
f f f f
fff fff fff ff

f
f f ff

Verified Proof Carrying Code

Martin Wildmoser

Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Verified Proof Carrying Code

Martin Wildmoser

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten

Prüfer der Dissertation: 1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Martin Hofmann, Ph.D.
(Ludwig-Maximilians-Universität München)

Die Dissertation wurde am 3.11.2005 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 10.5.2006 angenommen.

Kurzfassung

Proof Carrying Code (PCC) ist eine Technik zum Ausschluss von Sicherheitsfehlern
in Maschinencode. Statt Laufzeittests durchzuführen, wird statisch ein Beweis (Zerti-
fikat) geprüft. Um zu garantieren, dass ein solches System nur sicheren Code akzep-
tiert, formalisieren und verifizieren wir PCC in Isabelle/HOL, einem Beweissystem für
höherstufige Logik. Wir beweisen, dass zertifizierter Code sicher ist, und unter welchen
Voraussetzungen sich sicherer Code zertifizieren lässt. Der Hauptbeitrag ist ein gener-
ischer Verifikationsbedingungsgenerator (VCG), den wir für eine Teilsprache von Java-
Bytecode instanziieren. Dieser VCG inspiziert Bytecode, der mit Formeln einer eigens
geschaffenen Zusicherungssprache annotiert ist, und liefert Beweisverpflichtungen, die
arithmetischen Überlauf und falsche Annotationen ausschließen. Annotationen können
wir manuell oder mittels angebundener Analysatoren für Typen und Intervalle einfügen.
Zur Gewinnung und Überprüfung der Zertifikate setzen wir wiederum Isabelle/HOL ein.

I

II

Abstract

Proof Carrying Code (PCC) is a technique to exclude safety errors in low level code.
Instead of runtime tests, it statically checks a proof of safety (a certificate) attached
to the code. To guarantee that PCC only accepts safe code, we formalise and verify it
in Isabelle/HOL, an interactive theorem prover for higher order logic. In an abstract
framework we identify key components and their interfaces, specify requirements and
prove theorems stating that accepted code is safe and under what conditions safe code
can be certified. Our main contribution is a generic verification condition generator
(VCG), which inspects code and emits proof obligations. By adjusting parameters,
we instantiate this VCG to a Java-like bytecode language with objects, methods and
exceptions. Bytecode with annotations in a first order assertion logic can be certified
not to cause arithmetic overflow. To annotate code we integrate bytecode analysers for
intervals and types. Finally, Isabelle’s facilities for code generation, proof production
and proof checking enable us to turn our formalisation into a runnable prototype.

III

IV

Acknowledgements

I very much thank Tobias Nipkow for supervising this thesis, offering me a position in
his group and giving me the opportunity to work on a wonderful topic.

I also want to thank Prof. Martin Hofmann for acting as referee and Prof. Manfred
Broy together with his staff for excellent working conditions.

I am deeply indebted to Stefan Berghofer, Amine Chaieb and Gerwin Klein, whose work
and participation on the project gave me a solid ground to build on.

I am very grateful to Jorge Fox, Norbert Schirmer and Tjark Weber for many inspiring
and joyful discussions on the topic and other things. I also thank them, as well as the
collegues mentioned above, for reading and commenting on drafts of this thesis.

Finally, I thank the users and developers of Isabelle in Munich not only for their technical
advice, but in particular for the friendly atmosphere. Many thanks to Clemens Ballarin,
Gertrud Bauer, Florian Haftmann, Alexander Krauss, Steven Obua, Sebastian Skalberg,
Martin Strecker, and Markus Wenzel.

V

VI

Contents

Contents

1 Introduction 1
1.1 Proof Carrying Code . 1
1.2 Contributions . 2
1.3 Related Work . 2

1.3.1 Touchstone . 4
1.3.2 Foundational Proof Carrying Code 6
1.3.3 Syntactic Proof Carrying Code . 9
1.3.4 Typed Assembly Languages . 11
1.3.5 Mobile Resource Guarantees . 14
1.3.6 Open Verifier . 16

1.4 Our work . 18
1.5 Outline . 22

2 Abstract Framework 23
2.1 Program Semantics . 24
2.2 Safety Logic . 27
2.3 Safety Policy . 27
2.4 Annotated Control Flow Graphs . 28
2.5 Abstract Semantics . 31
2.6 Generic Verification Conditions . 31
2.7 Correctness . 34
2.8 Completeness . 37
2.9 Invariant Verification Conditions . 46
2.10 Instantiating the Framework . 47
2.11 Conclusion . 49

3 Jinja Bytecode and Virtual Machine 51
3.1 Jinja Bytecode . 51
3.2 Operational Semantics . 56

3.2.1 States . 57
3.2.2 Extended Machine . 57
3.2.3 Argument Passing . 59

VII

Contents

3.2.4 Arithmetics, Checks and Branches 59
3.2.5 Heap Access . 60
3.2.6 Method Invocation and Return . 60
3.2.7 Initial States . 63
3.2.8 Simulation . 63

3.3 From Java to Jinja Bytecode . 65
3.4 Conclusion . 66

4 Bytecode Assertion Logic 67
4.1 Syntax and Semantics of Assertions . 68

4.1.1 JVM Constructs . 69
4.1.2 Logical Constructs . 74

4.2 Logical Judgments . 75
4.3 Design Choices . 76

4.3.1 Deep or Shallow? . 76
4.3.2 What Language Constructs? . 77
4.3.3 Typed or Untyped? . 77
4.3.4 Higher Order Abstract Syntax . 77
4.3.5 Inference Rules? . 78

4.4 Conclusion . 79

5 Control Flow and Abstract Semantics 81
5.1 Control Flow Approximation . 81
5.2 Abstract Semantics . 90

5.2.1 Initial States . 90
5.2.2 Transitions . 91

5.3 Conclusion . 106

6 Verification Conditions for Jinja 109
6.1 SafetyPolicy . 109
6.2 Wellformedness . 110
6.3 System Invariants . 112
6.4 Instantiating the VCG . 114
6.5 Verification Conditions and Modularity 115

6.5.1 Verifying Method Bodies . 118
6.5.2 Verifying Method Invocations . 120
6.5.3 Verifying Method Returns . 121
6.5.4 Exceptional Method Returns . 122

6.6 Proving Requirements . 123
6.6.1 Control Flow Approximation . 124

VIII

Contents

6.6.2 Abstract and Concrete Semantics 125
6.6.3 Instantiating the Locales . 127

6.7 Correctness and Completeness Theorems 127
6.7.1 Correctness . 128
6.7.2 Invariance . 128
6.7.3 Completeness . 129

6.8 Conclusion . 130

7 Generating Annotations and Proofs 131

7.1 Program Analysis . 131
7.1.1 Bytecode Verifier . 131
7.1.2 Interval Analysis . 132

7.2 Integrating Trusted and Untrusted Analysis Results 134
7.3 Optimising Verification Conditions . 136
7.4 Generating Proofs . 138

7.4.1 Proof Construction with Isabelle 138
7.4.2 Proof Producing Program Analysis 139

7.5 Conclusion . 142

8 Using the System 143

8.1 Generating Runnable ML Prototypes . 143
8.2 Tasks for Code Producers and Consumers. 144

8.2.1 From Java to Jinja . 146
8.2.2 Annotating the Code . 151
8.2.3 Checking Wellformedness . 152
8.2.4 Generating Verification Conditions 153
8.2.5 Proving the Verification Condition 154
8.2.6 Exporting the Proof Object . 157
8.2.7 Checking the Proof Object . 158

8.3 Experiments . 158
8.4 Conclusion . 160

9 Conclusion 163

9.1 Achievements . 163
9.2 Experience . 164
9.3 Discussion . 165
9.4 Further Work . 166

IX

Contents

A Appendix 169
A.1 Isabelle/HOL . 169

A.1.1 Types . 169
A.1.2 Pairs . 169
A.1.3 Sets . 169
A.1.4 Lists . 170
A.1.5 Option . 170
A.1.6 Functions . 170
A.1.7 Finite Maps . 171
A.1.8 Locales . 172

A.2 Additional Definitions . 172
A.2.1 External VCG . 172
A.2.2 Wellformedness . 173

A.3 Additional Proofs . 174
A.3.1 Instantiating the Abstract Semantics 174

B Bibliography 183

X

1 Introduction

This chapter introduces and motivates Proof Carrying Code. We take a
glimpse at related work and assess each approaches merits and drawbacks
from our perspective. Finally, we give an overview on our own approach and
the structure of this thesis.

1.1 Proof Carrying Code

Proof Carrying Code (PCC), first proposed by Necula and Lee [67, 68], is a scheme
for executing untrusted code safely. Fig. 1.1 shows the architecture of a PCC system.
The code producer is on the left, the code receiver on the right. Both sides run a
verification condition generator (VCG). The VCG inspects every instruction and emits
proof obligations ensuring safety. For this purpose it expects certain positions in the
code to be annotated with assertions, e.g. loop or function entry points. The logic used
for assertions and for the proof of safety is the safety logic, the property that is shown
about the program is the safety policy.

Verification Condition

Proof Object

VC
Generator

VC
Generator

Theorem
Prover

Proof
Checker

Annotated Program
Compiler Interpreter

Figure 1.1: PCC Architecture

It is the responsibility of the producer to generate the annotations and a proof for the
formula the VCG constructs. Annotations, program and proof are then transmitted to
the code receiver. The code receiver runs the VCG again and uses a proof checker to
verify that the proof indeed fits the generated verification condition. Proof checking is

1

Chapter 1 Introduction

usually much simpler and more efficient than proof searching. Hence, the main burden
lies on the shoulders of the producer. However, once proper annotations and a correct
proof are found, the code can be installed and run without further runtime checks. Since
the static check needs to be done only once, this makes PCC interesting for safe code
that should run efficiently. Apart from web applets and device drivers mobile code ap-
plications are still to come. Interesting possibilities open with ubiquitous computing.
Small devices (smart cards, pdas, phones, . . .) coming from different vendors and fol-
lowing different standards could teach each other how to communicate by sending each
other drivers. Even without the mobile aspect, PCC is interesting for high risk software,
such as control code for air planes or rockets. Since one verifies the code that actually
flies, one does not have to trust a compiler. In addition, one knows that certain errors
will never occur and can thus avoid error recovery or self destruction.

1.2 Contributions

This thesis makes various contributions to the field of low level software verification
and applications of interactive theorem proving. A detailed discussion of strengths and
weaknesses follows in §9.

(1) An abstract framework for a Verification Condition Generator (VCG), stating
explicit requirements and providing proofs of correctness and completeness.

(2) Instantiations of verified VCGs for Java-like bytecode with support for objects,
inheritence, dynamic method invocations and exceptions.

(3) An assertion logic for Java-like bytecode, which abstracts machine states, states
safety policies and expresses verification conditions.

(4) Integration of trusted and untrusted program analysers for verification.

(5) A runnable PCC system for Java-like bytecode supporting advanced safety policies,
such as arithmetic overflow.

1.3 Related Work

In this section we shortly summarise other people’s work on proof carrying code. The
arrangement of subsections is roughly chronological based on the first publication from
the corresponding authors. We try to make the different approaches comparable by
highlighting three aspects. The underlying programming language, the safety policy

2

1.3 Related Work

and the safety logic. In our framework these will be the main factors determining a
PCC system. Finally, we try to assess each approaches merits and drawbacks from our
perspective. We also try to visualise each approach using data flow diagrams. Boxes
with round corners denote components taking data represented in boxes with rectangular
corners as input or producing such data as output. Arrows indicate how the data flows.
Apart from that we sometimes use ovals connected to components via dotted lines. These
denote parameters influencing the components behaviour.

3

Chapter 1 Introduction

1.3.1 Touchstone

The Touchstone system, shown in Fig. 1.2, is the main result of Necula’s pioneering
work on PCC [68]. Programs written in Safe-C, a type-safe subset of C, are compiled
to assembly code. The compiler also annotates loops, function entry and exit points
with types for registers, stack and heap positions. A formula annotated to some code
position symbolically approximates the states under which this position can be reached
at runtime. The compiler generates these formulas from source language types found in
variable and function declarations. It knows how values of these types are represented
in the machine and can choose corresponding machine level types. The compiler also
performs various code optimisations and simultaneously adjusts the annotations. The
annotated assembly program is then symbolically executed by a VCG. Starting with
formulas for function entry points the VCG follows the control flow until a return in-
struction occurs or an annotated position is reached twice. Whenever it passes a control
flow edge it transforms the formula, which abstracts the current state, using a strongest
postcondition operator. Depending on the instruction to be executed next it also drops
a safety condition as proof obligation. One has to prove that this safety condition follows
from the current state formula. All proof obligations together make up the verification
condition, a formula that ensures the safety policy.

loop invariants

function specs

Safe-C
program

Type
translator Optimizer

Compiler
assembler

code

Simplex

Cong.
Closure

Memory
Safety
Axioms

Prover

First Order
Verification
Condition

Post

VCG

Dispatcher

Nelson-Oppen
Compressed

LF - Proof

Checker
Memory
Safety
Axioms

Trusted Code Base

Safety Logic
Safety
Policy

Safety
Cond.

Defensive SAL
Machine

OK/
No

Figure 1.2: Touchstone PCC

Programming Language

The symbolic execution is done on a RISC-like assembly language, called SAL. Existing
machine languages can be supported by translating their code to SAL and verifying
the translation. Necula’s PhD thesis [68] mentions translators for DecAlpha and x86

4

1.3 Related Work

assembly code. With only 13 instructions SAL provides the essential operations needed
to run a machine with a bank of custom and special (stack pointer, return address) reg-
isters and heap memory. There are instructions to initialise, copy, perform arithmetic
or logical operations on these registers. To organise the control flow there are direct and
conditional jumps as well as function calls and returns. Finally, there are instructions
to write to and read from the memory. Unlike typical assembly languages SAL distin-
guishes memory and stack access with syntactically different instructions. This design
choice is helpful to express and verify the safety policy, because different rules can be
designed for stack and normal memory access.

Safety Policy

Programs are safe if they access the memory in a regulated way. Stack accesses are only
allowed within the frame of the current method, and heap accesses must be safe with
respect to a memory safety policy expressed by checking functions safeRD and safeWR.
These checks are evaluated by a defensive SAL machine, which gets stuck if they are
violated. Programs are safe if the defensive machine never gets stuck before returning
from the main function.

Safety Logic

The safety policy is verified by proving the verification condition for a program. A
pen-and-paper soundness proof [68] guarantees that only safe programs have provable
verification conditions. The logic employed to formulate and prove verification condi-
tions is called safety logic. In [68] this is a first order predicate logic with extensions for
memory safety. The latter is supported by special predicate symbols safeRd and safeWr,
whose semantic counterparts are the corresponding checks built into the SAL semantics.
These predicates can be derived by using axiomatic typing rules together with ordinary
natural deduction rules. The verification conditions are hereditary Harrop formulas and
can thus be solved by a Prolog [23] like verification system. For reasons of efficiency
Necula [68] has implemented his own theorem prover. As Fig. 1.2 shows this prover
combines decision procedures for linear inequalities (Simplex [38]) and congruence clo-
sure [44, 71, 12] in a Nelson-Oppen [70] architecture. Non-convex theories, such as the
memory safety typing rules, are integrated via a top-level Dispatcher. All decision pro-
cedures certify their work by emitting LF proof objects. The dispatcher combines these
to a full proof of the verification condition. This proof is then sent to the consumer, who
again runs the VCG on the received code and checks, for example with Twelf’s [77] LF

5

Chapter 1 Introduction

proof checker, whether the proof fits the resulting formula.

Conclusion

Touchstone PCC is highly efficient. The transmitted proofs are relatively small thanks
to the high amount of tuning in the proof producing decision procedures, efficient proof
representations using oracle strings [69] and a VCG optimised for SAL and memory
safety. Primitive checks, such as ensuring that control flow does not fall out of the code
range, are already performed by the VCG when it scans the code. The downside of
Touchstone is that it involves complex trusted components, such as a type system with
axiomatic rules for memory safety and the VCG, a program of about 23k lines of code
[57]. Although these components have been verified by pen and paper any flaw in their
implementation can compromise safety. For example the Special-J system [33], which
compiles Java to x86, showed a critical leak in its type axioms found by League et al.
[57].

1.3.2 Foundational Proof Carrying Code

Foundational Proof Carrying Code (FPCC) [6] aims at proving safety with a minimal
trusted code base. It avoids trusted components like type-specific axioms or a VCG.
Instead, it defines the operational semantics of machine code in higher order logic (HOL)
using only foundational mathematics such as sets and functions. The safety policy is
defined as a defensive machine where programs get stuck when unsafe. This can be
directly expressed and proven in HOL. The consumer can check safety using a higher
order proof checker, which are typically small and simple programs. The structure of the
safety proof and the safety logic is up to the producer, who can employ any type system
or verification condition generator as long as soundness proofs are also transmitted.

In reality FPCC systems turn out to be more complicated than Fig. 1.3 suggests. The
problem seems to be that foundational proofs are hard to construct in general. Very
often FPCC targets type safety and uses a type system to structure the proof. Fig. 1.4
shows what happened to Appel’s idea in the following years. Instead of giving a direct
safety proof the compiler now emits type annotations. These can be seen as an indirect
safety proof. A type system, with machine checked soundness meta-theorems, guaran-
tees that well typed programs do not go wrong. The consumer now runs two different
kind of checkers. One checks the meta-theorems of the type system, and one checks that
the received code types well. If we regard the type system as a part of the safety proof
in Fig. 1.3 this setup is still compatible with the original idea of FPCC.

6

1.3 Related Work

Machine
Configuration s

Certifying
Compiler

Source
Program

Safety Policy

Safety Proof

Checker

Trusted Code Base

Safety Theorem

s runs without error.

Defensive
Machine

HOL Axioms

Machine

OK / No

Figure 1.3: Foundational PCC

Machine
Configuration s

Type
Preserving
Compiler

Safety
Policy

LTAL rules

Trusted Code Base

LTAL

Code P, Types T

Defensive
Machine

HOL Axioms

LF Checker

LTAL Soundness Proof
(Preservation, Progress, Simulation)

LTAL Checker
|- P:T and s:P ?

Soundness Theorem
If |- P:T and s:P then
s does not get stuck.

ML Code

Semantic Models
of Types

OK / No

Machine

OK / No

Figure 1.4: Foundational PCC in practice

Programming Language

Starting with [64] much research went into how assembly code can be type-checked and
a wide variety of typed assembly languages turned up in the following years. We will
discuss some of these in the next sections. Appel et al. now have a PCC system that
supports LTAL [31, 89], a typed assembly language whose type system is expressive

7

Chapter 1 Introduction

enough to translate high-level ML programs into it.

Safety Policy

In the early work on FPCC [6] only simple safety policies such as correct decoding of
instruction codes are addressed. Now, with the type oriented setup [31] [89], type safety
is the major goal. This means machine programs are safe if they respect the data ab-
stractions from the source program. For example, a defensive machine for type safety
would get stuck if an instruction would be applied to arguments of incompatible type,
e.g. adding a boolean to a string.

Safety Logic

To prove type safety Appel and Felty [7] propose to use semantic models of types. In-
stead of introducing types as syntactic objects with a (possibly faulty) inference system,
Appel and Felty model them semantically in Twelf [77], for example as sets of values or
states. Typing rules are then formulated and proven as lemmas on these type models
in HOL. Modelling types as sets of values or states [7] turned out to get unwieldy when
higher order polymorphism or general recursive types come into play. The approach
proposed in [7] sounds complex as it involves a formalisation of the Banach fixed point
theorem on complete metric spaces. Later Appel and McAllester [8] proposed a much
simpler model for recursive types based on indexed values. This model is also used in
the Open Verifier [30] we discuss in §1.3.6.

Conclusion

FPCC is more trustworthy and flexible than conventional PCC. The gain in trustworthi-
ness comes from a minimal trusted code base, that only involves the machine semantics
(with built-in safety policy) and the proof checker. It is flexible, because it does not
demand to use a specific type system or VCG to prove safety of programs. A common
strategy is to define a type system for a particular safety policy inside the foundational
logic and then to reduce safety proofs to type checking via a type soundness argument.
A drawback is that the soundness proof is also part of the transmitted proof and must be
checked again and again for every program. This and the fact that proof obligations are
typically in HOL, which is difficult to automate, makes generating foundational proofs
hard. In addition, finding suitable semantic models for advanced types (polymorphic,

8

1.3 Related Work

recursive) is a non-trivial task. Hence, it is not surprising that existing FPCC systems
only handle basic safety policies, such as instruction decoding or operand safety.

1.3.3 Syntactic Proof Carrying Code

Foundational Proof Carrying Code as proposed by Appel and Felty [7] uses semantic
models of types to prove the safety policy. Before indexed values came up [8] such models
turned out to be complex when higher order polymorphism or contravariant types shall
be supported. Syntactic Proof Carrying code [50] is like Foundational Proof Carrying
Code [6], but uses explicit syntax for types and does not require a semantics of types at
all. Instead, as Fig.1.5 illustrates, the proof is gained from translating a syntax driven
type derivation for the source program (typed assembly language) into a safety argument
for the machine language.

FTAL configuration P
Machine
Configuration s

Safety
Policy

Coq Proof
Checker

Trusted Code Base

Safety Theorem
s does not get stuck.

Inv(s) = Exists P,T.
P translates-to s and P:T

Syntactic Invariant

Defensive
MachineCompiler

Ptranslates-to s

Safety Proof

Soundness Lemmas
(Preservation,Progress)

FTAL
Types T

Syntax Driven
FTAL Derivation Gen.

prf „|- P:T“

CiC Axioms

Soundness Proof

OK / reject

Figure 1.5: Syntactic PCC

Programming Language

The types are designed for a down sized variant of typed assembly language (TAL) [64],
called Featherweight Typed Assembly Language (FTAL). This language serves as an
abstract description of concrete machine programs, which are represented as a series
of opcodes stored in a segment of a machine configuration. The compiler used in [50]
translates an FTAL program P to an initial machine configuration s, that includes both
data and code.

9

Chapter 1 Introduction

Safety Policy

This configuration is safe if the defensive machine does not get stuck on it, which hap-
pens when the program counter points to an invalid opcode.

Safety Logic

To prove safety Hamid et al. [50] follow the idea of FPCC and directly demand a proof
for an instance of the safety theorem to the given configuration s (state + program
code). This proof is generated by the compiler using a global inductive invariant Inv.
This invariant is global because one shows that all reachable machine configurations
satisfy it. It can be proven by induction on the execution semantics given by a function
step, which computes the successor configurations. The safety policy, given in form of
a predicate, must follow directly from the Invariant. This means one has to prove these
three conditions:

Initial Condition Inv s0

Preservation ∀s. Inv s −→ Inv (step s)
Progress ∀s. Inv s −→ SP s

The safety policy SP in [50] only holds for machine configurations where the program
counter points to a memory cell containing a valid opcode. The key idea is to make the
compiler and the source level type system parts of the invariant Inv, which then says
that the code represented in memory is syntactically wellformed.

Inv s ≡ ∃ P : program.(P translates-to s) ∧ `FTAL P

It holds for configurations s that are translations of a well typed abstract program P .
In [50] FTAL comes with a type judgement (`FTAL) and an abstract execution relation
FTAL7−→. The following theorems, which are proven as meta-theorems in Coq [43], guarantee
that a machine program gained by translation of a well typed FTAL program is safe.
The notation P

FTAL7−→ P ′ stands for an abstract program semantics, which transforms
types instead of values.

FTAL-Preservation If `FTAL P and P
FTAL7−→ P ′, then `FTAL P ′.

FTAL-Progress If `FTAL P, then there exists P ′ such that P
FTAL7−→ P ′.

FTAL-Translation If `FTAL P and P
FTAL7−→ P ′ and P ′ translates-to s, then

P ′ translates-to (step s).

10

1.3 Related Work

Once these theorems are proven, one can show the Preservation and Initial Condition
by finding a well typed FTAL program that translates to the initial machine state s0.
In [50] the safety policy SP follows directly from the translation relation, which does
not permit machine states with illegal instructions on its right hand side. Hence, the
progress condition holds automatically because of the construction of Inv.

Conclusion

The clear advantage of the syntactic approach is, that it avoids introducing a complex
semantics for the FTAL types, which include tuple types with polymorphism and re-
cursion. Types only reside in the abstract (syntactic) domain and are dropped by the
translation relation. In case of FTAL this translation converts tuple values and machine
instruction sequences to machine words following a predefined memory layout. For the
meta-proofs it is important that each FTAL instruction corresponds to one machine
instruction. Hence, macro instructions, such as malloc, need to be split into various
FTAL instructions. Proving safety of individual programs is made relatively simple as
the FTAL typing system is purely syntax directed and easily checkable. This clearly
remedies the problem of proof generation which is often seen as the major problem of
FPCC. A drawback of syntactic proof carrying code is that the type system is typically
designed for a particular safety policy. If one wants to change this policy one has to
come up with a different type system and prove the meta-theorems for it. This makes
Syntactic PCC less flexible than semantical FPCC (Fig. 1.3). In addition, the safety
policy Syntactic PCC currently handles is rather basic, e.g. correct decoding of instruc-
tions. Another downside is that the gap between FTAL and machine code is quite low,
only the format of instructions and the layout of structured values seem to be different.
A compiler for a real high-level language to FTAL seems to be missing in the work of
Hamid, Zhong et al.

1.3.4 Typed Assembly Languages

Morisett et al. [64, 78] introduced Typed Assembly Language as a target language for a
type preserving compiler. Their motivating idea was to be able to type-check the results
of a compiler rather than verifying the compiler itself. By doing this, one can ensure that
data abstractions used in the source languages, e.g. lists, trees, records and so on, are
respected by the assembly code. Their initial paper [64] shows how functional programs
in λF , a call-by-value variant of System F (polymorphic λ-calculus) with products and
recursion on terms, can be translated to typed assembly language. Their paper illus-
trates this compilation process using the factorial function as an example. Programs

11

Chapter 1 Introduction

pass three intermediate lambda-calculi (continuation passing style, closure conversion,
stepwise allocation). Later this work has been extended to a more realistic TAL [64]
targeting Intel’s 80x86 architecture. Since then, a multitude of TALs, each with different
modellings of instructions and typing rules, have been proposed. In the appendix of [31]
one finds an overview on these. Apart from FTAL and LTAL, which we discussed in
the previous chapters, there is a major body of work done by Crary et al [36], which
this section will focus on. Fig. 1.6 outlines this approach. Crary’s idea is to embed
everything into a meta-logical framework and thus be able to machine-check all safety
critical components.

Machine
Configuration M

TALT rules

Trusted Code Base

 TALT Types T Defensive
Machine

Twelf
Checker

TALT Soundness Proof
(Preservation, Progress)

Twelf
Checker

Soundness Theorem
If |- M:T then

M does not get stuck.

Twelf Metalogic

TALT derivation

Machine

OK / No

OK / No

Figure 1.6: Typed Assembly Language (TALT)

Programming Language

Crary [35] formalises TALT (TAL Two) in the Twelf meta logic. TALT has similar
instructions like TAL, but supports arbitrary level of indirection for passing arguments.
The semantics of TALT is given by a defensive operational machine. Such a machine
gets stuck, when an unsafe state is reached.

Safety Policy

The safety policy is memory safety and is built into the semantics, which is completely
independent of the type system.

12

1.3 Related Work

Safety Logic

Like in other TALs the type system plays the role of the safety logic. This type sys-
tem consists of 13 different judgments, each giving constraints on different parts of the
machine state: heap, program code, register files, values, and much more. For exam-
ple judgement Ψ, r1 : int, r2 : box(int), r3 : code(r1 : int, r2 : int) ` C states that code
C is safe to execute if register r1 contains an integer, register r2 a pointer to an inte-
ger and register r3 a return address to code that is safe to execute when registers r1
and r2 contain integers. Note that TALT, as other TALs, types states and instructions
simultaneously. Most of the flexibility of this type system is provided by its subtyp-
ing rules. It provides the facility for introducing or eliminating existential, universal,
union, intersection or recursive types. All rules are formalised in the Twelf meta logic
and a lot of specialised rules are derived therein. Soundness is guaranteed by machine-
checkable proofs for progress, type preservation and a simulation theorem between the
typed (static) and untyped (dynamic) semantics. These theorems look very similar to
FTAL, but a major difference is that TALT is not syntax directed. Type checking is not
even decidable, hence a code producer has to provide a typing derivation as proof. This
derivation can then be efficiently checked by Twelf’s proof checker.

Conclusion

TALT provides an elegant and expressive type system for assembly code. The entire
safety argument is formalised and supported with machine-checkable proofs. The safety
considerations even include a theorem stating that garbage collection preserves type-
ability of states. The downside is, that TALT requires typing derivations and it remains
unclear where these should come from. A compiler for an appropriate source language
is missing. The Twelf type checker is also larger than the simple LF type checker used
by Appel [31].

13

Chapter 1 Introduction

1.3.5 Mobile Resource Guarantees

Mobile Resource Guarantees [81] aims at certifying bounds on memory consumption
of programs. Resource-aware typing rules [52] for a functional source language ensure
that programs only consume linearly many heap cells. The semantics of this functional
language is defined operationally with an explicit free-list, which indicates free memory
cells in the heap.

Whenever a program allocates new data, for example when a new datatype constructor
is used, the semantics removes entries from the free-list. If a program releases memory,
as in a destructive pattern match, the free-list grows. The amount of required and
released memory is bounded by a linear expression on the input size, which is part
of the typing information and derivable by a type inference algorithm. For example
x : L(L(B, 1), 2), 3 ` e : L(B, 4), 5 is a typing judgement of the system. It says that if we
evaluate e in a context where x is bound to a list [l1, l2, ..., lm], where each li is a list of
booleans, then a free-list of length 3 + 2m + 1

∑m
i=1 |li| ensures that execution does not

get stuck. After a successful execution with result l, the free-list is guaranteed to have
length 5 + 4|l|. If e is the body of a function with argument x a programmer specifies
input and output types without resource numbers, e.g. f : L(LB) −→ LB. The type
inference algorithm then finds out proper resource numbers. It does so by solving linear
inequalities that occur in the syntax directed typing rules. The type system only works
for first order functional programs with restrictions on variable sharing, but is efficient
on these. MRG supports proof carrying code in its low level architecture. Typeable
source programs can be compiled to a bytecode like low level language such that the
type derivation can be turned into a low level safety proof.

Resource
Types

Linear
Functional
Program

Bytecode e Spec P Proof of e : P

Type Inference

Certifying
Compiler Program Logic

Resource
Type System

Checker

Safety theorem
eonly terminates in P

accept

Trusted Code Base

Figure 1.7: Mobile Resource Guarantees

14

1.3 Related Work

Programming Language

The target language for MRG is Grail [19], which is a compromise between a functional
language and bytecode like low level code. Assignments are simulated with Let expres-
sions and jumps are made obsolete by turning each code block into continuation passing
style. That is, jumps only occur at the end of code blocks in form of function calls. The
semantics of Grail is defined with big step rules (natural semantics [72]), which closely
match the semantics rules of the source language. A cost model makes the relationship
to execution on a virtual machine, which is typically defined via small step rules, explicit.

Safety Policy

The safety policy for Grail is encoded into a program specification, which is a logical
formula relating initial with final states. Parts of this specification define how many re-
sources the program consumed until the final state has been reached. The specification
can be automatically generated from the resource types of the source program.

Safety Logic

The safety logic comes in form of a program logic [10, 18] for Grail, whose rules closely
reflect the typing rules of the source language. This makes it possible to translate a typ-
ing derivation into a safety proof. The logic is embedded into Isabelle/HOL in form of a
shallow embedding. Assertions are written in VDM style [53], that is variables can refer
to the current or initial state. Unlike Hoare Logic [51], where pre and postconditions
are usually separated, the logic specifies the behaviour of programs in a single formula.

Conclusion

Certifying memory bounds is difficult to automate, as it involves reasoning not only
on types but also on values and arithmetic expressions. In that respect MRG goes far
beyond type safety. The restriction to programs with linear memory consumption is
not problematic in practice. In particular not for programs running on devices with
very limited memory (smart cards, pdas, phones). The sharing constraints on variables
seem to be more prohibitive. There are relaxations of these restrictions[11], but these
introduce further complications for the type inference. Another question is what kind

15

Chapter 1 Introduction

of safety guarantee MRG gives for non-terminating programs. The bytecode logic only
gives partial correctness, thus non-terminating programs e satisfy every specification P .

1.3.6 Open Verifier

Instead of having a highly engineered and thus complex VCG, the Open Verifier approach
[84] only maintains a small trusted core as shown in Fig. 1.8. This core consists of two
subsystems, the decoder and the director.

SAL
translator

Extension

code

Trusted
Core

CheckerFixpoint
Module

Director reject

ok

accept

Decoder
Post

Cond.

prf „P“

prf „[E1,...,Em]
 covers [D 1,...,Dn]“

 next locinvs [D 1,...,Dn]

safety condition P

abstract
locinvs [E1,...,Em]

SAL
program C

locinv I

 Memory
Safety FOL

safety theorem:
C runs without error

defensive
interpreter

Figure 1.8: Open Verifier

The decoder maintains the abstract semantics of machine code in form of a strongest
postcondition generator. It takes first order formulas in a specific format and computes
the strongest postcondition and a safety condition for the current instruction. Since each
formula contains a reference to the program counter it is only valid at a specific location
in the program an is thus called local invariant or locinv. The general idea is to verify a
safety policy SP by finding a set of locinvs Ik, such that the following conditions hold:

1) I0 −→
∨

k=1,...,n

Ik 2) for each k = 1, ..., n

a) Ik −→ SP
b) Post Ik −→

∨
j=1,...,n

Ij

A fix point module built into the core tries to find a disjunction of locinvs that covers
all reachable states (2b) and implies the safety policy (2a). It starts with a disjunction
that only contains I0 and continues adding new postconditions until the collection of

16

1.3 Related Work

locinvs becomes stable. Normally this process does not terminate, as the postcondi-
tion operator may never stop introducing new formulas. Here the extension comes into
play. In order to check (2b) the extension weakens the exact postcondition Post Ik,
for example, by abstracting values to their types. Instead of adding the exact postcon-
dition to the collection, the fix point module adds the weakened formula and checks
that it is indeed a weakening. To achieve this the extension has to produce a proof
of Post Ik → Ext (Post Ik)), which is then checked by the trusted core. The whole
process stops when for all k = 1, ..., n there is a j = 1, ..., n, such that Ext(Post(Ik)) = Ij .

Programming Language

Like Touchstone PCC [68] the Open Verifier works with SAL, the RISC-like assembly
language discussed in §1.3.1. There are also instantiations of Open Verifier that support
Cool, a mini object oriented language, or a variant of Typed assembly language (TAL).
In both cases the languages are internally translated to SAL, the language the postcon-
dition module understands.

Safety Policy

Similar to Touchstone PCC the Safety Policy in the Open Verifier architecture is built
into the operational semantics. In case of a violation of the safety policy, which is also
memory safety in [30], the program counter is set to error. Once programs reach this
position they cannot escape from there. Hence, the safety policy SP is a predicate that
checks rpc 6= error. In addition, it also checks that code does not get overwritten, so
that the post condition generator can determine the current instruction by extracting
the program counter from the input locinv.

Safety Logic

The logic in which locinvs are expressed in is quite similar to the first order logic
used in Touchstone. The format of formulas is fixed to a triple (Γ, R, Ψ), where Γ
maps free variables to their types, R contains expressions for registers of the form
rj = ej (ej is an arithmetic expression with variables bound in Γ), and Ψ is collec-
tion of assumptions h : φ with names h. Encoded in the logic this format stands for
∃ x1 : τ1, ..., xm : τm ∈ Γ. (

∧
r=e ∈ R

r = e ∧
∧

h:φ ∈ Ψ

φ). Note that neither the ex-

17

Chapter 1 Introduction

pressions e nor the formulas φ contain register symbols r. This greatly simplifies the
computation of postconditions that would involve introducing new existentials otherwise.

Conclusion

The Open Verifier architecture is an adjustment of Touchstone PCC towards FPCC. The
trusted core is a lot smaller than in Touchstone PCC, as it involves only the checker, the
fix point module and the postcondition operator as well as the safety logic and policy.
Parts of the Touchstone VCG have moved to the extension, but the core functional-
ity, namely computation of weakest preconditions and adding safety conditions remains
trusted. It is unclear if these parts are covered by machine-checked proofs. It is the
extension which gives the Open Verifier its flexibility. Like in FPCC each extension may
use its own type system or logic to prove the weakening of locinvs. In extreme cases the
producer may send another extension for each piece of code. That is instead of proofs,
provers are transmitted. On the other hand one may also use default provers, maybe
verified in meta-theorems as extensions. This opens a great amount of flexibility, just
as FPCC does. The difference between FPCC and the Open Verifier is that the latter
contains a fixed trusted core providing program analysis functionality. In pure FPCC
these components are missing and if they would be employed their transformations would
need to be justified in the transmitted proofs. In this respect the Open Verifier is more
efficient, but also a bit less flexible.

1.4 Our work

The VeryPCC project [4] aims at formalising and verifying PCC in a theorem prover.
As we pointed out in the previous chapters, the main factors for PCC are the target
programming language and its semantics, the safety policy and the safety logic. All
these factors determine the work of the VCG, which transforms program code to proof
obligations ensuring safety.
In the early PCC systems [68] (§1.3.1) these factors are hardwired into the VCG, which
leads to a highly efficient, but large, complex, and rather inflexible system. Since the
VCG must be trusted, large and complex handwritten code is certainly not desirable.
Eliminating the VCG, as purely foundational PCC [6] (§1.3.2) proposes, typically leads
to long and complex safety proofs. Foundational proofs are rather long, because work
done by the VCG, namely analysing the control flow and symbolically approximating the
reachable states, becomes part of the proof. They are complex, because proving safety
directly on the semantics usually involves higher order reasoning (transitive closure of

18

1.4 Our work

transition relation) and induction.
An alternative is to gain a trustworthy VCG by formalising it and verifying it inside
a theorem prover. About the same time the Open Verifier [30] (§1.3.6) came up, we
realized that this is feasible, because one can isolate a VCG’s trusted core. By factoring
out all parts that depend on the underlying machine semantics, safety policy and safety
logic as independent parameters, one can keep the VCG compact and clear. This way
the VCG not only becomes less complex, but also generic, in the sense that it can be
instantiated to various PCC setups.
We propose an Isabelle/HOL [74] framework for PCC [98], whose main contribution is a
generic, executable, and verified VCG. This VCG views programs as annotated control
flow graphs and constructs verification conditions just as Floyd [47] proposed in the early
days. That is, every annotation has to imply the weakest precondition [47, 42] for each
successor annotation. This ensures that all annotations hold at runtime, provided the
initial one did. Although annotations are important for verifying cyclic code, they are
just a supportive concept.
Our primary concern is the validity of the safety policy. Unlike annotations, the safety
policy is fixed for all programs and chosen by the consumer. Our framework expects
the safety policy as a function (safeF), which yields a formula for a given program and
position therein. This so-called safety formula expresses the conditions we want to hold,
whenever this position is reached at runtime. By conjoining safety formulas with anno-
tations we construct verification conditions in Floyd’s fashion. These guarantee validity
of both: annotations and safety policy. Apart from that, representing a safety policy in
this way also works nicely for non-deterministic programs.
Defensive machines, which are an alternative to express safety policies, typically have
problems with non-determinism. Programs that can reach states, where only some tran-
sitions are blocked, are not stuck and would thus be regarded safe. For the construction
of verification conditions, two functions, also taken as parameters, play a major role. One
that approximates the control flow (succsF) and one that computes weakest precondi-
tions (wpF). Given a position, we expect succsF to list all possible successor positions
together with so-called branch conditions. These are formulas that describe the situa-
tions when a particular successor is accessible. The second function, wpF, takes a control
flow edge and a postcondition as input. It yields a formula that ensures that when we
move along this edge at runtime, we end up in a state satisfying the postcondition.
Our framework makes all these expectations about the parameter functions explicit in
form of HOL formulas expressing requirements. When one instantiates our framework
by giving definitions for the parameter functions, one also has to prove that these re-
quirements are satisfied. Relying on the requirements we prove our generic VCG correct
and relatively complete.
Correctness ensures that verification conditions provable in the safety logic guarantee
the safety policy. Relative completeness is less important, but desirable. It says that

19

Chapter 1 Introduction

when the annotations and safety formulas make up valid Hoare triples [51], then the
verification conditions are tautologies. This means they are provable, when the safety
logic can prove valid formulas.
Our VCG is formalised in an executable style. If the parameters are also executable,
one can use Isabelle/HOL’s code generator [17] to obtain a runnable ML prototype.
We have demonstrated this for a simple assembly language using Isabelle/HOL as safety
logic [98, 96] and will do so for Jinja (§8). The expressiveness of HOL enables us to treat
safety policies beyond the much researched type safety. We have chosen a safety policy
that prohibits arithmetic overflow, a risk many programming languages, such as Java
[49, 88], silently ignore. However, the instantiations in our early publications [98, 96]
mainly serve as proofs of concept. They show that our framework has satisfiable require-
ments and can be instantiated with reasonable effort.

With Jinja PCC [97, 95] we have an instantiation that is much more realistic. For

J2Jin
Interval

Analyzer
Bytecode

Verifier

Java classfiles

Jinja
bytecode

Interval
annotations

 Type
branch

conditions

verification condition

Safety Logic

VCGsuccsF

wpF sF

Isabelle/HOL

anFVirtual
Machine

Semantics

HOL
formula

HOL Proof
Checker

Isabelle/HOL
Simplifier / Tactics

|- |=

Safety
Policy

requirements

correctness &
completeness

theorems

OK /
reject

HOL axioms

Trusted

Jinja proof lemmas

proof

proof

proof

Opt
opt. vc

Figure 1.9: Jinja PCC

Jinja bytecode we already had a formalised and verified bytecode verifier (BCV) and
virtual machine available [55]. As Fig. 1.9 illustrates both take Jinja bytecode, which
we obtain from Java classfiles using a converter called j2jin (§3.3), as input. The BCV
computes types for registers and the operand stack. Using these types together with

20

1.4 Our work

interval annotations we obtain from an untrusted analyser [95], our instantiated VCG
constructs verification condition against arithmetic overflow.
The verification condition is an expression in an assertion language for bytecode [97].
A downside of constructing generic verification conditions is that these tend to be quite
verbose. Knowing how formulas in the safety logic look like, what invariants are guar-
anteed by the system, and being able to identify sub formulas that are irrelevant for a
particular safety policy, opens much potential for optimisations. To some extent one can
optimise the instantiated VCG by defining sophisticated parameter functions. However,
this usually makes proving the requirements trickier. An alternative is to analyse the
resulting verification condition and postprocess it with an optimiser. Of course one has
to justify this with a proof that the optimiser preserves provability of a formula. In the
case of Jinja, we have done so for simple optimisations, like folding constant expressions
or cutting out obviously redundant subformulas.
We have formalised the provability judgement ` for our safety logic such that it turns
assertions A into propositions ` A in HOL. Since the verification condition vc is also an
assertion, we can use Isabelle/HOL to prove it. We give the HOL proposition ` vc to
Isabelle’s simplifier and decision procedures and ask Isabelle to record proof objects. Us-
ing Isabelle’s proof checker we can simulate the consumer’s job of validating proofs. All
the components inside the dot-framed area of Fig. 1.9 are formalised in Isabelle/HOL.
Most important is the VCG, for which we have correctness and completeness proofs.
This makes the Jinja Virtual Machine and the Isabelle proof checker the only remain-
ing trusted components. For the Jinja VM one has to believe that it behaves on Java
programs converted by j2jin just as a real Java VM would behave on this program.
Note that such a border between formal and real world exists in all verification projects.
Also, we cannot avoid trusting Isabelle/HOL’s proof checker. We need it to check safety
proofs of individual programs as well as the proofs for our PCC system.

Programming Language

Jinja bytecode is a down-sized version of Java bytecode. Although it only has a few in-
structions, it supports the core object oriented features like object creation, inheritance,
dynamic method call and exceptions. Missing are static methods and fields, non-default
constructors and arrays. From Java’s primitive datatypes Jinja only supports booleans,
integers and references.

21

Chapter 1 Introduction

Safety Policy

Since Isabelle/HOL has powerful decision procedures for linear arithmetic [29] and type
safety is already handled by the bytecode verifier [54], we have chosen to instantiate a
safety policy for arithmetic overflow. In general arithmetic properties cannot be decided,
but for many programs interval annotations suffice to prove this policy automatically.

Safety Logic

A first order expression language [97], which we designed for modelling Jinja Virtual
Machine states, serves as assertion logic. We use it to express safety policies, annotations
and verification conditions. Judgments for provability and validity relate assertions to
HOL predicates on machine states. This enables us to use Isabelle/HOL as proof engine
for safety proofs. Other tools could also be used for this purpose, as long as they emit
HOL proofs our proof checker understands.

1.5 Outline

In §2 we describe our framework for PCC, which we instantiate in the following chapters.
Chapter §3 formalises the syntax and semantics of Jinja bytecode and briefly discusses
how we translate classfiles into that format. Then §4 introduces a formal language and
semantics for annotating Jinja bytecode and expressing safety policies and verification
conditions. Having all these factors set, chapter §5 defines the main parameters for
our VCG: the control flow function and abstract semantics. In chapter §6 we define a
safety policy against arithmetic overflow, a wellformedness checker and all the remaining
parameters. This chapter also instantiates our VCG and proves that the instantiated
parameters satisfy the requirements. Chapter §7 shows how different program analysers
can be integrated and demonstrates this with our bytecode verifier and interval analyser.
Finally §8 shows the system from a user’s perspective. We demonstrate how our system
simulates the different tasks PCC has for code producer and consumer. Throughout this
thesis we use Isabelle/HOL as our formal meta-language. Reader’s not familiar with this
notation may start with the short introduction in §A.1. For more details we recommend
the tutorial [74].

22

2 Abstract Framework

We introduce a generic framework for proof carrying code, developed and
mechanically verified in Isabelle/HOL. The framework defines and verifies a
verification condition generator with minimal assumptions on the underlying
programming language, safety policy, and safety logic.

PCC systems mainly depend on three factors: programming language, safety policy, and
safety logic. The programming language defines syntax and semantics of programs, the
safety policy specifies the conditions programs must satisfy at runtime, and the safety
logic provides a formal notation and a means for proving these conditions.

In classical PCC systems [68] the VCG is a major component and is affected most
by these factors. Although VCGs for various PCC systems differ in detail, they all
incorporate the same principle. Floyd’s [47] ground breaking idea to represent concrete
states as logical formulas and state transitions via formula manipulations is the essence.
Hoare [51] and Dijkstra [42] later on refined this idea to structured languages.

In our formalisation of PCC we capture this essence in form of an abstract framework
for a VCG. As shown in Fig. 2.1 it is the job of the VCG to reduce programs to logical
formulas that are provable only if the program is safe.

In our framework we define a generic VCG, which one can instantiate to different pro-
gramming languages, safety policies and logics by adjusting its parameters. An instan-
tiation has to provide definitions for the parameter types and functions. Our framework
only declares these elements and makes requirements on them.

Based on these requirements the framework provides abstract proofs of soundness and
relative completeness for the VCG, which automatically carries over to all of its instan-
tiations. The instantiation only has to provide proofs that the parameters it defines
satisfy the framework’s requirements.

As shown in Fig. 2.2, our framework consists of various Isabelle/HOL theories. Each
theory is a box and arrows point at its parents.

23

Chapter 2 Abstract Framework

annotated
control-flow
graph

logical
formulaVCG

Safety Logic Safety PolicyProg. Sem.

 function signatures
 requirements

p
p'

B

A

A'

Figure 2.1: VCG - what it does and what it depends on.

2.1 Program Semantics

The first important factor of any PCC system is the programming language. Since
safety properties typically only concern the execution of programs, our framework does
not care about program syntax. We model this by using a type variable ′prog to stand
for program representations Π. To model execution we use state transition systems,
which we formalise as an Isabelle/HOL locale called Semantics.

locale Semantics =
fixes initS :: ′prog ⇒ (′pos × ′mem) set
fixes effS :: ′prog ⇒ ((′pos × ′mem) × (′pos × ′mem)) set

Given some program Π we identify the set of initial states with initS Π. The transition
relation effS Π pairs each state with its immediate successors. This is what the literature
calls a small step semantics. It is commonly used in safety analysis, where not only initial
and final states matter, but in particular intermediate ones. We model states as tuples

24

2.1 Program Semantics

Semantics Safety Policy Safety Logic

CFG

AbsSem

VCG

VCG
Correctness

VCG
Completeness

VCG
Invariant

Figure 2.2: Isabelle/HOL theories of our framework

(p,m) of type ′pos × ′mem , where p denotes the current position in the control flow
graph and m the machine’s memory, e.g. heap, stack and registers. Again, these are type
variables, allowing one to instantiate control flow positions and memory as one likes. For
our notion of program safety (§2.3) only reachable states matter. These are states that
occur in some execution sequence starting from an initial state. Using Isabelle/HOL’s
feature of inductive definitions we can formalise the set of reachable states as follows.
First, we define the set ReachFromIns R F I to cover F and all elements reachable from
there by taking an arbitrary number of R transitions staying inside I.

ReachFromIns :: (′a × ′a) set ⇒ ′a set ⇒ ′a set ⇒ ′a set

a ∈ F
a ∈ ReachFromIns R F I

F
a ∈ ReachFromIns R F I (a, b) ∈ R a ∈ I b ∈ I

b ∈ ReachFromIns R F I
R

In Fig. 2.3 we illustrate this reachability set. The small and shaded triangle bounds
the set of initial states F. All states within the outer triangle lie inside I. The numbered

25

Chapter 2 Abstract Framework

F

I

2

5

6 7

8

3
4

1

Figure 2.3: Reachability

circles represent states and the arrows R. In the depicted situation ReachFromIns R F
I would be the set of states S = {1 ,2 ,3 ,4 ,5}. The state 1 lies in S because it belongs
to F, although not to I. States such as 8 satisfy I, but are not reachable from F. State
7 is reachable from F, but only if we temporarily move to state 6 which lies outside I.
This is not permitted and thus, neither 6 nor 7 belong to S.

Some further definitions don’t care in who is in or out of I. In ReachableFrom R F we
disable the set of insiders I by setting it to {s. True}, the set of all states. For our
example in Fig. 2.3 this means ReachableFrom R F contains all states, except 8.

ReachableFrom :: (′a × ′a) set ⇒ ′a set ⇒ ′a set
ReachableFrom R F = ReachFromIns R F {s. True}

Using this construction, we now define Reachables Π, the set of states a program Π
reaches.

Reachables :: ′prog ⇒ (′pos × ′mem) set
Reachables Π = ReachableFrom (effS Π) (initS Π)

From this definition we can derive a conversion lemma using transitive reflexive closure.

Lemma 2.1 (Semantics) The set Reachables Π contains all states reachable from an initial state
with an arbitrary number of state transitions.

Reachables Π = {s. ∃ s0. s0 ∈ (initS Π) ∧ (s0,s) ∈ (effS Π)∗ }

Note that we have written (Semantics) behind Lemma 2.1. This indicates that the

26

2.2 Safety Logic

lemma is proven inside the locale Semantics. It depends on the parameters initS and
effS and all of the locale’s requirements (none in this case).

2.2 Safety Logic

To specify and prove properties about programs we use a safety logic.

locale SafetyLogic =
fixes xTy, xFy:: ′form
fixes x

∧
y::

′form list ⇒ ′form
fixes x⇒y:: ′form ⇒ ′form ⇒ ′form

fixes -,- |= - :: ′prog ⇒ (′pos × ′mem) ⇒ ′form ⇒ bool
fixes - ` -:: ′prog ⇒ ′form ⇒ bool

Every structure having constants for the truth values xTy and xFy, operators for conjunc-
tion x

∧
y and implication x⇒y, judgments for validity |= and provability ` of formulas

can be employed as a safety logic as long as it respects the requirements below. These
requirements only concern the semantics (|=) of the logical connectives. How formulas
(′form) or their proofs (`) look like is left open to the instantiator.
To distinguish the symbols we use for the safety logic from our meta-logic (Isabelle/HOL),
we frame the former with little corners x--y. Please do not confuse those with the floor
symbols b-c we use for the option datatype. For better readability we sometimes use
the infix x∧y instead of the prefix x

∧
y. For example [A] x∧y [B] or simply A x∧y B are just

alternative writings for x

∧
y [A,B]. We also write the logical judgments in infix notation.

With Π,s |= f we express that for program Π the state s is a model of formula f. The
notation Π ` f means that for program Π the formula f is derivable in the safety logic.

Requirement 2.1 Π,s |= xTy

Requirement 2.2 ¬ (Π,s |= xFy)

Requirement 2.3 Π,s |= x

∧
y Fs = (∀ f ∈set Fs. Π,s |= f)

Requirement 2.4 Π,s |= (f x⇒y f ′) −→ Π,s |= f −→ Π,s |= f ′

2.3 Safety Policy

The safety policy expresses what conditions we expect from programs to be safe. Safety
conditions may vary from program position to program position. Our framework expects

27

Chapter 2 Abstract Framework

safety conditions to be expressed via the safety logic.
That is, we represent the safety policy as a function safeF, that yields a safety formula for
each program position. In locale SafetyPolicy, which extends Semantics and SafetyLogic,
we declare this function safeF as a parameter.
What safety actually means only becomes clear after one instantiates SafetyPolicy with
a concrete definition for safeF.

locale SafetyPolicy = Semantics + SafetyLogic +
fixes safeF :: ′prog ⇒ ′pos ⇒ ′form

We call a program Π safe, i.e. isSafe Π, when all its reachable states (p,m) satisfy the
safety formula at p, i.e. Π,(p,m) |= safeF Π p.

isSafe:: ′prog ⇒ bool
isSafe Π = ∀ (p,m) ∈ Reachables Π. Π,(p,m) |= safeF Π p

2.4 Annotated Control Flow Graphs

The VCG we define in this chapter views programs as annotated control flow graphs.
Such graphs consist of positions, edges and annotations. Fig. 2.4 shows an example.

p0

p2 p1

B01B02

B12

A
0

B20

Example program Πx

p0 : if (x <= 0) {
p1 : x = y + 2; }
p2 : x = x - 2;

goto p0;

Figure 2.4: Annotated control flow graph.

We write domC Π for a program Π’s code domain, which is a list of all its positions.
Execution is expected to start at ipc Π, the initial position. In the example Πx shown in
Fig. 2.4, we have domC Πx = [p0,p1,p2] and ipc Πx = p0. Note that the locale does not
define this functionality, as it just declares domC and ipc. However, the requirements
we state in further locales will constrain our parameter functions such that they behave
as expected.

28

2.4 Annotated Control Flow Graphs

locale CFG = SafetyPolicy +
fixes domC :: ′prog ⇒ ′pos list
fixes ipc :: ′prog ⇒ ′pos
fixes succsF :: ′prog ⇒ ′pos ⇒ (′pos × ′form) list
fixes anF :: ′prog ⇒ ′pos ⇒ ′form option
fixes wf :: ′prog ⇒ bool

Function succsF yields the edges of the control flow graph. Given a position p in a
program Π the expression succsF Π p yields a list of pairs (p ′,B) where p ′ is a possible
successor of p and B is the branch condition for the edge from p to p ′. The branch con-
dition B is a formula in the safety logic that describes the situations when p ′ is accessible
from p. For example in Fig. 2.4 Πx jumps from p0 to p1 under condition B01, and from
p0 to p2 under condition B02. Hence, we have succsF Πx p0 = [(p1,B01),(p2,B02)].

With anF we access the annotations; anF Π p returns bAc if position p in Π is annotated
with A, otherwise None.
Sometimes it is more convenient to avoid the option type. With aF we introduce a
variation of anF giving xTy for non-annotated positions and the annotation otherwise.

aF :: ′prog ⇒ ′pos ⇒ ′form
aF Π p = (case anF Π p of None ⇒ xTy | bAc ⇒ A)

For the list of all annotated positions we write domA Π.

domA :: ′prog ⇒ ′pos list
domA Π = [p∈ domC Π. anF Π p 6= None]

Examples taken from Fig. 2.4 illustrate how these annotation functions work: domA Πx

= [p0], anF Πx p0 = bA0c, anF Πx p1 = None, aF Πx p0 = A0 and aF Πx p1 = xTy.

In the following we will often conjoin safety formulas with annotations, e.g. safeF Π p
x∧y aF Π p. So, why don’t we just use one function? The reason is that annotations are
different for every program and are provided by the code producer. The safety formulas
are provided by the consumer, who expresses with them the desired safety properties.
Typically safeF is defined such that the formula safeF Π p only depends on the kind of
instruction we find a position p in Π. The annotations are not local in that respect. In
order to construct them the code producer typically has to take the entire arrangement
of instructions in Π into account.

Finally, locale CFG introduces a wellformedness checker wf for programs. What well-
formedness means is left open to the instantiator, except for some basic properties our
framework demands. The most important is Requirement 2.5, which ensures that pro-
grams are sufficiently annotated. Our VCG requires every cycle in the control flow graph
to have at least one annotation.

29

Chapter 2 Abstract Framework

For the completeness proofs wf also has to check that ipc and succsF are closed under
domC. Additional checks may be integrated to any instantiation of wf. Since wf is a
premise of many requirements this may help to conduct the instantiation proofs. How-
ever, one should always keep in mind that wf is only meant to check simple properties.
A code consumer must be able to run it efficiently. Please note that from now on we
implicitly assume that we are dealing with wellformed programs.

Requirement 2.5 wf Π −→ enoughAn Π

The predicate enoughAn Π, which we define below, checks that every control flow cycle
in Π has at least one annotation. To define cycles, we first introduce the concept of
control flow paths.

paths :: (′pos ⇒ (′pos × ′form) list) ⇒ (′pos list) set

(p ′, B) ∈ set (sc p)
[p, p ′] ∈ paths sc

Pinit
l @ [p] ∈ paths sc (p ′, B) ∈ set (sc p)

l @ [p] @ [p ′] ∈ paths sc
Pstep

A cycle is a control flow path, where the first and the last position coincide.

isCycle :: ′prog ⇒ (′pos list) ⇒ bool
isCycle Π ps = ((hd ps = last ps) ∧ ps ∈ paths (succsF Π))

Now, we are ready to define the predicate enoughAn from above.

enoughAn :: ′prog ⇒ bool
enoughAn Π = (∀ ps. isCycle Π ps −→ (∃ p ∈ set ps. anF Π p 6= None))

Sometimes we need further constraints on annotations. Above all they should be cor-
rect to be of any use for verification. We say a program Π is correctly annotated, i.e.
correctAn Π, if all annotations hold at runtime.

correctAn :: ′prog ⇒ bool
correctAn Π = ∀ s ∈ Reachables Π. Π,s |= aF Π (fst s)

30

2.5 Abstract Semantics

2.5 Abstract Semantics

For verification purposes we work with an abstract semantics. It abstracts states with
formulas and simulates transitions by manipulating these.

locale AbsSem = CFG +
fixes initF :: ′prog ⇒ ′form
fixes wpF :: ′prog ⇒ ′pos ⇒ ′pos ⇒ ′form ⇒ ′form

Function initF Π can be seen as an abstract notion of initS. It abstractly models the set
of initial states. Note that the letter F behind an identifier indicates that it belongs to
the formal world, whereas S suggests the semantic side.

The weakest precondition operator wpF is the abstract counterpart of effS. The formula
that wpF Π p p ′ Q yields is expected to characterise those states (p,m) that have suc-
cessor states (p ′,m ′) satisfying Q. Note that we associate effects with edges, although
instructions are sitting at nodes. This is because one instruction may behave differ-
ently. For example, consider exceptional versus normal execution. Having p and p ′ as
arguments help wpF to figure out what effect must be simulated.

For our correctness and completeness proofs we require initial states to have the initial
program counter determined by the control flow function ipc.

Requirement 2.6 wf Π ∧ Π,s |= (initF Π) −→ fst s = ipc Π

2.6 Generic Verification Conditions

In this section we define a generic VCG, the core of our framework. We model the VCG
as a function vcg :: ′prog ⇒ ′form and construct verification conditions out of so called
inductive safety formulas isafeF Π p, which we generate individually for each position p
in a program Π. We call a state (p,m) inductively safe if it satisfies the inductive safety
formula for p, i.e., Π,(p,m) |= isafeF Π p.

We define vcg and isafeF in a locale called VCG, but need to use external functions
vcG and isafe for this purpose. This is because locales in Isabelle/HOL do not (yet)
support recursive definitions. Since the external functions vcG and isafe take all locale
parameters as additional arguments their definitions are rather indigestible.

In addition, the recursive definition of isafe maintains a list of non-visited positions and
terminates with xFy when this list becomes empty or a position is visited twice. For
wellformed programs this is never the case, hence we are able to derive a more readable
definition inside the locale. In this section, we only show the derived equations for vcg
and isafeF. The definitions for vcG and isafe can be found in the appendix §A.2.1.

31

Chapter 2 Abstract Framework

locale VCG = AbsSem +

isafeF :: ′prog ⇒ ′pos ⇒ ′form
isafeF Π p = isafe(domC Π,Π,anF ,p,xFy, x

∧
y,x⇒y,safeF ,succsF ,wpF)

vcg :: ′prog ⇒ ′form
vcg Π = vcG x

∧
y x⇒y xFy ipc initF safeF succsF wpF domC domA anF Π

In Fig. 2.5 we show the derived definition of isafeF Π p. The wellformedness check wf
Π ensures that every cycle has at least one annotation; otherwise the recursion of isafeF
would not terminate.

wf Π −→
isafeF Π p = (if (p ∈ set (domC Π))
then [safeF Π p] x∧y

(case (anF Π p)
of None ⇒ map (λ (p ′,B). B x⇒y (wpF Π p p ′ (isafeF Π p ′)))

(succsF Π p)
| bAc ⇒ [A])

else xFy)

Figure 2.5: Construction of inductive safety formulas

When p lies outside the code domain domC Π we must never reach it at runtime.
We express this formally by returning the unsatisfiable formula xFy in this case. For
positions p within the code domain the inductive safety formula guarantees the safety
formula safeF Π p. In addition, if there is an annotation A at p, we conjoin the safety
formula with A. For example in Πx from Fig. 2.4, we have the annotation A0 at p0.
Hence, we obtain this inductive safety formula:

isafeF Πx p0 = [safeF Πx p0] x∧y [A0]

If p is not annotated, we take all successor positions p ′ together with their branch con-
ditions B and recursively compute the inductive safety formulas isafeF Π p ′. Using the
wpF operator we construct a precondition wpF Π p p ′ (isafeF Π p ′). If this precon-
dition holds for a state (p,m) with some successor (p ′,m ′), then isafeF Π p ′ holds for
(p ′,m ′). By constructing implications of the form B x⇒y (wpF Π p p ′ (isafeF Π p ′)),
we design the inductive safety formula isafeF Π p such that all states satisfying the
branch condition B for a particular successor p ′ also have to satisfy the precondition
above. These implications are constructed for all pairs (p ′,B) we get from succsF Π p.
For example the positions p1 and p2 are not annotated in Πx. Below are their inductive

32

2.6 Generic Verification Conditions

safety formulas, where safeF, wpF, branch conditions and annotations are not expanded.
This can only be done after instantiating the parameter functions.

isafeF Πx p1 = [safeF Πx p1] x∧y
[B12 x⇒y wpF Πx p1 p2 ([safeF Πx p2] x∧y [B20 x⇒y wpF Πx p2 p0 ([safeF Πx p0] x∧y [A0])])]

isafeF Πx p2 = [safeF Πx p2] x∧y [B20 x⇒y wpF Πx p2 p0 ([safeF Πx p0] x∧y [A0])]

Executing a program Π with an inductively safe state (p,m) produces a trace of induc-
tively safe states until we reach the next annotated position p ′. The state (p ′,m ′) in
which we reach this position is safe and satisfies the annotation. After this state, the
execution could become unsafe. However, this does not happen if all successor states
of (p ′,m ′) are again inductively safe. This observation guides the construction of the
verification condition vcg Π, which we show in Fig. 2.6.

wf Π −→
vcg Π = [initF Π x⇒y (isafeF Π (ipc Π))] x∧y (

map (λpa. x

∧
y (map (λ(p ′,B). ([isafeF Π pa] x∧y [B]) x⇒y

wpF Π pa p ′ (isafeF Π p ′))
(succsF Π pa)))

[pa∈ domC Π. anF Π pa 6= None])

Figure 2.6: Verification Condition Generator

The verification condition vcg Π demands two things: First, all initial states must satisfy
the first inductive safety formula isafeF Π (ipc Π). Second, for every annotated position
pa the inductive safety formula isafeF Π pa and the branch condition B for all successors
p ′ of pa must guarantee wpF Π pa p ′ (isafeF Π p ′). This ensures that the transitions
out of annotated positions lead to inductively safe successor states. Transitions out of
non-annotated positions are automatically covered by the recursion in isafeF. Hence, it
suffices to verify transitions out of annotated positions. For example vcg Πx would have
the following pattern:

vcg Πx = [initF Πx x⇒y (isafeF Πx p0)] x∧y ([
[([isafeF Πx p0] x∧y [B01]) x⇒y wpF Πx p0 p1 (isafeF Πx p1)] x∧y
[([isafeF Πx p0] x∧y [B02]) x⇒y wpF Πx p0 p2 (isafeF Πx p2)]])

The first conjunct expresses that initial states are inductively safe. Note that ipc Πx =
p0. Since p0 has two successors p1 and p2, which are accessible if B01 resp. B02 hold,
we have two further conjuncts. One requires us to show that all states satisfying the
inductive safety formula for p0 and the branch condition B01 can only have successor
states that satisfy the inductive safety formula for p1. The other is analogous for p2.
Note that a verification condition contains as many conjuncts of the second form as

33

Chapter 2 Abstract Framework

there are annotations in a program. One could reduce this number to a minimum by
only annotating one position per loop. However, since the construction of inductive
safety formulas analyses each path leading from one annotated position to the next,
reducing the number of annotations increases the size of inductive safety formulas. So,
it is advisable not only to annotate loops, but also positions where the control flow splits
up and joins. This reduces the number of paths between annotations exponentially,
while the number of annotations only increases linearly.

2.7 Correctness

Most important for a VCG is its correctness. If we can prove the verification condition
for some program Π, then we want to know for sure that it is safe, i.e. isSafe Π.

Theorem 2.1 (correctVCG) Wellformed programs with provable verification condition are safe.

wf Π ∧ Π ` vcg Π −→ isSafe Π

Our proof of this theorem relies on various requirements on the parameter functions. If
the instantiation can prove that its definitions for the parameters satisfy these require-
ments, then the correctness theorem automatically carries over to the instantiated VCG.
Note that none of the requirements involve the safety policy safeF. This makes changing
the safety policy very convenient. No proof needs to be adjusted. Locale correctVCG
contains all the correctness requirements as well as the requirements it inherits from
VCG and the other locales above it.

locale correctVCG = VCG +

Some requirements make use of the set ReachablesAn Π. It contains those states that
are reachable by only traversing states that satisfy annotations.

ReachablesAn:: ′prog ⇒ (′pos × ′mem) set
ReachablesAn Π = ReachableFromInv (effS Π) (initS Π) ({s. Π,s |= aF Π (fst s)})

We say states in ReachablesAn Π are anno-reachable in order to distinguish them from
states that are just reachable, i.e. Reachables Π. Note that only for correctly annotated
programs both sets are equivalent.

Lemma 2.2 (correctVCG) correctAn Π −→ ReachablesAn Π = Reachables Π

34

2.7 Correctness

Many requirements only demand something for anno-reachable states. Note that this
restriction makes it easier for the instantiator to prove the requirements. We come back
to that below and in §6.5.

In the Requirements 2.7 and 2.8 we demand that the abstract semantics mimics the
concrete one. Initial states must be covered by initF, and wpF must guarantee the
postcondition in the successor state.

Requirement 2.7 wf Π ∧ s ∈ initS Π −→ Π,s |= (initF Π)

Requirement 2.8 wf Π ∧ s ∈ (ReachablesAn Π) ∧ (s,s ′)∈(effS Π) ∧
Π,s |= (wpF Π (fst s) (fst s ′) Q) −→ Π,s ′ |= Q

Requirement 2.9 demands succsF to approximate the real control flow and that branch
conditions are valid. In other words, succsF may guess successors, but must not miss
any or give branch conditions that are too strong. Here the restriction to anno-reachable
states is quite important. When one instantiates succsF to languages with procedures,
one can stick annotations of call positions into branch conditions for edges leading back
to this position (procedure return). As we explain in §6.5 this restores the call context
and leads to modular verification conditions. We do not have to introduce a special
procedure call/return treatment into our generic VCG.

Requirement 2.9 wf Π ∧ s ∈ (ReachablesAn Π) ∧ (s,s ′) ∈ (effS Π) −→
(∃B . (fst s ′,B) ∈ set (succsF Π (fst s)) ∧ Π,s |= B)

Finally, Requirement 2.10 demands the safety logic to be correct. Derivable formulas
must hold for all anno-reachable states. Note that this is a weaker form of correctness
than usually stated in logic textbooks. Normally, logical correctness demands provable
formulas to be tautologies. For our purpose of proving safety and correctness of anno-
tations it suffices if the verification condition holds for all anno-reachable states. The
additional premise, which restricts s to be anno-reachable, can simplify the proof of
this requirement. In [96] we defined Π ` f such that it holds for all invariant formulas
f, not just for tautologies. Having the additional premise was crucial there to prove
Requirement 2.10.

Requirement 2.10 wf Π ∧ Π ` f ∧ s ∈ (ReachablesAn Π) −→ Π,s |= f

35

Chapter 2 Abstract Framework

Correctness Proof

Proof (Theorem 2.1) We obtain our correctness Theorem 2.1 from Lemma 2.3 below. In
case of a provable verification condition it states that all reachable state are inductively
safe. Since inductively safe states are also safe, we can establish program safety, i.e.
isSafe Π. �
Theorem 2.2 also follows from Lemma 2.3 and is important, because annotations usually
come from the same untrusted source as the code. Indirectly Theorem 2.2 says that
incorrect annotations lead to unprovable verification conditions.

Theorem 2.2 (correctVCG) Wellformed programs with provable verification condition are cor-
rectly annotated.

wf Π ∧ Π ` vcg Π −→ correctAn Π

Proof All anno-reachable states satisfy the annotations. Lemma 2.3 guarantees that all
reachable states are anno-reachable, hence correctAn Π. �

All that remains is to state and prove Lemma 2.3. This shows why the requirements are
in the form presented above and how they fit together.

Lemma 2.3 (correctVCG) In wellformed programs with provable verification conditions all reach-
able states are inductively safe and anno-reachable.

wf Π ∧ Π ` vcg Π ∧ s ∈ (Reachables Π) −→ (Π,s |= isafeF Π (fst s) ∧ s ∈ ReachablesAn Π)

Proof We prove Lemma 2.3 by induction on Reachables Π. Since Reachables Π is defined
via the set ReachFromIns, we can use the induction rule Isabelle/HOL automatically
provides for inductive definitions. In the base case we have s0 ∈ initS Π. From this
we get s0 ∈ ReachablesAn Π and derive Π,s0 |= initF Π using Requirement 2.7. Using
Requirement 2.6 and the initial conjunct of the verification condition, which holds for
s0 because of Requirement 2.10, we arrive at Π,s0 |= isafeF Π (ipc Π), which finishes
the base goal.
In the induction case, we can assume (s,s ′) ∈ (effS Π), Π,s |= isafeF Π (fst s) and s ∈
ReachablesAn Π. Our goals are Π,s ′ |= isafeF Π and s ′ ∈ ReachablesAn Π. First we
make a case distinction on anF Π (fst s).
If there is some annotation A, i.e. anF Π (fst s) = bAc, we use the verification condition,
which holds for s because of Requirement 2.10 and our assumptions. In the annotation
case fst s belongs to domA Π and because of (s,s ′) ∈ effS Π and Requirement 2.9 we
find some branch condition B, such that (fst s ′,B) ∈ (succsF Π (fst s)) and Π,s |= B.
This means the verification condition has a conjunct of the form (safeF Π (fst s) x∧y A
x∧y B) x⇒y wpF Π (fst s) (fst s ′) (isafeF Π (fst s ′)), which holds also for s because of

36

2.8 Completeness

Requirement 2.3 and the fact that the entire verification condition holds for s. From
Π,s |= isafeF Π (fst s) we get Π,s |= safeF Π (fst s) x∧y A. Hence all the conditions of
the left hand side of this implication formula hold. Using Requirement 2.4, we get Π,s
|= wpF Π (fst s) (fst s ′) (isafeF Π (fst s ′). Now, we can use Requirement 2.8 and get
our goal Π,s |= (isafeF Π (fst s ′)). For the second goal, we first establish Π,s ′ |= aF Π
(fst s ′) and use the R rule for ReachablesAn. To show Π,s ′ |= aF Π (fst s ′) we make a
case distinction on anF Π (fst s ′). In the None case aF Π (fst s ′) yields xTy, which holds
because of Requirement 2.1. In the anF Π (fst s ′) = bA ′c case, we get Π,s |= A ′ from
Π,s ′ |= isafeF Π (fst s ′), the first goal shown before. This concludes the case anF Π
(fst s) = bAc.
In the other case, that is anF Π (fst s) = None, we do not need the verification condition.
In this case we get the important fact from the definition of isafeF and Requirement
2.9. We get Π,s |= safeF Π (fst s) x∧y B x⇒y wpF Π (fst s) (fst s ′) (isafeF Π (fst s ′) from
Π,s |= isafeF Π (fst s). Now we can use Requirements 2.8, 2.3 and 2.4 like before and
arrive at Π,s ′ |= isafeF Π (fst s ′). From that, we can show the goal s ′ ∈ ReachablesAn
Π like before. �

2.8 Completeness

Apart from correctness we have also proven that our VCG is relatively complete [34].
Before we explain what we mean by that, let us have a look at Hoare Logic and what
completeness means there.
In Hoare Logic one specifies a program Π’s input/output behaviour in form of a triple
{P} Π {Q}. A Hoare triple is valid, i.e. |= {P} Π {Q}, if Π, when started on a state
satisfying P, only terminates in states satisfying Q. The Hoare Logic itself consists of
rules on how to derive such triples ` {P} Π {Q}. A Hoare Logic is complete, if every
valid triple is derivable. For most Hoare Logics, this is not the case as they use incomplete
logics for the assertions and some rules, such as the consequence rule, demand to prove
side conditions in the assertion logic.
Hence, the best one can usually have is a Hoare Logic that is relatively complete. In
case of relative completeness a valid Hoare triple has a derivation where all the side
conditions are valid assertions, and the assertion logic is expressive. The latter means
that we can encode all assertions a derivation requires internally, such as loop invariants.
Our aim is now to adapt this notion of completeness to our VCG, which essentially is
just a machine applying Hoare-like rules internally and emitting all the side conditions
as one verification condition. However, there are also things that are different. First, we
are primarily interested in safety and not so much in functional correctness. For us not
only initial and final states count, but also intermediate ones. Second, we do not care

37

Chapter 2 Abstract Framework

about termination, since also non-terminating programs can be safe.
Hence, in our case a specification not only involves annotations at initial and final control
flow positions, but also ones in between. Nevertheless we can interpret our annotations
as embedded Hoare triples. Every path between two control flow positions p and q can
be interpreted as an embedded program. If p is annotated with P and q is annotated
with Q (if not, take xTy for Q) we can build the triple {P} p. . . q {Q} and view it as an
embedded Hoare triple.
For example in Fig. 2.4 we find the embedded Hoare triple {A0} p0,p1,p2,p0 {A0}. In
addition there is {A0} p0,p1,p2,p0,p2,p0 {A0}, or {A0} p0,p1 {xTy} and so on. We call
an embedded Hoare triple {P} ps {Q} valid, if all execution traces in effS that strictly
follow the path ps end with a state satisfying Q provided they start with one satisfying
P.
Now, if we also add the safety formulas of the initial and final path position to our
triple, we arrive at what we call a safety triple. For example if S i abbreviates safeF Πx

pi then Fig. 2.4 contains the safety triples {A0 x∧y S 0} p0,p1,p2,p0 {A0 x∧y S 0} or {A0 x∧y
S 0} p0,p1 {xTy x∧y S 1} and many others. We say a program Π is strongly annotated, i.e.
strongAn Π, if all embedded safety triples are valid.
To define this formally, we do not have to formalise the concept of a safety triple, but
can instead use our reachability predicates. We introduce Starters Π, which contains
two kinds of states. It contains all states satisfying initF Π. In addition it contains
all safe states s that have an annotation and satisfy it. The latter means that fst s is
annotated, i.e. anF Π (fst s) = bAc, and this annotation holds for s, i.e. Π,s |= A.

locale completeVCG = VCG +

Starters:: ′prog ⇒ (′pos × ′mem) set
Starters Π = {s. Π,s |= initF Π ∨
(∃A. anF Π (fst s) = bAc ∧ Π,s |= A ∧ Π,s |= safeF Π (fst s))}

Instead of starting programs on initial states only, we now consider execution from any
state in Starters Π. We only have to consider executions that stay within the control
flow graph and where all transitions satisfy a branch condition. The transition relation
effSB constrains effS in that respect.

effSB :: ′prog ⇒ ((′pos × ′mem) × (′pos × ′mem)) set
effSB Π = effS Π ∩ {((p,m),(p ′,m ′)). ∃B . (p ′,B) ∈ set (succsF Π p) ∧ Π,(p,m) |= B}

A program is strongly annotated, if all states effSB Π can reach from a state in Starters
Π are safe and satisfy their annotation (in case there is one).

strongAn:: ′prog ⇒ bool
strongAn Π = (∀ s ∈ ReachableFrom (effSB Π) (Starters Π).
Π,s |= aF Π (fst s) ∧ Π,s |= safeF Π (fst s))

38

2.8 Completeness

Note that strongAn contains severe restrictions on the annotations and safety formulas.
Both together must constrain each state such that all further states we can reach by
executing Π along a control flow path also satisfy their annotations and safety formulas.

In the example from Fig. 2.4 we could annotate p0 with a formula stating that x equals 0,
e.g. A0 = (x = 0). Then if we assume that in all initial states x and y are initialised to
0, the program Πx would be correctly annotated, i.e. correctAn Πx. However, it would
not be strongly annotated, as Starters Πx not only contains initial states, but also all
states satisfying A0. The state (p0,(x :0 ,y :1)) would be in Starters Πx as A0 does not
restrict y. Now, if we start executing Πx with this state and follow the path p0,p1,p2,p0,
we end up with the state (p0,(x :1 ,y :1)), which violates A0. If we strengthen A0 to A0 =
(x = 0 ∧ y = 0) then Πx is strongly annotated, provided it respects the safety policy.

The predicate strongAn Π has close similarities with the concept of inductive invariants
as defined in [90]. For a transition system (R,F) a set of states I is an invariant, if
it covers all reachable states, i.e. ∀ s ∈ Reachables R F . s ∈ I. An invariant I is an
inductive invariant , if we also have: s ∈ I ∧ (s,s ′) ∈ R −→ s ′ ∈ I. Now, if we assume
that every position is annotated, and consider the set of states F = {s. Π,s |= initF Π}
and AS = {s. Π,s |= aF Π (fst s) ∧ Π,s |= safeF Π (fst s)} as well as the transition
relation R = (effSB Π). Then strongAn Π says that F ∪ AS is an inductive invariant
for (R,F ∪ AS). Note that we can prove the theorems below also by taking effS instead
of effSB, but this just makes strongAn Π stronger than necessary.

Now, we are able to state our relative completeness theorem for the VCG. It says that
strongly annotated programs have valid verification conditions.

Theorem 2.3 (completeVCG) For wellformed and strongly annotated programs the verification
condition is a tautology.

wf Π ∧ strongAn Π −→ (∀ s. Π,s |= vcg Π)

Note that we are talking about completeness of the VCG, and not of the safety logic.
In the latter case we would have Π ` vcg Π in the conclusion. Since the safety logic we
instantiate later contains non-linear arithmetics and is thus naturally incomplete, our
framework makes no requirement on the completeness of the safety logic, i.e. (∀ s. Π,s
|= f) −→ Π ` f. This means we might end up with a valid verification condition, but
cannot construct a proof for it. However, in this case it is the safety logic we have to
blame, not the VCG, which might give us proof obligations that are overly restrictive.

Before we come to the proof of theorem 2.3 let us have a look on the requirements for
the parameter functions.

In Requirement 2.11 we demand that succsF gives us a precise control flow graph.

39

Chapter 2 Abstract Framework

Whenever a branch condition for an edge holds a transition along this edge must be
possible. This means, branch conditions guarantee progress.

Requirement 2.11 wf Π ∧ Π,(p,m) |= B ∧ (p ′,B) ∈ set (succsF Π p ′′)
−→ (p=p ′′ ∧ (∃m ′. ((p,m),(p ′,m ′)) ∈ (effS Π)))

Requirements 2.12 and 2.13 demand that ipc and succsF only yield results within the
code domain domC. Note that these requirements together with requirement 2.11 enforce
control flow safety, no matter how safeF becomes instantiated. Control flow safety is
a fundamental basis for static code verification. It ensures that during execution the
program counter always stays within the inspected code.

Requirement 2.12 wf Π −→ ipc Π ∈ set (domC Π)

Requirement 2.13
wf Π ∧ (p ′,B) ∈ set (succsF Π p) −→ (p ∈ set (domC Π) ∧ p ′ ∈ set (domC Π))

Requirement 2.14 states an important property for the abstract semantics. The wpF
function must now compute weakest preconditions. In other words, the formulas it
yields must not be too strong. Whenever a successor state satisfies the postcondition Q
the weakest precondition must hold for the current state.

Requirement 2.14
wf Π ∧ ((p,m),(p ′,m ′)) ∈ (effSB Π) ∧ Π,(p ′,m ′) |= Q −→ Π,(p,m) |= wpF Π p p ′ Q

Finally, the safety logic must guarantee the implication introduction rule. For the cor-
rectness proof this was not necessary, hence we did not include this property in the
general assumptions on the safety logic.

Requirement 2.15 wf Π ∧ (Π,s |= f −→ Π,s |= f ′) −→ Π,s |= f x⇒y f ′

Completeness Proof

The proof of Theorem 2.3 is based on Lemma 2.4, whose premise partitions the code
domain into a list of visited positions V and spare positions S.

Lemma 2.4 (completeVCG) In wellformed and strongly annotated programs, all states s reach-
able from Starters Π are inductively safe, provided we can find a control flow path V of non-
annotated positions leading to position fst s inside the code domain.

40

2.8 Completeness

wf Π ∧ strongAn Π −→ (∀ s ∈ ReachableFrom (effSB Π) (Starters Π).
((∃V . (∀ p ∈ set V . anF Π p = None) ∧ set V ∪ set S = set (domC Π)
∧ set V ∩ set S = {} ∧ (V 6= [] −→ V @[fst s] ∈ (paths (succsF Π))))
−→ ((fst s ∈ set (domC Π)) −→ (Π,s |= isafeF Π (fst s)))))

Proof Lemma 2.4 contains a sophisticated constraint on a subset S of the code domain.
It plays a vital role for our induction on S. If we take apart the constraints for S and V
and s, we can assume:
(1) no position in V is annotated.
(2) V and S partition the code domain domC Π.
(3) V is empty or can be augmented by fst s to a control flow path.
(4) fst s lies in domC Π.
(5) s is reachable from Starters Π.
Our goal is to show that s is inductively safe. We prove this by induction on the length
of S, which will decrease with every recursion of isafeF.
In the base case we have S = []. From (2) we get V = domC Π. This means V cannot
be empty, because Requirement 2.12 says that it contains at least ipc Π. Therefore (3)
says we have a control flow path containing all positions and fst s. Because of (4) we
have that fst s must already be in V and thus occurs twice in the control flow path.
Since (1) says that there are no annotations in V, we have a cycle with no annotation.
This contradicts wf Π and Requirement 2.5, which demands cycles to have at least one
annotation.
In the induction case, we have the hypothesis that any s ′ is inductively safe, provided
we can find some S ′ with a smaller length than S and some V ′ such that (1), (2), (3),
(4), (5) hold for s, S and V replaced by s ′, S ′ and V ′. We refer to these modified
conditions as (1’), (2’), (3’), (4’) and (5’) and continue with case distinctions. First, a
case distinction on anF Π (fst s). Assume there is some annotation A, i.e. anF Π (fst
s) = bAc. We know from strongAn Π and (5) that s is safe and satisfies A. Because s
is annotated isafeF Π (fst s) demands exactly those two conditions.
In case there is no annotation at fst s, i.e. anF Π (fst s) = None, we make another case
distinction on fst s ∈ set S.
Assume fst s ∈ set S holds. We unfold our goal formula isafeF Π (fst s) with the
definition of isafeF shown in Fig. 2.5. Because there is no annotation and (4) holds, we
end up in the recursive branch. In case the control flow graph does not have any successor
for s, we are done, as the goal formula becomes an empty conjunction. Otherwise, we
take some successor p ′ together with its branch condition B, i.e. (p ′,B) ∈ set (succsF
Π (fst s)). Our new goal is to show that B implies the weakest precondition for the
inductive safety formula at p ′, i.e Π,s |= B x⇒y wpF Π (fst s) p ′ (isafeF Π p ′). Using
Requirement 2.15 we can assume that the branch condition holds,i.e. Π,s |= B, and have

41

Chapter 2 Abstract Framework

to show the weakest precondition only, i.e. Π,s |= wpF Π (fst s) p ′ (isafeF Π p ′). All
premises of Requirement 2.11 are met. Hence, we conclude that there is some m ′, such
that (s,(p ′,m ′)) ∈ effSB Π. Now, we apply Requirement 2.14, which solves our goal, if
we can show that the postcondition holds for the successor state, i.e. Π,(p ′,m ′) |= isafeF
Π p ′. Here the induction hypothesis comes into play. Note that we are still in the case
fst s ∈ set S. Hence, we can instantiate S ′ with [q∈ S . q 6= fst s], which is clearly shorter
than S. For V ′ we take V @[fst s] and for s ′ we take (p ′,m ′). In this instantiation the
induction hypothesis guarantees our goal, provided we can show (1’), (2’), (3’), (4’) and
(5’). Since fst s is not annotated, we obtain (1’) from (1). From (2) and the fact that
we just moved one element from one list to the other, S ′ and V ′ are still a partition of
domC Π. Hence, we have (2’). Since, p ′ comes from succsF Π (fst s), we can augment
our former control flow path to V @[fst s,p ′], which gives us (3’). To establish (4’) we
use Requirement 2.13. Finally, we have (5’), because we can apply the R rule to (5) and
(s,(p ′,m ′)) ∈ (effSB Π). This finishes the case fst s ∈ set S.
When s is not in S, i.e. fst s /∈ set S, it must lie in V, i.e. fst s ∈ set V, because it
belongs to domC Π (4), which is partitioned by S and V (2). Hence, V is not empty
and we get from (3) that V @[fst s] is a control flow path. Since, fst s occurs twice in
this path and no position is annotated, we have again a cycle with no annotation. This
contradicts wf Π and Requirement 2.5. �

From Lemma 2.4 we can easily derive Lemma 2.5.

Lemma 2.5 (completeVCG) For wellformed and strongly annotated programs every state reach-
able from Starters Π is inductively safe, provided its program counter lies within the code domain.

wf Π ∧ strongAn Π −→ (∀ s ∈ ReachableFrom (effSB Π) (Starters Π).
(fst s ∈ set (domC Π)) −→ Π,s |= isafeF Π (fst s))

Proof Take Lemma 2.4 and instantiate S with domC Π and V with []. All the conditions
for S and V hold trivially. �

Now, let us see how this proves Theorem 2.3.

Proof (Theorem 2.3) For the initial conjunct of the verification condition, we have to
prove Π,s |= (initF Π) x⇒y (isafeF Π (ipc Π)). Requirement 2.15 allows us to assume
Π,s |= (initF Π) and reduces the goal to Π,s |= isafeF Π (ipc Π). With Requirement
2.6 we can transform this to Π,s |= isafeF Π (fst s). Because of Requirement 2.12 we
get that ipc Π or fst s belongs to domC Π. The initial formula initF holds for s, which
is thus in Starters Π. Rule F guarantees that s also lies in ReachableFrom (effSB Π)
(Starters Π). This gives us all conditions to apply Lemma 2.5 to finish this goal.
To show the other conjuncts of the verification condition, we pick some annotated posi-
tion p, i.e. anF Π p = bAc, with some successor p ′ under branch condition B, i.e. (p ′,B)

42

2.8 Completeness

p0
p1 p2

specF Π p0 = binitF Πc specF Π p1 = None specF Π p2 = bQc

Figure 2.7: Functional Specification

∈ succsF Π p. This leaves us with the task to prove Π,s |= (isafeF Π p x∧y B) x⇒y wpF
Π p p ′ (isafeF Π p ′). Again, Requirement 2.15 allows us to get rid of x⇒y in the goal.
Under the assumptions Π,s |= isafeF Π p and Π,s |= B, we have to show wpF Π p p ′

(isafeF Π p ′). From the first assumption, we get that s satisfies the annotation at p,
i.e. Π,s |= aF Π p. Like in the proof for Lemma 2.4, we can use Requirements 2.11 and
2.14 to reduce our goal to Π,(p ′,m ′) |= (isafeF Π p ′) for some m ′ such that (s,(p ′,m ′))
∈ (effSB Π). From Requirement 2.11, we also get fst s = p, which means that s satisfies
the annotation at fst s and is thus in Starters Π. Because s can make a transition to
(p ′,m ′) we can apply rule R to obtain s ∈ ReachableFrom (effSB Π) (Starters Π). From
Requirement 2.13 we obtain p ′ ∈ set (domC Π). Now, we can instantiate our Lemma
2.5 with s replaced by (p ′,m ′) to finish the proof. �

Expressiveness

Theorem 2.3 states that we obtain valid verification conditions for strongly annotated
programs. The question is: Can we always find strong annotations?
Assume we have a program Π and a functional specification for it in form of a Hoare
triple {initF Π} Π {Q}. In our framework we can express this specification with a
function specF that assigns initF Π to the initial position, Q to all final positions and
nothing to all internal positions. If Π only has three positions we have the situation
depicted in Fig. 2.7. Formally, a specification is a function specF that assigns formulas
to initial and final positions.

locale Expressiveness = completeVCG +

specF :: ′program ⇒ ′pos ⇒ ′form

For the initial position ipc Π the specification must coincide with initF Π.

Requirement 2.16 specF Π (ipc Π) = binitF Πc

According to requirement 2.17 a specification must also provide formulas for all final, but
not for internal positions. Final positions are those in the set finals Π , which contains

43

Chapter 2 Abstract Framework

all positions p where the control flow function succsF Π p does not have an outgoing
edge. If a position is neither initial nor final we call it internal.

finals :: ′program ⇒ ′pos set
finals Π = {p. p ∈ set (domC Π) ∧ ¬ (∃ p ′ B . (p ′,B) ∈ set (succsF Π p))}

Requirement 2.17 ∀ p. p ∈ {ipc Π}∪(finals Π) = (specF Π p 6= None)

Now, if we annotate a program according to its specification, i.e. anF = specF, then
strongAn Π holds, if the specification is valid, i.e. |= {initF Π} Π {Q}, and the program
can only reach safe states from {s. Π,s |= initF Π}. However, as soon as we start adding
annotations to internal positions strongAn Π may break, because Starters Π additionally
receives the states satisfying the new annotation and this annotation may not be strong
enough to guarantee all further ones.
Hoare Logic also uses internal annotations, but these only occur in the derivation of a
Hoare triple ` {P} Π {Q}. It is part of the completeness proof to show that provided
a triple is valid, i.e. |= {P} Π {Q}, one can always construct the required internal
annotations. This is what the literature addresses with the notion expressiveness.
According to Winskel [99] an assertion logic is expressive when it can encode weakest
preconditions. In requirements 2.8 and 2.14 we demand that wpF yields preconditions
that are correct and weak enough. So can we conclude from that that our safety logic is
expressive? We can not, because our wpF operator only approximates the effect of single
control flow edges, but Winskel is talking about weakest preconditions for structured
programs.
Since Winskel’s proof on expressiveness is by induction on the program structure porting
it to our framework becomes difficult. In addition Winskel employs an assertion logic
with quantifiers and arithmetic expressions. These are needed to construct invariants
for While loops. The idea is to express program execution with a formula on natural
numbers. States and finite sequences of states can be encoded as natural numbers.
This does not work for infinite sequences, hence Winskel’s completeness proof requires
programs to terminate.
Requiring termination and extending our safety logic to first order arithmetics would
clearly reduce the generality of our framework. Therefore, we set out for a different
approach to completeness. The question is, under what conditions can we construct all
the required internal annotations in a propositional style?
As we will show, this is possible, when a program Π has a finite diameter. The diameter of
a transition relation effSB Π is the highest distance between any two states. This notion
is heavily used in bounded model checking [20] and gives analogous completeness results
there. In reality programs run on computers with limited memory and thus always have
a finite diameter. To define diameters formally, we introduce the set ReachableFromIn
R F k, which contains all states R reaches from F in exactly k steps.

44

2.8 Completeness

ReachableFromIn :: (′a × ′a) set ⇒ ′a set ⇒ nat ⇒ ′a set

a ∈ F
a ∈ ReachableFromIn R F 0

F
a ∈ ReachableFromIn R F k (a, b) ∈ R

b ∈ ReachableFromIn R F (k + 1)
R

The diameter of effSB Π is finite, if we can find a bound d for it. Whenever effSB Π
reaches a state s ′ from another state s it can also reach it within d steps.

diameter :: (′s × ′s) set ⇒ nat ⇒ bool
diameter R d = ∀ s s ′. s ′ ∈ ReachableFrom R {s} −→ (∃ r≤d . s ′ ∈ ReachableFromIn R {s} r)

When we have an upper bound d for the diameter, we can construct internal annotations
for a given functional specification specF. For this purpose we introduce the function
ispecF, which computes internal safety specifications.

ispecF :: ′program ⇒ ′pos ⇒ nat ⇒ ′form

ispecF Π p k = (case specF Π p of bQc ⇒ Q
| None ⇒ (case k of 0 ⇒ xTy

| Suc k ′⇒ x

∧
y (map (λ(p ′,B). B x⇒y (wpF Π p p ′ (x

∧
y [safeF Π p ′, ispecF Π p ′ k ′]))))

(succsF Π p)))

The construction is very similar to isafeF, except that ispecF can unroll cycles multiple
times if d is large enough. When p is the initial or a final position, then ispecF yields
specF Π p. If p is an internal position, that is specF Π p = None, then ispecF constructs
a formula that ensures that all states that can be reached from p within the next d steps
are safe and satisfy their (internal) specification. This implies that if we start executing
a program Π on a state (p,m) that satisfies ispecF Π p, then every final state (p ′,m ′)
we reach within d steps satisfies the postcondition specF Π p.

This means, we can use ispecF to fully annotate a given program that only has anno-
tations at initial and final positions. The next theorem shows, that the annotations we
construct in this way are strong.

Theorem 2.4 (Expressiveness) Wellformed programs with a bounded diameter that are safe and
satisfy a given specification specF can be strongly annotated with ispecF.

wf Π ∧ diameter (effSB Π) d ∧ (∀ s ∈ ReachableFrom (effSB Π) {s. Π,s |= initF Π}.
Π,s |= safeF Π (fst s) ∧ (∀Q . specF Π (fst s) = bQc −→ Π,s |= Q))
∧ (∀ p. anF Π p = bispecF Π p dc) −→ strongAn Π

The proof relies on two further requirements. We forbid transitions back to the initial
position, because ispecF Π (ipc Π) does not guarantee anything for follow up positions.

45

Chapter 2 Abstract Framework

Requirement 2.18 wf Π −→ (∀ p p ′ B . (p ′,B) ∈ set (succsF Π p) −→ p ′ 6= ipc Π)

Finally, we assume that wpF is correct for all state transitions in effSB. Note that
requirement 2.19 turns the implication in requirement 2.14 around. This requirement is
harder to fulfil than requirement 2.8, because we now do not have the constraint that
(p,m) is a reachable state.

Requirement 2.19
wf Π ∧ ((p,m),(p ′,m ′)) ∈ (effSB Π) ∧ Π,(p,m) |= wpF Π p p ′ Q −→ Π,(p ′,m ′) |= Q

Proof (Theorem 2.4) By unfolding strongAn Π we have to show for a reachable state s
= (p,m), i.e. s ∈ ReachableFrom (effSB Π) (Starters Π), that it is safe and satisfies the
annotation aF Π p = ispecF Π p d. The proof is by induction on ReachablesFrom. The
base case s ∈ Starters Π is trivial due to the definition of Starters. In the inductive case
we have a predecessor state s ′ = (p ′,m ′), such that (s ′,s) ∈ (effSB Π) and Π,s ′ |= ispecF
Π p d. Note that p ′ can only be initial or internal, but not final. In case p ′ is internal
we apply an auxiliary lemma: . . . ∧ diameter (effSB Π) d ∧ (p ′,m ′) |= ispecF Π p ′ d
−→ Π,(p ′,m ′) |= ispecF Π p ′ (d+1), which we prove by induction on ReachablesFromIn.
The underlying idea is that when we exceed the diameter we reach a state that is also
reachable with fewer steps and can thus apply our induction hypothesis. We also use
another auxiliary lemma, which ensures that ispecF is preserved. Provided we have Π,s ′

|= ispecF Π p k then all follow up states s ′′ reachable from s ′ in l steps satisfy Π,s ′′

|= ispecF Π p ′′ (k − l). We prove it by induction on the difference k − l and need
requirement 2.18. From the first lemma we obtain Π,s ′ |= ispecF Π p ′ (d+1) and finish
the proof by unfolding ispecF and applying requirement 2.19. In case p ′ is initial, we
have Π,s ′ |= ispecF Π p ′ d ′ for any d ′ any can apply the second lemma to finish the
proof. �

2.9 Invariant Verification Conditions

Theorem 2.3 only states something for strongly annotated programs. What can we say
about the verification conditions if annotations are only correct?

locale invariantVCG = VCG +

Theorem 2.5 (invariantVCG) For wellformed, safe and correctly annotated programs the veri-
fication condition holds for all reachable states.

wf Π ∧ isSafe Π ∧ correctAn Π −→ (∀ s ∈ Reachables Π. Π,s |= vcg Π)

46

2.10 Instantiating the Framework

Showing that the verification condition is an invariant is enough to guarantee safety for
correctly annotated programs. This follows from Theorem 2.1 with Requirement 2.10
and Lemma 2.2. In our example Πx the annotation A0 = (x = 0) is correct and we
can expect an invariant as verification condition. However, when we try to show ∀ s∈
Reachables Πx. Πx,s |= vcg Πx, we might have to derive y = 0 from the operational
semantics. The set Reachables Π is a semantical notion of the strongest invariant and
contains all valid facts for reachable states. This shows the drawback we have with
annotations that are “only” correct. For strongly annotated programs the verification
condition is a tautology. In tautologous verification conditions all information needed
to show validity is already inside and no facts needs to be derived from the operational
semantics.

Nevertheless Theorem 2.5 is interesting as it says something about the VCG in case of
weaker annotations. To prove it, we need requirements that are quite similar to the
completeness requirements. Additional premises, such as (p,m) ∈ Reachables Π make
these requirements easier to instantiate than their counterparts in locale completeVCG.

Requirement 2.20 wf Π ∧ correctAn Π ∧ isSafe Π ∧ (p,m) ∈ Reachables Π ∧
Π,(p,m) |= B ∧ (p ′,B) ∈ set (succsF Π p ′′) −→ (p=p ′′ ∧ (∃ m ′. ((p,m),(p ′,m ′)) ∈ (effS Π)))

Requirement 2.21 wf Π ∧ correctAn Π ∧ isSafe Π ∧ (p,m) ∈ Reachables Π ∧ (∃ B . (p ′,B)
∈ set (succsF Π p)) ∧
((p,m),(p ′,m ′)) ∈ (effS Π) ∧ Π,(p ′,m ′) |= Q −→ Π,(p,m) |= wpF Π p p ′ Q

In addition to these invariantVCG also has Requirements 2.15, 2.12 and 2.13 just as
completeVCG does. The proof for Theorem 2.5 is similar to the one for Theorem 2.3.
Only the premises need to be adjusted, the induction and the auxiliary lemmas stay the
same.

2.10 Instantiating the Framework

Our framework distributes over multiple theories and locales as shown in Fig. 2.2. Def-
initions and theorems inside locales are relative to the assumptions made. To make
use of locales one has to instantiate them, which involves providing definitions for all
parameters and proving that they meet the requirements. For each locale Isabelle/HOL
automatically generates a predicate taking all parameters as arguments. For example
for the locale correctVCG we get the following predicate:

correctVCG initS effS xTy xFy x

∧
y x⇒y |= ` ipc anF succsF wf initF wpF

This predicate places the given parameters into a big conjunction of all the requirements.

47

Chapter 2 Abstract Framework

Note that the predicate correctVCG, just as all the other locales, does not depend on
safeF. This means the safety policy safeF does not matter for the instantiation and can
be replaced without having to adjust proofs. To alter other parameters, our framework
provides instantiation theorems. For example, the following theorem allows to replace
the wellformedness checker wf with a stronger version wf ′.

Theorem 2.6 Severing wellformedness conditions preserves a VCG’s correctness.

∀Π. wf ′ Π −→ wf Π
correctVCG initS effS xTy xFy x

∧
y x⇒y |= ` ipc anF succsF wf initF wpF

correctVCG initS effS xTy xFy x

∧
y x⇒y |= ` ipc anF succsF wf ′ initF wpF

The benefit of such instantiation theorems is that one can upgrade an instantiation
later on without having to prove all requirements again. This is in particular important
for the successor function succsF, which we will upgrade later on to integrate trusted
facts from external program analysers. For this purpose we use the functional upg. It
modifies a given successor function by conjoining formulas from a given assignment iF
to its branch conditions:
upg :: (′prog ⇒ ′pos ⇒ ′form) ⇒ (′prog ⇒ ′pos ⇒ (′pos × ′form) list) ⇒ (′prog ⇒ ′pos
⇒ (′pos × ′form) list)

upg iF sucF = λΠ p. map (λ(p ′, B). (p ′, x

∧
y [B , iF Π p])) (sucF Π p)

Equipped with upg, we can improve the quality of branch conditions of a given successor
function succsF. Here is an example, in which we augment succsF with the formulas iF
yields for program positions.

succsF Π p = [(p1,B1),. . . ,(pk,Bk)] −→
(upg iF succsF) p = [(p1,B1 x∧y iF p), . . . , (pk,Bk x∧y iF p)]

The following theorem states that correctness of the VCG stays intact if one upgrades
the successor function with invariants.

Theorem 2.7 Upgrading succsF with an invariant iF preserves a VCG’s correctness.

∀Π. wf Π −→ (∀ s∈ReachableFrom (effS Π) (initS Π). Π,s |= iF Π (fst s))
succsF ′ = upg iF succsF

correctVCG initS effS xTy xFy x

∧
y x⇒y |= ` ipc anF succsF wf initF wpF

correctVCG initS effS xTy xFy x

∧
y x⇒y |= ` ipc anF succsF ′ wf initF wpF

48

2.11 Conclusion

Note that the Theorems 2.6 and 2.7 are proven outside any locale and thus do not depend
on further assumptions.

2.11 Conclusion

Our framework makes various contributions for constructing trustworthy PCC systems.
First, it identifies the program semantics, safety logic and safety policy as the three ma-
jor influences on PCC, and gives a blueprint for a PCC architecture where these factors
are kept modular. It defines a VCG that can easily be adapted to different PCC setups
by adjusting its parameter functions.
Second, because the VCG is written in an executable style one can use Isabelle’s code
generator to obtain an ML program. Other features of Isabelle/HOL like its support for
proof objects and checking, or tactics and decision procedures for proof generation allow
to simulate the full work flow of a PCC system inside the theorem prover.

Third, it makes requirements on the parameters explicit and proves the VCG correct
and relatively complete. The completeness theorems only regard the semantical proper-
ties of verification conditions. Depending on the quality of annotations, they are either
tautologies or just invariants. In contrast to Hoare Logic, our verification conditions also
give guarantees for non-terminating programs and our VCG works for programs with
arbitrarily “structured” control flow. The fact that our framework’s theorems carry over
to all instantiations makes it an ideal starting point for prototyping PCC systems. One
can alter the parameters, rerun the proofs and discover how changes affect the soundness
or performance of the modified system.

In this thesis we will instantiate this framework to Jinja [55] bytecode. We also have
instantiations for simple assembly languages [98, 96]. Although these have by no means
the complexity of Jinja, they are mature enough to verify interesting examples [4] with
non-trivial safety policies. Apart from policies that prevent arithmetic overflow, we also
verified examples with type safety or bounds on memory usage as safety policies. For
example in [98] we verified that a little smart card purse does not overflow. Apart from
that we also verified that in-place list reversal does not consume additional memory
and terminates within a certain number of instruction executions. To demonstrate that
we can deal with recursion, we also verified that a recursive multiplication algorithm is
functionally correct and does not overflow.

49

Chapter 2 Abstract Framework

50

3 Jinja Bytecode and Virtual Machine

This chapter defines the syntax of Jinja bytecode programs and their seman-
tics with a formalised virtual machine. We also introduce an example pro-
gram that will serve for illustration throughout the thesis.

3.1 Jinja Bytecode

Jinja bytecode is a down-sized version of Java bytecode. Despite its small instruction set,
it covers most object oriented features: objects, dynamic method calls and exceptions.

datatype instr =
Load nat load from register

| Store nat store into register
| Push val push a constant
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname
| Invoke mname nat invoke method with nat parameters
| Return return from method
| Pop remove top element
| IBin num-op integer arithmetic
| Goto int goto relative address
| CmpEq equality comparison
| IfFalse int branch if top of stack false
| IfIntCmp rel-op int take integers a and b from stack,

branch on relop rel a b.
| Throw throw exception

Figure 3.1: Jinja bytecode instructions

For the sake of simplicity, Jinja does not have static methods and fields, non default

51

Chapter 3 Jinja Bytecode and Virtual Machine

constructors, arrays and threads. In total the Java VM supports about 200 instructions.
Many of these just perform similar tasks. We tried to reduce this high number, which
leads to many case splits in proofs, by having multi-purpose instructions. In particular,
integer arithmetic and branches are subsumed by two instructions only. Mode arguments
of type num-op or rel-op distinguish various operations.

num-op = Add | Sub | Mul
rel-op = Less | Leq | Eq | Geq | Grtr
cname = vname = mname = string

With numop and relop we connect these symbols to Isabelle/HOL’s arithmetic.

numop :: num-op ⇒ int ⇒ int ⇒ int relop :: rel-op ⇒ int ⇒ int ⇒ bool

numop Add a b = (a + b) relop Less a b = (a < b)
numop Sub a b = (a − b) relop Leq a b = (a ≤ b)
numop Mul a b = (a ∗ b) relop Eq a b = (a = b)

relop Geq a b = (a ≥ b)
relop Grtr a b = (a > b)

Both functions are used in the definition of the operational semantics (§3.2) and for the
semantics of assertions (§4). For better readability we abbreviate some instructions as
follows:

IAdd = IBin Add IfIntL = IfIntCmp Less IfIntGeq = IfIntCmp Geq
ISub = IBin Sub IfIntLeq = IfIntCmp Leq IfIntG = IfIntCmp Grtr
IMul = IBin Mul IfIntEq = IfIntCmp Eq

The original Jinja bytecode [55] only has one arithmetic instruction and one conditional
branch. In order to translate real Java programs to Jinja, we adjusted all the definitions
and proofs in [55] to this extended instruction set.

Jinja has values for booleans, e.g. Bool True, integers, e.g. Intg 5, references, e.g. Addr
3, null pointer, e.g. Null or a dummy element, e.g. Unit.

datatype val = Bool bool | Intg int | Addr addr | Null | Unit

For booleans and integers we use the corresponding Isabelle/HOL types. Addresses are
modelled as natural numbers.

types addr = nat

For some values, we introduce destructor functions. In case these are applied to improper
values, their result becomes arbitrary, a default value Isabelle/HOL provides automati-
cally for each type, i.e. the-Intg (Bool b) = arbitrary.

the-Intg (Intg i) = i, the-Bool (Bool b) = b, the-Addr (Addr a) = a

52

3.1 Jinja Bytecode

Each value has a type associated with it:

datatype ty = Boolean | Integer | Class cname | NT | Void

With liftI and liftR we lift Isabelle/HOL’s arithmetic or relational operators, e.g. +,
−, <, = and so on, to Jinja values. In case any argument has improper type the result
becomes None.

liftI :: ((int ⇒ int ⇒ int) × val option × val option) ⇒ val option
liftI (f ,bIntg ac,bIntg bc) = bIntg (f a b)c
liftI (f ,oth,oth ′) = None

liftR :: ((int ⇒ int ⇒ bool) × val option × val option) ⇒ val option
liftR (r ,bIntg ac,bIntg bc) = bBool (r a b)c
liftR (r ,oth,oth ′) = None

To illustrate how Jinja bytecode looks like Fig. 3.3 shows a translation of the Java
program shown in Fig. 3.2. The example has three classes Start, Cnt and No. The first
contains the main method, which creates a new counter object, sets it to x0 and then
adds a constant y0 to it by calling up. The up method of class Cnt adds its argument
to counter field c or throws a No exception in case of a negative or too large argument.
Depending on how up terminates x either becomes x0 + y0, 0 or -1. The specifications
in Fig. 3.2 are written in JML [58]. We will use similar annotations in our assertion logic
(see §4) to verify that the program does not cause arithmetic overflows, not matter how
we chose the initial constants x0 and y0. If a programmer slightly modifies the check
in method up, for example by swapping the disjunction to (maxI - i < c || i < z),
then the check itself can cause an overflow. The check in Fig. 3.3 is correct, because
the left hand side of the disjunction || is checked first in the bytecode. This means i is
non-negative in the check of the right hand side. We subtract two non-negative numbers
from each other, which never produces an over- or underflow. Also if we change the
check to (i < z || maxI < c + i), the check itself can cause an overflow and also the
addition it should protect. This illustrates that some bugs can be found at the bytecode
level, where expression evaluation is ordered, but not so easy at the source level.

Jinja bytecode identifies instructions with positions. These are triples of type cname ×
mname × nat. For example (C ,M ,pc) points to instruction number pc in method M of
class C. Each method is a tuple of the form (mxs,mxr ,is,et), where mxs indicates the
maximum operand stack height, mxr the number of usable registers, is the instructions
of the method body and et the exception table.

types jvm-method = nat × nat × instr list × ex-table

53

Chapter 3 Jinja Bytecode and Virtual Machine

class Cnt {

static final int maxI =
Integer.MAX_VALUE;

int c;

//@ ensures c = 0;
void reset() {
c = 0; }

/*@ ensures c = s;
@ assignable c;
@ signals (No ne)
@ c = 0 && s < 0 ;
@*/

void set(int s)
throws No {
reset();
up(s); }

/*@ ensures
@ c = \old(c) + \old(i)
@ && \result = c;
@ assignable c;
@ signals (No ne)
@ c = \old(c) &&
@ (i < 0 || maxI - i < c)
@*/

int up(int i)
throws No {
int z = 0;
if (i < z || maxI - i < c)
then throw No();
c = c + i;
return c; }

}

class Start {

static final int x0 = 3;
static final int y0 = 15;

void main() {
int x = x0;
int y = y0;
try { Cnt ct = new Cnt();

/*@ assert
@ x = x0 && y = y0 @*/

ct.set(x);
/*@ assert x = x0 &&
@ y = y0 && ct.c = x0 @*/

x=ct.up(y);
/*@ assert x = ct.c &&
@ y = y0 && ct.c = x0 + y0 @*/

}
catch (No ne) {

/*@ assert
@ x = x0 && y = y0 @*/

x=0; }
catch (Exception e) {

/*@ assert
@ x = x0 && y = y0 @*/

x=-1; }
}
}

class No {
}

Figure 3.2: A Java Counter

54

3.1 Jinja Bytecode

class Cnt {

Void reset () {

0 Load 0

1 Push Intg 0

2 Putfield c Cnt

3 Push Unit

4 Return }

Void set (Integer) {

0 Load 0

1 Invoke reset 0

2 Pop

3 Load 0

4 Load 1

5 Invoke up 1

6 Pop

7 Push Unit

8 Return }

Integer up (Integer) {

0 Push Intg 0

1 Store 2

2 Load 1

3 Load 2

4 IfIntL 7

5 Push (Intg 2147483647)

6 Load 1

7 ISub

8 Load 0

9 Getfield c Cnt

10 IfIntGeq 5

11 New No

12 Push Null

13 Pop

14 Throw

15 Load 0

16 Load 0

17 Getfield c Cnt

18 Load 1

19 IAdd

20 Putfield c Cnt

21 Load 0

22 Getfield c Cnt

23 Return }

}

class Start {

Void main () {

0 Push (Intg 3)

1 Store 1

2 Push (Intg 15)

3 Store 2

4 New Cnt

5 Push Null

6 Pop

7 Store 3

8 Load 3

9 Load 1

10 Invoke set 1

11 Pop

12 Load 3

13 Load 2

14 Invoke up 1

15 Store 1

16 Push Unit

17 Return

18 Store 3

19 Push (Intg 0)

20 Store 1

21 Push Unit

22 Return

23 Store 3

24 Push (Intg -1)

25 Store 1

26 Push Unit

27 Return

from 4 to 16 catch No at 18

from 4 to 16 catch Exception at 23 }

}

Figure 3.3: Counter in Jinja Bytecode

55

Chapter 3 Jinja Bytecode and Virtual Machine

The exception table is a list of tuples (f , t , E , h, d):

types ex-table = (nat × nat × cname × nat × nat) list

Whenever an instruction within the try block ranging from f to t, i.e. [f , t), throws an
exception of type Class E the handler starting at h is executed. If an exception occurs,
for which the current method has no matching handler, control is transferred to the caller
method, where the search for a handler continues. The parameter d, which is always 0
in our case, specifies how many additional values the handler expects on the operand
stack upon entry. This is used in [55] to handle exceptions within expression evaluation,
but is not required for bytecode obtained from Java programs. In Java, exceptions can
only be caught at the statement level.

Jinja programs are lists of class declarations. Each class declaration (C ,S ,fs,ms) consists
of the name of the class C, the name of its direct superclass S, a list of field declarations fs,
which are pairs of field names and types, and a list of method declarations ms. Method
declarations (M ,aTys,rTy ,bd) consist of the method’s name M, its argument types aTys,
its result type rTy and its body bd.

types jvm-prog = (cname × cname × fdecl list × mdecl list) list
fdecl = vname × ty
mdecl = mname × ty list × ty × jvm-method

We write method P C M (see [55]) to lookup the method with name M that is visible from
C in a program P. The result is of the form (D ,Ts,T ,m), where D is the hierarchically
closest class from C that declares a method with name M and (M ,Ts,T ,m) is the
declaration of this method. Analogously we write field P C F (see [55]) to fetch field
declarations. It gives us (D ,T), where D is the closest class that declares a field with
name F and T is the type of that field.

Our PCC system requires programs Π with annotations, which we give in form of a finite
map from positions to logical expressions.

types jbc-prog = jvm-prog × (pos ∼∼> expr)

3.2 Operational Semantics

Jinja programs are interpreted by the Jinja virtual machine, which closely models the
Java VM.

56

3.2 Operational Semantics

3.2.1 States

We model Jinja states σ as triples (x ,h,frs). They consist of a flag x indicating whether
an exception is raised, a heap h, and a method frame stack frs.

types jvm-state = addr option × heap × frame list

In case an exception occurs the flag records a reference to the corresponding exception
object. The heap is a partial map from addresses (natural numbers) to objects.

types heap = addr ⇒ obj option
obj = cname × fields fields = (vname × cname) ⇒ val option

Whenever a method is invoked, a new frame is allocated on the method frame stack.
This frame contains an operand stack, registers and the program counter. In the registers
the Jinja VM stores the this reference, the method’s arguments and its local variables.
The operand stack is used to evaluate expressions.

types frame = opstack × registers × pos
opstack = val list registers = val list pos = cname × mname × nat

stack

regs

pc Start main 10

Addr 5

Null

Cnt set 5

Intg 3 Addr 5

Addr 5 Intg 3

Cnt up 19

Intg 3 Intg 0

Intg 3 Intg 0

Intg 0c:
Cnt5:

environmentheap

frame stack

Intg 0c:
Cnt5:

Intg 0c:
Cnt5:

Intg 3

Intg 3 Intg 15 Addr 5Addr 5

Addr 5

Figure 3.4: Jinja VM Snapshot

3.2.2 Extended Machine

Some constructs of our assertion language (§4) require extended Jinja states (p,σ,e),
which carry additional information in an environment e. Since our framework expects
states as tuples ′pos × ′mem, the first component of a jbc-state is a position.

57

Chapter 3 Jinja Bytecode and Virtual Machine

P = fst Π p = (C , M , pc)
i = (instrs-of P C M)[pc]

σ = (None, h, (st , rg , p) · frs)
exec-instr i P h st rg C M pc frs

= (None,h ′,fr ′ · frs ′)
σ ′ = (None, h ′, fr ′ · frs ′)
p ′ = snd (snd fr ′)
e ′ = e(|cs:=if ∃M n. i =
Invoke M n then h · (cs e)
else if i = Return

then tl (cs e) else cs e|)
((p, σ, e), p ′, σ ′, e ′) ∈ effS Π

nrml

P = fst Π p = (C , M , pc)
i = (instrs-of P C M)[pc]

σ = (None, h, (st , rg , p) · frs)
exec-instr i P h st rg C M pc frs =

(bxac,h ′,)
find-handler P xa h ((st ,rg ,p) · frs)

= σ ′

σ ′ = (None,h,
([Addr xa],rg ′,p ′) · frs ′)

e ′ = e(|cs:=drop (|frs|
− |frs ′|) (cs e)|)

((p, σ, e), p ′, σ ′, e ′) ∈ effS Π
expt

Figure 3.5: Semantics of the extended Jinja VM

types jbc-state = pos × jvm-state × env

The position is also stored in σ, and we write pos σ to access it.

pos :: jvm-state ⇒ pos
pos (x ,h,(st ,rg ,p) · frs) = p

This redundancy is unpleasant for data modeling, but harmless for our verifications. For
reachable states (p,σ,e), we always have p = pos σ.
The environment e contains a virtual stack of call states cs e and a binding lv e for
so-called logical variables, which we introduce in §4.

record env = cs:: heap list lv :: var ⇒ val

Whenever a new frame is allocated on the method frame stack, we record the current
heap on the call stack, which acts like a history variable in Hoare Logics. Whenever a
frame is popped, we also pop an entry from the call stack. In Fig. 3.4 we show a snapshot
of the extended virtual machine. The machine executes instruction IAdd next, which
removes Intg 3 and Intg 0 from the operand stack and pushes Intg 3 back. Formally, we
define the semantics of the extended machine with the two rules shown in Fig. 3.5. One
rule specifies normal, the other one exceptional execution. For the state transformation
inside the jvm-state component of jbc-state we use functions from the original Jinja VM
[55].
In both rules we use instrs-of (see [55]) to retrieve the instruction list of the current
method. The actual execution for single instructions is delegated to exec-instr.

exec-instr :: [instr , jvm-prog , heap, val list , val list , cname, mname, pc, frame list] =>
jvm-state

58

3.2 Operational Semantics

exec-instr (Load n) P h st rg C 0 M 0 pc frs =
(None, h, (rg [n] · st , rg , C 0, M 0, pc+1) · frs)

exec-instr (Store n) P h st rg C 0 M 0 pc frs =
(None, h, (tl st , rg [n:=hd st], C 0, M 0, pc+1) · frs)

exec-instr (Push v) P h st rg C 0 M 0 pc frs =
(None, h, (v · st , rg , C 0, M 0, pc+1) · frs)
exec-instr Pop P h st rg C 0 M 0 pc frs =
(None, h, (tl st , rg , C 0, M 0, pc+1) · frs)

Figure 3.6: Argument Passing

The parameters of exec-instr i P h st rg C 0 M 0 pc frs are the following: the instruction
to execute, the program P, the heap h, the operand stack st and registers rg of the
current frame, the class C 0 and name M 0 of the method that is currently executed, the
current pc, and the rest of the call frame stack frs.
The results of exec-instr are triples, whose first component indicates whether an excep-
tion occurs. If yes (rule expt), we use the function find-handler (see [55]) to do exception
handling similar to the Java VM: it looks up the exception table in the current method,
and sets the program counter to the first handler that protects pc and that matches the
exception class. If there is no such handler, the topmost call frame is popped, and the
search continues recursively in the invoking frame. If no exception handler is found, the
machine halts. If this procedure does find an exception handler (f ,t ,C ,h,0) it sets the
pc to h and empties the operand stack except for the reference to the exception object
xa. Next, we reveal the details of exec-instr, whose definition can also be found in the
Jinja article [55], except for the new arithmetic and branch instructions.

3.2.3 Argument Passing

In Fig. 3.6 we have the semantics of instructions that pass arguments between registers
and the operand stack. With Load n the machine pushes register n onto the stack. The
instruction Store n does exactly the opposite. To push a constant value v onto the
stack, we have Push v. With Pop we remove the topmost stack value.

3.2.4 Arithmetics, Checks and Branches

Instructions performing binary arithmetic operations, checks or branches are defined
in Fig. 3.7. The instruction IBin no expects two integers on top of the stack. It
removes both, applies operation numop op (see §3.1) on them and pushes the result

59

Chapter 3 Jinja Bytecode and Virtual Machine

back. With IfIntCmp ro t the machine checks if the two topmost integers on the stack
satisfy the relation relop ro (see §3.1) and removes these. If so it jumps t instructions
forward (backward if t is negative), otherwise just one. The instruction Goto t jumps t
instructions forward. The instruction CmpEq just checks whether the two topmost stack
values are equal. It removes both and pushes back a boolean with the result. This
result b can then be checked and removed with IfFalse t, which jumps t instructions
forward if b is Bool False. To check the dynamic type of objects the machine provides
Checkcast Cl. It expects an object reference r on top of the stack and checks whether
it has a subtype of Cl. In this case, the function cast-ok P C h v (see [55]) yields true
and Checkcast silently removes the reference. If not, it throws a ClassCast exception.
This is one of the pre-allocated system exceptions, whose address is determined by the
function addr-of-sys-xcpt (see [55]). With Throw, one can raise exceptions explicitly. It
expects an object reference on top of the stack and simply sets the exception flag. If the
reference is Null, it fails with a NullPointer exception.

3.2.5 Heap Access

In Fig. 3.8 we show the instructions that read from or modify the heap. The instruction
Getfield F C expects a reference to an object of type C on top of the stack. It replaces
this reference with the value of this object’s field F. In case the reference is Null, it fails
with a NullPointer exception. The Putfield F C instruction expects a value and a
reference to an object of type C on top of the stack. It removes both and updates the
referenced object field with this value. In case the reference is Null, it raises a NullPointer
exception. With New C the machine creates a new object of type C, initialises its fields
with dummy values and pushes a reference to this object onto the stack. The creation
and initialisation of the new object is handled by blank P C (see [55]), its address is
determined by new-Addr h (see [55]). In case the heap is full, new-Addr h yields None
and New C raises an OutOfMemory exception.

3.2.6 Method Invocation and Return

Finally, Fig. 3.9 shows how methods are invoked and how they return. The instruction
Invoke M n expects n+1 arguments on top of the stack. The bottom one must be a
reference to an object whose class provides or inherits a method with name M taking
n arguments. Here, we abstract from the real JVM [88], where methods are actually
identified by their name and argument types. In case the reference is Null, the machine
throws a NullPointer exception. Otherwise, it fetches the invoked method’s body with
method P C M and allocates a new frame on the frame stack. This frame has an empty

60

3.2 Operational Semantics

exec-instr (IBin no) P h st rg C 0 M 0 pc frs =
(let i2 = the-Intg (hd st);

i1 = the-Intg (hd (tl st))
in (None, h, (Intg (numop no (i1) (i2)) · (tl (tl st)), rg , C 0, M 0, pc+1) · frs))

exec-instr (IfIntCmp ro t) P h st rg C 0 M 0 pc frs =
(let i2 = the-Intg (hd st);

i1 = the-Intg (hd (tl st))
in (None, h, ((tl (tl st)), rg , C 0, M 0, (if relop ro i1 i2

then nat(int pc+t) else pc+1)) · frs))
exec-instr (Goto i) P h st rg C 0 M 0 pc frs =
(None, h, (st , rg , C 0, M 0, nat(int pc+i)) · frs)
exec-instr CmpEq P h st rg C 0 M 0 pc frs =
(let v2 = hd st ;

v1 = hd (tl st)
in (None, h, (Bool (v1=v2) · tl (tl st), rg , C 0, M 0, pc+1) · frs))

exec-instr (IfFalse i) P h st rg C 0 M 0 pc frs =
(let pc ′ = if hd st = Bool False then nat(int pc+i) else pc+1
in (None, h, (tl st , rg , C 0, M 0, pc ′) · frs))

exec-instr (Checkcast C) P h st rg C 0 M 0 pc frs =
(let r = hd st ;

xp ′ = if ¬cast-ok P C h r then baddr-of-sys-xcpt ClassCastc else None
in (xp ′, h, (st , rg , C 0, M 0, pc+1) · frs))
exec-instr Throw P h st rg C 0 M 0 pc frs =
(let xp ′ = if hd st = Null then baddr-of-sys-xcpt NullPointerc

else bthe-Addr(hd st)c
in (xp ′, h, (st , rg , C 0, M 0, pc) · frs))

Figure 3.7: Arithmetics, Checks and Branches

operand stack. The initial registers contain the this reference at location 0 and the
method’s arguments at the locations 1 to n. The remaining registers are used to store
local variables and are initialised with arbitrary. Here we use the function replicate k v,
which yields a list of v elements of length k. In Fig. 3.10 we illustrate how the program
from Fig. 3.3 invokes the method up from method main.
A method returns to its call frame when a Return instruction occurs. The topmost value
of the operand stack is the method’s result and is pushed onto the call frame’s operand
stack, after all the arguments have been cleared. In Fig. 3.11 we show how method up
returns to main.

61

Chapter 3 Jinja Bytecode and Virtual Machine

exec-instr (Getfield F C) P h st rg C 0 M 0 pc frs =
(let v = hd st ;

xp ′ = if v=Null then baddr-of-sys-xcpt NullPointerc else None;
(D ,fs) = the(h(the-Addr v))

in (xp ′, h, (the(fs(F ,C)) · (tl st), rg , C 0, M 0, pc+1) · frs))
exec-instr (Putfield F C) P h st rg C 0 M 0 pc frs =
(let v = hd st ;

r = hd (tl st);
xp ′ = if r=Null then baddr-of-sys-xcpt NullPointerc else None;
a = the-Addr r ;
(D ,fs) = the (h a);
h ′ = h(a 7→ (D , fs((F ,C) 7→ v)))

in (xp ′, h ′, (tl (tl st), rg , C 0, M 0, pc+1) · frs))
exec-instr (New C) P h st rg C 0 M 0 pc frs = (case new-Addr h
of None ⇒ (baddr-of-sys-xcpt OutOfMemoryc, h, (st , rg , C 0, M 0, pc) · frs)
| bac ⇒ (None, h(a 7→blank P C), (Addr a · st , rg , C 0, M 0, pc+1) · frs))

Figure 3.8: Heap Access

exec-instr (Invoke M n) P h st rg C 0 M 0 pc frs =
(let ps = take n st ;

r = st [n];
xp ′ = if r=Null then baddr-of-sys-xcpt NullPointerc else None;
C = fst(the(h(the-Addr r)));
(D ,M ′,Ts,mxs,mxl0,ins,xt)= method P C M ;
f ′ = ([],[r]@(rev ps)@(replicate mxl0 arbitrary),D ,M ,0)

in (xp ′, h, f ′ · (st , rg , C 0, M 0, pc) · frs))
exec-instr Return P h st0 rg0 C 0 M 0 pc frs =
(if frs=[] then (None, h, []) else

let v = hd st0;
(st ,rg ,C ,m,pc) = hd frs;
n = length (fst (snd (method P C 0 M 0)))

in (None, h, (v · (drop (n+1) st),rg ,C ,m,pc+1) · tl frs))

Figure 3.9: Method Invocation and Return

62

3.2 Operational Semantics

stack

regs

Intg 15 Addr 5

heap

Cnt5:
Intg 3c:

Invoke up 1

s

Null Intg 3 Intg 15 Addr 5

stack

regs

Intg 15 Addr 5

heap

Cnt5:
Intg 3c:

s’

Null Intg 3 Intg 15 Addr 5

regsAddr 5 Intg 15

stack

Start
main

14
pc

Start
main

14
pc

Cnt
up
0

pc

Figure 3.10: Invoke up 1

3.2.7 Initial States

We require Jinja Bytecode programs to have a main method. For simplicity we assume
that this method is named main, has no arguments, and belongs to a class called Start.
This means we start a program at position (Start ,main,0). The initial operand stack is
empty and the registers are initialised with arbitrary values. The initial heap (start-heap
(fst Π)) contains three entries for system exceptions NullPointer, ClassCast and Out-
OfMemory. The initial environment contains an empty call stack and an unrestricted
binding of logical variables.

initS Π = {(p, σ, e). p = (Start , main, 0) ∧ cs e = [] ∧ (let (, , (, , (mxr ,)))
= method (fst Π) Start main in σ = (None, start-heap (fst Π), [([], Null · replicate mxr
arbitrary , p)]))}

3.2.8 Simulation

The operational semantics effS describes the behaviour of our extended Jinja VM. In
addition to ”normal” states of type jvm-state it also maintains an environment env. The
original Jinja VM [55] is defined as a relation P ` σ

jvm−→1 σ ′ on normal states only:

- ` - jvm−→1 - :: jvm-prog ⇒ (jvm-state × jvm-state) set

Although the definition of P ` σ
jvm−→1 σ ′ uses the same auxiliary functions, namely

exec-instr, find-handler and so on, it behaves slightly differently. In Jinja [55] exception
handlers can be entered with additional arguments on the operand stack. If so, the num-

63

Chapter 3 Jinja Bytecode and Virtual Machine

stack

regs

Intg 15 Addr 5

heap

Cnt5:
Intg 18c:

s

Null Intg 3 Intg 15 Addr 5

regsAddr 5 Intg 15

stack

stack

regs

Intg 18

heap

Cnt5:
Intg 18c:

s’

Null Intg 3 Intg 15 Addr 5

Intg 18 Return

Start
main

14
pc

Cnt
up
23

pc

Start
main

15
pc

Figure 3.11: Return

ber d in the corresponding table entry (f ,t ,E ,h,d) says how many elements are expected
below the reference to the exception object. This feature is not required for programs
translated from Java bytecode and complicates the definition of our abstract semantics
wpF unnecessarily. For this reason we forbid it and define the wellformedness checker
wf (see §6.2) such that it only accepts d=0 in all exception handler tables. The rule
expt in Fig. 3.5 expects this and matches only if find-handler yields an operand stack
containing just the reference, i.e. [Addr xa]. Another difference lies in the termination
of both machines. The semantics jvm−→1 stops executing a program if it reaches a state
with an empty frame stack. This can either be due to an uncaught exception or to a
return from the main method. In other words, states with an empty frame stack are
final states.

final :: jvm-state ⇒ bool
final σ = snd (snd σ) = []

The following lemma guarantees that jvm−→1 stops in case of a final state.

Lemma 3.1 final σ −→ (@σ ′. P ` σ
jvm−→1 σ ′)

Our extended machine effS never reaches states with an empty frame stack. It stops
immediately before such states would be reached. Both rules nrml and expt only
permit progress to states with at least one frame. Having non empty frame stacks all
the time simplifies the evaluation of some constructs in our assertion language, which
we define in the next chapter. Apart from that both machines simulate each other for
wellformed programs (d = 0).

64

3.3 From Java to Jinja Bytecode

Theorem 3.1 Every reachable, non-final transition in jvm−→1 also occurs in effS.

wf Π C0 = fst (ipc Π) M0 = fst (snd (ipc Π))
fst Π ` start-state (fst Π) C0 M0 jvm−→ σ

fst Π ` σ
jvm−→1 σ ′ ¬ final σ ′

∃ e ′. ((pos σ, σ, e), pos σ ′, σ ′, e ′) ∈ effS Π

Theorem 3.1 is extremely important to transfer our notion of safety, which we define
relative to effS, to the actual behaviour a program shows on the non-extended Jinja
VM jvm−→1. If effS could not simulate every step of jvm−→1, a program could be safe, just
because we ignore some dangerous transitions of jvm−→1. From theorem 3.1 we know that
a program than runs safely on effS also does so on jvm−→1. The theorem has a premise
that σ is reachable and expresses it with jvm−→, which is just a shortcut for the transitive
reflexive closure of jvm−→1, i.e. jvm−→ = (jvm−→1)∗. We use this restriction to prove that both
machines behave equally in case of exceptions. If we know that σ is reachable, we know
that all positions recorded on the frame stack lie inside domC (P ,An). Then we know
that all exception handler tables find-handler takes into account have been checked by
wf and have d = 0.

The other way round, we also have a simulation, even for non-reachable states.

Theorem 3.2 Every transition in effS also occurs in jvm−→1.

wf (P , An) ((p, σ, e), p ′, σ ′, e ′) ∈ effS (P , An)

P ` σ
jvm−→1 σ ′

Theorem 3.2 states that the extended machine only shows behaviour that also occurs in
jvm−→1. This means, the extended machine effS Π does not have unrealistic transitions,

which would need to be verified although they never can occur in the non-extended one.

3.3 From Java to Jinja Bytecode

To be able to use our system on existing Java classfiles we developed a translation tool
from Java classfiles to Jinja’s class format. For this purpose jissa [1], a tool which
disassembles Java classfiles to ASCII text, turns out to be handy. In contrast to other
tools, e.g. javap or BCEL [2], jissa allows its users to customise the output easily. We
translate all Java bytecode instructions to meaningful Jinja counterparts when possible.

65

Chapter 3 Jinja Bytecode and Virtual Machine

Unsupported bytecode instructions are substituted by dummy instructions, e.g. Goto 1,
Push X or Pop. To get an idea of what is going on, let us look at an example. Compiling
the Java program of Fig. 3.2 with javac version 1.4.1 and translating it with j2jin gives
us the code shown in Fig. 3.3. Whenever a new object is created the javac compiler
emits a new C, which allocates the object an pushes its reference onto the stack, followed
by a constructor invocation. This is done by two instructions. First dup duplicates the
reference, then invokespecial removes it and invokes the constructor. In Jinja, we do
not support constructors. Objects are simply created with default field values. Instead
of invoking constructors j2jin replaces dup with Push Null and invokespecial with
Pop. In case all objects only have empty standard constructors, this amounts to the
same. In Fig. 3.3 we have this situation at positions 5 and 6 of method main. Another
deviation occurs when methods returning Void are invoked. In Jinja such methods yield
Unit as result value, whereas real bytecode does not yield any result value. To deal
with this, j2jin inserts a Pop instruction whenever a Void method returns. Before the
Return it inserts Push Unit. For example at positions (Start ,main,11) and (Cnt ,set ,7)
we can observe this modification. Without these adjustments the Jinja bytecode verifier
would reject the code. Since inserting instructions affects the control flow, j2jin also
has to adjust jump targets and address labels in exception handler tables.

3.4 Conclusion

Many parts of the Jinja VM we presented in this chapter are taken from [55]. Since the
concrete semantics is very helpful to understand the subtle transformations we will later
on perform in the abstract semantics and because we added IBin and IfIntCmp, we have
presented the full definition of exec-instr. We believe that the Jinja VM closely resembles
the real Java VM as defined in [88]. The formalisation is mostly identical to the one
Klein [54] used for the verification of the Java bytecode verifier. This formalisation has
by now been completed to the full JVM. In case we are interested in extending our PCC
framework towards full Java bytecode, this would be the machine to go for. Most features
the Jinja VM misses should not cause conceptual challenges. Static methods are even
simpler than dynamic ones. Non-standard constructors are challenging for the bytecode
verifier [54] (field initialisation), but semantically they are just virtual method calls.
Arrays require significant changes in the type system of the bytecode verifier and also in
our assertion logic, which we introduce in the next chapter. However, Klein effectively
shows in his verification of the bytecode verifier how to do it [54]. A big challenge are
threads. Although we could simulate parallelism by making effS non-deterministic, this
approach would lead to enormously big control flow graphs. This and the fact that one
needs non-interferent annotations [9], make a naive approach practically infeasible.

66

4 Bytecode Assertion Logic

This chapter defines an assertion logic for Jinja bytecode. We need it to write
annotations describing machine states, to express the safety policy as well
as the verification conditions. The logic we propose here is first order and
has interpreted symbols for integer arithmetic and virtual machine specific
operations.

Over the years various logics for object oriented programs have been proposed. Abadi
and Leino [5] define a Hoare Logic based on a combination of a type system and first
order logic with equality. Oheimb [75] uses a shallow embedding of Isabelle/HOL to
define a Hoare logic for Java. A very prominent annotation language for Java is JML
[58] or the down-sized version of it used in ESC Java [40]. However, all of the logics
have been designed for source languages, not for bytecode. To verify bytecode people
suggested other ways. For example the LOOP tool [91] and the JIVE verifier [62] can
be used to turn Java classes into proof obligations in form of theory files for a theorem
prover. Since these tools are complex, but not verified themselves, they face the same
problems with trustworthiness as Touchstone PCC (see §1.3.1). Strother Moore has
formalised the Java VM in ACL2 and proposes to verify bytecode programs directly on
the semantics [3]. He thus follows FPCC (see §1.3.2) in its purest form. Recently, also
the interest in logics for bytecode started growing [79, 14, 10]. However, as we point out
in the conclusion, these publications do not focus on the assertion level. Most try to
port Hoare Logic to the bytecode level in order to reason about input/output relations
for terminating bytecode. We are rather interested in safety and intermediate states.
Hence, our main interest is the assertion language.
Albeit the data abstractions of Java and its bytecode are similar, there are differences in
the states. The states of a Java VM contain a lot more details than those at the source
level.
For example, the operand stack is always empty when a Java statement is fully processed.
An assertion logic for Java does therefore not have to bother about the operand stack.
At the bytecode level we want to able to reason about this stack. We want to simulate
all the fine grained effects bytecode instructions have on it at a syntactic level.
Since safety violations not just happen at the points when Java statements begin or end,
our assertion logic needs to be able to take snapshots of the VM before and after the

67

Chapter 4 Bytecode Assertion Logic

execution of single instructions. The assertion logic we present in this chapter is tailored
for this purpose. As we will prove in §6.6 it can express weakest preconditions for every
Jinja instruction and any postcondition.

4.1 Syntax and Semantics of Assertions

Our assertion language has the syntax shown in Fig. 4.1. It is first order arithmetic with
special constructs for adequate modelling of virtual machine states. All these constructs
are used to express our safety policy (no arithmetic overflow) and weakest preconditions
for Jinja VM instructions. Next, we explain the semantics of all language constructs.

datatype expr =
Rg nat register

| St nat operand stack cell
| xvaly constant value
| NewA nat address for nth new object
| Gf vname cname expr get field value
| Ty expr ty type check
| FrNr height of method frame stack
| Pos pos position check
| Call expr evaluation in call state
| Catch cname expr evaluation in catch state
| Num expr num-op expr numerical expression
| Rel expr rel-op expr numerical relation
| xify expr xtheny expr xelsey expr conditional
| expr x=y expr equality
| x¬y expr negation
| expr x⇒y expr implication
| x

∧
y expr list conjunction

| Lv nat logical variable
| x∀y nat . expr quantification (logical vars)

Figure 4.1: Jinja bytecode assertion language.

Each expression can be evaluated for a given jbc-state and yields some Jinja value.

evalE :: jbc-prog ⇒ jbc-state ⇒ expr ⇒ val option

The expressions come in two categories. From Rg nat to Catch expr we have JVM spe-
cific constructs. These are needed to access various parts of Jinja states in annotations.
The remaining constructs are purely logical and are required to construct verification
conditions or to express safety policies.

68

4.1 Syntax and Semantics of Assertions

4.1.1 JVM Constructs

Since we want to use the assertion logic to abstract Jinja states, we need various con-
structs to access different parts of such states. Most instructions manipulate only the
topmost method frame. Instead of making the whole frame stack accessible in the logic,
which would complicate the evaluation range, we decided to use constructs for individ-
ual parts only. In the following we define the meaning of each expression. The reader
may check these definitions against the example expressions shown in Fig. 4.3, which we
evaluate under the situation depicted in Fig. 4.2. This situation occurs if we start the
program from Fig. 3.3 with x0 set to −3, instead of 3.

With Rg k and St k we access the kth register or element on the operand stack. If k
exceeds the register range or stack height, these expressions yield None.

evalE Π (p,σ,e) (Rg k) = (let (x ,h,frs)=σ; (st ,rg ,p)=hd frs
in (if k < length rg then brg [k]c

else None))

evalE Π (p,σ,e) (St k) = (let (x ,h,frs)=σ; (st ,rg ,p)=hd frs
in (if k < length st then bst [k]c

else None))

Constants xvy evaluate to their values v.

evalE Π s xvy = bvc
To improve readability we sometimes abbreviate constants like xIntg 5y, xBool Truey or
xBool Falsey with x5y, xTy and xFy.

The NewA n expression yields the reference that is allocated in the heap for the nth
object. If the heap is full, it yields Null. We use this operator to express the semantics
of the New instruction. This is one of the few situations where weakest precondition
construction becomes difficult. The new state has something, e.g. a new address, that is
not directly accessible in the current state. In many cases the NewA expression can be
avoided as [22] shows. In our wpF operation, we will also replace field accesses of newly
created objects by their default values.

Eliminating all instances of NewA could be achieved at the level of formulas [22], which
in our cases are expressions always yielding values of the form Bool b. However, using
this elimination right from the start leads to difficulties. Our proofs for the wpF function
would become a lot more involved, as non-trivial transformations and the distinction be-
tween expression and formulas lead to complications in the structural induction scheme.
Eliminating NewA where possible in a post-processing optimiser is an alternative we
prefer. Moreover, NewA turns out to be useful when it comes to exceptions. In our

69

Chapter 4 Bytecode Assertion Logic

completeness proof for the VCG, we require the assertion language to be expressive
enough for sharp branch conditions of all instructions. In case of the New instruction,
we must be able to express the situation when an OutOfMemory exception occurs. The
expression NewA 0 x=y xNully exactly does that. To describe the semantics of NewA n
formally, we use the auxiliary function new-Addr h (see [55]), which yields either bac if
a is the reference that is allocated next, or None if the heap is full. With evalNewA we
repeat allocating addresses until we get the address for the nth new object.

evalE Π s (NewA n) = (let (p, σ, e) = s; (x , h, frs) = σ in bevalNewA h nc)
evalNewA h 0 = (case new-Addr h of None ⇒ Null | bac ⇒ Addr a)
evalNewA h (Suc n) = evalNewA (h(the (new-Addr h) 7→ arbitrary)) n

To evaluate Gf F C ex, which corresponds to (C)ex .F in Java, we first check whether
ex evaluates to an address value. If so, we fetch the value of the corresponding object
field, otherwise we return None.

evalE Π s (Gf F C ex) =
(case evalE Π s ex of None ⇒ None
| bvc ⇒

case v of
Addr a ⇒
blet (p, σ, e) = s; (x , h, frs) = σ; (D , fs) = the (h a)
in the (fs (F , C))c

| - ⇒ None)

To check the exact type of some expression, we use Ty ex tp. Note that this check does
not take the class hierarchy into account. Subtyping can be expressed by a disjunction
of Ty ex tp expressions.

evalE Π s (Ty ex tp) =
bBool

(case evalE Π s ex of None ⇒ False
| bvc ⇒

case v of Unit ⇒ tp = Void
| Null ⇒ tp = NT
| Bool b ⇒ tp = Boolean
| Intg i ⇒ tp = Integer
| Addr a ⇒

let (p, σ, e) = s; (x , hp, frs) = σ
in case hp a of None ⇒ False
| bobc ⇒ tp = Class (fst ob))c

Expression FrNr counts the number of frames on the frame stack. This is important to

70

4.1 Syntax and Semantics of Assertions

specify initial states with initF correctly.

evalE Π s FrNr = (let (p, σ, e) = s; (x , h, frs) = σ in bIntg (int |frs|)c)
To check the current program position we have Pos p. In addition this expression also
checks other properties that should hold whenever a program Π reaches p at runtime.
The frame stack must not be empty and the position recorded on the topmost frame
must coincide with the program counter p, the first component of a jbc-state. In addition,
we check the exception flag to be unset. Note that effS uses this flag only internally
while it searches for a handler, but never yields a successor state with a set exception
flag. Finally, we require the frame stack to be wellformed, i.e. wf-frs Π p.

evalE Π s (Pos q) =
bBool

(let (p, σ, e) = s; (x , h, frs) = σ; (st , rg , pf) = hd frs
in q = p ∧ pf = p ∧ x = None ∧ frs 6= [] ∧ wf-frs Π frs)c

The predicate wf-frs Π frs checks two things: First, the instruction of the bottom frame
lies in the main method, whose class and method name is determined by ipc Π. Second,
the program position of each frame lies in the code domain and points to an instruction
that invokes the method of the frame above. We write callers Π p for a list of all
positions that call the method p belongs to.

callers :: jbc-prog ⇒ pos ⇒ pos list
callers Π (C , M , pc) = [pc∈domC Π . ∃n. cmd Π pc = bInvoke M nc]
wf-frs:: jbc-prog ⇒ (val list × val list × pos) list ⇒ bool
wf-frs Π frs =

∀ i<|frs|.
let (st i, rg i, pi) = frs [i]; (stc, rgc, pc) = frs [i + 1];

(C i, M i, pci) = pi; (C 0, M 0, pc0) = ipc Π

in pi ∈ set (domC Π) ∧
(if i + 1 = |frs| then C i = C 0 ∧ M i = M 0 else pc ∈ set (callers Π pi))

With Call and Catch we evaluate expressions in previous states. The Call ex expression
evaluates ex in the call state of the current method. This helps to specify postconditions
of methods modularly. For example, annotating a Return instruction with Rg 1 x=y Call
(Rg 1) x+y x1y means that the returning method has incremented register 1.

This technique is related to primed variables in VDM [53], except that we can set entire
expressions into a different temporal context, just like temporal logic operators do. This
is important, as some postconditions need old values of object fields or other parts of the
heap. Another reason is that we use this operator to restore the call context, when we

71

Chapter 4 Bytecode Assertion Logic

regs

Intg -3 Addr 5

Throw

s

Addr 5 Intg -3

regs

Intg -3 Addr 5

Null Intg -3 Intg 15 Addr 5

Start
main
10

pc

Cnt
set
5

s'

regs

Addr 6

Null Intg -3 Intg 15 Addr 5

Start
main
18

pc

stack

regsAddr 5 Intg -3

Cnt
up
14

pc

stack

stack stack

Addr 6

Cnt5:
Intg 0c:

heap
Cnt5:

Intg 0c:

6: No

heap
(set)

Cnt5:
Intg -1c:

heap
(main)

env

heapCnt5:
Intg 0c:

6: No

env

Figure 4.2: Throw

i Q i evalE Π s Q i

1 Rg 1 bIntg −3 c

2 St 0 bAddr 6 c

3 NewA 0 bAddr 7 c

4 Pos (Cnt ,up,14) bBool Truec

5 Call (Rg 0) bAddr 5 c

6 Catch No (Rg 0) bNullc

7 Catch No (Gf c Cnt (Rg 0)) bIntg −1 c

Figure 4.3: Example expressions and evaluations

72

4.1 Syntax and Semantics of Assertions

compute the verification condition of a method return. For example, if register 1 had
value Intg 5 before the method call, the programmer might annotate the call position
with Rg 1 x=y x5y and the return position with Rg 1 x=y x6y. Our VCG would then produce
the following proof obligation, where we have to show that the postcondition together
with the call annotation (evaluated in the call state!) imply the annotation at the return
position:
(Rg 1 x=y Call (Rg 1) x+y x1y x∧y Call (Rg 1 x=y x5y)) x⇒y Rg 1 x=y x6y. Details about this
construction can be found in [98] and in §6.5. We use the auxiliary function callstate to
restore the call state of the current method. The program counter, registers and operand
stack at call time are taken from the method frame beneath. The heap can be restored
from the recordings in the environment. In case of a main method state (no caller), Call
ex evaluates to None.

evalE Π s (Call ex) =
(let (p, σ, e) = s; (x , h, frs) = σ
in if |frs| ≤ 1 then None else evalE Π (callstate s) ex)

callstate::jbc-state ⇒ jbc-state
callstate (p,(x ,h,f · (s,r ,p ′) · frs),e) = (p ′,(None,hd (cs e),(s,r ,p ′) · frs),e(|cs:=tl(cs e)|))
callstate s = s

Exceptions impose a similar problem than method returns. In case the current method
provides a handler, exceptions are not a big deal. Control is transferred to the handler
and the operand stack becomes emptied. If there is no handler, frames are chopped off
the frame stack until a method with a catching handler is found. The effect on the state
is quite drastic and imposes a real problem for our weakest precondition operator, which
has to reflect such changes by transforming expressions. How many frames exception
handling climbs up is hard to determine statically. For example, if the current method is
recursive and only the top level method has a catching handler, the number of removed
frames coincides with the current recursion depth. Our solution to this problem is to
introduce a special operator for exception handling. Just like Call ex the construct
Catch X ex evaluates ex in a previous state. In this case we restore the state under
which we have last been in the try block that has a catching handler for exception X.
The auxiliary function catchstate chops off frames until a catching handler is found. For
this purpose it uses ex-table P C M and match-ex-table P X pc xt (see [55]). The first
fetches a method’s exception table, while the second searches such a table for an entry
that catches exceptions of type X thrown from pc. It yields a pair pd consisting of the
entry position pch of the catching handler and a number d, i.e. pd = b(pch,d)c, or None
if there is no such handler. Once a catching handler is found, catchstate restores the
state under which we have last been in the catching method. The frame stack of this
state is a suffix of the current frame stack. The heap at that time is recorded in the
environment of the current state. Note that the resulting state is not the state under

73

Chapter 4 Bytecode Assertion Logic

which the handler is entered, but the state under which we have last been in the method
with the try block. For the former state we would use find-handler, which in contrast
to catchstate keeps the current heap and transfers control into the handler.

evalE Π s (Catch X ex) =
(let (p, σ, e) = s; (x , h, frs) = σ
in if |frs| ≤ 1 then None else evalE Π (catchstate (fst Π, X , s)) ex)

catchstate :: (jvm-prog × cname × jbc-state) ⇒ jbc-state
catchstate (P ,X ,(p,(x ,h,fr · (st ,rg ,p) · frs),e)) =
(let (C ,M ,pc)=p in (case (match-ex-table P X pc (ex-table-of P C M))

of None ⇒ catchstate (P ,X ,(p,(None,hd (cs e),(st ,rg ,p) · frs),e(|cs:=tl(cs e)|)))
| bpdc ⇒ (p,(None,hd (cs e),(st ,rg ,p) · frs),e(|cs:=tl (cs e)|))))

catchstate (P ,X ,s) = s

4.1.2 Logical Constructs

The arithmetic, relational, conditional and logical expressions are evaluated recursively.
First, we evaluate the argument expressions, then we apply the corresponding arithmetic,
relational, conditional or logical operator on the results. This is done by the lifting
functions liftI and liftR, which we introduced in §3.1. If any argument value has not
the expected type the result becomes None. For better readability, we write concrete
instances of numerical expressions Num e no e ′ and relations Rel e ro e ′ in the following
style: e x+y e ′ , e x−y e ′, e x∗y e ′, e x<y e ′, e x6y e ′, e x>y e ′, e x>y e ′ and e x=y e ′.

evalE Π s (Num e1 no e2) = liftI (numop no, evalE Π s e1 , evalE Π s e2)

evalE Π s (Rel e1 ro e2) = liftR (relop ro, evalE Π s e1 , evalE Π s e2)

evalE Π s (xify b xtheny t xelsey e) =
(if the-Bool (evalE Π s b) then evalE Π s t else evalE Π s e)

evalE Π s (e1 x=y e2) = bBool (evalE Π s e1 = evalE Π s e2)c

evalE Π s (x¬y ex) = bBool (¬ the-Bool (evalE Π s ex))c

evalE Π s (e1 x⇒y e2) = bBool (the-Bool (evalE Π s e1) −→ the-Bool (evalE Π s e2))c

74

4.2 Logical Judgments

evalE Π s (x

∧
y es) = bBool (∀ ex∈set es. the-Bool (evalE Π s ex))c

A logical expression ex is true if it evaluates to bBool Truec, otherwise it is false. From
Winskel [99] we take the idea of distinguishing program and logical variables. The first
(registers, stack ...) depend on the jvm-state and may be modified by instructions. The
latter are evaluated in a separate binding lv e, which we made part of the environment
e in jbc-state, and are unaffected by instructions. In the substitutions we use to ex-
press the effect of instructions, we will neither transform nor introduce logical variables.
Hence, no renaming of bound variables is required. From our experience with a different
instantiation, where we only had one notion of variable, we can say that this greatly
simplifies the wpF operator.

evalE Π (p, σ, e) (Lv k) = lv e k

Quantification only binds logical variables. The expression x∀y x . ex holds, if ex holds
no matter what value v the logical variable Lv x is bound to.

evalE Π (p, σ, e) (x∀y x ex) =

bBool (∀ v . the-Bool (evalE Π (p, σ, e(|lv := (lv e)(x := v)|)) ex))c

4.2 Logical Judgments

To use this expression language as a logic, we need judgements for validity and provabil-
ity. Models are program states under which an expression evaluates to bBool Truec.
Π,s |= ex = evalE Π s ex = bBool Truec
Provability ` is usually defined by giving a set of axioms and inference rules. However,
we can also “define” provability semantically and use the inference system of HOL for
proofs. We regard a formula as provable if we can prove in HOL that it holds for all
states.

Π ` ex = (∀ s. Π,s |= ex)

In earlier instantiations, we also defined ` semantically, but only required all reachable
states [97] or even only anno-reachable states [98] to satisfy the expression. Although
this works for our purpose of proving safety, it is rather unnatural as it drags the oper-
ational semantics into the logic. The notion of provability as defined above agrees with
the semantical conception of provable formulas in standard text books on logic[46] and
is completely detached from the program semantics. This way the safety logic abstracts

75

Chapter 4 Bytecode Assertion Logic

from the programming language and proving verification conditions becomes a purely
logical task.

4.3 Design Choices

The assertion language we just introduced is the result of various considerations. In this
section we shed some light on why we ended up with this format.

4.3.1 Deep or Shallow?

When one embeds a language into a theorem prover a major decision is whether to make
it shallow or deep. In this chapter we have realised a deep embedding, because we defined
expressions as a datatype expr. For a simpler instantiation of our PCC framework, we
formalised safety logics in both styles and compared them [96]. In a shallow embedding
one reuses the syntax of the theorem prover and defines language constructs purely
semantically [73, 75, 83]. In our case this means expressions are modelled as HOL
predicates on Jinja states, i.e. expr = (jbc-state ⇒ bool). A shallow embedding has
many advantages. First of all, it only costs little effort to formalise. Second, if the
logic of the theorem prover is very expressive, which clearly is the case for HOL, we can
easily describe complex sets of states. We can define functions in HOL and use them in
assertions. To transform the meaning of a shallow embedded assertion we can compose
it witch a function that modifies the state. For example Hoare’s assignment rule in
a shallow embedding looks like {λ s. Q s(x :=e s)} x :=e { Q }. Instead of syntactic
substitutions, we update the semantical object, the state. Avoiding substitutions clearly
saves proving effort. The downside is that, we cannot talk in the theorem prover about
the structure of language constructs. All we can do is application. If we want to
compare two shallow embedded expressions, e.g. e = e ′, we end up with comparing two
functions semantically, which is undecidable in general. Also induction on the size of
expressions is impossible. In a deep embedding one defines a datatype for the language,
and thus introduces syntax. This allows to do induction, comparison, and optimisation.
The latter two are in particular important to our application. With comparison we can
extract information from language expressions. In our case the successor function succsF
will make use of this and extract information about the potential successors of method
invocations and exception throws from the annotations at these instructions. Since
the syntax is visible, we can also do optimisations of formulas. In case of verification
conditions this turned out to greatly reduce the size of formulas and their proofs. Even
without optimisations the proofs of verification conditions in the deep embedding turned
out to be smaller. The reason is, that in the deep embedding semantic transformations

76

4.3 Design Choices

are done by substitutions, which take place inside the VCG. When we prove the resulting
formula this work is already done. In the shallow embedding the VCG expresses semantic
transformations via λ terms that change the state. These transformations are carried
out when we do β contraction. In contrast to syntactic substitutions this happens inside
the proof, when we apply the semantical judgement to the verification condition.

4.3.2 What Language Constructs?

In our assertion language one finds three categories of expressions reflecting the three
purposes of the language. We have purely logical expressions for constructing verifica-
tion conditions. Then we have arithmetic expressions, which are important to specify
a safety policy against arithmetic overflow. Finally, we have various constructs for ac-
cessing different parts of Jinja states in order to abstract them in annotations. All these
constructs evaluate to primitive Jinja values. This makes the language first order and
expressions easily composable. When we introduced our language constructs we found
that one cannot blindly add new constructs depending on the state. If we introduce
state dependent language construct, e.g. Gf F C, we have to make sure that we can also
express all effects instructions have on it. For example, once we introduced Gf, we re-
alised that we also need NewA and xify - xtheny - xelsey to compute weakest preconditions. If
we dropped all heap dependent language constructs, we could also achieve an expressive
assertion logic, because no heap transformation would affect any logical construct. An
extreme example of an expressive assertion logic would be a logic with only one formula,
e.g. xTy. It is expressive, because all weakest preconditions of assertions would be xTy,
which is representable in the logic.

4.3.3 Typed or Untyped?

For simplicity, our assertion language is untyped. We do not even distinguish between
formulas and expressions. Earlier instantiations [96] showed that this distinction leads
to duplication of functions and lemmas for both types. The uniform representation
avoids this and still allows categorisation with type checking functions. In our case the
semantics of ill-typed expressions is None, which is one of the many representations of
the truth value False.

4.3.4 Higher Order Abstract Syntax

A convenient way to reduce the number of different constructs would have been to de-
fine expr as a datatype with higher order abstract syntax. That is using constructors

77

Chapter 4 Bytecode Assertion Logic

with functions as arguments. For example one could define a binary Apply operator as
follows:

expr = . . . | Apply (val ⇒ val ⇒ val) expr expr

In the semantics one would then simply apply the provided function on the results for
the argument expressions.

evalE Π s (Apply f e1 e2) = (lift f) (evalE Π e1) (evalE Π e2).

Many expressions like relations, binary arithmetic and so on could be defined in that
way. Since the function f only operates on values (not states!) the definition of a weak-
est precondition operator would also cause no problems. Only the argument expressions
need to be modified. However, such a representation of formulas also introduces prob-
lems. First, like in a shallow embedding the syntax of the operator f is not accessible
for other HOL functions. This hampers extracting information from or optimising such
formulas. For example the formula Apply (λ x y . x + y) x2y x3y cannot be optimised to x5y.
Second, the notation is bound to Isabelle/HOL. Employing other provers for the safety
logic becomes quite difficult. Third, the representation of such formulas causes problems
for the code generator. If we generate code for the expression above the generator would
turn λ x y . x + y into ML code computing + rather than leaving the representation as
it is. Although the code generator now supports a Quoting mechanism that allows to
handle this, it is more convenient to avoid it.

4.3.5 Inference Rules?

Usually one defines provability ` with axioms and inference rules. For example:

Π ` x¬y (x¬y ex) x=y ex

In this fashion we could define a calculus for our safety logic and then connect provability
` with validity |= by conducting proofs for correctness and completeness. If one wants
to employ a very specialised safety logic, such as a type system that ensures some kind
of type safety, this would be the way to go. In our case the situation is different. Except
for the Jinja specific operations our safety logic is what the literature calls first order
arithmetic (FOA). We can quantify over primitive values and have arithmetic operations
with fixed interpretation. Since rules for such a standard logic are well researched we
decided against a deep embedded inference system. Another reason is that rules of the
form above, do not work well with the Isabelle simplifier, which rewrites =, but not
x=y. The equation x¬y (x¬y ex) = ex would work well as a rewrite rule, but is logically
wrong, because both sides are syntactically different elements of the datatype expr and
= means syntactic equivalence. For these reasons we define ` directly with |= and prove
formulas on the semantic side. This way we can employ Isabelle/HOL inference rules

78

4.4 Conclusion

Π,s |= f1 Π,s |= f2
Π,s |= x

∧
y [f1 , f2]

ConjI

∀ v . Π,(p, σ, e(|lv := (lv e)(x := v)|)) |= f
Π,(p, σ, e) |= x∀y x f

AllI

∃n. Π,s |= ex x=y xIntg ny
Π,s |= Ty ex Integer

TyIntI

Π,s |= xIntg 1y x<y FrNr Π,s |= x¬y (Call f)
Π,s |= Call (x¬y f)

CallNeg

Figure 4.4: Semantical proof rules

and decision procedures for our safety proofs. We can also derive rules to guide the proof
construction. For example Fig. 4.4 shows such derived rules.

The rules ConjI and AllI connect the logical symbols of the assertion logic to the cor-
responding operators in Isabelle/HOL. The rule CallNeg is just one example of many
other rules we have to push Call or Catch operators inside composed expressions. Note
that this rule requires the frame stack to have at least two entries. The rule TyIntI
resolves type expressions to Isabelle variables of the corresponding type. When the ex-
istential quantifier becomes removed, which is typically done automatically by Isabelle’s
proof procedures, one can use the resulting equation to simplify other expressions. For
example the following lemma can be proven automatically this way.

lemma Π,s |= (Ty ex Integer x⇒y (ex x<y (ex x+y xIntg 1y)))
by clarsimp

To achieve this, we actually do not use the rules in the format shown above, but in form
of equations on the evalE function. For example the rule TyIntI can be turned into
the following rewrite rule:

evalE Π s (Ty ex Integer) = bBool (∃ x . evalE Π s ex = bIntg xc)c

4.4 Conclusion

In its current form our assertion logic is biased to verify absence of arithmetic overflows.
Other safety policies, in particular those involving complex statements about the heap

79

Chapter 4 Bytecode Assertion Logic

structure are not supported. Properties like referential reachability require higher order
concepts such as transitive closure. To support this, we plan to extend our logic with
primitive recursion. This way we can also integrate other analysers, e.g. [59, 87, 85].
The literature also offers alternatives to verify bytecode.
Quigley [79] formalises a Hoare Calculus for bytecode in Isabelle/HOL using a shallow
embedded assertion language. The focus of this work is to state and prove sound a rule
for bytecode patterns resembling a WHILE loop. A glimpse at the control flow graph we
show in Fig. 5.1 reveals that bytecode is naturally flat and unstructured. In particular
exceptions mess up the control flow.
Nevertheless, Hoare rules can be ported to that level. Clint and Hoare [32] propose to
view jumps to a label l as calls to an embedded procedure l, whose body starts with l
and ends where instructions exit the block. The benefit of porting Hoare rules to byte-
code is that one can translate high level proofs to the target language. For example the
bytecode logic proposed in [10], which is also formalised in Isabelle/HOL as a shallow
embedding, is designed to replay the type inferences of a high level type system for
memory consumption [52] (see §1.3.5). The bytecode Hoare Logic proposed in [14] is
also accompanied by a compiler that translates high level Hoare proofs.
In our case we keep the VCG generic and cannot directly employ rules designed for the
structure of a particular programming language. However, a way to support source level
reasoning is to translate annotations. Our VCG emits similar proof obligations as Hoare
rules have in their side conditions. Hence, we think that primarily the complexity of
annotations determines how hard a program is to verify. Annotations are directly influ-
enced by a program’s semantics and not so much by its structure. Necula [68] backs up
this claim with his observations on how little code optimisations affect the provability
of verification conditions. Hence, if we can translate invariants, pre- and postconditions
form the source level, verifying a program at the bytecode level should cause similar
difficulties than on the source level. Pavlova [76] proposes to translate JML annotations
into BCSL, the so-called bytecode specification language. The low level annotations can
then be given to the JACK tool [25], which emits verification conditions for an external
theorem prover, such as Coq, Simplify or PVS.
The BCSL language is also defined with a specific syntax (an extension of JML). How-
ever, JML is quite complex as a logic. For example, it allows to evaluate Java methods
inside logical expressions. Hence, it remains to be seen, if it can be sufficiently sup-
ported by theorem provers. Our assertion logic is not that expressive, but since we use
Isabelle/HOL inference rules to conduct safety proofs, we can be sure that it is sound.

80

5 Control Flow and Abstract Semantics

Our verification conditions are structured according to a program’s control
flow. We instantiate a function that determines statically what successors a
Jinja instruction can have and under which situations these are accessible.
Each control flow edge abstracts an instruction’s effect on the state. Our
abstract semantics mimics this effect by transforming formulas such that their
meaning is preserved.

In this chapter we instantiate the essential parameters of our VCG, the control flow
function succsF and the abstract semantics in form of wpF, a weakest precondition
operator, and initF, a formula specifying initial states.

5.1 Control Flow Approximation

Our verification conditions are structured after the control flow graph, which consists
of positions and edges. For example Fig. 5.1 shows the control flow for the counter
application from Fig. 3.3. One can observe that many edges lead to instruction number
23 of the main method. This is where the exception handler for general exceptions starts.
Some instructions even have more than one edge leading to a handler. For example at
node 14 of the up method we have a Throw instruction with two edges leading to the
handler at position 18 and two leading to the one at position 23. This is because method
up has two call contexts, namely from method main and set, at each of which either a
NullPointer or a No exception may be thrown. For each of these 4 situations we have
to construct a different branch condition.

81

Chapter 5 Control Flow and Abstract Semantics

Cnt.reset

Cnt.set

Cnt.up

Start.main

0 : Load 0

1 : Push Intg 0

2 : Putfield c Cnt

3 : Push Unit

23 : Store 34 : Return

2 : Pop 0 : Load 0

1 : Invoke reset 03 : Load 0

4 : Load 1

5 : Invoke up 1

0 : Push Intg 0

6 : Pop

7 : Push Unit

8 : Return 11 : Pop

1 : Store 2

2 : Load 1

3 : Load 2

4 : IfIntL 7

5 : Push Intg 2147483647

11 : New No

6 : Load 1

7 : ISub

8 : Load 0

9 : Getfield c Cnt

10 : IfIntGeq 5

15 : Load 0

12 : Push Null

13 : Pop

14 : Throw

18 : Store 3

16 : Load 0

17 : Getfield c Cnt

18 : Load 1

19 : IAdd

20 : Putfield c Cnt

21 : Load 0

22 : Getfield c Cnt

23 : Return

15 : Store 1 0 : Push Intg 3

1 : Store 1

2 : Push Intg 15

3 : Store 2

4 : New Cnt

5 : Push Null

6 : Pop

7 : Store 3

8 : Load 3

9 : Load 1

10 : Invoke set 1

12 : Load 3

13 : Load 2

14 : Invoke up 1

16 : Push Unit

17 : Return

19 : Push Intg 0

20 : Store 1

21 : Push Unit

22 : Return

24 : Push Intg ~1

25 : Store 1

26 : Push Unit

27 : Return

Figure 5.1: Control Flow Graph
82

5.1 Control Flow Approximation

As defined in §3.2 positions are triples (C ,M ,pc) of a class name C, method name M
and program counter pc. The code domain, e.g. domC Π, is a list of all positions in a
program Π. To collect all these positions we iterate domCC over all classes and domMC
over all methods therein. For all classes Cl in Π the code domain domC Π concatenates
the code domains domCC Cl, which again are concatenations of code domains domMC
Mt for all methods in Cl.

domC :: jbc-prog ⇒ pos list

domC Π = concat (map domCC (fst Π))

domCC :: jvm-method cdecl ⇒ pos list

domCC (C , C ′, fs, []) = []
domCC (C , C ′, fs, (M , Ts, T , m) · ms) = domMC (C , M , m) @

domCC (C , C ′, fs, ms)

domMC :: (cname × mname × jvm-method) ⇒ pos list
domMC (C , M , mxs, mxl , bd , et) = map (λn. (C , M , n)) [0 ..<|bd|]

Each position p in a program points to a Jinja bytecode instruction. We write cmd Π p
to fetch this instruction. If p lies outside the program cmd yields None.

cmd ::jbc-prog ⇒ pos ⇒ instr option
cmd (P , An) (C , M , pc) =

(case map-of P C of None ⇒ None

| bcc ⇒ case map-of (snd (snd c)) M of None ⇒ None

| bmc ⇒ let (, , (, , (is,))) = m in if pc < |is| then bis [pc]c else None)

In wellformed programs - a notion we formalise later on - all classes and all methods of
a class have distinct names. Under these circumstances positions in the code domain
are exactly those with instructions.

Lemma 5.1 wf Π −→ set (domC Π) = {p. cmd Π p 6= None}

Some positions have annotations. In §3.1 we introduced annotated Jinja programs, i.e.
jbc-prog, as tuples of bytecode programs as defined in [55] and annotations in form of
finite maps from positions to expressions. To fetch the annotation a program Π provides
for a position p, we write anF Π p. The result is bAc or None depending on whether an
annotation A exists.

anF :: jbc-prog ⇒ pos ⇒ expr option
anF (P , An) p = map-of An p

With domA we project the annotated positions out of the code domain.

83

Chapter 5 Control Flow and Abstract Semantics

domA :: jbc-prog ⇒ pos list
domA Π = [p∈domC Π . anF Π p 6= None]

An edge from position p1 to p2 with label B indicates a transition from some state
(p1,. . .) satisfying B to another state (p2,. . .) in the operational semantics effS. We
formalise edges via the successor function succsF. Given a program Π and a position
p we write succsF Π p to obtain the list of all direct successors paired with branch
conditions. Branch conditions are expressions in our assertion logic §4 that describe the
situations when a particular successor is accessible. In the definition of succsF we use
separate functions for normal and exceptional successors.

succsF :: jbc-prog ⇒ pos ⇒ (pos × expr) list

succsF Π p = (case cmd Π p of None ⇒ []
| bcc ⇒ addPos p (succsNrm (Π, p, c) @ succsExpt (Π, p, c)))

The auxiliary function addPos augments the branch conditions with a position formula
Pos p. This allows to identify subformulas in the verification condition with the part of
the program they came frome and helps to locate bugs in case of unprovable verification
conditions. In addition Pos p ensures a wellformed frames tack, which is important to
prove the progress requirement 2.11.

addPos :: pos ⇒ (pos × expr) list ⇒ (pos × expr) list
addPos p ps = map (λ(p ′, B). (p ′, Pos p x∧y B)) ps

The function succsNrm yields the successors for normal execution. For Throw there are
no such successors.

succsNrm (Π, (C , M , pc), Throw) = []

Many instructions only have the follow up position (C ,M ,pc+1) as successor. We write
incP to increment positions.

incP :: pos ⇒ pos
incP (C , M , pc) = (C , M , pc + 1)

The branch condition xTy indicates that these successors are always reachable.

c ∈ {Load n, Store n, Push v , Pop, IBin bo, CmpEq} −→
succsNrm (Π, p, c) = [(incP p, xTy)]

Jump instructions have relative targets in form of offset numbers t. This avoids labels
and uniqueness checks for these. In case of conditional jumps, we get multiple successors
with branch conditions expressing the condition or its negation.

succsNrm (Π, (C , M , pc), Goto t) = [((C , M , nat (pc + t)), xTy)]

84

5.1 Control Flow Approximation

succsNrm (Π, (C , M , pc), IfIntCmp ro t) =

[((C , M , nat (pc + t)), Rel (St 1) ro (St 0)),

((C , M , pc + 1), x¬y (Rel (St 1) ro (St 0)))]

succsNrm (Π, (C , M , pc), IfFalse t) =

[((C , M , nat (pc + t)), St 0 x=y xFy), ((C , M , pc + 1), x¬y (St 0 x=y xFy))]

For instructions that might throw exceptions, succsNrm produces a branch condition
that excludes this exception. For this purpose we use the auxiliary function xcpt-cond,
which generates a condition that ensures a particular exception. We define it later, when
we come to exceptions.

succsNrm (Π, p, Getfield F C) = [(incP p, x¬y (xcpt-cond Π NullPointer p))]

succsNrm (Π, p, Putfield F C) = [(incP p, x¬y (xcpt-cond Π NullPointer p))]

succsNrm (Π, p, Checkcast C) = [(incP p, x¬y (xcpt-cond Π ClassCast p))]

succsNrm (Π, p, New Cl) = [(incP p, x¬y (xcpt-cond Π OutOfMemory p))]

Method calls are more complicated, because overriding opens multiple possibilities. It
is hard to statically determine the type of the object whose method we are calling.
However, we can ask the programmer or compiler to insert annotations constraining
the possible types. In §7.1.1 we show how such type annotations can be obtained au-
tomatically from the bytecode verifier. For now, assume that every Invoke instruction
is annotated with such information. Since we have deeply embedded formulas we can
analyse annotations syntactically and extract type information from them. This is what
the function extractTy (A,ex) does.

extractTy :: expr × expr ⇒ ty list

It searches A for occurrences of subexpressions of the form Ty ex tp and lists the types
tp. It only descends through conjunctions and disjunctions. Although our safety logic
does not provide disjunctions, we can introduce these as negated conjunctions.

x

∨
y :: expr list ⇒ expr

x

∨
y exs = x¬y (x

∧
y (map x¬y exs))

If an annotation enforces a particular type tp in other ways, for example via xTy x⇒y Ty ex
tp, this type will not be extracted. Since we can generate type annotations automatically,
expecting them in a particular format, is an acceptable restriction. Before we come to
the definition, let us look at the following lemma, which is all we need to know about
extractTy in our proofs.

Lemma 5.2 When extractTy(A,ex) is not empty, it contains the type of ex under states

85

Chapter 5 Control Flow and Abstract Semantics

where A holds.

Π,s |= A ∧ extractTy (A, ex) = tys ∧ tys 6= [] −→ (∃ tp∈set tys. Π,s |= Ty ex tp)

The formal definition of extractTy is a bit technical due to the fact that disjunctions are
expressed as negated conjunctions. In contrast to x

∧
y the symbol x

∨
y is not a constructor

and we cannot use it as a pattern. Instead, we use recursive definitions and directly work
on negated conjunctions. First, we introduce isNegTy (ex , ex ′), which checks whether
ex has the form x¬y (Ty ex ′ tp) for some type tp.

isNegTy ::(expr × expr) ⇒ bool
isNegTy (x¬y (Ty ex tp),ex ′) = (ex = ex ′)
isNegTy (,ex ′) = False

Now, we are ready to define extractTy (A,ex). It descends through conjunctions, applies
itself on all conjuncts and returns a concatenation of the resulting type lists. Note that
if A has conjuncts enforcing incompatible types, then A cannot hold for any state and
the result of extractTy does not matter. If extractTy hits a conjunct of the form Ty ex ′

tp, it checks whether ex ′ matches the target expression ex. In case of a match the type
tp goes into the result list, otherwise it is ignored. When extractTy reaches a conjunct of
the form x¬y (x¬y ex ′

x∧y exs), it checks whether we have a disjunction of type expressions
at hand. This is the case if ex ′ is a type expression and all expressions in exs are negated
type expressions. We collect all possible types by recursively applying extractTy on ex ′

and the remaining disjunction. In all other cases extractTy terminates with an empty
list.

extractTy (x

∧
y [],ex) = []

extractTy (x

∧
y (ex ′#exs),ex) = extractTy (ex ′,ex) @ extractTy (x

∧
y exs,ex)

extractTy (Ty ex ′ tp,ex) = (if ex ′=ex then [tp] else [])
extractTy (x¬y (x

∧
y []),ex) = []

extractTy (x¬y (x

∧
y (x¬y ex ′#exs)),ex) =

(if (list-all (λ ex ′′. isNegTy (ex ′′,ex)) (x¬y ex ′#exs))
then (extractTy (ex ′,ex) @ extractTy (x¬y (x

∧
y exs),ex)) else [])

extractTy (, ex) = []

Having a list of potential types available, we can select the corresponding method entry
positions and construct sharp branch conditions. For this purpose we use the auxiliary
function succsInvoke.

succsNrm (Π, p, Invoke Mn n) = succsInvoke (Π, Mn, n, p)

Using the type extractor function above succsInvoke analyses the annotation at p to find
out the types of the object reference on top of the stack. It expects this information to
be given in form of a disjunction of Ty ex tp expressions. Then, it constructs exclusive
branch conditions for each type. These conditions are exclusive, as Ty ex tp does not

86

5.1 Control Flow Approximation

check subtyping. This is important, because in some situations we may want to exclude
some potential successor by not listing the corresponding type in the annotation. For
example, if a programmer knows the exact type tp of an object o, she may annotate a
method invocation o.m() with Ty o tp. In this case sucssNrm only yields one successor
and subclasses of tp with overridden versions of m do not clutter the verification condi-
tion. For each possible type X, it creates a successor position of the form (CM ,M ,0),
where CM is for X the closest class in the hierarchy that declares a method with name
M. It also constructs a branch condition stating that we actually have a reference of type
X, which is not a null pointer.

succsInvoke ((P , An), M , n, p) =
(case anF (P , An) p of None ⇒ []
| bAc ⇒

concat
(map (λtp. case tp of

Class X ⇒
let (CM ,) = method P X M
in [((CM , M , 0),

x¬y (xcpt-cond (P , An) NullPointer p) x∧y
Ty (St n) (Class X))]

| - ⇒ [])
(extractTy (A, St n))))

For Return instructions we scan the code for all positions from which the current method
could have been called. The name and class of the current method can be obtained from
the position, say (C ,M ,pc), of the Return instruction. Then we scan the code for all
positions p ′ with Invoke M n. For each of these call positions p ′ we construct a branch
condition with the annotation and position information of p ′. Note that both are put
into a Call operator in order to evaluate them under a state that satisfied them. As we
explain in §6.5 this will lead to modular method verifications.

succsNrm (Π, p, Return) =

map (λp ′. (incP p ′, Call (x

∧
y [aF Π p ′, Pos p ′]))) (callers Π p)

When instructions throw exceptions control flows to an appropriate handler. The func-
tion succsExpt knows which exceptions each instruction may throw and invokes succsXpt
to find potential handlers.

succsExpt (Π, p, New C) = succsXpt (Π, OutOfMemory , [p])

succsExpt (Π, p, Getfield F C) = succsXpt (Π, NullPointer , [p])

succsExpt (Π, p, Putfield F C) = succsXpt (Π, NullPointer , [p])

87

Chapter 5 Control Flow and Abstract Semantics

succsExpt (Π, p, Checkcast C) = succsXpt (Π, ClassCast , [p])

succsExpt (Π, p, Invoke M n) = succsXpt (Π, NullPointer , [p])

succsExpt (Π, p, Throw) =
succsXpt (Π, NullPointer , [p]) @
(case anF Π p of None ⇒ []
| bAc ⇒ concat

(map (λx . case x of Class X ⇒ succsXpt (Π, X , [p]) | - ⇒ [])
(extractTy (A, St 0))))

c ∈ {Load n, Store n, Push v , Return, Pop, IBin no, Goto t , CmpEq,
IfIntCmp ro t , IfFalse t} −→

succsExpt (Π, p, c) = []

Handlers are searched by recursively climbing up the call tree and inspecting the ex-
ception tables of each call method. The call tree of a position p contains all positions
from which one can reach p via method invocations. We discover it with succsXpt by
recursively tracing Invoke instructions backwards. For example Fig. 5.2 shows the call
tree of position (Cnt ,up,0) from the program in Fig. 5.1.

Start.main

Cnt.set

Cnt.up

10 : Invoke set 1

5 : Invoke up 1

14 : Invoke up 1

0 : Push (Intg 0)

Figure 5.2: Call tree of position (Cnt ,up,0)

In succsXpt we keep a list of visited positions. When this list becomes too long or empty,
succsXpt terminates by making all program positions to successors. This means pro-
grams with uncaught exceptions usually yield unprovable verification conditions. How-
ever, adding a global handler to the main method always helps to avoid this. When
succsXpt finds a handler it constructs an individual branch condition for this handler.
When an exception is caught in the same method as it is thrown (pss=[]), the branch
condition is xTy. Otherwise we restore the call context using Catch on the annotation
and safety formula of the call point.

succsXpt ((P , An), X , ps) =
(case |domC (P , An)| ≤ |ps| of True ⇒ map (λp. (p, xTy)) (domC (P , An))
| False ⇒

88

5.1 Control Flow Approximation

case ps of [] ⇒ map (λp. (p, xTy)) (domC (P , An))
| p · pss ⇒

let (C , M , pc) = p; (, , (, , (, , et))) = method P C M ;
A = aF (P , An) p

in case match-ex-table-e P X pc et of
None ⇒

concat
(map (λp ′. succsXpt ((P , An), X , p ′ · ps))

(callers (P , An) p))
| bec ⇒

let (f , t , X ′, pc ′, d) = e
in [((C , M , pc ′),

x

∧
y ((if pss = [] then [] else [Catch X ′ A, Catch X (Pos p)]) @

[xcpt-cond (P , An) X (last ps)]))])

Finally, we define xcpt-cond, which yields an expression that describes the reason for a
particular exception. All instructions, except Throw, only raise one kind of exception.
In case of a null reference Throw gives a NullPointer exception, otherwise the exception
reference from the stack. The New instruction fails if there is insufficient memory. This
is exactly when NewA 0 evaluates to Null. The Checkcast C instruction throws a
Classcast exception if the type of the reference is not a subclass of C. In case of a null
reference Putfield, Getfield or Invoke throw NullPointer exceptions.

xcpt-cond Π X p =
(case cmd Π p of None ⇒ xTy

| bcc ⇒
case c of New C ⇒ NewA 0 x=y xNully
| Getfield F C ⇒ St 0 x=y xNully
| Putfield F C ⇒ St 1 x=y xNully
| Checkcast C ⇒

x¬y (St 0 x=y xNully) x∧y
map
(λCl . x¬y (Ty (St 0) (Class Cl)))
[Cl∈classnames (fst Π) .
fst Π ` Cl �∗ C]

| Invoke M n ⇒ St n x=y xNully
| Throw ⇒ if X = NullPointer

then (St 0 x=y xNully) x∨y
Ty (St 0) (Class X)

else Ty (St 0) (Class X)
| - ⇒ xTy)

89

Chapter 5 Control Flow and Abstract Semantics

5.2 Abstract Semantics

In §3.2 we defined the concrete semantics for Jinja bytecode. It describes the behaviour
of programs in terms of states and transitions between these. For the purpose of verifying
programs we now introduce an abstract semantics. It describes states symbolically with
formulas and thus makes them amenable for logical reasoning. To abstract the initial
states we introduce initF Π, an expression covering all states in initS. To simulate
transitions, we introduce a weakest precondition operator operator wpF Π. This will be
the essential engine for our VCG later on.

5.2.1 Initial States

The Jinja virtual machine starts a program Π with one frame on the stack. This frames
remains there until the program terminates either with a return from the main method
or due to an uncaught exception. Execution starts at position ipc Π, which points to
the first instruction of the main method. In register 0, which usually contains the this
reference, we find Null. This is because the main method is static. The registers 1 to
mxl, that is the local variables of the main method, are initialised to some unknown
values. By demanding that their evaluation does not yield None, we express that the
list of registers is long enough. To express this in our logic we introduce none as an
abbreviation for an ill typed expression, which evaluates to None under all states.

none :: expr
none = xIntg 0y x+y xTy

In contrast to the real JVM [88] the Jinja VM [55] preallocates objects for system ex-
ceptions. This simplifies the semantics and enables throwing exceptions in situations
with no memory left. With initF we formalise these constraints as an expression. We
use the auxiliary function addr-of-sys-cxpt (see [55]) to determine the address a system
exception becomes preallocated to.

sys-xcptns :: cname list
sys-xcptns = [NullPointer , ClassCast , OutOfMemory]

initF :: jbc-prog ⇒ expr
initF Π =

x

∧
y ([Pos (ipc Π), Rg 0 x=y xNully, FrNr x=y xIntg 1y] @

map (λC . Ty xAddr (addr-of-sys-xcpt C)y (Class C)) sys-xcptns @
(let (C , M , pc) = ipc Π; (, , (, , (mxl ,))) = method (fst Π) C M
in map (λn. x¬y (Rg n x=y none)) [1 ..mxl]))

90

5.2 Abstract Semantics

5.2.2 Transitions

The purpose of the wpF operator is to simulate transitions on states with transforma-
tions of expressions. Our aim is a function that preserves the evaluation of expressions
Q by compensating effects of the concrete semantics with substitutions on Q. Formally,
this property can be described as follows:

. . . ∧ ((p, m, e), (p ′, m ′,e ′)) ∈ effS Π −→
(evalE Π (p,m,e) (wpF Π p p ′ Q) = evalE Π (p ′, m ′,e ′) Q)

This relation between abstract and concrete semantics only holds with some restrictions,
which we suppress with For now, just assume that that wpF Π p p ′ Q needs to
transform a postcondition Q, such that it evaluates to the same value as Q does in the
successor state. It substitutes all subexpressions of Q whose evaluation would change
due to the state transition by another expression. The new expression must evaluate
under the current state to the same value as the replaced subexpression does under the
successor state. For this purpose we use a substitution function

substE ::(expr ∼∼> expr) ⇒ expr ⇒ expr,

which maintains an expression map em. We will define substE em ex such that it tra-
verses a given expression ex (not descending into temporal operators) and simultaneously
replaces all instances of expressions that appear on the left hand side of a maplet in em
by the corresponding right hand side. Example:

substE [(St 0 ,Rg 0)] (St 0 x=y Call (St 0)) = Rg 0 x=y Call (St 0)

The substitution does not only replaces variables, because Jinja Bytecode instructions
may also change the heap and other parts of the state. Hence, we sometimes have to
substitute entire expressions. In the definition of wpF we analyse the postcondition and
extract subexpressions of particular patterns. These are then used to build maplets for
the substitution map. For example, we start our definition of wpF by constructing a
map pm adjusting position expressions.

wpF :: jbc-prog ⇒ pos ⇒ pos ⇒ expr ⇒ expr
wpF Π p p ′ Q =
(let pm = map (λq . (Pos q , if q = p ′ then Pos p else xFy)) (getPosEx Q)
in case cmd Π p of None ⇒ xFy

| bic ⇒ case handlesEx (fst Π) p ′ of None ⇒ wpNrm Π p p ′ Q pm i
| bcnc ⇒ wpExc Π p p ′ Q pm cn i)

In wpF Π p p ′ Q we have to compensate the change of the program counter from p to
p ′. This affects all position expressions Pos q in Q, which we extract with getPosEx Q.
If q differs from p ′, the position formula Pos q is false in the successor state and must be
so in the current state. We replace it with xFy. Otherwise, if q = p ′ the position formula

91

Chapter 5 Control Flow and Abstract Semantics

Pos q is true if all positions on the frame stack form a call chain. Note that this is
also checked with Pos and holds in the successor state exactly when Pos p holds in the
predecessor state. The reason for having the positions p and p ′ among the arguments
of wpF is that instructions may behave differently on each outgoing control flow edge.
In case of Jinja, we have instructions that can throw exceptions. To cope with that we
use two different weakest precondition operators wpNrm and wpExc. We can determine
statically from p ′ which one to apply, thus wpF does not have to introduce disjunctions
of both effects. If p ′ is the entry position of some handler for an exception X, we assume
that the transition from p to p ′ is due to an exception and delegate work to wpExc.
Otherwise we use wpNrm, which transforms Q according to normal execution. In our
wellformedness constraint wf Π we demand that all exception handlers have distinct
entry positions, a condition that holds for all bytecode programs compiled from Java
sources. Due to the unique entry positions, we can define a function handlesEx P p ′,
which yields bX c if p ′ starts the handler catching exceptions of type Class X or None
if no such handler exists. We skip the formal definition of handlesEx as it is a straight-
forward lookup in all exception handler tables on the call tree. However, before we turn
our attention on the actual transformations of wpNrm and wpExc, we go into the details
of substitution and extractor functions.

Substitution

In many textbooks on Hoare Logics [99, 72] substitution is not a big deal as only pro-
gram variables need to be substituted. In case of Jinja a state has many facets and
much more different kinds of expressions need to be substituted. In particular the heap
complicates matters as it demands to substitute even composed expressions. Instead of
having multiple substitution functions each handling the effect on a particular part of
the state, we decided to define a uniform operation. Since we do not distinguish between
expressions and formulas, one map from expressions to expressions does the job. The
substitution substE em ex, which we define formally in Fig. 5.3 transforms the expres-
sion ex according to the maplets in em. For every kind of expression substE em ex first
checks if em provides a maplet for ex. If so, it becomes substituted by its mapping and
the substitution stops. Otherwise, substE recursively descends into all subexpressions,
except for those below temporal operators, i.e. Call and Catch. This is because most
instructions only modify the topmost frame, which has no influence on the evaluation of
temporal expressions.

92

5.2 Abstract Semantics

substE :: (expr ∼∼> expr) ⇒ expr ⇒ expr

substE em ex =
(case ex of x

∧
y es ⇒ x

∧
y (map (substE em) es)

| - ⇒ case map-of em ex of
None ⇒

case ex of Gf F C e ⇒ Gf F C (substE em e)
| Num e1 no e2 ⇒ Num (substE em e1) no (substE em e2)
| Rel e1 ro e2 ⇒ Rel (substE em e1) ro (substE em e2)
| xify b xtheny t xelsey e ⇒ xify substE em b xtheny substE em t xelsey substE em e
| e1 x=y e2 ⇒ substE em e1 x=y substE em e2 | x¬y e ⇒ x¬y (substE em e)
| e1 x⇒y e2 ⇒ substE em e1 x⇒y substE em e2 | x∀y v e ⇒ x∀y v (substE em e)
| Ty e tp ⇒ Ty (substE em e) tp | - ⇒ ex
| bex ′c ⇒ ex ′)

Figure 5.3: Substitution of expressions

Extractions

Since we defined substitutions via finite maps, we can combine them using list concate-
nation and perform induction on lists. The expression maps also allow us to substitute
composed expressions at once. On the other hand, finite maps also come with a price.
We cannot represent substitutions with infinitely many patterns. For example shifting
the stack by replacing all occurrences of St k with St (k+1) is something we cannot
directly represent. However, we just need substE mp ex to construct weakest precon-
ditions for postconditions Q. For that wpF only has to substitute some subexpressions
in Q. These are finitely many and we can extract those from Q and turn them into
a finite map of substitution maplets. Since different instructions affect different kinds
of subexpressions, we need various extractions. Many of these work in a similar way.
They traverse an expression and collect all subexpressions fitting a given pattern. To
avoid defining this traversal separately for each extractor function Fig. 5.4 introduces
a general fold operator foldE f c a ex. In addition to the analysed expression ex it
takes three parameters, f, c and a. With a one hands over a default result for atomic
expressions ex. The function f performs the actual work on expressions. It gets the cur-
rent subexpression and the current result as arguments and produces a new result. The
combinator function c is used to combine results from different recursive calls of foldE.
For example if ex is an expression with multiple subexpressions foldE applies itself on
all subexpressions and combines the results to one final result using c.

Using foldE we can define the function getPosEx ex, which extracts all position expres-
sions inside ex, except those below a Catch or Call operator. For example:

getPosEx (And [Pos p,xTy x⇒y Pos q ,Call (Pos c)]) = [p,q]

93

Chapter 5 Control Flow and Abstract Semantics

foldE :: (expr × ′a ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ ′a) ⇒ ′a ⇒ expr ⇒ ′a
foldEs:: (expr × ′a ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ ′a) ⇒ ′a ⇒ expr list ⇒ ′a

foldEs f c a [] = a
foldEs f c a (e · es) = c (foldE f c a e) (foldEs f c a es)
foldE f c a ex =
(case ex of Gf F C e ⇒ f (ex , foldE f c a e)
| Num e1 no e2 ⇒ f (ex , c (foldE f c a e1) (foldE f c a e2))
| Rel e1 ro e2 ⇒ f (ex , c (foldE f c a e1) (foldE f c a e2))
| xify b xtheny t xelsey e ⇒ f (ex , c (c (foldE f c a b) (foldE f c a t)) (foldE f c a e))
| e1 x=y e2 ⇒ f (ex , c (foldE f c a e1) (foldE f c a e2))
| x¬y e ⇒ f (ex , foldE f c a e)
| e1 x⇒y e2 ⇒ f (ex , c (foldE f c a e1) (foldE f c a e2))
| x

∧
y es ⇒ f (ex , foldEs f c a es) | x∀y v e ⇒ f (ex , foldE f c a e)

| Ty e tp ⇒ f (ex , foldE f c a e) | Call e ⇒ f (ex , foldE f c a e)
| Catch X e ⇒ f (ex , foldE f c a e) | - ⇒ f (ex , a))

Figure 5.4: Fold operator for expressions

We use the extracted expressions to define a substitution that handles the effect of an
instruction on the state. Since most instructions only modify the topmost frame, we
usually do not have to modify subexpressions inside a Catch X ex or Call ex expression.
All reachable states s, i.e. s ∈ Reachables Π, have non-empty frame stacks and Catch
or Call remove at least one frame, before their argument expression becomes evaluated.
To avoid extractions below Catch and Call we introduce the filter function noCC ex
exs, which keeps all results in exs when ex is neither Catch nor Call, or removes them
otherwise.

noCC :: expr × ′a list ⇒ ′a list
noCC (ex , as) = (case ex of Call ex ′⇒ [] | Catch C ex ′⇒ [] | - ⇒ as)

The auxiliary function posEx ex is our actual extractor function. It checks, whether ex
is of the form Pos p. If so, it yields [p], otherwise [].

posEx :: expr ⇒ pos list
posEx ex = (case ex of Pos p ⇒ [p] | - ⇒ [])

Using foldE we now drive posEx inside a given expression ex. As combinator c we use list
concatenation @, which collects all results found for any subexpression of ex. Whenever
foldE reaches a subexpression se it applies the function λ (se,as). posEx es @ (noCC
(ex ,as)). This function receives the current subexpression se and a list of all results
obtained from children of se. We feed as into noCC se as and in order to drop all these
results when se is Catch or Call. To the resulting list we append posEx se, which gives
us a new position [p] when ex is of the form Pos p. The list posEx se @ noCC (se,as)

94

5.2 Abstract Semantics

contains all extracts found in se and we propagate it upwards.

getPosEx :: expr ⇒ pos list
getPosEx ex = foldE (λ(ex , as). posEx ex @ noCC (ex , as)) (@) [] ex

For the remaining extractor functions we only give brief explanations. They work anal-
ogously to getPosEx. Quite often, we have to extract the indices of stack and register
expressions. For this purpose, we introduce stkIds and rgIds.

stkId :: (expr × var list) ⇒ var list
stkId (ex , vs) = (case ex of St k ⇒ [k] | - ⇒ vs)
stkIds:: expr ⇒ var list
stkIds ex = foldE (λ(ex , as). noCC (ex , stkId (ex , as))) (@) [] ex

rgId :: (expr × var list) ⇒ var list
rgId (ex , vs) = (case ex of Rg k ⇒ [k] | - ⇒ vs)
rgIds:: expr ⇒ var list
rgIds ex = foldE (λ(ex , as). noCC (ex , rgId (ex , as))) (@) [] ex

To extract temporal expressions, we use getCatchEx and getCallEx.

callEx :: expr ⇒ expr list
callEx ex = (case ex of Call ex ′⇒ [ex ′] | - ⇒ [])
getCallEx :: expr ⇒ expr list
getCallEx ex = foldE (λ(ex , as). callEx ex @ noCC (ex , as)) (@) [] ex

catchEx :: expr ⇒ (cname × expr) list
catchEx ex = (case ex of Catch cn ex ′⇒ [(cn, ex ′)] | - ⇒ [])
getCatchEx :: expr ⇒ (cname × expr) list
getCatchEx ex = foldE (λ(ex , as). catchEx ex @ noCC (ex , as)) (@) [] ex

Sometimes we need to find expressions depending on the heap. We introduce a separate
datatype, i.e. heapexpr = GF vname cname expr | TY expr ty , to subsume expressions
that might be affected by a field update.

gfEx :: (vname × cname × expr) ⇒ expr list
gfEx (F , C , ex) = (case ex of Gf F ′ C ′ ex ′⇒ if F = F ′ ∧ C = C ′ then [ex ′] else [] | - ⇒ [])
getGfEx :: vname ⇒ cname ⇒ expr ⇒ expr list
getGfEx F C ex = foldE (λ(ex , as). as @ gfEx (F , C , ex)) (@) [] ex

heapEx :: expr ⇒ heapexpr list
heapEx ex = (case ex of Gf F C ex ′⇒ [GF F C ex ′] | Ty ex ′ tp ⇒ [TY ex ′ tp] | - ⇒ [])
getHeapEx :: expr ⇒ heapexpr list
getHeapEx ex = foldE (λ(ex , as). as @ heapEx ex) (@) [] ex

Apart from field updates also the creation of new objects modifies the heap. With

95

Chapter 5 Control Flow and Abstract Semantics

getNewEx we extract all indices n of NewA n expressions.

newEx :: expr ⇒ nat list
newEx ex = (case ex of NewA n ⇒ [n] | - ⇒ [])
getNewEx :: expr ⇒ nat list
getNewEx ex = foldE (λ(ex , as). newEx ex @ as) (@) [] ex

Equipped with extractor functions, we now describe how the normal behaviour of in-
structions can be described in our assertion logic. We handle this with the wpNrm
function.

wpNrm :: jbc-prog ⇒ pos ⇒ pos ⇒ expr ⇒ (expr ∼∼> expr) ⇒ instr ⇒ expr

Argument Passing

The Load n instruction loads the value of register n onto the stack. We replace St 0
with Rg n and decrement the index of all other stack expressions. The latter simulates
the growth of the stack. For example the value at the third stack position after the
Load equals the one at position 2 before. The effect on the program counter is already
handled by pm, which we wpF creates and passes over to wpNrm.

wpNrm Π p p ′ Q pm (Load n) = substE (pm@
(map (λk . (St k ,if k=0 then Rg n else St (k − 1))) (stkIds Q))) Q

The Store n instruction removes the topmost value from the stack and stores it in
register n. We replace Rg n with St 0 and increment all stack positions to compensate
the stack shift.

wpNrm Π p p ′ Q pm (Store n) =
substE (pm@((Rg n,St 0) ·map (λk . (St k ,St (k+1))) (stkIds Q))) Q

The Push v instruction pushes value v onto the stack. We simulate this by replacing St
0 with xvy and decrementing all other stack positions.

wpNrm Π p p ′ Q pm (Push v) = substE (pm@
(map (λk . (St k ,if k=0 then xvy else St (k − 1))) (stkIds Q))) Q

Arithmetics, Checks and Branches

The IBin no instruction performs binary operations on integers. We replace St 0 with
the corresponding arithmetic expression and shift the other stack indices to compensate
the removal of 2 arguments.

wpNrm Π p p ′ Q pm (IBin no) = substE (pm@(map (λk . (St k ,if k=0
then Num (St 1) no (St 0) else (St (k+1)))) (stkIds Q))) Q

96

5.2 Abstract Semantics

The IfIntCmp ro t instruction removes the topmost two integer values from the stack,
compares them and branches accordingly. To simulate the removal of the two stack
elements, we shift stack expressions.

wpNrm Π p p ′ Q pm (IfIntCmp ro t) =
substE (pm@(map (λk . (St k ,St (k+2))) (stkIds Q))) Q

The direct jump Goto t has no effect except from changing the program counter, which
is already handled by pm.

wpNrm Π p p ′ Q pm (Goto t) = substE pm Q

The instruction CmpEq removes the topmost two values from the stack, compares them
and pushes the result in form of a boolean value back. We replace St 0 with the
condition St 0 x=y St 1. The new stack is one element shorter and we compensate this
by incrementing all remaining stack expressions.

wpNrm Π p p ′ Q pm CmpEq = substE (pm@
(map (λk . (St k ,if k=0 then St 0 x=y St 1 else St (k+1))) (stkIds Q))) Q

The IfFalse t instruction expects a boolean on top of the stack, removes it and branches
accordingly. We only have to simulate the shortening of the stack, the position change
is handled by pm.

wpNrm Π p p ′ Q pm (IfFalse t) = substE (pm@(map (λk . (St k ,St (k+1))) (stkIds Q))) Q

The Checkcast C instruction throws an exception if the topmost stack value is not a
reference to an object of class C. Otherwise it just skips. Since wpNrm only handles
non-exceptional behaviour, it just needs to change position expressions according to pm.

wpNrm Π p p ′ Q pm (Checkcast Cl) = substE pm Q

In case of Throw there is always an exception. Since we cannot reach p ′ with a ”normal”
transition, wpNrm yields xFy.

wpNrm Π p p ′ Q pm Throw = xFy

Heap Access

Three Jinja instructions, namely Getfield, Putfield and New depend on or modify the
heap. The instruction Getfield F C expects a reference to an object of class C on top
of the stack and replaces it with the value of field F of this object. To simulate this
statically, we only have to replace St 0 with the fetched field value.

wpNrm Π p p ′ Q pm (Getfield F C) = substE (pm@[(St 0 ,Gf F C (St 0))]) Q

97

Chapter 5 Control Flow and Abstract Semantics

c

stack

regs

Addr 7 Addr 6

Addr 5

6:

heap

Addr 6n:

Lst5:
Intg 1v:

Nulln:

Lst
Intg 2v:

Addr 6

stack

regsAddr 5

6:

heap

Addr 6n:

Lst5:
Intg 1v:

n:

Lst

Addr 7
v:

Addr 6

Putfield n Lst

s s’

Intg 2

Figure 5.5: Putfield

i Q i evalE Π s ′ Q i

1 Gf n Lst (xAddr 6y) bAddr 7 c

2 Gf n Lst (Rg 1) bAddr 7 c

3 Gf n Lst (Rg 0) bAddr 6 c

4 Gf n Lst (Gf n Lst (Rg 0)) bAddr 7 c

5 Gf v Lst (Gf n Lst (Rg 0)) bIntg 2 c

6 Rg 0 bAddr 5 c

7 Rg 1 bAddr 6 c

Figure 5.6: Example expressions

98

5.2 Abstract Semantics

The Putfield F C instruction expects a reference followed by a value on top of the
stack. It removes both and updates field F of the referenced object of class C with
this value. The removal of two operands can be simulated by shifting indices of St
expressions. With em we introduce a substitution map that adds this part to pm, the
map handling position expressions.

em=pm@(map (λk . (St k ,St (k+2))) (stkIds Q))

The heap modification, although simple in the dynamic semantics, causes trouble for our
static simulation. First of all it is difficult, if not impossible, to figure out the address of
the modified object. Even if we could sharply approximate this runtime value, aliasing
comes into play. Many syntactically different expressions may depend on the modified
field.

In Fig. 5.5 we have a Putfield that updates field n of an Lst object residing at address 6.
The old field value Null is changed to Addr 7. To illustrate the following transformations
Fig. 5.6 shows a few expressions and their evaluation under s ′.

Expression Q1 accesses the modified field using the concrete address of the object. Re-
placing Q1 by St 0 would work in this case, but not in general. The fact that Addr 6
equals St 1 is just a coincidence and does not hold for all states. However, we can use
conditionals to handle Putfield’s effect. Using xify xtheny xelsey we can check whether
an expression Gf F C ex accesses the modified field and return the new or old value
accordingly. This means wpNrm transforms every expression Q i from Fig. 5.6 into W i:

W i = wpNrm Π p p ′ Q i pm (Putfield v Lst)

For Q1 we get the following result.

W 1 = xify xAddr 6y x=y St 1 xtheny St 0 xelsey Gf n Lst (xAddr 6y)

Evaluated under s expression W 1 yields bAddr 7 c, the same as Q1 does under s ′. Anal-
ogously, wpNrm transforms Q2 into W 2 and Q3 into W 3.

W 2 = xify Rg 1 x=y St 1 xtheny St 0 xelsey Gf n Lst (Rg 1)

W 3 = xify Rg 0 x=y St 1 xtheny St 0 xelsey Gf n Lst (Rg 0)

In Q4 we find nested field lookups, hence wpNrm introduces nested conditionals. We
abbreviate the result by reusing W 3.

W 4 = xify W 3 x=y St 1 xtheny St 0 xelsey Gf n Lst W 3

In the real result W 3 would be expanded, which causes exponential growth of the expres-
sion in the depth of nested field lookups. For each Gf F C ex expression the constructed
conditional contains the address expression ex (in transformed form) twice: once for the
check and once in the xelsey branch. Should this exponential growth turn out to be a
problem in practice one can tackle it by using Let expressions. In an extended version

99

Chapter 5 Control Flow and Abstract Semantics

of our assertion language we plan to support primitive recursion, which would allow to
express a Let operator.
Note that wpNrm does not need to protect Gf F ′ C ′ ex expressions where F ′ or C ′

differs from F or C in the Putfield F C instruction. For example in Q5 the access of
field v, which differs from n, must not be protected by a conditional.

W 5 = Gf v Lst W 3

In that respect our approach is quite similar to the split heap approach [26, 24, 61], where
modifications are kept local by keeping fields in separate heaps. If we had not used a
deeply embedded assertion language this static distinction of field names in expressions
would not be possible.
The formal definition of our transformation turns out to be tricky. For every Gf F C
ex expression in the postcondition Q we need the entire substitute in our map. To
construct this substitute we first have to transform other Gf F C expressions inside ex.
To accomplish this task, we first extract all Gf F C expressions in Q in sub-term order.
That is expressions that occur as subexpressions in other expressions come first. For
example here is what getGfEx yields for Q4:

L = getGfEx n Lst Q4 = [Rg 0 ,Gf n Lst (Rg 0)].

The expressions getGfEx extracts are so-called address expressions, because field lookup
expressions use them locate objects. Note that in L the atomic address expression Rg 0
comes first. Next, we need the left oriented fold operator on lists, i.e foldl.

foldl :: (′a ⇒ ′b ⇒ ′a) ⇒ ′a ⇒ ′b list ⇒ ′a
foldl f a [] = a
foldl f a (x · xs) = foldl f (f a x) xs

Using foldl on L we construct gfe, a map substituting field lookups in Q4.

gfe = foldl (λmp ex .let ex ′=substE mp ex
in (Gf F C ex ,xify (ex ′

x=y St 1)
xtheny St 0
xelsey Gf F C ex ′) ·mp) em L

= [(Gf n Lst (Rg 0),W 3),(Gf n Lst (Gf n Lst (Rg 0)),W 4)]

Note that W 3 is needed to compute W 4. This means we first have to construct the
substitutes for the smaller address expressions and use those to construct the bigger ones.
This works, because of the sub-term order of L. When foldl takes the next expression
from L all maplets for its subexpressions are already produced and in mp. When we
apply gfe to Q4 only the mapping for the outermost Gf n Lst expression matters. When
substE reaches it, it instantly performs the substitution and does not descend further.
Now, we are ready to assemble the full definition of wpNrm. We apply remdup, a function

100

5.2 Abstract Semantics

removing duplicates from lists, on the list of extracted expressions. This simplifies our
proof later on, which performs inductions on maps represented as lists. Only if the left
hand sides of all maplets are distinct, removing one element from the list also reduces
the domain of the map.

wpNrm Π p p ′ Q pm (Putfield F C) = (let
em = pm@(map (λk . (St k ,St (k+2))) (stkIds Q));
gfe = foldl (λmp ex . let ex ′=substE mp ex

in (Gf F C ex ,xify (ex ′
x=y St 1)

xtheny St 0 xelsey Gf F C ex ′) ·mp)
em (remdup (getGfEx F C Q))

in substE gfe Q)

Another instruction that modifies the heap is New C, which creates an object of class
C and pushes the reference to it onto the stack. Here we have the difficulty that the
new state contains a value (a new address) that is not present in the old state. Hence,
it is difficult to construct an expression yielding this new value when evaluated under
the current state. To solve this problem we introduced the NewA n expression, which
anticipates object allocation by yielding the address the n-th new object would have.
For example NewA 0 yields the next free address in the heap, the one New Cl would
allocate and push onto the stack. By replacing St 0 with NewA 0 in a postcondition
Q, we preserve the evaluation of subexpressions in Q that talk about this new address.
To compensate the growth of the stack, we shift the indices of other St k expressions
and replace them with St (k − 1). The index n in our NewA n expression is necessary,
because the postcondition Q may already contain other expressions of the form NewA.
Since newly allocated addresses differ from all other addresses we must distinguish these
expressions. In the state after New Cl we have one more object allocated than before.
When we evaluate NewA k in this state, we obtain the same address as when we evaluate
NewA (k+1) in the state before. Hence, we replace all occurrences of NewA k in
Q with NewA (k+1). Apart from that we have to deal with expressions that could
possibly access fields of the newly created object. For example this could be the case for
expressions like Q1 in Fig. 5.6, which fetches the field of an object at a concrete address.
Since New Cl initialises all fields with default values, we can replace such expressions
with default constant expressions. For example if we find a Gf v Lst (St 0) in Q, we
can replace it with xdvy, where dv is the default value for integer fields. To obtain these
default values, we first construct a default object via blank P Cl (see [55]) and then fetch
the corresponding field. Since we can not distinguish address expressions statically, we
again employ conditionals for this purpose. The construction with the foldl operator
works just like in the Putfield case. Apart from field fetching expressions also type
checking expressions can be affected by the New C operation. It can be that in Ty ex
tp the expression ex evaluates to the address of the newly created object. If so, then
the validity of the expressions depends on whether tp equals Class C. Otherwise the

101

Chapter 5 Control Flow and Abstract Semantics

validity of the expression is unaffected. We can handle this situation similarly to the
field fetching expressions by introducing conditionals.

wpNrm Π p p ′ Q pm (New Cl) = (let
em = (pm@(map (λk . (St k ,if k=0 then NewA 0

else St (k − 1))) (stkIds Q))@
(map (λn. (NewA n, NewA (n+1))) (getNewEx Q)));

gfe ′ = foldl (λmp hex . (case hex
of GF F C ex ⇒ (let ex ′=substE mp ex

in (Gf F C ex ,xify ex ′
x=y NewA 0

xtheny xthe ((snd (blank (fst Π) Cl))(F ,C))y
xelsey Gf F C ex ′))

| TY ex ty ⇒ (let ex ′=substE mp ex
in (Ty ex ty ,xify ex ′

x=y NewA 0
xtheny xBool ((Class Cl) = ty)y
xelsey Ty ex ′ ty))) ·mp)

em (remdup (getHeapEx Q))
in substE gfe ′ Q)

Method Call and Returns

Method calls and returns modify the frame stack and not just the topmost frame. Here
our temporal operators Call and Catch come into play. With them we can move down
the frame stack and restore previous states. The Invoke M n instruction allocates a
new frame, and copies n+1 values from the stack of the call frame into registers 0 to n
in reversed order. The value lying on stack position 1 moves into register n, that from
position 2 into register n−1 and so on. Register 0 becomes the this pointer, which lies
on top of the operand stack at call time.
In Fig. 5.7 we illustrate the effect of the Invoke up 1 instruction from position (Cnt ,set ,5)
of the program shown in Fig. 3.3. Since the frame stack grows, we replace FrNr with
FrNr x+y xIntg 1y. Registers Rg 0 to Rg n become substituted with the corresponding
stack elements as described above. In Fig. 5.7 we have eval Π s ′ (Rg 1) = bIntg 3 c =
eval s (St 0). The registers for the local variables, that is Rg (n+1) to Rg mxV, become
initialised with arbitrary. Registers above mxV are illegal (outside the bank) and we
replace them with the none expression. In our example mxV of up is 2. Hence, Rg 3
would evaluate to None under s ′ just as none does under s. The stack of the new frame
is initially empty, hence we replace all St expressions with none. Temporal expressions
also need to be modified. In our example we have eval Π s ′ (Call (St 0)) = bIntg 3 c. To
obtain the same value in the previous state, we drop the Call operator, because callstate
s ′ = s. In case of Catch X ex we check whether the current method has a catching
handler. If so, we can eliminate the Catch. In Fig. 5.7 this is not the case, because
set does not provide any handler at all. In Fig. 3.10 (p. 63) the main method, which

102

5.2 Abstract Semantics

regs

Intg 3 Addr 5

heap

Cnt5:
Intg 0c:

Invoke up 1

s

Addr 5 Intg 3

regs

Intg 3 Addr 5

Null Intg 3 Intg 15 Addr 5

Start
main
10

pc

Cnt
set
5

pc

regs

Intg 3 Addr 5

heap

Cnt5:
Intg 0c:

s'

Addr 5 Intg 3

regs

Intg 3 Addr 5

Null Intg 3 Intg 15 Addr 5

Start
main
10

pc

Cnt
set
5

pc

stack

regsAddr 5 Intg 3

Cnt
up
0

pc

stack stack

stack stack

Figure 5.7: Invoking up from (Cnt ,set ,5).

has some handlers, calls up. In this situation wpNrm would transform Catch No ex to
ex, because evalE Π s ′ (Catch No ex) = evalE Π (catchstate (Π,No,s ′)) ex = evalE Π
s ex. Removing Catch also works in situations, where we only have one frame on the
stack. This is because we defined catchstate such that it becomes an identity in these
situations. In all other situations, where we have at least two frames and no catching
handler, we leave Catch X, because we have catchstate (Π,s ′,X) = catchstate (Π,s,X).
In Fig. 5.7 this applies, hence wpNrm leaves Catch No (St 0) as it is.

wpNrm (P , An) p (C ′, M ′, pc ′) Q pm (Invoke M n) =
(let (, , (, , (mxl ,))) = method P C ′ M
in substE

(pm @ (FrNr , FrNr x+y xIntg 1y) ·
map (λk . (Rg k , if k ≤ n then St (n − k) else if k ≤ n + mxl then xarbitraryy else none))
(rgIds Q) @

map (λk . (St k , none)) (stkIds Q) @
map (λex . (Call ex , ex)) (getCallEx Q) @
concat
(map (λ(cn ′, ex ′).

if catchesEx P cn ′ p then [(Catch cn ′ ex ′, ex ′)]
else [(Catch cn ′ ex ′, xify FrNr x=y xIntg 1y xtheny ex ′

xelsey Catch cn ′ ex ′)])
(getCatchEx Q)))

Q)

103

Chapter 5 Control Flow and Abstract Semantics

regs

Intg 3 Addr 5

heap

Cnt5:
Intg 3c:

Return

s

Addr 5 Intg 3

regs

Intg 3 Addr 5

Null Intg 3 Intg 15 Addr 5

Start
main
10

pc

Cnt
set
5

pc

regs

Intg 3

heap

Cnt5:
Intg 3c:

s'

Addr 5 Intg 3

regs

Intg 3 Addr 5

Null Intg 3 Intg 15 Addr 5

Start
main
10

pc

Cnt
set
6

pc

stack

regsAddr 5 Intg 3

Cnt
up
23

pc

stack stack

stack stack

Intg 3

Figure 5.8: Returning from up

In case of Return the successor state has one frame less. Hence, the evaluation of Call
and Catch expressions needs to be adjusted again. Adding an additional Call to such
expressions amounts to the same as chopping off the topmost frame of the current state.

For example in Fig. 5.8 we illustrate how up returns to set. If we evaluate Call (Rg 0) in
state s ′ we obtain bNullc. To get the same result in state s we have to add one Call and
evaluate Call (Call (Rg 0)). The reduction of the frame stack can be compensated by
replacing FrNr with FrNr x−y xIntg 1y. Note that execution ends, when the main method
returns. Our semantics effS and control flow function succsF do not yield successors
in this situation. Hence, whenever we apply wpF on a Return, there are at least two
entries on the frame stack. To hand back the result value Return pushes the topmost
value from the stack onto the stack of the caller. That means St 0 evaluates to the
same value before and after. For the remaining St k expressions, we have to switch the
context using Call. The same needs to be done with registers.

104

5.2 Abstract Semantics

wpNrm (P , An) (C , M , pc) p ′ Q pm Return =
(let (, aTys,) = method P C M
in substE

(pm @ (FrNr , FrNr x−y xIntg 1y) ·
map (λk . (St k , if 1 ≤ k then Call (St (|aTys| + k)) else St 0)) (stkIds Q) @
map (λk . (Rg k , Call (Rg k))) (rgIds Q) @
map (λex . (Call ex , Call (Call ex))) (getCallEx Q) @
map (λ(cn ′, ex ′). (Catch cn ′ ex ′, Call (Catch cn ′ ex ′))) (getCatchEx Q))

Q)

Exceptional Weakest Preconditions

Exception handling works quite similar for all instructions. Only Throw needs to be
treated separately, because it either throws the reference lying on top of the stack or a
NullPointer exception. We handle this diversity by replacing St 0 with a conditional
expression. If the reference is not Null, we keep it, otherwise we replace it with the
address of the pre-allocated system exception NullPointer. This reference is the only
thing lying on the stack before entering the handler, all other entries are removed. Hence,
we replace all other stack expressions with none. If the instruction is not Throw, the
thrown exception can only be a system exception. We use the function sys-xcpt-of to
determine the kind of system exception from the instruction i.

sys-xcpt-of :: instr ⇒ cname
sys-xcpt-of i =
case i of New C ⇒ OutOfMemory
| Getfield F C ⇒ NullPointer
| Putfield F C ⇒ NullPointer
| Checkcast C ⇒ ClassCast
| Invoke M n ⇒ NullPointer
| Throw ⇒ NullPointer
| - ⇒ Exception

Then we replace St 0 with the address of the corresponding pre allocated system excep-
tion. Next, we have to handle Catch and Call expressions. We can check statically if
the thrown exception is caught inside the current method. If so, the frame stack stays
the same and temporal expressions must not be modified. Otherwise, we pack frame de-
pendent expressions into a Catch cn operator, which we introduced in particular for this
situation. We only have to do this for register expressions, other temporal expressions
and FrNr. Other expressions are either compositions, which only need to modified at

105

Chapter 5 Control Flow and Abstract Semantics

their leaves, are already handled, like Pos, or are not affected by changes on the frame
stack, like heap expressions.

wpExc:: jbc-prog ⇒ pos ⇒ pos ⇒ expr ⇒ (expr ∼∼> expr) ⇒ cname ⇒ instr ⇒ expr

wpExc Π p p ′ Q pm cn i = (let mp=pm@
(map (λk . (St k ,

(if 1≤k then none
else (if i = Throw

then (xify St 0 x=y xNully
xtheny xAddr (addr-of-sys-xcpt NullPointer)y
xelsey St 0)

else xAddr (addr-of-sys-xcpt (sys-xcpt-of i))y))))
(stkIds Q))@

(let (C ,M ,pc)=p; (C ′,M ′,pc ′)=p ′; (P ,An)=Π
in (if match-ex-table P cn pc (ex-table-of P C M) = bpc ′c

then []
else let
rgm= map (λk . (Rg k ,Catch cn (Rg k))) (rgIds Q);
om = map (λex . (Call ex ,Catch cn (Call ex))) (getCallEx Q);
cm = map (λ(cn ′,ex ′). (Catch cn ′ ex ′, Catch cn (Catch cn ′ ex ′)))

(getCatchEx Q)
in (FrNr ,Catch cn FrNr) · rgm@om@cm))

in substE mp Q)

5.3 Conclusion

In this chapter we defined the main workhorses for our VCG. The control flow function
succsF and the abstract semantics in form of initF and wpF. These functions embody the
major complexity of a VCG and demonstrate that having a non-verified VCG is a high
risk. In fact, we needed to debug our definitions several times until we could prove the
requirements in §6.6 and instantiate our correctness and completeness theorems in §6.7.
Our control flow function and abstract semantics operate on formulas of the safety logic
we defined in §4, and are thus heavily influenced by the design choices we made there.
Since we chose to embed safety formulas deeply, we are able to extract type information
from annotations and can use it to narrow the potential successors for dynamic method
calls or exceptions. The same technique could be applied to determine the successors
of bytecode subroutines [56, 94]. Being able to distinguish formulas syntactically also
allows us to distinguish formulas that access the heap. The wpF function knows that a
Putfield F C instruction cannot affect expressions fetching fields from different classes
or with different names. This helps to localise changes in the heap and offers similar
benefits than the split heap approach [26, 24, 61]. In Necula’s approach [68] the heap

106

5.3 Conclusion

is a variable rm and the assertion language has constructs for dynamic heap update
and selection. In case of Putfield F C the symbolic evaluator would simply replace
rm with upd rm (St 0) (St 1) and the logic would resolve heap changes with special
update rules, e.g. sel (upd x y z) y ′ = (if y = y ′ then z else sel x y ′). As one can see
this eventually also boils down to conditional expressions. However, the variable rm has
a function type, whereas our assertions always evaluate to primitive Jinja values. The
downside of using a deep embedding is that we have to use complicated substitutions to
define wpF. If we used a shallow embedding, we would define formulas as predicates, i.e.
Q :: jbc-state ⇒ bool, and could define wp in one line:

wp p p ′ Π Q = λs. (∀ s ′. (fst s ′ = p ′ ∧ ((p,snd s),(p ′,snd s ′)) ∈ set (effS Π)) −→ Q s ′)

Although this would also greatly simplify proving our framework’s requirements, this
approach has disadvantages. For example, wp does not abstract from the concrete
semantics effS. This means state effects Q is not interested in would also appear in s ′

and thus be mentioned in the resulting verification condition. For example, assume we
have Push (Intg 3) at position p, i.e. cmd Π p = bPush (Intg 3)c, and a postcondition
Q that is only interested in register 0, e.g. Q = (Rg 0 x=y xNully). With wpF we obtain
the following precondition:

wpF Π p p ′ Q = substE [] Q = (Rg 0 x=y xNully)

Nothing changes, because no affected expression can be extracted from Q !

In the shallow embedding we could express Q as Qs = (λs. rg 0 s = Null), where
rg is a function fetching registers from a state. Now, if we apply the shallow weakest
precondition operator wp, we obtain the following:

wp p p ′ Π Qs = (λs. (∀ s ′. (fst s ′ = p ′ ∧ ((p,snd s),(p ′,snd s ′))∈(effS Π)) −→ (λs. rg
0 s = Null) s ′))

Schirmer [83] effectively demonstrates that one could write Isabelle/HOL tactics that
apply beta reduction, lookup cmd Π p and resolve the effect of effS to beautify a shallow
formula. However, all the steps of the tactic result in proof steps and must be recorded,
sent to and checked by the consumer. We cannot directly send the small, beautified
formula, because the consumer can only reproduce the raw output of the VCG. From
an earlier instantiation [96], where we directly compare a deep with a shallow assertion
logic, we made the following experience: In a shallow embedding the definition of the
“abstract” semantics is simple and elegant, but the resulting verification conditions are
complex (HOL) and big. In a deep embedding the functions are complex (substitution),
but the resulting formulas simple (FOA) and small.

107

Chapter 5 Control Flow and Abstract Semantics

108

6 Verification Conditions for Jinja

This chapter defines the remaining parameters for our VCG and instantiates
it by putting the pieces together. We also show examples of verification con-
ditions and explain why these are modular. To carry over the theorems from
the framework to our instantiation, we have to prove that the parameters
satisfy the requirements. These proofs are the main effort in instantiations
and we discuss some of them in detail.

6.1 SafetyPolicy

Our VCG expects the safety policy to be defined via local safety formulas. We have to
define a function safeF, which yields a safety formula for every position in a program Π.

safeF :: jbc-prog ⇒ pos ⇒ expr

In our case, we specify a policy against arithmetic overflow. In Java the highest positive
integer is maxI, i.e. maxI = 2 31−1 = 2147483647 . If the result of an arithmetic
operation lies above that number, Java silently overflows. In our safety logic we have
normal integers and x+y means the ordinary unbounded addition on integers. Hence, we
can express the situation of an overflow by computing the real result in the integers and
checking whether it lies within the representable region. For simplicity, we do not check
underflow here.

safeF Π p = (case cmd Π p of None ⇒ xFy | bic ⇒
(case i of IBin no ⇒ Num (St 1) no (St 0) x6y xIntg 2147483647y
| - ⇒ xTy))

In Jinja only the binary arithmetic operation can overflow. If p points to such an
operation we specify a condition that computes the real result and checks whether it is
low enough. If p is outside the code domain, safeF Π p yields xFy. This means programs
that can reach such a position are unsafe. Positions with other instructions are always
safe to execute; we express this with the trivial safety formula xTy.

109

Chapter 6 Verification Conditions for Jinja

6.2 Wellformedness

Some of our VCG’s parameter functions require Jinja programs to satisfy a few easily
checkable wellformedness constraints. In this section we specify these and discuss why
they are helpful or even necessary. We call a program Π wellformed, i.e. wf Π, if and
only if

(1) control flows within the code domain and there are enough annotations,

(2) exception handlers do not overlap and only expect one argument on the operand
stack (reference to exception),

(3) all classnames and method names per class have distinct names,

(4) system classes are declared,

(5) the position (Start ,main,0) exists,

(6) they are accepted by the Jinja bytecode verifier, and

(7) the main method has no arguments.

Below is the formal definition of these properties. We discuss some of the checks below.
For the sake of brevity, we skip the formal definitions of auxiliary functions used here.
Interested readers find the full definitions in the appendix §A.2.2 or otherwise in the
Jinja article [55].

wf :: jbc-prog ⇒ bool

wf Π = (checkPos Π (domC Π) ∧
checkExTables Π ∧
distinct (classnames (fst Π)) ∧ distinct (methodnames (fst Π)) ∧
(∃ cdl . fst Π = (SystemClasses @ cdl)) ∧
(ipc Π ∈ set (domC Π)) ∧
wf-jvm-prog-phi (map-of2 (convert-pt (prog-kil (fst Π)))) (fst Π) ∧
fst (snd (method (fst Π) (fst (ipc Π)) (fst (snd (ipc Π))))) = [])

Comment on 1
We check for each program position p, that all its normal and exceptional successors lie
within the code domain domC Π and are distinct. The first is required for the complete-
ness proof and an essential requirement for safety anyway. The latter enables our wpF
operator to distinguish normal from exceptional execution by checking whether control
flows into a handler. We also check that targets of backward jumps have annotations.

110

6.2 Wellformedness

This ensures that there are no cycles without annotations, which would prevent our VCG
from terminating. Moreover Throw and Invoke instructions must have type annotations.
Types are extracted by succsF to narrow down possible targets. All these properties
are checked by checkPos Π (domC Π), whose formal definition is in the appendix §A.2.2.

Comment on 2
For all exception handler tables xt we demand that its entries (f ,t ,C ,h,d) have d=0 and
unique entry positions h. With d=0 we say that exception handlers may only be en-
tered with an operand stack that contains nothing, but the reference to the exception. In
[55] exceptions may be thrown and caught during expression evaluation and d additional
stack arguments may be taken by the handler. Demanding unique entry positions means
that if we have another handler (f ′,t ′,C ′,h ′,d ′) ∈ set xt, then h ′ 6= h. The uniqueness
property is just a simplifiction that allows us to define handlesEx, which is used by wpF,
as a function. Note that both conditions automatically hold for all bytecode programs
compiled from Java sources. In Java, exceptions are only caught at the statement level
(d=0) and handlers are unique as compilers do not share handlers with common code.

Comment on 3
We require that all classnames and all methods per class have distinct names. This
guarantees that domC, which recurses over all class declarations and methods therein,
does not yield dead positions. We call positions dead if they belong to methods that are
not obtainable by the method lookup function, because they coincide with other entries
having higher priority in the class map (represented as list). Both restrictions could be
dropped, but this would complicate our definition of domC.

Comment on 4
The system classes Exception, ClassCast, OutOfMemory, NullPointer and Object must
be declared in the program. This is important, because otherwise the method and field
lookup functions do not work properly.

Comment on 5
The initial program position ipc Π, which is (Start ,main,0) must exist in the code do-
main. This is ensures requirement 2.12 of our framework.

Comment on 6
Programs accepted by the Jinja bytecode verifier are type safe. This means our semantics
effS never gets stuck, because operands do not have the expected format. Since [55]
provides an Isabelle/HOL proof for type safety, we can trust the bytecode verifier and

111

Chapter 6 Verification Conditions for Jinja

use its types in §6.4 to upgrade the branch conditions of our successor function.

Comment on 7
The type safety theorem for Jinja bytecode [55] assumes that the main method has no
arguments. This restriction is not essential, but simplifies the specification of initial
states. Since we rely on type safety in order to prove lemma 6.4, we also demand this
condition.

6.3 System Invariants

In §3.2 we model states of the Jinja virtual machine as the HOL type jbc-state. Al-
though this type already gives a detailed picture of how states are structured, it is just
a coarse definition of states a Jinja program can actually have. Many elements of this
type are “states” that will never occur in any running Jinja program. The operational
semantics and the wellformedness constraints assure certain properties every reachable
state satisfies automatically.
For example, in every state of a wellformed program the program counter points to some
instruction and all operands have the type this instruction expects. We call such prop-
erties system invariants as the system guarantees them for every wellformed program.
To prove verification conditions it is sometimes necessary to explicitly express such sys-
tem invariants in the safety logic. Making these invariants a part of annotations is one
way to reach this goal. From the logical point of view this is perfectly acceptable, but it
comes at a price. Annotations need to be verified! Although many system invariants are
properties that could be verified automatically, they usually cause a lot of unnecessary
clutter in a safety proof.
A better way to deal with such properties is to prove them once and for all as invariants
that hold for any program and then make them available in proofs as trusted facts. Our
framework allows to do this by packing system invariants into branch conditions, which
only appear at the left hand side of implications in the proof obligations.
Another reason why system invariants are interesting is that they are very helpful in the
verification of the requirements our PCC framework poses on various parameter func-
tions. For this reason, we now introduce a few essential properties, which we have proven
to be system invariants. We represent these system invariants as functions inv-. . . yield-
ing a formula in the safety logic for every program position.

inv-. . . :: jbc-prog ⇒ pos ⇒ expr

System invariant inv-Pos follows from the constraints wf Π poses on the control flow.

inv-Pos Π p = Pos p

112

6.3 System Invariants

Although inv-Pos essentially is just a different name for Pos. We introduce it to make
clear that it is a system invariant and to make its signature compatible to other system
invariants that may depend on the additional parameter Π. Note that Pos p not only
fixes the program counter to p, but also guarantees the call stack to be wellformed. The
following lemma says that inv-Pos holds for all reachable states in wellformed programs.
In other words, it is a system invariant.

Lemma 6.1 The predicate inv-Pos covers all reachable states.

wf Π ∧ s ∈ Reachables Π −→ Π,s |= inv-Pos Π (fst s)

Control flow safety also guarantees that every Return instruction, except for the ter-
minating one from the main method, finds at least two frames on the frame stack.
This property is quite important for many proof rules we derive for our Call and Catch
operators.

inv-FrNr Π (C ,M ,pc) = (if C=Start ∧ M=main then FrNr x=y xIntg 1y
else (xIntg 1y x<y FrNr))

Lemma 6.2 The predicate inv-FrNr covers all reachable states.

wf Π ∧ s ∈ Reachables Π −→ Π,s |= inv-FrNr Π (fst s)

Another property of all reachable Jinja states is that pre-allocated exception objects
remain in the heap at specific addresses.

inv-ExTys Π p = x

∧
y [Ty xAddr (addr-of-sys-xcpt NullPointer)y (Class NullPointer),

Ty xAddr (addr-of-sys-xcpt ClassCast)y (Class ClassCast),
Ty xAddr (addr-of-sys-xcpt OutOfMemory)y (Class OutOfMemory)]

Lemma 6.3 The predicate inv-ExTys covers all reachable states.

wf Π ∧ s ∈ Reachables Π −→ Π,s |= inv-ExTys Π (fst s)

Apart from the system exceptions, we can also construct annotations constraining the
types of registers and operands from the bytecode verifiers type inference.

inv-Ty Π p = annotate-types (fst Π) (convert-pt (prog-kil (fst Π))) p

The Jinja bytecode verifier, i.e. prog-kil, infers types for registers and stack elements.
Converted to our assertion language, i.e annotate-types, these facts become expressions
of the form Ty (Rg 0) (Class Start) x∧y . . . x∧y Ty (St 0) Integer x∧y
In §7.1.1 we elaborate more on the bytecode verifier (BCV). In [55] one finds all the
details about it, including a proof of its correctness. Types inferred by prog-kil, that are
accepted by the type checker wt-jvm-prog-kil, are guaranteed to hold at runtime. Note
that our wellformedness checker wf uses this type checker to enforce welltypedness. From

113

Chapter 6 Verification Conditions for Jinja

the BCV’s correctness and this check, we can then derive the following lemma, which
says that inv-Ty is a system invariant.

Lemma 6.4 Function inv-Ty is a system invariant.
wf Π ∧ s ∈ Reachables Π −→ Π,s |= inv-Ty Π (fst s)

6.4 Instantiating the VCG

Having defined all parameter functions, we can now instantiate our generic VCG to Jinja.
We do this in two steps. First, we define a function vcg using our global operator vcG
taking all parameters and combining them to a verification condition generator. Note
that we also have used vcG in our locale VCG, but only have shown derived lemmas
from that. The reason is that the definition of vcG is quite unreadable due to its many
parameters and due to an artifical list of positions used to enforce termination even for
non-wellformed programs. In §2.6 we rather present derived equations for vcg. These
can also be seen as definitions under the assumption of wellformed programs.

vcg Π = vcG x

∧
y x⇒y xFy ipc initF safeF succsF wpF domC domA anF Π

We also instantiate other VCGs using upgraded control flow functions. Theorem 2.7 (p.
48) enables us to add invariants to branch condition. Since, we have proven that our
system invariants are invariants, we will now upgrade them to succsF. For this purpose
we use the upgrade function upg from §2.10. We start with inv-FrNr, which ensures that
there are always enough frames on the stack.

succsFrNrF :: jbc-prog ⇒ pos ⇒ (pos × expr) list

succsFrNrF = upg inv-FrNr succsF

Then, we upgrade inv-ExTy, which ensures that objects for system exceptions are allo-
cated.

succsExTysF :: jbc-prog ⇒ pos ⇒ (pos × expr) list

succsExTysF = upg inv-ExTys succsFrNrF

Finally, we upgrade the types the bytecode verifier infers. With inv-Tys we translate
these to expressions.

succsTysF :: jbc-prog ⇒ pos ⇒ (pos × expr) list

succsTyF = upg inv-Ty succsExTysF

Although succsTyF clutters up the branch conditions from succsF with lots of detailed
type information, it has one important advantage. It guarantees progress as demanded

114

6.5 Verification Conditions and Modularity

by requirement 2.11 from §2.8. In §6.7 this will play a vital role for our completeness
proof.

Taking the upgraded control flow functions, we now define upgraded versions of our
VCG.

vcgFrNr Π = vcG x

∧
y x⇒y xFy ipc initF safeF succsFrNrF wpF domC domA anF Π

vcgExTys Π = vcG x

∧
y x⇒y xFy ipc initF safeF succsExTysF wpF domC domA anF Π

vcgTy Π = vcG x

∧
y x⇒y xFy ipc initF safeF succsTyF wpF domC domA anF Π

With vcgTy we have arrived at a VCG that emits complete verification conditions. In
§6.7 we will show the corresponding theorem. The reason why we also define and mention
the other VCGs is that for practical purposes incomplete VCGs are often better. Note
that with every upgrade the resulting verification conditions contains more facts. For
some safety policies or programs many of these facts will not be needed to prove the
verification condition. In this case they only lead to big verification conditions and
safety proofs. Therefore it is practical to try to prove safety with a weaker VCG first.
Only if the verification condition cannot be proven automatically, one should switch to
more powerful VCGs. When one has arrived at vcgTy and the proof still cannot be
constructed automatically, this is because either the program is unsafe, the annotations
are wrong, or the proof procedures are insufficient. However, the completeness theorem
guarantees that the reason is not the VCG, which may have missed some important
facts or constructed verification conditions that are too restrictive.

6.5 Verification Conditions and Modularity

Java programmers keep code modular by distributing it among various methods. For
practical reasons it is quite important that our VCG also respects this modularity. The
proof for a method body must be strictly detached from its call contexts. Otherwise we
would have to adjust annotations and proofs of methods every time we add or remove
code that uses this method. Verified libraries would become impossible. In Hoare Logic
modularity is achieved by working with modular specifications of methods, typically
in form of pre- and postconditions. We follow this idea and require entry and exit
positions of methods to be annotated with such conditions. Pre- and postconditions are
not modular if they depend on a particular call context. To give an example, consider
our program from Fig. 3.3. At position (Start ,main,14) the main method invokes up in
order to increase the counter field c from Intg x 0 to Intg (x 0 + y0).

115

Chapter 6 Verification Conditions for Jinja

Cnt.up Start.main

15 : {R} ...

14 : {C} Invoke up 1

23 : {Post} Return

0 : {Pre} ...

Figure 6.1: Method invocation and return

In Fig. 6.1 and Fig. 3.10 we illustrate the situation. Immediately before up becomes
invoked, the machine is in a state, where:

• register 1 and 2 contain the integers Intg x 0 and Intg y0 (x 0=3, y0=15).

• register 3 points to a Cnt object, whose c field is set to Intg x 0.

• the argument Intg y0 lies on top of the stack, followed by a copy of the reference
from register 3.

The call condition C describes this situation formally. It is valid whenever we reach the
call position (Start ,main,14) at runtime, thus we can use it as annotation.

C = aF Π (Start ,main,14) =

x

∧
y [Ty (St 1) (Class Cnt), Rg 1 x=y xIntg x 0y, Rg 2 x=y xIntg y0y, Gf c Cnt (Rg 3) x=y xIntg

x 0y, St 0 x=y xIntg y0y, St 1 x=y Rg 3]

When up returns to main from position (Cnt ,up,23) (see Fig. 3.11), the result Intg (x 0

+ y0) lies on top of the stack and the counter field c has been updated with it. All the
other things are just as before. Again, we can formulate these expectations in a so called

116

6.5 Verification Conditions and Modularity

return condition R and annotate it to position (Start ,main,15).

R = aF Π (Start ,main,15) =

x

∧
y [Rg 1 x=y xIntg x 0y, Rg 2 x=y xIntg y0y, Ty (Rg 3) (Class Cnt), St 0 x=y Gf c Cnt (Rg 3),

Gf c Cnt (Rg 3) x=y xIntg (x 0 + y0)y]

Together, call condition C and return condition R make up a call context for method up.
Note that x 0 and y0 are constants standing for the input values, e.g. Intg 3 and Intg 15.
If (C ,R) is the only call context, we could verify method up with a precondition claiming
Rg 1 x=y xIntg 3y and a postcondition directly referring to the result valueyIntg 18y, i.e. St
0 = xIntg 18y. Even if there are other call contexts we could disjunct the facts from the
different call contexts to obtain valid pre and postconditions. However, such conditions
would not be modular. If additional call contexts come into play, we have to adjust
the method specification and its proofs. To achieve modular pre and postconditions, we
follow the idea of VDM [53], which uses a temporal operator ′ to interpret variables x in
the initial state of a method, i.e. x ′. In our case the Call operator serves this purpose.
Below we have the formulas Pre and Post. They show how we can specify the behaviour
of up in a modular way.

In Pre, we say that register 0 (this) contains a reference to Cnt object. Register 1
contains an integer within the representable range. These two registers are filled with
the arguments the method has been invoked on. Using the Call operator we link them
to the values lying on the operand stack at call time. Finally Pre claims that the object
field c has not changed so far.

Pre = aF Π (Cnt ,up,0) =

x

∧
y [Ty (Rg 0) (Class Cnt), Ty (Rg 1) Integer , Rg 1 x6y xIntg 2147483647y, Rg 0 x=y Call

(St 1), Rg 1 x=y Call (St 0), Gf c Cnt (Rg 0) x=y Call (Gf c Cnt (St 1))]

The postcondition Post describes the result of up when no exception occurs, that is
when we reach position (Cnt ,up,23). It says that register 0 still contains a reference to
a Cnt object and that this reference is the one passed as an argument. It also says that
the object field c has been increased by the second argument and that the same value
is lying on top of the stack, ready for being returned as result value.

Post = aF Π (Cnt ,up,23) =

x

∧
y [Ty (Rg 0) (Class Cnt), Rg 0 x=y Call (St 1), St 0 x=y Gf c Cnt (Rg 0), Gf c Cnt (Rg

0) x=y (Call (St 0) x+y Call (Gf c Cnt (St 1)))]

Now, we have to think about how to verify method up and its invocations. In Hoare
Logic, one would have to show two sorts of triples. One for the method body, i.e. {Pre}
body {Post}, and one for each invocation, e.g. {C} Invoke up 1 {R}.

117

Chapter 6 Verification Conditions for Jinja

6.5.1 Verifying Method Bodies

To verify the body of method up, we simply have to annotate its entry position (Cnt ,up,0)
with Pre and its exit position (Cnt ,up,23) with Post. When our VCG reaches the an-
notated position (Cnt ,up,0) it automatically starts producing proof obligations similar
to those of the Hoare triple for method bodies.

In our example vcgFrNr produces the proof obligation vc-Cnt-up-0 for position (Cnt ,up,0),
which we show in Fig. 6.2. In essence, it is a big implication ensuring that from a state
satisfying the precondition we can reach the exit position (Cnt ,up,23) only in states
satisfying the postcondition. In the example we find the precondition Pre in lines 1-2
and the postcondition Post (manipulated by wpF) in lines 40-45. For every control flow
transition, we get an implication. On the left hand side we find the branch condition, on
the right hand side the safety formula of the next position and the formula for the re-
maining path. In up there are only two critical operations, the subtraction at (Cnt ,up,7)
and the addition at (Cnt ,up,19). The safety formulas in line 16 and 32 ensure that their
result is below the highest integer (no overflow). All other safety formulas are simply xTy.
For the branch conditions we use the abbreviations P, F and Br. In the real verification
condition these stand for the following expressions:

P = Pos (Cnt , up, 0)
F = xIntg 1y x<y FrNr
Br = x

∧
y [x

∧
y [P ,xTy],F]

Each branch condition is a conjunct of three parts. First there are the position con-
straints, which are all assimilated to P by the weakest precondition operator. Then
there is the target constraint, which ensures that we reach a particular successor. Most
instructions do not throw exceptions or jump to various targets. Hence, we often find
the trivial formula xTy as target constraint. Finally, we have the frame stack constraint,
which vcgFrNr adds by using succsFrNrF. The frame stack constraint is important, be-
cause it triggers our simplification rules for Call and Catch operators. In our example,
the dynamic checks on the argument Rg 1 result in the branch conditions on lines 10
and 22. Note that at these positions we have conditional jumps and the verification con-
dition has obligations for both successors. However, in Fig. 6.2 we only show the parts
for the normal execution of up. The placeholder indicates where the full verification
condition has formulas ensuring that up also behaves correctly in case of exceptions.
Although the formula in Fig. 6.2 looks complex, we can prove it automatically using
Isabelle/HOL’s combined tactic (clarsimp,arith). It performs rewriting using our se-
mantical proof rules, applies introduction and elimination rules and handles remaining
numerical subgoals with arithmetic proof procedures. The branch conditions in Fig. 6.2
are mostly irrelevant. The optimised formula for vc-Cnt-up-0, which we show later in
Fig. 7.4, visualizes the actual proof obligations much better.

118

6.5 Verification Conditions and Modularity

vc-Cnt-up-0 = x

∧
y [x

∧
y [x

∧
y [xTy, x

∧
y [Ty (Rg 0) (Class Cnt), Ty (Rg 1) Integer ,

1 Rg 1 x6y xIntg 2147483647y, Rg 0 x=y (Call (St 1)), Rg 1 x=y (Call (St 0)),
2 (Gf c Cnt (Rg 0)) x=y (Call (Gf c Cnt (St 1)))]], Br]
3 x⇒y

4 x

∧
y [xTy, Br

5 x⇒y

6 x

∧
y [xTy, Br

7 x⇒y

8 x

∧
y [xTy, Br

9 x⇒y

10 x

∧
y [xTy, x

∧
y [, x

∧
y [P , x¬y (Rg 1 x<y xIntg 0y), F]

11 x⇒y

12 x

∧
y [xTy, Br

13 x⇒y

14 x

∧
y [xTy, Br

15 x⇒y

16 x

∧
y [(xIntg 2147483647y x−y Rg 1) x6y xIntg 2147483647y, Br

17 x⇒y

18 x

∧
y [xTy, Br

19 x⇒y

20 x

∧
y [xTy, x

∧
y [, x

∧
y [P , x¬y (Rg 0 x=y xNully)], F]

21 x⇒y

22 x

∧
y [xTy, x

∧
y [, x

∧
y [P , (xIntg 2147483647y x−y Rg 1) x>y (Gf c Cnt (Rg 0))], F]

23 x⇒y

24 x

∧
y [xTy, Br

25 x⇒y

26 x

∧
y [xTy, Br

27 x⇒y

28 x

∧
y [xTy, Br

29 x⇒y

30 x

∧
y [xTy, Br

31 x⇒y

32 x

∧
y [(Gf c Cnt (Rg 0) x+y Rg 1) x6y xIntg 2147483647y, Br

33 x⇒y

34 x

∧
y [xTy, x

∧
y [, x

∧
y [P , x¬y (Rg 0 x=y xNully)], F]

35 x⇒y

36 x

∧
y [xTy, Br

37 x⇒y

38 x

∧
y [xTy, x

∧
y [, x

∧
y [P , x¬y (Rg 0 x=y xNully)], F]

39 x⇒y

40 x

∧
y [xTy, x

∧
y [Ty (Rg 0) (Class Cnt), Rg 0 x=y (Call (St 1)),

41 (xify (Rg 0 x=y Rg 0) xtheny (Gf c Cnt (Rg 0) x+y Rg 1)
42 xelsey (Gf c Cnt (Rg 0))) x=y (xify (Rg 0 x=y Rg 0)
43 xtheny (Gf c Cnt (Rg 0) x+y Rg 1) xelsey (Gf c Cnt (Rg 0))),
44 (xify Rg 0 x=y Rg 0 xtheny (Gf c Cnt (Rg 0) x+y Rg 1) xelsey Gf c Cnt (Rg 0))
45 x=y ((Call (St 0)) x+y (Call (Gf c Cnt (St 1))))]]]]]]]]]]]]]]]]]]]]]]

Figure 6.2: Verification Condition: Body Cnt.up

119

Chapter 6 Verification Conditions for Jinja

vc-main-up =
1 x

∧
y [x

∧
y [xTy,

2 x

∧
y [Ty (St 1) (Class Cnt), Rg 1 x=y xIntg x 0y, Rg 2 x=y xIntg y0y,

3 (Gf c Cnt (Rg 3)) x=y xIntg x 0y, St 0 x=y xIntg y0y, St 1 x=y Rg 3]],
4

5 x

∧
y [x

∧
y [Pos (Start , main, 14),

6 x

∧
y [x¬y (St 1 x=y xNully), Ty (St 1) (Class Cnt)]], FrNr x=y xIntg 1y]]

7

8 x⇒y

9

10 x

∧
y [xTy,

11 x

∧
y [Ty (St 1) (Class Cnt), Ty (St 0) Integer , St 1 x=y St 1 ,

12 St 0 x=y St 0 , (Gf c Cnt (St 1)) x=y (Gf c Cnt (St 1))]]
13

14 vc-main-main =
15 x

∧
y [x

∧
y [xTy,

16 x

∧
y [Ty (St 1) (Class Cnt), Rg 1 x=y xIntg x 0y, Rg 2 x=y xIntg y0y,

17 (Gf c Cnt (Rg 3)) x=y xIntg x 0y, St 0 x=y xIntg y0y, St 1 x=y Rg 3]],
18

19 x

∧
y [x

∧
y [Pos (Start , main, 14),

20 x

∧
y [St 1 x=y xNully]], FrNr x=y xIntg 1y]]

21

22 x⇒y

23

24 x

∧
y [xTy,

25 x

∧
y [Rg 1 x=y xIntg x 0y, Rg 2 x=y xIntg y0y]]

26

27 vc-Start-main-14 = x

∧
y [vc-main-up, vc-main-main]

Figure 6.3: Verification Condition: Invoking Cnt.up

6.5.2 Verifying Method Invocations

To verify method invocations {C} Invoke M n {R}, Hoare Logic gives us proof obliga-
tions of the form C (x 1,. . . ,xn) −→ Pre(x 1,. . . xn), where the x i stand for the arguments.
In our case we use Rg and St expressions for that purpose.

Our VCG gives us the formula vc-main-up shown in Fig. 6.3 for the discussed method
invocation. We have to show the weakest precondition for Pre (lines 11-12) and can
assume the call condition C (lines 2-3). Note that the precondition Pre links the ar-
guments of the operand stack, about which C contains facts, with the registers inside
the invoked method. In the goal (lines 11-12) the wpF operator has already resolved
argument passing and we obtain trivial equations of the form St 0 x=y St 0. The second
formula vc-main-main treats the case when Invoke up 1 fails due to a NullPointer ex-

120

6.5 Verification Conditions and Modularity

ception and we end up in (Start ,main,23). Note that the goal (line 25) follows trivially
from the facts in line 16. This is an example of a formula the optimising function opt,
which we will introduce in §7.3, reduces to xTy.

6.5.3 Verifying Method Returns

Finally, we have to show that up returns correctly to its caller. In Hoare Logic one
typically uses a postcondition that relates the input values x i with the output values y i.
Then one has to show that the return conditions holds for all y i that are correct outputs
of inputs satisfying C, i.e. Post(x 1,. . . ,xn,y1,. . . ,yn) ∧ C (x 1,. . . ,xn) −→ R(y1,. . . ,yn).

When trying to adapt this proof obligation to our VCG, we run into difficulties. Note
that the Hoare rule abstracts from the control flow, it goes directly from the call to the
return condition. Since we chose to keep our VCG generic, it has to follow the control
flow instead. For the method entry this is no problem. However, for the method exit,
we end up with proof obligation of the form:

x

∧
y [Post ,B] x⇒y wpF (Cnt ,up,23) (Start ,main,15) R

The problem here is that the return condition R depends on the call context, whereas
Post must not in order to be modular. For example R claims that register 1 contains xIntg
x 0y, but Post does not mention this register at all. However, there is a neat way around
this problem. We can pack call context specific information into branch conditions.
Note that branch conditions are computed individually for each return position and
need therefore not be modular. This means that we can take the call condition, wrap
it into a Call operator in order to apply it to the registers, stack and heap at the call
state, and pack it into B.

B = x

∧
y [. . . , Call C , . . .]

In Fig. 6.4 we show the verification condition we obtain for the normal exit of up, that
is for position (Cnt ,up,23). We only show the part for the return to (Start ,main,15).
The full verification condition also contains a formula for the return to (Cnt ,up,set)
using a completely different call context. We have to show the return condition R (lines
17-19) for states satisfying the postcondition Post (lines 2-4) and the branch condition
B (lines 6-12). Note how the branch condition restores the call context by wrapping the
call condition C with a Call operator (lines 7-11). Since, the frame stack is guaranteed
to have at least two entries this call operator distributes inwards and we can directly
establish many parts of the goal. For example in line 17 we have to show Call (Rg 1)
x=y xIntg x 0y, which we can obtain from line 8 after pushing the Call operator into the
conjunction. Note that again clarsimp can solve this condition automatically.

121

Chapter 6 Verification Conditions for Jinja

vc-up-main =
1 x

∧
y [x

∧
y [xTy,

2 x

∧
y [Ty (Rg 0) (Class Cnt),

3 Rg 0 x=y (Call (St 1)), St 0 x=y (Gf c Cnt (Rg 0)),
4 (Gf c Cnt (Rg 0)) x=y ((Call (St 0)) x+y (Call (Gf c Cnt (St 1))))]],
5

6 x

∧
y [x

∧
y [Pos (Cnt , up, 23),

7 Call (x

∧
y [x

∧
y [Ty (St 1) (Class Cnt),

8 Rg 1 x=y xIntg x 0y, Rg 2 x=y xIntg y0y,
9 (Gf c Cnt (Rg 3)) x=y xIntg x 0y,
10 St 0 x=y xIntg y0y, St 1 x=y Rg 3],
11 Pos (Start , main, 14)])],
12 xIntg 1y x<y FrNr]]
13

14 x⇒y

15

16 x

∧
y [xTy,

17 x

∧
y [(Call (Rg 1)) x=y xIntg x 0y, (Call (Rg 2)) x=y xIntg y0y,

18 Ty (Call (Rg 3)) (Class Cnt), St 0 x=y (Gf c Cnt (Call (Rg 3))),
19 (Gf c Cnt (Call (Rg 3))) x=y (xIntg x 0y x+y xIntg y0y)]]
20

21 vc-Cnt-up-23 = x

∧
y [, vc-up-main]

Figure 6.4: Verification Condition: Return from Cnt.up

6.5.4 Exceptional Method Returns

So far we have ignored exceptions. The postcondition Post only specifies the normal
behaviour of our method up. If one looks at the control flow graph in Fig. 5.1 there are
many positions in up leading to one of the two exception handlers. All these positions
can also be annotated with a postcondition stating what holds in case of an exception.
For example we can annotate position (Cnt ,up,14) with the following exceptional post-
condition PostE, which roughly corresponds with the signals clause of the JML assertion
shown in Fig. 3.3.

PostE = x

∧
y [Ty (St 0) (Class No), Rg 0 x=y (Call (St 1)), Rg 1 x=y (Call (St 0)),

(Gf c Cnt (Rg 0)) x=y (Call (Gf c Cnt (St 1))),

x

∨
y [(Rg 1) x<y (Cn (Intg 0)), (xIntg 2147483647y x−y (Rg 1)) x<y (Gf c Cnt (Rg 0))]]

As Fig. 5.1 shows there are four edges leading out of (Cnt ,up,14). For each of those we
get different branch conditions and thus we end up with four different proof obligations
for this position.

122

6.6 Proving Requirements

vc-Cnt-up-14-1 =
1 x

∧
y [x

∧
y [xBool Truey, PostE],

2 x

∧
y [x

∧
y [Pos (Cnt , up, 14),

3 x

∧
y [Catch No (x

∧
y [Ty (St 1) (Class Cnt),

4 Ty (Gf c Cnt (St 1)) Integer ,
5 Rg 1 x=y xIntg 3y, Rg 2 x=y xIntg 15y,
6 St 0 x=y Rg 1 , St 1 x=y Rg 3]),
7 Catch No (Pos (Start ,main,10)),
8 Ty (St 0) (Class No)]],
9 xIntg 1y x<y FrNr]]
10

11 x⇒y

12

13 (x

∧
y [xBool Truey,

14 x

∧
y [(Catch No (Rg 1)) x=y xIntg 3y, (Catch No (Rg 2)) x=y xIntg 15y]])

15 vc-Cnt-up-14 = x

∧
y [vc-Cnt-up-14-1 , vc-Cnt-up-14-2 , vc-Cnt-up-14-3 , vc-Cnt-up-14-4]

Figure 6.5: Verification Condition: Exceptional return from Cnt.up

In Fig. 6.5 we only show one of the four formulas in detail, namely vc-Cnt-up-14-1.
This formula handles the case when up is called from set with an improper argument.
For example if we set x 0 to −3 the situation depicted in Fig. 4.2 occurs. Control
flows to position (Cnt ,up,14) and the created No exception is passed to the handler at
(Start ,main,18). Assume position (Cnt ,main,18) is annotated with x

∧
y [Rg 1 x=y xIntg

x 0y, Rg 2 x=y xIntg y0y, just as the JML assertion in Fig. 3.3 suggests. Then the wpF just
wraps each register expression with Catch No (line 14). The successor function restores
the call context, by wrapping the call condition also with Catch No. The verification
condition can be proven automatically, because our simplification lemmas for |= and
evalE push the Catch operator inwards. Eventually, clarsimp finishes the goal from
the facts in line 5. Note that clarsimp can also prove all the cases we have not shown
here.

6.6 Proving Requirements

Apart from defining all the parameter functions, we also have to show that our definitions
satisfy all the requirements our abstract framework demands. From the experience with
various instantiations we can say that this boils down to verifying that succsF and wpF
operate as expected. All the other requirements are usually trivial to verify.

123

Chapter 6 Verification Conditions for Jinja

6.6.1 Control Flow Approximation

For the correctness proof of our VCG we have to show that succsF does not forget any
successors effS yields and that the branch conditions hold.

Lemma 6.5 Function succsF approximates the control flow and yields valid branch conditions.

wf Π s ∈ ReachablesAn Π (s, s ′) ∈ effS Π
∃B . (fst s ′, B) ∈ set (succsF Π (fst s)) ∧ Π,s |= B

Proof To prove lemma 6.5, which discharges requirement 2.9, we first distinguish two
cases: normal and exceptional execution of effS. In both cases, a lot of further case splits
follow. In particular we do a case split on the kind of instruction the program counter
of s points to. For each instruction, we apply the corresponding definition of succsNrm
and show the goal by simplification. In the cases with exceptional execution, we have a
separate lemma, which connects the outcome of find-handler with succsXpt. �

For the completeness proof we have to show that the branch conditions guarantee
progress.

Lemma 6.6 Branch conditions of succsF ensure progress for states satisfying system invariants.

Π = (P , An) p = (C , M , pc)
s = (p, (None, h, (st , rg , p) · frs), e) wf Π (p ′, B) ∈ set (succsF Π p)

Π,s |= B cmd Π p = bic Π,s |= inv-Pos Π p
Π,s |= inv-FrNr Π p Π,s |= inv-ExTys Π p Π,s |= inv-Ty Π p

∃ st ′ rg ′ frs ′ e ′. (s, p ′, (st ′, rg ′, frs ′), e ′) ∈ effS Π

Proof To prove lemma 6.6 we first make a case distinction on the kind of instruction. For
each instruction we separate the cases where p ′ is a normal or exceptional successor. In
each case the branch condition restricts the state s such that either normal execution is
possible or an exception occurs. In case of an exception we have that (p ′,B ′) ∈ succsXpt
(Π,X ,[p]). We generalise this to succsXpt (Π,X ,L), where p = last L, and start an
induction on the difference length (domC Π) − length L, which becomes smaller with
every recursive call of succsXpt. Then we instantiate L with [p] and finish the proof. �

From lemma 6.6 we can derive two further lemmas, which establish the requirements
2.20 for succsF and 2.11 for succsTyF. All that needs to be done is to discharge the
system invariants in lemma 6.6.

124

6.6 Proving Requirements

Lemma 6.7 For reachable states succsF yields branch conditions that ensure progress.

wf Π
(p, σ, e) ∈ Reachables Π Π,(p, σ, e) |= B (p ′, B) ∈ set (succsF Π p ′′)

p = p ′′ ∧ (∃σ ′ e ′. ((p, σ, e), p ′, σ ′, e ′) ∈ effS Π)

Proof Lemma 6.7 follows from lemma 6.6, because we can obtain the system invariants
from (p,σ,e) ∈ Reachables Π. �

Lemma 6.8 The branch conditions of succsTyF guarantee progress.

wf Π Π,(p, m, e) |= B (p ′, B) ∈ set (succsTyF Π p ′′)
p = p ′′ ∧ (∃m ′ e ′. ((p, m, e), p ′, m ′, e ′) ∈ effS Π)

Proof We obtain lemma 6.8 from lemma 6.6 and the fact the succsTyF establishes all
system invariants in its branch condition B.�

6.6.2 Abstract and Concrete Semantics

The symbolic evaluation of programs performed by our VCG must mimic the real be-
haviour of the Jinja VM. For the correctness of our VCG it suffices that the weakest
precondition guarantees the postcondition in the successor state. Requirement 2.8 from
§2.7, expresses this formally. It essentially demands the following implication:

. . . ∧ (s,s ′) ∈ (effS Π) −→ Π,s |= wpF Π (fst s) (fst s ′) Q −→ Π,s ′ |= Q

This specifies that the formulas wpF produces must be strong enough, they must con-
strain s such that execution can only proceed with states s ′ satisfying Q. Note that this
property does not prevent us from using a wpF function that is too strong. For example
the function returning xFy would perfectly satisfy this requirement. Hence, requirement
2.14 in 2.8 requires wpF to produce weakest preconditions only. For completeness the
implication from above is turned around:

. . . ∧ (s,s ′) ∈ (effS Π) −→ Π,s ′ |= Q −→ Π,s |= wpF Π (fst s) (fst s ′) Q

Instead of proving both requirements separately, we prove them at once by turning
−→ and ←− into =. Since wpF directly operates on expressions, we prove that wpF
preservers the evaluation of all expressions. In Fig. 6.6 we visualise this relationship.

125

Chapter 6 Verification Conditions for Jinja

effS Πs

Q ′

evalE Π s ′ Q = evalE Π s Q ′

s ′

wpF Π (fst s) (fst s ′) Q

Figure 6.6: Abstract and Concrete Semantics

Note that for the correctness and completeness proof preserving validity (|=) of expres-
sions would be enough. However, proving equivalence under evaluation (evalE) turns
out to be more practical for induction on expressions. The lemma we actually prove
makes a lot of assumptions, which we previously suppressed with Now, it is time
to reveal the details:

Lemma 6.9 wpF mimics effS.

wf Π s = (p, σ, e) s ′ = (p ′, σ ′, e ′) Π,s |= inv-Pos Π (fst s)
Π,s |= inv-ExTys Π (fst s) Π,s |= inv-Ty Π (fst s)

(p ′, B) ∈ set (succsF Π p) Π,s |= B (s, s ′) ∈ effS Π
∀ I . evalE Π (p, σ, e(|lv := I |)) (wpF Π p p ′ Q) = evalE Π (p ′, σ ′, e ′(|lv := I |)) Q

Proof Apart from wellformedness, which is a prerequisite for many other lemmas, the
proof of lemma 6.9 requires the system invariants. These ensure that s has a valid frame
stack, allocated exception objects and arguments of proper type on the operand stack
and in the registers. We also assume that that the successor position p ′ lies in succsF
Π p and that the branch condition B holds. From that and wf Π we can deduce that
p ′ and p lie in domC Π and that handlesEx Π p ′ = None in case of normal execution
of effS Π. Normal or exceptional execution of effS Π is an early case split we make
in the proof. In addition we make case distinctions on the instruction at p. For each
instruction we then induct on the structure of Q. Since we have 16 instructions and 19
different expressions, we end up with 304 cases for the normal behaviour only. Since
wpF treats exception handling uniformly, we only have one induction (19 cases) for the
exceptional behaviour. Most cases, in particular the ones with composed expressions can
be trivially handled by instantiating the induction hypotheses for the subexpressions.
Difficult are the cases for Putfield F C, New, Invoke, Return and Throw. The first two
modify the heap and we have to show the correctness for the substitutions of Gf F C ex

126

6.7 Correctness and Completeness Theorems

and Ty ex tp expressions. In the appendix §A.3.1 we have a detailed and commented
Isar proof for the Putfield case. It gives a feeling on what steps must be taken also
in the other cases. The instructions Invoke, Return as well as Throw modify the frame
stack and also require a lot of hand tuned proof steps. The remaining instructions are
straightforward and all their induction cases can be handled automatically. �

6.6.3 Instantiating the Locales

Unlike the requirements in the last section verifying the remaining locale requirements is
straightforward. Since the lemmas look exactly as the requirements, we omit them here.
After all requirements have been shown, we can instantiate our locales. Each locale
comes with a predicate over all its parameters. This predicate is a conjunction of all the
locale’s requirements including those of its parent locales. The following theorems show
with which setting of parameters, we have been able to instantiate our framework with.

Theorem 6.1 The requirements of locale correctVCG hold for these parameters:
correctVCG initS effS xTy xFy x

∧
y x⇒y |= ` ipc anF succsF wf initF wpF

Theorem 6.2 The requirements of locale completeVCG hold for these parameters:
completeVCG effS xTy xFy x

∧
y x⇒y |= domC ipc anF succsTyF wf initF wpF

Theorem 6.3 The requirements of locale invariantVCG hold for these parameters:
invariantVCG initS effS xTy xFy x

∧
y x⇒y |= safeF domC ipc anF succsF wf initF wpF

Theorem 6.4 The requirements of locale Expressiveness hold for these parameters:
Expressiveness effS xTy xFy x

∧
y x⇒y |= domC ipc anF succsF wf initF wpF specF

In Theorem 6.4 the paramter specF refers to a function, which views initF Π as precon-
dition and all annotations at final positions as postconditions.

specF :: jbc-prog ⇒ pos ⇒ expr option
specF Π p = if p = ipc Π then binitF Πc else if p ∈ finals Π then baF Π pc else None

6.7 Correctness and Completeness Theorems

By now we have defined all the parameter functions our abstract framework expects for
Jinja. We have also proven that they satisfy the requirements stated in the framework.

127

Chapter 6 Verification Conditions for Jinja

This enables us to instantiate the theorems proven abstractly within the framework with
our concrete VCG, as defined in §6.4.

6.7.1 Correctness

Most important is the following theorem, which guarantees correctness of our Jinja
verification condition generator vcg :

Theorem 6.5 Jinja programs with provable verification condition are safe and have correct an-
notations.

wf Π Π ` vcg Π
isSafe Π ∧ correctAn Π

Theorem 6.5 is a combination of theorems 2.1 and 2.2. Now, wf, vcg, ` and isSafe,
which internally uses initS, effS, |= and safeF, are the concrete functions we defined for
Jinja. We have proven that the generic VCG instrumented by the control flow function
and abstract semantics defined in §5 is correct. Theorem 6.5, just as all the other
theorems and lemmas in this chapter, is proven outside any locale and does not depend
on any further assumptions. Although not shown here, we have verified exactly the same
correctness result for the other VCGs vcgFrNr, vcgExTys and vcgTy. With the upgrade
theorem 2.7 and the lemmas on the system invariants 6.2, 6.3 and 6.4 we can derive this
from theorem 6.1.

6.7.2 Invariance

In a similar fashion we can carry over a theorem that guarantees verification conditions
to be invariants. That means, the formula vcg Π holds for all reachable states.

Theorem 6.6 Safe and correctly annotated Jinja programs, have an invariant verification con-
dition.

wf Π isSafe Π correctAn Π
∀ s∈Reachables Π. Π,s |= vcg Π

128

6.7 Correctness and Completeness Theorems

This property can be seen as a weak variant of completeness. It is not equivalent to se-
mantical completeness, which would demand the verification condition to be a tautology.
Nevertheless, it indicates that vcg does not reject programs blindly. A function yielding
xFy for every input would also be safe in the above sense, but clearly not yield invariants.
We also have a framework for semantical completeness, but we cannot instantiate it
for vcg. The reason is that one of its requirements demands the successor function to
guarantee progress. This is not the case for succsF, whose branch conditions provide
valuable restrictions, but do not prevent effS from getting stuck. For example in case
of IAdd the transition relation effS gets stuck if there are not at least two elements on
the operand stack. The branch condition succsF yields for IAdd is xTy, which would also
hold for such malformed states.

6.7.3 Completeness

With succsTyF, which augments the branch conditions of succsF with various system
invariants, we cure this defect. In vcgTy we instantiate our generic VCG with succsTyF
instead of succsF. Since succsTyF does guarantee progress, we can show semantical
completeness for this VCG.

Theorem 6.7 Strongly annotated Jinja programs have a tautologous verification condition.

wf Π strongAn Π
∀ s. Π,s |= vcgTy Π

When annotations are strong enough is defined in §2.8. Roughly speaking, this means
if we have an annotation A at p, then we can start the program at p with any state
satisfying A and have that the program runs safely and satisfies all further annotations
coming along. The important gain of theorem 6.7 towards theorem 6.6 is in the conclu-
sion. Now, the obtained formula is a tautology and does not just hold for all reachable
states. Provided the safety logic is complete, this means we have a provable verification
condition. Unfortunately this is not the case for our safety logic. It embodies natural
numbers and is thus naturally incomplete. However, if we fail to prove a certain pro-
gram it is because of the (unavoidable) incompleteness of first order arithmetics and not
because our VCG is overly restrictive.

129

Chapter 6 Verification Conditions for Jinja

6.8 Conclusion

The safety policy we defined in this section is just one example. One could replace it
with any other safety policy expressible in our assertion language without having to
modify any proof.
The requirement proofs mainly concentrate on the relation between the control flow
function and abstract semantics towards the concrete semantics. Both have to be static
approximations of the dynamic behaviour. The proofs about the weakest precondition
operator turned out to be the largest and most difficult part of our work. In total it
comprises 9kloc of Isar proof scripts. One reason why these proofs are so large is because
we make nested case distinctions on two large datatypes (expressions and instructions).
In [96] we also had this situation, but followed the standard approach of deriving substi-
tution lemmas [99]. That means we have lemmas that allow us to reduce the substitution
by making modifications on the state.

evalE Π s (substE ((x ,y) ·mp) Q) = eval Π (eff (x ,y) s) (substE mp Q)

The modification function eff (x ,y) compensates on the state s the difference of evalu-
ating y instead of x in Q. One keeps applying such lemmas until the substitution map
becomes empty, i.e. [], and the modifications of eff accumulate to the full state transi-
tion of effS. In case of Jinja this standard approach did not work well, because Jinja has
instructions with so many different effects. We would need almost as many substitution
lemmas as instructions. For this reason we skip these lemmas and evaluate substitutions
directly for each instruction.

Also succsF requires non-trivial proofs. Proving the correctness property on succsF
takes 2.5kloc of Isar proofs and the progress property 3.5kloc. In both cases the main
difficulty is to prove lemmas that show the correlation between find-handler (part of
effS) and succsXpt (part of succsF). The remaining proofs are easy (less than 1kloc).
In the final conclusion of this thesis we show a table with all the sizes.

In this section we also showed how one can achieve modularity for each method without
using specific call and return rules. Our idea is to pack call context specific information
into branch conditions. Note that methods and their modular specification also have
a downside. Now, we not only have to verify safety, but also functional correctness.
Detecting modular method specifications automatically is difficult in practice, and so
manual annotations from programmers are likely to be required here.

130

7 Generating Annotations and Proofs

By now we can produce verification conditions against arithmetic overflow for
annotated Jinja programs. Two important questions remain. First, where do
the annotations come from? Second, how can we prove verification condi-
tions? Both questions are the topic of this chapter.

Let us first consider annotations. Clearly they could be inserted manually by the pro-
grammer. The fact that we are working on the bytecode level is no real obstacle. The
data abstractions of Java and its bytecode are almost identical. Hence, one could write
a tool that translates assertions in the source code, e.g. in JML [58], into our assertion
language for the bytecode. The bigger problem is, that programmers are not (yet?) used
to writing annotations. Having an automatic method to infer those, would be much more
practical. For some safety policies, such as type- or control flow safety, inferring anno-
tations is a standard technique by now. It happens silently inside compilers. For less
abstract policies, such as absence of overflow, this is not standard. For these purposes
program analysers can be used.

7.1 Program Analysis

At the moment most program analysers [41, 21, 60] only support bug detection, but the
information they extract is also useful for program verification [59]. Since we have chosen
overflow safety, we are interested in finding arithmetic properties. Interval analysis, such
as the one implemented for Jinja bytecode [28] by Amine Chaieb, is very helpful in that
respect. In addition, the Jinja bytecode verifier modelled and verified in Isabelle/HOL
by Gerwin Klein [55, 54] is a valuable provider of annotations.

7.1.1 Bytecode Verifier

In inv-Ty from §6.3, we use prog-kil to infer primitive Jinja types using Kildall’s dataflow
algorithm. The Jinja article[55] reveals the details of this construction. The result of
prog-kil is a mapping from program positions to so-called state types. These are either
of the form Err, OK None or OK b(st , lt)c. If the state type Err occurs somewhere,

131

Chapter 7 Generating Annotations and Proofs

-
instruction stack registers
Load 0 ([], [Class B , Integer])
Store 1 ([Class A], [Class B , Err])
Load 0 ([], [Class B , Class A])
Getfield F A ([Class B], [Class B , Class A])
Goto −3 ([Class A], [Class B , Class A])

Figure 7.1: Example of a well typed program.

there is a type error and the program is rejected by the type checker. If a position
has state type OK None, it has not yet been visited by the algorithm. Initially all
positions are marked with OK None. State types of the form OK b(st , lt)c abstract the
topmost frame with the types of its operand stack st and local variables lt. Both, st
and lt are lists of Jinja types ty with an additional type Err representing uninitialised
or erroneous values. For example, OK ([Integer],[Class B ,Err]) represents a state type,
which states that an integer is lying on the stack, while register 0 contains a reference
to a B object and register 1 an erroneous value. An exemplary program P together
with its state types Φ is shown in Fig. 7.1. For the instructions on the left hand side
prog-kill P infers the state types on the right. The type checker wf-jvm-prog-phi Φ P
(see [55]) accepts this program, because all instructions receive arguments with proper
type. Note that, although the first instruction pushes a B reference onto the stack, we
have A, the super class of B, on the operand stack in the succeeding state type. This
is because the succeeding position is a join point, where prog-kil merges types to their
least common supertype. Register 1 at that position becomes typed with Err, the least
common supertype of Integer and Class A.

Using annotate-types and convert-pt as auxiliary functions, we can transform these state
types into an assertion. This assertion is a conjunction of Ty ex tp expressions, where
ex is either of the form Rg k or St k and tp the corresponding type. The example given
above would translate to the assertion Ty (St 0) Integer x∧y Ty (Rg 0) (Class B). Error
types are simply dropped during the translation. Using the type soundness proof of [55]
we can derive lemma 6.4, stating that inv-Ty is a system invariant.

7.1.2 Interval Analysis

To verify arithmetic overflow it is very helpful to have upper and lower bounds for integer
variables available. Interval analysis, such as the one implemented for Jinja bytecode

132

7.1 Program Analysis

instruction stack registers source
12 Load 2 ([], [[−1 ,4], [−2 ,6]])

int m(int x, int y) {
if (-1 <= x & x <= 4
&-2 <= y & y <= 6)
{ if (y<=x) {
y=x*y;
x=0; }
return y;

}
}

13 Load 1 ([Rg 2], [[−1 ,4], [−2 ,6]])

14 IfIntG +7 ([Rg 1 , Rg 2], [[−1 ,4], [−2 ,6]])

15 Load 1 ([], [[−1 ,4], [−2 ,4]])

16 Load 2 ([Rg 1], [[−1 ,4], [−2 ,4]])

17 IMul ([Rg 2 ,Rg 1], [[−1 ,4], [−2 ,4]])

18 Store 2 ([Rg 1 x∗y Rg 2], [[−1 ,4], [−2 ,4]])

19 Push 0 ([], [[−1 ,4], [−8 ,16]])

20 Store 1 ([[0 ,0]], [[−1 ,4], [−8 ,16]])

21 Load 2 ([], [[−1 ,4], [−8 ,16]])

22 Return ([Rg 2], [[−1 ,4], [−8 ,16]])

Figure 7.2: Arithmetic program

[95, 28], provides such information. The basic idea is that integer values are abstracted
with intervals. For example the interval [0 ,3] abstracts the concrete value of a variable
that may range from 0 to 3. The state types consist of a list of intervals for the registers
and a list of expressions for the operand stack. Using expressions for the stack instead
of intervals allows to exploit branch conditions for sharpening interval bounds.

In Fig. 7.2 we have a small Java program manipulating variables x and y, which are
represented in registers Rg 1 and Rg 2 in the bytecode. We only show the bytecode
snippet for the inner conditional, which we enter with the intervals [−1 ,4] for Rg 1 and
[−2 ,6] for Rg 2. Note how storing expressions on the stack pays off for the conditional
jump from position 14 to 15. The analyser knows the condition Rg 2 x6y Rg 1 and that
the arguments Rg 1 and Rg 2 are lying on the stack. Combining these facts allows it
to restrict Rg 2 to [−2 ,4] at position 15. If we only had intervals on the stack this
restriction would not be possible. An easy way to use the intervals shown in Fig. 7.2
for our purposes is to translate them into annotations. For example for position 12, we
could generate the following formula:

St 0 x=y none x∧y xIntg −1y x6y Rg 1 x∧y Rg 1 x6y xIntg 4y x∧y xIntg −2y x6y Rg 2 x∧y Rg 2 x6y xIntg 6y

Since annotations need to be verified in the verification conditions, we do not have to
trust the analyser. If the annotations are incorrect, we end up with an unprovable
verification condition.

133

Chapter 7 Generating Annotations and Proofs

VCG

Proof
Checker

Analyzer
2

Compiler Prover

Safety
Policy

Safety
Logic

Prog.
Lang.

Trusted Components

code

annotations

annotations

formula

proof

Analyzer
1

Figure 7.3: PCC system architecture

7.2 Integrating Trusted and Untrusted Analysis Results

In the previous section, we have seen two examples of program analysis, bytecode ver-
ification and interval analysis. Both yield formulas in our assertion logic, but there is
a difference. The bytecode verifier has been formalised in Isabelle/HOL and proven to
be correct. Theorem 6.4 from §6.3 expresses this correctness, the inferred types hold at
runtime. The interval analysis on the other side is not proven to be correct [55]. Hence,
we cannot trust its results. Now, the question arises how we can integrate trusted and
untrusted analysis results in a meaningful way [95]. In Fig. 7.3 we illustrate the situation
in general. We have a trusted analyser and an untrusted one. Our goal is to instantiate
the VCG such that it produces proof obligations that require us to show the validity of
untrusted facts and allow us to exploit the trusted facts.

Assume that for a given program P the first analyser gives the annotations aF 1 P and
the second one aF 2 P. Both are finite maps from positions to assertions expressing the
facts each analyser has found. A simple way to integrate both results is to conjoin the
maps. We take An12 = conjAn (aF 1 P) (aF 1 P) and construct the annotated program
Π12 = (P ,An12). The function conjAn conjuncts the annotations of two maps. For
example, if the first map yields A1 for a position p and the second one A2, i.e. aF i P p
= bAic, then An12 maps p to A1 x∧y A2. If one map has a mapping where the other one
does not, the missing annotation is replaced with xTy. Only if both maps do not have an
annotation for a position p, An12 does not have one either, i.e. An12 p = None.

To verify safety of Π12 and the correctness of its annotations, we can construct and

134

7.2 Integrating Trusted and Untrusted Analysis Results

prove the verification condition vcg Π12. Assume position p has a successor p ′ with
branch condition B, i.e. (p ′,B) ∈ set (succsF Π p). Also assume that the analysers give
us the annotations A1

′ and A2
′ for the successor p ′, i.e. aF i P p ′ = bAi

′c. Then the
verification condition contains the following proof obligation:

(safeF Π p x∧y (A1 x∧y A2) x∧y B) x⇒y wpF Π p p ′ (safeF Π p ′
x∧y (A1

′
x∧y A2

′))

The problem with this proof obligation is that annotations appear on the right hand
side of the implication x⇒y. This means, we have to verify their correctness, when we
prove the verification condition. This is acceptable if neither analyser can be trusted.
Now, assume the second analyser has been verified and all the annotations it gives are
known to be correct. Then, we are in an unhappy situation, because we have to verify A2

′

again. A way around this problem is to pack trusted annotations into branch conditions.
These only appear on the left hand side of implications x⇒y. This can be accomplished
by instantiating our verification condition generator with a different successor function
succsF ′. Using the upgrade function upg from §2.10 we can add the formulas from the
trusted analyser to the branch conditions the original successor function succsF yields.
Then we instantiate vcg ′, a verification condition generator that is identical to vcg from
§6.4, except that it uses the upgraded successor function succsF ′.

vcg ′ = vcG . . . initF (upg succsF (λ (P ,An). aF 2 P)) wpF sF aF.

Now, we take the annotated program Π1 = (P ,aF 1 P), which only carries the anno-
tations from the first analyser, and verify it with the new VCG. The new verification
condition vcg ′ Π1, gives us the following proof obligation for position p:

(safeF Π p x∧y A1 x∧y (A2 x∧y B)) x⇒y wpF Π p p ′ (safeF Π p ′
x∧y A1)

The goal A2
′ now has disappeared, but all the facts on the left hand side remain. This

means we arrived at a verification condition that is easier to prove. The price we have
to pay for this manipulation is that we have instantiated a new VCG and now have
to prove again that it meets all the requirements. Here the instantiation theorem 2.7
from §2.10 helps. Provided we already have proven the requirements for vcg, we now
only have to show that the formulas we upgrade the successor function with are system
invariants. Since we said that the second analyser can be trusted, this follows from its
correctness proof. If we associate aF 2 with our trusted bytecode verifier, this is exactly
what theorem 6.4 in §6.3 guarantees. In §6.4 we follow this principle when we instantiate
vcgTy. Since we only upgrade system invariants, we can justify the correctness of vcgTy
from the correctness of vcg. Although vcgTy produces larger verification conditions than
vcg, they are easier to prove as more facts are available. Using simple optimisation tech-
niques as the ones shown in the next section, help to get rid of redundant facts, before
starting the safety proof.

135

Chapter 7 Generating Annotations and Proofs

7.3 Optimising Verification Conditions

Making the VCG generic reduces its complexity and simplifies proofs of correctness and
completeness. On the other hand, generic verification conditions tend to be very verbose.
One reason is that our VCG does not abstract the control flow and produces many proof
obligations for programs with complex control flow. In particular, exceptions lead to a
lot of paths. Many of those turn out to produce the same or very similar verification
conditions. However, there are ways to tackle these inefficiencies. One is to instantiate
sophisticated parameter functions. For example wpF and succsF could analyse the safety
policy and filter out irrelevant parts of the formulas they produce. This would keep the
resulting verification conditions small from the start, but also make the definitions of
these functions more complex and thus proving the requirements harder. Another way is
to optimise the resulting verification condition in a post-processing step. Then instead of
proving the real verification condition vc a code producer would only prove the reduced
version opt vc. However, there are two things one must keep in mind. First, the optimiser
opt :: expr ⇒ expr must preserve the validity of formulas, i.e. Π,s |= vc = (Π,s |= opt
vc). Otherwise correctness and completeness of the VCG become void. Second, opt
must be very efficient, as it has to run on the consumers side too.

The good news is that there are many simple and efficient optimisations. In experiments
we found that in case of Jinja such optimisations greatly impact the size of the resulting
verification conditions and also of the resulting proofs. Factors between 4 and 10 are
not seldom. We implemented three kinds of optimising functions. Their definitions are
straightforward, hence we only describe them informally here. Our first optimiser fA::
expr ⇒ expr flattens conjunctions. It searches a given expression for nested conjunctions
and transforms these into flat conjunctions. Here is an example:

fA (x

∧
y [Rg 0 x=y Rg 0 , x

∧
y [Rg 1 ,Rg 1], (x

∧
y [x

∧
y [Rg 2 ,Rg 3],Rg 2]) x⇒y Rg 3])

= x

∧
y [Rg 0 x=y Rg 0 ,Rg 1 ,Rg 1 ,(x

∧
y [Rg 2 ,Rg 3 ,Rg 2]) x⇒y Rg 3]

Flattening conjunctions is quite helpful for our next optimisation rd ::expr ⇒ expr, which
removes duplicates. Not only does it remove duplicates in conjunctions, but also it
removes subformulas on the right hand side of implications that also occur on the left
hand side. Applied to the result from above, rd would reduce the implied Rg 3 with xTy

and eliminate redundant occurrences of Rg 2 and Rg 1.

rd (x

∧
y [Rg 0 x=y Rg 0 ,Rg 1 ,Rg 1 ,(x

∧
y [Rg 2 ,Rg 3 ,Rg 2]) x⇒y Rg 3])

= x

∧
y [Rg 0 x=y Rg 0 ,Rg 1 ,(x

∧
y [Rg 2 ,Rg 3]) x⇒y xTy]

The implication above is an example of a constant subexpression. Its evaluation yields
the same for any state. Our next optimiser fc:: expr ⇒ expr detects such constant
subexpressions and folds them to their evaluation result. Here is what fc does to the
result above.

136

7.3 Optimising Verification Conditions

fc (x

∧
y [Rg 0 x=y Rg 0 ,Rg 1 ,(x

∧
y [Rg 2 ,Rg 3]) x⇒y xTy])

= x

∧
y [Rg 1]

Note that fc is not complete, it only discovers simple cases of constant subexpressions.
It reduces conjunctions, implications involving xTy or xFy, biased conditionals or syntactic
equalities. It also optimises relations or numerical compositions of constant subexpres-
sions, e.g. xIntg 1y x+y xIntg 2y x=y xIntg 3y. However, it would not discover that Rg 0 x<y (Rg
0 x+y xIntg 1y) is always true. A complete fc would reduce every tautology to the con-
stant xTy. This would amount to a decision procedure for first order arithmetics, which
is impossible due to Gödel’s incompleteness theorem.

For reasons of convenience we bundle our optimising functions into one optimiser.

opt :: expr ⇒ expr.
opt = fc ◦ rd ◦ fA ◦ fc

Using similar theorems for the functions fA, rd and fc, we have proven the following
theorem, which justifies optimising formulas prior to their proof.

Theorem 7.1 The optimiser opt preserves the semantics of expressions.
evalE Π s (opt ex) = evalE Π s ex

The complexity of opt is quadratic to the size of the input formula. This is because some
functions, e.g. rd, need to look up expressions in lists of subexpressions. The quadratic
time is acceptable, because our verification conditions typically are conjunctions of many
small subgoals that can be optimised independently. In fact we could also justify the
use of less efficient optimisers, because the main bottleneck lies in producing and writing
down proofs. For example decision procedures for Presburger arithmetics can produce
proofs that are double exponentially bigger than the proven formula [45].

Although the optimisations opt performs are rather simple, their effect on verification
conditions is enormous. For example optimising the verification condition shown in
Fig. 6.2 leads to the formula shown in Fig. 7.4, which has ten times fewer nodes. Note
that all redundant branch conditions have been removed and the conditionals in the
postcondition have been simplified. Like Fig. 6.2 we also omit the parts for the ex-
ceptional behaviour of up with . These parts are also reduced drastically, some even
collapse to xTy.

137

Chapter 7 Generating Annotations and Proofs

opt-vc-Cnt-up-0 = x

∧
y [Ty (Rg 0) (Class Cnt), Ty (Rg 1) Integer ,

1 Rg 1 x6y xIntg 2147483647y, Rg 0 x=y (Call (St 1)),
2 Rg 1 x=y (Call (St 0)), Gf c Cnt (Rg 0) x=y (Call (Gf c Cnt (St 1))),
3 Pos (Cnt , up, 0), xIntg 1y x<y FrNr]
4

5 x⇒y

6

7 (x

∧
y [, x

∧
y [x¬y (Rg 1 x<y xIntg 0y)]

8

9 x⇒y

10

11 (x

∧
y [(xIntg 2147483647y x−y Rg 1) x6y xIntg 2147483647y,

12 x

∧
y [, x¬y (Rg 0 x=y xNully)]

13

14 x⇒y

15

16 (x

∧
y [(xIntg 2147483647y x−y Rg 1) x>y (Gf c Cnt (Rg 0))]

17

18 x⇒y

19

20 (x

∧
y [((Gf c Cnt (Rg 0)) x+y Rg 1) x6y xIntg 2147483647y,

21 ((Gf c Cnt (Rg 0)) x+y Rg 1) x=y ((Call (St 0)) x+y (Call (Gf c Cnt (St 1))))]))])])

Figure 7.4: Optimised Verification Condition: Body Cnt.up

7.4 Generating Proofs

To construct proofs for verification conditions we use a theorem prover. Although other
first order provers with proof objects and sufficient support for arithmetics could be
employed, we also use Isabelle/HOL for this purpose. This enables us to define the
provability judgement semantically and spares us from verifying a calculus of inference
rules. An alternative we also investigated is to let the program analysis (interval analysis)
produce a proof for its result.

7.4.1 Proof Construction with Isabelle

As we have defined our provability judgement semantically, we can prove Π ` f by prov-
ing ∀ s. Π,s |= f. The latter amounts to evaluating the formula f on an unknown state
s. That is we have to prove:

∀ s. evalE Π s f = bBool Truec
A proof for such a goal typically involves two steps. First, one uses the simplifier to

138

7.4 Generating Proofs

push evalE as far inside f as possible. The result is a HOL formula that connects
various occurrences of evalE Π s ex, where ex is an atomic subexpression of f, with
Isabelle/HOL’s logical and arithmetic operators. That is x+y becomes +, x

∧
y becomes

an iteration of ∧ and so on. Then the second step of the proof is to show that the
resulting HOL formula holds. Here the huge library of Isabelle theories can be used as
well as various decision procedures. In case of a safety policy against arithmetic overflow
one often ends up with proving arithmetic subgoals. Here, Isabelle’s decision procedure
for Presburger arithmetic is useful. It automatically handles all linear arithmetic sub-
goals. In our experiments we found that in most cases the clarsimp procedure proves
goals automatically. It performs rewriting, instantiates quantifiers and finally calls the
arithmetic decision procedures. However, to get it running we had to introduce a lot of
rewriting rules for the evalE function. Some of these are shown in Fig. 4.4.

7.4.2 Proof Producing Program Analysis

Instead of standard proof procedures, a different approach is to let the program analyser
produce a proof of its result. After the analyser reaches a post-fixpoint, it should return
a proof that the found annotations are correct. Intuitively, since the analyser infers these
invariants, their correctness proofs will rely on a small set of theorems, which express
how the analyser manipulates domain elements. Independently from [86] this technique
is proposed in [28] and has been implemented in [39]. For every edge (p,q) in the control
graph of a Jinja program it creates a theorem of the form form P −→ form (WP c
Q), where P and Q are domain elements inferred for p and q, and form is a function
turning these into HOL formulas. The WP operator performs the same transformations
as wpF, but works directly on domain elements (lists of intervals and stack expressions).
For example take p = (Start ,m,17) and q = (Start ,m,18) and consider the program in
Fig. 7.2. In this case, we obtain the following formulas:

form P = −1 ≤ r1 ∧ r1 ≤ 4 ∧ −2 ≤ r2 ∧ r2 ≤ 4 ∧ −2 ≤ s0 ∧ s0 ≤ 4 ∧ −1 ≤ s1

∧ s1 ≤ 4

form Q = −1 ≤ r1 ∧ r1 ≤ 4 ∧ −2 ≤ r2 ∧ r2 ≤ 4 ∧ −8 ≤ s0 ∧ s0 ≤ 16

Note that form introduces integer variables r1, r2, s0 and s1 and resolves stack expres-
sions into their intervals. The proof producing analyser emits the following lemma for
the edge from p to q and also supplies an Isabelle/HOL proof for it.

lemma p-q :
−1 ≤ r1 ∧ r1 ≤ 4 ∧ −2 ≤ r2 ∧ r2 ≤ 4 ∧ −2 ≤ s0 ∧ s0 ≤ 4 ∧ −2 ≤ s1 ∧ s1 ≤ 4
−→
−1 ≤ r1 ∧ r1 ≤ 4 ∧ −2 ≤ r2 ∧ r2 ≤ 4 ∧ −8 ≤ s0 ∗ s1 ∧ s0 ∗ s1 ≤ 16

The lemma p−q involves multiplication and can thus not be proven automatically by

139

Chapter 7 Generating Annotations and Proofs

constdefs vc-Start-m-18- :: expr
1 vc-Start-m-18- =
2 x

∧
y [xIntg −1y x6y Rg 1 , Rg 1 x6y xIntg 4y,

3 xIntg −2y x6y Rg 2 , Rg 2 x6y xIntg 4y,
4 St 0 x=y (Rg 1 x∗y Rg 2),
5 Pos (Start , m, 18)]
6

7 x⇒y

8

9 (x

∧
y [xIntg −8y x6y St 0 , St 0 x6y xIntg 16y])

Figure 7.5: Verification Condition: (Start,m,18) to (Start,m,19)

Isabelle/HOLs decision procedures for arithmetics. We have a tactic for bounded arith-
metic, which would solve the goal, but it is not included in the standard proof procedures
such as clarsimp. Hence, having such lemmas proven by the analyser can be quite help-
ful. Consider position r = (Start ,m,19) in Fig. 7.2. When we translate the analysis
results into our assertion format, we obtain annotation Ar.

constdefs Ar ::expr
Ar = x

∧
y [xIntg −1y x6y Rg 1 , Rg 1 x6y xIntg 4y,

xIntg −8y x6y Rg 2 , Rg 2 x6y xIntg 16y]

Analogously Q becomes translated to Aq.

constdefs Aq ::expr
Aq = x

∧
y [xIntg −1y x6y Rg 1 , Rg 1 x6y xIntg 4y,

xIntg −2y x6y Rg 2 , Rg 2 x6y xIntg 4y,
St 0 x=y (Rg 1 x∗y Rg 2)]

When we compute the optimised verification condition for this example we get
vc-Start-m-18- as proof obligation for the transition from q to r. This formula, which we
show in Fig. 7.5 is the result of x

∧
y [Aq ,xTy,xTy] x⇒y wpF Π q r x

∧
y [Ar , xTy]. The constants

xTy are safety formulas or branch condition, they are optimised away in Fig. 7.5.

In Fig. 7.6 we show an Isar proof script for this verification condition. As one can see
clarsimp cannot prove the condition vc-Start-m-18- automatically. It terminates with
a subgoal, where one has to bound the multiplication n2 ∗ n2a, where n2 has been
introduced for the integer in register 1 and n2a for the one in register 2. A similar
problem occurs for the verification condition vc-Start-m-0- which covers the whole path

140

7.4 Generating Proofs

Figure 7.6: Proving the verification condition

141

Chapter 7 Generating Annotations and Proofs

from (Start ,m,0) to (Start ,m,18). There the safety formula for the IMul instruction
requires to show that the result is within the representable range. To solve this subgoal
we manually used a rule for interval multiplication.

lemma mult-intervals-less:
lx < x ∧ x < ux ∧ ly < y ∧ y < uy ∧ l = [lx∗ly ,lx∗uy ,ux∗ly ,ux∗uy] −→

(foldl min (hd l) (tl l) < x ∗ y ∧ x ∗ y < foldl max (hd l) (tl l))

We could use the same rule for vc-Start-m-18-, but as Fig. 7.6 shows one needs to
give explicit bounds. Here the automatically generated theorems from the program
analysis help. If we added lemma p-q from above to the simplification set we do not
need the lemma mult-intervals-less. We could replace the three lines with apply we
have in Fig. 7.6 for the goal vc Start m 0 holds with an automatic proof, namely with
by clarsimp. The proofs obtained with proof producing program analysis are also a
lot shorter. Arithmetical rewriting as we perform it for vc Start m 0 holds in Fig. 7.6
leads to very verbose proof objects. Having perfectly matching lemmas from the analyser
available, avoids this. Note that all the lemmas and proofs from the analyser must be
added to the proof for the verification condition, but this is just a technical issue.

7.5 Conclusion

This chapter showed how program analysis can be integrated into our PCC system. The
best way is when one can trust the analyser. In this case the results can be placed
into branch conditions. This makes them available as facts, but does not require to
verify them. The only drawback with trusted analysers is that they must be installed
and run on the consumer’s side as well. This means they have to be efficient and
a producer cannot adjust them for each individual program. Theoretically one could
think about sending an individual analyser together with its correctness proof along
with each program. However, our experience with the verified BCV [54] tells us that
such correctness proofs are complex and big theories in HOL. In case an analyser cannot
be trusted, which is the case for the interval analysis used here, one can use the results as
annotations. The resulting verification condition can then be proved either interactively
in Isabelle/HOL or by employing a proof producing program analyser [28, 39]. The latter
case is of course preferable, but many analysers around these days do not provide this
feature. In our case the interval analyser has been upgraded to produce proven lemmas
for all edges in the control flow graphs. If we add these lemmas to the simplification set,
the proof procedures of Isabelle/HOL can verify all annotations automatically.

142

8 Using the System

This chapter consists of two parts. First, we show how we can use Isabelle’s
code generator to turn our formalisation into a collection of runnable ML
tools. Then we show on a small example how these tools should be applied by
the code producer and consumer.

8.1 Generating Runnable ML Prototypes

Isabelle/HOL provides a code generator [17] for turning HOL specifications into runnable
ML code. When instantiating our framework to Jinja, we carefully chose definitions that
work well with this code generator. However, some definitions we inherit from Jinja [55]
are not directly amenable for code generation.

For such situations, the code generator allows us to bridge the gap by providing alterna-
tive definitions via so called code lemmas. We had to do so for Jinja’s functions looking
up methods or fields in programs. In [55] these functions use existential quantifiers and
Hilbert’s choice operation THE x . P x, which returns a value satisfying a given predi-
cate. We could make these functions executable, by turning them into inductive sets,
for which the code generator can produce search algorithms. For example, consider the
following definition:

f x = THE y . ∃ z . R x y z

When the relation R x y z enforces unique values for y for a given x, we can define an
inductive set F with one introduction rule:

R x y z −→ (x ,y ,z) ∈ F

If R is already inductively defined, we can skip this step. Next, we turn the definition
above into a conditional rewriting rule and declare it as an inductive code lemma.

lemma [code ind]: (x ,y ,z) ∈ F −→ f x = y

The code generator then generates code for f that internally searches the inductively
defined set F for a solution, quite similar to a Prolog [23] interpreter. Apart from that,
the code generator can also use alternative types. In our case, we replaced finite sets with

143

Chapter 8 Using the System

lists. We do not go further into the details of code generation here. Interested readers
may have a look at our theory files BCVExec.thy and VCGExec.thy [4], which contain all
the code lemmas, type conversions and the like. The generated system consists of three
executable ML programs. All together they make up 4.3kloc of Standard ML [63].

(1) Bytecode Verifier.

(2) Wellformedness Checker.

(3) Verification Condition Generators and Optimiser.

Each of those is placed into a separate ML structure inheriting the common datatypes
from other structures defining the Jinja syntax and the expression language. For the con-
venience, we have ML startup scripts for each component: concon, jinwf and jinvcg.
These scripts not only invoke the generated ML modules, but also perform additional
tasks. The tool concon turns the bytecode verifier’s types into control constraints, jinwf
not only answers with yes/no, but also gives detailed error descriptions and jinvcg de-
composes the resulting verification condition and also produces a tailored Isar [93, 92]
proof script for it. We discuss each of these tools in the following sections.

8.2 Tasks for Code Producers and Consumers.

This section illustrates the tasks code producers and consumers have to perform. Fig. 8.1
gives an overview. In total there are 13 steps to take, 1-9 for the producer and 10-13 for
the consumer.

1. The producer writes a Java program and compiles it.

2. The producer uses j2jin to convert the classfile into Jinja bytecode in formats for
ML and Isabelle/HOL.

3. Program analysers for types and intervals inspect the bytecode and produce an-
notations our assertion logic.

4. The producer loads these annotations into Isabelle/HOL, merges them automati-
cally and maybe adds further annotations manually.

5. The wellformedness checker inspects the code and annotations and rejects them if
it discovers defects.

144

8.2 Tasks for Code Producers and Consumers.

OK / reject

 Start.class

 Prog.thy

 Prog.ML

javac Start.java

j2jin

concon

jinint

isabelle

jinwf

 Int.thy

 ConCon.thy

jinvcg

isabelle

 An.thy

 An.ML

 VC.thy

 PrfObj.xml Proof.thy

OK / reject

 Prog.thy

 Prog.ML

j2jin

jinwf

jinvcg

proof
checker

 VC.thy

OK / reject

Code Producer Code Consumer

Figure 8.1: Jinja PCC - Workflow

6. The producer runs jinvcg, which turns program and annotations into a verification
condition together with a proof script for it.

7. The producer loads the verification condition and the proof script into Isabelle/HOL
and generates the proof.

8. When the proof is finished the producer exports it as an LF style proof object
[16, 15] into a XML file.

9. The producer sends the classfiles, annotations and proof object to the consumer.

10. The consumer receives the classfiles and converts them to Jinja using j2jin.

11. The consumer runs the wellformedness checker on the converted code and the
received annotations.

12. If the check is successful, the consumer runs the VCG to obtain the verification
condition.

145

Chapter 8 Using the System

13. The consumer uses Isabelle’s proof checker to find out whether the received proof
object is a valid proof for the generated verification condition.

If the proof is valid, the program is guaranteed to run safely on the Jinja VM and is
cleared for execution. Although our formalised Jinja VM could also be turned into an
executable ML program, executing the original classfiles on a real Java VM gives much
better performance. There is a risk that errors in j2jin or our formalisation of the
Jinja VM, cause the code to behave differently. If the Jinja bytecode does not match
the original classfile or the real Java VM [88] behaves differently than our formalised
version, our safety guarantee cannot be transferred to the real world. However, here we
are close to an absolute limit in safety concerns. At some point the gap between real and
formal world is inevitable. The good news is that we have narrowed down the potential
risks to a small number of trusted components. They can be checked once and for all
by human inspection.

In the following sections, we illustrate all these steps with a small example. Instead
of the counter application from Fig. 3.2, we now pick a program that is numerically
more appealing and better suited for the interval analyser, which cannot handle method
invocations and exceptions.

8.2.1 From Java to Jinja

Although programming directly in bytecode is possible, it is much more convenient to
write code in Java or any other source language that can be compiled to Java bytecode.
The example we discuss in this section is the Java program shown in Fig. 8.2. It contains
a method sum, which adds the numbers from 0 to n.

sum n =
∑n

i=0 i

Instead of using Gausses famous formula, i.e. sum n = n (n+1) / 2, we rather keep
the program more interesting by using a loop of additions. Our aim is to write this
program in a robust form. It should check its input n and avoid running into arithmetic
overflows. The constant mn denotes the largest input n, for which the result of sum n
is still representable as a 32bit Java integer. If n exceeds this number the loop carrying
out the additions causes an arithmetic overflow and we end up with a wrong result.
Therefore, our method first checks whether n exceeds mn and immediately terminates
with the error code −1 if so. Otherwise it enters a loop that n times increments i
and adds it to the result variable s. Both s and i grow with every iteration, but are
always lower or equal to the result sum n, which our check on n already keeps within the
representable range. Hence, in principle our initial check suffices to exclude arithmetic
overflow. However, our code also checks the result variable s within the loop to be below

146

8.2 Tasks for Code Producers and Consumers.

public class Start {

static final int input = 100;
static final int mn = 65535;
static final int ms = 2147418112;

public static void main(String args[]) {
try { Start st=new Start();

st.sum(input); }
catch (Exception e) {}
}

public int sum(int n) {
int i = 0;
int s = 0;
if (n <= mn) {
while (i <= n) {
if (s <= ms) { s=s+i;

i=i+1; }
else {
s=-2;
//System.out.println ("Impossible!");
break; }

}
//System.out.println(s);}
else {
//System.out.println("Input too high!");
s=-1; }
return s;
}
}

Figure 8.2: Gauss Summation

147

Chapter 8 Using the System

the constant ms, which we have chosen relative to mn and maxI. That is, we have: sum
mn = ms + mn = 2147483647 = maxI.

Note that maxI can be distinguished easily from ms by reading their digits from right
to left. The reason for the cumbersome check s <= ms, which is always true, is that
we want to use interval analysis to obtain proper annotations automatically. Interval
analysis does not relate variables with each other and would widen the interval for s to
[0,∞] otherwise. Since the relation between s and i is the non-linear Gaussian formula,
we would need a very advanced program analyser to avoid the magic number ms.

After the code has been written, we use the java compiler to obtain the classfiles.

:) javac Start.java

We obtain Start.class, which we now have to convert to the Jinja format using j2jin.

:) j2jin -o Prog Start.class

This gives the following output:

File Prog.ML has been generated.
File Prog.thy has been generated.

The resulting files Prog.ML and Prog.thy, which we partly show in Fig. 8.3, contain
Jinja representations of Start .class in formats for ML and Isabelle. In Fig. 8.4 we show
the control flow of this code.

The ML file is processed further on by our tools, while the Isabelle file is needed for
verification in Isabelle/HOL only. When j2jin finds an instruction Jinja does not
directly support, it replaces it with a proper substitute. For example System.out .writeln,
which we commented out to avoid clutter in the bytecode, would not be translated into
Invoke Printstream . . . , but result in a series of Pop instructions that just clear the
arguments. Whenever such a substitution is made the ML file contains a comment
with the real instruction. The generated theory file decomposes the entire program into
various constant definitions. For each method, we get a separate constant listing all its
instructions commented with their line of occurrence. To integrate these comments we
use the −− operator, which simply drops its first argument: linenr −− i = i.

148

8.2 Tasks for Code Producers and Consumers.

theory Prog imports VCGExec begin

. . .

constdefs m-Start-sum:: jvm-method mdecl
m-Start-sum = (sum, [Integer], Integer, 3, 3,
[0 −− Push (Intg 0),
1 −− Store 2,
2 −− Push (Intg 0),
3 −− Store 3,
4 −− Load 1,
5 −− Push (Intg 65535),
6 −− IfIntG 19,
7 −− Load 2,
8 −− Load 1,
9 −− IfIntG 18,
10 −− Load 3,
11 −− Push (Intg 2147418112),
12 −− IfIntG 10,
13 −− Load 3,
14 −− Load 2,
15 −− IAdd,
16 −− Store 3,
17 −− Load 2,
18 −− Push (Intg 1),
19 −− IAdd,
20 −− Store 2,
21 −− Goto −14,
22 −− Push (Intg −2),
23 −− Store 3,
24 −− Goto 3,
25 −− Push (Intg −1),
26 −− Store 3,
27 −− Load 3,
28 −− Return],
[])

constdefs StartC:: jvm-method cdecl
StartC = (Start, Object,
[(input, Integer),(mn, Integer),(ms, Integer)], [m-Start-main, m-Start-sum])

constdefs P:: jvm-prog
P = [ObjectC, ExceptionC, NullPointerC, ClassCastC, OutOfMemoryC, StartC]

end

Figure 8.3: Prog.thy

149

Chapter 8 Using the System

Start.main

Start.sum

0 : New Start

1 : Push Null

9 : Store 1

2 : Pop

3 : Store 1

4 : Load 1

5 : Push Intg 100

6 : Invoke sum 1

0 : Push Intg 0

7 : Pop

8 : Goto 2

10 : Push Unit

11 : Return

1 : Store 2

2 : Push Intg 0

3 : Store 3

4 : Load 1

5 : Push Intg 65535

6 : IfIntG 19

7 : Load 2

25 : Push Intg ~1 8 : Load 1

9 : IfIntG 18

10 : Load 3

27 : Load 3

11 : Push Intg 2147418112

12 : IfIntEq 10

13 : Load 322 : Push Intg ~2

14 : Load 2

15 : IAdd

16 : Store 3

17 : Load 2

18 : Push Intg 1

19 : IAdd

20 : Store 2

21 : Goto ~14

23 : Store 3

24 : Goto 3

26 : Store 3

28 : Return

Figure 8.4: Gaussian Summation - Control Flow

150

8.2 Tasks for Code Producers and Consumers.

theory ConCon imports JBC SafetyLogic begin

constdefs concons :: pos ∼∼> expr
concons = [
((Start, main, 0), Ty (Rg 0) NT),

((Start, main, 6), x

∧
y [Ty (St 1) (Class Start), Ty (St 0) Integer]),

((Start, main, 7), xTy), ((Start, main, 11), xTy),

((Start, sum, 0), x

∧
y [Ty (Rg 0) (Class Start), Ty (Rg 1) Integer,
Rg 0 x=y (Call (St 1)), Rg 1 x=y (Call (St 0))]),

((Start, sum, 7), xTy), ((Start, sum, 28), xTy)]

end

Figure 8.5: ConCon.thy

8.2.2 Annotating the Code

Now, after we have the Jinja bytecode the next step is to annotate it. First, we generate
so called control constraints, which are annotations our VCG expects.

:) concon -o ConCon Prog.ML

If the program is welltyped, this gives the following response.

File ConCon.thy generated.

The result is a new Isabelle theory, which we show in Fig. 8.5.

Using the bytecode verifier concon annotates Invoke and Throw instructions with types
narrowing their possible successors. The initial instruction of every method automati-
cally receives an annotation restricting the types of the arguments and connecting these
with the arguments lying on the stack before the call. Usually this information suffices
as precondition, at least for robust methods. Finally all targets of backward jumps
are annotated with xTy to signal that our VCG expects annotations there. Control con-
straints are essential, but usually not sufficient for verification. Other annotations, such
as meaningful loop invariants, need to be added. In our example we can use jinint for
that purpose. It runs an external interval analyser and translates its result back into
annotations in our assertion language.

151

Chapter 8 Using the System

theory Int imports JBC SafetyLogic begin

constdefs intervals :: pos ∼∼> expr
intervals = [
((Start,sum,7), x

∧
y [

Rg 1 x6y xIntg 65535y,
xIntg 0y x6y Rg 2, Rg 2 x6y xIntg 65536y,
xIntg 0y x6y Rg 3, Rg 3 x6y xIntg 2147483647y])]

end

Figure 8.6: Int.thy

:) jinint -o Int Prog.ML

This results in another theory file containing interval annotations for registers.

File Int.thy generated.

As Fig. 8.6 shows, jinint already knows what positions our VCG expects to be anno-
tated, such as targets of backward jumps. Instead of annotating every position, it only
annotates those. For our example program we only obtain an annotation for the entry
position of the loop, that is for (Start ,sum,7). As Fig. 8.6 shows, this annotation limits
the integers residing in registers 1, 2, and 3. Important is the upper limit for register 3.
Thanks to our check against ms the analyser knows upper limits for both arguments of
the addition. Hence, it can limit the resulting value for register 3 to 2147483647, which
is mn + ms.

After annotations from various sources have been collected, one needs to combine these.
In our example, we have to merge the control constraints from Fig. 8.5 with the intervals
from Fig. 8.6. A simple way of merging two annotation maps is to conjunct them
pointwise.

As Fig. 8.7 indicates, we use function conjAn An1 An2 for that purpose. After the
combination Fig. 8.7 uses Isabelle’s code generator to turn the final annotations into an
ML format, ready for being shipped to the consumer and further processing.

8.2.3 Checking Wellformedness

Next, it is time to check the wellformedness of our program. This rules out basic errors
such as type errors, missing annotations or control flow anomalies. Rather than using

152

8.2 Tasks for Code Producers and Consumers.

theory AnProg
imports Prog ConCon Int
begin

constdefs An::pos ∼∼> expr
An = conjAn concons intervals

constdefs Π::jbc-prog
Π = (P,An)

code-module (term-of) An
file An.ML
imports VCGExecute
contains An = An

end

Figure 8.7: Packing code and annotations

our formalised wellformedness checker wf directly, we use a slightly modified version
wfS. It performs exactly the same checks as wf, but instead of yielding False it gives a
string with a description of the error. This helps to detect and fix wellformedness errors
quickly. Note that wfS is also formalised in Isabelle/HOL and proven to be equivalent
to wf.

:) jinwf Prog.ML An.ML

Our example is wellformed, hence jinwf accepts.

OK

8.2.4 Generating Verification Conditions

Once wellformedness has been checked, a program is ready for verification. Here our
VCG comes into play. In §6.4 we have instantiated four versions of this generator, vcg,
vcgFrNr, vcgExTys and vcgTy. From left to right they integrate more and more details
into the formulas they produce. The first one produces the smallest conditions, but only
the last has been shown to be complete. For programs with methods vcgFrNr is usually
required. It includes the system invariant invFrNr, which triggers many important

153

Chapter 8 Using the System

simplification rules for Catch and Call expressions. Since our example does not have a
functional specification to verify, Call and Catch do not matter. Hence, we can take vcg.

:) jinvcg -e "opt o vcg" Prog.ML An.ML

With this command we execute vcg on the given program and annotations, and feed the
result into the optimiser opt from §7.3.

File VC.thy generated.
File Proof.thy generated.

The resulting verification condition is decomposed into various parts and printed into
the Isabelle theory VC.thy shown in Fig. 8.8. Note that the original result of vcg has
other proof obligations, one for every annotated position and the initial one. However,
all these obligations are trivial and opt removes them. What we are left with are two
conjuncts vc-Start-sum-0 and vc-Start-sum-7. From the position formulas in the branch
conditions the tool can automatically connect each subgoal with the method it belongs to
and invent proper constant names. For example vc-Start-main-0 stands for the conjunct
of the verification condition produced for position (Start ,main,0). Simultaneously with
the condition the tool also creates Proof.thy, a file with an Isar proof tailored to VC.thy.

8.2.5 Proving the Verification Condition

The verification condition in Fig. 8.8 is structured after the control flow of the pro-
gram. In a similar manner, we can structure a proof skeleton for this formula. As
Fig. 8.9 shows our tool produces an Isar proof, which decomposes the entire verifica-
tion condition vc into two subgoals, both can be handled successfully by the clarsimp
method. For vc-Start-sum-0 we have to verify the transitions from (Start ,sum,0) to
(Start ,sum,7), the position with the loop invariant. To prove this goal clarsimp has
to transform the negated x>y relation in line 6 to the x6y relation in line 10. The other
subgoal vc-Start-sum-7 verifies the loop body. In line 11 we first have the branch con-
dition then the loop annotation which spans until line 13. The goal we have to show in
line 25-27 is again the loop annotation, but in a transformed form. The wpF operator
has replaced Rg 2 with Rg 2 x+y xIntg 1y and Rg 3 with Rg 3 x+y Rg 2 anticipating the
additions at positions (Start ,sum,19) and (Start ,sum,15). This explains how line 26
results from line 12 and line 27 from line 13. Line 25 contains the safety formula for the
addition at position (Start ,sum,19). Note that the original verification condition also
contains such a safety formula for the addition at (Start ,sum,15). However, this safety
formula coincides with line 27, hence the optimiser has removed it. Very important

154

8.2 Tasks for Code Producers and Consumers.

theory VC imports JBCSafetyLogic begin

constdefs vc-Start-sum-0 :: expr
1 vc-Start-sum-0 = x

∧
y [Ty (Rg 0) (Class Start), Ty (Rg 1) Integer,

2 Rg 0 x=y (Call (St 1)), Rg 1 x=y (Call (St 0)), Pos (Start, sum, 0)]
3

4 x⇒y

5

6 (x¬y (Rg 1 x>y xIntg 65535y)
7

8 x⇒y

9

10 (Rg 1 x6y xIntg 65535y))

constdefs vc-Start-sum-7 :: expr
11 vc-Start-sum-7 = x

∧
y [Pos (Start, sum, 7), Rg 1 x6y xIntg 65535y,

12 xIntg 0y x6y Rg 2, Rg 2 x6y xIntg 65536y,
13 xIntg 0y x6y Rg 3, Rg 3 x6y xIntg 2147483647y]
14

15 x⇒y

16

17 (x¬y (Rg 2 x>y Rg 1)
18

19 x⇒y

20

21 (x¬y (Rg 3 x>y xIntg 2147418112y)
22

23 x⇒y

24

25 (x

∧
y [(Rg 2 x+y xIntg 1y) x6y xIntg 2147483647y,

26 xIntg 0y x6y (Rg 2 x+y xIntg 1y), (Rg 2 x+y xIntg 1y) x6y xIntg 65536y,
27 xIntg 0y x6y (Rg 3 x+y Rg 2), (Rg 3 x+y Rg 2) x6y xIntg 2147483647y])))

constdefs vc :: expr
vc = x

∧
y [vc-Start-sum-0, vc-Start-sum-7]

lemmas vc-defs[simp] = vc-def vc-Start-sum-0-def vc-Start-sum-7-def

end

Figure 8.8: VC.thy

155

Chapter 8 Using the System

theory Proof
imports An Prog VC
begin

theorem vc-provable:
(P,An) ` vc
proof −
have vc-holds: ∀ s. (P,An),s |= vc
proof (intro allI)
fix s
show (P,An),s |= vc
proof −
have vc-Start-sum-0-holds: (P,An),s |= vc-Start-sum-0
by clarsimp

have vc-Start-sum-7-holds: (P,An),s |= vc-Start-sum-7
by clarsimp

from vc-Start-sum-0-holds vc-Start-sum-7-holds
show (P,An),s |= vc
by simp

qed
qed

from vc-holds
show (P,An) ` vc
by (rule completeSafetyLogic)

qed

end

Figure 8.9: Proof.thy

156

8.2 Tasks for Code Producers and Consumers.

are the branch conditions in lines 17 and 21. They bound the registers Rg 2 and Rg 3
sharply enough to bound the additions in the conclusion as requested. Again clarsimp
can verify this formula automatically here. The reason why everything works smoothly
is that we have set up the simplifier with a lot of carefully designed semantical rewrite
rules for our assertion logic. These rules transform the deep embedded expressions into
corresponding HOL formulas, which can then be solved by Isabelle’s built in tactics
and decision procedures. The arithmetic part is automatically handled by methods for
Fourier Motzkin elimination [37] and Presburger arithmetics [29, 27]. In case clarsimp
fails, the user can try to fix the proof by inserting a manual Isar script. Due to the
structure and constant names of the Isar proof one knows which part of the program
causes the trouble and can investigate if the failure is due to wrong annotations, a safety
bug in the code or insufficiency of the proof methods.

In general the control flow graph can be quite helpful to understand and debug bytecode.
For that reason we turned our control flow function succsF into the tool jincfg:

:) jincfg Prog.ML

The result is the control flow graph in a standard graph format.

File Prog.dot generated.

Using dot [48] one can visualise this graph. In Fig. 8.4 we show the result for our
example.

8.2.6 Exporting the Proof Object

After the proof is accomplished one has various options for shipping and checking it.
One method is to ship the Isar proof and let the consumer run Isabelle to check it. In
this way proofs are quite small, but checking them requires heavy weight machinery.
Another method is to use Isabelle’s proof objects [15, 16], which are based on the Curry-
Howard isomorphism. Proofs are encoded as terms whose types represent the proven
theorem. Checking the proof then becomes type checking.

In the theory file shown in Fig. 8.10 we show how we export the proof of theorem
vc-provable from Fig. 8.9 into a proof object in XML format. For the producer the
proof object is the last piece of the chain. All that remains is to send the class file
Start.class, the annotations An.ML and the proof object PrfObj.xml to the consumer.

157

Chapter 8 Using the System

theory PrfObj.thy imports Proof begin

use "ProofExporter.ML";
File.write (Path.unpack("PrfObj.xml"))

(exportPrf (thm "vc_provable"));

end

Figure 8.10: Exporting the proof object

8.2.7 Checking the Proof Object

When the consumer has received the proof carrying code package, the first steps that
need to be taken are equivalent to the producer. First, the consumer uses j2jin to obtain
the Jinja representation of Start.class. Second, the generated ML file is checked for
wellformedness together with the annotations. Third, the consumer uses the VCG to
obtain the file VC.thy, which contains the verification condition. Fourth, the consumer
runs the Isabelle proof checker to check the proof object against the freshly generated
verification condition. To do this the tool checkPrf traverses the proof object and infers
its type. This type must then be compatible with the generated verification condition.
In case of a mismatch the inference is interrupted and an error message is given to the
user.

:) checkPrf PrfObj.xml VC.thy

If the proof is valid, which is the case for our example, the following response is given:

OK

Now, the consumer knows that the received program is type safe, has a sound control
flow and never causes an arithmetic overflow. The only parts of software it needs to
trust are j2jin, and the proof checker checkPrf.

8.3 Experiments

Absence of overflows can also be tested. By placing dynamic checks in front of arithmetic
operations one can modify a program such that it gives an alarm in case an overflow

158

8.3 Experiments

N nr. of instr. vcg (h:m:s) proof (h:m:s)

1 11+28 0:0:1 0:0:3

10 291 0:0:4 0:0:17

50 1411 0:0:5 0:1:19

100 2811 0:0:13 0:3:09

300 8411 0:2:23 0:12:47

500 14011 0:11:10 0:33:12

Figure 8.11: Performance: Running the VCG and constructing safety proofs.

would occur. Then one runs the programs for all inputs. Of course this is only feasible if
there not many input variables involved. The example program of this chapter takes one
integer, which means there are 2 32 different inputs. A complete test run of our example
(augmented with the checks) on a 3Ghz Intel Xeon with 2Gb RAM takes 1 minute and
33 seconds. With our approach, checking wellformedness, running the interval analyser
and computing the verification condition takes all together 0.2 seconds. Constructing the
automatic proof with Isabelle takes 3 seconds. This shows that even for small examples
verification, which only abstractly executes a program, performs better than testing.

To check how our system scales we can take our example program with multiple copies
of the summation method sum1, sum2, . . . sumN. In this case the verification condition
becomes bigger, because for each of the N method bodies the VCG constructs proof
obligations. The formulas are the same, but our proof tactic does not exploit this. It
verifies each subgoal independently and thus constructs N proofs.

In Fig. 8.11 we show the results of this experiment. It illustrates that although we just
use ML code generated from an Isabelle/HOL formalisation and use a standard prover
to generate proofs, our prototype scales within the expected quadratic bound (VCG).

Although the construction of the proofs is quite fast, recording and checking the proofs
objects is not. For the example of this chapter this takes 10 seconds, which is still better
than the full test, but a lot worse that the 3 seconds it took to construct the proof. Since
theoretically proof checking is at least as efficient as proof construction, we expect much
better performance by engineering the proof object module. Isabelle’s proof objects tend
to be very verbose.

The proof object for our simple example is already huge. Even in normalised form
it has 53k nodes and requires 138kb in a zipped file. Compared to the 1.4kb of the

159

Chapter 8 Using the System

zipped program file with annotations, this is huge. The reason why our proofs are
so big is because we use a lot of rewriting. In the current implementation of proof
objects rewriting is expensive. The objects not only record the applied rule and its
redex position, but also the context of the substitution. This simplifies matching in
proof checking. Using oracle strings [66] to memorise the correct matchings would be
much more efficient. We also observed that large parts of our proofs are due to arithmetic
procedures, which cause a lot of rewriting. If we provide the arithmetic facts needed to
prove the example in Fig. 8.2 as lemmas, the proof object shrinks to 7% of its original size.
Engineering proof procedures towards smaller proofs [80] or using procedures tailored
to the proof obligations, such as the Simplex procedure used by Necula[68], offer a lot
of potential for optimisations. A rigorous approach would be to eliminate the need to
record rewriting steps completely, by using reflection. In this case the proof would not
record the rewriting steps, but a call to a simplification procedure that proof checker also
has available. This reduces the size of proofs drastically, but comes at the price of higher
complexity in the proof checker. Provided the code consumer can run Isabelle/HOL in
total, one could also send the Isar proof we present in Fig. 8.9, or just the command
”apply clarsimp”. In general, there is a tradeoff between the size of the proof and the
complexity of the system checking them.

8.4 Conclusion

The example in this section has been set up to show how Proof Carrying Code ideally
works. The annotations and proofs are generated automatically from program analysers
and standard proof procedures. The magic number ms may look a bit unnatural, but
otherwise the limitations of interval analysis cannot be bridged. Since program analysis
is not our main issue and more powerful analysers could be integrated just in the same
manner we believe this artificial tuning does not harm our results.

In the example shown in this section, we only verify the safety policy, which is the
primary concern of PCC. Our VCG and assertion logic also offer the possibility to
verify functional correctness. We can annotate the sum method with a postcondition
expressing the functionality with Gausses formula. For example, we can annotate the
following formula to (Start ,sum,28):

(xIntg 2y x∗y Rg 3) x=y Rg 2 x∗y (Rg 2 x+y xIntg 1y)
x∧y Rg 2 x=y Rg 1 x∧y Rg 1 x=y Call (St 0)

The proof for functional correctness is still automatic, provided we add a tactic for
bounded multiplication (mult-intervals-less on page 142) and also use Gausses formula
as loop invariant.

160

8.4 Conclusion

However, this invariant is a non-linear equation and cannot be found by the interval
analyser.

Analysis techniques for polynomial relationships [65, 82] exist, but seem to be only
applicable for fields rather than rings (integers). From a theoretical point of view the
non-linear relationship between registers 2 and 3 could also be expressed in a linear
formula. Since we have finitely many 32bit integers, we can build a formula that directly
enumerates all combinations:

(Rg 2 x=y xIntg 0y x∧y Rg 3 x=y xIntg 0y) x∨y
(Rg 2 x=y xIntg 1y x∧y Rg 3 x=y xIntg 1y) x∨y
(Rg 2 x=y xIntg 2y x∧y Rg 3 x=y xIntg 3y) x∨y . . .

However, the sheer size of this invariant makes this approach clearly infeasible. Testing
the code on all inputs would probably be faster.

Although Isabelle produces big proofs it offers a lot of effective proof methods. In our
experiments we found that clarsimp in combination with arith can prove many verifi-
cation conditions automatically. Both tactics are suited perfectly for combination. The
first only applies safe rules, and the latter can only be applied if it is able to finish a
goal completely.
While other first order provers usually have problems with arithmetics, Isabelle/HOL
offers Coopers algorithm for Presburger arithmetics [27] and other arithmetical proce-
dures. In addition the user always has the possibility to interact, in order to prove
non-linear arithmetic goals. We believe that verifying complicated programs with com-
plex safety policy will never be fully automatable. Hence, having a system that assists
a human performing that task is maybe the best we can have. For simpler properties
type systems and other silent techniques should of course be preferred.

161

Chapter 8 Using the System

162

9 Conclusion

In this conclusion we shortly summarise our main achievements and experiences. We
also discuss the strengths and weaknesses of our results in relation to other people’s work
and show ways of improvement.

9.1 Achievements

Generic Framework In the early approaches to PCC [68] (§1.3.1) the VCG was a com-
plex, large and hardly trustable component. This thesis shows that by concentrat-
ing the essentials into a framework one can obtain a VCG that is simpler, smaller
and completely verified in Isabelle/HOL.

Instantiation By instantiating our VCG to a Java-like language we demonstrate that
our approach is applicable to real life languages. Although the foundations of our
approach date back to Floyd [47], we had to find ways to support modern language
features such as dynamic methods, objects and exception handling.

Assertion Logic The literature offers Hoare logics and assertion languages for high level
languages such as Java. For the bytecode level we could not find anything like
that when we started the project. Only recently bytecode logics started to emerge
(see §4) and our assertion logic [97] is a contribution to that field. We have proven
that first order arithmetic enriched with a few VM specific operators is enough to
express annotations, weakest preconditions and safety policies for Java-like byte-
code.

Advanced Safety Policies Since we use a logic instead of a specific type system our
approach is very flexible in respect to the safety policies it can support. We picked
arithmetic overflow, because it is practically relevant and to our knowledge not yet
supported by many other tools. Interactive theorem provers such as Isabelle/HOL
seem to adequate for this problem, as they provide powerful proof procedures as
well as an interface to human experts. Model checkers are known to deal badly
with arithmetic and testing such properties becomes quickly infeasible. Apart from
certifying safety, one can also use our VCG and assertion logic to verify functional

163

Chapter 9 Conclusion

correctness of bytecode. In contrast to Hoare Logic our verification conditions also
give guarantees for non-terminating programs.

Program Analysis Many PCC systems of today are designed for a particular safety
policy and embody their own program analyser or type inference algorithm. In
this thesis we disconnect this problem completely from the the task of verification.
We show how external analysers can be integrated and how facts coming from
trusted sources can be used without having to axiomatise or re-verify them.

Prototype Using Isabelle/HOL’s infrastructure, such as an ML code generator, proof
objects and checkers, and proof procedures we have turned our formalisation into
a runnable prototype. Apart from using this system to verify individual programs,
one can see it as an example of how critical software can be developed rigorously
inside a theorem prover.

9.2 Experience

In retrospect we can say that the toughest part of instantiating the framework is to
get the abstract semantics right and to prove it. Also the control flow function raises
difficulties in case of dynamic jumps (method invocations, exceptions).

Choosing a deep embedded assertion logic caused a lot of extra work, but our compar-
ison [96] shows that it pays off when one is interested in smaller formulas and proofs,
and wants to extract information from annotations.

Following the standard approach of stating and verifying substitution lemmas [99],
worked nicely in instantiations for simpler languages [98], but in case of Jinja we gave
up this idea after having almost as many different substitution lemmas as instructions.

Representing substitutions as finite maps also worked out well in simpler instantiations
[96], but it was probably a mistake to keep them for Jinja. We managed to get the
proofs done, but the foldl operator we use to construct the substitutions for the heap
instructions makes the proofs for the weakest precondition operator very complicated.
It would be interesting to see if a different representation of substitutions, e.g. expr ⇒
expr, simplifies these proofs.

In Fig. 9.1 we give an overview on the sizes of our Isabelle theories, they roughly coincide
with the amount of time to create them. Note that this does not mention the 11kloc of

164

9.3 Discussion

Theory, Component Size (loc)
PCC Framework 4000
Concrete Semantics 700
Assertion Logic 5900
Control Flow 6300
Abstract Semantics 9800
Optimiser 800
System Invariants 5600
Code Lemmas 1200
Remainder 1700

total 36000

Figure 9.1: Theories and their sizes

Isabelle for the Jinja VM and its Bytecode Verifier [55]. It also does not mention the
about 2kloc of Examples we have for Jinja. The previous instantiations of our framework
together with their examples are also ignored [98, 96].

Our work can also be seen as a major case study for Isabelle’s code generator. The
entire ML code we generate from our theories is about 4kloc and turns out run stable and
relatively fast. We tried to run our VCG on examples up to 10.000 bytecode instructions
and up to this size it scaled well. It also turned out that HOL serves well as a modelling
and programming language. One can first define functions indirectly and abstractly,
prove the important properties and later on refine them to an executable style.

9.3 Discussion

Necula’s pioneering PCC systems [33, 68] (see §1.3.1) are very powerful and efficient,
but hardly trustworthy. One has to trust the axioms of the safety logic and the VCG,
which consists of 23.000 handwritten lines of C code.

The general experience teaches that complex software and proof systems are likely to
contain subtle errors. A famous example is the untyped lambda calculus, which was
meant to serve as a logic, but turned out to be inconsistent. Hence, it is not surprising
that the Special J system [33], which is closely related to Touchstone (see §1.3.1), has
been reported to have holes in its safety logic. These can be exploited to smuggle unsafe
code through the checks [57].

Since also a bug in the implementation of a VCG can lead to a proof of the wrong
formula a new approach to PCC came up.

165

Chapter 9 Conclusion

Appel claims, “Constructing a mechanically-checkable correctness proof of a VCGen
would be a daunting task” ([6] p.2), and proposes foundational PCC (FPCC) (see §1.3.2).
In FPCC the VCG and other untrusted components, such as a safety logic based on
obscure axioms, are removed and just the proof checker and the formalised machine
semantics remain.

The idea is to formulate a safety theorem directly on the semantics, e.g. isSafe Π, and
submit a proof for it. For constructing the proof all means (type system, VCG, . . .) are
permitted, but these must be part of the proof. This makes FPCC very flexible, but as
we point out in §1.3.2 it is hard to construct foundational proofs automatically and in
compact form.

New publications on FPCC deviate from the original intention and use type systems
with verified rules [31]. Type rules are closely related with an abstract semantics and
many type systems [36, 35] are so expressive that they are very similar to an assertion
logic. In that respect FPCC has moved towards the conventional PCC setup.

On the other hand Necula’s group has moved towards FPCC with the Open Verifier
approach (see §1.3.6). There the VCG’s trustworthiness is increased by reducing it to
a small core that cooperates with extensions that are obliged to justify their work with
proofs.

Our approach has many similarities with the Open Verifier. The generic VCG can be
seen as a core and the parameters together with the program analysers as extensions.
However, there is a fundamental difference. Our VCG and the parameters come with
machine-checkable proofs. This means, we can trust the work of our VCG and its
parameters. Hence, we do not have to include additional certificates in our safety proofs.

One can see our approach as a union of conventional and foundational PCC. We use a
VCG, a logic and an abstract semantics just as conventional PCC does, but we have
verified these and thus have reduced the trusted code base to the checker and machine
model, just as FPCC does. Our generated prototype does not offer the efficiency of
systems like Touchstone, but one has to take into account that it can verify non-standard
safety policies and even functional correctness.

9.4 Further Work

The PCC system we presented in this thesis can be improved in a number of ways.

More Bytecode The Jinja language already contains a representative subset of real
Java bytecode, but some practically important concepts are missing. For example
we ignored non-default constructors, arrays, and threads and all the remaining

166

9.4 Further Work

primitive datatypes, e.g. float, byte, string. In the conclusion of §3 we pointed
out that apart from threads integrating these features is mainly an engineering
task.

More Assertions Apart from the bytecode, also our assertion logic has shortcomings.
The fact that it is first order clearly limits its expressibility when it comes to
pointer structures. Transitive closures and reachability cannot be expressed in the
current version. Here, we plan to integrate primitive recursion. This also allows to
integrate user defined functions into annotations without risking consistency. Since
Isabelle/HOL also supports primitive recursion, we should be able to support it
with our approach to verify formulas semantically by translating them to HOL.

More Analysers With an extended assertion logic we plan to integrate other analysers
for Java bytecode. In particular, the object oriented aspect is only marginally
supported with our existing analysers. The bytecode verifier only infers the types
of references leading out of the current frame. Identifying shapes in the reference
structure is clearly beyond its capability. We believe, that with the integration of
pointer analysis tools, we can support other safety policies such as excluding null
pointer dereferences.

Less Proof Objects Another desirable goal are smaller proof objects. Since rewriting
really boosts them up, reflection should be integrated into Isabelle/HOL. This
would immediately eliminate the need to justify rewriting, but comes with the
price of more complexity in the proof checker.

167

Chapter 9 Conclusion

168

A Appendix

A.1 Isabelle/HOL

This chapter gives a short overview on the notation of Isabelle/HOL, which we use as
formal meta-language throughout this thesis.

A.1.1 Types

The basic types of truth values, natural numbers and integers are called bool , nat , and
int . The space of total functions is denoted by ⇒. Type variables are written ′a,
′b, etc. The notation t::τ means that HOL term t has HOL type τ . Every type in
Isabelle/HOL has at least one element. The element arbitrary is known to exist in any
type, but comparisons with ”ordinary” elements of each type cannot be decided within
Isabelle/HOL. Hence, arbitrary behaves like a free variable.

A.1.2 Pairs

The type ′a × ′b denotes all pairs of elements from ′a and ′b. Pairs come with the two
projection functions fst :: ′a × ′b ⇒ ′a and snd :: ′a × ′b ⇒ ′b. We identify tuples with
pairs nested to the right: (a, b, c) is identical to (a, (b, c)) and ′a × ′b × ′c is identical
to ′a × (′b × ′c).

A.1.3 Sets

Sets (type ′a set) follow the usual mathematical convention. For example (nat × nat)
set is the set of all pairs of natural numbers, i.e. {(0 ,0),(0 ,1),(1 ,0),(0 ,2),. . . }. With
{x . P x} we denote the set of all x satisfying P.

169

Chapter A Appendix

A.1.4 Lists

Lists (type ′a list) come with the empty list [], the infix constructor · , the infix @ that
appends two lists, and the conversion function set from lists to sets. For example, we
have 1 · [2 ,3] = [1 ,2 ,3] = [1 ,2]@[3] and set [1 ,2 ,3] = {1 ,2 ,3}. The destructors hd and
tl yield the first element of a list and its tail, e.g. hd [1 ,2 ,3] = 1 and tl [1 ,2 ,3] = [2 ,3].
Likewise, the destructors last and butlast , yield the last element and the list before it,
e.g. last [1 ,2 ,3] = 3 and butlast [1 ,2 ,3] = [1 ,2]. To split lists we have take n xs and
drop n xs . The first yields the list up to the nth element and the latter the list after
it, e.g. take 1 [1 ,2 ,3] = [1] and drop 1 [1 ,2 ,3] = [2 ,3]. Variable names ending in “s”
usually stand for lists, |xs| is the length of xs, and xs [n], where n::nat, is the nth element
of xs (starting with 0), e.g. |[1 , 2 , 3]| = 3 and [1 ,2 ,3][1] = 2. The notation [i ..<j]
with i ::nat and j ::nat stands for the list [i , . . . , j−1]. The predicate distinct xs means
that the elements of xs are all distinct. Finally, we have the standard functions map f
xs and filter P xs , also writen as [x∈xs. P x] . For example, take map fst [(1 ,2),(4 ,3)]
= [1 ,4] and [(x ,y) ∈ [(1 ,2),(4 ,3)]. x > y] = [(4 ,3)].

A.1.5 Option

The type ′a option

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. For succinctness we write bac instead of Some
a. The under-specified inverse the of Some satisfies the bxc = x.

A.1.6 Functions

Isabelle/HOL is a logic of total functions only. Functions are typically declared by with
a name and a type. For example f :: nat ⇒ nat declares a total function over the natural
numbers. Functions are usually defined via equations, where the left hand side contains
the function symbol and a list of parameters and the right hand side a term with already
defined functions. For example

f x = x∗x
defines f to be the square function. Another possibility is to define functions with the
λ operator:

f = λ x . x∗x
Finally, there is the possibility to define functions via recursive equations. Note that

170

A.1 Isabelle/HOL

Isabelle/HOL provides different methods to define recursive functions and some require
to prove termination explicitly. However, for the sake of simplicity, we do not distinguish
these variants and just write the equations. For example the following equations define
the square function recursively:

f 0 = 0
f (Suc n) = f n + n + n −1

Note that in case one does not list equations matching all input combinations, Isa-
belle/HOL automatically adds equations yielding arbitrary in order to obtain a total
definition. The the operator above is an example for that. Isabelle/HOL internally gen-
erates the None = arbitrary, where the type of arbitrary depends on the context the is
used.

Functions can be composed via the o operator. For example (f o g) x is the same as f
(g x).

Function update is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b.

Partial functions can be modelled as functions of type ′a ⇒ ′b option, where None
represents undefinedness and f x = byc means x is mapped to y. For updating partial
functions we sometimes write f (x 7→ y) as a shorthand for f (x :=byc)
Function map-of turns an association list, i.e. list of pairs, into a map:

map-of [] = empty
map-of (p · ps) = map-of ps(fst p 7→ snd p)

A.1.7 Finite Maps

In addition to functional maps (′a ⇒ ′b option), we also use finite maps . They have
type ′a ∼∼> ′b , which is just an abbreviation for association lists (′a × ′b) list. Finite
maps are lists of pairs, e.g. fm = [(1 ,1),(3 ,5),(3 ,6)], and have operations for lookup,
e.g. fm ? 0 = None or fm ? 3 = b5 c, domain, e.g. dom fm = [1 ,3 ,3] and range, e.g. ran
fm = [1 ,5 ,5]. Note that a pair (x ,y) is overwritten by a pair (x ,y ′) to the left of it. To
combine finite maps one can use ordinary list concatenation, e.g. (fm@[4 ,6]) ? 4 = b6 c.
Note that the lookup operator ? is just an infix notation for the map-of operator above,
i.e. fm ? x = map-of fm x. The advantage finite maps have over functional ones is that
we can induct on their representation (lists) and that dom and ran are computable.

171

Chapter A Appendix

A.1.8 Locales

Locales [13] are detached proof contexts. They support modular reasoning inside Isabelle
theories. In this thesis we use locales to define an abstract framework for our VCG.
Locales declare parameters and requirements on these. Inside a locale these parameters
can be used to define further functions or to state theorems, whose proofs can assume
all the requirements. To make these theorems available for the outside world, one has
to instantiate a locale. This is done by providing defined functions for the parameters
and by proving that these satisfy the requirements. In contrast to theories all type
variables used inside locales must be instantiated with the same type. For example in
locale Semantics on page 24 both parameters initS and effS must be instantiated to a
common type for ′pos × ′mem.

A.2 Additional Definitions

A.2.1 External VCG

In this section we define isafe and vcG, which are used in the locale VCG to construct
inductive safety formulas and generic verification conditions. Since locales do not allow
recursive definitions, we have to define these operators outside, with the drawback that
all parameters declared inside the locale VCG must be given as additional arguments.
Since type variables can be renamed as one likes we use ′p, ′P and ′f as shorthands for
′pos, ′prog and ′form.

isafe::(′p list × ′P × (′P ⇒ ′p ⇒ ′f option) × ′p × ′f × (′f list ⇒ ′f) × (′f ⇒ ′f ⇒ ′f) × (′P
⇒ ′p ⇒ ′f) × (′P ⇒ ′p ⇒ (′p × ′f) list) × (′P ⇒ ′p ⇒ ′p ⇒ ′f ⇒ ′f)) ⇒ ′f

isafe (S , Π, anF , p, xFy, x

∧
y, x⇒y, safeF , succsF , wpF) =

if p /∈ set S then xFy

else x

∧
y [safeF Π p] @ (case anF Π p

of None ⇒map (λ (p ′,B). B x⇒y

wpF Π p p ′ (isafe ([q∈S . q 6= p],Π,anF , p, xFy, x

∧
y, x⇒y, safeF , succsF , wpF)))

(succsF Π p)
| bAc ⇒ [A])

By setting S to the full code domain domC Π and passing the corresponding parameters
locale VCG defines isafeF as follows:

isafeF = (λ Π p. isafe (domC Π, Π, anF , p, xFy, x

∧
y, x⇒y, safeF , succsF , wpF))

172

A.2 Additional Definitions

Analogously we define vcG for the generic verification condition generator.

vcG :: (′f list ⇒ ′f) ⇒ (′f ⇒ ′f ⇒ ′f) ⇒ ′f ⇒ (′P ⇒ ′p) ⇒ (′P ⇒ ′f) ⇒ (′P ⇒ ′p ⇒ ′f) ⇒
(′P ⇒ ′p ⇒ (′p × ′f) list) ⇒ (′P ⇒ ′p ⇒ ′p ⇒ ′f ⇒ ′f) ⇒ (′P ⇒ ′p list) ⇒ (′P ⇒ ′p list)
⇒ (′P ⇒ (′p ⇒ ′f option)) ⇒ ′P ⇒ ′f

vcG x

∧
y x⇒y xFy ipc initF safeF succsF wpF domC domA anF Π =

(let isafeF = (λ Π p. isafe(domC Π,Π,anF ,p,xFy, x

∧
y,x⇒y,safeF ,succsF ,wpF))

in (x

∧
y [initF Π x⇒y (isafeF Π (ipc p))] @

(map(λ pa. x

∧
y (map(λ (p ′,B). (x

∧
y [isafeF Π p, B] x⇒y

(wpF Π p p ′ (isafeF Π p ′))))
(succsF Π p)))

(domA Π))))

By passing vcG all parameters the locale VCG defines the function vcg.

vcg = (λ Π. vcG x

∧
y x⇒y xFy ipc initF safeF succsF wpF domC domA anF Π)

Note that under the assumption that Π is wellformed, we can derive the simpler defini-
tions for isafeF and vcg shown in Fig. 2.5 and Fig. 2.6.

A.2.2 Wellformedness

This section defines the function checkPos, which performs many of the wellformedness
checks discussed in §6.2.

checkPos :: jbc-prog ⇒ (pos list) ⇒ bool
checkPos Π [] = True
checkPos Π (p · ps) =
(if (let scsn = map fst (succsNormal Π p);

scse = map fst (succsExcept Π p)
in list-all

(λp ′. (idx (domC Π) p ′ ≤ idx (domC Π) p −→ anF Π p ′ 6= None) ∧
p ′ mem domC Π ∧
(p ′ mem scsn −→ handlesEx (fst Π) p ′ = None) ∧
p ′ 6= ipc Π)

(scsn @ scse) ∧
set scse ⊂ set (domC Π)) ∧

throwChk (Π, cmd Π p, anF Π p, p) ∧
invokeChk (Π, cmd Π p, anF Π p, p)

then checkPos Π ps else False)

173

Chapter A Appendix

The definition above uses two auxiliary functions to check Invoke and Throw instruc-
tions

invokeChk :: jbc-prog × (instr option) × (expr option) × pos ⇒ bool
invokeChk =
λ(Π, ins, an, p).

case ins of None ⇒ True
| bcc ⇒

case c of
Invoke M n ⇒

case an of None ⇒ False
| bAc ⇒

if p = ipc Π then False
else case extractTy (A, St n) of [] ⇒ False
| ty · tys ⇒

list-all
(ty-case False False False True

(λX . JBC-Semantics.has-method (fst Π) X M))
(ty · tys) ∧

M 6= fst (snd (ipc Π))
| - ⇒ True throwChk :: jbc-prog × (instr option) × (expr option) × pos ⇒ bool

throwChk =
λ(Π, ins, an, p).

case ins of None ⇒ True
| bcc ⇒

case c of
Throw ⇒ case an of None ⇒ False

| bAc ⇒
if p = ipc Π then False
else case extractTy (A, St 0) of [] ⇒ False
| ty · tys ⇒

list-all
(ty-case False False False False (λX . True))
(ty · tys)

| - ⇒ True

A.3 Additional Proofs

A.3.1 Instantiating the Abstract Semantics

One of the more complicated cases is the normal behaviour of Putfield F C. We have
a closer look on this case now, as it reveals a lot about what needs to be proven in all
the other cases as well.

174

A.3 Additional Proofs

assumes
cmd-p: cmd Π p = bic
i-def : i = Putfield F Cl
handlesEx : handlesEx (fst Π) p ′ = None
p-def : p = (C ,M ,pc)
sigma-def : σ = (None,h,(stk ,loc,p) · frs)
sigma ′-def : σ ′ = (None,h ′,fr ′ · frs ′)
e ′-def : e ′ = e(|cs := if ∃M n. i = Invoke M n

then h · cs e else if i = Return
then tl (cs e) else cs e|)

p ′-def : p ′ = snd (snd fr ′)
check-i : check-instr ′ i P h stk loc C M pc frs
exec-i : exec-instr i P h stk loc C M pc frs = σ ′

shows
G : ∀ I . evalE Π (p,σ,e(|lv :=I |)) (wpF Π p p ′ Q) = evalE Π (p ′,σ ′,e ′(|lv :=I |)) Q
proof (cases hd (tl stk) = Null)

First, of all we check whether there is a NullPointer on top of the stack. If so, effS raises an
exception and sets the exception flag. Since σ ′ has an unset exception flag we have a contradiction
and are done with proving this case.

case True: hd (tl stk) = Null

from True exec-i i-def sigma ′-def

show G

Next comes the case with no Null reference.

case False: hd (tl stk) 6= Null

Here effS executes normally and we can derive more details about the states. The successor
frame has a shorter operand stack.

from False i-def exec-i sigma-def sigma ′-def
have Afr ′: fr ′ = (tl (tl stk), loc, C , M , Suc pc)

Only the topmost frame changes.

from False i-def exec-i sigma-def sigma ′-def
have Afrs ′: frs ′ = frs

From check-i we get that there are at least two elements st and st ′ on top of the stack.

from False i-def exec-i sigma-def check-i
obtain st st ′ stk ′ where Astk : stk = st · (st ′ · stk ′)

175

Chapter A Appendix

We also get that st ′ is a reference r to some object ob.

from False Astk i-def exec-i sigma-def sigma ′-def check-i
obtain r ob where Ar-ob: st ′ = Addr r ∧ h r = bobc

The environment does not change at all.

from False i-def exec-i sigma-def sigma ′-def Astk e ′-def
have Ae ′: e ′ = e

In successor heap h ′ field F of object ob has been updated with st.

from False i-def exec-i sigma-def sigma ′-def Astk Ar-ob
have Ah ′: h ′ = h(r 7→ (cname-of h r , (snd ob)((F , Cl) 7→ st)))

The program counter is incremented by one.

from Afr ′ p ′-def
have p ′-def : p ′ = (C ,M ,Suc pc)

Now, we start looking the symbolic manipulations. For Putfield F Cl we get the following
substitution map mp. We decompose it to a basic map em, which substitutes Pos and St expres-
sions, and a map for heap expressions obtained by folding f on the list of address subexpressions
remdup (getGfEx F Cl Q) in Q.

obtain em where Aem:
em = map (λq . (Pos q , if q = p ′ then Pos p else xFy)) (getPosEx Q) @

(map (λk . (St k , St (Suc (Suc k)))) (stkIds Q))

obtain f where Af :
f = (λmp ex . let ex ′ = substE mp ex

in (Gf F Cl ex ,

xify ex ′
x=y (St (Suc 0)) xtheny St 0

xelsey Gf F Cl ex ′) · mp)

obtain mp where Amp:
mp = foldl f em (remdup (getGfEx F Cl Q))

To handle lookups in mp, we have to get through the foldl operator. For this reason, we frequently
use the lemma foldl-map-lookup, which moves the lookup operator behind the foldl whenever the
expression we lookup cannot match a maplet f constructs.

have foldl-map-lookup:∧
es x . (∀ ex ∈ set es. x 6= Gf F Cl ex) =⇒ ∀mp ′. foldl f mp ′ es ? x = mp ′ ? x

176

A.3 Additional Proofs

Before we start an induction on Q, we introduce an alias Q ′ for it. With that we distinguish
the expression being substituted (Q ′ from now on) from the one used to extract patterns for the
map mp.

obtain Q ′ where AQ ′: Q = Q ′

From that we can easily derive that Q ′ is also a subexpression of Q.

from AQ ′

have Q ′-subExpr-Q : Q ′ ∈ set (subExpr Q)

This relationship is weaker, but more stable for induction on Q ′, which follows now. We perform
this induction on goal G2, which uses Q ′ ∈ set (subExpr Q) as premise. This is important as
the substitution map mp only has entries for subexpressions of Q. We end up with 19 different
cases for Q ′. For brevity’s sake, we omit the proofs for most cases below. Instead, we illustrate
the proof on a few cases only, including the complicated one where Q ′ = Gf F Cl ex.

have G2 :
∧

I . Q ′ ∈ set (subExpr Q) =⇒
(evalE Π (p, σ, e(|lv := I |)) (substE mp Q ′) = evalE Π (p ′, σ ′, e ′(|lv := I |)) Q ′)
proof (induct Q ′ rule: expr-induct)

Let us start with an easy case, Q ′ = Rg k. From the premise we obtain subEx, which says that
Rg k occurs in Q.

assume subEx : Rg k ∈ set (subExpr Q)

Obviously Rg k is not an heap expression.

have neqGf : ∀ ex ∈ set (remdup (getGfEx F Cl Q)). Rg k 6= Gf F Cl ex

Since em does not substitute Rg k expressions, we can use the foldl-map-lookup on the fact above
and obtain that Rg k is not modified by the substitution.

from Amp Af Aem neqGf foldl-map-lookup
have AsubstE-mp: substE mp (Rg k) = Rg k

Since Putfield F Cl does not touch registers either, we can finish the case by evaluating both
expressions.

from AsubstE-mp Afr ′ sigma-def sigma ′-def foldl-map-lookup
show evalE Π (p, σ, e(|lv := I |)) (substE mp (Rg k)) =

evalE Π (p ′, σ ′, e ′(|lv := I |)) (Rg k)

Next, we have Q ′ = St k. Since St k is not an heap expression, we can use foldl-map-lookup to
turn substE mp (St k) into substE em (St k).

assume subEx : St k ∈ set (subExpr Q)

177

Chapter A Appendix

have neqGf : ∀ ex ∈ set (remdup (getGfEx F Cl Q)). St k 6= Gf F Cl ex
from neqGf subEx Amp Af foldl-map-lookup
have AsubstE-mp: substE mp (St k) = substE em (St k)

To find the maplet em provides for St k, we only have to show that k is among the extracted
stack indices. This follows from subEx.

from subEx
obtain sid sid ′ where AIds: stkIds Q = sid @ (k · sid ′) ∧ k /∈ set sid

From this and the facts we derived about the effects Putfield F Cl has on the states, we can
finish this case.

from AsubstE-mp Aem Afr ′ sigma-def sigma ′-def Astk AIds
show evalE Π (p, σ, e(|lv := I |)) (substE mp (St k)) =

evalE Π (p ′, σ ′, e ′(|lv := I |)) (St k)

With NewA n we have a subexpression of Q that accesses the heap.

assume subEx : NewA n ∈ set (subExpr Q)

Since, NewA n does not match any Gf expression, we can derive neqGf and use foldl-map-lookup
to obtain AsubstE-mp.

have neqGf : ∀ ex ∈ set (remdup (getGfEx F Cl Q)). NewA n 6= Gf F Cl ex

from Amp neqGf Aem Af foldl-map-lookup
have AsubstE-mp: substE mp (NewA n) = NewA n

As AsubstE-mp shows the substitution does not modify NewA n. This means that Putfield F
Cl does not affect it either. This is the case as the reference NewA n yields depends only on the
references currently allocated with objects, but not on their field values.

from subEx AsubstE-mp Afr ′ sigma-def sigma ′-def Ah ′ Astk Ar-ob
show evalE Π (p, σ, e(|lv := I |)) (substE mp (NewA n)) =

evalE Π (p ′, σ ′, e ′(|lv := I |)) (NewA n)

With an Gf F ′ Cl ′ ex expression things become complicated. Here we have to deal with the foldl
operator in mp.

assume subEx : Gf F ′ Cl ′ ex ∈ set (subExpr Q)

Since Gf F ′ Cl ′ ex is a composed expression, we get an induction hypothesis for the smaller
expression ex.

assume hyp:
∧

I . ex ∈ set (subExpr Q) =⇒
evalE Π (p, σ, e(|lv := I |)) (substE mp ex) =

178

A.3 Additional Proofs

evalE Π (p ′, σ ′, e ′(|lv := I |)) ex

The premise for hyp follows easily from subEx and the fact that subExpr is transitive.

from subEx
have ex-subEx : ex ∈ set (subExpr Q)

This enables us to split the list of address expressions used at the very bottom of mp, into the
sublists as, [ex] and bs.

from subEx
have ex-getGfEx : ex ∈ set (getGfEx F ′ Cl ′ Q)

from ex-getGfEx obtain as bs
where Aasbs: remdup (getGfEx F ′ Cl ′ Q) = as @ (ex # bs)

∧ ex /∈ set as ∧ ex /∈ set bs

We start proving the goal by a case distinction on F = F ′ and C = Cl.

show GGf : evalE Π (p, σ, e(|lv := I |)) (substE mp (Gf F ′ Cl ′ ex)) =
evalE Π (p ′, σ ′, e ′(|lv := I |)) (Gf F ′ Cl ′ ex)

proof (cases F = F ′ ∧ Cl = Cl ′)

case False: F 6= F ′ ∨ Cl 6= Cl ′

In this case the Putfield F C instruction modifies a different field than the one accessed by Gf
F ′ Cl ′ ex. With neqGf and em-lup we prepare ourselves to use fold-map-lookup in order to show
in AsubstE-mp that substitution simply moves into Gf F ′ Cl ′ ex.

from False
have neqGf :
∀ ex ′ ∈ set (remdup (getGfEx F Cl Q)). Gf F ′ Cl ′ ex 6= Gf F Cl ex ′

from Aem
have em-lup:

em ? Gf F ′ Cl ′ ex = None

from False Af Amp Aem em-lup neqGf foldl-map-lookup
have AsubstE-mp: substE mp (Gf F ′ Cl ′ ex) = (Gf F ′ Cl ′ (substE mp ex))

With AsubstE-mp we can finish the goal by evaluating both sides using the induction hypotheses,
to obtain evalE . . . (substE mp ex) = evalE . . . ex.

from False AsubstE-mp Afr ′ sigma-def sigma ′-def Ah ′

Astk Ar-ob p ′-def Aob hyp[of I] ex-subEx

179

Chapter A Appendix

show evalE Π (p, σ, e(|lv := I |)) (substE mp (Gf F ′ Cl ′ ex)) =
evalE Π (p ′, σ ′, e ′(|lv := I |)) (Gf F ′ Cl ′ ex)

case True: F = F ′ ∧ Cl = Cl ′

Now comes the complicated case, where the expression Gf F ′ Cl ′ ex may or may not access the
modified field.

We start with deriving neqGf-as and neqGf-bs, which we need for foldl-map-lookup later on.

from Aasbs
have neqGf-as: ∀ exp ∈ set as. Gf F Cl ex 6= Gf F Cl exp

from Aasbs
have neqGf-bs: ∀ exp ∈ set bs. Gf F Cl ex 6= Gf F Cl exp

We can alter the substitution map mp to the following pattern with nested foldl.

from True Amp Aasbs
have Amp: mp = foldl f (f (foldl f em as) ex) bs

Inside this pattern we have mp1, a map that only substitutes expressions getGfEx extracts before
it detects ex. Note that this already contains all subexpressions of ex that also occur in a Gf F ′

Cl ′ context.

obtain mp1 where Amp1 :
mp1 = (foldl f em as)

This is why we can use mp1 to modify the address expression ex. In mp2 we apply the f in mp
onto ex.

obtain mp2 where Amp2 :
mp2 = (foldl f ((Gf F Cl ex ,let ex ′ = substE mp1 ex

in (xify ex ′
x=y St (Suc 0) xtheny St 0

xelsey Gf F Cl ex ′)) ·mp1) bs)

We can show that mp2 is just an unfolded version of mp.

from Amp Amp1 Amp2
have Amp: mp = mp2

Since mp1 already contains the maplets for all subexpressions of ex, the substitution maps mp2
and mp1 amount to the same when we apply them to ex

have substE-mp2-mp1 : substE mp2 ex = substE mp1 ex
proof −

180

A.3 Additional Proofs

However, showing this relationship is tricky and requires another induction. Before we come to
that, we introduce the fact eqExMps-mp2-mp1, which claims that the expressions maps mp2 and
mp1 are equally suited for substitution on ex.

eqExMps :: (expr ∼∼> expr) ⇒ (expr ∼∼> expr) ⇒ expr ⇒ bool

eqExMps em em ′ ex = foldE (λ(ex , a). em ? ex = em ′ ? ex ∧ list-all (λx . x) (noCC (ex , [a])))
op ∧ True ex

have eqExMps-mp2-mp1 : eqExMps mp2 mp1 ex
proof −

Before we induct, we introduce an alias for ex just as we did for Q.

obtain ex ′ where Aex ′: ex = ex ′

from Aex ′

have Aex ′-subEx : ex ′ ∈ set (subExpr ex)

Then we prove eqExMps-ind by induction on ex ′. This gives another 19 cases, which we omit
here for the sake of brevity.

have eqExMps-ind :
ex ′ ∈ set (subExpr ex) =⇒ eqExMps mp2 mp1 ex ′

from Aex ′ Aex ′-subEx eqExMps-ind
show eqExMps mp2 mp1 ex
by simp

qed(eqExMps-mp2-mp1)

Note that eqExMps is designed to guarantee equivalence on substituion. Hence, we can conclude
our initial goal.

from eqExMps-mp2-mp1
show substE mp2 ex = substE mp1 ex
qed(substE-mp2-mp1)

Now, we have everything to instantiate our hypotheses hyp with mp1 instead of mp.

from hyp ex-subEx Amp substE-mp2-mp1
have evalE-ex : evalE Π (p, σ, e(|lv := I |)) (substE mp1 ex) = evalE Π (p ′, σ ′, e ′(|lv := I |)) ex

With that modified hypothesis, we can now finish the case by evaluating both sides.

from True Amp substE-mp2-mp1 Amp2 neqGf-bs Af evalE-ex
sigma ′-def sigma-def Astk Ah ′ Ar-ob Aob Afr ′

show evalE Π (p, σ, e(|lv := I |)) (substE mp (Gf F ′ Cl ′ ex))

181

Chapter A Appendix

= evalE Π (p ′, σ ′, e ′(|lv := I |)) (Gf F ′ Cl ′ ex)
qed(GGf)

The remaining cases can be handled analogously to the previous ones. We do not have any
further expressions accessing the heap. Hence, all these cases are as simple as the ones for Rg k.

qed(G2)

Now, we can use our proven goal G2 to obtain our initial one, G. Since Q = Q ′ this adaption is
trivial.

from G2 Q ′-subExpr-Q AQ ′ Amp Aem Af False handlesEx i-def cmd-p
show
∀ I . evalE Π (p, σ, e(|lv := I |)) (wpF Π p p ′ Q) = evalE Π (p ′, σ ′, e ′(|lv := I |)) Q
qed(G)

Now, we have finished our proof for the Putfield instruction. In total this proof amounts
to 1kloc of Isar script and is an example of a non-trivial instantiation proof. Other in-
structions with similar complexity are New, Invoke, Return and Throw. The remaining
instructions are straightforward and all their induction cases can be handled automati-
cally. �

182

B Bibliography

[1] Jissa website, http://www.quiss.org/jissa/, 2000.

[2] Bytecode engineering library by markus dahm; http://bcel.sourceforge.net, 2002.

[3] Proving Theorems about Java and the JVM with ACL2. In M. Broy and M. Pizka,
editors, Models, Algebras and Logic of Engineering Software, pages 227–290. IOS
Press, 2003.

[4] VeryPCC project website in Munich, http://isabelle.in.tum.de/verypcc/, 2003.

[5] M. Abadi and K. R. M. Leino. A Logic of Object-Oriented Programs. In Verifica-
tion: Theory and Practice, volume 2772 of Lect. Notes in Comp. Sci., pages 11–41.
Springer-Verlag, 2004.

[6] A. W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium
on Logic in Computer Science (LICS ’01), pages 247–258, June 2001.

[7] A. W. Appel and A. P. Felty. A semantic model of types and machine instructions
for proof-carrying code. In 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’00), pages 243–253, January 2000.

[8] A. W. Appel and D. McAllester. An indexed model of recursive types for founda-
tional proof-carrying code. Technical report, Princeton University, October 2000.

[9] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer-Verlag, 1991.

[10] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program
logic for resource verification. In Proc. 17th Int. Conf. on Theorem Proving in Higher
Order Logics (TPHOLs 2004), pages 34–49. Springer Verlag, 2004.

[11] D. Aspinall and M. Hofmann. Another type system for in-place update. In D. L.
Metayer, editor, European Symposium on Programming, pages 36–52, 2002.

[12] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. (Paperback: 1999).

183

B Bibliography

[13] C. Ballarin. Locales and Locale Expressions in Isabelle/Isar., 2004.

[14] F. Bannwart and P. Müller. A program logic for bytecode. In Proceedings of the
1st Workshop on Bytecode Semantics, Verification and Transformation, Electronic
Notes in Computer Science, 2005. to appear.

[15] S. Berghofer. Proofs, Programs and Higher Order Logic. PhD thesis, Institut für
Informatik, Technische Universität München, 2004.

[16] S. Berghofer and T. Nipkow. Proof terms for simply typed higher order logic. In
J. Harrison and M. Aagaard, editors, Theorem Proving in Higher Order Logics,
volume 1869 of Lect. Notes in Comp. Sci., pages 38–52. Springer-Verlag, 2000.

[17] S. Berghofer and T. Nipkow. Executing higher order logic. In Types for Proofs and
Programs (TYPES 2000), volume 2277 of Lect. Notes in Comp. Sci., pages 24–40.
Springer-Verlag, 2002.

[18] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certifi-
cation of heap consumption. In F. Baader and A. Voronkov, editors, Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR2004), volume 3452 of Lect. Notes in Comp. Sci. Springer
Verlag, March 2005.

[19] L. Beringer, K. MacKenzie, and I. Stark. A functional form for imperative mo-
bile code. In Proceedings of the 2nd EATCS Workshop on Foundations of Global
Computing (FGC’03), Electronic Notes in Theoretical Computer Science., volume
85(1), June 2003.

[20] A. Biere, A. Cimaati, E. Clarke, O. Strichman, and Y. Zhu. Bounded model check-
ing. In M. V. Zielkowitz, editor, Advances in Computers - Highly dependable soft-
ware, volume 58, 2003.

[21] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In R. Cytron
and R. Gupta, editors, Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation (PLDI’03), pages 196–207. ACM
Press, 2003.

[22] F. D. Boer and C. Pierik. A Syntax-Directed Hoare Logic for Object-Oriented
Programming Concepts. In Proceedings of Formal Methods for Open Object-based
Distributed Systems (FMOODS), LNCS. Springer, 2003.

[23] P. Boizumault. The Implementation of Prolog. Princeton University Press, 1993.

184

B Bibliography

[24] R. Bornat. Proving pointer programs in Hoare Logic. In R. Backhouse and
J. Oliveira, editors, Mathematics of Program Construction (MPC 2000), volume
1837 of Lect. Notes in Comp. Sci., pages 102–126. Springer-Verlag, 2000.

[25] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-oriented
approach. In G. S. Mandrioli D, Araki K, editor, Formal Methods: International
Symposium of Formal Methods Europe (FME 03), volume 2805 of Lect. Notes in
Comp. Sci., pages 422–439, 2003.

[26] R. Burstall. Some techniques for proving correctness of programs which alter data
structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7, pages
23–50. Edinburgh University Press, 1972.

[27] A. Chaieb. Isabelle trifft Presburger Arithmetik. Master’s thesis, Institut für In-
formatik, TU München, 2003.

[28] A. Chaieb. Proof-producing program analysis. Technical report, TU, München,
Dec. 2004.

[29] A. Chaieb and T. Nipkow. Generic Proof synthesis for Presburger Arithmetic.
Technical report, TU München, 2003.

[30] B.-Y. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. The Open Veri-
fier Framework for Foundational Verifiers. In In Proceedings of the ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI’05). ACM SIG-
PLAN Notices, 2005.

[31] J. Chen, D. Wu, A. W. Appel, and H. Fang. A Provably Sound TAL for Back-end
Optimization. In Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation (PLDI 2003), pages 208–219. ACM,
June 2003.

[32] M. Clint and C. A. R. Hoare. Program proving: Jumps and functions. In Acta
informatica, volume 1. Springer-Verlag, 1972.

[33] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying
compiler for Java. In Proc. ACM SIGPLAN conf. Programming Language Design
and Implementation (PLDI), pages 95–107, 2000.

[34] S. A. Cook. Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput., 7(1):70–90, 1978.

[35] K. Crary. Toward a foundational typed assembly language. In Proccedings of the
2003 Symposium on Principles of Programming Languages (POPL’03). ACM Press,
January 2003.

185

B Bibliography

[36] K. Crary and S. Sarkar. A metalogical approach to foundational certified code.
Technical report, CMU Technical Report CMU-CS-03-108, January 2003.

[37] G. Dantzig and B. C. Eaves. Fourier-motzkin elimination and its dual. J. Combi-
natorial Theory A, 14:288–297, 1973.

[38] G. B. Dantzig. Lineare Programmierung und Erweiterungen. Springer, 1966.

[39] A. Dehne. Beweiserzeugende Programmanalyse: Intervallanalyse. Master’s thesis,
Technische Universität München, 2005.

[40] D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Technical report, Compaq Systems Research Center, 1998.

[41] A. Deutsch. Static verification of dynamic properties. Technical report, PolySpace
Technologies, 2003.

[42] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[43] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring,
and B. Werner. The Coq proof assistant user’s guide version 5.8. Technical Report
154, INRIA, May 1993.

[44] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758–771, 1980.

[45] Fischer and Rabin. Super-exponential complexity of presburger arithmetic. In
SIAMAMS: Complexity of Computation: Proceedings of a Symposiu m in Applied
Mathematics of the American Mathematical Society and the Society fo r Industrial
and Applied Mathematics, 1974.

[46] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.

[47] R. W. Floyd. Assigning meanings to programs. In J. Schwartz, editor, Proceedings:
Symposium on Applied Mathematics, volume 19, pages 19–32, 1967.

[48] E. Ganser, E. Koutsofios, and S. North. Drawing graphs with dot. Technical report,
AT&T, 2002. http://www.graphviz.org.

[49] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

[50] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to
foundational proof-carrying code. In Proc. 17th IEEE Symp. Logic in Computer
Science, pages 89–100, July 2002.

186

B Bibliography

[51] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:567–580,583, 1969.

[52] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In In Proceedings of the 30th Symposium on Principles of
Programming Languages (POPL’03), pages 185–197. ACM Press, January 2003.

[53] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall, 2nd
edition, 1990.

[54] G. Klein. Verified Java Bytecode Verification. PhD thesis, Institut für Informatik,
Technische Universität München, 2003.

[55] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, vir-
tual machine and compiler. Technical Report 0400001T.1, National ICT Australia,
Sydney, Mar. 2004. to appear in TOPLAS.

[56] G. Klein and M. Wildmoser. Verified bytecode subroutines. In D. Basin and
B. Wolff, editors, Proceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’03), volume 2758 of Lect. Notes in Comp.
Sci., pages 55–70. Springer Verlag, September 2003.

[57] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving
Java compiler. Technical Report YALEU/DCS/TR-1223, Department of Computer
Science, Yale University, Mar. 2002.

[58] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. Jml
reference manual (draft). Technical report, 2004.

[59] T. Lev-Ami, T. Reps, M. Sagiv, and T. Wilhelm. Putting static analysis to work
for verification: A case study in issta 2000. Technical report, 2000.

[60] L. Mauborgne. Astrèe: Verification of absence of runtime error. In R. Jacquart,
editor, Building the information society (WCC’04), pages 385–392. Kluwer, 2004.

[61] F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Infor-
mation and Computation, 199:200–227, 2005.

[62] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, Tools and Algorithms for the Construction
and Analysis of Systems: 6th International Conference, TACAS 2000, volume 1785
of Lect. Notes in Comp. Sci., pages 63–77, 2000.

[63] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

187

B Bibliography

[64] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly
language. In Proc. 25th ACM Symp. Principles of Programming Languages, pages
85–97. ACM Press, 1998.

[65] M. Müller-Olm and H. Seidl. Computing polynomial program invariants. Informa-
tion Processing Letters, 91(5):233–244, 2004.

[66] G. Necula and S. Rahul. Oracle based checking of untrusted software. In 28th ACM
Symposium on Principles of Programming Languages (POPL’01), 2001.

[67] G. C. Necula. Proof-carrying code. In Proc. 24th ACM Symp. Principles of Pro-
gramming Languages, pages 106–119. ACM Press, 1997.

[68] G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, 1998.

[69] G. C. Necula and P. Lee. Efficient representation and validation of proofs. In 13th
IEEE Symp. Logic in Computer Science (LICS’98), pages 93–104. IEEE Computer
Society Press, 1998.

[70] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Programming Languages and Systems, 1(2):245–257, 1979.

[71] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27:356–364, 1980.

[72] H. R. Nielson and F. Nielson. Semantics with Applications. Wiley, 1992.

[73] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook.
In V. Chandru and V. Vinay, editors, Foundations of Software Technology and
Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages
180–192. Springer-Verlag, 1996.

[74] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer, 2002.

[75] D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München, 2001.

[76] M. Pavlova and L. Burdy. Java bytecode specification and verification. In ACM
Symposion on Applied Computing (SAC06), 2006. to appear.

[77] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Automated Deduction —
CADE-16, volume 1632 of Lect. Notes in Comp. Sci., pages 202–206. Springer-
Verlag, 1999.

188

B Bibliography

[78] B. C. Pierce. Advanced Topics in Types and Programming Languages. The MIT
Press, 2005.

[79] C. Quigley. A Programming Logic for Java Bytecode Programs. PhD thesis, Uni-
versity of Glasgow, 2004.

[80] C. Sacerdoti Coen. Tactics in modern proof-assistants: The bad habit of overkilling.
In R. J. Boulton and P. B. Jackson, editors, TPHOLs 2001: Supplemental Proceed-
ings, number EDI-INF-RR-0046 in Informatics Report Series, pages 352–367. Divi-
sion of Informatics, University of Edinburgh, Edinburgh, Scotland, UK, September
2001.

[81] D. Sanella and M. Hofmann. Mobile ressource guarantees, eu openfet project,
http://www.dcs.ed.ac.uk/home/mrg, 2002.

[82] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant gener-
ation using Gröbner bases. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 318–329, New
York, NY, USA, 2004. ACM Press.

[83] N. Schirmer. Verification of sequential imperative programs in Isabelle/HOL. PhD
thesis, Institut für Informatik, Technische Universität München.

[84] R. Schneck. Extensible untrusted code verification. PhD thesis, University of Cali-
fornia, Berkeley, 2004.

[85] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In
C. Hankin, editor, Proc. of Static Analysis Symposium (SAS), volume 3672 of Lec-
ture Notes in Computer Science, pages 320–335, London, UK, September 2005.
Springer. To appear.

[86] S. Seo, H. Yang, and K. Yi. Automatic Construction of Hoare Proofs from Abstract
Interpretation Results. In The First Asian Symposium on Programming Languages
and Systems, LNCS Vol. 2895, pages 230–245, Beijing, 2003. Springer.

[87] F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc. of the
7th Workshop on Formal Techniques for Java-like Programs, FTfJP’2005, Glasgow,
Scotland, July 2005.

[88] Sun Microsystems. The Java Virtual Machine Specification, Aug. 1995.

[89] G. Tan, A. W. Appel, K. N. Swadi, and D. Wu. Construction of a semantic model
for a typed assembly language. In B. Steffen and G. Levi, editors, Verification,
Model Checking, and Abstract Interpretation, 5th International Conference, VMCAI

189

B Bibliography

2004, Venice, January 11-13, 2004, Proceedings, volume 2937 of Lecture Notes in
Computer Science. Springer, 2004.

[90] A. Tiwari, H. Rueß, H. Säıdi, and N. Shankar. A technique for invariant generation.
In T. Margaria and W. Yi, editors, TACAS 2001 - Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 of Lecture Notes in Computer
Science, pages 113–127, Genova, Italy, Apr. 2001. Springer-Verlag.

[91] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. Lecture
Notes in Computer Science, 2031:299+, 2001.

[92] M. Wenzel. The Isabelle/Isar Reference Manual. TU München, 1999.

[93] M. Wenzel. Isar - a generic interpretative approach to readable formal proof docu-
ments. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors,
Theorem Proving in Higher Order Logics, TPHOLs’99, volume 1690 of Lect. Notes
in Comp. Sci., pages 167–183. Springer-Verlag, 1999.

[94] M. Wildmoser. Subroutines and java bytecode verification. Master’s thesis, Tech-
nische Universität München, 2002.

[95] M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying
code. In Proceedings of the 1st Workshop on Bytecode Semantics, Verification and
Transformation, Electronic Notes in Computer Science, 2005. to appear.

[96] M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep
embedding. In K. Slind and A. Bunker, editors, Proc. 17th Int. Conf. on Theorem
Proving in Higher Order Logics (TPHOLs’04), volume 3223 of Lect. Notes in Comp.
Sci., pages 305–320. Springer Verlag, September 2004.

[97] M. Wildmoser and T. Nipkow. Asserting bytecode safety. In M. Sagiv, editor, Pro-
ceedings of the 14th European Symposium on Programming (ESOP 2005), volume
3444 of Lect. Notes in Comp. Sci., pages 326–341. Springer Verlag, 2005.

[98] M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping proof carrying code.
In J.-J. Levy, E. W. Mayr, and J. C. Mitchell, editors, Exploring New Frontiers of
Theoretical Informatics, IFIP 18th World Computer Congress, TC1 3rd Int. Conf.
on Theoretical Computer Science (TCS2004), pages 333–347. Kluwer Academic
Publishers, August 2004.

[99] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

190

List of Figures

List of Figures

1.1 PCC Architecture . 1
1.2 Touchstone PCC . 4
1.3 Foundational PCC . 7
1.4 Foundational PCC in practice . 7
1.5 Syntactic PCC . 9
1.6 Typed Assembly Language (TALT) . 12
1.7 Mobile Resource Guarantees . 14
1.8 Open Verifier . 16
1.9 Jinja PCC . 20

2.1 VCG - what it does and what it depends on. 24
2.2 Isabelle/HOL theories of our framework 25
2.3 Reachability . 26
2.4 Annotated control flow graph. 28
2.5 Construction of inductive safety formulas 32
2.6 Verification Condition Generator . 33
2.7 Functional Specification . 43

3.1 Jinja bytecode instructions . 51
3.2 A Java Counter . 54
3.3 Counter in Jinja Bytecode . 55
3.4 Jinja VM Snapshot . 57
3.5 Semantics of the extended Jinja VM . 58
3.6 Argument Passing . 59
3.7 Arithmetics, Checks and Branches . 61
3.8 Heap Access . 62
3.9 Method Invocation and Return . 62
3.10 Invoke up 1 . 63
3.11 Return . 64

4.1 Jinja bytecode assertion language. 68
4.2 Throw . 72

191

List of Figures

4.3 Example expressions and evaluations . 72
4.4 Semantical proof rules . 79

5.1 Control Flow Graph . 82
5.2 Call tree of position (Cnt ,up,0) . 88
5.3 Substitution of expressions . 93
5.4 Fold operator for expressions . 94
5.5 Putfield . 98
5.6 Example expressions . 98
5.7 Invoking up from (Cnt ,set ,5). 103
5.8 Returning from up . 104

6.1 Method invocation and return . 116
6.2 Verification Condition: Body Cnt.up . 119
6.3 Verification Condition: Invoking Cnt.up 120
6.4 Verification Condition: Return from Cnt.up 122
6.5 Verification Condition: Exceptional return from Cnt.up 123
6.6 Abstract and Concrete Semantics . 126

7.1 Example of a well typed program. 132
7.2 Arithmetic program . 133
7.3 PCC system architecture . 134
7.4 Optimised Verification Condition: Body Cnt.up 138
7.5 Verification Condition: (Start,m,18) to (Start,m,19) 140
7.6 Proving the verification condition . 141

8.1 Jinja PCC - Workflow . 145
8.2 Gauss Summation . 147
8.3 Prog.thy . 149
8.4 Gaussian Summation - Control Flow . 150
8.5 ConCon.thy . 151
8.6 Int.thy . 152
8.7 Packing code and annotations . 153
8.8 VC.thy . 155
8.9 Proof.thy . 156
8.10 Exporting the proof object . 158
8.11 Performance: Running the VCG and constructing safety proofs. 159

9.1 Theories and their sizes . 165

192

Index

Index

::, 169
⇒, 169
∼∼>, 171
- ` - jvm−→1 -, 63
@, 170
| |, 170
{x . P x}, 169
[x∈xs. P x], 170
[], 170
[- ..< -], 170
-[-], 170
· , 170
b c, 170
(:=), 171
(7→), 171
- x+y -, 74
- x∧y -, 27
- x=y -, 74
- x>y -, 74
- x>y -, 74
- x6y -, 74
- x<y -, 74
- x−y -, 74
- x∗y -, 74
- ` -, 27, 75
-,- |= -, 27, 75

x

∧
y, 27

x

∨
y, 85

x⇒y, 27
’mem, 25
’pos, 25
’prog, 24

AbsSem, 31
Add, 52
addPos, 84
addr, 52
aF, 29
anF, 28, 83
annotate-types, 113
arbitrary, 169

bool, 169
Boolean, 53
Br, 118
butlast, 170

Call, 73
callstate, 73
Catch, 73
catchstate, 73, 74
CFG, 28
Checkcast, 51
Class, 53
cmd, 83
CmpEq, 51
cname, 52
completeVCG, 38
conjAn, 134
convert-pt, 113
correctAn, 30
correctVCG, 34
cs, 58

diameter, 45
distinct, 170

193

Index

domA, 84
domC, 28, 83
drop, 170

effS, 24, 58
effSB, 38
enoughAn, 30
env, 58
Eq, 52
evalE, 68
exec-instr, 58
ex-table, 56, 73
extractTy, 85

F, 118
xFy, 27, 69
fdecl, 56
field, 56
fields, 57
filter, 170
finals, 43
find-handler, 59
finite maps, 171
foldE, 94
foldl, 100
frame, 57
FrNr, 68
fst, 169

Geq, 52
getCallEx, 95
getCatchEx, 95
Getfield, 51
getGfEx, 95
getHeapEx, 95
getNewEx, 96
getPosEx, 95
Goto, 51
Grtr, 52

hd, 170

heap, 57
heapexpr, 95

IAdd, 52
IBin, 51
IfFalse, 51
IfIntCmp, 51
IfIntEq, 52
IfIntG, 52
IfIntGeq, 52
IfIntL, 52
IfIntLeq, 52
IMul, 52
incP, 84
inductive invariant, 39
initF, 31, 90
initS, 24
int (type), 169
Integer, 53
invariantVCG, 46
inv-ExTys, 113
inv-FrNr, 113
Invoke, 51
inv-Pos, 112
inv-Ty, 113
ipc, 28
isafeF, 31
isCycle, 30
ispecF, 45
isSafe, 28
ISub, 52

jbc-prog, 56
jbc-state, 58
jvm-method, 53
jvm-prog, 56
jvm-state, 57

last, 170
Leq, 52
Less, 52

194

Index

liftI, 53
liftR, 53
list, 170
Load, 51
locales, 172
lv, 58

map, 170
map-of, 171
match-ex-table, 73
maxI, 109
mdecl, 56
method, 56
mname, 52
Mul, 52

nat (type), 169
New, 51
noCC, 94
None, 170
none, 90
NT, 53
numop, 52

o, 171
obj, 57
opstack, 57
option, 170

P, 118
paths, 30
Pop, 51
pos, 57, 58
prog-kil, 113
Push, 51
Putfield, 51

ReachableFrom, 26
ReachableFromIn, 44
Reachables, 26
ReachablesAn, 34

ReachFromIns, 25
registers, 57
relop, 52
remdup, 100
replicate, 61
Return, 51
rgIds, 95

safeF, 28, 109
SafetyLogic, 27
SafetyPolicy, 28
Semantics, 24
set, 169, 170
snd, 169
Some, 170
specF, 43, 127
Starters, 38
start-heap, 63
stkIds, 95
Store, 51
strongAn, 38
Sub, 52
substE, 93
succsExpt, 87
succsExTysF, 114
succsF, 28, 84
succsFrNrF, 114
succsNrm, 84
succsTyF, 114
succsXpt, 88
sys-xcptns, 90
sys-xcpt-of, 105

xTy, 27, 69
take, 170
the, 170
the-Addr, 52
the-Bool, 52
the-Intg, 52
Throw, 51

195

Index

tl, 170
ty, 53

upg, 48

val, 52
VCG, 31
vcg, 31, 114
vcgExTys, 115
vcgFrNr, 115
vcgTy, 115
vname, 52
Void, 53

wf, 28, 110
wf-jvm-prog-phi, 110
wpExc, 106
wpF, 31, 91

xcpt-cond, 89

196

	Introduction
	Proof Carrying Code
	Contributions
	Related Work
	Touchstone
	Foundational Proof Carrying Code
	Syntactic Proof Carrying Code
	Typed Assembly Languages
	Mobile Resource Guarantees
	Open Verifier

	Our work
	Outline

	Abstract Framework
	Program Semantics
	Safety Logic
	Safety Policy
	Annotated Control Flow Graphs
	Abstract Semantics
	Generic Verification Conditions
	Correctness
	Completeness
	Invariant Verification Conditions
	Instantiating the Framework
	Conclusion

	Jinja Bytecode and Virtual Machine
	Jinja Bytecode
	Operational Semantics
	States
	Extended Machine
	Argument Passing
	Arithmetics, Checks and Branches
	Heap Access
	Method Invocation and Return
	Initial States
	Simulation

	From Java to Jinja Bytecode
	Conclusion

	Bytecode Assertion Logic
	Syntax and Semantics of Assertions
	JVM Constructs
	Logical Constructs

	Logical Judgments
	Design Choices
	Deep or Shallow?
	What Language Constructs?
	Typed or Untyped?
	Higher Order Abstract Syntax
	Inference Rules?

	Conclusion

	Control Flow and Abstract Semantics
	Control Flow Approximation
	Abstract Semantics
	Initial States
	Transitions

	Conclusion

	Verification Conditions for Jinja
	SafetyPolicy
	Wellformedness
	System Invariants
	Instantiating the VCG
	Verification Conditions and Modularity
	Verifying Method Bodies
	Verifying Method Invocations
	Verifying Method Returns
	Exceptional Method Returns

	Proving Requirements
	Control Flow Approximation
	Abstract and Concrete Semantics
	Instantiating the Locales

	Correctness and Completeness Theorems
	Correctness
	Invariance
	Completeness

	Conclusion

	Generating Annotations and Proofs
	Program Analysis
	Bytecode Verifier
	Interval Analysis

	Integrating Trusted and Untrusted Analysis Results
	Optimising Verification Conditions
	Generating Proofs
	Proof Construction with Isabelle
	Proof Producing Program Analysis

	Conclusion

	Using the System
	Generating Runnable ML Prototypes
	Tasks for Code Producers and Consumers.
	From Java to Jinja
	Annotating the Code
	Checking Wellformedness
	Generating Verification Conditions
	Proving the Verification Condition
	Exporting the Proof Object
	Checking the Proof Object

	Experiments
	Conclusion

	Conclusion
	Achievements
	Experience
	Discussion
	Further Work

	Appendix
	Isabelle/HOL
	Types
	Pairs
	Sets
	Lists
	Option
	Functions
	Finite Maps
	Locales

	Additional Definitions
	External VCG
	Wellformedness

	Additional Proofs
	Instantiating the Abstract Semantics

	Bibliography

