
Lehrstuhl für Datenbanksysteme

Fakultät für Informatik

Technische Universität München

Security, Caching, and Self-Management in

Distributed Information Systems

Diplom-Informatiker Univ.
Stefan Seltzsam

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Krcmar

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Erhard Rahm,

Universität Leipzig

Die Dissertation wurde am 17.06.2004 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 11.11.2004 angenommen.

Acknowledgments

First of all, I would like to thank my advisor, Prof. Alfons Kemper, for the opportunity
to participate in ambitious and visionary projects. His advices, many helpful discussions,
and comments provided invaluable guidance for my work.

Natalija Krivocapić was the advisor for my master thesis and introduced me to the
topic of security in a distributed system of autonomous objects. She did a great job and I
learned a lot from her insight and experience in doing research and project work.

My doctoral thesis was done in the context of the projects ObjectGlobe, ServiceGlobe,
and AutonomicGlobe. Since so many people contributed to these projects, it is impossible
to list all of them here. In particular I like to thank Reinhard Braumandl, Markus Keidl,
Bernhard Stegmaier, and Christian Wiesner, who contributed various important parts to
these projects. A big “Thank you!” to all other project members!

I wish to thank Stephan Börzsönyi, Tobias Brandl, Roland Holzhauser, and Christof
König, whose master thesis I adviced, for their excellent work. A special thank to Tobias
Brandl and Stefan Krompaß for the implementation of the autonomic computing concept
and the simulation system. Another special thank to Roland Holzhauser and Christof
König for the implementation of the SSPLC prototype system. They all worked with me
for a long time and did an excellent job. Thank you all for being such a great team!

I wish to express my gratitude to all my colleagues at the University of Passau and
afterwards at the Technical University Munich for many helpful discussions and the pleasant
working environment: Reinhard Braumandl, Markus Keidl, Bernhard Stegmaier, Christian
Wiesner, Bernhard Zeller, and my newest colleagues Daniel Gmach, Richard Kuntschke,
and Martin Wimmer. Alexandra Schmidt and Evi Kollmann provided support in all kinds
of administrative and non-technical tasks. Markus Keidl and I shared an office for several
years. We always had a great and inspiring working atmosphere.

For helpful criticism, proof-reading and/or advice on my doctoral thesis, I express my
thanks to Laura Alvarey, Markus Keidl, Roland Holzhauser, Martin Wimmer, Bernhild
Ellmann, Reinhard Braumandl, Natalija Krivocapić, Thomas Sturm, Andreas Seidl, and
Richard Kuntschke. I appreciate all their valuable suggestions. A very special thank to
Laura Alvarey who did a very thorough and fast job in proof-reading. As native speaker
she even found grammatical subtleties and helped me fixing them.

I thank Wolfgang Becker, Ingo Bohn, and Thorsten Dräger of SAP’s Adaptive Com-
puting Infrastructure group for their cooperation.

Last, but not least, many thanks to my parents, my brother, Susanne Koerber, and my
friends for their support and encouragement throughout the years and for “always being
there”.

Garching, January 2005,

Stefan Seltzsam

Abstract

In this thesis, we investigate three different aspects of distributed information systems:
security, caching, and self-management.

We describe our concept of a security system for distributed and open systems using
our query processing system ObjectGlobe as an example. One part of this concept is
our OperatorCheck server, which validates the semantics of an operator and analyzes its
quality before the operator is actually used in queries. This is done semi-automatically
using an oracle-based approach to compare a formal specification of an operator against
its implementation. Further security measures are integrated into the query processing
engine: secure communication channels are established, authentication and authorization
are performed, and overload situations are avoided by admission control. Operators are
guarded using Java’s security model to prevent unauthorized resource access and leakage
of data. The resource consumption of operators is monitored and limited to avoid resource
monopolization.

We present a semantic caching scheme suitable for caching responses from Web ser-
vices on the SOAP protocol level. Web services are typically described using WSDL docu-
ments. For semantic caching we developed an XML-based declarative language to annotate
WSDL documents with information about the caching-relevant semantics of requests and
responses. Using this information, our semantic cache answers requests based on the re-
sponses of similar previously executed requests. Performance experiments—based on the
scenarios of TPC-W and TPC-W Version 2—conducted using our prototype implementa-
tion demonstrate the effectiveness of the proposed semantic caching scheme.

We present a novel autonomic computing concept which is hiding the ever increasing
complexity of managing IT infrastructures. For this purpose, we virtualize, pool, and
monitor hardware to provide a dynamic computing infrastructure. A fuzzy-logic-based
controller supervises all services running on this virtual platform. Higher-level services
such as business applications profit from running on this platform. For example, failed
services are restarted automatically. A service overload is detected and remedied by either
starting additional service instances or by moving the service to a more powerful server.
The capabilities and constraints of the services and the hardware environment are specified
in a declarative XML language.

Contents

1 Introduction 1

1.1 Purpose of this Thesis . 2

1.2 Outline of this Work . 4

2 ObjectGlobe - A Distributed and Open Query Processing System 5

2.1 Query Processing in ObjectGlobe . 5

2.2 Example Query . 7

2.3 Lookup Service . 8

2.4 Quality of Service (QoS) . 9

3 Security and Privacy Issues in Distributed and Open Systems 11

3.1 Motivation . 12

3.2 Security Requirements . 12

3.3 Java’s Security Model . 14

3.4 Security Measures during Plan Distribution 15

3.5 Architecture of the Runtime Security System 16

3.6 Correctness Issues of the Runtime Security System 20

3.6.1 Integrity of Data . 20

3.6.2 Privacy of Data . 21

3.7 Quality Assurance for External Operators 24

3.7.1 Goal of Testing . 24

3.7.2 Methods of Formal Specification . 24

3.7.3 User-Directed Test Data Generation 25

3.7.4 The OperatorCheck Server . 27

3.7.5 Limitations of Testing . 28

3.8 Usage Scenarios and their Security Implications 28

3.8.1 Intranet . 28

3.8.2 Extranet . 29

3.8.3 Internet . 29

3.9 Related Work . 29

3.10 Conclusions . 30

viii Contents

4 ServiceGlobe - A Distributed and Open Web Service Platform 33
4.1 Web Services Fundamentals . 33

4.1.1 Web Service Registry UDDI . 34
4.1.2 Communication Protocol SOAP . 35
4.1.3 Web Service Description Language WSDL 36

4.2 Architecture of ServiceGlobe . 36
4.3 Basic Load Balancing and Service Replication Framework 38

4.3.1 Architecture of the Dispatcher . 39
4.3.2 Load Measurement . 41
4.3.3 Automatic Service Replication . 43
4.3.4 High Availability / Single Point of Failure 44

4.4 Related Work . 45

5 Semantic Caching for Web Services 47
5.1 Motivation . 47
5.2 Background and Running Example . 50

5.2.1 Fundamentals of Semantic Caching 50
5.2.2 Running Example . 50

5.3 Basics of the Web Service Cache SSPLC 54
5.3.1 Replacement Policy . 54
5.3.2 Distribution Control and Cache Consistency 55
5.3.3 Physical Storage of Semantic Regions 56

5.4 Semantic Caching in the Web Service Cache SSPLC 56
5.4.1 WSDL Annotations . 56
5.4.2 Matching and Control Flow . 61
5.4.3 Sorting and Generalization . 63

5.5 Performance Evaluation . 64
5.5.1 Benchmark Scenario 1 (TPC-W) 64
5.5.2 Benchmark Scenario 2 (TPC-W 2) 67

5.6 Related Work . 69
5.7 Status and Future Work . 70

6 An Autonomic Computing Concept for Application Services 71
6.1 Motivation . 71
6.2 Architecture of the Controller Framework 73

6.2.1 Load Monitors and Advisor Modules 73
6.2.2 Load Monitoring System . 74
6.2.3 Fuzzy Controller . 74
6.2.4 Load Archive . 74
6.2.5 Environment and Service Virtualization 74

6.3 Fuzzy Controller Basics . 76
6.4 Fuzzy Controller for Load Balancing . 79

6.4.1 Action-Selection Process . 80

Contents ix

6.4.2 Server-Selection Process . 82
6.4.3 Execution of the Controller’s Decision 83

6.5 Simulation Studies . 84
6.5.1 Description of the Simulation Environment 84
6.5.2 Results of the Simulation Studies 88
6.5.3 Summary of Simulation Assessment 93

6.6 Related Work . 93
6.7 Status and Future Work . 95

7 Conclusions 97

Bibliography 99

List of Figures

2.1 Processing a Query in ObjectGlobe . 6
2.2 Distributed Query Processing with ObjectGlobe 7
2.3 The Architecture of the Lookup Service . 9

3.1 Java’s Five-Layer Security Model . 14
3.2 Protection of the Resources of Cycle Providers 17
3.3 Extending Privileged Access Rights to User-Defined Operators 18
3.4 Architecture of the Resource Monitoring Component 19
3.5 Flow Chart of Supervised Plan Execution 19
3.6 Overview of the Communication Channels During Plan Execution 22
3.7 Architecture of the Operator Check Server 27

4.1 UDDI Data Structures . 34
4.2 Basic Structure of a SOAP Message . 35
4.3 Classification of Services . 37
4.4 Survey of the Load Balancing System . 40
4.5 Dispatcher’s Architecture . 40
4.6 Different Views of the Load Situation during Request Dispatching 42
4.7 Automatic Replication of Service S . 44

5.1 Web Service Architecture in a Highly Accessed System 48
5.2 Example SOAP Request for Book Store Light 51
5.3 Example SOAP Response from Book Store Light 51
5.4 Messages and Port Types (Book Store Light) 52
5.5 Type Definitions (Book Store Light) . 53
5.6 Annotation of the AuthorSearchRequest Operation 57
5.7 Annotated WSDL Type Definition . 59
5.8 Flow Chart of the Caching Process . 61
5.9 Match Types . 62
5.10 Request Distribution . 65
5.11 Match Distribution Varying Cache Size . 65
5.12 Transfer Volume Varying Cache Size . 67
5.13 Match Distribution Varying TTL . 67

5.14 Match Distribution Varying Slot Size . 68
5.15 Match Distribution Varying Maximum Cached Response Size 68
5.16 Match Distribution of SSPLC Varying Theta 68
5.17 Match Distribution of NSC Varying Theta 68
5.18 Cache Hits Varying Theta (TPC-W 2) . 68

6.1 Architecture of the AutonomicGlobe Computing Concept 72
6.2 Architecture of the Controller Framework 73
6.3 Blade Server and a Blade Server Rack . 75
6.4 Linguistic Variable cpuLoad . 76
6.5 Architecture of a Fuzzy Controller . 77
6.6 Max-Min Inference Result . 78
6.7 Interaction Flow Chart of the Fuzzy Controllers 79
6.8 Flow Chart of the Action-Selection Process 81
6.9 Rule Base for the serviceOverloaded Trigger 82
6.10 Administrator Controller GUI . 83
6.11 Example of an ERP Environment . 85
6.12 Qualitative Load Curve of LES and BW 86
6.13 Simulated Hardware and Initial Deployment 87
6.14 CPU Load of all Servers (Static Scenario) 89
6.15 CPU Load of all Servers (Constrained Mobility Scenario) 89
6.16 CPU Load of all Servers (Full Mobility Scenario) 89
6.17 CPU Load of the FI Instances (Static Scenario) 91
6.18 CPU Load of the FI Instances (Constrained Mobility Scenario) 91
6.19 CPU Load of the FI Instances (Full Mobility Scenario) 92

List of Tables

3.1 Specification Methods for Database Operators (Skyline) 26

6.1 Input Variables for the Action-Selection . 80
6.2 Output Variables for the Action-Selection 81
6.3 Input Variables for the Selection of a Server 82
6.4 Initial Number of Users . 86
6.5 Services in the Constrained Mobility Scenario 87
6.6 Services in the Full Mobility Scenario . 88
6.7 Maximum Possible, Relative Number of Users 93

xii List of Tables

Chapter 1

Introduction

During the last decade, we have seen a substantial growth of the Internet with respect
to several dimensions: the number of computers connected to the Internet, the number
of users, and the number of content providers all have increased dramatically. Initially,
only a very limited and static content was available on the Internet. Nowadays, however,
a vast amount of static and dynamic information is accessible. With the increasing flood
of information, the desire to be able to efficiently query this data and correlate data from
different sources has grown. Thus, more and more complex data integration systems have
been developed with the goal of realizing the vision of the Internet as a global database
management system [LKK+97].

Data integration systems evolved from centralized middleware systems [Wie93] to glob-
ally operating data integration systems like ObjectGlobe [BKK+01a] which can potentially
cover all the appropriate data sources on the Internet. ObjectGlobe is not a monolithic
architecture. Instead, it is a distributed and open query processor for Internet data sources
in which operators can be integrated in the form of user-defined mobile code in a seamless
and effortless manner to, for example, add user-defined data transformations or predicates.
Thus, ObjectGlobe satisfies the emerging need for distribution and quick adaptation to
new requirements stemming from, for example, virtual enterprises. However, usage of mo-
bile code introduces specific security concerns. ObjectGlobe and all other distributed and
open architectures need sophisticated security systems to check the semantics and qual-
ity of mobile code before the code is actually executed. Additionally, they must provide
secure runtime environments for mobile code to protect the executing systems from unau-
thorized resource access and overload situations. An additional issue is the prevention of
data leakage.

Currently, a second wave of integration is rolling through the Internet. This time the
focus of the integration efforts is on applications rather than on data. Service-oriented
architectures based on Web services are already emerging as the predominant application
type on the Internet. This development is primarily driven by the desire of companies for a
global application integration platform. Companies bargain for cost-cuttings by automated
flexible workflows for business-to-business (B2B) e-commerce, like fully-automated supply

2 Introduction

chain management, as well as for business-to-consumer (B2C) e-commerce. Companies
and technology providers are both interested in interoperability. Therefore, they are work-
ing together on several standards for Web services [RV02], for example, XML [BPSM+04],
SOAP [BEK+00], UDDI [UDD00], and WSDL [CCMW01] (to name the most important
ones). Currently, there are several Web service platforms available from different ven-
dors, for example, IBM WebSphere [IBMb], Microsoft .NET [NET], Sun ONE [Sunb], and
ServiceGlobe [KSK03a], our own research platform. All these platforms implement the
standards mentioned above and can therefore seamlessly interact with one another. These
Web service platforms can be used for inter-company as well as intra-company application
integration.

Some of the most urgent problems of globally accessible Web services are performance
and scalability. These problems are common in distributed systems on the Internet and,
thus, there are solutions for different application areas. For example, distributed database
management systems and traditional Web servers rely heavily on different caching tech-
niques [RV02, INST02] to reduce the load of their servers and to speed up processing, for
example, proxy caches, content distribution networks (CDNs), or edge server caches. Cur-
rently, there are no sophisticated caching schemes available in the area of Web services. It
is obvious that such caching schemes will be essential in the future as the number of users
of Web services grows steadily.

Another purpose of Web services is, as already mentioned, the intra-company applica-
tion integration. Here again, the predominant aim of companies is cutting costs. Using
Web service technology, the linking of applications becomes much easier, less complex and,
therefore, cheaper. Nevertheless, complexity and consequently administration costs of IT
infrastructures are ever increasing. IBM coined the term autonomic computing [Hor01] for
solutions which overcome this trend. This term refers to some kind of self-management
of hardware and software. Comprehensive self-management capabilities for systems in-
clude self-configuration, self-optimization, self-healing, and self-protection. Several global
players conduct research in this area, and they have already integrated some aspects of
self-management into their hardware and software products. While several technologies
and products are already available, most of them are only able to handle problems of iso-
lated components of IT infrastructures, for example, a failed processor of a multi-processor
system. Additionally, they depend heavily on vendor-specific hardware features. A solu-
tion for a self-managing, vendor-independent IT infrastructure that supervises and controls
itself is still missing.

1.1 Purpose of this Thesis

In this thesis, we investigate the three different aspects of distributed information systems
addressed above. Our focus is on security, caching, and self-management.

As mentioned before, usage of mobile user-defined code introduces specific security con-
cerns. We present a comprehensive security architecture for distributed and open systems

1.1 Purpose of this Thesis 3

using ObjectGlobe as an example. In ObjectGlobe, users can provide operators in the form
of mobile code. Before such an operator is actually used in queries, an OperatorCheck server
validates its semantics and analyzes its quality. This is done semi-automatically using an
oracle-based approach to compare a formal specification of an operator against its im-
plementation. Further security measures are integrated into the query processing engine:
during plan distribution, secure communication channels are established, authentication
and authorization are performed, and overload situations are avoided by admission con-
trol. During plan execution, operators are guarded using Java’s security model to prevent
unauthorized resource access and leakage of data. The resource consumption of operators
is monitored and limited to avoid resource monopolization. We show that the presented
security system is capable of executing arbitrary operators without risk to the executing
host or the privacy and integrity of the processed data.

Caching is an approved solution for performance and scalability issues of distributed
systems. We present a semantic caching scheme suitable for caching responses from Web
services on the SOAP protocol level. Existing semantic caching schemes for database sys-
tems or Web sources cannot be applied directly because there is no semantic knowledge
available about the requests to and responses from Web services. Web services are typi-
cally described using WSDL (Web Service Description Language) documents. To enable
semantic caching we developed an XML-based declarative language to annotate WSDL doc-
uments with information about the caching-relevant semantics of requests and responses.
Using this information, our semantic cache answers requests based on the responses of
similar previously executed requests. Performance experiments—based on the scenarios of
TPC-W and TPC-W Version 2—conducted using our prototype implementation demon-
strate the effectiveness of the proposed semantic caching scheme.

The third challenge of distributed systems we investigate in this thesis is the self-man-
agement of complex IT systems. We present a novel autonomic computing concept which
is hiding the ever increasing complexity of managing IT infrastructures. For this purpose,
we virtualize, pool, and monitor hardware to provide a dynamic computing infrastruc-
ture. A fuzzy-logic-based controller supervises all services running on this virtual platform.
According to the vision of autonomic computing, this infrastructure is a step towards a
self-managing, self-optimizing, and self-healing virtual platform for services. Higher-level
services such as business applications benefit from running on this supervised virtual plat-
form. For example, failed services are restarted automatically and a service overload is
detected and remedied by starting additional service instances or by moving the service
to a more powerful server. Available resources are shared between all services as appro-
priate for a particular situation. Thus, by dynamically allocating the services, we improve
the average utilization of the available hardware and minimize idle time. Thereby, total
cost of ownership (TCO) is reduced either because more users can be handled using the
existing hardware or because less hardware is required to begin with. The capabilities and
constraints of the services and the hardware environment are specified using a declarative
XML language. We used our prototype implementation, AutonomicGlobe, for first tests
managing a blade server configuration and for comprehensive simulation studies which
demonstrate the effectiveness of our proposed autonomic computing concept.

4 Introduction

1.2 Outline of this Work

The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview of the ObjectGlobe system—our distributed and open
query processing system for data processing services on the Internet.

• Chapter 3 presents a security system for distributed and open architectures using
ObjectGlobe as an example system. Additionally, a technique concerning quality
assurance for external operators is presented.

• Chapter 4 introduces the ServiceGlobe system—our distributed and open Web ser-
vice platform. We also give a brief introduction to Web service standards that are
important in our work.

• Chapter 5 investigates caching techniques for Web services. We present a seman-
tic caching scheme suitable for caching responses from Web services on the SOAP
protocol level. Additionally, results of comprehensive performance experiments are
given.

• Chapter 6 describes an autonomic computing concept for application services using
an enterprise resource planning (ERP) software installation as an example. This work
is based on the ServiceGlobe system and adds a controller framework for autonomic
decisions to ServiceGlobe. A fuzzy controller which can be plugged into this frame-
work is presented. Comprehensive simulation studies using this fuzzy controller are
described.

• Chapter 7 concludes the thesis.

Chapter 2

ObjectGlobe - A Distributed and
Open Query Processing System

In this chapter, we present the design of ObjectGlobe, our distributed and open query
processor for Internet data sources. The goal of the ObjectGlobe project is to distribute
powerful query processing capabilities (including those found in traditional database sys-
tems) across the Internet. The idea is to create an open marketplace for three kinds of
suppliers: data providers which supply data, function providers which offer query operators
to process the data, and cycle providers which are contracted to execute query operators.
Of course, a single site (even a single machine) can comprise all three services, i.e., act
as data, function, and cycle provider. In fact, we expect that most data and function
providers will also act as cycle providers. ObjectGlobe enables applications to execute
complex queries involving the execution of operators from multiple function providers at
different cycle providers and the retrieval of data and documents from multiple data sources.

A detailed description of the ObjectGlobe system is given in [BKK+01a, BKK+01b,
Bra01, BKK+00, BKK+99]. The HyperQuery project presented in [KW01, KW04] is an
extension of the ObjectGlobe system offering a platform for scalable electronic marketplaces
on the Internet.

This chapter is organized as follows: In Section 2.1 we outline how queries are processed
in ObjectGlobe. Section 2.2 gives a concrete example and introduces the external Skyline
operator. The lookup service of ObjectGlobe is presented in Section 2.3. In Section 2.4 we
give a survey of the quality of service management of ObjectGlobe.

2.1 Query Processing in ObjectGlobe

Processing a query in ObjectGlobe involves four major steps, as shown in Figure 2.1:

• Lookup: In this phase, the ObjectGlobe lookup service is queried to find relevant
data sources, cycle providers, and query operators that might be useful in executing
the query. In addition, the lookup service provides the authorization data—mirrored
and integrated from the individual providers—to determine what resources may be

6 ObjectGlobe - A Distributed and Open Query Processing System

List

XML

Query

Plan

XML

Query

Result

XML
Parse/Lookup

Lookup
Service

Optimize Plug Execute
Query

Search
Resources

XML

Resource

Figure 2.1: Processing a Query in ObjectGlobe

accessed by the user who initiated the query and what other restrictions apply for
processing the query.

• Optimize: The information obtained from the lookup service is used by a quality-
aware query optimizer to compile a valid (as far as user privileges are concerned)
query execution plan believed to fulfill the users’ quality constraints. This plan is
annotated with site information indicating on which cycle provider each operator is
executed and from which function provider the external query operators involved in
the plan are loaded.

• Plug: The generated plan is distributed to the cycle providers and the external
query operators are loaded and instantiated at each cycle provider. Furthermore, the
communication paths (sockets) are established.

• Execute: The plan is executed following an iterator model [Gra93]. In addition
to the external , i.e., user-defined, query operators provided by function providers,
ObjectGlobe has built-in query operators for selection, projection, join, union, nest-
ing, unnesting, sending data, and receiving data. If necessary, communication is
encrypted and authenticated. Furthermore, the execution of the plan is monitored
in order to detect failures, look for alternatives, and possibly halt the execution of a
plan.

The whole system is written in Java for two reasons. First, Java is portable so that
ObjectGlobe can be installed with very little effort on various platforms; in particular, cycle
providers which need to install the ObjectGlobe core functionality can very easily join an
ObjectGlobe system. The only requirement is that a site runs the ObjectGlobe server on a
Java virtual machine. Second, Java provides secure extensibility. Like ObjectGlobe itself,
external query operators are written in Java: they are loaded on demand (from function
providers), and they are executed at cycle providers in their own Java“sandbox” (described
in Chapter 3). Just like data and cycle providers, function providers and their external
query operators must be registered in the lookup service before they can be used.

ObjectGlobe supports a nested relational data model in order for relational, object-
relational, and XML data sources to be easily integrated. Other data formats (e.g., HTML),

2.2 Example Query 7

HotelBookWrapper

(Cycle Provider)

HotelBookWrapper HotelGuideWrapper

HotelGuideWrapper

Hotels

Send

Skyline

Send

Skyline

www.hotelguide.com

Hotels

www.hotelbook.com

City=Nassau

D
at

a
Pr

ov
id

er
C

yc
le

 P
ro

vi
de

r

D
ata Provider

C
ycle Provider

Skyline

Display

Recv Recv

Client

City=Nassau

Price min, Dist min Price min, Dist min

Price min, Dist min

www.operators.org

Skyline

Function Provider

Figure 2.2: Distributed Query Processing with ObjectGlobe

however, can be integrated by the use of wrappers that transform the data into the required
nested relational format. Wrappers are treated by the system as external query operators.
As shown in Figure 2.1, XML is used as a data exchange format between the individual
ObjectGlobe components. Part of the ObjectGlobe philosophy is that the individual Ob-
jectGlobe components can be used separately. XML is used so that the output of every
component can be easily visualized and modified. For example, users can browse through
the lookup service in order to find interesting functions which they might want to use in the
query. Furthermore, a user can look at and change the plan generated by the optimizer.

2.2 Example Query

Figure 2.2 shows an example of distributed query processing with ObjectGlobe. Suppose
one is going on holiday to Nassau, Bahamas, and is looking for a hotel that is cheap and
close to the beach. This task is known as the “maximum vector problem” [PS85]. Actually,
we are searching for the minimal vectors, but these can be found analogously. Formulated
precisely, we are looking for all hotels which are not dominated by other ones. A hotel
dominates another one if it is cheaper and closer to the beach. Dominance imposes a
partial ordering on the hotels.

8 ObjectGlobe - A Distributed and Open Query Processing System

A naive solution for this problem is to compare each hotel to every other and delete
dominated ones. This simple algorithm yields quadratic runtime. However, a more sophis-
ticated algorithm with a lower complexity has been developed by [KLP75]. [BKS01] have
investigated this algorithm in the context of databases and adapted it to constrained main
memory. They called the operator “Skyline”.

The resources used to find the desired cheap hotel near the beach are as follows: two
Web sites, www.hotelbook.com and www.hotelguide.com, supply hotel data and all exter-
nal operators are provided by the function provider www.operators.org. Two wrappers,
HotelBookWrapper and HotelGuideWrapper, are responsible for querying the two Web
sites and transforming the data into ObjectGlobe’s internal format. They are executed at
cycle providers located near the data sources in order to minimize transfer time. As the
following equation holds for the Skyline operator, it can be applied to each data source
directly in order to further reduce data shipping costs:

Skyline(Skyline(A) ∪ Skyline(B)) = Skyline(A ∪ B)

Thus, only the best hotels are passed to the client. The send/receive iterator pairs per-
forming the transmission of data are installed automatically during the plug phase. The
client calculates the Skyline of the union of both data sources, and the user can choose a
hotel from the result.

2.3 Lookup Service

The lookup service plays the same role in ObjectGlobe as the catalog or metadata manage-
ment of a traditional query processor. Providers are registered before they can participate
in ObjectGlobe. In this way, the information about available services is incrementally ex-
tended as necessary. A detailed description of the lookup service of ObjectGlobe is given
in [KKKK02].

During the optimization of every query in an ObjectGlobe federation, the lookup ser-
vice is queried for descriptions of useful services for the respective query. Therefore, the
main challenge of the lookup service is to provide global access to the metadata of all
registered services without becoming the bottleneck of the whole system. Since the meta-
data structures in an open and extensible system are naturally quite complex, the lookup
service offers a sophisticated special-purpose query language, which also allows for the ex-
pression of joins over metadata collections. In addition to the network and storage devices,
the computing power of a lookup service machine can limit the throughput of metadata
queries. Thus, our lookup service uses a three-tier architecture as depicted in Figure 2.3.
The purpose of this architecture is to scale in the number of users of the lookup service
(both real users who browse the metadata and optimizers which search for specific services)
by adding new local metadata repositories at the hot spots of user activity.

The information at metadata providers is regarded as globally and publicly available
and therefore it is consistently replicated by all metadata providers which appear in the
metadata provider backbone. For the efficiency reasons stated above, metadata providers

2.4 Quality of Service (QoS) 9

Function Provider

Resources

Metadata
Provider
Backbone

Provider
ResourcesRegister

Resources
Register

Publish

Subscribe

Data Provider

Publish

Subscribe Metadata
Repositories for
Specialized Topics

Hotels

BrowserObjectGlobe
Parser

Lookup Service
Clients

Repository

HotelBookWrapper

Metadata

HotelGuideWrapper

Metadata
Provider

Repository

Metadata

Local Metadata

ProviderProvider

Skyline

Local Metadata

Figure 2.3: The Architecture of the Lookup Service

themselves cannot be queried; they only can be browsed in order to detect metadata which
should also be available at a specific local metadata repository. Only these local meta-
data repositories can be queried for locally cached metadata. They use a publish/subscribe
mechanism to fetch relevant data from a metadata provider. In the case of updates, in-
sertions, or deletions of metadata, a metadata provider evaluates the possibly huge set
of subscription rules with the help of a sophisticated prefilter algorithm and forwards the
appropriate changes to the corresponding local metadata repositories.

2.4 Quality of Service (QoS)

Query execution in ObjectGlobe can involve a large number of different function, cycle
and data providers. Therefore, a plan produced by a traditional optimizer might consume
much more time and money than an ObjectGlobe user is willing to spend. In such an open
query processing system it is essential that a user can specify quality constraints on the
execution itself. These constraints can be separated into three different dimensions:

• Result: There are several important properties of a query result a user should be
able to specify. For example, a user may want to restrict the size of the result set

10 ObjectGlobe - A Distributed and Open Query Processing System

returned by a query in the form of a lower or an upper bound (an upper bound
corresponds to a stop after query [CK98]). Constraints on the amount of data used
for answering the query (e.g., at least 50% of the data registered for the theme“hotels”
should be used for a specific query) and its freshness (e.g., the last update should
have happened within the last day) can be used to get results which are based on a
current and sufficiently large subset of the available data.

• Cost: Since providers can charge for their service, a user should be able to specify
an upper bound for the respective consumption by a query.

• Time: The response time is another important quality parameter of an interactive
query execution. A user can be interested in a fast production of the first answer
tuples or in a fast overall execution of the query. A fast production of the first tuples
can be important so that the user can look at these tuples while the remainder is
computed in the background.

In many cases not all quality parameters will be interesting. Just like in real-time systems,
some constraints could be strict (or hard) and others could be soft and handled in a relaxed
way. A detailed description of the QoS management in ObjectGlobe as well as a comparison
to other existing system architectures are given in [BKK03, Bra01].

The starting point for query processing in our system is a description of the query itself,
the QoS constraints for it and statistics about the resources (providers and communica-
tion links). QoS constraints will be treated during all phases of query processing. First,
the optimizer generates a query evaluation plan whose estimated quality parameters are
believed to fulfill the user-specified quality constraints of the query. For every sub-plan
the optimizer states the minimum quality constraints it must obey in order to fulfill the
overall quality estimations of the chosen plan and the resource requirements deemed nec-
essary to produce these quality constraints. In case the resource requirements cannot be
satisfied with the available resources during the plug phase, the plan is adapted or aborted.
The QoS management reacts in the same way if during query execution the monitoring
component forecasts an eventual violation of the QoS constraints.

Chapter 3

Security and Privacy Issues in
Distributed and Open Systems

Security is crucial to the success of distributed and open systems like ObjectGlobe because
usage of mobile code introduces specific security concerns. In this chapter, we describe
our concept of the security system of ObjectGlobe. The security measures are classified by
the time of application. Before an operator is actually used in queries, our OperatorCheck
server validates its semantics and analyzes its quality. This is done semi-automatically
using an oracle-based1 approach to compare a formal specification of an operator against
its implementation. Further security measures are integrated into the query processing
engine: during plan distribution, secure communication channels are established, authenti-
cation and authorization are performed, and overload situations are avoided by admission
control. During plan execution, operators are guarded using Java’s security model to
prevent unauthorized resource access and leakage of data. The resource consumption of
operators is monitored and limited to avoid resource monopolization. We show that the
presented security system is capable of executing arbitrary operators without risks to the
executing host or the privacy and integrity of the processed data. Parts of this chapter
have already been presented in [SBK01].

This chapter is organized as follows: Section 3.1 motivates the importance of security
systems for distributed and open systems and Section 3.2 elaborates on the security re-
quirements of such systems. Our security system is based on the security model of Java,
which is outlined in Section 3.3. Sections 3.4 and 3.5 give a survey of the security measures
during plan distribution and outline runtime guarding and monitoring measures used to
detect malicious or defective operators. Section 3.6 discusses some issues on the correct-
ness of the runtime security system. After that, Section 3.7 describes in detail preventive
measures appropriate to detect the majority of low quality and malicious external oper-
ators before actually executing them in queries. Section 3.8 discusses security concerns
in different scenarios and demonstrates the usage of our security system adapted to the
specific needs of the scenarios. Related work is addressed in Section 3.9, and Section 3.10
concludes this chapter.

1We think of an oracle in the true sense of the word, not of the commercial DBMS.

12 Security and Privacy Issues in Distributed and Open Systems

3.1 Motivation

The recent trend towards distributed and open systems demands new sophisticated security
systems to meet the challenges of mobile user-defined code. Examples for such systems
are Web browsers executing Applets, Web application servers executing Servlets or Java
Server Pages, and extensible database management systems implementing, e.g., the SQL99
standard [SQL99] for user-defined functions. Nowadays more and more wireless devices
execute code in the form of WML scripts [GS01], e.g., to interact with a mobile e-commerce
system. In this chapter, we use ObjectGlobe as an example for such a system.

The openness of a system like ObjectGlobe creates new demands on a security system.
The source, the programmer, and the code of external user-defined operators are normally
unknown. Thus, users of such operators are unsure whether the operator is calculating the
correct result or may crash or manipulate data given to it. For this reason quality assurance
is necessary because users of external operators want to feel confident about the semantics
and functioning of operators in order to rely upon the results of a query. As in every
distributed system, it is necessary to protect communication channels against tampering
and eavesdropping. Cycle providers execute arbitrary external operators. Thus, they need
a security architecture which prevents external operators from accessing resources like the
file system of the cycle provider, monopolizing resources like memory or CPU time, or
manipulating vital components of the ObjectGlobe system. Additionally, cycle providers
need an authentication framework to be able to determine the identity of a user.

The goal of this work is to provide a security architecture for ObjectGlobe which ad-
dresses all mentioned challenges and in general is appropriate for distributed and open
systems. In order to achieve these goals we have to rely upon some basic assumptions
about the environment of ObjectGlobe. First, we assume that the operating system which
is running ObjectGlobe is secure and that the administrators of the cycle providers are
trustworthy, because we cannot protect the system against the operating system. Second,
we assume that the code and the Java virtual machine (JVM) used to run ObjectGlobe
are unmodified. These requirements are enforced in ObjectGlobe by giving the user the
possibility to restrict the cycle providers to a set of trusted cycle providers. The last and
most serious assumption is that the security system of Java 2 [Oak98] works as designed.
There have been some security-related bugs and implementation flaws of Java, but it seems
that there are no elementary flaws in the design of the security model.

3.2 Security Requirements

There are several security requirements of users and cycle providers. First, we will con-
centrate on security issues introduced by external operators: cycle providers want to be
able to execute arbitrary external operators in a safe way, i.e., they want to be sure that
operators do not monopolize resources, access resources like the file system unauthorized,
or manipulate vital components of the system.

3.2 Security Requirements 13

We now demonstrate some attacks and the implications that arise without an effective
security system using modified versions of the Skyline operator (see Section 2.2). The
example below shows a code snippet which monopolizes the memory by continuously gen-
erating and storing new Object instances in a LinkedList. The execution of this operator
results in a denial of service because there will be insufficient memory for other operators.
Of course, an external operator could just as well monopolize CPU time, secondary mem-
ory, or any other limited shared resource. It would also be possible for an operator to, e.g.,
access the file system to modify arbitrary files or to steal confidential data.

Example Resource Monopolization

public class Skyline extends IteratorClass {

public TypeSpec open() throws CommandFailedException,IOException {

List l = new LinkedList();

while(true)

l.add(new Object());

...

}

...

}

Along with security requirements of providers there are requirements of users. They
want to feel confident about the semantics of external operators in order to rely upon the
results of a query even when they use external operators. Recall the query using a Skyline
operator to find the hotels which are cheap and near the beach (see Section 2.2). Now
assume a modified Skyline operator that filters all hotels of the Sheraton hotel chain. The
result of a query using this modified Skyline would be all cheap hotels near the beach not
being a Sheraton hotel, which is not the result the user requested. Privacy is another severe
requirement endangered by external operators: an operator could calculate the result as
required, but it could also send a copy of the processed data to an arbitrary host on the
Internet or leak data to a concurrent query, possibly compromising confidentiality of data.
For that reason, it is necessary that the security system can guarantee that data given to an
operator can only flow using communication channels which are obvious to and authorized
by the user.

In addition to the security requirements induced by external query operators there are
some which are common to many distributed systems. First, using our terminology, cycle
and data providers may have a legitimate interest in obtaining the identity of users for au-
thorization purposes. It must be considered that users normally want to stay anonymous
as far as possible, therefore it must not be mandatory to give authentication data to cycle
providers. Second, the communication channels between different collaborating hosts must
be protected against tampering to avoid unnoticed modifications of the data. Additionally,
it must be possible to encrypt confidential data to prevent other parties from eavesdrop-
ping. Third, cycle providers need an admission control system to guard themselves against
overload situations.

14 Security and Privacy Issues in Distributed and Open Systems

To meet these requirements, we use a multilevel security architecture combining preven-
tive measures, security measures during plan distribution, and a runtime security system.
Preventive measures take place before an operator is actually used in queries. They are
used to validate the semantics and analyze the quality of the operator. Based upon the vali-
dation results, ObjectGlobe could renounce runtime security measures. Because preventive
measures are optional, untested operators are regarded as possibly malicious and all secu-
rity measures apply. During plan distribution, common security measures of distributed
systems take place which include admission control. The remaining security requirements,
e.g., protection of cycle providers, are met by the runtime architecture. We give a brief
overview of Java’s security model and the mandatory security levels of our security architec-
ture, i.e., security measures during plan distribution and the runtime security architecture,
in the next three sections. Thereafter, we present the preventive measures in detail and
point out the advantages of validated operators.

3.3 Java’s Security Model

Interpreter/JIT

Policy File

Compiler Class Loader
Class−/Byte−
code Verifier

Security Manager

Access Controller

Figure 3.1: Java’s Five-Layer Security Model

Figure 3.1 outlines the five layers of Java’s security model [Oak98]. Java is a strongly
typed object-oriented programming language with information hiding. The adherence to
typing and information hiding rules is verified by the compiler and, because code could be
generated by an evil compiler, again by the class/bytecode-verifier before a class object is
generated from the bytecode. The class loader’s tasks are to load the bytecode of a class
into memory, monitor the loaded code’s origin (i.e., its URL), and to verify the signature
of digitally signed code. The security manager controls the access to safety critical system
resources, such as the file system, network sockets, peripherals, etc. The security manager
is used to create a so-called sandbox in which untrusted code is executed. Most well-known
are the restrictive sandboxes in which Web browsers execute mobile code (i.e., Applets)
loaded from Web servers. The ObjectGlobe system is based on Java Release 2, in which
the security manager interfaces with the access controller. The access controller verifies
whether an access to a safety-critical resource is legitimate according to a configurable
policy. Privileges can be granted based on the origin of the code and whether or not it
is digitally signed (i.e., authenticated) code. Additionally, the access controller offers the
facility to temporarily give classes the ability to perform an action on behalf of a class

3.4 Security Measures during Plan Distribution 15

that normally might not have that ability by marking code as privileged. This feature is
essential, for example, for granting access to temporary files via a secure interface (called
TmpFile in ObjectGlobe). Finally, the Java program is executed by the interpreter which is
responsible for runtime enforcement of security by, e.g., checking array bounds and object
casts. From a security perspective, it is irrelevant whether or not parts of the code are
compiled by a just-in-time (JIT) compiler to increase performance.

3.4 Security Measures during Plan Distribution

The common security requirements of distributed systems, as enumerated above, are met
during plan distribution where four security-related actions take place: setup of secure
communication channels, authentication, authorization, and admission control.

Privacy and integrity of data and function code that is transmitted between Object-
Globe servers is protected against unauthorized access and manipulation by using the well-
established secure communication standards SSL (Secure Sockets Layer) [FKK96] and/or
TLS (Transport Layer Security) [DA99] for encrypting and authenticating (digitally signed)
messages. Both protocols can carry out the authentication of ObjectGlobe communication
partners via X.509 certificates [HFPS99], thus ensuring communication with the desired
ObjectGlobe server. The security level of network connections can be chosen depending
on the processed data.

If authentication is required for authorization or accounting purposes of providers, Ob-
jectGlobe can authenticate users using one of the two possibilities described below. In both
schemes, the authentication data is inserted into the query plan generated from the user’s
query:

• A user can provide a password. The password is used to generate a secret key (using
the PKCS #5 password-based encryption standard [PKC99]) which is afterwards
used to calculate a MAC (Message Authentication Code) of the query plan and some
additional data (e.g., a time stamp to avoid reusage of signed plans).

• The user possesses a valid X.509 certificate [HFPS99, PKI]. The private key corre-
sponding to the certificate is used to calculate a digital signature of the query plan
and some additional data.

Of course, usage of X.509 certificates is preferred, but until certificates are commonly
used, password-based authentication is supported as an alternative. The signature of a
query arriving at a provider is verified using the user’s X.509 certificate or the user’s
password. After that, the originator and the integrity of the query is known reliably.
Providers can use this knowledge to enforce their local authorization policy autonomously.
Of course, users and applications accessing only free and publicly available resources can
stay anonymous and no authentication is required. If a user wants to access a resource
that charges and accepts electronic payment, the user can remain anonymous as well (if
the electronic payment system supports it) and the electronic payment is shipped as part
of the plug phase.

16 Security and Privacy Issues in Distributed and Open Systems

The last security-related action during plan distribution, which is needed by all systems
offering services to users, is admission control. ObjectGlobe’s admission control component
determines whether or not the estimated resource requirements of a query—calculated using
the cost models of the operators (see Section 3.5)—can be satisfied by the executing host.
This proceeding is advantageous insofar as queries can be aborted as early as possible if any
cycle provider executing a part of the query cannot satisfy the resource requirements of the
query. Queries whose resource requirements can be fulfilled are scheduled using a FCFS
(First Come First Served) scheduler considering only main memory usage of the operators.
We assume that a sufficient amount of all other resources such as secondary memory is
available. This scheduling approach works well, because every query is restricted to using
only a small fraction of the main memory of the server. Thus, a certain degree of parallel
execution is guaranteed.

3.5 Architecture of the Runtime Security System

After plan distribution, all involved cycle providers execute the operators assigned to them
to calculate the result of the query. Therefore, they must be protected from damage by
malicious or low quality operators as outlined above. To satisfy the security interests of
users, the security system must also be able to guarantee that data given to an operator
can only flow using communication channels which are obvious to and authorized by the
user. These security requirements are met using two techniques: guarding and monitoring.

The guarding mechanisms are realized using Java’s security architecture, i.e., security
manager and class loaders, to control and restrict access to resources of the cycle provider
and components of the ObjectGlobe system.

The class loader’s tasks are to load the bytecode of a class into memory, monitor the
loaded code’s origin (i.e., its URL), and verify the signatures of digitally signed code.
Additionally, every class loader generates its own name space. Normally, class loaders are
able to load further classes from the code’s origin at runtime. But to prevent external
operators from abusing a connection to a function provider as a covert communication
channel by requesting classes with data coded into the names of the classes, all (non built-
in) classes required by an external operator must be combined into a JAR2 file. This file is
loaded and cached by the class loader during the plug phase. Thus, there is no connection
to the function provider during plan execution. Furthermore, queries running concurrently
are separated from each other to prevent them from exchanging information with each
other via, e.g., static class variables. This is done by using a new class loader instance
(called OGClassLoader) for each query which implicitly separates the name spaces. In this
way, external operators are isolated and leakage of data is prevented, because they are only
able to communicate with their children and parent operators.

The security manager is used to create a sandbox in which untrusted code is executed.
It controls the access to safety-critical system resources such as the file system, network

2JAR (Java ARchive) is a platform-independent file format that aggregates many files (compressed)
into one (like ZIP) and is supported by the Java runtime environment.

3.5 Architecture of the Runtime Security System 17

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Query 1

Query 3

Query 2

(e.g., Temporary Files and Network Sockets)

Access to Local Resources of the Cycle Provider

Classes of ObjectGlobe
Which are Accessible
by External Operators

(Name Space of the OG System)

(e.g., TmpFile)

Basic Query Operators

(Iterators) Supplied

by ObjectGlobe

ObjectGlobe

Runtime System

Interface to O
bjectG

lobe

Java Virtual Machine

Sandbox for Queries

System Class Loader

OGClassLoader

Access to Class Files in the CLASSPATH

Name Spaces for External Operators

Access to
Function Providers

via the
Internet

OGClassLoader

OGClassLoader

Figure 3.2: Protection of the Resources of Cycle Providers

sockets, peripherals, etc. Privileges can be granted to code based on its origin and whether
or not it is digitally signed. Of course, it would be unreasonable to grant unprotected access
to system resources to unknown code. Therefore, all user-defined operators are normally
executed in a “tight” sandbox. The sandbox, the name space separation, and the class
loaders are illustrated schematically in Figure 3.2.

Additionally, only selected classes of the name space of the ObjectGlobe system are
accessible to external operators. Access to other classes of the ObjectGlobe system is
prevented by the class loaders of external operators. Thus, vital components of the system
are protected. One of the classes available to operators is TmpFile. This class implements
a secure interface to the file system to enable operators to use temporary files. Figure 3.3
sketches the usage of temporary files by external operators.

Monitoring measures are necessary to avoid resource monopolization. We use our
own (platform-dependent) resource accounting library which supervises CPU and main
memory usage of external operators3, because Java does not offer such functionality. Ac-
counting of secondary memory and data volume produced by an operator is done using
pure Java. External operators must be endowed with (worst-case) cost models written
in MathML [CIMP03] for their CPU usage, consumption of main memory and secondary
memory, number of temporary files simultaneously in use, and the number and size of
tuples they produce. The last two cost models are necessary to prevent operators from

3Using our library, accounting results in overheads between 5% and 10%.

18 Security and Privacy Issues in Distributed and Open Systems

External Operators

Operators Supplied by ObjectGlobe

Temporary
Files

TmpFile TmpFile

Sandbox for Query

TmpFile

Figure 3.3: Extending Privileged Access Rights to User-Defined Operators

blocking the network and from flooding their parent operators. If an external operator is
not equipped with its own cost models, ObjectGlobe uses default cost models, which of
course might not be very appropriate.

Figure 3.4 illustrates the monitoring for an external operator with two children. In
order to keep track of resource consumption, every external operator is executed by a
separate thread and is disconnected from other operators using buffers, each managed by
a send/receive iterator pair. The resource consumption of operators is traced by several
collaborating components: an RMAccount object is used to store the current resource
consumption and limits thereof, cost models, and information about number and size of
tuples delivered to the operator. The ResourceMonitor is used to interact with our resource
monitoring library to periodically determine the CPU and main memory usage of the thread
running the external operator. The send operator above the external operator updates the
number and size of the tuples produced by the operator, while the receive operators beneath
the operator measure the number and maximal size of tuples and the total data volume
delivered to the operator. TmpFiles (not shown in the illustration) register themselves
at the corresponding RMAccount and permanently report their current sizes. Thus, an
RMAccount is able to track the number and overall size of the operator’s temporary files.

3.5 Architecture of the Runtime Security System 19

C
alculation of L

im
its

External Operator

Send
Receive

Send
Receive

Send
Receive RMAccount

CPU=nrT[0]*nrT[1]*50
Tuples=nrT[0]*nrT[1]
...

...

CPUUsage: 90/320
TuplesProd: 12/100

nrT[0], nrT[1]
maxTSize[0], ...
...

ResourceMonitor

Input0 Input1

Output

Figure 3.4: Architecture of the Resource Monitoring Component

Calculation

Violation

Yes

No

Yes

Yes

No

No

Termination

Read Estimated
Calculation Basis

From Plan

Resource Limits

Calculate Initial

Start

Wait Until Query

is Scheduled

Too High?

Limits

Run Query
Wait Until Query

Terminates or
Violates Limit

Status
End

Successful

End

Unsuccessful

Reject Query

Abort Query

Recalculate

Resource Limits

Violation
Limit

Changed?
Basis

Limit

Figure 3.5: Flow Chart of Supervised Plan Execution

20 Security and Privacy Issues in Distributed and Open Systems

Figure 3.5 illustrates the workflow which is executed when a user-defined operator is
executed. The optimizer annotates query plans with estimated values for the number and
size of the tuples that the different operators will produce. Using these values and the
cost models, a cycle provider is able to calculate the initial resource limits for an external
operator. If there is any limit violation, the monitoring component verifies if the limits have
to be adapted dynamically, i.e., if changes to the initial calculation basis of the cost models
has occurred. For example, if the optimizer estimated that the underlying operator will
produce 100 tuples but it has produced 110 tuples so far, the limits are adapted dynamically.
If the newly calculated resource requirements of the operator exceed the upper resource
limits set by the cycle provider, the plan is aborted. The plan is also aborted if the newly
calculated resource limits are still too low to satisfy the current resource demand of the
operator. Otherwise, the operator is allowed to resume until there is another limit violation
or the operator terminates normally.

3.6 Correctness Issues of the Runtime Security

System

As already mentioned, users of the ObjectGlobe system are interested in the privacy and
integrity of data processed during query execution. Cycle providers could always manip-
ulate the system in order to access or modify data without authorization, so users can
restrict the cycle providers used to execute a plan to a set of trusted cycle providers.

3.6.1 Integrity of Data

There are two different situations in which the integrity of data is endangered: during
the transport of data from data providers via cycle providers to the client and during the
processing of data by operators at cycle providers.

Data integrity during transportation is warranted by secure communication channels
using MACs. These channels can be used to construct a virtual private network, e.g., to
always protect data in the Intranet of an enterprise. Another possibility is that the user
annotates a plan to force application of MACs. This way, it is possible for both providers
and users to be concerned with data integrity.

Integrity of data during processing of data by built-in operators is no problem because
these operators are tested and work as expected. If arbitrary user-defined operators are
used, integrity of data becomes a concern because ObjectGlobe cannot guarantee that
these operators do not modify data unintentionally. Therefore, the user can specify a set of
trusted operators by specification of their names, signatures, and/or function providers. A
signature can, for example, confirm that an operator is tested by the OperatorCheck server
(see Section 3.7). This way the user can minimize the risk of using malicious operators.

3.6 Correctness Issues of the Runtime Security System 21

3.6.2 Privacy of Data

In ObjectGlobe, privacy of data means that data can only flow in a predefined way from
data providers to users. There must not be any holes where an attacker or a malicious
user-defined operator can leak the data, or a copy of it, and make it available to someone
else. Unlike data integrity, ObjectGlobe can guarantee privacy of data even in case of
the usage of arbitrary user-defined operators. To justify this statement, it is necessary to
analyze in detail how a query is processed in ObjectGlobe.

Query processing in ObjectGlobe is composed of three stages: generation of the query
plan (parse/lookup and optimization), distribution of the plan, and execution of the plan.
In order to ensure privacy it is necessary to provide security during these three steps.

3.6.2.1 Plan Generation

Guarantee 1 The plan generation stage provides a plan which cannot be modified without
notice and which can only be executed once.

A plan is generated by a user of the ObjectGlobe system using an SQL-like language.
Assuming the parser and optimizer are working correctly, the user receives an XML rep-
resentation of the plan. The user can verify the plan which later can be annotated with
authentication information for, e.g., wrappers (where required). Additionally, the plan is
signed using the user’s private key (or a password), assuring integrity of the plan in the
remaining query processing stages. To prevent reuse of (wire trapped) signed plans, every
plan has a unique ID assigned containing a time stamp among other things. A signed plan
can only be executed for a specified amount of time, e.g., for 60 minutes. Cycle providers
store the IDs of processed queries until they are outdated.

3.6.2.2 Plan Distribution

Guarantee 2 The plan distribution stage ensures that the query is instantiated as specified
in the plan.

Query plans are distributed in a straightforward way using the host annotations of the
operators in the plan. Every cycle provider loads the code of external operators with
a specialized ObjectGlobe class loader (OGClassLoader); the URL of the code is given
in the codeBase annotation. If the plan or the cycle provider requires that the code be
digitally signed, the OGClassLoader will check the signature of the code. Furthermore, all
communication paths (including the paths for sending the plan) are established by built-in
send and receive operators. If desired (i.e., specified in the annotations of the plan or
required by the cycle provider), an SSL (Secure Sockets Layer) connection is established.

By using SSL, ObjectGlobe achieves not only the privacy and integrity of the plan dur-
ing network communication, but also authenticates both communication partners of con-
nections, assuring that a plan is distributed to the correct cycle providers. Cycle providers
can authenticate function providers and check the digital signatures of operators to ensure
that they receive and instantiate the expected operators.

22 Security and Privacy Issues in Distributed and Open Systems

Send Iterator

Receive Iterator

Data Flow Between Operators and Function Providers

C
ycle Provider

C
lient

Function Provider

Data Flow Between Send/Receive Iterators

Data Flow by Method Calls

s

r r

ss

r

Operator

Figure 3.6: Overview of the Communication Channels During Plan Execution

3.6.2.3 Plan Execution

Privacy during plan execution is achieved by granting user-defined operators access only to
controlled communication channels. These channels are presented in Figure 3.6, showing
two queries running at several cycle providers (the client is a cycle provider, too). The
arrows indicate the direction of data flow. As explained above, there is always a pair
of built-in send/receive operators between host boundaries, which is created during plan
distribution. Local communication between operators belonging to the same query is done
by calling the open, next, and close methods from the succeeding operators.

Guarantee 3 During plan execution there are no other connections except those shown in
Figure 3.6.

The communication channels shown in the figure are provided by ObjectGlobe core func-
tionality. Other channels are prevented by the security system of ObjectGlobe. User-
defined operators cannot access arbitrary classes of the ObjectGlobe core system because
they reside in a different name space. Furthermore, user-defined operators are not able to
load classes into packages belonging to ObjectGlobe or the Java API preventing them from

3.6 Correctness Issues of the Runtime Security System 23

superseding classes or achieving widened access rights based on the fact that the classes
belong to the same package. Thus, user-defined classes can neither manipulate the classes
of Java and ObjectGlobe nor can they access arbitrary methods of the ObjectGlobe core
system.

User-defined operators have no direct access to local resources like network sockets
due to the security manager. Even network connections from OGClassLoaders to function
providers are not available during plan execution any more. The classes of user-defined
operators must be combined into a single JAR file. During query distribution, the Ob-
jectGlobe system requests the JAR file for the operator specified in the query plan. This
file is loaded and cached. Subsequent requests of a user-defined operator to dynamically
load classes are satisfied using the JAR file. If the requested class is not available there it
cannot be loaded at all. Thus, user-defined operators cannot abuse class loaders as cov-
ered channels by requesting classes (which are actually not needed and do not exist) with
information about the processed data coded into the class name. Altogether, user-defined
operators are prevented from sending data to other hosts, restricting communication to the
local host.

The security manager also prevents communication between operators belonging to
different queries, e.g., via a local network connection or a file. The remaining way of
communication between different queries is the use of method calls. In order to do so,
an operator needs a reference to another operator, but these references are retained by
ObjectGlobe. Therefore, operators could only communicate using static members (class
members) or static methods. But every query is instantiated by a separate OGClassLoader
instance, implicitly separating the name spaces of queries. Thus, if several queries are
using the same operator, there are several independent instances of a class residing in
different name spaces. As consequence there are several sets of static members, restricting
communication to operators of the same query.

There is one possible communication channel left, namely the only available access to
local resources: temporary files. Access to temporary files is controlled by ObjectGlobe.
When a user-defined operator claims a temporary file, ObjectGlobe generates a new empty
file. The implementation of file access in Java prevents reading of data that was previously
stored at the location of the new file (just as it prevents reading from uninitialized vari-
ables). Thereafter, the operator does not have direct access to the file but only to streams
to write into and read from this file. Since user-defined operators do not have direct access
to the local file system, only the operator which created such a file can access it.

Guarantee 4 The connections shown in Figure 3.6 create no risk for privacy.

Method calls can only be used to transport data within the same query. The implementa-
tion of send and receive operators ensures that user-defined operators can only call methods
which are uncritical. The network connection between these operators is established in the
query distribution stage and cannot be changed afterwards. This connection can be en-
crypted to ensure privacy during transportation of the data.

24 Security and Privacy Issues in Distributed and Open Systems

3.7 Quality Assurance for External Operators

Using the security measures presented so far, we are able to execute arbitrary external
operators without risk to cycle providers and privacy of data. Nevertheless, it would be
advantageous if the system could in advance verify the semantics of new external operators,
examine their behavior under heavy load, and compare their resource consumption with
given cost models. If an operator is well-behaved, ObjectGlobe could renounce security
measures and execute the code at full speed or it could relax the sandbox of an operator.
Several methods of software verification and testing have been developed so far (see [Mye79]
for an overview), but it has also been shown that in general the correctness of arbitrary
code cannot be proved [HH76].

3.7.1 Goal of Testing

Testing is a verification technique used to find bugs by executing a program. The testing
process consists of designing test cases, preparing test data, running the program with this
test data, and comparing the results to the correct results. An oracle is consulted for the
correct result of certain test data. This could be a human, a reference implementation,
or an interpreter of a (formal) specification of the program. While the design of good
test cases requires some ingenuity, test data can sometimes be derived automatically. For
automated testing, a test driver is necessary to feed test data to the function and to receive
and record the results.

Methods for deriving test cases can be divided into two classes—white-box and black-
box testing—depending on whether or not the source code is available. [Mye79] provides
a detailed description of the most important techniques. We are focusing on black-box
testing.

3.7.2 Methods of Formal Specification

As the correctness of a program depends on what it is specifically supposed to do, a com-
plete and consistent specification is necessary. If testing should be processed automatically,
a formal specification is required so that an interpreter can determine whether or not a
calculated result is correct. There are two classes of formal specifications: operational tech-
niques describe a way how the result can be calculated. Their advantage is that the correct
result can be determined in advance and compared to the result of the program. However,
they will not choose the most efficient way and hence are not a viable alternative to the
real program. In contrast to that, descriptive techniques specify what the result should
look like. Although the correct result cannot be calculated, the result of the program can
be checked against them. Moreover, they usually are even more concise than operational
specifications.

We have investigated several methods of formal specification, e.g., SQL, Haskell, Prolog,
and mathematical formulae. Table 3.1 shows these specification methods for the Skyline

3.7 Quality Assurance for External Operators 25

operator. For our purpose, the best choice is to use a purely functional language like
Haskell [Bir98] because coding is quite straight-forward and efficient.

Especially in the database context, not only is the correctness of the result important
but also the efficiency of its computation. Therefore, the specification of an external
operator is augmented with several cost models. For each supervised resource the user can
specify a worst-case cost model, which is a function of the extent of the input relations,
namely their number of tuples, their maximum tuple size, and their total data size. If any
resource is overconsumed, the operator is considered faulty and aborted immediately in a
real application. Nevertheless, the cost models chosen should not be too generous, because
then a cycle provider might refuse to instantiate the operator.

3.7.3 User-Directed Test Data Generation

As stated before, the design of good test cases requires some ingenuity. Thus, in our im-
plementation, it is possible to direct the generation of test data so that they fulfill the
preconditions of operators as well as meet the testers’ strategies. Testers may want to
specify single attribute values, enforce functional dependencies between attributes, estab-
lish relationships between relations, and control the order of the tuples. Therefore, the
generation is done in three steps. First, the relation is created and the attribute types and
number of tuples are specified. Second, all attribute rows are filled by random values or by
referencing other relations. Third, the relation can be sorted or permuted some other way.

Possible domains for attributes are Boolean, Integer, Real, and String. Boolean values
are true and false. Integers are taken from a set {min, . . . , max}, Reals from an interval
[min,max]. For Strings, only the minimal and maximal string lengths are defined. The
tester may also specify a set {x1, . . . , xn} from which the attribute values are drawn. Null
values are not supported yet, because Haskell cannot deal with them.

For a single attribute column the values can be generated randomly or deterministically.
The latter means that the values are taken one after the other in increasing order. If there
are more tuples than different values, the procedure is started cyclically again. Random
values can be taken uniformly from their possible values. In order to simulate functional de-
pendencies and primary keys, it is important that unique values can be generated. [DeW93]
presents an algorithm that produces random numbers with this property. For Real values,
other distributions are possible such as normal distribution or exponential distribution.
Foreign key relationships can also be simulated. For 1:1 relationships, the attributes of the
other relation can be copied one after the other or be referenced unique-randomly. For 1:N
relationships, a uniform random reference should be applied. Occasionally the order of the
tuples matters. Thus, the relation can be sorted by the values of an attribute. Moreover, a
shuffle operation has been implemented that permutes the tuples of a relation. This is use-
ful to create a slight disorder. A factor between 0.0 (identity) and 1.0 (completely random
shuffle) describes how far a tuple can move relative to the cardinality of the relation.

26 Security and Privacy Issues in Distributed and Open Systems

Skyline (S,�) Explanation

Fo
rm

ul
a

{s | s∈S ∧ ¬∃t∈S : t �= s ∧ t � s} This formula can be derived directly from
the definition: “The Skyline of a set S con-
sists of all tuples s that are in S and for
which no tuple t exists in S that is differ-
ent from s and dominates s.”

C
on

di
ti

on
s

Pre ≡ true
Post ≡ ∀s∈Skyline(S) :

(s∈S ∧ ¬∃t∈S : t �= s ∧ t � s)
∧ ∀s∈S \ Skyline(S) :
(∃t∈S : t �= s ∧ t � s)

There is no precondition, i.e., the opera-
tor can be applied to any set on which a
partial ordering relation is defined.
The postcondition describes which tuples
may be in the Skyline (cf. the formula
above) and which must not be left out,
defining exactly the result.

SQ
L

SELECT *
FROM S s
WHERE NOT EXISTS (
SELECT * FROM S t
WHERE t�=s AND t�s);

This is the naive approach to calculate the
Skyline. Each tuple is compared to every
other and is only selected if it is not dom-
inated by any other tuple. �= and � must
be adapted to the specific scenario.

P
ro

lo
g

skyline(S,R) :- skyline’(S,S,R).
skyline’([],T,[]).
skyline’([X|S],T,R) :-
dominated(X,T),
skyline’(S,T,R).

skyline’([X|S],T,[X|R]) :-
not(dominated(X,T)),
skyline’(S,T,R).

dominated(X,[Y|T]) :-
dominance(Y,X).

dominated(X,[Y|T]) :-
dominated(X,T).

dominance(Y,X) :- Y�=X, Y�X.

The Skyline of a list S is R, if the result
of a function skyline’ that filters S with
itself, i.e., compares each tuple with each
tuple and deletes dominated tuples, is also
R. If the empty list [] is filtered, the re-
sult is also empty.
Now consider a list that contains at least
one element X. If X is dominated by any
tuple of the filter T , the result consists
only of the rest of the list still to be fil-
tered by T . Otherwise, X is taken over
into the result.
X is dominated by a non-empty list if it is
dominated by the first element or by the
rest. If the list is empty, X is not con-
sidered dominated (closed world assump-
tion).

H
as

ke
ll

skyline :: [α] → [α]
skyline ss = skyline’ ss ss
skyline’ [] ts = []
skyline’ (s:ss) ts =
if dominated s ts

then skyline’ ss ts
else s:skyline’ ss ts

dominated s [] = False
dominated s (t:ts) =
dominance t s || dominated s ts

dominance t s = (t�=s && t�s)

skyline is a function that takes a list of
elements of some type α and returns a list
of elements of the same type.
Like in Prolog, the Skyline of a list ss is
the result of a function skyline’ that fil-
ters ss with itself.
Again, there is a distinction between the
empty list [] and a list containing at least
one element. This element is only taken
over into the result if it is not dominated
by any element of the filter ts.

Table 3.1: Specification Methods for Database Operators (Skyline)

3.7 Quality Assurance for External Operators 27

Save

Test Operator

Load

Test Data Generation

Validation Server

− Digitally Signed Test Results

O
bjectG

lobe Q
uery E

ngine

Analysis of Results

Program Generation / Plan Generation

Generating Signature for Test Results

− JAR−Archive Containing External Operator
− Executable Formal Specification
− Cost Models
− Description of Test Data

Oracle (Haskell Interpreter)
Consultation of the Oracle / Query Execution

Test Data
Data
Test

Figure 3.7: Architecture of the Operator Check Server

3.7.4 The OperatorCheck Server

We have implemented a server that checks external operators in ObjectGlobe by performing
some tests on them. This server can be used by developers during development to test the
implementation of operators. Additionally, trustworthy independent associations can use
the server to check external operators and to generate digitally signed test reports.

Figure 3.7 shows the architecture of the server. The tester provides a JAR archive
containing the external operator to be tested, a formal specification of the operator in
Haskell (for a correctness test) or cost models (for a benchmark test), and some directives
on how the test data should look like. For a correctness test, the server generates test
data based on the directives and stores them on the hard disk. A Haskell program is built
from the formal specification and the ObjectGlobe query execution plan is assembled. Now
the test is performed: the Haskell interpreter and the ObjectGlobe system calculate their
results. Afterwards, the results are loaded and compared, and the user receives the results
of the test. For comparison, the semantics of the result must be taken into account. If the
resulting relation is a list, the order of the tuples, as well as their count, is important. A
multiset is a set where an element may occur several times. The order of the elements,
however, is arbitrary. In a set, neither order nor count of elements matters.

It is also possible to perform a reference test . Instead of providing a Haskell specifica-
tion, the user can also provide an ObjectGlobe query execution plan or an operator that
serves as the oracle. The testing process works in an analogous way.

In a benchmark test no oracle is consulted, but the test operator is executed several
times using different sizes of input data. Instead of a formal specification, the user provides
cost models for several resources. The consumption of these resources is measured and

28 Security and Privacy Issues in Distributed and Open Systems

compared to the cost models. The test result shows the resources actually consumed and
the maximum consumption allowed by the cost models. Using large input sizes, a stress
test can be carried out that examines the behavior of the operator under heavy load and
checks whether its performance degenerates or is still in accordance with the cost models.

3.7.5 Limitations of Testing

E. W. Dijkstra noted that “program testing can be used to show the presence of bugs, but
never to show their absence” [DDH72]. Nevertheless, testing provides a practicable and
promising way to find bugs in a piece of code, thus improving confidence in it. Several
sophisticated methods of deriving “good” test cases have been developed. Under the hy-
pothesis that the tested program behaves the same way for all test data of an equivalence
class, the correctness can even be guaranteed by successful tests with one representative of
each class. Malicious operators, however, intentionally destroy the uniformity hypothesis.
This can only be detected by a white-box test which inspects the source code. Therefore,
it is still necessary to take further measures for absolute security.

3.8 Usage Scenarios and their Security Implications

As we have seen, ObjectGlobe offers a very powerful security system which can easily
be adapted to different scenarios. Thus, the amount of work to be done by the security
system can be kept as small as possible depending on the hostility of the environment.
The applications of an ObjectGlobe system can, e.g., be distinguished according to the
openness of the underlying network. In the following sections we describe three different
scenarios with varying levels of openness and the resulting security requirements.

3.8.1 Intranet

An Intranet is a controlled network within an organization and therefore access is restricted
to a limited group of authorized users, i.e., the employees of the company. ObjectGlobe’s
cycle, data, and function providers are located within the Intranet and all query operators
are implemented by employees of the company or obtained from trustworthy third party
suppliers. Therefore, it is not necessary to monitor the resource consumption of these
operators and they can be executed in privileged mode, e.g., these operators are granted
privileges to access the disk or establish network connections if necessary. To avoid that
operators are manipulated, they should be digitally signed (authenticated) by a responsible
security administrator of the ObjectGlobe system. Execution can then be restricted to
these digitally signed operators. If there is a need for secure communication (e.g., if there
are outposts), ObjectGlobe can establish secure communication channels itself or it can
rely on underlying network layers (e.g., hard- or software transparently enabling a virtual
private network).

3.9 Related Work 29

3.8.2 Extranet

An Extranet is a network that is used by different companies, e.g., by a company and
its suppliers, forming a virtual enterprise. An important example of an Extranet is an
electronic marketplace. There are many different scenarios in which virtual marketplaces
can be run, but we assume in this example that the core cycle and function providers of
the marketplace are operated by a trusted third party which is also responsible for the
digitally signing of external operators. Within the Extranet these authenticated operators
can be executed with additional privileges. Every participant of the marketplace operates
at least one data provider to supply its product catalog and offers operators to access it,
but it can operate additional cycle providers, too. The task of such cycle providers could be
to execute external operators developed by the participants themselves, either because the
marketplace does not trust the operators or because the participants do not want others to
execute their operators to prevent, e.g., decompilation of the operators. As in the Intranet
scenario there are several built-in possibilities to achieve secure communication.

3.8.3 Internet

The (global) Internet is the most challenging environment and it requires the full featured
security system of ObjectGlobe. As mentioned in Section 3.2, protecting the sensitive
resources of cycle providers is necessary because external operators could contain hostile
code. There are many external operators which are not signed or which are signed by
unknown third parties and, thus, cannot be trusted. With its effective security system,
ObjectGlobe is able to execute such operators in a restricted sandbox, thereby guaranteeing
security and availability of the system. Furthermore cycle providers are protected against
denial of service attacks by the resource monitoring component of ObjectGlobe.

3.9 Related Work

There are a lot of extensible database systems allowing the implementation of user-defined
functions as predicates or general functions/operators in C, C++, or Java. Examples
for such systems include Postgres [SR86], Iris [WLH90], Starburst [HCL+90], and our
distributed system of autonomous objects called AutO [KSKK99], but there are also several
commercially available systems like Informix, Oracle, and DB2. The AutO system was also
developed at the University of Passau and we adopted some fundamental results from the
security system of AutO for ObjectGlobe. The systems mentioned above are all more or
less exposed to the same security risks as ObjectGlobe, even if they do not load untrusted
code dynamically from function providers like ObjectGlobe does. The security measures
of most systems are not appropriate to guard the database system against attacks by
such code. Thus, only administrators are allowed to augment the functionality and they
must take care that the extensions are well-behaved and non-malicious. For example, DB2
implements the SQL99 standard for user-defined functions and provides the possibility to
specify a function as FENCED to execute it in its own process. In this way, the internal

30 Security and Privacy Issues in Distributed and Open Systems

structures of the database system are protected, but denial of service attacks are still
possible. Recently, with the development of Java as a secure programming language, some
new considerations have been taken into account. [GMSvE98] have compared the efficiency
of several designs using the Predator database server: the naive approach of putting user-
defined functions directly into the server process, running them in a separate process and
communicating with the server process via shared memory, and accessing Java user-defined
functions via the Java Native Interface (JNI). Their conclusion is that Java is a bit slower
on average while being a viable and secure alternative, although it still faces the problem
of denial of service attacks. [CMSvE98] recommend to use a resource accounting system
like JRes to guard against denial of service attacks, bill users, and obtain feedback that
can be used for adaptive query optimization. To neutralize resource-unstable functions,
they restrict CPU usage, number of threads, and memory usage to a fixed limit which is
not appropriate for complex operators.

Beside database systems, there are, e.g., Java operating systems which must ensure
security because enforcing resource limits has been a responsibility of operating systems
for a long time. Another task of operating systems is to separate applications to avoid
interference. Using our security system, a Java operating system could limit the amount
of damage that a compromised application could do to the system and other applications
on the system as described in [DC01]. This paper proposes the usage of Trusted Linux as
secure platform for e-services application hosting because it adequately protects the host
platform as well as other applications if an application is attacked and compromised.

The OperatorCheck approach is used to validate the semantics and to analyze the qual-
ity of operators. Thus, the quality of service of validated operators is higher than that of
untested operators. This leads to a more reliable query execution, continuously available
cycle providers, and better result quality. A more detailed motivation for the importance of
these aspects can be found in [Wei01]. Obviously, for upcoming service platforms like the
Sun ONE framework [Sunb], IBM WebSphere [IBMb], and Microsoft .NET [NET], those
quality considerations will also play a very important role.

3.10 Conclusions

We presented an effective security framework for distributed and open systems and used
ObjectGlobe as an example. We focused on security requirements of cycle providers and
users. The security requirements of users are satisfied by the OperatorCheck server which
is used to rate the quality of external operators and test their semantics. Privacy of data
is guaranteed by isolating external operators and by using secure communication channels.
Cycle providers are protected using a monitoring component which tracks resource con-
sumption of external operators to prevent them from resource monopolization and an ad-
mission control system to guard providers against overload situations. A security manager
and class loaders are used to protect cycle providers from unauthorized resource accesses
and to shield the ObjectGlobe system from external operators. Additionally, we presented

3.10 Conclusions 31

the authentication framework of ObjectGlobe which can be used by cycle providers to
determine the identity of users in a reliable way.

The security system can easily be adapted to other applications, e.g., Web application
servers using server-side Java components such as Servlets, Java Server Pages, or Enterprise
Java Beans to generate dynamic Web content. Nowadays it is common, to outsource one’s
own Web server to specialized suppliers. Using our security system, suppliers of such
services can set resource limits to, e.g., Java Server Pages. Of course, there are some
necessary adaptions to the security system. For example, server-side components usually
do not have real cost models. In most of these cases, however, it is sufficient to use fixed
resource limits. Additionally, the resource monitoring component can be used to establish
a “per-resource” instead of, for example, a flat-rate tariff structure.

32 Security and Privacy Issues in Distributed and Open Systems

Chapter 4

ServiceGlobe - A Distributed and
Open Web Service Platform

Web services are a new technology for the development of distributed applications on the
Internet. By a Web service (also called service or e-service), we understand an autonomous
software component that is uniquely identified by a URI and that can be accessed by
using XML and standard Internet protocols like SOAP or HTTP [RV02]. Web services are
running within Web service platforms, also called service oriented architectures (SOAs).
A service may combine several applications that a user needs such as the different pieces
of a supply chain architecture. For a client, however, the entire infrastructure will appear
as a single application. Due to its potential of changing the Internet to a platform of
application collaboration and integration, Web service technology gains more and more
attention in research and industry; products like IBM WebSphere, Microsoft .NET, or
Sun ONE show this development. All these frameworks implement–respectively use–Web
service standards published by the World Wide Web Consortium (W3C) or other consortia,
e.g., SOAP, WSDL, and UDDI.

Parts of this chapter have already been presented in [KSK03a, KSK03b, KSK02]. A
demo of the ServiceGlobe system was given at the VLDB’02 conference [KSSK02].

This chapter is organized as follows: In Section 4.1 we give a short introduction to
Web service standards that are important for our work. In Section 4.2, we present the
architecture of our Web service platform ServiceGlobe. ServiceGlobe’s load balancing and
service replication framework is presented in Section 4.3. Finally, Section 4.4 presents
related work.

4.1 Web Services Fundamentals

There are several XML-based standards in the area of Web services. We will give a brief
survey of the most important standards needed to understand this work.

34 ServiceGlobe - A Distributed and Open Web Service Platform

bindingTemplate
WSDL Document

businessEntity

tModel
businessService

Figure 4.1: UDDI Data Structures

4.1.1 Web Service Registry UDDI

UDDI (Universal Description, Discovery and Integration) is designed to “provide a
platform-independent way of describing services, discovering businesses, and integrating
business services using the Internet” [UDD00]. Four main data structures can be identified
which set-up the basic schema, as shown in Figure 4.1: businessEntity, businessService,
bindingTemplate, and tModel . While the first three data structures form a hierarchy, the
tModel can be seen as an independent structure providing concepts, ideas, and technical
fingerprints of services.

• businessEntity: This data structure gathers information about an entire company
or party which offers a family of services. For example, a dealer can register its
company name, address information, and contact persons. The concept of categories
allows for the classification of businesses in several dimensions, e.g., industry codes
or geographic locations. User-defined dimensions are also possible. Normally a busi-
nessEntity registers several services.

• businessService: This structure contains information about a particular service
offered by a businessEntity. For example, a dealer may have product information
and selling services. It also contains one or more bindingTemplates specifying binding
information for this service.

• bindingTemplate: The most important component of this structure is the access
point of a service, i.e., the actual URL, phone number, etc., by which a service can
be invoked. In ServiceGlobe each service host, i.e., host connected to the Internet
which is running the ServiceGlobe runtime engine, is specified by a bindingTemplate
with its URL as an access point. A bindingTemplate may have several references to
tModels.

• tModel: tModels describe as a technical fingerprint various concepts and classifica-
tions. In ServiceGlobe, for example, tModels are used as functionality descriptions
for services, like retailing or service hosting. The tModel may contain a link to a
WSDL document (see Section 4.1.3) which specifies the signature of the service in de-

4.1 Web Services Fundamentals 35

<Envelope encodingStyle="...">

<Header>

<!-- the header is optional -->

</Header>

<Body>

<!-- serialized object data -->

</Body>

</Envelope>

Figure 4.2: Basic Structure of a SOAP Message

tail [CER02]. Besides these service-classification-oriented tModels, concept-oriented
tModels like geographical locations or industry codes are possible as well.

Invoking a service requires knowledge of the signature and the access point of the service.
The signature of the service provides the structure of the SOAP documents to communicate
with the service (input parameters, output parameters, data types). This signature is
defined in the WSDL document referenced by the tModel of the service. The access point,
which is stored in the bindingTemplate structure, references an actual implementation of
a service.

4.1.2 Communication Protocol SOAP

SOAP (Simple Object Access Protocol) [BEK+00, Mit03] is an XML-based communication
protocol for distributed applications. SOAP is designed to exchange messages containing
structured and typed data and can be used on top of several different transfer protocols
like HTTP (Hypertext Transfer Protocol), SMTP (Simple Mail Transfer Protocol), and
FTP (File Transfer Protocol). The usage of SOAP over HTTP is the default in the current
landscape of Web services. SOAP itself does not define any application semantics and
therefore can be used in a broad range of applications. It can be used to simply deliver a
single message or for more complex tasks like request/response message exchange or even
RPC (Remote Procedure Call).

Figure 4.2 shows the basic structure of a SOAP message consisting of three parts: an
envelope, an optional header, and a mandatory body. The root element of a SOAP message
is an Envelope element containing an optional Header element for SOAP extensions and a
Body element for the payload. The Header element of a message offers a generic mechanism
for extending the SOAP protocol in a decentralized manner. This is used for extensions
like Web Service Security [ADLH+02].

SOAP offers a standard encoding style1, i.e., serialization mechanism, to convert ar-
bitrary graphs of objects to an XML-based representation, but user-defined serialization
schemes can be used as well.

1This standard serialization can be referenced by the URL http://schemas.xmlsoap.org/soap/
encoding/.

36 ServiceGlobe - A Distributed and Open Web Service Platform

4.1.3 Web Service Description Language WSDL

WSDL (Web Service Description Language) [CCMW01] is an XML-based language for
describing the technical specifications of a Web service. In particular it describes the op-
erations offered by a Web service, the syntax of the input and output documents, and the
communication protocol to use for communication with the service. The exact structure
of a WSDL document is complex and beyond the scope of this work, but we will give a
brief overview of the WSDL standard. At first, a service in WSDL is described on an
abstract level and then bound to a specific protocol, network address (normally a URL),
and message format. On the abstract level, port types are defined. A port type is a set
of operations. Every operation is associated with a number of input and output messages,
defining the order and type of the messages sent to/received from the operation. There
are four message exchange patterns defined within the WSDL specification: one-way, re-
quest/response, solicit/response, and notification. The messages themselves are assembled
from several typed parts. The types are defined using XML Schema [Fal01].

On the non-abstract level, port types are bound to concrete communication protocols
and concrete formats of the messages using so-called bindings . Messages are serialized
according to a set of rules defined by an encoding style. At last, a service in WSDL is
defined as a set of ports, i.e., bindings with associated network addresses (normally URLs).

4.2 Architecture of ServiceGlobe

The ServiceGlobe system is a distributed and open service platform. It is fully imple-
mented in Java Release 2 and is based on standards like XML, SOAP, UDDI, and WSDL.
Additionally, the system supports mobile code, i.e., services can be distributed and in-
stantiated on demand during runtime at arbitrary Internet servers participating in the
ServiceGlobe federation. Of course, ServiceGlobe offers all the standard functionality of
a service platform like SOAP communication and a transaction system. These areas are
well covered by existing technologies and are therefore not the focus of this work. In this
section, we present the basic components of the ServiceGlobe infrastructure. First of all,
we distinguish between external and internal services (see Figure 4.3).

External services are services currently deployed on the Internet which are not provided
by ServiceGlobe itself. Such services are stationary, i.e., running only on a dedicated host,
are realized on arbitrary systems on the Internet, and have arbitrary interfaces for their
invocation. If they do not provide an appropriate SOAP interface, we use adaptors to
transpose internal requests to the external interface (and vice versa), to be able to integrate
these services independent of their actual invocation interface, e.g., RPC. This way we are
also able to access arbitrary applications, e.g., ERP applications. Thus, external services
can be used like internal services.

Internal services are native ServiceGlobe services implemented in Java. They are using
the service API provided by the ServiceGlobe system. ServiceGlobe services use SOAP to
communicate with each other. Services receive a single XML document as input and gen-

4.2 Architecture of ServiceGlobe 37

Classification by
Classifications

Orthogonal
Mobility

C
la

ss
if

ic
at

io
n

by
C

om
po

si
tio

n
L

ev
el

����

����

����

���� ������

������(location−independent)

Si
m

pl
e

Se
rv

ic
e

Static Service

A
da

pt
or

(location−dependent)

Internal Service

C
om

po
si

te
 S

er
vi

ce

Dynamic Service

External Service

Figure 4.3: Classification of Services

erate a single XML document as a result. There are two kinds of internal services, namely
dynamic services and static services. Static services are location-dependent , i.e., they can-
not be executed dynamically on arbitrary ServiceGlobe servers because they, for example,
require access to certain local resources like a DBMS. In contrast, dynamic services are
location-independent . They are state-less, i.e., the internal state of such a service is dis-
carded after a request was processed, and do not require special resources or permissions.
Therefore, they can be executed on arbitrary ServiceGlobe servers.

There is an orthogonal categorization for internal services: adaptors, simple services,
and composite services. We have already defined adaptors. Simple services are internal
services not using any other service. Composite services are higher-value services assem-
bled from other internal services. These services are, in this context, called basis services
because the composite service is based on them. A composite service can also be used
as a basis service for another higher-value composite service. Of course it is feasible to
use a specialized programming language, e.g., XL [FK01], or a GUI-based tool to draw a
representation (similar to a workflow graph) of a composite service, but that is not the
focus of our work.

Internal services are executed on service hosts, i.e., hosts connected to the Internet
which are running the ServiceGlobe runtime engine. ServiceGlobe’s internal services are
mobile code. Therefore, their executables can be loaded on demand from code repositories
into a service host’s runtime engine (this feature is called runtime service loading). A UDDI
server is used to find an appropriate code repository storing a certain service. Thus, the set
of available services is not fixed and can be extended at runtime by everyone participating

38 ServiceGlobe - A Distributed and Open Web Service Platform

in the ServiceGlobe federation. If internal services have the appropriate permissions, they
can also use resources of service hosts, e.g., databases. These permissions are part of
the security system of ServiceGlobe, which is based on the security system described in
Chapter 3. The permissions are managed autonomously by the administrators of the service
hosts. This security system also deals with the security issues of mobile code introduced
by runtime service loading. Thus, service hosts are protected against malicious services.

Runtime service loading allows service distribution of dynamic services to arbitrary
service hosts, opening optimization potential: several instances of a dynamic service can
be executed on different hosts for load balancing and parallelization purposes. Dynamic
services can be instantiated on service hosts having the optimal execution environment, e.g.,
a fast processor, large memory, or a high-speed network connection to other services. Of
course, this feature also contributes to reliable service execution because unavailable service
hosts can be replaced dynamically by available service hosts. Together with runtime service
loading this provides the flexibility needed for load balancing or optimization issues.

[KSK03a] describes a sophisticated technique called dynamic service selection which is
now an integral part of ServiceGlobe. It provides a layer of abstraction for service invocation
offering Web services the possibility of selecting and invoking Web services at runtime based
on a technical specification of the desired service. The selection can be influenced by using
different types of constraints. [KK04b, KK04a, KSKK03] present a context framework
that facilitates the development and deployment of context-aware adaptable Web services
in ServiceGlobe.

4.3 Basic Load Balancing and Service Replication

Framework

For large-scale, mission-critical applications such as an enterprise resource planning system
like SAP with thousands of users working concurrently, a single service host is not sufficient
to provide low response times. Even worse, if there are any problems with the service or the
service host, the service will be completely unavailable. Such downtime can generate high
costs even if a service host is only down for some minutes. Therefore, it is necessary to run
several instances of a service on multiple service hosts for fault tolerance reasons. Moreover,
a load balancing component is needed to avoid load skew. A server blade architecture (see
Section 6.1) is very beneficial for this purpose because scale-out of computing power can
be done on demand by adding additional server blades. Of course, a traditional cluster
of service hosts connected by a LAN can be used as well but with higher total cost of
ownership (TCO) and normally slower network connections.

Since it is very expensive and error-prone to integrate the functionality for the coopera-
tion of the service instances directly into every new service, we propose a generic solution to
this problem: a modular dispatcher service which can act as a proxy for arbitrary services.
Using this dispatcher service it is possible to enhance many existing services or develop
new services with load balancing and high availability features without having to consider

4.3 Basic Load Balancing and Service Replication Framework 39

these features during their development. All kinds of services are supported as long as
concurrency control mechanisms are used, e.g., by using a database as back-end (as many
real-world services do). The concurrency control mechanisms ensure a consistent view and
consistent modifications of the data shared between all service instances. Of course, if there
is no data sharing between different instances of a service, the dispatcher can be used as
well. An additional feature of our dispatcher is called automatic service replication and it
enables the dispatcher to install new instances of static services on demand.

4.3.1 Architecture of the Dispatcher

Our dispatcher is a software-based layer-7 switch2. Such switches perform load balancing
(or load sharing) using several servers on the back-end with identically mirrored content.
They use a dispatching strategy like round robin or more complex strategies which are
using load information about the back-end servers. Our solution is a pure software solution
and—in contrast to existing layer-7 switches—is realized as a regular service. Thus, our
dispatcher is more flexible, extensible, and seamlessly integrated into the platform.

Figure 4.4 shows our dispatcher monitoring three service hosts which are running two in-
stances of service S (both connected to the same DBMS). The database server is monitored
as well, using a stand-alone monitoring application. Using information from monitoring
services and monitoring applications, the dispatcher generates the dispatcher’s local view
of the load situation of the service hosts. Upon receiving a message (in this case for ser-
vice S), the dispatcher looks for the service instance running on the least loaded service
host and forwards the message to it. As already mentioned, our dispatcher is modular, as
shown in Figure 4.5. There are four types of modules:

• Operation Switch Module: This module controls the operation mode of the dis-
patcher on a per-service level. In our implementation, the standard operation mode
is forward . Other modes are buffer or reject . The latter two modes are set to pre-
vent the more expensive execution of the dispatch module when there are no suitable
service hosts.

• Dispatch Module: This module implements the actual dispatching strategy. It can
access the load situation of service hosts and of other resources for the assignment
of requests to service instances. Possible results of a dispatch strategy are an assign-
ment of a request to a service instance, a command to initiate a service replication
(see below), a reject command, or a buffer command. We implemented a strategy
which assigns requests to the service instance on the least loaded service host based
on the CPU load. We additionally implemented a more sophisticated strategy which
handles the load of CPU and main memory on different types of resources (e.g., ser-
vice hosts and database management systems) needed for the execution of a service.
This strategy prevents overload situations not only on service hosts but also on other
resources like DBMSs.

2This kind of switch is also used in the context of Web servers [CCCY02].

40 ServiceGlobe - A Distributed and Open Web Service Platform

D

C

Delivery

Operation
Mode

BufferReject

A

C

Database Server
Monitoring Service

JDBC

Service S

Service Instance Selection

Service SA

Dispatcher (for S)

Forwarded Message

Service S

Result Message

Load Situation

Message for

}Service Host

Internet Server
ServiceGlobe Runtime Engine

Internet Server

Monitoring App.

DBMS

Forward

B

B D

Figure 4.4: Survey of the Load Balancing System

Modules
Advisor

Modules
Config

Modules
Advisor

Config
Modules

Buffer

Operation Mode

Load Situation

Dispatcher

C

Load Situation

A

Archive

Reject Forward

B

Module

Dispatch

Operation

Module

Switch

Modules

Modules

Advisor

Config

D

Figure 4.5: Dispatcher’s Architecture

4.3 Basic Load Balancing and Service Replication Framework 41

• Advisor Modules: Advisor modules are used to collect data for the dispatcher’s
view of the load situation of all relevant resources. We implemented advisor modules
to measure the average CPU and memory load on service hosts (using the monitoring
services) and on hosts running database management systems (using the monitoring
applications). There are lots of different reasonable advisor modules. The simplest
kind of advisor module only knows two conditions of a resource: available or unavail-
able. For service hosts, this could be achieved by a simple ping on the host running
the ServiceGlobe system. More complex advisors can provide more detailed infor-
mation like CPU or main memory load of a service host, or the load of a database
management system depending on CPU, memory, disc I/O, and others.

• Config Modules: The configuration modules are used to generate the configuration
for new service instances (see Section 4.3.3). The modules can access the load situa-
tion archive which stores aggregated historic load information. This is very beneficial
if there are, e.g., several instances of a database system working on replicated data.
Using historic load information, a new service instance can be advised to connect to
the instance of the DBMS which had the lowest average load in the past.

To turn an existing service into a highly available and load balanced one, a properly con-
figured dispatcher service must be started. Additionally, the dispatcher must be registered
at the UDDI repository. Already existing UDDI entries of the service instances and service
hosts have to be modified so that all service instances and all service hosts can be found by
the dispatcher. After that the service instances are no longer contacted directly, but are
accessible via the dispatcher service controlling the forwarding of the messages. A cluster
of service hosts can easily be supplemented with new service hosts. The administrators of
these service hosts only have to install the ServiceGlobe system and register them at the
UDDI repository using the appropriate tModel, e.g., ServiceHostClusterZ, indicating that
these service hosts are members of cluster Z. The dispatcher will automatically use these
service hosts as soon as it notices the changes to the UDDI repository.

4.3.2 Load Measurement

The dispatcher’s view of the load situation is updated at intervals of several seconds to
prevent overloading the network. Thus, this view is constant between two updates. There-
fore, a service host SH will still be considered to have low load even if several requests
have been assigned to it after the last load update. Without precautions the dispatcher
might overload SH for this reason. To avoid these overload situations, the dispatcher adds
“penalties” to its view of the load once a request is assigned. Figure 4.6 illustrates the
load of SH, the load reported to the dispatcher (load without penalties), and the load with
penalties.

The grey, thick line represents the load LSH(t) of the service host SH. The dashed line
represents the dispatcher’s view D′

SH(t) of the load of SH, which is the average load of SH
over the last update interval of length Iu. This average load is calculated by SH and sent

42 ServiceGlobe - A Distributed and Open Web Service Platform

d :7

Interval 4

7

Interval 5
Time

Request Arrives at
Service Host SH

Real Load on the Service Host SH

Dispatcher’s View (Avg. Real Load; with Penalty)

Dispatcher’s View (Avg. Real Load; w/o Penalty)

0%

50%

Pe
na

lty

Aged Penalty

to Service Host SH

t

R

Load

Average Load Situation of Service Host SH is Reported to the Dispatcher

Request is Assigned

Iu

Figure 4.6: Different Views of the Load Situation during Request Dispatching

to the dispatcher at regular intervals. The function int(t) calculates the number of the
interval containing a given time t:

int(t) :=
t /Iu�

The dispatcher’s view can now be written as follows:

D′
SH(t) := avg

{
LSH(t′)

∣∣ int(t′) = int(t) − 1
}

The black, solid line shown in Figure 4.6 represents the dispatcher’s view including penalties
DSH(t). The initial (maximum) value of a penalty (represented by Pm

SH,S in the equations)
depends on the service S and the performance of the service host SH and is configurable.
This way, every assignment of a request Ri, i.e., every dispatch operation (represented by
di, i ∈ N; d7 in the figure), has an immediate effect on the dispatcher’s view of the load
situation. If there is a load update from SH shortly after an assignment of a request Ri

but before SH started to process Ri, the associated penalty is lost if the dispatcher replaces
its view with the reported load. This is due to the fact that the load does not yet include
the load caused by Ri. Thus, the load reported by the load monitors and the dispatcher’s
view of the load situation are remerged using aging penalties: the penalties decrease over
time and are added to further load values reported by the service host until the values
of penalties reach zero. The time Ip until a penalty is zero is configurable and normally
shorter than shown in the picture, e.g., twice the time a request Ri needs to arrive at
SH plus the time SH needs to start processing Ri. After Ip, we assume that a request Ri

arrived at SH and that the load caused by Ri is already included in the reported load so that
there is no need for the dispatcher to add penalties for Ri any longer. Using our notation

4.3 Basic Load Balancing and Service Replication Framework 43

and defining time(di) to indicate the time of the assignment di, host(di) to indicate the
destination host of the assignment di, and service(di) to indicate the destination service
of the assignment di, the view with penalties DSH(t) can be calculated as follows: the
penalty Pdi

for the assignment di is zero before the assignment. After Ip, it is zero again.
In between this interval the penalty is calculated using a linear function fdi

(t) with the
following constraints: fdi

(0) = Pm
host(di),service(di)

and fdi
(Ip) = 0.

Pdi
(t) :=

{
0 if t < time(di) ∨ t > time(di) + Ip

fdi
(t − time(di)) else

When receiving load updates from the service host SH, i.e., t = x ∗ Iu for x ∈ N, the
load including penalties is calculated by adding all aged penalties of assignments to SH to
the reported value:

AssSH :=
{
a ∈ N

∣∣ host(da) = SH
}

DSH(t) := D′
SH(t) +

∑
i∈AssSH

Pdi
(t) if ∃x ∈ N : t = x ∗ Iu

Within an update interval, penalties of new assignments to SH, i.e., assignments done
within the current update interval, are added to this load as soon as they occur:

NewAssSH(t) :=
{
a ∈ AssSH

∣∣ int(time(da)) = int(t) ∧ t > time(da)
}

DSH(t) := DSH (int(t) ∗ Iu) +
∑

i∈NewAssSH(t)

Pm
SH,service(di)

if ∀x ∈ N : t �= x ∗ Iu

4.3.3 Automatic Service Replication

If all available service instances of a static service3 are running on heavily loaded service
hosts and there are service hosts available which have a low workload, the dispatcher
can decide to generate a new service instance using a feature called automatic service
replication. Figure 4.7 demonstrates this feature: service hosts A and B are heavily loaded
and host C currently has no instance of service S running. Thus, the dispatcher sends a
message to service host C to create a new instance of service S. The configuration of the
new service S is generated using the appropriate configuration module. If no service hosts
with low workload are available, the dispatcher can buffer incoming messages (until the
buffer is full) or reject them depending on the configuration of the dispatcher instance and
the modules.

3Dynamic services can be executed on arbitrary service hosts and need not be installed, anyway.

44 ServiceGlobe - A Distributed and Open Web Service Platform

D

Database Server

Service S

Monitoring Service

Message for Service S

Service S CService S

JDBC

Dispatcher (for S)

}Service Host

Internet Server
ServiceGlobe Runtime Engine

Internet Server

Monitoring App.

"Create New Instance
of Service S"

DBMS

BA

Figure 4.7: Automatic Replication of Service S

4.3.4 High Availability / Single Point of Failure

Using several instances of a service greatly increases its availability and decreases the
average response time. Just to give an impression of the high level of availability, we want
to sketch this very simple analytical investigation. Assuming that the server running the
dispatcher itself and the database server (in our example the database server is needed
for service S) are highly available, the availability of the entire system only depends on
the availability α of the service hosts. The availability of a pool of service hosts can be
calculated as follows:

α =
MTBF

MTBF + MTTR
(1) αpool =

N∑
i=1

αi(1 − α)(N−i) = 1 − (1 − α)N (2)

Equation 1 calculates the availability of a single service host based on its MTBF (mean
time between failures) and MTTR (mean time to repair). The availability of a pool of N
service hosts can be calculated using Equation 2. Even assuming very unreliable service
hosts with MTBF = 48h and MTTR = 12h a pool with 8 members will only be unavailable
about 1.5 minutes a year.

Because database management systems are very often mission critical for companies,
there are different approved solutions [Bre98, HD91] for highly available database manage-
ment systems. Thus, the remaining single point of failure is the dispatcher service. There

4.4 Related Work 45

are several options for reducing the risk of a failure of the dispatcher. A pure software
solution is to run two identical dispatcher services on two different hosts. Only one of these
dispatchers is registered at the UDDI server. The second dispatcher is the spare dispatcher
and it monitors the other one (“watchdog mechanism”). If the first dispatcher fails, the
spare dispatcher modifies the UDDI repository to point to the spare dispatcher. If the
clients of the dispatcher call services according to the UDDI service invocation pattern,
any failed service invocation will lead to a check for service relocation. Thus, failures of the
first dispatcher will lead to an additional UDDI query and an additional SOAP message
to the second dispatcher. Of course, there are many other possible solutions which are
adaptable for a highly available dispatcher service known from the fields of database sys-
tems [Bre98, HD91] and Web servers [CCCY02], including solutions based on redundant
hardware. These solutions are outside the scope of this work.

4.4 Related Work

The success of Web services results in a large number of commercial service platforms
and products, e.g., the Sun ONE framework [Sunb] and IBM WebSphere [IBMb], which
are both based on J2EE [J2E], and Microsoft .NET [NET]. All these products and plat-
forms rely on the well known standards XML, SOAP, UDDI, and WSDL. They all provide
tools for fast and straightforward deployment of existing applications as Web services.
Furthermore, there are research platforms like ServiceGlobe [KSSK02, KSK02] and SELV-
SERV [BDSN02] which focus on certain aspects in the Web service area. In SELV-SERV
services with equal interfaces are grouped together into service communities. This project
focuses on composing Web services using state charts. The main difference of ServiceGlobe
is that it offers mobile services which can be executed on every service host.

A lot of work has been done in the area of load balancing, e.g., load balancing for Web
servers [CCCY02] and load balancing in the context of Grid computing [Glo]. Grid com-
puting is focused on distributed computing in wide area networks involving large amounts
of data and/or computing power, using computers managed by multiple organizations.
Our dispatcher focuses on distributing load between hosts inside a LAN. In contrast to
dispatchers for Web servers [CCCY02], dispatchers for service platforms cannot assume
that all requests to services produce the same amount of load because the computational
demands of different services might be very different. There are also commercial products
available, e.g., DataSynapse [Dat] which offers a self-managing distributed computing so-
lution. One of the key differences of this system is that it works in a pull-based manner,
i.e., hosts request work, instead of using a dispatcher to push work to the hosts. Addi-
tionally, DataSynapse requires an individual integration of every application, which is not
necessarily an easy task for arbitrary applications.

46 ServiceGlobe - A Distributed and Open Web Service Platform

Chapter 5

Semantic Caching for Web Services

In this chapter, we present a semantic caching scheme suitable for caching responses from
Web services on the SOAP protocol level. Existing semantic caching schemes for database
systems or Web sources cannot be applied directly because there is no semantic knowledge
available about the requests to and responses from Web services. Web services are typi-
cally described using WSDL documents. For semantic caching we developed an XML-based
declarative language to annotate WSDL documents with information about the caching-
relevant semantics of requests and responses. Using this information, our semantic cache
answers requests based on the responses of similar previously executed requests. Perfor-
mance experiments—based on the scenarios of TPC-W and TPC-W Version 2—conducted
using our prototype implementation demonstrate the effectiveness of the proposed semantic
caching scheme.

This chapter is organized as follows: In Section 5.1 we describe how Web services are
deployed today and motivate the usage of Web service caches. In Section 5.2 we present
background information for semantic caching. Additionally, we introduce an example Web
service based on the TPC-W scenario. This service is used to explain our semantic caching
scheme. Several basic design decisions are described in Section 5.3. A detailed description
of our Web service cache SSPLC, the embedded control instructions of service providers,
and some sophisticated features of the SSPLC are presented in Section 5.4. Experimental
results follow in Section 5.5. Section 5.6 surveys related work and Section 5.7 presents our
conclusions.

5.1 Motivation

Service-oriented architectures (SOAs) based on Web services are emerging as the domi-
nant application on the Internet. Mission critical services like business-to-business (B2B)
or business-to-consumer (B2C) services often require more performance, scalability, and
availability than a single server can provide. Server side caching [YFIV00] and some kind
of cluster architecture alleviate some of these problems. Figure 5.1a) shows this central
architecture. The computers on the left-hand side represent the clients, the cloud repre-

48 Semantic Caching for Web Services

DBMS

Web Service

Local Cache

a)

SSPLC

SSPLC

DBMS

Web Service

Local Cache

b)

Figure 5.1: Web Service Architecture Without (a) and With Distributed Caching (b) in a
Highly Accessed System

sents the Internet. On the right-hand side, there is a Web service (possibly running on a
cluster) using a database as back-end like many real-world services do. The local cache
shown in the figure can be, e.g., a cache for the DBMS and/or a cache for XML fragments.
A major drawback of this architecture is that all clients must still access the Web service
directly over the Internet, possibly resulting in high latency, high bandwidth consumption,
and high server load.

One solution to these scalability problems appears to be distributing Web service in-
stances across strategic locations on the Internet, i.e., edge servers. A similar approach is
already known in the context of traditional Web servers where static content like images,
text, or videos is replicated on servers around the world using content distribution networks
(CDNs) [INST02] like, e.g., Akamai [Aka]. This approach works well with traditional Web
content assembled from a composite HTML page and other resources like images, refer-
enced via URLs in the HTML page. Thus, static resources can easily be moved from the
origin server to a CDN. However, this approach is not particularly suitable for Web ser-
vices because their results are typically monolithic XML documents without links to other
documents. Thus, the distinction between static and dynamic content is more difficult
and the data is not available in predetermined fragments like images and HTML pages.
Furthermore, applying this approach to Web services including their back-end databases
requires replication of the application logic as well as utilization of some kind of distributed
DBMS or local database cache for the service instances [GDN+03]. This must be done in-
dividually for every service and is very time-consuming and costly. Therewith, this is one
of the main disadvantages of this approach.

There are many Web services characterized by many requests corresponding to read-
only queries on their back-end databases and only a small fraction of requests actually
initiating updates on the databases. One important category of services showing this kind
of access pattern is business services (B2C and B2B) offering query-like interfaces to, e.g.,
access product catalogues. Such services are also used in standard benchmarks for B2C
and B2B environments, e.g., TPC-W [TPPC02] and TPC-W Version 2 [TPPC03]. Users
normally send many read-only query-style requests to find the products they are interested
in before sending a few (generally not cachable) transaction-style requests to order the se-

5.1 Motivation 49

lected products. Another important category of Web services includes information services
like news services, weather services, etc., which typically offer read-only access. There are
Web services with different access patterns but since the Web service categories described
above are very common and important, this work focuses on them.

Our generic approach to achieving higher performance and scalability is called Semantic
SOAP Protocol Level Cache (SSPLC). The performance increase is based on semantic
caching of responses from Web services in request/response message exchange patterns on
the SOAP [BEK+00, Mit03] protocol level. The resulting Web service architecture is shown
in Figure 5.1b). Clients are not directly accessing the origin service anymore; instead they
are accessing instances of SSPLC. As long as requests can be answered based on cached
data, the origin server hosting the Web service is not involved anymore. Therefore, the
load at the origin server is reduced, bandwidth consumption is diminished, and latency is
reduced. The advantage of a semantic cache is that it reuses the responses to prior requests
to answer similar requests, not only the exact same requests. Thus, if request R1 retrieves
all books written by “Kemper” and afterwards a request R2 retrieves all books written by
“Alfons Kemper”, a semantic cache reuses the response to R1 to answer the more selective
request R2.

Our proposed cache can be used like traditional HTTP proxies, i.e., SSPLC instances
need not be hosted by service providers themselves, but can easily be run by, e.g., companies
and universities, just like HTTP proxies nowadays. However, SSPLC can also be used as
client cache, reverse-proxy cache, or edge server cache [RV02, RS01]. Because of synergy
effects, there are major savings when the cache is used by a large number of clients, i.e.,
is not used as client cache. Additionally, if used as a reverse-proxy or an edge cache,
server-driven cache consistency techniques are applicable.

Our approach relies on service provider cooperation. All instructions to control the
SSPLC are embedded by the provider of a service in SOAP result documents and in the
WSDL description of a service. The SOAP results are augmented with information about
cache consistency. This is the only modification to a Web service required for the use of
SSPLC. The effort necessary to generate these annotations depends on the consistency
strategy and the complexity of the application logic and is subject to further investiga-
tions. Simple annotations, e.g., TTL values, can be inserted by the SOAP-engine in a
post-processing step without modifications of the Web service. More complex annotations
demand some coding effort. Additionally, the WSDL document of the service is annotated
with information about the caching-relevant semantics of a service. This is done manually
using an XML-based declarative language because automatic reasoning about the seman-
tics normally results in a very conservative caching behavior. Developers of a Web service
should not have problems writing these annotations because they already have the required
knowledge. Using our declarative semantic annotations it is possible to formalize a consid-
erable amount of application domain knowledge and knowledge about the semantics of the
requests and responses of Web services to achieve effective caching behavior. Currently, we
are describing semantics of individual operations without considering semantic correlations
between different operations. Thus, SSPLC is internally organized as a set of virtual caches
such that every operation has its own private virtual cache instance.

50 Semantic Caching for Web Services

5.2 Background and Running Example

5.2.1 Fundamentals of Semantic Caching

Semantic caching is a client-side caching technique introduced in the mid 90s for DBMSs
to exploit the semantic locality of queries, e.g., [CB00, DFJ+96, LC99, LC01, LKRPM01].
A semantic cache is managed as a collection of semantic regions. Semantic regions group
together semantically related objects and are composed of region descriptor and region
content. The descriptor basically contains a region predicate (like ’author = “Alfons Kem-
per” ’) describing the region content. The region content stores the objects related to a
region descriptor. Access history is maintained and cache replacement is performed at the
granularity of semantic regions.

Every query sent to a semantic cache is split into two disjoint parts: a probe query and
a remainder query. The probe query extracts the relevant portion of the result already
available in the cache while the remainder query is sent to the origin server to fetch the
missing, i.e., not cached, part of the result. If the remainder query is empty, the cache does
not interact with the origin server. If a client wants to pose, e.g., a query A and the cache
already contains the result for the query A∧B, it sends a remainder query A∧¬B to retrieve
the missing results. In the context of DBMSs or Web sources, all participating components
have been full-fledged DBMSs. Since Web services normally have a more constrained query
interface, semantic caching must be adapted to these limitations (see Section 5.4).

5.2.2 Running Example

In this section, we will present an example Web service based on the TPC-W scenario.
This service is used to explain our semantic caching scheme. Amazon offers a SOAP-
based Web service interface [Ama] which is very similar to their broadly known HTTP
interface. Since Amazon is in fact a“real-world implementation”of the TPC-W benchmark,
we use parts of their interface for our example and the TPC-W benchmark scenario as
basis for performance experiments conducted using our prototype implementation.1 Our
example service is called Book Store Light and is a slim version of Amazon. The relevant
operation of this service is a search for books written by certain authors (author search).
The XML documents used by Amazon are too large to be presented entirely in this work.
We shortened and simplified them to a reasonable degree and removed all namespaces from
the presented documents for better readability and a more concise presentation.

Figure 5.3 shows an example SOAP response corresponding to the request shown in
Figure 5.2. As already mentioned in Section 4.1.2, SOAP offers a standard encoding
style, i.e., serialization mechanism, to convert arbitrary graphs of objects to an XML-
based representation, but user-defined serialization schemes can be used as well. Since the
techniques presented in this work are applicable independent of the concrete serialization

1We also used some other Web services listed by the online directory XMethods [XMe], e.g., Google
and a recipe service, to verify the capabilities of our caching approach.

5.2 Background and Running Example 51

<Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<Body>

<AuthorSearchRequest>

<AuthorSearchRequest type="AuthorRequest">

<author type="string">Alfons Kemper</author>

<levelOfDetail type="string">lite</levelOfDetail>

</AuthorSearchRequest>

</AuthorSearchRequest>

</Body>

</Envelope>

Figure 5.2: Example SOAP Request for Book Store Light

<Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<Body>

<AuthorSearchRequestResponse>

<return type="ProductInfo">

<TotalResults type="int">4</TotalResults>

<DetailsArray arrayType="Details[4]" type="Array">

<Details type="Details">

<Title type="string">Object-Oriented Database Management</Title>

<Authors arrayType="string[2]" type="Array">

<Author type="string">Alfons Kemper</Author>

<Author type="string">Guido Moerkotte</Author>

</Authors>

</Details>

<!-- ...three more Details elements... -->

</DetailsArray>

</return>

</AuthorSearchRequestResponse>

</Body>

</Envelope>

Figure 5.3: Example SOAP Response from Book Store Light

52 Semantic Caching for Web Services

<message name="AuthorSearchRequest">

<part name="AuthorSearchRequest" type="AuthorRequest" />

</message>

<message name="AuthorSearchResponse">

<part name="return" type="ProductInfo" />

</message>

<portType name="BookStoreLightPort">

<operation name="AuthorSearchRequest">

<input message="AuthorSearchRequest" />

<output message="AuthorSearchResponse" />

</operation>

</portType>

Figure 5.4: Messages and Port Types (Book Store Light)

method (as long as the cache understands the encoding), we use the standard serialization
throughout this chapter.

As stated in Section 4.1.3, there are four message exchange patterns defined within the
WSDL specification: one-way, request/response, solicit/response, and notification. Our
SSPLC handles the most commonly used request/response message exchange pattern. In
fact, this is also the only message exchange pattern qualifying for caching. Such an op-
eration expects one message as input and generates one output message. Our prototype
implementation currently supports the SOAP 1.1 binding defined in the WSDL 1.1 spec-
ification which is the most commonly used binding today.2 Of course, the prototype can
be enhanced to support other bindings.

We will now present parts of the WSDL document of our Book Store Light ser-
vice. Since SSPLC is currently mainly based on annotations at the abstract level we
will focus on this level. Figure 5.4 shows a fragment of a WSDL document defining the
port type of the Book Store Light service (BookStoreLightPort) having one operation
(AuthorSearchRequest). This operation expects an AuthorSearchRequest message as in-
put and produces an AuthorSearchResponse message as an output document. These mes-
sages are defined just above the portType element. Messages are composed of several part
elements. As shown in the figure, the request message has one part of type AuthorRequest
and the response message has one part of type ProductInfo. These types are defined using
XML Schema [Fal01] in another fragment of the WSDL document, shown in Figure 5.5.
An element of type AuthorRequest has the elements author and levelOfDetail, both of
type string, in its content. In our example, levelOfDetail can be “heavy” or “lite” and
influences the level of detail of the result. Figure 5.2 shows an example SOAP message
requesting the most important information about books written by “Alfons Kemper”.

An element of type ProductInfo contains the two subelements TotalResults and
DetailsArray. The former is of type int, whereas DetailsArray is, in short, an array of

2An example for a SOAP 1.1 binding is presented in Section 5.4.

5.2 Background and Running Example 53

<types>

<schema>

<complexType name="AuthorRequest">

<all>

<element name="author" type="string" />

<element name="levelOfDetail" type="string" />

</all>

</complexType>

<complexType name="ProductInfo">

<all>

<element name="TotalResults" type="int" />

<element name="DetailsArray" type="DetailsArray" />

</all>

</complexType>

<complexType name="DetailsArray">

<complexContent>

<restriction base="Array">

<attribute ref="arrayType" arrayType="Details[]" />

</restriction>

</complexContent>

</complexType>

<complexType name="Details">

<all>

<element name="Asin" type="string" />

<element name="Title" type="string" />

<element name="Authors" type="AuthorArray" />

</all>

</complexType>

<complexType name="AuthorArray">

<complexContent>

<restriction base="Array">

<attribute ref="arrayType" arrayType="string[]" />

</restriction>

</complexContent>

</complexType>

</schema>

</types>

Figure 5.5: Type Definitions (Book Store Light)

54 Semantic Caching for Web Services

Details elements. Details is another type defined inside the WSDL document, having
the three subelements Asin, Title, and Authors. The first two subelements are of type
string, the last one is of type AuthorArray which is an array of strings representing the
authors of the book. For our example, we assume that Asin is only present in a result if
levelOfDetail was “heavy”. Figure 5.3 shows an example SOAP response corresponding
to the request shown in Figure 5.2. Only one of the books (i.e., Details elements) is
shown.

5.3 Basics of the Web Service Cache SSPLC

The SSPLC features protocol level semantic caching, not application level caching. Thus,
the SSPLC a priori has no implicit knowledge about the applications, i.e., Web services.
It is therefore necessary to instruct the cache what to cache, how to cache, and how long
to cache. In our approach this information is specified by the provider of a service (see
Section 5.4). Of course, protocol level caching in general cannot be as efficient as an
application level cache, but added generic usability and good applicability to a wide range
of existing Web services is compensating for that.

We will now discuss our design decisions on caching aspects like replacement policy and
cache consistency strategy. These concerns are not the main focus of our work so we used
existing solutions as far as possible and adapted existing work where necessary.

5.3.1 Replacement Policy

Since cache memory is a limited resource, the cache may have to discard some regions
to free memory for new regions. There are several well known replacement strategies
available, e.g., FIFO (First In First Out), LRU (Least Recently Used), LRU-K [OOW93],
and a low overhead approximation to LRU-2 called 2Q [JS94]. After experimenting with
FIFO and 2Q, we decided to implement our own modified version of the 2Q strategy.
Empirically, standard 2Q is a smart choice because of good replacement decisions and low
CPU overhead, but this algorithm is designed to handle objects of uniform size.

The 2Q strategy (more precisely the simplified 2Q strategy) is based on two queues
which share the cache memory. The first queue (A1) is organized using a FIFO strategy.
Every object which is requested for the first time is inserted into this queue. If an object is
requested for a second time while it is still contained in A1, the object is considered a hot
spot and is moved to the other queue Am which is organized using the LRU strategy. Every
time an object contained in Am is requested, the corresponding entry is moved to the top
of the queue. Objects reaching the tail of A1 or Am are removed if memory is required for
new objects. Which queue is selected for deletion depends on a tunable threshold for the
size of A1. In our implementation, A1 and Am are of the same size.

As semantic regions can be of different size, it is obvious that purging a region from
the cache should not only depend on its usage but also on its size. Thus, we introduce a
simple but efficient cost-to-size ratio. This is done by dividing the queues into slots. Thus,

5.3 Basics of the Web Service Cache SSPLC 55

large regions allocate multiple slots of the queues A1 or Am. Of course, every region exists
only once but is referenced from multiple slots. How many slots a region r uses is defined
by the tuning parameter slot size: slots(r) = �size(r)/slot size�.

Now, a large region r must be requested for slots(r) times before it is completely moved
from A1 to Am. The queue Am is still organized using LRU. After r has been completely
moved to Am, every time r is requested, the lowest slot of r contained in Am is moved to
the top of Am. If one of the slots allocated by r reaches the bottom of A1 or Am, r is
purged if memory is required, as described above. Thus, the larger a region r is, the more
often it has to be requested to preserve it from being purged.

5.3.2 Distribution Control and Cache Consistency

The replacement strategy determines which data to cache for how long. There are also
other cache consistency and legal issues affecting this decision [Ber02]. The SSPLC is
transparent to users and other Web services. Thus, for clients responses from the cache
look like responses generated by the origin Web service itself. Since Web services are often
used in business environments, ambiguity about who is liable for a response is not tolerable.
There are a lot of other problems related to caches, e.g., is it allowed to cache the response
of a pay-per-use service, or is it allowed to cache responses from a service at all? Therefore,
SSPLC gives providers exclusive control over distribution and cache consistency using a
SOAP header extension. As long as there is no consistency information, SSPLC won’t
cache a response as postulated by [Not01] and [Ber02]. Web services can also explicitly
forbid caching.

There are several techniques described in the literature offering weak or strong cache
consistency guarantees. The most commonly used weak consistency techniques are client-
driven and easy to handle: time-to-live (TTL) and expiry-time [Cz02]. Strong consistency
techniques, e.g., server invalidation or lease-based techniques [CAL+02, Cz02, INST02,
NKS+02], are typically server-driven and are more complex. As already mentioned, these
techniques can only be applied in a reasonable way if SSPLC is used as a reverse-proxy
or an edge cache. Using these techniques, SSPLC can even handle highly dynamic Web
services. Since cache consistency mechanisms are not the focus of this work, we assume
service-specific TTL in the following discussion.

If a provider allows caching, it must explicitly state some cache consistency information.
For example, the following CacheControlHeader element allows caching of the message and
states that the response is fresh for at least the given duration (12 hours). After this du-
ration, the cached version of the response must be removed from the cache.

<CacheControlHeader>

<CacheConsistency>

<TTL>P0Y0M0DT12H00M00S</TTL>

</CacheConsistency>

</CacheControlHeader>

56 Semantic Caching for Web Services

5.3.3 Physical Storage of Semantic Regions

Using a cache requires a large amount of memory to be able to serve lots of clients based
on a reasonably large number of semantic regions. Since disks are considerably larger and
cheaper than main memory, it is obviously a good idea to use them for the storage of
semantic regions. The simplest way is to keep only region descriptors in main memory
and to store region content on disk, e.g., by using a DBMS (a rudimentary one should
be sufficient) or a flat file system. Preferably, the replacement strategy should be aware
of disks in order to distinguish between “purge a semantic region” and “move a semantic
region to disk”, thus allowing“hot”regions to be kept in main memory while storing“cooler”
regions on disk.

Since it is orthogonal to the issues discussed in this work whether the cache is based on
main memory, disk, or both, we assume for the rest of the chapter that the cache is only
based on main memory. Our prototype system is main memory-based as well.

5.4 Semantic Caching in the Web Service Cache

SSPLC

Basically, semantic caching in SSPLC is done by annotating WSDL documents with
information about the caching-relevant semantics of services using the language presented
in the next section. This information is used for mapping SOAP requests to predicates, for
fragmenting responses, and for reassembling responses. Thus, adapted semantic caching
algorithms can be applied.

5.4.1 WSDL Annotations

Our language is designed both to cover common capabilities of existing Web service inter-
faces and to preserve efficient solvability of the query containment problem [GSW96, Ull89],
which is intrinsic to the semantic caching approach.

5.4.1.1 Fragmentation and Reassembling

Since Web services deliver monolithic XML documents rather than tuple-oriented re-
sponses, SSPLC needs some information about how to fragment such documents to obtain
fine-granular response units comparable to tuples in database caching. These units are
called fragments. We use an XPath-expression [CD99] to specify the fragmentation. Addi-
tionally, SSPLC needs further instructions regarding the generation of a complete response
document based on fragments of prior requests. This information is specified using the
XQuery language [BCF+03]. Both the XPath-expression and the XQuery, are provided
using an additional element (OperationCacheControl) inside the binding element of the
WSDL document of a service because it depends on the actual coding of the messages.

5.4 Semantic Caching in the Web Service Cache SSPLC 57

<binding name="BSLBinding" type="BookStoreLightPort">
<binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="AuthorSearchRequest">
<operation soapAction="BookStoreLight" />
<input>
<!-- ...describes how the input message is mapped to XML... -->

</input>
<output>
<!-- ...describes how the output message is mapped to XML... -->

</output>
<OperationCacheControl>
<fragmentationXPath>
/Envelope/Body/AuthorSearchRequestResponse/return/DetailsArray/Details
</fragmentationXPath>
<reassemblingXQuery>
<!CDATA[
let $details := ##RESULT_FRAGMENTS##
return
<Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<Body>
<AuthorSearchRequestResponse>
<return type="ProductInfo">
<TotalResults type="int">##COUNT_RESULT_FRAGMENTS##</TotalResults>
<DetailsArray arrayType="Details[##COUNT_RESULT_FRAGMENTS##]"

type="Array">
{$details}
</DetailsArray>
</return>
</AuthorSearchRequestResponse>
</Body>
</Envelope>
]]>
</reassemblingXQuery>
</OperationCacheControl>

</operation>
</binding>

Figure 5.6: Annotation of the AuthorSearchRequest Operation

58 Semantic Caching for Web Services

Figure 5.6 gives an example for our Book Store Light. The marked region depicts the
annotated information for the SSPLC while the rest of the document constitutes a standard
SOAP binding. Referring to our book store example, we are interested in the individual
books, i.e., Details elements, contained in a response document of our example service.
The XPath-expression shown inside the fragmentationXPath element in Figure 5.6 can
be used to fragment a response document accordingly. This XPath-expression can be
figured out by examination of the type definition part of the service’s WSDL document
(see Figure 5.5) and of an example response of the service (see Figure 5.3). The XQuery
to reassemble a response is shown in the figure inside the reassemblingXQuery element.
The macros ##RESULT_FRAGMENTS## and ##COUNT_RESULT_FRAGMENTS## are expanded by
the SSPLC before evaluating the XQuery and represent exactly the fragments (respectively
their number) which should be reassembled to a complete response document. Since an
introduction to XQuery lies outside the scope of this work, we will not explain the XQuery
shown in the figure. It should be obvious that the result of the XQuery is a SOAP response
like the one shown in Figure 5.3.

5.4.1.2 Predicate Mapping

We need predicates in region descriptors to describe the fragments stored in the region
contents. Thus, we need some information about the semantics of requests. Moreover, we
want to be able to filter semantic regions, e.g., if we are looking for all books written by
“Alfons Kemper” in a region storing all books written by “Kemper”. Therefore, we need
to know how to access the individual “attributes” (elements) of a tuple (fragment). This
information is annotated to the type definitions of requests in WSDL documents.

We will explain the annotations using our Book Store Light example. The original
type definition of AuthorRequest, which is the request type of our service, is shown in
Figure 5.5. Currently, we assume that if there are several parameters defined in a request,
i.e., levelOfDetail and author, they are combined by an AND operator. Thus, the
request shown in Figure 5.2 means that we are looking for all books written by “Alfons
Kemper”and we are only interested in the most important facts of the books. Additionally,
we assume that if there are several elements inside an array, the elements are logically
ANDed together, too. This is also true for responses (see the Author elements inside the
Authors element shown in Figure 5.3). The annotated version of the AuthorRequest type
is shown in Figure 5.7.

We annotate every parameter of the request using one or more CacheControl elements.
It is necessary to specify some context information because a message can be used for
several operations having different semantics. Also, if another binding is used, the coding
of the message might be different, requiring some modifications inside the CacheControl

element. Thus, the context information given by the attributes of CacheControl defines
when to use the information inside the CacheControl element. The information shown in
Figure 5.7 can only be used to analyze an input message for the AuthorSearchRequest

operation using the BSLBinding. A StringParameter element defines that the parameter
is of type string. The content of this element gives more detailed information about how

5.4 Semantic Caching in the Web Service Cache SSPLC 59

<complexType name="AuthorRequest">

<all>

<element name="author" type="string">

<annotation>

<appinfo>

<CacheControl context="AuthorSearchRequest"

bindingContext="BSLBinding">

<StringParameter>

<required>true</required>

<fragmentXPath>

Authors/Author/text()

</fragmentXPath>

<implicitOperator>contains_wwo</implicitOperator>

<caseSensitive>false</caseSensitive>

<operators>

<and> </and>

<and>,</and>

</operators>

</StringParameter>

</CacheControl>

</appinfo>

</annotation>

</element>

<element name="levelOfDetail" type="string">

<annotation>

<appinfo>

<CacheControl context="AuthorSearchRequest"

bindingContext="BSLBinding">

<StringParameter>

<required>true</required>

<implicitOperator>equals</implicitOperator>

<caseSensitive>true</caseSensitive>

</StringParameter>

</CacheControl>

</appinfo>

</annotation>

</element>

</all>

</complexType>

Figure 5.7: Annotated WSDL Type Definition

60 Semantic Caching for Web Services

to handle this string parameter. We also defined elements for other parameter types, e.g.,
an IntegerParameter element. Each of these elements contains further information (e.g.,
operators) depending on the parameter type.

Looking at the example in Figure 5.7, we observe that the author parameter is manda-
tory (required element). If a parameter is optional, a default value of the parameter
that is used in case of absence of the parameter in a request must be specified using a
default element (not available in the example document). The fragmentXPath element
specifies how to extract the information from result fragments that correspond to this pa-
rameter (compare Figure 5.3). For example, if we ask for books written by an author,
the fragmentXPath can be used to find the authors in the result fragments. If, as in our
example, an XPath is specified, the cache can inspect the fragments to look up the actual
author(s) of a book. This information can be used to filter all fragments contained in a
semantic region. If there is no XPath specified, the cache is not able to do such filtering
because it is constrained to the information obtained from the request.

The element implicitOperator defines the operator of the parameter. Currently, we
support the following operators (for appropriate parameter types): >, ≥, <, ≤, = (or
equals), contains, contains wwo, starts with, and ends with. In our example, the operator
is contains wwo which is a contains operator that looks for “whole word only” occurrences
of the given pattern in a string, i.e., “Alfons Kemper” does not contain wwo “Kemp”, but
contains wwo “Kemper”. The comparison of strings is case insensitive as defined by the
caseSensitive element.

Additionally, we support the logical operators AND and OR to support complex predi-
cates. We also support parentheses for precedence control. Currently, we are not supporting
the ¬ operator (logical NOT operator)3 because there are virtually no Web services offering
this operator and we are interested in keeping the query containment problem efficiently
solvable. The operators element in Figure 5.7 defines two AND operators for the author
parameter: a space character and a comma.

The second parameter is levelOfDetail. This is also a mandatory string parameter.
The implicit operator is a case sensitive “equals”. There is no fragmentXPath defined
because in the response document of our Web service no explicit information about whether
it is a “heavy” or a “lite” result is contained. As this information is contained in the request
and therefore is stored as part of the region predicate, this information is not lost.

Using these annotations our SSPLC can figure out the semantics of a request and is
able to extract interesting elements from fragments. Also, it is able to generate a region
predicate from a request. For example, the request shown in Figure 5.2 is mapped to the
following predicate:

author contains wwo case insensitive “Alfons”∧
author contains wwo case insensitive “Kemper”∧

levelOfDetail equals case sensitive “lite”

3and hence we are not supporting �=,¬contains,...

5.4 Semantic Caching in the Web Service Cache SSPLC 61

Generate Predicate
From SOAP
Document

Convert Predicate
Into DNF and Split

Into CPs

Determine Match
Types of CP

Best Match
Type?

Result Fragments :=
Filter(Region Content, Region Predicate, CP)

Generate Result
From All Result

Fragments

Send Result Back to
Client

Generate SOAP
Document From CP
and Send it to Web

Service

Fragment the Server Response
Result Fragments := Fragmented Response

Generate New/
Replace Existing
Semantic Regions

EndStart

Fork
(CP)

Wait for All
Result Fragments

Exact Match

Containing Match

Other

Result Fragments := Region Content

Figure 5.8: Flow Chart of the Caching Process

5.4.2 Matching and Control Flow

Using our annotations we are now able to understand the caching-relevant semantics of
requests and responses. We will now describe how this information is used for caching.
The control flow of our SSPLC is shown in Figure 5.8. First of all, a SOAP request R
is mapped to a predicate P as described above. Although the Book Store Light does
not offer a logical OR operator for the author parameter, we will use the following predi-
cate P (operator names are shortened) for demonstration purposes throughout this section:

(author contains “Kemper”∨ author contains “Moerkotte”) ∧ levelOfDetail =“lite”

After the mapping, P is transformed into disjunctive normal form (DNF) and split into
conjunctive predicates (CPs), i.e., predicates only containing simple predicates connected
by logical AND operators. If there is no logical OR in a request, P is processed as is. The
transformation of our example predicate P results in:

CP1 : author contains “Kemper”∧ levelOfDetail =“lite”
CP2 : author contains “Moerkotte”∧ levelOfDetail =“lite”

For every CP, the light gray actions shown in Figure 5.8 are executed in parallel. First,
match types of a CP with all semantic regions are determined, i.e., the correlation between
every semantic region S and the result of CP is determined. There are five different match
types (compare [CB00, LC01]) as shown in Figure 5.9. The best match type for a CP
and a semantic region S is, of course, the exact match. The next best match type is a
containing match because we only have to filter S by eliminating all fragments fulfilling the
region predicate but not CP to get the fragments for the response. The other three match

62 Semantic Caching for Web Services

Exact and Extended Matching
Result Can be Generated Autonomously

Exact Match Containing Match

Contained Match

No Matching
Result is Requested From Origin Server

Overlapping Match Disjoint Match

Semantic Region S
(Available in the Cache)

Result of New Request R
Based on One CP

Figure 5.9: Match Types

types require server interaction because we do not have all fragments cached to answer the
request. Since most Web services do not have adequate interfaces to be able to process
complicated remainder requests, we are sending a request generated from the CP to the
Web service even though there already might be some relevant fragments available in the
cache. Even if a Web service can process complicated remainder requests, processing of
such complex requests is likely to be costly. As one of the goals of SSPLC is to reduce
processing demands of the central servers, usage of complex remainder requests could be
counterproductive.

The response of the Web service is fragmented and afterwards stored in the cache. If
there are already regions in the cache containing some of the fragments of the response
(i.e., in the case of a contained match), these semantic regions are replaced with the new
(larger) semantic region. In all other cases, the fragmented response is inserted as a new
semantic region using CP as the region predicate.

After all CPs have been processed, SSPLC calculates the result of P as the union of
the results of all CPs. By default, duplicates are eliminated, i.e., SSPLC implements the
very common set semantics. Alternatively, SSPLC calculates the result without dupli-
cate elimination. This behavior is controlled by an optional distinct element inside the
OperationCacheControl element (not shown in the example document). The default be-
havior is to eliminate duplicates. Fragments are considered equal if their contents are equal
or if keys are defined, their keys are equal. Keys can be defined vi a key element inside the
OperationCacheControl element using the standard XML Schema syntax for keys. Usage
of keys considerably speeds up duplicate elimination. We do not further investigate keys in
the scope of this work. The result of P is (conceptually) written to an XML document D.
After that, the reassemblingXQuery is evaluated with the macro ##RESULT_FRAGMENTS##

expanded to D. Finally, the response is sent back to the client.

5.4 Semantic Caching in the Web Service Cache SSPLC 63

We implemented some optimizations in our SSPLC, e.g., if P does not contain an OR
operator, there is only one CP to be processed. If there is no matching region for CP, we
send a request to the server. After that, we temporarily store its response and send it back
to the client instead of regenerating it from the fragmented response.

5.4.3 Sorting and Generalization

Since the order of elements can be important in XML documents, we enhanced our SSPLC
to be aware of it. XML documents are inherently ordered by the sequence of the elements
(document order). As long as the document order generated by a Web service offers no
real added value (e.g., lexicographical order by title), it does not matter in which order
the fragments emerge in the response. Also, as long as we are using fragments of only one
semantic region (filtered or not), order is abided and we can generate correctly ordered
results as in the Book Store Light example.

If a Web service orders fragments using some information available in the response,
there are two possibilities to establish the same order even if we are merging fragments of
several semantic regions to generate the response. First, if the order is fixed, i.e., always
the same, the reassemblingXQuery can be modified to do the sorting using the order by
clause of XQuery. Second, if the order depends on a request parameter, we can annotate
this parameter using a SortParameter element. This element contains a mapping from
the service’s sorting facilities to order by clauses of XQuery. For example, if a Web service
has a parameter sort and the value “+title” means “sort by title”, a mapping to XQuery
could look like “order by $fragment/Title”. The appropriate order by clause is inserted
into reassemblingXQuery before evaluation.

The value of a sorting parameter is stored in the region descriptor because it is relevant
for determining the match types. An exact or containing match is only usable if either
the sorting is already as it should be or we are able to establish the correct order using an
order by clause. If the response of the Web service does not contain an element that can
be used to reestablish the sorting of fragments, the SSPLC has to send a SOAP document
generated from the region predicate to the Web service for the correct order when frag-
ments from more than one semantic region are needed for the response. If only fragments
from one semantic region are needed, it must already have the required order, otherwise
the service must be contacted as well. To avoid several semantic regions containing the
same fragments in different order, SSPLC stores sorting vectors inside semantic regions to
remember alternative sortings for future use.

Another enhancement of our semantic caching scheme is the usage of generalization for
better decisions on the query containment/predicate subsumption problem. Our SSPLC
supports two different types of generalization. First, tree-structured containment relations
for values of parameters can be defined. For example, if there is a parameter defining
whether we are interested in paperback, hardcover, or both, we are able to annotate this
parameter to point out that“hardcover ⊆ both”and“paperback ⊆ both”. This information
is used during match type computation and for filtering of semantic regions.

64 Semantic Caching for Web Services

The second type of generalization can be seen in our Book Store Light example. There
is a parameter levelOfDetail that influences the level of detail of the response. Since
“heavy” fragments simply contain some extra elements, it is possible to define an XQuery
filter to transform “heavy fragments” to “lite fragments” by removing the surplus elements
like the Asin elements in our example. This information is also used during match type
computation and region filtering.

5.5 Performance Evaluation

We implemented a prototype of the Web Service Cache SSPLC for our service platform
ServiceGlobe using Java. We conducted several performance experiments based on the
scenarios of the TPC-W [TPPC02] and TPC-W Version 2 [TPPC03] benchmarks.

5.5.1 Benchmark Scenario 1 (TPC-W)

The first scenario is related to the online bookstore scenario of the TPC Web commerce
benchmark (TPC-W). Because TPC-W does not aim at SOAP Web services and semantic
caching, but instead at traditional Web servers and back-end servers, major modifications
to TPC-W (system architecture as well as data generation) are necessary to adjust the
benchmark to the context of our SSPLC in a reasonable way. Thus, we decided to model
our benchmark scenario on the SOAP interface of Amazon, just as the scenario of TPC-W
is modeled on the HTTP interface of Amazon. We chose to use Amazon’s author search re-
quest for our benchmarks because this search functionality is also addressed in the TPC-W
benchmark.

5.5.1.1 Experimental Setup

Our benchmark environment for the first scenario consists of two standard off-the-shelf
computers with an Intel Pentium 4 CPU, 2.8 GHz, 1 GB main memory, and 100 MBit/s
network adapter each. The operating system is Red Hat 9 and we use Java 2 SDK,
Version 1.4.1 from Sun Microsystems. One of the computers is used for the simulation
Web service (see below), the other one for the cache and the benchmark engine. We use
the QIZX/open Version 0.2 01 [Fra] as XQuery processor and a recent version of Xalan [Xal]
as XPath processor. A recent version of Xerces [Xer] is used as XML parser and Axis [Axi]
is used as implementation of SOAP.

To show the effectiveness of our semantic cache, we implemented a simulation service
rather than using Amazon directly because Amazon delivers its results page-wise (i.e., 10
books per SOAP response), which is an unusual behavior for Web services. The requests
and responses of our simulation service are identical to those of the Amazon service despite
the fact that our service delivers all results to a request in one response. For that purpose,
we materialized some of the data of Amazon to be able to work with real data. Since our
simulation service delivers these materialized results extremely fast, we are delaying results

5.5 Performance Evaluation 65

1845

770

93
2762 19

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Trace Unique-Trace

N
um

be
r

of
 R

eq
ue

st
s

Requests Producing 0-500 Fragments

Requests Producing 501-1000 Fragments

Requests Producing 1001-2000 Fragments

Figure 5.10: Request Distribution

27.1% 28.8% 34.0% 37.8% 37.0%
43.4%

16.4%

56.5%
71.3%

43.1%

62.2%

36.9%

56.6%

26.2%
22.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

Small Standard Large

Cache Size

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Figure 5.11: Match Distribution Varying
Cache Size

to simulate processing time of a Web service. We conducted some experiments to assure
that SSPLC is able to deliver its results as fast or faster on average than the origin Web
service. Since these results depend heavily on the performance of the origin server and of
the machine running SSPLC, we do not present quantitative results.

Our benchmark scenario is based on several top-300 bestseller lists (top selling science
books, top selling sports books, ...) of Amazon. We used these different bestseller lists
to generate different traces as described below and we always present the average of all
performance experiments conducted using these different traces. If an author’s book is
present on the bestseller list, people will be interested in other books published by the
same author, too. Thus, an author search request is more likely for authors whose books
are ranked high on the bestseller list. Since studies [AH02] have found that access to data
on the Internet often follows a Zipf distribution, we use a Zipf distribution (θ = 0.75) on
the top-300 bestseller lists to select books.4 Using the names of the authors of a book, we
generate a request for our simulation service. We randomly choose which names (surnames,
first names) are used for the request. Every request contains at least one surname of an
author. This is done to challenge semantic caching. We generated traces of 2000 requests
each for the performance experiments.

Some of the requests produce very large response documents containing up to 32000
fragments. Since the size of such documents is about 40 MB, it is very likely that Web
services do not generate such large responses. Rather, they generate a fault response
informing the caller that there are too many results and that the request has to be refined.
Thus, our simulation service sends fault messages for results containing more than 2000
fragments. SSPLC caches these fault messages because they are marked cachable in the
SOAP header.

4We conducted a second series of experiments using a Zipf distribution with θ = 0.86. These experiments
confirm the results and correlations presented in this section.

66 Semantic Caching for Web Services

Figure 5.10 shows the average distribution of the requests of our traces. The majority
of the requests produces responses containing up to 500 fragments (or fault messages as
described above). The term unique-trace refers to a trace where all duplicates are removed.
The figure shows that there are, e.g., only 19 unique requests producing responses contain-
ing between 1001 and 2000 fragments. So, each of these requests is only contained about
3 times in the full trace. Thus, for our Book Store Light, caching of large responses is not
very promising because they are requested very infrequently.

We conducted several performance experiments varying different parameters and we
present the results in this section. For the experiments in this section, the TTL of re-
sponses was set to 30 minutes, if not explicitly stated differently. The data volume of all
responses materialized by our simulation service was about 85.4 MB. Every execution of a
trace lasted for about 100 minutes. We conducted some longer running experiments which
demonstrated similar results. The maximum size for responses to be cached was set to
about 1000 fragments (1.2 MB). Larger responses were fetched from the remote Web ser-
vice and forwarded to the client without caching. One slot (see Section 5.3.1) had the size
of about 1/4 of an average response, i.e., 40 KB. We conducted the experiments using three
different cache sizes: small (10% of the data volume of the unique-trace), standard (20%),
and large (30%). The cache was warmed up by running every trace twice and measuring
the second one, although there are only minor differences between the two runs.

5.5.1.2 Experimental Results

The main goal of the SSPLC is to improve scalability of Web services. Figure 5.11 shows5

that already the smallest semantic cache is able to answer 43.5% (exact matches + contain-
ing matches) of all requests using data stored in the cache, reducing processing demands on
the central servers significantly. A traditional (non-semantic) cache (NSC) achieves much
smaller hit rates (28.8%). The bigger the caches are, the better the hit rates become even
though the increase rate is not linear with the cache size increment. This is due to the
fact that already the standard cache size is large enough to cache most of the hot spot
responses. The only advantage of a larger cache is that it is able to additionally store some
of the less frequently requested responses. SSPLC benefits more from a larger cache than
NSC because SSPLC can exploit the semantics of the requests.

Figure 5.12 demonstrates the reduction of bandwidth consumption. Running the trace
without cache results in the transfer of 298 MB across the network. The smallest semantic
cache reduces the transfer volume by approximately 28%, the standard semantic cache by
approximately 41%. The large semantic cache reduces the transfer volume even more, but
the difference is not linear with the cache size increment due again to the reasons above.
On average, the transfer volume of NSC is more than 12% larger than that of SSPLC.

Figure 5.13 shows results for varying time-to-live periods. Of course, the longer the
TTL period is, the more effective the caches are. Depending on the TTL, SSPLC performs
about 43% to 50% better than NSC.

5Please note that the sum of the rates of exact matches, containing matches, and other matches is not
always exactly 100% due to rounding errors.

5.5 Performance Evaluation 67

23
4

M
B

20
2

M
B

18
2

M
B

21
5

M
B

17
7

M
B

15
9

M
B

29
8

M
B

29
8

M
B

0

50

100

150

200

250

300

No Cache Small Standard Large

Cache Size

T
ra

ns
fe

r
V

ol
um

e
(M

B
)

NSC

SSPLC

Figure 5.12: Transfer Volume Varying
Cache Size

22.8% 24.5%
34.0% 37.8% 40.5%

46.8%
13.4%

22.9%

26.7%

63.9%
75.6%

43.1%

62.2%

32.8%

53.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

5 min 30 min (Standard) Infinite

Time-To-Live

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Figure 5.13: Match Distribution Varying
TTL

Figure 5.14 shows the influence of the slot size parameter (see Section 5.3.1) of the
replacement strategy on the hit rates of the caches. Smaller slot sizes lead to better hit
rates because only minimal cache memory is wasted by partly used slots (clippings). If
the slot size increases, the amount of wasted cache memory increases as well, leading to
comparably slightly lower hit rates of both SSPLC and NSC. The disadvantages of smaller
slot sizes are higher administrative costs. Thus, we decided to use a medium slot size for
our performance experiments.

The results for varying maximum cached response size is shown in Figure 5.15. Of
course, these results depend on the access trace of the cache. The average distribution of
the requests of our traces (see Figure 5.10) shows that large responses are accessed very
infrequently. Thus, the caching of large responses is not beneficial in the presented scenario.
Both NSC and SSPLC suffer equally from larger maximum cached response sizes.

Figures 5.16 and 5.17 show the results for varying value of the theta (θ) parameter of the
Zipf distribution for the SSPLC respectively for a non-semantic cache (NSC). The larger
the value of theta is, the more distinct the hot spots of a trace are. Thus, if θ = 0.99999
(this value is rounded to 1.0 in the figure), there are few distinct hot spot authors that are
accessed very frequently. If θ = 0.0, there are no real hot spot authors. The figures show
that SSPLC is always superior to a non-semantic cache by far. Additionally, Figure 5.16
demonstrates that SSPLC works very well even for small values of θ in this scenario.

5.5.2 Benchmark Scenario 2 (TPC-W 2)

The Transaction Processing Performance Council quite recently published a first draft of
TPC-W Version 2 (TPC-W 2) for public review. This new version of TPC-W is aiming
at Web services. Thus, we decided to conduct some additional performance experiments
based on TPC-W 2. Due to incomplete specifications and time constraints, we did not
implement the full benchmark. Rather, we chose the “product detail Web service inter-

68 Semantic Caching for Web Services

34.9% 39.4% 34.8% 39.6% 34.0% 37.8% 32.3% 35.4%

40.8%

60.6%

41.3%

60.5%

43.1%

62.2%
46.6%

64.6%

24.3% 22.9% 21.1%
23.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC SSPLC NSC

Very Small (1K) Small (10K) Standard (40K) Large (80K)

Slot Size

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Figure 5.14: Match Distribution Varying Slot Size

36.4% 40.3%
34.0% 37.8%

30.9% 34.5%

40.2%

59.7%

43.1%

62.2%
48.8%

65.5%

22.9%
20.4%

23.4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

500 Standard (1000) 2000

Maximum Cached Response Size (Details)

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Figure 5.15: Match Distribution Vary-
ing Maximum Cached
Response Size

22
.4

%

23
.0

%

22
.8

%

25
.0

%

25
.7

%

26
.8

%

30
.8

%

33
.3

%

35
.8

%

39
.0

%

42
.5

%15
.6

%

16
.9

%

17
.3

%

19
.7

%

20
.3

%

21
.5

%

23
.9

%

25
.9

%

26
.8

%

62
.0

%

60
.1

%

59
.7

%

57
.8

%

57
.0

%

53
.5

%

48
.9

%

45
.2

%

40
.4

%

35
.1

%

30
.7

%

17
.2

%

17
.5

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Theta

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Figure 5.16: Match Distribution of SSPLC
Varying Theta

19
.3

%

20
.3

%

20
.2

%

23
.8

%

26
.2

%

30
.7

%

35
.5

%

40
.5

%

46
.8

%

52
.5

%

80
.8

%

79
.8

%

79
.8

%

77
.4

%

76
.2

%

73
.8

%

69
.4

%

64
.6

%

59
.5

%

53
.2

%

47
.5

%

22
.6

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Theta

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Other

Figure 5.17: Match Distribution of NSC
Varying Theta

0.
0%

0.
0%

0.
1%

0.
1%

0.
4%

0.
6%

1.
0%

7.
7% 13

.8
% 23

.3
%

37
.1

% 44
.5

% 52
.6

%

4.
4%

0%

10%

20%

30%

40%

50%

60%

0.5 0.6 0.7 0.8 0.9 0.95 0.99999

Theta

P
er

ce
nt

ag
e

of
 C

ac
he

 H
it

s

NSC

SSPLC

Figure 5.18: Cache Hits Varying Theta (TPC-W 2)

5.6 Related Work 69

action” of TPC-W 2 to conduct our experiments. The data was generated conforming to
the rules of TPC-W Version 2, i.e., 100000 books were generated and stored in the DBMS.
We configured our remote business emulator (RBE) to run 8 emulated businesses (EB)
concurrently. The TTL was set to 5 minutes6 and a total of 3000 requests were sent to
the SSPLC. The cache size was 4.6 MB, i.e., about 5% of the data volume available at the
origin server could be cached. The slot size was set to the maximum size of one book, i.e.,
the cache was able to store about 2500 books. Every request asked for detailed information
about a randomly chosen number (1 to 10) of books. According to the TPC-W 2 specifi-
cations, the books should be selected using a given non-uniform random distribution, but
this distribution generates values which are distributed too uniformly for any cache. Again,
we use a Zipf distribution to select the books.

If a client requests product details for, e.g., book 2 and book 8, SSPLC translates the
request to the predicate “book = 2 ∨ book = 8”. Thus, SSPLC splits up the request into
two CPs, as described above, and generates a request for every single book if not available
in the cache. For this reason, there are only exact matches and disjoint matches in this
scenario. If not all books of a request are available in the cache, the SSPLC rates the
request as exact match and disjoint match according to the ratio of books available in the
cache to books not available in the cache. For example, if a client requests details about
eight books and six books are available in the cache, the request is rated as 0.75 exact
match and 0.25 disjoint match.

Figure 5.18 shows the exact matches for the benchmark varying theta of the Zipf distri-
bution. A non-semantic cache (NSC) is virtually useless in this scenario because the cache
hits are less than 1%, even if θ = 0.99999. This is because NSC can only answer requests
from the cache if two requests are exactly the same, i.e., the number of product details
requested must be the same, the books must be the same, and the order of the books must
be the same. SSPLC works very well for sufficient large θ, even though the cache size is
small (about 5% of the data volume available at the origin server) and the TTL is short.
For a realistic θ, i.e., greater or equal to 0.8, the SSPLC is able to answer more than 23%
of the requests.

5.6 Related Work

Caching in the context of Web services has been addressed, e.g., by Akamai [Not01] and
by the usage scenarios S032 and S037 of the World Wide Web Consortium [HHO04]. The
proposed approaches are either described very abstractly, or are limited to a more or
less straightforward store-and-resend of SOAP responses. Our approach differs in that it
takes advantage of the fact that query-style requests can be cached more efficiently using
semantic caching. Thus, this chapter proposes an alternative solution which is more flexible
and powerful.

6Every benchmark run lasted for about 20 minutes.

70 Semantic Caching for Web Services

A solution for a similar but simpler problem in the area of Web sources and respectively
Web databases, was presented by [LC99, LC01]. They focus on wrapper7 level caching.
Therefore, they are able to take advantage of the semantics of the declarative query lan-
guage SQL, i.e., they automatically deduce region predicates from SQL queries. In the area
of Web services, no such standardized declarative language exists. Due to our declarative
language for the annotation of WSDL documents with information about caching-relevant
semantics, we are able to apply semantic caching to Web services in, e.g., B2B and B2C
scenarios. Additionally, we investigate sorting and generalization issues. Thus, our solu-
tion is more comprehensive and more flexible. The basic techniques of both SSPLC and
[LC99, LC01] are based on prior work on semantic caching, e.g., [DFJ+96].

A different usage of caching for Web services is presented in [TR03]. They use caching
techniques for reliable access to Web services from, e.g., PDAs or similar unreliably con-
nected mobile devices. While connected to the Internet, the cache stores requests and
associated results but does not answer them itself. In the case of a disconnection, the
cache tries to answer the requests and additionally caches them. The cache plays the
requests back to the origin server as soon as it is online again. The authors use one repre-
sentative service to demonstrate the benefits of a Web service cache and expose a number
of issues in caching Web services. They do not present a generic solution, but they do
conclude that extensions to WSDL are needed to support cache managers. We think that
the language presented in this chapter constitutes a good base for such extensions.

5.7 Status and Future Work

We presented the semantic cache SSPLC that is suitable for caching responses from Web
services on the SOAP protocol level. We therefore introduced an XML-based declarative
language to annotate WSDL documents with information about the semantics of service
requests and responses. We demonstrated the validity of our proposed caching scheme by
performing a set of experiments. The results of these experiments confirm the reduction of
processing demands on the central servers and the diminishment of bandwidth consump-
tion, as well as competitive average response time.

We currently conduct benchmarks to compare the performance of our semantic caching
scheme without sorting or generalization against the performance with sorting and general-
ization enabled. We plan to investigate some ideas on how SSPLC can be further improved.
First, the declarative language can be extended to integrate additional semantic knowledge
like fragment inclusion dependencies [LC01] to be able to transform as many overlapping
or contained matches as possible into exact or containing matches. Furthermore, we in-
tend to improve our caching scheme by taking advantage of richer interfaces of services.
Additionally, we plan to investigate techniques which enable Web services to load caches
with relevant data [KFD00].

7Wrappers are used to extract data from Web sources.

Chapter 6

An Autonomic Computing Concept
for Application Services

In this chapter, we present a novel autonomic computing concept which is hiding the ever
increasing complexity of managing IT infrastructures. For this purpose, we virtualize, pool,
and monitor hardware to provide a dynamic computing infrastructure. A fuzzy-logic-based
controller module supervises all services running on this virtual platform. According to
IBM’s vision of autonomic computing, this infrastructure is a step towards a self-managing,
self-optimizing, and self-healing virtual platform for services. Higher-level services such as
business applications profit from running on this supervised virtual platform. For example,
failed services are restarted automatically. A service overload is detected and remedied by
either starting additional service instances or by moving the service to a more powerful
server. The capabilities and constraints of the services and the hardware environment are
specified in a declarative XML language. We used our prototype implementation of Au-
tonomicGlobe for first tests managing a blade server configuration and for comprehensive
simulation studies which demonstrate the effectiveness of our proposed autonomic comput-
ing concept.

This chapter is organized as follows: Section 6.1 motivates and introduces our autonomic
computing concept. In Section 6.2 we present the architecture of AutonomicGlobe, which
relies on our ServiceGlobe platform for location-independent execution of Web services.
The basic concepts of fuzzy controllers are described in Section 6.3. A detailed description
of the fuzzy controller integrated in AutonomicGlobe is presented in Section 6.4. Simulation
study results follow in Section 6.5. After a discussion of related work in Section 6.6, the
chapter is concluded in Section 6.7.

6.1 Motivation

Complexity and consequently administration costs of IT infrastructures are ever increas-
ing. To overcome this, IBM coined the term autonomic computing [Hor01] for a concept
that refers to some kind of self-management of hardware and software. Comprehensive

72 An Autonomic Computing Concept for Application Services

Infrastructure Layer

Application Services Layer

Business Applications

Figure 6.1: Architecture of the AutonomicGlobe Computing Concept

self-management capabilities for systems include self-configuration, self-optimization, self-
healing, and self-protection. Several global players conduct research in this area and have
already integrated some aspects of self-management into their hardware and software prod-
ucts.

We use a complex enterprise resource planning (ERP) environment as an example for
our autonomic computing concept. Figure 6.1 shows the layered architecture of Auto-
nomicGlobe. Application services such as business applications are conceptually running
on the application services layer. The services are virtualized, i.e., not running on a fixed
server. The self-management capabilities are provided by the infrastructure layer below. It
virtualizes, pools, and monitors hardware to provide an adaptive and dynamic computing
infrastructure which is supervised by a fuzzy-logic-based controller. This controller can, for
example, automatically restart failed services. It detects overloaded service instances and
remedies overload situations by either starting new service instances or by moving services
to more powerful servers. Available resources are shared between all services as appropriate
for a particular situation. Thus, by dynamically allocating the services, we improve the
average utilization of the available hardware and minimize idle times. Thereby, total cost
of ownership (TCO) is reduced either because more users can be handled using the existing
hardware or because less hardware is required initially.

The capabilities and constraints of the application services and the hardware environ-
ment are described using a declarative XML language. Among other things, with this
language the maximum and minimum number of instances of a service can be defined, the
performance of hosts can be related to each other, and the rules for the fuzzy controller
can be specified. As a decision finding component, a fuzzy controller is employed because
of its robustness, adaptability, and intuitive specification of rules.

Although AutonomicGlobe is designed to run in arbitrary heterogeneous computing
environments, we will use a blade server environment (see Section 6.2.5) for the presentation
of our autonomic computing concept and for some performance experiments.

6.2 Architecture of the Controller Framework 73

������
������
������
������

����

Load Situation

Load Monitor

Load Archive

Load Monitor

Load Monitor

Controller

Fuzzy Controller

Advisor

Load Monitoring System

 100 80 60 40 20

 1

 0.8

 0.6

 0.4

 0.2

 0
 0

Figure 6.2: Architecture of the Controller Framework

6.2 Architecture of the Controller Framework

AutonomicGlobe is based on our distributed and open service platform ServiceGlobe (see
Chapter 4). More precisely, it is based on the dispatcher service presented in Section 4.3.
The ambition of the AutonomicGlobe project is to add an active control component for
autonomic service and server management to ServiceGlobe. The architecture of our con-
troller framework is shown in Figure 6.2. Load monitors run on every server and report
their measurements to advisors. These measurements are used to maintain an up-to-date
local view of the load situation of the system (see Section 4.3.2). Imminent overload situa-
tions1 are reported to a load monitoring system which observes the load changes for a while
and triggers a fuzzy controller in case of a real overload situation. This fuzzy controller
initiates actions to prevent critical load situations. For example, if a CPU overload on
a service host is detected, the controller can move services from this overloaded host to
currently idle hosts. A load archive stores aggregated historic load data. These modules
are described in more detail in the following sections.

The controller framework is a service itself, i.e., it runs in a ServiceGlobe environment.
Thus, this flexible and extensible controller framework is seamlessly integrated into the
ServiceGlobe platform.

6.2.1 Load Monitors and Advisor Modules

Every server and every service is monitored by a load monitor service.2 Whenever a new
service is started in the ServiceGlobe system, a new advisor is instantiated by the controller.

1The controller also reacts in failure and idle situations. Because the handling of these situations is
quite analogous, we focus on overload situations in the remainder of this chapter.

2Figure 6.2 only shows the load monitors and advisors responsible for the servers. For simplicity of the
illustration, services running on the servers and their load monitors and advisors are omitted.

74 An Autonomic Computing Concept for Application Services

During instantiation, the advisor remotely executes the corresponding load monitor on the
service host running the new service. Load monitors are specialized services for resource
monitoring of service hosts and for monitoring of resource usage of services. The advisors
and corresponding monitors use the UDP protocol to send load messages from a monitor
to an advisor. These messages are used to maintain an up-to-date local view on the load
situation of the system. Service hosts report their current CPU and main memory usage,
whereas services report one numerical value representing their load.

6.2.2 Load Monitoring System

In real systems, short load peaks are quite common. If these peaks are relatively short,
the controller should not react because there may not actually be a real overload situa-
tion. If the system always reacted immediately, it would be very instable. Thus, if load
values exceed a tunable threshold, the advisor passes the load data to the load monitoring
system module for further observation. Then the load data is observed for a tunable time
(watchTime). After this period, the load monitoring system calculates the arithmetic mean
of the load during the watchTime. It determines a real overload situation if the average
load is above the threshold. If such an overload situation is detected, the fuzzy controller
module is triggered.

6.2.3 Fuzzy Controller

If an overload situation is detected by an advisor and verified by the load monitoring
system, the controller identifies an appropriate action to remedy the overload situation.
For this purpose, it initializes the fuzzy controller with information about the current load
situation of the affected services and servers. After that, the fuzzy controller calculates the
applicability of all actions. Our controller is able to handle the following actions: start,
stop, move, scale-in, scale-out, scale-up, and scale-down. If required, as for a move action,
the fuzzy controller then calculates the score of all suitable target service hosts. Finally,
the action with the highest applicability is executed and the host with the highest score
is selected as target host of the action. The fuzzy controller is described in more detail in
Section 6.4.

6.2.4 Load Archive

The load archive stores a persistent aggregated view of historic load data. This data is
used to calculate the average load of services during their specific watchTime. These values
are used to initialize all resource variables of the fuzzy controller before execution.

6.2.5 Environment and Service Virtualization

We use a blade server environment for the presentation of our autonomic computing concept
and for first performance experiments. This is because our research prototype is being field

6.2 Architecture of the Controller Framework 75

Figure 6.3: Blade Server and a Blade Server Rack

tested on a blade server environment. Blade servers are relatively cheap and the processing
power can easily be scaled to the current processing demand by adding additional blades
on the fly. Figure 6.3 shows a blade and a blade server rack containing infrastructure
hardware like redundant power supplies and network switches.

Further, administration costs of blade servers are low compared to traditional main-
frame hardware which was favored by large ERP installations in the past. Administration
overhead can be further reduced by implementing, e.g., NetBoot based on the PXE Proto-
col [Sch03]. Using NetBoot, new blades added to the rack are booted instantly by loading
a kernel and a software image over the network. After the boot process is finished, Au-
tonomicGlobe is started automatically on this blade to make the blade available to the
controller. Blade servers normally store their data using a storage area network (SAN) or
a network attached storage (NAS). Thus, CPU power and storage capacity can be scaled
independently and services can be executed on any blade because services can access their
persistent data regardless of the blade on which they are running.

Services running on the blade servers are virtualized by usage of service IP addresses,
i.e., every service has its own IP address assigned. This IP address is bound to the physical
network interface card (NIC) of the host running the service. Thus, if a service is moved
from one host to another, the virtual IP address is unbound from the NIC of the old
host running the service and afterwards bound to the NIC of the target host. Thus,
services are decoupled from servers. This service virtualization is a basic requirement for
AutonomicGlobe.

76 An Autonomic Computing Concept for Application Services

medium

Name of
Linguistic
Variable

Linguistic Terms
Referring to

cpuLoad

Membership
Functions

of
Linguistic

Terms

low
medium
high

high

cpuLoad

T
ru

th
 V

al
ue

CPU Load
l=0.6

low

 0.6

 0.8

 1

 0.2

10.80.60.40.2 0
 0

 0.4

µmedium(l) = 0.5

µhigh(l) = 0.2

Figure 6.4: Linguistic Variable cpuLoad

6.3 Fuzzy Controller Basics

In general, fuzzy controllers are special expert systems based on fuzzy logic [KY94]. Fuzzy
controllers are used in control problems for which it is difficult or even impossible to con-
struct precise mathematical models. In the area of autonomic computing, these difficulties
stem from inherent nonlinearities, the time-varying nature of the services to be controlled,
and the complexity of the heterogeneous system. Contrary to classical controllers, fuzzy
controllers are capable of utilizing the knowledge of an experienced human operator as
an alternative to a precise model. This knowledge is expressed using intuitive linguistic
descriptions of the manner of control.

Fuzzy logic is the theory of fuzzy sets devised by Lotfi Zadeh in 1965 [Zad65]. The mem-
bership grade of elements of fuzzy sets ranges from 0 to 1 and is defined by a membership
function. Let X be an ordinary (i.e., crisp) set, then

A = {(x, µA (x)) | x ∈ X} with µA : X → [0, 1]

is a fuzzy set in X. The membership function µA maps elements of X into real numbers
in [0, 1]. Thereby, a larger value (truth value) denotes a higher membership grade.

Linguistic variables are variables whose states are fuzzy sets. These sets represent
linguistic terms, such as low, medium, and high. A linguistic variable is characterized by
its name, a set of linguistic terms, and a membership function for each linguistic term. An
example for the linguistic variable cpuLoad is shown in Figure 6.4. The figure shows the
three linguistic terms low, medium, and high with their assigned trapezoid membership

6.3 Fuzzy Controller Basics 77

Defuzzification
Module

Fuzzification
Module

Fuzzy Inference
Module

Fuzzy Rule Base

Actions

Conditions

Fuzzy Controller

Controlled
Adaptive

Computing
Infrastructure

Figure 6.5: Architecture of a Fuzzy Controller

functions3. Other shapes of membership functions can be used as well, but since trapezoid
functions were empirically proven to be effective, we decided to use them.

Figure 6.5 shows the general architecture of a fuzzy controller according to [KY94].
The controller works by repeating a cycle of three steps. First, measurements are taken
of all variables representing relevant conditions of the controlled infrastructure. These
measurements are converted into appropriate fuzzy sets (input variables) in the fuzzification
step. After that, these fuzzified values are used by the inference engine to evaluate the fuzzy
rule base. At last, the resulting fuzzy sets (output variables) are converted into a vector
of crisp values during the defuzzification step. The defuzzified values represent the actions
taken by the fuzzy controller to control the infrastructure. We will now explain the fuzzy
controller mechanisms in more detail by way of an example from the area of autonomic
computing.

During the fuzzification phase, the crisp values of the measurements (e.g., CPU load
of a host) are mapped onto the corresponding linguistic input variables (e.g., cpuLoad) by
calculating membership rates using the membership functions of the linguistic variables.
For example, according to Figure 6.4, a host having a measured CPU load l = 0.6 (60%)
has 0.5 medium and 0.2 high cpuLoad.

In the inference phase, the fuzzy rule base is evaluated using the fuzzified measurements.
The form of the rules is exemplified by the two sample rules4

IF cpuLoad IS high AND

(performanceIndex IS low OR performanceIndex IS medium)

THEN scaleUp IS applicable

IF cpuLoad IS high AND performanceIndex IS high

3In the figure, triangular functions are shown which are a special form of trapezoid functions. Actually,
our controller can handle arbitrary trapezoid functions.

4These simple rules are only used to explain the inference phase. The rules used in our autonomic
computing system are generally more complex.

78 An Autonomic Computing Concept for Application Services

Terms

Name of
Linguistic
Variable

Linguistic Terms
Referring to

Membership
Functions

of
Linguistic

a = 0.6

Clipped Fuzzy Set

applicable

scaleUp
T

ru
th

 V
al

ue

Applicability

scaleUp

0.8

 0.6

 0.8

 0.2

 0

 1

1 0 0.2 0.4 0.6

 0.4

Figure 6.6: Max-Min Inference Result

THEN scaleOut IS applicable

where cpuLoad and performanceIndex (specifying the relative performance of a server)
are the input variables and scaleUp and scaleOut are the output variables. Typical fuzzy
controllers have dozens of rules. Actually, AutonomicGlobe’s fuzzy controller currently
comprises about 40 rules. The first sample rule states that it is reasonable to move a
service to a more powerful host (scale-up) if the host running the service has a high load
and a low or medium performance index (the higher the performance index of a host, the
more powerful it is). The second rule states that it is reasonable to start an additional
service instance (scale-out) if the host running the service is highly loaded despite being
quite powerful.

Conjunctions of truth values in the antecedent of a rule are evaluated using the min-
imum function. Analogously, disjunctions are evaluated using the maximum function.
Given a CPU load of l = 0.9, the membership grades for the linguistic variable cpuLoad
are µlow(l) = 0, µmedium(l) = 0 and µhigh(l) = 0.8. Given a performance index of i = 5, we
assume for this example that the membership grades for the linguistic variable performan-
ceIndex are µlow(i) = 0, µmedium(i) = 0.6 and µhigh(i) = 0.3. Thus, the truth value of the
antecedent of the first rule evaluates to min(0.8,max(0, 0.6)) = 0.6 and the truth value of
the antecedent of the second rule evaluates to min(0.8, 0.3) = 0.3.

In classical logic, the consequent of an implication is true if the antecedent evaluates
to true. For fuzzy inference, there are several different inference functions proposed in
the literature. We use the popular max-min inference function. Using this function, the
fuzzy set specified in the consequent of a rule (e.g., applicable) is clipped off at a height
corresponding to the rule’s antecedent degree of truth. After rule evaluation, all fuzzy
sets referring to the same output variable are combined using the standard fuzzy union

6.4 Fuzzy Controller for Load Balancing 79

Detection of an
Exceptional

Situation

Selection of an
Action

Fuzzy Controller

Selection of
 a Host

Fuzzy Controller

Execution of the
Action

Failure Success
No

No

Other Success

Action is Scale-In or Stop

Another
Host?

Yes

Another
Action?

Yes
Failure

Failure

Success

Failure

Action

Figure 6.7: Interaction Flow Chart of the Fuzzy Controllers

operation:

µA∪B(x) = max (µA (x) , µB (x)) for all x ∈ X

The resulting combined fuzzy set is the result of the inference step. Figure 6.6 shows the
result of the inference for the linguistic output variable scaleUp.

During the defuzzification phase, a sharp output value is calculated from the fuzzy set
that results from the inference phase. There are several defuzzification methods described
in the literature. We use a maximum method such that the result is determined as the
leftmost of all values at which the maximum truth value occurs. Regarding our example
shown in Figure 6.6, the crisp value for the action scale-up is a = 0.6, i.e., the action is
applicable to a degree of 0.6. The linguistic variable scaleOut is defined analogously. Thus,
the action scale-out is applicable to a degree of 0.3. Therefore, the controller will favor the
scale-up action for execution.

6.4 Fuzzy Controller for Load Balancing

The fuzzy controller module in AutonomicGlobe consists of two separate fuzzy controllers.
The first one reacts on exceptional situations and determines an appropriate action. If the
selected action requires a target host, e.g., scale-out, a second fuzzy controller is triggered
to determine a suitable service host. Figure 6.7 shows the interaction of the two fuzzy
controllers selection of an action and selection of a host. After a rearrangement has taken
place, the involved services and servers are protected for a certain time, i.e., they are
excluded from further actions. This protection mode prevents the system from oscillation,
i.e., the moving of services back and forth.

80 An Autonomic Computing Concept for Application Services

Variable Description
cpuLoad CPU load of the server (average load of all CPUs)
memLoad main memory load of the server
performanceIndex performance index of the server
instanceLoad load of the service instance
serviceLoad average load of all instances of the service
instancesOnServer number of services running on the server
instancesOfService number of instances of the service

Table 6.1: Input Variables for the Action-Selection

6.4.1 Action-Selection Process

In the first phase, the input variables of the fuzzy controller are initialized. Table 6.1 shows
the input variables of our controller. All variables of the fuzzy controller regarding CPU or
memory load are set to the arithmetic means of the load values during the service specific
watchTime. The other variables are initialized using the current measurements or using
available metadata, e.g., for the performanceIndex.

The fuzzy controller distinguishes between exceptional situations induced by a service,
and exceptional situations induced by a server (see Figure 6.8). If a service has triggered the
controller, it decides on the basis of information about the considered service, the service
instance, and the server on which it is executed. Other services running on the considered
host are not taken into account. If a server triggered the fuzzy controller, the gathered
information of all services running on the considered host must be taken into account.

Since the action-selection process depends on the specific situation, our controller is
able to handle dedicated rule bases for different exceptional situations (triggers). We dis-
tinguish between four different triggers: serviceOverloaded, serviceIdle, serverOverloaded,
and serverIdle. Further, our controller facilitates dynamic adaptations. For example, an
administrator can add service-specific rule bases for mission critical services to favor pow-
erful servers for these services.

A rule base comprises dozens of rules, each consisting of an antecedent and a conse-
quent. Figure 6.9 shows an example rule base for the serviceOverloaded trigger. The rules
presented are the same as in Section 6.3, given in XML format.

The fuzzy controller evaluates the appropriate rule base and calculates crisp values
for the output variables. Table 6.2 shows the output variables. These output variables
represent the actions executed by the controller to control the infrastructure.

The fuzzy controller only considers actions that do not violate any given constraint,
e.g., a database service normally does not support a scale-out. Thus, the action scale-out
is not possible for such a service. These constraints are defined using a declarative XML
language. The result of the fuzzy controller is a list of actions along with their ratings
between 0% and 100%. These ratings determine how applicable the actions are in the
current situation. In case a server triggered the controller, we execute the fuzzy controller
for each service running on the server and subsequently collect the possible actions of all
services.

6.4 Fuzzy Controller for Load Balancing 81

Detection of an
Exceptional

Situation

Selection of an
Action for a

Service

Ordered Set
of Actions

Service ServerCaused
by?

For all Services on
the Server

Selection of an
Action for
Service n

Selection of an
Action for
Service 2

Selection of an
Action for
Service 1

Verification of the
Constraints and Sorting

of the Actions

...

Figure 6.8: Flow Chart of the Action-Selection Process

Afterwards, the actions are sorted by their applicability in descending order. Actions
whose applicability value is lower than an administrator-controlled minimum threshold are
discarded. The first action of the list is selected and verified once more. This is necessary
because the fuzzy controller is able to handle several exceptional situations concurrently.
Thus, if as an example the maximum number of instances of a service is currently run-
ning, no additional instance can be started. Consequently, a scale-out cannot be performed.

Variable Description
start starting of a service
stop stopping of a service
scaleIn stopping of a service instance
scaleOut starting of a service instance
scaleUp movement of a service instance to a more powerful host
scaleDown movement of a service instance to a less powerful host
move movement of a service instance to an equivalently powerful host

Table 6.2: Output Variables for the Action-Selection

82 An Autonomic Computing Concept for Application Services

<ruleBase name="serviceOverloaded">

<rule>

<condition>cpuLoad is high and

(performanceIndex is low or performanceIndex is medium)

</condition>

<action>scaleUp is applicable</action>

</rule>

<rule>

<condition>cpuLoad is high and performanceIndex is high</condition>

<action>scaleOut is applicable</action>

</rule>

...

</ruleBase>

Figure 6.9: Rule Base for the serviceOverloaded Trigger

Variable Description
cpuLoad CPU load of the server (average load of all CPUs)
memLoad main memory load of the server
instancesOnServer number of instances on the server
performanceIndex performance index of the server
numberOfCpus number of CPUs of the server
cpuClock clock speed of the CPUs of the server
cpuCache cache size of the CPUs of the server
memory main memory size of the server
swapSpace size of the available swap space
tempSpace size of the available temporary disk space

Table 6.3: Input Variables for the Selection of a Server

6.4.2 Server-Selection Process

In the case of a scale-out, scale-up, scale-down, move, or start, an appropriate target server
must be chosen to specify where the action should take place. The selection of a server
proceeds analogously to the selection of an action. First, a list of all possible servers is
compiled. Initially, these are all servers on which an instance of the service can be started
and that are not in protection mode. For each server the fuzzy controller is executed with
the input variables initialized to the current values. Table 6.3 shows the input variables
for the server-selection.

Since the server-selection process depends on the specific action, our controller is able
to handle different rule bases for different actions. With these rules we determine the
applicability of a server for handling the given situation. In the defuzzification phase, the
controller calculates a crisp value for every possible host and selects the most applicable
server.

6.4 Fuzzy Controller for Load Balancing 83

Figure 6.10: Administrator Controller GUI

6.4.3 Execution of the Controller’s Decision

The controller can operate in two different modes: in the automatic mode, the actions are
logged and then executed. In semi-automatic mode, the human administrator is contacted
to confirm the action prior to execution. Before an action is actually executed, the controller
checks once more whether or not the concerned resources are in protection mode. This
is necessary because a concurrently running selection process might have resulted in a
conflicting action in the meantime. If all preconditions hold, the controller carries out the
action.

Otherwise, the execution of the action fails and the controller tries the next available
host respectively action. If there are no more possible hosts and actions with a sufficient ap-
plicability, the controller requests human interaction by alerting the system administrator.
For this purpose, our controller is coupled with a graphical control console which displays
the monitored state of the system. Using this console, the administrator can manually
execute actions normally triggered by the fuzzy controller. Figure 6.10 shows the GUI of
the controller console. There are three different views: the server view displays information
about the controlled servers, the service view is analogously displaying information about
the controlled services, and the message view lists administrative messages and notifica-
tions. The presented screenshot shows the server view. The panel on the left-hand side
shows a list of all controlled servers grouped by category. The upper right-hand panel
displays overview information about all servers belonging to the selected category. Finally,

84 An Autonomic Computing Concept for Application Services

the lower right-hand panel displays detailed information about the selected server.

6.5 Simulation Studies

We performed comprehensive simulation studies using our prototype implementation of Au-
tonomicGlobe to assess the effectiveness of our autonomic computing concept. They have
been conducted using a simulation environment that models a realistic ERP installation.

6.5.1 Description of the Simulation Environment

The simulation environment models a realistic ERP system with the corresponding hard-
ware. Our simulated ERP system is based on an SAP installation. The simulated services
and servers are described using our declarative XML language, just like real existing ser-
vices and servers. Figure 6.11 shows the architecture of our simulated ERP installation,
which is—like, e.g., SAP ERP systems—divided into three layers: the database layer, the
application server layer, and the presentation layer. End-users communicate with the ERP
installation using clients in the presentation layer. The end-users’ clients themselves do
not affect the system, thus we only simulate the number of users connected to services
of our simulated ERP installation. Our installation comprises three subsystems in the
application and database layer: classical Enterprise Resource Planning (ERP), Business
Warehouse (BW), and Customer Relationship Management (CRM), each running its own
dedicated database and central instance. The central instance application servers (CIs) are
responsible for the global lock management of their particular subsystem. The other ap-
plication servers (BW, CRM, FI, HR, LES, PP) execute the application logic, i.e., process
user requests. Our controller supervises these application servers, databases, and central
instances.

In a real system, there is a great deal of communication between the individual services.
In our simulation environment, we neglect communication costs because we assume a local
high-bandwidth network connection. This is realistic in blade server environments which
are normally equipped with Gigabit Ethernet or Infiniband.

Our system simulates a varying number of users generating requests. As observed in
running SAP installations, the course of a request is simulated as follows. First, a request
increases the load of the affected service host for a short period. Before handling the request
in the database, the lock management of the central instance (CI) is requested. Therefore,
the load drops on the application server and increases on the central instance. In case of
a positive check the request is passed to the database. Thus, load drops on the central
instance and increases on the database for the processing time. Finally, the database sends
the answer back to the application server. Thus, for a short period, the load drops on the
database and rises on the application server. Since the load caused by a single request
depends on the specific service, e.g., an FI request produces lower load than a BW request,
our simulation system uses service-specific parameters to simulate the impact of requests.

In addition to the load produced by user requests, every application server itself induces

6.5 Simulation Studies 85

CI

CI: Central Instance

CRM: Customer Relationship Management

FI: Financial Accouting

PP: Production and Planing System

LES: Logistics Execution System

HR: Human Resources

Database Database Database

CICI

BW CRM

HRLESLESLESLES

FI FI FI PP PP

Presentation Layer

BW: Business Warehouse

Figure 6.11: Example of an ERP Environment

a basic load. The load curves generated by simulated services follow predetermined pat-
terns that can be observed in many companies running SAP software. Figure 6.12 shows
example load curves for an LES and for a BW application server over one day. At eight
o’clock, when the employees begin work, the number of requests sent to the LES applica-
tion servers increases. There are three peaks—one in the morning, one before midday, and
one before the employees leave. The load curve of a BW application server is different.
During the night, several heavy-load batch jobs are processed. During the day, only few
user requests have to be processed based on the aggregated data.

We assume a hardware environment that is scaled for peak load as that is quite com-
mon in today’s computing centers. A standard single processor blade in our simulation
(performance index = 1) is dimensioned to handle at most 150 users of one service. The
CPU load of the blades is between 60% and 80% during main activity in order to retain
reserves for unpredictable load bursts. Figure 6.13 shows the simulated hardware and the
initial deployment of the services. The simulated servers are5:

5The performance index values stated are based on estimations and do not necessarily reflect the true

86 An Autonomic Computing Concept for Application Services

00:00 04:00 08:00 12:00 16:00 20:00 00:00

L
oa

d

Time

LES
BW

Figure 6.12: Qualitative Load Curve of LES and BW

Service Number of Users Number of Instances
BW 60 2
CRM 300 1
FI 600 3
HR 300 1
LES 900 4
PP 450 2

Table 6.4: Initial Number of Users

• 8 FSC-BX300 blades with one Intel Pentium III 933 MHz processor and 2 GB main
memory each (performance index = 1).

• 8 FSC-BX600 blades with two Intel Pentium III 933 MHz processors and 4 GB main
memory each (performance index = 2).

• 3 HP-Proliant BL40p servers with four Intel Xeon MP 2.8 GHz processors and 12
GB main memory each (performance index = 9).

Table 6.4 shows the number of users per service and the number of instances that are
started initially. These numbers are reasonable for a medium-sized company running an
SAP system, e.g., most departments use the LES application servers while only the staff
department uses the HR application servers.

Every simulation starts with the same reasonable initial deployment of the services
shown in Figure 6.13. We run different simulation series and continually increase the
number of users by 5% until the system becomes overloaded. The BW is an exception
because it processes batch jobs instead of interactive requests. Thus, we increase the load
per batch job by 5% and leave the number of jobs constant.

performance of the servers.

6.5 Simulation Studies 87

H
os

tn
am

e

L
E

S

A
m

id
al

a

A
th

le
tic

s

L
E

S

B
el

in
da

FI B
ra

ve
s

PP B
re

w
er

s

FI D
ag

ob
er

t

C
I

E
R

P

D
ol

ph
in

C
I

C
R

M

G
ia

nt
s

C
I

B
W

In
di

an
s

B
W

V
ad

er

C
R

M

M
et

s

H
R

R
ed

so
x

FI R
oc

ki
es

L
E

S

T
ig

er
s

L
E

S

T
ita

ni
a

PP W
hi

te
so

x

B
W

HP − Proliant BL40p

Leia

DB BW

HP − Proliant BL40p

Goldfish

DB CRM

HP − Proliant BL40p

Devilray

DB ERP

Hostname

Chassis with 8 x FSC − BX300

Chassis with 8 x FSC − BX600

Server with
Service AllocationService Instances

Hardware

Service Allocation
Blade Server with

Se
rv

ic
e

In
st

an
ce

s

Figure 6.13: Simulated Hardware and Initial Deployment

Service Conditions Possible Actions
database ERP exclusive –
database BW, CRM – –
central instances – –
application server minimum 2 FI instances scale-in, scale-Out

minimum 2 LES instances

Table 6.5: Services in the Constrained Mobility Scenario

We perform simulation series using three different scenarios. In the static scenario, a
computing environment with all services being static is simulated. This is the standard
environment used in most computing centers today. In the constrained mobility scenario, we
simulate an ERP environment supervised by our controller, where some but not all services
support the scale-in and scale-out action (Table 6.5 gives an overview). The exclusive
condition states that no other service may be executed on the host. The minimum instances
condition defines the minimum number of instances of a service allowed. In this scenario, all
databases and central instances are static. Users are distributed to the instances of a service
according to the performance indexes of the servers running the instances. Application
servers support scale-in and scale-out. After an scale-out, the system does not dynamically
redistribute the users, i.e., users are logged in at one service instance during their complete
session. We simulate a fluctuation of the users, i.e., users infrequently log themselves
off of the application server they are connected to and reconnect to the currently least-

88 An Autonomic Computing Concept for Application Services

Service Conditions Possible Actions
database ERP exclusive –
database CRM – –
database BW minimum performance index 5 scale-in, scale-out
central instances – scale-up, scale-down,

move
application server minimum 2 FI instances scale-in, scale-out,

minimum 2 LES instances scale-up, scale-down,
move

Table 6.6: Services in the Full Mobility Scenario

loaded server. This behavior can be observed in real systems, too. In the full mobility
scenario, we simulate a system where the BW database can be distributed across several
servers. The central instances and the other application servers can be moved from one
host to another (see Table 6.6 for details). The minimum performance index constraint
defines the minimum performance index requirements of a service. Furthermore, users are
dynamically redistributed across all instances of a service if any instance gets overloaded.

Today, the movement of services as well as the dynamic redistribution of users are only
supported by few services because services must explicitly assist the movement or redis-
tribution. Movement requires that the service be able to store its internal state before it
is stopped, and that the newly started instance can restore the old state. Furthermore, it
must be guaranteed that the users can be reconnected automatically to the newly instan-
tiated service instance. Dynamic redistribution requires that the service be able to move
parts of its state to another instance. In the future, we expect that more services will
support dynamic relocation and redistribution and thus consider them in the full mobility
scenario.

To prevent the system from reacting too late, we set the controller’s threshold value
for a CPU overload to 70%, i.e., if a server has more than 70% CPU load it is considered
overloaded. In this case, the controller monitors the load values of the service for 10 minutes
(watchTime) in order to prevent the system from over-reacting on short load bursts. After
execution of an action, the affected services are protected for 30 minutes and affected
servers are protected for 60 minutes. The threshold value for an idle situation depends on
the performance index of the server and is 12.5%/performance index. An idle situation is
recognized after a watchTime of 20 minutes.

All simulation runs are carried out in 40-fold acceleration and are simulating a system
for 80 hours. The shown time intervals correspond to simulated time.

6.5.2 Results of the Simulation Studies

Figures 6.14, 6.15, and 6.16 show simulation results with the number of users increased by
15% compared to the user numbers shown in Table 6.4. This demonstrates how the ERP
installation handles an increasing number of users. The figures show the load curves of all
servers and the average load of the whole system, indicated by a thick line.

6.5 Simulation Studies 89

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

Figure 6.14: CPU Load of all Servers (Static Scenario)

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

Figure 6.15: CPU Load of all Servers (Constrained Mobility Scenario)

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

Figure 6.16: CPU Load of all Servers (Full Mobility Scenario)

Amidala

Athletics

Belinda

Braves

Brewers

Dagobert

Devilray

Dolphin

Giants

Goldfish

Indians

Leia

Mets

Redsox

Rockies

Tigers

Titania

Vader

Whitesox

Average Load

90 An Autonomic Computing Concept for Application Services

In the static scenario, several servers become overloaded, i.e., have a CPU load of more
than 80% for a long time6, at regular intervals, thus a non-adaptive computing environ-
ment cannot handle this situation satisfactorily. If a host running an interactive service
is overloaded, the service requires more time to process the requests and, therefore, de-
lays new requests. Thus, users cannot perform all their requests in a given period, e.g., a
working day, and requests will be delayed until the next day. If a BW application server
is overloaded, the batch jobs require more time. Thus, they may become conflicted with
other services and compete against them for resources.

The situation already improves in the constrained mobility scenario. The controller
reacts on arising overload situations by automatically starting additional instances of ser-
vices. Because the users are not dynamically redistributed after a scale-out has taken place,
the original servers remain quite loaded for a while. Due to user fluctuations, the load of
the initially overloaded services slowly decreases. Altogether, the overload situations are
on average shorter than in the static scenario, but due to the restrictions of the static user
distribution, the overload situations cannot be prevented completely.

In the full mobility scenario, the results are much better than in the constrained mobility
scenario. Idle resources are efficiently used to relieve the load on heavily used resources.
Thus, the utilization of the hardware is well-balanced. Due to the dynamic redistribution
of users across all service instances, the effects of controller actions are observable almost
instantly. Another advantage of the full mobility scenario is that the controller can react
more flexibly on overload situations. The remaining short overload peaks at the beginning
stem from the watchTime. If the instances of a service become overloaded, the controller
monitors the instances for 10 minutes before starting a new instance. Therefore, for a short
time, the existing instances stay overloaded. After the first day, there are normally more
instances of every application server running than in the beginning. Thus, if the controller
does not stop too many instances, the load can be distributed across a sufficient number
of instances, and overload situations can be avoided.

In order to demonstrate the behavior of our controller in more detail, we present the
FI application servers’ load curves of the above described simulations.

Figure 6.17 shows the load curve of the FI application servers in the static scenario.
There are three instances running on Belinda, Brewers, and Redsox. As services are static,
the controller cannot remedy the overload situations. Thus, the service instances running
on the less powerful blades become overloaded periodically. If a service or a server is
overloaded, it can no longer be used in a reasonable way because the processing of mission
critical OLTP-requests is slowed down.

Figure 6.18 shows load curves in the constrained mobility scenario. When the employees
begin to work, the instances on Belinda and Brewers become overloaded. The controller’s
reaction is to start an additional instance on Dagobert (“Out Dagobert”). Since users
are not redistributed dynamically, the load of Belinda and Brewers only decreases slowly.

6The controller considers a server already overloaded if it has more than 70% CPU load to prevent the
system from reacting too late. Actually, we consider a server overloaded if it has more than 80% CPU
load for a long time.

6.5 Simulation Studies 91

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

FI on Belinda
FI on Brewers

FI on Redsox
Controller Actions

Figure 6.17: CPU Load of the FI Instances (Static Scenario)

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

FI on Belinda
FI on Braves

FI on Brewers
FI on Dagobert

FI on Indians
FI on Leia

FI on Redsox
FI on Tigers

FI on Vader
Controller Actions

Out
Dagobert

Out
Leia 1 2

Out
Braves

In
Dagobert

In
Braves

In
Redsox

In
Leia

Out
Tigers

Out
Leia

3 4
In
Brewers

In
Indians

In
Vader

In
Leia

1: In
Brewers

2: Out
Brewers

3: Out
Vader

4: Out
Indians

Figure 6.18: CPU Load of the FI Instances (Constrained Mobility Scenario)

92 An Autonomic Computing Concept for Application Services

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

FI on Athletics
FI on Belinda
FI on Brewers
FI on Dolphin

FI on Giants

FI on Indians
FI on Mets

FI on Redsox
FI on Rockies

FI on Tigers

FI on Titania
FI on Vader

FI on Whitesox
Controller Actions

Out
Indians

Out
Athletics

In
Athletics

Out
Athletics

Out
Giants

In
Giants

Move
Redsox
Tigers

Out
Whitesox

1

2

3

In
Brewers

Up
Belinda

Vader

Out
Belinda

Move
Indians
Titania

Move
Titania
Mets

Up
Belinda
Titania

Move
Mets

Whitesox

4 5 6

Up
Athletics
Vader

Move
Giants
Athletics

1: Move
Brewers
Dolphin

2: In
Whitesox

3: Out
Brewers

4: Out
Belinda

5: Move
Vader
Rockies

6: Out
Giants

Figure 6.19: CPU Load of the FI Instances (Full Mobility Scenario)

These two hosts are still overloaded after the protection time, thus the controller starts
another instance on Leia (“Out Leia”). Because these actions do not remedy the overload
on Brewers fast enough, the controller decides to stop the instance running on Brewers
(“In Brewers”) to protect the host from a continuous overload situation. This FI instance
is started again (“Out Brewers”) after a short period of time due to an overload situation
on Dagobert. Another FI instance is started on Braves (“Out Braves”). Further on, the
controller starts new FI instances as required and stops instances running on overloaded
blades and idle instances. During the second day, the controller needs only to execute
one scale-in action because the FI instances running on Belinda, Brewers, and Leia can
handle the load. The FI instance on Redsox is stopped (“In Redsox”) because Redsox is
additionally running a CRM instance and, thus, is overloaded. The FI instance running
on Leia is stopped (“In Leia”) in the night because the database of the BW subsystem uses
the resources of Leia heavily. Thus, at the beginning of the third day, the remaining FI
instances become overloaded. To remedy this overload situation, the controller starts new
FI instances as required. In summary, the controller can avert most imminent overload
situations from the FI. The remaining overload situation periods are short.

Figure 6.19 shows load curves in the full mobility scenario. Again, the controller adds
and stops instances as required. Additionally, service instances are moved from heavy
loaded servers to other servers. In this scenario, users are dynamically redistributed, thus
the effects of controller actions are observable instantly and overload situation can be

6.6 Related Work 93

Scenario Maximum Number of Users
static 100%
constrained mobility 115%
full mobility 135%

Table 6.7: Maximum Possible, Relative Number of Users

averted completely.

6.5.3 Summary of Simulation Assessment

We ran simulation series for the three scenarios and each time increased the number of
users by 5% until the system became overloaded, i.e., one or more servers had a CPU load
of more than 80% for a long time. Table 6.7 shows the maximum numbers of users that
can be handled by the existing hardware in the different scenarios. The values are relative
to the number of users stated in Table 6.4.

In the static scenario, the hardware is sized for the initial number of users. Thus, if we
increase the number of users by 5%, some servers immediately become overloaded. Using
our controller in the constrained mobility scenario, the ERP installation can handle 15%
more users because otherwise idle resources are used to remedy overload situations. Due
to the restrictions of the static user distribution and of the available actions, idle resources
cannot be used as efficiently as in the full mobility scenario. Nevertheless, our controller
already works quite well for the constrained mobility scenario. In the full mobility scenario,
our controller can push the number of users that can be handled by the ERP installation
to 135% compared to the static scenario. The number of users is higher than in the
constrained mobility scenario because idle resources can be used more efficiently.

The conclusion of our studies is that our controller can improve the capability of current
IT infrastructures if static services like databases and central instances are deployed well.
Additional degrees of freedom and dynamic user redistribution result in much more effective
controller actions and, thus, a higher number of users that can be handled by the available
hardware.

6.6 Related Work

Weikum [WMHZ02] motivates automatic tuning in the database area and concludes that
it should be based on the paradigm of a feedback control loop which consists of three
phases: observation, prediction, and reaction. [MLR03] presents IBM’s autonomic query
optimizer—based on a feedback control loop—that automatically self-validates its model
without requiring any user interaction to repair incorrect statistics or cardinality estimates.
[KMP93] developed a similar self-optimizing query optimizer that is based on a blackboard
architecture known from the area of artificial intelligence. [LL02] presents several self-
healing and self-optimizing features of IBM DB2. These features optimize, e.g., indexes

94 An Autonomic Computing Concept for Application Services

and performance parameters. Rather than concentrating on a single software system, we
focus on the optimization of a complex adaptive computing infrastructure. This is necessary
as the complexity of current computer infrastructures is evermore increasing.

Since IBM coined the term autonomic computing [Hor01] in October 2001, several global
players initiated research projects in this area. An autonomic computing system provides
self-managing capabilities, i.e., it handles self-configuration, self-healing, self-optimization,
and self-protection. First results of this research area are already integrated in the IBM
Director 4.1 [IBMa]. Using this tool, administrators can view and track the hardware
configuration of remote systems and monitor the usage and performance of critical com-
ponents. Further, it contains tightly integrated tools, e.g., for monitoring the availability
of hardware and software and distributing system resources according to administrator-
defined policy entitlements, to optimize performance and maximize availability. Sun N1
Grid [Suna] is Sun’s vision, architecture, and product for optimizing network computing.
It virtualizes the data center and monitors the computing infrastructure. The HP Utility
Data Center [HP] is designed for on demand computing systems where processing needs
are constantly changing. It virtualizes, consolidates, and standardizes the hardware. Thus,
the administrators can dynamically allocate and reallocate resources via a Web-based in-
terface. While the commercial products depend on vendor-specific hardware-features, our
solution is independent of the underlying hardware. Further, our autonomic controller
supervises and controls a complex computing infrastructure without human interaction
and/or supports administrators by giving recommendations.

For the description of the servers and services we use a proprietary XML language
that is based on preliminary versions of an XML language for the description of servers
and services from the “Scheduling and Resource Management” project group of the Global
Grid Forum [GGF]. If this XML language becomes standard, we will adopt it.

The author of [Bou01] pragmatically explains the concepts and terminology of load
balancing. This book shows the complexity of load balancing in computing infrastructures.

Our work is also related to the academic projects Autonomia [DHX+03] and Auto-
Mate [ABL+03]. The Autonomia environment provides a core autonomic middleware
service to maintain autonomic requirements. Its methodology to achieve self-control and
management is based on three procedures: monitoring, analysis and verification, and adap-
tation. Until now, they have implemented a proof-of-concept prototype that handles several
aspects of self-healing. Currently, they are working on integrating self-optimizing features.
AutoMate is a framework for enabling autonomic grid applications. They use a decentral-
ized deductive engine, that provides the core capabilities for supporting autonomic compo-
sitions, adaptations, and optimizations. In their system, the monitored services themselves
communicate informations about their behavior, resource requirements, performance, and
adaptability to the AutoMate system. In contrast to Autonomia and AutoMate, our auto-
nomic controller uses an adaptive fuzzy controller. Thus, the load balancing and reaction
on exceptional situations is easy to configure and to administrate. Further, the monitored
services need not to be modified.

6.7 Status and Future Work 95

6.7 Status and Future Work

We presented our novel autonomic computing concept which is hiding the ever increasing
complexity of managing IT infrastructures. AutonomicGlobe is based on our distributed
and open service platform ServiceGlobe. We described the architecture of AutonomicGlobe
and its controller framework, which enhances ServiceGlobe with an active control compo-
nent for autonomic service and server management. We presented a fuzzy controller which
generates actions to remedy imminent overload, failure, and idle situations. We demon-
strated the effectiveness of our proposed solution by performing a set of comprehensive
simulation studies using our prototype. The results of these studies confirm the applicabil-
ity of a fuzzy controller for the supervision of an adaptive computing infrastructure, and
the benefits of such an infrastructure even for already existing complex environments.

We implemented a research prototype of AutonomicGlobe and currently field test it on
blade server environments using a rule base comprising about 40 rules. Up to now, the
largest environment used for testing was a blade server system with 160 processors overall
(with 2 and 4 processors per blade, respectively).

We are currently working on real-world experiments and on further simulation studies
which are additionally simulating random one-time events and work loads which do not
recur on a daily basis (e.g., payroll accountings running at the last business day of every
month) to check the behavior of our controller. Additionally, we are investigating some
ideas on how the controller can exercise more comprehensive control. First, we will en-
hance the controller in such a way that it can manage explicit reservations, i.e., that an
administrator can register critical tasks along with their resource requirements. Second, we
will work on predicting the future load of services based on historic data stored in the load
archive using pattern matching and data mining techniques. Based on explicit reservations
for mission critical services and on the predicted load situation of services, we plan to de-
velop a landscape designer tool. This tool calculates a statically optimized pre-assignment
of all services to improve the dynamic optimization potential of the fuzzy controller. Ad-
ditionally, this information can be used to support (and improve) both the action-selection
and server-selection process of the controller. Thus, for example, the controller could avoid
starting a new service instance on a host which will most likely soon be heavily loaded by
another service.

96 An Autonomic Computing Concept for Application Services

Chapter 7

Conclusions

In this thesis, several aspects of distributed information systems have been investigated:
security, caching, and self-management.

The substantial growth of the Internet led to the growing desire to be able to handle
the flood of information available online. Thus, more and more complex data integration
systems have been developed. Modern systems like ObjectGlobe are extensible by mobile
user-defined code. Of course, such code introduces specific security concerns. We presented
an effective security framework for distributed and open systems and used ObjectGlobe as
an example. The security requirements of users are satisfied by the OperatorCheck server,
which is used to rate the quality of external operators and test their semantics. Privacy of
data is guaranteed by isolating external operators and by usage of secure communication
channels. Cycle providers are protected using a monitoring component which tracks the
resource usage of external operators to prevent them from monopolizing resources, and
an admission control system to guard providers against overload situations. A security
manager and class loaders are used to protect cycle providers from unauthorized resource
accesses and to shield the ObjectGlobe system from external operators. Additionally,
we presented the authentication framework of ObjectGlobe which can be used by cycle
providers to determine the identity of users in a reliable way.

The second wave of integration currently rolling through the Internet makes service-
oriented architectures based on Web services broadly available. Although Web services
offer solutions to plenty of hard integration problems, there still remain several others to be
solved. One of these problems is the performance and scalability of globally accessible Web
services. We presented the semantic cache SSPLC suitable for caching responses from Web
services on the SOAP protocol level. We introduced an XML-based declarative language to
annotate WSDL documents with information about the semantics of service requests and
responses. We demonstrated the validity of our proposed caching scheme by performing a
set of experiments. The results of these experiments confirm the reduction of the processing
demands on the central servers and the diminishment of bandwidth consumption, as well
as competitive average response times.

Another problem which is currently not addressed by existing Web service standards
is the increasing complexity of managing IT infrastructures. We presented a novel auto-

98 Conclusions

nomic computing concept which is hiding this complexity. We described the architecture
of AutonomicGlobe and its controller framework, which enhances ServiceGlobe with func-
tionality to generate an up-to-date view of the load situation of the system. This view is
used by a fuzzy controller to generate actions to remedy imminent overload, failure, and
idle situations. We demonstrated the effectiveness of our proposed solution by performing
a set of comprehensive simulation studies using our prototype. The results of these studies
confirm the applicability of a fuzzy controller for the supervision of an adaptive computing
infrastructure and the benefits of such an infrastructure.

Bibliography

[ABL+03] M. Agarwal, V. Bhat, H. Liu, V. Matossan, V. Putty, C. Schmidt, G. Zhang,
L. Zhen, M. Parashar, B. Khargharia, and S. Hariri. AutoMate: Enabling
Autonomic Applications on the Grid. In Proceedings of the International
Workshop on Active Middleware Services (AMS), pages 48–59, Seattle, WA,
USA, June 2003.

[ADLH+02] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein,
B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Na-
garatnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web Service Secu-
rity (WS-Security). http://www.ibm.com/developerworks/webservices/

library/ws-secure, April 2002.

[AH02] L. A. Adamic and B. A. Huberman. Zipf’s Law and the Internet. Glottomet-
rics, 3:143–150, 2002.

[Aka] Akamai Technologies. Akamai: The Business Internet. http://www.akamai.
com/.

[Ama] Amazon.com. Amazon Web Services. http://soap.amazon.com/.

[Axi] Apache Web Services Project: Axis. http://ws.apache.org/axis/.

[BCF+03] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/
2003/WD-xquery-20031112, November 2003. World Wide Web Consortium
(W3C), W3C Working Draft.

[BDSN02] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu. Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web Services. In
Proceedings of the International Conference on Data Engineering (ICDE),
pages 297–308, San Jose, CA, USA, February 2002.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP11, May 2000. World Wide Web Consortium
(W3C), W3C Note.

100 Bibliography

[Ber02] H. Berghel. Responsibe Web Caching. Communications of the ACM
(CACM), 45(9):15–20, 2002.

[Bir98] R. Bird. Introduction to Functional Programming Using Haskell. Prentice
Hall, London, United Kingdom, second edition, 1998.

[BKK+99] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Pröls,
S. Seltzsam, and K. Stocker. ObjectGlobe: Ubiquitous Query Processing
on the Internet. Technical Report MIP-9909, Universität Passau, Passau,
Germany, 1999.

[BKK+00] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Pröls,
S. Seltzsam, and K. Stocker. ObjectGlobe: Ubiquitous Query Processing on
the Internet. In Proceedings of the International Workshop on Technologies
for E-Services (TES), pages 247–268, Cairo, Egypt, September 2000.

[BKK+01a] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam,
and K. Stocker. ObjectGlobe: Ubiquitous Query Processing on the Internet.
The VLDB Journal: Special Issue on E-Services, 10(1):48–71, 2001.

[BKK+01b] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, S. Seltzsam, and
K. Stocker. ObjectGlobe: Open Distributed Query Processing Services on
the Internet. IEEE Data Engineering Bulletin, 24(1):64–70, 2001.

[BKK03] R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in an
Information Economy. ACM Transactions on Internet Technology (TOIT),
3(4):291–333, 2003.

[BKS01] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Pro-
ceedings of the International Conference on Data Engineering (ICDE), pages
421–430, Heidelberg, Germany, April 2001.

[Bou01] T. Bourke. Server Load Balancing. O’Reilly & Associates, Sebastopol, CA,
USA, 2001.

[BPSM+04] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). http://www.w3.org/
TR/2004/REC-xml-20040204, February 2004. World Wide Web Consortium
(W3C), W3C Recommendation.

[Bra01] R. Braumandl. Quality of Service and Query Processing in an Information
Economy. PhD thesis, Universität Passau, Fakultät für Mathematik und
Informatik, Passau, Germany, 2001.

[Bre98] R. Breton. Replication Strategies for High Availability and Disaster Recovery.
IEEE Data Engineering Bulletin, 21(4):38–43, 1998.

Bibliography 101

[CAL+02] K. S. Candan, D. Agrawal, W.-S. Li, O. Po, and W.-P. Hsiung. View Inval-
idation for Dynamic Content Caching in Multitiered Architectures. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB),
pages 562–573, Hong Kong, China, August 2002.

[CB00] B. Chidlovskii and U. M. Borghoff. Semantic Caching of Web Queries. The
VLDB Journal, 9(1):2–17, 2000.

[CCCY02] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The State of the
Art in Locally Distributed Web-Server Systems. ACM Computing Surveys,
34(2):263–311, 2002.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/2001/

NOTE-wsdl-20010315, March 2001. World Wide Web Consortium (W3C),
W3C Note.

[CD99] J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. http://
www.w3.org/TR/1999/REC-xpath-19991116, November 1999. World Wide
Web Consortium (W3C), W3C Recommendation.

[CER02] F. Curbera, D. Ehnebuske, and D. Rogers. Using WSDL in a UDDI Reg-
istry, Version 1.07 - UDDI Best Practice. http://www.uddi.org/pubs/

wsdlbestpractices-V1.07-Open-20020521.pdf, 2002.

[CIMP03] D. Carlisle, P. Ion, R. Miner, and N. Poppelier. Mathematical Markup Lan-
guage (MathML) Version 2.0 (Second Edition). http://www.w3.org/TR/

2003/REC-MathML2-20031021, October 2003. World Wide Web Consortium
(W3C), W3C Recommendation.

[CK98] M. Carey and D. Kossmann. Reducing the Braking Distance of an SQL Query
Engine. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 158–169, New York, NY, USA, August 1998.

[CMSvE98] G. Czajkowski, T. Mayr, P. Seshadri, and T. v. Eicken. Resource Control
for Database Extensions. Technical Report TR98-1718, Cornell University,
Computer Science Department, Ithaca, NY, USA, 1998.

[Cz02] L. Y. Cao and M. T. Özsu. Evaluation of Strong Consistency Web Caching
Techniques. World Wide Web, 5(2):95–124, 2002.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0. http://www.

rfc-editor.org/rfc/rfc2246.txt, January 1999. RFC 2246.

[Dat] DataSynapse Inc. Homepage. http://www.datasynapse.com/.

102 Bibliography

[DC01] C. Dalton and T. H. Choo. An Operating System Approach to Securing
E-Services. Communications of the ACM (CACM), 44(2):58–64, 2001.

[DDH72] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, New York, NY, USA, 1972.

[DeW93] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. In
J. Gray, editor, The Benchmark Handbook for Database and Transaction Sys-
tems. Morgan Kaufmann Publishers, San Mateo, CA, USA, second edition,
1993.

[DFJ+96] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic
Data Caching and Replacement. In Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB), pages 330–341, Mumbai (Bombay),
India, September 1996.

[DHX+03] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao.
Autonomia: An Autonomic Computing Environment. In Proceedings of
the International Performance Computing and Communications Conference
(IPCCC), pages 61–68, Phoenix, AZ, USA, April 2003.

[Fal01] D. C. Fallside. XML Schema Part 0: Primer. http://www.w3.org/TR/

2001/REC-xmlschema-0-20010502, May 2001. World Wide Web Consor-
tium (W3C), W3C Recommendation.

[FK01] D. Florescu and D. Kossmann. An XML Programming Language for Web
Service Specification and Composition. IEEE Data Engineering Bulletin,
24(2):48–56, 2001.

[FKK96] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. http://home.

netscape.com/eng/ssl3, November 1996. Netscape Communications Corp.

[Fra] X. Franc. Qizx/open. http://www.xfra.net/qizxopen/.

[GDN+03] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application Specific
Data Replication for Edge Services. In Proceedings of the International World
Wide Web Conference (WWW), pages 449–460, Budapest, Hungary, May
2003.

[GGF] Global Grid Forum (GGF) Project: Scheduling and Resource Management
(SRM). https://forge.gridforum.org/projects/srm/.

[Glo] Globus Project Homepage. http://www.globus.org/.

[GMSvE98] M. Godfrey, T. Mayr, P. Seshadri, and T. v. Eicken. Secure and Portable
Database Extensibility. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 390–401, Seattle, WA,
USA, June 1998.

Bibliography 103

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Com-
puting Surveys, 25(2):73–170, 1993.

[GS01] A. K. Ghosh and T. M. Swaminatha. Software Security and Privacy Risks
in Mobile E-Commerce. Communications of the ACM (CACM), 44(2):51–57,
February 2001.

[GSW96] S. Guo, W. Sun, and M. A. Weiss. Solving Satisfiability and Implication
Problems in Database Systems. ACM Transactions on Database Systems
(TODS), 21(2):270–293, 1996.

[HCL+90] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms, G. Lapis,
B. G. Lindsay, H. Pirahesh, M. J. Carey, and E. J. Shekita. Starburst Mid-
Flight: As the Dust Clears. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2(1):143–160, 1990.

[HD91] H. I. Hsiao and D. J. DeWitt. A Performance Study of Three High Availability
Data Replication Strategies. In Proceedings of the International Conference
on Parallel and Distributed Information Systems (PDIS), pages 18–28, Miami
Beach, FL, USA, December 1991.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. http://www.rfc-editor.org/

rfc/rfc2459.txt, January 1999. RFC 2459.

[HH76] J. Hartmanis and J. E. Hopcroft. Independence Results in Computer Science.
SIGACT News, 8(4):13–24, 1976.

[HHO04] H. He, H. Haas, and D. Orchard. Web Services Architecture Usage Scenarios.
http://www.w3.org/TR/ws-arch-scenarios, February 2004. World Wide
Web Consortium (W3C), W3C Note.

[Hor01] P. Horn. Autonomic Computing: IBM’s Perspective on the State of Informa-
tion Technology. http://www.research.ibm.com/autonomic/manifesto/

autonomic_computing.pdf, 2001.

[HP] HP Utility Data Center. http://www.hp.com/go/hpudc.

[IBMa] IBM Director 4.1. http://www.ibm.com/servers/eserver/xseries/

systems_management/director_4.html.

[IBMb] IBM Web Sphere. http://www.ibm.com/websphere.

[INST02] A. Iyengar, E. M. Nahum, A. Shaikh, and R. Tewari. Enhancing Web Per-
formance. In Communication Systems: The State of the Art (IFIP World
Computer Congress), volume 220 of IFIP Conference Proceedings, pages 95–
126, Montréal, Québec, Canada, August 2002.

104 Bibliography

[J2E] Java 2 Platform Enterprise Edition (J2EE). http://java.sun.com/j2ee.

[JS94] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer
Management Replacement Algorithm. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 439–450, Santiago de
Chile, Chile, September 1994.

[KFD00] D. Kossmann, M. J. Franklin, and G. Drasch. Cache Investment: Integrating
Query Optimization and Distributed Data Placement. ACM Transactions on
Database Systems (TODS), 25(4):517–558, 2000.

[KK04a] M. Keidl and A. Kemper. A Framework for Context-Aware Adaptable Web
Services (Demonstration). In Proceedings of the International Conference on
Extending Database Technology (EDBT), volume 2992 of Lecture Notes in
Computer Science (LNCS), pages 826–829, Heraklion, Crete, Greece, March
2004.

[KK04b] M. Keidl and A. Kemper. Towards Context-Aware Adaptable Web Services.
In Proceedings of the International World Wide Web Conference (WWW),
Manhattan, NY, USA, May 2004. Accepted for publication.

[KKKK02] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A Publish & Subscribe
Architecture for Distributed Metadata Management. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 309–320, San
Jose, CA, USA, February 2002.

[KLP75] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a
Set of Vectors. Journal of the ACM (JACM), 22(4):469–476, 1975.

[KMP93] A. Kemper, G. Moerkotte, and K. Peithner. A Blackboard Architecture for
Query Optimization in Object Bases. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 543–554, Dublin, Ireland,
August 1993.

[KSK02] M. Keidl, S. Seltzsam, and A. Kemper. Flexible and Reliable Web Service
Execution. In Proceedings of the Workshop on Entwicklung von Anwendungen
auf der Basis der XML Web-Service Technologie, pages 17–30, Darmstadt,
Germany, July 2002.

[KSK03a] M. Keidl, S. Seltzsam, and A. Kemper. Reliable Web Service Execution
and Deployment in Dynamic Environments. In Proceedings of the Interna-
tional Workshop on Technologies for E-Services (TES), volume 2819 of Lec-
ture Notes in Computer Science (LNCS), pages 104–118, Berlin, Germany,
September 2003.

Bibliography 105

[KSK03b] M. Keidl, S. Seltzsam, and A. Kemper. ServiceGlobe: Flexible and Reliable
Web Services on the Internet (Poster Presentation). In Proceedings of the
International World Wide Web Conference (WWW), Budapest, Hungary,
May 2003.

[KSKK99] M. Keidl, S. Seltzsam, A. Kemper, and N. Krivokapić. Sicherheit in einem
Java-basierten verteilten System autonomer Objekte. In Proceedings of the GI
Conference on Database Systems for Business, Technology, and Web (BTW),
Informatik Aktuell, pages 38–58, Freiburg, Germany, March 1999.

[KSKK03] M. Keidl, S. Seltzsam, C. König, and A. Kemper. Kontext-basierte Personal-
isierung von Web Services. In Proceedings of the GI Conference on Database
Systems for Business, Technology, and Web (BTW), volume 26 of Lecture
Notes in Informatics (LNI), pages 344–363, Leipzig, Germany, February 2003.

[KSSK02] M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper. ServiceGlobe: Distributing
E-Services across the Internet (Demonstration). In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 1047–1050,
Hong Kong, China, August 2002.

[KW01] A. Kemper and C. Wiesner. HyperQueries: Dynamic Distributed Query
Processing on the Internet. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 551–560, Rome, Italy, September
2001.

[KW04] A. Kemper and C. Wiesner. Building Scalable Electronic Market Places using
HyperQuery-Based Distributed Query Processing. World Wide Web, 2004.
Accepted for publication.

[KY94] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice Hall, Upper Saddle River, NJ, USA, 1994.

[LC99] D. Lee and W. W. Chu. Semantic Caching via Query Matching for Web
Sources. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 77–85, Kansas City, MO, USA,
November 1999.

[LC01] D. Lee and W. W. Chu. Towards Intelligent Semantic Caching for Web
Sources. Journal of Intelligent Information Systems (JIIS), 17(1):23–45, 2001.

[LKK+97] P. C. Lockemann, U. Kölsch, A. Koschel, R. Kramer, R. Nikolai, M. Wall-
rath, and H.-D. Walter. The Network as a Global Database: Challenges of
Interoperability, Proactivity, Interactiveness, Legacy. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 567–574,
Athens, Greece, August 1997.

106 Bibliography

[LKRPM01] L. Li, B. König-Ries, N. Pissinou, and K. Makki. Strategies for Semantic
Caching. In Proceedings of the International Conference on Database and
Expert Systems Applications (DEXA), volume 2113 of Lecture Notes in Com-
puter Science (LNCS), pages 284–298, Munich, Germany, September 2001.

[LL02] G. M. Lohman and S. Lightstone. SMART: Making DB2 (More) Autonomic.
In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 877–879, Hong Kong, China, August 2002.

[Mit03] N. Mitra. SOAP Version 1.2 Part 0: Primer. http://www.w3.org/TR/2003/
REC-soap12-part0-20030624, June 2003. World Wide Web Consortium
(W3C), W3C Recommendation.

[MLR03] V. Markl, G. M. Lohman, and V. Raman. LEO: An Autonomic Query Opti-
mizer for DB2. IBM Systems Journal, 42(1):98–106, 2003.

[Mye79] G. J. Myers. The Art of Software Testing. John Wiley & Sons, New York,
NY, USA, 1979.

[NET] Microsoft .NET. http://www.microsoft.com/net.

[NKS+02] A. G. Ninan, P. Kulkarni, P. J. Shenoy, K. Ramamritham, and R. Tewari. Co-
operative Leases: Scalable Consistency Maintenance in Content Distribution
Networks. In Proceedings of the International World Wide Web Conference
(WWW), pages 1–12, Honolulu, HI, USA, May 2002.

[Not01] M. Nottingham. SOAP Optimisation Modules: Response Caching.
http://lists.w3.org/Archives/Public/www-ws/2001Aug/att-0000/

01-ResponseCache.html, August 2001.

[Oak98] S. Oaks. Java Security. O’Reilly & Associates, Sebastopol, CA, USA, 1998.

[OOW93] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page Replacement
Algorithm For Database Disk Buffering. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 297–
306, Washington, DC, USA, May 1993.

[PKC99] PKCS #5 v2.0: Password-Based Cryptography Standard. ftp://ftp.

rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf, March 1999. RSA
Laboratories.

[PKI] Public-Key Infrastructure (X.509) (PKIX). http://www.ietf.org/html.

charters/pkix-charter.html. The Internet Engineering Task Force
(IETF).

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, New York, NY, USA, 1985.

Bibliography 107

[RS01] M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison-
Wesley, Reading, MA, USA, 2001.

[RV02] E. Rahm and G. Vossen, editors. Web & Datenbanken: Konzepte, Architek-
turen, Anwendungen. dpunkt-Verlag, Heidelberg, Germany, 2002.

[SBK01] S. Seltzsam, S. Börzsönyi, and A. Kemper. Security for Distributed E-Service
Composition. In Proceedings of the International Workshop on Technologies
for E-Services (TES), volume 2193 of Lecture Notes in Computer Science
(LNCS), pages 147–162, Rome, Italy, September 2001.

[Sch03] D. Scheibli. Modular Computing for E-Business Solutions. In Intel Developer
Forum (IDF) Conference Presentations, February 2003.

[SQL99] Database Language SQL. International Organization for Standardization
Document ISO/IEC 9075:1999, 1999.

[SR86] M. Stonebraker and L. A. Rowe. The Design of Postgres. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 340–355, Washington, DC, USA, May 1986.

[Suna] Sun N1. http://www.sun.com/software/solutions/n1/.

[Sunb] Sun Open Net Environment (Sun ONE). http://www.sun.com/sunone.

[TPPC02] Transaction Processing Performance Council. TPC Benchmark W Version
1.8, 2002. http://www.tpc.org/tpcw/spec/tpcw_V1.8.pdf.

[TPPC03] Transaction Processing Performance Council. TPC Benchmark W Version
2.0r, 2003. http://www.tpc.org/tpcw/spec/TPCWV2.pdf.

[TR03] D. B. Terry and V. Ramasubramanian. Caching XML Web Services for Mo-
bility. ACM Queue, 1(1):70–78, 2003.

[UDD00] Universal Description, Discovery and Integration (UDDI) Technical White
Paper. http://www.uddi.org, 2000. Ariba Inc., IBM Corp., and Microsoft
Corp.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume
II: The New Technologies. Computer Science Press, Rockville, MD, USA,
1989.

[Wei01] G. Weikum. The Web in 2010: Challenges and Opportunities for Database
Research. In Informatics - 10 Years Back. 10 Years Ahead., volume 2000 of
Lecture Notes in Computer Science (LNCS), pages 1–23, Saarbrücken, Ger-
many, August 2001.

108 Bibliography

[Wie93] G. Wiederhold. Intelligent Integration of Information. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 434–437, Washington, DC, USA, May 1993.

[WLH90] W. K. Wilkinson, P. Lyngbæk, and W. Hasan. The Iris Architecture and
Implementation. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2(1):63–75, 1990.

[WMHZ02] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-tuning Database
Technology and Information Services: from Wishful Thinking to Viable En-
gineering. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 20–31, Hong Kong, China, August 2002.

[Xal] Apache XML Project: Xalan-Java. http://xml.apache.org/xalan-j/.

[Xer] Apache XML Project: Xerces2 Java Parser. http://xml.apache.org/

xerces2-j/.

[XMe] XMethods. http://www.xmethods.org/.

[YFIV00] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez. Caching Strategies for
Data-Intensive Web Sites. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 188–199, Cairo, Egypt, September
2000.

[Zad65] L. A. Zadeh. Fuzzy Sets. Information and Control, 8(3):338–353, 1965.

	Title Page
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Purpose of this Thesis
	1.2 Outline of this Work

	2 ObjectGlobe - A Distributed and Open Query Processing System
	2.1 Query Processing in ObjectGlobe
	2.2 Example Query
	2.3 Lookup Service
	2.4 Quality of Service (QoS)

	3 Security and Privacy Issues in Distributed and Open Systems
	3.1 Motivation
	3.2 Security Requirements
	3.3 Java's Security Model
	3.4 Security Measures during Plan Distribution
	3.5 Architecture of the Runtime Security System
	3.6 Correctness Issues of the Runtime Security System
	3.6.1 Integrity of Data
	3.6.2 Privacy of Data

	3.7 Quality Assurance for External Operators
	3.7.1 Goal of Testing
	3.7.2 Methods of Formal Specification
	3.7.3 User-Directed Test Data Generation
	3.7.4 The OperatorCheck Server
	3.7.5 Limitations of Testing

	3.8 Usage Scenarios and their Security Implications
	3.8.1 Intranet
	3.8.2 Extranet
	3.8.3 Internet

	3.9 Related Work
	3.10 Conclusions

	4 ServiceGlobe - A Distributed and Open Web Service Platform
	4.1 Web Services Fundamentals
	4.1.1 Web Service Registry UDDI
	4.1.2 Communication Protocol SOAP
	4.1.3 Web Service Description Language WSDL

	4.2 Architecture of ServiceGlobe
	4.3 Basic Load Balancing and Service Replication Framework
	4.3.1 Architecture of the Dispatcher
	4.3.2 Load Measurement
	4.3.3 Automatic Service Replication
	4.3.4 High Availability / Single Point of Failure

	4.4 Related Work

	5 Semantic Caching for Web Services
	5.1 Motivation
	5.2 Background and Running Example
	5.2.1 Fundamentals of Semantic Caching
	5.2.2 Running Example

	5.3 Basics of the Web Service Cache SSPLC
	5.3.1 Replacement Policy
	5.3.2 Distribution Control and Cache Consistency
	5.3.3 Physical Storage of Semantic Regions

	5.4 Semantic Caching in the Web Service Cache SSPLC
	5.4.1 WSDL Annotations
	5.4.2 Matching and Control Flow
	5.4.3 Sorting and Generalization

	5.5 Performance Evaluation
	5.5.1 Benchmark Scenario 1 (TPC-W)
	5.5.2 Benchmark Scenario 2 (TPC-W 2)

	5.6 Related Work
	5.7 Status and Future Work

	6 An Autonomic Computing Concept for Application Services
	6.1 Motivation
	6.2 Architecture of the Controller Framework
	6.2.1 Load Monitors and Advisor Modules
	6.2.2 Load Monitoring System
	6.2.3 Fuzzy Controller
	6.2.4 Load Archive
	6.2.5 Environment and Service Virtualization

	6.3 Fuzzy Controller Basics
	6.4 Fuzzy Controller for Load Balancing
	6.4.1 Action-Selection Process
	6.4.2 Server-Selection Process
	6.4.3 Execution of the Controller's Decision

	6.5 Simulation Studies
	6.5.1 Description of the Simulation Environment
	6.5.2 Results of the Simulation Studies
	6.5.3 Summary of Simulation Assessment

	6.6 Related Work
	6.7 Status and Future Work

	7 Conclusions
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

