortical structures are well shown when using Hunt"s Q�criterion Hunt
et al� ������

Q �
�

�
!ij!ij � SijSij� �

�

��

��p

�xi�xi
����



���� First and second order statistics ��

where

!ij �
�

�

�Ui

�xj
� �Uj

�xi
� ����

and

Sij �
�

�

�Ui

�xj
�
�Uj

�xi
� ����

In Figure ���	� isosurfaces of constant value of Q are shown� together with
isosurfaces of constant pressure �uctuations� The highly organized nature of
turbulence in coherent structures is noticed in the near wake region� The
primary vortex plays a pivotal role in the transition process of the shear
layers by feeding perturbations from further downstream back to the shear
layers via the recirculation region� From visual inspection of a time sequence
of frames like in Figure ���� we see that the structures fed to the shear layers
by the primary K�arm�an vortices are elongated in the streamwise direction�
This certainly results from the stretching caused by the counter rotating
rollers� The Kelvin�Helmholtz vortices are also visible from the Q�criterion�
and in addition� streamwise vortices linking two consecutive occurences of
the Kelvin�Helmholtz vortices can be observed� They are similar to the ones
present in the K�arm�an vortex street�

��� First and second order statistics

After an initial transient period of about �		 time units based on the free�
stream velocity and the cylinder diameter� statistics of �rst and second order
were gathered for T � �		D�U� and the ��� planes perpendicular to the
spanwise direction were used as realizations� Drag and back pressure coe��
cients� the separation angle  sep� the recirculation length Lr and the Strouhal
number St� see eq� ���	�� were computed and are presented in Table ����
The drag coe�cient CD has been de�ned in eqs� ���������� for laminar �ow�
If the velocity and pressure are replaced by their statistical mean values� this
de�nition holds here� The back pressure coe�cient reads�

CPb �
�pb � p�
�

�
�U�

�
����

The separation angle  sep is de�ned at the point of zero wall vorticity� The
recirculation length� �nally� is given as the distance between the rear stagna�
tion point and the point on the symmetry plane where the mean streamwise
velocity changes sign�
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Fig� ��
� Time evolution of the contour lines of the second invariant of the ve�
locity gradient tensor Q � ������ over one vortex shedding period
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Fig� ���� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� perspective view
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Fig� ���� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� top view


Fig� ���� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� side view
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Fig� ���� Isosurfaces of spanwise velocity �uctuations V ��U� � ����� top view


Fig� ���� Isosurfaces of spanwise velocity �uctuations V ��U� � ����� side view
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Fig� ���� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� �darker gray	� and
of the second invariant of the velocity gradient tensor Q � ���� �lighter
gray	
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Data from CD CP b �sep Lr�D St

exp ���� � ���� ����� � ���� �� � 	 
�� � ��
 ��	
� � �����
DNS �	�� Case I � ����� � 
�
	 ��	��
Present DNS 
��� ����� ���� 
��� ��		�

Tab� ���� Mean �ow parameters from DNS and experiments


We note the excellent agreement of our simulation when compared to the
experiments� All the parameters are within the experimental accuracy� The
data of Ma et al� ���� shows a smaller recirculation region which leads to a
lower back pressure coe�cient� a trend that is consistent�

Figure ���� shows the mean and instantaneous streamlines of the �ow� The
latter being obtained from the projection of the velocity �eld onto a �D
plane� In the mean� a nearly perfectly symmetric recirculation bubble is
observed� No secondary recirculation is noted� The mean �ow is distorted
by the presence of the cylinder only in a small area around the cylinder� which
con�rms the validity of the boundary conditions used far from the cylinder
in our computation� When looking at the instantaneous streamlines� we
note a small secondary recirculation at the lower side of the cylinder� A
strong vortex is also observed� originating from the upper side� The region of
disturbed �ow is obviously more extended in the instantaneous than in the
mean �ow� especially in the wake region�

Figure ���� presents contour lines of the mean streamwise velocity� the mean
vertical velocity and the mean pressure� respectively from top to bottom� The
number of samples used for averaging seems su�cient� excellent symmetry
being observed� The recirculation length is easily identi�ed by the change
from dashed to solid contour lines of the mean streamwise velocity along the
centreline of the wake� We note that the minimum pressure appears in the
region of maximum backward �ow within the recirculation bubble�

Figure ���� shows contour lines of the RMS velocity �uctuations in the
streamwise� vertical and spanwise directions from top to bottom� respec�
tively� Interestingly� two distinct maxima are observed on each side of the
cylinder in the streamwise velocity �uctuations� The one occuring in the
shear layer is the strongest� Its location corresponds well to the location
where the wake vortex formation is initiated as discussed above and observed
on Figure ���� The second peak is slightly downstream from the �rst one and
closer to the symmetry line� It represents a relative maximum� The location
of this peak seems to correspond to the location where the vortex migrates
after the initial phase of its formation and where it grows in strength before
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Fig� ����� Mean and instantaneous streamlines of the �ow near the cylinder� the
latter being obtained from the projection of the instantaneous velocity
�eld onto a �D plane
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being convected downstream� On the contour plot of the vertical velocity
�uctuations� a maximum appears slightly downstream of the recirculation
bubble� The spanwise velocity �uctuations are smaller in magnitude than
those in the other directions� A maximum is observed in the recirculation
region� just upstream of the closing of the bubble� indicating a high level of
three�dimensionality in this area�

In order to validate our results we use data available both from numerical
simulations and from experiments of other authors� The experimental data
is the PIV measurements of Lourenco and Shih ����� published in ���� and the
hot�wire experiment of Ong and Wallace ����� The hot�wire device cannot
be used in recirculating �ows� Hence the data is available only downstream
of the recirculation zone� i�e� x�D � ��		� We also compare our results with
the numerical simulations of Ma et al� ����� Their DNS was conducted with
spectral elements as discussed in Chapter �� The data presented here are
those of Case I in ����� This case corresponds to a �ow domain with a size
in spanwise direction of ��D which was resolved by ��� Fourier modes� The
number of triangular elements in the x�y��plane was 
	�� Each element was
�lled with Jacobi polynomial modes of order �	� Hence� this case represented
the highest spatial resolution case of all the runs discussed in �����

Figure ���� presents the mean pressure coe�cient distribution along the sur�
face of the cylinder� The angle  � 	 corresponds to the front stagnation
point while  � ��	 correponds to the back of the cylinder� Only the pres�
sure distribution on the upper half of the cylinder is shown� the other side is
symmetric� We compare our results to those of the experiment of Norberg
����� carried out at a Reynolds number Re � �	�	� very close to the present
one� The overall agreement is good� The location of the minimum pressure
coe�cient and the extent of the region along the back of the cylinder where
the pressure coe�cient is practically constant are well predicted�

In Figure ����� the mean streamwise velocity along the centreline of the
cylinder is shown� We notice a good prediction of the recirculation length
and its strength� re�ected by the minimum velocity achieved� The rate of
recovery of the �ow is also well predicted� Our data matches the one of Ong
and Wallace ���� in the region further downstream� There is no explanation
for the apparent discrepancies observed between the experiments of Lourenco
and Shih ���� and Ong and Wallace ���� around x�D � ��	� A plateau
appears in the data of Lourenco and Shih ���� while the trend in the near�wake
is unknown for the hot�wire experiment of Ong and Wallace ����� Similar
plateaus were also observed in the experiments of Prasad and Williamson
���� at Reynolds numbers of ��	� ��	� ���� and ����� Although observed
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levels
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experimentally� this plateau has never been predicted in any of the numerical
simulations of the cylinder �ow at Re � �
		 we know of� This leaves an
open question that needs to be investigated� It is tempting to conjecture that
a large scale phenomenon in the spanwise direction could be responsible for
the appearance of the plateau� A possible candidate is the so�called vortex
dislocation �rst described by Williamson ����� Vortex dislocations are large
scale phenomena occuring when the frequency of the K�arm�an vortex shedding
goes out of phase along the span of the cylinder� Vortex dislocations appear
naturally in the wake"s �D transition regime and at higher Reynolds number
or can be caused by end�e�ects in experiments� Dislocations have a strong
three�dimensional e�ect on the wake and hence could be partly responsible for
the discrepancies between the measured and simulated streamwise velocity
pro�les�

Figures ����� ���� and ���� show vertical pro�les of the mean streamwise
velocity at streamwise locations ranging from x�D � ��	� to x�D � �	�	�
The agreement is generally good� We note a slight blockage e�ect due to
the boundary conditions at y�D � �	 which leads to a �' increase of the
streamwise velocity �D away from the cylinder� In the regions further down�
stream we note a reduced quality of the DNS data of Ma et al� ���� near the
symmetry plane of the wake� This might be due to the fact that the data
set provided was not sampled over a su�ciently long period of time� On the
other hand the present DNS data also deviate from the experimental data in
the free�stream region� Further simulations would be needed to clarify the
e�ect of the boundary conditions there�

Figures ���
� ���	 and ���� show vertical pro�les of the mean vertical velocity
at the same downstream locations� Our simulation agrees well with the
data of Ma et al� ���� except after x�D � ��		� The experimental data of
Lourenco and Shih ���� do not seem reliable for this quantity� it lacks the
basic properties of symmetry and a zero value on the centreline�

Figures ����� ���� and ���� present vertical pro�les of the variance of the
streamwise velocity �uctuations at the locations described above� Good
agreement is observed between all numerical data sets� Downstream of the
near wake Ma et al�"s data are certainly not stable enough� The experimental
data of Ong and Wallace ���� generally reveal lower amplitudes� In view of
the relatively close agreement between the two DNS data sets� one is tempted
to question the experimental acuracy�

Figures ����� ���� and ���� show vertical pro�les of the variance of the ver�
tical velocity �uctuations� Again� good agreement is observed between the
numerical simulations� although in the region more downstream� we predict
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� Distribution of the pressure coe�cient along the surface of the cylinder
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higher values than the experiment and the simulation of Ma et al� �����

In Figures ����� ���
 and ���	� the pro�les of the shear stress uv are presented
at the same locations as used in the previous plots� Strikingly good agreement
is obtained at locations x�D � ��	� and ���� with the data of Lourenco and
Shih ����� At the locations more downstream� the agreement is still quite
good�
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It is interesting to have a look at the behavior of the second and third in�
variants of the anisotropy of the Reynolds stress tensor since this tensor and
its invariants play an important role in algebraic Reynolds stress modeling�
If we de�ne the anisotropy tensor as�

bij �
uiuj
�k

� �
�
�ij ��
�

where �k � uiui and �ij is the Kronecker delta� the second and third invari�
ants read

II � �bijbji
�

���	�

III �
bijbjkbki
�

�����

In a plot of II vs III� all possible states of a turbulent �ow are constrained to
lie in the triangular region shown in Figure ����� For a detailed presentation
of how this triangle is obtained� the reader is referred to ����� The point
O corresponds to isotropic �D turbulence� point P represents �D isotropic
turbulence� and �nally point Q corresponds to �D turbulence� Segment 	P is
given by the equation III � ���II������ and corresponds to axisymmetric
turbulence� Starting from �D isotropic turbulence� one diagonal component
of the Reynolds stress tensor gradually tends toward 	� On segment OQ
given by eq� III � ��II������� we also �nd axisymmetric turbulence�
Segment PQ ��
 � �III � II � 	� denotes �D turbulence� From point P
to point Q� one of the two non�zero diagonal components of the Reynolds
stress tensor tends to zero� Figures ���� to ���� show plots of II vs III along
vertical coordinates taken at downstream locations ranging from x�D � ��	�
to x�D � �� A few selected points are highlighted with symbols in order to
help situate the reader� The points chosen are A at y�D � �� B at y�D � ��
C at y�D � 	�� and �nally G at y�D � 	 which lies on the centreline of
the wake� Figure ���� shows II vs III along a vertical coordinate taken at
x�D � ��	�� Point A is outside of the wake and although very small Reynolds
stresses are observed� the vertical Reynolds stress vv dominates slightly over
uu while ww is several orders of magnitude smaller� Complex behavior of the
curve is noted between A and D� The curve goes through various stages before
it enters the axisymmetric segment OQ and �nally reaches quasi�isotropic
turbulence on the centreline� In the region further downstream� outside of the
mean recirculation bubble where the �ow exhibits fully developed turbulence�
i�e� x�D � ��	�� Figures ���� to ���� show a very similar behavior of II vs
III near the centreline point D� where the turbulence is axisymmetric�
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��� Frequency spectra

To gain further insight into the turbulence structure in the wake of the cylin�
der� frequency spectra are computed from the DNS data� Over a period of
time T � 
	D�U�� ��
	 samples were gathered along the centreline of the
cylinder at � downstream locations� x�D � ��		� x�D � ��		� x�D � ��		
and x�D � �	�	� Frequency spectra of velocity �uctuations were computed
via the Lomb periodogram technique ����� All points in the spanwise di�
rection were treated as independant realizations and used to average the
spectra� The spectra are compared to those obtained experimentally by Ong
and Wallace �����

At x�D � ��		� Figures ���
 and ���	 show the frequency spectra of the
streamwise and vertical velocity �uctuations� respectively� At the lower fre�
quencies� the level of energy is predicted in accordance with the experiment
while at the higher frequencies a slightly higher level is seen� The exper�
iments might have had di�culties to capture the highest frequencies� In
Figure ���	� the strong peak at the Strouhal frequency is well reproduced� A
second weaker peak at ���St � ��	 appears on both sets of data� It should
be kept in mind that the primary frequency which is due to vortex shedding
appears at twice the Strouhal frequency in the streamwise velocity �uctua�
tions Fig� ���
�� In both �gures� an extended inertial range where energy
cascades following a ���� slope is observed�
Figures ���� and ���� show the frequency spectra at x�D � ��		� Very good
agreement is observed with the experiment� In Figure ����� the two peaks
are still visible� Again the spectra show an extended inertial range�

Figures ���� and ���� present the frequency spectra at x�D � ��		� Again
the agreement is good� The inertial range now encompasses a reduced portion
of the spectrum�

Finally� in Figures ���� and ���� the frequency spectra are plotted at the last
position� x�D � �	�	� At the higher frequencies� the DNS now shows lower
level of energy� This most certainly results from an underresolution of the
simulation in this area� It is estimated that �	 to �	 grid points per diameter
would be needed to properly resolve all the �ow features� In any case� one
can conservatively conclude that up to x�D � ��		� our DNS data is reliable�

One�dimensional wavenumber power spectra were also computed in the ho�
mogeneous spanwise direction� They provide valuable informations about
the resolution requirements in this direction� The spectra of velocity �uctua�
tions have been obtained by Fourier transforming the instantaneous velocity
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components and multiplying Fourier coe�cients with their complex conju�
gate and summing over all these products� Time averaging of the spectra was
performed to obtain smooth curves� Figures ���� and ���� show the spec�
tra for di�erent streamwise positions of the streamwise and vertical velocity
�uctuations� respectively� Between ��� and � orders of magnitude of energy
decay is observed from the low to the high wavenumbers�
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Re � ����

In this chapter� LES results of the �ow around a circular cylinder at
Re � �
		 are reported for di�erent SGS models and grid resolutions� They
are compared to DNS data presented in the previous chapter� In addition�
comparisons with numerical simulations and experiments� performed by other
authors� are also provided and discussed in detail�

��� Computational details

The computational domain and boundary conditions were set identically
equal to those of the DNS presented in the previous chapter and are repeated
here� The computational domain is �	 diameters D long in the streamwise x�
direction� with the center of the cylinder being �D downstream of the in�ow
plane� In the normal y�direction� the domain size is also �	D� The span�
wise extent of the domain was chosen to be Lz � �D� which corresponds
to the size used by most previous authors� The boundary conditions pre�
scribed in the present simulations are a uniform� unperturbed in�ow velocity
and periodic velocity components in the normal and spanwise directions� A
zero�gradient out�ow condition holds at x � ��D�

Recently� Ma et al� ���� pointed out the fact that a small spanwise com�
putational domain like �D or a high dissipation LES favor U�shape rather
than the V�shape streamwise velocity pro�les that were also observed in PIV�
experiments of Lourenco anf Shih ���� in the near wake x�D � ��	��� We
will show later that such a discrepancy in the near wake region is largely
explained by di�erences in the prediction of the mean recirculation bubble
which are sometimes due to an insu�cient averaging time�

Two meshes with di�erent resolutions� ��� � �	� case LES�� and ��� � �	�
case LES�� cells have been used to investigate the grid independence of
the solution� The total number of cells Nx� Ny� Nz in x�y�z��directions is
summarized in Table ���� This table also contains the number of cells Dx�
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Case NxxNyxNz DxxDy ��xi����xi

�xi
�� 
�� �

�yj����yj
�yj

�� 
��

LES
 ���x�	�x�� 
��x
�� 
�� 	��
LES	 	��x	��x�� ��x�� ��
 ���

Present DNS ���x���x

	 
��x
�� ��� 
��

Tab� 
��� Computational parameters

Dy taken to discretize the square DxD which contains the cylinder� The last
two columns represent the grid stretching factors� The corresponding data
of the DNS presented earlier are included for comparison�

Three di�erent computations were performed� In LES�� the Smagorinsky sgs
model was used with a coe�cient of 	�� and a length scale � � �x�y�z�

����
but no wall damping LES� smago�� For comparison� the dynamic Smagorin�
sky model of Germano et al� ���� with Lilly"s modi�cation ���� was applied
on grid LES� LES� dyn�� On grid LES�� only the Smagorinsky model was
used LES� smago�� Both models are described in Chapter ��

��� Instantaneous �ow �eld

Figure ��� shows instantaneous isosurfaces of a speci�c pressure �uctuation
P ��	���U�

� � �	��� for DNS and LES� smago computations� The large
vortical structures rollers� and the braids� are easily identi�ed� The LES
simulation is able to capture such phenomena� but looses the �ner scales as
can be seen from the DNS data� Further in the wake� Figure ���� the K�arm�an
vortex street is mostly two�dimensional�

In Figure ���� instantaneous isosurfaces of a speci�c value of Q are shown�
together with isosurfaces of a pressure �uctuation� It is encouraging to note
the similarities of this �gure with Figure ���	� which shows the same quan�
tities but for the DNS� The same streamwise structures in the near wake are
present� but bigger in the LES when compared to the DNS� an e�ect of the
di�erence in spatial resolution�

��� First and second order statistics

All the �ow statistics of the LES and DNS have been accumulated over
�		 problem times tU��D which corresponds to approximately �	 vortex
shedding cycles� In Table ���� the comparison of �ow parameters starts
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Fig� 
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Tab� 
��� Mean �ow parameters from DNS�LES and experiments �taken from
���������	

with the mean drag coe�cient CD� the base pressure coe�cient CP b� then
proceeds to the separation angle  sep� the length of the mean recirculation
region and the Strouhal shedding frequency St� Three di�erent LES� the LES
of Kravchenko and Moin ����� case �� the DNS of Ma et al� ����� case I� and
our own DNS are contrasted� The coarse grid computation together with the
Smagorinsky model LES� smago� provides the poorest results� On the �ne
grid� the di�erence between both sgs models is unimportant� The separation
angle and the shedding frequency agree well with the experimental data� For
the drag coe�cient and the base pressure coe�cient the agreement is fair�
The length of the mean recirculation region� Lr� however� appears to be too
small�

Figure ��� shows the streamlines of the mean velocity �eld� We again notice
the shortening of the recirculation length obtained by our LES computations
as compared to the DNS result� Also worth mentioning is a secondary re�
circulation bubble which was seen only on an instantaneous �ow �eld in the
DNS� but now appears in the mean for the LES� A correlation is observed
between the strength of the secondary recirculation and the length of the
primary recirculation which is a�ected by the decrease in resolution on one
side and the amount of low�pass �ltering on the other� Similar secondary
recirculations were reported in the LES studies of Breuer ��� and Fr�ohlich
et al� ����� Experimental studies reported that such regions occur around
Re � �			� which is physically consistent with the present simulations which
predicted earlier transition of the shear layers accompanied by shorter re�
circulation bubbles and lower base pressure coe�cients� These trends are
typical for Reynolds numbers higher than �
		�

Figure ��� compares isolines of the mean streamwise velocity of the DNS�
LES� dyn and LES� smago� We note once again the shorter recirculation
bubble of the two LES computations� Shorter shear layers are also noted�
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In the LES� the formation length of the wake vortices is also shorter as
illustrated by Figure ��� which shows contour lines of the RMS streamwise
velocity �uctuations� The two peaks associated with the vortex formation� as
shown in the previous chapter� are closer to the cylinder� The peaks present
in the vertical and spanwise velocity �uctuations� as seen in Figures ��� and
���� are shifted closer to the cylinder� which is also a consequence of the
shorter recirculation regions obtained in the LES� Wiggles resulting from the
use of coarse grids are clearly visible in Figure ����

Figure ��
 presents the distribution of the pressure coe�cient along the sur�
face of the cylinder� LES� dyn and LES� smago provide very similar solu�
tions� in fair agreement with the DNS and with the experiment of Norberg
����� LES� smago is in good agreement with the other numerical simulations
on the front part of the cylinder� but gives a lower pressure coe�cient toward
the rear of the cylinder�

Figure ���	 shows the mean streamwise velocity in the symmetry plane of
the cylinder wake� The maximum back�ow velocity is fairly well predicted
in all cases� especially by the DNS� The underprediction of the recirculation
length Lr by all LES runs is obvious and has been documented in Table ����
The plateau in the data of Lourenco and Shih ���� for x � �D has already
been discussed in the previous chapter� Figures ���� to ���� show the mean
streamwise velocity pro�les taken along vertical coordinates through the wake
at positions ranging from x�D � ��	� to �	� In the near wake� Figure ������
at x�D � ��	�� the LES predicts more pronounced V�shape pro�les than the
DNS� Downstream of x�D � ��	� see Figures ���� and ����� the recovery
of the centreline velocity is retarded for the LES data� especially for LES�
smago� The results of LES� dyn and LES� smago are nearly identical and
both show fair agreement with the DNS data� In Figures ���� to ����� the
mean vertical velocity pro�les taken at the same positions as described above�
are shown� The overall agreement is good for computations LES� dyn and
LES� smago� while LES� smago gives the poorest predictions�

The variance of the streamwise velocity �uctuations is shown in Figures ����
to ���
� Although at x�D � ��	�� Figure ����� all the LES data predict
higher peaks� at the locations downstream the overall agreement with the
experiment is quite acceptable� We note no clear superiority of one of the
two computations LES� dyn and LES� smago� The Smagorinsky model
gives slightly better predictions in the near wake� i�e� x�D � ����� ��	��
while more downstream the dynamic model behaves somewhat better� The
variances of the vertical velocity �uctuations are presented in Figures ���	
to ����� After exhibiting much higher peaks than the DNS at x�D � ��	�
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� experiment of Lourenco and Shih ����� Symbols are the experiment of
Norberg

and x�D � ����� all LES come closer to the DNS on the centreline y�D � 	
further downstream� The width of the wake� however� is overpredicted by all
LES� LES� smago showing once again the poorest results� We note in Figure
���� the excellent agreement between LES� dyn and DNS in the mid�wake�
This is practically the only plot where a signi�cant di�erence is observed
between LES� dyn and LES� smago�

Vertical pro�les of the Reynolds shear stress �uv are shown in Figures ���� to
����� At x�D � ��	� and x�D � ����� all LES computations show higher
peaks than the DNS and the experiment� Further downstream� all the LES
data provide good predictions� most probably due to a compensation of model
and resolution e�ects� At x�D � ��	�� the excellent agreement of LES�
smago with the experiment is merely a coincidence� Overall LES� dyn and
LES� smago provide the best predictions�



�� 
� LES of the �ow around a circular cylinder at Re � ����

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

u/
U

∞

x/D

Fig� 
��� Mean streamwise velocity along the centreline of the cylinder
 Symbols�
�� DNS� � � � LES� smago� � � � � LES� dyn� � � � � � � � LES�
smago� � experiment of Lourenco and Shih ����� x experiment of Ong
and Wallace ���


-2

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

u/
U

∞

y/D

x/D = 1.06

x/D = 1.54

x/D = 2.02

Fig� 
���� Vertical pro�les of mean streamwise velocity at x�D � ����� ��� and
����
 Symbols as in Figure �
��




��� First and second order statistics ��

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

u/
U

∞

y/D

x/D = 3.00

x/D = 4.00

x/D = 5.00

Fig� 
���� Vertical pro�les of mean streamwise velocity at x�D � ����� ���� and
���
 Symbols as in Figure �
��

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

u/
U

∞
2

y/D

x/D = 6.00

x/D = 7.00

x/D = 10.0

Fig� 
���� Vertical pro�les of mean streamwise velocity at x�D � ����� ���� and
����
 Symbols as in Figure �
��



�� 
� LES of the �ow around a circular cylinder at Re � ����

-2.5

-2

-1.5

-1

-0.5

0

0.5

-3 -2 -1 0 1 2 3

v/
U

∞

y/D

x/D = 1.06

x/D = 1.54

x/D = 2.02

Fig� 
��
� Vertical pro�les of mean vertical velocity at x�D � ����� ��� and ����

Symbols as in Figure �
��

-0.2

-0.1

0

0.1

0.2

-3 -2 -1 0 1 2 3

v/
U

∞

y/D

x/D = 3.00

x/D = 4.00

x/D = 5.00

Fig� 
���� Vertical pro�les of mean vertical velocity at x�D � ����� ���� and ���

Symbols as in Figure �
��




��� First and second order statistics ��

-0.15

-0.1

-0.05

0

0.05

-3 -2 -1 0 1 2 3

v/
U

∞

y/D

x/D = 6.00

x/D = 7.00

x/D = 10.0

Fig� 
���� Vertical pro�les of mean vertical velocity at x�D � ����� ���� and ����

Symbols as in Figure �
��

-0.6

-0.4

-0.2

0

0.2

0.4

-3 -2 -1 0 1 2 3

uu
/U

∞
2

y/D

x/D = 1.06

x/D = 1.54

x/D = 2.02

Fig� 
���� Vertical pro�les of the variance of the streamwise velocity �uctuations
at x�D � ����� ��� and ����
 Symbols as in Figure �
��



�� 
� LES of the �ow around a circular cylinder at Re � ����

-0.1

-0.05

0

0.05

0.1

-3 -2 -1 0 1 2 3

uu
/U

∞
2

y/D

x/D = 3.00

x/D = 4.00

x/D = 5.00

Fig� 
���� Vertical pro�les of the variance of the streamwise velocity �uctuations
at x�D � ����� ���� and ���
 Symbols as in Figure �
��

-0.1

-0.05

0

0.05

0.1

-3 -2 -1 0 1 2 3

uu
/U

∞
2

y/D

x/D = 6.00

x/D = 7.00

x/D = 10.0

Fig� 
���� Vertical pro�les of the variance of the streamwise velocity �uctuations
at x�D � ����� ���� and ����
 Symbols as in Figure �
��




��� First and second order statistics ��

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-3 -2 -1 0 1 2 3

vv
/U

∞
2

y/D

x/D = 1.06

x/D = 1.54

x/D = 2.02

Fig� 
��� Vertical pro�les of the variance of the vertical velocity �uctuations at
x�D � ����� ��� and ����
 Symbols as in Figure �
��

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

vv
/U

∞
2

y/D

x/D = 3.00

x/D = 4.00

x/D = 5.00

Fig� 
���� Vertical pro�les of the variance of the vertical velocity �uctuations at
x�D � ����� ���� and ���
 Symbols as in Figure �
��



�� 
� LES of the �ow around a circular cylinder at Re � ����

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-3 -2 -1 0 1 2 3

vv
/U

∞
2

y/D

x/D = 6.00

x/D = 7.00

x/D = 10.0

Fig� 
���� Vertical pro�les of the variance of the vertical velocity �uctuations at
x�D � ����� ���� and ����
 Symbols as in Figure �
��

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-3 -2 -1 0 1 2 3

uv
/U

∞
2

y/D

x/D = 1.06

x/D = 1.54

x/D = 2.02

Fig� 
���� Vertical pro�les of the shear stress uv at x�D � ����� ��� and ����

Symbols as in Figure �
��




��� First and second order statistics ��

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-3 -2 -1 0 1 2 3

uv
/U

∞
2

y/D

x/D = 3.00

x/D = 4.00

x/D = 5.00

Fig� 
��
� Vertical pro�les of the shear stress uv at x�D � ����� ���� and ���

Symbols as in Figure �
��

-0.15

-0.1

-0.05

0

0.05

-3 -2 -1 0 1 2 3

uv
/U

∞
2

y/D

x/D = 6.00

x/D = 7.00

x/D = 10.0

Fig� 
���� Vertical pro�les of the shear stress uv at x�D � ����� ���� and ����

Symbols as in Figure �
��



�� 
� LES of the �ow around a circular cylinder at Re � ����

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

u/
U

∞

y/D

x’/Lr = 0.431

x’/Lr = 0.80

x’/Lr = 1.17

Fig� 
���� Mean streamwise velocity pro�les at three locations x��Lr in the wake
of the cylinder
 The locations x�D vary from case to case according to
the di�erent recirculation lengths Lr
 Symbols as in Figure �
��

In order to demonstrate the importance of properly predicting the mean
recirculation length Lr� we have plotted pro�les of the mean streamwise ve�
locity and its variance at locations which are the same when normalized with
the corresponding Lr� Hence the location x�D � ��	� e�g� corresponds to
x��Lr � 	���� for the DNS� where x

� is measured from the back of the cylin�
der while x starts from its center x� � x�D���� Figure ���� shows pro�les of
the mean streamwise velocity at three locations in the near wake� There is a
surprising collapse of the computed results for the two �rst locations� While
we observe the characteristic V�shape pro�le at x��Lr � 	��� in agreement
with fully turbulent free shear layers and the experiment� such a shape does
not perfectly appear in the numerical data at x��Lr � 	����� The streamwise
velocity �uctuations in Figure ���� re�ect a much better behavior compared
to the experiment� when they are taken at equal locations x��Lr�

��� One�dimensional power spectra

Figures ���� to ���� show one�dimensional frequency spectra at four down�
stream locations x�D � ��	� ��	� ��	 and �	�	� along the centreline� Around
��		 samples were collected over a time�interval of about tU��D � �	 which
corresponds to roughly �	 vortex shedding cycles� The frequency is normal�
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ized with the Strouhal shedding frequency� This frequency is very pronounced
and produces nice peaks in all the computations for the vertical velocity �uc�
tuations and at twice this frequency for the streamwise velocity �uctuations�
The vertical velocity �uctuations also exhibit a second peak like the experi�
ment which is the higher harmonic of the Strouhal frequency� The LES also
predicts an inertial range� but over a less extended frequency range as the
DNS� due to the coarser grids used� especially in LES� smago� LES� dyn
and LES� smago provide practically identical results�

�D wavenumber spectra were computed in the homogeneous y�direction on
the centreline at x�D � �� In Figure ����� all the LES predict the energy
content of the scales up to almost their respective cuto� wavenumber� in
surprisingly good agreement with the DNS�

��	 U�shape vs V�shape of mean streamwise velocity pro�le in

the near wake

It has been discussed by Kravchenko and Moin ��	� that the di�erence be�
tween a U�shape and a V�shape of the mean streamwise velocity pro�le in the
near wake is mainly due to the shear layer dynamics which a�ect this region�
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Shear layers are very sensitive to free�stream turbulence� to oscillations of the
cylinder� acoustic forcing and aspect ratio for example� Any of these param�
eters can a�ect the recirculation bubble via a modi�cation of the transition
point to turbulence in the shear layer� The wide range of critical Reynolds
numbers for the shear layer instability ��	 to �			 ����� may re�ect how the
di�erent experiments were a�ected by the aforementioned phenomena�

In a numerical experiment� the possibility to in�uence the shear layer dynam�
ics comes through the spanwise domain size chosen� the boundary conditions
enforced� the numerical errors inherent to the schemes used� the underlying
grid and the sgs model� Kravchenko et al� ��	� argued that the experiment
of Lourenco and Shih ���� might have been contaminated by external dis�
turbances which led to premature transition of the shear layers and thus to
a shorter recirculation bubble� To demonstrate this point� they computed
a case with insu�cient radial and circumferential resolution and obtained
results closer to the experiment� The numerical perturbations introduced
by the use of a coarse grid were su�cient to trigger an earlier transition of
the shear layers� In the spectral investigations of Ma et al� ����� a U�shape
pro�le was obtained in a computation using a spanwise box size of �D� like
most previous authors� while a V�shape pro�le was obtained for a box size of
��D� They then concluded that the U�shape pro�le observed in the numer�
ical experiments resulted from too small a spanwise length or from the use
of a high dissipation sgs model� This is obviously not generally true for all
the numerical simulations since in our DNS and LES� V�shape pro�les were
obtained in conjunction with high values of the variance of the streamwise
velocity �uctuations� Our computations had a spanwise domain size of �D�

In the initial phase of our DNS computation� statistical sampling was started
after about tU��D � ��� a time at which the �ow� started from a uniform
velocity in the whole domain� had established a stable vortex shedding cycle
and was turbulent in the wake as judged from visual inspection of the �ow
�eld� Statistics were then gathered for about tU��D � �	 or roughly �	
vortex shedding cycles� In Figures ���� to ���
 we compare the statistics
obtained after this short period of time to the one presented earlier which
gathered statistics for about tU��D � �		� The results of Kravchenko et
al� ���� are also included for comparison� They correspond to approximately
� shedding cycles� Figure ���� shows the mean streamwise velocity along
the centreline� We note that for the computation with the smaller averaging
period� the recirculation length is greater than the one for the long period
with fully converged statistics� We match fairly well the pro�les obtained by
Kravchenko ����� although the recirculation bubble is slightly larger in our
case� The larger recirculation length is responsible for the more pronounced
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U�shape observed in Figure ���� in the case of short statistical averaging
period� while the converged statistics show more a V�shape type of pro�le�
The data of Kravchenko ���� lie in between� In Figure ���
� the variance of the
streamwise velocity �uctuations show typical low values associated with late
transition in the short averaging period case and in the data of Kravchenko
����� while the long averaging period case shows high values achieved in earlier
transition of the shear layers�

We suspect that in addition to the previously mentioned possible explana�
tions for the U�shape and V�shape velocity pro�les obtained by di�erent
authors there might be an additional one� It seems from our data that the
establishment of a stable statistical state for the cylinder �ow at Re � �
		
can take a considerable amount of time� This means that care should be
taken when performing a numerical experiment so that a su�cient sampling
time is used and that the statistics are fully converged in the end� Prasad
at al� ���� presented time traces of the velocity in the detached shear layer
behind a cylinder at Re � �			� They noted intermittency in the time
traces� They conjectured that the intermittency observed was caused by the
random displacement upstream and downstream of the region of instability
of the shear layer� In ����� at x�D � �� strong periods of intermittency in
which the variations of the velocity are much larger than the ones caused at
the Strouhal frequency� appear quasi�periodically� Their duration is of the
order of �	 shedding cycles� The period of time between two consecutive
occurences is also of the order of �	 shedding cycles� In order to include a
few of these occurences in a statistical sampling� a period of time of about �	
vortex sheddings seems necessary in accordance with the �ndings presented
in Prasad et al� �����




��� U	shape vs V	shape of mean streamwise velocity pro�le ��

Fig� 
���� Mean streamwise velocity along the centreline
 Solid line � DNS after
a sampling period of tU��D � ���� short dash� DNS after a sampling
period of tU��D � �� long dash� Kravchenko et al
 ����

Fig� 
���� Mean streamwise velocity at x�D � ����
 Solid line � DNS after a
sampling period of tU��D � ���� short dash� DNS after a sampling
period of tU��D � �� long dash� Kravchenko et al
 ����
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Fig� 
���� Variance of streamwise velocity �uctuations at x�D � ����
 Solid line �
DNS after a sampling period of tU��D � ���� short dash� DNS after a
sampling period of tU��D � �� long dash� Kravchenko et al
 ����



�� LES of the �ow around a circular cylinder at

Re � ������

In this chapter� results of LES computations of the �ow around a circular
cylinder at Re � ��				 are presented and compared to the experiment of
Cantwell and Coles ��� and to numerical experiments performed by other
authors�

	�� Description of the computed cases

The �ow around a circular cylinder at a high subcritical number Re �
��				� is computed� The e�ect of the grid resolution is investigated� Both
the studies of Travin et al� ���� and of Breuer ��� show that grid re�nement
does not automatically lead to better results when compared to the exper�
imental data� Our �rst two computations were performed on those grids
which were used at lower Reynolds number �
		�� namely the �nest grid
of our LES at Re � �
		 LES��� and the one used for the DNS� These
computations will demonstrate the e�ect of a severe underresolution of the
boundary layer at the surface of the cylinder and of the detached shear layers�
It is well known that the current limitation of applying LES to engineering
problems lies in the tremendous number of grid points needed to properly re�
solve the thin boundary layers found at high Reynolds numbers� The recent
DES published in ���� proposed to use RANS modeling for the boundary
layers and LES in the separated �ow regions� thus raising hope to extend
�ow prediction to very high Reynolds numbers� Unfortunately� the results
published in ���� at Re � ��				 are not very convincing� with predictions
of the mean recirculation length between � to � times larger than the one
measured in the experiment of Cantwell and Coles ���� Predicting accurately
the recirculating �ow region is of prime importance in order to grant any
credibility to the computed drag and back pressure coe�cients and also to
any statistics in the wake� The early stage of development of DES techniques
is probably responsible for such a discrepancy�
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A third computation is performed on a grid which resolves the boundary layer
at the surface of the cylinder and has a �ner grid spacing in the spanwise
direction when compared to the grids used by Breuer ���� This computation
was carried out in order to enhance the resolution study published in ���
by providing a simulation with higher spanwise resolution and smaller grid
spacings in the very near wake�

	�� Computational details

The �rst two grids were described in details in chapters � and �� They are
named hereafter LESH� for the grid used in LES�� and LESH� for the grid
used in the DNS at Re � �
		�

The computational details of LESH� are the following� the computational
domain is �� diameters D long in the streamwise x�direction� with the center
of the cylinder being �D downstream of the in�ow plane� In the normal
y�direction� the domain size is �	D� The spanwise extent of the domain was
chosen to be Lz � �D� The boundary conditions prescribed in the present
simulations are a uniform� unperturbed in�ow velocity and periodic velocity
components in the normal and spanwise directions� A zero�gradient out�ow
condition holds at x � ��D� The total number of cells Nx� Ny� Nz in x�y�z��
directions is ���x���x���� In the attached boundary layer along the cylinder�
a minimum grid spacing of 	�		���D was used to ensure a proper resolution�
In the square DxD which contains the cylinder ��	x�	� cells were used in
the streamwise and the normal directions� respectively� The time step was
set to �tU��D � 	�			� which ensured that the maximum Courant number
is about 	����

After an initial transient period of time of about TU��D � ��� statistics
were gathered for about �TU��D � �		� The spanwise direction was used to
enhance our statistical sampling� The Smagorinsky SGS model with Cs � 	��
and no wall damping was applied in all our computations�

All the simulations were performed on the Hitachi SR�			�F� located at the
LRZ in Munich� The code MGLET had to be adapted to the new architec�
ture of the computer� The SR�			�F� introduces a new intermediate level of
parallelism to the �ne and coarse levels implemented for architectures like the
Fujitsu VPP �		 for example see Chapter ��� Each node of the SR�			�F�
is composed of 
 processors which share memory� � are available for the exe�
cutable code and one is for internal administrative tasks� At the intermediate
level of optimization� the recursive references of variables are removed from
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one of the code"s loops� The best performance is achieved when the most
inner loops are vectorized and the most outer loops are divided among the �
intra�node processors� The most time�consuming tasks in an incompressible
Navier�Stokes solver are the time advancement of the momentum equations
and the solution of the Poisson equation for the pressure� The explicit nature
of our time stepping algorithm removes all recursion of the variables within
the loops� The optimization is thus e�cient and easily implemented� In the
case of our Poisson solver� recursive references were removed at the most
outer loop by the use of a red�black algorithm� Two loop levels now have
red�black properties the inner one is for vectorization� in the Poisson solver�
This has an e�ect on the convergence rate of the pressure variable which was
small and without negative consequences in the simulations�

For case LESH�� as a typical example� we use �� nodes of the computer�
Domain decomposition is applied among the di�erent nodes� A total mean
performance of about �� G�ops� or � G�ops per node� is achieved� It takes
roughly � seconds to make one time step� Around �	 GBytes of memory
in total are necessary� a level much lower than the ��� GBytes available�
The di�erence could be used to perform more detailed statistical analysis of
turbulent �ows for example�


�				 time steps were needed in order to perform the entire simulation
LESH� T � ���D�U��� A total number of about ���			 CPU hours� all
processors combined� or �� computing days in wall clock time were necessary�

	�� Instantaneous �ow �eld

Figure ��� highlights the presence of the Kelvin�Helmholtz vortices in the
detached shear layers� At this instant in time� they are easily identi�ed in
the regions of low pressure on the top side of the cylinder� They are also noted
in Figure ���� which shows the cross�ow velocity component in the very near
wake� Near the back of the cylinder� surprisingly high values of cross�ow
velocity are found� of the order of U�� In Figure ���� the instantaneous
spanwise velocity component is shown� Again� high values are noted in this
component� also of the order of U�� We observe the presence of streamwise
vortices both in the separated top shear layer and in the wake� illustrated
by pairs of elongated regions of high spanwise velocity of opposite sign� The
Kelvin�Helmholtz vortices in the detached shear layers can be also observed
in Figures ��� to ���� We note that three�dimensionality of these vortices
appears rapidly after separation see Figure ����� The K�arm�an vortex street
remains quasi two�dimensional downstream of the cylinder� see Figure ����
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Fig� ���� Instantaneous pressure distribution in the very near wake


Streamwise vortices linking the K�arm�an vortices are also present� They can
attain a long streamwise extent� as seen in Figure ����

	�� Integral parameters and statistics of �rst and second order

Table ��� presents the drag and back pressure coe�cients� the mean recircu�
lation length and separation angle obtained in our simulations� We compare
our results to those of ��� and ���� and also to the experiment of Cantwell
and Coles ���� The predominant feature of LESH� is the overprediction of the
mean recirculation length� a feature comparable to that of the DES of �����
In fact� all the parameters of LESH� lie within the incorrect range de�ned
by DES data� with the exception of the mean separation angle which seems
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Fig� ���� Instantaneous cross�ow velocity distribution in the very near wake
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Fig� ���� Instantaneous spanwise velocity distribution in the very near wake
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Fig� ��
� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� perspective view
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Fig� ���� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� enlarged perspec�
tive view




��
� Integral parameters and statistics of �rst and second order ���

Fig� ���� Isosurfaces of pressure �uctuations P ���
�
�U�

� � ���� side view
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to be more precisely predicted in the DES� In ���� the mean separation angle
was obtained from the in�exion point of the pressure distribution along the
surface of the cylinder which in fact is di�erent from the actual separation
point� Separation occurs in reality at some distance downstream� after the
boundary layer has encountered su�cient adverse pressure gradient� The
fact that the coarser grid used in LESH� provides better agreement with the
experiment than the �ner grid of LESH� is most probably due to fortuitous
error compensations� In the DES of ����� better agreement with the experi�
ment was obtained with the �ner grid at this Reynolds number� but at a lower
Reynolds number� namely Re � �			� a similar e�ect was observed in the
sense that this time the coarser grid showed better agreement with accepted
experimental values� In all cases DES� LESH� and LESH��� the primary
vortex formation process is obviously highly de�cient� We recall here that
the mean recirculation length which is intimately related to the formation
length of the primary K�arm�an vortex� depends on the transition scenario to
turbulence in the separated shear layers� After the separation from the sur�
face of the cylinder� the shear layer has a thickness which is of the same order
of magnitude as that of the attached boundary layer� This means that both
in DES or in underresolved LES like LESH� and LESH�� the dynamics of
the separating shear layers is not properly predicted� This is especially true
in the upper subcritical range where transition to turbulence happens in the
shear layers shortly after separation� The underresolution of the boundary
layer and of the detached shear layer leads to a vortex formation length that
is too long as noted� An erroneous prediction of Lr is su�cient to query
the reliability of any other quantity computed� In contrast� LESH� predicts
the mean recirculation length very well and all the parameters lie within the
range computed by ���� and are also in globally reasonable agreement with
���� The back pressure coe�cient shows a departure from the experiment of
��� by about �	'� This di�erence remains unexplained so far� The separa�
tion angle also di�ers substantially� The angle at which the �ow separates
has a direct impact on the back pressure coe�cient� as re�ected in Table
���� The experiments available in the literature suggest a highly non�linear
relationship between the separation angle and the Reynolds number in the
high subcritical regime as pointed out in ���� This could mean that the sep�
aration point is very sensitive to the boundary conditions like for example
the level of turbulence in the in�ow� In the numerical computations� we have
a perfectly uniform and laminar in�ow� which can never be the case in the
experiments� Another possible explanation is that the use of eddy�viscosity
based SGS models has a stabilizing e�ect even in the laminar �ow region�
retarding separation�
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Data from CD CP b  sep Lr�D

exp ��� ����� ����� �� 	���
DES ���� 	������	� �	�������	� ����� �������
LES ��� ��������� ����	������ 
����
��� 	����	���
LESH� ����� ����� 
	 	�
�
LESH� 	�
�� �	�
�	 
	 ����
LESH� ���� ����� 
��� 	���

Tab� ���� Mean �ow parameters from DES� LES and experiments


Figure ��� shows the pro�le of the mean tangential velocity taken along a
vertical coordinate at the apex of the cylinder  � 
	 degrees�� We compare
LESH� to LESH�� The e�ect of boundary layer underresolution is clearly
seen� The gradient of the tangential velocity is reduced� the boundary layer
is too thick near the wall and the �ow accelerates less as it passes near the
cylinder� This probably causes the separated shear layers to be more stable�
thus retarding the primary vortex formation�

The mean streamwise velocity along the centreline of the cylinder is pre�
sented in Figure ���� LESH� and LESH� strongly overpredict the recircu�
lation length while LESH�� in Figure ��
� shows good agreement with the
experiment of ���� The streamlines of the mean �ow of LESH� are shown in
Figure ���	� We note the symmetry of the recirculating region and conclude
that su�cient statistical samples were taken� No secondary recirculation is
noted� Vertical pro�les of the mean streamwise velocity at X�D � ��	 and
X�D � ��	 are shown in Figures ���� and ����� respectively� We note a good
agreement with the experiment although a slight blockage e�ect is present in
our simulation� due to the small computational domain�

The mean cross�ow velocity pro�le at X�D � ��	 is shown in Figure �����
Excellent agreement with the experiment is noted�

The Reynolds shear stress u�v� pro�le at X�D � ��	 is presented in Figure
����� We observe higher peaks in our simulation when compared to the
experiment� The width of the wake� measured by the position at which the
shear stress falls close to zero� is very well captured by our simulation�

RMS values of streamwise and cross�ow velocity �uctuations along the cen�
treline of the cylinder are shown in Figures ���� and ����� respectively� We
note a fair agreement of u� with the experiment while v� shows a signi�cant
departure from the measurements of ���� Such a discrepancy was also noted
by Breuer ��� in his �ne grid simulations� The higher peak in v� re�ects a
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behavior of the very near wake that is di�erent from the experiment� causing
also the lower back pressure coe�cient that we obtained in our simulation�
There is no clear explanation for this discrepancy� more numerical experi�
ments are needed� We nevertheless point out that both in Breuer"s and in
our numerical experiments� the short spanwise length or an insu�cient reso�
lution in this direction may inhibit the transfer of energy to the third velocity
component�
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	� Conclusions and recommendations for future work

The novel immersed boundary technique developed and implemented in the
code MGLET has proven to be a valuable tool for computations of �ow
around bodies with arbitrary shape� It provides results comparable in accu�
racy to those obtained with other numerical schemes employing body��tted
computational grids� given that the resolution of the cartesian grids is su��
cient to resolve the relevent physical phenomena of the �ow considered�

Successful DNS and LES investigations of the �ow past a circular cylin�
der in the subcritical Reynolds number range have been conducted� They
have demonstrated that the formation length of the K�arm�an vortex street
in the very near wake intimately depends on where transition to turbulence
occurs in the detached shear layers� The instability of the detached shear
layers is mostly a �D phenomenon ��� and is highly sensible to all pertur�
bations� irrespective of whether they result from the experimental setup or
from numerical contamination in the simulations� Adequate resolution of
the attached boundary layer along the surface of the cylinder and of the free
shear layers after separation is needed in order to predict the dynamics of
the very near wake exactly� The spanwise resolution also plays a predomi�
nant role in obtaining accurate simulations of the wake� �D simulations ���
of the �ow past a circular cylinder in this range of Reynolds numbers lead to
totally erroneous solutions� The initial spanwise instability of the K�arm�an
vortex initiates to formation of self�sustained streamwise vortices that scale
with the diameter of the cylinder� consistent with B�mode instability �����

At Re � �
		� resolving a few occurences of these streamwise vortices� at
least � in our case� seems su�cient to accurately represent the most important
physical features involved in shear layer transition and their rolling up into
the K�arm�an vortex street� This leads to reliable predictions of the mean
recirculation region� base pressure coe�cient and Strouhal number� It is�
however� clear that a small spanwise extent of the computational domain�
of the order of �D� does not allow for the formation of dislocations in the
K�arm�an vortex street� Such dislocations occur between regions of the vortex
street which exhibit a phase shift� They can occur naturally or may be
provoked by end e�ects in the experiments� Dislocations are thought to play
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a further important role in the transition to turbulence of the wake� We
conducted a numerical experiment� not reported in the previous chapters�
in which we computed a �ow based on the grid LES�� but with a spanwise
extent of ���D and ��� grid points in this direction� After a period of
time T � �		D�U�� although weak inhomogeneity of the K�arm�an vortex
street in the spanwise direction was noted� no dislocations appeared� The
plateau in the mean streamwise velocity reported by the experiments �����
���� did not show up� The short duration of the simulation compared to
the experimental time scale was probably not su�cient for dislocations to
develop� Future work should aim at provoking dislocations arti�cially� or
at least important phase shifts along the span of the cylinder in order to
con�rm whether the dislocations are partly reponsible for the appearence of
the aforementioned plateau�

The LES conducted at Re � �
		 gave acceptable results when the grids
were �ne enough to resolve the important features of the �ow� The e�ects of
using di�erent SGS models were much smaller than those obtained by grid
re�nement� This is in accordance with numerical experiments of previous
authors�

At Re � ��				� the importance of an adequate resolution of the attached
boundary layer along the surface of the cylinder and of the detached shear
layers was demonstrated� Without a proper resolution� the near wake dynam�
ics of the �ow is highly de�cient and strong overprediction of the recirculation
length is observed� Without a reliable prediction of the recirculation length�
serious concerns arise about the value of the results� The simulation LESH��
which properly resolved the attached boundary layer along the surface of the
cylinder and the detached shear layers provided much more adequate pre�
dictions of the near wake behavior� The �rst order statistics were in very
good agreement with the experiment of Cantwell and Coles ���� The most
notable deviations were observed in the back pressure coe�cient and the
peak of cross�ow velocity �uctuations� Similar tendencies were also observed
by Breuer ���� Although no clear explanation for these discrepancies can be
given at the moment� we conjecture that the spanwise extent and resolution
will be partly responsible for the deviation from the experiment� �D simu�
lations typically produce a back pressure coe�cient that is too low� In our
case� we used a spanwise extent of only �D� Although Breuer ��� computed
cases with larger spanwise domains� namely �D and �D� he used only �� grid
points in all cases which strongly underresolves three�dimensional phenom�
ena� More detailed studies of the e�ects of spanwise extent and resolution
are thus needed�
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We now have su�cient con�dence in our immersed boundary technique in
order to apply it to a more complex geometries� e�g� an airfoil undergoing
heavy separation �
�� The high computational e�ciency and low memory
consumption of the method is demonstrated by tackling �grand challenge�
problems at a reasonable computational cost� Given the resources available
today� we could even envisage a DNS of the �ow past a circular cylinder at
a Reynolds number of about �				� Such a simulation would take approx�
imately �	 computing days when using �� nodes of the Hitachi SR�			�F�
for a total time duration of about �		D�U��

At the end of this study which naturally has left open questions� four tasks
appear that would be worthwhile studying in the future� They are discussed
according to their order of importance�

Order of accuracy of the numerical scheme

It is well known that the use of second order central schemes leads to a
coupling between numerical errors and e�ects of the sgs model� It would�
therefore� be desirable to further develop the immersed boundary technique
to a method of fourth order accuracy and to implement it into the corre�
sponding fourth order version of MGLET�

Boundary conditions

Both in�ow and cross�ow boundary conditions used in the present simula�
tions should be modi�ed to investigate their impact on the dynamics of the
near cylinder wake� Homogeneous in�ow velocities should be replaced by
potential �ow velocities in one step and in another� various low levels of grid
turbulence should be superimposed to mimic e�ects that eventually were
present in the experiments� Since slight blockage e�ects had been noted in
the present data� it would be useful to try di�erent cross�ow boundary con�
ditions instead of periodic velocity boundary conditions� e�g� zero��ux von
Neumann boundary conditions or pressure boundary conditions� Of course�
the best remedy to the blockage e�ect would be the use of a computational
domain much larger where the in�uence of the conditions prevailing at its
boundary would be accordingly reduced�
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Sgs models

Considerable progress achieved in recent years in the �eld of modeling the
"unresolved scales"� see e�g� ����� prompts the replacement of eddy�viscosity
based models by new ones� Not only scale�similarity and mixed models ����
but also approximate deconvolution models are promising alternatives�

Spanwise domain size and spatial resolution

The discovery of dislocations in the K�arm�an vortex street by Williamson ����
is likely to explain the appearance of the plateau in the mean streamwise ve�
locity pro�le at x�D � � of the symmetry plane� Simulations of �ow around
a cylinder at Re � �
		 with wide spanwise domain of at least ���D would
be highly desirable to con�rm the experimental �ndings and to understand
the underlying modi�cations of the turbulence structure� This� however� will
form a grand challenge problem on present day"s high�performance comput�
ers� due to the high resolution requirement in the spanwise direction� A
further problem of this kind forms the Re � ��				 case which should be
repeated with a switched�o� sgs model in the complete boundary layer� with
improved spatial resolution of the boundary and free shear layers and in a
considerably larger spanwise domain�
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