Technische Universitat Miinchen
Fakultat fir Informatik
Lehrstuhl III - Datenbanksysteme

©66—6 —6
—6-6-66 66—
©66—6 66—
©6—666—

Query Processing on Data Streams

Diplom-Informatiker Univ.
Bernhard Stegmaier

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Priifer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph.D.
2. Univ.-Prof. Dr. Christoph Koch,
Universitit des Saarlandes, Saarbriicken

Die Dissertation wurde am 16.11.2005 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultéat fiir Informatik am 19.06.2006 angenommen.

Abstract

Data stream processing is currently gaining importance due to the rapid increase in data
volumes and developments in novel application areas like e-science, e-health, and e-business.
In this thesis, we propose an architecture for a data stream management system and
investigate methods for query processing on data streams in such systems.

In contrast to traditional database management systems (DBMSs), queries on data
streams constitute continuous subscriptions for retrieving interesting data rather than one-
time ad-hoc queries. To meet the challenges of the new “streaming” paradigm, we propose
StreamGlobe as a distributed data stream management system for efficiently querying and
processing XML data streams in the spirit of a traditional DBMS. Beyond processing
XQuery subscriptions, StreamGlobe in particular addresses the problem of efficiently dis-
tributing data streams in Peer-to-Peer networks by means of data stream sharing to avoid
network and peer congestion.

For the evaluation of XQuery subscriptions, StreamGlobe employs our novel streaming
XQuery processor, FluX . FluX represents an extension of the XQuery language supporting
event-based query processing and the conscious handling of main memory buffers to achieve
a scalable execution of queries on data streams. XQueries are rewritten into the event-based
FluX language by exploiting order constraints from the schema of a data stream to schedule
event processors and to thus minimize the amount of buffering required for evaluating a
query. Performance experiments prove the effectiveness of our approach.

StreamGlobe further allows the use of user-defined operators for enabling expressive
query processing. We discuss the implementation of such operators using our novel class of
best-match join operators as an example. These operators address the problem of finding
best matching pairs of data objects in multi-dimensional spaces. Considering multiple
dimensions leads to a partial order on the pairs of objects. Since partial orders naturally
have more than one minimum, traditional approaches aiming at determining a single “best”
pair most likely fail to produce satisfying results. In contrast, our best-match join computes
the best matching pairs having a maximum similarity on each individual dimension. We
assess the effectiveness of this approach by means of performance experiments.

Contents

1 Introduction

1.1
1.2

2 The
2.1
2.2

2.3

24
2.5

2.6

3 The
3.1
3.2
3.3
3.4

Purpose of this Thesis
Outline of this Work

StreamGlobe Data Stream Management System

Motivation
The StreamGlobe Architecture.
2.2.1 The Fundamentals: Open Grid Services Architecture
2.2.2 Network Topology
2.2.3 Peer Architectureo
2.2.4 Client Interfaceo
2.2.5 Metadata Managemento
Subscription Evaluation
2.3.1 Optimization Goals and Strategy
2.3.2 Optimization Algorithm,
2.3.3 Query Execution Basics oL
Further Example Scenarios
Related Worko
2.5.1 Peer-to-Peer Data Management
2.5.2 Data Stream Management and Processing
2.5.3 Multi-Query Optimization and Execution.
2.5.4 Networking Aspects
2.5.5 Grid Computing and E-Science Applications
Discussion

FluX Streaming XQuery Processor

Motivation
Preliminaries
Efficient Checking of Schema Constraints
Query Language
3.4.1 An XQuery Fragment: XQuery™
3.4.2 Syntax and Semantics of FluX
3.4.3 Safe Querieso

13
13
14
17
18
19
20
20
23
27
29
32
32
33
34
35
36
37

vi

Contents

3.5 Translating XQuery™ into FluX
3.5.1 A Normal Form for XQuery™
3.5.2 Rewriting Normalized XQuery™ into FluX
3.5.3 Exampleso

3.6 Algebraic Optimization of XQuery™
3.6.1 Rewrite Rules for Algebraic Optimization
3.6.2 Exampleso

3.7 Implementationo
3.7.1 The XSAX Parser
3.7.2 Query Execution L
3.7.3 Buffer Managemento

3.8 Extending the FluX Query Language
3.8.1 Aggregate Functions L
3.8.2 Data Windows

3.9 Performance Evaluation
3.9.1 XSAX Parser
3.9.2 Basic Performance Tests
3.9.3 Pipelining Behavior and Buffer Allocation

3.9.4 Extensions: Aggregate Functions and Data Windows

3.10 Related Work,

3.11 Discussiono

4 The Best-Match Join

4.1 Motivation
4.2 Definition of the Best-Match Join Variants
4.2.1 Comparing Pairs Using Partial Orders
4.2.2 The Best-Match Join Operators
4.2.3 Constrained Best-Match Joins
4.3 Evaluating Best-Match Joins on Data Streams
4.3.1 Best-Match Joins and Data Streams
4.3.2 The Window-Based Approach
4.3.3 Exploiting Fuzzy Orders on Data Streams
4.3.4 1/0O-Scheduling Using the €-Grid-Order
4.3.5 Dealing with Time-Stamped Data Streams
4.4 Performance Evaluation
4.5 Related Work
4.6 Discussion

5 Conclusion
A Complete XQuery Grammar

B Translating XQuery into FluX: The Rewrite Algorithm

Contents

vii

C FluX Benchmark Experiments 177
C.1 Modified XMark Benchmark Queries 177
C.2 Additional Benchmark Queries 180
C.3 Benchmark Results 181

D Translating XQuery into FluX: The Rewrite System 185
Bibliography 189

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

Example Astrophysical Scenario 8
Visualization of the ROSAT Photon Data 11
Traditional Subscription Evaluation 12
Optimized Subscription Evaluation 12
StreamGlobe Architecture Overview 13
Network Topology of the Extended Example Scenario 16
Architecture Overview of Different Peers 17
XML Representation of Query Plan 26
Query Plan of the Introductory Example 27
Integration of “RXJ-alert” 30
Integration of “Bursts”o 30
Glushkov Automaton for p = (a*.b.c*.(d|e*).a*) and S={b} 47
XQuery™ Grammar 51
Normal Form Rewrite Rules 56
Function rewrite(Variable $z, Set(X) H, XQuery™) returns FluXQuery . 59
Algebraic Optimization Rewrite Rules 67
Architecture of the FluX Query Engine 75
Query Plan for Query XMP-Q1 81
Fragment of Query Plan for Example 3.5.5 83
Buffer Trees of Example 3.7.5. 85
XQuery~ Grammar Fragment for Handling Aggregate Functions 89
Additional Normal Form Rewrite Rules for Extended XQuery™ 93
Fragment of Query Plan for Example 3.8.1.4 98
Fragment of Query Plan for Example 3.8.12, 100
Element-Based and Time-Based Data Windows 102
XQuery~ Grammar Fragment for Handling Data Windows 103
Extension of Function "rewrite” for Handling Data Windows 111
Fragment of Query Plan for Example 3.8.22 116
Fragment of Query Plan for Example 3.8.23 119
XSAX Performance 123
FluX Overall Performance: Execution Time 124

FluX Overall Performance: Memory Consumption 125

List of Figures ix

3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

B.1

C.1
C.2

D.1

Comparison of FluX Optimization Variants: Execution Time 126
Comparison of FluX Optimization Variants: Memory Usage 127
Scalability 127
Throughput 127
Execution of Query 13o 128
Execution of Query 8o 129
Execution of Query 8bo 129
Performance of FluX Extensions 129
Execution of Query W2o 130
Join Optimization on the Example of Query 8 135
Examples of Best-Match Join Computations 144
Nested-Loops Left-Outer-BMJ 148
Constrained Left-Outer-BMJ: Initial Computation Step 153
Constrained Left-Outer-BMJ: Moving Data Windows 154
Constrained Left-Outer-BMJ: Updating Current Best Pairs 155
MatWin Algorithm 156
Pages in the Data Space L. 159
Pairs of Pages to be Processed 159
Gallop Mode: Thrashing, 160
Crabstep Mode 160
MatWindows Algorithm 162
Filling Data Windows on Fuzzy Ordered Data Streams 163
Fixed Time Window Evaluation 165
Overall Performance of the MatWin Algorithm 167
Streaming Behavior of the MatWin Algorithm 168
Function rewrite(Variable $z, Set(X) H, XQuery) returns FluXQuery . 176

XMark Benchmark Results 182
Extensions Benchmark Results 183
Rewrite Rules for Translation of XQuery into FluX (Using a DTD) 186

Chapter 1

Introduction

Recent advances in research and technology, e. g., miscellaneous mobile devices being able
to participate in ubiquitous (ad-hoc) networks, enable the gathering of huge amounts of
data in various fields. In e-business, the advent of RFID-tags will produce a huge amount
of relevant information to support and to improve business processes. In e-science, more
sophisticated experiments and analysis methods, e. g., in the areas of high energy physics,
astronomy, and life-sciences, will deliver more and more data that has to be evaluated.

All of these applications continuously produce data as data streams, e.g., by RFID-
readers and various other sensor devices, by simulation experiments, and so on. In the
following, we will denote these data stream providers as data sources. Data streams are
usually delivered as long as their data sources are operational. Thus, the amount of deliv-
ered data is—in the extreme—infinite. The traditional approach of processing such data
streams is to store some kind of a “snapshot” of the stream, which represents a certain
amount of time over which data has been collected, in an appropriate data management
system. Then, analysis tasks are carried out upon this set of (now persistent) data. Though
this approach of storing data prior to processing it is still state-of-the-art, it will not be
feasible considering the rapid growth of data volumes in the near future. Further, the
streaming nature of the data opens up for novel application scenarios of monitoring data
streams to be able to detect and to possibly react to interesting situations in real-time as
the data streams in. Hence, data stream management systems (DSMSs) that are able to
efficiently process data streams will inevitably be needed.

In traditional data management systems users issue ad-hoc queries against persistent
data to get all results at once. In contrast, in a data stream management environment, users
subscribe to interesting data by means of continuous queries which describe, transform, and
process the data in which users are interested in. As the name suggests, these queries are
continuously evaluated and qualifying results are subsequently delivered—again, as data
streams. Such subscriptions provide both the ability to process and analyze data streams
on-the-fly as well as to retrieve interesting data, e. g., to store it for off-line computations.

During the last decade, we have seen a substantial effort on turning the Internet into
a global database management system for searching, querying, and retrieving persistent
data [LKKT97]. Now, a major challenge is to build a distributed DSMS in the same

2 Introduction

manner. Users should be able to join such an information retrieval network to publish
their data and/or to subscribe to all the data they are interested in. Such a DSMS has
to provide capabilities for performing expressive information retrieval and fusion tasks as
well as for tailoring the retrieved information exactly to the users needs, e.g., for being
viewed on devices ranging from powerful workstations to small mobile devices such as PDAs
and cell phones. Although data management systems for persistent data and data stream
management systems seem to face the same problem of efficiently querying information,
DSMSs have to cope with several challenges stemming from the streaming nature of data
streams [BBD*02]. One problem is, that data streams can only be read once, i.e., if a data
object of a data stream is not stored for later usage, it cannot be obtained in the future
anymore. Hence, novel algorithms accounting for the volatility of data streams and, at the
same time, being parsimonious with resources are needed. Another problem is the fact that
the result of a subscription (or a query) is also a data stream. On the one hand, this again
depends on novel algorithms continually producing results—in contrast to traditional data
management systems, where many operations are of a blocking nature. Conversely, this
means that in a distributed DSMS results have to be transferred unceasingly through the
network. Although network bandwidths will most probably continue to increase (or, at
least, high bandwidths will become widely available), it has been observed time and again
that the amount of information grows much faster than technology improves (or traffic
costs decrease, respectively). Hence, an optimization goal of a DSMS must be to minimize
the amount of network traffic by only transmitting relevant parts of data streams and to
leverage previous work on routing data in computer networks to avoid network congestion.

Currently, most research addresses individual aspects of these challenges of a distributed
data stream management system. Various novel techniques have been developed to enable
streaming computation of miscellaneous operations known from persistent data manage-
ment systems. There are also attempts to adopt data management systems for persistent
data to the streaming model. However, to the best of our knowledge, no principled work
exists on building a distributed data stream management system specifically optimizing for
parsimonious handling of both computational and network resources.

1.1 Purpose of this Thesis

In this thesis, we address the following aspects of building a general-purpose data stream
management system facing the challenges outlined above:

e We provide an architecture of a distributed DSMS optimizing for both network and
computational resources.

e We show buffer-conscious optimization techniques for efficiently and scalably execut-
ing queries on data streams.

e We propose a novel (streaming enabled) operator for information retrieval and show
how to efficiently execute it on data streams.

1.2 Outline of this Work 3

We propose StreamGlobe as a distributed data stream management system for efficiently
querying and processing data streams. Since XML [W3C04a| is the preeminent data ex-
change format on the Internet, StreamGlobe exchanges information by means of XML data
streams and employs XQuery [W3C05b| for the specification of subscriptions. To further
ensure interoperability, StreamGlobe is built on top of Grid standards [FK04], which is a
common platform for distributed systems—especially in the area of e-science applications.
Finally, StreamGlobe employs Peer-to-Peer networking techniques for enabling users to
flexibly join and leave the information retrieval network. Beyond processing XQuery sub-
scriptions, StreamGlobe in particular addresses the problem of efficiently distributing data
streams in Peer-to-Peer networks by means of data stream sharing to avoid network and
peer congestion.

For the evaluation of XQuery subscriptions on XML data streams, we have developed
our streaming XQuery processor, FluX. We introduce an extension of the XQuery lan-
guage supporting event-based query processing and the conscious handling of main memory
buffers. Purely event-based queries of this language can be executed on streaming XML
data in a very direct way. XQueries are rewritten into the event-based FluX language by
exploiting order constraints from a DTD to schedule event processors and to thus minimize
the amount of buffering required for evaluating a query. Therefore, a scalable execution of
queries on data streams is achieved.

To be able to carry out expressive information retrieval and analysis tasks, Stream-
Globe enables the execution of user-defined operators for query processing. We discuss the
execution of such operators using the example of our novel class of best-match join opera-
tors. These operators address the problem of finding best matching pairs of data objects
in multi-dimensional spaces. Considering multiple dimensions leads to a partial order on
the object pairs. Since partial orders naturally have more than one minimum, traditional
approaches based on determining a single “best” pair, e.g., by means of rating functions,
most likely fail to produce satisfying results. In contrast, our best-match join computes
the best matching pairs having a maximum similarity on each individual dimension. To
overcome its inherently blocking nature and to improve the quality of the results we em-
ploy constraints in combination with physical properties of the data streams to enable our
pipelined best-match join algorithms.

1.2 Outline of this Work

The remainder of this thesis is organized as follows. In Chapter 2, we provide an overview
of the architecture of our StreamGlobe data stream management system. We further sketch
our ideas for optimizing subscription evaluation with respect to minimization of network
traffic and peer load. Chapter 3 presents our FluX query language, optimization techniques
for buffer-conscious query execution, and core concepts of the implementation of our FluX
query engine used for subscription evaluation in StreamGlobe. In Chapter 4, the family of
best-match join operators is formally defined and techniques for evaluating these operators
on data streams are presented. Finally, Chapter 5 concludes this thesis.

Introduction

Chapter 2

The StreamGlobe Data Stream
Management System

Recent research and development efforts substantiate the increasing importance of pro-
cessing data streams, not only in the context of sensor networks, but also in information
retrieval networks. With the advent of various (possibly mobile) devices being able to
participate in ubiquitous (wireless) networks, a major challenge is to develop data stream
management systems for information retrieval in such networks. In this chapter, we present
the architecture and core concepts of our StreamGlobe system, which is focused on meeting
the challenges of efficiently querying and distributing data streams in an (possibly ad-
hoc) network environment. StreamGlobe is based on a federation of heterogeneous peers
ranging from small, possibly mobile devices to stationary servers. On this foundation, self-
organizing network optimization and expressive in-network query processing capabilities
enable powerful information processing and retrieval. Data streams in StreamGlobe are
represented in XML and queried, i.e., subscribed, using XQuery.

Parts of this chapter have been presented at the International Workshop on Data Man-
agement for Sensor Networks 2004 (held in conjunction with VLDB 2004) [SKKO04], at
the workshop Dynamische Informationsfusion (in conjunction with the 34. Jahrestagung
der Gesellschaft fir Informatik 2004) [SK04], and have been published in [KSH*04]. A
demonstration of StreamGlobe has been given at the International Conference on Very
Large Data Bases 2005 [KSKRO05].

This chapter is organized as follows: Section 2.1 demonstrates the need for data stream
management systems for distributed information retrieval networks and outlines the core
concepts of StreamGlobe. In Section 2.2 an overview of the StreamGlobe system architec-
ture is presented. In Section 2.3 the key concepts of optimization and query processing
in StreamGlobe are discussed. Further application scenarios are presented in Section 2.4.
Related work is addressed in Section 2.5. Section 2.6 concludes this chapter.

6 The StreamGlobe Data Stream Management System

2.1 Motivation

In the past few years, two designs of distributed systems have gained much attention in
the research community: Grid Computing and Peer-to-Peer networks.

With the increasing amount of data to be processed, computing more and more ad-
dresses collaboration, data sharing, cycle sharing, and other methods of interaction in-
volving distributed resources. Embraced by the term distributed computing in the early
seventies, first attempts have been made to harness unused CPU cycles by sharing them
in a network. With the advent of the Internet in the nineties, distributed computing has
become interesting on a global level, e. g., in the SETIQHome project—which is still consid-
ered as a proof for the effectiveness of distributed computing. Todays developers typically
target a specific platform, such as Windows, Unix, Java, .NET, and others, which provides a
hosting environment for running applications. The heterogeneity of the available platforms
is a major drawback with respect to interoperability for the goal of distributed comput-
ing. Especially work within the community of large-scale scientific research has led to
the development of Grid technologies [FK04], which have been widely adopted in scientific
and technical distributed computing since then, to overcome this drawback and to provide
platform-independent standards. In particular, the open source Globus Toolkit [Glo04] has
emerged as the de facto standard for the construction of Grid systems. Grid technologies,
and the Globus Toolkit in particular, have evolved to an Open Grid Services Architecture
(OGSA) [FKNTO02] in which a Grid provides an extensible set of services, which are built
on concepts of both the Grid community and established Web-Service standards. There-
fore, OGSA defines a uniform exposed service semantics allowing for an easy aggregation
and composition of services provided in the Grid. As the World Wide Web has began as a
network for scientific collaboration and later has been adopted for e-business, we are likely
to see a similar evolution in the field of Grid computing.

The Peer-to-Peer (P2P) network architecture has gained much attention both in the
media and in the research community in the past few years. This is due to the stunning
success of P2P file-sharing networks like Napster and Gnutella in the special application
domain of exchanging (music-) files. Basically, in a P2P network all participants, denoted
as peers, have the same capabilities and may act both as client and server. Further,
peers are allowed to join or leave the network at any time. The goal is a flexible and
decentralized community of peers pooling their resources to benefit everyone. However, the
well-known file-sharing systems, which have made P2P systems popular, ignore a crucial
aspect: the semantics of the data. A very challenging issue for database researchers is
how data management can be applied to P2P and what we can learn from the P2P area.
Hence, the P2P paradigm has been picked up for the realization of dynamic and adaptive
distributed information retrieval systems in the research community. Various techniques,
topologies, and prototype systems have been developed to efficiently query, locate, and
process information available in such P2P networks, with the goal of creating peer database
management systems (PDMSs) in the spirit of traditional (distributed) DBMSs!. Another

ISee Section 2.5 for a detailed overview.

2.1 Motivation 7

indicator for the growing importance of P2P systems is the fact that in commercial systems
a shift towards the P2P collaboration paradigm also takes place.

Altogether, the combination of Grid computing and P2P techniques provides a good
basis for building flexible and adaptive information retrieval networks. To realize such net-
works, efficient, adaptive, and self-organizing data stream management systems are needed
to cope with the huge amount of data that will have to be processed in the e-business
and e-science application scenarios which we outlined in the introduction. On the one
hand, peers can register themselves as data sources in such a network to provide their data
as a continuous data stream. Conversely, peers can subscribe to interesting data in the
network by means of queries. Now, a major challenge is to not only match subscriptions
to available data and deliver this data, but to exactly tailor the data to a specific query,
which represents the specification of a subscription, and to deliver only the specific part
of the data a user is really interested in (or has subscribed to, respectively). Furthermore,
the aspect of routing data streams in the network is of great importance. In traditional
PDMSs various techniques for locating data matching a query have been developed. Since
these queries are only one-time ad-hoc queries, no special efforts for delivering the results
are needed. This problem facing data streams has to be addressed, since a subscription
will establish a continuous data flow in the network, which naturally has to be routed in a
way that reduces network traffic.

We pursue these goals with our StreamGlobe system, which is based on the techniques
of its predecessor ObjectGlobe [BKKT01] addressing distributed query processing on per-
sistent data. The main contributions of StreamGlobe are as follows: StreamGlobe enables
peers to register and efficiently query data streams by means of subscriptions. Further-
more, query processing is pushed adaptively into the network to optimize the data flow.
This is achieved by data stream sharing, which denotes the re-usage of data streams which
are computed to fulfill other subscriptions (or parts of other subscriptions) and are already
available in the network. In addition, common parts of various subscriptions are computed
only once (if possible) and again the results are re-used. This leads to a reduction of the
data volume flowing through the network and reduces the workload of the individual peers.

Let us show by means of an introductory example how StreamGlobe implements such
an adaptive DSMS. It is based upon a visionary scenario in the field of astronomy, which we
have developed in the context of data stream management for the German Astrophysical
Virtual Observatory (GAVO) [GAV04] in cooperation with the Maz Planck Institute for
Extraterrestrial Physics (MPE)?* and the Astrophysical Institute Potsdam (AIP). The data
used in this example has been collected by the ROSAT satellite during the ROSAT All-
Sky Survey (RASS) [VAB199]. This scenario is visionary, because most of the analysis
tasks in astronomy are conducted on persistent data to date. However, this will not be
feasible in the future due to tremendously growing data volumes. Hence, direct processing
of data streams will be needed. The information retrieval network used in this simplified
example is depicted in Figure 2.1. It is organized as a super-peer network® with SPy to SPs

2Located in Garching near Munich, Germany
3This topology will be described in Section 2.2.2.

8 The StreamGlobe Data Stream Management System

photons
SP3
P4 T SP, SP,
— = e
T ‘55555‘
< P,
Po
g 8
P S
% Pl ‘55255‘ SPO

Figure 2.1: Example Astrophysical Scenario

constituting a super-peer backbone. Four (possibly mobile) clients Py to Py are connected to
this backbone via super-peers. Peer P, depicts the ROSAT satellite. The detector of this
satellite detects single photons and delivers each photon and some additional measurements
directly as an XML data stream of photon events to the network. Peers P, and P, register
subscriptions in this network to gather interesting information from the stream of photons.
Such subscriptions have a broad scope: They can be used to acquire specific data researchers
might be interested in for online analysis or to store it for offline computations. Further, in
the field of virtual observatories, which are currently of great interest in the astronomical
community, they can be used to automatically trigger actions based on observational data.
For example, if data in an observational data stream has certain properties, an alert could
be triggered, which automatically directs robotic telescopes to the area in the sky where
something interesting happens to gather additional data.

We start our example with two basic subscriptions and we will extend it in Section 2.4.
At first, let us have a look at the data stream, which is delivered by peer P, (the ROSAT
satellite). As described before, the detector delivers an event for each detected photon,
which contains a number of measurements. These measurements consist of temporal, po-
sitional, and spectral aspects. In detail:

e The position, where the photon came from, described by right ascension (ra) and
declination (dec).

e Details about the error between real and measured position of the photon (pos_error).
e The detector pulse (phc) of the detected photon.

e The energy of the photon (en) computed from the detector pulse in keV.

2.1 Motivation 9

e The number of the RASS field the photon came from (field_id). The RASS field
is an artificial classification of the sky in 1378 areas with an approximate size of six
times six degrees.

e The time, at which the photon was detected (det_time).

e The coordinates of the detector-pixel which recorded the photon (dx, dy).

All these measurements are converted into an XML stream compliant with the following
schema. For the sake of brevity, we show the schema using a DTD [W3C04a]. However,
StreamGlobe is also capable of using XML Schema [W3C04b].

<!ELEMENT photons (photonx*)>
<!ELEMENT photon (ra, dec, pos_error, phc, en, field_id, det_time,

dx, dy)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT pos_error (#PCDATA)>
<IELEMENT phc (#PCDATA) >
<!ELEMENT en (#PCDATA)>

<IELEMENT field_id (#PCDATA)>
<!ELEMENT det_time (#PCDATA)>
<IELEMENT dx (#PCDATA) >
<IELEMENT dy (#PCDATA) >

Note that photons is the root tag of the XML document specified by this DTD. Such a root
tag might not seem reasonable in a streaming environment, since the start tag <photons>
is only delivered once at the very beginning of the data stream. If the data stream is
subscribed at any later time, this tag would not be seen and no results would be produced.
However, we try to adhere as close to the XML standards as possible and hence require
XQuery subscriptions to always include the root element. Internally, StreamGlobe uses the
root tag for synchronizing query processing. That is, whenever a subscription is registered,
the stream is read until a consistent starting point is detected. In this example, this is the
case whenever the end of a photon element is encountered. Then, StreamGlobe inserts an
artificial <photons> tag into the input stream of this subscription to signalize the query
engine to start its evaluation.

Now, let Fy and P, be devices used by two different groups of astronomers. The first
group wants to receive data about all photons in the area of the Vela Supernova Remnant.
Hence, all relevant photon events with their coordinates, energy measurements, and the
detection times shall be delivered to Fy. To verify and eventually recompute the energy
of a photon its detector pulse shall be contained additionally. To acquire this data, the

10 The StreamGlobe Data Stream Management System

following subscription “Vela”, phrased in XQuery, is registered as a subscription at peer Py:

<photons>
{ for $p in stream("photons")/photons/photon
where $p/ra > 120.0 and $p/ra < 138.0 and
$p/dec > -49.0 and $p/dec < -40.0
return
<vela>
{$p/ra}t {$p/dec}
{$p/phc} {$p/en}
{$p/det_time}
</vela> }
</photons>

The function stream(...) is one of our extensions to the XQuery language to specify
a (possibly infinite) XML stream as the input of an XQuery in the same style as doc(. . .)
is used for persistent XML documents. In this example, photons denotes the identifier of
the stream generated by the satellite.

A second group working at peer P, shall only be interested in high-energetic photons
of the smaller area denoted as the RXJ0852.0-4622 Supernova Remnant [Asc98|. Hence,
P; should only get photon events with an energy of more than 1.3keV. For receiving this
data, that group registers the following XQuery subscription “RXJ” at peer Ps:

<photons>
{ for $p in stream("photons")/photons/photon
where $p/en > 1.3 and
$p/ra > 130.5 and $p/ra < 135.5 and
$p/dec > -48.0 and $p/dec < -45.0
return
<rxj>
{$p/ra}t {$p/dec}
{$p/en}
{$p/det_time}
</rxj> }
</photons>

Figure 2.2 shows the effect of selecting only the high-energetic photons. The graphs
depict the number of detected photons with respect to their energy and their distribution in
the sky. The upper two graphs show a section of the area of the Vela Supernova Remnant,
i.e., the area of the RXJ0852.0-4622 Supernova Remnant, without performing a selection on
the energy of the photons. Here, no new structures can be determined. When performing
an additional selection on the energy of photons, as shown in subscription “RXJ”, a new
structure in the lower two graphs appears as the RXJ0852.0-4622 Supernova Remnant,
which was discovered this way.

Traditional systems handle this situation in the network we have given at the begin-
ning of the example as depicted in Figure 2.3. For each subscription, the data stream is

2.1 Motivation 11

30040 T T

2500

2000

Z 1500

1
Declination

1000

500

200 300 135.5 134.2 133.0 131.8 1305
energy Right Ascension
250 T !] —45.0
200 s
150 5 =
j 2]
=z E —485
] 3
100 B]
s0F —
] | | Ll] —48.0
1] 160 200 300 135.8 134.2 133.0 131.8 130,58

energy Right Ascension

Figure 2.2: Visualization of the ROSAT Photon Data

transmitted individually to the peer where the subscription is registered. On this peer
the query representing the subscription is evaluated and the results are delivered to the
users. Such architectures naturally congest the underlying network. First, unused data is
transmitted, e. g., Py does not need the measurements dx and dy. Second, the data streams
are individually delivered and therefore a single stream is transmitted multiple times in
the network, e.g., at the network connections P, — SP; and SP; — SP*.

StreamGlobe handles this scenario as depicted in Figure 2.4. Data from P, is transmit-
ted to S P; and filtered at this peer to remove those parts of the data as early as possible,
which are not needed by any of the subscriptions. This is done by applying suitable pro-
jection and selection operations. In this case, it is easy to see that the area of the sky of

40f course, we exaggerated our example in the sense that the satellite transmits the stream two times
to SPs. In reality, this would be avoided by using some kind of “proxy”, e. g., the satellite would transmit
its stream to S P3. From there it would be routed to the other peers. However, this does not solve the basic
problem, but only shifts it to the problem of statically determining a suitable network topology having
such proxies at special nodes.

12 The StreamGlobe Data Stream Management System

photons photons

SP SP1 SP SP1
—— —|
) =]
/@@}PU RXJ <N X RX) S
STP m SPo SR QSPO

Figure 2.3: Traditional Subscription Evalua- Figure 2.4: Optimized Subscription Evalua-
tion tion

query “RXJ” is completely contained in the subscription “Vela”, so that all photon events
not stemming from the Vela Supernova Remnant can be eliminated. Further, the elements
pos_error, field_id, dx, and dy are not needed by either query and thus are projected
out. Additional selections, e. g., with respect to the energy of a photon, cannot be applied
at this peer, since subscription “Vela” at P, does not impose further restrictions regarding
the energy of a photon. This stream, containing the combined information for the two
subscriptions (visualized by the purple color) and having a smaller data volume than the
original stream (visualized by thinner arrows), is routed to SP,, where it is split up into
two streams. The first stream is routed to Fy via SFy. This stream only contains the
information needed to compute the query “Vela” (marked in the figure in blue color). A
second stream is generated by applying the selection of high-energetic photons and deliv-
ered to P, via SP;. Again, this stream (marked red in the figure) only contains data for
the subscription “RXJ”.

Altogether, StreamGlobe combines routing techniques and in-network query processing
capabilities to reduce the data volume being transmitted in the network, as it can be seen
easily by comparing Figures 2.3 and 2.4. Moreover, filtering of the data streams also reduces
the processing cost at the peers, since smaller streams have to be processed. This can be
seen as some kind of parallel processing in the network, since the computation of parts
of subscriptions is spread over suitable peers of the network. This concept of combining
routing and query processing to reduce network traffic is an important contribution of
StreamGlobe and distinguishes it from existing systems and techniques, e. g., multicasting.
Another contribution, which we have not shown in this first example, is capability-based
execution of subscriptions. That is, (parts of) subscriptions are not only executed on peers
with respect to minimizing network traffic and peer load, but also with respect to the
individual capabilities of peers. For example, mobile peers, e.g., PDAs, cell-phones, and
so on, do not provide extensive query processing capabilities. If a subscription is registered
at such a peer, it will be processed on some other suitable peer in the network and only
the results will be delivered to the target peer.

2.2 The StreamGlobe Architecture 13

XQuery XML
Subscriptions Data Sources

Optimization

Plan Distribution

Data Stream Processing

. Mobile Code |

StreamGlobe

Metadata Management

P2P Overlay Network

OGSA (Globus Toolkit)

Figure 2.5: StreamGlobe Architecture Overview

2.2 The StreamGlobe Architecture

StreamGlobe constitutes a federation of servers (i.e., peers) which carry out query pro-
cessing tasks according to their capabilities. The basic structure of a peer is depicted in
Figure 2.5. We will sketch the various layers of this structure in a bottom-up fashion in the
following. We will omit the “Optimization” and “Data Stream Processing” components in
this section and present them in more detail in the next section. The dashed lines of these
components of StreamGlobe denote that they are optional depending on the capabilities
of the actual peer.

2.2.1 The Fundamentals: Open Grid Services Architecture

The StreamGlobe architecture is based on Grid standards. As mentioned in the moti-
vation, Grid Computing [FK04, FKTO01] and the associated Open Grid Services Archi-
tecture (OGSA) [FKNTO02] have recently gained considerable attention, especially in the
high-performance and distributed computing communities. Grid Computing denotes a
distributed computing infrastructure where computers are able to exchange data and to
perform large-scale resource sharing over the Grid. To achieve this, the Open Grid Ser-
vices Architecture has been developed for integrating heterogeneous dynamic services while
guaranteeing certain quality-of-service requirements.

Despite the growing importance of the Grid standards, data stream processing in the
Grid Computing context has hardly been investigated so far. We have decided to imple-
ment our StreamGlobe prototype as an extension of the Globus Toolkit for Grid Comput-
ing [Glo04], which is a reference implementation of the Open Grid Services Architecture.

14 The StreamGlobe Data Stream Management System

Our goal is to use existing Globus techniques for our purposes where possible and to im-
plement the StreamGlobe system and its functionality on top of the Globus toolkit as an
extension for data stream processing. This enables a seamless integration of StreamGlobe
into already established Grid infrastructures of the various communities.

The StreamGlobe system itself is implemented as a set of collaborating Grid services,
which represent the different layers of Figure 2.5, based upon the Globus Toolkit. The
main technical aspects of Globus used in StreamGlobe are communication mechanisms
and service data elements. Service data elements can be associated with any service in the
Grid. They are essentially XML documents satisfying a given XML Schema and describing
properties of the service they are associated with.

Unfortunately, the OGSA framework does not yet provide any means for stream com-
munication or P2P networking. Hence, we have implemented these layers on our own
directly in the StreamGlobe system. For instance, we have implemented a stream commu-
nication protocol between peers on top of TCP/IP interfaces provided by Java. However,
there are ongoing efforts [GGFO05] for integrating both stream communication mechanisms
and a P2P networking layer into the OGSA framework. As soon as results in this area are
available, we will utilize them in StreamGlobe to be only based on native Grid technology.

2.2.2 Network Topology

In the OGSA framework, direct communication between all participating Grid services
is allowed. However, this behavior is not the natural way of communication in networks
including mobile devices. It might not even be desirable in a scenario that tries to reduce
network traffic as we intend to do. For instance, mobile sensors will normally communicate
via some kind of access point which they are connected to.

In StreamGlobe, we distinguish two types of communication: data transfers and control
messages. The first are data streams fed into the network by peers acting as data sources.
The latter are used for managing the network, e.g., metadata requests. Obviously, data
transfers have a high data volume, whereas control messages are only small one-time mes-
sages. Hence, we establish a logical P2P overlay network only for data transfers to be able
to control the data flow in the network. As usual, each peer in the overlay network has a
set of other peers as neighbors. A peer establishes data transfers only with its neighbors,
i.e., no direct data communication takes place between two peers not being neighbors. If
data has to be transferred between any two peers, a route between these two peers has to
be established so that two successive peers on this route are neighbors and the starting
point and the end point of the route are the source peer and the destination peer, re-
spectively. This notion of the P2P-Overlay network distinguishes StreamGlobe from many
other PDMSs: Searching data is carried out similarly by walking from a peer to neigh-
bored peers until suitable data is found. But once the data has been found, it is normally
directly sent back to the peer that has issued the query. Such a technique is obviously not
well suited for establishing and optimizing continuous data transfers in a network as our
approach aims at. For the implementation of the overlay network, previous work on P2P
network topologies can be employed, e.g., a structured approach based on Cayley graphs

2.2 The StreamGlobe Architecture 15

as used in the HyperCup [SSDNO02] topology. However, developing a research platform, we
do not restrict ourselves to utilize a special P2P network topology at the moment. The
analysis of suitable topologies for StreamGlobe is planned for future work.

Since a major goal is building a network of highly heterogeneous peers with respect
to computing power—ranging from small, mobile devices to stationary workstations or
servers—, we have to classify peers according to their capabilities. Thin-peers are devices
with low computational power, like sensor devices, PDAs, cell phones, etc., which are not
able to carry out complex query processing tasks. In contrast, super-peers are stationary
workstations or servers providing enough resources for extensive query processing. These
super-peers establish a backbone taking over query processing tasks which cannot be per-
formed by other peers. Thus, they constitute a super-peer backbone network [YGMO03].
This network topology renders the StreamGlobe network different from other P2P networks
in the sense that we require the super-peer backbone to be relatively stable, i.e., super-
peers should not join or leave the network frequently. Of course, thin-peers are allowed to
arbitrarily join or leave the network similar to traditional P2P networks.

Experiences with different P2P systems like Napster or Gnutella have shown that the
performance and the scalability of a P2P network heavily depends on metadata man-
agement. Napster uses a centralized directory, which makes it easy to process metadata
requests of peers, but eventually becomes a bottleneck with a growing number of peers. On
the other extreme, Gnutella is organized completely decentralized. This results in flooding
the network (up to a certain “horizon”) whenever a peer asks for metadata, since it has to
query all its neighbors, all those neighbors their neighbors, and so on. To bring out the
best of both extremes, we took the following hierarchical approach: The whole network
is divided into non-overlapping subnets. Each subnet consists of a set of super-peers and
peers. Among the super-peers, a speaker-peer is elected® which is responsible for managing
this subnet. In detail, the speaker-peer has the following management tasks:

Subnet Management Peers entering this subnet contact the speaker-peer. The discov-
ery of a speaker-peer is implemented via broadcast mechanisms. The speaker-peer
determines the best suited super-peer to be registered at and forwards the registra-
tion to this super-peer. If the subnet grows beyond a certain limit, the speaker-peer
initiates a split of the subnet into two subnets. In each of the new subnets again a
speaker-peer will be elected for management. Similarly, if a peer leaves the subnet,
the super-peer at which it was registered notifies the speaker-peer. If the subnet
shrinks below a certain size, the speaker-peer initiates a merge of this subnet with
a neighboring subnet. As before, in this new subnet a new speaker-peer is elected
among the set of super-peers.

Subscription Optimization The speaker-peer is responsible for optimizing the evalua-
tion of subscriptions of its subnet, as it has been outlined in the motivation. The
concepts of this optimization will be presented in detail in Section 2.3.

®Such an election can be implemented, e. g., by means of the Bully Algorithm [GM82)].

16 The StreamGlobe Data Stream Management System

SP1o

)]

SP20

photons

w0

P2 SP]_
L 1

L_J === Metadata Exchange

e Data Flow

= Network Connections

RXI

==l

SPo

Figure 2.6: Network Topology of the Extended Example Scenario

Metadata Management The speaker-peer maintains and provides global metadata of its
subnet. Further details on the metadata management will be shown in Section 2.2.5.

Inter-Subnet Communication Speaker-Peers are responsible for the communication
between different subnets. For instance, if a peer subscribes to a data stream, which
is not yet known in the subnet of this peer, the speaker-peer contacts the speaker-
peers of neighboring subnets to locate this data stream. Another example is a peer
joining the network. If the discovered speaker-peer decides that this peer should not
participate in this subnet—due to, e.g., local aspects—it forwards this peer to the
speaker-peer of another subnet.

An overview of this hierarchical network topology is shown in Figure 2.6 by means of an
example which is a slightly extended version of the example already known from Section 2.1.
Three subnets are shown, with one of them being exactly the network depicted in Figure 2.1.
In each subnet, the speaker-peers are marked by blue color. The P2P overlay network is

2.2 The StreamGlobe Architecture 17

XQuery Subscriptions XML Data Streams

! v

1
T
1
1
{ Speaker-Peer Interface ﬂ : { Super-Peer Interface
1
1
1

t
{ Optimization J}Q
-»[Plan Distribution ﬂo

v

(Thin-)Peer Interface

——/
StreamGlobe
Interface

|

Plan Distribution ﬂo

\ /

Plan Distribution

\

L

[[Metadata Management } <

[Mcta{lata Management]4—.
—

H Metadata Management

@

1 [Q

i Query Execution > { Query Execution { Query Execution Jﬂ» EOD

\f'j [”’:’:‘ ,MEELISS,OL]E,JH i Mobile Code 7Y Mobile Code S
FlX | FluxX FluX g
Secooooooodl pelsd
nO

\ |

OGSA (Globus Toolkit)

Y

TCP/IP Network Layer

(Thin-)Peer Speaker-Peer Super-Peer

Figure 2.7: Architecture Overview of Different Peers

represented as black connections between the peers. Of course, peers of different subnets
are allowed to be connected to each other as neighbors. The colored arrows depict the data
flow in the network. Control message communication, e.g., metadata exchange, is shown
by green arrows. The speaker-peers also form a metadata-backbone above all subnets.
In each subnet, the speaker-peer is able to query metadata from a peer—for instance, in
our example from peer P,, which represents a data source and publishes the metadata of
this data stream. The separation of data transfer and the exchange of control messages
not being bound to the P2P neighborship relations is clearly visible in this example. As
outlined before, we have chosen this approach as a trade-off between flexibility with respect
to management of the network and being able to optimize the high-volume data flow.

2.2.3 Peer Architecture

At the beginning of this section, we have shown a high-level overview of the StreamGlobe
architecture. Figure 2.7 provides a deeper insight into its design.

Basically, all layers are implemented as collaborating Grid services, which are repre-
sented by rounded rectangles. According to the classification of peers, the provided ser-
vices of a peer are shown individually for each type. The Grid services are divided into
two groups: Interface services represent the different peers in the network. These services
constitute the interfaces of peers to the rest of the StreamGlobe system and forward all

18 The StreamGlobe Data Stream Management System

requests to appropriate core services. The core services implement the functionality of a
peer. Every peer runs exactly one instance of an interface service and a set of core services
according to its capabilities as follows.

Thin-peers are peers with the minimum amount of functionality. They basically are
only able to publish data streams into the network and to receive the results of their
subscriptions, but do not carry out query processing. Such a peer mainly runs the metadata
management service, since it also has to provide metadata, e. g., statistics of a data stream.
Beyond it, only the plan distribution service and a restricted query execution service is
provided. The plan distribution service is needed for all peers, since this component is
responsible for correctly setting up data communication with other peers and instantiating
the queries in the query execution service. The query execution service of a thin-peer
is only able to display results of subscriptions, to publish data streams, and to maintain
statistics of data streams published by this thin-peer, if needed.

With respect to capabilities, more powerful peers are super-peers. They provide basi-
cally the same set of services than thin-peers, but offer extensive query processing capabili-
ties. Thus, their query execution service is able to invoke fully fledged query processing for
data streams. For carrying out query processing tasks, the query execution service has two
possibilities: the general XQuery engine FluX for data streams, which will be presented in
Section 3, or user-defined stream operations may be utilized. These user defined stream
operators are implemented by users as mobile Java code and therefore any query execution
service is able to load and execute such an operation. This provides for a great amount of
flexibility for specifying subscription rules.

Last but not least, speaker-peers are basically super-peers with the additional task
to optimize and manage their subnets. Hence, their basic structure is equal to that of
super-peers. Additionally, speaker-peers provide an optimization service taking over all
the optimization tasks and the management of the subnet.

In Figure 2.7, the communication paths are depicted by arrows. Blue arrows represent
direct communication between different services on a single peer within the StreamGlobe
system. Inter-peer communication, which is shown in red, uses the RPC mechanisms
provided by the Globus Toolkit. Finally, data stream transfers are shown in green. Since
the OGSA framework does not yet provide any suitable means for data stream transfer,
query execution services directly communicate with each other using TCP/IP networking
techniques.

Note that there is no service representing the P2P-Network layer. This layer is implicitly
contained in the metadata and optimization services. Since the optimization service com-
putes and instantiates the data-flow at the involved peers of the network, this component
ensures that data streams are routed consistently within the P2P network structure.

2.2.4 Client Interface

User interaction in StreamGlobe is depicted at the top of Figure 2.5 and at the inter-
face layer of Figure 2.7. Clients specify subscription rules for information processing and
retrieval using the XQuery language. Currently, not the whole XQuery language is sup-

2.2 The StreamGlobe Architecture 19

ported, but an expressive fragment being significant for data stream processing. This
fragment will be specified in Section 3.4. Subscription rules are registered at certain peers,
i.e., normally at the devices users are working with, e. g., their laptops, PDAs, cell phones,
etc. In our context, subscriptions are transforming queries and not just queries for retriev-
ing and delivering matching files or documents. In fact, StreamGlobe enables expressive
transformations of data streams using subscription rules. Thus, it allows clients to flexibly
tailor data streams to their individual requirements.

Similarly to clients subscribing to needed information, data sources also register the
provided data streams at a certain peer within the StreamGlobe system. Data streams
can be registered in two ways. A data source may register a data stream as an individual
stream, which is then published using a unique identifier. Subscriptions refer to streams
using this identifier. Another possibility is registering a data stream as part of a wvirtual
data stream, which again is accessible using a unique identifier. StreamGlobe multiplexes
all the data of the participating data sources into one single stream, which will (internally)
be available at one single peer chosen by the StreamGlobe optimizer.

Schemata of data streams are specified using XML Schema. Non-XML data streams
are fed into StreamGlobe using wrappers, which are running on corresponding peers and
transform the data into a suitable format, e.g., by converting raw sensor data to XML.
These wrappers for non-XML data streams have to be provided by the peer which is
publishing a data stream.

2.2.5 Metadata Management

As Figure 2.5 suggests, metadata is needed in all layers of the StreamGlobe architecture.
The metadata management (MDV) is based on techniques of the distributed metadata
management of ObjectGlobe [KKKKO02]. As shown in Section 2.2.2, speaker-peers consti-
tute a metadata backbone that peers exchange metadata with.

In particular, the metadata management component records the following information:

e Network: The MDV stores the neighborhood relationships between peers needed
for establishing the P2P overlay network.

e Subscriptions: All subscriptions and registered data sources are recorded. For each
registered data source, the schema of the data stream is stored.

e Optimization: The metadata management provides information needed for opti-
mizing the network. Among others, it maintains properties of network connections,
like bandwidth and current amount of network traffic. It also maintains the compu-
tational capabilities of peers and statistics of data streams, i.e., size, cardinality, and
histograms of the elements of a data stream. The statistics can be provided either
by the data source itself or by computing them online as the corresponding wrapper
feeds the data stream into StreamGlobe.

20 The StreamGlobe Data Stream Management System

Super-Peers and thin-peers store their own metadata locally. That is, a peer knows
which peers are its neighbors and which subscriptions and data sources are currently reg-
istered and provided, respectively. Furthermore, peers publishing data streams provide
details about these streams like their schemata and statistics. To maintain a consistent
state, a peer notifies its super-peer of changes, e.g., if it leaves the network, new sub-
scriptions or data streams are registered, or existing subscriptions or data streams are
de-registered. These notifications are forwarded to the speaker-peer of the corresponding
subnet. As a result, the speaker-peer is able to maintain additional “global” metadata
about the subnet needed for performing subnet management and optimization. For in-
stance, the speaker-peer maintains a graph of the current network topology of its subnet.
All other metadata requests, e. g., other speaker-peers querying metadata about a certain
data stream, are forwarded to the appropriate peer.

Altogether, the speaker-peers of the entire network constitute a metadata backbone,
which enables an efficient and scalable metadata management.

2.3 Subscription Evaluation

In Section 2.1, we have briefly introduced our concepts of optimizing the data flow in a
network using in-network query processing and data stream sharing. In the following, we
explain the optimization and evaluation strategy employed in StreamGlobe in more detail.

2.3.1 Optimization Goals and Strategy

Basically, the optimization component of a speaker-peer analyzes all subscriptions to iden-
tify common parts, determines the peers at which subscriptions or common parts of sub-
scriptions should be evaluated, and decides how to route the data streams in the subnet.
The optimization has the following major goals:

1. Enable users to register arbitrary subscriptions at any device regardless of its pro-
cessing capabilities.

2. Achieve a data flow in the network which does not congest it with redundant trans-
missions of data streams.

3. Optimize the evaluation of a large number of subscription rules by means of multi-
query optimization.

4. Avoid overload situations at both peers and network connections, e.g., caused by
evaluating too many subscriptions on a single peer or exceeding the maximum band-
width of network connections.

The general approach for achieving these optimization goals is to rewrite subscriptions
into one or more queries and to spread the execution of these queries all over the network.
To clarify this idea, let () be a new subscription to be registered at some peer. During

2.3 Subscription Evaluation 21

the registration process, the optimization component analyzes) with respect to all cur-
rently registered subscriptions in the speaker-peer’s subnet and therewith computes a set
of queries ¢, ..., gy, such that the successive execution ¢, o --- o ¢ yields the same result
as executing the original subscription). We distinguish two types of queries ¢;: reducing
queries and non-reducing queries.

Definition 2.3.1 (Reducing Query) A query q; is denoted as a reducing query, if the
data volume of the computed data stream is less than the data volume of its input data
streams.

Definition 2.3.2 (Non-Reducing Query) A query ¢; is a non-reducing query, if it is
not a reducing query.

The optimization goals are accomplished by pushing the execution of ¢y, ..., q, into the
network. These queries are evaluated at suitable peers on the route starting at the data
sources and ending at the peer having registered the subscription. A peer is suitable for
executing a query, if it is capable of processing the query, has been chosen by the optimizer
with respect to the optimization goals, and will not get into an overload situation executing
the novel query. In the following, we will show the achievement of some of the individual
goals in detail.

Establishing a good distribution of data streams in the network by avoiding redundant
transmissions is achieved using two techniques complementing one another. The first is
early filtering of data streams. That is, reducing queries are executed on suitable peers on
the route of a data stream as close to the data source as possible. These reducing queries
normally consist of projections (structural filtering) and selections (content-based filtering)
contained in subscriptions, but could also be a highly selective join. Non-reducing queries
of a subscription are executed as close to the peer, which has registered the subscription,
as possible. Thus, the data volume of data streams transmitted in the network is reduced.
The complementary technique is data stream sharing. The idea of data stream sharing has
already been outlined in the introductory example of Section 2.1: Instead of transmitting
a data stream individually to each peer having subscribed to this stream, only a single
data stream serving the needs of all subscriptions is transmitted on the common parts of
the routes from the peers to the data source. This approach is similar to multicasting
techniques, e.g., known from the TCP/IP protocol. These techniques also provide some
kind of stream sharing over single network connections, but they disregard content based
aspects (i.e., in-network query processing capabilities) by always transmitting the whole
data from the data source to all recipients. In contrast, our combination of data stream
sharing and filtering is able to shrink data streams on the way from the data source to the
recipients with respect to the subscribed content of the data stream and therefore further
reduces network traffic. Of course, the computation of reducing queries and data stream
sharing schemes are closely related. The biggest challenge for the optimizer is to compute
both the best possible data stream sharing scheme, i.e., routes for each data stream, and
the appropriate reducing queries.

22 The StreamGlobe Data Stream Management System

Data stream sharing implicitly also contributes to the achievement of the third goal
of multi-query optimization. As outlined before, the optimizer analyzes a novel subscrip-
tion with respect to all existing subscriptions. The computed set of queries ¢y, ..., g, may
contain a query ¢;, which constitutes a common part of the novel and already existing
subscriptions®. To perform multi-query optimization, query ¢; is executed only once at a
suitable peer. Therefore, already existing subscriptions are rewritten to re-use the data
stream generated by ¢;. Besides reducing the load of peers, this technique may also con-
tribute to the goal of reducing network traffic. For instance, a common task in a sensor
network is computing aggregates of sensor measurements. Instead of transmitting the
measurements data stream to every peer computing the same aggregations, e. g., a sliding
window average, the computation of the aggregate operation is executed near the data
source and only the results, which will in general be much smaller, are transmitted to the
recipients. Such aggregated data streams can be re-used even if different aggregation pa-
rameters, e. g., different window sizes for sliding window averages, are needed by applying
techniques similar to roll-up and cube operators known from the data-warehouse context.

Having discussed our optimization goals and how to achieve them, we now discuss
optimization strategies in a distributed architecture. There are basically three strategies
for performing optimization tasks in such an environment:

1. A central optimization component which has global knowledge of all needed metadata
performs optimization with a global view of the network.

2. Every peer has only local knowledge of its own metadata (including that neighbors
can be asked for their metadata) and tries to achieve an optimal network state by
making locally optimal decisions.

3. A hybrid approach, in which special peers have knowledge of (small) subnets which
are individually optimized by the responsible peer.

Since we assume a large, distributed environment, a centralized optimization component as
depicted in (1) is obviously infeasible because of the huge search space an optimizer would
have to consider.

The second approach at first glance fits quite nicely into the context of a distributed
P2P network. To be able to deliver good results, such an optimization strategy depends on
the validity of Bellmann’s principle of optimality, i. e., that a globally optimal solution only
consists of locally optimal solutions. But, yet in the field of distributed query optimization
this principle only holds under certain stringent restrictions. For example, it is violated,
if semi-join filters are possible query operators. In this case, a query plan consisting of
locally optimal subplans might not constitute the globally optimal query plan, because
at a higher level a bigger benefit might be achieved from non-optimal efforts on a lower
level. We are facing a similar situation in our context, which most likely renders such an
approach unsuitable to deliver good optimization results.

50f course, this is possibly the case for more than one query g;.

2.3 Subscription Evaluation 23

Hence, we focus on the hybrid approach: As already outlined in Section 2.2.2, a speaker-
peer is responsible for optimizing its local subnet. Thus, the search space of the optimizer
can be reduced to a feasible size by limiting the maximum size of the subnets. On the other
hand, in contrast to approach (2) knowledge of the whole subnet enables more powerful
optimizations. For example, a peer may reduce a data stream, which might not be the
optimal solution from this peers point of view, but routing this reduced data stream to
other peers might lead to a significant reduction of network traffic in the subnet.

Another important aspect is when and what kind of optimization is invoked. Basi-
cally, StreamGlobe—or, the speaker-peer of a subnet, respectively—carries out optimiza-
tion whenever a new subscription is registered. For this optimization, two possible ap-
proaches exist:

Global Optimization All previously registered subscriptions and the new subscription
to be registered are taken into account to compute a completely new, optimal routing
and data stream sharing.

Incremental Optimization The optimizer tries to fit the new subscription into the exist-
ing routing and data stream sharing situation as good as possible—without affecting
already existing subscriptions.

Incremental optimization can be carried out by analyzing existing data streams and there-
with deciding what data streams may be shared or not and where a new subscription is
additionally executed. In contrast, global optimization is a very costly task. First, finding
the best data stream sharing and routing scheme in the subnet is a much more complicated
optimization problem than only analyzing what data streams can be shared for serving the
new subscription. Second, after a new data stream sharing and routing scheme has been
computed, the whole subnet has to be restructured accordingly. In particular, this only can
be done by synchronously stopping all affected queries, instantiating the new situation, and
again synchronously starting the new queries without loosing any data in the meantime.

Hence, whenever a new subscription is registered, StreamGlobe integrates it into the
network using incremental optimization to enable efficient subscription registration without
affecting the performance of the system too much. Because of this, the state of the network
could degrade over time with more and more subscriptions being registered. To overcome
this problem, additional global optimization is triggered in an event-based fashion. Such
events can either be periodically generated or alerts of a monitoring component indicating a
non-optimal state of the network can be used. Therefore, the whole network is reorganized
if necessary and hence can be kept in a near-optimal state in terms of efficient query
processing and data flow, without the need for explicit external intervention.

2.3.2 Optimization Algorithm

In this section, we present a brief overview of the optimization algorithm. Details on the
optimization algorithms can be found in [KSKO05] and are beyond the scope of this thesis.

24 The StreamGlobe Data Stream Management System

All optimization algorithms get a set of metadata, consisting of, e.g., the network
topology, statistics about data streams, and the current state of the network, and a set
of subscriptions as input. The output is a query plan describing where to execute which
reducing or non-reducing queries. This query plan is then forwarded to the plan distribution
services of the corresponding peers, which instantiate and initiate query processing services.

We start by explaining how the incremental optimization is done whenever a new sub-
scription is registered on the example introduced in Section 2.1. We assume that the query
“Vela” has already been registered in the network. As a result, a filtered data stream for
this query—as described before—is routed through the network from P, to F, via SPj,
SP,, and SF,. Now, query “RXJ” is registered at peer P,. As a first step, this novel
subscription is analyzed with respect to what part of the original data stream is needed by
considering contained projections and selections. Then, a reducing query is generated to
reduce the data volume of the data stream that has to be routed through the network. In
this example, the reducing query, denoted as “RXJ-filter”, is as follows:

<photons>
{ for $p in stream("photons")/photons/photon
where $p/en > 1.3 and
$p/ra > 130.5 and $p/ra < 135.5 and
$p/dec > -48.0 and $p/dec < -45.0
return
<photon>
{$p/ra} {$p/dec}
{$p/en}
{$p/det_time}
</photon> }
</photons>

Using this filter query the original subscription is rewritten to work on the filtered data
stream generated by the filter query. The resulting query “RXJ-trans” is:

<photons>
{ for $p in stream("rxj-photons")/photons/photon
return
<rxj>
{$p/*}
</rxj> }
</photons>

Note that the filter query does not change the basic structure of the stream apart from
discarding unneeded parts. In particular, it does not introduce the novel tag <rxj> ...
</rxj> instead of the original <photon> ... </photon> tag. This is accomplished by
the transformational query. Also note that the input stream of “RXJ-trans” has changed
to stream("rxj-photons"), which identifies the stream generated by the filter query.
Now, these two queries generated from the original subscription have to be executed
on suitable peers in the network. To find the optimal execution peers, the optimizer

2.3 Subscription Evaluation 25

enumerates all possible query plans in the current network situation with different execution
peers for these two queries. To do so, the algorithm has to compare existing data streams
to a query with respect to whether they may be re-used as an input for this query, i.e.,
if all the needed content is contained. Therefore, for any data stream in the network—
either stemming originally from a data source or being the result of some other query—,
properties are stored. These properties contain the identifier of the data stream, the data
stream it was derived from, and operators that have been applied to it, e. g., projections or
selections, together with their parameters. By comparing the applied operators contained
in the properties of a data stream to the operators of the query to be matched against
the stream, the optimizer is able to decide whether this stream is suitable for sharing, or
not. To enumerate only presumably good candidates, only routes with a minimal number
of hops between the peer, at which the subscription is registered, and the data source
are considered. Note that the term “data source” in the context of optimization not only
denotes the peer feeding the subscribed data stream into the network, but also all other
peers having a suitable data stream which can be shared. Having enumerated all possible
query plans, the optimal query plan is determined by comparing all query plans using a cost
model. For that purpose, we have developed a cost model accounting for network traffic,
maximum bandwidths of network connections, and workload of peers [KSKO05]. With this,
the optimal plan in terms of the goals stated in the previous section can be found.
Coming back to our example, the optimizer at first searches for data sources for the
filter query “RXJ-filter”. A candidate is super-peer SP, since it can provide a filtered
instance of the original data stream. Comparing the properties of this data stream to the
requirements of “RXJ-filter” yields, that this stream is suitable for being shared, since the
selection predicates and projections are more general than that of “RXJ-filter” and thus all
needed data is contained. Now, the rewritten subscription “RXJ-trans” is executed on the
peer where it has been registered, since we assume that this peer is capable of executing
this query. If this would not be the case, it would be executed on the nearest peer being
capable of evaluating it on the shortest path to SP, e.g., SP;. Another possible query
plan would be to directly use the original data stream at P, as data source for “RXJ-filter”.
This candidate will be rejected by comparing costs of these two query plans, since it would
cause more network traffic than the former query plan, because the “photons” stream would
be transmitted redundantly as shown in Figure 2.3. The XML representation of this new
query plan for adding the subscription “RXJ”, which is forwarded to the plan distribution
components, is shown in Figure 2.8. It contains the computed set of queries (enclosed by
the source tags), the peers at which they are executed (as values of the atPeer attributes),
which data streams are used as inputs, and identifiers for the queries and data streams.
Data streams being the results of queries are identified by means of the corresponding
query identifiers. As explained before, data stream sharing is done in the filter query
(apparent in stream("vela") and <streamreference streamref="vela"/>), by re-using
the data stream generated by the subscription “Vela”, which has been registered before,
instead of working on the original “photons” data stream. Figure 2.9 shows a graphical
representation of the network situation after the computed query plan has been integrated
into the network. The symbols at the network connections denote groups of elements of

26 The StreamGlobe Data Stream Management System

<plan atPeer="P_2" id="rxj_p2" xmlns="urn:streamglobe.in.tum.de/pdc"
xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>
<streamoperator id="result" name="display" xsi:type="builtInStreamoperator">
<dependencies>
<streamreference streamref="rxj-trans"/>
</dependencies>
</streamoperator>
<streamoperator id="rxj-trans" name="query" xsi:type="queryStreamoperatorType">
<dependencies>
<streamreference streamref="rxj-filter"/>
</dependencies>
<source><! [CDATA[
<photons>
{ for $p in stream("rxj-filter")/photons/photon
return
<rxj>
{$p/*}
</rxj> }
</photons>
11></source>
</streamoperator>
</add>
<plan atPeer="SP_2" id="rxj_sp2" xmlns="urn:streamglobe.in.tum.de/pdc"
<add>
<streamoperator id="rxj-filter" name="query" xsi:type="queryStreamoperatorType">
<dependencies>
<streamreference streamref="vela"/>
</dependencies>
<source><! [CDATA[
<photons>
{ for $p in stream("vela")/photons/photon
where $p/en > 1.3 and
$p/ra > 130.5 and $p/ra < 135.5 and
$p/dec > -48.0 and $p/dec < -45.0
return
<photon>
{$p/ra} {$p/dec}
{$p/en}
{$p/det_time}
</photon> }
</photons>
11></source>
</streamoperator>
</add>
</plan>
</plan>

Figure 2.8: XML Representation of Query Plan
the original data stream. The diamond denotes the elements pos_error, field_id, dx,

and dy, the circle phc, and the rectangle ra, dec, en, and det_time. Projections remove
symbols, because corresponding elements are removed from the data stream. Selections

2.3 Subscription Evaluation 27

ol J o FluX

Fy &od (=)

)
=

od
SPy Pl g Wl
Forwarding SP) SP

Projection
Projection and Selection

FluX Subscription Evaluation

Figure 2.9: Query Plan of the Introductory Example

filter instances of elements not satisfying the selection predicate, which is visualized by
dotted symbols.

Note that in this simple example the subscription has been split into only one filter query
and one transformational query. For more complex subscriptions and network situations,
this is normally not the case. In particular, if filter queries are merged, they might not only
have to be executed at a suitable peer, but again be rewritten. For instance, suppose that a
computed filter query contains a predicate, which is already contained in an existing filter
query suitable for sharing the data stream with the new filter. In this case, we would not
simply install the new filter query, because this predicate would then be evaluated twice.
In fact, the new filter query would be rewritten such that this predicate is removed and the
data stream of the existing filter would be used as input instead. So, in general, a single
subscription will consist of a set of queries being evaluated in the network in a distributed
fashion, depending on the current situation in the network.

Global optimization works similar to incremental optimization. Instead of only adding
a single subscription into an existing network situation, all registered subscriptions are
inserted simultaneously into an initially empty network. This allows for more powerful
optimizations, but obviously increases the search space of the optimization problem and
hence depends on efficient optimization algorithms. As already mentioned, we will not go
into further details, since that problem is beyond the scope of this thesis.

2.3.3 Query Execution Basics

Let us now outline some basic concepts used for in-network query processing. As we have
shown in the previous section, new subscriptions are optimized with respect to the current
state of the network and as a result of the optimization process a query plan is generated.
It contains a set of queries constituting the original subscription and the peers at which

28 The StreamGlobe Data Stream Management System

each of these has to be executed. This query plan is forwarded to the plan distribution
component (PDC) of the peer executing the top-level query or operator, respectively, which
in turn forwards subplans to the corresponding PDCs on other peers, if necessary, and so
on. On each peer where new queries have been installed, the corresponding PDC triggers
the execution of its part of the query plan to be executed on this peer at the query execution
service of this peer.

Query execution in StreamGlobe focuses on processing streaming data and therefore
employs push-based evaluation strategies—in contrast to traditional query engines where
data is normally “pulled” from subordinate operators, e.g., by using the iterator model.
This renders query execution different from executing queries over traditional data, because
mostly main-memory techniques are needed. For the evaluation of queries a query execu-
tion service is able to invoke stream operators, which have to implement the StreamGlobe
interface for stream operators, process an input stream, and generate an output stream. As
suggested by Figure 2.7, two kinds of stream operators exist in StreamGlobe: user-defined
stream operators implemented as mobile code and built-in stream operators.

User-defined stream operators provide a maximum amount of flexibility in data stream
processing. They are typically employed for highly customized and specialized tasks or
whenever the semantics of a subscription cannot be conveniently written in XQuery. Users
implement such operators as mobile code in Java. Hence, the query engine service of any
peer chosen by the optimizer to run such an operator is able to load this mobile code from
any given location, to instantiate it, and to execute it. For instance, we have implemented
some typical astronomical operators used in our demonstration scenarios like converting
Celestial into Cartesian coordinates, special distance computations, and the so called cone
search, which selects data contained in a cone-shaped area of the sky. For a seamless
integration into StreamGlobe, subscriptions based on user-defined stream operators are
also specified in XQuery using the syntax for external functions. At the moment, such an
XQuery is only used for specifying how the input parameters of the user-defined operator
are extracted from the data stream and how to construct the output data stream. It is not
yet possible to register more complex subscriptions based on user-defined operators, e. g.,
join queries, subqueries, and so on.

Built-in stream operators constitute the set of operations available as the core function-
ality of StreamGlobe. These are mostly simple operators for managing data streams, e. g.,
send- /receive operators for forwarding data streams between peers and a display operator
for outputting a data stream.

To be able to manipulate data streams by means of the queries computed by the opti-
mizer, StreamGlobe has to evaluate those XQueries on XML data streams. Therefore, it
provides our own streaming XQuery engine FluX as a built-in stream operator. FluX is
a novel optimization and evaluation technique for minimizing memory buffer consumption
during the execution of XQueries on streaming data. FluX consists of an intermediate lan-
guage extending the XQuery syntax by event-based processing instructions which enables
conscious handling of main memory buffers and an optimization algorithm for rewriting
XQueries in this intermediate language. FluX enables query evaluation on data streams
with very low memory consumption or does not even need any buffering at all. Hence,

2.4 Further Example Scenarios 29

it provides for a scalable evaluation of XQueries generated to compute subscription rules.
However, some subscription rules might possibly need unbounded buffering, e. g., subscrip-
tions containing joins or special (holistic) aggregates. In such cases, unbounded buffering
is precluded by requiring users to specify window constraints. These allow for a scalable
execution on infinite data streams. To further provide a maximum amount of flexibility in
processing XQueries, the FluX query engine is extensible by means of user-defined func-
tions. Similar to user-defined operators discussed at the beginning of this section, these
user-defined functions are implemented as mobile Java code, which is loaded from any given
location and used by the query engine. The difference between user-defined functions of
the query engine and user-defined operators is their granularity: User-defined operators
completely work on the entire data streams on their own. In contrast, user-defined func-
tions of the query engine, e. g., special aggregate functions, only work on (a set of) atomic
values to compute a single result. Details on the FluX query language, its optimizations,
and an experimental evaluation will be presented in Chapter 3.

2.4 Further Example Scenarios

Having discussed the principles of subscription optimization and evaluation, we will present
some further example scenarios in this section. For that purpose, we stay in the astrophys-
ical domain and continue the example we have started in Section 2.1.

Astrophysical Alerter Service

Assume, that the second group of astronomers wants to realize some kind of an “alerter
service”. Such a service will be a common application scenario in the field of astronomy
in the future to detect interesting events and to trigger some action, e.g., automatically
directing currently idling robotic telescopes to a certain part of the sky to join the obser-
vation for being able to collect more observational data. In our case, an alert should be
generated, whenever the average value of the energies of photons of the RXJ0852.0-4622
Supernova Remnant in the last 60 seconds exceeds 1.3 keV. To realize this, this group regis-
ters a subscription “RXJ-alert” at peer P in our exemplary network depicted in Figure 2.1.
This subscription can be written in XQuery as

<photons>
{ for $w in stream("photons")/photons/photon
[ra > 130.5 and ra < 135.5 and dec > -48.0 and dec < -45.0]
|det_time diff 60 step 15|
let $a := avg($w/photon/en)
where $a > 1.3
return
<avg_energy> {$a} </avg_energy> }
</photons>

30 The StreamGlobe Data Stream Management System

photons photons

Py SP1
. ‘ RXJ N S
Vel _—
o %®> RxJ-alert™ P2 RxJ-alert ~ P2
<P, m SPo SPo
Figure 2.10: Integration of “RXJ-alert” Figure 2.11: Integration of “Bursts”

The expression |det_time diff 60 step 15| is a part of our XQuery/XPath-extension
to support window-based operators, which will be further discussed in Section 3.8.2. It
specifies a time-based data window with respect to the values of the det_time element of
the “photons” data stream. In detail, every 15 seconds an average value of the energies of the
last 60 seconds is computed. The result is propagated to P, only if its value exceeds 1.3 keV.
This subscription could be integrated into the network situation depicted in Figure 2.4
considering the optimization goals of the previous sections as follows. Because of the
registered subscription “RXJ” P, already receives a part of the data needed for evaluating
“RXJ-alert”. In detail, all photons with en < 1.3keV are filtered out by the selection
predicate contained in “RXJ”, but needed for “RXJ-alert”. To also get those parts of the
data stream, the optimizer could move the selection predicate en < 1.3keV of the filter
query for “RXJ” running on SP, to peer P, and execute “RXJ-alert” on P,. This would
yield an increased network traffic, because the benefit of early filtering the photon data
stream for “RXJ” could not be exploited. The superior alternative is to execute “RXJ-
alert” directly on SP,. The data stream routed to SP, already contains all needed data
and the additional network traffic of “RXJ-alert” is very small, since the selectivity of this
subscription is very high and the aggregate compresses the data significantly. The selection
of photons of the RXJ0852.0-4622 Supernova Remnant is identified as a common part of
“RXJ” and “RXJ-alert” and only performed once at SP,. The resulting network situation
is depicted in Figure 2.10.

Combination of Streaming and Persistent Data

Another interesting and emerging application scenario in the field of astronomy is com-
bining online observational data streams with persistent data of previous observations,
e.g., stored in a DBMS. The goals of such an analysis are, e.g., to classify observed ob-
jects online using additional data of previous observations or to look for sudden changes
(“bursts”) in the energy of observed luminaries. To show how to realize such an application
in StreamGlobe, we extend our example scenario such that super-peer SP; additionally
hosts a DBMS in which all observational data of P, is persistently stored. Now, our first

2.4 Further Example Scenarios 31

group of astronomers shall be interested in detecting such bursts, i.e., sudden changes in
the energy of online observed luminaries contained in the data stream “photons”. Therefore,
for each newly observed photon the difference of its current energy and that of previously
observed photons in the same spot of the sky has to be computed. Since the measurement of
the coordinates of photons is subject to small errors, we have to match the current photon
with photons of previous observations, such that they most likely stem from the same lu-
minary. Further, the time between the considered measurements should be approximately
90 minutes, which is the time the satellite needs for its orbit. To compute those pairs of
measurements, i.e., photons, which best meet these requirements, we propose our novel
best-match join (BMJ) operator, which will be explained in detail in Chapter 4. There-
fore, astronomers of the first group are able to register the subscription “Bursts”, which is
phrased in XQuery as follows, at peer P;.

<photons>
{ for $pl in stream("photons")/photons/photon
for $p2 in document ("photons_db")/photons/photon
where $pl left outer bestmatch join $p2 on
(fn:abs($pl/det_time - ($p2/det_time + 5400))) min 250,
(fn:abs($pl/ra - $p2/ra)) min 0.1,
(fn:abs($pil/dec - $p2/dec)) min 0.1
return
<rel_energy>
{$p1/ra} {$p1/dec}
{$p1/en - $p2/en}
<rel_energy> }
</photons>

In this example, we utilize a left-outer best-match join (LOBMJ) to find best matching
photons of previous observations for each newly observed photon. The where-clause of this
subscription specifies the best-match join using our XQuery extensions for best-match joins.
It contains the description of the join condition described above along with a specification
of the maximum errors that are allowed in each comparison dimension for pairs being
contained in the result. In detail, the measurement time must not differ more than 250
seconds from the given 90 minutes and the coordinates must not deviate more than 0.1
degree from each other. As explained in the previous sections, the optimal query plan for
integrating the subscription “Bursts” into the existing network depends on the data volume
of the input data stream “photons”, the size of the computed data stream, and the current
network situation. If the data volume of the result of this subscription is high compared
to the data volume of the inputs, it is beneficial to execute “Bursts” as near as possible to
peer P; to reduce the network costs. In our example, the optimizer is able to devise from
statistics about the “photons” data stream and the persistent data, that such bursts are
very seldom and hence propagation of the resulting data stream is neglectable compared
to transferring the input data. Thus, it executes “Bursts” directly on super-peer SPj,
where all required data is already available. The resulting network situation is depicted in
Figure 2.11.

32 The StreamGlobe Data Stream Management System

In both examples, we have assumed that the peers chosen for executing the new sub-
scriptions are capable of executing the computed queries and do not run into overload
situations. If this would be the case, the peers at which (parts of) the subscriptions are
executed would be chosen differently in order to prevent such overload situations. This
might probably yield a sub-optimal network situation with respect to network traffic, but
of course leads to a network being in a good state with respect to all optimization goals
presented in Section 2.3.1.

2.5 Related Work

In the following, we present an overview of some work related to our StreamGlobe sys-
tem. In particular, we deal with work in the fields of Peer-to-Peer data management,
data stream management systems, multi-query optimization and execution, networking as-
pects, and Grid Computing. We will not present relevant work in the area of evaluating
XPath/XQuery on data streams in this section, since this topic will be covered in detail in
Section 3.10.

2.5.1 Peer-to-Peer Data Management

A number of relevant techniques and prototype systems have been developed in the Peer-
to-Peer (P2P) context.

The most prominent P2P systems are file-sharing systems like Napster and Gnutella.
Napster has been the first successful P2P system for exchanging files in a global scale. It
stores all metadata on a central server, which is a vital drawback with respect to scalability
of the network. To cope with this, Gnutella works without any centralized metadata service.
Queries are propagated to neighbors and the results are “flowing” back to the client. The
drawback of this approach is flooding of the network with queries and their results.

To efficiently support data retrieval various indexing techniques have been proposed,
which are mostly based on distributed hash tables (DHTSs). Some well known systems in
this context are CAN [RFH101], CHORD [SMK*01], Pastry [RD01], Tapestry [ZHS"04],
and P-Grid [ACMD™03]. Hash-based techniques only support point queries, i.e., the re-
trieval of matching data objects (files), and are therefore not well suited for more complex
applications such as distributed query processing that are targeted by StreamGlobe. How-
ever, some techniques can be adopted for StreamGlobe whenever point queries are needed,
e.g., for retrieving metadata from other peers, to improve scalability and efficiency.

Beyond DHT-based indexing techniques various other topologies for P2P networks have
been developed. In [YGMO3] the concept of super-peer networks is introduced. These
networks are meant to improve the scalability of P2P networks by using a super-peer
backbone network. The super-peers usually are powerful servers. Less powerful, possibly
mobile thin-peers can register and de-register themselves in the network via the super-peers.
We employed the super-peer concept as an integral part of the StreamGlobe architecture
because of its scalability and flexibility. In DHT-based networks the topology of the overlay

2.5 Related Work 33

network, i.e., the neighborship relation of peers, is constructed with respect to the hash
function and the content a peer serves. Another approach is the HyperCuP [SSDN02]
topology using hypercubes as a network topology in P2P networks. It thereby achieves a
logarithmic upper bound for the number of hops needed to get from one super-peer in the
network to any other super-peer. Content-based construction of the overlay network might
lead to the fact that neighbored peers are far from each other in the physical network.
This renders such topologies not well suited for being used in StreamGlobe, which aims
at optimizing network traffic. Attempts to construct an overlay network preserving the
topology of the underlying physical network are proposed in [RHKS02].

DHT-based P2P networks are based on a global schema of the metadata describing
the data objects. In contrast, schema-based P2P networks are able to deal with different
schemata of metadata [BDK03, ACMHO03] or try to adopt queries to the different schemata
at various peers, e. g., PTAZZA [TIM*03]. At the moment, StreamGlobe does not perform
any schema mediation to answer subscriptions. However, this research area will be of
importance in future work.

Other research efforts aim at building a peer database management system to enable
transparent querying of a P2P system in the form of a traditional distributed DBMS.
“Mutant Query Plans” [PMTO03] implement distributed query processing at peers close
to the data. PIER [HCH'05] is a distributed query engine based on structured overlay
networks, which is intended to bring database query processing facilities to new, widely
distributed environments. AmbientDB [FB04] aims at supporting non-trivial semantic
multimedia retrieval queries. All these systems are common in that they share and enable
querying of persistent data in P2P networks. Some optimization aspects are similar to
those of StreamGlobe, e.g., pushing the execution of parts of queries into the network
close to the data. In contrast to these systems, StreamGlobe aims at sharing continuous
data streams and therefore has to consider additional optimization goals like optimizing
network traffic in the P2P network.

2.5.2 Data Stream Management and Processing

With StreamGlobe being a system that handles and processes data streams, it is worthwhile
to take a look at other recent approaches to building data stream management systems.
The overview paper [BBDT02] presents general challenges and requirements for such data
stream management systems.

STREAM [ABB*03, MWA 03, BWO01] aims at constituting a comprehensive prototype
data stream management system. It incorporates its own declarative query language CQL
for continuous queries over data streams and relations. It handles streams by converting
them into relations using special windowing operators and converting the query result back
into a data stream if necessary. Up to now, STREAM only considers a centralized DSMS
model, where all processing is performed on a single system.

Telegraph is a major project of the Berkeley Database Research group embracing vari-
ous relevant sub-projects. TelegraphCQ [CCDT03, MSHR02] is a system to manage data
streams and to adaptively process continuous queries over data streams. Currently, Tele-

34 The StreamGlobe Data Stream Management System

graphCQ is a centralized DSMS, but a distributed implementation is planned for future
work. PSoup [CF03] combines the processing of ad-hoc and continuous queries by treating
data and queries symmetrically, allowing new queries to be applied to old data and new
data to be applied to old queries.

Aurora [CCCT02] is a new DBMS for monitoring applications and implements a central-
ized stream processor for dealing with streaming data. In [CBB*03] two complementary
large-scale distributed stream processing systems, Aurora* and Medusa, are described. Au-
rora™® is a distributed version of Aurora with nodes belonging to a common administrative
domain. Medusa, on the other hand, supports the federated operation of several Aurora
nodes across administrative boundaries. Aurora, Aurora®, and Medusa have been super-
seded by Borealis [AAB'05], which is a distributed multi-processor version of Aurora built
upon the techniques of Aurora® and Medusa. Its current focus is on QoS management,
load distribution, high availability, and fault tolerance in data stream processing.

Above mentioned systems aim at constituting a complete DSMS, but up to now—
more or less—focus on special aspects of (adaptive) query processing, load balancing, or
quality-of-service management. The major contribution of StreamGlobe compared to these
systems is that it does not only efficiently locate and query data streams, but explicitly
addresses the optimization of the data flow within the network by employing in-network
query processing capabilities.

PIPES [KS04] aims at being a flexible and extensible infrastructure providing fun-
damental building blocks to implement a data stream management system. PIPES also
contains separate frameworks that establish a basis for other essential runtime components,
namely the scheduler, the memory manager, and the query optimizer.

Naturally, data streams play an important role in the area of sensor networks. The
Cougar Sensor Database Project [YG02, YGO03] tasks sensor networks through declarative
queries. A query optimizer generates an efficient query plan for in-network query process-
ing, which reduces resource usage and thus extends the lifetime of a sensor network. As a
part of the Telegraph project, the Fjords [MF02] architecture aims at managing multiple
queries over many sensors and shows how it can be used to limit sensor resource demands
while maintaining high query throughput. These systems are designed to handle sensor
networks and their special needs. StreamGlobe is well-suited to manage such sensor net-
works in terms of a general, distributed data stream system. It already natively provides
optimizations needed in sensor networks, e. g., reducing network traffic to conserve energy,
reuse of operators to minimize computing effort, and the execution of queries on devices
with respect to their capabilities. Further special optimizations needed for sensor networks
can easily be integrated into the subscription optimization process.

2.5.3 Multi-Query Optimization and Execution

With respect to query execution, work in the field of multi-query optimization is related

to StreamGlobe. Since query optimization in StreamGlobe is not the main scope of this

thesis, we will only briefly show the most important relevant work in this area.
Multi-query optimization has been addressed in [Sel88]|. It pursues the goal of processing

2.5 Related Work 35

multiple queries all at once instead of one query at a time. The main optimization potential
lies in the fact that queries may share a considerable amount of common—or at least
similar—parts of subscriptions that can be reused for more than one query. Obviously,
StreamGlobe in general has to deal with a set of queries simultaneously, thus rendering
multi-query optimization an applicable and suitable optimization approach.

StreamGlobe uses data stream sharing techniques to identify reusable existing data
streams in the network that fit newly registered queries. This approach has similarly
been applied in the world of persistent data where view materialization and view selec-
tion are used to improve the efficiency of query processing [LMSS95]. In [YKL97], further
algorithms for solving the view materialization problem are devised. Materialized view
selection and maintenance have also been examined using techniques of multi-query op-
timization [MRSRO1]. The query containment problem in the context of XML queries,
which is also relevant for multi-query optimization, has been addressed in [THO04].

Queries in StreamGlobe are usually continuous queries over data streams. A high level
of scalability in continuous query processing intends NiagaraCQ [CDTWO00] to achieve by
grouping continuous queries according to similar structures. In StreamGlobe, we employ
similar multi-query optimization approaches by extracting common parts of subscriptions
to reduce network traffic and to enable efficient query evaluation.

Much work on multi-query execution has been done in the field of Selective Dissemina-
tion of Information or XML Message Brokering. XFilter [AF00] transforms XPath-Queries
into finite automata and indexes their states to efficiently check what paths are matched.
YFilter [DFFT02, DF03] targets on-the-fly matching of XML data to interest specifications
written in a subset of XQuery, and transformation of the matching XML data based on
recipient-specific requirements. It combines all path expressions into a single nondetermin-
istic finite automaton where the common prefixes among path expressions are represented
only once. When the automaton execution reaches an accepting state, a path match is
output for all path expressions represented by that accepting state. ONYX [DRF04] con-
stitutes a distributed XML Dissemination Service based on YFilter. XTrie [CFGR02] is
an index structure based on tries, that supports the efficient filtering of streaming XML
documents based on XPath expressions. In contrast to StreamGlobe, where subscriptions
are “real” queries enabling transformation of input data, most of these systems treat sub-
scriptions as boolean queries, i.e., it is only checked whether a query matches input data
or not. Hence, these techniques cannot directly be applied to query execution in Stream-
Globe. Nevertheless, some aspects of these approaches are also relevant for multi-query
optimization and execution in StreamGlobe, e. g., for computing common filter queries for
a set of subscriptions.

2.5.4 Networking Aspects

Multicast techniques route data towards receiving ends in a way that reduces network
traffic by transmitting the same message or document only once for all recipients instead
of multiple times, once for each recipient. Such a multicast technique is provided by
the TCP/IP networking layer, but is mainly used in local area networks. Various works

36 The StreamGlobe Data Stream Management System

have been done to extend TCP/IP routing capabilities to enable multicast over wide area
networks, e.g. in [DC90]. Especially in the context of ad-hoc and sensor networks some
work has been done, e. g., to efficiently enable multicast in evolving networks [HLRO3].

It is important to point out that our work differs from these approaches in a major way.
Multicast techniques as mentioned above work mostly on a network level, i. e., they prevent
the redundant transmission of equal data packets of a data stream. This is sufficient for,
e. g., video streams, since such streams always have the same content for each recipient. In
the context of StreamGlobe this assumption does not hold, since an original data stream
may have various more or less different instances. Hence, techniques working on the network
level do not achieve satisfying improvements with respect to network traffic. Instead,
StreamGlobe provides multicast techniques on an application or content-based level by
means of data stream sharing. Instead of only reusing existing messages or documents, our
system is able to perform in-network transformations on data streams. Therefore, it can
dynamically create appropriate data streams for data stream sharing that fit the queries
to be answered best while at the same time reducing network traffic.

2.5.5 Grid Computing and E-Science Applications

StreamGlobe builds on and extends the Open Grid Services Architecture and its reference
implementation, the Globus Toolkit [Glo04] by adding data stream management and data
stream processing capabilities to the Grid Computing domain.

A related approach, also building on Globus, is GATES [CRA04]. However, this al-
ternative approach concentrates mainly on data stream analysis and quality-of-service as-
pects in data stream delivery, whereas we primarily focus on self-organization, distributed
in-network query processing, and optimization.

Another system building on the Open Grid Services Architecture is OGSA-DATI (Open
Grid Services Architecture Data Access and Integration) [OGS04]. As the name suggests,
this project is concerned with constructing a middleware to enable the access and integra-
tion of data from distributed data sources via the Grid. It also contains a distributed query
processor called OGSA-DQP. In contrast to StreamGlobe, OGSA-DAT has no special focus
on data streams.

Recent efforts in applying database and Grid Computing techniques to e-science ap-
plications in data-intensive fields, e.g., astronomy, high-energy physics, or genetics, have
gained much attention. In [NSGS'05] it is demonstrated how the astronomical problem
of finding galaxy clusters can be improved by magnitudes employing database techniques.
GridDB [LF04] is a software overlay that provides data-centric services for scientific Grid
Computing. These examples prove the demand for efficient management and processing
systems for huge data volumes in future e-science applications, which StreamGlobe targets
as one of its main application scenario.

2.6 Discussion 37

2.6 Discussion

In this chapter, we have described the basic architecture and goals of our StreamGlobe
data stream management system. StreamGlobe is focused on meeting the challenges that
arise in processing data streams in an (ad-hoc) P2P network scenario. It differs from
other data stream systems in not only efficiently locating and querying data streams, but
also optimizing the data flow in the network using expressive in-network query processing
techniques. This is basically achieved by pushing operators for query processing into the
network and data stream sharing. Continuous re-optimization leads to an adaptive and
self-optimizing system which enables users to carry out powerful information processing
and retrieval tasks. StreamGlobe builds on and extends the Globus Toolkit, a reference
implementation of the Open Grid Services Architecture for Grid Computing, and serves as
a research platform for our future work.

Future research will cover further topics in query processing on streaming data, opti-
mization methods for distributed data stream processing, load balancing, and quality-of-
service aspects [BKKO03] in a distributed data stream management system. In detail, this
will comprise improving the optimization component by taking into account reorganization
issues to keep the system effective as well as synchronization aspects, e.g. for distributed
join processing on various streaming inputs. We will investigate more sophisticated algo-
rithms for the—in general—NP-hard problem of predicate comparisons in the context of
selecting data streams being suitable for performing data stream sharing. Furthermore,
we will continue to examine routing approaches and well-suited network topologies for our
hierarchical network organization. Another interesting aspect will be support for content-
based query subscriptions.

38

The StreamGlobe Data Stream Management System

Chapter 3

The FluX Streaming XQuery
Processor

In this chapter our streaming XQuery processor FluX, which is employed for subscrip-
tion evaluation in StreamGlobe, is presented. We introduce an extension of the XQuery
language that supports event-based query processing and the conscious handling of main
memory buffers. Purely event-based queries of this language can be executed on streaming
XML data in a very direct way. We then develop an algorithm that allows to efficiently
rewrite XQueries into the event-based FluX language. This algorithm uses order constraints
from a DTD to schedule event-handlers and to thus minimize the amount of buffering re-
quired for evaluating a query. Further, various technical aspects of query optimization
and query evaluation within our framework are discussed. This is complemented with an
experimental evaluation of our approach.

This work evolved from a collaboration with Prof. Dr. C. Koch (TU Wien/Universitét
des Saarlandes) and Prof. Dr. N. Schweikardt (HU Berlin). Parts of this chapter have
been presented [KSSS04c| at the International Conference on Very Large Databases 2004
in conjunction with a demonstration of our prototype of the FluX query engine [KSSS04a].

An extended version of [KSSS04c| has been published in [KSSS04b].

This chapter is structured as follows. At first, we motivate our approach for processing
XQueries on streaming data. In Sections 3.2 and 3.3 we start with basics on DTDs,
regular languages, schema constraints, and checking of the constraints. Section 3.4 defines
the query language considered in this chapter. Section 3.5 presents our algorithm for
translating XQuery into FluX. In Section 3.6 we show additional algebraic optimizations
which exploit DTD knowledge and discuss implementation aspects of our prototype system
in Section 3.7. We show principles for extending the core FluX query engine in Section 3.8
considering aggregations and data windows as examples. In Section 3.9 we present our
experiments conducted using our prototype implementation. We conclude with related
work in Section 3.10 and a discussion in Section 3.11.

40 The FluX Streaming XQuery Processor

3.1 Motivation

XML is the preeminent data exchange format not only in our StreamGlobe system, but
generally on the Internet. Stream processing naturally bears relevance in the data exchange
context (e.g., in e-commerce). An increasingly important data management scenario is the
processing of XQueries on streams of exchanged XML data. While the weaknesses of XML
as a semistructured data model have been observed time and again (cf. e.g. [ABS00)),
XQuery on XML streams can be seen as the prototypical instance of the problem of queries
on structured (vs. flat tuple) data streams.

Query engines for processing streams are naturally main-memory-based. Conversely,
in some efforts towards developing main-memory XQuery engines whose original emphasis
was not on stream processing (e.g., BEA’s XQRL [FHK"03]), it was observed that it is
worthwhile to build such systems using stream processing operators. The often excessive
need for buffers in current main memory query engines causes a scalability issue that has
been identified as a significant research challenge [ABB*02]. While the efficient evaluation
of XPath queries on streams has been worked on extensively in the past (here, state-of-the-
art techniques use very little main memory), not much work has been done on efficiently
processing XQuery on streams. The nature of XQuery, as a data-transformation query
language entirely different from node-selecting XPath, requires new techniques for dealing
with (and reducing) main memory buffers. State-of-the-art XQuery engines consume main
memory in large multiples of the actual size of input XML documents [MS03].

An important goal is thus to devise a well-principled machinery for processing XQuery
that is parsimonious with resources and allows to minimize the amount of buffering. Such
machinery needs to be based on intermediate representations of queries that are syntacti-
cally close to XQuery and has to allow for an algebraic approach to query optimization,
with buffering as an optimization target. This is necessary to allow for both extensibility
and the leverage of a large body of related earlier work done by the database research
community. However, to our knowledge, no principled work exists on query optimization
in the framework of XQuery (rather than automata) for structured data streams (such as
XML, but unlike flat tuple streams) which honors the special features of stream process-
ing. Moreover, no framework for optimizing queries on structured data streams exists that
captures the spirit of stream processing and allows for query optimization using schema
information. However, there are XQuery algebras meant for conventional query processing,
and there is some work on applying them in the streaming context!.

In this chapter, we attempt to improve on this situation. We introduce the FluX query
language, which extends XQuery by a new construct for event-based query processing called
process-stream. FluX motivates a very direct mode of query evaluation on data streams
(similar to query evaluation in XQRL), and provides a strong intuition for what main
memory buffers are needed in which queries. This allows for a strongly “buffer-conscious”
mode of query optimization. The main focus of this section is on automatically rewriting
XQueries into event-based FluX queries and at the same time optimizing (reducing) the

IFor details, see Section 3.10.

3.1 Motivation 41

use of buffers using schema information from a DTD.

To motivate our approach, we leave the astrophysical domain used in the previous chap-
ter and utilize a bibliography domain known from the XML Query Use Cases [W3C05a].
Consider the following XQuery @ (XMP-Q3) as an example:

<results>
{ for $b in $RO0T/bib/book
return
<result>
{$b/title}
{$b/author}
</result> }
</results>

For each book in the bibliography, this query lists its title(s) and authors, grouped inside
a result element. Note that the XQuery language requires that, within each book, in the
result all titles are output before all authors.

Counsider the DTD

<!ELEMENT bib (book) *>
<!ELEMENT book (titlelauthor)*>
<IELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>

specifying that each book node may have several title and several author children?. A
priori, no order among these items is inferable from the given DTD. To implement this
query, we may output the title children inside a book node as soon as they arrive on the
stream. However, the output of the author children needs to be delayed (using a memory
buffer) until we reach the closing tag of the book node (at that time, no further title
nodes may be encountered). Then, we may flush the buffer of author nodes to the output,
empty it, and later refill it with the author nodes from the next book node.

We thus only need to buffer the author children of one book node at a time, but not
the titles. Current main memory query engines do not exploit this fact, and rather buffer
either the entire book nodes or, as an optimization [MS03], only all title and all author
nodes of a book node. Previous frameworks for evaluating or optimizing XQuery do not
provide any means of making this seeming subtlety explicit and reasoning about it.

The process-stream construct of FluX allows to express precisely the mode of query

2For the sake of readability, we will omit terminals of the DTD similar to <!ELEMENT title (#PCDATA)>
in the remainder.

42 The FluX Streaming XQuery Processor

execution just described. XQuery Q is then phrased as a FluX query® as follows:

<results>
{ process-stream $ROOT:
on bib as $bib return
{ process-stream $bib:
on book as $book return
<result>
{ process-stream $book:
on title as $t return {$t};
on-first past(title, author) return
{ for $a in $book/author
return {$a} }; }
</result>; }; }
</results>

A “process-stream $x"-expression consists of a number of event-handlers which pro-
cess the children of the XML tree node bound by variable $x from left to right (on
the stream, from start to end). An “on a ... return «’-handler fires on each child la-
beled “a” visited during such a traversal, executing the associated query expression «. In
the “process-stream $book’-expression above, the “on-first past(title, author)”-
handler fires exactly once as soon as the DTD implies for the first time that no further
author or title node can be encountered among the children of the node currently bound
to $book. As observed above, in the given, very weak DTD, this is the case only as soon
as the last child of $book has been seen. In the query associated with the “on-first
past(title, author)”-handler, we may freely use paths of the form “$book/author” or
“$book/title”, because such paths cannot be encountered anymore and we may assume
that the query engine has already buffered all matches of these paths for us. It is a feasible
task for the query engine to buffer only those paths that the query actually employs (see
also [MS03]).

We call a query safe for a given DTD if, informally, it is guaranteed that XQuery
subexpressions (such as the for-loop in the query above) do not refer to paths that may
still be encountered in the stream. The above FluX query is safe: The for-expression
employs the “$book/author” path, but is part of an “on-first”-handler that cannot fire
before all author nodes relative to $book have been seen. If the path “$book/author” was
replaced by, e. g., “$book/price” and the DTD production for book were

<!ELEMENT book ((titlelauthor)*, price)>

then the FluX query above would not be safe. In that case, on the firing of “on-first
past(title, author)”, the buffer for “$book/price” items would still be empty and the
query result would be incorrect.

3Here, we employ a slight generalization of the FluX syntax as defined later on—expressions of the form
(t)a(/t), where «v is a “process-stream”™expression—to improve readability.

3.2 Preliminaries 43

Query () can be processed more efficiently with the schema used in the XML Query
Use Cases, which is

<!ELEMENT bib (book)*>
<!ELEMENT book (title, (author+|editor+), publisher, price)>

Here, no buffering is required to execute our query, because the DTD asserts that
for each book, the title occurs strictly before the authors. We denote this situation as
Ordyoox(title, author), called an order constraint. Hence, we may phrase our query in
FluX so as to directly copy titles and authors to the output as they arrive on the input
stream as follows:

<results>
{ process-stream $ROOT:
on bib as $bib return
{ process-stream $bib:
on book as $book return
<result>
{ process-stream $book:
on title as $t return {$t};
on author as $a return {$al}; }
</result> }; }
</results>

In this case, no data items need to be buffered during the execution of this FluX query.
Hence, the evaluation of this query using our optimizations enables for scalable execution
of XQueries on data streams.

This is, to the best of our knowledge, the first work on optimizing XQuery using schema
constraints derived from DTDs*. A main strength of the approach taken in this work is its
extensibility. Even though we restrict our discussion to a (powerful) fragment of XQuery,
our results can be generalized to even larger fragments. Some principles for extending the
XQuery fragment will be shown in Section 3.8.

3.2 Preliminaries

In this section, we introduce our data model, some basics about DTDs, and define schema
constraints needed for the remainder of this chapter.

For simplicity of exposition, we consider the fragment of XML without attributes as our
data model. Note that this is no substantial restriction, since attributes can be handled in
the same way as subelements. Moreover, we focus on valid documents, i. e., documents con-
forming to a given DTD. The input XML stream is processed by a SAX parser generating
corresponding events upon reading opening tags, character data, and closing tags.

4To simplify presentation we restrict ourselves to DTDs, but the required information could also be
derived from XML Schemata [W3C04b).

44 The FluX Streaming XQuery Processor

Let ¥ be a set of symbols (or tag names). A document type definition (DTD) is an
extended context free grammar defined for a set of element names > and special symbols
PCDATA and EMPTY, with productions p € P of the form

p ::= <IELEMENT eP pP>

where e? € X and pP is either EMPTY or a one-unambiguous regular expression over
Y. U {PCDATA}. Furthermore, DTDs are local tree grammars [MLMO1], i.e. without com-
peting nonterminals to the left-hand sides of productions, so each production in a DTD is
unambiguously identified by a tag name in . By L(p) we denote the language defined by
p, 1.e., the set of words over symb(p) that are recognizable by p.

Definition 3.2.1 (Order Constraint) Let p be a reqular expression and let symb(p) be
the set of atomic symbols that occur in p. Given a word w, let w; denote its i-th symbol.
We define a binary relation Ord, C symb(p) x symb(p) such that for a,b € symb(p),

Ord,(a,b) = Pw e L(p):w; =bAw;j=aNi<j.
Then, a constraint of the form Ord,(a,b) is defined as an order constraint.

That is, Ord,(a,b) holds if there is no word in L(p) in which a symbol a is preceded by a
symbol b. In other words, all a symbols occur before all b symbols.

Example 3.2.2 Let
p = (a".b.c*.(dle*).a")

Then, Ord,(b,c), Ord,(c,d), and Ord,(c,e), but =Ord,(a,c). Ord, is transitive, so we also
have e. g. Ord,(b,d). O]

Besides order constraints, we are able to infer constraints regarding the cardinality of
elements from a DTD.

Definition 3.2.3 (Cardinality Constraints) Let p be a regular expression. We define
cardinality constraints as sets |7, [|5', |51 € X such that for a € ¥,

aell & agsymb(p),
aell! & YwelL(p): {i|lw=a} <1,
acll;t = YweL(p): {i|lw=a} =1

That is, for a symbol a € %, the order constraint a € |9 (a € [|5! or a € [|77, respec-

tively) holds, if the symbol a does not occur (occurs at most once or occurs exactly once,
respectively) in any word of L(p).

Example 3.2.4 As before, let
p = (a".b.c’.(d|e*).a")
Then, ||5" = {b,d} and ||5' = {b}. O

3.3 Efficient Checking of Schema Constraints 45

3.3 Efficient Checking of Schema Constraints

In this section, we present how to efficiently compute order constraints and cardinality
constraints derived from DTDs.

First, we introduce additional notation. Let p be the regular expression contained in a
single production of a DTD as outlined in the previous section. By a marking of a regular
expression p we denote a regular expression p’ such that each occurrence of an atomic
symbol in p is replaced by the symbol with its position among the atomic symbols of p
added as a subscript. That is, a symbol a € symb(p) at the i-th position of p is replaced
by a;. The reverse of a marking (indicated by #) is obtained by dropping the subscripts.

Example 3.3.1 Consider again the reqular expression
p = (a".b.c*.(dle”).a")

The marking p' of p is
p = (a1.by.c5.(dale3).ag),
and, e.g., afé = a? =a. O
As stated before, all regular expressions in a DTD are one-unambiguous [BKW9S].
Intuitively, a one-unambiguous regular expression p allows for deterministic matching of a
word w € L(p) using only a one-token lookahead.
For each one-unambiguous regular expression, an equivalent deterministic finite au-
tomaton called the Glushkov automaton can be constructed. Glushkov automata have the
characteristic properties that

1. each state in a Glushkov automaton (apart from the initial state) corresponds to a
symbol in the marked regular expression, and

2. each transition 0(g, a) = p into a state p takes place under input symbol a = p*.

We refer to [BKW9S] for a formal definition of one-unambiguous regular expressions, of
Glushkov automata, and their construction. Glushkov automata for one-unambiguous reg-
ular expressions can be constructed efficiently in quadratic time [BKWO98]. In the context
of document grammars for SGML (and thus, XML) documents Glushkov automata can
even be constructed in linear time [BK93].

As mentioned in the introduction, we have to determine when certain elements cannot
be encountered anymore, which might only be the case as soon as we see the closing tag of
the current production. For instance, in the first DTD of the introductory example, we are
only able to ensure that no further titles or authors can be encountered upon seeing the
closing tag </book> of the current book element. To be able to handle such situations, we
introduce the symbol “©®” which corresponds to the closing tag of the current production
p. With this, we define p := p.® by appending “®” to a given production p. Intuitively,
the symbol “®” is used as some kind of “end marker” in p.

46 The FluX Streaming XQuery Processor

Let G(p) = (Q, symb(p'), 0, qo, F) be a Glushkov automaton for p with @ =
{qo,.-.,q,} and F C Q. Further, let 6*(q, a1 ...a,) :=0(...0(0(q,a1),as),...,a,). There-
with, let the reachability relation A be

A= {{(g, q;) | Fu € symb(p')* : 6*(qi, u) = ¢}

Obviously, A can be computed in time O(|Q|*) by simply, for each ¢ € @, computing the
reachable states in the transition graph of G (for which there is a well-known linear time
algorithm [Tar72]).

Definition 3.3.2 (Past Set) Let p be the reqular expression for a production of the DTD,
G(p) its Glushkov automaton, and a € symb(p). The relation Past, C @ x 3 is defined as

Past,(q;, a) < fg; : q;éé =a (g, q) €A

Intuitively, Past,(¢;,a) means that on reaching state g;, we are past all occurrences of “a”.
That is, we may not encounter “a” anymore until we reach the end of the word, otherwise
it is not in L(p). Obviously, this relation can be obtained from A in time O(|Q|*). Note
that # is functional and imposes a partition of Q.

Now, we can define order constraints as

Ord,(a,b) < Vq: (¢* =b) — Past,(q,a).

It is easy to see that the relation Ord, can be computed in time O(|Q)| - |symb(p)|).

Beyond computing order constraints, for the evaluation of FluX queries we have to gen-
erate events, called “on-first-past™events, which indicate that no atomic symbol of a given
set S C X can be encountered anymore in the stream of the current production. To gener-
ate “on-first-past”-events, we validate each token read from the input stream by simulating
a transition of the Glushkov automaton associated with the current DTD production. We
can pre-compute a table

PastTable, s(q) < Va € S : Past,(q,a)

which denotes whether symbols of the set S in the current production p cannot be encoun-
tered in the stream anymore if the Glushkov automaton is currently in the state ¢. Since
we are only interested in the first occurrence of this situation, we therefore additionally
define a Boolean function first-past, s. For each transition of the Glushkov automaton,
we may compute firsi-past, ¢ by a constant-time lookup in PastTable. More precisely, we
compute first-past, g(u; . ..u;) as follows. Initially,

first-past, () := PastTable, s(qo).
On making the transition 6(q, u;) = ¢ where ¢ = §*(qo, w1 ... u;—1),

first-past, s(u1 ... u;) := PastTable, s(0(q,u;)) N —PastTable,s(q).

3.3 Efficient Checking of Schema Constraints 47

Figure 3.1: Glushkov Automaton for p = (a*.b.c*.(d|e*).a*) and S = {b}

Intuitively, when processing a word uw € L(p) from left to right, if first-past, ¢(u) holds,
then the reading of the last symbol of u is the earliest possible time at which we know that
none of the symbols in S can be seen anymore until the end of the word ww. Thus the
SAX parser generates “on-first-past™events (which fire when first-past, ¢ becomes true) in
addition to traditional SAX events with very little overhead, namely one validating DFA
transition and one constant-time lookup per input token read.

Example 3.3.3 We continue with the regular expression p and its marking p/ we have
started in Ezxample 8.3.1. Figure 8.1 shows the Glushkov automaton G(p) for p con-
structed as described above. Let S = {b}. Then, Past,(q,b) holds for the states q €
{es,dy, €5, a6, O7}, which are marked red in the figure. first-past, g is true for all transi-
tions of G(p) which start in a state not in Past, and end in a state contained in Past,.
Again, these transitions are marked red. Whenever such a transition is simulated, we fire
an “on-first-past™event indicating that no “b” can be seen while processing the production
p anymore. 0

Note that instead of performing a lookup in PastTable for each transition to deter-
mine whether to fire an “on-first-past”event or not, we may annotate the events at the
corresponding transitions of the automata. Also note that on making a single transition
we might have to fire more than one “on-first-past™event (for different sets S of symbols).
In this case, all “on-first-past”-events are thrown simultaneously.

Cardinality constraints can be computed efficiently as follows.

Definition 3.3.4 (Ahead Set) Let p be the regular expression for a production of the
DTD, G(p) the Glushkov automaton of p, and a € symb(p). Analogously to Past,, we
define the relation Ahead, C Q) X ¥ as

Ahead,(g;,a) < B ¢f = a A g q;) € A.

48 The FluX Streaming XQuery Processor

That is, Ahead,(q, a) holds iff for no u € 3 such that §*(go, u) = g, there is an ¢ with u; = a.
We compute cardinality constraints as

a€||pSl

aer:l

34i, q; : Ahead,(q;,a) A (6(qi,a) = ¢; V ¢; = q;) N Past,(q;,a)
L(p) C L(precisely one a)

L(p) N L(not precisely one a) = ()

L(p) N L((X\{a})" | ¥".a.X".a.X%) = .

S R

The relation ||5! can be be computed in time O(|Q|-[symb(p)|), where we use the fact that
0 is functional. The relation || can be computed in time O(|G|-|%]). The “N” construction
is that of a product automaton of G with a constant automaton, and the emptiness test is
feasible in time linear in the size of the automaton produced.

3.4 Query Language

In Section 3.4.1 we specify the XQuery fragment supported by FluX. Based on this frag-
ment, Section 3.4.2 defines the syntax and semantics of the FluX query language, and
Section 3.4.3 singles out the safe FluX queries.

Before defining the XQuery fragment we support and our FluX language, we need some
more notation. We write $z, $y, $2, ... to denote variables that range over XML trees. In
the following, we overload the meaning of a variable $x bound to an XML tree whose root
is labeled a, by writing $z when we actually mean the DTD production unambiguously
identified by the element a. For example, if the DTD contains the rule <!ELEMENT a p*> for
a regular expression p®, we write Ordg,(c,d) instead of Ord,(c,d), and we write symb(3x)
instead of symb(p®).

Definition 3.4.1 (Fixed Path) A fixed path is a sequence a1/ ... /a,, where the a; are
symbols from the DTD and n > 1.

XPath expressions such as a/ * /b, a//b, or a]x] with x being some conditional expression
are no fixed paths and not considered in this work.

Definition 3.4.2 (Value Expression) A value expression is of the form

° s
o Sx/m
e v ValOp '

with s being a string, ™ being some fized path, v and v’ being value expressions, and ValOp €
{+7 —, %, diV, idiV, mod}.

3.4 Query Language 49

Definition 3.4.3 (Atomic Condition) An atomic condition is of the form

fn:true()
fn:false()

v RelOp v/,
fn:exists($z/7)
fn:empty($z/7)

with v and v' being value expressions, ™ being a fized path, and RelOp € {=,!=,<, <, >, >}.

Definition 3.4.4 (Condition) A condition is a Boolean combination using “and”, “or”,
and “fn:not” of atomic conditions.

Note that for specifying (Boolean) functions, e. g., “exists” or “not”, and Boolean values,
i.e., “true” and “false”, we adhere to the syntax as defined in [W3C05d].

3.4.1 An XQuery Fragment: XQuery

With the above definitions we are able to define the XQuery™ fragment of XQuery that we
support with our FluX query engine.

Definition 3.4.5 (XQuery) The XQuery fragment XQuery~ is the smallest set consist-
ing of expressions

®c (the empty query)
° s (output of a fized string)
e af (sequence)
e { for $z in $y/m return « } (for-loop)
e { for $z in $y/m where x return « } (conditional for-loop)
o { Sz/m} (output of subtrees reachable from node $x through path)
o { Sz} (output of subtree of node $x)
e {if (x) then a } (conditional)

where 7 is a fived path, s a fixed string, x a condition, and «, B are XQuery expressions.

Indeed, XQuery ™ is very similar to (a fragment of) standard XQuery [W3C05¢], but
slightly differs in semantical and syntactical aspects.

The first is how we treat fixed strings inside queries. For example, the string “<hello>”
is valid in XQuery ™, but not in standard XQuery. The query

<result> {/bib/book} </result>

is understood in standard XQuery as a result node, denoted as an element constructor,
with an embedded query to produce its children. In this work, the same query is read as
a sequence of three queries which write the string “<result>”, the “/bib/book” subtrees,

50 The FluX Streaming XQuery Processor

and finally the string “</result>” to the output. This, however, is only a subtlety which,
on the one hand, is very convenient for obtaining our main results in Section 3.5 and which,
on the other hand, as the following Proposition 3.4.7 shows, does not cause any problems.
The alternative semantics of XQuery™ is the basis of optimizations used internally by the
query engine. Users formulate input queries in standard XQuery and may assume the usual
semantics.

Apart from this small semantical difference, there are also some syntactical differences.
In XQuery, an expression to be executed has to be put into curly braces if it is enclosed by
an element constructor. Otherwise, it is treated as a string constant. Further, a sequence of
expressions «y, . .., v, has to be written as “(aq, ..., ay,)” if it is not enclosed in an element
constructor, otherwise it must be phrased as “{ay}...{a,}". To simplify notation, we
always use the standard XQuery syntax in element constructors, i.e., we enclose every
expression by curly braces.

Example 3.4.6 The following standard XQuery

for $x in /bib/book
return
($x/author, $x/title)

is phrased in XQuery™ as

{ for $x in /bib/book
return
{$x/author}
{$x/title} }

O

Figure 3.2 shows the grammar of XQuery™ in an EBNF similar to that used in [W3C05b]
for standard XQuery. Non-terminals on the left-hand side printed in italics denote pro-
ductions of XQuery~. Non-terminals on the right-hand side printed in bold refer to the
original productions of the standard XQuery grammar [W3CO05b].

Let [Q] xguery,~ (D) (and [Q] xquery(D), respectively) denote the XML document stream
produced by evaluating query () on document D under our XQuery ™~ semantics (and under
the standard XQuery semantics [W3C05c¢|, respectively).

Proposition 3.4.7 Let Q) be an XQuery that parses as an XQuery query. Then, for any
input document D,

[[Q]]XQuery7 (D) = HQ]]XQUET?/(D)'

3.4 Query Language 51

FizedPath = VarRef (“/” QName)*
AtomicClause n= (“fn:true()” | “fn:false()”)
ValExpr = (Literal
| FizedPath
| ValEzpr (“+” | “=7) ValExpr
| ValEzpr (“¥” | “div” | “idiv” | “mod”) ValEzpr)
AtomicCondition = (ValEzpr GeneralComp ValEzpr
| AtomicClause

| (“fn:empty” | “fn:exists”) “(” FizedPath “)”

| “fn:not (" AtomicCondition “)”

| AtomicCondition “and” AtomicCondition

| AtomicCondition “ox” AtomicCondition)

Ezxpression t= (407

| Literal

| Expression (Expression)+

| “{” “for” VarRef “in” FizedPath (“where” AtomicCondition)?
“return” Ezpression “}”

| “{” FizedPath “}”

| 44{77 VarRef 44}77

| {7 “1f” “(" AtomicCondition “)” “then” Ezpression “}”)

Figure 3.2: XQuery™ Grammar

3.4.2 Syntax and Semantics of FluX

To be able to define the syntax and semantics of our query language FluX, we need some
more notation and a further classification of XQuery™ expressions.

Definition 3.4.8 (Parent Variable) Let a be an XQuery expression. Then, we define
parentVar(a) as

e the nearest variable $x bound by a surrounding for-expression, or
e $ROQT if no surrounding for-expression exists.

With this, we are able to define the class of simple conditions and simple expressions.

Definition 3.4.9 (Simple Condition) Let x be a condition as defined in Definition 3.4.4.
Then, x is denoted as a simple condition if

)

e \ is an atomic condition of the form “s RelOp s'” or “Sx/m RelOp s”, where s, s’ are
strings (constants), $x is some variable, and w is a fized path, or

”

e x is a Boolean combination (using “and”, “or”, and “fn:not”) of simple conditions.

That is, a condition is simple if it does not contain any atomic condition performing a join,
e.g., “$x/m RelOp $y/n'”, and thus it can be checked statically or directly on-the-fly as we
see the corresponding elements on the data stream.

52 The FluX Streaming XQuery Processor

Definition 3.4.10 (Simple Expressions) Let @ be an XQuery expression of the form
@ =« (. Further, let $x := parentVar(a@). @ is simple if

e « and 7y are possibly empty sequences of expressions “s” or of expressions of the form
“Lif (x) then s}”, where s is outputting a fized string and x is a simple condition,

and

o (3 is either empty, “{$x}”, or {if (x) then {$x}1}” for some simple condition ¥,
and

e if 3 is not empty, then no condition that occurs in a3 contains the variable $x.

Intuitively, an expression is simple, if it can be evaluated on the current stream (defined
by parentVar(@)) without any additional buffering of the input stream.

Example 3.4.11 The following expression «
<a>{$x} {if ($x/b=5) then 5}

with parentVar(a) := $x is simple, since the if-condition can be checked during outputting
the stream and the then-clause may be appropriately executed afterwards. In contrast,

{8x} {8y’

s not simple, because at least the contents of one variable have to be buffered, depending
on the current stream (or, parentVar). O

Using this definition of simple expressions, we now define the syntax of our query
language FluX.

Definition 3.4.12 (FluX) The class of FluX expressions is the smallest set of expressions
that are either simple or of the form

s { process-stream $y: ¢ } ¢

where s and s are possibly empty strings, $y is a variable, and ¢ is a list (where entries

@,

are separated by semicolons “;”) of one or more event-handlers. Fach event-handler is of
one of the following two types:

1. (so-called “on-first™handler)
on-first past(S) return «a

where S C symb(Sy) and « is an XQuery expression

2. (so-called on-handler)
on a as $x return Q

where $x is a variable, a is an element name in symb($y), and Q is a FluX expression.

3.4 Query Language 53

PY A4

We will use “ps” as a shortcut for “process-stream”, “on-first past(*)” as an abbre-
viation for “on-first past(symb($y))”, and furthermore “on-first past()” in place of
“on-first past()”.
Some examples of FluX expressions, as well as an informal description of the FluX
semantics, were already given in Section 3.1; further examples can be found in Section 3.5.3.
In general, we evaluate an expression

{ process-stream $y: (}

as follows: An event-handling statement considers the children of the node currently bound
by variable $y as a list (or stream) of nodes and processes this list one node at a time. On

processing a node v with children ¢, ..., t,, with the labels of ¢; denoted as label(t;), we
proceed as follows. For each ¢ from 0 to n+1 (i.e., n+2 times), we scan the list of event-
handlers (= (y;...;(, once from the beginning to the end. In doing so, we test for each

event-handler ¢; whether its event condition is satisfied, in which case the event-handler (;
“fires” and the corresponding query expression is executed:

e A handler “on a as $z return @ firesif 1 <i < n and label(t;) = a.

e A handler “on-first past(S) return «” fires if 0 < i <n and
first-pastg, s(label(t,) . .. label(t;))

is true (i.e., for the first time while processing the children of $y, no symbol of S can
be encountered anymore) or if i = n+1 and this event-handler has not fired in any
of the previous (n+1) scans.

In summary, it is well possible that several events fire for a single node, in which
case they are processed in the order in which the handlers occur in ¢. During the run on
t1,...,t,, each on-handler may fire zero up to several times, while each “on-first”-handler
is executed exactly once.

Definition 3.4.13 (Free Variables) For a FluX or XQuery expression Q, let free(Q)
be the set of all free variables in @, defined analogously to the free variables of a formula
in first-order logic as follows.

=

free(e) = free(s)
free({$z/7}) = free({$z}) = {$z}
free(a B) = free(a) U free(B)
free({if (x) then a}) free(o) U {Sz | 3z appears in x}

free({for $z in $r/m return a}) := (free(a)\{$z})U {$r}
free({for $z in $r/m where x return al) free({for $z in $r/m return

{if x then a }})
free({process-stream $r: (}) = {$r} U

U{free(a) | on-first past(X) return a”€ (} U
U{free(ﬁ)\{$x} | on a as $x return 7€ (}

54 The FluX Streaming XQuery Processor

Note that expressions of the form “{for $zx in $y/a return «}” and event-handlers of
the form “on a as $z return Q7 bind the variable $z, i.e., remove it from the free vari-
ables of the superexpressions.

Definition 3.4.14 (FluX Query) A FluX query is a FluX expression in which all free
variables except for the special variable $RO0T corresponding to (the root of) the document
are bound. That is, for a query Q in FluX (respectively, o in XQuery) we require that
free(Q) C {$ROOT} (respectively, free(a) C {$ROOT}).

As the following example shows, every XQuery ™ query can be transformed into a FluX
query in a straightforward way.

Example 3.4.15 Fvery XQuery query « is equivalent to the FluX query

{ ps $ROOT:
on-first past(*) return o }

In Section 3.5 we will show how, depending on a given DTD, this FluX query can be
transformed into an equivalent FluX query that can be evaluated more efficiently. 0

In the remainder of this chapter we need the size of a query to be able to estimate the
complexity of our algorithms. By the size of an expression) (respectively, a condition y),
denoted |@Q| (respectively, |x|), we refer to the size of its string representation.

3.4.3 Safe Queries

We next define the notion of safety for FluX queries. Informally, a query is called safe for
a given DTD if it is guaranteed that XQuery™ subexpressions do not refer to paths that
might still be encountered in an input stream compliant with the given DTD.

For a precise definition we need the following notation. By the condition paths in
a, we refer to the set of paths $z/7 in a condition x that occurs in a. For FluX or
XQuery ™ expressions a and [we write o < [(respectively, a <) to denote that « is a
subexpression (respectively, proper subexpression) of 3. An XQuery ™~ subexpression « of a
FluX expression @ is called maximal if there is no XQuery ™ expression 3 with a < 3 < Q.
Note that a FluX query may contain several such maximal expressions.

Example 3.4.16 The maximal XQuery subexpressions of the first FluX query from Sec-
tion 3.1 are {$t}” and {for $a in $book/author return {$a}t}”. 0

We characterize the set of symbols needed for the evaluation of an XQuery ™ expression with
respect to a given variable (or, production of the DTD) as dependencies.

Definition 3.4.17 (Dependencies) The set of dependencies with respect to a variable
$y of an XQuery™ expression is defined as

3.4 Query Language 55

dep($y; a/m) =
dep($y; {Sy/m}) = dep(Sy; Sy/m) := dep(Sy; m)
dep(8y; f(a)) - (8y; a)
dep(Sy; an op az) = dep($y; a1) U dep($y;)
dep($y; {for $x in Sy/m return a}) ($y, m) Udep(3y;)
dep($y; {for $x in $y/m where y return al}) ($y, m) Udep(3y;)

U dep($y; x)
dep($y; {if (x) then a}) := dep(Sy; x)Udep($y;)
dep($y; ay o) = dep(Sy; a1) Udep(Sy; as)

dep($y; -) = 0
with a being a symbol from the DTD, m a non-empty path, o, oy, g XQuery expressions,
X a condition, f € {fn:not, fn:empty,fn:exists}, op € ValOp U RelOp U {and,or},
and dep($y; -) matching all other expressions not being explicitly defined.

With this, we are able to precisely define the notion of safe queries, which we have
already informally introduced in Section 3.1 and at the beginning of this section.

Definition 3.4.18 (Safe Queries) A FluX query Q) is called safe with respect to a given
DTD if and only if for each subexpression {ps $y: ¢ }” of Q, the following two conditions
are satisfied:

1. For each handler “on-first past(S) return «”in the list (, the following is true:
o Vb e dep(3y,) we have:
(be S)V (3a e S: Ordgy(b,a))
o V $z € free(ar) such that “{$z}” =< a or 4$z/7}” < «a (for some 7) we have:
($2=8%y) A (Vb e symb($y) : (be S)V (Ja € S : Ordgy(b,a))).

2. For each handler “on a as $x return Q7 in the list of handlers ¢, and for each
maximal XQuery~ subexpression « of Q, the following is true:

o V be dep($y,a) we have:
Ordg, (b, a)

o ifa=0Q (note that according to Definition 3.4.12 o must then be simple), then
for all $u such that “{$u}” < a we have:

$u = $x.

This notion of safety is sufficient to ensure that main memory buffers are fully popu-
lated when they are accessed by a query, i.e., that a FluX query can be evaluated in a
straightforward way on input streams compliant with the given DTD.

Examples of safe and un-safe FluX queries with respect to a given DTD have been shown
in Section 3.1. Further examples of safe FluX queries will be presented in Section 3.5. To
be precise, all FluX queries occurring in the remainder of this chapter are safe.

56 The FluX Streaming XQuery Processor

{ for $z in $y/7 where x return [}
{ for $z in $y/m return { if (x) then § } }

{ Sy/7 }
{ for $z in $y/m return {$z} }

[Elim-Where]

[Only-For]

{ for $z in Sy/a/m return [}

{ for $x¢ in $y/a return
{ for $z in $z(/m return § } }

[Single-Step-For]

{ if (x) then { for $z in $y/m return o } }
{ for $z in $y/m return { if (x) then « } }

{ if (x) then a (}
{ if (x) then a } { if (x) then [}

{ if (x) then { if (¢) then o } }
{ if (x and %) then « }

[Pushdown-If-1]

[Pushdown-If-2]

[Merge-If]

Figure 3.3: Normal Form Rewrite Rules

3.5 Translating XQuery into FluX

In this section, we address the problem of rewriting a query of our XQuery™ fragment into
an equivalent FluX query that employs as little buffering as possible. This rewriting pro-
ceeds in two steps: First, we transform the given XQuery™ query into an equivalent query
in XQuery~ normal form, which will be presented in Section 3.5.1. In Section 3.5.2, we
present our algorithm for rewriting this normalized query, depending on a given DTD, into
an equivalent safe FluX query. The FluX extensions manage the event-based, streaming
execution of the query. All subqueries exclusively working on buffered data are XQuery™
expressions. Some examples of this transformation are given in Section 3.5.3.

3.5.1 A Normal Form for XQuery~

An XQuery~expression is transformed into normal form by rewriting (subexpressions of)
it using the rules in Figure 3.3 until no further changes are possible. In this work, rewrite
rules are displayed in the form

expression «

. , (condition ¢)
rewritten expression o’

where query expression « is rewritten to o/, iff condition ¢ holds. All rewrite rules are
equivalences, but our rewrite strategy is always downward. I.e., it is never necessary to
employ a rule to go from an expression o’ to an expression «. Note that none of the normal

3.5 Translating XQuery™ into FluX 57

form rewrite rules shown in Figure 3.3 has a condition, i.e., they are always applied on a
matching expression. Conditional rewriting rules will be used in Section 3.6.
For an XQuery™ expression in normal form the following three properties hold:

1. All paths except those inside conditionals are simple (single-)step paths of the form

$z/a.

2. An expression in normal form does not contain any conditional for-loops, as the
normalization process pushes conditionals inside the innermost for-loops.

3. For each subexpression of the form “{if y then al}”, a is either a fixed string or of
the form “{$z}” for some variable $x.

In particular, the normalization process leaves paths inside conditionals unchanged, while
all other fixed paths $y/a/m, where 7 is a path of nonzero length, are decomposed into
nested for-loops.

It can be shown that for an XQuery () the rule applications of Figure 3.3 terminate
with a unique result, the so-called normalization of (). Obviously, the normalization of an
XQuery @ is equivalent to (). Further, the rewriting can be implemented in such a way
that it terminates after O(|@|) rule applications [KSSS04c].

The following example shows the normalization process on behalf of a sample query
taken from the XQuery Use Cases [W3C05a].

Example 3.5.1 ([W3CO05a], XMP-Q1) Consider the following XQuery @y for books
published by Addison-Wesley after 1991, including their year and title.

<bib>
{ for $b in $RO0OT/bib/book
where $b/publisher = "Addison-Wesley" and $b/year > 1991
return
<book>
{$b/year}
{$b/title}
</book> }
</bib>

In the following, we abbreviate the condition

$b/publisher = "Addison-Wesley" and $b/year > 1991

by x.

58 The FluX Streaming XQuery Processor

Then, Q1 has the following normalization, denoted as @} :
<bib>
{ for $bib in $RO0T/bib return
{ for $b in $bib/book return
{ if (x) then <book> }
{ for $year in $b/year return
{ if (x) then {$year} } }
{ for $title in $b/title return
{ if (x) then {$title} } %}
{ if (x) then </book> } } }
</bib>

3.5.2 Rewriting Normalized XQuery into FluX

To formulate our main rewrite algorithm for transforming normalized XQuery™ queries
into equivalent, safe FluX queries, (Function “rewrite”), we need some further notation.

Definition 3.5.2 (HSymb) Let > be the set of tag names occurring in the given DTD and
L denote an empty list of event handlers. For a list (of event handlers, we inductively
define the set hsymb(() of handler symbols for which an on-handler or an “on-first’™-
handler exists in C:

hsymb(L) := 0
hsymb((; on a as $x return «) := hsymb({)U {a}
hsymb((; on-first past(S) return «) := hsymb(()US

Our algorithm for recursively rewriting normalized XQuery™~ expressions into FluX is
shown in Function “rewrite”. Note that this algorithm uses order constraints and hence
depends on the underlying DTD. If no DTD is given, we assume a very generic DTD which
does not impose any order constraints. Given a query (), we obtain the corresponding
FluX query as “rewrite($R00T, L,)”. Note that we need to distinguish the situation that
no set of symbols is given (as the second parameter of rewrite, H) from the situation that
rewrite is called with an empty set. We do this by using “_1” for the situation that no set is
given (in the sense of a null-pointer in programming languages), and depicting the empty
set by “00”. Some example runs of this algorithm are given in Section 3.5.3 below. The
goals in the design of the algorithm were to produce a FluX query which

1. is safe with respect to the given DTD,

2. is equivalent to the input XQuery (on all XML documents compliant with the given
DTD), and

3. minimizes the amount of buffering needed for evaluating the query.

3.5 Translating XQuery™ into FluX 59

Function rewrite(Variable $x, Set(¥) H, XQuery () returns FluXQuery

1 begin

2 if {$z} < 8 then

3 if (3 is simple then

4 return 3 ;

5 else

6 return {ps $x: on-first past(x) return (5} ;

7 endif

8 else

9 if (3 is simple and H = 1 then

10 return 3 ;

11 else if 3 = 3; #> then

12 if H =1 then H :=10;

13 B = rewrite ($z, H, () ;

14 match ¢; such that] = {ps $z: ¢ };

15 Bh = rewrite ($x, H U hsymb((y), (B2) ;

16 match ¢y such that g5 = {ps $z: (o };

17 return {ps $x: (1; ¢ }

18 else if (3 is of the form {for $y in $z/a return a} then
19 X :={b e dep($z,a) UH | =Ordg,(b,a)} ;

20 if $2 # $2 then

21 return {ps $z: on-first past(X) return (};
22 else if X # () then

23 return {ps $z: on-first past(X U{a}) return 3} ;
24 else

25 o = rewrite ($y, L,) ;

26 return {ps $z: on a as $y return o'} ;

27 endif

28 else

29 return {ps $x: on-first past(dep($z,3)U H) return [} ;
30 endif

31 endif

32 end

60 The FluX Streaming XQuery Processor

To meet goals (1) and (2), e. g., the particular order of the if-statements in the algorithm
(lines 2, 9, 11, 18) is crucial. Also, a set H of handler symbols must be passed on in
recursive calls of the algorithm, because otherwise the resulting FluX query would not be
safe. One important construct for meeting goal (3) is the case distinction in lines 20-27,
where an on-handler is created provided that this is safe, and an “on-first”-handler is
created otherwise.

Given a DTD D and a normalized XQuery~ query @, “rewrite($R00T, L, @))” runs
in time O(|D|® + |Q]?) and produces a safe FluX query that is equivalent to @ on all
XML documents compliant to the given DTD. Although our algorithm performs only a
single traversal of the query tree, the runtime of O(|Q|?) is due to the need to compute
dependencies in subtrees of the expression being currently rewritten. In addition, O(|D|?)
is needed to compute order constraints imposed by the given DTD as shown in Section 3.3.

Note that the resulting FluX query is also in normal form in the sense that every
XQuery ™ subexpression is in normal form.

3.5.3 Examples

We now discuss the effect of our rewrite algorithm on sample queries from the XQuery
Use Cases [W3C05al°. In Section 3.1 we have already shown the query XMP-Q3 and the
resulting FluX queries obtained by our rewrite algorithm using DTDs with and without
order constraints, respectively, between titles and authors. In the optimal case, i.e., with
the order constraint that all titles arrive before authors, this query can be evaluated without
any buffering.

The following query will always require some data to be buffered. However, the amount
of data that must be buffered depends on the schema.

Example 3.5.3 ([W3CO05a], XMP-Q2) Let us consider the XQuery XMP-Q2, in the
following denoted as Qs, from the XQuery Use Cases [W3C05a], which creates a flat list
of all the title—author pairs, with each pair enclosed in a result element.

<results>
{ for $b in $RO0T/bib/book return
{ for $t in $b/title return
{ for $a in $b/author return
<result>
{$t}
{$a}
</result> } } }
</results>

Normalizing this query yields the following query Q% (which is very similar to the orig-
inal XQuery Qz):

5We rewrite the queries to work without attributes as shown in Appendix C.1.

3.5 Translating XQuery™ into FluX 61

1 <results>

> { for $bib in $RO0T/bib

3 { for $b in $bib/book return

4 { for $t in $b/title return

5 { for $a in $b/author return
6 <result>

7 {$t}

8 {$a}

9 </result> } } } }

10 </results>

When given a DTD that does not impose any order constraints on title and author
(only the book element is of relevance in this query), e. g., the first DTD from Section 3.1,
then “rewrite(SROOT, L, Q)7 proceeds as follows: First, QY is decomposed into two subex-
pressions (31, consisting of line 1, and (5, consisting of lines 2—10. Then, the rewrite al-
gorithm is recursively called for 5y and for By. As H = 0, the call for 3, produces the
result:

{ ps $ROOT:
on-first past() return <results>; }

The call for By decomposes Py into two subexpressions [Boy, consisting of lines 2-9, and Pas,
consisting of line 10 of QY. The recursive call “rewrite(SROOT, (), B21)” then executes lines
24-27 of the rewrite algorithm, because (39, is a for-loop with parent variable SROOT and
associated set X = Xg, = 0. That is, the result

{ ps $ROOT:
on bib as $bib return ay; }

is produced, where a7 is the result produced by the recursive function call “rewrite($bib, L,
aq)”, for the subquery oy of QY in lines 3-9. This recursive call for oy again executes lines
24-27 of the algorithm, producing the expression oy =

{ ps $bib:
on book as $b return az; }

where @y is the result of “rewrite($b, L, ay)” for the subquery as of QY in lines 4-9. As as
is a for-loop with parent variable $b and associated set X = X,, = {author}, in this call
line 23 of the algorithm is executed, producing the expression am =

{ ps $b:
on-first past(author, title) return as; }

62 The FluX Streaming XQuery Processor

All in all, “rewrite($RO0T, L, Q)" returns the following FluX query Fy:

1 { ps $ROOT:

2 on-first past() return <results>;

3 on bib as $bib return

4 { ps $bib:

5 on book as $b return

6 { ps $b:

7 on-first past(author, title) return
8 { for $t in $b/title return

9 { for $a in $b/author return
10 <result>

11 {$t}

12 {$a}

13 </result> 3} }; }; };

14 on-first past(bib) return </results>; }

We will refer to the “{ps $b ---}-expression in lines 6-13 of F» as az. When evaluating
the query Fy on an XML document, the XQuery inside tz will be evaluated once all author
and all title nodes have been encountered and buffered.

Let us now consider the case where we are given a DTD with the production

<1ELEMENT book (author*, titlex)>

where the order constraint Ordyeex(author, title) is met. While running “rewrite($ROOT,
1, Q)" we now encounter the situation where X = X,, = 0 (rather than {author}, as
with the previous DTD). Therefore, when processing the recursive call “rewrite($b, L, as)”,
now lines 24-27 of the algorithm are executed, eventually producing the following result
Qy =
{ ps $b:
on title as $t return
{ ps $t:
on-first past(*) return
{ for $a in $b/author return

<result>

{8t}

{$a}

</result> }; }; }

Now, “rewrite(SROOT, L, Q)" yields query F} differing from Fy in the lines 6-13, which
must be replaced by the above expression av.

When evaluating Fy on an XML document compliant with the second DTD, all author
nodes arrive before title nodes and are buffered. Encountering a title node in the input
stream invokes the following actions: The value of that particular node is buffered, i.e.,
‘on-first past(*)” delays the execution until the complete title node has been seen.

3.5 Translating XQuery™ into FluX 63

Then, we iterate over the buffer containing all collected author nodes, each time writing
the buffered title and the current author to the output. In contrast to the worst-case
scenario above, we only buffer one title at a time in addition to the list of all authors. If
there is more than one title, this strateqy is clearly preferable. O

We next demonstrate that conditional for-loops are optimized correspondingly in the
following example.

Example 3.5.4 ([W3CO05a], XMP-Q1) Let us consider the query Q1 and its normal-
ization Q) from Example 3.5.1. Given a DTD that does not impose any order constraints,
e.g., the DTD:

<!ELEMENT bib (book) *>
<!ELEMENT book (title|publisher|year)*>

Then, the function call “rewrite(SROOT, L, Q)" rewrites Q} into the following FluX query
Fy (with the condition abbreviated by x):

{ ps $ROOT:
on-first past() return <bib>;
on bib as $bib return
{ ps $bib:
on book as $b return
{ ps $b:
on-first past(publisher, year) return
{ if (x) then <book> }
on-first past(publisher, year) return
{ for $year in $b/year return
{ if (x) then {$year} } I};
on-first past(publisher, year, title) return
{ for $title in $b/title return
{ if (x) then {$titlel} } };
on-first past(publisher, year, title) return
{ if (x) then </book> } } };
17 on-first past(bib) return </bib> }

© o0 ~ =] t - w [—

e e e e
S N =)

-
(=]

The “on-first ™handler in lines 12-14 delays query execution until all title nodes have
been buffered and all publisher and year nodes have been seen. The condition x is evalu-
ated on the fly and does not require further buffers except one bit storing its current state.

Consider a different DTD which ensures that both order constraints Ordpoox(year, title)
and Ordyeox(publisher, title) hold, e.g.

<!ELEMENT bib (book)*>
<!ELEMENT book (publisher*, year*, titlex*)>

Then, the title nodes can be processed in a streaming fashion. The following query F,
which differs from the above query in lines 12—14, is produced by “rewrite(SROOT, 1.,Q")”
using this new DTD:

64 The FluX Streaming XQuery Processor

1 { ps $ROOT:

2 on-first past() return <bib>;
3 on bib as $bib return
4 { ps $bib:
5 on book as $b return
6 { ps $b:
7 on-first past(publisher, year) return
8 { if (x) then <book> }
9 on-first past(publisher, year) return
10 { for $year in $b/year return
1 { if (x) then {$year} } };
12 on title as $title return
13 { if (x) then {$title} };
14 on-first past(publisher, year, title) return
15 { if (x) then </book> } } };
16 on-first past(bib) return </bib> }
Consequently, titles will not be buffered at all during evaluation of this query. OJ

Note that more than two subsequent “on-first”-handlers can be merged into a single
handler by concatenating their subqueries if they work on equal past-sets. For instance, in
query FY of the above example the two handlers in lines 7 and 9 can be merged into a single
handler by appending the subquery of lines 10-11 to the subquery in line 8. Non-subsequent
handlers must not be merged, because in this case, the execution order of statements given
by the XQuery might be violated depending on when the events are fired.

Our rewrite algorithm is capable of optimizing joins over two or more join predicates,
as is demonstrated in the following example which is not part of the XQuery Use Cases.

Example 3.5.5 We remain in the bibliography domain and consider documents compliant
with the DTD:

<!ELEMENT bib (book|article)*>
<!ELEMENT book (title, (author+|editor+), publisher)>
<!ELEMENT article (title, author+, journal)>

The following XQuery Q3 retrieves those authors of articles which are co-authored by
people who have also edited books:

<results>
{ for $bib in $RO0T/bib return
for $article in $bib/article return
for $book in $bib/book
where $article/author = $book/editor
return
<result>
{$article/author}
</result> }
</results>

3.5 Translating XQuery™ into FluX 65

For the remainder of this example, we abbreviate the join-condition comparing the au-
thors of articles with the editors of books by x. Normalization yields the following XQuery™
query Q-

1 <results>
2 { for $bib in $RO0T/bib return
3 { for $article in $bib/article return
4 { for $book in $bib/book return
5 { if (x) then <result> }
6 { for $author in $article/author return
7 { if (x) then {$author} } }
8 { if (x) then </result> } } } }
9 </results>

When executing “rewrite(SROOT, L, Q%)” with the DTD given above, the recursive call
“rewrite($bib, L, 3)” is eventually invoked for the subexpression B of Q% in lines 3-8. As
B is a for-loop with parent variable $bib and associated set X = Xz = {book} # 0, line
23 of the algorithm is executed, returning an expression of the form

{ ps $bib: on-first past(book, article) --- }.

That is, as no order constraint between article and book holds, an “on-first™handler
ensures that all articles and books will be buffered. Altogether, “rewrite(SROOT, L, (QJ5)”
produces the following FluX query F:

{ ps $ROOT:
on-first past() return <results>;
on bib as $bib return
{ ps $bib:
on-first past(book, article) return
{ for $article in $bib/article return
{ for $book in $bib/book return
{ if (x) then <result> }
{ for $author in $article/author return
{ if (x) then {$author} } }
{ if (x) then </result> } } } }
on-first past(bib) return </results> }

© o0 ~ =] wt = w [V =

— e
= (=}

[
)

When given a different DTD which imposes an order on books and articles, e. g., by the
following production

<I1ELEMENT bib (book*, articlex)>

we can evaluate Q% by buffering only book nodes but processing article nodes in a stream-
ing fashion. Indeed, when executing “rewrite(SROOT, L, Q})” with this new DTD, we
eventually encounter the situation where the set X = Xg = 0, and therefore, lines 2427
(rather than line 23, as with the previous DTD) are executed. Altogether, the following
FluX query F} is produced now, which differs from the above query Fs in the subexpression
in line 5:

66 The FluX Streaming XQuery Processor

1 { ps $ROOT:

2 on-first past() return <results>;

3 on bib as $bib return

4 { ps $bib:

5 on article as $article return

6 { for $book in $bib/book return

7 { if (x) then <result> }

8 { for $author in $article/author return
9 { if (x) then {$author} } }

10 { if (x) then </result> } } }

11 on-first past(bib) return </results> }

As all book nodes will have arrived before an article node can be encountered, data from
books is available in buffers once the first article node is being read. When processing
the children of an article node, we first buffer all author nodes before the query can be
evaluated for the current article. During the evaluation of Fji, we therefore only buffer
the authors of a single article in addition to the data already stored on books, whereas the
evaluation of F3 requires the authors of all articles to be buffered. OJ

3.6 Algebraic Optimization of XQuery

In this section, we present an effective and efficient rewrite system for algebraically opti-
mizing XQueries exploiting schema knowledge from the DTD. All rewrite rules are, again,
equivalences that are relevant beyond the optimization of XQuery in main memory engines,
even though emphasis is put on reducing memory consumption rather than running time.
In practice, for large data volumes, these two goals are of course very highly correlated.
Algebraic optimization of XQueries is done in a preprocessing phase before rewriting them
into FluX. These optimizations are optional in the sense that they provide no prerequisite
for the application of our main rewrite algorithm introduced in Section 3.5.2. However, the
algebraic optimization steps introduced here improve the efficiency of the resulting FluX
queries, as we will show in Section 3.6.2.

3.6.1 Rewrite Rules for Algebraic Optimization

In this section, we assume that all XQuery™~ conditions are in negation normal form, i.e.,
negation only occurs directly in front of atomic conditions. Of course, conditions can be
efficiently transformed into negation normal form by using De Morgan’s laws. To formulate
the rewriting rules for algebraic optimization (Figure 3.5), we first need to define some
further notation.

For each condition x in negation normal form we define a language L,.(x) in such a
way that the following is true: If the sequence of children of the node bound by variable
$z does not belong to L,(x), then condition x cannot be satisfied at this node.

3.6 Algebraic Optimization of XQuery™ 67

% (3 $2 such that L($z) N L,eyq($z, a) =0) [DTD-Impl]

{ if (x) then 8 }
{ if (simplyrp(X)) then [}
{ if (fn:true()) then 3 }
p

{ if (fn:false()) then (3 }
€

[Simplify-If]

[Sat-If]

[Unsat-If]

{ for $2 in $y/a return e }

[Silent-For]

€

{ for $z in $z/a r(.aturn a } { for $y in $z/a return 8 } (ae ||§1) [Mergel]
{ for $z in $z/a return o B[Sy — $z] } z
{ for $2 in $z/a return a
Br... b -
f $y in $ t $z
.{ or $y in 82/a return 7) B is either of the form [Merge2]
{ for $2 in $z/a return « (i...5, v[Sy — 8] } sior { if (xs) then s; }
a€ ||$Szl, o is obtained from « by replacing
{ for 3z in $z/a return o } each condition path $z/a/7 (7 # €), [Simplify]
{ for $z in $z/a return o } by $x/7 and each subexpression of the form PRIy

{ for $y in $z/a return § } by B[y — $z]

Figure 3.5: Algebraic Optimization Rewrite Rules

Definition 3.6.1 (Condition Requirements) We define the requirement of a condition
X, denoted as L.,(x), as follows:

Lyey($z, fn:exists ($z/a/m)) =
L,ey($7, fn:empty($z/a/m)) =
Lyey($, $z/a/m op c)

Lyey($z, S /a/m op $y/b/7")
Lyey($2, Sz /a/m op $x/b/7")

(X*.a.3%)

(S {a})")

(X*.a.X%)

(X*.a.X%)

(2%.0.5%) N L(S*.b.57)

Il
S

Here, op € ValOp U RelOp, with ValOp and RelOp as introduced in Definition 3.4.2
and 3.4.8. For all other (unnegated or negated) atomic conditions xo, we let

Lreq($x7 XO) = L(Z*)

Finally, let
Lreq($xa X1 and XQ) = Lreq($x7 Xl) N Lreq($x7 XQ)
Lreq($x7 X1 OT XQ) = L $

68 The FluX Streaming XQuery Processor

Therewith, we overload the definition of Ly, for expressions:

Lyey(Sz, {if (x) then a}) = L., (3z, x)
Lyey($z, {for $y in $z/a return o)) = L(X".a.X")

and we let
Ley($7,) := L(X")

for all other kinds of expressions v in normal form.
Given an XQuery expression () in normal form and a subexpression o of Q), we define

LreqTQ($xa O[) = ﬂ Lreq($x7 ﬁ) .
B axp=Q

Intuitively, L,.io(Sx, o) denotes the requirements that expression o imposes on the
sequence of children of the node bound by variable $z in the following sense: If this
sequence does not belong to L,.iqo($z, «), then the subquery o will never be executed
while $z is bound to this node. This gives rise to the rewrite rule /[DTD-Impl/ in Figure 3.5.
The condition for the application of this rule can be checked using finite automata (cf.,
[HUT79]).

We now provide some notation needed for the elimination of conditions that can never
be satisfied or are always satisfied, respectively, in XML documents compliant with a given
DTD. Let v, v be value expressions as defined in Definition 3.4.2 and v or v’ contain a path
T =ay/--/a, such that a; ¢ symb($x) or there is an i < n such that a;,1 & symb(a;).
In other words, v or v' contain a path that is not valid according to the given DTD. We
say that an atomic condition Yq is unsatisfiable with respect to the DTD, if xq is of one of
the forms

e fn:exists(v) or
e v RelOp v'.

Informally, a condition is unsatisfiable, if it contains a path which is not valid according to
the given DTD. Analogously, we say that an atomic condition y; of the form

e fn:empty(v)

is always satisfied with respect to the DTD.
Let x be a condition in negation normal form that occurs in an XQuery™ expression Q).
We define

replace-unsat,,.,(x)

to be the condition (in negation normal form) that is obtained from yx by replacing every
unnegated (or negated, respectively) occurrence of an atomic condition xo that is unsat-
isfiable with respect to the DTD by the Boolean constant fn:false() (or fn:true(),
respectively). Analogously, all occurrences of an always satisfied atomic condition y; are
replaced by the Boolean constant fn:true().

For every condition y (possibly, with occurrences of the Boolean constants fn:true()
and fn:false()) we define its simplification as follows.

3.6 Algebraic Optimization of XQuery™ 69

Definition 3.6.2 (Condition Simplification) We inductively define the simplification
simpl,,...(x) of x, where the Boolean constants are propagated as far as possible, as follows:

e [f x is a Boolean constant or a negated or unnegated atomic condition, then

Simplbasic(x) = X

o [f x is of the form

;

“X1 and Y27, then

fn:true() simpl,,...(x1) = fn:true O A
simpl,,.,.(x2) = fn:true O
fn:false() simpl,,...(x1) = fn:false(OV
simpl,,.,.(x) = simpl,,.,.(x2) = fn:false()
87;mpllmsic<xl> 87;mplbasic<x2> = fn : true ()
87;mplbasic<x2) 87;mplbasic<xl) = fn:true ()
| simpl,,...(x1) and simpl,, . (x2) otherwise.

o [f x is of the form “x1 or x»27, then

(fn:true() simpl,,...(x1) = fn:true OV
simpl,,...(x2) = fn:true()
fn:false() simpl,,...(x1) = fn:false O A
87;mplbasic<x> = Simplbasic(XQ) = fn:false()
stmply,..(X1) simpl,,..(x2) = fn:false)
87;mplbasic<x2) Simplbasic<xl> = fn:false ()
| simpl,,...(x1) or simpl,, . (x2) otherwise.

Finally, we define for a condition x in negation normal form, occurring in an XQuery Q)

simply,p(x) = simpl,,, (replace-unsat, (X)) .

Informally, simpl,,,(x) is the simplified condition derived by using knowledge of the
DTD to eliminate unsatisfiable (or always satisfied, respectively) atomic conditions.

Obviously, simpl,,,(x) can be computed in time linear in the size of x. The following is
true for every XML document D compliant with the DTD: For every variable binding that
occurs while evaluating () on D, the condition Yy is satisfied if, and only if, the condition
simpl,,(x) is. This gives rise to the rewrite rules [Simplify-If], [Sat-If], and [Unsat-If] in
Figure 3.5.

Further, let «[$z — $y] denote the expression obtained by substituting all occurrences
of $z in a by $y.

Now, given a DTD, a normalized XQuery™ expression () is algebraically optimized by
rewriting (subexpressions of) it using the rules in Figure 3.5 until no further changes are
possible. It is not difficult to see that the resulting XQuery™ expression is, again, in normal
form. Furthermore, the rewrite rules in Figure 3.5 are, in fact, equivalences.

70 The FluX Streaming XQuery Processor

In the following, we briefly characterize the complexity of our algebraic optimiza-
tions [KSSS04c|. Let £, denote the maximum length of the regular expressions occurring
in the DTD. For every normalized XQuery ™ expression () let vy be the number of vari-
ables occurring in @, dg the depth of @ (i.e., the maximum number of nested subexpres-
sions), and cg the maximum size (in terms of “and” and “or” connectives) of conditions
in (). For every XQuery™ query () in normal form and every subquery a < @ it takes
O(E prp - VQ - 4CQ'dQ) computation steps to check whether rule /[DTD-Impl] can be applied
to a and to actually apply the rule. This complexity can be deduced by estimating the
size of the automaton needed to check the condition L($z) N L,.,10 (3, o) = 0 of the rule
[DTD-Impl] for each variable in (). Further, it is easy to see, that for each rule except
[DTD-Impl], it takes O(|Q|) computation steps to check whether the rule can be applied
to a and to actually apply the rule. Similar to rewriting an XQuery into its normal form,
the rewriting rules of Figure 3.5 can be implemented in such a way that the following is
true: Given a DTD and a normalized XQuery query (), the rewriting terminates after
O(|@|) rule application with a (unique) normalized XQuery™ query)" which is equivalent
to @ on all XML documents compliant with the given DTD.

3.6.2 Examples

In this section, we further explain the rewrite rules from Figure 3.5 with some examples.
When it can be derived from the DTD that certain elements will not appear (in com-
bination), we may prune such expressions accordingly. This is the basic idea behind the

rules [DTD-Impl] and [Simplify-If], [Sat-If], and [Unsat-If].

Example 3.6.3 Consider the third DTD from Section 3.1, 1. e., the DTD:

<!ELEMENT bib (book)*>
<!ELEMENT book (title, (author+|editor+), publisher, price)>

Let QQ be the following XQuery:

<result>
{ for $bib in $RO0T/bib return
(if (fn:not(fn:exists($bib/book/subtitle))) then
<remark> books don’t have subtitles </remark>,
for $book in $bib/book return
if ($book/author = "Hull" and $book/editor = "Vianu") then
$book) }
</result>

We abbreviate the second if-condition as x and the string <remark> --- </remark>
as s for syntactic brevity. Directly rewriting Q into FluX (without algebraically optimizing)

3.6 Algebraic Optimization of XQuery™ 71

leads to the following FluX query F:

{ ps $ROOT:
on-first past() return <result>;
on bib as $bib return
{ ps $bib:
on-first past(book) return
{ if (fn:not(fn:exists($bib/book/subtitle))) then s I};
on-first past(book) return
{ for $book in $bib/book return
{ if (x) then {$book} } } };
on-first past(bib) return </result>; }

When evaluating F' on an input XML stream, all books will be buffered. This will
be circumuvented if, prior to the transformation into FluX, the XQuery Q) is algebraically
optimized by using the rewrite rules of Figure 3.5: From the given DTD we know that books
do not have subtitles. Therefore, the first if-condition in Q) is always satisfied, and we can
use the rule [Sat-If] to rewrite the first if-expression. Additionally, the DTD tells us that
books do either have authors or editors. Therefore, the second if-condition x in Q) is never
satisfied, and we can use rule [DTD-Impl] to rewrite this if-expression. Altogether, using
the rules [DTD-Impl], [Simplify-If], [Sat-If], [Unsat-If], and [Silent-For], Q is rewritten
into the XQuery Q'

<result>
{ for $bib in $RO0OT/bib return s }
</result>

which, by applying our rewriting algorithm, leads to the equivalent FluX query F”:

{ ps $ROOT:
on-first past() return <result>;
on bib as $bib return s;
on-first past(bib) return </result>; }

Hence, no buffering is necessary when evaluating F' on an XML stream compliant with the
aforementioned DTD. dJ

Although the algebraic optimizations in the former example might seem to be deviously,
they are of importance when thinking of processing (possibly infinite) data streams with
respect to user-friendliness. Consider a query containing a wrong path with respect to the
DTD (probably due to a typing error) and hence yielding an empty result. Without our
optimizations, users will probably wait a long time for the expected result, which obviously
never will be computed, because the (non-existent) path cannot be matched on the data
stream. Exploiting our optimizations, in the best case the query can be reduced in such
a way that immediately an empty result can be delivered without even having to process
the data stream.

72 The FluX Streaming XQuery Processor

With the algebraic optimization rules [Mergel] and [Merge2/, for-loops over the same
path may be merged if it is known from a cardinality constraint of the DTD that they
are executed at most once. Optimizing an XQuery () by means of these rules leads to
an equivalent XQuery " which, when transformed into FluX, can lead to a FluX query
that needs significantly less buffering than the original query. Analogously, rule [Simplify]
shortens condition paths and eliminates nested for-loops, again provided that the for-loop
is executed only once. This will pay off when computing the dependency sets, since buffers
will appear more locally. Altogether, the algebraic optimization rules often reduce the
amount of buffering needed for processing a query. Consequently, the FluX query obtained
from the optimized XQuery will be executed much more efficiently than that obtained from
the original XQuery. Let us demonstrate this effect using the following examples.

Example 3.6.4 Consider a DTD in the bibliography domain with the productions

<!ELEMENT bib (dissertation)*>

<!ELEMENT dissertation (title, author, pubyear)>

<!ELEMENT author (lastname, firstname, address)>
and the XQuery:

<address>

{ for $d in $RO0T/bib/dissertation
where $d/author/lastname = "Goedel"
return

$d/author/address }
</address>

Normalization of this query yields the following XQuery query Qs:

<address>
{ for $d in $bib/dissertation return
{ for $a in $d/author return
{ for $addr in $a/address return
{ if ($d/author/lastname = "Goedel") then {$addr} } } } }
</address>

Directly rewriting Q2 into FluX leads to the FluX query F,

{ ps $ROOT:
on-first past() return <address>;
on bib as $bib return
{ ps $bib:
on dissertation as $d return
{ ps $4:
on-first past(author) return
{ for $author in $d/author return
{ for $addr in $author/address return
{ if ($d/author/lastname = "Goedel") then {$addr} } } }; }; };

on-first past(bib) return </address>; }

3.6 Algebraic Optimization of XQuery™ 73

that needs to buffer the entire author node (because of the “on-first past(author) ™-
handler).

If we first rewrite Qo using the algebraic optimization rule [Simplify/, which simplifies
the if-expression to “{if ($author/lastname = "Goedel") then ...1}7”, and then trans-
form the resulting query into FluX, we obtain the following FluX query Fj:

{ ps $ROOT:
on-first past() return <address>;
on bib as $bib return
{ ps $a:
on author as $author return
{ ps $author:
on address as $addr return
{ if ($author/lastname = "Goedel") then {$addr} }; }; I};
on-first past(bib) return </address>; }

Note that for processing Fj on a stream conforming to the DTD no buffering is needed at
all. O

Example 3.6.5 Consider again the DTD of the previous example and the following XQuery
retrieving last and first names of all authors:

<authors>
{ for $a in $RO0T/bib/dissertation
return
($a/author/lastname,
$a/author/firstname) }
</authors>

Normalizing this query yields the following XQuery query Qs:

<authors>
{ for $bib in $RO0T/bib return
{ for $d in $bib/dissertation return
{ for $author in $d/author return
{ for $1n in $author/lastname return
{$1n} } }
{ for $author in $d/author return
{ for $fn in $author/firstname return
{$fnr + + } 3

</authors>

© oo ~ =] wt = w [V =

-
[=}

74 The FluX Streaming XQuery Processor

Directly rewriting Qs into FluX leads to the following FluX query Fj:

1 { ps $ROOT:

2 on-first past() return <authors>;

3 on bib as $bib return

4 { ps $bib:

5 on dissertation as $d return

6 { ps $4:

7 on author as $author return

8 { ps $author:

9 on lastname as $1n return {$1n}; };
10 on-first past(author) return

11 { for $author in $a/author return

12 { for $fn in $author/firstname return
13 {$fn} > }; }; ks

14 on-first past(bib) return </authors>; }

Because of the two consecutive for-loops over authors in lines 4 and 7 of)3, when
ignoring cardinality constraints we are only able to execute the first loop in a streaming
fashion (using an on-handler), whereas the second loop has to work on previously buffered
author nodes (by means of an “on-first -handler).

By applying rule [Mergel] on Q3 the two for-loops can be merged into a single loop.
The resulting query Q% is obtained from Q3 by replacing lines 4-9 with:

{ for $author in $a/author return
{ for $1n in $author/lastname return {$1n} }
{ for $fn in $author/firstname return {$fn} } 7}

Rewriting Q% into FluX yields the following FluX query Fj:

{ ps $ROOT:
on-first past() return <authors>;
on bib as $bib return
{ ps $bib:
on dissertation as $d return
{ ps $4d:
on author as $author return
{ ps $author:

on lastname as $1n return {$1n};

on firstname as $fn return {$fn}; }; }; I;
on-first past(bib) return </authors>; }

Not only is Fy aesthetically preferable, but it can be executed without any buffering at all
on streams conforming to the given DTD.

3.7 Implementation 75

XQuer Query (Normal Form
Q Y Rewriter L Rewriting Rules
Normalized XQuery ™
DTD Query (Algebraicj (')ptimization
Rewriter L Rewriting Rules
Optimized XQuery ™
FluX
Translation
Query Optimizer

FluX Query
Query Query Plan
Compiler
?P:;)ﬁml’ ofp-Events
CSAX Streamed XML Output
XML Input Query Evaluator Stream
Stream :
Memory
Buffers
Runtime Engine

Figure 3.6: Architecture of the FluX Query Engine

3.7 Implementation

Figure 3.6 depicts the architecture of our FluX query engine with the query optimizer and
a runtime engine as the main modules.

The query optimizer gets an XQuery and a DTD as input and transforms this query
successively into a FluX query as described in the previous sections. The optional algebraic
optimizations are shaded grey.

In this section, we will discuss various aspects of the runtime engine for evaluating
FluX queries computed by the query optimizer, which are shown in the bottom half of the
figure. We first explain the implementation of our SAX-based XML parser for producing
“on-first-past”-events in Section 3.7.1. In Section 3.7.2 we show how a physical query plan is
generated by the query compiler and how it is executed. Finally, we describe the handling
of main memory buffers in Section 3.7.3.

76 The FluX Streaming XQuery Processor

3.7.1 The XSAX Parser

For the evaluation of FluX queries special “on-first-past™events (ofp-events) are needed.
Our eXtended SAX (XSAX) parser accomplishes this task. The XSAX parser is based
upon a conventional SAX parser. Such a SAX parser produces a sequence of the following
events while parsing an XML stream:

e Start of an element (with associated tag name and attributes)
e Character content (with associated content)
e End of an element (with associated tag name)

Our XSAX parser extends such a SAX parser by additionally feeding SAX events through
an ofp manager. The ofp manager handles SAX events through to the FluX query engine
and additionally inserts appropriate ofp-events into this stream of SAX events.

The basic mode of operation of our XSAX parser is the full validation mode. Given a
DTD of the input stream, the ofp manager computes the Glushkov automaton for every
production of the DTD as described in Section 3.3. Further, the query compiler analyzes
the FluX query with respect to which ofp-events have to be generated in what productions
and registers those ofp-events at the XSAX parser. The ofp manager then computes the
past sets for each ofp-event and annotates the events at the corresponding transitions of
the automata. Since making a single transition may trigger more than one ofp-event for
different sets of symbols, ofp-events are encoded as bitmaps, where each bit corresponds
to a unique ofp-event. If ofp-events have to be thrown on making a transition of an
automaton, a bitmap with the corresponding bits set is handed to the query engine as a
single ofp-event representing all ofp-events that have to be processed. Note that automata
transitions can be annotated at query compile time, so ofp-events can be generated very
efficiently at runtime by only simulating the automata. To be able to switch between the
automata of all productions during parsing the input stream, the ofp manager maintains
a stack of automata representing the current nesting level of the input stream. Therefore,
the ofp manager handles SAX events as follows:

e Upon seeing a start element event “<tagname>”, the automaton on top of the stack
is simulated by making the transition labeled tagname from its current state. If
ofp-events are associated with this transition, they are thrown. If no transition can
be made, the document is not valid according to the given DTD and an error is sig-
naled. Afterwards, we enter the production of this tag by pushing the corresponding
automaton on top of the stack.

e Upon seeing an end element event “</tagname>”, we simulate the automaton on top
of the stack using input symbol “®”. Note that the end tag is a valid symbol in
this automaton because of the construction described in Section 3.3. Afterwards, we
remove this automaton from the stack, which represents a decrease in the current
nesting depth of the XML input stream.

3.7 Implementation 7

Having simulated the appropriate automata and possibly generated ofp-events, the original
SAX event is forwarded to the query engine. Mixed content is managed by introducing a
special symbol for character content (independent from the real content) and therefore is
handled like any other symbol (i.e., a tag name). Since for every production in the DTD
an automaton is built and simulated, the whole input stream is validated against the DTD.

The second mode of operation of our XSAX parser is the lazy mode. Obviously, only
automata for those productions are needed, in which actually ofp-events have to be gen-
erated. Hence, in this mode of operation we only build and simulate automata for such
productions. For all remaining productions a “dummy” automaton, which does not try to
make a transition and does not throw any ofp-events, is used. First, this conserves main
memory, because fewer automata have to be held in memory (in the worst case, i.e., no
order constraints among the children, an automaton of a production has O(n?) transitions
with n being the number of children). Second, the efficiency of the ofp manager is improved,
because the dummy automata do not simulate any transitions. Of course, only parts of
the data stream are now validated against the given DTD. Since we assume that the input
stream is valid with respect to the given DTD, this is the default mode of operation.

Another important task of the XSAX parser is online compression of the XML data
stream. Using the given DTD, the XSAX parser assigns each production (and therewith,
each possible tag name) a unique integer identifier. When forwarding SAX start/end
element events to the query engine, the actual name of the tag is replaced by its iden-
tifier®. Additionally, the ofp manager works on these identifiers rather than using the
original element names. SAX events representing character content remain untouched.
This compression is similar to the dictionary-based compression of structural content in
XMill [LS00]. The query engine benefits in two ways from this approach: First, the execu-
tion of on-handlers is improved, since we do not have to compare string values but only the
integer identifiers for determining whether a handler matches an event, which obviously
is much more efficient. Second, if the query engine buffers parts of the input document
(which is realized as storing a list of SAX events—see Section 3.7.3 for details), only the
identifier together with the type of the event has to be stored. This dramatically reduces
main memory consumption. When outputting events, the query engine uses the symbol
table of the XSAX parser to restore its original name.

Note also that the XSAX parser performs an on-the-fly conversion of attributes into
elements as described in Appendix C.1.

3.7.2 Query Execution

In this section, we present how the runtime engine evaluates FluX queries by means of the
query compiler and the streamed query evaluator depicted in Figure 3.6.
The query compiler transforms an optimized FluX query into a physical query plan by

6 Actually, when forwarding SAX events we hand both its name and identifier to the query engine to
avoid compressing in the parser and immediately uncompressing in the query engine, e.g., when directly
outputting the input stream. Apart from that, the query engine only works with the compressed events.

78 The FluX Streaming XQuery Processor

rewriting the logical query operations into physical operators. Physical query operators
are classified as follows:

Stream Operators This class of operators consists of operators handling streams, e. g.,
for controlling buffering or direct outputting of streams, for matching paths on a
stream, and so on.

Buffered Operators This class basically contains all standard XQuery constructs work-
ing on buffered data as used in “on-first”-handlers. The most prominent represen-
tatives are operators for evaluating for-loops on buffers.

Common Operators These are general purpose operators that may be used both on
streaming data and buffered data. Examples for such operators are conditional exe-
cution of subplans (representing if-statements) or computation of expressions (e. g.,
used in conditions).

3.7.2.1 Implementation of the “process-stream”-Statement

The most important extension of FluX compared to standard XQuery is the introduction of
the process-stream construct for directly processing data streams. Every “{ps $x: ... }"-
statement defines a scope. A scope corresponds to a set of nodes at a certain depth of the
tree representation of the input XML stream, which have a common parent node. Note
that a certain depth in the XML tree may have different (sibling) scopes. For each scope
of a query, i.e., for each “{ps $x: ... }’-statement, a scope-handler is created, which
processes the events it receives from the XSAX parser.

The functionality of a scope-handler slightly differs from the semantics of a ps-statement
(with respect to the execution of handlers) as follows. The semantics of an “on a”-handler in
FluX is defined such that on seeing an a node and processing the handler the whole subtree
rooted at a is known. This is somewhat different when processing the input stream as a
sequence of SAX (or, in detail, XSAX) events. Here, we receive an event corresponding to
the opening tag <a> and a different event representing the closing tag (of course, with
the sequence of events corresponding to the subtree rooted at a in between). Hence, for a
single “on a”-handler of a ps-statement two handlers, one for the start and the other for the
end tag event, have to be managed in a scope-handler. The query compiler appropriately
schedules physical query operators into the start tag handler, the end tag handler, or both
of them. For instance, consider the case that we want to buffer the whole subtree rooted
at a. Then, the query compiler schedules a physical operator for starting buffering in the
start tag handler of @ and another operator for turning buffering off in the end tag handler
of a. “on-first”handlers and events are handled by a scope-handler exactly as defined in
Section 3.4.2.

Using the physical operators and scope-handlers, the query compiler is able to construct
a query plan, which consists of a set of nested scope-handlers containing all the physical
query operators derived from the optimized FluX query in the appropriate event handlers.
Additionally, the query compiler registers all ofp-events occurring in a FluX query at the

3.7 Implementation 79

XSAX parser and utilizes the symbol table of the XSAX parser for substituting all labels
of elements by their identifier.

3.7.2.2 Execution of a Query Plan

We have the following two possibilities for executing the query plan compiled by the query
optimizer:

e The query plan is directly interpreted by means of the streamed query evaluator.

e The query plan can be transformed into native Java code, which eventually yields a
directly executable query.

Both approaches share common core functionality. Hence, in the remainder we focus on
describing how the streamed query evaluator executes a query plan.

The streamed query evaluator maintains a stack of scope-handlers representing the cur-
rent nesting of the XML input stream. XSAX events are always passed to the scope-handler
on top of the stack, i.e., to the current scope. This scope-handler executes the appropriate
handlers (and associated operators). If a new scope is entered, a scope-handler for the new
scope is generated, pushed on top of the stack, and all “on-first past()”-handlers are
executed. From now on, this new handler receives all XSAX events and processes them
accordingly, which is equivalent to descending one level in the tree representation of the
input stream. Upon seeing the end tag event of the symbol associated with the current
scope, it is left by executing all “on-first past(*)”-handlers and removing the topmost
scope-handler from the stack. Analogously, this is equivalent to ascending one level in the
XML tree. In special cases events are handed from the current scope to parent scopes.
For instance, if a parent scope has turned on buffering of the stream, the current scope-
handler also propagates all events it receives to the parent scope-handler, so that it is able
to populate its buffers accordingly. This is, however, only an implementation subtlety.

3.7.2.3 Condition Evaluation

Another interesting aspect of the query compiler /streamed query evaluator is the handling
of if-conditions.

Due to the normalization, if-statements (or, conditional operators in the query plan)
are always pushed down to the “leaves” of the query tree. This has the effect that often
a single if-expression of the query is translated into multiple if-statements with equal
conditional expressions (this can be easily observed in the prior examples). At first glance,
this seems to be rather poor with respect to efficiency. To avoid multiple computation of
conditions in such situations we separate the evaluation of the condition itself from the
execution of an if-expression (or, a conditional operator in the query plan). That is,
the query compiler schedules an operator evaluating the conditional expression such, that
this operator is executed (and therewith, the expression is evaluated) right before the first
conditional operator actually needs the result. The result of the condition is stored in a

80 The FluX Streaming XQuery Processor

Boolean flag. Then, all conditional operators only check this flag rather than repeatedly
computing the conditional expression. This can be applied for all types of conditional
expressions and only implies a very low additional need for main memory consumption.

However, there is a striking difference between the evaluation of (join) conditions and
streaming atomic conditions.

Definition 3.7.1 (Streaming Atomic Condition) A streaming atomic condition is an
atomic condition of the form
$x /7 RelOp s

with $z being a variable bound by an on-handler, ™ a (non-empty) fived path, and s a
constant string.

Streaming atomic conditions may be checked on-the-fly and the values of the fixed path m
do not have to be buffered. In detail, whenever a value of the corresponding path is seen
on the stream, the condition is immediately checked and the result is stored in a Boolean
flag for use in the appropriate conditional operators. Since our rewriting algorithm always
generates safe queries, it is assured that all nodes which need to be checked for correctly
evaluating the expression have been seen before the result of the expression is used for the
first time in a conditional operator. In other words, the rewriting algorithm delays the

execution of if-statements, until all necessary data has been seen’.

3.7.2.4 Examples

For the sake of briefness, we refrain from giving a more detailed description of the query
compiler and the streamed query evaluator and provide an instructive example instead.

Example 3.7.2 Consider again query XMP-Q1 introduced in Example 3.5.1 and the FluX
query F| generated in the optimal case as described in Example 3.5.4. The query engine
pursues the evaluation strateqy, which has been computed by the query compiler, as shown
i Figure 3.7.

Scope-handlers are denoted as PSNode (corresponding to a scope, see lines 1, 8, and
17) and handle the events startStream, endStream, on-first, and start/end tags of
elements®. startStream- and endStream-handlers are executed when entering and leaving,
respectively, the scope and correspond to “on-first past() ™~ and “on-first past(*) -
handlers in FluX. Handlers for start and end tag events are separated into the startTag
and endTag sections as described before.

Query processing starts by executing the startStream-handler of the main scope (line
2), which outputs the start tag <bib> (line 3). When receiving the events <bib> and
<book>, the scope of a book is entered (line 17) and the corresponding content of a book

"This is usually accomplished by placing the corresponding statement(s) into an appropriate
“on-first”-handler if the DTD does not assure the correct order of elements.

8For presentation purposes, all handlers are shown with the real labels of the symbols. Of course,
internally only the corresponding identifiers are used.

3.7 Implementation

81

© 0N O U R W N =

U Ut gr Ot Ot O U Ot U s R s s s e B R R W W W W W W W W W W NN NN NN NN NN E R e e
W N O Uk W= O © 0O U R WN O ®© WO U B W =O®©WoWw-NOo U & Wk HFHFO W OW-N O Uk W = O

PSNode [symbol=__R0O0T]
* startStream:
Output [data=<bib>]
* endStream:
Output [data=</bib>]
* startTag:
on ’bib’:
PSNode [symbol=bib]
* startStream:
(NOP)
* endStream:
(NOP)
* startTag:
on ’book’:
SequenceNode
BufferStream[bufID=0; state=true]
PSNode [symbol=book]
* startStream:
SequenceNode
BufferStream[bufID=0; state=false]
InitializePathMatcher [path=publisher; AtomicCondition: 1]
InitializePathMatcher [path=year; AtomicCondition: 3]
* endStream:
BufferStream[bufID=0; state=true]
* startTag:
on ’title’:
Conditional [conditionID=4]
OutputStream[state=true]
on ’year’:
BufferStream[bufID=0; state=true]
* endTag:
on ’title’:
Conditional [conditionID=4]
OutputStream[state=false]
on ’year’:
BufferStream[bufID=0; state=false]
* on-first:
OnFirstHandler {year, publisher}:
SequenceNode
Conditional [conditionID=4]
Output [data=<book>]
BufferedFor [var=$year; baseVar=$b; step=year, buffer=0]
Conditional [conditionID=4]
BufferedOutput [var=$year]
OnFirstHandler {year, title, publisher}:
Conditional [conditionID=4]
Output [data=</book>]
* endTag:
on ’book’:
SequenceNode
InitializeBuffer [bufID=0]
BufferStream[bufID=0; state=false]
* on-first:
(NOP)
* endTag:
(NOP)
* on-first:
(NOP)

Figure 3.7: Query Plan for Query XMP-Q1

82 The FluX Streaming XQuery Processor

can be processed. Upon entering this scope, the sequence of operators in lines 20-22 is
executed. The first manages the needed buffering of the year nodes. Details on buffering
will be presented in the next section and we will refrain from describing the BufferStream
operators in the following. The InitializePathMatcher operators in lines 21 and 22
handle the evaluation of the condition

$b/publisher = "Addison-Wesley" and $b/year > 1991

In detail, it consists of two streaming atomic conditions, which can be checked on-the-fly.
For each condition the following is accomplished by the InitializePathMatcher operator:

e A Boolean flag is created, which stores the result of the atomic condition, and initial-
1zed to false.

o An automaton corresponding to the path that has to be checked (in this example,
publisher or year relative to the current book node) is set up, which receives the
imcoming events. Whenever this automaton is in an accepting state, 1. e., a match
with the given path has occurred, it executes a specific action. In this case, the
action 1s to evaluate the given atomic condition on the current content of the path by
examining the character data read on the stream without the explicit use of buffers.
If, at some point in time, an atomic condition already has been evaluted to true, no
further evaluation is performed.

Hence, while receiving XSAX events of a book node the two atomic conditions are trans-
parently checked on-the-fly. Fventually, an ofp-event signaling that no further publisher
and year nodes can be encountered anymore triggers the execution of the lines 39-44. If
the composite condition evaluates to true, the Conditional operator executes line 41 and
hence prints the opening tag <book> to the output. The BufferedFor operator (line 42)
loops over all (previously buffered) year nodes and the BufferedOutput writes the current
binding to the output if the condition is fulfilled (lines 43—44). From now on, we may re-
ceive title nodes (and not before, because of the order constraints of the DTD). Whenever
a start tag event <title> is processed, we signal the scope-handler to turn on outputting of
the incoming data stream, if the condition is fulfilled (lines 27-28). Analogously, directly
writing the stream to the oulput is terminated at the closing tag event </title> (lines
33-34). When no further titles can be encountered anymore, the closing tag is written to
the output by means of the ofp-handler in lines 45-47. Upon receiving the end tag event
</book> the scope of book is left and all buffers needed in this scope are cleared (lines
49-52).

Entering, processing, and leaving the book-scope continues until the data stream ends.
Then, query processing terminates by executing the end stream handler in the main scope
i lines 4—5 and printing the closing tag </bib> of the result. U

The following example briefly shows, how non-streaming conditions are handled during
the evaluation of a FluX query.

3.7 Implementation 83

1 * on—-first:
2 OnFirstHandlerNode {article, book}:

3 BufferedFor [var=$article; baseVar=$bib; step=article, buffer=0]
4 BufferedFor [var=$book; baseVar=$bib; step=book, buffer=0]

5 SequencelNode

6 BufferedConditionCheck [conditionID=2]

7 Conditional [conditionID=2]

8 Output [data=<result>]

9 BufferedFor [var=$author; baseVar=$article; step=author]

10 Conditional [conditionID=2]

11 BufferedOutput [var=$author]
12 Conditional [conditionID=2]

13 Output [data=</result>]

Figure 3.8: Fragment of Query Plan for Example 3.5.5

Example 3.7.3 Consider the FluX query F3 shown in Example 3.5.5. This query contains
the (non-streaming) join condition

$article/author = $book/editor,

which is processed inside an “on-first past(book, article) -handler. Figure 3.8 shows
the relevant fragment of the query plan for this handler inside the bib scope. The oper-
ators BufferedFor, Conditional, and BufferedOutput directly reflect the structure of
the XQuery expression in lines 6-11 of F3. The condition itself is evaluated by means
of the operator BufferedConditionCheck in line 6 of Figure 3.8, which is scheduled right
before the result of the condition is needed for the first time in a Conditional operator,
1. e., in line 7. This operator iterates over the current bindings of the variables $article
and $book contained in the buffer and sets a flag corresponding to the current result of the
condition. The Conditional operators (in lines 7, 10, 12) then only read this flag to de-
termine whether to execute the corresponding subplan, rather than evaluating the condition
each time. O

3.7.3 Buffer Management

In this section, we discuss the allocation of buffers and their use during query evaluation.
Given a FluX query, we statically infer the buffers which are necessary in order to avoid
superfluous buffering. Our pre-filtering techniques generalize those of [MS03] to the scenario
where certain parts of the input do not need to be buffered—even though they are used by
the query—because they can be processed on-the-fly.

Buffers are implemented as lists of SAX events?. A buffer is always associated to its
corresponding variable, which must be bound by an on-handler and processed by a ps-
statement. Hence, it is tied to the scope of this variable. On entering this scope the buffer

9Note that ofp-events are not needed for “classic” evaluation of XQuery over buffers inside ofp-handlers
and hence it is sufficient to buffer SAX events.

84 The FluX Streaming XQuery Processor

is initialized and cleared on leaving it. The events stored in a buffer represent well-formed
XML in the sense that start/end element events are properly nested within each other. This
renders data read from (a stream replayed from) a buffer indistinguishable from data read
from the input stream. In our implementation, we employ a common set of operators for
handling both events originating from streams and buffers, e. g., for condition evaluation!®.

In the following, we say that a FluX query is in normal form if all of its (maximal)
XQuery ™~ subexpressions are in normal form.

Let @ be a safe FluX query in normal form. The FluX query engine identifies all nodes
that must be stored in buffers, i. e., all nodes compared in non-streaming atomic conditions,
e.g., a join condition, the roots of buffered subtrees that are output, and buffered nodes
over which for-loops iterate. The following definition formalizes this idea of buffered paths.

Definition 3.7.4 (Buffered Paths) Let o and 5 be XQuery subexpressions of Q). We
define I1($r, o), the set of all buffered paths in « starting with variable $r, as

I($r, €) = ($r,s)
II($r, {$r})
)
)

0
= {3}
= I($r, «) U II($r, B)
— 16,)
U {$T/a | $y = $r ATI(Sz, o) = 0}
UA{$r/a/w | $y = $r A $z/w € TI($z,)}
I1($r, {if x then a}) := II($r, a)

U {$r/7 | x contains a non-streaming

M($r, af

I1($r, {for $z in $y/a return a}

atomic condition with

a path $r/m}
For a variable $r and a safe FluX query Q in normal form, we now define I1($r) as

($r) = UH($T, @)

with a being a mazimal XQuery subexpression of Q.

Let 7 ($r) be the prefix tree constructed by merging all paths from II($r). Intuitively,
the prefix tree defines a projection of the input document, as it describes which parts of
the input tree will be buffered.

We optimize the prefix tree in order to restrict the amount of data being buffered as
follows. Let $r/m =$r/.../a € II($r). Now, let 7™ ($r) be the tree obtained from 7 ($r)
by marking the node labeled a if $r/7 does not stem from the set

{$r/a | $y = $r ATI(Sz,) = 0}

0T hus, physical query evaluation proceeds in a way similar to that followed in XQRL [FHK*00].

3.7 Implementation 85

$bib $article
| I
book author®
|
publisher®

Figure 3.9: Buffer Trees of Example 3.7.5.

contained in Definition 3.7.4 of buffered paths of a for-expression. Therefore, marked
nodes are buffered together with their entire subtree. For unmarked nodes in 7™ ($r), we
merely store the SAX events for the opening and the closing tag.

Clearly, if a node is marked and we buffer it together with its subtree, we also buffer the
subtrees of any descendant nodes at the same time. Thus we only buffer the data of the
topmost marked nodes in 7™ ($r). For example, if we need to buffer two subtrees reachable
by paths 7 and 7’ respectively, where 7 is a prefix of @/, we restrict ourselves to buffering
the subtree identified by . Let 77($r) be the pruned prefix tree obtained from 7™ ($r) by
successively removing a subtree rooted at a node v’ if an ancestor node v is marked. We
refer to 7P($r) as a buffer tree.

Without loss of generality, we assume that variables in queries are used uniquely, i.e.,
each variable name is bound at most at one place in the query. For a safe FluX query @) in
normal form, let X be the set of variables that are free in maximal XQuery~ subexpressions
of (). The variables in X are precisely those for which we will later define buffers.

Example 3.7.5 The following FluX query selects all book publishers whose CEO has pub-
lished articles.

{ ps $ROOT:
on bib as $bib return
{ ps $bib:
on article as $article return
{ ps $article:
on-first past(author) return
{ for $book in $bib/book return
{ for $p in $book/publisher return
{ if $article/author = $book/publisher/ceo
then {$p} } } }; }; }; }

Here, X = {$bib, $article} and we compute the sets of buffer paths for each variable in
X as:

[I($bib) = {$bib/book/publisher/ceo,
$bib/book/publisher}
[I($article) = {$article/author}

86 The FluX Streaming XQuery Processor

We construct a buffer tree for each variable in X with a nonempty set of buffer paths.
Here, we obtain the trees shown in Figure 3.9 (the bullet denotes a marked node). Note
that the leaf node ceo has been pruned off the buffer tree of variable $bib. OJ

With the next example we show how the additional optimizations of the buffer tree
work.

Example 3.7.6 Consider the following FluX query, which only prints an <aBook/> ele-
ment for each book:

{ ps $ROOT:
on-first past(bib) return
{ for $bib in $RO0T/bib return
{ for $book in $bib/book return
<aBook/> } }; }

Note that this query is safe, but for presentation purposes it has not been obtained through
our algorithm and hence it is not optimal with respect to minimal buffer usage (in this case,
no buffering would be required at all).

Here, X = {$RO0T} and II($RO0T) = {$ROOT/bib, $RO0T/bib/book}. The optimized
buffer tree TP(SROOT) consists only of the unmarked path $RO0T/bib/book. Hence, for
each book only the sequence of events <book></book> will be buffered (nested inside the
surrounding bib events). This is sufficient for being able to iterate over all books and print
the tag <aBook/>, since only the number of books, but not their actual contents, is needed.

O

In other words, the buffer tree of a variable $r can be considered a schema for all events
stored in the associated buffer.

The query compiler prepares buffering of nodes to be able to evaluate a safe FluX
query @ in normal form as follows. At first, it computes the set X of () and constructs
the buffer tree 7P($r) for each variable $r € X. As already said at the beginning, each
variable corresponds to a scope. Hence, in each scope belonging to some $r a buffer is
set up. This buffer is initialized on entering the scope of $r and freed after leaving it by
adding appropriate physical query operators to the query plan. To realize the selective
buffering, in all needed subscopes of $r physical query operators for turning buffering on
and off are scheduled at the appropriate start and end tag events such that the buffer is
correctly filled. In cases where no such subscopes exists (because the query itself does not
need them), we introduce new variables and scopes accordingly. As there is at most one
(start and end tag) event-handler for a given node label, it is clear where corresponding
commands are to be introduced.

Example 3.7.7 Consider again the query plan of Example 3.7.2 depicted in Figure 3.7.
For this query, X = {$b} and TP($b) consists only of the path $b/title® with a marked
title node. Recall, that the atomic condition referring to publishers can be checked on-
the-fly and thus no publishers have to be buffered. To ensure correctly buffering of the year
nodes of the stream, the query compiler schedules physical operators as follows.

3.7 Implementation 87

Before entering the scope of $b, buffering is turned on by means of the BufferStream
operator (line 16) to ensure, that the events of the surrounding book node are buffered'!.
Upon entering the scope, buffering is immediately turned off again in the startStream-
handler to achieve that mno unnecessary subsequent events are buffered (line 20). Upon
receiving a <year> event, buffering is turned on again (line 30). Analogously, when re-
ceiving the </year> event buffering is switched off (line 36). Because of that, all events
belonging to the whole year subtree (including the opening and closing year events) are
buffered. Eventually, in the endStream-handler of $b buffering is turned on to assure that
the closing tag </book> is correctly buffered (line 24).

After having left the scope of $b (and thus not needing the buffer anymore), in the end
tag handler of a book the buffer is freed (line 51). O

Due to the computation of the set X and associating buffers to scopes it is possible, that
some nodes are buffered more than once. The following example illustrates this situation.

Example 3.7.8 Consider the following FluX query:

{ ps $ROOT:
on bib as $bib return
{ ps $bib:
on book as $book return
{ ps $book:
on-first past (title, author) return
{ for $title in $book/title return {$title} }
{ for $author in $book/author return {$author} }; };
on-first past(book) return
{ for $book in $bib/book return
{ for $title in $book/title return {$title} } }; };

Note that this safe FluX query is again written by hand only for presentation purposes.
For the sake of brevity we have left out the construction of surrounding tags in the result
(and thus, the result might not be well-formed XML).

In this example, X = {$bib, $book} and hence we define buffers in the bib scope and
the book scope. The buffer in the bib scope contains all books together with their titles and
no other nodes such as author. The buffer of book buffers only for each book titles and
authors. Hence, for the book currently being processed the title node is buffered twice.

Of course, this situation could be avoided by re-using buffers. In the former example,
the bib buffer could also be used inside the book scope to avoid double-buffering of title
nodes. However, this complicates buffer management: In the superordinate buffer the
union of the schemas of both buffers would have to be stored. In our example, the bib-
buffer would have to store titles and authors of books. If we do it this way, we would buffer
too many nodes, since the author node is only needed for the current book and not for

' Note that in this case storing the tags of the surrounding scope would not be needed, but it is required
for being able to handle the extensions shown in Section 3.8.

88 The FluX Streaming XQuery Processor

all books. Hence, after having processed a book, the superordinate buffer would have to
be cleaned, such that only that nodes, i. e., titles, are contained, which are actually needed
later on for all books. Since this cleaning of buffers would introduce additional overhead,
we do not pursue this approach and accept multiple buffering of nodes. However, this is
not much of a drawback, since it only occurs in situations where a superordinate scope
buffers all instances of a certain node n and only for each instance of n a subordinate scope
buffers some children of n. Hence, the amount of wasted memory can be expected to be
generally very low.

3.8 Extending the FluX Query Language

In this section, we present some principles and examples on how to extend our XQuery ™
fragment of XQuery. In Section 3.8.1 we will show how aggregate functions can be handled.
In Section 3.8.2 we augment our fragment with novel syntactical constructs for dealing with
data windows on streams.

3.8.1 Aggregate Functions

Computing aggregates is a very common task in data streams processing, especially in the
field of sensor networks. In the following, we will show the basic steps of extending our
FluX query engine by means of the example of aggregate operations: First we will extend
the XQuery™ fragment. Then, we will show how to adapt the syntax and semantics of
FluX. Finally, we will present the evaluation strategy implemented in the query compiler
and streamed query evaluator.

3.8.1.1 Extending the XQuery Fragment

In the following, we denote an XQuery aggregate function [W3C05d] or an user-defined
function (UDF) as function. All XQuery aggregate functions, i.e., fn:count, fn:avg,
fn:max, fn:min, and fn:sum, are supported. To achieve maximum flexibility, certain
UDFs are also allowed. In detail, supported UDFs are supposed to have the following
signature using the standard XQuery notation for function signatures [W3C05d]:

udf:function-name($arg as xdt:anyAtomicType*) as xdt:anyAtomicType

UDFs are simply identified by the namespace prefix “udf:” and handled appropriately by
the query optimizer and the streamed query evaluator!2.

To be able to correctly handle all kinds of functions—in detail, all kinds of user-defined
functions—we classify functions into holistic and non-holistic (i.e., distributive or alge-
braic) functions. The result of non-holistic functions, e.g., fn:sum or fn:avg, can be

12Note that we do not yet use the XQuery syntax “declare function ...” for declaring UDFs as
external functions.

3.8 Extending the FluX Query Language 89

(“fn:” (“count” | “avg” | “max” | “min” | “sum”)

| “udf:” QName) “(” FizedPath “)”

(Literal

| FizedPath

| Function

| ValEzpr (“+7 | “=7) ValExpr

| ValEzpr (“¥” | “div” | “idiv” | “mod”) ValExpr)

Expression == (“0”

| Literal

| Expression (Expression)+

| “{” “for” VarRef “in” FizedPath (“where” AtomicCondition)?
“return” Ezpression “}’

| “{” “let” VarRef “:=" Function (“where” AtomicCondition)?
“return” Fzxpression “}”’

| “{" FizedPath “}”

| “{” VarRef “}”

|

|

Function =

ValExpr =

L({?? Funct'LOn L(}??
“L7eif” «(7 AtomicCondition “)” “then” Ezpression “}")

Figure 3.10: XQuery~ Grammar Fragment for Handling Aggregate Functions

computed or updated with every new data value that is seen on the stream!®. In case of a
holistic function, e. g., the median of a set of values, all values have to be known at once to
be able to correctly compute the function result. Note that all built-in XQuery functions
are non-holistic.

Using this notion of functions, we extend the original grammar of XQuery~ as shown
in Figure 3.10. For the sake of brevity, we only show new or changed productions with
respect to Figure 3.2 and we will refer to this new grammar also as XQuery™ in the
rest of this thesis. The definition of value expressions (Definition 3.4.2) and of XQuery™
(Definition 3.4.5) can be easily extended with respect to the novel XQuery~ grammar and
will not be shown.

Within this language, functions can be used in if-conditions, their result can be printed,
or their result may be assigned to some variable $x by means of the novel let-expression.
Note that the let-expression only constitutes syntactical sugar, since all occurences of $x
bound by this expression can be substitutet by the original function. Because of our defini-
tion of the let-expression, a variable $2 cannot be bound to a set of nodes in this fragment.
The definition of functions also implies that they cannot be applied to intermediary results
of a query, but only directly on data of the XML stream.

13Note that in some cases not only the current result of the function has to be held in memory, but a set
of values (with constant size). For instance, in case of fn:avg the current sum and the number of values
is stored to be able to correctly update and compute the function result at any point in time.

90 The FluX Streaming XQuery Processor

Again, this new language XQuery ™ is very similar to a (now bigger fragment being of
relevance for processing data streams) of standard XQuery [W3CO05b]. As for the original
XQuery™ fragment, this new fragment still differs to XQuery in the treatment of fixed
strings. Besides that, the semantics of the novel XQuery ™ fragment is equal to the semantics
of XQuery and the document stream produced by evaluating an XQuery™ query is the same
as that of an equivalent XQuery.

3.8.1.2 Syntax and Semantics of FluX Revisited

In this section, we will present the needed changes to the syntax and semantics of the
FluX query language in order to correctly handle (aggregate) functions introduced above.
Normally, functions are handled inside “on-first”-handlers to ensure that all elements
needed for the computation of the function have been seen. In some special cases, i.e., if
functions are contained in simple expressions and certain order constraints are satisfied,
functions are also processed in on-handlers. Hence, no additional syntactical constructs are
needed'. However, some definitions of Section 3.4 have to be adapted to be able to handle
the novel constructs of the extended XQuery™ language. Note that we do not address the
treatment of the new let-expression in the remainder of this section and show how to
handle it in the next section.

At first, we have to revise the definition of simple conditions (Definition 3.4.9) as follows.

Definition 3.8.1 (Simple Condition) Let y be a condition as defined in Definition 3.4.9.
Then, x s denoted as a simple condition, uf

e x is an atomic condition “s RelOp s'7 or ‘Sx/m RelOp s”, where s, s are strings
(constants), $z is a variable, and 7 is a fized path.

e x is an atomic condition “f($3x/m) RelOp s” or “f($x/m) RelOp f'($y/n")” with s
being a string (constant), $xz, $y variables, f, ' non-holistic functions, and =, =’
fixed paths.

e \ is a Boolean combination (using “and”, “or”, and “fn:not”) of simple conditions.

In other words, beyond the old definition, a simple condition may now contain comparisons
of constant values with function results.

An important characterization of expressions have been simple expressions (Defini-
tion 3.4.10). A simple expression can be evaluated on the current stream without having
to buffer (parts) of the input stream. Dealing with functions, the definition of simple

4Remember, that inside an “on-first™handler only XQuery expressions (including functions) are
used. Further, simple expressions inside an on-handler are also XQuery expressions.

3.8 Extending the FluX Query Language 91

expressions has to be revised as follows.

Definition 3.8.2 (Simple Expressions) Let @ be an XQuery expression of the form
@ :=« (. Further, let $x := parentVar(@). @ is simple, if all of the following hold:

e « and 7y are possibly empty sequences of expressions ‘0”7 and of expressions of the
form “{if x then 0}”, where x is a simple condition and § is an expression of the
form

U »

s”, with s being a string (constant), or

— Hf(...)}7 with f being a function as defined above.

e (3 is either empty, “{$x}”, or {if (x) then {$2}}” for a variable $x and a simple
condition x.

e if 3 is of the form “{$x}”, or “{if x then {$2}}” then $x does not occur in any
condition or parameter of a function in o (.

The following example motivates the need to adapt the definition of simple expressions
for correctly treating functions.

Example 3.8.3 The expression «
<a>{$x} {if (fn:count($x/b) = 5) then 5}

with parentVar(a) := $x is a simple expression, since the number of b elements can be
counted during outputting $x and afterwards the if-expression can be correctly executed.
In contrast, the expression [3

<numb>{fn:count ($x/b) }</numb> <a>{$x}

is not simple, because the number of b elements has to be printed before outputting the
whole stream of $x. Hence, during counting b elements the stream of $x has to be buffered
for output later on. (l

The definition of free variables of a XQuery query () must be slightly extended to cover
the novel statement for outputting function results. For the sake of brevity, in the following
we show definitions in an “overloaded” style, where only changes and additional constructs
are shown.

Definition 3.8.4 (Free Variables) Let the set of free variables be defined as in Defini-
tion 3.4.13. Additionally, let

free(f(3z/m)) = {Sz},

with f being a function as defined above.

92 The FluX Streaming XQuery Processor

We will show how to deal with let-expressions later on.
Analogously, the definition of the set of dependencies with respect to a given variable
is extended as follows.

Definition 3.8.5 (Dependencies) Let the set of dependencies with respect to a variable
$y of a XQuery expression be defined as in Definition 3.4.17. Further, let

dep(3y; {f(a)}) == dep($y; f(a))

where f is a function as defined at the beginning of this section or as defined in Defini-
tion 3.4.17.

Using these “overloaded” definitions covering functions, we may re-define the notion of
safe queries as follows.

Definition 3.8.6 (Safe Queries) A FluX query Q is called safe with respect to a given
DTD if and only if for each subexpression {ps $y: ¢ }” of Q, the following two conditions
are satisfied:

1. For each handler “on-first past(S) return a”in the list (, the following is true:
o Vb e dep($y,a) we have:

(be S)V (Ja e S: Ordg,(b,a))

o V 3z € free(ar) such that “{$z}7 < o, 4$z/7}" 2 o, or {f($z/m)}” < «a (for
some m and function f) we have:

($z=8%y) AN (Vb e symb($y) : (be S)V (Fa € S : Ordgy(b,a))).

2. For each handler “on a as $r return Q7 in the list C, and for each mazimal XQuery™
subexpression « of Q, the following is true:

o Vb e dep($y,a) we have:
Ordg, (b, a)

o ifa= Q (note that according to Definition 8.4.12 o« must then be simple), then
for all $u such that {$u} < a we have:

$u = $x.

Note that this definition is basically equal to that of Definition 3.4.18. In detail, only the
expression for outputting function results has been added to the second bullet of (1).

3.8 Extending the FluX Query Language 93

{let $z := f($y/m) where y return [}
{let $z := f($y/m) return {if (x) then [}}

{let $x := f($y/m) return (3}
Blsz — f($y/m)]

[Elim-Where2]

[Elim-Let]

Figure 3.11: Additional Normal Form Rewrite Rules for Extended XQuery™

3.8.1.3 Rewriting Extended XQuery into FluX

In this section, we will show how to rewrite queries of the extended XQuery™ fragment into
FluX. First, we will present how to deal with the novel let-expression, which has not been
addressed yet. Afterwards, we will give some examples for illustrating the transformation
of XQuery ™ into FluX.

Obviously, the novel let-expression only constitutes syntactical sugaring in the sense,
that it is more convenient to assign the result of a function to a variable if it is used more
than once in a query. Hence, we handle an expression

{let $z := f($y/m) return o}

by simply eliminating this expression and substituting every occurrence of $x in « by
f($y/m) during the normalization step of a XQuery™ query. This is accomplished by the
additional normal form rewriting rules shown in Figure 3.11. This approach might seem to
perform worse with respect to efficiently evaluating the normalized query at first glance,
since in a naive evaluation approach one evaluation of the function is replaced by having
to evaluate each occurrence separately. However, our approach dramatically simplifies
rewriting such a normalized query into FluX. We will show in the next section how to
efficiently handle this situation.

Apart from adding the novel normal form rewrite rules to the normalization step and us-
ing the “overloaded” definitions of, e. g., dependencies, no further changes have to be made
to our rewriting algorithm shown in Function "rewrite” in Section 3.5.2 to correctly handle
functions. Functions used in conditions are correctly handled due to the re-definition of de-
pendencies and hence the execution of conditional subexpressions is automatically delayed
until all needed values for computing the functions have been seen in the stream. Ex-
pressions outputting function results are handled by the “catch-everything” else-statement
in line 29 of the algorithm. Therefore, such an output expression is placed inside an
appropriate “on-first”-handler delaying the execution until all elements needed for the
computation of the function are known.

We show the effect of our rewrite algorithm with respect to handling of functions on
some sample queries in the bibliography domain.

Example 3.8.7 Consider the following query QQ4, which counts the number of authors of
each book and prints it with the title of the book grouped into a new result element.

94 The FluX Streaming XQuery Processor

<results>
{ for $book in /bib/book return
<result>
{$book/title}
<numAuthors>{fn:count ($book/author) }</numAuthors>
</result> }
</results>

Normalization of Q4 yields the query Q) as follows:

1 <results>
2 { for $bin in /bib return
3 { for $book in $bib/book return

4 <result>

5 { for $title in $book/title return {$titlel} }
6 <numAuthors>

7 {fn:count ($book/author) }

8 </numAuthors>

9 </result>

10 </results>
We first assume to have a stream compliant to the following D'TD known from Section 3.1:

<!ELEMENT bib (book)*>
<!ELEMENT book (title | author)*>

When rewriting (), into FluX, the for-expressions in lines 2 and 3 are rewritten into
on-handlers and we eventually make the recursive call “rewrite($book, L, o)” with o being
the sequence of expressions in lines 4-9 of Q. Since H = 1 and dep($book, <result>) = (),
the expression <result> in line 4 will be transformed into:

on-first past() return <result>;

Analogously, the algorithm proceeds by rewriting the for-loop into an on-handler to directly
output titles. Now, when rewriting line 7, H = {title} and dep($book,<numAuthors>) =
0. Thus, a handler

on-first past(title) return <numAuthors>;

is created. Next, “rewrite($book, {title}, {fn:count ($book/author)})” is called. Here,
H = {title} and dep($book,{fn:count ($book/author)}) = {author}. Hence, line 29
of the rewriting algorithm is executed and a handler

on-first past(title, author) return {fn:count($book/author)};

1s generated. The remainder of the query is analogously transformed and eventually the
following FluX query Fy is generated:

3.8 Extending the FluX Query Language 95

{ ps $ROOT:
on-first past() return <results>;
on bib as $bib return
{ ps $bib:
on book as $book return
{ ps $book:

on-first past() return <result>;
on title as $title return {$title};
on-first past(title) return <numAuthors>;
on-first past(title, author) return {fn:count($book/author)};
on-first past(title, author) return </numAuthors>;
on-first past(title, author) return </result>; }; };

on-first past(bib) return </results>; }

In detail, the “on-first past(title, author) ™-handler delays the execution of the
function {fn:count ($book/author)} after all titles and authors have been seen on the
stream. Thus, the query is executed in the correct order, i.e., titles are outputted before
the number of authors is printed (because of delaying it after all title nodes), and the
function can be correctly computed, because it is assured that all author nodes have been
read from the stream. Hence, the FluX query Fy is safe. U

The following example shows how a query using the novel let-expression is handled.

Example 3.8.8 Consider the following XQuery query Qs, which prints titles and the
number of authors of each book, if the book has more than five authors.

<results>
{ for $book in /bib/book return
{ let $a := fn:count($book/author)
where $a > 5
return
<result>
{$book/title}
<numAuthors>{$a}</numAuthors>
</result> } }
</results>

This query has the following normalized form denoted as Q%:
1 <results>
2 { for $bib in $RO0T/bib return
3 { for $book in $bib/book return

4 { if (fn:count($book/author) > 5) then <result> }

5 { for $title in $book/title return

6 { if (fn:count($book/author) > 5) then {$title} } }

7 { if (fn:count($book/author) > 5) then <numAuthors> }

8 { if (fn:count($book/author) > 5) then {fn:count($book/author)} }
9 { if (fn:count($book/author) > 5) then </numAuthors> }

10 { if (fn:count($book/author) > 5) then </result> } } }

11 </results>

96 The FluX Streaming XQuery Processor

Further, we will use the DTD given in the previous example. As before, the for-
loops in lines 2 and 3 are rewritten into on-handlers. In order to achieve a safe query,
the conditional expression in line 4 is delayed by line 29 of the rewriting algorithm until
all authors have been seen, due to dep($book,{fn:count ($book/author)}) = {author}.
Hence, it is rewritten into:

on-first past(author) return
{ if (fn:count($book/author) > 5) then <result> };

The algorithm proceeds by rewriting the for-loop in lines 5-6. To ensure the correct exe-
cution order as required by the query and to achieve a safe FluX query, in contrast to the
previous example this for-loop is not rewritten into an on-handler, but delayed until all
authors and titles have been seen. In detail, the following handler is created:

on-first past(title, author) return
{ for $title in $book/title return
{ if (fn:count($book/author) > 5) then {$title} } I};

Delaying this for-loop until all titles (and authors, of course) have been seen is needed to
assure that all titles can be buffered until we see no further author nodes (note that there
is no order constraint between titles and authors). The remainder of the query is rewritten
as before, and we eventually get the following FluX query Fj:

{ ps $ROOT:
on-first past() return <results>;
on bib as $bib return
{ ps $bib:
on book as $book return
{ ps $book:
on-first past(author) return
{ if (fn:count($book/author) > 5) then <result> };
on-first past(title, author) return
{ for $title in $book/title return
{ if (fn:count($book/author) > 5) then {$title} } };
on-first past(title, author) return
{ if (fn:count($book/author) > 5) then <numAuthors> };
on-first past(title, author) return
{ if (fn:count($book/author) > 5) then {fn:count($book/author)} };
on-first past(title, author) return
{ if (fn:count($book/author) > 5) then </numAuthors> };
on-first past(title, author) return
{ if (fn:count($book/author) > 5) then </result> }; }; };
on-first past(bib) return </results>;}

Note that this FluX query is also safe. 0

3.8 Extending the FluX Query Language 97

3.8.1.4 Implementation

In this section, we will show some core implementation details of the runtime engine con-
cerning the evaluation of functions. In detail, we will show how function results are com-
puted and how buffers are handled.

The key idea of handling functions in the runtime engine is to separate the computation
of function results from their usage. This approach is similar to the treatment of condition
results shown in Section 3.7.2. To assure that the result of a function is correctly computed
before it is being used for the first time, the query compiler appropriately schedules physical
query operators for evaluating and storing the result in a temporary variable in main
memory. All functions contained in conditional expressions or expressions printing function
results only refer to the actual result of a function being held in main memory. As a result,
multiple evaluation of functions introduced by eliminating a let-expression is prevented
and an efficient execution is achieved. Note that this approach is always correct, since the
definition of safety and dependencies of a function ensure that all values needed for the
computation have already been seen before the result is used for the first time.

Apart from this separation of computation and usage of function results being common
to all types of functions, there is a striking difference between holistic and non-holistic
functions with respect to the actual evaluation strategy and buffer management. For a
non-holistic function f,($z/x), with 7 = a;/.../a, and n > 1, an automaton matching
the path 7 is installed in the scope of $x, if $zx is processed as a stream'®. Whenever
a match occurs, the function result is updated. Here, the notion of a “match” depends
on the actual function: E.g., for fn:count a match occours upon seeing the start tag of
a, and the current result is increased by one. In case of functions working on real data
values, e. g., fn:avg, a match occurs upon seeing the “character content” event for the path
7 (and, of course, this content is then used for updating the result). Since the rewriting
algorithm always produces safe FluX queries, as soon as f, is used in some expression,
all values needed to compute the correct result have been processed and the result of the
function may safely be read from main memory. Hence, if $z is processed as a stream, non-
holistic functions are transparently computed on-the-fly and no data needs to be buffered.
Otherwise, non-holistic functions are computed on the already buffered data. In contrast,
to be able compute a holistic function f;,($x/7) all its arguments are needed. Thus, the path
$x /7 is always completely buffered. Before using fj, for the first time in some expression,
the query compiler schedules a physical operator, which evaluates f; using the buffered
data. We formalize this in the following definition.

Definition 3.8.9 (Streaming Function) A function f($x/m) is a streaming function if
f is non-holistic and $z is bound by an on-handler.

To only buffer arguments of holistic functions, we overload the definition of streaming
atomic conditions (Definition 3.7.1) as follows.

15That is, $z is not bound by a for-loop inside an “on-first’-handler.

98 The FluX Streaming XQuery Processor

1 * startTag:

2 on ’book’:

3 PSNode [symbol=book]

4 * startStream:

5 SequenceNode

6 Output [data=<result>]

7 InitializePathMatcher[path=author; InternalAggregate: exprID=0, type=2]
8 * endStream:

9 (NOP)

10 * startTag:

11 on ’title’:

12 OutputStream[state=true]

13 * endTag:

14 on ’title’:

15 OutputStream[state=false]

16 * on-first:

17 OnFirstHandlerNode [symbols={title}]
18 Output [data=<numAuthors>]

19 OnFirstHandlerNode [symbols={title, author}]
20 SequencelNode

21 OutputExprResult [exprID=0]

22 Output [data=</numAuthors>]

23 Output [data=</result>]

Figure 3.12: Fragment of Query Plan for Example 3.8.1.4

Definition 3.8.10 (Streaming Atomic Condition) A streaming atomic condition is
an atomic condition of the form

o $u/m RelOp s
e f($z/m) RelOp s

e f($z/m) RelOp f'($y/7")

with $x, $y being variables bound by an on-handler, 7w, ©" (non-empty) fixed paths, f, f'
non-holistic functions, and s a string value.

As a result, optimal buffer trees only buffering arguments of holistic functions are computed
exactly as described in Section 3.7.3.

We refrain from giving a more detailed description of the evaluation strategy and provide
some instructive examples instead.

Example 3.8.11 Consider again the query from Example 3.8.7, which prints for each book
its title and the number of authors. The query compiler computes a query plan as shown
i Figure 3.12. For the sake of brevity, only the relevant part of the query plan handling
the book scope is shown.

3.8 Extending the FluX Query Language 99

Since fn:count is a non-holistic function, upon entering the scope of book an automa-
ton matching the path author (relative to a book) is set up and the result of the function
is initialized (line 7). The built-in function fn:count is depicted by “InternalAggregate”
with “type=2". The automaton transparently receives all events of a book and updates the
result of the function if an author path (relative to the current scope) is matched. As
soon as no further authors and titles can be encountered, the “on-first™handler in line
19 is executed, which prints the result of the function by means of the OutputExprResult
operator in line 21 (in detail, it outputs the result of the expression with exprID=0, which
is the fn:count function). Note that nothing is buffered and no additional operations for
explicitly computing the function result are needed. O

The following example illustrates the handling of holistic functions during query eval-
uation.

Example 3.8.12 We modify the DTD used in the previous Example 3.8.11 to also be able
to handle shops which sell a book and the price of the book in each shop:

<!ELEMENT book (title | author | bookstore)*>
<!ELEMENT bookstore (name, price)>

Consider the following XQuery Qg, which prints the title of books and the median of all
prices, computed by a user-defined median function:

<results>
{ for $book in /bib/book return
<result>
{$book/title}
<medPrice>{udf :median($book/bookstore/price) }</medPrice>
</result> }
</results>

Our rewriting algorithm generates the following safe FluX query Fy:

{ ps $ROOT:
on-first past() return <results>;
on bib as $bib return
{ ps $bib:
on book as $book return
{ ps $book:
on-first past() return <result>;
on title as $title return {$titlel};
on-first past(title) return <medPrice>;
on-first past(title, shop) return
{udf :median($book/bookstore/price)};

on-first past(title, shop) return </medPrice>;
on-first past(title, shop) return </result>; }; };

on-first past(bib) return </results>; }

100 The FluX Streaming XQuery Processor

1 * startTag:
2 on ’book’:
3 SequenceNode
4 BufferStream[bufID=0; state=true]
5 PSNode [symbol=book]
6 * startStream:
7 SequenceNode
8 BufferStream[bufID=0; state=false]
9 Output [data=<result>]
10 * endStream:
11 BufferStream[bufID=0; state=true]
12 * startTag:
13 on ’title’:
14 OutputStream[state=true]
15 on ’bookstore’:
16 SequenceNode
17 BufferStream[bufID=0; state=truel]
18 PSNode [symbol=bookstore]
19 * startStream:
20 BufferStream[bufID=0; state=false]
21 * endStream:
22 BufferStream[bufID=0; state=true]
23 * startTag:
24 on ’price’:
25 BufferStream[bufID=0; state=true]
26 * endTag:
27 on ’price’:
28 BufferStream[bufID=0; state=false]
29 * on-first:
30 * endTag:
31 on ’title’:
32 OutputStream[state=false]
33 on ’bookstore’:
34 BufferStream[bufID=0; state=false]
35 * on-first:
36 OnFirstHandlerNode [symbols={title}]
37 Output [data=<medPrice>]
38 OnFirstHandlerNode [symbols={bookstore, titlel}]
39 SequenceNode
40 BufferedFunction[exprID=0; iterator=buf[0]/bookstore/price; ExternalAggregate: median]
41 OutputExprResult [exprID=0]
42 Output [data=</medPrice>]
43 Output [data=</result>]
44 * endTag:
45 on ’book’:
46 SequenceNode
47 InitializeBuffer [bufID=0]
48 BufferStream[bufID=0; state=false]

Figure 3.13: Fragment of Query Plan for Example 3.8.12

The query compiler transforms Fg as shown in Figure 3.13 into a physical query plan.
Again, only the relevant part of the book scope is shown.

All price nodes (and, no other nodes) are buffered, because udf:median is a holis-
tic function. The buffer is handled by the InitializeBuffer and BufferStream oper-
ators as described in Section 3.7.3. The function itself is computed after all title and
bookstore nodes have been seen (i.e., in the “on-first™handler in lines 38—43) by the
BufferedFunction operator (line 40), right before the result is needed for the first time (in

3.8 Extending the FluX Query Language 101

line 41). This operator handles an iterator over all price nodes contained in the buffer
to the evaluation method of the external function udf :median. This method returns the
result of the function, which is then stored in a temporary variable in main memory for
later re-usage. This variable is read by OutputExprResult operator to print the result to
the output. O

3.8.2 Data Windows

For applications monitoring and processing (possibly) infinite data streams, e.g., sensor
measurements, an important query processing task is to break the stream into (possibly
overlapping) subsets of data, denoted as data windows, and to perform computations on
each of these portions of the stream. In this section, we first present our notion of data
windows. Then, we show how to integrate data windows into our XQuery~ fragment, how
to extend and rewrite into our FluX language, and finally how it is implemented in the
runtime engine.

We start by defining the semantics of data windows. Let (d;); be an ordered (and
possibly infinite) sequence (dy,ds, ..., d,) of data objects representing the data stream. In
our case, a data object d; represents a node of the XML Stream. A window specification
maps (d;); to an ordered (and also possibly infinite) sequence (W;); of sets of data objects
(W1, Wy, ..., W,,), such that

1. Wj = (d“ di+1, ce 7di+0j) and

2. Wj+1 = (di-I—Sja di+8j+17 SR di+8j+Cj+1)’

with ¢, being some constant and s > 1 (1 < k < m). In other words, the data windows
W; slide over the data stream in a forward-only fashion possibly overlapping each other
and always contain a contiguous interval of the data stream.

In this work, we focus on two types of window specifications: element-based and time-
based data windows, which are defined as follows.

Definition 3.8.13 (Element-Based Data Windows) Let A, € NT. The sequence of
data windows is defined as:

W1 = (dl,dg, .. .,dA)

Wi = (di-vpt1s dg-nutas - dG-1uea)

That is, each element-based data window W; contains exactly A data objects (except for
the last data window, which may contain fewer elements—if the stream is finite). Further,
the data window “slides” forward by discarding the first p elements and adding the next p
data objects to it.

102 The FluX Streaming XQuery Processor

e e e
i i+1 i+2
~ | e o o | ° ° ° |) ° - Element-Based (A =3, u = 3)
Wi Wi Wi Vi Wi
° Time-Based (A =3, u = 3)

e o oo e .

Reference Attribute

10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 3.14: Element-Based and Time-Based Data Windows

Definition 3.8.14 (Time-Based Data Windows) Let A, € RY and t be an attribute
of each data object d;, denoted as the reference attribute. We refer to the reference attribute
of a data object d; by “d;.t”. Further, let the sequence S of data objects be ordered according
to the reference attribute, i.e., d;.t < d;11.t. The sequence of data windows is defined as:

1. For each data window Wj := (d;, diy1, ..., diyc;)
(dige; t —dit < A) A (digejq1.t —diit > A)
holds.
2. The sequence of data windows (Wi, ..., W,,) is defined as

W1 = (dl,dQ, e 7dcl)

VV]' = (dl, d’i+17 e 7di+6j) with dzt = (] — 1),u -+ dlt

Here, ¢, (1 <k <m) is a constant representing the size of each data window.

In other words, a time-based data window contains all elements differing less than A in
the reference attribute and slides forward by the amount of yu. Note that the number of
data objects contained in the individual data windows is not fixed and completely depends
on the values of the reference attribute. Usually, the reference attribute is some kind of a
time-stamp (and thus this type is called a “time-based” data window). In that case, the
sequence of data objects is naturally ordered according to the reference attribute.

Figure 3.14 illustrates element-based and time-based data windows for A = 3 and p = 3.
In this example, we use an attribute in the domain of integer values as reference attribute,
e.g., constituting a time-stamp. Data objects are symbolized by dots and delivered from
left to right. Note that the data objects are not dense with respect to the reference attribute
in the sense that not for every possible value of the reference attribute a data object exists.

All element-based data windows W/ exactly contain three data objects. In contrast, all

3.8 Extending the FluX Query Language 103

RelPath = QName (“/” QName)*
FizedPath = VarRef (“/” RelPath)?
WinPath = FizedPath “|” WinSpec “|”
WinSpec = (“count” IntegerLiteral (“step” IntegerLiteral)?
| (RelPath)? “diff” NumericLiteral (“step” NumericLiteral)7)
Ezxpression == (“(0)”
| Literal

| Expression (Expression)+

| “{” “for” VarRef “in” FizedPath (“where” AtomicCondition)?
“return” Ezpression “}’

| “{” “let” VarRef “:=" Function (“where” AtomicCondition)?
“return” FEzpression “}’

| “{” “for” VarRef “in” WinPath (“where” AtomicCondition)?
“return” Fzxpression “}”’

| “{” FizedPath “}”

| “{” VarRef “}”

| “{” Function “}”

| {7 “1f” “(" AtomicCondition “)” “then” Expression “}”")

Figure 3.15: XQuery~ Grammar Fragment for Handling Data Windows

time-based data windows Wf have the same size with respect to the reference attribute,
but contain a different number of data objects or are even empty. Note that if the data
objects would be dense with respect to the reference attribute, i.e., a data object exists
for every possible value of the reference attribute, then W¢ = W}

This semantics of data windows and window specifications is equal to that of other
works, e.g., of [LMT*05] or [ABWO03]. Of course, not all instances of data windows are
computed at once on the whole input data and then a computation is performed on each
data window. The goal is to use the data window as a moving view of the stream and
to perform processing only in the current data window with a minimum amount of the
data stream being buffered. When computing data windows on a data stream in such a
sliding fashion, we say that a window specification is fulfilled, if the current data window
is completely filled by adding the current data object and hence the current data window
is ready to be processed.

3.8.2.1 Extending the XQuery Fragment

We will now present an extension of XQuery~ to support data windows. Since standard
XQuery has been designed for materialized XML data, it currently does not yet provide
any syntactical means for specifying data windows. Hence, we also propose the following
extensions of XQuery~ for standard XQuery. To provide for a seamless integration, we
thus adhere to the standard XQuery semantics as closely as possible.

Figure 3.15 shows the needed extensions to the XQuery~ grammar for supporting data

104 The FluX Streaming XQuery Processor

windows. Again, only new or changed productions are shown.

To enable windowed computations windowed paths are introduced. We define the se-
mantics of windowed paths as follows. In standard XQuery, the result of a path expres-
sion “$x/ai/.../a,” is a sequence of a, nodes, which are reachable by the given path
in the current context. In case of a windowed path “$x/ai/.../a,|winSpec|”, the path
“$x/ai/ ... /a,” denotes the sequence of a, nodes, which should be processed by sliding
data windows. This sequence of a, nodes is mapped to a sequence of sets of a,, nodes by
means of the window specification “winSpec”, which is enclosed by “|”. Hence, the result of
a windowed path expression is a sequence of data windows according to the window specifi-
cation. Element-based windows are specified by “|count A step p|” under the semantics
given in Definition 3.8.13. “la,41/ ... /apne; diff A count p|” specifies time-based data
windows as defined in Definition 3.8.14 with “a,y1/ ... /a,s;” specifying the reference at-
tribute relative to the base path “$z/a,/.../a,”. If the path to the reference attribute is
omitted, the content of each window element is used. Note that the path to the reference
attribute is never directly evaluated, but only used as some kind of “specification” of (or
“reference” to) the reference attribute. In both window specifications the “step p” part
may be omitted. In that case, we assume p = A.

Data windows are processed by means of the standard XQuery for-expression. Because
of the semantics of windowed path expressions, the usual semantics of the XQuery for-
expression exactly achieves the desired handling of data windows. In detail, consider the
expression:

for $w in $x/ai/.../anlwinSpec| return «

The windowed path $z/ay/ ... /a,|winSpec| evaluates to a sequence of data windows. The
data windows are sequentially bound to the variable $w by means of the for-expression
and the subquery « is executed for each data window. Inside a, the contents of the
current data window are accessible by means of $w. Although the grammar supports an
arbitrary number of (nested) data windows, we focus in the remainder of this thesis on
queries having a single data window, e.g., for computing windowed aggregate functions.
Supporting multiple data windows, e. g., for windowed joins, is subject of current research.

The following example illustrates the usage of data windows.

Example 3.8.15 Consider the DTD

<!ELEMENT root (a*)>
<!ELEMENT a (b*, c*)>
<!ELEMENT c (d*)>

and the following query Q7, which prints for each a node its b children and an element-based

3.8 Extending the FluX Query Language 105

sliding window average of the values of all d nodes under this a node:

<results>
{ for $x in /root/a return
<result>
{$x/b}
{for $w in $x/c/dlcount 4 step 2| return
<winavg>
{fn:avg($w)}
</winavg>}
</result> }
</results>

We evaluate this query on the following XML document:

<root>
<a>
some b data
other b data
<c>
<d>1</d> <d>2</d> <d>3</d> <d>4</d>
</c>
<c>
<d>5</d> <d>6</d> <d>7</d>
</c>

</root>

The windowed path $x/c/d|count 4 step 2| evaluates to:

((<d>1</d>, <d>2</d>, <d>3</d>, <d>4</d>),
(<d>3</d>, <d>4</d>, <d>5</d>, <d>6</d>),
(<d>5</d>, <d>6</d>, <d>7</d>))

The result of the query is:

<results>
<result>
some b data
other b data
<winavg>2.5</winavg>
<winavg>4.5</winavg>
<winavg>6</winavg>
</result>
</results>

Note that processing data windows can be expressed in native XQuery by implementing a
function computing the sequence of data windows according to the window specification.
The former query can be phrased in native XQuery as follows:

106 The FluX Streaming XQuery Processor

1 declare function cwin($count as xs:integer, $step as xs:integer,

2 $e as node()*)

3 as node()*

a q

5 let $win := fn:subsequence($e, 1, $count)
6 let $rest := fn:subsequence($e, $step + 1)
7 return

8 if (fn:count($e) <= $count) then

9 (<we>{$win}</wc>)

10 else

11 (<we>{$win}</wc>, cwin($count, $step, $rest))
12 };

13

1u for $x in /root/a return

15 <result>

16 {$x/p}

17 {for $tmp in cwin(4, 2, $x/c/d)

18 let $w := $tmp/*

19 return

20 <winavg>{fn:avg($e) }</win>}

21 </result>

Observe that the function cwin (lines 1-12) implements element-based windows in a func-
tional style. The query itself in lines 14-21 s basically equal to the original query using
our notation for data windows. The main difference is the let-expression in line 18. It
is needed to remove the artificial wc-tags, which are introduced by the function cwin to
separate the individual data windows in the sequence of data windows. O]

3.8.2.2 Syntax and Semantics of FluX Revisited

To provide a better understanding of how windowing techniques are integrated into the
event-based part of FluX, we start with some basic thoughts on processing data windows
on data streams.

As sketched out before, data windows are used to restrict computations on a small
portion of the (possibly infinite) data stream, which “slides” along the stream over time.
Given a window specification, we can observe the following: If A > u, the data stream
is divided into a sequence of overlapping data windows (W;);, i.e., W; N W;,; # 0. Since
data in a data stream is volatile, i.e., it can be processed only once if it is not buffered
somewhere, at least the overlapping part of two subsequent data windows has to be buffered
for being able to process it in each data window it is contained. In contrast, if A < pu,
the data stream is divided into a disjoint sequence of data windows (W;);. Here, no data
object has to be processed in more than one data window and hence potentially nothing
has to be buffered for being able to correctly process each data window. Of course, this
only holds, if the query itself, which is executed on each data window, can be processed
without any buffering.

3.8 Extending the FluX Query Language 107

Further, the window specification itself has a crucial impact on processing data windows
on data streams. In case of an element-based data window, upon seeing an element of the
data window it can be immediately determined, if the window specification is fulfilled or
not. Hence, this element can be correctly processed in a streaming fashion with respect to
the current state of the data window. Whether the window specification of a time-based
data window is fulfilled or not, cannot be determined based on the current element. In
detail, we are only able determine that the current data window is completely filled by
including the current element, if the next element is outside of the current data window.
Hence, the current element has to be buffered to be able to process the data window
correctly as soon as it is known, that the window specification is fulfilled upon seeing some
future elements.

We formalize these observations in the following definition.

Definition 3.8.16 (Simple Window Specification) Let ws be a window specification
with parameters A and p as introduced at the beginning of this section. We call ws simple,
iff ws is element-based and A < p.

We extend the syntax of FluX to incorporate these two notions of processing data
windows as follows.

Definition 3.8.17 (FluX) Let the class of FluX expressions be as defined in Defini-
tion 3.4.12. Further, let ws be a window specification and $y/a/w|ws| a windowed path.
We additionaly introduce the following two types of event handlers:

e (so-called “on-window -handler)
on $y/a/m|ws| as $x return @

where $x is a variable, ws is simple, and Q) is a simple expression.

e (so-called “on-each past™handler)
on-each past $y/a/m|ws| as $x return «

where $x is a variable and « is a XQuery~ expression.

The semantics of the new “on-window”- and “on-each past”-handler is defined as fol-
lows. The event condition of such a handler is fulfilled each time the first node is seen on
the stream, which fulfills the given window specification. That is, if such a handler fires,
we have seen all nodes of the stream, such that the content of the current data window
is completely known and can be processed. Of course, these handlers fire multiple times
while processing an input stream, i.e., once for each data window. Given a windowed path
$y/a/m|ws| a window handler eventually fires, if and only if we have seen all occurrences
of a nodes and no new nodes of the path $y/a/m have been encountered since the last
invocation of the window handler. That is, the final data window is always processed, even

108 The FluX Streaming XQuery Processor

if the window specification is not yet fulfilled for the last data window (and never will be
fulfilled, since no a nodes will be seen on the stream anymore). Whenever such a handler
fires, the associated subquery is executed using the standard XQuery semantics, i.e., it is
assumed that the whole content of the data window is bound to the variable given after the
as keyword. Informally, the difference between an “on-window ... as $x ...”- and an
“on-each past ... as $x ...”-handler is, that the “on-window”-handler does not bind
the whole content of the data window to $x, but again processes $x as a stream—similar
to an on-handler. In contrast, an “on-each past’-handler actually binds the whole data
window to $x by buffering the data and processing the subquery on the buffered data—
similar to an “on-first”handler. We will show details on how buffer management and
query execution is done for each handler in Section 3.8.2.4.

Note that we restrict subqueries of “on-window”-handlers to simple expressions. Basi-
cally, arbitrary streaming FluX expressions, i.e., a ps-expression, might be possible. But,
the semantics of ps-expressions is not sufficient for handling data windows, because it is
designed for processing a single node, whereas in a data window a sequence of nodes has
to be processed. This could be addressed by introducing some kind of a “process window”-
statement, which individually processes each node contained in a data window by means
of a ps-expression. However, the optimization potential is very limited in that case, since
no order constraints can be derived to reduce buffering. We illustrate this fact by means
of the following example. We use the DTD given in Example 3.8.15 and extended it by
the production

<!ELEMENT 4 (e, f)>.

Now, consider the following XQuery™ expression, which prints for each window all e nodes
of all d nodes before all £ nodes of, again, all d nodes.

{ for $w in $x/c/d|lws| return
{ for $e in $w/e return {$e} }
{ for $f in $w/f return {$£f} } 3}

The content of an arbitrary data window is then ((eq, f1),. .., (eén, fn)), where (e;, f;) de-
notes some node d;. The FluX idea of scheduling parts of the query with respect to order
constraints to process this data window in a streaming fashion would be applied as follows:
We would scan through the data window, directly output all nodes e; (as it is done by an
on-handler), buffer all nodes f;, and eventually output all buffered f; nodes at the end of
the data window (similar to an “on-first”-handler). Since we subsequently walk through
the d; nodes (the parent node of each e; and f;), we cannot derive an order constraint
between e and f nodes, such that we might be able to directly output both e and f nodes
on-the-fly assuring that all e; are printed before all f;. Generally speaking, only the first
expression of a subquery being executed on a data window can potentially be evaluated
directly on the stream without buffering. Data needed for the remaining expressions al-
ways has to be buffered for being processed at the end of the data window. Of course, by
directly executing the first expression on the stream without buffering (if the expression
allows for that) buffer consumption is reduced. However, since both data windows itself

3.8 Extending the FluX Query Language 109

and the contained data items are generally not very large, there is no huge benefit and
therefore we did not pursue this approach further.

The definition of free variables of a FluX expression (Definition 3.4.13/3.8.4) can be
extended to include “on-window ... as $x ...”- and “on-each past ... as $x ...”-
handlers, such that they bind the variable $2 and remove it from the set of free variables of
the superexpressions—similar to an on-handler. We will not show the extended definition
for the sake of brevity.

To be able to define safety for FluX queries involving data windows, we have to slightly

adapt the definition of dependencies (Definition 3.4.17/3.8.5).

Definition 3.8.18 (Dependencies) Let the set of dependencies with respect to a variable
$y of an XQuery~ expression be defined as in Definition 3.8.5. Further, let

dep($y; {for $x in Sy/m|ws| return o) := dep(Sy, Sy/m|ws|)
U dep(Sy; «)
dep($y; {for $x in $y/mw|ws| where y return a}) := dep($y, Sy/m|ws|)

U dep($y; a) U dep($y; x)
dep(3y; Sy/mwlws|) = dep($y; Sy/m)

with |ws| denoting a window specification, ™ a path, and o an XQuery™ expression.

Note that the reference path of a time-based window does not contribute to the depen-
dencies, since it only refers to the window element itself or a deeper nested element. With
this, we are able to extend the notion of safe queries given in Definition 3.4.18/3.8.6 to
include data window computations.

Definition 3.8.19 (Safe Queries) A FluX query Q) is called safe with respect to a given
DTD if and only if for each subexpression “4ps $y: ¢ }” of Q, the two conditions given
in Definition 3.8.6 and the following condition are satisfied:

3. For each handler “on-each past $y/a/m|lws| as $x return a” in the list , the
following s true:

o V 3z € free(a) such that “{3z}” < o we have: $z = $x
o V 3z € free(a) such that “{$z/b/n'}” < o, {f(32/b/7")}” < «, or “f($3z/b/7")”

contained in some condition x (for some function f and path ') we have:
($z = $z) or (($z = $y) A (Ords, (b, a))

In other words, (3) ensures that a subquery of an “on-each past”handler references
only contents of the current data window or data which is completely known before pro-
cessing the sequence of data windows. Hence, data which is needed inside data windows
but stems from outside of the data windows can be completely buffered before process-
ing the data windows. Note that “on-window’-handlers are per definition safe, since they
may only contain simple expressions as subqueries, which can be processed directly on the
stream without buffering at all.

110 The FluX Streaming XQuery Processor

3.8.2.3 Rewriting Extended XQuery into FluX

We will now address the problem of rewriting a query containing the novel parts for data
window processing into an equivalent FluX query that employs as little buffering as possible.

Again, the query is first transformed into its normal form by applying the rules de-
picted in Figure 3.3 and 3.11. We introduce the restriction, that the rule /[Single-Step-
For] must not be applied to for-expressions defining data windows, i.e., for-expressions
containing windowed paths. That is, paths referring to the elements of data windows
are not broken into single-step for-loops. The remaining rewriting rules concerning for-
expressions, i.e., [Elim-Where] and [Pushdown-If-1], do not distinguish between windowed
and non-windowed paths and are applied as usual. The following example illustrates the
normalization process.

Example 3.8.20 Consider the query Q7 and the DTD as given in Example 3.8.15. Q7
has the following normalization, denoted as Q%:

1 <results>

2 { for $r in $RO0T/root return

3 { for $x in $r/a return

4 <result>

5 { for $b in $x/b return {$v} }
6 { for $w in $x/c/dlcount 4 step 2| return
7 <winavg>

8 {fn:avg($w)}

9 </winavg> }

10 </result> } }

11 </results>

Note that the windowed path in the for-expression in line 6 is not broken into single-step
for-loops. O]

To formulate the extensions of our rewrite algorithm, we need to adapt the definition
of handler symbols to include the novel handlers as follows.

Definition 3.8.21 (HSymb) Let the set hsymb(C) of handler symbols be defined as in
Definition 3.5.2. Additionally, we inductively define hsymb(() for the novel “on-window -
and “on-each past™handler as follows:

hsymb((; on-window $z/a/m as $y return «) = hsymb(¢) U {a}
hsymb((; on-each past $z/a/m as $y return a) := hsymb(¢)U{a}

With this, we extend our rewrite algorithm presented in Section 3.5.2 to handle the
novel constructs for data window processing as depicted in Figure 3.16. For the sake of
brevity, we only show the new fragment of the rewriting function handling data windows.
This fragment has to be inserted between lines 27 and 28 of the Function "rewrite”. The
complete rewriting algorithm is shown in Appendix B.

3.8 Extending the FluX Query Language 111

Figure 3.16: Extension of Function "rewrite” for Handling Data Windows

101 else if (3 is of the form {for $y in $z/a/m|ws| return a} then
12 X :={bedep($x,a)UH | =Ords,(b,a)};
103 if ($2 # $2) V (X # () then

104 return {ps $z: on-first past(X U{a}) return (};

105 else

106 if 3 is simple and |ws| is simple then

107 return {ps $z: on-window $z/a/m|ws| as $y return [} ;
108 else

109 return {ps $z: on-each past $z/a/m|ws| as $y return [} ;
110 endif

111 endif

112 endif

Instead of discussing the novel part of the rewriting algorithm in detail, we provide
some illustrative examples in the following.

Example 3.8.22 Consider again query Q7 and the corresponding DTD shown in Exam-
ple 3.8.15. We slightly modify the window specification of this query and obtain the following
normalized query Qg:

<results>
{ for $r in $RO0T/root return
{ for $x in $r/a return
<result>
{ for $b in $x/b return {$b} }
{ for $w in $x/c/dlcount 4 step 4| return
<winavg>
{fn:avg($w)}
</winavg> }
</result> } }
1 </results>

© o0 ~ =] t - w [—

[un
(=}

Rewriting lines 1-5 of Qy using our rewrite algorithm is done similarly as described in
Section 3.5.83 and eventually yields the following fragment of a FluX query:

{ ps $ROOT:
on-first past() return <results>;
on root as $r return
{ ps $r:
on a as $x return
{ ps $x:
on-first past() return <result>;
on b as $b return {$b};

112 The FluX Streaming XQuery Processor

Note that the for-loop of line 5 is rewritten into an on-handler directly outputting b nodes,
because at this point, H = () and X = (. Next, the for-expression defining the data
window in lines 6-9, which will be denoted as (3 in the following, is rewritten by means of the
recursive call “rewrite($3x, {b}, 3)” performed in lines 13/15 of the rewrite algorithm. Since
0 specifies a data window, the novel part of the algorithm shown in Figure 3.16 is executed.
Here, $x = $z and X =), because the given DTD assures the order constraint Orda(b,c).
Further, the subquery of the for-loop is simple and also the window specification is simple
(A = pu=4). Hence, line 107 is executed, which yields the following FluX expression:

{ ps $x:
on-window $x/c/d|count 4 step 4| as $w return
<winavg>
{fn:avg($w)
</winavg>; }

Because of the definition of handler symbols, rewriting the remaining expressions proceeds
with H = {b, c}. Fventually, the following FluX query Fy is produced:

{ ps $ROOT:
on-first past() return <results>;
on root as $r return
{ ps $r:
on a as $x return
{ ps $x:
on-first past() return <result>;
on b as $b return {$b};
on-window $x/c/d|count 4 step 4| as $w return
<winavg>
{fn:avg($w)}
</winavg>;
on-first past(c, b) return </result>; }; };
on-first past(root) return </results>; }

Note that the FluX query Fy is safe, because (1) the DTD assures, that all b nodes
have been printed before the first ¢ node is seen on the stream and (2) the data window
computation itself can be executed directly on the data stream, since the window specification
and the subquery itself are simple. Hence, no buffers are needed at all for evaluating this
query. We will show details on the actual execution strategy of such computations on data
windows in the next section. O

We demonstrate by means of the following example how more complex computations
on data windows, i.e., non-simple queries, are optimized.

Example 3.8.23 Consider query Q7 and the DTD given in Example 3.8.15 with its nor-
malization Q% presented in Example 3.8.20.

Rewriting lines 1-5 into FluX produces the same result as shown in the previous ex-
ample. As before, the for-expression defining the data window in lines 6-9, which will be

3.8 Extending the FluX Query Language 113

denoted as (3 in the following, is rewritten by means of the recursive call “rewrite($x, {b},
B)” performed in lines 13/15 of the rewrite algorithm. Again, $x = $z and X = 0, because
the given DTD assures the order constraint Orda (b, c). Now, the window specification is
not simple (A =4 # u = 2), because two subsequent data windows have an overlap of two
nodes. Hence, line 109 is executed returning the following expression:

{ ps $x:
on-each past $x/c/d|count 4 step 2| as $w return
<winavg>
{fn:avg($w)
</winavg>; }

Rewriting the remaining part of Q% eventually produces the following FluX query Fr:

{ ps $ROOT:
on-first past() return <results>;
on root as $r return
{ ps $r:
on a as $x return
{ ps $x:
on-first past() return <result>;
on b as $b return {$b};
on-each past $x/c/d|count 4 step 2| as $w return
<winavg>
{fn:avg($w)}
</winavg>;
on-first past(c, b) return </result>; }; };
on-first past(root) return </results>; }

Again, because of the order constraint between b and c nodes all b nodes can be directly
output before all c nodes are processed in a windowed fashion. The “on-each past™handler
buffers the whole data window, 1. e., four d nodes, and triggers the execution of the subquery
as soon as the window specification is fulfilled (i.e., if four d nodes are contained in the
buffer). Hence, all nodes needed for correctly computing the subquery on the data window
are fully buffered and F; is safe. More details on the execution of such a handler, e.g.,
how data windows are moved, will be provided in the next section. O

Eventually, the most general case of processing data windows is shown in the following
example.

Example 3.8.24 Consider again query Q7 of Example 3.8.15 and its normalized form Q)%
shown in Fxample 3.8.20. Now, we assume the following DTD:

<!ELEMENT root (a*x)>
<!ELEMENT a (b | c)*>
<V'ELEMENT ¢ (d*)>

114 The FluX Streaming XQuery Processor

That is, no order constraint between b and c nodes can be derived from the DTD.

Rewriting lines 1-5 into FluX produces the same result as shown in the previous ex-
amples. As before, the for-expression defining the data window in lines 6-9, which will
be denoted as (3 in the following, is rewritten by means of the recursive call “rewrite($zx,
{b}, B)” performed in lines 13/15 of the rewrite algorithm. Now, $x = $z and X = {b},
because the order constraint Orda(b, c) does not hold for this DTD. Hence, line 104 of the
extended rewrite algorithm is executed returning the following expression:

{ ps $x:
on-first past(b, c) return
{ for $w in $x/c/dlcount 4 step 2| return
<winavg>
{fn:avg($w)}
</winavg> }; }

Again, the remaining part of Q% is rewritten as described in the previous examples and
eventually the following FluX query F; is produced:

{ ps $ROOT:
on-first past() return <results>;
on root as $r return
{ ps $r:
on a as $x return
{ ps $x:
on-first past() return <result>;
on b as $b return {$b};
on-first past(b, c) return
{ for $w in $x/c/dlcount 4 step 2| return
<winavg>
{fn:avg($w)
</winavg> };
on-first past(b, c) return </result>; }; };
on-first past(root) return </results>; }

In this case, all b nodes are directly output without buffering. Due to the “on-first™
handler, all ¢ nodes are buffered. After allb and c nodes have been seen, the data windows
are computed and processed based on the buffered data. Obviously, F} is also safe. 0]

Of course, it could be argued that an evaluation strategy as shown in Example 3.8.24
is undesireable, since buffering all nodes to be processed in a windowed fashion is some-
what contradictory to the goal of limiting buffer size by applying windowing techniques.
However, results must adhere to the structure given by an XQuery, e.g., in the previous
example all b nodes must be outputted before processing the ¢ nodes in a windowed fash-
ion. If the DTD does not impose sufficient order constraints, the evaluation strategy of
buffering all data and computing the data windows afterwards is the best that can be done
in order to produce results compliant to the query.

3.8 Extending the FluX Query Language 115

3.8.2.4 Implementation

In this section, we show how data windows are handled by the query compiler and the
runtime engine. For the sake of brevity, we refrain from giving an abstract description and
show how the former three examples are compiled into a query plan instead.

To be able to correctly process conditions and functions, we revise the definitions of
“streaming atomic conditions” (Definition 3.7.1/3.8.10) and “streaming functions” (Defini-
tion 3.8.9) to incorporate the novel handlers as follows.

Definition 3.8.25 (Streaming Atomic Condition) Let a streaming atomic condition
be exactly as defined in Definition 3.8.10, with $xz, $y being variables bound by an on-
handler or an “on-window ™handler.

Definition 3.8.26 (Streaming Function) A function f($z/m) is denoted as stream-
ing function, if and only if [is non-holistic and $x is bound by an on-handler or an
“on-window -handler.

The first two examples show the execution of an “on-window” handler, which can be
directly processed on the stream without buffering any data. The basic idea of executing
such a handler is as follows: Recall that a subquery @ of such a handler has to be simple.
According to the definition of simple queries, @ can be rewritten as a sequence a3+, where
a and v may (conditionally) output some constants (or, function results, which are actually
treated as constants, since the scheduling of expressions assures that the result has been
completely computed before) and 3 processes the current input stream. Applied on data
windows, « is executed at the beginning of a new data window, [is processed on-the-fly
as the data streams into the query engine, and + is executed at the end of the current data
window.

Example 3.8.27 Consider FluX query Fg of Example 3.8.22. The interesting part of Fg
dealing with data windows is the scope of a, which has been rewritten into the following
FluX query fragment:

on a as $x return

1

2 { ps $x:

3 on-first past() return <result>;

4 on b as $b return {$b};

5 on-window $x/c/d|count 4 step 4| as $w return
6 <winavg>

7 {fn:avg($w)}

8 </winavg>;

9 on-first past(c, b) return </result>; }; };

This part of the query is compiled into the query plan depicted in Figure 3.17. Printing the
tag <result> (line 3), the contents of all b nodes (line 4), and the tag </result> (line 9)
is done as already shown in Section 3.7.2 in lines 4, 30-31, 353-34, and 4142 of the query

116

The FluX Streaming XQuery Processor

© 0w N O s W N =

e T T T e =
= O © ® N 9 U oA W N = O

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PSNode [symbol=a]
* startStream:
SequenceNode
Output [data=<result>]
InitializePathMatcher[path=c/d; CountWinMatcher: size=4; step=4]
InitializePathMatcher[path=c/d; InternalAggregate: exprID=0, type=0]
* endStream:
(NOP)
* startTag:
on ’c’:
PSNode [symbol=c]
* startStream:
(NOP)
* endStream:
(NOP)
* startTag:
on ’d’:
StreamWindow[win=c/d|count 4 step 4|, type=startWindow]
SequencelNode
InitializeExprResult [exprID=0]
Output [data=<winavg>]
* endTag:
on ’d’:
StreamWindow [win=c/d|count 4 step 4|, type=endWindow]
SequencelNode
OutputExprResult [exprID=0]
Output [data=</winavg>]
* on-first:
(NOP)
on ’b’:
OutputStream[state=true]
* endTag:
on ’b’:
OutputStream[state=false]
* on-first:
OnFirstHandlerNode [symbols={c}]
StreamWindow [win=c/d|count 4 step 4|, type=finalWindow]
SequenceNode
OutputExprResult [exprID=0]
Output [data=</winavg>]
OnFirstHandlerNode [symbols={c, b}]
Output [data=</result>]

Figure 3.17: Fragment of Query Plan for Example 3.8.22

plan. The result of fn:avg is computed directly on the stream as shown in Section 3.8.1
by means of line 6 of the query plan.

To determine the current state of the data window, the window specification, 1. e.,

|count 4 step 41, has to be evaluated on the data stream. This is done by setting up

3.8 Extending the FluX Query Language 117

an automaton, which receives all events of this scope and matches the path of the window
specification (line 5). Here, we have an element-based window and thus the path is equal to
the base-path of the window elements, i. e., c/d (relative to $x). Whenever a match occurs,
the window specification (here, CountWinMatcher) is updated, i. e., the current size of the
window is increased by one.

The “on-window ~handler is transformed into physical query operators as follows. First,
the path $x/c/d defining the elements of the data window is decomposed into one-step paths
and corresponding nested scope-handlers are generated. Here, a scope-handler for c is in-
troduced (lines 11-29). As sketched before, the subquery of the “on-window -handler (lines
6-8 of the FluX fragment) is simple and can be decomposed into o = <winavg>, [= ¢,
and v = {fn:avg($w)} </winavg>. Appropriate execution of o and 7y is achieved by the
physical operator StreamWindow, which conditionally executes a subplan depending on the
state of the current data window. The execution of o at the beginning of the current data
window is performed in lines 18-21 of the query plan. Whenever a start-tag of a d element
(which are the elements contained in the data window) is encountered, the StreamWindow
operator executes lines 19-21 if and only if the window specification indicates that upon see-
ing this <d> tag the current data window starts, which is denoted by “type=startWindow”.
Additionally, at the beginning of each data window the query compiler inserts operators
for resetting all expressions, e. g., conditions or function results, depending on the window
variable. Here, in line 20 the result of fn:avg($w) is initialized to ensure that only ele-
ments of the current data window are considered. Whenever an end-tag </d> is encountered
(lines 23-27), the StreamWindow operator of type “endWindow” executes v (lines 25-27), if
and only if the window specification is fulfilled, 1. e., the current data window is at its end.
Having executed 7y, the StreamWindow operator moves the data window by appropriately
updating the window specification, i.e., setting the current size to zero. The final window
is processed in an ‘on-first past(c) ™-handler (lines 36-40) by a StreamWindow operator
of type “finalWindow”, which executes v (lines 38-40), if and only if any new d elements
have been seen since the beginning of the current data window.

Note that no special handler for processing an “on-window -handler is needed in the
query plan, but the appropriate operators are scheduled into conventional start-/end-tag
and ofp-handlers. O

Example 3.8.28 Consider again the FluX fragment of the previous example. We replace
the subquery of the “on-window -handler in lines 6-8 with

<win>

{$w}

</win>

to print the contents of the entire data window nested inside a win element instead of
computing a windowed average. Observe that this sequence of expressions is also simple
with o = <win>, § = {$x}, and v = </win>. As a result, the following handlers for start-
and end-tags of d nodes are produced:

118 The FluX Streaming XQuery Processor

1 * startTag:

2 on ’d’:

3 SequenceNode

4 StreamWindow[win=c/d|count 4 step 4|, type=startWindow]
5 Output [data=<win>]

6 OutputStream[state=true]

7 * endTag:

8 on ’d’:

9 SequenceNode

10 OutputStream[state=false]

11 StreamWindow[win=c/d|count 4 step 4|, type=endWindow]
12 Output [data=</win>]

Now, each d node is printed on-the-fly by means of the OutputStream operators in lines 6
and 10, which switch outputting appropriately on and off in the start- and end-tag events,
respectively. To correctly nest all d nodes of a data window into a win node, the start-tag
<win> is printed before the first d node of each data window due to the StreamWindow
operator in lines 4—5. The end-tag </win> is outputted after the last d node by means of
the StreamWindow operator in lines 11-12. O

The following example shows how an “on-each past”handler is compiled into a query
plan. Basically, it is handled similar to an “on-first”-handler, except that the window
specification determines the amount of nodes to be buffered and the point in time when the
execution of the handler is triggered. Similarily to buffering data for “on-first”-handlers,
not the entire elements of the data windows are buffered, but only the actual needed parts.
This is accomplished by computing the buffer tree for the subquery of an “on-each past”-
handler and translating it into a projection scheme for the query plan as described in
Section 3.7.3.

Example 3.8.29 Consider FluX query F; presented in Fxample 3.8.23. The interesting
part dealing with data windows is again the scope of a, which has been rewritten into the
following FluX query fragment:

1 on a as $x return

2 { ps $x:

3 on-first past() return <result>;

4 on b as $b return {$b};

5 on-each past $x/c/dlcount 4 step 2| as $w return
6 <winavg>

7 {fn:avg($w)

8 </winavg>;

9 on-first past(c, b) return </result>; }; };

This part of the FluX query is compiled into the query plan shown in Figure 3.18. The
handlers in lines 3, 4, and 9 are transformed into physical operators as shown in Eram-

ple 3.8.27.

3.8 Extending the FluX Query Language 119

PSNode [symbol=a]
* startStream:
SequenceNode
Output [data=<result>]
InitializePathMatcher[path=c/d, CountWinMatcher: size=4; step=2]
* endStream:
InitializeBuffer [bufID=0]
* startTag:
on ’c’:
PSNode [symbol=c]
* startStream:
(NOP)
* endStream:
(NOP)
* startTag:
on ’d’:
BufferStream[bufID=0; state=true]
* endTag:
on ’d’:
SequenceNode
BufferStream[bufID=0; state=false]
BufferedWindow[win=c/d|count 4 step 2|; type=matched]
SequencelNode
Output [data=<winavg>]
BufferedFunction[exprID=0; path=buf[0]/d, InternalAggregate: 0]
OutputExprResult [exprID=0]
Output [data=</winavg>]
* on-first:
(NOP)
on ’b’:
OutputStream[state=true]
* endTag:
on ’b’:
OutputStream[state=false]
* on-first:
OnFirstHandlerNode [symbols={c}]
BufferedWindow[win=c/d|count 4 step 2|; type=finall
SequencelNode
Output [data=<winavg>]
BufferedFunction[exprID=0; path=buf[0]/d, InternalAggregate: 0]
OutputExprResult [exprID=0]
Output [data=</winavg>]
OnFirstHandlerNode [symbols={c, b}]
Output [data=</result>]

© 0 N O U W N =

R R s s W W W W W W W W W W NN N NN N NN N e e e e e
AW N = O © 00 N O U R W N O © 0N O U R W N O © 0O U R W N O

Figure 3.18: Fragment of Query Plan for Example 3.8.23

120 The FluX Streaming XQuery Processor

Again, the path defining the elements of the data window, 1. e., $x/c/d, is decomposed
into single-step paths and appropriate scope-handlers are inserted (lines 10-29). Further,
the window specification is transparently checked on the input stream as already shown in
Ezample 3.8.27 (line 5).

To process an “on-each past™handler the content of an entire data window is buffered.
This 1s accomplished by the BufferStream operators in lines 17 and 21 as described in
Section 3.7.3. Note that no further projection of d nodes is needed, since they only contain
character content.

Processing a complete data window is performed by the Buf feredWindow operator, which
conditionally executes its subplan (lines 22-27) if and only if the window specification is
fulfilled (which is denoted by “type=matched”). Due to scheduling this operator into the
end-tag handler of d, the last d node of the data window is completely known and buffered.
Hence, the subquery in lines 25-27 can be correctly executed. Having executed the subquery,
the window is moved by appropriately updating the window specification and deleting the
first i elements from the buffer. Similar to the previous examples, the final data window
1s processed in an “on-first past(c) -handler by means of a BufferedWindow operator
of type “final” (lines 36—42). Here, the BufferedWindow operator executes the subquery
only, if new window elements have been seen since its last invocation. O

Time-based data windows are handled very similarly to element-based data windows
shown in the previous example. Beforehand, we outlined whether a time-based window
specification is fulfilled or not can only be determined upon seeing the next window ele-
ment. We address this problem as follows: When buffering the current window element,
it is marked as “pending”. If the window specification is not fulfilled after having seen
this element, it is contained in the current window and we remove the “pending”-mark.
Otherwise, this element belongs to the next data window and must not be processed in
the current data window. This is realized by modifying iterators over buffers to ignore
pending nodes. Hence, the subquery can be processed as usual. Afterwards, the window
is moved by removing appropriate elements from the beginning of the buffer and removing
the “pending”-mark of the current element to make it visible in the data window.

We briefly show how data windows inside an “on-first”-handler are processed on behalf
of the following example.

Example 3.8.30 Consider FluX query F) presented in Example 3.8.24. Data windows are
processed by means of the following FluX query fragment inside an “on-first ™-handler:

on-first past(b, c) return
{ for $w in $x/c/dlcount 4 step 2| return
<winavg>
{fn:avg($w)}
</winavg> };

[T R

3.9 Performance Evaluation 121

This fragment is compiled into an “on-first™~handler of the query plan as follows:

1 OnFirstHandlerNode [symbols={c, b}]
2 SequenceNode

3 BufferedWindowedFor [var=$w; win=c/d|count 4 step 2|; buffer=0]
4 SequencelNode

5 Output [data=<winavg>]

6 BufferedFunction[path=$w, Matcher: d, InternalAggregate: 0]
7 OutputExprResult [exprID=0]

8 Output [data=</winavg>]

Because of our buffering strategy, all d nodes have been buffered. The BufferedWindowedFor
operator subsequently iterates over all possible data windows and binds the current data
window to $w, which is then processed by the operators in lines 4-8. 0

3.9 Performance Evaluation

To assess the merits of the approach presented in this chapter, we have experimentally
evaluated our prototype query engine implemented in Java using a number of queries on
data obtained using the XMark benchmark generator.

Our implementation supports the XQuery™ fragment as defined in Sections 3.4 and 3.8.
We have taken selected queries of the XMark benchmark [SWK102] and, as XQuery~
does not include certain features that are used in these queries, we have adapted them
correspondingly. In detail, attributes have been converted into subelements of their parent
element in our tests'®. Occurrences of the XPath kind test text() have been replaced
by {$x}-expressions that print the whole element instead. We have eliminated count ($z)
aggregations by outputting $x instead. Note that these aggregations are not yet covered by
the extensions shown in Section 3.8.1, since they do not directly work on the data stream,
but on intermediary results.

XMark queries 1, 5, 8, 11, 13, 16, and 17 have been adjusted as sketched above. We
have extracted the last FLWR subexpression of original query 20 (which computes persons
whose income is not available) for our novel query 20. Further, we have introduced a novel
query “8b”, which basically performs a join similar to query 8, but with inner and outer
for-loops swapped. The queries thus obtained can be found in Appendix C.1.

We have used data generated by the XMark “xmlgen” data generation tool (V. 0.96) of
the sizes 5MB, 10MB, 50MB, and 100MB as input data. All tests have been performed
with the SUN JDK 1.5.0_03. The XSAX parser is based on the Apache Xerces2 SAX-
Parser (V. 2.6.2). The tests have been conducted on a “HP ProLiant BL20p G20” server
blade (dual Xeon 2.8GHz processor, 4 GB main memory) running SuSE Enterprise Linux
V. 9 (kernel 2.6.5). Note that neither FluX nor Galax (to the best of our knowledge) is
optimized for multiprocessor systems.

16The XMark DTD was adjusted accordingly.

122 The FluX Streaming XQuery Processor

Our query engine is implemented precisely as described before. As a reference imple-
mentation the Galax query engine (V. 0.5.0) has been employed with projection turned on
[MS03] by means of the “~projection optimized” parameter.

The performance of query evaluation has been studied by measuring the execution time
(in seconds) and maximum memory consumption (in bytes) of each engine. The memory
and CPU usage of both query engines have been retrieved by internal monitoring functions
(excluding the memory consumption of the Java Virtual Machine). Unfortunately, internal
monitoring of execution time of Galax has dramatically slowed down query execution, so the
execution time has been measured by means of the Unix “time” command. The times taken
for rewriting an XQuery into FluX are negligible—namely in the order of the time needed
for parsing the query itself—and thus are not reported separately in our experiments.

3.9.1 XSAX Parser

To get an idea of the maximum achievable performance, i. e., the minimum execution times
or maximum throughput, of the FluX query engine, we first evaluate the efficiency of the
XSAX parser.

We have made two tests, each varying the size of the XMark input document. The
first experiment has been to parse the input document in lazy validation mode having
not registered any “on-first’-events. Hence, no automata for generating ofp-events are
produced and the whole input document is not validated. This test denotes the absolute
upper bound of the performance for executing FluX queries. In the second experiment,
we have parsed the input document in full validation mode. Here, for every production
a validating automaton is generated and the whole input document is thus validated.
Therefore, this experiment constitutes the worst case with respect to the XSAX parser.
Note that this worst case is independent from the actual number of registered “on-first”-
events, since ofp-events can be generated during the simulation of the automata without
any additional cost. With respect to the XSAX parser, only the number of productions,
which are being validated, determines its performance. See Section 3.7.1 for further details
of the XSAX implementation.

Figure 3.19 shows the results of these experiments. To minimize side-effects, the de-
picted execution times are the average of five runs. As expected, parsing time in lazy
validation without having registered any “on-first”-events scales linearly with the size
of the input document. The overhead of validating the whole input document, i.e., the
maximum overhead for generating ofp-events, is low (27% on the 100MB document). Also,
validating the whole document scales linearly with the size of the input document. The
throughput of the XSAX parser, which is given as the number of produced SAX-events
per seconds, is relatively constant—apart from the 5MB and 10MB documents. Here, the
overall parsing time is relatively small, so side-effects such as class-loading or byte-code
compilation have a noticeable influence and lower the throughput.

3.9 Performance Evaluation 123

Lazy Validation Full Validation

Time [s] | Throughput [222%5] || Time [s] | Throughput [£22n5]
XMark 5MB 0.562 672 0.799 472
XMark 10MB 0.904 836 1.083 697
XMark 50MB 3.558 1054 4.352 862
XMark 100MB 6.575 1141 8.349 898

XSAX Scalability (XMark)

Lazy Validation ——
Full Validation ----x---
10
o (b'
_ ey
(2] o
2 ez
S
'_
2
©
o
h
0.1
1 10 100

Document Size [MB]

Figure 3.19: XSAX Performance

3.9.2 Basic Performance Tests

In this section, we show the overall performance of our FluX query engine with respect to
execution time, memory consumption, and investigate its scalability. Therefore, we employ
the adapted XMark queries as briefly described at the beginning of this section. Again, to
minimize side-effects all execution times have been averaged over three independent runs.
Detailed benchmark results can be found in Section C.3.

Figure 3.20 shows the execution times of our queries varying the size of the input
document. The results of our FluX query engine have been obtained exploiting order
constraints of the DTD and applying algebraic optimizations, which will be referred to as
fully optimized in the remainder. Obviously, our FluX query engine (blue bars) outperforms
Galax (red bars) on each of our queries and input documents. The rapid increase in
execution time, which can be observed for queries 8, 8b, and 13, is due to the fact that
these queries contain joins. We currently compute joins by a naive nested-loops algorithm,
which clearly is a drawback with respect to efficiency. Note that query 11 could not be
measured on the 100MB document with Galax, since an “Out-Of-Memory” error occurred.

Next, Figure 3.21 shows the memory consumption of our FluX query engine (blue

124 The FluX Streaming XQuery Processor

Query Execution
10000 T

FluX (5MB)
Galax (5MB)
FluX (10MB)

Galax (10MB;

)
)
)

FluX (50MB
Galax (50MB,
FluX (100MB,

Galax 1 00MB

M

1000

100

Execution Time [s]

Query 1 Query 5 Query 8 Query 8b Query 11 Query 13 Query 16 Query 17 Query 20

Figure 3.20: FluX Overall Performance: Execution Time

bars) and Galax (red bars) for each query varying the size of the input document. As
before, FluX queries have been executed fully optimized. Obviously, independent from
the actual query, Galax needs a relatively constant amount of memory decided by the
actual size of the input document. In contrast, memory consumption of our FluX query
engine is mostly decided by the query (and, of course, the underlying DTD) and clearly
outperforms Galax. Queries 1, 13, and 20 can be evaluated directly only the input stream
without buffering at all because of the order constraints imposed by the DTD. Queries 5,
16, and 17 show a constant amount of memory consumption independent from the size of
the input document. This is due to the fact that only a (singular) current element of the
input stream has to be buffered at a time for being able to correctly process it. Having
processed this element, the buffer is freed and filled with the next element. Further, due
to our projection scheme, only the actual needed part of these elements is buffered, which
additionally lowers memory usage. Queries 8, 8b, and 11 perform a join on two subtrees
(i.e., of people and closed_auction respectively open_auction) and therefore inevitably
have to buffer all affected elements or join partners, respectively. Nevertheless, due to our
effective projection scheme, only a small fraction of the original data is buffered compared
to Galax. Because of the order constraints imposed by the DTD, when evaluating Query
8b we are further able to exploit the fact that all subtrees of one join partner (person) are
fully known before we see the subtrees of the other join partner (closed_auction) on the
stream. Hence, only subtrees of the first join partner have to be buffered and the join can
be evaluated on-the-fly as the other join partners are seen on the stream. This yields a
reduction of memory usage by approximately a factor of ten compared to original Query 8
(remember, that Query 8 and Query 8b basically compute the same join besides having
swapped inner and outer loops).

Altogether, our optimization approach performs very well with respect to execution

3.9 Performance Evaluation 125

Memory Consumption

1GB

FluX (5MB
Galax (5MB
FluX (10MB

)

)

100MB 1 Galax (10MB;
)

)

)

FluX (50MB
Galax (50MB,
FluX (100MB
1 Galax (100MB

M

10MB

1MB

100kB

10kB

Memory Usage

1kB

100

Query 1 Query 5 Query 8 Query 8b Query 11 Query 13 Query 16 Query 17 Query 20

Figure 3.21: FluX Overall Performance: Memory Consumption

time and maximum memory consumption.

We further investigate the performance of our optimization techniques by comparing
the execution time and memory usage of our query engine utilizing different levels of
optimizations during rewriting an XQuery into FluX and executing it.

Figure 3.22 shows the execution times of our benchmark queries applying different
levels of optimization and using the 50MB document as input. “Fully Optimized” denotes
the situation of exploiting order constraints imposed by the DTD and applying algebraic
optimizations. For the “Not Optimized” experiment, order constraints have been ignored—
which is equal to using a very weak DTD, which does not impose any order constraints—
and no algebraic optimizations have been performed. In case of “Compiled”; all queries
have been fully optimized and eventually the query plan has been compiled into stand-
alone Java code, which can be directly executed. Further, the dotted red line in the figure
marks an average parsing time of the input document. First, it can be observed that the
execution time of Queries 1, 5, 13, 16, 17, and 20 is mostly determined by the parsing
time of the document. These queries filter or transform special elements of the stream,
which does not result in high computational complexity. Hence, only a slightly better
performance can be achieved by compiling those queries into Java code. Since there is only
one element at a time involved in the computation (which is even reduced in its size due to
our projection scheme), it practically makes no difference whether this element is processed
buffered (in the not optimized case) or fully streaming (in the fully optimized case) with
respect to execution time. The situation is different for Queries 8, 8b, and 11. Those queries
have a high computational complexity (the join), which dominates the parsing time of the
document. Here, performing a full optimization improves the performance. This is due
to the fact that algebraic optimizations are able to eliminate and merge (duplicate) for-
loops of the queries, which obviously pays off during the execution of the queries. Due

126 The FluX Streaming XQuery Processor

FluX Comparison (XMark 50MB)

Not Optimized ===
Fully Optimized
Compiled
Parsing Time eewee

1000

100

Execution Time [s]

Query 1 Query 5 Query 8 Query 8b Query 11 Query 13 Query 16 Query 17 Query 20

Figure 3.22: Comparison of FluX Optimization Variants: Execution Time

to the high computational complexity, compiling the query plan into stand-alone Java
additionally improves performance. This is the result of directly compiling structures of
the query plan into corresponding Java constructs, which may additionally be optimized
by the Java compiler on the byte-code level. For example, loops can be directly compiled
into corresponding Java loops, while for the normal (interpreted) execution these loops are
wrapped inside general physical operators.

Figure 3.23 shows the memory usage of the same experiment. Here, the “Compiled”
case is omitted, since there is no difference in memory consumption compared to the “Fully
Optimized” case. In the “Not Optimized” case, Queries 1, 5, 13, 16, 17, and 20 have to
buffer a single element at a time!”. If order constraints imposed by the DTD are taken into
account, Queries 1, 13, and 20 can be optimized such that they can be evaluated without
any buffering. Since Queries 8, 8b, and 11 perform a join, they inevitably have to buffer
all join partners. Exploiting order constraints, memory consumption of Query 8b can be
reduced by approximately a factor of ten by buffering only one of the join partners.

Altogether, it can be observed that even unoptimized FluX queries, i.e., using a DTD
without any specific order of elements, show a good performance and very low memory
consumption. Exploiting order constraints imposed by the DTD, memory consumption
can further be significantly reduced when processing well suited queries.

We conclude this basic performance evaluation by having a closer look at the scala-
bility and the throughput of our query engine. Figure 3.24 shows the scalability of our
query engine. For each query, the execution times are normalized to that of the 5MB
document. Input documents of sizes 5MB/50MB are shown in red and input documents of
sizes 10/100MB in blue color, i.e., for each color, the step from a circle to a filled circle is
increasing the input size by a factor of ten. Obviously, Queries 1, 5, 13, 16, 17, and 20 scale

1"This can be verified by looking at the detailed results shown in Figure C.1. For these queries, the
memory consumption is practically constant—independent from the size of the input document.

3.9 Performance Evaluation 127

FluX Comparison (XMark 50MB)

Not Optimized ===
Fully Optimized

10MB

1MB |-

100kB

10kB

Memory Usage

1kB |-

Query 1 Query 5 Query 8 Query 8b Query 11 Query 13 Query 16 Query 17 Query 20

Figure 3.23: Comparison of FluX Optimization Variants: Memory Usage

Scalability Throughput
! ! ! ! XMark 5MB ' ' ' ' ' '

XMark 50MB
® ® XMark 100MB

FluX (5MB) ===

.
x
=
5
Bl
=)
=
@

000

ul
S
x
5
=
.

FluX (100MB) s

1000 £

100

=
3

Throughput [kEvent/s]

o
°
°

3

Normalized Execution Time

[} o
[} [} o o) [} 9
1 @ @ o} o} o} o} @ o} o} 1
Query1 Query5 Query8 Query8b Query 11 Query 13 Query 16 Query 17 Query 20 Query! Query5 Query8 Query8b Query 11 Query 13 Query 16 Query 17 Query 20
Figure 3.24: Scalability Figure 3.25: Throughput

very well with the size of the input document (execution times raise lower than a factor
of ten upon increasing the size of the input document by a factor of ten). Queries 8, 8b,
and 11 scale quadratically with the size of the input document due to performing a nested-
loops join. Figure 3.25 shows the throughput of the query engine of each query varying the
size of the input document. The throughput is defined as the number of processed input
SAX-events per seconds. As expected, Queries 1, 5, 13, 16, 17, and 20 show a high and
relatively constant throughput. Due to their computational complexity, Queries 8, 8b, and
11 naturally show a lower throughput. Less throughput on processing smaller input docu-
ments can be traced back to parasitic effects such as class-loading, byte-code compilation,
etc., which in this case have a bigger impact due to low overall execution times.

3.9.3 Pipelining Behavior and Buffer Allocation

In this section, we examine the pipelining behavior and memory consumption of our query
engine using some exemplary queries. Therefore, we plot the number of produced output

128 The FluX Streaming XQuery Processor

Query 13 (XMark 5MB)
B‘uffer T . ‘ o0
9kB [Output -+

I 1 4000

8kB
-1 3500

7kB | e
1 3000

I) - 1 2500
[{7 4 2000

-1 1500

6kB

4kB

Buffer Size [Byte]
(2]
x
w

Output Events

3kB

2B |- AT
1kB Tt
. u H

‘
16000 18000 20000 22000 24000 26000 28000
Input Events

-4 1000

Figure 3.26: Execution of Query 13

events and the current memory usage versus the number of processed input SAX events.

Figure 3.26 illustrates the execution of Query 13 on the 5MB XMark document. For
presentation purposes, this query was executed ignoring order constraints to also be able to
show buffer usage (remember, that in the fully optimized case this query can be executed
without any buffering at all). The x-axis shows the number of processed SAX events. To
obtain more details, we have narrowed the range to the relevant part of the document.
The number of produced SAX events is shown on the right y-axis and the current buffer
size is shown on the left y-axis. It can be observed that while processing the input stream
of the document, the results are continually outputted (dotted blue line). With respect
to buffer usage, the figure proofs the claim, which we have made in the previous section:
Each current element (here, an item of Australia) to be processed is first buffered, then
processed after it has been completely buffered, and afterwards, the buffer is freed. The
actual size of the buffer is not constant, because the contents of each item element, in
detail, the description, are different. When executing this query fully optimized, outputs
are produced even more continually right after having seen the corresponding input events.
Here, a whole element is outputted after this element has been completely buffered and
processed (which may be observed, e.g., at the spike right before input event 24000).

Figures 3.27 and 3.28 compare the execution of Queries 8 and 8b. Remember, that
these two queries are more or less identical except from having swapped inner and outer
loops of the join. This time, both queries are executed fully optimized. As shown in
Figure 3.27, Query 8 buffers both join partners (from approximately input event 0-225000
and 325000-400000). As soon as all elements are buffered, the whole output is produced
in the corresponding ofp-handler and the buffer is cleared. Figure 3.28 illustrates the
execution of Query 8b. As already explained before, only the first join partner has to be
buffered for this query, which are again the events 0-225000 (approximately). In contrast

3.9 Performance Evaluation 129

Query 8 (XMark 5MB) Query 8b (XMark 5MB)
T . . . 60000 T T . : 50000
Buffer Buffer
1.4MB | Output - Output =+ 1 45000
50000 | i
1.2MB L 200k8 F{ 40000
_ ‘1 35000
T MBI 40000, () A
g g & 150kB |- H 30000 g
[}
R 800kB |- = g I =
3 30000 3 3 25000 3
£ 500kB |- I £ 100kB - I 20000 3
@ 20000 * @ =
H 15000
400kB -
50kB |- H 10000
200kB 10000
H 5000
; 0 0 I
150000 200000 250000 300000 350000 150000 200000 250000 300000 350000
Input Events # Input Events
Figure 3.27: Execution of Query 8 Figure 3.28: Execution of Query 8b
Query Execution Memory Consumption
10000 ;
FluX (5MB) === FluX (5MB) ===
Galax (5MB) ——= Galax (5MB) ——=
FluX (10MB) o FluX (10MB) e
Galax (10MB) === Galax (10MB) ===
FluX (50MB) s FluX (50MB) s
Galax (50MB) s Galax (50MB) s
1000 FluX (100MB) s 10GB FluX (100MB) s __|
Galax (100MB) Galax (100MB) e
- 1GB
" S
g & 100MB =
= 2 [
< > 10MB
S z
= g 1MB
o []
L% = 100kB
10kB
1kB
100
10
1
Query A Query W1 Query W2 Query W3 Query A Query W1 Query W2 Query W3

Figure 3.29: Performance of FluX Extensions

to Query 8, when reaching the elements of the second join partner on the stream (starting
approximately with event 325000), only the current element is buffered (visible as the
“noise” at the end of the red line). The join of this current element with all buffered elements
is computed and the results are immediately outputted. Hence, results are continually
produced while processing this part of the input stream.

3.9.4 Extensions: Aggregate Functions and Data Windows

In this section, we briefly assess the performance of our extensions of the basic FluX query
engine, i.e., aggregate functions and data windows, by means of some sample queries. For
this purpose, we employ the additional queries shown in Section C.2, which are not part
of the XMark benchmark.

Figure 3.29 shows the execution time and the memory consumption of the additional
queries varying the size of the input document. Detailed benchmark results can be found
in Section C.3. Clearly, our FluX query engine outperforms Galax both with respect to

130 The FluX Streaming XQuery Processor

Query W2 (XMark 5MB)

Buffer
1kB I Output ---------
4 350

900

800 | | -1 300
o L Irh 1%}
£ 700 ' | | {250 £
D g
g oor U 200 3
‘N T 3
D 500 | ‘ B
o
£ E o
2 400 f 150 5

300 | 4 100

200

4 50

100

0 \ | ! 1 L L 0

200000 220000 240000 260000 280000 300000 320000 340000

Input Events

Figure 3.30: Execution of Query W2

execution times and memory consumption on these queries. With respect to execution
times, it can be observed that our FluX query engine scales to increasing sizes of the input
document. Due to our effective projection scheme, Query A shows a good performance in
respect of memory usage. Note that this query has to buffer all closed items to be able
to print those with a maximum price. Query W1 has a simple data window and hence
can be executed without any buffering directly on the input stream. Queries W2 and W3
cannot be executed directly on the stream since subsequent data windows overlap. Hence,
always a single data window is buffered. Obviously, its size is independent from the actual
size of the input document. Clearly, these strategies of using data windows as a sliding
view of the data stream perform much better with respect to memory consumption than
an unoptimized evaluation. Note that Query W3 uses a data window twice as large as it
is used in Query W2 and thus needs twice as much memory!®.

Figure 3.30 shows a detailed analysis of the streaming behavior and buffer usage, which
already has been introduced in the previous section for other queries, of Query W2 on the
5MB XMark document. For presentation purposes, only the relevant part of the document
is shown. Again, while processing the data windows results are continually produced in
a streaming fashion. It can be easily seen that all elements of the current data window
are buffered until the window specification is fulfilled. Then, results are output and the
window is moved by discarding elements from the beginning of the buffer according to the
window specification (here, half of the elements are thrown away).

8Note that the y-axis in the Figure is in a logarithmic scale. See Figure C.2 for the exact values.

3.10 Related Work 131

3.10 Related Work

In this section, we give an overview of some work relevant to the problem of query evaluation
on XML data. Since XPath and XQuery have been proposed as W3C Recommendations,
much research has been done to efficiently implement these standards. These works can
roughly be classified into query evaluation on stored XML data and query evaluation on
XML data streams. Since our goal is efficient query evaluation on data streams, we focus
on works of the latter class. Works of the former class might be of interest under certain
circumstances, e.g., whenever working on buffered data. In such situations, techniques
developed for stored XML data, such as special indexes supporting the evaluation of path
expressions or compression techniques, could play a role for further improving query eval-
uation on buffered data. However, since the current status of our FluX query engine does
not yet employ such techniques, we do not cover this research area in this section.

Algebras for XML Query Processing

An important goal is to devise a well-principled machinery for processing XQuery. Such
machinery needs to be based on intermediate representations of queries that are syntacti-
cally close to XQuery and has to allow for an algebraic approach to query optimization.
This is necessary to allow for both extensibility and the leverage of a large body of related
earlier work done by the database research community.

An algebra for XQuery is part of the XQuery standard [W3C05¢]. Several other works
propose other approaches of XQuery algebras meant for conventional query processing,
e.g., [FSWO01, JLSTO01, BT99]. The work in [FLBC02, BF05] aims at applying such an
XQuery algebra in the streaming context.

To the best of our knowledge, no principled work exists on query optimization in the
framework of XQuery (rather than automata) for structured data streams which honors the
special features of stream processing, i.e., having buffer minimization as an optimization
target or exploiting DTD information.

XML Stream Transformation Languages

Some works aim at efficient and scalable transformation of an XML stream by defining
languages which only allow for a single pass over the XML stream.

STX [Bec04] is an XML transformation language being geared to XSLT [W3CO05¢].
STX processes an XML document as a (single-pass) data stream. It restricts the view to
the input data by enabling the access only to the ancestors of the current context node.
Thus, a scalable execution on documents of an arbitrary size is achieved.

XSAGs [KS03] are a novel class of attribute grammars specifically designed for scalable
XML stream processing. XSAGs are based on extended regular tree grammars, which are
normally given by the DTD of a data stream. An XSAG is obtained by annotating a
given extended regular tree grammar with attribution functions that describe the output

132 The FluX Streaming XQuery Processor

to be produced from the input stream. XSAGs can be evaluated strictly in linear time in a
streaming fashion, consuming only a stack of memory bounded by the depth of the XML
tree being streamed. The TransformX framework [SKO05] is a generalization of attribute
grammars used in XSAGs. Here, attribution functions are allowed to be arbitrary Java
code. The attributed tree grammars are translated into Java source code in the style of
parser generators such as YACC. The output of a TransformX attribute grammar need not
be XML. Rather, TransformX attribute grammars may be regarded as a comprehensive
programming language for XML streams, with all the capabilities provided by Java.

STX and XSAGs only allow for transformations which can be computed using the
restricted view of the input stream (in STX) or even without any buffering at all (in
XSAGs). This supports for somewhat expressive transformations, but not for general
queries. TransformX enables the whole expressive power of Java, especially allowing users
to buffer (and process) parts of the data stream on their own. This basically enables the
computation of arbitrary transformations (or queries), but since buffering is done inside
the Java attribution functions, the framework is not able to optimize the execution with
respect to minimize memory consumption.

Processing XPath Queries on Data Streams

The efficient evaluation of XPath queries on data streams has been worked on exten-
sively in the past. These works can basically be classified into Boolean and node-selecting
XPath queries.

Works on Boolean XPath queries, such as [CFGR02] or [AF00], are primarily intended
to be used in matching XPath expression against XML documents for selective dissemina-
tion of XML documents according to user interests. Relevant work in this area has already
been discussed in Section 2.5.3.

In contrast, node-selecting XPath queries produce a set of nodes as a result. In
[GMOS03, ACGGT02] the authors propose deterministic finite automata (DFAs) for eval-
uating XPath expressions on data streams. To overcome the problem of the huge number
of states of such a DFA, they suggest a lazy construction of the DFA. Although predicates
can be handled in this approach, the efficiency decreases with the number of predicates.
This problem is addressed by XPush machines [GS03]|, which is a modified deterministic
pushdown automaton (PDA). A given set of XPath expressions is compiled into a single
XPush machine. To avoid the theoretical exponential state blow-up, the XPush machine
is again computed lazily. Further, optimizations accounting for order constraints given by
a DTD to reduce the number of states of the PDA are presented. XSQ [PC03] compiles
pushdown transducers augmented with buffers for building blocks of XPath expressions
into a single hierarchical pushdown transducer representing the whole XPath expression.
XSQ pushdown transducers only buffer the minimum amount of data needed for process-
ing the XPath query and further support aggregate functions. Another approach built on
top of transducers is SPEX [OKBO03]|. Here, regular path expressions are translated into a
network of transducers. SPEX also supports regular path expressions with qualifiers. The

3.10 Related Work 133

authors of [BCGT03] present an algorithm for streaming XPath expressions with forward
and backward axes, which is not based on automata techniques. The key idea of this work
is to convert backward into forward axes and to match the input stream by means of a
directed acyclic graph representation of the XPath expression.

Although path expressions are never completely evaluated in FluX, we have adopted
some basic ideas of these works for matching paths on the data stream, e.g., for check-
ing atomic conditions and computing function results. These works might gain further
importance in future work, e. g., when considering paths containing predicates.

In [BGKO03] the authors present a compression technique for XML documents and
provide algorithms for directly and efficiently executing path queries. Even though this
area is not directly related to FluX, such compression techniques could be of interest for
further reducing the needed amount of main memory, if some parts of the data stream
must be buffered for executing certain queries.

XML Query Processing on Data Streams

Compared to XPath 1.0, XQuery is more expressive and therefore involves additional
challenges. Several recent projects have addressed evaluating XQueries on data streams.

The authors of [LMP02] propose XML Stream Machines (XSMs) for efficient stream
processing. XSMs are transducers possibly having more than one input stream augmented
with buffers. XQueries are translated into a network of XSMs, which are connected by
means of buffers, based on building blocks of XQueries. This network is then compiled
into a single XSM. It is shown that schema information can be exploited to reduce the size
of the XSMs. In contrast to our work, schema information (e.g., order constraints) is not
used for minimizing buffer usage. Automata-based techniques are usually quite elegant but
are hard to compare or integrate with other approaches and usually do not generalize to
real-world query languages such as (full) XQuery with their great expressive power and all
their odd features and artifacts of the standardization process.

Raindrop [SRMO05] also employs an automata-based execution model for XQuery evalu-
ation. Similar to our approach, schema constraints are exploited to optimize the execution
of an XQuery. In detail, schema information is used to terminate computations early, e. g.,
if it can be determined that an element needed for satisfying a predicate cannot be en-
countered in the future (similar to our concept of “on-first past’-events). This reduces
processing cost and, at the same time, may lead to reduced buffer usage, since a buffer
might be freed early on, or certain initially buffered elements are no longer buffered. How-
ever, schema information is not directly used for minimization of buffer usage. That is,
basically all elements that need to be processed are buffered as a start. The techniques
for early terminating computations are orthogonal to our approach and thus could also be
applied in FluX.

In [LAO5] the authors present an approach for directly compiling XQueries into exe-
cutable Java code. They present a methodology to determine whether an XQuery can be
correctly executed with only a single pass over the data stream. Further, some optimiza-

134 The FluX Streaming XQuery Processor

tions are shown to rewrite XQueries initially having to perform multiple passes over the
data stream into equivalent queries, which only perform a single pass. This is achieved by
merging loops if possible, which is similar to some of our algebraic optimizations. Buffer
minimization is no direct optimization goal. However, they employ similar projection tech-
niques as we do to reduce memory usage.

The Tukwila XML Engine [THW02]| employs the X-scan operator for evaluating paths on
streaming XML data and generating variable bindings. Bindings are encoded in binding
tuples and processed by a set of conventional query operators. Such query plans are
optimized very similar to what is done in relational DBMS. Particularly, they do not
account for buffer conscious query execution by any means.

The BEA/XQRL [FHK"03] query engine supports pipelined processing of XML data
streams by implementing the iterator model at expression level. Like the Tukwila XML
Engine, query optimization is not tailored to the peculiarities of processing data streams,
and large documents cannot be processed.

Moreover, the problem of optimizing XQueries using a set of constraints holding in the
XML data model — rather than a schema — was addressed in [DT03]. The optimization
approach taken there is based on a mapping of certain XQueries to relational conjunctive
queries and the use of a chase/back-chase procedure for query simplification.

One approach [MS03] towards addressing the problem of reducing main memory con-
sumption in an engine for full XQuery on materialized XML documents aims at reducing
the amount of data buffered in main memory by pre-filtering the data read from the stream
with the paths occurring in the query. However, for real-world XQueries, the need for sub-
stantial main memory buffers cannot be avoided in general. We have adopted this technique
in our FluX query engine for further reducing the size of buffers needed for query execution.

3.11 Discussion

Main memory is probably the most critical resource in (streamed) query processing. Keep-
ing main memory consumption low is vital to scalability and has—indirectly—a great
impact on query engine performance in terms of running time.

The main contribution of this work is the FluX language together with an algorithm for
automatically translating a significant fragment of XQuery into equivalent FluX queries.
Our algorithm uses schema information to schedule FluX queries so as to reduce the use
of buffers. The FluX language itself—while intended as an internal representation format
for queries rather than a language for end-users—provides a strong intuition for buffer-
conscious query processing on structured data streams.

FluX, with its intuitive direct way of evaluation, also provides a good measure of relative
utility of equivalent XQuery expressions (with respect to memory consumption). This
allows for the algebraic optimization of XQueries in order to minimize buffers.

As evidenced by our experiments, our approach indeed dramatically improves the scal-
ability of main memory XQuery engines, even though we think we are not yet close to
exhausting this approach, neither with respect to run-time buffer management and query

3.11 Discussion

135

Nested-Loops Join

Hash-Based Join

s Execution Time [s] | Execution Time [s]
XMark 5MB 7.1 1.8
XMark 10MB 23.1 2.4
XMark 50MB 499.6 7.4
XMark 100MB 2375.5 14.5

Figure 3.31: Join Optimization on the Example of Query 8

processing, nor query optimization.

In particular, an optimization is to push if-expressions—which we have moved down
the query tree to obtain our normal form—back “up” the expression tree as soon as the
other simplifications have been realized. This avoids possibly unnecessary iterations of
buffers in case of un-satisfied conditional subexpressions. A subject of our current research
is a more sophisticated evaluation of joins. We already have implemented first prototype
join optimizations and a hash-based join operator instead of the nested-loops evaluation
strategy. Figure 3.31 shows first promising results on the example of Query 8 of the XMark
benchmark. Besides very little overhead for maintaining hash-tables, the same parts of
the stream are buffered like in the nested-loops case. Also, we are currently extending
windowed computations to more than one data window on the data stream, e.g., needed

for computing window-joins.

136 The FluX Streaming XQuery Processor

Chapter 4

The Best-Match Jown

As already outlined in Section 2.2, our StreamGlobe data stream management system en-
ables the execution of new expressive query operators for information retrieval by means of
user-defined operators. “Interesting” information is often obtained by combining dynami-
cally generated data streams. Such an operation is needed, for instance, in our astrophys-
ical example scenarios, which have been presented in Section 2.4, for classifying observed
objects. Here, a common problem is finding best matching pairs of data objects given user-
defined multi-dimensional criteria. Traditional aggregation-based techniques (e.g., min or
max) in conjunction with rating functions do not give satisfying results, because a single
“best” pair cannot be determined, since diverse pairs, each being best in different aspects
of the comparison, are interesting. We propose the novel class of best-match join (BMJ)
operators to solve this problem. Unfortunately, the BMJ operators are inherently blocking
(pipeline-breakers), such that, in their basic form, they are not applicable to streaming
data or (practically) “infinite” data sources. To overcome the blocking nature and to im-
prove the quality of the results we propose the constrained BMJ operators. The constraints
in combination with physical properties of the data stream, i.e., being ordered according
to a constrained (best-match) join attribute, enable our new pipelined BMJ algorithms,
which are based on synchronously shifting windows over the data streams. To assess our
algorithms, we present experimental results of our StreamGlobe prototype implementation,
which demonstrate the required non-blocking behavior and the good performance of our
BMJ algorithms.

The work presented in this chapter has been published in the Technical Report MIP-
0204 of the Universitit Passau [KS02].

This chapter is outlined as follows. At first, we motivate our best-match join operators
on behalf of some example application scenarios. In Section 4.2 the class of BMJ operators
is formally defined, basic evaluation methods are presented, and the constrained BMJ
operators are introduced. The window-based algorithm, its optimizations, and special
application scenarios dealing with time-stamped data streams are shown in Section 4.3.
Experimental performance results are discussed in Section 4.4. We conclude this chapter
by presenting some related work in Section 4.5 and a discussion in Section 4.6.

138 The Best-Match Join

4.1 Motivation

Information retrieval networks, such as our StreamGlobe data stream management system,
which we have presented in Section 2, enable users to globally exchange and query data
provided all over the world. Often, complex queries have to be processed to retrieve exactly
the information the users are interested in from this huge volume of “raw” data. A common
problem is, for instance, finding best matching pairs of data objects provided by different
data sources given user-defined criteria. This is done by comparing the data objects in
multi-dimensional spaces, which leads to a partial order on the pairs of data objects.
Because partial orders naturally do not have a single minimum, diverse pairs, each being
best in different aspects of the comparison, are interesting. Hence, traditional aggregation-
based techniques in conjunction with rating functions based on determining a single “best”
pair fail to produce satisfying results.

We propose the novel class of best-match join (BMJ) operators to solve this problem.
Nearest neighbor operators or closest point algorithms use an overall distance between two
data objects to determine closest pairs. This overall distance is based on all dimensions in-
volved in the comparison. In contrast, our new BMJ considers each dimension individually.
The quality of the match of a pair of data objects given a special attribute is determined by
user-defined functions, e. g., the distance, set inclusion, etc. Hence, the BMJ computes the
best matching pairs of data objects having a maximum similarity on each individual join
attribute. The result contains those pairs for which no better matching pair exists. Com-
puting BMJ operators substantially differs from the conventional join, because tentatively
computed results might become invalid if a better matching pair is found later on.

Unfortunately, these basic BMJ operators are inherently blocking operators (pipeline-
breakers). Thus, they are not applicable on streaming data, because all input data has
to be processed before any results can be delivered. Furthermore, less interesting pairs
matching very well in one, but worse in all other dimensions may be contained in their re-
sult. Therefore, we introduce reasonable restrictions to the basic BMJ operators to improve
their results in common application scenarios. These constraints (sometimes also denoted
as “window predicates”) in combination with physical properties of the data streams, i.e.,
being ordered according to a constrained join attribute, constitute data windows on the
input data streams. We propose an algorithm for computing BMJ operators based on
synchronously shifting these data windows over the input data streams, which enables
processing of unbounded data streams requiring only a limited amount of main memory
and storage capacity. In contrast to other windowing techniques known in the literature
we do not assume that the data windows have to fit into main memory and show how
to efficiently employ secondary storage for processing large data windows. Because of the
pipelined execution, this algorithm is suitable for application in modern stream process-
ing query engines. In particular, we have implemented the best-match join operators as
external operators in our StreamGlobe framework.

The BMJ operators for computing best matching pairs of two data sources proposed
in this thesis cover a wide spectrum of applications. BMJ operators are not tied to a
special data model. Hence, to ease presentation we use the relational data model and SQL

4.1 Motivation 139

as a query language in the following. In Section 4.2.2 we will also show how to phrase
best-match joins in XQuery.

Example 4.1.1 A first application scenario is assembling a composite part out of two base
parts partl and part2. Various suppliers provide different models of these two parts. Since
we want to build the “perfect” composite part, we are only interested in those combinations
of the two parts which, e. g., have the lowest cost, minimum overall tolerance, lowest overall
weight, and are provided by high quality providers. A single best composite part probably
cannot be determined, because the cheapest composite part cannot be compared to a more
expensive one with a better tolerance, and so on. In the context of a relational database, the
best matching pairs of subparts could be determined using the following SQL query, which
considers the cost and weight of subparts for computing best matches as an example:

select *

from partl pla, part2 p2a
where not exists (
select *
from partl plb, part2 p2b
where plb.cost + p2b.cost <= pla.cost + p2a.cost and
plb.weight + p2b.weight <= pla.weight + p2a.weight and
(pla.partno <> plb.partno or p2a.partno <> p2b.partno));

Using our syntactical extension of SQL, which will be introduced in Section 4.2.2, this query
can be written much more conveniently as:

select *

from partl pl bestmatch join part2 p2
on (pl.cost + p2.cost) min, (pl.weight 4+ p2.weight) min;

t

Example 4.1.2 As another application scenario consider a recruitment agency. The task
of such an agency might be to find all the best job seekers for each given project advertised
as a post. Whether a job seeker is suitable for a given project is determined upon attributes
such as the grade, professional qualifications, the distance of the job seekers home to the
company, and the experience of the job seeker. Again, comparing all pairs of open projects
and job seekers by means of a single rating function does not deliver satisfying results,
because for a given project a job seeker with a better grade might be of interest as well
as a job seeker with a worse grade, but having more experience. Again, in the relational
context we could compute these best matching pairs by executing the following SQL query
considering the distance!, grade, and experience of job seekers as an example:

'We assume that some user-defined function “dist(x, y)” is defined, which computes the distance between
its two arguments.

140 The Best-Match Join

select *
from project op, person pl
where not exists (
select *
from person p2
where dist(op.location, p2.location) <= dist(op.location, pl.location) and

p2.grade >= pl.grade and
p2.experience >= pl.experience and
pl.personlD <> p2.personlD);

In our extension of SQL this query is succinctly written as:

select *

from project op left outer bestmatch join person p
on (dist(op.location, p.location)) min,
(p.grade) max,
(p.experience) max;

O

Obviously, using multi-dimensional comparisons, the standard SQL queries to deter-
mine all best pairs become very complex. Also, it should be obvious that standard SQL
evaluation techniques for these correlated subquery formulations are extremely inefficient.
Therefore, we propose the above (slight) syntactical extensions of SQL to express our new
best-match join operators in a succinct and convenient syntactical format.

Example 4.1.3 (Running Example) In this chapter, we employ as a running example
the matching of different sensor data streams. Consider a weather service which determines
the probability of rain at certain locations. For this purpose, it may need the temperature
and humidity at these locations. We assume that it is too expensive for the weather service
to establish their own meteorological stations. Various providers make the measurements
of both types of sensors available through the Internet. These sensors are independently
spread over the observed region and moreover it is not necessary for a specific location
to accommodate both types of sensors. The measuring data of all sensors are multiplezed
by StreamGlobe into two data streams; one data stream contains all temperature data and
the other all humidity data. FEvery data object of these data sources contains the sensor
reading, the measurement time, and the (two-dimensional) location of the sensor. To be able
to estimate the probability of rain, the weather agency has to find pairs of temperature and
humidity measuring data, which are both locally and temporally close together. Additionally,
the pairs must satisfy the following requirements to be usable for the estimation:

o The time between the measurement of the temperature and the humidity must not
exceed 10 minutes.

o The distance between the sensors for temperature and humidity must not exceed 100m
in each dimension of the sensor’s coordinates.

4.2 Definition of the Best-Match Join Variants 141

Since the individual sensors most likely deliver their measurements with different update
rates, it is not possible to make a static assignment of sensors to be used as pairs. This
assignment changes with time and data being currently available. 0

4.2 Definition of the Best-Match Join Variants

In this section, we give a formal definition of the family of BMJ operators. For the sake of
a more convenient presentation of the BMJ semantics, we do not consider streaming data
yet, but refer to conventional relational data. To further simplify the notation, we assume
that the inputs of the BMJ operators are two relational tables R and S with the following
schemata:

R:A{lx1, ..., xn,y1,- - val}ls S A{lvi, -y Ya, 21, - Zm)}

With » € R and s € S the BMJ operators generate pairs of tuples (r x s). As mentioned
in the introduction, these pairs shall match best according to special attributes, which are
denoted as join attributes. The attributes yy,...,yq of R and S are used as join attributes.
The attributes x1,...,x, and z, ...z, contain additional data and do not participate in
the computation of best pairs. The terms “join attributes” and “dimensions” are treated
as synonyms in the remainder of this thesis. Of course, all presented techniques are also
applicable to other data models, e.g., XML data.

4.2.1 Comparing Pairs Using Partial Orders

For computing the best matching pairs of tuples all different pairs (r x s) and (' x §')
of (R x S) have to be compared. Thus, for every join attribute y; (i € {1,...,d}) an
order <, has to be defined on the elements of (R x S). (r x s) <,, (' x s’) denotes the
situation that (r x s) matches better than (7' x s’) according to y;. These orders represent
the user-defined criteria. Which order shall be used on a specific join attribute depends on
the intended application. Hence, the orders <, may be provided as “black-boxes”, e. g., as
user-defined functions, which get two pairs of tuples and return true in case of <,,, false
in case of >, and null if the two pairs are incomparable with respect to dimension y;. In
general, <, may also be a partial order, which is relevant in practice, e. g., for comparisons
on set-valued attributes. If the join attributes are of numerical type, an order could, e.g.,
be defined using the minimum distance of the join attributes.

Definition 4.2.1 (minAttrDist) Letr,r’ € R and s, s’ € S. Then, the order <J/nAtrbist
on a join attribute y; is defined as

minAttrDist
<yi

(rxs) < (r' x &) & |ry; — sy < |y — syl

An example for a partial order based on the comparison of set-valued attributes is, for
instance, as follows.

142 The Best-Match Join

Definition 4.2.2 (subset) Let r,7’' € R and s,s" € S. Then, the order g;gbset on a join
attribute y; is defined as

(rx s) <S8 & (Fy N s) C© (ry O sayg).

We distinguish two types of orders on the individual join attributes. Type I orders—
such as minAttrDist—can be reduced to the order of real numbers using a function f; :
dom(y;) x dom(y;) — R. With this, an order <,, can be written as

(rxs) <, (rxs)e filry,sy) < fi(r'y, s .y).

For instance, minAttrDist is defined by f;(a,b) := |a — b|. Type II orders are arbitrary
partial orders, e. g., the order subset. The methods presented in this chapter are applicable
to both types. In real-world applications mainly orders of the first type are used and hence
we focus on this type in the remainder of this work.

Using the individual orders on each join attribute, a single partial order <,, .. on the
elements of (R x S) can be constructed as follows.

Definition 4.2.3 (Preference Order) Let <,, be a (partial) order on join attribute y;
1<i<d), r,r"eR, ands,s' € S. Then, an order <, ., representing user preferences
on all dimensions is defined as

d

(rx 8) <y .y (FFxs)e (rxs)<, (xs) An--A
(rxs) <, (rxs) A(rxs)# @ xs).

The inequality predicate in the last clause of this partial order prevents a pair from being
compared to itself. (r x s) <y, ., (' x s') denotes the situation that the tuples r and s
match better than 7’ and s according to all join attributes; this situation is called (r x s)
dominates (r' x s'). Since multiple dimensions are involved in the comparison, two pairs
may naturally be incomparable.

4.2.2 The Best-Match Join Operators

We now define the family of BMJ operators on the basis of partial orders for comparing
elements of (R x S) defined in Definition 4.2.3.

4.2.2.1 Definition of the Best-Match Join Operators

The task of the BMJ operator is to find all best matching elements of (R x S) according
to a given partial order <,, . That is, all elements of (R x) have to be found which
are not dominated by any other pair in (R x S).

Definition 4.2.4 (Best-Match Join) Let <, .. be a partial order reflecting users pref-
erence as defined in Definition 4.2.8, r,r' € R, and s,s' € S. Then, the BMJ of R and S,
symbolized by R, .S, is defined as

Ry S ={(rxs)e(RxS)|-3(r" xs)e(RxS):(rxs) <y, 4 (rxs}

4.2 Definition of the Best-Match Join Variants 143

Since <, .., is a partial order, there may be several minima in (R x S) which are all
incomparable against each other. Hence, the result generally consists of more than one
pair. The BMJ computes all these minimal pairs. An alternative notation of the BMJ
operator using an arbitrary (user-defined) partial order < is K.

The BMJ-operator is not associative, i.e.,
(RN, SYR T # RRE, (S T).

It is important to note that the BMJ operator is different from the matching problem
known in the context of graph theory. This problem is defined as finding a maximal subset
of the edges—representing preferences for pairs of nodes—of a graph such that no edges of
this subset share a single node as start and end point, respectively. In contrast to that, our
BMJ operator computes the overall best matching pairs of objects, none of which being
dominated by any other pair.

Of particular practical relevance are the outer-best-match join variants. The most
interesting variant is the left-outer-BMJ. It does not only compute the overall best matching
pairs, but produces all best matching pairs for each individual tuple of the left input.

Definition 4.2.5 (Left Outer Best-Match Join) Let <,, ., be a partial order reflect-
ing users preference as defined in Definition 4.2.8, r € R, and s,s' € S. Then, the left-
outer-BMJ of R and S, symbolized by R X, .. S, is defined as

R¥y S ={(rxs)e(RxS)|=3s' €S5:(rxs) =<y, 4 (rxsh

This left-outer-BMJ operator determines for every r € R the best-matching partners in S.
Of course, the right-outer-BMJ is defined analogously. A last variant of the basic BMJ is
the full-outer-BMJ. It computes for each left and right input tuple its best pairs.

Definition 4.2.6 (Full Outer Best-Match Join) Let <,, .. be a partial order reflect-
ing users preference as defined in Definition 4.2.3, r,rv' € R, and s,s" € S. Then, the
full-outer-BMJ of R and S, symbolized by R X, .S, is defined as

RX,, . S:= {(r xs) € (RxS) ’ (-3 €S (rxs) <y (rxs)V
(=3 € R: (1 x 8) <y, 4y (r X s))}

Let us show by means of the following two abstract examples how the BMJ and the
left-outer-BMJ variants work.

144 The Best-Match Join

hn n

A
X Q]
L9a 9a
O o
h d h d

Y2 Y2
(a) BMJ (b) left-outer-BMJ

x
os]

Figure 4.1: Examples of Best-Match Join Computations

Example 4.2.7 Figure 4.1 (a) depicts the result of the BMJ R X, . S. It shows two
datasets of two-dimensional points, which are symbolized by crosses (representing R) and
circles (representing S). The two dimensions are used as join attributes with minAttrDist
as order on each dimension. The three pairs marked by boxes in Figure 4.1 (a) are the
result of the BMJ R, ,, S. These pairs are incomparable against each other, because the
join pair (A, a) is better than (A, ¢) with respect to join attribute yo and (A, c) is better than
(A, a) with respect to join attribute y,. Similar thoughts hold for (A,b). All other pairs
are dominated by one of these three pairs, e.g., (B,d) is dominated by (A, a), because the
distances of the points of both pairs with respect to join attribute vy, are equal, but (A, a)
is better than (B,d) with respect to join attribute yo. This result can be achieved by, for
instance, executing the SQL query:

select *

from Rr,Ss
where not exists (
select *
from R, S
where abs(r'.yy — s'.y1) <= abs(r.y; — s.y;) and
abs(r'.ys — s'.ys) <= abs(r.ys — s.y) and
(ry1 <> r'.yp or r.ys <> 1r'ys or s.y; <> §.y; or s.ys <> 5'.y2));

O

Example 4.2.8 Figure 4.1 (b) shows the result of the left-outer-BMJ R X, ,, S on the
same data. For the first tuple A of R the same conditions hold as before. Hence, the same
pairs (A,a), (A,c), and (A,b) are generated. Next, the data point B is examined. The
pair (B,d) dominates all other pairs with B as the first point and thus it is contained in
the result. There are no more tuples in R, so the result of the left-outer-BMJ contains
the marked pairs. Analogously to the previous example, these results can, for instance, be
computed using the SQL query:

4.2 Definition of the Best-Match Join Variants 145

select *
from Rasr, S ass
where not exists (
select *
from S as ¢

where abs(r.ay — s'.y1) <= abs(r.y; — s.y;) and
abs(r.ys — s'.ys) <= abs(r.ys — s.y2) and
syp <> sy and s.yp <> §.ya);

4.2.2.2 Query Language Integration

In this section, we propose some extensions to common query languages for being able to
conveniently specify BMJ computations.

In order to specify BMJ operators in SQL queries, we propose to extend SQL’s from-
clause as follows:

select

from R [(left | right | full) outer | bestmatch join S
on orderl, order2, ...

where

orderl, order?, ... denote the user-defined comparison functions to be used as an order on
the particular join attributes which are then composed to obtain the entire partial order for
comparing pairs. There are two possibilities for specifying these individual orders. Type I
orders using functions f; that can be formulated in SQL are conveniently expressed as:

(fi(R.y;, S.y;)) [min | max]
This specification is translated into an order
(rxs) <, (rxs)s filry,sy) < filr"y, sy
in the case of “min” and in
(rxs) <, (rxs) e filry,sy) > filr'y,s.y)
in the case of “max”.

Example 4.2.9 The order minAttrDist on an attribute y, is specified by:

(abs(R.yy — S.y1)) min

146 The Best-Match Join

Type I orders using functions that cannot be directly formulated in SQL and Type II
orders, e.g., subset, are handled similarly by specifying the join attributes and the name
of the user-defined comparison function:

(R.y;, S.y;) function

The difference of the variants is as follows: In the former, the computational logic is
completely specified in SQL inside the parenthesis. The comparison operation, i.e., > or
<, is specified using the min and max keyword, respectively. In the latter, only the join
attributes are specified in the parenthesis. The whole computation and comparison of these
join attributes is done inside the code of the comparison function.

Example 4.2.10 A best-match join RX,, ,, S using minAttrDist on y, and subset on y,
(y2 being a set-valued attribute) is written as:

select
from R bestmatch join S
on (abs(R.y; — S.y1)) min, (R.ys, S.y») subset;

0

Note that it has to be distinguished between the number of parameters of an order in
our SQL syntax and the number of parameters of the user-defined comparison functions. In
our SQL syntax, an order is specified by means of two (or at least one) join attribute. The
implemented comparison functions always assume four parameters, where two at a time
constitute one pair. For instance, these comparison functions could have the following
signature in Java:

public int compareTo(Object r, Object s, Object r_prime, Object s_prime);

Unused parameters either refer to the same data object, e. g., in the case of a left-outer-
BMJ “r = r_prime”, or are null.

We propose a similar syntax to that of our SQL extensions for specifying BMJ compu-
tations in XQuery as follows.

for $r in w5
for $s in mg
where $r [(left | right | full) outer | bestmatch join $s
on orderl, order2, ...
return ...

As before, orderl, order2, ... denote the user-defined comparison functions to be used as
an order on the particular join attributes which are then composed to obtain the entire
partial order for comparing pairs.

4.2 Definition of the Best-Match Join Variants 147

Example 4.2.11 Consider again the example given in Example 4.2.10. Here, let $r and
$s be the left and right inputs defined by the paths wr and s, respectively, on which the
best-match join shall be computed. Further, y, shall be reachable by the path $r/m, in
R and by $s/m,, in S, respectively. Analogously, y is reachable by the paths $r/m,, and
$s/m , respectively. Then, RN, ,, S using minAttrDist on y; and subset on ys is phrased

Y2’
i XQuery using our syntactical extensions as follows:

for $r in 75
for $s in 7y
where $r bestmatch join $s
on (fn:abs($r/m,, - $s/m,)) min, ($r/7,,, $s/7,,) subset
return ...

Note that the paths $r/m,,, $s/m, , $r/m,,, and $s/m,, refer to the pair of elements currently
being processed in the two nested for-loops. This pair qualifies, if, for instance, the distance
in the first dimension, i. ., fn:abs($r/m,, - $s/7,), is minimal, which is denoted by the
min keyword. The computation of this minimum is hidden inside the bestmatch join
operator. Also note that the comparison function subset has to be defined in XQuery or
as an external function as described above in the case of SQL. O

4.2.2.3 Basic Evaluation Strategy

Obviously, there is a close relationship between the BMJ operator and the skyline operator
introduced in [BKSO01]. The skyline of a single set of points (objects) is defined as those
points which are not dominated by any other points of the set. Using the above defined
partial order <, .., the BMJ can be ascribed to the computation of a skyline of the set
(R x S) as

Ry, 4y S=skylines, (RxS).

,,,,,

Therefore, a first approach for computing the BMJ consists of first materializing the Carte-
sian product (R x S) and then computing the skyline. Theoretically, by changing the
original order <, ., to

/

(T X S) _<y17---=yd

(rxs)ye (r=r)N(rxs) <y ., (" *xs))
the left-outer-BMJ can also be ascribed to the skyline computation as

RX, ,.S= sk:yline%l
Similarly, the other outer-variants can be handled.

In practice, not a single skyline is computed to get the results of the outer-variants,
but for each left (or right) tuple a skyline is computed. Changing the partial order as
described above exactly leads to this behavior. However, the approach of adapting the

partial order for computing the outer-variants is not relevant in practice, since it has a

148 The Best-Match Join

Figure 4.2: Nested-Loops Left-Outer-BMJ
Input : R, S, partial order <, .,
Output: R X, ., S

—Yd

1 foreach r € R do
2 foreach s € S do

3 dominated <« false;

4 foreach s’ € S do

5 if (r x s') <y,,..y. (r x s) then dominated « true;
6 endforeach

7 if ~dominated then Output (r X s);

8 endforeach

9 endforeach

higher complexity than, e.g., the simple nested-loops approach for computing the left-
outer-BMJ shown in Figure 4.22. The algorithms of the other outer-BMJ variants can be
constructed analogously. Obviously, ascribing the computation of BMJ operators to the
computation of a skyline is rather inefficient because of the Cartesian product to combine
the two argument sets and cannot be applied on streaming data, as it is impossible to
materialize the Cartesian product.

4.2.3 Constrained Best-Match Joins

Figure 4.1 shows that “extreme pairs” such as (A4,b) may be contained in the result of
best matching pairs. This pair matches very well in one dimension, i.e., y5, but poorly in
the other dimension, i.e., y;. This behavior is often not desirable in practice, because a
single well-matching dimension might not balance the poor matching in other dimensions.
Therefore, we propose constraints such that only pairs (r x s) € (R x S) are considered
which do not exceed an individual maximum distance in each constrained dimension. This
maximum distance on a dimension y;, which is required for a pair to be considered as a
part of the result of a constrained BMJ, is denoted as ¢;. The distance of two tuples r
and s in dimension y; is symbolized by d;(r, s). The situation that d;(r,s) < ¢; for every
i €{l,...,d} is denoted as d(r,s) < € (e symbolizes the vector of the individual ¢;). So,
only those (r x s) € (R x S) have to be considered as candidates for best matching pairs,
for which d(r, s) < e holds. With this, the constrained BMJ operator, denoted as X
is formally defined as follows.

yeeYd)

Definition 4.2.12 (Constrained Best-Match Join) Let <,, ., be a partial order re-
flecting users preference as defined in Definition 4.2.3, € a vector of constraints, d; the
distance metrics for each dimension, r,r’" € R, and s,s" € S. Then, the constrained BMJ

2Tt can easily be seen that the first approach has a complexity of O(n*), whereas the algorithm in
Figure 4.2 has a complexity of O(n?).

4.2 Definition of the Best-Match Join Variants 149

of R and S, symbolized by R, S, is defined as

R S:={(rxs)e(RxS8)|d(r,s)<ern-3(r xs)e(RxS):
(d(r',s') < en(r' x ") <ypa (rxs))}.

Analogously, the constrained left-outer-BMJ operator 37 = is formalized in the
following definition.

Definition 4.2.13 (Constrained Left Outer Best-Match Join) Let <, ., be a par-
tial order reflecting users preference as defined in Definition 4.2.3, € a vector of constraints,

d; the distance metrics for each dimension, r € R, and s,s' € S. Then, the constrained
BMJ of R and S, symbolized by R, S, is defined as

RW . 5= {(r X s) € (R xS) ‘ d(r,s) <en-3s' €S
(d(r,s) < e (rxs) <y .y (rx5)}.

Of course, the constrained right-outer-BMJ and the constrained full-outer-BMJ are
defined similarly. Constrained BMJ operators are expressed in SQL/XQuery using our new
notation for the BMJ operators. To phrase a constrained BMJ, the maximum distance
constraints are simply written after the corresponding comparison functions in the on-
clause of the BMJ as follows

select

from R [(left | right | full) outer | bestmatch join S
on orderl ey, order? s, . ..

where

As before, the join attributes and the names of the user-defined comparison functions
are specified after the on-keyword for each dimension. Additionally, for every join attribute
the maximum distance is given by ¢;. Constraints are handled analogously in our extensions
of the XQuery syntax.

The approach of computing the basic BMJ operators by ascribing them to the compu-
tation of one (or more) skyline(s) applies as well to the constrained BMJ operators. For
instance, in the case of the constrained BMJ operator it has to be done as follows: Instead
of using R x S as an intermediate relation, all pairs

{(rxs)e(RxS)|d(r,s)<e}

are materialized. On this temporary relation an existing skyline algorithm can be applied
as explained in Section 4.2.2 to determine the result of the constrained BMJ. The other
variants of the constrained BMJ operator can be computed analogously by restricting the
temporary relation to those pairs, which do not exceed the distance limits.

Example 4.2.14 (Running Example) Using this definition of constrained best-match
joins, the problem of the weather agency introduced in Example 4.1.83 can be solved on

150 The Best-Match Join

materialized data. The temperature and humidity data, respectively, shall be contained in
the relations Temp and Hum, respectively. Fach relation consists of the attributes t, x, y,
and v storing the time of measurement, the x- and y-coordinates of the sensor, and the
sensor reading v. The attributest, x, andy are used as join attributes. For comparing pairs
of sensor data a partial order <., is constructed using minAttrDist on each dimension as
an order. The given restrictions can be employed by setting ¢, = 10min, €, = ¢, = 100m.
Then, the expected pairs of sensor data can be obtained by evaluating the query

Temp K¢ Hum,

t,x,y

which can be written in our SQL extension as (we refrain from considering the correct units
of the attributes):

select *

from Temp T constrained left outer bestmatch join Hum H
on (abs(T.t - H.t)) min 10,
(abs(T.x - H.x)) min 100,
(abs(T.y - H.y)) min 100;

The result contains pairs of sensor data consisting of the best matching humidity mea-
surements for each temperature sensor. If for a certain temperature sensor mo humidity
measurement satisfying the specified requirements is available, no pair having this partic-
ular sensor as a join partner will be contained in the result. To compute the results, the
algorithm shown in Figure 4.2 can be employed. It has to be extended in a straightforward
way to compare only those pairs satisfying the given maximum distance constraints.

Of course, the right-outer-BM.J could be executed as well to get for each humidity sensor
the best matching temperatures. O

4.3 Evaluating Best-Match Joins on Data Streams

Naturally, Internet data sources provide their data as data streams. These data streams
are either infinite or very huge. In both cases it is not feasible to buffer them locally
and process the materialized data. Thus, methods for evaluating the constrained BMJ
operators on streaming data are needed.

As already described in Section 3.8.2, a data stream R (or, S) is considered to be an
ordered sequence of data objects (rq,72,...). The data objects can only be read sequen-
tially, i.e., they are read in the sequence rq,r,... If r; has been read, the data objects
r; with j <4 cannot be accessed anymore unless they are buffered locally. The problems
arising from computing blocking operators, like the BMJ operators, on such data streams
are discussed in the next section.

4.3.1 Best-Match Joins and Data Streams

To clarify the problems of evaluating BMJ operators on data streams we first consider the
standard join operator. Generally, avoiding a blocking and enabling a pipelined execution is

4.3 Evaluating Best-Match Joins on Data Streams 151

achieved by utilizing suitable join algorithms, e.g., the double pipelined hash join [WA91].
That is, for every read input data object the join partners can be computed (on the basis
of the inputs known up to that time) and delivered. To be able to compute the correct
result, i.e., no join partners are missed, all consumed inputs have to be buffered. Hence,
working on infinite data streams, a pipelined execution is possible, but the size of the state
of a join operator grows beyond limits.

In contrast, the BMJ operators are in their basic form inherently blocking and hence
not applicable on infinite data streams. This is due to the fact that temporary results may
be invalidated by later arriving, better matching pairs. In the extreme, the best matching
pairs of two (finite) data streams might be the last two data objects of the data streams.
Therefore, in contrast to standard join operators, correct results cannot be delivered before
the entire streams have been processed. If the BMJ operators are forced to deliver any
results before, these results are approximative intermediate results. That is, they are correct
with respect to the data processed up to that time, but some pairs might get dominated by
newer (better matching) pairs and hence would be invalidated. Thus, dealing with infinite
data streams, only approximative results can be continuously propagated. However, these
approximative results are the best we can expect, since a “final” result does not exist. Like
for the conventional join, the state of the BMJ operators in this case has an unlimited size,
because all input data has to be buffered to be able to consider all pairs. The challenge in
developing a BMJ algorithm that scales to infinite data streams is thus to deliver results
as early as possible and to get by with a state of limited size.

We have introduced the constrained BMJ operators to enhance the quality of results
by discarding non-interesting extreme pairs. In the worst case, these maximum distance
constraints for pairs do neither bound the size of the state of the constrained BMJ operators,
nor enable a pipelined execution. A best matching pair still might consist of data objects
being delivered at the beginning of one and at the end of the other data stream. Again,
the entire streams have to be buffered and processed to compute precise results. However,
many data streams, e.g., sensor data, stock quotes, etc., do not deliver their data in a
random fashion. Practically all real data streams consist of data objects which carry some
kind of ordering information in special attributes, e.g., a time-stamp, sequence numbers,
location neighborhood, etc. The data stream will naturally deliver its data objects sorted
according to this attribute. In the remainder we focus on the data stream being strictly
sorted in ascending order with respect to this attribute. We show techniques for relaxing
this premise in Section 4.3.3. We refer to such an ordering of the data stream as a physical
property and denote the special attribute as y; in the remainder. Furthermore, we assume
that many data sources are somewhat “intelligent”, so that they can be told to deliver
their data streams sorted according to a certain attribute y;. In practice, y; is one of the
constrained join attributes of a BMJ operation. Now, we can apply the constraint on 1
as a window predicate to restrict the required input data to a small (contiguous) fraction
of the data stream. Thus, the size of the state of the BMJ operator has an upper bound:
For any data object » € R only those data objects s € S have to be buffered which are
contained in the contiguous interval r.y; — ¢ < s.y; < r.y; + € of the data stream S
and vice versa (note that R and S are sorted according to y;). These contiguous intervals

152 The Best-Match Join

correspond to sliding windows of height €; on the data streams and restrict the number of
data objects that have to be buffered for computation.

In case of the practically more relevant outer-BMJ operators the combination of con-
straints and physical properties even enables a pipelined execution. Consider the left-outer-
BMJ R X S as an example. For any data object r € R we are able to determine
whether all interesting join partners s € S have been processed yet. This is the case, if
all data objects s of the relevant contiguous interval of S have been read. As soon as this
holds, the precise results for this r can be delivered without processing the remainder of the
streams® and therefore a pipelined execution is achieved. This applies analogously for all
outer-BMJ operators. The constrained BMJ is more complex, since it not only has to find
all best matches for a single join partner, but the overall best matches. Thus, with respect
to the pipelining behavior it cannot benefit from the combination of physical properties and
constraints. However, approximative intermediate results, which converge to the precise
result in case of finite data streams, can be delivered using size-limited sliding windows.

4.3.2 The Window-Based Approach

In the previous section, we have shown that it is possible to compute the constrained BMJ
operators in a non-blocking fashion on data streams being sorted according to a constrained
join attribute. The constraints define a multi-dimensional window of “interesting data” on
the domain of a data stream. The idea of our algorithms is to “slide” this window along
the sorted dimension over the data streams.

Our MatWin algorithm works as follows. We focus on the constrained left-outer-BM.J
as an example in the following. Of course, the other variants (i.e., the constrained BMJ,
right-outer-BMJ, and full-outer-BMJ) may be employed analogously. We further assume
that both data streams are sorted according to yi, that all distances of pairs d;(r, s) are
normalized to the interval [0;1], and therewith all ¢; are within the interval]0;1]. For
the input data streams R and S, two data windows Wy and Wy are maintained and
synchronously shifted over the data streams. Because each data stream is sorted according
to y1, it can be assured that all data objects belonging to a certain interval with respect
to y1 have been read from the data streams. The upper and lower bounds of this interval
are denoted by maz RS and minRS, respectively. maxr RS —minRS is denominated as the
height of the data windows. min,, (Wg) denotes the minimal y;-value of all data objects
contained in Wg. The data windows are maintained such that their height equals e;.
Hence, the contents of the data windows given minRS and maxRS are

Wg={r; € R| minRS <r;.y; < maxRS},
Ws={s; € S| minRS < s;.y1 < mazrRS}.

During the computation the data windows are moved along the dimension y; by increasing
minRS and maxRS. That is, all data objects r; € Wg with r;.y; < minRS’ are deleted

30f course, we continue to process the remainder of the stream to compute the left-outer-BMJ for all
subsequent r’, but this data is not relevant for r anymore.

4.3 Evaluating Best-Match Joins on Data Streams 153

Y1 R Y1 S
? X
o
A)

” x¢ S ¢} O

61 X Y1,Y2 @)

T d Wr 5 W ©
Y2 Y2

Figure 4.3: Constrained Left-Outer-BMJ: Initial Computation Step

from Wg and new data objects r; € R are read and stored in Wy as long as r}.y; < mazRS’,
with minRS’ and max RS’ being the new lower and upper bound of the data windows.
Analogously, Wy is maintained. Thus, it can be assured that for a specific r; € R all
needed join partners s; € S are contained in Wg at the same time: r; enters Wx, when
ri.y1 = maxRS. At this time Wy contains all s; € S, for which

Ty — Sy < €

holds. Analogously, r; is deleted from Wy, if r;.y; < minRS. Before that, Wy contained
all s; € S with
Sjy1 — Ti-y1 < €1

Hence, all interesting join partners are contained in Wy and Wy while the data windows
are shifted over the data streams.

The number of data objects contained in a data window is determined by e; and the
distribution of the values of join attribute y;. This number may be potentially unlimited,
but in real application domains the required size of the data windows will be limited.
However, the maximum size of the data windows might be large and thus we might not be
able to keep the data windows completely in main memory. All windowing techniques for
joins described in the literature—to the best of our knowledge—limit the size of the data
window to the size of the available main memory and discard the rest of the data objects.
Hence, only approximative results can be computed, because interesting combinations of
data objects might not be considered. In contrast to that, our approach materializes the
data windows on secondary storage in fixed sized pages and employs efficient techniques for
updating and processing these materialized data windows. Therefore, correct and complete
results can be efficiently computed independently of the size of available main memory
and the size of the data windows. We present efficient materialization and I/O-scheduling
strategies for computing the constrained BMJ operators on these materialized data windows
in Section 4.3.4.

Figures 4.3 to 4.5 show in detail how the MatWin algorithm computes the left-outer-
BMJ R X¢ S. In these figures two join attributes y; and y, are used. The data streams

Y1,92
are sorted according to y; and therefore the data objects are delivered from the bottom up.

154 The Best-Match Join

Y1 R Y S
N >< N
,,,,,,,,,,,,,,,, RS> - AT
X
(@) (@)
€1 X G
x W, W .

A [e) - 1
—Y2 =12

Figure 4.4: Constrained Left-Outer-BMJ: Moving Data Windows

propagate results and discard

Figure 4.3 shows the initial computation step. The initial data windows Wx and Wy are
read (with minRS = 0, maxRS = €1), materialized, and the left-outer-BMJ is computed
on all pairs of Wxr x Wy using the nested-loops algorithm shown in Figure 4.2. Not all
needed pairs are processed at this time, so the computed best pairs are held in memory
as an intermediate result O. Next, the data windows have to be moved. In a first step,
all data objects r; € Wg are removed, for which r;.y; = minRS holds. To calculate the
new bounds of the data windows the two distances d and d’ have to be considered. d is
the distance with regard to y; of the first data object outside the current data window
to maxRS. d' is defined as d' = min,, (Wg) — minRS. With this, minRS and maxRS
are increased by min(d,d') and the data windows are moved as described above. The
new situation is depicted in Figure 4.4. The remaining parts of the data windows are
denoted by W}, and W and the newly read parts are marked as AWpg and AWs. Since
all discarded data objects of the data window of R have been completely processed, all
best matching pairs they are involved in can be propagated to the output data stream and
deleted from O. The remaining current best pairs have to be updated with the pairs of
(WrUAWR) x (W&U AWg). This is done by comparing the current best pairs O to pairs
of the new data windows using <,, ... If a pair in O is dominated by a new pair, this
new pair is inserted into O and the dominated pair is deleted. (W UAWER) x (WiUAWS)
can be rewritten as

(W x W5 U (Wh x AWg) U (AWg x (W5 U AWs)).

Obviously, not all pairs of the new data windows have to be compared with O, because
the pairs of W}, x W{ have already been processed in the previous step. Hence, only the
pairs of W}, x AWg and AWg x (W{UAWjg) have to be compared with all pairs contained
in O. This situation is depicted in Figure 4.5. The movement of the data windows, the
propagation of final results, and updating O continues until no more data can be read from
the data streams.

[t might seem obvious that the BMJ operators—being theoretically only an application
of the skyline operation—could be computed by more sophisticated algorithms proposed in

4.3 Evaluating Best-Match Joins on Data Streams 155

Y1 R Y S
X

R S O

,,,,,,,,,,,,,,,, AW D~ Ut AW
X

€ « o) . o)

X W Wy o
O
Y2 Yo

Figure 4.5: Constrained Left-Outer-BMJ: Updating Current Best Pairs

the literature, e. g., using the algorithms described in [BKS01, TEO01, KRR02, CGGLO03].
But, the BMJ operators are intrinsically nested-loops operations because of having to
compare pairs of data objects. While generating all pairs of data objects of both streams,
the domination of the new pairs and the current best pairs can easily be checked as described
above. Further, Kossmann et. al. [BKS01] have shown the nested-loops algorithm to be a
good choice, since the number of best matching pairs is supposed to be small. All other
algorithms are not applicable in the context of data streams: First, they work on indices of
the entire data set, which cannot be computed on the data stream. Second, none of these
algorithms is able to update an existing intermediate result by means of new data as it is
needed here.

The details of the MatWin algorithm are shown in Figure 4.6. Data objects are read
from the stream and materialized on secondary storage by the method MatWindows(...)
(line 7). Its details are presented in Section 4.3.4.3. The method Update(...) used in lines
9, 11, and 12 updates the current best pairs of the left-outer-BMJ by the given parts of
the data windows using a nested-loops algorithm as described in Section 4.2.2.

Of course, instead of the constrained left-outer-BMJ the other constrained BMJ oper-
ators can be computed by this method as well. However, in the case of the constrained
BMJ, the propagated pairs are approximative as described in the previous section.

4.3.3 Exploiting Fuzzy Orders on Data Streams

The premise of the data streams being ordered is needed for the MatWin algorithm to be
able to determine whether for a given upper bound of the data windows all necessary data
objects have been read. However, some data sources may not be able to produce a strictly
ordered data stream but only a “somewhat ordered” data stream. Consider a sensor network
managed by our StreamGlobe DSMS, which multiplexes data from individual sensors into
a single stream, e.g., the sensor data of individual temperature and humidity sensors of
our running example. It might not be able to deliver all sensor readings ordered strictly
according to the time of measurement, because the connections of the individual sensors
have variable latencies. Hence, on the whole the timestamps of the sensor readings increase,
but some data objects may be slightly out of order. But, StreamGlobe might be able to

156

The Best-Match Join

Figure 4.6: MatWin Algorithm

Input : data streams R and S €1,..., €3 <y1... .0,
Output: output data stream of R Nyl S

1 O « (); oldMaxRS « 0 ;

2 W« 0; Wg <« 0 ;

3 r <« R.next(); s « S.next() ;
4 minRS — max(0, r.y; — €1) ;
5 maxRS «— minRS + ¢; ;

6 while (r # null) vV (Wg # 0) do

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

{Wg, Wg} < MatWindows(R, S, r, s, minRS, maxRS);
if oldMaxRS = 0 then

Update(O, Wg, W, <y, v.);
else

endif
oldMaxRS « maxRS ;
Wrp.delete({r € Wg | r'.y; = minRS}) ;
if (r =null) A (Wg = 0) then
break ;

else if (r = null) A (Wg # () then
minRS «— min,, (Wg) ;
else if (r # null) A (Wg # () then
minRS «— min(min,, (Wg), ry; —€) ;
else
minRS «— r.y; — €1 ;
oldMaxRS « 0;
endif

maxRS « minRS + €;
Wg.delete({s" € Wg | s".y; < minRS});
output and delete {(r' x s') € O | r'.y; < minRS};

29 endwhile
30 output {(r x s) € O};

assure that, e.g., all measurements up to ¢ — 5s have been delivered at time t. We denote
data streams satisfying such relaxed ordering properties as fuzzy ordered data streams. The
MatWin algorithm can easily be adapted to work with such relaxed physical properties,
because it still can be determined if all needed data has been read from a data stream.

dynamic constraints.

We distinguish two types of constraints for fuzzy ordered data streams:
A static constraint is a fixed property of a data stream known in

static and

4.3 Evaluating Best-Match Joins on Data Streams 157

advance. For instance, static constraints are:

e Value constraint. Let r; be the last read data object of a data stream R and let
max,, = max{r;.y; | 1 < j <i}. Then, this constraint assures that all data objects
r’ with .y, < max,, — c have been delivered up to the current point of time, with ¢
being a characteristic constant of a given data stream.

¢ Read-ahead constraint. The read-ahead constraint defines the number ¢ of data
objects which have to be read from the data stream until it can be determined that
all needed data objects have been read yet. For instance, if we want to read all data
objects r with r.y; < maxRS, we have to read until ¢ consecutive data objects with
y1-values greater than max RS have been encountered.

In addition, dynamic constraints can be delivered by the data source in the data stream as
metadata interspersed with the data objects. An example for such a dynamic constraint
is the concept of punctuations of data streams proposed by Tucker et. al. [TMSF03]. A
punctuation is a predicate, which is delivered in the data stream like a normal data object.
It means that after a punctuation has been read, no data objects will be contained in the
data stream which satisfy that predicate. For instance, after the punctuation “y; < ¢”
has been read, no more data objects with y;-values less than or equal to ¢ are delivered.
Punctuations of a data stream can be arbitrary predicates on any attributes. For our
purpose, punctuations concerning the join attribute y; in the form of “y; < ¢” are useful.

4.3.4 1/0-Scheduling Using the e-Grid-Order

In our approach, we buffer data windows that do not fit into main memory on secondary
storage. For an efficient computation of the constrained BMJs on the materialized data
windows under main memory limitations we adapt the Epsilon Grid Order developed by
Bohm et. al. [BKO1]. It has been designed to efficiently compute the similarity join

{lpxq)e (PxQ)|l|lp—ql <D}

of two data sets P and () given a maximum distance D of the pairs of points. To suit our
needs, we extend this order to consider a maximum distance ¢; on each dimension instead
of using a single distance D. We denote our extended version of the Epsilon Grid Order
as €-Grid-Order. Further, the scheduling algorithms of [BK01] exploiting the Epsilon Grid
Order are restricted to the similarity self-join; we adapted them to work on two inputs
instead of one. Note that the €-Grid-Order is used as an indexing technique for buffering
the data windows on secondary storage. The order in which data objects arrive on the
data stream is independent from the €-Grid-Order, which only affects the materialized
data windows.

4.3.4.1 Definition and Properties of the €-Grid-Order

In this section, we define the €-Grid-Order and show an important property for utilizing it
in the context of constrained BMJ computations. For presentation purposes, we define the

158 The Best-Match Join

€-Grid-Order, symbolized by <., and present its properties using d-dimensional vectors p
and ¢. The dimensions of these vectors correspond to the join attributes of a BMJ.

Definition 4.3.1 (€-Grid-Order) Let p and q be d-dimensional vectors. The predicate
p <c q s true if there exists a dimension i such that the following condition holds:

(L) <2]) ~ (LE=15) o=

The i-th dimension of the vectors p and q are denoted by p; and g;.

Bohm et. al. show that the original Epsilon Grid Order is an irreflexive order. The
proofs are similar for the €-Grid-Order and are therefore not carried out here. The €-Grid-
Order divides the d-dimensional space into a grid. The edges of every cell of this grid have
a length of ¢; in the dimension i. The data objects contained in each cell are equal with
regard to <..

The following properties of the €-Grid-Order enable an efficient computation of con-
strained BMJ operators. Let p,p’, ¢ be d-dimensional vectors. Given a fixed p, the follow-
ing condition holds: If ¢ <. p — (€1, ..., €4), there exists a dimension ¢ € {1,...,d} with
pi — q; > €; and therewith

q & [p1—e] X X [pa— el

Additionally, for all p" with p <. p’ there exists a dimension j € {1,...,d} with p;—q; > ¢;
and therewith

q¢ & [ph —eal x - x[pg—ed.

Hence, a point ¢ cannot be a join partner of p if ¢ <. p — (€1, ...,€4). Analogously, it can
be derived that a point ¢ cannot be a join partner of p if p + (€1,...,€q4) <c q.

These two properties can be utilized for an efficient computation of R X S (and
the other variants) as follows. We assume that S is sorted on the join attributes according

to the €-Grid-Order. We define
r—€:=[rys — €1, T Yd — €dy T 215 oy T 2]

and analogously r + €. For a specific r € R only those s € S are interesting join partners
which are contained in the interval

[r—e€, r+¢€

of the sequence of S sorted according to <.. Hence, not all pairs {(r x s) | s € S} have to
be examined for computing the best matching pairs.

4.3 Evaluating Best-Match Joins on Data Streams 159

)
5 D
Page 5 T
56 § T A @
| | N\ b
deg e oo ‘ _
L e — ns T
3¢ ‘ ‘ ‘
’ Page 3 9 < \ \
20, ; N | | & e
Page 24) ® |\
€9 — o S
iPage 1 1 2 3 4 5
€3 2eg 3e3 3 P}%
Figure 4.7: Pages in the Data Space Figure 4.8: Pairs of Pages to be Processed

4.3.4.2 1/0-Scheduling

As mentioned before, the current data windows Wx and Wy are stored in pages on sec-
ondary storage by our MatWin algorithm. The pages of Wx and Wy are denoted as Pj,
and Pg, respectively, where i and j range between 1 and the maximum number of pages
of Wgr and Ws. To be able to exploit the benefits of the €-Grid-Order these data windows
have to be stored sorted according to <.. That is, every page contains a sorted sequence of
data objects. Further, the last data object of a page P} has to be less than or equal to the
first data object of any other page P}, with i < i’ (analogously for the pages of Ws). Two
approaches for storing the data objects in that manner are presented in the next section.
The pages of Wx and Wy have to be loaded into main memory to perform the computation
of the constrained BMJ operators. For that purpose a buffer for m pages shall be available.
The task of the scheduling algorithm is to load the pages of Wx and Wg into main memory
during the computation of the constrained BMJ operators such that the number of disk
accesses is minimized.

Figure 4.7 depicts an example of an assignment of data objects to pages with respect
to the join attributes y, and y3. The join attribute y; is omitted, because the height of
the data windows is equal to €. Hence, with regard to y; the data objects of the data
windows are all equal or at most divided into two parts—if minRS and maz RS are not a
multiple of e;—according to <.. Therefore, to be able to present the assignment of data
objects to pages in more detail we only show the join dimensions y, and y3. Note that in the
current situation of the data streams being sorted according to y; it would not be necessary
to include y; in the €-Grid-Order definition, because the sliding windows of the MatWin
algorithm ensure that the constraints on y; are satisfied. To exploit physical properties
that do not impose that the data streams are strictly sorted according to y; (as shown
in Section 4.3.3), y; has to be included in the €-Grid-Order definition. For presentation
purposes we assume in the remainder that the layout of pages of both data windows equals

160 The Best-Match Join

7 ik RN
-
6 rd 6 T
g ? o g * e
ke e P eeeee
- [
2 P 2 O
1 \ 1 NN
- ® ® - ® ®
1 2 3 4 5 6 7 1 2 3 4 5 6 7
P Py
Figure 4.9: Gallop Mode: Thrashing Figure 4.10: Crabstep Mode

that of Figure 4.7. Of course, in reality the assignment of data objects to pages might not
be identical for Wi and Wy, which does not affect the algorithm.

To perform the update of the current best matching pairs O with new data windows
the pages of Wxr and Wy have to be loaded into the memory buffers and all interesting
pairs have to be examined. Because of the observations of the previous section, not all
pairs of pages have to be considered for computing the constrained BMJ. Figure 4.8 shows
which pairs of pages have to be considered using the page layout of Figure 4.7. Each cell
in the matrix stands for a pair of pages. Obviously, the pair (1,1), i.e., P4 and P&, has to
be processed. The pair (1,2) has to be considered, because P} may contain data objects
which have interesting join partners stored in PZ. The grey shaded cells need not to be
considered. For instance, the pair (1,3) does not have to be processed, because P3 cannot
contain any interesting join partner s for any r € P}%.

Now, all interesting pairs of pages have to be loaded into the main memory buffers.
The goal is to induce a minimum number of disk accesses. Assuming m = 4 the naive
column-by-column scheduling method is optimal. One buffer is reserved for storing the
current page of Wg. The remaining m — 1 buffers are available for loading pages of Wg. If
m — 1 pages of Wy are contained in the buffers and a new page of Wg has to be loaded, a
page of Wy is discarded from memory using the LRU strategy. In the figure, a disk access
of a page of W is symbolized by a blue oval and a disk access of a page of Wy is symbolized
by a red oval. First, P and P& are loaded and O is updated with all pairs of P} x Pd.
Next, P2 is loaded and the pairs of Ph x P2 are processed. No other pairs of pages in
this column have to be processed. This can be determined by comparing the last and first
data objects of the corresponding pages using <.. The values of the join attributes of the
first and last data object of a page can be held in main memory to avoid additional disk
accesses. Proceeding to the next column is done by discarding P4 and loading P3. This
scheduling is performed until all pairs of pages have been processed. In the style of [BKO01]
this scheduling method is called gallop mode.

4.3 Evaluating Best-Match Joins on Data Streams 161

Figure 4.9 depicts another example using m = 4 and the gallop mode. Up to column
2 this method is optimal. Then, thrashing occurs, because the number of pages needed
for storing the whole interesting interval of data objects exceeds the number of memory
buffers. In this case we switch to the crabstep mode (according to [BKO1]) as shown in
Figure 4.10. After processing the pair (2,3), P4 has to be loaded, but there is no available
buffer. Hence, the loaded pages of Wy are pinned to the buffers. The pages Pj,..., P}
are consecutively loaded into the single buffer for pages of Wg and processed. After (5,3)
has been computed, all buffers are freed and the scheduling is continued at (2,4). It is
again started with the gallop mode and switched to the crabstep mode if needed. Thus,
the number of disk accesses can be greatly reduced—in this example from 30 to 21.

Another reason for utilizing this grid structure to store the data windows on secondary
storage is that an efficient “lazy update” strategy can be used while sliding the materialized
windows over the data streams. This lazy update works as follows. While shifting the data
windows, data objects that are not needed any longer (i. e., data objects having an y;-value
less than minRS) are not explicitly deleted from the corresponding pages. Because of the
fact that traversing all grid cells according to the €-Grid-Order is done in a lexicographical
fashion, a whole page can be discarded if the “maximum” data object of this page according
to y; has a yp-value less than minRS. Therefore, while shifting the data windows, no
expensive deletions of individual data objects are performed, but whole pages are simply
dropped if they are found not to be needed anymore. Hence, no additional sophisticated
and possibly expensive “bulk-delete” strategies have to be employed for performing the
updates of the materialized sliding windows.

As explained in Section 4.3.2, the MatWin algorithm does not have to process all pairs
of Wr x Wg but only parts of the whole data windows, e.g., AWg x (Ws U AWg). The
data objects of these parts, e.g., AWpg, are spread over all pages of the data windows. Of
course, while processing a pair of pages the data objects not contained in these interesting
parts of the data windows are ignored. To efficiently process only the interesting parts of
the pages the following indexing technique can be applied. A page contains an ordered
sequence of cells of the €-Grid-Order. In every cell, all data objects are equal according
to <. and hence the order in which the data objects arrive can be preserved in each cell
(note that the stream is sorted according to y; and hence the data objects of each cell
are ordered accordingly, too). In each page a list of references to the first data objects
of all contained cells is stored. The first data object of a page having a y;-value greater
than a given boundary can be determined by performing a binary search over this list.
Analogously, all data objects of a page with a y;-value lower than a given boundary are
processed by proceeding sequentially through each cell until a data object with a y;-value
greater than the limit is reached.

4.3.4.3 Materializing the Data Windows

In this section, we show how to materialize the current data windows Wx and Wy of the
data streams R and S sorted according to <.
We start by again assuming that the data streams are strictly ordered with respect to y;.

162 The Best-Match Join

Figure 4.11: MatWindows Algorithm
Input : data streams R and S; r, s, minRS, maxRS
Output: materialized windows Wx and Wy

1 while ((r.y; < maxRS) A (r # null)) V ((s.ys < maxRS) A (s # null)) do

2 if (r.y; < maxRS) A (r # null) then

3 if (|IMg| = mpg — 1) A (last page in Mg is full) then
4 Materialize(Mg);

5 Mg « 0;

6 endif

7 Mpg.add(r);

8 r < R.next();

9 endif

10 if (s.y1 < maxRS) A (s # null) then

11 if s.y; > minRS then

12 if (|Mg| = mg — 1) A (last page in Mg is full) then
13 Materialize(Mg);

14 Mg < 0;

15 endif

16 Mg.add(s);

17 endif

18 s — S.next();

19 endif

20 endwhile

21 Materialize(Mg);

22 Materialize(Mg);

23 return {Wg, Wg};

The common part of both methods is depicted in Figure 4.11. The memory buffers, which
were used in the previous section for computing/updating the constrained BMJ operators,
are divided between the two input stream for sorting. For R and S, respectively, they
are denoted by Mg and Mg. Further, mrp and mg pages can be held in main memory
(mg+mgs =m). mgr and mg may be dynamically adapted to improve the efficiency of the
materialization, e. g., if Wx is completely materialized before Wy, the entire buffer is used
to materialize Wg. The data objects of the data streams are read into the corresponding
buffer. If the buffer of a data window is full or the data window contains all necessary
data objects, e.g., Wg is completely filled if a r with r.y; > maxRS has been read, the
buffer is sorted (in memory) and written to disk using the Materialize()-method (lines 4,
13, 21, and 22). This is repeated until both data windows are completely materialized.
The Materialize()-method implements one of the following two strategies.

The first materialization approach works like external sorting. If the memory buffers
of a data stream are full, the pages are sorted and written to secondary storage as a run.

4.3 Evaluating Best-Match Joins on Data Streams 163

Y1 R hn S
/
r read
« ahead
o)
N X o
< maxrRS
“ o) o)
€1 ©
X € o)
WR N Y1,Y2 o WS
Y2 Y2

Figure 4.12: Filling Data Windows on Fuzzy Ordered Data Streams

Eventually, all created runs and the old data window (W}, and WY, respectively) of the
previous step are merged to create the current sorted data window. This approach is
denoted as standard materialization.

The second approach, denoted as grid materialization, utilizes the fact that the €-Grid-
Order divides the data space into cells. This grid is held in memory as an index. Every
cell of the grid contains a list of pages. If the memory buffers of a data stream are full,
the data objects are sorted in memory. Using the grid structure, all data objects belonging
to a single cell are materialized by reading the last page of the list of pages belonging to
this cell and writing the data objects to it. If a page is full, a new one is appended to the
corresponding list.

Both approaches have assets and drawbacks. The standard materialization has to create
and merge the runs. Hence, all pages of the old data windows and the current runs are read
and written. In contrast to that, the grid materialization has to read and write only the last
existing page of each cell for inserting new data objects. Hence, the grid materialization
will in most cases generate less disk accesses. But, the grid structure will grow rapidly
with decreasing ¢; and an increasing number of dimensions. Additionally, the pages might
be populated sparsely as for each cell a page is reserved.

Only minor changes to the MatWindows algorithm have to be made to accommodate
it to fuzzy ordered data streams. The MatWin algorithm needs the y;-value of the “next”
data object outside the current data window for the computation of the new window
bounds. Hence, the materialization algorithm has to continue reading data objects from
the stream until this data object is definitely known. How many data objects have to be
read ahead is determined by considering the given constraint of the fuzzy ordered stream.
Figure 4.12 shows this situation for the example of the initial computation step of the
MatWin algorithm. R and S shall be fuzzy ordered data streams with the static read-ahead
constraint ¢ = 2. While filling the data window Wy the data object r with r.y; > maxRS
is read. Because of the fuzzy ordered stream, the MatWindows()-method continues reading
data objects until the read-ahead constraint is satisfied, i.e., until r’ is known. Now, it is
guaranteed that all necessary data objects for Wg have been delivered and r is the “next”

164 The Best-Match Join

data object outside the data window. Wy is handled analogously. Dynamic constraints
such as punctuations can be exploited similarly: For filling a data window with a given
upper bound max RS the data stream is read until a punctuation “y; < ¢” with ¢ > maxRS
is received. Then, all needed data objects are known and the computation can be done as
already presented. Obviously, only the conditions in the lines 2 and 10 have to be adapted
according to the given physical property. Of course, the data windows may contain data
objects lying above the upper bound of the data windows. To avoid multiple processing
of these data objects only the data objects within the upper and lower bound of the data
windows have to be considered for computing the constrained BMJ operators.

Further, it might be possible that the data sources can be told to already deliver the data
streams ordered according to the €-Grid-Order. Obviously, such streams are fuzzy ordered
data streams and therefore usable by the MatWin algorithm. In this case the sorting steps
during the materialization of the data windows can be avoided and the MatWin algorithm
becomes even more efficient.

4.3.5 Dealing with Time-Stamped Data Streams

In the previous sections, we have shown how the constrained BMJ operators can be ef-
ficiently processed on (fuzzy) ordered data streams. In this section, we analyze some
example application scenarios for computing constrained BMJ operators on special data
streams which we denote as time-stamped data streams. Time-stamped data streams are
data streams where each data object has an associated time-stamp ¢ and which are sorted,
or at least fuzzy ordered, according to this dimension t. We distinguish two cases with
regard to the computation of constrained BMJ operators on such streams: ¢ is not used as
a join attribute and ¢ is a join attribute.

4.3.5.1 Time as a Non-Join-Attribute

Here, the most common task is to consider all input data given a particular maximum age,
but the time-stamps of the data objects do not affect the computation of best matching
pairs. For instance, the problem “Compute R X, S of the data streams R and S using
an order <y, ., and do not consider any input data older than T'” has to be solved.

For that purpose, we employ a simple window-based (not the MatWin algorithm) ap-
proach as shown in Figure 4.13, which is similar to window joins [KNV03, GO03]. For each
data stream a data window is maintained such that for every point in time all previous
data objects of period T are contained. The upper and lower bounds with regard to the
time-stamps of the data objects of both data windows are equal. Every time a new data
object with an associated time-stamp t is read from a data stream, all data objects with
a time-stamp older than ¢ — T" are discarded from both data windows. The data windows
are either materialized, if they are too big for being stored in main memory, or held in
main memory. Whenever the data windows change, Wx X Wy is computed, the best
matching pairs are annotated with the current time, and propagated to the output data
stream. For the computation of the constrained left-outer BMJ operator any algorithm

4.3 Evaluating Best-Match Joins on Data Streams 165

) > > po
t to t
R N!/l:---:!/d S
> N > > >
[4 | 4 | 4 | 49
N N /\\/ N N |\
A A A A A A A A
—>
t
WR myh"wyd WS
Wil)My W #—T
t—1T
A A A A A 4 A A
A\ e\ /\\/ V) /\v 8\ V) V)
R S R S

Figure 4.13: Fixed Time Window Evaluation

can be used, e. g., the nested-loops algorithm utilizing the €-Grid-Order. We propose this
re-evaluation approach, because an algorithm continuously updating the current result of
best matching pairs does not produce satisfying results in this situation: Consider a very
well matching pair (r x s) which dominates a pair (7’ x '), where r’ and s’ are younger than
both r and s. At a particular point in time, r, s, or both of them are discarded from the
data windows, because they are too old. At this time the pair (' x s’) should be contained
in the result, as (r x s) (which dominated (1" x s’)) is not known any longer. An approach
which continuously updates the current best pairs will not generate the pair (' x s’) after
(r x s) has been discarded, because (r’ x s’) already has been processed and it will not be
considered again.

Of course, fuzzy ordered data streams can be handled analogously as explained in
Section 4.3.3 for the MatWin algorithm.

4.3.5.2 Time as a Join-Attribute

Now, the time dimension is a join attribute and hence influences the computation of best
matching pairs. We show how to handle such a situation by means of the following example:
“Compute for each data object of the data stream R all best matching join partners of the
data stream S. Best matching pairs shall be those pairs which match best given a partial
order <y, . 4, not considering the time dimension, as well as pairs being very young, even

if they do not match perfectly according to <, ..,
To solve this problem, we define the age of a pair (r x s) as

age(r, s) := max(r.t, s.t),

i.e., a pair is as old as the youngest join partner?. In combination with the given partial

4Depending on the application scenario, min might also be of interest. It can be dealt with analogously.

166 The Best-Match Join

order <, .. a single partial order < for comparing pairs of (R x S) can be constructed
as follows to solve our problem using a left-outer-BMJ operator:

(rxs) < (rxs) < (age(r,s) > age(r,s')) N ((rxs) <y 4, (xs))

Because of the definition of the age of a pair, a pair consisting of a young and a very old
data object is considered to be young. Again, such pairs are not interesting in real-world
applications, because in general we are only interested in young pairs consisting of data
objects of roughly the same age. So, we only want to consider pairs (r x s) which differ no
more than a given T in their age, i.e., to be an interesting pair the condition |r.t —s.t| < T
must hold. Since the data streams are (fuzzy) ordered according to the time-dimension and
pairs to be considered have a given maximum distance 7" with regard to this dimension, the
MatWin algorithm is applicable for efficiently computing this constrained left-outer-BMJ.
Therefore, our problem is solved and the result contains all pairs for which no younger and
better matching pair exists, as well as older pairs which match better than the younger
pairs according to <, .-

4.4 Performance Evaluation

In this section, we present the results of the most relevant benchmark experiments to
assess our algorithms. All tests have been performed using the prototype Java (JDK 1.4)
implementation in our StreamGlobe system. 1/O operations are based on the java.nio-
package. In our experiments, we have measured the query R X S as an example. As
input data we have used data streams of a simple relational schema

{[data : string,y, : double, ..., yq : double] }

for both R and S. As before, 1, ...,yq have been the join attributes of the constrained
left-outer-BMJ. On each dimension the order minAttrDist has been utilized for comparison.
The values of the join attributes have been randomly generated in the range [0;1] using
uniform, correlated, and anti-correlated distributions [BKS01] and a normal distribution.

All experiments have been carried out on a Sun Enterprise 450 with four 400 MHz
processors and 4 GB of main memory. The implementation is not optimized for parallel
processing, so only one processor has been utilized. In our tests, we have varied the size
of the inputs, the number of dimensions, the distribution of the join attributes, and the
maximum distances ¢;.

At first, we have measured the total execution time of the MatWin algorithm in com-
parison with the nested-loops algorithm to be able to judge the overall efficiency of the
MatWin algorithm. We have used the 2-dimensional constrained left-outer-BMJ with
¢, = 0.1, uniformly distributed values of the join attributes, and have varied the size
of the input data streams. For the computation of the constrained left-outer-BMJ, the
MatWin algorithm with/without utilizing the €-Grid-Order using the standard materi-
alization (MatWin/Standard, MatWin/Standard/EGO) and the grid materialization uti-
lizing the €-Grid-Order (MatWin/Grid/EGO) have been employed. The left diagram of

4.4 Performance Evaluation 167

Total Execution Time Total Execution Time
T T T T T T 1000

100

Time [min]
Time [min]
=
S

0.1

MatWin/Standard/EGO ——

- MatWin/Standard/EGO —+—
MatWin/Grid/EGO ---*:-- MatWin/Standard -

MatWin/Grid/EGO ---*---
0.01 0.1 L

I I I I I I I I
100 200 300 400 500 600 700 800 900 1000 1 2 3 4 5
IRI =S| # Dimensions

n‘es(ed Ioops‘ a

Figure 4.14: Overall Performance of the MatWin Algorithm

Figure 4.14 shows the results of this experiment. All measured variants of the MatWin
algorithm perform significantly better than the nested-loops algorithm. Utilizing the €-
Grid-Order, the efficiency can be further increased. The grid materialization performs
slightly better than the standard materialization. The right diagram of Figure 4.14 shows
the results of the next experiment. In this test the three MatWin-variants have been mea-
sured using the same parameters as before and varying the number of dimensions. The size
of the input has been fixed to 1000 data objects each. Obviously, the grid materialization
performs better with less dimensions. With an increasing number of dimensions the growth
of the grid prevails its benefits and it performs worse. The performance of the standard
materialization is not affected by the number of dimensions.

Considering the overall efficiency, the MatWin/Standard /EGO algorithm outperforms
the nested-loops algorithm. Other tests show, that these observations hold varying the
distribution of the values of the join attributes and the maximum distances ¢;. Of course,
the total time of execution can only be determined if the data streams are finite. But it
has to be kept in mind that the nested-loops algorithm is not applicable to never-ending
data streams and thus a comparison of the overall performance is only feasible in the case
of finite data streams.

To determine the performance of the MatWin algorithm on infinite data streams, the
following experiments investigate how continuously results are delivered. For that purpose,
the constrained left-outer-BMJ has been computed on data streams of a fixed size of 1000
data objects each with two join attributes. The percentage of the result, which had been
propagated at a certain time, has been measured. The remaining parameters have been
equal to those mentioned above. The left diagram of Figure 4.15 depicts the results of this
experiment varying the distribution of the values of the join attributes. It can be observed
that the distribution of the join attributes has no influence on how continuously the results
are propagated. The difference in total execution time is due to the fact that the result
consists of more pairs using normally distributed join attributes. Thus, more pairs have to
be compared during the update of intermediate results yielding a higher execution time.

168 The Best-Match Join

Propagated Results vs. Time Propagated Results vs. Time

250 200

, . . o n .
uniform —— T 1 digit ——

T T
normal ---x--- 2000 2 digits e
correlated ------ 00000 180 | 3digits %~
anti-correlated & ¢ 4 digits &
2 5 digits
200 5086 160
%
XX% 140
150 7 120
= N -
s v 2
£ 4 £ EEEEE|
[X = gal
100 £ ,.«w»«»[umnnucﬁﬂjjj
=
g —_— HHHAKKFON
P HHHHH
- e e

I I I I I I I I I I I I I I I
10 20 30 40 50 60 70 80 90 100 40 50 60 70 80 90 100
% Delivered Results % Delivered Results

Figure 4.15: Streaming Behavior of the MatWin Algorithm

The right diagram of Figure 4.15 shows the results of the tests varying the number of
distinct values of the join attribute y;. The precision of the values of y; has been varied
from one to five decimal places to investigate whether the granularity of y; influences the
propagation of results. It can be observed that the granularity does not influence the
continuous propagation of results except the measurement with one decimal place. In this
case, the precision is equal to ¢; = 0.1. Hence, the data objects are always located exactly
on the boundaries of the data windows. Whenever the data windows are moved, all data
objects of the lower boundary are completely discarded and the results, they are involved
in, are propagated all at once. This explains the steps in the measurement.

Concluding, it can be stated that the MatWin algorithm shows a good overall perfor-
mance and pipelined behavior in all our experiments.

4.5 Related Work

Our work on best-match joins is related to three subareas of query evaluation: evaluation
techniques for streaming data, window-based processing of joins, and finding optimal (best-
matching) pairs of objects. We will focus on related work in these three areas in the
remainder of this section.

Query Processing on Data Streams

We will only show some directly related work to our best-match joins in this paragraph.
Most of the related work of this area has already been covered in Sections 2.5 and 3.10.

The streaming query engine of STREAM [ABB*03, MWA103, BWO01] processes data
by mapping streams to relations using window constraints, applying relational operators,
and converting the result back to streams. We employ a similar processing approach in our
streaming algorithms.

4.5 Related Work 169

Other relevant work is generating approximative intermediate results [RH02]. This is
related to computing an unconstrained best-match join (i.e., all overall best matching
pairs) on data streams, where approximate results are the best that can be expected.

Window-Based Join Processing

To enable pipelined BMJ processing of streaming data we have developed windowed
BMJ processing techniques. Window-based processing of joins is one approach to overcome
the fact that many join implementations are pipeline breakers. One noble exception is the
double pipelined hash join [WA91]. It has been extended to the XJoin [UF99] enabling
arbitrarily large buffers which are swapped to secondary storage. We employ a similar idea
in our best-match join by buffering data windows on disk if they exceed main memory ca-
pacity. To overcome the fact that processing a join over unbounded data streams requires
unbounded memory, in [KNV03] window joins are investigated. In [GO03] different algo-
rithms and optimization techniques for efficiently processing sliding window multi-joins are
described. Various processing strategies for shared window joins aiming at the optimization
of the response time of all processed queries are proposed in [HFAE03]. The problem of
approximating sliding window joins over data streams and quality measures of generated
results is investigated in [DGRO03]. In contrast to our work, these window join algorithms
are all main memory techniques.

Computation of Best-Matching Pairs

Semantically, the variants of the best-match join operators conform to the skyline
computation—albeit over the cross product of the arguments and therefore not being
applicable on data streams. Finding the best data objects of a single set according to
multi-dimensional criteria is the goal of much research effort. Kung et. al. [KLP75, PS85]
describe the maximum vector problem to find all maximum (“best”) vectors with respect
to a partial order. Meanwhile, several other algorithms have been proposed for solving
the maximum vector problem. However, these algorithms are all main memory techniques.
[BKSO01] was the first work to tackle this problem in a database context. The authors
have introduced the skyline operator as an extension of the work of Kung et. al., working
much better in the database field, proposed new algorithms, and showed how to integrate
this operator into a database system. Since then, various algorithms have been devised
for efficiently computing the skyline in a database environment, especially for comput-
ing the skyline progressively. That is, first skyline points are delivered before the entire
data is read. This is accomplished by the use of various indexing techniques, e.g., sort-
ing [CGGLO03], bitmap indices and B-Trees [TEOO01], and nearest neighbor search using
R-Trees [KRR02, PTFS03, RKV95]. These algorithms are able to progressively deliver
skyline points, but beforehand the entire data has to be processed in order to compute the
required indices. Thus, these algorithms are not applicable in the context of data streams.
Further, they only work on a single set as input data.

170 The Best-Match Join

From a more theoretical point of view the work on preference queries, which are a
generalization of the skyline problem, is also of interest. In [Kie02] Kieflling presents a
general framework for preference queries and a preference algebra using partial orders,
which are also used in our work for specifying best matches. Chomicki [Cho03] studies
properties of preference queries by means of a general framework using preference formulas
and binary preference relations.

The area of similarity joins is also semantically related. In [BKO1] efficient indexing
techniques for the similarity self-join are presented. We have extended these techniques to
be able to process two inputs and employ them for efficiently buffering data windows on
secondary storage.

4.6 Discussion

In this chapter, we have introduced the novel class of best-match join operators and the
practically more relevant family of constrained BMJ operators to compute best matching
pairs of two data sets based on user-defined multi-dimensional criteria. The constraints
in combination with certain physical properties of the data streams overcome the blocking
nature of the BMJ operators and enable our new pipelined sliding-window BMJ algo-
rithms to process infinite, (fuzzy) ordered data streams. These algorithms are based on
synchronously sliding data windows over the data streams. To handle arbitrarily large data
windows we have developed techniques for efficiently materializing the data windows on
secondary storage. We have discussed efficient 1/O-scheduling methods for processing the
materialized data windows based on a particular order of the materialized data. Our exper-
iments, which have been carried out within our Java-based StreamGlobe implementation,
have shown a good overall performance and pipelining behavior of this approach.

Chapter 5

Conclusion

In this thesis, we have investigated three aspects of a general-purpose data stream man-
agement system: its design and common optimization goals, a streaming query engine for
processing subscriptions, and the application of novel information retrieval operations on
data streams.

We have presented the architecture of our distributed data stream management system
StreamGlobe, which has been designed to meet the challenges that arise in processing data
streams in an information retrieval network. StreamGlobe employs XML, being the de
facto standard for information exchange, as the data model for data streams and, corre-
spondingly, XQuery for specifying subscriptions. Further, StreamGlobe is built on top of
P2P networking and Grid techniques to provide users the ability to flexibly join the net-
work and to fit into existing e-science platforms. StreamGlobe differs from other upcoming
data stream systems in not only efficiently locating and querying data streams, but at the
same time optimizing the data flow in the network by means of data stream sharing. Data
stream sharing is based on exploiting in-network query processing capabilities by push-
ing operators for subscription evaluation into the network. These optimizations, aiming
at a parsimonious usage of both networking and computational resources, are a crucial
requirement for scalable large-scale distributed data stream management systems.

For the evaluation of XQuery subscriptions, we have presented our streaming XQuery
engine, FluX. Main memory is probably the most critical resource in (streamed) query pro-
cessing. Keeping main memory consumption low is vital to scalability and has an impact
on query engine performance in terms of runtime. We have introduced the FluX language
as an extension of the XQuery language. It supports event-based query processing and pro-
vides a strong intuition for buffer-conscious query processing on structured data streams.
Further, we have presented an algorithm for automatically translating a significant frag-
ment of XQuery into equivalent FluX queries. This algorithm uses schema information
to schedule FluX queries so as to reduce the use of buffers. We have described the core
concepts of the prototype implementation of our query engine. As evidenced by our ex-
periments, our approach indeed dramatically increases the scalability and performance of
main memory XQuery engines.

StreamGlobe enables the execution of user-defined operators to carry out expressive

172 Conclusion

information retrieval tasks beyond the scope of subscriptions phrased in XQuery. As an
example, we have introduced and formally defined the novel class of best-match join op-
erators addressing the problem of finding best matching pairs of data objects with regard
to multiple dimensions. To overcome the inherently blocking nature of these operators
and to improve the quality of the results we have employed constraints on join dimen-
sions. These constraints in combination with physical properties of data streams have
enabled our pipelined sliding-window best-match join algorithms. Further, we have dis-
cussed efficient 1/0O-scheduling techniques for processing materialized data windows. Our
experimental evaluation has proven the good overall performance and pipelining behavior
of these algorithms.

Appendix A

Complete XQuery™ Grammar

RelPath z= QName (“/” QName)*
FizedPath VarRef (“/” RelPath)?
WinPath FizedPath “|” WinSpec “|”
WinSpec = (“count” IntegerLiteral (“step” IntegerLiteral)?
| (RelPath)? “diff” NumericLiteral (“step” NumericLiteral)7)

AtomicClause n= (“fn:true()”| “fn:false()”)
Function m= (“fn:” (“count” | “avg” | “max” | “min” | “sum”)
| “udf:” QName) “(” FizedPath “)”
ValExpr == (Literal
| FizedPath
| Function
| ValExpr (“+” | “=") ValExpr
| ValEzpr (“¥” | “div” | “idiv” | “mod”) ValEzpr)
AtomicCondition = (ValExzpr GeneralComp ValEzpr
| AtomicClause
| (“fn:empty” | “fn:exists”) “(” FizedPath “)”
| “én:not (7 AtomicCondition “)”
| AtomicCondition “and” AtomicCondition
| AtomicCondition “or” AtomicCondition)
Ezxpression n= (407

| Literal

| Expression (Expression)+

| “{” “for” VarRef “in” FizedPath (“where” AtomicCondition)?
“return” Expression “}”

| “{” “1let” VarRef “:=" Function (“where” AtomicCondition)?
“return” FEzxpression “}”

| “{” “for” VarRef “in” WinPath (“where” AtomicCondition)?
“return” FExpression “}”

| “{” FizedPath “}”

‘ 44{77 VarRef 44}77

| 44{77 Function 44}77

| {7 “1£” “(” AtomicCondition “)” “then” Expression “}")

174 Complete XQuery~ Grammar

Appendix B

Translating XQuery into FluX: The
Rewrite Algorithm

The complete algorithm for rewriting normalized XQuery™ queries into FluX is shown on
the next page.

176 Translating XQuery ™ into FluX: The Rewrite Algorithm

Function rewrite(Variable $x, Set(X) H, XQuery () returns FluXQuery
1 begin

2 if {$z} < 5 then

3 if (3 is simple then

4 return (3 ;

5 else

6 return {ps $z: on-first past(x) return (3} ;

7 endif

8 else

9 if (3 is simple and H = 1 then

10 return [;

11 else if 5 = 3 B> then

12 if H=1 then H:=10;

13 B = rewrite ($z, H, (31) ;

14 match (; such that 3] = {ps $z: { };

15 B = rewrite (S, H U hsymb((1), o) ;

16 match (o such that 35 = {ps $z: { };

17 return {ps $z: (; ¢ }

18 else if (3 is of the form {for $y in $z/a return al} then

19 X :={bedep($z,a) UH | = Ordg,(b,a)} ;

20 if $2 # $x then

21 return {ps $z: on-first past(X) return (};

22 else if X # () then

23 return {ps $z: on-first past(X U{a}) return (};
24 else

25 o := rewrite (3y, L, a) ;

26 return {ps $2: on a as $y return o'} ;

27 endif

28 else if 3 is of the form {for $y in $z/a/mw|ws| return a} then
29 X :={b e dep($x,a) UH | = Ordg,(b,a)};

30 if (32 # $2) V (X # 0) then

31 return {ps $z: on-first past(X U{a}) return (};
32 else

33 if 3 is simple and |ws| is simple then

34 return {ps $z: on-window $z/a/m|ws| as $y return [} ;
35 else

36 return {ps $z: on-each past $z/a/m|ws| as $y return [} ;
37 endif

38 endif

39 else

40 return {ps $z: on-first past(dep($z,3) U H) return (3} ;
41 endif

42 endif

43 end

Appendix C

FluX Benchmark Experiments

In this section, we present our benchmark experiments based on the XMark benchmark
and the queries we have used in detail.

C.1 Modified XMark Benchmark Queries

As briefly sketched in Section 3.9, we have adapted selected queries of the XMark bench-
mark to suit the capabilities of our prototype implementation. In detail, we have made the
following changes:

e Attributes have been converted into subelements of their parent element. For exam-
ple, an element

<person id = "..."> ... </person>
has been converted to:

<person>
<person_id>

</person_id>
</person>
The XMark queries and the schema have been adapted accordingly. While processing

an XML stream (generated by the XMark xmlgen data generation tool), our XSAX
parser converts attributes into subelements on-the-fly.

e XPath kind tests such as text() have been omitted; the whole element is printed
instead.

178 FluX Benchmark Experiments

e Aggregations such as count ($x) have been omitted and the whole subtree bound to
$x is written to the output instead. In some queries this caused runtime to be mainly
determined by the time taken to produce the output, in which case we have further
restricted the queries to printing a fraction of the whole subtree.

The following queries have been used in our experiments (for all systems):

Query 1

<querylb>
{ for $b in /site/people/person
where $b/person_id = "personO"
return
<result>
{$b/name}
</result> }
</querylb>

Query 5

<queryb>
{ for $i in /site/closed_auctions/closed_auction
where $i/price >= 40
return
$i/price }
</query5>

Query 8

<query8>
{ for $p in /site/people/person return
<item>
<person>
{$p/name}
</person>
<items_bought>
{ for $t in /site/closed_auctions/closed_auction
where $t/buyer/buyer_person = $p/person_id
return
<result>
{$t}
</result> }
</items_bought>
</item> }
</query8>

C.1 Modified XMark Benchmark Queries 179

Query 8b

<query8b>
{ for $t in /site/closed_auctions/closed_auction return
<item>
<auction>
{8t
</auction>
{ for $p in /site/people/person
where $t/buyer/buyer_person = $p/person_id
return
<buyer>
{$p/name?}
</buyer> }
</item> }
</query8b>

Query 11

<querylil>
{ for $p in /site/people/person return
<items>
{$p/name}
{ for $0 in /site/open_auctions/open_auction
where $p/profile/profile_income > (5000 * $o/initial)
return
$0/open_auction_id }
</items> }
</queryl1l>

Query 13

<query13>
{ for $i in $RO0T/site/regions/australia/item return
<item>
<name>
{$i/name}
</name>
<desc>
{$i/description}
</desc>
</item> }
</query13>

180 FluX Benchmark Experiments

Query 16

<query16>
{ for $a in /site/closed_auctions/closed_auction
where fn:not(fn:empty($a/annotation/description/parlist/listitem/ 2
parlist/listitem/text/emph/keyword))
return
$a/seller/seller_person }
</query16>

Query 17

<queryl7>
{ for $p in /site/people/person
where fn:empty($p/homepage)
return
<person>
{$p/name’}
</person> }
</queryl7>

Query 20

<query20>
{ for $p in /site/people/person
where fn:empty($p/person_income)
return
$p
</query20>

C.2 Additional Benchmark Queries

Our additional benchmark queries are also based on the data of the XMark benchmark.
As before, attributes are converted into elements to suit our prototype implementation.

C.3 Benchmark Results 181

Query A

List the most expensive items sold.

<query_agg>
{ for $a in /site/closed_auctions return
for $c in $a/closed_auction
where $c/price = fn:max($a/closed_auction/price)
return
$c }
</query_agg>

Query W/[1|2|3]
List the mazximum current price of the last A open items every u items.

<query_win>
{ for $w in /site/open_auctions/open_auction|count A step pul
return
<max_item>
{fn:max($w/current)}
</max_item> }
</query_win>

In our experiments the following values for A and p have been used:

| A n
Query W1 || 10 | 10
Query W2 || 10 | 5
Query W3 || 20 | 5

C.3 Benchmark Results

Figure C.1 shows the results of our performance tests using the queries presented in Sec-
tion C.1. The term “DNF” denotes the situation that the query could not be processed
due to, e.g., an “Out Of Memory” error. The results of the benchmarks using the queries
shown in Section C.2, which involve aggregations and windowed computations, are shown
in Figure C.2. The benchmark setup is described in Section 3.9.

182 FluX Benchmark Experiments
FluX Galax
Unoptimized Optimized Compiled

Time [s] | Memory || Time [s] | Memory || Time [s] || Time [s] | Memory
5M 15 112 Byte 1.4 0 Byte 1.4 1.6 32.1 MB
0 10M 2.1 109 Byte 1.8 0 Byte 1.8 3.5 64.1 MB
Y soM 5 114 Byte 5 0 Byte 4.6 24.8 | 318.9 MB
100M 8.4 113 Byte 8.1 0 Byte 7.9 69.9 | 638.2 MB
5M 14 91 Byte 14 91 Byte 14 1.6 32.2 MB
0 10M 1.8 91 Byte 1.8 91 Byte 1.9 3.5 64.3 MB
> 50M 4.8 91 Byte 4.8 91 Byte 4.9 24.9 | 320.3 MB
100M 8.1 91 Byte 8.2 91 Byte 8.4 70.3 | 640.8 MB
5M 12 1.4 MB 7.1 1.4 MB 6.5 13.6 34.2 MB
0 10M 40 2.9 MB 23.1 2.9 MB 20.3 52 63.4 MB
50M | 10453 | 149 MB | 499.6 | 14.9 MB 466.1 1707.7 | 340.4 MB
100M | 3967 | 30.1 MB | 2375.5 | 30.1 MB | 1873.1 8821.3 | 681.4 MB
5M 5.9 1.4 MB 5.2 209.7 kB 1.3 9.2 32.9 MB
0 10M 18.4 2.9 MB 13.2 412 kB 10.1 33.7 65.8 MB
8 50M || 3828 | 149MB | 3089 | 1.9MB 257.9 850.8 | 327.3 MB
100M || 1523.8 | 30.1 MB || 1208.5 | 3.9 MB 995.5 3853.4 | 655 MB
5M 5.6 275.3 kB 17 275.3 kB 3.8 133 32.7 MB
0 10M 153 | 545.4 kB 124 | 5454 kB 9.2 177 65.8 MB
" 50M || 3766 | 2.6 MB 282.4 | 2.6 MB 187.5 6087.5 | 351.1 MB

100M || 1495.8 | 53 MB | 1097.3 | 5.3 MB 742.8 DNF DNF
5M 1.3 8.7 kB 1.3 0 Byte 1.4 1.6 32.2 MB
0 10M 1.8 8.6 kB 1.7 0 Byte 1.7 3.5 64.3 MB
¥ 50M 4.8 13.4 kB 4.6 0 Byte 4.5 26.2 | 320.1 MB
100M 8.2 15.6 kB 8.2 0 Byte 7.9 72 640.5 MB
5M 1.3 129 Byte 1.3 129 Byte 15 1.6 32.1 MB
0 10M 1.8 129 Byte 1.7 129 Byte 2.1 3.4 64.2 MB
% 50M 5 130 Byte 4.7 130 Byte 4.6 26.8 | 319.6 MB
100M 8.2 130 Byte 8.2 130 Byte 8.1 70.4 | 639.5 MB
5M 15 112 Byte 1.4 112 Byte 1.6 1.6 32.6 MB
0 10M 2 109 Byte 1.9 109 Byte 2 3.5 65.2 MB
T 50M 5 114 Byte 5 114 Byte 5 27.6 | 324.7 MB
100M 8.5 113 Byte 8.5 113 Byte 8.5 71.2 | 649.7 MB
5M 1.6 11kB 15 0 Byte 15 2 32.3 MB
0 10M 1.9 4.7 kB 1.8 0 Byte 1.8 4.2 64.6 MB
2 50M 5.3 6.2 kB 4.7 0 Byte 4.8 32.3 | 321.7 MB
100M 9.3 6.3 kB 8.3 0 Byte 8.2 88.2 | 643.7 MB

Figure C.1: XMark Benchmark Results

C.3 Benchmark Results

183

FluX Galax
Unoptimized Optimized
Time [s] | Memory || Time [s] | Memory || Time [s] | Memory
5M 1.3 1.2 MB 1.6 1.2 MB 5.1 34.9 MB
0 10M 1.8 2.5 MB 2.1 2.5 MB 17.7 | 126.6 MB
A 50M 5.1 13 MB 5 13 MB 386 884.9 MB
100M 8.7 26.2 MB 9.1 26.2 MB || 1571.7 | 11.4 GB
5M 1.3 0 Byte 1.6 0 Byte 2 40.1 MB
0 10M 1.6 0 Byte 1.6 0 Byte 4.4 81.7 MB
W 50M 4.6 0 Byte 4.6 0 Byte 37.6 | 472.3 MB
100M 8.2 0 Byte 8.1 0 Byte 137.5 1 GB
5M 1.3 910 Byte 15 910 Byte 2.4 48 MB
0 10M 1.9 910 Byte 1.7 910 Byte 5.5 99.2 MB
W2 50M 5.1 910 Byte 5 910 Byte 50.8 | 632.8 MB
100M 8.6 910 Byte 8.5 910 Byte || 202.6 1.5 GB
5M 1.3 1.7 kB 1.4 1.7kB 3.2 61.9 MB
0 10M 1.9 1.7 kB 1.8 1.7 kB 7.4 128.1 MB
W3 50M 4.9 1.7 kB 4.9 1.7 kB 72.6 | 776.6 MB
100M 8.6 1.7 kB 8.5 1.7 kB 261.9 1.8 GB

Figure C.2: Extensions Benchmark Results

184 FluX Benchmark Experiments

Appendix D

Translating XQuery into FluX: The
Rewrite System

Our rewrite algorithm for transforming normalized XQuery ™ into FluX (function "rewrite”
in Section 3.5) is based on a corresponding rewrite system. The rules of that rewrite system
are given in Figure D.1.

Our algorithm “rewrite” applies the rules of this rewrite system according to the follow-
ing rewrite strategy: Given a DTD, for transforming a given normalized XQuery™ query
@ into a FluX query, the rewrite rules of Figure D.1 are applied in the following way: Do
one top-down left-to-right pass over the query tree of (), where the children of each node
are processed from left to right. Each node v (or, more precisely, the subtree rooted at v)
represents a subexpression «, of Q. If «,, is simple and none of the rules in Figure D.1 can
be applied to «,, then «a, will not be further rewritten and the subtree rooted at node v
will not be further processed. In all other cases, all possible rewrite rules are applied at
node v. Inside “on-first”-handlers, no application of rewrite rules is allowed.

During the rewrite process intermediate results might occur that are not syntactically
correct FluX queries. However, following the above strategy, the rewriting will always
terminate with a syntactically correct FluX query, denoted FluX,;,(Q). Note, that one
can easily define an extension FluXt of FluX such that the rewrite rules of Figure D.1
are in fact equivalences and all intermediate results that occur during the rewrite process
belong to FluX™.

For every XQuery ™ query @ in normal form, FluX,;,(Q) can be computed in O(|Q])
rewrite steps, and FluX,;,(Q) is a safe FluX query that is equivalent to @ on all XML
documents compliant with the DTD. In fact, FluX,;,(Q) is the FluX query produced by
our rewriting algorithm via calling “rewrite($ROOT, L, Q).

Let us demonstrate the rewrite system by considering once again Example 3.5.3.

Example D.0.1 ([W3CO05a], XMP-Q2) Let Q) be the normalized XQuery™ query from
Ezample 8.5.3. Rewriting Q4 into FluX,.p(Q%), we first apply the rule [For3] to rewrite
the outermost for-loop into a “{ps $RO0OT: on bib ---}-expression. Then, we apply the
rules [Mrg-HLists5] and [Mrg-HLists]] to move the strings ““results>” and ‘</results>”

186 Translating XQuery™ into FluX: The Rewrite System

B: A{for $y in $z/a return a} < $r = parentVar(B), $r # $z, {$r} A o,) [For1]
{ps $r: on-first past(X) return X = {b € dep($r, a) | ~Ords, (b, a)}
{for 3y in $z/a return a};}
. . $r = parentVar(B), {$r} £ a,
B: A{for $x in $r/a return o}
X={bed - b F
{ps $r: on-first past(X U {a}) return " #(}{) € dep($r, a) | =Ords,.(b, a)}, [For2]
{for 3z in $r/a return a};}
B: A{for $z in $r/a return a} ($r = parentVar(B), {$r} £ a,) [For3)]
{ps $7: on a as $x return o} Vb € dep(Sr, a) : Ordg,.(b, a)
@ $x = parentVar(c), {$z} < a,) P
{ps $z: on-first past(x) return a} < dep(8z, o) # 0 or o is not simple [Outputi]

«: {if x then s}
{ps $z: on-first past(dep($z, «)) return o}

($z = parentVar(c)) [Output?2]

{ps $r: (¥

{ps $r: on a as $z return a}

Vbeh b . Ordg, (b ‘Mrg-HLists1
{ps $r: (; on a as $z return a} (€ hsymb(C) rds; (b, a)) [Mrg ists1]

{ps $r: (¥
{ps $r: on a as $x return a} X = {b € hsymb(¢) | ~Ordg,. (b, a)}) .
. T ’ ‘Mrg-HList
{ps $r: (; on-first past(X U{a}) return (X #0, ais an XQuery [Mrg- HLists2]

{for $z in $r/a return a};}

{ps $r: (¢}
{ps $r: on-first past(X) return o}

{ps $r: (; on-first past(X U hsymb(¢)) return a}

[Mrg-HListsS]

{ps $r: (¥ s
{ps $r: (; on-first past(hsymb({)) return s}

[Mrg-HLists4]

s {ps $r: (2}
{ps $r: on-first past() return s; (}

[Mrg-HLists5]

Figure D.1: Rewrite Rules for Translation of XQuery into FluX (Using a DTD)

into this expression. With another application of rule [For3] we rewrite the subquery inside
the “on bib™handler into a “{ps $bib: on book ...} -expression.

How the subquery inside the “on book ™-handler is rewritten into FluX depends on the
particular DTD.

When given the first DTD from Section 3.1, no order constraint on title and author
holds, and we have to rewrite the for-loop over titles using rule [For2]. To check that this
rule can indeed be applied, note that $b is the parent variable of this for-loop and that
X = {author} is the set of dependencies for $v. Applying rule [For2], we obtain the

187

following query FluX,r,(Q), which is exactly the FluX query Fy from Ezample 3.5.3:

{ ps $ROOT:
on-first past() return <results>;
on bib as $bib return
{ ps $bib:
on book as $b return
{ ps $b:
on-first past(author, title) return
{ for $t in $b/title return
{ for $a in $b/author return
<result>
{$t}
{$a}
</result> } }; }; };
14 on-first past(bib) return </results>; }

© oo ~ =] wt = w [V =

o
V] = o

-
w

We will refer to the expression in lines 6-13 of Iy as o).
Let us now consider the case where we are given a different DTD with the production

<IELEMENT book (author*, titlex)>

in which the order constraint Ordygok(author, title) is met. Then, rule [For3] can be
applied to rewrite the for-loop over titles. Thus, an “on title-handler is created instead
of an “on-first past(author, title) -handler. Considering the event expression of this
newly created handler, we apply rule [Outputl], as the parent variable $t is output inside
the event expression. The resulting query FluX,,(Q) differs from the solution above in
the subexpression o, which is replaced by

{ ps $b:
on title as $t return
{ ps $t:
on-first past(*) return
{ for $a in $b/author return

<result>

{$t}

{$at

</result> }; }; }

Note, that the resulting query FluX,,,(Q) now is precisely the query Fy from Example 3.5.3.
O

188 Translating XQuery™ into FluX: The Rewrite System

Bibliography

[AABT05]

[ABB+02]

[ABBT03]

[ABS00]

[ABWO03]

[ACGG+02]

[ACMD*03]

[ACMHO3]

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.
Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. B. Zdonik. The Design of the Borealis Stream Processing Engine.

In Proc. of the Conf. on Innovative Data Systems Research, pages 277289,
Asilomar, CA, USA, January 2005.

A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing
Memory Requirements for Queries over Continuous Data Streams. Technical
report 2002-29, Stanford University, 2002.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,
U. Srivastava, D. Thomas, R. Varma, and J. Widom. STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bulletin, 26(1):19-26, March
2003.

S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kauf-
mann, 2000.

A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language:
Semantic Foundations and Query Execution. Technical report 2003-67, Stan-
ford University, 2003.

I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizukaz, D. Raven, and D. Su-
ciu. XMLTK: An XML Toolkit for Scalable XML Stream Processing. In
Workshop on Programming Language Technologies for XML, Pittsburgh, PA,
USA, October 2002.

K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: A Self-organizing Structured P2P
System. ACM SIGMOD Record, 32(3):29-33, 2003.

K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The Chatty Web: Emer-
gent Semantics Through Gossiping. In Proc. of the Intl. World Wide Web
Conference, pages 197-206, Budapest, Hungary, May 2003.

190

Bibliography

[AF00]

[Asc98]

[BBD*02]

[BCG*03]

[BDK*03]

[Bec04]

[BFO5]

[BGKO3]

[BK93]

[BKO1]

[BKK*01]

M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents for
Selective Dissemination of Information. In Proc. of the Intl. Conf. on Very
Large Data Bases, pages 53-64, Cairo, Egypt, September 2000.

B. Aschenbach. Discovery of a Young Nearby Supernova Remnant. Nature,
396(6707):141-142, November 1998.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
Issues in Data Stream Systems. In Proc. of the ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, pages 1-16, Madison,
WI, USA, June 2002.

C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josi-
fovski. Streaming XPath Processing with Forward and Backward Axes. In
Proc. of the IEEFE Intl. Conf. on Data Engineering, pages 455-466, Bangalore,
India, March 2003.

. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and C. Wiesner. Distributed
Queries and Query Optimization in Schema-Based P2P-Systems. In Proc.
of the Intl. Workshop On Databases, Information Systems and Peer-to-Peer
Computing, Berlin, Germany, September 2003.

O. Becker. Serielle Transformationen von XML — Probleme, Methoden, Ld-
sungen. PhD thesis, Humboldt-Universitiat zu Berlin, 2004. http://edoc.hu-
berlin.de/dissertationen/becker-oliver-2004-11-26 /PDF /Becker.pdf.

S. Bose and L. Fegaras. XFrag: A Query Processing Framework for Frag-
mented XML Data. In Proc. of the Intl. Workshop on the Web € Databases,
pages 97-102, Baltimore, Maryland, USA, June 2005.

P. Buneman, M. Grohe, and C. Koch. Path Queries on Compressed XML.
In Proc. of the Intl. Conf. on Very Large Data Bases, pages 141-152, Berlin,
Germany, September 2003.

A. Briiggemann-Klein. Regular Expressions into Finite Automata. Theoretical
Computer Science, 120(2):197-213, 1993.

C. Bohm and H.-P. Kriegel. A Cost Model and Index Architecture for the
Similarity Join. In Proc. IEEE Conf. on Data Engineering, pages 411-420,
Heidelberg, Germany, 2001.

R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam,
and K. Stocker. ObjectGlobe: Ubiquitous query processing on the Internet.
The VLDB Journal, 10(1):48-71, August 2001.

Bibliography 191

[BKKO03] R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in an Infor-
mation Economy. ACM Transactions on Internet Technology, 3(4):291-333,
November 2003.

[BKSO1] S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proc.
IEEFE Conf. on Data Engineering, pages 421-430, Heidelberg, Germany, 2001.

[BKWOS| A. Briiggemann-Klein and D. Wood. One-Unambiguous Regular Languages.
Information and Computation, 142(2):182-206, 1998.

[BT99] C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured Data and
XML. In Proc. of the Intl. Workshop on the Web & Databases, pages 3742,
Philadelphia, Pennsylvania, USA, June 1999.

[BWO01] S. Babu and J. Widom. Continuous Queries over Data Streams. ACM SIG-
MOD Record, 30(3):109-120, March 2001.

[CBB*03] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S. B. Zdonik. Scalable Distributed Stream Processing. In
Proc. of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA,
January 2003.

[CCD*03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-
stein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and
M. A. Shah. TelegraphCQ: Continuous Dataflow Processing for an Uncertain
World. In Proc. of the Conf. on Innovative Data Systems Research, Asilomar,

CA, USA, January 2003.

[CDTWO00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Con-
tinuous Query System for Internet Databases. In Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data, pages 379-390, Dallas, TX, USA, May
2000.

[CF03] S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming queries
over streaming data. The VLDB Journal, 12(2):140-156, 2003.

[CFGR02] C.Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of
XML documents with XPath expressions. The VLDB Journal, 11(4):354-379,
2002.

[CGGLO03] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting.
In Proc. IEEE Conf. on Data Engineering, pages 717-719, Bangalore, India,
2003.

[Cho03] J. Chomicki. Preference Formulas in Relational Queries. ACM Trans. on
Database Systems, 28(4):427-466, 2003.

192

Bibliography

[CRAO4]

[CCCH02]

[DCY0]

[DF03]

[DFFT02]

[DGRO3]

[DRF04]

[DT03]

[FB04]

[FHK*00]

[FHK*03]

L. Chen, K. Reddy, and G. Agrawal. GATES: A Grid-Based Middleware for
Processing Distributed Data Streams. In Proc. of the IEEE Intl. Symp. on
High-Performance Distributed Computing, Honolulu, HI, USA, June 2004.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. B. Zdonik. Monitoring Streams - A New
Class of Data Management Applications. In Proc. of the Intl. Conf. on Very
Large Data Bases, pages 215-226, Hong Kong, China, August 2002.

S. E. Deering and D. R. Cheriton. Multicast Routing in Datagram Inter-
networks and Extended LANs. ACM Transactions on Computer Systems,
8(2):85-110, May 1990.

Y. Diao and M. Franklin. Query Processing for High-Volume XML Message
Brokering. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 261—
272, Berlin, Germany, September 2003.

Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter: Efficient and
Scalable Filtering of XML Documents. In Proc. of the IEEE Intl. Conf. on
Data Engineering, pages 341-342, San José, CA, USA, February 2002.

A. Das, J. Gehrke, and M. Riedewald. Approximate Join Processing Over
Data Streams. In Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pages 40-51, San Diego, CA, USA, June 2003.

Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-Scale XML Dis-
semination Service. In Proc. of the Intl. Conf. on Very Large Data Bases,
pages 612623, Toronto, Canada, August 2004.

A. Deutsch and V. Tannen. Reformulation of XML Queries and Constraints.
In Proc. of the Intl. Conf. on Database Theory, pages 225-241, Siena, Italy,
January 2003.

W. Fontijn and P. A. Boncz. AmbientDB: P2P Data Management Middleware
for Ambient Intelligence. In Workshop on Middleware Support for Pervasive
Computing (PerWare), In conjunction with the IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom), Orlando, FL,

USA, March 2004.

D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann,
M. J. Carey, A. Sundararajan, and G. Agrawal. The BEA/XQRL Streaming
XQuery Processor. In Proc. of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 997-1008, Dallas, TX, USA, May 2000.

D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann,
M. J. Carey, A. Sundararajan, and G. Agrawal. The BEA/XQRL Streaming

Bibliography 193

XQuery Processor. In Proc. of the Intl. Conf. on Very Large Data Bases,
pages 997-1008, Berlin, Germany, September 2003.

[FK04] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Comput-
ing Infrastructure, 2nd Edition. Morgan Kaufmann, 2004.

[FKNTO02] 1. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration,
June 2002. http://www.globus.org/research /papers/ogsa.pdf.

[FKTO01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. The Intl. Journal of Supercomputer Applica-
tions and High Performance Computing, 15(3):200-222, August 2001.

[FLBCO02] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Query Processing of
Streamed XML Data. In Proc. of the ACM Intl. Conf. on Information and
Knowledge Management, pages 126-133, McLean, VA, USA, November 2002.

[FSWO1] M. F. Fernandez, J. Siméon, and P. Wadler. A Semi-monad for Semi-
structured Data. In Proc. of the Intl. Conf. on Database Theory, pages 263—
300, London, UK, January 2001.

[GAV04] German Astrophysical Virtual Observatory. http://www.g-vo.org, 2004.
[GGF05] The Global Grid Forum (GGF), 2005. http://www.ggf.org/.
[Glo04] The Globus Alliance. http://www.globus.org, 2004.

[GM82] H. Garcia-Molina. Elections in a Distributed Computing System. I[FEEFE
Transactions on Computers, C-31(1):48-59, January 1982.

[GMOS03] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams
with Deterministic Automata. In Proc. of the Intl. Conf. on Database Theory,
pages 173-189, Siena, Italy, January 2003.

[GS03] A. K. Gupta and D. Suciu. Stream Processing of XPath Queries with Pred-
icates. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,
pages 419-430, San Diego, CA, USA, June 2003.

[GO03] L. Golab and M. T. Ozsu. Processing Sliding Window Multi-Joins in Contin-
uous Queries over Data Streams. In Proc. of the Intl. Conf. on Very Large
Data Bases, pages 500-511, Berlin, Germany, September 2003.

[HCH*05] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The Architecture of PIER: an

Internet-Scale Query Processor. In Proc. of the Conf. on Innovative Data
Systems Research, pages 2843, Asilomar, CA, USA, January 2005.

194

Bibliography

[HFAEO03]

[HLRO3]

[HU79]

[THW02]

[JLSTO1]

[Kie02]

[KKKKO02]

[KLP75]

[KNV03]

[KRRO2]

[KS02]

[KS03]

M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elmagarmid. Schedul-
ing for shared window joins over data streams. In Proc. of the Intl. Conf. on
Very Large Data Bases, pages 297-308, Berlin, Germany, September 2003.

Q. Huang, C. Lu, and G.-C. Roman. Spatiotemporal Multicast in Sensor
Networks. In Proc. of the Intl. Conf. on Embedded Networked Sensor Systems,
pages 205217, Los Angeles, CA, USA, November 2003.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Publishing Company, 1979.

Z. G.Ives, A. Y. Halevy, and D. S. Weld. An XML Query Engine for Network-
Bound Data. The VLDB Journal, 11(4):380-402, 2002.

H. Jagadish, L. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A Tree
Algebra for XML. In Proc. of the Intl. Workshop on Database Programming
Languages, pages 149-164, Frascati, Italy, September 2001.

W. Kieflling. Foundations of Preferences in Database Systems. In Proc. of
the Intl. Conf. on Very Large Data Bases, pages 311-322, Hong Kong, China,
August 2002.

M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A Publish & Subscribe
Architecture for Distributed Metadata Management. In Proc. of the IEEE
Intl. Conf. on Data Engineering, pages 309-320, San José, CA, USA, February
2002.

H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a
Set of Vectors. Journal of the ACM, 22(4):469-476, 1975.

J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating Window Joins over
Unbounded Streams. In Proc. IEEE Conf. on Data Engineering, pages 341—
352, Bangalore, India, 2003.

D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An Online
Algorithm for Skyline Queries. In Proc. of the Intl. Conf. on Very Large Data
Bases, pages 275-286, Hong Kong, China, August 2002.

A. Kemper and B. Stegmaier. Evaluating Bestmatch-Joins on Streaming
Data. Technical Report MIP-0204, Universitiat Passau, 2002.

C. Koch and S. Scherzinger. Attribute Grammars for Scalable Query Pro-
cessing on XML Streams. In Proc. of the Intl. Workshop on Database Pro-
gramming Languages, pages 233-256, Potsdam, Germany, September 2003.

Bibliography 195

[KS04] J. Kramer and B. Seeger. PIPES - A Public Infrastructure for Processing and
Exploring Streams. In Proc. of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 925-926, Paris, France, June 2004.

[KSH*04] R. Kuntschke, B. Stegmaier, F. Hauslschmid, A. Reiser, A. Kemper, H.-M.
Adorf, H. Enke, G. Lemson, and W. Voges. Datenstrom-Management fiir e-
Science mit StreamGlobe. Datenbank Spektrum, (11):14-22, November 2004.

[KSKO05] R. Kuntschke, B. Stegmaier, and A. Kemper. Data Stream Sharing. Technical
Report TUM-10504, TU Miinchen, 2005. To Appear.

[KSKRO05] R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser. StreamGlobe: Pro-
cessing and Sharing Data Streams in Grid-Based P2P Infrastructures. In
Proc. of the Intl. Conf. on Very Large Data Bases, Trondheim, Norway, Au-
gust 2005.

[KSSS04a] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An
Optimizing XQuery Processor for Streaming XML Data. In Proc. of the Intl.
Conf. on Very Large Data Bases, pages 1309-1312, Toronto, Canada, August
2004.

[KSSS04b] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based
Scheduling of Event Processors and Buffer Minimization for Queries on Struc-
tured Data Streams. CoRR, ¢s.DB/0406016, 2004.

[KSSS04c] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based
Scheduling of Event Processors and Buffer Minimization on Structured Data
Streams. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 228-239,
Toronto, Canada, August 2004.

[LAO5] X. Li and G. Agrawal. Efficient Evaluation of XQuery over Streaming Data.
In Proc. of the Intl. Conf. on Very Large Data Bases, Trondheim, Norway,
August 2005.

[LF04] D. T. Liu and M. J. Franklin. GridDB: A Data-Centric Overlay for Scientific
Grids. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 600611,
Toronto, Canada, August 2004.

[LKK*97] P. C. Lockemann, U. Kélsch, A. Koschel, R. Kramer, R. Nikolai, M. Wallrath,
and H.-D. Walter. The Network as a Global Database: Challenges of Inter-
operability, Proactivity, Interactiveness, Legacy. In Proc. of the Intl. Conf.
on Very Large Data Bases, pages 567-574, Athens, Greece, August 1997.

[LMPO02] B. Ludéscher, P. Mukhopadhyay, and Y. Papakonstantinou. A Transducer-
Based XML Query Processor. In Proc. of the Intl. Conf. on Very Large Data
Bases, pages 227-238, Hong Kong, China, August 2002.

196

Bibliography

[LMSS95]

[LMT*05]

[LSO0]

IMF02]

[MLMO1]

IMRSRO1]

IMS03]

[MSHRO02]

[MWA+03]

INSGS+05]

A.Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries
Using Views. In Proc. of the ACM SIGACT-SIGMOD-SIGART Symp. on
Principles of Database Systems, pages 95-104, San José, CA, USA, May 1995.

J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and
Evaluation Techniques for Window Aggregates in Data Streams. In Proc. of
the ACM SIGMOD Intl. Conf. on Management of Data, Baltimore, Mary-
land, USA, June 2005.

H. Liefke and D. Suciu. XMill: An Efficient Compressor for XML Data.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages
153-164, Dallas, TX, USA, May 2000.

S. Madden and M. J. Franklin. Fjording the Stream: An Architecture for
Queries Over Streaming Sensor Data. In Proc. of the IEEE Intl. Conf. on
Data Engineering, pages 555-566, San José, CA, USA, February 2002.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages
using Formal Language Theory. In Extreme Markup Languages, Montreal,
Canada, August 2001.

H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized View
Selection and Maintenance Using Multi-Query Optimization. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pages 307-318, Santa
Barbara, CA, USA, May 2001.

A. Marian and J. Siméon. Projecting XML Documents. In Proc. of the Intl.
Conf. on Very Large Data Bases, pages 213-224, Berlin, Germany, September
2003.

S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman. Continuously
Adaptive Continuous Queries over Streams. In Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data, pages 49-60, Madison, WI, USA, June
2002.

R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S.
Manku, C. Olston, J. Rosenstein, and R. Varma. Query Processing, Approx-
imation, and Resource Management in a Data Stream Management System.

In Proc. of the Conf. on Innovative Data Systems Research, Asilomar, CA,
USA, January 2003.

M. A. Nieto-Santisteban, J. Gray, A. S. Szalay, J. Annis, A. R. Thakar, and
W. O’'Mullane. When Database Systems Meet the Grid. In Proc. of the Conf.
on Innovative Data Systems Research, pages 154-161, Asilomar, CA, USA,
January 2005.

Bibliography 197

[OGS04] OGSA-DAL http://www.ogsadai.org.uk, 2004.

[OKBO03] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Regular Path Expres-
sions with Qualifiers against XML Streams. In Proc. of the IEEE Intl. Conf.
on Data Engineering, pages 702-704, Bangalore, India, March 2003.

[PCO3] F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. In Proc. of
the ACM SIGMOD Intl. Conf. on Management of Data, pages 431-442, San
Diego, CA, USA, June 2003.

[PMTO03] V. Papadimos, D. Maier, and K. Tufte. Distributed Query Processing and
Catalogs for Peer-to-Peer Systems. In Proc. of the Conf. on Innovative Data
Systems Research, Asilomar, CA, USA, January 2003.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, New York, Berlin, etc., 1985.

[PTEFS03] D. Papadias, A. Tao, G. Fu, and B. Seeger. An Optimal and Progressive
Algorithm for Skyline Queries. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pages 467478, San Diego, CA, USA, June 2003.

[RDO1] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systems. In Proc. of the
IFIP/ACM Intl. Conf. on Distributed Systems Platforms, pages 329-350, Hei-
delberg, Germany, November 2001.

[RFH'01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable
Content-Addressable Network. In Proc. of the Conf. on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, pages

161-172, San Diego, CA, USA, 2001.

[RHO2] V. Raman and J. M. Hellerstein. Partial Results for Online Query Processing.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages
275-286, Madison, WI, USA, June 2002.

[RHKS02] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-Aware
Overlay Construction and Server Selection. In Proceedings of IEEE INFO-
COM, New York, USA, June 2002.

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. In
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 71-79,
San Jose, CA, USA, May 1995.

[Sel88] T. K. Sellis. Multiple-Query Optimization. ACM Trans. on Database Systems,
13(1):23-52, March 1988.

198

Bibliography

[SKO04]

[SK05]

[SKKO04]

[SMK*+01]

[SRMO5]

[SSDN02]

[SWK*02]

[Tar72]

[TEOO1]

[THO4]

[TIM*03]

B. Stegmaier and R. Kuntschke. StreamGlobe: Adaptive Anfragebearbeitung
und Optimierung auf Datenstromen. In GI Workshop Dynamische Informa-
tionsfusion, Ulm, Germany, September 2004.

S. Scherzinger and A. Kemper. Syntax-directed Transformations of XML
Streams. In Workshop on Programming Language Technologies for XML,
Long Beach, USA, January 2005.

B. Stegmaier, R. Kuntschke, and A. Kemper. StreamGlobe: Adaptive Query
Processing and Optimization in Streaming P2P Environments. In Proc. of
the Intl. Workshop on Data Management for Sensor Networks, pages 88-97,
Toronto, Canada, August 2004.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc.
of the Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 149-160, San Diego, CA, USA, 2001.

H. Su, E. A. Rundensteiner, and M. Mani. Semantic Query Optimization for
XQuery over XML Streams. In Proc. of the Intl. Conf. on Very Large Data
Bases, Trondheim, Norway, August 2005.

M. T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP — Hyper-
cubes, Ontologies, and Efficient Search on Peer-to-Peer Networks. In Proc. of

the Intl. Workshop on Agents and Peer-to-Peer Computing, pages 112-124,
Bologna, Italy, July 2002.

A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
XMark: A Benchmark for XML Data Management. In Proc. of the Intl. Conf.
on Very Large Data Bases, pages 974-985, Hong Kong, China, August 2002.

R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J.
Comput., 1(2):146-160, 1972.

K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline Compu-
tation. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 301-310,
Roma, Italy, September 2001.

I. Tatarinov and A. Halevy. Efficient Query Reformulation in Peer Data Man-
agement Systems. In Proc. of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 539-550, Paris, France, June 2004.

I. Tatarinov, Z. G. Ives, J. Madhavan, A. Y. Halevy, D. Suciu, N. N. Dalvi,
X. Dong, Y. Kadiyska, G. Miklau, and P. Mork. The Piazza Peer Data
Management Project. ACM SIGMOD Record, 32(3):47-52, 2003.

Bibliography 199

[TMSF03] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting Punctuation
Semantics in Continuous Data Streams. IEEFE Trans. Knowledge and Data
Engineering, 15(3):555-568, 2003.

[UF99] T. Urhan and M. J. Franklin. XJoin: Getting Fast Answers From Slow and
Bursty Networks. Technical report CS-TR-3994, University of Maryland,
College Park, February 1999.

[VABT99] W. Voges, B. Aschenbach, Th. Boller, H. Brauninger, U. Briel, W. Burkert,
K. Dennerl, J. Englhauser, R. Gruber, F. Haberl, G. Hartner, G. Hasinger,
M. Kiirster, E. Pfeffermann, W. Pietsch, P. Predehl, C. Rosso, J. H. M. M.
Schmitt, J. Triimper, and H. U. Zimmermann. The ROSAT All-Sky Survey
Bright Source Catalogue. Astronomy and Astrophysics, 349(2):389-405, July
1999.

[W3C04a] W3C. Extensible Markup Language (XML) 1.0 Third Edition (W3C Recom-
mendation 4 February 2004), 2004. http://www.w3.org/TR/2004/REC-xml-
20040204/

[W3C04b] W3C. XML Schema Part 0: Primer Second Edition (W3C Recommendation
28 October 2004), 2004. http://www.w3.org/TR/xmlschema-0/.

[(W3C05a] W3C. XML Query Use Cases (W3C Working Draft 4 April 2005), 2005.
http://www.w3.org/ TR /xquery-use-cases/ .

[W3C05b] W3C. XQuery 1.0: An XML Query Language (W3C Working Draft 04 April
2005), 2005. http://www.w3.org/ TR /xquery/.

[W3C05¢] W3C. XQuery 1.0 and XPath 2.0 Formal Semantics (W3C Working Draft 4
April 2005), 2005. http://www.w3.org/TR/xquery-semantics/ .

[(W3C05d] W3C. XQuery 1.0 and XPath 2.0 Functions and Operators (W3C Working
Draft 4 April 2005), 2005. http://www.w3.org/ TR /xpath-functions/.

[W3C05¢] W3C. XSL Transformations (XSLT') Version 2.0 (W3C Working Draft 4 April
2005), 2005. http://www.w3.org/TR/xslt20/.

[WA91] A. N. Wilschut and P. M. G. Apers. Dataflow Query Execution in a Paral-
lel Main-Memory Environment. In Proc. of the Intl. Conf. on Parallel and
Distributed Information Systems, Miami Beach, Florida, USA, pages 68-77,
December 1991.

[YG02] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing
in Sensor Networks. ACM SIGMOD Record, 31(3):9-18, September 2002.

200

Bibliography

[YGO3]

[YGMO3]

[YKL97]

[ZHS™04]

Y. Yao and J. Gehrke. Query Processing for Sensor Networks. In Proc. of the
Conf. on Innovative Data Systems Research, Asilomar, CA, USA, January
2003.

B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In Proc.
of the IEEFE Intl. Conf. on Data Engineering, pages 49-60, Bangalore, India,
March 2003.

Y. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized View Design
in Data Warehousing Environment. In Proc. of the Intl. Conf. on Very Large
Data Bases, pages 136145, Athens, Greece, August 1997.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubia-
towicz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, 22(1):41-53, January
2004.

	Title Page
	Contents
	1 Introduction
	1.1 Purpose of this Thesis
	1.2 Outline of this Work

	2 The StreamGlobe Data Stream Management System
	2.1 Motivation
	2.2 The StreamGlobe Architecture
	2.2.1 The Fundamentals: Open Grid Services Architecture
	2.2.2 Network Topology
	2.2.3 Peer Architecture
	2.2.4 Client Interface
	2.2.5 Metadata Management

	2.3 Subscription Evaluation
	2.3.1 Optimization Goals and Strategy
	2.3.2 Optimization Algorithm
	2.3.3 Query Execution Basics

	2.4 Further Example Scenarios
	2.5 Related Work
	2.5.1 Peer-to-Peer Data Management
	2.5.2 Data Stream Management and Processing
	2.5.3 Multi-Query Optimization and Execution
	2.5.4 Networking Aspects
	2.5.5 Grid Computing and E-Science Applications

	2.6 Discussion

	3 The FluX Streaming XQuery Processor
	3.1 Motivation
	3.2 Preliminaries
	3.3 Efficient Checking of Schema Constraints
	3.4 Query Language
	3.4.1 An XQuery Fragment: XQuery-
	3.4.2 Syntax and Semantics of FluX
	3.4.3 Safe Queries

	3.5 Translating XQuery- into FluX
	3.5.1 A Normal Form for XQuery-
	3.5.2 Rewriting Normalized XQuery- into FluX
	3.5.3 Examples

	3.6 Algebraic Optimization of XQuery-
	3.6.1 Rewrite Rules for Algebraic Optimization
	3.6.2 Examples

	3.7 Implementation
	3.7.1 The XSAX Parser
	3.7.2 Query Execution
	3.7.3 Buffer Management

	3.8 Extending the FluX Query Language
	3.8.1 Aggregate Functions
	3.8.2 Data Windows

	3.9 Performance Evaluation
	3.9.1 XSAX Parser
	3.9.2 Basic Performance Tests
	3.9.3 Pipelining Behavior and Buffer Allocation
	3.9.4 Extensions: Aggregate Functions and Data Windows

	3.10 Related Work
	3.11 Discussion

	4 The Best-Match Join
	4.1 Motivation
	4.2 Definition of the Best-Match Join Variants
	4.2.1 Comparing Pairs Using Partial Orders
	4.2.2 The Best-Match Join Operators
	4.2.3 Constrained Best-Match Joins

	4.3 Evaluating Best-Match Joins on Data Streams
	4.3.1 Best-Match Joins and Data Streams
	4.3.2 The Window-Based Approach
	4.3.3 Exploiting Fuzzy Orders on Data Streams
	4.3.4 I/O-Scheduling Using the -Grid-Order
	4.3.5 Dealing with Time-Stamped Data Streams

	4.4 Performance Evaluation
	4.5 Related Work
	4.6 Discussion

	5 Conclusion
	A Complete XQuery- Grammar
	B Translating XQuery- into FluX: The Rewrite Algorithm
	C FluX Benchmark Experiments
	C.1 Modified XMark Benchmark Queries
	C.2 Additional Benchmark Queries
	C.3 Benchmark Results

	D Translating XQuery- into FluX: The Rewrite System
	Bibliography

