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Abstract

The characterization of genetic mechanisms underlying normal cellular function, patho-
genesis or the effect of drug treatment is one of the most challenging topics for todays
lifesciences. The basis upon which the vast complexity and flexibility of life processes
emerges is constituted by the interaction of various types of molecules such as proteins,
mRNA, DNA or metabolites. The perhaps most important part of this complex signaling
network is based on the interaction of proteins with the genome - the gene regulatory net-
work. Thus, genetic network inference forms an enormous drive towards understanding,
both the principles and details of the machinery which underlies the operation of living
cells and systemic disease mechanisms such as cancer or diabetes.

The invention of high throughput screening techniques, such as DNA microarrays, and
the resulting growth of biological data let data driven methods become very popular in the
fields of genetic network inference. This thesis is concerned with elucidating gene regula-
tory network features by means of machine learning methods, more precisely, by means of
graphical models. Most of the here presented approaches are related to Bayesian networks
which fit the natural factorization of cellular processes into regular relationships between
molecules and which are able to model causal relationships. One general problem, that data
driven approaches are facing, is the noise and sparseness of given data sets. We therefore
investigate measures which help to extract reliable features from Bayesian networks trained
on microarray data with the goal to gain a more accurate interpretation of learned networks.
The topology of such learned networks is the basis of a second approach, aiming to esti-
mate genes that play a key role in controlling the state of regulatory genetic networks. By
introducing new topological features we are able to estimate the effect of genes on the net-
work stability finding those ones that represent the Achilles Heel of a molecular interaction
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network.
Existing methods for inferring gene regulatory networks from genome wide expression

profiles provide important information about gene interactions and regulatory relationships.
However, these methods do not provide information about the impact of possible inter-
ventions or changes on such regulatory networks to study cause-effect relationships at a
systems biology level. We therefore propose a data driven method called ”generative in-
verse modeling” which simulates the effect of local genetic changes on the global cellular
state, as reflected by an altered genome wide expression profile. The method can be used
to estimate the relevance of genes regarding disease specific genetic mechanisms and to
simulate local genetic changes on a global scale. Another strength of Bayesian networks is
their probabilistic nature including the opportunity to make use of prior belief. We investi-
gate the use of additional biological information as a probabilistic prior to guide structure
learning. These approaches present two ways towards more robust estimates and equips
Bayesian networks with further biological knowledge. The final chapter deals with an al-
ternative graphical model approach to represent molecular networks. Instead of focusing
on causal relationships between molecules, as done with Bayesian networks, decompos-
able models describe the underlying densities in terms of modules. This approach accounts
for another fundamental principle of the molecular interplay, namely the union of several
molecules into biological functional modules, to accomplish a certain task.
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Chapter 1

Introduction

During their life span, living cells accomplish a vast multitude of different tasks which are
all directly or indirectly controlled by their genome, encoded in the deoxyribonucleic acid
(DNA) molecule. For example, cells have to maintain their organization, ensure their nutri-
tion and synthesize and exchange new biomolecules – which they consist of – by metabolic
processes. In response to external chemical signals, they eventually grow and undergo cell
division, differentiate into specialized cell types, start or stop secretion of one or several
substances, start proliferating, or migrating, leave their place within the cellular matrix,
or initiate their own death (Lodish et al. 2000). But also without any direct external con-
trol, cells can vary their behavior: For example, specialized neurons underneath the optic
nerve possess a machinery by which they produce oscillating concentrations of several pro-
teins and thereby participate in encoding our wake-sleep or circadian rhythm (Hedges &
Kumar 2003). According to a popular view, all these cellular life processes are coordi-
nated and guided by the states of the underlying network of mutual interactions among the
multitude of cell’s aggregates, genes, RNAs, proteins and small molecules. Thus, cellular
characteristics can be represented in terms of a complex molecular network composed of
the interplay of millions of molecules. One prominent part of this network is constituted
by the regulatory interaction network among genes, the gene regulatory network or genetic
network.

When cells are assembled to form a higher organism, these and other cellular processes
are being carried out in a concerted fashion, subtly coordinated by a mutual exchange of
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chemical signals. The resulting collective activities form the basis of growth and shaping of
organs and body parts by self-organizational processes. They also guide the maintenance
of the structure of the organism: for example the vast majority of the molecules of a human
body are exchanged against other ones during a period of only two years, but despite our
body more or less remains in its shape. In other words, our structure is maintained inde-
pendently of the identity we are made of. Furthermore, the cellular machinery is involved
in processes of adaptation to the environment such as learning or muscular training, and
guides repair mechanisms involving wound healing and DNA repair (Bohr 2002) at the
macroscopic and microscopic levels, respectively.

In light of the central role of cellular genetic network for the life of higher organ-
isms, it seems not too surprising that many severe diseases including different kinds of
cancer or Alzheimer’s disease show a clear relationship to genetic disorders (Hanahan &
Weinberg 2000, Strittmatter & Roses 1995). Further, fundamental restrictions in wound
healing and repair exist for higher organisms (imputed limbs and removed organs do not
replace themselves in humans), and seem to have their roots in a disability of differentiated
cells to re-use the embryonic genetic machinery of morphogenesis. Finally, changes in the
cellular machinery related to impairment in repair mechanisms also seem to be related to
aging and death (Strehler 1995, Vijg & Dolle 2002).

1.1 Motivation

These and other insights claiming the importance of the genetic network, form an enor-
mous drive towards understanding both, the principles and details of the machinery which
underlies the operation of living cells and the pathogenesis of systemic diseases. There is a
huge diversity of different molecular processes which have to be characterized and stored in
data bases. Scientists are working since many years on this challenging tasks to collect data
about genes, proteins, cellular pathways, disease markers and other molecular phenomena
(Galperin 2004) to provide a comprehensive knowledge base, helpful for the elucidation
of still unknown cellular procedures. However, biological diversity is enormous, as is the
complexity of the data and knowledge to be stored, and existing data and knowledge bases
are at the edge to turn into an inextricable jungle. Therefore, collecting the data is not



1.1 Motivation 3

enough: instead scientists have to additionally reveal unifying principles of operation of
life processes.

Many researchers propagate the view, that networking is one such principle. All pro-
cesses in a living cell are directly or indirectly related to and guided by complex, recurrent
and mutually interacting signalling chains. Proteins are synthesized from genes, interact
with each other and with smaller molecules but also act back onto the RNA and DNA where
they regulate the production of other proteins. It is not sufficient to regard individual com-
ponents of the cellular machinery anymore. Instead its full understanding is unresolvable
coupled to the understanding of the concerted action of all molecules in the cell at a sys-
tems level. In light of this view, systems level modeling of the genetic regulatory network
(by methods of artificial intelligence) represents one of the most powerful combinations
on the way towards a complete understanding of the underlying cellular machinery and
related inter- and intracellular processes. Computational models of genetic networks can
be divided into mainly two classes: bottom-up approaches which use explicit molecular
biological knowledge to reconstruct the genetic network and top-down approaches, which
make use of massive biological data to learn genetic network principles without focusing
explicitly on biochemical parameters. For a review see (Stetter et al. 2003).

The first class covers biochemically inspired models based on the reaction kinetics be-
tween the different components of the genetic regulatory network and can be associated
with the level of detail of Figure 2.2a. Biochemically inspired models have the advantage
that they can be more directly related to biological processes, but they also suffer from
a number of difficulties. Firstly, many of the biochemically relevant reactions under par-
ticipation of proteins do not follow linear reaction kinetics. For example, many proteins
undergo conformational changes after reactions, which change their chemical behavior. In
particular, in many regulatory DNA regions transcription factor binding can show cooper-
ative or competitive effects, which are nonlinear and mostly unknown. Secondly, the full
network of metabolic, enzymatic and regulatory reactions is very complex and hard to dis-
entangle in a single step. To do so, the kinetic equations of all the different interactions
(e.g., those in Figure 2.2a) would have to be written down, but the type of reactions and
their parameters are often unknown. At present, the data basis seems not sufficient to glob-
ally understand regulatory networks at this level of detail. However, very well-examined
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regulatory sub-networks (Yuh et al. 1998, Yuh et al. 2001, de Jong et al. 2001) which are
sufficiently well-characterized to be modelled in some detail exist. Other approaches use
approximations to reaction-kinetics formulations to arrive at systems of coupled differential
equations for describing the time course of gene expression levels (Chen et al. 1999, Kato
et al. 2000, Sakamoto & Iba 2001). Other models which fall into this class are boolean net-
works, which have been among the earliest approaches towards genetic network modeling
(Kauffman 1969).

The second class of models yet has gone through another step of abstraction, and treats
the task of modeling microarray data as a data mining problem (Somogyi et al. 1997,
D’haeseleer et al. 1997, Wang et al. 1999, Baldi & Brunak 1998, D’haeseleer et al. 2000,
Slonim 2002). The goal of data mining is to explore a data set and to discover regular-
ities and structures from it. As opposed to hypothesis-driven approaches, which search
for a particular and pre-defined pattern in the data, data mining approaches specify au-
tonomously which patterns are present in the data – they are exploratory and data driven.
As gene expression data sets are high dimensional and noisy by nature, statistical methods
play an important role in their interpretation by finding trends and patterns in the experi-
mental results. In case of genetic networks, the patterns to be inferred may be for example
clusters of genes which are coexpressed under a given mode of the cell, or the structure of
regulatory relationships between genes. Clustering studies have revealed many extended
clusters of genes, which collectively change their expression levels when a cell or tissue
changes from one mode of life to another (Eisen et al. 1998, Spellman et al. 1998, Ben-Dor
et al. 1999, Golub et al. 1999, Yeoh et al. 2002). In fact it has been shown that many coex-
pressed genes are known to share common molecular pathways which indicates that these
global gene expression patterns reflect the execution of specific genetic programs.

However, clustering analysis can not provide an answer to the question of what is it
that either stabilizes a global gene expression pattern or evokes a change to a new one.
In other words, are there dominant genes or gene groups which are the underlying cause
of a specific global pattern? It is also important to know, which global control functions
might have failed when a pathological global gene expression pattern is observed in case
of a disease. Knowing the basic origin of a disease might help identifying more potent
and more selective drugs and to do so in shorter time. Due to these considerations, re-
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cent approaches have concentrated on inferring the structure of underlying genetic regu-
latory networks from microarray data. Finding a structure from high-dimensional data is
a common problem in the machine learning community known as structure learning of
graphical models (Jordan 1998). Friedman and colleagues (Friedman et al. 2000) intro-
duced this framework to infer the structure of the underlying genetic regulatory networks
from microarray data and initialized a series of related works (Pe’er et al. 2001, Hartemink
et al. 2001, Imoto et al. 2002, Segal et al. 2003). In this approach, the set of measured
gene expression vectors is considered to be drawn from a high-dimensional multivariate
probability density function which is modeled by a Bayesian network with adaptive net-
work structure. The basic idea is to display the associations among the variables, namely
the conditional dependencies and independencies, by means of a directed acyclic graph. In
the context of genetic pathway inference, each node of a Bayesian network is assigned to
a gene, and can assume the different expression levels of this gene throughout the set of
measurements. Each edge between genes hints towards a regulatory relationship between
them. If this edge is directed, it can, under certain assumptions, be interpreted as a causal
relationship: it can be inferred which gene controls another gene. Moreover, Bayesian
networks can be used to pose probabilistic inference questions and, with an algorithm pro-
posed in Chapter 6, also to conduct what-if scenarios, such as: ”what happens to the global
genetic network if a certain gene turns into over-expressed?”. Even despite these advan-
tages, Bayesian network learning is a data-driven method and therefore suffers from the
sparseness of available data. Since most microarray data sets consist only of a few sam-
ples, one has to pose the question what can Bayesian networks, learned from sparse data,
represent and what they can not represent (see Section 4.3.2).

Another representation of genetic networks by a member of the graphical models class
puts particular emphasis on the modular way in which molecules act together to accomplish
certain tasks (Schwaighofer et al. 2004). Decomposable models try to explain the statis-
tics in a data set by the action of mutually linked functional modules, so-called cliques,
represented by a structure of undirected links. By this, decomposable models should be
able, with particularly high sensitivity, to detect the signature of a concerted action of gene
modules in the data. In light of this rationale, cliques are likely to contain functionally
high correlated genes, as opposed to gene clusters (see above), where genes are grouped
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together by mere coexpression. Hence, in contrast to clustering, the learned structure also
reveals some information about possible statistical relationship of genes within a cluster
and relationships between clusters (see Chapter 8).

1.2 Overview

The work presented in this thesis is concerned with revealing genetic network principles
by means of graphical models focusing on Bayesian networks and decomposable models
whose structural and parametric characteristics are estimated from molecular data.

Chapter 2 provides a brief summary of fundamental issues of molecular biology, the
common view of genetic networks and their relation to disease mechanisms. Furthermore
common screening and data retrieval methods which provide a basis for various data driven
methods are presented (see (Stetter et al. 2003)).

In Chapter 3, I give a brief introduction to those two classes of graphical models which
are used in the following chapters, namely Bayesian networks and decomposable models
and motivate their descriptive power regarding molecular network principles (see (Stetter
et al. 2004)).

In Chapter 4, I study the robustness of Bayesian networks under real-life conditions
with the goal to find measures which can be accurately interpreted in Bayesian networks
learned from microarray data. The main novel contributions are the definition of various
measures to evaluate the robustness and correctness of learned networks and robustness
tests to analyze the effect of search strategies and the effect of small sample sizes for struc-
ture learning (see (Dejori & Stetter 2003a)).

The approach presented in Chapter 5.1 concentrates solely on the structure of learned
Bayesian networks aiming at drawing conclusions from characteristic topological patterns.
The main contribution is the introduction of topological features which might provide ad-
ditional information towards a deeper understanding of genetic network principles (see
(Dejori & Stetter 2003c, Dejori, Schürmann & Stetter 2004, Scholz et al. 2005)).

In the approach of Chapter 6 I try the other way around and focus only on the para-
metric part with the intention to learn about genetic network mechanisms from the learned
probabilistic densities. The main contribution here is a new approach to conduct what-if
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scenarios, by generating in-silico expression data, on the basis of probabilistic inference
(see (Dejori & Stetter 2003b, Dejori & Stetter 2004)).

In Chapter 7 I propose two ways of using other sources of molecular data as a prior to
guide Bayesian network learning. Novel contributions are the way in which appropriate
biological prior knowledge is obtained and how it is incorporated as a probabilistic prior
into the structure learning procedure (see (Dejori, Nägele & Stetter 2004)).

In Chapter 8 I propose an alternative way of modeling genetic networks, namely by
means of decomposable models. The main contribution here is the application of this class
of graphical models on gene expression data and the motivation for its use to reveal new
genetic network principles (see (Dejori, Schwaighofer, Tresp & Stetter 2004)).

The appendices contain information about algorithms and data which have been used
throughout this thesis.



Chapter 2

From Genes to Metabolites

In 1953 Watson and Crick discovered the double helix structure of the DNA and conse-
quently the principle of DNA replication (Watson & Crick 1953). This was the break-
through for molecular biology and provided evidence for the central role of the DNA se-
quence cellular processes. The era of molecular genetics was launched and with it pro-
duction of huge amounts of genetic data, driven by a rapid development of new screening
technologies. Almost 50 years later 90% of the human genome was announced to be se-
quenced (International Human Genome Sequencing Consortium 2001, Venter et al. 2001)
and raised hope to hold in hand the Rosetta stone for solving the secret of life. But soon it
became clear that discovering functional aspects of genes and their products, directly from
the genomic sequence, is not feasible. Consequently, the era of functional genomics started
and with it the effort to discover the function of individual genes and their related products
by making use of different types of molecular data. Nowadays, attention is directed beyond
the function of individual cellular components towards functional and systemic principles
of the underlying complex system build by genes, proteins, RNA and other molecules.
Only such an extensive view at a network level will put science forward to a complete
insight into the cellular machinery.

This chapter provides a brief summary of molecular principles which underlie the idea
of genetic networks and their relation to complex disease mechanisms. In favor of the grand
picture we omit many important details and focus on eukaryotic cells. For further in-depth
reading see (Lodish et al. 2000, Brown 1999).
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2.1 The Cellular Machinery

Genetic information in living cells is encoded in the deoxyribonucleic acid (DNA) se-
quence, a linear polymer built up of 4 types of nucleotide bases: two purine bases, adenine
(A) and guanine (G), and two pyrimidine bases, thymine (T) and cytosine (C). The major
characteristic of DNA is the right-handed double helix structure composed of two antipar-
allel strands stabilized by hydrogen bonds between complementary purine and pyrimidine
bases (A-T and G-C). The human genome consists of about 3 billion base pairs, the com-
plete sequence of which has very recently been published (International Human Genome
Sequencing Consortium 2004). The nucleus of an eukaryotic cell carries the entire genome
in so called chromosomes, which consist of a set of DNA doublestrands and associated
proteins. During each cell division, DNA is replicated with very high accuracy, and conse-
quently almost every cell in an organism contains a virtually identical copy of the genome
(see Figure 2.1).

Each DNA sequence can further be subdivided into functional information units called
genes. The human genome is estimated to carry roughly 30000 genes, which all together
cover only 2-3 % of the DNA double strand. A gene can be defined as a physical segment
of varying length of a chromosome on one of the two DNA strands. This ”sense-making”
strand codes for the amino acid sequence of one protein or a set of proteins. However,
also noncoding DNA fragments are found within eukaryotic genes: a gene sequence can
(functionally) be divided into exons, which explicitly encode the amino-acid sequence of
corresponding proteins, and introns, which do not code protein sequence but can contain
otherwise important information (Figure 2.2a top). Moreover a gene contains regulatory
regions which do not code for corresponding proteins but which are necessary for their
synthesis. Proteins are the working units of cells involved in nearly all cellular activities,
e.g. as catalysts or signal carriers. Hence, as DNA stores all genetic information necessary
for protein synthesis it also codes for the emerging cellular programs.

2.1.1 Gene Expression

As noticed before, genes are subunits of the DNA sequence, located in the nucleus and
encode information for certain proteins. The way by which proteins is synthesized from
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the DNA sequence of corresponding genes follows a two-step procedure.
When a certain protein is needed, the DNA sequence of the corresponding gene is used

to synthesize a complementary single stranded molecule of ribonucleic acid (RNA). RNA
is very similar to single-stranded DNA, where thymidine is replaced by uracil (U). This
transformation from DNA to RNA is called transcription and is mainly executed by the
RNA-polymerase II (PolII) enzyme. PolII binds to a specific transcription start site (TSS),
unwinds the double strand and adds nucleotides to the growing RNA strand. The primary
RNA transcript is transcribed from the entire DNA sequence of the corresponding gene
except regulatory regions. It therefore contains intron segments which do not code for
aminoacids of the corresponding protein. Consequently, these non-coding intron regions
are removed in a process called RNA splicing and the remaining exons in the primary RNA
transcript are joined together to form the messenger RNA (mRNA).

In a second step, after mRNA has been transported out of the nucleus, it is used as a
template for the synthesis of amino acids, which are chained together to form the desired
polypeptide. This step, known as translation, is mediated by the cooperation of a ribosome,
composed of numerous proteins, two ribosomal RNA molecules (rRNA) and transfer RNA
(tRNA). The two-step mechanism of protein synthesis is referred as gene expression and
forms the central dogma of molecular biology:

DNA −→︸︷︷︸
transcription

RNA −→︸︷︷︸
translation

Protein

RNA molecules are synthesized from a DNA template during transcription and proteins
are synthesized from RNA molecules in the process of translation. Thus, when proteins are
produced, the corresponding gene is said to be expressed. It is important to note that the
stronger a gene is expressed, the more mRNA of this gene is present in the cytosol. Figure
2.1 provides a general sketch of gene expression and regulation.

2.1.2 Regulatory Mechanisms

The human genome is believed to encode about 1 million different proteins. Most inter-
estingly, each cell of an organism contains only a subset of these proteins, the so-called
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proteome, at any time. In other words, whereas the genome is (almost) identical for each
cell, the proteome varies strongly over different cell types, depends on the distinct cell-
states (i.e., the phase of the cell cycle), and on external signals imposed on the cell (see
Figure 2.1). This implies, that cells must have control over the use of their genome provid-
ing the possibility to change their proteome in a very flexible way. The regulation of the
proteome is achieved by affecting the gene expression machinery at their different stages
and different molecular products (see Figure 2.2a).

The first and most effective control mechanism is transcriptional regulation. DNA bind-
ing proteins, so called transcription factors (TF), bind to specific sites within the regula-
tory region of a gene and affect the transcription initiation of DNA into RNA. Usually
up to a few tens of transcription factors can act on the same regulatory regions of a gene
(Latchman 1998). Transcription factors can enable, disable, enhance or repress gene ex-
pression, and they can do so in a highly nonlinear collective way (Yuh et al. 2001). In turn,
any given transcription factor could act on a few thousand of different genes (Brown 1999).
TF-binding sites can be located immediately upstream of the transcription initiation site as
well as up to many kilobases (kb) away from the start site. Enhancers for example can
be located thousands of base pairs upstream, downstream or even within the gene they
control. Another mechanism of transcriptional control is accomplished by DNA methyla-
tion of cytosine residues, specifically those cytosines which precede guanine nucleotides
(CpG islands), in mammalian genome: methylated DNA-fragments in vicinity of promot-
ers correlates with a reduced transcriptional activity of the corresponding genes. DNA
methylation therefore is suspected to determine severe cellular changes (Widschwendter &
Jones 2002).

Regulation also happens at the RNA level, for example when the primary RNA tran-
script is spliced to form mRNA. RNA splicing can occur in various different ways, so called
alternative splicing, which is one way to produce a whole family of proteins from one gene.
Alternative splicing is controlled by RNA-binding proteins that bind near regulated splice
sites, such as splicing inhibitors or splicing activators. They can control which parts of
mRNA are being translated, affecting the behavior of the resulting proteins. Moreover,
mRNA concentration in the cytosol is controlled by regulating the rate of degradation or
translation. Interaction of specific mRNA binding protein protects mRNA from degrada-
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tion or blocks the translation process. Also translation can be inhibited by RNA interference
(RNAi), where mRNA is marked for being degraded by short double-stranded RNAs (Fire
et al. 1998).

Finally, the translated amino acid chains are subject of regulatory effects, so-called
post-translational modifications. This includes attachments of peptides to the polypeptide
chain and covalent modifications, e.g. phosphorylation. These chemical modifications
alter the biological activity of the affected proteins and are argued to be crucial for the
global cellular mode (Banin et al. 1998, Cortez et al. 1999). Moreover, by protein-protein
interactions many proteins form various sets of aggregates and are only operative in these
complexes.

Furthermore, the whole genomic/proteomic machinery is controlled by extracellular
signals which form the interface between a cell and its environment. External signals can
regulate gene expression either by directly acting as transcription factors, or by modifying
transcription factors (Brown 1999). Due to a wealth of regulatory mechanisms, such as
alternative splicing, post-translational modifications and aggregation, each gene produces
a whole family of operative protein structures.

2.1.3 The Genetic Network

As noted in the previous section, gene expression is controlled by various mechanisms
mainly conducted by special proteins which bind to DNA sequences, RNA molecules or
other proteins. These regulatory mechanisms add a feedback step to the feed-forward pro-
cess of protein synthesis since gene expression controls protein concentrations, and proteins
in turn – either directly or indirectly – regulate gene expression levels. Hence, the genome
and the proteome are linked together by a complex recurrent (and nonlinear) regulatory
network, the genetic network.

Figure 2.2b summarizes, at a more abstract level, the pathways, by which protein A,
synthesized from gene A, can regulate the expression level of gene B. Depending on the
function of protein A, it controls the transcriptional, posttranscriptional or posttranslational
level of gene B. In terms of a graph structure, this regulatory mechanism can be represented
by a directed link from gene A to protein A back to gene B, or simply by a directed link
from gene A directly to gene B. Roughly speaking, gene B is said to be regulated by gene
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A. Indeed, this simplified view neglects diverse products emerging from gene A, but helps
to gain a clear sketch of the basic regulatory relationship. Figure 2.2c, finally shows a
highly abstracted graphical representation of a genetic network. Each gene regulates many
(up to thousands) of other genes, and its own expression level may be regulated by up to a
few tens of other genes. Some genes form a source of transcriptional control, they have a
high fan out or divergence of edges (e.g. gene A). Other genes have no regulatory action at
all but may be regulated by others. They are characterized by a high fan in or convergence
of edges (e.g. gene C). This complex regulatory network between genes, RNA, proteins
and other molecules forms a central part of the cellular machinery. Its different modes of
operation control the multitude of biochemical processes in a living cell.

2.1.4 Disease Mechanisms

During the last decades, the hypothesis that different cellular states arise from execution
of diverse genetic programs has been consolidated. Such genetic programs are accompa-
nied and guided by certain functional states of the gene regulatory network of the cell.
Thus, understanding the principles of normal cellular function, pathogenic mechanisms
and the effect of drug treatment represents perhaps the most challenging issue of mod-
ern life sciences. Revealing the mechanisms which lead to fundamental aberration in
the underlying genetic network will help to understand not only the cellular machinery
but also the principles of genetically caused diseases. Many diseases are suspected and
some known to be caused and influenced either directly or indirectly by genetic alterations
(Dulbecco 1986, Hanahan & Weinberg 2000): as an effect of a local change in the function
of one or a small collection of genes, the whole genetic program and the operational mode
of the cell turns into a pathological one. This assumption is confirmed by the fact that
pathological transformations are often paralleled by a change in the global gene expression
profile (Ross et al. 2000, Yeoh et al. 2002). Malfunctions of regulatory mechanisms can
have serious consequences especially in the context of tumor-specific abnormalities.

Cancer is a genetic disease triggered by the aberration of mainly two types of genes:
proto-oncogenes and tumor-suppressor genes. Tumor-suppressor genes inherit special reg-
ulatory and repair functions to inhibit cell proliferation, and are crucial for the mainte-
nance of a controlled cell state. They code either for proteins which are involved in DNA-
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repair, for proteins which promote the programmed cell death, the so-called apoptosis,
or for proteins which arrest an ongoing cell-cycle if a previous step has carried out in-
correctly. Proto-oncogenes are normal genes which, due to a genetic mutation, turn into
oncogenes. In this transformed state, they cause a healthy cell to become a malignant one.
Mutations can change their function, due to point-mutations, their expression level, due to
re-duplications or deletions, or the environment in which they are usually expressed due
to chromosomal translocations. Mutations in both gene types, caused by external factors
(e.g. tobacco smoke or other carcinogenic agents), inherited by a genetic predisposition or
by both, are the major molecular determinant of tumorigenesis. In the last decades, many
tumor-suppressor genes have been identified, such as gene p53, coding for a protein which
is involved in a variety of pivotal molecular processes such as DNA-repair or cell-cycle
arrest (Symonds et al. 1994). Moreover, for some cancer types related genetic markers
or typical expression profiles are known and provide new possibilities for diagnosis and
prognosis (Golub et al. 1999, Yeoh et al. 2002). However, in most of the cases it is still
unknown which genetic changes cause the disease, and how these changes are processed
by the genetic network. Thus, a more complete description of tumorigenesis and pathogen-
esis in general will undoubtedly emerge only with the detailed elucidation of pathogenic
mechanisms at a network level.

2.2 Screening the Cellular Machinery

Computational models of genetic networks depend on the availability of data that reflect
the state of the cellular system. These data would ideally cover a wide range of genetic
information such as genomic data (e.g. regulatory regions), transcriptomic data (e.g. ex-
pression rates of all genes), proteomic data (e.g. types, concentrations and states of all
proteins in the cell) as well as metabolomic data (e.g. known biochemical pathways). This
section summarizes in vitro as well as in silico methods which provide an important data
basis for the genetic network inference step.
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2.2.1 Genomic Data

As the human genome was announced to be sequenced, scientists realized that the genetic
key for the complexity of life does not lie in the number of genes, but in the interplay
of them with proteins, RNA and small molecules. Thus, from the DNA sequence only,
functional aspects can not be retrieved. Although the genomic sequence is not enough
to gain a full understanding of the cellular machinery, it stores almost all the information
necessary for the execution of global cellular processes. The techniques presented in the
following show that DNA sequence is a good starting point for deciphering the underlying
genetic network.

Comparative Genomics

The great diversity of living organisms provides evidence, that mutations in the genetic
material are crucial for the evolution of life, ranging from single point mutations to major
structural modifications in chromosomes. Studying the evolution of life is hence strongly
linked with studying the evolution of the genome. With the availability of genomes from
different species it became possible to study not only individual sequences, but also evolu-
tionary differences and homologies among them and even functional aspects by compara-
tive studies.

Comparative genomics is based on the hypothesis that important biological sequences
in the genome are conserved between species, due to functional constraints. The ideal pair-
wise comparison is between two organisms that share a common physiology or biology.
Humans and mice, for example, have roughly the same number of protein-coding genes (∼
30000) and less than 1% of these have no ortholog in the other species (Mouse Genome Se-
quencing Consortium 2002). The mouse is hence a popular organism for the identification
of functionally conserved sequences shared with the human genome. Comparative studies
with the mouse genome led to the identification of new genes, the annotation of previously
unknown genes, the identification of gene-regulatory elements and the detailed character-
ization of transcription factor binding sites (Nobrega & Pennacchio 2003, Pennacchio &
Rubin 2003) (see Section 2.2.1 below).

Moreover, comparative studies are not limited to closely related genomes. Distant
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species comparisons revealed astonishing results: comparative studies between human
and the pufferfish Fugu rubripes revealed more than 1000 genes that had previously been
unidentified in the human genome (Aparicio et al. 2002).

Single-nucleotide polymorphisms

Single-nucleotide polymorphisms (SNPs) are individual point mutations in the DNA se-
quence and occur every 100 to 300 bases along the human genome (Collina et al. 1997).
Besides the vast amount of point mutations in noncoding DNA regions, researchers focus
on inter-individual variations in coding regions, since many of them are suspected to cause
predisposition for diseases. The correlation of variants in the APOE4 gene with late-onset
Alzheimers’s disease (Strittmatter et al. 1993) or the protective effect of variants in the
APOE2 gene against Alzheimer’s are prominent examples for SNP-related disease predis-
positions.

Besides their importance as disease markers, identifying SNPs associated with signifi-
cant biological effects in response to chemical drugs represents another major aim of SNP
analysis. Mutations in drug-metabolizing enzymes such as cytochrome P450 are known to
have a significant effect on drug response and effect. SNP profiling is therefore a promis-
ing way towards personalized medicine, because it helps to determine appropriate ways of
drug-treatment (McCarthy & Hilfiker 2000). Another big advantage of SNPs for diagnosis
is the fact that they can be measured with highthroughput DNA microarrays (see Section
2.2.2) thus the human genome can be screened for various SNP markers in one single ex-
periment (Wang & et al. 1998).

Identification of regulatory regions

As noted in Section 2.1.3, proteins regulate gene expression at various levels, by binding
to DNA, mRNA or to other proteins. Protein-DNA interactions form an important part in
the global genetic network, the transcriptional regulatory network: proteins bind to specific
binding sites within a regulatory region and regulate the expression of a certain gene. Thus,
identifying DNA regions which hold regulatory functions, will provide new insights into
transcriptional regulatory mechanisms. Regulatory regions mainly contain two classes of
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protein binding sites: binding sites which are involved in transcription initiation, so-called
transcription start sites (TSS), and binding sites involved in transcriptional regulation tran-
scription factor binding sites (TFBS).

Finding TSSs is already well established since the search space is limited to a relatively
small region upstream of the gene. Proteins involved in the initiation process, such as the
RNA polymerase (see Section 2.1.1), bind to short DNA sequences immediately upstream
(∼ 30 bp) of the gene on which they act. TATA-boxes or regions of C-G enrichment (CpG
islands) are well known markers for TSSs and are consequently also helpful for detecting
the starting point of a gene. Finding TFBSs is much more difficult since they are not
limited to regions proximal to the transcription initiation site. Enhancers for example can
be located thousands of base pairs upstream, downstream or even within the gene they
control.

A general problem of finding regulatory elements in the DNA sequence is the fact that
protein binding sites are specific to certain proteins but not identical in their sequences. In
other words, there is no single sequence which is recognized, but a sequence motif where
for some positions several choices of nucleotides are possible. Therefore, protein binding
sites are not described by a unique sequence but by a collection of sites characterized by a
position weight matrix (PWM) which provides a quantitative probabilistic description of a
protein binding site (Stormo 2000).

Additionally, in higher eukaryotes the transcriptional regulatory network becomes very
complex such that instead of independently binding to a single target, proteins form reg-
ulatory complexes by binding to multiple DNA regions and to each other. Transcription
factors are known to compete or cooperate with each other. The identification of single
binding sequences tends to consider proteins as binding independently and therefore ne-
glects such collective effects. Nevertheless, the simplistic view of transcription initiation
and regulation regions is a first step towards understanding transcriptional regulatory prin-
ciples. Furthermore, the analysis of TFBSs can be improved through comparative studies,
known as phylogenetic footprinting, and through a combination of sequence-analysis and
transcriptomic data. Especially the combination with microarray data can improve our
understanding of regulatory mechanisms.
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2.2.2 Transcriptomic Data

The following discussed techniques make use of the fact that mRNA concentration in the
cytosol reflects the level of expression of this gene. Since the measured mRNAs are further
translated into proteins, screening the transcriptome also reflects, even if indirectly, the
cellular behavior at the proteomic level. However, it needs to be noted that these techniques
cannot capture the post-transcriptional processes downstream of mRNA processing and
their effect on the proteome. This includes many protein protein interactions which can
also form part of the regulatory mechanism within the genetic network (dashed arrows
in Figure 2.2b). But direct regulatory mechanisms triggered by transcription factors, as
well as indirect regulatory processes involving the modification of transcription factors by
protein protein interactions, will in general be reflected in altered gene expression levels.

The popularity of transcriptomic data is primarily triggered by highthroughput meth-
ods which can monitor the expression of thousands of genes, and hence almost the entire
transcriptome of a cell, in parallel. In the following, we will concentrate on this type of
analysis since it provides a vast amount of data, necessary for the following statistical ap-
proaches. However, it should be noted, that various serial techniques are still used (e.g.
RT-PCR (Heid et al. 1996) or SAGE (Velculescu et al. 1995)) not only to validate results
of highthroughput experiments but also to provide highly accurate experimental results.

High-Throughput Gene Expression Profiling

During the last decade, techniques for large scale measurement of gene expression levels,
based on DNA microarrays, have been developed (Fodor et al. 1993, Schena et al. 1995).
For reviews see (Brown & Botstein 1999, Schena 2000, Baldi & Hatfield 2002).

DNA microarrays measure in parallel the cellular mRNA concentrations for many thou-
sands of genes and make use of the following facts: (i) Complementary strands of RNA
and DNA (a pair of sequences where each T combines with A/U and G with C on the
two strands) bind to each other, a process which is called hybridization. (ii) Hybridization
is highly selective for the sequence and is most stable when the two sequences are com-
plementary to each other. For longer sequences of a few hundred base pairs, virtually only
complementary strands bind at an adequate temperature. This effect can be used to very se-
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lectively filter out RNA strands of a certain sequence, by means of a complementary DNA
(cDNA) strand. These cDNA strands are obtained by reverse transcription of the corre-
sponding mRNA strands. The strength of hybridization is temperature-dependent which is
used in many molecular biological techniques. (iii) The mRNA sequence for each gene is
unique, in other words for every mRNA to a given gene there can be found a sequence that
appears only in this mRNA. (iv) Due to whole genome projects, the sequences of entire
genomes, but also the loci and sequences of an increasing number of genes for a collection
of different organisms become available.

A gene expression measurement with microarrays is based on the selective hybridiza-
tion of dissolved mRNA with probes of complementary sequences that are fixed on a sub-
strate. The surface of a DNA microarray is divided into many spots. At each spot a number
of nucleotide strands with a sequence complementary to the mRNA sequence of one gene
are fixed. Hence, a DNA microarray with N spots can measure N mRNA concentrations at
the same time. Microarrays use either short oligonucleotide probes with 15-25 base pairs,
as manufactured by the company Affymetrix (Fodor et al. 1993), or longer strands of a
few hundred bases. The latter microarrays are more selective and can be used for differ-
ential gene expression measurements (cf. (Brown & Botstein 1999)), whereas the former
microarrays are mostly used to measure expression levels from a single cell.

Figure 2.3 illustrates schematically the procedure of a differential gene expression mea-
surement. mRNA from a control cell and the cell to be measured are extracted, purified and
labelled with two different dyes (often Cy3 and Cy5). They are brought together with the
DNA probe spots on the microarray where they compete for hybridization. At the end
of hybridization, the ratio of bound mRNA from both cells on each spot reflects the ra-
tio of concentrations of this mRNA in both cells. After optical readout – usually with a
confocal laser scanning microscope – an image with colored spot patterns results, where
colors reflect the expression level of each gene in the measured cell, relative to the con-
trol cell. Image processing algorithms can semi-automatically or automatically analyze the
spot pattern and transform it into numerical gene expression values (Hegde et al. 2000, An-
gulo & Serra 2003) which, after normalization procedures (Hegde et al. 2000, Bilban
et al. 2002, Baldi & Hatfield 2002), are stored in a N dimensional gene expression vec-
tor x. There are many sources of noise in microarray experiments which include biological
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noise (variation of cellular states in a homogeneous strain, variations caused by RNA ex-
traction procedures), finite sample effects such as fluctuations in the number of hybridizing
molecules or optical readout noise. Consequently, the gene expression vector is of proba-
bilistic nature, and often modelled as an instance of a random vector X.

2.2.3 Proteomic Data

Proteins are considered as the working units of the cell involved in almost all inter- and
intra-cellular processes. In contrast to the genome, the proteome differs highly among cell
types and states (cf. Figure 2.1). Measuring the proteome would therefore be an impor-
tant step towards a better understanding of the cellular machinery. The widespread high-
throughput microarray techniques capture the proteome only indirectly by measuring the
transcriptome. Although the mRNA concentration might be related with the final protein
quantity, microarray measurements miss important effects, such as post-translational mech-
anisms or varying protein degradation and hence ignore important influences. This makes
such techniques uncapable of capturing the complete proteome. Measuring proteomic alter-
ation directly is therefore one of the major issues of todays research. Present techniques are
centered around two-dimensional gel electrophoresis (2DPAGE) which separates proteins
by two physical characteristics. Their charge and their mass (Brown 1999, Yates 1998).
Hanash and coworkers showed the power of protein analysis by successfully classifying
different leukemia subtypes (Hanash et al. 1986, Hanash et al. 1989). However, these
lowthroughput techniques only allow a limited view analyzing a small proportion of the
proteome. Delineating the proteome as a whole, such as in DNA microarrays, is still
difficult because proteins are much more difficult to handle than mRNA probes. Robust
technologies for a parallel characterization of the proteome are not yet available, although
high-throughput protein expression profiling technologies for large-scale proteome mea-
surements are being put forward (Phizicky et al. 2003, Hanash 2003).

Yeast-two-Hybrid

As mentioned in section 2.1.3, many proteins interact with each other and thereby partici-
pate in molecular signalling or in reaction networks of the cell. Protein protein interactions
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control and regulate a large number of cellular processes, e.g. post translational modifi-
cations and are therefore crucial for the cellular machinery. The Yeast-two-hybrid method
(Fields & Song 1989) is an in vitro assay to discover the ability of two proteins to interact
with each other. It makes use of a mechanism of transcriptional regulation. A transcription
factor regulates the expression of a gene by binding with its DNA-binding domain (BD) to
an activation domain (AD) specific for the relevant gene. In a two-hybrid assay, protein X
is fused to a DNA-binding domain of a transcription factor such as GAL4 and its potential
binding partner Y is fused to the corresponding activation domain. If protein X interacts
with protein Y, they form a transcriptional activator which activates the expression of a
specific reporter gene, whose expression is measured.

Various studies (Uetz et al. 2000, Ito et al. 2001) use two-hybrid assays to systematically
analyze the entire proteome to identify interactions which place functionally unclassified
proteins into a biological context. Besides identifying novel protein-protein interactions,
that were previously uncharacterized, two-hybrid assays are also used to understand the na-
ture of protein protein interactions, by manipulating or inactivating certain proteins. Many
diseases arise due to mutations causing the protein to be non-functional, or to have an al-
tered function. The significance of such mutations can be studied by analyzing how much
they affect following protein protein interactions.

2.2.4 Metabolomic Data

A fundamental task of proteins is to act as enzymes - catalysts which accelerate specific
chemical reactions by lowering the activation energy. Enzymes accomplish the catalysis
by binding to a substrate S forming a enzyme-substrate complex ES. While bound to the
enzyme, the substrate is converted into the product P of the reaction which is then released
from the enzyme.

E + S 
 ES 
 E + P (2.1)

Metabolic reactions are a fundamental part of the cellular machinery: proteins, amino acids
or other molecules (necessary for life processes) are generated but also degenerated through
a sequence of different enzymatic reactions forming biochemical pathways which alto-
gether create a complex entity, the metabolic network. Individual pathways are already
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well characterized and modeled at a varying level of detail. From the reactions kinetics of
enzymatic processes modeled with Michaelis-Menten equations, to a static network level
visualized as huge interaction maps, such as the Boehringer Mannheim wallchart, or stored
in databases (Ogata et al. 1999). Together they form a huge knowledge basis for a better
understanding of the metabolic network as well as the genetic network.

2.3 Summary

Molecular mechanisms, such as cell cycle control, DNA repair or apoptosis are of major
interest for molecular biologists as well as for physicians or pharmacologists since their
decipherment is expected to provoke a big step towards a better understanding of cellular
modes, disease mechanisms or drug response. These underlying mechanisms are closely
related to the perception that the diversity of cellular modes is guided by the execution of
distinct genetic programs, assembled by the interaction of a huge number of molecules. In
contrast to previous assumptions that only proteins regulate the cellular behavior, genetic
programs emerge from the interplay of various types of molecules. Proteins are synthesized
from DNA, bind to other proteins or act back to regulate the production of other proteins.
Other regulatory systems emerge from the interaction of mRNA molecules with the DNA
or with proteins or from enzymatic reactions.

To uncover the underlying molecular pathways and the emerging cellular phenomena,
scientists are working on challenging tasks to collect molecular data. The first breakthrough
was made with sequencing and annotating the genome from different species, providing in-
formation about the arrangement of genes and other functional units on the entire genome.
But it became clear, that these data provide only one step and that, for a complete functional
annotation of genes, all different molecular levels (genome, transcriptome, proteome, ..)
need to be observed. Especially due to the invention of high-throughput techniques, such
as DNA microarrays which allow the observation of thousands of mRNAs in parallel, it
became possible to gain a global view of molecular activities in the cell.

However, the exploration and understanding of molecular interaction networks, their
operational modes under different circumstances and their response to external signals, still
remains one of the major challenging tasks of the post-genomic era. To solve this prob-
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lem, data from different sources need to be analyzed and merged together in an integrated
approach. Moreover, due to the complexity of the mapped system and the resulting data,
information is not intuitively interpretable such that additional in depth statistical analyses
are indispensable.
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Figure 2.1: The genome and the proteome of a living cell. Transcription and translation are
used to produce proteins from genes on the DNA. Proteins in turn regulate gene expression
levels. For details see text.
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Figure 2.2: From cellular regulatory mechanisms to abstract genetic networks. (a) Tran-
scription and translation mechanisms and control points for regulation. RR= regulatory
region; PTM = post-translational modification (of proteins) (b) More schematic view of
the interaction pathways between genes. (c) Abstract genetic network. Shaded boxes mark
the part of the network measured by DNA microarray experiments.
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Figure 2.3: Schematic sketch of differential gene expression profiling with DNA microar-
rays. Left: each spot of a microarray contains single-stranded nucleotide sequences as
probes which are complementary to a sequence of one gene. Center: differently labelled
RNA molecules (light and dark gray) from two samples are brought in contact with the
array, and are hybridized. Confocal fluorescence microscopy is used to optically determine
the relative fraction of RNA from each cell and for each spot (gene). Right: a microarray
usually contains many thousands of sample spots. The spot size n ranges from 25-500 µm,
depending on the type of microarray.



Chapter 3

Genetic Network Inference with
Graphical Models

The various modes of a cellular system are accomplished by the interplay of thousands of
molecules, e.g. proteins which bind back to the DNA and regulate the synthesis of other
proteins, or several proteins which form a functional complex by binding with each other.
Altogether these molecular interactions form the molecular network. An intuitive way of
modeling such a network might be to construct a graph structure G where nodes corre-
spond to molecules and edges indicate relationships among them. Nodes can be associated
with genes, proteins or other molecules and edges represent for example a transcriptional
regulatory mechanism or a simple binding relation. This abstracted graphical representa-
tion might help to gain a clearer understanding of complex cellular mechanisms. Although
graph structures are suitable for describing the qualitative nature of molecular relationships,
they completely miss the quantitative nature of regulation, for example, if a transcription
factor inhibits or promotes the expression of a certain gene and all other biochemical quan-
tities.

Here the family of graphical models comes into play. Graphical models represent a
family of probabilistic models which describe the relationships among a set of random
variables x in terms of a directed or undirected graph structure G and a set of parame-
ters Θ, given as probability distributions. This scheme fits the scenario mentioned above
where variables correspond to molecules and edges denote general molecular interactions.
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Thus, the intuitive representation as a graph structure and the probabilistic semantic fit the
stochastic nature (Gillespie 1977, McAdams & Arkin 1997) and the network character of
biological processes very well and make graphical models a good candidate for modeling
genetic networks.

This chapter deals with the problem how to model the multi-dimensional probability
distribution of microarray data sets in terms of a graphical model: how to learn the structure
G and the set of parameters Θ from data D, a procedure known as structure learning.
Since microarray data are argued to provide snapshots of the cellular system, the resulting
model might represent some structural and functional aspects of the underlying genetic
network. All members of the graphical model class consist of a network structure and a
set of parameters. However, they differ in the way the joint probability distribution over
variables is factorized into a set of conditional and marginal probability distributions.

In the following, two types of graphical models are used for genetic network infer-
ence: Bayesian networks and decomposable models. Due to their differences in factorizing
the global probability distribution, each model might fit different aspects of the genetic
network. Bayesian networks are useful for modeling molecular regulatory relationships,
whereas decomposable models focus on the modular way in which different molecules act
together to accomplish a certain task in the cellular machinery.

3.1 Learning Genetic Networks with Bayesian Networks

Molecular regulatory mechanisms form a fundamental part of the cellular machinery: pro-
teins bind back to the DNA strand and bias the expression of certain genes, or they interact
with other proteins, modify their three dimensional structure and – as a consequence –
change their function. Thus, regulatory events appear at each molecular level, from the
genome to the metabolome and, even more important, also between the different molecular
scales of the cellular system (see Section 2.1.2 for a more detailed description). Figure 3.1a
sketches several regulatory mechanisms by which different molecules can regulate each
other. Protein A regulates the synthesis of protein B which in turn regulates together with
protein D as a transcriptional activator the expression of gene C. Finally, on a proteomic
scale, protein C alters protein E through a protein-protein interaction.
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Figure 3.1: From cellular regulatory mechanisms to an abstracted probabilistic causal
model. a) Regulatory mechanisms appear at various molecular levels. b) The set of regu-
latory mechanisms can be modeled by a directed graph whose edges code for causal rela-
tionship. c) Given a multinomial model, the regulatory mechanisms can quantitatively be
described as a table of conditional probability entries.
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Each of these events forms a causal relationship between two molecules and can be
described by a directed edge pointing from the regulating molecule to the regulated one.
Moreover, all processes in Figure 3.1a can be redrawn by means of a directed graph, where
nodes correspond to genes, proteins or other molecules and edges describe regulatory
mechanisms among them. This results in a simple graph structure, as shown in Figure
3.1b, of 6 variables interconnected by a set of directed edges. Edges symbolize causal re-
lationships between the genes they connect. For example, the state of gene B is said to be
caused by the state of gene A. This corresponds to the biological content of Figure 3.1a
where the expression of gene B depends on the expression of gene A. As mentioned above
the graph structure itself provides only a qualitative description of molecular interactions
and lacks the quantitative aspect. Bayesian networks describe such regulatory relationships
qualitatively, by a directed graph structure, as well as quantitatively, by a set of conditional
probability distributions. Suppose each molecule can be in one of two states, on and off,
the conditional probability distribution of gene B can be represented as a 2 × 2 table, such
as in Figure 3.1b. The entries in the table state that A inactivates molecule B since the
probability of B being active is 0, P(B=on|A=on)=0, when A is active, and 1 if A is inac-
tive, P(B=on|A=off)=1. In addition, distributions are not limited to boolean functions, as
sketched here, but entries are assigned with probability values. Thus, a Bayesian network
model is well suitable to describe molecular regulatory mechanisms qualitatively as well
as quantitatively, even though in a more abstract way as biochemical driven models. The
following section deals with the problem of learning Bayesian networks out of microarray
data and addresses the question of how well they can model complex molecular regulatory
networks.

3.1.1 Bayesian Belief Network

A Bayesian network (Pearl 1998) is a probabilistic model which splits the joint probability
distribution over a set of random variables x = {x1, ..., xn} into a set of local conditional
probabilities in terms of a graph structure G and a set of parameters Θ such that

p(x) =
n∏

i=1

p(xi|x{1,...,i−1}, Θ, G). (3.1)
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Besides decomposing the probability distribution over x in a set of local probabilities, a
Bayesian network also exploits independency relationships among these variables such
that a set of variables pai ∈ x exists which renders variable xi and {x \ pai} independent.
Thus, Equation 3.1 can be rewritten as follows

p(x) =
n∏

i=1

p(xi|pai, Θ, G). (3.2)

The first part of a Bayesian network is a graphical structure G = (V, E), with a set
of nodes V = {1, ..., n} and a set of edges E. Each node i ∈ V corresponds to the
random variable xi ∈ x, e.g. a molecule, edges represent the conditional dependencies and
independecies among them. The structure of a Bayesian network is defined by a directed
acyclic graph (DAG) which means that all edges are marked with a unique direction and
no cycles appear (i.e. starting from any given node and following the direction of the
edges, there is no way to cycle back to the original node). The conditional independencies
among the variables defined in Equation 3.2 are encoded in the graph structure and can be
explained by the Markov independence relation. It states that the state of each variable xi

depends only on the states taken by its parents pai, where xj ∈ pai is called a parent of xi

which is symbolized by an edge pointing from xj to xi. Consequently xi ∈ chj is called a
child of xj .

D-Separation Criterion

The complete relationship between probabilistic independence and the graph structure of
a Bayesian network is given by the concept of d-separation (Pearl 1998) which states that:
two variables a and b in a network G are d-separated given an intermediate variable c

(a ⊥ b|c) if for all paths between a and b

• c is a node of a serial or diverging connection and its state is known or

• c is a node of converging connection, called collider, and neither c nor any of its
descendants is known.

It can be shown that the d-separation criterion results in the same set of conditional
distributions as defined in Equation 3.2 (Verma & Pearl 1990).
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Figure 3.2: Instead of one DAG a set of DAGs, an equivalence class, describes a given
joint density in an indistinguishable way. G1, G2 and G3 code for the same joint density
distribution and build the equivalence class E1. G3 on the other hand, represents a unique
d-separation scheme and cannot be represented by another DAG.

Structure Equivalence

According to the d-separation criterion, the DAG of a Bayesian network graphically de-
scribes the conditional dependence and independence relationships encoded in the prob-
ability distribution among the set of variables. However, it is not guaranteed that the
conditional dependencies and independencies lead to a unique DAG but instead to many
DAGs which altogethers describe the same probability distribution equally. This problem
is known as structure equivalence and can be formulated as follows: Two DAGs are equiv-
alent if and only if they have the same set of edges and the same set of colliders.

This implies that two equivalent DAGs represent the same set of d-separations and
therefore also the same probability distribution even though they differ in the direction of
some edges.

G1, G2 and G3 in Figure 3.2 for example state the same d-separation namely that vari-

able a and b are d-separated given variable c. Thus, even though the structures differ in the
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direction of some edges they are all structure equivalent, denoted by G1 ∼ G2 ∼ G3, and

belong to the same equivalence class, namely E1. Equivalent structures can be redrawn as

a partial directed acyclic graph (PDAG) which can contain directed as well as undirected

edges. Undirected edges have no direction whereas directed ones are labeled with an irre-

versible unique direction. The resulting PDAG for the equivalence class E1 only contains

undirected edges, since each edge varies in its direction across the class members. The

assumption of structure equivalence can be easily proven by analyzing the probability dis-

tribution. Using Bayes’ rule, the probability distribution of a DAG can be transformed into

the distribution of any other member of the same equivalence class, e.g. for the example in

Figure 3.2

E1 : p(a, b, c) = p(a|c)p(b|c)p(c)︸ ︷︷ ︸
p(x)G1

= p(c|a)p(b|c)p(a)︸ ︷︷ ︸
p(x)G2

= p(a|c)p(c|b)p(b)︸ ︷︷ ︸
p(x)G3

E2 : p(a, b, c) = p(c|a, b)p(a)p(b)︸ ︷︷ ︸
p(x)G4

.

Consequently a Bayesian network model can not necessarily be interpreted as a causal

model since putative undirected edges of the corresponding PDAG do not represent causal

relationships anymore. For example, part of the scenario of molecular regulatory mecha-

nisms described in Figure 3.1a can be modeled by a Bayesian network structure in terms

of causal relationships (see Figure 3.1b). However, the edge between A and B can be re-

versed in the graph (but not necessarily in the biochemical network) without changing the

set of colliders. Hence for this relationship no unique graphical representation exists and

no statement about the causal relationship among these two molecules can be made. In

this case, additional prior knowledge is required to assign a direction to the undirected link.

Given that the real scenario in Figure 3.1a is known, the edge pointing from A to B would

be preferred to the reversed one, since protein A is known to regulate the transcription of

gene B. Thus, the problem of structure equivalence can be best addressed by using addi-
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tional prior domain knowledge. Chapter 7 presents two approaches which use biological

prior knowledge to solve the problem of equivalent structures.

3.1.2 Parameter and Structure Learning

A Bayesian network models the conditional dependencies and independencies among a

set of random variables x in terms of a network structure G and a set of parameters Θ.

In the domain of structure learning the underlying probability distribution which encodes

these conditional relationships is inferred from a finite database D of N cases, where each

case includes observations of one or more variables in x (Buntine 1996).This unsupervised

learning method can be divided into two problems. In the first case the structure is already

known and only the parameters have to be learned from the data set (e.g. naı̈ve Bayes

approach). The second task is the more difficult, since, besides the parameters, also the

structure has to be learned from the data set. This work focuses on the second problem,

namely learning the parameters as well as the structure of genetic network systems from

microarray data.

The procedure of structural learning can be summarized as follows: Let D = {d1, ..., dN}
be a data set of N independent observations, where each data point is an n-dimensional vec-

tor with components dl = (dl
1, ..., d

l
n). Find a graph structure G and a parameter set Θ that

best match D.

In the present context the data set is given by N independent microarray experiments,

each observing the expression states of n probes or genes. Each node in the learned

Bayesian network symbolizes a specific probe or gene and the structure represents the

conditional dependency relationships among these molecules regarding the cellular condi-

tions from which microarray samples where taken. In the same way as microarray data

are considered to provide a snapshot of the cell at the observed state, the learned Bayesian

network might provide patterns of molecular interplay, visible from the observed transcrip-

tomic data.
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Fitness Function

To evaluate the goodness of fit of a network graph structure G with respect to the data, a

statistically motivated scoring function S assigns a score S(G|D) to the graph G. In the

following, data are supposed to be multinomial such that the Bayesian model is of multi-

nomial nature too. In a multinomial model each gene can have several discrete states, e.g.

{underexpressed, normal, overexpressed}. When each variable xi can assume ri different

values k and the set of parents pai can assume qi different values j, the local multinomial

conditional probability distribution can be represented as a ri × qi table. Each parameter

entry in the table is given by

θijk = p(xi = k|pai = j, G), (3.3)

where the parameters satisfy the constraints 0 ≤ θijk ≤ 1 and
∑

k θijk = 1. Equation 3.3

can be approximated by taking the relative frequencies Nijk as estimates for θijk such that

θ̂ijk =
Nijk

Nij

. (3.4)

Nijk denotes the number of cases in data set D in which dl
i = k and pai(d

l) = j, Nij =∑
k Nijk.

Before discussing different scoring metrics, it is necessary to outline two fundamental

properties of a scoring function.

Decomposability Since the conditional probability distribution of a Bayesian network

decomposes into a product of local probabilities, see Equation 3.2, one might suspect that

the same holds for the scoring function. In fact, if the data set contains neither missing nor

hidden values, the score can be decomposed into a set of local scores such that

S(G|D) =
n∏

i=1

Si(G|D). (3.5)
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Si(G|D) denotes the local score of variable i which only depends on the states of xi and

pai.

Score Equivalence Two structure equivalent DAGs belong to the same equivalence class

since they represent the same conditional probability distribution. Only in the case of

prior knowledge it might be possible to distinguish between equivalent DAGs. Otherwise

there is no reason for favoring a particular equivalence class member. Due to this, Markov

equivalent DAGs should also be assigned with the same score value to be score equivalent

G1 ∼ G2 ⇒ S(G1|D) = S(G2|D). (3.6)

Frequentist Score

According to the frequentist approach, where the data set D represents the ”true” joint

probability distribution, the structure G which best fits the data is assigned with the highest

score. The fitness of a network structure G according to a data set D can therefore be

estimated in terms of the maximum likelihood function (cf. Equation A.11) which, taking

the logarithm, is given by

log p(D|Θ, G) =
n∑

i=1

∑
j,k

Nijk · log θijk. (3.7)

One general problem of likelihood scoring metrics is the effect of overfitting which be-

comes even more problematic when the data contains only a small amount of samples.

Thus, Equation 3.7 is extended by a penalty term p which penalizes the complexity of a

network structure

S(G, Θ, D) =
n∑

i=1

∑
j,k

Nijk · log θijk − p. (3.8)

A wide range of model complexity penalty functions has been suggested, among them

the Akaike Information Criterion (AIC) (Bozdogan 1987) and the Bayesian Information
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Criterion (BIC) (Schwarz 1978). The AIC complexity penalty is |Θ|, the effective number

of parameters in the model. The BIC term is 1
2
|Θ| log N , where N is the number of sam-

ples. Another prominent frequentist scoring function is the Minimum Description Length

(MDL) which is identical to the negative BIC score but with a completely different ori-

gin, namely from coding theory (Wai & Fahiem 1994) (for a comparison of these model

selection criteria see (Allen & Greiner 2000)).

Although the maximum likelihood score is quite useful for structure learning it has to

be noted that only in the limit N → ∞ the maximum likelihood estimate converges to the

true value, whereas for small sample size the maximum likelihood produces biased results

(Bishop 1995). This has to be taken into consideration especially in the domain of learning

from microarray data where sample number is very low.

Bayesian Score

According to the Bayesian approach the data set does not represent the ”true” joint prob-

ability distribution and is therefore just used to revise our degree of belief including our

already gained a priori knowledge. The Bayesian score is proportional to the posterior

probability of the graph G given the data D,

S(G|D) =
p(D|G)p(G)

p(D)
, (3.9)

where p(G) is the prior probability of the structure, p(D) is a normalization constant, and

p(D|G) is the marginal likelihood of the data given the structure G. In contrast to the

frequentist scoring functions which relies on the maximum likelihood parameters θ̂G the

Bayesian score treats the parameters of a model as random variables characterized by a

distribution. This uncertainty over the parameters is expressed by marginalizing out the

parameters. Thus, the marginal likelihood equals the integral:

p(D|G) =

∫
p(D|Θ, G)p(Θ|G)dΘ, (3.10)
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where p(Θ|G) denotes the prior density of the model parameters Θ for a given structure,

and p(D|Θ, G) is the likelihood of the data given a Bayesian network.

Given a conjugate prior which for the multinomial case implicates that p(Θ|G) fol-

lows a Dirichlet distribution and given other plausible assumptions such as data complete-

ness, parameter independence and parameter modularity (see (Cooper & Herskovits 1991)),

Equation 3.10 can be solved in closed form (see Appendix A for a more detailed descrip-

tion). The solution is a unique scoring function for the multinomial model namely the

Bayesian Dirichlet (BD) score (Heckerman & Chickering 1995). Approximating Equation

3.3 by relative frequencies leads to a closed form solution for the BD score

p(D|G) =
n∏

i=1

qi∏
j=1

Γ(N
′
ij)

Γ(N
′
ij + Nij)

ri∏
k=1

Γ(N
′

ijk + Nijk)

Γ(N
′
ijk)

, (3.11)

where N
′

ijk express parameters of the Dirichlet prior distributions, N
′
ij =

∑
k N

′

ijk, and Γ

denotes the gamma function.

Because member graphs of an equivalence class are indistinguishable, the Bayesian

score in Equation 3.9 has to assume identical values for all members of a certain class to

ensure score equivalence. To achieve this, Heckerman and co-workers proposed a non-

informative parameter prior N
′

ijk = 1
qiri

. Together with the non-informative prior Equation

3.11 forms the so-called BD equivalent score (BDe).

As in the frequentist approach, also in this scoring metric the problem of overfitting

needs to be reduced by punishing networks complexity. For this, the structure prior p(G)

can be used as a penalty term such that the prior probability of a structure G decreases the

more complex it becomes. In (Heckerman & Chickering 1995), the number of edges δ is

used as a measure for the complexity of structure G such that the structure prior is given as

p(G) = ckδ, (3.12)

where k is a constant factor 0 < k ≤ 1 and c is a normalization constant. It has to be noted



3.1 Learning Genetic Networks with Bayesian Networks 39

that the prior belief in Equation 3.12 does not reflect real expert knowledge regarding the

observed (cellular) system, favoring the presence or absence of specific edges (cf. Chapter

7).

Search Strategies

Because the task of finding the optimal structure of a Bayesian network is NP-hard (Chickering

et al. 1994), one needs to adopt heuristic search strategies which can efficiently determine

a Bayesian network close to the optimum. As outlined above, the scoring function can be

decomposed into a product of local scoring functions restricted to each family (a variable

xi and its parents pai). Each term can be defined as the local score of xi which depends

only on the state of xi and pai. This decomposition property is crucial for learning struc-

tures, since a local search procedure that changes one edge at each move can efficiently

evaluate the gains made by this change. This implies that at each step only the local scores

of those variables whose set of parents has been changed have to be re-evaluated. For a

structure G, the structures which differ only in the presence or absence of one edge and

satisfy the acyclicity condition (using depth-first search), represent the so-called neighbor-

ing structures nbg(G). The structure G′ ∈ nbg(G) which entails the best scoring function

is selected as the next candidate structure G′. This technique is known as local search

strategy and a commonly used approach in structure learning. If G′ is selected as the next

structure G depends on the heuristic which used.

Greedy Search The simplest heuristic strategy is greedy search. In each iteration the

space of neighboring structures is tested for an improvement in the score. The neighboring

structure G′ which entails the largest improvement with respect to G becomes the next

intermediate structure which is the starting point for the next iteration. Thus, the algorithm

always moves across the model space in the direction of the greatest rate of decrease of the

error which is quite similar to the gradient descent algorithm for training neural networks
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(see (Bishop 1995)). A big drawback of this search strategy is that instead of finding the

global optimum it might get stuck in a local optimum.

Simulated Annealing Searching the model space by only accepting improvements in

the model score might be a pitfall and leads to a suboptimal optimization result. Simulated

annealing (SA) tries to overcome the problem of getting stuck in local optima by allowing

up-hill as well as down-hill steps regarding the scoring function. Similar to greedy search,

SA in each iteration selects the neighboring structure with the best score. If the change

increases the score, the selected structure becomes the new intermediate structure. In case

of a down-hill step, the neighboring structure is being accepted with a certain probability

p = e
−∆
T , where ∆ = S(G)− S(G′) and T is the current temperature. The algorithm is an

extension of the Metropolis algorithm (Metropolis et al. 1958) and has its origin in cooling

theory. It was originally proposed as a means of finding the equilibrium configuration of

a collection of atoms at a given temperature (Pincus 1970) and further used as a global

optimization technique (Kirkpatrick et al. 1983). Starting from a high value Tstart, where

almost every proposed transition is accepted, the pseudo-temperature T is cooled down to

a low temperature where only up-hill steps are allowed.

If T is annealed logarithmically, SA is guaranteed to converge to the global optimum

(Laarhoven & Aarts 1987). But since logarithmic cooling is of prohibitive computational

expense, one has to find a compromise between search-accuracy and computational time.

However, simulations showed that even with a fast cooling scheme, SA reaches better

results than greedy-hillclimbing (Steck 2001, Dejori & Stetter 2003a).
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3.2 Learning Genetic Networks with Decomposable Mod-
els

Besides regulatory relationships, the molecular interplay in the cellular system can be de-

scribed in terms of functional modules, composed of different molecules which act together

to accomplish a certain task. Functional modules are considered to be a critical aspect of

biological organization (Hartwell et al. 1999) at each molecular scale. A functional module

is defined as a discrete entity whose function is separable from those of other molecules.

Most cellular processes are the result of a set of interacting molecules, rather than the result

of the activity of an individual molecule. Transcriptional regulation for example is often

not affected by a single transcription factor but by several ones which alter the transcrip-

tion rate by forming a complex. Further examples of molecular modules are subunits of

multimeric proteins, e.g. hemoglobin, where the subunits are coded by separate genes, or

protein groups which associate into larger structures termed macromolecular assemblies or

reaction chains.

Figure 3.3a shows two ways in which proteins form modular compositions. Protein A,

B and D form a transcriptional regulatory complex which alters the expression rate of gene

C. This complex might, for example, act like a logic AND-gate such that only when all

3 proteins bind the promoter region gene C is being expressed. Protein C in turn groups

together with protein E and F to form a multimeric protein. This molecular system can be

represented by an undirected graph, where molecular functional modules are characterized

by a set of fully connected nodes, so-called cliques. The graph structure shown in Figure

3.3b consists of two cliques: one is composed of A, B and D and the other one of C, E

and F. The decomposition of variables into cliques is provided by a decomposable model:

variables are grouped into overlapping subsets of fully linked nodes (cliques) and nodes

which participate in more than one clique form a separator which connects the cliques

sharing this node. Figure 3.3c shows the corresponding decomposable structure which
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Figure 3.3: From molecular modules to an abstracted probabilistic decomposable model.
a) Molecules group together and form functional modules to accomplish specific tasks in
the cellular system. b) A functional module can be represented by a set of fully linked
molecules, a clique. c) The whole set of modular relationships can be described by a
decomposable model, in terms of cliques linked by separators.
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models the relationships between the molecular functional modules Figure 3.3a.

The aim of learning decomposable models out of microarray data is to infer modular

relationships among molecules and not, as with Bayesian networks, to reveal regulatory

relationships. This modular view might contribute to a more profound knowledge of how

molecules act together and form (previously unknown) functional groups.

3.2.1 Decomposable Model

Decomposable models belong to the family of graphical models. The probability distribu-

tion over a set of random variables x is described in terms of a graph structure G and a set

of parameters Θ. The structure G is that of a general Markov model, namely fully undi-

rected. Thus, in contrast to Bayesian networks, where each variable is characterized by its

set of parents, variables are characterized by a set of adjacent variables sharing dependen-

cies with it. Whereas the joint density in the Bayesian network model factorizes in a set of

conditional densities, they decompose in a set of smaller joint densities in decomposable

models. See Figure 3.4 for a schematic comparison of joint and conditional densities.

Therefore, the main characteristic of decomposable models is the way in which the joint

density over x is decomposed into a set of local marginal densities. For this the notion of

a clique is required. A clique C is defined as a maximal subgroup of nodes xC ∈ x which

are mutually fully connected. xS ∈ x denotes the subset of variables that form separator

S. The graph structure G can therefore be decomposed into a set of K cliques and Σ

separators. Furthermore G can be transformed into a so-called clique tree a particular tree

in which the cliques form the nodes. Each edge in the tree represents a separator which

contains the nodes common to the cliques linked by the edge. The joint density over x of a

decomposable model factorizes into the product of marginal densities over cliques, divided

by the marginal densities over separators

p(x) =

∏
C∈K p(xC)∏
S∈Σ p(xS)

. (3.13)
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Figure 3.4: Schematic illustration of decomposable graphical models. a) Sketch of a two-
dimensional joint probability density p(x1, x2). The marginal densities p(x1) and p(x2) are
obtained by integrating over the respective other variable. In this example, the conditional
probability density p(x2|x1) differs from the marginal density, reflecting a statistical depen-
dency between x1 and x2. b) Same as a) but for statistically independent variables x1 and
x2. Here conditional and marginal probability densities coincide and the joint probability
density factorizes. c) Graph structure of a simple decomposable graphical model with 7
nodes. Each node i stands for a variable xi, and each edge reflects a direct statistical depen-
dency. d) A join tree equivalent to the graph structure of c). Each node of the tree stands
for a clique of fully connected variables, and each edge reflects a set of variables common
to adjacent cliques: their separator.
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Nonparametric Density Estimation

As previously shown, a decomposable model splits the joint density over x into a set of

marginal densities. In the following a nonparametric probability density estimate, namely a

kernel density estimator, is used for modeling these marginal clique and separator densities.

A kernel density estimator consists of the superposition of N kernel functions g centered

at each data point

p(x|D, Θ) =
1

N

N∑
i=1

g(x; xi, Θ), (3.14)

where N is the number of samples of data set D. In the following a Gaussian kernel with

diagonal covariance matrix is used

g(x; xi, Θ) =
1

(2π)
n
2 |diagΘ|1/2

exp

(
1

2
(x− xi)T (diagΘ)−1(x− xi)

)
. (3.15)

In Equation 3.15, Θ denotes the vector of variances along the n dimensions of the data

space. It is worth noting that although the kernel function is Gaussian, the nonparametric

probability density estimate in Equation 3.14 is a superposition of Gaussians and can in

principle describe any probability density function. This is an important extension to other

approaches of structure learning from microarray data which are restricted to Gaussian den-

sities or discrete data. Both assumptions are limited: the probability density of microarray

data is not known but it is likely to be non-Gaussian and their discretization might mask

statistical dependencies.

In (Schwaighofer et al. 2004), the variance parameters Θ are fitted once for a fully con-

nected model, i.e. all nodes form one large clique, using a leave-one-out procedure. The

densities for the low-dimensional marginal densities p(xC) and p(xS) can be calculated by

marginalizing the joint density. This procedure has two important advantages: first the

density estimate is consistent which means that calculating a marginal probability density

with different sequences of marginalization always yields the same result. Second, com-

putational complexity is reduced by avoiding a permanent re-fitting of the density model.
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Thus, Equation 3.13 can be rewritten as follows

p(x) =

∏
C∈K p(xC |DC , Θ̂c)∏
S∈S p(xS|DS, Θ̂S)

, (3.16)

where the vectors in DC , Θ̂C , DS and Θ̂S contain only the dimensions (or nodes) which

belong to clique C or separator S, respectively. The hat denotes the fitted values of a

variable.

3.2.2 Structure Learning

Structure learning of decomposable models requires a criterion to score the quality of a

given model structure for describing the data, such as a cross validation scheme. For this,

the data set is divided into k disjoint sub sets Dk, then the model is learned using k − 1

sets of the available data and is evaluated based on the log-likelihood of the remaining data

points Dk which had not been used for training. The procedure is repeated k times with

different sets and the final score is given by the average of the k test set log-likelihoods.

Since the joint probability density factorizes as given by Equation 3.13, the log-likelihood

becomes

L(T ) =
A∑

j=1

L(Cj)−
B∑

i=1

L(Si) (3.17)

with

L(C) =
∑

k

∑
xc∈Dk

C

log p(xC |DC \Dk
C) (3.18)

L(S) =
∑

k

∑
xs∈Dk

s

log p(xS|DS \Dk
S), (3.19)

and where A denotes the number of cliques and B is the number of separators. Cross

validation enforces the model to explain previously unseen data. The log likelihood in

Equation 3.17 is used to score the goodness of a model.
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Besides the scoring scheme, an efficient search strategy to walk through the model

space is required. While in Bayesian network learning the structure has to be acyclic, here

in each search-step the condition of staying within the class of decomposable models has

to be satisfied. This can be efficiently done with the cordiality check procedure introduced

in (Ibarra 2000) and described in (Schwaighofer et al. 2004).

3.3 Summary

The various modes and states of the cellular machinery derive from the complex intercel-

lular interplay of thousands of molecules. This wealth of molecular relationships can be

described (however not completely) by means of a network structure where nodes represent

molecules and edges stand for relationships among them. An appropriate statistical way for

describing such molecular networks is given by the class of graphical models where the re-

lationship among a set of random variables is represented in terms of a graph structure and

a set of local probability distributions. Especially the combination of the intuitive graphical

representation and their probabilistic nature makes this kind of models suitable for describ-

ing the complex interplay of molecules in the cellular system. This chapter presented two

members of the graphical model class, each of which is appropriate to describe different

properties of genetic network systems. Furthermore, it is shown how these models can be

learned from microarray data sets to infer the genetic network of underlying cellular mech-

anisms encoded in the measured expression profiles. A Bayesian network model describes

conditional dependencies among molecules in terms of a directed graph structure. This

representation fits the way how molecules regulate and affect each other. Such molecu-

lar regulatory mechanisms denote causal relationships which can be modeled as directed

edges. However, due to the problem of structure equivalence a learned Bayesian network

might not be able to fill all relationships with causality. Another big problem of Bayesian

networks is their demanded acyclicity which does not fit the picture of genetic regulatory
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feedback loops. One solution is to consider the time domain for the network design, as in

dynamic Bayesian networks (Murphy & Mian 1999), such that acyclicity constraints are

reduced. Moreover, experimentally and statistically results have shown that transcriptional

networks are predominated by feedforward network units which fit Bayesian network ar-

chitecture (Lee et al. 2002, Shen-Orr et al. 2002).

Decomposable models represent a probability distribution as a set of cliques connected

by some separators. The graph structure is fully undirected and hence not able to model

molecular regulatory mechanisms as Bayesian networks. However, the decomposition of a

network structure into modules ties up with another fundamental principle of the molecular

interplay, namely the union of several molecules into biological functional modules to ac-

complish a certain task. Moreover, this method permits working directly with continuous

data instead of assuming a multinomial or Gaussian distribution.



Chapter 4

Robustness Analysis of Learned
Bayesian Networks

Learning the Bayesian network structure from finite data suffers from different kinds of

problems which altogether become even more evident in the approach described here. Es-

pecially in the field of bioinformatics, high throughput methods, such as DNA microarrays,

produce data with a high number of observed variables but with a very small number of

samples. Estimating the genetic network by learning a Bayesian network is a very hard

task in this domain. This chapter focuses on the problems which arise from various limi-

tations and studies to which extent such constraints influence the performance of network

structure inference.

The first problem, that of finding the optimal structure, was introduced already in Sec-

tion 3.1.2. With the number of variables the space of possible graph structures grows

superexponentially and makes the learning problem NP-hard. Thus, one has to resort to

heuristic search strategies which, however, do not guarantee to find the global optimum and

thereby incompletely identify the underlying systems from which data derive. This poses

the question, whether analyzing such a limited subnetwork allows meaningful statements

about global cellular mechanisms. In particular, it needs to be assessed how the obtained
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results are affected by the high number of missing variables which are not considered for

the inference step.

When learning Bayesian networks from microarray data, these two major problems,

the high-dimensional space of variables on the one side and the limitation of available data

points on the other side become even more evident: for thousands of genes only a few tens

of samples are usually available. This shows the necessity for methods which quantitatively

explore the robustness of Bayesian network structures learned under these circumstances.

The following chapter addresses these problems with various approaches and tries to iden-

tify types of structural features which can be robustly identified when learning Bayesian

networks from microarray data.

4.1 Data Bootstrap

Structure learning in graphical models is partially unstable which means that the learned

structure can be sensitive to small modifications in the data. Variability in the structure can

be assessed by retraining the network under a Q−fold non-parametric bootstrap procedure

(Efron & Tibshirani 1993, Zoubir 1993). In this approach at each run q, a bootstrap data set

Dq is generated by re-sampling, with replacement, N data points from the original data set

D of size N . Dq is not a simple permutation of D. Because of the replacement, some data

points may appear in multiple copies in Dq, while others may be missing. All bootstrap data

sets have the same size as the original data set, and reflect the same underlying probability

density, however in general contain different data points. Retraining Q networks based on

Q bootstrap samples yields a sample from the distribution PQ(G) over graph structures G.

As a consequence, one can estimate the effect of finite sample size fluctuations on fluc-

tuations in the learned structure which leads to an estimate of the confidence of network

features. The confidence measure is reliable, when the data set D can be considered to

really reflect the underlying probability distribution, e.g. when the data points ergodically
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spread over the distribution. Then, also the bootstrap replicas will resample the complete

and true original distribution. If due to fluctuations or systematic errors, D does not unifor-

mally cover the original distribution, the same will hold for the bootstrap replicas.

4.2 Feature Partial Directed Graph

The major difficulties for any data-driven approach regard the noise of microarray mea-

surements and the lack of enough observations. Generally, given finite data, rather than a

single best model a set of models exist which describe the underlying probability distribu-

tion equally well. As a result of this effect, called model uncertainty which comes along

with the well known problem of over-fitting, one should not rely on the estimation of a

single model but on several good models to gain a better understanding of the underlying

distribution. In the case of bootstrap experiments, the fluctuation throughout the Q learned

models reflects the uncertainty given by the observed domain.

The variability of the structure G over Q bootstrap steps can be described by a weighted

graph, the so-called feature PDAG (fPDAG) which emerges from the superposition of Q

learned PDAGs. An fPDAG addresses the uncertainty over structural features, such as

the presence or absence of an edge or other topological features. Each feature F can be

assigned with a probability, that is

p(F |D) =
∑

q

p(Gq|D)f(Gq). (4.1)

Gq is the PDAG learned at bootstrap step q and f(Gq) denotes the value of feature F in Gq.

It is 1 if feature F is contained in G and 0 otherwise. Given the Q graphs Gq, q = 1, ..., Q

trained by the bootstrap procedure, Equation 4.1 can be approximated by the empirical

mean

p(F |D) =
1

Q

∑
q

f(Gq). (4.2)
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One example of a topological feature is the dependency relationship between a given pair

of variables {xi, xj}. Since the PDAGs underlying a fPDAG, describe undirected as well

as directed dependencies, such a feature can be described by a probability distribution pi↔j

with 4 discrete states, that is

pi↔j = {pi→j, pi−j, pi←j, pi⊥j} ≡ (pi↔j(1), pi↔j(2), pi↔j(3), pi↔j(4)). (4.3)

pi→j denotes the probability for a directed edge from i to j, pi−j is the probability for an

undirected edge between i and j, pi←j denotes the probability for an edge from j to i and

pi⊥j denotes the probability that i and j are independent from each other. Each term satisfy

the constraints 0 ≤ pi↔j(k) ≤ 1 and
∑

k pi↔j(k) = 1. Each of these terms is calculated

according to Equation 4.2, where f(Gq) is again 1 if G contains this dependency and 0

otherwise. Moreover, the probability for an edge between node i and j, regardless of its

direction, is given by c = 1− pi⊥j . It reflects the probability of a Markov relation between

xi and xj and is, in the following, named as edge confidence.

A fPDAG over a set of n random variables x can therefore be represented by a feature

distribution p which decomposes into n(n−1)
2

local probability distributions each of which

describes the uncertainty for the dependency relationship between two variables. The mean

uncertainty per edge of a fPDAG’s probability distribution p is given quantitatively by

H(p) = − 1

n(n− 1)

∑
i,j∈x
i6=j

4∑
k=1

pi↔j(k) log2 pi↔j(k), (4.4)

which is the entropy (Shannon 1948) or the degree of disorder per edge of the probability

distribution described by the fPDAG. H(p) = 0 if for each pair of nodes {xi, xj} there is

an absolute certainty about pi↔j , and ∈]0, 2] otherwise.

Although Equation 4.4 provides a measure for the uncertainty of the learned fPDAG

and therefore for the robustness of the estimated features, it does not evaluate to which

extent the learned model approximates the true one which underlies the observed data.
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This requires a measure for the distance between the true and the learned fPDAG, or rather,

between their feature distributions. For a quantitative comparison in terms of the divergence

between the feature distribution q of the true fPDAG and the estimated feature distribution

p of the learned fPDAG the Kullback-Leibler divergence (Kullback & Leibler 1951) per

edge was used, such that

K(q, p) =
1

n(n− 1)

∑
i,j∈x
i6=j

4∑
k=1

qi↔j(k) log
qi↔j(k)

pi↔j(k)
. (4.5)

K(q, p) is non symmetric, however it represents a quasi-distance that is always non-negative

and zero if and only if for each pair of variables {xi, xj} qi↔j = pi↔j . The readers should

be reminded, that the KL-distance in Equation 4.5 only relates to the structural component

of a fPDAG and not to the probability density represented by the full Bayesian networks

the fPDAG is composed of. For this see (Whittaker 1990).

Another important issue is the question which kind of deviations from the learned distri-

bution p to the underlying true distribution q contribute to the distance K(q, p). Especially

one might be interested to which extent the distance results from erroneously overestimated

dependencies, K(q, p)+ = K(q, p) | pi⊥j < qi⊥j , or from erroneously underestimated

ones, K(q, p)− = K(q, p) | pi⊥j > qi⊥j . Both measures are related to the estimates of false

positive edges (fp) which appear in the learned but not in the true network, and false neg-

ative edges (fn), those which appear in the true but not in the learned network. K(q, p)+

relates to the divergence caused by false positives and K(q, p)− to the divergence caused

by false negatives, in the framework of a weighted graph.

4.3 Analysis of Robust Features in Benchmark Networks

In order to be able to interpret the structures learned from microarray data in a correct

manner, robustness parameters have to be extracted which can then be used to discriminate
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between true and false features. Therefore, in this section, we conduct several robustness

tests on 3 benchmark data sets addressing two problems of structure learning: the variabil-

ity of common heuristic search strategies and the effect of sparse data. The first benchmark

case is the well known ALARM network (Beinlich et al. 1989). This established benchmark

network consists of 37 discrete variables, interconnected by 46 arcs. However this network

might not be an ideal benchmark to address problems related to learning genetic networks

from gene expression data since it does not reflect the ”statistics” of real microarray data.

For this purpose, two Bayesian networks, ALL-SIM and E2APBX1-SIM, have been con-

structed based on a real microarray data set (cf. Appendix B.2.1). The first one consists

of 271 discrete variables each of which can have 3 values (-1, 0, +1), connected by 300

directed edges. The second one consists of 39 discrete variables each of which can have

3 values (-1, 0, +1), connected by 43 directed edges. All three networks are used in the

following as generative models to generate data sets of varying sample size by use of the

algorithm 6.1.1. Based on these data, structure learning results can be evaluated according

to Equation 4.5, because the corresponding ”true” model is known. In order to smoothen

the effect of outliers, all benchmarks are performed 5 times, with constant learning param-

eters but different random seeds.

4.3.1 Variability of Heuristic Search Strategies

As noted in Section 3.1.2 finding a model which best fits the data is NP-hard. To solve

this problem one has to use heuristic search strategies, for example a simple greedy hill-

climbing search or a more costly simulated annealing scheme. This section addresses the

question if the complexity of the search strategy positively correlates with the quality of

the learned structure. For this a 20-fold data bootstrap learning procedure with different

search strategies has been applied on three data sets of 1000 samples. On each data set the

following different heuristics have been applied: greedy search, and simulated annealing

with different start temperatures from a very low temperature, Tstart = 0.5, up to a high
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Figure 4.1: Entropy of learned fPDAGs as a function of the heuristic search strategy. The
more costly the search strategy the lower the network entropy of the learned fPDAG.

value Tstart = 20.

For each learned fPDAG the entropy H(p) was calculated and plotted against the ap-

plied heuristic search strategy in Figure 4.1. For each network, the mean entropy (black

solid line) is highest for greedy search and decays with increasing the start temperature

of the SA scheme. As the computation cost increases with Tstart, it can be concluded that

the main entropy decreases the more costly the heuristic search strategy. The dashed lines

represent the course of the entropy for each of the 5 runs. It can be seen that the entropy

decreases consistently and almost independent of the random seed. The variability over

the 5 runs remains relatively low. Thus, the more expensive the applied heuristic the more

robust the learned fPDAG.
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However, this does not explain if and to which extent the expense of the heuristic search

leads to a closer approximation of the true graph. For this each fPDAG has been compared

with the true fPDAG, from which the data set has been sampled, according to Equation 4.5.

It should be noted, that since the true fPDAG is based on only one Bayesian network, the

distribution over pi↔j is concentrated on a single value.

Figure 4.2 plots the KL-distance between true fPDAG and learned fPDAG (black solid

line), according to Equation 4.5, as a function of the search strategy. The distance as

well as the variability across training runs decay with the expensiveness of the applied

heuristic. Already at a relatively low start temperature of Tstart = 0.5, where only a few

down-hill steps are allowed, simulated annealing performs much better than greedy search.

Start temperatures higher than 5 do not result in a significant improvement. Consistently

across networks it is observed that (i) the more expensive the heuristic the better the learned

fPDAG approximates the true one and (ii) start temperatures Tstart ≥ 5 result in a good and

constant learning performance.

4.3.2 The Effect of Small Sample Size

Another problem related to current microarray data is their small sample size N . From a

statistical point of view, a data set of finite sample size is always incapable of exhaustively

reflecting the entire density over the observed variables of the underlying system. Thus, es-

pecially for learning the genetic network of thousands of genes from a few microarray data

vectors this limiting factor has to be examined. To address the impact of data sparseness on

the learning result, a 20-fold bootstrap procedure has been applied 5 times on data sets of

different sample sizes, ranging from 1000 down to 50 cases. All networks were learned by

using a simulated annealing scheme with Tstart = 5. As before first the entropy of learned

networks was examined. Figure 4.3 plots the entropy as a function of increasing sample

size. The result is quite comprehensible: The larger the data set the more clearly defined

the underlying density which results in more robust network estimates. Figure 4.4 illus-
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Figure 4.2: KL-distance between true and learned fPDAG as a function of the heuristic
search strategy. The more expensive the heuristic the better the learned fPDAG approxi-
mates the true one.
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Figure 4.3: Entropy of learned fPDAGs as a function of the heuristic search strategy. With
increasing the number of samples the learned fPDAG becomes more robust and the entropy
decreases.
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trates the evolution of the relative entropy between the true and learned fPDAG, K(q, p)

(black solid line) when increasing the sample size N . As expected, with an increasing num-

ber of samples, the learned fPDAGs better approximate the true one, and the KL-distance

decreases. Thus, with a sufficiently large sample size the difference between the original

underlying system and the learned one diminishes, but it increases when scaling down the

data set size.

However, if one focuses on the distance which results from erroneously overestimated

dependencies K(q, p)+ (black dashed lines) one can see that it is relatively low and remains

also relatively constant compared to the total distance. Thus, we can draw the important

conclusion that deviations from the true network is primarily caused by erroneously un-

derestimated dependencies K(q, p)− (black dashed-dotted line), and not by erroneously

overestimated ones. This hypothesis becomes even more evident when looking at Figure

4.5 which shows how the confidence of false positives and true positives is distributed, for

two sample runs with 1000 and 50 samples, respectively, for each of the three networks.

The solid line indicates the edge confidence distribution of the true network and dots that of

the learned network. Thus, the area to the left of the solid line shows the confidences of the

true positives and the area to the right shows the confidences of the false positives. With a

small sample size (N=50) the number of falsely learned dependencies is much higher com-

pared to a relatively large size data set (N=1000). However, since they are mainly of low

confidences K(p, q)+ remains relatively constant and does not highly contribute to the total

distance. Further, a small sample size results in a decrease of originally highly confident

edges and in an increase of low confident ones. Thus, K(p, q)− states the biggest part of the

total distance. A small sample size causes a decrease of truly estimated dependencies but

does not strongly increase the belief in falsely estimated dependencies. Hence, structures

learned from sparse data deviate from the underlying true system but those edges which

have a high confidence in the learned fPDAG are likely to be correct. However, Figure 4.5

also shows that given a very small sample size of N = 50 no threshold cτ for the edge con-
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Figure 4.4: Comparison of true fPDAG and learned fPDAG from generated data sets with
different sample sizes. When increasing the sample size, the distance between the true and
the learned model decreases. The major part of this distance is caused by false negatives
whereas the contribution of false positives is low and remains relatively constant.
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a) alarm 1000 samples b) alarm 50 samples

c) all-test 1000 samples d) all-test 50 samples

e) e2apbx1-test 1000 samples f) e2apbx1-test 50 samples

Figure 4.5: Confidence distribution (dots) of true and false positive edges learned from data
sets of 1000 samples (a, c, e) and 50 samples (b, b, f). The area to the left of the solid line
shows the confidences of the true positives and the area to the right shows the confidences
of the false positives.
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N = 50 N = 300 N = 1000
benchmark cτ s p cτ s p cτ s p

ALARM 0.8 0.174 0 0.5 0.89 0.04 0.5 0.97 0.03
ALL-SIM 0.8 0.078 0.02 0.5 0.81 0.03 0.5 0.99 0.02

E2APBX1-SIM 0.8 0.093 0.05 0.5 0.95 0.03 0.4 1.0 0.03

Table 4.1: Confidence threshold and sensitivity for all three benchmark cases, with N = 50,
N = 300 and N = 1000, given p ≤ 0.05.

fidence exists which fully separates the true from the false positives, since both are of low

confidences. Thus, a compromise between predicting most of the underlying dependencies

and accepting false predictions has to be made. This condition can be best described by

means of two parameters: the sensitivity (s(cτ ) = tp
tp+fn

) which is the probability of pre-

dicting the true dependencies, and the error probability measure or p-value (p(cτ ) = fp
fp+tp

)

which denotes the probability that the estimated dependencies are wrong an therefore false

positives. Given these two parameters, each confidence threshold cτ can be assessed for its

accuracy with the goal to find a cut-off which perfectly separates true from false positives

such that s(cτ ) = 1 and p(cτ ) = 0.

Varying the confidence threshold cτ and plotting the sensitivity versus the correspond-

ing p-value results in a curve which illustrates how much error one has to tolerate to achieve

a certain sensitivity. Figure 4.6 plots these curves for all three benchmarks with different

sample sizes (N = 1000 − 50). In all three cases lowering the sample size results in a

decrease of the area under the curve meaning that to achieve a certain sensitivity a bigger

error has to be accepted. Thus, to stay below a certain p-value (e.g. p ≤ 0.05), the achieved

sensitivity respectively the number of true positives decreases with the number of available

samples.

As listed in Table 4.1, for sample sizes of N = 50 and a p-value of p ≤ 0.05, a sensitiv-

ity of around 0.078 ≤ s ≤ 0.174 can be achieved. This might sound very little, but readers

should be advised that revealing ∼ 10% of the underlying genetic network would already
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be a promising result. In addition there are experiments with much more than 50 samples.

So, for a data set of 300 samples we achieve a sensitivity of around 0.89 ≤ s ≤ 0.95.

Moreover, Table 4.1 shows a constant confidence cut-offs up to which the corresponding

dependencies can be believed in with a high accuracy: for N = 50 the threshold is cτ ≥ 0.8

whereas for 300 samples it is cτ ≥ 0.5. Thus, for further analyses of Bayesian networks

learned from sparse microarray data sets on should primarily focus on edges whose edge

confidence exceeds the corresponding threshold since these dependencies are likely to part

of the underlying genetic network.

4.4 Robustness of Bayesian Networks Learned from Mi-
croarray Data

The simulations of the previous section show that even from data with a low sample size

robust structural features can be extracted. These benchmarks can now be used to estimate

features, learned from microarray data which probably belong to the underlying genetic

network. As a data basis for the following examinations we chose the leukemia microarray

data set of (Yeoh et al. 2002) since it provides a relatively high number of samples, namely

327.

4.4.1 The ALL Data Set

The acute lymphoblastic leukemia (ALL) study (Yeoh et al. 2002) provides measurements

of 12.000 probes in 327 samples collected from patients with different pediatric ALL sub-

types. The goal of this study was to use expression profiling for identifying each of the

known prognostically and therapeutically relevant subgroups and for the identification of

patients who are at high risk for failing conventional therapeutic approaches.

Out of the 12.000 measured genes, those genes have been selected that best define
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the individual subtypes using χ2 statistic according (Yeoh et al. 2002). The final data set

(271 genes × 327 samples) is composed of the 40 most discriminative genes for each of

the 7 subtypes, whereby 9 genes appear in more then one cluster but only once in our

final dataset. Be precise from the beginning, the data corresponds to 271 gene probes.

Some genes are represented by multiple probes (e.g. to overcome problems with alternative

splicing or to test for variability within a microarray measurement). In accordance with the

original experiments (Yeoh et al. 2002), we leave these duplicates in the data.

Next, gene expression levels were discretized to three levels, over-expressed, unchanged

and under-expressed, thresholded by the standard deviation of the expression levels over the

whole data set, to learn a multinomial Bayesian network. Since this model can describe any

discrete conditional distribution, all algorithms also work for higher classes of ordinal data.

However, given the low signal to noise ratio of current microarray data with a polynomial

scaling of computational expense, finer discretization might result in noise-contaminated

data.

Based on these data we trained 20 networks according to the non-parametric data boot-

strap approach described in Section 4.1 with simulated annealing (Tstart = 10) as a heuristic

search strategy. According to the previous benchmark simulation and the size of the used

data set, namely N = 327, we only took those dependencies with a confidence ≥ 0.5. We

found 81 edges exceeding this threshold whereby 29 dependencies, listed in Table 4.2 ex-

ceed the confidence threshold of 0.8. , whereof 20 represent dependencies between probes

of the same gene. Since a gene is by definition linked most strongly to itself, this result

demonstrates the power of Bayesian network learning to capture statistical dependencies

and thereby to hint towards functional gene gene relationships even from sparse data.

Furthermore also functional dependencies have been estimated. For example, CD3D

and CD3E are both part of the T-cell surface glyoprotein CD3 and therefore both involved in

the same cellular pathways. Another example is the estimated dependency between HLA-

DRA and HLA-DPB1. Both genes are part of the major histocompatibility complex, class
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iAffymetrix ID iSymbol pi→j pi−j pi←j jAffymetrix ID jSymbol

39730 at ABL1 0.55 0.175 0.275 1636 g at ABL1
37014 at MX1 0.625 0.05 0.2 39061 at BST2
330 s at TUBA1 0.55 0.1 0.35 36591 at TUBA1
1287 at PARP1 0.425 0.15 0.275 41146 at PARP1
40648 at MERTK 0.475 0.125 0.225 1786 at MERTK
717 at TRIB2 0.625 0.075 0.3 40113 at TRIB2

38679 g at SNRPE 0.65 0.05 0.1 33859 at SAP18
38459 g at CYB5 0.625 0.1 0.075 31492 at eIF3k
34374 g at UREB1 0.45 0.1 0.25 40998 at TNRC11
39402 at IL1B 0.65 0.025 0.325 1520 s at IL1B

955 at CALMI 0.45 0.1 0.425 41288 at CALM1
40518 at PTPRC 0.825 0.075 0.1 40519 at PTPRC
1126 s at CD44 0.45 0.05 0.325 2036 s at CD44
38242 at BLNK 0.55 0.05 0.225 34168 at DNTT
31892 at PTPRM 0.425 0.175 0.375 995 g at PTPRM
41266 at ITGA6 0.45 0.2 0.225 33410 at ITGA6
33410 at ITGA6 0.475 0.15 0.175 33411 g at ITGA6
38747 at CD34 0.475 0.2 0.325 538 at CD34
38319 at CD3D 0.225 0.375 0.2 36277 at CD3E
38017 at CD79A 0.6 0.125 0.275 38018 g at CD79A
37039 at HLA-DRA 0.35 0.3 0.25 38095 i at HLA-DPB1

38095 i at HLA-DPB1 0.625 0.3 0.075 38096 f at HLA-DPB1
2059 s at LCK 0.3 0.425 0.25 33238 at LCK

41165 g at IGHM 0.5 0.05 0.45 41166 at IGHM
36239 at POU2AF1 0.575 0.075 0.225 40570 at FOXO1A
38652 at C10orf26 0.475 0.125 0.25 32224 at FCHSD2
41097 at TERF2 0.5 0.2 0.3 1299 at TERF2
1980 s at NME2 0.425 0.175 0.4 33415 at NME2
1336 s at PRKCB1 0.45 0.1 0.45 160029 at PRKCB1

Table 4.2: Statistical dependencies estimated from the ALL data set with a confidence
greater or equal 0.8. Most of them are between probes of the same gene. Dependencies
between distinct genes are marked gray.
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II, and therefore functionally related. Further emphasis should be put on the analysis of

dependencies which predict causal relationships and hence regulatory relationships among

gene, such as the dependency between MX1 and BST2 or between SNRPE and SAP18.

However, we do not conduct such a profound analysis since it would be beyond the scope

of this section.

4.5 Summary

By learning Bayesian networks from microarray data we assume to be able to capture gene

regulatory relationships which are part of the whole genetic network. But as a data driven

approach this method suffers from the fact that common microarray data sets are of small

sample size and therefore insufficient to reflect the entire ”statistic” of the underlying sys-

tem. Generally given finite data, rather than a single best model, several models describe

the underlying probability distribution equally well and should therefore be taken into ac-

count. This results in a weighted graph structure, where each dependency is labeled with

a probability value, the so-called edge confidence, addressing the uncertainty given the

observed domain.

Several benchmarks have been performed in this chapter to simulate the effect of small

sample sizes with the goal to extract features which are robust against data sparseness.

For this, a measure has been introduced which accounts for the deviation of the learned

model from that model where the data are sampled from. The results show that most of

the error is induced by falsely underestimated dependencies and only weakly by falsely

overestimated ones. Thus, we can conclude that the sparser the data the less dependencies

can be learned, but that dependencies of high confidence are likely to be true estimates.

We further examined this results more precisely with the aim to find a confidence threshold

which discriminates between false and true estimates such that the p value is still acceptable

p ≤ 0.05. Simulations showed that for a sample size of N = 50 and an error probability
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of p ≤ 0.05 only edges with a confidence of 0.8 or higher should be considered as true

estimates. Thus, for microarray data sets of around 50 samples, structure learning should

be able to detect ∼ 10% of the underlying genetic network and ∼ 80% with data sets of

300 samples. However, a major point of criticism regarding these results is the fact that

Bayesian network learning has been tested on data sampled again from Bayesian networks.

We therefore need to investigate in further benchmark cases including other types of gener-

ative models, such as systems of coupled differential equations or boolean networks which

is left to future work.



Chapter 5

Topological Analysis of Bayesian
Networks

As shown in the previous chapter, structures learned from sparse data have to be inter-

preted carefully especially when analyzed edge by edge. However, further topological

features exist whose exploration might be important in light of a deeper understanding of

genetic network principles. The here presented approach puts emphasis on global topolog-

ical features of the learned network structure, with the aim of finding basic principles of

the learned network structure and hence of the underlying genetic regulatory system. This

work is summarized in (Dejori, Schürmann & Stetter 2004).

5.1 Network Topology and Scale-Free Architecture

A Bayesian network is specified by a pair (G, Θ), where Θ describes the probability dis-

tribution of the variables as a set of conditional probability distributions and G = (V, E)

denotes the graph structure with a set of vertices V and edges E. The approach proposed

in this chapter is based on the analysis of estimated topological features of the trained

Bayesian networks. Thus, from a learned Bayesian network, only the graph structure G
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Figure 5.1: (a) Load and degree (in brackets) of a small example network. (b) A case in
which the degree and the load differ strongly.

is utilized for a further analysis whereas the set of parameters Θ is fully neglected. More-

over, rather then studying the quality of a learned structure G by looking at each edge

independently, the following approach focuses on global topological features of a single

network G or of a set networks {G1, ..., Gq} resulting from a Q-fold bootstrap procedure

and represented by an fPDAG.

To this end, the topology T of obtained graph structures is assumed to be a direct

estimate of the topology of the underlying genetic regulatory network. More precisely,

using the posterior distribution p(Gq|D) of graph structures, it is possible to equip for

example each feature F with its confidence p(F |D) as shown in Section 4.2.

5.1.1 Scale-free Topology

As mentioned at the beginning of this thesis the cellular system is often characterized by

a network structure, where nodes are joined together by links indicating an interaction or

association among molecules, e.g. genes or proteins. Such complex regulatory systems ap-

pear on various molecular levels, from the genetic regulatory network up to better known
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metabolic pathways. Besides molecular network systems many other complex organiza-

tions such as social relationships among individuals or the spreading of diseases are often

analyzed at a network level. Many studies in this field try to find fundamental procedures

which let such networks emerge and common principles which might help gaining a better

understanding of complex systems in general. Empirical studies of the past few years have

shown that many large-scale networks, such as metabolic pathways or protein-protein net-

works, share a common topological feature, namely a scale-free topology (see (Barabasi &

Bonabeau 2003) for a review).

To define a scale-free property of a network, a new feature has to be introduced namely

that of the degree k of a node. The degree is defined as the number of connections (edges)

k to or from it. In contrast to a random network, whose degree distribution is that of a

Poisson function, in a scale-free network the degree k of a node is distributed according to

a power law of the form

P (k) ∼ k−γ, (5.1)

where γ denotes the scaling exponent. Such networks are characterized by a fairly small

amount of nodes which show a much higher degree than the average. An interesting phe-

nomenon found for the operation of scale-free networks is that they display a high degree

of robustness against random failures of nodes but a high vulnerability for targeted attacks

on the few highly connected nodes (Albert et al. 2000).

Another important topological feature of scale-free networks has been introduced by

Motter et al. (Motter et al. 2002): the load c of a node is defined by the total number

of shortest paths between all possible pairs of nodes that pass through it (also referred to

as node betweenness centrality (Barthelemy 2004)). Depending on the scaling exponent γ,

nodes with high degree or nodes with a high load represent spots of high vulnerability of the

network. For exponents around 3, a high load has been shown to mark stabilizing nodes.

Thus, scale-free topology of a network with exponents in this range implies that only a

small number of nodes, characterized by a high load, control the global network behavior.
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Both topological features suggest that in scale-free networks only a small fraction of nodes

play a crucial role for the integrity of the system and stable network operation.

Assuming a scale-free topology of the molecular network such nodes might represent

the Achilles heel of the cellular machinery and are hypothesized to play a crucial role

in pathogenesis. This view matches perfectly the biological principles of tumorigenesis:

tumor-suppressor genes are crucial for the maintenance of a controlled cell state and mu-

tations on them can turn the cell into a cancer cell. Since a learned Bayesian network

is argued to reflect the underlying genetic network, it might be interesting to test learned

structures for their scale-free behavior and if this holds to raise the following question: does

the topological importance of nodes correlate with what is known about the biological im-

portance of the proteins they represent. For example, are such genes known to be involved

in oncogenesis or related critical processes?

5.1.2 Calculation of Mean degree and Directed Load

The result which emerges from a structure learning procedure is not a single fully directed

graph but a set of Q partial directed graphs, which together form a fPDAG. Thus, as men-

tioned in Section 5.1, both features, degree and load, can be formulated by a feature likeli-

hood using Equation 4.2. The mean degree of a variable xi is given by:

ki =
1

Q

∑
q

Ki(Gq), (5.2)

where Ki(Gq) is the degree of variable xi in graph Gq which can easily be estimated by

counting all directed and undirected edges related to node i.

The mean directed load of a variable xi is defined as:

ci =
1

Q

∑
q

Ci(Gq). (5.3)



5.2 Using Scale-free Topology to Estimate Critical Genes 73

The directed load Ci(Gq) is calculated by searching in Gq for each of the n(n − 1) pairs

of nodes for the shortest connecting path through the network, which is consistent with

eventual edge directions, and incrementing the load Ci of each node i on this shortest path

by 1. In case of a directed edge the path can only pass in the way of the direction whereas

in case of an undirected edge both paths are possible. Figure 5.1a depicts a small example

network and lists the values of the load and the degree (brackets). In general the load and

the degree will be correlated, however they can also differ drastically, as for the case of a

node connecting two large communities, as shown in Figure 5.1b.

5.2 Using Scale-free Topology to Estimate Critical Genes

The basis for the following examinations consists of a fPDAG (cf. Section 3.1) composed

of Bayesian networks learned from 20 bootstrap replicas of the leukemia ALL-microarray

data set B.2.1 as described in Section 4.1. ALL is a heterogeneous disease. It appears

in various subtypes which differ markedly in their response to medical treatment. Apart

from T-cell-related ALL, T-ALL, the pathogenesis of which is not yet well-understood,

the subtypes related to B-cells can be retraced to specific genetic lesions, namely genetic

translocations t(9;22) (BCR-ABL), t(1;19) (E2A-PBX1), t(12;21) (TEL-AML1), t(4;11)

(MLL) and hyperdiploid karyotype with >50 chromosomes (hyperdip> 50). The data set

used to train our model B.2.1 partitions into markedly different gene-expression patterns,

which are characterized by different over- or underexpressed gene clusters and which can

be assigned either to the six known ALL subtypes or a seventh new subtype (see Figure

Figure 5.2 shows the resulting ALL-fPDAG connecting the 271 investigated genes. The

small red numbers (also reflected by the linewidth) denote the likelihood of the edge (con-

fidence) as the result of a Q = 20 fold bootstrap procedure. The position of the 271 nodes,

each representing a certain gene i, results from the projection of the corresponding ex-

pression vector across experiments, di = (d1
i , ..., d

N
i ), onto the plane spanned by the first
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Figure 5.2: Genetic network structure obtained by a learning Bayesian network from the
ALL gene expression data. Each node represents a gene and each edge an estimated reg-
ulatory relationship. The area of each gene node is proportional to its degree, the color
reflects the gene cluster. Genes are denoted by their Affymetrix-IDs. Red numbers indicate
the confidence of each edge according to the bootstrap procedure.
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Figure 5.3: Degree distribution of the ALL network. Apart from genes with degree 1, the
network follows closely a scale-free topology with γ = 3.2.

two principal components over these vectors d1, ..., dn. This representation already allows

a first coarse classification of the high-dimensional gene space into several gene clusters.

The area of each node is proportional to the mean degree, see Equation 5.2, of the corre-

sponding gene. Already visual inspection reveals that there is only a small number of genes

with a high degree whereas the majority of nodes have small degree, which is a qualitative

indication for the scale-free characteristic of the fPDAG network. B.1) (Yeoh et al. 2002).

We tested the scaling of the ALL network by calculating its degree distribution, i.e. the

histogram of the number of genes with degree k. The degree distribution, summed up over
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Affy.-ID Gene Putative function
36239 at POU2AF1 transcription cofactor, anti-pathogene response
1287 at ADPRT DNA repair, apoptosis
38017 at CD79A Anti-pathogene response
38319 at CD3D T-cell receptor, cellular defense response
33355 at PBX1 Proto-oncogene, transcription factor
41442 at CBFA2T3 cell proliferation, transcription factor
2059 s at LCK tyrosin kinase, cell cycle regulation
37988 at CD79B Anti-pathogene response
38095 i at HLA-DPB1 MHC, Anti-pathogene response
37350 at PSMD10 proteosome subunit, protein degradation

Table 5.1: Genes with highest directed load

all Q = 20 bootstrap runs, is displayed in a log-log plot in Figure 5.3. It clearly shows a

power-law decay, as given in Equation 5.1. This demonstrates the scale-free characteristic

of the ALL network, for which we find a scaling exponent of γ = 3.2. The slightly too

low number for genes with only one link might arise from the fact that we consider only

a subset of genes. Next, we make use of this scale-free property to define a measure for

the importance of a gene for the network operation. For this we consider the propagation

of information through a gene within the network. In the context of biological regulatory

networks, a direct link between two genes corresponds to a chemical regulatory relation-

ship: one gene provides information about its state to another gene by a chemical link.

Likewise, an arbitrary, indirect path between two genes can be interpreted as a chemical

signalling chain, through which information from a source gene to a target gene is propa-

gated as a chemical reaction cascade, for example a cascade of transcription factor bindings

on regulatory upstream regions. The information load or traffic load of a gene can then be

interpreted as the total chemical information, which flows through that gene while forming

indirect multi-step regulatory relationships between pairs of genes in the network. Besides

this intuitive motivation for the load of a gene as an important topological feature, we can

now make use of the findings from the systematic analysis of scale-free networks, (Motter
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Figure 5.4: Scatter plot of load against degree for the 271 genes. Both features are corre-
lated, but mostly for high-load and high-connected genes, load and degree differ from each
other.
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et al. 2002), namely that for scale-free networks with scaling coefficients around 3 a high

load ci of node i renders it important for a globally stable operation for the network. In

other words: damage to this node will have a particularly large impact on the global net-

work behavior. Now we identify the total chemical information as motivated above with

the directed load as defined in Section 5.1.2. Then a high load ci in the genetic regulatory

network represents a good measure for the network’s vulnerability to a local attack to the

expression of this gene i. We predict that if genes with high load are damaged, the nor-

mal operation of the regulatory network will break down more likely than for damage of

low-load genes. In particular, we predict damage on genes with a high load to be the cause

for pathological cellular function. These genes should be responsible for oncogenesis, tu-

mor development or other critical processes. Consequently, high-load critical genes are

estimates for pharmaceutical drug targets.

Table 5.1 shows the annotation (from the Affymetrix database) of the 10 genes with

highest mean directed load. Some of them are known as oncogenes or proto-oncogenes

whereas others are involved in critical processes such as DNA repair, induced cell death or

cell-cycle regulation. All genes with high load are involved in critical cellular processes.

POU2AF1, the gene with the highest load, is annotated as a proto-oncogene, acting as a

B-cell-specific transcriptional coactivator. The results seem to confirm that a high load is

a good indicator for genes which occupy a central position in normal cellular function,

and whose failure is likely to cause severe cellular malfunction such as cancer. As the

10 highest degree-genes seem to be related, by annotation, with oncogenesis , it might be

useful to rate genes by topological features in order to identify disease-critical genes.

But one criticism still remains, namely, that the network consists of a small selection

of genes where most of them can be related with oncogenic processes. In fact 36% of the

271 genes are related with oncogenesis 1. However, as shown in Figure 5.5, for the first

5 highest-degree genes the relative frequency of oncogenes is 75%, taking the first 10 of

1listed in CancerGene database
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Figure 5.5: Relative frequency of annotated oncogenes as a function of the number of genes
selected by their node’s degree in descending order.
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the list the percentage is still 70% but deacys the more genes from the sorted list are in-

cluded. This underlines the predictive power of topological features for the characterization

of critical genes.

5.3 Summary

In the here presented approach we focus on the topology of mutual dependencies between

genes, and rank the importance of genes for the global operation of the network by topo-

logical measures including the degree of a node (the number of links to and from other

nodes of the network) and a measure for the traffic load. For a set of genes, whose expres-

sion levels have high covariance with the individual subtypes of the disease, we find that

the graph structure of the learned Bayesian network of statistical dependencies follows a

scale-free network topology (Motter et al. 2002), a structure which has been observed also

for other cellular molecular networks such as in metabolic networks (Jeong et al. 2000) or

in the S. cerevisiae protein-protein interaction network (Jeong et al. 2001). According to

the theory of scale-free networks, genes with high load or high degree are important for

stable network operations, and are points of high vulnerability of the complex system. We

provide the load and degree distribution of the ALL-relevant genes and find a small number

of high-load genes, which are often annotated with central functions.

In order to judge the robustness of the present method in light of the data sparseness,

preparatory benchmark tests in Chapter 4 found, that the edges of our learned network

might reflect the subset of the strongest and therefore most significant ”backbone” regula-

tory relationships, which form a robust skeleton of the complete network. Analyzing the

topology of a subsystem and making hypothesis for the underlying global one might be a

point of criticism. But in (Scholz et al. 2005) it has been shown that random link removal

conserves the scale-free organization as well as the respective exponent of the true network

even up to a considerable level of noise, which underlines the relevance of our findings for
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the exploration of genetic network principles.



Chapter 6

Generative Inverse Modeling in
Bayesian Networks

Bayesian networks belong to the class of graphical models where graph theory and prob-

ability theory are related to each other. In Section 5.1 we presented one way of interpre-

tation, by considering only the structure G of a learned Bayesian network and neglect-

ing its probabilistic density Θ. In the here presented approach which is summarized in

(Dejori & Stetter 2004),the graph structure of the Bayesian network is not explicitly ana-

lyzed, and edges are not put in a direct relation to regulatory relationships between genes or

molecules. Instead the whole Bayesian network is interpreted as a density estimator which

consequently can be treated as a generative statistical model. In the case of learning from

microarray data such a generative model can be used to generate artificial gene expression

profiles which should reflect the statistics of the original data and therefore patterns of the

underlying system. Much more interesting it might be to alter the learned model and to

observe the consequences, in form of artificial gene expression profiles, which arise from

this intervention.

In the following, we present a probabilistic graphical modeling technique which allows

to relate local genetic interventions to alterations in the global gene expression profile as
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well as the other way around, namely, to infer the local genetic change responsible for a

global gene expression alteration. The underlying part of our approach consists of a number

of Bayesian belief networks, learned from gene expression measurements, which represent

dependency relationships among a set of genes. The learned Bayesian networks are used

as generative models for sampling simulated expression profiles, while at the same time

genetic changes are imposed on these networks. Genetic changes are induced by fixing

the expression level of one or a few genes to a constant value and calculating all other

expression levels conditioned on this intervention. Fixing gene expression levels can be

thought to model the effects of biological transcriptional signals, mutations, drug treatment,

gene knock-out or other interventions into the biological regulatory network. Therefore,

this technique might be useful to infer stabilizing or destabilizing genes or pathways from

microarray data.

6.1 Generative Inverse Modeling

Generative inverse modeling is a three-step approach using gene expression profiles as data

basis (see Figure6.1). In the first step, based on microarray data, a Bayesian network is

learned which, as described in Section 3.1, can be used to extract the statistical dependen-

cies and regulatory relationships hidden in the observed microarray data set. In the second

step this statistical model is being used to simulate artificial gene expression profiles, that

follow either the same statistical structure or a changed statistics as an effect of an inter-

vention (e.g. by switching a certain gene on or off). When the generated patterns closely

resemble measured patterns under a certain condition, such as a specific disease, the inter-

vention is considered likely to be involved in the mechanism causing this disease. Thus,

in a third step, artificial gene expression patterns are compared with gene characteristic ex-

pression patterns such that generative inverse modeling can provide a ranking of a certain

intervention to be the cause of an observed global expression pattern.
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Figure 6.1: Illustration of generative inverse modeling. From a set of gene-expression pat-
terns measured under different conditions, the genetic network learner extracts the statis-
tical dependencies and regulatory relationships that best describe the input expression set.
This statistical description is then used by the expression profile generator to produce arti-
ficial gene expression profiles, that follow either the same statistical structure or a changed
statistics as an effect of an intervention. The dashed box contains the process of generative
inverse modeling.
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Algorithm 1 Sampling (B,N)
Input:

B - Bayes-net;
N - Number of independent samples.

Output:
Dg - Data set of N independent samples.

1. Order variable-set x consistent with the condition
that parents pai are sorted before xi

2. For s = 1, ...., N

3. For i = 1, ...., n

4. Let xi be the highest ordered node not instantiated in sample s

5. Select state with probability p(xi =state|pai,g)
6. Update s-th sample of Dg

7. Instantiate xi=state

Figure 6.2: Algorithm to sample from a Bayesian network without interventions

6.1.1 Data Generation without Intervention

Being a density estimator, the trained Bayesian network B = (G, Θ), Equation 3.2, can be

used as a generative probabilistic model to produce a data set Dg that mirrors the probability

distribution, that had been learned previously from the original data set D (cf. Section 3.1).

Drawing gene expression profiles without an intervention works as follows (cf. Algorithm

1 in Figure 6.2): First, all variables are ordered such that the parents pai of each variable xi

are instantiated before xi itself. Next, variables are selected according to this ordering and

instantiated with a value, xi = xi,g. The value of each variable is selected with probability

p(xi|pai,g), where pai,g denotes the already selected states for xi’s parents. This procedure

is repeated until all variables are instantiated to form a generated global gene expression

profile xg, and until N gene expression patterns are drawn to form an artificial data set Dg.
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6.1.2 Interventional Modeling

The approach of interventional modeling estimates the effect of a certain intervention on

the behavior of the learned Bayesian network using a combination of probabilistic inference

and data sampling. The aim is to draw gene expression patterns and to form an artificial data

set Dg|E under a set of interventions, which are imposed as a set of evidences E. Possible

interventions can be for example (i) clamping a subset xE of genes to certain values and/or

(ii) clamping parts of the graph structure G to certain values yielding a new posterior

distribution p′(G) 6= pQ(G) (e.g., forcing an edge to be present or absent). In this work we

focus solely on the first type of intervention, namely clamping genes to certain expression

levels and measuring the expression behavior of all other genes given this intervention, by

generating data.

Generating data under interventions (cf. Algorithm 2 in Figure 6.3) is done by propa-

gation of evidence through the Bayes-net, that is, by obtaining the posterior distributions

of the subset xq = x \ xE of free expression levels. The posterior distribution follows

p(xq|E) =
∑

G

p(xq|E, G)p′(G), (6.1)

were p(xq|E, G) denotes the joint probability to measure gene expression levels xq in a

network with structure G, given certain genes have been fixed to expression levels by an

intervention E. Before instantiation, the free variable set xq is sorted as described in the

previous section, such that for each variable xi ∈ xq its parents pai are ordered before the

variable itself. In contrast to the sampling procedure without intervention, the distribution

over values of xi depends on its parents pai and on the set of gene expression levels xE in-

stantiated through the intervention E. Thus, the conditional probability has to be calculated

by performing Bayesian inference

p(xi|pai,g, E) =
p(xi, pai,g, E)

p(pai,g, E)
, (6.2)
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Algorithm 2 Interventional Sampling (B,E,N)
Input:

B - Bayes-net;
E - Set of interventions;
N - Number of independent samples.

Output:
Dg|E - Data set of N independent samples given E.

xE - Set of observed variables;
xq = {x\xE} - Set of query variables.

1. Order xq consistent with the condition
that parents pai are sorted before xi

2. For s = 1, ...., N

3. For i = 1, ...., n

4. Let xi be the highest ordered node not instantiated in sample s

5. Select state with probability p(xi =state|pai,g, E)
6. Update s-th sample of Dg|E

7. Instantiate xi=state

Figure 6.3: Algorithm to sample from a Bayesian network with interventions
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where the numerator is computed by marginalizing the joint distribution over all variables

except xi, pai and xE and the denominator is obtained by a subsequent marginalization

over xi:

p(xi|pai,g, E) =

∑
x\xi,pai,xE

p(x)∑
x\pai,xE

p(x)
(6.3)

In order to efficiently solve Equation 6.3, we use bucket elimination (Dechter 1996), an

exact inference algorithm in which variables are summed out one at a time. Each gene

xi ∈ xq is then instantiated according to Equation 6.3 until the full vector x = (xq, xE) of

gene-expression levels is instantiated.

Figure 6.4 illustrates the generation of one data-sample from a 5-gene network, where

each gene can be either under-, normal- or overexpressed, given gene x4 is observed as

overexpressed (x4 ≡ xE = 1). After gene x4 is fixed at its observed state and the empty

data-sample is initialized (step 1), each non-observed gene, beginning with the highest

ordered one, gene x1, is instantiated with an expression value according Equation 6.3. The

data-sample is updated with the selected instantiation until the full vector is drawn (step

2 - step 5). Note, that to solve Equation 6.3 only those variables are required, that are

conditionally relevant to xi (Shachter 1998). Thus, for gene x1 Equation 6.3 can be written

as:

p(x1|x4 = 1) =

∑
x3

p(x4 = 1|x3)p(x3|x1)p(x1)∑
x1

∑
x3

p(x4 = 1|x3)p(x3|x1)p(x1)
(6.4)

Step 1 - step 5 are repeated until the full data set of N samples is filled up (step 6).

The marginalization over the graph structure in Equation 6.1 is approximated by draw-

ing expression patterns from all Q graph structures obtained from the bootstrap procedure

after application of structural expression interventions E, until Dg|E is complete. For ex-

ample, data of Table 6.1 and Table 6.2, were obtained by drawing 100 samples from each

of the Q = 20 graph structure to form N = 2000 artificial patterns, which were compared

to the measured patterns as described below.
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1. Clamp gene x4 at value +1 and initialize empty
data-sample

2. Instantiate gene x1 according p(x1|x4 = 1) (e.g.
x1 = −1) and update data-sample

3. Instantiate gene x3 according
p(x3|x4 = 1, x1 = −1) (e.g. x3 = 0) and update

data-sample

4. Instantiate gene x2 according
p(x2|x4 = 1, x3 = 0) (e.g. x2 = 1) and update

data-sample

5. Instantiate gene x5 according p(x5|x4 = 1) (e.g.
x5 = 1) and update data-sample

6. Proceed with step 1 until data set is drawn

Figure 6.4: Interventional modeling scheme. Step 1 - step 5 illustrate the generation of one
data-sample from a 5-gene network. As an intervention gene x4 is kept fixed on its over-
expressed state. Conditioned to its parents and the observed intervention, each unobserved
gene is instantiated with an expression-level and the current data-sample is filled up with
the selected value. This procedure is repeated until the full data set is generated (step 6).
The drawn samples reflect the impact of the observed intervention on the global expression
behavior.
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6.1.3 Statistical Comparison of Data Sets

To estimate the effect of an intervention E on the global expression behavior, the artificial

data set Dg|E is compared with gene expression patterns of different conditions Dt, t =

1, ..., T . For the following approach we use a dissimilarity measure between two gene

expression vectors, the generated X and measured X’ one, d(X, X’), which was chosen as

the Euclidean distance. Dissimilarity measures based on the city-block metric or mismatch

count turned out to yield very similar results.

In order to estimate the correlation between an evidence E and a condition t we have to

calculate the posterior probability p(t|E) for the appearance of condition t given evidence

E (note that, as our goal it is to examine disease related mechanism, the terms condition and

disease will be used likewise). We therefore estimate the number of samples xg|E of Dg|E

that are closest to Dt, Nt|E , by calculating the distance between each generated sample and

each condition Dt and assigning the sample to the closest condition t. In the limit as N

becomes large, the maximum likelihood estimate for the conditional probability is given as

p(t|E) =
Nt|E

N
, (6.5)

were the denominator N =
∑T

t=1 Nt|E is given as the total number of samples of Dg|E .

Finally, we propose a criterion for the probability of an intervention E being the cause

for a condition t, whose effect is given by its specific gene expression profile. The pathogenic

score of an intervention E for a condition t is defined as

S(E, t) =

{
p(t|E)−p(t)

1−p(t)
p(t|E) > p(t)

p(t|E)−p(t)
p(t)

else
(6.6)

where p(t) is the relative frequency of the condition t pattern without intervention. The

pathogenic score corresponds to the normalized increase or decrease in relative frequency

of a generated, condition specific pattern caused by an intervention E. It ranges within

[−1, 1] and represents a probabilistic measure of how much the intervention stabilizes or
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destabilizes a disease specific global expression profile and therefore the corresponding

disease t.

6.2 Estimation of Oncogenes by Generative Inverse Mod-
eling

This chapter presents an application of the generative inverse modeling procedure, based

on the ALL microarray data set (see B.2.1), for the case of imposing interventions by

means of clamping genes on a fixed expression value. The underlying model consists

of 20 Bayesian networks learned from the leukemia data set with a simulated annealing

scheme (Tstart = 5). In this study we wanted to estimate those gene expression alterations

which are most likely to be the cause of one of the 7 ALL subtypes, the original data is

composed of. Thus, for the estimation of the pathogenic score, t runs over the different

ALL subtypes where each of them is represented by the mean vector Dt over samples of

the same subtype. As already mentioned in the previous section, results were obtained by

drawing 100 samples from each of the Q = 20 graph structure to form N = 2000 artificial

patterns.

For the following computer experiment, we generated artificial data sets while fixing

the state of gene PBX1 to be permanently overexpressed (activating PBX1). This was done

by using Algorithm 2 in Figure 6.3. While enforcing xE ≡ xPBX1 = 1, instances for the

remaining gene expression levels xq = x \xPBX1 were drawn from the resulting conditional

probability P (xq|xPBX1 = 1). For a better visual comparison of training and artificial

data, Figures 6.5b-d consist of 327 randomly selected samples from the corresponding

drawn data set (N=2000), whereas for all calculations the entire data sets were used. Figure

6.5b shows 327 samples drawn from the learned network without any intervention using

Algorithm 6.2, after average linkage hierarchical clustering has been applied to the columns

(samples). A comparison of Figure 3b with 3a shows, that the artificial data resembles
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(a) measured ALL patterns (b) sampled, no intervention

(c) sampled, PBX1 activated (d) sampled, SNRPE activated

(e) pathogenic score as a function of monogenic activations

Figure 6.5: (a) Training data consisting of 327 gene-expression profiles from patients with
seven different subtypes of childhood acute lymphoblastic leukemia (ALL). Each column
contains the expression profile for one patient, each row the expression levels of one of 271
genes selected to be most discriminating between the subtypes. The different ALL subtypes
are accompanied by globally different expression profiles. (b) 327 artificial expression
profiles produced by the generative model without intervention, in the same format as (a).
(c) 327 generated expression profiles, when proto-oncogene PBX1 is clamped to the over-
expressed state. (d) 327 generated patterns, when gene SNRPE is clamped to the over-
expressed state (red line marked with arrow). Activating SNRPE has not such a strong effect
on the global expression pattern as activating PBX1. (e) Pathogenic score for ALL-subtype
E2A-PBX1, plotted against the 271 interventions, where each of the genes is individually
clamped to the over-expressed state. The global maximum of the score is reached for PBX1:
E(PBX1=1,E2A-PBX1)=0.923.
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the measured expression patterns both in appearance and frequency of occurrence. Only

two of the subtype patterns which are rare in the data (BCR-ABL and MLL) are less well

reproduced. However, the general similarity reflects the capability of the model to correctly

capture the statistical structure from the size-limited data set.

When artificial data are generated under this intervention, the relative frequency of

those artificial patterns that are most similar to the E2A-PBX1 subtype patterns, dramati-

cally increases from 0.07 to 0.93. This vast over-representation of the E2A-PBX1 typical

expression pattern as a consequence of the intervention is reflected in Figure 6.5c where a

random selection of 327 drawn samples with activated PBX1 is shown. In contrast, clamp-

ing gene SNRPE (small nuclear ribonucleoprotein) to the active state (cf. arrow in Figure

3d) does not strongly increase the relative frequency of these patterns. This finding is re-

markable, because both PBX1 and SNRPE belong to the same gene cluster (cf. arrow in

Figure 6.5a) and are both over-expressed in E2A-PBX1 ALL patients. In other words,

whereas standard cluster analysis cannot distinguish between these two genes, generative

inverse modeling clearly ranks both genes differently in light of their role for pathogenesis:

PBX1 is predicted to cause stabilization of the pathologically altered expression pattern in

E2A-PBX1 ALL, whereas SNRPE is predicted to be over-expressed as an effect.

In fact, PBX1 is hypothesized to be a proto-oncogene: Due to the chromosomal translo-

cation t(1:19), PBX1 fuses with gene E2A and converts to a potent transcriptional activator

(van Duk et al. 1993) for which accumulating evidence supports its importance for caus-

ing ALL subtype E2A-PBX1 (Aspland et al. 2001). Hence, the model correctly predicted

both the identity of the oncogene and the type of pathogenic transition (the gene is being

activated).

Generative inverse modeling was then performed by searching through the space of all

monogenic interventions (i.e., clamping all genes one by one) and calculating the pathogenic

score for ALL-subtype E2A-PBX1. This pathogenic score is shown in Figure 6.5e, where

the abscissa runs over all 271 genes being individually set to the active, over-expressed
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state. Many of the genes that belong to the most significant active gene cluster in E2A-

PBX1 ALL (arrow in Figure 3a) show increased scores, however the absolute maximum is

given by PBX1.

Next, the pathogenic scores for all known subtypes were calculated as a function of

monogenic activation and suppression, respectively, resulting in 542 scores for each sub-

type. Table 6.1 summarizes the five genes that reached the highest scores for each subtype.

All of the highest scoring interventions were activations. In all but one case, the high-

est scoring genes are substantially involved in oncogenic processes by annotation. For

the remaining case – the hyperdipd> 50 subtype – the model predicts an over-expressed

proteosome 26S subunit gene PSMD10 as pathogenic. This seems reasonable, as 26S is

involved in general protein degradation and could be hyperactive in response of excess

protein production by the hyperdiploidy. The side effects of its hyperactivity might then be

driving the pathogenesis of this subtype.

For the subtypes where the putative disease causing proto-oncogenes were part of the

training data set (PBX1 (Aspland et al. 2001) for E2A-PBX1 and ABL (Fainstein et al. 1987)

for BCR-ABL), they reached the highest scores. However, for BCR-ABL all scores are rel-

atively small and of limited robustness, probably caused by the small sample size of these

profiles in the training data. For the TEL-AML and MLL subtypes, the corresponding

pathogenic genes AML and MLL were not contained in the training set used. This probably

deteriorates the predictive power of the model for the highest scoring genes. For T-ALL,

the examination reached high but unspecific scores, which reflects the extremely tight de-

pendencies of the genes in the active gene cluster.

Finally we examined higher order effects by setting interventions to selected pairs of

genes. The top part of Table 6.2 exemplifies a synergistic pathogenic effect predicted by the

model for the hyperdip> 50 subtype. PSMD10 and the metallo-endopeptidase MME are

both involved in protein degradation, but activating MME alone has no detectable impact

on the score. However, when both genes are coactivated, the score substantially exceeds
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Score Affy-name Gene Putative function
hyperdip> 50

0.535 37350 at PSMD10 proteosome subunit, protein degradation
0.513 41132 r at HNRPH2 RNA-binding
0.432 38518 at SCML2 embryogenesis, transcription factor
0.382 38317 at TCEAL1 repression of Pol II transcription
0.378 36169 a NDUFA1 energy generation

E2A-PBX1
0.923 33355 at PBX1 transcription factor, proto-oncogene
0.899 32063 at PBX1 transcription factor, proto-oncogene
0.834 1287 at ADPRT DNA repair, apoptosis
0.809 39614 at KIAA0802 unknown
0.790 41146 at ADPRT DNA repair, apoptosis

BCR-ABL
0.144 39730 at ABL1 apoptosis related, proto-oncogene
0.140 36591 at TUBA1 tubulin cytoskeleton associated
0.130 34362 at SLC2A5 glucose transport
0.129 1636 g at BCR signal transduction, oncogenesis
0.118 330 s at – tubulin cytoskeleton associated

TEL-AML1
0.518 41442 at CBFA2T3 cell proliferation, transcription factor
0.501 36524 at ARHGEF4 cytoskeleton
0.495 35614 at TCFL5 cell proliferation, differentiation
0.484 1299 at TERF2 telomerase-dependent telomere maintenance
0.473 36985 at IDI1 isoprenoid biosynthesis

MLL
0.139 33412 at LGALS1 control of proliferation, apoptosis
0.128 2036 s at CD44 matrix adhesion
0.114 1126 s at CD44 matrix adhesion
0.099 40763 at MEIS1 Pol II transcription, oncogenesis
0.087 38413 at DAD1 anti-apoptosis

T-ALL
0.833 38319 at CD3D T-cell receptor, cellular defense response
0.832 39709 at SEPW1 unknown
0.812 36277 at CD3E cellular defense response
0.811 38415 at PTP4A2 hydrolase
0.811 33238 at LCK regulation of cell cycle

Table 6.1: The five highest-scoring interventions (clamping all genes one by one at its
over-expressed state) for each ALL-subtype
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Score Gene 1 Gene 2 Putative function
hyperdip> 50

0.535 PSMD10 proteosome, protein degradation
-0.030 MME protease, protein degradation
0.764 PSMD10 MME
0.201 TGFB1 anti-apoptosis
0.608 PSMD10 TGFB1

Table 6.2: Score changes for selected bi-genic interventions (clamping genes at its over-
expressed state)

the sum of both individual scores. When, in contrast, a second gene from the PSMD10

gene cluster is coactivated, both scores sum up roughly linearly or less (Table 6.2, bottom).

This observation hints towards a synergy between the PSMD10 and MME gene products

in agreement with the annotation. This synergy appears particularly interesting because

MME is not in the same gene cluster as PSMD10. This finding thus underlines the analyt-

ical power of generative inverse modeling by Bayesian networks for detecting functional

relations between genes from expression data.

6.3 Summary

Revealing the underlying cause of pathogenic mechanisms and the related alteration of

genetic programs represent one of the major challenging tasks of the post-genomic era

(de Jong 2002, Stetter et al. 2003). Standard clustering methods were among the earliest

tools for grouping genes by their functions from expression measurements (Eisen et al.

1998, Yeoh et al. 2002) and although experiments showed, that groups of genes are often

coexpressed in a characteristic manner while a certain cellular function is carried out, no

causal relationships and functional roles can be assigned to the different genes within a

cluster or between the clusters itself.

One major contribution of the here presented approach is to suggest an alternative way
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of using the dependency structure found by a Bayesian belief network. We bypass struc-

tural considerations of the graph structures and do not directly interpret edges of a graph as

causal regulatory relationships. Instead, the Bayesian network is treated as a density esti-

mator and as a generative model with the ability to produce artificial expression data sets.

With this approach, the impact of interventions on the global expression behavior is shown

in an intuitively fashion, namely as artificial expression profiles. Thus, one can perform

what-if scenarios on genetic regulatory systems in silico, rather than in lab. Moreover, with

the so-called pathogenic score it is then possible to label each intervention with a probabil-

ity of how likely it is triggering a certain gene expression profile and therefore the disease

the expression profile is characteristic for.



Chapter 7

Biological Priors for Bayesian Network
Learning

The results of previous sections have shown that learning Bayesian networks from microar-

ray data can be useful to gain a better understanding of genetic network principles. The de-

composition into conditional dependencies can describe the statistics of regulatory relation-

ships, such as transcriptional mechanisms, and the probabilistic nature renders Bayesian

networks and graphical models in general ideal candidates for modelling cellular systems.

However, structure learning on the basis of microarray data suffers from a number of

difficulties such as small sample size and noisy measurements.

Another problem is related to the type of data which DNA microarrays provide. As

noted in Section 2.2.2 transcriptomic data are not sufficient to capture the complexity of

the whole cellular machinery. Post-translational effects, methylation, protein-protein in-

teractions or metabolic changes are not measurable with DNA microarray techniques and

might not enter the learned structure. On the other hand, as shown in Chapter 2.2, a huge

amount of additional information in form of genomic, proteomic and metabolomic data is

available and should be used for the reverse engineering procedure to gain a complete view

of an observed cellular state. This again underlines the advantage of the Bayesian frame-
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Microarray
⇓

Preprocessing Biological data
⇓ ⇓

Structure learning Data analysis
⇓ ⇓

Genetic network ⇐⇒ Additional knowledge

Figure 7.1: Schematic illustration of how prior knowledge is incorporated so far. Only
microarray data are used to learn a genetic network whereas additional biological informa-
tion from other data-sources, e.g. gene annotation, is only used after the learning step, for
example to explore the relevance of learned structural features.

work which can easily use such additional information by integrating it as a probabilistic

prior into the structural learning process.

7.1 Using Biological Prior Knowledge to Guide Network
Inference

In the Bayesian scoring approach the fitness function of a structure G given a data set D is

log p(G|D) = log p(D|G)︸ ︷︷ ︸
likelihood

+ log p(G)︸ ︷︷ ︸
prior

(7.1)

where p(D|G) represents the data likelihood, our belief in the probability that G is correct

given the data set D, and p(G) represents the prior probability, our belief in G before we see

the data. Together, both estimates form our updated belief about G after we saw the data.

In contrast to the frequentist approach which derives the posterior from the data solely, the
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Bayesian approach makes use of a prior distribution to guide the posterior belief.

Given a set of n variables, the prior belief of the Bayesian network structure p(G) can

be written as a n × n matrix p, where pij is our prior belief for variable xi being a parent

of variable xj . pij implicates that xj conditionally depends on xi which is symbolized by

an edge i→j. Biologically speaking, pij quantifies our prior belief that gene i regulates, or

influences in some other way, the expression behavior of gene j. pi⊥j denotes our prior

estimate for an independency of xi and xj and is given by

pi⊥j = 1− (pij + pji) (7.2)

By this means any prior knowledge about gene-gene, protein-gene or protein-protein rela-

tionships can be included into the prior probability of the network structure p(G).

If no prior knowledge regarding the structure is available, because for example nothing

is known about the relationships between the corresponding set of genes, the biological

prior belief is reflected by an non-informative biological prior, by giving equal weights

to all possible structures. The only restriction comes from the acyclicity-condition of

Bayesian networks: a self-cycle, where variable xi points to itself, is excluded pij =

0 | xi = xj . Without prior knowledge, a conditional independency between xi and xj

(pi⊥j) is as likely as a conditional dependency of j from i (pij) and vice versa (pji) such

that

pi⊥j = pij = pji =
1

3
(7.3)

and

p =


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The probabilistic prior of network G can then be written in decomposed form such that

p(G) =
n∏

i=1

∏
j∈pai

pji

∏
k∈chi

pik

∏
l∈x\pai,chi

(1− (pli + pil)) (7.4)

where pai denotes the parents of xi and chi the children of xi.

So far, we used additional biological knowledge only after the learning procedure to

examine the biological relevance of learned network structures (see Figure 7.1). For ex-

ample, consider the case of learning a Bayesian network of two genes, gene a and gene b.

Assume that the data likelihood favors a dependency between a and b, however, as shown

in Section 3.1.1, due to structure equivalence and the resulting likelihood equivalence, one

can not favor a → b over a ← b. Thus, the result is a PDAG with an undirected edge.

According to Figure 7.1, one could now use additional information about these two genes

to prove the data-driven result. Let, for example, gene a be a known transcription factor

which is known to regulate gene b. This fact confirms the dependency between a and b

learned from the data. But additionally one can mark this (undirected) edge with an well-

defined direction, namely from a to b. In this case, additional information was used as a

prior to bias the evaluation of the learned structure.

The following sections present two approaches which use additional biological knowl-

edge already in early stages of the genetic network inference framework. The goal of both

approaches is to improve the robustness of learned structures by guiding structure learning.

Moreover, by explicitly incorporating supplementary knowledge about the cellular system

the learned genetic network is drawn closer to the true genetic network.

7.1.1 Biasing Gene Selection and Structure Learning

Due to the sparseness of given datasets and computational limitations of the learning proce-

dure only a relatively small set of genes is usually considered: One focuses on a significant

gene subset x of presumably important genes from the entire gene set X. The selection
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Microarray
⇓

Preprocessing ⇐= Biological data
⇓ ⇓

Structure learning ⇐= Data analysis
⇓ ⇓

Genetic network ⇐⇒ Additional knowledge

Figure 7.2: The preprocessing step which is crucial for the further structure learning pro-
cedure is biased by additional biological knowledge.

is usually done by choosing highly differentially expressed genes using various statistical

tests such as ANOVA or t-test. Scoring genes according their expression profile seems

to be a reasonable and sufficient way to select genes important for the learning process.

Genes showing an altered expression in a certain cell state might play a crucial role in the

underlying cellular machinery (Yeoh et al. 2002) and might therefore also be important for

genetic network inference.

However, by focusing only on their expression profile, genes with weak differential

expression, e.g. some transcription factors, will be neglected. Transcription factors play a

central part in several regulatory mechanisms and are crucial for capturing the gene regula-

tory network of the cellular system (see Section 2.1.3). The lack of such important factors

renders learned genetic networks incomplete and even potentially wrong. Such missing

variables might bias structure learning especially if they are crucial for the exact under-

standing of the underlying system rendering learned genetic networks incomplete and even

potentially wrong.

Thus, the preselected gene set has to be completed with those genes which are not in the
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initial preselection but are highly relevant for modelling the underlying genetic regulatory

network.

Transcription Factor Binding Site Matches

Transcription factor binding sites (TFBSs) are commonly described by a W -length position

weight matrix (PWM), w, where wbj gives the probability for finding base b at position j

of the binding site. The PWM of a transcription factor can be used to search for putative

binding sites in the upstream DNA sequence of a gene suggesting a putative protein-DNA

interaction. The estimation of putative binding sites for a certain TF is done by scoring the

quality of an alignment of w with a nucleotide sequence s, usually located in the upstream

region of a certain gene. For this, w is slid along s and at each position i a similarity

score between the matrix and the W -length subsequence of s is calculated. Quandt et al.

(Quandt et al. 1995), for example, proposed the following score: first, a consensus index is

calculated meaning to what extent each position of a motif is variable. The conservation of

the individual positions j in the matrix M is given by

Ci(j) = (100/ ln 5)(
∑

b∈A,C,G,T

wbj ln wbj + ln 5)

0 ≤ Ci(j) ≤ 100

(7.5)

The resulting vector Ci provides a measure for the entropy at each position where Ci(j) =

100 indicates a total conservation of one nucleotide at position j and Ci(j) = 0 a flat

distribution over all nucleotides. Using the consensus index, each motif is scored according

to

mat sim = (
W∑

j=1

Ci(j)wbj)/(
W∑

j=1

Ci(j) arg max
b

wbj),

0 ≤ mat sim ≤ 1

(7.6)

where wbj is the value for base b at position j in the PSSM. Multiplying each score by the

Ci vector emphasizes the fact that mismatches at less conserved positions are more easily
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tolerated than mismatches at highly conserved positions.

To decide whether or not a score is high enough such that a transcription factor is able

to bind to specific position, a threshold τ is introduced which should discriminate between

matches and non-matches. A transcription factor is considered to bind only to those genes

which have at least one position in their upstream region with a score higher than τ for the

binding motif of this TF. Finding a match of a binding site for transcription factor a in the

promoter region of gene b might therefore indicate a directed protein-DNA relationship,

namely the regulation of gene b through transcription factor a.

Estimation of Prior-relevant Transcription Factors

Our task is to find TFs which relate to the observed gene expression alterations and which

therefore should be enter structure learning. Consequently, we search for binding sites

which are found more frequently in the gene preselection x than in the entire gene set X, as

their overrepresented TFBSs might be an indicator for a relationship between gene altered

expression and the corresponding TF. For example, the accumulation of a certain TFBS in

a preselected list of strongly co-expressed genes might indicate that this co-expression is

caused by means of a common TF.

To evaluate this, the statistical significance of each TF is characterized by a p-value,

derived from the hypergeometric distribution. The hypergeometric distribution models the

number of elements k with a certain property in a sample of size |x|, selected (without

replacement) from a total of |X|, K of which have that property. The probability for this

observation, arising by chance, is

p(k) =

(
K
|x|

)(|X|−K
|x|−k

)(|X|
|x|

) (7.7)

and the probability of observing k or more elements (with a certain property) in a randomly
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selected subset of size |x| is given by

p =

|x|∑
j=k

(
K
j

)(|X|−K
|x|−j

)(|X|
|x|

) (7.8)

In our case the problem can be stated as follows: given a total number of |X| genes, of

which K show a potential TFBS in their upstream region, and given a preselected gene set

of size |x| of which k contain a potential match, is the relative frequency k
|x| significantly

different from K
|X|? Equation 7.8 quantifies this significance by means of a p-value. Thus,

the lower pTF i, the higher our belief belief in the significance of TF i for the preselected

gene set. TFs with a low p-value and their potential regulated genes are presumable causing,

directly or indirectly, the observed altered expression patterns. These TFs are therefore of

major importance for inferring the underlying regulatory network structure and should be

included to the initial gene set.

Protein-DNA Interaction Prior

Besides using significant TFBSs to refine the step of gene selection, we make use of the

emerging knowledge about putative regulatory mechanisms to build a probabilistic prior

which guides the structure learning process. If transcription factor TF i is suspected to act

on gene j by binding at a specific upstream located binding site, our prior belief for an edge

pointing from i to j increases in favor of our prior belief for the reversed variant or for the

absence of this link, namely by

pij = 1− pTF i (7.9)

pji = pi⊥j = 0.5pTF i, (7.10)

where pTF i denotes the p-value for TF i. Thus, prior p(G) which previously was a non-

informative, now turns into a (partially) informative prior. The smaller the p-value of a

significant TF, the higher the prior belief for links pointing from this TF to those genes
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Microarray
⇓

Preprocessing Biological data
⇓ ⇓

Structure learning ⇐⇒ Data analysis
⇓ ⇓

Genetic network ⇐⇒ Additional knowledge

Figure 7.3: Structure learning is on the one hand guided by additional biological data but
on the other hand structure learning itself guides the knowledge discovery of the additional
data

owning a match for the corresponding TFBS. It should be noted that for the prior construc-

tion only highly significant TFs are considered (pTF i ≤ 0.01) whereas for low significant

TFs the prior remains flat.

7.1.2 Elimination of Equivalence Classes via Online Motif Search

A major problem of Bayesian network learning is the fact, that the conditional probabil-

ity distribution learned from a data set D can not always be mapped to one single DAG.

Instead, as shown in Section 3.1.1, a set of Bayesian networks can represent the same prob-

ability distribution such that some edges lack a unique direction and therefore a causal

meaning. Thus, instead of obtaining a single Bayesian network where each edge represents

a regulatory relationship among genes, structure learning from microarray data results in a

PDAG where some dependencies are not uniquely defined.

This section presents an approach to resolve ambiguities in equivalence classes by mak-

ing use of additional biological knowledge to discriminate between previously equivalent
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structures. Consequently, ambiguous relationships can be resolved, edges can be equipped

with a unique direction and causal meaning is added. The probabilistic prior derives from

motif discovery results, where a set of upstream sequences is scanned for a common pat-

tern indicating a common TFBS and hence a putative regulation by the same TF. As shown

in Figure 7.3, motif discovery, biological prior estimation and structure learning are done

simultaneously and cooperatively. The result is a Bayesian network structure, learned from

microarray data and guided by an online constructed structure prior, and a set of putative

TFBSs.

Resolving Equivalence Classes

Bayesian network structures which share the same skeleton and the same set of colliders

fall into the same equivalence class, whose member DAGs are assigned with the same

score if no additional prior knowledge is available. However, another biologically relevant

information lies in the network structure and is probably helpful to differentiate between

equivalent structures. To explain this, let the complete non-singleton set of variables which

share a common parent i be a regulon %i such that %i = {j|i ∈ paj}. From a statistical

point of view, all members of %i causally depend on a common variable xi which in terms

of transcriptional regulatory mechanisms might refer to a common transcription factor TF

i. As noted in Section 2.2.1, transcription factors regulate the genetic activity by binding to

a specific domain which, in a simplified view, is located upstream of the considered gene.

Genes which are regulated by the same transcription factor might therefore share a common

TFBS in their promoter region. Consequently, since all genes of regulon %i are hypothe-

sized to be regulated by a common gene i they probably share a common DNA sequence

pattern or motif wi in their upstream region, given as a position weight matrix (PWM).

Even more important, finding a common DNA sequence pattern in the upstream region of

a set of genes which share a common parent, confirms their affiliation to a common regulon

structure.
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Motif discovery in DNA sequences is a well known problem for which a variety of

methods have been proposed, such as Gibbs sampling (Lawrence et al. 1993) or expectation

maximization (Bailey & Elkan 1994). In our case the problem can be stated as follows:

given a regulon %i find an unknown motif wi that is shared by the upstream sequences s

of %i’s members and score regulon %i according its motif. In this work we use the EM

algorithm of Bailey an co-workers (Bailey & Elkan 1994), whose simplest variant, the so-

called OOPS algorithm, estimates one PWM by searching in each sequence exactly one

substring. Given the found motif wi, each regulon %i can be assigned with an additional

score, namely, by evaluating the quality of the corresponding PWM. A common score is

given by the information content of the weight matrix

Iwi
=

W∑
j=1

∑
b∈A,C,G,T

wbj log2

wbj

wb

(7.11)

where wb is the background frequency of base b which we assumed to be uniform. Given

Equation 7.11 we define a probabilistic score for regulon %i as follows

S(%i) =
1

2W
Iwi

. (7.12)

where W is the number of positions wi consists of.

Given a structure G, a set of regulons {%1, ..., %n} and the corresponding set of motifs

{w1, ..., wn} the estimates {p(w1|%1), .., p(wn|%n)} can in the following be used to construct

a probabilistic structure prior p(G). A high value of p(wi|%i) which indicates a highly

conserved TFBS shared within the members of regulon %i confirms the occurrence of this

regulon as it is reflected in the structure G. Consequently, a directed link from gene i to

gene j in regulon %i should be higher scored than a link from gene j to gene i. This altered

prior belief for a specific link can be manifested in the structure prior matrix p by setting

pij = S(%i) ∀j ∈ %i (7.13)

pji = pi⊥j = 0.5(1− S(%i)) ∀j ∈ %i (7.14)
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TF i pTF i description subtype

HFH-3 0.06 forkhead box I1 E2A-PBX1
HFH-3 0.06 forkhead box I1 BCR-ABL

GATA-x∗ 0.03 T-cell specific transcription factor BCR-ABL
GATA-x∗ 0.007 T-cell specific transcription factor TEL-AML1
AML-1∗ 0.01 runt-related transcription factor 1 TEL-AML1

Thing1-E47∗ 0.07 transcription factor E2-alpha TALL

Table 7.1: List of TFs estimated as significant (pTF i < 0.1) for a subtype specific expression
pattern. ∗-labeled TFs are associated with leukemia oncogenesis by annotation.

As the structure prior p(G) turns into a (partially) informative one, equivalence classes with

at least one regulon can be dissolved completely into a set of unique Bayesian networks or

at least partitioned into several equivalence classes where the number of undirected edges

is reduced.

In contrast to the static prior estimate in Section 7.1.1, in this approach the probabilistic

prior is calculated dynamically during the structure learning procedure. At each learning

step the next candidate structure G
′ is estimated according to Equation 3.9 where the struc-

ture prior p(G), given by Equation 7.4, is constructed with respect to the found motifs.

7.2 Using TFBS Information to Bias Genetic Network Es-
timation

As shown in Figure B.1 the prefiltered ALL data set decomposes into 7 clusters of co-

expressed genes each of which corresponds to a specific ALL subtype. Studies of Yeoh

and co-workers (Yeoh et al. 2002) as well as results from previous sections of this thesis

have underlined the significance of the preselected genes for the particular subtypes.

However, as TFs are known to be weakly expressed, they might be missed in this pres-

election in spite of their putative importance. In the following we combine expression and
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sequence data analysis to extract significant TFs. Moreover, we refine the selected gene

set and construct a probabilistic prior which is then used to guide structure learning. For

this, a collection of 109 position weight matrices of different TFs from human has been

derived from TRANSFAC and JASPAR database. Each of the weight matrices was then

tested for an alignment in the upstream region (500 bp) of each gene present in the en-

tire data set (12.000) using Equation 7.6. A common threshold of τ ≥ 0.96 was used to

discriminate between matches and non-matches. Given these estimates each of the 109

TFs was assigned with a p-value for its significance regarding the 7 subtype-specific gene

clusters. As listed in Table 7.1 only 4 TFs achieved a sufficiently low p-value pTFi
< 0.1

to be labeled as significant. Their annotations underline our findings as most of the TFs

(labeled with ∗) are associated with leukemia oncogenesis by annotation 1. For example,

we found the transcription factor AML-1 to be highly significant for the co-expression pat-

tern in the ALL-subtype TEL-AML1. In fact, this subtype correlates with a chromosomal

rearrangement resulting in the fusion of gene TEL and transcription factor AML-1 (Golub

et al. 1995). Generally, as shown in Figure 7.4, the TFs show only a moderate differential

expression which does not strongly correlate with the expression profile of the regulated

gene, except the transcription factor Thing1-E47 which strongly correlates with the corre-

sponding gene cluster. Moreover, all 3 genes related to Thing1-E47 are part of the Major

Histocompatibility complex (MHC) which suggests a dependency between transcription

factor Thing1-E47 and the Major Histocompatibility complex (MHC).

After integrating those genes which corresponds to the 4 TFs in our initial gene list the

knowledge about putative genetic regulatory mechanisms is next used to alter the structure

prior according to Equation 7.10. As in Section 4.4 we trained 20 networks according to

the non-parametric data bootstrap and simulated annealing (Tstart = 10) with the difference

that the current network is composed of 275 variables and the structure prior is partially

informative based on these 4 TFs. As shown in Figure 7.5 the edge confidences strongly

1According to the CancerGene database.
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correlates with those of the network learned with an uniform prior (see Section 4.4). Es-

pecially high confident edges (τ ≥ 0.5) seem to be robust against changes in the gene

selection or alteration of the structure prior. This gives us some trust in the accuracy of the

confidence thresholds estimated in Section 4.3.2.

7.3 Online Motif Discovery on an Artificial Network

We designed an artificial network structure, shown in Figure 7.6 with 23 genes connected

by 22 edges without any collider structure. From this network an artificial microarray data

set with 1000 samples has been generated. The network consists of 5 regulons, each of

which was assigned to a PWM taken from the Jaspar database. For each gene we randomly

generated artificial DNA sequences and inserted a pseudo motif according to the corre-

sponding PWM. First, we learned 20 networks only on the sampled microarray data with a

simulated annealing scheme (Tstart = 5). All 20 learned structures fall into the equivalence

class of the original network. But since no prior has been used we can not discriminate

between equivalent structures and that the resulting fPDAG is fully undirected. On the one

hand, the results show the power of structure learning to train the original network from

the data. But on the other side, they reveal the weakness of Bayesian networks regarding

equivalent structures.

We next repeated the learning procedure with the extension that at each step candidate

structures are weighted not only according to their expression profile but also according to

the motifs estimated from the corresponding set of regulons respectively the constructed

structure prior. The resulting structure falls into the same equivalence class as in the ap-

proach without prior. However, as one can see from Figure 7.7, we are now able to dis-

crimante between equivalent structures with the effect that the learning procedure returns

a fully directed structure. Except the reversion of one edge, namely from gene 36959 at

to gene 39864 at, the highest scoring structure corresponds to the original network. This
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deviation is caused by the fact that the motif discovery procedure was unable to find the

specific motif in gene 36959 at with the consequence that the regulon was higher scored

without gene 36959 at than with it.

7.4 Summary

Besides gene expression data a variety of other data exist that are useful for genetic network

inference. As Bayesian network learning requires infinitely many data points to infer the

complete underlying density distribution, data sparseness is a big problem. However, the

big advantage of the Bayesian approach in general is the ability of using a-priori informa-

tion to refine the posterior estimate.

In this chapter we proposed two different approaches which estimate a structure prior

from DNA motif discovery estimates and then guide the structure learning procedure. Fur-

thermore, we addressed the problem of restricting the genetic network space to relatively

small networks. Usually gene selection is done by focusing on gene expression data only,

e.g. by selecting highly differentially expressed genes. However, as it is known that many

weakly expressed genes are crucial for the underlying genetic network, such missing vari-

ables bias the resulting learned network. By scanning the entire set of genes for putative

binding sites of known TFs and by extracting those TFs whose TFBS appears more often

than by chance our approach is able to enlarge the initial gene selection by weakly ex-

pressed but still highly significant genes. The fact that none of the found TFs was present in

the preselection, although their putative important role for the underlying genetic network,

emphasizes the need of integrating and analyzing various types of data. Furthermore, the

structure prior proposed in this chapter is not restricted solely to data used here, but can be

adapted to integrate a variety of other biological knowledge ranging from quantitative data,

e.g. protein-protein interaction networks, to qualitative statements which altogether assist

structure learning.
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Figure 7.5: Edge confidences of the ALL network learned with uniform prior versus ALL
network extended by significant TFs and learned with a (partially) informative prior. Espe-
cially high confident edges (τ ≥ 0.5) are not strongly affected by the extensions through
additional genes and prior knowledge.
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Figure 7.6: A designed network consisting of 5 regulons each of which is characterized by
a specific TFBS. As no collider exists in the network no causal regulatory relationship can
be learned.
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Figure 7.7: Given the informative structure prior estimate, equivalent structures are scored
differentially according to their decomposition into high scoring regulons. Except the re-
version of one edge the highest scoring structure corresponds to the original network.



Chapter 8

Mining Functional Modules with
Decomposable Models

The descriptive power of decomposable models in light of the modular decomposition of

molecular networks has already been motivated in Section 3.2. We therefore want to apply

this approach on real microarray data to test its capacity of revealing molecular functional

modules. This chapter is summarized in (Dejori, Schwaighofer, Tresp & Stetter 2004)

8.1 Mining Functional Modules in Acute Lymphoblastic
Leukemia

The approach presented in Section 3.2 is capable to efficiently learn the graphical struc-

ture of a decomposable model from continuous data. By its structure, the decomposable

model explains the statistical structure of the data in terms of functionally linked genes (the

nodes). The first section is concerned with a topological analysis of the dependence graph

with the goal to identify central genes. Moreover, the decomposable model can be repre-

sented as a clique tree, where each clique represents a group of genes (the nodes of the

clique) which are fully connected, and therefore explains interacting functional modules
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(represented by cliques). This dense statistical dependency structure is thought to reflect

the dense biological link of a functional module causing the gene expression patterns which

will be examined in the second section.

To ensure a robust learning result, a bootstrap scheme was used. Moreover, only edges

that have a confidence of 90 % or above, i.e., edges that were found in at least 18 out of

the 20 replications, were considered for the following analysis. This thresholding by edge

confidence may lead to a non- decomposable resulting model. To again obtain a decompos-

able model, some of the lowest confidence edges were pruned until decomposability was

reached.

8.1.1 Analysis of the Dependence Graph

The network topology output by the structure learning algorithm (with restriction to high

confidence edges, as described in the previous section) shows a few highly connected genes,

with most edges connecting genes belonging to the same ALL subtype. Thus, most genes

are conditionally independent from each other, given one of these highly connected genes.

For example, in Figure 8.1, gene 37350 at renders most of its adjacent genes pairwise

conditionally independent. Biologically speaking, the expression behavior of many genes

only depends on a set of few genes which therefore are supposed to play a key role in

the underlying genetic network. Since the structure is learned from leukemia data, these

few highly connected genes are predicted to be important for leukemogenesis or for tumor

development in general. In fact, as shown in Table 8.1, highly connected genes are either

known to be genes with an oncogenic characteristic or known to be involved in critical

biological processes, such as DNA repair or proteolysis.

Figure 8.1 shows part of the decomposable model learned on the ALL data set. Gene

PSMD10 (Affymetrix-ID 37350 at, at the top of the figure) is found to be linked to a high

number of other genes, and is therefore predicted by the model as important for the stability

of cellular function. In fact, PSMD10 is a regulatory subunit of the 26S proteasome, a
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Gene Affymetrix ID # of connections Putative function
PSMD10 37350 at 17 proteosome, protein degradation
HLA-DRA 37039 at 13 immune response, antigen presentation
SCML2 38518 at 9 embryogenesis, transcription factor
POU2AF1 36239 at 7 transcription cofactor, anti-pathogene response

Table 8.1: Genes in the ALL data set, ranked by the number of connections. Each row lists
the gene’s name and Affymetrix ID, the number of connections and the putative function
of this gene

Gene Affymetrix ID # of cliques Putative function
PSMD10 37350 at 12 proteosome, protein degradation
HLA-DRA 37039 at 8 immune response, antigen presentation
SCML2 38518 at 6 embryogenesis, transcription factor
POU2AF1 36239 at 6 transcription cofactor, anti-pathogene response

Table 8.2: Genes in the ALL data set, ranked by the number of cliques they are contained in.
Each row lists the gene’s name and Affymetrix ID, the number of cliques and the putative
function of this gene

protein complex which—in agreement with the model topology—degrades a large family

of proteins that are marked to be destroyed, and thus helps regulating the protein turnover in

eukaryotic cells. Hence, it is known to be crucial for normal cellular function. In particular,

a malfunction of PSMD10 is known to result in a defective regulation of a large number of

intracellular proteins that govern cell division, tumor growth, and tumor survival, and which

are functionally altered in cancer cells. Indeed, recent work has shown that the PSMD10

pathway is often the target of cancer-related deregulation and can underlie processes, such

as oncogenic transformation or tumor progression.

8.1.2 Analysis of Functional Modules

In a second step of analysis, we consider individual cliques of the learned decomposable

model as functional modules.
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Figure 8.1: Part of the decomposable model structure learned on the ALL data set. The
highly connected gene PSMD10 (Affymetrix-ID 37350 at, at the top of the figure) is known
to be involved in cellular deregulations that potentially leads to oncogenesis
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Gene Affymetrix ID # of cliques Gene title
HLA-DRA 37039 at 8 MHC II, DR alpha
HLA-DMA 37344 at 4 MHC II, DM alpha
HLA-DPB1 38095 i at 3 MHC II, DP alpha 1
HLA-DPA1 38833 at 2 MHC II, DP alpha 1
HLA-DPB1 38096 f at 1 MHC II, DP beta 1
HLA-DRB1 41723 s at 1 MHC II, DR beta 1

Table 8.3: Genes of the MHC II complex ranked by the number of cliques they are con-
tained in. Each row lists the gene’s name and Affymetrix ID, the number of cliques the
particular gene is contained in, and the title of this gene

A first observation is concerned with multiply occurring genes in the data. In the given

data set, 13 genes are represented twice and 2 thrice on the chip. We noticed that these

multiply occurring genes always formed unique cliques which affirms our assumption that

cliques contain (functionally) highly correlated genes.

We next focused on genes known to be subunits of a common functional module. From

annotation data we found three functional modules, the major histocompatibility complex

class II (MCH II), the proteosome 26s (p26S), and the T-cell antigen receptor complex

(T3) with more than one member present in the data set. Interpreting cliques as functional

modules, these genes should also belong to the same clique. And in fact it turned out that

they were always put into one clique, or into adjacent1 cliques. Furthermore, we ranked

these genes by the number of cliques they are contained in. We suggest that the higher the

number of cliques a gene is contained in the more important is its role in a module.

Genes listed in Table 8.3 are part of the MHC II complex. Class II molecules are com-

posed of two polypeptide chains, α and β chains. The MHC II molecules themselves are

highly polymorphic (meaning that there are many different variants of these genes within

the population), forming different MHC II variants for different antigenes. Yet, HLA-DRA

1By adjacent we mean cliques that are adjacent in the clique graph (Galinier et al. 1995), that is, cliques
that have some common nodes.
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Gene Affymetrix ID # of cliques Gene title
PSMD10 37350 at 12 26S proteosome, non-ATPase regulatory sub-

unit 10
PSMC1 688 at 1 26S proteosome, ATPase regulatory subunit 1

Table 8.4: Genes of the p26 proteosome complex ranked by the number of cliques they are
contained in. Each row lists the gene’s name and Affymetrix ID, the number of cliques the
particular gene is contained in, and the title of this gene

Gene Affymetrix ID # of cliques Gene title
CD3D 38319 at 12 T3 complex, delta polypeptide subunit
CD3E 36277 at 1 T3 complex, epsilon polypeptide subunit

Table 8.5: Genes of the T3 complex ranked by the number of cliques they are contained
in. Each row lists the gene’s name and Affymetrix ID, the number of cliques the particular
gene is contained in, and the title of this gene

itself is monomorph, thus it is present in almost each of the MHC modules. This agrees

with the fact that each clique containing a MHC II member also contains HLA-DRA itself.

Genes listed in Table 8.4 are subunits of the 26S proteosome complex. Whereas PSMD10

is present in many cliques the other subunit,PSMC1, is present only in one clique, namely

with PSMD10. This can be evidence for a more dominant role of PSMD10 in protein

degradation than PSMC1.

8.2 Summary

A decomposable model tries to explain the statistics in a data set by the action of mutu-

ally linked functional modules, so-called cliques. Decomposable models with continuous

variables have significant advantages for this application domain:

(i) Previous approaches (Friedman et al. 2000, Pe’er et al. 2001) have mostly con-

centrated on learning discrete valued models from such data. Hence, one needs to first

discretize the continuous-valued expression level. This is a crucial and quite delicate pre-
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Figure 8.2: A part of the clique tree learned on the ALL data set. The highly connected
gene HLA-DRA (Affymetrix-ID 37039 at) is present in each clique
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processing step that needs to be conducted carefully (Friedman et al. 2000). In contrast, the

approach adopted here accounts in a natural way for the continuous nature of the measure-

ments, and for their unknown and probably non-Gaussian joint probability distribution.

(ii) Molecular networks often show a small-world topology (Jeong et al. 2000), in which

the network is decomposable into smaller groups of densely connected clusters (Watts and

Strogatz, 1998). This finding might render decomposable models with their intrinsic mod-

ular or clique-like structure particularly suitable for describing genetic networks.

(iii) Functional modules are considered to be a critical level of biological organization

(Hartwell et al. 1999). One example are modules in transcriptional regulation. Transcrip-

tion factors work by binding to DNA-motifs and affecting the rate of transcription. Many

binding sites occur in spatial and functional clusters called enhancers, promoter elements,

or regulatory modules. Thus, the promoter regions suggest a hierarchical or modular style

of the transcription complex. Two further examples of molecular modules are subunits

of multimeric proteins, where the subunits are coded by separate genes, or protein groups

which associate into larger structures termed macromolecular assemblies. In the latter two

cases, the genes for the different subunits or the genes that code for proteins of the same

macromolecular assembly are functionally grouped to a module. Finally, gene products

can also form a functional module by carrying out a certain cellular function in a concerted

way, but without being physically grouped to a molecular assembly. The inherent modular

structure of a decomposable model imposes a strong drive for it towards explaining the data

in terms of densely linked gene groups. By this, decomposable models should be able to

detect with particularly high sensitivity the signature of a concerted action of gene modules

in the data. In light of this rationale, cliques are likely to contain functionally highly corre-

lated genes, as opposed to gene clusters (Eisen et al. 1998, Yeoh et al. 2002), where genes

are grouped together by mere coexpression. Hence, as opposed to clustering, the learned

structure also reveals some information about the possible statistical relationship of genes

within a cluster.
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A decomposable model approach preserves some of advantages of the related systems-

level modelling techniques by Bayesian networks (Friedman et al. 2000, Dejori & Stetter

2003a, Dejori, Schürmann & Stetter 2004), namely (i) it takes into account the systemic

nature of many biological processes which arise from the interactions of many genes rather

than from actions of an individual gene, and (ii) it accounts for the statistical and noisy

nature of the data by adopting a probabilistic approach. A difference is that Bayesian net-

works allow a causal interpretation whereas decomposable models are restricted to identi-

fying strongly coupling sets of genes. The two main advantages of our approach are that (i)

it directly works with the continuous expression data and does not depend on preprocessing

by discretization or assumptions like Gaussianity of the data. (ii) The approach is tailored

to account for the modular nature of biological molecular life processes which frequently

involve the collective action of protein subunits, protein assemblies, and other functional

modules.

An apparent restriction of a decomposable graphical model, namely its special structure

as a set of linked cliques, turns out to be its strength: Decomposable models are particularly

sensitive to the signature of functional modules in the data, because they are designed to

explain all the statistics in terms of interacting cliques of genes. In applying the model to

ALL data, genes known to encode subunits of known complexes were correctly inked into

individual or closely linked adjacent cliques, demonstrating a high sensitivity for detect-

ing functional modules. If subunits were not grouped into a single clique but in adjacent

cliques, the link connecting them was very strong. This means that for such adjacent cliques

only one or few edges in the graph were missing to render them a single clique which might

be a consequence of statistical fluctuations due the limited number and the noisiness of the

data set. Based on the clique and the link structure learned from the data, it became possi-

ble to formulate two new scores for ranking genes according to their putative importance in

cellular processes: the number of links to a gene and the number of cliques it participates

in.
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One important ingredient of cellular processes is their dynamical nature which is linked

with molecular reaction constants (Stetter et al. 2004). Unfortunately, due to the vast com-

plexity of these dynamics and the small amount of data available the dynamics of molec-

ular networks at a large scale have rarely been investigated so far. At present, dynamical

considerations can be at most applied to small and experimentally very well-characterized

subsystems. Decomposable models might be able to simplify a dynamic analysis by sug-

gesting small (i.e., low-dimensional) tightly coupled functional modules. These modules

might be natural breakpoints for the separation of scales, for example by assuming an adi-

abatic approximation within a functional module and by explicitly modelling only the time

constants for interactions between modules.

Decomposable models are not restricted to analyzing the transcriptome of a cell and

its changes under various pathological conditions. As cellular life processes are strongly

affected and even dominated by a enormous multitude of protein-protein interactions, the

technique presented here will be suitable to analyze whole proteome measurements from

cells in laboratories of the near future, putting emphasis in the level of interaction between

proteins. Of similar importance is the extraction of the modularity of these interactions,

where small functional modules will be continuously grouped together to accomplish more

and more complex tasks, up to whole cellular genetic programs. In light of this view,

genome wide and proteome wide modular analysis and related techniques might form a

key ingredient of modern functional genomics and proteomics.



Chapter 9

Conclusions

The perhaps most important signaling network in living cells is constituted by the interac-

tions of proteins and other molecules with the genome – the gene regulatory network of the

cell. In various stages of the cell cycle, genetic regulatory mechanisms are of fundamental

importance for a controlled action, starting with the initial cell differentiation and ending

up with the final programed cell death. From a system level point of view, the various inter-

actions and control loops which form a genetic network, represent the basis upon which the

vast complexity and flexibility of life processes emerges. Especially for pharmacology and

healthcare industry knowledge about genetic network principles will help opening the gate

towards a deeper understanding of morphogenesis and pathogenesis and towards the devel-

opment of new tissue engineering techniques and drug discovery methods, just to mention

a few.

A quantitative understanding of the regulatory genetic network represents therefore one

of the major challenges of the post-genomic era not only for biologists but also for com-

puter scientists as their methods and algorithms might contribute to decipher regulatory

mechanisms and their related outcomes.With the increased availability of genomic data,

mainly caused by high-throughput techniques, an enormous data basis has become avail-

able which manifests the need of bioinformatics for analyzing, storing and managing the



128

produced data. Moreover, these data provide an ideal basis for data-driven genetic net-

work modeling approaches to learn genetic network principles from generated data. The

learned models might then assist the research of biologists, pharmacologists and physicians

to decipher for example disease mechanisms or fundamental regulatory rules.

The way how genetic networks are tried to be modelled with computational approaches

ranges from biochemically inspired models based on the reaction kinetics between the dif-

ferent components to more abstracted data driven approaches with the aim to explore a data

set and to discover regularities and structures from it. With the invent of high-throughput

methods such as gene expression profiling and the resulting massive amount of data, data

driven approaches have become of major interest for the genetic network modelling com-

munity and their descriptive power has been proven in many studies even though the bio-

chemical part is fully neglected. Classification approaches, e.g. clustering or SVM, are in

the mean time standard tools to analyze and mine gene expression data. However, these

approaches are limited in their contribution to the genetic network inference problem as

they do not provide an answer to the regulatory mechanisms or relationships among genes.

Graphical models partly overcome these problems as they estimate the dependency

structure between entities which in case of gene expression data can be interpreted as de-

pendencies among genes and therefore might hint towards gene regulatory relationships.

Learning graphical models on the basis of genomic data has been first applied by Friedman

and colleagues when learning Bayesian networks from DNA microarray data (Friedman

et al. 2000). Especially their probabilistic nature and the intuitive graphical representation

makes graphical models an ideal approach towards genetic network modeling from noisy

omics data. In many studies, learning graphical models, e.g. Bayesian belief networks, dy-

namic Bayesian networks, module networks and decomposable models, from microarray

data has been discovered as a potentially useful tool for estimating principles of genetic

regulatory networks (Friedman et al. 2000, Pe’er et al. 2001, Hartemink et al. 2001, Imoto

et al. 2002).
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9.1 Contribution and Future Work

The major problem of data driven methods is their need of large data sets to correctly es-

timate the underlying probability density. Unfortunately, this conflicts with the sparseness

of todays genomic data, a fact that challenges the robustness of structure learning from mi-

croarray data. We therefore studied structure learning of Bayesian networks under real-life

conditions with the goal to estimate parameters which lead to a more accurate interpretation

of Bayesian networks learned from microarray data. With various measures we evaluate

the robustness and correctness of learned networks, analyze the effect of search strategies

and, most importantly, the effect of small sample sizes for structure learning. As a re-

sult, we showed that even with a sparse data structure learning provides robust results and

we have been able to define parameters which discriminate between false and true esti-

mates. Another way to increase robustness is the use of additional data sources as a prior to

guide structure learning. We presented two approaches of constructing a probabilistic prior,

namely from motif discovery and motif binding site estimates. Moreover, we addressed the

problem of neglecting potentially important genes when selecting genes on the basis of

their expression profile only. It is known that transcription factors are weakly expressed

even when they play crucial roles in the underlying genetic network. Consequently, our ap-

proach used data of putative binding sites to extract previously missed genes, to add them

to the initial gene selection and to further use this knowledge to build a probabilistic prior

for the learning process.

A major strength of graphical models in general is the intuitive representation of the

statistics which underlies the data. Variables are drawn as nodes and edges, directed or

undirected, represent dependencies among variables. Both together results in an ideal ap-

proach in a complex network structure. Based on this, we presented a method for estimating

genes that play a key role in controlling the state of regulatory genetic networks by ana-

lyzing the network topology. For this, each gene in the network is equipped with several
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features, that are all derivable from the network structure. Two well-known features are the

connectivity of a gene, given by the number of input and output connections, and the type

of connectivity determined by the fraction of fan-in and fan-out. In addition to these two

features, we propose a new one that characterizes the importance of a gene for the stabil-

ity and operational mode of a genetic network. We annotate each gene by its load, that is

the number of shortest paths passing through it. In conjunction with a scale-free structure,

this property is hypothesized to have a big biological impact since it was shown that such

nodes are spots of high vulnerability of a scale-free network and that their failure can cause

the network to collapse. By introducing a new topological feature we are able to estimate

the effect of genes on the stability of scale-free genetic networks finding those ones that

represent the Achilles Heel of a molecular interaction network, for example the putative

oncogene PBX1.

In another approach, we bypass structural considerations of the graph structures and

do not directly interpret edges of a graph as causal regulatory relationships. Instead, we

treat the Bayesian network as a density estimator and as a generative model to produce

artificial expression datasets. This data-driven method called generative inverse modeling,

simulates the effect of local genetic changes on the global cellular state, as reflected by an

altered genome-wide expression profile. For each genetic change we define a pathogenic

score by calculating to what extent it transforms the simulated expression patterns into

patterns measured for pathologically altered tissues. The method can be used to estimate

the relevance of genes for disease-specific genetic mechanisms, e.g. as presented here for

pathogenesis. With this approach, the impact of interventions on the global expression

behavior is shown in an intuitive way, namely as artificial expression profiles. Thus, one

can perform what-if scenarios on genetic regulatory systems in silico, rather than in the wet

lab.

We finally presented a novel approach towards a systems level analysis of concerted cel-

lular mechanisms, and applied the model to a set of genomewide expression profiles from
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ALL patients. The approach is based on a graphical modelling technique called decompos-

able model which puts particular emphasis on the modular way, in which biomolecules act

together to accomplish a certain task, and on the continuous yet noisy nature of the data to

be analyzed. A decomposable model tries to explain the statistics in a data set by the action

of mutually linked functional modules, so-called cliques.

Computational biology is driven by the need of new algorithms and methods but also

by the necessity of new tools and applications. Thus, all algorithms presented in this the-

sis have been implemented to build the core modules of a microarray analysis platform,

called GeneSim 1. Besides standard microarray data analysis tools, such as hierarchical

clustering or principal component analysis, GeneSim provides the ability to learn graphi-

cal models from microarray data, to incorporate prior knowledge from other data sources,

to visualize these models graphically and to perform in-silico what-if scenarios. The fact

that GeneSim is used by several companies to assist their drug-discovery workflow gives

evidence for the strength of our methods.

1All figures showing microarray data or graphical model structures are generated with GeneSim



Appendix A

Bayesian Score

A.1 Bayesian Dirichlet Equivalent Score

To evaluate the goodness of fit of a network G with respect to the data set D, a score S(G)

is assigned to the graph G. Using Bayesian statistics S(G) is given by

S(G) =
p(D|G)p(G)

p(D)
(A.1)

were p(D|G) is the marginal likelihood, p(G) is the prior probability of structure G and

p(D) a normalization constant. Given a uniform structure prior p(G), Equation A.1 reduces

to the marginal likelihood

S(G) ' p(D|G) =

∫
p(D|Θ, G, ξ)p(Θ|G, ξ)dΘ (A.2)

where Θ is the set of parameters and ξ denotes our entire background knowledge. Given

that data set D consists of N independent samples, such that p(D|G) is

p(D|Θ, G, ξ) =
N∏

l=1

p(dl|Θ, G, ξ) (A.3)



A.1 Bayesian Dirichlet Equivalent Score 133

, where dl represents the lth case in the data set. Hence, Equation A.2 can be written as

p(D|G) =
N∏

l=1

∫
p(dl|Θ, G, ξ)p(Θ|, G, ξ)dΘ (A.4)

To solve Equation A.2 in closed the following 5 assumptions have to be made (Cooper

& Herskovits 1991):

Assumption 1 Multinomial Distribution A.1 Let dl
i and dl

pai
denote the variable xi and

the parent set pai in the lth case of data set D, respectively. Then,

p(dl
i = k|dl

pai
= j, Θ, G, ξ) = θijk ∈ [0, 1] ∀xi, pai. (A.5)

Assumption 2 Parameter Independence A.2 Given network structure G, the parameters

associated with each variable are independent from each other such that p(Θ|G, ξ) decom-

poses into

p(Θ|G, ξ) =
n∏

i=1

p(Θi|G, ξ). (A.6)

Due to the local independence of each instance of parents of a variable xi, p(Θi|G, ξ)

decomposes into

p(Θi|G, ξ) =

qi∏
j=1

p(Θij|G, ξ) ∀i = 1, ..., n, (A.7)

where qi is the number of values the set of parents, pai, can assume.

Assumption 3 Parameter Modularity A.3 Given two network structures G1 and G2, if

xi has the same parents in G1 and G2, then

p(Θij|G1, ξ) = p(Θij|G2, ξ) ∀j = 1, ..., qi (A.8)
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Assumption 4 Dirichlet Prior A.4 Given a network structure G, p(Θij|G, ξ) is a priori

Dirichlet distributed, θij ∼ D(Nij1, ...., Nijri
), byexists exponents N

′

ijk, which depend on

p(Θij|G, ξ) =
Γ(

∑ri

k=1 N
′

ijk)∏ri

k=1 Γ(N
′
ijk)

∏
k

θ
N
′
ijk−1

ijk , (A.9)

where Γ(.) denotes the Gamma function and ri is the number of values of variable xi. The

hyperparameters N
′

ijk are given as

N
′

ijk = N
′
p(xi = k, pai = j|ξ), (A.10)

where N
′ denotes the equivalent sample size and can be seen as the dimension of the

imaginary data set from which the a priori knowledge is extracted.

Assumption 5 Complete Data A.5 The data set is complete. That is, D contains no miss-

ing values.

From the multinomial sample assumption (Assumption A.1) and the assumption of

complete data (Assumption A.2) p(D|Θ, G) factorizes into

p(D|Θ, G, ξ) =
N∏

l=1

n∏
i=1

p(dl
i = k|dl

pai
= j, Θ, G, ξ) =

n∏
i=1

∏
j,k

θ
Nijk

ijk , (A.11)

where Nijk is the number of cases in the data set D in which xi = k and pai = j.

With Equation A.9 and Equation A.11 the marginal likelihood in Equation A.2 can be

re-written as

p(D|G, ξ) =

∫
p(D|Θ, G, ξ)p(Θ|G, ξ)dΘ (A.12)

=

∫ n∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk

Γ(
∑ri

k=1 N
′

ijk)∏ri

k=1 Γ(N
′
ijk)

∏
k

θ
N
′
ijk−1

ijk dΘ (A.13)

=
n∏

i=1

qi∏
j=1

Γ(
∑ri

k=1 N
′

ijk)∏ri

k=1 Γ(N
′
ijk)

∫ ri∏
k=1

θ
Nijk+N

′
ijk−1

ijk dΘ (A.14)
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Since the Dirichlet distribution is conjugate for this domain the posterior of each pa-

rameter remains in the conjugate family and the integral results in∫ ri∏
k=1

θ
Nijk+N

′
ijk−1

ijk dΘ =

∏ri

k=1 Γ(N
′

ijk + Nijk)

Γ(N
′
ij + Nij)

(A.15)

where Nij =
∑

k Nijk and N
′
ij =

∑
k N

′

ijk.

Thus, finally the marginal likelihood results in

p(D|G, ξ) =
n∏

i=1

qi∏
j=1

Γ(N
′
ij)

Γ(N
′
ij + Nij)

ri∏
k=1

Γ(N
′

ijk + Nijk)

Γ(N
′
ijk)

. (A.16)



Appendix B

Data Sets

B.1 Benchmark Data Sets

B.1.1 Alarm Network

This Bayesian network was constructed from expert knowledge as a medical diagnostic

alarm message system for patient monitoring and has become the most popular benchmark-

network for assessing structural learning algorithms. The domain has 37 discrete variables

taking between 2 and 4 values, connected by 46 directed edges, which can be interpreted

in a causal manner. The set of conditional probability distributions and the structure, used

for generating the data sets are described on the Netica homepage (Corp. 2003).

B.1.2 ALL-SIM Network

This Bayesian network was learned from the ALL microarray data set (Yeoh et al. 2002)

(cf. Section B.2.1) with a fast simulated annealing scheme. The network consists of 271

discrete variables each of which can have 3 values (-1, 0, +1), connected by 300 directed

edges. Data sets of different sample size were generated from the underlying probability

distribution (cf. Algorithm 6.1.1).
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B.1.3 E2APBX1-SIM Network

This network was learned from the same data set as with a fast simulated annealing scheme.

The network consists of 39 discrete variables each of which can have 3 values (-1, 0, +1),

connected by 41 directed edges. Data sets of different sample size were generated from the

underlying probability distributions (cf. Figure 6.1.1).

B.2 Microarray Data Sets

B.2.1 St. Jude ALL Data

The acute lymphoblastic leukemia (ALL) study provides measurements of 12.000 probes

in 327 samples collected from patients with different pediatric ALL subtypes. The goal of

this study was to use expression profiling for identifying each of the known prognostically

and therapeutically relevant subgroups and for the identification of patients who are at high

risk for failing conventional therapeutic approaches.

Out of the 12.000 measured genes, we selected those genes that best define the indi-

vidual subtypes using the χ2 statistic according (Yeoh et al. 2002). The final data set (271

genes × 327 samples) is composed of the 40 most discriminative genes for each of the 7

subtypes, whereby 9 genes appear in more then one cluster but only once in our final data

set.

Finally, gene expression levels were discretized to three levels, over-expressed, un-

changed and under-expressed, thresholded by the standard deviation of the expression lev-

els across samples for each gene separately, to learn a multinomial Bayesian network. Since

this model can describe any discrete conditional distribution, all algorithms also work for

higher classes of ordinal data. However, given the low signal to noise ratio of current

microarray data with a polynomial scaling of computational expense, finer discretization

might result in noise-contaminated data.
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Figure B.1: Acute Lymphoblastic Leukemia is a heterogeneous disease consisting of vari-
ous subtypes that go back to distinct genetic lesions. The different subtypes which appear
in the data set are manifested by distinct gene expression patterns (marked at the left hand
side).
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