
Lehrstuhl für Netzwerkarchitekturen
Fakultät für Informatik

Technische Universität München

Handling the complexity of BGP
via characterization, testing and

configuration management

Olaf Maennel

Vollständiger Abdruck der von der Fakultät für Informatik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Bernd Brügge, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Anja Feldmann, Ph.D.

2. Univ.-Prof. Timothy G. Griffin, Ph.D.,

Univ. of Cambridge / UK

Die Dissertation wurde am 29. 6. 2005 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik

am 11. 10. 2005 angenommen.

Kurzfassung

In der heutigen Zeit hat das Internet eine überwältigende kommerzielle und soziale Bedeu-
tung eingenommen; dennoch mangelt es an einem Verständnis der grundlegenden Routing-
protokolle, wie des Border-Gateway-Protokolls (BGP). Komplexitäten entstehen zum einen
dadurch, dass man das Problem “globale Erreichbarkeit” an vielen räumlich weit verteil-
ten Komponenten lösen muss, zum anderen haben sie den Ursprung in der Tatsache, dass
die Verkehrslenkungsstrategien (routing policies) eines autonomen Systems (AS) ständigen
Veränderungen unterworfen sind, aus Gründen wie Verkehrskapazitätsplanung (traffic engi-
neering) oder um kundenspezifische Wünsche zu erfüllen – ein fehleranfälliges Vorgehen.

In dieser Arbeit behandeln wir diese Probleme in mehrfacher Hinsicht:

Um das Problem der Netzwerkkonfigurationen zu lösen, haben wir ein System entwickelt,
mit dem man die AS-weiten Verkehrslenkungsstrategien eines ASes umsetzen kann – im
Gegensatz zum herkömmlichen Verfahren, wo die Strategien auf Komponentenbene umge-
setzt wird. Damit wird eine Abstraktionsebene geschaffen, die auch viele Vorteile im oper-
ationalen Betrieb aufweist. Dies zeigt sich an unseren Erfahrung, die wir beim Einsatz des
Systems im Netz der Deutschen Telekom gewonnen haben.

Da allerdings die Ausdrucksmöglichkeiten den Verkehr zu lenken sehr vielfältig sind, führt
dies zu komplexen Interaktionen und Dynamiken, die sich auf das gesamte Internet auswirken.
Um diese Dynamiken zu verstehen, stellen wir Methoden vor, die Administratoren helfen
können, problematische Routingzustände zu identifizieren und zu lokalisieren.

Während die meisten der heutigen Verkehrslenkungsprobleme aus solchen Interaktion entste-
hen, so gibt es andere, die direkt von der Router-Software/Hardware ausgelöst werden –
solche Problem hätte man in einem geeigneten Test-Labor beheben sollen, bevor das Gerät in
das Produktionsnetzwerk aufgenommen wurde. Wir beschreiben einen BGP-Lastgenerator,
welcher in einer Vielzahl von Gerätetests eingesetzt werden kann. Wir illustrieren seine
Fähigkeiten exemplarisch daran, dass wir erklären, wie man komplexe Tests aufsetzt, ohne
dass sich der Anwender in Details verliert.

ii

Abstract

Even today, given the widespread usage and critical importance of the Internet, its basic
routing protocols such as the Border Gateway Protocol (BGP) are poorly understood. This
is in part an artifact of the complex interactions that arise from a distributed system that is
administered locally to achieve a global task: reachability. In another part it has its origin
in the fact that inter-domain routing policies of autonomous systems (ASes) often undergo
constant adjustments for reasons of traffic engineering and/or to address specific customer
wishes, an error prone approach.

In this thesis we address these problems in multiple ways:

The problem of policy configurations by developing a system that allows us to manage the
overall routing architecture rather than each individual router. With this we raise the abstrac-
tion level from individual BGP configuration statements to an AS-wide routing policy.

The richness of policy expressions leads to complex interactions and dynamics that can be
observed throughout the Internet. We present a methodology that helps operators to detect
problematic routing conditions, and we discuss how to identify that AS which is responsible
for an instability.

While we find that some of todays routing issues are stemming from protocol interactions,
others are coming from router software/hardware problems that should have been detected
in a test-lab before deployment in the operational network. We describe a BGP workload
generator that can help in a wide variety of equipment testing. We illustrate the capabilities of
the tool by showing how complex tests can be instantiated, without of losing the test engineer
in the intricacies of the test setup.

iii

Contents

Contents iv

1 Introduction 1

1.1 Outline . 2

1.2 Vorveröffentlichte Teile der Dissertation (Previously Published Work) 4

2 Internet Routing Architecture 7

2.1 BGP basics . 8

2.1.1 BGP path selection and filtering . 10

2.1.2 Passive BGP data collection architectures 15

2.2 Router configuration and RPSL . 16

2.3 State of the art and related work . 21

2.3.1 Configuration management . 21

2.3.2 BGP dynamics . 22

2.3.3 Router testing . 23

3 AS-Wide Inter-Domain Routing Policies 25

3.1 Network-wide routing policy . 26

3.2 System design . 27

3.2.1 Concepts underlying the configurator input 27

3.2.2 Enabling abstract routing policy specification 30

3.2.3 Design alternatives for the configurator 31

3.2.4 Advantages of the approach . 32

3.3 Data model . 32

3.3.1 Network Module . 33

3.3.2 Policies . 35

3.3.3 Back-end module . 38

iv

CONTENTS

3.3.4 Summary . 42

3.4 Configurator . 42

3.5 Operational considerations . 45

3.5.1 Generated configlets: Examples . 45

3.5.2 Experiences . 45

3.6 Summary . 48

4 BGP Dynamics 49

4.1 Instability creators . 49

4.2 Instability propagation . 51

4.3 BGP Convergence Properties . 53

4.4 Methodology . 53

4.5 Data sets . 54

4.6 BGP Beacons . 55

4.6.1 Prevalent behavior . 56

4.6.2 Slow convergence events . 57

4.7 BGP dynamics . 58

4.8 Summary . 62

5 Locating Internet Routing Instabilities 63

5.1 Ideal methodology . 64

5.1.1 Basic methodology . 64

5.1.2 Cautions . 65

5.1.3 Identifying link changes . 68

5.1.4 Consideration of multiple prefixes 69

5.2 Adopted methodology . 69

5.2.1 Candidate sets . 70

5.2.2 Events . 72

5.2.3 Correlated events . 72

5.3 Data sets . 73

5.4 What if – simulations . 73

5.4.1 Controlled experiments . 74

5.4.2 Results . 74

5.5 What is – data analysis . 76

v

CONTENTS

5.5.1 Update bursts . 76

5.5.2 Events . 77

5.5.3 Instability candidates . 79

5.5.3.1 Beacons . 79

5.5.3.2 All prefixes . 80

5.5.4 Event correlation across prefixes . 81

5.5.5 Validation . 82

5.6 Summary . 83

6 Measuring BGP Pass-Through Times 84

6.1 Test methodology . 85

6.1.1 Measuring pass-through times . 85

6.1.2 MRAI delay . 86

6.1.3 Controlled background CPU load 87

6.2 Test framework . 88

6.3 Pass-through times . 89

6.3.1 Pass-through times vs. background CPU load 89

6.3.2 Pass-through times vs. number of sessions 90

6.3.3 Pass-through times vs. BGP table size and update rate 91

6.4 Summary . 92

7 Towards more Realistic Router Testing 93

7.1 Design goals . 93

7.1.1 Test framework . 94

7.1.2 BGP workload generation . 94

7.1.2.1 Generator tool . 94

7.1.2.2 Workload ingredients . 95

7.1.3 Requirements . 96

7.1.3.1 Manual vs. auto-configuration 96

7.1.3.2 Dependencies of variables 97

7.1.4 Summary . 97

7.2 Test metrics . 98

7.2.1 Key variables . 98

7.2.2 RIB construction metrics . 100

vi

CONTENTS

7.2.3 Update generation metrics . 102

7.2.3.1 Sphere and phase shift . 102

7.2.3.2 Cluster generation . 103

7.2.3.3 FIB changes . 103

7.2.4 Summary . 104

7.3 Algorithm . 104

7.3.1 XML-Configuration language . 105

7.3.2 Initial settings . 109

7.3.2.1 Calibrating the RIB . 109

7.3.2.2 Details of RIB construction 109

7.3.3 Equipment test phase . 113

7.3.3.1 Details of update stream construction 113

7.3.3.2 Stream Mixer . 115

7.3.3.3 Output devices . 115

7.3.4 Summary . 116

7.4 Summary . 117

8 Conclusion 118

9 Future Work 120

9.1 Towards more realistic Internet-like simulations 120

9.1.1 Proposed approach . 120

9.1.2 Benefits . 121

9.2 Configuration management . 121

9.2.1 Proposed approach . 122

9.2.2 Benefits . 122

List of Figures 123

List of Tables 126

Bibliography 127

vii

1 Introduction

The Internet is a complex, highly-configurable, distributed system, which has become part of
today’s critical communication infrastructure. Companies rely upon this (new) medium for
doing their business and it influences the daily lives of many people. While the Internet is
technically complex and composed of many Autonomous Systems (ASes), it is the delivery
of packets that matters for the end-user. To be able to offer connectivity to the “network of
networks”, Internet Service Providers (ISPs) interconnect with each other to exchange traffic.

Routing protocols, such as BGP [1] or OSPF [2] / ISIS [3] build the necessary foundation
to direct the packets through the networks. The increased competition and widely deployed
services, such as VPNs or VoIP, require performance guarantees, which leads to tight Service
Level Agreements (SLAs). This means ISPs build and manage their network according to
the traffic matrix. But, network traffic is difficult to predict [4]. History has shown that traffic
demands can change rapidly and drastically based on at-the-time popular applications. Exam-
ples include the rapid rise in HTTP traffic after the introduction of the Mosaic and Netscape
browsers, the recent explosion of file-sharing services, and heavy traffic loads generated by
worms, viruses and DDos attacks.

ISPs strive to accommodate varying traffic loads and still build networks that are robust to link
and router failures. Besides adhere to resilience and performance, they often try to balance
the traffic within their networks.

The demand for control over traffic flows does not stop at the doors of an ISP. Large compa-
nies build networks on top of the physical infrastructure (e.g., VPNs). Others offer a widely
varying range of services to customers – for example, Akamai is using DNS to route traf-
fic [5]. One may ask how many other stub networks will soon deploy sophisticated traffic
engineering mechanisms on their own? Or may even end-users try to obtain flexible routing
in terms of control over cost and performance of network paths (e.g., overlay networks)?

The above considerations leads to the question who directs traffic flows? How does this
impacts the routing system (e.g., [6])? What dynamics arise between inter-, intra-domain
routing, overlay networks and the emerging mobility of end-users?

Before one is able to answer such questions, we need an in-depth understanding of the pieces
of the puzzle. One piece addressed in this thesis is the inter-domain routing architecture, and
its basic routing protocol, the Border Gateway Protocol (BGP).

BGP is the de-facto standard inter-domain routing protocol. Its main propose is to distribute
reachability information, while at the same time allowing a flexible control over routing de-
cisions. This means a policy routing protocol has to bridge the gap between the technical
realization to guide the packets to their destinations and the different commercial, political,
social, etc. interests of the participating networks.

This comes at a price: a distributedly controlled system composed of about 20,000 competing
ASes is hard to debug; and its dynamic behavior is difficult to predict. How can we deploy

1

1 Introduction

mission critical applications in the Internet, when we do not understand why packets do not
follow the expected path through the network [7]? How can we make the Internet a robust and
fault-tolerant network, when we do not have good metrics to evaluate the quality of routing
system [8]? How can we estimate the impact of routing changes, when we do not know how
to estimate the inter-domain traffic matrix [9]? (See [10] for more research questions.)

Yet, given the critical importance of the Internet, ISPs, router vendors, and researchers have
to work together to find solutions to those problems. To evolve the Internet, it is necessary
to understand and fix problems such as long convergence times (e.g., [11]); protocol dynam-
ics (e.g., [12]); which can lead to performance disruptions for a substantial amount of traffic
(e.g., [13–15]); and those unforseen interactions between policies (e.g., [16]). Furthermore,
ISPs can benefit from systems that instantiate a valid (e.g., [17]) policy inside their network
automatically (e.g., [18]), for example to avoid misconfigurations (e.g., [19]); as well as pre-
dict the implication of policy changes on the traffic shifts (e.g., [20, 21]). In addition, it is
difficult to test protocol and service interactions on the network equipment in a test-lab under
field conditions (e.g., [22]).

In this thesis we address those problems in multiple ways: via characterization of BGP dy-
namics, router testing and proposing a system for configuration management.

1.1 Outline

We start in Chapter 2 with some background information about today’s Internet routing ar-
chitecture. In particular we look at the basics of the BGP protocol, how to configure a router
and discuss some related work.

Next, in Chapter 3, we develop a system that allows us to manage the overall routing archi-
tecture rather than each individual router. This includes how routing policies of autonomous
systems (ASes) are specified. With this we raise the abstraction level from individual BGP
configuration statements to a AS-wide routing policy. Our system enables an autonomous
system (i) to explicitly specify its inter-domain AS-wide routing policy as first class enti-
ties (an extensible collection of individual policies and services such as a peering policy, a
filter-martians policy, a signaled black-hole service, etc.); (ii) to specify its routing policy in-
dependently of the current state of the network; (iii) to automatically generate the appropriate
pieces of the router configurations for all routers in the AS, even routers of different vendors;
(iv) to impose a clear separation of tasks that is aligned with the organizational boundaries
within an ISP; (v) to automatically generate a documentation of the current active routing
policy in RPSL; (vi) to enable customers of the AS to apply changes to the route-sets they
announce without any explicit human-to-human interaction. Initial deployment of the system
to manage the AS-wide routing policy of Deutsche Telekom affirm the above advantages in
an operational setting.

Each AS has its own routing policy, which tries to optimize its own cost, performance, reach-
ability and reliability. Yet, the richness of policy expression in such a well-connected system
like the Internet leads to unforeseen effects. This means that the intended and the actual
outcome of a policy setting do not necessarily match. The result are complex interactions
which lead to dynamics between the ASes that can be observed on multiple vantage points
throughout the network. This even leads to severe problematic routing conditions, where the

2

1.1 Outline

routing system in itself has no, or more than one stable solution [23]. In Chapter 4 we first
review the ingredients that cause BGP dynamics and then study the convergences properties
by analyzing raw BGP update traces, in Chapter 4. Such insights in the behavior of BGP help
operators to detect problematic routing issues (e.g., divergent, hijacked prefixes).

To further understand the BGP dynamics, we ask the question of the origin of all these updates
and if these can be inferred just by observing the control plane of the Internet. We discuss
a methodology for identifying the AS that is responsible when a routing change is observed
and propagated by BGP in Chapter 5. The origin of such routing instabilities is deduced
by examining and correlating BGP updates for many prefixes gathered at many observation
points. Although interpreting BGP updates can be difficult and easily misleading, we find
that we can pinpoint the origin to either a single AS or a session between two ASes in most
cases. For this we developed several heuristics to cope with the limitations of the actual
BGP update propagation process and monitoring infrastructure, and apply our methodology
and evaluation techniques to actual BGP updates gathered at hundreds of observation points.
Furthermore, we performed simulations to evaluate the inference quality achieved by our
approach under ideal situations and compared how this correlates with the actual quality and
the number of observation points.

While we find that some of todays routing issues are stemming from routing protocol inter-
actions, others are coming from router software/hardware problems that should have been
detected in a test-lab before deployment in the operational network. In Chapter 6 we develop
a methodology for investigating the relationship between BGP pass-through times and a num-
ber of operationally important variables. We explain under what conditions, such as router
CPU load, number of BGP peers, etc., this can result in unusually high delays and thus long
convergence times.

Measuring BGP pass-through times is an example that can be view from a broader perspec-
tive: testing router software implementations, evaluating performance, understanding scala-
bility and data-plane convergence. We believe that we can better answer the needs of test
engineers by:

• generating control and data plane traffic that is statistically similar, in both quantitative
and timing terms, to observed data

• generating control traffic protocol mix that reflects current operating practice and de-
mand for a given service (e.g., VPNs)

• making multi-protocol tests easier to specify, setup and execute.

In Chapter 7 we describe a tool that generates synthetical BGP update traces for multiple
peering sessions that can be targeted towards a few devices under test (DUTs). The tools is
user-friendly, highly flexible and supports well-specified test conditions. The main goal is
that it is easy for a test engineer to instantiate a complex BGP test. Reasonable defaults are
assumed, instead of losing the test engineer in the intricacies of the BGP test setup. Such a
tool has to create an initial-test setup that respects user wishes (e.g., number and type of peers)
and at the same time is able to reflect some of the variability of the Internet (e.g., number of
prefixes, AS path length, usage of communities). This means being able to derive from data
characterization a normal setting for a BGP workload generator. With such an approach it
becomes easy for a test engineer to set up a test in a lab that reflects, to some degree, the
dynamics of the real Internet; more and more complex tests can be constructed, involving
multiple services, and this in turn adds confidence in the robustness of the router design and

3

1 Introduction

implementation.

This thesis concludes with a brief summary in Chapter 8. Our main contribution is a frame-
work for handling the complexity of BGP. This work shows how operators and vendors can
benefit from an in-depth understanding of BGP; and how researchers can improve BGP. Fur-
thermore, we provide an outlook, in Chapter 9, how this work may evolve in the future and
show how other research areas may benefit from our insights.

1.2 Vorveröffentlichte Teile der Dissertation (Previously
Published Work)

Some parts of this thesis have been already published:

Alexander Tudor, Olaf Maennel, Anja Feldmann, and Hongwei Kong.
Towards more Realistic Router Testing.
Agilent Internal Report, Melbourne (Australia), June 2005.

Hagen Böhm, Anja Feldmann, Olaf Maennel, Christian Reiser, and Rüdiger Volk.
AS-Wide Inter-Domain Routing Policies: Design and Realization.
Technical Report, TU München (Germany), June 2005.

Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger, and Bruce Maggs.
Locating Internet Routing Instabilities.
In Proceedings of ACM SIGCOMM, Portland (USA), August 2004.

Anja Feldmann, Hongwei Kong, Olaf Maennel, and Alexander Tudor.
Measuring BGP Pass-Through Times.
In Proceedings of Passive & Active Measurement Workshop, Antibes Juan-les-Pins (France),
April 2004.

Olaf Maennel, Alexander Tudor, Anja Feldmann, and Sara Bürkle.
Observed properties of BGP convergence
Talk at RIPE 45, Barcelona (Spain), May 2003.

Some parts of this work went also in master theses:

Christian Reiser.
Network-Wide Inter-Domain Routing Policies: Design and Realization.
Diplomarbeit, TU München (Germany), June 2005.

Sara Bürkle.
BGP convergence analysis.
Diplomarbeit, Saarland University, Saarbrücken (Germany), June 2003.

4

Acknowledgments

Acknowledging every person that contributed directly or indirectly to the realization of this
thesis is not possible. I have benefited from too many persons to ever be able to mention them
all.

I like to start with the networking architecture group at the Technische Universität München.
Foremost I like to thank my thesis advisor, Anja Feldmann. I am extremely grateful for her
generosity, confidence, motivation, advice and endless support. I started working with Anja,
and most of my colleagues, already during my master studies at the Saarland University
in Saarbrücken. Without their invaluable ideas, knowledge and feedback this thesis would
simply not exist. I cannot express in words how grateful I am, and I will never be able to
repay this debt. Beside from the fun it was working in this group, most of them became good
friends.

With regards to friendship I also like to mention Steve Uhlig, who is currently a researcher
at UCL in Belgium. He gave me a lot of very inspiring thoughts (not only on this thesis).
Furthermore, I like to thank Alexander Tudor from Agilent Labs. Although he was never
an official advisor his support kept me going for several years. His enthusiasm and commit-
ment to our router testing project (see Chapters 6 and 7) greatly motivated me and gave me
direction. He always found time to discuss problems, and helped me bridge the gap between
the work that is on the one hand relevant for research and on the other hand beneficial to
practioners.

I am also very thankful to Timothy G. Griffin – it is a great honor that he is part of my
thesis committee. I met him at a few conferences and workshops and he always found time
to discuss with me. He encouraged me, gave me faith and with that he strengthened my
personality as a researcher.

I would like to express special thanks to Bruce Maggs for all that he has done for me. Behind
his jolly appearance shines an incredible brilliance. He gave me amazingly insightful com-
ments and always found all the time that is needed to explain and/or discuss a problem. As
he was the advisor of Anja, he is for me my “grand-advisor”.

It was also good fortune to meet Zhuoqing Morley Mao, who is an assistant professor at
University of Michigan. We had great fun working and chatting together. Morley contributed
a lot to this work, in particular to Chapter 5. In the same context I like to thank Arthur Berger
and the Akamai staff for sharing their insights.

Let me also express my thanks to Rüdiger Volk and Hagen Böhm from Deutsche Telekom –
without their operational insights, the system proposed in Chapter 3 would not have been
realizable.

5

1 Introduction

Furthermore, I am grateful to the folks at RIPE, especially Henk Uijterwaal and Matthew
Williams, for their continuing support. Without the work of this group, the research commu-
nity would be missing a significant number of BGP beacons as well as routing observation
points. Furthermore, the quality of the provided data is outstanding.

Thanks also to Geoff Huston for taking his time at RIPE 48 and discussing with Alex and me
the details of what matters for router testing. Without his help, the choice of variables used
in Chapter 7 would be much less relevant for operational people.

I also like to thank other students in Anja’s group working on related topics. Among them
were Sara Bürkle, Christian Reiser and Wolfgang Mühlbauer. With Sara I started discovering
the properties and behavior of the BGP protocol, with Christian I worked on the automated
configuration system for the backbone of Deutsche Telekom and with Wolfgang I gained a
better understanding of the Internet topology.

I am also thankful to the reviewers of my previously published papers. They provided valu-
able suggestions regarding the material itself as well as on how to improve its presentation.
Furthermore thanks to Nils Kammenhuber, Arne Wichmann and Vinay Aggarwal for their
comments on earlier drafts of this thesis. Special thanks belongs to Wolfgang Mühlbauer for
his help and support with the final version and publication of this work.

6

2 Internet Routing Architecture

The Internet is a collection of many independently administrated routing domains. Each
routing domain is composed of multiple networks operated under the same authority.

Connectivity within and between such routing domains is accomplished via the Internet Pro-
tocol (IP) addresses. Currently there are two types in active use: IP version 4 (IPv4) and
IP version 6 (IPv6). IPv4 was initially deployed in 1983 and is still the most commonly
used version. IPv4 addresses are 32-bit numbers often expressed as 4 octets in “dotted dec-
imal” notation (e.g., 127.0.0.1). Deployment of the IPv6 protocol began in 1999. IPv6
addresses are 128-bit numbers and are conventionally expressed using hexadecimal strings
(e.g., 2001:db8::dead:beef). Packet forwarding is based on an initial prefix of the IP
address that is being used for routing decisions. Prefix-based addressing is in use since the
early beginnings of IP [24] in classful routing, and has evolved into supernetting [25] and
CIDR [26]. Nowadays a CIDR prefix is written in “slash-notation” providing the network
address and a variable length subnet mask (e.g.,2001:db8::/32). IP addresses are allo-
cated by IANA [27] from pools of unallocated address space and delegated to the appropriate
Regional Internet Registries (AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC) or National In-
ternet Registries. They in turn distribute their address space to the Local Internet Registries
and they again to ISPs. See RFC 2050 [28] for more information.

Today, a default-free routing table in the Internet contains roughly 200,000 prefixes1, which
are announced by independently administrated routing domains. For example a routing do-
main can be an enterprise network, a campus network or an ISP. Those routing domains are
often referred to as autonomous systems (ASes), yet note that there is no trivial mapping be-
tween a routing domain and an AS number (ASN), which is handed out by the route registries.
Companies may operate several ASNs or even several companies may appear in the routing
system under one single ASN. Nowadays there are roughly about 21,000 ASes1, while only
about 3,5001 sell Internet connectivity to other ASes.

Each AS is composed of a collection of routers that are interconnected, using different link
layer technologies including Synchronous Optical Networking links (SONET/SDH), and/or
Ethernet. A router consists of many components, a switching fabric, a set of line cards (some-
times equipped with their own CPUs), and a main route processor. Packets enter the router
via one of the line cards and leave the router via some other line card as determined by the
Forwarding Information Base (FIB). The FIB is often situated directly on the line cards of
the routers and is constructed from the routing tables computed by the various routing pro-
tocols. Inside an AS reachability information is propagated by an Interior Gateway Protocol
(IGP) [2], among them are ISIS, OSPF, EIGRP, RIP. Each router selects a shortest path to
the destination according to a metric chosen by the network administrator. We distinguish
the core links that interconnect the routers within the AS and the edge links that cross AS

1Numbers are rough estimates.

7

2 Internet Routing Architecture

boundaries. The routers where edge links are terminated are called border routers. The loca-
tions of these border routers are usually called Points Of Presence (PoPs). An AS typically
buys Internet connectivity from one or more transit providers. Such providers are often called
upstreams. Contractual relationships between ASes can be very complex. Beside the afore
mentioned customer-provider relationship there is also a category referenced to as peering
relationship2 . Peers usually share the link cost between them. In addition, the peering link is
only used to exchange traffic with the peer and its customers. No transit traffic should flow
through the peering links [29–31]. We call an AS that has no upstream provider a tier-1. As
a consequence all tier-1 provider more or less have to peer with each other3 and therefore
build the core of the Internet, while ISPs that do not provide transit services, and “simple”
customers, e.g., multi-homed ASes, are at the periphery. Often the AS graph is depicted with
the core AS at the top and the periphery at the bottom.

For the technical realization of such complex policies a policy routing protocol is deployed,
also referenced to as an Exterior Gateway Protocol (EGP). Today, BGP [32] is the de facto
standard inter-domain routing protocol used in the Internet. Its main propose is to exchange
reachability information between different ASes while at the same time allowing complex
economic relationships. The next section discusses BGP in more details.

2.1 BGP basics

The Border Gateway Protocol (BGP) [1] was designed as a successor to the Exterior Gateway
Protocol [33]. It is a variant of the class of distance-vector protocols, where neighboring
routers exchange link cost information to destinations. BGP itself is a so-called path-vector
protocol. A route advertisement indicated the reachability of a network. To avoid cycles
and to provide a distance-metric the AS number of each AS on the path to the destination is
propagated along with the route advertisements.

The signaling of reachable destination prefixes is accomplished over a TCP session between
the two BGP speaking routers. BGP is stateful, which means that when a BGP session comes
up, first all best routes are exchanged. Afterwards, only incremental updates are sent when-
ever the current best route changes. There are two variants of BGP. The eBGP variant is used
to announce the reachable prefixes on a link between routers that are part of distinct ASes.
The iBGP variant is used to distribute the best BGP routes inside an AS. As the AS path
inside an AS is not modified, it cannot be used to avoid routing loops and thus a full mesh of
all BGP speaking routers or route reflection [34] is often configured.

Four kinds of messages can be exchanged between two BGP speakers:
OPEN is used to open up a BGP session.
KEEPALIVEs are used between neighbors to make sure that the connection still persists

during periods of inactivity.
UPDATE messages carry network reachability information. An update either advertises a

prefix or withdraws a previously announced prefix. Multiple announcements and/or
withdraws can be packed into one BGP UPDATE packet.

2Note that the word “peer” is often used ambiguously – on one side it just means any BGP neighbor (for example
as defined in the BGP-RFC 4271 [1]), on the other side common practice may mean the economic relationship
where only customer prefixes are propagated.

3See [17] for a nice counter-example.

8

2.1 BGP basics

NOTIFICATION is used to tear a BGP session down in case of an error.

If a neighbor advertises a prefix, this can be seen as a commitment from the sending neighbor
that it can reach the specified destination. By withdrawing a prefix, the sending neighbor in-
dicates that it can no longer reach the destination (or does not want to carry the traffic towards
this destination anymore). Every time the best route changes all neighbors that received an
announcement of this route have to be informed about the change.

Routes learned via BGP have associated attributes that are used to determine the best route
to a destination when multiple paths exist to a particular destination. These properties are
referred to as BGP attributes. While BGP allows the network operators to modify attributes
or remove some of the attributes, it also distinguishes between transient and non transient
attributes – which means attributes that can be passed on to another AS, or that cannot, re-
spectively. In the following we provide a short summary of how some BGP attributes work,
for a detailed discussion see,e.g., [32].

A route advertisement for a particular prefix includes an ordered sequence of ASes that con-
stitute the AS path. Whenever a BGP border router propagates a route to a neighbor, the ASN
will be prepended to the AS path. As a consequence the AS that originated the prefix is at
the end of the AS path, while transiting ASes follow from right to left. The information con-
tained in the AS path attribute concerns only the traffic that goes from the local AS towards
the prefix. The actual path used in the reverse direction may not to be the same due to local
policies enforced along the path between the AS and the destination prefix. Note that the AS
number used in BGP does not necessarily corresponds to the routing domains created by the
network operators.

Large ISPs may operate serval ASNs, for example to keep traffic local to certain regions
(e.g., one in the US, one in Europe, and one in Asia or the Pacific Region); or small companies
may simply use the ASN of their upstream provider to avoid the hassle of applying and
maintaining their own AS number.

The NEXT_HOP attribute tells the router to which IP address it should forward packets. This
does not necessarily have to be the neighboring BGP speaker since BGP allows third-party
next hops. Within an AS the next hop attribute is not modified, thus it points to the chosen
exit router4 . Note that here BGP and IGPs are closely coupled, because the packets need to be
able to “find their way” through the local network to reach the BGP exit point. For example
if the path towards any exit point becomes unavailable in the IGP, all BGP routes using this
exit must be considered unavailalbe and withdrawn. For more detailed information in this
area see Teixeira et al. [13–15, 35].

There are other attributes available in BGP, e.g., the Local Preference attribute, the Multiple
Exit Discriminator (MED) and Community attributes. The local preference attribute is used
within an AS to implement local policies for the best exit point. It is used by some ISPs
to influence outgoing traffic (e.g., prefer customers over peers over upstreams). With the
Multiple Exit Discriminator, an AS can indicate the best entry point to its neighboring AS in
case of multiple connections. The community attributes [36] can be used to “color” routes and
to organize them into classes. While all other BGP attributes have a well specified semantic,

4Note that the exit router is by default the border router of the remote AS. Yet often next-hop-self is configured
by the administrator, which indicates that the exit router is the border router of the local AS. This has the
advantage that the link between the border routers of both ASes does not have to be carried in IGP.

9

2 Internet Routing Architecture

���������	��
�����
� ��
 �����

RIB�
� �������	��� �
�!��
��	���"����#

��#$���%��
������
� ��
 �����

��#$���	��
�����
� ��
 �����

&

Best route s t o r e d i n F IB'�(����)*��� +��#�,.-/# � ���102��� ����#435���!�	6

&
&

Figure 2.1: Update processing per router.

t1

t2

t1

t3

t3

AS1

AS2

AS3

AS4

Figure 2.2: Example: update propagation.

the community attribute provides a large code space that can be freely used by a network
administrator to define signaling within the domain and/or across domains.

2.1.1 BGP path selection and filtering

A router exchanges routing information about particular network addresses (prefixes) via
BGP sessions in the following way (see Figure 2.1 as illustration). First, the ingress filter
policies of the session over which a route is received decides whether to accept a route or
not. If the received route is in accordance with the policy, the router may modify some of the
attributes, and then stores it in the BGP routing table. The Routing Information Base (RIB)
keeps all routes learned from the BGP neighbors. Then a BGP decision process inspects the
attributes to select a preferred route. If the “best” route changes, then the routing table is
updated, and the new best route passes through the egress filter policies of all sessions. These
can again rewrite the BGP attributes or restrict propagation. Finally, if it passes the filter the
route is propagated. This process is referred to as route manipulation. Note that scalability
is one of the reasons for not propagating alternative routes. The more alternative routes are
available the “better” can be the path selection but at the same time all alternatives have to
be stored on the router. This consumes memory and the amount of memory stored on each
router is limited.

To select the best route among the set of routes for the same prefix in the RIB, a BGP speaker
follows a set of selection criteria called the best path selection algorithm. Next we discuss 10
of the most prominent rules currently in use. These criteria are applied in the specified order
until only one path remains.

1. Next-hop reachable? The first rule of the BGP decision process is to make sure that the
next-hop is actually reachable. This is usually implemented by a periodic IGP lookup
of the next-hops used by BGP. Note that an announcement is typically rejected if the
next hop is not reachable5 .

2. Prefer highest weight: This rule is not RFC conform but some vendors, including
Cisco and Juniper, allow administrators to configure a preference that is local to the
router. Sometimes this is referred to as the “sledgehammer” among the best path selec-
tion rules. This rule is used rarely.

5Note that this is an important detail when we are going to test routers in a test-lab in Chapter 7.

10

2.1 BGP basics

3. Prefer highest local-pref: This attribute is an administrative cost specifying the
preference among the different routes towards a given destination. Contrary to the
weight, the local-pref is an BGP attribute and is propagated to iBGP neighbors
but remains local to the AS. It is set by the border routers upon receiving the BGP route
to the value configured by the administrator or to a default of 100.

4. Prefer locally originated routes: Routes that are locally originated by the router or
redistributed from IGP by the router are preferred over routes that are learned from
other routers.

5. Prefer routes with the shortest AS path length: This rule constitutes a distance metric.
The best route is the one with the shortest AS path length. The reasoning behind this
is the idea that the shortest AS path is also the shortest path to the destination (which
does not have to be true in the Internet).

6. Prefer the path with the lowest origin type: IGP (means that the network layer
reachability information was introduced into BGP by the IGP), is lower than EGP (the
route is learned via an Exterior Gateway Protocol), which is lower than INCOMPLETE
(the information is learned by some other means, often manual configuration).

7. Prefers the route with the lowest MED value: Routes without an MED attribute are
considered to have the lowest possible MED value. The MED attribute is used to
select a particular egress point in the local domain. This can be used for “cold-potato”
routing [37]. Cold potato routing aims at carrying the traffic for as long as possible in
the own network before handing it off to the neighbor. The input filter of the neighbor
domain might override the MED value, so that the use of this attribute usually relies on
a mutual understanding between the two neighboring ASes.
While one might expect that MED values are only comparable if they are received
from the same neighboring AS, some vendors offer to compare MEDs “non determin-
istically” [38]. Furthermore, MEDs are sometimes used as an internal metric (similar
to local-pref but respecting the AS path length): As MED comparison is in the
decision process after the AS path evaluation it is possible to set MED values at the
ingress border routers according to the preference of the network administrator (e.g.,
to realize the policy: “prefer European peers over Asian peers over US peers, but only
if the AS path length is of equal length”).

8. Prefers eBGP routes over iBGP: The motivation behind this rule is to hand off traffic
to other networks as early as possible. Clearly, handing a packet off at the local router
is preferred over carrying it around in the local AS before handing it off.

9. Prefers routes with the lowest IGP cost to the egress point: This rule enables what is
commonly termed “hot-potato” routing [13], which means that the local AS tries to
get rid of the IP packet as soon as possible. The logic behind “hot-potato” routing is
to minimize the resources consumption necessary for forwarding the IP packets that
transit through the AS. Therefore the closes exit point is chosen (according to the IGP
metric). This rule is useful for transit domains. Most router vendors implement some
kind of “scanner processes”, running periodically (e.g., once a minute), on their routers
to see if the IGP cost has changed and then update the best BGP route accordingly.
Note that this “scanner” provides a mechanism for IGP/BGP interactions (see [13–15]
for more details).

10. “Tie-breaking” rules: The last rules of the BGP decision process are used when there
are still several equivalent routes available. Note that vendors often implement them
differently. Some BGP implementations break ties by preferring the routers received

11

2 Internet Routing Architecture

“San Francisco” “Munich” “Beijing”

r41 r42
r43

r33r21
r22

AS 1r11
prefix p

r32
AS 2

AS 3

AS 4

AS 5

AS 6

iBGP
peer best route

customer provider (traffic flows this direction)

r61 r62 r63

r51 r52 r53

Figure 2.3: Example: Path sections of ASes6.

from the router with the lowest router-id while other prefer the oldest route. These rules
introduces some randomness in the inter-domain routing path selection.

Note that the best path selection process as stated above, summerizes just the typical behavior
as implemented by most of the vendors. Some vendors implement slightly different variances
and even allow operators to modify the selection process. For example, Cisco introduces the
BGP Cost Communities rule [39], which changes the BGP best path selection process at the
point of insertion (POI) by selecting the path according to the lowest cost community value.
(Note that if the POI is not applied consistently throughout the AS, routing loops can occur.)

The best path selection process is executed on each router that runs BGP. This means that each
router in a network picks one route from a possible set of alternatives. Traffic forwarding as
well as route propagation is affected by this choice7. To improve the scalability inside the AS
BGP Route Reflection [34] was designed. The idea is that Route Reflectors (RRs) aggregate
route information and thus keep multiple alternative routes inside PoPs or within a certain
geographic region. Only the best route, as picked by the best path selection process of the
RR, is allowed to be distributed within the AS. A RR is a BGP speaker that reflects iBGP

6Images used with permission. (Thanks to http://visibleearth.nasa.gov/ and
http://www.cisco.com/warp/public/503/2.html).

7There are some efforts to allow a router to select multiple paths for load sharing purposes, see e.g., [40].

12

2.1 BGP basics

updates from RR-clients to other clients as well as to other RRs and also distributes iBGP
updates from RRs to clients (but not to other RRs). RRs can be organized hierarchical and
a full-mesh is only needed on the top-level of the hierarchy. Yet, routing loops cannot occur
inside the AS8. To avoid single points of failures, redundant RRs can be configured.

The number of alternatives available to a router influences the route selection inside the Inter-
net. To illustrate typical effects of the best path selection algorithm in the context of multiple
ASes, consider the example shown in Figure 2.3. This simple illustration shows six ASes.
AS1 is multihomed to AS2 and AS3, which both provide transit service for AS1. AS2 and
AS3 are customers of AS4. AS3 is also a customer of AS5 (customer-provider relationships
are indicated by solid black lines). AS4, AS5 and AS6 build the core of this “Internet-like”
example, i.e., they can be considered as tier-1 ASes. They all peer with each other (peer-
ing links are indicated by dashed red lines). Keep in mind that ASes often cover the same
geographical area while still being competitors. To illustrate this we have chosen three ge-
ographically distant location, “San Francisco”, ”Munich”, and ”Beijing”. In the example of
Figure 2.3 a router that is supposed to be located in “San Francisco” is labeled r∗1, one from
“Munich” is labeled r ∗2, and one located in “Beijing” is labeled r ∗3 (where the ∗ stands for
the ASN of the AS). Note that AS4, AS5 and AS6 provide service in all three regions and
peer in multiple places but not necessarily at every location.

AS1 announces its prefix p to both of its upstream providers. Both have no alternatives routes.
Thus they both select the direct path. AS4 learns the route from its customers (AS2 and AS3)
over all 4 links. Routers inside AS4 are free to choose their exit point (unless, for example,
AS3 decides to use MEDs to signal that it wants to receive incoming IP traffic over the
“Munich”-link and AS4 respects the MED setting). If MEDs are not used, a “hot-potato”-
like behavior is often the default. This means traffic flows directly to the “closest” egress
router9 . In the case of AS4, traffic entering the router in San Francisco (router r41) leaves
the AS via the “San Francisco”-link to AS2 (link r41 to r21). Traffic originated in Munich
entering router r42 leaves the AS via one of the “Munich”-links. Note that this router can
chose between two equally good paths – in the BGP sense. In this case the last “tie-braking”
rule is used to pick one link, i.e., based on the remote router-id. Next consider how AS5
learns about prefix p. This situation is slightly different, because the path via Beijing has a
shorter AS path length (furthermore AS3 is a customer and customers are often preferred via
local-pref). Although the router r52, which is located in Munich, learns the prefix p over a
peering link in Munch (link to router r42), and thus could deliver the traffic “locally” – all
routers in AS5 may prefer to send the traffic for prefix p to Beijing, to be then handed-over via
the customer link to AS3, just to be transfered back to Munich. Finally consider AS6: Traffic
from router r62 (located in Munich) can be delivered via the peering link to AS5 (to router
r52), because AS5 picked the customer link over AS3. But then traffic detours via Beijing.
If the link in Beijing fails (between r33/AS3 and r53/AS5), then r52 (AS5) would use the
peering link to AS4 and therefore withdraws the announcement given to AS6 (because a peer
does not offer transit service for another peer). Ironically, in such a case, router r62 would
chose as next hop either r43 or r41.

Note that if one login to all routers in AS6 to see which AS path is being used, one would
gets different results: router r61 uses AS path “6 4 2 1”, while router r62 propagates AS

8If appropriately configured, see [41] for detailed information.
9Note that the “closest” egress router is determined based on the IGP metric.

13

2 Internet Routing Architecture

path “6 5 3 1” and router r63 uses the AS path “6 4 3 1” as best route. Such a simple
example, as illustrated in Figure 2.3, shows how complex the interaction in the Internet can
be.

In addition, to the complexity induced by path choices, one also needs to consider the dy-
namics that arise from the propagation of updates. The example in Figure 2.2 (see page 10)
shows how “one update” propagates through the network can spawn multiple updates at re-
mote ASes. In Figure 2.2 one new prefix p is announced at AS1. This is called the triggering
event. A BGP update for prefix p is therefore sent to AS2 and AS3. This update is received
by AS3, added to the routing tables, and sent onward to AS4. AS2 also receives an update
from AS1 but the propagation through AS3 may take a bit longer (e.g., due to geographical
distances) and thus AS3 does not receive this update immediately. Once AS3 receives the
update from AS2 it may prefer this path for some reason (e.g., maybe routes from AS3 get a
higher local-pref value) and re-updates its routing table and sends a second update for prefix
p to AS4. In this rather simple example AS1 added one prefix (triggering event), yet AS4 is
sending two updates for the same root cause. This is just one of many examples how updates
can be spawned (see as well [12]).

The Minimum Route-Advertisement Interval (MRAI) [1] is used to rate limit outgoing BGP
updates. The idea is to first receive “all” BGP updates from ingress neighbors (within some
specified time), compute the best path and then propagate only one BGP update10 . The RFC
suggests that after one update for one prefix is sent to one peer, there should be a jittered11

delay of 30 seconds before another update for the same prefix is sent to the same peer. This
limits the number of BGP messages that need to be exchanged.

Another way to rate-limit updates is BGP Route Flap Damping [43,44]. The goal is to reduce
the impact of routing oscillations and therefore the processing load of routers. To achieve this
the router collects statistics about announcements and withdrawals of prefixes. Each time a
prefix is withdrawn, the router increments the so-called damping penalty for the prefix by a
fixed amount (Cisco / Juniper penalty: 1,000). Whenever the router observes an announce-
ment, the router also increments the penalty (Cisco: 500 / Juniper: 1,000/500). Once the
penalty exceeds the cutoff threshold the path is no longer used and the prefix is suppressed
(Cisco: 2,000 / Juniper: 3,000). This means that after the prefix enters the suppressed state,
the prefix is withdrawn – regardless of whether the route is still valid or not. Any flap after-
wards incurs additional penalty increments until some maximum is reached (Cisco: 12,000,
which corresponds to 60 min). Once the prefix stops flapping, the penalty is decremented over
time using an exponential decay until the reuse threshold is reached (Cisco / Juniper: 750).
Once the penalty falls below this reuse threshold, the suppressed path is re-advertised to ap-
propriate BGP neighbors. This can lead to route suppression for more than one hour [45,46].

We note that certain vendor-specific implementations differ from the recommendation in the
RFC. These cause different propagation patterns. For example Cisco’s MRAI implementa-
tion differs in at least two major points from the RFC. The first difference is that the timer
is implemented on a per-peer basis instead of a per-prefix basis. Scalability reasons do not
10Note that this is also used to collect multiple prefixes that can be packed in one BGP update packet.
11A jittered timer is a timer that uses randomly varying values. The MRAI, for example, has a typical value of

30 seconds. But if all routers would use a 30 seconds interval timer, this would lead to self-synchronization.
This means that all routers send their updates at the same time and pace, every 30 seconds [42]. This is an
undesired effect. It can be avoided by varying the timer interval randomly at each router. The jittered timer is
implemented in such a way that values between 25 and 31 seconds are normal.

14

2.1 BGP basics

allow an implementation per peer and prefix. As a result almost all outgoing updates will
be delayed – not just two consecutive updates (close in time and belonging to one prefix).
The second difference is that the MRAI is applied to withdraws as well as announcements.
Another example is the MRAI in Junipers routers, called “out-delay” [47], is disabled by de-
fault. That means, Juniper is not holding back any BGP update messages. While this speeds
up convergence, the risk is that many more updates will be send – which can trigger more
route flap damping. The trade-off here is between faster propagation vs. more protocol mes-
sages. It is clear that in todays Internet more protocol messages lead to more damping, which
does not improve convergence. Even in a fictional Internet without damping, more protocol
messages burn more CPU time. We look into this trade-off in more detail in Chapter 6.

2.1.2 Passive BGP data collection architectures

The principle idea behind collecting and archiving BGP data is to provide operators with a
view of the network from different locations inside the Internet. This is essential for trou-
bleshooting network problems. Furthermore, researchers can benefit from the data to study
protocol behavior. There are two types of data available: BGP table dumps and BGP up-
dates. The former provides a snapshot of the RIB, while the latter contains a time series of
the changes to the routes. A table dump can be gathered by “logging” into a router (a real
router, or a software BGP speaker) and querying the RIB. Regarding BGP updates, there are
three different techniques: First, one dumps an IP packet trace of TCP port 179 on the link be-
tween two BGP speakers. Another way is to setup a PC with a software pseudo-BGP speaker,
called BGP collector, that peers with a router in the operational network. Beside recording
the original BGP update packet, a timestamp and both end points are archived. Note that this
is considered to be a passive collector, even though it maintains a BGP session with a router
in the production network. The collector only receives and archives all messages it receives
from its neighbors it does not inject any updates. The third mechanism is by providing access
to a router, which can then be queried for a RIB dump or various statistics.

Public BGP archives are available since September 1999. Additional collectors are added
frequently. As the growing number of collectors provide different views of the Internet, BGP
analysis has become more representative over time. RIPE (Réseaux IP Européens) [48] main-
tains a BGP collection infrastructure. They offer about 14 different Remote Route Collectors
(RRC) located at different places in the world. Each box has a number of BGP feeds – in
total there are several hundreds BGP feeds12 available. Another public source is Oregon’s
Routeviews Project [49]. Beside the public collection points a number of ASes set up their
own proprietary BGP collectors. This can be looking glasses, trace collections, or as in the
case of Akamai [5] remote collectors. Akamai has collectors in about 500 ASes. Some of
these feeds are full-feeds, some are partial feeds, some are even iBGP feeds, and often there
are multiple observation points within an AS. All three mentioned archives do not only record
BGP traffic, but also snapshots of the BGP tables.

The placement of the collectors in the topology is important. Recall, customer-provider and
peering policies, outlined above, have certain implications regarding connectivity. At the
top, the connectivity is excellent – many alternative paths of the same AS-path length are
available. Closer to the bottom, this diversity is significantly restricted. Furthermore, since

12They provide a mix of full-feeds and “peering”-feeds.

15

2 Internet Routing Architecture

customer ASes often have a primary connection to one AS and a backup connection to another
AS, the connectivity is further reduced, as the backup path may not be visible to most of the
Internet unless a failure close to the customer occurs. Accordingly, a monitoring point at an
AS towards the bottom of AS topology may not see any of the updates caused for example
by a session reset between two tier-1 ISPs. Such a session reset may not change any of the
best routes at this AS. On the other hand a monitoring point at a tier-1 ISP may not see
any updates caused by a peering link failure between two of its customers. The redundancy
requirement inherent in peering should guarantee this. Therefore Teixeira et al. [35] argue
that the currently available public data is not sufficient.

2.2 Router configuration and RPSL

The last section discusses how routes are originated and propagated, and how BGP attributes
are modified as they are propagated (which, in turn, affects route selection). This section now
presents a very brief overview of how to instantiate this inside a network. The first part of this
section looks at low level router configuration mechanisms, while the second part summerizes
the Routing Policy Specification Language (RPSL) [50].

Todays routers have a large number of configuration options that control the operation of the
main processor, the various interfaces / link technologies, available hardware resources, etc..
For example the configuration determines which routing protocols are enabled, as well as the
selection of parameters (e.g., OSPF/ISIS weights) and policies (e.g., ingress and egress filters
for each BGP session). This information is configured and stored on a device-by-device
basis in a distributed manner, which means on each individual router in the network. The
configuration can be altered by applying commands to the router via its operating system,
e.g., Cisco IOS [51], JunOS [52,53]. These commands can be specified via a Command Line
Interface (CLI) or by uploading a configuration file to the router (e.g., via tftp).

Figure 2.4 shows a shortened example of a configuration of two Cisco routers, while Fig-
ure 2.6 (see page 18) shows the interface configuration for a Juniper router. For example, the
right column of Figure 2.4 shows the configuration of a Cisco GSR 12008 [54] router. Its
hostname is c12008 (“hostname c12008”). Various global settings that apply to the router
are configured, in the example DNS lookups are disabled (“no ip domain-lookup”), and
that classless inter-domain routing is performed (“ip classless”), etc.. Other global vari-
ables which are not specified in the configuration have default values.

In addition to global settings, the configuration includes details about interface specific pa-
rameters (such as IP addresses). Note that the GSR in our example is equipped with four
Gigabit SX and 8 Fast Ethernet interfaces, but we show only a stripped-down configuration
with two interfaces (FastEthernet1/2 and GigabitEthernet5/0).

The “router bgp 65001” entry identifies the AS number (65001) and may include a list
of commands that enable/disable certain features. This includes the “neighbor” command
which is used to configure BGP sessions. The example in Figure 2.4 shows one eBGP13

session configured to a router with the IP address 10.5.1.2 (see “neighbor 10.5.1.2

13The example shows an eBGP configuration because the remote-as number (65000) is different from the routers
ASN (65001). Note that if both numbers match, then an iBGP session is configured.

16

2.2 Router configuration and RPSL

version 12.2
!
hostname c7507
!
ip subnet-zero
ip tftp source-interface GigabitEthernet4/0/0
no ip domain-lookup
!
!
interface FastEthernet1/1/0
description c7507 FE1/1/0 to c12008 FE1/2
ip address 10.5.1.2 255.255.255.0
no ip mroute-cache
full-duplex

!
interface GigabitEthernet4/0/0
description c7507 GE4/0/0 to rt 1/1
ip address 10.2.1.1 255.255.255.0
no ip mroute-cache
no negotiation auto

!
!
router bgp 65000
no synchronization
bgp log-neighbor-changes
neighbor 10.5.1.1 remote-as 65001
no auto-summary

!
ip classless
ip route 10.4.2.0 255.255.255.0 10.5.1.1
!
!
!
snmp-server community public RO
snmp-server enable traps tty
!
!
!
line con 0
exec-timeout 0 0

line aux 0
line vty 0 4
password ocsic
login

!
end

version 12.0
!
hostname c12008
!
ip subnet-zero
ip tftp source-interface GigabitEthernet5/0
no ip domain-lookup
!
!
interface FastEthernet1/2
description c12008 FE1/2 to c7507 FE1/1/0
ip address 10.5.1.1 255.255.255.0
no ip directed-broadcast
duplex full

!
interface GigabitEthernet5/0
description c12008 GE5/0 to rt 1/C
ip address 10.2.3.1 255.255.255.0
no ip directed-broadcast
no negotiation auto

!
!
router bgp 65001
no synchronization
bgp log-neighbor-changes
neighbor 10.5.1.2 remote-as 65000
no auto-summary

!
ip classless
ip route 10.3.2.0 255.255.255.0 10.5.1.2
!
!
!
snmp-server community public RO
snmp-server enable traps rf
!
!
!
line con 0
line aux 0
line vty 0 4
exec-timeout 0 0
password ocsic
login

!
end

Figure 2.4: Sample router configuration for router c7507 and c12008.

BGP router identifier 10.3.0.1, local AS number 65000
BGP table version is 1, main routing table version 1

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.5.1.1 4 65001 336571 494703 5213436 0 0 24w6d 163201

Figure 2.5: Output of show ip bgp summary command.

17

2 Internet Routing Architecture

remote-as 65000”). Of course the BGP session setup has to match the configuration on
the remote router. To illustrate this Figure 2.4 shows in the left column the simplified con-
figuration of a Cisco 7507. The BGP configuration part reads “router bgp 65000” indi-
cating the ASN of the other router that has to match the remote-as command. Then the line
“neighbor 10.5.1.1 remote-as 65001” sets up the other end of the BGP configura-
tion. The CLI can be used for debugging and status reports. For example Figure 2.5 shows
the output of the command “show ip bgp summary” which was executed on the c7507
router.

In this thesis we are in particular interested in the eBGP parts of the router configuration.
Route manipulations are specified via route-maps (Cisco terminology) and can filter a prefix
or change each of the attributes of the routing information. The route-maps may specify des-
tination network checks via access lists, AS path checks via regular expressions matching the
AS path string, communities via community lists, etc.. They can be applied to incoming rout-
ing updates and to outgoing routing updates. Figure 3.9, and 3.10 on page 47 provide more
detailed examples of policy configurations on Cisco routers. Each entry consists of a filter
(e.g.,prefix-list martians) and a set of attribute manipulations (e.g.,set community
1:1 additive). If a router receives a route over a BGP session with an associated im-
port route-map it processes the route-map entries one by one until one of the filters matches
the current route. As long as the route-map statement does not contain the keyword “con-
tinue” the attribute manipulations are applied to the route and the route is either accepted
via the keyword permit or denied via the keyword deny. If the route-map entry contains
the continue keyword (see Figure 3.9) with value 300 attribute manipulation are stored in
a todo list and processing continues with the route-map entry 300. Juniper offers a similar
mechanism by configuring policy-options and accessing further policy-statements via
the keyword next policy (not shown in Figure 2.6).

version 6.2R3.10;
system {

host-name TUM-OM1;
login {

user olafm {
full-name "O. Maennel";
uid 2000;
class super-user;
authentication {

encrypted-password "...";
}

}
}
services {
ssh;
telnet;

}

syslog {
user * {

any emergency;
}
file messages {

any notice;
authorization info;

}
}

}
interfaces {

fxp0 {
unit 0 {

family inet {
address 10.1.1.1/24;

}
}

}
}

Figure 2.6: Simple Juniper configuration

Nearly each vendor has developed one or more configuration languages for its routers. As this
is not very desirable there are efforts from the IETF to standardize routing policies in a vendor
independent configuration language. RPSL has been designed as such a vendor-independent
language that is able to capture AS and prefix information. RPSL can also denote BGP

18

2.2 Router configuration and RPSL

attribute modifications. The IRRToolSet [55] is one software implementation that is able to
process RPSL. For example RtConfig [56] translates RPSL expressions to vendor-specific
router code. In the near future such tools should not be necessary anymore, vendors should
be able to build their low-level router configuration based on RPSL.

In RPSL information is organized in objects, which are intended to communicate policy in-
formation among ISPs. This is done via the Internet Routing Registries [57], such as the
RADB [58]. The IRRs provide an easy way for consistent and up-to-date configuration of
filters. Furthermore, such a database facilitates troubleshooting failures, because prefixes are
registered along with contract information. For example if a customer reports that a certain
prefix p is not reachable and the prefix is not registered, then it takes a lot longer to figure out
who to call to resolve the problem.

Yet there is a lot more potential in the IRR [59]. Unfortunately, most of a policy is stored as
text-comments in a database. While this still helps humans in debugging routing problems,
it becomes problematic for automated tools to validate routing policies, e.g., [60, 61]. In the
following we summerize some of the features of RPSL [50, 62, 63] as far as needed in this
thesis.

RPSL is structured in objects, which can be maintained by network administrators. To ensure
the authenticity of updates to the database, every object contains a maintained-by attribute
pointing towards a maintainer object. This contains a reference to an administrative and/or
technical contact as well as a specification of an authentication method to ensure that the
updates are coming from an authorized maintainer. Updating the database can be done via
e-mail and the authentication might be a clear text password or a PGP signed message [63].
The verification is performed automatically by the database.

In RPSL there are 12 different classes of records, that either describe portion of a policy, or
describe who is administering this policy. Objects are instantiated classes, which consist of
several attribute/value pairs. An attribute may appear once (single valued) or multiple times
(multi valued), depending on the specification. Values have a defined type and can be checked
during processing, e.g., when checking into a database. One class, which realizes one of the
core functionalities of RPSL is the route object. It contains a prefix and the origin AS of this
prefix. This allows to lookup all prefixes associated with an AS. With this it is possible to
generated prefix filters based on neighboring ASes, without human interactions between the
two ASes. Such filters can minimizes the error of address space that is not “owned” by an
AS.

Prefixes can be grouped using the route set objects. By convention route set names must start
with “rs-” (e.g., valid route set names might be RS-FOO or RS-BAR). Objects referencing
other objects can be created. Beside route sets, which contains routes, there are AS sets (“as-
”), which contains ASes, peering sets (“prng-”), which pack several BGP sessions into one
object, filter sets (“fltr-”), which contain prefix, AS path or community filters, etc..

The delimiter “:” is used to construct a hierarchical namespace. Each level of the hierarchy
may have a new maintainer, which is responsible for all objects lesser levels. Each level-name
either consists of a route set name or a AS number. At least one route set name must be present
in the hierarchy to indicate the type (e.g., AS1:AS-FOO, AS1:AS2:RS-CUSTOMERS,. . .).

Each AS has one unique object within the IRR [57], which is called the aut-num object. It is
supposed to describe the routing policy of an AS. This is realized via two attributes: import

19

2 Internet Routing Architecture

and export. Both can appear multiple times. To determine whether an update is accepted
or distributed, the applicable statements are searched in the order they are specified for a
matching rule. An simple example is shown in Figure 2.7 and states that AS1 has one or
more (direct) connections to AS2 and accepts the address space 131.159.0.0/16. No
further restrictions apply.

aut-num: AS1
import: from AS2 action pref = 1; accept { 131.159.0.0/16 };

Figure 2.7: Example of the aut-num object.

import: from <peering> [action <action>] accept <filter>;

Figure 2.8: Definition of the aut-num import attribute.

Figure 2.8 shows the generalized format of such import statements. Note that the export
statement has a similar structure. Here <peering> specifies BGP sessions for which the
statement (called factor) applies. This can apply to a neighboring AS as whole, or only to a
subset of the sessions (specified via AS SET (AS-) or a peering set (PRNG-)). <filter>
specifies which prefixes can be accepted by an AS. Beside prefix filters this includes AS path
restrictions as well as community filters. It can be stated explicitly or via a filter set (FLTR-)
reference. The <action> is optional and specifies in which way the update is manipulated if
it passes the filter. Actions can change any attribute of the update except the prefix. Common
actions are addition and/or removal of communities or changes to the local preference, etc..

RPSL is designed in such a way that it should be possible to specify any policy using multiple
import statements. Yet, this is inconvenient, if one considers the following policy example:
three customers are connected to an ISP (AS1). Prefix filters should be applied based on the
address space owned by each customers respectively. Furthermore, an AS path prepending
service should be offered to all three customers, which is triggered by a community (e.g., “do
not prepend the AS path” = no community present; “prepend AS1 one time” = community
1 : 1 is set; “prepend AS1 two times” = community 1 : 2 is present). To specify such a policy,
nine import statements are needed – three for each customer to filter the routes and to en-
able AS path prepending. To ease the configuration structured policies have been introduced,
which enable on to handle different tasks independently. So it is possible to compose several
factors into a term. Figure 2.9 shows a generalized term that handles the AS path prepend-
ing14. Such a generalized term can be combined via the “refine” statement with other terms,
e.g., to the above mentioned route-filter, see Figure 2.10. Such a term is processed in the
following way: each term (refine-element) is searched for the first match. If any of the terms
has no matching factor, the update will be denied. Otherwise, all actions of the matching
factors are collected and applied to the update.

Unfortunately there are some limitations within RPSL. One is that community wild-cards
(such as regular expressions) are not supported (by in the current version of RPSL). Fur-
thermore, not all router configuration statements can be mapped to RPSL expressions. For
example:

• the maximal number of prefixes from neighbor to accept
• an MD5-based BGP authentication

14Note that AS-ANY is a representation for all neighbors; ANY is a filter accepting anything

20

2.3 State of the art and related work

{
from AS-ANY action aspath.prepend(AS1, AS1);

community.contains(1:2);
from AS-ANY action aspath.prepend(AS1);

community.contains(1:1);
from AS-ANY accept ANY;

}

Figure 2.9: Generalized RPSL term for AS path prepending.

import: {
from AS-ANY action aspath.prepend(AS1, AS1);

community.contains(1:2);
from AS-ANY action aspath.prepend(AS1);

community.contains(1:1);
from AS-ANY accept ANY;

}
refine
{

from AS2 accept AS2;
from AS3 accept AS3;
from AS4 accept AS4;

}

Figure 2.10: Example of structured policy in RPSL.

• e-bgp-multihop
• default routes

However, RPSLs features have proven to be extremely useful in terms of debugging, doc-
umentation, and legibility. Hopefully router vendors will soon allow operators to configure
their routers via RPSL. Already some tools exists (e.g., IRRToolSet) that allows operators to
check, manipulate and transformate RPSL.

2.3 State of the art and related work

This section discuss related work in the context of (i) configuration management, (ii) BGP
dynamics, and (iii) router testing.

2.3.1 Configuration management

Work towards systems that help ISPs manage and structure their policies exists in a mani-
fold diversity. Tools that are able to manage routers or switches in an automated or semi-
automated fashion range from free software scripts, like RANCID [64], to commercial prod-
ucts from companies such as AlterPoint, Cariden, CPlane, Gold Wire Technology, Intelliden,
Network-Clarity, OpNet, Rendition Networks, Tripwire, Voyence, Wandl, etc.. This set also
includes products from router vendors themselves, e.g., Cisco IP Solution Center [65]. Such
tools can help with keeping track of router updates, maintain consistency across similar de-
vices, and document critical changes automatically. The goals of such utilities are to help

21

2 Internet Routing Architecture

administrators to reduce manual configuration and provisioning tasks, and this is claimed
to lead to a minimization of human errors, which in turn reduces potential downtime. Fur-
thermore, they provide more security through tight access controls and configuration audits.
Some even include mechanisms to optimize packet traffic flows. While most products have
the capability to manage multiple devices in the network at the same time, most of them focus
on direct device management, e.g., the routers. They allow, e.g., setting up MPLS, VPNs, or
downloading previously stored configurations. Note that most of these products are targeted
towards enterprise solutions, and only some of them are developed for the needs of Internet
service providers. This is due to the fact that policies of ISPs are often complex and do not
fit any pre-defined specifications. Therefore most ISP rely on engineers for maintaining and
realizing their routing policy. To the best of our knowledge, this task is often accomplished
by using a combination of small utilities, including homegrown scripts, templates, and human
experience.

Recent work by Caldwell et al. [18] shows the problems inhering automated AS-wide policy
configuration and demonstrate possible directions. Gottlieb et al. [66] describe an automated
provisioning system for BGP. How to migrate, store and analyze router configuration is pre-
sented in [18, 67]. Other work, such as [68], shows the complexity of creating automated
configuration tools. For example in [68], the authors illustrate an automated firewall configu-
ration tool.

A good overview about how network operators are using BGP to realize various policies in
their network (such as traffic engineering) can be found in Uhlig et al. [20]. Yet the im-
plications of certain routing policies on the control and data plane can be difficult to pre-
dict [69, 70]. To gain a better understanding about the control plane interactions within the
Internet, some projects monitor the routing system, e.g., [59], and try to validate the rout-
ing policies in use, e.g., [17, 60, 71–73], while others try to understand their interactions via
simulation, e.g., [74].

Griffin et al. have shown that policy interactions between ASes can cause BGP divergence at
an Internet-wide level [7,75,76]. Even assuming the unrealistic case that all ISPs register their
policies in the IRRs, the complexity for validating the Internet routing system convergence
properties is NP-hard [16, 23, 41]. This indicates that the research community needs a solid
understanding about BGP dynamics occurring in the Internet.

2.3.2 BGP dynamics

In his work on developing a signal propagation model for BGP updates, T. Griffin [12] ob-
served that “In practice, BGP updates are perplexing and interpretation is very difficult”. And
indeed, BGP has been studied extensively within the last few years, e.g., [77–83], but is still
an active research area. In general it is difficult to infer root causes of observed BGP updates
given the opaque routing policies and the limited visibility into the topology [35].

Unexplainable large convergence times have been reported [84] and it is unclear whether
they are attributable to protocol interactions [13–15], implementation idiosyncrasies [85],
hardware limitations or other factors [19].

Researchers address these problems by characterizing the routing table [86], analyzing un-
usual events [87], and/or study unexpected behavior [88]. For example, Geoff Huston looks at

22

2.3 State of the art and related work

general statistics of the routing tables and is even able to derive valuable insights into Internet
evolution [89] (i.e., the “dot-com-boom” showed significant different characteristics of how
people used address space allocations and the way they announced more specific prefixes for
doing traffic engineering).

Typically such studies about BGP dynamics analyze either particular destination prefixes to
understand the trend of BGP update growth over time [45,90], or particular time periods, e.g.,
during worm outbreak, to understand how BGP behaved while Internet is under stress [91].

Caesar et al. [92] as well as Chang et al. [93] use three dimensions to infer the origins of
routing instabilities: time, views, and prefixes. Yet Caesar et al. first distinguish quiescent and
turbulent periods while Heidemann et al. perform the per view and prefix steps in one cluster-
ing step. Lad et al. [94] use an idealized model which assumes shortest path routing. Finally
Wu et al. [95] designs a system that identifies a few dozen significant routing disruptions
within millions of BGP update messages.

Still a lot of questions cannot be answered by just observing update propagation. Therefore
some researchers actively inject faults into the network (e.g., BGP Beacons [96]). For exam-
ple Labovitz et al. [97–100] studied reachability, packet loss rate, and delay to a set of web
hosts while the stub networks experienced routing changes. Follow-up studies by Mao et
al. [101], Bush et al. [8], and Bürkle [102] investigated similar questions with more beacons
and more observation points.

To understand BGP dynamics, researchers need a solid knowledge about the Internet topology
(which includes ISPs policies, AS relationships, etc.). Some projects start with large Internet
mapping efforts, for example by using traceroute to discover the network topology [103,
104]. Others try to infer the routing policies without access to the router configurations,
e.g., [105,106]. Since Gao’s [31] AS relationship inference methodology has been published,
researchers try to get a rule of thumb who is a customer of which provider and who peers with
whom [107,108]. But commercial relationships can be complex, and the decisions chosen by
BGP do not have to match the optimal available paths in the Internet [109, 110].

2.3.3 Router testing

Besides those dynamics that can be studied from active and passive BGP research (which
uses the Internet itself as test environment), there are also efforts from vendors, ISPs, the
IETF and researchers to investigate protocol behavior before the deployment in the oper-
ational network. Those studies are conducted in test-beds that consist of a small number
of routers and test-traffic generators, e.g., Router Testers from Agilent [111], IXIA [112],
Spirent Communications [113] or Arsin [114].15

Furthermore, the work of the IETF, in particular the Benchmarking Methodology Working
Group (bmwg) [22], is relevant for testing research. They recommend metrics and test setups
for test-beds. This includes for example a terminology to standardize how to measure eBGP
convergence in the control plane of a single BGP router [115, 116].

15Note that those products do not generate IP or routing traffic that is necessarily consistent with the traffic in the
Internet. For example test-traffic often does not reflect temporal variability as captured by self-similarity nor
does it capture the full range of IP addresses.

23

2 Internet Routing Architecture

Studies at the router level explain the behavior of protocols at the network scale. Related
work such as [101, 117, 118] examines the details of the implementation variants of different
vendors. Other work looks at how routers react to large routing tables loads [119]. We address
related issues in Chapter 6.

24

3 AS-Wide Inter-Domain Routing
Policies

A network’s routing policy is embodied in the configuration of the routing protocols of each
individual router and link in the network. These configurations are the basis on which the
Internet routing protocols create the “network-wide intelligence” that transforms individual
network components into an operational IP network [120]. Initially the goal of a routing
policy was to just ensure connectivity. But nowadays the requirements and therefore the
complexity has grown substantially and include maintaining contractual or business rela-
tionships between different domains, ensuring resilience requirements even under overload,
achieving stability, guaranteeing efficient internal operations, and supporting growing cus-
tomer demands to control their traffic flows.

Sophisticated customers of Internet transit services demand more control over how their
routes are propagated past their immediate transit providers (with the goal to control the paths
of the traffic attracted by the routes [121]). Community-signaled services address this prob-
lem, and more recently they have become an essential part of transit providers service offer-
ings. The NOPEER community [122] gives a simple and useful example that has additional
appeal by virtue of defining Internet-wide semantics. An overview of more community-based
hacks for traffic engineering can be found in [123].

Even though the demands on the routing policy have grown, the way how a routing policy
is expressed and realized has not changed. It is still embedded in the low level router con-
figuration commands of the individual network components of the network. This means that
an AS-wide entity, the routing policy, is not managed AS-wide but rather component-by-
component. Therefore artifacts within the routing policy can lead to routing stability prob-
lems, e.g., [7,124]. Even worse, component-by-component realization often involves manual
configuration which is error-prone and expensive [18, 19, 66, 67, 72]. In the worst case a
simple omission on one router can invalidate the overall policy1.

Already the problem of formulating the AS-wide routing policy of an ISP is non-trivial. The
IRR, which facilitates universal access to routing policies and is part of an architecture for
coordinating Internet routing policies [128], has not yet fulfilled its potential [59]. Either the
ISP does not even try to formulate its policy in the proposed language, RPSL, or the policy
is not consistent with the routing policy actually realized. Yet, the growing complexity of
policies as well as the growing customer demands in addition to the intrinsic complexities of
BGP itself accentuate the need for a system that allows an abstract formulation of the AS-wide
routing policy of an ISP as well as the automatic configuration of the network components.

1Discussions at operator forums, such as NANOG [125], RIPE [126], APRICOT [127], shows that running
a large ISP is not only done by optimizing selfish interests but also involves participating in a community
composed of competitors. Mailing lists document nicely the daily struggle of operators to troubleshoot invalid
policies and their effects.

25

3 AS-Wide Inter-Domain Routing Policies

In this chapter we propose a system for formulating and managing the routing policy as a
first class entity. Using the routing policy as its basis, our system generates the necessary
configuration configlets for all routers in a specific network to realize the routing policy as
well as a documentation of the routing policy. In effect we raise the management level for
the routing policy from the management of individual network components to managing the
routing policy itself. A version of our system is in production use at a Deutsche Telekom
(AS 3320), an ISP with more than thousand routers.

The remainder of this chapter is organized as follows: in Section 3.1 we explore the concept of
a routing policy and then explain, in Section 3.2, our system design in more detail. Section 3.3
describes the data models. Section 3.4 discusses how to construct a database-driven provi-
sioning system, the configurator, based on these data models. This chapter concludes with
Section 3.5 which shows some generated configlets for the examples presented in Section 3.3
and discusses our experiences with the system. Section 3.6 summerizes our contributions.

3.1 Network-wide routing policy

Before we can present our system for defining and realizing an AS-wide routing policy we
need a better understanding of the underlying concepts of a routing policy.

A routing policy should capture the essences of the many rules according to which ASes in-
teract with each other. The multitude of such rules include rules for realizing best common
practice (such as martians filter, prefix aggregation), rules for internal routing (including filter-
ing of internal address space, traffic engineering), rules for maintaining business relationships
(such as a peering policy), and rules for offering value-added services to customers (such as
community-signaled services). As a result, a BGP session is governed by some combination
of these rules, which together determine which routes are accepted on ingress or propagated
on egress. The building blocks for an AS-wide routing policy are policies and services. Each
policy or service corresponds to a rule like the ones discussed above. The difference is that
a service is an optional value-added feature, that can be booked for any neighbor. Policies
are applicable AS-wide (within the AS). One aspect to consider is that rules change over
time, that new rules are added while others are removed, and that even policies may become
services or vice versa.

Almost none of the above rules refer to specific BGP neighbors or specific network compo-
nents. Indeed, the rules can be formulated independently of the specifics of any network.
Just the selection of BGP sessions, to which a rule has to be applied, depends on certain pa-
rameters of the BGP session, the BGP neighbor, or the services that are booked for the BGP
session or the BGP neighbor. In fact, certain rules cannot be specified on a session-by-session
basis. Rather they require that some actions are taken for all routes entering a network and for
all routes leaving the network. But depending on the session over which they enter the AS and
the session over which they leave the AS the actions have to differ. For example, a peering
policy [129] may mark all routes on ingress with a community that reflects the peering type
of the BGP session and on egress it will filter the routes based on the community tags and the
peering type of the session. Here the peering type, a parameter of the session, determines the
actions on the routes. Other rules, such as a community-signaled black-hole service [130],
require different actions to be taken for different sets of sessions. For those sessions that have

26

3.2 System design

subscribed to the service, the rule checks if an appropriate black-hole community is set for
a route. If it is, traffic to that prefix is redirected to a discard interface. If a session has not
subscribed to the service, the rule does not allow the BGP neighbor to send routes tagged
with the black-hole community. These are rejected.

Relying on the above example we identify the following strategies for defining an AS-wide
routing policy:

• It consists of a collection of policies and services.
• Policies apply AS-wide.
• Services are bookable for each session or each neighbor.
• Policies and services perform route manipulations for subsets of BGP sessions. (A

route manipulation consists of applying a filter to the incoming or outgoing routes and
manipulating their attributes.)

• Subsets of BGP sessions are identified via conditions on BGP session parameters or
their services.

• A policy/service may perform route manipulations on multiple subsets of BGP ses-
sions.

Accordingly, any system that supports the definition of an AS-wide routing policy needs
primitives for defining policies and services as well as specifying sets of session and route
manipulations. There is no need for these primitives to be network-specific. Indeed, in prin-
ciple it should be possible to use a policy or a service defined by one ISP within another
one.

3.2 System design

In this chapter we propose a simple and efficient way for defining AS-wide routing policies
and realizing them. In effect we are bridging the gap between the concepts underlying AS-
wide routing policies and how routing policies have to be configured on a session-by-session
basis. In order to realize a routing policy, we need additional information besides a policy
specification: a description of the network and a library with BGP operations to be used as
building blocks. All three entities are realized as databases. These databases are the input to
a configurator that generates eBGP configuration configlets for all routers (all BGP sessions)
in the network. In addition, the configurator generates a policy description in RPSL, which, if
desired, can be published at the IRR and may in the future be useful for generating configlets.
An overview of the system is shown in Figure 3.1.

In this section we briefly sketch the abstractions we have chosen for the inputs to our tool,
the configurator, before discussing why these are sufficient for satisfying the concepts of an
AS-wide routing policy. Then we explain how the configurator generates the desired output,
configlets for all eBGP sessions. We end this section with a discussion of the advantages that
our system offers.

3.2.1 Concepts underlying the configurator input

The decomposition of the inputs to the configurator into three logical entities, routing policy
specification, network specification, and library with BGP operations, imposes a clear sep-

27

3 AS-Wide Inter-Domain Routing Policies

Confi−
gurator

R1RtConfig

RtConfig Rn

RtConfig

eBGP Configlet for R1
(embedded RPSL expressions)

for all eBGP parts
RPSL documentation

specification

Network
specification

Policy

eBGP operations
Library of

Configlet

... ...

Configlet

Figure 3.1: Overview of proposed system.

Figure 3.2: Example network Figure 3.3: Main database objects and their re-
lationships.

aration of tasks and is aligned with the organizational boundaries within an ISP. The policy
designer should focus his/her attention on the set of policies and services (e.g., based on what
criteria tagging should be done, where to filter or manipulate attributes). The network ad-
ministrator, who adds a new BGP session, should only have to worry about the parameters
of the specific session and which services are to be booked (e.g., add routers to the network,
setup customers, active services in the network as booked by customers). He/she does not
have to worry about ensuring that the configuration of this session respects all policies. The
person realizing and testing some BGP operation has no need to know which BGP sessions
use this specific operation (e.g., testing that the configuration works on the routers that are
in use by the ISP before the configuration gets uploaded to routers in production use; this
includes evaulating new features).

The overall AS-wide routing policy is stored in the database of the policy module and consists
of a set of policies and services. The main difference between a service and a policy is that
services are bookable and therefore require interactions with the network module, while poli-
cies apply AS-wide. Accordingly, we refer to services as available services and to policies
as enforced policies. As they rely on the same concepts they are both specified as service.
Each service is expressed as one or more steps of first selecting a set of BGP sessions based
on some conditions on the network module database and then applying one or more BGP
operations from the back-end module database to these sessions. Each of these combinations
is referred to as a sessionset. Note, that this process results in two selection steps. The first
step, the condition in the sessionset, selects a set of BGP sessions. The second step, the BGP
operation, selects a set of routes (via a filter) for that session. Both levels of selection are
crucial.

The network specification is stored in a database within the network module. It contains a
description of the network including routers, BGP neighbors, and BGP sessions with their
parameters and list of booked services. We include BGP neighbors (another AS), as most re-

28

3.2 System design

lationships are realized via multiple BGP sessions between the ASes, that either use the same
or similar services. To simplify the specification of the network inheritance of parameters is
supported. The BGP session inherits (unless overwritten) its router-specific elements from
the router on which it is configured and its other elements from the BGP neighbor. Services
are parameters of BGP neighbors and sessions. The only difference is that parameters are
singular, while services are not. A network operator might want to use different service pa-
rameter values for different subsets of routes in order to, e.g., tune traffic flows through its
network. We support this via the concept of cases.

The back-end module database contains a library of fragments. Each fragment pairs a name
with a specific BGP operation. A BGP operation is specific to a single BGP session. A BGP
operation consists of selecting a group of routes, which are to be accepted or denied, and per-
forming specific BGP attribute manipulations on the selected routes. Route selection is done
via filters based on lists of prefixes, lists of communities, regular expressions over AS paths,
etc.. Attribute manipulations involve some actions on route attributes, e.g., setting the local
preference. These are very low-level operations, whose syntax depends on the configuration
language supported by the router on which the session is realized. Since, for the purpose
of specifying a routing policy, this syntax is irrelevant, the functionality is encapsulated in a
library object which can be referred to by a name. Fragments are the building blocks for our
assembly system, the services and policies.

Besides encapsulating vendor-specific realizations each fragment also includes a non-router
vendor-specific one to enable us to generate a realization of the routing policy via an in-
termediate language, a necessity if the number of router vendors that have to be supported
increases. RPSL, an object-oriented language designed for publishing routing policies, is the
prime candidate for such an intermediate language. RPSL supports most of the features pro-
vided by the vendor-specific languages, has excellent support for filter handling, delegation
of responsibility, and the ability to operate on sets of routes, sets of BGP sessions, and sets
of ASes. As filter handling and delegation are hard problems that are well handled by RPSL,
we allow the fragment writers to include RPSL filter expressions inside the vendor-specific
parts of the fragments. These are resolved with the help of RtConfig [56], which is part of
the IRRToolSet [55]. RtConfig converts RPSL expressions to vendor-specific router config-
urations. Since RtConfig can interact directly with the IRR [57], it is possible to retrieve
information about neighbors and their sets of routes. This allows us to delegate the responsi-
bility of specifying, e.g., a customer routeset, to the customer itself. This has the benefit that,
if the customer changes its routeset, he can handle the change him-/herself [63]. No human
interaction with the ISP is necessary to update the filters, a rather convenient feature.

An overview of the main objects in the three databases is shown in Figure 3.3. This figure
also includes the various relationships between the modules:

• The fragments of the back-end module need information about the specific router and
the specific BGP session in order to be converted into a configlet. We solve this by
writing fragments as templates. They can use variables to refer to network-specific
elements and a functional interface to access other data sources.

• As soon as a service is specified as an available service, it is made bookable as a
BGP session parameter. This enables the network operator to book the service for
any session. Note, that each service specification defines an appropriate language for
specifying the now feasible network configuration. Enforced services are not available

29

3 AS-Wide Inter-Domain Routing Policies

as BGP session parameters!
• Conditions within the policy module are based on the session parameters from the

network module. This is again solved via variables for referring to network-specific
elements.

• Services are defined by applying fragments to subsets of BGP sessions. Such references
are possible by simply using the name of the fragment.

3.2.2 Enabling abstract routing policy specification

Next we discuss how our system is able to address the concepts identified for defining a rout-
ing policy.
“Policies and services perform route manipulations”: For us a route manipulation corre-
sponds to selecting a group of routes, which are to be accepted or denied, and performing
specific BGP attribute manipulations on the selected routes. Accordingly, each route manip-
ulation is a BGP operation. The policy designer can use fragments to specify what kind of
route manipulations to perform as long as the operation of the fragment is well-specified and
documented.

“Subsets of BGP sessions are identified via conditions on BGP session parameters”: While
policies can be specified in an abstract manner, they eventually have to be combined with
the network in which the routing policy is realized. At that point the policies have to be
applied to specific sessions. The choice of sessions depends on the session parameters and
the booked services. This network-specific information is accessible to the policy designer
via variables referencing the network elements. Identification or rather selection of BGP
sessions is therefore possible via conditions on any of the BGP session parameters.

“Subsets of BGP sessions are identified via conditions on their services”: Once an service is
specified as available service, it is accessible as BGP session parameter. There is no funda-
mental difference in identifying or selecting sessions based on booked services or based on
other session parameters. The condition can include both.

“Policies and services perform route manipulations on subsets of BGP sessions”: Given that
fragments are organized in the back-end module database and network elements are organized
in the network module database, policies or services can be defined by multiple selections
and one join operation. Identifying BGP sessions via conditions is a “select operation” on the
network database, determining the appropriate route manipulations is a “select operation” on
the back-end module database. Combining them is a “join”. This is expressible via sessionset.

“A policy/service may perform route manipulations on multiple subsets of BGP sessions”:
This corresponds to multiple select and join operations, meaning multiple sessionsets.

“Policies apply AS-wide; services are bookable for each session or each neighbor”: Avail-
able services are bookable by the network administrator via the network module, enforced
policies are not selectable. Their route manipulations just depend on the conditions that they
use for selecting BGP sessions.

This completes our discussion about how our proposed system allows us to address the con-
cepts for defining routing policies. Lets consider how to realize the configurator.

30

3.2 System design

3.2.3 Design alternatives for the configurator

The next problem to tackle is how to realize a routing policy. Realizing a routing policy cor-
responds to generating appropriate vendor-specific configlets for all routers in the network
using the data of the three modules: policy, network, and back-end as input. This is the task
of the configurator. We choose to generate configlets with embedded RPSL filter statements
as well as pure RPSL. The latter currently serves documentational purposes. But as the ca-
pabilities of RPSL, RtConfig, and the vendor-specific router configuration languages evolve,
and our experience with the system grows, this might become the basis for automatically
generating the configlets.

The motivation for using an hybrid approach is that it lets us benefit from the advantages of
generating both, while avoiding some of their disadvantages. The benefits of generating the
configlets directly are precise control over how policies are realized as well as the chance
to optimize the generated code. In addition, the tool can ensure that any filter IDs are used
consistently across different instantiations as well as across different routers (very useful for
debugging). This eases the transition from a manual configuration or template-based process
to our system in the sense that it is often possible to write policies that resemble the existing
configurations. Once all configurations are based on the configlets generated by the system,
it is possible to add new features by enhancing the routing policy. If there is a problem, it
is clearly within the configurator or any of its input databases. There are no dependencies
on other tools or developers. Indeed, since each fragment has a very precise and simple
functionality, they are easy to write and easy to test.

Currently our tool supports two router vendors: Cisco and Juniper. If the number of router
vendors increases, an intermediate language such as RPSL is not only useful but a necessity.
Still at this point RPSL does not suffice. In addition, RtConfig is a complex tool grown over
time that is fairly intolerant to mistakes in its input data, which is aggravated by a somewhat
sparse documentation. Another issue with RPSL and RtConfig is that they do not yet support
all features. Also adding support for new vendor features is not trivial and usually comes with
some time delay. These problems are circumvented by our hybrid approach.

The configurator proceeds by processing the services one by one. For each service, listed
under available service or enforced policy, it considers all sessionsets within their service
specifications. For each sessionset the sessions for which the condition evaluates to true
are selected. For each of these relevant sessions and all fragments within the sessionset it
adds the fragment together with the necessary parameters to a fragment_list at the session.
Once all services have been processed, the configurator generates the configlets from the
fragment_lists, one session at a time, by merging the appropriate vendor-specific realizations
of the fragment functionality into one configlet. The generation of the RPSL documentation
proceeds in a different order to take advantage of RPSL’s capability of grouping sessions.

The functionality within our system goes beyond RPSL’s concept of a policy. For RPSL a
policy is a BGP operation on a set of routes. For us a routing policy is collection of policies
and services that are each specified as first class entities. As a result if one adds a session to
the network in our system one has an explicit choice of which services to enable while all
policies are automatically applied. With RPSL one has to explicitly add the session to all sets
for all policies that need to be applied to this session. Still, our system is not a superset of
RPSL, rather it can be realized via RPSL.

31

3 AS-Wide Inter-Domain Routing Policies

3.2.4 Advantages of the approach

Lets consider the properties that our proposed system offers for defining an AS-wide routing
policy.

Abstraction: Our system allows us to express a routing policy as a set of enforced policies
and available services using high-level language primitives rather than forcing one to
use low level BGP filters and attribute manipulations. The specifications are stored in
a database which eases their maintenance.

Separability: It is possible to independently express how each policy is realized.

Extensibility: Extensibility goes two ways: First it is possible to add new policies or ser-
vices and/or to change existing ones. Changing existing or introducing new policies
is possible in stages. Second it is possible to take advantage of new router features
without having to change the routing policy. One just has to rewrite the appropriate
fragments.

Customizability: Services rely on fragments that can access network-specific parameters
and filters. As such the services are easily customizable. In addition, our decision to
enable the use of RPSL filters allows us to use an existing database.

Modularity: Our system encourages the policy designer to realize each of the many rules
of a routing policy as a service. In addition, the services are in principle independent
of each other. Of course if two policies manipulate the same BGP attribute, possible
conflicts in the realizations have to be addressed and resolved by the overall system.

Debuggability: By adding comments to the configlets the origin of each line in the gener-
ated configlet it is easily traceable. Each fragment can be debugged individually and the
system is able to recognize dependencies and force the designer to disambiguate them.
How optimized the generated configlets are depends on how optimized the fragments
are. To improve readability and consistency across routers some redundancy can easily
be justified as it improves debugability.

Testability: It is possible to automatically generate configlets for all common service com-
binations. These can then be used as test cases in labs or for manual inspection by the
routing policy designer.

3.3 Data model

Our proposed system relies on three databases, the network module, which captures the state
of the network, the policy module for specifying the routing policy, and the back-end module
for providing a library of base elements for formulating services. We choose to represent
each database as a set of XML documents. Among the advantages of choosing XML are: the
set of tags is flexible and extensible; XML is designed for representing data and is capable
of capturing structure even in semi-structured data; a wide range of editors and libraries are
available to ease the generation, maintenance, verification, and processing of the modules.

32

3.3 Data model

To illustrate the capabilities of our system we use the example shown in Figure 3.2 on page 28.
AS 1 uses our system and operates two routers: r1 and r2. It has two BGP neighbors: P and C.
While C (AS 2) is a customer with two BGP sessions (c1 to router r1 and c2 to r2), P (AS 3)
is a peer with one BGP session (p to r2). The routing policy consists of the policies: peering,
martians filter, and community filter and the services: black-hole and traffic engineering via
MED. The black-hole service is booked for all of C sessions and restricted to an authorized
routeset. In addition, C has the ability to use MED based traffic engineering on session c2.

3.3.1 Network Module

The task of the network module is the description of the components of the network that are
necessary for realizing a routing policy. On first sight one would say that these are routers
and BGP sessions. We choose to explicitly represent BGP neighbors as their BGP sessions
often share parameters and use the same policies. This allows BGP sessions to inherit prop-
erties from BGP neighbors. In addition, there are some AS-wide parameters, such as the AS
number. Figure 3.4 shows examples of how to describe network elements and the relavant
XML tags of the network of discussed above. (The * after an element indicates that it can be
used multiple times.)

In general, each <router> consists of a set of interfaces, is of a certain hardware type, runs a
specific OS version, is at a specific location, meaning in a country and geographic region, etc..
Yet, not all of these elements are relevant for expressing policies. So for example, location
matters only if policies tag routes with communities marking the location where the route
entered the network. The OS version is needed by the configurator to ensure that configlets
that have been tested for the specific OS versions are generated.

Each <bgpneighbor> captures a relationship with a specific BGP neighbor, which is re-
alized by a number of associated BGP sessions. Each BGP neighbor description includes
their AS number and some set of associated basic BGP configuration options, e.g., the max-
imum number of prefixes that it is allowed to announce. In terms of routing policy it is
mandatory/desirable to specify filters to be able to apply incoming and/or outgoing filters.
Furthermore, the routing policy has to include a service that ensures that the business rela-
tionship with the BGP neighbor is respected by enforcing the peering status: upstream, peer,
customer, etc.. We propose to enforce this via a policy rather then offering it as a service. Ac-
cordingly, the neighbor type is not a service parameter but an subelement of BGP neighbor.
This way it can be used in the condition of the peering policy. Observe, that there is no need
to specify on which routers the BGP sessions are realized.

Each <bgpsession> has to contain sufficient details to realize the session. This includes in-
formation about the endpoints, such as the IP addresses, port numbers, and AS numbers. As
one does not want to duplicate information from the router or the BGP neighbor we rely on
inheritance. This suffices to access the local endpoint information via a cross-reference to the
router. Furthermore, the BGP neighbor contains a cross-reference to all its BGP sessions. Ac-
cordingly, access to the remote endpoint information is possible. Cross-relationships are re-
alized by using the value of the <name> tag. This enables a BGP session to inherit properties
from the router as well as the BGP neighbor, including the service selection. To disable inher-
itance or to overwrite inherited values the subelements of <router> and <bgpneighbor>
are valid within <bgpsession>.

33

3 AS-Wide Inter-Domain Routing Policies

<router>
<name> r1 </name>
<loopback>1.0.0.1</loopback>
<location>
<city> Munich </city>
<country> DE </country>
<region> Europe </region>

</location>
<system>
<hw> GSR </hw>
<sw> IOS 42.0(12)ST3 </sw>

</system>
</router>

(a) Router r1

Router name <name></name>
Router IP address (e.g., loopback IP) <loopback></loopback>
Router location <location>

e.g., Region <region></region>
e.g., Country <country></country>

</location>
Router information <system>

e.g., Hardware type <hw></hw>
e.g., Software version <sw></sw>

</system>

(b) Subelements of <router>

<bgpneighbor>
<name> Neighbor P </name>
<neighborAS> 2 </neighborAS>
<neighbortype>

peer
</neighbortype>
<session> p </session>
<filter_import>

AS2:RS-I
</filter_import>
<filter_export>

AS2:RS-E
</filter_export>

</bgpneighbor>

(c) BGP neighbor P

Neighbor name <name></name>
Neighbor type (e.g., peer) <neighbortype></neighbortype>
AS number of the neighbor <neighborAS></neighborAS>
Import filter handle <filter_import></filter_import>
Export filter handle <filter_export></filter_export>
BGP session list <session></session>*
Subscribed services <services></services>

(d) Basic subelements of <bgpneighbor>

<bgpsession>
<name> p </name>
<myrouter> r2 </myrouter>
<remoteIPaddr>

2.0.0.1
</remoteIPaddr>

</bgpsession>

(e) BGP session p

Session name <name></name>
Router name (within this AS) <myrouter></myrouter>
AS number of remote endpoint <neighborAS></neighborAS>
IP address of remote endpoint <remoteIPaddr></remoteIPaddr>
Port number of remote endpoint <remoteport></remoteport>
Subscribed services <services></services>

(f) Basic subelements of <bgpsession>

<bgpsession>
<name> c2 </name>
...
<services>
<egress_med>
<case>
<filter> SET-2000 </filter>
<med_value> 2000 </med_value>

</case>
<case>
<filter> SET-3500 </filter>
<med_value> 3500 </med_value>

</case>
<default>
<med_value> 100 </med_value>

</default>
</egress_med>
</services>

</bgpsession>

(g) BGP session c2 for neighbor C

Service name <servicename>
Case differentiation <case>

Filter specification <filter></filter>
Parameter name <parametername></parametername>*

</case>
<default>

Parameter name <parametername></parametername>*
</default>

</servicename>

(h) Subelements of <service>

Figure 3.4: Network module XML elements

34

3.3 Data model

Network-wide policies <enforced_policies>
Service name <name> </name>*

</enforced_policies>
Available routing services <available_services>

Service name <name> </name>*
</available_services>

Service definition <service>
Name <name> </name>
Parameter list <parameter> </parameter>*
Session selection criteria <sessionset>

Ingress or egress <direction> </direction>
Session selection criteria <condition> </condition>
Group of manipulations <task>

Manipulations to perform <fragment> </fragment>*
</task>

Alternative manipulation group <default>
Manipulations to perform <fragment> </fragment>*

</default>
</sessionset>*

</service>*

Figure 3.5: Policy module XML base elements.

While services are defined within the policy module they are booked via the network module.
Accordingly, each <bgpneighbor> and <bgpsession> contains a <services> section.
The list of available services together with their parameters are extracted (indicated by the
italic font in Figure 3.4 (h)) from the list of services listed under <available_services>.

Still this is not quite sufficient to enable an appropriate specification of the services in the
network module. For example an ISP might want to use the MED value 100 as its default.
But for some subset of its routes it prefers the value 2000 and for yet another subset the
value 3500. This example highlights that a case differentiation is needed within the service
specification. Each case has the ability to select routes according to some filter and specify
a different parameter value. For the user of the system it can be useful to specify a default
case which is applicable if none of the other filters match. A default case is just a case
entry without filter. Such a service definition can lead to conflicts, e.g., if route A matches
the filters in the first and the second case entry. Which parameter value is appropriate? We
decided to resolve such conflicts according to the sequence in which the cases are specified.
In this case the parameter value from the first case entry is chosen for route A. We stress
that inheritance also applies to services: if a BGP neighbor uses a consistent service set with
consistent parameters for all BGP sessions it is sufficient to specify them once (at the BGP
neighbor). Otherwise they can be redefined, removed, or/and changed individually at each
session.

3.3.2 Policies

The policy module is at the core of the routing policy description. It allows a policy designer
to define an AS-wide routing policy using the concepts identified in Section 3.1. It enables
him to distinguish services that are selectable on a per session basis from policies, that have
to be applied AS-wide. Accordingly, the top level tags, see Figure 3.5, are <service> for
specification, <enforced_policy> and <available_service> to distinguish between
services and policies.

35

3 AS-Wide Inter-Domain Routing Policies

<enforced_policies>
<name> peering </name>

</enforced_policies>

<availabe_services>
<name> blackhole </name>

</available_services>

<service>
<name> blackhole </name>
<parameter> <blackhole_set/> </parameter>
<sessionset>

<direction> ingress </direction>
<condition> IF($service.blackhole) </condition>
<task>

<fragment> ingress_blackhole_community </fragment>
<fragment> ingress_blackhole_accept </fragment>

</task>
<default>

<fragment> ingress_blackhole_community_deny </fragment>
</default>

</sessionset>
</service>

<service>
<name> peering </name>
<parameter> $session.neighbortype </parameter>
<sessionset>

<direction> ingress </direction>
<task>

<fragment> ingress_mark_neighbortype </fragment>
</task>

</sessionset>
<sessionset>

<direction> egress </direction>
<condition> EQUAL($session.neighbortype, "peer") </condition>
<task>

<fragment> egress_allow_customer </fragment>
<fragment> egress_allow_self </fragment>

</task>
</sessionset>
<sessionset>

<direction> egress </direction>
<condition> EQUAL($session.neighbortype, "upstream") </condition>
<task>

<fragment> egress_allow_customer </fragment>
<fragment> egress_allow_self </fragment>

</task>
</sessionset>
<sessionset>

<direction> egress </direction>
<condition> EQUAL($session.neighbortype, "customer") </condition>
<task>

<fragment> egress_allow_all </fragment>
</task>

</sessionset>
</service>

Figure 3.6: Policy module XML examples

36

3.3 Data model

Recall that a service consists of multiple sessionsets each of which uses a condition for se-
lecting sets of BGP session and then applies a set of fragments to realize some route manipu-
lations. This structure is reflected in the data model, under <sessionset>. It contains, with
<task>, references to the appropriate fragments of the back-end module for realizing the
route manipulation functionality, and with <condition> the ability to specify the desired
condition.

Lets review how to select sets of BGP sessions. For a policy the selection depends on some
parameters of the session. For a service it matters if the service is booked. In addition, the
realization of the service might depend on some parameters of the session. Accordingly,
useful selection criteria include, besides the direction of the session, any of the session pa-
rameters specified in the network module. These are accessible via cross-references using the
following (PERL like) syntax: $element_name.$subelement_name. All elements of the
network are available as such variables for defining services. As the direction of the BGP ses-
sion, ingress or egress, in which some actions should be applied is orthogonal to the condition
for selecting set of session we choose to explictly separate it. Accordingly, <sessionset>
contains the subelements: <direction> and <condition> for selection purposes.

The <condition> allows the policy designer to select BGP sessions based on equality, on
numerical comparisons (LOWER, GREATER, EQUAL), or/and on existence tests (IF), etc., on
the session parameters, the booked services, and/or the parameters of the booked services. In
addition, it is possible to create more complex conditions using the logical operations AND,
OR, NOT. It is easily possible to expand this set of operators.

Sometimes it is useful to bundle the specification of which route manipulations should be
performed, if the condition evaluates to true, with those that should be performed, if the
condition evaluates to false. For example, the latter is useful to specify the behavior, if a
service is not booked, while the former is useful to specify the behavior, if the service is
booked. We provide this ability via <task> and <default>. <default> allows the policy
designer to specify which fragments to apply to those sessions not selected by the condition
tag in the same direction. To finish the specification of the services we need the ability to
specify the names of the service parameters via parameter. Note, that parameters are only
sensible for available services but not for enforced policies.

Now, that we have discussed how to define a routing policy, we show how to specify a routing
policy consisting of a black-hole service and a peering policy. We structure our discussion by
first specifying the service informally. Next we analyze how it can be represented using our
schema. Finally, we explain how the chosen realization, see Figure 3.6, fullfils the informal
specification.

Black-hole service:

Specification: A possible black-hole service offering might be: If a customer sends
a route for a prefix tagged with a specific black-hole community then the AS
rewrites the next hop of the route such that the traffic is discarded or could be
analyzed. To avoid abuse this is only possible for some well-specified set of
prefixes, Ps. (Typically consisting of some of the more specifics of the prefixes,
P, that a customer is allowed to announce.)

Analysis: Such a service only requires a sessionset for the ingress direction. If the
customer has booked the service and the black-hole community is present, then

37

3 AS-Wide Inter-Domain Routing Policies

the next hop has to be rewritten. Furthermore, care has to be taken that the prefixes
in Ps, which are not part of P, are not rejected. If the customer has not booked the
service then routes, tagged with the black-hole community, should be rejected.

Realization: One sessionset suffices. Its direction is ingress and the condition is used
to select sessions that have booked the service. The task for all those sessions
that match the condition is to use the fragments ingress_blackhole_com-
munity and ingress_blackhole_accept. This ensures that if the commu-
nity is present the appropriate route manipulations happen and also accepts the
prefixes specified in the blackhole_set. If the session has not booked the ser-
vice, ingress_blackhole_community_deny is used to reject invalid routes:
routes tagged with the black-hole community. Note that there is a difference
between rejecting the route (which could lead to a withdraw, if the route was pre-
viously accepted) and an ignore (which would just remove the community that is
not allowed). The appropriate action depends on the routeset.

Peering policy:

Specification: An AS may partition its set of neighbors into several classes such as,
customers, peers, upstream, etc., and use the following peering policy: announce
all routes to its customers; announce all routes learned from customers to its peers
and its upstreams.

Analysis: This service requires sessionsets for ingress as well as for egress. On
ingress the AS marks all routes with the neighbor type of the session over which
it receives the route. On egress side it filters routes based on these neighbor type
marks.

Realization: One sessionset is not sufficient, since different tasks have to be taken for
ingress and egress and on egress for customers and peers respectively upstreams.
On ingress no distinction between the sessions is needed, as all routes have to
be tagged. Accordingly, no condition is needed and the tagging is performed
with the fragment ingress_mark_neighbortype. On egress the distinction is
based on the neighbortype of the session. The variable that enables access to the
value of this session element is $session.neighbortype. The condition is
based on the value of the variable. More specifically the value is tested against a
fixed string: peer, customer, or upstream. If the neighbortype is peer or upstream
the two fragments egress_allow_customer and egress_allow_self are
used to ensure the appropriate action. If the neighbortype is customer no specific
filtering is necessary.

3.3.3 Back-end module

The back-end module provides a library of fragments for performing route manipulations and
their vendor-specific realizations for use by the policy module. Each fragment is a capsule for
selecting prefix groups and then performing specific BGP operations. The task of realizing a
fragment can be delegated to an expert for that vendor.

Fragments are the building blocks for our assembly system, the services. Each fragment is
a configuration template that can consist of a filter for selecting routes and an action that

38

3.3 Data model

manipulates some of the attributes of the selected routes. This suffices as the service spec-
ification enables one to use multiple fragments in the same sessionset. Therefore, should a
fragment become too complicated, it can be split into two fragments. Accordingly, fragments
are easy to write and simple to verify.

A particularity that has to be addressed is the need of a uniform way to access information
from the network and the policy module while dealing with the specifics of the router OSes.
This is solved in the back-end module in the same way as the policy module via variables.

We further simplify the task of the fragment designer by delegating the handling of some
naming conventions and some syntax particulars to the configurator. One example is the
space of community values. A community value consists of two 16-bit values X and Y writ-
ten as X:Y, where X is the ASN that defines the mean of the value Y. Given that an AS may
want to support a whole range of community signaled services one needs an easily adaptable
mapping between the service specifics and community values that can be used for fragment
specification. The first approach would be to use variables. Yet, since the result can depend on
another variable, we rather use a functional notation: e.g.,community_value(· · ·). The pa-
rameters to the “function” can be variables, that access parameters from the network module.
This is useful for example when marking routes by the region in which they entered the
AS via community_value($session.region). On routers Asia this will be replaced to
community_value("Asia"), which in turn gets transformed to the specific community
value by evaluating the result of the community_value-function. Even though the specific
value, e.g., for community-pattern-matching-expression, might depend on the vendor OS2.
Another problem that can be circumvented using the functional notation is that for some ven-
dors and some purposes, e.g., community filter list, one needs consistent names. Those can be
generated in the same fashion, just using a different function name, (community_filter_
name("black-hole").

Another particularity is that, in writing policies, one does not want to distinguish, if a pa-
rameter used as a filter imposes a restriction to a specific prefix set, or an AS set, or is an
expression on the AS path, etc.. Yet, for most vendors each of the above filters requires a
different syntax. We solve this problem in the same manner as the naming problem, by using
a functional notation of the following form: filter($blackhole_set).

Given that each fragment has to contain the templates for each vendor, the top level XML
elements currently include <rpsl>, <ios>, and <junos>. RPSL is treated as just another
vendor. Once the system supports additional vendor OSes this list has to be expanded. An
overview of the elements of the back-end module together with an example fragment is shown
in Figure 3.7.

For RPSL it is easy to follow the idea that each fragment consists of filters and actions. In-
deed, <filter> and <action> are the only subelements. Each one contains the RPSL code
that realizes the filter or the action. Both filters and actions can embed variable references
and function calls that are resolved by the configurator.

In Cisco IOS the basic setup of a BGP session, including overall session parameters, is re-
alized within the “router bgp” block of the configuration tree. “Routemap” is the syntax

2We do not need to pass the OS as a parameter, since this information is available to the configurator via the
network module.

39

3 AS-Wide Inter-Domain Routing Policies

Fragment <fragment>
Name <name> </name>
RPSL realization <rpsl>

Filter specification <filter> </filter>
Action specification <action> </action>

</rpsl>
IOS realization <ios>

Session selection/parameter <bgp> </bgp>
Filter/action specification <routemap> </routemap>*
Filter list specification <filterlist> </filterlist>*

</ios>
JUNOS realization <junos>

Session selection/parameter <protocols> </protocols>*
Filter/action specification <policy-options> </policy-options>*

</junos>
</fragment>*

<fragment>
<name> ingress_blackhole_community <\name>
<rpsl>

<action>
next-hop=172.24.42.172;
community.append(community_value("no-export"))

</action>
<filter>

community.contains(community_value("black-hole"))
</filter>

</rpsl>
<ios>

<bgp>
neighbor $remoteIPaddr route-map $routemapname_in in

</bgp>
<routemap>

<map>
route-map $routemapname_in permit $priority

filter($blackhole_set)
match community community_filter_name("black-hole")
set ip next-hop 172.24.42.172
set community community_value("no-export") additive

</map>
<routemapaction>

continue
</routemapaction>

</routemap>
<filterlist>

ip community-list expanded community_filter_name("black-hole")
permit community_value("black-hole")

</filterlist>
</ios>
...

</fragment>

Figure 3.7: Examples for back-end module entries

40

3.3 Data model

element for realizing filters and actions. Each routemap consists of a set of routemap en-
tries. Each individual routemap entry allows the user to combine several kinds of different
filters into one filter and to manipulate the attributes of those routes that pass the filter. A
filter can, e.g., consist of a prefix list filter and a community list filter. An attribute manip-
ulation can consist of modifying the next-hop and adding a community tag. Each routemap
entry can either accept routes that pass its filters, reject routes that pass its filters, or con-
tinue the processing of the route at a routemap entry specified via the “continue” keyword.
Accordingly, <bgp>, <routemap>, and <filterlist> are the subelements of <ios>.
Since the “continue” feature is extremely helpful for combining routemap entries from vari-
ous fragments into a combined routemap, <routemap> explicitly separates <map> from the
<routemapaction>. Each entry can embed variable references and function calls that are
resolved by the configurator.

In Juniper JunOS the high-level elements for realizing policies are “protocols” and “policy-
options”. This is reflected in the subelement tags. The actual filters and actions are specified
within the policy-options. The session selection and session parameter specification in addi-
tion to the specification of the order in which the policy-options are applied is done within
the protocol section.

Since there are a large number of possible kinds of fragments we propose to use a naming
schema. One possible convention is: <direction>_(<attribute>|<service>)_<op-
eration>_<parameter>_<accept|deny>. Here direction stands for ingress or egress.
Attributes can be AS path or MED, while “services” may be black-hole, martians, or neigh-
bortype. Operation can be set, add, filter, remove, mark, etc.. Parameter captures if a parame-
ter is necessary or if the action is triggered by a community. Accept is the expected default be-
havior while deny is explicitly stated. This results in names such as ingress_blackhole_
community, a fragment which is used by the black-hole service in the ingress direction. As
the route manipulation of the fragment is triggered by a community the parameter is commu-
nity.

Since fragments may manipulate the same attributes it is necessary to resolve conflicts. Should
one fragment set the value of a route attribute to X and another set it to Y then one needs some
method to resolve such conflicts. We propose to solve this problem in two steps. First we par-
tition the fragments along the dimensions in which route manipulation occurs. The important
aspect is that if two fragments belong to two different dimensions than no conflict is possible.
Typically a dimension corresponds to one specific attribute. Additional dimensions arise due
to certain prefix filters, e.g., a martians filter and a community filter.

The second step is to capture for each dimension the relationships between the fragments in
a partial order. If two fragments manipulate the same object, e.g., fragment A via X = a and
fragment B via X = b, then the result of applying fragment A and fragment B to a session
will be a if fragment A is less than fragment B for attribute X and b if fragment B is higher
in the partial order. This implies that it is not possible for two fragments F1 and F2 to both
manipulate attributes A and B with partial orders: F1 <A F2 and F2 <B F1. This is an illegal
specification and will be rejected by the configurator. In principle this should never occur,
since it indicates that the two services, using these fragments, are overwriting each others
settings. If this is a desired behavior, the check can be circumvented by using four fragments
instead of two. Two fragments for manipulating each of the two attributes.

41

3 AS-Wide Inter-Domain Routing Policies

3.3.4 Summary

The ability to delegate everything BGP-specific to the back-end module and everything net-
work-specific to the network module enables the formulation of a routing policy at a level of
abstraction previously unavailable. This is accentuated by the specifications of the sample
policies, see Figure 3.7.

Our approach differs from other XML based languages such as for example NETCONF [52]
and NetML [131]. NETCONF uses XML requests and queries to provide a simple mechanism
for managing configuration data and system state of network devices. NetML uses XML
to describe computer networks in a vendor-independent manner. While both provide nice
abstractions of the various router configuration languages and highlight the differences in the
approaches of the vendors, they do not have the ability or the goal of expressing abstract
routing policy.

3.4 Configurator

In collaboration with Deutsche Telekom, we have developed a prototype, the configurator,
that generates router configlets for the eBGP parts of each router in the network based on
the information provided in the XML databases. In this section, we describe its design and
operation.

Syntax and semantic checks: The tool starts by parsing the XML databases and using XSD
schemas to perform integrity checks of the cross-references in the network module database:
are the router names used in the bgpsession elements defined; are the bgpsession who’s names
are used in the bgpneighbor elements valid? Other consistency checks within the modules
include checks for collisions in the name space, e.g., is the same ASN used for two different
neighbors, etc.. Next the tool performs additional consistency checks between the modules.
It checks that the fragment and service definitions only reference existing variables, meaning
elements in the network database, call functions that are realized in the current version of the
configurator, and if all fragments exist that are used in the services, etc..

Inheritance: Inheritance is a excellent method since it simplifies the specification of the
network database and it ensures that it is possible to highlight where exceptions for specific
BGP sessions are necessary. The configurator deals with inheritance by determining for
each BGP session which services with which parameters are indeed booked. By storing
this information separately the configurator still knows which service is session-specific and
which service is neighbor-specific.

Configlet generation for RPSL: In principle the generation of the RPSL documentation
could be done by defining multiple import/export statements on a per session basis (see
Section 2.2 on page 18). Yet, the drawback of this approach is that it does not take advantage
of RPSL’s capabilities of abstraction by grouping objects using session sets or AS sets. Our
goal is to use this ability to document which BGP sessions to which ASes have common parts
in their policies.

Using the refine construct that RPSL offers, let us separate route manipulations that are inde-
pendent of each others. Accordingly, each “dimension” of route manipulation is realized via

42

3.4 Configurator

a refine block3. As each RPSL statement has to be added to some refine block we proceed
by handling dimensions within the outer loop. The next loop addresses everything that needs
to be done for this dimension. We start with all fragments in this dimension and determine
the sessionsets and with the sessionsets the services that use these fragments. To resolve the
conflicts within each dimension the fragments are processed in accordance with the partial
order for the dimension. Once the appropriate sessionsets are determined it is possible to
evaluate the condition within the sessionset to select the appropriate group of BGP sessions,
construct the RPSL statements from the fragments, and append these to the refine block.

At this point we explore, if there is a way to partition the session group, e.g., by using RPSL
session sets or by using one or more AS sets. One can use a RPSL session set if the RPSL
statement for the fragment is the same for all sessions in the group. This is possible if the
RPSL fragment elements do not contain any session specific variables. Otherwise we explore
if it is possible to split the session group into subgroups, e.g., into AS sets. This is possible
if the RPSL elements do not contain any neighbor specific variables and if the condition is
not session specific. Otherwise even finer partitions are considered. In the worst case no
subgroups exist and an RPSL statement for each session is generated. Once the subgroups,
RPSL session sets, AS sets, etc., have been identified, the RPSL statement is added to the
refine block after restricting it to the appropriate level.

Vendor-specific configlet generation: In contrast to the generation of the RPSL documen-
tation the configlet generation for Juniper and Cisco routers is done on a per session basis.
The configlet generation for Juniper routers proceeds in a similar fashion as the one for Cisco
routers. We therefore only discuss the configlet generation for Cisco IOS. Our assumption
is that the fragments of the back-end module can utilize the Cisco continue feature. Unfor-
tunately the continue feature is currently only available in rather recent releases Cisco IOS4.
The configlet generation for IOS proceeds in three steps: we first determine for each session
which fragments have to be combined; next we generate a preliminary configlet for each ses-
sion; finally, we deal with specifics of Cisco IOS and optimize the generated configlets with
embedded RPSL expressions for filter generation.

The first step involves selecting for each <enforced_policy>, <available_service>,
and each sessionset within the corresponding services, which bgpsessions fulfill the condition
of the sessionset. Next we evaluate the service parameters for each session that meets the
condition, (in the context of this bgpsession) and store the result together with the fragments
listed under <task> in a list of fragments at the session. For all sessions that do not meet
the condition, the evaluated parameters and the fragments under <default> are stored. In
effect this list gathers for each session the names of all fragments with their parameters that
are applied to this session.

In the second step we proceed session by session and direction by direction to generate pre-
liminary configlets based on the list of fragments. In this step the configurator combines
the fragments in the appropriate order and ensures that all variables, all function calls, and
all parameter values of all subelements of <ios> are replaced with the appropriate values.
The fragments are processed in an order that respects the partial order of the fragments. For

3In order to accept a route, there has to be a matching RPSL statement in each refine block. See Chapter 2.2 for
more background information.

4Inbound support for Cisco BGP route-map continue was introduced in 12.0(24)S and support for outbound
policies was introduces in 12.0(31)S.

43

3 AS-Wide Inter-Domain Routing Policies

each subelement the results are joined. This is a simple merge for <bgp> and <list>. Any
conflict indicates that the fragment designer made a mistake and the configurator returns an
error. For “route-maps” the join is not that simple and postponed to the final processing step.
At this point the new piece is just added to the pieces from the other fragments.

Once all fragments have been processed the join of the route-map entries can be completed.
Just chaining the individual route-map entries according to the partial order is not sufficient.
For example, if fragment A and fragment B manipulate attribute x with A <x B, one needs to
ensure that attribute x will have the value of fragment A even if the filters in both fragments
match. Even though the serialization ensures that the partial order is respected, it does not
ensure that route filtering proceeds at the appropriate place: e.g., the first route-map entry
from a fragment of the next dimension. This is accomplished by rewriting the continue entries
of the joined route-map entry.

As the Cisco continue feature is not always available realized with regular route-maps (with-
out continue) by computing a convolution of all route-map entries. A convolution explores all
possible combinations of route-map entries and arranges them in an order that has the most
restrictive filter at the beginning and the least restrictive one at end of the new route-map. A
combination of two route-map entries is computed by joining their filters with a logical AND
and their attribute manipulations with a logical OR operation. The latter is the case as long as
the manipulations are orthogonal. Unfortunately route-map entries do not support arbitrary
filter combinations using logical AND operation. For example it is not possible to combine
two prefix filter lists A and B using a logical AND in the same route-map entry. Instead this
can be realized by generating a third prefix filter list, C = A AND B, for use in the route-map
entry. We solve this complication by using RtConfig to generate the appropriate filter lists,
specified via RPSL statements, and adjust the route-map entries to use the new filter.

Finally, duplicate entries, filters that are no longer used, and route-map entries that are never
reached are removed. For example, if route-map entry 1 uses filter A and route-map entry 2
uses filter A then the combined entry from 1 and 2 suffices. The entry for only 1 and the entry
for only 2 can be removed as it will never be reached. If entry 2 uses a different filter all three
route-map entries have to be present.

RtConfig: At this point the output of the configurator is a documentation of the routing policy
in RPSL and a set of configlets with embedded RPSL expressions for every bgpsession in the
network. These embedded RPSL expressions need to be replaced with actual filter statements
before the configlet can be uploaded to the router. For this purpose we rely on RtConfig.
RtConfig is able to resolve all RPSL filter statements by using a local cache of RPSL objects
for AS internal filters together with the IRR database. This implies that if a customer changes
his entry in the IRR database, this change is automatically propagated to the configlet the next
time the configlet is regenerated.

Upload: If there has been a change in the configlet it needs to be uploaded to the appropriate
router. For this purpose it is combined with some base configuration code which ensures
redistribution of routes, deals with static routes, etc.. The upload for Juniper router is nicely
supported by their release management. The upload to Cisco routers is more troublesome.

44

3.5 Operational considerations

3.5 Operational considerations

In this section we show examples of generated configlets and discuss some challenges that an
operator faces.

3.5.1 Generated configlets: Examples

For the example of Figure 3.2 (page 28) the generated RPSL documentation is shown in Fig-
ure 3.8. The various dimensions are apparent in the different refine blocks for both directions,
e.g., for ingress the route filtering is handled in a different dimension than the black-hole ser-
vice. The differences between the default action and those based on the condition are easily
seen for the black-hole service. If the black-hole service is not booked or used for a route that
is not in the appropriate routeset (RS-AS3-BLACKHOLE), then the route is rejected. Other-
wise the appropriate action is taken. The realization of different cases is nicely highlighted
by the handling of med for AS 2 on session c2. Here, the value is set to 100 per default. If
the route is part of the RS-2000 the value is 2000, if the route is part of RS-3500 the value is
3500. For all other sessions the med is set to 500. As the example is constructed to enable
different services for different sessions, the configurator has only limited success in using
session sets, e.g., AS-CUST and AS-PEER (from the peering policy) each consisting of a
single AS.

The main difference between the generated RPSL and the vendor-specific code is, that in
RPSL the full eBGP policy of the whole network can be specified within one statement. At
the moment RPSL has the drawback that it is not capable of matching or deleting communities
specified by patterns. All communities have to be listed explicitly. In some cases this is not
feasible, e.g., the cleaning of internal communities at ingress. Therefore we currently lose
some functionality.

The generated code for a Cisco router for BGP session c1 on r1 is shown in Figure 3.9. Each
of the different fragments contributes some pieces to the “router bgp” and “route-map” sub-
section of the configlet. The first entry in the routemap_out part is the result of martians filter.
The second one is the result of clearing internal communities. The final part is realizing the
appropriate piece of the peering policy. The route-map for ingress filtering has a few addi-
tional pieces: entry 700 marks the received routes as coming from a customer (community
1:1), entry 800 realizes black-holing. First the next hop is rewritten, then the black-hole
community is added to the route (as route-map entry 600 deletes all communities).

To highlight the differences between the generated code for an IOS version that does not
support the continue feature Figure 3.10 shows the route-maps of the generated code for the
same session. Now each route-map entry consists of a self-contained set of route manipu-
lations that are appropriate for the filters. In this case, the order of the route-map entries is
crucial. It goes from the most restrictive filter to the least restrictive one.

3.5.2 Experiences

Our system is in production use at a AS 3320. It is used for generating the configlets for
the eBGP sections of several hundred routers and it has proven to be beneficial to consider

45

3 AS-Wide Inter-Domain Routing Policies

aut-num: AS1
import: from AS-ANY accept ANY;

refine { # from ingress_route_filter:
from AS2 accept AS2:RS-I;
from AS3 accept RS-AS3-IMPORT;
from AS2 accept RS-AS3-BLACKHOLE AND community.contains(65000:0);

} refine { # from blackhole
from AS3 2.1.1.2 at 1.0.0.2 action next-hop=172.24.42.172;

community.append(no_export);
accept community.contains(65000:0) AND RS-AS3-BLACKHOLE;

from AS-ANY accept not community.contains(65000:0);
} refine { # from ingress_peer

from AS-CUST action community.append(1:1) accept ANY;
from AS-PEER action community.append(1:2) accept ANY;

}
export: to AS-ANY announce ANY;

refine { # from egress_route_filter:
to AS2 announce AS2:RS-E;
to AS3 announce RS-AS3-EXPORT;

} refine { # from egress_wellknowncommunites_filter
to AS-ANY announce not community.contains(no_export, no_advertise);

} refine { # from peering
to AS-CUST announce community.contains(1:0) OR

community.contains(1:1) OR community.contains(1:2)
OR community.contains(1:3);

to AS-PEER announce community.contains(1:0)
OR community.contains(1:1);

} refine { # from egress_med
to AS2 2.1.1.2 at 1.0.0.2 action med=2000; announce RS-2000;
to AS2 2.1.1.2 at 1.0.0.2 action med=3500; announce RS-3500;
to AS2 2.1.1.2 at 1.0.0.2 action med=100; announce ANY;
to AS-ANY action med=500; announce ANY;

}

Figure 3.8: Generated documentation in RPSL.

the routing policy as a first class entity. Each service and each policy is now well specified,
which increases the degree of transparency for the ISP. In addition, it is easy to add, expand,
and change services and policies.

The flexibility of the system proved to be crucial during the migration phase: moving from
a “legacy” state to an automatically generated state. All of the network specific information
had to be gathered for the network module. In addition, the routing policy in use has to be
expressed using our abstraction. The ability of using almost arbitrary router configuration
commands simplified reproduction of the legacy state. Once the legacy state could be regen-
erated and uploaded to the routers the next phase of transitioning to the desired routing policy
was possible. This involves, as a first step, the definition of the desired routing policy. After
definition each of the policies and services has to be introduced into the network. This can
involve multiple stages. After all it is impossible to change the configuration of all routers at
exactly the same time. If the policy or service depends on some precondition, e.g., that all
routes are marked with a community on ingress, then this precondition has to be introduced
on all sessions before, in a second stage, the postcondition can be introduced, e.g., that routes
are filtered based the community.

Specifying the desired routing policy is still not trivial as the system does not restrict the rout-
ing policy designer in realizing various variants. Among the choices to consider are: how to
realize filters, e.g., prefix and community filters. Does the policy include the acceptance of all
routes that are not filtered due to some reasons or another? Are all inappropriate communities
removed in one filter or should each service, that is signaled via a community, implement its

46

3.5 Operational considerations

router bgp 1
neighbor 2.1.1.2 remote-as 2
neighbor 2.1.1.2 next-hop-self
neighbor 2.1.1.2 route-map c1_routemap_in in
neighbor 2.1.1.2 route-map c1_routemap_out out

!
route-map c1_routemap_out deny 100

match ip address prefix-list martians
route-map c1_routemap_out permit 200

set comm-list out_fltr_communities delete
continue 300

route-map c1_routemap_out permit 300
match community export_all

!
route-map c1_routemap_in deny 500

match ip address prefix-list martians
route-map c1_routemap_in permit 600

set comm-list in_fltr_communities delete
continue 700

route-map c1_routemap_in permit 700
set community 1:1 additive
continue 800

route-map c1_routemap_in permit 800
match ip address prefix-list c1-blackhole
match community blackhole
set ip next-hop 172.24.42.172
set community no-export additive
continue 900

route-map c1_routemap_in permit 900
match ip address prefix-list c1-import

route-map c1_routemap_in permit 910
match ip address prefix-list c1-blackhole
match community blackhole

!
ip community-list expanded in_fltr_communities permit _1:.*_
ip community-list expanded in_fltr_communities permit 64900:.*
ip community-list expanded out_fltr_communities permit 64900:.*
ip community-list expanded blackhole permit 65000:0_
ip community-list expanded export_all permit _1:[0123]_
!
ip prefix-list c1-import permit 2.1.1.0/22 ge 24 le 24
ip prefix-list c1-blackhole permit 2.1.1.0/24 ge 32 le 32
ip prefix-list c1-blackhole permit 2.1.1.0/24
ip prefix-list martians permit ...

Figure 3.9: Generated configlet for c1 using routemap feature continue.

part of the community filter? It is possible to realize any of these options within our system.

We found that using vendor-specific code inside the fragments is useful as the designer has
complete control over the generated configlets. Fragments can be extended, rewritten, repar-
titioned, and rearranged as needed. One aspect to be aware of is the choice of embedding
more functionality inside a single fragment vs. using multiple fragments. The first enables
more control over the generated configlet and therefore its optimality, while the second im-
proves reusability. Most policies and services are realized using just one, two, or at most three
fragments. Using the suggested naming schema is helpful for associating fragments with di-
mensions and expressing the conflicts between the fragments, currently the most awkward
part of the system.

Separating the network-specific parts into its own database has proven to be essential as it
separates the task of the network administrator from those of the routing policy designer. In
addition, the documentation of the current state of the network as well as the routing policy
(in the policy module as well as in RPSL) is extremely helpful.

47

3 AS-Wide Inter-Domain Routing Policies

route-map c1_routemap_in deny 10
match ip address prefix-list martians

route-map c1_routemap_in permit 76
match ip address prefix-list c1-import-c1-blackhole
match community blackhole
set comm-list in_fltr_communities delete
set ip next-hop 172.24.42.172
set community 1:1 no-export additive

route-map c1_routemap_in permit 77
match ip address prefix-list c1-blackhole
match community blackhole
set comm-list in_fltr_communities delete
set ip next-hop 172.24.42.172
set community 1:1 no-export additive

route-map c1_routemap_in permit 78
match ip address prefix-list c1-import
set comm-list in_fltr_communities delete
set community 1:1 additive

!
route-map c1_routemap_out deny 10
match ip address prefix-list martians

route-map c1_routemap_out permit 15
match community export_all
set comm-list out_fltr_communities delete

!
ip prefix-list c1-import-c1-blackhole permit 2.1.1.0/24

Figure 3.10: Generated configlet for c1 after convolution (without continue).

3.6 Summary

In the past networking research has tended to focus on the individual parts of the network
rather than on the network as a whole. In this thesis we propose a system that can help raise
the level of abstraction for a small but crucial piece of the overall Internet: the routing policy
of one AS.

For this purpose we tackle the problem of identifying the concepts underlying an AS-wide
routing policy. Based on this understanding we propose a system for managing AS-wide rout-
ing policies as first class entities. This includes providing a flexible, extensible, and scalable
framework for formulating the routing policy, eliminating the need of manual configuration
of IP routers for the purpose of realizing the policy, and respecting the division of responsi-
bilities within the ISP.

As such we have presented a data model that enables the definition of an abstract routing
policy but also allows its concrete realization on the routers in the network. It is now possible
to express the enforced policies and available services of a routing policy precisely as well as
in a compact format. The experiences gathered from the production use at a large ISP have
shown that transitioning from a network configuration grown bottom up to one with a well
documented routing policy that is specified top down is possible.

Clearly, the work reported herein has not exhausted the problem area, and there is much more
that can be done. One limitation of the current system is that it does not have support for
iBGP. Other avenues for expanding the capability of the system are support for IPv6 and
VPNs as well as support for additional router vendors.

48

4 BGP Dynamics

Timothy G. Griffin states: “The following scenario MUST take place within the next few
years: The Inter-domain routing system will enter a state of non-convergence that is so dis-
ruptive as to effectively bring down large portions of the Internet. The problem will be due
to unforeseen global interactions of locally defined routing policies. Furthermore, no one ISP
will have enough knowledge to identify and debug the problem.” [132]

While we have seen in the last chapter how policies are realized statically, we now look at
the dynamics that such a complex system of about 20,000 competing ASes induce. Thus,
we now delve into some BGP details and discuss what kind of instability creators exist, how
instabilities propagate through the actual network and what kind of updates may be visible at
an observation point. This builds the necessary framework for the following chapters, where
we will look into the characteristics of BGP dynamics.

4.1 Instability creators

A BGP instability is an event that impacts inter-AS routing, see Table 4.1. We exclude from
the notion of an “event” the receipt of an eBGP update message. Rather, we consider the
eBGP update message as a consequence of some instability. That is, in response to a BGP
instability, a BGP-speaking router initiates a BGP update that propagates an attribute change
from one BGP peer to another. BGP instabilities can have their origin at the source of the
prefix, in the input filters, the decision process, the output filters, or through the availability
of BGP sessions. While the filters are limited to the BGP attributes, the decision process also
uses the following other resources: link availability, node reachability, IGP cost, and next-hop
IP addresses.

Accordingly, the BGP instabilities can be initiated by: changes to the availability of BGP
sessions, the session filters, the link and/or node availability, introduction or withdrawal of
prefixes including aggregation, IGP cost changes, or IP address changes. Typical examples
for each of these are given in Table 4.1. Note that one kind of change, e.g., a node failure,
may imply other failures, e.g., multiple link failures, which can in turn imply other changes,
e.g., IGP cost changes.

Next we consider what kind of BGP updates these BGP instabilities impose. Here the first
question is which prefixes will see any updates, referred to as relevant prefixes. An instability
is relevant to a prefix if an attribute of its best path or if its filter policy is changed. In terms of
blaming an AS for an instability, one has to distinguish between changes within an AS, called
internal changes, and between ASes, called external changes. Typical internal changes are
those associated with iBGP sessions. Others are IGP traffic engineering operations changing
IGP metrics. Typical external changes are changes to eBGP sessions, e.g., for the purpose

49

4 BGP Dynamics

Instability Examples
BGP session availability session establishment/teardown/reset
BGP session filters filter changes and/or BGP attribute manipulations

usually imply session (soft-)reset or graceful restart
IGP costs changes IGP metric changes, link or node failures/repairs
IP address changes renumbering, link or node failures/repairs
link/node availability link failures/repairs, node failures/repairs

may cause BGP session availability changes
and IGP cost changes

originator changes addition/deletion of network prefixes
route flap damping delay of the propagation of updates

Table 4.1: BGP instability and their typical causes.

of traffic engineering, and may include subaggregation, or aggregation of prefixes, changing
filter rules, AS path prepending, etc.. The difference between internal and external changes is
that the latter usually only impacts the prefixes whose best paths include the affected session
and therefore both ASes. Internal changes can impact prefixes with diverse next hop and
previous hop ASes.

The next question is what kind of updates a prefix will experience. One important factor is the
diversity of routes available to the best path selection process. A link or BGP session failure
can disrupt the connectivity between two ASes and affect many prefixes. The existence of an
alternative route causes the selection of a new best path, which will not be propagated if it has
the same attribute values or if it is caught in the output filter. Otherwise the AS announces
the existence of an alternative route. This route may differ from the old one in either the AS
path, the next hop, or other attribute changes. An AS path change is necessary if reachability
via the old AS path is no longer given, e.g., if two ASes have a single eBGP session and it
fails, or if an internal link failure causes a network split, or if the reachability via the new AS
path is more attractive.

Yet, by design not all instabilities impact reachability, e.g., peering usually requires BGP ses-
sions at at least three diverse locations and ASes usually have multiple upstream providers.
This diversity implies that the addition of a new route or the withdraw of a route usually
just adds one more variant to the best path selection process. For example if two eBGP ses-
sions exist between two ASes one may expect to learn two routes to each prefix routed via
these sessions which, if a consistent routing policy is used, will have the same AS path. Ac-
cordingly, the BGP decision process may choose between multiple routes with the same AS
path. In addition, if the prefix is reachable via another AS, further alternatives are available
to the decision process. If the routes have an AS path of the same length, the decision about
which route is best depends on the MED values, the IGP distance metrics, and the next hop
IP addresses. Accordingly, if a better route becomes available or the best route becomes un-
available, this either lead to a AS path change, a next hop change with or without AS path
change, or no change at all if there are multiple peerings between the same routers1 . In this
case, each router may make a different decision which implies that AS path changes are likely
to occur for only a subset of the relevant ASes.

Since the IGP metric and the router-ID are used as tie-breakers in the BGP decision process,
changes to these cause instabilities to those prefixes using this AS as a transit AS. While IP
address changes are expected to be rare, intra-domain traffic tweaking is more widespread.
Accordingly, a sizable number of prefixes may see AS path and/or next hop changes. Inter-

1Note that this ignores the steps above AS path change in the BGP decision process, e.g., local preference.

50

4.2 Instability propagation

Instability/Condition BGP updates expected number of responsible comment
affected prefixes AS

eBGP session availability
single session AS path changes all relevant prefixes both ASes
multiple sessions next hop changes subset of rel. prefixes both ASes no alt. AS path of equal length
multiple sessions AS path/next hop changes subset of rel. prefixes both ASes alt. AS path of equal length

iBGP session availability
reachability impacted AS path changes all relevant prefixes AS
reachability not impacted next hop changes subset of rel. prefixes AS

eBGP session filter attribute changes small subset of rel. prefixes both ASes
eBGP attribute changes attribute changes small subset of rel. prefixes both ASes
IGP cost change next hop changes subset of rel. prefixes AS tie breaker in BGP decision

AS path changes subset of rel. prefixes AS alt. AS path of equal length
IP address changes next hop changes subset of rel. prefixes AS tie breaker in BGP decision

AS path changes subset of rel. prefixes AS alt. AS path of equal length
link availability
internal no session change next hop/AS path change subset of rel. prefixes none via IGP cost changes
internal with session change AS path changes all relevant prefixes AS via reachability problems
external no session change none none none unlikely
external with session change next hop/AS path changes all relevant prefixes AS via eBGP multiple session

node availability = multiple “link availability”
originator changes
single homed new updates/withdraws single prefix originator AS
multiple homed attribute changes single prefix originator AS

Table 4.2: Effects of BGP instability

domain traffic engineering [74] takes advantage of the full spectrum of options that BGP
provides including but not limited to AS path prepending, filtering, local preference, prefix
deaggregation, prefix aggregation, IGP metric changes, MED changes, eBGP session param-
eter changes. But since automatic tools are still a rarity, most of the tuning is still done by
hand.

In summary, most instability events cause BGP updates to a number of prefixes at about the
same time. But not all of these have to result in an AS path change. Other instability events
are of concern to only individual prefixes. Note that human misconfigurations of BGP [19]
are either unintended changes impacting single prefixes, IGP costs, or whole BGP sessions.
Table 4.2 tabulates the various possibilities of BGP instabilities.

4.2 Instability propagation

In this Section we consider the effects of a routing instability in terms of how BGP updates
propagate through the Internet, and where they are observable. While some BGP updates
change almost all attributes, quite a few only change a single attribute. We classify updates
according to the attribute change that has the biggest impact with regard to how far the update
will have to be propagated, see Table 4.3.

Next we define an abstraction of the actual AS topology that we use in our arguments below.
Each reasonably sized AS consists of a number of routers that have between them full iBGP
connectivity, either via a full iBGP mesh, route reflectors, or confederations. Accordingly,
we model each AS as a clique, one node for each router and an edge for each node pair. Each
eBGP session between AS 1 and 2 corresponds to an edge between a node of the clique of AS
1 and a node of AS 2. For simplicity and to ensure that AS-internal effects are captured, we
assume that each AS has enough nodes so that no two eBGP peering sessions are terminated

51

4 BGP Dynamics

Class of updates subclass discussion

Local pref changes multi-homed customer might cause next hop change
route selection between might cause next hop change

peer/upstream/customer should cause AS path change
AS path changes withdraw the only route is no longer available corresponds to “bad news”.

new “better” route corresponds to “good news” and can mean a new route with
- a shorter AS path is available (ignoring local pref)
- same length AS path is available (ignoring local pref)

with new MED smaller and same next hop AS / new IGP cost or ID
smaller if next hop AS changes

- longer AS path length if local pref or weight is used
implicit withdraw corresponds to “bad news” and can mean the route with
old route “better” - a shorter AS path no longer available (ignoring local pref)

- same length AS path is available (ignoring local pref)
with new MED larger and same next hop AS / new IGP cost or ID
larger if next hop AS changes

- shorter AS path length if local pref or weight is used
Origin changes IGP/Incomplete to eBGP implies changes to the AS path, i.e., current AS is no longer the originator

eBGP to Incomplete/IGP implies changes to the AS path, i.e., current AS is now the originator
Incomplete to IGP change of status, likely together with next hop change
IGP to Incomplete change of status, likely together with next hop change

MED changes MEDs are comparable for paths from the same AS
MED changes may reorder paths from the same AS which may cause

next hop changes
MED changes may change ties between path from different ASes which

may cause AS path changes
Next hop changes without AS path changes new route uses different eBGP or iBGP session between same peers
Community changes need to be propagated since they are transitive. Agreement on semantic

of global community values missing

Table 4.3: Effects of BGP updates

at the same node. Now consider some prefix p and its routing table entries at all routers. The
graph that is induced by choosing the edges of those sessions over which the router received
the update and directing them towards the router is a directed acyclic graph (DAG), as long
as there are no temporary loops induced by BGP. Any changes to the BGP sessions may
impose changes to the DAG by adding or deleting edges or changing their direction, and all
updates for this prefix p have to traverse a subset of this DAG. Hereby one has to keep in
mind that each update can only traverse each edge in one direction and that each router will
only propagate information about prefix p if its best route has changed.

Next we consider what this implies for our above classification of updates. Pure next hop
changes matter for the current AS and in some cases may have to be propagated to the neigh-
bor ASes. For example sometimes the ingress is marked with a community, if not filtered at
the egress, this results in update propagation. In the worst case, AS path changes and with-
drawals have to be propagated along the same subgraph. But in most cases, due to the high
connectivity of the Internet, other alternative paths exist. In this case, the update has to reach
only those nodes that benefit from the new alternative path or those nodes that have to now
choose an alternative path.

In summary, while one expects BGP updates to several prefixes if a change to an eBGP
session is the instability originator, some or all of the updates may be rather local. But they
can also impose major non-localizable BGP updates, e.g., if AS path changes are involved.
This may depend on the specific policy of the AS, the ISP’s topology, etc.. Changes to
individual prefixes may have only local impact or a global one.

52

4.3 BGP Convergence Properties

7 89 ::;
8
7 89 ::;
8

updates for prefix p received from neighbor N1 :

BGP updates (“echoes”) <"=>@?updates grouped into “update bursts”
7 89 ::;
8
7 89 ::;
8

<"=>@?BA�CD<<"=>E?BA�CD<
““convergence point”convergence point”

Figure 4.1: Illustration of BGP update clustering.

4.3 BGP Convergence Properties

While BGP dynamics are studied extensively in the last few years (see Section 2.3.2, page 22,
for a discussion of related work), there are still a number of open questions. Despite the huge
commercial success of the Internet, there are only a limited number of tools that help trou-
bleshooting network problems. As a result ISPs often notice problems only when a customer
calls and complains. This is due to the complex interactions between the independent sys-
tems, including the unknown local policies, internal topologies and settings of parameters,
etc.. Yet, these factors influence the behavior of the routing system (i.e., best path selection).
Given all those unknown factors, it is hard to understand the root cause of a problem within
the Internet (see Chapters 4 and 5).

Therefore it is crucial to understand the characteristics of the raw BGP data that are observable
in the Internet. Not only operators can benefit from tools that detect problematic routing
conditions (e.g., hijacked or oscillating prefixes), vendors may improve the router code (e.g.,
based on the insights of the propagation patterns), also researchers can better sense problems
and develop solutions. In addition, replacement protocols should be designed with an in-
depth understanding what worked today, what did not, and why.

To approach this we start by discussing a methodology for clustering BGP updates on a per
prefix and per peer basis in Section 4.4. After a short discussion of the data sets in Section 4.5
we use the methodology to look at BGP beacons in Section 4.6. As time and location of the
beacon event is known, it is possible to study convergence properties of the Internet. From the
insights gathered from the beacon analysis we study the characteristics of all BGP updates in
Section 4.7. Finally we summerize our findings in Section 4.8.

4.4 Methodology

To better understand what is happening in the Internet, we need a notion of what convergence
is, how to measure convergence and how derive this from raw BGP update traces.

The difficulties already starts with defining the term “convergence”. A lot of practioners call
convergence the time needed to build a full table after a router reboot or a hard session reset.
Others define convergence at the router level as the time needed for a router to respond to
a new announcement or withdraw. We follow the notion of Labovitz et al. [84] and call the
convergence point of a prefix that moment, when all routers in the Internet have reached a
stable routing state towards that prefix.

53

4 BGP Dynamics

Recall from Section 2.1.1 (see page 14) that instabilities can lead to path explorations in-
volving many BGP updates to spread across a significant time period. Thus, not all updates
are equally important (e.g., consider the amount of traffic that is flowing along a route that
gets replaced two seconds after it was announced, compared to one that is stable for several
weeks). So, what are “important” updates and what are “less-important” updates?

Recall, that the goal is still to have constant traffic flows. Therefore operational practice is to
optimize routing to achieve a stable state [90]. Because of that we can group updates observed
at a given observation point and for a given prefix into a burst of updates, just as one would
group packets into flows [133], using a timeout. With that we identify those updates that
remain stable on that observation point for a time less that the specified timeout. Figure 4.1
illustrates this concept. The vertical lines symbolize BGP updates, which can be observed
at an observation point N1 and are triggered by an instability event. Accordingly, the last
update in the burst approximates a stable route, it is also called the “convergence point” or
“new_stable_route”. Intermediate updates, e.g., due to path exploration, are called “echoes”
throughout this thesis. And the valid route before the beginning of an update burst is the
old_stable_route (or previous_stable_route). It is the new_stable_route of the previous burst
at this observation point. If no update burst was previously observed, we take the appropriate
route from the table dump.

Typically neither the cause of the instability nor its time nor its location are known. Yet, in
the case of the BGP beacons, researchers artifically inject faults at well defined times. This
means that the time is known and we say that the beacon duration is the time starting with
the beacon event and ending at the convergence point. This is not to be confused with the
burst duration, which is the time from the first update in a burst until the last update in that
burst. We use this latter terminology if the time of the triggering event is unknown. In effect
the burst timeout allows us to separate events.

The choice of the timeout is crucial as is illustrated in Figure 4.2. On one side, if two trig-
gering events are very close in time a large timeout would group updates from the two events
together. For example, as one would hope, that after a link failure the repair is performed
quickly, but with a large timeout the updates from the failure and the repair are together in
one event. On the other side, if a small timeout is used, then events may be separated even
though they still belong to the same convergence process. In this chapter we are interested in
characterizing the convergence properties of BGP. To be able to study the impact of route flap
damping on convergence, we use a large timeout, typically larger than one hour. In the next
chapter (Chapter 5) our motivation is different as we consider multiple events due to route
flap damping as new events. Therefore we chose timeouts ranging from 2 to 16 minutes.

With this methodology it is possible to identify persistent flapping prefixes (e.g., [76, 124,
134, 135]).

4.5 Data sets

Our characterization work is based on raw external BGP routing table dumps and update
traces that we obtain from Ripe [48], and Routeviews [49]. Throughout this chapter we only
present results in an exemplary fashion for the following raw data sets.

54

4.6 BGP Beacons

F"GHEI

updates for prefix p received from neighbor N1 :

updates for prefix p received from neighbor N2 :

J�K L$M�N"OPJJ�K L�M�N"OPJ

J�K L$M�N"OPJJ�K L�M�N"OPJ
Q RS TTU
R
Q RS TTU
R

Q RS TTU
RV
VV

Q RS TTU
RV
VV

Q RS TTU
R
Q RS TTU
R

Figure 4.2: Limitations of BGP update bursts.

The beacon study presented in Section 4.6 is based on BGP traces starting October 1, 2002 to
January 31, 2003. 13 BGP beacon prefixes are included in this characterization2 . This results
in 617,299 beacon events (including announcement and withdraw events). Note that not all
beacons are visible on all observation points. Indeed, only about 40% of the expected beacon
events are observable.

The raw data characterization study presented in Section 4.7 is based on 11 to 14 full feeds
collected by the RIPE RRC00 [48] collector in the time from January 1, 2003 to April 24,
2003. The table dumps contains between 100k - 123k prefixes. In January (1/1 - 1/31) about
69 million updates are recored, in February (2/1-2/28) about 61 million updates are collected,
in March (3/1 - 3/31) about 47 million updates are studied, and in April (4/1- 4/24) about 44
million updates. The trace ends on 4/24 2003 at 17h UTC. Note that there is a gap on March
6 for about four hours (6:08-10:13 UTC) due to an outage of the collector. We also consider
two specific peering sessions from RRC00, starting 01/14/02, 1am to 01/20/02, 1:10am.

The estimated error, i.e., missing updates, in all traces is less than 1%. We estimated the error
by loading a routing table dump in a virtual RIB, then applying all updates to this RIB, and
comparing at the end of the trace a routing table dump with the virtual RIB.

4.6 BGP Beacons

The beacons are a starting basis for our studies as the time and location of the triggering event
is known. Our findings are consistent with Mao et al. [101]. For more details see [102].

We analyze 617,299 BGP beacon events, 301,295 of them are announce events (A-events),
while 316,004 are withdraw events (W-events). 272,605 (90%) of the A-events show “only”
updates within the first two minutes after the triggering event. Yet converging a W-event
usually takes some more time. After two minutes only 48.5% reached a stable state and it
takes 220 seconds to convergence 90% of all withdraw events. After 6 minutes 304,848
(96.5%) of the withdraw events are converged.

Figure 4.3 and Figure 4.4 show the convergence time of all analyzed beacon events. Fig-
ure 4.3 shows a smoothed density plot of the beacon event durations. The x axis plots the
seconds since the triggering beacon event, while the y axis shows the density function. Note

2Note that update traces before November 9, 2002 (0:00 GMT) from the Routeviews collector are excluded
because of inaccurate time synchronization of the collector. In addition the beacon operated by Andrew
Partan starting November 21, 14:00 and David Meyer’s beacon before November 16 cannot be used due to a
schedule change.

55

4 BGP Dynamics

0 50 100 150 200 250 300 350 400 450 500

0.
00

0.
01

0.
02

0.
03

0.
04

Seconds since beacon event

D
en

si
ty

120 sec 360 sec

beacon duration A−events
beacon duration W−events

Figure 4.3: Beacon durations of all events. [102]

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0
20

40
60

80
10

0

Seconds since beacon event

P
er

ce
nt

 (a
cc

um
ul

at
ed

 n
um

be
r o

f v
al

ue
s

<=
 x

)

beacon duration A−events
beacon duration W−events

400 seconds

Figure 4.4: CDF of beacon durations. [102]

that the plot is cut off at 500 seconds for clarity but there are beacon events that did not con-
verge within the 2 hours. (This is the maximum duration, because a beacon event is triggered
every two hours, therefore for longer convergence times, the two consecutive events are not
distinguishable anymore.) This can be seen in Figure 4.4, which shows the Cumulative Dis-
tribution Function (CDF) of the beacon duration of both A-events and W-events. This CDF
shows on the x axis the duration in seconds and on the y axis the probability that an event
converged before the given duration.

Next, in Section 4.6.1, we study the prevalent convergence behavior, while in Section 4.6.2
we look at those events that show long converge times.

4.6.1 Prevalent behavior

We say that an beacon event shows prevalent convergence behavior if it converges within two
minutes in the case of an A-event, and if it converges within six minutes in the case of an W-
event. With this notion 95.3% of all recorded events show prevalent convergence behavior.
(Figure 4.3 show vertical lines at two and six minutes.) Of course, we make sure that the last
update that is observed is of the corresponding type. Which means an A- (W-) event con-
verges with an network reachable (unreachable) message. Note we actually observed events
ending with the “wrong” type: 2.1% (1.5%) of all A-events (W-events) converged within the
prevalent time of two (six) minutes, but showed as last update an withdraw (announcement).
We suspect that this is due to errors in the collection process.

The “good news” for the Internet is that 57% of the fast converging A-events consist of
exactly one announcement. Yet the maximum number of BGP update messages is 659 during
the time of one event. Even more intriguing is that 1,615 (0.6%) of the prevalent A-events
show withdraws (up to 3)!

The median number of updates for W-events is 3 (triple of the median of A-events). The
maximum is even 825 updates in one W-event. Only 22.7% of the prevalent W-events carry
no announcement, i.e., do not show path exploration3 .

3From all 2,350,428 beacon updates, only 511,497 are withdrawals, i.e., 1 update out of 5 is a withdrawal.

56

4.6 BGP Beacons

0 2,000 4,000 6,000 8,000

0e
+0

0
5e

−0
4

Seconds

D
en

si
ty

burst duration slow converging A−events
beacon duration slow converging A−events

Figure 4.5: Burst duration and beacon duration
of slow converging A-events. [102]

0 2,000 4,000 6,000 8,000

0e
+0

0
2e

−0
4

4e
−0

4

Seconds

D
en

si
ty

burst duration of slow converging W−events
beacon duration of slow converging W−events

Figure 4.6: Burst duration and beacon duration
of slow converging W-events. [102]

4.6.2 Slow convergence events

In this section we study the “remaining” 28,820 (4.7%) events, which show long convergence
times. Note that this includes possible unrelated events occurring in the Internet, for exam-
ple a link failure between the beacon prefix and the observation point could show updates
at the observation point that are not due to slow convergence triggered by the beacon event.
As this is not distinguishable from a slow convergence triggered by the beacon, we look at
slow convergence beacon statistics in general. The median number of updates within such
a slow converging A-event is 3, while the maximum is 1,575. Note that 29.7% of the those
events actually contain withdrawals! The median number of updates within a long converg-
ing W-event is 5, and the maximum is 241. Only 8.8% of those events do not contain any
announcement.

Figure 4.5 shows the smoothed density of the duration of the slow converging A-events, and
Figure 4.6 shows the same densities for the long W-events. Note that both plots show the
beacon duration4 as well as the burst duration5 to be able too compare the differences. This
is because in the global data we lack the information of the time of the triggering events, thus
we can only measure burst durations. Yet the beacons can provide a rough approximation
about how large the error can be (see [136] for additional information).

Figure 4.7 shows the density of interarrival times within slow converging events. The median
interarrival time of updates in slow converging A-events is 28s, and in W-events is 26s. Both
median values are in the order of the MRAI timer. Yet the mean is 484.1s for slow converging
A-events, and for W-events it is 365.5s. We have marked values at 600, 1,800 and 3,600
seconds (see shaded vertical lines), which represent recommendations by RIPE-229 [44] for
route-flap damping. Thus our suspicion is that those peaks correlate with route flap damping
parameters. Yet not all peaks can be easily explained.

Still we are interested in looking deeper in this mystery of slow BGP convergence. Rather
intriguing is that 53.4% of all slow converging events show only one update burst within the
first 500 seconds after the beacon event. Furthermore, even 27.8% of all beacon events show
only one burst that duration is at most two (six) minutes for A-events (W-events). This means

4Recall from Section 4.4 (page 54), that the beacon duration is the time from the known triggering beacon event
to the last recorded update in that event.

5The burst duration is the time between the first and the last update in a burst. All updates within the two-hour
interval are treated as one update burst.

57

4 BGP Dynamics

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0e
+0

0
1e

−0
4

2e
−0

4
3e

−0
4

Seconds

D
en

si
ty

500

600

1,300

1,800 3,500

3,600

Figure 4.7: Interarrival times between updates in
slow converging events. [102]

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0e
+0

0
1e

−0
4

2e
−0

4
3e

−0
4

4e
−0

4
5e

−0
4

Seconds

D
en

si
ty

3,6001,800

Figure 4.8: Interarrival times between bursts in
slow converging events. [102]

that the event would have been classified as prevalent (“fast converging”) but the onset from
the triggering beacon event put it in the categories of slow converging events. In addition,
another 22.96% show exactly two fast converging bursts during one beacon event. As an
example consider route flap damping where a few updates are observable before the prefix is
dampened and after the suppression is released another convergence process is triggered (by
the router that dampened that prefix).

To understand the characteristics we look at the interarrival times between the bursts. Fig-
ure 4.8 shows a smoothed density plot of interarrival times between update bursts. The two
vertical lines, at 1,800 seconds (30 min) and at 3,600 seconds (an hour) mark again the
damping parameters recommended by RIPE-229 [44] and the maximum suppression time by
most vendors. Thus this plot affirms that slow convergence is in parts caused by ill-applied
route-flap damping [46].

4.7 BGP dynamics

The purpose of this section is to characterize BGP dynamics. Accordingly we start with
looking at the convergence process. For this we use the notion of update bursts. Then we
move onward and take a deeper look at the impact of the MRAI and route flap damping on
the overall convergence behavior of the Internet and we conclude with some statistics about
different attribute properties observable different peering sessions.

Our motivation is that each update burst should summarize all updates caused by one or mul-
tiple instability events and therefore capture the BGP convergence process. We are interested
in understanding the characteristics of update bursts such as duration, number of updates and
arrival process. Correspondingly Figures 4.9, 4.10 show the density of the logarithm of the
duration and number of updates of update bursts. Based on the results by Mao et al. [45],
we use a timeout value of a bit larger than one hour (4,000s). While a specific timeout value
changes the curves, we found that the general characteristics do not change.

Note that Figure 4.9 shows only bursts that have at least two updates (otherwise the duration
is 0). About 33.8% of all bursts consist of only one update in the burst and therefore are
removed from the density computation. Remarkable is that the effects of the MRAI and
multiples of the MRAI are clearly predominant in update bursts. The curve increases between

58

4.7 BGP dynamics

50 500 5,000 50,000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

seconds

de
ns

ity

MRAI 1h

January
Febuary
March
April

Figure 4.9: Duration of bursts.

1 10 100 1,000 10,000 100,000

0.
0

0.
5

1.
0

1.
5

number of updates

de
ns

ity

no change
path change
attribute change
failure

Figure 4.10: Number of updates in burst.

30 min, 1 hour and flattens at about 3 hours. This are quite likely the effects of route flap
damping. Still update bursts can be quite long. We find that there are most of the time some
prefixes that are flapping for serval days, weeks and even sometimes over many month. We
identify in the data a set of two prefixes (operated by different ASes) that were flapping over
four month with more than one update approximately every hour. (Note that the duration
of the trace analysis was four month, the duration of the divergence could actually be much
longer). Such events are not uncommon in context of issues such as MED oscillation [76,
124, 134]. Yet we recommend to use our methodology to identify such prefixes and notify
the ISPs. A flapping prefix can degrade performance and pollutes routers in terms of CPU
utilization and network bandwidth, still it is observable in the traces that oscillating prefixes
remain undetected for quite a long time.

To understand the types of changes we compare updates from the previous stable state and
the new stable state. To study how these instability events are related we distinguish the
following categories: “no change”, “path change”, “attribute change”, “failure”. “No change”
is predominant (77.8%) and means the last update in the burst has exactly the same set of
attributes as the update in the previous stable route. This can be for example due to a failure
somewhere on the path to the prefix, the failure is repaired within the timeout window and
converges back to the old best path. The second category is “path change”. This contributes
in 13.3% to the result and means that the AS path is not the same when comparing old and
new stable routes. If the AS paths remains the same but any other attributes change, e.g.,
community values, then we say it is an “attribute change”. This happens in 4.1% of the
cases. Finally if the old or new stable path is a withdraw while the other is an announcement
we say this is a “failure/repair”-event. This contributes to the overall in 4.8%.

Figure 4.10 shows a smoothed density distribution of the number of updates in a burst on a
logarithmic scale. While most bursts consists only of one or two updates up to 10 updates is
not unusual. Still a burst can consists of quite a number of updates. The distribution is consis-
tent with a heavy-tailed distribution [82]. We also find a correlation between the duration of a
burst and the number of updates (correlation > 0.92). Furthermore, it is interesting that with-
draw events (failure category) shows typically more updates in a burst, than bursts changing
attributes or the AS path. This also underlines the path exploration observation before the ac-
tual withdraw is recorded. The fact that a lot of consecutive update bursts end with the same
update indicates that most prefixes, even if they experience an instability event, converge to
a main route. We observe that instabilities last only for a short time period and are contained
within an update burst, which supports that our methodology is useful for finding instability
events.

59

4 BGP Dynamics

5,000 20,000 50,000 200,000 500,000 2,000,000

0.
0

0.
2

0.
4

0.
6

seconds

de
ns

ity

no change
path change
attribute change
failure/repair

Figure 4.11: Burst interarrival time with kind of
change.

0 10 20 30
seconds

Fe
qu

en
cy

0
5,

00
0

10
,0

00
15

,0
00

with MRAI
without MRAI

Figure 4.12: Interarrival times of between
echoes.

Still, some failures cannot be repaired within 1 hour (burst timeout) and therefore involve
two update bursts (captured by failure/repair). This is shown in Figure 4.11. This plots shows
the interarrival times of bursts, i.e., when the next burst starts? This plot again distinguishes
the categories “no change”, “path change”, “attribute change” and “failure/repair”. The red
dashed curve (failure) answers the question above: If a failure cannot be repaired within 1
hour (which would put the burst in the “no change”-category), it is typically repaired within
3 to 6 hours. This can explain the high peak at the left side of Figure 4.11. The remaining
curves actually do not show predominant peaks, and thus support the assumption that after an
instability ends it is more or less random until the next instability affects the prefix.

Next we take a closer look at two factors contributing to long convergence times: the effects
of MRAI and the impact of route flap damping.

Figure 4.12 shows a histogram of interarrival times of updates over a peering session. This
means while we usually compute interarrival times on a per prefix and per peer basis, we
solely consider here consecutive update packets arriving over a peering session. We distin-
guish peers that have an active MRAI and compare them to peers that do not show the effects
of an MRAI timer. Figure 4.12 clearly shows that jittered behavior of 8 sessions with MRAI
timer. Yet, only 3 sessions in that plot have no MRAI timer. The updates arrive over the
session nearly immediately and the number of messages is much higher. This is a typical
behavior because the MRAI collects updates coming from various internal neighbors, while
the router without MRAI passes nearly every change in the best path selection process on to
the eBGP neighbor. See [11] for related work.

Let us now investigate the effects of route flap damping in a thought experiment. We are
interested in understanding the delay induced by a router, that is doing route flap damping and
how this relates to the “echoes” that are typical for distance vector protocols. We approach
this question from a practical viewpoint, by taking a router, a Cisco GSR 12008 [54]. We
activate Cisco’s default route flap damping (Half-life time: 15 mins, decay time: 2320 secs,
max suppress penalty: 12,000, max suppress time: 60 mins, suppress penalty: 2,000, reuse
penalty: 750). In a test-lab we send update bursts to the router. The update bursts consists
of a different number of updates (up to 40). Furthermore, the update probes are differently
spaced (i.e., 1 sec, 10 sec, 30 sec, 1 min, 2 min). Figure 4.13 shows the results of this
experiment. On the x axis is the number of probes in the update bursts. The y axis shows
the times outgoing BGP updates are observed. The different points (see legend) represent the
various spacings. A burst is targeted towards the router until all updates are sent, they are
sent in the pace of the “echo spacing”. So, consider for example a burst of only 6 updates

60

4.7 BGP dynamics

0 10 20 30 40

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
5,

00
0

number of updates send to the router

ob
se

rv
ed

 o
ut

go
in

g
up

da
te

s

echo spaceing 1s
echo spaceing 10s
echo spaceing 30s
echo spaceing 1m
echo spaceing 2m

(1 hour)

Figure 4.13: Durations of Route Flap Damping.

1 10 100 1,000 10,000

50
%

60
%

70
%

80
%

90
%

10
0%

echoes
(in 120s timeout bursts)

P
[#

up
da

te
s

<
ec

ho
es

]

6 echoes with MRAI timer
without MRAI timer

Figure 4.14: Number of echoes in a burst.

where all updates are spaced 30 seconds apart (illustrated in Figure 4.13 by the blue crosses
at value 6). This means the experiment sending the updates to the router lasts 3 minutes (6
echos x 30 seconds), yet updates are coming out of the router for 1,680 seconds (28 min!).
The prefix was suppressed (= withdrawn) for over 25 minutes. Note that damping can be
triggered already after the fourth updates, yet if updates are not very closely spaced then the
decay does not cause damping immediately.6

Now lets continue our thought experiment: We are interested how often this happens in re-
ality? And if it matters if there is a router with MRAI or without MRAI timer on the other
side? 7 We analyze the recorded data from the remote collector RRC00 as if the collector
were an actual router with Cisco’s default route flap damping enabled. We group updates
into bursts with a timeout of two minutes. This provides us with groups of updates that are
at most two minutes spaced. Note that this is a lower bound approximation for damping ef-
fects, as updates can be spaced even closer and therefore trigger damping even faster as well
as bursts with a slightly larger spacings are not evaluated (because they are separated by the
burst timeout).

Figure 4.14 shows a CDF of number of updates in a burst (burst timeout two minutes). This
means we show on the y axis the probability that the number of updates in a burst is less
than the value on the logarithmically scaled x axis. Again, we distinguish peers with MRAI
(solid blue curve) and peers without (dashed red curve). Note that the distribution is heavy-
tailed, which means there are a few prefixes that are subjected to a lot of updates. This can
be due to oscillations, yet most prefixes are “well-behaved”. The vertical line at 6 represents
the number of echoes that surely triggers route suppression on a router with Cisco’s defaults.
This means that 8.3% (2.4%) of the prefixes that observed updates would get dampened on
a BGP session where the remote router does not (does) use a MRAI timer. Note, that even
though the number of well behaved prefixes that are subjected to damping is larger without
MRAI, still the MRAI timer does not prevent suppression of prefixes that are in the normal
convergence process.

Finally, we illustrate update propagation and filters by comparing the properties of two dif-
ferent BGP peering sessions. Figures 4.15, 4.16 show the stacked relative distribution of
updates over time for two peerings sessions from the data set of 2002. While we observe that

6For example 4 updates spaced 1 second apart triggers damping already after the fourth updates – if the updates
are spaced 2 minutes apart, then 6 updates are “needed” to trigger damping.

7Recall, Cisco has per default a MRAI timer of jittered 25-30 seconds. Juniper’s out-delay is disabled by default.

61

4 BGP Dynamics

01/14/02 01/16/02 01/19/02

0
20

40
60

80
10

0

time

pe
rc

en
t

Path
Path/Prepending
Path/Prepending/Att
Path/Att

Prepending
Prepending/Att
Att
neither

Figure 4.15: Relative # of updates.

01/14/02 01/16/02 01/19/02

0
20

40
60

80
10

0

time

pe
rc

en
t

Path
Path/Prepending
Path/Prepending/Att
Path/Att

Prepending
Prepending/Att
Att
neither

Figure 4.16: Relative # of updates.

for some peers, most updates involve mainly AS path changes, for other peers, combinations
of path changes and attribute changes explain most updates. This depends on the policy of
the peer. If the peer announces communities or other attributes, that shows different patterns
on the BGP session, as in the case of the peer in Figure 4.15 (approximately 1

4 of all updates
are just changing community values). We will revisit this in a more generalized context in
Chapter 7, when we build a workload generator for BGP that reassembles the observable
properties of BGP on a session.

4.8 Summary

In summary we find, that BGP convergence in the Internet happens within two minutes.
For failure events prevalent times are a bit longer, in the order of four to six minutes. Yet
oscillating and diverging prefixes can be observed regularly.

A large factor to slow Internet convergence is the MRAI timer and route flap damping. We
find, as well as other researchers [45, 46], that even “well-behaved” prefixes are subjected to
route flap damping. This is because of too tight parameter settings that ignore the fact that
BGP may send multiple updates for one event. While the distribution of the durations of the
update bursts is consistent with heavy-tailed distributions the distribution of the interarrival
times is not. This shows that our simple clustering technique is capable of grouping updates
belonging to one event or related events (such as a failure and the corresponding repair of the
failure) together and is able to identify stable states.

Working with BGP updates can sometimes be perplexing as a lot of policy decisions interplay
with unfortunate administrative settings, vendor bugs and a still not well understood behavior
of BGP dynamics.

62

5 Locating Internet Routing Instabilities

In the last chapter we looked at BGP dynamics and studied the convergence properties. This
raises the question of the origins of all these updates (i.e., the location of the event that
triggered updates), how they are correlated and if this can be inferred just by observing the
control plane of the Internet. In this chapter we propose a methodology for locating the
origins of routing instabilities. Our approach is to correlate information from updates across
observation points (views) and across prefixes. In contrast to others [92–94] we propose to
first correlate across time, then views, and finally prefixes. Each instability (any change of
BGP advertisement over an eBGP session) implies that some BGP attribute changes for some
prefixes are propagated via BGP updates throughout the autonomous system (AS) topology.
Our main insight is that if there is an AS path change, then some instability has to have
occurred on one of two AS paths: the previous best path or the new best path. Furthermore,
if there is only an attribute change, then the instability has to be on the AS path. Using
multiple vantage points, one can then pinpoint an instability. Under certain conditions (see
Section 5.1.3) this instability corresponds to the original cause of the routing change.

We verify our approach in a novel way. In particular, we use a simulator (Section 5.4) which is
based on an AS topology derived from actual BGP updates, and which uses BGP policies that
are compatible with the inferred peering/customer/upstream relationships among the ASes.
In the simulation, network and protocol behavior are ideal. Through simulation we learn what
inference quality is achievable and how it is correlated with the number of observation points
and the location of the observation points.

We then apply our methodology and evaluation technique to the same actual BGP updates
gathered at more than 1,100 observation points located in more than 650 ASes including the
ones from RIPE RIS [48], University of Oregon RouteView [49], and more than 700 feeds
are from Akamai Technologies (Section 5.3). To cope with the complexity of BGP we de-
velop several heuristics (Section 5.2) to deal with the limitations of real BGP updates, such as
update propagation, AS path exploration, MRAI timer, route-flap damping, absent updates,
multiple instability events, as well as missing information. Overall we find (Sections 5.4
and 5.5) that we can pinpoint a likely origin of instability to a single AS or a session between
two ASes in most cases even without correlating across prefixes. For further validation, we
correlated the inferred instability with router syslog data from a tier-1 ISP. We are able to con-
firm that 75% of the inferences where this ISP is identified to be responsible for originating
an instability coincides with a BGP session reset.

To summarize our contributions: We present a methodology for identifying origin of insta-
bility visible in BGP routing changes along three dimensions: time, view, and prefixes. Our
approach is thorough, as we take into consideration complex BGP operational issues, but
mainly it is simple and intuitive. It is based on how BGP path selection operates – some rout-
ing instability lies on either the previous or the changed stable paths. To show improvement
over previous work, we also illustrate through detailed examples that simplified assumptions

63

5 Locating Internet Routing Instabilities

AS3

AS1

P

AS2

P1

P1 P31

P21

AS4

P231

Figure 5.1: Example AS topology.

do not hold in practice. Furthermore, a main distinction of our work is that we use simulation
as a validation methodology on an accurate, fairly complete AS topology to understand when
we can and cannot narrow down the instability origin and the effect of vantage points on the
inference. Finally, we apply our inference methodology on a large set of BGP data from
diverse vantage points.

5.1 Ideal methodology

The goal of this section is to propose a methodology for inferring the origin of routing in-
stabilities from their effects – the results of the BGP convergence process. Each instability
may cause BGP updates to propagate through the Internet which can be observed at various
monitoring points throughout the network. We use these updates to identify the instability
origins. Moreover, the methodology is applicable to any other path vector routing protocols.

We refer to the location of a routing instability, either internal to an AS or between two ASes
with BGP peering session(s), as an instability origin, and refer to the resulting sequence
of BGP update messages as an instability burst. The specific instability burst observed at
particular points on the Internet via monitoring sessions differs according to the location
of the observation point (also referred to as view), the instability origin, the policies of the
ASes along the AS path, the effects of timing imposed on the message ordering, and the AS
topology itself. When the instability cause is due to an event internal to a given AS, excluding
eBGP sessions to its neighbors, we say the cause is located in the given AS. When the cause
of the instability is due to an event at an eBGP session between two given ASes, we say the
cause is located at the edge between the two given ASes. (Note that in the latter case we do
not try to determine which router at either end of the eBGP session initiated the event.)

5.1.1 Basic methodology

Let us consider the example AS topology in Figure 5.1 where AS1 is originating a route to
prefix P. Assume the single link between AS1 and AS2 fails. In this case, the best BGP
route at AS2 and AS4 changes from the solidly marked one to the dashed one. Given eBGP
monitoring sessions to AS2, AS3 and AS4 (not shown in the figure), one will observe BGP
updates at AS2, similar to the ones propagated to AS4, but none at AS3. The best path
propagated by AS2 changes from P:21 to P:231. This is the kind of information that we take
advantage of. In this case we can narrow the cause of the routing instability to AS2, or the

64

5.1 Ideal methodology

foreach instability event of prefix p
foreach observation point o

if route change with path change: from rp to rn
rb = best_path(rp, rn)
candidate_set co = candidates(rb)

if route change without path change: rp == rn
rb = best_path(rn)
candidate_set co = candidates(rb)

instability candidates = ∩co

Figure 5.2: Per prefix – ideal methodology for locating instabilities.

edge between AS1 and AS2. The main idea is that when there is a change in the best BGP
path, the origin of instability is either on the new path or on the old path or induces another
instability on either of the two paths. Furthermore, the original or the induced instability must
be on whichever of these two paths is “better” when compared head-to-head. To see this,
notice that if the old path was better, then there would be no path change without instability
on the old path. On the other hand, if the new path is better, then there must have been some
instability on the new path. While it is not always obvious to an outside observer which of the
two paths (old and new) is better, it is possible to derive a set of candidates for the instability
by taking the union of the two paths. Alternative heuristics that are more aggressive are
presented in Section 5.2. For example, here one may presume that the best path is the one
with shorter path length: P:21. Similarly, the eBGP monitor at AS4 sees previous and new
paths of P:421 and P:4321, and may presume that the best path is P:421.

Using information from multiple monitoring sessions helps narrow down the origin of the
instability. Assume that the instability under consideration is the only instability during some
time period. Then all path changes for the prefix P are due to this instability. This implies
that the instability is visible at each observation point receiving BGP updates for P, which
means that it is present in the intersection of the corresponding candidate sets. In the present
example, the intersection from the eBGP monitoring sessions at AS2 and AS4 yields the
candidate set of AS1, AS2, and the edge between AS1 and AS2. This basic approach is
summarized in Figure 5.2.

This ideal methodology assumes the following:

1. All updates caused by an instability event are identifiable.
2. At any time each prefix is only hit by one instability event.
3. BGP convergence finishes within some time period.
4. We can determine which paths are stable.
5. We can determine which of two BGP paths is better.
6. There are no induced instabilities (see Section 5.1.2).

While any of the above may not apply with actual BGP update data, it is possible to develop
heuristics to deal with each violation of these assumptions as described in Section 5.2. Fur-
thermore, it is possible to evaluate the methodology using simulations, see Section 5.4. This
enables us to calibrate our expectations.

5.1.2 Cautions

Next we illustrate using simple examples why the details and the assumptions matter when
trying to locate routing instabilities1 .

1For additional discussion see [35].

65

5 Locating Internet Routing Instabilities

P431 P421

AS4 AS5

P431

P421

P31 P21

AS1

P

AS2

AS3

P1

P1

P1

P1

P21

P31P1

P1

P5421

P5421 P21

AS3 AS4AS2AS1

P

P1

P1

AS5

AS6

P4321

AS7

P54321

P64321
P21

P321

P321 P4321

(a) Example topology 1 (b) Example topology 2

AS4

AS2AS1

P

AS3

P1
P421

P221

AS5

P5321

P5421
P321

P21

AS6

P421

P421

P21

P21

P871

AS1

P

AS6

P1

P1

P71

P4561

P5871

P1

P321
AS2 AS3 AS4

P61

P21

P4321

P461

AS8AS7

AS5

(c) Example topology 3 (d) Example topology 4

Figure 5.3: Example AS topologies

Caution on excluding candidate ASes: Suppose that, at a given observation point and for
a given prefix P one sees previous and new stable paths of P:7,6,5,4,3,2,1 and P:7,6,5,8,3,2,1
respectively. One might think that AS 7 or 6, or 2 or 1 could not be the cause of the routing
change, and thus these shared segments of the two paths could be excluded from the candidate
set. However, such inference can be erroneous and is not made in the “ideal methodology”.
The following two examples show that if the previously best and the new best path share
segments, it can be important to include the shared segments in the candidate set. This is
where our methodology differs from the approach by Chang et al. [93] which can incorrectly
exclude some instability originators.

Consider the example shown in Figure 5.3(a). Customer AS1 is multi-homed to two providers,
AS2 and AS3. Both providers, AS2 and AS3, have the same upstream provider AS4. And
AS4 peers with AS5 at two peering points. AS4 learns of the given prefix from AS2, and
may propagate the path P:421 to AS5 on the top of the two peering sessions. Likewise, AS4
also learns of the given prefix from AS3, and may propagate the path P:431 to AS5 on the
second of the two peering sessions, the bottom one. With cold potato routing, AS5 chooses
to announce the single route P:5421 to other ASes, including an eBGP session with an ob-
servation point (not shown in the figure). Now, due to, say, an internal failure within AS5 or
an operator in AS5 intentionally changing IGP costs, the route announced by AS5 to other
ASes changes from P:5421 to P:5431. Thus AS5 is the instability originator even though the
AS path change is at a different location, i.e., from 421 to 431. Thus the tie-breakers cause
situations in which changes within a remote AS can lead to AS path changes in the initial
(closer to the origin AS) segment of the AS path.

66

5.1 Ideal methodology

Furthermore, consider the example shown in Figure 5.3(b). Here the customer, AS1, is again
multi-homed but to only a single provider and originates prefix P. AS2, as well as AS3, and
AS4 all use cold potato routing in the sense that they use the IGP metrics to initialize the
MED values within the BGP updates. In this case it might well be that AS5 uses a route
which is propagated along the solidly marked path while AS6 is using the dashed one. Lastly,
based on received MED values, next hop IP’s and IGP costs, AS7 chooses to announce path
P:754321 on an eBGP session to some observation point (not shown in the figure). Now
assume that the solid link between AS1 and AS2 fails. In this case the next hop of the BGP
update from AS2 to AS3 together with the MED value will change. This causes all routers
within AS3 to change their best path to the dashed path. This implies that the BGP update
from AS3 to AS4 will have a different next hop and a different MED value. This will cause
AS5 and AS6 to announce new next hop and different MED values to AS7. Since the next
hop and MED values received by AS7 have changed, AS7 may change its preference from
AS5 to AS6, and announce a new path of P:764321 to the observation point. Thus, a link
failure in or between some AS near the origin AS, i.e., AS1 to AS2, can cause an AS path
change at a subsequent location on the path, i.e., from P:754 to P:764. If one imagines a
slightly more complex internal topology, even changes to IGP metrics within an AS can have
such an effect. Using IGP metrics as MED values creates a link between internal changes
and external effects and therefore between distant ASes. Similar effects are possible using
communities.

Caution on instability propagation: Figure 5.3(c) shows the danger of assuming that all
instabilities are propagated. In this specific case, AS6 uses the dotted route to prefix P, P:6421,
while AS5 uses the solid one P:5421. Now suppose that AS2 does AS path prepending on
one of the eBGP sessions with AS4, and that this causes AS4 to switch its best route for P
to the dotted one. This change has no impact on AS6 since its route does not change. AS5
will receive updates since the IGP/MED values within AS4 changed. This may cause AS5 to
switch to the dashed path via AS3, P:5321. Hence we have a situation where the best path
of AS6, in the sense of AS-level path P:6421, has an instability, but AS6 will not receive a
corresponding BGP update. This can be achieved via IGP/MED coupling and filters, e.g.,
using communities. In essence this problem corresponds to the previous problem.

Caution regarding induced updates: Figure 5.3(d) shows the danger of assuming that the
origin of all instabilities is either on the new or on the old path. In this specific case, AS4
prefers the route P:321 for prefix P instead of the route P:61. Accordingly it advertises the
route P:4321 to AS5, and AS5 advertises P:5871 to an observer. If the link between AS2
and AS3 goes down, AS4 revises its advertisement to AS5 to the route P:461. If now AS5
prefers the route P:461 over the route P:871 it will advertise the route P:5461 to an observer.
Thus the observer sees the route to P change from path P:5871 to P:5461, even though the
original failure is the link between AS2 and AS3. In this case the original failure induced or
triggered a route change at AS5. While the routing decision at AS4 may seem unorthodox, it
is nevertheless coherent in the sense that AS4 uses a consistent ranking of the paths. Induced
updates can occur if the ranking of routes differs between providers. Our methodology is
capable of locating the AS where the route change is induced, but may not be able to locate
the original cause of the instability. On the one hand this is disappointing, yet on the other
hand locating the induced instability already reduces the problem and is valuable in itself. The
problem introduced by induced updates is that the intersections can be empty, if a subset of
the observers point towards the original instability and another subset to an induced update, or

67

5 Locating Internet Routing Instabilities

even incorrect, e.g., if A is the instability origin AS, B the AS at which an update is induced,
and A, C is the subset that one subset of the observer identifies, and B, C is identified by
another subset. Nevertheless it is the case that each set of observers can be partitioned in such
a way that the intersection of the union of the AS paths will include either one AS at which
an update is induced or the original instability.

5.1.3 Identifying link changes

The cautionary examples highlight that the union and the intersection rules are only heuristics.
Yet, these are sensible heuristics and we now provide some formal justification. In particular,
we analyze the effectiveness of the union heuristic in the simplified model of BGP that is
realized by our simulator. Each of the theorems in this section relies on one or more of the
following assumptions.

Assumption 5.1.1. The simplified BGP model assumes:

a) The only events in the network are link failures and link restorations, and the network
fully converges to new routes between successive events.

b) Routes are chosen based on the AS Path attribute only. Other attributes such as MED
and next hop are not considered in calculating local preferences. There is at most one
peering session between any pair of ASes.

c) For each destination and for each AS, routes are chosen based on a total order over all
possible AS paths to the destination. Although the list of paths available to an AS may
change over time, the total order over all possible paths never changes.

The following theorems relate to the union rule. Suppose that an event has occurred, and that
as a result, the AS path from an observer (AS O) to a destination (AS D) has changed.

Theorem 5.1.2. Suppose Assumptions 5.1.1 hold. If observer O sees its path to destination D
change, then on either the old path or the new path, at least one AS changes the advertisement
for D that it sends to its predecessor on the path.

Proof: If no AS on either the old or new paths changes its advertisement, then both paths were
already available to O, and remain available. Since, by Assumption 5.1.1(c), paths are chosen
according to a fixed total ordering, the old path remains preferred over the new path.

Observe that, by Theorem 5.1.2, on either the old path or the new path from O to D, there
is a maximal prefix of ASes such that every AS on the path changed its advertisement to
its predecessor on the path. By definition, the last AS on the prefix did not receive a new
advertisement for D from its successor on this path. Call this last AS on the prefix Y , its
successor Z, and its predecessor X .

Theorem 5.1.3. Suppose Assumptions 5.1.1 hold. If Y is on the old path, then it either
observed a link failure on the old path or received a new advertisement for a path to D from
outside the old path. If Y is on the new path, then it either observed a link restoration on the
new path, or it received an advertisement withdrawing a path to D from outside the new path.

Proof: Suppose that X , Y , and Z lie on the old path, and Y changed its advertisement to its
predecessor X on the old path. Since Y is receiving the same advertisement for D from its

68

5.2 Adopted methodology

successor Z on the old path, then either the link between X and Y failed (and hence Y could
no longer advertise across it), or Y must have learned of a new path to D from outside the old
path that it prefers over the old path. If, on the other hand, X , Y , and Z lie on the new path,
then either the link between Y and Z was restored, or a path to D that Y prefers over the new
path was withdrawn from outside the new path.

Theorem 5.1.4. Suppose Assumptions 5.1.1 hold. Consider the common prefix of the old and
new paths from O to D. If Y appears on this prefix, it can only appear as the AS closest to D.

Proof: The proof is by contradiction. If Y is on the common prefix with respect to the old
path (but not the AS closest to D), then it must appear (in the same position) with respect
to the new path, and vice versa. Since the link between Y and X has neither failed nor been
restored (it appears on both the old and new paths), it must be that Z either learned of a new
path from outside old path, or saw a path withdrawn from outside the new path. But both the
old path and new path were available to Y before the event, and are still available to Y after
the event, and (by Assumption 5.1.1(c)) no event observed by Y can change its preference of
the old path over the new path.

Theorem 5.1.5. Suppose Assumptions 5.1.1 hold. Consider the common suffix of the old and
new paths from O to D. If Y lies on this suffix, then it must appear as the AS farthest from D.

Proof: The proof is by contradiction. If Y appears on the common suffix but is not farthest
from D, then Y appears in the same position with respect to both the old and new paths.
On both paths, Y receives the same advertisement from its successor Z, and sends the same
advertisement to its predecessor X . This contradicts the definition of Y .

5.1.4 Consideration of multiple prefixes

So far we have only considered two of the possible three dimensions for inferring the origin
of routing instabilities: time, views, but not multiple prefixes. Since it is quite likely that
multiple prefixes use the same BGP session/same link/same AS on their AS path, a failure
to any of the latter will cause changes to multiple best paths. This implies that if a prefix
is affected by only a single instability during some time, then we can identify correlated
events. One approach is to use a Greedy heuristic which starts with a set P that includes
all prefixes with instabilities during this time window. For all prefixes within the set P ,
count how often each AS topology component appears across the instability candidate sets
associated with these prefixes. Choose the most frequented AS topology component E as the
most likely instability cause/origin, and subtract the prefixes from P that include E in their
candidate set. The algorithm continues until P is empty which means that all prefixes have
been assigned an instability “origin”.

5.2 Adopted methodology

Beyond opening new questions for the general evaluation of BGP, the details examined in
Chapter 4 impose certain adaptations of the proposed basic methodology as well as the in-
troduction of additional heuristics. The final approach is outlined in Figure 5.4 and 5.5. The
first reflects the necessary adaptations while the second corresponds in essence to the ideal
methodology (see Figure 5.2 on page 65).

69

5 Locating Internet Routing Instabilities

preprocessing per observation point
(condense updates per prefix)
foreach prefix p ## condense updates per prefix

foreach observation point o
U = updates(o)− f lapping(o)
burst_setp = update_burst(U, timeout)
foreach b in burst_set

rp = as_path(old_stable_route(b))
rn = as_path(new_stable_route(b))
rb = best_path_set(rp, rn)
candidate_set cob = candidates(rb)

identify event set E
across observation points and prefixes p
foreach time-unit t and foreach prefix p

Ep = Ep ∪ new_event(t);
foreach event e ∈ Ep

event_burst_sete = associate_event_bursts(burst_setp, e)
condense bursts to identify instability origins
foreach event e and foreach prefix p

foreach observation point o
foreach (burst b, o) in event_burst_sete

candidate_set co = ∪cob
instability candidates = ∩co

Figure 5.4: Per prefix – adapted methodology for locating instabilities.

5.2.1 Candidate sets

Since instabilities can originate within an AS or between ASes our basic units are edges either
between two ASes or within an AS. The candidate set of an AS path consists of an edge for
each AS and an edge for each pair of consecutive entries on the path. Note that typically the
path received at the monitoring point does not contain the AS in which the monitoring point
resides, for brevity called the monitoring AS. However, should the path indeed contain the
monitoring AS, then we can exclude that AS if care is taken to exclude all updates associated
with session resets on the monitoring session. For example, the candidate set for the path
4321 where AS4 is the monitoring AS is: candidates(4321) = {(1,1), (1,2), (2,2), (2,3),
(3,3)}.

Best path: In general (see Chapter 4), it is hard to determine which route is the better one.
For updates with path changes, this corresponds to the problem of deciding which of the
two AS paths is the better path. Accordingly, the standard heuristic uses the conservative
approach of including the union of the edges from both AS paths. This yields, ignoring
induced updates, a lower bound with respect to pinpointing instability origins. For example,
if monitor AS4 sees updates 4321 and 421, this results in best_path_set(421, 4321) = {421,
4321}. Should one of the two stable routes be a withdrawal then the best_path_set is the AS
path of the other. If both stable routes are withdrawn then we do not gain any information and
the best_path_set consequently contains all possible paths. If the AS path does not change
then the best_path_set corresponds to one of the two paths.

If one ignores the impact of local preference and if the AS paths are of different length then

70

5.2 Adopted methodology

identify correlated events CE across prefixes
foreach time-unit t

CE = CE ∪ new_correlated_event(t);
foreach correlated_event ce ∈CE

event_setce = associate_ce_events(ce)
Greedy heuristic for clustering instabilities
foreach correlated event ce and event e ∈ event_setce

P = ∪ prefix(e)
while (P! = {})

reset counts to 0
foreach p ∈ P

increase count(instability_candidates(event(p))
i = instability with count(i) == max(counts)
P = P−{p with i ∈ instability_candidates(event(p))}
print instability i with prefixes Q

Figure 5.5: Across prefix – adapted methodology.

the better path is the shorter one. Accordingly, the best path heuristic only considers the
shorter one, e.g., best_path_set(421, 4321) = {421}. (In the case of equal path length, the
standard heuristic is used.)

Shared path segments: The example in Figure 5.3(b) shows that if the new and the old
stable AS path have the same initial segments, it is in general not permissible to exclude
it. Yet for an instability in the joined initial segment to cause the later AS path change, the
instability has to be propagated through multiple ASes without path changes. This is possible
via IGP/MED interactions or by specific filter combinations. Since experience shows that
such combinations across multiple ASes are unlikely, one can expect that a heuristic, called
initial path, which excludes the initial segments up to but not including the edges to the
divergence point, does not do too badly. For example, with the initial path heuristic we have
at AS7: best_path_set(754321, 764321) = {7543,7643} − 3. This notation means that we
can exclude the edge (3,3) from the candidate set. This heuristic is especially helpful when
only non-transitive attribute changes occur, e.g., next hop, local preference, and originator
changes. With regards to changes to transitive attributes, e.g., communities, more care may
be necessary.

The example in Figure 5.3 shows that, if the new and the old stable AS paths have the same
final segments, it is in general not possible to exclude it. The problem sketched there is due
to peering at multiple connections which is common between larger providers. Therefore,
applying a heuristic that excludes the final path segment, called final path, can be dangerous
in the sense of excluding the cause of the instability. Nevertheless exploring it is of interest.
For example with the final path heuristic we have at AS7: best_path_set(765321, 765421)
= {65421,65421}−6.

Summary: Note that the standard heuristic tries to never exclude the cause of an instability
or the induced instability. The heuristics: best, initial, and final paths can exclude some ASes
and AS pairs that might have caused an instability. On the other hand they provide the benefit
of narrowing the candidate sets. Accordingly, we are interested in evaluating the benefits and
dangers of using the heuristics, especially since related work [93] by default assume that the
initial and the final path heuristic are applicable.

71

5 Locating Internet Routing Instabilities

5.2.2 Events

So far we have adapted the ideal methodology of Figure 5.2 (page 65) to include specifics
about how to determine old/new stable routes, route and path changes as well as best paths
calculations (see Chapter 4, page 54). But we are missing a way to identify instability events.

Note that all non-local instabilities of a prefix, e.g., those that cause AS path changes, have to
be propagated along a subgraph of the DAG of this prefix. This implies that an instability may
be visible at multiple observation points within the DAG subgraph at about the same time.
After excluding most effects due to path exploration, propagation delays, and BGP timers by
computing per prefix update bursts, we now identify the start and end times of events and
associate each burst with an event.

When identifying events we still have to deal with timing problems: within BGP, as well as
with the propagation to the observation points, as well as with the “accurate” time synchro-
nization of the monitors. To identify for each prefix the event start and end times together with
the appropriate update bursts, those that started within this time window, the two heuristics
new_event and associate_event_burst are used. One way of grouping bursts into events is
similar to grouping updates into bursts or packets into flows using a relative timeout. The first
event is initialized with the start time and the finish time of the earliest update burst across all
observation points. If the time difference between the event finish time and the start time of
the next update burst is less than the timeout value, the event end time is set to the end time
of this next burst. This implies that the quiet period between the events has to be greater than
the timeout value. This approach is referred to as relative timeout. A major drawback is
that events can span a long time period and may therefore contain multiple actual events. An
alternative is to use a static timeout. But now the sensitivity of the timeout becomes a prob-
lem. An appropriate value for one prefix may not be a good one for another. Furthermore, a
static timeout may separate two related update burst into different events (see Section 4.2 on
page 55).

Accordingly, we also pursue the third option of an adaptive timeout. It consists of two
steps: During an initial period which starts with the beginning of the event and ends at start +
timeout, a relative timeout of timeout/2 value is used. Then a relative timeout of 0 is used.
The first part desensitizes the specific choice of timeout values and takes advantage of the
nice properties of relative timeouts. The second part together with excluding continuously
flapping updates ensures that events are not too long and that parallel bursts are associated
with the same events.

5.2.3 Correlated events

Chapter 4 clearly outlines that BGP updates to multiple prefixes are often correlated. Ac-
cordingly, the next step is to correlate the located instability origins across multiple prefixes
and identify clusters. The Greedy heuristic outlined in Figure 5.5 provides a simple ap-
proach, but it requires us to identify which prefixes experience correlated events. We solve
this problem by grouping events per edge to correlated events in the same manner using the
same heuristics as for identifying events. But to prevent long events from attracting all other
events we put a limit on how much each event can extend the per edge clusters. The number
of events in each edge clusters is used in the ranking of the Greedy heuristic.

72

5.3 Data sets

5.3 Data sets

Our work relies on external BGP routing tables dumps and update traces obtained from
RIPE [48], Routeviews [49], a local ISP, and Akamai Technology. Throughout this chap-
ter we only present results in an exemplary fashion for the following raw data sets.

BGP update traces: from 12/04/03, 00:00 GMT to 12/16/03, 00:00 GMT, consisting of more
than 343,600,000 updates from more than 1,100 different peering sessions to more than 650
ASes, including Tier 1 ISPs, major European ISPs, Asian ISPs, as well as stub ASes. Some
ASes provide full feeds while others are partial feeds. We have multiple monitoring sessions
to about 43.3% of the monitored ASes.

Basic statistics: Overall the number of observed prefixes is 276,556 of which 28,110 are
from the private address space. The latter are excluded from further consideration. Of the
remaining, included prefixes, 42.7% were, at some point in time on at least one observation
point, subject to AS path prepending, which is a popular policy used for traffic engineering
purposes. In terms of inconsistencies we found that 4,038 or 1.46% of the prefixes had
multiple originating ASes. Also, 11,507 of the pairs of (observation points, prefixes) were
continuously receiving updates in the sense that they have at no inter-update time larger than
2 hours for more than 1 day.

Inferred AS topology: We took one day of BGP table and update data on December 10,
2003 for the purpose of analyzing AS relationships and inferring AS paths for simulation
purposes as described below. 3,428,464 distinct AS paths (after ignoring AS prepending)
are used as input to the relationship inference algorithm. The graph consists of 16,757 nodes
with 45,376 edges. Based on the relationship inference, we have 30,653 customer-provider
relationships, and 1,532 pairs of ASes are found to have peering relationships.

5.4 What if – simulations

To understand the accuracy of our algorithm for inferring the location and the cause of routing
instability, we validate via extensive simulations on the inferred AS topology. We make
use of RouteScope [137] in inferring all valid policy paths between two ASes. RouteScope
uses a simple algorithm based on shortest AS hop count for inferring AS paths between two
end systems, without access to either host, by using information from BGP tables collected
from multiple vantage points. Given the collection of AS paths from BGP tables, the AS
relationship inference algorithm by Battista et al. [138] is used to identify all valid policy
paths. Valid AS paths are assumed to go through paths in the form of CustomerProvider*
PeerPeer? ProviderCustomer* (denoted as AS path rule), where “*” represents zero or more
occurrences of an AS edge and “?” represents zero or a single occurrence of an AS edge.

Based on the inferred AS relationships, edges in the AS graph are grouped into the following
four categories: (i) custom-provider link (UP link), (ii) provider-custom link (DOWN link),
(iii) peering links (FLAT link), and (iv) unknown AS relationship. For the last type, we
replace the edge with one UP link and one DOWN link, effectively removing any restriction
on the inclusion of edges with unknown AS relationships. We repeated our analysis with
all such edges excluded from the AS graph. The results are very similar to what we report
here. The accuracy of RouteScope in predicting AS paths from several selected ASes to the

73

5 Locating Internet Routing Instabilities

entire Internet is around 85%. Inaccuracy stems from the following reasons: (1) Inaccuracy in
AS relationship inference. (2) AS prepending effect is ignored. (3) Special routing policies
for particular prefixes. We emphasize that such inaccuracy does not affect our evaluation
methodology, as we aim to have a reasonably accurate AS topology to study whether our
algorithm can precisely identify the location of simulated failures, given the AS paths selected
before and after the failure.

5.4.1 Controlled experiments

We perform the following set of controlled experiments. RouteScope can infer a set of most
preferred valid policy paths between any two AS pairs in the AS graph. Oftentimes, multiple
AS paths appear to have the same preference, i.e., with the same AS path length and of the
same type (customer, peer, or provider routes). To understand the effect of an arbitrary link
failure, we randomly select a set of observation points and destination points by picking from
tier-1 ISPs, tier-2 ISPs, ISPs with other ranks (based on ranking algorithm in [107]), and stub
ASes based on a fixed proportion. We also attempt to include the observation points from
which we have the BGP feeds as part of the source ASes.

Given the selection of source and destination AS nodes, we study the effect of a failure by
computing the set of best AS paths before and after the failure. We remove the inter-AS
link affected by the failure. In practice, there may be multiple peering links between two
ASes, especially two large providers. We simplify this by assuming a single link and thus
simulate the worst case scenario. We select 100 failures strategically by considering a variety
of combinations of ASes in different parts of the Internet hierarchy, e.g., between two tier-
1 ASes, a tier-1 AS and a stub AS, two tier-2 ASes, etc.. Given the set of equal cost paths
between two ASes, we impose a selection among all equal cost paths to make sure the routing
decision is consistent. For instance, if AS X selects a route advertised by AS Z, and AS Y
chooses a route from AS X, Y’s route must also go through Z.

To our surprise, just randomly selecting 100 destinations and observation points can make it
hard to observe any changes in the best paths. Contrary to previous claims, in our simulations,
we found that BGP failures are fairly well-isolated due to redundant paths, see Section 4.2.
We plan to explore this further by understanding the properties of topologies where a partic-
ular failure between two ISPs of given ranks can affect.

5.4.2 Results

Given the results of the failure, we apply our heuristics (see Section 5.2) to the data sets to
compute possible instability candidate sets. We note that none of the heuristics has ever ex-
cluded the failed edge from the resulting instability set indicating that the approach is sound.
Indeed it is not surprising that none of the examples from Section 5.1.2 materialize since the
simulation scenario mainly follows the assumptions except for best path. Preferring customer
and peering relationships over upstream providers may cause the best path heuristic to fail.

To explore whether the location of the failure has any impact on our ability to locate it, we
divide the failed links into three classes: “top tier” (between tier-1’s and tier-2’s or between
a tier-1 and a tier-3), “middle tier” (between tier-2’s, tier-3’s or tier-4’s), “bottom tier” (all

74

5.4 What if – simulations

1 2 3 4 5 6 7 8 9 10 11−30

0
10

20
30

40
50

loc: top, obs: 1, heur: std
loc: top, obs: 2, heur: std
loc: top, obs: 5, heur: std
loc: top, obs: 10, heur: std
loc: top, obs: 20, heur: std

Size of instability set (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.6: Simulation: instability set size hist.
for # of obs. (heur.: standard, loc.: top).

1 2 3 4 5 6 7 8 9 10 11−30

0
10

20
30

40

loc: bot, obs: 2, heur: std
loc: bot, obs: 2, heur: best
loc: bot, obs: 2, heur: init−fin
loc: bot, obs: 2, heur: stable
loc: bot, obs: 2, heur: init−fin−best−stable

Size of instability set (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.7: Simulation: instability set size hist.
for various heuristics (obs: 2).

1 2 3 4 5 6 7 8 9 10 11−44

0
10

20
30

40

loc: top, obs: 2, heur: init−fin−best−stable
loc: mid, obs: 2, heur: init−fin−best−stable
loc: bot, obs: 2, heur: init−fin−best−stable

Size of instablity set (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.8: Simulation: instability set size hist.
for failure locations (heur.: all, obs.: 2).

path
reach−
ability

com−
munity med

nexthop/
other none

0
5

15
25

timeout: b=02m
timeout: b=04m
timeout: b=08m
timeout: b=16m

Kind of changes

N
um

be
r o

f b
ur

st
s

(in
 1

0^
6)

Figure 5.9: Stable route differences for various
timeouts.

path
reach−
ability

com−
munity

nexthop/
med other none

0
5

10
15

20
25 0s <= dur < 4s

4s <= dur < 64s
64s <= dur < 1024s
1024s <= dur < 4.6h
4.6h <= dur < 73h
73h <= dur < 1200h

Kind of changes

N
um

be
r o

f b
ur

st
s

(in
 1

0^
6)

Figure 5.10: Stable route differences for burst
length with 2 minute timeouts.

path
reach−
ability

com−
munity

nexthop/
med other none

0
20

40
60

80

1 <= number < 10
10 <= number < 100
100 <= number < 1000
1000 <= number < 10000
10000 <= number < 100000

Kind of changes

P
er

ce
nt

ag
e

of
 b

ur
st

s

Figure 5.11: Stable route differences by # of up-
dates in burst for 2 minute timeouts.

75

5 Locating Internet Routing Instabilities

others). Unfortunately the observation that random selection of points makes it hard to ob-
serve any changes also implies that the number of observation points that observe any best
path changes is limited. This is extreme for the bottom class where of the 9,112 events, about
15% are observed at multiple observation points. For the middle tier, this value is close to
40% and for the top tier 69%. While this might limit the potential gains of our methodology,
Figure 5.6 shows that it is possible to derive instability set sizes with the conservative standard
heuristic of 5− 7 for more than 68% of the failures with only two observation points. With
10 observation points this increases to almost 88% and almost 100% with further observation
points. This implies that it is easier to track those failures that are percolating through larger
parts of the Internet.

Narrowing the instability set size to three is the best one could hope for since the candidate is
at a peering link which causes the instability set to already contain three edges. This set can
only be further reduced by using the other heuristics. Figure 5.7 shows this benefits for the
bottom class. The best path heuristic helps to decrease the instability set size from two inter-
AS links (= 5 AS-AS edges) to one (= 3 AS-AS edges) for more than 20% of the events. The
stable, the initial, and final heuristics exclude more edges so that even the precise instability
origin can be determined. Overall the combination of all heuristics reduces the instability
set to less than 5 AS-AS edges including intra AS edges for more than 88% of the cases.
Figure 5.8 shows that using our heuristics with five observation points, one can pinpoint the
origin for more than 80% of the events down to less than 5 edges for bottom tier, 6 edges for
middle tier and 7 edges for the top tier. Overall this indicates that the huge redundancy within
the core of the Internet adds additional complexity to pinpointing the origins. On the positive
side these edges are used by many different prefixes so that the Greedy heuristic will capture
the appropriate edges, which it indeed does for these failures.

5.5 What is – data analysis

Having shown that our methodology is sound in the “what if” world, we can now apply it to
the “real world”. For this we need to determine how sensitive the results are to the heuristics
as well as their parameters. Furthermore, each step provides us with useful information about
how far BGP updates spread and their impact radius. For the purpose of the evaluation, we
partition the approach into the following four stages: (1) update burst calculation, (2) group-
ing of bursts to events (3) instability candidate calculation for each event, and (4) correlation
of events.

5.5.1 Update bursts

The update burst calculation is used to identify prior and post stable routes and one of the
more interesting questions is how do these stable routes differ. We classify the changes into
the following groups: path summarizes all updates that have changes in their AS path, reach-
ability counts those prefix bursts where a route either became available or was withdrawn,
community sums up those without path and reachability changes but with a change in their
community attribute, nexthop/med includes those with either nexthop or med but no AS path
or community change, other captures all other attribute changes not within any of the previ-
ous classes, while none pools those where all attribute values of the two stable routes remain

76

5.5 What is – data analysis

equal. Note that if, e.g., the AS path and the MED changes then the burst is counted as a path
change.

Figure 5.9 shows a histogram of the number of bursts per group for different timeout choices.
While more than 23% of the 2 minute bursts include a path change, more than 24% do not
result in a change, even though within the burst there was a change. Furthermore, a significant
fraction only propagates attribute changes that should mainly have local impact. On the other
hand, about 5% of the bursts with pure community changes have to be propagated through
the full reachability graph unless some providers filter such community values.

We decided to study timeouts ranging from 2 to 16 minutes. The smallest value, 2 min-
utes, can be sufficient to group updates caused by path exploration together into one burst.
Section 4.6 (page 55) shows that most beacon announcements converge within a two-minute
window. Yet since there are various ways in which BGP updates can be delayed, including
MRAI timer, route reflectors, etc., not all path exploration can be captured with timeout val-
ues of 2 minutes. Accordingly, we study larger timeouts of 4, 8 and, 16 minutes as well. The
problem with large timeouts is that they can group the results of several instabilities together,
e.g., an instability together with the instability repair, which may correspond to combining
bursts with smaller timeouts of group path or group reachability to one of group none. The
decrease in the absolute number of bursts as well as the above average decreases in the path
and reachability groups is apparent in Figure 5.9. The larger timeout values are especially
problematic since they are larger than the delays imposed by route flap damping. Further-
more, they limit our ability to pinpoint the exact time of the instability which is needed for
the next steps for determining the origin of the instability.

In terms of the duration of the instabilities, Figure 5.10 shows a histogram of the number of
bursts per group for a timeout choice of 2 minutes, by duration of the burst. That a large
fraction of the bursts lasts less than 64 seconds, independent of the timeout value, is an
indication that most timeout values are reasonable. On the other hand we note that the longer
a burst lasts the more likely it is to recover its old stable route. This is (not shown) even more
dominant for larger timeout values. The bursts in the community, nexthop/med, and other
groups tend to be significantly shorter than others. This may be an indication that these bursts
are not the result of a path exploration. As the duration of a burst is somewhat correlated with
the number of updates in a burst, it can be expected that most bursts contain a fairly small
number of updates. Figure 5.11 shows the result of first grouping bursts according to the
number of updates that they contain and then computing the relative distribution across the
groups. Most of these involve a change in either reachability or in the AS path. The fact that
most bursts in the community, nexthop/med, and other group are dominated by small bursts is
another indication that no extensive path exploration takes place. Yet, longer timeout values
cause the numbers of updates within bursts to increase and these are likely to be in group
none. Since we want to pinpoint instabilities in time and since bursts of group none have lost
most of their information about the location of the instability, we proceed with update bursts
of 2 and 4 minutes.

5.5.2 Events

This stage associates bursts from various observation points with events using various time-
out heuristics: relative, static, and adaptive timeout. With regard to choosing parameters, the

77

5 Locating Internet Routing Instabilities

path
reach−
ability

com−
munity

nexthop/
med other none

0
1

2
3

4
5

b=02m, e=04m heur: adaptive−16m
b=04m, e=04m heur: adaptive−16m

b=04m, e=16m heur: static
b=02m, e=04m heur: rel

Kind of changes

N
um

be
r o

f e
ve

nt
s

(in
 1

0^
6)

Figure 5.12: Event characterization for various
timeout heuristics.

1 4 16 64 256 1024 4096 16384

0
2

2
6

6
10

timeout: b=02m, e=04m heur: adaptive−16m
timeout: b=04m, e=04m heur: adaptive−16m
timeout: b=04m, e=16m heur: static
timeout: b=02m, e=04m heur: rel

Event duration (seconds)

N
um

be
r o

f e
ve

nt
s

(in
 1

0^
6)

Figure 5.13: Event duration for various timeout
heuristics .

event associated timeout should be compatible with the update burst timeout. Choosing an
event timeout less than the burst timeout indicates that one is more stringent for grouping
events than for updates and can create situations where a burst should be part of two events.
To avoid this, we choose to be more lenient and use a timeout greater than or equal to the burst
timeout. Still the timeouts should not be too large to avoid grouping those bursts together that
were separated by the timeout of the burst calculation. Accordingly we select the follow-
ing parameter sets for relative: (bursts=2m,events=4m), (b=4m,e=8m); static: (b=2m,e=8m),
(b=4m,e=16m); adaptive: (b=2m, e:(max=16m,rel=4m), (b=4m, e:(max=16m,rel=4m)).

Overall we notice that the specific choice of parameters and heuristic does not appear to cause
major differences. For example, Figure 5.12 shows a grouping of the events into similar
categories. An event belongs to group “path” if at least one of its bursts belongs to this group.
An event belongs to group “reachability” if no burst belongs to group “path” and at least
one burst belongs to group “reachability,” etc.. Some observations about bursts carry over to
events, e.g., events are again dominated by path and reachability changes. But while more
than 24% (28%) of the 2 (4) minute bursts are in group none, less than 14% (18%) of the
events are. In comparison, note that the fractions of events with community, next-hop, or
other attribute change have increased significantly.

One of the reasons for proposing to use the static and adaptive timeouts is that we want to limit
the duration of each event in order to pinpoint the origin of instability, either in the next step
or the final step of event correlation. This is indeed the case for these heuristics. Figure 5.13
show a histogram of the event durations for a subset of the parameter choices. Note that
most events, just as most bursts, are short, yet a few last for a long time. While the events
identified by the relative heuristic can be long (more than 4 hours) the ones generated by the
static heuristic are indeed less than 16 minutes. The adaptive timeout events are somewhere
in between since they separate active from quiet periods and are patient enough for active
periods to finish.

The next question motivated by our experiences with the simulated failures is how many
observation points observe each change. More than 66.6% of instabilities are only observable
at a single observation point and 16.1% at two. Overall 95.3% are observable at less than 10
observation points. This again confirms that BGP indeed provides significant isolation against
routing updates.

78

5.5 What is – data analysis

−1 0 1 2 3 4 5 6 7 8 9−24

0
10

20
30

40
50

60

obs: 1
obs: 2
obs: 5
obs: 10
obs: 20

Size of instability set (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.14: Beacons: instability set size hist.
for # of obs. (adaptive (b=2m,e: (max=16m,
rel=4m)); heur.: standard).

−1 0 1 2 3 4 5 6 7 8 9−24

0
10

20
30

40
50

adaptive−16m (b=2m,e=4m)
adaptive−16m (b=4m,e=4m)
relative (b=2m,e=4m)
relative (b=4m,e=4m)
static (b=2m,e=8m)
static (b=4m,e=16m)

Size of instability set (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.15: Beacons: instability set sizes hist.
for timeout heuristics (obs.: 2; heur.: standard).

5.5.3 Instability candidates

Once the bursts are grouped to events, we can apply path heuristics to compute the instability
candidates for each event to compare with simulation results.

5.5.3.1 Beacons

We first apply our heuristics to BGP beacon prefixes. Our experiences with the simulation
results have shown that we can usually narrow the candidate sets to an instability candidate
set of about 3−7 edges for more than 70% of the examples. For the beacons we can do even
better. With the adaptive event timeout (b=4m,e:(max=16m,rel=4m)) heuristic and at least
two observation points we can narrow the instability set to three or fewer AS edges for more
than 76% of the events (see Figure 5.14). We verified that each instability set contains the
edge for the origin AS. While in theory each beacon should be observable at all observation
points, this is not the case. For example, some events consists of only withdrawals and the
previous event is also a withdrawal. These kinds of events are captured in the category la-
beled “-1” and sum to about 5%. Furthermore, with the adaptive event timeout, more than
31% of the events are only observable at a single location. This can be explained by BGP
update delays, e.g., due to route flap damping, filtering at intermediate peers, time synchro-
nization problems of the collectors, or other instabilities that affect beacon prefixes. Using
the static (b=4m, e=16m) heuristic reduces this to only 18% since it ensures that appropriate
events are clustered while other unrelated events are separated from the beacon events. Thus
the percentage of events with an instability set of three or fewer AS edges increases to 77.6%.
Note that identifying three AS edges usually includes the edges of two ASes and the edge
between the two ASes. For more than 50% of the beacon events both heuristics let us iden-
tify the origin AS correctly as the instability creator. Increasing the number of observation
points to at least two increases this to more than 64%, a rather nice success rate. Indeed if
one considers a set of four ASes good enough for pinpointing the instability, we succeed for
more than 90% of the cases with only two observation points. Figure 5.14 highlights again
the benefit of having information at multiple observation points. Figure 5.15 accentuates that
while the timing heuristics differ, e.g., in terms of the number of events that are only observed

79

5 Locating Internet Routing Instabilities

−1 0 1 2 3 4 5 6−24

0
20

40
60

80

heur: standard
heur: best
heur: stable
heur: init
heur: init−fin

Size of instability set (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.16: Beacons: instability
set size hist. for heuristics (adaptive:
(b=2m,e:(max=16m,rel=4m)); obs: 2).

−1 0 1 2 3 4 5 6 7 8 9−42

0
10

20
30

40 obs: 1
obs: 2
obs: 5
obs: 10
obs: 20

Intersection size (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.17: Instability set size hist.
for various # of obs. (adaptive: (b=2m,
e:(max=16m,rel=4m)); heur.: standard).

at a single observation point, they still generate results of a similar accuracy level in terms of
the instability sets they identify.

Figure 5.16 shows the histogram of the sizes of the instability sets for the different path
heuristics. The conservative approach of the “standard” heuristic is rather successful, and the
“best path” heuristics improves the accuracy by more than 7%. But the “stable”, “initial”, and
“final path” heuristics prove to be disastrous. The intersection size is empty in more than 55%
and for stable up to 83% of the cases. This indicates that the examples shown in Section 5.1
are not just possible but that BGP features that create similar results are in use in the Internet.
Note that the results are similar for different choices of timeout heuristics.

5.5.3.2 All prefixes

Next we apply our path heuristics to all prefixes and consider the same set of plots as for the
BGP beacons (Figures 5.17, 5.18, 5.19). Clearly the results are not quite as good as for the
BGP beacons. On the other hand being able to pinpoint the origin of an instability, which is
observed at two observation points, to three AS edges for more than 42% of the cases, and
to five AS edges for about 70% for all timeout heuristics, and more than 76% for some, is
quite impressive and shows that we have made significant progress towards understanding
the origin of BGP instabilities. We checked that almost all of the time, 99.9%, instability sets
with three AS edges correspond to those that surround a BGP peering location, e.g., AS1 and
AS2 are peers and the instability set contains (AS1-AS1, AS1-AS2, AS2-AS2). Furthermore,
most of the time the AS edges in the instability set are continuous on some AS path.

Furthermore, with increasing number of observation points, the ability to pinpoint increases
(see Figure 5.17). But most important, the instability set is hardly ever reduced to size 0,
which confirms that using the standard methodology is a safe approach for reducing the can-
didate set size. Indeed with more than 5 observation points it is possible to reduce the size
to five edges for almost 90% of the events for all timeout heuristics without increasing the
fraction with zero size instability sets.

Comparing the various timeout heuristics, Figure 5.18 shows that the impact of the specific
methods increases but is not that dramatic with the exception of the static heuristic based on 4

80

5.5 What is – data analysis

−1 0 1 2 3 4 5 6 7 8 9−42

0
5

10
15

20
25

30

adaptive−16m (b=2, e=4)
adaptive−16m (b=4, e=4)
rel (b=2, e=4)
rel (b=4, e=8)
static (b=2, e=8)
static (b=4, e=16)

Intersection size (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.18: Instability set size hist. for timeout
heuristics (obs.: 2; heur.: standard).

−1 0 1 2 3 4 5 6−42

0
10

20
30

40

heur: std
heur: best
heur: init−stable
heur: init
heur: init−fin

Intersection size (# of AS−AS edges)

P
er

ce
nt

ag
es

 o
f e

ve
nt

s

Figure 5.19: Instability set size hist.
for various heuristics (adaptive: (b=2m,
e:(max=16m,rel=4m)); obs.: 2).

minute bursts. This indicates that timeout values of 2 to 4 minutes used in the other heuristics
may not yet be optimally chosen.

The impact of the path heuristics (Figure 5.19) is on the one hand positive, e.g., for “best”
path, but on the other hand again disappointing for “initial,” “final,” and “stable”. Regarding
the origin of instabilities, we further inspect the instability sets with up to and including three
edges for the adaptive heuristic (b=2m,e:(max=16m,rel=4m) including all observation points.
For these, 30.4% of the time the origin AS is the only AS in the instability set. For 66.3%,
the origin AS is one of the edges. This leaves us with 3% that are unconnected to the origin
AS. Of these, .4% included only a single AS, while 1.3% include multiple ASes. The others
1.3% include some inter AS link.

5.5.4 Event correlation across prefixes

So far we have seen that it is possible for most events that involve more than a single ob-
servation point to identify a reasonable-sized instability candidate set. To locate a plausible
origin for the remaining events we can take advantage of our knowledge of BGP instabilities,
see Table 4.2. Most of the plausible events cause updates to multiple prefixes at about the
same time. Given that the instability set computation has already narrowed the origin of the
instabilities, majority decisions help us now to further pinpoint the instability origins using
the Greedy heuristic, see Section 5.2.3.

Using rather aggressive timeouts of 4 minutes to determine which edges are considered cor-
related for each event, and artificially shortening the duration of each event to a maximum of
16 minutes helps us to ensure that we mainly catch correlated events. In each time period,
selecting the edge that is involved in the most instabilities is easy as the number of events dif-
fer by a rather significant factor, usually larger than 1.5. We have even observed factors of up
to 3. Indeed the distribution of correlated events by edge appears to be consistent with a Zipf
distribution, which justifies using the Greedy heuristic. This also explains why the Greedy
heuristic is rather successful in identifying instabilities. Once the most likely candidates have
been identified the Greedy heuristic may have to break ties. We choose to not break ties but
rather include all edges as possible instability origins.

81

5 Locating Internet Routing Instabilities

After applying the Greedy heuristic, with the adaptive timeout heuristic, we are able to asso-
ciate 93.4% of the prefixes to a single AS as a possible origin for the instability. A single AS
corresponds to the intra-AS edge. In more than 97.2% of the cases Greedy narrows the pos-
sible instability origin to at most three AS edges. Even if the instability origin includes three
AS edges, the instability origin points to a single peering connection in more than 47.5%.
As the edges correspond to the two intra-AS edges and the link between them. In the other
52.5%, the instability origin seems to lie inside any of the three involved ASes. If we require
that each correlated event has at least 100 prefixes, we are able to associate 96.3% of the
prefixes with a single instability origin.

5.5.5 Validation

Given that Greedy appears to be able to further pinpoint the instability origin, the obvious
question is if the caveats and dangers highlighted by the examples in Section 5.1.2 have
been sufficiently addressed or if the heuristic misguided us. We address this issue by further
validating our results in two ways. First we use syslog data from a large tier-1 ISP to see
if we can correlate times when Greedy identifies the AS edge A-A (A is the AS number of
the tier-1 ISP) as instability origin with session resets within the tier-1 ISP. Second we again
take advantage of our simulator by comparing the inferred origin of instability with simulated
results. For this purpose we select some instabilities identified by Greedy to simulate and then
compare the outcome.

For the first validation step we selected 35 events for which Greedy identified A-A as insta-
bility origin and the syslog data is available. We checked them against the appropriate router
syslog data from the ISP. (Note that the syslog data is not available for the entire week.) We
say that we find a session reset that corresponds to the event if at most the 5 minutes of the in-
stability event overlaps with the session reset time window – starting 1 minute before the time
session reset occurs shown in the syslog and ending 1 minute after that. Adding 1 minute to
the time window addresses potential clock synchronization issue and the delay in observing
the change at the BGP monitoring points due to BGP rate limiting timers and propagation
delays. The results are rather promising as we can find related session resets for 26 or 74%
of them. One should not expect to find all events since some may not have been caused by
session resets. Furthermore, note that not all session resets will cause updates as discussed in
Chapter 4.

For the second validation step we selected 20 events for which Greedy identified a single
AS-AS edge as the instability origin. The corresponding simulation first excludes those pre-
fix origins that do not use this AS-AS edge on one of their best path under the simplified
simulator BGP model. Note that otherwise this will introduce some errors due to inaccu-
rate policy inference. It then fails the appropriate edge, or approximates the failure inside
an AS by deleting all edges containing the corresponding AS. This effectively assumes that
all paths going through the AS are affected. We find that the heuristics when applied to the
outcome of these simulations identify the same AS-AS edge in 90% of the cases improving
our confidence in the appropriateness of the heuristics.

82

5.6 Summary

5.6 Summary

Trying to identify the origin of global Internet routing instabilities poses challenges that stem
from the complexity of the BGP decision process, the challenging problem of achieving a
globally optimal routing via local routing configuration by various administrators as well as
the global traffic dynamics. In this thesis we propose a methodology for identifying the origin
of routing instabilities by examining and correlating BGP updates along three dimensions:
time, views, and prefixes and show how it can be adapted to account for the complexities
of BGP. By applying our heuristics first to an ideal world where we control the failure and
the observation points and then to a huge amount of actual BGP updates, we show that the
methodology is sound and accounts for cases that have been previously ignored. Indeed with
only two observation points, we are able to pinpoint the origin of instabilities due to beacons
to no more than three AS edges for more than 76% of the cases. This increases to only five AS
edges when considering all prefixes. Relying on Zipf like characteristics of correlated events
across prefixes, the Greedy heuristic is capable to further pinpoint the origin to a single AS
for more than 93% of the prefixes. Accordingly we conclude that despite the intricacy of
ISP routing policies, and the issues regarding propagation, or lack thereof, of BGP update
messages, and complexity of the Internet topology, we have demonstrated significant ability
at narrowing down the location of BGP instabilities.

83

6 Measuring BGP Pass-Through Times

Even though we studied the BGP convergence process extensivly in the last chapters, a re-
maining unknown component of the update delay is the contribution of each router along the
path. A detailed exploration of the delay of each router and how it relates to factors, such as
CPU load, number of BGP peers, etc., can help explain these observations.

We propose to explore pass-through times of BGP updates using a black-box testing approach
in a controlled environment with appropriate instrumentation. To this end, we have setup a
test framework that consists of:

• Device under test (DUT): a router.
• Load framework: that can be used to impose a specific, pre-defined load on the DUT.

In our case it consists of several PCs and an Agilent router tester. BGP workloads
can be generated by the PCs as well as the router tester. The router tester is used to
generate controlled rate data traffic. Tests are repeated with both PC as well as router
tester generated BGP workloads.

• Instrumentation framework: that allows us to measure not just the pass-through times
of BGP updates but also the load imposed by the load framework. It consists of several
packet-level monitors, periodic router queries and the router tester.

The testbed has wider applicability. For example, it can be used to explore other router
measures, such as line card FIB convergence.

Our methodology goes beyond RFC compliance tests and benchmarks, e.g., BMWG [116],
in that we do not consider pass-through times in isolation. Rather, we investigate the cor-
relation between BGP pass-through time and router load using a variety of stressors. BGP
load is affected by such variables as (1) number of peers, (2) routing table size, and (3) BGP
update rate. Non-BGP related tasks are many. We do not attempt to account for all of them
individually. Instead, we impose a specific background traffic load which causes the ip_input
task’s CPU usage to increase. To measure the CPU load we periodically sample the cumula-
tive route processor’s load. With controlled experiments we can then use previously obtained
CPU load data to infer the BGP portion of the CPU load. Our initial results are about estab-
lishing a baseline for pass-through times. We also explore some aspects of stress response. A
stress situation arises when the imposed load reaches the limits of DUT.

Additional parameters that may effect pass-through time include the configured I/O queue
length for BGP processes, ACLs’ complexity and hit ratio, BGP policy settings such as route-
maps, peer-groups, filter-lists and/or communities, as well as AS prepending, etc. These are
beyond the scope of this thesis.

Parameter sensitivity tests and reasonable configurations were used to reduce the otherwise
many experiments, given the large number of parameter value permutations.

Our experiments show that in general the DUT handles BGP stress well, which is in line with
recent findings [139]. Yet the per hop BGP processing delays can be significant. Updates

84

6.1 Test methodology

are only processed every 200ms even when the MRAI timer is inactive. Activating the MRAI
timer adds further delay components causing higher delays occur with increasing MRAI timer
values. DUT targeted traffic, even at low data rates, drastically impacts CPU load and accord-
ingly pass-through delays. We notice that update the rate is not nearly as significant a factor
for causing delays as is the number of peers. Yet high update rates occurring concurrently on
multiple peers, as is happening with after router reboots, can cause problems.

The rest of the chapter is structured as follows. In Section 6.1 we describe our methodology
for measuring pass-through times and imposing a controlled router CPU load. Next, in Sec-
tion 6.2, we describe in detail the configuration and tools that constitute our test framework.
We then describe our experiments and report their results in Section 6.3. Section 6.4 con-
cludes this chapter and comments on the practical learnings of this work as applied to current
operational practice and future routing protocol design.

6.1 Test methodology

Three topics need detailed explanation: measuring pass-through time, separating router pro-
cessing delay from MRAI timer delay, and imposing a controllable load on the DUT.

6.1.1 Measuring pass-through times

There are three common approaches to network measurement: passively observing regular
traffic, actively evaluating injecting traffic at end points within the injecting application, and
passively measuring actively injected traffic. Since we operate in a testbed the first option is
not applicable. Accordingly, we use specifically designed updates as active probes together
with a monitoring BGP session. The timings of the probes and the resulting response updates
generated by the DUT and directed to the monitoring session are passively measured using
dedicated and synchronized packet capture.

Using special updates gives us the ability to impose patterns with certain characteristics, such
as ensuring that the DUT will relay it to the monitoring session. The alternative approach
is to replay captured BGP update traces. While this may provide useful background traffic
it suffers from several shortcomings. First the pass-through time of a router depends on the
settings of several BGP specific parameters such as the value of the MRAI timer. In order
to distinguish the delay due to this timer from the delay due to the router we need certain
update patterns which may or may not be present in regular BGP traces. Second, not all
incoming BGP updates trigger an outgoing BGP update. Therefore it is hard to tell which
BGP updates are discarded or are combined into other updates. Furthermore, the amount of
work associated with each BGP update will vary depending on its content with respect to the
router’s configuration.

The simplest form of a BGP update probe pattern is comprised of a single new prefix. Since
the prefix is new, the update has to be propagated to all neighbors and the monitor session,
policy permitting. The drawback is that the routing table size grows ad infinitum and that the
available memory becomes an unintended co-variable. The table size can be controlled via
explicit or implicit withdrawals. We use implicit ones since BGP withdrawal processing dif-
fers from update processing and the results would have to be separated. Implicit withdrawals

85

6 Measuring BGP Pass-Through Times

on the other hand are indistinguishable from other updates. Each time a probe update for
a prefix is to be sent we randomly choose an AS path length that differs from the previous
path length. This ensures that the update is propagated to the monitor session and that the
quality of the path improves or deteriorates with the same probability. The BGP update rate
for both probes and traces can be controlled. In summary probe patters are convenient for
active measurements while replaying BGP traces is appropriate for generating a realistic load
on a router.

Pass-through times are not constant. They vary with the makeup of the updates and the back-
ground load caused by other factors. Accordingly, we obtain sample values by measuring
the time difference between in-bound (into the DUT) probe injections and out-bound (onto
the monitoring BGP session) update propagation. To avoid time synchronization errors the
packet monitors are dedicated, line rate capable, capture only cards with highly accurate, syn-
chronized clocks. Furthermore, all other BGP sessions are terminated on the same machine,
either the PC or the router tester.

Throughout this chapter we use 10,000 prefixes from the 96/8 range as probe prefixes. The
central part of the experiments last for 15 minutes and our probing rate is a rather low 1 update
a second. This guarantees that the TCP throughput will never be problematic. We started
by using 10 probing sessions but realized that interactions with a periodic timer limited the
accuracy of the estimates. The periodicity of the timer in question is 200ms which with 10
probes per second gave us only 2 samples per timer. To increase the rate of samples per timer
to 10 we increased the number of probe sessions to 50. Each probe session uses a different
random offset within the second for sending its probe. This ensures that the probing is done at
exponentially spaced but fixed intervals within the second. A histogram of the resulting pass-
through times is plotted in Figure 6.1. Interestingly, the pass-through times vary from 2.4ms
to about 200ms with some ranging up to 400ms. The average pass-through time is 101ms.
The even distribution in the range of 2ms to 200ms indicates some kind of timer. Indeed,
closer inspection reveals that the router limits the update processing to 5 times a second. This
should result in a theoretical upper bound on the pass-through times of 200ms. Yet some of
the updates are held back for one update processing cycle. This results in pass-through time
greater than 210ms for 1.3% of the probes.

To determine how the pass-through time compares with the one-way packet delays we also
measured the one-way delay experienced by IP packets of three typical packet sizes (64, 576,
1500 bytes) that were sent during the same experiment, see Figure 6.1 for the 1500 byte
packets. The average delays are, 0.028ms, 0.092ms and 0.205ms, hence, significantly shorter.
This shows that a BGP update is delayed 11 times longer in the best case and 500 times longer
on average than a simple IP packet. While this might seem significant, the total accumulated
delay, at 100ms a hop along a 20 hop router path, would be rather small at under 2 seconds.
This indicates that we have to consider additional factors.

6.1.2 MRAI delay

The purpose of the MRAI is to limit the number of updates for each prefix/session for a peer
to one every x seconds. A typical value for x is 28 seconds (see Section 2.1.1 on page 14). If
the timer fires at time t − x and t then all updates received and processed within this interval
of size x are batched and sent shortly after time t. Based on this observation an upper bound

86

6.1 Test methodology

0−0.25 0.25−2.5 2.5−50 50−100 100−150 150−200 200−250 250−400
Milliseconds

P
er

ce
nt

ag
es

0.
0

0.
2

0.
4

0.
6

0.
8

BGP updates
1500 byte pkts

Figure 6.1: Histogram of pass-through times to-
gether with one-way packet delays for typical
packet sizes 64, 576, and 1500.

−0.05−0 0−0.05 0.05−0.1 0.1−0.25 0.25−0.5 0.5−1 1−2
Seconds

P
er

ce
nt

ag
es

0.
0

0.
2

0.
4

0.
6

lower bound, MRAI = 5 sec
upper bound, MRAI = 5 sec
lower bound, MRAI = 30 sec
upper bound, MRAI = 30 sec

Figure 6.2: Histogram of upper and lower bounds
on pass-through times for MRAI values of 5 and
30 seconds.

for the pass-through time can be derived, even when the MRAI timer is active: for each
MRAI timer interval consider those probes with minimal pass-through delay. A lower bound
is derivable from the probe with largest pass-through delay within the interval. This probe
arrived too late to be included in the previous MRAI timer interval.

Figure 6.2 shows the histogram of the pass-through times for two different MRAI timer val-
ues: 5s and the default Cisco value, which is roughly 30 seconds. Note that with the MRAI
timer in place the minimal measured pass-through times are 71ms and 122ms. On the other
hand the maximum values for the lower bounds are 0.121 and 1.72 seconds! This indicates
that an update might have to wait a significant amount of time before it is processed even if it
reaches the router at a good moment. This is especially the case for larger MRAI values where
the average pass-through time increases from 109ms for the 5s MRAI timer to 883ms for the
default MRAI value. Note that each experiment is run for the same duration. Accordingly
the number of samples for the pass-through time decreases as the MRAI value increases.

Overall it seems that even for small MRAI values the timer interactions between MRAI and
the BGP update processing timer increases the minimum pass-through time significantly. As
the MRAI value is increased the minimum pass-through time also increases and will clearly
dominate any link delays. Furthermore, inspection of the probes on the monitoring session
reveals that the order of the update probes is not maintained. This means that a probe that
was sent 10 seconds later than another might be observed earlier on the monitoring session.

6.1.3 Controlled background CPU load

Imposing a controllable background CPU load on the DUT is necessary in order to study how
it responds to stress. The goal is to identify a set of tasks that generate a constant CPU load
independent of BGP. This is difficult as it implies generating an input load that is uniformly
served by a task running at a uniform priority. This is rarely the case. In Cisco IOS the BGP
processes (and any routing tasks) have higher scheduling priority than almost everything else
targeted at the CPU. The IOS ip_input task is a high priority process whose CPU use is related
to the rate of a packet stream directed to the DUT’s main IP address.

87

6 Measuring BGP Pass-Through Times

0%−15% 15%−30% 30%−60% 60%−75% 75%−90% 90%−100%
Percentage of CPU load

0
20

40
60

80
0 pkts/s
2,000 pkts/s
5,000 pkts/s
10,000 pkts/s
15,000 pkts/s

Figure 6.3: Histogram of CPU load estimates for
packet rates of 2k,5k,10k and 15k directed to the
router IP.

Device Under Test
Router (12008)

Probe Update
Monitor Peer
Router (7507)

Probe Updates
Source Peers

Router Tester/PC

Data Traffic Src
Background

Router Tester

Bkgrnd. Updates
Source Peers

PC

Downstream
Peers

PC

Traffic Capture
PC

Figure 6.4: Test-bed setup for router testing.

Another problem is measuring the CPU load. The CPU load of a Cisco router can be queried
in two ways: via a command at the telnet interface of via an SNMP query. Unfortunately,
the default priorities of both telnet and SNMP are lower than those of BGP and the packet
processing tasks. Accordingly, for calibration only, we raised the priority of SNMP task
and then measured the CPU load both via the command line as well as via SNMP for 5
rates: 2k,5k,10k,15k pkt/s. Both estimates aligned quite well with the only problem that
the command line interface did not deliver any values under high loads due to starvation.
Figure 6.3 shows a histogram of the CPU load. 2k packets impose almost no load. 5k is
already significant. 10k is almost critical while 15k is well beyond critical. Note that a 15k
packet rate corresponds to a bit rate of 0.36 Mbits, which is rather modest for a high speed
interface on a high end router. This should encourage providers to filter internal destination
addresses on all incoming connections.

6.2 Test framework

The testbed shown in Figure 6.4 illustrates its functional building blocks. The physical layout
is more complex and not shown here for the sake clarity and brevity.

The device under test (DUT) is a Cisco 12008 GSR [54] equipped with: 256MB memory,
512KB of L2 cache, 200MHz GRP CPU, four Gigabit SX and 8 Fast Ethernet interfaces. It
runs IOS version 12.0(26)S. An Agilent RT900 router tester is used for selective experiment
calibration and to generate data traffic. BGP updates, probes and background, are generated
by a PC. The monitoring peer runs on a Cisco 7507. Probe update traffic from the PC into the
DUT is captured by Endace DAG cards [140]. Outgoing probe update traffic from the DUT
to the monitoring peer is also captured by an Endace DAG card. All cards are synchronized.

The DUT is subjected to three traffic types: BGP update probes, BGP background activity
updates and non-routed data traffic directed to the DUT. Probe updates are used to compute
DUT pass-through times. We create a BGP activity noise floor by generating separate update
streams, called background updates, that are in turn propagated to multiple downstream peers.

88

6.3 Pass-through times

Data traffic is used to indirectly control the CPU load and hence the time alloted to BGP
processing.

DAG generated time-stamps are used to compute the DUT pass-through time. We use teth-
ereal to decode and reconstruct the BGP TCP sessions from the capture files. To ease the
configuration and setup of each experiment various scripts automatically configure the PCs,
the router tester, and the routers, then start the experiments and after it is done start the eval-
uation. Unless specified otherwise each experiment lasts for 15 minutes actual time but the
evaluation is not started for another 15 in order to retrieve all updates.

6.3 Pass-through times

Section 6.1 introduces our methodology for measuring pass-through times and shows how to
impose a background load on the DUT. In this section we explore how pass-through times
change as the demand on the router increases. Due to the large number of parameters we
cannot test all combinations. Rather, we perform a number of tests to explore the variables
to which pass-through times are sensitive, including the background CPU load, the number
of sessions in combination with the BGP update rate, and the complexity of the BGP table in
combination with the BGP update rate.

More precisely in a first step we combine BGP pass-through probes with the background
CPU load. Next we increase the CPU load by adding 100/250 additional BGP sessions and a
total of 500 BGP updates a second. This experiment uses a regular pattern of updates similar
to the probes. Based on this calibration of our expectation we explore the load that is imposed
by actual measured BGP tables. The next two experiments differ in that one uses small BGP
tables containing between 15,000 - 30,000 prefixes while the other uses large BGP tables
containing between 110,000 - 130,000 updates. Due to the memory requirements of this
table the number of additional sessions is reduced to 2. This provides us with a setup to
explore different BGP update rates: as fast as possible (resembles BGP session resets), 200
updates and 20 updates a second.

6.3.1 Pass-through times vs. background CPU load

This set of experiments is designed to show how the background CPU load influences the
BGP pass-through delays. Accordingly we combine the approach for measuring BGP pass-
through delays via active probes with that of imposing a controlled background CPU load via
a controlled packet stream directed to the DUT’s IP address, see Section 6.1. We use a packet
stream of 0, 2k, and 10k packets as the first two impose no additional or just minimal load
while the latter is already almost critical.

The histogram of the resulting pass-through times is shown in Figure 6.5. While the differ-
ences may at first appear minor the CPU load nevertheless has an impact. It causes a delayed
invocation of the BGP update processing task which is reflected in the increase of the number
of updates with a pass-through time larger than 210ms. With no additional load only 1.3% of
the updates are in this category. With 2k packets this increases to 2.15% and for 10k packets
to 3.73%. Note that a probe rate of 50 updates a second coupled with 5 invocations of the
BGP update processing task every second should create delays longer than 200ms for at most

89

6 Measuring BGP Pass-Through Times

0−0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5
Seconds

P
er

ce
nt

ag
es

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 pkts/s
2,000 pkts/s
10,000 pkts/s

Figure 6.5: Histogram of pass-through times sub-
ject to different levels of background traffic (0, 2k,
10k pkts/second).

0−0.2 0.2−0.4 0.4−1 1−4 4−10 10−40 40−88
Seconds

P
er

ce
nt

ag
es

0.
0

0.
2

0.
4

0.
6

0.
8 100 sessions, 5 updates/s, 0 pkts/s

100 sessions, 5 updates/s, 2,000 pkts/s
100 sessions, 5 updates/s, 5,000 pkts/s
250 sessions, 2 updates/s, 0 pkts/s
250 sessions, 2 updates/s, 2,000 pkts/s

Figure 6.6: Histogram of pass-through times sub-
ject to different # of sessions (100/200) and back-
ground traffic (0, 2k).

10% of the probes. Overall we conclude that the increased CPU load delays the invocation of
the BGP update processing task and therefore increases the pass-through delays. Yet, due to
the timer, the delay increase is on average rather small: from 101ms to 106ms to 110ms.

6.3.2 Pass-through times vs. number of sessions

This set of experiments is designed to explore if the number of sessions has an impact on
the BGP pass-through times. So far our load mix consisted of the active BGP probes and
the packets which cause a background CPU load. Next we add additional BGP sessions
(100/250) and 500 updates a second to this mix. The simplest additional sessions are similar
to our probe sessions with the exception that we increase the update rates to 2 and 5 updates
per second respectively.

Figure 6.6 shows a histogram of the resulting BGP pass-through times. Interestingly adding
100 sessions poses no significant problem to the router. Yet adding 250 sessions causes way
too much load on the router even without background traffic. Note that Cisco recommends to
keep the number of sessions for this specific router below 150. Adding to the 100 session ex-
periment a background CPU load of 2k (5k) increases the CPU load from a 5 minute average
of roughly 67% to 83% and then to 95%. That CPU loads are not summable is an indication
for the possibility of saving some CPU by delaying the processing of the BGP updates. The
additional BGP sessions increase the average pass-through times to 116ms. The CPU load is
then responsible for the increase to 130ms and respectively 160ms. The increase of the per-
centage of BGP probes that take longer than 200ms is even more dramatic: first from 1.3%
to 7.4% and then with the packet load to 12.5% and 25.9%. Still the maximum pass-through
times are reasonable small at less than 800ms.

The further increase of the number of sessions to 250 causes a multitude of problematic
effects. First the router is no longer capable of processing the updates so that it can send
TCP acknowledgments on time. Accordingly the number of TCP retransmissions increases
from almost none, less than 0.15%, to 2.5% of the BGP probe updates. Second the number
of probes propagated to the monitoring sessions is drastically reduced. With 250 sessions
the router does not propagate updates for 39.8% of the probes. This problem is aggravated

90

6.3 Pass-through times

0−0.2 0.2−0.4 0.4−0.6 0.6−0.8
Seconds

P
er

ce
nt

ag
es

0.
0

0.
2

0.
4

0.
6

0.
8

10 updates/sec
100 updates/sec
full−speed

Figure 6.7: Histogram of pass-through times as
update rate increases (small table, 2 sessions).

0−0.2 0.2−0.4 0.4−0.6 0.6−0.8 0.8−2.8
Seconds

P
er

ce
nt

ag
es

0.
0

0.
2

0.
4

0.
6

0.
8

10 updates/sec
100 updates/sec
full−speed

Figure 6.8: Histogram of pass-through times as
update rate increases (large table, 2 sessions).

(49.2%) by adding 2k packets of background traffic. While this reduces the number of sam-
ples of the pass-through times their values are now in a different class with average pass-
through times of 9,987ms and 15,820ms. The pass-through times increase by several orders
of magnitude.

6.3.3 Pass-through times vs. BGP table size and update rate

So far all tests consisted of either probe updates or artificial patterns. Accordingly we now
replace these artificial BGP sessions with actual BGP updates. For this purpose we have
selected two sets of two BGP routing tables dumps, one containing 37,847/15,471 entries
and the other containing 128,753/113,403 entries. Note that routing tables generally differ
in terms of their address space overlap, their size and their update rate. In this preliminary
work we want to study the impact of the BGP update rate on the pass-through times for
different table sizes, we opted for some regular pattern. The first pattern, called “full-speed”,
corresponds to continuous session resets and is realized by repeatedly sending the content of
the BGP table to the router as fast as possible. The second pattern, called “100 updates/sec”,
is similar but limits the rate of updates to 100 BGP updates a second. The third pattern,
called “10 updates/sec”, further reduces the rate of updates to 10 BGP updates a second. As
it is well known that session resets impose a large load on the router one may expect larger
pass-through times. As one hopes that the router can perform session resets at a rate of 100
updates a second the second pattern should be simpler and not impose quite such a large load.
The 10 updates a second can be expected to impose even less load than our update probes and
therefore should provide us with a base line.

Figure 6.7 and 6.8 show the histograms of the pass-through times for experiments with the
two small tables, Figure 6.7, and the two larger tables, Figure 6.8. As expected the pass-
through times for “10 updates/sec” is with an average of 111ms for the small table only
slightly increased. The impact of the large table is visible in its average of 127ms. For the
small table the full speed update rate is significantly higher than 100 updates/sec and imposes
a CPU load of 88% to 60%. This difference in terms of update rate is not as large for the full
table. Here the full patter generates a CPU load of 100% as one would hope for. For the small
table the average pass-through times increase significantly from 147ms to 181ms. If this may

91

6 Measuring BGP Pass-Through Times

not seem like much there is huge danger hiding here, the one of missing BGP keep-alives. In
both “100 updates/sec” experiments and the “full-speed” experiment for the large table the
router did not manage to send its keep-alive in time. Therefore these experiments terminated
prematurely. Overall the maximum pass-through time in the small table experiments are
reasonable with a maximum of less than 710ms and only 35% greater than 210ms. For the
more realistic cases with the large tables this changes. Here the maximum pass-through times
increase to 2.8 seconds and the percentages larger than 210ms increases to 76%.

6.4 Summary

Our results show that it is possible to determine the pass-through times using a black box
testing approach. In general we find that BGP pass-through times are rather small with aver-
age delays well less than 150ms. Yet there are situations where large BGP convergence times
may not just stem from protocol related parameters, such as MRAI and route flap damping.
The pass-through time plays a role as well.

Even when the MRAI timer is disabled and the router is otherwise idle, periodic BGP update
processing every 200ms can add as much as 400ms to the propagation time. Increasing MRAI
values appear to trigger timer interactions between the periodic processing of updates and the
timer itself which causes progressively larger delays. For example, when using the default
MRAI timer value even the average estimate increases to 883ms but more importantly the
lower bound estimation can yield values for up to 8 seconds. This indicates that there is
an additional penalty for enabling MRAI beyond the MRAI delay itself. Furthermore, we
have observed out of order arrival of updates which suggests that using multiple prefixes for
load balancing or fail-over may not always function as expected. This bears more detailed
verification.

Low packet rate data traffic targeted at the DUT can impose a critical load on the router and in
extreme cases this can add several seconds to BGP processing delay. These results reinforce
the importance of filtering traffic directed to the infrastructure.

As expected, increasing the update rate does have an effect on processing time, but it is not
nearly as significant as adding new peers. Worth noting is that concurrent frequent updates on
multiple peers may cause problems. For example, 53 peers generating 150 updates per second
can cause the router to miss sending a KEEPALIVE in time, thus resulting in a session reset.

Overall the in general small pass-through times indicate that the current generation of routers
may enable us to rethink some of the timer designs/artifacts in the current BGP setup. Yet
care is needed to not trigger the extreme situations outlined above. Furthermore, additional
analysis is needed to better understand the parameters affecting BGP processing rate, such
as FIB updates, line card CPU loads, BGP update contents and other configuration related
parameters already mentioned above.

92

7 Towards more Realistic Router Testing

This chapter is based on the observation, that operational problems in the backbone of a net-
work rarely stem from simple protocol implementations errors. Well designed test-suites are
available to assure a minimum of functionality and interoperability. Yet, despite the wealth
and breadth of test tools, network equipment continues to fail in the field. Conventional wis-
dom suggests that this is an expected outcome of a product release cycle that is too short,
compared to circuit switched equipment, and that the development of network equipment is
proceeding at a faster rate than test equipment. That may be partly true, but the reality is that
creating field conditions for packet-switched test setups are not well understood. There is an
increasing discrepancy between field and testing conditions.

Today, network equipment is becoming more and more complex, it is computationally dis-
tributed across the main CPU and line card CPUs and it runs many different services on
the same device at the same time. This causes problems or even failures that arise from the
interactions of the various functionalities. This is particularly acute for network protocol
interactions, because, given the large number of possibilities, they are difficult to test.

Therefore it is very necessary to go beyond simple RFC compliance tests. The ideal network
equipment testing platform also needs to map protocol idiosyncrasies to the way in which test
engineers work and think. Envision an easy to use test tool that is able to create workloads
for:

• control plane traffic per protocol with varying levels of activity
• data plane traffic per protocol with varying levels of activity
• protocol mix across layers 2-7

This means that the workload generators produce “realistic” looking signaling and data traffic,
and thus emulates placing the system under test in different “virtual locations” with different
characteristics.

Imagine a tool that is easy to use and at the same time able to create complex test-scenarios,
where a test engineer can set high-level conditions. With such a tool, complex multi-service
test scenarios can be created without the pain of dealing with all the details of each proto-
col. Tests of involving many protocols can be performed automatically and reproduce the
variability that is observable in an operational backbone. Constructing more and more com-
plex test setups is possible, which adds confidence to the robustness of the router design and
implementation.

In this chapter we illustrates how such a tool can bring more variability into a test-lab at the
example of a BGP workload generator.

7.1 Design goals

In this section we discuss the basics of our approach. We start by looking at the test framework
in Section 7.1.1, provide an overview over the workload generation in Section 7.1.2, and
finally discuss some requirements for the tool in Section 7.1.3.

93

7 Towards more Realistic Router Testing

WYX2Z\[*]_^1`�ab]�c�d
egf�h�f ^ic�j]_^
k c h dml	n f ^ o

prq�stn

j f nuj f�v lgwyx�z fYh j

Figure 7.1: Test-bed for router testing.

{}|P~��������B�}�����{}|P~������/�������~����i�����b��"� ������~���b�D�i������ |i����� |P� � �"�/�	�}|!������"� ���P���P~�� � � � |�~��D�/|P������� � |��

network-equipment.xml

test-equipment.xml

topology.xml

distributions.xml
test.xml

¡ ¢
£ ¤

¥¦ §
¨© ª¢

« ¬©®
¤¬
¯© ¦ §

°± ¬
¢
£

²³
´ ²

°± ¬
¢
£

µu¶�·1¸�¹»º�¼D¹�½i¸�¹»º

¾u¿gÀiÁ�µ�¹»ÂÄÃ ÅÇÆ

¾u¿gÀiÁ�µ�¹»ÂÄÃ ÅÇÆ

È�É"Ê�ËuÌ$ÍÍ@Î Ï$Ë�Ê
Ð�ÑYÒ È�Ó�Ô�Ê�Õ�ËDÈÖ×��Ø � Ø Ù�Ú�Û�Ü�ÝiÚbÞ�Û�Þ!ßyÚbà�Ü�Û�á

È�â�ã�É"ä!Ë»É"Î�ÕÐ�ÑYÒ É Ê�Ì�å�å�Î�Õ
æ�Ë$ãDË�Ê�Ì�É"Î�Ó�ã

åPËDËuçBèuÌ!ÕÄéÖ×��Ø � Ø Ù�ê�ë�ìíÜ�îPà�ï�ð�ÛPñ�á

Figure 7.2: Overview of synthetic BGP traffic algorithm.

7.1.1 Test framework

Our goal is to be able to study system limits and protocol or component interactions in a
controlled environment, in an appropriate test-bed. Internal test-labs are not uncommon for
vendors, telecom operators and large enterprises. They are established, at great expense, for
the purpose of certifying new equipment, testing new service configurations and performing
capacity planning. These test-beds reflect, on a small scale, the main topological characteris-
tics of the production network. In addition to switching nodes, they are outfitted with traffic
playback, generation and measurement equipment.

Figure 7.1 illustrates the functional building blocks (see also RFC 2544 [141]). We suppose
that the test lab consists of one or more devices under test (DUTs). In our case a DUT is a
BGP-speaking device such as a router. To conduct the test we need some sort of test equip-
ment. This, for example, can be an Router Tester or a few PCs. Typically the test equipment
includes some data traffic load generators. Furthermore, some network monitoring equip-
ment (e.g., Endace DAG cards [140]) is commonly used to evaluate the results. (Note that
our routing workload generation does not rely on such data traffic generation and monitoring
equipment.)

7.1.2 BGP workload generation

This section is divided in two sub-parts: We first provide a rough overview over the tool and
then discuss our workload ingredients.

7.1.2.1 Generator tool

To generate our BGP workload we build a tool that generates synthetical traces that can be
targeted at the DUTs. Our design goals state that the tool has to be user-friendly, highly
flexible and support well-specified test conditions. In other words, it should be easy for a test
engineer to instantiate a complex BGP test.

94

7.1 Design goals

With this we are trying the balance act between a tool that is able to create very specific
tests that vendors and operators are asking for, and that at the same time assumes reasonable
defaults if the test engineer is “a bit vague” in the test specification. Thus, whenever the user
does not describe a precise test scenario, our tool emulates “typical BGP” by emulating the
dynamics of the outside world. With this we bring some of the variability of today’s Internet
into the test-lab, without loosing the test engineer in the intricacies of the protocol test setup.

To accomplish this goal, we cannot simply replay recorded BGP update traces, because we
still want to be able to respect specific test-settings provided by the user (e.g., experiments
with different memory loads of a router). Nor can we derive such a trace by simulation,
because it is not possible to emulate thousands of BGP finite state machines on the test equip-
ment. To address those problems we generate a synthetic assembled BGP update stream based
on probability distributions. These distributions are used as input to our workload generator
and can be derived from a characterization of real BGP traces or constructed manually. As an
illustration consider the characteristics of the Routing Information Base (RIB). For the gener-
ation process the input-distributions provide the details about how to construct the RIB (e.g.,
number of prefixes, AS path lengths, etc.). Furthermore, they can be sub-divided into classes
at a finer granularity. For example eBGP classes include “customer”, “peer”, “upstream”; for
iBGP those classes reflect the behavior of Route Reflectors; and for Virtual Private Networks
(VPNs) they are based on different customer types. While the characteristics of the tables and
so the distributions are different, the generation algorithm does not have to change. With that
we are able to increase the realism of testing methods and to create scalable workload con-
ditions that reflects todays protocol behavior. Furthermore, a test engineer may approximate
growth and evolution by modifying these distributions.

The tool first creates an initial test setup that respects user wishes (e.g., “for BGP I need an
exchange point router with 5 peers, running at normal workload”). At the start of the actual
test, the DUT is automatically placed in an environment that meets these initial conditions.
During the test, BGP updates are created that reflect the dynamics in the Internet with respect
to some given metrics, or alternatively conditions specified by the user. The tool comes with a
set of normal conditions. These reflect the statistical distributions of protocol metrics that are
derived from an in-depth analysis of publicly available BGP update streams. Of course these
distributions can be varied within or outside the normal range. Therefore such a tool is also
able to investigate questions such as: “What if today’s Internet grows further?”, “How long
will my routers be able to cope with that growth?”, “When do I have to replace my routers?”,
“Can I add another full feed to the router at an IXP?”, “Can I withstand an attack?”, “What
about abuse – are my routers prepared?”, or “What happens if a disaster strikes? Can I still
offer service?”.

7.1.2.2 Workload ingredients

Our tool provides “knobs”1 to the test engineer for adjusting the load scenarios. For example
the statistical distributions could range from “normal” situations, over “growth” to “disas-
trous” network conditions2 . This lets explore the different influences of nearly all parameter
combinations in a systematic fashion.

1A “knob” is a user selectable BGP traffic generator parameter.
2Note that our methodology does not try to trigger specific failures (e.g., router crashes). The design goal is to

facilitate the work of the test engineer by generating a workload based on probability distributions.

95

7 Towards more Realistic Router Testing

To find the appropriate “knobs”, or key protocol characteristics, we identify essential compo-
nents of BGP traffic. Recall from Chapter 4 that the cause of a routing instability is described
by the notion of an instability creator or instability origin and the temporal characteristic of
the resulting sequence of updates by the notion of an instability burst. We view the prefixes of
the table as nodes in a graph, where edges capture the structure (the nesting) of the prefixes.
Regarding BGP attributes, the AS path reflects the interconnectivity of the various ASes and
their peering policies. But instead of modeling the AS topology [142, 143] and their peering
policies [31, 129, 144] explicitly, we focus on AS path properties as seen via a single peering
session. After all we are looking for a workload model that can stimulate a system under
test or a simulation, but not a full BGP simulation/emulation as for example provided by
C-BGP [74].

Our findings from Chapters 4 and 5 show that most instability events cause BGP updates to
a number of prefixes at about the same time. But not all of these have to result in an AS
path change. Other instability events are of concern to only individual prefixes. While one
expects BGP updates to several prefixes if a change to an eBGP session is the instability
originator, some or all of the updates may be rather local, e.g., in case they involve only next
hop changes. But they can also impose major non-localizable BGP updates, e.g., if AS path
changes are involved. This may depend on the specific policy of the AS, the ISP’s topology,
etc.. To capture the correlations within an instability burst we focus on the attribute changes
between updates for the same prefix.

Ideally we build our workload model around instability event updates and update sequences.
Unfortunately, distinguishing between instability event updates and related updates is an un-
resolved problem (see Section 5.5.2). But a second look reveals that to a system under test it
does not matter if the update burst is the result of one or n instability events. What matters is
the number of updates it has to handle and the relationship between the updates. Thus each
instability creator is either generating a single update burst, in case of a prefix, or a set of up-
date bursts, in the case of an AS. For example, we can express BGP protocol divergence [124]
for a prefix as a single update burst that lasts for the duration of the test and consists of a large
number of updates.

In summary, our “knobs”, provide the input variables for our tool. They include for example:
memory consumption of the RIB, number of sessions, neighbor type, number of prefixes total
or per session, number of updates the FIB change rate. Note that some of the input variables
are mainly metrics, such a the memory consumption of the RIB, which can only be measured
and are difficult to set. Therefore in the next section we look at the requirements that for out
tool.

7.1.3 Requirements

We have two important requirements that must be met before a test can be preformed: First,
the DUTs have to be correctly configured. This can either be done manually by the test
engineer or automatically by our script. Secondly, we need to solve all dependencies between
the input variables.

7.1.3.1 Manual vs. auto-configuration

The device under test has to be properly configured. No BGP session can establish between
the DUT and the test equipment, unless both sides are properly configured. While we assume

96

7.1 Design goals

that our script has full control over the test equipment, it may not have any control over the
DUT. As it is very inconvenient for the test engineer to setup a potential large number of
BGP sessions manually, we offer a mechanism to automatically configure routers3 . If the
user chooses to configure the DUTs automatically, then the script has to have the information
so that it can login to the router.

7.1.3.2 Dependencies of variables

Ideally, all our variables should be independent. Although the variables are chosen and the
algorithm is designed with this goal in mind, this is not always possible. Some of them are
dependent on each other and some on the hardware. Consider the following example: one
of our metrics is “memory consumption of the RIB”. A test engineer may ask for a memory
consumption of 200 MB, but only wants a total of 10 prefixes in the routing table. Clearly
this is not possible, because RIB memory consumption, number of prefixes and number of
peers are strongly correlated. Yet, sometimes a user asks for one variable as input, while in
another context another variable is more important for the test. Therefore, we have to offer a
larger spectrum of variables to allow for flexibility. But once one variable is set, the ranges
of values for other parameters may be reduced. As this reduction may depend on the specific
hardware our script may have to calibrate the workload with the router architecture.

To deal with metrics as input we have to perform a calibration phase to assure that the param-
eters – specified by the user or provided by the distributions – are actually “supported” on the
DUT. The calibration phase is also needed to determine the range from which the algorithm
can pick values. This approach allows for a very flexible specification of user requests, but
has the disadvantage that some variables can become dependent. Given the inter-dependence
of controlled variables, the generator needs to have the leeway to delimit, whenever neces-
sary, some or all other values. In practice this implies that only some of the user selections
can be respected. Note that a user specification of a variable always overwrites the probability
distributions derived from observed data.

7.1.4 Summary

We outline the design for a tool that can help network operators in a wide variety of equipment
testing: testing software implementations, performance, scalability, data-plane convergence,
and benchmarking. A “normal” or “initial” setting for the workload generator is derived
from publicly available traces. But they can also be derived from measurements at specific
locations (e.g., a collected trace at a specific route reflector), or they can be modified to reflect
network growth. Furthermore, in the future the algorithm can be updated with a new set of
“default” settings.

The design goal of the algorithm is that whenever the test engineer is “a bit vague” in de-
scribing his/her test setup, a value will be picked in accordance to the distributions. With this
approach, the test setup gets easier (for the test engineer) and at the same time we bring the
dynamics and variability of the real Internet into test labs.

3This is based on the RANCID [64] tool and we currently support only Cisco routers. Juniper is forthcoming.

97

7 Towards more Realistic Router Testing

• memory consumption for RIB4(in MB and/or number of prefixes)
• BGP neighbors (number and neighbor type)
• instability event rate (events per minute)
• update rate (updates per minute)
• update impact percentage4(percent and number of FIB changes)

Table 7.1: Key variables for today’s router architectures.

• Packet forwarding latency (in microseconds)
• Switch-over-time (in microseconds)
• Convergence time (in microseconds)
• Packet loss and misrouted packets (in number of packets)

Table 7.2: Key metrics of today’s router architectures.

7.2 Test metrics

This section discusses the variables and metrics that we consider to be the key ingredients of
our workload generator. We start with those variables that we consider to be most important
for our tool, and then explain all other turnable “knobs” that an test engineer can influence.
The next section (Section 7.3) provides more details about the design and the realization of
an algorithm that fulfills the design goals.

7.2.1 Key variables

The main challenge of this work is to find a good trade-off: on the one hand our goal is to
allow a large number of variables to influence the test scenarios, but on the other hand there
needs to be a realizable algorithm, which is capable of resolving dependencies.

Therefore, as a first step, we identify key metrics and variables relevant for today’s router
architectures, see Table 7.1. Note that some variables are on a per-session basis (e.g., number
of prefixes), others on a per-router-interface basis (e.g., changes in the Forwarding Informa-
tion Base (FIB)), others on a per-DUT basis (e.g., memory consumption) and some even
applicable to DUTs involved in the test (e.g., total number of prefixes).

In addition, Table 7.2 lists metrics that are crucial for today’s router architecture, but which
have too many influencing factors. Therefore we do not consider them as input variables, yet
we recommend that those variables should be measured in appropriate tests. This includes
the one-hop packet forwarding latency, switch-over-time, convergence time, as well as packet
loss and misrouted packets. The one-hop packet forwarding latency tlatency is defined as:

tlatency = 1
n ∑n

i=1[tb(i)− ta(i)]

where tb(i) is the time at which the ith packet was observed on the outgoing link and ta(i) is
the time at which the ith packet was sent to the DUT.

The switch-over-time is the time difference between the moment that the router receiving a
new BGP update, which is going to “win” in the best path selection process on one interface,

4Note that memory consumption and number of FIB changes are metrics but for our algorithm they are also
considered as input variable.

98

7.2 Test metrics

until the moment that the traffic actually start flowing out of that interface. This means the
switch-over-times, tswitch−over−time is defined as:

tswitch−over−time = 1
n ∑n

i=1[tO(Pi)− tA(Pi)]

where tO(Pi) is the time at which the first packet with destination prefix Pi was observed on the
link where Pi is announced, and tA(Pi), the time at which prefix Pi was announced. Note that is
is very similar to the definition of convergence time. Convergence time has two components
tannouncement convergence and twithdrawal convergence :

tannouncement convergence = 1
n ∑n

i=1[tŌ(Pi)− tA(Pi)]

where tŌ(Pi) is the time at which the first packet with destination prefix Pi was observed,
and tA(Pi), the time at which prefix Pi was announced. Contrary to the switch-over-times,
this assumes that either Pi was not in the RIB, or that the FIB was re-computed. The second
component is defined as:

twithdrawal convergence = 1
n ∑n

i=1[t ¯̄O(Pi)− tW (Pi)]

where tW (Pi) is the time at which prefix Pi was withdrawn and t ¯̄O(Pi) is the time at which a
data traffic stream with destination Pi was not seen for a given time period.

A test setup can always measure lost and misrouted packets. The number of lost packets
nlost packets is defined as:

nlost packets = 1
n ∑n

i=1 n(Pi)[tO(Pi)− tA(Pi)]

where n(Pi) is the number of bytes per second generated for a data traffic stream with desti-
nation Pi.

Correspondingly the number of misrouted packets nmisrouted packets is defined as:
nmisrouted packets = 1

n ∑n
i=1 n(Pi)[tŌ(Pi)− tW (Pi)]

Let us revisit Table 7.1 in more details: The purpose of a routing protocol is to find the “best”
path through the network to a destination. Especially in times of changes, a fast conver-
gence is needed to fulfill that goal. Leaving aside protocol-dependent timers that slow down
convergence, there are two essential resources that govern convergence: memory and CPU
availability. The total number of prefixes that needs to be stored on the DUT affects memory
consumption. In addition, the number of neighbors has a strong influence. BGP-generated
CPU load is related to update frequency and update impact. An update’s impact is the amount
of work that needs to be performed by the central CPU to process it. This ranges from low
(e.g., immediate discard due to filtering) to high (e.g., FIB is changed and an update is propa-
gated). Furthermore, a large number of FIB changes may increase latency and impose packet
loss. Note that this information is not in publicly available BGP traces, therefore it is very
difficult to estimate a number of FIB changes by data characterization. This underlines once
again that observable changes in publicly available update files do not necessarily reveal those
metrics that trouble a router or the network.

Note that memory consumption and update impact depends on previous calibration. If no
calibration is possible or if the user does not specify those variables, their values is not deter-
mined by a statistical distribution, but instead is the result of the generation process of other
input distributions.

Having discussed the key variables, we now consider all details that we need to create the
synthetic workload. The prefixes and the attributes reflect the virtual network environment in
which the router is placed (Section 7.2.2). The updates reflect the dynamics which the router
is subjected to (Section 7.2.3).

99

7 Towards more Realistic Router Testing

7.2.2 RIB construction metrics

Consider an example how a user may chose different kinds of RIBs. First, we assume that
the test engineer starts with the “knob”, memory consumption. There he/she can specify
approximately how much memory should be used for the RIB and what percentage should be
used for prefixes vs. for attribute values. Next the user may specify how many and what type
of peering sessions he wants from a range of plausible values.

Alternatively the user can start by specifying the total number of prefixes that the RIB of the
DUT should contain. The default value is the number of prefixes in the default-free routing
table of the Internet. Next he/she will have to specify the number and types of BGP peering
sessions. The type of peering session determines for how many prefixes updates will be
sent across that session. This impacts the DUT since the DUT has to store the reachability
information. If desired, the user can specify the number of prefixes on a per session basis.

This section outlines the parameters that impact the generation of a RIB in our workload
model. Our algorithm changes the memory consumption on the router via the number of pre-
fixes, the length of the AS path, the number of communities attached to a prefix, the diversity
of the attributes and the overlap between the sessions. To realize this we distinguish several
classes to model these characteristics (such classes could be for example “small customers”,
“large customers”, “peer”, “upstream”, etc.).

To model this RIB construction, we start with a concept of a “globally advertised address
space” [145, 146] 5. There are several ways how prefixes may materialize inside the RIB of
a router. Providers which offer full-feeds6 to customers claim that they can carry the traffic
to all addresses advertised in the Internet. A peer/customer typically limits the announced
address space to its own and customer routes of the peer/customer. To reflect this in our
workload model we use the notion of overlap. With overlap we mean two or more sessions
that announce the same prefix7. The overlap of prefixes between two full feeds is typically
large, the overlap of peering sessions is low (unless there are two peering feeds receiving
routes from a multihomed customer of those two peers). The overlap between two customer
sessions is almost non-existing.

Next, consider iBGP. There are several ways to set up iBGP inside a network. One is in a
full-mesh. In this case every BGP-speaking router must be connected with every other BGP-
speaking router. Another possibility are route reflectors (RRs). A BGP speaker connects
only to a RR8 and receives a summarized view of the routing information. Note that Route
Reflection may include multiple hierarchies.

The main difference for our testing purpose is that a RR only forwards its best routes to a
RR-client and other RRs. Therefore the distributions that generate the RIB (and the update
streams as well) have to reflect the behavior of the session at each RR level. Thus we need
classes of distributions that grasp the properties of the RR-clients, and the characteristics
between RRs – if multiple levels are present, then each hierarchy has to be modeled by a
separate set of distributions. This means again, while our basic algorithm that creates the

5Note that we ignore the tiny fraction of “dark address space” [88]. that is observable in the real Internet.
6A set of BGP routes that provide reachability to all advertised address space in the Internet.
7Of course only the prefix has to be the same, BGP attributes can differ.
8Typically it connects to more than one RR for reliability.

100

7.2 Test metrics

prefixes for the routing table remains the same, the characteristics of the table change at the
various levels of RRs. This is reflected in our algorithm by using a different set of distributions
that creates the workload similar to the observed properties at the corresponding place in the
real network.

Finally, for mpBGP, we have to go one step further. Here is an identifier attached to each
route, enabling a distinction between various VPNs9. Each VPN is associated with one or
more VPN routing/forwarding instances (VRFs). The route distinguisher is used to place
“bounds” around a VPN so that the same prefixes can be used in different VPNs without
conflicts. This requires us to pay some extra attention to VPNs. Again, classes of VPN
customers can be constructed that reflects the properties of the tables (and update dynamics)
of VPNs.

Let us consider the metrics and their inter-dependencies in more detail:
eBGP: Our approach starts with generating the “globally advertised address space” and then
assigns a subset of the IP address space to each neighbor based on its type, e.g.,

• “Customer” (small # IPs: 1-1,000 prefixes)
• “Peer” (medium # IPs: 1,001-90,000 prefixes10)
• “Upstream” (large # IPs: 90,001-∞ prefixes)

To keep our model simple and scalable, we recall what matters for a router: the DUT needs to
represent and store the RIB in a certain data structure – and this uses memory on the router.
Hence what consumes the memory of a router are the number of BGP neighbors and the
type of routing tables that they send. Filtering of more specific prefixes may reduce memory
consumption while maintaining a similar reachability (in terms of address space coverage).
Table 7.3 summerizes the variables that influence the eBGP table generation process.

• BGP neighbors (number and type)
• RIB memory consumption (in MB)

Table 7.3: Variables influencing eBGP.

iBGP: Table 7.4 shows that we need a set of distributions for each level of route reflection.
Note that this means that the content of the distributions, (such as number of prefixes, AS
path length, usage of communities, etc.), needs to be generated from traces collected at the
particular RR or at a RR-client. Unfortunately, such data is currently not publicly available;
therefore our script does not provide defaults for this. This means that before using iBGP, the
test engineer has to collect traces from RRs in their own network and run the data characteri-
zation algorithms to derive the distributions.

• Multiple hierarchical levels of route reflection

Table 7.4: Variables influencing iBGP.

9VPN customers carry their own routing tables which are separated from the Internet and other VPN customers.
To be able to assure that the same prefix can occur in multiple VPNs, and still is treated separately, it gets
tagged with an additional 8 byte route distinguisher.

10Note that a peer that announces 40,000 or more prefixes over a peering session is quite rare (e.g., only tier-1’s).
After all this is 1

4 of the total address space and who has 1
4 of the whole Internet as customers?

101

7 Towards more Realistic Router Testing

VPNs: Table 7.5 illustrates how we treat VPNs. Again, what matters for our purposes is
the memory load of the router. Thus we consider the fact that each VRFs table consumes
memory and needs to be stored separately.

Each VPN customer in our model is treated as a differently composed set of distributions, this
assures that each VPN customer can reflect its unique characteristics. Of course, distributions
can be aggregated into classes of distributions (e.g., “small-sized VPN customers”, “customer
carrying a full Internet table inside its VPN”).

• type of VPN neighbor.

Table 7.5: Variables influencing VPNs.

Note that we treat IPv6 prefixes in the same way: the table characteristics are determined by
another set of distributions. Yet the generation process of prefixes for IPv6 follows the same
mechanism (of course with a 128-bit prefix).

7.2.3 Update generation metrics

In this section we describe how we impose the load on the DUT with BGP updates that
are consistent with the kind of instability events observed in the Internet. For this we use
the notion of the “instability creator” (see Section 4.1 on page 49 for more details). Each
instability creator affects multiple prefixes on a subset of the BGP sessions.

For our workload generator we respect the fact that not all instabilities propagate to all peers
on which the prefix is announced. Rather an instability only propagates within a certain
“sphere” of the AS topology. Furthermore, BGP signal propagation through the topology
takes some time, for example due to the MRAI timer or route flap damping. This is addressed
by the concept of a “phase shift”. Finally, BGP may show multiple updates for one prefix
on one peering session that was triggered by the same instability event. Such an “update
cluster” generates potentially multiple updates for each prefix on each peering session within
the sphere. See Table 7.6 for a summary.

• an instability creator produces sphere and phases shifts (Section 7.2.3.1)
• an instability creator produces a set of update clusters (Section 7.2.3.2)

Table 7.6: Variables controlling instability creators.

7.2.3.1 Sphere and phase shift

In general the propagation of BGP updates through the Internet follows a directed acyclic
graph. Hereby one has to keep in mind that BGP updates start at the “origin of the instability”
and will only be propagated if the best route gets changed. Due to the denseness of the
current Internet topology this has an impact on those ASes that will observe the effects of
this instability event. We call those ASes that are affected by a certain instability event, to lie
within the sphere of the event.

For our workload model this means that we sub-select some fraction of the prefixes and
induce updates on these prefixes within a subset of the peering sessions. We may have to bias

102

7.2 Test metrics

this sub-selection so that a possible specification regarding the impact of the updates on the
DUT can be satisfied.

Furthermore, we have to consider that the propagation through the sphere of the instability
can be surprisingly long. Recall the effects of the MRAI timer from Section 2.1.1 (page 14),
Section 4.7 (page 4.7), and Section 6.1.2 (page 6.1.2). This timer limits the update rate for
announcements to each eBGP peer to a typical value of 30 seconds. At each route reflector
inside an AS the propagation of updates are delayed by 5 seconds. Additionally route flap
damping can suppress propagation for an extremely long time. Table 7.7 summerizes the
relationships between different peering session on the DUT for the same instability event.

• the sphere of a cluster propagation is determined by a distribution
• for a given prefix the arrival time phase shift on any two peers is determined by a

distribution

Table 7.7: Variables influencing update spread.

7.2.3.2 Cluster generation

BGP may send several update messages for a single triggering event [11]. Such a train of BGP
updates triggered by one event is called an update burst, see Section 4.4 on page 54. Various
timers, such as MRAI and route flap damping, cause clearly identifiable patterns within such
an update burst. The goal is to create synthetical update bursts that reveal a behavior similar
to the behavior of update bursts in the real Internet. This include that our workload model has
to account for the fact that such a burst can have a heavy-tailed number of updates, and that
update inter-arrival times follows a distribution (see Chapter 4).

Furthermore, we have to assure that additional characteristics are met, like ratios of announce-
ments of withdraws, type of changes. Thus we decided to account for the following variables
shown in Table 7.8.

• a cluster is a set of updates
• cluster intra-arrival-time follows a distribution
• the number of intra-cluster updates follows a distribution
• announcement & withdraw ratio
• last update in cluster is a reachable / unreachable prefix

Table 7.8: Variables influencing update bursts.

7.2.3.3 FIB changes

So far we have constructed a workload model that is consistent with the key factors that
can be observed in real-world BGP traffic. The remaining metric that needs to be address
is the “impact” of a BGP update on the DUT. A BGP update may cause (a) a FIB change
and additional updates to its neighbors, (b) a FIB change, but no additional updates, (c) no
FIB change, but additional updates, (d) just an update of the RIB, but do not result in FIB
changes nor in additional updates, or (e) it might be filtered beforehand. Switch-over-times

103

7 Towards more Realistic Router Testing

are actually crucial metrics in the performance of a router. Because this metric is difficult
to derive from publicly available traces, we only consider this metric if the user requested a
specific rate. Otherwise it will be the outcome of the other distributions above. If a specific
rate is requested, we create, during the construction of the update bursts, the changes in a
particular way that depends on how many FIB changes, and/or update propagation events
the user is looking for. If not enough FIB changes can be created in the current time block,
then more events are added. See Table 7.9 for a summary of the specifiable parameters that
influence the FIB changes. Note the currently version of the algorithm does not allow the user
to specify a percentage of the FIB entries that is supposed to change. This is future-work.

• number of FIB changes per time unit
• % of the FIB entries that change

Table 7.9: Variables influencing FIB changes.

7.2.4 Summary

In this section we identified a set of “knobs” that allows a test engineer to specify the charac-
teristics of the generated BGP workload. We designed the variables and metrics around the
characteristics of observable routing traffic in the Internet, so that the generated workloads are
useful for testing today’s and tomorrow’s router architectures, and also respects the wishes of
a test engineer.

7.3 Algorithm

In this Section we describe an algorithm that can test multiple devices under test and runs
multiple consecutive tests automatically (e.g., regression tests). Figure 7.2 (see page 94)
gives a rough overview over the algorithm. The algorithm is designed in a modular way,
so that it is possible to add new variables as new router architectures may require other test
metrics.

A prototype implementation of this algorithm is called syn.pl and is written in PERL. The
prototype itself consists of a calibration phase and a test phase.

The calibration phase assumes, as indicated in the previous section, that DUTs have to be
configured properly. If a DUT is not already configured, we offer an auto-configuration
mechanism. This logs into the router and sets-up the appropriate BGP sessions automati-
cally. This feature is very valuable, especially for tests with several hundreds of sessions.
Furthermore, before staring the test, a calibration may be necessary to determine the range of
appropriate parameters. Our script starts with identifying the initial settings and the executes
a calibration phase for the equipment. The main purpose is to construct appropriate routing
tables (see Section 7.3.2).

Then, the tests are performed – one after the other (see Section 7.3.3). This part relies on
the information gathered by the calibration phase and consists again of three parts: (1) The
sources of the updates. BGP updates need to be generated based on the distributions. Ad-
ditionally, it is possible to merge the synthetically generated update stream with a recorded
trace from disk. That is the reason that we allow multiple independent input sources (see

104

7.3 Algorithm

Section 7.3.3.1). (2) the sources have to be mixed together and the traces for the appropriate
devices under tests are modified (e.g., adjusting next-hop, test- and network-equipment IPs
to the corresponding session parameters). Furthermore, a trace can be scaled or otherwise
modified (see Section 7.3.3.2). (3) Then the traces are ready to be sent to the DUTs. The test
equipment that is conducting the test consists of several units (e.g., Agilent Router Tester,
load generating PCs, etc.) or the trace may be written to disk for later playback. Our proto-
type currently pre-generates the full trace, transfer it to the replay equipment and conduct the
test – but the ultimate goal is to create the updates on the fly while performing the test (see
Section 7.3.3.3).

All this needs to be controllable by the user. XML-configuration files provide the necessary
interface between the user and the script as presented in the next section (see Section 7.3.1).

7.3.1 XML-Configuration language

The goal is to decompose the inputs into logical configuration files so that a clear separation
of the entities in the test-lab can be achieved. Our system is driven by five databases. The
first three take stock of the testbed’s inventory, which consists of routing & test equipment
and connecting cables. Accordingly, network-equipment.xml, captures the hardware setup
of the devices under test (DUTs) in the test-lab (e.g., routers/interfaces, access mechanisms,
etc.). test-equipment.xml specifies the available test components (e.g., Agilent Router Testers,
PCs), and topology.xml provides a description of how the test equipment is connected with
the devices under test (e.g., physical cables, VPNs). Furthermore, distributions.xml provide
a mechanism to specify the characteristics of the synthetically generated workload that is
supposed to be used to stress the DUTs. While test.xml gives a description of the tests to be
performed. test.xml references the other databases. Here is a short overview:

Content Sample filename Description
Devices under test network-equipment.xml Setup of the DUTs in the test-lab.
Test equipment test-equipment.xml Setup of the test-hardware.
Link-level topology topology.xml Connections between interfaces.
Distributions distributions.xml Math. or empirical functions.
Main configuration test.xml Definition of test parameters.

The choice of splitting it into five databases is motivated by the rate of change to their content.
First consider the physical hardware. New devices are rarely added to the test-lab, their
setup and interfaces will not change very often, but the details of the available routers are
essential for the tool to be able to perform the tests. Therefore providing a description of each
device under test has to be done – but has to be done only once for each device (network-
equipment.xml). The same holds for the test equipment: once bought, setup, and configured,
it should be ready to use (test-equipment.xml). The interconnecting cables between the DUT
interfaces may actually vary much more frequent for example by recabeling, or changing the
VPN setup of intermediate switches, or simply by putting an interface within another logical
subnet. For this reason we “outsource” this part (topology.xml).

Next, the workload that is supposed to be generated may be derived from public sources such
as [48,49] – or may be extracted from proprietary data collected at a certain peering point that
reflects a “typical” situation which is supposed to be reconstructed in the test scenario. Mul-
tiple distributions may be collected and exchanged for variables depending on the question
that is under investigation in a certain test situation (distributions.xml).

105

7 Towards more Realistic Router Testing

And finally, the specification of how to perform the actual test, is the key element the test
engineer will work with (test.xml). Our configuration “language” is designed to make this
part very flexible and easy to adjust.

Now, we briefly illustrate the makeup of our configuration language with the following ex-
ample: We assume that the testbed already consists of one properly set up router as DUT,
a Cisco GSR 12008 [54], and an Agilent Router Tester 900 equipped with an N2X XS Test
Card [111]. Furthermore, assume that the test engineer plans to conduct a single, rather sim-
ple test, that uses only BGP traffic, and no data traffic. There are supposed to be two BGP
sessions on the DUT: one synthetically generated session, referred to as full-feedwith a
user-determined number of 180,000 prefixes; and one session11 , referred to as customer,
that replays a pre-recorded BGP data stream (from disk located in data/rrc00/...).

A test.xml configuration for our example looks like this:

<test>
<test-run>
<mytest1>

<dut use="c12008">
<configuration-reload use="config-3"/>
<link use="c12008 FastEthernet1/0-rt 101/4">
<bgp>

<full-feed>
<number-of-sessions> 1 </number-of-sessions>
<number-of-prefixes> 180000 </number-of-prefixes>
<as-path-length use="my-modified-distribution"/>

</full-feed>
<customer>
<data-set>

<rib-preload>
data/rrc00/bview.20050301.0000.gz

</rib-preload>
<bgp-update>

data/rrc00/updates.20050301.*.gz
</bgp-update>

</data-set>
</customer>

</bgp>
</link>

</dut>
</mytest1>

</test-run>
</test>

Here, <test> is the top level structure in this database, <test-run> is the tag that allows
the test engineer to specify the tests. Within <test-run> multiple tests can be defined, in
the example above only a single test is defined, called <mytest1>. Everything encapsulated
within this tag describes a single test run and is executed in parallel. The workload generation
can include consecutive tests. <dut> groups all “instructions” together that apply to a specific
device under test. Of course, different workloads can be applied to different routers. To indi-
cate which router is the target, the XML-attribute “use” is used. Here, use=“c12008” refers to
11If more than one session is recorded in the trace, then all sessions can be played back or a sub-set can be

selected. Commands for this are not shown in the example.

106

7.3 Algorithm

a definition of a dut that was “labeled” with c12008 in the XML-files. Our notation for defin-
ing such a reference is: <dut name="c12008">. Our tools interpretes such entities with a
name-attribute as macro definitions. They can be referenced across all XML files. One prop-
erty of such a macro is that all sub-elements of that object are “inherited”. To continue in our
example, the specification of dut may contain various mechanisms to reinitialize the router,
including an inherited default. But the user can overwrite this default, redefine or disable cer-
tain tags. For example the instruction <configuration-reload use="config-3"/>
initializes (reboots) the router with “config-3”. Note, that either the reload mechanism has to
be described inline (e.g., if tftp should be used, where to find the configuration file, etc.) or
the mechanism has to be pre-configured. The latter is the case for our example.

The next tag in our example is: <link use="c12008 FastEthernet1/0-rt 101/4">.
This is again a reference, but this time to the topology-section. It specifies the interface of the
DUT and also indicates to syn.pl which parts of the test equipments has to perform the test.

Finally, the <bgp> tag configures the protocol specific details for the test. Other protocols,
such as OSPF, may be added here in future work. In the case of BGP, a single router typically
carries multiple BGP sessions. In the example above one session is called <full-feed>,
the other is called <customer>. As our algorithm generates the updates for each session
differently, we need such a sub-structure. Note that the actual tag names are of minor impor-
tance. Instead of creating “useless” grouping tags we allow the engineer to give user-defined
tag-names. This may help in debugging or structuring the configuration. The concept of such
user-defined tag-names was already introduced on the test-run-level: <mytest1> can be
renamed to any other tag-name that captures the propose of the test in the mind of the test
engineer. In fact the concept of user-defined levels that group sets of pre-defined tags together
is a key ingredient to our framework. Thus at any level, the user may introduce tag-names
as long as they do not conflict with pre-defined tag-names or with the state-machine of the
parser. With such a mechanism it is possible to group certain tags together that support the
user.

This is especially useful in conjunction with the following advanced feature that allows flexi-
ble specification of parameters: In the above example each BGP session and all its parameters
had to be explicitly configured. Yet in the end the tool needs to know which part of the test
equipment is supposed to stress which interface of a DUT. Here again, it is desirable to be
“a bit more unspecific” and let the software take appropriate actions to achieve the requested
workload. Therefore, it is possible to specify tags at higher levels. To illustrate this, consider
the example above, where the user changed the characteristics of the session <full-feed>
by specifying <as-path-length use="my-modified-distribution"/>. This causes
the AS path length to be generated according to the distribution specified in “my-modified-
distribution”. While this allows us to be very flexible, it has the disadvantage if many sessions
are supposed to be generated according to a given set of distributions. Therefore it is desirable
to specify tags at higher levels, including the dut or even the test-run level. Thus, if tags are
specified at a different level, it will be applied to all appropriate configurations. In the above
example this means, if the user moves the tag <as-path-length use="my-modified-
distribution"/> to the <dut>-level, that the AS path length distribution will be applied to
both sessions, <full-feed> and <customer>. Note that in combination with user-defined
levels this provides a powerful specification mechanism for the test engineer.

Next let us take a look at the other XML configuration files. We start with the corresponding
network-equipment.xml. Note that we will not discuss all commands here. The goal is to

107

7 Towards more Realistic Router Testing

highlight some of the capabilities. For example method specifies how to access the router by
using the URL format to define protocol, user, address and port. It is assumed that manage-
ment interfaces are properly pre-configured to support the access method.

<network-equipment>
<dut name="c12008">
<access name="telnet">

<method> telnet://10.4.3.1/ </method>
<passwd> ocsic </passwd>

</access>
<interface>

<name> FastEthernet1/0 </name>
</interface>
...

</dut>
</network-equipment>

In the same testbed we also have a Router Tester with one module comprising four fast Ether-
net interfaces. Note that host below can be used to ssh to a PC for performing the test, or like
in the example it specifies the Router Tester controller. The corresponding test-equipment.xml
is:

<test-equipment>
<tester name="router tester 1">
<host> rt </host>
<interface>

<name> 101/4 </name>
</interface>
...

</tester>
</test-equipment>

Topology.xml documents the testbed cable connections and assigns the infrastructure ad-
dresses. Following the above example, we specify a cable from port 4 of our Router Tester’s
module 101 with the GSR’s FastEhernet1/0 interface. A link tag defines two directly con-
nected end points, one belonging to the router, the other to the router tester. The router end
is tagged dut and the router tester end, tester. Both tags reference names defined at different
places.

<topology>
<link name="c12008 FastEthernet1/0-rt 101/4">

<dut use="c12008">
<interface use="FastEthernet1/0">

<addr> 10.1.3.1/24 </addr>
</interface>

</dut>
<tester use="router tester 1">
<interface use="101/4">

<addr> 10.1.3.2/24 </addr>
</interface>

</tester>
</link>

</topology>

108

7.3 Algorithm

In summary this approach facilitates the specification of regression tests and let a user easily
explore the impact of various parameter combinations on the DUTs. At the same time it
allows a very detailed specification of of the tests. Actually, this is crucial for a test-bed
configuration language: to be able to reuse a complex specification and just change a few
parameter values.

7.3.2 Initial settings

DUT memory consumption for a given protocol depends, at a minimum, on its underlying
operating system and version. Accordingly, a RIB that indeed uses the user specified amount
of memory cannot be constructed without a previous calibration step.

7.3.2.1 Calibrating the RIB

In the first step of the calibration phase we have to generate a RIB. This has to be done
independent of a possible user specification. Note that the user can pre-load a RIB from
a file and may ask the tool for some modifications (e.g., add prefixes accordingly to the
configuration specifications).

The largest contributers to memory use are: number of BGP sessions and number of prefixes.
As the number of BGP sessions has to be specified by the user for each test, the algorithm
can only modify the number of prefixes and their parameters. The number of prefixes is used
to catapult us in the overall region in which the memory consumption resides. Fine-tuning is
done with the BGP attributes including AS path length, number of communities, etc..

The calibration consists of a limited number of download steps of the generated routing tables
to the DUT. We measure the corresponding memory usage via SNMP or via the CLI.

There are several issues with the calibration approach: Router management processes run at
regular times (such as garbage collection tasks), but not necessarily in synchronization with
our calibration software. For example imaging a calibration with a large routing table, the
table is generated, downloaded to the router and considered to be too large. The session
is teared down, and a smaller routing table is generated and downloaded to the router. To
estimate the memory consumption of the routing table the memory usage of the router is
measured before and after the table is downloaded. But what if some “old” memory chunks
are freed during the downloading of the new RIB? This can mislead the calibration phase.
This particular problem exists in two ways: First one calibration step may influence the next
calibration step and second two calibrations with the same parameters can result in different
memory consumptions.

7.3.2.2 Details of RIB construction

Next we discuss how the RIB itself is created by the algorithm. First, if the user specified a
RIB pre-load, this file is used as a basis. Then prefixes are added in several steps. We first
identify the prefixes contained in the RIB and also determine the attributes that are consistent
across all peering sessions, e.g., origin AS (Section 7.3.2.2). Next to select which prefixes of

109

7 Towards more Realistic Router Testing

• Minimum and maximum number of prefixes to generate (determined by various configured
parameters, such as neighbor-type, etc.).

• Diversity of attributes (“equality” of BGP attributes across prefixes):
• This parameter determines the maximum number of prefixes that can be packed in

one BGP update. Note that a small number makes the attributes more divers, because
many different attributes will be generated. A large number will generate a lot of
prefixes with the same set of attributes.

• This parameter determines for how many BGP update packets the AS-path and the
community string should not change. This is a typical behavior in the Internet that
many prefixes have the same (or very similar) attributes. Router code optimizes for
this and is testable with this option. Note that a high value in this parameter will reduce
memory consumption.

• Overlap to globally advertised address space12. (this will influence the number of prefixes
per session.)

• AS-path length13

• Communities13

Table 7.10: Parameters used to generated RIB

the RIB are announced over which peering sessions (Section 7.3.2.2) and finally to determine
their specific attributes, e.g., the full AS-path, community strings, etc. (Section 7.3.2.2).

Currently the RIB generation process depends on the variables summarized in Table 7.10.
Note that those variables are used to construct the synthetical part of the RIB. If the user
requested a certain memory consumption those parameters will be altered until the specified
memory consumption is reached.

Now that we have discussed the basic ingredients for the RIB construction we take a closer
look at details of the prefix generation (Section 7.3.2.2), the distribution of prefixes to sessions
(Section 7.3.2.2) and the generation of BGP attributes (Section 7.3.2.2).

Prefix selection

This part discusses how we add synthetically generated prefixes to a pre-loaded RIB from
a file. Note that if no RIB files are pre-loaded, then the RIB is empty. Thus, the goal is to
generate a set of n IP prefixes out of an IP range whose prefix length and prefix nesting dis-
tribution is consistent with some distribution, determined via characterization of BGP tables
or specified otherwise.

This is done by first computing how many prefixes for each prefix length at which nesting
level are required. For this we first loop over all nesting levels and in each nesting level over
all prefix lengths (starting at /8’s and going to /32). We get an value from our distribution
and multiply it with the number of prefixes that are supposed to be generated.

Next we have to understand how much address space those prefixes cover. This is especially
important for more specific prefixes, because our algorithm first tries to fit all prefixes into
the same super-prefix. Therefore we first try to find a prefix on the corresponding nesting

12Note that the overlap percentage between any two sessions on the DUT cannot be configured.
13AS path length and communities refers to a numerical value that is being added to the picked value from the

distribution.

110

7.3 Algorithm

level (current nesting level - 1) that could carry all prefixes that should be generated. For
example, if we are going to generate 3 more specifics of a prefix length of /24 we need at
least a /22 to be able to fit those prefixes on the corresponding nesting level. Then we look for
the smallest super-network that is able to cover this set of prefixes. If it is not possible to find
such a super-net that can carry all more specifics that should be generated with the current
length, then we try to split the prefixes on multiple super-nets. If even this fails, we disrespect
the nesting (because the number of prefixes requested by the user is more important than the
nesting structure of the prefixes).

A limitation of this approach is that to some degree the prefix length/nesting distribution
depends on the number of prefixes. This is because IP address distribution policies by the
regional route registries change over time. For example, formerly /8 networks were assigned
according to the classful address space. In the time of the “dot-com” boom traffic engineering
via more specifics was heavily used [89]. Nowadays very restrictive policies are used. This
interplay is captured in a snapshot in the distribution. If a user chooses a higher number of
prefixes, we scale the distribution. That means for different types of networks a distributions
may have to be regenerated based on newer or more accurate data.

Finally, we choose prefixes. This means we need to generate a 32-bit or 128-bit “number”
(IP address) that is not already “in used”. Note that a prefix can be “in use” because it was
already generated or this address space is already covered by the pre-load RIB. There are
two possibilities: Either we pick a random number or we choose consecutive prefixes. The
advantage of choosing consecutive prefixes is that the algorithm does only have to check for
conflicts with the pre-loaded RIB and therefore the prefix generation is faster.

Prefix to peering sessions distribution

Next the prefixes are assigned to the sessions. First the pre-loaded RIB files are applied to
“their sessions” (each RIB file is associated with a session via user specification). Then, we
use the overlap distribution. Recall, that overlapping tells us the percentage of prefixes from
the generated set of prefixes that is supposed to appear on that particular session. Consider the
example “upstream”: A “provider” is expected to announce a full routing table to the router.
As no full routing table contains all prefixes we select a subset of all prefixes at random. We
pay attention that we select all prefixes of depth 0,14 and only “filter” more specifics (e.g.,
only 90−95% of depth 1, 80−90% of depth 2, etc.). In addition, if a prefix is nested at depth
x and the corresponding prefix at depth x− 1 was not selected this prefix is also excluded.
This corresponds to the following interpretation: A provider is able to propagate routes to
all of the reachable address space but some of the more specific routes are not announced to
everyone.

As an additional consideration we need to make sure that a certain fraction of the prefixes
is reachable via a certain fraction of the interfaces. This is necessary to assure the requested
number of FIB changes. To induce a FIB change we must use a prefix that is announced
via multiple BGP sessions that are located on different interfaces of the DUT. Therefore we
prefer to distribute prefixes to those sessions that are on different interfaces of the DUT.

14Note this does not have to be true all the time in real Internet. Consider an aggregated prefix on one session
and several deaggregated prefixes on another session. Both provide the same address space coverage but with
a “different” set of prefixes.

111

7 Towards more Realistic Router Testing

Note that in a future version of this algorithm we plan to allow that a certain percentage of
the FIB can be changed (either caused by an instability event or by user request). To realize
this we have to ensure that this percentage of the FIB actually can be changed. Thus prefixes
for this fraction of the FIB must be available on different interfaces of the DUT.

Attribute selection: per prefix and per session

In the next step each prefix needs to receive an AS path as well as other attributes. In the first
release we mainly consider AS path and communities. Communities provide a nice way to
increase memory consumption on the routers. AS path are used to group prefixes and to in-
duce instability events. Accordingly we group prefixes that effect the same subsets of peering
sessions together. Otherwise the AS path length is chosen according to an appropriate distri-
bution and filled with random AS numbers. While a table is constructed we build statistics
across the AS path and sub-select a number of candidate ASes to be used for the instability
events.

Below is a detailed list on how the various attributes are constructed:
• AS path (list of numbers)

If the AS path length distribution is present on the system a path length according to
that distribution is chosen. If the user throttles the memory consumption a path length
multiplier is applied. The AS numbers are chosen at random including 1 and 64511
except for the ASN of the DUT as well as any ASN used by the test equipment.

• Community (list of two octet)
If the use of communities is activated for that neighbor, a number of communities
will be selected according to a distribution. The community octet itself is generated
completely random.

• Origin (IGP, EGP, incomplete)
Generated based on a distribution.

• Atomic Aggregator (NAG/AG)
If specified it is generated based on a distribution.

• Aggregator
This attribute does not influence the best path selection process, but needs to be stored
in memory and propagated to neighbors. The IP is chosen randomly if aggregation was
selected for the atomic aggregator.

• Multi-Exit-Discriminator MED (numeric value)
MED will not be used and therefore set to 0. A user that likes to use MED can specify
an optional distribution. In this case a MED value according to that distribution is
chosen. The usage of MED distributions can be turned on or off on a per neighbor
basis.

• Local Preference (numeric value)
Same as MED.

• Next Hop (IP)
It is set to the IP of the router tester. In the case of iBGP this is not correct, but IP
packets must be forwarded to a valid destination. This may change in the future, if
there is an integration with synthetic IGP traffic generation.

112

7.3 Algorithm

7.3.3 Equipment test phase

During the test phase we first the updates are created. The update source can be a recorded
trace replayed from disk, or updates generated by our script, or both – a recorded trace “en-
hanced” with some synthetic updates (e.g., to achieve a certain number of FIB changes, to
add additional background BGP load, etc.). For this we allow several sources that may con-
tribute to the final update stream. The next section discusses how this works in detail (Sec-
tion 7.3.3.1).

Those sources get “mixed” together in the mixer (Section 7.3.3.2 on page 115). The mixer
can interlace multiple update files to one output stream, or it can “speed-up” a recorded trace.
Furthermore, it prepares the update stream for the configured session (e.g., next-hop addresses
and session specific parameters are being rewritten). Additionally the mixer collects statistics
on the outgoing updates (e.g., counts the number of FIB changes that are likely to occur on
the DUT). This information is provided as “feedback” to the synthetic BGP traffic generation.

Finally, the BGP updates are sent out, targeted at the device under test. This can be done
via different output streams designed for different test equipment including Agilent Router
Tester or a PC running Linux. Section 7.3.3.3 explains the details.

7.3.3.1 Details of update stream construction

This section discusses how to construct the synthetic update streams. We start with instability
events and reconstruct update bursts. Finally we make sure to create the requested number of
FIB changes.

Creation of instability events

The synthetic BGP update stream is the result of the updates of a generated set of BGP
instabilities. An instability cluster consists of multiple prefixes that are supposed to “see
updates”. Those updates start on various BGP sessions within a relatively short time period.
See Section 4.1 on page 49 for more details. Clusters of prefixes are identified during the RIB
construction (or during the RIB table read). Then the update stream will be constructed on
a minute by minute basis for the configured duration of the test. In each cycle we pick the
number of instabilities events that are supposed to start within that minute. This value can
be configured by the test engineer or is picked from a distribution. By choosing one of those
cluster we have selected the maximum number of BGP peering sessions that participate in this
instability event. This is important to later determine the number of possible FIB changes.

Once an instability cluster is picked, it has to be “locked”. This is to assure that prefixes
are only effected by one instability at a time, because if two instability clusters for the same
prefix for the same time are created, the resulting instabilities would not be realistic anymore
because the statistical distribution of the burst (burst duration, number of updates within
a burst, inter-arrival-time distribution of updates) already capture the observed effects and
dynamics.

Next the “sphere” of the instability is selected. This is a very important parameter, because
it determines on how many peering session (and also on how many physical interfaces of

113

7 Towards more Realistic Router Testing

the DUT) the instability is observable. Once we have selected the number of BGP peering
sessions that will participate in this instability event. We pick those sessions that will actually
see the instability. Here we prefer sessions that are located on different links, so that it is
possible to create the necessary FIB update rate – as requested by the user. We start with
the first session15 on each link, if all links are covered we continue with the second session
on each link. Then we have to sub-select the prefixes that are part of this instability cluster.
At the moment we apply the instability to all prefixes that are associated with this instability
cluster.

Update burst generation

Now that we have determined which prefixes are affected by an instability cluster and on
which sessions this instability is visible, we start generating the BGP updates, or in our ter-
minology, create the update bursts. We consider three metrics to be relevant for an update
bursts:

• number of updates in burst.
• duration of update burst.
• inter-arrival-time of updates within update burst.

From an algorithmic perspective any two of those variables may be used to derive the third
metric. Nevertheless, to allow for flexibility we enable the user to provide any combination
of two metrics and compute the third.

By default the number of updates in burst cluster and the duration of the cluster is used. The
updates are spaced randomly within the cluster which results in an exponentially distribution
of the inter-arrival times. Such a distribution of inter-arrival-times can be observed in the
Internet.

Another way of constructing a update burst cluster is by using the distributions of inter-
update-times and number of updates in a burst. The algorithm is: as long as the number of
updates generated so far has not reached the number of updates supposed to be generated, we
pick an inter-update-time from the distribution and put a new update in the stream. Note, that
the update duration is the sum of the various inter-update-times.

And finally the third method is to specify the inter-update-times and the cluster duration. In
this case we construct updates as long, as the duration is not reached. This approach has two
problems: First, the duration distribution is only valid for bursts that have a duration – bursts
with only one update are not captured by this distribution. Second, the last update may not
“hit” the duration. That means that the actual duration is smaller or equal to the duration that
is supposed to be generated.

FIB change generation

To be able to construct later FIB changes and determine switch-over-events, we have to keep
track of which updates actually result in a modification of the DUTs best path selection pro-
cess and which only change the RIB entry inside the router (this can be further sub-divided

15Note that the order of sessions is randomly selected to assure that each session gets the necessary amount of
BGP updates.

114

7.3 Algorithm

into updates that needs to be passed on to neighbors and updates that will not be propagated).
We compute the best path that is (most likely) to be picked by the DUT. Note that it is not
trivial for our algorithm to detect which updates will actually result in a FIB change or prop-
agation event on the DUT. It may seems feasible at first glance, because our algorithm has
all updates targeted towards the DUT as well as the timestamps and thus can “emulate” the
best path selection process. Yet updates may be delayed due to TCP problems, or updates on
different interfaces may be processed in a slightly different order then that specified by the
timestamp. While the result is stable in the long run, which means the router pick the “best
path” that is the best path according to the configuration – this does not have to be true for
flapping prefixes. If our algorithm now creates flaps to impose a required FIB change rate
this could result is some “losses” of FIB changes by a clever implementation of the router
software. As we do not know how the DUT is processing the intended FIB changes, we can
only try to space FIB changes for one prefix “as far as possible”16 .

7.3.3.2 Stream Mixer

The mixer is a central part of the script. Its goal is to ease the process of adding further up-
date sources. For example beside our generated workload, a user might add some specific
probe updates to the trace. Such probe updates can be integrated in a larger setup, with IP
traffic streams and/or OSPF/ISIS, to measure control plane convergence times and switch-
over-times. To implement this, there may be certain conditions that must meet in order to
work properly (e.g., synthetically generated prefixes must not interfere with the probe up-
dates). To be able to assure that only minimal parts of the algorithm have to be changed to
allow user-supplied update sources we ensure that every update is processed in one central
place. With this it is possible for the user to check for user-specified conditions.

Beside a user might want to modify certain characteristics of an input stream. For example a
recorded trace should be played back at twice the speed. This is also the appropriate place to
adapt all update sources to the outgoing BGP session in the test lab. Once the outgoing update
stream is in the correct order and everything is prepared so that the update trace can be send
to the DUT, it is possible to estimate the number of FIB changes that will occur on the DUT
but this information is important for the update stream generation itself. Global variables will
assure proper communication. Furthermore, if the requirements are not meet, then additional
updates are created and intermixed into the already produced update stream. This means it
has to be possible to “go back in time” and reconstruct a new update mix based on a modified
stream.

In summary the mixer interlaces multiple update sources, checks for certain conditions, mod-
ifies various parameters of the trace (including playback speed), prepares the outgoing update
stream and collects statistics for the synthetic update generation.

7.3.3.3 Output devices

In this section we discuss those devices that are actually performing the tests, the test-
equipment itself. Note that the test-equipment is typically a different set of devices than
16Note that this spacing has to be determined during a calibration phase by verifying that the number of actual

and the number of intended FIB changes match.

115

7 Towards more Realistic Router Testing

the workload generating PC. This is mainly for scalability as the workload generation is very
CPU and memory intensive. In a future release of our tool we plan to be able to generate
the updates “on the fly”, while the test-equipment performs the test. Therefore outgoing test
devices can be:

• Router Tester.
• load generating PC (e.g., running BGP_Replay).
• a file stored on disk.

Choosing the option “file stored on disk” means just writing the output stream to disk for
later playback via the Router Tester and/or BGP_Replay. For the time being, we have only
implemented this option, to pre-generate all tables and updates and store them on disk. This
means that during the calibration phase, we will generate a table, store it on disk, transfer it to
the test equipment (e.g., automatically via ssh to a load generating PC or to the Router Tester
controller, which in itself communicates with the modules), then the script starts the download
process of the RIB. Our tool logs into the router and measures the memory consumption and
decides what is next to do (e.g., repeat with differently generated RIB). Similar process with
the actual test: create tracefile (for the whole test), transfer it to test equipment, start the test.

This part of the code will have to evolve in future work. The main problem we are facing here
is time-synchronizing all participating test devices. Furthermore, the updates themselves have
to be transfered from the workload generator to the test equipments without overwhelming
them – the device that is being tested should still be the router in the middle of the test setup
and not the test equipment. Future work has to investigate performance issues of the update
generation, the appropriate communication between generating script and the test equipment
as well as the necessary synchronization of test equipment of different types (e.g., Router
Testers and PCs).

We face a further, unresolved, problem with the TCP window size handling between a PC and
router. The stress on the router17 is created when the TCP window is closed on the outbound
BGP sessions of the router to the test equipment. In an repeated, prioritized cycle the router
tries to send the queued updates to the test equipment, which is not possible (because of
the closed TCP window). This causes the high CPU load on the router. Note that this, if
controllable by the test-equipment, can also be used as DUT stressor.

7.3.4 Summary

The corner pillars of our algorithmic design are the flexible and extensible configuration
language, the calibration phase, as well as the actual test phase.

In the XML specification the test engineer is able to set all parameters for the test, this in-
cludes the specification of which distributions are supposed to be used to generate the work-
load.

Next the parameters need to be calibrated. At the moment, this is the RIB memory consump-
tion, and a check if the number of FIB changes can be actually achieved on the DUT. To
do this we generate multiple RIBs, download them to the routers and measure the memory
consumption. We repeat this until we have approximated the requested memory consumption
sufficiently well. Then we send a short update stream to the DUT that induces the maximum

17This problem was observed at a Cisco GSR 12008 router.

116

7.4 Summary

number of FIB changes per time unit that is requested (and can be generated with the avail-
able prefixes). The CLI of the DUT reveals, if the intended number of FIB changes match the
actual FIB recomputes on the DUT.

During the test phase the algorithm generate updates based on the identified metrics. Those
synthetically generated streams can be mixed with other update sources. We compute statis-
tics about the “impact” of an update and this influences the update generation process again.
While the current implementation pre-generates the trace files for the whole specified test du-
ration, it should be possible to generate the updates on the fly and run the update generation
in an endless loop.

7.4 Summary

In this section we describe a tool that generates synthetical BGP update traces for multiple
peering sessions that can be targeted to devices under test (DUTs). The tool is user-friendly,
highly flexible and supports well-specified test conditions. The goal is to ease the engineer’s
task to instantiate a complex BGP test. Reasonable defaults are provided, so that a test engi-
neer is not lost in the intricacies of the BGP test setup. Therefore our tool creates an initial-test
setup that respects the wishes of the test engineer (e.g., number and type of peers) and at the
same time is able to reflect some of the variability of the Internet (e.g., number of prefixes, AS
path length, usage of communities). This means deriving via data characterization a “nor-
mal setting” for the BGP workload generator. Using this approach the test-setup gets easier
and at the same time we bring dynamics and variability of the real Internet to the test-lab;
more and more complex test setups are possible. With this our tool helps in a wide variety of
equipment testing: testing software implementations, performance, scalability and data-plane
convergence.

117

8 Conclusion

At a first glance BGP is a rather simple protocol. It forwards only reachability information
from one router to the other and each router is allowed to pick its “best path” from a set
of available alternatives. Yet, this simple protocol is of great interest to the community as
the the experiment “Internet” has become a critical part of our communication infrastructure.
Not only technical people try to optimize the goal of global reachability, but also commercial,
political, social interests are biasing its de-facto standard routing protocol, BGP.

In this thesis we look at some of the complexities of BGP. We start with configuration man-
agement. Despite all of our knowledge in software, operating and distributed systems, the
configuration of todays router sometimes appear to be from the stone ages of software de-
sign. In Chapter 3 we present a system that helps raise the level of abstraction from a router
configuration to an AS-wide configuration. We first identify the concepts underlying a routing
policy and based on this understanding we propose a system for managing AS-wide routing
policies as first class entities. This eliminates the need to configure the IP routers manually
to change the embedded policy. Furthermore, it provides a flexible, extensible, and scalable
framework for formulating the routing policy, which respects the divisions of responsibility
within an ISP. In addition, the automatic generation of the configlets by the configurator re-
duces the probability of errors. And by the virtue of the flexibility of the system the likelihood
decreases that the system is bypassed to fix operational problems, thus clear and documented
migrations from one state of the network to the next are possible and help with troubleshoot-
ing. A prototype is in production use at Deutsche Telekom. The ability to express an AS-wide
routing policy as a flexible collection of enforced policies and available services independent
of the current state of the network as well as the ability to easily and quickly introduce new
services or adjust policies has proven to be valuable.

Beside the fact that a routing policy can now be expressed very easily on an AS-wide level,
this does not solve the problem that routing policies in itself can bring the Internet to diverging
states, e.g., [7]. This can happen with our system or without, actually this could happen every
day and with fully legitimate policies. As a first step to be able to cope with the dynamics that
arise from such a distributed system, we need a detailed understanding about the signaling
properties of BGP. In Chapter 4 we review BGP dynamics and in Chapter 4 BGP beacons
as well as the general behavior of BGP updates. In this context we used simple clustering
technique to observe path exploration, identify stable states, and analyze diverging prefixes.
While we find, that most instabilities in the Internet converge within two minutes (in the case
of a withdraw within four to six minutes), there are some events that can last for several hours,
days, or even weeks.

Such a knowledge can be beneficial to operators, as it may help them to detect unwanted rout-
ing conditions and start debugging problems before customers complain. Yet, troubleshooting
is still difficult because of the lack of information who to call and to fix a problem. For this
reason we developed a methodology to narrow down the set of ASes that potentially caused

118

the routing instability, solely based on the observable routing changes collected by passive
monitoring the routing system. Chapter 5 presents our approach together with some initial
results. Indeed, we are able to narrow down the candidate sets of possible ASes to a single
AS and explain with this 93% of all prefixes that were observing updates.

While this brings us some insights on the observable protocol properties, it still does not
explain why we see such behavior. Clearly, a lot of todays convergence delays are due to
the MRAI timer and route flap damping, but what about overloaded routers along the path?
In Chapter 6 we discuss a methodology that evaluates such questions in a test-lab by mea-
suring BGP pass-through times. We investigate the impact of factors, such as CPU load,
number of BGP peers, etc., on the propagation delays of BGP updates. We find that that
BGP pass-through times are rather small with average delays less than 200ms. Yet, if routers
are operated outside their specification limits, then BGP processing delays can become quite
high.

Such questions can be viewed from a more general perspective: How can we test network
equipment in a test-lab so that the results are comparable to the placing this device in the
operational network? How can we recreate the dynamics and the variability observable in
the Internet in a small-scale test-lab. Therefore we investigate in Chapter 7 how we can
reproduce a realistic BGP workload for devices under test in a small-scale test-lab. We use our
knowledge from the previous chapters about the characteristics of BGP signaling properties
to propose a tool that generates synthetical BGP update traces. The goal is to ease the task
of the test engineer and help instantiate complex BGP tests. This is realized by assuming
reasonable defaults whenever the user is “a bit vague” in the test specification. With this
test-setups become easier and at the same time we bring dynamics and variability of the real
Internet into the test-lab. This in turn helps in a wide variety of equipment testing: testing
software implementations, performance, scalability and data-plane convergence.

The main contribution of this thesis is to study a framework of how to handle the complexity
of BGP today. We investigated this

• via characterization of the dynamic behavior of BGP by observing the properties of the
Internet control plane,

• via router testing by designing a tool that brings BGP dynamics into the test-lab, and
• via configuration management that defines an AS-wide routing policy and instantiate

this policy in the operation network by automated router configuration.

While it is not always easy working with BGP and its limitations, we showed areas and ways
to help operators, vendors to do their daily job and researchers to improve the Internet. One
day there maybe replacements for BGP (e.g., [147]) – yet one should better have a very good
solutions to replace BGP, the inter-domain routing protocol.

119

9 Future Work

In this chapter we discuss some open questions regarding how this work may evolve in the
future. We start with a project, in Section 9.1, which is targeted towards a more realistic
Internet-like simulation framework for more accurate traffic engineering based on insights
gained in Chapters 4 to 5. Next we discuss a project, in Section 9.2, that extends our configu-
ration management system, proposed in Chapter 3, and combines this with our router testing
methodology developed in Chapter 7.

9.1 Towards more realistic Internet-like simulations

To better understand the impact of routing policies on inter-domain traffic flows, we propose
to develop a methodology that allows simulating complex inter-domain topologies with con-
ditions similar to those that are observed in reality (i.e., with more realistic filter policies).
Especially traffic shifts inside ASes and their impact on other domains can only be under-
stood by large Internet-size simulations. In addition, such questions are closely related to the
limits imposed by policies in respect to how far routing updates will propagate.

Thus, to understand inter-domain traffic flows our simulation framework deals with the topol-
ogy as well as with policy decision of ISPs. Sadly enough, ISPs usually do neither disclose
topology nor policy information, so that path inference becomes necessary.

While the physical topology shows the paths that could be used across the network, it relies
on the routing protocols to decide which paths are actually being used. To the best of our
knowledge, today, no simulation framework fully captures both aspects: the available links in
the topology (i.e., [104, 148]) and the decisions taken by the routing system (i.e., [31, 137]).

Our goal is to develop a methodology where researchers and ISPs can ask what-if questions
in terms of:

• impact of link failures on routing dynamics, BGP update spread and traffic shifts;
• impact of changed status of a relationship (e.g., canceled peering);
• impact of changes in the connectivity of transit networks;
• impact of internal link changes/failures on the routing inside an AS;
• impact of complex policies between ASes;
• impact on the traffic of a transit AS of changing its Internet connectivity.

We now discuss how to tackle these problems, by looking at how to construct the necessary
simulation setup.

9.1.1 Proposed approach

The ingredients to our large scale Internet-like simulations are: a simulator, the inter-domain
topology, approximations of intra-domain topologies, and a set of filter policies.

120

9.2 Configuration management

Recent advances on simulators, such as C-BGP [74] developed at UCL in Belgium, make
it feasible to work with large models of the Internet that include all ASes. Basic AS-level
relationships can be inferred by common algorithms such as [31]. Yet, this is not sufficient,
because internal topologies of ISPs span a large geographical region (see Section 2.1.1 on
page 13, especially Figure 2.3) and filter policies1 add an additional complexity to the best
path selection process that has to be considered as a relevant factor in the simulation.

Our intent is to start with a standard AS relationship inference with data from AS paths
collected by RIPE, Routeviews, and Akamai. In a next step this inference is used as a “seed”
to the simulation. We model the internal topology on a PoP level of transit ISP – stub ASes
are modeled with one router only. It is important to note that ASes, such as tier-1 and large
tier-2, operate their networks on multiple continents. Smaller ASes operate only within a
certain region (they can be geographically located by whois-queries and/or other techniques).
IGP metrics, unless better known, can be assigned according to a “semi-random” function
that approximates geographic distances.

Finally it is important to derive the filtering on a per eBGP session basis. In a first step the
filter policies are approximated from the standard routing policies inference. We validate the
simulation by comparing them with actual monitored paths. Yet, the outcome is not expected
to be very accurate. Therefore a heuristic similar to the one presented in Section 5.2 is used
to detect locations (AS-edges within the simulation) that hint towards a different setting of
policies or undetected inter-AS links. With that we can improve the accuracy of the simulation
in successive steps. The simulation is re-run and revalidated with the new policies inferred by
our heuristics. Additional information from various looking glasses may help in improving
the accuracy up to the desired level.

9.1.2 Benefits

Such an Internet-wide simulation technique is very valuable for operators to diagnose prob-
lems, optimize network performance, identify peering partners, provide better connectivity
to the rest of the Internet (e.g., shorter average AS paths due to an improved selection of up-
stream providers) and see what competitors are doing as well as estimate their impact on the
own AS. Researchers can study routing protocol behavior, traffic shifts with load-adaptive
routing mechanisms and improve traffic engineering methodologies. Finally the accuracy
might even be sufficient to detect problematic routing conditions more easily [7, 16, 23].

9.2 Configuration management

Next we turn to configuration management. The system presented in Chapter 3 enables op-
erators to implement their business model in a straightforward, flexible fashion, facilitates
automatic network management and allows an easy realization of new policies – there is also
a potential risk that it becomes now too easy to instantiate wrong policies. There should be
an automated configuration management system which first validate that the vendor-specific
configuration actually matches the intended routing conditions the administrator contem-
plates.

1Policy settings of ISPs are not limited to the two simple categories “customer-provider” and “peering”.

121

9 Future Work

Thus, how can an ISP verify their configurations? How can tools help in checking if the
intended policy actually matches the effective policy in a network (e.g., [60])? Is it possi-
ble to validate router configurations in a way that they are guaranteed to be globally sane
(e.g., [61])?

9.2.1 Proposed approach

Recall from Chapter 3, that we designed a system that is able to generate the appropriate
eBGP configlets and thus can configure routers automatically. This is done based on a set
of input configuration files decompositioned by the organizational boundaries within an ISP
(i.e., the policy designer creates the routing policy of the ISP; the network administrator adds
customers, routers, etc.; and the person realizing and testing BGP operations is working on
the fragments of the router code).

What is missing in this design is a validation of the generated configlets before they are
uploaded to the routers in the operational backbone. We propose to use the above mentioned
C-BGP simulator for this task. The simulator is able to read the generated configlets directly
and thus simulate network with the policies in an AS-wide (or even Internet-wide) context.

Together with an accurate model of the internal topology of an AS, the RIB of all neighboring
ASes, and maybe the approximation from Section 9.1 this results in a powerful tool, that can
find local unwanted policy settings that were configured by mistake as well as potentially
even detect global conflicting policies [7]. With such a methodology it is possible to forsee
the routing states created by the configuration [21]. Based on this, certain criteria can be
checked: e.g., identify routers that pick paths via the upstream, while a customer link is
available (due to wrong communities?); or detect that customer routes disappear on peering
links, because a peer announced a shorter AS path which might be picked; or the simulation
does not “converge” based on conflicting policies; etc..

After the policy is checked via simulation (iBGP, eBGP and VPNs), the tools needs to make
sure that the configlets are actually supported by the field equipment. With our methodology
developed in Chapter 7 basic compliance and regression tests can be performed with a work-
load that corresponds to the setting where the actual router is located, which adds confidence
that the router is actually capable of performing its task appropriately.

An integrated documentation system keeps track about the migration from one network con-
figuration state to the next. Here the changes between the last and the new configuration are
highlighted which help operators to retrace changes and ease debugging.

9.2.2 Benefits

The importance of the Internet requires that the protocols are correctly configured. Thus
we propose to use our system that enables ISPs to specify a routing policy AS-wide (see
Chapter 3) and combine this with a verification mechanism. This uses a simulation of the
routing policies of the AS (or even beyond the AS) to check if the intended outcome of a
policy actually matches the BGP expressions that are supposed to be uploaded to the routers.
Furthermore, basic router tests (see Chapter 7) can verify that the router is capable of per-
forming its task in the given environment with the given configuration. This may avoid some
configuration mistakes and thus may contribute to the stability of the Internet.

122

List of Figures

2.1 Update processing per router. 10

2.2 Example: update propagation. 10

2.3 Example: Path sections of ASes2. 12

2.4 Sample router configuration for router c7507 and c12008. 17

2.5 Output of show ip bgp summary command. 17

2.6 Simple Juniper configuration . 18

2.7 Example of the aut-num object. 20

2.8 Definition of the aut-num import attribute. 20

2.9 Generalized RPSL term for AS path prepending. 21

2.10 Example of structured policy in RPSL. 21

3.1 Overview of proposed system. 28

3.2 Example network . 28

3.3 Main database objects and their relationships. 28

3.4 Network module XML elements . 34

3.5 Policy module XML base elements. 35

3.6 Policy module XML examples . 36

3.7 Examples for back-end module entries . 40

3.8 Generated documentation in RPSL. 46

3.9 Generated configlet for c1 using routemap feature continue. 47

3.10 Generated configlet for c1 after convolution (without continue). 48

4.1 Illustration of BGP update clustering. 53

4.2 Limitations of BGP update bursts. 55

4.3 Beacon durations of all events. [102] . 56

4.4 CDF of beacon durations. [102] . 56

4.5 Burst duration and beacon duration of slow converging A-events. [102] . . . 57

123

LIST OF FIGURES

4.6 Burst duration and beacon duration of slow converging W-events. [102] . . . 57

4.7 Interarrival times between updates in slow converging events. [102] 58

4.8 Interarrival times between bursts in slow converging events. [102] 58

4.9 Duration of bursts. 59

4.10 Number of updates in burst. 59

4.11 Burst interarrival time with kind of change. 60

4.12 Interarrival times of between echoes. 60

4.13 Durations of Route Flap Damping. 61

4.14 Number of echoes in a burst. 61

4.15 Relative # of updates. 62

4.16 Relative # of updates. 62

5.1 Example AS topology. 64

5.2 Per prefix – ideal methodology for locating instabilities. 65

5.3 Example AS topologies . 66

5.4 Per prefix – adapted methodology for locating instabilities. 70

5.5 Across prefix – adapted methodology. 71

5.6 Simulation: instability set size hist. for # of obs. (heur.: standard, loc.: top). . 75

5.7 Simulation: instability set size hist. for various heuristics (obs: 2). 75

5.8 Simulation: instability set size hist. for failure locations (heur.: all, obs.: 2). . 75

5.9 Stable route differences for various timeouts. 75

5.10 Stable route differences for burst length with 2 minute timeouts. 75

5.11 Stable route differences by # of updates in burst for 2 minute timeouts. 75

5.12 Event characterization for various timeout heuristics. 78

5.13 Event duration for various timeout heuristics 78

5.14 Beacons: instability set size hist. for # of obs. (adaptive (b=2m,e: (max=16m,
rel=4m)); heur.: standard). 79

5.15 Beacons: instability set sizes hist. for timeout heuristics (obs.: 2; heur.: stan-
dard). 79

5.16 Beacons: instability set size hist. for heuristics (adaptive: (b=2m,e:(max=16m,rel=4m));
obs: 2). 80

5.17 Instability set size hist. for various # of obs. (adaptive: (b=2m, e:(max=16m,rel=4m));
heur.: standard). 80

5.18 Instability set size hist. for timeout heuristics (obs.: 2; heur.: standard). 81

124

LIST OF FIGURES

5.19 Instability set size hist. for various heuristics (adaptive: (b=2m, e:(max=16m,rel=4m));
obs.: 2). 81

6.1 Histogram of pass-through times together with one-way packet delays for
typical packet sizes 64, 576, and 1500. 87

6.2 Histogram of upper and lower bounds on pass-through times for MRAI values
of 5 and 30 seconds. 87

6.3 Histogram of CPU load estimates for packet rates of 2k,5k,10k and 15k di-
rected to the router IP. 88

6.4 Test-bed setup for router testing. 88

6.5 Histogram of pass-through times subject to different levels of background
traffic (0, 2k, 10k pkts/second). 90

6.6 Histogram of pass-through times subject to different # of sessions (100/200)
and background traffic (0, 2k). 90

6.7 Histogram of pass-through times as update rate increases (small table, 2 ses-
sions). 91

6.8 Histogram of pass-through times as update rate increases (large table, 2 ses-
sions). 91

7.1 Test-bed for router testing. 94

7.2 Overview of synthetic BGP traffic algorithm. 94

125

List of Tables

4.1 BGP instability and their typical causes. 50

4.2 Effects of BGP instability . 51

4.3 Effects of BGP updates . 52

7.1 Key variables for today’s router architectures. 98

7.2 Key metrics of today’s router architectures. 98

7.3 Variables influencing eBGP. 101

7.4 Variables influencing iBGP. 101

7.5 Variables influencing VPNs. 102

7.6 Variables controlling instability creators. 102

7.7 Variables influencing update spread. 103

7.8 Variables influencing update bursts. 103

7.9 Variables influencing FIB changes. 104

7.10 Parameters used to generated RIB . 110

126

Bibliography

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4).” RFC 4271.

[2] J. Moy, OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[3] D. Oran (Editor), “OSI IS-IS Intra-domain Routing Protocol,” 1990. RFC 1142, ISO
DP 10589.

[4] A. Feldmann, A. C. Gilbert, and W. Willinger, “Data networks as cascades: Inves-
tigating the multifractal nature of Internet WAN traffic,” in Proc. ACM SIGCOMM,
1998.

[5] Akamai Technologies. http://www.akamai.com.

[6] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in internet-like
environments.,” in Proc. ACM SIGCOMM, pp. 151–162, 2003.

[7] T. G. Griffin and G. Huston, “BGP Wedgies,” 2005. RFC 4264.

[8] R. Bush, T. Griffin, Z. M. Mao, E. Purpus, and D. Stutzbach, “Happy Packets - Initial
Results,” 2004. NANOG 31.

[9] A. Feldmann, N. Kammenhuber, O. Maennel, B. M. Maggs, R. D. Prisco, and R. Sun-
daram, “A methodology for estimating interdomain web traffic demand.,” in Proc.
ACM IMC, 2004.

[10] T. G. Griffin Interdomain routing links.
http://www.cl.cam.ac.uk/users/tgg22/interdomain/.

[11] T. G. Griffin and B. J. Premore, “An Experimental Analysis of BGP Convergence
Time,” in Proc. ICNP, 2001.

[12] T. G. Griffin, “What is the Sound of One Route Flapping?,” 2002. IPAM.

[13] R. Teixeira, A. Shaikh, T. G. Griffin, and J. Rexford, “Dynamics of Hot-Potato Routing
in IP Networks,” in Proc. ACM SIGMETRICS, 2004.

[14] R. Teixeira, A. Shaikh, T. G. Griffin, and G. M. Voelker, “Network sensitivity to hot-
potato disruptions,” in Proc. ACM SIGCOMM, 2004.

[15] R. Teixeira, N. G. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Im-
pact of routing changes,” in Proc. Passive and Active Measurement Workshop (PAM),
2005.

127

BIBLIOGRAPHY

[16] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy Disputes in Path Vector Proto-
cols,” in Proc. ICNP, 1999.

[17] N. Feamster, H. Balakrishnan, and R. Johari, “Stable Policy Routing with Provider
Independence,” in Proc. ACM SIGCOMM, 2005.

[18] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and J. Rexford,
“The cutting EDGE of IP router configuration,” in ACM SIGCOMM HotNets Work-
shop, 2003.

[19] D. Wetherall, R. Mahajan, and T. Anderson, “Understanding BGP misconfigurations,”
in Proc. ACM SIGCOMM, 2002.

[20] S. Uhlig and O. Bonaventure and B. Quoitin, “Interdomain Traffic Engineering with
minimal BGP configurations,” in Proc. of the 18th International Teletraffic Congress,
Berlin, 2003.

[21] B. Quoitin and S. Uhlig, “Modeling the routing of an Autonomous System with C-
BGP,” 2005. (under submission).

[22] “IETF Benchmarking Methodology Working Group (bmwg).”
http://www.ietf.org/html.charters/bmwg-charter.html.

[23] T. G. Griffin and G. Wilfong, “A Safe Path Vector Protocol,” in Proc. IEEE INFOCOM,
2000.

[24] J. Postel, “Internet protocol,” 1981. RFC 791.

[25] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Supernetting: an Address Assignment and
Aggregation Strategy,” 1992. RFC 1338.

[26] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless Inter-Domain Routing (CIDR): an
Address Assignment and Aggregation Strategy,” 1993. RFC 1519.

[27] “IANA - Internet Assigned Number Authority.”
http://www.iana.org/ipaddress/ip-addresses.htm.

[28] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, and J. Postel, “Internet Registry
IP Allocation Guidelines,” 1996. RFC 2050.

[29] G. Huston, “Where’s the Money?,” 2005. The ISP Column.
http://www.potaroo.net/ispcol/2005-01/interconn.html.

[30] R. Govindan and A. Reddy, “An analysis of Internet inter-domain topology and route
stability,” in Proc. IEEE INFOCOM, 1997.

[31] L. Gao, “On Inferring Autonomous System Relationships in the Internet,” in Proc.
IEEE Global Internet, 2000.

[32] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet. Addison-Wesley, 1999.

[33] B. Halabi, Internet Routing Architectures. Cisco Press, 1997.

128

BIBLIOGRAPHY

[34] T. Bates, R. Chandra, and E. Chen, “BGP Route Reflection - An Alternative to Full
Mesh IBGP,” 2000. RFC 2796.

[35] R. Teixeira and J. Rexford, “A measurement framework for pin-pointing routing
changes,” in Proc. ACM SIGCOMM Network Troubleshooting Workshop, 2004.

[36] R. Chandra, P. Traina, and T. Li, “BGP Communities Attribute,” 1996. RFC 1997.

[37] L. Subramanian, V. N. Padmanabhan, and R. H. Katz, “Geographic properties of In-
ternet routing,” in Proc. Usenix, 2002.

[38] Cisco Systems, “How the bgp deterministic-med Command Differs from the bgp
always-compare-med Command,” 2005.
http://www.cisco.com/warp/public/459/bgp-med.pdf.

[39] Cisco Systems, “BGP Cost Community,” 2005. http://www.cisco.com/
univercd/cc/td/doc/product/software/ios120/120newft/
120limit/120s/120s24/s_bgpcc.pdf.

[40] “BGP Multipath Load Sharing for Both eBGP and iBGP in an MPLS-VPN.”
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios122/122newft/122t/122t4/fteibmpl.pdf.

[41] T. G. Griffin and G. Wilfong, “On the Correctness of IBGP Configuration,” in Proc.
ACM SIGCOMM, 2002.

[42] S. Floyd and V. Jacobson, “The synchronization of periodic routing messages,” IEEE/
ACM Transactions on Networking, 1994.

[43] C. Villamiyar, R. Chandra, and R. Govindan, “BGP route flap damping,” 1998. RFC
2439.

[44] C. Panigl, J. Schmitz, P. Smith, and C. Vistoli, “RIPE Routing-WG Recommendation
for Coordinated Route-flap Damping Parameters ,” 2001.
http://www.ripe.net/ripe/docs/ripe-229.html.

[45] Z. M. Mao, R. Govindan, G. Varghese, and R. Katz, “Route flap damping exacerbates
Internet routing convergence,” in Proc. ACM SIGCOMM, 2002.

[46] R. Bush, T. Griffin, and Z. M. Mao, “Route flap damping: harmful?.” RIPE 43,
September 2002. http://www.ripe.net/ripe/meetings/archive/
ripe-43/presentations/ripe43-routing-flap.pdf.

[47] Juniper Networks Inc., “Out-delay.” https://www.juniper.net/techpubs/
software/junos/junos57/swconfig57-routing/html/
bgp-summary32.html.

[48] RIPE’s Routing Information Service. http://www.ripe.net/ris/.

[49] University of Oregon RouteViews project. http://www.routeviews.org/.

129

BIBLIOGRAPHY

[50] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karren-
berg, and M. Terpstra, “Routing Policy Specification Language (RPSL),” 1999. RFC
2622.

[51] Cisco, Cisco IOS Configuration Fundamentals. Cisco Press, New Riders Publishing,
1998. Documentation from the Cisco IOS reference Library.

[52] R. Enns, “NETCONF Configuration Protocol,” 2004. Internet Draft (draft-ietf-
netconf-prot-04.txt).

[53] “Introduction to Configuring JUNOS Internet Software.”
http://www.juniper.net/training/elearning/junos_cli/.

[54] Cisco 12000 Series Routers.
http://www.cisco.com/en/US/products/hw/routers/ps167/.

[55] IRRToolSet. http://www.isc.org/sw/IRRToolSet/.

[56] C. Alaettinoglu, “Rtconfig: Router configuration generator,” 1996. NANOG 6.

[57] Internet Routing Registry. http://www.irr.net/.

[58] RADB - Routing Assets Database. http://www.radb.net/.

[59] G. Siganos and M. Faloutsos, “Analyzing BGP Policies: Methodology and Tool,” in
Proc. IEEE INFOCOM, 2004.

[60] N. Feamster, “Practical verification techniques for wide-area routing,” in Proc. ACM
Workshop on Hot Topics in Networks, 2003.

[61] N. Feamster and H. Balakrishnan, “Verifying the correctness of wide-area Internet
routing,” Tech. Rep. MIT-LCS-TR-948, MIT, 2004.

[62] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, “Using RPSL in
practice.” RFC 2650.

[63] C. Villamizar, C. Alaettinoglu, D. Meyer, and S. Murphy, “Routing Policy System
Security,” 1999. RFC 2725.

[64] RANCID - Really Awesome New Cisco confIg Differ.
http://www.shrubbery.net/rancid/.

[65] Cisco IP Solution Center. http://www.cisco.com/en/US/products/
sw/netmgtsw/ps4748/index.html.

[66] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Automated provisioning of BGP
customers,” IEEE Network Magazine, 2003.

[67] A. Feldmann and J. Rexford, “IP network configuration for interdomain traffic engi-
neering,” IEEE Network Magazine, 2001.

[68] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall manage-
ment toolkit,” in IEEE Symposium on Security and Privacy, pp. 17–31, 1999.

130

BIBLIOGRAPHY

[69] S. Agarwal, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “The Impact of BGP Dy-
namics on Intra-Domain Traffic,” in Proc. ACM SIGMETRICS, 2004.

[70] S. Uhlig and O. Bonaventure, “Implications of interdomain traffic characteristics on
traffic engineering,” European Transactions on Telecommunications, 2002.

[71] N. Feamster and H. Balakrishnan, “Towards a Logic for Wide-Area Internet Routing,”
in Proc. ACM SIGCOMM FDNA Workshop, 2003.

[72] N. Feamster and H. Balakrishnan, “Detecting BGP Configuration Faults with Static
Analysis,” in Proc. USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2005.

[73] T. G. Griffin, A. D. Jaggard, and V. Ramachandran, “Design Principles of Policy Lan-
guages for Path Vector Protocols,” in Proc. ACM SIGCOMM, 2003.

[74] S. Uhlig and B. Quoitin, “Tweak-it: BGP-based Interdomain Traffic Engineering for
Transit ASes,” in Proc. of the first EuroNGI Conference on Next Generation Internet
Networks, 2005.

[75] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence properties,” in Proc.
ACM SIGCOMM, 1999.

[76] T. Griffin and G. T. Wilfong, “Analysis of the MED Oscillation Problem in BGP,” in
Proc. ICNP, 2002.

[77] B. Chinoy, “Dynamics of Internet routing information,” in Proc. ACM SIGCOMM,
1993.

[78] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek, “Measuring the
effects of Internet path faults on reactive routing,” in Proc. ACM SIGMETRICS, 2003.

[79] D. Obradovic, “Model and convergence time of BGP,” in Proc. IEEE INFOCOM,
2002.

[80] X. Zhao, M. Lad, D. Pei, L. Wang, D. Massey, S. Wu, and L. Zhang, “Understanding
BGP Behavior Through A Study of DoD Prefixes.” In Proc. of DISCEX III, April
2003.

[81] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and L. Zhang, “An analysis
of BGP multiple origin AS (MOAS) conflicts,” in Proc. ACM IMW, 2001.

[82] O. Maennel and A. Feldmann, “Realistic BGP traffic for test labs,” in Proc. ACM
SIGCOMM, 2002.

[83] O. Maennel and A. Feldmann, “Identifying Problematic Inter-domain Routing Issues,”
2002. NANOG 24.

[84] C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian, “An Experimental Study of Delayed
Internet Routing Convergence,” in Proc. ACM SIGCOMM, 2000.

[85] C. Labovitz, “Scalability of the Internet backbone routing infrastructure,” in PhD The-
sis, University of Michigan, 1999.

131

BIBLIOGRAPHY

[86] G. Huston, “IPv4 Address Space Report,” 2005.
http://bgp.potaroo.net/ipv4/.

[87] S. Donelan, “What Worked and What Didn’t: 9/11,” 2001. NANOG 23.

[88] C. Labovitz and A. Ahuja, “Shining Light on Dark Internet Address Space,” 2001.
NANOG 23.

[89] G. Huston, “Allocations vs announcements,” 2004. Internet Society Publications:
ISP Column. http://www.potaroo.net/papers/isoc/2004-05-02/
alloc.html.

[90] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of popular destina-
tions,” in Proc. ACM IMW, 2002.

[91] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and L. Zhang,
“Observation and analysis of BGP behavior under stress,” in Proc. ACM IMW, 2002.

[92] M. Caesar, L. Subramanian, and R. H. Katz, “Route cause analysis of Internet routing
dynamics,” tech. rep., UCB/CSD-04-1302, 2003.

[93] D.-F. Chang, R. Govindan, and J. Heidemann, “The Temporal and Toplogical Charac-
teristics of BGP Path Changes,” in Proc. ICNP, 2003.

[94] M. Lad, A. Nanavati, D. Massey, and L. Zhang, “An algorithmic approach to identify-
ing link failures,” in 10th Pacific Rim Dependable Computing Symposium, 2004.

[95] J. Wu, Z. M. Mao, J. Rexford, and J. Wang, “Finding a needle in a haystack: Pinpoint-
ing significant BGP routing changes in an IP network,” in Proc. USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2005.

[96] RIS Routing Beacons.
http://www.ripe.net/projects/ris/docs/beacon.html.

[97] C. Labovitz, R. Malan, and F. Jahanian, “Internet routing instability,” IEEE/ACM
Trans. Networking, 1998.

[98] C. Labovitz, R. Malan, and F. Jahanian, “Origins of Internet routing instability,” in
Proc. IEEE INFOCOM, 1999.

[99] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of Internet stability and
wide-area network failures,” in Proc. International Symposium on Fault-Tolerant Com-
puting, 1999.

[100] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A. Ahuja, “The impact of Internet
policy and topology on delayed routing convergence,” in Proc. IEEE INFOCOM, 2001.

[101] Z. M. Mao, R. Bush, T. G. Griffin, and M. Roughan, “BGP Beacons,” in Proc. ACM
IMC, 2003.

[102] S. Bürkle, “BGP convergence analysis,” Diplomarbeit, Saarland University, 2003.

132

BIBLIOGRAPHY

[103] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map discovery,” in Proc.
IEEE INFOCOM, Computer Science Department, University of Southern California,
2000.

[104] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topologies with Rocket-
fuel,” in Proc. ACM SIGCOMM, 2002.

[105] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan, “Topology Inference
from BGP Routing Dynamics,” in Proc. ACM IMW, 2002.

[106] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link weights using
end-to-end measurements,” in Proc. ACM IMW, 2002.

[107] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing the Internet
hierarchy from multiple vantage points,” in Proc. IEEE INFOCOM, 2002.

[108] G. D. Battista, M. Patrignani, and M. Pizzonia, “Computing the Types of the Relation-
ships between Autonomous Systems,” in Proc. IEEE INFOCOM, 2003.

[109] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. E. Anderson, “The End-to-End
Effects of Internet Path Selection,” in Proc. ACM SIGCOMM, 1999.

[110] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin, “The impact of Internet
policy on Internet paths,” in Proc. IEEE INFOCOM, 2001.

[111] Agilent N2X Multi-Services test solution.
http://advanced.comms.agilent.com/n2x/.

[112] IXIA BGP Routing Protocol Emulation Software, 2002.
http://www.ixiacom.com/.

[113] AX/4000 Spirent Communications, 2005. http://www.spirentcom.com.

[114] Arsin Corporation, “RIG, A BGP Routing Instability Generator,” 2001.
http://www.arsin.com/archive/archive26.htm.

[115] H. Berkowitz, A. Retana, S. Hares, and P. Krishnaswamy, “Benchmarking method-
ology for basic BGP convergence,” 2002. Internet Draft (draft-ietf-bmwg-bgpbas-
01.txt).

[116] H. Berkowitz, A. Retana, S. Hares, P. Krishnaswamy, and M. Lepp, “Terminology for
Benchmarking BGP Device Convergence in the Plane,” 2003. Internet Draft (draft-
ietf-bmwg-conterm-05.txt).

[117] A. Shaikh, L. Kalampoukas, R. Dube, and A. Varma, “Routing stability in congested
networks: Experimentation and analysis,” in Proc. ACM SIGCOMM, 2000.

[118] A. Shaikh, R. Dube, and A. Varma, “Avoiding instability during graceful shutdown of
OSPF,” in Proc. IEEE INFOCOM, 2002.

[119] D.-F. Chang, R. Govindan, and J. Heidemann, “An Empirical Study of Router Re-
sponse to Large BGP Routing Table Load,” tech. rep., USC/ISI, 2001.

133

BIBLIOGRAPHY

[120] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg, “Routing
design in operational networks: A look from the inside,” in Proc. ACM SIGCOMM,
2004.

[121] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-compliant rout-
ing,” in Proc. ACM SIGCOMM, 2004.

[122] G. Huston, “NOPEER Community for Border Gateway Protocol (BGP) Route Scope
Control,” 2004. RFC 3765.

[123] O. Bonaventure and B. Quoitin, “Common utilizations of the BGP community at-
tribute,” 2003. Internet Draft (draft-bq-bgp-communities-00.txt).

[124] D. McPerson, V. Gill, D. Walton, and A. Retana, “Border Gateway Protocol (BGP)
Persistent Route Oscillation Condition,” 2002. RFC 3345.

[125] North American Network Operators Group. http://www.nanog.org/.

[126] RIPE Meetings. http://www.ripe.net/meetings/.

[127] Asia Pacific Regional Internet Conference on Operational Technologies.
http://www.apricot.net/.

[128] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and W.-S. Lee, “An
architecture for stable, analyzable Internet routing,” IEEE Network Magazine, 1999.

[129] G. Huston, “Interconnection, Peering, and Settlements,” in Internet Protocol Journal,
1999.

[130] D. Turk, “Configuring BGP to Block Denial-of-Service Attacks,” 2004. RFC 3882.

[131] NetML (an XML specification language to configure and express network devices).
http://giga.dia.uniroma3.it/∼ivan/NetML/.

[132] T. G. Griffin, “Routing policy languages must be designed and standardized.”
WIRED – Workshop on Internet Routing Evolution and Design, 2003.

[133] K. Claffy, H.-W. Braun, and G. Polyzos, “A Parametrizable methodology for Internet
traffic flow profiling,” in IEEE Journal on Selected Areas in Communications, 1995.

[134] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations in inter-domain
routing,” tech. rep., USC/ISI-96-631, 1996.

[135] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and G. Wilfong, “Route Oscillations
in I-BGP with Route Reflection,” in Proc. ACM SIGCOMM, 2002.

[136] H. Uijterwaal, “Routing Beacons,” 2002. IEPG meeting
http://www.ripe.net/ris/Talks/0211_IEPG/sld009.html.

[137] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang, “On AS Level Path Inference,” in Proc.
ACM SIGMETRICS, 2005.

[138] G. Battista, M. Patrignani, and M. Pizzonia, “Computing the Types of the Relation-
ships Between Autonomous Systems,” in Proc. IEEE INFOCOM, 2003.

134

BIBLIOGRAPHY

[139] S. Agarwal, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Impact of BGP dynamics on
router CPU utilization,” in Proc. Passive and Active Measurement Workshop (PAM),
2004.

[140] “ENDACE measurement systems.” http://www.endace.com/.

[141] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect
Devices,” 1999. RFC 2544.

[142] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the In-
ternet topology,” in Proc. ACM SIGCOMM, 1999.

[143] K. Calvert, M. Doar, and E. W. Zegura, “Modeling Internet topology,” in IEEE Com-
munication Magazine, 1997.

[144] L. Gao and J. Rexford, “Stable Internet routing without global coordination,” in Proc.
ACM SIGMETRICS, 2001.

[145] G. Huston, “IPv4 ALL Allocation Report,” 2004. http://bgp.potaroo.net/
ipv4/stats/allocated-all.html.

[146] M. Kühne, P. Rendek, S. Wilmot, and L. Vegoda, “IPv4 Address Allocation and As-
signment Policies for the RIPE NCC Service Region,” 2003. RIPE-288.

[147] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica,
“HLP: A Next-generation Interdomain Routing Protocol,” in Proc. ACM SIGCOMM,
2005.

[148] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal
Topology Generation,” in International Workshop on Modeling, Analysis and Simula-
tion of Computer and Telecommunications Systems – MASCOTS, 2001.

135

