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Abstract

Structured linear systems of equations arise in a variety of applications in scientific
computing. Image restoration problems and the solution of partial differential
equations, which are discussed in this work, are only two examples out of many.
We focus on classes of matrices which are related to generating functions: two-level
Toeplitz matrices and matrices belonging to a trigonometric algebra, such as two-
level circulant, tau, or DCT-III matrices. The main purpose of this thesis is the
development of multigrid methods for these structured matrix classes. Generating
functions are important for both the design of the methods and the accomplishment
of convergence proofs.

In the first chapters of this thesis, we review well-established results on struc-
tured matrices, iterative methods, and especially multigrid methods. Special at-
tention is given to the combination of the two fields. We describe several recent
developments and add some new results on DST-III matrices and on block systems.

The first main contribution to ongoing research presented in this work is the
development of multigrid methods for anisotropic structured linear systems. First,
we focus on systems where anisotropy occurs along coordinate axes. The multi-
grid methods are either based on a suitable combination of semicoarsening and full
coarsening steps or on especially designed smoothers. The use of generating func-
tions allows us to present convergence proofs and to carry over some of the results
to the more difficult case of linear systems with anisotropy in other directions.

Furthermore, we develop multigrid methods for linear systems corresponding
to generating functions with whole zero curves instead of isolated zeros. Typically,
these matrices arise when indefinite systems are solved with normal equations. We
introduce a Galerkin-based multigrid method and present a convergence proof for
the two-grid version. Since matrices become denser on each grid, this method is
more a theoretical model than a practical algorithm. However, it is the basis for
the development of all subsequent multigrid methods, which are constructed with
rediscretization and splitting techniques.

Eventually, we present the two above-mentioned applications of our multigrid
methods. First, we solve image deblurring problems with anisotropic, spatially-
invariant point spread functions. After introducing the principal techniques with
noise-free examples, we combine multigrid methods with regularization techniques
to restore pictures which are both blurred and affected by noise. The second
application is the solution of partial differential equations. After briefly discussing
anisotropic equations, we focus on the solution of PDEs whose discretization leads
to matrices whose generating functions have a zero curve. The most prominent
example for this type of PDEs is the Helmholtz equation with constant coefficients.
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Zusammenfassung

Strukturierte lineare Gleichungssysteme ergeben sich in einer Vielzahl von An-
wendungen im Bereich des Wissenschaftlichen Rechnens. Probleme im Bereich
der Bildwiederherstellung sowie das Lösen von partiellen Differentialgleichungen
werden in dieser Arbeit diskutiert. Wir konzentrieren uns dabei auf solche Matrix-
klassen, die eng mit erzeugenden Funktionen zusammen hängen: 2-level Toeplitz-
matrizen sowie Matrizen, die zu einer trigonometrischen Algebra gehören, wie z.B.
2-level zirkulante, tau oder DCT-III-Matrizen. Das zentrale Thema dieser Arbeit
ist die Entwicklung von Mehrgitterverfahren für diese Klassen von strukturierten
Matrizen. Dabei spielen erzeugende Funktionen sowohl bei der Entwicklung der
Verfahren als auch bei der Durchführung von Konvergenzbeweisen eine wichtige
Rolle.

In den ersten Kapiteln werden bereits bekannte Ergebnisse über strukturierte
Matrizen, iterative Verfahren und insbesondere Mehrgitterverfahren wiederholt.
Vor allem wird dabei die Verbindung der beiden Themengebiete diskutiert und
an einigen Stellen ergänzt, insbesondere für den Fall von DST-III-Matrizen und
Blockmatrizen.

Der erste größere Beitrag dieser Arbeit zur aktuellen Forschung ist die Ent-
wicklung von Mehrgitterverfahren für anisotrope strukturierte Systeme. Zuerst
werden Methoden für Systeme beschrieben, bei denen die Anisotropie entlang von
Koordinatenachen auftritt. Diese Methoden basieren entweder auf einer geeigneten
Kombination aus Semidiskretisierung und voller Diskretisierung oder auf speziell
angepaßten Glättern. Mit Hilfe der erzeugenden Funktionen ist es möglich, Kon-
vergenzbeweise zu führen und einige Ergebnisse auf den schwierigeren Fall, in dem
Anisotropie in anderen Richtungen auftritt, zu übertragen.

Außerdem werden Mehrgitterverfahren für solche lineare Gleichungssysteme
entwickelt, deren erzeugende Funktion anstelle isolierter Nullstellen eine ganze
Nullkurve besitzt. Diese Matrizen treten typischerweise beim Lösen von indefi-
niten Systemen mit Hilfe von Normalengleichungen auf. Wir stellen ein Galerkin-
basiertes Mehrgitterverfahren vor und präsentieren dafür einen Zweigitterbeweis.
Da die Bandbreite der Matrizen auf gröberen Gittern zunimmt, dient dieses Ver-
fahren eher als theoretisches Modell denn als praktischer Algorithmus. Es stellt
jedoch die Grundlage für alle folgenden Mehrgitterverfahren dar, die mit Hilfe von
Rediskretisierungs- und Splitting-Techniken entwickelt werden.

Schließlich präsentieren wir zwei Anwendungen für unsere Mehrgitterverfahren.
Zuerst sollen Probleme der Bildschärfeverbesserung mit anisotroper, ortsunabhän-
giger Point-Spread-Funktion gelöst werden. Zuerst führen wir die wesentlichen
Techniken anhand von Beispielen ein, in denen die Bilder nicht durch zusätzliches
Rauschen gestört sind. Dann verbinden wir Mehrgitterverfahren mit Regularisie-
rungsmethoden zur Wiederherstellung von Bildern, die sowohl durch Unschärfe
als auch durch Rauschen gestört sind. Die zweite Anwendung ist die Lösung von
partiellen Differentialgleichungen. Nach einer kurzen Diskussion ansiotroper Glei-
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chungen liegt der Schwerpunkt auf der Lösung von partiellen Differentialgleichun-
gen, deren Diskretisierung auf erzeugende Funktionen mit Nullkurven führt. Das
bedeutendste Beispiel für diesen Typ von Differentialgleichung ist die Helmholtz-
Gleichung mit konstanten Koeffizienten.
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Chapter 1

Introduction

Partial differential equations, image restoration, signal processing, integral equa-
tions - completely different problems in scientific computing lead to very large,
and in many cases sparse and structured, linear systems of equations. In the early
days of numerical mathematics, direct solvers with a complexity of O(n3) arith-
metic operations were applied to fairly small linear systems. Today, fast iterative
methods are used for solving larger and larger systems, especially those which are
highly structured. Multigrid methods are among the fastest algorithms, as they
make use of both sparsity and structure of the matrices. The work presented in
this thesis centers around three topics that interact with each other: multigrid
methods, structured linear systems of equations, and their applications.

1.1 Multigrid methods, structured linear systems, and
applications

In the year 2000, J. Dongarra and F. Sullivan [43] published a list containing those
ten algorithms that had the greatest influence on science and engineering in the
last century: the ’Top Ten Algorithms of the 20th century’. This list includes,
for example, the simplex method, the quicksort algorithm, Krylov subspace meth-
ods, and the Fast Fourier Transform. Surprisingly, it does not mention multigrid
methods. The latter are widely accepted as being among the fastest numerical
methods for the solution of partial differential equations, for integral equations, sig-
nal and image processing problems, and many other applications. Therefore, one
aim of this thesis is to demonstrate that multigrid methods are equally influential
on the field of scientific computing as other methods in the abovementioned top ten
list. Compared to other, more classical algorithms, the development and analysis
of multigrid methods is a rather young discipline. After the first groundbreak-
ing articles had been published in the late 1970s, the number of research groups
working on multigrid methods and the amount of published articles exploded in
the 1980s and 1990s. Today, multigrid methods are still a field of ongoing re-
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search. The main focus is on more sophisticated applications involving indefinite
or convection-dominated problems. Historically, the first multigrid methods were
all geometric, i.e. they were based on an underlying physical grid, which was used
for a discretization of the problem. Starting in the mid 1980s, researchers became
more and more interested in algebraically-oriented multigrid methods. Since these
do not require a real grid, they are purely based on the structure and the proper-
ties of the matrices. As we are not only interested in partial differential equations,
we will mostly follow the algebraic multigrid approach, which is the more general
one.

For large classes of linear systems, especially for Hermitian positive-definite
ones, multigrid methods are the fastest standalone iterative solvers. For more
involved problems, however, they are not as robust as other methods. Nevertheless,
multigrid methods are extremely useful for these applications, too: They serve as
preconditioners for other iterative solvers. Krylov subspace methods, for example,
are not just fast, but also very robust iterative solution techniques. For Hermitian
positive definite linear systems, the preconditioned conjugate gradient method
is one of the classical iterative solvers. The quality of the method essentially
depends on the choice of the preconditioner. If multigrid methods are used as
preconditioners, the excellent convergence properties of multigrid can be combined
with the robustness of Krylov subspace methods. The result is a method which
would truly have deserved a place in the top ten list.

Being iterative solution techniques, multigrid methods essentially demand that
matrix-vector products can be computed quickly. Moreover, prolongation and re-
striction operators as well as coarse grid matrices must be obtained efficiently.
Both requirements are met for highly structured linear systems . Faster im-
plementations of matrix-vector products are available if the structure is exploited
effectively. For example, if matrices are sparse, or if they are tridiagonal, penta-
diagonal, etc., matrix-vector products are computed very fast. But what kind of
structure do the matrices considered in this work have? All of them either have
(multilevel) Toeplitz structure or they belong to a trigonometric matrix algebra
such as circulant or tau matrices. Also block variants of these matrices will be
considered in this thesis. If matrices with these structures are solved with the help
of multigrid methods, the structure of the matrices is used to improve the quality
and the efficiency of the algorithms in the following two ways:

• Matrix-vector multiplications involving these structured matrices can be per-
formed significantly faster than with general matrices.

• The matrices correspond to generating functions (often also called symbols),
which contain valuable information about the matrices, especially on their
eigenvalues. Therefore, essential parts of the multigrid methods are described
in terms of generating functions. This is extremely helpful for choosing
adequate coarsening operators and for conducting convergence proofs.
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The first improvement is quite significant for the matrix classes that are of interest
here. For dense matrices, the complexity of a matrix-vector product is reduced
from O(n2) to O(n log n) arithmetic operations. If, in addition, the matrices are
sparse or banded, this complexity is further reduced to O(n) operations. Multigrid
methods for Toeplitz-like matrices or for matrices belonging to a trigonometric
algebra are a very recent development. The first article on this topic was published
by Fiorentino and Serra [52] in 1992, and most of the convergence results have been
obtained in the last five years.

Both sparse and dense matrices appear in applications , which are the third
main topic considered in this thesis. Structured matrices corresponding to gener-
ating functions arise in many applications. Typical examples come from the fields
of ordinary and partial differential equations, integral equations, Markov chains,
signal and image processing, to mention just a few. Several areas of applications
are described in the book of Ng [83] . For many of these applications, multigrid
methods belong to the fastest solvers. The two areas we are particularly interested
in are partial differential equations (PDEs) and image restoration problems.

• Discretization of large classes of PDEs leads to sparse and structured linear
systems. Especially if the PDEs have constant coefficients and if discretiza-
tion is done on regular grids, the resulting matrices belong to a class that is
related to generating functions. Although structured linear systems also arise
from discretization of parabolic and hyperbolic PDEs, we restrict ourselves
to the elliptic case here. Discretization of many boundary value problems
with elliptic PDEs results in matrices of Toeplitz or trigonometric algebra
type, depending on which kind of boundary condition is used. In this work,
we are mainly interested in two types of elliptic problems: on the one hand
Poisson-like equations, especially their anisotropic versions, and Helmholtz-
related equations on the other.

• The main goal of image restoration is to obtain the original image from
an observed image. An observed image can be blurred and, in addition,
affected by noise. Typical examples for this type of problem are found in
astronomy or in medicine. The blur results for example from looking at
an image through clouds or other objects, whereas the noise comes from
measurement or transmission errors. If the blur operator is spatially invariant
(i.e. if it does not depend on the position within the image), it is represented
by a structured matrix. Our aim then is to compute the original image x
from the blurred image b by solving the linear system

Ax = b + η , (1.1.1)

where η denotes the noise. By imposing certain boundary conditions, one
obtains a blurring matrix which is of two-level Toeplitz, circulant, or DCT-
III type. Assuming that there is no noise, these positive definite and ill-
conditioned linear systems are solved efficiently with multigrid methods.
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However, since the matrices are highly ill-conditioned, the systems are un-
stable with respect to noise, i.e. perturbations in b . Therefore, several
regularization techniques have been proposed in the literature.

1.2 Outline of the thesis

In the following, we wish to give a overview of the main parts of this thesis.
Chapter 2 and large parts of Chapter 3 review important, well-established results,
whereas Chapters 4 and 5 contain original results obtained in the course of this
work. Chapter 6 presents applications for the latter.

Chapter 2 introduces certain classes of structured matrices which are related
to generating functions. These include Toeplitz, multilevel Toeplitz, and block
Toeplitz matrices on the one hand, as well as matrices belonging to trigonometric
matrix algebras such as circulant and tau matrices on the other. We will emphasize
the strong connection, which will be used throughout this work, between generating
functions and matrices. Whereas matrices of a trigonometric algebra are efficiently
solved with direct methods, this is not true for Toeplitz matrices. Therefore, we
present the conjugate gradient method as an example of an iterative solver which
is highly efficient if a suitable preconditioner is used. In the last two sections of this
chapter, we discuss preconditioners for certain classes of Hermitian positive definite
(multilevel) Toeplitz systems. It becomes clear that, especially for ill-conditioned
multilevel Toeplitz systems, there are hardly any efficient preconditioners. These
limitations of the preconditioned conjugate gradient method leave plenty of room
for the development of multigrid methods for structured matrices. This will be
the central topic in the remainder of this thesis.

Chapter 3 gives an introduction to multigrid methods, particularly to multi-
grid methods for structured linear systems. We start with a rather general descrip-
tion of the main multigrid components, smoothing and coarse grid correction, and
of the structure of the iterations. Special emphasis is given to algebraic multigrid
and on the convergence theory of Ruge and Stüben. Moreover, we describe the
use of multigrid methods as a preconditioner for other iterative solvers. Since our
main goal is to develop multigrid methods for structured matrices and generat-
ing functions, we describe how matrix structure can be exploited. Moreover, we
discuss general prolongation and restriction operators in terms of generating func-
tions as well as criteria that should be fulfilled by a good multigrid algorithm. In
the next two sections, we review well-established results on multigrid methods for
matrices of a trigonometric algebra and their extension to Toeplitz problems. The
results for the DST-III algebra are an original contribution of this work. These
methods are restricted to generating functions with single isolated zeros. The two
final sections contain new results on multigrid methods for block Toeplitz systems
and their use for linear systems whose generating functions have multiple zeros.

Chapter 4 presents multigrid methods for anisotropic linear systems from the
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point of view of structured matrices and generating functions. We start with a
description of what anisotropy means in the context of generating functions and
why the multigrid methods from Chapter 3 lose their efficiency when applied to
anisotropic systems. In terms of generating functions, we divide anisotropic prob-
lems into two classes, depending on whether anisotropy occurs along coordinate
axes or in other directions. For each class, we develop multigrid methods based
both on a combination of semicoarsening steps and full coarsening steps, and multi-
grid methods based on more sophisticated smoothers. Multigrid methods for the
first class of problems have been developed in the context of partial differential
equations. Here, however, we present them in terms of generating functions and
their level curves. On the one hand, this allows us to perform convergence proofs
for two-grid methods, and for multigrid methods using W-cycles. On the other
hand, we can carry over most of the results for Toeplitz and circulant matrices to
the second class of problems, which are more difficult to solve. After a coordinate
transformation, which corresponds to a permutation of the rows and columns of
the matrices, we design multigrid methods either with a semicoarsening strategy
or with specialized smoothers. Due to the use of generating functions, we also
retain theoretical results in this more general context.

Chapter 5 is devoted to multigrid methods for positive-definite linear sys-
tems whose generating functions have a whole curve of zeros instead of isolated
zeros. These matrices appear, for example, when indefinite systems are solved
with normal equations. We start with an extension of the Galerkin-based multi-
grid methods from Chapter 3 for generating functions with a zero curve. Although
optimal convergence can be proved, this approach is computationally too expen-
sive. Therefore, we present a multigrid method based on rediscretization, where
the zero curve is only approximated on coarser grids. Since this method preserves
bandedness of the matrices on all levels, it is computationally acceptable. The only
disadvantage is that the number of grids is limited, because zero curves become sig-
nificantly larger on coarser grids. Therefore, we devise a splitting technique which
divides the original problem into a fixed number k of subproblems on coarser grids,
each of them corresponding to a generating function with isolated zeros. The split-
ting technique is then combined with the Galerkin approach, which means that
the Galerkin-based coarsening is used on the finest levels and splitting only on
coarser levels. In the next section, we discuss multigrid methods for anisotropic
linear systems whose generating functions have a whole curve of zeros. These
methods are constructed by combining the techniques from this chapter with the
multigrid methods developed in Chapter 4 . Eventually, we construct multigrid
preconditioners, using a slightly different splitting technique. It is based on an
approximation of the zero curve by k auxiliary problems with isolated zeros.

Chapter 6 contains examples for applications of the multigrid methods pre-
sented in Chapters 4 and 5 . The first application considered in this work are
image restoration problems, where the blur is of anisotropic nature. Under the
assumption that the blurred images are not contaminated with any noise, the
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multigrid methods from Chapter 4 are highly efficient for the restoration of such
pictures. In the presence of noise, regularization is necessary. After discussing
several strategies, we apply either the Tikhonov or the Riley regularization and
solve the resulting linear systems with multigrid methods.
The second application are partial differential equations. Discretization of anisotro-
pic PDEs of Poisson type with constant coefficients results in anisotropic linear
systems which can be analyzed with the methods from Chapter 4 . Depending on
the choice of boundary conditions, one obtains matrices belonging to the Toeplitz
class or to one of the trigonometric matrix algebras. When indefinite PDEs of
Helmholtz type are discretized and then solved with normal equations, one obtains
linear systems, the generating functions of which have a whole zero curve. Again,
the boundary conditions determine the matrix class. Both the rediscretization-
based multigrid method from Section 5.2 and the splitting technique from Section
5.3 are used to solve these problems.

Chapter 7 concludes this thesis by summarizing the main results which have
been obtained in the course of this work. Furthermore, we outline a number of
possible extensions of our results, which could be subject of further research.

The main results of Chapter 4 are contained in the articles [55] and [56] ,
whereas the results of Sections 5.1 and 5.2 are summarized in [57] . The rest of
Chapter 5 as well as Section 6.2 will appear in an upcoming paper.

16



Chapter 2

Structured linear systems of
equations and generating
functions

This chapter gives an overview of the classes of structured matrices which are
relevant for our work. All these matrices are connected to generating functions.
Throughout this thesis, generating functions will be used for the development of
iterative methods, especially of multigrid methods. The linear systems we are
most interested in can be divided into two different classes: multilevel Toeplitz
matrices and block Toeplitz matrices on the one hand, and matrices belonging to
a trigonometric algebra such as multilevel circulant or τ matrices on the other.
Matrices from these algebras are not only challenging problems in themselves,
they are also important as preconditioners for Toeplitz systems. Moreover, the
development of multigrid methods for Toeplitz systems in Chapter 3 will be based
on multigrid methods for matrix algebras.

At the beginning of this chapter, we introduce both types of matrices and
emphasize their strong connection to generating functions. Since in this work, we
mainly focus on Hermitian positive-definite matrices, these are subdivided into sev-
eral categories, depending on the corresponding generating functions. For Toeplitz
matrices, the applicability of direct solution methods is rather limited. Therefore,
we describe the preconditioned conjugate gradient method as an example of an
efficient iterative solver. In the last two sections of this chapter, we summarize the
main results which were obtained on preconditioners for Hermitian positive-definite
Toeplitz systems in the last 15 years. In particular, we describe the limitations of
the pcg method for ill-conditioned multilevel Toeplitz matrices. These results are
the starting point for the development of multigrid methods for structured linear
systems, both as standalone solvers and as preconditioners for the cg method.
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2.1 Toeplitz and block Toeplitz matrices

This section introduces the class of Toeplitz matrices, which is one of the classes
we are primarily interested in. We start with a description of one- and multilevel
Toeplitz matrices in the context of generating functions. Since we mainly focus
on two-level matrices, we consider the general multilevel case only briefly. In the
second part of this section, we introduce block Toeplitz matrices, which will be
helpful for the construction of certain multigrid preconditioners and solvers. In
the last part, we give a more detailed description of those Toeplitz matrices we
are mostly looking into: Hermitian positive-definite two-level Toeplitz matrices.
These can be divided into different classes, depending on the generating function.
The description of Toeplitz and multilevel Toeplitz matrices is, to a large extent,
based on the presentation in [62, 27, 83] , the one of block Toeplitz matrices on the
presentation in [96, 79, 71] .

2.1.1 The correspondence of (multilevel) Toeplitz matrices and
generating functions

A matrix Tn ∈ C
n×n is called Toeplitz if it is constant along its diagonals, i.e. if

it is of the form

Tn =

⎛
⎜⎜⎜⎜⎜⎝

t0 t−1 · · · t2−n t1−n

t1 t0 t−1 t2−n

...
. . .

. . .
. . .

...
tn−2 t1 t0 t−1

tn−1 tn−2 · · · t1 t0

⎞
⎟⎟⎟⎟⎟⎠ . (2.1.1)

Tn can be interpreted as the n-by-n principal submatrix of a singly-infinite matrix
T∞ , whose entries are given by Tl,m = tl−m . This matrix is connected to the
generating function

f(x) =
∞∑

k=−∞
tke

−ikx . (2.1.2)

On the other hand, we can define, for any function f ∈ L2[−π, π] , the sequence of
Toeplitz matrices (Tn[f ])n∈N , whose coefficients are the Fourier coefficients

tk =
1
2π

∫ π

−π
f(x)e−ikxdx (k ∈ Z) . (2.1.3)

of f . There is a strong connection between a generating function f and the
matrices of the sequence (Tn[f ])n∈N .

Remark 1 The following properties of a Toeplitz matrix Tn[f ] are derived from
the properties of the generating function f .
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• If f is a trigonometric polynomial f(x) =
q∑

k=−p

tke
−ikx , then Tn[f ] is a band

matrix with bandwidth ≤ p + q + 1 .

• If f is real-valued, then Tn[f ] is Hermitian.

• If, in addition, f is even, then Tn[f ] is real symmetric. This means that f
can be written as a cosine series.

• Toeplitz matrices do not form an algebra. For example, the product of
two Toeplitz matrices is not necessarily Toeplitz. However, they have the
following properties:

Tn[1] = In , Tn[λf ] = λTn[f ] (λ ∈ C) , Tn[f + g] = Tn[f ] + Tn[g] .

The most important relationship between generating function and Toeplitz matri-
ces concerns the spectra of the matrices. The following Theorem summarizes the
main results given by Grenander and Szegö on the bounds and the distribution of
the eigenvalues of Tn[f ] .

Theorem 1 (Grenander and Szegö,[62])
Let f be an integrable, real-valued function and (Tn[f ])n the sequence of Toeplitz
matrices generated by f . Let fmin and fmax denote the essential infimum and
essential supremum of f , respectively.

1. Then, for each n ≥ 1 , the eigenvalues λ
(n)
j (0 ≤ j ≤ n − 1) of Tn[f ] have

the following properties:

• λk ∈ [fmin, fmax] (1 ≤ k ≤ n)

• If fmax > fmin , then fmin < λmin(Tn[f ]) ≤ λmax(Tn[f ]) < fmax

• Furthermore, for n → ∞ , the extreme eigenvalues of Tn[f ] tend to fmin

and fmax , i.e.

lim
n→∞λ

(n)
min = fmin and lim

n→∞λ(n)
max = fmax . (2.1.4)

2. λ
(n)
j are equally distributed as f(2πj

n ) , i.e.

lim
n→∞

1
n

n−1∑
j=0

[
g(λ(n)

j ) − g(f(
2πj

n
))
]

= 0 (2.1.5)

for any continuous function g defined on [−π, π] .
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The first part of this theorem implies that the matrices Tn[f ] are Hermitian
positive-definite and ill-conditioned if f is nonnegative and has zeros. A more
detailed description of this fact will be given for two-level Toeplitz matrices in
Chapter 2.1.3 . The second part of Theorem 1 implies that for large n one can
hardly distinguish between the graph of f and a plot of the eigenvalues.

So far, we have described one-level Toeplitz matrices. However, all the results
hold for multilevel Toeplitz matrices as well. A two-level Toeplitz matrix of size
n = n1 · n2 is a block Toeplitz matrix of the form

Tn =

⎛
⎜⎜⎜⎜⎜⎝

T0 T−1 · · · T2−n1 T1−n1

T1 T0 T−1 T2−n1

...
. . .

. . .
. . .

...
Tn1−2 T1 T0 T−1

Tn1−1 Tn1−2 · · · T1 T0

⎞
⎟⎟⎟⎟⎟⎠ , (2.1.6)

where each block Tj is itself a Toeplitz matrix of size n2 . Two-level Toeplitz
matrices are also called block-Toeplitz-Toeplitz-block (BTTB) matrices. They
correspond to generating functions in two variables. (2.1.2) and (2.1.3) are replaced
by

f(x, y) =
∞∑

k=−∞

∞∑
l=−∞

tk,le
−i(kx+ly) (2.1.7)

and

tk,l =
1

(2π)2

∫ π

−π

∫ π

−π
f(x, y)e−i(kx+ly)dxdy (k, l ∈ Z) . (2.1.8)

A p-level Toeplitz matrix has Toeplitz structure on each level and corresponds to
a p-variate generating function. It is a matrix of size n = n1 · · · · · np .

Remark 2 In the multilevel case, the results of Remark 1 and Theorem 1 hold
unchanged. Most importantly, the eigenvalues are bounded by fmin and fmax ,
and for large n the minimum and maximum eigenvalues of Tn tend to fmin and
fmax .

2.1.2 Block Toeplitz matrices

In a BTTB matrix Tn[f ] , the number of blocks n1 and the size of the blocks n2

are variable, because a scalar generating function f(x, y) corresponds to a whole
sequence of matrices (Tn1n2 [f ])n1,n2∈N . Now, we introduce another class of matri-
ces which will be useful for the development of multigrid methods: the so called
block Toeplitz matrices, which are for example described in [93, 96, 79] . They
are connected to matrix-valued generating functions F : [−π, π] −→ C

k×k . Thus,
F (x) defines a sequence of matrices (Tn1·k[F ])n1 , which are of the form (2.1.6) on
the block level. The individual blocks, however, do not necessarily have structure,

20



but k is a fixed and usually small number . In the following, we assume that the
matrix F (x) is Hermitian. The block Tj is considered to be the Fourier coefficient

Tj =
1
2π

∫ π

−π
F (x)e−ikxdx (j ∈ Z) (2.1.9)

of the function F (x) , which is assumed to be L2-integrable on [−π, π] . (2.1.9)
implies that Tn1k[F ] is Hermitian if the k-by-k matrix F (x) is Hermitian.

The main results on the eigenvalues of Tn1k[F ] are extensions of the two parts
of Theorem 1 for the block case (k > 1) . They are summarized in the following
two theorems, which can be found in [96, 79] . The first of them gives upper and
lower bounds for the eigenvalues of Tn1k[F ] .

Theorem 2
Let f : [−π, π] −→ C

k×k be an Hermitian function in L2([−π, π]) with eigen-
value functions λj(x) . Let (Tn1k[F ])n1 denote the corresponding sequence of block
Toeplitz matrices, where the matrix Tn1k[F ] has eigenvalues λ

(n1,k)
j (1 ≤ j ≤ n1 ·k) .

Let mf and Mf be defined by

mf = ess inf
x∈[-π,π]

min
j=1,...,k

(λj(f(x))) , mf = ess sup
x∈[-π,π]

max
j=1,...,k

(λj(f(x))) .

Then the following holds:

1. The λ
(n1,k)
j lie in the interval [mf ,Mf ] .

2. If min
j=1,...,k

λj(x) is not essentially constant in x , then all λ
(n1,k)
j lie in (mf ,Mf ] .

3. If max
j=1,...,k

λj(x) is not essentially constant in x , then all λ
(n1,k)
j lie in [mf ,Mf ) .

The second theorem leads to an equal distribution of the eigenvalues.

Theorem 3
Let f(x) , (Tn1k[F ])n1 , λj(x) , and λ

(n1,k)
j be defined as in Theorem 2 . Then the

λ
(n1,k)
j are equally distributed as the λj(x) , i.e. for any continuous function G(x)

on R with bounded support, we obtain

lim
n→∞

1
n

n1k∑
j=1

G(λ(n1,k)
j ) =

1
2π

∫ π

−π

k∑
j=1

G(λj(F (x))dx) . (2.1.10)

Furthermore, we wish to introduce multilevel block Toeplitz matrices. These
have multilevel Toeplitz structure on the block level with unstructured blocks of
fixed size k . The results of Theorems 2 and 3 hold unchanged for these matrices.
In this work, we are mainly interested in two-level block Toeplitz matrices, i.e.
matrices which have BTTB structure on the block level and blocks of fixed size k .
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2.1.3 Classification of Hermitian positive-definite two-level Toe-
plitz matrices

In Section 2.1.1 , we have described the strong connection between (multilevel)
Toeplitz matrices and generating functions. Theorem 1 implies that a change
of sign in the function leads to indefinite matrices. There has been research on
indefinite Toeplitz systems [53] , but it is extremely difficult to find preconditioners
which are suitable for large classes of indefinite matrices. In this work, we are
mainly concerned with the solution of Hermitian positive-definite linear systems,
whose underlying generating function is nonnegative. Nevertheless, there is still
a huge variety of matrices that satisfy this condition. We now wish to achieve a
better understanding of the different types of two-level Toeplitz systems we have
to deal with in this thesis. Therefore, we divide these matrices into three different
classes, depending on the zeros of their generating functions:

(I) f is strictly positive, i.e. there exists a constant c with f(x, y) ≥ c > 0 . Due
to Theorem 1 the corresponding Toeplitz matrices have a smallest eigenvalue
λmin > c . Therefore, this class of linear systems is the only one where
matrices are well-conditioned.

(II) f has a single isolated zero of finite order in ]−π, π]2 . Since f is nonnegative,
the order of the zero is even. By Theorem 1 , the minumum eigenvalue of the
Toeplitz matrices tends to zero for large n . Moreover, Serra [94] has proved
that the condition number of Tn[f ] grows like O(n2ν) if the zero is of order
2ν .

(III) f has several isolated zeros of finite order in ] − π, π]2 .

(IV) f has a whole zero curve in ] − π, π]2 , i.e. infinitely many zeros which
form a smooth curve. The design of multigrid methods will turn out to be
considerably more difficult than for problems of class (II) or (III) .

We do not solve other types of Hermitian positive definite BTTB systems here.
These include systems corresponding to functions with zeros of infinite order or
functions which are zero on a subset of ] − π, π]2 with Lebesgue measure > 0 .

2.2 Matrices forming an algebra

In addition to Toeplitz systems, we focus on other types of structured matrices,
which are central to the course of this work. These include circulant and ω-
circulant matrices, tau matrices, DCT-III and DST-III matrices. Each of these
matrix types forms an algebra. This means that its members have more common
structure than Toeplitz matrices, and that the corresponding linear systems are
easier to solve. Therefore, they are not only useful as preconditioners for Toeplitz
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systems. It will also be effective to develop multigrid methods first for these
algebras of structured matrices, and extend them to the Toeplitz case later.

Matrices belonging to trigonometric algebras can be characterized and de-
scribed from three different points of view, which all contribute to a better under-
standing of the matrix classes. The structural and functional characterizations are
similar to the ones for the Toeplitz class, the algebraic characterization is new for
matrix algebras. The structural description is based on the pattern of the matri-
ces, whereas the functional characterization relies on the correspondence between
matrices and generating functions. An algebraic description for Toeplitz matri-
ces has only been possible in a very limited way. For the matrix algebras we are
interested in, it is based on a diagonalization of the matrices by fast trigonomet-
ric transforms. We will use aspects of all three characterizations to describe the
matrix algebras.

2.2.1 Circulant and ω-circulant matrices

Circulant matrices are described in much detail in the book by Davis [36] and
in the articles [27, 83] . They arise for example when periodic boundary condi-
tions are used in image processing or with elliptic partial differential equations.
Furthermore, they are important as preconditioners for Toeplitz systems. From a
structural point of view, every circulant matrix is a special Toeplitz matrix where
the first element of each row is equal to the last element of its preceding row. In
other words, it is of the form

Cn =

⎛
⎜⎜⎜⎜⎜⎝

c0 cn−1 · · · c2 c1

c1 c0 cn−1 c2

...
. . .

. . .
. . .

...
cn−2 c1 c0 cn−1

cn−1 cn−2 · · · c1 c0

⎞
⎟⎟⎟⎟⎟⎠ . (2.2.1)

From an algebraic point of view, the circulant class contains all matrices which
are diagonalized by the Discrete Fourier Transform (DFT), i.e. which have a
decomposition of the form

Cn = (Q(circ)
n )HΛnQ(circ)

n . (2.2.2)

Λn is the diagonal matrix containing the eigenvalues of Cn , and Q
(circ)
n is the

Fourier matrix, which is a unitary matrix with entries

[Q(circ)
n ]j,k =

1√
n

e2πijk/n (0 ≤ j, k ≤ n − 1) . (2.2.3)

The columns of Q
(circ)
n form an eigenvector basis for all circulant matrices of size

n . A direct consequence of the decomposition (2.2.2) is that the class of circulant
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matrices is an algebra and, most importantly, that the product of two circulant
matrices is again circulant. Furthermore, matrix-vector products involving Q

(circ)
n

and (Q(circ)
n )H can be computed in O(n log n) arithmetic operations with the FFT.

Since linear systems involving circulant matrices are solved with three FFTs, this
also requires only O(n log n) operations.

The functional characterization of circulant matrices can be given in two differ-
ent ways. The first of them is similar to the functional characterization of Toeplitz
matrices.

• For a given function f(x) , we can define a sequence of circulant matrices
(Cn[f ])n∈N using the Fourier coefficients of f . The coefficients from c−n/2 to
cn/2 are the matrix entries in the central n diagonals. The outer diagonals
are filled such that the matrix has circulant structure. In other words, the
circulant matrix of size n corresponding to eix is

Zn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1
1 0
0 1 0
...

. . .
. . .

. . .
. . .

...
0 1 0
· · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.2.4)

and all other circulant matrices of size n can be interpreted as polynomials
in Zn , whose coefficients are the Fourier coefficients c−n/2 to cn/2 of f .
Like Toeplitz matrices, circulant matrices are Hermitian if f is real-valued,
and symmetric if f is even. Mostly, we are interested in sparse matrices,
corresponding to generating functions which are polynomials with only a
small number of nonzero coefficients.

• The second functional description of circulant matrices is obtained from the
decomposition (2.2.2) . It can be shown that the eigenvalues in Λn are a
sampling of the function f(x) over the points xj = 2jπ

n (j = 0, . . . , n − 1) .
For example, the elementary matrix Zn from (2.2.4) is obtained from Λ with
λj = e2ijπ/n . One consequence of this functional characterization becomes
important when we consider ill-conditioned matrices. If f is zero at one of
the sampling points, then one of the eigenvalues of Cn[f ] is zero, and the
matrix is singular.

ω-circulant matrices form a slightly more general matrix algebra, which in-
cludes circulant matrices as a subalgebra. ω-circulant matrices are described for
example in [27, 83] . From a structural point of view, an ω-circulant matrix is
a Toeplitz matrix where the first element of each row is obtained by multiplying
the last element of the preceding row by eiθ with θ ∈ [−π, π] . Algebraically, an
ω-circulant matrix Wn of size n is defined by the decomposition

Wn = ΩnCnΩH
n = Ωn((Q(circ)

n )HΛnQ(circ)
n )ΩH

n . (2.2.5)
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Λn contains the eigenvalues of Wn , Q
(circ)
n is the Fourier matrix, and Ωn =

diag(1, ω1/n, . . . , ω(n−1)/n) with ω = eiθ . Of course, matrix vector products in-
volving ω-circulant matrices and the solution of linear systems with an ω-circulant
matrix can be computed in O(n log n) operations.

Multilevel versions of circulant and ω-circulant matrices are obtained by form-
ing the Kronecker product of one-level matrices. Multilevel circulant matrices cor-
respond to multivariate generating functions. In this thesis, we are primarily inter-
ested in two-level algebras. In the circulant case, these are called block-circulant-
circulant-block (BCCB) matrices. For the diagonalization of two-level matrices we
only need to change the subscripts in (2.2.2) and (2.2.5) . A BCCB matrix Cn is
diagonalized with the two-level Fourier matrix Q

(circ)
n = Q

(circ)
n1 ⊗Q

(circ)
n2 . For two-

level ω-circulant matrices, we use, in addition to Fn , the matrix Ωn = Ωn1 ⊗Ωn2 ,
where the parameters ω1 and ω2 can be chosen with different angles θ1 and θ2 .
Again, the eigenvalues in Λn are obtained as a sampling of f(x, y) over the points
(xj , yk) = (2ijπ

n1
, 2ikπ

n2
) . Again, this leads to a singular matrix if f is zero at one of

the points.

2.2.2 Tau matrices

Another matrix algebra related to fast trigonometric transforms is the class of
tau matrices, which are described for example in [9, 6, 51] . They are not only
important as preconditioners for Toeplitz systems. The development of multigrid
methods for Toeplitz matrices is essentially based on the results obtained for tau
matrices. Algebraically, the class of tau matrices is obtained by applying the
Discrete Sine Transform I (DST-I) to real diagonal matrices. A tau matrix τn is
defined as the product

τn = (Q(tau)
n )HΛnQ(tau)

n . (2.2.6)

Λn is the diagonal matrix containing the eigenvalues of τn , and Q
(tau)
n is the

orthogonal and symmetric DST-I matrix, which has the entries

[Q(tau)
n ]j,k =

2√
n + 1

sin
(

πjk

n + 1

)
(1 ≤ j, k ≤ n) . (2.2.7)

Again, the columns of Q
(tau)
n are an eigenvector basis for every tau matrix of size n .

Like the FFT, the DST-I has a fast implementation which requires only O(n log n)
operations. Therefore, computation of matrix-vector products and the solution of
a linear system can be computed in O(n log n) .

The structure of a tau matrix is closely related to a Toeplitz matrix, especially
if the matrix is sparse. A tau matrix can be expressed as the difference between
a symmetric Toeplitz matrix and a persymmetric Hankel matrix. Since we wish
to give a more detailed description of this fact, we also need to consider the func-
tional point of view. As tau matrices are real symmetric, generating functions are
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represented as a cosine series

f(x) =
∞∑

k=0

tk cos (kx) . (2.2.8)

For a given generating function f(x) , whose Fourier coefficients are known, the
tau matrix of size n is defined

τn[f ] =

⎛
⎜⎜⎜⎜⎝

t0 t1 · · · tn−1

t1 t0
. . .

...
...

. . .
. . . t1

tn−1 · · · t1 t0

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎜⎝

t2 · · · tn−1 0 0
... . .

.
0

tn−1 0 tn−1

0 . .
. ...

0 0 tn−1 · · · t2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.2.9)

Therefore, a tridiagonal τ matrix is also Toeplitz and vice versa. Another way
of expressing the correspondence between matrices and generating functions is to
relate the matrix

Yn =

⎛
⎜⎜⎜⎜⎝

0 1

1
. . .

. . .

. . .
. . . 1
1 0

⎞
⎟⎟⎟⎟⎠ (2.2.10)

to the function f(x) = 2 cos (x) . Then, every cosine polynomial can be expressed
by a sum of powers of Yn .

The second functional description is similar to the circulant case. The eigen-
values of a matrix τn[f ] , which appear in Λn[f ] , are again a sampling of the
generating function. Only the choice of sampling points xj = jπ

n+1 (j = 1, . . . , n) is
slightly different. The elementary tau matrix Yn from (2.2.10) has the eigenvalues
λj = 2cos jπ

n+1 .
Like in the circulant algebra, multilevel tau matrices are constructed by forming

the Kronecker product of one-level tau matrices. For the diagonalization of a two-
level matrix, we use Q

(tau)
n = Q

(tau)
n1 ⊗ Q

(tau)
n2 in (2.2.6) . From a functional point

of view, the eigenvalues in Λn are obtained by sampling f(x, y) over the points
(xj , yk) = ( jπ

n1+1 , kπ
n2+1) (j, k ∈ {1, . . . , n}) .

2.2.3 DCT-III and DST-III matrices

Finally, we wish to introduce two more trigonometric matrix algebras, the ones
related to the DCT-III and DST-III transforms. Matrices from these algebras are
constructed when certain boundary conditions are used with partial differential
equations or in image restoration applications. Matrices of the former algebra
are diagonalized by a discrete cosine transform, more specifically by the DCT-III
transform. This transform, which is described for example in [23, 28] , also has a
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fast implementation based on the FFT. The algebraic description of this matrix
class is given by the diagonalization

Rn = Q(dct3)
n Λn(Q(dct3)

n )H . (2.2.11)

Λn is the diagonal matrix containing the eigenvalues of Rn , and Q
(dct3)
n is the

orthogonal DCT-III matrix, which has the entries

[Q(dct3)
n ]j,k =

√
2 − δk,1

n
cos

(
π(k − 1)(2j − 1)

2n

)
(1 ≤ j, k ≤ n) , (2.2.12)

where δ1,1 = 1 and δk,1 = 0 if k 	= 1 . Again, the columns of Q
(dct3)
n are an

eigenvector basis for every DCT-III matrix of size n . From a structural point
of view, a DCT-III matrix can be written as the sum of a Toeplitz matrix and
a Hankel matrix. With the first functional description, this can be expressed in
more detail. Since we are only interested in real symmetric DCT-III matrices, the
generating function f(x) is a cosine series of the form (2.2.8) . The corresponding
DCT-III matrix Rn[f ] of size n is written as the sum

Rn[f ] =

⎛
⎜⎜⎜⎜⎝

t0 t1 · · · tn−1

t1 t0
...

...
. . .

. . . t1
tn−1 · · · t1 t0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 · · · tn−1 0

t2 . .
.

0 tn−1

... . .
.

. .
.

. .
. ...

tn−1 0 . .
.

. .
.

t2
0 tn−1 · · · t2 t1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2.13)

The second functional point of view is again related to the eigenvalues of the
matrix Rn[f ] , which appear in Λn[f ] . This time they are a sampling of the
generating function at the points xj = jπ

n (j = 0, . . . , n − 1) . As for circulant and
tau matrices, there is also an elementary matrix Wn which generates the DCT-III
algebra of size n , and which belongs to the generating function f(x) = 2 cos (x) :

Wn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1 0
. . .

. . .
. . .

. . .

. . . 0 1
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2.14)

The last trigonometric algebra we want to present in this thesis contains the
matrices obtained with the DST-III transform, which is a slightly different discrete
sine transform. A matrix of this class

Sn = (Q(dst3)
n )HΛnQ(dst3)

n (2.2.15)
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is obtained by orthogonal transformation with Q
(dst3)
n from the diagonal matrix Λn

containing the eigenvalues of Sn . Q
(dst3)
n is the orthogonal DST-II matrix, which

has the entries

[Q(dst3)
n ]j,k =

√
2 − δk,n

n
cos

(
π(j − 1)(2k − 1)

2n

)
(1 ≤ j, k ≤ n) , (2.2.16)

where δn,n = 1 and δk,n = 0 if k 	= n . Again, the columns of Q
(dst3)
n are an

eigenvector basis for every DST-III matrix of size n . From a structural point
of view, the matrices in this algebra are very similar to the ones belonging to
the DCT-III algebra. In (2.2.13), one has to replace the plus sign by a minus
sign to obtain the matrix Sn as a Toeplitz-minus-Hankel matrix. The eigenvalues
of Sn[f ] are obtained by sampling the generating function f(x) over the points
xj = jπ

n (j = 1, . . . , n) . The elementary matrix generating the DST-III algebra
and corresponding to f(x) = 2 cos (x) is of the form

Vn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1

1 0
. . .

. . .
. . .

. . .

. . . 0 1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2.17)

Again, multilevel DCT-III and DST-III matrices are constructed by forming
the Kronecker product of the corresponding one-level matrices. For the diagonal-
ization of a two-level matrix, we use Q

(dct3)
n = Q

(dct3)
n1 ⊗ Q

(dct3)
n2 in (2.2.11) and

Q
(dst3)
n = Q

(dst3)
n1 ⊗ Q

(dst3)
n1 in (2.2.15) . From a functional point of view, the

eigenvalues in Λn[f ] are obtained by sampling f(x, y) over the points (xj , yk) =
( jπ

n1+1 , kπ
n2+1) (j, k ∈ {1, . . . , n}) .

2.3 Solution of structured linear systems with direct

methods

The first solution methods for structured linear systems of equations were direct
ones. Whereas unstructured linear systems are solved in O(n3) arithmetic opera-
tions with Gaussian elimination or Cholesky factorization, the classes of matrices
we have described so far can be solved much faster. Concerning efficiency, we have
to distinguish between Toeplitz matrices and matrices belonging to a trigonometric
algebra.

Fast direct solvers requiring only O(n log n) operations exist for all trigono-
metric algebras presented in Chapter 2.2 . These solvers are based on fast imple-
mentations of the trigonometric transforms. The FFT, which is needed for the
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solution of circulant matrices, is described in much detail in Van Loan’s book [77] ,
the other transforms can be reduced to FFTs. A linear system Anx = b is solved
in the following three steps:

• Apply the fast transform to both b and the first column of An , which gives
the vectors bt and at .

• Perform componentwise division of bt by at , which results in a vector xt .

• Compute x by application of the fast inverse transformation to xt .

Therefore, three fast transforms plus O(n) operations are necessary for the solution
of a linear system. For dense matrices, the same number of operations is necessary
to compute a matrix-vector product Anx . Here, the componentwise division in
the second step is replaced by a componentwise multiplication. Thus, for dense
matrices, no iterative solver which is based on matrix-vector multiplications can be
faster than a direct solver. Only for banded matrices with small bandwidth, where
matrix-vector multiplication is carried out in O(n) operations, iterative methods
can be an improvement. We will come back to this idea when we describe multigrid
methods in Chapter 3 .

The situation is significantly more difficult for Toeplitz matrices. Whereas
matrix-vector products involving Toeplitz matrices can be computed in O(n log n)
operations (as will be described in the subsequent subsection), there is no straight-
forward algorithm for a fast direct solution of Toeplitz systems. Here, we only give
a very brief overview of the development of direct methods for Toeplitz systems.
A detailed description of these methods can be found in [27, 83, 74] . Levinson [76]
was the first who developed an O(n2) algorithm. His method was improved to a
complexity of 3n2 operations by Trench [111] and Zohar [118] . These algorithms
start with a 1×1 system and recursively compute the solution of the larger systems
with the so called Szegö recurrence relation. In each step, the algorithm requires
the invertability of a principal submatrix of Tn . In the 1980s the first superfast
direct solvers with a complexity of O(n log2 n) were developed. These methods
can be divided into two classes, depending on the fundamental idea on which they
are based. The methods of Bitmead and Anderson [11] and Morf [80] are based
on the fast Cholesky factorization for Toeplitz matrices and on the concept of dis-
placement rank, which was introduced in [73] . The methods of Brent et al. [18] ,
Musicus [81] , and Ammar and Gragg [1] use a generalized Schur algorithm. The
main problem of all these methods is that they break down if Tn has a singular or
ill-conditioned submatrix. Several look-ahead algorithms have been developed to
get rid of this problem. References for these algorithms and for further research
on stability issues of direct Toeplitz solvers can be found in [83] .
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2.4 Iterative solution of Toeplitz systems

Whereas linear systems with matrices stemming from trigonometric algebras are
solved in O(n log n) operations with direct methods, no such algorithm exists for
Toeplitz matrices. For the iterative solution of a linear system, however, the most
time-consuming part are matrix-vector products. There are two different ways to
implement matrix-vector products involving Toeplitz matrices Tn in O(n log n) ,
which are e.g. described in [83] . The first method embeds Tn into a circulant
matrix of size 2n , and computes the matrix-vector product Tnx with two FFTs

of size 2n in O(n log n) . This is done by choosing Bn such that
(

Tn Bn

Bn Tn

)
is

circulant, and then computing Tnx in(
Tn Bn

Bn Tn

) (
y
0

)
=

(
Tnx
∗

)

with the FFT. The other method makes use of the fact that each Toeplitz matrix
can be written as a sum of a circulant and a skew-circulant matrix. Since for
both matrix types, a matrix-vector product is computed with two FFTs, a total
of 4 FFTs of size n is necessary to perform the multiplication Tnx . For banded
Toeplitz systems, a matrix-vector product is even computed in O(n) operations.
For multilevel Toeplitz matrices Tn , computation of a matrix-vector product has
the same computational cost, because multilevel versions of the fast transforms
are applied.

The most expensive part in iterative methods is usually the computation of
matrix-vector products. Since we are mainly interested in positive definite matri-
ces, the conjugate gradient method is one of the fastest solvers. When no precondi-
tioner is used, one matrix-vector product must be computed in each iteration. This
implies that Toeplitz systems are solved in O(n log n) if and only if the conjugate
gradient method converges after a constant number of iterations. In the following,
we describe the conjugate gradient method and its convergence properties. Since
the desired convergence results are only obtained with the use of preconditioners,
we will state criteria on how such a preconditioner must be chosen.

2.4.1 The conjugate gradient method

Krylov subspace methods belong to the fastest iterative solvers for linear systems
Anx = b . For positive definite matrices, the conjugate gradient (cg) method is the
most frequently used iterative solution technique. It was developed by Hestenes
and Stiefel [68] , and it is described in detail in [58, 59, 67, 74] . The method
is based on the idea that the solution of the linear system is equivalent to the
minimization of the function

f(x) =
1
2
xHAnx − bHx , (2.4.1)
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which has the gradient Δf(x) = Anx − b . Each iteration of the algorithm follows
the same pattern. Starting with an initial guess x0 , the following steps are carried
out for k = 0, 1, 2, . . . , until the residual rk = b −Anxk is below a given tolerance
TOL:

• Choose a search direction dk .

• Solve the 1D minimization problem αk = minα f(xk + αdk) .

• Compute the new iterate xk+1 = xk + αkdk .

The simplest method following this strategy is the method of steepest descent.
Since f decreases most rapidly in the direction of the negative gradient −Δf(x) ,
dk is chosen to be the residual rk = b − Anxk . However, this simple choice is not
practical, because for large and ill-conditioned An , many search directions run in
parallel, and convergence becomes prohibitively slow. Therefore, the cg method
uses a projection of rk such that all search directions dk are An-conjugate, i.e.
dH

j Andk = 0 for j 	= k . It starts with d0 = r0 , and then obtains dk+1 from
rk+1 as the result of Schmidt’s orthogonalization procedure applied to rk+1 and
span(d0, . . . , dk) . Because the dj are pairwise conjugate, this reduces to

dk+1 = rk+1 + βkdk ,

where βk is derived from 〈dk+1, dk〉 = 0 :

βk+1 =
rH
k+1rk+1

rH
k rk

.

Then

αk = − rH
k rk

dH
k Andk

is computed in order to minimize f(x) along dk . Now, the conjugate gradient
method for the solution of the linear system Ax = b can be stated as follows:

Algorithm 1 (Conjugate Gradient Method)
make an initial guess x0

d0 = r0 = b − Ax0

for k = 0, 1, 2, . . .
αk = − rH

k rk

dH
k Adk

xk+1 = xk − αkdk

rk+1 = rk − αkAdk

if rk+1 = 0 then STOP

βk+1 =
rH
k+1rk+1

rH
k rk

dk+1 = rk+1 + βk+1dk

end
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From Algorithm 1 we see that the computational cost is dominated by the matrix-
vector product. Since this can be done with FFTs, the total cost of one iteration is
O(n log n) operations. In the banded case, the complexity reduces to O(n) . Thus,
we need to carry out a convergence analysis in order to find out under which
circumstances the cg method converges after O(1) iterations.

2.4.2 Convergence results and the use of preconditioners

A very general convergence analysis of the cg method is carried out in [5] . It only
requires that A is positive definite and that the condition number κ(A) = λmax

λmin
is

known. The main result is stated in the following theorem.

Theorem 4 (Axelsson and Barker, [5])
Let A be an Hermitian positive definite matrix with condition number κ(A) , and
let xmin be the exact solution of the linear system Ax = b . Then, the error of the
k-th iterate xk satisfies

‖xmin − xk‖A ≤ 2‖xmin − x0‖A

(√
κ(A) − 1√
κ(A) + 1

)k

. (2.4.2)

For Toeplitz matrices, this estimate can be written in terms of generating functions.
Application of Theorem 1 to (2.4.2) leads to

‖xmin − xk‖A ≤ 2
(√

fmax −√
fmin√

fmax +
√

fmin

)k

. (2.4.3)

If there is more information available about the distribution of the eigenvalues
than just the values of λmin and λmax , one obtains better bounds for the error
than the one from Theorem 4 . A much stronger result holds under the assumption
that the eigenvalues of A are clustered around 1 . That means all eigenvalues are
in the interval [1− ε, 1+ ε] , except for a few outlying ones. The following theorem
shows that in this case, the cg method converges very fast.

Theorem 5 (Kailath and Sayed, [74])
Let A be an Hermitian positive definite matrix whose eigenvalues λj satisfy the
condition

0 < δ ≤ λ1 ≤ · · · ≤ λi ≤ 1 − ε ≤ λi+1 ≤ · · · ≤ λn−j

≤ 1 + ε ≤ λn−j+1 ≤ · · · ≤ λn . (2.4.4)

Then we have

‖xmin − xk‖A ≤ 2‖xmin − x0‖A

(
1 + ε

δ

)i

εk−i−j (k ≥ i + j) . (2.4.5)
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In the following, these two theorems shall be applied to Toeplitz matrices. Ac-
cording to Theorem 1 , the condition number of a Toeplitz matrix depends on the
generating function. Thus, for strictly positive f , the condition number is low,
and Theorem 4 gives a satisfactory bound for the convergence rate. However, the
clustering property of the eigenvalues, which is a prerequisite for the application
of Theorem 5 , does not hold for most Toeplitz matrices at all. By Theorem 1 ,
the eigenvalues of Tn[f ] are equally distributed as f(2πj

n ) . Therefore, the original
linear system Tnx = b must be replaced by another Hermitian positive definite
system with the same solution x and with better spectral properties. This is done
by choosing a preconditioner Pn and formally multiplying its inverse to both sides
of the equation:

P−1
n Tnx = P−1

n b .

The goal is to choose Pn such that the spectrum of P−1
n Tn is clustered, or the con-

dition number κ(P−1
n Tn) of the preconditioned matrix is close to 1 . The following

two properties characterize a good preconditioner.

• Preconditioners with clustered spectrum at 1 are often called superlinear and
the cg method applied to P−1

n Tn is said to converge superlinearly. Superlin-
earity holds if the eigenvalues of P−1

n Tn − In have a proper cluster at 0 , i.e.
if for any ε > 0 , the number of eigenvalues > ε , denoted γ(ε) , is O(1) . If
γ(ε) = o(n) the cluster is denoted general, and the preconditioner sublinear.

• Independent of the clustering property, a preconditioner is called optimal if
the eigenvalues of Tn and Pn are spectrally equivalent. This property holds
if and only if all eigenvalues of P−1

n Tn lie in the interval [α, β] with 0 < α
and β < ∞ .

If a preconditioner satisfies both superlinearity and optimality, the cg method
applied to the preconditioned system is expected to have excellent convergence
properties. In the remainder of this chapter, we summarize the most important
preconditioners which were developed for both well-conditioned and ill-conditioned
Toeplitz systems. Special emphasis is put on superlinearity and optimality.

2.5 Preconditioners for one-level Toeplitz matrices

As we have pointed out in the previous section, the preconditioner Pn must be
a matrix which can be inverted in O(n log n) operations, and which leads to a
clustered spectrum of P−1

n Tn . The first requirement is met by all matrix alge-
bras, and it turns out that for a wide range of positive definite one-level Toeplitz
systems, many different algebra preconditioners also meet the second requirement.
These are especially useful for Toeplitz systems which are well-conditioned. There-
fore, we begin this chapter with a description of algebra preconditioners for well-
conditioned Toeplitz matrices. In particular, we emphasize circulant precondition-
ers. In the second part, we present preconditioners for ill-conditioned Toeplitz
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systems. These are either modified algebra preconditioners or Toeplitz matrices
themselves.

2.5.1 Algebra preconditioners for well-conditioned Toeplitz ma-
trices

Preconditioners taken from a trigonometric matrix algebra are particularly inter-
esting for Toeplitz matrices, because they are inverted in O(n log n) with the FFT.
Circulant preconditioners are not just the oldest class of algebra preconditioners
for Toeplitz systems Tn , but still one of the most popular for matrices of type
(I) from Section 2.1.3 , i.e. for matrices with strictly positive generating function.
A comprehensive presentation of circulant preconditioners is for example given in
[27, 83] . The first circulant preconditioner cS(Tn) was developed by G. Strang
[107] . cS(Tn) is constructed by copying the central diagonals of Tn and reflect-
ing them to complete the circulant structure. For an n-by-n Hermitian Toeplitz
matrix Tn the diagonals sj of Strang’s preconditioner cS(Tn) = [sk−l]0≤k,l<n are
defined by

sj =

⎧⎪⎨
⎪⎩

tj 0 ≤ j ≤ �n/2� ,

tj−n �n/2� < j < n ,

sn+j 0 < −j < n .

(2.5.1)

It was shown by R. Chan [20] that cS(Tn) minimizes ‖Cn − Tn‖1 and ‖Cn −
Tn‖∞ over all Hermitian circulant matrices Cn . Moreover, Chan proved that the
preconditioner is superlinear if Tn corresponds to a strictly positive generating
function in the Wiener class. T. Chan [34] developed a circulant preconditioner
cF (Tn) which minimizes

‖Cn − Tn‖F (2.5.2)

over all circulant matrices Cn , where ‖ · ‖F denotes the Frobenius norm. The
diagonals of cF (Tn) are defined by

cj =

{
(n−j)tj+jtj−n

n 0 ≤ j ≤ n − 1 ,

cn+j 0 < −j < n − 1 .
(2.5.3)

In [32] superlinearity of cF (Tn) is proved for 2π-periodic continuous functions
which are strictly positive. Furthermore, the preconditioner is positive definite if
Tn is positive definite [26] . For the Strang preconditioner, this property only holds
for large n . The so-called superoptimal preconditioner cT (Tn) of Tyrtyshnikov
[113] is the minimizer of

‖In − C−1
n Tn‖F (2.5.4)

over all non-singular circulant matrices Cn . It is given by

cT (Tn) = cF (TnTH
n )cF (Tn)−1 . (2.5.5)
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The superoptimal preconditioner is superlinear for positive functions in the Wiener
class, and preserves positive definiteness. The same properties are proved for a
preconditioner developed by Huckle [70] , which minimizes

‖In − C−1/2
n TnC−1/2

n ‖F . (2.5.6)

A unifying approach for the construction of circulant preconditioners is presented
in [31] . Most circulant preconditioners can be constructed using convolution prod-
ucts of well-known kernels with the generating function f . For a given kernel Kn(x)
defined on [0, 2π] , Cn is the circulant matrix with eigenvalues

λj(Cn) = (Kn ∗ f)(
2πj

n
) , 0 ≤ j < n . (2.5.7)

In [31] , superlinearity is proved for all preconditioners constructed from (2.5.7)
with Kn ∗ f tending to f , uniformly on [−π, π] . The classical preconditioners
of Strang, T. Chan, and Huckle can all be obtained with this approach by using
Dirichlet and Fejér kernels.

Not only circulant preconditioners have been developed for Toeplitz matrices.
Several other algebras can be used for the construction of superlinear precondition-
ers. Two different tau preconditioners are presented by Bini and Di Benedetto [8] .
The so-called natural preconditioner is simply τ [f ] , whereas the optimal precondi-
tioner minimizes ‖τ−Tn‖F over all tau matrices τ . In [97], a proof of superlinearity
is given for both preconditioners under the assumption that Tn belongs to a con-
tinuous, 2π-periodic functions f > 0 . Bini and Favati [10] proved superlinearity
for their optimal Hartley preconditioner. R. Chan et. al. [25] obtained the same
result for their preconditioner based on the cosine transform.

2.5.2 Preconditioners for ill-conditioned Toeplitz matrices

Toeplitz matrices whose generating functions have zeros are ill-conditioned. The
preconditioners from Section 2.5.1 cannot simply be applied to these matrices. Tyr-
tyshnikov [114] proved that both the Strang and the T. Chan preconditioner do
not converge superlinearly when applied to an ill-conditioned matrix. He showed
that cF (Tn)−1Tn and cT (Tn)−1Tn have O(nν/(ν+μ)) and O(nν/(ν+1)) eigenvalues
outside [1 − ε, 1 + ε] , respectively. ν denotes the order of the zeros of f and μ
the degree of smoothness. In general, it is very difficult to find good circulant
preconditioners, but Potts and Steidl [88] presented a superlinear ω-circulant pre-
conditioner Wω,n(f) . They chose a number ξn ∈ [−π, π] with f(2πj/n + ξn) > 0
for 0 ≤ j < n . The matrix containing the eigenvalues is defined

Λn = diag (f(ξn), f(2π/n + ξn), . . . , f(2(n − 1)π/n + ξn)) , (2.5.8)

and ω is chosen ω = e−iξn . In [88] , the authors proved that the eigenvalues
of Wω,n(f)−1Tn(f) are clustered around 1 , and therefore the preconditioner is
superlinear.
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Several Toeplitz preconditioners with small bandwidth have been proposed for
ill-conditioned Toeplitz systems. The first one was presented by R. Chan [21] .
It is based on the idea that f is approximated by a trigonometric polynomial
of fixed degree matching the zeros of f . If f has a single zero x0 in ] − π, π]
of order 2ν , then the polynomial (2 − 2 cos (x − x0))ν is chosen. If f has sev-

eral zeros, the polynomial is the product
k∏

j=1
(2 − 2 cos (x − xj))νj . The condition

number is bounded, but the eigenvalues of the preconditioned system are not clus-
tered. Thus, the preconditioner is optimal, but not superlinear, and therefore the
constant O(1) in the number of iterations is expected to be rather high. Chan
and Tang [29] developed a preconditioner which has slightly more bandwidth, but
minimizes the relative error ‖(f − p)/f‖∞ in addition to matching the zeros of f .
The minimization is done with a modified Remez algorithm, which can become
computationally too expensive. Based on this idea, Serra [92] proposed a superlin-
ear band Toeplitz preconditioner. Instead of the Remez algorithm, his method is
based on interpolating Chebyshev polynomials, which can be done in O(n log n) .
Noutsos and Vassalos [87] presented a preconditioner which is the product of three
band Toeplitz matrices. The preconditioned system is optimal in the sense that its
condition number is bounded. Serra also proposed a tau preconditioner [97] which
applies the Sherman-Morrison-Woodbury formula to the preconditioned system
and reaches superlinear behavior for large classes of matrices.

2.6 Difficulties with preconditioners for multilevel Toe-

plitz matrices

In the previous section, several different preconditioners have been presented for
one-level Toeplitz matrices. Even in the ill-conditioned case, where f has a fi-
nite number of zeros, superlinear convergence could be achieved for some of them.
Obviously, one hopes to carry over many of these results to multilevel Toeplitz ma-
trices, but unfortunately this is not possible for most of the preconditioners studied
so far. First, we present negative results concerning superlinear and optimal con-
vergence. Then, in the last part of this section, we describe what preconditioners
have been developed and used under these restrictions.

2.6.1 Negative results for multilevel matrix algebra precondition-
ers

For the solution of Toeplitz systems with the PCG method, the development of
superlinear or at least optimal preconditioners is the main field of research activity.
Recall from Chapter 2.4.2 that a preconditioner is called superlinear if P−1

n Tn has
clustered eigenvalues around 1 , and optimal if the condition number of P−1

n Tn is
bounded. Preconditioners from trigonometric matrix algebras were most popular
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for one-level Toeplitz matrices, because they are inverted in O(n log n) operations
with fast trigonometric transforms. For d-level Toeplitz systems with d > 1 ,
however, they cannot be applied with the same efficiency. The first negative result
was obtained by Serra and Tyrtyshnikov [104] , who state that no circulant and
circulant-like preconditioner can be superlinear. The result is extended in [105,
100] , showing that no preconditioner from a trigonometric algebra is superlinear,
not even if the generating function f is strictly positive. It is shown that γn(ε) ,
the number of eigenvalues of P−1

n Tn lying outside [1 − ε, 1 + ε] , is bounded from
below by

γn(ε) ≥ c(ε)n
d∑

k=1

1
nk

, (2.6.1)

where nk is the k-th partial dimension of Tn , i.e. n = n1 · . . . · nd . This is not at
all satisfactory if d becomes larger. From [95] we know that this bound is sharp,

i.e. that for example multilevel circulant preconditioners have O(n
d∑

k=1

1
nk

) outliers.

For d = 2 , this implies that the number of outliers is O(
√

n) , which can still be
acceptable if the condition number can be bounded independent of n .

If superlinearity cannot be reached for multilevel preconditioners from algebras,
we wish to guarantee at least optimality, i.e. spectral equivalence of Tn and Pn .
Following [84] , Tn and Pn are called spectrally equivalent if all eigenvalues of
P−1

n Tn are contained in the interval [α, β] , independent of n with 0 < α ≤ β < ∞ ,
and essentially spectrally equivalent if there are only a constant number of outliers
> β . In [84] and [85] , it is proved that for most important classes of multilevel
Toeplitz matrices, preconditioners from trigonometric algebras satisfy none of the
two properties.

2.6.2 Multilevel Toeplitz preconditioners

The negative results of the previous subsection state that no superlinear precondi-
tioner from a trigonometric algebra can be found for BTTB systems, and that, in
the ill-conditioned case, not even an optimal algebra preconditioner exists. Accept-
ing these facts, one can nevertheless choose a multilevel circulant or ω-circulant
preconditioner. In the two-dimensional case, the results are still acceptable for
many linear systems. If the generating function is strictly positive, it is, for some
preconditioners, possible to show that

• the eigenvalues of the preconditioned system P−1
n Tn are inside an interval

[c1, c2] , independent of n

• P−1
n Tn has a general cluster at 1 , i.e. there are only o(n) eigenvalues outside

[1 − ε, 1 + ε]

For example, these two properties can be proved for the two-level version of the
T. Chan preconditioner [35] and for the natural two-level tau preconditioner [7]
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under the condition that f(x, y) > 0 . For ill-conditioned BTTB systems, the
convergence properties of algebra preconditioners deteriorate further. For example,
the two-level-tau preconditioner from [7] leads to a preconditioned system with
O((n1 + n2) log (κ(Tn)) outliers.

Therefore, a different strategy is pursued for the development of multilevel pre-
conditioners: BTTB matrices themselves are used as preconditioners. Serra [91]
developed the first optimal preconditioner for ill-conditioned BTTB systems cor-
responding to a function f(x, y) with zeros. He chose Pn such that the correspond-
ing function p(x, y) is a trigonometric polynomial of minimum degree satisfying
f(x,y)
p(x,y) > 0 for all x and y . In [82] , similar preconditioners are constructed, match-
ing the zeros of f(x, y) . If f is a nonnegative piecewise continuous real-valued
function with zeros x1, . . . , xk of orders 2ν1, . . . , 2νk , then the BTTB matrix Pn

corresponds to the function

p(x, y) =
k∏

j=1

(4 − 2 cos (x − xj) − 2 cos (y − yj))νj .

This preconditioner also ensures optimal convergence of the pcg method. In [86]
the authors propose a new BTTB preconditioner which does not require the explicit
notion of the generating function, but uses an approximation instead. Although
it is not optimal in general, it leads to very fast convergence for many example
problems.

All these BTTB preconditioners suffer from the fact that another BTTB sys-
tem must be inverted. However, they are very useful for the preconditioning of
dense BTTB matrices, because the problem of solving a full BTTB system is re-
duced to the problem of solving a banded one. This is the point where multigrid
methods become highly efficient. It will turn out that with a multigrid solver, an
ill-conditioned positive definite BTTB system can be solved in O(n log (n)) . If the
matrix is banded, it is even possible to reach an overall cost of O(n) arithmetic
operations.
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Chapter 3

Multigrid methods for
structured linear systems

Multigrid methods are universally accepted as the fastest numerical methods for
the solution of elliptic partial differential equations. Moreover, they are success-
fully applied to problems in image processing, to other types of PDEs, to integral
equations, and to many other applications. Starting with the articles of Brandt
[13] and Hackbusch [64] , multigrid methods became increasingly popular. Dis-
cretization of elliptic PDEs, for example with finite differences, mostly results in
ill-conditioned linear systems of equations. Especially if these systems are positive
definite, multigrid methods are the fastest iterative solvers.

For structured linear systems of equations, multigrid methods offer fascinating
possibilities. At the end of Chapter 2 , we have illustrated the difficulties pre-
conditioned Krylov subspace methods face when they are used for the solution
of ill-conditioned multilevel Toeplitz systems. In recent years, multigrid methods
have been applied to (multilevel) Toeplitz matrices and to matrices which are el-
ements of a trigonometric algebra. Generating functions are the most important
tool in the construction of multigrid methods for these specific matrix classes.
All essential parts of a multigrid method such as prolongation, restriction, and
computation of the coarse grid matrices are designed with the help of generating
functions.

After giving a general introduction to multigrid methods with special emphasis
on algebraic multigrid, we will describe how the structure of the matrices and
their correspondence to generating functions are exploited for the development of
multigrid methods. Then, we will review recent results on multigrid methods for
matrices belonging to a trigonometric algebra or to the Toeplitz class. In Section
3.3.2 , we are going to extend some of these results to the DST-III algebra. In
Section 3.5 , we will introduce multigrid methods for the solution of block Toeplitz
systems, and describe how Toeplitz matrices are interpreted as block Toeplitz
matrices. Some new results on eigenvectors and eigenvalues allow a more detailed
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analysis of the methods. Eventually, we will use the results on block Toeplitz
matrices for the development of different multigrid methods for functions with
multiple zeros.

3.1 General multigrid methods

In this section, we give an introduction to multigrid methods, which are not re-
stricted to a specific matrix class and which do not use generating functions. These
rather general methods will constitute the framework for the development of more
specific multigrid methods that can be used for certain classes of structured ma-
trices. We begin this section with a presentation of multigrid methods, which is
strongly influenced by the books of Trottenberg et. al. [112] and Briggs et. al.
[19] . After describing the two main ingredients of multigrid methods, smooth-
ing and coarse grid correction, we present two-grid and multigrid algorithms in a
rather general form. In the second part of this section, we focus on the algebraic
multigrid method (AMG) developed in [14, 17, 90] . Since the convergence theory
of Ruge and Stüben [90] is used throughout this thesis, we lay special empha-
sis on their results. Finally, we describe how multigrid methods can be used as
preconditioners for other iterative solvers such as Krylov subspace methods.

3.1.1 The principles of multigrid methods

The high efficiency of multigrid methods is only obtained when their two main
components, smoothing and coarse grid correction, complement each other well.
Behind each of these components, there is one fundamental principle. We start
with a description of the smoothing principle and the coarse grid principle, and
explain why each of them alone is not suitable for the construction of a standalone
solver. Then, we present a generic two-grid method, which combines the two prin-
ciples and hence becomes an efficient solver. Since this method is too expensive for
practical calculations, smoothing and coarse grid correction are applied recursively,
leading to a multigrid method.

Two-grid methods: Smoothing and coarse grid correction

The smoothing principle is derived from stationary iterative methods, which can be
used for the solution of a linear system Ahx = b starting with the initial guess x0 .
In PDE applications, the matrix Ah is assumed to be the result of a discretization
on the grid Ωh . Typical examples are the damped Richardson, Jacobi, or Gauss-
Seidel method. One iteration of a stationary method is of the form

x(ν+1) = x(ν) − ω · M · (Ahx(ν) − b) (3.1.1)

with damping parameter ω . The damped Richardson method is obtained by
choosing M to be the identity matrix, the damped Jacobi method by choosing
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M = diag(Ah)−1 , and the damped Gauss-Seidel method with lexicographic or-
dering by choosing M to be the inverse of the lower triangular part of Ah . (3.1.1)
can be rewritten

x(ν+1) = S · x(ν) + ωM · b , (3.1.2)

where
S = I − ωMAh (3.1.3)

is called the iteration matrix. From the initial error e(0) = x−x(0) , the error after
ν steps is computed with e(ν) = Sνe(0) . Since for ill-conditioned matrices Ah ,
the spectral radius of S tends to 1 , convergence of the three stationary methods
is rather slow. However, if one of the stationary methods is applied to an elliptic
problem, almost all oscillatory parts of e(0) are removed after only a few iterations,
and the error becomes smooth. Further iterations only reduce the error very
slowly, because stationary methods are not suitable for removing smooth error
components. This property can be summarized in the following form (see [112]) .

Smoothing principle: Many classical iterative methods such as the damped
Richardson, Jacobi, or Gauss-Seidel method have a strong smoothing effect
on the error, when they are applied to discrete elliptic problems.

The second principle is obtained from the following observation: A smooth error
is well approximated on a coarser grid, i.e. without much loss of information,
although a significantly smaller number of grid points is used. In most cases, the
number of grid points is halved in each dimension, leading to a coarse grid Ω2h .
Other choices such as a reduction by a factor 4 in each direction or coarsening in
only one direction are favorable in specific examples. Then, on the coarser grid, the
error is more oscillatory, which means that it can be treated with the stationary
method more efficiently. This property is summarized in the following form (see
[112]) .

Coarse grid principle: A smooth error term is well approximated on
a coarse grid. All computations on the coarse grid are significantly less
expensive, because there are much fewer grid points than on the fine grid.

It is important to note that the coarse grid principle only holds if the error is
smooth. Oscillatory components are not visible on a coarser grid, because they
coincide with smooth components due to aliasing of frequencies.
Now we combine the two principles and construct a fast algorithm for the solution
of linear systems Ahx = b obtained from discretization of a PDE on a fine grid
Ωh . After a few iterations with a stationary method, resulting in the approximate
solution x̂ , the error eh = x − x̂ is smooth. Of course, we cannot compute the
error, but we can compute the residual rh = b−Ahx̂ . With rh , we obtain another
equation involving the matrix Ah , the residual equation

Aheh = rh . (3.1.4)
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The aim is to find an approximation for eh with the residual equation, and there-
fore a new approximation x̂ for the solution x . Such an approximation is found
by computing rh and restricting it to r2h = R · rh on the coarse grid Ω2h with the
restriction matrix R . Then r2h is the coarse grid version of rh , i.e. an approxima-
tion on the coarse grid with only half as many grid points. In the next step, the
coarse grid version of the residual equation A2he2h = r2h is solved exactly. The
correction e2h is interpolated back to the fine grid with the prolongation matrix
P , and the result ēh = P ·e2h is used to compute the new x̂ . After this coarse grid
correction has been computed, further smoothing iterations can be applied. Alto-
gether, each iteration step of a two-grid method consists of presmoothing, coarse
grid correction, and postsmoothing. Following the presentation in [112] , we can
formulate a generic two-grid algorithm.

Algorithm 2 (Generic two-grid method)
For the solution of Ahx = b , start with an initial guess x(0) . With the following
iteration, which is denoted TGM(x(k), Ah, b, ν1, ν2) , compute x(k+1) from x(k) ,
until the error is below a given tolerance:

1. Presmoothing:
Perform ν1 iterations of a stationary method of the form (3.1.2) , i.e.

x̄(k) = SMOOTHν1(x(k), Ah, b)

2. Coarse grid correction:

• Compute the residual: rh = b − Ahx̄(k)

• Restrict the residual: r2h = R · rh

• Solve exactly on Ω2h : A2he2h = r2h

• Interpolate the correction: ēh = P · e2h

• Add the coarse grid correction: x̂(k) = x̄(k) + ēh

3. Postsmoothing:
Perform ν2 iterations of a stationary method of the form (3.1.2) , i.e.

x(k+1) = SMOOTHν2(x̂(k), Ah, b)

This algorithm is a generic procedure. Its components have to be chosen for
the problem at hand. In the following, we wish to describe how efficient two-grid
methods are defined for elliptic problems. We use the discrete 2D Poisson equation
as a model problem to illustrate the main ideas.
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Example 1 (Discrete 2D Poisson equation) The Poisson equation in two di-
mensions on the unit square Ω = [0, 1]2 with Dirichlet boundary conditions is given
by

−Δu(x, y) = g(x, y) for (x, y) ∈ Ω
u(x, y) = 0 for (x, y) ∈ ∂Ω .

(3.1.5)

Finite-difference discretization with a 5-point stencil on the grid Ωh yields a linear
system of the form Ahx = b with

Ah = I ⊗ A(1D) + A(1D) ⊗ I

and A(1D) = tridiag(−1, 2,−1) .

The following individual components of a two-grid solver have to be specified.

• The stationary method must be chosen such that it serves as a smoother, i.e.
such that a small number of iterations significantly reduces the oscillatory
components of the error. For elliptic problems, the damped Jacobi and
Gauss-Seidel methods have good smoothing properties. In many cases, the
red-black version of the Gauss-Seidel method, which uses a different ordering
of the grid points, leads to better smoothing. Following [112] , a measure
for the quality of the smoother is the smoothing factor, which is defined to
be the worst factor by which high frequency error components are reduced
in each iteration of the smoother. For the model problem of Example 1 ,
the smoothing factor is 2

3 for damped Jacobi with optimal ω = 4
5 , 1

2 for
lexicographic Gauss-Seidel with ω = 1 , and 1

4 for red-black Gauss-Seidel
with ω = 1 . In many applications, more sophisticated smoothers such as an
ILU-factorization [78] or the SPAI algorithm [63] are used.

• The intergrid transfer operators, i.e. restriction and prolongation, can be
chosen from a huge variety of matrices. A standard choice which is used in
many multigrid methods is the full weighting operator. In 1D, it is given by
the matrix

R(1D) =
1
4
·

⎛
⎜⎜⎜⎝

1 2 1
1 2 1

. . .
. . .

. . .

1 2 1

⎞
⎟⎟⎟⎠ , (3.1.6)

and in 2D, by the matrix R(2D) = R(1D) ⊗ R(1D) . A typical choice for
prolongation is the bilinear interpolation. It is described by the matrix
P (1D) = 2 · (R(1D))T in 1D and by the matrix P (2D) = 4 · (R(2D))T in 2D.
These restriction and prolongation operators satisfy the variational property

R = c · P (3.1.7)

with a constant c ∈ R .
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• Eventually, the coarse grid matrix A2h can be obtained in two different ways,
either by rediscretization on the coarse grid or by algebraic computation.
Depending on this choice A2h is called a

– natural coarse grid operator: The problem is discretized again on
the coarser grid. This means A2h is obtained with the same discretiza-
tion technique as Ah , just with fewer grid points. This approach is
chosen in most geometric multigrid methods, where matrices are ob-
tained from discretization on real grids.

– Galerkin coarse grid operator: A2h is obtained purely in algebraic
terms as the product

A2h = R · Ah · P . (3.1.8)

Since this approach can still be applied when there is no actual grid, it
is chosen for all algebraic multigrid methods.

Multigrid methods and convergence

The two-grid method cannot be used in most practical applications, because the
size of the matrix A2h is still too large for an exact solution of the residual equation.
Nevertheless, two-grid methods are the basis both for the practical development
of multigrid methods and for a theoretical investigation concerning convergence
of the methods. A multigrid method is obtained by recursive application of the
two-grid idea. Instead of being computed exactly, the solution e2h of the residual
equation is approximated by a small number γ of two-grid iteration steps. More
formally, it is computed as follows.

• If A2h is already small enough, solve A2he2h = r2h directly as in Algorithm
2 .

• If the size of A2h is too big for a direct solution, approximate e2h with k
two-grid iterations, i.e.

e2h = TGMγ(0, A2h, r2h, ν1, ν2) .

The approximate solution leads to a residual equation on a third grid Ω4h , which
can either be solved exactly or be approximated by a further level of two-grid
iterations. This procedure of recursive two-grid application continues until the
linear systems are small enough for being solved exactly. This multigrid method
generates a hierarchy of grids Ω2h,Ω4h,Ω8h, etc. and the coarse grid matrices
A2h, A4h, A8h, etc. Different choices of γ result in different types of multigrid
cycles. Figure 3.1 shows, for a four-grid method, the structure of one multigrid
cycle with γ = 1 and γ = 2 . Filled circles denote smoothing and empty circles
denote exact solution of the residual equation. For γ = 1 , the algorithm is called
V-cycle, for γ = 2 , W-cycle.
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Figure 3.1: One four-grid iteration step for γ = 1 and γ = 2

So far, we have only described the multigrid algorithm and not yet said any-
thing about the computational cost. The total cost depends on two factors, the
cost per iteration and the number of iterations the multigrid method needs to
converge. The cost per iteration can be determined easily. We assume that so
many grids are used that the cost of the exact solution of the residual equation
on the coarsest grid is negligible. Then, in each iteration, the cost is dominated
by the matrix-vector products needed for the smoothers and for computation of
the residuals on the finest grid. It can be shown (see e.g. [112, 19]) that both
the V-cycle iteration and the W-cycle iteration are asymptotically of the same
complexity as a matrix-vector product involving Ah .

In multigrid history, several approaches towards a convergence theory have
been presented. The main goal is to show that a multigrid method converges op-
timally, i.e. that it converges after a constant number of iterations independent of
the matrix size. One approach is the classical qualitative multigrid theory of Hack-
busch [65, 66] , which is based on certain regularity conditions for elliptic partial
differential equations. The results are obtained for natural coarse grid operators.
A more practical approach is the local Fourier analysis, which is developed in
[13, 15] and described in detail in [112] . It is more a tool to obtain quantitative
bounds for the smoothing and coarse grid factors than a theory. It is based on
the idea that a discrete operator with nonconstant coefficients is linearized and
replaced, locally, by an operator with constant coefficients. A different type of
convergence theory has been developed for the algebraic multigrid method, which
will be described in more detail in the subsequent section.

3.1.2 Algebraic multigrid

In contrast to the geometrically oriented multigrid methods described in the pre-
vious section, algebraic multigrid (AMG) methods do not require a real grid. All
components of the multigrid method are constructed in a purely algebraic way.
Descriptions of this method, which was introduced in [14, 17] , can be found in
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[90, 112, 19] . After presenting the fundamental concepts of AMG, we focus on the
convergence theory presented in [90] .

Multigrid without real grids

Formally, an AMG method for the solution of a linear system Ax = b consists of
the same fundamental components as its geometric counterpart: grids, smoothers,
prolongation and restriction operators, coarse grid matrices, and solvers on the
coarsest level. In the absence of a physical grid, a grid in the algebraic sense
consists of the indices 1, . . . , n of the xj . On this grid, all the other components
are defined as in the geometric case. However, there is one fundamental conceptual
difference between the two types of multigrid methods. In geometrically oriented
methods, the grid hierarchy is usually given by the geometry, and the coarsening
strategy is quite a straightforward one, but much effort is spent on the choice of
an adequate smoother. It is important that the error is physically smooth, i.e.
that it has a low spatial frequency, and this is not always easy to achieve. In
AMG methods, on the other hand, a standard smoother is fixed at the beginning,
which is usually the damped Jacobi or the Gauss-Seidel method. Then, much
more effort is made in choosing an efficient coarsening strategy. Moreover, the
concept of smoothness is quite different in AMG. Before we can start with a more
detailed description of AMG methods, we need to introduce a bit of notation on
inner products and norms. In addition to the Euclidean inner product 〈u, v〉 , the
following inner products are defined for the system matrix A :

〈u, v〉0 = 〈diag(A)u, v〉 , 〈u, v〉1 = 〈Au, v〉 ,

〈u, v〉2 = 〈diag(A)−1Au,Av〉 (3.1.9)

The respective norms, which are derived from these inner products, are denoted
‖ · ‖i , i = 0, 1, 2 .

At first glance, the two-grid method is of the same form as the generic method
of Algorithm 2 . In the following, we describe how its individual components
are defined. Let us start with some comments on smoothing. As in geometric
multigrid, we start with a small number of iterations with a standard stationary
method. The main difference to geometric multigrid is that we do not observe
whether the error is smooth or not. Instead, we define it. Put informally, an
error is called algebraically smooth if it is not reduced effectively by the smoother.
Hence, smoothness depends on the choice of the smoother. Mathematically, this
means that e is smooth if ‖Se‖1 ≈ ‖e‖1 with the smoothing matrix S defined
in (3.1.3) . It can be shown that a smooth error varies slowly in the direction of
strong connections between grid points. If the grid point j strongly depends on the
grid point k , the value xj can be interpolated well from the value xk . The notion
of strong influence and strong dependence is the principal motivation behind the
original coloring algorithm for the construction of the coarse grid. Since we do
not use this algorithm in our work, we refer the reader to [19, 112] for a more
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detailed description. The prolongation operator is chosen such that the values xk

at the fine grid points are obtained as a weighted sum of the values at the coarse
grid points. The restriction matrix is chosen R = PH , which implies that the
variational property is satisfied. Since the AMG is a purely algebraic method, the
coarse grid matrix is computed using the Galerkin condition

AC = R · A · RH .

Finally, a postsmoother is applied to smooth the error obtained from coarse grid
correction.

In the following, we present a two-grid and a multigrid version of the AMG
method. The notation chosen here will be used throughout this thesis.

Algorithm 3 (AMG, Two-grid algorithm)
The following algorithm defines one iteration of the two-grid version of the AMG
method.

x(k+1) = TGM(x(k), A, b, ν1, ν2)
1 x̄ = SMOOTHν1(x(k), A, b)
2 r = A · x̄ − b
3 rC = R · r
4 AC = R · A · RH

5 solve AC · y = rC

6 x̂ = x̄ − RH · y
7 x(k+1) = SMOOTHν2(x̂, A, b)

In matrix notation, one iteration of the two-grid method can be written

TG = Sν2(I − RH(RARH)−1RA)Sν1 . (3.1.10)

This two-grid method will mostly be used as a starting point for a theoretical
analysis and for convergence proofs. Almost all proofs for structured matrices
have first been devised for the two-grid method before being extended to the
multigrid method. In most practical applications, the size of AC is too big for an
exact solution of the system AC · y = rC . Therefore, the two-grid idea is applied
recursively, as in the geometric case.

Algorithm 4 (AMG, Multigrid algorithm)
The following algorithm shows the structure of the multigrid version of the AMG
method. For the solution of the linear system A1x1 = b1 , starting from an initial
guess x(0) , one V-cycle iteration computes x(k+1) from x(k) with

x(k+1) = MGM(levs, x(k), A1, b1, ν1, ν2) ,

where levs denotes the number of grids which are used.
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x
(out)
j = MGM(l, x(in)

j , Aj , bj , ν1, ν2)

IF (l = 1) THEN solve Ajx
(out)
j = bj

ELSE 1 x̄j = SMOOTHν1(x(in), Aj , bj)
2 rj = Aj · x̄j − bj

3 bj+1 = Rj · rj

4 Aj+1 = Rj · Aj · RH
j

5 x
(out)
j+1 = MGM(l − 1, 0, Aj+1, bj+1, ν1, ν2)

6 x̂j = x̄j − RH
j · x(out)

j+1

7 x
(out)
j = SMOOTHν2(x̂j , Aj , bj)

In matrix notation, one iteration of the V-cycle is given by the matrix MGlevs,1 ,
where

MGl,j = Sν2(I − RH
j (I − MGl−1,j+1)A−1

j+1RjAj)Sν1 (3.1.11)

for l > 1 , and MG1,j is the matrix with all zeros. If a W-cycle is used instead of
a V-cycle, line 5 of the algorithm has to be replaced by

5a x
(int)
j+1 = MGM(l − 1, 0, Aj+1, bj+1, ν1, ν2)

5b x
(out)
j+1 = MGM(l − 1, x(int)

j+1 , Aj+1, bj+1, ν1, ν2)

and (3.1.11) by

MGl,j = Sν2(I − RH
j (I − MG2

l−1,j+1)A
−1
j+1RjAj)Sν1 . (3.1.12)

The convergence theory of Ruge and Stüben

As pointed out in Section 3.1.1 , it is very difficult to derive a multigrid convergence
theory. For algebraically oriented multigrid methods, such a theory has been
developed by Ruge and Stüben [90] . Their convergence theory can not only be
applied to multigrid methods with the quite specific restriction and coarse grid
operators described above. It holds for all two-grid and multigrid methods which
have the form of Algorithms 3 and 4 . In other words, it is required that both the
variational condition (Pj = c·RH

j ) and the Galerkin condition (Aj+1 = Rj ·Aj ·RH
j )

hold. In order to state the main theorem from [90] , we need to define, on each
level, the exact coarse grid correction in matrix notation:

CGCj = I − RH
j · A−1

j+1 · Rj · Aj . (3.1.13)

The following theorem contains the most general form of the convergence result.
Conditions which are easier to verify in practical proofs will be derived in two
corollaries.
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Theorem 6 (AMG convergence, [90])
Let A ∈ C

n×n be an Hermitian positive definite matrix and b ∈ C
n . Suppose

MGM is the V-cycle multigrid method defined in Algorithm 4 , in matrix terms
described by MGlevs,1 with levs being the number of levels used in the multigrid
method. Moreover, let A1 = A , and let A2, . . . , Alevs be the coarse grid matri-
ces of size n2 > · · · > nlevs , let R1, . . . , Rlevs−1 be the restriction matrices, and
S1, . . . , Slevs−1 the smoothing matrices. If there exists a δ > 0 such that

‖Sjx‖2
1 ≤ ‖x‖2

1 − δ‖CGCjx‖2
1 ∀x ∈ C

nj (3.1.14)

holds on each level j with δ independent of j , then δ > 0 and

‖MGlevs,1‖1 ≤ √
1 − δ < 1 . (3.1.15)

Condition (3.1.14) is difficult to prove, because it contains both properties of the
smoother and of the coarse grid correction. Therefore, it is split in two or three
conditions which can be proved separately. In the first corollary, conditions for
optimal convergence of the two-grid method are stated. In the two-grid case, the
condition on the coarse grid correction can be further simplified.

Corollary 1 (Two-grid convergence, [90])
Let A ∈ C

n×n be an Hermitian positive definite matrix and b ∈ C
n . Suppose

TGM is the two-grid method defined in Algorithm 3 , in matrix terms described
by TG . Assume that the smoother S satisfies the presmoothing property and the
postsmoothing property , i.e. there exist two positive constants αpre and αpost such
that

‖Sν1x‖2
1 ≤ ‖x‖2

1 − αpre‖Sν1x‖2
2 , ∀x ∈ C

n , (3.1.16)

‖Sν2x‖2
1 ≤ ‖x‖2

1 − αpost‖x‖2
2 , ∀x ∈ C

n . (3.1.17)

Moreover, assume that the correcting condition is satisfied, i.e. there exists β > 0
such that

min
y∈R

nC
‖x − RHy‖2

0 ≤ β‖x‖2
1 , ∀x ∈ C

n . (3.1.18)

Then the two-grid method converges optimally. More precisely, β > αpost , and the
convergence factor of the two-grid method ‖TG‖1 is bounded by

‖TG‖1 ≤
√

1 − αpost/β

1 + αpre/β
. (3.1.19)

The second corollary gives conditions for the multigrid method. Whereas the
smoothing conditions are the same as in Corollary 1 , the correcting condition is
more difficult to satisfy.
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Corollary 2 (Multigrid convergence, [90])
Let A ∈ C

n×n be an Hermitian positive definite matrix and b ∈ C
n . Suppose

MGM is the V-cycle multigrid method defined in Algorithm 4 , in matrix terms
described by MGlevs,1 . Let the matrices Aj, Rj , Sj be defined as in Theorem 6 .
Assume that, for all j ∈ {1, . . . , levs − 1} , there exist α

(pre)
j , α

(post)
j > 0 such that

‖Sν1
j x‖2

1 ≤ ‖x‖2
1 − α

(pre)
j ‖Sν1x‖2

2 , ∀x ∈ C
nj , (3.1.20)

‖Sν2
j x‖2

1 ≤ ‖x‖2
1 − α

(post)
j ‖x‖2

2 , ∀x ∈ C
nj . (3.1.21)

Furthermore, assume that the correcting condition is satisfied on each level, i.e.
for all j ∈ {1, . . . , levs − 1} , there exists βj > 0 such that

‖CGCjx‖2
1 ≤ βj‖x‖2

1 , ∀x ∈ C
nj . (3.1.22)

Then the V-cycle multigrid method converges optimally. More precisely, βj >

α
(post)
j , and the convergence factor of the multigrid method ‖MGlevs,1‖1 is bounded

by

‖MGlevs,1‖1 ≤
√

1 − δpost

1 + δpre
(3.1.23)

with δpre = min
1≤j≤levs

α
(pre)
j

βj
and δpost = min

1≤j≤levs

α
(post)
j

βj
.

The advantage of using the two corollaries instead of Theorem 6 is that the smooth-
ing properties and the coarse grid correction property can be studied indepen-
dently. The smoothing conditions depend only on the choice of the Sj and on
the number of smoothing iterations ν1 and ν2 , whereas the correcting condition
depends only on the choice of the restriction matrices Rj .

Remark 3 Theorem 6 still holds if diag(A) in (3.1.9) is replaced by any Hermitian
positive definite matrix Y . This fact is mentioned in [90] and much employed in
[103, 3] . We will make use of this degree of freedom in several convergence proofs
throughout this thesis.

Remark 4 Both corollaries also hold if only one type of smoothing is applied, i.e.
either presmoothing or postsmoothing. In Corollary 1 and 2 this implies that either
α

(pre)
j or α

(post)
j is zero for all j . In this work we will describe multigrid methods

which use only postsmoothing and methods where both types of smoothing are
applied.

3.1.3 Multigrid as a preconditioner

Multigrid methods are not only efficient solvers for linear systems of equations.
They are also suitable as preconditioners for Krylov subspace methods. In this
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section, we describe how the multigrid methods presented so far can be used as
preconditioners. Furthermore, we present purely additive multigrid methods which
are efficiently employed as preconditioners, but not as standalone solvers.

CG accelerated multigrid

The use of multigrid methods as a preconditioner for Krylov subspace methods
is often referred to as accelerating multigrid methods by Krylov subspace meth-
ods . Since the matrices we are interested in in this work are positive definite,
the accelerator will be the conjugate gradient method described in Chapter 2.4.1 .
A description of Krylov subspace methods with multigrid preconditioners can be
found in [112, 61] . Formally, the problem is to find a preconditioner Ã for the
solution of a linear system Ax = b with a Krylov subspace method. If Ã is an
approximation for A−1 , the solver applied to the preconditioned system

ÃAx = Ãb (3.1.24)

converges significantly faster. In each iteration of the pcg method, a linear system
involving the matrix Ã must be solved. If multigrid is used as a preconditioner,
one V-cycle or W-cycle iteration of the multigrid method is performed with initial
guess zero. In most examples, this gives much better results than the standard one-
level preconditioners such as Jacobi, Gauss-Seidel, or ILU. Another possible way of
using multigrid as a preconditioner is known as multigrid by iterant recombination.
From the first approximations x(1), . . . , x(k) an improved approximation is obtained
by a residual minimization technique.
Having introduced the use of multigrid as a preconditioner, we ask the following
question for practical applications: How can we decide which is more efficient,
multigrid as a standalone solver or the accelerated version? There is no general
rule, but the following guidelines can be given:

• If a standalone multigrid algorithm is very efficient for a class of problems, it
is not useful to accelerate it with Krylov subspace methods. The additional
computational effort is not worth to be made.

• Multigrid as a preconditioner for the cg method leads to a more robust al-
gorithm. This is especially important for more involved problems, which
contain either convection dominance or strong anisotropies, or even nonlin-
earities. In these cases, it is very difficult to choose the multigrid components
in such a way as to obtain a robust standalone solver.

• Sometimes the combination of smoothing and coarse grid correction quickly
reduces all components of the error, except for a few specific components.
These are responsible for a slow overall convergence of the multigrid solver.
This is where the pcg method is most effective, eliminating a small number
of outliers with a very small number of iterations.
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Domain decomposition methods

The multigrid preconditioners discussed so far are all multiplicative. This means
that the residual is updated after each smoothing and coarse grid correction step of
the preconditioner. Additive multigrid preconditioners, on the other hand, perform
smoothing on different grids at once and add several corrections to the residual at
the same time. This property makes them highly parallelizable, but leads to much
slower convergence in the sequential case. Therefore, additive multigrid methods
cannot be used as standalone solvers. They are nevertheless very useful as parallel
preconditioners. Some of the most famous additive multilevel preconditioners fall
into the category of domain decomposition methods. These are described in much
detail in the book of Smith, Björstadt, and Gropp [106] . Domain decomposition
methods are usually applied to linear systems arising from discretizing PDEs in
the domain Ω . In this context, domain decomposition refers to subdividing the
whole problem into smaller problems. Their solutions are then used to construct
a preconditioner for the whole system. Combination of the domain decomposition
idea for overlapping domains on the one hand and additive multigrid methods on
the other leads to additive multilevel Schwarz methods. These consist of smoothers
and coarse grid correction operators. On each grid the smoothers are applied to
several, possibly overlapping subdomains. The coarse grid correction is computed
with exact inversion of the coarse grid matrix in the two-grid case, whereas in
the multigrid case the two-grid idea is applied recursively. In the following, we
briefly introduce three additive multilevel Schwarz methods, which are described
for example in [106] .
The multilevel diagonal scaling preconditioner [46] is the Schwarz method which
uses minimal size subdomains consisting of only one node. Thus the smoothing
part is equivalent to the Jacobi smoother. The restriction matrix R is chosen for
the problem at hand and the prolongation is given by RH . Then the two-grid
version of the diagonal scaling preconditioner is of the form

Ã = diag(A)−1 + RHA−1
C R , (3.1.25)

where the coarse grid matrix AC is computed either with the Galerkin approach or
obtained from rediscretization on the coarse grid. A multilevel version of (3.1.25)
is obtained by applying the two-grid idea recursively to approximate AC . In this
thesis, we will use the multilevel diagonal scaling preconditioner to illustrate that
our multigrid methods for structured linear systems are not only suitable as stan-
dalone solvers, but also as preconditioners for Krylov subspace methods. Another
famous Schwarz method is the BPX or multilevel nodal basis preconditioner [12] .
It is very similar to the diagonal scaling preconditioner. Instead of the Jacobi
smoother, which contains the inverse of the main diagonal of A , it uses a diagonal
matrix whose entries are the size hj of the elements of a finite element discretization
on the respective grid. This is an approximation to the main diagonal of A which
works very well for discrete elliptic PDEs. The hierarchical basis preconditioner
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[117] can be derived from both the BPX and the diagonal scaling preconditioner.
The main difference concerns coefficients which appear on the finest grid and also
on some of the coarse grids. Instead of using these coefficients on each grid for
smoothing, they are only treated once, on the coarsest grid on which they appear.
The coarse grid correction is the same for all three methods.

Convergence results for additive Schwarz methods are presented in [44, 45,
116] and in the book [106] . These results are obtained in an abstract finite-
element-based framework known as the Schwarz framework. A is interpreted as
an operator a in a Hilbert space V , and both smoothing and coarse grid correction
are considered to be subspace corrections computed in subspaces Vj ⊂ V . The
condition number of the preconditioned system is essentially given by the product
of three parameters. The first parameter states whether the subspaces Vj provide a
stable splitting of V , the second parameter serves as a measure of the orthogonality
of the subspaces, and the third parameter predicts how good the operators aj in the
subspaces approximate a . Convergence of the three Schwarz methods described
above is proved in [46, 12, 48] by estimating the three parameters, assuming that a
finite element discretization is used for the underlying PDEs. The diagonal scaling
preconditioner is the one with the best convergence properties of the three.

3.2 Exploiting matrix structure for the development
of multigrid methods

In the first part of this chapter, we have pointed out that multigrid methods belong
to the most efficient and most popular solution techniques for linear systems of
equations. On the other hand, we have outlined at the end of Chapter 2 that
classical iterative solvers, such as the pcg method, face serious limitations when
applied to ill-conditioned two-level Toeplitz systems. Therefore, beginning in the
mid 1990s, multigrid methods have been developed for certain classes of structured
matrices. In the following, we wish to give an introduction to these methods, which
are essentially based on the strong connection between certain types of structured
matrices and generating functions. Furthermore, we state criteria which allow us
to judge whether a multigrid method, defined in terms of generating functions, is
suitable for the solution of the corresponding structured linear systems.

3.2.1 Multigrid in terms of generating functions

One- and multilevel Toeplitz matrices as well as matrices belonging to a trigono-
metric algebra have been introduced in Chaper 2 . In Section 2.1.3 , a classification
of these matrices has been given according to the zeros of the corresponding gen-
erating functions. For matrices of class (I) , i.e. for strictly positive generating
functions, iterative solvers such as the pcg method are highly efficient. For all
other matrix classes, they cannot be applied with the same efficiency. Especially
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in the multilevel case, convergence deteriorates significantly (see Chapter 2.6) .
Therefore, multigrid methods have been developed which are especially designed
for structured matrices. One main goal is to apply these methods to a greater vari-
ety of Toeplitz matrices than the pcg method, especially to matrices of class (II) ,
(III) , and (IV) . The methods developed so far can be used for matrices of class
(II) and, with some restrictions, to matrices of class (III) , i.e. for functions with
isolated zeros. Moreover, one hopes to obtain faster methods for Toeplitz matrices
than the ones already available. For banded matrices belonging to the Toeplitz
class or to a trigonometric algebra, the aim is to find an O(n) solver. Multigrid
methods for tau and Toeplitz systems were first developed by Fiorentino and Serra
[52, 54] . Further work has been done in [99, 108, 24, 109, 72] . For recent results
on circulant and tau matrices we refer to [103, 3] , and for DCT-III matrices to
[28, 33] .

Multigrid methods for structured matrices make heavy use of the correspon-
dence between matrices and generating functions. They are designed in an AMG-
like fashion, because they rely more on the matrix structure than on an actual
geometry. Therefore, all multigrid methods presented in this work are of the same
form as Algorithm 3 and 4 . All convergence proofs are based on the theory of
Ruge and Stüben [90] , which was summarized in Theorem 6 and its two corol-
laries. Following the classical AMG approach, the smoother is chosen to be a
rather simple one. Most of the methods developed so far use the damped Ja-
cobi method, some of them even the damped Richardson method. Prolongation
and restriction as well as computation of the coarse grid matrices are described
in terms of generating functions. The given matrix A1 = An corresponds to the
generating function f1 = f . If the coarse grid matrices A2, A3, A4, etc. are still in
the same matrix class, the corresponding generating functions is denoted f2, f3, f4,
etc. , respectively. The restriction matrices R1, R2, R3, etc. are of the form

Rj = Bj · Ej . (3.2.1)

Bj is a matrix in the same class as Aj , corresponding to a function bj , which is
defined to deal with the zeros of fj . More precisely, since the matrices Aj are coarse
grid representations of A1 , the functions fj should be coarse grid representations of
f with the same number of zeros of the same order. Ej is an elementary restriction
matrix of the respective matrix class. The matrix Aj+1 on the next coarser level
is computed with the Galerkin approach

Aj+1 = RH
j AjRj = EH

j (BH
j AjBj)Ej . (3.2.2)

Depending on the respective matrix class, (3.2.2) will be translated to generat-
ing functions. This correspondence between matrices and functions enables us to
develop multigrid methods solely from looking at the zeros of the corresponding
generating functions. Moreover, rigorous convergence proofs can be given for many
problems where proofs would not be possible without generating functions. Later,
we will also discuss the use of multigrid as a preconditioner for the pcg method.
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Since multigrid methods for structured matrices are constructed in terms of
generating functions, the requirements on the choice of projection/restriction ma-
trices and on computation of coarse grid matrices are stated in terms of generating
functions first. But then, what special properties is a good multigrid method for
structured linear systems expected to have? Following the presentation in [3] , we
state three main criteria for the assessment of a multigrid method. If they are all
satisfied, we can expect our method to work fast and efficiently.

3.2.2 Criteria for an efficient multigrid method

In the following, we describe three properties of multigrid methods which are
desirable for the solution of structured linear systems Anx = b with An corre-
sponding to a generating function f(x) . They are stated in [3, 38] and concern
algebraic, computational, and convergence-related issues. If all three criteria are
satisfied, the multigrid method is optimal in the sense of Axelsson and Neytcheva
[4] . This means the problem of solving a linear system with matrix An has the
same asymptotic cost as one matrix-vector multiplication involving An . In sub-
sequent chapters, we try to satisfy as many of the criteria as possible when we
design our own multigrid methods.

• Algebraic criterion:
All coarse grid matrices obtained in the multigrid procedure should be in the
same matrix class as A1 = An . For example, if A1 is a two-level tau matrix,
then the matrices A2 , A3, and so on must also be two-level tau matrices,
just of smaller size. This criterion is a purely algebraic one. It does not state
anything about convergence or optimality. However, it is important for a
multigrid method to preserve the relationship between matrices and gener-
ating functions on coarser levels. Only if the algebraic criterion is satisfied,
we can define a multigrid method which fully exploits the matrix structure.

• Computational criterion:
The computational cost of each iteration should be optimal. More precisely,
the cost of one multigrid iteration is of the same order as the cost of one
matrix-vector product involving An . This means that for banded matrices,
the total cost of one multigrid iteration should be O(n) , and for dense ma-
trices O(n log (n)) . In more detail, the computational criterion states that
the following operations should be carried out in at most O(n) flops for
banded matrices and in at most O(n log (n)) flops for full matrices: matrix-
vector products involving Ai ,Ri ,RH

i , computation of coarse grid matrices
Ai , smoothing operations, exact solution of the linear system on the coarsest
grid.

• Convergence criterion: In each multigrid iteration, the error reduction
must be uniformly bounded by a constant smaller than 1 , independent of
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the matrix size n . This guarantees that the number of multigrid iterations
to reach convergence is bounded by a constant, independent of n . This
criterion is verified by proving that Corollaries 1 and 2 and therefore the
convergence theorem of Ruge and Stüben is satisfied.

3.3 Multigrid for trigonometric matrix algebras

In this section, we wish to give an overview of multigrid methods for trigonometric
matrix algebras. All these methods have been developed for matrices correspond-
ing to generating functions with isolated zeros of finite order. The methods benefit
from the fact that in a matrix algebra the product of two matrices is still in the al-
gebra. Since Toeplitz matrices do not share this property, there will be additional
difficulties with respect to this fact. In the first part of this section, we focus on
circulant and tau matrices. A description of the main components of the multigrid
algorithms is followed by a proof that the criteria stated in Section 3.2.2 are indeed
satisfied. The second part of this section is devoted to the DCT-III and DST-III
algebras. First, we review a well-known multigrid method for the DCT-III algebra,
and analyze it from the point of view of the three criteria. Then, we carry over
the main ideas to the related DST-III algebra, for which similar convergence and
optimality results are obtained.

3.3.1 Circulant and tau matrices

Fiorentino and Serra developed the first multigrid methods for the structured
matrix classes which shall be analyzed in this work. In [52, 54] , they present a
method for one- and two-level tau matrices. In [100] , the second author gave a
two-grid convergence proof for multilevel tau matrices. For circulant matrices,
a similar multigrid algorithm was presented in [102], and two-grid convergence
for one- and multilevel circulant matrices was proved in [103] . In [3] , a V-cycle
multigrid convergence proof for circulant and tau matrices is given under slightly
stronger conditions. It is extended to the multilevel case in [2] . All these methods
are based on the algebraically oriented multigrid approach, i.e. they are of the
same form as Algorithms 3 and 4 . In the following, we describe how the individual
components of the multigrid methods are chosen and how the conditions stated
in Corollaries 1 and 2 are satisfied. We use the same notation as in Algorithms 3
and 4 .

Let us start with the multigrid method for one-level circulant and tau matri-
ces, and then generalize it to the multilevel case. As for most of their multigrid
algorithms, the authors choose the damped Richardson method as the smoother
Sj on all levels 1 ≤ j ≤ levs . To compute the coarse-grid correction, a restriction
matrix Rj according to (3.2.1) must be defined on each level. This means Bj and
Ej are chosen such that Aj+1 is about half the size of Aj , and that the zeros of
the coarse-grid function fj+1 correspond to the zeros of fj . Computation of Aj+1
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in (3.2.2) is translated to generating functions in two steps. The product

Âj = BH
j AjBj (3.3.1)

in (3.2.2) is in the same algebra as Aj , and therefore corresponds to the product
of functions

f̂j(x) = fj(x) · b2
j (x) . (3.3.2)

The algebraic criterion is only satisfied if Ej is chosen such that the matrix Aj+1

is in the same algebra as Aj , and has about half the size of Aj . To preserve the
circulant structure on the coarser level, the size of Aj+1 is nj+1 = nj

2 , whereas for
tau matrices it is nj+1 = n−1

2 . E
(circ)
j is an nj+1-by-nj matrix which is given by

(E(circ)
j )H =

⎛
⎜⎜⎜⎝

1 0
1 0

. . .
. . .

1 0

⎞
⎟⎟⎟⎠ , (3.3.3)

whereas E
(tau)
j is of the form

(E(tau)
j )H =

⎛
⎜⎜⎜⎝

0 1 0
0 1 0

. . .
. . .

. . .

0 1 0

⎞
⎟⎟⎟⎠ . (3.3.4)

If we use the notation Ej , this means that the matrix belongs to either of the
matrix algebras. With this choice of Ej , Aj+1 = EH

j ÂjEj is obtained by picking
every second row and every second column of Âj . In terms of generating functions,
this means fj+1 is obtained by picking every second Fourier coefficient of f̂j . For
circulant matrices, this is achieved with

fj+1(x) =
1
2

(
f̂j(

x

2
) + f̂j(

x

2
+ π)

)
=

1
2

(
fj(

x

2
)b2

j (
x

2
) + fj(

x

2
+ π)b2

j (
x

2
+ π)

)
.

(3.3.5)

For tau matrices, x/2 + π is replaced with π − x/2 . It should be mentioned that
application of Ej to the orthogonal transform matrices Q

(circ)
nj or Q

(tau)
nj produces

two transform matrices Q
(circ)
nj+1 or Q

(tau)
nj+1 of smaller size. More precisely, we obtain

(E(circ)
j )H · Q(circ)

nj
=

(
Q(circ)

nj+1
|Q(circ)

nj+1

)
(3.3.6)

for circulant matrices and

(E(tau)
j )H · Q(tau)

nj
=

(
Q(tau)

nj+1
|0nj+1 |Dnj+1Q

(tau)
nj+1

)
(3.3.7)
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for tau matrices, where Dnj+1 = diag(d0, . . . , dnj+1−1) with dk = (−1)k .
At the very heart of the algorithm is the choice of Bj corresponding to a

function bj(x) . The first idea was the following: If fj(x) has a zero at x0 of order
ν0 , then bj(x) must be strictly positive at x0 , and it must have a zero of order
ν0 at π + x0 in the circulant case and at π − x0 in the tau case. Then, it can be
shown that fj+1 has a zero of order ν0 at 2x0 . The zero of bj is called a mirror
point. This choice of bj has been refined and described in more detail in [102] and
[99] . bj is chosen to satisfy the following conditions for circulant and tau matrices,
respectively. Let us assume that fj has a single isolated zero x0 in ] − π, π] in
the circulant case or a pair of zeros −x0, x0 in the tau case. Then, for circulant
matrices, we choose

bj(x) ∼ |x − (π + x0)|2�β/2� over ] − π, π] , (3.3.8)

where

β = argmin
k

(
lim

x→x0

(x − x0)2k

fj(x)
< ∞

)
(3.3.9)

and
0 < b2

j(x) + b2
j (π + x) . (3.3.10)

(3.3.8) and (3.3.9) can be generalized to the condition

lim sup
x→x0

b2
j (π + x)
fj(x)

< ∞ , (3.3.11)

which gives the minimum order the zero of bj(x) must have at the mirror point.
Condition (3.3.10) states that bj(x) must be nonzero at x0 . A possible choice of
bj satisfying the conditions is

bj(x) = (2 − 2 cos (x − (π + x0)))β/2 . (3.3.12)

For tau matrices, the conditions are very similar. (3.3.8) is replaced by

bj(x) ∼ |x − (π − x0)|2�β/2� over ]0, π] , (3.3.13)

whereas (3.3.9) holds unchanged, leading to the more general

lim sup
x→x0

b2
j (π − x)
fj(x)

< ∞ . (3.3.14)

(3.3.10) is changed to
0 < b2

j(x) + b2
j (π − x) . (3.3.15)

Since bj must be an even function, it can, for example, be chosen

bj(x) = (cos (x0) + cos (x))β . (3.3.16)
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For d-level circulant and tau matrices, the elementary restriction matrices are
chosen to be the Kronecker products of (3.3.3) and (3.3.4) , i.e.

Ej = Ej1 ⊗ · · · ⊗ Ejd
. (3.3.17)

Restriction in terms of generating functions is done with the d-dimensional analogs
of (3.3.2) and (3.3.5) . In the two-level case, these are

f̂j(x, y) = fj(x, y) · b2
j (x, y) (3.3.18)

and

fj+1(x, y) =
1
4

(
f̂j(

x

2
,
y

2
) + f̂j(

x

2
+ π,

y

2
+

x

2
,
y

2
+ π) + f̂j(

x

2
+ π,

y

2
+ π)

)
(3.3.19)

or the tau analogs. Frequently, we use the notation x = (x, y) or x0 = (x0, y0) .
The function bj(x) must satisfy the d-level version of conditions (3.3.8)-(3.3.16) .

For each zero of fj , there is not just one, but 2d − 1 mirror points, where bj must
be zero. For example in two dimensions, a zero of f(x) at (x0 requires b(x) to be
zero at the three mirror points, which are contained in the set

M(x0) = {(π + x0, y0) , (x0, π + y0) , (π + x0, π + y0)} (3.3.20)

for two-level circulant matrices and

M(x0) = {(π − x0, y0) , (x0, π − y0) , (π − x0, π − y0)} (3.3.21)

for two-level tau matrices. The multilevel conditions on bj are the following for
circulant and tau matrices:

lim sup
x→x0

b2
j (y)

fj(x)
< ∞ for y ∈ M(x) (3.3.22)

∑
y∈M(x)∪{x}

b2
j (y) > 0 . (3.3.23)

With these definitions of Ej and Bj , the following theoretical results have been
obtained in [3] and [2] :

• The algebraic condition is satisfied, i.e. on each level the matrix Aj is the
circulant or tau matrix generated by fj . Moreover, a zero of f at x0 implies
a zero of f2 at 2x0 .

• If An is banded, i.e. if f is a trigonometric polynomial of small degree,
then the bj can be chosen such that all coarse grid functions fj are also
polynomials of small degree. Thus, there exists a constant C such that each
matrix-vector product involving Aj is computed in less that C ·nj operations.
The computational condition holds.
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• The two-grid version of the Ruge-Stüben-Theorem holds, i.e. conditions
(3.1.16)-(3.1.18) in Corollary 1 are proved to hold if (3.3.22) and (3.3.23) are

satisfied. The convergence rate
√

1−αpost/β
1+αpre/β is independent of the recursion

level. This property, which is called level independency, is necessary, but
not sufficient for optimal convergence of a V-cycle multigrid method. A
simple example for non-optimal convergence is given in [3] . The tau matrix
corresponding to the function

f(x) = (2 − 2 cos (x))2

is solved with a multigrid method, where on each level, the prolongation
matrix is related to

b(x) = 2 + 2 cos (x) .

Then, (3.3.14) and (3.3.15) are satisfied, but the V-cycle multigrid method
does not converge optimally.

The above conditions suffice to ensure two-grid convergence and also conver-
gence of the W-cycle, but they are not strong enough to guarantee optimal multi-
grid convergence in the V-cycle. This can be achieved by using functions bj with
zeros of higher order at the mirror points, and therefore slightly denser matrices
Bj . In [3, 2] , the following condition is proposed instead:

lim sup
x→x0

∥∥∥∥bj(y)
fj(x)

∥∥∥∥ < ∞ for y ∈ M(x) . (3.3.24)

With (3.3.24) and (3.3.23) , the multigrid correcting condition (3.1.22) , and there-
fore Corollary 2 , is proved. Hence, also the convergence criterion is satisfied and
the multigrid method is optimal in the sense of Axelsson and Neytcheva.

3.3.2 DCT-III and DST-III algebras

Multigrid methods for DCT-III matrices have been introduced in [33, 28] . In these
articles, convergence has been proved for the two-grid method, but in the numerical
experiments, also the V-cycle multigrid method shows optimal convergence. We
review the main results and then carry them over to the related DST-III algebra.

DCT-III matrices

Again, the smoother is chosen to be the damped Richardson or Jacobi iteration.
We start with the one-level DCT-III algebra and present an extension to the two-
level algebra later. Having in mind the three criteria for an efficient multigrid
method, the restriction matrices Rj = Bj · Ej are defined as follows. In order to
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satisfy the algebraic requirement, the elementary restriction matrix of size nj-by-
nj+1 with nj+1 = nj/2 is chosen to be

(E(dct3)
j )H =

⎛
⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1 1

⎞
⎟⎟⎟⎠ . (3.3.25)

Again, (E(dct3)
j )H represents the spectral link between the space of frequencies on

the fine and on the coarse grid. In [28] , it is shown that applying (E(dct3)
j )H to the

matrix Q
(dct3)
nj leads to the DCT-III equivalent of equations (3.3.6) and (3.3.7) :

(E(dct3)
j )H · Q(dct3)

nj
=

(
Q(dct3)

nj+1
D

(1)
j+1|Q(dct3)

nj+1
D

(2)
j+1Πj+1

)
(3.3.26)

with

D
(1)
j+1 = diag

l=1,...,nj+1

[√
2 cos

(
(l − 1)π
4nj+1

)]
, D

(2)
j+1 = diag

l=1,...,nj+1

[
−
√

2 sin
(

(l − 1)π
4nj+1

)]
,

The permutation matrix Πj+1 corresponds to the permutation

πj+1 : (1, 2, . . . , nj+1) −→ (1, nj+1, nj+1 − 1, . . . , 2) .

With (3.3.26) , it is shown that

Aj+1 = RH
j AjRj = (E(dct3)

j )HBH
j AjBjE

(dct3)
j

= (E(dct3)
j )HQ(dct3)

nj
Δnj(fjb

2
j )(Q

(dct3)
nj

)HE
(dct3)
j

= Q(dct3)
nj+1

[D(1)
j+1,D

(2)
j+1Πj+1]Δnj (fjb

2
j)

(
D

(1)
j+1

ΠH
j+1D

(2)
j+1

)
(Q(dct3)

nj+1
)H

(3.3.27)

with Δnj(f) = diag
0≤j≤nj-1

[f(jπ/nj)] . Hence, Aj+1 corresponds to the function

fj+1(x) , which is obtained with

fj+1(x) = 2[cos2 (
x

4
)fj(

x

2
)bj(

x

2
) + sin2 (

x

4
)fj(π − x

2
)bj(π − x

2
)] . (3.3.28)

The choice of the functions bj(x) is done in a similar way as in (3.3.13)-(3.3.15) .
If fj has a unique zero x0 ∈ [0, π] , then bj must satisfy (3.3.15) and, in addition,

bj(x) = [2 − 2 cos (x − (π − x0)]�β/2� ∼ |x − (π − x0)|2�β/2� over ]0, π] , (3.3.29)

where

β ≥ argmin
k

(
lim

x→x0

sin2 (x/2)
cos2 (x/2)

· |x − x0|2k

fj(x)
< ∞

)
. (3.3.30)
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Remark 5 With conditions (3.3.29) and (3.3.30) , the following properties of the
two-grid method are shown in [33, 28]:

• If x0 is a zero of fj , then 2x0 is a zero of fj+1 which is of the same order as
x0 . The only exception is x0 = π , where the order of 2x0 is the order of x0

plus 2 . However, a zero of f at x0 = π leads to a zero of f2 at the origin.
Therefore, this additional in increase of the order happens only on the finest
grid.

• If f is a trigonometric polynomial of fixed degree, then f2 (and therefore
all fj) are polynomials of fixed degree, only depending on the orders of the
zeros. Thus, the computational complexity is not increased on coarser levels.

• The postsmoothing condition (3.1.17) and the correcting condition (3.1.18)
are satisfied, and the two-grid method converges optimally.

These properties are necessary conditions for optimality in the sense of Axelsson
and Neytcheva. However, V-cycle convergence has not yet been proved.

For two-level DCT-III matrices, the elementary restriction matrix is the Kro-
necker product of the matrices (E(dct3)

j )H from (3.3.31) , i.e.

(E(dct3)
j )H = (E(dct3)

j1
)H ⊗ (E(dct3)

j2
)H (3.3.31)

With the two-dimensional analogue of Q
(dct3)
nj , being defined as

Q
(dct3)
nj = Q(dct3)

nj1
⊗ Q(dct3)

nj2
, (3.3.32)

(3.3.27) and (3.3.26) are directly carried over to the two-dimensional case with
Kronecker products. In terms of generating functions, (3.3.28) is replaced by

fj+1(x, y) = 4[cos2 (
x

4
) cos2 (

y

4
)f̂j(

x

2
,
y

2
) + sin2 (

x

4
) cos2 (

y

4
)f̂j(π − x

2
,
y

2
)

+ cos2 (
x

4
) sin2 (

y

4
)f̂j(

x

2
, π − y

2
) + sin2 (

x

4
) sin2 (

y

4
)f̂j(π − x

2
, π − y

2
)] ,

(3.3.33)

with f̂j(x, y) = fj(x, y) · b2
j (x, y) . bj(x, y) is chosen in analogy to (3.3.29) and

(3.3.30) :
bj(x) ∼

∏
x̂0∈M(x)

‖x− x̂‖2�β/2�
1 over ]0, π]2 (3.3.34)

with

β ≥ argmin
k

(
lim

x→x0

sin2 (x/2)
cos2 (x/2)

· |x − x0|2k

fj(x)
+ lim

y→y0

sin2 (y/2)
cos2 (y/2)

· |y − y0|2k

fj(y)
< ∞

)
.

(3.3.35)
If bj satisfies these two conditions, the same facts as in Remark 5 hold.
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DST-III matrices

In the following, we define the components of a multigrid method for the related
DST-III algebra. In the one-level case, we choose nj+1 = nj/2 and

E
(dst3)
j = E

(dct3)
j . (3.3.36)

with E
(dst3)
j from (3.3.25) . The DST-III equivalent of (3.3.26) is

(E(dst3)
j )H · Q(dst3)

nj
=

(
Q(dst3)

nj+1
D̃

(1)
j+1|Q(dst3)

nj+1
Π̃(2)

j+1D̃
(2)
j+1Π̃

(1)
j+1

)
(3.3.37)

with

D̃
(1)
j+1 = diag

l=1,...,nj+1

[√
2 cos

(
lπ

4nj+1

)]
, D̃

(2)
j+1 = diag

l=1,...,nj+1

[√
2 sin

(
(l − 1)π
4nj+1

)]
,

The permutation matrix Π̃(1)
j+1 corresponds to the permutation

π
(1)
j+1 : (1, 2, . . . , nj+1) −→ (nj+1, nj+1 − 1, . . . , 1) ,

whereas Π̃(2)
j+1 corresponds to

π
(2)
j+1 : (1, 2, . . . , nj+1) −→ (2, 3, . . . , nj+1, 1) .

Hence, we can compute

Aj+1 = Q(dst3)
nj+1

[D̃(1)
j+1, Π̃

(2)
j+1D̃

(2)
j+1Π̃

(1)
j+1]Δnj (fjb

2
j)

(
D̃

(1)
j+1

(Π̃(1)
j+1)

HD̃
(2)
j+1(Π̃

(2)
j+1)

H

)
(Q(dct3)

nj+1
)H ,

(3.3.38)
which implies that fj+1(x, y) is computed with (3.3.28) . We choose bj(x) , which
corresponds to the DST-III matrices Bj , such that (3.3.15) , (3.3.29) , and (3.3.30)
are satisfied. Since the multigrid method is similar as in the DCT-III case, the
following properties can be stated.

Theorem 7
Let Sn[f ] be the DST-III matrix of size n corresponding to a trigonometric polyno-

mial f with an isolated zero. If Rj = Bj · E(dst3)
j with E

(dst3)
j and bj(x) is chosen

as above, the following holds:

1. If x0 	= π is a zero of fj(x) , then 2x0 is a zero of fj+1(x) of the same order.
If x0 = π , then the order is increased by 2 .

2. If f(x) is a trigonometric polynomial of fixed degree, then this is also true
for all fj(x) .
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3. For the two-grid method, the postsmoothing condition (3.1.17) and the cor-
recting condition (3.1.18) are satisfied, and the two-grid method converges.

Proof: The proof of 1. and 2. is the same as in the articles [33, 28] . For the
postsmoothing condition, we show that

(Sn[f ])j,j =
n−1∑
k=0

f(kπ/n)(Q(dst)
n )2j,k > 0 (0 ≤ j ≤ n − 1) .

Hence, â = min
j

(Sn[f ])j,j > 0 . Then, (3.1.17) follows as in [28] . The proof of the

correcting condition is similar to the DCT-III case. Following the proof in [28] ,
(3.1.18) is proved if the following inequality holds:

I − RH [RRH ]−1R ≤ γ

â
Sn[f ] . (3.3.39)

We carry out a block diagonalization of (3.3.39) by multiplying both sides with
the two-dimensional Fourier matrix Q

(circ)
n from the right and with (Q(dst3)

n )H from
the left. On the right hand side, this results in a diagonal matrix containing the
eigenvalues of Sn[f ] , i.e. the values of f at the grid points. On the left-hand side,
we can permute

(Q(dst3)
n )HI − RH [RRH ]−1RQ

(circ)
n

into a 2-by-2 bock diagonal matrix. With this decomposition, we follow the proof
of [28] . Due to the continuity of f(x) and b(x) , we prove (3.3.39) by showing that

I2 − 1
‖b[x]‖2

2

b[x](b[x])T ≤ γ

â
diag(f [x]) (3.3.40)

with b[x] = (cos (x/2)b(x), sin (x/2)b(π − x))T and f [x] = (f(x), f(π − x))T . This
is true if all entries of the 2-by-2 matrix

R(x) = diag−1/2(f [x])
(

I2 − 1
‖b[x]‖2

2

b[x](b[x])T
)

diag−1/2(f [x]) (3.3.41)

are uniformly bounded. For j 	= k , we have

[R(x)]j,k =
cos (x/2) sin (x/2)

cos2 (x/2)b2(x) + sin2 (x/2)b2(π − x)
b(x)b(π − x)√
f(x)f(π − x)

.

Hence, the matrix R(x) has almost the same entries as in [28] , and all entries are
uniformly bounded. Thus, the correcting condition holds. �

In the two-dimensional case, the matrices E
(dst3)
j and Q

(dst3)
nj

are the Kronecker
products of the one-level matrices, similar to their DCT-III counterparts in (3.3.31)
and (3.3.32) . fj+1(x) is computed with (3.3.33) and bj(x) is chosen such that
(3.3.34) and (3.3.35) are satisfied.

Remark 6 With Ej and bj defined as above, the same results as in Theorem 7
can be proved for the two-level case. The proof of the smoothing and correcting
condition are carried out with tensor arguments.
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3.4 Multigrid for Toeplitz systems

Unlike matrices from trigonometric algebras, Toeplitz matrices do not have the nice
property that the product of two Toeplitz matrices is again Toeplitz. Therefore, it
is significantly more difficult to develop multigrid methods for Toeplitz matrices,
and especially to carry out convergence proofs. However, in recent years, several
articles have been published on multigrid methods for Toeplitz systems. Based
on the first methods proposed by Fiorentino and Serra [52, 54] , the methods are
all very similar to the ones for trigonometric matrix algebras presented in Section
3.3 . In this section, we give an overview of the well-known results on multigrid
methods for Toeplitz systems. We start with convergence proofs for functions with
zeros of order 2 . Then, we present more general convergence results, which were
obtained for an adaptation of the methods presented for tau matrices. Finally, we
describe a slightly different method, which is based on rediscretization.

3.4.1 A method for zeros of order two

In [108, 24] , R. Chan et. al. gave the first multigrid convergence proof for Toeplitz
systems corresponding to functions with a single isolated zero of order 2 in ]−π, π] .
In [109] , their results are extended to BTTB systems. These articles are based on
the multigrid methods developed in [52, 54] , which are stated not only for tau,
but also for Toeplitz matrices. The smoother is a simple one, either the damped
Richardson or the damped Jacobi method. Under the assumption that the zero of
f(x, y) is located at the origin, i.e. that f(x, y) satisfies the condition

min
(x,y)∈[−π,π]2

f(x, y)
2 − cos (x) − cos (y)

> 0 , (3.4.1)

the restriction matrix is again chosen to be R = B · E . B is the BTTB matrix
corresponding to

b(x, y) = 2 − cos (x) − cos (y) , (3.4.2)

and E is the elementary restriction matrix defined in (3.3.4) . Convergence of
the two-grid method is proved by verifying the conditions of Corollary 1 . Only
postsmoothing is used in this method. The smoothing condition for Toeplitz ma-
trices is already proved in [90] , the correcting condition, and therefore two-grid
convergence, is proved in [109] .

Under the assumption that the size of the matrix Tn1n2 is of the form n1 =
2k1 − 1 and n2 = 2k2 − 1 , all matrices on coarser grids are again BTTB. For this
case, level-independency of the multigrid method has been proved. Following the
presentation in [112] , this implies optimal convergence of the W-cycle, but not of
the V-cycle. The numerical results, however, suggest that also a multigrid method
with V-cycles converges optimally. In Chapter 4 , we will use the proof technique
from [109] to obtain convergence results for anisotropic BTTB systems.
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3.4.2 Adapting the matrix algebra method to the Toeplitz class

In the original articles of Fiorentino and Serra [52, 54] as well as in [99, 3] , multi-
grid methods for Toeplitz matrices are tightly connected to the methods for tau
matrices described in the previous section. For tau matrices, computation of the
coarse grid matrices with (3.2.2) was directly translated to generating functions in
(3.3.2) and (3.3.5) . In the Toeplitz class, this analogy can be used as a heuristic,
but there is no one-to-one correspondence between matrices and functions. Even if
Aj is Toeplitz, neither Âj nor Aj+1 is Toeplitz in general. In the one-level Toeplitz
class, Âj and Aj+1 are Toeplitz plus low-rank matrices, but for BTTB matrices,
low-rank means O(

√
n) . Nevertheless, the prolongation Fiorentino and Serra use

for Toeplitz matrices is very similar to the prolongation they use for tau matrices.
More precisely, Ej is the same as in (3.3.4) , and Bj is either the Toeplitz or the
tau matrix corresponding to the function bj(x) , which is chosen as in the tau case.
If Bj = τ(bj) with bj satisfying (3.3.22) and (3.3.23) , Serra [99] proved conditions
(3.1.17) and (3.1.18) of the Ruge-Stüben-theorem and therefore optimal two-grid
convergence for f having a zero of finite order, also for multilevel Toeplitz ma-
trices. Implicitly, level independency of the multigrid method has been proved
in [99] . Following the presentation in [112] , this implies optimal convergence of
the W-cycle, but not of the V-cycle. In [3] , several examples have been given
to demonstrate that level independency does not imply optimal multigrid conver-
gence. Optimal V-cycle convergence is much harder to prove, because Toeplitz
matrices do not have algebra structure. Therefore, such a proof has not yet been
given. However, the numerical results presented in [99, 3] suggest that the con-
vergence of the V-cycle method is indeed optimal. Recently, there have been two
further proposals for the choice of the restriction matrices. For one dimensional
Toeplitz matrices, they enforce the Toeplitz structure on coarser grids by setting
some rows in Ej to zero. The first cutting matrix was presented in [99] , the second
one in [3] :

• Ej[t] is obtained from Ej by deleting the first t and the last t rows, where t =
deg(bj)−1 with deg(bj) denoting the degree of the trigonometric polynomial
bj(x) .

• Ej{t} is obtained from Ej by deleting only about half as many rows as for
Ej[t] . If t is even, the first t/2 and the last t/2 rows of Ej are deleted with
t as above.

It is shown that the second proposal preserves the Toeplitz structure, cutting the
lowest amount of information. If f has only one isolated zero of order at most two,
then t = 0 and no extra cutting has to be applied. Thus Ej , Ej [t] , and Ej{t} are
equivalent. For multilevel Toeplitz matrices, the cutting matrices are obtained as
tensor products of the one-level cutting matrices.
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3.4.3 Using rediscretization

All multigrid methods for Toeplitz matrices described so far use coarse grid op-
erators which are computed with the Galerkin approach, i.e. as a product of the
form TC = RHTnR . The main disadvantage of this technique is that in general,
Toeplitz structure is lost on coarser levels. Application of additional cutting, as
described in Chapter 3.4.2 , enforces the Toeplitz structure of TC , but cuts infor-
mation by deleting columns of R , and therefore rows and columns of TC . In [72] ,
Huckle and Staudacher propose a different kind of multigrid method, which uses
natural coarse grid operators instead. This means the coarse grid matrix TC is a
Toeplitz matrix of smaller size, generated by the original function f .

If f has a single zero in ] − π, π] , the algorithm proposed in [72] starts with a
diagonal scaling of Tn which corresponds to a shift of the zero to the origin. Pro-
longation and restriction are done in a similar way as in [24, 109] , but computation
of the coarse grid matrix is done differently. A natural coarse grid operator is used,
i.e. an operator obtained from rediscretization of the problem on the coarser grid.
The advantage of this technique is that the coarse grid matrix is again Toeplitz,
independent of its size. Since the zero remains at the origin on coarser levels, the
same prolongation and restriction matrices can be applied on each level. Further-
more, the coarse grid matrices on all levels correspond to the function f , they are
just of smaller size. The numerical results presented in [72] show that for large
classes of linear systems, the method based on rediscretization converges as fast as
the Galerkin-based methods. Since no Galerkin strategy is used, it is not possible
to give convergence proofs based on the theory of Ruge and Stüben.

3.5 Multigrid for block systems

The multigrid methods discussed so far are all designed for one-level or multilevel
matrices of the Toeplitz class or of a trigonometric matrix algebra. In this section,
we introduce multigrid methods for block Toeplitz matrices, where the blocks
are usually small, but unstructured. First, we present an idea of Huckle and
Staudacher [71] for the development of a multigrid method for block matrices.
Then, we describe, in more detail, how Toeplitz matrices can be treated as block
Toeplitz matrices. This technique, which is also applied to trigonometric matrix
algebras, will be useful for generating functions with multiple zeros in the next
section.

3.5.1 A multigrid method for block Toeplitz systems

Block Toeplitz matrices were introduced in Section 2.1.2 . They have Toeplitz
structure on the block level and small, unstructured blocks of fixed size k . The
corresponding generating functions are k-by-k matrix functions F (x) in one vari-
able (see [93, 96, 79]) . The same type of structured matrix exists in two dimen-
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sions. We call it block BTTB matrix in the following. These matrices have BTTB
structure on the block level and unstructured blocks of size l . The corresponding
functions are l-by-l matrix functions F (x, y) in two variables.

Huckle and Staudacher [71] developed multigrid methods for one-level block
Toeplitz matrices corresponding to simple generating matrix functions. They call
a matrix function F (x) simple if

• it is symmetric and nonnegative definite,

• all its eigenvalue functions have a single isolated zero in ] − π, π] of order at
most 2 .

First, the authors use the Galerkin approach to compute the coarse grid matrix.
The restriction matrix R is defined as R = B · E , where B is chosen to be the
block Toeplitz matrix generated by

B(x) = diag(b1(x), b2(x), . . . , bk(x)) , (3.5.1)

and EH is the elementary restriction matrix

EH =

⎛
⎜⎜⎜⎝

Ik 0k 0k

0k Ik 0k

. . .
. . .

. . .

0k Ik

⎞
⎟⎟⎟⎠ (3.5.2)

with Ik being the k-by-k identity matrix and 0k the k-by-k zero matrix. The coarse
grid matrix AC is computed with

AC = EH · B · A · BH · E ,

which, up to a perturbation of low-rank, corresponds to

F2(x) =
1
2
·
[
B(

x

2
)HF (

x

2
)B(

x

2
) + B(

x

2
+ π)HF (

x

2
+ π)B(

x

2
+ π)

]
. (3.5.3)

The choice of the functions bj(x) depends on the zeros of the eigenvalue functions
λj(x) of F (x) . Under the assumption that either all singularities of F (x) are
located at 0 or all singularities are located at π , all bj(x) are the same, i.e. B(x) =
b(x) · Ik with b(x) = 1 + cos (x) or b(x) = 1 − cos (x) , respectively.

In [71] , the authors also propose a different choice of the coarse grid matrix
AC . Instead of computing AC with the Galerkin method, they employ a natural
coarse grid matrix, i.e. a matrix obtained from rediscretization on the coarser grid.
This is the same idea as in [72] , which has the advantage that the block Toeplitz
structure is retained on coarser levels. However, there are no convergence proof
for this method.
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3.5.2 Toeplitz matrices treated as block Toeplitz matrices

In [71] , there is a brief description how Toeplitz matrices can be interpreted as
block Toeplitz matrices and then solved with the multigrid methods described
in the previous subsection. Here we wish to extend these results, laying special
emphasis on the eigenvalues and eigenvectors of the generating matrix functions
and on the treatment of two-dimensional problems.

In the next section, interpreting Toeplitz matrices as block Toeplitz matrices
will become a helpful tool for the multigrid solution of Toeplitz systems with
several zeros in ] − π, π] . Before being presented in a more formal context, this
technique shall be illustrated for the simplest case, i.e. for block size k = 2 .

Motivation

Let Tn[f ] be the Toeplitz matrix

Tn[f ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0 t−1 | t−2 t−3 | . . . . . . | t2−n t1−n

t1 t0 | t−1 t−2 | . . . . . . | t3−n t2−n

−− −− − −− −− − . . . . . . − −− −−
t2 t1 | . . .

...
...

...
...

t3 t2 | . . .
...

...
...

...
−− −− − −− −− − . . . . . . − −− −−
...

...
...

...
. . . | t−2 t−3

...
...

...
...

. . . | t−1 t−2

−− −− − . . . . . . − −− −− − −− −−
tn−2 tn−3 | . . . . . . | t2 t1 | t0 t−1

tn−1 tn−2 | . . . . . . | t3 t2 | t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5.4)

corresponding to the generating function f(x) . Interpretation of Tn[f ] as a block
Toeplitz matrix (see [71]) leads to the generating matrix function

F (x) = · · · + e−ix

(
t2 t1
t3 t2

)
+

(
t0 t−1

t1 t0

)
+ eix

(
t−2 t−3

t−1 t−2

)
+ . . .

=
1
2

(
f(x/2) + f(x/2 + π) eix/2(f(x/2) − f(x/2 + π))

e−ix/2(f(x/2) − f(x/2 + π)) f(x/2) + f(x/2 + π)

)
.

(3.5.5)

The eigenvalues of the 2-by-2 matrix function F (x) are easily computed:

λ0(x) = f(
x

2
) , λ1(x) = f(

x

2
+ π) . (3.5.6)

In the following, we present a one-dimensional and a two-dimensional example
function, which will be used to illustrate the main ideas.
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Example 2 For a positive integer k ,

f(x) = 1 − cos (kx) (3.5.7)

has k zeros in [−π, π[ . If k is even, f is zero at both 0 and π . A two-dimensional
example is the function

g(x) = 2 − cos (kx) − cos (ky) , (3.5.8)

which has k2 zeros in [−π, π[2 . The corresponding structured matrices are denoted
Tn[f ] and Tn[g] .

For the function f(x) from Example 2 with k = 2 this means that

λ0(x) = λ1(x) = 1 − cos (x) ,

i.e. both eigenvalue functions only have a zero at the origin. Since f(x/2)−f(x/2+
π) ≡ 0 in this case, F (x) is a diagonal matrix. This example suggests another
interpretation of the block Toeplitz approach. The two functions in the diagonal
of F (x) can be interpreted as generating functions of two Toeplitz matrices of
size n/2 which are the diagonal blocks of the matrix T̃n =

(
Tn/2[λ0(x)] 0

0 Tn/2[λ1(x)]

)
.

T̃n = Tn[f ](perm, perm) is obtained by permuting rows and columns of Tn[f ] with
the vector

perm = [1, 3, 5, . . . , n − 1, 2, 4, 6, . . . , n]T .

Functions of the form f(x) = 1 − cos (kx) are solved in a similar way by using
blocks of size k . Then, all eigenvalue functions are of the form λj(x) = 1−cos (x) .

In two dimensions, a BTTB matrix can be interpreted as a block BTTB matrix.
The procedure illustrated in (3.5.4) is carried out in two dimensions. This leads to
small blocks of size k2 with k ∈ {2, 3, 4, . . . } . For k = 2 , we obtain the analogue
of the first line in (3.5.5)

G(x, y) =
∞∑

l=−∞

∞∑
m=−∞

ei(lx+my) · Tlm , (3.5.9)

where the matrices Tl,m are of the form

Tl,m =

⎛
⎜⎜⎝

t2m,2l t2m,2l−1 t2m−1,2l t2m−1,2l−1

t2m,2l+1 t2m,2l t2m−1,2l+1 t2m−1,2l

t2m+1,2l t2m+1,2l−1 t2m,2l t2m,2l−1

t2m+1,2l+1 t2m+1,2l t2m,2l+1 t2m,2l

⎞
⎟⎟⎠ . (3.5.10)

The generating matrix function G(x, y) is then a k2-by-k2 function, which is the
analogue of the second line in (3.5.5) . For k = 2 , it is an Hermitian BTTB matrix
of the form

G(x, y) =
(

G0(x, y) GH
1 (x, y)

G1(x, y) G0(x, y)

)
. (3.5.11)
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where

G0(x, y) =

(
g00 + gπ0 + g0π + gππ ei x

2 (g00 − gπ0 + g0π − gππ)
e−i x

2 (g00 − gπ0 + g0π − gππ) g00 + gπ0 + g0π + gππ

)
(3.5.12)

and

G1(x, y) =

(
e−i y

2 (g00 + gπ0 − g0π − gππ) ei( x
2− y

2 )(g00 − gπ0 − g0π + gππ)

e−i( x
2 + y

2 )(g00 − gπ0 − g0π + gππ) e−i y
2 (g00 + gπ0 − g0π − gππ)

)

(3.5.13)
with the abbreviations

g00 = g(
x

2
,
y

2
) , gπ0 = g(

x

2
+ π,

y

2
) , g0π = g(

x

2
,
y

2
+ π) , gππ = g(

x

2
+ π,

y

2
+ π) .

The eigenvalue functions of G(x, y) are

λ0(x, y) = f(
x

2
,
y

2
) , λ1(x, y) = f(

x

2
+ π,

y

2
) ,

λ2(x, y) = f(
x

2
,
y

2
+ π) , λ3(x, y) = f(

x

2
+ π,

y

2
+ π) .

(3.5.14)

For the example function g(x, y) from Example 2 , G(x, y) becomes a 4-by-4 di-
agonal matrix with eigenvalues λj = 2 − cos (x) − cos (y) . Again, this can be
interpreted as a permutation of T̃n = Tn[f ](perm2, perm2) , where perm2 is the
two-dimensional analogue of perm . If g from Example 2 with k = 2 is interpreted
as a block BTTB matrix, the generating matrix function is the diagonal matrix

G(x, y) = (2 − cos (x) − cos (y)) · I4 .

Eigenvalues of the generating matrix functions

We have outlined how one- and two-dimensional Toeplitz systems can be treated
as block Toeplitz and block BTTB systems, respectively. This allows multigrid
methods to be applied also to problems with multiple zeros and especially with
zeros at the mirror points of another zero. As a motivation for the following
analysis we have illustrated that this approach leads to considerable improvement
in the special case of block size 2 . In order to apply this approach to more general
problems, we wish to examine the generating matrix functions as well as their
eigenvalues and eigenvectors for arbitrary block sizes. First, we introduce the
following bit of notation.

Definition 1
Let Tn[f ] be a Toeplitz matrix corresponding to the generating function f(x) , and
let Tn[f ] be treated as a block Toeplitz matrix with blocks of size k . Then we define,
for 0 ≤ l ≤ k − 1 :

fl := f(
x

k
+

l

k
· 2π) . (3.5.15)
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Furthermore, let Tn[f ] be the BTTB matrix corresponding to f(x, y) , and let Tn[f ]
be treated as a block BTTB matrix with blocks of size k2 . Then we define, for
0 ≤ l,m ≤ k − 1 :

fl,m := f(
x

k
+

m

k
· 2π,

y

k
+

l

k
· 2π) . (3.5.16)

With this notation, we can analyze the generating matrix functions more formally.
For the development of multigrid methods, we are mainly interested in their eigen-
values and eigenvectors. In one dimension, the main result is stated in the following
theorem.

Theorem 8
Let Tn[f ] be a Toeplitz matrix corresponding to the generating function f(x) , and
let Tn[f ] be treated as a block Toeplitz matrix with blocks of size k . Then, the
generating function F (x) is a k-by-k matrix with the following properties:

1. F (x) is an Hermitian Toeplitz matrix with first column

F0(x) =
1
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1∑
j=0

fj

e−ix/k
k−1∑
j=0

e−2ijπ/kfj

...

e−i(k−1)x/k
k−1∑
j=0

e−2ij(k−1)π/kfj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.5.17)

2. The eigenvalues of F (x) are

λ0 = f0 , . . . , λ1 = f1 , . . . , λk−1 = fk−1 . (3.5.18)

3. The eigenvector vj corresponding to λj is

vj =

⎛
⎜⎜⎜⎜⎜⎜⎝

e2ij k−1
k

πei k−1
k

x

...

e2ij 2
k
πei 2

k
x

e2ij 1
k
πei 1

k
x

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.5.19)

Proof: The result in 1. is a generalization of (3.5.4) and (3.5.5) . It is obtained
from the Fourier representation of f(x) .

2. and 3. are proved by direct calculation. For each eigenvalue λj , we can
verify that

F (x)vj = λjvj ,
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which completes the proof. �
In two dimensions, similar results are obtained, computations are performed

with tensor arguments. The analogue of Theorem 8 can be proved in the same
way.

Theorem 9
Let Tn[f ] be a BTTB matrix corresponding to the generating function f(x, y) , and
let Tn[f ] be treated as a block BTTB matrix with blocks of size k2 . Then, the
generating function F (x, y) is a k2-by-k2 matrix with the following properties:

1. F (x, y) is an Hermitian BTTB matrix with Hermitian blocks. For 0 ≤ l,m <
k , the element Fl,m (i.e. the m-th element in the l-th block), is given by

Fl,m = e−imx/ke−ily/k
k−1∑
r=0

k−1∑
s=0

e−2irlπ/ke−2ismπ/kfr,s . (3.5.20)

2. The eigenvalues of F (x, y) are

λ0,0 = f0,0 , . . . , λ0,1 = f0,1 , . . . , λ0,k−1 = f0,k−1

λ1,0 = f1,0 , . . . , λ1,1 = f1,1 , . . . , λ1,k−1 = f1,k−1

...

λk−1,0 = fk−1,0 , . . . , λk−1,1 = fk−1,1 , . . . , λk−1,k−1 = fk−1,k−1 .

(3.5.21)

3. The eigenvector vl,m corresponding to λl,m is

vl,m = vl ⊗ vm (3.5.22)

with vl and vm from (3.5.19) .

Consequences of the results on eigenvalues

The eigenvalues of the matrix-valued functions F (x) or F (x, y) are crucial for the
development of multigrid methods. Since Theorems 8 and 9 yield very simple
formulas for these eigenvalues, we can now state some immediate consequences.
The first corollary ensures that all zeros of f(x) which are located at x = l

k ·2π (l ∈
{0, . . . , k−1}) lead to zeros of the eigenvalue functions located at integer multiples
of 2π .

Corollary 3
Let Tn[f ] be a Toeplitz matrix corresponding to the nonnegative generating function
f(x) , and let Tn[f ] be treated as a block Toeplitz matrix with blocks of size k .

1. If f(x) has periodicity p , then all functions fj(x) have periodicity k · p .
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2. Suppose f(x) = 0 implies that ∃l ∈ {0, . . . , k−1} such that x = l
k ·2π . Then,

for each eigenvalue function λj(x) , the following holds:

• λj(x) is nonnegative

• λj(x) = 0 implies ∃m ∈ Z such that x = m · 2π .

3. In particular, suppose f(x) has a zero at x = l
k ·2π (l ∈ {0, . . . , k−1}) . Then

the j-th eigenvalue function λj(x) of F (x) has a zero at x = (l − j) · 2π .

Proof:

• The first result follows from the definition of the fj in (3.5.15) . Whereas
x/k is responsible for the periodicity of fj , 2jπ/k represents the shift of the
zeros.

• Since f(x) is nonnegative,

λj(x) = fj(x) = f(
x

k
+

j

k
· 2π) (3.5.23)

guarantees that all λj(x) are also nonnegative.

• Let us now suppose fj(x) = 0 . With (3.5.23) this is equivalent to

f(
x

k
+

j

k
· 2π) = 0 .

Since by assumption the zeros of f(x) are located at x = l
k ·2π , the following

equation must hold:
x

k
+

j

k
· 2π =

l

k
· 2π .

This is equivalent to
x = (l − j) · 2π ,

proving the rest of 2. and 3. �

This Corollary ensures that zeros of the eigenvalue functions only occur at integer
multiples of 2π . However, it does not state whether the λj are zero for all of these
points, which would be very helpful for the construction of a prolongation matrix.
The following corollary gives one positive and one negative answer to this question.

Corollary 4
Let Tn[f ] be a Toeplitz matrix corresponding to the 2π-periodic nonnegative gener-
ating function f(x) , and let Tn[f ] be treated as a block Toeplitz matrix with blocks
of size k .

1. If, for all j ∈ {0, . . . , k − 1} , f( j
k · 2π) = 0 , then all functions λj(x) become

zero for all x = l · 2π (l ∈ Z) . If, in addition, f(x) > 0 for all other x , then
the λj are strictly positive for x 	= l · 2π (l ∈ Z) .
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2. If ∃j ∈ {0, . . . , k − 1} such that f( j
k ) > 0 , then for each λj the following

holds: ∃m ∈ Z such that fj(m · 2π) > 0 .

Proof: The results are immediate consequences of Definition 1 and of the third
part of Corollary 3 , which is applied to each zero of f(x) . �

Remark 7 The results of Corollaries 3 and 4 hold unchanged in the two-level
case.

• The periodicity of the λr,s is k times the periodicity of f both in x- and in
y-direction.

• A zero of f(x, y) at (m
k · 2π, l

k · 2π) leads to a zero of the eigenvalue function
λr,s at ((m − s) · 2π, (l − r) · 2π) .

• If, for all r, s ∈ {0, . . . , k − 1} , f(m
k · 2π, l

k · 2π) = 0 , then all eigenvalue
functions are zero at (m · 2π, l · 2π) for all l,m ∈ Z .

3.6 Generating functions with multiple zeros

So far, we have considered linear systems where the corresponding generating func-
tion f(x) has a single isolated zero x0 of finite order in the interval [−π, π[ . If f(x)
has several zeros in [−π, π[ , it is more complicated to define prolongation matri-
ces. Especially in the case where f(x) has another zero at π−x0 , the convergence
theory described in the previous sections does not hold anymore, and the multigrid
methods fail in most numerical experiments. If a two-dimensional function f(x, y)
with a zero (x0, y0) vanishes at one of the mirror points from (3.3.20) or (3.3.21) ,
standard multigrid fails for the same reason. However, generating functions with
multiple zeros arise in many applications. In this work, they become important for
the solution of certain two-level Toeplitz or trigonometric algebra systems which
are anisotropic.

In this section, we develop multigrid methods especially designed for linear
systems whose generating functions have multiple zeros. Starting from suggestions
in [99, 3] , we discuss generalizations of the multigrid methods present so far, where
each zero is treated individually. Then, we make use of the block interpretation of
Toeplitz matrices from Section 3.5.2 , laying special emphasis on the eigenvalues
of the generating matrix functions. The multigrid methods obtained from this
approach are eventually combined with the former ones.

3.6.1 Treating each zero separately

In [99, 3] , the authors mention that their methods can be easily extended to linear
systems corresponding to functions with several zeros. Let us assume that f(x)
has l zeros located at xj (1 ≤ j ≤ l) . If none of the zeros are located at distance
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π , only the prolongation function b has to be modified. This is the first strategy
we wish to discuss. It has been suggested in [99, 3] .

(1) The multigrid methods from Sections 3.3.1 and 3.4.2 are used with b from
(3.3.16) being replaced by the product

b(x) = (1 + cos (x − x1))q1 · · · · · (1 + cos (x − xl))ql (3.6.1)

in the Toeplitz or circulant case and by

b(x) = (cos (x1) + cos (x))2q1 · · · · · (cos (xl) + cos (x))2ql (3.6.2)

in the tau case. For a two-dimensional function f(x, y) , the prolongation
function b(x, y) is defined analogously.

This technique works well if f has a small number of zeros, and if these are not
located at distance π . For a larger number of zeros, this approach has the disad-
vantage that matrices become denser on coarser levels, and therefore the multigrid
method loses its efficiency. Both multigrid solvers and multigrid preconditioners
are constructed with this method.

In the following, we present a different technique, which also treats each zero
of f individually. It can be used for both one- and multilevel structured matrices.
First, we describe the construction of a multigrid preconditioner which is based
on the diagonal scaling method described in Section 3.1.3 . Then we present a
modified version of the V-cycle which allows more than one coarse grid correction
per iteration.

(2) For each zero xk , separate restriction and coarse grid matrices are computed.
We construct a diagonal scaling preconditioner P for the linear system Ax =
b as the sum of l coarse grid corrections. The two-grid version is of the form

P = I + R1A
−1
C1

RH
1 + · · · + RlA

−1
Cl

RH
l (3.6.3)

with ACj = RH
j ARj . The restriction matrices are constructed from the l

functions
b(j)(x) = (1 + cos (x − xj))qj (3.6.4)

or
b(j)(x) = (cos xj + cos (x))2qj . (3.6.5)

This two-grid preconditioner is extended to a multigrid preconditioner by
applying the two-grid idea recursively to the ACj , i.e. by replacing A−1

Cj
with

I + R̃jA
−1
CCj

R̃j
H

, where ACCj is the representation of the matrix ACj on the
next coarser grid. If multigrid is used as a solver, we modify the standard
V-cycle such that several coarse grid corrections are used in every multigrid
iteration, one for each zero. The coarse grid matrices are computed in the
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same way as was done for the preconditioner, i.e. with bj from (3.6.4) or
(3.6.5) . Then, one iteration of the multigrid method consists of k coarse
grid corrections with smoothing between each of them. We will follow this
idea in much more detail in Chapter 5 , where the structure of one iteration
is shown in Figure 5.5 .

Since for each zero, a coarse grid correction is computed in each iteration, this
technique is also limited to a rather small number of zeros. Unlike (1) , (2) can
be used for arbitrary zeros, even if they are located at distance π .

3.6.2 Using the block approach

The two multigrid strategies presented in the previous subsection are very useful
for generating functions with a small number of zeros, distributed irregularly in
[−π, π[d . The opposite case is a large number of zeros, distributed regularly, or
even equidistantly in [−π, π[d . Typical function are the ones from Example 2 . For
these types of linear system, we propose different multigrid techniques which are
based on the block interpretation of structured matrices introduced in Section
3.5 . The multigrid methods for block Toeplitz matrices described in [24, 71]
efficiently solve systems like the ones from Example 2 . We have described the
approach from [71] in Section 3.5 and given an analysis of this method in terms
of generating matrix functions and its eigenvalues. In the following, we wish to
apply this method to larger classes of matrices whose generating functions have
multiple zeros which are distributed equidistantly or at least somehow regularly.
To simplify notation, we start with the one-level Toeplitz case. The trigonometric
algebra classes, which can be treated similarly, will be described later. Having
the results from Corollaries 3 and 4 in mind, we propose a third strategy for the
multigrid solution of linear systems whose generating function has several zeros.

(3) Instead of computing several coarse grid corrections, one for each zero of f ,
use a single coarse grid correction in each iteration and construct a multigrid
method following these ideas:

– Treat the Toeplitz matrix Tn[f ] as a block Toeplitz matrix with small
blocks of size k , which corresponds to a k-by-k generating matrix func-
tion F (x) .

– If all zeros of f are located at points x = l · 2π/k , choose k as the
smallest natural number such that the eigenvalue functions of F (x) do
not have multiple zeros in ] − π, π] anymore.

– Solve the system with the multigrid method for block Toeplitz matrices
described in 3.5.1 .

The more equidistant the distribution of the zeros of f is, the better are the results
obtained with this approach. In other words, if f is zero at all x = l ·2π/k , then all
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functions fj have an isolated zero in ]−π, π] , which is located at the origin. In this
case, the method from [71] converges rapidly. However, if f is nonzero at many of
the points x = l · 2π/k , then fj is nonzero at x = l · 2π due to Corollary 4 . The fj

are not 2π-periodic and the multigrid method converges significantly slower. The
following examples illustrate under which circumstances the block approach yields
fast convergence.

• Excellent convergence is obtained for the functions from Example 2 . Since
f(x) is zero for all x = 2πl/k (l ∈ {0, . . . , k − 1}) , all functions fj(x) are
zero at all multiples of 2π .

• Rather poor convergence is obtained for functions like

f(x) = (1 − cos (3x)) · (1 − cos (5x)) . (3.6.6)

To avoid multiple zeros in ]−π, π] , we have to choose k = 15 , and this implies
that f is zero at only some of the points x = k/15·2π . The multigrid method
still converges, but this convergence is extremely slow.

In two-dimensions, i.e. for BTTB matrices corresponding to generating functions
with multiple zeros, the same behavior of the multigrid methods is observed.

3.6.3 Multigrid methods with blocks and splitting

The block approach presented in the previous subsection ran into problems for
functions f which are zero at x = l · 2π/k for only some l ∈ Z . A typical example
is f from (3.6.6) . For examples like this, however, the block approach can still be
used for the design of an efficient method. By combining the block interpretation
with strategy (2) , we obtain another strategy for the development of multigrid
methods.

(4) Divide the zeros of f into two or more subsets and apply the block approach
from (3) to compute a coarse grid correction for each of them. This leads
to significantly smaller blocks than in (3) . If multigrid is used as a precon-
ditioner, it is of the same form as in (3.6.3) , but the number of coarse grid
corrections l is usually significantly smaller.

A typical example where this approach works well is f from (3.6.6) . Two coarse
grid corrections are necessary. One of them is computed with blocks of size k1 = 3 ,
the other one with blocks of size k2 = 5 . The zero at the origin occurs in both
subsets, and one has to keep in mind that it has the order 4 .

Strategy (4) also works if the block approach is only used for some of the
subsets. For example, the function

f(x) = (1 − cos (5x))(1 + cos (x))
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has zeros at x = l · 2π/5 for all l ∈ Z and at x = π . Hence, the first subset
contains the zeros x = l · 2π/5 , leading to a blocksize k1 = 5 for the first coarse
grid correction, whereas the second subset only contains x = π . This implies that
k2 = 1 , i.e. no blocks are used for the computation of the second coarse grid
correction.
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Chapter 4

Multigrid methods for
anisotropic systems

Many applications such as the discretization of partial differential equations lead
to anisotropic linear systems of two-level Toeplitz or trigonometric algebra type.
Although for some of these systems, the classical convergence theory from Chapter
3 still holds, standard multigrid methods converge so slowly that they become
totally impractical. Therefore, we devise multigrid methods which are especially
designed for application to anisotropic problems. We wish to emphasize that in
this Chapter, multigrid is only used as a standalone solver. The use of multigrid
as a preconditioner will be discussed in Chapter 5 , where the differences between
multigrid solver and multigrid preconditioner are more evident.

In Section 4.1 , we start with defining anisotropy in the context of generating
functions. Then, we describe what kind of difficulties the multigrid methods from
Chapter 3 encounter when they are applied to anisotropic linear systems. In the
rest of this chapter, multigrid algorithms for two different types of anisotropic prob-
lems are developed. In Sections 4.2 and 4.3 , we consider systems where anisotropy
occurs along coordinate axes. In Section 4.2 , we develop multigrid methods based
on a suitable combination of semicoarsening and full coarsening steps, whereas in
Section 4.3 , the focus is on the use of more sophisticated smoothers. Some of
these results are known from the solution of partial differential equations, but here
we present them in a slightly different context, making explicit use of the strong
connection between structured matrices and generating functions with their level
curves. This has the advantage that the methods can be extended to more general
classes of matrices, and that convergence can be proved in a formal way. The
problems considered in Sections 4.4 and 4.5 are more difficult to solve, because
anisotropy occurs in other directions. We develop multigrid methods which are
suitable for this case by carrying over the results from Sections 4.2 and 4.3 . We
focus on Toeplitz and circulant matrices and on directions where anisotropy occurs
in an angle of k

k+l ·90◦ towards one of the axes (with k and l being small integers) .
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Although the classical two-level matrix structure with blocks of equal size is lost
for Toeplitz matrices, the methods still work in this case. For circulant matrices,
the exact correspondence between generating functions and matrices with blocks
of equal size can be carried over. We are mostly interested in sparse examples,
which arise e.g. from the discretization of partial differential equations. However,
our methods also work in the more general case of dense matrices corresponding
to arbitrary generating functions. The development of fast multigrid methods for
dense matrices is especially interesting in the Toeplitz case, because there is no
fast direct solver available.

4.1 Anisotropy in terms of generating functions

The phenomenon of anisotropy is widely known from the numerical solution of
partial differential equations. Here we introduce it in the context of structured
linear systems and generating functions. After explaining what anisotropy is, we
describe the convergence-related difficulties of the methods from Chapter 3 .

4.1.1 Definition of Anisotropy

Anisotropy in general is a function’s property of being directionally dependent, i.e.
of having a different value when measured in different directions. In the context of
PDEs, this behavior occurs rather frequently. Two of the reasons are the following
(see e.g. [19] ):

• The coefficients of the derivatives are quite different. A typical example is
the anisotropic version of the Poisson equation:

−ε · uxx − uyy = g (0 ≤ ε � 1) . (4.1.1)

• The discretization uses a different mesh size in each direction.

Since in this work, we solve linear systems corresponding to generating functions,
we wish to treat anisotropy also in terms of generating functions. Let us start with
two examples. The first of them is obtained from finite-difference discretization
of the anisotropic Poisson equation with a five point stencil on a uniform mesh.
Depending on the type of boundary condition, one obtains a two-level Toeplitz
matrix or a matrix from a trigonometric algebra.

Example 3 Let An[f ] be the matrix belonging to the Toeplitz class or to a
trigonometric matrix algebra corresponding to the generating function

f(x, y) = α · (1 − cos (x)) + (1 − cos (y)) . (4.1.2)

If α = 1 , we get one of the isotropic standard model problems, the discrete Poisson
equation. For α � 1 , the problem becomes strongly anisotropic.
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Figure 4.1: Curves f(x, y) = 0.01 for the function from Example 3 with α =
1, 0.1, 0.01

In terms of generating functions anisotropy means that the level curves of f(x, y)
become extremely flat. This is illustrated in Figure 4.1 , which depicts the curve
f(x, y) = 0.01 for three different values of α , i.e. for three different degrees of
anisotropy. The second example presents a matrix which has a similar type of
anisotropy, but which is not sparse.

Example 4 Let An[f ] be the matrix belonging to the Toeplitz class or to a
trigonometric matrix algebra with the underlying generating function

f(x, y) = αx2 + y2 (α � 1) . (4.1.3)

It also has a single zero of order two at the origin, and it can be written as the
Fourier sum

f(x, y) = (1 + α)
π3

3
+ 4π

∞∑
j=1

(−1)j

j2
(α cos (jx) + cos (jy)) . (4.1.4)

These two functions are examples where anisotropy occurs along one of the co-
ordinate axes. In most of this article, we restrict ourselves to anisotropic linear
systems which correspond to generating functions with a single zero in [−π, π[2 of
order two, because these can be described best in a formal way. However, we will
also outline how to solve certain anisotropic systems whose function has several
zeros or zeros of higher order. Let us now assume that f has a single zero at the
origin of order 2 . Then the Taylor expansion of f is of the form

f(x, y) = ax2 + bxy + cy2 + . . . =
(

x y
)
M

(
x
y

)
+ . . . (4.1.5)

with M =
(

a b/2
b/2 c

)
. For the analysis of f(x, y) in the neighborhood of the origin,

we omit all higher order terms and describe f only with the symmetric matrix
M . Since f is nonnegative, M is positive semidefinite, i.e. its eigenvalues are
nonnegative. The eigenvalues λ1, λ2 of M give information about the degree of
anisotropy, the corresponding orthogonal eigenvectors v1, v2 about the direction
in which anisotropy occurs. If exactly one of the eigenvalues is close to zero,
anisotropy is strong. In the limit case, λ1 or λ2 is zero. This means that f is zero
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Figure 4.2: Level curves f(x, y) = 0.01 and g(x, y) = 0.01 for the functions from
Example 5 with α = 0.01

along a whole line which passes through the origin. In Example 3 , the function f
can be described by the diagonal matrix M = 1

2 · ( α 0
0 1 ) .

In this work, we are also interested in more general classes of functions, where
anisotropy occurs in other directions. The following two functions correspond to
model problems of this more general type.

Example 5 Let An[f ] and An[g] be two-level Toeplitz or trigonometric algebra
matrices corresponding to the functions

f(x, y) = α · (1 − cos (x + y)) + (1 − cos (x − y)) ,

g(x, y) = (1 − cos (2x + y)) + α · (1 − cos (x − 2y)) .
(4.1.6)

Figure 4.2 shows how the two functions behave in the neighborhood of their zero at
the origin, i.e. with what kind of anisotropy we have to deal with. f is anisotropic
along the line y = x , which means it is rotated by an angle of 45 degrees from the
x-axis. The anisotropy of g occurs along y = −2x , which corresponds to an angle
of 30 degrees from the y-axis.

4.1.2 Problems arising from anisotropic systems

The multigrid methods from Chapter 3 do not work with the same efficiency when
they are applied to anisotropic problems. If the anisotropy is strong, they fail
completely. In order to explain the reasons for this behavior, we begin with the
following observation. As described in Chapter 3 , the V-cycle multigrid method
converges if fj and bj satisfy conditions such as (3.3.22) and (3.3.23) . A necessary
condition for this is that, on each level, for each zero of fj , the function bj is
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zero at the mirror points, and fj itself is nonzero at these points [99, 3, 103] .
However, apart from these convergence results, there is also one important negative
observation which will be crucial for the development of our multigrid methods.

Remark 8 Let f(x, y) be a nonnegative generating function which has a zero at
(0, 0) . If f has another zero at one of the mirror points, the multigrid method from
Chapter 3 fails completely in all numerical experiments. A theoretical reason for
this behavior can be found in [100, 3] : The convergence theory for the multigrid
method of Serra [54, 100] requires that b is nonzero at the origin and zero at all
mirror points. Hence, if f is zero at the origin and at one of the mirror points,
b cannot meet both requirements. Even if f is close to zero at one of the three
points (0, π), (π, 0), (π, π) , convergence of the multigrid method is extremely slow.

In the following, we describe what problems arise when the standard multigrid
methods from Chapter 3 are applied to anisotropic linear systems. Without loss
of generality, we assume that the generating function is zero at the origin and
anisotropic in its neighborhood. The function f from Example 3 serves to illus-
trate how generating functions are used for an analysis of multigrid methods. We
distinguish two different cases, linear systems with strong anisotropy and linear
systems with only moderate anisotropy.

1. If anisotropy is strong, i.e. if 0 < α � 1 or even α → 0 , then the methods
fail completely for the following reasons:

• If anisotropy occurs along one of the axes or in an angle of 45◦ to the
axes, the function f becomes close to zero at one of the mirror points.
In Example 3 , this happens at (π, 0) . From Remark 8 we know that
convergence is extremely slow in this case.

• For anisotropy in arbitrary directions, f becomes close to zero along a
whole line. In the case of f from Example 3 , this line is the x-axis.
This means that multigrid methods which are designed for functions
with a single isolated zero are no more applicable.

• Most interesting sparse examples with anisotropy in other directions,
i.e. not along the coordinate axes, have several zeros in [−π, π[2 , which
means several lines of zero in the limit case.

2. If the linear system is only moderately anisotropic, the methods from Chap-
ter 3 can still be applied. However, they become more and more inefficient
with an increasing degree of anisotropy. The reason for this is the weak
connection in one direction due to small coefficients in front of some terms
in f , which, in the case of f from (4.1.2) are the x-terms. This can be il-
lustrated very well with the level curves of the generating function f from
Example 3 . Figure 4.1 depicts the curve f(x, y) = 0.01 for three different
values of α , i.e. for three different degrees of anisotropy. The solid curve for
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α = 1 is totally isotropic, i.e. almost like a circle. The dashed curve with
α = 0.1 is only moderately anisotropic, and the dotted curve for α = 0.01
is significantly more anisotropic, which means that the curve is very flat. If
anisotropy is even stronger, the value of the function hardly depends on x ,
making coarsening in x-direction rather useless. In the limit case, i.e. for
α = 0 , we obtain n2 independent 1D Poisson systems.

4.1.3 How to design multigrid methods for anisotropic systems?

Having defined anisotropic systems and having described the problems arising from
the use of multigrid methods, we wish to develop multigrid solvers which overcome
these problems and which converge optimally. There are two fundamentally dif-
ferent concepts for the design of multigrid methods for anisotropic linear systems.
Both are known from the solution of partial differential equations, but in this work,
we present them in the context of generating functions and the corresponding ma-
trices. This leads to a more formal treatment of the two concepts. The first of
them is based on semicoarsening, the second on line smoothing.

• Semicoarsening: Since strong coupling occurs only in one direction, relax-
ation leads to a sufficiently smooth error only in this direction. Therefore, we
perform coarsening only in this direction. This strategy known as semicoars-
ening reduces the degree of anisotropy in each step. Usually, semicoarsening
is combined with a standard smoother such as the Jacobi or Gauss-Seidel
method.

• Line smoothing: The standard coarsening strategy from Chapter 3 can
still be used if we choose a more sophisticated smoother, which must be es-
pecially well-suited for anisotropic systems. Instead of performing pointwise
relaxation, the smoother solves for entire lines of unknowns, perpendicular
to the direction of the anisotropy. This is achieved with block relaxation, for
example with the block-Jacobi method.

After having introduced the two main strategies for the development of multigrid
methods, we now divide anisotropic linear systems into two classes.

1. The first class contains matrices where anisotropy occurs along coordinate
axes such as the matrices from Example 3 . Multigrid methods will be de-
scribed in a formal way using the notation of generating functions. This gives
us a different view on this type of anisotropic problems, which is known from
the solution of partial differential equations.

2. This rigorous treatment enables us to carry over the results to the second
class of anisotropic problems, where anisotropy occurs in other directions.
These systems are more difficult to solve, because in general, the two-level
Toeplitz or algebra structure is lost on coarser levels. However, in some cases,
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the matrix structure can be retained, for example in the circulant case. Then,
the methods for the first class of anisotropic systems can be directly carried
over. For the other matrix classes, they still work as a heuristic.

In Sections 4.2 and 4.3 , we develop multigrid methods for anisotropic systems be-
longing to the first class. In Section 4.2 , the methods are based on semicoarsening,
whereas in Section 4.3 line smoothers are used. Sections 4.4 and 4.5 contain meth-
ods for systems with anisotropy in other directions, the former methods based on
semicoarsening, the latter methods based on line smoothing.

4.2 Anisotropy along coordinate axes: Semicoarsening

One possible way to get rid of the problems described in the previous section is to
use semicoarsening in the direction perpendicular to the anisotropy. The smoother
is chosen to be a pointwise one such as the damped Jacobi method. We start with a
description of the two-grid method and with theoretical results on the reduction of
anisotropy. Then, the two-grid method is extended to a multigrid method, where
reduction of anisotropy is obtained on each level. Convergence proofs are given for
the two-grid method and for the W-cycle based multigrid method. First, this is
done for the trigonometric algebra case, extending results from [99, 103, 28]. Then,
similar results are obtained for the Toeplitz case, extending results from [109] . At
the end of this section, we present several numerical examples to illustrate the
behavior of the semicoarsening-based multigrid methods. The main results of this
section are summarized in the article [55] .

4.2.1 A two-grid method with semicoarsening

Since we solve two-level Toeplitz or trigonometric matrix algebra systems, we wish
to describe semicoarsening in terms of generating functions. Let us assume that we
have anisotropy along the x-axis (e.g. a function such as f from Example 3 with
α = 0.01) , and that coarsening is done in y-direction only. R = B ·E is the product
of the following two matrices. B is the two-level structured matrix corresponding
to a function which is chosen to match, for each x ∈ [−π, π] , possible zeros of f .
If f has a zero of order two at the origin, the simplest choice is

b(x, y) = 1 + cos (y) , (4.2.1)

corresponding to a matrix of the form

B =

⎛
⎝ 1 0.5

0.5 1 0.5
. . .

. . .
. . .

0.5 1 0.5
0.5 1

⎞
⎠⊗ In (4.2.2)

or its BCCB or two-level DCT-III equivalent. For zeros of higher order, b is chosen
to be a power of the function from (4.2.1) , because, for all points on the x-axis,
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Figure 4.3: Level curves f(x, y) = 0.01 and f2(x, y) = 0.01 obtained by one
semicoarsening step with f from Example 3 and α = 0.01

a condition such as (3.3.24) must be satisfied. For all choices of b , the product
Â = BT ·An[f ] ·B (or f̂(x, y) = f(x, y) ·b(x, y)2 in terms of functions) is computed
as in the isotropic case. The elementary restriction matrix E is chosen to be

En = En1 ⊗ In2 (4.2.3)

with the one-dimensional elementary restriction matrix En1 defined in Chapter 3 .
Translated to generating functions, this becomes

f2(x, y) =
1
2

(
f̂(x,

y

2
) + f̂(x,

y

2
+ π)

)
(4.2.4)

or its tau or DCT-III equivalent. The result is a coarse grid matrix AC with half
as many blocks as An[f ] , but with the same block size. In the Toeplitz case, AC

is BTTB if n1 is odd and b from (4.2.1) is used. For general n1 , additional cutting
(as suggested in [99, 3]) has to be applied. If anisotropy occurs along the y-axis,
semicoarsening is done in x .

Why is this approach superior to the standard coarsening method? Since
anisotropy occurs along coordinate axes, we have to focus on two of the difficulties
described in Section 4.1.2 . The problem that f is almost zero along a whole axis
is overcome by coarsening in only one direction, and therefore by treating the
other variable as if it were a constant. With the same argument, we get rid of
the problem with the zeros at mirror points, because they are all located on the
x-axis.

The use of semicoarsening is a good idea for all types of anisotropic problems,
not just for the extrem case described above, because it yields a matrix AC which
is less anisotropic than An[f ] . Figure 4.3 suggests that generating functions can
be used to illustrate this property. Whereas full coarsening does not change the
degree of anisotropy, semicoarsening leads to level curves on the coarser grid which
are less flat. This fact can be described more formally with the following definition.

Definition 2
Let f(x, y) = c be a level curve of f with a sufficiently small, positive real number
c , and let f2 be the function computed in (4.2.4) . We consider the points (xF (c), 0)
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and (0, yF (c)) , where the level curve of f intersects the coordinate axes for positive
xF (c) and yF (c) . xC(c) and yC(c) are the analogues on the coarser level, i.e. for
the curve f2(x, y) = c . For the sake of abbreviation, let us omit the parameter c ,
i.e. let us denote for example xF = xF (c) . The ratios rF = xF

yF
and rC = xC

yC
are

used as a measure to describe the degree of anisotropy along the coordinate axes x
and y for small c .

For the functions in Example 3 , we observe that rF is reduced by a factor 2 after
one semicoarsening step, independent of α and for c � 1 . In the following, we
prove that this property holds in a more general context.

Theorem 10
Let f be a nonnegative generating function with a zero of order 2 at the origin
which is of the form

f(x, y) = [λ1(1 − cos (x)) + λ2(1 − cos (y))] · h(x, y) (4.2.5)

with h(x, y) > 0 and λ1, λ2 > 0 . Let f2 be the function obtained by one semicoars-
ening step with b from (4.2.1) . Let rF = xF

yF
and rC = xC

yC
be the ratios described

above for f and f2 , respectively. Then the degree of anisotropy is reduced by a
factor 2 , i.e. rF

rC
→ 2 for c → 0 .

Proof: 1. Computation of rF :
Since h(x, y) > 0 , we can assume that h0 := h(0, 0) and hπ := h(0, π) are bounded
away from 0 . f is approximated in the neighborhood of (0, 0) by the following
Taylor expansion with terms of order at most 2 :

f(x, y) .= (λ1
x2

2
+ λ2

y2

2
) · h0 . (4.2.6)

With this approximation, xF and yF can be computed as follows

f(xF , 0) .= c ⇔ λ1
x2

F

2
h0

.= c

f(0, yF ) .= c ⇔ λ2
y2

F

2
h0

.= c .

(4.2.7)

This leads to the ratio

rF =
xF

yF

.=
√

λ2

λ1
. (4.2.8)

2. Computation of rC :
First, we compute f̂ with b from (4.2.1) :

f̂(x, y) = [λ1(1 − cos (x))(
3
2

+ 2 cos (y) +
1
2

cos (2y))

+
1
2
λ2(1 + cos (y) − cos (2y) − cos (y) cos (2y))] · h(x, y) .

(4.2.9)
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With the abbreviations h̃0 := h(x, y/2) and h̃π := h(x, y/2 + π) and with (4.2.4)
and (4.2.9) we obtain the following function f2 :

f2(x, y) =
λ1

2
(1 − cos (x))

(
3
2
(h̃0 + h̃π) + 2 cos (

y

2
)(h̃0 − h̃π) +

1
2

cos (y)(h̃0 + h̃π)
)

+
λ2

4

(
(h̃0 + h̃π) + cos (

y

2
)(h̃0 − h̃π) − cos (y)(h̃0 + h̃π) − cos (

y

2
) cos (y)(h̃0 − h̃π)

)
.

(4.2.10)

With Taylor expansion of the cosine terms at (0, 0) , and with approximation of
h̃0 and h̃π by h0 and hπ this becomes

f2(x, y) .=
λ1x

2

4

(
3
2
(h0 + hπ) + 2(h0 − hπ) +

1
2
(h0 + hπ)

)

+
λ2y

2

4

(
(h0+hπ) + (1− y2

8
)(h0−hπ) − (1− y2

2
)(h0+hπ) − (1− y2

2
− y2

8
)(h0−hπ)

)

= λ1x
2h0 +

λ2

4
y2h0 .

(4.2.11)

With this approximation of f2 we can compute rC in the same way as rF above:

f2(xC , 0) .= c ⇔ λ1x
2
Ch0

.= c

f2(0, yC) .= c ⇔ λ2

4
y2

Ch0
.= c

rC =
xC

yC

.=
√

λ2

4λ1

.=
1
2
rF . �

(4.2.12)

Since this theorem is stated purely in terms of generating functions, it holds for
all structured matrix classes treated in this work.

4.2.2 Extension to a multigrid method

We wish to develop a multigrid method for the solution of anisotropic systems
which combines semicoarsening and full coarsening steps. Therefore, we have to
state a criterion for the choice between the two different coarsening strategies.
Since we know that the system becomes less anisotropic with each semicoarsening
step, we can use a straightforward heuristic: Apply semicoarsening until the system
is not anisotropic anymore, and then switch to full coarsening. So far, we have
proved that the first semicoarsening step reduces the degree of anisotropy by a
factor 2 . This shall now be generalized to more than two grids by using the result
on generating functions and their level curves which was obtained in the previous
subsection. If the matrix An[f ] is anisotropic, level curves are flat. The following
theorem shows that Theorem 10 can be applied recursively, and therefore that
each semicoarsening step reduces the ratio xF

yF
exactly by a factor 2 .
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Figure 4.4: Three steps of semicoarsening applied to the system from Example 3
with α = 0.01

Theorem 11
Let f be an nonnegative generating function with a zero of order 2 at the origin
which is of the form (4.2.5) . Let rF = xF

yF
be the ratio of the intersection points

on the finest level.
Then, the function f2 obtained after one semicoarsening step is also of the form
(4.2.5) . Therefore, Theorem 10 can be applied recursively, and each semicoarsen-
ing step reduces rF by a factor 2 for small c .

Proof: The coarse grid function f2(x, y) , which has been computed in (4.2.10) in
the proof of Theorem 10 , can be slightly rewritten:

f2(x, y) = λ1(1 − cos (x))
(

3
4
(h̃0 + h̃π) + cos (

y

2
)(h̃0 − h̃π) +

1
4

cos (y)(h̃0 + h̃π)
)

+
λ2

4
(1 − cos (y))

(
(h̃0 + h̃π) + cos (

y

2
)(h̃0 − h̃π)

)
.

(4.2.13)

In the neighborhood of the origin, f2 is approximated by Taylor expansion and
by replacing h̃0 and h̃π with h0 and hπ :

f2(x, y) .= λ1(1 − cos (x))2h0 +
λ2

4
(1 − cos (y))2h0 . (4.2.14)

Thus, f2 is of the form (4.2.5) , and Theorem 10 can be applied recursively. �

Remark 9 Theorem 11 has the consequence that level curves become less flat
on each level. If we start with the ratio rF on the finest level, we need log2(rF )
semicoarsening steps until the level curves are almost like circles, i.e. until the ratio
is close to 1 . Figure 4.4 shows the result of three steps of semicoarsening applied
to the function f , whose level curve is the flattest of the four. Since rF = 10 on
the finest level, a multigrid method following our heuristic should start with three
semicoarsening steps followed by full coarsening.

4.2.3 Convergence results for trigonometric matrix algebras

After having presented a multigrid method for matrices from trigonometric alge-
bras and for Toeplitz matrices whose generating functions are anisotropic with

91



isolated zeros, we wish to give a more theoretical analysis in the following. We
start with a two-grid convergence result for trigonometric matrix algebras which
is based on Corollary 1 . The result is achieved by extending two-grid convergence
proofs for two-level tau [99] , DCT-III [28] , DST-III, and circulant matrices [103]
which were stated by Serra et al. for isotropic generating functions with isolated
zeros. In the anisotropic case, the generating function is allowed to be zero or very
small along a whole line, which is located in parallel to one of the coordinate axes.
Since in the tau, DCT-III, and DST-III case, a zero at x0 	= 0 implies that f also
has a zero at −x0 , f has two lines of small values, unless these lines coincide at
one of the axes.

Remark 10 In order to prove convergence, we impose the following conditions
on the functions bj . For every point on these lines,

• conditions (3.3.22) and (3.3.23) must be satisfied in the tau and circulant
case,

• conditions (3.3.34) and (3.3.35) must hold in the DCT-III and DST-III case.

For the two-grid proof, these conditions are required to hold only on the finest
level, i.e. for f and b . Under these conditions, the following theorem proves
convergence for anisotropy in y-direction. The case of anisotropy in x-direction
follows immediately by interchanging x and y . Furthermore, let is assume that f
has a zero at the origin, i.e. that the line of possible zeros is one of the coordinate
axes.

Theorem 12
Let An[f ] be a two-level tau, circulant, DCT-III, or DST-III matrix of size n
corresponding to a nonnegative trigonometric polynomial f . Let the smoother be
the damped Richardson or Jacobi method and the restriction chosen to be R = B ·E
such that E is defined in (4.2.2) and B satisfies the criteria stated in Remark
10 . Then, conditions (3.1.17) and (3.1.18) are satisfied, and the two-grid method
converges with a convergence factor ‖TG‖1 < 1 .

Proof: The smoothing condition for these matrix algebras has been proved in [99,
28, 103] . We prove the correcting condition first for the circulant case, extending
the result from [103] . The matrix An[f ] is of size n = n1 ·n2 with n1 and n2 being
even , and the coarse grid matrix AC of size n1 · k2 with k2 = n2/2 . Following the
strategy from [103] , we prove the correcting condition by showing that (3.1.18)
holds if we choose, for each x ∈ C

n , the following y :

y = [RRH ]−1Rx . (4.2.15)

In [103] , it is shown that this is true if there exists γ > 0 such that

I − RH [RRH ]−1R ≤ γ

â
An[f ] (4.2.16)
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with â = min
j

Aj,j > 0 . We perform a block diagonalization of (4.2.16) by multi-

plying both sides with the two-dimensional Fourier matrix Q
(circ)
n from the right

and with (Q(circ)
n )H from the left. On the right hand side, this results in a diagonal

matrix containing the eigenvalues of An[f ] , i.e. the values of f at the grid points.
To obtain the block diagonalization of the left hand side, we express the matrix R
as the product

R = Q̃(circ)R̃Q
(circ)
n . (4.2.17)

In this decomposition, Q̃(circ) is chosen

Q̃(circ) = Q(circ)
n1

⊗ Q
(circ)
k2

, (4.2.18)

and R̃ is the block diagonal matrix whose j-th diagonal block R̃j is given by

R̃j =

⎛
⎜⎜⎜⎝

bj,0 bj,k2

bj,1 bj,k2+1

. . .
. . .

bj,k2−1 bj,n2−1

⎞
⎟⎟⎟⎠ (4.2.19)

with bj,l = b(xl, yj) . Since all matrices occuring in the transformed version
of (4.2.16) have block diagonal structure, the correcting condition reduces to n1

decoupled matrix inequalities of size n2 . Following the proof in [103] , due to the
continuity of f and b , we can reduce each inequality to an inequality involving 2-
by-2 matrix-valued functions. Since the n1 inequalities are decoupled, y is treated
as if it were a constant. Thus, the j-th inequality, with y being substituted by the
constant value yk , is of the form

γ

(
f(x, yj) 0

0 f(x + π, yj)

)
− a0

|b(x, yj)|2 + |b(x + π, yj)|2 ·( |b(x + π, yj)|2 −b(x, yj)b(x + π, yj)
−b(x, yj)b(x + π, yj) |b(x, yj)|2

)
≥ 0

(4.2.20)

with x ∈]− π, π] and yj denoting the j-th line of grid points. (4.2.20) holds if the
matrix on the right hand side

• has a nonnegative entry in position (1, 1) independent of x ,

• has a nonnegative determinant independent of x .

Since for each xj , the conditions stated in Remark 10 are satisfied, both of these
requirements are met for the same reasons as in [103] , and the correcting condition
is satisfied.

For tau matrices, the proof is almost the same. Since we assume that n1 and n2

be odd, we obtain, in addition to the inequalities involving 2-by-2 matrix valued
functions, n1 scalar inequalities.

â ≤ f(xν1, yν2) , (4.2.21)

93



where ν1 denotes the respective block and ν2 = �n2/2� . Since by Remark 10 , f
cannot vanish for y = π/2 , (4.2.21) is satisfied for each block.

For DCT-III and DST-III matrices, the proof is similar, extending the result
from [28] and from Chapter 3 . If the line of small values of f is not located at
x = π , the result is the same. In the case of x = π , the zero of f2 is of higher
order. However, the second condition in Remark 10 guarantees that the correcting
condition also holds in this case. �

4.2.4 Convergence results for Toeplitz matrices

In this section, the convergence proofs of [24] and [109] shall be carried over
to anisotropic BTTB systems. For the convergence proofs, let us assume that
anisotropy occurs along the y-axis, because notation is slightly simpler in this
case. Anisotropy along the x-axis is treated similarly. If anisotropy occurs along
the y-axis, i.e. if f(x, y) is small for x = 0 and y ∈ [−π, π] , coarsening is done
only in x . Instead of (4.2.1) and (4.2.2) , we use b(x, y) = 1 + cos (x) and

RT
n = In1 ⊗ RT

n1
with RT

n1
=

(
0.5 1 0.5

0.5 1 0.5
. . .

. . .

)
. (4.2.22)

In this case, f is allowed to be zero on the whole line x = 0 . Thus, (3.4.1) is
replaced by

min
(x,y)∈[−π,π]2

f(x, y)
1 − cos x

= C > 0 . (4.2.23)

The following theorem proves convergence of the two-level method.

Theorem 13
Let Tn[f ] be a positive definite BTTB matrix whose generating function is real-
valued even and satisfies (4.2.23) . Let t0,0 denote the entries in its main diagonal.
Moreover, let the prolongation matrix RT

n be given by (4.2.22) , and let the smoother
be the damped Jacobi method.
Then, the convergence factor of the two-level method is uniformly bounded below
1 independent of n1 and n2 . The following estimate for the convergence factor
holds:

‖TG‖1 ≤
√

1 − C

2ρ(Tn[f ])
. (4.2.24)

Proof: The proof of the postsmoothing condition (3.1.17) is the same as in [24]
and [109] . Therefore, we only have to prove the correcting condition (3.1.18) .
First assume that n2 = 2k + 1 with k being the size of the blocks on the coarse
level. Following [24] , we define, for any

e = (e1, e2, . . . , en1)
T = (e1,1, . . . , e1,n2 , e2,1, . . . , e2,n2 , . . . , en1,1, . . . , en1,n2)

T ∈ R
n,

the vector

eC = (ẽ1, ẽ2, . . . , ẽn1)
T = (ẽ1,1, . . . , ẽ1,k, ẽ2,1, . . . , ẽ2,k, . . . , ẽn1,1, . . . , ẽn1,k)T ∈ R

n1k ,
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where ẽi,j = ei,2j . If j ≤ 0 or j > n2 , we set ei,j = 0 in order to complete
the notation. For this special choice of eC , we try to find an upper bound for
‖e − RT

neC‖2
0 of the form β‖e‖1 with β independent of e . Then, the correcting

condition would follow immediately. With RT
n from (4.2.22) , the following upper

bound is found:

‖e − RT
neC‖2

0 = ‖e − (In1 ⊗ RT
n2

)eC‖2
0 =

n1∑
i=1

‖ei − RT
n2

ẽi‖2
0

≤
n1∑
i=1

t0,0〈ei, Tn2 [1 − cos (x)]ei〉 = t0,0〈e, (In1 ⊗ Tn2 [1 − cos (x)])e〉 .

(4.2.25)

The n1 one-dimensional inequalities hold because of a result in [24] . It remains
to show that there exists a β independent of e such that

t0,0〈e, (In1 ⊗ Tn2 [1 − cos x])e〉 ≤ β〈e, Tn[f ]e〉 , ∀e ∈ R
n . (4.2.26)

Because of Theorem 1 and Remark 1 , condition (4.2.23) has the consequence

C · (In1 ⊗ Tn2 [1 − cos x]) ≤ Tn[f ] . (4.2.27)

This implies that (4.2.26) is satisfied with

β =
t0,0

C
,

and the correcting condition is proved for the case n2 = 2k + 1 . For n2 = 2k , the
vector e is embedded into the vector ê of size n1n̂2 = n1(2k + 1) by filling zeros
into the additional positions. Then the correction condition also holds because of

‖e − RT
neC‖2

0 ≤ ‖ê − R̂T
n1n̂2

eC‖2
0 (4.2.28)

and
〈ê, In1 ⊗ Tn̂2[1 − cos x]ê〉 = 〈e, In1 ⊗ Tn2[1 − cos x]e〉 .

�
To obtain a result for the multilevel method we prove that if (4.2.23) holds on

some level, it also holds on the next coarser level after one semicoarsening step.
Again, the proof is obtained by extending the one from [109] . Let T h and TH

denote the BTTB matrices on the finer and on the coarser level, and nh and nH

the respective block sizes. Since semicoarsening is used, the number of blocks is
constant on all levels. Furthermore, th0,0 and tH0,0 are the main diagonal entries of
T h and TH .

Theorem 14
Let T h be a positive definite BTTB matrix of size mnh satisfying

T h ≥ th0,0

βh
Tmnh

[1 − cos x] (4.2.29)
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for some βh from (3.1.18) independent of mnh , and let the restriction be defined
with (4.2.22) . Then

TH ≥ tH0,0

βH
TmnH

[1 − cos x] (4.2.30)

with

βH = 2
tH0,0β

h

th0,0

. (4.2.31)

This implies that Theorem 13 can be applied on each level, stating that the correct-
ing condition is also satisfied on coarser levels. If q levels are used, the following
estimate for the convergence factor holds:

‖TGq‖1 ≤
√

1 − αq

βq
=

√
1 − αh

4q−1βh
. (4.2.32)

Proof: Define the (nH + 1)-by-nH matrix K = 1
2

⎡
⎣ 1

1 1
1 1

1
. . .

. . .

⎤
⎦ . Then there

exists a permutation matrix Q such that

Q · RT
mnh

= Im ⊗
(

InH

K

)
(4.2.33)

and
Q · Tmnh

[1 − cosx] · QT = Im ⊗
(

InH −K
−KT InH+1

)
. (4.2.34)

With these prerequisites, we can derive the lower bound (4.2.30) for TH . By
(4.2.23) and (4.2.29) , we have

TH = Rmnh
T hRT

mnh
≥ th0,0

βh
Rmnh

Tmnh
[1 − cos x]RT

mnh
. (4.2.35)

With (4.2.33) and (4.2.34) , the right-hand side can be simplified in the following
way:

th0,0

βh

[
Im ⊗

(
(InH

,KT )
(

InH
−K

−KT InH+1

)(
InH

K

))]

=
th0,0

βh

[
Im ⊗ (InH

− KT K)
]

=
th0,0

2βh
[Im ⊗ TnH

[1 − cos x]]

=
th0,0

2βh
TmnH

[1 − cos x] ,

(4.2.36)

where the third line follows from the second by the definition of K . (4.2.30) and
(4.2.31) are immediate consequences of (4.2.36) . �
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coarsening n=(26−1)2 n=(27−1)2 n=(28−1)2

y,xy,xy,xy,xy 170 > 200 > 200
y,y,y,xy,xy 12 19 23
y,y,y,y,y 7 7 7

Table 4.1: Iteration numbers for Tn[f ] with f from Example 3 with α = 0.001

Remark 11 Theorem 14 implies that if (4.2.23) holds on some level, it also holds
on the next coarser level. Therefore, Theorem 13 can be applied on each level.
This property is known as level independency. From [112] we know that level
independency implies optimal convergence of the multigrid method with W-cycles,
but not necessarily optimal convergence of the V-cycle based method.

Remark 12 If the anisotropy is moderate, our heuristic suggests the use of a
multigrid method which consists of some semicoarsening steps followed by full
coarsening on the coarser levels. In this case, we can combine the convergence
results on full coarsening from [109] with our results. This is done by computing
βH in (4.2.31) as in [109] if full coarsening is used at some level. As a consequence
we obtain an estimate such as (4.2.32) .

4.2.5 Numerical results

After having analyzed our multigrid methods theoretically concerning reduction of
anisotropy and convergence, we perform numerical tests to illustrate the optimal
convergence behavior. The methods consist of a certain number of semicoarsen-
ing steps followed by full coarsening steps. The damped Jacobi method or the
Gauss-Seidel method is used as a smoother. Theorem 10 states that the ratio rF

is reduced by a factor 2 with each semicoarsening step. Following our heuristic,
we apply semicoarsening until this ratio is close to one, i.e. until the system is
not anisotropic anymore, and then proceed with standard coarsening. For the
function f(x, y) from Example 3 with α = 0.001 , the ratio rF is 31.62 , which
means that on the five finest levels, semicoarsening should be performed. In our
numerical experiments, we test different coarsening strategies on the matrix Tn[f ] ,
which belongs both to the two-level Toeplitz and the two-level tau class. The first
strategy (denoted y,xy,xy,xy,xy) consists of one semicoarsening step, followed by
four full coarsening steps, the second (denoted y,y,y,xy,xy) of three semicoarsening
steps and two full coarsening steps, and the third (denoted y,y,y,y,y) of five semi-
coarsening steps. Table 4.1 shows the number of V-cycle iterations our method
requires until the residual is smaller than 10−6 . These results are obtained with one
presmoothing step and one postsmoothing step on each level with the symmetric
Gauss-Seidel method. If the damped Jacobi method is used, the difference between
the coarsening strategies is even more striking. Since we are also interested in mul-
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coarsening n=(25−1)2 n=(26−1)2 n=(27−1)2

y,xy,xy,xy,xy 76 182 > 200
y,y,y,xy,xy 9 11 15
y,y,y,y,y 9 9 9

Table 4.2: Iteration numbers for Tn[f ] with f from (4.1.3) with α = 0.001

α coarsening n=(26)2 n=(27)2 n=(28)2

0.02 y,xy,xy,xy,xy 24 23 23
0.02 y,y,y,xy,xy 5 5 5
0.02 y,y,y,y,y 8 8 8
0.001 y,xy,xy,xy,xy > 200 > 200 > 200
0.001 y,y,y,xy,xy 27 27 26
0.001 y,y,y,y,y 5 5 5

Table 4.3: Iteration numbers for C̃n[f ] with f from Example 3 with α = 0.02 and
α = 0.001

tilevel Toeplitz matrices which are not necessarily connected with PDEs, we take
a look at the BTTB matrices with f from (4.1.3) , which are not sparse. Again,
we choose α = 0.001 and use one iteration of the Gauss-Seidel method as pre- and
postsmoother. Table 4.2 shows a similar behavior of the multigrid method as we
have observed in Example 3 . Again, the damped Jacobi smoother leads to similar
results. It is cheaper concerning computational cost, but the V-cycle requires a
few more iterations.

Multigrid methods for circulant matrices are usually only efficient if the matrix
is sparse, because for dense matrices, the inverse can be directly computed in
O(n log (n)) with the FFT. The circulant matrix Cn[f ] with f from Example 3 ,
however, is singular. Therefore, we replace it by its Strang correction. This means
we add 1

(n)2
·In to Cn[f ] , which corresponds to a shift of the grid points and results

in the ill-conditioned matrix C̃n[f ] . In our numerical experiments, we use a V-
cycle with six levels and the damped Jacobi method as a smoother. For α = 0.02 ,
the value rF suggest that we use three steps of semicoarsening followed by full
coarsening. For the stronger anisotropy with α = 0.001 , five semicoarsening steps
are supposed to yield optimal results. The results of the numerical calculations in
Table 4.3 confirm that these suggestions lead to the fastest convergence in both
cases.

Furthermore, we wish to give results for the DCT-III algebra. We use the
function f(x, y)2 with f from Example 3 . In this case, the proper choice of the
number of semicoarsening steps is even more important. Again, our heuristic
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α coarsening n=(26)2 n=(27)2 n=(28)2

0.01 y,xy,xy,xy,xy > 200 > 200 > 200
0.01 y,y,y,xy,xy 6 6 6
0.01 y,y,y,y,y 10 10 10
0.001 y,xy,xy,xy,xy > 200 > 200 > 200
0.001 y,y,y,xy,xy > 200 > 200 > 200
0.001 y,y,y,y,y 7 6 6

Table 4.4: Iteration numbers for Rn[f2] with f from Example 3 with α = 0.01 and
α = 0.001

suggests the same number of semicoarsening as above. Table 4.4 contains the
number of iterations. The results for the DST-III matrices corresponding to f or
f2 are very similar.

4.3 Anisotropy along coordinate axes: Line Smoothing

Anisotropic systems can be solved with a different multigrid strategy where stan-
dard coarsening from Chapter 3 can still be used. However, this requires appli-
cation of an adequate smoother on each grid. First, we describe the components
which are necessary to construct a two-grid method and a multigrid method. Then,
we obtain convergence results concerning the smoother, and finally, we present nu-
merical results. The main results of this section can be found in the article [56] .

4.3.1 A multilevel method with line smoothing

The multigrid method presented in this chapter uses the same full coarsening
strategy as the methods from Chapter 3 . On each level, we choose a function
bj which satisfies (3.3.22) and (3.3.23) . The function fj+1 on the next coarser
level is computed with (3.3.5) . Thus, a more sophisticated smoothing technique
must be used on each level. Line smoothers such as the damped block Jacobi
method smooth along a whole line of grid points, which corresponds to a block
of unknowns in the solution vector. These unknowns, and therefore also the rows
and columns of the matrix, are permuted and then grouped into blocks. Instead
of inverting the main diagonal as in the pointwise Jacobi method, the diagonal
blocks are inverted. However, for most of our matrix classes, almost all diagonal
blocks are the same. Figure 4.5 shows how the blocks of the matrix are built, i.e.
how the rows and columns of Aj must be permuted for smoothing. Each point
in the pictures corresponds to one unknown in the solution vector or to one line
or column of the matrix. In the context of PDEs, the points in the picture can
be interpreted as grid points. If anisotropy occurs along the y-axis, the blocks
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Figure 4.5: Partitioning of the original matrix into blocks

of Aj must be constructed as it is shown in the left picture. No permutation is
necessary, and all blocks have size n2 . The matrix Dj , which contains the digonal
blocks of Aj , corresponds to a generating function gj . If fj can be written as
a trigonometric sum, gj is obtained from fj by eliminating all terms of the sum
containing y . If anisotropy occurs along the x-axis, the right picture applies. The
rows and the columns are permuted with the vector

(1, n2 + 1,2n2 + 1, . . . , (n1 − 1)n2 + 1, 2, n2 + 2, 2n2 + 2, . . . , (n1 − 1)n2 + 2,
. . . , n2 − 1, n2 + n2 − 1, 2n2 + n2 − 1, . . . , (n1 − 1)n2 + n2 − 1) .

This permutation can be interpreted as a change of the variables, i.e. as a new
coordinate system, where x and y are interchanged. This idea of permutation
and changing variables will become more important in Section 4.4 . The blocks
in this case are of size m . Since full coarsening is used, the degree of anisotropy
remains the same on each level. Therefore, block Jacobi smoothing is applied
on all levels. In theory, other block smoothers could be used instead of the block
Jacobi method. For example the block version of the Gauss-Seidel method leads to
excellent convergence results. However, such a method requires not only inversion
of the diagonal block, but also of all blocks below the main diagonal. This is
computationally too expensive for an efficient algorithm.

4.3.2 Convergence results

The following theorem shows that the block Jacobi method indeed satisfies the
smoothing conditions (3.1.16) and (3.1.17) if anisotropy occurs along the y-axis.
The condition for anisotropy in x-direction follows immediately. The following
theorem proves the conditions on the finest level. Later we will show that they
also hold on coarser levels. Moreover, we assume that f has a zero at the origin
of order two.
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Theorem 15
Let f be a nonnegative generating function with a zero of order 2 at the origin
which is of the form

f(x, y) = [(1 − cos (x)) + α(1 − cos (y))] · h(x, y) (4.3.1)

with 0 < α � 1 and the trigonometric polynomial h satisfying 0 < hmin ≤
h(x, y) ≤ hmax < ∞ . Let A = An[f ] be the corresponding two-level tau, cir-
culant, DCT-III, or DST-III matrix, and D the block diagonal matrix with the
same diagonal blocks as A , corresponding to the generating function

g(x, y) = (1 + α − cos (x)) · h̃(x) . (4.3.2)

h̃ is obtained by eliminating all terms in h containing y . Let Mf ,Mg,M f
g

denote

the maximum values of f, g, f
g .

If h̃(x) > 0 , then the block Jacobi method

x(k+1) = x(k) + ωD−1(b − Ax(k)) ,

i.e. S = I − ωD−1A , satisfies the smoothing conditions (3.1.16) and (3.1.17) .
More precisely, for 0 ≤ ω ≤ 2/M f

g
, there exist nonnegative αpre, αpost with

αpre ≤ min

⎧⎨
⎩2ω ,

ω(2 − ωM f
g
)

(1 − ωM f
g
)2

⎫⎬
⎭

αpost ≤ ω(2 − ωM f
g
) .

(4.3.3)

Proof: First of all, we show that the functions f , g , and f/g are bounded by
Mf ,Mg , and M f

g
. For the first two of them, this is straightforward:

Mf = max
(x,y)∈[−π,π]2

f(x, y) = (2 + 2α) · hmax

Mg = max
(x,y)∈[−π,π]2

g(x, y) = (2 + α) · h̃max

For the third function, we estimate the quotient

f(x, y)
g(x, y)

≤ 1 − cos (x) + α(1 − cos (y))
1 − cos (x) + α

· hmax

h̃min

≤
(

1 +
−α cos (y)

1 − cos (x) + α

)
· hmax

h̃min

≤
(

1 +
−α · (−1)

α

)
· hmax

h̃min

≤ 2 · hmax

h̃min

.

This implies that

M f
g

= max
(x,y)∈[−π,π]2

f(x, y)
g(x, y)

= 2 · hmax

h̃min

.
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Moreover, f/g has the minumum value m f
g

= 0 .

In the following, we prove the smoothing conditions with Y = D−1 (see Remark
3) . It should be noted that the proof technique of translating the conditions of
Theorem 6 into function inequalities was introduced in [99] . Here, we use this
technique for tau, circulant, and DCT-III matrices. In [2] , the authors use a
similar proof technique with Y = I for the damped Richardson method. With our
choice of Y , the presmoothing condition (3.1.16) can be written

SAS ≤ A − αpreSA2D−1S ,

which is equivalent to

(I − ωD−1A)A(I − ωD−1A) ≤ A − αpre(I − ωD−1A)D−1A2(I − ωD−1A) . (4.3.4)

This is implied by the function inequality

(1 − ω · f

g
) f (1 − ω · f

g
) ≤ f − αpre(1 − ω · f

g
)

f2

g
(1 − ω · f

g
) , (4.3.5)

and because of f
g ≥ 0 by

1 + αpre · f

g
≤ 1

(1 − ω · f
g )2

. (4.3.6)

There exists a nonnegative αpre in (4.3.6) only for 0 ≤ ω ≤ 2
M f

g

. Since f/g can

take values between 0 and M f
g

, (4.3.6) holds if

1 + αpre · t ≤ 1
(1 − ω · t)2 (4.3.7)

is true for all 0 < t ≤ M f
g

. As suggested in [2] , we can deduce that this holds if

αpre ≤ 2ω for 0 ≤ ω ≤ 2
M f

g

, and, in addition,

1 + αpre · M f
g
≤ 1

(1 − ω · M f
g
)2

for 1
M f

g

< ω ≤ 2
M f

g

.

The postsmoothing condition is equivalent to

(I − ωD−1A)A(I − ωD−1A) ≤ A − αpostD
−1A2 . (4.3.8)

This inequality is translated to generating functions, and because of f/g ≥ 0 , it
can be simplified to

(1 − ω · f

g
)2 ≤ 1 − αpost · f

g
, (4.3.9)
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which leads to nonnegative αpost only for 0 ≤ ω ≤ 2
M f

g

. (4.3.9) is satisfied if

(1 − ω · t)2 ≤ 1 − αpost · t (4.3.10)

holds for 0 < t ≤ M f
g

. Similar to [2] , this is shown to be true if

1 − αpostM f
g
≥ (1 − ω · M f

g
)2 . �

In the following corollary, we deduce optimal values for αpre, αpost, ω from
(4.3.3) .

Corollary 5
Under the same assumptions as in Theorem 15 we obtain the following optimal
values for the parameters αpre, αpost, ω:

1. If one presmoothing step and no postsmoothing is performed, then

ωbest =
3

2 · M f
g

, αpre,best =
3

M f
g

.

2. If one postsmoothing step and no presmoothing is performed, then

ωbest =
1

M f
g

, αpost,best =
1

M f
g

.

3. If only one step of smoothing shall be performed, then the optimal rate of
convergence is obtained with

• one presmoothing step with ω = 3
2·M f

g

if αpost

β ∈ [0, 2
3 ] ,

• one postsmoothing step with ω = 1
M f

g

if αpost

β ∈ [23 , 1] .

Proof: The proof uses the same technique as the one in [103] . The first two parts
are proved using the estimates for αpre and αpost from Theorem 15 . The first
inequality in (4.3.3) implies that

αpre,best = max
ω∈(0,2/M f

g

)

{
2ω if ω ≤ 3/(2M f

g
)

(ω(2 − ωM f
g
))/(1 − ωM f

g
)2 if ω > 3/(2M f

g
)

}
,

which is obtained for ω = 3/(2M f
g
) . The second inequality in (4.3.3) leads to

αpre,best = max
ω∈(0,2/M f

g

)
ω(2 − ωM f

g
) .
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The third part is proved by comparing the convergence factors from Theorem 6 .
One presmoothing step without postsmoothing leads to√

1/(1 + αpre,best/β) =
√

1/(1 + 3αpost,best/β) ,

whereas one postsmoothing step without presmoothing leads to√
1 − αpost,best/β . �

Remark 13 An extension of Theorem 15 and Corollary 5 to the BTTB case seems
rather difficult. For example, the implication from (4.3.4) to (4.3.5) does not hold
in the Toeplitz case. We have information on the localization of the spectrum
of A,A2,D−1A (see [91]) , but not on their linear combinations. The nontrivial
structure of D poses a serious problem. Nonetheless, block Jacobi smoothing leads
to fast multigrid convergence for BTTB systems.

Remark 14 In Theorem 15 , the smoothing conditions have been proved on the
finest level. If full coarsening is used, as described in Chapter 3 , the theorem
can be applied on all levels. In [3, 2, 28] , it is shown that for matrix algebras,
the functions on coarser grids also have a zero of the same order at the origin.
Moreover, the corresponding matrices are in the same class as on finer levels.
Therefore, all functions fj can be written in the form (4.3.1), and Theorem 15 can
be applied on each level.

4.3.3 Numerical results

The following numerical results are obtained from a multigrid method using stan-
dard coarsening in combination with a line smoother such as the damped block
Jacobi method. If the anisotropy is very strong, this method converges extremely
fast, because the block diagonal matrix of the smoother is a very good approxi-
mation of An[f ] . If the problem is only mildly anisotropic, we observe the typical
multigrid convergence behavior which is fairly fast and independent of the matrix
size. In this case, standard coarsening still works, because the anisotropy is not
so strong, and the block Jacobi method has good smoothing properties. The most
difficult case for our method are problems which are quite anisotropic, e.g. when
α is between 0.01 and 0.001 in our examples. However, even in this case we obtain
fast convergence if we apply two block Jacobi iterations as pre- and postsmoother,
although the number of V-cycle iterations increases slightly with the matrix size.
Table 4.5 summarizes the results for the BTTB matrices from Example 3 , com-
paring the number of iterations for different degrees of anisotropy. In each case,
we use a V-cycle with five levels and standard coarsening. Since the diagonal
blocks have to be inverted, the block Jacobi method is too expensive for dense
BTTB matrices. For sparse matrices, however, their results are comparable with
those obtained by semicoarsening. Furthermore, it is possible to start with some
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α n=(26−1)2 n=(27−1)2 n=(28−1)2

0.1 8 8 8
0.001 3 4 6

0.00001 2 2 3

Table 4.5: Iteration numbers for Tn[f ] with f from Example 3 with different α

α n=(26−1)2 n=(27−1)2 n=(28−1)2

0.1 5 5 5
0.001 5 5 5

0.00001 5 5 5

Table 4.6: Iteration numbers for C̃n[f ] with f from Example 3 with different α

semicoarsening steps, and then, on coarser levels, use the block Jacobi method.
Such a mixture of both types of algorithms is less expensive and further improves
convergence, especially for those α where standard coarsening combined with a
line smoother has difficulties.

The circulant matrix corresponding to the function f(x, y) from Example 3
is also solved quite efficiently with standard coarsening and the block Jacobi
smoother. Table 4.6 shows the number of V-cycle iterations. For BCCB ma-
trices, the block Jacobi method can be applied even if the diagonal blocks are
not sparse, because inversion of a circulant block has a worst case complexity of
O(n log (n)) .

Again, we conclude this section with numerical results for the DCT-III and
DST-III algebras. The generating function is the square of f(x, y) from Example
3 , which is, of course, more complicated then f itself. As for the other tests, we
use a V-cycle with five grids and, on each grid, one step of block Jacobi smoothing
as a presmoother and one as a postsmoother. Table 4.7 contains the number
of iterations for different degrees of anisotropy. The numbers are given for the
DCT-III class, but those for the DST-III class are almost identical.

α n=(26−1)2 n=(27−1)2 n=(28−1)2

0.1 7 7 7
0.001 6 7 7

0.00001 4 4 4

Table 4.7: Iteration numbers for Rn[f2] with f(x, y) from Example 3 and different
α
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4.4 Anisotropy in other directions: Semicoarsening

So far, we have developed multigrid methods for anisotropic problems where
anisotropy occurs along coordinate axes. Generating functions and their level
curves were used for a theoretical analysis of the methods. Now we introduce
linear systems with anisotropy in other directions. In this case, neither standard
multigrid from Chapter 3 nor the methods from Sections 4.2 and 4.3 work properly,
and for α → 0 , they fail completely. Semicoarsening along an axis does not help to
treat anisotropy in other directions well. Moreover, we have to take into account
that f(x, y) has another zero at (π, π) , independent of α , which is another ob-
stacle to a convergent multigrid method, see Remark 8 . Now, we develop similar
techniques as in Sections 4.2 and 4.3 for the more general case where anisotropy
occurs in other directions. This shall be done for both the two-level Toeplitz class
and the two-level circulant algebra. In this section, we present methods based
on the use of semicoarsening and pointwise smoothers. We start with the case of
anisotropy occurring in an angle of 45◦ to the coordinate axes. After introducing
our heuristic, we present two-grid and multigrid methods. Then, we describe how
the method is generalized to anisotropy in other directions and present theoretical
results concerning convergence and the reduction of anisotropy. Numerical test
conclude this section, the main results of which can be found in the article [55] .

4.4.1 The heuristic: Transformation of the coordinate system

For anisotropic systems with anisotropy occurring not along the coordinate axes,
all multigrid methods based on semicoarsening are constructed with the follow-
ing heuristic. It is stated both in terms of generating functions and in terms of
matrices. The two descriptions correspond to each other.

• Generating functions: On the finest level, define a new coordinate system
(s, t) such that anisotropy occurs along one of the new axes. Then define
a multigrid method in terms of generating functions in the new coordinates
similar to the ones from Section 4.2 .

• Matrices: Initially, permute the rows and columns of An[f ] and partition
the matrix into new blocks. Then, construct a multigrid method as a com-
bination of semicoarsening and full coarsening steps.

We start with the case where anisotropy occurs in an angle of 45◦ to the coordinate
axes, i.e. along the line y = x or y = −x . With the 45◦ case, we can illustrate all
ideas which are important for the design of a multigrid method for angles of the
form k

k+l · 90◦ with integers k and l . The new coordinate system (s, t) must be
chosen such that anisotropy occurs in s- or t-direction. For anisotropy along the
line y = x , this is done by defining

s := x − y and t := x + y . (4.4.1)
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Figure 4.6: The change of coordinates and level curves of f

Then, the function f from Example 5 becomes

f(s, t) = (1 − cos (s)) + α · (1 − cos (t)) . (4.4.2)

The right picture of Figure 4.6 illustrates the consequences of this transformation.
For (s, t) ∈ [−π, π[2 , the function f has only one zero, and anisotropy occurs along
the t-axis. Hence, we will construct a multigrid method similar to the ones from
Section 4.2 .

Since the method should be stated in terms of matrices, the change to new coor-
dinates is translated to the corresponding classes of structured matrices. Defining
new coordinates corresponds to permuting rows and columns of An[f ] and par-
titioning the resulting matrix into blocks. However, since there are differences
between the matrix classes, let us start with the Toeplitz case and describe the
circulant case later. If anisotropy occurs in an angle of 45 degrees, permutation
and partitioning are done as shown in the left picture of Figure 4.7 . Each block
of the matrix corresponds to one diagonal in the picture. Under the assumption
that n1 = n2 , this means permutation must be done with the permutation vector

(1, 2,n1 + 1, 3, n1 + 2, 2n1 + 1, . . . , n1, n1 + n1 − 1, 2n1 + n1 − 2, . . . ,

(n1 − 1)n1 + 1, . . . , (n1 − 1)n1, n
2
1 − 1, n2

1) ,
(4.4.3)

and the blocks are of size 1, 2, 3, . . . , n1−1, n1, n1−1, . . . , 2, 1 . The resulting matrix
is denoted Ã . The only disadvantage of this transformation is that the blocks of
Ã are not all of the same size. Hence, it will not always be possible to retain
the structure of the matrix Ã on coarser levels. Nonetheless, the correspondence
of structured matrices and generating functions serves as a good heuristic for
anisotropies in other directions.

The situation is significantly better for two-level circulant matrices. The block
structure is obtained from the one in Figure 4.7 by uniting two blocks each to form
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Figure 4.7: Partitioning of the original matrix into blocks in the 45◦ case: BTTB
matrices (left) and BCCB matrices (right)

a single one: blocks 1 and n1 + 1 , blocks 2 and n1 + 2, and so on. The n1-th block
remains the same. This yields the permutation vector

(1, 2n1,3n1 − 1, . . . , n2
1 − (n1 − 2), 2, n1 + 1, 3n1, 4n1 − 1, . . . , n2

1 − (n1 − 3),

. . . , n1, 2n1 − 1, . . . , n2
1 − (n1 − 1)) .

(4.4.4)

This permutation procedure is illustrated in the right picture of Figure 4.7 . The
first block is depicted with the dashed line, whereas the n1-th block is surrounded
by the solid line. The main advantage of this permutation is that all n1 blocks
are of equal size. Therefore, the correspondence between BCCB matrices and
generating functions holds as in the case of anisotropy along coordinate axes. This
will allow us to develop more efficient multigrid methods than for the other matrix
classes.

4.4.2 The 45◦ case: Two-grid and multigrid methods

With the basic heuristic from the previous subsection in mind, we start with the
development of two-grid and multigrid methods for the 45◦ case. The smoother is
chosen to be an elementary pointwise one such as the damped Jacobi method. The
main ingredients for the coarsening process are semicoarsening and full coarsening
steps, which will be described in the following. Having performed the coordinate
transformation, we state the same multigrid method in terms of generating func-
tions as was done in Section 4.2 for anisotropy along coordinate axes. Then, the
goal will be to carry over as many results from Section 4.2 as possible for BTTB
and BCCB matrices. For f from Example 5 , semicoarsening must be performed
in s-direction, for example with the function

b(s, t) = 1 + cos (s) . (4.4.5)
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If full coarsening should be applied, the simplest choice for b is

b(s, t) = (1 + cos (s)) · (1 + cos (t)) . (4.4.6)

If f has a zero of higher order, conditions such as (3.3.24) or (3.3.35) have to be
satisfied with x and y being replaced by s and t . For all choices of b , b̂ is computed
with

f̂(s, t) = f(s, t) · b(s, t)2 . (4.4.7)

Elementary projection within a semicoarsening step is done with

f2(s, t) =
1
2
· [ f̂(

s

2
, t) + f̂(

s

2
+ π, t) ] , (4.4.8)

whereas within a full coarsening step with

f2(s, t) =
1
4
· [ f̂(

s

2
,
t

2
) + f̂(

s

2
+ π,

t

2
) + f̂(

s

2
,
t

2
+ π) + f̂(

s

2
+ π,

t

2
+ π) ] (4.4.9)

in the circulant case and with

f2(s, t) =
1
4
· [ f̂(

s

2
,
t

2
) + f̂(π − s

2
,
t

2
) + f̂(

s

2
, π − t

2
) + f̂(π − s

2
, π − t

2
) ] (4.4.10)

in the Toeplitz or tau case. A semicoarsening step in s-direction reduces the
degree of anisotropy in the same way as one semicoarsening step in y-direction did
in Section 4.2 . This is because after defining the new coordinates we carry out
the same calculations in s and t as we did in x and y . The result is summarized
in the following theorem. The positive numbers sF and tF are the points where s-
and t-axis are intersected by the level curves f(s, t) = c for a small positive c .

Theorem 16
Let f be a nonnegative generating function with a zero of order 2 at the origin
which is of the form

f(s, t) = [λ1(1 − cos (s)) + λ2(1 − cos (t))] · h(s, t) (4.4.11)

with the trigonometric polynomial h(s, t) > 0 and λ1, λ2 > 0 . Let f2 be the coarse
grid function obtained by one semicoarsening step with b from (4.4.5) . Let rF = sF

tF
and rC = sC

tC
be the ratios described above for f and f2 , respectively. Then, the

degree of anisotropy is reduced by a factor 2 , i.e. rF
rC

→ 2 for c → 0 . Since the
coarse level function is of the form (4.4.11) if only terms of order at most 2 are
considered in the Taylor expansion, the two-level result can be applied recursively.
Then, the degree of anisotropy is reduced by a factor 2 on each level.

Now the multigrid method developed in terms of generating functions is trans-
lated to matrices. To simplify notation, we choose n1 = n2 . We start with a
two-grid method which consists of one semicoarsening step in s-direction. This
step can be divided into three parts.
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1. As described above, defining new coordinates corresponds to permuting rows
and columns of An[f ] and partitioning the matrix into new blocks. The
resulting matrix is denoted Ã .

2. The matrix BS is chosen corresponding to b(s, t) from (4.4.5) . In the Toeplitz
case, this matrix has blocks of different size. With the ordering obtained after
applying (4.4.3) , BS is the block diagonal matrix

BS = diag(B1, B2, . . . , Bn1 , . . . , B2, B1) , (4.4.12)

where B1 = 1 and all other blocks are Bk = tridiagk(0.5, 1, 0.5) of size k .
In the circulant case, all blocks obtained from permutation with (4.2.34) are
of equal size, i.e. we get a block diagonal matrix whose diagonals are 1D
circulant matrices corresponding to 1 − cos (x) .

3. The coarse grid matix AC is again computed by applying elementary re-
striction to the matrix Â = BS · Ã · BS . This means we leave the number
of blocks unchanged, and within each block, we pick every second row and
every second column.

Since we wish to develop a multigrid method as a combination of semicoarsening
steps in s and full coarsening steps, we must first describe how a single full coars-
ening step in s and t is carried out. A two-level method with full coarsening is
defined by translating (4.4.6) , (4.4.9) , and (4.4.10) into matrices. Permutation of
An[f ] and partitioning of Ã are done in the same way as for a semicoarsening step.
The matrix

BF = BS + BT (4.4.13)

is chosen to be the sum of BS from (4.4.12) and BT , which is defined as

BT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 B1,2

B2,1 0 B2,3

B3,2 0 B3,4

. . .
. . .

. . .

B2,3 0 B2,1

B1,2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4.14)

In the Toeplitz case, Bk,k+1 is the matrix

Bk,k+1 = tridiag(0.25, 0.5, 0.25)

of size k-by-(k + 1) , and Bk+1,k the same matrix of size (k + 1)-by-k . In the
circulant case, all blocks are of size n2 . After Â = BF · Ã · BF is computed, AC

is obtained by elementary restriction. Within each block, we pick every second
row and every second column. On the block level, we pick two rows, eliminate the
next two, pick another two rows and so on. This procedure is shown in Figure 4.8 .
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Figure 4.8: A full coarsening step in the 45◦ case

The solid lines mark the blocks which are retained on the coarser grid, whereas
the other blocks are eliminated. The dashed line explains why precisely these
blocks have to be chosen. Elimination on the block level must be done such that
within the dashed line, every second element is retained and the other elements
are eliminated. In the circulant case, the same technique is used, just with blocks
of equal size.

We now define a multigrid method similar to the one from Section 4.2 , i.e. as
a suitable combination of semicoarsening steps followed by some full coarsening
steps. The prolongation/restriction matrices and the elementary projection ma-
trices are defined as described above, the change of coordinates has of course only
to be done before the first step. Again, we use the same heuristic as in Section
4.2 . Theorem 16 states that the ratio rF is reduced by a factor 2 in each semi-
coarsening step. Therefore, semicoarsening steps are applied until level curves are
close to circles, i.e. until rF is almost 1. Then, we continue with full coarsening.

4.4.3 Generalization to other directions

The case where anisotropy occurs in an angle of 45◦ with respect to the coordinate
axes is best suited to explain our method. Although systems with this angle arise
in many applications, this is not the only important case. Therefore, we want to
describe how to solve systems where anisotropy occurs in other directions. The
function g(x, y) from Example 5 is anisotropic in an angle of 30◦ with respect to
the y-axis. Furthermore, it has the following zeros in the interval [−π, π[2 :

(0, 0), (
2
5
π,−4

5
π), (

4
5
π,

2
5
π), (−4

5
π,−2

5
π), (−2

5
π,

4
5
π) . (4.4.15)

Again, we wish to define a multilevel method as a combination of semicoarsening
and full coarsening steps. As in the 45◦ case , we define new coordinates s and t
such that anisotropy occurs along coordinate axes, and then apply coarsening along
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Figure 4.9: Partitioning of the original matrix corresponding to g into blocks

s and t . For a problem with an angle of 30◦ towards the y-axis, such as g(x, y) from
Example 5 , the new coordinates are s := 2x+y and t := −x+2y . Having defined
the new coordinates, we choose b(s, t) either as in (4.4.5) or in (4.4.6) , and proceed
as in the 45◦ case. The coordinate transformation is translated into matrices by
permuting rows and columns, and then partitioning the matrix into blocks. The
grid points in Figure 4.9 which are highlighted by a solid circle show how two
example blocks of the matrix are built. Since we have anisotropy in an angle
of 30◦, the points corresponding to one block are obtained by moving two steps
in x-direction and one step in y-direction. The matrices BS and BT are defined
as in (4.4.12) and (4.4.14) , just the size of the blocks is different. Elementary
restriction within a semicoarsening step is done exactly as in the 45◦ case, by
eliminating every second row and column within each block, leaving the number
of blocks the same. If we apply full coarsening, we eliminate every second row and
column within each block, and on the block level, we eliminate five consecutive
block rows, then pick the next five block rows, eliminate five block rows and so on.
The reason for choosing this pattern is explained in Figure 4.9 , where we have to
eliminate every second grid point with a dashed circle. This is the equivalent to
the dashed line in Figure 4.8 . There are three other directions where anisotropy
occurs in an angle of 30◦ to one of the coordinate axes. Each of them is treated
as the one we have described here by an appropriate choice of s and t .

Finally, let us take a look at anisotropy which occurs yet in other directions.
Functions of the form

f(x, y) = α · (1 − cos (k · x + l · y)) + (1 − cos (l · x − k · y)) (4.4.16)

are examples, representing classes of problems where anisotropy occurs in an angle
of k

k+l · 90◦ to one of the coordinate axes. In this general case, transformation to
new coordinates is done with

s := k · x + l · y and t := l · x − k · y . (4.4.17)
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k l block size angle
1 2 5 30◦

1 3 10 22.5◦

1 4 17 18◦

1 5 26 15◦

2 3 13 36◦

Table 4.8: Angles and block size for different choices of k and l in (4.4.16)

If |k| and |l| are small, our method works very well for these systems. However, this
approach is limited to small |k| and |l| , because the block sizes which have to be
used in the multigrid method become large if |k| and |l| increase. For |k| = |l| = 1 ,
the size was 2 , for |k| = 1, |l| = 2 , it was 5 , and in general it is det

(
l −k
k l

)
, i.e.

k2 + l2 . Table 4.8 illustrates what blocksize we have to use and what angle we
get for different choices of k and l . For each line in Table 4.8 , four problems
with different angles can be obtained by interchanging k and l , and by moving α
to the term (1 − cos (l · x − k · y)) in (4.4.16) . Most other angles lead to a block
size which becomes too large for practical computations. In theory however, if
the size of An[f ] is large enough, any rational angle can be described by k and l ,
allowing our method to be applied. Thus, we suggest to approximate the angle of
anisotropy and to treat a given problem as if anisotropy occured along a direction
from (4.4.16) .

4.4.4 Convergence results

In the following, we wish to give a convergence result for the Toeplitz case. It is
a generalization of Theorem 13 for anisotropies in other directions. Let us assume
that anisotropy of a matrix Tn[f ] occurs in a direction where the new coordinates
for our method can be defined with (4.4.17) . We prove the following theorem for
the case where f is anisotropic along the t-axis. It is required that, in the new
coordinates, f satisfies the condition

min
(s,t)∈[−π,π]2

f(s, t)
1 − cos s

= C > 0 . (4.4.18)

The coordinate transformation with (4.4.17) corresponds to a permutation of the
rows and columns of Tn[f ] with a vector perm such as the one in (4.4.3) , i.e.
T̃ = Tn[f ](perm, perm) . The inverse permutation is defined by the vector iperm .
The restriction matrix for a semicoarsening step in s-direction is defined as the
product of BS from (4.4.12) and an elementary restriction matrix. We can now
prove this more general version of the two-level result from Theorem 13 .
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Theorem 17
Let Tn[f ] be a positive definite BTTB matrix whose generating function f(x, y) is
real-valued even. Assume that introduction of new coordinates s and t by (4.4.17)
leads to a generating function f(s, t) which satisfies (4.4.18) . Let T̃ be the per-
muted matrix defined above. Furthermore, let the restriction matrix R̃ be con-
structed with B from (4.4.12) , and let the smoother be the damped Jacobi method.
Then, the correcting condition (3.1.18) is satisfied for T̃ and R̃ , and the conver-
gence factor of the two-level method is uniformly bounded from below 1 indepen-
dently of n .

Proof: The proof is similar to the one of Theorem 13 , but this time we have to
consider blocks of variable size. First, assume that all diagonal blocks are of odd
size mj , i.e. mj = 2kj + 1 for some integer kj . For any

e = (e1,1, . . . , e1,m1 , e2,1, . . . , e2,m2 , . . . , eb,1, . . . , eb,mb
)T

we define

eC = (ẽ1,1, . . . , ẽ1,k1 , ẽ2,1, . . . , ẽ2,k2 , . . . , ẽb,1, . . . , ẽb,kb
)T ,

where ẽi,j = ei,2j . If j ≤ 0 or j > mk , then we set ei,j = 0 in order to complete
the notation. For this special choice of eC we try to find an upper bound for
‖e − R̃T eC‖2

0 of the form β‖e‖1 with β independent of e . Similar to [109] we
obtain

‖e − R̃T eC‖2
0 = t0,0

b∑
i=1

ki∑
j=0

{
ei,2j+1 − 1

2
ei,2j+2 − 1

2
ei,2j

}2

≤ t0,0

b∑
i=1

ni∑
j=0

(e2
i,j − ei,jei,j+1) = t0,0〈e, diag(Tm1 , . . . , Tmb

) · e〉
(4.4.19)

with Tmj = Tmj [1 − cos (s)] . Again, we have to find a parameter β independent
of e such that

t0,0〈e, diag(Tm1 , . . . , Tmb
) · e〉 ≤ β〈e, T̃ e〉 , ∀e ∈ R

n . (4.4.20)

First, we permute the left-hand side back to x- and y-coordinates with the vector
iperm , i.e. eiperm = e(iperm) and

Tn[1 − cos (kx + ly)] = diag(Tm1 , . . . , Tmb
)(iperm, iperm) .

As in the proof of Theorem 13 , the inequality in the following expression is a
consequence of (4.4.18) :

t0,0〈e, diag(Tm1 , . . . , Tmb
) · e〉 = t0,0〈eiperm, Tn[1 − cos (kx + ly)] · eiperm〉

≤ t0,0〈eiperm, Tn[f(x, y)] · eiperm〉 = t0,0〈e, T̃ e〉 .
(4.4.21)
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α coarsening n=(26−1)2 n=(27−1)2 n=(28−1)2

0.002 t,t,st,st 10 12 13
0.002 t,t,t,t 6 6 6
0.0001 t,t,st,st 24 51 77
0.0001 t,t,t,t 6 6 6

Table 4.9: Iteration numbers for Tn[f ] with f from Example 5 with α = 0.002 and
α = 0.0001

The last equality is obtained by permutation with the vector perm , i.e. by trans-
formation to s- and t-coordinates. From (4.4.21) we obtain the parameter β = t0,0

C
in (4.4.20) .
Finally, we must get rid of the assumption that the block sizes be odd. Let us
therefore assume that the j-th block is of even size mj . The vector (ej,1, . . . , ej,mj )
is embedded into a vector of size mj + 1 by filling 0 into the additional position.
If this is done for all parts of e corresponding to a block of even size, we obtain a
vector ê which is slightly larger than e . Then, with (4.2.28) and

〈ê, diag(Tm̃1 , . . . , Tm̃b
)ê〉 = 〈e, diag(Tm1 , . . . , Tmb

)e〉 ,

the correcting condition still holds. �

4.4.5 Numerical results

We wish to give some numerical results for a multigrid method which is constructed
as a suitable combination of semicoarsening steps followed by some full coarsening
steps. The prolongation/restriction matrices and the elementary projection matri-
ces are defined as described above. The change of coordinates, of course, has to be
done only before the first step. Again, we use the same heuristic as in Section 4.2 .
Semicoarsening steps are applied until level curves are close to circles, i.e. until rF

is almost 1. Then we continue with full coarsening. Our theoretical results state
that the ratio rF is reduced by a factor 2 in each semicoarsening step. We wish
to test our multilevel method with the function f(x, y) from Example 5 , where α
takes the values 0.002 . The corresponding matrices Tn[f ] belong both to the two-
level Toeplitz class and to the two-level tau algebra. We use a five-grid method,
where one step of symmetric Gauss-Seidel is used as pre- and postsmoother. Our
theory suggests to use four semicoarsening steps, because rF = 22.36 . Table 4.9
shows that the number of V-cycle iterations is significantly lower if four semicoars-
ening steps are used instead of only two. For a strongly anisotropic problem such
as the same function f with α = 0.0001 and rF = 100 , two semicoarsening steps
followed by full coarsening do not lead to satisfactory convergence at all. If only
semicoarsening is used, we observe rapid convergence.
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α coarsening n=(26−1)2 n=(27−1)2 n=(28−1)2

0.02 t,st,st,st,st 23 24 24
0.02 t,t,t,st,st 5 5 5
0.02 t,t,t,t,t 8 7 7
0.001 t,st,st,st,st > 200 > 200 > 200
0.001 t,t,t,st,st 27 26 26
0.001 t,t,t,t,t 5 5 5

Table 4.10: Iteration numbers for C̃n[f ] with f from Example 5 with α = 0.002
and α = 0.0001

Let us finally consider a two-level circulant example. The matrix C̃n[f ] with
f from Example 5 is obtained from Cn[f ] by adding 1

(n1·n2)2
. As we have seen

in Section 4.4.1 , these BCCB examples can be treated almost like the BCCB
systems where anisotropy occurs along coordinate axes. The semicoarsening steps
are exactly the same as in Chapter 4.2 . For full coarsening, we have to use the
block interpretation of [71] , which is equally valid for BCCB matrices. Table 4.10
shows the number of V-cycle iterations for different numbers of semicoarsening
steps. As we expect from our theory, best results for α = 0.02 are obtained with
three semicoarsening steps and for α = 0.001 , with five semicoarsening steps.

4.5 Anisotropy in other directions: Line smoothing

For problems with anisotropy along coordinate axes we have used standard coars-
ening in combination with a line smoother to define a different kind of multigrid
algorithm. The same can be done with the systems introduced in Example 5 .
We must take into account that the functions f(x, y) and g(x, y) have multiple
zeros in [0, 2π[2 . In the following, we describe how line smoothing is applied to
this type of anisotropy, state a result concerning the smoothing conditions of the
Ruge-Stüben-theory, and finally present numerical results.

4.5.1 Line smoothing and block coarsening

A multigrid method based on full coarsening and line smoothing requires the trans-
formation of coordinates, and therefore the permutation of rows and columns of the
corresponding matrices, only for the smoothing operations. For prolongation and
restriction as well as for the computation of the system matrices on coarser grids,
we use the original coordinates x and y . Since we wish to apply a line smoother,
the rows and columns of An[f ] are permuted with the vector from (4.4.3) if An[f ]
is Toeplitz. Circulant matrices are permuted with the vector (4.4.4) . Then, we
partition the permuted matrix into blocks in the same way as it was done for the
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semicoarsening method. Each line in Figure 4.8 corresponds to one block of the
matrix.

Computation of the coarse grid matrix AC cannot be done in such a straight-
forward way as in Section 4.3 , because f has an additional zero at (π, π) . There-
fore, we make use of the results from Sections 3.5 and 3.6 , where one- and
two-dimensional Toeplitz systems were solved with a block multigrid method
whose generating functions have multiple zeros. This approach can also be ap-
plied to the tau and circulant algebras. The BTTB matrix Tn[f ] of size n2-
by-n2 is considered to be a block BTTB matrix with blocks of size 4 . Thus,
the generating function becomes a 4-by-4 matrix F (x, y) , whose entries are func-
tions in x and y . The eigenvalues of F (x, y) in Example 5 only become zero at
(0, 0) . Then, B(x, y) is for example chosen to be the 4-by-4 diagonal matrix with
b(x, y) = (1 + cos (x))(1 + cos (y)) in each position of the diagonal, taking care of
the zero in F (x, y) . The coarse grid matrix is computed by picking every second
2-by-2 block on both levels.

4.5.2 Theoretical results

The following theorem is a generalization of Theorem 15 which covers anisotropies
occurring in arbitrary rational angles.

Theorem 18
Let f(x, y) be a nonnegative generating function with a zero of order 2 at the origin
which, in the rotated coordinates, is of the form

f̃(s, t) = [(1 − cos (s)) + α(1 − cos (t))] · h(s, t) (4.5.1)

with the trigonometric polynomial h(s, t) > 0 and 0 < α � 1 . Let A = An[f ] be
the two-level circulant matrix corresponding to f(x, y) , and Ã its permuted version
corresponding to f̃(s, t) . Let D be the matrix corresponding to g(x, y) , which, in
the rotated coordinates is of the form

g̃(s, t) = (1 + α − cos (s)) · h̃(s) , (4.5.2)

where h̃ is obtained by eliminating all terms in h containing t . D̃ , the permuted
version of D , is a block diagonal matrix with the same diagonal blocks as Ã . If
h̃(s) > 0 , then the block Jacobi method satisfies the smoothing conditions (3.1.16)
and (3.1.17) .

Proof: After replacing the functions f(x, y) and g(x, y) by f̃(s, t) and g̃(s, t) the
calculations are the same as in the proof of Theorem 15 . As in the proof of
Theorem 15 , the matrix Y is chosen to be D−1 . �

Remark 15 Again, the proof does not include BTTB matrices for the technical
problems mentioned in Remark 13 . However, the numerical results of the multigrid
solution of anisotropic BTTB systems with the block Jacobi smoother are quite
promising (see Section 4.5.3) .
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α n=(2·(25−1))2 n=(2·(26−1))2 n=(2·(27−1))2

0.1 9 8 8
0.001 3 6 11

0.00001 2 2 2

Table 4.11: Iteration numbers for the block Jacobi smoother and Tn[f ] with f
from Example 5

4.5.3 Numerical results

Finally, we wish to present numerical results for multigrid methods using line
smoothers for relaxation and the block strategy mentioned above for full coarsen-
ing. Again, this is too expensive if the diagonal blocks are full. However, if the
matrix is sparse, this type of method is a good alternative to the multigrid algo-
rithm with semicoarsening. As we have observed for the systems in Section 4.3 ,
this method obtains its best results if the anisotropy is either moderate or very
strong. If α is somewhere between 0.05 and 0.005 , the method based on semicoars-
ening is preferrable. The following iteration numbers we obtained with a three-level
method, where two steps of block Jacobi were used as pre- and postsmoother.

For circulant matrices C̃n[f ] we can also define a multigrid method using stan-
dard prolongation and a line smoother. The convergence behavior is the same as
for the circulant example with anisotropy along coordinate axes, where the results
were shown in Table 4.6 . For circulant matrices, however, inversion of the diag-
onal blocks is too expensive in most cases, since the whole system can be solved
in O(n log n) with the FFT. Therefore, we suggest to use the multilevel method
which is based on semicoarsening for BCCB matrices.
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Chapter 5

Generating functions with
whole zero curves

All structured linear systems for which multigrid methods have been developed so
far correspond to nonnegative generating functions with isolated zeros. Typical
applications for these types of matrices in the field of PDEs are the solution of the
discrete Laplace or Poisson equation. Also anisotropic versions of these equations
fall into this category. In the following, however, we are interested in matrices
corresponding to nonnegative functions having a whole zero curve instead of iso-
lated zeros. Such linear systems arise for example when the discrete Helmholtz
equation is solved with normal equations. Before working on applications we wish
to develop multigrid methods for these systems in a more theoretical setting, again
using generating functions for the definition of restriction and coarse grid matrices.
Let us start with an example, which will be used to illustrate the main features of
our multigrid methods and which will be the basis for application of our method
to the discrete Helmholtz equation.

Example 6 Let An[f ] be the two-level matrices belonging to a trigonometric
algebra or to the Toeplitz class which correspond to the generating function

f(x, y) = (ρ − cos (x) − cos (y))2 (0 < ρ ≤ 2) . (5.0.1)

If ρ = 2 , f(x, y) has a single isolated zero at the origin of order 4 , and the
corresponding linear systems can be solved with the method from Chapter 2. For
ρ < 2 , f is zero along a whole curve. These zero curves become larger as ρ
decreases.

For this type of matrices, the classical convergence theory for two-level structured
matrices [24, 99, 3] , which was presented in Chapter 3 , does not hold anymore, and
standard multigrid methods fail. Therefore, we seek to devise multilevel methods
which are especially designed for application to structured linear systems whose
generating functions have zero curves.
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Starting from a Galerkin method, we present a multigrid algorithm which is
based on rediscretization on coarser levels and on approximation of the zero curve.
Since such a method preserves the bandedness of a given matrix, it is more suitable
for practical use than a pure Galerkin method. Then, we introduce a splitting
technique which divides the original problem into several subproblems on coarser
grids which are easier to solve. This technique is then combined with the Galerkin
approach. Furthermore, we wish to solve anisotropic linear systems with whole
zero curves. We propose a combination of the methods from this chapter and the
ones from Chapter 4 . Since multigrid methods can also be used as preconditioners
for Krylov subspace methods, we develop a slightly different splitting technique
for the design of multigrid preconditioners.

5.1 Galerkin-based multigrid

In this section, we present a Galerkin-based multigrid method for linear systems
corresponding to functions with whole zero curves. The first strategy for the design
of a multigrid solver is to extend the Galerkin methods from Chapter 3 and make
them suitable for functions with zero curves instead of isolated zeros. This has
been suggested at the end of the article [72] . After giving a convergence proof for
the two-grid method, we explain the practical problems of extending the two-grid
method to a multigrid method.

5.1.1 Extending standard multigrid

In Chapter 3 , we have described the standard Galerkin-based multigrid method
for systems with an isolated zero (x0, y0) , which was introduced by Fiorentino
and Serra [54] . Let us recall that the prolongation and restriction matrices are
defined in terms of generating functions such that the functions of the coarse grid
matrices have a single zero at (2x0, 2y0) , (4x0, 4y0) ,(8x0, 8y0) , etc. Matrices of
the tau algebras have two or four zeros on each level, unless the zero is located at
the origin, because they correspond to even functions. The prolongation function
b(x, y) is zero at the mirror points defined in (3.3.20) or (3.3.21) and strictly
positive at (x0, y0) . As described in Chapter 2, the elementary projection matrix
is chosen such that the coarse grid matrix A2 belongs to the same class or algebra
as An[f ] .

For the solution of linear systems whose generating functions have zero curves,
we wish to design a method which is based on the same idea. We use the same
standard smoother, i.e. the damped Jacobi or Gauss-Seidel method, and the same
elementary restriction matrices E as in Chapter 3 . Prolongation and restriction
must be defined such that every zero (x, y) on the curve is mapped to (2kx, 2ky)
on coarser grids. The zero curve f(x, y) = 0 on the finest level must become
f(x/2, y/2) = 0 , f(x/4, y/4) = 0 , f(x/8, y/8) = 0 , etc. on the next coarser
grids. In other words, we impose conditions similar to (3.3.22) and (3.3.23) on the
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Figure 5.1: Zero curves of f , f2 , f3 for the function f(x, y) = (1.9 − cos (x) −
cos (y))2 on the three finest levels

function b corresponding to the matrix B . This time there is not a single zero,
but a whole curve of zeros for which (3.3.22) and (3.3.23) must be satisfied. This
means that instead of three mirror points, b must be zero at three mirror curves,
which are obtained by considering the three mirror points for every point on the
curve f(x, y) = 0 . The function b(x, y) , which is chosen

b(x, y) = f(x + π, y) · f(x, y + π) · f(x + π, y + π) (5.1.1)

in the circulant case and

b(x, y) = f(π − x, y) · f(x, π − y) · f(π − x, π − y) (5.1.2)

in the tau, DCT-III, DST-III, and Toeplitz case, meets these requirements. After
having made this choice of b , the coarse grid function f2 is computed with (3.3.2)
and (3.3.19) . The following properties of f2 are easily verified by direct calculation.

Lemma 1 Let An[f ] be a tau or circulant matrix whose generating function has a
curve of zeros in ]−π/2, π/2[2 . Let b be chosen as in (5.1.1) or (5.1.2) , and let f2

be computed with (3.3.2) and (3.3.19) . Then f2(x, y) has the same zero curve as
f(x/2, y/2) , and the zeros are of the same order as the ones of f(x, y) . Moreover,
conditions (3.3.22) and (3.3.23) hold for each point (x0, y0) on the zero curve of
f .

For the construction of a Galerkin-based multigrid method we chose

b2(x, y) = f2(x + π, y) · f2(x, y + π) · f2(x + π, y + π) (5.1.3)
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ρ n=(25−1)2 n=(26−1)2 n=(27−1)2 n=(28−1)2

1.9 18 18 18 18
1.8 18 18 18 18
1.6 18 18 18 18

Table 5.1: Iteration numbers for the Galerkin-based two-grid method applied to
τn[f ] with f from Example 6

or its tau equivalent to compute the restriction matrix on the next level. This
leads to a function f3(x, y) , which has the same zero curve as f(x/4, y/4) . Figure
5.1 depicts the zero curves of f , f2 , and f3 for the function f from Example 6 with
ρ = 1.9 . To illustrate that our method converges fast we apply it to the matrices
from Example 6 . For f(x, y) from (5.0.1) , the function b becomes

b(x, y) = (ρ−cos (x)+cos (y))2(ρ+cos (x)−cos (y))2(ρ+cos (x)+cos (y))2 (5.1.4)

for all trigonometric matrix algebras and for Toeplitz matrices. The following table
contains iteration numbers of the two-grid method for the two-level tau matrices
corresponding to f(x, y) . As in the isolated zero case, our method can also be
applied to matrices belonging to the two-level Toeplitz class. matrices. However,
we either have to apply additional cutting to enforce BTTB structure of A2 , or
accept that A2 is BTTB with low-rank perturbations. Nevertheless, we obtain
similar numerical results if we apply our two-grid method to the BTTB matrices
corresponding to f(x, y) from Example 6 .

5.1.2 Two-grid convergence results

For the two-level method, we wish to give a theoretical convergence result which
is based on Theorem 6 and Corollary 1 . We extend two-grid convergence proofs
for two-level tau [99] , DCT-III [28] , DST-III, and circulant matrices [103] , which
were stated by Serra et al. for generating functions with isolated zeros. Since
the proofs for the different algebras are similar, the following theorem is formally
proved for two-level τ -matrices. At the end, we explain the differences in the proof
for the other two algebras.

Theorem 19
Let A := An[f ] be a two-level matrix from the circulant, tau, DCT-III, or DST-III
algebra. Assume that f(x, y) is a cosine nonnegative polynomial (not identically
zero) with a zero curve in ] − π

2 , π
2 [2 . Suppose that the smoother is the damped

Richardson or Jacobi method. Furthermore, let the restriction be R = B · E with
B from (5.1.1) or (5.1.2) and with the elementary restriction matrix E of the
respective algebra. Then, there exists β > 0 such that condition (3.1.18) is satisfied,
and the TGM converges.
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Proof: From Chapter 3 we know that the elementary smoothers such as the
Richardson and Jacobi method satisfy both the presmoothing condition (3.1.16)
and the postsmoothing condition (3.1.17) . Thus it remains to show that the
correcting condition (3.1.18) is satisfied. Since the technique of the proof is similar
to the one used in [99, 28, 103] and in Section 4.2.3 , we abbreviate it here. (3.1.18)
is proved by showing that it holds if we choose, for each x ∈ C

n , the following y :

y = [RRH ]−1Rx .

In [99] , it is shown that this is true if there exists γ > 0 such that

I − RH [RRH ]−1R ≤ γ

â
An[f ]

with â = Aj,j > 0 . By performing a block diagonalization procedure with a
permuted version of Q

(tau)
n from (2.2.6) this is equivalent to proving n1n2−4nC

1 nC
2

scalar inequalities and nC
1 nC

1 4-by-4 matrix inequalities, where nC
1 = �n1/2� and

nC
2 = �n2/2� . The scalar inequalities are of the form â ≤ γf(xμ, yν) with either

μ = nC
1 + 1 or ν = nC

2 + 1 or both. Due to our assumption that the zero curve
is located within ] − π

2 , π
2 [2 , f cannot vanish if x or y takes the value π/2 , and

the scalar inequalities hold. Because of the continuity of f and b the matrix
inequalities can be reduced to a unique inequality involving 4-by-4 matrix-valued
functions [99] . This inequality is of the form L(x, y) ≤ γ

âI4 with

L(x, y) = diag(f [x, y]))−1/2(I4 − 1
‖b[x, y]‖2

2

b[x, y](b[x, y])T )diag(f [x, y]))−1/2 ,

where f [x, y] = (f(x̄1), f(x̄2), f(x̄3), f(x̄4)) with x̄1 = (x, y) and its mirror points
x̄2, x̄3, x̄4 . b[x, y] is defined analogously. This inequality holds if L(x, y) is uni-
formly bounded in spectral norm, which is in turn true if each element Li,j(x, y)
of the 4-by-4 matrix function L(x, y) is bounded in L∞ . For i 	= j ,

Li,j(x, y) = − b(x̄i)b(x̄j)√
f(x̄i)f(x̄j)

1
‖b[x, y]‖2

2

is bounded, because, due to (3.3.23) , one of the four terms in b[x, y] is nonzero
and, due to (3.3.22) , b(x̄i)

f(x̄i)
is bounded. For all other x ∈] − π, π[2 which are not

located on the zero curve, f is strictly positive. For i ∈ {1, 2, 3, 4} , the functions

Li,i(x, y) = −

∑
y∈M(x̄i)

b2(y)

f(x̄i)
· 1
‖b[x, y]‖2

2

are also bounded, because the first factor is bounded due to (3.3.22) .
For circulant matrices, the proof is almost the same. Since matrices are as-

sumed to be of even size, the are no scalar inequalities. L(x, y) and b[x, y] are
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the same as for tau matrices. For DCT-III and DST-III matrices, b[x, y] must be
chosen differently. If

b[x, y] := (cos (
x

2
) cos (

y

2
)b(x̄1) , − sin (

x

2
) cos (

y

2
)b(x̄2) ,

− cos (
x

2
) sin (

y

2
)b(x̄3) , sin (

x

2
) sin (

y

2
)b(x̄4)) .

then L(x, y) is proved to be bounded in infinity norm. This is done by showing
that all Li,j are bounded due to (3.3.34) and (3.3.35) . �

5.1.3 Limitations of the Galerkin approach

The Galerkin-based two-grid method converges after a low number of iterations,
independent of the matrix size, and we have proved convergence in Theorem 19.
However, the design of a multigrid method for practical applications runs into two
major problems.

• Most of the matrices we are interested in are sparse, i.e. their corresponding
generating functions are trigonometric polynomials of low degree. Applica-
tion of the Galerkin method with b(x, y) from (5.1.1) or (5.1.2) results in
matrices which are significantly denser on coarser levels. To illustrate this
fact, let us examine the matrix A1 = An[f ] and the corresponding coarse
grid matrix A2 from Example 6 . The stencil of A1 has 13 nonzero entries,
compared to 113 of A2 . This enormous increase in density occurs in each
coarsening step, and therefore makes a multigrid method with more than
three levels inefficient. In some cases, it is possible to define a function
b(x, y) which is less dense, but which has the same zero curves as b from
(5.1.1) or (5.1.2) . For our example function f , we can use

√
b(x, y) , re-

sulting in a stencil of A2 which has only 41 nonzero entries. However, such
a prolongation is only possible if this square root is itself a trigonometric
polynomial of low degree.

• Zero curves become larger on each level. Figure 5.1 shows that two steps
of coarsening transform a zero curve of moderate size into a considerably
larger one. However, our multigrid method only works well if the zero curve
is located within the region ]−π/2, π/2[2 . Even if the curve only approaches
the boundaries of this area, i.e. if for a zero (x0, y0) on the curve, either x0

or y0 becomes greater than 1.3 or 1.4 , convergence is extremely slow. For
the example function f(x, y) from Example 6 , we see in Figure 5.1 that at
most three levels, i.e. two coarsening steps can be used. To illustrate this
restriction, the following table shows, for the desired number m of grids in
the multigrid method, how small ρ is allowed to be in (5.0.1) such that an
m-grid method can still be applied.
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� levels 2 3 4 5 6 7
ρmin 1.25 1.80 1.95 1.987 1.997 1.9995

5.2 Rediscretization and approximation of the zero
curve

The Galerkin method described in the previous section leads to optimal conver-
gence for matrices whose generating functions have a whole curve of zeros. Al-
though the two problems described at the end of the section prevent the multigrid
version of the method from being applicable in practical computations, it is the
basis for the development of fast multigrid methods. In the following, we focus on
the problem of finding coarse grid matrices which are less dense, but which do not
increase the number of V-cycle iterations. This shall be achieved by using the fol-
lowing heuristic: Carry out smoothing, prolongation, and restriction as before, but
do not compute the coarse grid matrix A2 with a Galerkin approach. Instead, we
choose A2 corresponding to a generating function which has the same zero curve
as f(x/2, y/2) , or which is at least a good approximation to this curve. In other
words, we use a form of rediscretization on coarser grids. Finding a sparse matrix
A2 whose generating function has exactly the same zero curve as f(x/2, y/2) is dif-
ficult, because the function f(x/2, y/2) in general corresponds to a dense matrix,
and even in special cases, matrices become denser on coarse grids. Therefore, f2 is
obtained by multiplying f(x/2, y/2) with other cosine terms such that the result is
a polynomial in cos (x) and cos (y) . With such an approach, coarse grid matrices
are difficult to compute if more than two-levels are used. Furthermore, matrices
still become significantly denser on each level, because there are no trigonometric
polynomials of low degree with exactly the same zero curve. Because of these
difficulties, we do not use coarse grid functions with exactly the same zero curve
as f(x/2, y/2) . Therefore, we approximate f(x/2, y/2) by a trigonometric poly-
nomial of low degree.

We start with a description of our approximation technique for the development
of a two-grid method. Then, we explain how this two-grid idea can be applied re-
cursively for the development of a multigrid method. Numerical examples conclude
this section.

5.2.1 A two-level method based on rediscretization

In our new two-grid method, we use the damped Richardson, Jacobi, or Gauss-
Seidel smoother and the restriction matrix R = B ·E with E from (3.3.3) or (3.3.4)
and B corresponding to b from (5.1.1) or (5.1.2) . We define a function f2(x, y) in
such a way that its zero curve approximates the one of f(x/2, y/2) . Furthermore,
f2 must be a trigonometric polynomial with only few nonzero coefficients such that
the corresponding matrices are sparse. Such an approximation is carried out in
two steps.
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Figure 5.2: Zero Curves of f(x/2, y/2) and f
(1)
2 (x, y) for ρ = 1.6

1. First, we choose a function f2(x, y) which is similar to the original function
f and which has some free parameters.

2. In the second step, these parameters are computed such that the zero curve
of f2 shares some points with the curve f(x/2, y/2) = 0 . A function f2

with these two properties is expected to have a zero curve very similar to
the one of f(x/2/y/2) . The number of free parameters should correspond to
the number of points we want to fix on the curve, depending on the desired
accuracy of the approximation. If f and f2 have symmetry properties, their
zero curves have additional points in common.

We illustrate the construction of the coarse grid function with our example function
f , which is symmetric in x and in y . The first idea for the choice of f2 is

f
(1)
2 (x, y) = [σ − cos (x) − cos (y)]2 , (5.2.1)

which only contains one parameter, and which results in very sparse matrices
A2 . We choose σ such that the zero curves of f(x/2, y/2) and f

(1)
2 (x, y) share

the point (x1, 0) with x1 = 2arccos (ρ − 1) on the positive x-axis. Then, from
f

(1)
2 (x1, 0) = 0 , we obtain that

σ = 1 + cos(2 arccos (ρ − 1)) . (5.2.2)

Because of the symmetries in f and f
(1)
2 , also the points (0, x0) , (−x0, 0) , and

(0,−x0) lie on both zero curves. For ρ = 1.6 , the zero curves are shown in Figure
5.2 , where the exact curve is drawn as a solid line and the approximation as a
dotted line. Since this approximation is not accurate enough, we choose a slightly

126



more complicated f2 by adding one additional term:

f
(2)
2 = [σ − α(cos (x) + cos (y)) − β cos (x) cos (y)]2 . (5.2.3)

We fix σ (e.g. by taking the value computed above) and use α and β as the free
parameters. Now we determine α and β such that the zero curves of f(x/2, y/2)
and f

(2)
2 (x, y) have the following two points in common:

(x1, y1) = (2 arccos (ρ − 1), 0)
(x2, y2) = (2 arccos (ρ/2), 2 arccos (ρ/2)) .

Due to the symmetry mentioned above, the two zero curves have eight points in
common. With the abbreviations

c1 = cos (2 arccos (ρ − 1)) and c2 = cos (2 arccos (ρ/2)) ,

the parameters α and β are computed from f
(2)
2 (x1, 0) = 0 and f

(2)
2 (x2, x2) = 0 :

β =
c2
2σ − c1σ

c2
2(c1 + 1) − 2c1c2

, α =
σ

c1
− β(c1 + 1)

c1
.

The zero curve of f
(2)
2 (x, y) is an excellent approximation to the one of f(x/2, y/2) .

Even for a large zero curve, e.g. for ρ = 1.6 , the two curves are almost equal.
The zero curve of f

(2)
2 can hardly be distinguished from the curve f(x/2, y/2) =

0 in Figure 5.2. When we use A2 corresponding to f (2)(x, y) in the two-grid
method instead of the coarse grid matrix computed with the Galerkin approach,
similar numerical results are obtained. For more complicated functions f with less
symmetry or for extremely large matrix sizes, the approximation with f

(2)
2 may

not be sufficiently close. In that case, we can use a third free parameter and a
function of the form

f
(3)
2 = [σ − β(cos (x) + cos (y)) − α cos (x) cos (y) − γ(cos (2x) + cos (2y))]2 , (5.2.4)

with fixed σ and free α, β, γ . The third common point of the two zero curves is
(2x3, x3) , leading to seven more common points due to the symmetry of f . In
total, the two zero curves have 16 points in common. After computing

x3 = 2arccos [(−1 +
√

9 + 8ρ)/4] ,

the parameters are obtained from

f
(3)
2 (x1, 0) = 0 , f

(3)
2 (x2, x2) = 0 , f

(3)
2 (2x3, x3) = 0 .

This leads to the linear system⎛
⎝ cos (x1) + 1 cos (x1) cos (2x1) + 1

2 cos (x2) (cos (x2))2 2 cos (2x2)
cos(x3) + cos (2x3) cos (x3) cos (2x3) cos (2x3) cos (4x3)

⎞
⎠ ·

⎛
⎝β

α
γ

⎞
⎠ =

⎛
⎝σ

σ
σ

⎞
⎠ . (5.2.5)
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If f
(3)
2 is still not accurate enough, another term of the form

−δ cos (2x) cos (2y)

is added in (5.2.4) within the square brackets. This adds another free parameter δ

and forces the resulting f
(4)
2 to be zero at another point such as (3x4, x4) . If f

(4)
2

or even a trigonometric polynomial of slightly higher degree is used, the matrix A2

is not denser as the one obtained from the Galerkin approach. The true benefit of
our approximation technique will become apparent when we use several levels of
restriction to define a multigrid method. Since we use this approximation-based
rediscretization approach on each level, the system matrix on coarser grids will
not increase in bandwidth.

5.2.2 Extending the idea to the multigrid case

Multilevel methods based on the Galerkin approach suffer from an increasing den-
sity of the coarse grid matrices. This fact restricts the number of grids which can
be used in a multigrid method to two or three. The rediscretization-based method
just described, on the other hand, do not suffer from these limitations. The two-
grid method has the advantage that the coarse grid matrix A2 has roughly the
same density as the original matrix An[f ] . The true benefit of our rediscretiza-
tion approach only becomes apparent when we construct a multigrid method with
several coarsening levels. Such a method is defined by applying the two-grid idea
from the previous subsection recursively. The only restriction concerning the num-
ber of levels in the multigrid method lies in the increased size of the zero curves.
However, if ρ is close to 2 , several levels can be used as described in Section 5.1.3 .
The multigrid method uses a standard smoother such as damped Jacobi on each
level. In the following, we explain how restriction and coarse level matrices are
computed.

• On the finest level, b(x, y) is defined as in the Galerkin method with (5.1.1)
or (5.1.2) . Then, f2 is computed as described in the previous subsection,
using (5.2.3) ,(5.2.4) , or an even better approximation.

• With this choice of f2 , b2(x, y) is computed with (5.1.3) or the tau equivalent
on the second finest level. The function f3(x, y) , which corresponds to the
system matrix A3 on the next coarser level, is computed in a similar way as
f2 . f3 is again a function of the form (5.2.3) or (5.2.4) , but it must have
common points with the curve f(x/4, y/4) = 0 . With

x1 = 4arccos (ρ − 1) , x2 = 4arccos (ρ/2) ,

x3 = 4arccos [(−1 +
√

9 + 8ρ)/4] ,

the coefficients are computed as above.
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ρ n=(26)2 n=(27)2 n=(28)2 n=(29)2

1.99 15 15 15 15
1.98 16 16 16 16
1.97 18 18 18 18

Table 5.2: Iteration numbers for the rediscretization-based four-grid method ap-
plied to Cn[f ] with f from Example 6

ρ n=(26)2 n=(27)2 n=(28)2 n=(29)2

1.9995 15 15 15 15
1.9990 15 15 15 15
1.9985 20 20 20 20

Table 5.3: Iteration numbers for the rediscretization-based six-grid method applied
to τn[f ] with f from Example 6

• On the next level, we compute

b3(x, y) = f3(x + π, y) · f3(x, y + π) · f3(x + π, y + π)

and f4(x, y) as above. f4 must have points in common with f(x/8, y/8) = 0 .

• On coarser levels, this procedure continues until the zero curve

f(x/2d, y/2d) = 0

becomes too large, i.e. reaches the boundaries of ] − π/2, π/2[2 .

The main advantage of this approach is that the matrices corresponding to f2 have
the same sparsity pattern as the matrices corresponding to f3 , f4 , and so on.

5.2.3 Numerical examples

In the following, we carry out numerical tests using matrices from the circulant
and tau algebras corresponding to the function f from Example 6 . For the coarse
grid functions, we use an approximation in 8 points, i.e. f

(2)
2 from (5.2.3) and its

analogs on coarser grids. First, we use a four-grid method for matrices of circulant
type. Table 5.2 contains the number of V-cycle iterations for different values of ρ .
If ρ becomes significantly smaller than 1.97 , convergence deteriorates significantly.
For problems where ρ is close to 2 , even six levels can be used for the construction
of a multigrid method. Table 5.3 summarizes the results for matrices of the tau
algebra. For the DCT-III and DST-III algebras, similar iteration numbers are
obtained.
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Figure 5.3: Two-grid iteration with one coarse grid correction (left) and with three
coarse grid corrections (right)

5.3 A new splitting technique

All multigrid methods we have described in this chapter are based on comput-
ing exactly one system matrix on each grid: A1 = An[f ] on the finest grid and
A2, A3, A4, . . . on coarser grids. If the original matrix An corresponds to a func-
tion f(x, y) with a whole curve of zeros, this curve becomes larger on each grid,
limiting the maximum number of levels for a multigrid method. So far,

• we have developed a method where all coarse grid matrices have the same
sparsity pattern and do not become denser on coarser levels

• we have not found a remedy for the problem of increasing zero curves.

In the following, we propose a method which overcomes this problem. Instead
of a single coarse grid correction, several coarse grid corrections are computed in
every iterative step, each of them representing one part of the zero curve of f . We
start with the description of a two-grid method, explaining the principal ideas of
our approach. Then, we extend the two-grid method to a multigrid method and
finally combine it with the multigrid methods from Sections 5.1 and 5.2 . At the
end of this section, we present numerical results to compare the different types of
multigrid methods.

5.3.1 A two-grid method with splitting

In the Galerkin-based two-grid method from Chapter 5.1 , the coarse grid cor-
rection X in each iteration is computed from one coarse grid matrix A2 , which
corresponds to the function f2(x, y) . f2 has the same zero curve as f(x/2, y/2),
and therefore represents the whole zero curve of f(x, y) on the coarse grid. The
left picture in Figure 5.3 shows one iteration of this two-grid method. The filled
circles denote possible smoothing iterations, the empty circles represent the exact
solution of the coarse grid problems. In our splitting-based method, we compute
k coarse grid corrections X1,j with restriction matrices R1,j and coarse grid ma-
trices A2,j in every iteration of the two-grid method. Each of the corresponding
generating functions f2,j is a local coarse grid representation of the zero curve
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f(x/2, y/2) = 0 in the neighborhood of at least one of its points (xj, yj) . The
iteration matrix TG of the two-grid method is of the form

TG = Sνk+1 ·
k∏

j=1

(X1,j · Sνj) (5.3.1)

with smoother S and coarse grid corrections

X1,j = I − RH
1,jA

−1
2,jR1,jAn[f ] .

This means one iteration of the two-grid method consists of k coarse grid correc-
tions X1,j and smoothers between the X1,j . One iteration of this two-grid method
is depicted in the right picture of Figure 5.3 . It uses three coarse grid corrections
with smoothing between them. There are two important goals when designing a
two-grid method with several coarse grid corrections: Each part of the zero curve
must be approximated well and the number of coarse grid corrections per iteration
must be small.

Each coarse grid matrix A2,j is computed as follows. The restriction matrices
are of the form R1,j = B1,j ·E1 , where Bj corresponds to a function b1,j(x, y) and
E1 is the elementary restriction matrix defined in (3.3.3) or (3.3.4) . Since f from
(5.0.1) is symmetric in x and y , b is chosen such that f2,j represents the zero curve
of f(x/2, y/2) in two or four point. A zero of f at (xj , yj) implies that f is also
zero at (−xj , yj), (xj ,−yj), (−xj ,−yj) . If b1,j is chosen to be

b1,j(x, y) = (cos (xj) + cos (x))2(cos (yj) + cos (y))2 , (5.3.2)

and if A2,j is computed with the Galerkin approach (A2,j = R1,jAn[f ]RH
1,j) , then

the zero curve of f(x/2, y/2) is approximated very well in the neighborhood of the
points (2xj , 2yj), (−2xj , 2yj), (2xj ,−2yj), (−2xj,−2yj) . For a point (xj , 0) on the
x-axis, f2,j is zero at (−2xj , 0), (2xj , 0) and very small in the neighborhood of the
two points. The left picture of Figure 5.4 shows the zero curves of f(x, y) and
f(x/2, y/2), and the level curve f2,j(x, y) = 0.005 . From this picture we see that
large parts of the zero curve of f(x/2, y/2) are approximated well by f2,j . The
following theorem summarizes properties of A2,j and f2,j .

Theorem 20
Let f(x, y) be the function defined in (5.0.1) with ρ > 1, and An[f ] the corre-
sponding matrix of the two-level tau, circulant or DCT-III algebra. Furthermore,
let (xj, yj) be a point on the zero curve of f(x, y) , and assume that R1,j = B1,j ·E1 ,
with B1,j corresponding to b1,j from (5.3.2) . Moreover, assume that A2,j is com-
puted with the Galerkin approach. Then the following holds:

1. A2,j is a symmetric positive definite matrix. Its generating function f2,j has
zeros at

(2xj , 2yj), (−2xj , 2yj), (2xj ,−2yj), (−2xj ,−2yj)

and it is strictly positive elsewhere in ] − π, π]2 .
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Figure 5.4: Zero curves of f(x, y) and f(x/2, y/2) with the level curve f2,j = 0.005
approximating f(x/2, y/2) = 0 in the neighborhood of the points (±xj, 0) (left)
and approximation after shifting a zero to the origin (right)

2. In the direction t of the tangent on f(x/2, y/2) in (xj, yj) , the first directional
derivatives of f(x/2, y/2) and f2,j(x, y) are both zero.

Proof: From [3] we know that A2,j is the matrix of the respective algebra corre-
sponding to f2,j . Since f2,j is real-valued even and nonnegative, A2,j is symmetric
positive definite. Due to ρ > 1 the curve f(x, y) = 0 is located within ]−π/2, π/2[2 .
Then, by the results from [3] , f2,j is zero at the four points. From (3.3.5) we can
deduce that f2,j is strictly positive at all other points.

For zeros on the x- and y-axis, the result stated in (2) follows from direct
calculation, for other zeros, it is obtained by a simple coordinate transformation.
�

In the Toeplitz and circulant case, another way to perform restriction is the
following.

• The zero curve of f is shifted such that (x0, y0) moves to the origin. This
corresponds to a diagonal transformation Ã of An[f ] .

• Then, the restriction matrix R̂1,j = B1,j ·E1 is applied to Ã , where E1 is the
elementary restriction matrix of the class and B1,j corresponds to a function
of the form

b1,j(x, y) = (1 + cos (x))2(1 + cos (y))2 . (5.3.3)

• The coarse grid matrix A2,j is computed with the Galerkin approach, i.e.
A2,j = R̃1,jÃR̃H

1,j .

The right picture in Figure 5.4 shows the result on the corresponding generating
function f2,j , depicting the level curve f2,j(x, y) = 0.01 . f2,j is zero only at (0, 0)
and very small along the zero curve of f(x/2, y/2) in the neighborhood of the
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Figure 5.5: One iteration of a five-grid method with a splitting into three subprob-
lems on the finest grid

origin. Thus, each coarse grid matrix corresponds to a nonnegative generating
function with and isolated zero at the origin. This property will be very useful for
the development of a multigrid method in the next section. In the tau and DCT-III
algebras, we cannot perform diagonal transformation because the resulting matrix
Ã would not be in the same matrix class. Therefore, we apply restriction directly
to the matrix An[f ] . Shifting the zeros to the origin in the Toeplitz and circulant
case has one main advantage and one main disadvantage:

• The advantage is that the zero remains at the origin on coarser levels.
Thus, no further complications arise from the zero, and a large number of
coarsening steps can be used in the multigrid method.

• The disadvantage is that the number of coarse grid corrections is signifi-
cantly higher if the generating function is symmetric. In the case of f from
(5.0.1) , this means 8 corrections have to be used instead of 3 or 16 instead
of 5 .

5.3.2 From two-grid to multigrid

The two-grid method becomes a multigrid method if each coarse grid system in
(5.3.1) with the matrix A2,j is solved recursively with the multigrid scheme from
Chapter 3 . This implies that one iteration of the multigrid method consists of k
V-cycles instead of one in the method from Chapter 5.2 . Figure 5.5 shows one
iteration of the multigrid method which uses three coarse grid corrections and
five grids for each of them. Since A2,j corresponds to a generating function f2,j

with isolated zeros, the functions b2,j, b3,j , etc., corresponding to the restriction
matrices on coarser levels, are of the form (5.3.2) . Each zero (2xj , 2yj) of f2,j

moves to (4xj , 4yj), (8xj , 8yj), . . . on the next levels. Thus, extra care has to be
taken if either the x- or the y-value of the zero approaches π/2 (mod π) .
As described above, the problem of moving zeros can be avoided in the Toeplitz
and circulant case by treating each zero (xj , yj) separately. This is done by shifting
(xj , yj) to the origin and then using a function such as

bi,j(x, y) = (1 + cos (x))2(1 + cos (y))2 (5.3.4)
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for restriction. From the form of the level curves of f2,j , we see that the coarse
grid matrices are of slightly anisotropic type. Especially when ρ becomes smaller,
some of the coarse grid matrices have significant anisotropies. In these cases, we
can use the results from [55] and apply one or two semicoarsening steps. This
means that (5.3.2) is replaced by functions such as

bi,j(x, y) = (cos (x0) − cos (x))2 .

Elementary restriction is done only in one direction, i.e. the matrix size is reduced
only by a factor of 2 .

For the design of an efficient multigrid method, the number of coarse grid
corrections is critical. For zeros of f(x, y) on the x- or y-axis, one coarse grid
correction approximates the zero curve of f(x/2, y/2) in the neighborhood of two
points, for all other zeros, in the neighborhood of four points. Since we ususally
start with the zeros on the axes, this means that k

4 + 1 coarse grid corrections Xj

are needed for an approximation in k equidistant points. Thus, two corrections
are needed for 4 points, three corrections for 8 points, and five corrections for 16
points. The number of necessary points depends on two factors, the size of the
zero curve and the size of the matrices.

5.3.3 Combining splitting with the Galerkin method

So far, we have defined two different kinds of multigrid methods for matrices
corresponding to generating functions with whole zero curves. Both strategies
have advantages and disadvantages:

(I) The strategy from Section 5.2 uses only one coarse grid matrix on each
grid. The main advantage of this method is that the zero curve of f is
represented very well by generating functions on coarser grids. This leads
to fast convergence. The main disadvantage is the increase of the size of
the zero curve on each grid, limiting the possible number of levels in our
multigrid method.

(II) The splitting strategy from Sections 5.3.1 and 5.3.2 has the main advantage
that zero curves do not grow, and therefore a much larger number of levels can
be used. The disadvantage of these methods is that for very large matrices,
an approximation in 4 or 8 points is not accurate enough, and therefore k
may become too big for a fast algorithm.

Therefore, we suggest to apply a multigrid method which combines the advantages
of both types. We use the following heuristic: Start with the first strategy until the
zero curve is too large for another coarsening step. Then split the resulting coarse
grid problem into k subproblems and apply further levels of restriction to each of
them. To illustrate this new strategy, Figure 5.6 depicts one multigrid iteration. It
starts with two coarsening steps using the first strategy and then computes three
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Figure 5.6: One iteration of a six-grid method with a combined Galerkin-splitting
technique

coarse grid corrections on three further levels, leading to an approximation in the
neighborhood of 8 points. The main advantage of this method is the following.
After a few coarsening steps with strategy (I) , we obtain a matrix which is consid-
erably smaller than An[f ] , because in each step, the number of rows and columns
is reduced by a factor 4 each. Thus, a slightly larger number of necessary coarse
grid corrections (due to the increased size of the zero curve after a few coarsening
steps) is still acceptable.

In many applications, discretization of the Helmholtz equation results in a
function f from (5.0.1) with 1.99 < ρ < 2 . In this case, we can apply several
coarsening steps with strategy (I) before the zero curve reaches the boundaries of
] − π/2, π/2[2 . Then, we switch to strategy (II) .

5.3.4 Numerical results

With the following numerical tests we wish to illustrate that quite a small number
of coarse grid problems are sufficient for fast multigrid convergence. Moreover,
the pure splitting technique shall be compared with the combined strategy. To
illustrate that indeed a fairly small number of coarse grid corrections is needed, we
have tested our method for f from (5.0.1) and the corresponding two-level Toeplitz
matrices. Table 5.4 contains the number of necessary coarse grid corrections (�cgc)
and the iteration numbers for a three-grid method. Since each iteration contains
two or three V-cycles, it roughly corresponds to two or three iterations of a method
from Section 5.2 .

The numerical results contained in Table 5.5 are obtained with the combined
method for two-level DST-III matrices corresponding to f from (5.0.1) . For
ρ = 1.95 , we test two different methods. Method 1 uses two steps of the first
strategy followed by splitting into three subproblems and one further level of pro-
longation. Method 2 uses one step of the first strategy followed by splitting into
three subproblems and two more coarsening steps.
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ρ �cgc n=(25)2−1 n=(26)2−1 n=(27)2−1 n=(28)2−1

1.95 2 4 4 4 4

1.9 2 6 6 6 6

1.8 3 4 4 4 4

1.6 3 5 5 5 6

Table 5.4: Iteration numbers for the splitting-based three-grid method applied to
Tn[f ] with f from Example 6

ρ method n=(25)2 n=(26)2 n=(27)2 n=(28)2

1.95 1 13 13 14 14

1.95 2 9 9 10 10

Table 5.5: Iteration numbers for the combined four-grid method applied to Sn[f ]
with f from Example 6

5.4 Anisotropic problems with zero curves

The whole Chapter 4 was devoted to the development of multigrid methods for
anisotropic systems whose generating functions have isolated zeros. Now we wish
to describe multigrid methods for anisotropic problems with whole zero curves.

Example 7 Let An[f ] be the two-level matrices belonging to a trigonometric
algebra or to the Toeplitz class which correspond to the generating function

f(x, y) = (ρ − α cos (x) − (2 − α) cos (y))2 (0 < ρ ≤ 2 , α � 1) . (5.4.1)

For ρ < 2 , f is zero along a whole curve. This zero curve becomes extremely flat
if α tends to zero.

As their isotropic counterparts, these systems can be solved with two fundamen-
tally different types of multigrid methods. Again, the first type is based on using
a classical V-cycle with one coarse grid matrix on each level, whereas the second
type splits the original problem into several coarse grid problems.

5.4.1 Galerkin-based methods

The starting point for the development of multigrid methods for this class of ma-
trices is again the classical Galerkin approach. As for the simpler case of Chapter
4 , multigrid methods shall be defined as a combination of semicoarsening and full
coarsening steps. If anisotropy occurs along the x-axis, semicoarsening steps are
performed in y-direction. The prolongation matrix on the finest level corresponds
to

b(x, y) = f(x, π − y) , (5.4.2)
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Figure 5.7: Zero curve of f(x, y) , f(x, y/2) , and f(x, y/4) for f from Example 7

which is the anisotropic analog of (5.1.2) . Elementary restriction for this semi-
coarsening step is done with (4.2.3) . In the case of anisotropy in y-direction,
semicoarsening is done with

b(x, y) = f(π − x, y) (5.4.3)

and with elementary restriction in x-direction. We continue with semicoarsening
until there is no more anisotropy, i.e. in Example 7 until zero curves are close to
circles, and then switch to full coarsening as described in Section 4.2 . Figure 5.7
illustrates what happens to the zero curve of f when two semicoarsening steps are
applied. The solid curve is the zero curve of f(x, y) with ρ = 1.9 and α = 0.1 ,
whereas the two dotted curves are the zero curves of f2 and f3 , which are equivalent
to the zero curves of f(x, y/2) and f(x, y/4) , respectively.

As in Chapter 4 , we state two theoretical results. One of them describes
the reduction of anisotropy and the other one proves convergence of the two-grid
method. To quantify the reduction of anisotropy, we analyze zero curves instead
of the more general level curves from Chapter 4. This implies that Theorem 10
can be greatly simplified. We define the ratios rF and rC in a slightly different
way as in Chapter 4 . The ratio rF = xF

yF
measures the degree of anisotropy of

the given matrix, where (xF , 0) and (0, yF ) denote the points where the zero curve
f(x, y) = 0 intersects the coordinate axes for positive xF and yF . rC = xC

yC
is the

same ratio for f2 on the coarse grid.

Theorem 21
Let f be a nonnegative generating function with a zero curve of order 2 . Let f2 be
the function obtained by one semicoarsening step with b from (5.4.2) . Moreover,
let rF = xF

yF
and rC = xC

yC
be the ratios described above for f and f2 , respectively.

Then the degree of anisotropy is reduced by a factor 2 , i.e. rF
rC

= 2 .
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Proof: Since semicoarsening is done in y-direction, the zero curve of f2 is given by
f(x, y/2) = 0 . Hence, we obtain xC = xF and yC = 2 · yF , and therefore rF

rC
= 2 .

�
The second theoretical result concerns convergence of the two-grid method. It

is the anisotropic analogue of Theorem 19 .

Theorem 22
Let A := An[f ] be a two-level matrix from the circulant, tau, DCT-III, or DST-III
algebra. Assume that f(x, y) is a cosine nonnegative polynomial (not identically
zero) with a zero curve in ] − π

2 , π
2 [2 . Suppose that the smoother satisfies condi-

tion (3.1.17) . Furthermore, let the restriction be defined by R = B · E with B
corresponding to b(x, y) from (5.4.3) , and the elementary restriction matrix E of
the resprective algebra. Then, there exists γ > 0 such that condition (3.1.18) is
satisfied and the two-grid method converges.

Proof: This theorem is proved by combining the proofs of Theorems 12 and 19 .
The smoothing condition here is the same as in the two theorems. The correcting
condition is proved for y defined in (4.2.15) , which leads to the inequality (4.2.16) .
In the circulant case, block diagonalization of the matrices involved in (4.2.16) is
done with Q̃(circ) from (4.2.18) . Due to the continuity of f and b , this reduces to
n1 2-by-2 matrix inequalities of the form (4.2.20) . Since f and b satisfy conditions
(3.3.22) and (3.3.23) for each point on the zero curve, these inequalities hold.
For the classes of tau, DCT-III and DST-III matrices, the proof is carried out
analogously. �

The Galerkin method which uses exact zero curves converges optimally, but
suffers from the same two problems as in the isotropic case, increasing zero curves
and denser matrices on coarser levels. First, we focus on the second problem and
define a method with coarse grid matrices which are less dense. The first idea,
which is only applicable to some problems, is to choose

b(x, y) =
√

f(x, y + π) (5.4.4)

instead of (5.4.2) .

Remark 16 If b(x, y) from (5.4.4) is a trigonometric polynomial of low degree, i.e.
if the corresponding matrices are sparse, then the two-grid method does not only
converge optimally. Moreover, the coarse grid matrix is still as sparse as An[f ] ,
i.e. we have no increase in bandwidth. Hence, we can use this choice of b for the
Galerkin-based method.

This is, for example, possible for the matrices in Example 7 . However, this ap-
proach will be limited to two-grid methods, because on coarser levels, it is even
more difficult to construct

√
f2(x, y + π) explicitly. In addition, b from (5.4.4)

satisfies (3.3.22) , but not (3.3.24) . Again, this is enough to prove two-grid con-
vergence and level independency, but not convergence of the V-cycle. Nevertheless,
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this choice of b can be useful for the construction of a multigrid method. The first
coarsening step is carried out with b from (5.4.4) , and the following steps on coarser
grids with the methods described in the following.

5.4.2 Rediscretization and splitting techniques

As in the isotropic case, we do not require that the coarse grid functions have
exactly the same zero curve as f(x, y/2) , f(x, y/4) , etc. In this subsection, we
present two alternative methods, similar to the ones from Section 5.2 and 5.3 for
isotropic problems. The first of these methods uses one coarse-grid correction in
each V-cycle iteration, and the coarse grid matrices are obtained from rediscretiza-
tion on coarser grids. The second method is based on splitting the original problem
and computing several coarse grid corrections in each iteration.

For the construction of the first method, we use a trigonometric polynomial
f2 as the coarse grid function, which is similar to the function f and whose zero
curve is a good approximation to the one of f . In the anisotropic case, f has
less symmetry properties, which means that more common points are necessary to
obtain the same degree of approximation. f(x, y) from Example 7 is not symmetric
with respect to the line y = x . We compute approximations for f2 in a similar way
as with (5.2.1) , (5.2.3) , and (5.2.4) in Section 5.2.1 . The zero curves of f(x, y/2)
and f2(x, y) have 4 common points if we use a function with two free parameters,
which are computed at points (x1, 0) and (0, y2) . Since this approximation is not
good enough, we choose

f2(x, y) = [2 − α cos (x) − β cos (y) − γ cos (x) cos (y)]2 , (5.4.5)

which has three free parameters. These are computed by requiring that f2 has
zeros at (x1, 0) ,(x2, x2) and (0, y3) . By symmetry on both axes, f(x, y/2) and
f2(x, y) have 8 common points. For 16 common points we need a function with
five parameters such as

f2(x, y) = [2 − α cos (x) − β cos (y) − γ cos (x) cos (y) − δ cos (2x) − ε cos (2y)]2 ,
(5.4.6)

which, in addition to the three points from above, has to be zero at (2x4, x4)
and (x5, 2x5) . As in the isotropic case, this rediscretization technique is applied
recursively. On each level, the restriction matrix is constructed with a function bj

such as
bj(x, y) = fj(π − x, y) or bj(x, y) = fj(x, π − y) . (5.4.7)

The multigrid method based on splitting is of the form (5.3.1) . As in Section
5.3 , there are two options for the construction of the subproblems:

• For k of points xj on the zero curve of f , we shift xj to the origin, i.e. apply
diagonal transformation to the matrix An[f ] . Then, we use the function
b1,j from (5.3.3) for restriction. This shifting technique, which results in
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ρ n=(25−1)2 n=(26−1)2 n=(27−1)2

1.9 14 14 14
1.8 14 14 14
1.6 15 15 15

Table 5.6: Two-grid iteration numbers for Tn[f ] with f from Example 7 and
α = 0.1

subproblems with zeros at the origin on all grids, can only be used for Toeplitz
and circulant matrices.

• We define k restrictions R1,j with b1,j from (5.3.2) . Because of the symmetry
of f , each of the resulting coarse grid matrices A2,j corresponds to a function
f2,j , which approximates the zero curve of f(x, y/2) in the neighborhood of
at least two points. However, on coarser grids, the isolated zeros of the
subproblems are not located at the origin. On the other hand, a smaller
number of coarse grid problems is sufficient.

The structure of one V-cycle, which is of the same form as in Section 5.3 , is
depicted in Figure 5.5 . As in Section 5.3 , the splitting technique can be combined
with both the Galerkin and the rediscretization approach. The structure of one
multigrid iteration is the same as in Figure 5.6 . The difference is that we start
with semicoarsening steps until the linear system is not anisotropic anymore, i.e.
until the zero curve of the generating function is almost a circle.

5.4.3 Numerical results

In Theorem 22 , we have proved optimal convergence of the two-grid method con-
structed with the Galerkin approach. This convergence behavior shall be illus-
trated with the function f from Example 7 and the parameter α = 0.1 . Table 5.6
contains the iteration numbers of the two-grid method for different values of ρ .

Following Theorem 21 , we apply semicoarsening until the zero curve is almost
a circle. This means coarsening is done only in one direction. For the example
function f , the direction of coarsening is the y-axis. Moreover, semicoarsening can
only be applied until the zero curve reaches the line y = π/2 , i.e. as long as

max
(x,y)∈f(x,y)=0

y < π/2 .

Otherwise, the function f is also zero at the mirror points of some of its zeros,
and the multigrid method diverges for the reasons described in Remark 8 . For f
from Example 7 with α = 0.1 and ρ = 1.9 this implies that two semicoarsening
steps can be applied (see Figure 5.7) . Then, the zero curve of f3(x, y) is too large
for a further semicoarsening or full coarsening step, and splitting must be used.
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α � (semi) n=(26−1)2 n=(27−1)2 n=(28−1)2

0.05 2 21 23 24
0.05 3 18 18 18
0.1 2 24 24 24
0.1 3 21 21 21

Table 5.7: Five-grid iteration numbers for τn[f ] with f from Example 7 , α = 0.1 ,
and ρ = 1.99

If α = 0.01 and ρ = 1.95 , three semicoarsening steps can be used. For this case,
we apply the multigrid method based on rediscretization, which uses the functions
bj from (5.4.7) on the three finest levels . Then, we must switch to splitting. For
α = 0.01 and ρ = 1.99 , we can apply three semicoarsening steps followed by
one full coarsening step can be used, before we switch to splitting. We use this
last case for further numerical tests. A four-grid method is applied to the tau
matrices corresponding to f from Example 7 with α = 0.05 and ρ = 1.99 . Table
5.7 shows the iteration numbers of the V-cycle. As our heuristic suggests, three
semicoarsening steps is the best choice. In the case of α = 0.1 , best results are
obtained with two semicoarsening steps followed by one full coarsening step.

5.5 Multigrid as a preconditioner

As described in Chapter 3 , multigrid methods are not only used as solvers, but also
as preconditioners for Krylov subspace methods. Since the matrices we consider in
this chapter are Hermitian positive definite, the pcg method is used as the solver.
The aim of a multigrid preconditioner P is to obtain a matrix P−1An , which is
significantly less ill-conditioned than An . On the other hand, application of the
preconditioner must be less costly than the solution of the original problem.

Here, we develop different kinds of multigrid preconditioners for linear systems
whose generating function has a zero curve. Some of these methods are based
on the ideas presented in Sections 5.1 and 5.2 , others on splitting the original
problem into a fixed number of subproblems. After introducing preconditioners of
both types, we describe how they can be combined to a preconditioner with the
advantages of both types. This is similar to the combination of different types of
multigrid solvers in Section 5.3.3 .

5.5.1 A Galerkin- or rediscretization-based preconditioner

The first type of preconditioner computes only one coarse grid correction in each
iteration of the cg method. This coarse grid correction represents the whole zero
curve of f . We apply the multilevel diagonal scaling preconditioner, which was
introduced in Section 3.1.3 . Although this additive preconditioner leads to slightly
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ρ n=(25−1)2 n=(26−1)2 n=(27−1)2

1.9 28 28 28
1.8 32 32 32
1.6 41 41 41

Table 5.8: Iteration numbers of the pcg method with the Galerkin-based two-grid
preconditioner, applied to τn[f ] with f from Example 6

slower convergence of the pcg method than a multiplicative one, it is significantly
more efficient as a parallel preconditioner. Moreover, it is ideally suited to study
the convergence optimality of the multigrid preconditioner based on semicoarsen-
ing. The two-grid version of the diagonal scaling method is of the form (3.1.25) ,
and the multigrid version is obtained by approximating A−1

C recursively with the
two-grid method. With the notation used in this chapter, the three-grid method
is of the form

P = diag(A)−1 + RH
1 (diag(A2)−1 + RH

2 A−1
3 R2)R1 . (5.5.1)

The first way of computing the coarse-grid matrices Aj follows the strategy applied
in Section 5.1 , i.e. the Galerkin approach. On each grid, the restriction matrix
Rj = BjEj consists of the elementary restriction matrix Ej and of the matrix Bj

corresponding to

bj(x, y) = fj(π − x, y) · fj(x, π − y) · fj(π − x, π − y) . (5.5.2)

Since this choice of the matrices Rj results in coarse grid functions with exactly the
same zero curve as f(x/2, y/2) , f(x/4, y/4) , etc., we expect optimal convergence
of the pcg method, independent of the matrix size.

Table 5.8 illustrates that the two-grid preconditioner indeed leads to optimal
convergence of the pcg method. However, the multigrid version of the Galerkin-
based preconditioner is more a theoretical construction than a practical algorithm,
because the matrices Aj become much denser as j increases. Nevertheless, the
method is the starting point for the development of all other multigrid precondi-
tioners presented in this section.

The rediscretization-based preconditioner uses the same kind of restriction ma-
trices as the Galerkin method. The coarse grid functions, on the other hand, are
approximations for f(x/2, y/2) , f(x/4, y/4) , etc. We use the same heuristic as in
Section 5.2 to keep matrices sparse on coarser levels. The restriction matrices cor-
respond to (5.5.2) , but the coarse grid matrices are computed with rediscretization
on each grid. This is done by choosing the functions fj as in (5.2.3) or (5.2.4) ,
depending on the number of points on which the zero curves should match. The
great advantage of this method is that the sparsity pattern of the matrices is the
same on all grids. Therefore, the number of grids is only limited by the size of the
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zero curve, which becomes larger on coarser grids. This problem is addressed in
the following subsection.

5.5.2 Approximation with auxiliary problems

The second type of preconditioner is constructed by splitting the original problem,
where f has a whole zero curve, into a fixed number k of auxiliary problems, each
of them corresponding to a generating function f1,j with isolated zeros. Then,
the preconditioner P , which shall be described in the following, is the sum of k
auxiliary problems, which are then replaced by coarse grid corrections. In more
detail, P is constructed as follows:

• On the finest level, choose k matrices A1,j corresponding to nonnegative
generating functions f1,j with isolated zeros, which approximate the zero
curve of f in the neighborhood of at least one point. The linear systems
involving A1,j are significantly easier to solve than the system involving A .
The one-grid preconditioner, which is of course not used in practice, is of the
form

P = A−1
1,1 + · · · + A−1

1,k . (5.5.3)

• Instead of explicitly computing A−1
1,j , we approximate it with the two-grid

correction RH
1,jA

−1
1,jR1,j . Doing that, we obtain the two-grid preconditioner

P = c · I + RH
1,1A

−1
1,1R1,1 + · · · + RH

1,kA
−1
1,kR1,k , (5.5.4)

where each auxiliary problem A1,i is projected to the coarser grid with R1,i .
The constant c is chosen to be zero unless the matrix P is singular. In that
case, c must be a small positive constant, such that P is regular, but still a
good approximation for A−1 .

• P can easily be extended to a multilevel preconditioner by restricting the ma-
trices A1,i to A2,i on the next coarser level and by replacing each RH

1,iA
−1
1,i R1,i

in (5.5.4) by
RH

1,i(diag(A1,i)−1 + RH
2,iA

−1
2,i R2,i)R1,i .

This procedure can be carried out on several levels, until the matrix on the
coarsest level can be inverted exactly.

The number of auxiliary problems mainly depends on the size of the zero curve
of f and on the matrix size. For f with a small zero curve and medium or large size
matrices, four auxiliary problems are enough to get fast convergence. However, if
matrix sizes become extremely large, and if zero curves also become larger, 8 or
16 auxiliary problems are necessary.
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Figure 5.8: Zero curve of f(x, y) from Example 6 and level curves of 8 auxiliary
problems

5.5.3 The choice of the generating functions

The crucial task when designing an additive multilevel preconditioner with (5.5.4)
is the choice of the A1,j . There will always be a tradeoff between approximating the
zero curve of f well and picking auxiliary problems which are easy to compute. In
this section, we choose matrices A1,j corresponding to generating functions with
a single isolated zero in ] − π, π[2 , which can be solved with the methods from
Chapters 3 and 4 . We describe three different choices for the matrices A1,j in the
following:

1. A first idea for the choice of the A1,j is the shifted discrete Laplacian, which
is described by

f1,j(x, y) = 2 − cos (x − xj) − cos (y − yj) (i ∈ {1, . . . , k}) (5.5.5)

with the points (xj , yj) on the zero curve of f . Alternatively, one can use an
anisotropic version of (5.5.5) , which is a better approximation to the zero
curve. Figure 5.8(a) shows how 8 anisotropic auxiliary problems approximate
the zero curve of f , each of them being zero in one point and having small
values in its neighborhood.
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The three generating functions with zeros in the top right quarter are

f1,1(x, y) = α(1 − cos (x − x1)) + 1 − cos (y − y1)
f1,2(x, y) = α(1 − cos (x + y − x2 − y2)) + 1 − cos (x − y − x2 + y2)
f1,3(x, y) = 1 − cos (x − x3) + α(1 − cos (y − y3)) .

(5.5.6)

The others are defined analogously, with anisotropy occurring in the direction
of the tangent to the zero curve at the respective point (xj, yj) . Each of
these functions is a good approximation in the neighborhood of its zero,
but this neighborhood is still too small for the construction of an efficient
preconditioner (5.5.4) .

2. A slightly more sophisticated choice for the A1,j is obtained by defining
generating functions f1,j which are zero at one point (xj , yj) of the zero
curve of f and whose partial derivatives in the point (xj, yj) are the same as
the ones of f . Since the resulting matrices should be sparse, the functions
f1,j must be polynomials in sine and cosine. For the example function f from
(5.0.1) , we choose

fj(x, y) = a + b · cos (x) + c · sin (x) + d · cos (y) (5.5.7)

for a point which is located on the x-axis. For points on the y-axis we
interchange x and y in (5.5.7) , and for points with xj = yj we replace x by
x − y and y by x + y . For the point (xj , 0) , the coefficients in (5.5.7) are
computed with the simple conditions

a + b cos (xj) + c sin (xj) + d = 0 ,

obtained from f1,j(xj, 0) = 0 , and

d =
b sin (xj) − c cos (xj)

sin (xj)
,

obtained by comparing d2x
dy2 of both functions. Since the first and the third

derivative do not yield further equations, we can, for example, compute the
third condition by comparing d4x

dy4 and the fourth condition by minimizing
the sum of the absolute values of the four coefficients. The approximation
obtained with these functions f1,j is superior to (5.5.5) , but still not good
enough for practical application.

3. A significantly better approximation is obtained by adding the original func-
tion f to each of the auxiliary functions f1,j . This is useful for both types of
auxiliary functions defined above. The matrices become slightly denser, but
the generating functions still have a single isolated zero, which makes them
easy to solve. The generating functions can be written

h1,j(x, y) = γj1f1,j(x, y) + γj2f(x, y) (j ∈ {1, . . . , k}) (5.5.8)
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Figure 5.9: Zero curves of f , f2 , and f3 for f from Example 6 and level curves of
auxiliary problems h3,j(x, y) , which approximate the curve f3(x, y) = 0

with f1,j(x, y) defined in (5.5.6) or (5.5.7) . Typically, γj1 and γj2 are both
chosen to be 0.5 . A larger value of γj2 results in a better approximation
to the zero curve of f , but in an auxiliary problem which is less efficiently
solved with the methods from Chapters 3 and 4 . The functions h1,j are less
anisotropic than the f1,j , but it is still advantageous to apply semicoarsening
on the first one or two grids of the preconditioner. Figure 5.8(b) shows that
the functions h1,j(x, y) are far better approximations to the zero curve of f ,
although they only have a single isolated zero.

5.5.4 Combining the Galerkin approach with auxiliary problems

As for multigrid solvers, there is a possibility of combining the two preconditioning
strategies described in the previous subsections. The preconditioners from Section
5.5.1 lead to fast convergence due to a very good coarse grid representation of the
zero curve of f , but the number of grids is limited. The preconditioners based
on auxiliary problems, on the other hand, use an arbitrary number of grids, but
require a larger number of auxiliary problems if matrices are very large. Therefore,
we use a similar heuristic as in Section 5.3.3 for the multigrid solver: Start with
the first strategy until zero curves become too large, then approximate the zero
curve on the coarsest level with k auxiliary problems and continue with the second
strategy. Figure 5.9 illustrates this method with the function f from Example
6. It depicts the zero curves of f(x, y) and its counterparts on the next two
coarser levels f2(x, y) = 0 and f3(x, y) = 0 . Since f3(x, y) = 0 is too large for a
further coarsening step, we split it into 8 auxiliary problems h3,j(x, y) . The curves
h3,j(x, y) = 0.001 show how these auxiliary problems behave in the neighborhood
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ρ n=(25−1)2 n=(26−1)2 n=(27−1)2

1.9 30 30 30
1.8 32 33 33
1.6 40 42 42

Table 5.9: Iteration numbers for the pcg method with the rediscretization-based
two-grid preconditioner applied to τn[f ] with f from Example 6

of their zero.
This heuristic is translated to matrices as follows. The first two coarsening

steps, i.e. the ones following the first strategy, are performed with the restriction
matrices corresponding to (5.1.1) , (5.1.2) , and (5.1.3) and with the coarse grid
matrices A2 and A3 from (5.2.3) or (5.2.4) . To simplify notation, let us only use
one coarsening step within each auxiliary problem. A3 is then approximated by k
matrices A3,j corresponding to the k auxiliary functions h3,j from (5.5.8) . Their
equivalents on the next coarser grid are computed by

A4,j = R3,jA3,jR
H
3,j

with R3,j defined as in Chapter 3 . Then, the whole preconditioner P can be
written

P = diag(A)−1 + RH
1 (diag(A2)−1 + RH

2 (c · I +
k∑

j=1

RH
3,jA

−1
4,jR3,j)R2)R1 . (5.5.9)

In a practical algorithm, the matrices A4,j are again recursively approximated by
further levels of restriction and computation of coarse grid matrices.

5.5.5 Numerical results

In the following, we wish to give numerical evidence of the optimal convergence ob-
tained with the conjugate gradient method and a diagonal scaling preconditioner.
We start with the two-grid method which is based on rediscretization. The coarse-
grid function is chosen to be f2 from (5.2.3) , approximating the exact zero curve
in 8 points. For two-level tau matrices corresponding to f from Example 6 , we
obtain very similar iteration numbers as in Table 5.8 , although the zero curve is
only approximated. The results are displayed in Table 5.9 . The real advantage
of this rediscretization approach is that matrices do not become denser on coarser
grids. Hence, we apply a four-grid method which is not only optimal concerning
convergence, but also efficient concerning computational cost. The only restriction
is posed by the increasing size of the zero curves on coarser grids. This time, we
use two-level Toeplitz instead of tau matrices. Table 5.10 summarizes the itera-
tion numbers of the pcg method. The preconditioner based on splitting leads to
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ρ n=(26−1)2 n=(27−1)2 n=(28−1)2

1.99 33 33 33
1.98 36 36 36
1.97 41 41 41

Table 5.10: Iteration numbers for the pcg method with the rediscretization-based
four-grid preconditioner applied to Tn[f ] with f from Example 6

ρ � (points) n=(26−1)2 n=(27−1)2 n=(28−1)2

1.9 4 23 23 23
1.8 8 24 24 24
1.6 8 30 31 31

Table 5.11: Iteration numbers for the pcg method with the splitting-based four-
grid preconditioner applied to Tn[f ] with f from Example 6

fast convergence, too. Depending on the parameter ρ , we choose 2 or 3 auxiliary
problems, approximating the zero curve in 4 or 8 points. Again, the number of
iterations is considerable larger than in Section 5.3 , because here we perform only
very basic smoothing. The results of the four-grid method are displayed in Table
5.11 .
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Chapter 6

Applications

We have chosen two applications, out of many, for the solution of structured linear
systems with multigrid methods. The first application comes from the field of
image restoration. More precisely, we solve the deblurring problem with multigrid
methods, under the assumption that the shift-invariant point spread function is
anisotropic. The second application is the solution of partial differential equations.
We focus on anisotropic PDEs of Poisson type and on indefinite PDEs of Helmholtz
type. The structured matrix classes presented in this thesis arise both from dis-
cretization of constant coefficient PDEs and from the use of preconditioners for
PDEs with variable coefficients.

6.1 Anisotropic image restoration problems

Deblurring problems in image restoration are a typical application for the struc-
tured linear systems presented in this work. The aim is to reconstruct an image
which has been blurred and, in most realistic examples, affected by noise. In this
work, we assume that the blur is spatially invariant, i.e. the blur does not depend
on the position within the image. Moreover, we assume that the blurring operator
is known and given by the point spread function (PSF). This function describes
how a point source of light is blurred into a larger object. Since the blur is spatially
invariant, application of the PSF to each point of the image leads to a structured
linear system of Toeplitz or trigonometric algebra type. For the solution of this
linear system during the deblurring process, multigrid methods are highly efficient.
In this thesis, we are especially interested in deblurring problems where the PSF
is of anisotropic nature.

We start with a description of the linear deblurring problem and a discussion
about which types of boundary conditions should be imposed. Our presentation
is mainly influenced by [83, 37, 39, 38] . Then, we introduce the anisotropic case,
under the slightly idealized assumption that there is no noise. In this case, we
can directly apply the multigrid methods from Chapter 4 for the deconvolution
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process. We introduce test problems where the blur originates from different point
spread functions. In the presence of noise, however, the straightforward deblurring
approach does not work anymore, because the linear systems become ill-posed. In
other words, the problem is so strongly ill-conditioned that already a small amount
of noise is greatly amplified in the restored image. To overcome this problem, we
review regularization strategies suggested in [83, 37, 39, 42] . In this work, we
wish to discuss two of them in more detail, which are effectively combined with
multigrid solvers: the regularization methods of Tikhonov and Riley.

6.1.1 The deblurring problem with boundary conditions

For the introduction of the general deblurring model, we assume that the blur
is spatially invariant and that there is no noise. To simplify notation, we start
with the 1D case, i.e. with signals, and describe the 2D case, i.e. images, as an
extension of the 1D case by tensor arguments. The blurred signal g is obtained as
the convolution g = h ◦ s̃ of the blurring function

h = (. . . , 0, 0, h−m, h−m+1, . . . , h0, . . . , hm−1, hm, 0, 0, . . . )T (6.1.1)

and the original signal

s̃ = (. . . , s−m+1, . . . , s0, s1, . . . , sn, sn+1, . . . , sn+m, . . . )T . (6.1.2)

In other words, the j-th entry gj of the blurred signal is computed with

gj =
∞∑

k=−∞
hj−ksk .

The principal aim is to recover, from the given blurred signal

g = (g1, . . . , gn)T ,

which is measured at n points, the original signal

s = (s1, . . . , sn)T

at the same n points. Since the blurred signal g is not only determined by
s1, . . . , sn , but also by s−m+1, . . . , s−1 and by sn+1, . . . , sn+m , the deblurring prob-
lem is equivalent to the solution of the linear system

0
BBBBBBBB@

hm . . . h0 . . . h−m

hm h0 h−m

. . .
. . .

. . .
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. . .
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(6.1.3)
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Since this linear system is underdetermined, we make certain assumptions on the
values s−m+1, . . . , s−1 and sn+1, . . . , sn+m , i.e. we impose boundary conditions.
These are chosen for the problem at hand, mainly serving two purposes. On the
one hand, adequate boundary conditions are supposed to yield a high precision
of the reconstruction process near the boundaries. On the other hand, we obtain
square matrices for which a fast solution algorithm is available. Depending on
the type of boundary conditions, one obtains matrices of a certain class. In the
following, we present the ones which are most important.

• Zero Dirichlet boundary conditions yield Toeplitz matrices. All values of
s̃ outside 1, . . . , n are chosen to be zero, i.e.

s−m+1 = · · · = s−1 = 0 and sn+1 = · · · = sn+m = 0 .

These boundary conditions have, in some cases, two disadvantages. In
general, Toeplitz matrices are more difficult to solve than matrices from
a trigonometric algebra. Moreover, Dirichlet boundary conditions can in-
troduce discontinuities near the border, depending on the type of signal or
image. These artifacts (often also called ringing effects) spread throughout
the image due to the strong ill-conditioning of the blurring matrix.

• Periodic boundary conditions result in circulant matrices. They are im-
posed by requiring fj = fn+j for all j . Periodic boundary conditions can still
produce discontinuities at the border, but the linear system can be solved in
O(n log n) arithmetic operations.

• Neumann or reflective boundary conditions are obtained by reflecting the
data at the boundary, i.e. by choosing

s1−j = sj and sn+j = sn+1−j for all j .

The resulting matrices belong the the DCT-III class. Since boundary con-
ditions preserve continuity of the image, they are better in avoiding ring-
ing effects. Moreover, they also lead to linear systems which are solved in
O(n log n) operations.

• Anti-reflective boundary conditions are obtained by performing an anti-
reflection at the boundary, i.e. by choosing

s1−j = 2s1 − sj+1 and sn+j = 2sn − sn−j for all j .

The resulting matrix is not exactly a tau matrix, but the solution of the
linear system can be reduced to the solution of a linear system with tau
structure. The use of antireflective boundary conditions for image deblurring
was introduced in [101] and further investigated in [41, 40] . In addition
to preserving continuity of the image, they also preserve continuity of the
normal derivatives.

151



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) isotropic

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) anisotropic

Figure 6.1: PSFs for isotropic and anisotropic blurring

Blurring matrices in the 2D case are obtained from the 1D matrices by tensor
arguments. The same types of boundary conditions are applied as in the 1D case
in order to treat the values of s outside the image boundaries. The result is a
two-level, Toeplitz, circulant, or DCT-III matrix, or, in the case of anti-reflective
boundary conditions, a linear system which can be reduced to a two-level tau
system.

6.1.2 Multigrid for noise-free anisotropic deblurring

In this section, we assume that the blurred image is not affected by any noise, i.e.
the quantity η in (1.1.1) is the zero vector. Hence, deblurring of an image, whose
spatially invariant blurring function is known, reduces to solving a linear system
of the form

Anx = b , (6.1.4)

where An is a two-level Toeplitz or trigonometric algebra type matrix. In many
examples, the blur is modeled with a Gaussian-like PSF, which usually has a rather
small support. It takes a large value at the center and decreases rapidly to zero
when moving away from the middle. In [37, 39] , the author suggests to approxi-
mate the Gaussian filter with compact support by a trigonometric polynomial with
a similar behavior. The PSF is obtained by taking the coefficients of a polynomial
of the form

f(x, y) = (2 + cos (x) + cos (x))3 · φ(x, y)/c . (6.1.5)

In this function, φ(x, y) is a strictly positive function and c a normalization con-
stant, which guarantees that the sum of the Fourier coefficients of f(x, y) is 1 .
The function f has a zero of order 6 at (π, π) and is strictly positive elsewhere in
[0, 2π[2 .
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In Figure 6.1(a) , the PSF corresponding to f(x, y) from (6.1.5) is depicted with
φ(x, y) = 1 .

In [37, 38] , systems of the form (6.1.4) are solved with multigrid methods. As
described in Chapter 3 , a zero of f at (x0, y0) leads to a zero of f2 at

(2x0 mod 2π, 2y0 mod 2π) .

This implies that on all grids except for the finest, the generating function has a
zero at the origin. Hence, the same restriction matrix is used on each level, except
for the finest. Since the multigrid methods converge optimally for functions such
as f from (6.1.5) , the total cost of the solution is O(n log n) operations in the case
of a dense blurring function and O(n) in the banded case. Therefore, multigrid
methods are faster than the best direct methods if the PSF has small support.

In this work, we are interested in anisotropic blurring operators. This means
blurring occurs mainly in one direction, which can be one of the axes or any other
direction. We assume that the direction of anisotropy is the same across the whole
picture. The following two point spread functions are used to illustrate this kind
of blur.

Example 8 We wish to examine the blur obtained from the PSF which corre-
sponds to the generating functions

f(x, y) = [(1 + cos (x)) + α · (1 + cos (y))]2 · φ(x, y)/c . (6.1.6)

g(x, y) = [(1 + cos (x + y))2 + α · (1 + cos (x − y))2] · φ(x, y)/c . (6.1.7)

In both cases, φ(x, y) denotes a strictly positive trigonometric polynomial, whereas
c is a normalization constant and 0 ≤ α � 1 . When f is used, anisotropy occurs
along the y-axis, i.e. the blurring happens mainly in x-direction. In the case of
g , anisotropy and blurring occur in an angle of 45◦ with respect to the coordinate
axes. In the limit case α = 0 , blurring occurs only in one direction. Figure 6.1(b)
shows the anisotropic PSF corresponding to f(x, y) from (6.1.6) with φ(x, y) = 1
and α = 0.005 .

In Chapter 4 , we have developed and analyzed multigrid methods for anisotropic
linear systems of both kinds. Systems with anisotropies along coordinate axes are
more straightforward to solve, but the methods from Sections 4.4 and 4.5 allow an
efficient treatment of anisotropies in other directions, especially in the two-level
circulant case, i.e. in the case of periodic boundary conditions.

6.1.3 Test problems and numerical results

In this section, we carry out numerical tests to demonstrate the efficiency of multi-
grid methods for the deblurring process with anisotropic point spread functions.
In order to focus on the efficiency of multigrid methods as solvers, we still assume
that there is no noise. The first example picture for our tests is the well-know
satellite image, which has been used in many articles such as [37, 39] .
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(a) Original image (b) Blurred image

(c) Restored image

Figure 6.2: Application of the anisotropic PSF corresponding to f from Example
8 to the satellite image (size 200 × 200)
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Figure 6.2(a) shows the original picture which is of size 200 × 200 . Since it is
mostly black near the boundaries, all types of boundary conditions are more or less
equivalent. Therefore, we can safely assume that periodic boundary conditions lead
to a very low amount of ringing effects. In Figure 6.2(b) , the picture has been
blurred with the anisotropic PSF f(x, y) from Example 8 . The parameter α ,
which indicates the degree of anisotropy is set to 0.001 , i.e. the PSF is strongly
anisotropic. The positive function φ is chosen

φ(x, y) = [(2 + cos (x)) + α · (1 + cos (x))]2 ,

which also contributes to the strong anisotropy. This PSF implies that we con-
struct a multigrid method which uses, in each V-cycle, 5 semicoarsening steps,
followed by full coarsening. Since the zero f has order 4 and is located at (π, π) ,
semicoarsening on the top level is done with

b(x, y) = (1 − cos (x))2 , (6.1.8)

whereas on all other grids where semicoarsening is applied, we choose

bj(x, y) = (1 + cos (x))2 . (6.1.9)

For the first full coarsening step on the 6-th finest grid, one must keep in mind
that the y-coordinate of the zero of f6 is still π . This implies that a function such
as

b6(x, y) = (1 + cos (x))2 · (1 − cos (y))2 . (6.1.10)

must be applied. If one step of the symmetric Gauss-Seidel is used as a pres-
moother and as a postsmoother on each level, the multigrid method converges
after 10 V-cycle iterations with a residual less than 1 · 10−6 . The result is shown
in Figure 6.2(c) . If the damped Jacobi method is used for smoothing, the number
of iterations is slightly higher, but the multigrid method nevertheless converges
optimally.

If reflective boundary conditions are used instead of periodic boundary condi-
tions, the results are very similar. The PSF used in the example above produces
the same picture as in Figure 6.2(b) , and the same multigrid method as above
is defined for the DCT-III algebra. Again, rapid convergence is obtained in this
noise-free case.

The second example PSF, g(x, y) from Example 8 , is anisotropic along the line
y = x and has zeros at (0, π) and (π, 0) . Hence, blurring is done in an angle of
45◦ with respect to the coordinate axes. The positive function φ , which makes the
blurring stronger, is chosen

φ(x, y) = [(2 + cos (x + y)) + α · (1 + cos (x − y))]2 ,

and α is 0.01 .
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(a) Blurred image (b) Restored image

Figure 6.3: Application of the anisotropic PSF corresponding to g from Example
8 to the satellite image (size 200 × 200)

Figure 6.3(a) shows the result of this kind of blurring applied to the same satellite
image as above. The multigrid method we apply for the restoration of the original
image is of the same form as the methods in Section 4.4 . First, we define new
coordinates as suggested in (4.4.17) and then, we apply, in each V-cycle iteration,
three semicoarsening steps followed by full coarsening steps. The only zero of g
in the new coordinates is located at (π, π) . The generating functions b(s, t) and
bj(s, t) are of the same form as the functions in (6.1.8) and (6.1.9) , with x and y
being replaced by s and t . The result of the multigrid method, i.e. the restored
picture, is shown in Figure 6.3(b) . Again, the multigrid method converges after a
low number of V-cycle iterations. If the symmetric Gauss-Seidel smoother is used,
the number is 13 . If the damped Jacobi method is applied, a few more iterations
are necessary.

6.1.4 Regularization strategies in the presence of noise

So far, all computations were done under the assumption that the blurred images
are not contaminated by noise. However, in most realistic examples, blurred images
contain at least a small amount of noise. In [37, 39] , the author describes that
already 2% of noise cause the multigrid method to break down completely. The
small eigenvalues of An amplify the noise and corrupt the image already after
one V-cycle. In other words, the multigrid methods from Chapter 4 do not have
regularization properties. In [83, 60] , it is illustrated that even direct solvers such
as the FFT do not yield satisfactory results when applied to a blurred image with
noise. Since these methods fail for the same reason as our multigrid methods,
other regularization strategies have to be employed. The main goal is to make the
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unstable problem as stable as possible. On the other hand, we should not sacrifice
too much of the accuracy of the computed solution.

In the following, we give a brief overview of some of the most popular regular-
ization methods.

• The Tikhonov regularization (see [110]) is one of the most classical regu-
larization techniques. The task of solving the ill-conditioned linear system
(6.1.4) is replaced by the problem of minimizing

‖Anx − b‖2
2 + μ‖x‖2

2 (6.1.11)

over x ∈ R
n with a fixed parameter μ ≥ 0 . The minimum is obtained via

normal equations, i.e. by solving the linear system

(AT
nAn + μI)x = Anb , (6.1.12)

where b on the right-hand side represents the blurred and noisy image. The
parameter μ must be chosen such that the problem is regularized, but not
too much of the original information is lost. In 6.1.12 , the matrix I can be
replaced by a low order differential operator TTT , as suggested in [42] . The
Tikhonov regularization has the disadvantage that the condition number of
the system matrix is doubled when we change from An to AT

nAn . Moreover,
in the Toeplitz case, AT

nAn is not exactly a BTTB matrix.

• If An is symmetric and positive definite, Riley proposed a different regu-
larization technique in [89] . Instead of resorting to normal equations, he
chooses a parameter ν ≥ 0 and solves the linear system

(An + νI)x = b . (6.1.13)

This is equivalent to minimizing

‖A1/2
n x − A

−1/2
n b‖2

2 + ν‖x‖2
2 (6.1.14)

over all x ∈ R
n . This method circumvents the two problems of the Tikhonov

regularization, but the matrix A
−1/2
n slightly amplifies the noise.

• Iterative methods such as the classical Landweber method [75] or its projected
version are often used for regularization purposes. They are simple gradient
descent algorithms which are often applied to normal equations. For positive
definite linear systems, the cg method can be used instead and is usually
more efficient. In [42] , the authors propose a combination of geometric and
algebraic multigrid as a regularizer.
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(a) Blurred image with 2% noise (b) Restored image

Figure 6.4: Deblurring with the anisotropic PSF corresponding to f(x, y) from
Example 8 in the presence of noise

6.1.5 Numerical tests with Tikhonov and Riley regularization

For the solution of the anisotropic deblurring problem, we concentrate on the
classical regularization strategies of Riley and Tikhonov. The resulting linear
systems are solved with the multigrid methods for anisotropic linear systems from
Chapter 4 . Let us start with the case of periodic boundary conditions, i.e. two-
level circulant matrices. For our first example, we choose the PSF corresponding
to f(x, y) from (6.1.6) . As was done in [37, 39] , we add 2% of noise to the blurred
image. The resulting picture is displayed in Figure 6.4(a) .

As described in Section 6.1.4 , deblurring without regularization amplifies the noise
and returns a picture which is absolutely useless. Therefore, we apply Riley’s
regularization method and solve the linear system (6.1.13) . The optimal parameter
ν in this linear system is 0.08 . The multigrid method from Section 6.1.3 applied to
the regularized system (6.1.13) converges after 6 iterations. The resulting picture
is shown in Figure 6.4(b) . The Tikhonov regularization leads to a restored picture
which cannot be distinguished from the one in Figure 6.4(b) . As reported in
[37, 39] , the number of multigrid iterations, which is 25 , is significantly higher
compared to the Riley method, and the optimal regularization parameter is μ =
0.01 .

In the second example, the blurred image is affected by a larger amount of
noise. We choose the PSF corresponding to g(x, y) from (6.1.7) . In this case, the
blurred image is affected by 10% of noise. The resulting picture is displayed in
Figure 6.5(a) .
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(a) Blurred image with 10% noise

(b) Restored image with Riley regularization (c) Restored image with Tikhonov regularization

Figure 6.5: Deblurring with the anisotropic PSF corresponding to g(x, y) from
Example 8 in the presence of noise
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We perform regularization with both the Riley and the Tikhonov method, using
the same parameters as above. Then, we solve the resulting linear systems with
the same multigrid method as in Section 6.1.3 . For the system obtained with
the Riley method, the multigrid method converges after 8 iterations, whereas for
the system obtained with the Tikhonov method, 38 iterations are needed. The
resulting pictures are shown in Figures 6.5(b) and 6.5(b) . The computational
effort of the Tikhonov regularization is significantly higher, but the extra work
pays off in this example with a larger amount of noise. The restoration with
Tikhonov’s method leads to a restored image which is less contaminated with
noise.

6.2 Partial differential equations

The second type of applications presented in this thesis is the numerical solution
of partial differential equations. Discretization of a PDE with finite differences or
finite elements leads to a linear system which is sparse and, in most cases, banded.
This section is divided into two parts. In the first subsection, the focus is on
anisotropic PDEs of Poisson type. Hence, the multigrid methods from Chapter 4
are applied. The main topic of the second part is the application of the methods
from Chapter 5 to the Helmholtz equation.

6.2.1 Multigrid methods for anisotropic PDEs

The idea of using multigrid methods for the solution of anisotropic PDEs is not
new. In this work, however, we look at these problems from a slightly different
perspective. The importance of structured linear systems corresponding to gen-
erating functions for the solution of isotropic elliptic PDEs has been described,
for example, in the book of Ng [83] and in the articles [98, 103] . Here, we focus
entirely on anisotropic PDEs, putting special emphasis on the solution of the re-
sulting linear systems with multigrid methods. Central to our approach are those
classes of structured matrices for which we have developed multigrid methods in
Chapter 4 .

We discuss elliptic problems of the form

−(a1(x, y)ux)x − (a2(x, y)uy)y = h(x, y) , (6.2.1)

defined on the unit square (Ω = [0, 1]2) with nonnegative functions a1(x, y) and
a2(x, y) . Linear systems of Toeplitz or trigonometric algebra type mainly appear
in two situations:

• When a1(x, y) and a2(x, y) are constant functions, i.e. when the PDE has
constant coefficients, finite-difference discretization, for example with a five-
point stencil, leads to a Toeplitz, circulant, or DCT-III matrix, depending
on the type of boundary condition.
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• In the case of variable coefficients a1(x, y) and a2(x, y) , circulant or tau
preconditioners are applied to reduce the condition number of the linear
system.

In the remainder of this subsection, we discuss these two cases and apply multigrid
methods for the structured linear systems involved.

Anisotropic PDEs with constant coefficients

An elliptic PDE of the form (6.2.1) with constant coefficients a1 = a1(x, y) and
a2 = a2(x, y) is said to be anisotropic if either 0 < a1 � a2 or 0 < a2 � a1 .
First, we assume that, on the whole boundary Ω̄ , homogeneous Dirichlet boundary
conditions are imposed. In this case, discretization of equation (6.2.1) with a five-
point stencil or a nine-point stencil on a uniform grid results in a linear system
Anx = g , which belongs to both the two-level Toeplitz and the two-level tau class.
In the case of periodic boundary conditions, the resulting matrix An is circulant,
and in the case of Neumann boundary conditions, An is of DCT-III type. Mixed
types of structured matrices appear when different types of boundary conditions
are imposed on different parts of the boundary. The corresponding generating
function to (6.2.1) with constant coefficients is

f(x, y) = a1(1 − cos (x)) + a2(1 − cos (y)) . (6.2.2)

For the solution of the linear system with multigrid methods, we use the same
heuristic as in Section 4.2 . We apply semicoarsening until the system is not
anisotropic anymore and then switch to full coarsening. Theorem 12 states that
the choice

b(x, y) = 1 + cos (x) or b(x, y) = 1 + cos (y) (6.2.3)

(depending on the direction of anisotropy) is sufficiently accurate for the construc-
tion of the restriction matrices on all grids. For different values of a1 and a2 , our
heuristic suggests different numbers of semicoarsening steps. Table 6.1 contains
the optimal number of semicoarsening steps and the iteration numbers of the V-
cycle for different values of a1 and a2 . Since the boundary conditions are assumed
to be of Dirichlet type, the resulting matrices have both Toeplitz and tau struc-
ture. We use one iteration of the Gauss-Seidel method as pre- and postsmoother.
Discretization of the equation

−(a1(x, y)uxx)xx − (a2(x, y)uyy)yy = h(x, y) , (6.2.4)

with constant coefficients a1 = a1(x, y) and a2 = a2(x, y) results in a function of
the form

f(x, y) = a1(1 − cos (x))2 + a2(1 − cos (y))2 . (6.2.5)

The function b(x, y) is chosen to be the square of the function in (6.2.3) . Table
6.2 contains the iteration numbers of the six-grid method for different choices of
a1 and a2 and for matrices Rn[f ] of the DCT-III algebra .
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� semi n=(26−1)2 n=(27−1)2 n=(28−1)2

a1 = 0.1, a2 = 1 2 10 10 10
a1 = 0.01, a2 = 1 3 8 8 8
a1 = 0.001, a2 = 1 5 7 7 7

Table 6.1: Iteration numbers of the six-grid method for τn[f ] with f(x, y) from
(6.2.2) and different a1 and a2

� semi n=(26−1)2 n=(27−1)2 n=(28−1)2

a1 = 0.1, a2 = 1 2 9 9 9
a1 = 0.01, a2 = 1 3 10 10 10
a1 = 0.001, a2 = 1 5 10 10 10

Table 6.2: Iteration numbers of the six-grid method for Rn[f ] with f(x, y) from
(6.2.5) and different a1 and a2

Preconditioners from trigonometric matrix algebras

In the following, we assume that the coefficients a1(x, y) and a2(x, y) in (6.2.1) and
(6.2.4) are nonnegative, but variable in x and y . Then, the resulting matrices An

have the same sparsity pattern as above, but they do not belong to a structured
matrix class that corresponds to generating functions. In the point (x0, y0) , the
PDE is anisotropic if a2(x0, y0) is significantly smaller or larger than a1(x0, y0) .

Circulant preconditioner have been employed for isotropic PDEs of the form
(6.2.1) or (6.2.4), see e.g. [83, 22, 103] . Two different ways to construct a circulant
preconditioner are proposed in [22] . Both are based on computing the arithmetic
means ā1 and ā2 of all values of a1(x, y) and a2(x, y) at the grid points. The first
preconditioner C1 is a one-level circulant matrix of size n with entries

c
(1)
1 = 2(ā1 + ā2) + ρn−1 , c

(1)
2 = −ā1 , c

(1)
n2+1 = −ā2 ,

whereas the second preconditioner is a two-level circulant matrix of the form

C2 = Ca2 ⊗ I + I ⊗ Ca1

with entries

c
(a1)
1 = 2ā1 + ρn−1 , c

(a1)
2 = −ā1 , c

(a2)
1 = 2ā2 + ρn−1 , c

(a2)
2 = −ā2 , .

The terms ρn−1 are added to the main diagonal of the preconditioners in order
to minimize the condition number of the resulting preconditioned system. They
correspond to the Strang correction for circulant matrices, which was introduced
in Section 4.2.5 . In [22] , it is proved that C1 reduces the condition of An from
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� semi n=(26−1)2 n=(27−1)2 n=(28−1)2

a1 = 0.1, a2 = 1 2 7 7 7
a1 = 0.01, a2 = 1 3 6 6 6
a1 = 0.001, a2 = 1 5 6 6 6

Table 6.3: Iteration numbers of the six-grid method for Cn[f ] with f(x, y) from
(6.2.5) and different ā1 and ā2

O(n) to O(
√

n log(n)) and C2 to O(
√

n) . Here, we focus on C2 , and particularly
on the case where C2 is anisotropic, i.e. where ā1 � ā2 or ā2 � ā1 . The matrix
C2 is equal to the Strang correction of Cn[f ] corresponding to the function f(x, y)
from (6.2.2) . Discretization of higher order PDEs may result in functions such as
f from (6.2.5) or in functions with zeros of higher order. These circulant linear
systems can be solved with the methods from Chapter 4 . Table 6.3 contains the
number of V-cycle iteration for f from (6.2.5) . Six grids are used, and the number
of semicoarsening steps depends on the values of ā1 and ā2 .

In [69] , Huckle suggested a skew-circulant preconditioner, which leads to sim-
ilar results. The advantage of this approach is that the preconditioner works
without the extra term ρn−1 . For anisotropic problems, this preconditioner can
be applied as well, showing a similar convergence behavior as the circulant one.

Not only circulant and skew-circulant matrices are used as preconditioners for
linear systems obtained from discretizing elliptic PDEs. Especially when Dirichlet
boundary conditions are imposed on the PDE, the tau class is a more natural
choice for the preconditioner. Different tau preconditioners have been suggested
in the literature, see e.g. [30, 83] . For numerical results on two-level tau systems,
which can be used as preconditioners similar to the circulant examples, we refer
to Table 6.1 .

6.2.2 Multigrid methods for the Helmholtz equation

Several articles have been published concerning the solution of the Helmholtz equa-
tion with multigrid methods, see for example [16, 47, 50, 49] . In this article, we
wish to present a different approach to the multigrid solution of the Helmholtz
equation with constant coefficients. It is primarily based on certain classes of
structured matrices and their strong correspondence to generating functions.

The discretized Helmholtz equation

The 2D Helmholtz equation is a boundary value problem given by

−Δu − k2u = g on Ω ⊂ R
2 ,

Bu = h on Γ ⊂ δΩ ,
(6.2.6)
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h k = 50 k = 100 k = 200 k = 400
0.01 1.875 1.500 0 −
0.001 1.999 1.995 1.980 1.920
0.0001 2.000 2.000 1.999 1.999

Table 6.4: Values of ρ , depending on k and h

where k is a constant wavenumber and B an operator on the boundary Γ . Dis-
cretization of the Helmholtz equation is done, for example, with a five-point finite
difference scheme. Depending on the boundary condition, this results in a sparse
and structured matrix A of a certain class. For example, if Dirichlet boundary
conditions are imposed on Γ , the matrix belongs to both the two-level Toeplitz
and the two-level tau class. For periodic boundary conditions, we obtain a two-
level circulant matrix, and for certain Neumann boundary conditions, a two-level
DCT-III matrix. Since all these matrix classes are strongly related to generating
functions, we wish to apply the theory of generating functions to the solution of
the discretized Helmholtz equation.

Since the matrix A is indefinite, we solve the corresponding linear system via
normal equations. The generating function f , which corresponds to the matrix
An[f ] = AT A , is of the form (5.0.1) , where ρ takes the value 2 − k2h2

2 , with k
denoting the wavenumber and h the size of a discretization step (see [50, 49]) . If
|ρ| = 2 , f(x, y) has a single isolated zero of order 4 , whereas for |ρ| < 2 , f is zero
along a whole curve. This zero curve becomes larger as ρ decreases. Depending on
the boundary condition, An[f ] is the two-level tau, circulant, or DCT-III matrix
corresponding to f(x, y) .

For these types of boundary conditions and under the assumption of constant
coefficients, the methods from Chapter 5 can be applied for the multigrid solu-
tion of the discretized systems. In our notation, the parameter ρ measures how
indefinite and how difficult-to-solve the linear system is. Usually, the degree of
indefiniteness is determined with k in (6.2.6) . In many articles (see e.g. [47, 50]) ,
the condition

k · h ≤ π/5 (6.2.7)

is proposed for determining the grid size, i.e. the size of the resulting matrix. If
k · h = π/5 , ρ takes the value 1.80 . This allows between one and two coarsening
steps with the method from Section 5.2 . Then, the zero curve is too large for
a further step, and we have to switch to a splitting technique on coarser grids.
If we require that k · h be smaller, then we end up with a larger ρ , which allows
more coarsening steps with one coarse grid correction, but the matrix size increases
quadratically. For example, halving the value of k · h implies that the size of the
resulting linear system is multiplied by four. Table 6.4 displays the values of ρ
obtained for different k and h . For a moderate size of k , such as k = 30 ,
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ρ k = 10 k = 20 k = 40
1.99 14 14 14
1.98 15 15 15
1.97 18 18 18

Table 6.5: Iteration numbers of the four-grid method for Rn[f ] with f(x, y) from
(5.0.1) and different values of k

ρ k = 40 k = 80 k = 120
1.8 10 10 10

Table 6.6: Iteration numbers of the four-grid method for Cn[f ] with f(x, y) from
(5.0.1) and different values of k

condition (6.2.7) is satisfied if n > 2300 . If k = 100 , n must be > 25000 , and for
a large k such as 400 , we obtain n > 400000 .

In the following, we demonstrate numerically that the multigrid methods from
Chapter 5 converge optimally if the approximations for the zero curve are accurate
enough. In the notation of the Helmholtz equation this means that for a fixed ρ ,
the number of iterations does not grow when the wavenumber k increases. The
first example deals with moderate values of k . Assuming that ρ is chosen between
1.97 and 1.99 , we solve the Helmholtz equation for k between 10 and 50 . A larger
value of k implies that the size of the linear system grows quadratically if ρ is
fixed. Recall from Chapter 5 that a value of ρ between 1.97 and 1.99 allows the
use of three coarsening steps with a single coarse grid correction. Only if we wish
to use more than four grids, we have to apply splitting. Table 6.5 displays the
number of iterations of the four-grid method applied to a DCT-III matrix. If we
wish to obtain a larger value of ρ , we have to choose a smaller grid size, i.e. we
have to use a larger linear system. On the other hand, the number of iterations is
smaller, and we could even use more than four grids if ρ = 1.99 . For larger k , we
assume that the matrix size is chosen such that condition (6.2.7) is just satisfied.
We solve the Helmholtz equation for values of k between 40 and 120 . With ρ = 1.8
we can use only one coarsening step before we have to apply splitting. Table 6.6
contains the number of iterations which are obtained for a multigrid method with
one coarsening step followed by splitting and two more coarsening steps for each
subproblem. Here, we assume that periodic boundary conditions are imposed.
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ρ k = 10 k = 20 k = 40
1.99 12 12 12
1.98 14 14 14
1.97 15 15 15

Table 6.7: Iteration numbers of the four-grid method for Cn[f ] with f(x, y) from
(5.4.1) and different values of ρ and k

An anisotropic version of the Helmholtz equation

Finally, let us consider an anisotropic version of the Helmholtz equation. This
PDE is obtained by replacing the first line of (6.2.6) by

−a1(x, y) · uxx − a2(x, y) · uyy − k2u = g on Ω ⊂ R
2 .

Here, we assume that the coefficients are constant and strictly positive in Ω , i.e.
a1 = a1(x, y) > 0 and a2 = a2(x, y) > 0 . Moreover, we require that either
a1 � a2 or a2 � a2 . Discretization with a five-point stencil leads to a structured
matrix An[f ] corresponding to a function f(x, y) which is of the form (5.4.1) .
The constant coefficient case occurs, for example, when the discretized Helmholtz
equation with variable coefficients is preconditioned, for example with a two-level
circulant matrix. For the solution of the linear system with An[f ] , we use the
multigrid methods from Section 5.4 . Depending on the value of ρ , we start with
some semicoarsening steps followed either by full coarsening with one coarse grid
correction or by splitting into several problems on coarser grids. Again, we wish to
demonstrate that the optimal convergence behavior of our multigrid method allows
us to solve larger systems, i.e. problems with a larger wavenumber k , in the same
number of iterations. We start with k of moderate size, i.e. between 10 and 50 ,
and we assume that the anisotropy is significant, i.e. that α = 0.01 . If we use quite
a large value of ρ , we can apply three steps of semicoarsening and then, possibly,
splitting, followed by further coarsening. In our numerical tests, we apply a four-
grid method with three semicoarsening steps to the BCCB systems corresponding
to f from (5.4.1) . Table 6.7 contains the iteration numbers for different choices of
ρ and different wavenumbers k . For larger values of k , we require that condition
(6.2.7) is just satisfied, i.e. that ρ ≈ 1.8 . This is necessary, because otherwise the
resulting linear systems are too large for practical computations. This implies that
we can apply one semicoarsening step before we have to split into several coarse
grid problems. For our numerical tests, we use a four-grid method, with one step
of semicoarsening followed by splitting and two more coarsening steps within each
subproblem. Again, we assume that α = 0.01 . Table 6.8 summarizes the iteration
numbers for this method, applied to Toeplitz matrices corresponding to f from
(5.4.1) with different values of k .
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ρ k = 40 k = 80 k = 120
1.8 12 12 12

Table 6.8: Iteration numbers of the four-grid method for Tn[f ] with f(x, y) from
(5.0.1) and different values of k
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Chapter 7

Conclusions and future work

At the end of this thesis, we would like to summarize the most important results
and point to some possible directions for future research. The whole work was
devoted to the development of multigrid methods for structured linear systems
of equations. The main contributions to current research presented in this dis-
sertation can be divided into three categories: anisotropic systems (Chapter 4),
generating functions with zero curves (Chapter 5), and applications (Chapter 6).
Moreover, a multigrid method for the DST-III algebra and some minor theoretical
results and heuristics on block Toeplitz matrices and on generating functions with
multiple zeros have been obtained in Chapter 3 .

Anisotropic systems

With the help of generating functions, we have divided anisotropic structured
linear systems into two classes, depending on the direction of anisotropy. The
following results were obtained:

• For systems with anisotropy along coordinate axes, we have presented a
multigrid method based on a suitable combination of semicoarsening and
full coarsening steps. For both Toeplitz matrices and matrices belonging to
a trigonometric algebra, we have given two-grid convergence proofs. More-
over, we have shown level-independency, which implies convergence of the
multigrid method with W-cycles.

• An alternative approach is the combination of full coarsenining with line
smoothers. Using generating functions, we have proved that the block Ja-
cobi smoother satisfies conditions (3.1.16) and (3.1.17) in the trigonometric
algebra case.

• The rigorous treatment of systems with anisotropy along coordinate axes
with the help of generating functions allows us to carry over large parts of the
results, for Toeplitz and circulant matrices, to the case of anisotropy in other
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directions. After having presented the principal heuristic of transforming the
coordinate system, we have given a two-grid convergence proof for BTTB
systems. For line smoothers, we have shown that the smoothing conditions
still hold in the circulant case.

The following aspects seem to be interesting for further investigations in the future:

• For linear systems with anisotropy along coordinate axes, the multigrid
method with V-cycles converges optimally in all numerical experiments.
Therefore, a multigrid (V-cycle) convergence proof for trigonometric matrix
algebras should be possible by extending the results from [3, 2] .

• In the circulant case, a multigrid extension of the convergence proofs (both
W-cycle and V-cycle) might be given for the case of anisotropy in other
directions. At least, this should be possible when anisotropy occurs in an
angle of 45◦ .

Generating functions with zero curves

The development of multigrid methods for linear systems corresponding to gener-
ating functions with zero curves has lead to the following results:

• We have presented a Galerkin-based multigrid method and proved optimal
convergence of the two-grid method for all trigonometric matrix algebras.

• By approximating the zero curves on coarser grids, we have modified this
Galerkin method such that it still converges extremely fast, but also retains
the sparsity of the matrices on coarser grids.

• For the case where zero curves become too large on coarser grids, we have
introduced a multigrid method based on splitting. Furthermore, we have
combined this method with the Galerkin approach.

• We have combined the results of Chapters 4 and 5 in order to solve anisotropic
linear systems with zero curves. Again, we have proved two-grid convergence
for the Galerkin method and presented two heuristics for the design of effi-
cient multigrid methods with sparse matrices on coarser grids.

• Eventually, we have constructed multigrid preconditioners with slightly dif-
ferent techniques as were used for the development of the solvers.

There is still plenty of room for extending these results. Here are some suggestions:

• The Galerkin-based method applied to Toeplitz systems converges optimally
in all experiments. Therefore, an extension of the two-grid proof from
trigonometric matrix algebras to Toeplitz matrices seems to be possible.
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• An analysis of the multigrid methods from Sections 5.2 and 5.3 with the Local
Fourier Analysis (see [115, 112]) seems worthwhile. This could be helpful for
the decision how accurate an approximation of the zero curve must be.

Applications

In this thesis, we have presented results for two applications. These are image
deblurring problems and the solution of partial differential equations:

• We have applied our multigrid methods to anisotropic image deblurring prob-
lems with shift-invariant point spread function. Noise-free pictures are de-
blurred with a multigrid method consisting of semicoarsening and full coars-
ening steps. This technique also works well if anisotropy occurs along lines
that are not in parallel with one of the coordinate axes. In the presence of
noise, we employ Tikhonov or Riley regularization and solve the resulting
linear systems with the multigrid methods from Chapter 4 .

• Anisotropic structured linear systems appear when anisotropic, elliptic PDEs
with constant coefficients are solved or when trigonometric matrix algebra
preconditioners are applied to variable coefficient problems. In both cases,
the multigrid methods from Chapter 4 are highly efficient. Moreover, we
have discussed multigrid solution techniques for the Helmholtz equation with
constant coefficients and also for an anisotropic version of the Helmholtz
equation.

We suggest the following extensions of our results for future research:

• In addition to Tikhonov and Riley regularization, Donatelli and Serra [42]
suggest that multigrid methods be used as regularizers. We expect that this
approach can be applied to anisotropic deblurring problems with the same
efficiency.

• The treatment of other boundary value problems will be subject of future
research. A straightforward extension should be possible for other Toeplitz
plus Hankel matrices such as the DST-III matrices. A more difficult task is
an adaptation of our methods to complex boundary conditions such as the
Sommerfeld radiation boundary conditions [49] . Furthermore, an extension
of our methods for the solution of the Helmholtz equation with variable
coefficients seems a challenging task for the future.
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