
BMDFM: A Hybrid Dataflow
Runtime Parallelization Environment
for Shared Memory Multiprocessors

Oleksandr Pochayevets

Technische Universität München
Institut für Informatik

Lehrstuhl für Rechnertechnik und Rechnerorganisation

BMDFM: A Hybrid Dataflow Runtime Parallelization
Environment for Shared Memory Multiprocessors

Thesis in Computer Engineering
Oleksandr Pochayevets

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr.rer.nat.)

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr. Ernst Mayr

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Arndt Bode

2. Univ.-Prof. Dr. Hans Michael Gerndt

Die Dissertation wurde am _______21.07.2005_______ bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am _______01.02.2006_______ angenommen.

iii

BMDFM Abstract

Abstract

Nowadays parallel shared memory symmetric multiprocessors (SMP) are complex machines, where
a large number of architectural aspects have to be simultaneously addressed in order to achieve high
performance. The quick evolution of parallel machines has been followed by the evolution of
parallel execution environments. An effective parallel environment must be high-level enough so
that it is easy for the programmer to use, and map well to the underlying computer architecture for
efficient execution.

A recent general methodology of sequential code parallelization for SMP relies on compile-time
methods. But a compiler can apply them only when the dependencies are simple and clear. However
if dependencies are complex, compilers may not be able to suggest a different parallel execution
order. Compile-time optimizations cannot be applied to situations where the time it takes to complete
an operation varies at runtime, so the programmers have to synchronize the units of parallelism in
their application programs explicitly. Compilers also can perform only limited inter-procedural and
cross-conditional optimizations.

Directive-based parallelism for SMP supported by a fork-join paradigm runtime library has
disadvantages due to the necessity of expressing parallelism explicitly, insufficient portability,
granularity that is too fine and idling for the slowest slave threads.

On the other hand, the dataflow computational model presumes implicit exploitation of
parallelism but lacks a natural software development methodology and has dynamic scheduling
overhead.

These were the trends we were interested in, when we started the development.

To complement existing compiler-optimization methods we propose a programming model and a
runtime system called BMDFM (Binary Modular DataFlow Machine), a novel hybrid parallel
environment for SMP, that creates a data-dependence graph and exploits parallelism of user
application programs at run time. This thesis describes the design and provides a detailed analysis of
BMDFM, which uses a dataflow runtime engine instead of a plain fork-join runtime library, thus
providing transparent dataflow semantics on the top virtual machine level.

Our hybrid approach eliminates disadvantages of the compile-time methods, the directive-based
paradigm and the dataflow computational model. It is portable and is already implemented on a set
of available shared memory symmetric multiprocessors. The transparent dataflow semantics
paradigm does not require parallelization and synchronization directives. The BMDFM runtime
system shields the end-users from these details. Tunable grain of parallelism provides efficient
performance.

BMDFM is ported and evaluated on most available SMP platforms. The evaluation of BMDFM in
this thesis was done on a POWER4 IBM p690 SMP machine. The evaluation consisted of several
different types of experiments. We evaluated the overhead introduced by the execution environment,

iv

Abstract BMDFM

and the performance obtained running both standard numerical applications and non-trivial adaptive
algorithm based applications.

BMDFM Table of Contents

v

Abstract..iii

Table of Contents ... v

List of Figures.. ix

List of Tables ... xi

Acknowledgements ...xiii

Chapter 1
Introduction.. 1

1.1 Motivation .. 1
1.2 Contributions .. 2
1.3 Thesis Structure .. 3

Chapter 2
State of the Art ... 5

2.1 Overview .. 5
2.2 Target SMP Hardware.. 5
2.3 Directive-Based Parallelization and Fork-Join Paradigm for SMP...................................... 10
2.4 Dataflow Computation Model.. 15
2.5 Thread-Level Speculations... 18
2.6 Software Dynamic Parallelization.. 20
2.7 Summary .. 21

Chapter 3
BMDFM Architectural Overview .. 23

3.1 Overview .. 23
3.2 Basic Concept... 23
3.3 Multithreaded Architecture .. 24
3.4 Static Scheduler .. 26
3.5 Dynamic Scheduler .. 26
3.6 Programming Model... 30
3.7 Virtual Machine Language and C Interface ... 31
3.8 Workflow for Applications .. 40
3.9 Running Applications on a Single Threaded Engine ... 41
3.10 Running Applications Multithreadedly .. 42
3.11 Summary .. 45

Chapter 4
Dynamic Scheduling Subsystem ... 47

Table of Contents

vi

Table of Contents BMDFM

4.1 Overview .. 47
4.2 Inter Process Synchronization .. 47
4.3 Shared Memory Pool.. 52
4.4 Non-Dead-Locking Policy ... 55
4.5 Inter Process Communication .. 57
4.6 Task Connection Zone.. 61
4.7 I/O Ring Buffer Ports ... 65
4.8 Data Buffer ... 68
4.9 Operation Queue... 72
4.10 IORBP Scheduling Process .. 74
4.11 OQ Scheduling Process .. 78
4.12 CPU Executing/Scheduling Process... 81
4.13 Complexity of the Dynamic Scheduling Subsystem.. 83
4.14 Summary .. 85

Chapter 5
Static Scheduling Subsystem... 87

5.1 Overview .. 87
5.2 Parallel Dataflow Code Style Restrictions ... 88
5.3 Static and Dynamic Type Casting .. 89
5.4 Code Reorganization .. 93
5.5 Generation of Marshaled Clusters .. 97
5.6 Uploading of Marshaled Clusters... 99
5.7 Summary .. 108

Chapter 6
Transparent Dataflow Semantics ... 111

6.1 Overview .. 111
6.2 Conventional Programming Paradigm ... 111
6.3 Synchronization of Asynchronous Coarse-Grain and Fine-Grain Functions..................... 113
6.4 Ordering Non-Standard Stream in Out-of-Order Processing ... 116
6.5 Speculative Dataflow Processing ... 117
6.6 Summary .. 119

Chapter 7
Evaluation... 121

7.1 Overview .. 121
7.2 Test Environment ... 121
7.3 NAS Parallel Benchmarks.. 124
7.4 Irregular Test .. 129
7.5 Summary .. 134

Chapter 8
Conclusion .. 137

8.1 Overall Summary ... 137

vii

BMDFM Table of Contents

8.2 Future Directions .. 138

List of Defined Terms .. 139

References ... 143

viii

Table of Contents BMDFM

BMDFM List of Figures

ix

Figure 2-1. Compaq/DEC bus architecture.. 6
Figure 2-2. SUN Enterprise 10000 architecture .. 7
Figure 2-3. Origin2000 node and external connections... 8
Figure 2-4. IBM POWER4 Multi-Chip Module (MCM) .. 9
Figure 2-5. General methodology of sequential code parallelization for SMP 11
Figure 2-6. Speculation loop transformations.. 19
Figure 2-7. Runtime dependence-driven execution ... 20
Figure 3-1. Basic concept of BMDFM .. 23
Figure 3-2. BMDFM architecture .. 25
Figure 3-3. Static scheduler ... 26
Figure 3-4. Dynamic scheduler.. 27
Figure 3-5. Typical configuration for the 8-way SMP machine .. 28
Figure 3-6. BMDFM user programming models ... 30
Figure 3-7. Byte code generation... 36
Figure 3-8. A user defined C function ... 39
Figure 3-9. Application life cycle .. 40
Figure 3-10. Single threaded engine workflow.. 41
Figure 3-11. BMDFM server unit workflow ... 43
Figure 3-12. External task unit workflow .. 44
Figure 3-13. Multithreaded engine workflow.. 45
Figure 4-1. Basic synchronization paradigm ... 48
Figure 4-2. Interleaved semaphore distribution in the shared memory pool 49
Figure 4-3. Reduced number of blocking semaphores for the shared zones 50
Figure 4-4. Architecture of the shared memory pool... 53
Figure 4-5. One-way object locking policy ... 56
Figure 4-6. UWPR and PWPR channels.. 58
Figure 4-7. Communication between the scheduling processes .. 59
Figure 4-8. Task connection zone.. 62
Figure 4-9. TCZ output queue ... 64
Figure 4-10. IORBP cell .. 65
Figure 4-11. Structure of marshaled cluster... 67
Figure 4-12. DB cell .. 69
Figure 4-13. Multiple context data structuring .. 71
Figure 4-14. OQ cell .. 73
Figure 4-15. Speculative tagging of instructions ... 79
Figure 5-1. Variable initialization within potentially unreachable code.. 88
Figure 5-2. Static casting of data types .. 90
Figure 5-3. Physical meaning of justification .. 91
Figure 5-4. Physical meaning of casting.. 93
Figure 5-5. Preprocessing of the UDF declaration and UDF invocation... 94
Figure 5-6. Preprocessing of the output functions ... 94
Figure 5-7. Preprocessing of the input functions ... 95

List of Figures

x

List of Figures BMDFM

Figure 5-8. Preprocessing of conditionals in the global and local scopes 95
Figure 5-9. For-loop preprocessing.. 96
Figure 5-10. While-loop preprocessing ... 96
Figure 5-11. Preprocessing of recursion .. 97
Figure 5-12. Generation of marshaled cluster.. 98
Figure 5-13. Dataflow engine controlled by the front-end VM... 100
Figure 5-14. Control sequence template of local UDF invocation .. 103
Figure 5-15. Control sequence template of for-loop.. 105
Figure 5-16. Control sequence template of while-loop ... 108
Figure 7-1. Speedups for NAS PB 2.3 (classes A, C) on 8-way SMP... 127
Figure 7-2. Speedups for irregular test .. 134

BMDFM List of Tables

xi

Table 3-1. BMDFM virtual machine language .. 35
Table 4-1. Function interface of the shared memory pool ... 54
Table 4-2. Interface to the multithreaded dataflow engine... 63
Table 4-3. Program complexity of the dynamic scheduler... 84
Table 5-1. Register architecture of the front-end control VM.. 101
Table 5-2. Instruction set matrix of the front-end control VM... 102
Table 7-1. Execution times and speedups for NAS PB 2.3

(classes A, C) on 8-way SMP ... 127
Table 7-2. Number of instructions and scheduling overhead for NAS PB 2.3

(classes A, C) on 8-way SMP ... 128
Table 7-3. Execution times and speedups for irregular test ... 133

List of Tables

xii

List of Tables BMDFM

xiii

BMDFM Acknowledgements

Acknowledgements

Many people have made this work possible. I would like to express my deep gratitude to all of them
for being there, working with me and helping me.

First of all, I would like to thank my doctoral advisers, Prof. Dr. Herbert Eichele (Georg-Simon-Ohm
University of Applied Sciences Nuremberg), Prof. Dr. Arndt Bode (Technical University Munich),
Prof. Dr. Michael Gerndt (Technical University Munich) and Prof. Dr. Fridolin Hofmann (Friedrich-
Alexander-University Erlangen-Nuremberg) for their encouragement, patience, guidance and
valuable support throughout the preparation of this thesis.

I wish to thank the staff of RZ TU Dresden and LRZ Munich for providing the facility and an
excellent research environment to conduct my research.

Furthermore, I would like to thank my colleagues. They spent many hours of their spare time to read
my thesis and provide numerous comments and ideas on how to improve this thesis.

Finally, but not less important, I would like to thank my family and friends for their support
throughout the entire process.

xiv

Acknowledgements BMDFM

1

BMDFM Introduction

Chapter 1
Introduction

1.1 Motivation

A recent general methodology of sequential code parallelization for SMP relies on compile-time
methods. However, a compiler can apply them only when the dependencies are simple and clear, but
if dependencies are complex, compilers may not be able to suggest a different parallel execution
order.

Compilers cannot apply many interesting optimizations that depend on the knowledge of dynamic
information. Compile-time optimizations cannot be applied to situations where the time it takes to
complete an operation varies at runtime, which is a common case on cache-based and parallel
computers. A user has to explicitly state the interaction and synchronization between the units of
parallelism.

In general, the weaknesses with compile-time strategies can be described as follows:

• First, when running in parallel there are many operations that take a non-deterministic
amount of time, making it difficult to know exactly when certain pieces of data will
become available. In contrast, a runtime strategy allows a degree of adaptivity to tolerate
not just large latencies, but varying or indeterminate latencies.

• Second, in a multi-user mode other people’s codes can use up resources or slow down a part
of the computation in a way that the compiler cannot account for. For example, there can be
a severe degradation of performance on multi-programmed environments due to barrier
synchronization.

• Finally, compilers can perform only limited inter-procedural and cross-conditional
optimizations because they often cannot determine which way a conditional will go or
cannot optimize across a function call.

To complement existing compiler-optimization methods we propose a programming model and a
runtime system called BMDFM (Binary Modular DataFlow Machine) that creates a data-
dependence graph and exploits parallelism of a user application program at run time.

Another important type of overhead is the amount of time required for the programmers to
parallelize and synchronize the units of parallelism in their application programs. The BMDFM
runtime system shields the end-users from these details, allowing them to make more efficient use of
their expertise.

2 Contributions

Introduction BMDFM

1.2 Contributions

The main contribution of this thesis is the design and implementation of the BMDFM runtime
system - a complete parallelization environment, resulting in an efficient product, competitive with
widely-used parallel execution environments. The well-combined SMP and dataflow paradigms are
the basis of the proposed architecture.

The highlights are summarized below:

• Definition and design of the BMDFM hybrid architecture that combines von Neumann and
dataflow computational models running on top of commodity SMP systems. In the
proposed architecture the dataflow paradigm is used for the MIMD runtime parallel engine,
which is controlled by the virtual machine built in von Neumann manner. Analysis of this
design has shown that our approach is efficient and applicable both in the area of numerical
high performance computations and for dynamic adaptive algorithms as well, hiding
parallelization and synchronization details from the end-users.

• Definition and design of the context dependent data structure in the shared memory pool.
This allows dataflow processing of the iterations in parallel storing the iteration’s data
dynamically under unique contexts. The proposed data structure uses SVR4 IPC blocking
semaphores distributed along the shared memory pool that is efficient and portable across
the commodity SMP.

• Definition and design of the speculative tagging dynamic scheduling algorithm that is used
to tag ready instructions for execution in the runtime dataflow engine. This is a solution
how to significantly reduce dynamic scheduling overhead.

• Definition and design of the multithreaded marshaled clustering of the data loaded from the
control virtual machine into the dataflow runtime engine. This approach allows to avoid a
bottleneck when the parallel dataflow machine is fed dynamically from the single threaded
control virtual machine. In the proposed scheme the marshaled clusters are prepared
statically during the compilation stage, which does not cause additional runtime overhead
for marshaling.

• Definition and design of transparent dataflow semantics at the top virtual machine level
that shields the end-users from the parallelization and synchronization details. No special
parallel directives are required. The transparent dataflow semantics level can be used both
for conventional manual programming and as the target level for the code
generators/translators.

Thesis Structure 3

BMDFM Introduction

1.3 Thesis Structure

This thesis is organized into 8 chapters. Chapter 2 analyzes existing SMP hardware and various
parallelization approaches in the field of parallel SMP computing. We give an overview and
compare methods of directive-based parallelization and fork-join paradigm. We also analyze the
related works on dataflow computation models and some alternative projects of runtime SMP
parallelization such as hardware Thread Level Speculation (TLS) and some software dynamic
parallel schemes.

Chapter 3 discusses the architecture of the BMDFM system, functionality of its units, programming
model and applicability.

Chapter 4 describes the dataflow runtime engine in details. We analyze the internal data structures,
how they are mapped into the shared memory pool and dynamic scheduling algorithms.

Chapter 5 presents the static part of the BMDFM system. Therefore, we present the algorithms
running during the compilation phase and the architecture of the multithreaded marshaled clustering.

Chapter 6 gives an overview of the transparent dataflow semantics paradigm introduced in this
thesis. We show that a conventional programming approach can be automatically mapped into the
proposed dataflow hybrid architecture.

After discussing all the proposals of this thesis, Chapter 7 presents an evaluation of the complete
BMDFM parallelization environment running on a POWER4 IBM p690 SMP machine. We evaluate
the overhead introduced by the execution environment and the performance obtained running both
standard numerical applications and non-trivial adaptive algorithm based applications.

Finally, Chapter 8 contains the overall conclusions of this thesis and work planned for the future.

4 Thesis Structure

Introduction BMDFM

5

BMDFM State of the Art

Chapter 2
State of the Art

2.1 Overview

This chapter provides an analysis of recent parallelization technologies for SMP. The following
important items are considered:

• We analyze the typical SMP architectures existing on the market, paying attention to CPU
interconnections and memory latencies. We choose the architecture that is most appropriate
for our tests.

• We provide a detailed description of directive-based parallelization and fork-join paradigm
for SMP as the main technology in this area. We discuss various approaches and highlight
disadvantages.

• We look at related work and alternative technologies for efficient parallelization. We think
that the dataflow computation model, thread-level speculation and software dynamic
parallelization are closest to our work. We analyze all of them to avoid the weak sides they
may have.

2.2 Target SMP Hardware

Parallel processing increases the computational power of computers ranging from low-end
workstations and even personal computers to big mainframes containing a large number of
processing elements. Small shared-memory multiprocessor (SMP) machines are available from a
great number of computer makers: Silicon Graphics, SUN Microsystems, Compaq/DEC, Hewlett
Packard, Intel, Sequent, Data General, etc. Some of them also build big mainframes.

The larger the machines, the more complex they are. Complexity comes partially from the fact that
the path from the processors to the memory becomes a bottleneck when more than 10-12 processors
are put together. Poor scalability due to the memory subsystem bottleneck causes higher memory
access latencies and poor performance when the number of processors is increased. Several solutions
have been adopted to solve the problem of scalability. They include an improved path from the
processors to the memory, through pipelined memory architectures in bus-based and NUMA
computers. As a result, memory accesses have different latencies. The resulting architecture is more
complex and difficult to manage to achieve high performance. Along with varying data access
latencies, other elements that make parallel processing difficult in current hardware systems are the

6 Target SMP Hardware

State of the Art BMDFM

architecture of the current super-scalar processors, improved synchronization mechanisms and
support for relaxed memory models.

Examples of SMP nodes are the Compaq/DEC AlphaServer GS140 [50, 51, 52, 53, 54, 55, 56], the
SUN Ultra Enterprise 10000 server (Starfire) [33, 138, 139, 140], SGI Origin2000 ccNUMA server
[38, 39, 99, 104] and the POWER4 IBM p690 SMP server [82, 105, 119]. These machines are
commented on next.

Compaq/DEC AlphaServer GS140

The Compaq/DEC AlphaServer GS140 is based on the Alpha 21264 processor. It supports up to 14
processors. Each Alpha processor has up to 4 MB of external third-level cache. Processors are
connected through a system bus supporting a maximum of 28 GB of main memory.

Figure 2-1 shows the architecture of this system. The system bus supports the connection of a
maximum of 9 system boards. This limitation seems to confirm that the small bus size required for
performance is really conditioning the design of the computer. There are three types of system
boards: processor boards, memory boards and I/O boards. A processor board may contain up to two
Alpha processors. A memory board can accommodate up to 4 GB of memory. This means that a 14
processor system is limited to 4 GB of memory, due to the maximum of 9 system boards connected
to the system bus.

Figure 2-1. Compaq/DEC bus architecture

The SUN Ultra Enterprise 10000 (Starfire)

The SUN Ultra Enterprise 10000 server supports up to 64 processors and 64 GB of main memory. It
is based on the Ultra SPARC processor and Gigaplane-XB interconnect technology. Each processor
comes with 4 MB of external secondary cache.

ProcessorProcessorProcessor Processor
or Memory
ProcessorProcessor
or Memoryor Memory

Processor
or Memory
ProcessorProcessor
or Memoryor Memory

Processor
or Memory
ProcessorProcessor
or Memoryor Memory

MemoryMemoryMemory
Processor
or Memory

or I/O

ProcessorProcessor
or Memoryor Memory

or I/Oor I/O

Processor
or Memory

or I/O

ProcessorProcessor
or Memoryor Memory

or I/Oor I/O

Processor
or Memory
ProcessorProcessor
or Memoryor Memory

I/OI/OI/O
System BusSystem Bus

Target SMP Hardware 7

BMDFM State of the Art

The Enterprise 10000 server accommodates a maximum of 16 system boards. Each system board can
be configured with up to 4 processors and 4 GB of memory. System boards are connected through
the Gigaplane-XB interconnect, a crossbar designed specifically for this machine. It uses a packed
switched scheme with separate address and data paths. The reason is that data is usually
communicated point-to-point, while addresses have to be distributed simultaneously throughout the
system for the snooping protocol. The main structure of the system is shown in Figure 2-2. Data
transfers are done through a 16x16 crossbar allowing communication between any two system
boards at the same time. Contention arises when a system board is the origin or the destination for
two or more data transfers in the same bus cycle. In this case, only one of the requests can be
satisfied and the rest must wait for an available bus cycle. Addresses are communicated to all boards
through four independent address busses. Each bus covers 1/4 of the total address space.

With these characteristics, the data crossbar has a latency of 468 ns. The latency of a SUN Ultra
6000, a smaller machine supporting 24 processors is half (216 ns). The problem is that, in the
Enterprise 10000, both local and remote memory references suffer the latency penalty.

Figure 2-2. SUN Enterprise 10000 architecture

SGI Origin2000 ccNUMA server

The SGI Origin2000 server supports up to 1024 processors and one TB of main memory. It is based
on the MIPS R10000 processor (with 4 MB of external secondary cache) and a distributed shared
memory (DSM) architecture. The DSM architecture implements directory-based memory coherence,
removing the broadcast bottleneck that prevents scalability in the snoopy bus-based SMP
implementations.

System
Board

SystemSystem
BoardBoard

System
Board

SystemSystem
BoardBoard

System
Board

SystemSystem
BoardBoard

System
Board

SystemSystem
BoardBoard

Four Address Busses (Snoopy Protocol)Four Address Busses (Snoopy Protocol)

16 x 16 Data Crossbar (Point-To-Point Communication)16 x 16 Data Crossbar (Point-To-Point Communication)16 x 16 Data Crossbar (Point-To-Point Communication)

8 Target SMP Hardware

State of the Art BMDFM

The basic Origin2000 node is shown in Figure 2-3. Each node contains two R10000 processors, with
their respective secondary cache memories. The central element in each node is the HUB, which
connects both processors to the memory, I/O and the interconnection network (interconnection
fabric, in SGI terminology). Each node can accommodate up to 64 GB of main memory and its
corresponding directory memory. The global shared address space is distributed among the nodes in
slices. Node 0 contains addresses in the lower range from 0 to N-1, node 1 follows, containing
addresses from N to 2*N-1, and so on.

Figure 2-3. Origin2000 node and external connections

The DSM architecture provides global addressability from any processor to all memory and I/O. The
Origin2000 system uses a directory-based memory coherence protocol. Each cache line in memory
has an associated directory entry. Directory memory is located near main memory in the same
module. Each entry contains information about the associated cache line: its system-wide caching
state and bit-vectors pointing to caches, which have copies of the cache line. Memory can determine
which caches need to be involved in a given memory operation in order to maintain coherence.

Processor nodes are attached to the interconnection routers, which provide low latency
communication. Routers link the HUB inside the basic nodes to the CrayLink Interconnect. Each
router has six external full-duplex connections, which are managed internally by a full six-way non-
blocking crossbar switch. Machines with 128 processors use meta-routers (routers connecting
routers) to connect four 32-processor groups. Meta-routers are replaced by 5-D hypercubes to reach

Secondary
Cache

SecondarySecondary
CacheCache

Secondary
Cache

SecondarySecondary
CacheCache

Directory /
Main Memory

Directory /Directory /
Main MemoryMain Memory

Crossbar
I/O

CrossbarCrossbar
I/OI/O

Origin 2000 NodeOrigin 2000 Node

 Router Router Router

To I/OTo I/O
DevicesDevices

InterconnectionInterconnection
FabricFabric

 Hub Hub Hub

R10000
Processor

R10000R10000
ProcessorProcessor

R10000
Processor

R10000R10000
ProcessorProcessor

Target SMP Hardware 9

BMDFM State of the Art

up to 1024 processors. It is remarkable that, in a 64-processor machine, the average latency of a
remote memory access is only 2.7 times the latency of a local memory access.

POWER4 IBM p690 SMP server

The pSeries 690 system architecture is implemented through Central Electronic Complex (CEC).
Logically, the CEC consists of the microprocessors, pervasive functions and the storage subsystem.
Physically, the CEC consists of the microprocessor chip, the Level 3 (L3) cache chip and the
memory controller chip, which controls main memory.

At the heart of the CEC is the POWER4 chip [49], which contains: either one or two
microprocessors; the L2 cache running at the same speed as the microprocessors; the microprocessor
interface unit, which is the interface for each microprocessor to the rest of the system; the directory
and cache controller for the L3 cache; the fabric bus controller, which is at the heart of the system’s
interconnection design; and a GX bus controller that enables I/O devices to connect to the CEC.

Figure 2-4. IBM POWER4 Multi-Chip Module (MCM)

The second component of the POWER4 CEC is the L3 cache, comprised of two 16MB eDRAM
chips mounted on a separate module. Each POWER4 chip controls an L3 cache, connected between
the POWER4 chip and the memory controller chip. The third component of the POWER4 CEC is
the memory controller chip. It is connected to the L3 cache on one side and to synchronous memory
interface (SMI) chips on the other to control main memory. Each memory controller chip can have
one or two memory data ports and can support up to 16GB of memory. There is a separate memory

CoreCoreCore CoreCoreCore

L3L3L3 Shared L2Shared L2Shared L2

Chip-to-ChipChip-to-Chip

CoreCoreCoreCoreCoreCore

L3L3L3Shared L2Shared L2Shared L2

C
h

ip
-to

-C
h

ip
C

h
ip

-to
-C

h
ip

CoreCoreCore CoreCoreCore

L3L3L3 Shared L2Shared L2Shared L2

CommunicationCommunication

CoreCoreCoreCoreCoreCore

L3L3L3Shared L2Shared L2Shared L2

Chip-to-ChipChip-to-Chip

Multi-Chip Module (MCM)Multi-Chip Module (MCM)

L3L3L3

L3L3L3

 M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 C
o

n
tr

o
l

M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 C
o

n
tr

o
l

M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 M
em

o
ry

M
em

o
ry GX BusGX Bus

GX BusGX Bus

L3L3L3

L3L3L3

 M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 C
o

n
tr

o
l

M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 C
o

n
tr

o
l

M
em

o
ry

 C
o

n
tr

o
l

 M
em

o
ry

 M
em

o
ry

M
em

o
ryGX BusGX Bus

GX BusGX Bus

C
o

m
m

u
n

ic
at

io
n

C
o

m
m

u
n

ic
at

io
n

C
o

m
m

u
n

icatio
n

C
o

m
m

u
n

icatio
n C

h
ip

-t
o

-C
h

ip
C

h
ip

-t
o

-C
h

ip

CommunicationCommunication

10 Directive-Based Parallelization and Fork-Join Paradigm for SMP

State of the Art BMDFM

controller for each POWER4 chip. Two memory controllers are packaged on each memory card, and
a maximum of two memory cards can be attached to each MCM. In all system configurations, all
memory and all I/O is transparently accessible to all processors. The basic building block for pSeries
690 systems, the MCM, is shown in Figure 2-4. Each MCM contains four interconnected POWER4
chips, each with its own off-chip L3 cache. The pSeries 690 can contain up to 4 MCMs. Each MCM
comprises either a 4-way or an 8-way symmetric multiprocessing (SMP) unit, depending on whether
one or two microprocessors are present on each of the POWER4 chips.

The POWER4 microprocessor was specially designed to support an SMP memory hierarchy. As a
result, IBM SMP architecture based on the POWER4 chip is the most tightly coupled SMP
architecture nowadays.

At the beginning of year 2003, the US department of Energy (DOE) created a development program
"Creating Science-Driven Computer Architecture: A New Path to Scientific Leadership" [107],
which aims to restore American leadership in scientific computing and relies on IBM’s POWER4,
POWER5 and POWER6 evolving line.

In this thesis, we used the 8-way POWER4 IBM p690 SMP server for the evaluation of our
proposals.

2.3 Directive-Based Parallelization and Fork-Join Paradigm for
SMP

A recent general methodology of sequential code parallelization for Shared Memory Symmetric
Multiprocessors (SMP) is the directive-based parallelization paradigm [5, 17, 20, 126, 127, 177]. A
sequential program is first analyzed to discover loops, which are the main source of parallelism, and
any dependencies among different loop iterations, which prevent parallelization of those loops for
the sake of correctness. Based on this analysis it may be possible to modify the code to remove
dependencies. Parallelism is expressed simply by inserting appropriate compiler directive before a
loop. As Figure 2-5 indicates, this is essentially an iterative process of modifying the loop nesting in
the sequential code until most of the computationally expensive loops are parallelized. Finally, the
parallelized code (i.e. sequential code with compiler directives) is compiled and linked with
appropriate runtime libraries to be executed on the target system.

Directive-Based Parallelization and Fork-Join Paradigm for SMP 11

BMDFM State of the Art

Figure 2-5. General methodology of sequential code parallelization for SMP

Directive-based parallelism is supported by a runtime library, which implements a fork-join
paradigm of parallelism. A master thread initiates the program, creates multiple slave threads,
schedules the iterations of parallelized loops on all threads including itself, waits for the completion
of a parallel loop by all the slave threads and continues to execute the sequential parts of the
program. Slave threads must wait for work (i.e. for parts of subsequent parallel loops) while the
master thread is executing a sequential portion of the code.

Use of directive-based parallelism is limited due to portability issues. Almost every vendor of a
shared memory computer system offers its own extension of Fortran or C language via
parallelization directives. Usually these directives are not portable from one shared memory
computer system to another. The OpenMP Architecture Review Board spent a lot of efforts to
standardize a collection of compiler directives, library functions and environment variables that is
known as the OpenMP Application Program Interface (API) [44, 117] and used to specify shared
memory parallelism in programs. Although the OpenMP model can be useful for solving a variety of
problems, it is somewhat tailored for large array-based applications. In OpenMP any unsynchronized
calls to output functions may result in output, in which data written by different threads appears in
non-deterministic order. Similarly, unsynchronized calls to input functions may read data in non-
deterministic order. According to OpenMP the user explicitly specifies the actions to be taken by the
compiler and runtime system in order to execute the program in parallel. OpenMP implementations
do not check for dependencies, conflicts, deadlocks, race conditions or other problems which result
in incorrect program execution. The user himself is responsible to ensure that the application using
the OpenMP API constructs executes correctly.

A runtime library, which implements a fork-join paradigm, has the drawback of the idle time, in
which program execution has to wait for the completion of the slowest thread. Even if a master

 Code modifications
as needed

 Code modifications Code modifications
as neededas needed

 Sequential
Code

 Sequential Sequential
CodeCode

Parallel directives
insertions

Parallel directivesParallel directives
insertionsinsertions

 Parallel Code
for SMP

 Parallel Code Parallel Code
for SMPfor SMP

Performance
evaluation

PerformancePerformance
evaluationevaluation

12 Directive-Based Parallelization and Fork-Join Paradigm for SMP

State of the Art BMDFM

thread initializes an equal chunk of iterations for each slave thread the execution time will differ due
to the Non-Uniform Memory Access (NUMA) of modern SMP architectures. To avoid idle time
wasting, a mechanism of guided scheduling of threads was introduced [130]. With guided
scheduling the iterations are assigned to threads in chunks with approximately exponentially
decreasing sizes. When a thread finishes its assigned chunk of iterations, it is dynamically assigned
another chunk until no more remain. The drawback of this approach is the considerably bigger
overhead spent on dynamic scheduling of the threads.

One more issue with directive-based parallelization is that multiprocessors present more difficult
challenges to parallelizing compilers than the vector machines which initially were their targets.
Effective use of the vector architecture involves parallelizing of repeated arithmetic operations on
large data streams (e.g. innermost loops in array-oriented programs). On a multiprocessor however,
parallelizing of innermost loops typically does not provide sufficient granularity of parallelism - not
enough computational work is performed in parallel to overcome the overhead of synchronization
and communication between processors. To utilize a multiprocessor effectively the compiler must
exploit coarse grain parallelism locating large computations, which can execute independently in
parallel [87]. Multiprocessor systems also have more complex memory hierarchies than typical
vector machines. Modern multiprocessors also contain multiple levels of caches in addition to the
shared memory. These additional challenges often prevented early parallelizing compilers from
being effective for multiprocessors.

Commercial parallel execution environments provide different user-level thread libraries. There are
two main types of such libraries: The standard libraries, such as Pthreads (Posix threads) [83], are
intended for parallel programmers to build parallel applications expressing the parallelism by hand.
The programmer introduces explicit calls to the thread library to create, manage, terminate and
synchronize the parallel application tasks. The Pthreads library is oriented to work with shared
memory. There are also standard libraries oriented toward message passing, such as PVM [63] and
MPI [108, 109]. There are also plenty of custom thread libraries (such as the SGI MP library).
Custom thread libraries are highly tuned for execution on top of a parallel architecture. For instance,
spawning parallelism in custom libraries is done from a master processor to all the slave processors
at once, instead of supplying work on a one-to-one basis, which it is the case in the Pthreads library.
Such a fine tuning encourages the use of very simple structures to support the parallelism. Simplicity
leads to efficiency, but also there is a lack of functionality with respect to standard libraries. For
instance, the SGI MP library forbids spawning parallelism inside a parallel region. That is allowed in
the Pthreads library, which does not impose such a restriction by allowing that any pthread be able to
spawn a new pthread. In general, it is common that custom libraries do not support the exploitation
of multiple levels of parallelism.

A multiprocessor operating system assigns physical processors to application processes (or threads).
Different kernel-level scheduling policies are usually provided by the operating system. For
instance, the SGI IRIX operating system provides time-sharing and gang scheduling policies [156] to

Directive-Based Parallelization and Fork-Join Paradigm for SMP 13

BMDFM State of the Art

manage parallel applications. Time-sharing is a priority-based scheduling policy, where processes
are scheduled independently of each other. In gang scheduling, instead, processes belonging to the
same application are scheduled as a group. In the SGI MP execution environment, the time-sharing
policy is used because it is more dynamic than gang scheduling and applications are able to adapt to
the number of processors allocated. In fact, each application has a specific thread in charge of
controlling the load of the system and whether the application is taking advantage of the allocated
processors. This thread serves two purposes. First, in case that thread detects that the load is high and
the application is not receiving enough resources, it decides to stop some of the processes of the
application, to free some physical processors and reduce the system load. Second, when that thread
detects that the load is low and the application can use more processors, it starts some of the
processes of the application to take advantage of more physical processors. This is a specific feature
of the SGI MP execution environment, not found in other environments.

Other operating systems, such as Digital UNIX, provide the FIFO and round-robin scheduling
policies, in addition to time-sharing, to schedule processes/threads on top of processors. SunOS
provided a gang scheduling class for lightweight processes (LWPs) [131]. Nevertheless, the parallel
execution environments running on top of them are simpler than the SGI one, lacking the same kind
of communication between the user and kernel levels.

Nowadays parallelization of sequential code for shared memory systems is an extensively researched
area. A lot of research efforts have focused on parallelizing sequential programs. Currently, many
types of loops can be parallelized with various data dependency analysis techniques [20, 127].
Among them GCD, Benerjee’s inexact and exact tests [17, 177], OMEGA test [132], symbolic
analysis [74], semantic analysis and dynamic dependence test and program restructuring techniques
such as array privatization [170], loop distribution, loop fusion, strip mining and loop interchange
[121, 178]. Due to the simplicity of shared memory multiprocessor programming, compiler
developers have provided various facilities to allow the users to exploit parallelism. Native
compilers support multiprocessing directives to allow users to exploit loop-level parallelism in their
programs. Every commercial parallel execution environment provides a set of parallelizing
compilers, usually supporting the C and Fortran languages. For instance, both the MIPS Pro C [150]
and Fortran 77 [153] compilers provided by Silicon Graphics are able to automatically extract loop
parallelism from sequential applications. This is done with the help of the PCA (Parallel C Analyzer)
and PFA (Parallel Fortran Analyzer) tools [152], respectively. Both in automatic and annotated
parallelizations, the resulting parallel code calls to the SGI MP library [151, 154, 155], the custom
thread library provided by SGI to support parallel execution. KAP [96] and Polaris [24, 129] are
other parallelizing compilers, which are able to generate parallelized code for SMPs. The Polaris
compiler exploits loop parallelism by using inline expansion of subroutine, symbolic propagation,
array privatization [57, 170] and runtime data dependence analysis [133]. CAPTools [101] is a semi-
automatic parallelization tool, which transforms a sequential program to a message passing program
by user directed distribution of arrays. The PROMIS compiler [27, 120] combines the Parafrase2
compiler [125] using HTG [65] and symbolic analysis techniques [74], and the EVE compiler for

14 Directive-Based Parallelization and Fork-Join Paradigm for SMP

State of the Art BMDFM

fine grain parallel processing. However, these compilers cannot parallelize loops that include
complex loop carrying dependences and conditional branches to the outside of a loop.

There are several well-known non-commercial projects in which parallelizing compilers are being
developed to generate code to run on top of custom thread libraries. For instance, the SUIF compiler
[4, 75] gets sequential Fortran code and automatically generates parallel code to run on a custom
library, with no communication with the operating system. The SUIF compiler system incorporates
various modules, which can be used to analyze the sequential program, to parallelize loops,
distribute program arrays and perform inter-procedural analysis [4, 75, 76], unimodular
transformation and data locality optimization [9, 98]. Effective optimization of data localization is
more and more important because of the increasing disparity between memory and processor speeds.
(Currently, many researchers for data locality optimization using program restructuring techniques
such as blocking, tiling, padding and data localization are trying to achieve high performance
computing with single chip multiprocessor systems [80, 136, 180].) The SUIF runtime system
supports a single-level of parallelism in the same way as the SGI MP library does. The NANOS
compiler [13, 104] based on Parafrase2 has been trying to exploit multi-level parallelism including
the coarse-grain parallelism by using the extended OpenMP API.

In the field of runtime libraries, searching for support of multiple levels of parallelism and fine
granularity is a main goal. The Illinois-Intel Multithreading Library (IML [64]) is a user-level
threads package supporting nested parallelism and code generation from the Intel Fortran compiler.
It runs on PC-compatible Intel multiprocessor machines, on top of the Windows NT kernel.
Communication with the operating system includes a specific interface to get the number of
available processors and to stop and resume kernel threads.

COOL [31] is a runtime system supporting parallel object-oriented programs written in the COOL
language [32]. It is intended for NUMA machines. The programmer is allowed to express data
locality in three different ways: through object, task and processor affinity. Cilk, Filaments, Concert
and Active Threads are thread libraries also providing support for compiler generated code.
Communication with the operating system is not considered in any of these projects. They provide
support for multiple levels of parallelism. Data locality is taken into account, providing tools in the
library interface to map the application tasks onto specific processors. The Cilk language extends C
with parallel constructs. The Cilk runtime system [25] is oriented to express parallelism in recursive
programs. Filaments [58] can be used directly by the C programmer or from the Sisal functional
language. It supports fine-grained iterative and fork-join threads. Active Threads [176] is a runtime
system supporting code generation for the pSather compiler [111, 162]. Threads are grouped in
thread bundles, sharing a common scheduler. Bundles facilitate data locality because threads
accessing the same data can be assigned to the same physical processors through the bundle.

Projects considering the improvement of communication with the kernel include Process Control,
Scheduler Activations, First-Class User-level Threads and Execution Vehicles. Process Control

Dataflow Computation Model 15

BMDFM State of the Art

[171, 172] introduces the concept of dynamic adaptation of the parallelism inside applications to the
available resources, as indicated by the kernel. The application receives enough information to start
and stop processes when needed to adapt to the allocated resources. Scheduler Activations [6]
provides to the user level all scheduling events related to the application. The events are: receiving a
new processor, a processor preemption, thread blocking and thread unblocking. All events are
communicated through the upcall mechanism, which sometimes is too costly to allow an efficient
communication path between user and kernel levels. First-Class User-Level Threads [103] merges
the upcall mechanism with the shared memory. The most aggressive approach is taken in the recent
implementation in IRIX6.5 of Execution Vehicles [40]. In this approach, the full context of the
kernel-level threads is made available to the user-level execution environment, in such a way that
both the kernel and the user levels can resume a preempted thread.

There are other research projects providing threads libraries, such as Quartz [8], FastThreads [7],
Presto [22] and SwitchStacks [35] which are interesting for various reasons and have also been
studied during the development of this work.

2.4 Dataflow Computation Model

Dataflow expresses computations as operations, which may in principle be of any size. The
execution of these operations depends solely on their data dependencies - an operation is computed
after all of its inputs have been computed, but this moment is determined only at runtime.
Operations, which do not have a mutual data dependency, may be computed concurrently.

The fundamental principles of dataflow were developed by Jack Dennis [45] in the early 1970s. The
dataflow model [2, 47, 67, 145] avoids the two features of von Neumann model, the program counter
and the global updatable store, which become bottlenecks in exploiting parallelism [15]. Due to its
elegance and simplicity, the pure dataflow model has been the subject of many research efforts.
Since the early 1970s, a number of dataflow computer prototypes have been built and evaluated, and
different designs and compiling techniques have been simulated [10, 46, 62, 100, 114, 144, 149, 157,
159, 165, 167]. Depending on the way of handling the data, several types of dataflow architectures
emerged in the past: single-token-per-arc dataflow [48], tagged-token dataflow [12, 175] and explicit
token store [122]. The major advantage of the single-token-per-arc dataflow model is its simplified
mechanism for detecting enabled nodes. Unfortunately, this model of dataflow has a number of
serious drawbacks. Since consecutive iterations of a loop can only partially overlap in time, only a
pipelining effect can be achieved and thus a limited amount of parallelism can be exploited. Another
undesirable effect is that token traffic is doubled. There is also a lack of support for programming
constructs essential to any modern programming language.

The performance of a dataflow machine significantly increases when loop iterations and subprogram
invocations can proceed in parallel. To achieve this, each iteration or subprogram invocation should

16 Dataflow Computation Model

State of the Art BMDFM

be able to execute as a separate instance of a reentrant subgraph. However, this replication is only
conceptual. In an implementation only one copy of any dataflow graph is actually kept in memory.
Each token includes a tag, consisting of the address of the instruction for which the particular data
value is destined, and other information defining the computational context in which that value is
used. A node is enabled as soon as tokens with identical tags are present at each of its input arcs.
Dataflow architectures using this method are referred to as tagged-token (or dynamic) dataflow
architectures. The most important tagged-token dataflow projects are Manchester Dataflow
Computer [18, 19, 26, 29, 30, 66] and MIT Tagged-Token Dataflow Machine [11, 69, 70]. The
major advantage of the tagged-token dataflow model is the higher performance it obtains by
allowing multiple tokens on an arc. One of the main problems of tagged-token dataflow model is the
efficient implementation of the unit that collects tokens. For reasons of performance, an associative
memory would be ideal. Unfortunately, it would not be cost-effective since the amount of memory
needed to store tokens waiting for a match tends to be very large. Therefore, all existing machines
use some form of hashing techniques, which typically are not fast compared with associative
memory. To eliminate the need for associative memory searches, the concept of an explicit address
token store has been proposed. The basic idea is to allocate a separate memory frame for every active
loop iteration and subprogram invocation. Each frame slot is used to hold an operand for a particular
activity. The explicit token address store principle was developed in the Monsoon project [42, 123,
146, 166] but is applied in most dataflow architectures developed more recently, i.e. as so-called
direct matching in the EM-4 [23, 94, 141, 142, 143] and Epsilon-2 [71, 72].

Pure dataflow computers usually perform quite poorly with sequential code. A further drawback is
the overhead associated with token matching. One solution of these problems is combining the
dataflow and control-flow mechanisms. The symbiosis between dataflow and von Neumann
architectures is represented by a number of research projects developing von Neumann/dataflow
hybrids [28, 84]. After early hybrid dataflow attempts, several techniques for combining control-
flow and dataflow emerged [21]: threaded dataflow [124], large-grain dataflow [84], RISC dataflow
[113] and dataflow with complex machine operations [59]. The threaded dataflow technique has a
modified dataflow principle so that instructions of a sequential instruction stream can be processed
in succeeding machine cycles. A thread of instructions is issued consecutively by the matching unit
without matching further tokens except for the first instruction of the thread.

The large-grain dataflow technique, also referred to as coarse-grain dataflow, advocates activating
macro dataflow actors by the dataflow principle while executing the represented sequences of von
Neumann instructions. Off-the-shelf microprocessors can be used for the execution stage. Most of
the more recent dataflow architectures fall into this category and they are often called multithreaded
machines: Threaded Abstract Machine TAM [41, 43], Associative Dataflow Architecture ADARC
[163, 164, 181], Pebbles architecture [137].

Another stimulus for dataflow/von Neumann hybrids was the development of RISC dataflow
architectures, notably P-RISC [113], which allow the execution of existing software written for

Dataflow Computation Model 17

BMDFM State of the Art

conventional processors. Using such a machine as a bridge between existing systems and new
dataflow supercomputers made the transition from imperative von Neumann languages to dataflow
languages easier for the programmer. Another technique to reduce the instruction level
synchronization overhead is the use of complex machine instructions, for instance vector
instructions. These instructions can be implemented by pipeline techniques as in vector computers.
Structured data is referenced in blocks rather than element-wise, and can be supplied in a burst
mode.

Recently the dataflow principles have also been used on the micro level. The latest generation of
super-scalar microprocessors as Intel Pentium [37], MIPS [179] and PA-RISC [97] displays an out-
of-order dynamic execution that is referred to as local dataflow or micro dataflow. In the first paper
on the PentiumPro, the instruction pipeline is described as follows: ’’The flow of the Intel
Architecture instructions is predicted and these instructions are decoded into micro-operations
(micro-ops), or series of micro-ops, and these micro-ops are register-renamed, placed into an out-of-
order speculative pool of pending operations, executed in dataflow order (when operands are ready),
and retired to permanent machine state in source program order’’. But the micro dataflow of today’s
super-scalar processors also has some problems when finding enough fine-grain parallelism to fully
exploit the processor. One solution is to enlarge the instruction window to several hundred
instruction slots with hopefully more simultaneously executable instructions present. There are two
drawbacks to this approach. First, given the fact that all instructions stem from a single instruction
stream and that on average every seventh instruction is a branch instruction, most of the instructions
in the window will be speculatively assigned with a very deep speculation level. Thereby most of the
instruction execution will be speculative. The principal problem here arises from the single
instruction stream that feeds the instruction window. Second, if the instruction window is enlarged,
the updating of the instruction states in the slots and matching of executable instructions lead to more
complex hardware logic in the dispatch stage of the pipeline, thus limiting the cycle rate increase.

Ideally, a parallel programming environment should be able to exploit parallelism, which is not
expressed explicitly. From this point of view the dataflow computational model has been attractive
because it allows the exploitation of parallelism at instruction, loop, procedure and task levels
implicitly. Communication between the operations is not made explicit in the dataflow programs,
rather the occurrence of a name as the result of an operation is associated by the compiler with all of
those places where the name is the input of an operation. Because operations execute only when all
of their inputs are present, communication is always unsynchronized. Having problems with the
single assignment and iterations, dataflow languages have taken different approaches expressing
repetitive operations. Language such as Id [135] and Val [1] that most recently has evolved to Sisal
[60] have syntactic structures looking like loops, which create a new context for each execution of
the loop body. These languages seem like imperative languages except that each variable name may
only be assigned once in each context. In Sisal parallelism is not explicit at the source level.

18 Thread-Level Speculations

State of the Art BMDFM

However, the language runtime system may exploit parallelism. The loop bodies could be scheduled
simultaneously and their results then collected.

2.5 Thread-Level Speculations

Techniques such as simultaneous multithreading [173] (e.g., the Alpha 21464) and single-chip
multiprocessing [116] (e.g., the Sun MAJC [168] and the IBM Power4 [85]) suggest that thread-
level parallelism may become increasingly important even within a single chip. Despite the
significant progress which has been made in automatically parallelizing regular numeric
applications, compilers have had little or no success in automatically parallelizing highly irregular
numeric or especially non-numeric applications due to their complex control flow and memory
access patterns. One promising technique for that is Thread-Level Speculation (TLS), which enables
the compiler to create parallel threads optimistically despite uncertainty as to whether those threads
are actually independent.

Loop speculation may be used to split virtually any sequential program with loops of any kind into
arbitrary threads that can be parallelized across several processors. However, before the system can
successfully exploit loops it must know where they occur in the code. It is actually possible to find
loops as existing code executes, simply by looking for backward branches. Wherever one is
encountered, the hardware may assume that a loop has been found and begin forking off speculative
threads with the program counter set to the target of the backward branch in all speculative threads.
However, finding loops "on the fly" like this with legacy code requires the hardware to speculatively
track references to registers as well as memory. Because it is too expensive it was necessary to add a
semi-manual compiler pass to isolate the loops. Figure 2-6 explains how a conventional loop has to
be modified to run on a speculative hardware. The loop itself is replaced with the loop starting
template that invokes the loop encapsulation function on the main processor after signaling the other
processors to start it as well. The loop body is encapsulated within the new "ThisLoop()"
encapsulation function. In the process, the necessary "spec_:" marking lines are added to provide the
correct addresses to the "spec_begin()" API. The body clauses of the loop are distributed
appropriately to use the speculation APIs. In order to ensure correct program execution, TLS
hardware must track all inter-thread dependencies. When a true dependence violation is detected, the
hardware must ensure that the "later" thread in the sequence executes with the proper data by
dynamically discarding threads that have speculatively executed with the wrong data.

Thread-Level Speculations 19

BMDFM State of the Art

Figure 2-6. Speculation loop transformations

Knight was the first to propose hardware support for a form of thread-level speculation [93]. His
work was within the context of functional languages. The Multi-scalar architecture [61, 151] was the
first complete design and evaluation of the architecture for TLS. There have since been many other
proposals, which extend the basic idea of thread-level speculation [3, 36, 68, 73, 95, 102, 118, 160,
169]. In nearly all of these cases, the target architecture has been a very tightly coupled machine,
where all of the threads are executed within the same chip. These proposals have often exploited this
tight coupling to help them track and preserve dependencies between threads. For example, the
Stanford Hydra architecture [78, 79], which consists of four MIPS cores, uses special write buffers to
hold speculative modifications, combined with a write-through coherence scheme that involves
snooping of these write buffers upon every store. Hydra simulator tests show overall speedup of 2.5
on a variety of applications from different domains.

While TLS approach may be perfectly reasonable within a single chip, it was not designed to scale to
larger systems. However, there are some attempts to scale the thread-level speculation on the
traditional SMP architectures using cache coherency techniques [161]. Experimental simulation
results demonstrate that TLS scheme offers absolute program speedups ranging from 8% to 46% on
a four-processor system. There are also some other attempts [182] for a form of TLS within large-
scale NUMA multiprocessors.

int i; //loop counter

int x,y; //loop local variables

for (i=0; i<50; i++)

{

 ...

 // loop body code

 ...

}

int i; //loop counter

int x,y; //loop local variables

i=0;

ThisLoop(); //start loop on all CPUs

void ThisLoop()

{

 spec_begin(&spec_start, &spec_end);

 spec_start:

 if(!(i<50)) spec_terminate()

 ...

 //loop body code

 ...

 i++;

 spec_end:

 return;

}

20 Software Dynamic Parallelization

State of the Art BMDFM

2.6 Software Dynamic Parallelization

In general, while compile-time methods have the advantage that they incur little runtime overhead
and that the automation frees the user from the details of locality and parallelism, they are limited in
that compilers cannot apply many interesting optimizations that depend on knowledge of dynamic
information. Compile-time optimizations cannot be applied to situations where the time it takes to
complete an operation varies at runtime, a common case on cache-based and parallel computers.

Nowadays only few software systems support dynamic parallelization (that actually are dataflow
simulators). The OSCAR compiler has realized a multi-grain parallel processing [88] that effectively
combines the coarse-grain task parallel processing with the loop parallelization and near fine-grain
parallel processing [81, 90, 91, 92]. In the OSCAR compiler, a dynamic scheduling routine
generated by the compiler is used to schedule coarse-grain tasks dynamically onto processors or
processor clusters to cope with the runtime uncertainties caused by conditional branches. As the
embedded dynamic task scheduler, the centralized dynamic scheduler [89, 115] in the OSCAR
Fortran compiler and the distributed dynamic scheduler [110] have been proposed. Concert is a
concurrent object-oriented language and runtime system [34] designed to support fine-grain
applications, the behavior of which is unknown at compile time. SMARTS (Shared Memory
Asynchronous RunTime System) [174], based on the POOMA (Parallel Object-Oriented Methods
and Applications) framework [86, 134], is a C++ class library for high performance scientific
computations.

Figure 2-7. Runtime dependence-driven execution

ReadyReady

IterationsIterations
Control
Thread
ControlControl
ThreadThread

 Work Queue Work Queue Work Queue

 Work Queue Work Queue Work Queue

 Work Queue Work Queue Work Queue

CPUCPUCPU

CPUCPUCPU

CPUCPUCPU

Completed IterationsCompleted Iterations

Completed IterationsCompleted Iterations

IterationsIterations

HandoffHandoff

Dependent
Graph

Manager
/Scheduler

DependentDependent
GraphGraph

ManagerManager
/Scheduler/Scheduler

Summary 21

BMDFM State of the Art

Software dynamic parallelization borrows the ideas from macro-dataflow computation models and
builds the graph of data dependencies dynamically. Figure 2-7 demonstrates typical architecture of
the runtime dependence-driven execution. The control thread unit provides the iterations to the
dependent graph manager/scheduler. Ready iterations feed the work queues and are processed by the
CPU units. The completed iterations resolve dependencies for the next iterations to become ready.
Evaluations done in [174] show the total amount of time spent on system overhead was only 3.49%
on numeric applications, indicating that runtime graph generation does not have significant overhead
costs.

Two important drawbacks can be highlighted for the existing dynamic architectures. First, they are
still oriented only toward the numeric loop-based scientific applications and they have no support for
irregular adaptive algorithms. Second, the control thread and dependent graph manager/scheduler
are centralized in one thread, so they are a bottleneck for the system.

2.7 Summary

Having analyzed the recent parallelization technologies for SMP, we made the following important
conclusions:

• We have chosen the POWER4 IBM p690 SMP architecture for the evaluation of our
proposals as the most tightly coupled SMP architecture available today. IBM’s POWER4,
POWER5 and POWER6 evolving line is considered to be main stream in DOE
development program for scientific computing.

• Directive-based approach has a lot of weaknesses because of its static nature. Directive-
based implementations do not check for dependencies, conflicts, deadlocks, race conditions
or other problems, which result in incorrect program execution. A runtime library, which
implements a fork-join paradigm, has the drawback of the idle time, in which program
execution has to wait for the completion of the slowest thread. Compile-time methods are
limited in that compilers cannot apply many interesting optimizations that depend on
knowledge of dynamic information.

• Dataflow computation model relies on runtime parallelization, but "pure" dataflow
machines have overhead because each dynamic instruction requires dynamic operand
matching, and because extra instructions are needed to make copies of data when a
particular value is required by several instructions. Dataflow languages are abstract and
simple, but they do not have a natural software development methodology and still contain
an inconvenient single assignment paradigm.

• Thread-level speculation complements parallelization dynamically when a code is un-
analyzable at the compilation stage, but it requires special hardware support; this hardware,

22 Summary

State of the Art BMDFM

however, will be occupied partly with unnecessary speculative processing. The thread-level
speculation approach works within a single chip and it is not designed to scale to larger
systems.

• Recent attempts at software dynamic parallelization, which are based on dataflow
computation model, are still oriented only toward the numeric loop-based scientific
applications and do not support the irregular adaptive algorithms. A master control thread
is centralized, so it is a bottleneck for the system.

We think that dataflow systems are probably worth another look at this time. The community has
gone through a shared-distributed-shared memory cycle since the peak of dataflow activity and
applying some of what we have learned in that time to software based systems seems appropriate.

We build our architecture as a hybrid SMP dataflow runtime engine that avoids disadvantages of its
predecessors. Our system combines both static and dynamic scheduling, does not require any special
hardware, is portable and scalable on commodity SMPs and is applicable for numeric-based and
irregular adaptive algorithms as well.

23

BMDFM BMDFM Architectural Overview

Chapter 3
BMDFM Architectural Overview

3.1 Overview

This chapter introduces the BMDFM architecture. We discuss the following important basic issues:

• The idea of a hybrid architecture comprised of the dataflow and SMP paradigms.

• Architecture and configuration of a dataflow runtime engine.

• Programming model.

• Structure of byte code and the C interface.

• Running an application in single threaded and multithreaded modes.

3.2 Basic Concept

BMDFM (Binary Modular DataFlow Machine) [14, 128] is built as a hybrid of the SMP and
dataflow paradigms. The basic concept is shown in Figure 3-1.

Figure 3-1. Basic concept of BMDFM

SMP HardwareSMP Hardware

Interface: SMP OSInterface: SMP OS

Multithreaded Dataflow Runtime EngineMultithreaded Dataflow Runtime Engine
(Software Emulation)(Software Emulation)

Interface: VM/C LanguageInterface: VM/C Language

Translators from other high-levelTranslators from other high-level
languageslanguages

24 Multithreaded Architecture

BMDFM Architectural Overview BMDFM

Our approach relies on underlying commodity SMP hardware, which is available on the market.
Normally, SMP vendors provide their own SMP Operating System (OS) with an SVR4 UNIX
interface on top (Linux, HP-UX, SunOS/Solaris, Tru64OSF1, IRIX, AIX, MacOS, etc.). To provide
maximal portability we use only very basic UNIX functionality:

• standard I/O and terminal capabilities (termcap);

• parallelism of the processes, which are created once by the fork() system call during the
startup of BMDFM;

• SVR4 IPC POSIX functionality: shmget()/shmctl() for initial creation of the shared
memory pool and semget()/semctl() for the purpose of runtime synchronization;

• ANSI C compiler to compile the complete system, which is written strictly in ANSI C.

Having no conditional compilation directives, BMDFM is compiled for most SMP machines with
their native SMP OS’s and is publicly available [14] for download.

On top of an SMP OS we run our multithreaded dataflow runtime engine that performs a software
emulation of the dataflow machine. Such a virtual machine has interfaces to the virtual machine
language and to C. This interface provides the transparent dataflow semantics for conventional
programming. Optionally, the code for the virtual machine can be generated/translated from other
high-level languages by some external software tools.

The scope of this work is the BMDFM multithreaded dataflow runtime engine itself and
accompanying static preprocessing/loading utilities. Details and extensions of translators from other
high-level languages are left for further research.

3.3 Multithreaded Architecture

BMDFM uses both highly efficient dynamic and static scheduling, combining von Neumann, Shared
Memory Symmetric Multi Processing (SMP), Multiple Instruction Multiple Data Stream (MIMD)
and Data Flow Machine (DFM) paradigms. According to the dataflow classification, BMDFM is a
hybrid of tagged-token dataflow, explicit token store, threaded dataflow and large-grain dataflow.
The BMDFM architecture is shown in Figure 3-2.

Multithreaded Architecture 25

BMDFM BMDFM Architectural Overview

Figure 3-2. BMDFM architecture

A pool of processes is divided into two subsets: work processes, which execute parallel instruction
streams, and dynamic scheduling processes, which automatically convert sequential instruction
streams into parallel ones.

Running under an SMP OS, the processes will occupy all available real machine processors.

All processes share the shared memory pool containing instructions and data. Each work process
also has its own local memory, which may contain user subroutines to implement additional coarse-
grain levels of parallelism. The external loader/listener pair performs preprocessing and static
scheduling of the input program instructions and stores them clustered in the task connection zone.
The listener is responsible for the ordered output after the out-of-order processing in the
multithreaded engine. Clustered instructions and data are fetched by the dynamic scheduling
processes into the shared memory pool. Additionally, dynamic scheduling processes release
(garbage collect) resources after the data contexts and speculative branches are processed. Lastly, the
external tracer assists in debugging the multithreaded out-of-order processing of the input program.
The external tracers are connected via the ports of the trace plugging area. The tracer can operate in
various modes of full/partial and master/slave debugging.

Work ProcessesWork ProcessesWork ProcessesWork ProcessesWork ProcessesWork Processes

Shared Memory PoolShared Memory Pool (Instructions/Data)(Instructions/Data)

External
Tracer

ExternalExternal
TracerTracer

Local Local MemoryMemory

Multithreaded EngineMultithreaded Engine

Task Connection
Zone

Task ConnectionTask Connection
ZoneZone

SocketSocketSocketSocketSocketSocket

Trace Plugging
Area

Trace PluggingTrace Plugging
AreaArea

SocketSocketSocketPortPortPort Dynamic Scheduling
Processes

Dynamic SchedulingDynamic Scheduling
ProcessesProcesses

Dynamic Scheduling
Processes

Dynamic SchedulingDynamic Scheduling
ProcessesProcesses

External Task
Loader / Listener

Pair

External TaskExternal Task
Loader / ListenerLoader / Listener

PairPair

Dynamic Scheduler PartDynamic Scheduler PartStatic Scheduler PartStatic Scheduler Part

26 Static Scheduler

BMDFM Architectural Overview BMDFM

3.4 Static Scheduler

Figure 3-3 shows the static scheduling part of BMDFM. An application program (input sequential
program) is processed in three stages: preliminary code reorganization (code reorganizer), static
scheduling of the statements (static scheduler) and compiling/loading (compiler).

Figure 3-3. Static scheduler

The output after the static scheduling stages is a multiple clusters flow that feeds the multithreaded
engine via the interface designed in a way to avoid bottlenecks. The multiple clusters flow can be
thought of as a compiled input program split into marshaled clusters, in which all addresses are
resolved and extended with context information. Splitting into marshaled clusters allows loading
them multithreadedly. Context information lets iterations be processed in parallel.

3.5 Dynamic Scheduler

Figure 3-4 shows the part of BMDFM responsible for the dynamic scheduling in more detail. The
BMDFM dynamic scheduling subsystem is an efficient SMP emulator of the tagged-token, explicit
token store, threaded DFM.

Code
Reorganizer

CodeCode
ReorganizerReorganizer

Static
Scheduler

StaticStatic
SchedulerScheduler CompilerCompilerCompiler

InputInput

SequentialSequential
ProgramProgram

ClustersClusters
FlowFlow

MultithreadedMultithreaded
EngineEngine

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

MultipleMultiple

Dynamic Scheduler 27

BMDFM BMDFM Architectural Overview

Figure 3-4. Dynamic scheduler

The Shared Memory Pool is divided in three main parts: Input/Output Ring Buffer Port (IORBP),
Data Buffer (DB) and Operation Queue (OQ).

The external static scheduler (External Task Loader/Listener Pair) puts clustered instructions and
data of an input program into the IORBP. The ring buffer service processes (IORBP PROC) move
data into the DB and instructions into the OQ. The operation queue service processes (OQ PROC)
tag the instructions as ready for execution if the required operands’ data is accessible. Execution
processes (CPU PROC) execute instructions, which are tagged as ready and output computed data
into the DB or to the IORBP. Additionally, IORBP PROC and OQ PROC are responsible for freeing
memory after contexts have been processed. The context is a special unique identifier representing a
copy of data within different iteration bodies accordingly to the tagged-token dataflow architecture.
This allows the dynamic scheduler to handle several iterations in parallel.

To allow several processes accessing the same data concurrently, the BMDFM dynamic scheduler
locks objects in the shared memory pool via SVR4 semaphore operations. Locking policy provides
multiple read-only access and exclusive access for modification.

The BMDFM Dynamic Scheduler is configured at startup using a configuration profile. Figure 3-5
illustrates a typical configuration for the 8-way SMP machine.

Shared Memory PoolShared Memory Pool

DBDBDB

IORBPIORBPIORBP

OQOQOQ
OQ PROCOQ PROCOQ PROCOQ PROCOQ PROCOQ PROC

OQ PROCOQ PROCOQ PROCIORBP PROCIORBP PROCIORBP PROC OQ PROCOQ PROCOQ PROCCPU PROCCPU PROCCPU PROC

(Instructions)(Instructions)(Data)(Data)

(Instructions(Instructions
/ Data)/ Data)

External
Task Loader

/ Listener
Pair

ExternalExternal
Task LoaderTask Loader

/ Listener/ Listener
PairPair

Multithreaded EngineMultithreaded Engine

28 Dynamic Scheduler

BMDFM Architectural Overview BMDFM

Figure 3-5. Typical configuration for the 8-way SMP machine

In our experiments we used the Tuning and Analysis Utilities (TAU) [147, 148] to analyze the
performance of BMDFM scheduling routings and to define optimal configuration parameters. TAU
uses a timing instrumentation that is triggered at function entry and exit. The instrumentation is
responsible for name registration, maintaining the function database, the call stack, and statistics.
From the profile data collected, TAU’s profile analysis procedures can generate a wealth of
performance information for the user. It can show the exclusive and inclusive time spent in each
function with nanosecond resolution. Other data includes how many times each function was called,
how many profiled functions were invoked by each function, and what the mean inclusive time per
call was. On systems where available, TAU can also use hardware performance counters.

SHMEM_POOL_SIZE defines maximal shared memory pool size. Bigger value ensures that
BMDFM will operate for larger amounts of data. This value can be limited by the operating system.
Normally, a 2GB value is the limit of shared addressable space for 32-bit mode applications. In our
experiments we use 64-bit compilation and we set this value to 32GB (34359738368).

SHMEM_POOL_BANKS defines the number of banks in the shared memory pool. To enable
access to the shared memory pool from many processes simultaneously, we developed a reentrant
driver for shared memory allocation. The driver can run the allocation sequence in every bank
independently, which actually causes the shared memory pool to be split into multiple memory
banks. Several banks together work faster than one but the memory bank restricts maximal memory
block size that can be allocated. CPU PROC processes are the main consumers for the shared
memory reallocation routines; IORBP PROC and OQ PROC processes perform only non-intensive
resource allocation/release. Therefore it is better to have this value a little bigger than the number of
CPU PROCs. Experimentally, we have defined a calculation formula for the number of shared
memory pool banks: SHMEM_POOL_BANKS = 1.25 * N_CPUPROC.

ARRAYBLOCK_SIZE defines the policy of the memory allocation. All dynamic structures of the
shared memory pool are allocated in chunks. Bigger values cause less intensive and faster memory
allocation but at the same time cause inefficient memory usage.

SHMEM_POOL_SIZE = 2147483647 # (2GB) Shared memory pool size [Bytes]
SHMEM_POOL_BANKS = 10 # Number of banks in pool
ARRAYBLOCK_SIZE = 20 # Array block size

Q_OQ = 3000 # Operation Queue (OQ) size [Entities]
Q_DB = 1000 # Data Buffer (DB) size [Entities]
Q_IORBP = 16 # I/O Ring Buffer Port (IORBP) size [Entities]
N_IORBP = 4 # Number of the IORBPs

N_CPUPROC = 8 # Number of the CPU PROCs
N_OQPROC = 8 # Number of the OQ PROCs
N_IORBPPROC = 8 # Number of the IORBP PROCs

Dynamic Scheduler 29

BMDFM BMDFM Architectural Overview

Q_OQ defines OQ size. Bigger values allow the running of tasks with more complex data
dependencies but a big OQ requires additional memory space, an additional number of semaphores
and can slow down associative searches in the dynamic scheduling subsystem. Experimentally, we
determined the most appropriate value to be 3000.

Q_DB defines DB size. Bigger values allow running tasks with more variables but a big DB requires
additional memory space and an additional number of semaphores. Experimentally, we determined
the most appropriate value to be 1000.

Q_IORBP defines the IORBP size. This value can be understood as a maximal number of the
buffered marshaled clusters, which are sent to the multithreaded engine from a single instance of the
external task loader/listener pair. Bigger values allow more intensive loading of data via the task
connection zone but a big IORBP requires additional memory space and an additional number of
semaphores. Normally, the IORBP size has to be less than the OQ size to avoid a situation where the
dataflow engine is saturated with the OQ full of instructions waiting for some unresolved
dependencies from the IORBP. Experimentally, we determined the most appropriate value to be 16.

N_IORBP defines the number of IORBPs, thus the number of tasks (jobs), which can be processed
in parallel. Processing several tasks (jobs) simultaneously uses system resources more efficiently. If
it is really planned to run many applications on a single BMDFM instance, the DB and OQ sizes
have to be increased accordingly.

N_CPUPROC, N_OQPROC and N_IORBPPROC define the number of CPU PROC, OQ PROC
and IORBP PROC processes, respectively. Usually it makes sense to set these values equal to the
real number of system processors. Recent hyper-threading technology that allows running multiple
threads on one CPU can change this policy only a little bit. Currently, one CPU can run not more
than two threads. That means in our configuration every CPU can multiplex between three instances
of CPU PROC, OQ PROC and IORBP PROC, roughly. In the future, if one CPU core will be able to
run more than two parallel threads, our configuration recommendations could be reviewed. In any
case, an additional tuning for these parameters can be done after the analysis of stall warnings in the
log files. In our experiments we very often set the N_OQPROC value to half the number of system
processors.

Even after having determined the most appropriate configuration parameters, we decided not to hard
code them but to leave them open in the configuration profile. In this case the end user will have
freedom to change the configuration depending on his applications. It is quite possible that some
SMP architectures may demonstrate better performance if configured with the number of virtual
processes, which considerably exceeds the number of system processors.

30 Programming Model

BMDFM Architectural Overview BMDFM

3.6 Programming Model

BMDFM can be thought of as a virtual machine, which provides a conventional functional
programming model and uses transparent dataflow semantics. No directives for parallel execution
are required! From the user’s point of view BMDFM is a virtual machine, which runs every
statement of an application program in parallel with all parallelization and synchronization
mechanisms fully transparent. The statements of an application program are normal operators that
any single threaded program might consist of: variable assignments, conditional executions, loops,
function calls, etc. BMDFM has a rich set of standard operators/functions, which can be extended by
user functions written in C/C++. A BMDFM user application can be built according to the three
schemes shown in Figure 3-6.

Figure 3-6. BMDFM user programming models

Scheme A. A complete application is written in pure virtual machine language. In this case BMDFM
will exploit fine-grain parallelism, thus BMDFM will try to unroll the loops and to execute all
statements in parallel. If it runs on a non-UMA (non-Uniform Memory Access) machine the
dynamic scheduling can be expensive.

Scheme B. According to this scheme some UDFs (User Defined Functions) will be uploaded into
CPU PROCs local memory and their bodies will be prevented from scheduling for parallel
processing (such a UDF will be treated as one seamless statement). In this case less time is obviously
spent on dynamic scheduling.

udf0(){udf0(){
 virtual machine codevirtual machine code
}}

udfNudfN(){(){
 virtual machine codevirtual machine code
}}

main(){main(){
 udf0(); udf0();
 virtual machine codevirtual machine code
 udfNudfN();();
}}

user application fileuser application file

.
.
.

.
.
.

.
.
.

udf0(){udf0(){
 virtual machine codevirtual machine code
}}

udfNudfN(){(){
 virtual machine codevirtual machine code
}}

library functionslibrary functions

.
.
.

.
.
.

.
.
.

user application fileuser application file

main(){main(){
 udf0(); udf0();
 virtual machine codevirtual machine code
 udfNudfN();();
}}

udf0(){udf0(){
 C/C++ codeC/C++ code
}}

udfNudfN(){(){
 C/C++ codeC/C++ code
}}

C/C++ library behindC/C++ library behind
BMDFM C interfaceBMDFM C interface

.
.
.

.
.
.

.
.
.

user application fileuser application file

main(){main(){
 udf0(); udf0();
 virtual machine codevirtual machine code
 udfNudfN();();
}}

Scheme AScheme A Scheme BScheme B Scheme CScheme C

Virtual Machine Language and C Interface 31

BMDFM BMDFM Architectural Overview

Scheme C. This scheme allows using the C code directly instead of the virtual machine code. Of
course the C code compiled and optimized by a local C compiler is faster than virtual machine code.

3.7 Virtual Machine Language and C Interface

When we designed a language for BMDFM we chose a subset of LISP with an open C interface,
taking into account the following ideas:

• LISP has the simplest syntax ever created in the programming language area, thus it has the
simplest syntax checker, parser and byte code generator. That helped us very much in quick
prototyping of the complete BMDFM architecture.

• LISP is abstract regarding the data types and convenient enough for manual programming.
At the same time the LISP-like prefix format is the de facto standard for the intermediate
program presentation after a preprocessing from other high-level programming languages.
Similarly to the RTL level of the GCC compiler set, most compilers optimize code
presented in a LISP-like prefix format. We used this advantage of LISP because BMDFM
is intended for manual programming and for generated code as well.

• LISP efficiently combines features of both algorithmic and artificial intelligence languages
that allow using LISP in a wide area of computations.

• The open C interface allows extending the base virtual machine with additional
functionality required in an application area. Once a library of specialized functions is
written and compiled it can be used from the virtual machine via the C interface. It is a
common practice of well-known virtual machines (TCL/TK, Perl, Java) to achieve
sufficient performance. Statistically, user applications for the virtual machines use 80% of
running time executing the functions from the provided libraries, compiled for the target
architecture.

The following Table 3-1 describes the BMDFM virtual machine language briefly. We spend several
pages for that because this information is necessary for understanding further examples given in this
thesis.

32 Virtual Machine Language and C Interface

BMDFM Architectural Overview BMDFM

Syntax
A function may appear as (<func_name> <par_1> ... <par_N>). As a result it returns its calculated <value>.
It is possible to give a constant value, variable name, actual parameter/argument or other function in place of
the functions’ parameters, for instance: (* 2 (+ 2 2)) returns 8.
A complex function is a (progn <func_name_1> ... <func_name_N>) encapsulation. As result it returns its
last calculated value. A <program> is a function. Formal parameters/arguments appear like $1 ... $N in the
program’s body. All actual parameter/argument types will automatically be converted to the required ones in
all cases possible during the actual function calls.
‘#’ char is assumed as a comment symbol. All the rest of the line after ‘#’ char will be ignored.
Variable assignments
([al]setq <quota_var_name> <func_name>) Sets value to a variable
(arsetq <quota_var_name> <func_name_index> <func_name>) Sets value to an array member
(index <quota_var_name> <func_name_index>) Array member
(alindex <quota_var_name> <func_name_indices>) Number of array members
User Defined Function (UDF)
(defun <quota_func_name> <program>)

Conditional
(if <func_name_?> <func_name_true> <func_name_false>)

Loop
(while <func_name_?> <func_name_body>)

(for <quota_ctrl_var_name> <func_from_ctrl_var> <func_step_ctrl_var> <func_to_ctrl_var>
<func_name_body>)

(break) Cancels an iteration or a UDF execution of the current nested level
(exit) Cancels a program execution
I/O
(accept <func_prompt_message_for_console_or_empty_for_stdin>)

(scan_console <wait_keypress_forever_if_1_or_useconds_if_ positive>)

(outf <func_C_like_printf_format> <func_name>)

(file_create <file_name>) File descriptor or -1 if error
(file_open <file_name>) File descriptor or -1 if error
(file_write <file_descriptor> <string_to_be_written>) Number of bytes written or -1 if error
(file_read <file_descriptor>
<number_of_bytes_to_be_read>) String read or empty string if error

(file_close <file_descriptor>) Zero or -1 if error
(file_remove <file_name>) Zero or -1 if error
Compare
(== …) (!= …) (< …) (> …) (<= …) (>= …) Names are in C notation
Boolean (short-circuit evaluation)
(&& …) (|| …) (! …) Names are in C notation

Virtual Machine Language and C Interface 33

BMDFM BMDFM Architectural Overview

Integer
(ival <Val>) Explicitly converts to integer
(indices <Val>) Number of array indices
(irnd <range>) Random number within the range of 0 to <range>
(+ …) (- …) (* …) (/ …) (% …) (++ …) (-- …) Names are in C notation
(*+ …) Multiplication and addition
(0- …) Negation
(iabs …) Absolute value
(& …) (| …) (^ …) (~ …) (>> …) (<< …) Names are in C notation
Float
(fval <Val>) Explicitly converts to float
(frnd <range>) Random number within the range of 0 to <range>
(+. …) (-. …) (*. …) (/. …) Names are in C notation
(*+. …) Multiplication and addition
(fabs …) Absolute value
(int …) (round …) (cos …) (sin …) (atn …) Names are in C notation
(cas …) Sine plus cosine
(exp …) (pow …) (sqrt …) Names are in C notation
(ln …) Logarithm of e base
String
(str <Val>) Explicitly converts to string
(chr <I_val>) String of one character
(asc <S_val>) ASCII code of the first character
(type <Val>) Value type among I, F, S, Z (Z for nil value)
(dump_i2s <I_val>) Memory dump of integer
(dump_f2s <F_val>) Memory dump of float
(dump_s2i <string>) Integer mapped from string
(dump_s2f <S_val>) Float mapped from string
(notempty <S_val>) True if string is not empty
(len <S_val>) Length of string
(at <pattern> <within>) Occurrence position searching from left
(rat <pattern> <within>) Occurrence position searching from right
(cat <S_val> <S_val>) Concatenation
(space <space_number>) String of spaces
(replicate <pattern> <repetition_number>) Replication
(left <string> <position_from_left>) Left part of string
(leftr <string> <position_from_right>) Left part of string
(right <string> <position_from_right>) Right part of string
(rightl <string> <position_from_left>) Right part of string
(substr <string> <position> <number>) Substring
(strtran <string> <pattern> <substitution>) Find and replace
(str_raw <S_val>) Raw string
(str_unraw <S_val>) Special characters are slashed
(str_dump <S_val>) Semi-hexadecimal string dump
(str_fmt <C_like_printf_format> <value>) Formatted string
(ltrim <S_val>) String without leading blanks

34 Virtual Machine Language and C Interface

BMDFM Architectural Overview BMDFM

(rtrim <S_val>) String without ending blanks
(alltrim <S_val>) String without leading and ending blanks
(pack <S_val>) String without redundant blanks
(head <S_val>) First token of string
(tail <S_val>) Remaining tokens of string
(upper <S_val>) Upper case string
(lower <S_val>) Lower case string
(rev <S_val>) Back ordered string
(padl <string> <width>) Left justified string
(padr <string> <width>) Right justified string
(padc <string> <width>) Centered string
(time) Current time
(getenv <environment_variable>) Environment value
Constants
(ee) E
(gamma) Aler-McCheroni constant
(phi) Golden
(pi) Pi
(prn_integer_fmt) Default integer format “%ld”
(prn_float_fmt) Default float format “%.16E”
(prn_string_fmt) Default string format “%s”
(reinit_terminal <terminal_type_or_empty>) Terminal status
(term_type) TERM environment
(lines_term) termcap(li)
(columns_term) termcap(co)
(clrscr_term) termcap(cl)
(reverse_term) termcap(mr)
(blink_term) termcap(mb)
(bold_term) termcap(md)
(normal_term) termcap(me)
(hidecursor_term) termcap(vi)
(showcursor_term) termcap(ve)
(gotocursor_term <y_coord> <x_coord>) termcap(cm)
(n_cpuproc) Number of CPU PROCs currently configured
Mapcar

(mapcar <program>)

(<preprinted_info> <result_of_execution> <syntax_error_code>
<syntax_error_message> <runtime_error_code> <runtime_error_message>
<processed_function> <processed_function_compiled>
<processed_function_linked> <time_spent_in_seconds>)

Virtual Machine Language and C Interface 35

BMDFM BMDFM Architectural Overview

Table 3-1. BMDFM virtual machine language

The virtual machine language is first compiled into byte code and is then linked to resolve all
external references. Figure 3-7 explains the structure of the byte code we designed for our BMDFM
project. The structure is trivial but at the same time is flexible enough to extend the virtual machine
with a C function library and to relocate the byte code harmlessly into the shared memory pool.

Asynchronous Heap
(asyncheap_create <bytes>) Descriptor
(asyncheap_getaddress <descriptor>) Physical address
(asyncheap_putint <descriptor> <offset> <integer>) 1
(asyncheap_getint <descriptor> <offset>) Integer value
(asyncheap_putfloat <descriptor> <offset> <float>) 1
(asyncheap_getfloat <descriptor> <offset>) Float value
(asyncheap_putstring <descriptor> <offset>
<string>) 1

(asyncheap_getstring <descriptor> <offset>
<length>) String value

(asyncheap_reallocate <descriptor> <bytes>) New descriptor
(asyncheap_replicate <descriptor>) New descriptor
(asyncheap_delete <descriptor>) 1

36 Virtual Machine Language and C Interface

BMDFM Architectural Overview BMDFM

Figure 3-7. Byte code generation

……………………..….……………………..….

((sctqsctq …) …)
< < func_reffunc_ref > >

VM Byte CodeVM Byte Code

first argumentfirst argument
< local_ref >< local_ref >

second argumentsecond argument
< local_ref >< local_ref >

((get_varget_var …) …)
< < func_reffunc_ref > >

aa
< < var_refvar_ref > >

(* …)(* …)
< < func_reffunc_ref > >

first argumentfirst argument
< local_ref >< local_ref >

second argumentsecond argument
< local_ref >< local_ref >

(+ …)(+ …)
< < func_reffunc_ref > >

first argumentfirst argument
< local_ref >< local_ref >

second argumentsecond argument
< local_ref >< local_ref >

((get_varget_var …) …)
< < func_reffunc_ref > >

bb
< < var_refvar_ref > >

(get_const …)(get_const …)
< < func_reffunc_ref > >

2 < integer>2 < integer>
machine presentationmachine presentation

((get_varget_var …) …)
< < func_reffunc_ref > >

aa
< < var_refvar_ref > >

……………………………………………………

��
 C

o
m

p
ila

ti
o

n
C

o
m

p
ila

ti
o

n

��
 L

in
ka

g
e

L
in

ka
g

e

VM LanguageVM Language

((setqsetq

 a a

 (* (*

 (+ (+

 b b

 2 2

))

 a a

))

))

((setqsetq

………………….………………….

………………….………………….

……. ………………. …………

setqsetq address address

……. ………………. …………

get_varget_var address address

get_const addressget_const address

……. ………………. …………

* address* address

+ address+ address

……. ………………. …………

……. ………………. …………

……. ………………. …………

a addressa address

……. ………………. …………

b addressb address

……. ………………. …………

Variable DirectoryVariable Directory

……. ………………. …………

Function DirectoryFunction Directory

Virtual Machine Language and C Interface 37

BMDFM BMDFM Architectural Overview

The byte code fragment shown reflects one to one the "(setq a (* (+ b 2) a))" expression of the virtual
machine language. Every function from the byte code portion refers to the common function
directory and is followed by a list of the arguments’ local references. This list is required to represent
different offsets to the real locations of the arguments. Predefined constants are stored in the byte
code directly but they are accessed through the "get_const" function call at runtime. Variable
references point to the common variable directory.

The function directory contains all standard functions, virtual machine functions defined via "defun"
and functions added through the C interface. Normally, the directory is fixed after a successful
compilation/linkage stage. The exception case is the "mapcar" invocation, which can force dynamic
expansion of the function directory. The variable directory is dynamically created in the stack every
time the runtime engine enters a virtual machine UDF recursively.

In addition to the virtual machine language, BMDFM provides an open C interface, which is
described below. To simplify declaration constructions we use the following abbreviations for the
standard types.

#define UCH unsigned char
#define SCH signed char
#define USH unsigned short int
#define SSH signed short int
#define ULO unsigned long int
#define SLO signed long int
#define DFL double

The virtual machine stores each variable in the universal structure that enables it to change data types
dynamically and to have a single value or an array with different types of members, thus supporting
lists and trees. Declaration of a variable of the universal structure type allocates single value on the
stack and array in the heap that is very convenient assuming most variables store only single values.
No memory overhead is needed for storing arrays with members of the same type.

38 Virtual Machine Language and C Interface

BMDFM Architectural Overview BMDFM

struct fastlisp_data{
UCH disable_ptr; // 1 = stores value, 0 = ptr to a variable possible
UCH single; // 1 = single value, 0 = array
UCH type; // 0=undef, ’I’=int, ’F’=float, ’S’=string, ’Z’=nil
UCH arraytype; // 0=undef, ’I’=int, ’F’=float, ’S’=string, ’Z’=nil
union{

SLO ival; // integer value
DFL fval; // float value

} value;
UCH *svalue; // string value
ULO indices_numb; // number of indices in the array
UCH *aready_tags; // flags ’0IFSZ’ for arraytype!=0 for every member
union{

struct fastlisp_data *mix; // array members of mixed types
SLO *ival; // array members of integer type
DFL *fval; // array members of float type
UCH **svalue; // array members of string type

} array;
};

A user C function can be defined through the following type declaration.

typedef void (*fcall)(ULO*, struct fastlisp_data*);

The first argument is a pointer to the function parameters/arguments and the second argument is a
pointer to the result structure. Passed parameters/arguments can be obtained from inside the function
via the following set.

void ret_ival(ULO *dat_ptr, SLO *targ); // gets integer or pointer value
void ret_fval(ULO *dat_ptr, DFL *targ); // gets float value
void ret_sval(ULO *dat_ptr, UCH **targ); // gets string value
void (*fcall)(ULO*, struct fastlisp_data*); // gets universal structured data

There are two additional functions for copying and deleting the universal data structure.

void copy_flp_data(struct fastlisp_data *dest, struct fastlisp_data *source,
ULO indices_numb);

void free_flp_data(struct fastlisp_data *ret_dat);

The last step, which should be performed after a user C function is defined, is to fill the virtual
machine instruction database according to the following structure.

Virtual Machine Language and C Interface 39

BMDFM BMDFM Architectural Overview

typedef struct{
UCH *fnc_name; // function name
SSH operands; // number of arguments
UCH ret_type; // result type: ’I’=int, ’F’=float, ’S’=string, ’Z’=nil
UCH *op_type; // flags ’IFSZ’ for for every argument
fcall func_ptr; // pointer to the function

} INSTRUCTION_STRU;

Figure 3-8 gives an example of a user defined C function. According to the byte code structure the
function’s actual parameters/arguments are obtained sequentially through the incremented "dat_ptr".
Internal calls to "ret_ival", "ret_fval" and "ret_sval" provide dynamic type casting if required. Direct
"fcall" function invocation omits the dynamic casting and returns a universal data structure.

Figure 3-8. A user defined C function

Finally, "my_function" is registered in the virtual machine instruction database. The corresponding
record states that the function has five parameters/arguments and returns an integer value.
Parameter/argument types are integer, integer, float, string and integer respectively. Specification of
the parameter/argument types is not strictly necessary because the virtual machine casts the data
types dynamically, but such a specification can help an internal optimizer to generate more efficient
byte code.

void my_function(ULO *dat_ptr, struct fastlisp_data *ret_dat){
ULO *tmp_ptr;
SLO n,result=0;
UCH *str=NULL;
DFL *f_array,koef;
struct fastlisp_data idat={0,1,0,0,{0},NULL,1,NULL,{NULL}};
ret_ival(dat_ptr,&n); // arg0: integer (n)
ret_ival(dat_ptr+1,(SLO*)&f_array); // arg1: ptr to floats (f_array)
ret_fval(dat_ptr+2,&koef); // arg2: float (koef)
ret_sval(dat_ptr+3,&str); // arg3: string (str)
tmp_ptr=*((ULO**)(dat_ptr+4)); // arg4:
(*(fcall)*tmp_ptr)(tmp_ptr+1,&idat); // integer as universal data (idat)

if(noterror){
// ...
// data processing to compute ‘result’ or noterror=0 if error;
// ...
ret_dat->single=1;
ret_dat->type=’I’;
ret_dat->value.ival=result;

}

if(idat.disable_ptr)
free_flp_data(&idat);

free_string(&str);

return;
}

INSTRUCTION_STRU INSTRUCTION_SET[]={
{"MY_FUNCTION",5,’I’,"IIFSI",&my_function}

};
const ULO INSTRUCTIONS=sizeof(INSTRUCTION_SET)/sizeof(INSTRUCTION_STRU);

40 Workflow for Applications

BMDFM Architectural Overview BMDFM

3.8 Workflow for Applications

Normally, the life cycle of a BMDFM user application has two major steps as shown in Figure 3-9.
First the application is developed and tested under the BMDFM single threaded engine, then if it
works properly it can be moved without any modifications into the BMDFM multithreaded engine.

Figure 3-9. Application life cycle

The proposed BMDFM workflow for the applications fully follows conventional approaches. The
application design and debug processes can be accomplished on an inexpensive PC for example.
Later, after the application has reached a certain state of maturity, it is run on an SMP mainframe
multithreadedly in a batch mode using full size input data patterns. Two important features have to
be mentioned in the context of BMDFM:

• If the application uses specific functions defined in C they have to be linked with both
single threaded and multithreaded BMDFM engines. The BMDFM byte code structure and
the C interface are designed in such a way that no modifications in C code are required.

• The BMDFM single threaded engine warns about all variables, which are used without a
prior initialization. Such an uninitialized variable endangers dataflow processing, bringing
it to an endless idle state (this comes from the dataflow principle itself). The severity of

 Singlethreaded
Engine

 Singlethreaded Singlethreaded
EngineEngine

 Works
properly?

 Works Works
properly?properly?

BEGINBEGINBEGIN

ENDENDEND

Multithreaded
Engine

MultithreadedMultithreaded
EngineEngine

Full size
real patterns

Full sizeFull size
real patternsreal patterns

Small size
test patterns
Small sizeSmall size

test patternstest patterns

Modifi-
cations
ModifiModifi--
cationscations DevelopmentDevelopment

CycleCycle

ExploitationExploitation

nono

yesyes

 User
Application

 User User
ApplicationApplication

Running Applications on a Single Threaded Engine 41

BMDFM BMDFM Architectural Overview

"warning" is changed to "error" in the multithreaded dataflow engine to prevent potential
blocking.

3.9 Running Applications on a Single Threaded Engine

The BMDFM single threaded engine compiles, links and runs a user application in standalone mode
as shown in Figure 3-10. If the application uses specific functions defined in C they have to be linked
with the runtime engine.

Figure 3-10. Single threaded engine workflow

VMVMVM

 User
Application

 User User
ApplicationApplication

CompilerCompilerCompiler

Compiled?Compiled?Compiled?

BEGINBEGINBEGIN

ENDENDEND

Compiled
Code

CompiledCompiled
CodeCode

Configuration
Profile

ConfigurationConfiguration
ProfileProfile

S
in

g
le

th
re

ad
ed

 E
n

g
in

e
S

in
g

le
th

re
ad

ed
 E

n
g

in
e

yesyes

LinkerLinkerLinker

Run-time
Environment

Run-timeRun-time
EnvironmentEnvironment

Application
Input / Output
ApplicationApplication

Input / OutputInput / Output

nono

End?End?End?

yesyes

nono

42 Running Applications Multithreadedly

BMDFM Architectural Overview BMDFM

This is a classic scheme used in all other (TCL/TK, Perl, Java) virtual machines. In our case we use
this workflow only for preliminary preparations before any application is moved to the BMDFM
multithreaded engine.

3.10 Running Applications Multithreadedly

Multithreaded workflow for the applications is implemented in a client/server manner. The BMDFM
multithreaded runtime engine acts as a server accepting and processing the connection sessions. The
external task load/listener pair acts as a client virtual machine uploading the application to the server.

The BMDFM server unit reads the configuration profile, initializes the shared memory pool, starts
multiple copies of the daemons (CPU PROCs, OQ PROCs, IORBP PROCs and an additional PROC
stat daemon that collects statistic information) in the background and enters the console mode. The
BMDFM server unit is also responsible for shutting down the whole multithreaded engine correctly.
This procedure is illustrated in Figure 3-11.

The external task unit reorganizes the user code, makes static scheduling, compiles, connects the
multithreaded engine, links, starts the listener thread and uploads the user application into the
multithreaded engine as shown in Figure 3-12.

Running Applications Multithreadedly 43

BMDFM BMDFM Architectural Overview

Figure 3-11. BMDFM server unit workflow

Start PROC statStart PROC statStart PROC stat

Start multiple copies
of IORBP PROC

Start multiple copiesStart multiple copies
of IORBP PROCof IORBP PROC

Start multiple copies
of CPU PROC

Start multiple copiesStart multiple copies
of CPU PROCof CPU PROC

Start multiple copies
of OQ PROC

Start multiple copiesStart multiple copies
of OQ PROCof OQ PROC

Console ModeConsole ModeConsole Mode

Shut Down
Sequence

Shut DownShut Down
SequenceSequence

Initialize Shared
Memory Pool

Initialize SharedInitialize Shared
Memory PoolMemory Pool

BEGINBEGINBEGIN

ENDENDEND

Console
Log File
ConsoleConsole
Log FileLog File

Configuration
Profile

ConfigurationConfiguration
ProfileProfile

M
u

lt
it

h
re

ad
ed

 E
n

g
in

e
M

u
lt

it
h

re
ad

ed
 E

n
g

in
e

End?End?End?

yesyes

nono

44 Running Applications Multithreadedly

BMDFM Architectural Overview BMDFM

Figure 3-12. External task unit workflow

Control VMControl VMControl VM

 User
Application

 User User
ApplicationApplication

Compiled?Compiled?Compiled?

BEGINBEGINBEGIN

Compiled
Code

CompiledCompiled
CodeCode E

xt
er

n
al

 T
as

k
U

n
it

 (
L

o
ad

er
/L

is
te

n
er

 P
ai

r)
E

xt
er

n
al

 T
as

k
U

n
it

 (
L

o
ad

er
/L

is
te

n
er

 P
ai

r)

yesyes

nono

Code ReorganizerCode ReorganizerCode Reorganizer

Static SchedulerStatic SchedulerStatic Scheduler

ENDENDEND

Application
Input / Output
ApplicationApplication

Input / OutputInput / Output

End?End?End?

yesyes

nono

Connect multi-
threaded engine
Connect multi-Connect multi-

threaded enginethreaded engine

CompilerCompilerCompiler

Start listener
thread

Start listenerStart listener
threadthread

UploadUploadUpload

LinkerLinkerLinker

Summary 45

BMDFM BMDFM Architectural Overview

The front-end virtual machine (Figure 3-13) plays a different role than in the case of a single
threaded workflow. It does not execute the byte code of an application but it uploads the code
dynamically to the dataflow runtime engine.

Figure 3-13. Multithreaded engine workflow

Depending on programming model a user application is scheduled differently. In "scheme A" all
byte code resides in the front-end virtual machine. Each statement of the code acts as a standalone
virtual machine instruction and is scheduled in the dataflow engine. In "scheme B" and "scheme C"
the dataflow engine uses coarse-grain parallelism of the user functions. The last schemes are
preferable because they reduce dynamic scheduling overhead.

3.11 Summary

We have designed the BMDFM architecture as a hybrid of the dataflow machine built on commodity
SMP hardware. The BMDFM runtime engine is an efficient SMP emulator of the tagged-token,
explicit token store, threaded dataflow machine.

Multithreaded Multithreaded DataflowDataflow
Runtime EngineRuntime Engine

Working
Processes
WorkingWorking

ProcessesProcesses

Dataflow
Schedulers
DataflowDataflow

SchedulersSchedulers

Shared Memory PoolShared Memory Pool

Virtual Machine
Instructions

Virtual MachineVirtual Machine
InstructionsInstructions

Shared
Data

SharedShared
DataData

User
Coarse
Grain

Functions

UserUser
CoarseCoarse
GrainGrain

FunctionsFunctions

Front-end Virtual MachineFront-end Virtual Machine

User Virtual Machine CodeUser Virtual Machine CodeUser Virtual Machine Code

Dynamic Loader ThreadDynamic Loader ThreadDynamic Loader Thread

Marshaled ClustersMarshaled Clusters

Listener ThreadListener ThreadListener Thread

U
se

r
A

p
p

lic
at

io
n

U
se

r
A

p
p

lic
at

io
n

InterfaceInterface

46 Summary

BMDFM Architectural Overview BMDFM

The aim we pursued was to use the dataflow runtime engine in the role of a fork-join runtime library.
This idea brings a solution to the following problems:

• Compile-time strategies are useless against parallel operations that take a non-deterministic
amount of time, making it difficult to know exactly when certain pieces of data will
become available. This issue is solved in the dataflow runtime engine in a natural way.

• The dataflow runtime engine can resolve complex dependencies, which can not be detected
during the compilation stage.

• The dataflow approach eliminates the fork-join drawback of the idle time, in which
program execution has to wait for the completion of the slowest thread.

Our architectural approach has the following important features that are not present in known
runtime parallelization projects:

• The dataflow runtime engine is not aggressively optimized for the applications in some
specific areas such as numeric processing, for example. It can solve inter-procedural and
cross-conditional dependencies as well.

• The dynamic scheduling subsystem is decentralized and is executed in parallel on the same
multiprocessors that run the application itself. This approach eliminates a situation where
the task scheduling becomes a bottleneck of the entire computing process.

• An application is comprised of the conventional virtual machine language and classic C.
There is no special language to control dataflow. The application program itself controls
dataflow fully automatically and transparently.

• From the point of view of dataflow programming our approach excludes the problem of a
single assignment paradigm. We think that our way of dataflow programming with a
conventional algorithmic language can remove the known gap of a missing programming
methodology for dataflow.

47

BMDFM Dynamic Scheduling Subsystem

Chapter 4
Dynamic Scheduling Subsystem

4.1 Overview

In this chapter we discuss the BMDFM dynamic scheduling subsystem, which is an efficient
emulator of the tagged-token dataflow built upon shared memory. We have carefully optimized all
dynamic shared memory structures and scheduling algorithms to reach high performance. We share
our experience on how to avoid bottleneck and dead-locking effects. The following ideas are
described:

• The architecture of the shared memory pool split on multiple banks.

• Semaphore synchronization of the parallel process-distributed dynamic scheduler.

• The architecture of an abstract shared memory dataflow machine.

• Effective parallel scheduling algorithms.

• Ordering of a sequential output stream after out-of-order dataflow processing.

• Program complexity of the dynamic scheduling subsystem.

4.2 Inter Process Synchronization

To synchronize multiple parallel processes of the BMDFM dynamic scheduling subsystem we use
standard SVR4 IPC semaphores. When several processes access the same data concurrently in the
shared memory pool the semaphore locking policy provides multiple read-only access and exclusive
access for modification excluding possible data WAR/RAW/WAW hazards. This basic
synchronization principle is shown in Figure 4-1. The synchronization semaphores themselves are
also stored in the shared memory pool together with the shared objects they control.

48 Inter Process Synchronization

Dynamic Scheduling Subsystem BMDFM

Figure 4-1. Basic synchronization paradigm

Although the standard SVR4 IPC semaphore provides a broad range of operations (such as "undo"
for example), we use a subset consisting of only three main functions:

• Semaphore initialization initializes a semaphore with a maximal possible value. This
operation is performed only once when the semaphore is created. In our implementation all
semaphores are created in the shared memory pool during the startup sequence and remain
there until the dataflow engine is closed.

• Object read operations decrement the semaphore value by one before reading and
increment the value back after reading is finished. A decrement can suspend the process to
an idle state if the semaphore value is not positive. Thus all parallel processes can read the
object simultaneously.

• Object write operations decrement the semaphore by the maximal value before writing
and restore the value after. The calling process will be suspended if at least one other
process is already accessing the object. Thus only one process can modify the object.

Normally, the semaphore synchronization is considered to be an expensive one but we use it taking
into account portability issues. The three mentioned operations are implemented as separate
procedures in the source code and can be changed if the target SMP hardware provides some specific
inexpensive type of synchronizers (special mutexes, barriers, etc.).

Synchronization
Semaphore

SynchronizationSynchronization
SemaphoreSemaphore

Parallel Parallel ProcessesProcesses SharedShared MemoryMemory Pool Pool

R/WR/W

R/WR/W

R/WR/W

Semaphore init:Semaphore init:

Object read:Object read: SEM_OP(-1); RD; SEM_OP(+1);SEM_OP(-1); RD; SEM_OP(+1);

Object write:Object write: SEM_OP(-MAX_VAL); WR; SEM_OP(+MAX_VAL);SEM_OP(-MAX_VAL); WR; SEM_OP(+MAX_VAL);

Shared ObjectShared Object

CPU PROCCPU PROCCPU PROCCPU PROCCPU PROCCPU PROC

CPU PROCCPU PROCCPU PROCOQ PROCOQ PROCOQ PROC

CPU PROCCPU PROCCPU PROCIORBP PROCIORBP PROCIORBP PROC

SEM_INIT(MAX_VAL);SEM_INIT(MAX_VAL);

Inter Process Synchronization 49

BMDFM Dynamic Scheduling Subsystem

One other important issue regarding the semaphores is that the operating system can allocate only a
limited number of them. This number sometimes can be insufficient especially in a case when the
dataflow engine is configured for a big data buffer (DB) and/or operation queue (OQ). Therefore we
came up with idea of an interleaved semaphore distribution within the shared memory pool as it is
illustrated in Figure 4-2.

Figure 4-2. Interleaved semaphore distribution in the shared memory pool

All semaphores are divided into three groups: OQ semaphores, DB semaphores and others. The ratio
of semaphores for a given semaphore group to the total number of semaphores is equal to the ratio of

Other Shared
Memory Structures

Other SharedOther Shared
Memory StructuresMemory Structures

OQ OQ SemSem

..

..

OQ OQ SemSem

DB DB SemSem

..

..

DB DB SemSem

otherother SemSem

..

..

other other SemSem

OQ CellOQ CellOQ Cell

………………….………………….………………….

………………….………………….………………….

………………….………………….………………….

OQ CellOQ CellOQ Cell

………………….………………….………………….

………………….………………….………………….

………………….………………….………………….

OQ CellOQ CellOQ Cell

………………….………………….………………….

………………….………………….………………….

………………….………………….………………….

DB CellDB CellDB Cell

………………….………………….………………….

………………….………………….………………….

………………….………………….………………….

DB CellDB CellDB Cell

………………….………………….………………….

………………….………………….………………….

………………….………………….………………….

DB CellDB CellDB Cell

………………….………………….………………….

………………….………………….………………….

………………….………………….………………….

OQOQ All SemaphoresAll Semaphores DBDB
In

te
rl

ea
ve

d
 D

is
tr

ib
u

ti
o

n
In

te
rl

ea
ve

d
 D

is
tr

ib
u

ti
o

n

In
te

rl
ea

ve
d

 D
is

tr
ib

u
ti

o
n

In
te

rl
ea

ve
d

 D
is

tr
ib

u
ti

o
n

50 Inter Process Synchronization

Dynamic Scheduling Subsystem BMDFM

resources in the corresponding resource group to the total number of resources. Thus, the number of
semaphores in each group is calculated according to the proportional sizes of OQ, DB and other
shared memory structures. Then each cell number (index) will possess a semaphore from the
a p pr op r i a t e g ro up i n t e r l e a ve d t h r ou gh t h e m o du l o op er a t i on
(index%number_of_semaphores_in_group). Such a distribution has two important features:

• Neighbouring cells will not be assigned to the same semaphore, which increases the
probability that independent access attempts will not block each other.

• Different shared memory pool resources will not be intersected through the same
semaphores, which prevents a dead-locking situation where a parallel processing is trying
to block one resource keeping another resource blocked.

The same distribution policy is applied to all other shared memory zones (shared areas of the
memory pool to be protected for a concurrent access). Figure 4-3 shows an access mechanism to the
shared zones within the range of 0 to Number_of_zones. To save on the number of the dedicated
semaphores we use only N semaphores, supposing that N is less than Number_of_zones. Parallel
processes PROCs, which access the shared zones randomly, select the blocking semaphore i%N.
Such simple modulo calculations take a negligible amount of time and can be easily performed at
runtime.

Figure 4-3. Reduced number of blocking semaphores for the shared zones

PROC

.......

.......

PROC

.......

.......

PROC

PROCPROC

..............

..............

PROCPROC

..............

..............

PROCPROC

 Sem Sem Sem Sem Sem Sem Sem Sem Sem Sem Sem Sem SemSem Sem

Sem=i%N;
if(Sem.SEM_OP(-1));
SemSem=i%N;=i%N;
if(Sem.SEM_OP(-1));if(Sem.SEM_OP(-1));

Enter zone i=0 ... <Number_of_zones>-1Enter zone i=0 ... <Number_of_zones>-1

Leave zone iLeave zone i

NN

i%Ni%N Restriction semaphore structureRestriction semaphore structure

Sem.SEM_OP(+1));SemSem.SEM_OP(+1));.SEM_OP(+1));

Inter Process Synchronization 51

BMDFM Dynamic Scheduling Subsystem

The dataflow engine itself is also synchronized through the semaphores. For this purpose we have
built a common semaphore array, which consists of only twelve semaphores enumerated and
explained below:

[DFMSrv]: Common Semaphores Array:
[DFMSrv]: N# | Meaning | SemVal
[DFMSrv]: ----+-----------------------------------+------------
[DFMSrv]: 0 | for the DFM child PROCs blocking | 1
[DFMSrv]: 1 | for the PROCs msg pipe | 1
[DFMSrv]: 2 | for the CPU logs | 1
[DFMSrv]: 3 | for the statistic | 1
[DFMSrv]: 4 | for the Task Connection Zone | 32767
[DFMSrv]: 5 | for the Trace Plugging Area | 32767
[DFMSrv]: 6 | number of used entities in IORBPs | 0
[DFMSrv]: 7 | number of free entities in DB | 500
[DFMSrv]: 8 | number of free entities in OQ | 5000
[DFMSrv]: 9 | for the changes fixing | 0
[DFMSrv]: 10 | CPU PROCs awaker | 0
[DFMSrv]: 11 | OQ PROCs awaker | 0

Semaphore 0 is used by the BMDFM external tracer. When the tracer disables the semaphore value
it creates a frozen state of the entire dataflow engine, thus allowing step-by-step dataflow debugging.

Semaphore 1 blocks the output from the parallel dynamic scheduling processes to the server
console. The output contains stall warnings and statistic information.

Semaphore 2 controls CPU and IORBP PROCs when they log their activities to the common log
file. The log file is useful to analyze a dataflow graph of the running application.

Semaphore 3 enables/disables the PROCstat auxiliary process to collect a statistic from the dataflow
kernel. Statistic information shows the peak and average use of dataflow resources.

Semaphore 4 is used by the external loader/listener pair when a user application connects or
disconnects the dataflow engine.

Semaphore 5 is responsible for the registration of the external tracer in the trace plugging area.

Semaphore 6 stores the number of cells used in the I/O ring buffer ports. Storing of the resource
usage value directly on the semaphore considerably simplifies synchronization issues between the
parallel processes that try to occupy the resources and those that use them. Thus, an external task
puts the marshaled clusters to the ring buffers increasing the semaphore value that signals an event
for all waiting IORBP PROCs to fetch the cluster into the dataflow engine.

Semaphore 7 stores the number of free cells in the data buffer. As soon a DB cell is released all
waiting IORBP PROCs are allowed to occupy the DB cell and decrement the semaphore value again.

52 Shared Memory Pool

Dynamic Scheduling Subsystem BMDFM

Semaphore 8 stores the number of free cells in the operation queue. IORBP PROCs tries to put a
new instruction into the OQ performing the SEM_OP(-1) operation. CPU PROCs execute the
instructions releasing them from the queue. Release of the OQ cell is done through the SEM_OP(1)
operation that in its turn allows new instructions to be put into the queue.

Semaphores 9 through 11 are the event signaling semaphores for the external tracer. They are used
only when at least one tracing engine is connected to the dataflow engine. Semaphore 9 signals the
tracer about changes in the dataflow engine, then the tracer signals back through the awakers to
continue until the next change occurs.

4.3 Shared Memory Pool

The shared memory pool plays a key role in the entire BMDFM architecture because all BMDFM
parallel processes synchronize their activities through the shared memory. According to our
approach the shared memory pool stores synchronization semaphores, the complete data structure of
the dataflow engine and data allocated by the user applications. Both the dynamic scheduling
subsystem itself and running user applications can allocate/free memory blocks dynamically,
therefore we designed our shared memory pool in a way to avoid a bottleneck of the memory
allocation. Internally, the shared memory pool is divided into memory banks that can be accessed
simultaneously by each BMDFM parallel process running its own copy of the reentrant shared
memory pool driver. The shared memory pool architecture is shown in Figure 4-4.

Shared Memory Pool 53

BMDFM Dynamic Scheduling Subsystem

Figure 4-4. Architecture of the shared memory pool

The reentrant memory driver provides a conventional memory allocation interface explained in
Table 4-1. Functions malloc(), realloc() and free() comprise a complete set to control a memory
allocation process but in our implementation we use one additional function multicast() to assign
multiple references to an allocated memory block. The function free() applied to the multicast

Memory BankMemory Bank

i%Ni%N Restriction structureRestriction structure

 Shared Memory Pool (size=SHMEM_POOL_SIZE)Shared Memory Pool (size=SHMEM_POOL_SIZE)

Interface: malloc(), realloc(), multicast(), free().Interface: Interface: mallocmalloc(), (), reallocrealloc(), multicast(), free().(), multicast(), free().

Sync_SemaphoreSync_SemaphoreSync_Semaphore Round_Robin Bank SelectorRound_Robin Bank SelectorRound_Robin Bank Selector

Bank #SHMEM_POOL_BANKS-1Bank #SHMEM_POOL_BANKS-1Bank #SHMEM_POOL_BANKS-1Bank #iBank #iBank #iBank #0Bank #0Bank #0

Allocated entityAllocated entity

Heap of entity descriptorsHeap of entity descriptors

Allocated entityAllocated entity

Allocated entityAllocated entity

Allocated entityAllocated entity

Heap of entity descriptorsHeap of entity descriptors

Allocated entityAllocated entity

Allocated entityAllocated entity
..

Sync_semaphoreSync_semaphore

Number of allocatedNumber of allocated
entitiesentities

First hole ptrFirst hole ptr

A
llo

ca
te

d
A

llo
ca

te
d

A
llo

ca
te

d
A

llo
ca

te
d

F
re

e
H

o
le

 S
p

ac
e

F
re

e
H

o
le

 S
p

ac
e

A
llo

ca
te

d
A

llo
ca

te
d

A
llo

ca
te

d
A

llo
ca

te
d

A
llo

ca
te

d
A

llo
ca

te
d

F
re

e
 S

p
ac

e
F

re
e

 S
p

ac
e

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

D
es

cr
ip

to
r

ptrptr

MulticastMulticast
 refs refs

sizesize

AllocationAllocation

orderorder

GrowingGrowing

heapheap

IncreasingIncreasing

addressesaddresses

54 Shared Memory Pool

Dynamic Scheduling Subsystem BMDFM

memory block decrements a counter of the references, the actual memory free is done when the
counter has reached a zero value.

Table 4-1. Function interface of the shared memory pool

The top structure of the shared memory pool contains a synchronization semaphore used to
increment a round-robin bank selector in an exclusive mode. That is only one critical section of code
the processes have to go through. However this section contains only an increment operation for the
bank selector, so no serious bottleneck is present. Furthermore, each memory pool bank has its own
synchronization semaphore, which ensures entry of only one process when the internal bank
structure is being modified. This algorithm is illustrated below in a kind of pseudo-code.

Sync_semaphore.SEM_OP(-MAX_VAL); // enter pool critical section
RoundRobin_bank_selector=(RoundRobin_bank_selector+1)%SHMEM_POOL_BANKS;
bank_number=RoundRobin_bank_selector;

Sync_semaphore.SEM_OP(MAX_VAL); // leave pool critical section

bank_number.Sync_semaphore.SEM_OP(-MAX_VAL); // enter bank critical section
// ...
// perform memory allocation and modify the bank structure
// ...

bank_number.Sync_semaphore.SEM_OP(MAX_VAL); // leave bank critical section

Allocated blocks occupy memory space from lower addresses toward higher addresses. Each
memory block has a corresponding entity descriptor containing a pointer to the allocated block, size
of the block and the multicast reference counter. The heap of the entity descriptors grows from
higher addresses to lower addresses until the memory space of the bank is exhausted. In our
implementation we use a pointer to the first memory hole to speedup the allocation time for a new
memory block. This additional pointer forces a search subroutine to start searching for a free space
not from the beginning of a heap but from the first memory hole.

Synchronization semaphores are also operated in a read mode SEM_OP(-1)/SEM_OP(1) when the
system collects a statistic information. A typical statistic report is shown below, from which we can
recognize that the round-robin policy equally divides the load among the shared memory pool banks.

[MemPool]: ** STATUS OF THE SHARED MEMORY DRIVEN BY REENTERABLE CODE **
[MemPool]: Shared memory segment ID=4087.
[MemPool]: SHMEM_POOL_SIZE: 2147483648Bytes (10 BANK(S) of 214748352 each).
[MemPool]: Shared memory segment has been attached at 0x4000068000.

Function call Description
ptr=malloc(bytes) Allocates a block specified by number of bytes.
new_ptr=realloc(ptr,bytes) Reallocates the specified block according to the new size.
multicast(ptr) Adds new reference to the block.
free(ptr) Decrements the reference counter and/or frees the memory block.

Non-Dead-Locking Policy 55

BMDFM Dynamic Scheduling Subsystem

[MemPool]: Shared memory segment permissions are 0x01B4.
[MemPool]:<BANK#: Entities, FirstEntSpaceAfter, Free(Max), Fragmentation.>
[MemPool]: B#0: Ent=897, FA=798, Free=210477464B(210420120), Frag=0.03%.
[MemPool]: B#1: Ent=901, FA=797, Free=210358008B(210261568), Frag=0.05%.
[MemPool]: B#2: Ent=900, FA=805, Free=210385192B(210266224), Frag=0.06%.
[MemPool]: B#3: Ent=898, FA=792, Free=210148336B(210099184), Frag=0.02%.
[MemPool]: B#4: Ent=894, FA=790, Free=210321824B(210158824), Frag=0.08%.
[MemPool]: B#5: Ent=894, FA=811, Free=210782552B(210682200), Frag=0.05%.
[MemPool]: B#6: Ent=892, FA=794, Free=210493944B(210381120), Frag=0.05%.
[MemPool]: B#7: Ent=884, FA=794, Free=210630464B(210594624), Frag=0.02%.
[MemPool]: B#8: Ent=890, FA=797, Free=210582384B(210241864), Frag=0.16%.
[MemPool]: B#9: Ent=878, FA=794, Free=210404136B(210225776), Frag=0.08%.
[MemPool]: Memory Pool TOTAL:
[MemPool]: Number of entities allocated in the pool: 8928.
[MemPool]: Number of extra multicast references in the pool: 10.
[MemPool]: Free space in the pool: 2104584304Bytes.
[MemPool]: Largest free block in the pool: 210682200Bytes.
[MemPool]: Fragmentation of holes in the pool: 0.06%.

The proposed architecture of the shared memory pool is fully multithreaded and scalable for any
number of running processes and shared memory pool banks. Generally, it performs well on all
affordable SMP hardware we experimented with.

4.4 Non-Dead-Locking Policy

The problem of dead-locking is a very important issue for every parallel system that shares common
resources. This section describes how we avoid this problem in our parallel architecture.

At first we create some prerequisite conditions during the static scheduling stage:

• The static scheduler checks for all uninitialized variables in a user application that are
potential hazards for the dataflow engine. The uploading process will not start until all
uninitialized states are fixed.

• The uploading process feeds the marshaled clusters into the dataflow engine in the
sequence they would be executed single-threadedly. That prevents a situation where the
dataflow resources are saturated with unresolved data waiting for dependencies from
outside.

Secondly, the dataflow engine relies on a distributive semaphore allocation in the shared memory
pool. Thus different shared resources do not use the same semaphores, which prevents dead-locking
situation when a parallel processing is trying to block one resource keeping another resource
blocked.

And finally, the dynamic scheduling subsystem uses one-way object locking policy shown in
Figure 4-5.

56 Non-Dead-Locking Policy

Dynamic Scheduling Subsystem BMDFM

Figure 4-5. One-way object locking policy

There are four object locking algorithms of the dynamic scheduling. Obviously in each case we
exclude a mutual blocking of resources:

1. The external task loader locks a cell in the I/O buffer ports for writing. If some stream data
has to be allocated dynamically the shared memory pool bank is locked as well.

2. IORBP processes read the marshaled clusters from the I/O buffer cells locking the cell for
reading. The cluster’s data is targeted for the data buffer and the cluster’s instructions are
directed to the operation queue. Both types of cells are locked for writing. The shared
memory bank could be locked for the streamed data allocation additionally.

3. OQ processes tag ready instructions in the operation queue. To tag the instruction it has to
be locked for writing and all dependent operands, which are being checked in the data
buffer, are locked for reading.

1

Bank
ShMemPool

BankBank
ShMemPoolShMemPool

LoaderLoaderLoader LockLock

WW
IORBP

Cell
IORBPIORBP

CellCell

LockLock

Bank
ShMemPool

BankBank
ShMemPoolShMemPool

OQ PROCOQ PROCOQ PROC LockLock

WW
OQ
Cell
OQOQ
CellCell

LockLock

DB
Cell
DBDB
CellCell

RR
LockLock

Bank
ShMemPool

BankBank
ShMemPoolShMemPool

LockLock

WW
DB
Cell
DBDB
CellCell

LockLock

IORBP PROCIORBP PROCIORBP PROC LockLock

RR

Bank
ShMemPool

BankBank
ShMemPoolShMemPool

LockLock

WW OQ
Cell
OQOQ
CellCell

LockLock

Bank
ShMemPool

BankBank
ShMemPoolShMemPool

LockLock

R/WR/W
DB
Cell
DBDB
CellCell

LockLock

Bank
ShMemPool

BankBank
ShMemPoolShMemPool

LockLock

WW Output
Queue
OutputOutput
QueueQueue

LockLock

CPU PROCCPU PROCCPU PROC

IORBP
Cell

IORBPIORBP
CellCell

2

3 4

Inter Process Communication 57

BMDFM Dynamic Scheduling Subsystem

4. CPU processes execute ready instructions and put the results back to the data buffer or to
the output queue. The output queue is locked for writing only. The DB cell is locked for
reading when the required operands are being read and is locked for writing when the result
is flushed to the DB. The shared memory pool bank is locked for writing.

4.5 Inter Process Communication

Three types of dynamic scheduling processes (IORBP PROC, OQ PROC and CPU PROC)
communicate with each other through the communication channels. In the dataflow engine we use
our own implementation of the communication channels. We do not use the standard SVR4 IPC
message queues on account of the following considerations:

• The standard SVR4 IPC message queues are restricted in size, maximal number of
messages and structure of the message. These limits come from operating system
configuration parameters.

• The message queues are too redundant for our needs. For example, the messages can be
retrieved from the queue randomly by their reference numbers, which is not necessary for
us.

• Extra functionality of the message queues predefines an approximate slowdown factor of
10 in comparison with the fastest communication through the shared memory as our
experiments with TAU [147, 148] have shown.

Our implementation of the communication channels is a classic ring buffer structure in the shared
memory synchronized by semaphores. As shown in Figure 4-6, two types of communication
channels are used: unprotected write protected read (UWPR) and protected write protected read
(PWPR).

58 Inter Process Communication

Dynamic Scheduling Subsystem BMDFM

Figure 4-6. UWPR and PWPR channels

Both communication channel types use ring buffer pointers for read and write and the
synchronization semaphores protecting the internal data structures. Because all communication
channels are used in a predefined functionality (Figure 4-7) we omit write semaphore locking in
most cases, reducing write synchronization efforts nearly to zero.

Ring Buffer SizeRing Buffer Size

PWPR-channelPWPR-channel

p
u

t_
ch

an
n

el
(

)
p

u
t_

ch
an

n
el

(
)

g
et

_c
h

an
n

el
(

)
g

et
_c

h
an

n
el

(
)

Blocking SemaphoreBlocking Semaphore
„„DataData AvailableAvailable““

SwmaphoreSwmaphore

RingRing BufferBuffer
Read PointerRead Pointer

„Data available“„Data available“
SemaphoreSemaphore

„Free space available“„Free space available“
SemaphoreSemaphore

RingRing Buffer Buffer
Write PointerWrite Pointer

Ring Buffer SizeRing Buffer Size

UWPR-channelUWPR-channel

p
u

t_
ch

an
n

el
(

)
p

u
t_

ch
an

n
el

(
)

g
et

_c
h

an
n

el
(

)
g

et
_c

h
an

n
el

(
)

Blocking SemaphoreBlocking Semaphore
„„DataData AvailableAvailable““

SwmaphoreSwmaphore

RingRing BufferBuffer
Read PointerRead Pointer

„Data available“„Data available“
SemaphoreSemaphore

RingRing Buffer Buffer
Write PointerWrite Pointer

Inter Process Communication 59

BMDFM Dynamic Scheduling Subsystem

Figure 4-7. Communication between the scheduling processes

The BMDFM dynamic scheduling subsystem uses four communication directions: OQ PROCs to
CPU PROCs, IORBP PROCs to CPU PROCs, CPU PROCs to OQ PROCs and IORBP PROCs to
OQ PROCs.

OQ PROCs to CPU PROCs communication. This group of channels delivers addresses of the
ready instructions tagged by the OQ PROCs. The size of each channel is equal to the size of the
operation queue, so no data overlap is possible. Therefore we use the UWPR type of channel, which
does not require checking of the "Free space available" semaphore.

Ready DataReady Data

N
_C

P
U

P
R

O
C

N
_C

P
U

P
R

O
C UWPR UWPR UWPR

Q_DBQ_DB

 UWPR UWPR UWPR

Ready InstructionsReady Instructions

N
_O

Q
P

R
O

C
N

_O
Q

P
R

O
C UWPR UWPR UWPR

Q_OQQ_OQ

 UWPR UWPR UWPR
N_OQPROC-1N_OQPROC-1N_OQPROC-1

OQ PROC
0

OQ PROCOQ PROC
00

N_CPUPROC-1N_CPUPROC-1N_CPUPROC-1

CPU PROC
0

CPU PROCCPU PROC
00

R
eady D

ata

R
eady D

ata

Q
_D

B
Q

_D
B

PW
PR

PW
PR

PW
PR

N_IORBPPROC

N_IORBPPROC

PW
PR

PW
PR

PW
PR

R
ea

dy
 In

st
ru

ct
io

ns

R
ea

dy
 In

st
ru

ct
io

ns

Q
_O

Q
Q

_O
Q

 U
W

PR

 U
W

PR
 U

W
PR

N_IORBPPROC

N_IORBPPROC

 U
W

PR

 U
W

PR
 U

W
PR

N_IORBPPROC-1N_IORBPPROC-1N_IORBPPROC-1

IORBP PROC
0

IORBP PROCIORBP PROC
00

60 Inter Process Communication

Dynamic Scheduling Subsystem BMDFM

IORBP PROCs to CPU PROCs communication. As in the previous case the purpose of these
channels is to deliver addresses of ready instructions with the difference that they are tagged by the
IORBP PROCs. This could happen if the instructions have all operands ready at the moment of
relocating to the operation queue. Here we also use UWPR channels as no write synchronization is
needed. The CPU PROCs listen to both groups of channels retrieving the addresses of ready
instructions tagged by OQ and IORBP PROCs. Unfortunately, there is no chance to reduce
synchronization efforts for reading.

CPU PROCs to OQ PROCs communication. These channels transfer addresses of the ready
operands after they have been processes by the CPU PROCs. To avoid write synchronization the size
of the channels is set to size of the DB. The UWPR channel type is applicable here as well.

IORBP PROCs to OQ PROCs communication. This group of channels delivers addresses of the
ready operands put into the I/O ring buffer from outside. Practically, it is possible that the external
task will provide ready data in the multiple contexts, so the total amount of data can exceed the size
of DB. Therefore the IORBP PROCs to OQ PROCs communication is the only place where PWPR
channels are used. The OQ PROCs listen to both groups of channels retrieving the addresses of ready
data tagged by the CPU and IORBP PROCs.

The following pseudo-code demonstrates schematically how the channel write/read operations are
implemented. Each process uses its own dedicated write channel that allows skipping the blocking
lock while incrementing the ring buffer write pointer.

Initial values for the channel semaphores are set as follows:

• All blocking semaphores are set initially to one, permitting any incoming operations.

• "Data available" semaphores store the number of unread data inside the channel, initial zero
values indicate that all channels are empty.

• "Free space available" semaphores initially are set to the size of the channel signaling write
enable state.

put_channel(address){

"Free_space_available".SEM_OP(-1); // only for PWPR channels

ring_buffer[write_pointer]=address;
write_pointer=(write_pointer+1)%buffer_size;

"Data_available".SEM_OP(1);

}

Task Connection Zone 61

BMDFM Dynamic Scheduling Subsystem

get_channel(){

"Data_available".SEM_OP(-1);

Blocking_semaphore.SEM_OP(-1);
address=ring_buffer[read_pointer];
read_pointer=(read_pointer+1)%buffer_size;

Blocking_semaphore.SEM_OP(1);

"Free_space_available".SEM_OP(1); // only for PWPR channels

return address;
}

As we can see there is no synchronization effort to write to the UWPR channel and minimal efforts
to write to the PWPR channel. Having used the UWPR channel type in 80% of the cases we can state
that we have an optimal solution when writing to the channel. Unfortunately, we have two
synchronization points when reading from the channel.

4.6 Task Connection Zone

The task connection zone (TCZ) provides an interface to the multithreaded dataflow engine
(Figure 4-8). TCZ can be configured for N_IORBP connection sockets defining the number of
simultaneously connected external task loader/listener pairs (user applications). A user application is
uploaded into the dedicated area of I/O ring buffer ports (IORBP) according to the round-robin
policy. Further IORBP PROC processes fetch this information multithreadedly scanning all IORBP.

62 Task Connection Zone

Dynamic Scheduling Subsystem BMDFM

Figure 4-8. Task connection zone

Each connected user application (job) is associated with a session and communicates through a
dedicated interface. Initially, the user application uploads all seamless byte code fragments into the
TCZ function directory and all referenced variables to the data buffer (DB). Then during runtime the
application uploads marshaled clusters, which contain data and instructions in a form of references to
the DB and TCZ function directory, respectively. The application can also ask for some data that
influences the uploading sequence. All these calls are performed through the dedicated interface
described in Table 4-2. Such an uploading scheme has the following advantages:

• The marshaled clusters and seamless byte code fragments are prepared during the
preprocessing and compilation stages. Thus no dynamic marshaling overhead is required.

……

……

……

……

……

……

Task Connection ZoneTask Connection Zone

Q
_I

O
R

B
P

Q
_I

O
R

B
P

 IORBP IORBP IORBP

Cell

.......

Cell

.......

Cell

CellCell

..............

CellCell

..............

CellCell

 IORBP IORBP IORBP

Cell

.......

Cell

.......

Cell

CellCell

..............

CellCell

..............

CellCell

 IORBP IORBP IORBP

Cell

.......

Cell

.......

Cell

CellCell

..............

CellCell

..............

CellCell

R
o

u
n

d
_R

o
b

in
R

o
u

n
d

_R
o

b
in

R
o

u
n

d
_R

o
b

in
R

o
u

n
d

_R
o

b
in

……

……

……

……

……

……

Socket#0Socket#0

R
o

u
n

d
_R

o
b

in
R

o
u

n
d

_R
o

b
in

 External

 Task

 Pair

 ExternalExternal

 Task Task

 Pair Pair

 L
is

te
n

er
 L

is
te

n
er

 L

o
ad

er

 L

o
ad

er

Socket#N_IORBP-1Socket#N_IORBP-1

 External

 Task

 Pair

 ExternalExternal

 Task Task

 Pair Pair

 L
is

te
n

er
 L

is
te

n
er

 L

o
ad

er

 L

o
ad

er

IORBP
PROC

.......

.......

IORBP
PROC

.......

.......

IORBP
PROC

IORBPIORBP
PROCPROC

..............

..............

IORBPIORBP
PROCPROC

..............

..............

IORBPIORBP
PROCPROC

TCZ Function
Directory

TCZ FunctionTCZ Function
DirectoryDirectory

Interface Interface Interface

TCZ Output
Queue

TCZ OutputTCZ Output
Queue Queue

TCZ Function
Directory

TCZ FunctionTCZ Function
DirectoryDirectory

Interface Interface Interface

TCZ Output
Queue

TCZ OutputTCZ Output
Queue Queue

Task Connection Zone 63

BMDFM Dynamic Scheduling Subsystem

• The size of the marshaled clusters and uploading traffic are considerably reduced because
instead of the byte code fragments only references to the TCZ function directory are
transferred.

• Space reservations in the DB for all application variables are done only once when the
external connection is initialized, completely excluding associative searches at runtime.

Table 4-2. Interface to the multithreaded dataflow engine

The last but also very important part of the task connection zone is a TCZ output queue shown in
more detail in Figure 4-9. The purpose of the TCZ output queue is to have a kind of buffer where
output data stream can be ordered after the out-of-order dataflow processing.

Function call Description

dfminit_upload(var_lst, fnc_lst);
Initializes a new session, allocates variables in DB, uploads
seamless byte code fragments into the TCZ function directory.

dfmend_session();

Informs listener that the last chunk of code is uploaded, so the
listener can wait until all data are received from the dataflow
engine and finish.

dfmclose_session();
Waits for the listener. When the listener is done purges the
occupied TCZ socket and closes the session.

dfmput_marshaled_cluster(cluster); Delivers a marshaled cluster.

dfmput_idata(ivar);
Puts a variable with new context. Variable is initialized with an
integer value.

dfmput_fdata(fvar);
Puts a variable with new context. Variable is initialized with a
float value.

dfmput_sdata(svar);
Puts a variable with new context. Variable is initialized with a
string value.

dfmput_zdata(zvar);

Puts a variable with the current context. Variable is not
initialized (nil value) but in this way the variable (with latest
context in DB) can receive destination attributes indicating that
value is requested by the loader or listener.

dfmput_crelease(contexts);
Informs garbage collector about obsolete contexts. Those are
marked for deletion.

dfmget_idata(var);
Loader requests an integer variable value and receives it when it
is ready.

dfmget_sdata(var);

Loader requests a string variable value and receives it when it is
ready. The loader can request only integer and string data that is
sufficient to control the uploading sequence.

64 Task Connection Zone

Dynamic Scheduling Subsystem BMDFM

Figure 4-9. TCZ output queue

Normally, the output stream is a result of processing done by CPU PROCs. Because the data is
processed on dataflow the results can be computed in an unpredictable order. To help making them
ordered in the output stream all output data are accompanied by an output_order attribute. This
attribute begins its life cycle from the marshaled cluster, then it is stored in the DB together with the
variable value. As soon the output value becomes ready it is sent into the TCZ output queue.

The TCZ output queue is organized in a row manner. Each row has its own synchronization
semaphore for the case of conflict when multiple parallel processes try to hold the row. CPU PROC
selects a row, performing a trivial modulo operation output_order%N, where N is a number of rows.
The computed result is put into a free cell of the row together with the output_order attribute firing
the stir-up semaphore. To prevent redundant copying of the resulting stream the multicast() function
of the shared memory pool is called. The external task listener waits when the stir-up semaphore is
fired and fetches the data. Two fragments of code running by the CPU/IORBP PROC and the
external listener, respectively, are shown below:

push_output_queue(DB_addr){ // CPU PROC or IORBP PROC

row=DB[DB_addr].output_order%N;

sem[row].SEM_OP(-MAX_VAL);
put_row(row,multicast(DB[DB_addr].data));

sem[row].SEM_OP(MAX_VAL);

stir-up_semaphore.SEM_OP(1);

}

PROC

.......

.......

PROC

.......

.......

PROC

PROCPROC

..............

..............

PROCPROC

..............

..............

PROCPROC

…………………………………………………………………………………………

TCZ Output QueueTCZ Output Queue

 Sem Sem Sem

 Sem Sem Sem

 Stir-up Semaphore

 Stir-up Semaphore Stir-up Semaphore

NN

<
o

u
tp

u
t_

o
rd

er
 >

 %
N

<
o

u
tp

u
t_

o
rd

er
 >

 %
N

E
ve

n
t

E
ve

n
t

External
Task

Listener

<output_
order_

counter>

ExternalExternal
TaskTask

ListenerListener

<output_<output_
order_order_

counter>counter>

 < output_order >
 < data_stream >

 < output_order > < output_order >
 < data_stream > < data_stream >

 Sem Sem Sem

I/O Ring Buffer Ports 65

BMDFM Dynamic Scheduling Subsystem

pull_output_queue(){ // External listener

stir-up_semaphore.SEM_OP(-1);

read_next=true;
while(read_next){

row=output_order_counter%N;

sem[row].SEM_OP(-MAX_VAL);

if(data=found_in_row(row,output_order_counter){
stream.concatenate(data);
output_order_counter++;

}
else

read_next=false;

sem[row].SEM_OP(MAX_VAL);

}

return stream;
}

4.7 I/O Ring Buffer Ports

I/O Ring Buffer Ports (IORBP) is an array of IORBP cells located in the task connection zone. The
structure of the IORBP cell is shown in Figure 4-10. The IORBP cell contents is initialized by the
external loader and further is fetched by IORPB PROC.

Figure 4-10. IORBP cell

Blocking_SemaphoreBlocking_SemaphoreBlocking_Semaphore

<Busy_flag><Busy_flag>

IORBP CellIORBP Cell

 Type: Data Cluster Context_release Init/Release Type: Type: Data Cluster Context_release Init/Release Data Cluster Context_release Init/Release

Marshaled
Cluster

MarshaledMarshaled
ClusterCluster

 Universal Structure
<dest_Loader/Listener>
<output_order>
<prev_context_release>

 Universal Structure Universal Structure
<dest_Loader/Listener><dest_Loader/Listener>
<output_order><output_order>
<prev_context_release><prev_context_release>

Context
………..

Context

ContextContext
………..………..

ContextContext

66 I/O Ring Buffer Ports

Dynamic Scheduling Subsystem BMDFM

Naturally, the IORBP cell has a blocking semaphore to protect the internal structure when it is shared
by the parallel processes. A busy flag indicates that the contents is loaded and is valid otherwise the
cell is considered to be free. Depending on the information type the cell can contain a marshaled
cluster, variable value arranged in the universal structure, a list of contexts to be released, or
indication of session begin/close (Init/Release) associated with the connected user job. The universal
structure is accompanied by the following "destination attributes":

• <Dest_Loader/Listener> is a flag that can be set if the value is needed for the loader to
control the uploading sequence or for the listener to be included into the output stream.

• <Output_order> is valid only if the <dest_Loader/Listener> flag is set for the listener. In
this case the <output_order> means the order, in which data has to appear in the output
stream.

• <Prev_context_release> points to the previous context number that automatically will be
marked as obsolete for the garbage collector. If no active links to the obsolete context exist
the context is removed from the dataflow engine.

Figure 4-11 shows the structure of the marshaled cluster. The marshaled cluster contains a group of
functions (local function directory) and referenced variables (local variable directory). Each function
is a reference to the TCZ function directory, thus it is a number associated with the seamless byte
code fragment. As in case of the universal structure each function has "destination attributes"
attached. Context variables from the local directory are targeted to the DB and the functions will be
moved to the operation queue (OQ). Each function inherits context from its destination variable, the
other way around each destination variable inherits the "destination attributes" from its function-
producer. This is done to make the marshaled cluster structure maximally compact as the clusters are
transferred and decoded at runtime.

I/O Ring Buffer Ports 67

BMDFM Dynamic Scheduling Subsystem

Figure 4-11. Structure of marshaled cluster

We think that this section is an appropriate place to describe the allocation algorithm used by the
external loader occupying free IORBP cell. Because the same strategy is applied when finding free
DB and OQ cells we describe the algorithm in a more common way, showing allocation of a shared
cell in an abstract array:

Local Function DirectoryLocal Function DirectoryLocal Function Directory

<<funcfunc_ref>_ref>
<<destdest_Loader/Listener>_Loader/Listener>
<output_order><output_order>
<<prevprev_context_release>_context_release>

<<varvar_local_ref>_local_ref>

. .. .

<<varvar_local_ref>_local_ref>

Local Variable DirectoryLocal Variable DirectoryLocal Variable Directory

<<varvar_ref>_ref>
<context ><context >

. .. .

<<varvar_ref>_ref>
<context><context>

Marshaled ClusterMarshaled Cluster

TCZ
Function
Directory

TCZTCZ
FunctionFunction
DirectoryDirectory

DBDBDB

68 Data Buffer

Dynamic Scheduling Subsystem BMDFM

ArrayFreeCells_semaphore.SEM_OP(-1); // synchronization, free cell exist,

while(true){ // endless allocation loop is safe.

array_ptr=(array_ptr+1)%array_size; // Round-Robin iterate.

if(!array[array_ptr].busy){ // first speculative check.

array[array_ptr].SEM_OP(-MAX_VAL); // lock the cell for modification.

if(!array[array_ptr].busy){ // second expensive safe check.
array[array_ptr].busy=true; // mark as occupied.
break; // leave the allocation loop.

}

array[array_ptr].SEM_OP(MAX_VAL); // unlock the cell.

}
}

fill_contents(); // fill the data.

array[array_ptr].SEM_OP(MAX_VAL); // unlock the cell.

The important feature of the proposed algorithm is a speculative check that is done omitting a
semaphore lock. Only if the first speculative check has passed the second expensive safe check will
make a final decision. Taking into account that the semaphore locking is in average 100 times slower
than a simple conditional, the proposed algorithm performs much faster as our experiments with
TAU [147, 148] have shown.

4.8 Data Buffer

Data Buffer (DB) is an array of DB cells located in the shared memory pool. The structure of the DB
cell, which is intended to store multiple contexts of a single variable, is shown in Figure 4-12. The
DB cell contents is initialized by the IORBP PROCs and further is used as the storage for all active
contexts of a variable value.

Data Buffer 69

BMDFM Dynamic Scheduling Subsystem

Figure 4-12. DB cell

According to the tagged-token dataflow every new variable assignment creates a copy of the variable
in a new unique context. The previous contexts live until they are referenced by the unprocessed
instructions. Later a garbage collector removes them from memory. Because multiple contexts can
be processed at the same time the DB cell structure is organized as an array of rows containing
context data. Each row has a blocking semaphore to control data sharing. In addition to the main data
storage the DB cell assists in a speculative tagging mechanism. The speculative tag buffer is
modified every time a new context is introduced into the DB cell. OQ zone pointers are tagged for
those zones where context dependent instructions are located. When the variable value is computed
and turned into a ready state the instructions from the tagged OQ zones are checked for readiness.

All other components of the DB cell are explained below:

• <Free_flag> tags the DB cell as free. Reservation of the cells for a user application is done
once during the initialization phase dfminit_upload().

• <Array_flag> is set when variable itself is an array. This defines a method how the
universal structure has to be checked whether it is ready or not. The problem can appear if a
CPU PROC tries to execute an instruction containing an indirect addressing. In this case
the array index is computed at runtime and can reference the array member, which is not
ready.

………………………………………………………….………………………………………………………….

DB CellDB Cell

<Free_flag><Free_flag>
<Array_flag><Array_flag>
<Socket#><Socket#>

Speculative
Tag

Buffer

SpeculativeSpeculative
TagTag

BufferBuffer

<OQ_zone_<OQ_zone_ptrptr>>

..

 <OQ_zone_<OQ_zone_ptrptr>>

Universal
Structure
UniversalUniversal
StructureStructure

Context DataContext Data

<Busy_flag><Busy_flag>
<Release_flag><Release_flag>
<Context><Context>
<Number_of_waiters><Number_of_waiters>
<<destdest_Loader/Listener>_Loader/Listener>
<output_order><output_order>

 Sem Length Sem Sem LengthLength

 Sem Length Sem Sem LengthLength

 Sem Length Sem Sem LengthLength

70 Data Buffer

Dynamic Scheduling Subsystem BMDFM

• <Socket#> is a task connection zone (TCZ) socket number that defines the user application
this data belongs to. The socket number associates input/output streams of user application,
it is also used as a filter to purge the socket of an interrupted application.

• <Busy_flag> marks the context data as busy. These flags are checked when a new context
is being allocated under the same row.

• <Release_flag> means that context data can be removed from memory, as soon it is not
referenced by any instruction (<Number_of_waiters> is equal to zero).

• <Context> is a unique number. This number is checked when a new context is being
allocated under the same row.

• <Number_of_waiters> is the number of the context dependent instructions. A non-zero
value means that the context is still in use.

• <Dest_Loader/Listener> and <output_order> are the "destination attributes" defining a
correct appearance of the results in the output stream.

When a new context is allocated and/or checked, the row and the locking semaphore is calculated by
a simple modulo operation; an integer division defines the starting point for the search in the row
(Figure 4-13). Such a multiple context data structuring has two advantages:

• It allows access to neighbouring contexts independently without blocking.

• It has negligible dynamic scheduling overhead while allocating and searching for the
context data.

Data Buffer 71

BMDFM Dynamic Scheduling Subsystem

Figure 4-13. Multiple context data structuring

The following pseudo-code fragment illustrates an implementation of shared access to the context
data:

row=Context%N; // select the row.
row.SEM_OP(-MAX_VAL); // lock the row.

posInRow=Context/RowLength; // starting point in the row.
found=false;

for(I=0;i<RowLength;i++){ // check if context already exists

ContextData=row[posInRow];

if(ContextData.Busy_flag && ContextData.Context==Context){
found=true;
break;

}

posInRow=(posInRow+1)%RowLength; // Round-Robin

}

Row
Length

RowRow
LengthLength

DB DB CellCell

SemSemSem
Pointers to context dataPointers to context dataPointers to context data

Row
Length

RowRow
LengthLengthSemSemSem

Pointers to context dataPointers to context dataPointers to context data

Row
Length

RowRow
LengthLengthSemSemSem

Pointers to context dataPointers to context dataPointers to context data

Row
Length

RowRow
LengthLengthSemSemSem

Pointers to context dataPointers to context dataPointers to context data

Row
0

Row
1

Row
i

Row
N-1R

o
w

 =
 C

o
n

te
xt

 %
 N

R
o

w
 =

 C
o

n
te

xt
 %

 N
R

o
w

 =
 C

o
n

te
xt

 %
 N

Starting point for allocation =

Context / RowLength

72 Operation Queue

Dynamic Scheduling Subsystem BMDFM

if(!found){

if(NoFreeSpaceInRow) // expand in chunks.
RowLength=expandRow(ARRAYBLOCK_SIZE); // RowLength+=ARRAYBLOCK_SIZE.

posInRow=Context/RowLength; // starting point in the row.

while(1){ // reservation for new context.

ContextData=row[posInRow];

if(!ContextData.Busy_flag)
break;

posInRow=(posInRow+1)%RowLength; // Round-Robin

}

ContextData.Busy_flag=1; // now new context
ContextData.Context=Context; // is placed to the row.

}

// ...
// modify the context data
// ...

row.SEM_OP(MAX_VAL); // unlock the row

At first we search whether the context is already in the row, assuming that its most probable position
in the row is Context divided by RowLength. In case the context is not detected we reserve a new
location for it, expanding the row if necessary. All shared memory dynamic structures expand in
chunks, which makes shared memory reallocation not so intensive. The starting point for the new
context in the row is also computed as the context divided by row length. In this way we increase
probability of our assumption regarding starting position for all further searches.

4.9 Operation Queue

The Operation Queue (OQ) is an array of OQ cells located in the shared memory pool. The structure
of the OQ cell is shown in Figure 4-14. The IORBP PROC daemons store the instructions in the OQ,
then the OQ PROC daemons tag them as ready if all required operands are ready. Ready instructions
are fetched and executed by the CPU PROCs. Physically, each instruction is a reference to one
seamless byte code fragment from the TCZ function directory.

Operation Queue 73

BMDFM Dynamic Scheduling Subsystem

Figure 4-14. OQ cell

All other components of the OQ cell are explained below:

• <Busy_flag> is set if the OQ cell currently contains an active instruction. This flag is
dropped only when the instruction is successfully executed.

• <Socket#> defines to which user application the instruction belongs. This is important
when the BMDFM system runs many applications on one dataflow engine.

• <Array_access_order> is set when the instruction contains indirect addressing. In this case
the array indices are computed at runtime to reference concrete array members.

• <var_ref> references the instruction’s operands in the DB. This reference is already
resolved and points directly to the context data in the DB cell.

• <ready_flag> marks each operand whether it is ready or not. The OQ PROC daemons
check only for unready operands. The instruction is considered to be ready if all operands
are ready.

• <index> specifies the array index additionally to the <var_ref>. Initially, the index is set to
zero for all array operands. In a first approach such an operand is considered to be ready if
zero member of the array is ready. A real array index is computed at runtime and can
reference the array member, which is not ready. In this case first execution fails, the
operand is reset to unready state but this time with the real index. Such a multi-pass
checking scheme is applied to all indirect addressing instructions.

OQ CellOQ Cell TCZ
Function
Directory

TCZTCZ
FunctionFunction
DirectoryDirectory

DBDBDB

Parameter
< var_ref >
< ready_flag >
< index >

ParameterParameter
< < var_refvar_ref > >
< < ready_flagready_flag > >
< < indexindex > >

 Parameter
 <var_ref>
 <ready_flag>
 <index>

 Parameter Parameter
 < <varvar_ref>_ref>
 <ready_flag> <ready_flag>
 <index> <index>

<Busy_flag>
<Socket#>
<Array_access_order>
<func_ref>

<Busy_flag><Busy_flag>
<Socket<Socket#>#>
<Array_access_order><Array_access_order>
<<func_reffunc_ref>>

 Blocking_Semaphore Blocking_Semaphore Blocking_Semaphore

74 IORBP Scheduling Process

Dynamic Scheduling Subsystem BMDFM

4.10 IORBP Scheduling Process

The IORBP PROC daemon runs an endless loop, in which all busy IORBP cells are analyzed for
their types. Depending on the cell type four different actions are taken, respectively: session
initialization, session deactivation, data allocation, processing of marshaled cluster and context
release. The loop is controlled by semaphore number 6, which stores the number of busy cells. After
the cell is processed it is relocked in writing mode to drop the <Busy_flag>. Note that relocking
(SEM_OP(-MAX_VAL); SEM_OP(MAX_VAL-1); … SEM_OP(1-MAX_VAL);) is a dead-lock
safe form of (SEM_OP(-1); … SEM_OP(1-MAX_VAL);) semaphore operation:

while(1){

semaphore6.SEM_OP(-1); // number of used entities in IORBPs
iorbp=find_Busy();

iorbp.sem.SEM_OP(-MAX_VAL); // lock cell for writing
iorbp.sem.SEM_OP(MAX_VAL-1); // re-lock cell for reading

switch(iorbp.Type){
case Init:
Socket#=dfminit_upload(var_lst, fnc_lst);
break;

case Release:
dfmclose_session(Socket#);
break;

case Data:
dfmput_data(var);
break;

case Cluster:
dfmput_marshaled_cluster(cluster);
break;

case Context_release:
dfmput_crelease(contexts);

}

iorbp.sem.SEM_OP(1-MAX_VAL); // re-lock cell for writing
Busy_flag=false;

iorbp.sem.SEM_OP(MAX_VAL); // unlock cell

}

Session initialization allocates application's variables in DB, uploads seamless byte code fragments
into the TCZ function directory and registers user application in TCZ.

IORBP Scheduling Process 75

BMDFM Dynamic Scheduling Subsystem

dfminit_upload(var_lst, fnc_lst){

allocate_variables(var_lst);

upload_TCZ_function_directory(fnc_lst);

semaphore4.SEM_OP(-MAX_VAL); // lock Task Connection Zone for writing
Socket#=register_application();

semaphore4.SEM_OP(MAX_VAL); // unlock Task Connection Zone

return Socket#;

}

Session deactivation similarly to the session initialization sequence purges DB and TCZ function
directory and then releases the socket.

dfmclose_session(Socket#){

purge_variables();

purge_TCZ_function_directory();

semaphore4.SEM_OP(-MAX_VAL); // lock Task Connection Zone for writing
release_socket(Socket#);

semaphore4.SEM_OP(MAX_VAL); // unlock Task Connection Zone

}

Data allocation delivers application’s data to DB and performs several auxiliary procedures.
Variable var is taken from the IORBP cell and moved to the context data of DB cell. The function
call access_context_data() modifies an existing context or creates a new one from the scratch.

If context data is ready the OQ PROC is informed through the communication channel to check the
dependent instructions. To reduce the number of speculative checks we use a restriction semaphore
structure. It is probable that a request to check the current DB speculative tag buffer was already sent
t o on e o f t h e ch a nn e l s . I n t h i s c a s e t he r e s t r i c t i on s e m a p ho re n um b e r
DB_addr%size_of_restriction_structure is locked. If some of the OQ PROCs are currently checking
all tags from the DB speculative tag buffer the restriction semaphore is unlocked again. Having
experimented on TAU [147, 148], we estimate significant (10 times) relief in OQ PROCs load when
using such a protection mechanism.

Ready data could also be requested by the loader or listener. After that the IORBP PROC performs
garbage collection. If current context data is marked for deleting (Release_flag is true) and there are
no dependent instructions (Number_of_waiters is zero) then the context is removed from memory.

76 IORBP Scheduling Process

Dynamic Scheduling Subsystem BMDFM

The same garbage collection is applied to the previous context data if specified in
prev_context_release.

dfmput_data(var){

ContextData=access_context_data(var); // context data of DB cell

if(ContextData.Ready){

if(!check_Restriction_Semaphore_Structure()) // instructions are being
// already checked.

put_channel(ContextData); // IORBP to OQ communication

switch(var.dest_Loader/Listener){
case Loader:

loader.dfmget_data(ContextData); // destination=loader
case Listener:

push_output_queue(ContextData,output_order); // listener output_queue
}

}

if(ContextData.Release_flag && !ContextData.Number_of_waiters)
ContextData.remove(); // remove from memory

if(var.prev_context_release){

ContextData=access_context_data(prev); // previous context data
ContextData.Release_flag=true;

if(!ContextData.Number_of_waiters)
ContextData.remove(); // remove from memory

}

}

The size of the OQ restriction semaphore structure was experimentally defined as 2*sqrt(Q_DB)
using TAU [147, 148]. This structure can be seen in a semaphore report log:

[DFMSrv]: OQ Seek Hashing Buffer Semaphores Array:
[DFMSrv]: (BlkSemsVals 1
1 1
1 1
1 1)

The processing of a marshaled cluster is done via two nested loops. The first loop iterates through
all cluster’s functions, the second loop iterates through all function’s variables. Each function is
allocated in the OQ as an instruction. Variables are moved to the DB via the function call
access_context_data(), that modifies an existing context or creates a new one. Then the cross-

IORBP Scheduling Process 77

BMDFM Dynamic Scheduling Subsystem

references are filled: the DB speculative tag buffer is tagged to the instruction and the instruction’s
parameters are pointed to the context data. Additionally, the number of dependencies is incremented
(waiters++).

The instruction is tagged as ready if all operands are ready. If the instruction is ready the CPU PROC
is informed through the communication channel to execute the instruction. After that the IORBP
PROC performs garbage collection as in the case of data allocation.

dfmput_marshaled_cluster(cluster){

foreach func_ref in cluster{ // iterate all functions.

instruction=allocate_in_OQ(func_ref); // allocate OQ instruction.

instruction.Ready=true; // assume instruction is ready.
foreach var_ref in func_ref{ // iterate all variables.

ContextData=access_context_data(var_ref); // context data in DB cell.

ContextData.Number_of_waiters++; // number of dependencies

// tag OQ_zone_ptr for OQ speculative search
DB_cell.speculative_tag_buffer[instruction%buffer_size]=true;

// initialize instruction’s parameters
instruction.parameter[var_ref].var_ref=ContextData;
instruction.Ready&= // instruction is ready if all operands are ready

// (Non-short-circuit evaluation)
(instruction.parameter[var_ref].ready_flag=ContextData.Ready);

instruction.parameter[var_ref].index=0;

}

if(instruction.Ready)
put_channel(instruction); // IORBP to CPU communication

if(func_ref.prev_context_release){

ContextData=access_context_data(prev); // previous context data
ContextData.Release_flag=true;

if(!ContextData.Number_of_waiters)
ContextData.remove(); // remove from memory

}

}

}

Context release is a pure garbage collection procedure. It is called by the external loader after
finishing a UDF uploading sequence. The contexts are collected in a list of all UDF’s local variables
to be removed from memory. If there are no dependent instructions then the contexts are removed.

78 OQ Scheduling Process

Dynamic Scheduling Subsystem BMDFM

dfmput_crelease(contexts){

foreach context in contexts{ // iterate all contexts.

ContextData=access_context_data(context); // context data in DB cell

ContextData.Release_flag=true;

if(!ContextData.Number_of_waiters)
ContextData.remove(); // remove from memory

}

}

4.11 OQ Scheduling Process

One of the serious dataflow problems is the dynamic scheduling overhead caused by dynamic
operand matching and tagging. The BMDFM exploits a speculative tagging mechanism of the
instructions as shown in Figure 4-15. Each data buffer (DB) cell additionally stores a limited number
of tags to the instructions in the operation queue (OQ). Each tag speculatively represents several OQ
cells where dependent instructions might be stored. Having experimented on TAU [147, 148], we
estimate an optimal size for the DB cell speculative tag buffer, which is equal to 2*sqrt(Q_DB). The
OQ PROC interleaved search loop is triggered when a variable’s data becomes ready in DB. The
implemented mechanism provides the following benefits:

• The DB cell speculative tag buffer has a fixed size and will not be dynamically reallocated.

• The DB cell speculative tag buffer does not require any semaphore synchronization.

• The reduced size of the DB cell speculative tag buffer saves memory space and scanning
time.

• Speculative checking loops do not block each other, detect required tagging with
reasonable probability and keep tagging latency low.

OQ Scheduling Process 79

BMDFM Dynamic Scheduling Subsystem

Figure 4-15. Speculative tagging of instructions

Each of the OQ PROC daemons runs an endless loop, listening to the IORBP and CPU
communication channels. As soon the DB cell number with new ready data is received the
speculative tagging algorithm is forced.

At first we reset the restriction semaphore structure to allow sending new messages to the
communication channels. Then the DB cell speculative tag buffer is scanned for all fired tags. Each
tag represents only a limited number of OQ cells to be checked, but they are interleaved along the
OQ. The second nested loop performs this interleaved selection.

000

DB Cell
Speculative
Tag Buffer

<variable a>

111

.........

kkk

.........

lll

.........

N-1N-1N-1

000

iii

.........

jjj

.........

i+Ni+Ni+N

.........

j+Nj+Nj+N

.........

i+2Ni+2Ni+2N

.........

j+2Nj+2Nj+2N

.........

M-1M-1M-1

OQOQ

c=a+b; <context x>

c=a+b; <context z>

d=a*a;

t=q*s; // checked speculatively

w=v*u; //checked speculatively

OQ PROC Check Loop (i % N = k)

OQ PROC Check Loop (i % N = k)

OQ PROC Check Loop (j % N = l)

OQ PROC Check Loop (j % N = l)

80 OQ Scheduling Process

Dynamic Scheduling Subsystem BMDFM

while(1){

DB_cell=get_channel(); // listen to all IORBP and CPU channels.

reset_Restriction_Semaphore_Structure(); // instructions are being checked

// scan DB_cell speculative tag buffer
for(i=0;i<DB_cell.speculative_tag_buffer_size;i++)

if(DB_cell.speculative_tag_buffer[i]){

DB_cell.speculative_tag_buffer[i]=0; // instructions are being checked

// check speculatively across the OQ
for(j=i;j<Q_OQ;j+=DB_cell.speculative_tag_buffer_size)
check_instruction(OQ[j]);

}

}

The check_instruction() procedure itself is shown in the following code fragment. An instruction
check is necessary only if the instruction is present in the OQ cell and it is not ready yet. We check it
twice: the first speculative check significantly reduces the number of semaphore operations. Initially,
we assume the instruction is ready, then this assumption is checked for each unready function’s
parameter. Finally, the instruction is tagged as ready if all operands are ready. If the check fails next
time the ready operands will not be checked again. The ready instructions are sent to the CPU
PROCs for execution through the communication channel.

check_instruction(instruction){

if(instruction.Busy_flag && !instruction.Ready){ // first speculative check

instruction.sem.SEM_OP(-MAX_VAL); // lock OQ cell for writing.

if(instruction.Busy_flag && !instruction.Ready){ // second safe check.

instruction.Ready=true; // assume the instruction is ready

foreach parameter in instruction.parameters

if(!parameter.ready_flag){

ContextData=access_context_data(parameter); // context data

// instruction is ready if all operands are ready
instruction.Ready&= // (Non-short-circuit evaluation)
(parameter.ready_flag=ContextData.Ready);

}

}

CPU Executing/Scheduling Process 81

BMDFM Dynamic Scheduling Subsystem

instruction.sem.SEM_OP(MAX_VAL); // unlock OQ cell

if(instruction.Ready)
put_channel(instruction); // OQ to CPU communication

}

}

4.12 CPU Executing/Scheduling Process

The CPU PROC daemons execute the instructions tagged as ready performing some scheduling task
in addition. In the main loop an instruction is obtained from the communication channel and
executed on a modified kernel of the virtual machine. In contrast to a standard kernel the modified
kernel communicates directly with the shared memory pool. For that only three modifications are
done:

• (get_var …) and ([al]index …) functions take variable values from the shared memory
pool.

• ([al]setq …) and (arsetq …) assignment functions store variable values in the shared
memory pool performing the additional scheduling.

• (asyncheap_ …) function group allocates memory in the shared memory pool.

while(1){

instruction=get_channel(); // listen to all IORBP and OQ channels.

modified_VM.execute(instruction); // execute instruction

}

(get_var …) and ([al]index …) functions use instruction's parameter to refer to the context data in
DB cell directly. The context data is locked for reading while copying them from the shared memory
pool. In case the array is accessed with an unready member the parameter is reset back to the unready
state and the current instruction is cancelled. No rollback actions are needed in the shared memory
pool because the instruction works with local copies of the operands.

get_var__index(parameter,index){

operand=parameters[parameter].var_ref;

ContextData=DB[operand];

82 CPU Executing/Scheduling Process

Dynamic Scheduling Subsystem BMDFM

ContextData.sem.SEM_OP(-1); // lock context data for reading

if(ContextData.Ready){

ContextData.sem.SEM_OP(1); // unlock context data.

return copy_flp_data(); // return a copy of context data

}

ContextData.sem.SEM_OP(1); // unlock context data.

parameters[parameter].Ready_flag=false; // reset ready parameter.
parameters[parameter].index=index; // set real index.

throw exception(notReady); // cancel instruction execution

}

([al]setq …) and (arsetq …) assignment functions also use instruction's parameter to refer to the
context data in the DB cell directly. The context data is locked for writing while modifying them in
the shared memory pool. After the context data are copied the following scheduling sequence is
executed:

1. Data could be delivered to the loader or listener if requested.

2. The OQ PROC is informed through the communication channel to check the dependent
instructions and tag them as ready. To reduce the number of speculative checks we use the
restriction semaphore structure again.

3. For all parameters the number of dependencies is decremented by one (waiters--),
immediately followed by an attempt to apply the garbage collection sequence to them.

4. Finally, the executed instruction is removed from the OQ, freeing space for other
instructions.

setq_arsetq(parameter,index){

operand=parameters[parameter].var_ref;
ContextData=DB[operand];

ContextData.sem.SEM_OP(-MAX_VAL); // lock context data for writing.
ContextData=copy_flp_data(); // copy context data.

ContextData.sem.SEM_OP(MAX_VAL); // unlock context data

Complexity of the Dynamic Scheduling Subsystem 83

BMDFM Dynamic Scheduling Subsystem

switch(var.dest_Loader/Listener){
case Loader:

loader.dfmget_data(ContextData); // destination=loader
case Listener:

push_output_queue(ContextData,output_order); // listener output_queue
}

if(!check_Restriction_Semaphore_Structure()) // instructions are being
// already checked.

put_channel(ContextData); // CPU to OQ communication.

foreach parameter in parameters{ // iterate all parameters.

ContextData=access_context_data(parameter); // context data in DB cell.

ContextData.Number_of_waiters--; // number of dependencies

if(ContextData.Release_flag && !ContextData.Number_of_waiters)
ContextData.remove(); // remove from memory

}

instruction.remove(); // remove from memory

}

4.13 Complexity of the Dynamic Scheduling Subsystem

Many different methodologies exist, which help to estimate program complexity [77, 106]. Some of
them recommend to count the code lines, others are based on calculations of conditional branches
and function calls. According to our approach we think that synchronization points are most
important for the dynamic scheduling subsystem.

Thus we estimate the complexity of the dynamic scheduler by the number of semaphore decrement
operations where the process can be suspended into the idle state. The BMDFM system can be
compiled in a debug mode (_DEBUG_MODE_), in which every synchronization point assigns the
state number before entering a critical code section.

...
#ifdef _DEBUG_MODE_

*state_ptr=76;
#endif

SEM_CMD(dfmserver.semID_commonsem,4,-dfmserver.sem_maxval);
if(cz_task->socket_used){

#ifdef _DEBUG_MODE_
*state_ptr=77;

#endif
free_string(&cz_task->fastlisp_errmsg);

...

84 Complexity of the Dynamic Scheduling Subsystem

Dynamic Scheduling Subsystem BMDFM

The above example code fragment defines two states. State number 76 is assigned when the system
tries to enter the task connection zone (Semaphore 4). Synchronization state 77 appears while freeing
memory block in the shared memory pool. All states together represent the state of the dataflow
engine as shown below:

[Msg]: Current BM_DFM native processes states:
[Msg]: N# | CPUPROCs | OQPROCs | IORBPPROCs | PROCstat
[Msg]: ------------+----------+---------+------------+----------
[Msg]: 0 | 4 | 14 | 8 | 2
[Msg]: 1 | 4 | 14 | 17 |
[Msg]: 2 | 4 | 13 | 7 |
[Msg]: 3 | 4 | 14 | 17 |
[Msg]: 4 | 116 | 14 | 11 |
[Msg]: 5 | 4 | 13 | 17 |
[Msg]: 6 | 4 | 13 | 25 |
[Msg]: 7 | 4 | 14 | 11 |
[Msg]: 8 | 108 | 14 | 17 |
[Msg]: Current BM_DFM external processes states (continue):
[Msg]: N# | ExtTaskLd {PCount} | ExtTaskLs | ExtTrace
[Msg]: ------------+----------------------+-----------+----------
[Msg]: 0 | 35 {0000000025} | 8 | _UNDEF_
[Msg]: 1 | _UNDEF_ { __UNDEF_ } | _UNDEF_ | _UNDEF_

For each process the number of synchronization states is listed in Table 4-3.

Table 4-3. Program complexity of the dynamic scheduler

The time complexity expressed in the number of synchronization states depends on how many
copies of the scheduling processes run in parallel. Thus it can be easily calculated using the
following formula: 92 * N_IORBPPROC + 16 * N_OQPROC + 159 * N_CPUPROC + (56+8) *
Number_of_Loaders/Listeners. We assume that PROC stat and the external tracers are just a kind of
auxiliary utilities, which can be run optionally.

Process Number of states
IORBP PROC 92
OQ PROC 16
CPU PROC 159
PROC stat 8
External task loader 56
External task listener 8
External tracer 9
TOTAL 348

Summary 85

BMDFM Dynamic Scheduling Subsystem

4.14 Summary

We have designed an all-purpose SMP dataflow engine, which performs parallelization of sequential
applications at runtime. Our architecture has the following features:

• Multiple context data structuring. This allows dataflow processing of the iterations in
parallel, storing the iteration’s data dynamically under different contexts. It is also a key
point in resolving inter-procedural and cross-conditional dependencies.

• Speculative tagging of instructions. This is a solution how to significantly reduce
dynamic scheduling overhead - the main problem of dataflow processing.

• Parallel load of clusters. This approach allows to avoid a bottleneck when the parallel
dataflow machine is fed dynamically from the single threaded control virtual machine. In
the proposed scheme the marshaled clusters are prepared statically on the compilation
stage, which does not cause additional runtime overhead for marshaling.

• Multithreading. The dataflow engine functionality is fully distributed among the parallel
processes. We have carefully tracked down all possible narrow/critical places in the code.
All scheduling algorithms are multithreaded and do not have bottlenecks.

• One-way locking policy. There are four object locking algorithms in the dynamic
scheduling subsystem. Obviously in each case we exclude a mutual blocking of the
resources. In combination with distributive semaphore allocation in the shared memory
pool we prevent a situation where the dataflow resources might be saturated.

• Ordering results after out-of-order processing. Because the data is processed on
dataflow the results could be computed in an unpredictable order. Our dataflow
architecture orders the output stream automatically in the TCZ output queue. Thus the
output stream will always appear naturally ordered.

• Multi-level granularity of parallelism. The BMDFM virtual machine can define seamless
macro- instructions, the bodies of which are prevented from dynamic scheduling.
Exploitation of coarse-grain parallelism in addition to the fine-grain parallelism is more
efficient as naturally less time is spent on dynamic scheduling.

• Immediate garbage collector. A postponed release of the shared resources is dangerous in
case of shared memory dataflow processing. Our parallel algorithms are programmed to
release unused resources immediately, which also prevents from having a kind of saturated
dataflow.

86 Summary

Dynamic Scheduling Subsystem BMDFM

Although the contribution of this thesis is the BMDFM dataflow architecture in its entirety, we
would especially like to highlight the multiple context data structuring, speculative tagging of
instructions and parallel load of clusters as our main contributions.

We have also estimated program complexity of the dynamic scheduling subsystem, which is
expressed in 348 synchronization states.

87

BMDFM Static Scheduling Subsystem

Chapter 5
Static Scheduling Subsystem

5.1 Overview

In this chapter we describe all sequential stages necessary to transform and upload the conventional
code into the dataflow engine. We call this flow a Static Scheduling of the code.

All transformations described in this chapter are performed fully automatically. Although the code
examples are given in the virtual machine language notation, the same methodology can be applied
to any other code semantics that formally consist of variable assignments, indirect addressing
(indexed arrays), conditionals, loop processing and function declarations/invocations.

In the proposed static scheduling flow we have defined the following stages:

• Checking for the parallel dataflow code style restrictions. This formal checking
procedure detects all code fragments that are dangerous for dataflow processing. In
particular, it considers all kind of uninitialized variables suspending the dataflow.

• Static and dynamic type casting. This stage is optional and does not influence the static
scheduling flow itself. Our implementation of the virtual machine language does not
require explicit type declarations in the application’s code. To reduce an overhead of the
runtime type casting we analyze the code statically detecting the data types where it is
possible.

• Code reorganization. Application code is split automatically into fragments, which have
only one destination for a computed result per fragment. Such a fragment is supposed to be
a seamless instruction for the dataflow processing.

• Generation of marshaled clusters. At this stage a sequential user application is split into
code chunks called marshaled clusters. This transformation aims to prepare the application
for a multithreaded dynamic uploading into the dataflow engine.

• Uploading of marshaled clusters. Marshaled cluster uploading is the final stage of the
static scheduling flow. It is executed on the virtual front-end machine that acts as a von
Neumann control machine for the dataflow engine.

88 Parallel Dataflow Code Style Restrictions

Static Scheduling Subsystem BMDFM

5.2 Parallel Dataflow Code Style Restrictions

The purpose of checking for the parallel dataflow code style restrictions is to track down all variables
that are used without prior initialization. Such an uninitialized variable endangers dataflow
processing bringing it into an endless idle state (because the dataflow processing is controlled by
firing of ready operands and instructions). To detect all uninitialized variables efficiently the
checking algorithm always assumes a worse case of initialization as shown in Figure 5-1.

Figure 5-1. Variable initialization within potentially unreachable code

Thus we can summarize that a variable is (still) considered to be uninitialized in the following cases:

• It was not initialized at all.

• It was previously initialized in a conditional statement.

• It was previously initialized within a loop (a worse assumption is that loop can iterate zero
times as well).

• It was previously initialized in the second argument of a boolean and/or short-circuit
operation that is not obligatorily evaluated.

The BMDFM restriction checking procedure additionally performs a few other checks that are
implementation specific. A full report about the checked conditions can be seen in the logs:

(progn

(if (== a 0)
(setq var 0) # initialization within a conditional
nil

)
(for i 1 1 n

(setq var i) # initialization within a loop
)

(setq b (& a (setq var 1))) # initialization in the second argument
of a boolean short-circuit operation.

(setq c var) # var is not initialized

)

Static and Dynamic Type Casting 89

BMDFM Static Scheduling Subsystem

* *
* The BM_DFM CODE STYLE RESTRICTIONS Summary: *
* ~~~ *
* o Variable names within the inclusive range of *
* [TMP__000000000; TMP__999999999] are reserved. *
* o ‘SHADOW’ is the reserved name for a UDF. *
* o Array names should differ from ordinary variable names. *
* o Every variable should be initialized before it is used. *
* The following is an example of how to copy an array: *
* ... *
* (arsetq a 0 1) *
* (arsetq a 1 5) *
* (alsetq b (alindex a 2)) # instead of ‘(setq b a)’ *
* ... *
* o The <step> and <limit> values of a <for> loop should be *
* the integer numeric constants, function parameters or *
* initialized variables which are not changed inside this *
* <for> loop. *
* o Second parameter of the booleans <or> and <and> should *
* not include any assignments, I/O, conditional/ *
* iterational processing and UDF calls. *
* NOTE: All conventional programs can be converted by a *
* formal procedure to those that accept the above *
* mentioned code style restrictions. *
* *

5.3 Static and Dynamic Type Casting

The BMDFM virtual machine is data type insensitive. The data type declarations can simply be
omitted as shown below:

(progn

(setq a "Dummy") # string

(setq a 1.2) # float

(setq a (+ a 2)) # casting to integer dynamically

)

To avoid the dynamic casting overhead the data types are analyzed at compile-time. After static type
casting, the source code is modified slightly (Figure 5-2).

90 Static and Dynamic Type Casting

Static Scheduling Subsystem BMDFM

Figure 5-2. Static casting of data types

The casting procedure adds type suffixes to the functions and variables that specify their types. The
suffixes are abbreviated from the standard type names:

• "I" stands for Integer.

• "F" stands for Float.

• "S" stands for String.

• "Z" for nil.

• "J" stands for Justified. This is a special type casting for functions that have more than one
argument. In this case the function is justified if all argument types match or is not justified
otherwise.

The suffixes provide additional information to the compiler and linker enabling optimized code
generation. Having experimented on TAU [147, 148], we estimate a speed gain of 4-5 times when
running statically casted VM code compared to dynamically casted VM code. Figures 5-3 and 5-4
explain the difference in the casting mechanisms on a physical level.

Source code Modified code
(progn

 (setq a (ival 1.2))

 (setq a (+ a 2))

)

(PROGN

 (SETQ@I A@I (IVAL@F 1.2))

 (SETQ@I A@I (+@J A@I 2))

)

Static and Dynamic Type Casting 91

BMDFM Static Scheduling Subsystem

Figure 5-3. Physical meaning of justification

Native virtual machine functions use the same C interface, which is opened for user defined
functions. The (+ …) function has a dual implementation. Depending on the static casting the linker
links a VM byte code with func__iadd() to resolve types at runtime or with func__iadd_j()
otherwise.

Functions with only one argument have one generic implementation and four type dependent
implementations. When linkage is applied to our VM code example the (IVAL@F …) function is
linked with the func__ival_f() implementation respectively.

#if defined(OP_CODE__IADD)

void func__iadd(ULO *dat_ptr, struct fastlisp_data *ret_dat){
 SLO op_b;

 ret_ival(dat_ptr,&ret_dat->value.ival); // DYNAMIC CASTING for ARG 0.
 ret_ival(dat_ptr+1,&op_b); // DYNAMIC CASTING for ARG 1.

 if(noterror){
 ret_dat->single=1;
 ret_dat->type=’I’;
 ret_dat->value.ival+=op_b; // ADDITION
 }
 return;
}

void func__iadd_j(ULO *dat_ptr, struct fastlisp_data *ret_dat){
 ULO *tmp_ptr;
 SLO op_a;
 ret_dat->disable_ptr=1;

 tmp_ptr=*((ULO**)dat_ptr); // ARG 0. NO RUNTIME CASTING NEEDED
 (*(fcall)*tmp_ptr)(tmp_ptr+1,ret_dat);
 op_a=ret_dat->value.ival;

 tmp_ptr=*((ULO**)(dat_ptr+1)); // ARG 1. NO RUNTIME CASTING NEEDED
 (*(fcall)*tmp_ptr)(tmp_ptr+1,ret_dat);

 if(noterror)
 ret_dat->value.ival+=op_a; // ADDITION
 return;
}

#endif

OP_CODE_STRU OP_CODE[]={ // Internal registry for instructions
 // ...
#ifdef OP_CODE__IADD
 ,{OP_NAME__IADD.name,2,’I’,"II",{&func__iadd,&func__iadd_j,NULL,NULL,NULL}}
#endif
 // ...
};
const ULO OP_CODES=sizeof(OP_CODE)/sizeof(OP_CODE_STRU);

92 Static and Dynamic Type Casting

Static Scheduling Subsystem BMDFM

#ifdef OP_CODE__IVAL

void func__ival(ULO *dat_ptr, struct fastlisp_data *ret_dat){
 ret_dat->single=1;
 ret_dat->type=’I’;

 ret_ival(dat_ptr,&ret_dat->value.ival); // DYNAMIC CASTING for ARG

 return;
}

void func__ival_i(ULO *dat_ptr, struct fastlisp_data *ret_dat){

 dat_ptr=*((ULO**)dat_ptr);
 (*(fcall)*dat_ptr)(dat_ptr+1,ret_dat); // NO RUNTIME CASTING NEEDED

 return;
}

void func__ival_f(ULO *dat_ptr, struct fastlisp_data *ret_dat){
 ret_dat->disable_ptr=1;

 dat_ptr=*((ULO**)dat_ptr);
 (*(fcall)*dat_ptr)(dat_ptr+1,ret_dat); // NO RUNTIME CASTING NEEDED

 if(noterror){
 ret_dat->type=’I’;
 if(ret_dat->value.fval<0.0)
 ret_dat->value.ival=(SLO)ceil((double)ret_dat->value.fval);
 else
 ret_dat->value.ival=(SLO)floor((double)ret_dat->value.fval);
 }
 return;
}

void func__ival_s(ULO *dat_ptr, struct fastlisp_data *ret_dat){
 ret_dat->disable_ptr=1;

 dat_ptr=*((ULO**)dat_ptr);
 (*(fcall)*dat_ptr)(dat_ptr+1,ret_dat); // NO RUNTIME CASTING NEEDED

 if(noterror){
 ret_dat->type=’I’;
 ret_dat->value.ival=atol(ret_dat->svalue);
 }
 return;
}

void func__ival_z(ULO *dat_ptr, struct fastlisp_data *ret_dat){
 ret_dat->disable_ptr=1;

 dat_ptr=*((ULO**)dat_ptr);
 (*(fcall)*dat_ptr)(dat_ptr+1,ret_dat); // NO RUNTIME CASTING NEEDED

 if(noterror){
 ret_dat->type=’I’;
 ret_dat->value.ival=0;
 }
 return;
}

#endif

Code Reorganization 93

BMDFM Static Scheduling Subsystem

Figure 5-4. Physical meaning of casting

5.4 Code Reorganization

The goal of code reorganization is to split an application code into fragments that have only one
destination for a computed result per fragment. Such a fragment is supposed to be a seamless
instruction for dataflow processing.

For a prefix notation the code reorganization mainly means moving the nested constructions to the
upper nesting levels. The following example code demonstrates this idea. Additionally, variable and
UDF names are prefixed with name of the parent function they are nested in. The most common
parent function is the function "MAIN".

Further we describe how the methodology of code reorganization is applied to the formal language
constructions: UDF, I/O, conditionals and loops.

User defined functions

• UDF invocation has to have its own destination variable. If it does not, then an artificial
temporary variable TMP is automatically introduced (here and further on in the explanation
text we use short names for the TMP variables, truncating superfluous zeros). UDF is
always considered to be a coarse-grain function in contrast to all native VM functions,
which are fine-grained. This is a very simple and at the same time very important rule that
defines where a temporary TMP variable has to be automatically introduced. Suppose that
in our example (Figure 5-5) the variables TMP1 and TMP2 were not introduced and the
coarse-grain UDF "true" performs heavy weight computations. Then the seamless
expression (!= (true) (true)) will run on one CPU. In the other case, due to the artificially

OP_CODE_STRU OP_CODE[]={ // Internal registry for instructions
 // ...
#ifdef OP_CODE__IVAL
 ,{OP_NAME__IVAL.name,1,’I’,"U",{&func__ival,&func__ival_i,&func__ival_f,
 &func__ival_s,&func__ival_z}}
#endif
 // ...
};
const ULO OP_CODES=sizeof(OP_CODE)/sizeof(OP_CODE_STRU);

Initial code
(setq a (setq b (setq c (+ 1 2))))

Preprocessed code
(SETQ@I MAIN:C@I (+@J 1 2))
(SETQ@I MAIN:B@I MAIN:C@I)
(SETQ@I MAIN:A@I MAIN:C@I)

94 Code Reorganization

Static Scheduling Subsystem BMDFM

introduced variables the dataflow engine will schedule two invocations of "true" for
multiple CPUs. Thus they will be executed in parallel.

• UDF declared at the virtual machine level always assigns variable TMP0 with its returned
value. That instructs the dataflow engine to process returned values correctly. Note that this
is valid only for programming model scheme A. A UDF declared on scheme B or scheme C
(UDF is implemented in C language) is not preprocessed at all.

Figure 5-5. Preprocessing of the UDF declaration and UDF invocation

Output

• Functions, which generate an output, have to have their own destination variable. If they
have not then an artificial temporary variable TMP is automatically introduced as shown in
Figure 5-6.

Figure 5-6. Preprocessing of the output functions

Input

• In contrast to the output, which is processed in the dataflow engine, the input is organized
in the control front-end VM. The control front-end VM communicates with the dataflow
engine through the TCZ interface via dfmget_data(var)/dfmput_data(var)-like calls.
Therefore input functions should have variables as arguments and destination. If they do

Initial code
(defun true
 (progn 1)
)

(setq false (!= (true) (true)))

Preprocessed code
(DEFUN MAIN:TRUE
 (SETQ@I MAIN:TRUE:TMP__000000000@I 1)
)

(SETQ@I MAIN:TMP__000000001@I (MAIN:TRUE))
(SETQ@I MAIN:TMP__000000002@I (MAIN:TRUE))
(SETQ@I MAIN:FALSE@I (!=@I MAIN:TMP__000000001@I MAIN:TMP__000000002@I))

Initial code
(outf "One = %d\n" 1)
(outf "Two = %d\n" (++ 1))

Preprocessed code
(SETQ@S MAIN:TMP__000000001@S (OUTF "One = %d\n" 1))
(SETQ@S MAIN:TMP__000000002@S (OUTF "Two = %d\n" (++@J 1)))

Code Reorganization 95

BMDFM Static Scheduling Subsystem

not, then the artificial temporary variables are automatically introduced (Figure 5-7). The
same methodology is applied to file-based i/o.

Figure 5-7. Preprocessing of the input functions

Conditionals

• Conditionals having no global constructions (setq, arsetq, for, while, break, exit) in
conditional branches are not modified. Such a conditional is similar to the "?:" C
equivalent. Otherwise the conditionals become global and are moved to the upper nested
level. Figure 5-8 shows an example of two conditionals ("if a" is a global one and "if b" is
in the local scope). In the preprocessed code the "if a" conditional is placed at the top level
keeping the assignment of the variable "number" appropriate.

Figure 5-8. Preprocessing of conditionals in the global and local scopes

For- and while-loops

• To process a loop the control front-end VM gets control variables from the dataflow engine
and then controls the iteration process. Therefore artificial temporary variables modify the
loop in a way that all loop controls are constants or variables (Figures 5-9 and 5-10).

Initial code
(setq number (++ (accept "Enter number: ")))

Preprocessed code
(SETQ@S MAIN:TMP__000000001@S "Enter number: ")
(SETQ@S MAIN:TMP__000000002@S (ACCEPT MAIN:TMP__000000001@S))
(SETQ@I MAIN:NUMBER@I (++ MAIN:TMP__000000002@S))

Initial code
(setq number
 (if a
 (if b 1 a)
 (setq b 1)
)
)

Preprocessed code
(IF@J MAIN:A@I
 (SETQ@I MAIN:NUMBER@I (IF@J MAIN:B@I 1 MAIN:A@I))
 (PROGN
 (SETQ@I MAIN:B@I 1)
 (SETQ@I MAIN:NUMBER@I 1)
)
)

96 Code Reorganization

Static Scheduling Subsystem BMDFM

Figure 5-9. For-loop preprocessing

Figure 5-10. While-loop preprocessing

Recursive call.

• In case of recursion a UDF calls itself from inside its body. This violates the rule that a
UDF always has to assign its return value to the variable TMP0. To solve the problem we
use the following trick. A copy of the recursive UDF is declared as a function "shadow"
inside the UDF. Then the shadow function calls its parent UDF, and the UDF itself calls its
own shadow copy. Such an intermediate presentation of recursion eliminates confusing the
variable TMP0. Figure 5-11 shows the initial, intermediate and preprocessed code,
respectively, for a classic recursive calculation of a factorial.

Initial code
(for i (- a b) 1 a
 (outf "%d\n" i)
)

Preprocessed code
(SETQ@I MAIN:TMP__000000001@I (-@J MAIN:A@I MAIN:B@I))

(FOR@J MAIN:I@I MAIN:TMP__000000001@I 1 MAIN:A@I
 (SETQ@S MAIN:TMP__000000002@S (OUTF "%d\n" MAIN:I@I))
)

Initial code
(while (< a b) (progn
 (outf "%d\n" a)
 (setq a (++ a))
))

Preprocessed code
(SETQ@I MAIN:TMP__000000001@I (<@I MAIN:A@I MAIN:B@I))

(WHILE@J MAIN:TMP__000000001@I (PROGN
 (SETQ@S MAIN:TMP__000000002@S (OUTF "%d\n" MAIN:A@I))
 (SETQ@I MAIN:A@I (++@J MAIN:A@I))

 (SETQ@I MAIN:TMP__000000001@I (<@I MAIN:A@I MAIN:B@I))
))

Generation of Marshaled Clusters 97

BMDFM Static Scheduling Subsystem

Figure 5-11. Preprocessing of recursion

5.5 Generation of Marshaled Clusters

Marshaled clusters are generated from the preprocessed user application after the code
reorganization stage according to the following rule. A sequence of assignment statements can be
merged to one cluster if this sequence is not interrupted by any global control statement (if, for,

Initial code
(defun factorial_f
 (if (<= $1 1.)
 1.
 (*. $1 (factorial_f (-. $1 1.)))
)
)

Intermediate code
(defun factorial_f (progn
 (defun shadow
 (if (<= $1 1.)
 1.
 (*. $1 (factorial_f (-. $1 1.)))
)
)
 (if (<= $1 1.)
 1.
 (*. $1 (shadow (-. $1 1.)))
)
))

Preprocessed code
(DEFUN MAIN:FACTORIAL_F (PROGN
 (DEFUN MAIN:FACTORIAL_F:SHADOW (PROGN
 (SETQ@I MAIN:FACTORIAL_F:SHADOW:TMP__000000002@I
 (<= MAIN:FACTORIAL_F:SHADOW:$1 1.)
)
 (IF@J MAIN:FACTORIAL_F:SHADOW:TMP__000000002@I
 (SETQ@F MAIN:FACTORIAL_F:SHADOW:TMP__000000000@F 1.)
 (PROGN
 (SETQ@F MAIN:FACTORIAL_F:SHADOW:TMP__000000001@F
 (MAIN:FACTORIAL_F (-. MAIN:FACTORIAL_F:SHADOW:$1 1.))
)
 (SETQ@F MAIN:FACTORIAL_F:SHADOW:TMP__000000000@F (*.
 MAIN:FACTORIAL_F:SHADOW:$1
 MAIN:FACTORIAL_F:SHADOW:TMP__000000001@F
))
)
)
))

 (SETQ@I MAIN:FACTORIAL_F:TMP__000000002@I (<= MAIN:FACTORIAL_F:$1 1.))
 (IF@J MAIN:FACTORIAL_F:TMP__000000002@I
 (SETQ@F MAIN:FACTORIAL_F:TMP__000000000@F 1.)
 (PROGN
 (SETQ@F MAIN:FACTORIAL_F:TMP__000000001@F
 (MAIN:FACTORIAL_F:SHADOW (-. MAIN:FACTORIAL_F:$1 1.))
)
 (SETQ@F MAIN:FACTORIAL_F:TMP__000000000@F (*.
 MAIN:FACTORIAL_F:$1 MAIN:FACTORIAL_F:TMP__000000001@F
))
)
)
))

98 Generation of Marshaled Clusters

Static Scheduling Subsystem BMDFM

while, defun, input and file i/o, break, exit). Enumerated global statements are processed on the
front-end VM controlling the marshaled cluster uploading process.

Figure 5-12 shows marshaled cluster containing three functions including one (Fnc #2) that
contributes to the output stream.

Figure 5-12. Generation of marshaled cluster

Marshaled cluster consists of local variable directory (variables A, B and TMP1 in our example) and
a group of functions (enumerated from 0 to 2). Physically, the functions are located in the TCZ
function directory, they are only referenced from the cluster. Each function has a list of references

Initial code
(setq a 1)
(setq b 1)
(outf "Result = %d\n" (+ a b))

Preprocessed code
(SETQ@I MAIN:A@I 1)
(SETQ@I MAIN:B@I 1)
(SETQ@S MAIN:TMP__000000001@S (OUTF "Result = %d\n" (+@J MAIN:A@I MAIN:B@I)))

Marshaled cluster
(marshaled_cluster
 (Vars_N#_Ref_Name_[Array]
 (0 0 "MAIN:A@I")
 (1 1 "MAIN:B@I")
 (2 14 "MAIN:TMP__000000001@S")
)

 (Fnc (N# 0)
 (FLP (SETQ@I MAIN:A@I 1))
 (FLP_COMPILED
 "D5 01 00 00" "01 00 00 00" "00 00 00 00" "D4 04 00 00" "00 00 00 00"
 "01 00 00 00" " I 00 00 00" "01 00 00 00"
)
 (Var_Ptrs 0)
)

 (Fnc (N# 1)
 (FLP (SETQ@I MAIN:B@I 1))
 (FLP_COMPILED
 "D5 01 00 00" "01 00 00 00" "00 00 00 00" "D4 04 00 00" "00 00 00 00"
 "01 00 00 00" " I 00 00 00" "01 00 00 00"
)
 (Var_Ptrs 1)
)

 (Fnc (N# 2)
 (FLP
 (SETQ@S MAIN:TMP__000000001@S
 (OUTF "Result = %d\n" (+@J MAIN:A@I MAIN:B@I))
)
)
 (FLP_COMPILED
 "D5 01 00 00" "03 00 00 00" "00 00 00 00" "D4 05 00 00" "00 00 00 00"
 "01 00 00 00" " T 8 00 00" "02 00 00 00" "07 00 00 00" " S 00 00 00"
 "0C 00 00 00" " R e s u" " l t __ =" "__ % d 0A" "00 00 00 00"
 "D4 AC 00 00" "02 00 00 00" "03 00 00 00" " i 00 00 00" "01 00 00 00"
 " i 00 00 00" "02 00 00 00"
)
 (Inq_Dest Ls)
 (Var_Ptrs 2 0 1)
)
)

Uploading of Marshaled Clusters 99

BMDFM Static Scheduling Subsystem

(one reference per parameter) to the local variable directory (Var_Ptrs). Optionally, each function
can have destination attributes (Inq_Dest) if the result is required by loader (Ld) or listener (Ls).

The structure of the marshaled cluster has the following advantages:

• A cluster is fully relocatable as it contains only function references to the TCZ function
directory and variable references from the local variable directory to the DB.

• A cluster is maximally compact to be transferred and decoded at runtime.

• Each function is associated with a VM byte code fragment that can be more than one VM
function (Fnc #2 has nested a+b). Further each cluster function becomes an atomic
instruction in the dataflow engine.

5.6 Uploading of Marshaled Clusters

The control front-end virtual machine (the loader part of the external task listener/loader pair)
uploads the marshaled clusters to the dataflow engine according to the generated control sequence.
There is no special need to create a control sequence manually. After the preliminary preprocessing
stages a user application is already split into marshaled clusters and control directives automatically.
Figure 5-13 illustrates the uploading process. Global constructions (input, if/else, for/next) are
processed on the control front-end VM in a classic von Neumann manner. The VM communicates
with the dataflow engine through the bi-directional TCZ interface uploading the marshaled clusters
and obtaining data necessary to control the uploading sequence.

The contexts of the marshaled clusters are modified dynamically when the clusters are delivered to
the TCZ interface. The VM stores the current contexts of all application’s variables in a table. The
clusters are loaded with the current contexts, which are taken from the VM context table. Then
contexts are incremented to the next unique values for those destination variables which are
reassigned in the clusters.

The proposed scheme provides one serious advantage that considerably reduces dynamic scheduling
overhead in the dataflow engine. The dataflow runtime engine is fed with the clusters dynamically in
the order of application workflow. So the dataflow engine will stay away from the clusters, which
are not in the current processing scope.

100 Uploading of Marshaled Clusters

Static Scheduling Subsystem BMDFM

Figure 5-13. Dataflow engine controlled by the front-end VM

The front-end VM is a von Neumann control machine with the traditional program counter (PC) and
stack pointer (SP). Table 5-1 summarizes the architecture of all VM registers. The register *context
is associated with the context table of all application’s variables. This table is initialized once at
startup and exists during the whole application life cycle, therefore we do not store *context register
in a stack while push/pop. The VM accumulator can store both integer and string values (accum_slo
and accum_uch respectively). Additionally, three loop control integer registers are intended for
organizing "for" iterations. The loop control, loop step and loop end limit are stored correspondingly
in the loop_slo, loopstep_slo and loopto_slo registers. Because an application can have multiple
nested loops we save these registers on the stack when entering a new nested loop.

The last register which has to be mentioned is *var_lst. It points to the list of UDF local variables.
When the control sequence enters a new local UDF the variable list of a parent UDF is saved on the
stack. Furthermore, when the control sequence leaves the UDF all contexts from the current *var_lst
are released through the dfmput_crelease() call of the TCZ interface, and the previous variable list is
restored from the stack to the *var_lst.

T
C

Z
 In

te
rf

ac
e

T
C

Z
 In

te
rf

ac
e

T
C

Z
 In

te
rf

ac
e

M
u

lt
it

h
re

ad
ed

 D
at

af
lo

w
 R

u
n

ti
m

e
E

n
g

in
e

M
u

lt
it

h
re

ad
ed

M

u
lt

it
h

re
ad

ed
 D

at
af

lo
w

D
at

af
lo

w
 R

u
n

ti
m

e
E

n
g

in
e

 R
u

n
ti

m
e

E
n

g
in

eN=console_input();

...

N=dfmget_data();

if N then

 for I=1 to N

 dfmput_marshaled_cluster(<cluster0>);

 next

else

 dfmput_marshaled_cluster(<cluster1>);

end if
a=f3(); <context>a=f3(); <context>

a=f0(); <context>
b=f1(); <context>
a=b+f2(); <context>

a=f0(); <context>
b=f1(); <context>
a=b+f2(); <context>

F
ro

n
t-

en
d

 V
ir

tu
al

 M
ac

h
in

e
F

ro
n

t-
en

d
 V

ir
tu

al
 M

ac
h

in
e

F
ro

n
t-

en
d

 V
ir

tu
al

 M
ac

h
in

e

Uploading of Marshaled Clusters 101

BMDFM Static Scheduling Subsystem

Table 5-1. Register architecture of the front-end control VM

Four groups of instructions are defined for the front-end control VM (all are explained in Table 5-2):

• Group 1 includes all instructions to communicate with the dataflow engine through the
TCZ interface. Actually, they repeat functionality of the TCZ interface.

• Group 2 is used to control the VM itself. These are classic jump and stack instructions.

• Group 3 is dedicated to the VM input/output.

• Group 4 organizes iteration control.

Register Description
*contexts Current contexts of all application variables
accum_slo Accumulator for integer values
accum_uch Accumulator for string values
loop_slo Loop control register
loopstep_slo Loop step register
loopto_slo Loop end limit register
*var_lst Current UDF variable list
PC Program counter
SP Stack pointer

102 Uploading of Marshaled Clusters

Static Scheduling Subsystem BMDFM

Table 5-2. Instruction set matrix of the front-end control VM

Further we explain the uploading of marshaled clusters in three use cases: local UDF invocation, for-
loop and while-loop. In each case we analyze the generated control sequence.

Local UDF invocation.

Figure 5-14 shows a fragment of code, which calls a locally defined function. The target control
sequence keeps the modified UDF in a cluster (CTRL 2). The UDF is invoked in the GOSUB
statement of CTRL 5, prior to which all UDF local variables are saved on the stack
(ENTER_RECURSION CTRL 4). The function in CTRL 6 copies the UDF return value to the
variable "a" of the function main and restores the local variables by popping them from the stack
(LEAVE_RECURSION CTRL 7).

Mnemonic / OpGroup Mnemonic / COP / Description
DFM 1 PUTCLUSTER 50 Sends marshaled cluster to the dataflow engine

PUTZDATA 70 Sends nil variable to the dataflow engine
PUTIDATA 71 Sends integer variable to the dataflow engine
PUTFDATA 72 Sends float variable to the dataflow engine
PUTSDATA 73 Sends string variable to the dataflow engine
GETIDATA 81 Gets integer data from the dataflow engine
GETSDATA 83 Gets string data from the dataflow engine

CONTROL0 2 PUSHA 10 Pushes registers (except *contexts & *var_lst)
POPA 11 Pops registers (except *contexts & *var_lst)
ENTERRECURSION 12 Pushes *var_lst
LEAVERECURSION 13 Pops *var_lst
GOTO 14 Jumps unconditionally
GOSUB 15 Calls subroutine
RETURN 16 Returns from subroutine
IFGOTO 17 Jumps conditionally

IO 3 ACCEPT 20 Inputs from stdin
SCANCONSOLE 21 Inputs from console
FILECREATE 22 Creates file
FILEOPEN 23 Opens file
FILEWRITE 24 Writes to file
FILEREAD 25 Reads from file
FILECLOSE 26 Closes file
FILEREMOVE 27 Deletes file

CONTROL1 4 LOOP 90 Sets loop registers
FOR 100 Organizes for loop
NEXT 101 Iterates
END 200 Ends control sequence

Uploading of Marshaled Clusters 103

BMDFM Static Scheduling Subsystem

Figure 5-14. Control sequence template of local UDF invocation

Initial code
(defun true
 (progn 1)
)

(setq a (true))

Preprocessed code
(DEFUN MAIN:TRUE (SETQ@I MAIN:TRUE:TMP__000000000@I 1))
(SETQ@I MAIN:A@I (MAIN:TRUE))

Control sequence for the front-end VM
(CTRL (N# 1) (OpGroup 2) (COP 14)
 (GOTO 4) (REM "Pass over UDF ‘MAIN:TRUE’ body")
)

(CTRL (N# 2) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array] (0 14 "MAIN:TRUE:TMP__000000000@I"))
 (Fnc (N# 0)
 (SETQ@I MAIN:TRUE:TMP__000000000@I 1)
 (Var_Ptrs 0)
)
)
)

(CTRL (N# 3) (OpGroup 2) (COP 16)
 (RETURN) (REM "End of UDF ‘MAIN:TRUE’ body")
)

(CTRL (N# 4) (OpGroup 2) (COP 12)
 (ENTER_RECURSION)
 (Vars_N#_Ref_Name_[Array] (0 14 "MAIN:TRUE:TMP__000000000@I"))
)

(CTRL (N# 5) (OpGroup 2) (COP 15)
 (GOSUB 2) (REM "UDF ‘MAIN:TRUE’ call")
)

(CTRL (N# 6) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array]
 (0 0 "MAIN:A@I")
 (1 14 "MAIN:TRUE:TMP__000000000@I")
)
 (Fnc (N# 0)
 (ALSETQ MAIN:A@I MAIN:TRUE:TMP__000000000@I)
 (Var_Ptrs 0 1)
)
) (REM "UDF ‘MAIN:TRUE’ returned value")
)

(CTRL (N# 7) (OpGroup 2) (COP 13)
 (LEAVE_RECURSION)
)

104 Uploading of Marshaled Clusters

Static Scheduling Subsystem BMDFM

For-loop

A typical control sequence of a "for" loop is shown in Figure 5-15. In the preamble section the VM
registers are saved on the stack (PUSHA CTRL 4). The following code (CTRL 5 - 9) prepares loop
controls retrieving loop_slo and loopto_slo values from the dataflow engine. The loop itself is
organized on CTRL 10 - 13. The value of the loop control variable is delivered to the dataflow
engine via dfmput_idata() call twice: inside the iteration (CTRL 11) and one time after the loop is
finished (CTRL 14). The epilogue section restores the VM registers back from the stack (POPA
CTRL 15).

Uploading of Marshaled Clusters 105

BMDFM Static Scheduling Subsystem

Figure 5-15. Control sequence template of for-loop

Initial code
(for i a 1 b
 (outf "%d\n" a)
)

Preprocessed code
(FOR@J MAIN:I@I MAIN:A@I 1 MAIN:B@I
 (SETQ@S MAIN:TMP__000000001@S (OUTF "%d\n" MAIN:A@I))
)

Control sequence for the front-end VM
(CTRL (N# 4) (OpGroup 2) (COP 10)
 (PUSHA)
)
(CTRL (N# 5) (OpGroup 1) (COP 70)
 (dfmput_zdata (VarRef 0) (VarName "MAIN:A@I") (Inq_Dest Ld))
 (REM "<For> ‘MAIN:I@I’ loop initialization begins here")
)
(CTRL (N# 6) (OpGroup 1) (COP 81) (SubCOP 1)
 (<loop_slo> (dfmget_idata))
)
(CTRL (N# 7) (OpGroup 4) (COP 90) (SubCOP 2)
 (<loopstep_slo> 1)
)

(CTRL (N# 8) (OpGroup 1) (COP 70)
 (dfmput_zdata (VarRef 1) (VarName "MAIN:B@I") (Inq_Dest Ld))
)
(CTRL (N# 9) (OpGroup 1) (COP 81) (SubCOP 3)
 (<loopto_slo> (dfmget_idata))
)
(CTRL (N# 10) (OpGroup 4) (COP 100)
 (FOR <loop_slo> (STEP <loopstep_slo>) (TO <loopto_slo>) (BODY 14))
 (REM "Controlled by ‘MAIN:I@I’ variable")
)
(CTRL (N# 11) (OpGroup 1) (COP 71) (SubCOP 1)
 (dfmput_idata <loop_slo> (VarRef 8) (VarName "MAIN:I@I"))
)

(CTRL (N# 12) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array]
 (0 0 "MAIN:A@I")
 (1 15 "MAIN:TMP__000000001@S")
)
 (Fnc (N# 0)
 (SETQ@S MAIN:TMP__000000001@S (OUTF "%d\n" MAIN:A@I))
 (Inq_Dest Ls)
 (Var_Ptrs 1 0)
)
)
)

(CTRL (N# 13) (OpGroup 4) (COP 101) (SubCOP 1)
 (NEXT (BODY 10))
 (REM "Controlled by ‘MAIN:I@I’ variable")
)
(CTRL (N# 14) (OpGroup 1) (COP 71) (SubCOP 1)
 (dfmput_idata <loop_slo> (VarRef 8) (VarName "MAIN:I@I"))
 (REM "<For> postloop ‘MAIN:I@I’ control variable value")
)
(CTRL (N# 15) (OpGroup 2) (COP 11)
 (POPA)
)

106 Uploading of Marshaled Clusters

Static Scheduling Subsystem BMDFM

While-loop

The loop we consider is additionally complicated by a "break" termination (Figure 5-16). It is nearly
impossible to process terminators (break, exit) on the dataflow when several iteration contexts are
already wandering across the dataflow engine. Therefore the only possible place is to embed them
into a control sequence for the front-end control VM.

In the preamble section we compute the while-loop control condition (CTRL 4) and save the VM
registers on the stack (PUSHA CTRL 5). The loop body (CTRL 6 - 17) retrieves the control
condition value from the dataflow engine in every iteration (CTRL 6 - 7) and exits the loop (IF_NOT
GOTO CTRL 8) when finished. The cluster in CTRL 9 performs mainly all loop computations.
CTRL 10 - 15 are an implementation of the "break" termination. The next cluster CTRL 16
recalculates a new value for the while-loop control condition. Then the unconditional jump redirects
back to the beginning of the loop (GOTO CTRL 17). Finally, the epilogue section restores the VM
registers from the stack (POPA CTRL 18).

Initial code
(while (< a b) (progn
 (outf "%d\n" a)
 (setq a (++ a))
 (if (> a 100)
 (break)
 nil
)
))

Preprocessed code
(SETQ@I MAIN:TMP__000000001@I (<@I MAIN:A@I MAIN:B@I))
(WHILE@J
 MAIN:TMP__000000001@I
 (PROGN
 (SETQ@S MAIN:TMP__000000002@S (OUTF "%d\n" MAIN:A@I))
 (SETQ@I MAIN:A@I (++@J MAIN:A@I))
 (SETQ@I MAIN:TMP__000000005@I (>@I MAIN:A@I 100))
 (IF@J MAIN:TMP__000000005@I
 (BREAK)
 (SETQ@Z MAIN:TMP__000000004@Z NIL)
)
 (SETQ@I MAIN:TMP__000000001@I (<@I MAIN:A@I MAIN:B@I))
)
)

Uploading of Marshaled Clusters 107

BMDFM Static Scheduling Subsystem

Control sequence for the front-end VM
(CTRL (N# 4) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array]
 (0 0 "MAIN:A@I")
 (1 1 "MAIN:B@I")
 (2 14 "MAIN:TMP__000000001@I")
)
 (Fnc (N# 0)
 (SETQ@I MAIN:TMP__000000001@I (<@I MAIN:A@I MAIN:B@I))
 (Var_Ptrs 2 0 1)
)
)
)

(CTRL (N# 5) (OpGroup 2) (COP 10)
 (PUSHA)
)

(CTRL (N# 6) (OpGroup 1) (COP 70)
 (dfmput_zdata (VarRef 14) (VarName "MAIN:TMP__000000001@I")
 (Inq_Dest Ld)
)
 (REM "<While> ‘MAIN:TMP__000000001@I’ loop body begins here")
)

(CTRL (N# 7) (OpGroup 1) (COP 81) (SubCOP 1)
 (<loop_slo> (dfmget_idata))
)

(CTRL (N# 8) (OpGroup 2) (COP 17) (SubCOP 1)
 (IF_NOT <loop_slo> (GOTO 18))
 (REM "Exit <while> loop")
)

(CTRL (N# 9) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array]
 (0 0 "MAIN:A@I")
 (1 15 "MAIN:TMP__000000002@S")
 (2 0 "MAIN:A@I")
 (3 17 "MAIN:TMP__000000005@I")
)
 (Fnc (N# 0)
 (SETQ@S MAIN:TMP__000000002@S (OUTF "%d\n" MAIN:A@I))
 (Inq_Dest Ls)
 (Var_Ptrs 1 0)
)
 (Fnc (N# 1)
 (SETQ@I MAIN:A@I (++@J MAIN:A@I))
 (Var_Ptrs 2 0)
)
 (Fnc (N# 2)
 (SETQ@I MAIN:TMP__000000005@I (>@I MAIN:A@I 100))
 (Var_Ptrs 3 2)
)
)
)

(CTRL (N# 10) (OpGroup 1) (COP 70)
 (dfmput_zdata (VarRef 17) (VarName "MAIN:TMP__000000005@I")
 (Inq_Dest Ld)
)
)

(CTRL (N# 11) (OpGroup 1) (COP 81)
 (<accum_slo> (dfmget_idata))
)

(CTRL (N# 12) (OpGroup 2) (COP 17)
 (IF_NOT <accum_slo> (GOTO 15))
 (REM "Pass over ‘MAIN:TMP__000000005@I’ <if> conditional branch")
)

108 Summary

Static Scheduling Subsystem BMDFM

Figure 5-16. Control sequence template of while-loop

5.7 Summary

This chapter analyzes the static scheduling subsystem of BMDFM. The purpose of the static
scheduling is to preprocess and to reorganize conventional input code into a set of marshaled clusters
and a control sequence. The static scheduler is designed as a hybrid architecture, in which dataflow
engine is controlled by a von Neumann front-end VM running the control sequence and uploading
generated marshaled clusters into the dataflow engine. Two topics are described in details:

• At first, we explain all code transformations that are necessary to generate the target
marshaled clusters and the control sequence.

• Secondly, we discuss the architecture of the front-end VM that has a minimal and sufficient
set of facilities to control the dataflow engine.

(CTRL (N# 13) (OpGroup 2) (COP 14)
 (GOTO 18) (REM "BREAK")
)

(CTRL (N# 14) (OpGroup 2) (COP 14)
 (GOTO 16)
 (REM "Pass over ‘MAIN:TMP__000000005@I’ <else> conditional branch")
)

(CTRL (N# 15) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array] (0 16 "MAIN:TMP__000000004@Z"))
 (Fnc (N# 0)
 (SETQ@Z MAIN:TMP__000000004@Z NIL)
 (Var_Ptrs 0)
)
)
)

(CTRL (N# 16) (OpGroup 1) (COP 50)
 (dfmput_marshaled_cluster
 (Vars_N#_Ref_Name_[Array]
 (0 0 "MAIN:A@I")
 (1 1 "MAIN:B@I")
 (2 14 "MAIN:TMP__000000001@I")
)
 (Fnc (N# 0)
 (SETQ@I MAIN:TMP__000000001@I (<@I MAIN:A@I MAIN:B@I))
 (Var_Ptrs 2 0 1)
)
)
)

(CTRL (N# 17) (OpGroup 2) (COP 14) (SubCOP 1)
 (GOTO 6)
 (REM "Continue <while> ‘MAIN:TMP__000000001@I’ loop,"
 " <while> loop body ends here"
)
)

(CTRL (N# 18) (OpGroup 2) (COP 11)
 (POPA)
)

Summary 109

BMDFM Static Scheduling Subsystem

The chapter contributes with the following ideas:

• The proposed methodology of the code preprocessing/reorganization is applicable to any
conventional code semantics that formally consist of variable assignments, conditional
processing, loop iterations and function declarations/invocations.

• There is no need for a special dataflow language. The marshaled clusters and control
sequence are derived from a user application’s code automatically.

• To reduce dynamic scheduling overhead in a runtime dataflow engine the dataflow engine
is fed with the clusters dynamically in the order of the application workflow. So the
dataflow engine will stay away from the clusters, which are not in the current processing
scope.

110 Summary

Static Scheduling Subsystem BMDFM

111

BMDFM Transparent Dataflow Semantics

Chapter 6
Transparent Dataflow Semantics

6.1 Overview

In this chapter we would like to put emphasis on the main feature of the proposed architecture - to
provide a conventional programming paradigm at the top level. We call this ability of BMDFM
transparent dataflow semantics, the convenience of which justifies all the effort we spent designing
the complex architecture behind it. We think that, because the complexity is hidden, transparent
dataflow semantics is a key point defining the applicability of the BMDFM system.

The mentioned transparency makes the discussion in this chapter relatively short.

6.2 Conventional Programming Paradigm

BMDFM provides a conventional programming environment with transparent dataflow semantics.
No directives for parallel execution are required! A user understands BMDFM as a virtual machine,
which runs every statement of an application program in parallel having all parallelization and
synchronization mechanisms fully transparent. The statements of an application program are normal
operators, which any single threaded program might consist of - they include variable assignments,
conditional processing, loops, function calls, etc.

Suppose we have the code fragment shown below:

(setq a (udf1 x)) # a=udf1(x); udf stands for user defined
(setq b (udf2 x)) # b=udf2(x); function
(setq b (++ b)) # b++;
(outf "a = %d\n" a) # printf("a = %d\n",a);
(outf "b = %d\n" b) # printf("b = %d\n",b);

The two first statements are independent, so the dataflow engine can run them on different
processors. The two last statements can also run in parallel but only after "a" and "b" are computed.
The dataflow engine recognizes dependencies automatically because of its ability to build a dataflow
graph dynamically at run time (in contrast to a static Petri Net). Additionally, the dataflow engine
orders the output stream to output the results sequentially. Thus even after the out-of-order
processing the results will appear in a natural way.

Suppose that above code fragment now is nested in a loop:

112 Conventional Programming Paradigm

Transparent Dataflow Semantics BMDFM

(for i 1 1 N (progn # for(i=1;i<=N;i++){
(setq a (udf1 x))
(setq b (udf2 x))
(setq b (++ b))
(outf "a = %d\n" a)
(outf "b = %d\n" b)

)) # }

The dataflow engine will keep variables "a" and "b" under unique contexts for every iteration.
Actually, these are different copies of the variables in the shared memory pool. A context variable
exists until it is referenced by instruction consumers. Later non-referenced contexts will be garbage
collected at runtime. Therefore the dataflow engine can exploit both local parallelism within the
iteration and global parallelism as well running multiple iterations simultaneously.

In comparison with the traditional directive-based paradigm for SMP (OpenMP) our approach has
the following advantages:

• According to OpenMP the user explicitly specifies the actions to be taken by the compiler
and runtime system in order to execute the program in parallel. OpenMP implementations
do not check for dependencies, conflicts, deadlocks, race conditions or other problems that
result in incorrect program execution. The user is responsible for ensuring that the
application using the OpenMP API constructs executes correctly. The BMDFM dataflow
engine takes care of synchronization at runtime automatically. No locks, semaphores,
mutexes, barriers or others are needed.

• Although the fork-join model can be useful for solving a variety of problems, it is
somewhat tailored for large array-based applications. BMDFM is not specialized for a
range of tasks.

• The OpenMP principle is based on barrier points, in which all team threads should be
synchronized ("nowait" directive will not help very much). Thus a system can idle for the
longest thread. The dataflow engine loads available CPUs in a natural and balanced
manner.

• In OpenMP any unsynchronized calls to output functions may result in output in which data
written by different threads appears in non-deterministic order. Similarly, unsynchronized
calls to input functions may read data in non-deterministic order. In BMDFM this problem
is solved. If non-deterministic order of i/o is really necessary the user can write his own
simple asynchronous i/o UDF.

Synchronization of Asynchronous Coarse-Grain and Fine-Grain Functions 113

BMDFM Transparent Dataflow Semantics

6.3 Synchronization of Asynchronous Coarse-Grain and Fine-
Grain Functions

In addition to the pure computations, an application very often accesses different peripheral devices,
performs graphical output or reads/writes dynamically allocated memory. All these asynchronous
resources have a similar access policy through interface functions: to obtain a descriptor first and
then to refer the resource using this descriptor. In the case of dynamic memory a memory address is
used. In this section we discuss how to synchronize the asynchronous interface functions on dataflow
having no special synchronization directives but using only return values of the functions. We
generalize it into a methodology for coarse-grain and fine-grain access types.

Suppose we have the source code fragment shown below that allocates three memory blocks
dynamically (p, c0 and c1). Block "p" from the producer loop is used in two consumer loops.
Formally, we can say that memory release calls are also a kind of consumer of the memory blocks.

p=malloc(<array_size>); // allocation
c0=malloc(<array_size>);
c1=malloc(<array_size>);

for(i=0;i<N;I++) // loop-producer
*(p+i)=...;

for(i=0;i<N;I++) // loop-consumer 0
(c0+i)=...(p+i)...;

for(i=0;i<N;I++) // loop-consumer 1
(c1+i)=...(p+i)...;

free(p); // memory release
free(c0);
free(c1);

In the proposed programming environment the corresponding coarse-grain functions will be
generated or created manually, which are regarded as the seamless instructions of the virtual
machine.

p_udf(*p){ // function-producer
for(i=0;i<N;i++)

*(p+i)=...;
return p; // repeats the address

}

114 Synchronization of Asynchronous Coarse-Grain and Fine-Grain Functions

Transparent Dataflow Semantics BMDFM

c0_udf(*c0, *p){ // function-consumer 0
for(i=0;i<N;i++)

(c0+i)=...(p+i)...;
return c0; // repeats the address

}

c1_udf(*c1, *p){ // function-consumer 1
for(i=0;i<N;i++)

(c1+i)=...(p+i)...;
return c1; // repeats the address

}

Then these coarse-grain seamless functions are called on the VM level and synchronized on the
dataflow engine due to artificial dependencies created via simple boolean bitwise operations.

(setq p_sync (& 0
(setq p (asyncheap_malloc <array_size>)) # allocation

))
(setq c0_sync (& 0

(setq c0 (asyncheap_malloc <array_size>))
))
(setq c1_sync (& 0

(setq c1 (asyncheap_malloc <array_size>))
))

(setq p_sync (& 0
(setq p (p_udf (| p p_sync))) # calls function-producer

))
(setq p_sync (setq c0_sync (& 0

(setq c0 (c0_udf (| c0 c0_sync) p)) # calls function-consumer 0
)))
(setq p_sync (setq c1_sync (& 0

(setq c1 (c1_udf (| c1 c1_sync) p)) # calls function-consumer 1
)))

(asyncheap_free (| p p_sync)) # memory release
(asyncheap_free (| c0 c0_sync))
(asyncheap_free (| c1 c1_sync))

The synchronization rules are trivial:

• Every pointer variable has a corresponding synchronization "_sync" variable.

• A pointer to a read-only area is passed as a direct argument. Thus parallel independent calls
are possible.

• A pointer to a modified area is passed as a dependent pair of the pointer and "_sync"
variables.

Synchronization of Asynchronous Coarse-Grain and Fine-Grain Functions 115

BMDFM Transparent Dataflow Semantics

• After the call is finished both "_sync" variables (for all pointers involved in the call) and
the pointer variables (only for pointers to the modified areas) are touched. Thus the
asynchronous coarse grain producer/consumer functions will be synchronized due to the
fact that BMDFM is capable of using the transparent dataflow semantics.

To exploit the fine-grain parallelism of loops the same synchronization rules are used. Below it is
shown of how this applies to the c0_udf consumer loop function. The function itself is modified
slightly to make the loop interleaved via "start" and "step" arguments.

c0_udf_(start, step, *c0, *p){ // modified function-consumer 0.
for(i=start;i<N;i+=step) // loop is interleaved

(c0+i)=...(p+i)...;
return 0; // now returns zero

}

On the VM level the function call is synchronized through the "c0_sync" and "p_sync" variables.

(setq nthreads (n_cpuprocs)) # number of configured CPU PROCs

(setq c0 (| c0 c0_sync)) # prologue
(for thread 1 1 nthreads

(setq c0_sync (+ c0_sync
(c0_udf_ (-- thread) nthreads c0 p) # calls modified function-consumer 0

))
)
(setq p_sync c0_sync) # epilogue
(setq c0 (| c0 c0_sync))

To remove dependencies of the c0_udf_ function calls the preprocessor reorganizes the code
introducing a temporary variable TMP1. Now the time consuming calls of c0_udf_ function are
context independent and can be executed in parallel at the dataflow level.

Initial code
(for thread 1 1 nthreads
 (setq c0_sync (+ c0_sync
 (c0_udf_ (-- thread) nthreads c0 p)
))
)

Preprocessed code
(FOR@J MAIN:THREAD@I 1 1 MAIN:NTHREADS@I (PROGN
 (SETQ@I MAIN:TMP__000000001@I
 (MAIN:C0_UDF_ (--@J MAIN:THREAD@I) MAIN:NTHREADS@I MAIN:C0@I MAIN:P@I)
)
 (SETQ@I MAIN:C0_SYNC@I (+@J MAIN:C0_SYNC@I MAIN:TMP__000000001@I))
))

116 Ordering Non-Standard Stream in Out-of-Order Processing

Transparent Dataflow Semantics BMDFM

6.4 Ordering Non-Standard Stream in Out-of-Order Processing

The dataflow runtime engine processes data in an out-of-order fashion but the output results have to
be ordered as if the application were processed on a single processor. The dataflow engine
recognizes and orders only standard output streams automatically.

A non-standard case can be easily solved as well due to the transparent dataflow semantics. Suppose
we have a function devicewrite() that writes data to a special device by chunks. In the function main
an array of data chunks is processed first and then delivered to devicewrite().

devicewrite(*chunk){ // non-standard output function.
// ... // performs non-standard output
return;

}

*process(*chunk){ // chunk process function.
// ... // performs chunk processing
return chunk;

}

**chunks[N]; // array of data chunks

for(i=0;i<N;i++) // processes and outputs array of chunks
devicewrite(process(chunks[i]));

A user has to create his own interface function with a dummy argument "enable", which repeats its
value as the result of the interface function (very often in a real implementation such an argument
has a meaning of the opened device descriptor).

devicewrite_udf(enable, *chunk){ // modified non-standard output function.
devicewrite(chunk); // calls non-standard output function.
return enable; // repeater

}

At the virtual machine level the interface function is called as any other conventional function. An
additional synchronization variable "wenable" is reassigned every time the interface function is
called. Thus the problem is reduced to a common case of data dependencies.

Because the preprocessor uses a policy that all UDF invocations have to have their own destination
variables, an artificial temporary variable TMP1 is automatically introduced. Now the dataflow
engine calls process() functions in a parallel out-of-order manner but the non-standard output stream
will be ordered due to the data dependencies.

The same technique can be applied to all cases where out-of-order processing has to be ordered.

Speculative Dataflow Processing 117

BMDFM Transparent Dataflow Semantics

6.5 Speculative Dataflow Processing

Speculative processing enables parallel computations in the branches of code in advance hoping that
results of the processed branches will be necessary. Speculative processing is useful because the
computing resources can process a dependent code section instead of idle until the dependency is
resolved. We propose very simple and elegant technique of how to process speculatively on
dataflow:

• A conditional variable, which creates dependency, is allocated in the shared memory pool.
A reference address is used instead of the variable that makes dataflow dependency
disappeared (the address itself is data that is ready).

• A conditional that checks the conditional variable is moved into the seamless user defined
functions. Such a conditional controls whether the UDF body will be processed.

• Finally, all UDF-instructions are uploaded into the dataflow engine to be processed
speculatively. Optionally, the control front-end VM can restrict the number of uploaded
instructions keeping the dataflow resources not overloaded.

The following example demonstrates a pseudo-code fragment with loop-carried control dependency.
Each next process() UDF can not be uploaded into the dataflow engine because of the status value
yielded by the previous call of the same UDF.

Initial code
(setq wenable 1) # write enable

(for i 1 1 N
 (setq wenable (devicewrite_udf wenable # repeats write enable
 (process (index chunks (-- i)))
))
)

Preprocessed code
(SETQ@I MAIN:WENABLE@I 1)

(FOR@J MAIN:I@I 1 1 MAIN:N@I (PROGN
 (SETQ@I MAIN:TMP__000000001@I # Out-of-order processing
 (MAIN:PROCESS (INDEX@I MAIN:CHUNKS@I (--@J MAIN:I@I)))
)
 (SETQ@I MAIN:WENABLE@I # Ordered on dataflow due to the data dependencies
 (MAIN:DEVICEWRITE_UDF MAIN:WENABLE@I MAIN:TMP__000000001@I)
)
))

118 Speculative Dataflow Processing

Transparent Dataflow Semantics BMDFM

The modified speculative version of the same example is shown below. Now the UDF body will be
processed only if global_status is still true. Multiple UDF invocations can be uploaded into the
dataflow engine as they do not depend from each other anymore. Resulting status is accumulated in
variable "status" through the logical multiplication. A simple modulo operation (%1000) restricts the
number of speculative instructions uploaded into the dataflow engine. After speculative processing
of the previous 1000 instructions the resulting status is checked to determine whether the next
speculative group of instructions has to be uploaded.

Callee (a seamless UDF processed on the Multithreaded Dataflow Engine)
boolean process(*chunk){ // a UDF that processes a chunk
 status; // and returns ’true’ or ’false’

 // processing...
 // ==> status=true_false;

 return status;
}

Caller (code processed by the Von-Neumann Control Front-end VM)
**chunks[N]; // array of data chunks

for(i=0;i<N;i++){

 status=process(chunks[i]);

 if(!status) // loop-carried control dependency
 break;

}

Callee (a seamless UDF processed on the Multithreaded Dataflow Engine)
boolean process(*chunk, *global_status){

 if(global_status){ // global status is in shared memory.
 // processing... // actual processing might not happen
 // ==> global_status=true_false;
 }

 return global_status;
}

Caller (code processed by the Von-Neumann Control Front-end VM)
**chunks[N]; // array of data chunks

*global_status=allocate_in_shared_memory(true);
status=true;

for(i=0;i<N;i++){

 status&=process(chunks[i],global_status);

 if(!(i%1000)) // upload every 1000 process()
 if(!status) // instructions into the DataFlow
 break; // Engine speculatively

}

// artificial dependency to complete the loop first and then deallocate
deallocate_in_shared_memory(global_status*(status|1));

Summary 119

BMDFM Transparent Dataflow Semantics

6.6 Summary

In this chapter we define the transparent dataflow semantics as a conventional programming
paradigm on top of the dataflow. No synchronization and parallelization directives are needed.

The directive-based approach is intended for numeric loop computations, thus it is restricted to the
numeric computation area. Our approach presumes that any application, presented in a conventional
form, will be processed in parallel automatically. Such an application could come from the symbol
processing area, adaptive algorithms or whatever (also including numeric computation as well).

Within the transparent dataflow semantics we explain the methodology of how to synchronize
asynchronous coarse/fine-grain functions, how to order non-standard streams in out-of-order
processing and how to process speculatively. This makes the proposed paradigm completed and
applicable for all-purpose computing.

The transparent dataflow semantics paradigm is intended for SMP. An ideal SMP hardware has to be
UMA capable but unfortunately the current technologies can ensure only NUMA functionality.
Therefore we still rely on large-grain seamless VM instructions to achieve higher performance.

120 Summary

Transparent Dataflow Semantics BMDFM

121

BMDFM Evaluation

Chapter 7
Evaluation

7.1 Overview

In this chapter we evaluate the efficiency of BMDFM. We run NAS Parallel Benchmarks 2.3, which
are widely recognized as a standard indicator of performance. We also evaluate the dynamic
scheduling overhead introduced by the dataflow runtime engine.

The biggest advantage of the dataflow runtime engine, however, is to parallelize dynamic adaptive
(irregular) applications, which can not be analyzed statically. We also test this capability as well
running an IP core generator based on a VHDL preprocessor.

7.2 Test Environment

The BMDFM system is available for commodity SMP platforms. The BMDFM code is written in
ANSI C, so every machine supporting ANSI C and shmctl()/semctl() UNIX SVR4 IPC calls should
be able to run BMDFM. The official BMDFM web site [14] provides already ported fully
multithreaded versions for:

• Intel/Linux/32bit, Intel/FreeBSD/32bit,

• IA-64/Linux/64bit, AMDx86-64/Linux/64bit,

• Alpha/Tru64OSF1/64bit, Alpha/Linux/64bit, Alpha/FreeBSD/64bit,

• PA-RISC/HP-UX/32bit, PA-RISC/HP-UX/64bit,

• SPARC/SunOS/32bit, SPARC/SunOS/64bit,

• MIPS/IRIX/32bit, MIPS/IRIX/64bit,

• RS6000/AIX/32bit, RS6000/AIX/64bit,

• PowerPC/MacOS/32bit,

• Intel/Win32-SFU, Intel/Win32-UWIN

• and a limited single threaded version for Intel/Win32.

122 Test Environment

Evaluation BMDFM

For testing purposes we chose the 8-way POWER4 IBM p690 SMP server running AIX 5.1. In all
our tests we measure real times to calculate speedups. Additionally, to measure the dynamic
scheduling overhead and to count number of the processed instructions we use the following
BMDFM embedded facilities, respectively:

• Statistics collector.

• Process logging.

Statistics collector

Each of the dynamic scheduling processes has its own signal handler that collects CPU execution
times via the standard UNIX call getrusage().

void resgettime_handl(){
// ...
getrusage(RUSAGE_SELF,&res_used);
// ...
return "[PROC#%ld]: USRs=%d, USRus=%d, SYSs=%d, SYSus=%d.\n";

}

signal(dfmsrv.resgettime_sig,(void(*)(int))&resgettime_handl);

The BMDFM server sends a signal to all dynamic scheduling processes and then summarizes the
obtained information into a report. We use this report to measure the dynamic scheduling overhead.

[SmartHistory]: Assuming {2}: GET COUNT
[SysMsg]: Sending a SIG_GET_TIME to the CPU PROCs...
pipe[CPUPROC#0]: USRs=12, USRus=270000, SYSs=1, SYSus=510000.
pipe[CPUPROC#2]: USRs=13, USRus=270000, SYSs=0, SYSus=580000.
pipe[CPUPROC#4]: USRs=15, USRus=110000, SYSs=3, SYSus=600000.
pipe[CPUPROC#1]: USRs=12, USRus=360000, SYSs=1, SYSus=400000.
pipe[CPUPROC#3]: USRs=12, USRus=870000, SYSs=1, SYSus=500000.
pipe[CPUPROC#5]: USRs=12, USRus=590000, SYSs=0, SYSus=790000.
pipe[CPUPROC#6]: USRs=12, USRus=600000, SYSs=1, SYSus=400000.
pipe[CPUPROC#7]: USRs=12, USRus=150000, SYSs=1, SYSus=380000.
[SysMsg]: Sending a SIG_GET_TIME to the OQ PROCs...
pipe[OQPROC#0]: USRs=0, USRus=120000, SYSs=0, SYSus=410000.
pipe[OQPROC#1]: USRs=0, USRus=160000, SYSs=0, SYSus=460000.
pipe[OQPROC#2]: USRs=0, USRus=140000, SYSs=0, SYSus=600000.
pipe[OQPROC#3]: USRs=0, USRus=180000, SYSs=0, SYSus=520000.
[SysMsg]: Sending a SIG_GET_TIME to the IORBP PROCs...
pipe[IORBPPROC#0]: USRs=0, USRus=50000, SYSs=0, SYSus=110000.
pipe[IORBPPROC#3]: USRs=0, USRus=40000, SYSs=0, SYSus=130000.
pipe[IORBPPROC#6]: USRs=0, USRus=100000, SYSs=0, SYSus=140000.
pipe[IORBPPROC#7]: USRs=0, USRus=40000, SYSs=0, SYSus=90000.
pipe[IORBPPROC#2]: USRs=0, USRus=90000, SYSs=0, SYSus=130000.
pipe[IORBPPROC#1]: USRs=0, USRus=20000, SYSs=0, SYSus=160000.
pipe[IORBPPROC#4]: USRs=0, USRus=160000, SYSs=0, SYSus=180000.
pipe[IORBPPROC#5]: USRs=0, USRus=70000, SYSs=0, SYSus=270000.
[SysMsg]: !!!!! GENERAL BENCHMARKS OF THE PERFORMANCE !!!!!

Test Environment 123

BMDFM Evaluation

[Msg]: All times are given in seconds below.
[DFMSrv]: CPU PROCs concurrency factor:
[DFMSrv]: 1.153800000000E+02/1.871000000000E+01=6.166755745591E+00.
[DFMSrv]: Parallelizing index:
[DFMSrv]: 4.370000000000E+00/7.400000000000E-01=5.905405405405E+00.
[DFMSrv]: BM_DFM Server total reached concurrency:
[DFMSrv]: 1.197500000000E+02/1.871000000000E+01=6.400320684126E+00.
[DFMSrv]: Estimation of the CPU PROCs run-time workload:
[DFMSrv]: Abs. time range: min=1.338000000000E+01, max=1.871000000000E+01.
[DFMSrv]: Square root of dispersion = 1.644184828418E+00.
[DFMSrv]: Normalized standard deviation = 4.030557260178E-02 (4.03%).
[DFMSrv]: Estimation of the OQPROCs run-time workload:
[DFMSrv]: Abs. time range: min=5.300000000000E-01, max=7.400000000000E-01.
[DFMSrv]: Square root of dispersion = 8.042853971073E-02.
[DFMSrv]: Normalized standard deviation = 6.210698047160E-02 (6.21%).
[DFMSrv]: Estimation of the IORBPPROCs run-time workload:
[DFMSrv]: Abs. time range: min=1.300000000000E-01, max=3.400000000000E-01.
[DFMSrv]: Square root of dispersion = 7.495832175282E-02.
[DFMSrv]: Normalized standard deviation = 1.191090732984E-01 (11.91%).

The CPU time of a process is calculated according to expression (1), where USRS is user time in
seconds, USRUS is additional user time in microseconds, SYSS – system time in seconds and SYSUS
is additional system time in microseconds. The expressions below show the calculations for:

• CPU PROC concurrency factor (2).

• Parallelization index of the scheduling processes (3).

• Total reached concurrency (4).

• Square root of dispersion (5).

• Normalized standard deviation (6) as an integral characteristic of the load balance.

(1) (4)

(2) (5)

(3) (6)

124 NAS Parallel Benchmarks

Evaluation BMDFM

Process logging

The dataflow engine is able to generate a computational dataflow graph that we use to count the
number of processed instructions. All execution processes (CPU PROCs) and I/O ring buffer
processes (IORBP PROCs) write their activities into a log file (example fragment is shown below).
Every entry in the log file has common clock synchronization. The TaskPort_ID tag unifies the
entries belonging to the same application. IORBP PROC entries show data written to the shared
memory pool, CPU PROC entries show executed instructions and types of results. Operand
references are written in the following format:

<DB_addr:Row:Offset_in_Row>[Index](#Context){Type} /* Var_Names */

[CPUPROC#17]: BEGIN at (sec=984321321, usec=96606)
TaskPort_ID = #2
FstLispCode = ‘(SETQ@S MAIN:TMP__000000001@S (OUTF "*** t00: ‘A*x^2+B*x+C=0’

square equations calculation ***\n\n" 0))’
AddressRefs = <18:0:0>[0](#0){UCH59} /* MAIN:TMP__000000001@S */
OutputOrder = {0(Ls)}

END_OF_CPUPROC_ENTRY at (sec=984321321, usec=103984)

[CPUPROC#14]: BEGIN at (sec=984321321, usec=99479)
TaskPort_ID = #2
FstLispCode = ‘(SETQ@S MAIN:TMP__000000002@S "How many equations do you want

to solve: ")’
AddressRefs = <19:0:0>[0](#0){UCH41} /* MAIN:TMP__000000002@S */
OutputOrder = {(Ld), 1(Ls)}

END_OF_CPUPROC_ENTRY at (sec=984321321, usec=108828)
[IORBPPROC#18]: BEGIN at (sec=984321323, usec=98113)

TaskPort_ID = #2
SrcAddrRefs = <20:0:0>[0](#0) = "5" /* MAIN:TMP__000000003@S */

END_OF_IORBPPROC_ENTRY at (sec=984321323, usec=98797)
[CPUPROC#19]: BEGIN at (sec=984321323, usec=109027)

TaskPort_ID = #2
FstLispCode = ‘(SETQ@I MAIN:NUMB@I (IVAL@S MAIN:TMP__000000003@S))’
AddressRefs = <14:0:0>[0](#0){SLO8}, <20:0:0>[0](#0){UCH1}

/* MAIN:NUMB@I, MAIN:TMP__000000003@S */
OutputOrder = {(Ld)}

END_OF_CPUPROC_ENTRY at (sec=984321323, usec=114636)
[IORBPPROC#21]: BEGIN at (sec=984321323, usec=124816)

TaskPort_ID = #2
SrcAddrRefs = <11:0:0>[0](#0) = 1 /* MAIN:I@I */

END_OF_IORBPPROC_ENTRY at (sec=984321323, usec=125041)

7.3 NAS Parallel Benchmarks

NAS Parallel Benchmarks [16, 112] were derived from Computational Fluid Dynamics (CFD) code.
They were designed to compare the performance of parallel computers and are widely recognized as
a standard indicator of computer performance. NPB consists of five kernels and three simulated CFD
applications derived from important classes of aerophysics applications. These five kernels mimic

NAS Parallel Benchmarks 125

BMDFM Evaluation

the computational core of five numerical methods used by CFD applications. The simulated CFD
applications reproduce much of the data movement and computation found in full CFD code.

• BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimensional
(3-D) compressible Navier-Stokes equations. The finite differences solution to the problem
is based on an Alternating Direction Implicit (ADI) approximate factorization that
decouples the x, y and z dimensions. The resulting systems are a Block-Tridiagonal of 5x5
blocks and are solved sequentially along each dimension.

• SP is a simulated CFD application that has a similar structure to BT. The finite differences
solution to the problem is based on a Beam-Warming approximate factorization that
decouples the x, y and z dimensions. The resulting system has Scalar Pentadiagonal bands
of linear equations that are solved sequentially along each dimension.

• LU is a simulated CFD application that uses a symmetric successive over-relaxation
(SSOR) method to solve a seven-block-diagonal system resulting from finite-difference
discretization of the Navier-Stokes equations in 3-D by splitting it into block Lower and
Upper triangular systems.

• FT contains the computational kernel of a 3D fast Fourier Transform (FFT)-based spectral
method. FT performs three one-dimensional (1-D) FFTs, one for each dimension.

• MG uses a V-cycle MultiGrid method to compute the solution of the 3-D scalar Poisson
equation. The algorithm works continuously on a set of grids. It tests both short and long
distance data movement.

• CG uses a Conjugate Gradient method to compute an approximation to the smallest
eigenvalue of a large, sparse, unstructured matrix. This kernel tests unstructured grid
computations and communications by using a matrix with randomly generated locations of
entries.

• IS is an Integer Sort kernel.

• EP is an Embarrassingly Parallel benchmark. It generates pairs of Gaussian random
deviates according to a specific scheme. The goal is to establish the reference point for
peak performance of a given platform.

Our starting point is the C implementation of NAS Parallel Benchmarks 2.3, automatically translated
into the BMDFM programming model scheme C. The following code fragment demonstrates a
typical transformation of parallel loops for the SSOR initialization of the LU benchmark. Each
parallel loop is presented in an interleaved fashion and located in the _wrk() function. The
corresponding _int() interface function is a kind of bridge between the C implementation and the
virtual machine. Then C functions are called and synchronized on the VM level.

126 NAS Parallel Benchmarks

Evaluation BMDFM

void lu_ssor_init_wrk(SLO step, SLO interleave, SLO ISIZ1, SLO ISIZ2,
DFL ****a, DFL ****b, DFL ****c, DFL ****d){

SLO i,j,k,m;
for(i=step;i<ISIZ1;i+=interleave)

for(j=0;j<ISIZ2;j++)
for(k=0;k<5;k++)

for(m=0;m<5;m++)
a[i][j][k][m]=b[i][j][k][m]=c[i][j][k][m]=d[i][j][k][m]=0.;

return;
}
void lu_ssor_init_int(ULO *dat_ptr, struct fastlisp_data *ret_dat){

SLO step,interleave,ISIZ1,ISIZ2;
DFL ****a,****b,****c,****d
ret_ival(dat_ptr,&step);
ret_ival(dat_ptr+1,&interleave);
ret_ival(dat_ptr+2,&ISIZ1);
ret_ival(dat_ptr+3,&ISIZ2);
ret_ival(dat_ptr+4,(SLO*)&a);
ret_ival(dat_ptr+5,(SLO*)&b);
ret_ival(dat_ptr+6,(SLO*)&c);
ret_ival(dat_ptr+7,(SLO*)&d);
if(noterror){

lu_ssor_init_wrk(step,interleave,ISIZ1,ISIZ2,a,b,c,d);
ret_dat->single=1;
ret_dat->type=’I’;
ret_dat->value.ival=0;

}
return;

}

INSTRUCTION_STRU INSTRUCTION_SET[]={
// ...
{"LU_SSOR_INIT",8,’I’,"IIIIIIII",&lu_ssor_init_int},
// ...

};
const ULO INSTRUCTIONS=sizeof(INSTRUCTION_SET)/sizeof(INSTRUCTION_STRU);

(setq a (| sync_a a))
(setq b (| sync_b b))
(setq c (| sync_c c))
(setq d (| sync_d d))
(for thread 1 1 threads

(setq sync_a (| sync_a
(lu_ssor_init (-- thread) threads ISIZ1 ISIZ2 a b c d)

))
)
(setq sync_b (setq sync_c (setq sync_d sync_a)))
(setq a (| sync_a a))
(setq b (| sync_b b))
(setq c (| sync_c c))
(setq d (| sync_d d))

Table 7-1 and Figure 7-1 show the execution times and speedups of a 64-bit BMDFM running the
NAS Parallel Benchmarks (version 2.3, class A and class C) on an 8-way POWER4 IBM p690 SMP

NAS Parallel Benchmarks 127

BMDFM Evaluation

server. BMDFM is configured on scheme C for N_CPUPROC = 8, N_IORBPPROC = 8 and
N_OQPROC = 4.

Table 7-1. Execution times and speedups for NAS PB 2.3
(classes A, C) on 8-way SMP

Figure 7-1. Speedups for NAS PB 2.3 (classes A, C) on 8-way SMP

These experimental results demonstrate good average speedup and prove the efficiency of the
proposed SMP dataflow hybrid architecture. Performance tends to be better for the NAS PB class C

Benchmark Class Baseline time/s BMDFM time / s Speedup
EP A 140.00 17.90 7.82

C 2266.00 286.47 7.91
CG A 10.36 2.57 4.03

C 2556.00 339.58 7.53
IS A 9.16 1.78 5.15

C 361.42 58.90 6.14
MG A 20.18 3.31 6.10

C 516.12 70.14 7.36
FT A 27.95 3.94 7.09

C 1575.56 215.97 7.30
BT A 860.84 159.54 5.40

C 20764.48 3039.68 6.83
SP A 410.32 115.50 3.55

C 9888.60 1708.99 5.79
LU A 490.38 91.07 5.38

C 13400.40 1798.41 7.45

5.
38

3.
55

5.
40

7.
09

6.
10

5.
15

4.
03

7.
82

7.
45

5.
796.

837.
30

7.
36

6.
14

7.
537.

91

0

2

4

6

8

EP CG IS MG FT BT SP LU

Class A Class C

128 NAS Parallel Benchmarks

Evaluation BMDFM

as this class operates on bigger arrays that influences larger granularity of the processed coarse-grain
instructions.

We also estimated the dynamic scheduling overhead of the dataflow runtime engine, collecting CPU
times used by the dynamic scheduling processes. Table 7-2 summarizes the number of instructions
processed in each test and gives CPU times spent for their dynamic scheduling. Then we calculate
normalized scheduling overhead (SO) per instruction. This parameter differs for all tests, which can
be explained by the different complexity of the algorithms and dependencies among the processed
instructions. The average value of the normalized scheduling overhead is 27µs per virtual machine
instruction, which is considerably less compared to the computational weight of the generated
instructions (5.3% for class A and 1.1% for class C – weight of instructions is bigger in class C).
Therefore we conclude the proposed SMP dataflow hybrid architecture has negligible dynamic
scheduling overhead.

Table 7-2. Number of instructions and scheduling overhead for NAS PB 2.3
(classes A, C) on 8-way SMP

Benchmark Class Number of
Instructions

Scheduling
Overhead (SO)
time / s

SO per
Instruction
time / µs

SO/Baseline
ratio
%

EP A 312 0.007 22.436 0.00500
C 312 0.005 16.026 0.00022

CG A 58012 1.132 19.513 10.92664
C 274372 6.265 22.834 0.24511

IS A 1708 0.067 39.227 0.73144
C 1708 0.054 31.616 0.01494

MG A 21782 0.935 42.925 4.63330
C 100049 4.234 42.319 0.82035

FT A 2954 0.093 31.483 0.33274
C 8994 0.234 26.017 0.01485

BT A 2140724 52.675 24.606 6.11902
C 5154915 202.854 39.352 0.97693

SP A 11726139 45.031 3.840 10.97461
C 27680328 530.763 19.175 5.36742

LU A 2227548 42.739 19.187 8.71549
C 5632798 170.720 30.308 1.27399

Average A 25.402 5.30478
C 28.456 1.08923

Average 26.929 (3.1970)

Irregular Test 129

BMDFM Evaluation

7.4 Irregular Test

The biggest advantage of the dataflow engine is to parallelize dynamic adaptive (irregular)
applications, which can not be analyzed statically. We also test this capability as well running an IP
core generator based on VHDL preprocessor.

The idea of the IP core generator is to have a library of configurable VHDL files (.vhl files stand for
VHDL + LISP). Each such a file consists of native VHDL code mixed with ‘macros‘, which are
written in the VM language. The VHDL preprocessor searches for all macros, evaluates them and
substitutes the macros with calculated result, in other words VHDL preprocessor converts .vhl files
from the source directory to .vhd files in a target directory. After a single file is processed, the
VHDL preprocessor performs a second pass, searching for all used components in the
“COMPONENT” statements and diving deeply into the hierarchy of referenced components
recursively. When all of the hierarchy is processed the target directory will contain pure VHDL code
of the generated IP core.

Such a non-trivial test is very interesting from the parallelization point of view because the dataflow
engine has to be able to exploit inter-procedural and cross-conditional parallelism at runtime.

The following code fragments demonstrate configurable VHDL code before and after preprocessing
(wordwidth = 32), which do not reference any hierarchy of components.

Initial configurable .vhl code
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_signed.ALL;
USE IEEE.std_logic_arith.ALL;

ENTITY rom IS
PORT(in_adr : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

out_d : OUT STD_LOGIC_VECTOR(‘(-- wordwidth)‘ DOWNTO 0));
END rom;

ARCHITECTURE str OF rom IS
BEGIN
 run: PROCESS(in_adr)
 BEGIN

130 Irregular Test

Evaluation BMDFM

Now let us have a look at the next code fragments of the top level VHDL model. After the
preprocessing (wordwidth = 32 and use_rom = true) the target code will contain COMPONENT
rom, which recursively forces to preprocess previously discussed code of the “rom” component.

‘(progn
 (defun coeff_gen
 (progn
 (setq wordwidth $1)
 (setq i $2)
 (setq n $3)
 (setq ret_line "\"0")
 (setq weight 0)
 (for j 2 1 wordwidth (progn
 (setq weight (<< weight 1))
 (setq weight (++ weight))
))
 (setq coeff (ival (*. weight (cos (/. (*. (pi) (++ (* 2 i))) (* 2 n))))))
 (setq j (<< 1 (- wordwidth 2)))
 (while (>= j 1) (progn
 (setq ret_line (cat ret_line (if (> (/ coeff j) 0) "1" "0")))
 (setq coeff (% coeff j))
 (setq j (>> j 1))
))
 (cat (cat ret_line "\"; -- R") (cat (str i) (cat "(" (cat (str n) ")"))))
)
)

(outf " IF in_adr = "00" THEN\n" 0)
 (outf " out_d <= %s\n" (coeff_gen wordwidth 0 8))
 (outf " ELSIF in_adr = "01" THEN\n" 0)
 (outf " out_d <= %s\n" (coeff_gen wordwidth 1 8))
 (outf " ELSIF in_adr = "10" THEN\n" 0)
 (outf " out_d <= %s\n" (coeff_gen wordwidth 3 8))
 (outf " ELSIF in_adr = "11" THEN\n" 0)
 (outf " out_d <= %s\n" (coeff_gen wordwidth 2 8))
 " END IF;\n"
)‘ END PROCESS run;
END str;

Preprocessed target pure .vhd code
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_signed.ALL;
USE IEEE.std_logic_arith.ALL;

ENTITY rom IS
 PORT(in_adr : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 out_d : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END rom;

ARCHITECTURE str OF rom IS
BEGIN
 run: PROCESS(in_adr)
 BEGIN
 IF in_adr = "00" THEN
 out_d <= "01111101100010100101111100111110"; -- R0(8)
 ELSIF in_adr = "01" THEN
 out_d <= "01101010011011011001100010100011"; -- R1(8)
 ELSIF in_adr = "10" THEN
 out_d <= "00011000111110001011100000111100"; -- R3(8)
 ELSIF in_adr = "11" THEN
 out_d <= "01000111000111001110110011100110"; -- R2(8)
 END IF;
 END PROCESS run;
END str;

Irregular Test 131

BMDFM Evaluation

The IP core generator (VHDL preprocessor) itself is also implemented in pure VM language. It
consists of five functions:

• (rd_file) reads a file. It takes a file name as an argument and returns the file contents.

• (wr_file) writes a file. It takes the file name and file contents as arguments.

Initial configurable .vhl code
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_signed.ALL;
USE IEEE.std_logic_arith.ALL;

ENTITY device IS
 PORT(a,b : IN STD_LOGIC_VECTOR(‘(if use_rom 1 (-- wordwidth))‘ DOWNTO 0);
 s: OUT STD_LOGIC_VECTOR(‘(-- wordwidth)‘ DOWNTO 0));
END device;

ARCHITECTURE str OF device IS
‘(if use_rom
 (progn
 (outf " COMPONENT rom\n" nil)
 (outf " PORT(in_adr : IN STD_LOGIC_VECTOR(1 DOWNTO 0);\n" nil)
 (outf " out_d : OUT STD_LOGIC_VECTOR(%ld DOWNTO 0));\n"
 (-- wordwidth))
 (outf " END COMPONENT;\n" nil)
 (outf " SIGNAL opa, opb : STD_LOGIC_VECTOR(%ld DOWNTO 0);\n"
 (-- wordwidth))
 ""
)
 ""

)‘BEGIN
‘(if use_rom
 (progn
 (outf " u0: rom\n" nil)
 (outf " PORT MAP(in_adr => a, out_d => opa);\n" nil)
 (outf " u1: rom\n" nil)
 " PORT MAP(in_adr => b, out_d => opb);\n"
)
 ""
)‘ s <= ‘(if use_rom "op" "")‘a + ‘(if use_rom "op" "")‘b;
END str;

Preprocessed target pure .vhd code
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_signed.ALL;
USE IEEE.std_logic_arith.ALL;

ENTITY device IS
 PORT(a,b : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 s: OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END device;

ARCHITECTURE str OF device IS
 COMPONENT rom
 PORT(in_adr : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 out_d : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
 END COMPONENT;
 SIGNAL opa, opb : STD_LOGIC_VECTOR(31 DOWNTO 0);

BEGIN
 u0: rom
 PORT MAP(in_adr => a, out_d => opa);
 u1: rom
 PORT MAP(in_adr => b, out_d => opb);
 s <= opa + opb;
END str;

132 Irregular Test

Evaluation BMDFM

• (fst_lsp) encapsulates the (mapcar) function. It takes an expression of the VM language,
evaluates it through the (mapcar) and returns the result of the calculation.

• (process_file) takes a raw file and returns a preprocessed file where all macros are
evaluated.

• (process_hierarchy) is a recursive function that calls (process_file) first and invokes itself
recurs ive ly for a l l found COMPONENT s ta tements . Funct ion main ca l ls
(process_hierarchy) for the top VHDL model.

The first three functions are trivial, so we explain only the (process_file) and (process_hierarchy)
functions below:

(process_file) real code
(defun process_file
 (progn
 (setq flp_statement $1) # parameters like (setq wordwidth 32) (setq use_rom 1)
 (setq file_contents $2) # raw file contents.
 (setq new_contents "") # new contents to concatenate.
 (while (len file_contents) # iterate through the raw contents.
 (if (setq pos (at "‘" file_contents)) # find a macro.
 (progn
 (setq new_contents (cat new_contents (left file_contents (idecr pos))))
 (setq file_contents (rightl file_contents pos))
 (setq pos (at "‘" file_contents))
 (setq flp_statement1 (cat flp_statement (left file_contents (idecr pos))))
 (setq flp_statement1 (fst_lsp flp_statement1)) # EVALUATE FOUND MACRO
 (setq new_contents (cat new_contents flp_statement1))
 (setq file_contents (rightl file_contents pos))
)
 (progn
 (setq new_contents (cat new_contents file_contents))
 (setq file_contents "")
)
)
)
 new_contents # return new preprocessed contents
)
)

(process_hierarchy) real code
(defun process_hierarchy
 (progn
 (setq flp_statement $1) # parameters like (setq wordwidth 32) (setq use_rom 1)
 (setq source_directory $2) # source directory.
 (setq target_directory $3) # target directory.
 (setq current_file $4) # file name.
 (setq hierarchy_level $5) # level of the nested hierarchy.
 (setq processed_files $6) # list of already processed files.
 (outf "%s\n" (cat (cat (cat (cat (cat (space hierarchy_level)
 source_directory) (cat current_file ".vhl")) " ==> ") target_directory)
 (cat current_file ".vhd")))

READ AND PREPROCESS FILE
 (setq file_contents (process_file flp_statement (rd_file (cat (cat
 source_directory current_file) ".vhl"))))

Irregular Test 133

BMDFM Evaluation

In our irregular test we run the VHDL preprocessor configuring an IP core of the “Fast
Trigonometric transform Processor”, which consists of:

• 347 .vhl files.

• 2641 VM macros embedded into the VHDL code.

Table 7-3 and Figure 7-2 show the execution times and speedups of a 64-bit BMDFM running the
irregular test on the 8-way POWER4 IBM p690 SMP server configured for:

• 2 processors: N_CPUPROC = 2, N_IORBPPROC = 2 and N_OQPROC = 2.

• 4 processors: N_CPUPROC = 4, N_IORBPPROC = 4 and N_OQPROC = 2.

• 8 processors: N_CPUPROC = 8, N_IORBPPROC = 8 and N_OQPROC = 4.

Table 7-3. Execution times and speedups for irregular test

WRITE PREPROCESSED FILE
 (wr_file (cat (cat target_directory current_file) ".vhd") file_contents)
 (while (len file_contents) (progn # search for COMPONENT statements
 (if (setq temp (at "COMPONENT" (upper file_contents)))
 (setq file_contents (rightl file_contents (idecr temp)))
 (setq file_contents "")
)
 (setq temp (upper (head file_contents)))
 (setq file_contents (tail file_contents))

(if (== temp "COMPONENT")
 (progn
 (setq temp (head file_contents))
 (setq file_contents (tail file_contents))
 (setq temp1 (cat (cat " " temp) " "))
 (if (at temp1 processed_files)
 (outf "%s\n" (cat (cat (cat (space (iadd hierarchy_level
 2)) source_directory) (cat temp ".vhl"))
 " skipped (already processed)"))
 # CALL ITSELF RECURSIVELY
 (setq processed_files (process_hierarchy flp_statement
 source_directory target_directory temp (iadd hierarchy_level 2)
 (cat processed_files (cat temp " "))))
)
)
 0
)
))
 processed_files # return list of already processed files, not to preprocess
) # them again.
)

Number of
Processors

Baseline
time / s

BMDFM
time / s

Speedup

1 223 running single-threadedly 1.00
2 131.18 1.67
4 69.69 3.20
8 34.31 6.50

134 Summary

Evaluation BMDFM

Figure 7-2. Speedups for irregular test

As we can see, the dataflow engine demonstrates good runtime parallelization capabilities, taking
into account that the sequential application is written in a conventional programming style and does
not require any parallelization/synchronization directives.

7.5 Summary

Having tested the performance of BMDFM on the 8-way POWER4 IBM p690 SMP server we have
concluded that in general it performs very well, demonstrating nearly linear scalability on both
numeric processing and irregular applications.

We have also estimated the dynamic scheduling overhead, which is 27µs per virtual machine
instruction. This value is considerably less compared to computational weight of the generated
instructions (5.3% for class A and 1.1% for class C of NAS Parallel Benchmarks 2.3 – weight of
instructions is bigger in class C).

6.50

3.20

1.67
1.00

0

1

2

3

4

5

6

7

8

1 2 4 8

Processors

Sp
ee

du
p

Irregular test

Summary 135

BMDFM Evaluation

The dataflow engine also demonstrates good runtime parallelization capabilities, running dynamic
adaptive (irregular) applications, which can not be analyzed statically. We also test this capability as
well running an IP core generator based on VHDL preprocessor.

136 Summary

Evaluation BMDFM

137

BMDFM Conclusion

Chapter 8
Conclusion

8.1 Overall Summary

Runtime parallelization definitely provides a wider range of possibilities compared to compile-time
methods. Compilers cannot apply many interesting optimizations that depend on knowledge of
dynamic information. Compile-time optimizations cannot be applied to situations where the time it
takes to complete an operation varies at runtime. Additionally, compilers can perform only limited
inter-procedural and cross-conditional optimizations because they often cannot determine which
way a conditional will go or cannot optimize across a function call.

To complement existing compiler-optimization methods we have proposed a hybrid dataflow
parallelization environment BMDFM that creates a data-dependence graph and exploits parallelism
of a user application program at run time.

Our architectural approach has the following important features that are not present in known
runtime parallelization projects:

• The dataflow runtime engine is not aggressively optimized for the applications in some
specific area such as numeric processing, for example. It can solve inter-procedural and
cross-conditional dependencies as well.

• The dynamic scheduling subsystem is decentralized and is executed in parallel on the same
multiprocessors that run the application itself. This approach eliminates the situation where
the task scheduling becomes a bottleneck of the entire computing process.

• An application comprises the conventional virtual machine language and classical C. There
is no special language to control dataflow. The application program itself controls dataflow
fully automatically and transparently.

• From the point of view of dataflow programming our approach excludes the problem of a
single assignment paradigm. We think that our way of dataflow programming with a
conventional algorithmic language can remove the known gap of missing programming
methodology for dataflow.

It is known that the main weakness of dataflow is relatively high dynamic scheduling overhead
because each dynamic instruction requires dynamic operand matching. We spent a great deal of
effort designing and optimizing our dataflow engine to reduce this overhead. We would especially
like to highlight the multiple context data structuring, speculative tagging of instructions and parallel

138 Future Directions

Conclusion BMDFM

load of clusters as our main contributions in this field. Additionally, we have estimated program and
time complexities of the proposed dataflow dynamic scheduling subsystem.

Having tested the performance of BMDFM on the 8-way POWER4 IBM p690 SMP server, we have
concluded that in general it performs very well, demonstrating nearly linear scalability on both
numeric processing and irregular applications.

Indeed, the main advantage of the proposed architecture is to provide a conventional programming
paradigm at the top level. We call this ability of BMDFM transparent dataflow semantics, the
convenience of which justifies all the efforts we spent designing the complex architecture behind it.
We think that because the complexity is hidden the transparent dataflow semantics is a key point
defining applicability of the BMDFM system.

* * *

The BMDFM is publicly available for commodity SMP platforms. BMDFM can be understood as a
virtual machine, which provides a conventional functional programming model using transparent
dataflow semantics with negligible dynamic scheduling overhead.

We believe that our approach is a big step toward exploring a better parallel programming/compiling
technology. Thanks to the effective architectural combination of SMP and dataflow we were able to
consider a much simpler parallelization technique for programmers.

8.2 Future Directions

Several directions for follow-up work have been identified as this thesis was written.

• Further improvements can be applied to some of the techniques that we have already used
in a limited fashion. We also would consider aggressive optimization of the system for
certain SMP architectures such as a popular scalable ccNUMA.

• One other direction is to add a pure C or Fortran interface to the system. This work has
already been started in regards to designing the external translators from high-level
languages into the VM/C language. Moreover, we have already used them in this work for
testing but we did not describe this functionality as it is out of the scope of the thesis.

139

BMDFM List of Defined Terms

List of Defined Terms

ARRAYBLOCK_SIZE – size of a minimal data chunk, in which data is allocated in the shared
memory pool.

Artificial temporary variable – a variable introduced by the static scheduler to resolve data
dependencies in the dataflow engine.

Binary Modular DataFlow Machine (BMDFM) – a hybrid dataflow runtime parallelization
environment for shared memory multiprocessors.

BMDFM server – the main BMDFM module, which starts and shuts down the dataflow engine.

Common semaphores – an array of main semaphores that synchronizes the dataflow engine.

Context – a unique number that specifies a copy of data in the tagged-token dataflow engine.

Context data – a piece of data within the specified context.

Control sequence – a code for the front-end virtual machine automatically generated from the user
application. Control sequence controls uploading of the marshaled clusters into the dataflow engine.

CPU PROC – a BMDFM CPU executing/scheduling process executing ready instructions and
performing garbage collection in the shared memory pool.

Dataflow engine – multithreaded dataflow engine that creates a data-dependence graph and exploits
parallelism of a user application programs at run time.

Distributed semaphores – semaphores that are interleaved along the shared memory pool to control
multiple resources of the same type.

Dynamic scheduler – multiple processes performing dataflow emulation and scheduling the
dataflow engine.

Front-end virtual machine – a von Neumann control machine for the dataflow engine. The control
machine does not execute the byte code of an application but it uploads the marshaled clusters
dynamically to the dataflow engine.

Function – an atomic unit for the virtual machine.

Input/Output Ring Buffer Ports (IORBP) – a data structure in the shared memory pool to which
the front-end virtual machine uploads the marshaled clusters and data. Consists of the separate cells.

140

List of Defined Terms BMDFM

Instruction – a seamless atomic unit for the dataflow engine that is a BMDFM byte code fragment.

IORBP PROC – a BMDFM IORBP scheduling process moving clustered data and instructions to
DB and OQ respectively and performing garbage collection in the shared memory pool.

Loader/listener pair – an external process performing the static scheduling of the user application
and then emulating the front-end virtual machine.

Local function directory – a directory for all functions of the marshaled cluster pointing to the TCZ
function directory.

Local variable directory – a directory for all variables of the marshaled cluster pointing to the data
buffer.

Machine instruction database – a registry for all available VM seamless functions.

Marshaled cluster – an atomic data chunk that is uploaded to the dataflow engine seamlessly. It
consists of local variable directory and local function directory.

N_CPUPROC – number of BMDFM CPU executing/scheduling processes.

N_IORBP – number of input/output ring buffer ports.

N_IORBPPROC – number of BMDFM IORBP scheduling processes.

N_OQPROC – number of BMDFM OQ scheduling processes.

Operation Queue (OQ) – a data structure in the shared memory pool where all instructions are
stored. Consists of the separate cells.

OQ PROC – a BMDFM OQ scheduling process performing the speculative tagging and garbage
collection in the shared memory pool.

Port – a single entity in the trace plugging area associated with one connected external tracer.

PROC – a BMDFM process.

PROC local memory – a local storage for the seamless coarse-grain user defined functions.

PROC stat – a BMDFM auxiliary process collecting statistic information on the dataflow engine.

Q_DB – size of data buffer.

Q_IORBP – size of input/output ring buffer ports.

141

BMDFM List of Defined Terms

Q_OQ – size of operation queue.

Scheme A – a programming model with fine-granularity of parallelism.

Scheme B – a programming model with coarse-grain UDFs that are defined on VM level.

Scheme C – a programming model with coarse-grain UDFs that are defined in C language.

Shared memory pool – a common storage shared by all BMDFM processes.

SHMEM_POOL_BANKS – number of memory banks in the shared memory pool.

SHMEM_POOL_SIZE – shared memory pool size.

Socket – a single entity in the task connection zone associated with one connected external task
loader/listener pair.

Speculative tagging – a dynamic scheduling algorithm that tags instructions to be ready for
execution. Speculative mechanism reduces the dynamic scheduling overhead.

Static scheduler – a process that converts the user application into the control sequence and
marshaled clusters.

Task Connection Zone (TCZ) – a structure in the shared memory pool where all connected external
task loader/listener pairs are registered.

TCZ function directory – a shared memory pool storage for all instructions of the connected user
application.

TCZ output queue – a shared memory pool structure where the output stream is ordered after out-
of-order processing.

Trace Plugging Area (TPA) – a structure in the shared memory pool where all connected external
tracers are registered.

Tracer – an external process for debugging the out-of-order execution in the dataflow engine.

Transparent dataflow semantics – a paradigm that provides a conventional programming style on
top of a dataflow machine.

Universal structure – a predefined VM data structure to store variables that enables changing data
types dynamically and having a single value or an array with different types of members in order to
support lists and trees.

User Defined Function (UDF) – a function defined on VM level or in C language.

142

List of Defined Terms BMDFM

Virtual Machine (VM) – a runtime kernel that runs BMDFM byte code. A single threaded VM runs
in a protected address space. The multithreaded VM is modified slightly to store all dynamic data in
the shared memory pool.

143

BMDFM References

References

[1] W.B.Ackerman, J.B.Dennis. VAL - A Value-Oriented Algorithmic Language. Technical
Report 218, Laboratory for Computer Science, MIT, 1979.

[2] T.Agerwala, Arvind, Data flow systems, IEEE Computer 15 (Feb. 1982), pp. 10-13.

[3] H.Akkary, M.Driscoll. A Dynamic Multithreading Processor. In MICRO-31, December
1998.

[4] S.P.Amarasinghe, J.M.Anderson, M.S.Lam, C.W.Tseng, The SUIF Compiler for Scalable
Parallel Machines, Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Processing, July, 1995.

[5] J.A.M.Anderson, Automatic Computation and Data Decomposition for Multiprocessors,
Technical Report CSL-TR-97-719, Computer Systems Laboratory, Dept. of Electrical Eng.
and Computer Sc., Stanford University, 1997.

[6] T.Anderson, B.Bershad, E.Lazowska, H.Levy, Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism, Proceedings of the 13th. ACM
Symposium on Operating System Principles (SOSP), October 1991.

[7] T.E.Anderson, FastThreads User’s Manual, Department of Computer Science and
Engineering, University of Washington, January 1990.

[8] T.E.Anderson, E.D.Lazowska, Quartz: A Tool for Tuning Parallel Program Performance,
Department of Computer Science and Engineering, University of Washington, September
1989.

[9] J.M.Anderson, S.P.Amarasinghe, M.S.Lam. Data and Computation Transformations for
Multiprocessors. Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Processing, Jul. 1995.

[10] Arvind, D.E.Culler, Dataflow architectures, Ann. Review in Comput. Sci. 1 (1986), pp. 225-
253.

[11] Arvind, V.Kathail, A multiple processor dataflow machine that supports generalized
procedures, Proc. 8th ISCA, May 1981, pp. 291-302.

[12] Arvind, R.S.Nikhil, Executing a program on the MIT tagged-token dataflow architecture,
Lect. Notes Comput. Sc. 259 (1987), pp. 1-29.

[13] E.Ayguade, X.Martorell, J.Labarta, M.Gonzalez, N.Navarro. Exploiting Multiple Levels of
Parallelism in OpenMP: A Case Study. ICPP’99, Sep. 1999.

[14] BMDFM The Official Site. http://www.bmdfm.de

[15] J.Backus, Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs, Comm. ACM 21 (1978), pp. 613-641.

[16] D.Bailey, T.Harris, W.Saphir, R.Wijngaart, A.Woo, M.Yarrow, The NAS Parallel
Benchmarks 2.0, Technical Report NAS-95-020, NASA, December 1995.

[17] U.Banerjee. Loop Parallelization. Kluwer Academic Pub., 1994.

144

References BMDFM

[18] P.M.C.C.Barahona, J.R.Gurd, Simulated performance of the Manchester multi-ring dataflow
machine, Proc. 2nd ICPC, Sep. 1985, pp. 419-424.

[19] P.M.C.C.Barahona, J.R.Gurd, Processor allocation in a multi-ring dataflow machine, J.
Parall. Distr. Comput. 3 (1986), pp. 67-85.

[20] U.Barnerjee. Dependence Analysis for Supercomputing. Kluwer Pub., 1989.

[21] M.Beck, T.Ungerer, E.Zehender, Classification and performance evaluation of hybrid
dataflow techniques with respect to matrix multiplication, Proc. GI/ITG Workshop PARS’93,
Apr. 1993, pp. 118-126.

[22] B.Bershad, E.Lazowska, H.Levy, Presto: A System for Object-oriented Parallel
Programming, Software - Practice and Experience, vol. 18, no. 8, pp. 713-732, 1988.

[23] L.Bic, M.Al-Mouhamed, The EM-4 under implicit parallelism, Proc. 1993 Int’l Conf.
Supercomputing, Jul. 1993, pp. 21-26.

[24] W.Blume, R.Eigenmann, K.Faigin, J.Grout, J.Hoeinger, D.Padua, P.Petersen, W.Pottenger,
L.Rauchwerger, P.Tu, S.Weatherford. Effective automatic parallelization with Polaris.
International Journal of Parallel Programming, May 1995.

[25] R.D.Blumofe, C.F.Joerg, B.C.Kuszmaul, C.E.Leiserson, K.H.Randall, Y.Zhou, Cilk: An
Efficient Multithreaded Runtime System, Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’95), Santa Barbara,
California, July 19-21, 1995.

[26] A.P.W.Boehm, Y.M.Teo, Resource management in a multi-ring dataflow machine, Proc.
CONPAR88, Sep. 1988, pp. B 191-200.

[27] C.J.Brownhill, A.Nicolau, S.Novack, C.D.Polychronopoulos. Achieving Multi-level
Parallelization. Proc. Of ISHPC’97, Nov. 1997.

[28] R.Buehrer, K.Ekanadham, Incorporating data flow ideas into von Neumann processors for
parallel processing, IEEE Trans. Computers C-36 (1987), pp. 1515-1522.

[29] A.J.Catto, J.R.Gurd, Resource management in dataflow, Proc. Conf. Functional
Programming Languages and Comput. Arch., Oct. 1981, pp. 77-84.

[30] A.J.Catto, J.R.Gurd, C.C.Kirkham, Non-deterministic dataflow programming, Proc. 6th
ACM European Conf. Comput. Arch., Apr. 1981, pp. 435-444.

[31] R.Chandra, A.Gupta, J.L.Hennessy, Data Locality and Load Balancing in COOL, Fourth
ACM SIGPLAN Symposium on the Principles and Practice of Parallel Programming
(PPoPP), pp. 249-259, May 1993.

[32] R.Chandra, A.Gupta, J.L.Hennessy, Integrating Concurrency and Data Abstraction in the
COOL Parallel Programming Language, Technical Report CSL-TR-92-511, Computer
Systems Laboratory, Stanford University, February 1992.

[33] A.Charlesworth, STARFIRE: Extending the SMP Envelope, IEEE Micro, Jan/Feb 1998.

[34] A.Chien, V.Karamcheti, J.Plevyak, The Concert System - Compiler and Runtime Support for
Efficient Fine-grained Concurrent Object-oriented Programs, Department of Computer
Science, University of Illinois, Urbana, IL, Tech. Rep. UIUCDCS-R-93-1815, 1993.

145

BMDFM References

[35] J.Chow, W.L.Harrison III, Switch Stacks: A Scheme for Micro-tasking Nested Parallel
Loops, Center for Supercomputing Research and Development (CSRD), University of
Illinois at Urbana-Champaign, 1990.

[36] M.Cintra, J.F.Martinez, J.Torrellas, Architectural Support for Scalable Speculative
Parallelization in Shared-Memory Multiprocessors, Proceedings of the 27th Annual
International Symposium of Computer Architecture, pp. 13-24, Vancouver, BC, June 2000.

[37] R.P.Colwell, R.L.Steck, A 0.6um BiCMOS processor with dynamic execution, Proc. Intl.
Solid State Circuits Conf., Feb. 1995.

[38] D.Cortessi, A.Evans, W.Ferguson, J.Hartman, Topics in IRIX Programming, Doc. num. 007-
2478-004, Silicon Graphics, Inc., http://techpubs.sgi.com, 1996.

[39] D.Cortessi, A.Evans, W.Ferguson, J.Hartman, Topics in IRIX Programming, Doc. num. 007-
2478-006, Silicon Graphics, Inc., http://techpubs.sgi.com, 1998.

[40] D.Craig, An Integrated Kernel- and User-Level Paradigm for Efficient Multiprogramming
Support, M.S. thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1999.

[41] D.E.Culler, S.Goldstein, K.E.Schauser, T.vonEicken, TAM - A compiler controlled threaded
abstract machine, J. Parall. Distr. Comput., 18 (1993), pp.347-370.

[42] D.E.Culler, G.M.Papadopoulos, The explicit token store, J. Parall. Distr. Comput. 10 (1990),
pp. 289-308.

[43] D.E.Culler, A.Sah, K.E.Schauser, T.vonEicken, J.Wawrzynek, Fine-grain parallelism with
minimal hardware support: A compiler-controlled Threaded Abstract Machine, Proc. 4th Int’l
Conf. Arch. Support for Programming Languages and Operating Systems, April 1991, pp.
164-175.

[44] L.Dagum, R.Menon. OpenMP: An Industry Standard API for Shared Memory Programming.
IEEE Computational Science & Engineering, 1998.

[45] J.B.Dennis, First version of a data-flow procedure language, Lect. Notes Comput. Sc. 19
(1974), pp. 362-376.

[46] J.B.Dennis, The varieties of data flow computers, Proc. 1st Int’l Conf. Distributed Comp.
Sys., Oct. 1979, pp. 430-439.

[47] J.B.Dennis, Dataflow computation: A case study, Computer architecture - Concepts and
systems (V.M.Milutinovic, ed.), North-Holland, 1988, pp. 354-404.

[48] J.B.Dennis, D.P.Misunas, A preliminary architecture for a basic data-flow processor, Proc.
2nd ISCA, Jan. 1975, pp. 126-132.

[49] K.Diefendorff, Power4 Focuses on Memory Bandwidth, Microprocessor Report, October 6,
1999, pp. 11-17.

[50] Digital Equipment Corporation / Compaq Computer Corporation, AlphaServer 8x00
Technical Summary, http://www.digital.com/alphaserver/alphasrv8400/8x00_summ.html,
1999.

[51] Digital Equipment Corporation / Compaq Computer Corporation, AlphaServer GS60/
GS140 and 8200/8400 Systems, technical summary,
http://www.digital.com/alphaserver/products.html, 1999.

146

References BMDFM

[52] Digital Equipment Corporation / Compaq Computer Corporation, Digital UNIX: Assembly
Language Programmer’s Guide, Maynard, Massachusetts, March 1996.

[53] Digital Equipment Corporation / Compaq Computer Corporation, Digital UNIX: Calling
Standard for Alpha Systems, Maynard, Massachusetts, March 1996.

[54] Digital Equipment Corporation / Compaq Computer Corporation, Digital UNIX: Guide to
DEC threads, Maynard, Massachusetts, December 1997.

[55] Digital Equipment Corporation / Compaq Computer Corporation, Digital UNIX:
Programmer’s Guide, Maynard, Massachusetts, March 1996.

[56] J.H.Edmondson, P.Rubinfeld, R.Preston, V.Rajagopalan, Superscalar Instruction Execution
in the 21164 Alpha Microprocessor, IEEE Micro, 15(2), pp. 33-43, April 1995.

[57] R.Eigenmann, J.Hoeflinger, D.Padua. On the Automatic Parallelization of the Perfect
Benchmarks. IEEE Trans. On parallel and distributed systems, 9(1), Jan. 1998.

[58] D.R.Engler, G.R.Andrews, D.K.Lowenthal, Filaments: Efficient Support for Fine-Grain
Parallelism, Technical Report 93-13a, Department of Computer Science, University of
Arizona, Tucson, 1993.

[59] P.Evripidou, J.L.Gaudiot, The USC decoupled multilevel data-flow execution model,
Advanced Topics in Data-Flow Computing (J.L.Gaudiot, L.Bic, eds.), Prentice Hall, 1991,
pp. 347-379.

[60] J.T.Feo, D.C.Cann, R.R.Oldehoeft. A report on the Sisal language project. J. Parallel Distrib.
Comput., 10:349-366, 1990.

[61] M.Franklin, G.S.Sohi. ARB: A Hardware Mechanism for Dynamic Reordering of Memory
References. IEEE Transactions on Computers, 45(5), May 1996.

[62]]J.L.Gaudiot, L.Bic, Advanced Topics in Data-Flow Computing, Prentice Hall, 1991.

[63] A.Geist, A.Beguelin, J.Dongarra, W.Jiang, B.Manchek, V.Sunderam, PVM: Parallel Virtual
Machine - A User’s Guide and Tutorial for Network Parallel Computing, MIT Press, 1994.

[64] M.Girkar, M.R.Haghighat, P.Grey, H.Saito, N.Stavrakos, C.D.Polychronopoulos, Illinois-
Intel Multithreading Library: Multithreading Support for Intel Architecture Based
Multiprocessor Systems, Intel Technology Journal, Q1 issue, February 1998.

[65] M.Girkar, C.Polychronopoulos. Optimization of Data/Control Conditions in Task Graphs.
Proc. 4th Workshop on Languages and Compilers for Parallel Computing, Aug. 1991.

[66] J.R.W.Glauert, J.R.Gurd, C.C.Kirkham, Evolution of dataflow architecture, Proc. IFIP WG
10.3 Workshop on Hardware Supported Implementation on Concurrent Languages in
Distributed Systems, March 1984, pp. 1-18.

[67] J.R.W.Glauert, J.R.Gurd, C.C.Kirkham, I.Watson, The dataflow approach, Distributed
Computing (F.B.Chambers, D.A.Duce, G.P.Jones, eds.), Academic Press, 1984, pp. 1-53.

[68] S.Gopal, T.Vijaykumar, J.Smith, G.Sohi. Speculative Versioning Cache. In Proceedings of
the Fourth International Symposium on High-Performance Computer Architecture, February
1998.

[69] K.P.Gostelow, R.E.Thomas, A view of dataflow, Proc. National Comp. Conf., Jun. 1979, pp.
629-636.

147

BMDFM References

[70] K.P.Gostelow, R.E.Thomas, Performance of a simulated dataflow computer, IEEE Trans.
Computers C-29 (1980), pp. 905-919.

[71] V.G.Grafe, J.E.Hoch, The Epsilon-2 multiprocessor system, J. Parall. Distr. Comput. 10
(1990), pp. 309-318.

[72] V.G.Grafe, J.E.Hoch, G.S.Davidson, V.P.Holmes, D.M.Davenport, K.M.Steele, The Epsilon
project, Advanced Topics in Data-Flow Computing (J.L.Gaudiot, L.Bic, eds.), Prentice Hall,
1991, pp. 175-205.

[73] M.Gupta, R.Nim. Techniques for Speculative Run-Time Parallelization of Loops. In
Supercomputing ’98, November 1998.

[74] M.R.Haghighat, C.D.Polychronopoulos. Symbolic Analysis for Parallelizing Compilers.
Kluwer Academic Publishers, 1995.

[75] M.W.Hall, J.M.Anderson, S.P.Amarasinghe, B.R.Murphy, S.W.Liao, E.Bugnion, M.S.Lam,
Maximizing Multiprocessor Performance with the SUIF Compiler, IEEE Computer,
December 1996.

[76] M.W.Hall, B.R.Murphy, S.P.Amarasinghe, S.Liao, M.S.Lam. Inter-procedural
Parallelization Analysis: A Case Study. Proceedings of the 8th International Workshop on
Languages and Compilers for Parallel Computing (LCPC95), Aug. 1995.

[77] M.H.Halstead Elements of Software Science, Operating and Programming Systems Series,
Vol. 7, New York, NY: Elsevier, 1977.

[78] L.Hammond, M.Willey, K.Olukotun. Data Speculation Support for a Chip Multiprocessor.
In Proceedings of ASPLOS-VIII, October 1998.

[79] L.S.Hammond, Hydra: A Chip Multiprocessor with Support for Speculative Thread-Level
Parallelization. Dissertation, Department of Electrical Engineering, Stanford University,
March 2002.

[80] H.Han, G.Rivera, C.W.Tseng. Software Support for Improving Locality in Scientific Codes.
8th Workshop on Compilers for Parallel Computers (CPC’2000), Jan. 2000.

[81] H.Honda, M.Iwata, H.Kasahara. Coarse Grain Parallelism Detection Scheme of Fortran
programs. Trans. IEICE, J73-D-I(12), Dec. 1990.

[82] IBM RISC System/6000 Technology, IBM International Technical Support Organization
SA23-2619.

[83] IEEE Computer Society, POSIX System Application Program Interface: Threads Extension
[C Language]POSIX 1003.4. Available from the IEEE Standards Department.

[84] R.A.Iannucci, Toward a dataflow/von Neumann hybrid architecture, Proc. 15th ISCA, May
1988, pp. 131-140.

[85] J.Kahle. Power4: A Dual-CPU Processor Chip. Microprocessor Forum ’99, October 1999.

[86] S.Karmesin, J.Crotinger, J.Cummings, S.Haney, W.Humphrey, J.Reynders, S.Smith,
T.J.Williams. Array Design and Expression Evaluation in POOMA II. In D.Caromel,
R.R.Oldehoeft, M.Tholburn, editors, Computing in Object-Oriented Parallel Environments,
volume 1505 of Lecture Notes in Computer Science, pages 231-238. Springer-Verlag, 1998.

[87] H.Kasahara, M.Obata, K.Ishizaka. Automatic Coarse Grain Task Parallel Processing on
SMP using OpenMP. Waseda University, LCPC 2000.

148

References BMDFM

[88] H.Kasahara. A Multi-grain Parallelizing Compilation Scheme on OSCAR. Proc. 4th
Workshop on Languages and Compilers for Parallel Computing, Aug. 1991.

[89] H.Kasahara, M.Okamoto, A.Yoshida, W.Ogata, K.Kimura, G.Matsui, H.Matsuzaki,
H.Honda. OSCAR Multi-grain Architecture and Its Evaluation. Proc. International
Workshop on Innovative Architecture for Future Generation High-Performance Processors
and Systems, Oct. 1997.

[90] H.Kasahara, H.Honda, M.Iwata, M.Hirota. A Macro-dataflow Compilation Scheme for
Hierarchical Multiprocessor Systems. Proc. Int’l. Conf. on Parallel Processing, Aug. 1990.

[91] H.Kasahara. Parallel Processing Technology. Corona Publishing, Tokyo, Jun. 1991.

[92] H.Kasahara, H.Honda, S.Narita. Parallel Processing of Near Fine Grain Tasks Using Static
Scheduling on OSCAR. Proc. IEEE ACM Supercomputing’90, Nov. 1990.

[93] T.Knight. An Architecture for Mostly Functional Languages. In Proceedings of the ACM
Lisp and Functional Programming Conference, pages 500-519, August 1986.

[94] Y.Kodama, Y.Koumura, M.Sato, H.Sakane, S.Sakai, Y.Yamaguchi, EMC-Y: Parallel
processing element optimizing communication and computation, Proc. 1993 Int’l Conf.
Supercomputing, Jul. 1993, pp. 167-174.

[95] V.Krishnan, J.Torrellas. The Need for Fast Communication in Hardware-Based Speculative
Chip Multiprocessors. In International Conference on Parallel Architectures and Compilation
Techniques (PACT), October 1999.

[96] Kuck & Associates, Inc., Experiences With Visual KAP and KAP/Pro Toolset Under
Windows NT, Technical Report, Nov. 1997.

[97] A.Kumar, The HP PA-8000 RISC CPU, IEEE Micro, 17 (Mar./Apr. 1997), pp. 27-32.

[98] M.S.Lam. Locallity Optimizations for Parallel Machines. Third Joint International
Conference on Vector and Parallel Processing, Nov. 1994.

[99] J.Laudon, D.Lenoski, The SGI Origin: A ccNUMA Highly Scalable Server, Proceedings of
the 24th. Annual International Symposium on Computer Architecture, pp. 241-251, Denver,
Colorado, June 1997.

[100] B.Lee, A.R.Hurson, Dataflow architectures and multithreading, IEEE Computer 27 (Aug.
1994), pp. 27-39.

[101] P.F.Leggett, 1998, CAPTools Communication Library (CAPLib), Technical report, CMS
Press, Paper No. 98/IM/37.

[102] P.Marcuello, A.Gonzlez. Clustered Speculative Multithreaded Processors. In Proc. of the
ACM Int. Conf. on Supercomputing, June 1999.

[103] B.Marsh, M.Scott, T.LeBlanc, E.Markatos, First-Class User-Level Threads, Proceedings of
the 13th. ACM Symposium on Operating System Principles (SOSP), October 1991.

[104] X.Martorell, E.Ayguade, N.Navarro, J.Corbalan, M.Gonzalez, J.Labarta, Thread Fork/Join
Techniques for Multi-level Parallelism Exploitation in NUMA Multiprocessors, Proceedings
of the 13th ACM International Conference on Supercomputing (ICS’99), Rhodes, Greece,
June 1999.

[105] H.M.Mathis, J.D.McCalpin, M.C.Chiang, F.P.O’Connell, P.Buckland, IBM eServer pSeries
690. Configuring for Performance, IBM Server Group, 2002.

149

BMDFM References

[106] T.J.McCabe, A Complexity Measure, IEEE Trans. Soft. Eng., Vol. 2, No. 6, pp. 308-320,
1976.

[107] C.W.McCurdy, R.Stevens, H.Simon, W.Kramer, D.Bailey, W.Johnston, C.Catlett, R.Lusk,
T.Morgan, J.Meza, M.Banda, J.Leighton, J.Hules, Creating Science-Driven Computer
Architecture: A New Path to Scientific Leadership, Computing Sciences Directorate Ernest
Orlando Lawrence Berkeley National Laboratory, Argonne National Laboratory, US
department of Energy (DOE), 2003.

[108] Message Passing Interface Forum, MPI: A Message Passing Interface Standard, The
International Journal of Supercomputer Applications and High Performance Computing 8,
1994.

[109] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface,
University of Tennessee, Knoxville, July 1997.

[110] J.E.Moreira, C.D.Polychronopoulos. Autoscheduling in a Shared Memory Multiprocessor.
CSRD Report No.1337, 1994.

[111] S.Murer, J.A.Feldman, C.C.Lim, M.M.Seidel, pSather: Layered Extensions to an Object-
Oriented Language for Efficient Parallel Computation, International Computer Science
Institute, University of California at Berkeley, Technical Report 93-028, December 1993.

[112] NAS Parallel Benchmarks 2.3. http://www.nas.nasa.gov/NAS/NPB/

[113] R.S.Nikhil, Arvind, Can dataflow subsume von Neumann computing?, Proc. 16th ISCA,
May 1989, pp. 262-272.

[114] M.Ojstersek, V.Zumer, P.Kokol, Data flow computer models, Proc. CompEuro ’87, May
1987, pp. 884-885.

[115] M.Okamoto, K.Aida, M.Miyazawa, H.Honda, H.Kasahara. A Hierarchical Macro-dataflow
Computation Scheme of OSCAR Multi-grain Compiler. Trans. IPSJ, 35(4):513-521, Apr.
1994.

[116] K.Olukotun, B.A.Nayfeh, L.Hammond, K.Wilson, K.Chang. The Case for a Single-Chip
Multiprocessor. In Proceedings of ASPLOS-VII, October 1996.

[117] OpenMP Fortran/C Application Program Interface. Version 2.0 March 2002.
http://www.openmp.org

[118] J.Oplinger, D.Heine, M.S.Lam. In Search of Speculative Thread-Level Parallelism. In
Proceedings of the 1999 International Conference on Parallel Architectures and Compilation
Techniques (PACT’99), October 1999.

[119] The POWER4 Processor. Introduction and Tuning Guide, IBM Red Books SG24-7041-00.

[120] PROMIS. http://www.csrd.uiuc.edu/promis/

[121] D.Padua, M.Wolfe. Advanced Compiler Optimizations for Supercomputers. C.ACM,
29(12):1184-1201, Dec. 1986.

[122] G.M.Papadopoulos, Implementation of a general-purpose dataflow multiprocessor, Tech.
Report TR-432, MIT Laboratory for Computer Science, Cambridge, Ma., August 1988.

[123] G.M.Papadopoulos, D.E.Culler, Monsoon: An explicit token-store architecture, Proc. 17th
ISCA, Jun. 1990, pp. 82-91.

150

References BMDFM

[124] G.M.Papadopoulos, K.R.Traub, Multithreading: A revisionist view of dataflow architectures,
Proc. 18th ISCA, May 1991, pp. 342-351.

[125] Parafrase2. http://www.csrd.uiuc.edu/parafrase2/

[126] I.Park, M.J.Voss, R.Eigenmann, Compiling for the New Generation of High Performance
SMPs, Technical Report, Nov. 1996.

[127] P.Petersen, D.Padua. Static and Dynamic Evaluation of Data Dependence Analysis. Proc.
Int’l conf. on supercomputing, Jun. 1993.

[128] O.Pochayevets, A.Bode, H.Eichele, Efficient Implementation of a Hybrid Dataflow Machine
on Shared Memory Symmetric Multiprocessors, Proceedings of the 1st international
conference ACSN’2003, pp. 86-90, Lviv 2003.

[129] Polaris. http://polaris.cs.uiuc.edu/polaris/

[130] C.D.Polychronopoulos, D.J.Kuck, Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers, IEEE Transactions on Computers, C-36(12), December 1987.

[131] M.L.Powell, S.R.Kleiman, S.Barton, D.Shah, D.Stein, M.Weeks, SunOS Multithread
Architecture, Proceedings of the USENIX Winter ’91 Conference, Dallas, Texas, 1991.

[132] W.Pugh. The OMEGA Test: A Fast and Practical Integer Programming Algorithm for
Dependence Alysis. Proc. Supercomputing’91, 1991.

[133] L.Rauchwerger, N.M.Amato, D.A.Padua. Run-Time Methods for Parallelizing Partially
Parallel Loops. Proceedings of the 9th ACM International Conference on Supercomputing,
Barcelona, Spain, pages 137-146, Jul. 1995.

[134] J.V.W.Reynders, P.J.Hinker, J.C.Cummings, S.R.Atlas, S.Banerjeee, W.F.Humphrey,
S.R.Karmesin, K.Keahey, M.Srikant, M.Tholburn. Pooma. In G.V.Wilson, P.Lu, editors,
Parallel Programming Using C++. MIT Press, 1996.

[135] R.S.Nikhil. Id Language Reference Manual Version 90.1. Technical Report CSG Memo
284-2, Laboratory for Computer Science, MIT, 1991.

[136] G.Rivera, C.W.Tseng. Locality Optimizations for Multi-Level Caches. Super Computing
’99, Nov. 1999.

[137] L.Roh, W.A.Najjar, Design of a storage hierarchy in multithreaded architectures,
Proc.MICRO-28, 1995, pp. 271-278.

[138] SUN Microsystems Inc., The Ultra Enterprise 10000 Server, Technical White Paper, 1997.

[139] SUN Microsystems Inc., Pthreads and Solaris Threads: A Comparison of two user level
threads APIs, SunSoft, Revision A, May 1994.

[140] SUN Microsystems Inc., The SUN Enterprise Cluster Architecture, Technical White Paper,
October 1997.

[141] S.Sakai, Synchronization and pipeline design for a multithreaded massively parallel
computer, Advanced Topics in Dataflow Computing and Multithreading (L.Bic, J.L.Gaudiot,
G.R.Gao, eds.), IEEE Computer Society Press, 1995, pp. 55-74.

[142] S.Sakai, K.Okamoto, H.Matsuoka, H.Hirono, Y.Kodama, M.Sato, Super-threading:
Architectural and software mechanisms for optimizing parallel computation, Proc. 1993 Int’l
Conf. Supercomputing, Jul. 1993, pp. 251-260.

151

BMDFM References

[143] S.Sakai, Y.Yamaguchi, K.Hiraki, Y.Kodama, T.Yuba, An architecture of a dataflow single
chip processor, Proc. 16th ISCA, May 1989, pp. 46-53.

[144] A.V.S.Sastry, L.M.Patnaik, J.Silc, Dataflow architectures for logic programming,
Electrotechnical Review 55 (1988), pp. 9-19.

[145] J.A.Sharp, Data flow computing, Ellis Horwood Ltd. Publishers, 1985.

[146] A.Shaw, Arvind, R.P.Johnson, Performance tuning scientific codes for dataflow execution,
Proc. PACT’96, Oct. 1996, pp. 198-207.

[147] S.Shende, A.D.Malony, J.Cuny, K.Lindlan, P.Beckman, S.Karmesin. Portable Profiling and
Tracing for Parallel Scientific Applications using C++. In Proceedings of the 2nd
SIGMETRICS Symposium on Parallel and Distributed Tools, pages 134-145. ACM, 1998.

[148] S.Shende, A.D.Malony, S.Hackstadt. Dynamic Performance Callstack Sampling: Merging
TAU and DAQV. In B.Kaegstroem et al., editors, Applied Parallel Computing, PARA’98,
Lecture Notes in Computer Science, No. 1541, pages 515-520. Springer-Verlag, 1998.

[149] J.Silc, B.Robic, The review of some data flow computer architectures, Informatica 11
(1987), pp. 61-66.

[150] Silicon Graphics Computer Systems (SGI), MIPSpro C and C++ Pragmas, Doc. num. 007-
3587-001, http://techpubs.sgi.com, 1998.

[151] Silicon Graphics Computer Systems (SGI), IRIX 6.4/6.5 manual pages: mp(3F) & mp(3C),
IRIX online manuals, also in http://techpubs.sgi.com, 1997-1999.

[152] Silicon Graphics Computer Systems (SGI), MIPSpro Auto-Parallelizing Option
Programmer’s Guide, Doc. num. 007-3572-002, http://techpubs.sgi.com, 1998.

[153] Silicon Graphics Computer Systems (SGI), MIPSpro Fortran 77 Programmer’s Guide, Doc.
num. 007-2361-006, http://techpubs.sgi.com, 1998.

[154] Silicon Graphics Computer Systems (SGI), Origin and Onyx2 Theory of Operations Manual,
Doc. num. 007-3439-002, http://techpubs.sgi.com, 1997.

[155] Silicon Graphics Computer Systems (SGI), Origin2000 and Onyx2 Performance Tuning and
Optimization Guide, Doc. num. 007-3430-002, http://techpubs.sgi.com, 1998.

[156] Silicon Graphics Computer Systems (SGI), REACT Real-Time Programmer’s Guide, Doc.
num. 007-2499-006, http://techpubs.sgi.com, 1998.

[157] D.F.Snelling, G.K.Egan, A comparative study of data-flow architectures, Tech. Report
UMCS-94-4-3, University of Manchester, Department of Computer Science, 1994.

[158] G.S.Sohi, S.Breach, T.N.Vijaykumar. Multi-scalar Processors. In Proceedings of ISCA 22,
pages 414-425, June 1995.

[159] V.P.Srini, An architectural comparison of dataflow systems, IEEE Computer 19 (1986), pp.
68-88.

[160] J.G.Steffan, T.C.Mowry. The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallellization. In Proceedings of the Fourth International Symposium
on High-Performance Computer Architecture, February 1998.

[161] J.G.Steffan, C.B.Colohan, A.Zhai, T.C.Mowry, A Scalable Approach to Thread-Level
Speculation, Proceedings of the 27th Annual International Symposium of Computer
Architecture, pp. 1-12, Vancouver, BC, June 2000.

152

References BMDFM

[162] D.Stoutamire, pSather 1.0 Manual, International Computer Science Institute, University of
California at Berkeley, Technical Report 95-058, October 1995.

[163] J.Strohschneider, B.Klauer, K.Waldschmidt, An associative communication network for fine
and large grain dataflow, Proc. Euromicro Workshop on Parallel and Distr. Processing, 1995,
pp. 324-331.

[164] J.Strohschneider, B.Klauer, S.Zickenheimer, K.Waldschmidt, Adarc: A fine grain dataflow
architecture with associative communication network, Proc. 20th Euromicro Conf., Sep.
1994, pp. 445-450.

[165] S.A.Thoreson, A.N.Long, J.R.Kerns, Performance of three dataflow computers, Proc. 14th
Ann. Comp. Sc. Conf., Feb. 1986, pp. 93-99.

[166] K.R.Traub, G.M.Papadopoulos, M.J.Beckerle, J.E.Hicks, J.Young, Overview of the
Monsoon project, Proc. 1991 Int’l Conf. Comput. Design, 1991, pp. 150-155.

[167] P.C.Treleaven, D.R.Brownbridge, R.P.Hopkins, Data-driven and demand-driven computer
architectures, Computing Surveys 14 (1982), pp. 93-143.

[168] M.Tremblay. MAJC: Microprocessor Architecture for Java Computing. HotChips ’99,
August 1999.

[169] J.Y.Tsai, J.Huang, C.Amlo, D.J.Lilja, P.C.Yew. The Super-threaded Processor Architecture.
IEEE Transactions on Computers, Special Issue on Multithreaded Architectures, 48(9),
September 1999.

[170] P.Tu, D.Padua. Automatic Array Privatization. Proc. 6th Annual Workshop on Languages
and Compilers for Parallel Computing, 1993.

[171] A.Tucker, A.Gupta, Process Control and Scheduling Issues for Multi-programmed Shared-
Memory Multiprocessors, Proceedings of the 12th. ACM Symposium on Operating System
Principles (SOSP), December 1989.

[172] A.Tucker, Efficient Scheduling on Multi-programmed Shared-Memory Multiprocessors,
Ph.D. Thesis, Stanford University, December 1993.

[173] D.M.Tullsen, S.J.Eggers, H.M.Levy. Simultaneous Multithreading: Maximizing On-Chip
Parallelism. In Proceedings of ISCA 22, pages 392-403, June 1995.

[174] S.Vajracharya, S.Karmesin, P.Beckman, J.Crotinger, A.Malony, S.Shende, R.Oldehoeft,
S.Smith, SMARTS: Exploiting Temporal Locality and Parallelism through Vertical
Execution, Los Alamos National Laboratory, Los Alamos, NM, U.S.A.

[175] I.Watson, J.R.Gurd, A prototype data flow computer with token labeling, Proc. National
Comp. Conf., Jun. 1979, pp. 623-628.

[176] B.Weissman, Active Threads: an Extensible and Portable Light-Weight Thread System,
International Computer Science Institute, University of California at Berkeley, Technical
Report 97-036, September 1997.

[177] M.Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.

[178] M.Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.

[179] K.C.Yeager, The MIPS R10000 super-scalar microprocessor IEEE Micro, 16 (Apr. 1996),
pp. 28-40.

153

BMDFM References

[180] A.Yoshida, K.Koshizuka, M.Okamoto, H.Kasahara. A Data-Localization Scheme among
Loops for each Layer in Hierarchical Coarse Grain Parallel Processing. Trans. of IPSJ, 40(5),
May. 1999.

[181] A.C.Yuceturk, B.Klauer, S.Zickenheimer, R.Moore, K.Waldschmidt, Mapping of neural
networks onto dataflow graphs, Proc. 22nd Euromicro Conf., Sep. 1996, pp. 51-57.

[182] Y.Zhang, L.Rauchwerger, J.Torrellas. Hardware for Speculative Parallelization of Partially-
Parallel Loops in DSM Multiprocessors. In Fifth International Symposium on High-
Performance Computer Architecture (HPCA), pages 135-141, January 1999.

154

References BMDFM

