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Abstract

With the services that autonomous robots are to provide becoming more demanding, the
states that the robots have to estimate become more complex. In this thesis, a vision-based,
probabilistic state estimation method for large and complex states is developed and applied
to autonomous mobile robot applications.

The proposed method extends the state-of-the-art in state estimation in two important
ways. First, it demonstrates how the estimation of states in complex and ill structured
state spaces, spanned by more than 60 parameters, can be achieved. The state estimation
problem is made feasible by decomposing it into several loosely coupled subproblems. Each
subproblem is solved by a task specific state estimator. In particular, this method enables
the mobile robots of a team to estimate their own positions in a known environment and to
track the positions of independently moving objects at frame rate.

The second contribution is the investigation of the use of cooperation, i.e. the exchange
of observations and state estimates between robots, for improved state estimation. The state
estimators of the robots are extended to use the information provided by other robots as
evidence. This information is shown to increase the accuracy, reliability and completeness of
the state estimation process. In particular, it is demonstrated that cooperation enables robots
to determine their poses and the positions of further dynamic objects more accurately, to track
temporarily occluded objects successfully, and to obtain a complete view of the surrounding
environment.

The method is empirically validated based on experiments with a team of autonomous
robots equipped with off-the-shelf computing hardware and sensory equipment within the
RoboCup scenario. It was applied during four RoboCup world championships. The collected
experimental data, from two competitions covering more than four hours net operation time,
is analysed.

Keywords: autonomous mobile robot, Bayes filter, computer vision, cooperative state
estimation, Kalman filter, multiple hypothesis tracking, multi-robot system, obstacle tracking,
pose tracking, RoboCup, robot soccer, sensor fusion, vision-based localisation.



Zusammenfassung

Damit autonome mobile Serviceroboter ihre immer komplexer werdenden Serviceaufgaben
erfolgreich bearbeiten können, müssen sie den Zustand ihrer Umwelt immer detaillierter und
genauer wahrnehmen. Diese Dissertation entwickelt ein bildbasiertes probabilistisches Ver-
fahren zur Schätzung hochdimensionaler Zustände und setzt es auf realen autonomen mobilen
Roboterplattformen ein.

Das vorgeschlagene Verfahren erweitert den Stand der Technik in zwei wichtigen Bereichen.
Zum einen wird demonstriert wie Zustände in Zustandsräumen mit mehr als 60 Dimensionen
geschätzt werden können. Die Komplexität des Schätzproblems wird dadurch reduziert, dass
es in mehrere lose verbundene Teilprobleme zerlegt wird. Jedes Teilproblem wird dann durch
einen spezifischen Zustandsschätzer gelöst. Insbesondere ermöglicht dieses Verfahren einem
Team mobiler Roboter ihre eigenen Positionen und die anderer sich unabhängig bewegender
Roboter zu bestimmen.

Zum anderen gelingt der Nachweis, dass kooperative Zustandsschätzung durch mehrerer
Roboter die Qualität und Vollständigkeit der geschätzten Zustände erheblich verbessert. Die
Zustandsschätzer der einzelnen Roboter werden dafür so erweitert, dass sie Informationen
anderer Roboter mit berücksichtigen können. Weiterhin wird gezeigt, dass kooperative Zu-
standsschätzung dem Roboterteam genauere Positionsschätzungen sowie das Verfolgen tem-
porär verdeckter Objekte ermöglicht.

Das Verfahren wurde erfolgreich an einem Team autonomer mobiler Roboter im Rahmen
des Roboterfussballszenarios (RoboCup) getestet. Erschwert wurde dies durch die Ausstat-
tung des Roboterteams, welches nur über handelsübliche Rechenleistung und Videosensorik
verfügte. Das Verfahren wurde im Rahmen von vier RoboCup Weltmeisterschaften erfolgreich
eingesetzt. Zur grundlegenden Evaluierung des Verfahren wurden experimentelle Daten aus
zwei Weltmeisterschaften mit insgesamt mehr als vier Stunden autonomer Spielzeit ausgew-
ertet.

Keywords: Autonome mobile Roboter, Bayes Filter, Bildverstehen, Kooperative Zust-
sandsschätzung, Kalman Filter, Multiples Hypothesen tracking, RoboCup, Roboterfussball,
Sensor Fusion, Bildbasierte Lokalisation.
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Chapter 1

Introduction

In many applications, autonomous robots have to know and assess the states of themselves and
their environments in order to choose their actions competently. Contrary to these need, the
information what robots receive through their sensors is inherently uncertain: typically, the
robot’s sensors can only perceive parts of their environments, and their sensor measurements
are inaccurate and noisy. In addition, control over their actuators is also inaccurate and
unreliable. Finally, the dynamics of many environments cannot be accurately modelled and
sometimes environments change too fast or even nondeterministically.

This dissertation explores fundamental issues in estimating the states of complex and
dynamic environments for a team of autonomous mobile robots. In particular, the problem
of vision-based state estimation, i.e. self-localisation as well as the detection and tracking of
dynamic objects, is investigated. A successful realisation of this process has to address several
sub-problems.

1.1 Background and Motivation

Autonomous robot soccer is considered to be the primary application domain for the tech-
niques developed in this thesis. This scenario is very challenging in the respect, that the
states of several dynamic objects have to be estimated simultaneously.

In the robot soccer middle size league two teams of four autonomous robots play soccer
against each other. Both teams have the intention to win the game and, consequently, try
to get possession of the ball and score goals. A state estimator for competent robotic soccer
players should provide the action selection routines with estimates of the positions and this
may even be the dynamic states of all players (teammates and opponents) and the ball.

Figures 1.1(a) to (m) (on the next page) depict a scene taken form a match at the RoboCup
World Championship 2001 in Seattle between The Ulm Sparrows (magenta marker) and
The AGILO RoboCuppers (cyan marker). The goals of The Ulm Sparrows and The AGILO
RoboCuppers are to the left and to the right of the images, respectively. The column to the left
displays the current match situation. The column to the right visualises the estimated game
state of The AGILO RoboCuppers. The trajectories of the AGILO robots are displayed with
different colours. Trajectories of opponent robots and the ball are black and red, respectively.
The time interval between two consecutive rows is approximately two seconds.

1
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In Figure 1.1(a), two robots of the The AGILO RoboCuppers are facing the ball. They
have to decide which one of them will go for it. If both robots approached the ball, it would be
very likely that they got entangled and a robot from The Ulm Sparrows would get possession
of the ball. As a consequence, the robot that can reach the ball faster1 decides to go for
it, whereas the second robot decides to move to a defending position. Figures 1.1(b) to (e)
illustrate this behaviour. The first robot moves towards the ball and tries to shuffle it away
from the wall. This requires precise knowledge about the ball’s position. By the time the first
robot has achieved this goal, a striker from The Ulm Sparrows blocks its path. The robot then
decides to avoid this obstacle and to push back. In the meantime, the second robot has also
successfully detected the opponent player and navigates around it. In order to accomplish
this task successfully, both robots must have the capability to detect the opponent player and
generate an estimate of its position.

As a result of its obstacle avoiding manoeuvre, the first robot gets stuck at the wall.
Figures 1.1(f) and (g) depict how it is trying to get away from the wall. Even though it
does not see the ball, it knows its exact position which is estimated by the second player and
communicated via a wireless connection link to all teammates. The second AGILO player
recognises that its teammate cannot actively intervene and decides to go for the ball. It moves
towards the ball and successfully dribbles it around the opponent player (see Figures 1.1(h)
to (j)) towards the goal of The Ulm Sparrows. Meanwhile, the other player moves towards a
defending position.

Finally, the robot dribbling the ball towards the opponent’s goal has to make the crucial
decision whether it is trying to score past the left or the right side of the goalkeeper (see
Figures 1.1(k) to (l)). In order to preserve a maximum chance of scoring, the AGILO player
is aiming for the right goal post. This allows it to kick the ball into both corners. If the
goalkeeper drives towards the right corner, a short turn and a kick into the left corner is
sufficient to score. On the other hand, if the goalkeeper decides to stay in the middle of the
goal or to move to the left, then a shot into the right corner is adequate. Eventually, the
goalkeeper stays in the middle of the goal and the striker scores into the right corner.

In order to exhibit the football playing behaviour described in the example above, the
perception mechanisms of the robots must provide them with several kinds of information:
(1) the position and orientation of the robot itself, (2) the position and orientation of the
teammates, (3) the position of the ball, and (4) the positions of the opponent robots. Deter-
mining the positions of opponent robots is particularly difficult, since the robots look similar
and exhibit only very few features that allow for an exclusive identification. Furthermore, the
robots and the ball may be taken out of the field and may be put in again later.

A system for state estimation in autonomous robot soccer should address the following
aspects.

• State Estimation and Environment Modelling - Autonomous robots must have sufficient
and accurate information about themselves and their environments to complete their
tasks competently. Contrary to these needs, the information that robots receive through
their sensors is inherently uncertain: typically the robots’ sensors can only access parts

1Faster, in this context, refers to the time that a robot requires to approach the ball in order to effectively
being able to dribble the ball towards the opponents goal. In certain situations a robot has to drive around
the ball and approach it from behind.
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of their environments and their sensor measurements are inaccurate and noisy.

• Cooperative Perception - Teams of robots, equipped with communication devices, can
estimate the same state cooperatively, i.e. robots can provide their own state estimates
and observations as evidence for the teammates. Through the fusion of information
from different observers, the uncertainty of the state estimates can be reduced. Fur-
thermore, information observed by only one member of the team can be used by others
for better decision making, action selection, and path planning. In particular, cooper-
ative perception enables a team of robots to track temporarily occluded objects and to
faster recover their position after they have lost track of it.

In Section 1.2, the problem addressed in this thesis is described in the context of the
constraints imposed on any proposed solution. In Section 1.3, the proposed approach and the
components of the solution are described. In Section 1.4, the principal contributions of the
thesis are summarised, and in Section 1.5, an outline of the thesis is presented.

1.2 Problem Summary

The general problem addressed in this thesis is the development of a vision-based cooperative
game state estimation system for a team of autonomous soccer robots (see Figure 1.2). Given
four video streams, a team of autonomous robots has to estimate a joint game state. This
game state contains all the estimates necessary for role and action selection, such as the pose
estimates of the teams robots, the position of the ball and the positions of the opponents.

This system must be able to cope with dynamic and fast changing environments. The
robots might travel at speeds up to 2 m per second and must be able to recognise static
landmarks and dynamic objects, determine their own poses relatively to a given model of the
playing field, track dynamic objects and determine their movement directions and velocities.
All of this information is derived from (1) a video stream, captured by the robot’s onboard
video camera, with 30 frames per second and (2) all the observations made by members of the
team which are broadcast through a wireless communication channel. Off-the-shelf computing
hardware is used for communication, I/O and processing of the sensor data. This requires
new and carefully chosen algorithmic techniques in order to achieve the required accuracy,
robustness towards noise and real time performance. The basic functional breakdown of the
system under development is the following:

1. A robot starts at an unknown position in a predefined global coordinate frame. The
system will refer all position measurements from the sensor relative to this global coor-
dinate frame.

2. The robot must estimate it’s own state, i.e. localise itself, and the states of the ball and
the opponent players. The estimated states are then broadcast to all members of the
team. State estimates received from other team members are fused with the own states
and the robot’s model of the world is updated.

3. On the basis of this world model, path planning is performed and a new action is chosen.
Finally, a motor command is selected and sent to the motor controller.
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Figure 1.2: Given four different views of the field a team of autonomous robots has to estimate
a joint game state.

The apparent simplicity of these three tasks is deceiving. For example, any measurement
taken by a sensor has some degrees of imprecision that must be represented. Applying a non-
linear transformation to such a measurement, e.g. transform from sensor centred coordinates
to global coordinates, this will affect the precision or accuracy of the position estimate in a
way that may be difficult to compute. Once the measurement has been transformed to global
coordinates, determining its origin from possibly millions of features may be very difficult,
ambiguous and computationally intensive. Finally, a mechanism must be applied to use the
imprecise measurement and to update the pose estimates of the robot and the game state.
The system also has to deal with several sensors, performing observations at various points in
time and with different observation frequencies, e.g. odometric and image data are received
at 10 and 30 Hz, respectively. Furthermore, communication channels between robots may be
unreliable and packets may be delayed, lost, or incomplete. Some principal constraints that
must be satisfied by the system include:

• Statistically meaningful representation of uncertainty. - Observations and pose estimates
are always associated with a degree of uncertainty. Particularly, the uncertainty of ob-
servations may influence the uncertainty introduced into the robot’s position estimates.
Furthermore, during the process of global self-localisation, ambiguous situations must
be represented. Usually, they are resolved by a sequence of observations at different
locations.
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Figure 1.3: The general state estimation problem, taken from Rao (1997).

• Real time processing of sensor data. - Robots operating in highly dynamic environments
require fast sensor data processing algorithms in order to react to environment changes
in an appropriate way. Disproportionately long processing times may result in unsat-
isfactory damage to both the environment and the robot. Moreover, a robot may be
equipped with several sensors in order to perceive more of its environment.

• Efficiently scalable. - The system must be scalable in the number of robots and sensors
belonging to the team, and in the number of dynamic objects that can efficiently be
tracked.

In the next section, the approach and the key techniques are identified which must be
addressed in order to create a system that satisfies the above constraints.

1.3 The Approach

Successful state estimation is a key requirement for autonomous robot deployment. The
general state estimation problem is depicted in Figure 1.3. The world is observed by an
observer. For simplicity, this observer is called estimator in the following. The sensing device
used by the estimator is limited. It has to obey several physical constraints, such as maximum
resolution, lens distortions and a limited field of view, and thus can only perceive a partial
and incomplete view of the world. The virtual function, mapping the world to sensor data, is
defined by the type of sensor used. This mapping function is commonly referred to as sensor
model. The estimator is now confronted with the problem of perceiving the external world
with the help of an inverse sensor model and an internal model of the world. The estimator
does not have access to the hidden internal states of the world that are causing its sensory
experiences. Instead, in order to correctly interpret and understand the external world, it
must solve the ”inverse” problem of estimating these hidden state parameters using only the
sensory data obtained from its various sensing devices.
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Figure 1.4 adapts the general state estimation problem to an autonomous robot and illus-
trates this process with the help of the dynamic system model2. The state of a continuously
changing world is observed by the robot through a sensor. Observations are acquired in the
form of sensor data according to an unknown sensor model. The state estimation process
uses an approximation of the inverse sensor model to estimate the world’s state, which is also
called the belief state (Aström, 1965) at times. This state usually includes the robot’s pose3

and the states of all other objects of interest to the robot. For example, a game state4, st, in
the robot soccer domain comprises the following variables:
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st = (Robot1t , . . . , Robot4t , . . . , Ballt, Opponent1t , . . . , Opponentnt ) (1.1)

ẋ, ẏ and φ̇ denote the translational and rotational velocities, respectively. This game state is
used as input to the action selection and path planning routines. These procedures decide
which action and path the robot is selecting. As a result, these routines determine a motor
control command which is executed by the robot’s motors. The execution of motor commands
change the state of the world and the whole process is repeated.

The main difficulty with state estimation is that in general the estimated states are in-
herently uncertain. Uncertainty arises from sensor limitations, noise, approximated and sim-
plified sensor and internal world models and the fact that most interesting environments are
to ”a certain degree” uncertain and unpredictable. Consequently, a good state estimation
technique must not only provide estimates of the world’s state, but also an estimate of the
uncertainty associated with this state.

One particularly promising method for accomplishing this task is probabilistic state es-
timation (Thrun, 2000). Recent longterm experiments with autonomous robots (Thrun et
al., 2000; Burgard et al., 2000; Simmons et al., 1997) have shown that an impressively high
level of reliability and autonomy can be reached by explicitly representing and maintaining
the uncertainty inherent in the available information.

Probabilistic state estimators maintain the probability densities for the states of objects
over time. The probability density of an object’s state, conditioned on the sensor measure-
ments received so far, contains all the information which is available about an object for a

2An introduction to the dynamic system model and a more formal definition can be found in Section 3.2
3The term pose, in this thesis, refers to a robot’s x− y-coordinates together with its heading direction φ.
4This state description is somewhat idealistic. In practice, the translational and rotational velocities of the

ball and the opponent robots are quite difficult to determine.
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Figure 1.4: State estimation with an autonomous robot.

robot. Based on these densities, robots are not only able to determine their own and other
objects most likely state, but can also derive even more meaningful statistics, such as the
variance of the current estimate, and derive an idea about the quality (e.g. accuracy) of the
estimate. As a result, a probabilistic robot can gracefully recover from errors, can handle am-
biguities, and can integrate noisy sensor data in a consistent way. Moreover, a probabilistic
robot knows about its own ignorance, a key prerequisite of truly autonomous robots.

Approached probabilistically, the state estimation problem is a density estimation problem,
where a robot seeks to estimate a posterior distribution over the space of its poses and the
poses of other objects conditioned on the available data. Denoting the game state at time t
by st, and the data received up to time t by datat, the posterior is conveniently written as

p(st|data0...t) (1.2)

For brevity, this posterior will be denoted by Bel(st), and referred to as the robot’s belief
state (Aström, 1965) at time t.

Building a single competitive state estimator for robot soccer is not feasible. Thus, two
simplifications assumptions about the probability distributions are made in order to reduce
the complexity of the estimation problem:

1. To estimate the desired belief state, Bel(st), probabilistic approaches frequently resort
to a Markov assumption, which states that the past is independent of the future given
knowledge of the current state. The Markov assumption is often referred to as the static
world assumption, since it assumes that the robot’s pose is the only state in the world
that would impact more than just one isolated sensor reading. Practical experience
suggests, however, that probabilistic algorithms are robust to mild violations of the
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Markov assumption, and extensions exist that go beyond this assumption (Fox et al.,
1998).

2. The game state estimator is decomposed into several different estimation modules which
use different estimation techniques. Consequently, the estimation problem is reduced to
estimating the following belief states:

Bel(Robot1t ), . . . , Bel(Robot4t )

Bel(Ballt)

Bel(Opponent1t ), . . . , Bel(Opponentnt )

In robotic soccer the four core components of a probabilistic state estimation system for
game state estimation and robot control are the following:

1. A framework for the integration of probabilistic state estimation modules. - Several dif-
ferent modules that perform different tasks, work together in the proposed probabilistic
state estimation system. They resolve feature ambiguities and contradictions in order
to estimate one global state of the environment. The framework is able to handle, load,
unload, start, stop, and reparameterise several different kinds of modules. It assures
that data among modules are exchanged in time and that data may be broadcast over
a wireless communication link.

2. A global self-localisation algorithm. - The static features, extracted by the feature ex-
traction algorithms, are used to determine a rough pose estimate. During this process of
global self-localisation, the algorithm must be capable of representing ambiguous situa-
tions. These ambiguities are then resolved in a fast manner by a sequence of observations
at different poses.

3. An iterative self-localisation algorithm. - Once a rough pose of the robot is uniquely
determined, refining and tracking this pose with a local self-localisation algorithm can
be achieved more efficiently. Localisation also includes the ability to detect failures of
the pose estimation and to relocalise the robot, when necessary. This requires to run
the global self-localisation algorithm again.

4. An object detection and tracking technique. - When a tracking process involves multiple
targets, it is necessary to identify the subset of tracked objects - or tracks - with which
each observation (dynamic feature) is feasibly associated. It is usually impractical to
enumerate all pairs of observations and tracked objects. Therefore, an efficient gating
mechanism is required, which avoids most infeasible associations without discarding any
potentially feasible ones. From the set of tracks which are feasibly associated with a
given observation, it is necessary to determine which observation/track pair should be
maintained as updated track. It is assumed that subsequent observations resolve the
ambiguity before the proliferation of hypotheses becomes excessive.
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Although previous researchers have examined the described approach and some of these
components before, no system exists that incorporates all these techniques into one robust
vision-based system. Furthermore, the techniques are extended in such a way, that they can
be applied to a multi-robot system, allowing for cooperative perception and cooperative state
estimation.

1.4 Principal Contributions

In this thesis, theory and techniques are used from several diverse areas of study, includ-
ing computer vision, statistics, state estimation and multiple target tracking, to study the
basic technical challenges in cooperative large scale state estimation. Several important con-
tributions are made towards both the theoretical foundations and the practical solution of
cooperative vision-based state estimation, and more generally, to the areas of localisation and
object tracking. In particular the following:

1. Estimation of Large Scale and Complex States - The approach to state estimation that
is presented in this thesis is able to solve large scale and complex state estimation
problems in the robot soccer domain. The estimated state includes, the pose of the own
robots, the position of the ball, and the positions of the opponent players. The overall
state consists of a vector with more than 60 parameters. In order to reduce the overall
complexity of the estimation problem, it is decomposed into several loosely coupled
subproblems. Each subproblem is solved by a task specific state estimator employing a
specific state estimation technique. The state estimators interact in order to derive more
accurate and complete game state estimates. This is made possible by a compact and
uniform representation of uncertainties, consisting of a mean value and a covariance
matrix, that can concisely be communicated between and easily be processed by the
state estimation algorithms. This approach allows a team of robots to make use of all
available information and to perform vision-based self-localisation, to track the ball,
and to track the opponent robots at a frame rate of 30 Hz with off-the-shelf computing
hardware and sensory equipment.

2. Vision-based Self-Localisation, Ball- and, Opponent-Tracking - A fast and accurate algo-
rithm for model driven vision-based self- and ball-localisation is presented. The proposed
algorithm is capable of estimating the pose of a robot in 3D (2D position and 1D orien-
tation) or 6D (3D position and 3D orientation) and can be employed on various robotic
platforms. Fast response times are achieved through the use of a known environment
model consisting of curve features, an accurate and universal model of an image sen-
sor, and an extremely efficient feature projection and extraction process. A particular
feature of this algorithm is its capability to uniquely solve ambiguous localisation prob-
lems through the use of teammate observations of dynamic objects with known shapes.
Furthermore, an efficient algorithm for vision-based object detection and cooperative
tracking is presented. This algorithm is especially suited for mobile sensors with uncer-
tain position. The observations of dynamic objects with unknown shape performed by
all members of the robot team are integrated into one single view of the world.
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3. Cooperative Perception Enhances the State Estimates - It is demonstrated that cooper-
ative perception enhances the accuracy, completeness and reliability of the estimated
states. This evidence is derived from a series of real world experiments, with a physical
team of robots in real match situations. Using ground truth data, provided by an over-
head camera system it is shown that cooperative state estimation increases the accuracy
as well as the coverage of ball and opponent tracks both substantially and significantly.

1.5 Outline

The following is a synopsis of the chapters of this thesis:

Chapter 2 introduces notation as well as some fundamental preliminaries. Particularly,
rotations in 3D Cartesian space, Gaussian normal distributions, distance measures for
Gaussian random variables, variants for the linear and nonlinear transformation of a
Gaussian probability density function are discussed. The chapter concludes with the
presentation of the pinhole camera model which is a fundamental building block for this
thesis.

Chapter 3 presents probabilistic state estimation as a formal framework for state estima-
tion in dynamical systems. The Bayes filter is introduced and several variants along
with their properties, strengths, weaknesses and applicability for the purpose of self-
localisation and multiple object tracking are examined and discussed.

Chapter 4 introduces the autonomous robot soccer benchmark and presents the research
platform, The AGILO RoboCuppers, used for the experimental evaluation of the algo-
rithms proposed in this thesis. The hardware setup, as well as the software architecture
of the robot controller, its components and the interactions among them are outlined.

Chapter 5 describes the extremely fast and accurate vision-based self- and ball-localisation
procedure, called the Cooperative Incremental Iterative Self-localisation (CIIL) algo-
rithm. The data structures of the algorithm, its computational principles and extensions
for cooperative perception are presented.

Chapter 6 presents the Cooperative Object Detection and Tracking (CODT) algorithm used
to track the opponent players. The data structures of the algorithm, its computational
principles and extensions for cooperative perception are developed.

Chapter 7 evaluates the proposed states estimation algorithms CIIL and CODT in several
real world experiments. Collected experimental data from two RoboCup world champi-
onships, covering more than four hours net operation time, is presented and analysed.

Chapter 8 summarises the contributions of this thesis and sketches further directions for
research.





Chapter 2

Preliminaries

2.1 Introduction

This chapter introduces notation as well as some fundamental preliminaries. Particularly,
rotations in 3D Cartesian space, Gaussian normally distributed random variables, distance
measures for Gaussian random variables, i.e. the Mahalanobis and Bhattacharyya distance,
variants for the linear and non-linear transformation of a Gaussian random variables are dis-
cussed. The chapter concludes with the presentation of the pinhole camera model which
constitutes is a fundamental building block for this thesis. Readers familiar with these con-
cepts may skip this chapter and should proceed with the next chapter.

2.2 Representation of Rotations in 3D Space

A relatively intuitive representation of a rotation is the encoding of the rotation with three
angles. (rα, rβ, rγ), each of them describing a rotation about a given axis,

Rx (rα) =

 1 0 0
0 cos (rα) − sin (rα)
0 sin (rα) cos (rα)


Ry (rβ) =

 cos (rβ) 0 sin (rβ)
0 1 0

− sin (rβ) 0 cos (rβ)


Rz (rγ) =

 cos (rγ) − sin (rγ) 0
sin (rγ) cos (rγ) 0

0 0 1


R = Rx (rα) · Ry (rβ) · Rz (rγ)

i.e. the rotation is expressed through a rotation about the Z-axis (angle rγ), followed by a
rotation about the new Y -axis (angle rβ) and a rotation about the new X-axis (angle rα).
The rotation matrix R is composed as follows:

15
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R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


r11 = cos (rβ) cos (rγ)

r12 = − cos (rβ) sin (rγ)

r13 = sin (rβ)

r21 = sin (rα) sin (rβ) cos (rγ) + cos (rα) sin (rγ)

r22 = − sin (rα) sin (rβ) sin (rγ) + cos (rα) cos (rγ)

r23 = − sin (rα) cos (rβ)

r31 = − cos (rα) sin (rβ) cos (rγ) + sin (rα) sin (rγ)

r32 = cos (rα) sin (rβ) sin (rγ) + sin (rα) cos (rγ)

r33 = cos (rα) cos (rβ) (2.1)

This is only one of several possibilities to describe a rotation with three rotation angles. A
commonly used representation is also the application of the rotation angles in reverse order:

R = Rz (rθ) · Ry (rϑ) · Rx (rφ)

r11 = cos (rθ) cos (rϑ)

r12 = cos (rθ) sin (rϑ) sin (rφ)− sin (rθ) cos (rφ)

r13 = cos (rθ) sin (rϑ) cos (rφ) + sin (rθ) sin (rφ)

r21 = sin (rθ) cos (rϑ)

r22 = sin (rθ) sin (rϑ) sin (rφ) + cos (rθ) cos (rφ)

r23 = sin (rθ) sin (rϑ) cos (rφ)− cos (rθ) sin (rφ)

r31 = − sin (rϑ)

r32 = cos (rϑ) sin (rφ)

r33 = cos (rϑ) cos (rφ) (2.2)

The rotation angles (rα, rβ, rγ) and (rθ, rϑ, rφ) can be derived from R as follows:

cos (rβ) =
√

r2
11 + r2

12

rα = atan2

(
− r23

cos (rβ)
,

r33

cos (rβ)

)
rβ = atan2 (r13, cos (rβ))

rγ = atan2

(
− r12

cos (rβ)
,

r11

cos (rβ)

)
(2.3)

respectively,
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cos (rϑ) =
√

r2
11 + r2

21

rθ = atan2

(
r21

cos (rϑ)
,

r11

cos (rϑ)

)
rϑ = atan2 (−r31, cos (rϑ))

rφ = atan2

(
r32

cos (rϑ)
,

r33

cos (rϑ)

)
(2.4)

with atan2(y, x) = arctan
(

y
x

)
. Furthermore, atan2(x, y) determines the quadrant of the

result according to the signs of both arguments.
This problem cannot be solved uniquely1 in the pathologic cases of cos (rβ) = 0 and

cos (rϑ) = 0. A possible solution is rα = atan2(r21, r22), rβ = 90◦ and rγ = 0◦. It is feasible to
apply the single rotations in reverse order if rβ ≈ 90◦ or rϑ ≈ 90◦. In many cases a minimal
disturbance of the rotation matrix is tolerable in oder to avoid this singularity.

2.3 Gaussian Normal Distribution

Many sensor data processing algorithms assume that the probability of measuring a certain
quantity is distributed according to a Gaussian normal distribution. This assumption is valid
since usually several disturbances (sources of error) are incorporated in a measurement. Every
disturbance is distributed according to a unique but unknown distribution. According to the
stochastic central limit theorem, the resulting measurement can be assumed to be Gaussian
distributed. The advantage of a normally distributed random variable is that it can completely
be characterised by its mean and variance.

The notation x ∼ N(x̄, σ2
x) describes a Gaussian distributed one dimensional (scalar or

single-variate) random variable, x, with mean x̄ and variance σ2
x. The probability density

function ( pdf), p(x), of this variable is defined as follows:

p(x) = N(x; x̄, σ2
x) =

1√
2πσ2

x

e
− 1

2
(x−x̄

σ2
x

)2

(2.5)

The notation x ∼ N(x̄, Σx) describes a normally distributed n-dimensional (vector or multi-
variate) random variable, x, with a n-dimensional mean vector, x̄, and a n × n-dimensional
covariance matrix, Σx. The pdf, p(x), of this variable is defined as follows:

p(x) = N(x; x̄, Σx) =
1√

(2π)ndet(Σx)
e−

1
2
(x−x̄)T Σ−1

x (x−x̄) (2.6)

The current state of a robot can efficiently be characterised by a Gaussian random variable.
The mean of this variable represents the robot’s state and the covariance matrix the associated
uncertainty. The same holds for measurements or observations performed with a sensor. The

1In fact every representation of a rotation, with three parameters, features such a singularity, e.g.(Melen,
1994).
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(a) (b)

Figure 2.1: Sigma contours (a) Hx(2) for a one-dimensional and (b) Hx(1) for a two-
dimensional random variable, taken from Lanser (1997).

mean of this random variable represents the actual measurement and the covariance matrix
the associated measurement uncertainty.

In order to display a Gaussian distribution, the concept of the Mahalanobis distance will
be introduced next. The Mahalanobis distance can also be used as a measure of similarity
between two Gaussian distributions. A more elaborate concept is the Bhattacharyya distance.

2.3.1 Mahalanobis Distance of a Gaussian Random Variable

Multi-dimensional Gaussian distributed random variables can efficiently be represented with
the use of hyperellipsoids. Given a confidence level α, e.g. α = 0.95, the hyperellipsoid
defines a volume around the mean that contains 95 % of the distributions volume. This
hyperellipsoid can also be regarded as a multi-dimensional confidence interval. Given a n-
dimensional random variable, x ∼ N(x̄, Σx), the associated hyperellipsoid

Hx(d) = {x ∈ IRn|dm(x; x̄, Σx) ≤ d} (2.7)

can be defined with the Mahalanobis distance

dm(x; x̄, Σx) =
√

(x− x̄)T Σ−1
x (x− x̄) (2.8)

The hyperellipsoid, Hx(d), contains all vectors x, of which the distance to the mean x̄ of the
random variable x is smaller than d (see Figure 2.1). The parameter d defines the confidence
level, i.e. the probability p(d) with which a possible value of the random variable x is contained
in the set Hx(d):

p(d) = 2Φ(d)− 1

Here, Φ(z) denotes the standard normal distribution. A confidence level of 95% is achieved
for d = 2. If the random variable describes the estimated state of a robot or an observation,
the real state or the actual observation is contained with probability p(d) in Hx(d).

In the scalar case, the computation of the Mahalanobis distance Eq. (2.8) for the random

variable x ∼ (x̄, σ2) simplifies to dm(x; x̄, σ2) = |x−x̄|
σ

. Set Hx(d) contains all possible values
form the confidence interval [x̄− dσ, x̄ + dσ], see Figure 2.1(a). In the two-dimensional case
Hx(d) is an ellipsoid with mean x̄, see Figure 2.1(b). Intuitively, the value of d defines the
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contour of an ellipsoid, the size of which is defined by d ∗ Σ. Consequently, this contour is
commonly called the d-sigma (d-σ) contour of a Gaussian distribution. The orientation and
the length of an ellipsoid’s (d-σ contour) axes can easily be determined by the singular value
decomposition of (d ∗ Σx)

−1. In the multi-dimensional case Hx(d) can be thought of as an
hyperellipsoid around the mean x̄.

2.3.2 Mahalanobis Distance of two Gaussian Random Variables

In the context of sensor data interpretation algorithms, it is often desirable to have a criterion
that decides whether an object’s estimate and an arbitrary observation, both represented as
Gaussian random variables, describe the same physical object.

The Mahalanobis distance can also be used as a measure of similarity between two Gaus-
sian distributed random variables. The squared Mahalanobis distance of the two Gaussian
random variables x ∼ N(x̄, Σx) and y ∼ N(ȳ, Σy) is defined as follows:

d2
m(x, y) = (x̄− ȳ)T (Σx + Σy)−1(x̄− ȳ) (2.9)

The squared Mahalanobis distance is distributed according to a χ2 distribution with n degrees
of freedom (Bar-Shalom and Fortmann, 1988). This can be used to define a test procedure that
decides whether two Gaussian Random Variables are similar to a certain level of confidence
α, e.g. α = 0.95. Two Gaussian distributions are assumed to be similar when

d2
m(x, y) ≤ χ2

n;α (2.10)

The value of χ2
n;α can be found in the χ2 distribution tables. Geometrically, this can be

interpreted as follows. Given the σ contours of two random variables that correspond to
the confidence level of α (see Figure 2.2(a)), the test criterion is successfully passed if the
mean ȳ falls within the validation region of x. The validation region of y is defined by the
corresponding σ contour of the sum of the covariances, Σx +Σy (see Figure 2.2(b)). This test
criterion is also commonly called a validation gate.

In the context of this thesis, the test criterion will be used to solve the data association
problem, i.e. to decide whether an estimate of an object’s position corresponds to a current
observation. Both entities are represented as Gaussian random variables. If the test is suc-
cessfully passed, it is assumed that both variables originated from the same object, and thus
the measurement can be used to refine the position estimate of that object.

2.3.3 Bhattacharyya Distance of two Gaussian Random Variables

The validation gate procedure based on the Mahalanobis distance described in the previous
section is commonly used to solve the data association problem. However, one significant
drawback of this procedure is that it only determines, if the mean of one random variable
falls within the validation region of another. The procedure does not take into account how
well two Gaussian random variables overlap and thus match. A more adequate measure is
the Bhattacharyya distance that computes the joint integral of the pdfs of both variables:

d2
b(x, y) =

∫ ∫
p(x; x̄, Σx) p(y; ȳ, Σy) dxdy (2.11)
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(a) (b)

Figure 2.2: The validation region of the Mahalanobis distance spanned by two random vari-
ables. (a) Given σ contours of two random variables, x and y, representing the estimate of an
object’s position and a current observation, respectively. (b) The observation y can success-
fully be associated with the estimated position x if the mean ȳ of y falls within the validation
region of x. The validation region is defined by σ contour of the sum of the covariances of x
and y.

Bhattacharyya (1943) evaluated the above expression for Gaussian random variables and
found an expression which is similar to the Mahalanobis distance.

d2
b(x, y) =

1

8
d2

m(x, y) +
1

2
ln

det(Σx + Σy)

2
√

det(Σx)det(Σy)

=
1

8
(x̄− ȳ)T (Σx + Σy)−1(x̄− ȳ) +

1

2
ln

det(Σx + Σy)

2
√

det(Σx)det(Σy)
(2.12)

In fact, the Bhattacharyya distance consists of a weighted sum of the Mahalanobis distance
and a second term. Consequently, the Bhattacharyya distance is computationally more expen-
sive than the Mahalanobis distance. To the author’s knowledge, the Bhattacharyya distance
has not been used to solve the data association problem before.

2.3.4 Transformation of Gaussian PDFs

Sensor data processing algorithms frequently have to transform measurements and observa-
tions, performed by different sensors, into a common frame of reference or coordinate system.
Measurements are generally represented by a pdf, e.g. a Gaussian normal distribution, with
mean and covariance. The task is to transform the pdf of the measurement from the sensor’s
coordinate system to a new pdf in the common frame of reference.

A common example is the transformation of polar coordinates into Cartesian coordinates.
Polar coordinates, such as bearing and range measurements, are obtained from a camera
or 2D laser range finder. Bearing and range measurements are assumed to be normally
distributed. The associated mean and covariance can usually be determined through a series of
measurements. The transformation of this measurement into the Cartesian frame of reference
determines a new mean and covariance and, as a result, a new pdf.
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Formally, the transformation of pdfs can be described as follows. Given a n-dimensional
random variable x ∼ N(x̄, Σx) and a transformation function f : IRn → IRm the m-
dimensional random variable y ∼ N(ȳ, Σy) with y = f(x) is to be obtained. Consequently,
not only the value of y but also its pdfs and the associated parameters ȳ and Σy have to be
determined. In order to determine the parameters of the transformed normal distribution,
two cases can be distinguished, i.e. (1) f is linear and (2) f is nonlinear.

Linear Transformation

In the linear case f is defined as f(x) = Ax + b, with A being a n ×m-dimensional matrix
and b being a m-dimensional vector. The transformed mean ȳ and covariance Σy can be
determined as follows:

ȳ = E(y)

= E(Ax + b)

= AE(x) + b

= Ax̄ + b (2.13)

Σy = E((y − E(y))(y − E(y))T )

= E((Ax + b− AE(x)− b)(Ax + b− AE(x)− b)T )

= E((A(x− E(x)))(A(x− E(x)))T )

= E((A(x− E(x)))((x− E(x))T AT ))

= AE((x− E(x))(x− E(x))T )AT

= AΣxA
T (2.14)

Nonlinear Transformation

If f is nonlinear two variants can be distinguished: (1) f is linearised and approximated by a
first order Taylor series, (2) the unscented transformation is used.

Linearisation and Approximation by a first order Taylor series If f is nonlinear
one possibility is to linearise it, i.e. approximate f by a first order Taylor series about an
appropriate support point x0:

f(x) ≈ f(x0) +∇F (x0)(x− x0) (2.15)

∇F (x0) = df
dx

(x0) is a n × m-dimensional matrix, containing the partial derivatives of f at
the support point x0. ∇F is also called the Jacobi matrix of f .

Usually, the mean of x is chosen as support point x0 = x̄. If f now is transformed into an
equivalent representation as in the linear case, then matrix A and vector b are defined by

A = ∇F (x̄) (2.16)

b = f(x̄)−∇F (x̄)x̄ (2.17)
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Substitution of A and b in Eq. 2.13 and Eq. 2.14 yields the transformed mean ȳ and covariance
Σy as follows:

ȳ = Ax̄ + b

= ∇F (x̄)x̄ + f(x̄)−∇F (x̄)x̄

= f(x̄) (2.18)

Σy = AΣxA
T

= ∇F (x̄)Σx∇F (x̄)T (2.19)

Unscented Transformation An alternative approach for the nonlinear transforma-
tion of Gaussian pdfs, called the unscented transformation, was developed by Julier and
Uhlmann (1997). They followed the intuition that it should be easier to approximate a given
distribution with a fixed number of parameters than it is to approximate an arbitrary nonlin-
ear mapping or transformation. Following this intuition, they have found a parameterisation
that captures the mean and covariance information while at the same time the unscented
transformation permits the direct propagation of the information through an arbitrary set of
nonlinear equations.

This can be accomplished by generating a discrete distribution having the same first and
second (and possibly higher) moments, where each point in the discrete approximation can
directly be transformed. The mean and covariance of the transformed ensemble can then
be computed as the estimate of the nonlinear transformation of the original distribution.
More generally, the application of a given nonlinear transformation to a discrete distribution
of points, which are computed so as to capture a set of known statistics of an unknown
distribution, is referred to as an unscented transformation (Uhlmann, 1995).

Intuitively the unscented transformation works as follows: The 1σ contour of a Gaussian
random variable is sampled at predefined points. In total, 2n sample points are generated.
Each of these sample points is propagated through the nonlinear transformation function f .
Finally, the transformed set of sample points is used to determine the mean and the covariance
of the transformed pdf. This procedure is illustrated in Figure 2.3.

More formally, the unscented transformation is defined as follows. Given a n-dimensional
Gaussian random variable x ∼ N(x̄, Σx) and a transformation function f : IRn → IRm, the
m-dimensional random variable y ∼ N(ȳ, Σy) with y = f(x) is determined by the following
four steps:

1. Compute the set Z of 2n points from the rows or columns of the matrices ±
√

nΣx.
This set is zero mean with covariance Σx. The matrix square root can efficiently be
computed by the Cholesky decomposition.

2. Compute a set of points X with the same covariance, but with mean x̄, by translating
each of the points as xi = zi + x̄.

3. Compute a set of points Y by transforming each element of X according to the trans-
formation function f , yi = f(xi).
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Figure 2.3: The concept of the Unscented Transformation. A set of sigma points, capturing
the mean and covariance information of the distribution, is transformed according to a non-
linear transformation function and is used to approximate the mean and covariance of the
transformed pdf, taken from Uhlmann (1995).

4. Compute ȳ and Σy by computing the mean and covariance of the 2n points in the set
Y .

The unscented transformation is summarised in Figure 2.4. An analysis of this approach
to transformation of Gaussian pdfs reveals that:

1. The unscented transformation is demonstrably superior to the results achieved by lin-
earisation for all absolutely continuous nonlinear transformations. Specifically, the un-
scented transformation achieves second order (or better) accuracy in determining the
mean as compared to the first order accuracy achieved by linearisation. Although both
approaches transform the covariance correctly up to the second order, the absolute errors
in the forth and higher order terms of the unscented transformation are smaller.

2. The unscented transformation can be applied with non-differentiable functions, in which
linearisation by a first order Taylor series is not defined.

3. The unscented transformation avoids the derivation of Jacobian (and Hessian) matrices
for linearising nonlinear kinematic and observation models. This makes the unscented
transformation conducive to the creation of efficient, general purpose black box code
libraries.

4. For several nonlinear transformations that are commonly required in robotic applica-
tions empirical results clearly demonstrate that linearised estimators yield very poor
approximations, compared to the unscented transformation.

While the linearisation of nonlinear transformation functions has been used in a variety
of applications (Lanser, 1997; Gutmann, 2000), the unscented transformation is used in this
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algorithm Unscented Transformation (< x̄, Σx >, f)
1 let
2 n % dimension of ω
3 < x̄, Σx > % previous <mean,covariance>

4 f() % transformation function

5 X = {x0, . . . , x2n} % set of points

6 Y = {y0, . . . , y2n} % set of transformed points

7 < ȳ, Σy > % transformed <mean,covariance>

8
9 do

10 % compute the set X of 2n points

11 for i← 1 to n do
12 xi ← x̄ + column (i,

√
nΣx);

13 xn+i ← x̄− column (i,
√

nΣx);
14
15 % transform each xi ∈ X to the set Y
16 for i← 1 to 2n do
17 yi ← f(xi);
18
19 % compute transformed mean and covariance

20 ȳ← 1
2n

∑2n
i=1 yi;

21 Σy ← 1
2n−1

∑2n
i=1(yi − ȳ)2;

22
23 return (ȳ, Σy);

Figure 2.4: The Unscented Transformation.

thesis to propagate uncertainty information through a series of nonlinear transformations, e.g.
system and observation models.

2.4 Camera Model

A camera model describes the mapping of the continuous world into the discrete pixel of a
video image. Knowledge about this mapping is of elementary importance for vision based
localisation and state estimation. In the following section the camera model of a pinhole
camera with radial distortions will be described. This model is applied throughout this thesis
and constitutes a fundamental building block for the algorithms presented.

2.4.1 Pinhole Camera with Radial Distortions

The model of a pinhole camera with radial distortions is a widely used cameramodel. It was
described in (Lenz, 1987). The mapping of a 3D world point w into a 2D pixel p can be
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Figure 2.5: Model of a pinhole camera with radial distortions (Lanser, 1997): The mapping
of a 3D world point w into a 2D pixel p.

decomposed into four separate steps, see Figure 2.5:

1. A 3D point w in world coordinates is transformed according to a rotation and a trans-
lation into a 3D point c in camera coordinates.

2. In the next step, c is projected into the 2D point u in the image plane according to the
perspective projection2.

3. Lens aberrations, i.e. radial distortions, are modelled in the third step. The 2D point
u is transformed into v.

4. Finally, v is discretised into the pixel p.

The following subsections will look at these four steps in greater detail. More accurate and
more complex camera models are described in (Weng, Cohen, and Herniou, 1992). They are
distinguished from the above camera model in the third, sometimes also in the fourth step.
However, the applications and algorithms presented in this thesis would not have gained any
benefits from the application of another camera model than the pinhole camera model.

The pinhole camera model consists of 12 camera parameters : six internal (also called
intrinsic or interior ) parameters

• f - effective focal length (focus) of the pinhole camera,

• κ - 1st order radial lens distortion ,

• Sx, Sy - scale factors to account for any uncertainty due to framegrabber horizon-
tal/vertical scan line resampling,

• [Cx, Cy]
T - coordinates of centre of radial lens distortion (principal point) and the inter-

secting point of the camera coordinate frame’s Z axis with the camera’s sensor plane,

2Earlier publications applied affine mappings as approximations of the perspective projection. Under cer-
tain circumstances, this reduces the achievable localisation and distance measurement accuracy significantly.
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and six external (also called extrinsic or exterior ) parameters.

• rα, rβ, rγ - rotation angles for the transform between the world and camera coordinate
frames, and

• tx, ty, tz - translational components for the transform between the world and camera
coordinate frames.

The internal parameters describe how the camera forms an image, while the exter-
nal parameters describe the camera’s pose (i.e. position and orientation) in the world
coordinate frame. The parameters are determined through a process called camera cal-
ibration. Calibration data for the model consists of 3D world coordinates w of a fea-
ture point (in mm for example) and corresponding 2D pixel coordinates p (typically in
pixels) of the feature point in the image. Several different variants for camera calibra-
tion procedures are described in (Lenz and Tsai, 1986; Tsai, 1986; Lenz and Tsai, 1988;
Wang, 1992).

2.4.2 3D-Transformation to Camera Coordinates

The first step is the transformation of a point w = [wx, wy, wz]
T from the world coordinate

system (WCS) into a point c = [cx, cy, cz]
T of the camera coordinate system (CCS):

Rc =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 , Tc =


tx

ty

tz


c = Rc (w − Tc) (2.20)

The 3D vector Tc and the rotation matrix Rc describe the position and the orientation of
the camera (the camera coordinate system) relative to the surrounding world (the world
coordinate system). If a camera is applied as part of a mobile robot or a manipulator, further
coordinate systems such as the robot (RCS) or the manipulator coordinate system (MCS),
come into play.

c = Rc (Rv (w − Tv)− Tc) (2.21)

For many aspects of localisation and state estimation Eq. (2.21) can be transformed with

R′

c = Rc · Rv

T ′

c = R−1
v · Tc + Tv

into a mapping similar to Eq. (2.20). For simplicity, a single step transformation will be used
in the following. For the application of multiple cameras, the propagation of uncertainties
(see Section 2.3.4), and the localisation of objects (see Section 6.3.1) additional coordinate
transformations according to Eq.(2.21) have to be applied.
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Coordinate rotations in 3D space can be represented in several different ways. Two com-
mon possibilities, are (1) the specification of a rotation angles for every axis and (2) the
Rodrigues (see Section 2.2). Every rotation in 3D space possesses three degrees of freedom.
For each degree of freedom a rotation angle (rα, rβ, rγ) is specified:

RC = Rx (rα) · Ry (rβ) · Rz (rγ)

i.e. the rotation of a 3D point is expressed by a rotation around the Z-axis (angle rγ), followed
by a rotation around the new Y -axis (angle rβ) and a rotation around the new X-axis (angle
rα)3.

2.4.3 Perspective Projection into the Image Plane

The transformation of a 3D point c = [cx, cy, cz]
T from the CCS into a two dimensional

point u = [ux, uy]
T in the image plane (image coordinate system ICS) is performed by the

perspective projection

u =

 ux

uy

 =

 f cx

cz

f cy

cz

 (2.22)

Here, f denotes the focal length (focus) of the camera.

Annotation 2.4.1 Equations (2.20) and (2.22) define a mapping from IR3 to IR2. If the
Euclidean space IR3 is embedded into the the projective space IP3, a corresponding linear
projective transformation is given through:

u = P · D ·wu1

u2

u3

 =

 f 0 0 0
0 f 0 0
0 0 1 0

 ·
 R −RT

0 0 0 1

 ·


wx

wy

wz

1

 (2.23)

This alternative representation makes use of the so called homogeneous coordinates and is
found throughout literature. It simplifies some geometrical considerations, as the nonlineari-
ties of the perspective projection Eq. (2.22) are eliminated or deferred. 4

2.4.4 Radial Distortions

The radial distortions caused by lens aberrations can be approximated by:

3This is one form of the so called Euler angles. Other representations, with reverse order of the rotation
angles, are commonly used, see also Eq. (2.1) in Section 2.2.

4 Linking the point u ∈ IP2 with the actual observable point, u ∈ IR2, reintroduces the nonlinearity again:
ux = u1/u3 respectively uy = u2/u3.
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(a) (b) (c)

Figure 2.6: Radial distortions through lens aberrations: pincushion distortions (κ =
0.078 1

mm2 ) (a), ideal mapping (κ = 0) (b) and barrel distortions (κ = −0.078 1
mm2 ) (c). Ad-

ditional camera parameters (RWI Pioneer camera system): 640× 480 Pixel (NTSC format),
f = 2.2 mm, Sx = 0.0046 mm, Sy = 0.0055 mm, Cx = 318.2 Pixel, Cy = 236.7 Pixel.

v =

 vx

vy

 =


2ux

1+
√

1−4κ(u2
x+u2

y)

2uy

1+
√

1−4κ(u2
x+u2

y)

 (2.24)

Here, κ represents the so called distortion coefficient . Eq. (2.24) allows for pincushion-
(κ > 0) and barrel (κ < 0) distortions, see also Figure 2.6.

2.4.5 Transformation to discrete Pixel

Finally, the observable (sub-)pixel p = [px, py]
T in the pixel coordinate system (PCS) is

obtained from the distorted image point v = [vx, vy]
T in ICS according to:

p =

 px

py

 =

 vx

Sx
+ Cx

vy

Sy
+ Cy

 (2.25)

Sx and Sy constitute scale factors , which represent the distance between the centres of the
CCD elements on the CCD chip.5 The coordinates, [Cx, Cy]

T , of the centre of the radial
lens distortion and the intersection point of the camera coordinate frame’s Z axis with the
camera’s sensor plane is called the principal point .

2.4.6 Inverse Camera Model

The inverse of a camera model describes the mapping of a discrete pixel of a video image into
the continuous world. This mapping can be used to measure range and bearing information
between camera and objects of interest, simply by back projecting the pixel coordinates of a
pixel belonging to an object of interest.

5If pixel synchron sampling is used, Sx corresponds to the horizontal distance between two sensor centres.
Otherwise, Sx is only a virtual magnitude which is highly influenced by the distance of sampling points used
by the framegrabber. Sx has to be determined though a calibration procedure.
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Due to the surjective nature of a camera model, the inverse cannot uniquely be defined
and certain assumptions and simplifications have to be made. In the following, the inverse
camera model and the underlying assumptions will be described.

Given an observable (sub-)pixel p = [px, py]
T in the pixel coordinate system (PCS) belong-

ing to an object of interest, it can be transformed into a distorted image point v = [vx, vy]
T

in ICS simply by the application of the inverse of Eq. (2.25):

v =

 vx

vy

 =

 Sx(px − Cx)

Sy(py − Cy)

 (2.26)

Again, Sx and Sy constitute scale factors , which represent the distance between the centres of
the CCD elements on the CCD chip. The coordinates of the centre of the radial lens distortion
and the intersection point of the camera coordinate frame’s Z axis with the camera’s sensor
plane is called principal point and denoted by [Cx, Cy]

T .
Eq. (2.24) possesses a simple analytical inversion, which allows for the elimination of

radial distortions during the image preprocessing:

u =

 ux

uy

 =

 vx

1+κ(v2
x+v2

y)

vy

1+κ(v2
x+v2

y)

 (2.27)

with κ being the distortion coefficient of the lens aberrations.
The inverse of the perspective projections (see Eq. (2.22)) cannot uniquely be defined.

Thus, the range between the optical centre and the object of interest is assumed to be the
focal length, f , of the camera. By doing this the inverse of the perspective projection degrades
to:

c =


cx

cy

cz

 =


uxcz

f

uycz

f

cz

 =


uxf
f

uyf
f

f

 =


ux

uy

f

 (2.28)

Finally, the 3D point c = [cx, cy, cz]
T is mapped from the CCS back into the WCS by inverting

Eq. (2.20) and Eq. (2.21):

w′ =


w′

x

w′
y

w′
z

 = R−1
c c (2.29)

w =


wx

wy

wz

 =


tx − tz

w′
x

w′
z

ty − tz
w′

y

w′
z

0

 (2.30)
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Rc and Tc = [tx, ty, tz]
T are the rotation matrix and translation vector specifying the relative

displacement between the CCS and the RCS or the CCS and the WCS, respectively. As
before, several coordinate system transformations can be specified with one rotation matrix
and one translation vector.

The underlying assumptions made in these equations is that the observed object touches
the ground. Consequently, only the relative displacement between the observing camera
and the object of interest can be derived. In any case, it is possible to convert this relative
displacement into range and bearing information through the use of a polar coordinate system.

2.5 Conclusions

This chapter introduced notation as well as some fundamental preliminaries for sensor process-
ing algorithms. Among the presented concepts are rotations in 3D Cartesian space, Gaussian
normal distributed random variables, distance measures based on them, i.e. the Mahalanobis
and Bhattacharyya distance, variants for the linear and non-linear transformation of a Gaus-
sian random variables. The chapter is concluded with the formal model of a pinhole camera
and its inverse. The presented concepts have been compiled to meet the requirements of
this thesis. More detailed representations can be found in (Lanser, 1997; Gutmann, 2000;
Uhlmann, 1995).



Chapter 3

State Estimation in Structured
Dynamical Systems

3.1 Introduction

The problem of estimating large and complex states is the main subject addressed in this
thesis. This chapter defines the formal problem in the context of a dynamic system and
introduces a probabilistic framework for state estimation. This framework allows for the
explicit representation of uncertainty and ambiguities associated with the estimated states. A
particular and commonly used technique for probabilistic state estimation is the Bayes Filter.
The general Bayes filter is introduced and several specialisations are discussed, along with
their assumptions, strengths and weaknesses. Furthermore, the different implementations are
analysed with respect to their properties and their applicability to self-localisation, object
localisation and multiple object tracking.

3.2 Dynamical Systems

In control theory, a dynamic system (Dean and Wellmann, 1991) is a model that describes
the interactions between a machine (called the controller) and its environment. Both entities
are tightly coupled and they interact with each other through signals and actions. Usually,
the controller is represented as a deterministic automaton that takes as input a signal (also
called a measurement, an observation, or simply sensor data)1 and outputs some actions (also
called an input or control)1. The environment can be viewed as an automaton that takes
the controller’s action as input and generates a signal to serve as the controller’s next input.
Figure 3.1 illustrates this cycle. It is noteworthy that the terms input and output take the
perspective of the environment rather than the controller.

In the structured dynamical system model the environment consists of two processes: (1)
the environment process and, (2) the sensor process. The environment process changes and
updates the state of the environment, according to the action generated by the controller.
The sensor process maps the current state of the environment into a signal which can then
be observed by the controller.

1All these terms are considered interchangeably and are used in alternating order throughout this thesis.

31
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Figure 3.1: The structured dynamical system is a model that describes the interactions be-
tween a machine (controller) and its environment.

More formally, at time t, the state of the environment is represented by xt, the output
signal of the environment is zt and the action performed by the controller is ut. The state of
the environment, xt, evolves with time according to

xt = ft(xt−1, ut−1, vt−1), (3.1)

where ft : IRnx× IRnu× IRnv → IRnx is a possibly nonlinear function of the state xt, called the
system, process or motion model1. vt−1 is the process noise, nx, nu and nv are the dimensions
of the state, the action and the process noise vectors, respectively. The updated state of the
environment is mapped to the next output signal, zt, by,

zt = ht(xt, wt), (3.2)

where ht : IRnx × IRnw → IRnz is a possibly nonlinear function called the observation or
measurement model1, wt is the observation noise, and nz, nw are the dimensions of the
observation and observation noise vectors, respectively.

The controller consists also of two processes: (1) the state estimation process, and (2) the
action selection process. Given the signal of the environment, the state estimation process
produces an estimate of the environment’s state. This estimate serves as input to the action
selection process, which in turn generates an action. Formally, the state estimation process
can be described through the mapping

x̂t = et(zt) (3.3)

where et : IRnz → IRn
x̂ is a possibly nonlinear function called the inverse observation or

measurement model2, x̂t is the estimate of the environments state, and nx̂ is the dimension
of the state estimate vector. It should be noted that xt and x̂t in general have different

2In the context of probabilistic state estimation there is no need to distinguish between an observation
model and its inverse. As such the term inverse is always omitted.
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dimensions, thus nx 6= nx̂. holds. Obviously, the ideal mapping for et would simply be the
inverse of ht, et = h−1

t . Practically, this is not possible. The application to the mapping ht in
the sensor process only performs a partial observation of the environment depending on the
sensor’s characteristics. Consequently, this results in a loss of information. It is impossible
to accurately restore this lost information during the state estimation process. Thus, the
controller’s action selection process has to consider that the input is only an estimate of the
environment’s state and as such, may be erroneous. The action, which serves as input to the
environment, is selected by

ut = at(x̂t) (3.4)

where at : IRn
x̂ → IRnu is a possibly nonlinear function called the action selection model3, ut

is the action selected, and nu is the dimension of the action vector.

The correct implementation of the state estimation and the action selection processes is a
fundamental prerequisite for a good controller performance. The work of this thesis focuses
on the state estimation problem and aims at the generation of the best state estimates, based
on the set of all available signals and actions. However, even with good state estimates a
second quantity, describing the uncertainty of an estimate, is always useful and desirable.

3.3 Probabilistic State Estimation

Probabilistic state estimation (Thrun et al., 2000; Fox et al., 2000) addresses the state esti-
mation problem within a probabilistic framework that allows for the explicit representation
of uncertainties of the estimated states. The key idea is to estimate the posterior probability
density over the state space conditioned on input data. In the robotics and AI literature,
this posterior is typically called the belief state (Aström, 1965). Throughout this thesis, the
following notation will be used:

Bel(x̂t) = p(x̂t|data0...t) (3.5)

As before, x̂t denotes the state estimate at time t, and data0...t denotes the data starting at
time 0 up to time t. For mobile robots, two types of data can be distinguished: (1) signals,
i.e. observational data such as features extracted from images or laser range measurements
and (2) actions, i.e. controls or odometry data containing information about robot motion.4

Denoting the former by zt and the latter by ut, the following expression is achieved:

Bel(x̂t) = p(x̂t|zt, ut−1, zt−1, ut−2, . . . , u0, z0) (3.6)

3The correct control theoretic term for this mapping is input regulation model. However, the controller of
an autonomous robot is not only concerned with the control of its actuators, on a more abstract level, it has
to deal with plans and actions. Hence, the term action selection model was chosen.

4It is noteworthy that in many successful autonomous robot systems the odometry readings are regarded
as actions u, and thus are used to predict the next state. This is somehow contradictory to the dynamic
system model, since the odometry of a robot can also be regarded as an additional sensor. However, this
approach can be justified, as in general the odometry readings are a result of the actions determined by the
action selection process, Eq. (3.4), and consequently are strongly correlated.
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Without loss of generality, it is assumed that observations and actions occur in an alternating
sequence. It is worth noting that the most recent perception in Bel(x̂t) is zt, whereas the
most recent control/odometry reading is ut−1. Several different techniques for probabilistic
state estimation exist. The most renowned and commonly used technique is the Bayes filter.

3.4 Bayes Filtering

Bayes filters estimate the belief (Aström, 1965) recursively. The initial belief characterises
the initial knowledge about the system state. In the absence of such knowledge (e.g. global
localisation), it is typically initialised by a uniform distribution over the state space. To derive
a recursive update equation, Eq. (3.6) can be transformed by Bayes rule to

Bel(x̂t) =
p(zt|x̂t, ut−1, . . . , z0) p(x̂t|ut−1, . . . , z0)

p(zt|ut−1, . . . , z0)

=
p(zt|x̂t, ut−1, . . . , z0) p(x̂t|ut−1, . . . , z0)

p(zt|ut−1, data0...t−1)
(3.7)

The Markov assumption states that measurements zt are conditionally independent of the
past measurements and odometry readings, given knowledge of the state x̂t:

p(zt|x̂t, ut−1, . . . , z0) = p(zt|x̂t) (3.8)

Eq. (3.7) can conveniently be simplified:

Bel(x̂t) =
p(zt|x̂t) p(x̂t|ut−1, . . . , z0)

p(zt|ut−1, data0...t−1)
(3.9)

To obtain the final recursive form, state x̂t−1 at time t − 1, has to be integrated out, which
results in

Bel(x̂t) =
p(zt|x̂t)

p(zt|ut−1, data0...t−1)

∫
p(x̂t|x̂t−1, ut−1, . . . , z0) p(x̂t−1|ut−1, . . . , z0) d x̂t−1 (3.10)

The Markov assumption also implies that, given knowledge of x̂t−1 and ut−1, the state x̂t

is conditionally independent of past measurements z0, . . . , zt−1 and of odometry readings
u0, . . . , ut−2 up to time t− 2, that is:

p(x̂t|x̂t−1, ut−1, . . . , z0) = p(x̂t|x̂t−1, ut−1) (3.11)

Using the definition of the belief Bel, the recursive estimator known as Bayes filter is obtained:

Bel(x̂t) =
p(zt|x̂t)

p(zt|ut−1, data0...t−1)

∫
p(x̂t|x̂t−1, ut−1) Bel(x̂t−1) d x̂t−1

= ν p(zt|x̂t)
∫

p(x̂t|x̂t−1, ut−1) Bel(x̂t−1) d x̂t−1 (3.12)
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where ν is a normalising constant. This equation is of central importance, as it is the basis
for various state estimation algorithms.

In order to conclude this derivation, Figure 3.2 displays the Bayes filtering algorithm. With
every iteration of the algorithm, the belief state Bel(x̂t) is updated according to the supplied
data. Depending on the type of data (action or signal), the algorithm can be divided into two
different stages: (1) prediction, and (2) update. During the prediction stage, the system model
Eq. (3.1) is used to obtain the prior pdf of the state at time t, via the Chapman-Kolomogorov
equation:

Bel(x̂t) =
∫

p(x̂t|x̂t−1, ut−1) Bel(x̂t−1) d x̂t−1 (3.13)

The probabilistic model of the state evolution, p(x̂t|x̂t−1, ut−1), is defined by the system equa-
tion Eq. (3.1) and the known statistics of vt−1. In analogy to Eq. (3.1) and in the context of
a Bayes filter p(x̂t|x̂t−1, ut−1), it is also referred to as the system, process or motion model.

During the update stage, a measurement zt becomes available and is used to update the
prior density to obtain the required posterior density of the current state:

Bel(x̂t) = ν p(zt|x̂t) Bel(x̂t−1) (3.14)

where the likelihood function p(zt|x̂t) is defined by the measurement model Eq. (3.2) and the
known statistics of wt. In analogy to Eq. (3.2) p(zt|x̂t) is also referred to (in the context of a
Bayes filter) as the observation or measurement model. Since the measurement zt plays the
key role in this stage, this stage is also sometimes called the measurement stage.

For the successful implementation of this algorithm three distributions have to be known:
the initial belief Bel(x̂0) (e.g. uniform), the next state probability p(x̂t|x̂t−1, ut−1), and the
observational likelihood p(zt|x̂0). Assuming that these pdfs are given, three different Bayes
filters, i.e. Gaussian, discrete, and Monte Carlo Bayes filter are presented in the following
sections along with their individual features and properties.

3.4.1 Gaussian Bayes Filters

Gaussian Bayes filters assume that the belief, the system, and the observation model are
normally distributed and, hence, can be represented by a mean and a covariance.

Bel(x̂t) = Nt(x̂t; x̄t, Σxt)

=
1√

(2π)nxdet(Σxt)
e−

1
2
{(x̂t−x̄t)T Σ−1

xt
(x̂t−x̄t)} (3.15)

(3.16)

The well known Kalman filter belongs to the class of Gaussian Bayes filters. In general, it
is possible to distinguish five different variants of the Kalman filter: (1) the linear Kalman
filter, (2) the extended (nonlinear) Kalman filter, (3) the iterated (nonlinear) Kalman filter,
(4) the unscented (nonlinear) Kalman filter, and (5) the multiple hypothesis Kalman filter.
The next sections describe the different types of Kalman filters in this order.
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algorithm Bayes Filter (Bel(x̂), data)
1 let
2 Bel(x̂) % previous belief state

3 Bel′(x̂) % updated belief state

4 data % data item (action or signal)

5 ν % normalising constant

6
7 do
8 ν ← 0;
9 switch (data)

10
11 case (data is an action data item u) :
12 % prediction stage

13 for each x̂ do
14 Bel′(x̂)←

∫
p(x̂|x̂′, u) Bel(x̂) d x̂′;

15
16 case (data is a signal (perceptual) data item z) :
17 % update or measurement stage

18 for each x̂ do
19 Bel′(x̂)← p(z|x̂) Bel(x̂);
20 ν ← ν + Bel′(x̂);
21 for each x̂ do
22 Bel′(x̂)← ν−1 Bel′(x̂);
23
24 return (Bel′(x̂));

Figure 3.2: The Bayes Filtering Algorithm.

3.4.2 Linear Kalman Filter

The linear Kalman filter (KF) (Kalman, 1960) assumes that the system and the observation
model are linear. That is, Eq. (3.1) and Eq. (3.2) can be re-written as:

xt = Ftxt−1 + Gtut−1 + vt−1 (3.17)

zt = Htxt + wt (3.18)

where Ft, Gt and Ht are known matrices defining the linear system and observation model.
The Gaussian random variables ut−1 = N(ūt−1, Σvt−1) and zt = N(z̄t, Σwt) represent the
action and the signal along with the process noise vt−1 and the measurement noise wt, respec-
tively. The prediction stage of the linear Kalman filter is defined by:

x̃t = Ftx̄t−1 + Gtūt−1 (3.19)

Σx̃t
= FtΣxt−1F

T
t + Σvt−1 (3.20)
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algorithm Kalman Filter (< x̄, Σx >, data)
1 let
2 < x̄, Σx > % previous belief state <mean,covariance>

3 < x̄′, Σx′ > % update belief state <mean,covariance>

4 data % data item (action or signal)

5 F, G % system model

6 H % observation model

7 Σs, K % innovation, Kalman gain

8
9 do

10 switch (data)
11
12 case (data is an action data item < ū, Σv >) :
13 % prediction stage

14 x̄′ ← F x̄ + Gū;
15 Σx′ ← FΣxF

T + Σv;
16
17 case (data is a signal (perceptual) data item < z̄, Σw >) :
18 % update or measurement stage

19 Σs = HΣHT + Σw;
20 K = ΣxH

T Σ−1
s ;

21 x̄′ = x̄ + K(z̄−Hx̄);
22 Σx′ = (I −KH)Σx;
23
24 return (< x̄′, Σx′ >);

Figure 3.3: The Kalman Filtering Algorithm.

where x̃t and Σx̃t
are the predicted state estimate and the associated covariance, respectively.

The update stage is defined through

Σst = HtΣx̃t
HT

t + Σwt (3.21)

Kt = Σx̃t
HT

t Σ−1
st

(3.22)

x̄t = x̃t + Kt(z̄t −Htx̃t) (3.23)

Σxt = (I −KtHt)Σx̃t
(3.24)

where Σst and Kt are the covariances of the innovation term (z̄t − Htx̃t) and the Kalman
gain, respectively. The standard Kalman filter algorithm is summarised in Figure 3.3. This
framework has been used by numerous researchers for pose tracking and has also proven to be
a good solution for sensor fusion (Leonard and Durrant-Whyte, 1991; Leonard and Durrant-
Whyte, 1992; Forsberg et al., 1993; Rencken, 1994; Crowley, 1989; Crowley, Wallner, and
Schiele, 1998; Gutmann, Weigel, and Nebel, 2001; Vestli and Tschichold-Gürman, 1996).
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algorithm Extended Kalman Filter (< x̄, Σx >, data)
1 let
2 < x̄, Σx > % previous belief state <mean,covariance>

3 < x̄′, Σ′
x > % update belief state <mean,covariance>

4 data % data item (action or signal)

5 ∇F,∇G,∇V % Jacobians of system model and system noise

6 ∇H,∇W % Jacobians of observation model and observation noise

7 Σs, K % innovation, Kalman gain

8
9 do

10 switch (data)
11
12 case (data is an action data item < ū, Σv >) :
13 % prediction stage

14 x̄′ ← f(x̄, ū);
15 Σx′ ← ∇FΣx∇F T +∇V Σv∇V T ;
16
17 case (data is a signal (perceptual) data item < z̄, Σw >) :
18 % update or measurement stage

19 Σs ← ∇HΣx∇HT +∇WΣw∇W T ;
20 K ← Σx∇HT Σ−1

s ;
21 x̄′ ← x̄ + K(z̄− h(x̄));
22 Σx′ ← (I −K∇H)Σx;
23
24 return (< x̄′, Σx′ >);

Figure 3.4: The Extended Kalman Filtering Algorithm.

3.4.3 Extended Kalman Filter

A fundamental prerequisite of the linear Kalman filter is that the system, Eq. (3.1), and
observation models, Eq. (3.2), are linear. However, in most applications the system model
and the observation model perform coordinate transformations, which can only be accurately
described by nonlinear mappings. For example, if the coordinate systems of the state es-
timate and the measurement are different, then the state estimate must be transformed to
measurement coordinates, or vice versa. To overcome this problem, the Extended Kalman
filter (EKF) was proposed (Jazwinski, 1970) and has been commonly used since. The EKF
approximates the nonlinear mappings of the system and observation models by a Taylor series
expansion about the current estimate x̂t, which is usually truncated after the first term. This
process is also sometimes called the linearisation of a mapping or a model. The success of the
EKF depends on how well the system is approximated by the linearisation. The prediction
stage of the EKF is defined by:
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x̃t = ft(x̄t−1, ūt−1) (3.25)

Σx̃t
= ∇FtΣxt−1∇F T

t + ∇VtΣvt−1∇V T
t (3.26)

where again x̃t and Σx̃t
are the predicted state estimate and the associated covariance, respec-

tively. The partial derivative operator (∇) is used to indicate the approximation of the system
model and the corresponding process noise by the truncated Taylor series expansion, i.e. the
Jacobians ∇Ft and ∇Vt of Ft and Vt, respectively. The update stage is defined through

Σst = ∇HtΣx̃t
∇HT

t +∇WtΣwt∇W T
t (3.27)

Kt = Σx̃t
∇HT

t Σ−1
st

(3.28)

x̄t = x̃t + Kt(z̄t − ht(x̃t)) (3.29)

Σxt = (I −Kt∇Ht)Σx̃t
(3.30)

where Σst and Kt are the covariances of the innovation term (z̄t − ht(x̃t)) and the Kalman
gain, respectively. Here, ∇Ht and ∇Wt represent the Jacobians of Ht and Wt respectively.
The first order EKF algorithm is summarised in Figure 3.4.

It is possible to use second and higher order terms of the Taylor series expansion. This type
of EKF is called second or higher order extended Kalman filter (HKF). It is more accurate
than the standard EKF, but the implementation and computational costs are substantially
increased by the use of second and higher order terms. These facts prevented the wide spread
of HKFs. In fact, the application of HKFs is questionable. Two alternatives exist of which
the implementation and computational costs are approximate equivalent to a first order EKF.
At the same time these alternatives achieve more accurate state estimates.

3.4.4 Iterated Kalman Filter and Gaussian MAP Estimation

One possibility to overcome the errors introduced by the linearisation of the observation
model in the first order EKF is to use the iterated extended Kalman filter (IKF). The IKF
iterates the update stage several times. With every iteration, the estimate of the previous
iteration is used as predicted input and fused with the observation. With every iteration
the measurement model is re-linearised about the previous estimate. The whole process is
repeated a fixed number of times or until it reaches convergence, i.e. the change between
two consecutive estimates becomes sufficiently small. The IKF algorithm is summarised in
Figure 3.5.

In computer vision, model fitting, and tracking applications are usually formulated as a
maximum a posteriori (MAP) estimation problem. The task of a MAP estimator is very
similar to the one of a Bayes filter. It tries to find the most likely estimate:

x̂t = arg max
x

p(x|zt)

= arg max
x

p(x) · p(zt|x)

p(zt)
(3.31)
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algorithm Iterated Extended Kalman Filter (< x̄, Σx >, data)
1 let
2 < x̄, Σx > % previous belief state <mean,covariance>

3 < x̄′, Σx′ > % update belief state <mean,covariance>

4 data % data item (action or signal)

5 ∇F,∇G,∇V % Jacobians of system model and system noise

6 ∇H,∇W % Jacobians of observation model and observation noise

7 Σs, K % innovation, Kalman gain

8 i % loop counter

9
10 do
11 switch (data)
12
13 case (data is an action data item < ū, Σv >) :
14 % prediction stage

15 x̄′ ← f(x̄, ū);
16 Σx′ ← ∇FΣx∇F T +∇V Σv∇V T ;
17
18 case (data is a signal (perceptual) data item < z̄, Σw >) :
19 % update or measurement stage

20 i← 0;
21 loop
22 Σs ← ∇HΣx∇HT +∇WΣw∇W T ;
23 K ← Σx∇HT Σ−1

s ;
24 x̄← x̄ + K(z̄− h(x̄));
25 Σx ← (I −K∇H)Σx;
26 i← i + 1;
27 until (‖K(z̄− h(x̄))‖ < εmin or i > imax);
28 x̄′ ← x̄;
29 Σx′ ← Σx;
30
31 return (< x̄′, Σx′ >);

Figure 3.5: The Iterated Kalman Filtering Algorithm.

given a prior p(xt) pdf of the estimate xt summarising all evidence gathered in the past,
an observational model p(zt|xt) and the prior of the observation p(zt). In most cases, these
densities are assumed to be Gaussian distributed. Bar-Shalom and Fortmann (1988) show
in their book Tracking and Data Association, pages 12f and 64f, that a MAP estimate of
Gaussian pdfs is identical to the estimate of a Kalman Filter. As long as measurement and
estimate are related to each other by a linear mapping, a closed form solution for the above
maximisation exists.

However, in most applications this is not the case and they are related to each other by a
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nonlinear mapping. In this case the MAP estimate cannot be determined directly. Moreover,
it has to be determined by an iterative process. For this, the MAP estimation is transformed
into a numerically more favourable optimisation of a sum, by taking the negative logarithm:

x̂t = arg min
x
−2 ln (p(x))− 2 ln (p(zt|x)) (3.32)

This optimisation problem can iteratively be solved by Newton minimisation. With every
step, the nonlinear observation model, Eq. (3.2), is linearised about the latest estimate and a
closed form solution is achieved in order to approximate a better estimate. This procedure is
repeated several times or until convergence is achieved.

It can be shown that this iterative process of determining a MAP estimate with a nonlinear
observation model, Eq. (3.2), is equivalent to an iterated Kalman filter. For this thesis,
the notation of MAP estimation was adopted because of its notational analogy to Bayes
estimation, Bayes filtering, and because of its common use throughout the computer vision
research community (Lowe, 1991).

3.4.5 Unscented Kalman Filter

Another alternative to the EKF is the unscented Kalman filter (UKF) (Julier and Uhlmann,
1997; Wan and van der Merwe, 2000; Wan and van der Merwe, 2001). The UKF is based
on the unscented transformation presented in Section 2.3.4. Instead of approximating the
nonlinear system and observation model by their Jacobians and using these approximations
to propagate the Gaussians, the UKF samples the Gaussians at several sigma points in space,
transforms these points according to the nonlinear models and uses them to reconstruct the
transformed Gaussian distribution. The UKF has been shown to achieve better estimation
performance (smaller errors in the estimates and tighter covariances) than a first order EKF,
while the computational complexity is equivalent. In fact, the state estimates can be proven
to be as good as achieved by a third order EKF. Furthermore, the UKF abolishes the need
to derive Jacobians and Hessians of the system and of the observation model.

In the UKF the unscented transformation is applied twice. First, in the prediction stage,
in order to predict the next state and its covariance,

< x̃t, Σx̃t
>= Unscented Transformation ((x̄t, ūt−1), (Σxt , Σvt−1), ft) (3.33)

and then in the update stage, in order to predict the next observation and its associated
covariance.

< z̄′t, Σw′
t > = Unscented Transformation ((x̃t, z̄t), (Σx̃t

, Σwt), ht) (3.34)

Kt = Σx̃t
Σ−1

w′
t

(3.35)

x̄t = x̃t + Kt(z̄t − z̄′t) (3.36)

Σxt = Σx̃t
−KtΣw′

tK
T
t (3.37)

where Kt is the Kalman gain. The summary of this algorithm can be found in Figure 3.6. An
improvement of the UKF is the square root UKF developed by Wan and van der Merwe (2000).
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algorithm Unscented Kalman Filter (< x̄, Σx >, data)
1 let
2 < x̄, Σx > % previous belief state <mean,covariance>

3 < x̄′, Σx′ > % update belief state <mean,covariance>

4 < z̄′, Σw′ > % predicted observation <mean,covariance>

5 data % data item (action or signal)

6 K % Kalman gain

7
8 do
9 switch (data)

10
11 case (data is an action data item < ū, Σv >) :
12 % prediction stage

13 < x̄′, Σx′ >← Unscented Transformation ((x̄, ū), (Σx, Σv), f);
14
15 case (data is a signal (perceptual) data item < z̄, Σw >) :
16 % update or measurement stage

17 < z̄′, Σw′ >← Unscented Transformation ((x̄, z̄), (Σx, Σw), h);
18 K ← ΣxΣ

−1
w′ ;

19 x̄′ ← x̄ + K(z̄− z̄′);
20 Σx′ ← Σx −KΣw′KT

21
22 return (< x̄′, Σx′ >);

Figure 3.6: The Unscented Kalman Filtering Algorithm.

The main advantage of the square root algorithm is to provide a better numerical stability and
to ensure that the state covariance matrices are positive, which was not necessarily the case
in the standard UKF. The square root version of the filter performs as well as the standard
filter. Further improvements for nonlinear Gaussian state estimation can also be achieved
through the combination of the IKF and the UKF.

3.4.6 Multiple Hypothesis Kalman Filters

One fundamental drawback of the KF arises from the fact that its state estimates can only
be represented by unimodal Gaussian pdfs. As long as the KF is only used for pose tracking
of a single object, a Gaussian pdf is a sufficient model for a state estimate. However, more
complex tasks such as the initial localisation problem, the kidnapped robot problem or the
multiple object tracking problem require a multimodal pdf that can represent several pose
hypotheses5 and association hypotheses6 simultaneously.

5Throughout this thesis the term hypothesis referes to a possible object state or object pose.
6An association hyotheses refers to a collection of disjoint tracks.
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To overcome this problem an extension to the KF, the Multiple Hypothesis Kalman Filter
(MHKF), was proposed by Reid (1979). There are two basic approaches to MHKF. The first
is Reid’s algorithm where the association hypotheses are continually maintained and updated
as measurements are received. This is the measurement oriented approach. The second is the
track oriented approach where object tracks are initiated, updated, and scored before being
formed into hypotheses.

The belief Bel(x̂t) of the MHKF is represented by a set of weighted pose hypotheses, Ht.

Ht =
n⋃

i=1

{hi
t, p

i
t}

=
n⋃

i=1

{< h̄i
t, Σhi

t
>, pi

t} (3.38)

Here, each hi
t is a Gaussian random variable, hi

t ∼ N(h̄i
t, Σhi

t
), representing an object hypoth-

esis (a possible object state) by a mean h̄i
t and a covariance Σhi

t
, and pi

t are non-negative
numerical factors called the importance factors, which sum up to one. As the name suggests,
the importance factors determine the weight (=importance) of each hypothesis. In the context
of a MHKF the importance factors can be thought of as the probability of being the correct
hypothesis. This representation is also sometimes called a sum or mixture of Gaussians. The
belief of a state can be evaluated as follows:

Bel(xt) =
n∑

i=1

pi
t ∗N(xt; h̄

i
t, Σhi

t
) (3.39)

The computational structure of the MHKF is illustrated in Figure 3.7. The MHKF maintains
a KF, or one of its variants, for every hypothesis. Consequently, the models and equations
used during the prediction and update stage are identical to the ones used in a standard
KF. The implementation of the prediction stage is straight forward, despite the fact that the
system model has to be applied to every hypothesis (Apply Motion Model). The update
stage has to be extended such that it can handle multiple measurements, multiple hypotheses
(add new, update existing and delete unlikely hypotheses), and can perform the probability
computations for all hypotheses.

For the following, it is assumed that the measurement vector consists of a number of
possible poses or object observations, which were determined by the sensor data processing
or feature extraction algorithms. The first task performed by the update stage is to copy all
existing hypotheses to the set of new hypotheses. This accounts for the fact, that none of the
hypotheses might be reconfirmed by a measurement and is also referred to as track splitting.

Then, the update stage has to assign the newly determined observations or measurements
to the existing hypotheses. This process is called data association. An association is usually
performed on the basis of a validation gate (Test Validation Gate). Typically, for Gaus-
sian pdfs the Mahalanobis (see Eq. 2.9) or Bhattacharyya (see Eq. 2.12) distance are used as
a validation gate. If an observation falls within the validation gate of an existing hypothesis,
then they are assumed to have originated from the same physical object. Consequently, the
measurement and the hypothesis can be fused (Associate) by the KF update equations and
are used to create a new hypothesis.
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algorithm Multiple Hypothesis Kalman Filter (H, data)
1 let
2 H % set of hypotheses representing previous belief state
3 H ′ % set of hypotheses representing updated belief state
4 data % data item (action or signal)
5 h, hi, hj % hypothesis
6 Z % set of measurements or observations
7 z, zi, zj % measurement or observation
8 p % weight of an hypothesis
9 ν % normalising constant

10
11 do
12 switch (data)
13
14 case (data is an action data item u) :
15 % prediction stage
16 H ′ ← ∅;
17 for i← 1 to |H| do
18 h← Apply Motion Model (hi, u);
19 H ′ ← H ′ ∪ {< h, pi >};
20
21 case (data is a signal (perceptual) data vector Z) :
22 % update or measurement stage
23 H ′ ← H;
24 ν ←

∑|H|
i=1 pi;

25 for j ← 1 to |Z| do
26 for j ← 1 to |H| do
27 if Test Validation Gate (zi, hj) then
28 h← Associate (zi, hj);
29 p← p(h|Z);
30 H ′ ← H ′ ∪ {< h, p >};
31 ν ← ν + p;
32 % generate new hypothesis
33 for i← 1 to |Z| do
34 if zi 6∈ H ′ then
35 H ′ ← H ′ ∪ {< hi, pstart >};
36 ν ← ν + pstart;
37 for j ← 1 to |H ′| do
38 pi ← ν−1pi;
39 % prune set of hypotheses
40 H ′ ← Prune Hypotheses(H ′);
41
42 return (H ′);

Figure 3.7: The Multiple Hypothesis Bayes Filtering Algorithm.

The computation of the importance factor (probability) of an hypothesis requires the
evaluation of the expression P (h|Z), where h is the hypothesis for which the probability is
computed, and Z is the set of all current observations. The evaluation of this expression is
highly task dependent. Jensfelt and Kristensen (2001) introduced a variant that solves the
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initial localisation problem for an autonomous mobile robot (see also Section 5.4.2). Bar-
Shalom and Fortmann (1988) presented a solution for the multiple object tracking problem in
cluttered environments and Cox and Leonard (1994) proposed a modification, which allows
dynamic environment modelling.

Observations, that cannot be assigned to an existing hypothesis, are used to initialise new
hypotheses. Usually, the probabilities of these hypotheses are initialised with a predefined
constant probability. Alternative approaches are to derive an initial probability from the
measurements covariance matrix.

Finally, in order to constrain the growth of the set of hypotheses and the computational
demand required by the MHKF, the set of hypotheses is pruned (Prune Hypotheses). It is
obvious, that several efficient pruning strategies exist. For example, similar hypotheses can be
merged and unlikely ones can be discarded. An upper bound on the maximal possible number
of hypotheses allows computational resources to be saved. It is noteworthy that the deployed
pruning strategies and their parameters are usually very much application dependent.

3.4.7 Discrete Bayes Filters

Discrete Bayes filter (BDF) algorithms assume that the state space can be divided into a fixed
number of discrete states. The idea of DBFs is to represent the belief Bel(x̂t) with a set that
has a fixed number of weighted discrete states:

Bel(x̂t) =

 pi
t , x̂t ∈ xi

t

0 , otherwise.
(3.40)

Here, each xi
t is a possible state, and pi

t are non-negative numerical factors representing the
probability of this state. The probabilities of all states sum up to one. Hence, Bel(x̂t) can be
regarded as a piecewise constant pdf.

The big advantage of the DBFs is that system and observation models do not necessarily
have to be linear. In fact, the associated pdf can have arbitrary shapes. The prediction state
of the DBF is similar to Eq. 3.13. Since the state space is discretised into a fixed number of
states the integral can be replaced by a sum:

Bel(x̂t) =
∑

p(x̂t|x̂t−1, ut−1) Bel(x̂t−1) (3.41)

The update stage of the DBF is identical to Eq. 3.14:

Bel(x̂t) = ν p(zt|x̂t) Bel(x̂t−1) (3.42)

A summary of the DBF can be found in Figure 3.8. Successful DBF implementations and
robotic applications can be found in (Simmons and Koenig, 1995; Burgard et al., 1996; Fox,
Burgard, and Thrun, 1999). The clear advantage of DBFs are that the belief, the system
model, and the observation model can have almost arbitrary shapes and are not limited to
the use of Gaussian pdfs. Thus, DBFs allow for global localisation. The disadvantages of
DBFs are their limited accuracy, the required computational demand for iterating over the
set of states, and the fact that the number of states has to be known in advance and always
remains fixed. Consequently, DBFs scale poorly with an increasing environment.
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algorithm Discrete Bayes Filter (Bel(x̂), data)
1 let
2 Bel(x̂) % previous belief state

3 Bel′(x̂) % updated belief state

4 data % data item (action or signal)

5 ν % normalising constant

6
7 do
8 ν ← 0;
9 switch (data)

10
11 case (data is an action data item u) :
12 % prediction stage

13 for each x̂ do
14 Bel′(x̂)← ∑

x̂′ p(x̂|u, x̂′) Bel(x̂);
15
16 case (data is a signal (perceptual) data item z) :
17 % update or measurement stage

18 for each x̂ do
19 Bel′(x̂)← p(z|x̂) Bel(x̂);
20 ν ← ν + Bel′(x̂);
21 for each x̂ do
22 Bel′(x̂)← ν−1 Bel′(x̂);
23
24 return (Bel′(x̂));

Figure 3.8: The Discrete Bayes Filtering Algorithm.

3.4.8 Monte Carlo Bayes Filters

All previously described methods are either limited to unimodal Gaussian state estimates
or assume that the size of the state space is limited and can be represented by a discrete
representation. Both assumptions are frequently violated in robotic applications.

To handle these problems, sequential Monte Carlo Bayes filter (MCBF), also known
as particle filters (PFs), and have been introduced by (Handschin and Mayne, 1969;
Akashi and Kumamoto, 1977). In the mid 1990s, several PF algorithms were proposed inde-
pendently under the names of Monte Carlo filters (Kitagawa, 1996), sequential importance
sampling (SIS) with resampling (SIR) (Doucet, 1998), bootstrap filters (Gordon, Salmond,
and Smith, 1993), condensation tracker (Isard and Blake, 1996a; Blake and Isard, 1998), dy-
namic mixture models (West, 1993), survival of the fittest (Kanazawa, Koller, and Russel,
1995), etc. One of the major innovations during the 1990s was the inclusion of a resampling
step to avoid degeneracy problems inherent to the earlier algorithms (Gordon, Salmond, and
Smith, 1993). In the late nineties, several statistical improvements for PFs were proposed
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algorithm Monte Carlo Bayes Filter (S, data)
1 let
2 S % set of samples representing previous belief state

3 S ′ % set of samples representing updated belief state

4 data % data item (action or signal)

5 xi, xj % sample pose

6 pi, pj % weight of a sample pose

7 ν % normalising constant

8
9 do

10 S ′ ← ∅;
11 ν ← 0;
12 switch (data)
13
14 case (data is an action data item u) :
15 % prediction stage

16 for i = 1 to |S| do
17 % generate new samples

18 xj = Draw Sample (S);
19 xi = Draw Sample (p(xi|xj, u));
20 S ′ ← S ′ ∪ {< xi, pj >};
21
22 case (data is a signal (perceptual) data item z) :
23 % update or measurement stage

24 for i = 1 to |S| do
25 pi ← p(z|xi);
26 ν ← ν + pi;
27 S ′ ← S ′ ∪ {< xi, pi >};
28 for i = 1 to |S ′| do
29 pi ← ν−1 pi;
30
31 return (S ′);

Figure 3.9: The Monte Carlo Bayes Filter Algorithm.

and some important theoretical properties were established. In addition, these algorithms
were applied and tested in many domains. An up-to-date survey of the field can be found in
(Doucet, de Freitas, and Gordon, 2000).

The idea of MCBF algorithms (and other particle filter algorithms) is to represent the
belief Bel(x̂t) with a set of weighted samples, St, distributed according to Bel(x̂t):

St =
n⋃
1

{xi
t, p

i
t} (3.43)
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Here, each xi
t is a sample (a state), and pi

t are non-negative numerical factors called the
importance factors, which sum up to one. As the name suggests, the importance factors
determine the weight (=importance) of each sample. The belief of a state can be evaluated
as follows:

Bel(x̂t) =

 pi
t , x̂t = xi

t

0 , otherwise.
(3.44)

In global mobile robot localisation, the initial belief is a set of poses drawn according to
a uniform distribution over the robot’s state space, annotated by the uniform importance
factor 1

n
. The recursive update is realized in three steps. The first two steps correspond to

the prediction stage and the third step to the update stage of a Bayes filter. Altogether they
compute the expression in Eq. 3.12 from the right to the left.

1. State xt is sampled from Bel(x̂t), by drawing a random xi
t−1 from the sample set rep-

resenting Bel(x̂t−1) according to the (discrete) distribution defined through the impor-
tance factors pi

t−1.

2. The sample xi
t−1 and the action ut−1 is used to sample xj

t from the distribu-

tion p(xt|xt−1, ut−1). The predictive density of xj
t is now given by the product

p(xt|xt−1, ut−1)Bel(x̂t−1).

3. Finally, the samples xj
t are weighted by the (non-normalised) importance factor p(zt|xj

t),
the likelihood of the sample xj

t given the observation zt.

After the generation of n samples, the new importance factors are normalised so that they
sum up to 1 and, hence, define a probability distribution. This procedure implements Eq. 3.12
using an (approximate) sample-based representation. A summary of the algorithm is given in
Figure 3.9. Obviously, this algorithm constitutes just one possible implementation of the par-
ticle filter idea. In Sensor Resetting Localisation (SRL) (Lenser and Veloso, 2000), the idea is
to draw a fraction of the samples in the resampling step not from the previous set, but instead
directly based on where the measurements indicate that there should be samples. Adaptive
MCL (AMCL) (Crisman et al., 2002) extends SRL with a schema for adaptively determining
how many samples should be added. Mixture MCL (MMCL) (Thrun, Fox, and Burgard, 2000)
also draws samples from the observations, but the samples are properly weighted, with the
probability assigned to the position where the sample is placed. This probability is typically
estimated based on a grid approximation. Further MCBF implementations and successful ap-
plications to autonomous robots can be found in (Kitagawa, 1996) and (Dellaert et al., 1999a;
Dellaert et al., 1999b; Fox et al., 1999), respectively (see also Section 5.4.2).

The clear advantages of MCBFs are that the belief, the system model, and the obser-
vation model can have arbitrary shapes and are not limited to the use of Gaussian pdfs.
Accordingly, MCBFs allow for global localisation. Furthermore, MCBFs scale easier to larger
environments than DBFs. The disadvantages of MCBFs are their limited accuracy and the
required computational demand. Several extensions of MCBFs were proposed, which allow
for adapting the number of samples and, thus, to reduce the computational demand re-
quired upon the uncertainty of the estimate represented in the belief (Fox, 2001; Fox, 2003;
Kwok, Fox, and Meila, 2003).
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KF MHKF DBF MCBF

System/Perceptual model Gaussian Gaussian Non-Gaussian Non-Gaussian

Belief state/Posterior Gaussian Multimodal Gaussian Piecewise constant Multimodal point

State space arbitrary arbitrary fixed arbitrary

Efficiency (memory) ++ + − −

Efficiency (time) ++ + o −

Implementation + + o o

Accuracy ++ ++ + o

Robustness o + ++ ++

Global/Initial localisation −
√ √ √

Multiple-Object tracking o
√

o o

Table 3.1: Strengths and weaknesses of Bayes filters.

3.5 Conclusions

Several different variants of the Bayes filter exist and are commonly used in successful robotic
applications. The strengths and the weaknesses of the variants are summarised in Table 3.1.

The clear advantage of the Kalman filter based methods (KF and MHKF) is the high
accuracy of the state estimates. Fast update times and limited memory requirements make
them highly employable for real time applications in robotics, where only limited resources are
available. The clear disadvantage of the KF is its limitation to Gaussian system/perceptual
models and its representation of the belief by an unimodal Gaussian pdf. This leads to limited
robustness when noisy observation are integrated and to the incapability to solve the global
localisation problem. This problem can be greatly overcome by the MHKF. However, the
need for efficient pruning heuristics makes it less applicable and a good working solution is
highly domain specific and problem dependent.

DBF and MCBF exploit more capabilities of the Bayes filter. They are applicable
with arbitrary system and perceptual models and allow for more complex (almost ar-
bitrary) representations of the belief. This makes them very robust towards noise and
allows them to solve the global localisation problem. This advantage comes with the
drawback of limited achievable accuracy, particularly, a MCBF converges with a rate of
1/
√

n with n being the number of samples (Tanner, 1993; Thrun, Fox, and Burgard,
2000), and tremendous requirements towards computational resources and storage capac-
ities. An additional disadvantage of the DBF is that the state space and its discreti-
sation have to be known prior to robot deployment and cannot be adapted or changed
while the filter is running. Recently proposed improvements (Kwok, Fox, and Meila, 2003;
Fox, 2001) allow a MCBF to adapt the number of particles and achieve real time perfor-
mance. With the further improvement of the state-of-the-art computer technology, MCBF
will become the method of choice.





Chapter 4

Physical Embedding and Integration
of State Estimation Modules in a
Robot Control Programme

4.1 Introduction

RoboCup is an international research and educational initiative. The goal of this initiative
is to foster Artificial Intelligence and Robotics research by providing a standard problem,
where a wide range of technologies can be examined and integrated. Robot soccer creates a
new class of applications. Autonomous agents have to cooperate within a highly dynamic,
complex and partially destructive environment in order to achieve a common goal. Successful
solutions to this problem have to combine results from the fields of multi-sensor, multi-robot,
and multi-agent-systems research. Finally, robotic soccer has become a standard “real-world”
testbed for the control of cooperative autonomous multi-robot systems, the development and
the evaluation of state estimation techniques embedded in robot control programmes (Stone
et al., 2000).

The survey in Section 4.2 introduces the Robot World Cup Initiative (short RoboCup)
along with their activities and areas of research. Furthermore, all aspects relevant to this
thesis, as well as the rules of the different leagues are outlined. Section 4.3 introduces the
approach chosen by the The AGILO RoboCuppers, the RoboCup team of the Munich Univer-
sity of Technology, in order to solve the RoboCup problem. Section 4.4 presents the robots’
hardware architecture, which serves as experimental platform for the research conducted for
this thesis. All aspects of the robots’ software architecture and their common belief state are
presented in Section 4.5.

4.2 Autonomous Robot Soccer - RoboCup

The concept of soccer-playing robots was first introduced in 1993. Following a two-year
feasibility study, and a Workshop held in Osaka, on November 1996. In July 1997, the
first official Symposium and Competition was held in Nagoya, Japan. Followed by Paris,
Stockholm, Melbourne, Seattle, Fukuoka/Busan, and Padua the annual events attracted more
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and more participants. The last RoboCup in 2003 involved 1004 participants and 188 Teams,
from 29 Nations, and attracted 117,000 visitors. Today, more than 3,000 researchers from
35 countries and regions are participating all around the world in various projects such as
international competitions, conferences, research and educational programmes. Following
previous Symposia and Competitions, the 9th RoboCup will be hosted in the City of Lisbon
(Portugal), by The University of Lisbon, in July 2004.

RoboCup Research activities and tournaments are divided in several classes or leagues.
The RoboCup Simulation Leagues are entirely virtual and purely based on software. Real
robot leagues include the Small Size League (small robots occupying an area of up to 180cm2),
Middle Size League (middle sized robots occupying an area of up to 2000cm2), the Legged
League (Sony’s four legged robot dogs called AIBO), the Humanoid League (humanoid like
robots on two legs) and the RoboCup Rescue Robot League (real robots assisting search and
rescue teams in disaster areas).

RoboCup Simulation League: A RoboCup Simulation match is operated as a client-
server-application. Each team consists of 11 software clients, the so called autonomous
software agents. These agents communicate with the soccer server through predefined
communication channels.

With every simulation step, the soccer server provides the clients with information
about the current state of the match, i.e. observations of the relative positions of the
software agents, the ball and the field’s landmarks. Within a predefined period of
time, the clients are required to analyse the provided data, estimate the game state,
and choose an action. This process is made more difficult through the association of
observations with systematic and random errors. However, it is still possible for the
agents to determine the correct and complete game state. The selected action is sent
back to the soccer server. The soccer server executes the action and updates the state of
the match. If a client is not able to react in time, its action will be executed in the next
time step. Each client is only allowed to control one player. Limited communication
among players can only take place via the soccer server.

The main research areas in the RoboCup Simulation League are action selection, be-
haviour modelling and learning, strategy acquisition, and multi-agent cooperation.

RoboCup Small Size League – F 180: A small size robot soccer game takes place be-
tween two teams of five robots each. The robots must fit within an 180mm diameter
circle and must be no higher than 15cm unless they use on-board vision. The robots
play soccer on a green carpeted field that is 2.8 m long and 2.3 m wide with an orange
golf ball. Robots come in two flavours, those with local on-board vision sensors and
those with global vision. Global vision robots use an overhead camera and off-field PC
to identify and track the robots as they move around the field. Local vision robots have
their sensing on the robot itself. The vision information is either processed on-board the
robot or is transmitted back to the off-field PC for processing. An off-field PC is used
for communicating referee commands, and in the case of an overhead vision for giving
information about actions to the robots. Typically, the off-field PC also performs most,
if not all, of the processing required for coordination and control of the robots. Com-
munication is wireless and typically uses dedicated commercial FM transmitter/receiver
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Object Color

Field surface GREEN

Lines on the field and the walls. WHITE

Ball ORANGE

One of the goals BLUE

The other goal YELLOW

Flagposts BLUE and YELLOW

Robot bodies BLACK

Markers of robots for team A LIGHT BLUE

Markers of robots for team B MAGENTA/PURPLE

Figure 4.1: Summary of object colourings in the RoboCup Middle Size League.

units.

Building a successful team requires clever design, implementation and integration of
many hardware and software sub-components into a robustly functioning system. The
RoboCup small size league focuses on the problem of intelligent multi-agent cooperation
and control in a highly dynamic environment with a hybrid centralised/distributed
system. Perception and game state estimation is straight forward when a global vision
system is used. Game state estimation with local sensors is a challenge but still a lot
easier, which is due to the small field, than in the middle size league.

RoboCup Middle Size League – F 2000: The concepts and techniques developed in this
thesis are implemented and tested on a system of middle robots and are evaluated during
matches of the RoboCup Middle Size league. Consequently, this section will investigate
the scenario and the rules of the middle size league in greater detail than for the other
leagues.

In the RoboCup Middle Size League, two teams of four autonomous robots — one goal
keeper and three field players — play soccer against each other. The soccer field is
between 8 to 12 meters long and 5 to 10 meters wide. Lines mark the boundary of the
field, the middle line, the centre circle and the penalty area. The goals are two meters
wide and about 50 cm deep. The corners of the playing field are marked by four corner
flagposts. Each post has a diameter of 20 cm and a height of one meter. The robots
may occupy an area of up to 2000cm2, which is approximately equivalent to a diameter
of up to 50 cm. The primary target for each team is the same as in real soccer, to
dribble or kick the ball (a standard FIFA soccer ball) into the opponent goal. A match
is divided into two halves of 10 minutes.

All computation, such as sensor data processing, state estimation, environment mod-
elling, path planning and robot control, have to be performed on board the robot’s
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own computer. The employed sensors mainly include cameras (directional and omni-
directional), laser-range-finders (180 and 360 degrees), tactile, odometric, infrared and
ultrasonic sensors. All objects of interest are encoded with predefined unique colours,
see Figure 4.1. Global sensor systems for guiding the robots are not permitted, i.e.
the robots rely exclusively on the information obtained by their local sensors, with a
possibly limited field of view. However, the robots may communicate and exchange
information in order to obtain a more complete and correct belief state of the world.
Considering the size of the field, self-localisation, object detection and robot tracking
with a conventional camera is a hard problem. This constitutes a though challenge for
the research areas of state estimation and distributed sensor processing. Since 2002,
global sensor systems can be used for match analysis and the determination of ground
truth data that can be used after a match in order to evaluate different state estimation
approaches.

Further important rules state that the attacking and defending robots (except the goal
keeper) may enter the penalty area only for a limited period of time (typically 5 to 10
seconds). This requires the robots to have a vague idea of their own pose on the field.

Charging opponent robots is prohibited. This rule requires the robots to possess a good
obstacle detection, obstacle localisation and obstacle avoidance mechanism. Movements
of observed and observing robots make this problem more difficult. The faster a robot
moves, the more important an accurate absolute localisation gets.

The key characteristics of middle size robot soccer is that the robots are completely
autonomous. Consequently, all sensing and all action selection is done on board of the
individual robots. Skillful play requires robots to recognise objects, such as other robots,
field lines, and goals, estimate a complete and comprehensive state of the game, perform
cooperative action selection, and perform path planning while they have to meet some
tough real time constraints.

RoboCup Legged and Humanoid Leagues: One of the ultimate dreams in robotics is to
create life-like robotic systems, such as humanoid robots and animal-like legged robots.
The robots used in the Legged and Humanoid Leagues are the dog like AIBO robots
of SONY and custom-made humanoid robots, respectively. In order to perceive the
environment, these robots are mainly equipped with vision sensors. The absence of a
communication link between the robots and their leg based locomotion might hamper
successful state estimation additionally. Consequently, game state estimation in these
leagues is at least as challenging as in the RoboCup Middle Size League, if not more.

RoboCup Rescue Leagues: Disaster rescue is one of the most serious social issues which
involves very large numbers of heterogeneous agents in a hostile environment. The
intention of the RoboCup Rescue project is to promote research and development in
this socially significant domain at various levels. These involve multi-agent team work
coordination, physical robotic agents for search and rescue, information infrastructures,
personal digital assistants, a standard simulator and decision support systems, evalua-
tion benchmarks for rescue strategies, and robotic systems that are all integrated into
a comprehensive systems in future.
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The two leagues that are currently active are the RoboCup Rescue Simulation and
RoboCup Real Robot Rescue Leagues. While the former aims at research in the areas
of multi-agent coordination and the application of traditional AI techniques to resource
management problems, the latter confronts physical robots with the toughest conceiv-
able perception and state estimation problems.

4.3 The Approach of the AGILO RoboCuppers

The approach chosen by The AGILO RoboCuppers is to tackle the RoboCup problem with a
standardised robotic platform. This platform consists of a robot chassis, a conventional CCD
video camera and off-the-shelf computing hardware, such as a laptop computer with moderate
computational resources. Perception and state estimation of the environment is performed
on the basis of video images and odometry readings only. They are used to determine the
pose of the robot, the position of the ball and positions of the opponents. Several different
probabilistic state estimation techniques are applied and they cooperate in order to generate
probabilistic estimates for these quantities and store them in an explicit probabilistic world
model, the belief state (Aström, 1965). A probabilistic world model was chosen as it allows
for an easy representation and easy integration of uncertain and ambiguous knowledge, such
as sensor data. Furthermore, the uncertain information acquired by several robots can be
integrated in an efficient way and support the implementation of a cooperative state estimation
system. The belief state is the central data structure used for the control of the robot. All
action selection and path planning is performed on the basis of the belief state, i.e. actions
are chosen deliberatively as a result of specific game situations (e.g. the ball is possessed by
an opponent player) and a path for the robot is planned such that it avoids collisions with
all dynamic objects contained in the belief state. Detailed descriptions of this approach can
also be found in (Beetz et al., 2002a; Schmitt, Buck, and Beetz, 2001; Buck et al., 2000;
Bandlow et al., 1999a; Klupsch et al., 1998)

This approach of The AGILO RoboCuppers has proven to be applicable and successful
during five RoboCup World Championships and three German Championships. A more
detailed description of the used Hardware and Software is presented in the next two sections.

4.4 Hardware Platform and Experimental Setup

The AGILO RoboCuppers (Schmitt et al., 2002; Beetz et al., 2004; Beetz et al., 2002b; Beetz
et al., 2002a; Schmitt, Buck, and Beetz, 2001; Buck et al., 2000), the RoboCup team of the
Munich University of Technology, consist of five Pioneer I robots; one of them is depicted in
Figure 4.2(a). The names are an homage to the Agilolfinger, the earliest dynasty ruling
in Bavaria during the 6th century. The dynasty’s most famous representatives are Garibald,
Grimoald, Hugibert, Odilo, Tassilo and Theodo. Only four of them are allowed to play at a
match at a given time. Tassilo usually serves as hardware backup and substitution player.
The robots are equipped as follows:

1. A wireless Ethernet (RadioLAN 10 Mbit/sec, 5.8 GHz) serves as communication device
among the robots themselves and between the referee and the robots. Through this
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(a) (b)

Figure 4.2: (a) An AGILO soccer robot and (b) a match situation.

communication channel a kinds of information are distributed among the members of
the team. This includes information about the poses of the robots, the position and
velocities of the ball and the opponent players and the commands given by referee (game
start, game stop, score, yellow/blue/red cards), etc.

Through several competitions held from 1999 to 2002, the RadioLAN wireless Ethernet
proved to be very robust with a net transmission rate of approximately 7 Mbit/sec.
Interference or disturbance of other wireless devices, particularly IEEE 802.11b devices,
were not observed.

2. The head and the brain of the robots is their own on board Linux notebook. It contains
a Pentium III 900 MHz CPU and 256 MB of RAM. Over the years two different Linux
distributions, Debian 2.2.r5 and SuSe 7.4, were used. Several processes are running
in parallel on this computer and perform tasks like image processing, path planning,
action selection and object tracking. Currently, every robot processes approximately
30 frames per second. From every frame a pose estimate, a ball estimate and a set
of opponent observations are extracted and sent to all other robots of the team via
wireless Ethernet. Every robot runs the opponent tracking algorithm once for every set
of opponent observations (own and teammates) and computes a new estimate of the
world state. This estimated state serves as input for action selection and path planning.

3. A colour CCD progressive scan camera (Point Grey - Dragonfly) with a wide angle lens
(Cosmicar/Pentax TV Lens, opening angle approximately 90o, focal length f = 2.8mm,
illumination 1 : 1.2, cs-mount adapter) is mounted firmly on top of the robot. The
camera is connected to the Linux notebook via an IEEE 1394 (FireWire) Cardbus (Sunix
1706). In order to dispense the CPU from receiving the frames, the direct memory access
(DMA) mode is used. The camera delivers up to 30 progressive scan frames per second
with a resolution of 640 x 480 pixels. The frames are encoded according to a Bayer
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Figure 4.3: The hardware architecture of The AGILO RoboCuppers.

pattern colour field array. Thus, down sampling or interpolation of this pattern has to
be performed on the on board computer. The camera obeys the nice features that two
or three cameras on the same IEEE 1394 bus synchronise automatically. This allows
a robot to be equipped with two or more cameras, all of which capturing their frames
simultaneously1. All algorithms presented in the subsequent chapters are able to handle
the information extracted from multiple synchronously captured images without any
changes.

4. The sonar sensors were used for collision avoidance. However, due to their extremely
noisy measurement they were soon replaced by a more sophisticated vision-based ob-
stacle detection algorithm.

5. A dribbling device is used for ball handling and dribbling.

6. The kicking device can shoot the ball with moderate speed up to three meters.

The overall hardware architecture of The AGILO RoboCuppers robot soccer team is dis-
played in Figure 4.3. Outside the field, two to three master computers are located. They are
linked via Ethernet with each other and via a wireless Ethernet with the robots on the pitch.
The master computers are used for the development and debugging of the control software
running on the robots, sending commands to the robots2, monitoring the team’s performance
and logging data about the robots’ states, such as their pose estimates and observed positions

1Simultaneously captured frames are all captured within a time interval of 3 ms.
2During a match, only start and stop commands are sent to the robots.
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(a) (b)

Figure 4.4: (a) An image captured by the ground truth camera system with (b) extracted
regions containing the robots and the detected triangle used in order to determine the orien-
tation of a robot.

of opponent robots. During a match, central processes such as the ball observation fusion
module, the opponent tracking module and high-level team coordination modules are also
running on the master computers.

A global vision system is mounted above the RoboCup field. The images captured by
this ground truth camera are analysed by a process running on a separate computer, see
Figures 4.4(a) and (b), and a global belief state is extracted. This data is primarily used
for the evaluation of a match and the performance of the teams. For experiments, such as
the automatic acquisition of an error model of the localisation or a motion model, this global
belief state may also be feed back to the robot.

4.5 Software Architecture

A complex hardware system such as The AGILO RoboCuppers requires an efficient, reliable
and scalable software architecture that supports the efficient development of software for a
multi-robot system. The software architecture of The AGILO RoboCuppers is depicted in
Figure 4.5. It consists of two main modules: (1) the perception module and (2) the control
system. The former contains the subsystems for sensor-data processing and state estimation,
while the latter consists of the subsystems for action selection, path planning and low level
robot control. The belief state serves as central data structure and communication link
between the two main modules.

All modules and subsystems are embedded in the object oriented Sequence/Functor frame-
work (Klupsch, 1998; Klupsch, 2001). In this framework, functionality is implemented in
Functor objects. On an abstract level, these objects enclose the functionality for continuously
capturing, transforming, or analysing dynamic data. In addition, Functor objects provide
application independent practical properties and interfaces, e.g. connections to the input and
output Data-Sequences objects, attributes and methods for analysing required computation
times, and a general interface for the repeated execution of a set of image processing operators.

Communication among Functors takes place via Data-Sequence objects, which serve as
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Figure 4.5: Software architecture of the multi-robot team, The AGILO RoboCuppers.

input and output streams. Furthermore, Data-Sequences provide general properties and in-
terfaces, which are common for all kinds of data sequences, such as data initialisation, access
to current and old values, access to their temporal properties, and methods for updating the
Data-Sequence or interpolating values.

With the help of the Sequence/Functor framework, data flow within and among subsystems
is easy to implement. It eliminates the need for an explicit specification of a data flow
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control programme. Functor objects are automatically executed and their output Sequences
are updated with the arrival of new input data or upon the request for new output data.
This behaviour can be adapted according to topological and functional needs. Overall the
Sequence/Functor framework proved and justified its applicability to real time applications,
such as multi-sensor multi-robots systems over the years.

The following sections present the perception module and the control system, explain the
tasks of the individual subsystems, and the interactions between them. A detailed description
of the approach chosen for the individual subsystems will follow in the subsequent chapters
and can also be found in (Schmitt, Hanek, and Beetz, 2003; Schmitt and Beetz, 2003; Schmitt
et al., 2002; Beetz et al., 2004; Schmitt et al., 2002; Schmitt et al., 2001; Hanek et al., 2000;
Bandlow et al., 1999b)

4.5.1 Perception Module

The perception module of each soccer robot receives an asynchronous stream of sensor data
and maintains a belief state with respect to its own position on the field, the positions of its
teammates, the ball, and the opponent players. Figure 4.5 shows the components of the per-
ception module and its embedding into the The AGILO RoboCuppers software architecture.

This module consists of the sensor-data processing subsystem, the state estimator, and
the belief state. The sensor-data processing subsystem itself consists of a camera system
with several feature detectors and a communication link that enables the robot to receive
information from other robots. The belief state contains a pose estimate for every robot of
the team and several position estimates for dynamic objects, such as the ball, opponent robots
and the referees. All estimates are also associated with a measure of uncertainty, a covariance
matrix.

Sensor-Data processing

The sensor-data processing subsystem provides the following kinds of information: (1) fea-
ture maps extracted from captured images, (2) odometric information, and (3) partial state
estimates broadcast by other robots. The estimates broadcast by the robots of the own team
comprise the estimate of the ball’s location. In addition, each robot of the own team provides
an estimate of its own position. Finally, each robot provides an estimate for the position
of every visible opponent. From the captured camera images the feature detectors extract
problem-specific feature maps that correspond to (1) static objects in the environment includ-
ing the goal, the borders of the field, and the lines on the field, (2) a colour blob corresponding
to the ball, and (3) the visual features of the opponents.

The working horse of the sensor-data processing subsystem is a colour classification (see
Section 5.3.1) and segmentation algorithm that is used to segment a captured image into
coloured regions and blobs (see Figure 5.4). The colour classifier is learned in a training
session before tournaments in order to adapt the vision system to specific lighting conditions
and effects.

Object detection is performed on the basis of blob analysis. The colour segmented image is
processed by a feature extraction algorithm (see Section 6.3.1) that estimates the 3D positions
with associated uncertainties of the objects of interest. The position of an object is estimated



4.5. SOFTWARE ARCHITECTURE 61

on the basis of a pinhole camera model.

State Estimation

The state estimation subsystem consists of three interacting estimators: the self localisation
system, the ball estimator, and the opponents estimator. State estimation is an iterative
process where each iteration is triggered by the arrival of a new piece of evidence, a captured
image, an odometric measurement or a state estimate broadcast by another robot.

The self localisation (see Section 5.3) estimates the probability density of the robot’s own
position based on extracted environment features, the estimated ball position, and the pre-
dicted position. Two different localisation approaches are used: (1) Monte Carlo Localisation
(MCL) and (2) Cooperative Incremental Iterative Localisation (CIIL). MCL is a Monte Carlo
Bayes filter and belongs to the class of global self localisation algorithms. It allows a robot to
generate a relatively coarse estimate of its initial pose. MCL is based on computational expen-
sive particle filter techniques and cannot be run at frame rate. The MCL-based localisation
procedure is not part of this thesis. A detailed description can be found in Neumann (2003).
CIIL is a very efficient high-precision pose tracking algorithm, based on least-square estima-
tion and Kalman filter techniques. It can easily run at frame rate. If the CIIL algorithm fails,
it is reinitialised with a pose estimate generated by the MCL algorithm. CIIL and MCL are
run simultaneously at different repetition frequencies, 30 Hz and 10 - 15 Hz, respectively.

The ball localiser (see Section 5.3.7) estimates the probability density for the ball position,
given the robot’s own estimated position and its perception of the ball, the predicted ball
position, and the ball estimations broadcast by the other robots.

Finally, the positions of the opponents are estimated (see Section 6.3.2) based on the
position of the observing robot, the robots’ appearances in the captured images, and their
positions as observed by the teammates.

4.5.2 Belief State

The central data structure of AGILO software architecture is a global belief state (Aström,
1965), which is maintained by every robot. It serves as a communication link between the
perception and the control module and is constructed as follows. The own position, the
position of the ball, and the positions of the opponent players are updated by local state
estimation processes. The estimated positions of the teammates are the broadcast results of
the self localisation processes of the respective teammates. This is done because the accuracy
of self localisation is much higher than the accuracy of the position estimation for moving
objects.

4.5.3 Control System

The Control System consists of three major subsystems for Action-Selection, Path Plan-
ning and Low-Level Robot Control. The subsystems for Action-Selection (Buck, Beetz, and
Schmitt, 2001; Buck, Beetz, and Schmitt, 2002b; Buck, Schmitt, and Beetz, 2002) decides
which action or behaviour the robot should perform on the basis of the belief state. Usually,
an action is associated with a target pose the robot has to achieve. In oder to reach this pose,
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the Path Planning subsystem (Buck et al., 2001) is used which determines a collision free
path. Finally, the Low-Level Robot Control subsystem (Buck, Beetz, and Schmitt, 2002a;
Buck et al., 2002) computes motor control commands in such a way that the robots follow the
planned paths as accurately as possible and reaches their target poses. The AGILO RoboCup-
pers make use of (1) a Situated Action Selection and (2) a Plan-based Control System.

Situated Action Selection and Execution

Throughout the game, the AGILO robots have a fixed set of tasks with different priorities.
The tasks include the following: shoot the ball into the goal, dribble the ball towards the goal,
look for the ball, block the way to the goal, get the ball, etc. The situated action selection
module (Buck, Schmitt, and Beetz, 2002) enables the robots to select a task and to carry it
out, in such a way that the team’s objectives will advance to the most. Action selection and
execution is constrained by (1) tasks being achievable only if certain conditions hold (e.g. the
robot has the ball) and (2) a robot being able to execute only one action at a time.

A task assignment a1 is better than a2 if such a task exists in a2 that has lower priority
than all the ones in a1 or if they achieve the same tasks but a task t exists in a1 such that all
tasks with higher priority are performed at least as fast as in a2 and t is achieved faster by
a1 than by a2. This performance criterion implies that if an AGILO robot can shoot a goal,
it will always try because this is the task with the highest priority. Also, if the The AGILO
RoboCuppers can get to the ball they will try to get there with the robot that can reach the
ball the fastest. This strategy might not yield optimal assignments but guarantees that the
highest priority tasks are achieved as quickly as possible.

To achieve a high degree of autonomy, the AGILO robots perform the task assignment and
execution distributedly on the individual robots. This makes the task assignment more robust
against problems in inter robot communication. These problems can be caused by robots being
sent off the field, computers being crashed after heavy collisions, and communication being
corrupted due to interferences with other communication channels.

The most salient features of the situated action selection are the following ones. First,
to realize a competent and fast task assignment and execution mechanism, the AGILO con-
trollers make ample use of automatic learning mechanisms. Second, the task assignment
mechanism works distributedly on the individual robots and are robust against communica-
tional disruptions. Finally, the task assignment and execution mechanism always produces
purposeful behaviour and always aims at the achievement of high priority tasks.

An important means for developing competent robot soccer skills is a robot simulator
that allows for realistic, controllable, and repeatable experiments. For this reason, a robot
simulator (Buck et al., 2001; Buck, Beetz, and Schmitt, 2002b) has been developed that
accurately simulates how the dynamic state of a robot changes as the robot’s control system
issues new driving commands, such as setting the target translational and rotational velocities.

Plan-based Control

While situated action selection aims at choosing actions that have the highest expected utility
in the respective situation, it does not take into account a strategic assessment of the alterna-
tive actions and the respective intentions of the teammates. This is the task of the plan-based
action control. While situated action selection achieves an impressive level of performance,
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it is still hampered by the requirement for small action and state spaces, a limited temporal
horizon, and without explicitly taking the intentions of the teammates into account.

The goal of plan-based control in robotic soccer is, therefore, to improve the performance of
the robot soccer team by adding the capability of learning and execute soccer plays. Soccer
plays are properly synchronised, cooperative actions that can be executed in certain game
contexts and have, in these contexts, a high success rate. Plans for soccer plays specify
how the individual players of a team should respond to changing game situations in order to
perform the play successfully.

The integration of soccer plays into the game strategies enables robot teams to consider
play specific state spaces for action selection, parameterisation, and synchronisation. In addi-
tion, the state space can reflect the intentions of the other robots. An action that is typically
bad might be very good if a robot knows that its teammate intends to make a particular
move. Further, action selection can consider a wider time horizon, and the robots can employ
play specific routines for recognising relevant game situations.

In order to realize an action assessment based on strategic consideration and on consid-
erations of the intentions of the teammates, a robot soccer play book has been developed,
which is a library of plan schemata that specify sequences of actions to be performed by the
individual robots. The plans, or better plays, are triggered by opportunities, e.g. the oppo-
nent team leaving one side open. The plays themselves specify highly reactive, conditional,
and properly synchronised behaviour for the individual players of the team.

The high-level controller of each soccer robot is realized as a structured reactive controller
(SRC) (Beetz, 2001) and implemented in an extended RPL plan language (McDermott, 1991).
The high-level controller works as follows. It executes the situated action selection as the
default strategy. At the same time, the controller continually monitors the estimated game
situation in order to detect opportunities for executing a play scheme. If an opportunity is
detected, the controller decides based on circumstances including the score and the estimated
success probability of the intended play scheme whether it is performed or not.

4.6 Conclusions

This chapter described the RoboCup initiative and discussed the hardware and software
approach chosen by The AGILO RoboCuppers autonomous robot soccer team. Similar
to advanced autonomous robotic agents acting in human working environments, The AG-
ILO RoboCuppers employ sophisticated state estimation and control techniques, including
experience-based learning and plan-based control mechanisms.

It was shown that the application of probabilistic state estimation techniques together
with information exchange between the robots result in game state estimators that are ca-
pable of estimating complete and complex states. It was also shown that the amble use of
experience-based learning has resulted in powerful control mechanisms, including competent
coordination, with little runtime computational cost. It was explained how plan-based control
mechanisms can enhance the robot’s playing skills by enabling the robots to perform complex
soccer plays. The results of the 2001 robot soccer world championship showed that these
techniques allow for competitive soccer play despite an inferior hardware equipment.

Overall, the approach of The AGILO RoboCuppers has proven to be applicable and suc-
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cessful during five RoboCup World Championships and three German Championships from
1998 until 2002. Furthermore, they have performed at several fairs, such as the Systems 2001
(Munich/Germany), The Science Festival 2000 (Freiburg/Germany) and the Deutsche Ar-
beitsgemeinschaft für Mustererkennung 2001 (DAGM/Munich/Germany), and demonstrated
their abilities in various friendly matches. The AGILO RoboCuppers appeared in several news-
paper articles, scientific publications, and two short movies: ”The RoboCup Story” (2001) is
a commercial for technological innovation that was shown at the Systems 2001 computer fair.
A documentation about The AGILO RoboCuppers was broadcast in 2001 on the German TV
channels BR3 and 3sat.



Chapter 5

Cooperative Incremental Iterative
Localisation

5.1 Introduction

The most fundamental problem a robot soccer player has to solve is to determine its own
pose and the position of the ball on the field. In highly dynamic environments, such as the
RoboCup scenario, these tasks do not only have to be achieved in real time but also with high
accuracy. A further constraint is imposed by the fact that small and inexpensive sensors are
used in order to keep size, weight and cost of a robot soccer player low. Currently, to tackle
this problem the most universal sensor that can be used is a digital video or CCD camera.
However, their comprehensive advantages are opposed by the huge amount of data provided
by them. This confronts the sensor data processing algorithms with a tough challenge if they
have to be real time capable.

This chapter presents a fast (real time capable) and accurate vision-based self- and ball-
localisation procedure, called the Cooperative Incremental Iterative Localisation (CIIL) algo-
rithm. CIIL allows a robot to track its own pose and the ball position with high precision.
Based on a model of the environment and the observations performed by the robot, the CIIL
algorithm iteratively estimates the probability density over the possible robot positions. A
further advantage of the CIIL algorithm is that it is also capable to take observations into
account (e.g. ball observations), performed by other robots. By doing this, a team of robots
performs cooperative localisation and is able to solve localisation problems a single robot
would not be able to solve on its own.

In the remainder of this chapter the CIIL algorithm is presented and evaluated. Sec-
tion 5.2 presents the belief state and the environment model used by the CIIL algorithm.
The CIIL algorithm and its implementation are described in Section 5.3. Related work is
briefly described in Section 5.4. A summary and discussion is given in Section 5.5 and this
also concludes the chapter. The algorithm and its properties are extensively evaluated in a
series of real world experiments in Chapter 7.

65
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5.2 Belief State, Pose Estimate and Environment

Model

Before the Cooperative Incremental Iterative Self-Localisation algorithm is described in detail,
this section will briefly review its central data structures, used to represent the belief state
and the environment model.

5.2.1 Pose and Ball Estimate

The first data structure used by the CIIL algorithm is the combined estimate of a robot’s pose
and the relative ball position. In the context of this thesis, the pose describes the position of
the robot’s vertical rotation axis in world coordinates and its orientation. The rotation axis
of an AGILO robot is located in the middle of the two driving wheels and does not coincide
with the centre of the robot’s body.

The belief, Bel(x̂t), of the CIIL algorithm is approximated by a multi-variate Gaussian
random variable, x ∼ N(x̄, Σx). The mean vector, x̄, represents the joined pose and position
estimate of the robot and the ball respectively, while the covariance, Σx, represents the
associated uncertainty of this estimate. Given the above definitions, the belief of the CIIL
algorithm can be represented as follows:

Bel(x̂t) = Nt(x̂t; x̄t, Σxt) (5.1)

The implementation of the algorithm allows the use of two different representations of the
mean, x̄:

x̄1 = (x, y, φz, xball, yball)
T

x̄2 = (x, y, z, φx, φy, φz, xball, yball)
T

(5.2)

The first, x̄1, represents the robot’s pose and the relative ball position. The associated covari-
ance matrix, Σx1 , is a 5× 5 matrix. This representation is used by The AGILO RoboCuppers
since 1998.

The second representation, x̄2, is more general. In addition to the first representation,
it also contains the height of the robot’s body and the two remaining rotational degrees of
freedom about the horizontal and longitudinal axes. This representation describes the position
of a robot in 3D Cartesian coordinates and with all three rotational angles. The associated
covariance matrix, Σx2 , is a 8 × 8 matrix. This representation is used for robots with more
degrees of freedom, such as the Sony AIBO robot dog.

5.2.2 Environment Model

The robot’s model of the static part of its environment is composed of landmarks together
with their positions and orientations. The landmarks themselves are described by 3D curve
functions that specify edge curves. Edge curves represent colour transitions, i.e. they separate
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(a) (b)

Figure 5.1: Model of the neighbourhood of a goal (a) until 2001 (b) from 2002. The model
contains the edges of the objects and the associated colour transitions.

image regions that differ in the distribution of colour vectors. A 3D curve feature is represented
by a pair consisting of a curve function and a colour transition.

In the context of the RoboCup scenario two types of curve functions are distinguished. An
edge curve separates two image regions which differ in the distribution of colour vectors. An
edge is specified by a single curve function. In the RoboCup scenario edges occur at the goals
and the corner flagposts. For a field line, two curve functions are used which not only describe
the position of the line but also its width. Using the world model, a camera model and a pose
estimate, the robot is able to predict the positions of colour transitions in a captured image.

Figure 5.1 depicts excerpts of the environment model representing the neighbourhood
around a goal, which is used for self localisation in the robot soccer domain. The goal is
modelled as a set of 3D lines, where each line is associated with a colour transition.

The individual features of the model are described by curve functions Ci : Di → R3. A
curve function Ci defines the set G(Ci) of curve points in 3D world coordinates by G(Ci) =
{Ci(s)|s ∈ Di}, where Di = [si,min, .., si,max] is the domain for s. All common curves, such as
circles or B-splines, can be specified or at least approximated by curve functions. A straight
line segment is simply given by

Ci(s) = s ·Bi1 + (1− s) ·Bi2 (5.3)

where the points Bi1 and Bi2 are the endpoints of the line segment and Di is equivalent to
[0, .., 1]. A horizontal circle is defined by

Ci(s) = Mi + r · (sin(s), cos(s), 0)T (5.4)

where Mi is the centre point, r is the radius, and Di = [0, .., 2π]. Line features with multiple
colour transitions, see Figure 5.1, are defined by multiple curve functions.

The edges of the corner cylinders (flagposts) are described as follows (see Figure 5.2):

Ci(s) = Ccenteri
(s) + r ∗

(
Rz (rγ) ∗

d

|d|

)
(5.5)

where Ccenteri
(s) = C represents the centre axis of the cylinder (see Eq. (5.3)), r its radius,

v = OC the vector from the camera’s optical centre, O(x), to the cylinder’s centre axis,
Ccenteri

(s),
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Figure 5.2: The width of the cylinder in an image and, thus, the position of its edges are a
function of the distance between the camera’s optical centre, O or O′, and the position of the
cylinder’s centre axis, C.

d = O(x)− Ccenteri
(s) (5.6)

and rγ = 6 TCP the angle between the perpendicular on the tangent point, T , the cylinder’s
centre axis, C, and the camera’s optical centre, O.

rγ = ±
(

Π

2
− asin

(
r

|d|

))
(5.7)

It is noteworthy that for rγ two possible solutions exist, depending on the sign they represent,
the tangent to the left side or to the right side of the cylinder. The camera’s optical centre,
O(x), can be determined from the robots pose, x, through the inverse of a simple coordinate
transformation (see also Section 2.4.2)

O(x) = R−1
v (x) + Tv = RT

v (x) + Tv (5.8)

5.3 The Cooperative Incremental Iterative Localisation

Algorithm

The Incremental Iterative Self-Localisation (CIIL) algorithm is used to track the pose of an
AGILO player and the ball. It is initialised with a pose estimate generated by a global self-
localisation procedure (Neumann, 2003), which is based on a MCBF (see also Section 4.5.1).
The CIIL algorithm then refines this pose and tracks the robots pose and the ball until it
fails and requires reinitialisation. By providing two self-localisation procedures computational
resources are saved. The fast and accurate CIIL runs at frame rate (30 Hz), while the global
self-localisation runs at 10 Hz or less.
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algorithm Self Localisation (< x̄, Σx >, data)
1 let
2 < x̄, Σx > % previous belief state <mean,covariance>

3 < x̃, Σx̃ > % predicted belief state <mean,covariance>

4 < x̂, Σx̂ > % updated belief state <mean,covariance>

5 data % data item (action or signal)

6 P % set of projected points

7 P̃ % set of correspondences (correspondence and uncertainty)

8
9 do

10 < x̃, Σx̃ >← Apply Motion Model (x̄, Σx);
11 < x̂, Σx̂ >← (x̃, Σx̃);
12 loop
13 switch (data)
14
15 case (data is an image) :
16 P ← Project Curve Points (x̂);
17 P̃ ← Search Correspondences (P, image);
18 χ2

I ← Quality Of Fit Image (P̃ , x̂);
19 χ2 ← χ̃2 + χ2

I ;
20
21 case (data is odometric data, odometry) :
22 χ2

O ← Quality Of Fit Odometry (odometry, x̂);
23 χ2 ← χ̃2 + χ2

O;
24
25 case (data is a ball observation from a teammate, ball) :
26 χ2

T ← Quality Of Fit Team (ball, x̂);
27 χ2 ← χ̃2 + χ2

T ;
28
29 % step of the Newton minimisation

30 x̂← arg minx χ2;
31
32 until (change of x̂ is small or data 6= image)
33
34 Σx̂ = 2 H(χ2)−1;
35
36 return (< x̂, Σx̂ >);

Figure 5.3: The Cooperative Incremental Iterative Self- and Ball-Localisation (CIIL) algo-
rithm integrates image data, odometric data, and observations of teammates over time to a
MAP estimate.
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The CIIL algorithm (see Figure 5.3) running on each robot integrates three different types
of data: (1) image data, (2) odometric data, (3) ball observations made by other teammates.
These data items are integrated over time to a maximum a posteriori (MAP)1 estimate of
the robot’s pose. First, the parts of the self-localisation algorithm, which are identical for all
three data types, are described. Then, the three cases corresponding to the three data types
(lines 15 to 27 in Figure 5.3) are presented in the remainder. The MAP estimate x̂ of the
CIIL algorithm is given by

x̂ = arg max
x

p(x|data)

= arg max
x

ν · p(x) · p(data|x) (5.9)

where ν is a normalising constant, p(data|x) is the observation model and p(x) is the prior of
the pose x summarising all evidence gathered in the past.

The prior p(x) at the current time step is obtained by predicting the pose distribution,
estimated for the previous time step. The constant velocity motion model used in line (10)
assumes that the robot continues with constant rotational and translational velocity. The
associated covariance is propagated using a linear approximation of the motion model.

The second term p(data|x), in equation (5.9), is the likelihood that the robot received data
given its current pose x. The computation of the likelihood corresponding to the three data
types (I = image data, O = odometric data, T = data from teammates) is explained below.
The optimisation of the product in equation (5.9) can be transformed into a numerically more
favourable optimisation of a sum by taking the negative logarithm:

x̂ = arg min
x

ln(χ2)

= arg min
x

ln(χ̃2) + ln(χ2
data) (5.10)

= arg min
x

−2 ln (p(x))− 2 ln (p(data|x))

The function χ̃2 evaluating the fit between the pose x and the prior is given by

χ̃2 = (x̃− x)T Σ−1
x̃

(x̃− x) + C (5.11)

where x̃ is the mean vector and Σx̃ is the covariance matrix of the prior. The constant
C = ln |2π Σx̃| is independent of the pose x. Hence, it can be omitted when χ2 is optimised
for x using Newton iteration (Press et al., 1996). After the optimisation of χ2, the covariance
matrix Σx̂ characterising the uncertainty of the robot’s pose is estimated according to:

Σx̂ = 2 H(χ2)−1 (5.12)

1Bar-Shalom and Fortmann (1988) proved in their book (pages 12f and 64f), that a MAP estimate of
Gaussian pdfs is equivalent to the estimate of a KF. However, for this thesis the notation of MAP estimation
was adopted because of its analogy to Bayes estimation and Bayes filtering.
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Figure 5.4: Image captured by the robot (top) and the colour labelled image (bottom). The
feature maps, computed for self, ball, and opponent localisation, correspond to the different
colour labels.

where H(χ2) is the Hessian of the objective function χ2 in the estimate x̂ (Press et al., 1996).
In all three cases (see Figure 5.3) a distinct function evaluates the fit between the pose and

the latest data. For image data, the corresponding χ2
I function is obtained by the following

steps. In line (16) the 3D curve features, which are predicted to be visible, are projected
into the image plane. In line (17) a local search is performed to establish correspondences
between the predicted and detected 3D curve features. In line (18) the function χ2

I is obtained
by evaluating the distances between the projections and the found image points. Finally, in
line (29) the resulting maximum a posteriori criteria is optimised for the robot pose. For
odometry and ball data, the corresponding χ2

O,T function can directly be determined and no
optimisation steps are required. In both cases the optimal solution is given by a weighted
sum of the prediction and the observation1.

In the following Sections, the implementation of the single steps of the CIIL algorithm are
presented.

5.3.1 Image Preprocessing and Feature Extraction

The CIIL algorithm and the CODT algorithm (see Chapter 6) use the colour information
provided by the objects of the RoboCup scenario to identify objects, to perform ball and op-
ponent observations, and to estimate the states of the ball, the own robots, and the opponent
robots. In order to make efficient use of the colour information provided, a fast preprocessing
and colour classification procedure is required. This section will describe a fast approach for
colour classification and for colour-based image segmentation in a RoboCup scenario.

In middle size robotic soccer all object categories have different colours: the ball is red,
field lines are white, and the goals are yellow and blue. These rules allow for the application



72 CHAPTER 5. COOPERATIVE INCREMENTAL ITERATIVE LOCALISATION

of a simple method for object recognition: segment the image into coloured blobs and identify
the blobs based on their colour (see Figure 5.4). The colour classifier is learned in a training
session before a tournament in order to adapt the vision system to the specific light conditions.

A RGB-16 colour vector is classified with the help of a look-up table. The use of a look-up
table has two advantages: (1) The classification is very fast and (2) no assumptions about
the classes’ shapes have to be made. The look-up table is constructed in a two step process:
First, an initial look-up table is obtained from classified training images. This look-up table
is sparse, since usually most of the 216 RGB vectors are not observed in the classified images.
Second, the unclassified RGB vectors are classified using a nearest-neighbour classifier. The
Euclidean distances are computed in a 4D space defined by the transformation:

T (R,G,B) =
(

R

I
,
G

I
,
B

I
,
R + G + B

3C2

)T

(5.13)

where I =
R + G + B

3
+ C1.

The constant C1 > 0 is chosen to be quite small, such that the first three components
are roughly independent of the intensity. Only for RGB vectors close to the colour black
the constant C1 is important by ensuring a smooth transformation. Other common colour
spaces such as HSI cause unwanted discontinuities for unsaturated colour values. The fourth
component of T describes the intensity, which is also valuable in order to separate the colour
classes given in RoboCup. However, within one class usually the intensities vary more than
the normalised values of the first three elements. Therefore, the intensity is normalised by
C2, e.g. C2 = 10.

It is noteworthy that the CIIL algorithm only requires pixels to be classified that are
accessed during the search for model curves in the image. This constitutes a big advantage
and speed up over traditional methods, like edge detection or Hough transformation, which
require the whole image to be processed.

5.3.2 Projecting 3D Curve Points into the Image

Before the CIIL algorithm can search for correspondences between the environment model
and the image it has to determine a set of starting points in pixel coordinates.

In order to accomplish this task, points of visible 3D curve features are projected into the
image plane (see line (16) in Figure 5.3). The observation of a 3D curve G(Ci) in an image is
a 2D image curve

G(ci) = {ci(s, x)|s ∈ [0, 1]} (5.14)

where x is the robot pose and ci is the image curve function given by

ci(s, x) = proj (Ci(s), x) (5.15)

Index s is used to specify the point the curve function is evaluated for. For example, Ci(0.0)
and Ci(1.0) determine the 3D world coordinates of the starting and ending points of the 3D
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(a) (b)

Figure 5.5: Search for correspondences. (a) Due to the occlusion caused by the robot, for one
projected point no corresponding image point is found with the required colour transition.
(b) By comparing the line width in the image with the line width of the projection, wrong
correspondences (crosses) can be detected.

curve, respectively. The function proj (see Section 2.4) projects a 3D point, given in world
coordinates, into the image and returns the pixel coordinates of the resulting 2D point. This
mapping assumes that an estimate of the robots pose, the relative displacement and rotation
between the robot pose and the camera, as well as the intrinsic camera parameters are known.

First, the mapping proj converts the 3D world coordinates into 3D robot coordinates (see
Eq. (2.21)). This conversion depends on the robot’s pose x. Then, the 3D robot coordinates
are transformed into 3D camera coordinates (see Eq. (2.20)). This transformation is straight
forward, as the relative displacement between the camera and the centre of the robot can be
measured in advance. In the next step, the 3D camera coordinates are projected into the
image plane according to Eq. (2.22), the radial lens distortions are taken into account with
the application of Eq. (2.24) and finally, the discrete pixel coordinates can be computed (see
Eq. (2.25)). The resulting image curve function ci describes the relation between the robot
pose x and the position of the model curve points in the image.

5.3.3 Searching for Correspondences

In this step the CIIL algorithm tries to establish correspondences between model and image
curves. Starting from the projected image coordinates it searches along the perpendiculars
for colour transitions associated with the 3D model features.

For each visible model curve, G(Ci), a small set, P , of projected curve points, Pi,j, is
determined. For each of these projected curve points, Pi,j, the algorithm searches for colour
transitions, P̃i,j, which are consistent with the transitions specified by the model (see line
(17)). To find the respective transition points, P̃i,j, in the image the algorithm locally searches
along the perpendiculars of the model curve starting at the projected curve point Pi,j (see
Figure 5.5(a)). This search is performed within a fixed search area. Image points outside
the search area are regarded as outliers and are omitted. While this is appropriate for the
RoboCup environment, search areas adapted to the uncertainty of the curve as in (Blake and
Isard, 1998) could be beneficial in more complex environments.

For each accepted point, P̃i,j, found in the image, a standard deviation, σi,j, is used which
describes the expected precision of the observation along the perpendicular. In the RoboCup
scenario for each P̃i,j a constant value of σi,j is used. This value was determined through
a series of experiments. However, for less restricted scenes it might be necessary to use
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Figure 5.6: One iteration step of the CIIL algorithm and the new projected model curve
moved closer to the actual image curve.

different σi,j. For example, individual σi,j can consider information provided by the local
image gradient.

The lines on the soccer field are treated as double colour transitions. The two curve
functions defining a line curve are used to predict the line width in the image. By comparing
the predicted width with the observed width, wrong correspondences can be rejected (see
Figure 5.5(b)).

5.3.4 Evaluating the Fit between an Image and the Robot’s Pose

To evaluate the quality of a fit between an image and the robot pose, a χ2
I error function is

defined. The evaluation given by χ2
I is based on the distances between points P̃i,j found in

the image and the corresponding model curves ci.
The accurate distance between a point and a curve is defined by a nonlinear function

and requires usually a nonlinear optimisation. For efficiency reasons the curve is locally
approximated by its tangent. The displacement (signed distance) di,j(x) between an observed
image point P̃i,j and the corresponding tangent of the projected model curve ci is

di,j(x) = (ni,j(x))T ·
[
ci(si,j, x)− P̃i,j

]
(5.16)

where ni,j(x) is the normal vector of the curve ci in the point ci(si,j, x).
The observations P̃i,j are noisy. The displacements between the observations P̃i,j and the

real image curve are assumed to be statistically independent and Gaussian distributed with
a mean value of 0 and covariances σ2

i,j. Under these assumptions, the observation model, i.e.
the likelihood for an observation given the robot’s pose x, is defined as:

p
(
P̃ |x

)
=
∏
(i,j)

1√
2πσi,j

exp

(
−d2

i,j(x)

2σ2
i,j

)
(5.17)

where P̃ denotes the set of all curve points P̃i,j found in the image. The function χ2
I evaluating

the fit between an image and the robot pose is defined as:
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χ2
I = −2 ln p

(
P̃ |x

)
(5.18)

5.3.5 Optimising the Robot’s Pose

Iterative optimisation enables the CIIL algorithm to take nonlinearities of the observation
model into account. The nonlinearities of the model curve functions are caused by different
reasons, such as dependence on the robot’s orientation and projection into the image plane.
This way, the self-localisation algorithm can avoid inaccuracies typically yielded by other state
estimation algorithms such as the extended Kalman filter (e.g. see (Faugeras, 1993)).

In line (30) of the self-localisation algorithm, a single Newton iteration step (Press et al.,
1996) minimising the objective function χ2 is performed. The Newton step is initialised by
the current pose estimate x̂ and yields a new estimate. Figure 5.6 illustrates the result of a
single iteration step. After one iteration step, the new projected model curves are closer to
the observed image points. However, the projected model points Pi,j are shifted along the
model curves. Hence, these new projected points do not correspond to the initial observations
P̃i,j. Therefore, with every iteration the model points have to be projected again, and a new
search for the corresponding colour transition is performed along the perpendiculars. Since
the deviation between image curves and projected model curves is already reduced, the new
search can be performed at clearly lower computational cost. The process is iterated until
the change of the estimate x̂ is smaller than a predefined value.

Since the pose consists of three variables, three independent displacements di,j correspond-
ing to three image point P̃i,j are sufficient to estimate the pose. However, in order to increase
robustness and accuracy, for each visible feature at least three correspondences are established.

For the proposed method usually only few iterations (about two or three) are necessary.
Since the computational cost for the self-localisation is much smaller than the cost for the
blob analysis, the overall cost increases only slightly by using multiple iterations. In general,
the higher computational cost is well compensated by a higher accuracy, especially in dynamic
scenes where predictions are quite uncertain.

Figure 5.7 depicts the results for a sequence of iteration steps. The result after one iteration
step (see Figure 5.7(a) and (b)) is identical to the estimate of an extended Kalman filter. This
estimate is substantially improved by the new nonlinear method using multiple iteration steps
(see Figure 5.7(b) and (c)).

5.3.6 Incorporation of Odometric Data

Similarly to the image data, in line (18) a function χ2
O is used for evaluating the fit between

consecutive odometric sensor readings and consecutive robot poses. The last two sensor
readings are used to determine a Gaussian random variable, u ∼ N(ū, Σu), representing the
relative motion of the robot. The mean, ū = (∆s, ∆φ)T consists of the distance ∆s travelled
and the change in orientation ∆φ between the last two robot poses. It is assumed that
the errors of u are zero-mean Gaussian distributed, mutually statistically independent, and
statistically independent of the noise corrupting the image measurements. Consequently the
errors can be represented with a 2× 2 covariance matrix, Σu.
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(a)

(b)

(c)

Figure 5.7: Illustration of a sequence of iteration steps. Dots indicate projected model points,
squares depict corresponding image points. (a) Initialisation. (b) The result of one iteration
step is equivalent to the estimate of an extended Kalman filter. (c) Further iterations can
yield significant improvements.

The resulting function χ2
O is quadratic in the robot’s pose. Hence, for the optimisation of

the objective function, see line (23) in Figure 5.3, only one iteration step is required. In fact
only the weighted sum of the predicted pose and the odometric pose has to be computed.
The weights are determined by the respective covariance matrices.

5.3.7 Ball-Localisation

In the RoboCup scenario the ball is a unique and robust observable object. Typically it
moves slowly and all robots participating in a match try to face and to observe the ball.
This suggests not only to estimate the position of the ball, but also to regard the ball as an
additional dynamic landmark that can be used for self-localisation.

On one hand, the estimated world coordinates of the ball depend on the world coor-
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Figure 5.8: Search for image points along the perpendiculars. The ball’s contour is projected
into the image and the algorithm establishes correspondences for several selected points (big
filled circles). For one image point no correspondence is found, due to the inscription on the
ball.

dinates of the observing robot. On the other hand, knowledge of the ball-position can be
used for self-localisation of the observing robot. In order to exploit these interdependencies,
the self-localisation and the localisation of the ball are performed simultaneously in a single
optimisation.

For ball localisation a similar approach is used as for self-localisation. The silhouette of the
ball is described by a curve function c(x) (see Figure 5.8). Here, the vector x to be estimated
contains the pose of the observing robot and the position of the ball. The optimisation is
done (as for the self-localisation) simultaneously over all curves, no matter whether a curve
feature belongs to the static world model or to the ball. The initialisation of the ball position
is obtained from an analysis of red blobs. Several consistency checks are applied testing the
shape and the relation between the size and the ball distance. The biggest accepted blob is
back-projected, which yields the initial ball position.

After a robot has updated its estimate x̂, it broadcasts a second order Taylor approxima-
tion χ2

T of the part of the optimised MAP objective function, which depends on the latest
observations. A receiving robot r updates its world model by including the approximation
χ2

T into its own estimation. If the same robot r afterwards observes the ball, the knowledge
of the vague ball position is used in order to refine the own pose. Robot r uses the ball
as a dynamic landmark. In order to predict the position of the ball, a linear motion model
is used. Section 7.3.2 in the experimental chapter will demonstrate that certain ambiguous
localisation problems can uniquely be solved with the help of the ball.

5.4 Related Work

As mentioned earlier, a large body of research in solving the mobile robot localisation and
pose tracking problem exists. Roughly, all techniques can either be assigned to the class of
outlier sensitive estimation techniques or to the class of robust estimation techniques. In
the following sections, different variants of these two main approaches, and their application
to various types of sensors within the RoboCup domain and other robotic applications, are
discussed.
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5.4.1 Outlier Sensitive Estimation Techniques

In general, estimation techniques that are sensitive to outliers, false correspondences, false
observations, and false positives are very accurate as long as observations are noise free and
require only limited computational resources. These are probably the main reasons why they
are still widely used for state estimation in autonomous robot systems.

The three most commonly used techniques include Kalman filter, MAP estimators, and
least square estimators. In the past, all these techniques have been applied to different types
of sensors in order to estimate the pose of an autonomous mobile robot. In the following,
approaches for laser range finders, cameras, and omnidirectional vision systems are discussed.

Laser Range Finder

A family of algorithms that is related to the CIIL algorithm uses laser range data for robot
localisation and navigation. It is their task to match laser range scans, which consist of data
points with range and bearing information of potential obstacles, with (1) a given map, or
(2) a previously recorded scan or set of scans.

The approach of Cox: An algorithm for solving the former problem is the Cox algorithm
(Cox, 1990; Cox, 1991). Given a laser range scan and a map consisting of line features, this
algorithm computes the relative displacement (translation and rotation) between the scan
and the map with a least square approach. Correspondences between data points of a laser
scan and line features of the map are established on the basis of a minimal Euclidean distance
between a data point and the intersection with the line feature obtained by the perpendicular
projection of the data point onto a line feature.

Due to nonlinearities in the coordinate transformations no closed form solution exists for
the Cox algorithm and it has to iterate until convergence is achieved. The computational
complexity of the algorithm is O(nmk), where n is the number of data points of a laser scan,
m is the number of line features contained in the map and k is the number of iterations
required to achieve convergence.

Algorithms for solving the latter problem are commonly referred to as scan matching algo-
rithms. The big advantage of scan matching algorithms is that they do not need a geometric
map in order to determine a pose estimate. Given a laser range scan and a map consist-
ing of several previously recorded scans, these algorithms compute the relative displacement
(translation and rotation) between the scan and the map based on a least square approach.
Approaches differ in the representations and optimisation criteria used.

The approach of Weiss and von Puttkamer: The CCF (cross correlation function)
algorithm is based on the use of a cross correlation function (Weiss and von Puttkamer, 1995).
Here, both scans are replaced by stochastic representations (histograms) and the matching is
solved by finding the maximum of a cross correlation function. This algorithm works only well
in polygonal environments. Furthermore, the basic algorithm as presented in (Weiss and von
Puttkamer, 1995) is especially suited for an orthogonal environment. Several enhancements
allow the application of this algorithm to nonorthogonal environments (e.g. see (Gutmann
and Schlegel, 1996)). The computational complexity of the CCF algorithm is O(n + m2),
where n is the number of data points of a laser scan, m is the number of histogram cells used.
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The approach of Lu and Milios: The IDC (Iterative dual correspondence) (Lu and Mil-
ios, 1994) algorithm does a point-to-point correspondence for calculating the scan alignment.
The correspondence problem is solved by two heuristics: (1) the closest point rule and (2) the
matching range rule. Again, due to nonlinearities in the coordinate transformations no closed
form solution exists and the IDC algorithm has to iterate until convergence is achieved. The
computational complexity of the algorithm is O(n2k), where n is the number of data points of
a laser scan and k is the number of iterations required to achieve convergence. An extension
of this algorithm is used by (Lu and Milios, 1997) to build globally consistent maps.

Gutmann (Gutmann and Schlegel, 1996; Gutmann et al., 1998; Gutmann, 2000) investi-
gated several combinations of, and enhancements for the above algorithms. An extremely fast
and precise variant was successfully applied in the CS Freiburg RoboCup team (Gutmann,
Weigel, and Nebel, 2001; Weigel et al., 2001; Weigel et al., 2002). Further variants have been
implemented by the CoPS and Attempto RoboCup team from the Universities of Stuttgart
and Tübingen, respectively.

Vision Sensors

The approach of Lowe: Early approaches to parameter estimation and model fitting in
video images are described in (Lowe, 1987; Lowe, 1991). This method is able to handle
objects with arbitrary curved surfaces and can estimate their pose as well as any number of
internal parameters representing articulations, variable dimensions, or surface deformations.
Lowe applies a least square estimation techniques, which is similar to the one used by the
CIIL algorithm. This is augmented by a numerical stabilisation method that incorporates
a prior model of the range of uncertainty in each parameter and estimates the standard
deviation of each image measurement. This allows useful approximate solutions to be obtained
for problems that would otherwise be under-determined or ill-conditioned. In addition, the
Levenberg-Marquardt method is used to always force convergence of the solution to a local
minimum.

The relatively simple search and matching procedure of (Lowe, 1991) is extended in (Lowe,
1992) such that it can handle matching and measurement errors. These errors can be treated
in an integrated way by using the computation of variance in predicted feature measurements
to determine the probability of correctness for each potential matching feature. In return, a
best-first search procedure uses these probabilities to find consistent sets of matches, which
eliminates the need to treat outliers during the analysis of measurement errors. The most reli-
able initial matches are used to reduce the parameter variance on further iterations, minimis-
ing the amount of search required for matching more ambiguous features. The computational
complexity of Lowe’s algorithm is O(nmk), where n is the number of data points per curve,
m is the number of curve features contained in the map, and k is the number of iterations
required to achieve convergence. Not contained in this estimate is the computational demand
for image preprocessing. The system is shown to be capable of tracking 3D objects at frame
rates of 3 to 5 Hz.

Lanser (1997) extends Lowe’s approach and applied it first for pose estimation, object de-
tection, and object identification in the context of autonomous mobile robot systems. How-
ever, the high computational demand for image preprocessing and the applied search and
matching strategies make Lowe’s and Lanser’s approach impractical for highly dynamic envi-
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ronments, such as the RoboCup scenario.

The approach of Se et al.: A very interesting and purely vision-based approach to Si-
multaneous Localisation And Map Building (SLAM) for autonomous robots is presented in
(Se, Lowe, and Little, 2002b; Se, Lowe, and Little, 2002a; Se, Lowe, and Little, 2002c).
The algorithm makes use of natural visual landmarks, called SIFT (Scale Invariant Feature
Transform) features, which are invariant to image translation, scaling, rotation, and partially
invariant to illumination changes and affine or 3D projections. SIFT features are determined
by a Triclops stereo vision system and their position is stored in a database. Every feature is
tracked with its own Kalman filter. By matching a set of currently observed landmarks with
the landmarks contained in the database, the robot can localise itself globally. In (Se, Lowe,
and Little, 2002a) two different algorithms are presented. This first one is based on a least
square procedure, while the second algorithm is based on the RANSAC algorithm (see Sec-
tion 5.4.2 for a more detailed description). While both algorithms perform equally well as far
as accuracy of their estimates is concerned (the mean translational and rotational errors are
around 6.1 cm an 1.3o, respectively), assessments of the computational requirements reveal a
little advantage for RANSAC. However, response times of more than 0.3 s for one localisation
cycle prohibit its use in the RoboCup scenario.

The approach of Olson: Olson (2000) describes a probabilistic self-localisation technique
for mobile robots, that is based on the principal of maximum-likelihood estimation. The
basic method is to compare a map, generated at the current robot position, with a previously
generated map of the environment to probabilistically maximise the agreement between the
maps. This method can operate in both indoor and outdoor environments using either discrete
features or an occupancy grid to represent the world map. The map may be generated using
any method to detect features in the robot’s surroundings, including vision, sonar, and laser
range-finder. A global search of the pose space is performed that guarantees the best position
in a discretised pose space to be found according to the probabilistic map agreement measure.
In addition, fitting the likelihood function to a parameterised surface allows both subpixel
localisation and uncertainty estimation to be performed.

Various other approaches: A final class of algorithms especially used in the RoboCup
domain is based on the Hough transformation for line and circle detection. Various teams
employ special variants of this algorithm in order to perform self-localisation and ball detection
(Iocchi and Nardi, 1999; Jonker, Caarls, and Bokhove, 2000; Marques and Lima, 2000b). A
common problem of all approaches is that the Hough transformation is usually carried out
on a complete image and, thus it is computationally extremely demanding.

Omnidirectional Vision Sensors

Omnidirectional mirrors mounted in front of a camera system (see Figure 5.9(a)) enables
the camera to obtain a 360o view of the environment with the acquisition of a single image
(Figure 5.9(b)). In the context of robotic applications, omnidirectional mirrors are gain-
ing more and more attention. This is mainly due to the fact, that a robot equipped with
an omnidirectional camera system can obtain information about its close neighbourhood by
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(a) (b) (c)

Figure 5.9: Images captured with omnidirectional camera systems. (a) The omnidirectional
camera system of the CS Freiburg middle size RoboCup team and an image taken by the
omnidirectional camera system of the (b) CS Freiburg and (c) Fraunhofer AIS Musashi middle
size RoboCup team.

analysing a single image, i.e. the robot can look more or less in all directions simultaneously.
This makes omnidirectional images particularly interesting for real time applications, such
as localisation and object tracking. The major drawback of omnidirectional mirrors is their
limited resolution and, consequently, limited achievable accuracy of pose estimates. Despite
this drawback, a number of omnidirectional vision systems has been developed over the last
years. This section briefly discusses design issues for omnidirectional mirrors and presents
several approaches successfully applied within the robotic soccer domain.

Several different shapes of omnidirectional mirrors exist. Applicable shapes range from
conical, spherical, ellipsoidal to hyperbolical (Nayar, 1997; Baker and Nayar, 1998b; Baker
and Nayar, 1998a; Yagi, 1999). The shape is critical, since it always constitutes a trade-off
between accuracy and the available field of view. Marchese and Sorrenti (2000) proposed an
optimised shape according to the requirements of the RoboCup scenario. Firstly, objects in
the near vicinity of the robot have to be recognised with high accuracy in order to facilitate
obstacle avoidance and handling of the ball. Secondly, far-off or tall objects, e.g. other
robots, have to be recognised, whereas accuracy plays not an important role. Thirdly, features
providing evidence of the robot’s location, e.g. field lines, have to be recognised with a constant
distance error in order to simplify the self-localisation process. Based on these requirements
Schulenburg, Weigel, and Kleiner (2003) calculated a mirror profile which is composed of
three parts. The first part is isometric and shaped such that it removes distortion due to the
mirror projection. This part allows a linear mapping from objects on the field to the camera
image up to a distance of 6 meters. The second part is designed with constant curvature and
does not remove the distortion of the image, but allows a reliable detection of high and far-off
objects with a maximum height of 0.6 meters and a maximum distance of 10 meters. The
third part, designed with curvature as well, allows an accurate detection of objects within a
range of 0.2m and 0.8m.
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The approach of Plagge et al.: Plagge et al. (1999) and Adorni et al. (2001) use the
omnidirectional image to extract range data similar to the data obtained by a laser range
finder and then apply the Cox algorithm (Cox, 1991) to estimate the robots pose. The
range data is determined as follows. First, the algorithm analyses the omnidirectional image
from the centre, along several lines of sight and searches for colour transitions from green to
white, blue or yellow. Then, a camera model of the omnidirectional camera system is used to
transform these colour transitions into range information. The algorithm is shown to be real
time capable and achieves a mean position accuracy of 20 to 30 cm. The drawback of this
algorithm is that it requires the RoboCup field to be surrounded by walls and makes no use
of further visible features such as lines and the corner flagposts.

The approach of Schulenburg et al.: Another similar but more applicable approach,
which also makes use of all straight field lines, is presented in (Schulenburg, Weigel, and
Kleiner, 2003). Again, the omnidirectional image is analysed from the centre in 2o increments
and a set of colour transitions, representing field lines, is extracted. Since the projection
function of the mirror is known, the world coordinates of these possible line points can be
determined. Finally, the extracted line points are grouped together into lines by standard
divide and conquer algorithms and a set of pose hypothesis is generated by a line matching
algorithm (Gutmann, Weigel, and Nebel, 2001). A nice variant of this algorithm is that it
can also be used with laser range data. The pose estimates, generated by both sensors, are
fused by an extended Kalman filter. Purely, omnidirectional vision based self-localisation
achieves an accuracy of 20 to 30 cm and three to four degrees, for position and orientation
respectively. Laser based self-localisation achieves positional accuracy of 12 to 15 cm and an
orientational accuracy of approximately three degrees. Poses estimated generated with both
types of information available, achieve an approximate accuracy of 10 cm and 2.5o. A further
nice property of this algorithm is its capability to solve the global localisation problem within
the RoboCup scenario.

Further omnidirectional camera systems for the robot soccer domain have been built by
(Lima et al., 2001; Marques and Lima, 2000b; Marques and Lima, 2000a) and (Nakamura et
al., 2000).

5.4.2 Robust Estimation Techniques

Robust estimation techniques are robust to outliers, false correspondences, false observations,
and false positives. In general they produce less accurate estimates and require greater com-
putational resources than the outlier sensitive estimation techniques presented in the previous
Section.

The four most commonly used techniques for self-localisation are Multiple Hypothesis
Localisation (MHL), Markov Localisation (ML), Monte Carlo Localisation (MCL) and RAN-
dom SAmple Consensus (RANSAC). Further robust estimation techniques are described in
(Kumar and Hanson, 1994).
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Multiple Hypothesis Localisation

The approach of Jensfelt and Kristensen: Jensfelt and Kristensen (2001) present a
probabilistic approach for mobile robot localisation using an incomplete topological world
model. The method is called multiple hypothesis localisation (MHL) (Jensfelt, 2001;
Jensfelt and Kristensen, 2001), and uses multiple hypothesis Kalman filter (MHKF) based
pose tracking, combined with a probabilistic formulation of hypothesis correctness, to generate
and track Gaussian pose hypotheses online (see also Section 3.4.6). Apart from a lower com-
putational complexity, this approach has the advantage, over traditional grid based methods,
that incomplete and topological world model information can be utilised.

Within the MHL framework new Hypotheses are usually generated with the observation of
unique landmarks. Jensfelt and Kristensen (2001) distinguish between creative and supportive
features. A creative feature carries enough pose evidence to initiate a new hypothesis (e.g.
a door), whereas the supportive one can only support already existing hypotheses (e.g. a
corner in a corridor or wall). The covariance of a new hypothesis is estimated from the
landmark positions and the observation uncertainties. Data association between an existing
hypothesis and an observation is performed on the basis of the Mahalanobis distance. Before
an hypothesis is updated, track splitting is performed. This ensures that no tracks are lost
due to spurious and false observations. Hypothesis pruning is based on two heuristics: Firstly,
hypotheses whose probability mass is below a certain threshold are deleted. Secondly, if two
hypotheses are almost similar in a Mahalanobis distance sense, the less likely hypothesis is
deleted.

MHL is intensively tested and evaluated in (Kristensen and Jensfelt, 2003). It is shown to
be as accurate as MCL and similar methods, but much faster in solving the global localisation
and kidnapped robot problems.

Markov Localisation

Markov Localisation (ML) is a commonly used global localisation procedure which is based on
the discrete Bayes filter (DBF) (see Section 3.4.7). The idea of ML is to maintain a discrete
position probability density over the whole threedimensional state space of the robot in its
environment. This density is updated whenever the robot moves or receives new information
from its sensors.

The different variants of this technique can roughly be distinguished by the type of discreti-
sation used for the representation of the state space. In (Nourbakhsh, Powers, and Birchfield,
1995; Simmons and Koenig, 1995; Kaelbling, Cassandra, and Kurien, 1996; Thrun, 1998)
Markov localisation is used for landmark-based corridor navigation and the state space is
organised according to the topological structure of the environment. Based on an orthogo-
nality assumption (Nourbakhsh, Powers, and Birchfield, 1995; Simmons and Koenig, 1995;
Kaelbling, Cassandra, and Kurien, 1996) consider only four possible headings of the robot.
In (Burgard et al., 1996) a finegrained gridbased discretisation of the state space is proposed.
The advantage of this approach is that it provides accurate position estimates and that it can
be applied in arbitrarily unstructured and even densely populated environments (Burgard et
al., 1998; Fox et al., 1998). The disadvantage of this approach, however, is the huge state
space which has to be maintained. The Dynamic Markov Localisation (DML) approach
presented in (Burgard et al., 1998) overcomes this problem because it dynamically adopts the
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size of the state space according to the robot’s certainty in its position. It is able to globally
localise the robot whenever necessary, and to efficiently keep track of the robot’s position in
normal situations in which the robot has almost certain knowledge about its own location.

The approach of Gutmann: Gutmann (2002) presented a further approach called
Markov-Kalman localisation (MKL) which is a combination of Markov localisation and
Kalman filter. MKL is well suited for robots observing known landmarks, having a rough
estimate of their movements, and which might be displaced to arbitrary positions at any
time. Experimental results show that this method outperforms both of its underlying tech-
niques by inheriting the accuracy of the Kalman filter and the robustness and relocalisation
speed of Markov localisation.

Monte Carlo Localisation

Monte Carlo Localisation (MCL) is based on the Monte Carlo Bayes filter (MCBF) presented
in Section 3.4.8. MCL maintains a set of particles, which represent a discrete position prob-
ability density over the whole threedimensional state space of the robot in its environment.
Just as for ML, this density is updated through resampling, whenever the robot moves or
receives new information from its sensors.

Several variants of MCL have already been discussed in Section 3.4.8. In the following, a
special real time particle filter and an extension of MCL for multi-robot systems is presented.

The approach of Fox et al.: Fox (2003) presents a statistical approach to increase the
efficiency of particle filters by adapting the size of sample sets during the estimation process.
The key idea of the KLD-sampling method is to bound the approximation error introduced by
the sample-based representation of the particle filter. The name KLD-sampling comes from
the fact that the approximation error is measured by the Kullback-Leibler distance. The
adaptation approach chooses a small number of samples if the density is focused on a small
part of the state space, and it chooses a large number of samples if the state uncertainty
is high. Both the implementation and computation overhead of this approach are small.
Extensive experiments using mobile robot localisation as a test application show that this
approach yields drastic improvements over particle filters, with fixed sample set sizes, and
over a previously introduced adaptation technique.

The approach of Fox and Burgard: A MCL algorithm for cooperative mobile robot
localisation in an office environment is proposed in Fox et al. (2000). When teams of robots
localise themselves in the same environment, probabilistic methods are employed to synchro-
nise each robot’s belief whenever one robot detects another one. As a result, the robots localise
themselves faster, maintain higher accuracy, and high-cost sensors are amortised across mul-
tiple robot platforms. The technique has been implemented and tested using two mobile
robots equipped with cameras and laser range-finders for detecting other robots. The results,
obtained with the real robots and in series of simulation runs, illustrate drastic improvements
in localisation speed and accuracy when compared with conventional single-robot localisation.
A further experiment demonstrates that under certain conditions, successful localisation is
only possible if teams of heterogeneous robots collaborate during localisation.
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RANdom SAmple Consensus

Many computer vision algorithms include a robust estimation step where model parameters
are computed from a data set containing a significant proportion of outliers. The RANdom
SAmple Consensus (RANSAC) algorithm introduced by Fischler and Bolles (1981) is possibly
the most widely used robust estimator in the field of computer vision.

RANSAC has been applied in the context of short baseline stereo (Torr, Zisserman, and
Maybank, 1995; Torr, 1995; Hartley and Zissermann, 2000), wide baseline stereo matching
(Pritchett and Zissermann, 1998; Schaffalitzky and Zisserman, 2001; Tuytelaars and Van Gool,
2000), motion segmentation (Torr, 1995), mosaicing (McLauchlan and Jaenicke, 2000), detect-
ing geometric primitives (Clarke, Carlsson, and Zisserman, 1996), robust eigenimage matching
(Leonardis and Bischof, 2000) and elsewhere.

The structure of the RANSAC algorithm is simple but powerful. Repeatedly, subsets are
randomly selected from the input data (e.g. a subset of model image correspondences) and
the model parameters fitting the sample set are computed. The size of the random samples
is the smallest sufficient for determining model parameters. In a second step, the quality of
the model parameters is evaluated on the full data set. Different cost functions may be used
(Torr and Zisserman, 2000) for the evaluation, the standard being the number of inliers, i.e.
the number of data points consistent with the model. The process is terminated when the
likelihood of finding a better model becomes low. The strength of the method stems from
the fact that, to find a good solution, it is sufficient to select a single random sample not
contaminated by outliers. Depending on the complexity of the model (the size of random
samples) RANSAC can handle contamination levels well above 50%, which is commonly
assumed to be a practical limit in robust statistics (Rousseeuw and Leroy, 1987).

The speed of RANSAC depends on two factors. First, the level of contamination deter-
mines the number of random samples that have to be used to guarantee a certain confidence
in the optimality of the solution. Second, the time spent evaluating the quality of each of the
hypothesised model parameters is proportional to the size N of the data set. It is obvious,
that the application of the RANSAC algorithm for state estimation problems in dynamic
scenarios poses a huge demand for computational resources.

5.5 Conclusions

This chapter presented the Cooperative Incremental Iterative Localisation (CIIL) algorithm
and applied it to solve the joint estimation problem of self- and ball-localisation in the
RoboCup scenario. The algorithm analyses digital images with the help of a known model of
the environment and runs on off-the-shelf computing hardware.

CIIL allows a team of robots to track its poses and the ball position with high precision
at frame rate. The high speed of the algorithm is achieved through a model driven feature
extraction process that requires the analysis of only very few pixels per image. In contrast to
this, data driven approaches such as blob analysis, edge detection and Hough transformations
usually require the analysis of large areas if not the whole image.

The accuracy of the algorithm is achieved by iterating over the same image several times
without loss of performance. This is enabled by the efficient feature extraction process. With
every iteration, the nonlinear observation model is relinearised and the estimate is refined.
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The resulting estimate is then used to initialise the next iteration. This procedure is repeated
a fixed number of times or until convergence is achieved.

A further advantage of the CIIL algorithm is its capability to exploit observations per-
formed by other robots. These observations are added to the environment model as dynamic
objects and are handled by the algorithm as if they were stationary. The only preconditions
these objects have to fulfil is that their geometric properties are known in advance, and that
they can uniquely be identified. By sharing and exploiting observations performed by other
teammates, a team of robots performs cooperative localisation and is able to solve localisation
problems a single robot would not be able to solve on its own.

The CIIL algorithm and its properties are extensively evaluated in a series of real world
experiments in Chapter 7.



Chapter 6

Cooperative Object Detection and
Tracking

6.1 Introduction

The second essential perception problem a robot soccer player has to solve is the estimation
of the positions and the moving directions of all other non-stationary dynamic objects on the
soccer field. The objects that are of particular interest are the opponent robots and humans1

entering the soccer field. Furthermore, it is often necessary to detect and track robots from
the own team and the ball. The estimates obtained by this detection and tracking process are
a necessary input for the action selection and path planning routines and allow them to plan
collision free paths and perform obstacle avoidance. Again, this task has to be accomplished
in real time and only based on information obtained by vision sensors.

Detection and tracking of opponent robots considers the following state estimation prob-
lem. The world is populated with a set of stationary and moving objects. The number of
objects may vary and they might be occluded, or out of sensor range. Robots are equipped
with sensing routines that are capable of detecting objects within sensor range, estimating
the positions and moving directions of the detected objects. Due to a general but simple
object model used for opponent detection, noise contained in the video stream, and varying
lighting conditions these routines are error-prone. Sometimes they hallucinate objects and at
other times they overlook objects. In order to deal correctly with false positive observations,
false negative observations, and inaccurate observations a MHKF framework is applied. It
demonstrates how a MHKF framework can be used to model dynamic environments in multi-
robot systems and equip it with mechanisms to handle multiple mobile sensors with uncertain
positions.

This chapter presents a fast (real time capable) and accurate vision-based Cooperative
Object Detection and Tracking (CODT) procedure. CODT allows a robot to observe dynamic
obstacles (robots and humans) and to track them at frame rate with high precision. Based on
a simple model of the opponents, the observations are performed by a robot. With every set
of observations the probability densities describing the presence of obstacle is then updated
by the CODT. A clear advantage of the CODT algorithm is that it is also capable of taking

1During a match the referee and robot maintenance staff is allowed to enter the soccer field.
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observations into account that were performed by several teammates. By doing this, a team
of robots performs cooperative opponent detection and tracking and is able to gain a more
precise and complete view of the environment than a single robot is able to gain with its own
camera.

In the remainder of this chapter the CODT algorithm is presented and evaluated. Sec-
tion 6.2 presents the belief state, object hypotheses, and object tracks used by the CODT
algorithm. The CODT algorithm and some implementation details are described in Sec-
tion 6.3. Related work is briefly described in Section 6.4. A summary and discussion is given
in Section 6.5 and this also concludes the chapter. The algorithm and its properties are
extensively evaluated in a series of real world experiments in Chapter 7.

6.2 Belief State, Object Hypotheses and Tracks

Before the Cooperative Opponent Detection and Tracking algorithm is described in detail,
this section will briefly review its central data structures, used to represent the belief state,
the object hypotheses, and the object tracks.

When tracking the positions of a set of opponent robots, there are two kinds of uncer-
tainties the state estimator has to deal with. The first one is caused by the inaccuracy of the
robots’ sensors. The second kind of uncertainty is introduced by the data association prob-
lem (Bar-Shalom and Fortmann, 1988), i.e. the assignment of observed objects to existing
object hypotheses from the previous time step. An appropriate data structure being capable
of representing both kinds of uncertainty will be presented in the next two sections.

6.2.1 Object Hypotheses

The central data structure used by the CODT algorithm is the object hypothesis, hi
t. Indices

i and t specify the hypothesis number and creation time, respectively. Each hypothesis
represents an estimate of a possible position and velocity of an opponent robot or another
dynamic object on the playing field. For every time step the algorithm maintains a set of all
existing hypotheses, Ht = {h1

t , . . . , hn
t }. It should be noted, that with every time step the

number of hypotheses contained in this set may vary.
The belief, Bel(x̂t), of the CODT algorithm is approximated by a set of weighted multi-

variate Gaussian random variables, hi
t ∼ N(h̄i

t, Σhi
t
). The mean vector, h̄i

t, represents the
joined positions and velocity estimate of an opponent robot hypothesis, while the covariance,
Σhi

t
, represents the associated uncertainty of this estimate. The validity of a hypothesis is

represented through its weight, pi
t. Given these definitions, the belief of the CODT algorithm

can be represented as follows:

Bel(x̂t) =
n∑

i=1

pi
t ∗N(x̂t; h̄

i
t, Σhi

t
) (6.1)

The mean vector, h̄i
t, of an object hypothesis, hi

t, consists of a 2D position and velocity
estimate with an associated 4× 4 covariance matrix:

h̄i
t = (x, ẋ, y, ẏ)T (6.2)
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Figure 6.1: Hypotheses trees maintained by the CODT algorithm. Every branch of a tree
represents one possible track of a physical object. New branches are introduced as an attempt
to solve data association ambiguities through track splitting.

6.2.2 Object Tracks

With the arrival of new sensor data and opponent observations the algorithm has to solve
the data association problem, i.e. decide which existing hypothesis is reconfirmed by which
observation. Usually, this problem is full of ambiguities and cannot be solved uniquely. For
example, it is possible that one opponent observation reconfirms several hypotheses or that
an existing hypothesis is reconfirmed by more than one observation.

A way to overcome the data association problem is to avoid unique associations and con-
sider all possible assignments instead. This procedure is called track splitting (see Figure 6.1)
and generates a new hypothesis for every possible combination of a hypothesis from the previ-
ous time step and an observation from the current time step. Every newly created hypothesis
is added to the set of current hypotheses and is linked with its predecessor contained in the
previous set of hypotheses. Over time this creates a tree like structure, where each branch
represents a possible track of a dynamic object.

More formally, the CODT algorithm maintains the last N sets of hypotheses Ht−N to Ht

at any time. Hypotheses that are assumed to originate from the same physical object are
linked in a tree like structure from one set of hypotheses to the next. A node hj

t is the son of
the node hi

t−1 if hj
t results from the assignment of an observation with a predicted state h̃i

t−1

of the hypothesis hi
t−1.

6.3 The Cooperative Opponent Detection & Tracking

Algorithm

In this section the CODT algorithm will be described by first detailing the underlying com-
putational structure and then presenting the computational steps of the algorithm.

The computational structure of the CODT algorithm is outlined in Figure 6.2. In the
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algorithm Cooperative Opponent Detection and Tracking (H, data, tdata)
1 let
2 H % set of hypotheses representing previous belief state

3 H ′ % set of hypotheses representing updated belief state

4 data % data item

5 Z % set of observed opponents

6 tlast, tdata % time stamps of last and current data item

7 ∆t % time difference between two data items

8
9 do

10 ∆t = tdata − tlast;
11
12 switch (data)
13
14 case (data is an image) :
15 Z ← Interpret Sensor Data (image);
16 % Broadcast observations to teammates

17 Broadcast Observations (Z, tdata);
18 % prediction stage

19 H ′ ←Multiple Hypothesis Kalman Filter (H, ∆t));
20 % update or measurement stage

21 H ′ ←Multiple Hypothesis Kalman Filter (H ′, Z));
22
23 case (data is a set of opponent observations from a teammate, Z) :
24 % prediction stage

25 H ′ ←Multiple Hypothesis Kalman Filter (H, ∆t));
26 % update or measurement stage

27 H ′ ←Multiple Hypothesis Kalman Filter (H ′, Z));
28
29 tlast = tdata;
30
31 return (H ′);

Figure 6.2: The Cooperative Opponent Detection and Tracking (CODT) algorithm.

algorithm H denotes the set of object hypothesis, which is updated every time new sensor data
arrives. Possible types of sensor data are (1) image data acquired by the camera mounted on
the robot (see Figure 6.2 lines 14 to 21) and (2) a set of opponent observations, Z, observed and
communicated by a teammate (lines 23 to 27). In the first case, the image data is processed
and a set of opponent positions, Z, is observed (line 15). Before the data is integrated into
the current set of hypotheses, it is broadcast to all teammates (line 7). In the second case,
opponent observations performed by teammates can be integrated without further processing.
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It is noteworthy, that communication delays are regarded to be negligible and that teammate
observations are processed in a first come first serve order. The remainder of the algorithm
is identical for both types of data. The multiple hypothesis Kalman filter algorithm (see
Section 3.4.6 or 6.3.3 for more details) is called twice. First, in order to predict the current
set of hypotheses (lines 19 and 25) and then to update it with the current set of observations
(lines 21 and 27).

In the following, the computational steps of the CODT algorithm will be presented: (1) de-
tecting feature blobs in the captured image that correspond to an opponent, (2) estimating
the position and uncertainties of the opponent in world coordinates, and (3) associating them
with the correct object hypothesis.

6.3.1 Image Preprocessing, Feature Extraction and Object Detec-
tion

This section outlines the feature extraction process (see Algorithm 6.3) which is performed in
order to extract a set of feature blobs out of an image, that correspond to opponent robots.

It is assumed that the opponent robots are coloured black and have approximately circular
shape. The discrimination of teammates and opponent robots is enabled through predefined
colour markers (cyan and magenta, see Figure 5.4) on the robots. Each marker colour may be
assigned to any of the two competing teams. Consequently, it is important that the following
algorithms can be parameterised accordingly. Furthermore, it is assumed that the tracked
object almost touches the ground and an inverse camera model can be applied for distance
estimation (see Figure 6.4). These predefined robot colours allow for a relatively simple
feature extraction process.

The following procedure extracts a set of regions from a captured image, where each region
corresponds to a currently visible robot. After capturing an image (see Figure 6.3 line 11) the
black colour-regions are extracted using colour classification and morphological operators. In
order to be recognised as an opponent robot a black blob has to satisfy several constraints
(line 12), e.g. a minimum/maximum size and a red or green colour-region adjacent to the
bottom region row. These constraints enable the routine to distinguish robots from black
logos and adverts affixed on the wall surrounding the field. Furthermore, blobs that contain
or have a colour-region of the own team colour in the immediate neighbourhood are discarded.

In the next step the physical size of the object corresponding to a blob is examined. For
every extracted region the object’s physical diameter is estimated. If it exceeds an upper
threshold, two robots are assumed to be directly next to each other. In this case the blob is
divided into two.

In order to detect cascaded robots (line 13), i.e. opponent robots that are partially oc-
cluded by other robots, the algorithm uses discontinuities in row width. As soon as the length
of a row differs significantly from the length of its lower predecessor and the respective world
coordinates are more than 10 cm above the ground it is assumed that a partly occluded object
is detected. However, before the region can safely be split into two, the resulting subregions
have to obey several further constraints such as a minimum width and height.

Finally, for every extracted region three features are computed (line 16): The bottom most
pixel row, the column col representing the centre of gravity, and a mean blob width. For the
latter two features only the three bottom most rows, which exceed a certain length, are used.
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algorithm Interpret Sensor Data (< x̂, Σx̂ >, image)
1 let
2 < x̂, Σx̂ > % belief state <mean,covariance> of the observing robot’s pose

3 < ȳ, Σy > % intermediate <mean,covariance>

4 image % image data

5 R = {r1, . . . , rnr} % set of regions

6 Z % set of observed opponents (features)

7 i % loop counter

8
9 do

10 Z ← ∅;
11 R← Extract Black Regions (Get Sensor Data ());
12 R← Check Constraints (R);
13 R← Extract Cascaded Robots (R);
14
15 for i← 1 to |R| do
16 (row, col, width)← Extract Features (ri);
17 ȳ← [x̂, row, col, width]T ;

18 Σy ←



Σx̂ 0 0 0

0 σrow 0 0

0 0 σcol 0

0 0 0 σwidth


;

19 Z ← Z ∪Unscented Transformation(ȳ, Σy, opp);
20
21 return (Z);

Figure 6.3: The Algorithm used for opponent detection and uncertainty estimation.

Occlusions through the ball are also considered while these rows are determined.
Empirically it was found that this feature extraction procedure is sufficient to determine

accurate positions of opponent robots. Mistakenly extracted objects are generally resolved in
a fast manner by the further computational steps of the CODT algorithm.

6.3.2 Estimation of Opponent Position and Uncertainty

This section discusses how the position and the respective covariance of an observed robot
is estimated. Each opponent observation is modelled in world coordinates by a bi-variate
Gaussian random variable, z ∼ N(z̄, Σz), with mean, z̄, and a 2×2 covariance matrix, Σz. In
order to achieve an accurate estimate for z this procedure takes the estimated pose and the
covariance of the observing robot into account as well as the position of the detected feature
blob in the image and the associated measurement uncertainties.
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Figure 6.4: An estimate of the robot’s distance is given through the intersection of the viewing
ray with the ground plane of the field.

The observation model opp is defined on the basis of an inverse camera model (see Sec-
tion 2.4.6). This model determines the world coordinates of an opponent robot based on the
pose estimate, x ∼ N(x̄, Σx), of the observing robot, the pixel coordinates row, col of the
centre of gravity and the width of the opponent robot’s blob. Due to rotations and radial
distortions of the lenses opp is nonlinear. First, the function opp converts the blob’s pixel
coordinates to relative polar coordinates, applying equations Eq. (2.26) to (2.30). On this
and on the width of the observed blob the radius of the observed robot is estimated. Since the
polar coordinates only describe the distance to the opponent robot but not the distance to
its centre, the radius is added to the distance. Finally, the polar coordinates are transformed
into world coordinates taking the observing robot’s pose estimate x̂ into account.

In order to estimate the position z̄ and the covariance Σz of an opponent robot, the un-
scented transformation of Julier and Uhlmann (1997) is used (see also Section 2.3.4). This
transformation allows the efficient propagation of uncertainties without creating the neces-
sity to derive the partial derivatives of the propagation functions. Julier and Uhlmann also
proved that the unscented transformation provides more realistic uncertainty estimates than
an approximation of the observation model obtained through linearisation with a truncated
first order Taylor series.

For the application of the unscented transformation, an augmented mean ȳ (see Figure 6.3
line 17) and covariance Σy (line 18) describing jointly the observing robot’s pose estimate and
the observed robot features is required. x̄, row, col and width are assumed to be uncorrelated
with variances σrow, σcol and σwidth. These sigmas are dependent on the image processing
hardware and can be determined from a series of experiments.

The unscented transformation (line 19) is then applied to the augmented mean and co-
variance using the nonlinear mapping opp. This yields the opponent robot’s position and
uncertainty as Gaussian random variable z ∼ N(z̄, Σz), which are stored in the set of obser-
vations Zt.

In Figure 6.5, the uncertainties of objects depending on the uncertainty of the observing
robot and their relative distances are displayed using σ-contours. For illustrative purposes the
uncertainty ellipses are scaled by an order of five. Each robot observes two obstacles in 3.5
and 7 m distance. Robot Odilo is very certain about its pose estimate and thus the covariance
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Figure 6.5: Propagation of uncertainties. For illustrative purposes the uncertainty ellipses are
scaled by an order of five.

of the observed robot depends mainly on its distance. The estimated distances according to
the unscented transformation do not diverge from the real distances. Robot Grimoald has a
high uncertainty in its orientation, approximately 7o. Consequently, the position estimate of
the observed obstacle is less precise and highly influenced by the orientation uncertainty.

In the subsequent step, the extracted opponent positions zi
t are associated with the pre-

dicted hypotheses h̃j
t by the multiple hypothesis tracking algorithm.

6.3.3 Multiple Hypothesis Tracking

For associating new observations with existing object hypotheses, a variant of the multiple
hypothesis Kalman filter (MHKF) is used. The first version of a MHKF was developed by
Reid (1979) in the context of a tracking application. Hence, the name that was chosen for this
algorithm was multiple hypothesis tracking (MHT) algorithm. The objectives of the MHT
algorithm are to keep a set of object hypotheses, each describing a unique real object and its
position, to maintain the set of hypotheses over time, and to estimate the likelihood of the
individual hypotheses.

Before the details of the MHT algorithm are presented the following brief description will
give an intuition of how it works. The MHT algorithm maintains a forest of hypotheses
trees, that is a set of trees (see Section 6.2.2). The nodes in the forest are object hypotheses
and represent the association of an observed object with an existing object hypothesis. Each
hypothesis has an association probability, which indicates the likelihood that observed object
and object hypothesis refer to the same object. In order to determine this probability, the
motion model is applied to object hypothesis of the previous iteration to predict the object’s
position. Then the association probability is computed by weighting the distance between the
predicted and the observed object position. Thus, in every iteration of the algorithm each
observation is associated with each existing object hypothesis.

The computational structure of the algorithm is shown in Figures 6.6 and 3.7. An iteration
begins with the set of hypotheses of object states Ht = {h1

t , . . . , h
nt
t } from the previous

iteration t. Each hi
t is a Gaussian random variable, hi

t ∼ N(h̄i
t, Σhi

t
), ranging over the state
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Figure 6.6: The multiple hypotheses framework for dynamic environment modelling.

space of a single object and represents a different assignment of measurements to objects,
which was performed in the past. The algorithm maintains a Kalman filter for each hypothesis.

With the arrival of new sensor data (see Figure 3.7 line 12), Zt+1 = {z1
t+1, . . . , z

nt+1

t+1 }, the

motion model (line 18) is applied to each hypothesis and intermediate hypotheses h̃i
t+1 are

predicted. For this step, a constant velocity model is used. Assignments of measurements to
objects (line 27) are established on the basis of a statistical distance measure, such as the
Mahalanobis distance. Each subsequent child hypothesis represents one possible interpreta-
tion of the set of observed objects and, together with its parent hypothesis, represents one
possible interpretation of all past observations. With every iteration of the MHT, probabil-
ities (line 29) describing the validity of hypotheses are calculated. Furthermore, for every
observed object a new hypothesis with associated probability is created (lines 33 to 36) (Cox
and Leonard, 1994).

In order to constrain the growth of the hypotheses trees, the algorithm prunes improbable
branches (line 40). Pruning is based on a combination of ratio pruning, i.e. a simple lower
limit on the ratio of the probabilities of the current and best hypotheses, and the N -scan-
back algorithm (Reid, 1979). This algorithm assumes that any ambiguity at time t is resolved
by time t + N . Consequently, if at time t hypothesis hi

t−N has m children, the sum of the
probabilities of the leaf nodes of each branch is calculated. The branch with the greatest
probability is retained and the others are discarded. After pruning, the world state of Ht−N

can be extracted. Please note that this world state is always N steps delayed behind the
latest observations. However, Section 6.3.6 will demonstrate that this delay can greatly be
overcome by N observers performing parallel observations.

In the next sections, the applied motion model is presented along with the equations used
to compute the probability of a hypothesis and some design decisions taken in order to apply
MHT to the RoboCup scenario.
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6.3.4 Motion Model

The motion model, used for predicting the movements of the hypotheses, is a simple constant
velocity model. The only input used by this model is the elapsed time, ∆t, since the last
update has been performed. Given the definition of a state, Eq. (6.2), and the equations for
state prediction, Eqs. (3.19) and (3.20), the prediction for the mean is given by:

h̃ = F h̄ + G∆t = Ih̄ +



ẋ

0

ẏ

0


∆t (6.3)

(6.4)

The prediction for the covariance is determined as follows:

Σ
h̃

= FΣhF T + Σvt = IΣhI +



∆t3/3 ∆t2/2 0 0

∆t2/2 ∆t 0 0

0 0 ∆t3/3 ∆t2/2

0 0 ∆t2/2 ∆t


q (6.5)

Here q is the variance of a continuous white-noise process (Bar-Shalom and Fortmann, 1988).
Further motion models are conceivable but in the RoboCup scenario the above model was
found to be sufficient.

6.3.5 Computing the Likelihood of Association Hypotheses

Obviously, the heart of the MHT algorithm is the computation of the likelihood of associa-
tion hypotheses, P (Θi

t+1|Z0...t). Each association hypothesis, Θ, represents a different set of
assignments of observations to objects, i.e. it is a collection of disjoint tracks.

This section derives the formula that is used to compute the likelihood for the specific
application of multiple object tracking. The derivation of this formula is critical because it
defines the probabilities that must be specified by programmers to apply the algorithm to
specific applications.

Let Z0...t be the sequence of all measurements up to time t. A new association hypothesis at
time t is made up of the current set of assignments (also called an event), θt, and a association
hypothesis, Θj

t−1, which is based on observed features up to time t− 1 inclusively.
The probability of an association hypothesis P (Θi

t|Z0...t) is transformed by using Bayes’
rule and the Markov assumption in order to obtain an easier expression:

P (Θi
t|Z0...t) = P (θt, Θ

i
t−1|Zt, Z0...t−1) (6.6)

= ν p(Zt|θt, Θ
j
t−1, Z0...t−1) P (θt|Θj

t−1, Z0...t−1) P (Θj
t−1|Z0...t−1) (6.7)



6.3. THE COOPERATIVE OPPONENT DETECTION & TRACKING ALGORITHM 97

Here, ν is a normalisation factor ensuring that P (Θi
t|Z0...t) sums up to one over all Θi

t. The
last term of this equation is the probability of the parent association hypothesis that was
computed in the previous iteration. The second factor can be evaluated as follows (Bar-
Shalom and Fortmann, 1988):

P (θt|Θj
t−1, Z0...t−1) =

φ!ν!

mk!
µF (φ)µN(ν)

∏
k

(P k
D)δk(1− P k

D)1−δk(P k
T )τk(1− P k

T )1−τk (6.8)

where µF (φ) and µN(ν) are prior probability mass functions of the number of spurious mea-
surements, φ, and new geometric features, ν. Generally, µF (φ) and µN(ν) are assumed to be
Poisson distributed with mean λF and λN . P k

D and P k
T are the probabilities of detection and

termination of track k. δk and τk are indicator variables. δk (τk) is 1, if track k is detected
(deleted) at time t and 0, otherwise.

δk =

 1 , track k (in Θi
t−1) is detected at time t

0 , otherwise.
(6.9)

τk =

 1 , track k (in Θi
t−1) is deleted at time t

0 , otherwise.
(6.10)

The indicator variable δk depends on the observing robot’s camera orientation. It is 1, if
the track k is within the sensor’s field of perception and track k is not occluded by another
teammate. P τk

T is used to model the probability of an unobserved object, which decreases
over time.

P τk
T = 1− e

− ∆t
λT (6.11)

∆t is the number of consecutive time steps a hypothesis was not observed. λT determines the
speed of the declination process. Larger λT result in a slower declination of the hypothesis
probability.

The first term on the right hand side of equation 6.7 denotes the association probability of
a measurement and an object state. This probability is defined with the help of a statistical
distance measure, such as the Mahalanobis distance (see Eq. (2.9)):

Nj(z̄
i
t) = Nj(z

i
t; h̃

j
t , Σsj

t
) =

1√
(2π)n

h̃det(Σsj
t
)
e
− 1

2
{(zi

t−h̃j
t )

T (Σ
s
j
t

)−1(zt−h̃j
t ))}

(6.12)

Here, h̃i
t denotes the predicted measurement for hypothesis j and Σsj

t
is the associated inno-

vation covariance and is defined by Σsj
t
= Σ

h̃j
t
+ Σzi

t
.

The probabilities of a new object and a spurious measurement are taken to be uniformly
distributed over the observation volume V . In the implementation, the observation volume
V is the intersection of the field of view (neglecting occlusions) and the soccer field. Thus, V
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is a function of the robot’s pose estimate and the camera’s field of view. Its complement Ṽ is
defined as the total area of the field without V .

p(Zt|θt, Θ
j
t−1, Z0...t−1) =

mk∏
i=1

[Nj(z
i
t)]

κiV −(1−κi) (6.13)

The quantity κi is another indicator variable which is 1, if zi
t came from a known track and

0, otherwise.

κi =

 1 , zi
t came from a known track i

0 , otherwise.
(6.14)

Substituting Eq. (6.13) and Eq. (6.8) into Eq. (6.7) yields the final expression for the condi-
tional probability of an association hypothesis

P (Θi
t|Z0...t) =

1

c

φ!ν!

mk!
µF (φ)µN(ν)V −φ−ν ∗ (6.15)

mk∏
i=1

[Nj(z
i
t)]

κi

{∏
k

(P k
D)δk(1− P k

D)1−δk(P k
T )τk(1− P k

T )1−τk

}
P (Θj

t−1|Z0...t−1)

If the number of false alarms and new features are assumed to be Poisson distributed with
densities λF and λN , respectively, then Eq. 6.16 reduces to

P (Θi
t|Z0...t) =

1

c′
λν

Nλφ
F

mk∏
i=1

[Nj(z
i
t)]

κi

{∏
k

(P k
D)δk(1− P k

D)1−δk(P k
T )τk(1− P k

T )1−τk

}
P (Θj

t−1|Z0...t−1)

(6.16)
The probability of an association hypothesis, is used to guide the pruning strategies of the
Multiple Hypothesis Tracking algorithm (Reid, 1979; Cox and Leonard, 1994).

6.3.6 Choosing the Maximum Depth of a Track Tree

In this section the options for selecting the maximum depth N of the track trees are discussed.
This is a crucial decision that has to be taken when a MHT approach is applied.

On the one hand, choosing a deeper maximum will increase the accuracy of the tracks.
This allows for the integration of observations from several more time steps. The idea is that
with more integrated observations the decision where the track tree has to be pruned becomes
clearer and in the best case even unique. Thus, the ideal track tree, as far as track accuracy
is concerned, is a track tree with an infinite depth. This would postpone the pruning decision
until all observations have been integrated.

On the other hand the required computation time for every update cycle grows exponen-
tially with the maximum depth of the track trees. As robot soccer is an especially dynamic
scenario, it requests for fast response times and the track tree have to be shallow.

Thus, the overall decision that has to be made is the decision between the maximum
accuracy of the tracks and the response times of the algorithm that allows to meet the real
times constraints of the scenario.
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N f (Hz) tmin t̄ tmax N f (Hz) tmin t̄ tmax

1 1015 0.0002 0.0009 0.29 15 35 0.0004 0.0279 0.63

4 219 0.0004 0.0045 0.30 20 20 0.0005 0.0480 1.30

7 140 0.0004 0.0070 0.31 25 13 0.0007 0.0716 2.49

10 77 0.0004 0.0129 0.40 30 9 0.0007 0.1023 2.70

Table 6.1: Update times of the CODT algorithm for various depths of the track trees.

An obvious choice for the maximum depth N of the track trees is to choose N equal to
the number of robots R that contribute observations to the team. Assuming that the track
trees have already grown to their maximum depth in the previous iteration, this allows for
the following procedure2:

1. In every time step R robots grab an image, process this image in order to perform
opponent observations, and broadcast these observations to their teammates.

2. After a robot has performed its own set of observations it iterates the CODT algorithm
once. Its observations are integrated into the track trees, the depth of the trees grows
by one, and the trees are pruned down to the maximum depth.

3. Then it receives the set of observations of its teammates and iterates the CODT algo-
rithm again for every set. Again, as part of every iteration observations are integrated
into the trees, the depth of the tree grows, and the trees are pruned.

4. Finally, the last set of hypotheses containing the current root nodes of all hypotheses
trees is extracted an used as input for the action selection and path planning routines.

With every iteration of this procedure it is assured that all sets of observations performed
in the previous time step have been fused by the CODT algorithm. Thus, the action selection
and path planning routines receive the opponent positions from the previous time step as
input. This delay is well compensated by the increased accuracy and completeness of the
opponents’ position estimates. In particular, at a frame rate of 30 Hz this delay is only 33
ms. Opponent robots moving at the high speed of 1 m/s will move at most for 3.3 cm during
that time.

Given a team of four robots the above procedure requires the CODT algorithm to be
capable of running at a frequency of 120 Hz. Table 6.1 displays the achievable update times
and frequencies of the CODT algorithm for various depths of the track trees. The CODT
algorithm was run over all log files recorded during 2001 and 2002 and the update times were
measured. This experiment took place on a Pentium class computer with 700 MHz.

2For simplicity it is assumed that the cameras of all robots are synchronised and that communication times
for broadcasts are negligible. In fact, during a running match an IP packet sent by a ping command requires
2 ms for its round trip between two robots.
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6.4 Related Work

As mentioned earlier, a large body of research towards solving the data association problem,
establishing motion correspondences, and the general problem of multiple object tracking
with multiple mobile sensors exists. Again the two classes of outlier sensitive estimation
techniques and robust estimation techniques can be distinguished. In the following sections
different variants of these two main approaches and their applications to various types of
sensors within the RoboCup domain and other robotic applications are discussed.

6.4.1 Outlier Sensitive Estimation Techniques

The approach of Stroupe et al.: Stroupe, Martin, and Balch (2001) present a first
approach towards object tracking in a multi-robot team. Based on observations performed
by a vision sensor, a Kalman filter is used to track one uniquely observable object, i.e. the
ball of the RoboCup scenario. Since the ball is observable without any ambiguities, this
scenario is well behaved and the algorithm does not have to deal with the data association
problem. Furthermore, this approach does not take the accuracy of the observing robot’s
pose into account. First results with almost stationary settings (at most one robot is moving)
demonstrate, that the tracking accuracy increases with the application of multiple sensors.

The approach of Dietl and Gutmann: Dietl, Gutmann, and Nebel (2001) develop two
different tracking techniques for the RoboCup scenario: (1) for multiple object tracking, i.e.
opponent robots, based on observations with several high precision sensors such as laser range
finders, and (2) for single object tracking, i.e. the ball, with multiple noisy sensors, such as
vision sensors. The position estimates generated by both techniques are stored in the team’s
world model (Gutmann et al., 1999).

The multi-object tracking algorithm is based on Kalman filtering and opponent observa-
tions that are performed with laser range finders. The data association problem is solved by
the geometric method developed by Veloso et al. (1998) which assigns measurements to tracks
by minimising the sum of squared error distances between observations and tracks. This is
done by first computing a distance table of all pairs. This table is then searched for a combi-
nation where no two observations correspond to the same track, the number of assignments
is maximal, and where the sum of all distances is minimised.

The single-object tracking method involves a combination of Kalman filtering and Markov
localisation. This method aims at the combination of both methods’ advantages, fast updates
and high accuracy on the one hand and robustness towards noise and detection of outliers on
the other (see also (Gutmann, 2002)). This is achieved by tracking the ball with a Kalman
filter and using a Markov grid as observation filter. The multi-modal probability grid is used
to distinguish which ball measurement should be integrated by the Kalman filter and which
not. After an update of the grid with the latest measurement the most likely ball position
is determined. Only measurements that are close to the most likely position are fused into
the Kalman filter and all others are considered as outliers. Furthermore, if the current state
of the Kalman filter does not correspond to the most likely ball position in the grid, the
Kalman filter can be reinitialised with this position. Experimental results prove the validity
and applicability of these techniques.
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6.4.2 Robust Estimation Techniques

The approaches of Bar-Shalom et al.: The Probabilistic Data Association filter (PDAF)
(Bar-Shalom and Fortmann, 1988; Cox, 1993) is an extension of the Kalman filter that uses a
Bayesian approach to the problem of data association, or how to update the state when there is
a single object and possibly no measurements or multiple measurements due to noise. Rather
than possibly erring by choosing the nearest neighbour (Bar-Shalom and Fortmann, 1988; Cox,
1993) or data closest to what is expected in order to update the state, the PDAF hedges its bets
by weighting the influence of the various candidate measurements based on two assumptions.
First, it assumes that there is exactly one target giving rise to one true measurement which
may sporadically disappear either because the object is temporarily occluded or because of
suboptimal feature detection. Second, the PDAF assumes that all other measurements are
false and arise from a uniform noise process. The relevant step in the Kalman filter is the
computation of the innovation. The PDAF introduces a notion of the combined innovation,
computed over the measurements detected at a given time step as the weighted sum of the
individual innovations. Though the PDAF is able to cope with noisy and false measurements,
it can only track one object.

To overcome this problem the Joint Probabilistic Data Association filter (JPDAF) was
proposed (Bar-Shalom and Fortmann, 1988; Cox, 1993). It maintains a Kalman filter for
every tracked object and introduces a kind of exclusion principle that prevents two or more
trackers from latching onto the same object by calculating target-measurement association
probabilities jointly. The JPDAF associates all measurements with each track to form a com-
bined weighted innovation, for every track. This weighted innovation is then applied in the
standard Kalman filter update equation for each object that is currently tracked. In order to
compute the weighted innovation the association probabilities for every target-measurement
association are computed on the basis of the distances between the object’s predicted measure-
ment and the actual measurement. Unlike associations have very low probabilities and, thus,
have almost no influence on the weighted innovation. Consequently, the JPDAF disregards
infeasible associations and, thus, avoids inappropriate state convergence. The major draw-
back of the JPDAF is that the number of tracked objects remains fixed and has to be known
in advance. The precise formula for the probability of each particular target-measurement
association in the PDAF and JPDAF framework is given in (Bar-Shalom and Fortmann, 1988;
Cox, 1993).

The approach of Rosencrantz: A new variable dimension particle filter algorithm for
tracking the location of objects under prolonged periods of occlusion was proposed by Rosen-
crantz, Gordon, and Thrun (2003). The algorithm has been implemented for a multi-robot
system playing the popular game of laser tag. The object of the game is to search for and
tag opponents that can move freely about the environment. The algorithm can cope effi-
ciently with variable numbers of targets, through mechanisms that dynamically increase and
decrease the number of particle filters. The data association problem is alleviated through
a novel tracking technique that represents objects by roles, such as ”the robot which went
to the left” or ”the robot which went to the right”, instead of individual identity. When
searching for objects, the individual agents greedily maximise their information gain, using
a negotiation technique for coordinating their search efforts. Experimental results obtained
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with a physical robot system equipped with laser sensors in large-scale indoor environments
demonstrate the applicability of this approach.

Although at first sight the laser tag scenario seems to be similar to the RoboCup scenario
they have four fundamental differences. (1) RoboCup is played on a field, with almost no
landmarks for localisation, while laser-tag is usually played in indoor corridor or tunnel system
like environments, which provide much more information for localisation. (2) The RoboCup
scenario contains two teams of robots with almost identical and indistinguishable robots and,
thus, make the data association and multiple object tracking problem more difficult. (3) Due
to the fast and dynamic nature of soccer and the limited size of the field, occlusions of agents
happen more often than in laser tag. Finally, (4) the movement directions of robots change
much more abruptly and robotic platforms with holonomic drives are applied in RoboCup.
This makes the assignment of roles, as proposed by Rosencrantz, Gordon, and Thrun (2003),
a lot more difficult than in the game of laser tag.

In contrast to the above approach, the CODT algorithm presented in this thesis tackles
the multiple object tracking problem in the far more complex RoboCup scenario with less
accurate and noisy vision sensors.

The approaches of Schulz et al.: The Sample-Based Joint Probabilistic Data Associa-
tion Filter (SJPDAF) (Schulz et al., 2001b; Schulz et al., 2001a; Schulz et al., 2003) is an
extension of the JPDAF, that combines the advantages of sample-based density approxima-
tions with the efficiency of JPDAFs. SJPDAF maintains a particle filter for every object that
is currently tracked and applies the idea of JPDAF to assign measurement to the individual
tracks. Furthermore, the algorithm also maintains a probability distribution over the number
of objects tracked. This allows for the tracking of an arbitrary number of objects and, thus,
to initiate and to terminate object tracks. The approach has been implemented and tested on
a real robot using laser-range data. The experiments illustrate that the SJPDAF algorithm
is able to robustly keep track of multiple moving persons, while the robot is in motion.

A further approach to tracking multiple objects, that combines the accuracy benefits of
anonymous sensors and the identification certainty of id-sensors is presented in Schulz, Fox,
and Hightower (2003). In this work Rao-Blackwellised particle filters (RBPF) (see also Doucet
et al. (2000)) are used to estimate object locations. Each particle represents the association
history between Kalman filtered object tracks and observations. After using only anonymous
sensors until id estimates are certain enough, id assignments are sampled as well resulting
in a fully Rao-Blackwellised particle filter over both object tracks and id assignments. This
approach has successfully been tested using data collected in an indoor environment equipped
with a large number of stationary sensors.

In contrast to SJPDAF and RBPF the CODT algorithm requires less computational power
if the pruning parameters are carefully selected and can handle observations performed by
multiple mobile robots with uncertain positions.

The approach of Hue et al.: A further approach to multiple object tracking with particle
filters was proposed by Hue, Le Cadre, and Perez (2000). The multiple target particle filter
(MTPF) is capable of tracking a fixed number of objects with one single set of particles. The
association probabilities of a measurement and a particle from the particle set are computed
on the basis of the Gibbs sampler (see (Hue, Le Cadre, and Perez, 2001)). Despite its
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computational complexity, this algorithm lacks the ability to initiate new tracks and terminate
vanished tracks.

The approaches of Cox et al.: The CODT algorithm presented in this thesis is most
closely related to the multiple hypothesis tracking approach used in (Cox, Rehg, and Hin-
gorani, 1993; Cox and Leonard, 1994; Cox and Hingorani, 1996). Cox, Rehg, and Hingo-
rani (1993) present a multiple hypothesis approach to edge grouping and contour segmenta-
tion. Cox and Leonard (1994) use multiple hypothesis tracking to model a static environment
consisting of corners and walls. Their work on multiple hypothesis tracking is extended with
this thesis, in which their method is applied to a more challenging application domain with
multiple moving observers with uncertain positions. In addition, tracking is performed at an
object level rather than at a feature level.

The approach of Rull: A humoristic3 approach to the multiple object tracking and data
association problem is presented in (Rull, 1993). The autonomous train spotter BARRY
is shown to be able to perform the task of train spotting for many hours, without requiring
human interaction. Theoretically, the system can spot and track trains travelling at relativistic
speeds. This allows for the application of BARRY to obvious future applications in the domain
of space-based spotting, such as RoboCup in space and planet bowling. Two appropriate and
revolutionary camera models such as (1) the black hole camera model and the (2) enormous-
mass camera model are also proposed. The article is well worth reading and laughing about3.

Various other approaches: Further approaches to the multiple object tracking prob-
lem can be found in the Greedy Optimal Assignment (GOA) tracker (Veenman, Reinders,
and Backer, 2003), the Restrained Optimal Assignment Decision (ROAD) tracker (Veenman,
Reinders, and Backer, 2001), and the Joint Likelihood filter (JLF) (Rasmussen and Hager,
2001). More work related to contour oriented vision based particle filter tracking can be found
in (Isard and Blake, 1996b; Blake and Isard, 1998; Isard and Blake, 1998) and (Comanicu,
Ramesh, and Meer, 2003).

6.5 Conclusions

This chapter presented a fast (real time capable) and accurate vision-based Cooperative Ob-
ject Detection and Tracking (CODT) procedure. CODT allows a team of robots to observe
dynamic obstacles (robots and humans) and to track them at frame rate with high precision.
Object observations are performed by a robot based on a general but simple object model
of the opponents. With every set of observations the CODT updates the probability density
describing the states of the opponents.

A clear advantage of the CODT algorithm is that it is capable of taking observations into
account that were performed by several teammates. By doing this, a team of robots performs

3Don’t take this paragraph seriously. However, I would like to acknowledge that you seem to be deeply
interested in the contents of this thesis and that you belong to the class of my best and most enthusiastic
readers. Thanks a lot!
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cooperative opponent detection and tracking, and is able to gain a more precise and complete
view of the environment than a single robot can with its own camera.

The algorithm and its properties are extensively evaluated in a series of real world exper-
iments in Chapter 7.



Chapter 7

Experimental Results

7.1 Introduction

The Cooperative Incremental Iterative Localisation algorithm and the Cooperative Opponent
Detection and Tracking algorithm presented in the previous chapters constitute the backbone
of the control system of the autonomous RoboCup team, The AGILO RoboCuppers. Their
performance is evaluated in this chapter with a series of large style experiments. During all
real world experiments both algorithms run on all four robots simultaneously in a competitive
match environment, i.e. robot soccer matches during a robot soccer world cup (RoboCup
2001, Seattle, USA) or friendly matches during the open day of the Munich University of
Technology, Munich, Germany in 2002 (see Figure 7.1). The experiments are performed
under ordinary RoboCup match conditions, as defined in (Bonarini et al., 2003), and in the
presence of an audience. During the experiments the robots were completely autonomous
and performed all actions based on their joint perceptions of the world. The only manual
interaction was the transmission of a start or stop signal to the robots at the beginning and
the end of the experiments, respectively. During the experiments all data generated by the
robots, i.e. pose estimates of the robots and positions of the ball and opponent robots, are
logged in a logfile. Furthermore, all experiments were also recorded in 2001 by an external
video camera and in 2002 by a ground truth camera system (see Section 4.4) for evaluation
purposes. While the former only allows for a qualitative evaluation of the experiments, the
latter also allows for a quantitative evaluation of track accuracies, e.g. by providing Root
Mean Square Errors (RMSE).

The remainder of this chapter proceeds as follow: First the CIIL algorithm is be used
to estimate the relative position of the ground truth camera system above the RoboCup
field. Then the accuracy of the ground truth camera system is accessed. The CIIL algorithm
is tested under various conditions and situations, and its accuracy is determined with the
ground truth camera system. Then the CODT algorithm is tested and its accuracy is deter-
mined. Finally, the performance of both algorithms is evaluated in two large style real world
experiments.

105
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(a) (b) (c)

Figure 7.1: Friendly matches between The AGILO RoboCuppers and The Ulm Sparrows at
the open day of the Munich University of Technology in 2002. (a) The field, (b) a match
situation and (c) the coach area of The AGILO RoboCuppers.

7.2 The Ground Truth Camera System

The ground truth camera system was developed in order to evaluate the approaches presented
in this thesis. It is designed to determine the position of the ball and the poses of all robots
on the field as accurately as possible. The backbone of the system is a blob analysis algo-
rithm, that extracts the pixel coordinates of all regions of interest. An inverse camera model
(see Section 2.4.6) is then used to transform pixel coordinates to 3D world coordinates. A
precondition for the successful application of an inverse camera model is that the exact pose
of the camera, relative to the field, is known. Determining this pose with high accuracy with
a simple measuring device, such as a metering rule, is not impossible. However, once a rough
first pose estimate has been generated, it can iteratively be refined through the application
of the CIIL algorithm.

7.2.1 Localisation of the Ground Truth Camera System

In this section the CIIL is used in order to localise the ground truth camera system relative
to the field. The results will show that a coarse initialisation of the the CIIL algorithm is
sufficient to determine an accurate position for the camera system.

Figure 7.2 illustrates the application of the CIIL algorithm to the pose estimation process
of the ground truth camera system. The camera system was placed at an approximate height
of 4.5 m above the centre of the field, facing downward. The six dimensional relative pose of
the camera system is initialised with

x̄2 = (x, y, z, φx, φy, φz)
T

= (0.0, 0.0, 4.50, 180.0, 0.0, 0.0)T

and the CIIL algorithm is run for three iterations. This process is illustrated in Figure 7.2.
Subfigures 7.2(a) and 7.2(b) show the projected field model (top) before the first and the
third iteration of the algorithm, respectively. At the bottom, the search for correspondences
between the field model and the image data is displayed (black lines). The adaptation of
the search interval is clearly visible, its width decreases in proportion with the decreasing
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(a) (b)

(c)

Figure 7.2: Localisation of the ground truth camera above the field with the CIIL algorithm.
(a) Projected field model and search for correspondences before the first and (b) before the
third iteration. (c) Projected field model after the third iteration.
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uncertainty of the estimate. The third iteration step estimates the pose of the ground truth
camera system as follows:

x̄2 = (−0.25, 0.1, 4.39, 179.58,−2.85, 0.07)T

Quantitatively this estimate can be assumed to be correct. Figure 7.2(c) also illustrates the
qualitatively correctness of this estimate. The overlaying field model was projected into the
image using the above estimate. Minor incorrections of the left penalty area lines reveal that
these lines were not drawn on the field as accurately as they should have been. This fact was
further investigated with a metering rule and these lines were found to have been a couple of
centimetres too long.

7.2.2 Evaluation of the Ground Truth Camera System

This section assesses the accuracy with which the ground truth camera system is able to
determine the positions and orientations of objects on the field. The mean error for ball posi-
tions is around 3 cm, and the mean position and orientation error for robots is approximately
10 cm and 5o, respectively.

Once the precise relative pose of the ground truth camera system is known it can be used
to estimate the world coordinates of the ball and of the robots. In the following, the accuracy
of these estimates is investigated.

For this the ball was put on 35 predefined positions on the field and its positions were
determined by the ground truth camera system. This experiment is displayed in Figure 7.3.
The exact predefined positions are marked by a circle, the positions determined by the ground
truth camera system are marked by a cross. The quantitative data for this experiment can
be found in the table at the bottom of Figure 7.3. For each pair of positions the Euclidean
distance was computed and the minimum, mean, and maximum distances of all pairs were
determined.

The ground truth for the ball location is found to be quite accurate. A mean error of 3.2
cm is observed for all positions. Displacements range from 0.7 cm to 7.3 cm, respectively. In
general, the displacement errors are small in the centre of the field and increase towards the
boundaries of the field. The good accuracy of the ball’s ground truth can be explained with
the relatively simple and unique geometry of the ball. The increasing displacement errors
towards the field boundaries are a result of the fact that the ball is more observed from the
side, than from the top. Thus, the ground truth position is mistakenly estimated to be further
towards the field boundaries, than it actually is. This problem can only be overcome by a
more elaborate feature extraction and blob analysis process, or through the application of
more cameras.

In the next experiment, the localisation accuracy of the ground truth camera system for
robots is accessed. Figure 7.4 displays the experimental setup. A robot is placed at 10 different
positions on the field and its pose is determined by the ground truth camera system. The
quantitative data for this experiment can be found in the table at the bottom of Figure 7.4.
The left, middle and right column contain the effective pose of the robot, the pose observed
by the ground truth system, and the observation errors, respectively.
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x/y y = 2.20 y = 1.25 y = 0.00 y = -1.25 y = -2.20

x = 4.15 4.17,2.18 4.15,1.26 4.15,0.01 4.15,-1.29 4.16,-2.19

0.028 0.010 0.010 0.040 0.014

x = 3.15 3.15,2.19 3.18,1.28 3.18,0.03 3.17,-1.28 3.15,-2.21

0.010 0.042 0.042 0.036 0.010

x = 1.60 1.66,2.17 1.62,1.25 1.61,-0.02 1.63,-1.25 1.66,-2.21

0.067 0.020 0.022 0.030 0.061

x = 0.00 0.004,2.19 -0.02,1.27 0.0044,-0.0054 -0.01,-1.27 -0.01,-2.20

0.011 0.028 0.007 0.022 0.010

x = -1.60 -1.64,2.18 -1.67,1.23 -1.64,-0.01 -1.65,-1.23 -1.60,-2.19

0.045 0.073 0.041 0.054 0.010

x = -3.15 -3.17,2.18 -3.17,1.26 -3.20,-0.03 -3.20,-1.30 -3.18,-2.21

0.028 0.022 0.058 0.071 0.032

x = -4.15 -4.17,2.20 -4.14,1.24 -4.19,0.008 -4.18,-1.29 -4.15,-2.19

0.020 0.014 0.041 0.050 0.010

RMSE: Min 0.007 m, Mean 0.032 m, Max 0.073 m

Figure 7.3: Ground truth accuracy for a ball at various positions on the field.
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No. x y φ x y φ ∆ ∆φ

(a) -3.15 0.0 0 -3.36 -0.04 -2.15 0.21 2.15

(c) -1.60 0.0 0 -1.80 0.02 1.89 0.20 1.89

(e) 0.0 0.0 0 -0.01 -0.01 3.40 0.01 3.40

(g) 1.60 0.0 0 1.68 0.01 -3.51 0.08 3.51

(k) 3.15 0.0 0 3.25 -0.03 1.14 0.10 1.14

RMSE ∆: Min 0.01 m, Mean 0.12 m, Max 0.21 m

RMSE ∆φ: Min 1.89o, Mean 2.41o, Max 3.51o

(b) 0.0 2.20 -90 -0.05 2.30 -81.12 0.11 8.88

(d) 0.0 1.20 -90 0.00 1.33 -87.02 0.13 2.98

(f) 0.0 0.0 -90 0.00 0.04 -86.19 0.04 3.81

(h) 0.0 -1.20 -90 0.01 -1.25 -87.34 0.05 2.66

(i) 0.0 -2.20 -90 -0.01 -2.28 -79.39 0.08 10.61

RMSE ∆: Min 0.04 m, Mean 0.082 m, Max 0.13 m

RMSE ∆φ: Min 2.66o, Mean 5.78o, Max 10.61o

Figure 7.4: Ground truth accuracy for a robot at various positions on the field.
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The ground truth position estimate for robots is less accurate than for ball. The mean
position and orientation error are estimated to be around 10 cm and 5o, respectively. Observed
displacements range from 1 cm to 21 cm, and observed orientation errors range from 1.8o to
10.6o. Again, these displacements are a result of the relatively simple feature extraction and
blob analysis process used by the ground truth camera system. The main reason why the
localisation accuracy for robots is worse than for a ball can be found in the fact that robots
are usually asymmetric and their own pose is estimated relative to their vertical rotation axis
and not to their centre of gravity (see also Section 5.2.1). However, the generic algorithm of
the ground truth camera system determines the position of all objects on the basis of their
blob’s centre of gravity. This leads to even greater localisation error at the field boundaries,
when the robots are observed more from the side. The only way to increase the localisation
accuracy for robots is to apply a computationally more expensive model based localisation
approach for the ground truth system.

The errors generated by the state estimation techniques applied in this thesis are expected
to be in the same order of magnitude as the errors of the ground truth system assessed above.
The validity of this assumption will be proven throughout the next sections.

7.3 Stationary localisation

This section investigates the localisation accuracy of the CIIL algorithm and its applicabil-
ity to different robotic platforms. In particular, a wheeled AGILO Pioneer 1 robot and a
quadruped Sony AIBO robot are used.

7.3.1 AGILO Robot

This experiment investigates the localisation accuracy for 3D and 6D estimates of the CIIL
algorithm at several poses on the field. The mean position and orientation errors for the 3D
estimate are found to be around 3.5 cm and 1o, respectively. The algorithm performs slightly
worse for the 6D estimate, with a mean position error of 6.5 cm and a mean orientation error
of 3.4o.

An AGILO robot is placed on the same positions on the field as in the experiments with
the ground truth camera system (see Figure 7.4). The images observed by the robot at the
different positions on the field are displayed in Figure 7.5. In order to verify the correctness
of a pose estimate, this estimate is used to project the field model into the image.

For the experiments the CIIL algorithm is initialised with a pose that diverges from the
true position and the true orientation by a Euclidean distance of 30 cm and 15o, respectively.
The CIIL algorithm is run for three iterations and the estimate is recorded. The quantitative
results are shown in Table 7.1. Each experiment is described by four rows. The first row
contains the robot’s pose as measured with a metering rule. The second row contains the
pose observed by the ground truth camera system. Row number three and four contain the
3D and 6D poses and the root of the covariance matrix’s diagonal elements (±σ) as estimated
by the CIIL algorithm, respectively. As before, the localisation error is measured by the
Euclidean distance ∆ between the estimate and the position measured by the metering rule.
The orientation error ∆φ is determined by the sum of the absolute errors of all rotational
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (k)

Figure 7.5: Localisation experiments at 10 different poses with superimposed field model.
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Experiment x y z φx φy φz ∆ ∆φ Eq Err %

(a) MR −3.15 0.00 − − − 0.00

GT −3.36 −0.04 − − − −2.15 0.21 2.15

3D −3.15 −0.03 − − − 1.83 0.03 1.83 40 10.61 10.73

±σ ±0.07 ±0.07 − − − ±0.06

6D −3.16 −0.08 −0.02 0.69 −0.47 2.25 0.08 3.41 43 18.35 11.45

±σ ±0.07 ±0.08 ±0.03 ±0.57 ±0.45 ±0.65

(c) MR −1.60 0.00 − − − 0.00

GT −1.80 0.02 − − − 1.89 0.20 1.89

3D −1.63 −0.01 − − − 1.09 0.03 1.09 46 8.47 17.73

±σ ±0.03 ±0.05 − − − ±0.57

6D −1.63 −0.02 −0.06 1.36 −2.19 1.88 0.04 5.43 49 8.30 16.18

±σ ±0.03 ±0.05 ±0.01 ±0.51 ±0.29 ±0.53

(e) MR 0.00 0.00 − − − 0.00

GT −0.01 −0.01 − − − 3.40 0.01 3.40

3D 0.03 0.04 − − − 0.48 0.05 0.48 42 6.58 15.30

±σ ±0.02 ±0.05 − − − ±0.61

6D 0.02 −0.01 0.01 1.38 0.56 1.33 0.02 3.27 40 10.83 16.48

±σ ±0.03 ±0.09 ±0.02 ±0.060 ±0.41 ±1.16

(g) MR 1.60 0.0 − − − 0.00

GT 1.68 0.01 − − − −3.51 0.08 3.51

3D 1.64 0.02 − − − 0.82 0.04 0.82 65 2.72 14.82

±σ ±0.01 ±0.03 − − − ±0.56

6D 1.64 0.01 0.02 0.02 −0.42 0.97 0.04 1.41 66 14.42 18.92

±σ ±0.01 ±0.03 ±0.02 ±0.38 ±0.69 ±0.60

(i) MR 3.15 0.0 − − − 0.00

GT 3.25 −0.03 − − − 1.14 0.10 1.14

3D 3.09 0.12 − − − −2.20 0.13 2.20 12 2.55 1.29

±σ ±0.02 ±0.05 − − − ±1.94

6D 3.10 −0.15 −0.01 2.00 −0.20 4.85 0.15 7.05 12 0.90 1.48

±σ ±0.03 ±0.19 ±0.03 ±1.45 ±1.29 ±5.35

GT RMSE ∆: Min 0.01 m, Mean 0.12 m, Max 0.21 m

GT RMSE ∆φ: Min 1.89o, Mean 2.41o, Max 3.51o

3D RMSE ∆: Min 0.03 m, Mean 0.05 m, Max 0.13 m

3D RMSE ∆φ: Min 0.48o, Mean 1.28o, Max 2.20o

6D RMSE ∆: Min 0.02 m, Mean 0.06 m, Max 0.15 m

6D RMSE ∆φ: Min 1.41o, Mean 4.11o, Max 7.05o

degrees of freedom. The last three columns summarise interesting runtime quantities of the
CIIL algorithm. Eq specifies the number of correspondences established between the model
and the image data. Err is an approximated χ2 error measure and ’%’ indicates the percentage
of image data accessed during the three iterations of the CIIL algorithm.

The CIIL algorithm performed very well in eight cases. The mean position and orientation
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Experiment x y z φx φy φz ∆ ∆φ Eq Err %

(b) MR 0.00 2.20 − − − −90.00

GT −0.05 2.30 − − − −81.12 0.11 8.88

3D −0.01 2.19 − − − −88.13 0.01 1.87 14 2.10 5.80

±σ ±0.00 ±0.03 − − − ±0.57

6D −0.00 2.21 0.00 0.94 −0.86 −88.49 0.01 3.31 13 0.75 6.81

±σ ±0.01 ±0.09 ±0.09 ±1.58 ±2.68 ±0.09

(d) MR 0.00 1.20 − − − −90.00

GT 0.00 1.33 − − − −87.02 0.13 2.98

3D 0.01 1.18 − − − −89.42 0.02 0.58 10 3.14 1.08

±σ ±0.04 ±0.20 − − − ±1.37

6D 0.00 1.10 0.02 1.48 0.85 −88.96 0.09 3.37 11 0.22 4.32

±σ ±0.04 ±0.63 ±0.11 ±0.99 ±6.40 ±1.24

(f) MR 0.00 0.0 − − − −90.00

GT 0.00 0.04 − − − −86.19 0.04 3.81

3D −0.01 −0.04 − − − −88.98 0.04 1.02 15 0.59 4.03

±σ ±0.02 ±0.03 − − − ±1.09

6D 0.00 −0.09 −0.01 −0.10 0.26 −89.04 0.09 1.32 16 0.30 6.73

±σ ±0.03 ±0.26 ±0.09 ±0.78 ±1.69 ±1.65

(h) MR 0.00 −1.20 − − − −90.00

GT 0.01 −1.25 − − − −87.34 0.05 2.66

3D 0.01 −1.21 − − − −90.35 0.01 0.35 7 0.08 3.64

±σ ±0.03 ±0.03 − − − ±2.73

6D 0.00 −1.11 0.03 0.64 −1.20 −89.03 0.09 2.81 4 0.04 4.43

±σ ±0.07 ±0.97 ±0.75 ±1.86 ±2.90 ±4.69

(k) MR 0.00 −2.20 − − − −90.00

GT −0.01 −2.28 − − − −79.39 0.08 10.61

3D − − − − − − − − 0 ∞ 0.00

±σ − − − − − − − − 0 ∞ 0.00

6D − − − − − − − − 0 ∞ 0.00

±σ − − − − − − − − 0 ∞ 0.00

GT RMSE ∆: Min 0.04 m, Mean 0.082 m, Max 0.13 m

GT RMSE ∆φ: Min 2.66o, Mean 5.78o, Max 10.61o

3D RMSE ∆: Min 0.01 m, Mean 0.02 m, Max 0.04 m

3D RMSE ∆φ: Min 1.02o, Mean 0.95o, Max 1.87o

6D RMSE ∆: Min 0.01 m, Mean 0.07 m, Max 0.09 m

6D RMSE ∆φ: Min 1.32o, Mean 2.70o, Max 3.37o

Table 7.1: Localisation error for 10 different poses on the field.

errors for the 3D estimate are around 3.5 cm and 1o, respectively. The algorithm performed
slightly worse for the 6D estimate, with a mean position error of 6.5 cm and a mean orientation
error of 3.4o. This result was expected as higher dimensional estimates have more degrees of
freedom and, thus, pose a higher demand on the quality of the correspondences. Particularly
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(a) (b)

Experiment x y φz ballx bally ∆ ∆φ Eq Err %

(a) MR −1.60 1.22 90.00 − −

3D −1.80 1.23 89.72 − − 0.20 0.28 3 0.03 3.01

±σ ±1.08 ±0.04 ±0.32 ±∞ ±∞

(b) MR −1.60 1.22 90.00 −1.60 −2.20

3D 1.60 1.23 89.69 −1.60 −2.18 0.01 0.31 7 0.04 3.73

±σ ±0.03 ±0.06 ±0.28 ±0.03 ±0.06

3D RMSE ∆: Min 0.01 m, Mean 0.10 m, Max 0.20 m

3D RMSE ∆φ: Min 0.28o, Mean 0.29o, Max 0.31o

Figure 7.6: Localisation experiments with a ball.

in this scenario, position errors can be compensated by rotation errors and vice versa. This
problem can be overcome by weighting position and rotation changes differently in the error
function.

The pose estimate generated by the CIIL algorithm in experiment (i) is less accurate. In
this case no vertical landmarks are visible and only horizontal landmarks are used to establish
correspondences. Thus, the algorithm converges but cannot derive any information from the
image data, that allows for estimating the y coordinate and the orientation correctly. The
generation of a pose estimate failed completely for experiment (k). In this case no field
landmarks are visible and, thus, the CIIL algorithm failed to produce a pose estimate. While
the outcome of this experiment is not surprising, this example shows that the heuristics
applied for establishing correspondences are robust against false matches and that the CIIL
algorithm can successfully detect these situations. The problems identified in experiments
(i) and (k) can successfully be overcome through the fusion of odometric and image data, as
demonstrated in Section 7.4.
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RoboCup 2001 Open Day 2002

Robot Break Hz Match Hz Break Hz Match Hz

#1 3637 2.0 16180 2.9 22087 8.9 35956 8.6

#2 12599 6.9 25061 4.4 22861 9.2 15502 3.7

#3 12551 6.8 24043 4.3 18536 7.5 17648 4.2

#4 14441 7.9 26356 4.7 18848 7.6 30251 7.2

Σ 43228 23.6 91640 16.3 82332 33.2 99357 23.7

Table 7.2: Absolute number and frequency of ball observations during the break and the
match.

7.3.2 AGILO Robot with Ball

In this experiment the use and impact of ball observations made by teammates on the local-
isation accuracy of the CIIL algorithm is explored. It is demonstrated that observations of
teammates can solve ambiguous localisation problems.

An AGILO Robot is placed such that it faces one of the side lines but cannot observe any
of the unique vertical landmarks such as corner flagposts or goals. In the first experiment the
robot can only observe the border field line. In the second experiment the ball is added and
a ball observation performed by another team member is sent to the robot via wireless LAN
and is used by the CIIL algorithm for localisation. The images observed by the localising
robot are displayed in Figure 7.6. In order to verify the correctness of a pose estimate, the
field model is projected into the image and is overlaid in the image.

As before, the CIIL algorithm is initialised with a pose that diverges from the true position
and the true orientation by a Euclidean distance of 30 cm and 15o, respectively. The CIIL
algorithm is run for three iterations and the estimate is recorded. The quantitative results
are shown in Table 7.6.

In experiment (a) the CIIL algorithm estimates the Y coordinate very accurately but fails
to estimate the X coordinate correctly. This is due to the fact that only the border line of the
field is visible and the CIIL algorithm is only able to extract range information between the
robot and the field line from the image. In experiment (b) the CIIL algorithm is also provided
with a rough (Euclidean distance of 20 cm) position estimate of the ball which was observed
by another robot. Due to the additional information the robot is now able to determine its
pose and the ball position very accurately, the robot position error is now only 1 cm and the
ball position error is around 2 cm.

During a match every robot performs ball observations at a mean observation rate of 4
to 8 Hz (see Figure 7.2). Thus, the combined utilisation of image data and ball observations
performed by team members is expected to greatly improve the localisation accuracy, and
it enables the algorithm to solve several localisation problems which would not have been
possible without ball observations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Experiment x y z φx φy φz ∆ ∆φ Eq Err %

(a) MR 0.00 0.00 0.15 0.00 0.00 0.00

6D 0.07 −0.01 0.16 0.01 1.09 −2.46 0.07 3.56 15 0.05 1.53

±σ ±0.05 ±0.08 ±0.09 ±1.98 ±2.63 ±3.22

(b) MR 0.00 0.00 0.15 0.00 0.00 −45.00

6D 0.00 0.10 0.14 −1.15 0.00 −41.26 0.10 3.78 12 0.09 7.34

±σ ±0.08 ±0.09 ±0.10 ±3.07 ±2.47 ±9.78

(c) MR 1.80 0.00 0.15 0.00 0.00 −45.00

6D 1.84 −0.03 0.13 0.83 −1.54 −40.29 0.05 7.08 7 1.53 4.46

±σ ±0.02 ±0.02 ±0.03 ±1.15 ±2.27 ±3.40

(d) MR 1.80 0.00 0.15 0.00 0.00 −90.00

6D 1.76 −0.01 0.17 0.54 0.51 −84.08 0.04 6.97 16 1.13 5.49

±σ ±0.03 ±0.11 ±0.03 ±1.10 ±1.85 ±2.18

6D RMSE ∆: Min 0.03 m, Mean 0.06 m, Max 0.10 m

6D RMSE ∆φ: Min 3.56o, Mean 5.34o, Max 7.08o

Figure 7.7: Localisation experiments with synthetic AIBO images.

7.3.3 AIBO Robot

This experiment demonstrates the applicability of the CIIL algorithm to other robotic plat-
forms, such as the AIBO robot.

Because of its limited onboard computational power and its high dimensional state vector



118 CHAPTER 7. EXPERIMENTAL RESULTS

(at least 6D; more dimensions are required if the states of leg joints are also estimated), an
AIBO robot is a promising candidate that can take full advantage of the real time capability
and high accuracy of the CIIL algorithm.

The images used for the following experiments are generated by the AIBO simulator of
the German Team (Burkhard et al., 2003; Burkhard et al., 2001). They differ from real
images in two manners, they do not contain any noise nor any radial lens distortions, i.e.
κ = 0. For every image the exact pose of the robot is known. For the experiments the
CIIL algorithm is initialised with a pose that diverges from the true position and the true
orientation by a Euclidean distance of 30 cm and 15o, respectively. The CIIL algorithm is run
for three iterations and the estimate is recorded. The images and the quantitative results of
the experiments are shown in Figure 7.7. Subfigures 7.7(e) to 7.7(h) illustrate the search for
correspondences and iterations performed by the CIIL algorithm for experiment (d).

The CIIL algorithm performs well in all four cases. The mean position and orientation
errors for the 6D estimate are around 6.5 cm and 5.34o, respectively. As expected, the
estimates are less accurate when only distant features are visible (see Figure 7.7(a) and 7.7(b))
and are more precise in the presence of close features (see Figure 7.7(c) and 7.7(d)). The
estimate of the covariance matrix is conservative and in all four cases only a small percentage
of the image data is accessed (between 1.5 and 7.3 %).

7.4 Localisation of a Robot in Motion

The state estimates generated by the CIIL algorithm are a result of the fusion of image and
odometric data. This section evaluates the localisation accuracy of a joint estimate that is
based on both types of data. Mean accuracies for robots travelling across the field are found
to be between 12 to 16 cm.

For the experiments, an AGILO Pioneer 1 robot is joysticked across the field for a couple
of minutes and the robot’s pose estimates as well as the robot’s pose determined by the
ground truth camera system are recorded in a log file. This data is then used to compute the
minimum, mean, and maximum error of the state estimates.

Figures 7.8(a) and 7.8(d) depict the robot’s trajectories according to the state estimates
generated by the CIIL algorithm. Subfigures 7.8(b) and 7.8(e) display the robot’s trajectories
that were observed by the ground truth camera system. The joint display of both trajectories
can be found in Figures 7.8(c) and 7.8(f).

It is clearly visible that the trajectories match for most of the time and as such the
localisation accuracy is quite high. The analysis of the log file revealed a mean accuracy
(RMSE) of 16 cm and 12 cm for the first (a-c) and the second experiment (d-f), respectively.
In both cases the minimum error is around 2 cm. The maximum error is 22 cm for the first
and 18 cm for the second experiment. Given the mean localisation accuracy of the ground
truth system which is around 10 cm, it can be assumed that the mean localisation error of
the robot is much smaller than determined by these experiments. Furthermore, it should be
noted that the achieved accuracy is sufficient for the robot soccer scenario.
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Localisation of a robot in motion.

7.5 Localisation of the Ball and Opponent Players

This section evaluates the accuracies with which a robot can detect the dynamic objects, such
as the ball and the opponent players, of the RoboCup scenario. The detection routines are
found to be quite precise for distances up to 2.8 m.

For the experiments an AGILO robot is placed in its own penalty area and a ball or
an opponent player is moved across the field. The position estimates of the ball and the
opponent player generated by the AGILO robot, as well as the filtered trajectories of the
CODT algorithm, are recorded in a log file. Again, this data is used to evaluate the accuracy
of the estimates.

Figure 7.9(a) depicts the ball’s position estimates (dotted line) of the AGILO robot and
the ball’s position (black circles) determined by the ground truth system. Figure 7.9(c) depicts
the observed opponent positions of the AGILO robot (green triangle) and the ground truth
system (black triangle). Figures 7.9(b) and (d) plot the filtered trajectory of the CODT
algorithm for the ball and the opponent robot, together with the ground truth data.

Ball and opponent observations can be performed up to a distance of approximately 7 m.
The observations are quite accurate for distances up to 2.8 m with a maximum error of 0.2
m. The maximum error at 7 m is about 1.5 m. This uncertainty is appropriately represented
in the observations covariance matrix. The uncertainty can be explained with the the fact
that the camera of a robot is fixed parallel to the floor at a very low height of around 30 cm.
The objects’ trajectories as determined with the CODT algorithm reflect the accuracies of
the observations. The trajectories are smooth and accurate for up to a distance of 3 m. It is
noteworthy that noisy observations are detected by the CODT algorithm and are discarded
accordingly.
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(a) (b)

(c) (d)

Figure 7.9: Localisation of (a,b) the ball and (c,d) opponent players.

7.6 CIIL and CODT of four Robots in a RoboCup

Match

This section evaluates the performance of the CIIL and CODT algorithms in real match
situations. The CIIL and the CODT algorithms have successfully been used throughout
several RoboCup events since 1999 and 2001, respectively. This includes tournaments like the
RoboCup World Championship, German Open, and a series of demonstration and friendly
matches. During all events, log files containing the states of the robots were recorded. This
section investigates the log files of two events, i.e. the RoboCup 2001 world championship
and the open day which was held at the Munich University of Technology in 2002.

During the RoboCup 2001 world championship The AGILO RoboCuppers played six
matches with a total time of two hours and four minutes, scored 22 : 6 goals and advanced to
the quarter finals. The RoboCup field was approximately 5 * 10 m large and was surrounded
by a white wall, such that the robots could not escape from the pitch and were not disturbed
by noise or unexpected observations from an undefined exterior. At that time the robots were
equipped with an industrial PC containing a Pentium 200 MMX CPU, 64 MB of RAM and
an off-the-shelf framegrabber expansion card. In this configuration the robots were able to
process a mean of 13 frames per second, i.e. the CIIL and CODT algorithms were both run
at a frequency of 13 Hz.

At the 2002 open day The AGILO RoboCuppers played three matches with a total time of
one hour and 50 minutes and achieved a total score of 11 : 8 goals. The RoboCup field was
approximately 6 * 12 m large. The surrounding walls had completely been removed and were
replaced by a 12.5 cm wide line surrounding the entire field. As a consequence, the robots
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Dist. Own v̄ vmin vmax ω̄ ωmin ωmax Loc. Err. RMSE

Robot (m) (%) (m/s) (deg/s) (#) (%) (m)

RoboCup 2001 in Seattle, Washington, USA

6 Matches, Total Score 22 : 6, Total Time: 02:04:38.418 (7478.418 sec), CIIL and CODT with 13 fps

Break - Total Time: 00:30:34.082 (1834.082 sec)

#1 63.05 99.71 0.15 -1.22 0.74 15.77 -150.58 119.28 18 (0.02) -

#2 188.26 88.87 0.34 -1.44 1.42 33.54 -390.97 244.47 58 (0.06) -

#3 175.93 95.07 0.32 -1.46 1.41 31.94 -425.90 208.18 27 (0.03) -

#4 182.90 99.40 0.36 -1.44 1.40 30.70 -171.44 228.14 30 (0.03) -

Match - Total Time: 01:34:04.336 (5644.336 sec)

#1 668.43 99.83 0.15 -0.96 1.21 7.58 -117.47 183.69 18 (0.02) -

#2 1157.08 76.34 0.20 -0.90 1.02 33.34 -160.56 221.34 92 (0.09) -

#3 1144.68 83.92 0.20 -0.91 1.02 34.72 -165.09 177.79 63 (0.06) -

#4 1024.65 78.87 0.21 -1.08 1.02 33.65 -276.22 166.91 75 (0.09) -

Friendly matches at the open day 2002 of the Munich University of Technology, Bavaria, Germany

3 Matches, Total Score 11 : 8, Total Time: 01:50:41.352 (6641.352 sec), CIIL and CODT with 30 fps

Break - Total Time: 00:41:15.392 (2475.392 sec)

#1 123.45 93.73 0.20 -0.98 0.81 9.78 -210.45 134.25 84 (0.04) 0.14

#2 385.04 70.21 0.17 -1.15 1.39 27.18 -282.57 267.15 1204 (0.62) 0.37

#3 366.62 66.29 0.20 -0.88 1.18 35.65 -194.12 190.04 583 (0.30) 0.26

#4 360.40 84.15 0.26 -0.96 1.42 35.43 -209.09 197.30 497 (0.25) 0.22

Match - Total Time: 01:09:25.960 (4165.96 sec)

#1 424.26 99.47 0.19 -0.98 0.96 7.71 -144.23 189.59 2 (0.00) 0.12

#2 1024.60 77.37 0.11 -0.45 0.93 29.90 -149.22 152.85 2292 (1.15) 0.34

#3 1172.88 67.65 0.17 -0.72 0.95 38.33 -234.49 170.08 1555 (0.78) 0.23

#4 1087.33 65.22 0.18 -0.48 0.97 38.03 -302.52 201.83 921 (0.46) 0.19

Table 7.3: Match statistics of two RoboCup events.

vision system had to be adapted and made more robust towards noise and false perceptions.
In contrast to 2001 the hardware had undergone major changes. The PC has been replaced
by a laptop computer with a Pentium III 900 MHz CPU, 256 MB of RAM and an IEEE 1394
Cardbus interface. In this configuration the robots were able to process all 30 frames per
second that were delivered by the camera, i.e. the CIIL and CODT algorithms were both run
at a frequency of 30 Hz.

Robot #1 (Theodo) is the goal keeper. His job is to protect the goal. In comparison to
his teammates this robot is quite stationary as he usually does not leave the penalty area.
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Robot #2 (Grimoald), robot #3 (Hugibert) and robot #4 (Odilo) are the field players of the
team. Role and action selection is performed dynamically and completely autonomously by
each robot (see (Buck, Beetz, and Schmitt, 2001; Buck, Schmitt, and Beetz, 2002) for further
details). At any one time, two robots choose the role as defender and one robot takes the role
as striker. At the game start Hugibert’s and Grimoald’s starting positions are close to the
left and right corner of the penalty area. Odilo’s starting position is either near the centre
circle or at the kick-off point. Due to these starting positions Odilo finds itself more often in
the role of the striker, than Hugibert or Grimoald, and as a consequence Odilo travels longer
distances across the field than his teammates.

Table 7.3 characterises both sets of log files by providing some fundamental statistics. For
each set of log files the statistics are subdivided into the two main stages of a match, break
and match. Break statistics are collected during periods of time where the referee has stopped
the match due to a foul or a goal. Their figures may be a result of manual human interference
and interaction with the robots, such as a human entering the field and pushing a robot back
to its starting position. A running match is characterised by the match statistics. These are
collected during a period of time with complete autonomy of the robots and with almost no
human interference.

The first column of Table 7.3 contains the robot number. The second column displays
the total distance a robot has travelled during the match and break intervals of all log files.
The percentage of time spent in the own half (Own %) is displayed in column three. Column
four and five contain the mean, minimum and maximum translational (v) and rotational
(ω) velocity of the robots, respectively. The localisation accuracy is assessed in column six.
It contains the number of images the CIIL algorithm did not converge for and had to be
reinitialised and the mean localisation accuracy. Unfortunately the mean localisation accuracy
can only be assessed for the second set of log files, as the ground truth camera system was
not available in 2001.

7.6.1 Self-Localisation

This section investigates the capabilities of the CIIL algorithm during real match situations.
It shows that the accuracy of the self-localisation in real match situations is in the same
order of magnitude as during the experiments performed in Section 7.4. Furthermore it is
demonstrated that the self-localisation is quite robust towards a set of wrong intrinsic camera
parameters and noise inflicted by a wrong colour classifier.

The analysis of the statistics reveals that the CIIL algorithm worked very well during
RoboCup 2001, while the field was surrounded by a white wall. This is not amazing, since
the walls are visible all across the field and can be used for localisation from almost any
position on the field. The removal of the wall in 2002 made the CIIL algorithm fail more
often by one and two orders of magnitude. This result was expected, since the field lines
that replaced the walls are properly visible only from within a distance of up to two meters.
Consequently, they cannot be used for localisation as often as the walls were used in previous
years. Furthermore, the spectators surrounding the field introduce more noise and can lead
to the establishment of false correspondences. Nevertheless, the localisation worked very well
for the goalkeeper (#1) and Odilo (#4). Their mean localisation accuracies are estimated to
be 12 and 19 cm, respectively. This is not astonishing for the goalkeeper, since it is quite
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Self-Localisation Ball Observations Opponent Observations

Robot RMSE (m) std.dev. (m) RMSE (m) std.dev. (m) RMSE (m) std.dev. (m)

1. Match (break / match)

#1 0.14 / 0.12 0.09 / 0.07 0.24 / 0.31 0.25 / 0.23 0.35 / 0.38 0.27 / 0.26

#2 0.31 / 0.33 0.13 / 0.15 0.46 / 0.38 0.39 / 0.25 0.52 / 0.50 0.29 / 0.26

#3 0.30 / 0.24 0.12 / 0.11 0.36 / 0.24 0.24 / 0.22 0.58 / 0.46 0.25 / 0.26

#4 0.21 / 0.19 0.06 / 0.09 0.43 / 0.25 0.30 / 0.23 0.41 / 0.37 0.27 / 0.25

2. Match (break / match)

#1 0.15 / 0.11 0.11 / 0.06 0.28 / 0.33 0.20 / 0.22 0.37 / 0.42 0.23 / 0.26

#2 0.44 / 0.33 0.29 / 0.19 0.49 / 0.35 0.21 / 0.25 0.56 / 0.48 0.24 / 0.27

#3 0.25 / 0.21 0.11 / 0.10 0.44 / 0.28 0.24 / 0.24 0.54 / 0.40 0.26 / 0.24

#4 0.25 / 0.20 0.08 / 0.10 0.34 / 0.25 0.21 / 0.26 0.36 / 0.35 0.23 / 0.24

3. Match (break / match)

#1 0.13 / 0.12 0.10 / 0.09 0.23 / 0.27 0.19 / 0.22 0.41 / 0.40 0.25 / 0.26

#2 0.36 / 0.37 0.21 / 0.21 0.45 / 0.34 0.26 / 0.26 0.56 / 0.51 0.27 / 0.26

#3 0.24 / 0.23 0.11 / 0.11 0.44 / 0.26 0.18 / 0.22 0.50 / 0.44 0.25 / 0.25

#4 0.21 / 0.19 0.10 / 0.10 0.28 / 0.18 0.21 / 0.20 0.42 / 0.38 0.23 / 0.25

Mean of all matches (break / match)

#1 0.14 / 0.12 0.10 / 0.08 0.25 / 0.29 0.21 / 0.22 0.38 / 0.40 0.25 / 0.26

#2 0.37 / 0.34 0.21 / 0.18 0.46 / 0.36 0.32 / 0.25 0.54 / 0.50 0.27 / 0.26

#3 0.26 / 0.23 0.11 / 0.11 0.43 / 0.26 0.23 / 0.23 0.55 / 0.44 0.26 / 0.25

#4 0.22 / 0.19 0.08 / 0.10 0.33 / 0.21 0.25 / 0.22 0.40 / 0.37 0.25 / 0.25

Table 7.4: Accuracies achieved for self-, ball-, and opponent localisation.

stationary and can observe the penalty area lines most of the time very well and use them
for precise localisation. The accuracy achieved by Odilo is quite remarkable since it travelled
long distances across the field and scored several goals. The inferior accuracies of Grimoald
(#2) and Hugibert (#3) lead to further investigations and it was found, that both robots were
using a set of wrong camera parameters. Furthermore, Grimoald (#2) was equipped with
a suboptimal colour lookup table, and as such failed to produce good classification results
for a wide range of images. As a consequence, the CIIL algorithm failed more often and
the achieved accuracy was less good than for the other two robots. However, the achieved
accuracies are still quite good and prove that the CIIL algorithm is robust up to a certain
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Ball track Opponent tracks

Corr. Incorr. RMSE std. dev. Corr. Incorr. RMSE std. dev.

Robot (%) (%) (m) (m) (%) (%) (m) (m)

1. Match (break / match)

#1 7 /21 9 / 8 0.28 /0.32 0.28 /0.23 24 /25 14 /13 0.50 /0.43 0.30 /0.26

#2 47 /17 22 /11 0.47 /0.37 0.40 /0.26 32 /21 13 /20 0.54 /0.50 0.29 /0.24

#3 5 /18 23 /14 0.32 /0.23 0.19 /0.23 27 /27 19 /19 0.55 /0.45 0.26 /0.25

#4 28 /31 15 / 9 0.46 /0.27 0.32 /0.24 29 /34 34 /13 0.47 /0.38 0.28 /0.24

Coop. 38 /46 17 /10 0.21 /0.23 0.25 /0.21 46 /57 12 /10 0.41 /0.35 0.30 /0.19

2. Match (break / match)

#1 13 /12 12 / 7 0.31 /0.33 0.22 /0.21 23 /20 13 / 8 0.42 /0.46 0.26 /0.25

#2 32 /16 19 /15 0.49 /0.31 0.22 /0.25 18 /19 14 /12 0.60 /0.46 0.22 /0.27

#3 50 /20 23 / 8 0.46 /0.32 0.24 /0.26 34 /28 15 /16 0.52 /0.40 0.25 /0.24

#4 21 /28 12 /13 0.35 /0.29 0.21 /0.27 30 /31 14 /11 0.43 /0.36 0.24 /0.23

Coop. 49 /49 14 /13 0.40 /0.23 0.25 /0.22 42 /50 11 / 9 0.39 /0.34 0.28 /0.21

3. Match (break / match)

#1 20 /24 12 / 9 0.23 /0.28 0.19 /0.22 19 /20 9 /11 0.47 /0.46 0.26 /0.25

#2 27 /10 39 / 9 0.44 /0.37 0.24 /0.26 11 /16 11 /11 0.56 /0.50 0.25 /0.25

#3 26 /18 29 /12 0.45 /0.27 0.17 /0.22 18 /21 16 /13 0.50 /0.44 0.24 /0.25

#4 67 /34 5 /17 0.26 /0.22 0.20 /0.22 38 /24 6 / 9 0.41 /0.39 0.23 /0.25

Coop. 53 /57 12 /16 0.26 /0.19 0.21 /0.18 32 /46 7 / 8 0.37 /0.38 0.24 /0.21

Mean of all matches (break / match)

Coop. 46 /51 14 /13 0.29 /0.21 0.23 /0.20 40 /51 10 / 9 0.39 /0.35 0.27 /0.20

Table 7.5: Accuracies and coverage achieved by the CODT algorithm for ball and opponent
tracking.

degree of noise and the use of suboptimal camera parameters. The addition of a suboptimal
colour classifier causes the CIIL algorithm to be unstable and fail more often by two orders
of magnitude.
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7.6.2 Cooperative Object Detection and Tracking

This section evaluates the capabilities of the CODT algorithm. It demonstrates that cooper-
ative state estimation increases both, the accuracy and the completeness of objects tracks.

A detailed analysis of the CODT algorithm is only performed for the 2002 matches. Ta-
ble 7.4 summarises the input data used to test the CODT algorithm. This data was acquired
during three matches. The left, centre and right column display the accuracies (RMSE) and
the standard deviation of the self-localisation, of the ball observations and of the opponent
observations of the individual robots. Every entry consists of an appropriate value for break
(left) and match periods (right). During a break the match is intermitted and the human
team members enter the field and repair robots and drag them to their starting position,
etc. This additional noise explains why the accuracies for all three kinds of observations are
worse during the break than during the match. It is clearly obvious that self-localisation
errors have an impact on errors for ball and opponent observations. As a rule the errors for
opponent observations are usually greater than the errors for ball observations. This is due
to the unique circular shape of a ball. Arbitrary robot shapes hamper the opponent detection
routines and as such add an indirect level of noise. Unfortunately the influence of the wrong
intrinsic camera parameters of Grimoald and Hugibert on the observations is clearly visible.

The results of the CODT algorithm for all three matches are displayed in Table 7.5. The
column ball and opponent tracks reveal the achieved statistics for each object class. Every
column displays the percentage of correct tracks, the percentage of incorrect tracks, the track
accuracies, and the standard deviation. Again, every entry consists of an appropriate value for
break (left) and match periods (right). For every match, the statistics for individual as well
as for cooperative perceptions are given. In order to generate the statistics for the individual
observations the CODT was run four times only using the observations performed by one
robot.

Cooperative perception increases both the percentage of the correctly determined tracks
and the accuracy of these tracks. During the match, between 46 to 57 % of the ball’s trajectory
was detected with an accuracy of 0.19 to 0.23 m. This is a good result, since the ball is often
occluded by robots, lifted up by the referee and moved to a new location or shot off the pitch
by one of the robots. Opponent tracking worked equivalently well. In average, 51 % of the
opponent tracks were determined correctly by the CODT algorithm. The number of false
tracks was reduced to an average of 9 % and the mean track accuracy was 0.35 m. This is
also a good result, since broken robots are regularly moved off the field and repaired outside.
Furthermore, the opponent goal keeper is usually only observed during an attack.

7.6.3 Detailed Analysis of Match Scenes

This section performs a detailed analysis of scenes from two matches played in 2001 and
2002. It demonstrates how observations from different teammates are integrated into tracks.
Though the robots perform more false positive observations in 2002 than in 2001, after the
removal of the wall, the quality of the trajectories is only slightly decreased.

Scene from a match in 2001 with walls surrounding the field

Figure 7.10 depicts a two minute scene from the second half of a match against The Ulm
Sparrows in 2001. It shows the sixth goal of The AGILO RoboCuppers. The final score of this
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match was 7:0. Figures 7.10(a) and (b) show the trajectories of the AGILO robots. Ball and
opponent observations performed by the AGILO players are displayed in Figures 7.10(c,d)
and (e,f), respectively. The tracks generated by the CODT algorithm are presented in Fig-
ures 7.10(g,h). Black tracks indicate the trajectories of opponent robots and red tracks depict
the trajectory of the ball. It is interesting to note how the observations performed by differ-
ent robots are integrated into the tracks. Several false observations are correctly identified
by the CODT algorithm and are discarded. The accumulation of two opponent robots and
one AGILO player at the bottom of Figure 7.10(g) was successfully resolved. Figure 7.10(g)
reveals relatively long tracks. The track on the left comes from the same opponent player.
It is interrupted at the top left, since the opponent player was not observed by any AGILO
player for about 10 s. The tracks on the right are originated from two other opponent players.
It is particularly interesting to note that both tracks were successfully handed over from one
observing AGILO robot to another. The ball was observed most of the time and its trajec-
tory was resolved correctly. All tracks were qualitatively verified with a video taken from the
match.

Scene from a match in 2002 without walls surrounding the field

Figure 7.11 depicts the last two minutes of the second match against The Ulm Sparrows in
2002. It shows the final attack of The AGILO RoboCuppers. Odilo tries to score but un-
fortunately he looses control of the ball in the last seconds and the match ends with a final
score of 4:3. Figure 7.11(a) shows the trajectories of the AGILO robots. Ball and opponent
observations performed by the AGILO players are displayed in Figures 7.11(b) and (c), respec-
tively. The tracks generated by the CODT algorithm are presented in Figures 7.11(d). Black
tracks indicate the trajectories of opponent robots and red tracks depict the trajectory of the
ball. Figures 7.11(e) to (h) depict the same match scene without cooperative perception only
based on the perceptions of the individual robots. Figure 7.11(e) is only based on Theodo’s
perceptions, Figure 7.11(f) on Grimoald’s, Figure 7.11(g) on Hugibert’s and Figure 7.11(h)
on Odilo’s ball and opponent observations. This example demonstrates clearly that the game
states, estimated on the basis of the individual perceptions only, are erroneous and less com-
plete. Theodo, the goal keeper hallucinates some tracks in the opponent’s half and the field
players only observe small parts of the opponent and ball trajectories. This is particularly
obstructive since the coordination of the team and the behaviour of the individual robots is
based on the ball’s position.

7.7 Conclusions

This chapter has investigated the capabilities of the CIIL and CODT algorithms in a variety of
experiments, including several matches performed under ordinary RoboCup match conditions.
Both algorithms can run at frame rate and achieve estimates with good accuracy. This was
proven through groundtruth data provided by a ceiling camera system.

It was demonstrated that cooperative state estimation enables robots to determine their
poses and the positions of further dynamic objects more accurately, to integrate individ-
ual observations into one common view of the world, to track temporarily occluded objects
successfully, and to obtain a more complete view of the surrounding environment.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.10: (a,b) Trajectories of The AGILO RoboCuppers, (c,d) ball observations of The
AGILO RoboCuppers, (d,e) opponent observations of The AGILO RoboCuppers, (f,g) esti-
mated trajectories of the ball and The Ulm Sparrows.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.11: (a) Trajectories of The AGILO RoboCuppers, (b) ball observations of The AG-
ILO RoboCuppers, (c) opponent observations of The AGILO RoboCuppers, (d) cooperatively
estimated trajectories of the ball and The Ulm Sparrows, (e)-(f) individually estimated tra-
jectories.



Chapter 8

Conclusions

In this thesis the computational problem of perceiving states of complex dynamic environ-
ments with a set of mobile, vision-based, and cooperating sensor systems has been inves-
tigated. The results of this investigation are a suite of novel and powerful techniques and
an integrated system that can perform this perception task both accurately and reliably. To
account for restricted views of individual sensors, the unreliability and inaccuracy of the data
provided by the sensors, and the uncertainty about the evolution of the environment the
problem has been solved as a complex probabilistic state estimation problem.

To develop and evaluate these techniques autonomous robot soccer was chosen as primary
application scenario. Robot soccer provides a challenging and realistic testbed for coopera-
tive state estimation in complex and dynamically changing environments. These challenges
include: (1) a competitive, highly dynamic, and fast changing environment, (2) a changing
number of opponent robots with unknown identity, (3) the use of an inaccurate and noisy
vision sensors and (4) independently moving sensors with inaccurately known positions.

Thus, the robots of The AGILO RoboCuppers were equipped with standard video cameras,
some limited communication capabilities, and with the developed state estimation system to
provide them with accurate and reliable information about the situation on the soccer field.
The state estimation system including the techniques that it has applied were thoroughly
tested and evaluated in the course of four robot soccer world championships. The presented
results showed, that (1) purely image-based probabilistic estimation of complex game states is
feasible in real time even in complex and fast changing environments, and that (2) cooperative
perception increases both the accuracy and the completeness of the estimated states.

The research described in this thesis makes three key scientific and technical contributions
to the fields of vision-based perception and autonomous robot control:

1. Estimation of Large Scale and Complex States - The approach to state estimation pre-
sented in this thesis is able to solve large scale and complex state estimation problems in
the robot soccer domain. The estimated state includes, the pose of the own robots, the
position of the ball, and the positions of the opponent players. The overall state consists
of a vector with more than 60 parameters (see Chapter 1). In order to reduce the over-
all complexity of the estimation problem, it is decomposed into several loosely coupled
subproblems. Each subproblem is solved by a task specific state estimator employing
a specific state estimation technique (see Chapters 3 and 4). The state estimators in-
teract in order to derive more accurate and complete game state estimates. This is

129
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made possible by a compact and uniform representation of uncertainties, consisting of
a mean value and a covariance matrix, that can concisely be communicated between
and easily be processed by the state estimation algorithms. This approach allows a
team of robots to make use of all available information and to perform vision-based
self-localisation, to track the ball, and to track the opponent robots at a frame rate of
30 Hz with off-the-shelf computing hardware and sensory equipment.

2. Vision-based Self-Localisation, Ball- and, Opponent-Tracking - A fast and accurate al-
gorithm for model driven vision-based self- and ball-localisation is presented (see Chap-
ter 5). The proposed algorithm is capable of estimating the pose of a robot in 3D (2D
position and 1D orientation) or 6D (3D position and 3D orientation) and can be em-
ployed on various robotic platforms. Fast response times are achieved through the use
of a known environment model consisting of curve features, an accurate and universal
model of an image sensor, and an extremely efficient feature projection and extraction
process. Per image less than 10% of the pixels are accessed and mean position and
orientation accuracies of less than 10 cm and 3o are achieved, respectively. A particular
feature of this algorithm is its capability to uniquely solve ambiguous localisation prob-
lems through the use of teammate observations of dynamic objects with known shapes.
Furthermore, an efficient algorithm for vision-based object detection and cooperative
tracking is presented (see Chapter 6). This algorithm is especially suited for mobile sen-
sors with uncertain position. The observations of dynamic objects with unknown shape
performed by all members of the robot team are integrated into one single view of the
world. In particular, it is demonstrated that this enables a team to track temporarily
occluded dynamic objects and to enlarge the common field of view.

3. Cooperative Perception Enhances the State Estimates - It is demonstrated that cooper-
ative perception enhances the accuracy, completeness and reliability of the estimated
states. This evidence is derived from a series of real world experiments, with a physical
team of robots in real match situations. Using ground truth data, provided by an over-
head camera system it is shown that cooperative state estimation increases the accuracy
as well as the coverage of ball and opponent tracks both substantially and significantly
(see Chapter 7). The mean accuracies for cooperative ball and opponent tracking are
0.21 and 0.35 m, respectively. Cooperative ball and opponent tracking recovered more
the 50 % of the balls and all opponent tracks with the standard control programme for
RoboCup robots. It is expected that active observation routines would further enhance
the achieved results.
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