
A Framework

for Dynamically Adaptable

Augmented Reality Systems

Thomas Reicher

Institut für Informatik

Technische Universität München

Institut für Informatik

der Technischen Universität München
c c c cccc ccc ccc ccc

c c cc

A Framework for Dynamically
Adaptable Augmented Reality Systems

Thomas Reicher

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Christoph Zenger

Prüfer der Dissertation:

1. Univ.-Prof. Bernd Brügge, Ph.D.

2. Univ.-Prof. Gudrun J. Klinker, Ph.D.

3. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

Die Dissertation wurde am 27.11.2003 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 16.04.2004 angenommen.

ii

Abstract

In this dissertation I present a software framework for adaptable Augmented Real-
ity systems in intelligent environments: the Distributed Wearable Augmented Reality
Framework (DWARF). The framework is a reusable basis for the development of Aug-
mented Reality applications and gives developers a system structure to customize
existing or develop new components.

Augmented Reality is a human-computer interaction paradigm offering users new
possibilities to interact with their environment. By tracking the position and viewing
direction of the user and of real world objects in the environment, real world objects
can be augmented with virtual objects. The most prominent example is the overlay
of real world objects with computer graphics in a head-mounted display.

DWARF models Augmented Reality applications in four abstraction layers: ap-
plication layer, inter-application layer, solution domain layer, and architectural style
layer.

For the architectural style layer, I specify a contract-based peer-to-peer style. A
system is a configuration of mutually interdependent distributed services. The con-
nections between services are established by an active middleware based on an abstract
service specification. Existing solutions for Augmented Reality are usually designed as
monolithic or client/ server systems. DWARF uses an extension of component-oriented
software engineering. Components on the user’s computer and in the environment are
both used as building blocks for Augmented Reality systems. Further on, I extend
the component-based system approach to a service-based approach. An application is
not built from instances of components, but from a configuration of services available
on the user’s computer and in the environment. An active middleware enables the
dynamic adaptation of the system to changes in the environment by a reconfiguration
of the system.

For the solution domain layer, I present an abstract reference architecture and a
system of patterns for Augmented Reality systems. The foundation for them is a
broad analysis of existing Augmented Reality systems.

Finally, as a case study for the applicability of the framework, I present the sub
framework M3ARF for mobile maintenance systems and a navigation application as
part of such a mobile Augmented Reality maintenance system, DWARF Pathfinder.
This case study covers the application layer, the inter-application layer, and the solu-
tion domain layer.

iii

Kurzfassung

Diese Dissertation stellt ein Softwaregerüst für anpassbare Systeme der Erweiterten
Realität in intelligenten Umgebungen vor: das Distributed Wearable Augmented Re-
ality Framework (DWARF). Dieses Framework ist eine wieder verwendbare Basis zur
Entwicklung von Anwendungen der Erweiterten Realität und gibt Entwicklern ein
Gerüst vor, um existierende Komponenten anzupassen oder eigene hinzuzufügen.

Erweiterte Realität (Augmented Reality) ist ein Interaktionsparadigma, das Be-
nutzern neue Möglichkeiten zur Interaktion mit ihrer Umgebung ermöglicht. Durch
das Verfolgen von Position und Blickrichtung der Benutzer und realer Objekte in
der Umgebung, kann die Welt der realen Objekte durch virtuelle Objekte erweitert
werden. Das bekannteste Beispiel ist die Überlagerung von realen Objekten und Com-
putergrafik in einer Datenbrille (Head-mounted Display).

DWARF beschreibt Anwendungen der Erweiterten Realität auf vier Abstraktions-
schichten: Applikationsschicht, Interapplikationsschicht, Lösungsraumschicht und die
Schicht des Architekturstils.

Für die Schicht des Architekturstils schlage ich einen vertragsbasierten Peer-to-
Peer-Architekturstil vor. Ein System besteht aus einer Konfiguration von gegenseitig
abhängigen verteilten Diensten. Der Aufbau von Verbindungen zwischen Diensten er-
folgt durch eine aktive Middleware, die auf der Basis von Dienstbeschreibungen die
Verknüpfungen herstellt. Bisherige Lösungen für Erweiterte Realitätssysteme sind
meist entweder monolithisch oder als Client/Server-System aufgebaut. DWARF ver-
wendet eine Erweiterung der komponentenorientierten Softwareentwicklung. Kom-
ponenten auf dem Anwenderrechner und in der Umgebung werden gleichberechtigt
als Systembausteine verwendet. Zudem erweitere ich den komponentenorientierten
Ansatz zu einem dienstorientierten Ansatz. Eine Anwendung besteht nicht aus In-
stanzen von Komponenten, sondern aus einer Konfiguration von Diensten auf dem
Anwenderrechner und Diensten in der Umgebung der Anwenders. Eine aktive Middle-
ware ermöglicht die dynamische Anpassung an Änderungen in der Umgebung durch
eine Umkonfiguration des Systems.

Für die Lösungsraumschicht gebe ich eine abstrakte Referenzarchitektur und ein
System von Entwurfsmustern für Systeme der Erweiterten Realität an. Grundlage ist
eine umfassende Analyse von bestehenden Systemen.

Schließlich gebe ich als Fallstudie für die Anwendbarkeit des Frameworks das Teil-
framework M3ARF für mobile Wartungssysteme und eine darauf aufbauende Navi-

v

gationsanwendung als Teil eines solchen mobilen Wartungssystems an, DWARF Path-
finder. Diese Fallstudie umfasst die Applikationsschicht, die Interapplikationsschicht
und die Lösungsraumschicht.

vi

Preface

The history of the DWARF project The starting point of developing an Augmented
Reality system at the Technische Universität München was the course “Erweiterte
Realität: Bildbasierte Modellierung und Tragbare Computer”. It was part of the 1999
summer school organized by the Technische Universität München and the Friedrichs-
Alexander Universität Erlangen-Nürnberg. Prof. Bernd Brügge and Prof. Gudrun
Klinker had the vision that software engineering and Augmented Reality would have
a stimulating influence on each other.

There, the idea was born to develop an own Augmented Reality system based on
modern software engineering concepts. The project name was DWARF for Distributed
Wearable Augmented Reality Framework.

The DWARF project started in earnest in spring 2000 and resulted in the first
DWARF application, DWARF Pathfinder. It was demonstrated successfully in fall
2000. After that, the DWARF framework became the basis for several other Aug-
mented Reality student projects at the Technische Universität.

But now DWARF has become a complex framework. It is the result of apply-
ing software engineering to develop a reusable framework for adaptable mobile Aug-
mented Reality systems in ubiquitous computing environments. Since the first version
of DWARF, a lot of development work and improvement has beeb done by several
people on each of the different layers of the framework. There are several remaining
research issues which are theses of their own. However, the basic concept of DWARF as
distributed service-based system is still the same, and has proven valid for Augmented
Reality system design.

Acknowledgements I would like to thank all people that supported me, and apologize
to all which I had not enough time for.

The people I want to thank first are the original members of the DWARF team
(the “seven dwarfs”): Martin Bauer, Asa MacWilliams, Florian Michahelles, Stefan
Riß, Christian Sandor, Martin Wagner, and Bernhard Zaun. Without their efforts
and talent, DWARF never would have been as successful as it appears to be now.
The collaboration with them in the DWARF team has always been very enjoyable. In
particular I want to thank Asa, who is the one who shares my interests and visions in
respect to software architectures for Augmented Reality.

vii

Next, I want to thank Prof. Bernd Brügge and Prof. Gudrun Klinker who had the
initial idea to implement a mobile Augmented Reality system as part of an intelligent
building. Their concepts for intelligent buildings developed within the OWL project at
the Carnegie Mellon University, Pittsburgh and the Technische Universität München,
and the vision of Augmented-Reality-ready buildings, developed into the idea of a com-
pletely distributed peer-to-peer Augmented Reality system. This concept has shown
to be very flexible and open for future enhancements.

For the reading and the many valuable comments on previous versions of this work,
I want to thank Prof. Bernd Brügge, Prof. Gudrun Klinker, and the former dwarfs
and now colleagues Asa, the two Martins, and Christian.

I want to thank all my friends and my family who encouraged and supported me
during the last years. There was not much time for them for too long.

And finally, I want to thank my two little women Gabi and Luisa for their endless
patience with me during the creation of my dissertation. No one has supported me
more on my way than they did. Thank you!

viii

Overview

1 Introduction . 1

An introduction into the research area and the technical problem, the identifi-
cation of four abstraction layers, goals, hypotheses, approach, and contributions
of this dissertation.

2 Exploration of the Design Space. 19

A motivating scenario, design space analysis, requirements analysis, design
goals, and related work.

3 Reference Architecture and Design Patterns for Augmented Reality. 47

A reference architecture and design patterns for Augmented Reality systems.

4 The DWARF Contract-based Peer-to-Peer Architectural Style 73

A contract-based peer-to-peer architectural style, a supporting middleware, and
a graphical notation for distributed AR systems.

5 A Case Study for the DWARF Framework . 119

The M3ARF sub framework of DWARF for mobile AR maintenance systems
and the DWARF Pathfinder application.

6 Conclusion . 145

Results and future work.

A Design Patterns for Augmented Reality Systems . 151

Architectural Patterns for the Application, Interaction, Presentation, Tracking,
Context, and World Model subsystems.

B Details on the Pathfinder Services . 165

Reference documentation for DWARF Services used in Pathfinder: Pathfinder
Application, CAP Router, Bluetooth Communication Service, Taskflow Engine,
Tracking Manager, Optical Tracker, User Interface Engine

ix

x

Contents

1 Introduction 1
1.1 What is Augmented Reality? . 2
1.2 Augmented Reality and Contributing Research Fields 4
1.3 Enabling Technologies . 5
1.4 Goals of this Dissertation . 7
1.5 Hypothesis . 9
1.6 Approach . 9
1.7 Software Abstraction Layers . 10

1.7.1 Architecture Layers . 10
1.7.2 Framework Layers . 12
1.7.3 The DWARF Framework . 12

1.8 Contributions of this Dissertation . 15
1.9 Outline . 17

2 Exploration of the Design Space. 19
2.1 Maintenance of Complex Systems . 19
2.2 The Design Space for Augmented Reality Systems 23

2.2.1 User Device . 23
2.2.2 Device Mobility . 24
2.2.3 Network Access . 25
2.2.4 Component Coupling . 26
2.2.5 Location Awareness . 27
2.2.6 User Interface . 27

2.3 Non-functional Requirements . 28
2.4 Design Goals . 32
2.5 Related Work . 33

2.5.1 Augmented Reality Systems . 34
2.5.2 Wearable Computing Systems . 42
2.5.3 Ubiquitous Computing Systems 44

2.6 Conclusion . 46

xi

Contents

3 Reference Architecture and Design Patterns for Augmented Reality. 47
3.1 An Augmented Reality Reference Model 49

3.1.1 Overview . 51
3.1.2 Application Subsystem . 53
3.1.3 Interaction Subsystem . 54
3.1.4 Presentation Subsystem . 54
3.1.5 Tracking Subsystem . 58
3.1.6 Context Subsystem . 60
3.1.7 World Model Subsystem . 60
3.1.8 Mapping of the ARVIKA System onto the Reference Architecture 62

3.2 Architectural Patterns for Augmented Reality Systems 66
3.2.1 A Catalogue of Patterns for Augmented Reality Systems 66
3.2.2 A Scheme for the Description of Patterns 68
3.2.3 A System of Patterns . 70

3.3 Conclusion . 72

4 The DWARF Contract-based Peer-to-Peer Architectural Style 73
4.1 A Contract-based Peer-to-Peer Architectural Style 74
4.2 The DWARF Peer-to-Peer Middleware 80

4.2.1 Use Cases . 80
4.2.2 Functional Requirements . 86
4.2.3 Non-functional Requirements . 88
4.2.4 Object Models . 89
4.2.5 System Design . 95
4.2.6 Hardware/ Software Mapping . 107
4.2.7 Persistent Data Management . 108

4.3 A Graphical Notation for DWARF Systems 112
4.3.1 DWARF Service Modelling . 112
4.3.2 System Modelling . 114

4.4 An Example for a Customized DWARF Service 116
4.5 Conclusion . 117

5 A Case Study for the DWARF Framework 119
5.1 The Pathfinder Scenario . 120
5.2 The Minimal Mobile Maintenance Augmented Reality Framework . . . 122

5.2.1 DWARF Services for M3ARF . 123
5.2.2 Classifying the Services into the DWARF Framework 125
5.2.3 Mapping M3ARF to the Reference Architecture 125

5.3 The Pathfinder DWARF Services . 129
5.3.1 The Connection View of Pathfinder 129
5.3.2 Pathfinder Application . 129
5.3.3 Taskflow Engine . 132

xii

Contents

5.3.4 User Interface Engine . 134
5.3.5 Tracking Manager and Position Trackers 136
5.3.6 Optical Feature Tracker . 138
5.3.7 World Model . 139

5.4 Service Deployment . 141
5.5 Conclusion . 144

6 Conclusion 145

A Design Patterns for Augmented Reality Systems 151

B Details on the Pathfinder Services 165
B.1 Pathfinder Application . 165
B.2 Bluetooth Communication Service . 166
B.3 CAP Router . 167
B.4 Taskflow Engine . 167
B.5 User Interface Engine . 176
B.6 Tracking Manager and Position Trackers 184
B.7 Optical Tracker . 192
B.8 World Model . 196

Bibliography 203

Acronyms 217

Index 219

xiii

Contents

xiv

List of Figures

1.1 Example for Augmented Reality . 2
1.2 Head-Mounted Displays . 3
1.3 Informal Model of Augmented Reality 4
1.4 Network types . 6
1.5 Relations between architecture types and between framework types . . . 11
1.6 The DWARF framework . 14

2.1 User in a ubiquitous computing environment 22
2.2 Design space for Augmented Reality systems 31
2.3 Architecture of the ARVIKA stationary solution. 35
2.4 Deployment of the ARVIKA web-based system 36
2.5 STAR system architecture . 39
2.6 UbiCom system . 40
2.7 Hardware architecture of the UbiCom mobile terminal 41
2.8 In the traditional deployment hardware and software are separated. . . . 43

3.1 Chapter solution domain layer . 47
3.2 MVC pattern plus Augmented Reality specific extensions 48
3.3 Subsystem decomposition of the reference model. 50
3.4 Abstract Augmented Reality architecture 52
3.5 Application subsystem . 53
3.6 Interaction subsystem . 55
3.7 Presentation pipeline . 56
3.8 Presentation subsystem . 57
3.9 Tracking subsystem . 59
3.10 Context subsystem . 61
3.11 World model subsystem . 63
3.12 ARVIKA architecture mapped onto reference architecture 65
3.13 System of AR patterns . 71

4.1 Architectural style layer chapter . 73
4.2 Concept of contract-based peer-to-peer style 75

xv

List of Figures

4.3 Connection layers . 76
4.4 Peer-to-Peer style . 77
4.5 Peer-to-Peer architectural style model 78
4.6 Use cases for the DWARF peer-to-peer middleware 81
4.7 Object model of a Service with two Needs and one Ability 90
4.8 Example dependency graph between Services 91
4.9 Model of Service, Need, Ability, and Connector Descriptions 92
4.10 Communication resources . 93
4.11 DWARF Connectors . 93
4.12 Communication between Services using Connectors 94
4.13 Subsystem decomposition of the DWARF middleware 96
4.14 Communication subsystem . 98
4.15 Location subsystem . 99
4.16 Service Manager subsystem . 101
4.17 Display service/middleware interaction 103
4.18 Tracker service/middleware interaction 104
4.19 Dynamic model of a DWARF Service (UML state diagram). 105
4.20 Setting up the Service dependency graph 106
4.21 DWARF subsystems deployment . 111
4.22 Model of an Optical Tracker Service in UML 2.0 113
4.23 Compact model of an Optical Tracker Service in UML 2.0 113
4.24 Model of an Optical Tracker Service with DWARF UML extensions . . 114
4.25 Compact model of an Optical Tracker Service with DWARF UML ex-

tensions . 115
4.26 The integration of the Optical Tracker Service via Needs and Abilities . 115
4.27 Customized DWARF Services: Example Optical Tracker Service 116
4.28 Simplified Service creation . 117

5.1 The abstraction layers of the case study 119
5.2 The use cases of the Pathfinder application 122
5.3 The Pathfinder DWARF Services . 127
5.4 The Pathfinder architecture . 128
5.5 Pathfinder connection view . 130
5.6 General idea of the Taskflow Engine Service 132
5.7 Several I/O channels for multi-modal interfaces 134
5.8 Activity diagram of data cooking of the Tracking Manager 138
5.9 Basic concept of the Optical Tracker Service 140
5.10 Prototype wearable computer . 142
5.11 Service deployment . 143

B.1 TaskflowEngine and -Editor boundaries 168
B.2 MVC architecture of the Taskflow Engine enhanced by a facade 174

xvi

List of Figures

B.3 Taskflow Engine Service specification . 175
B.4 Use cases of the User Interface Engine 177
B.5 Conceptual view of the User Interface Engine 181
B.6 User Interface Engine Service specification. 183
B.7 Use cases of the Tracking Manager. 186
B.8 Architecture of the Tracking subsystem 189
B.9 Tracking Manager and the Position Tracker Service specifications 191
B.10 Use case of the Optical Tracker Service. 192
B.11 Optical Tracking Service specification 195
B.12 Use cases describing the World Model’s behaviour 197
B.13 Subsystem Decomposition of the World Model Service 200
B.14 World Model Service specification . 201

xvii

xviii

1 Introduction
An introduction into the research area and the technical problem, the
identification of four abstraction layers, goals, hypotheses, approach, and
contributions of this dissertation.

Software engineering is “a systematic approach to the analysis, design, implemen-
tation and maintenance of software. . . ” [35]. This term was used first in 1967 by
Friedrich L. Bauer in a meeting of the NATO science committee to describe the state
of the art on the field of software development at that time: “There is so much tin-
kering with software . . . what we need is software engineering.” [12]. Since then, the
term ‘software engineering’ has been retained to imply the need to develop software
on the base on the types of theoretical foundations and practical disciplines, that are
well established in other branches of engineering [101].

Software engineering is a modelling, problem-solving, knowledge acquisition, and
rational-driven activity. Modelling helps to deal with complexity. Models are used
to search for an acceptable solution and to collect, organize, and formalize data into
information and knowledge. For the assumptions and decisions during the development
process the context and the rationale behind them must be captured [22].

Since Augmented Reality evolved as a full-fledged topic of research, many Aug-
mented Reality systems have been developed. Most of them are research prototypes
that demonstrate a particular aspect, such as tracking or human-computer interface
design. In most cases software engineering in general and the software architecture
in particular was a secondary issue. The reuse of artefacts was done, at best, on the
source code level.

The subject of this dissertation is the application of software engineering to build
a reusable and adaptable framework for Augmented Reality systems, the distributed
wearable augmented reality framework DWARF. The focus is on mobile Augmented
Reality systems in ubiquitous computing environments with the continuous example
of maintenance of complex systems, such as machine-tools.

In the next section we start with an informal introduction of Augmented Reality
(section 1.1). In section 1.2 we discuss several research fields that contribute to Aug-
mented Reality. The following section 1.3 delves into several technologies that enable
the realization of mobile Augmented Reality systems and ubiquitous computing. We

1

1 Introduction

present the goals of this dissertation (section 1.4), the underlying hypotheses (sec-
tion 1.5), and the chosen approach to prove these theses (section 1.6). In section 1.7
we introduce a schema with four abstraction layers for the modelling of complex Aug-
mented Reality systems. We will use this schema throughout this dissertation. In
particular we use it to specify the layers of the DWARF framework (section 1.7.3).
After that list the contributions of this dissertation (section 1.8). Finally we give the
outline of this work in (section 1.9).

1.1 What is Augmented Reality?

Traditionally, Augmented Reality has been seen as a human computer interaction
paradigm, which provides users with a new way to interact with their environment.
A core feature is the tracking of the user’s position and viewing direction (called the
pose) for the overlay of artificial artefacts over physical objects in the user’s perception.
As a result, the user perception of the world is augmented by virtual objects. The
most prominent example is superimposing computer graphics on objects of the user’s
environment in a head-mounted display (HMD). The real world objects are represented
by any kind of data that can be measured by sensors, and include primarily video, but
also photographic images (visible or infrared), radar, X-ray, and ultrasound, as well as
laser scanned range data.

(a) Indoors application (b) Outdoors application

Figure 1.1: Screenshots through head-mounted display.

A widely used definition of Augmented Reality by Ronald Azuma in [7]

“. . . defines AR as systems that have the following three characteristics:

1. Combines real and virtual
2. Interactive in real time
3. Registered in 3-D

2

1.1 What is Augmented Reality?

This definition allows other technologies besides HMDs while retaining the
essential components of AR.”

This definition does not limit Augmented Reality to “visual” Augmented Reality
but also includes audio. Nevertheless, visual Augmented Reality is most commonly
used and was also used in this dissertation. As an example see the screenshots in
figure 1.1 taken from the DWARF Pathfinder application. We will discuss Pathfinder
in Chapter 5.

The main technical problem is how to present the virtual objects to the user. There
are two different approaches: optical see-through Augmented Reality (figure 1.2(a)) or
video see-through Augmented Reality (figure 1.2(b)). Both are usually implemented
with a head-mounted display.

Monitors

Real
World

Video Cameras

Combined Images Scene Generator

Video
Compositor

Head Tracker

(a) Optical see-through HMD

Optical Combiners

Real
World

Monitors

Virtual ImagesScene Generator Head Tracker

(b) Video see-through HMD

Figure 1.2: Diagrams of video and optical see-through head-mounted displays
(from [13])

An optical see-through head-mounted display uses a half mirror to project virtual
objects into the users field of view. In contrast, a video see-through head-mounted
display captures images of the environment with a video camera, combines them with
graphical objects from a 3D image generator and projects the resulting image to a
head-mounted display directly in front of the eyes of the user.

The user tracking can be separated into two main approaches: inside-out tracking
and outside-in tracking. Inside-out tracking is a technique where a tracking system on
the user side tracks the position and orientation. An example is optical tracking by a
camera mounted on the user’s head that tracks markers in the environment. Typically,
a optical tracking system such as the ARToolkit [73] with a head-mounted camera is
used for this approach. Outside-in is the opposite approach. Tracking devices in the
user’s environment track the user from outside and send the information to the system.
An example is tracking a marker on the user’s head with an external camera system,

3

1 Introduction

for example the A.R.T. system [3]. Inside-out and outside-in tracking can be combined
to improve the tracking quality.

Applications of Augmented Reality can be found in several areas such as power
plants service [77], the installation of wire bundles in planes [33], or in car assem-
bly [122].

1.2 Augmented Reality and Contributing Research
Fields

Tracking and visualization are only a part of the aspects of Augmented Reality. There
are several contributing technologies that have to be combined.

Virtual World Real World

AR System

User

sensor datainformation

 manipulation
 of real objects

multimodal HCI

Wearable
Devices

Software Architecture

Distributed Systems

Realtime

Wireless
Communication

Data Security

Dynamic Modeling

Visualization

Scene Analysis

Tracking

Simulation

Ergonomics Adaptation

Figure 1.3: Informal model of Augmented Reality as multi-medial combination of real
and virtual world data [76].

Figure 1.3 shows an informal model of an Augmented Reality system that combines
real world and virtual world objects (or data). Real world data are accepted over
sensors and data of the virtual world are queried from an information system. Real
and virtual data are combined in human-computer interaction (HCI) devices.

There are several enabling technologies from various research fields used for an Aug-
mented Reality system. These include software architectures as a subtopic of software
engineering, distributed systems, wireless communication, wearable devices/wearable

4

1.3 Enabling Technologies

computing, real time computing, scene analysis, tracking, simulation, adaptation, er-
gonomics, visualization, dynamic modelling, and data security.

In the scope of this dissertation the former four were involved: software architectures,
distributed systems, wireless communication, and wearable devices.

An important addition in this model is the manipulation of real world data by the
user. This manipulation must be sent back to the Augmented Reality system over the
sensors. The feeding back of the manipulation of real world data into the system and
the required reactions is a subject of research on its own and beyond the scope of this
dissertation.

1.3 Enabling Technologies

Advances in four important fields are enabling new ways of human-computer inter-
action: computing power, network communication, user input/output devices, and
awareness of the user’s context. The most prominent context elements are the user’s
location and viewing direction.

Computing power. The technical advances in the microchip technology have changed
the application areas of the computer. The size of the devices has shrunk while the
computing power has increased enormously. Formulating Moore’s Law in 1965 [99],
Gordon Moore, founder of Intel Inc., expected a doubling of the number of transistors
per square inch on a computer chip each fifteen months. While Gordon Moore retired
some years ago, Intel’s engineers believe that this law will still be valid for at least
another ten years. This trend will enable a rich set of variants among computer
chips ranging from comparable larger chips with more transistors to tinier chips with
a smaller number of transistors. More transistors can not only be used to increase
computing power but enable also new functionality. For example, Intel has plans to
add radio transmission to microprocessors.

With the decreasing size of transistors the design space for microchips is increasing.
There is a wide spectrum with maximum compute power for server processors such
as the Intel Pentium IV or Itanium on one end and chips for embedded systems with
comparable fewer possibilities on the other end. On the one side system size and energy
consumption can be neglected while on the other side small physical size and energy
consumption is very important. Available processors and micro chips are located all
along this spectrum.

Network communication. In addition to the increasing computing power and the
decreasing device size, advances in network technologies, especially in the field of
wireless networking, have opened new possibilities. Some years ago 10 Mbit/s were

5

1 Introduction

the maximum possible transfer rate in a LAN1, now wired networks reach a transfer
rate of one gigabit per second and wireless networks such as IEEE 802.11g outperform
the rates of many existing wired networks.

Similar to computing devices along the power/size continuum, different types of
networks for different needs have been developed. This is especially true for wireless
networks where the transfer rate is correlated to the possible geographic network size
and the needed energy for data transmission. The particular network types are usually
separated according to the diameter of the network. Client devices, called multi-
network terminals, with access to more than one network are becoming available.
Depending on the application a particular network is dynamically chosen.

Figure 1.4: Network types

In figure 1.4 there are examples for several networks that could be available at the
same time. Each network is suitable for a particular range that an application needs to
cover. Starting with a Bluetooth [19] network for short range, low power networks for
in-house use, each network type covers a larger geographical area. WaveLAN networks
are usable for larger buildings with ranges of several hundred meters, UMTS2, GSM3

or Digital Video Broadcast (DVB) networks for the urban and suburban area, and
satellite networks for global access. There are also gateways between sub-nets, for
example between the UMTS networks of different network providers.

User input/output devices. The development of the 2-dimensional windows-based
graphical user interface (GUI) in the 1970s was a big advance over the text-based

1Local Area Network
2Universal Mobile Telecommunications System
3Global System for Mobile Communications

6

1.4 Goals of this Dissertation

user interface for mainframe access. A high-resolution monitor, keyboard and mouse
allowed a much more intuitive interaction between human and computer. The enduring
success and ongoing improvement of this concept has shown that windows-based GUIs
provide suitable metaphors for desktop computing.

When computing devices become more mobile these well-known input/output de-
vices are no longer appropriate. The need for lightweight devices and hands-free op-
erations in a 3-dimensional world drives the development of new devices. Examples
include head-mounted displays or speech recognition for pilots of fighter helicopters.
Moreover, the move of the computer from the desktop in the office to the field requires
the development of new devices that allows an interaction of users related to real world
objects such as machines or cars near their current position. This is the subject of
ongoing HCI (human computer interaction) research. Results of this research are laser
pointer , data glove or space mouse. These devices are often combined for multi-modal
input and multimedia output.

Context awareness. Dey defines the term context as follows: “...Context is any
information that can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and application themselves.” [34]. The computer
may use this information for filtering, decision making or generally, trying to behave
intelligently. The computer can gather the user profile, history, and actions easily with
means such as logging or listening to user input and output devices. The perception
of the user’s environment is much more complicated as it requires techniques such as a
GPS4 to recognize the user’s position or various tracking devices to perceive the user’s
viewing direction. Generally, the user’s environment can be perceived by sensors.

1.4 Goals of this Dissertation

The goal of this dissertation was to develop a software framework for Augmented
Reality to rapidly build systems that allow users with a mobile or wearable device to
operate in a ubiquitous computing environment.

We identify three core requirements for such systems.

Real time performance for Augmented Reality. This is the primary requirement
which decides upon the usability of an Augmented Reality system, although this re-
quirement is not as strict for Augmented Reality systems as, for example, for airplane
control systems.

Real-time systems can be classified into hard, firm, and soft real time systems [56,
141]. A real time system is called hard real time system if the consequences of not

4Global Positioning System

7

1 Introduction

meeting a deadline within the system are catastrophic. Periodic tasks such as recal-
culating the airfoil position usually have deadlines of this kind. A deadline is called
firm if the results produced are not useful after the deadline, but the consequences are
not very severe. The deadlines of many aperiodic tasks belong to this category. Real
time systems with a deadline, which is neither hard nor firm, are called soft real time
systems. Failing to meet such a deadline does not have catastrophic consequences.

Real-time in the Augmented Reality context means that the update rate for the
overlaid graphic must be acceptable by the user, which means a target value of 30
frames per second. The delivery and processing of position must happen in a specific
time frame to be useful but the consequences are not severe. So Augmented Reality
systems could be called firm real time systems. However, in the Augmented Reality
community the update rate is a target rate. Currently there is no Augmented Reality
system that can guarantee a time frame for position updates. Existing Augmented
Reality systems do not use real time operating systems with real time scheduler for
the underlying platform but relay on enough left over resources on a standard operating
system. Indeed, on most systems recalculating the user position and updating the view
are either the only user tasks of the platform or the resources are so high that it will
never come in a critical range that leads to a drop or delay of frames.

The real time requirements require low latency communication between the par-
ticipating subsystems of an Augmented Reality system. This means that the com-
munication overhead of the middleware must be minimized. Traditional middleware
techniques such as CORBA [109] or COM+ [94] do not support heterogeneous commu-
nication. There is only one defined communication protocol such as IIOP for CORBA
and DCOM for COM+ for all communication purposes. This is insufficient for the
transport of multimedia data such as video streams.

Seamless integration of components in the environment. Another requirement is
the ability to combine services on mobile, wearable devices of individual users with
services by an ambient, pervasive environment. An example are ‘AR ready build-
ings’, where buildings are equipped for user tracking for Augmented Reality [79]. This
requirement is similar to ambient computing where services located in the user’s cur-
rent environment can be used dynamically, rather than being hard-wired to a specific
application, device or user.

An additional requirement is the support of multiple interaction devices for input
and output, local devices worn by the user as well as ambient, stationary devices.
Wearable devices and environment components are treated the same.

To express that we want to integrate services from local components and components
in the environment we use the term service instead of component. A Service could
already be running when the user wants to use it or it can be started on demand

8

1.5 Hypothesis

Adaptability to changes in the environment. A final requirement is that a mobile
user must be able to freely enter and leave the access range of services in the environ-
ment. The user’s infrastructure must be able to find and integrate new services. It
must optimize the overall system functionality by connecting matching services and
handling the loss of connection between services, such as when the user leaves a room.
This requires the declaration of what a service needs and what it is able to provide.

1.5 Hypothesis

Most existing Augmented Reality systems are developed more or less as demonstrators
for new tracking technologies or user interface approaches. In order to develop a new
application everything must be written from scratch or be reused on the base of existing
source code and the developer’s knowledge how to use it.

We claim that it is possible to separate Augmented Reality systems into several
abstraction layers and handle each layer independently.

Further on, we claim that we can construct Augmented Reality systems on the base
of distributed components. Local components on the client system and components in
the environment can be treated equally without giving up the real time performance
requirement.

Traditionally, the design of mobile Augmented Reality systems has focused on stand-
alone monolithic or on client/server systems. Communication with remote components
was avoided or handcrafted, usually with network sockets. The reason has been that
middleware was considered to cause too much communication overhead violating the
real time requirement. Indeed, for tracking and visualization researchers were applying
many tricks to get as many frames per second on the underlying hardware, particularly
on mobile systems. Middleware overhead would make such efforts obsolete.

Furthermore, we claim that Augmented Reality systems share a common set of sub-
systems that can be specified as components. Different Augmented Reality systems
with different goals will implement these components and their collaboration in dif-
ferent ways. In particular, we claim that for each subsystem several patterns can be
identified and described.

1.6 Approach

We will develop an Augmented Reality framework on the base of a distributed com-
ponent-based system. Therefore we separate the application specific issues from the
Augmented Reality specific and the communication specific issues.

To address the communication specific issues we analyze existing work in distributed
and mobile systems research, specifically component models, architecture description
languages, and middleware frameworks. We then specify a new component model and

9

1 Introduction

implement a middleware that supports this model. The middleware is based on the
CORBA middleware and extends it with a new CORBA service.

For the Augmented Reality specific issues we analyze existing Augmented Reality
systems and extract the core building blocks. The result is the specification of an ab-
stract architecture for Augmented Reality systems and a set of architectural patterns.

From the abstract architecture we derive a sub framework for mobile maintenance
applications. Finally, middleware and the building blocks are integrated in a concrete
application, DWARF Pathfinder.

1.7 Software Abstraction Layers

A key concept in the design of a framework for Augmented Reality systems, is the
notion of software architecture. A well-known concept to handle the complexity of
systems is to divide the problem into several abstraction layers. Each layer can use
abstractions of the underlying layers. The granularity of the abstractions increases
from top to bottom.

1.7.1 Architecture Layers

To apply this concept to software architectures we use an analysis of software archi-
tecture types by Hofmeister et al. [58]. They identify four different meanings of the
term software architecture: (1) (application) software architecture, (2) product line
architecture, (3) reference architecture 5, and (4) architectural style 6.

1. A software architecture describes the architecture for a particular system or
product. There are application specific components, adaptations, configurations,
and data.

2. A product-line architecture describes an architecture for a set of products that
can be adapted for a series of similar applications, called a product line or prod-
uct family of a particular company. Only minor adaptations for a customer or
platform are needed.

3. A domain specific architecture/reference architecture describes an architecture
for a system or subsystem in a particular domain. It is useful for certain domains
but not for others. Nevertheless, such an architecture is part of many different
applications. Such an architecture can be used as a starting point to develop an
application in that domain. An example would be a reference architecture for
web applications or Augmented Reality applications.

5or domain-specific software architecture synonymously
6or architectural pattern synonymously

10

1.7 Software Abstraction Layers

Application architecture

Product line architecture

Reference architecture or
domain-specific software architecture

Architectural Style or
architectural pattern

(a) Relations between Hofmeister’s architecture
types.

Application

Inter-application framework

Solution domain framework

Architectural style framework

(b) Transfer to relations between framework
types.

Figure 1.5: Architectures and frameworks can be separated into a hierarchy of abstrac-
tion layers.

4. An architectural style/architectural pattern is . . . a set of design rules that iden-
tify the kinds of components and connectors that may be used to compose a system
or subsystem, together with local or global constraints on the way the composi-
tion is done . . . [139]. It describes a general solution and is usually not domain
specific. It is an abstract template and can be reused for several applications.

The different types of architectures are not mutually exclusive, but there are builds-
on relationships between them. Reference architectures, domain-specific architectures,
product-line architectures, and application software architectures all use architectural
styles in their design. Product-line architectures and application software architectures
can be based on a reference architecture or include parts of one. These in turn can be
based on a reference or domain-specific architecture. And the architecture for a par-
ticular software can be based on a product-line architecture. Figure 1.5(a) illustrates
these relationships.

The factor of the potential reuse is increasing across the layers from top to bottom.
It is difficult to reuse the software architecture of a particular application for a new
application but architectural styles can be reused for many applications.

11

1 Introduction

1.7.2 Framework Layers

A framework is “a set of classes providing a general solution that can be refined to
provide an application or a subsystem” [22]. Another definition includes the struc-
ture, and the flow of control and/or data and specifies a framework as “a hybrid of
architecture-level information and implementation” [58, p. 9]. We think it is impor-
tant to combine the architectural-level and the implementation-level information and
define a software framework as the combination of software architecture that can be
refined to provide an application or a subsystem with a set of classes as a refinable
partial implementation of it. With this definition we can transfer the layer model for
architecture types to a corresponding layer model for framework types. The excep-
tion is the (application-specific) software architecture. Usually the architecture for a
specific application is not intended for reuse.

For an architectural style there is a framework that supports the usage of this style,
the architectural style framework. For a reference or domain-specific architecture there
is a framework that implements parts of the architecture and provides the base of a
solution. We call it solution domain framework. A product-line architecture corre-
sponds to a framework that provides components and structures that can be reused in
several applications in the same application domain. So we call it an inter-application
framework. Analogously to figure 1.5(a), figure 1.5(b) shows the relationships of the
different types of frameworks.

Table 1.1 summarizes the attributes of the different framework types: the kind of
building blocks of each layer, the granularity of them, and how specific they are for a
particular application.

1.7.3 The DWARF Framework

We use the four abstraction layers defined above for the development of the DWARF
framework for Augmented Reality systems. DWARF consists of four abstraction layers.
On each layer sub-frameworks cover issues of the respective layer. Each of these
frameworks builds on frameworks of the subjacent layers. Figure 1.6 shows each layer
of DWARF and the frameworks developed for each of them. The upper layers use
services from the subjacent layers, but not necessarily only from the one directly
subjacent layer. The architecture of a particular layer could be independent from
the other layers, in particular the subjacent layers. For example, components of the
solution domain layer can be implemented with several architectural styles such as
peer-to-peer or client/server. A particular framework on a particular layer however
will not be independent since it combines design and implementation and will rely on
subjacent layers.

(1) Application layer. The application layer consists of the application code, compo-
nents, data, and bootstrapping-code for a particular software application. The appli-

12

1.7 Software Abstraction Layers

Framework type Kind of building blocks Granularity of Application
building blocks specificity

Application specific for a particular
application

element specific,
usually more
complex

high

Inter-application
Framework

for applications of the
same type, e.g. navigation

coarse middle

Solution Domain
Framework

building blocks of applica-
tions of the same technical
domain, e.g. Augmented
Reality

middle low

Architectural
Style Framework

building blocks for a tech-
nical concept, e.g. dis-
tributed peer-to-peer sys-
tems

fine granular none

Table 1.1: A comparison of different framework types. We compare them by the kind
of building blocks, by the granularity of the building blocks, and by how
application specific they are.

cation code is the part that provides the logic for the desired functionality. It initial-
izes components, loads application specific data and executes bootstrapping routines
for components provided by the underlying layers. Application components provide
functionality for a particular application and are not part of the Augmented Reality
framework. They must be developed especially for the application, but they provide
a component interface. Bootstrapping-code is needed to initialize framework compo-
nents and provide them with application specific data.

(2) Inter-application layer. The inter-application layer includes reusable building
blocks and supporting components for several applications. The focus of this work is
on the domain of Augmented Reality supported maintenance of complex systems. So
this layer corresponds to the product-line architecture layer. For different application
domains a different set of components and variants of general components are needed.
For example, the needed quality of user tracking strongly depends on requirements
of the particular application domain. Augmented Reality supported car design needs
high precision tracking while augmented reality supported power plant maintenance
is less demanding in user tracking but in taskflow dependent data.

(3) Solution domain layer. This layer defines element types and interactions specif-
ically for a particular domain. They describe how domain functionality is mapped
to the architectural elements. Within this dissertation the solution domain is mobile

13

1 Introduction

Pathfinder

Navigation

Minimal Mobile Maintenance
Augmented Reality

Framework

DWARF
Peer-to-Peer
Middleware

Application Layer:
Pathfinder

Inter-Application Layer:
Navigation

Solution Domain Layer:
Mobile Augmented Reality

Architectural Style Layer:
Peer-to-Peer Computing

Figure 1.6: The DWARF framework and the relationships of the individual layers.
The terms on the left hand side denote abstraction layers and the respec-
tive paradigms used in this dissertation. The right hand side shows the
developed sub-frameworks of each of these paradigms.

Augmented Reality and the Minimal Mobile Maintenance Augmented Reality Frame-
work is a framework for systems of this domain. For example, in Augmented Reality
an architecture describes which elements are used for video-based user tracking and
how they are interconnected: a video camera feeds images into a buffer. The buffer
is read by an image processor that detects features. A tracking component calculates
the user position and forwards it to the renderer, which in turn writes the data into
the video buffer of the display component.

(4) Architectural style layer. Architectural styles define the element types that can
be used to describe an architecture and how they interact. The term style is preferred
over the term pattern to distinguish it from the general use of the term pattern in
the sense of design patterns. An architectural style is not domain-specific and the
particular style also puts some constraints on how functionality can be mapped to
architectural elements. Examples of architectural styles are the Pipes-and-Filters style,
the Blackboard style or the Software Bus style [24]. The architectural style layer of
the DWARF framework consists of one particular style: peer-to-peer computing. The
DWARF Peer-to-Peer Middleware implements this style.

14

1.8 Contributions of this Dissertation

1.8 Contributions of this Dissertation

The main contribution of this dissertation is a software framework for Augmented
Reality systems. The focus is on mobile Augmented Reality systems that support
workers in their daily tasks in the production and maintenance domains.

We developed a scheme of four abstraction layers to describe Augmented Reality
systems. Each layer covers a specific aspect of an Augmented Reality system. The
lowest layer, the architectural style layer, describes the component model. The sec-
ond layer, the solution domain layer, describes the building blocks for systems in a
particular solution domain. In our case this domain is Augmented Reality. The third
layer, the inter-application layer, describes reusable building blocks that can be used
for a family of similar systems. The fourth layer, the application layer, describes a
particular application.

In addition, we have made contributions to each of the four layers.

Division of Problem into Layers of Concern. We developed a multi-layer frame-
work that allows developers to describe Augmented Reality applications in four layers.
These layers are from top to bottom: application layer, inter-application layer, solu-
tion domain layer, and architectural style layer. We then analyzed and worked on
each layer independently. The focus, however, is on the solution domain layer and the
architectural style layer.

Peer-to-Peer architectural style for dynamic, distributed service-based systems
The disadvantage of traditional middleware solutions for distributed Augmented Re-
ality systems was their communication overhead. Additionally, the middleware was
not adaptable to communication requirements between the distributed components.
So developers of Augmented Reality systems have not used middleware and have used
self-developed low-level approaches based on network sockets instead. This approach
led among other drawbacks to inflexible architectures simply because the developers
chose to optimize for performance and sacrifice flexibility.

We developed a distributed peer-to-peer architectural style that combines architec-
tural adaptability and flexibility with performance. We separate both issues into two
steps. First, we establish the communication relationships between components. To
this end, we treat components and connections between components both as first class
objects. We adapt the system’s transport facilities to the requirements of the compo-
nents by letting the components select the desired type of connection and make the
system establish it. Second, the connected components talk to one another over the
communication means that the components chose by themselves.

This architectural style allows to model a Augmented Reality system as a configu-
ration of collaborating peer services. Each collaboration of services is modelled as an
Ability/Need pair. Such a pair expresses that one service has an ability that another

15

1 Introduction

service needs. Connectors are first class objects and model the channel type over which
services collaborate.

Middleware for the adaptable systems A middleware reads abstract service descrip-
tions and connects services with matching Abilities and Needs. Connectors runtime
objects connect the services. This decouples the connection implementation from the
service implementations. So the active middleware can manage the connections inde-
pendently from the services.

Analysis model for Augmented Reality systems For the solution domain layer we
analyzed existing Augmented Reality systems. This analysis was done based on lit-
erature studies, a questionnaire that was sent to several Augmented Reality system
developers, and interviews with Augmented Reality researchers. As a result of the
studies, we specified an abstract architecture for Augmented Reality systems. This al-
lows us to compare the architectures of existing systems with respect to this abstract
architecture. We applied this approach to the architecture of the ARVIKA mobile
Augmented Reality system [43], which is the foundation of a “Leitprojekt” funded by
the German federal ministry for eduction and research (BMBF).

System of patterns for Augmented Reality systems The developers of Augmented
Reality systems select different approaches to implement the subsystems of their sys-
tems. Some recurring approaches can be found in several systems. This allows to
identify the abstract concept of an approach and describe it as a design pattern. The
term software pattern covers architectural patterns as well as design patterns. In this
dissertation we describe a system of patterns for Augmented Reality systems. Each
pattern is described abstractly and there are several ways to implement them. An
Augmented Reality system can then be described as the composition of several ap-
proaches.

M3ARF framework for mobile Augmented Reality maintenance systems We de-
veloped a framework for a mobile Augmented Reality maintenance system and imple-
mented a prototype based on this framework, DWARF Pathfinder. Pathfinder is a
navigation application whose main purpose was to navigate a user from the subway
station Königsplatz to the rooms of the Chair for Applied Software Engineering. The
main non-functional goal of Pathfinder was the reuse as many existing components as
possible and integrate them over the middleware into an Augmented Reality system.
We analyzed the requirements of such a system and designed an architecture based
on several Augmented Reality patterns. The prototype shows the applicability of the
framework.

16

1.9 Outline

1.9 Outline

The outline of this dissertation is as follows:

Chapter 2: Problem Space Analysis We motivate our approach with a maintenance
scenario. This scenario introduces an view on Augmented Reality that goes beyond
the traditional definition of Augmented Reality. We analyze the scenario and specify
the requirements for an adaptable Augmented Reality framework. An outcome of this
chapter is the division of the problem into several layers of concern that can be treated
separately. At the end we analyze related work in the research domains we want to
combine: Augmented Reality, ubiquitous computing, and wearable computing.

Chapter 3: DWARF Mobile Augmented Reality Framework This chapter covers
the solution domain layer Augmented Reality. We start with an analysis of existing
Augmented Reality systems known from literature and a study that was done for the
ARVIKA consortium [119]. This study revealed a core set of building blocks common
to each of the analyzed systems. So basing on these building blocks we developed an
abstract architecture for Augmented Reality systems. For example, components such
as trackers or renderers can be found in every system. Then we analyzed two selected
systems formally on the base of the abstract architecture, namely the ARVIKA mobile
Augmented Reality system and DWARF Pathfinder. The analysis focuses on how
the abstract building blocks were implemented in each system. The approaches to
implement the building blocks and their relationships can be seen similar to patterns.
We describe a set of approaches we identified and described in a way similar to design
patterns.

Chapter 4: DWARF contract-based peer-to-peer middleware In this chapter we
describe a contract-based peer-to-peer architectural style and the DWARF middle-
ware for adaptable Augmented Reality systems. The architectural style specifies the
building blocks for mobile Augmented Reality systems. It introduces the concept of
Services, Needs, Abilities, and Connectors. These concepts are implemented by a mid-
dleware that manages Services and Connectors at runtime. We close with a section
about a graphical notation of DWARF-based systems based on UML 2.0 component
diagrams.

Chapter 5: DWARF Pathfinder The previous chapters give the outline for the design
of particular Augmented Reality systems. We describe a specific sub framework for
mobile Augmented Reality maintenance systems and demonstrate the usefulness with
a demonstration application called DWARF Pathfinder. It is a tour guide system that
guides a tourist from a subway station to a desired room on a university campus. We
describe the overall Pathfinder system, give an overview of the participating DWARF

17

1 Introduction

services and describe how they cooperate. Each service is an implementation of a
building block and is based on an Augmented Reality design pattern.

Chapter 6: Conclusion. In this chapter we discuss the results of this dissertation
and future work.

18

2 Exploration of the Design Space.
A motivating scenario, design space analysis, requirements analysis, design goals,
and related work.

We see Augmented Reality as an interface to a virtual world around the user. For
that the registration both of real and virtual objects in the physical world is central,
while the traditional definition focuses on the user interface aspects [7].

In this chapter we illustrate our vision of Augmented Reality by a descriptive sce-
nario that represents a class of applications where a mobile worker in a ubiquitous
computing environment needs on-site information. For the implementation of that vi-
sion we argue that Augmented Reality, ubiquitous computing, and wearable computing
techniques must be combined. Starting from a basic scenario without Augmented Re-
ality, wearable computing or ubiquitous computing, we extend it step by step with
new technologies into an example for our vision of Augmented Reality (section 2.1).

For the requirements analysis we analyze the design space for Augmented Reality
systems on the base of the characterizing attributes of Augmented Reality, ubiquitous
and wearable computing. We use six attributes: type of user device and user mobil-
ity from wearable computing, network connectivity and component localization from
ubiquitous computing, and location awareness and media richness from Augmented Re-
ality. This enables us to characterize our vision of mobile Augmented Reality systems
compared to systems from related fields such as pure mobile and wearable comput-
ing (section 2.2). Based on the scenario and the design space analysis we formulate
the non-functional requirements and the design goals of mobile Augmented Reality
maintenance systems (sections 2.3 and 2.4).

We close with an overview of related work in Augmented Reality, ubiquitous com-
puting, and wearable computing in section 2.5.

2.1 Maintenance of Complex Systems

The focus of this dissertation is on a framework for mobile Augmented Reality systems
that support workers in their daily tasks in the production and maintenance domains.
As an example, we present a scenario of Augmented Reality for machine maintenance.
This example is similar to the maintenance scenario of the ARVIKA project [6]. We

19

2 Exploration of the Design Space.

start the description of the scenario without Augmented Reality and enhance it step
by step with several technologies.

A service technician has the task to maintain a group of production ma-
chines that are distributed over a larger area. When a machine fails, the
technician has to go to the malfunctioning machine, locate the error and
its cause, and fix it. To find the error and its cause the technician typically
needs a lot of information about that particular machine. The information
is provided in form of specifications, drawings, or repair guides. It is ei-
ther in the technicians head, written down in paper documents in a folder
or stored electronically in a database. When he needs some information,
he must retrieve the papers or go to a database terminal and look it up.
Either way, the technician has to stop his work for a certain time, look up
the information, and go back to work.

The introduction of mobile computing allows users to store information on a mobile
unit. The user does not have go to a database terminal for information access but
could take the information with him to the location, where he needs it. This allows
information access on-site. During physical work, the access to information used to
be hands-free. This can be realized with a wearable computer [9, 11, 36]. A wearable
computer is a special mobile computer that is worn by the user like clothing and
provides facilities similar to a tool chest. To achieve this, a wearable computer needs
a small form factor and input and output devices that allow hands-free interaction,
for example speech input and voice output, or input devices such as data gloves (e. g.
5DT from Virtual Realities [1]) or a Twiddler input device [53]. The output is mostly
via an HMD where information is blended into the user’s view [149] 1.

With a wearable computer the technician can look up any information he
needs without having to leave the task he is pursuing currently. He is
interacting with the system hands-free via speech-input.

With the help of an online maintenance guide book the technician could find
out, that a broken fuse caused the reported error. This book can also guide
the technician step by step through the maintenance process. The system
tells him to change the fuse, but to do so he needs to reach the fuse behind
a covering. This means that he cannot see the fuse but has to feel his way
to it. And the same, which is even more difficult, to plug in the new fuse.

Augmented Reality systems overlay real objects with virtual objects. Each virtual
object is registered with respect to the real world and has a geometric extent. Ideally,
1Note that is not yet Augmented Reality as Augmented Reality requires the combination of real and

virtual and a registration in 3D.

20

2.1 Maintenance of Complex Systems

the user gets the impression that the virtual objects are part of the real world. Just
as real world objects can be seen from different viewing directions the virtual objects
can viewed from different directions.

The technician is equipped with a wearable Augmented Reality system. The
online maintenance guide book does not only contain a description of where
to find the fuse, but also an Augmented Reality model of the fuse which is
projected at the location where the real fuse behind the shielding is located.
The technician’s position and viewpoint in front of the machine is tracked
and the system renders the fuse in the head-mounted display as if he wore
x-ray glasses.

Some of the virtual objects are representations of devices in the user’s environment.
Already in 1981 Marc Weiser expected that in the future hundreds and thousands of
computers would be embedded in everyday’s devices and enhance their capabilities.
They would surround the user and provide services without being noticed as computers.
Weiser called this vision ubiquitous computing [169].

Virtual arrows guide the technician to the machine the technician looks for.
In order to exchange the fuse, the electronic maintenance book2 suggests
to remove a shielding in front of the fuse and automatically contacts the
computer in the machine to check for hazards. When the technician tries
to remove the shielding, a warning is displayed in the HMD that shows that
parts behind the shielding are still under electrical power. Thanks to that
warning the technician first separates the machine from the electrical power
supply. Then he safely replaces the broken fuse.

The scenario contains two points where Augmented Reality and ubiquitous com-
puting are combined. First, the Augmented Reality system of the technician contacts
trackers in the environment for current position information. And second, it con-
tacts the control unit of the machine to check for electrical hazards. In the first place
the Augmented Reality system uses the external trackers itself, in the second place
the Augmented Reality system provides an interface between the control unit of the
machine and the user.

When a mechanic is maintaining a machine, he usually takes a set of tools with him
that are right for the intended task. Each worker tries to avoid carrying unneeded
tools. This is different to wearable computers. Traditional wearable computers are
monolithic and do not allow the end user to adapt their setup to the expected tasks.
The transfer of the tool metaphor to wearable computing would allow to do this.

2An example are Interactive Electronic Technical Manuals (IETM), a standard specified by the US
military for electronic maintenance and repair instruction manuals [71, 159, 157]

21

2 Exploration of the Design Space.

User

Optical
Tracker

3D
Viewer

Voice
Input

Taskflow
Engine

External
Optical
Tracker

Disk

Figure 2.1: User in a ubiquitous computing environment.
Local and remote services are transparent. The services taskflow engine,
optical tracker, 3D display and voice input are local services deployed on a
mobile or wearable computer, a remote optical tracker services is integrated
into the overall system transparently. The illustration also shows that
hardware components such as head-mounted displays or video cameras are
connected to the respective service which manages the access to it.

22

2.2 The Design Space for Augmented Reality Systems

Each special purpose function of a wearable computer such as tracking for Augmented
Reality could be encapsulated into an appliance, a boxed device. The appliances for
different tasks could collaborate over a body-worn network. They might be called
copliances.

In a step further, the combination of wearable computing and ubiquitous computing
allows to extend the capabilities of the wearable computer by the capabilities of appli-
ances in the environment. Dynamically new capabilities are integrated as required to
accomplish a user’s task. Figure 2.1 illustrates the transparent integration of local and
remote components for user tasks. The user and each component have an aura around
them (indicated by the clouds around them). Where the aura of the user intersects
auras of components, he can use the component.

Before the technician starts to go to the machine, he has a look at the
work directives for the machine he should repair. He sees that he can use
the Augmented Reality support and takes the tracking appliance out of the
tool box. This appliance consists of a HMD with head-mounted camera and
a box with an autonomous unit for the actual tracking and visualization
software. He connects it to the tool belt and powers it on. After booting it
connects to the body-network woven into the belt and is ready to work.

Figure 2.1 illustrates the approach to have an appliance that serves a dedicated
purpose. In the diagram, there are appliances for optical tracking, a 3D viewer, voice
input, and an appliance that processes given taskflows from a database.

2.2 The Design Space for Augmented Reality Systems

In order to derive the design goals for mobile Augmented Reality systems we analyze
the scenario from section 2.1 under six aspects: the type of the user device, the device
mobility, the type of network access, the coupling of components, the grade of location
awareness, and the richness of the user interface.

These six aspects set up a six-dimensional design space which can be used to compare
the design of Augmented Reality systems with the designs for mobile systems, purely
wearable systems or ubiquitous computing systems. Each dimension describes one
design aspect with a discrete value.

2.2.1 User Device

The most visible item for the user is the device he is working with. The list starts
with the Personal Computer (PC) and ends with connected appliances.

Stationary Personal Computer. The PC is the standard working device for desktop
computing. It is used for stationary work and usually connected to a fixed network.

23

2 Exploration of the Design Space.

Notebook. Basically notebooks are PCs, the main difference between PC and note-
book is that notebooks are designed for mobile use.

Personal Digital Assistant. Being smaller than notebooks, Personal Digital Assis-
tant (PDA) are restricted in size and computing power but have a smaller form factor
than notebooks. The application domains of PDAs are auxiliary services for a sin-
gle user, such as date planner, email client or calculator. Although newly developed
devices are getting more and more powerful, the applications on PDAs are restricted
because of the small displays and compute power they have.

Wearable computer. A wearable computer is a computer that is worn by the user,
either for business or for private use. There are already prototypes where the wearable
computer is woven into the user’s clothes [62]. The capabilities of wearable computers
can be quite varying. They can be especially adapted for a particular task or powerful
multi-purpose devices.

Appliance. Appliances are application specific devices, for example, calculators or
translators. Hardware and software of the device are one unit that cannot be changed.
This is the price for a device that is perfectly fitting for a dedicated purpose, cheaper,
and simpler to use.

Connected appliances. Several appliances can be connected to cooperate in an ap-
plication. Each appliance has a dedicated functionality which it contributes to the
application. In short they could be named Copliances. This is the application of
component-based software engineering to hardware-software co-design. The applica-
tion of that design for wearable computing follows recommendations of the committee
on electric power for the dismounted soldier in a study on electrical power requirements
of the land warrior computer system of the US Army [100, p. 156]: “. . .Army sponsored
research should focus on developing embedded, dedicated computer systems, rather than
adapting general purpose personal computers. Ideally, each sensor or subsystem should
have its own processor and wireless transceiver, and user level programming should be
minimized.”

2.2.2 Device Mobility

The user mobility is related to the device type, but generally we can identify three val-
ues for mobility: fixed, discrete, and continuously. The particular value has significant
consequences for the selection of other design attributes.

Fixed. The device is tied to a fixed location and the user cannot move with it.

24

2.2 The Design Space for Augmented Reality Systems

Discrete. The user can move with the device but he can use it only while he stays
at a discrete position (although he can be in a vehicle that moves). The reason is
that either the device is portable but too obtrusive to be used while moving or that a
network connection is only available at discrete locations.

Continuously. The user moves freely in a certain range and can use the device at any
point in this range.

2.2.3 Network Access

The connectivity is important to describe the flexibility and quality of the network
connection.

Disconnected. The device has no connection to the network and must work com-
pletely autonomously. An example is a PC without network access or an off-line
mobile computer work in disconnected mode.

Fixed device. A fixed device is statically connected to one network. This is the
standard configuration for workstations in a Local Area Network (LAN).

Spotty access. Mobile clients have network access at dedicated access points, so
called hotspots. It is important to note that while the clients are mobile, the network
can be accessed only at the hotspots. There is no connection handover when the user
moves from one network to another. This is the mode that is supported by Mobile
IP [114].

Roaming. A dynamic connection handover from one access point to another is pro-
vided. The consequence is that the client can be continuously online. The most
prominent example are cell phone networks.

Multiple networks. There are various network types that were designed for differ-
ent purposes, for example, cell phone networks (UMTS, GPRS3), digital broadcast
networks (DAB (Digital Audio Broadcast), DVB (Digital Video Broadcast)), wireless
networks (IEEE 802.11x), or body area networks (Bluetooth). Future user terminals
will have access to several of these networks. The concrete network for a connection
will be chosen on demand.

3General Packet Radio Service

25

2 Exploration of the Design Space.

2.2.4 Component Coupling

The combination of Augmented Reality and ubiquitous computing requires the dy-
namic coupling and decoupling of components on the client from components in the
environment. In a first step the components have to find each other. There are several
strategies beginning with a hard-wired connection up to dynamic connections based
on the help of dedicated lookup services. The choice for a particular strategy depends
on client mobility and the capabilities of the communication partners.

Hard-wired. This means that the connection between client and server is determined
at design time and not at runtime. An example for this type are thin-client systems.

Fixed address. The communication partners use fixed addresses that uniquely iden-
tify them to each other. If the address of a communication partner changes, the
configuration of the other communication partner must be updated to the new ad-
dress.

Address alias. The calling partner knows the name of the communication partner
and asks a Naming Service to look up its address. But the Naming Service is found
over a well-known address that needs to be given in advance. This indirection is more
flexible than fixed addresses because it allows to change the address associated with the
name at the Naming Server instead of at every client. Examples for address lookup
services include the Internet Domain Name Service (DNS) or the CORBA Naming
Service.

Yellow pages. A Yellow Page Server manages information of different types. In
this case a client requests information about a desired communication partner that
fulfils a given number of constraints. The Yellow Page Server is found over a given
name or address that the client needs to know. This type of lookup is more flexible
than a simple name-based address lookup. Examples include Network Information
Service (NIS), the Lightweight Directory Access Protocol (LDAP) [163] system or the
CORBA Trader Service [106].

Broadcast. In an ad hoc network environment a system has no information about
the infrastructure of the network. When it needs to communicate it first has to find
out about its environment. It sends out broadcast messages that can be received by
all systems that are in the same network. The same network means the same physical
net, for example, the same Ethernet sub-net or the same WaveLAN cell. Any receiver
of this broadcast can response to the call and accept it.

26

2.2 The Design Space for Augmented Reality Systems

Lookup. This is a combination of Broadcast and Yellow Pages. In a first step a
system sends out a broadcast for a Yellow Pages Server. Once such a server is found
it is asked for the actual desired communication partner. Examples include the Jini
Lookup Service [70] or the Service Location Protocol (SLP) [52]. This approach is
typical for ad hoc environments where client systems do not have detailed knowledge
about the surrounding environment [29].

2.2.5 Location Awareness

Another design criterion of mobile systems is location awareness. Four levels of location
awareness can be identified:

Location unaware. The application does not know the location of the user. Location
unawareness is typical for many mobile applications on notebook computers.

Two-dimensional awareness. The position of a user in a map can be described by
the geographic latitude and longitude. This is sufficient for current location-aware ap-
plications, for example location dependent services that provide nearby filling stations
for users in cell phone networks or a car navigation system.

Three-dimensional awareness. In addition to longitude and latitude the altitude can
be important. With three geometric parameters the position can be determined. For
example, Augmented Reality applications that want to visualize simple text widgets in
the 3D space need the position of an object in space. This is enough when it assumes
that the user looks at the widgets frontally from any direction.

Pose awareness. Augmented Reality applications need the user’s position and ori-
entation, called the pose. The pose is described in three values for the position and
three values for the orientation. The pose is important to calculate the relative posi-
tion of the user and objects in his environment. The relative position allows to adapt
the rendering of objects in the HMD according to the user’s current eye position and
viewing direction.

2.2.6 User Interface

The richness of the user interface is another attribute to distinguish designs of Aug-
mented Reality systems.

Text-based. Text-based interaction between user and system is sufficient for many
applications. For example, the Remembrance Agent [125] is a simple application on
a wearable computer that collects information from many sources such as email or

27

2 Exploration of the Design Space.

personal notes and offers information retrieval through a simple full-text index. It is
implemented on the base of GNU Emacs [38].

Windows-based. In a windows-based user interface the user’s screen consists of sev-
eral windows which can be distributed freely across the screen. In an Augmented
Reality system a 2D window can be attached to a position in the 3D space and ren-
dered as if it was fixed to that position. An example are virtual post-its or stickies [77].

Simple 3D. The goal of simple 3D, icon-based augmentation is to present information
to the user. Examples are three-dimensional arrows that show a moving direction for
a navigation aid [122] or highlighted buttons on a machine [41, 137]. It should be clear
at any time what is real and what is virtual. Simple 3D icons are a powerful way to
give hints to the user. The icons are usually not very complex but they are rendered at
the correct position. Occlusion is not considered. The user interacts with the system
on the base of discrete icon objects.

Complex 3D. 3D-based augmentation with complex 3D models tries to mix real and
virtual world. The goal is the perfect immersion of the user in his environment where
the user is not able to distinguish between real and virtual objects. This requires
advanced approaches such as considering object occlusion and light sources. Example
systems include the Virtual Show Case [18], ArcheoGuide [144] or the Virtualized
Environment Display Project [21].

2.3 Non-functional Requirements

We apply the system of six discriminants to the maintenance scenario in Section 2.1
and formulate the non-functional requirements for a mobile Augmented Reality system
for maintenance.

User device: Connected appliances. In the scenario the technician uses a wear-
able computer for hands-free working with speech input, a head-mounted display for
graphical output and user tracking. For input, output and tracking there are several
alternatives. It should be possible for workers to add and remove devices that provide
some functionality such as tracking.

In the scenario analysis we saw that an Augmented Reality system consists of several
functional units. There are Augmented Reality subsystems and special purpose devices
worn or carried by the user as well as devices in the environment that are dynamically
connected to the system over the network. Some of these units are used only by the
user and some of them are used by any user that connects to them. In our framework
we bundle the hardware and the software of each system into a module. Each module

28

2.3 Non-functional Requirements

has a dedicated purpose in the system and should be useable like an appliance. The
modules are combined dynamically into a system configuration of connected appliances.
While a module is the physical representation of hardware and software, the logical
building blocks of an Augmented Reality system are services.

Device mobility: Roaming users. The technician is moving across the site and is
continuously guided by arrows that point in the right direction. This requires that he
can take his client device, e. g. a wearable computer, with him and use it while he is
moving. This is a key concept of mobile Augmented Reality. Current mobile comput-
ing is based on notebooks or PDAs, which allow users to carry the computer and use
it at anywhere. Notebooks or PDAs do not support to focus on the computer and on
the environment simultaneously, in particular the traffic. Mobile Augmented Reality
applications must support this. The user’s position must be tracked permanently and
can be used for rendering of virtual objects in the user’s head-mounted display.

Network access: Multiple networks. The client system continuously tries to receive
tracking information and therefore it tries to get a network connection to contact the
trackers.

There are several networks involved in the scenario. First, a wireless network that
is available in the entire machine hall. Via that network the client system is supplied
with navigational data. Second, short range networks exist for ad hoc connections
between the client and devices in the environment. For example, the service worker
gets information from the machine when he stands in front of the machine. This could
be implemented over a short-range network such as Bluetooth [19]. Third, the client
system itself consists of modules that are connected over a body network such as a
wireless personal area network.

Component coupling: Lookup. In the scenario the client system has access to ex-
ternal position trackers. Let us assume that the technician is working in a larger site
that cannot be covered by one tracker but several trackers, and each tracker covers
a specific range. Then the client system has to change the external tracker it uses
dynamically when the user comes into the realm of a new tracker. Also, when the
user comes to the task where he should remove the shielding the client system has to
connect to the machine dynamically and ask for possible hazards. In dynamic environ-
ments the setup and closing of connections between components requires a dynamic
lookup of the currently available communication partners.

Location awareness: Registration in three dimensions. The mobile user is navi-
gating through a larger area. While navigating his position is tracked by position
trackers. When he arrives at the machine he sees 3D augmented objects. To be able
to render objects in 3D from the correct perspective the client system must be aware

29

2 Exploration of the Design Space.

of the user’s location and orientation.. In comparison, mobile computing with current
location-aware services requires only the registration of the position.

Richness of user interface: Simple 3D graphics. In the scenario Augmented Reality
is used to give hints and information to the user. The augmentations are simple icons
such as arrows that guide the way to the machine, warnings with icons and text,
and simple 3D graphics that show the position of the fuse’s socket. Photo-realistic
augmentation of the environment available in tourist guides such as ArcheoGuide [144]
might cause accidents because it distracts the user’s attention [137].

Comparison. To illustrate the differences between systems with the desired non-
functional requirements and traditional stationary and mobile Augmented Reality sys-
tems we use a Kiviat graph [81]. Kiviat graphs can be used to show deviations, in
for example the runtime behaviour of distributed systems with different distribution
strategies. In figure 2.2 we use it to show that our approach aims towards a very
flexible mobile system with simple 3D user interfaces.

Our system should be based on a flexible ad hoc component coupling over broadcasts
in a multi-network environment, whereas traditional mobile systems employ at most
coupling over a yellow pages service with spotty network access and stationary systems
are usually coupled fixedly over a fixed network access.

Our approach targets for user-configurable mobile devices that can be used mobile.
Traditional mobile Augmented Reality systems can only operate at discrete locations
and are usually PDAs or wearable computers, stationary Augmented Reality systems
are location fixed and usually a PC or workstation.

As all Augmented Reality systems we need the user’s pose but as we target at main-
tenance tasks we want to use simple 3D user interfaces. This is similar to traditional
mobile Augmented Reality systems, whereas stationary Augmented Reality systems
mostly target at high-quality rendering and a complex 3D user interface.

30

2.3 Non-functional Requirements

type of user device

grade of location
awareness

component coupling

type of
network
 access

device mobility

fixed

discrete

continuously

disconnected

fixed
spotty
access

roaming

multiple
networks

fixed address

address alias

hard-
wired

yellow pages

broadcast

lookup

location
unaware

2 dimensions

3 dimensions

pose

PC

notebook
PDA

wearable
computer

appliance
connected
appliances

augmented reality systems consisting of local
and remote connected appliances
stationary augmented reality systems

mobile augmented reality systems

complex 3D
simple 3D

windows textrichness
of user
interface

Figure 2.2: Design space for AR systems.
Different types of AR systems can be distinguished by the different instan-
tiations of design attributes. Each dimension is directed from a common
origin outwards. We placed simpler values closer to the origin and more
complex values further to the outside. The graph shows examples for an AR
system assembled with cooperating appliances, and traditional stationary
and mobile, for example PDA-based, Augmented Reality systems. Exam-
ples for traditional stationary and mobile Augmented Reality systems are
the stationary and mobile Augmented Reality systems of ARVIKA [43].

31

2 Exploration of the Design Space.

2.4 Design Goals

A recent study on software architectures for Augmented Reality systems [119] demon-
strated that most existing Augmented Reality systems were developed to test and
demonstrate specific Augmented Reality techniques. Only very few systems are based
on a reusable framework for Augmented Reality systems such as Studierstube [145],
ARVIKA [42], ImageTclAR [61], and the MR Platform [154].

Component-based software engineering [150] supports software reuse and the inte-
gration of local and external resources. “. . .A component can always be considered
an autonomous unit within a system or subsystem. It has one or more provided and
required interfaces (potentially exposed via ports), and its internals are hidden and in-
accessible other than as provided by its interfaces. Although it may be dependent on
other elements in terms of interfaces that are required, a component is encapsulated and
its dependencies are designed such that it can be treated as independently as possible.
As a result, components and subsystems can be flexibly reused and replaced by connect-
ing (“wiring”) them together via their provided and required interfaces.” [108]. None
of the frameworks for Augmented Reality mentioned above supports component-based
software engineering, only reuse on the class level. Due to advantages of component-
based software engineering over pure object-oriented software engineering, we chose to
use component technology as the basis for the development of our Augmented Reality
framework.

Ubiquitous computing services have two characteristics: First, they can be used by
several users in parallel and second, the life cycle of a service is independent of its
use. For example, a tracking service that covers a particular area is started at some
point in time. Then it runs and waits for bypassing client systems that want to use
it. Therefore we extend the component-based approach for our Augmented Reality
framework to a service-based approach. Our Augmented Reality system consists of a
set of distributed services instead of components.

Support of heterogeneous connections. We chose to design the envisioned Aug-
mented Reality system as a system of communicating local and remote services. For a
seamless integration the communication between both types must be treated equally.
Moreover, different communication mechanisms must be supported, for example, asyn-
chronous and synchronous communication as well as different implementations such
as Common Object Request Broker Architecture (CORBA) or shared memory. The
reason is that traditional communication concepts have performance penalties for mul-
timedia systems such as Augmented Reality systems. The developer of a new Aug-
mented Reality system should be able to select the most appropriate communication
mechanism for each situation. Therefore we model a connection between services not
as an association but as a first-class object, called Connector.

Connectors as first-class objects allow to separates the services of a system and the
connections between them. We use this to separate system setup from system data

32

2.5 Related Work

exchange. First, the system is set up by linking the services over a connector. After
the linking process the services communicate directly over the established connection.

Connectors as first class objects are widely used for modelling distributed sys-
tems. For example, the reference model for open distributed processing RM-OPD uses
Binding Objects for complex connections between two or more components [67], Jini
from Sun Microsystems uses Smart Proxies [164] and several Architecture Descrip-
tion Languages (ADL) such as xAcme [135], Wright [4], and the Unified Modelling
Language (UML) 2.0 [108] use connectors as modelling elements. Usually the con-
nection between components is left to the developer of each component and therefore
interwoven with the component.

Design by contract between services. Services usually depend on one another. A
service needs support from other services (Needs) and in turn supports again other
services through own Abilities. For the dynamic matching of service needs and abilities
each service offers a contract. If the service gets the desired Needs from other services
it provides own Abilities. The design of cooperating services is similar to Meyer’s
design-by-contract paradigm [91]. Meyer models contracts between components with
‘requires’ and ‘assure’ constructs. If the requirements are fulfiled by the caller then
the component holds its assurances. In our approach we model a contract between a
service and its environment. If the environment can accomplish the Needs then the
service offers its Abilities. A difference to Meyer’s paradigm is that his approach is
used to ensure the correctness of method calls between objects, whereas Needs and
Abilities are used to establish connections between components at runtime.

Loose coupling. In a dynamic environment, connections between services are only
temporarily available. We assume that the service connections are transient and chang-
ing. This requires loose coupling between services and dynamic service lookup. The
services specify what they need and what they offer in an abstract service description,
and register themselves at the service registry. When a service needs another service
it must ask the service registry for a connection to the required service.

Runtime reconfiguration by active middleware. The system developer should not
be concerned with the dynamic configuration issues This should be supported by an
active runtime environment or middleware that controls and manages the services and
the connections among them.

2.5 Related Work

The framework described in this dissertation combines techniques from Augmented
Reality, wearable computing and ubiquitous computing. In this section we give an
overview of related work in these fields.

33

2 Exploration of the Design Space.

2.5.1 Augmented Reality Systems

The following discussion is based on a study on software architectures for Augmented
Reality systems [119] conducted for the ARVIKA consortium [6]. In the scope of this
study nearly twenty existing Augmented Reality systems, libraries, and applications
were analyzed, namely ARVIKA [42], AIBAS [127], ArcheoGuide [65], AR-PDA [44],
ARToolkit [17], Aura [46, 47], BARS [10], the Boeing wire bundle assembly proto-
type [33], EMMIE [25], ImageTclAR [61], MARS [90, 60], MR Platform [154], several
prototypes from Siemens Corporate Research [138], STAR [142], Studierstube [145],
Tinmith [152, 116], and UbiCom [113, 153].

We describe ARVIKA, STAR, MR Platform, and UbiCom in more detail. They are
most relevant to us because they have a mobile setting or target mobile maintenance
as application domain.

ARVIKA

The ARVIKA project [42] was supported by the BMBF (German Federal Ministry
for Education and Research) and consisted of members from industry and research
institutes. The goal was to research and develop Augmented Reality technologies that
will support development, production and service of complex technical products. The
project structure was application-driven with the focus on areas such as: automobile
and aircraft development; production in automobile manufacture and aircraft construc-
tion; and service for large technical systems, particularly power stations and machine
tools. The application-driven efforts were complemented by sub-projects for research
on basic Augmented Reality technologies and a user-driven system design. The basic
technologies support both high-end applications in product development and low-end
mobile applications for skilled workers using belt-worn equipment in production and
service environments [43].

The ARVIKA project develops two different types of systems: A stationary high-
end system for lab environments and a mobile system for a web-based environment.
The high-end system can be deployed on SGI IRIX, Linux and Windows platforms,
whereas the mobile system runs on Windows 2000 and Windows CE for the client side
and Windows and Linux for the server side. Synergy effects among the two solutions
should be achieved by reusing implementations, interfaces and protocols for several
subsystems, for example, the tracking subsystems [168].

Stationary high-end system The stationary high-end solution is intended for lab
environments where high accuracy of tracking is mandatory.

All components of the high-end solution run on one system running SGI IRIX,
Linux or Windows. On top of the operating system are the device integration inter-
face IDEAL for local and remote devices, the AR Browser component for visualization,
and the tracking components. Remote trackers can be used over the IDEAL interface.

34

2.5 Related Work

The application-specific software runs on top of the Augmented Reality specific com-
ponents. Figure 2.3 illustrates the layering for the high-end systems in a deployment
diagram of the stationary system.

Device
Interface
IDEAL

Tracking AR Browser

Application

Operating System (IRIX, Linux, Windows)

ARVIKA Stationary Unit

Figure 2.3: Architecture of the ARVIKA stationary solution.

IDEAL provides interfaces to connect various tracking and interaction devices. The
connection is location transparent as IDEAL provides a socket-based interface, called
the Low Level Device Interface (LLDI).

The high-end system runs on one physical machine, except for some tracking devices
that are connected by socket interfaces. Thus, the underlying implementation uses
local method calls and socket interfaces.

Mobile web-based solution Figure 2.4 illustrates the subsystem decomposition of
the ARVIKA web-based system and the deployment on client and server nodes.

The focus of the ARVIKA mobile system is document access and presentation.
Documents with Augmented Reality content are one type of documents among others
(HTML documents, PDF documents, or CAD data). The ARVIKA system consists
of a mobile client and a server, in particular a web client and a web server.

The client-side platform is targeted at mobile or wearable systems with Windows
2000 or Windows CE and provides the typical Augmented Reality functionality of po-
sition and orientation tracking and registered rendering. It has localization, tracking,
graphics, and human-computer interaction techniques by several interaction devices
such as a space mouse. The client environment is the Microsoft Internet Explorer 5,
i.e. the client is a thin client with a web browser as the interface. The AR Browser
needs access to operating system resources, e.g. access to the video camera. So the

35

2 Exploration of the Design Space.

Internet Browser

CAD
Viewer

PDF
Viewer

Net
 Collaboration

AR Browser

Localization

Device
Interface
IDEAL

Client-side
Context
Manager

Video
ServerTracker

(marker-
based)

Intersense
Tracker

local
Webserver

Info
Broker

Info Service

Windows Operating System

Hybrid
Tracker

Webserver

Info
Service

Info Broker

Workflow Engine

Context Manager

Windows Operating System

Legacy Server

Legacy
System

Mobile Client
Webserver

 Collaborative
AR

Tracker
(markerless)

Net Collaboration

Annotation System

User Interface Configuration

Application Extension

F
igure

2.4:
D

eploym
ent

ofthe
A

R
V

IK
A

w
eb-based

system
.

It
is

a
typicalthree-tier

architecture.
T

he
left

side
show

s
the

com
ponents

that
run

on
the

client
side.

T
he

m
ain

com
ponents

are
the

M
icrosoft

Internet
E

xplorer
that

controls
severalplug-ins

and
a

client-side
w

eb
server

that
acts

as
a

proxy
for

the
w

eb
server

in
the

environm
ent.

T
he

right
hand

side
show

s
the

w
eb

server
that

controls
severalJava

Servlets.
T

he
Servlets

in
turn

can
connect

to
legacy

system
s

such
as

external
databases.

36

2.5 Related Work

Augmented Reality subsystem (tracking and 3D visualization) is a local component
with a wrapper around it to turn it into an ActiveX Control4. When a user loads
a document that contains Augmented Reality scenes, the AR Browser is started and
displays the scene registered in space.

The server handles the information management. It is based on the Apache Tomcat
application server. Each component is realized as a Servlet with a HTTP address.

When a user loads a document with Augmented Reality support, the Augmented
Reality subsystem is automatically loaded and the document is shown in the AR
Browser.

Although it is a thin-client, some components need to be installed locally by the user.
These components are Localization, Video Server, optical tracking and other tracking
(Intersense, hybrid tracking, etc.), and the IDEAL device integration interface.

Following the web-based concept, different types of documents must be viewed with
viewer plug-ins for the Microsoft Internet Explorer. Examples are an PDF viewer and
a viewer for CAD documents.

The ARVIKA project developed components for Augmented Reality functionality
such as tracking and rendering, but also several other supporting components. For
Augmented Reality they developed an AR Browser, which is based on OpenSG and
visualizes registered 3D virtual objects; a Localization component for the determina-
tion of the user’s position (coarse grained tracking); an Optical Tracking component
for the determination of the user’s pose (fine tracking); the device integration interface
IDEAL, which provides localization and instance independent interfaces for the inte-
gration and management of hardware devices such as trackers and input devices; and
a 3D Interaction component for user input in a 3D world, for example with a space
mouse. As supporting components ARVIKA developed a NetCollaboration component,
which builds on the AR Browser and displays annotations of the video image from a
remote expert; a Video Server component, which delivers the video images gathered by
a video camera over the network for the net collaboration; a Context Manager, which
provides context information to client and server side components; and the InfoService,
which acts as proxy server for server side components, for example the InfoBroker.

The ARVIKA server-side part was implemented with Java Servlets and Java Server
Pages (JSPs) using the Java 2 Standard Edition and the Apache Tomcat servlet en-
gine. These services are supporting services and do not belong to the core Augmented
Reality system. ARVIKA put a lot of effort into such services for a better integration
of Augmented Reality and information management. They developed the InfoBroker
component, which provides a document model based on the structure of machines. The
actual data are read from databases, files or third-party systems; the Taskflow Engine
processes descriptions of an Augmented Reality supported taskflow, e.g. checking a ma-
chine; taskflows are modelled graphically with a Taskflow Editor ; the server-side of the
NetCollaboration component displays videos from the client-side to a remote expert,

4ActiveX is the Microsoft component model for browser-embedded components.

37

2 Exploration of the Design Space.

which can annotate the image; the Annotation System gathers user annotations and
saves them; the InfoService component handles network issues and provides network
transparency for other components; the server-side of the Context Manager provides
context information to server-side components and collaborates with the client-side
Context Manager; and the UI Configuration, which adapts information to be displayed
to the user context, for example the device type.

The individual components are not connected directly but indirectly via the Context
Manager component. It collects and distributes messages generated by the components
to other interested components. This is basically a variation of the Observer pattern
with a central event bus for message distribution.

The Kiviat graph in figure 2.2 shows the design attributes of the stationary and
mobile ARVIKA Augmented Reality systems in comparison to the design attributes
that we follow in this dissertation (section 2.4).

MR Platform

The MR Platform [154] is an environment for research and development of mixed real-
ity and Augmented Reality and is based on the results of the Japanese Mixed Reality
project. After the end of the project Canon Inc. has continued the project. The MR
platform consists of a video see-through head-mounted display and a software devel-
opment kit which includes libraries for registration, tracking, and video mixing. User
interaction, inclusion of context knowledge, and the visualization of virtual objects
are not included but left to third-parties. Additionally, the toolkit provides tools for
sensor and camera calibration.

The user output subsystem of the Software Development Kit (SDK) contains ren-
dering routines of the real world image for the video see-through HMD. For the visu-
alization the SDK uses per default OpenGL drawing instructions but there are several
computer graphics libraries such as OpenSG, OpenInventor or OpenGL that can be
used instead.

The SDK is implemented as C++ class library on top of the Linux operating system
and the Video4Linux image capturing library.

The MR Platform does not support higher-level concepts for the integration of re-
mote sensors. The tracking devices, magnetic tracker and video camera, are connected
through local method calls or socket connections. For the update of the sensors and
the video image an update method must be called, usually within an update loop.
Within each cycle, the user’s position is calculated and the new image for the HMD is
rendered. The processing of the current position is left to the application developer.
For example, in the RV-Border Guards multi player game [111] the user position is
transmitted to the state server that manages the distributed state of the game and the
position of all players.

An application developed on top of the MR Platform must call the tracking-update-
render loop. After each cycle the control flow returns to the application. That way

38

2.5 Related Work

the application developer keeps the control over the control flow.
To embed the MR Platform into custom applications, a developer must manipulate

the OpenGL output window, where the MR Platform renderer displays the images of
the video cameras for video see-through.

STAR

STAR (Services and Training Through Augmented Reality) [142] is an EU funded
project with Siemens, TU Delft, KU Leuven, University of Geneve, Realviz and EPFL.
The project targets on the products for training, on-line documentation and planning
purposes.

STAR develops several tools for the production of Augmented Reality content and an
Augmented Reality runtime platform for the visualization of a sequence of maintenance
tasks [51].

Figure 2.5 gives an overview on the system components of the STAR Augmented
Reality system. STAR uses a thin-client architectural style. On the client, a video

Video
Camera

Image
Preprocessor

Image
Compressor

Image
Decompressor

Output
Device

User Input Application

Video Tracker

3D Image
Generator

Video Mixer World Model

3D Renderer

Figure 2.5: STAR system architecture

camera captures the image, the image is pre-processed (ImagePreprocessor), com-
pressed (ImageCompressor) and transferred to the server. The server unpacks the
image (ImageDecompressor), performs image processing, calculates the camera posi-
tion (VideoTracker), and augments the image with virtual objects from a World Model
(3DImageGenerator, 3DRenderer, and VideoMixer). The augmented image is again
encoded, packed (ImageProcessor), and transferred to the client. The client unpacks
(ImageDecompressor), decodes, and draws the image on an output device. User Input

39

2 Exploration of the Design Space.

is transferred to the Application, which collaborates with the 3DImageGenerator to
update the shown virtual objects.

STAR executes the complete tracking process on the server. This enables thin
clients with very low computing demands The disadvantage is a higher update latency
because of the video transfer.

UbiCom

The Ubiquitous Communications (UbiCom) project [113, 153] is a multidisciplinary
research project at Delft University of Technology. The program aims at carrying out
research needed for specifying and developing mobile systems for mobile multimedia
communications.

Database Server

Base Station Mobile Terminal

Model
Database

Sensor
Analysis

Image
Synthesis

Sensor
Analysis Sensor

DisplayImage
Synthesis

[internet][internet]

[wireless
LAN]

[wireless
LAN]

Figure 2.6: UbiCom system.
Sensors on the mobile terminal on the right hand node collect data such as
video images for user tracking. The sensor data are pre-processed and then
transferred to the base station. The base station conducts a further data
analysis, contacts an external server for more data, for example, virtual
models, and adapts them to the user’s pose and generates a new image.
This image is transferred to the client which mixes the generated image
and the video image. The synthesized image is displayed on a HMD.

40

2.5 Related Work

The project identified three important constraints for mobile Augmented Reality on
a ubiquitous communication system, i.e. a mobile system which has always network
access: low power on the mobile system, a system approach, and negotiated quality of
service in throughput, delay, and power consumption.

Ubiquitous communication systems have several architectural properties in com-
mon. They are data driven with occasional feedback control, and they allow for local
quality of service negotiations. The architecture recognizes three types of resources:
communication, storage, and processing.

Rendering and Display Module

Wireless Connection Module

Interconnect Module

Video and Application Module

Positioning Module

GPS
Receiver

GPS
Antenna

SA 1100 Gyroscope

3 DM DMR

SA 1100

FIFO Icube

SA 1100 Camera
MTV-5366

MPEG 2
Encoder

SA 1100 Permedia II

Lightcaster

SA 1100 Infrared

WaveLAN GSM

Seethrough
HMDCamera

Figure 2.7: Hardware architecture of the UbiCom mobile terminal.
The mobile terminal consists of four functional modules and an intercon-
nection module (middle node). A module is deployed on a LART board
and provides a particular function for the overall system. The SA 1100
chip (StrongARM) is the core and can be found on every module. Addi-
tionally, there are function-specific building blocks such as an MTV-5366
camera decoder chip and an MPEG 2 encoder chip on each board.

UbiCom uses a control flow where the general AR processing loop of video gathering
- image analysis - video synthesis - display is distributed on the mobile client and
the background server. Figure 2.6 shows the distributed architecture. Sensors on
the mobile station on the right hand side collect data such as video images for user
tracking. The sensor data are pre-processed and then transferred to the base station.
The base station conducts a further data analysis, contacts an external server for more

41

2 Exploration of the Design Space.

data, for example, virtual models, and adapts them to the user’s pose and generates
a new image. This image is transferred to the client which mixes the generated image
and the video image. The synthesized image is displayed on a HMD.

The design of the mobile station uses a peer-to-peer approach where the software
components are distributed over a set of several hardware units. Figure 2.7 illustrates
that in a UML deployment diagram. The purpose to use a set of smaller hardware
units instead of one large one are the lower resource requirements. The overall resource
requirements for all UbiCom units are smaller than they were for one larger unit.

The mobile system consists of five hardware modules. Each of them has a SA
1100 computing unit to execute the Linux operating system and function specific
code. The particular functions are Positioning, Rendering and Display, Video and
Application, Wireless Connection, and Interconnect. Additionally to the SA 1100 unit
each module has function specific hardware components. The Positioning module has
a GPS receiver, a GPS antenna and Gyroscope for obtaining the user’s position and
orientation, the Video and Application module has a Camera MTV-5366 module to
connect a video camera and a MPEG 2 encoder to stream video to the backbone unit
(for video-based tracking). The construction of the Rendering and Display module
and the Wireless Connection module is analogous. The Interconnect module serves as
the data exchange backbone for the connected modules.

UbiCom distributes the user tracking over the base station and the mobile station.
For video-based tracking the images are transferred to the base station. Additionally,
the client uses an inertial tracker for calculating the pose and GPS for the position.
Video-based rendering is only needed to correct the drift of the inertial tracker after
some milliseconds. This reduces the data transfer between mobile station and base
station.

2.5.2 Wearable Computing Systems

Wearable computers have been an issue of research at academia and industry for
several years. Commercially available wearable computers [171, 69, 160, 32] and several
research prototypes [16, 98, 48] are still constructed following the traditional design
for desktop computers. Housing and electronic hardware are designed so that they can
be worn at the body, for example in a belt or a vest. There is a central component
that contains the CPU and controls the computer’s functionality. All peripherals are
connected to this central component over hardware interfaces such as USB, Firewire or
proprietary connections. Special purpose hardware is connected to the central unit and
the appropriate driver software is installed. Figure 2.8 illustrates this approach. For
example, optical tracking requires a video camera and tracking software. The camera
is connected to the wearable computer over particular interfaces and the tracking
software and camera drivers are installed on the computer. A system administrator is
usually needed to install software and drivers. This leads to unneeded complexity for
the end users as configuration changes cannot be done by themselves.

42

2.5 Related Work

Wearable Computer

User Application 1

User Application 2 Tracker

User Interface

Camera

GPS

HMD

Microphone

Figure 2.8: In the traditional deployment hardware and software are separated.

Other designs of wearable computers employ several modules with own micro pro-
cessors connected over flexible data connections [68, 23, 26, 27]. These designs allow
a more flexible deployment of the individual modules around the human body, but the
architecture of the resulting computer is still similar to a traditional personal computer
architecture. The single modules are assisting processors such as controllers for pe-
ripherals or network connection. They are not autonomous units with own operating
system and higher-level functionality.

A wearable computer constructed from self-contained hardware components has
been the goal of several research groups, examples involve the Spot Computer developed
at Carnegie Mellon University[36], MIThril at MIT Media Labs[98], and the LART
(Linux Advanced Radio Terminal) of the TU Delft[83]. All three of them have a
modular concept based on the Intel StrongARM micro processor and use the Linux
operating system. But they do not support the dynamic collaboration of appliances
with dedicated functionality.

And these systems, except the LART do not have a comprehensive modular concept.
The network topology is star shaped with a powerful central processor and several
related smaller peripheral devices. These smaller devices process subtasks scheduled
by the central unit.

The design of known wearable computers is basically similar to the design of work-
stations. The difference is that workstations are not wearable. The main disadvantages
of the traditional design is the static system configuration and the nonuniform compo-
sition of components on the client system and components in the environment. There
is no concept for the seamless integration of modules worn by the user and modules
in the environment.

The only projects we are aware of that seems to go in a similar direction is the
EU funded project 2Wear [133]. Goal of this project is to integrate input and output

43

2 Exploration of the Design Space.

devices in the user’s environment for on-the-fly human machine interaction.

2.5.3 Ubiquitous Computing Systems

There are several approaches and technologies for ubiquitous computing systems to-
day that share the idea of a space providing services for the user (GaiaOS [128, 55],
Ninja [50], Aura [47], Oxygen [97], PIMA [8], or Cooltown [74]) 5. In contrast to
the decentralized approach we outlined in section2.4, most existing systems have a
star-shaped architecture with central components.

Gaia OS The Gaia middleware infrastructure [128, 55] aims at supporting the de-
velopment and execution of portable applications for Active Spaces. An Active Space
is a physical space with well defined physical boundaries containing physical objects,
heterogeneous networked devices, and users performing a range of activities. Gaia
provides an infrastructure that supports the development of applications in such an
environment and offers an abstract view as a single reactive and programmable envi-
ronment.

Gaia offers support for the development of user applications in a ubiquitous comput-
ing environment by extending the MVC [82] pattern with respect to dynamic multi-
input and output applications.

Oxygen The idea behind the MIT Oxygen project is that computational resources
are freely available around a user as freely as oxygen. The devices that provide the
computations are able to adapt themselves to the needs of the various users that want
to use them. The software in such a system must be adaptable to changing users,
environments, changes, and failures. The approach is to separate the description of
the needed functionality from the specification of components that implement the
features. Code, data objects, and specifications reside in a persistent data store.

The Oxygen software architecture is based on distributed objects. The components
can be customized and they are replaceable. Oxygen uses an own component model
called Pebbles [167]. Pebbles are described by interface specifications, informal de-
scriptions, and potentially useful information that allows a location service, called
Goals [166], to select a particular pebble needed for particular task.

Ninja The Ninja project aims to develop a software infrastructure to support the
next generation of Internet-based applications. Central to the Ninja approach is the
concept of a service, an Internet-accessible application. Key concepts of Ninja in-
clude: structured partitioning of state, operators and paths, automatic service compo-
sition, and mobile code for service deployment [50]. The Ninja architecture consists

5for a more complete list see http://devius.cs.uiuc.edu/gaia/html/links.htm

44

http://devius.cs.uiuc.edu/gaia/html/links.htm

2.5 Related Work

of bases (powerful workstation cluster environments), units (client devices), active
proxies (adaptation units), and paths (connect units, services, and active proxies).

Aura Project Aura from Carnegie Mellon University is intended for pervasive compu-
ting environments involving wireless communication, wearable computing, and smart
spaces. To accomplish the goals, Aura addresses every system level: hardware, oper-
ating system, application, and end users preferences. It applies to general concepts:
proactivity and self-tuning [47].

To adapt to changing runtime conditions Aura has a task layer called Prism that
represents user intent as a coalition of abstract services, configures tasks, and monitors
and adapts resources. It consists of a Task Manager, a Context Observer, and a
Environment Manager that implement these capabilities.

The existing approaches are quite different in detail, but each addresses the problems
of component control, lookup and selection.

Component control. To set up a collaboration of services at runtime it must be
possible to get information on them and control them. These requirements are met
by component- and service-based systems such as the CORBA Component Model
(CCM)[104], Microsoft’s Component Object Model (COM+) [94] or Sun’s Enterprise
JavaBeans (EJB) [148] (based on the Java Beans component model [146]). The con-
trol is provided by the runtime environment and is needed to start/stop and modify
components on demand, for example instantiate a new filter service for tracking. Web
services extend this to web-based access methods [95, 147]. Oxygen[97] uses its own
component model called Pebbles [167]. Aura [47] provides a software layer called Prism
that monitors and controls components in order to adapt a system for user tasks to
changing conditions. In Cooltown [74] persons, things, and places are connected via
web services, the configuration is left to the service administrator. Most systems
have an own component model that describes what attributes of components are well-
defined functional interfaces, explicit context dependency, introspection, interfaces for
the controlling runtime environment, usually the component container . A component
container is an environment for components that provides services and controls them.

Component lookup and selection. In dynamic systems it is not enough to have a
naming service that translates identifiers to references such as the CORBA Naming
Service. To bind a component at runtime to a formerly unknown component, there
must be an abstract description, and a lookup service must search for an implemen-
tation. Examples are CORBA with the CORBA Trader Service [106], Jini Lookup
Service [164], UPnP [93], JXTA [49], or IETF’s SLP [52]. These systems use sim-
ple attribute-value or a constraint-based language to formulate lookup. There are
recent efforts to reuse knowledge management techniques to transport more semantic
information, for example the Semantic Web research [54] or the W3C Web Services

45

2 Exploration of the Design Space.

Choreography Working Group [5, 151, 84]. In Oxygen Pebbles find each other by the
Goals lookup service [166], Gaia provides a Space Repository component that stores
information about available resources in the user’s space.

Component connection. Current middleware systems such as CORBA IIOP, Mi-
crosoft DCOM, Java RMI or SOAP do not support heterogeneous connection types
between components. More recent approaches try to make the middleware adaptable
[165, 129, 37, 105, 30] to the connection requirements. Ninja [50] separates nodes from
connections and enables the automatic construction of paths from node to node via
several other nodes.

2.6 Conclusion

In this chapter we gave a motivating scenario of Augmented Reality supported main-
tenance of complex systems. We analyzed the design space, the non-functional re-
quirements of such an Augmented Reality system and derived the design goals for
a reusable software framework for mobile Augmented Reality systems in ubiquitous
computing environments. Finally we gave an overview of related work in Augmented
Reality, wearable computing, ubiquitous computing.

46

3 Reference Architecture and Design
Patterns for Augmented Reality.

A reference architecture and design patterns for Augmented Reality systems.

This chapter covers the solution domain layer, the second layer of the four layer
architectures abstraction framework laid out in section 1.7. The solution domain is
mobile Augmented Reality.

Pathfinder

Navigation

Minimal Mobile Maintenance
Augmented Reality

Framework

DWARF
Peer-to-Peer
Middleware

Application Layer:
Pathfinder

Inter-Application Layer:
Navigation

Solution Domain Layer:
Mobile Augmented Reality

Architectural Style Layer:
Peer-to-Peer Computing

Figure 3.1: Chapter solution domain layer

Augmented Reality systems share a common basic architectural structure. In addi-

47

3 Reference Architecture and Design Patterns for Augmented Reality.

tion, many basic components and subsystems can be found in many different systems,
e.g. various trackers or a scene graph. This is not surprising as all Augmented Reality
systems are interactive systems and the core functionality of Augmented Reality is the
same for all systems: tracking the user’s position, mixing real and virtual objects, and
processing and reacting on context changes and user interactions.

This allows us to specify a descriptive reference model for Augmented Reality sys-
tems (section 3.1). With this reference model we can analyze and describe exist-
ing Augmented Reality systems by mapping them to the reference architecture, (sec-
tion 3.1.8). As an example we present a mapping of the ARVIKA mobile Augmented
Reality system onto the reference architecture.

Model

ViewController

(a) Model-View-Controller-Pattern [82] as de-
pendency graph

Application

PresentationInteraction

Context World
Model

Tracking

(b) Model-View-Controller as Application-
Presentation-Control plus Augmented Reality
specific subsystems for Tracking, World Model
and Context

Figure 3.2: Extension of the MVC pattern with Augmented Reality specific subsystems

The structure that we use to model Augmented Reality systems is similar to the
model-view-controller (MVC) pattern [82]. Figure 3.2(a) shows this pattern and the
dependencies among the subsystems. The MVC pattern separates interactive systems
into subsystems for the Model, Views of the Model, and a Controller for the data flow.
The Model encapsulates application data, provides access and manipulation methods,
and processes input from the controller; the View represents user information, updates
on changes in the model, and creates the Controller; the Controller is related to the
View, provides user input methods, forwards issues to the Model, and initiates changes
in the View. To conform to terms used in HCI research we call the View Presentation,
and the Controller Interaction. We extend this separation with specific extensions for

48

3.1 An Augmented Reality Reference Model

Augmented Reality and ubiquitous computing, in particular abstractions for Tracking ,
a World Model , and Context . To distinguish between the MVC Model and the World
Model we use the term Application instead of MVC Model (section 3.1). We illustrate
this in figure 3.2(b).

The similarity of our structure and the MVC pattern is not surprising, as AR systems
are interactive systems by definition [7].

In section 3.2 we show that different Augmented Reality systems use different ap-
proaches to implement the subsystems of the reference architecture. We identify a
set of different approaches and describe them as patterns (based on the description
of design patterns in [45, 136]). The result is a catalogue of patterns that can be
used to implement Augmented Reality subsystems. Every Augmented Reality system
has additional components but the core of each Augmented Reality system can be
implemented by a combination of these patterns.

3.1 An Augmented Reality Reference Model

We decompose an Augmented Reality system into six core subsystems. Each subsys-
tem provides a particular functionality for the whole system. These subsystems refer
to the three subsystems of the MVC pattern plus additional three that are specific for
Augmented Reality systems.

Application subsystem. An important issue of frameworks is the integration of appli-
cation specific functionality. The abstract Application subsystem is a placeholder
for all application specific code. This subsystem complies with the model sub-
system of the MVC pattern (section 3.1.2)

Interaction subsystem. The Interaction subsystem gathers and processes any input
that the user makes deliberately. We distinguish it from other input such as by
moving and changing the position. This subsystem complies to the controller
subsystem of the MVC pattern (section 3.1.3).

Presentation subsystem. The Presentation system displays system output for the
user. Besides 3D augmentation this also supports other media such as 2D text
or speech. This subsystem complies to the MVC view subsystem (section 3.1.4).

Tracking subsystem. Tracking the user’s pose is a key functionality of Augmented Re-
ality systems. The tracking subsystem is responsible for tracking the user’s pose
and update depending subsystems such as the presentation subsystem. Sensor
input in general is part of the Controller subsystem in the MVC pattern, but
because tracking is of prominent interest in Augmented Reality systems we de-
cided to partition the Controller into a Tracking subsystem for position and pose
information and subsystems for the other information (section 3.1.5).

49

3 Reference Architecture and Design Patterns for Augmented Reality.

interaction

tracking

context
worldM

odel
application

presentation

:Context
M

anager

:Input
Device

:Input
Processor

:Application

:W
orldM

odel

:W
orldM

odel
M

anager

:ThreeD
Im

age
G

enerator

:O
utput

Interface
ThreeD

Renderer

:Control
Feedback

:Tracker

:Tracking
M

anager

:Context
Elem

ent

F
igure

3.3:
Subsystem

decom
position

of
the

reference
m

odel.

50

3.1 An Augmented Reality Reference Model

Context subsystem. The Context subsystem collects different types of context data
and makes it available to other subsystems. Examples include user preferences
and the current user task. The context is a similar case as tracking. In MVC
it would belong to the Controller subsystem. Similar to tracking in Augmented
Reality systems it has a special relevance for ubiquitous computing systems and
we decompose it into an own subsystem. The user’s pose is of course part of the
user’s context. But again, tracking is very important for Augmented Reality, so
we partition the Context subsystem into a Context subsystem and a Tracking
subsystem. The pose belongs to the Tracking subsystem, and the remaining
context data belong to the Context subsystem. We model context not as part
of the Application subsystem because context is relevant for several subsystems
besides the application, for example the Presentation subsystem. The handling
of context changes is specific for the components of each subsystem, in particular
the application (section 3.1.6).

World model subsystem. In Augmented Reality the user moves in the real world and
obtains information linked to real world objects or user positions. Information
about the world are stored in a world model. In the MVC schema this subsystem
would be part of the model. Similar to tracking, the world model is of a particular
interest for Augmented Reality systems design, so we partition the MVC Model
into a two parts with an own World Model subsystem for geometric models
(section 3.1.7).

Each subsystem consists of several classes. Figure 3.3 gives an overview of the identified
subsystems and the main classes for each of them in a UML class diagram [108].
Subsystems are shown as UML packages which contain classes. We chose to model
them as packages to express a collaboration between the classes within a package. Each
class in turn may be realized by other classes. There are dependency relationships
between the subsystems, illustrated with dashed lines. A dependency shows that a
subsystem relies on interfaces of another subsystem.

3.1.1 Overview

Figure 3.3 gives an overview of the subsystems and the dependencies between them.
Now, figure 3.4 shows refinements of the classes by derived classes, aggregations and
associations between classes. The connections between classes are annotated with
labels that show what type of data is exchanged. To keep the complexity of the diagram
reasonable, we left out some details and swapped them out to detailed diagrams of the
individual subsystems.

We analyze each subsystem and model it with a class diagram. The models describe
which classes appear in each subsystem, what their task is and how they relate to each
other. The classes themselves are treated as functional black boxes.

51

3 Reference Architecture and Design Patterns for Augmented Reality.

interaction

tracking

context
worldM

odel
application

presentation

Control
Feedback

ThreeD
Renderer

Renderer

ThreeDIm
age

G
enerator

O
penSG

VRM
L

Brow
ser

Text
Renderer

O
penG

L

◀adapted
Model

Tracker

Com
posite

Tracker
External
Tracker

M
agnetic

Tracker
G

PS
 Tracker

Video
 Tracker

M
ouse

G
esture

Voice

Input
M

anager
*

Context
M

anager

Blackboard

Repository

Sensor

Tim
e

User
Preference

Context
Elem

ent
W

orld M
odel

M
anager

W
orld

M
odel

O
penInvent

or Stream
O

penSG

Stream
VRM

L
File

O
penG

L
Code

Application Com
posite

Application
Taskflow

M

anager

*

W
ebapplication

*

Com
posite

Context

*
 ◀
worldData

m
odelChange ▶

m
odel ▶

◀ pose

Input
Processor

reactionToInput ▶

pose ▶

input ▶

preferences ▶

inputData ▶

◀ inputData

Input
Device

1 ..*

*

rawData▶

video im
age ▶

◀
featureData

contextChange ▶
subapplication

F
igure

3.4:
A

bstract
A

ugm
ented

R
eality

architecture.
E

ach
of

the
six

subsystem
s

is
explained

in
the

sections
3.1.2–3.1.7

52

3.1 An Augmented Reality Reference Model

Note that we kept the layout of the subsystem diagram in figure 3.3. We will keep
the same layout when we describe the existing Augmented Reality systems, to show
what subsystems and classes of the reference model they implement.

3.1.2 Application Subsystem

The Application subsystem encapsulates application functionality and data. It consists
of several sub-applications and classes that also provide user functionality. Figure 3.5
illustrates the principal structure of that subsystem. This subsystem is not specific to
Augmented Reality, but communicates with other subsystems, particularly the Track-
ing and Rendering subsystems. The structure of the Application subsystem follows
the Composite pattern.

Application

Composite
Application

Taskflow
Manager

subapplication
*

Webapplication

Figure 3.5: Application subsystem.
The Application subsystem is represented by the abstract Application
class. A particular application can be implemented in several ways. Ex-
amples include Webapplication and Taskflow Manager. Also, a Composite
Application can consist of sub-applications.

Figure 3.5 shows the refinement of the Application subsystem. The abstract Ap-
plication class can be refined in several ways. Examples include Webapplication and
Taskflow Manager as in the ARVIKA system [42].

The Application subsystem corresponds to the Model subsystem of the MVC pat-
tern, so the Application controls the functionality of the Augmented Reality system.
To get information about the world outside the user data are read from the World
Model. After start-up it subscribes to context changes (from the Context subsystem),
user interactions (from the Interaction subsystem), and changes in the world model

53

3 Reference Architecture and Design Patterns for Augmented Reality.

(from the World Model subsystem) and reacts on them. This corresponds to the
Observe Pattern described by Gamma et al [45]. It processes the input, and sends
commands to the Presentation subsystem as reaction to the input and to the World
Model subsystem for changes in the model.

3.1.3 Interaction Subsystem

User input is any input that the user issues to control the system. Therefore in-
put through the Tracking subsystem is not taken into account. Figure 3.6 illustrates
the structure of this subsystem. The architecture of this subsystem is based on the
Perception subsystem from a conceptual architecture for situation-aware interactive
assistance systems developed by Kirste and Rapp [75]. It follows the pipes-and-filter
architectural pattern [24, pp 54]. Raw input from input devices is processed through
a pipeline into a recognized input token. The token is then forwarded to higher level
classes such as the Application.

User input can be achieved through several input devices, e.g. Mouse, Gestures,
Voice or combinations thereof through an Input Manager class. The raw input data
is forwarded to an Input Processor that uses Data Analysis and Modality Fusion
classes to interpret the raw input data. Context Information can be used for the data
interpretation. The interpreted input is then forwarded to the Application and the
Context Manager class. As a shortcut for instant user feedback, the recognized input
can be forwarded to the Presentation subsystem, particularly to a Control Feedback
class that visualizes the input, e.g. mouse input as movement of the mouse pointer.

3.1.4 Presentation Subsystem

The Presentation subsystem corresponds to the MVC View and models the human-
computer interface. User output can be achieved through several modalities, such
as 2D and 3D graphics, text, voice or sound. For Augmented Reality the graphical
presentation is the most important, but there are others such as audio. Other output
interfaces can be used simultaneously.

In general, the Presentation subsystem is setup as a pipes-and-filter system. Raw
graphical data from the World Model are processed in a pipeline of several classes into
a registered image that is displayed on a HMD or computer screen. The filters use
additional data such as the pose. Figure 3.7 shows this pipeline.

Figure 3.8 illustrates the Presentation subsystem. Core of this subsystem is the
ThreeDRenderer class, a refinement of the abstract Output Interface class. It renders
the virtual objects that augment the user’s perception in the correct distance, position
and orientation based on the user’s pose. The virtual objects are created by the
ThreeDImageGenerator. It reads models from the World Model and adapts them from
the World Model according to context information from the Context Manager, e.g. the
required level of detail. The user’s pose comes from the Tracker. For rendering in 3D

54

3.1 An Augmented Reality Reference Model

Gesture

Mouse

Voice

Input
Manager

*

Input
Processor

◀
 inputData

Input
Modality rawData ▶

Data
Analysis

Control Feedback
(from presentation)

◀ inputData

Application
(from application)

inpu
tDat
a ▶

contextData ▶

Modality
Fusion

* *

*

Tracker

◀
 p
os
e

◀
 c
on
ex
tD
at
a

Context Manager
(from context)

Figure 3.6: Interaction subsystem.
Input data are created by an Input Device (for example Mouse, Gesture,
Voice or combinations thereof from an Input Manager that combines sev-
eral input devices to an abstract input device). An Input Processor fur-
ther processes the input data with Data Analysis and Modality Fusion
and forwards it to the Application, the Context Manager and the Control
Feedback class. The Control Feedback class is part of the Presentation
subsystem and visualizes the recognized input.

55

3 Reference Architecture and Design Patterns for Augmented Reality.

W
orldM

odel
(from

 worldM
odel)

ThreeDIm
age

G
enerator

ThreeD Renderer
(from

 presentation)
Video M

ixer
(from

 presentation)
O

utput Device
(from

 presentation)

Video
 Cam

era
(from

 presentation)

Control
Feedback

(from
 presentation)

Input
Processor

(from
 interaction)

m
odel ▶

adaptedM
odel ▶

graphics ▶
im
age ▶

Context
M

anager
(from

 context)

Tracker

(from
 tracking)

preferences ▶

pose ▶

videoImage ▶

update ▶

inputData ▶

G
raphicsM

ixer

(from
 presentation)

◀ graphics

F
igure

3.7:
P

resentation
pipeline.

T
he

presentation
subsystem

is
set

up
as

a
pipes-and-filter

system
.

T
he

T
hreeD

Im
ageG

enerator
reads

the
m

odelfrom
the

W
orldM

odeland
adapts

it
according

to
preferences

from
the

C
ontextM

anager.
Such

preferences
m

ight
be

level
of

detail
or

possible
resolution

of
the

output
device.

T
he

adapted
m

odel
is

handed
over

to
the

T
hreeD

R
enderer,

w
hich

com
bines

it
w

ith
data

from
the

C
ontrolFeedback

and
the

G
raphicsM

ixer.
T

he
com

bined
m

odelis
adapted

to
the

current
pose

from
the

T
racker

and
forw

arded
to

the
V

ideoM
ixer.

T
he

V
ideoM

ixer
com

bines
the

im
age

of
a

live
video

stream
from

a
video

cam
era

and
generated

im
age

and
sends

it
as

the
final

output
to

an
O

utputD
evice,

w
hich

m
ight

be
a

head-m
ounted

display
or

a
m

onitor.

56

3.1 An Augmented Reality Reference Model

Control
Feedback

ThreeD
Renderer

Renderer

ThreeDImage
Generator

VRML
Browser

Text
Renderer

OpenGL

◀
 a
da
pt
ed
M
od
el

◀
update

pose ▶
Tracker

(from tracking)

Graphics
MIxer

1
Video

 Tracker
(from tracking)

Video
 Camera

Video
 Mixer

vid
eo
 Im
ag
e
▶

◀ graphics

WorldModel
(from worldModel)

 ◀
 gr
ap
hic
s

◀ videoImage

model ▶

1..n

Context
Manager

(from context)
◀preferences

OpenSG

VRML
Browser

Sound
Renderer

Output
Device

HMD

Monitor

Input Processor
(from interaction)

0..1

0..1

0..*

1..*

Figure 3.8: The core of the Presentation subsystem is the ThreeDRenderer, an Output
Interface for 3D graphics. Images are generated by a ThreeDImageGener-
ator, which adapts virtual objects from the World Model to the context.
The ThreeDRenderer can use a Graphics Mixer to embed non-3D data
into the scene. Trackers send the pose to the Three-D Renderer to enable
an update of the view. For video see-through a Video Mixer overlays im-
ages from the Video Camera and the images of the ThreeDRenderer. For
optical see-through, this class is not needed. In both cases, the rendered
images are emitted by an Output Device. This can be a head-mounted
display (HMD) or a computer screen.

57

3 Reference Architecture and Design Patterns for Augmented Reality.

usually a Scene Graph is used. There are several possible concrete 3D renderer libraries
available such as OpenSG Graph [110], OpenInventor [143], a VRML browser [66] or
OpenGL [170]. If non-graphical data should be embedded into the 3D scene such as
textual data from a Text Renderer, a Graphics Mixer combines graphics and non-
graphics into one representation.

The Control Feedback class is part of the Output Interface. It displays user in-
teractions without interpretation. This is analogous to mouse or keyboard input in
a window system. The operating system tells the Output Interface, for example a
window system, to update the mouse position or to display a new character. This is
done independently from any further processing by the application.

For optical see-through Augmented Reality the graphic is emitted by an Output
Device, for video see-through Augmented Reality the output data is then forwarded to
a Video Mixer, which mixes the videos images from a camera with the virtual images.
The mixed images are then emitted by the Output Device. An Output Device can be
a head-mounted display or a computer screen.

3.1.5 Tracking Subsystem

Figure 3.9 shows a class diagram of the Tracking subsystem. Tracking is achieved
by processing data from a sensor, for example a video camera. So tracking might be
seen as part of the Interaction subsystem (which complies to the MVC controller) or
the Context subsystem. We want to treat tracking as a separate subsystem for the
following reasons: First, as said before, tracking is important in Augmented Reality
systems. Indeed, many of existing Augmented Reality system have only tracking
sensors and no other ones. Second, we want to separate deliberate user input via a
control device and undeliberate input via a sensor. Changing the pose through the
natural human movement needs not to be treated by the MVC model as it does not
change it. Third, the pose is part of the user’s context, but a very important one.
Many sensors can only be used to calculate the pose. So we decided to create an own
subsystem for tracking which collaborates with the Context subsystem, the Interaction
subsystem, and the Presentation subsystem.

Tracking can be achieved by several techniques. For example, there are video-based
trackers, magnetic and inertial trackers, GPS, external trackers from the environment,
or combinations thereof, i.e. hybrid trackers. The diagram shows only some examples
of them. A Tracking Manager can be used to combine the input from several trackers
to higher level tracking data.

The trackers can use the World Model Manager from the World Model subsystem to
get information about the environment they are working in. For example, for feature-
based optical tracking the Video Tracker needs information about the features it should
look for in the video images. The result of the tracking, the pose, is forwarded to the
ThreeDRenderer that updates the visualization, the Context Manager as one part of
the user’s context, and the tracking-based user interaction. For example, user input

58

3.1 An Augmented Reality Reference Model

Tr
ac

ke
r

Co
m

po
si

te

Tr
ac

ke
r

Ex
te

rn
al

Tr

ac
ke

r
M

ag
ne

tic

Tr
ac

ke
r

G
PS

 T
ra

ck
er

In
er

tia
l

 T
ra

ck
er

*

Vi
de

o
 T

ra
ck

er

Th
re

eD

Re
nd

er
er

(fr

om
 p

re
se

nt
at

io
n)

vid
eo
 im
ag
e
▶

po
se
 ▶

Co
nt

ex
t

M
an

ag
er

(fr
om

 c
on

te
xt

)

W
or

ld
 M

od
el

M

an
ag

er

fro
m

 w
or

ld
M

od
el

)

◀
fe
at
ur
e
da
ta

◀
po
se

G
es

tu
re

(fr
om

 in
te

ra
ct

io
n)

tra
ck
er

Fi
lte

r
Tr

ac
ki

ng

M
an

ag
er

◀
po
se

Vi
de

oM
ix

er
(fr

om
 p

re
se

nt
at

io
n)

◀graphics

F
ig

ur
e

3.
9:

T
he

T
ra

ck
in

g
su

bs
ys

te
m

pr
oc

es
se

s
se

ns
or

da
ta

fr
om

tr
ac

ki
ng

de
vi

ce
s

an
d

ca
lc

ul
at

es
th

e
po

se
.

T
he

re
ar

e
se

ve
ra

l
ty

pe
s

of
tr

ac
ke

rs
su

ch
as

V
id

eo
T
ra

ck
er

,
M

ag
ne

ti
c

T
ra

ck
er

,
In

er
ti

al
T
ra

ck
er

,
E

xt
er

na
l
T
ra

ck
er

,
G

P
S

T
ra

ck
er

,o
r

a
T
ra

ck
in

g
M

an
ag

er
.

T
he

la
tt

er
co

m
bi

ne
s

tr
ac

ki
ng

da
ta

fr
om

se
ve

ra
ls

im
pl

e
tr

ac
ke

rs
to

im
pr

ov
e

tr
ac

ki
ng

ac
cu

ra
cy

.
Fo

r
th

e
in

it
ia

liz
at

io
n

th
e

tr
ac

ke
rs

ne
ed

in
fo

rm
at

io
n

fr
om

th
e

W
or

ld
M

od
el

.
T

he
re

su
lt

of
th

e
tr

ac
ki

ng
pr

oc
es

s,
th

e
po

se
,

is
fo

rw
ar

de
d

to
th

e
T

hr
ee

D
R

en
de

re
r

th
at

up
da

te
s

th
e

vi
su

al
iz

at
io

n,
th

e
C

on
te

xt
M

an
ag

er
fo

r
us

e
in

ot
he

r
su

bs
ys

te
m

s,
an

d
th

e
G

es
tu

re
cl

as
s.

59

3 Reference Architecture and Design Patterns for Augmented Reality.

through hand gestures requires hand-tracking.
As a special tracker the Video Tracker can be shortcut with the Video Mixer from

the Presentation subsystem for video see-through Augmented Reality where both must
share the video image.

3.1.6 Context Subsystem

Modelling the user’s context is still a field of research. We use the following definitions
for the terms context and context-aware defined by Dey for the Context Toolkit:

Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves. [34,
pp 22]

A system is context-aware if it uses context to provide relevant information services
to the user, where relevancy depends on the user’s task. [34, pp 23]

There are several facets of user context. For different applications, different parts of
the user’s context are needed. Therefore we model the Context subsystem as a system
with a Context Manager that collects different types of context information which we
call Context Elements. Examples are User Preferences, Sensor Data, the current Time,
the Pose, Resource Information such as the type of user device, Domain Knowledge
or the user’s current Task. Context Elements can be combined to Composite Context
Elements.

The Context Manager stores this information and makes it accessible to other classes.
Context Processors may read context information, process it and generate new con-
text information. Examples for Context Managers are Blackboards [31] and Reposi-
tories [140]. The Context Manager collaborates with the Application, the ThreeDIm-
ageGenerator, the Tracker, and the Input Processor.

Figure 3.10 illustrates the Context subsystem.

3.1.7 World Model Subsystem

The World Model subsystem (figure 3.11) stores and provides information about the
world around the user. It is user and application independent. The typical structure
for a world model is a scene which is often represented by a tree. The tree scheme is
usually relaxed to a graph in order to express relationship between objects on different
hierarchy levels, for examples in scene graphs. A scene graph is a hierarchical object-
oriented data structure for graphical objects, used for example in OpenInventor [143].
This is an application of the Composite design pattern.

A scene consist of Virtual Objects, Real Objects (representations of real world ob-
jects), Features (feature information for trackers), and sub-scenes (see right-hand side
of figure 3.11). Virtual Objects, Real Objects and Features have several attributes

60

3.1 An Augmented Reality Reference Model

Context
Manager

Blackboard

Repository

SensorData

TimeDateUser
Preference

Context
Element

*

Composite
Context

preferences
▶

Tracker
(from tracking)

Input Processor
(from interaction)

in
pu
tD
at
a
▶

◀pose

Context
Processor

Application
(from application)

*

Task Resource

*

Domain

ThreeDImage
Generator

(from presentation)

preferences ▶

Figure 3.10: Core of the Context subsystem is the Context Manager. It collects dif-
ferent Context Elements, e.g. User Preferences, Sensor Data, the current
Time, Tracking Data, Resource Information, Domain Knowledge or the
user’s current Task. The Context Manager stores this information and
makes it accessible for other classes. Context Processors may read context
information, process it and generate new context information.

61

3 Reference Architecture and Design Patterns for Augmented Reality.

that describe their graphical representation and other relevant information. A com-
mon important attribute of these classes is the Position relative to a common World
Coordinate System specified by the owning World Model.

Existing Augmented Reality systems use rather simple implementations of world
models. Usually they are file-based using various formats such as VRML [66] files,
OpenGL [170] classes, and OpenInventor [143] or OpenSG streams. VRML is mostly
used as there are many tools that create 3D models in VRML format and nearly every
other library or tool has import functions for VRML. Some more recent approaches
use a database for saving world model data [124, 59].

At runtime a World Model Manager controls the access to the World Model. The
ThreeDRenderer gets information about the graphical representation of real and vir-
tual objects for rendering and the Trackers get information about the Features they
have to look for from the World Model Manager. World Model objects are not only
graphical objects but representations of any object that have a spatial position. The
Application can access the World Model to read and change the non-graphical data of
these objects (see figure 3.11).

3.1.8 Mapping of the ARVIKA System onto the Reference
Architecture

As an example we map the software architecture of the ARVIKA mobile Augmented
Reality system that we described in section 2.5.1 onto the reference architecture. First
we analyze to which architectural layer each ARVIKA component belongs to. This
reveals which components are used for Augmented Reality functionality and which are
application specific.

The ARVIKA components can be classified into the four abstraction layers as follows:

Application layer. The ARVIKA project consists of several application-driven sub-
projects for production, development, and maintenance. Each sub-project de-
veloped its own specific application components.

Inter-application layer. The InfoBroker, Workflow Engine, NetCollaboration, and An-
notation System are specific to the application domains maintenance and service.

Solution domain layer. Reusable components for Augmented Reality systems are Lo-
calization for the determination of the current user position, the Context Man-
ager for the access of context information for different components, UI Config-
uration for the adaptation of the user interface to different devices and users,
the Device Integration Interface IDEAL for the integration of different devices,
mainly sensors, the Video Server to distribute the video image to remote com-
ponents, Tracking for pose tracking, and 3DInteraction to connect various inter-
action devices. These components are not specific for a particular application

62

3.1 An Augmented Reality Reference Model

W
or

ld
 M

od
el

M

an
ag

er

W
or

ld
 M

od
el

O
pe

nI
nv

en
to

r
St

re
am

O
pe

nS
G

St

re
am

VR
M

L
Fi

le
O

pe
nG

L
Co

de

◀

wo
rld
Da
ta

ch
an
ge
s
▶

vir
tu
alM
od
el
▶

◀
fea

tur
e d

ata

Ap
pl

ic
at

io
n

(fr
om

 a
pp

lic
at

io
n)

Tr
ac

ke
r

(fr
om

 tr
ac

kin
ng

)

Th
re

eD
Im

ag
e

G
en

er
at

or
(fr

om
 p

re
se

nt
at

io
n)

Sc
en

e

Vi
rtu

al
O

bj
ec

t

Fe
at

ur
e

Re
al

O
bj

ec
t

Po
se

*

* * *

1

1
1

Co
or

di
na

te

Sy
st

em
1

su
bs
ce
ne

*

F
ig

ur
e

3.
11

:
T

he
W

or
ld

M
od

el
ca

n
be

a
V

R
M

L
F
ile

,
O

pe
nG

L
C

od
e,

O
pe

nI
nv

en
to

r
St

re
am

or
O

pe
nS

G
,

to
na

m
e

so
m

e.
A

W
or

ld
M

od
el

co
ns

is
ts

of
Sc

en
e

ob
je

ct
s,

in
ea

ch
sc

en
e

ar
e

V
ir

tu
al

O
b
je

ct
s,

Fe
at

ur
es

,a
nd

R
ea

l
O

b
je

ct
s.

E
ac

h
of

th
em

as
a

P
os

it
io

n
in

th
e

co
or

di
na

te
sy

st
em

of
th

e
W

or
ld

M
od

el
.

A
W

or
ld

M
od

el
M

an
ag

er
co

nt
ro

ls
th

e
ac

ce
ss

to
th

e
W

or
ld

M
od

el
.

63

3 Reference Architecture and Design Patterns for Augmented Reality.

domain, but can be reused in new application domains for the ARVIKA mobile
Augmented Reality system.

Architectural style layer. The overall structure of the ARVIKA system is a web-based
client/ server system. The mobile Augmented Reality client is built upon a web-
browser with plug-ins that has access to various web services that run on a
webserver. The Augmented Reality subsystems (tracking and 3D rendering) are
realized as local applications. Via the IDEAL device interface various devices
can be connected locally or remotely via sockets.

For the mapping onto the reference architecture we consider the components of the
application layer for the Application subsystem and the components of the solution
domain layer for the remaining five subsystems. The analysis shows that ARVIKA
covers each subsystem of the reference model.

Figure 3.12 shows the mapping of ARVIKA onto the reference architecture. The
diagram shows that ARVIKA covers each of the six subsystems of the reference archi-
tecture. The main ARVIKA Applications are WorkflowManager and InfoBroker. The
WorldModel uses VRML files and proprietary marker configurations. The Microsoft
Internet Explorer is the main component for presentation and interaction. The Inter-
net Explorer is drawn in the Interaction subsystem and the Presentation subsystem
to show the double role of it but actually it exists only once. The Tracking subsys-
tem consists of IDEAL connected sensors and a local VideoTracker component. The
ContextManager stores user preferences, device type information, and workflow state.

64

3.1 An Augmented Reality Reference Model

int
era

cti
on

tra
ck

ing

co
nte

xt
wo

rld
Mo

de
l

ap
pli

ca
tio

n

pre
se

nta
tio

n

Th
ree

D
Re

nd
ere

r

Re
nd

ere
r

Op
en

SG

Int
ern

et
Ex

plo
rer

Tra
ck

er

ID
EA

L
De

vic
e

Vid
eo

 Tr
ac

ke
r

Mo
us

e

Vo
ice

Sp
ac

e
Mo

us
e

Co
nte

xt
Ma

na
ge

r
Re

po
sit

or
y

De
vic

eT
yp

e

Wo
rkfl

ow
St

ate
Us

er
Pr

efe
ren

ce

Co
nte

xt
Ele

me
nt

Wo
rld

 M
od

el
Ma

na
ge

r

Wo
rld

 M
od

el

VR
ML

Fil

e
Ma

rke
r

Co
nfi

g

Ap
pli

ca
tio

n

Wo
rkfl

ow

Ma
na

ge
r

Inf
oB

ro
ke

r

*

 ◀
wo
rld
Da
ta

mo
de
l ▶

◀ p
ose

Int
ern

et
Ex

plo
rer

rea
cti
on
To
Inp
ut
▶

po
se
 ▶

inp
ut
▶

inputData
 ▶

Inp
ut

De
vic

e

1 ..
*

plu
gin
s

vid
eo
 im
ag
e ▶

◀f
ea
tur
eD
ata

co
nte
xtC
ha
ng
e ▶

3D
Int

era
cti

on

*

PD
FV

iew
er

CA
DV

iew
er

inp
ut
▶

plu
gin
s

*

F
ig

ur
e

3.
12

:
A

R
V

IK
A

ar
ch

it
ec

tu
re

m
ap

pe
d

on
to

re
fe

re
nc

e
ar

ch
it

ec
tu

re
.

65

3 Reference Architecture and Design Patterns for Augmented Reality.

3.2 Architectural Patterns for Augmented Reality
Systems

The abstract reference model of the previous section describes the general components
and structure of Augmented Reality systems. However, depending on the functional
requirements of a particular system, some of the components may be left out. For ex-
ample, the Video Mixer component is not required for optical see-through Augmented
Reality.

On a subsystem level, however, the developers of existing Augmented Reality sys-
tems use different techniques and building blocks to implement the subsystems, e.g.
tracking or presentation. An analysis of existing systems reveals that several tech-
niques and building blocks recur in various existing systems—sometimes explicitly,
such as when two systems use a common library, and sometimes implicitly, when
different developers apply the same basic techniques. The selection depends on the
non-functional requirements and the design goals.

These techniques and building blocks can be extracted from existing systems and
described as abstract reusable patterns for Augmented Reality systems design. This
is heavily based on the idea of software design patterns. Patterns are structured de-
scriptions of successfully applied problem-solving knowledge: A software architectural
pattern describes a specific design problem, which appears in a particular design con-
text, and presents a generic solution scheme. The solution scheme specifies the involved
components, their responsibilities, relationships and the way they cooperate [24, pp 8].

3.2.1 A Catalogue of Patterns for Augmented Reality Systems

We classify the found patterns into six problem categories which comply to the six
subsystems. Here we follow Buschmann’s [24, pp 362] approach to specify categories
that support the search process of developers and use the subsystem decomposition as
the base for the problem categories.

Additionally, the list of patterns can be separated into two types: First, patterns
that are specific for Augmented Reality and describe good practices for the design of
Augmented Reality systems. Second, patterns that can be found in several existing
Augmented Reality systems with modifications for Augmented Reality. These patterns
complement the pattern system for a high-level description of Augmented Reality
systems. So although a pattern might already be well known as a general pattern for
system design, for example the Blackboard pattern, we present it in the Augmented
Reality context.

Table 3.1 gives an overview of the patterns we found ordered by the defined cate-
gories.

66

3.2 Architectural Patterns for Augmented Reality Systems

Subsystems Augmented Reality Patterns
Application Central Control

Scripting
Scene Graph Node
Tracking-Rendering-Loop
Web Service
Multimedia Flow Description

Interaction Handle in Application
Use Browser Input Functions
Networked Input Devices
Operating System Resources

Presentation 3D Markup
Low-level Graphics Primitives
Scene Graph
Video Transfer
Multiple Viewers
Proprietary Scene Graph

Tracking Tracking Server
Networked Trackers
Direct Access

World model Example Class
Scene Graph Stream
Object Stream
Marker File
Dynamic Model Loading

Context Blackboard
Repository
Publisher/Subscriber
Context Pull

Table 3.1: A collection of Augmented Reality patterns.

67

3 Reference Architecture and Design Patterns for Augmented Reality.

3.2.2 A Scheme for the Description of Patterns

We describe each pattern by name, goal, motivation, a description, usability, conse-
quences, collaborations, and known use. This follows the scheme of describing archi-
tectural or design patterns, e.g. as used by Gamma et al. [45].

Name The name of a pattern should be descriptive and in the best case in use in
several systems.

Goal The goal is a short description for the target use of the pattern.

Motivation This section describes why the pattern was developed.

Description We describe each pattern informally by its tasks and structure. We do
not yet have formalisms such as UML static and dynamic diagrams for each
pattern.

Usability Describes when and how each pattern can or cannot be used.

Consequences The advantages and disadvantages of the pattern.

Collaborations Other patterns that can or must be used in combination to this pat-
tern.

Known use Projects and systems that use the pattern.

A short description of each pattern can be found in the appendix A. Here we give
some examples of interesting Augmented Reality patterns. We describe the patterns
Scene Graph Node and Scripting for the Application subsystem, and the Scene Graph
pattern for the Presentation subsystem.

Scene Graph Node Pattern

Goal: Embed application in world model.

Motivation: In Augmented Reality, user interaction is connected with the physical en-
vironment. Consequently applications are often linked to places in the real world.
With this pattern, the application is seamlessly embedded in the environment.

Description: A scene graph models the world around a user as a tree of nodes. Each
node can be of any type, usually graphical objects such as spheres. But there
are also non-graphical objects that include control code.

Collaboration: Uses scene descriptions in scene graph format, may be implemented
with in a scripting language, may be implemented as event-call-back.

Usability: In combination with the Scene Graph pattern for rendering.

68

3.2 Architectural Patterns for Augmented Reality Systems

Consequences: The scene graph-based approach for an application handles the control
flow to the underlying scene graph platform, e.g. Open Inventor. On the other
side this approach offers a relatively easy possibility for the implementation of
shared applications for locally nearby users. One 3D interface can be shared
among several users but displayed for each user from a different view.

Known use: Studierstube [134], Tinmith [115]

Scripting Pattern

Goal: Quickly develop new applications.

Motivation: The real-time constraints of a user application are often not very strong,
so that it is possible to quickly develop new applications in a scripting language
supported by a powerful environment.

Description: For the development of an application, there is a scripting wrapper
around all components that have performance constraints. These components
are written in compiled languages such as C++ and offer scripting interfaces.

Collaboration: Can implement the Scene Graph Node pattern.

Usability: The development of scripted applications allows rapid prototyping but de-
mands powerful components that implement important functionality. The disad-
vantage is that the scripting approach is not suited for very complex applications.

Consequences: A script interpreter is needed, as well as (possibly) a special scripting
language for AR.

Known use: ImageTclAR [112], Karma [40], Coterie [85], MARS [39], EMMIE [25]

Scene Graph Pattern

Goal: Use a rendering component that allows more complex and dynamic scenes.

Motivation: For the representation of 3D environments, scene graphs have shown to
be a reasonable choice. The level of abstraction is higher than for OpenGL,
but they are much more powerful and flexible than VRML browsers with a
limited application programming interface. Most scene graph components can
read VRML based descriptions of scenes.

Description: Examples are (Open) Inventor, OpenSG, Open Scene Graph.

Collaboration: Use Scene Graph Node pattern for the application.

69

3 Reference Architecture and Design Patterns for Augmented Reality.

Usability: Use a scene graph if you don’t need the flexibility and low-level graphics
access that OpenGL provides but want to render more complex scenes and need
more dynamic access that a VRML browser offers.

Consequences: Can restrict the possibilities for modelling the application.

Known use: ARVIKA [42], Studierstube [134]

3.2.3 A System of Patterns

One of the goals of software patterns is to provide a common vocabulary for system
developers to discuss and compare the different approaches they use. Similar to words
in a vocabulary, patterns do not exist in isolation; there are interdependencies among
them. Patterns can be integrated into a system of patterns: “A system of patterns
for software architecture is a collection of patterns for software architecture, combined
with rules for their implementation, combination, and practical application for soft-
ware development.” [24, pp 360] Buschmann et al. formulate several requirements on
a system of patterns: it must contain a sufficient number of patterns, each pattern
should be described consistently, the pattern system should show the relationship be-
tween patterns, the patterns should be ordered adequately, the pattern system should
support the construction of new systems, and support its own evolution. We support
these requirements by the catalogue of patters and the schema for the descriptions of
individual patterns.

To give an overview of the relationships between the individual patterns we use a
directed graph. Each pattern is part of this graph along with labelled arrows indicating
direction and type of the relationships. Figure 3.13 shows the identified patterns and
their relationships. This illustration is similar to the one used in Gamma et al. [45].
To support the locating of patterns we show the associated subsystems.

70

3.2 Architectural Patterns for Augmented Reality Systems

Presentation

Central
Control

Scripting

Scene
Graph Node

Tracking-
Rendering-

Loop

Webservice

Multimedia Flow
Description

Operating
System

Resources

Use
Browser

Input
Functions Networked

Input
Devices

Direct
AccessNetworked

Trackers

Example
Class

SceneGraph
Stream

Object
Stream

Dynamic
Model Loading

Blackboard
Repository

Publisher
Subscriber

Context Pull

3D Markup

Scene
Graph Proprietary

Scene Graph

Video
Transfer

Multiple
Viewers

can use

can use

uses

implemented by

has

backend

saved as

has uses

hardcoded class

uses

part of

implemented by

uses rendering server

Low level
Graphics
Primitives

uses

uses

subscribes to
devices

reads context device

reads tracking data
shows rendered

 image

uses

accesses

implemented by

Marker File

hardcoded
configuration hardcoded

configuraton

subscribes

subscribes

provides input

Context

Interaction

Tracking

Application World Model

contributes to

Tracking
Server

usesuses

Handle in
Application

updates

Figure 3.13: Relationships between the individual patterns for Augmented Reality sys-
tems. Several patterns are used in combination within an Augmented
Reality system. One pattern might require the use of other patterns or
prevent the usage.

71

3 Reference Architecture and Design Patterns for Augmented Reality.

3.3 Conclusion

This chapter covered the second layer of section 1.7, the solution domain layer. We
presented an abstract architecture and a system of software patterns for Augmented
Reality systems. The abstract architecture is based on the notion, that the core
functional requirements for Augmented Reality systems are basically the same. This
allowed us to identify recurring components and collaborations. Architectures for
concrete Augmented Reality systems are an adaptation of this abstract architecture to
comply to application specific functional and non-functional requirements. The system
of patterns for Augmented Reality system is based on the non-functional requirements
which differ for each system. As well as different systems have some of the non-
functional in common, they also share some recurring approaches to fulfil them. These
approaches can be described as architectural patterns for the design of Augmented
Reality systems.

72

4 The DWARF Contract-based
Peer-to-Peer Architectural Style

A contract-based peer-to-peer architectural style, a supporting middleware, and a
graphical notation for distributed AR systems.

This chapter covers the architectural style layer, bottom layer of the four layer
architectures abstraction framework laid out in section 1.7.

Pathfinder

Navigation

Minimal Mobile Maintenance
Augmented Reality

Framework

DWARF
Peer-to-Peer
Middleware

Application Layer:
Pathfinder

Inter-Application Layer:
Navigation

Solution Domain Layer:
Mobile Augmented Reality

Architectural Style Layer:
Peer-to-Peer Computing

Figure 4.1: Architectural style layer chapter

Software architects use a number of styles in the design of software architectures.

73

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Each style is suitable for some classes of problems, but none is a general solution for
all [139]. A goal of this dissertation was to find the appropriate styles for mobile Aug-
mented Reality systems. In section 2.4 we discussed the requirements and design goals
for these systems. They were: development of a service-based framework, connectors
as first-class objects, design by contract, dynamic service lookup, and runtime reconfig-
uration. Therefore we propose to use a contract-based peer-to-peer architectural style.
The main building block of this style are Services which we call DWARF Services. In
the following sections we present this style (section 4.1) and the supporting DWARF
middleware (section 4.2). For the description of the style we follow the outline of
Buschmann et al. in [24].

We introduce a graphical notation for systems based on the proposed architectural
style in section 4.3. This notation is based on UML 2.0 component diagrams.

Finally we describe an example for the implementation of a DWARF Service in
section 4.4

4.1 A Contract-based Peer-to-Peer Architectural Style

A peer-to-peer architectural style allows to build a system configuration from a set of
collaborating peer components or services. To establish a collaboration, each partici-
pating peer specifies to the environment what needs it has, what abilities it can offer,
and how it wants to communicate. We call a collaboration on the base of specified
Needs and Abilities respectively a contract . Actually, there are two types of contracts.
There is one contract between a service that provides an Ability and another ser-
vice that has a Need for that Ability. This contract could be called a Collaboration
Contract. And there is a second contract between a service and the environment: If
the environment can fulfil all Needs of a service, then the service will offer its Abili-
ties. This contract could be called a Requires/Provides Contract. We illustrate this in
figure 4.2.

Example. In 2.1 we describe a scenario for mobile Augmented Reality maintenance
systems. A possible system configuration could include an optical local tracker, a
remote position tracker, and a local presentation subsystem for user output. The
optical tracker and the presentation subsystem communicate over shared memory,
because they must share the incoming video images for image analysis and video
overlay. The remote position tracker and a local tracking manager communicate over
asynchronous CORBA Events.

Context. A (distributed) component-based system with different communication re-
quirements between different component connections, for example a multi-media sys-
tem.

74

4.1 A Contract-based Peer-to-Peer Architectural Style

a:Service

:Need :Ability:Collaboration
Contract

:Environment

e-a:Requires/
Provides
Contract

* 1..*

11

b:Service

e-b:Requires/
Provides
Contract

*

11

1..*

Figure 4.2: The concept of the contract-based peer-to-peer architectural style.
A Service holds two contracts: a Requires/Provides Contract with its
Environment and a Collaboration Contract with another Services over a
Need/Ability pair.

Problem. In the last chapter we learned about the building blocks of Augmented
Reality systems. In a ubiquitous computing environment some of these blocks are local
and some are remote, for example in so called ‘Augmented Reality-ready buildings’
where the building is equipped with sensors for Augmented Reality [79]. A mobile
Augmented Reality system must be adaptable and able to dynamically find services
in the environment. It must optimize the overall system functionality by connecting
matching services on the mobile system and in the environment. It must also deal with
the loss of connection between services, such as when the user leaves a room or turns a
component off in the mobile system. Ideally, the middleware handles services running
on hardware worn by the user and services running on devices in the environment
without difference. The requirement of system adaptability requires a loose coupling
between the services.

As we have shown in section 2.4, Augmented Reality building blocks must commu-
nicate efficiently to meet the real-time requirement for Augmented Reality systems.

75

4 The DWARF Contract-based Peer-to-Peer Architectural Style

The most efficiently communicating system is where every single connection between
communicating components is adapted specifically. The disadvantage is that this often
leads to a mix of heterogeneous communication mechanisms in one system.

:Service

:VRML
Browser

:Service

:Optical
Tracker

:Service
Manager

[CORBA][CORBA]

[CORBA event]Steady State

Setup

peer peermediator

client

server

mediator
11

1

*

1 1

Figure 4.3: Connection layers for efficient communication.
In the setup phase the Service Manager establishes a connection between
two peer Services. In the following steady state phase the Services com-
municate directly without involvement of the Service Manager. In this
example, the Services use a client/server connection over CORBA events.
The server sends events to the client.

Solution. The contract-based peer-to-peer architectural style consists of a combina-
tion of several techniques. Systems are built by distributed services that assemble
themselves into a configuration for a complete system. The functionality for the ser-
vices to find each other and to establish connections is provided by a mediator . A
mediator arranges the Collaboration Contract between the Services.

Specification of contracts between DWARF Services. In a component or service-
based system, services cooperate over the mutual provision of abilities. Traditionally
the possibilities to declare the offered abilities and needed abilities (needs) from an-
other service are restricted to names of interfaces and the signatures of the supported
methods. The declaration of dependencies on the base of exported and imported in-
terfaces does not allow to transport semantic data such as tracking accuracy. A simple
method to transport semantics are the setting of attributes for each ability and predi-
cates for each need. Each service offers a contract to the mediator: when the mediator
fulfils all needs with the required quality, i.e. it establishes connections to all needed
services that meet the predicates and the desired connection type, then the service
provides its abilities, i.e. the mediator can establish connections to the service for
other services.

Support of component-specific communication methods. Traditional middleware tech-
nologies such as CORBA [103] or COM+ [94] do not support heterogeneous means
of communication as we discussed in 2.5.3. But to adapt the system’s transport fa-
cilities to the requirements of the components it is best to let the components select

76

4.1 A Contract-based Peer-to-Peer Architectural Style

Service

**

System

*

Attribute
name
value

Ability
name
type

Need
name
type

*Predicate
name
value

*

Figure 4.4: A System consists of Services. Each Service has Needs and Abilities. A
Need describes a requirement by Predicates. An Ability describes what the
Service can provide for other Services. The quality of service is expressed
by Attributes. Needs of one Service can be satisfied by Abilities of another
Service.

the desired type of connection and let the system establish it. This includes access
to low-level and high-level communication methods such as remote method invocation
and sending events.

Separate system setup and steady state. In the setup phase the mediator looks up all
required services and sets up the connections between them. Then the connected ser-
vices communicate with each other over the established connection specific connectors
(figure 4.3). After the services were started and configured to a system there is only
little need for reconfiguration. Most connections between services stay fixed after they
were established. For example, a local optical tracker sends position updates to a local
display service thirty times per second as long as they are connected. This two-phase
approach combines adaptability with dynamic system reconfiguration by a mediator,
and performance with heterogeneous direct peer-to-peer connectors that by-pass the
mediator.

77

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Service

Need
name
type

Ability
name
type

Connector *
*

* *

Figure 4.5: Model of the contract-based peer-to-peer architectural style.
A Service has Needs and Abilities. Matching Needs and Abilities are tied
over a Connector which provides the required communication means. The
Collaboration Contract of figure 4.2 is modelled as a Connection between
Services.

Structure. A DWARF System consists of a set of Services. A mediator connects
independent DWARF Services at runtime to build a system configuration. Figure 4.4
presents the elements of the architectural style. The mediator as a runtime object is
left out here.

System. In this style a System is a configuration of distributed cooperating Services.
Instead of components we use the term Services because of the integration of Services
provided by devices in the environment.

Services. Services are the building blocks of systems. They are similar to compo-
nents as they are used like components to compose a system but they are different to
components in one aspect. A component is a software construct that is instantiated
to be used in the context of one system. A Service is instantiated at some time to be
used by many clients.

Needs and Abilities. Needs and Abilities model the offers of a Service to other
Services and the requirements from other Services. When the Needs of a Service can
be fulfilled, then the Service can offer its Abilities. A match of a Need by an Ability
leads to a Connection between the Services. An Ability might be used by several
needing Services.

Attributes. To refine the specification of an Ability attribute/value pairs can be
used. For example, a Tracking Service could provide an Attribute update rate with
the value 30.

Predicates. Predicates are used for the selection of a Service. Needs have Predi-
cates that are applied over the Attributes of the Abilities to select a matching one.

78

4.1 A Contract-based Peer-to-Peer Architectural Style

In the example above, the Need of a Rendering Service could provide the predicate
update rate>=30.

Connectors. Connectors are first class elements. They allow to specify the desired
communication mechanisms and instantiate the corresponding system communication
resource. Usually connectors are solely handled by the runtime system without pos-
sibility to intervene by the involved services. In figure 4.5 the model is enhanced by
a Connector. Ability and Need have a reference to Connectors. To decide when to
model something as a Need and when to model it as an Ability, consider on which side
of the communication an actor is on. Thus, it is natural to model a head-mounted
display as needing position data, since this data is used to generate output for the user.
On the other hand, a printing Service has the Ability to accept print jobs, since the
user has documents that he wants to print out. This example shows that the direction
of data flow does not necessarily coincide with the direction of a dependency between
two Services.

Following the ‘where is the actor’ guideline, a Service’s Need in one application
may become an Ability in another. For example, when a user watches a television
show, his television needs images to display in order to make the user happy. During
commercials, this changes. The viewer actor would be happier without commercials,
but the television has the Ability to show images, which another actor, the advertiser,
is paying for.

If the middleware is aware of this kind of distinction, it makes it easier to design
applications around fulfilling the user’s desires.

Related work. The contract-based peer-to-peer architectural style is a new combina-
tion of several well-known techniques.

The Peer-to-Peer architectural style has been used in many systems. Prominent
examples are change platforms, examples involve the file sharing platform Gnutella [72]
and SUNs peer-to-peer framework JXTA [49].

There are several component models available for component-based software engi-
neering. The most prominent are the CORBA Component Model, Microsoft .NET,
Sun Java ONE. We presented them already among several approaches from research
in section 2.5.3. These models enable ubiquitous computing with distributed software
components. The DWARF contract-based peer-to-peer style is not directly supported
by these models. Our style complements them and could be added to each of them.

Using components and connectors as first class objects is an established technique
in component-oriented software engineering research. Several authors use this concept
in their respective version of an architecture specification language (we gave several
examples in section 2.4). The described style uses this approach not only for specifica-
tion purposes but also for connector objects at runtime. Connections are not created
by the components themselves but by the runtime environment.

The Mediator Pattern is a well-known pattern in pattern literature [45]. We use it

79

4 The DWARF Contract-based Peer-to-Peer Architectural Style

for decoupling individual DWARF Services.
Design by contract was firstly introduced by Bertrand Meyer [91]. He uses it to

specify assertions on objects in Eiffel. We use a modification of this paradigm. A
service offers a contract to the mediator and not directly to other services. This
contract offer is used at runtime to establish a connection to other services.

4.2 The DWARF Peer-to-Peer Middleware

So far we have discussed the contract-based peer-to-peer architectural style for the
design of mobile Augmented Reality systems. It gives the basic outline for the design
of a system and specifies which component types a developer can use for the system
design. Now we will address the DWARF middleware that implements this style.

In the specification of the architectural style in section 4.1 we use the abstract
class Environment which acts as a mediator between the individual services. The
responsibilities of this abstract class are taken over by the DWARF middleware. The
particular responsibilities are recorded by several use cases in section 4.2.1, and an
analysis of the functional and non-functional requirements (sections 4.2.2 and 4.2.3).

This analysis is followed by an object model of the DWARF middleware 4.2.4 and
the system design. The DWARF middleware consists of several subsystems for the
individual tasks of the middleware (section 4.2.5). It coordinates between matching
services and sets up the communication. It uses descriptions of the individual services
and their communication needs to do that automatically. For example, a Display
Service and a Tracking Service can be connected together without user interaction.

Finally we describe several possible deployment strategies for the middleware (sec-
tion 4.2.6) and persistent Service descriptions on the base of XML (section 4.2.7). The
DWARF middleware is implemented on the top of CORBA which allows the variable
deployment of the middleware.

4.2.1 Use Cases

The following use cases describe the functional model of an Augmented Reality system
based on Needs and Abilities. Figure 4.6 shows the relationships between use cases.

The first two use cases are from the point of view of a Service, which is started
manually and needs data from other Services to operate.

Use case name: StartManually

Participating actor: Initiated by User

Communicates with Service

Flow of Events: 1. Entry condition: The User starts the Service manually by
starting the appropriate executable.

80

4.2 The DWARF Peer-to-Peer Middleware

DWARF Middleware

User

UseNewService

UseOtherService

LostConnection

ManualShutdown

Establish
Communication

StartOnDemand

StartManually DescribeService

SatisfyNeeds

UseAbilities

Service

Administrator

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

NoLongerNeeded

Figure 4.6: Use cases for the DWARF peer-to-peer middleware.
The dashed arrows indicate “includes” relationships between use cases; the
solid lines indicate use cases being initiated by actors.

2. The Service checks whether the middleware has a Service de-
scription with its name, i.e. whether it has been described by an
Administrator using the DescribeService use case.

3. If there is no such description yet, the Service describes itself
to the middleware using an appropriate interface.

4. The Service registers itself by name.
5. The SatisfyNeeds use case is invoked to satisfy the Service’s

Needs.
6. Exit condition: If the Service’s Needs can be satisfied, the mid-

dleware tells it to start running.

Once the Service has registered itself with the middleware, the middleware will try to
fulfil the Service’s needs.

Use case name: SatisfyNeeds

Participating actor: Initiated by consumer:Service

Communicates with suppliers:Services

81

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Flow of Events: 1. Entry condition: The consumer is a Service that needs data from
another Service in order to operate. It has been loaded and has
registered itself with the middleware, using the StartManually
or StartOnDemand use case.

2. The middleware attempts to find other Services that can de-
liver the data this Service needs. If necessary, it starts them on
demand with the StartOnDemand use case.

3. For each Need of the consumer Service that the middleware satis-
fies, it establishes communication between the appropriate sup-
plier and the consumer, using the EstablishCommunication use
case.

4. Exit condition: The Service is connected to enough other Ser-
vices to satisfy all of its Needs, provided that enough other Ser-
vices are available.

The next three use cases reflect what happens on the other end: a Service is started
on demand, and one of its Abilities is used. For the Service to be started on demand,
it must first be described by an administrator.

Use case name: DescribeService

Participating actor: Initiated by Administrator

Communicates with —
Flow of Events: 1. Entry condition: The Administrator places a valid XML Ser-

vice description in a specified directory for the middleware.
2. Exit condition: The middleware loads the Service description

and can now start the described Service on demand.

Now that the Service has been described, it can be started when its Abilities are needed
by other Services.

Use case name: StartOnDemand

Participating actor: Initiated by firstConsumer:Service

Communicates with supplier:Service

Flow of Events: 1. Entry condition: The supplier is a Service that can deliver data
to other Services. The Service has previously been described by
an administrator, using the DescribeService use case. Enough
other Services are available to satisfy all needs of the supplier
Service. A firstConsumer Service needs data that the supplier
can supply, and has also been started and registered with the
middleware.

2. The middleware loads the supplier, using the executable file

82

4.2 The DWARF Peer-to-Peer Middleware

specified in the Service description.
3. Exit condition: The Service registers itself with the middleware

by name.

Once the desired Service has been started, its Needs are satisfied, and then it can offer
its Abilities to other Services.

Use case name: UseAbilities

Participating actor: Initiated by firstConsumer:Service

Communicates with supplier:Service

Flow of Events: 1. Entry condition: The supplier is a Service that can deliver
data to other Services. It has been loaded and has registered
itself with the middleware, using the StartManually or StartOn-
Demand use case. Enough other Services are available to satisfy
all needs of the supplier Service. A firstConsumer Service
needs data that the supplier can supply, and has also been
started and registered itself with the middleware.

2. The middleware satisfies all of the supplier’s needs, using the
SatisfyNeeds use case.

3. The Service is notified that it should start operating.
4. The middleware establishes communication between the sup-

plier and the firstConsumer, using the EstablishCommunica-
tion use case.

5. Exit condition: The Service is running and can provide its re-
quested Ability to the consumer.

When a Service’s Abilities are no longer needed, the middleware can shut it down.

Use case name: NoLongerNeeded

Participating actor: Initiated by lastConsumer:Service

Communicates with supplier:Service

Flow of Events: 1. Entry condition: At least one Ability of the supplier is being
used, as per the UseAbilities use case. The last consumer using
this Ability, lastConsumer, disconnects.

2. The middleware waits for a timeout specified in the Service de-
scription so that other consumers can reconnect to the Ability.
If another consumer connects again during this time, this use
case ends.

3. The middleware disconnects the Needs of the supplier from all
other Services.

83

4 The DWARF Contract-based Peer-to-Peer Architectural Style

4. The middleware frees the communication resources used by the
Service.

5. The middleware notifies the Service that it should stop running.
6. Exit condition: The Service unregisters itself from the middle-

ware and terminates.

Of course, a Service can be shut down by the user, as well.

Use case name: ManualShutdown

Participating actor: Initiated by User

Communicates with Service

Flow of Events: 1. Entry condition: The User instructs the Service to shut down.
2. The Service unregisters itself from the middleware and termi-

nates.
3. The middleware frees the communication resources used by the

Service.
4. Exit condition: For any Services that were using this Service’s

Abilities, the LostConnection use case is used.

The next two use cases deal with the middleware’s dynamic behaviour when the user
roams around in an intelligent environment. First, a new Service can be used in
addition to an old one.

Use case name: UseNewService

Participating actor: Initiated by User

Communicates with newSupplier, consumer:Service

Flow of Events: 1. Entry condition: All needs of the consumer Service have been
satisfied, using the SatisfyNeeds use case. The consumer’s Ser-
vice description allows the Need to be satisfied more than once
(e.g. a Tracking Manager that can combine multiple position
data inputs). The User enters a new wireless network, where
the middleware finds a newSupplier that can satisfy one of the
consumer’s needs.

2. The middleware establishes communication between the new-
Supplier and the consumer, using the EstablishCommunication
use case.

3. Exit condition: The consumer can use the Abilities of the new-
Supplier.

Second, a new Service can be used instead of an old one.

Use case name: UseOtherService

84

4.2 The DWARF Peer-to-Peer Middleware

Participating actor: Initiated by User

Communicates with newSupplier, oldSupplier, consumer:
Service

Flow of Events: 1. Entry condition: The consumer is currently using the oldSup-
plier to satisfy one of its Needs. The user either enters a new
wireless network, where the middleware finds a newSupplier
that can satisfy one of the consumer’s needs better than the
oldSupplier, or the oldSupplier is disconnected.

2. The middleware disconnects the oldSupplier from the con-
sumer. This can lead to the NoLongerNeeded use case being
used for the oldSupplier.

3. If necessary, the middleware starts the newSupplier with the
StartOnDemand use case.

4. The middleware establishes communication between the new-
Supplier and the consumer, using the EstablishCommunication
use case.

5. Exit condition: The consumer can use the Abilities of the new-
Supplier.

If a connection is lost, the middleware notifies the Services depending on it.

Use case name: LostConnection

Participating actor: Initiated by User

Communicates with oldSupplier, consumer:Service

Flow of Events: 1. Entry condition: The consumer is currently using the oldSup-
plier to satisfy one of its Needs. The connection is lost when
the User leaves the wireless network.

2. The middleware notifies the consumer of the lost connection.
3. If a new supplier is available that can satisfy the consumer’s

need, the UseOtherService use case is used.
4. Exit condition: If a new supplier is available, the consumer can

use its Abilities.

The last use case is never initiated directly by actors; it is included by other use
cases.

Use case name: EstablishCommunication

Participating actor: Initiated by other use cases
Communicates with supplier:Service, consumer:Service

Flow of Events: 1. Entry condition: The supplier and consumer Services have
both been loaded and have registered themselves with the mid-

85

4 The DWARF Contract-based Peer-to-Peer Architectural Style

dleware. The consumer has a Need that the supplier has a
matching Ability for.

2. The middleware sets up the necessary communication resources
for communication. This can be, for example, an event chan-
nel, a shared memory block or a remote interface reference. The
choice of communication resources depends on the Service’s pref-
erences and their location in the network.

3. If this is the first consumer to be connected to the supplier,
the middleware notifies the supplier that its Ability is desired,
and supplies it with the properly configured communication re-
sources. Otherwise, the supplier is not notified.

4. The middleware notifies the consumer that its Need can be satis-
fied, and supplies it with the properly configured communication
resources.

5. Exit condition: The supplier and consumer Services are both
connected to the communication resources and can communicate
with one another.

4.2.2 Functional Requirements

The DWARF middleware has to realize the coupling of the distributed services to build
a configuration of services. In particular the services have to be located, connected,
and managed.

Locate Services

One main area of functionality for the middleware is locating services. Note that the
term location refers to logical locations such as network addresses, not to physical
positions.

Advertise Services DWARF Services have Abilities that they offer to other Services.
For example, trackers provide position data. The middleware must advertise
these Services on the network so that other Services can find and use them.

Discover Services Conversely, the middleware must discover Services that have been
advertised, so that the head-mounted display, for example, can receive position
data from a tracker.

Abstract Description of Services In order to reduce coupling between the individual
DWARF Services, the Services should access each other only through well-defined
interfaces. The middleware can maintain an abstract description of each DWARF

86

4.2 The DWARF Peer-to-Peer Middleware

Service, including the interfaces it supports and what kind of other Services it
depends upon. Aside from formalizing the dependencies between Services, this
also allows the middleware to start Services on demand, since it knows details
of the DWARF Services from the Service descriptions before a Service actually
runs.

Expose Needed and Provided Quality of Service For the real-time requirement on
Augmented Reality, it is important that the position data are accurate and
have a low temporal lag. This can be described in quality-of-service attributes
of Abilities and quality-of-service predicates of Needs. The middleware must be
able to use the attributes, to find the Services that meet the predicates best. The
attributes can be static (such as the resolution of a video camera) or dynamic
(such as the current accuracy of a GPS device),

Roaming and Handover In mobile systems, new Services can become available and
the connection to old ones can be lost. These situations are not exceptions but
the normal case for mobile systems. To avoid user interventions, the middleware
must be able to handle these situations autonomously by changing the current
Service configuration dynamically. For example, when the user walks out of the
range of one video camera, another camera should take over.

Connect Services

Once Services have been located, they can communicate with one another with support
from the middleware. Again, this functionality can be divided up:

Manage Communication Resources The middleware should provide a general mech-
anism for managing communication resources. This way, neither one of two com-
municating Service have to deal with allocating event channels, network sockets,
etc., making implementation of the DWARF Services easier. Additionally, this
allows the middleware to configure the communication resources in order to op-
timize the communication in a group of Services—for example, by migrating an
event service from one network node to another.

Extendable Communication Support One of the design goals in section 2.4 was the
support of various communication means to be able to select the best one between
the respective Services.

Event-based communication is flexible, since it frees the sender from having to
know who will receive the event, and the receivers from having to know who
sent it. It is a useful mechanism where small chunks of information do not have
to be sent reliably to one or several receivers, for example Position events. The
DWARF middleware must provide a mechanism for event-based communication.
It also must manage the publish-and-subscribe mechanism for events, so that the

87

4 The DWARF Contract-based Peer-to-Peer Architectural Style

individual Services do not have to implement this themselves. The reason is that
the middleware also manages the autonomous connect and disconnect between
Services.

Remote method calls. To support access to complex services, in particular non-
stateless services, the calling of methods on remote objects must be supported.
For example, a World Model Service could be realized as a CORBA server.

Extensibility to other communication methods. In order to keep the middleware
open to future requirements it should be extendable for additional communica-
tion methods, such as shared memory blocks (when two Services are on the same
host) or streaming video.

Manage Services

After locating Services and connecting them, the Services have to be managed at
runtime.

Starting and Stopping Services The middleware should be able to offer Services’ abil-
ities on the network even when the Services are not running, and start the Ser-
vices on demand when other Services need them. Analogously, the middleware
should be able to shut Services down when they are no longer needed.

Service Status Information The middleware must provide a mechanism to gather sta-
tus information on the Services. This information is needed for monitoring and
control purposes. For example, for decisions about Service exchange due to de-
creasing quality of service.

4.2.3 Non-functional Requirements

The DWARF middleware has to make a trade-off between two contradicting require-
ments: efficiency and flexibility. On the one side it must support the Augmented
Reality real-time requirement and on the other side it must provide the flexibility for
combining wearable computers and intelligent environments (see the design goals in
section 2.4). Additionally, the middleware must be very stable.

The middleware has a central role in setting up and maintaining system configura-
tions from a set of Services. The middleware must be able to arrange for communi-
cation between a wide variety of Services and under a wide variety of circumstances.
For that the middleware must additionally provide high stability,

Low Latency The event-based communication that the middleware supports must
have a very low latency, so that position data can be transmitted from the
trackers to the head-mounted display quickly enough that the user does not be-
gin to feel sick. Not all events have to have this low latency, but a position event

88

4.2 The DWARF Peer-to-Peer Middleware

should not require more than 15 milliseconds (equivalent to half a video frame
at 30 frames per second) from the time the tracker sends it until the time the
display receives it.
Of course, the non-event-based communication should be fast as well.

Throughput The middleware must be able to handle fairly large volumes of data in
communication. For example, if an external server does the image processing, the
video image must be transferred from the clients camera to the server efficiently.
Example systems are UbiCom [113] and STAR [142].

Fault Tolerance The Augmented Reality system must be able to tolerate failures of
network connections that are frequent in mobile environments. Indeed, it should
shield the Services from these failures as much as possible and perform seamless
handover 1.

Robustness The middleware will connect Services together that it may never have
known about before, such as when a mobile user walks into a new intelligent
building. In the case that one such Service fails, the middleware must be able to
deal with it, so that the other Services can continue running. Where possible,
the middleware must shield the other Services from the failure by either starting
replacement Services or caring for a graceful shutdown of dependent Services.

Reliability The middleware must perform its tasks reliably, which means that it must
not connect Services that do not match. If it tries to supply a printer with
position data from a voice recognition system, neither side will work properly.

Scalability The middleware should be able to support a network of mobile computers.
The design should be scalable so that the middleware can run on large networks
with many mobile (wearable) terminals.

Ad hoc Connectivity When a user walks through a room with an ad hoc wireless net-
work, the middleware should be able to (briefly) establish a connection between
the wearable system and stationary Services. This allows the user to collect
information from the environment while walking by.

4.2.4 Object Models

The object model for the DWARF middleware refines the general model given by the
contract-based peer-to-peer architectural style (section 4.1).

1This non-functional requirement leads to the important design decision of distributing the middle-
ware

89

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Services

A Service can be started and stopped by a user or by the middleware, as in the use
cases StartManually and StartOnDemand . It is registered with the middleware, so it
can advertise its functionality to other Services, and find the external functionality it
needs. Services can be stopped manually or when they are no longer needed, as in
ManualShutdown and NoLongerNeeded .

Services are not sub classed into “supplier” and “consumer” Services, even though
these roles show up in the use cases. This simple division would limit the modelling
power of the middleware: we have to be able to model Services that can play both
roles simultaneously. This is accomplished by the next two objects identified.

Needs and Abilities

Following the structure of the contract-based peer-to-peer style, a Service can have
zero or more Needs, and zero or more Abilities (shown in figure 4.5).

For example, an Optical Tracker Service attached to a digital video camera might
have the following Needs and Abilities (figure 4.7).

• the Ability to provide position data,

• the Need for updates on context changes,

• and a Need for a description of the world that it is supposed to recognize.

OpticalTracker
:Service

WorldModel
:Need 1

PositionData:
Ability

1

ContextData
:Need

1

Figure 4.7: Object model of an Optical Tracker Service with two Needs for context
data and a world model and one Ability for the provision of position data.

The middleware must satisfy the Needs of all Services with the Abilities of others.
Thus, at any given time, the middleware must maintain a dependency graph between
Services, as shown in Figure 4.8 on the facing page. This is where the middleware
performs most of its work, as described in the use cases SatisfyNeeds, UseAbilities,
UseNewService, UseOtherService, and LostConnection.

In addition, the middleware can start and stop Services on demand, since it knows
when a Service is needed by others, and when a Service’s Needs are satisfied.

90

4.2 The DWARF Peer-to-Peer Middleware

OpticalTracker:
Service

PositionSender
:Ability

PositionReceiver:
Need

VRMLDisplay:
Service

MarkerInfo:
Need

VRMLModels:
Need

WorldModel:
Ability

WorldModel:
Service

<<uses>> <<uses>>

<<uses>>

Figure 4.8: Example dependency graph between Services. A VRML-based three-
dimensional display Service needs models of real and virtual objects to
display, which come from the World Model Service. It also needs position
data from the Optical Tracker, which in turn depends on the World Model
as well for descriptions of markers to recognize.

Service Descriptions

Even when a Service is not running, it can be described. Parts of this description
are hard-coded into the Service itself, and parts can be adjusted according to the
application the Service belongs to.

In other middleware systems, this description is often implicit, i.e. coded into the
Service. If, however, this description is formalized as a Service Description class, it
can be given to the middleware by an administrator (use case DescribeService). This
conserves resources by letting Services be located before they are started, and also
makes it possible to package Services as well-described stand-alone components. A
Service Description can include the following information:

• a Service’s Abilities, i.e. the functionalities it provides

• a Service’s Needs, i.e. functionalities of other Services that this Service depends
on

• quality-of-service information (as attributes)

• attributes of the Service, such as a printer’s paper size

• supported communication protocols

• how to start the Service, e.g. command line.

91

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Figure 4.9 shows the currently supported model for Service Descriptions. A Service
Description links to Descriptions of all Needs and Abilities of the Service. Each Need
and Ability Description links to Descriptions of all supported Connectors.

ServiceDescription
name
startCommand
startOnDemand
stopOnNoUse
attributes

Need
Description

name
type
predicates
minInstances
maxInstances

Ability
Description

name
type
attributes

Connector
Description

protocol

**

*

Figure 4.9: Model of Service, Need, Ability, and Connector Descriptions. A Service
Description links to Descriptions of all Needs and Abilities of the Service.
Each Need and Ability Description links to Descriptions of all supported
Connectors.

Some elements of this description are static (e.g. pages per minute) and can be
queried even when the Service is not running, others can change dynamically while
the Service is running (e.g. amount of toner remaining or number of pending print
jobs). The middleware must provide a mechanism for these attributes to be accessed
in a uniform fashion.

Communication Resources

There are many different ways that Services can communicate with one another. This
includes different basic communication methods such as notifications, sockets and
shared memory. Entity Objects involved here are communication resources such as
notification channels, shared memory blocks, and sockets(4.10).

For each supported communication resource Connectors for each side of a connection

92

4.2 The DWARF Peer-to-Peer Middleware

Communication
Resource

SharedMemory Socket Notification CorbaObjRef

Figure 4.10: DWARF is open to support different communication methods such as
notifications, sockets and shared memory.

must be provided. Currently DWARF provides connectors for CORBA object refer-
ences and structured notifications over the CORBA Notification Service (figure 4.11).

Connector

CorbaObj
Exporter

CorbaObj
Importer

NotifyStructured
PushSupplier

NotifyStructured
PushConsumer

Figure 4.11: For each supported communication resource a pair of corresponding con-
nectors must be provided, for example, export and import connectors for
CORBA objects references and push suppliers and consumers for CORBA
notifications.

Service Manager

Each Service must be able to access the middleware. In order to give the DWARF
middleware a coherent interface, we defined an object called the Service Manager .

Upon start-up, a Service registers itself with the Service Manager, from where it can
gain access to all of the DWARF middleware’s functions. The Service Manager must
know the Service descriptions for the Services that register themselves with it. If the
Service Manager has not received the Service description in the form of an XML2 file
from an administrator, the Service must describe itself upon start-up.

2eXtensible Markup Language

93

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Connectors

In the use case EstablishCommunication, the middleware needs to be able to deal with
the various communication protocols the Services use.

Since the DWARF middleware is supposed to be extensible to support many differ-
ent protocols, we have encapsulated the functionality for establishing and managing
communication into Connectors.

The middleware creates Connectors when Services want to communicate with one
another. These allocate and configure the necessary communication resources on both
ends of the connection. The Services can access the communication resources (event
channels, shared memory blocks) through the Connectors, and use them to communi-
cate with one another. This is shown in figure 4.12.

OpticalTracker:
Service

PositionSender:
Ability

VRMLDisplay:
Service

PositionReceiver:
Need

:Communication
Resource

:Connector:Connector

informs informs

configures configures

cooperates
with

communicates
using

communicates
using

Figure 4.12: Communication between Services using Connectors.
A VRML display receives Position Data from an Optical Tracker. The
data is sent using some communication resource (such as an event chan-
nel). This is configured by two cooperating connectors. The two Services
receive information about the communication resources from their Con-
nectors, so they do not have to know each other directly.

The abstract Connector interface encapsulate different protocols over sub classing
and makes the middleware much more extensible, since protocol-specific connectors
can be added later. Connectors also reflect the control flow in the use case Estab-
lishCommunication as Services do not actively request connections to other Services.
Instead, the middleware establishes a connection and delivers information about this
connection to the Service. This information is encapsulated in a Connector.

94

4.2 The DWARF Peer-to-Peer Middleware

Active Service Descriptions

When a Service becomes active, the middleware needs to keep track of it. A simple
Service Description is not enough for this—we need an Active Service Description.
This object knows the description of a Service and acts on its behalf. It coordinates
the rest of the middleware functionality in satisfying the Needs of a Service and offering
its Abilities to other Services. It encapsulates the functionality of the Service life cycle,
described on page 104.

4.2.5 System Design

The last section analyzed the requirements for the contract-based peer-to-peer archi-
tectural style. Based on these findings this section covers the system design of the
DWARF middleware components. From an AR system’s point of view, the basic func-
tionality is that of a mediator from the mediator design pattern, but additional steps
were necessary to make this functionality available in a distributed system.

Distributed Mediating Agents The use of the mediator pattern for the middleware
in the DWARF system has one obvious disadvantage for distributed systems: the
mediator has to know all other subsystems that it connects. The consequence is that
it could become a central component that cannot easily be distributed onto different
network nodes. This would limit the user’s ability to turn off arbitrary hardware
components—if the mediator is turned off, the whole system falls apart. It would also
break the robustness design goals.

The solution for this problem is to extend the mediator to a Distributed Mediating
Agent .

In software technology the term agent is used in different ways. Here, we use it
to mean software components running on the various computers in a network that
proactively communicate with one another on behalf of other components.

It turns out that the functionality of mediating between the DWARF Services can
be achieved just as well by distributed mediating agents as by a central mediator.
These local mediating agents obviously have to communicate with one another, on
a peer-to-peer basis, in order to set up communication between Services running on
different nodes of the network. Services that use the mediating agents see these agents
collectively as a single mediator.

The middleware that we have designed is active, in that the mediating agents proac-
tively search for other Services, create connections, start and stop Services.

Subsystem Decomposition

The Mediating Agents of the DWARF middleware can be divided into three distinct
subsystems for service management, location, and communication as shown in fig-

95

4 The DWARF Contract-based Peer-to-Peer Architectural Style

ure 4.13.

TrackingModule:WindowsNotebook DisplayModule:LinuxNotebook

Tracker Communication

ServiceManager Location

Communication Display

Location ServiceManager

Figure 4.13: Subsystem decomposition of the DWARF middleware.
On each DWARF system there are a Service Manager, a Communication,
and a Location subsystem. The DWARF Services communicate only with
the Service Manager which acts as a facade. The display needs position
data, which the tracker can deliver. The Communication and Location
subsystems communicate across network boundaries, the Service Manager
and the DWARF Services do not.

Communication Subsystem Encapsulates the functionality of communication between
known Services. This includes network communication, but also interprocess
communication on single machines.

Location Subsystem Advertises and finds Services that are distributed over the net-
work, so that they can communicate with one another. Note that the term
location refers to logical locations such as network addresses, not to physical
positions.

Service Manager Maintains descriptions of active and inactive Services. Starts and
stops Services on demand. Coordinates between communication and location
subsystems and the DWARF Services.

There are several reasons for the decomposition into three subsystems.
The middleware has two main functions, finding Services and letting them commu-

nicate. These two functions have widely different requirements: communication has to
be fast (especially for AR), whereas location has to be flexible. By using two different
subsystems for communication and location, these competing functionalities are sepa-
rated into distinct subsystems. This makes it possible to optimize separately for speed

96

4.2 The DWARF Peer-to-Peer Middleware

and for flexibility, and to use different existing components for Service location and
communication between Services, e.g. the Service Location Protocol and the CORBA
Notification Service.

Separating these two subsystems from the rest of the middleware also separates
the subsystems that use network communication from those that do not. Thus, only
the communication and location subsystems have to deal with low-level network com-
munication and problems such as loss of connectivity. The Service Manager and the
other DWARF Services only communicate locally, making them both simpler and more
reliable.

The rest of the middleware is part of the Service Manager. It needs to coordinate
between the DWARF Services, the communication subsystem and the location subsys-
tem. This includes managing Service descriptions, starting Services, and so on. In the
future, it might be desirable to further decompose the Service Manager into smaller
subsystems (such as storage of Service Descriptions).

The objects of the models in section 4.2.4 are distributed into the three subsys-
tems. The location subsystem does not contain any problem-domain objects, since the
decision to create a separate location subsystem was made after requirements analysis.

Communication Subsystem

The communication subsystem (figure 4.14) encapsulates the functionality of communi-
cation between Services. It manages communication resources such as event channels,
shared memory blocks and TCP3 sockets.

The design of the communication subsystem follows the abstract factory design pat-
tern. Connectors for various communication protocols are created by Connector Facto-
ries. There is one Connector Factory for each communication method, for example, one
for the CORBA Notification Service and one for the exchange of CORBA interfaces.
The Connectors have a common interface, but specialized Connector Factories may
have additional protocol-specific interfaces. A Service must know the protocol-specific
interface of the particular Connector type to be able to use it.

Connectors The communication subsystem, i.e. a Connector Factory creates Con-
nectors when instructed to do so by the Service Manager. A Connector manages
communication resources at one end of a connection between one Service’s Need and
another Service’s Ability. The Service Manager can actively tell the Connector to
connect to another Service, or it can tell it to passively wait for incoming connections.
Once a connection has been established, the Service Manager passes the Service’s Need
or Ability a reference to the Connector.

The Service’s Need or Ability then determines the protocol that the Connector sup-
ports, and extracts a reference to the protocol-specific communication resources from

3Transmission Control Protocol

97

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Connector
Factory

createConnector (type)
supportsType (type): boolean

RegisterConnector
Factories

addConnectorFactory
removeConnectorFactory

Service
Manager

CorbaObj
ConnectorFactory

Notify
ConnectorFactory

Connector
type
protocol

Protocol
Connector

setConnectCallback
connectTo (location)
destroy

Ability
Connector

NeedInstance
Connector

1 1
*

create

Figure 4.14: Communication subsystem.
The classes of this subsystem are highlighted. A protocol-specific Connec-
tor Factory creates Connectors of the supported type. For each connection
side, an Ability Connector and a Need Instance Connector respectively
hold the Connection instance in behalf of an Ability or a Need respec-
tively. Connector Factories that can establish connection must register
with the Service Manager over the Register Connector Factories interface.

the Connector. It then accesses these communication resources directly, bypassing the
Connector, to communicate with the other Service. The Service thus must be able
to “speak” the protocol itself, but it does not have to deal with managing the infras-
tructure, e.g. allocating event channels or shared memory blocks. DWARF Services
can access non-DWARF systems and vice versa, as long as a standard communication
protocol, e.g. HTTP4, is used.

A Service only receives one Connector per protocol for an Ability, even if more than
one other Service connects to it to use that Ability. In contrast, a Service receives
multiple Connectors for a Need if the Need is satisfied by connecting to multiple other
Services.

The data flow between two Services goes directly through the communication re-

4Hypertext Transport Protocol

98

4.2 The DWARF Peer-to-Peer Middleware

sources (event channels), once it has been set up by the Connector. The DWARF
middleware thus causes no extra overhead once the connection has been established.
Figure 4.3 illustrates this concept. This makes communication flexible and fast at the
same time.

Since Connectors can be created before the Service is running, the middleware can
accept connections on behalf of a Service and only then start the Service, saving
resources.

Location Subsystem

The location subsystem (figure 4.15) provides the basic functionality of locating Ser-
vices. This level of abstraction allows to use existing Service location technology (e.g.
SLP) for the implementation.

ServiceLocator

registerOffer (serviceID,type, offer)
registerRequest (serviceID,type,predicate,request)
unregisterOffer (offer)
unregisterRequest (request)
unregisterAllOffers (serviceID)
unregisterAllRequests (serviceID)
doQuery

LocatorRequest

found
(location,attributes)

LocatorOffer

getLocation: location
query: attributes

Need
Description

name
type
predicate
minInstances
maxInstances
connector

ActiveNeed
Description

Ability
Connector

**offers requests

Service
Manager

ActiveAbility
Description

InstanceNeed
Descriptor

**

Ability
Description

name
type
attributes
connector

Figure 4.15: Location subsystem.
A Service Locator interface must be implemented by every component
that provides Service lookup. It manages Service offers and Service re-
quests in form of Locator Offer and Locator Request interfaces. These are
call-backs to query for provided attributes and to inform about matching
offers.

Thus, the location subsystem does not know about communication protocols, con-

99

4 The DWARF Contract-based Peer-to-Peer Architectural Style

nectors, Services, Needs, or Abilities. It simply deals with Offers and Requests.

Offers consist of a location and a set of attributes, and

Requests are predicates over these attributes.

The location subsystem periodically tries to find Offers to match its Requests, either
from among its own Offers or by using network service discovery mechanisms to find
Offers that other location subsystems have advertised.

The Service Manager creates Offers and Requests from each Service’s description
and registers them with the Service Locator. It maps a Service’s Abilities onto Offers,
telling the location subsystem to advertise these on the network. Analogously, it maps
a Service’s Needs onto Requests, which the location subsystem tries to answer. An
Offer is registered as Locator Offer, a Request as Locator Request which are call-backs
to query for provided attributes and to inform about matching offers.

The communication protocol between the location subsystems is one main method
of communication between the mediating agents on different network nodes. The two
Service Managers do not communicate directly with one another. An example for a
Service Locator is a wrapper service around an SLP Directory Agent.

The simple model of Offers and Requests that the location subsystem uses makes
it easier to implement, because existing service location technologies use this model.
Also, the location subsystem’s functionality is broad enough so that the Service Man-
ager itself does not have to match up Needs and Abilities, simplifying the design of
the Service Manager. Direct communication between the Service Managers of differ-
ent mediating agents would not provide large enough benefits to make it worth the
additional complexity.

Service Manager

For the interface of the Service Manager we used the Facade design pattern. The
interface of the Service Manager provides the central access point of the DWARF
middleware for DWARF services. When a DWARF Service starts up, it must find the
Service Manager, but once it finds that, it can access all other middleware functionality
over the Service Manager, which provides operations to describe DWARF Services,
register and connect them.

Figure 4.16 shows the layout of the Service Manager subsystem. The Service Man-
ager holds a set of Active Service Descriptions, as identified on page 95. An Active
Service Description exists throughout the life cycle of a Service and represents the
Service within the Service Manager. It holds a state which reflects the state of the
represented Service (as shown in 104).

Coordination The Service Manager coordinates the other subsystems. It creates
Requests and Offers in the location subsystem to satisfy a Service’s Needs and to make

100

4.2 The DWARF Peer-to-Peer Middleware

ServiceManager

DescribeServices
Attributes
Attributes
newServiceDescription
getServiceDescription
deleteServiceDescription
activateServiceDescription

RegisterServices

registerService
unregisterService

Register
Connector
Factories

addConnectorFactory
removeConnectorFactory

ActiveService
Description

registerNeed
registerAbility

ActiveNeed
Description

ActiveAbility
Description

*

Service
Description

name
startCommand
startOnDemand
stopOnNoUse
newNeed
getNeed
deleteNeed
newAbility
getAbility
deleteAbility

Need
Description

Ability
Description

Figure 4.16: Service Manager subsystem.
The Service Manager is the facade of the subsystem and implements the
interfaces for the middleware functionality: Describe Service to create
new Service Descriptions, Register Service to activate already described
Services and Register Connector Factory to register a new Connector
Factory. Inactive Services, i.e. described but not yet registered Services,
are managed in a list of Service Descriptions, registered Services in a list
of Active Service Descriptions.

its Abilities available to other Services. It instructs the communication subsystem to
connect the Services together that the location subsystem locates.

Description and Registration An administrator can describe a Service before the
Service is started. Services are described by creating Service Descriptions, which de-
scribe a Service’s attributes, its Needs and Abilities, and the communication protocols
it supports.

When a Service starts, it registers itself with the Service Manager, which then
associates the running Service with its stored description.

101

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Starting and Stopping The Service Manager can create connectors for a Service’s
Abilities before the Service is started. When such a Connector is connected to, the
Service Manager can start the Service, potentially loading it across the network. When
all other Services have disconnected themselves from the Service’s Abilities, the Ser-
vice Manager can shut down the Service. This start-on-demand and stop-on-no-use
mechanism conserves resources.

Dynamic Models

We explain the collaboration between a DWARF Service and the middleware with
UML collaboration diagrams. The first diagram shows the course of action for a
Display Service that needs Position Data. The second diagram shows the opposite
side, a Tracker Service that provides Position Data.

In the first example, the display has not been described to the middleware yet. This
description can be done by the administrator in advance or it must describe itself after
the registration. In the second example, the tracker is described to the middleware by
an administrator so it can be started on demand.

Note that these two scenarios are complementary: when Alice starts the display, the
middleware finds and starts the tracker automatically. This could be modelled in one
large collaboration diagram, but to keep things simple, we have used two smaller ones.

Note also that the interactions shown here do not include the details of locating a
Tracking Service, which are internal to the middleware. Internally, the Service Manager
calls an external location service that implements the ServiceLocator interface to look
up for a registered Tracking Service. In our case this is an SLP Directory Agent.

Display Needs Position Data Figure 4.17 shows how a viewer that feeds a head-
mounted display starts up and receives position data from a tracker.

1. Alice starts the display Service.
2. The Service describes itself to the Service Manager, which creates an Active

Service Description object for the Service.
3. The Service registers itself with the Service Manager.
4. After having found an appropriate tracking Service to provide position data for

the middleware, the Active Service Description creates a Connector to handle
the communication.

5. The Connector allocates an event channel and configures it to receive position
data from the tracker’s event channel.

6. The Active Service Description gives the display’s Need a reference to the Con-
nector.

7. The display retrieves a reference to the event channel from the Connector.
8. The display’s PosReceiver connects itself to the event channel.

102

4.2 The DWARF Peer-to-Peer Middleware

display

middleware

PositionReceiver:
Need

VRMLDisplay:
Service

:EventChannel :Connector :Service
Manager

:ActiveService
Description

3: register

User

1: start

2: describe

4: create5: create

6: give Connector

7: get event channel

8: connect

9: send events

Figure 4.17: Example interaction between a display service and the middleware (UML
collaboration diagram).

9. The event channel forwards incoming position events to the display.

Tracker Provides Position data Figure 4.18 on the following page shows how an
optical head tracker is started on demand and supplies position data 5.

1. Joe, the administrator, describes the tracking Service to the middleware.
2. The optical tracker’s Active Service Description creates a Connector to handle

incoming communication requests.
3. The Connector creates an event channel and configures it to receive position data

from the tracker.
4. The Active Service Description, having been notified that another Service needs

position data, starts the tracker Service.
5. The Service registers itself with the Service Manager, which associates it with

its Active Service Description.
6. The Active Service Description gives the tracker’s Ability reference to the Con-

nector.
7. The tracker retrieves a reference to the event channel from the Connector.

5For simplicity, this tracker is modelled as having no Needs itself—in reality, however, most DWARF
trackers need at least a World Model to know what they are tracking.

103

4 The DWARF Contract-based Peer-to-Peer Architectural Style

tracker

middleware

PositionSender:
Ability

OpticalTracker:
Service

:EventChannel:Connector:Service
Manager

:ActiveService
Description

Administrator

1: describe

2: create 3: create

6: give Connector
7: get event channel

9: send events
5: register4: start

Figure 4.18: Example interaction between a tracker Service and the middleware (UML
collaboration diagram).

8. The tracker’s PositionSender sends its position events to the event channel.

State diagram of a DWARF Service DWARF Services can be in several states,
the stages of the service life cycle. In each state of the life cycle they have different
requirements of the middleware.

The states of the life cycle are shown in figure 4.19.

Undescribed The middleware does not know anything about the Service because it
has not been described yet.

UndescribedLoaded The user has loaded the Service, but this Service has not been
described yet. The Service describes itself to the middleware.

Inactive An administrator has described the Service to the middleware, but some of
the Service’s Needs are not yet satisfiable. The middleware tries to find Services
to satisfy the Service’s Needs.

LoadedManually The user has loaded the Service manually, and it has been described,
but some of the Service’s Needs are not yet satisfiable. As soon as the middle-
ware has found other Service to satisfy the Service’s Needs, it establishes the
appropriate communication and starts the Service.

104

4.2 The DWARF Peer-to-Peer Middleware

Undescribed

Inactive

Startable

UndescribedLoaded

LoadedManually

Running

Service describes itself

User loads Service

Service is described

Needs are satisfiable

User loads Service

User loads Service or
Ability is requested

Service is no
longer needed

Needs are no longer satisfiable

Needs are satisfiable

Figure 4.19: Dynamic model of a DWARF Service (UML state diagram).

Startable The middleware has found other Services that can satisfy this (not yet
loaded) Service’s Needs. As soon as an Ability of this Service is requested, the
middleware establishes the communication to satisfy the Service’s Needs, loads
the Service and starts it.

Running The Service is loaded, the middleware has satisfied its Needs, and told it to
start running. When the Service is no longer needed, or when its Needs are no
longer satisfiable, it stops.

Traversing Service Dependencies In finding, starting and arranging communication
between Services, the middleware creates and traverses a dependency graph between
Services. Since locating other Services happens before actually using them, the mid-
dleware must traverse this dependency graph twice, once for locating and once for
starting. In the first traversal, a possible configuration of Services using other Services
is found, but Services that are not running are not actually started yet. In the second
traversal, the Services are started one by one as they actually start using one another
and communicating.

An example of the setup of the Service dependency graph is shown in the two parts of
figure 4.20. The Optical Tracker is needed by another Service (not shown) and should
be activated (figure 4.20(a)). This requires to set up the Service dependency graph.

105

4 The DWARF Contract-based Peer-to-Peer Architectural Style

<<service>>
:WorldModel

:WorldModel

:ThingChangedEvents

:PositionData

:WorldModel

<<service>>
:Tracking
Manager :PositionData

<<service>>
:IDTracker

:WorldModel:PositionData

<<service>>
:GPSTracker

:WorldModel

<<service>>
:Mediator

:WorldModel

:PositionData

:ContextData
:PositionData
target=position

<<service>>
:Optical
Tracker :WorldModel:PositionData

:ContextData

target=pose

:PositionData
target=position

target=position

location=outdoors

location=indoors

location=outdoors

(a) Interdependent Services before the setup of the Service dependency graph

<<service>>
:WorldModel

:WorldModel

:ThingChangedEvents

:PositionData

:WorldModel

<<service>>
:Tracking
Manager :PositionData

:PositionData

<<service>>
:IDTracker

:WorldModel:PositionData

<<service>>
:GPSTracker

:WorldModel:PositionData

<<service>>
:Optical
Tracker :WorldModel:PositionData

<<service>>
:Mediator

:WorldModel

:PositionData

:ContextData

:ContextData

target=position

target=pose

target=optimum

target=optimum

target=optimum

target=position

target=position
location=outdoors

location=indoors

location=outdoors

(b) Interdependent Services after the setup of the Service dependency graph

Figure 4.20: Setting up the Service dependency graph
.

106

4.2 The DWARF Peer-to-Peer Middleware

The Optical Tracker needs a World Model and Context Data which can be delivered by
the Meditator Service; the Mediator Service also needs a World Model and additionally
optimal Position Data (from the Tracking Manager); the Tracking Manager requires
raw Position Data from an outdoor tracker; the GPS Tracker is such an outdoor tracker
and needs a World Model. Before the first traversal of the Service dependency graph,
all Services are located. After the first traversal, the Service dependency graph is set
up internally. This means that the middleware holds all possible connections between
Services. To activate the Optical Tracker, the middleware does a second traversal
in which it activates the required Services and establishes connections between them
(figure 4.20(b)).

The two-phase traversal, setting up an internal graph and actually starting Services,
allows browsing for potential Services while they are not started yet. In the example,
the ID Tracker is not connected, since the Tracking Manager prefers to use the outdoors
GPS Tracker.

4.2.6 Hardware/ Software Mapping

The DWARF middleware was developed on top of the CORBA middleware. This al-
lows to deploy the DWARF middleware on various hardware platforms with different
processor architectures (such as Intel x86, Motorola PowerPC, or StrongARM) with
widely different memory sizes and processing power. Since one of the requirements
of DWARF was to support collaboration between mobile systems and devices in the
environment, in particular AR-ready intelligent environments (section 1.4), the mid-
dleware must run on systems ranging from PDA-sized wearables to large servers within
a building.

Additionally, different methods of deploying the middleware subsystems onto the
hardware are possible—not every middleware subsystem has to be running on the
local machine.

Here, we will show different possible configurations of DWARF middleware compo-
nents with different hardware demands, ranging from high to low demands. The main
target platform is a wearable computer but we also want to support smaller devices
with less resources.

Different possible hardware software mappings are shown in figure 4.21, clockwise
from the top left. The top left platform belongs to the class of server computers, the
top right to the class of notebooks, the bottom right to the class of wearable computers,
and the bottom left to the class of PDAs.

Fully Local Middleware Deployment Ideally, one Service Manager, one location sub-
system, and one full communication subsystem run on each node of a networked sys-
tem. This way, all communication between Services and the middleware is local, and
the Services do not explicitly have to deal with losing network connectivity. This,
however, has the highest memory requirements.

107

4 The DWARF Contract-based Peer-to-Peer Architectural Style

Remote Communication Subsystem To be able to use systems with less memory
and processing resources, it is possible to move parts of the communication subsystem
(such as an event service) onto other, larger, hosts. Local DWARF Services can still
access the event service using CORBA—indeed, they will not even notice that the
event service is not local, unless the network connection fails.

Note that if the DWARF Services running on a particular wearable system do not
use an event service at all, the event service can be removed from the communication
subsystem entirely. The communication subsystem is modular by design, as shown in
Section 4.2.5.

Remote Mediating Agent This deployment configuration has hardly any local mid-
dleware at all. Each DWARF Service only has an ORB6 for using CORBA. The
Services then must be configured to use the mediating agent of another host but they
must know that host’s network name. This means that the machine must have some
form of reliable network connection to the machine whose DWARF middleware it is
using, otherwise the local Services will not even be able to communicate with one
another.

Use of Low-Level Protocols A system that cannot even accommodate an ORB im-
plementation cannot run DWARF Services in the usual way. It can, however, run
Services that cooperate with the rest of the system, similar to the way the DWARF
system can use external Services such as printers. So it can use DWARF Services
but cannot use the support of the DWARF middleware. To do this, a Service must
natively support the low-level protocols that the DWARF middleware uses. This is
the Service Location Protocol (SLP) and a communication protocol such as HTTP.
Since both SLP and HTTP require hardly any more resources than a TCP/IP stack,
this allows very limited systems to cooperate with other DWARF Services. Of course,
finding appropriate other Services, establishing connections, and so on all have to be
implemented by the Service itself.

4.2.7 Persistent Data Management

In this section, we describe the persistent data stored by the middleware and the
infrastructure required to store it.

The middleware hardly needs to store anything persistently, as the distributed me-
diating agents are designed to be running constantly on each network node. Status
information for Services, communication ports etc. are all transient, as the middleware
connects Services together dynamically.

The only persistent objects of the middleware are the Service Descriptions. As said
in section 4.2.5, the Service Manager describes the Offers and the Requests to the

6Object Request Broker

108

4.2 The DWARF Peer-to-Peer Middleware

Location subsystem. There are two ways: either a Services describes itself to the
Service Manager by calling the methods of the DescribeService interface, or the
Service Manager reads in persistent Service descriptions. The last method allows the
Service Manager to advertise the Abilities of Services that have not been started yet.
We have designed the data contained in Service Description so that these can easily
be stored in XML files.

Each Service Description is stored in its own XML file. These XML files can reside in
a file system directory that the Service Manager has access to. The Service Manager
reads the files in this directory upon start-up and regularly checks it for changes,
loading any new Service descriptions. This way, installing a new Service is as easy as
installing the executable file and copying the XML Service description into the Service
Manager’s directory.

An XML Service Description contains a description of a Service, its attributes, Needs
and Abilities, with the communication protocols they support. The format is specified
as an XML DTD7.

<!ELEMENT service (attribute|need|ability)*>

<!ATTLIST service

name CDATA #REQUIRED

startOnDemand (true|false) "false"

stopOnNoUse (true|false) "false"

startCommand CDATA ""

isTemplate (true|false) "false"

>

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

name CDATA #REQUIRED

value CDATA #REQUIRED

>

<!ELEMENT need (connector)*>

<!ATTLIST need

name CDATA #REQUIRED

type CDATA #REQUIRED

predicate CDATA ""

minInstances CDATA "1"

maxInstances CDATA "1"

>

<!ELEMENT connector EMPTY>

<!ATTLIST connector

protocol CDATA #REQUIRED

>

<!ELEMENT ability (attribute|connector)*>

<!ATTLIST ability

name CDATA #REQUIRED type CDATA #REQUIRED

>

Listing 4.1: XML DTD for service descriptions

7Data Type Definition

109

4 The DWARF Contract-based Peer-to-Peer Architectural Style

An example Service description for an Optical Tracking Service is the following:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="OpticalTracker"

startOnDemand="false" stopOnNoUse="false"

startCommand="/opt/dwarf/optical-tracker/bin/optical-tracker">

<need name="RoomChangedEvent" type="ContextData"

predicate="hopcount>=0"

minInstances="0" maxInstances="100">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="World" type="WorldModel" predicate="World=beautiful"

minInstances="1" maxInstances="100">

<connector protocol="CorbaObjImporter"/>

</need>

<ability name="PositionEventSender" type="PositionData">

<attribute name="how" value="fine"/>

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

Listing 4.2: Service description for an Optical Tracking Service

In the example above, the Service name is OpticalTracker. The Service can be
started on demand by the Service Manager (startOnDemand="true"), it can also be
stopped when it is no longer used (stopOnNoUse="true"). It can be started by issuing
the given start command, and stopped by sending a kill signal. The Service has one
Need (WorldModel) and two Abilities (PositionData and VideoData). Needs and
Abilities have a type and a name, where the types are used for Service matching and
the names are identifiers of Service instances. The WorldModel Need has a predicate
and the Service needs exact one WorldModel (minInstances="1" maxInstances="1")
over a CORBA RPC connection. The OpticalTracker wants to play the client part
and imports the reference of the WorldModel (CorbaObjImporter). The declaration of
the Abilities is analogous. In the example, both Abilities support two communication
means each. Any of two respective two can be used to access this Service.

Service Descriptions are small, as shown in listing 4.2, and thus fit comfortably into
text-based XML files. Using XML files showed the best trade-soff between expressive-
ness and complexity. Binary files would save only a marginal amount of space, and
would necessitate extra editing tools. Storing the data in some larger database system
would introduce more unneeded complexity. Databases are useful for large amounts
of data and a controlled data access. In our system both cases do not apply.

110

4.2 The DWARF Peer-to-Peer Middleware

middleware

Service

middleware

Service Manager

Location Communication

Service

Service Manager

Location

ServiceService

low-level protocols

CORBACORBA

CORBA

CORBA

:Server

:PDA

:Notebook

:Wearable

Figure 4.21: Deploying the subsystems of the DWARF middleware in a four machine
configuration.
Each machine shown belongs to a different hardware class with a different
hardware configuration and different middleware components. Note that
the DWARF Services on the wearable computer communicates with the
middleware as a whole using CORBA, whereas the Services on the PDA
only use low-level protocols.

111

4 The DWARF Contract-based Peer-to-Peer Architectural Style

4.3 A Graphical Notation for DWARF Systems

The development of systems based on DWARF Services must be supported by an
appropriate modelling technique. In particular, it must be able to model an individual
DWARF Service with Needs, Abilities, Attributes, and Connectors, and it must be
possible to model a DWARF-based system consisting of several DWARF Services. Up
to now we have used standard UML diagram types such as class diagrams. The goal
is to map the model of the contract-based architectural style to a compact graphical
notation.

As a starting point we use UML Version 2.0. This is a major revision of earlier
UML version and supports component-based software engineering . The UML 2.0 spec-
ification consists of two parts, the UML 2.0 Infrastructure specification [107] and the
UML 2.0 Superstructure specification [108]. The UML 2.0 Infrastructure specifica-
tion defines the foundational language constructs required for UML 2.0, whereas the
Superstructure specification complements it with the user level constructs

4.3.1 DWARF Service Modelling

UML 2.0 provides a new diagram type, component diagrams, for the specification
of components. Note, that component diagrams and components are introduced for
system modelling and differ considerably to components in UML 1.x deployment di-
agrams. In UML 1.x components are implementation artefacts such as executables
or libraries deployed on hardware nodes. In UML 2.0 a component is “A modular
part of a system that encapsulates its contents and whose manifestation is replaceable
within its environment. A component defines its behaviour in terms of provided and
required interfaces. As such, a component serves as a type, whose conformance is de-
fined by these provided and required interfaces (encompassing both their static as well
as dynamic semantics)” [108, p. 6].

A UML 2.0 component diagram consists of components. Each component can be
realized by other components or classes. A component specifies its external access
points by ports. And a port is a set of provided and required interfaces. Ports can be
used to specify the mapping of external interfaces to internal realizing components. If
it is not the goal to model the internals of a component, then the ports can be left out
of the diagram and the interfaces are connected directly to the component.

The example DWARF Service in section 4.2.4 could be modelled in UML 2.0 as
shown in figure 4.22. The Optical Tracker Service is modelled as UML component, the
Needs as required interfaces with dependency associations, and the Ability as provided
interface with implements association.

UML 2 allows a more compact notation with circles for provided interfaces and
semi-circles for required interfaces. This allows more compact diagrams when details
such as attributes can be left out (figure 4.23).

As we have seen, the mapping is straight forward. Both DWARF and UML specify

112

4.3 A Graphical Notation for DWARF Systems

<<component>>
OpticalTracker

<<interface>>
WorldModel

<<interface>>
PositionData

<<interface>>
ContextData

Figure 4.22: Model of an Optical Tracker Service in UML 2.0. The Optical Tracker
Service is modelled as UML component, the Needs as required interface
with dependency associations, and the Ability as provided interface with
implements association.

<<component>>
OpticalTracker :PositionData

ContextData

WorldModel

Figure 4.23: Compact model of an Optical Tracker Service in UML 2.0.
This diagram models the same DWARF Service as figure 4.22 but uses
the more compact circle and semi-circle notation for interfaces.

the provided and required interaction points of Service and components respectively.
The easiest way for the extension of UML diagram types are the use of stereotypes. A
stereotype can be used to adapt an existing UML element or to introduce a new one.
We use this approach to distinguish the DWARF elements from the elements of UML
component diagrams. DWARF Services are denoted by boxes with the stereotype
<<service>>, Needs by <<need>>, and Abilities by <<ability>>.

A key feature of DWARF is the use of connectors as first class objects. UML
connectors in component diagrams allow to express a relationship between a required
and a provided interface. In particular, UML provides delegation connectors and
assembly connectors. A delegation connector models the delegation of a request from
the component to a realizing internal component or class. An assembly connector
models the connection between a provided interface of one component with a required
interface of a second component. Both types of connectors do not allow to express
detailed semantics of a connection.

Further on, UML connectors are binary objects, i.e. they can be used to associate
two components. They cannot be used to express the possible connector types that
one component or Service supports. Here we need a unary object. UML supports the

113

4 The DWARF Contract-based Peer-to-Peer Architectural Style

use of association classes to express the semantics of an association between classes
or components. An association class is tied to an association between two or more
classes and as such it is also a binary object. There is no support in UML to connect
interfaces with association classes, besides the fact that interfaces are also classifiers
and as such they can have associations of their own. So such an interface/connector
combination can be expressed but this is not very elegant.

Instead we use the following concept: DWARF Connectors are modelled as classes
like association classes. To express the relationship between a Service and a Connector
we use the compact notation UML already uses for templates. A template is a pa-
rameterized element, i.e. one or more parameters are unbound. DWARF Connectors
are bound to Needs and Abilities, which we model as templates with the connectors
as parameter. Graphically we express it as dashed box for the Connector located at
the upper right corner of a Need or Ability box. Figure 4.24 shows the same example
with the Optical Tracking Service with the new notation.

<<service>>
OpticalTracker

<<need>>
WorldModel

predicate="World=bautiful"
minInstance=1
maxInstance=100

<<Ability>>
PositionData

how="fine"

<<need>>
ContextData

predicate="hopcoung>=1"
minInstance=0
maxInstance=100

NotifyStructured
PushConsumer

CorbaObj
Importer

NotifyStructured
PushSupplier

Figure 4.24: Model of an Optical Tracker Service with DWARF UML extension for
Connectors. Each connector is modelled as dashed box in the upper right
corner of the associated Need or Ability.

Similar to the compact circle and semi-circle notation for compact diagrams we can
use circles and semi-circles with dashed boxes for the connectors (figure 4.25). For
overview diagrams with several DWARF Services the dashed boxes may be left out.

4.3.2 System Modelling

A DWARF system consists of a set of Services that are connected via Needs and
Abilities. Again, we use UML 2.0 component diagrams as basis. Component diagrams
provide connectors to connect individual components. Graphically, a connector is
drawn as a circle for a provided interface encapsulated by a semi-circle for a required
interface. A circle and a semi-circle can also be connected over a dashed arrow for

114

4.3 A Graphical Notation for DWARF Systems

<<service>>
OpticalTracker

ContextData

WorldModel

:PositionData

NotifyStructured
PushSupplier

CorbaObj
Importer

NotifyStructured
PushConsumer

Figure 4.25: Compact model of an Optical Tracker Service with DWARF UML exten-
sion for Connectors. Each connector is modelled as dashed box in one of
the upper corners of the associated Need or Ability.

dependency directed from the semi-circle to the circle. This expresses that the required
interface depends on the provided interface.

We use the same concept to model the connection between a Need and an Ability.
As we explained, Needs can be drawn as semi-circles, Abilities as circles. In a system
model we draw DWARF Services as boxes with the compact circle and semi-circles
notation for Abilities and Needs and draw a dependency arrow from a Need to a
collaborating Ability. As an example see figure 4.26. This is a section of the system
model for the DWARF Pathfinder system we will present in chapter 5. Such a model
describes the communication relationships within a DWARF system. Therefore we
call this view onto a DWARF system as the communication view . A more complex
example is the communication view of DWARF Pathfinder which can be found on
page 130.

<<service>>
:WorldModel

:WorldModel

:ThingChangedEvents

:PositionData

<<service>>
:Optical
Tracker :WorldModel

:PositionData

<<service>>
:Mediator

:WorldModel

:PositionData

:ContextData:ContextData

<<service>>
:VRML

Manipulator

:PositionData
target=pose

target=posetarget=optimum

target=optimum

Figure 4.26: The integration of the Optical Tracker Service via Needs and Abilities.
To retain a compact model we use circles and semi-circles to model Abil-
ities and Needs. A Need/Ability pair is connected by a dependency asso-
ciation expressed with a dashed arrow.

115

4 The DWARF Contract-based Peer-to-Peer Architectural Style

4.4 An Example for a Customized DWARF Service

Developers of new DWARF Services must implement the Service interface. For each
Need and Ability there must be an associated class that implements the interface
Need and Ability respectively with the appropriate Connectors. Figure 4.27 shows
an example for an Optical Feature Tracker Service in a UML class diagram. This
Service has two Needs and one Ability with one supported Connector each. The Need
for a World Model has a CorbaObjImporter Connector, The Need for Context Data a
NotifyStructuredPushConsumer Connector, and finally the Position Data Ability has
a NotifyStructuredPushSupplier Connector.

OpticalTracker

Service

Need

Ability

NotifyStructured
PushConsumer

NotifyStructured
PushSupplier

WorldModel

ContextData

PositionData

CorbaObjImporter

Figure 4.27: Customized DWARF Services: Example Optical Tracker Service.
This Service has two Needs and one Ability with one possible Connector
each. The Need for a World Model has a CorbaObjImporter Connector,
The Need for Context Data a NotifyStructuredPushConsumer Connector,
and finally the Position Data Ability has a NotifyStructuredPushSupplier
Connector.

This is the ideal solution. To simplify the development of prototypical Services,
a new Service can implement the interfaces for Needs, Abilities and all supported
Connectors on its own. Instead of delegates for each Need and Ability it implements

116

4.5 Conclusion

the interfaces for Needs, Abilities, and Connectors and registers itself as the respective
implementing object with the Service Manager. For technical reasons resulting from
the implementation with CORBA, a new Service cannot implement each interface
directly but the interface ServiceAndNeedAndAbilityIsNotifySupplierConsumer.
Figure 4.28 shows the model of the simplified version of the Optical Feature Tracker
Service.

OpticalTracker

Service Need AbilityNotifyStructured
PushConsumer

NotifyStructured
PushSupplier

ServiceAndNeedAndAbility
IsNotifySupplierConsumer

Figure 4.28: With the simplified way to build a customized Service, the new Service
must implement the interfaces for Service, Needs, Abilities, and all Con-
nectors on its own. For technical reasons resulting from the implemen-
tation with CORBA, a new Service cannot implement each interface di-
rectly but the interface ServiceAndNeedAndAbilityIsNotifySupplier-
Consumer.

4.5 Conclusion

In this chapter we presented a contract-based peer-to-peer architectural style for dis-
tributed and adaptable systems. This pattern describes a model for system configu-
rations of peer-to-peer distributed services. It is a specialization of the Peer-to-Peer
pattern [24]. In the contract-based variant pattern peers collaborate on the base of
contracts between peers and the environment. An active middleware is described that
mediates between the DWARF Services and connects them for collaborations. Con-
nections between services are first-class objects at design and runtime. This allows to
change connections and adapt a system at runtime. Finally we presented a graphical
notation for this style based on UML 2.0 component diagrams.

117

118

5 A Case Study for the DWARF
Framework

The M3ARF sub framework of DWARF for mobile AR maintenance systems and
the DWARF Pathfinder application.

DWARF
Peer-to-Peer
Middleware

Application Layer:
Pathfinder

Inter-Application Layer:
Navigation

Pathfinder

Navigation

Minimal Mobile Maintenance
Augmented Reality

Framework

Solution Domain Layer:
Mobile Augmented Reality

Architectural Style Layer:
Peer-to-Peer Computing

Figure 5.1: This chapter covers the application layer, the inter-application-layer, and
the solution domain layer.

The abstract Augmented Reality architecture and the system of Augmented Reality
patterns introduced in the previous chapters can be used to design application domain

119

5 A Case Study for the DWARF Framework

specific sub-frameworks for particular Augmented Reality systems. In this chapter
we describe such a sub-framework for mobile Augmented Reality maintenance sys-
tems, the Minimal Mobile Maintenance Augmented Reality Framework (M3ARF), and
a demonstration application called DWARF Pathfinder. M3ARF supports the rapid
prototyping of Augmented Reality-supported maintenance applications as described
in section 2.1 with a core of required Augmented Reality Services. It includes several
Augmented Reality patterns that are particularly applicable for rapid prototyping.

The purpose for building Pathfinder was to demonstrate M3ARF in a coherent ap-
plication [14]. It covers parts of the motivating scenario in a modified form. Instead of
guiding a worker to a machine, Pathfinder guides a tourist over a campus, and instead
of overlaying a machine with maintenance information, Pathfinder overlays printing
instructions on a laser printer. The Pathfinder scenario is described in section 5.1.

A second purpose of Pathfinder was the implementation of a first set of reusable
DWARF Services upon which other sub-frameworks and applications could be built.
We developed each DWARF Service from scratch and often they are a technology
demonstrator on their own. We give an overview of the M3ARF framework in sec-
tion 5.2 and an overview of each subsystem in section 5.3. Details for each Service can
be found in appendix B.

The implemented Services include a core of reusable Services for Augmented Reality
systems as well as application and domain specific Services. Therefore, this chapter
covers the upper three abstraction layers: application layer, inter-application-layer,
and solution domain layer. The basis of M3ARF at the architectural style layer is the
contract-based peer-to-peer architectural style and the DWARF middleware.

The Pathfinder prototype and the included DWARF Services were developed in
several student theses. In this chapter we describe the core principles behind each
Service and the integration into the M3ARF framework to provide a coherent view
for the reader of this dissertation. Details for the individual Services beyond the
description here can be found in the respective student theses. We reference them at
the particular Service description.

5.1 The Pathfinder Scenario

A visitor is headed for a meeting in a room on the campus of the Technische Universität
München. His mobile Augmented Reality system navigates him to the meeting room
and lets him print out his handouts while he is on the way.

We made the choice for the scenario because of three goals:

• The scenario should involve not only all Augmented Reality core services (track-
ing, interaction, and presentation), but also demonstrate the dynamic use of
services,

120

5.1 The Pathfinder Scenario

• it should take place in different types of environments to show the flexibility of
the framework,

• and it should be a test driver for all the DWARF Services developed within the
Pathfinder project.

The scenario demonstrates a subset of the visionary scenario on page 2.1. Neverthe-
less, it covers the core features of a mobile Augmented Reality system in a ubiquitous
computing environment.

Scenario: Demonstration Scenario

Actor instances: Fred: User

Flow of Events: 1. Fred is invited to a meeting with some software engineering stu-
dents at the TU München. He is equipped with a backpack with
two laptops, a head-mounted display with an attached digital
video camera, a headset and microphone for voice input, a GPS/-
compass combination and a Radio Frequence ID (RFID) tracking
device. Fred has a handout on one of his laptops, and has already
registered the handout to be printed as soon as he reaches the
main building of the university. The students Fred is supposed to
meet with have told him to take the subway to the Königsplatz
station.

2. Fred emerges from the Subway station and walks towards the
exit. As he comes within reach of an information terminal on
his way, an option appears on his display letting him download
personalized navigation instructions to the meeting room. He
says “yes” to accept this data transfer. He sees a message that
the download is in progress. After a while a message appears
saying that the data transmission is complete.

3. On Fred’s head-mounted display, a three-dimensional map of the
area appears. It shows his own position with a red dot and ro-
tates as he turns, showing his current orientation. A blue arrow
indicates his destination. Fred uses this map to guide him to the
entrance of the university campus.

4. As Fred reaches the university campus, an option appears to let
him send off the print job for his handouts by wireless LAN. Fred
confirms this by saying “yes” again.

5. Inside the building, Fred is guided by a schematic two-dimensional
map, indicating which room he is currently in (the position is read
from RFID tags), to the hallway outside of the meeting room.

6. Here, he sees a red arrow appear in his head-mounted display,
pointing to one of two printers, which has printed his handouts.

121

5 A Case Study for the DWARF Framework

7. Fred picks up his handouts from this printer, says “ready”, and a
three-dimensional blue arrow appears, pointing him to the meet-
ing room.

8. Fred enters the meeting room, takes off his head-mounted display
and backpack and greets the students.

In the Pathfinder scenario we can identify one actor, the Pathfinder user, and derive
the following use cases: (figure 5.2):

1. receive navigation instructions,

2. outdoor, indoor and in-room navigation,

3. use dynamically found services such as printers,

4. and receive instructions over a HMD.

User

Pathfinder

Access
Navigation
Instructions Navigate

Use External
Service

Get Task
Instructions

Figure 5.2: The use cases of the Pathfinder application.

5.2 The Minimal Mobile Maintenance Augmented
Reality Framework

The purpose of the Minimal Mobile Maintenance Augmented Reality Framework is
the support of rapid prototyping of applications such as Pathfinder. As such it must

122

5.2 The Minimal Mobile Maintenance Augmented Reality Framework

provide DWARF Services for the Augmented Reality core functionalities tracking and
registered video overlay. Therefore we need Tracking Services and Services for the
User Interface. Further on, we need an Application Service that implements the ap-
plication functionality and is responsible for system initialization and bootstrapping.
For the navigation functionality we need a Service for the interpretation of navigation
instructions and a DWARF Service that provides the access to an external server pro-
viding such instructions. And finally, for the dynamic use of external non-DWARF
services we need another DWARF Service that manages the service access.

5.2.1 DWARF Services for M3ARF

We can map the use cases of the Pathfinder scenario to the following set of DWARF
Services including Services for Augmented Reality for the M3ARF, inter-application
Services for navigation, data access, the access to external, non-DWARF services, and
application specific Services (ordered by subsystems):

Application. For Pathfinder the Application Service is provided by the Pathfinder
Application Service. It is responsible to bootstrap the system and coordinate the
involved Services. It uses the Application Component pattern. This is a typical ap-
proach for distributed systems. The application functionality is encapsulated into a
distributed component that collaborates with other distributed components.

The navigation instructions are provided by an external information terminal (a PC
located near the subway station) in the form of a taskflow model. The instructions are
downloaded via the Bluetooth Communication Service. The Bluetooth Communication
Service is not an Augmented Reality specific DWARF Service but it can be reused
for other kinds of systems with local information points for data access. As such it
belongs to the inter-application layer of the DWARF framework. We assumed that
the information terminal is a black box which can generate navigation instructions on
demand, and transfer them via Bluetooth.

The navigation instructions are executed by the Taskflow Engine. A taskflow model
contains a description of the tasks the user has to do or wants to do. It receives events
from the application when a step is performed and then triggers the generation of the
user interface for the next step. This allows complex taskflows for maintenance or
navigation to be stored in a structured and uniform format. This is an application
of the (Multimedia Flow Description pattern). The advantage of this pattern is that
the content for the Augmented Reality system is described in a high-level declarative
language. This allows a faster development of new content. Internally the Taskflow
Engine uses a Web Service approach that provides the application content from an
Internet webserver.

The framework provides mechanisms for the application to select and access external,
non-DWARF services based on the current context of the user and the system, such

123

5 A Case Study for the DWARF Framework

as geographical location. The selection of a printer for the handouts are managed by
the Context-Aware Packet Routing Service.

The Services of the application subsystem are covered in more detail in the sec-
tions 5.3.2 and 5.3.3).

Presentation and Interaction. The goal of M3ARF’s interaction and presentation
subsystems was to support different types of viewers depending on the content and
to reuse existing viewer components [132]. User interface scenes for initialization,
navigation, graphical augmentations, and service selection are rendered in the User
Interface Engine. The user interfaces for applications built with M3ARF are described
at a high level in terms of functions, operations and messages. This description is then
converted into actual interface elements for the currently running user interface devices.
These devices allow multimodal user interaction, i.e. flexibly combining different user
input and output devices depending on the situation and the preferences of the user.

To address the requirements we use a web-based approach and write adaptors to
integrate third-party web components with DWARF. The central component was a
web browser with plug-ins for different views. In particular, Pathfinder uses a VRML
plug-in for 3D graphics controlled over the External Authoring Interface (EAI), a plug-
in for speech recognition, and an HTML frame for text and untracked graphics. Thus,
Pathfinder uses the VRML Browser and Multiple Viewers design pattern for output
and Browser Input and Input Manager for input. Technically, a User Interface Engine
combines input and output control.

We present the combined Interaction and Presentation subsystem in section 5.3.4.

Tracking. The framework contains support for selected tracking hardware devices as
well as the possibility of accessing future devices using the same interfaces. Several
Tracking Services determine the user’s position, both indoors and outdoors and the
output of the trackers is accessible by the application, including quality of service
parameters such as accuracy and lag. The framework also includes methods for post
processing and combining the output of the trackers with filtering and prediction
algorithms

M3ARF uses a combination of different tracking modalities. There is no hybrid
tracking, each modality covered a specific part: GPS tracking for outdoors, room
tracking to track the location within a building, and optical tracking for the near-
range. Each tracker worked independently and as part of a distributed system. As a
distributed system Pathfinder could use the approach of Networked Trackers combined
with the approach to use a Tracking Manager that coordinates the trackers.

Position trackers are described in section 5.3.5 and the Optical Feature Tracker in
section 5.3.6.

124

5.2 The Minimal Mobile Maintenance Augmented Reality Framework

World Model. The World Model receives a model of the TUM campus and the
relevant rooms, which were also downloaded from the Bluetooth Information Terminal.
A World Model stores all information the system has about its environment. All
relevant objects of the real world the system is operating in are represented as objects
in the World Model. In addition, virtual objects such as stickies (location-fixed textual
tags) that the system uses to augment the user’s reality are stored in the World Model.

The World Model for Pathfinder is adapted for navigation scenarios, so it is rather
small. Therefore we could use a simple file-based world model. The tracking informa-
tion was based on a proprietary format for saving information about the environment
such as the building and the area, and VRML files for the representation of 3D scenes.
The approach is therefore called Configuration File

The World Model subsystem is described in section 5.3.7.

The various functionalities provided by the framework are designed to interact au-
tomatically. Using a model of the real and virtual world, the tracking information and
the taskflow descriptions, the user interface can display relevant information to the
user, registered in three dimensions in real time.

5.2.2 Classifying the Services into the DWARF Framework

The identified Services for each subsystem can be classified into one of the four ab-
straction layers of the DWARF framework. Figure 5.3 illustrates this classification.

The core Augmented Reality Services are part of the M3ARF framework. They are
the User Interface Engine, the World Model, the Tracking Manager , the GPS Tracker ,
the ID Tracker , and the Optical Tracker .

Additionally there are Services which do not belong to the Augmented Reality core
system but can be used for several applications. As such they belong to the inter-
application layer. They are the Bluetooth Communication Service for data access,
the Taskflow Engine for executing navigation tasks, and the CAP Router for external
service access.

The Pathfinder application itself on the application layer consists of the Pathfinder
Application and the helper Service Mediator.

5.2.3 Mapping M3ARF to the Reference Architecture

The architecture of Pathfinder as M3ARF-based system can be mapped to the Aug-
mented Reality reference architecture. Figure 5.4 shows the mapping of the Pathfinder
DWARF Services with several support classes mapped onto the subsystems of the ab-
stract Augmented Reality architecture. This view is called architectural view . The
diagram shows that M3ARF covers the subsystems of the reference model except the

125

5 A Case Study for the DWARF Framework

Context subsystem. Additionally, several classes of the other subsystems in the ref-
erence architecture are also missing. For example, there is no Video Mixer class for
combining captured video and computer graphics for video see-through Augmented
Reality. For details on each subsystem and Service we defer to the following sections
on the individual DWARF Services of M3ARF.

126

5.2 The Minimal Mobile Maintenance Augmented Reality Framework
Pa

th
fin

de
r

Da
ta

 A
cc

es
s

Na
vig

at
io

n
Ex

te
rn

al
 S

er
vic

e
Ac

ce
ss

M
3 AR

F

DW
AR

F
M

id
dl

ew
ar

e

Pa
th

fin
de

r
Ap

pl
ica

tio
n

Ta
sk

flo
w

En
gi

ne

Us
er

In

te
rfa

ce

En
gi

ne
O

pt
ica

l
Tr

ac
ke

r
 T

ra
ck

in
g

M
an

ag
er

ID

Tr
ac

ke
r

G
PS

Tr
ac

ke
r

Se
rv

ice

M
an

ag
er

Se
rv

ice

Lo
ca

tio
n

Pr
ot

oc
ol

CO
RB

A
No

tif
ica

tio
n

Se
rv

ice

Bl
ue

to
ot

h
Co

m
m

un
ica

tio
n

Se
rv

ice
CA

P
Ro

ut
er

W
or

ld
 M

od
el

M
ed

ia
to

r
Ap

pl
ica

tio
n

La
ye

r:
Pa

th
fin

de
r

In
te

r-A
pp

lic
at

io
n

La
ye

r:
Na

vig
at

io
n

So
lu

tio
n

Do
m

ai
n

La
ye

r:
M

ob
ile

 A
ug

m
en

te
d

Re
al

ity

Ar
ch

ite
ct

ur
al

 S
ty

le
 L

ay
er

:
Pe

er
-to

-P
ee

r C
om

pu
tin

g

F
ig

ur
e

5.
3:

T
he

P
at

hfi
nd

er
D

W
A

R
F

Se
rv

ic
es

.
T

he
se

rv
ic

es
ar

e
al

lo
ca

te
d

to
th

e
re

sp
ec

ti
ve

ab
st

ra
ct

io
n

la
ye

r
ac

co
rd

in
g

to
fig

ur
e

1.
5.

T
he

gr
ee

n
co

lo
ur

ed
pa

ck
ag

es
co

nt
ai

n
se

rv
ic

es
th

at
ar

e
pa

rt
of

M
3 A

R
F
.

127

5 A Case Study for the DWARF Framework

interaction

tracking

context

worldM
odel

application

presentation

<<service>>
UIEngine

ThreeD
Renderer

View

VRM
L

View

HTM
L

View

Tracker

<<service>>
Tracking
M

anager

<<service>>
 O

ptical
Tracker

<<service>>
G

PS
 Tracker

<<service>>
ID

Tracker

M
ouse

Voice

<<service>>
W

orld
M

odel

XM
L

Tree
VRM

L
File

<<service>>
PathfinderApp

<<service>>
M

ediator

<<service>>
Taskflow

M

anager

1
 ◀ worldData

virtualM
odel ▶

reactionToInput
 ▶

pose ▶

CUIML ▶

inputData ▶

inputData ▶

Input
Device

1 ..*

*

1
1 ..*

1 ..*

1

<<service>>
Controller
Taskflow
Engine

<<service>>
VRM

L
M

anipulator

VRM
L

Brow
ser

W
ebbrow

ser
Text

Renderer

◀
 event

<<service>>
CAPRouter

<<service>>
Bluetooth

Com
m

unication
Service

1

1

F
igure

5.4:
T

he
P
athfinder

architecture
m

apped
onto

the
reference

architecture.
T

his
diagram

show
s

the
distribution

ofthe
services

am
ong

the
subsystem

s.
N

ote
that

there
is

no
Service

in
the

C
ontext

subsystem
.

128

5.3 The Pathfinder DWARF Services

5.3 The Pathfinder DWARF Services

Pathfinder is based on the M3ARF sub framework plus additional application-specific
Services. In this section we first give an overview on the whole DWARF system and
the connected DWARF Services. We do this with a connection view introduced in
section 4.3.1. After that we present each individual DWARF Service.

5.3.1 The Connection View of Pathfinder

The connection view in figure 5.5 shows the connections between all the services in-
volved in Pathfinder. In some sense, the connection view shows M3ARF systems from
the perspective of the architectural style layer, and the architectural view M3ARF
from the solution-domain layer above it.

We go into detail about the individual Services with the specification of the Needs,
Abilities and Connectors in appendix B. Here we give an overview on which Service
collaborates with which other Services.

For example, the Tracking Manager Service provides the Ability for enhanced Posi-
tion Data, but it itself has the Need for simple Position Data and a World Model. The
Need for simple Position Data can be fulfiled by the Services IDTracker, GPSTracker,
and OpticalTracker, the Need for a World Model by the World Model Service. The
provided Position Data Ability is used by the World Model Service and the Mediator
Service.

5.3.2 Pathfinder Application

Pathfinder Application Service

Some of the application’s functionality had to be implemented specifically for the
demonstrator:

• bootstrapping functionality that lets the user select (via a scene in the User
Interface Engine) navigation instructions to download, initiates the Bluetooth
data transfer, and passes the downloaded data to the DWARF Services,

• mediating functionality between the CAP Service and the User Interface, for the
confirmation and status reports for the print job,

• generation of ContextData events from the tracking data, indicating which room
the user is in, which causes the Taskflow Engine to move to the next navigation
step,

• and generation of ContextData events indicating the availability of the wireless
network.

129

5 A Case Study for the DWARF Framework

<<service>>
:WorldModel

:PositionData

:WorldModel

:ThingChangedEvents

<<service>>
:PathfinderApp

:ITermInfo

:CAPInfo

:UserInterfaceEvent

:WorldModel

:ITermControl

:CAPControl

:TaskflowControl

:ContextData

<<service>>
:CAPRouter

:CAPControl

:ContextData

:CAPInfo

<<service>>
:Bluetooth

Communication
Service:ITermControl :ITermInfo

<<service>>
:IDTracker

:WorldModel:PositionData

<<service>>
:Mediator

:WorldModel

:PositionData

:ContextData

<<service>>
:Controller

TaskflowEngine :ContextData

:TaskflowControl

:UserInterface
Event

<<service>>
:GPSTracker

:WorldModel:PositionData

<<service>>
:OpticalTracker

:WorldModel

:ContextData

:PositionData

<<service>>
:TrackingManager

:PositionData

:WorldModel

:PositionData

<<service>>
:UserInterface

Engine
:SceneData

<<service>>
:VRMLManipulator

:PositionData

<<service>>
:TaskflowEngine

:TaskflowControl

:ContextData

:SceneData

Figure 5.5: Pathfinder connection view.
This view shows the Need/Ability contracts between the individual
DWARF Services.

130

5.3 The Pathfinder DWARF Services

Details on the DWARF Pathfinder Application Service and the helper Mediator
Service can be found in [87].

Context-Aware Packet Routing Service

Besides predefined task flows, the user of a DWARF system should be able to spon-
taneously use external services, such as printing in an unknown environment. For
example, in the fist step of the scenario, the user registers a print job to be printed
when he enters the campus of the university. This is handled by the Context-Aware
Packet (CAP)context Routing Service. Here, the user defines a service he would like
to use, such as ‘print out this document at a printer on the way to the meeting room’,
and the CAP Routing Service takes care of it.

The major problem for this task is the user’s current printer configuration. Even
technically simple tasks such as printing can lead to huge problems in unknown com-
puting environments, as a lot of contextual information such as the preferred paper
size has to be regarded for successful execution.

The basic idea of the CAP service is to encapsulate such information in packets that
are further processed by software devices that route them in a suitable way. For the
printing example, all of the user’s configuration data, e.g. paper size, preferred colour
model etc., are stored in such as packet. The CAP router gathers all information nec-
essary for an optimal fulfilment of the given task of printing from the other DWARF
subsystems and executes the print job. The packet also contains the contextual con-
ditions under which the print job should be started. In this case, that means “when
the user is within the TUM’s wireless network.”

Further details on the CAP Service can be found in [92].

Bluetooth Communication Service

The scenario includes an information terminal that allows the user to download lo-
cation dependent data. To make the interaction with the information terminal as
painless as possible for the user, we chose to communicate wirelessly using Bluetooth.

For this, we used the file transfer mechanism of the DWARF Bluetooth Communi-
cation Service. In the scenario, the mobile system tells the information terminal that
its user wants to go to the meeting room (and print something along the way), and
the information terminal sends a compressed file which contains:

• a geographic and geometric description of the area of the TUM campus, including
locations of printers along the way, which is loaded into the World Model,

• a Taskflow which guides the user towards the meeting room step by step and
room by room, which is loaded into the Taskflow Engine,

131

5 A Case Study for the DWARF Framework

• and abstract user interface descriptions of the navigation scenes to be displayed
during this navigation process, which are stored locally so the Taskflow Engine
can send them to the User Interface Engine at the appropriate time.

The Bluetooth Communication Service is described in [172].

5.3.3 Taskflow Engine

The basic idea behind the development of the taskflow engine was to provide an easy-
to-use possibility for the description of structured flows of tasks. The advantages of this
concept arise immediately if we think of maintenance applications using Augmented
Reality technologies. Most maintenance tasks are characterized by a fixed flow of
steps that have to be performed one after another. This feature is very useful for other
application domains as well, such as navigation.

task step 1 task step 3task step 2 task step n

media repository

taskflow repository

scene 1 scene 2 scene m

Figure 5.6: General idea of the Taskflow Engine Service.
A taskflow repository contains information about the single steps of a task-
flow. For each step several Augmented Reality scenes or other documents
provide information for the user.

Initially, the TaskflowEngine Service was specified and developed as part of the
ARVIKA Augmented Reality system [118]. Goal of this component is the easier de-

132

5.3 The Pathfinder DWARF Services

velopment of Augmented Reality content as before. Basic idea is that in industrial
domains Augmented Reality-supported work is integrated into a predefined taskflow
or sub-taskflow. Typical scenarios from the ARVIKA project such as laboratory ex-
periments, assembly or maintenance schedules follow a pre-planed flow of steps and
require a description of this process flow. Examples can be found in Production Plan-
ning Systems (PPS) and IETMs [155, 156, 158].

A particular taskflow is specified in an XML-dialect that we developed for that pur-
pose, the Taskflow Definition Language (TDL). At runtime a taskflow description is
loaded from the repository and interpreted by the Taskflow Engine. The Taskflow En-
gine tells the client system, in the case of ARVIKA a web browser and the ARBrowser,
which documents and Augmented Reality scenes should be loaded and displayed.

A taskflow is composed of several tasks in a given sequence. The single steps of such
a taskflow are linked with information from legacy systems, Augmented Reality scenes
or other types of documents. Figure 5.6 illustrates the idea. A Taskflow Repository
contains descriptions of taskflows and the steps of the taskflows, Media Repositories
provide documents that may be displayed for each step.

For DWARF Pathfinder the ARVIKA Workflow Engine was reused. The navigation
of a user to a predefined goal is similar to the guidance of a service man through a
maintenance order. The single tasks of a workflow became the location points the user
had to follow in the navigation scenario, the information documents became augmented
information about the environment at each location

Internally, the taskflow engine may be seen as a state machine that switches to new
states when it is triggered by certain incoming events. Every state has information
associated with it, which can be sent to the user interface to be displayed. This could
be a textual or graphical description of a navigation task, e.g. ‘go up the stairs’, or
an animation of how to repair a certain machine part. By evaluating incoming events
such as changes in the user’s location or a spoken ‘done’ command, the taskflow engine
switches to new task descriptions.

In the Pathfinder application, the Taskflow Engine receives and stores navigation
instructions in the form of a taskflow from the information terminal via the Bluetooth
Communication Service. This taskflow represents the process of navigating from the
subway station to the meeting room. States in this taskflow are, for example, “outside”,
“in the hallway on the first floor” and “in the meeting room”. Every state has a textual
or graphical description of a navigation task, e.g. “go up the stairs” or an image of
the stairs that have to be taken. This is sent to the User Interface Engine.

The Taskflow Engine reacts to incoming ContextData Events with updates on the
user’s position, which are generated by the application from the tracking data. By
evaluating them, it can switch to new states of the navigation task.

Further details on the taskflow engine can be found in [126].

133

5 A Case Study for the DWARF Framework

5.3.4 User Interface Engine

Augmented Reality is a technology which combines a real-world scene with virtual
objects created from a computer. A desired feature of the presentation layer of all of
those systems is multi-modal human-computer interaction. Figure 5.7 shows the idea
of a multi-modal system.

User

Speech
Recognition

Speech
Synthesis

Touchpad Joystick

Head-mounted
Display

Figure 5.7: Several I/O channels for multi-modal interfaces

A definition of multi-modal system is given by Nigay and Coutaz [102]:

“In the general sense, a multi-modal system supports communication with
the user through different modalities such as voice, gesture and typing.
Literally “multi” refers to “more than one” and the term “modal” may
cover the notion of “modality” as well as that of “mode”

1. Modality refers to the type of communication channel used to convey
or acquire information. It also covers the way an idea is expressed or
perceived, or the manner an action is performed.

2. Mode refers to the state that determines the way information is inter-
preted to extract or convey meaning.

(. . .) multi-modality is the capacity of the system to communicate with
the user along different types of communication channels and to extract
and convey meaning automatically. (. . .) a multi-modal system is able to
model the content of the information at a high level of abstraction.”

134

5.3 The Pathfinder DWARF Services

This means that the system should support user input and system output by various
ways. User input could use components such as speech or gesture recognition, system
output could use components such as voice output, 3D graphics, and text. These
components have different features and properties as well as common ones. This can
be used to combine different components to complement each other. For example, in
a tour guide the directions are shown in 3D graphics in a head-mounted display in
form of an arrow, but information about a tourist attraction is given in text and 2D
graphics. The common features of devices allow the user to interact via more than
one respective input or output component. Another example is user input by pressing
the button “OK” or by saying “OK” to a speech recognition component.

The recurring task of developing a multi-modal HCI should be simplified by a
presentation-free language for describing human-computer interaction: the Coopera-
tive User Interfaces Markup Language (CUIML) This language should allow to use
various input and output components in combination and in addition to each other.
The User Interface Markup Language (UIML)[2] is an abstract language for user in-
terface definition that was used as a starting point for CUIML. In DWARF we use
CUIML for the definition of the presentation and control subsystems of Augmented
Reality systems.

The core idea of CUIML is to factor out the structure of a HCI that is common to
all different wearable setups. When the structure changes, only the passage in CUIML
that contains the structural information has to be changed. As the concrete views that
form the HCI for different hardware setups are generated automatically, the changes
are minimized by this approach.

The DWARF User Interface Engine is responsible for interaction with the user. For
the Pathfinder application, it displays three different kinds of scenes:

• outdoor navigation, showing a three-dimensional map of the TUM campus, ro-
tated to match the user’s orientation,

• indoor navigation, showing two-dimensional maps of rooms, halls, stairs and
doorways,

• and three-dimensional highlighting of a specified object, for example the printer
used for the handouts.

Only the last scene, overlaying an arrow over the printer, fits the classical definition
of AR [7]. However, we found that for the task of navigation, schematic maps can
provide a better overview than virtual arrows floating in mid-air would.

The information on which scene to display when comes from the taskflow engine.
Additionally, the User Interface Engine can display status information such as “print

job started” and processes user input by voice recognition, in order to start the Blue-
tooth download or to confirm the print job.

135

5 A Case Study for the DWARF Framework

The main task of the User Interface Engine is to display and process the user interface
scenes provided by the application or the taskflow engine using multi-modal human-
computer interfaces. The DWARF framework has been designed to support a large
variety of application domains. In consequence, we can not rely on a fixed class of user
interface devices such as head-mounted displays or usual computer terminals. It may
even be possible that the output device changes during the runtime of an application.

To handle these constraints, the User Interface Engine separates the description of
the user interface from its actual instantiation. The input of the engine consists of a
XML-based description of the user interface’s functionality that does not contain much
information about its final look and feel. This input is then transformed or rendered
to a concrete user interface displayed on a single or multiple available devices. This
approach allows high flexibility and reduced development time for highly platform
independent Augmented Reality applications.

Concrete User interface Devices supported by the user interface engine include
a Virtual Reality Modelling Language (VRML)-based three-dimensional interface,
a Hypertext Markup Language (HTML)-based interface for displaying textual and
graphical information in two dimensions, and a voice recognition system that allows
the user to give commands to the system.

For a more detailed discussion of the User Interface Engine, see [130].

5.3.5 Tracking Manager and Position Trackers

The tracking subsystem provides methods for determining the position of the user or
other tracked objects. It is divided into two layers; there are several more or less simple
trackers that provide location information. This information is collected by the next
layer called the tracking manager, where the possibly contradictory data is combined
and according to the reliability of the data the most probable position is computed as
well as the accuracy of this measurement.

We use two classes of tracking devices. The first class are simple devices that give less
than the six-dimensional data (three translational and three rotational components)
necessary for real three-dimensional registration, but have a large range of operation
or require only limited computing power. The second class are trackers that deliver
six-dimensional data, but which are often constrained in rage or need a large amount
of computing power.

Tracking Manager For an application using the tracking subsystem, a tracking man-
ager is basically all it needs to get the most accurate position.

A tracking manager collects the information of all relevant trackers and calculates
a more accurate real position out of this data. This takes the general accuracy of the
trackers into account as well as the time when the measurement was done and the
update frequency of the information.

136

5.3 The Pathfinder DWARF Services

One important feature of the tracking manager is the ability to dynamically add
and remove trackers, which is invisible to the application.

In addition, facilities such as sensor fusion or movement prediction may be added
to the tracking manager. In short, its task is to make the whole of the trackers more
than the sum of its parts.

GPS Tracker The GPS tracker uses the output of a standard GPS receiver to de-
termine the position and orientation. The position data consists of two-dimensional
coordinates (the altitudinal measurement is very imprecise) and an orientation angle
from a magnetic compass. This GPS tracker only works outdoors, and only when it
has an unobstructed view of the GPS satellites.

Radio Frequency ID Tracker For indoor navigation, we originally intended to use
RFID tags, which can identify each doorway as the user walks through it.

id tags are unpowered devices that are attached to known locations in the real world,
like doors or significant points in hallways. A special RFID-Tag reader mounted on
the user’s wearable computer reads the tag’s identification every time the user passes
by. This way, it is possible to obtain precise location information, although only for a
short moment.

Unfortunately, it was not possible to find and obtain such tags in the narrow time
frame of the project. As an alternative, we implemented a software simulation of RFID
tags—a “manual tracking Service” in which an assistant entered the ID of the room
the user was entering. Porting this software to use RFID tags should be trivial.

For every Augmented Reality application its very important to know at every time
the accurate pose of the user. Unfortunately, no system exist at the moment that gives
the required accuracy both in position and in viewing direction at the same time and
is scalable to large areas as well [7].

The tracking subsystem for DWARF is a tracking framework that provides an appli-
cation with position data for any object of interest, including the user, other persons,
and moving or static objects. It is used as an abstraction layer between the application
and the actual hardware tracker used to retrieve the position. On the other hand, the
tracking subsystem can be used as a testing platform for testing new tracking hardware
as well as new algorithms for data fusion, dead reckoning and movement prediction by
simply implementing the right interfaces.

The output of each single tracker can not be used directly by an application without
knowing detail about the available trackers and their properties. To detach this depen-
dency on actual hardware and to simplify the tracking process for the application, the
tracking subsystem is responsible for collecting the data from the various connected
tracker, to check if its valid, then to filter it and generate the model parameters de-
scribing the tracked object. It also offers the service to predict the position at a given
time based on this model.

137

5 A Case Study for the DWARF Framework

Prediction
Dead Reckoning TrackingModel

Linear Graph-based Probabilistic

Position

Filtering

Collecting Data

Integrity Check

use

generate

use

use generate

Context,
History

generate

use

Figure 5.8: Activity diagram of data cooking of the Tracking Manager

Current tracking systems for Augmented or virtual reality are in most cases either
commercial products that are if at all only to a small extend configurable or they are
research projects that are usually limited to their particular research domain [123].
The proposed tracking framework provides an object-oriented design for the overall
tracking process that tries to one the one hand be flexible to use any kind of tracking
device, even not yet existing ones, and on the other hand to move away from the usual
filter theory approach.

The difference between prediction and dead reckoning is the fact that dead reckoning
is necessary where temporarily no data is available and prediction is needed when the
data is not yet available. Therefore, prediction can be used later to validate the model
and the parameters.

More information about the Tracking subsystem can be found in the diploma thesis
of Martin Bauer [13].

5.3.6 Optical Feature Tracker

For the AR highlighting of the printer that printed the user’s handouts, we needed
accurate and fast tracking. For this, we used the Optical Tracking Service.

The Optical Tracker processes live video input from a camera mounted on the user’s
head and determines its orientation and position in real time. This six-dimensional
data is crucial for performing ‘real’ augmented reality applications.

The basic principle of the optical tracker is simple. The video stream is analyzed
for markers that are attached to known locations in the three-dimensional world. As a
result, correspondences between two-dimensional image points and three-dimensional

138

5.3 The Pathfinder DWARF Services

real world points are established. Sophisticated algorithms are now used to compute
the camera’s six-dimensional pose out of these correspondences.

Optical tracking is a computationally expensive task. To ensure stable high per-
formance of this crucial service for exact registration, the optical tracker should be
executed on a dedicated Central Processing Unit (CPU) and deliver its result over a
reliable network connection to the user interface.

The area around the printer was measured accurately, and the optical tracker could
detect carefully-placed fiducial markers on and around the printer. It used this to
calculate the user’s position, and sent position data to the VRML display component
of the user interface.

Figure 5.9 shows a general overview of the subsystems involved in the optical tracker
and the shared memory areas they use to communicate with each other.

Further details on the Optical Tracker are described in [162].

5.3.7 World Model

The geographical and geometric information from the information terminal is stored
in the mobile system’s DWARF World Model Service.

The DWARF system needs to store data about real and virtual objects in a well
organized fashion. The first place to store all data describing the user’s natural and
virtual environment is the World Model Service. It can be seen as a large database that
holds entries for every real or virtual object. Examples for real objects are buildings,
floors, furniture in rooms etc. Virtual objects may consist of virtual stickies attached to
real objects or highlighting information such as virtual arrows to indicate the directions
the user has to take [77].

The crucial point for all these objects is their three-dimensional position and orien-
tation towards each other. The World Model service provides facilities that allow easy
description and computation of these relations.

The World Model represents the world as a tree of Things, such as a campus,
buildings, rooms, furniture items and so on. Each Thing has a geometrical relation to
its parent Thing, allowing the relative position of all Things to be computed. Each
Thing can also have arbitrary attributes associated with it. Useful attributes include
services associated with Things, or VRML descriptions of the Thing’s appearance.
This tree-shaped structure is stored in an XML dialect.

As almost all DWARF components rely on such data, the World Model is a heavily
used component. In consequence, efficiency was one of the major design goals.

The DWARF WorldModel component may be seen as the central database holding
all necessary information about the real and virtual objects in the user’s environment.
As such, the specific requirements for AR systems have to be kept in mind and the
World Model’s interfaces have to be defined in a way that facilitates the development
of AR applications.

139

5 A Case Study for the DWARF Framework

Image
Aquisition

Fiducial
Detection

Optical Flow
Tracking

Absolute Pose
Estimation

Image Buffer
Filled

2D/3D
Correlation
Buffer Filled

6D Pose
Buffer Filled

Video See-
through Output

Optical See-
through Output

Figure 5.9: Basic concept of the Optical Tracker Service. Note that this diagram
presents the dynamic behaviour of the Optical Tracking subsystem, the
actual underlying architecture is not object-oriented and separates data
from functionality.

140

5.4 Service Deployment

From the requirements for the World Model Service, the system design follows
straightforward. The core component of the information about a real or virtual object
is its pose. Perhaps the single most important functional requirement for the World
Model is the ability to compute one object’s pose relative to an arbitrary other.

The system design of the World Model is centred around this capability. In the
remainder of this section, we will explain the basic approach we chose to handle this
problem and give some details about the subsystem decomposition and the persistent
data management.

Real and virtual objects can be grouped hierarchically in a tree data structure (this
could be modelled using the Composite design pattern). To give an example, consider
a table in a room at the TUM campus. The top-level object may be, at the DWARF
system designer’s choice, something like a map of Munich or a Universal Transverse
Mercator Projection (UTM) coordinate system [57]. One child of this top-level object
should be the TUM campus. The coordinates of this campus may well differ from the
UTM coordinates so we have to store rules how to convert the UTM system to the
TUM campus system.

Again, the campus object has children. We may want to take every floor of every
building at the campus as a child. These floor objects will then have single rooms as
children. Finally, the table we are looking for is represented as a child of the room it
is standing in.

Using this general structure, it is easy to add objects without knowing their position
in the top-level coordinate system. If we add a virtual TV set to the table in our room,
we only have to give the coordinate transformation from the virtual object to the table
in order to allow the World Model service to compute the TV set’s pose relative to
every other object in the tree structure.

Details on the World Model can be found in the diploma thesis of Martin Wag-
ner [162].

5.4 Service Deployment

The DWARF Services can be distributed onto several computing devices; the middle-
ware will let them find each other, as long as they have a network connection. This
allows computation-intensive services such as an optical tracker to run on dedicated
hardware which can be added to or removed from the system at run time.

This way, the user can tailor the mobile Augmented Reality system to the require-
ments and leave out the hardware modules that are not needed for a particular appli-
cation.

DWARF takes advantage of existing software components. For example, the user
interface devices use existing VRML rendering and voice recognition software, and the
middleware makes use of CORBA and third-party event services.

The DWARF services can run on many different platforms; the choice of hardware

141

5 A Case Study for the DWARF Framework

and operating system for a particular Service depends heavily on the availability of
drivers for the specialized hardware (such as digital cameras or GPS receivers). The
performance-intensive and resource-constrained Services are written in C or C++, the
others in Java.

Camera

Microphone

HMD
Bluetooth

Laptop

Battery

Wireless Ethernet

Laptop

GPS Receiver

Backpack

Figure 5.10: A side view of our prototype wearable computer built with DWARF.
Note that two laptops are used, and that there are no trailing cables. The
display on the lower laptop was kept open so that the user’s view could
be shown to an audience as well

The Pathfinder prototype was deployed on two laptops with attached peripheral
devices. They were mounted on a mobile frame one on top of the other as shown in
figure 5.10.

• A Sony Vaio PCG-C1XD PictureBook (upper laptop in the figure) with a Pen-
tium II-400 processor and 128 MB of RAM, running Microsoft Windows 98,
with

– a Sony DFW-VL 500 FireWire Camera for optical tracking,

– an Ericsson Bluetooth device for access to the information terminal,

– and a PC Card Ethernet adapter for access to the other laptop.

• A Dell Inspiron 5000 (lower laptop in the figure) with a Pentium III-450 processor
and 192 MB of RAM, running SuSE Linux, with

– a Sony PLM-S 700 Glasstron see-through head-mounted display,

– a Garmin eTrex Summit GPS receiver,

142

5.4 Service Deployment

– a Lucent WaveLAN wireless network PC Card adapter (using Apple AirPort
base stations),

– and a PC Card Ethernet adapter for access to the other laptop.

All devices were battery-powered, and the time of operation was about two hours.
The deployment of the DWARF Services on the laptops is shown in figure 5.11.

For the middleware, we used the “no local mediating agent” deployment on page 108
for the Sony Vaio, where all the middleware was on the Dell Laptop and there was a
reliable Ethernet connection between the two.

Vaio:Laptop

DELL:Laptop

Pathfinder
App

GPS
Tracker

IDTracker

CAPRouter

UIEngine

Workflow
Engine

WorldModel

Optical
Tracker

Bluetooth
Communication

Service

Print Server: PC Information Terminal: PC

[Ethernet] [Bluetooth][Wireless LAN]

Tracking
Manager

Print
Server

Information
Server

Figure 5.11: Deployment of the DWARF Services in the demonstration system. It
consists a Sony Vaio running Microsoft Windows 98, a Dell laptop run-
ning SuSE Linux, a PC as Information Terminal Server connected over
Bluetooth to the Vaio laptop, and a PC as Print Server connected over
wireless LAN to the Dell laptop. The two laptops communicate over an
Ethernet cross cable.

143

5 A Case Study for the DWARF Framework

5.5 Conclusion

In this chapter we described a case study for the DWARF framework. We present
the M3ARF sub framework for mobile Augmented Reality maintenance systems and a
demonstrator that implements a subset of the maintenance scenario, DWARF Path-
finder. This framework is a subclass of the abstract reference architecture and uses
several Augmented Reality software patterns for the implementation of the Augmented
Reality components. As system model the framework uses the contract-based peer-to-
peer architectural style.

The case study shows the applicability of the DWARF framework and the underlying
peer-to-peer architectural style.

144

6 Conclusion
Results and future work.

The goal of this dissertation was the development of a framework for adaptable
mobile Augmented Reality systems in ubiquitous computing environments. A subclass
of ubiquitous computing environments are so called Augmented Reality-ready buildings
where external trackers can be integrated into the client’s tracking process [79]. A
special requirement was the ability to change the system configuration on demand to
adapt to changes in the environment. For example, external resources such as tracking
systems should be integrated dynamically as soon as they come within reach and be
released when they get out of reach.

Another requirement was the ability to develop Augmented Reality applications with
the framework that are fast enough for interactive use. This means that the overhead
caused by the framework had to be as low as possible to enable real-time Augmented
Reality systems. So we had to find a good balance between design for adaptability
and flexibility on the one side, and performance on the other, similarly to finding the
balance between high-quality and real-time constraints as described in [80].

Results

The result of this dissertation is the Distributed Wearable Augmented Reality Frame-
work (DWARF), a reusable basis for the development of Augmented Reality applica-
tions. The DWARF framework divides Augmented Reality systems into four abstrac-
tion layers to handle technical, Augmented Reality, application domain, and applica-
tion specific aspects separately.

Contract-based peer-to-peer architectural style. The first layer, called the archi-
tectural style layer, is based on the contract-based peer-to-peer architectural style
for dynamically adaptable distributed systems. It allows us to model a system as a
configuration of distributed services. Each service provides a contract which specifies
possible collaborations with other services. The architectural style is implemented by
the DWARF peer-to-peer middleware that connects services for collaboration on the
base of these contracts. The chosen approach allows the dynamic configuration and

145

6 Conclusion

adaptation of Augmented Reality systems and is also fast enough to develop interactive
Augmented Reality systems. This is achieved by decoupling the system configuration
from the system communication. In the first step, the services find each other and
establish the communication. In the second step, the actual communication takes
place and data are exchanged. After that, the middleware is no longer involved and
therefore does not induce communication overhead.

Augmented Reality reference architecture and design patterns While the first layer
of the DWARF framework is domain independent, the second layer, the solution do-
main layer, is domain specific, which is Augmented Reality in the context of this
dissertation. An abstract reference model for Augmented Reality systems describes
the subsystems and their relationships of Augmented Reality systems [121]. This ab-
stract model allows us to identify design patterns to implement these subsystems and
components. An Augmented Reality system is the composition of Augmented Real-
ity subsystems and an individual Augmented Reality subsystem is the composition of
several Augmented Reality patterns [120]. The M3ARF framework has a minimal set
of the required DWARF Services for mobile Augmented Reality maintenance systems
and includes several design patterns which are particularly suited for rapid prototyping
of Augmented Reality systems.

M3ARF framework and DWARF Pathfinder To demonstrate the feasibility of the
DWARF framework we presented a case study with the M3ARF sub framework for
mobile maintenance systems and the prototype of a navigation application, DWARF
Pathfinder. This application covers the application layer, the inter-application layer,
and the solution domain layer. The third layer, the inter-application layer, contains
reusable, more complex services that are suited for a specific application domain.
Services of this layer use Services of the solution domain layer. An example from
DWARF Pathfinder is the Taskflow Service for user navigation which collaborates
with the User Interface Service.

Future Research Directions

The DWARF framework provides a useful foundation for the development of Aug-
mented Reality systems. This was demonstrated successfully by building several Aug-
mented Reality applications based on DWARF, for example FixIT [78], TRAMP [89]
or SHEEP [131].

Nevertheless, the framework can be extended in several research directions.

Contract-based architectural style. The developed architectural style and the mid-
dleware for the dynamic configuration of Augmented Reality systems from distributed

146

services have been demonstrated as a powerful approach to develop flexible and adapt-
able Augmented Reality systems. It was developed for Augmented Reality systems on
wearable computers with the possible integration of external resources. The assump-
tion was that the available resources do not change too quickly, and as a consequence a
system configuration could be assumed to be relatively stable. At system start-up the
original set of DWARF Services is connected, afterwards only some, such as Services
for tracking, are replaced dynamically. It is unclear, if the chosen concept is still valid
in a highly dynamic environment. The next challenge is to see how the approach scales
when it is applied to a new class of systems with potentially hundreds or thousands of
available services.

The evolution of the contract-based peer-to-peer architectural style is still ongoing
to enhance the Service selection strategies towards context-based selections [88].

DWARF Middleware. In any distributed system, deadlocks are an issue. If there is a
cyclic dependency between Services, the DWARF middleware will be able to solve the
deadlock by starting up the Services in an unspecified order, and connect them. The
Services themselves may still deadlock, however—for example, if Services need to have
data from other Services before they can send data themselves, and this dependency
forms a cycle. Therefore, when designing DWARF Services, such dependencies should
be considered carefully.

The DWARF middleware currently does not address all stages of the Service life
cycle, such as installation and upgrade. It only deals with starting and stopping
Services and arranging for communication between them. Managing these additional
steps of the Service life cycle would be a useful future extension of the middleware.

Security. Another open issue is security. DWARF-based systems are still research
systems and security has not been a major design goal. However, in future the mid-
dleware should address security issues, especially when multiple mobile users share
Services in the same wireless network.

Evolution of the DWARF framework. M3ARF was the first sub framework and
Pathfinder the first application developed on the base of the presented DWARF frame-
work for Augmented Reality systems. Other systems followed. For each system new
DWARF Services have been developed and existing ones have been improved. So
DWARF is evolving into a real framework with mature and reusable Services. Partic-
ulary, the User Interface and Tracking Services have improved a lot. For other domains
such as games, new sub frameworks that customize already available Services and add
their own DWARF Services must be developed.

Architectural patterns for Augmented Reality systems. New Augmented Reality
systems for new application domains with yet unknown approaches will appear. There-

147

6 Conclusion

fore the catalogue of patterns must be updated regularly, quantitatively as well as
qualitatively. New patterns must be added to the catalogue and existing ones must
be updated or measured again. Such a step was done by the pattern community for
approaches that have existed for a long time. To do that for a still rather young field as
Augmented Reality is promising but would require the efforts of the whole Augmented
Reality community. One possibility is to adapt the pattern shepherding concept used
in the pattern community. Shepherding is the collaboration of one that is experienced
in the description of patterns (‘the shepherd’) with one that identified a new pattern
(‘the sheep’). Collaboratively they improve the description of the new pattern. The
concept to describe a reusable solution as patterns is not very well known in the Aug-
mented Reality community, but there several developers that have developed solution
that could be described as pattern. So the task is to identify a possible pattern in an
existing Augmented Reality system and ask the author to join a shepherding process
(as a sheep).

Development tools. With an underlying architectural style for distributed Aug-
mented Reality systems and concrete middleware, the next challenge is to develop
new software tools. For example, a graphical editor for the visual design would al-
low to specify the overall system and generate the contract files and code skeletons
of the services. This could be combined with other tools that check the correctness
of system designs. The key concept in this context is the OMG’s Model Driven Ar-
chitecture (MDA) specification [96]. The key idea of the MDA is the generation of
executable code from machine-readable application and data models. The idea is al-
ready used in some domains such as telecommunications and real-time systems. A
widely supported specification is the ITU’s Specification and Description Language
(SDL) [64]. The MDA tries to transfer the success of SLD to software engineering in
general. The challenge is to develop a DWARF profile for the MDA and generate most
part of a new DWARF system from a system model.

Content for Augmented Reality. Currently, the creation of new content for Aug-
mented Reality and the dynamic access to it, for example over database interfaces is
not yet solved satisfyingly. This is true for Augmented Reality systems in general and
DWARF in particular. Here we see the need to research the connection of Augmented
Reality systems with authoring environments such as DART [86], to implement the
world model with database systems [124] and to connect enterprise-wide information
systems [77].

Development of a wearable multi-computer. Another challenge is to build a wear-
able multi-computer based on the DWARF concept for dynamic module integration.
Such a multi-computer would be composed of several loosely coupled self-contained
computers worn by the user and several external computers in the environment. Each

148

unit could be restricted to serve a specific function, similar to an appliance [15]. This
design promises a very flexible system with a straight-forward integration of external
resources. New developments on the field of FPGA1 allow us to develop such a proto-
type. Possible technical solutions are described in [117]. FPGA-based functionality-
specific modules could also include the required middleware for dynamic collaboration.

1Field-Programmable Gate Arrays

149

150

A Design Patterns for Augmented
Reality Systems

Architectural Patterns for the Application, Interaction, Presentation, Tracking,
Context, and World Model subsystems.

This section is a catalogue of patterns that we have identified so far. The patterns
are ordered by subsystems and described with name, goal, motivation, description,
usability, consequences, and known use.

Application Subsystem

Central Control pattern

Goal: Keep the flow of control.

Motivation: The main parts of an application are independent of Augmented Reality.
Indeed, the Augmented Reality specific components are only one part among
others, and only used to visualize some content.

Description: Write the application in a high-level programming language, explicitly
describing what happens when.

Usability: Use this pattern if it is necessary to keep the control flow, for example to
guarantee real-time constraints for non-AR subsystems, e.g. reacting to exter-
nal events. The disadvantage is that it is up to the application developer to
implement the continuous update of registration and the rendering.

Consequences: The modifiability of the application is low.

Known use: MR Platform, ARToolKit

151

A Design Patterns for Augmented Reality Systems

Tracking-Rendering-Loop pattern

Goal: Let an AR library do the tracking and rendering and call the application within
the tracking-rendering loop.

Motivation: The tracking and rendering must be done in a regular loop that updates
the user’s view based on her motion. Embed the application into this loop.

Description: To alleviate the development of AR applications some libraries provide
the needed low-level functionality to update the user’s view regularly. The ap-
plication’s task is to provide hooks that can be called within the update loop
and that might react on changes in the view.

Usability: With a library for tracking and rendering.

Consequences: The control flow is managed by the update loop of the tracking-
rendering system.

Known use: VD2, ARToolKit

Web Service pattern

Goal: Treat AR as one type of media among others.

Motivation: For content-based applications the web-based approach has been proven
to be a reasonable approach. AR scenes and world model information can be
seen as an AR document. A scene such as an arrow that points to a particular
button in front of the user is then described in document that is loaded from a
web server.

Description: The control flow is situated on a web server and implemented within a
web service. This web service is published under a particular web address and
the answer of the service is rendered on a web client. If the answer contains
Augmented Reality content then the AR component is activated to display the
given AR content.

Usability: This approach can be used where the focus is on displaying various types
of content and load them dynamically from a server.

Consequences: The client and the server must be connected. If a connection cannot be
guaranteed then there must be a proxy available locally that emulates the server.
This approach should be combined with a scene-based rendering component, e.g.
a VRML or custom AR browser.

Known use: ARVIKA

152

Multimedia Flow Description pattern

Goal: Use high-level description language to describe AR scenes.

Motivation: For the development of multimedia content, there are several formats
that simplify the creation of new content by providing high-level concepts such
as timers. Examples for such languages are SMIL and Macromedia Flash. Ad-
ditionally to multi-purpose languages for multimedia content, there are domain
specific languages for particular fields—for example, description languages for
Workflows or for technical manuals (IETMs).

Description: A high-level markup language provides domain specific components and
concepts that help quickly create new content. For example, to support a training
scenario for unskilled workers, the AR system should visualize a sequence of AR
scenes and other documents. To describe such a scenario, the content creator has
to combine workflow steps and add content to each step. An execution engine for
workflows reads such a description and controls the presentation of the current
working step.

Usability: This approach can be used for applications with a meta-model for the de-
scription of documents and their relationship and dependencies combined with
a component that reads and executes such descriptions.

Consequences: The complexity of this approach is higher for simple applications. This
approach should be combined with a scene-based rendering component, e.g. a
VRML or custom AR browser.

Known use: STAR, ARVIKA, DWARF

Interaction Subsystem

Handle in Application pattern

Goal: Keep the system architecture simple; provide high-fidelity interfaces.

Motivation: The simplest way to handle user input for a specific application is to
hard-code it into the application logic itself. Also, this allows custom-tailored
input styles for each application.

Description: Include input handling code in the application code, with explicit refer-
ences to the types of input devices.

Usability: Within a main executable application.

Consequences: Potential for high-fidelity interfaces; reduced modifiability.

Known use:

153

A Design Patterns for Augmented Reality Systems

Use Browser Input Functions pattern

Goal: Take advantage of existing functionality.

Motivation: When using a browser for rendering, you can take advantage of its input
features.

Description: VRML browsers can send events out through the EAI interface when
the user clicks on on-screen objects with the mouse or when the gaze direction
coincides with certain objects. Other browsers provide similar functionality.

Usability: Together with a browser-based output subsystem.

Consequences: Separating input from output modalities and integration into multi-
modal systems can be difficult. Since wearable systems do not generally have a
mouse, the mouse movement must be simulated with another input device.

Known use: ARVIKA

Networked Input Devices pattern

Goal: Combine the data of various input devices to form multi-modal user interfaces.

Motivation: Multi-modal interfaces require many simultaneous input devices. Mod-
elling all possible combinations is exponentially complex.

Description: Provide an abstraction layer for input devices and a description of how
the user input can be combined; interpret this description using a controller
component. Use middleware to find new input devices dynamically.

Usability: Good when combined with multiple viewers for output.

Consequences: Allows integration of new input devices at run time or when building
new systems.

Known use: DWARF

Presentation Subsystem

VRML Browser pattern

Goal: Use a rendering component that can display simple virtual scenes.

Motivation: The usage of a VRML browser is a simple way to display virtual scenes.
The standardized VRML format, a markup language for the description of virtual
worlds, allows to use a lot of tools for authoring virtual worlds and to reuse
components that can render descriptions of virtual worlds.

154

Description: Use a third-party VRML browser to display 3D information. Use the
External Authoring Interface (EAI) that is part of the VRML standard to modify
the scene and set the viewpoint based on tracking data.

Usability: A VRML browser component can be used if the complexity of the scenes is
relatively low and the browser is only used as a rendering engine.

Consequences: The advantages of using a VRML browser are the standardized format
and the reuse of tools for authoring and the reuse of existing components. This
allows rapid prototyping of Augmented Reality system based on VRML scenes.
The disadvantages are that the EAI is restricted to relatively simple operations
and that tying the VRML browser to the rest of the system may be tedious.
Also, the rendering performance of VRML browsers is not as high as that of
native OpenGL.

Known use: STAR, DWARF

OpenGL pattern

Goal: Use a standardized library to render 3D objects and keep maximum flexibility
and control.

Motivation: OpenGL is the standard low-level library for 3D graphics. While higher-
level approaches, particularly scene graphs, provide a more powerful interface for
3D worlds, OpenGL provides the most flexibility to the application programmer.
Scene graphs use their own control path user applications have to comply with.
By using OpenGL, the developer can implement his own control flow.

Description: OpenGL provides low-level 3D constructs. The application developer
creates new objects and tells the render to display them [170]. With the infor-
mation from the trackers the scene can be rendered with the correct viewing
direction and distance.

Usability: Usable on nearly all systems.

Consequences: Modifiability of system is low.

Known use: ARToolKit

Proprietary Scene Graph pattern

Goal: Use a rendering component that can render scenes and provides a customized
programming interface.

155

A Design Patterns for Augmented Reality Systems

Motivation: There may be reasons to develop an own scene graph for rendering, e.g.
the provided interfaces are not satisfying or the control over the data flow, that
is often controlled by the scene graph, should be kept.

Description: The Tinmith system uses an own scene graph for graphics rendering on
top of OpenGL combined with an own concept for object access through an
own addressing schema. Each node of the scene graph has the same abilities to
serialize and address them as the other objects in the system.

Usability: An own scene graph may be useful if the developer wants to control the
implementation and the behaviour of the scene graph. For example, in the
Tinmith system each object of the system can be made persistent and it can be
reached over an address schema. The nodes of the scene graph are objects of the
same type and there have the same attributes.

Consequences: The scene graph has to be developed from the ground up. For exam-
ple, to make scenes persistent, either a parser for a standard format like VRML
has to be developed or a proprietary format which cannot reuse scenes developed
by standard tools such as VRML editors.

Known use: Tinmith

Video Transfer pattern

Goal: Offload the video rendering to a server, transfer it to the client and present it
there.

Motivation: To reduce hardware requirements of the client system, use a rendering
server in the environment and transfer the completely rendered images to the
client. Particularly suited for video see-through AR.

Description: The client gathers videos through one or two head-mounted cameras,
encodes them (e.g. MPEG 2), compresses them, and transfers them to the server.
The server uncompresses the video images, processes them (calculates the camera
position and orientation), augments, encodes and compresses the images. The
images are sent to the client, decompressed and shown on the HMD.

Usability: This can be used with a good network connection and a strong rendering
server.

Consequences: The advantage is that the hardware requirements for the clients are
very low. Even PDA-class devices can be used. The disadvantage is that the
client and the server must have network connection.

Known use: STAR, MR Platform, AR-PDA.

156

Multiple Viewer Classes pattern

Goal: Use different media types for different types of information.

Motivation: Although the central requirement of AR is displaying three-dimensional
information, other types of output devices such as speech synthesis or wrist-worn
displays are also useful.

Description: Provide an abstraction layer for different types of viewers (AR, speech,
text etc.) that can handle certain document types. Then provide the viewers
with the appropriate documents.

Usability: This approach can be used whenever multiple output media are desired,
unless the rendering complexity is so high that the 3D viewer cannot be param-
eterized.

Consequences: Advantages are a modular system design and the possibility of inte-
grating additional output devices at run time or in new systems. Disadvantages
are the extra complexity of a viewer abstraction layer.

Known use: ARVIKA, DWARF

Tracking Subsystem

Networked Trackers pattern

Goal: Combine the data of various trackers in the environment without knowing the
physical location.

Motivation: The best results for tracking can be achieved by combining various track-
ing methods. Usually, the possibilities to connect tracking devices physically to
the client device or a tracking server are restricted. As a solution, wrap every
tracker with a software interface that masks the location of the tracker by pro-
viding a network-accessible interface. To gather the data of all trackers, each
tracker is accessed remotely. If supported by middleware, the lookup can be
done by name, not by network address.

Description: For each tracking device, provide a wrapper that uses middleware con-
cepts such as CORBA. The wrapper provides an interface to the tracker and
registers itself in the network. Components that need a tracker (consumer) look
for them through middleware services and connect to them. The components
search for the trackers by name, not by address. Once connected, the tracker
and the consumer communicate transparently.

157

A Design Patterns for Augmented Reality Systems

Usability: This approach can be used when the client system can connect to tracking
devices over the network.

Consequences: The advantage is that virtually any number of tracking devices of
different types can be combined. The disadvantage is the overhead of network
communication.

Known use: ARVIKA, Studierstube, DWARF.

Operating System Resources pattern

Goal: Directly connect tracking devices to client system.

Motivation: If no network connection is available then only devices that are physically
connected to the client device can be used. Particularly inertial trackers and
video cameras are small and can be used.

Description: The tracking devices are accessed through drivers for the operating sys-
tem.

Usability: The client device must powerful enough to execute the tracking algorithms.

Consequences: The advantage is that no network connection is needed but only de-
vices that can be connected physically to the client device can be used. And the
computing must be done completely on the client device.

Known use: MR Platform, ARToolKit

Tracking Server pattern

Goal: Use a centralized tracking server to reduce hardware requirements on the client
system.

Motivation: There are many different tracking technologies available: magnetic, video
based, inertial, or combinations thereof. Calculate the user’s pose from raw data
may require significant computing power. One strategy to avoid this is to offload
the computing to a server in the user’s environment and only transfer the result
to the client system.

Description: A tracking server in the user’s environment performs resource intensive
computations and returns the results to the client.

Usability: Use when integrating a commercial tracking system.

Consequences: Availability of a connection to the server.

Known use: STAR, UbiCom.

158

World Model Subsystem

OpenGL Code pattern

Goal: Describe virtual objects in OpenGL source code and load objects at runtime
from library.

Motivation: To be able to render objects in an AR system, it is enough to write some
OpenGL code, compile it and feed the code to the renderer. For testing purposes,
this will suffice.

Description: The developer creates OpenGL code and calls the OpenGL rendering
engine to display it. For correct registration with the user’s pose, the position
and angle of the virtual camera that looks at the scene can be changed. This is
usually done in rendering-tracking-update loop.

Usability: When only small scenes need to be presented, simple OpenGL code can
easily be written and tested, or existing code for scenes may be reused.

Consequences: The advantages are that it is easy to test an AR system. However,
this approach is not very scalable as OpenGL is a fairly low-level library for 3D.

Known use: ARToolKit

Scene Graph Format pattern

Goal: Use a standard format with authoring tools to generate content and rendering
engines to display them.

Motivation: Scene graphs are the standard component to display virtual environ-
ments. Each scene graph can read scene graph descriptions in several formats,
where the most well-known is the VRML format.

Description: With an authoring tool a content developer creates the model of a virtual
scene. In industrial context scenes created with CAD tools can be simplified and
reused. The scene description is saved in the file system and given the AR system
for processing. Scene graphs are usually stored on the file system.

Usability: Can be used where a scene graph is used for rendering, the scene does not
change too often, and the scenes are discrete without interconnection with each
other.

Consequences: Simplifies the creation of new content as authoring tools can be reused
and fits perfectly to the scene graph component.

Known use: ARVIKA, DWARF, MR Platform.

159

A Design Patterns for Augmented Reality Systems

Object Stream pattern

Goal: Serialize world model in main memory to disk.

Motivation: Serialization is a well-known technique to save runtime objects. This can
be reused for objects in a scene graph at runtime.

Description: The runtime environment allows to serializing objects to disk. The next
time the application is started the objects are recreated by deserializing them.
Recursively, a whole scene graph can be loaded from disk.

Usability: Usable where the world model is created by the system user and the system
only has to read own formats.

Consequences: An object stream can be read only by systems that knows the classes
of the objects. Thus, an object stream is a proprietary format.

Known use: Tinmith

Configuration File for Marker Positions pattern

Goal: Read configuration data for the trackers from a flat file.

Motivation: The easiest way to tell a tracker what to look for and how to interpret it
is to write it to a file and read it every time the system starts.

Description: At system start-up or any time the system comes into a new environment
the trackers have to know what to look for and how to interpret it. So the tracking
component is told the file that describes the markers or any natural features it
has to look for.

Usability: Used if only a small number of markers are needed. If many markers are
needed the same problems as with file-based scene graphs will happen.

Consequences: Does not scale well for data more complex than marker positions or
for dynamically changing data.

Known use: ARVIKA, MR Platform, ARToolkit

Dynamic Access pattern

Goal: Use abstract description of world model from a database.

Motivation: For larger descriptions of the user’s environment a collection of file-based
scene descriptions may not be enough. For example, finding a particular scene
by filename requires a name schema that could become quite complex depending
on the number of scenes and the complexity of them. Especially in mobile
environments, this can happen quickly.

160

Description: Instead of loading a particular scene from a file, the system has access
to a database system. This system contains information about the environment,
e.g. in a geographical schema. Part of the information are graphical information
and marker information. The system queries for the graphical information that
belongs to a discrete database object and passes it on to the rendering compo-
nent. The same is true for marker information (to the tracking component) and
real world objects (e.g. for occlusion).

Usability: World models in a database can be combined with graphical models that are
also saved in the database. This decouples the application dependent model, e.g.
the model for a machine to be repaired, from the graphical information needed
to render objects that are part of the model.

Consequences: A database server is a heavy-weight component compared to file sys-
tem but offers more possibilities to model larger environments. Especially use-
able for mobile applications a database model based on geographical information
system (GIS) concepts combined with graphical models for concrete objects.

Known use: ARVIKA, ArcheoGuide, MARS.

Context Subsystem

Blackboard pattern

Goal: Gather and process context information.

Motivation: Blackboards are a well-known pattern to gather information from various
sources, apply rules and create new information. This is particularly suited
where a lot of raw data with low-level information must be refined in several
steps to higher abstract information. Consumers and producers of information
are decoupled.

Description: Information producers write information to the Blackboard, a central
component. Information consumers read data from the Blackboard, process
them and may write new, higher abstract information to the Blackboard.

Usability: Good if information from many sources must be analyzed and filtered.

Consequences: Blackboards are a central component which might become a bottle-
neck. As an advantage, the participating components do not need to know each
other.

Known use: MIThril

161

A Design Patterns for Augmented Reality Systems

Repository pattern

Goal: Provide a central means for information exchange.

Motivation: Many components need context information, other produce context in-
formation. A Repository component is a central component that is well-known
by all components. It acts as a information storage.

Description: Components that produce context information write to the repository.
Components that are interested into context information read from the repos-
itory. The repository uses an addressing schema to manage the information.
Each kind of data is written and read by providing its address.

Usability: Good if data from many sources must be stored and read.

Consequences: Similar to Blackboards, Repositories can be a bottleneck. But again
the participating components do not need to know each other.

Known use: ARVIKA

Publisher/Subscriber pattern

Goal: Provide a means to distribute context information.

Motivation: When context data does not need to be saved for a certain period of time,
it can be distributed at once without need for a temporary storage.

Description: Context providers connect as publishers to a central messaging service,
context consumers as subscribers. The context providers write the new con-
text information to a particular channel which distributes it to the connected
subscribers.

Usability: May be used where there is no need to store context information. Could be
used in combination with a context repository. Some data may be saved, some
delivered at once.

Consequences: Again might be a bottleneck and publishers and subscribers do not
need to know each other.

Known use: DWARF, ARVIKA

162

Context Pull pattern

Goal: Connect components that need context information directly with source.

Motivation: For simple cases a centralized service for data exchange may not be
needed. For example, if only location context is needed a direct link to the
tracking subsystem may be enough.

Description: An interested component directly queries the context producer compo-
nent or it registers itself as subscriber. The subscriber list is managed by each
component privately.

Usability: Suited for reduced context sensitivity.

Consequences: If the amount of context sources and context consumers increases
ad hoc hardwired direct connections will lead to unmanageable code. The cou-
pling between consumer and producers is very tight, which makes them very
interdependent.

Known use:

163

164

B Details on the Pathfinder Services
Reference documentation for DWARF Services used in Pathfinder: Pathfinder
Application, CAP Router, Bluetooth Communication Service, Taskflow Engine,
Tracking Manager, Optical Tracker, User Interface Engine

This chapter contains some technical details for the DWARF Services that are part of
the M3ARF sub framework and were used for the Pathfinder application as described in
chapter 5. It provides a coherent view on the Services in one place and with a uniform
structure. For each Service we present the use cases, the functional requirements, the
system design, the integration into the system, and the XML service description. The
DWARF Services for the Pathfinder application, the CAP Router, and the Bluetooth
Communication Service are not part of the M3ARF framework and we only present
the XML service description and abstain from more details.

B.1 Pathfinder Application

Service Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="PathfinderApp" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="needITerm" type="ITermInfo"

predicate="" minInstances="0" maxInstances="10000">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="needCAP" type="CAPInfo" predicate=""

minInstances="0" maxInstances="10000">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="needUserInterfaceEvent" type="UserInterfaceEvent"

predicate="" minInstances="0" maxInstances="10000">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="needWorldModel" type="WorldModel" predicate=""

minInstances="0" maxInstances="10000">

165

B Details on the Pathfinder Services

<connector protocol="CorbaObjImporter"/>

</need>

<ability name="abilityITerm" type="ITermControl">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

<ability name="abilityTaskflow" type="TaskflowControl">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

<ability name="abilityCAP" type="CAPControl">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

<ability name="abilityContextData" type="ContextData">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="Mediator" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="needPositionData" type="PositionData"

predicate="" minInstances="1" maxInstances="10000">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="needWorldModel" type="WorldModel"

predicate="" minInstances="1" maxInstances="10000">

<connector protocol="CorbaObjImporter"/>

</need>

<ability name="abilityContextData" type="ContextData">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

B.2 Bluetooth Communication Service

Service Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="BluetoothCommunicationService" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="BluetoothEventReceiver" type="ITermControl"

predicate="OS!=Win98" minInstances="0" maxInstances="100">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<ability name="BluetoothEventSender" type="ITermInfo">

<attribute name="batz" value="bargl"/>

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

166

B.3 CAP Router

</service>

B.3 CAP Router

Service Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="CAPRouter" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="egal" type="CAPControl"

minInstances="0" maxInstances="4711">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="auchegal" type="ContextData"

minInstances="0" maxInstances="4711">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<ability name="wurscht" type="CAPInfo">

<attribute name="batz" value="bargl"/>

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

B.4 Taskflow Engine

Use Cases

The following use cases provide a generalization of the taskflow system’s external
behaviour. The use case diagram in figure B.1 shows the interdependencies between
the use cases. These use cases do not cover the possibilities of the taskflow description
language but the possibilities and reactions a taskflow controlled system has to provide.

In fact it was not easy to find more detailed use cases at all because most of the
time a user will not be working with the taskflow directly. He will either manipulate
it through a not further specified GUI or the taskflow just manages the control flow in
another system, in which case the user might not even be aware of handling a taskflow.

CreateTaskflow. Please note that in the case that the TaskflowCreator is a legacy
system with an export filter it has to have access to a document repository. In most
cases a combination of both would be most effective: A product management system
exports a rough outline of a taskflow and a human taskflow creator fills in the gaps
and links AR-documents to it.

167

B Details on the Pathfinder Services

User Interface Engine

Taskflow Editor

Document
Repository

Taskflow Engine

Execute
Taskflow

Resume
Taskflow

Suspend
Taskflow

Control
Taskflow

Request
Document

Display
Document

Taskflow
Control
Actor

Taskflow
Watcher

Taskflow
Creator

AddNoteTo
Task

Author
Workflow

<<extends

notify

notify

notify

retrieveDocument

save
Document

<<extends>>

<<extends>>

saveTaskflow

parse
Taskflow

Figure B.1: TaskflowEngine and -Editor boundaries (UML use case diagram)

Use case name: CreateTaskflow

Participating actor: Initiated by :TaskflowCreator

Communicates with :DocumentRepository

Flow of Events: 1. Entry condition: The TaskflowCreator starts the graphical
Taskflow Editor and creates the first task.

2. Create additional tasks and connect them with each other, so
that the connections describe the taskflow.

3. To every task in the taskflow the TaskflowCreator may add
links to documents either from a document repository or from
an AR-scene repository. Each document may have properties
that may influence the taskflows behaviour.

4. Connections between tasks can have a condition.
5. It is also possible to add links to information that should always

be available.

168

B.4 Taskflow Engine

6. Exit condition: When finished the taskflow has to be transferred
to the taskflow server.

ExecuteTaskflow. A user directly manipulates the taskflow through a web browser-
based GUI. This is an example of how a taskflow might be presented to the user
and how it should react to the users input. Additionally, there could be sensors that
monitor and control a taskflow.

Use case name: ExecuteTaskflow

Participating actor: Initiated by TaskflowControlActor

Communicates with TaskflowWatcher

Flow of Events: 1. Entry condition: The TaskflowControlActor chooses a task-
flow.

2. The taskflow description is loaded and parsed.
3. The taskflow is started and the user is shown the first task.
4. In each task the user is presented a list of available documents

upon entering a task.
5. The user may control the taskflow with the available options

(ControlTaskflow use case).
6. He may also suspend the taskflow (SuspendTaskflow use case).
7. Or he may add a note (AddNoteToTask-use case) to the current

task.
8. Exit condition: The Worker has seen all mandatory documents

of the last task and has received acknowledgment that the data
entered in the process has been saved.

ControlTaskflow. The control over a taskflow is part of the execution of it. For
example, a user can go to the next task or the previous one.

Use case name: ControlTaskflow

Participating actor: Initiated by TaskflowControlActor

Communicates with TaskflowWatcher

Flow of Events: 1. The user is shown a control bar that offers task specific functions
(i.e. next task, previous task, show documents, call help, ...).

2. The user may also choose from a list of documents available in
the current task.

3. Whenever the user activates any of these options a request is
sent to the taskflow.

169

B Details on the Pathfinder Services

4. TaskflowWatchers have to be notified about changes in the
Taskflow.

RequestDocument. Load a document that is linked with the current task.

Use case name: RequestDocument

Participating actor: Initiated by TaskflowControlActor

Communicates with TaskflowWatcher

Flow of Events: 1. Entry condition: The user requests a document to be shown.
2. The request for the document is sent to the taskflow, so that it

may react appropriately. For example it may note that the user
has read some security instructions.

3. The TaskflowWatcher is sent a request to display a document
(DisplayDoxcument use case).

4. Exit condition: The TaskflowWatcher is displaying the requested
information.

DisplayDocument. Show it.

Use case name: DisplayDocument

Participating actor: Initiated by Web browser as a TaskflowWatcher

Communicates with DocumentRepository

Flow of Events: 1. Entry condition: The TaskflowWatcher received a request to
display a document.

2. The TaskflowWatcher connects to the DocumentRepository and
loads the document.

3. The TaskflowWatcher displays the document.

SuspendTaskflow. Taskflows can be suspended and resumed later.

Use case name: SuspendTaskflow

Participating actor: Initiated by TaskflowControlActor

Communicates with
Flow of Events: 1. Entry condition: The TaskflowControlActor activate the Sus-

pendTaskflow function.
2. The user has to acknowledge his intention to suspend the task-

flow.

170

B.4 Taskflow Engine

3. To ensure that an other worker is able to continue the taskflow
later the current user has to enter a note that includes a descrip-
tion of the completed tasks and a reason for the suspension.

4. Other TaskflowWatchers have to be notified of the taskflow’s
suspension.

5. The system saves the taskflow’s current state and again presents
a list of available taskflows. This should now also include the
suspended taskflow which is marked accordingly.

ResumeTaskflow. Resume a suspended taskflow.

Use case name: ResumeTaskflow

Participating actor: Initiated by TaskflowControlActor

Communicates with
Flow of Events: 1. Entry condition: The TaskflowControlActor activate a sus-

pended taskflow.
2. The taskflow is presented to the user as in the ExecuteTask-

flow use case. The initial task is the same as the one when the
taskflow has been suspended.

AddNoteToTaskflow. This use case requires that a common document repository
is used and referenced by a taskflow. This repository is not part of the taskflow
system. This use case was not implemented neither for ARVIKA nor for DWARF
Pathfinder.

Use case name: AddNoteToTask

Participating actor: Initiated by TaskflowControlActor

Communicates with DocumentRepository

Flow of Events: 1. Entry condition: The TaskflowControlActor activates the
AddNote function.

2. The TaskflowControlActor enters a note (text, video, graphic
or audio) and acknowledges his input.

3. The note is saved to a document repository and linked to the
taskflow as a new document with additional information speci-
fying author and date.

171

B Details on the Pathfinder Services

Functional Requirements

The following list of functional requirements has been extracted (and translated) from
the ARVIKA Taskflow Engine specification [118]. They “... describe the interactions
between the system and its environment independent of its implementation” [22, 4.3.1
Functional Requirements].

1. Creation of taskflow descriptions with a graphical user interface.

2. It should be possible to define taskflows that are more complex than just a linear
sequence of documents, although the first release will only offer simple taskflows.

3. Definition of sub-taskflows to reduce the complexity of a taskflow and to provide
a mechanism for simple AR scenes.

4. Interface to production-planning-systems PPS: In many cases a PPS will plan the
taskflow for the worker so that the Taskflow Engine should have an interface that
allows other systems to add new taskflows on demand. Additionally the Taskflow
Engine also should have an interface that allows the user to add information from
a PPS or other production relevant tools.

5. Linking of documents to single tasks in the taskflow: There is a number of
supplementary documents for each step in the taskflow that support the user to
fulfil the task.

6. Interface to document-systems: Various ARVIKA partners already had company
wide access to product documentation over an intranet. These systems may be
coupled with a production-planning-system. The taskflow system should provide
an interface to enable the access to the document-system.

7. Definition of events and conditions to change from one task to another: Events
and definitions may be defined in the taskflow’s description that should be in-
terpreted by a Taskflow Engine. Such events may lead the user to the next task
in the taskflow or invoke an other action, i.e. a sub-taskflow.

8. The Taskflow Engine will trace the users way through the taskflow and log every
task so that the user is able to suspend the taskflow at any time. The Taskflow
Engine keeps the current state and notifies the next user that the taskflow can
be resumed at that task.

The following functional requirements are not part of the ARVIKA specification but
have been included to be able to easier cope with future problems and scenarios.

1. The user should be able to activate a supporting display: Documents that are
not suited for the display on HMDs should be displayed on a secondary display
nearby. This display has to be identified by the user.

2. Multiple TaskflowWatchers may observe the same taskflow.

172

B.4 Taskflow Engine

System Design

The Taskflow Engine Service is designed using the MVCpattern.
Figure B.2 provides an overview of the subsystem decomposition based on the MVC

architecture and enhanced by a facade that hides the Model ’s structure from the
View and Controller subsystem. The following sections describe each subsystem from
bottom to top.

The model subsystem. The model subsystem keeps an object representation of the
taskflow. The model is optimized to allow easier processing of requests and to enable
the TDL’s reaction mechanism. To reduce the coupling with the facade subsystem
the model is accessed through the central FsaTaskflow class. The FsaTaskflow keeps
a CommandQueue to serialize the TaskflowCommands which request a change in the
taskflow.

The facade subsystem. One of our major design goals was to keep the system as
adaptable as possible and modifiable as possible. The facade subsystem serves exactly
that purpose by providing a simple API for Views and Controllers on one hand and
on the other hand by reducing the coupling to the underlying Model. The intent of a
facade is to “provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use” [45, p. 185
Facade].

The facade itself is provided by the FsaTaskflowEngine. The name comes from
the fact that it is a descendant from the TaskflowEngine and thus responsible to
forward ControlTaskflow requests to the Taskflow and that it provides a facade for
a taskflow based on a Finite State Automaton.
What follows is a description of the Taskflow Engine’s interface divided into two parts.
The first describes the methods that a Controller may use to modify the state of a
taskflow, the second part describes the methods that allow communication between
the TaskflowEngine and the Views.

The controller subsystem. To control and manipulate a taskflow or to request the
display of a document a controller has to access the FsaTaskflowEngine and call the
appropriate methods.

The only controller we implemented is part of the prototype adapter for the ARVIKA
system. The controller is a Servlet that allows to access the TaskflowEngine from
a web-browser by translating special HTTP request into calls for the facade’s meth-
ods. The View counterpart of this adapter are formed by the Workspace and the
FsaWebRenderer which are described in the next section.

The view subsystem. Views that want to be notified have to implement one or more
of the listener interfaces in the view subsystem. Each listener monitors different as-

173

B Details on the Pathfinder Services

FsaTFWeb
Renderer

Workspace

Tasklistener

TaskflowListener

DocumentListener

TaskflowEngine

FsaTaskflow
Parser

FsaTaskflow
Controller

Taskflow
Servlet

Webbrowser

FsaTaskflow

FsaTask CommandQueue

InternalEvent

Condition

Information

Model

Facade

View Controller

repository 1

* initiator

1 repository
 Facade

notifier 1

* subscriber

Figure B.2: MVC architecture of the Taskflow Engine enhanced by a facade

174

B.4 Taskflow Engine

pects of the taskflow. To be notified a view has to register itself by calling the Taskflow
Engine’s addListener method. Every time the monitored aspect changes the view is
notified which is the essence of the MVC pattern.

System Integration

Figure B.3 shows the specification of the Taskflow Engine Service. It requires a Task-
flowControl and ContextData. If it finds these two services it will provide SceneData.

<<service>>
:TaskflowEngine

startOnDemand="false"
stopOnNoUse="false"

<<ability>>
:SceneData

NotifyStructured
PushSupplier

<<need>>
:TaskflowControl

predicate=""
minInstances="0"
maxInstances="4242"

NotifyStructured
PushConsumer

<<need>>
:ContextData

predicate=""
minInstances="0"
maxInstances="4242"

NotifyStructured
PushConsumer

1

1

1

Figure B.3: Taskflow Engine Service specification.

Service Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="TaskflowEngine" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="contextData" type="ContextData"

predicate="" minInstances="0" maxInstances="4242">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="taskflowControl" type="TaskflowControl"

predicate="" minInstances="0" maxInstances="4242">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<ability name="sceneData" type="SceneData">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

175

B Details on the Pathfinder Services

B.5 User Interface Engine

Use Cases

CreateHCI. This use case describes the typical creation of a multi-modal HCIs.

Use case name: CreateHCI

Participating actor: Initiated by HCICreator

Communicates with HCIRepository

Flow of Events: 1. Entry condition: The HCICreator has several specification doc-
uments that describe the semantics that should be supplied by
the HCI

2. The HCICreator specifies for, all supported hardware configura-
tions, the Views that should be displayed to the HCIUser.

3. He adds the synchronization logic by specifying the controller
that describes the different states in which the HCI can be.

4. The HCICreator maps the Views to concrete markup languages
for the output components.

5. The resulting documents are saved to the HCIRepository.
6. Exit condition: The HCIRepository contains all documents needed

to build the current HCIs.

ModifyHCI

Use case name: ModifyHCI

Participating actor: Initiated by HCICreator

Communicates with HCIRepository

Flow of Events: 1. Entry condition: The HCIRepository contains a HCI descrip-
tion that should be adjusted because of changed specifications.

2. The HCICreator retrieves the formerly saved documents.
3. The changes are integrated in the descriptions.
4. The changed documents are saved back to the HCIRepository.
5. Exit condition: The HCIRepository contains all updated doc-

uments needed to build the current HCIs according to the new
specification.

RenderHCI

176

B.5 User Interface Engine

UserInterfaceEngine

HCICreator HCIRepository

ModifyHCI

CreateHCI

<<extends>>

HCIUser

HCIState
Changer

DisplayHCI RenderHCI

RequestNewHCI

ChangeHCIState

ChangeConfiguration

<<extends>>

<<include>>

<<include>>

<<include>>

loadHCI
Description

Figure B.4: Use cases of the User Interface Engine

Use case name: RenderHCI

Participating actor: Initiated by HCIRepository

Communicates with
Flow of Events: 1. Entry condition: The HCIRepository contains the documents

that are needed to create a HCI according to the hardware con-
figuration of the wearable.

2. The HCIRepository supplies the input needed for the transfor-
mation process (abstract descriptions, mapping information).

3. A HCI is built according to the above mentioned information.
4. Exit condition: The HCI components are generated and kept in

the memory of the wearable.

177

B Details on the Pathfinder Services

DisplayHCI

Use case name: DisplayHCI

Participating actor: Initiated by HCIRepository

Communicates with HCIUser

Flow of Events: 1. Entry condition: The “Render HCI” use case has been applied
and thus the HCI components are kept in the memory of the
wearable.

2. The HCI components are activated.
3. The components are visible to the HCIUser.
4. Exit condition: The HCI components are displayed to the user.

RequestNewHCI

Use case name: RequestNewHCI

Participating actor: Initiated by HCIUser

Communicates with
Flow of Events: 1. Entry condition: The DisplayHCI use case has led to a display

of the HCI views.
2. The HCIUser interacts with the HCI in a way that leads to the

necessity of a new HCI.
3. The RenderHCI use case is triggered.
4. Exit condition: The newly generated HCI components are dis-

played to the user.

ChangeConfiguration

Use case name: ChangeConfiguration

Participating actor: Initiated by HCIUser

Communicates with
Flow of Events: 1. Entry condition: The DisplayHCI use case has led to a display

of the HCI views.
2. The user changes his current wearable configuration.
3. The RequestNewHCI use case is triggered with the updated

hardware configuration.
4. Exit condition: The newly created HCI has to be displayed as

described in the DisplayHCI case.

178

B.5 User Interface Engine

ChangeHCIState

Use case name: ChangeHCIstate

Participating actor: Initiated by HCIChanger

Communicates with
Flow of Events: 1. Entry condition: An external event appeared that should change

the semantics of the HCI.
2. The HCIstateChanger delegates an event to the controller mech-

anism of the HCI.
3. The controller requests a new HCI if it is not configured to deal

with the event.
4. Exit condition: The RequestHCI use case is triggered.

Functional Requirements

Multi-modality of the system A desired feature of the presentation layer multi-modal
human-computer interaction. This means that the system should support user input
and system output by various ways. User input could use components such as speech
or gesture recognition, system output could use components such as voice output, 3D
graphics, and text. These components have different features and properties as well
as common ones. This can be used to combine different components to complement
each other. For example, in a tour guide the directions are shown in 3D graphics in a
head-mounted display in form of an arrow, but information about a tourist attraction
is given in text and 2D graphics. The common features of devices allows the user to
interact via more than one respective input or output components. Another example
is user input by pressing the button “OK” or by saying “OK” to a speech recognition
component.

Short response times of the presentation layer An important rule for HCIs is that
the response times should be short. The user should get feedback of his actions as
quickly as possible. Long response times are annoying to the user and can lead to
rejection of the whole system.

Easy creation of HCIs The creation of a HCI should be as simple as possible. Often
human factor specialists and cognitive psychologists are involved in the creation of
user interfaces. To give them the chance to help in the creation process, they should
not have to learn complex programming syntax.

Reuse of parts of HCIs The creation is simplified even more, when common parts of
the HCI can be reused, for example from libraries that contain semantic descriptions

179

B Details on the Pathfinder Services

of several common tasks.

I/O hardware is subject to change There are two points that have to be considered:
First, I/O hardware of one category differs dramatically. For example HMDs differ in
resolution, field of view, opacity etc. The user interface description should support as
many different hardware versions as possible. Second, during the usage of a wearable
system by a user, the user might switch off parts for various reasons. Or he might add
components for I/O at runtime. This requirement deserves serious consideration, as a
static system would not find the acceptance of users

Simple Adjustment of the design of presentations Because of the differences in I/O
hardware, the designer of the views has to make many adjustments to the presentation
of the semantics of the HCI. Usability tests and cognitive experiments as well as field
studies have to be done. The results of those investigations have to be easily integrable
into the presentation, as the designer has to create several versions that are used in
the tests.

High-level modelling of HCIs and their underlying logic In the introduction of the
requirements analysis, we already pointed out that the information that describes the
interaction with the user should be modelled at a high level of abstraction.

Transforming the high-level descriptions to device-dependent representations This
requirement follows directly from the previous one. To interact with the user, the high-
level models, as described above, have to be transformed according to the context.

Synchronization of multiple views A wearable computer consists of numerous I/O
devices. To keep the information presented on the different devices in a consistent
state an instance that synchronizes these different views has to be provided. This
recurring problem has been formalized with the MVC design pattern.

System Design

Figure B.5 gives an overview of the system. The system is divided into two parts: the
front-end and the back-end. The back-end is responsible for generating the front-end,
which are all the components that run at the wearable.

Taskflow Engine The Taskflow Engine is a component that is from another part of
the DWARF system and was developed by Stefan Riss [126]. The responsibility of
the Taskflow Engine is to keep track of the user’s current task and accordingly send
CUIML documents to the User Interface Engine (UIE). It is important to notice that
in DWARF the user is always in a state that is linked to a CUIML document.

180

B.5 User Interface Engine

<<service>>
Taskflow
Engine

<<service>>
UserInterface

Engine

<<service>>
Controller

Taskflow Engine

<<service>>
VRML

Manipulator
VRMLBrowser:

View

Webbrowser
:View

frontend
config

control

new page

new scene

1

1

<<service>>
Optical
Tracker

backend

SceneData

PositionData

<<service>>
Pathfinder
Application

Taskflow
Control

frontend

Figure B.5: Conceptual view of the User Interface Engine

The internal state of the Taskflow Engine can be changed by events that are triggered
by other DWARF Services that observed a change of the user’s context.

User Interface Engine The User Interface Engine is responsible for transforming
CUIML documents to the components needed for the front-end. This is done by
triggering the appropriate renderers.

View In our concept, a view is the display of markup language. The view can send
events to the Controller when the user interacts with it, for example by clicking on
a link. To enable this kind of communication an event adapter has to be generated
which is not shown in our diagrams for simplicity reasons. The concept of describing
and rendering of the views has been adopted from UIML.

Manipulator Another enhancement over UIML is the concept of manipulators. To
achieve faster response times, minor changes to the view should be done by the

181

B Details on the Pathfinder Services

manipulators instead of rendering new CUIML descriptions to the according view.
Views described by markup languages can be accessed using the Document Object
Model (DOM) [28]). For other types of views, proprietary access mechanisms have
to be found. For example, the Reflection API can be used to access Java objects at
runtime.

Controller Taskflow Engine The central component on the wearable is the Con-
trollerTaskflowEngine. It embodies the central instance to synchronize the views and
keep track of the current state of the HCI. This is the same component as the Taskflow
Engine–it was reused because the requirements were very similar.

System Integration

Figure B.6 shows the specification of the User Interface Engine It consists of the three
sub-Services User Interface Engine, Controller Taskflow Engine and VRML Manipu-
lator. The User Interface Engine Service requires Scene Data, the Controller Taskflow
Engine requires Context Data and a Taskflow Control and provides User Interface
Events, and the VRML Manipulator requires Position Data.

Service Descriptions

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="UIEngine" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="currentScene" type="SceneData"

predicate="" minInstances="0" maxInstances="4242">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

</service>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="ControllerTaskflowEngine" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="contextData" type="ContextData"

predicate="" minInstances="0" maxInstances="4242">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="taskflowControl" type="TaskflowControl"

predicate="" minInstances="0" maxInstances="4242">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<ability name="userInterfaceEvent" type="UserInterfaceEvent">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

182

B.5 User Interface Engine

<<service>>
:Controller

TaskflowEngine
startOnDemand="false"
stopOnNoUse="false"

<<ability>>
:UserInterfaceEvent

NotifyStructured
PushSupplier

<<need>>
:TaskflowControl

predicate=""
minInstances="0"
maxInstances="4242"

NotifyStructured
PushConsumer

<<need>>
:ContextData

predicate=""
minInstances="0"
maxInstances="4242"

NotifyStructured
PushConsumer

1

1

1

<<service>>
:UserInterfaceEngine

startOnDemand="false"
stopOnNoUse="false"

<<need>>
:SceneData

predicate=""
minInstances="0"
maxInstances="4242"

NotifyStructured
PushConsumer

<<service>>
:VRMLManipulator

startOnDemand="false"
stopOnNoUse="false"

<<need>>
:PositionData

predicate=""
minInstances="0"
maxInstances="100"

NotifyStructured
PushConsumer

1

1

Figure B.6: User Interface Engine Service specification.

</service>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="VRMLmanipulator" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="PositionDATA" type="PositionData"

minInstances="0" maxInstances="100">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

</service>

183

B Details on the Pathfinder Services

B.6 Tracking Manager and Position Trackers

Use Cases

Sensor Fusion. Sensor Fusion or Data Cooking is the overall process of receiving
data from the various external tracker, filtering the data to get more accurate results
and predicting positions where no measurements are available. This use case combines
together all other use cases, though the other us cases not necessarily have to be really
initiated by this use case but can be self-running independent processes that use the
same data as well.

Use case name: Sensor Fusion

Participating actor: Initiated by Tracker

Communicates with Position User

Flow of Events: 1. A position event that has been emitted by a tracker is received.
2. The position data contained in the event is converted into a

common coordinate system and time-base.
3. Using older information, the data is checked for validity.
4. The data is filtered together with the stored data to generate a

tracking model of the user
5. While no new input from the tracker is received, the generated

model is used to compute new position events.
6. If desired, predictions into the future are made using the com-

puted model.
7. The new position events are sent to the Position User.

Dynamic Handover Sometimes the user leaves the range of a tracker or enters the
range of a new one. At this point, the output of both trackers has to be com-
bined.

Use case name: Dynamic Handover

Participating actor: Initiated by Tracker

Communicates with ---

Flow of Events: 1. As the user walks around, his position is tracked by some track-
ers.

2. The output of those trackers is merged together.
3. When a new tracker suddenly shows up, depending on the track-

ing model the position data from this tracker is used separately
or together with the other outputs and the tracker is added to
the set of currently active trackers.

184

B.6 Tracking Manager and Position Trackers

4. Eventually the user leaves the range of one of the active tracker.
Then this tracker produces no output anymore. Depending on
the tracking model this may be detected and the tracker removed
from the set of active trackers.

Collecting Data. In a scenario where several users equipped with mobile tracking
devices or using stationary tracking services, usually the position data sent over the
network. The event service ensures that once the tracking subsystem of a user only
receives position events concerning this user. Nevertheless, this positions may be in
different coordinate systems or even of a different time-base.

Use case name: Collecting Data

Participating actor: Initiated by Tracker

Communicates with History

Flow of Events: 1. A position event is received by the tracking subsystem.
2. The coordinates are converted to a common coordinate system

for all positions.
3. The measurement time is adjusted using the time stamp of the

event and the specified latency
4. The converted data is stored in the History.

Integrity Check. Sometimes a tracker constantly produces wrong, but repeatable re-
sults. These errors can be removed by adding a constant offset or by building a lookup
table, for example. This can be considered as an additional calibration step for each
tracker. Additionally, a tracker producing complete nonsense can be revealed in this
step. The algorithms here may vary and are usually based on empirical observations
or probabilistic methods.

Use case name: Integrity Check

Participating actor: Initiated by Tracker

Communicates with Tracking Model, History

Flow of Events: 1. New position is stored in the history.
2. If some calibration exists for this tracker, the offset is applied to

the data.
3. Using the tracking model, the data is checked if it appears to be

valid.
4. The calibration is updated using this information.
5. If the data appears to be nonsense, it is discarded.

185

B Details on the Pathfinder Services

Tracking M
anager

Tracker

Sensor
Fusion

Integrity
Check

CollectData
Dynam

ic
Handover

Filter
Prediction

<<includes>>

<<includes>>

<<includes>>

Dead
Reckoning

<<includes>>

<<includes>>

<<includes>>

Position
User

new position

History

save data

Tracking
M

odel

use

save data

save data

use

use

save data
use

F
igure

B
.7:

U
se

cases
of

the
T
racking

M
anager.

186

B.6 Tracking Manager and Position Trackers

Filtering. The filtering step is the most important step during data cooking. In this
step a model of the users motion, the ‘tracking model’ is applied to the measurements
to adjust the parameters. Models may be simply mathematical functions, like linear
movements using in least-square methods or Kalman filtering. More sophisticated
models include some kind of world knowledge like assuming that a car only moves on
roads and not somewhere else. Adaptive learning algorithms known from robotics can
be used as well.

Use case name: Filtering

Participating actor: Initiated by Tracker

Communicates with Tracking Model, History

Flow of Events: 1. New valid data is stored in the history.
2. According on the algorithm and the tracking model, the new

parameters are calculated
3. The calculated parameters are stored with the model.

Dead Reckoning. Dead reckoning occurs when for some period of time the sensors
are unable to provide position data. This may happen for example when a car equipped
with a GPS receiver drives through a tunnel and looses temporarily the connection to
the satellites. Similarly, when the output frequency of the actual tracker is lower than
the desired tracking frequency, dead reckoning is necessary between two measurements
to ensure a higher output rate.

Use case name: Dead reckoning

Participating actor: Initiated by Application

Communicates with Tracking Model, Position User

Flow of Events: 1. The application needs current position data.
2. According to the algorithms and the tracking model, an esti-

mate of the current position is calculated based on the stored
parameters.

3. The data is sent to the Position User

Prediction. Prediction is necessary, when for some task an estimate of a position in
the future is necessary. On space missions to Mars for example, the transmission of a
control command to a vehicle takes several minutes to reach the vehicle. Therefore,
a prediction into the future is necessary to get the position at the time the control
command will reach the vehicle.

Use case name: Prediction

187

B Details on the Pathfinder Services

Participating actor: Initiated by Position User

Communicates with Tracking Model, Position User

Flow of Events: 1. The application needs future position data.
2. According to the algorithms and the tracking model, an esti-

mate of the current position is calculated based on the stored
parameters.

3. The data is sent to the Position User
4. The data may be stored to validate the Tracking Model and the

parameters in the future.

Functional Requirements

Although the application needs always the accurate pose of the user, its not that
important to know how that information is retrieved form the external world. Never-
theless, information about the accuracy of the pose data as well as the delay or update
frequency can help the application to change its behaviour according to the actual
situation. One scenario could be for example an application that displays additional
information overlaid to the view of the user only when the accuracy is good enough
not to distract the user, and otherwise switches to a different user interface.

Position Data. The Position Trackers provide means to extract position, orientation
and quality of service parameters from all available tracker using a standard way with-
out the need to know, which systems are actually used to get the data. For a ‘stupid’
system, this is only the location and orientation of the tracked object; for a more
advanced system this includes all the mentioned accuracy and reliability parameters
device abstraction.

Additionally, position data from different objects that have a fixed pose relative to
the tracked object should be used to determine the pose of the object. The process of
finding the relative pose of fixed objects is called the calibration step.

Sensor Fusion and Dead Reckoning. In general, the same object may be tracked by
different trackers. The tracking subsystem is responsible for combining these trackers
output (sensor fusion) and post processing it to get the highest possible accuracy (dead
reckoning).

If there is only a single tracker available, then the tracking subsystem should not
introduce additional delay. For temporary unavailable trackers or for long tracker
update intervals, intermediate values are computed by the tracking subsystem.

188

B.6 Tracking Manager and Position Trackers

Dynamic Handover. When the user moves out from the range of a specific tracker
into another ones, this has to be transparent for the application; new trackers are
integrated seamlessly with the already used trackers.

Navigation. The tracking subsystem for DWARF is not a navigation system. It
gives only the actual pose and orientation of the user; there is no way to extract other
navigational data from the interfaces given to the system. It may be desirable some day
to extend the DWARF system with another subsystem for navigation, that bases on
the tracking component, but we decided to leave this to the application. The reason for
this is that navigational tasks are most of the time highly application data dependent.
For example, navigation routes for cars should be always on roads, while for example
airplanes or helicopters can reach basically every point in three-dimensional space.

Subsystem Design

<<service>>
Tracking Manager

<<service>>
IDTracker

<<service>>
GPSTracker

<<service>>
Optical Tracker

PositionData

PositionData

Figure B.8: Architecture of the Tracking subsystem

The tracking subsystem consist of two layers. It is based on a set of different low
level trackers which provide by there own a guess of the users pose. These trackers can
be either built using a single hardware device like Global Positioning System (GPS)
or a gyroscope, or already be hybrid trackers combining two different kinds of tracker
hardware in close interaction. The tracking devices provide position data either in all
six dimensions or in position or orientation only. Based on those guesses the tracking
manager combines the outputs of the trackers and tries to get better results using some

189

B Details on the Pathfinder Services

kind of prediction algorithms. This hierarchy can be extended to more subsequent
layers; the tracking manager also makes dynamic handover between different trackers
possible. On the top of this hierarchy sits the application that uses the processed data.

Each external tracking device that is used in the tracking subsystem gives a new
module. All those modules can be distributed over several networked computers. The
dynamic combination of different trackers as well as filtering and identification of bad
trackers is done in a new module that we call Tracking Manager. The communication
between the modules is done using the Service Manager, therefore there is no need for
the single modules to know of each other. This enables us to switch the modules on
and off as we like and as the current situation requires.

System Integration

Figure B.9 shows the specification of the Tracking subsystem. It consists of the three
Services Tracking Manager, GPS Tracker, and ID Tracker. The Tracking Manager
Service requires Position Data and a World Model and provides improved Position
Data, GPS Tracker and ID Tracker require a World Model and provide Position Data.

Service Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="TrackingManager" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="world" type="WorldModel"

predicate="hopcount>=0"

minInstances="0" maxInstances="4711">

<connector protocol="CorbaObjImporter"/>

</need>

<need name="theposition" type="PositionData" predicate=""

minInstances="0" maxInstances="4711">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<ability name="myposition" type="PositionData">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="GPSTracker" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<ability name="position" type="PositionData">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

190

B.6 Tracking Manager and Position Trackers

<<service>>
:GPSTracker

startOnDemand="false"
stopOnNoUse="false"

<<need>>
:WorldModel

predicate=""
minInstances="0"
maxInstances="100"

CorbaObj
Importer
1 <<ability>>

:PositionData

NotifyStructured
PushSupplier

1

<<service>>
:IDTracker

startOnDemand="false"
stopOnNoUse="false"

<<need>>
:WorldModel

predicate=""
minInstances="0"
maxInstances="100"

CorbaObj
Importer
1 <<ability>>

:PositionData

NotifyStructured
PushSupplier

1

<<service>>
:TrackingManager

startOnDemand="false"
stopOnNoUse="false"<<need>>

:WorldModel
predicate="hopcount>=0"
minInstances="0"
maxInstances="4711"

CorbaObj
Importer

1

<<ability>>
:PositionData

NotifyStructured
PushSupplier

1

<<need>>
:PositionData

predicate=""
minInstances="0"
maxInstances="4242"

NotifyStructured
PushConsumer

1

Figure B.9: Tracking Manager and the Position Tracker Service specifications

<need name="world" type="WorldModel"

minInstances="0" maxInstances="100">

<connector protocol="CorbaObjImporter"/>

</need>

</service>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="IDTracker" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<ability name="position" type="PositionData">

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

<need name="world" type="WorldModel"

minInstances="0" maxInstances="4711">

<connector protocol="CorbaObjImporter"/>

</need>

</service>

191

B Details on the Pathfinder Services

B.7 Optical Tracker

Use Cases

Tracking Manager

Position
User

Optical Tracker

Calculate
Position

Camera

Sensor
Fusion

Figure B.10: Use case of the Optical Tracker Service.

Calculate Position The OpticalTracker Service calculates the current pose from video
image, forwards the pose to the TrackingManager and the PositionUser. The UIEngine
is such a PositionUser.

Use case name: CalculatePosition

Participating actor: Initiated by OpticalTracker

Communicates with TrackingManager

Flow of Events: 1. Entry condition: A PositionUser needs the current pose.
2. The OpticalTracker does image processing on the current video

image from the camera.
3. The calculated pose from the video image is sent to the Track-

ingManager.
4. Exit condition: The pose is sent to the PositionUser.

Functional Requirements

Pose determination The optical tracker determines the pose (translation and ori-
entation) of a video camera. It uses a live video stream from this camera in order

192

B.7 Optical Tracker

to detect some artificial landmarks (fiducials) in every video image. The real-world
position of these fiducials has to be given.

Due to the nature of its task, the optical tracker does not provide any user interface.
The optical tracking service does not provide any output capabilities beyond debugging
purposes. All access to the optical tracker (except starting it) is done via software
interfaces. To ensure the optical tracking being encapsulated from any visualization
tasks, even debugging programs for rapid visualization outside the DWARF framework
should communicate using the standard DWARF tracking API.

Determination of intrinsic video camera parameters The following (intrinsic) pa-
rameters of the video camera have to be determined in an offline procedure:

1. The focal length multiplied by the pixel size in u and v direction of the image
frame: αu and αv

2. The center point C of the image frame: C = (u0, v0)

3. The angle between the u and v axis of the image frame: θ

During runtime, the optical tracker gives regular updates of the camera’s pose. This
data is sent via the DWARF event architecture to other DWARF components using
the data.

Dynamic reconfiguration To ensure the use of the tracker in a large environment,
there have to be mechanisms that allow dynamic reconfiguration of the Tracking Ser-
vice’s model of the real world. These mechanisms have to be based on data stored in
the DWARF World Model Service. The Tracking Service should register for events
indicating a change of the user’s global position. For every such incoming event, the
World Model should be queried for the existence and probably location of fiducials
that can be tracked.

Subsystem Design

In subsequent sections, we will give detailed explanations to every subcomponent of
the Optical Tracker Service. Each subcomponent is responsible for a particular task
in the image processing flow.

Image Acquisition The task of this component is simple: get the image of a video
camera attached to the computer and transfer the data in 24-bit RGB format to
a memory buffer. However, getting the image data requires in-depth knowledge of
several operating system dependent Application Programmer Interface (API). Alto-
gether, three different methods to acquire video data were implemented: from IEEE
1394 digital cameras, USB webcams, and a file video data reader.

193

B Details on the Pathfinder Services

Processing the Image Data The processing of the image data acquired from one of
the modules described above can be divided in three parts: fiducial detection, optical
flow tracking and absolute pose estimation. In addition, an implementation of the
relative pose estimation algorithm has been provided, although it is not called in the
current tracker implementation.

Fiducial Detection: ARToolKit The Augmented Reality Toolkit [73] has been used
to detect the artificial markers mounted in the areas of interest.

The ARToolKit code has been slightly modified to fit our needs, the modifica-
tions are marked as such in the source code. For every marker the toolkit detects,
a structure ARMarkerInfo is put in a shared memory area. These structure holds the
two-dimensional information of the detected markers along with information like a
confidence value and the marker’s direction.

During start-up and if the user enters new rooms, the fiducial detection component
reads in marker data from the World Model and stores it in an array of marker data
structures.

Optical Flow Tracking For the optical flow tracking a pyramid implementation of the
Lucas Kanade optical flow algorithm described in [20] was used. One of the driving
forces for this decision was the availability of this algorithm in the Intel OpenCV
library [63], leading to minimized implementation efforts.

Once new correlations are established, the corresponding absolute pose is estimated
via a function call and distributed to other DWARF components.

Collaboration Between Optical Flow Tracker and Fiducial Detection The tracker
we developed is thought of as a proof of concept, not a fully functional implementation.

We simply tested the effect of post-calculating 2D–3D correspondences by means
of optical flow without worrying about delay in general or delay being constant or
minimized. We did not implement the check for still valid 2D points after each update
from the fiducial detector. Instead, we forced the ARToolKit tracker to update its
values at an update rate that was ten times slower than the video camera’s frame rate.
In consequence, the intermediate nine image frames between the fiducial detector’s
updates were tracked solely using optical flow.

Communication between the two trackers was done as usual using shared memory
and semaphores for access control.

Absolute Pose Estimation The absolute pose estimator is called directly from the
optical flow tracker and puts the resulting six-dimensional pose in a shared memory
area for further processing.

194

B.7 Optical Tracker

It relies heavily on matrix operations like simple multiplications or the Singular
Value Decomposition. These operations have been encapsulated in an object oriented
library that facilitates the handling significantly.

Displaying the Results Although the DWARF system has its own user interface en-
gine to display the results of the tracking subsystem, it is preferable to have a separate
display component that allows testing of the tracker without the whole DWARF sys-
tem running. In addition, such a component offers an easy possibility to perform video
see-through augmented reality by using shared memory to access the camera image.

This component is implemented as a separate process that has to run on the same
computer as the tracker. The two processes communicate via shared memory. Ob-
viously, the interprocess communication is highly platform dependent. To ensure a
maximum portability besides this, we decided to use OpenGL [170] as the API to
draw the images. First, the camera image is taken and drawn as background image,
afterwards the viewpoint of the OpenGL scene is set and some simple objects like
cylinders are drawn at well-known locations to create a testing environment.

As mentioned above, the displaying task is usually performed by the DWARF User
Interface Engine subsystem. This engine internally uses VRML [66] to display correctly
aligned virtual objects.

Service Integration

<<service>>
:OpticalTracker

startOnDemand="false"
stopOnNoUse="false"<<need>>

:WorldModel
predicate="World=beautiful"
minInstances="0"
maxInstances="100"

CorbaObj
Importer

1

<<ability>>
:PositionData

how="fine"

NotifyStructured
PushSupplier

1

<<need>>
:ContextData

predicate="hopcount>=0"
minInstances="0"
maxInstances="100"

NotifyStructured
PushConsumer

1

Figure B.11: Optical Tracking Service specification

Figure B.11 shows the specification of the Optical Tracker Service. It requires Con-
text Data and a World Model and provides Position Data.

Basically, there are only two ways of communication between the Optical Tracker
and the other DWARF Services:

195

B Details on the Pathfinder Services

Sending Tracking Data Every time the Optical Tracker has estimated the camera’s
six-dimensional pose, it encapsulates this pose with some other information such as
the time for which the pose is valid or the delay that occurred during the processing
of the image frame and sends it to the DWARF event bus.

The encapsulation is done using a CORBA structured event of type Any that contains
a single object of type PositionEvent. Note that the six-dimensional pose is given in
VRML coordinates (i.e. Rodriguez coordinates) as well as a homogeneous matrix.

Obtaining Information About the Current Environment To get up to date informa-
tion about the currently available features to track, the Optical Tracker registers for
so-called RoomChangedEvents during start-up. Every time the other components of
the DWARF Tracking subsystem realize that the user has entered a new room, such an
event is sent. After receiving it, the Optical Tracker checks for and loads the marker
data of the new environment as described in section B.7.

Service Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="OpticalTracker" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="RoomChangedEvent" type="ContextData"

predicate="hopcount>=0"

minInstances="0" maxInstances="100">

<connector protocol="NotifyStructuredPushConsumer"/>

</need>

<need name="World" type="WorldModel" predicate="World=beautiful"

minInstances="1" maxInstances="100">

<connector protocol="CorbaObjImporter"/>

</need>

<ability name="PositionEventSender" type="PositionData">

<attribute name="how" value="fine"/>

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

B.8 World Model

Use Cases

The scenarios described above allow us to derive use cases specifying further the flow of
events of the World Model service. There are only two possible actors that can initiate
a use case: the user of a DWARF system (User) or other components of the system

196

B.8 World Model

(External). Figure B.12 describes the relationship between the use cases described
below.

WorldModel

User

DWARF
Service

RequestData

Modify
Information

AddData

InitSystem

WorldModel
Listener

notify

notify

notify

Figure B.12: Use cases describing the World Model’s behaviour

RequestData

Use case name: RequestData

Participating actor: Initiated by DWARFService

Communicates with TaskflowListener

Flow of Events: 1. Entry condition: A DWARF service needs information stored in
the World Model.

2. The external service sends an information request regarding a
certain object to the World Model.

3. If this object does not exist, the World Model notifies the exter-
nal service. Otherwise, the requested information is returned.

4. Exit condition: The DWARF service processes the information.

ModifyInformation

Use case name: ModifyInformation

197

B Details on the Pathfinder Services

Participating actor: Initiated by User or DWARFService

Communicates with TaskflowListener

Flow of Events: 1. Entry condition: Another DWARF service has detected a change
in the user’s environment.

2. The DWARF service either calls the World Model directly or
sends an event to the DWARF system bus in order to insert the
new information into the World Model database.

3. The World Model changes its data and uses NotifyDWARF to
inform the other DWARF services.

4. Exit condition: A consistent state of information in the overall
system is maintained.

AddData

Use case name: AddData

Participating actor: Initiated by User or DWARFService

Communicates with TaskflowListener

Flow of Events: 1. Entry condition: Either the user or another DWARF service gets
a bunch of new information about the user’s environment.

2. The caller invokes the World Model with this information.
3. The World Model adds the given data to its internal memory

and uses NotifyDWARF to inform the other DWARF services.
4. Exit condition: A consistent state of information in the overall

system is maintained.

InitSystem

Use case name: InitSystem

Participating actor: Initiated by User

Communicates with
Flow of Events: 1. Entry condition: The user wants to start a DWARF system.

2. The user starts the World Model either with initial data or in
an empty state.

3. The World Model initializes itself, registers to the DWARF sys-
tem bus and reads the data given by the user.

4. Exit condition: The World Model is in a valid state and can be
used by other DWARF components.

198

B.8 World Model

Functional Requirements

The World Model stores information about the real and virtual objects that may be
important for the user’s interaction with the AR system.

As for most databases, there is no direct user interaction with the World Model.
This service itself does not provide any output capabilities beyond debugging purposes.
All access to the World Model is done via software interfaces.

Every real or virtual object has an associated position and orientation, its pose. To
facilitate the development of applications, the World Model has to provide means to
compute the pose of one object relative to an arbitrary other.

The objects stored in the World Model are highly variable. To handle this variability
in a wide range of possible applications, it has to be possible to store an arbitrary
amount of arbitrary information associated with each object.

In addition, it must be possible to change the World Model’s content dynamically.
As several DWARF services may access the World Model at the same time, there shall
be mechanisms that allow consistent multi-threaded access. After every change to the
World Model’s content, all services wishing to do so must be notified by an efficient
event mechanism about the details of this change.

Finally, the World Model has to register for events that indicate the change of an
object’s position or orientation. Every such change has to be processed by the World
Model and, if necessary, stored in the internal data structure.

The DWARF system is designed to be able to work in a large variety of different
settings. In consequence, it may occur that more than one World Model service is
present. This situation has to be handled.

Subsystem Design

We fixed the central data structure to be a tree. In this section, we will think about
the overall software organization of the World Model service.

As we can see in figure B.13, the structure is simple. We have one central object,
the World Model. This object handles the initialization of the service, the CORBA
communication and some high-level functionality as loading new information out of
files. The actual data is stored in a set of Thing objects organized in a tree data
structure. Each Thing object has exactly one parent Thing and an arbitrary amount of
children. To facilitate the loading of files containing World Model entries, we provide an
XML Parser object that encapsulates all necessary tasks for reading files as described
in section B.8.

Persistent Data Management In the current state of development, the World Model
holds all data in memory at runtime. However, it may be necessary to add a large
amount of data at some point in time, e.g. during start-up or at a situation similar to
the Information Download scenario.

199

B Details on the Pathfinder Services

WorldModel

Thing

XMLParser
1

1

*

1 parent
child

root
parser1

Pose Attribute*
1

Figure B.13: Subsystem Decomposition of the World Model Service

It seems reasonable to create a possibility to hand a file of arbitrary size to the
World Model that has the following properties:

1. Every type of information that can be stored in the World Model can be specified
in the file as well.

2. The file should be readable by humans, it has to be possible to modify or create
such a file with a simple text editor.

3. There has to be a possibility to add comment lines to the file.

4. It must not be possible to take the World Model in an inconsistent state by
reading a malformed file.

A natural choice for these requirements is to use a variant of XML, the eXtended
Markup Language [161]. With XML, it is possible to use a large variety of existing
parsers that perform all error handling based upon a so-called Data Type Defini-
tion (DTD) that defines the syntax of well-formed documents describing content of
the World Model.

System Integration

Figure B.14 shows the specification of the World Model Service. It requires Position
Data. If it finds a Service that provides them it will provide a World Model and Thing
Changed Events.

Service Description

200

B.8 World Model

<<service>>
:WorldModel

startOnDemand="false"
stopOnNoUse="false"

<<ability>>
:WorldModel

CorbaObj
Exporter

<<need>>
:PositionData

predicate="hopcount>=0"
minInstances="1"
maxInstances="100"

NotifyStructured
PushConsumer 1

1

<<ability>>
:ThingChangedEvents

what="unused"

NotifyStructured
PushSupplier

1

Figure B.14: World Model Service specification.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE service SYSTEM "service.dtd">

<service name="WorldModel" startOnDemand="false"

stopOnNoUse="false" startCommand="">

<need name="WMPositionData" type="PositionData"

predicate="hopcount>=0" minInstances="1"

maxInstances="100">

<connector protocol="NotifyStructuredPushConsumer"/>

<attribute name="bla" value="fasel"/>

</need>

<ability name="WorldModelInterface" type="WorldModel">

<connector protocol="CorbaObjExporter"/>

</ability>

<ability name="ThingChangedEventSender" type="ThingChangedEvents">

<attribute name="what" value="unused"/>

<connector protocol="NotifyStructuredPushSupplier"/>

</ability>

</service>

201

202

Bibliography

[1] 5DT Glove. http://www.vrealities.com/5dtglove.html, 2003. 20

[2] M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, and
J. Shuster, UIML: An Appliance Independent XML User Interface Language.
http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html. 135

[3] advanced realtime tracking GmbH, Infrared Optical Tracking System
ARTtrack and DTrack. http://www.ar-tracking.de/viewtopic.php?t=17,
Sep. 2003. 4

[4] R. Allen and D. Garlan, The Wright Architectural Specification Language,
Tech. Rep. CMU-CS-96-TBD, Carnegie Mellon University, 1996. 33

[5] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi,
D. Orchard, S. Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy,
I. Trickvic, and S. Zimek, Web Service Choreography Interface (WSCI) 1.0,
Tech. Rep. W3C Note 8 August 2002, World Wide Web Consortium, 2002. 46

[6] ARVIKA consortium, Internet Presentation of the ARVIKA Project.
http://www.arvika.de, 2003. 19, 34

[7] R. T. Azuma, A Survey of Augmented Reality, Presence, 6 (1997),
pp. 355–385. 2, 19, 49, 135, 137

[8] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and
D. Zukowski, Challenges: an Application Model for Pervasive Computing,
Proceedings of 6th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom 2000), (2000). 44

[9] W. Barfield and T. Caudell, Fundamentals of Wearable Computers and
Augumented Reality, Lawrence Erlbaum Assoc, Dec. 2000. 20

[10] Battlefield Augmented Reality System (BARS) - Website.
http://ait.nrl.navy.mil/vrlab/projects/BARS/BARS.html, 2002. 34

203

http://www.vrealities.com/5dtglove.html
http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html
http://www.ar-tracking.de/viewtopic.php?t=17
http://www.arvika.de
http://ait.nrl.navy.mil/vrlab/projects/BARS/BARS.html

Bibliography

[11] L. Bass, D. Siewiorek, M. Bauer, R. Casciola, C. Kasabach,
R. Martin, J. Siegel, A. Smailagic, and J. Stivoric, Constructing
Wearable Computers for Maintenance Applications, in Fundamentals of
Wearable Computers and Augmented Reality, Lawrence Erlbaum Associates,
2001, pp. 663–694. 20

[12] F. L. Bauer, Meeting of the Study Group on Computer Science of the NATO
Science Committee, 1967. 1

[13] M. Bauer, DWARF – Design and Prototypical Implementationof a Module for
the Dynamic Combination of Different Position Trackers, Master’s thesis,
Technische Universität München, Department of Computer Science, Feb. 2001.
3, 138

[14] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riß, C. Sandor, and M. Wagner, Design of a Component-Based
Augmented Reality Framework, in Proceedings of ISAR 2001, New York, USA,
2001, IEEE Computer Society, pp. 124–133. 120

[15] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
C. Sandor, and M. Wagner, An Architecture Concept for Ubiqutous
Computing Aware Wearable Computers, in Proceedings of the International
Workshop on Smart Appliances and Wearable Computing (IWSAWC 2002),
Vienna, AU, 2002. 149

[16] R. Behringer, C. Tam, J. McGee, S. Sundareswaran, and
M. Vassiliou, A Wearable Augmented Reality Testbed for Navigation and
Control Built Solely with Commercial-Off-The-Shelf (COTS) Hardware, in
Proceedings of ISAR 2000, Munich, Oct. 2000, pp. 12–19. 42

[17] M. Billinghurst, H. Kato, and I. Poupyrev, The MagicBook: Moving
Seamlessly between Reality and Virtuality, IEEE Computer Graphics and
Applications, (2001). 34

[18] O. Bimber, M. L. Ecarnação, and D. Schmalstieg, The Virtual
Showcase as a new Platform for Augmented Reality Digital Storytelling, in
Proceedings of the 7th International Immersive Projection Technologies
Workshop, J. Deisinger and A. Kunz, eds., 2003. 28

[19] Bluetooth Special Interest Group Website. http://www.bluetooth.com, 2001.
6, 29

[20] J.-Y. Bouguet, Pyramidical Implementation of the Lucas Kanade Feature
Tracker. Description of the algorithm. Part of the Intel Computer Vision
Library Documentation, 2000. 194

204

http://www.bluetooth.com

Bibliography

[21] P. Boulanger, J. Taylor, S. El-Hakim, and M. Rioux, How to
Virtualize Reality: An Application to the Re-creation of World Heritage Sites,
in Proceedings of VSMM98, vol. I, Gifu, Japan, Nov. 1998, International
Society on Virtual Systems and Multimedia, pp. 39–45. 28

[22] B. Bruegge and A. H. Dutiot, Object-Oriented Software Engineering –
Using UML, Patterns, and Java, Prentice-Hall, Inc., Upper Saddle River, New
Jersey 07458, 2 ed., 2003. 1, 12, 172

[23] K. Burr and A. Dove, Wearable Personal Computer System. US patent,
2000-08-17. 43

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A Systems of Patterns, John Wiley &
Sons, 1996. 14, 54, 66, 70, 74, 117

[25] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers,
Enveloping Users and Computers in a Collaborative 3D Augmented Reality, in
Proceedings of IWAR ’99 (Int. Workshop on Augmented Reality), San
Francisco, CA, USA, Oct. 1999, pp. 35–44. 34, 69

[26] D. W. Carroll, Wearable personal computer system. US patent, Feb. 1996.
43

[27] D. W. Carroll, Wearable personal computer system having flexible battery
forming casing of the system. US patent, Nov. 1996. 43

[28] W. Consortium, DOM specification. http://www.w3.org/DOM/. 182

[29] S. Corson and J. Macker, Mobile Ad hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations. Request for
Comments: 2501, Jan. 1999. 27

[30] G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas, The Design
of a Configurable and Reconfigurable Middleware Platform, IEEE Distributed
Computing, (2001). 46

[31] I. Craig, Blackboard Systems, Ablex Publishing Corporation, Norwood, NJ,
USA, 1995. 60

[32] J. Craig, Flexible wearable computer. US patent, 2000-08-22. 42

[33] D. Curtis, D. Mizell, P. Gruenbaum, and A. Janin, Several Devils in the
Details: Making an AR Application Work in the Airplane Factory, in
Augmented Reality - Placing Artificial Objects in Real Scenes, R. Behringer,
G. Klinker, and D. W. Mizell, eds., A K Peters, Ltd., 1999. 4, 34

205

http://www.w3.org/DOM/

Bibliography

[34] A. D. Dey, Providing Architectural Support for Building Context-Aware
Applications, PhD thesis, Georgia Institute of Technology, 2000. 7, 60

[35] Dictionary.com/software engineering. http://dictionary.reference.com,
2003. 1

[36] J. Dorsey and D. Siewiorek, The Design of Wearable Systems: A Shift in
Development Effort, in Proceedings of the International Conference on
Dependable Systems and Networks (DSN-2003), San Francisco, USA, Jun.
2003. 20, 43

[37] F. Eliassen, T. Plagemann, B. Hafskjold, T. Kristensen, H. O.
Rafaelsen, and R. H. Macdonald, QoS Management in the MULTE-ORB,
IEEE Distributed Systems Online, (2002). 46

[38] GNU Emacs - GNU Project - Free Software Foundation (FSF), 2003. 28

[39] S. Feiner, B. MacIntyre, T. Höller, and T. Webster, A touring
machine: Prototyping 3D mobile augmented reality systems for exploring the
urban environment, in Proc. ISWC ’97 (First Int. Symp. on Wearable
Computers), Cambridge, MA, USA, Oct. 1997. 69

[40] S. Feiner, B. MacIntyre, and D. Seligmann, Knowledge-based augmented
reality, Communications of the ACM, 36 (1993), pp. 52–62. 69

[41] W. Friedrich, ARVIKA - Augmented Reality for Development, Production
and Service, in Invited talk at the International Symposium on Mixed and
Augmented Reality, Darmstadt, Germany, Oct. 2002. 28

[42] W. Friedrich, D. Jahn, and L. Schmidt, ARVIKA - Augmented Reality for
Development, Production and Service. Proceedings of the International Status
Conference HCI, 2001. 32, 34, 53, 70

[43] W. Friedrich and W. Wohlgemuth, ARVIKA - Augmented Reality for
Development, Production and Service, in The International Workshop on
Potential Industrial Applications of Mixed and Augmented Reality, Tokyo,
Japan, Oct. 2003. 16, 31, 34

[44] J. Fründ, J. Gausemeier, C. Matysczok, G. Mnich, and A. von
Fircks, AR-based Configuration and Information Retrieval of Household
Appliances on Mobile Devices, in Proceeding CHINZ03, 2003. 34

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA,
1995. 49, 54, 68, 70, 79, 173

206

http://dictionary.reference.com

Bibliography

[46] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Proactive
Self-Tuning System for Ubiquitous Computing, in Proceedings of the Large
Scale Networks Conference, Arlington (VA), March 2001. 34

[47] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Project
Aura: Towards Distraction-Free Pervasive Computing, IEEE Pervasive
Computing, special issue on“Integrated Pervasive Computing Environments”, 1
(2002). 34, 44, 45

[48] J. H. J. Garrett and A. Smailagic, Wearable computers for field
inspectors: Delivering data and knowledge-based support in the field, in AI in
Structural Engineering, 1998, pp. 146–164. 42

[49] L. Gong, Project JXTA: A Technology Overview, tech. rep., Sun
Microsystems, 2002. 45, 79

[50] S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E.
Culler, N. Borisov, S. E. Czerwinski, R. Gummadi, J. R. Hill, A. D.
Joseph, R. H. Katz, Z. M. Mao, S. Ross, and B. Y. Zhao, The Ninja
Architecture for Robust Internet-Scale Systems and Services, Computer
Networks, 35 (2001), pp. 473–497. 44, 46

[51] P. Gussmann, The Workflow Editor for Mobile Industrial AR, in The
International Workshop on Potential Industrial Applications of Mixed and
Augmented Reality, Tokyo, Japan, Oct. 2003. 39

[52] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service Location
Protocol. IETF, RFC 2608, June 1999. 27, 45

[53] Handykey Corporation, Twiddler 2.
http://www.handykey.com/site/twiddler2.html, 2003. 20

[54] J. Hendler, T. Berners-Lee, and E. Miller, Integrating Applications on
the Semantic Web, Journal of the Institute of Electrical Engineers of Japan,
122 (10) (2002). 45

[55] C. K. Hess, M. Román, and R. Campbell, Building Applications for
Ubiquitous Computing Environments, in International Conference on Pervasive
Computing (Pervasive 2002), Zurich, Switzerland, August 2002, pp. 16–29. 44

[56] M. Hiller, Software Fault Tolerance Techniques from a Real-Time Systems
Point of View: An Overview, Tech. Rep. 98-16, Dept. of Computer
Engineering, Chalmers University of Technology, Sweden, Sweden, 1998.
citeseer.nj.nec.com/hiller98software.html. 7

207

http://www.handykey.com/site/twiddler2.html

Bibliography

[57] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, eds., GPS –
Theory and Practice, Springer, Wien, New York, 4th ed., 1997. 141

[58] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture,
Object Technology Series, Addison-Wesley Publishing Company, 2000. 10, 12

[59] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm,
Next Century Challenges: Nexus - An Open Global Infrastructurefor
Spatial-Aware Applications, in Proceedings of Mobicom ’99, Seattle,
Washington, USA, 1999. 62

[60] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway,
Exploring MARS: Developing Indoor and Outdoor User Interfaces to a Mobile
Augmented Reality System, Computers and Graphics, 6 (1999). 34

[61] ImageTcl Multimedia Develpment System - Website.
http://metlab.cse.msu.edu/imagetclar/, 2003. 32, 34

[62] Infineon Technologies, Infineon Wearable Technologies - Wearable
Electronics. http://www.wearable-electronics.de/, 2003. 24

[63] Intel Corporation, Open Source Computer Vision Library.
http://www.intel.com/research/mrl/research/cvlib/, January 2001.
Available for Linux and the Microsoft Windows Platform. 194

[64] International Telecommunications Union, Specificaiton and Description
Language (SDL), 2002. 148

[65] N. Ioannidis, ARCHEOGUIDE.
http://archeoguide.intranet.gr/project.htm, 2002. 34

[66] ISO, VRML97 International Standard. http://www.web3d.org/
technicalinfo/specifications/ISO IEC 14772-All/index.html, 2003. 58,
62, 195

[67] ITU-T X.901 — ISO/IEC 10746-1 ODP Reference Model Part 1. Overview,
1995. 33

[68] C. M. Janik, Flexible wearable computer. US patent, Dec. 1996. 43

[69] M. Jenkins and S. Hussein, Modular wearable computer. US patent,
2000-10-25. 42

[70] Jini. http://www.jini.org, February 2001. 27

[71] E. L. Jorgensen, DoD Classes of Electronic Technical Manuals, tech. rep.,
Carderock Division, Naval Surface Warfare Center, Apr. 1994. 21

208

http://metlab.cse.msu.edu/imagetclar/
http://www.wearable-electronics.de/
http://www.intel.com/research/mrl/research/cvlib/
http://archeoguide.intranet.gr/project.htm
http://www.web3d.org/technicalinfo/specifications/ISO_IEC_14772-All/index.html
http://www.web3d.org/technicalinfo/specifications/ISO_IEC_14772-All/index.html
http://www.jini.org

Bibliography

[72] G. Kan, Gnutella, in Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, Mar. 2001. 79

[73] H. Kato, M. Billinghurst, R. Blanding, and R. May, ARToolKit PC
version 2.11, December 1999.
http://www.hitl.washington.edu/research/shared space/download. 3,
194

[74] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell,
P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris,
J. Schettino, and B. Serra, people, places, things: web presence for the real
world, tech. rep., Hewlett-Packard Laboratories, 2003. 44, 45

[75] T. Kirste and S. Rapp, Architecture for Multimodal Assistance Systems.
Proceedings of the International Status Conference HCI, Oct. 2001. 54

[76] G. Klinker and B. Brügge, Einführung in die erweiterte Realität. Lecture
at the Technische Universität München, May 2000. 4

[77] G. Klinker, O. Creighton, A. Dutoit, R. Kobylinski, C. Vilsmeier,
and B. Bruegge, Augmented maintenance of powerplants: A prototyping case
study of a mobile AR system, in IEEE and ACM International Symposium on
Aumgented Reality ISAR 2001, Oct. 2001. 4, 28, 139, 148

[78] G. Klinker, H. Najafi, T. Sielhorst, F. Sturm, F. Echtler, M. Isik,
W. Wein, and C. Trübswetter, FixIt: An Approach towards Assisting
Workers in Diagnosing Machine Malfunctions, in Submitted to the
International Workshop on Exploring the Design and Engineering of Mixed
Reality Systems, Funchal, Island of Madeira, Portugal, Jan. 2004. 146

[79] G. Klinker, T. Reicher, and B. Brügge, Distributed User Tracking
Concepts for Augmented Reality Applications, in Proceedings of ISAR 2000,
Munich, Oct. 2000, pp. 37–44. 8, 75, 145

[80] G. Klinker, D. Stricker, and D. Reiners, Augmented Reality: A Balance
Act between High Quality and Real-Time Constraints, in Mixed Reality -
Merging Real and Virtual Worlds (Proc. of the 1st International Symposium
on Mixed Reality (ISMR’99)), Y. Ohta and H. Tamura, eds., Springer-Verlag,
Mar. 1999. 145

[81] K. W. Kolence and P. J. Kiviat, Software Unit Profiles and Kiviat Figures,
ACM SIGMETRICS, Performance Evaluation Review, 2 (1973), pp. 2–12. 30

[82] G. E. Krasner and S. T. Pope, A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System, tech. rep., ParcPlace
Systems, Inc., Mountain View, USA, 1988. 44, 48

209

http://www.hitl.washington.edu/research/shared_space/download

Bibliography

[83] Lart, Project Home Page. TU Delft, http://www.lart.tudelft.nl, 2001. 43

[84] F. Leymann, Web Services Flow Language (WSFL 1.0), tech. rep., IBM
Software Group, 2001. 46

[85] B. MacIntyre and S. Feiner, Language-level support for exploratory
programming of distributed virtual environments, in Proc. UIST ’96 (ACM
Symp. on User Interface Software and Technology), Seattle, WA, USA, Nov.
1996, pp. 83–95. 69

[86] B. MacIntyre and M. Gandy, Prototyping Applications with DART, The
Designer’s Augmented Reality Toolkit, in International Workshop on Software
Technology for Augmented Reality Systems (STARS 2003), Tokyo, Japan, Oct.
2003. 148

[87] A. MacWilliams, DWARF – Using Ad-Hoc Services for Mobile Augmented
Reality Systems, Master’s thesis, TU München, Department of Computer
Science, Feb. 2000. 131

[88] A. MacWilliams, T. Reicher, and B. Brügge, Decentralized Coordination
of Distributed Interdependent Services, in IEEE Distributed Systems Online –
Middleware Work in Progress Papers, Rio de Janeiro, Brazil, June 2003. 147

[89] A. MacWilliams, C. Sandor, M. Wagner, and B. Bruegge, A
Component-Based Approach to Developing Mobile Maintenance Applications.
Report on the TRAMP student project, 2002. 146

[90] Mobile Augmented Reality - Website.
http://www.cs.columbia.edu/graphics/projects/mars/mars.html, 1999.
34

[91] B. Meyer, Applying Design by Contract, IEEE Computer, 25 (1992),
pp. 40–51. 33, 80

[92] F. Michahelles, DWARF – Designing an Architecture for Context-Aware
Service Selection and Execution, Master’s thesis, Universität München,
Department of Computer Science, Feb. 2000. 131

[93] Microsoft Corporation, Understanding Universal Plug and Play.
http://upnp.org/download/UPNP UnderstandingUPNP.doc, Jun. 2000. 45

[94] Microsoft Corporation, COM+ Component Model.
http://www.microsoft.com/com, 2003. 8, 45, 76

[95] Microsoft Corporation, .NET Homepage.
http://www.microsoft.com/net, 2003. 45

210

http://www.lart.tudelft.nl
http://www.cs.columbia.edu/graphics/projects/mars/mars.html
http://upnp.org/download/UPNP_UnderstandingUPNP.doc
http://www.microsoft.com/com
http://www.microsoft.com/net

Bibliography

[96] J. Miller and J. Mukerji, MDA Guide Version 1.0.
http://www.omg.org/cgi-bin/doc?mda-guide, May 2003. 148

[97] MIT Laboratory for Computer Science, MIT Project Oxygen:
Overview. http://oxygen.lcs.mit.edu/Overview.html, 2003. 44, 45

[98] MIThril, Project Home Page. Massachussets Institue of Technology,
http://www.media.mit.edu/wearables/mithril/. 42, 43

[99] G. E. Moore, Cramming more components onto integrated circuits,
Electronics, 38 (1965). 5

[100] National Research Council Committee for the Electric Power of
the Dismounted Soldier, National Research Council,
Energy-Efficient Technologies for the Dismounted Soldier, National Academy
Press, Washington, D.C., 1997. 24

[101] P. Naur and B. Randell, eds., NATO Software Engineering Conference,
Garmisch, Germany, Oct. 1968. 1

[102] L. Nigay and J. Coutaz, A design space for multimodal systems - concurrent
processing and data fusion, in INTERCHI ’93 - Conference on Human Factors
in Computing Systems, Amsterdam, 1993, Addison Wesley. 134

[103] Object Management Group, CORBA 2.4.2 Specification. formal/01-02-33,
2001. 76

[104] Object Management Group, CORBA Components v3.0. formal/02-06-65,
June 2002. 45

[105] Object Management Group, Real-Time CORBA Specification, Tech. Rep.
formal/02-08-02, Object Management Group, 2002. 46

[106] Object Management Group, CORBA Trader Service Specification.
http://www.omg.org, 2003. 26, 45

[107] Object Management Group, UML 2.0 Infrastructure Final Adopted
Specifcation, 2003. 112

[108] Object Management Group, UML 2.0 Superstructure Final Adopted
specification, 2003. 32, 33, 51, 112

[109] Object Management Group (OMG), Common Object Request Broker:
Architecture and Specification, CORBA 2.6.1.
http://www.omg.org/cgi-bin/doc?formal/02-05-08, 2002. 8

[110] OpenSG Forum, OpenSG Home. http://www.opensg.org/, 2003. 58

211

http://www.omg.org/cgi-bin/doc?mda-guide
http://oxygen.lcs.mit.edu/Overview.html
http://www.media.mit.edu/wearables/mithril/
http://www.omg.org
http://www.omg.org/cgi-bin/doc?formal/02-05-08
http://www.opensg.org/

Bibliography

[111] T. Oshima, RV-Border Guards: A multiplayer entertainment in mixed reality
space, in Poster session of IEEE Internation Workshop on Augmented Reality,
San Francisco, USA, 1999. 38

[112] C. Owen, A. Tang, and F. Xiao, ImageTclAR: A Blended Script and
Compiled Code Development Systems for Augmented Reality, in International
Workshop on Software Technology for Augmented Reality Systems (STARS
2003), Tokyo, Japan, Oct. 2003. 69

[113] W. Pasman and F. W. Jansen, Distributed Low-latency Rendering for
Mobile AR, in Proceedings of the International Symposium on Augmented
Reality, IEEE Computer Society, 2001, pp. 107–113. 34, 40, 89

[114] C. Perkins, IP Mobility Support for IPv4. IETF RFC 3344, Aug. 2002. 25

[115] W. Piekarski and B. Thomas, An Object Oriented Software Architecture for
3D Mixed Reality Applications, in Proceedings of the International Symposium
on Mixed and Augmented Reality, Oct. 2003. 69

[116] W. Piekarski and B. H. Thomas, The Tinmith System - Demonstrating
New Techniques for Mobile Augmented Reality Modelling, in 3rd Australasian
User Interfaces Conference, Melbourne, Australia, Jan. 2002. 34

[117] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele,
and G. Tröster, The Case for Reconfigurable Hardware in Wearable
Computing, Personal and Ubiquitous Computing, 7 (2003), pp. 299–308. 149

[118] T. Reicher, Augmented Reality in Entwicklung, Produktion und Service:
Komponentenspezifikation Workflow Engine, tech. rep., ARVIKA, 2000. 132,
172

[119] T. Reicher and A. MacWilliams, Study on Software Architectures for
Augmented Reality Systems, report for the ARVIKA consortium, tech. rep.,
Technische Universität München, 2002. 17, 32, 34

[120] T. Reicher, A. MacWilliams, and B. Bruegge, Towards a System of
Patterns for Augmented Reality Systems, in International Workshop on
Software Technology for Augmented Reality Systems (STARS 2003), Tokyo,
Japan, Oct. 2003. 146

[121] T. Reicher, A. MacWilliams, B. Brügge, and G. Klinker, Results of a
Study on Software Architectures for Augmented Reality Systems, in Proceedings
of the International Symposium on Mixed and Augmented Reality, Tokio,
Japan, October 2003. 146

212

Bibliography

[122] D. Reiners, D. Stricker, G. Klinker, and S. Müller, Augmented
Reality for Construction Tasks: Doorlock Assembly, in Proceedings of the
International Workshop on Augmented Reality (IWAR ’98), Nov. 1998. 4, 28

[123] G. Reitmayr and D. Schmalstieg, OpenTracker – An Open Software
Architecture for Reconfigurable Tracking Based on XML, tech. rep., Vienna
University of Technology, 2001. 138

[124] G. Reitmayr and D. Schmalstieg, Data Management Strategies for
Augmented Reality, in International Workshop on Software Technology for
Augmented Reality Systems (STARS 2003), Tokyo, Japan, Oct. 2003. 62, 148

[125] B. Rhodes and P. Maes, Just-in-time information retrieval agents, IBM
Systems Journal special issue on the MIT Media Laboratory, 39 (2000),
pp. 685–704. 27

[126] S. Riß, DWARF – A XML based Task Flow Description Language for
Augmented Reality Applications, Master’s thesis, Technische Universität
München, Department of Computer Science, Feb. 2001. 133, 180

[127] C. Robertson and B. MacIntyre, Adapting to Registration Error in an
Intent-Based Augmentation System, in ACM User Interface Software and
Technology 2002 (UIST 2002), Paris, France, Oct. 2002. Presented as a poster.
34

[128] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. Campbell,
and K. Nahrstedt, Gaia: A Middleware Infrastructure to Enable Active
Spaces, IEEE Pervasive Computing, Oct-Dec (2002), pp. 74–83. 44

[129] M. Román, D. Mickunas, F. Kon, and R. Campbell, LegORB and
Ubiquitous CORBA, in Workshop on Reflective Middleware at Middleware
2000, New York, USA, 2000. 46

[130] C. Sandor, DWARF – CUIML: A Language for the Generation of Multimodal
Human-Computer Interfaces, Master’s thesis, Technische Universität München,
Department of Computer Science, Feb. 2001. 136

[131] C. Sandor, A. MacWilliams, M. Wagner, M. Bauer, and G. Klinker,
Herding Sheep: Live System Development for Distributed Augmented Reality, in
IEEE and ACM International Symposium on Mixed and Augmented Reality
ISMAR 2003, Tokyo, Japan, 2003. 146

[132] C. Sandor and T. Reicher, CUIML: A Language for the Generation of
Multimodal Human-Computer Interfaces, in Proceedings of the European
UIML conference, 2001. 124

213

Bibliography

[133] A. Savidis and C. Stephanidis, Interacting with the Disappearing Computer:
Interaction Style, Design Method, and Development Toolkit, Tech. Rep. 317,
ICS-FORTH, Heraklion, Crete, Greece, Dec. 2002. 43

[134] D. Schmalstieg and G. Hesina, Distributed Applications for Collaborative
Augmented Reality, IEEE Virtual Reality, (2002). 69, 70

[135] B. Schmerl, xAcme: CMU Acme Extensions to xArch, tech. rep.,
Carnegie-Mellon-University, 2001. 33

[136] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture, Vol. 2: Patterns for Concurrent and
Networked Objects, Wiley, New York, NY, 2000. 49

[137] L. Schmidt, O. Oehme, S. Wiedenmaier, A. Beu, and
P. Quaet-Faslem, Usability Engineering für Benutzer. Interaktionskonzepte
von Augmented-Reality-Systemen., it+ti - Informationstechnik und Technische
Informatik, (2002), pp. 31–39. 28, 30

[138] Siemens - SCR - Website. http://www.scr.siemens.com/2a.html, 2002. 34

[139] M. Shaw and P. Clements, A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems, in Proceedings of
The 21st Computer Software and Applications Conference, 1994. 11, 74

[140] M. Shaw and D. Garlan, Software Architectur: Perspective on an Emerging
Discipline, Prentice Hall, Upper Saddle River, NJ, 1996. 60

[141] J. A. Stankovic and K. E. Ramamritham, Tutorial: Hard Real-Time
Systems, IEEE Press, 1988. 7

[142] STAR consortium, STAR website. http://www.realviz.com/STAR/, 2002.
34, 39, 89

[143] P. Strauss and R. Carey, An object-oriented 3D graphics toolkit, Computer
Graphics (SIGGRAPH 1992 Proceedings), (1992), pp. 341–349. 58, 60, 62

[144] D. Stricker, P. Dähne, F. Seibert, I. Christou, L. Almeida, and
N. Ioannidis, Design and Development Issues for ARCHEOGUIDE: An
Augmented Reality-based Cultural Heritage On-site Guide, in EuroImage ICAV
3D Conference in Augmented Virtual Environments and Three-dimensional
Imaging, Mykonos, Greece, 2001. 28, 30

[145] Studierstube Augmented Reality Project - Website.
http://www.studierstube.org, 2003. 32, 34

214

http://www.scr.siemens.com/2a.html
http://www.realviz.com/STAR/
http://www.studierstube.org

Bibliography

[146] Sun Microsystems, JavaBeans.
http://java.sun.com/products/javabeans/, 2001. 45

[147] Sun Microsystems, Sun Open Network Environment (ONE) Software
Architecture. http://www.sun.com/products/sunone/wp-arch/, 2001. 45

[148] Sun Microsystems, Enterprise JavaBeans Specification, v2.3.
http://java.sun.com/products/ejb/docs.html, 2003. 45

[149] I. E. Sutherland, A Head-Mounted Three-Dimensional Display, in AFIPS
Conference Proceedings, vol. 33, 1968, pp. 757–764. 20

[150] C. Szyperski, Component Software - Beyond Object-Oriented Programming -
Second Edition, Addison-Wesley and ACM Press, 2002. 32

[151] S. Thatte, XLANG - Web Services for Business Process Design, tech. rep.,
Microsoft Corporation, 2001. 46

[152] Tinmith - Website. http://www.tinmith.net, 2002. 34

[153] Ubiquitous Commmunications program, UbiCom home - Website.
http://www.ubicom.tudelft.nl, 2003. 34, 40

[154] S. Uchiyama, K. Takemoto, K. Satoh, H. Yamamoto, and H. Tamura,
MR Platform: A Basic Body on Which Mixed Reality Applications are Built, in
Proceedings of the International Symposium on Mixed and Augmented Reality,
Darmstadt, Germany, 2002. 32, 34, 38

[155] US Department of Defense, Requirements for Interactive Electronic
Technical Manuals abd Associated Technical Information, Nov. 1992. 133

[156] US Department of Defense, General Content, Style, Format, and User
Requirements for Interactive Electronic Technical Manuals, Oct. 1995. 133

[157] US Department of Defense, Performance Specification - Revisable
Database for the Support of Interactive Electronic Technical Manuals.
http://navycals.dt.navy.mil/ietm/, Oct. 1995. 21

[158] US Department of Defense, Revisable Database for the Support of
Interactive Electronic Technical Manuals, Oct. 1995. 133

[159] US Department of Defense, Technical Manual - General Content, Style,
Format and User Requirements for Interactive Electronic Technical Manuals.
http://navycals.dt.navy.mil/ietm/, Oct. 1995. 21

[160] ViA Inc., Home Page. http://www.via-pc.com. 42

215

http://java.sun.com/products/javabeans/
http://www.sun.com/products/sunone/wp-arch/
http://java.sun.com/products/ejb/docs.html
http://www.tinmith.net
http://www.ubicom.tudelft.nl
http://navycals.dt.navy.mil/ietm/
http://navycals.dt.navy.mil/ietm/
http://www.via-pc.com

Bibliography

[161] W3C XML Working Group, The annotated XML specification.
http://www.xml.com/axml/testaxml.htm, January 2001. 200

[162] M. Wagner, DWARF – Design, Prototypical Implementation and Testing of a
Real-Time Optical Feature Tracker, Master’s thesis, Technische Universität
München, Department of Computer Science, Feb. 2001. 139, 141

[163] M. Wahl, T. Howes, and S. Kille, Lightweight Directory Access Protocol
(v3). Request for Comments: 2251, Dec. 1997. 26

[164] J. Waldo, Jini Architecture Overview. Sun Microsystems, http:
//java.sun.com/products/jini/whitepapers/architectureoverview.pdf,
February 2001. 33, 45

[165] N. Wanga, D. C. Schmidt, A. Gokhale, C. D. Gill, B. Natarajan,
C. Rodrigues, J. P. Loyall, and R. E. Schantz, Total Quality of Service
Provisioning in Middleware and Applications, Elsevier Journal of
Microprocessors and Microsystems, 26 (2003). 46

[166] S. Ward, C. Terman, and U. Saif, Goal-Oriented System Semantics, tech.
rep., MIT Laboratory for Computer Science, Mar. 2002. 44, 46

[167] S. Ward, C. Terman, and U. Saif, Pebbles: A Software Component System,
tech. rep., Massachusetts Institute of Technology, Mar. 2002. 44, 45

[168] J. Weidenhausen, Reuse in the ARVIKA project. private communication,
2002. 34

[169] M. Weiser, The computer of the twenty-first century, Scientific American,
(1991), pp. 94–100. 21

[170] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL 1.2 Programming
Guide, Addison Wesley, Reading, MA, 3rd ed., 1999. 58, 62, 155, 195

[171] Xybernaut Corporation, Home Page. http://www.xybernaut.com. 42

[172] B. Zaun, A Bluetooth Communication Service for DWARF. SEP, March 2001.
132

216

http://www.xml.com/axml/testaxml.htm
http://java.sun.com/products/jini/whitepapers/architectureoverview.pdf
http://java.sun.com/products/jini/whitepapers/architectureoverview.pdf
http://www.xybernaut.com

Acronyms

API Application Programmer Interface
(page 193)

AR Augmented Reality

ATM Asynchronous Transfer Mode

CAP Context-Aware Packet (page 131)

COM Component Object Model

CORBA Common Object Request
Broker Architecture (page 32)

DA Directory Agent

DHCP Dynamic Host Configuration
Protocol

DTD Data Type Definition (page 200)

GIS Geo Information System

DWARF Distributed Wearable
Augmented Reality Framework

FPGA Field-Programmable Gate Arrays

GNU GNU is Not Unix

GPS Global Positioning System
(page 189)

GPRS General Packet Radio Service

GSM Global System for Mobile
Communications

HMD head-mounted display (page 2)

HTTP Hypertext Transport Protocol

IDL Interface Definition Language

IETM Interactive Electronic Technical
Manuals (page 21)

IETF Internet Engineering Task Force

IP Internet Protocol

LAN Local Area Network (page 25)Local
Area Network

LDAP Lightweight Directory Access
Protocol (page 26)

MDA Model Driven Architecture
(page 148)

ORB Object Request Broker

PC Personal Computer (page 23)

PDA Personal Digital Assistant
(page 24)Personal Digital Assistant

POA Portable Object Adapter

RAD Requirements Analysis Document

RAM Random-Access Memory

RFC Request For Comment

RFID Radio Frequence ID (page 121)

217

Bibliography

RF Radio Frequency

RPC Remote Procedure Call

SA Service Agent

SCP Simple Control Protocol

SDD System Design Document

SLP Service Location Protocol (page 27)

SMB Service Message Block

STARS Sticky Technology for
Augmented Reality Systems

TDL Taskflow Definition Language
(page 133)

TCP Transmission Control Protocol

UDP User Datagram Packet

UML Unified Modelling Language
(page 33)

UMTS Universal Mobile
Telecommunications System

UPnP Universal Plug and Play

URL Uniform Resource Locator

VRML Virtual Reality Modelling
Language (page 136)

VR Virtual Reality

WLAN Wireless Local Area Network

XML eXtensible Markup Language

218

Index

(application) software architecture, 10

Ability, 97, 99
accuracy, 128
Active Service Description, 96, 102
AddData, 202
AddNoteToTask, 175
ADL (Architecture Description Languages),

33
agent, 97
Alice, 104
API (Application Programmer Interface),

198, 221
Application, 51
application, 194
Application Programmer Interface, see

API
AR (Augmented Reality), 97, 98, 109,

139, 142, 221
AR processing loop, 40
architectural pattern, 10
architectural style, 10
architectural view, 129
Architecture Description Languages, see

ADL
ATM (Asynchronous Transfer Mode),

221

Binding Objects, 33
Bluetooth, 25, 127, 135
Bluetooth Communication Service, 135

C++, 146

CalculatePosition, 196
calibration, 192
CAP (Context-Aware Packet), 135, 135,

221
Central Processing Unit, see CPU
ChangeConfiguration, 182
ChangeHCIstate, 183
Cooperative User Interfaces Markup Lan-

guage, see CUIML
Collecting Data, 189
COM (Component Object Model), 221
Common Object Request Broker Ar-

chitecture, see CORBA
communication resource, 89, 94
communication subsystem, 97, 99, 109,

110
communication view, 117
component container, 46
component-based software engineering,

114
connection view, 133
Connector, 32, 96
Context, 51
context, 127, 135
Context-Aware Packet, see CAP
contract, 76
contract-based peer-to-peer architectural

style, 76
ControlTaskflow, 173
Copliance, 24
copliance, 23
CORBA (Common Object Request Bro-

219

Index

ker Architecture), 32, 110, 221
CORBA Naming Service, 26
CORBA Trader Service, 26
CPU (Central Processing Unit), 143
CreateHCI, 180
CreateTaskflow, 172
CUIML (Cooperative User Interfaces Markup

Language), 139

DA (Directory Agent), 221
DAB, see Digital Audio Broadcast
Data Cooking, 188
data glove, 7
Data Type Definition, see DTD
Dead Reckoning, 193
Dead reckoning, 191
dependency graph, 107
deployment, 109
DescribeService, 84, 93
design pattern, 97, 102
design rationale, see rationale
device abstraction, 192
DHCP (Dynamic Host Configuration Pro-

tocol), 221
Digital Audio Broadcast (DAB), 25
Digital Video Broadcast (DVB), 25
Digital Video Broadcast, see DVB
DisplayDocument, 174
DisplayHCI, 182
Distributed Mediating Agent, 97, 147
distributed system, 97
DNS (Domain Name Service), 26
Document Object Model, see DOM
DOM (Document Object Model), 186
Domain Name Service, see DNS
domain-specific software architecture, 10
DTD (Data Type Definition), 111, 205,

221
DVB (Digital Video Broadcast), 6
DVB, see Digital Video Broadcast
DWARF (Distributed Wearable Aug-

mented Reality Framework),

221
Dynamic Handover, 188

EstablishCommunication, 87, 96
event, 89, 90, 145
ExecuteTaskflow, 173
extendable communication, 89

Facade design pattern, 102
fault tolerance, 91
Filtering, 191
filtering, 128
FPGA (Field-Programmable Gate Ar-

rays), 153, 221
framework, 142
Fred, 125
fuducial, 197

GIS (Geo Information System), 221
Global Positioning System, see GPS
GNU (GNU is Not Unix), 221
GPRS (General Packet Radio Service),

25, 221
GPS (Global Positioning System), 7,

60, 89, 125, 141, 146, 191, 194,
221

GPS Tracker, 129
graphical user interface, see GUI
GSM (Global System for Mobile Com-

munications), 6, 221
GUI (graphical user interface), 6

handover, 89, 91
HCI (human-computer interaction), 4,

139
HCI, see human computer interaction
head-mounted display, 3
head-mounted display, see HMD
HMD (head-mounted display), 2, 20,

38, 160, 221
hotspot, 25
HTML (Hypertext Markup Language),

140

220

Index

HTTP (Hypertext Transport Protocol),
100, 110, 221

human computer interaction (HCI), 7
human-computer interaction, see HCI
Hypertext Markup Language, see HTML

ID Tracker, 129
IDL (Interface Definition Language), 221
IETF (Internet Engineering Task Force),

221
IETM (Interactive Electronic Techni-

cal Manuals), 21, 137, 221
information terminal, 135
InitSystem, 203
Integrity Check, 189
intelligent environment, 109
Interaction, 50
Interactive Electronic Technical Manu-

als, see IETM
IP (Internet Protocol), 221

Java, 146
Jini Lookup Service, 27
Joe, 105

lag, 128
LAN (Local Area Network), 6, 25, 125,

147, 221
laser pointer, 7
latency, 90
LDAP (Lightweight Directory Access

Protocol), 26, 221
Lightweight Directory Access Protocol,

see LDAP
Local Area Network, see LAN
location, 88, 98
location subsystem, 98, 101, 109
LostConnection, 87, 92

maintenance, 127
ManualShutdown, 86, 92
MDA (Model Driven Architecture), 152,

221

mediator, 78
Mobile IP, 25
Model Driven Architecture, see MDA
model-view-controller, see MVC
ModifyHCI, 180
ModifyInformation, 202
Moore’s Law, 5
multi-modal, 128, 140
multi-network terminals, 6
MVC (model-view-controller), 50, 177,

184

Naming Server, 26
Naming Service, 26
navigation, 126, 127, 139, 193
Need, 97, 99
Network Information Service, see NIS
NIS (Network Information Service), 26
NoLongerNeeded, 85, 92

Offer, 101
Optical Tracker, 129, 142
optical tracker, 142, 145
ORB (Object Request Broker), 110, 221
orientation, 192

PC (Personal Computer), 23, 221
PDA (Personal Digital Assistant), 24,

109, 221
persistent data, 110
Personal Computer, see PC
Personal Digital Assistant, see PDA
POA (Portable Object Adapter), 221
pose, 2, 27
position, 88, 98, 192
PPS (Production Planning Systems),

137, 176
Prediction, 192
prediction, 128, 141, 192
Presentation, 50
product line architecture, 10
Production Planning Systems, see PPS

221

Index

quality of service, 128, 192

RAD (Requirements Analysis Document),
221

Radio Frequence ID, see RFID
RAM (Random-Access Memory), 221
reference architecture, 10
relative pose, 192
reliability, 91
remote method call, 90
RenderHCI, 181
Request, 101
RequestData, 201
RequestDocument, 174
RequestNewHCI, 182
response time, 91
ResumeTaskflow, 175
RF (Radio Frequency), 221
RFC (Request For Comment), 221
RFID (Radio Frequence ID), 125, 125,

141, 221
RFID Tracker, 141
robustness, 91
RPC (Remote Procedure Call), 222

SA (Service Agent), 222
SatisfyNeeds, 83, 92
scalability, 91
scenario, 125
SCP (Simple Control Protocol), 222
SDD (System Design Document), 222
SDK (Software Development Kit), 38
sensor, 7
Sensor Fusion, 188, 188, 193
sensors, 4
Service, 99
Service Description, 93, 110
service life cycle, 106
Service Location Protocol, see SLP
Service Manager, 95, 98, 102, 109
shared memory, 90

SLP (Service Location Protocol), 27,
46, 101, 110, 222

Smart Proxies, 33
SMB (Service Message Block), 222
software architecture, 10
software design patterns, 68
Software Development Kit, see SDK
software framework, 12
space mouse, 7
STARS (Sticky Technology for Augmented

Reality Systems), 222
StartManually, 82, 92
StartOnDemand, 84, 92
stickies, 129
streaming video, 90
SuspendTaskflow, 174

Taskflow, 127
Taskflow Definition Language, see TDL
Taskflow Engine, 129
TCP (Transmission Control Protocol),

99, 110, 222
TDL (Taskflow Definition Language),

137, 177, 222
thin-client architectural style, 39
Thing, 143
throughput, 91
Tracking, 51
Tracking Manager, 86, 129

ubiquitous communication system, 40
UDP (User Datagram Packet), 222
UIE (User Interface Engine), 185
UIML (User Interface Markup Language),

139
UML (Unified Modelling Language), 33,

114, 222
UMTS (Universal Mobile Telecommu-

nications System), 6, 25, 222
Unified Modelling Language, see UML
Universal Transverse Mercator Projec-

tion, see UTM

222

Index

UPnP (Universal Plug and Play), 222
URL (Uniform Resource Locator), 222
use case, 82–87, 172–175, 180–183, 188,

189, 191, 192, 196, 201–203
UseAbilities, 85, 92
UseNewService, 86, 92
UseOtherService, 86, 92
user interface, 127, 128
User Interface Engine, see UIE
User Interface Markup Language, see

UIML
UTM (Universal Transverse Mercator

Projection), 145

Virtual Reality Modelling Language, see
VRML

VR (Virtual Reality), 222
VRML (Virtual Reality Modelling Lan-

guage), 140, 143, 145, 199, 222

WaveLAN, 6
WLAN (Wireless Local Area Network),

222
World Model, 51, 129, 143

XML (eXtensible Markup Language),
95, 111, 112, 140, 143, 222

Yellow Page Server, 26

223

	Title
	Preface
	Overview
	Contents
	Figures
	1 Introduction
	1.1 What is Augmented Reality?
	1.2 Augmented Reality and Contributing Research Fields
	1.3 Enabling Technologies
	1.4 Goals of this Dissertation
	1.5 Hypothesis
	1.6 Approach
	1.7 Software Abstraction Layers
	1.7.1 Architecture Layers
	1.7.2 Framework Layers
	1.7.3 The DWARF Framework

	1.8 Contributions of this Dissertation
	1.9 Outline

	2 Exploration of the Design Space.
	2.1 Maintenance of Complex Systems
	2.2 The Design Space for Augmented Reality Systems
	2.2.1 User Device
	2.2.2 Device Mobility
	2.2.3 Network Access
	2.2.4 Component Coupling
	2.2.5 Location Awareness
	2.2.6 User Interface

	2.3 Non-functional Requirements
	2.4 Design Goals
	2.5 Related Work
	2.5.1 Augmented Reality Systems
	2.5.2 Wearable Computing Systems
	2.5.3 Ubiquitous Computing Systems

	2.6 Conclusion

	3 Reference Architecture and Design Patterns for Augmented Reality.
	3.1 An Augmented Reality Reference Model
	3.1.1 Overview
	3.1.2 Application Subsystem
	3.1.3 Interaction Subsystem
	3.1.4 Presentation Subsystem
	3.1.5 Tracking Subsystem
	3.1.6 Context Subsystem
	3.1.7 World Model Subsystem
	3.1.8 Mapping of the ARVIKA System onto the Reference Architecture

	3.2 Architectural Patterns for Augmented Reality Systems
	3.2.1 A Catalogue of Patterns for Augmented Reality Systems
	3.2.2 A Scheme for the Description of Patterns
	3.2.3 A System of Patterns

	3.3 Conclusion

	4 The DWARF Contract-based Peer-to-Peer Architectural Style
	4.1 A Contract-based Peer-to-Peer Architectural Style
	4.2 The DWARF Peer-to-Peer Middleware
	4.2.1 Use Cases
	4.2.2 Functional Requirements
	4.2.3 Non-functional Requirements
	4.2.4 Object Models
	4.2.5 System Design
	4.2.6 Hardware/ Software Mapping
	4.2.7 Persistent Data Management

	4.3 A Graphical Notation for DWARF Systems
	4.3.1 DWARF Service Modelling
	4.3.2 System Modelling

	4.4 An Example for a Customized DWARF Service
	4.5 Conclusion

	5 A Case Study for the DWARF Framework
	5.1 The Pathfinder Scenario
	5.2 The Minimal Mobile Maintenance Augmented Reality Framework
	5.2.1 DWARF Services for M3ARF
	5.2.2 Classifying the Services into the DWARF Framework
	5.2.3 Mapping M3ARF to the Reference Architecture

	5.3 The Pathfinder DWARF Services
	5.3.1 The Connection View of Pathfinder
	5.3.2 Pathfinder Application
	5.3.3 Taskflow Engine
	5.3.4 User Interface Engine
	5.3.5 Tracking Manager and Position Trackers
	5.3.6 Optical Feature Tracker
	5.3.7 World Model

	5.4 Service Deployment
	5.5 Conclusion

	6 Conclusion
	A Design Patterns for Augmented Reality Systems
	B Details on the Pathfinder Services
	B.1 Pathfinder Application
	B.2 Bluetooth Communication Service
	B.3 CAP Router
	B.4 Taskflow Engine
	B.5 User Interface Engine
	B.6 Tracking Manager and Position Trackers
	B.7 Optical Tracker
	B.8 World Model

	Bibliography
	Acronyms
	Index

