
Lehrstuhl für Datenbanksysteme

Fakultät für Informatik

Technische Universität München

Metadata Management and Context-based

Personalization in Distributed Information Systems

Dipl.-Inf. Univ.
Markus Keidl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Florian Matthes

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr.-Ing. Klemens Böhm

Universität Karlsruhe (TH)

Die Dissertation wurde am 23.06.2004 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 28.09.2004 angenommen.

Abstract

Nowadays, the Internet provides a large number of resources such as data sources, comput-
ing power, or applications that can be utilized by data integration systems. For an efficient
usage and management of these resources, data integration systems require an efficient
access to extensive metadata. Within the scope of the ObjectGlobe system, our open and
distributed query processing system for data processing services on the Internet, we there-
fore developed the MDV system, a distributed metadata management system. MDV has a
3-tier architecture and supports caching and replication in the middle-tier. It implements a
novel, DBMS-based publish & subscribe algorithm to keep replicas up-to-date and initiate
the replication of new and relevant information.

Many companies are not only interested in data integration but in application inte-
gration for cost-cutting reasons. In recent years, Web services have become a new and
promising technology for application integration on the Internet. Within the scope of the
ServiceGlobe system, our open and distributed Web service platform, we developed tech-
niques that facilitate the development of Web services with regard to flexibility, reliability,
and personalization. Dynamic service selection offers the possibility of selecting and invok-
ing services at runtime based on a technical specification of the desired service. Thus, it
provides a layer of abstraction from the actual services. Our context framework facilitates
the development and deployment of context-aware adaptable Web services. Web services
are provided with context information about clients that may be utilized to provide person-
alized behavior. Context is extensible with new types of information at any time without
any changes to the underlying infrastructure.

Acknowledgments

First of all, I would like to thank my parents for their support and encouragement. They
gave me the opportunity to study, and they never had any doubt that I would succeed.

My doctoral thesis was done in the context of the ObjectGlobe and the ServiceGlobe
project. Many people contributed to these projects, and it is impossible to list them all
here. In particular, I like to thank my colleagues Reinhard Braumandl, Konrad Stocker,
Christian Wiesner, and Bernhard Stegmaier. All of them contributed various important
parts to these projects. Without them, my work would not have been possible.

I also thank the following students for their work on the implementation of the Object-
Globe and ServiceGlobe system as part of their diploma theses and programming courses:
Alexander Kreutz, Franz Häuslschmid, Christof König, and Michael Denk.

For helpful criticism and advice on my doctoral thesis, I express my thanks to Stefan
Seltzsam, Christian Wiesner, and Bernhard Stegmaier. I appreciate all their valuable
suggestions.

I would also like to thank Natalija Krivokapić and Stefan Seltzsam. Natalija was the
advisor for my master thesis, and I learned a lot from her insight and experience in doing
research work. Stefan and I shared an office for several years. We always had a great and
inspiring working atmosphere.

Special thanks go to the rest of the coffee gang. Drinking my - as you always said -
huge cups of coffee would not have been half the fun without you all.

Last, but not least, I thank my supervisor Professor Alfons Kemper.

München, November 2004 Markus Keidl

Contents

1 Introduction 1
1.1 Purpose of this Thesis . 2
1.2 Outline of this Work . 4

2 ObjectGlobe - Open and Distributed Query Processing 5
2.1 Query Processing in ObjectGlobe . 5
2.2 Lookup Service and Optimization . 7
2.3 Quality of Service (QoS) . 9
2.4 Security and Privacy Issues . 10

2.4.1 Preventive Measures . 10
2.4.2 Checks during Plan Distribution . 10
2.4.3 Runtime Measures . 11

3 MDV - Distributed Metadata Management 13
3.1 Motivation . 13
3.2 Overview of the MDV System . 14

3.2.1 Example . 14
3.2.2 Architecture Overview . 15
3.2.3 Rule System . 17
3.2.4 References . 18

3.3 Publish & Subscribe Algorithm . 19
3.3.1 Overview of the Approach . 19
3.3.2 Decomposition of Documents . 20
3.3.3 Decomposition of Rules . 20
3.3.4 Filter Algorithm: Matching Documents and Rules 25
3.3.5 Updates and Deletions . 27

3.4 Performance Experiments . 28
3.5 Related Work . 30

4 Deployment of MDV within ObjectGlobe 33
4.1 MDV Lookup Service . 33

4.1.1 ObjectGlobe’s Metadata . 33
4.1.2 Using the MDV Lookup Service . 35

viii Contents

4.2 MDV Security Provider . 37
4.2.1 Architecture of the MDV Security Provider 38
4.2.2 Distribution of Authorization Constraints 43
4.2.3 Internal Security Systems of Providers 44

5 ServiceGlobe - Open and Distributed Web Services 47
5.1 Motivating Scenario . 48
5.2 Web Services Fundamentals . 49

5.2.1 The SOAP Standard . 49
5.2.2 The UDDI Standard . 50
5.2.3 The WSDL Standard . 51

5.3 Architecture of ServiceGlobe . 52
5.4 Related Work . 54

6 Dynamic Service Selection 57
6.1 Overview of the Approach . 57
6.2 Constraints . 59
6.3 Combination of Constraints . 62
6.4 Evaluation of Constraints . 63

6.4.1 Preprocessing of Constraints . 63
6.4.2 Invocation of Web Services . 64

6.5 Related Work . 65

7 Context-Aware Adaptable Services 67
7.1 Motivation . 67
7.2 Motivating Scenario . 68
7.3 Context for Web Services . 70

7.3.1 Context Infrastructure . 70
7.3.2 Life-Cycle of Context Information 72
7.3.3 Context Processing . 74
7.3.4 Context Processing Instructions . 77

7.4 Context Types . 80
7.5 Related Work . 83

8 Conclusions and Future Work 87

Bibliography 89

List of Figures

2.1 Processing a Query in ObjectGlobe . 6
2.2 Distributed Query Processing with ObjectGlobe 7

3.1 Excerpt from an MDV RDF Document . 15
3.2 Overview of MDV’s Architecture . 16
3.3 Basic Idea of the Filter Algorithm . 20
3.4 Table FilterData based on the RDF document of Figure 3.1 21
3.5 Dependency Tree of the Example Rule in Section 3.3.3.1 23
3.6 Generation of Rule Groups . 24
3.7 Table AtomicRules based on the Example in Section 3.3.3.1 24
3.8 Table RuleDependencies based on the Example in Section 3.3.3.1 25
3.9 Table RuleGroups based on the Example in Section 3.3.3.1 25
3.10 Triggering Rules of Example 3.3.3.1 . 26
3.11 Table ResultObjects for an Example Execution of the Filter 27
3.12 Benchmark Rule Types . 28
3.13 OID Rules . 29
3.14 PATH Rules . 29
3.15 COMP Rules (10% of Rule Base) . 30
3.16 JOIN Rules . 30
3.17 COMP Rules - Varying Batch Sizes and Triggered Rule Base Percentage . 30

4.1 RDF Registration Code for a Data Collection 36
4.2 Example Search Result . 37
4.3 Architecture of the MDV Security Provider 38
4.4 User Security Information in RDF Format 41
4.5 Role Security Information in RDF format 42
4.6 Permission Security Information in RDF format 42
4.7 Distribution of Authorization Constraints 43

5.1 Motivating Scenario: A Travel Agency Portal 48
5.2 UDDI Data Structures . 50
5.3 Classification of Services . 52
5.4 Architecture of the ServiceGlobe System 53

x List of Figures

6.1 Example of Dynamic Service Selection . 59
6.2 Phases of Dynamic Service Selection . 60
6.3 Example of the Combination of Constraints 62

7.1 Motivating Scenario: No Context Processing 68
7.2 Motivating Scenario: Internal Context Processing 69
7.3 Motivating Scenario: External Context Processing 69
7.4 Context within a SOAP Message . 71
7.5 SOAP Message with a Context Header Block 72
7.6 tModel for the Location Context Type . 73
7.7 Context Life-Cycle . 74
7.8 Components for Context Processing . 76
7.9 Context Processing Instructions . 78
7.10 UDDI Metadata of a Context Service . 80
7.11 UDDI Metadata: Stylesheets for a Web Service’s Reply 81
7.12 Context Block of Context Type ReplyProperties 81
7.13 Motivating Scenario: Context Processing with the Context Framework . . 82

Chapter 1

Introduction

The emergence of the Internet imposed new challenges to computer systems in the area of
information systems and databases. The World Wide Web, for example, has made it very
easy for people and organizations all over the world to publish their data as Web pages, as
documents, or by establishing interfaces to the databases containing the data. Thus, data
integration efforts started soon in order to provide a unified view over the various data
sources and to achieve consistency across these data sources [Sto99]. In addition to these
data sources, the Internet provides further resources such as computing power or applica-
tions that can be utilized by data integration systems. For example, the computing power
of computers in the Internet can be used for data processing, similar to the SETI@home
project [ACK+02] that utilizes a large number of Internet-connected computers to ana-
lyze radio telescope signals. Because of the increasing number of applications available on
the Internet, many companies are nowadays not only interested in data integration but in
application integration for cost-cutting reasons.

In recent years, Web services have become a new and promising technology for applica-
tion integration on the Internet. A key feature of Web services is interoperability, that is,
Web services are usable without any knowledge about their underlying operating system
or the programming language used for their development. Together with the world-wide
interconnection of computer systems, Web services technology makes enterprise applica-
tion integration feasible. Although Web services offer solutions to numerous integration
problems, application integration is still a cumbersome task as these applications were not
designed for interoperability.

One of the problems in application integration is flexibility and reliability of Web ser-
vices, which are important in a dynamic environment like the Internet. Without precau-
tions, Web services could easily fail because a Web service on which they depend is unavail-
able. Another problem is the large number of heterogeneous consumer groups using Web
services. Today, consumers want to use several ways to access information systems on the
Internet, for instance, browsers on desktop computers, PDAs, or cell phones. As the trend
to an increasing number of ubiquitous, connected devices—called pervasive computing—
continues to grow, the heterogeneity of client capabilities and the number of methods for
accessing Web services increases continually. Consequently, Web services are expected

2 Introduction

to respect the needs, the preferences, and the current environment of their consumers to
provide them with customized and personalized behavior.

1.1 Purpose of this Thesis

In this thesis, we address the challenges for data integration systems imposed by the large
number of resources available on the Internet. We also introduce techniques that facilitate
application integration based on Web services. These techniques support the development
of Web services with regard to flexibility, reliability, and personalization.

The ObjectGlobe system [BKK+01a] is an example of an open and distributed query
processing system for data processing services on the Internet. The goal of the ObjectGlobe
project is to create an infrastructure that makes it as easy to distribute query processing
capabilities, including those found in traditional database management systems (DBMSs),
across the Internet as it is to publish data and documents on the Web today. The idea is to
create an open marketplace for three kinds of suppliers: data providers which supply data,
function providers which offer query operators to process the data, and cycle providers
which are contracted to execute query operators.

Distributed information systems like ObjectGlobe require an efficient, distributed man-
agement of the available resources, that is, they require extensive metadata for the descrip-
tion, discovery, and administration of these resources. For example, ObjectGlobe has a
metadata repository that registers all data, function, and cycle providers on which queries
can be executed. Every time a new provider joins or leaves the ObjectGlobe federation,
the corresponding metadata is added to or removed from the respective metadata reposi-
tory. The metadata repository is used by the ObjectGlobe optimizer in order to discover
relevant resources for a query. Due to the nature of the Internet, this metadata changes
rapidly. Furthermore, such information must be available for a large number of consumers
and Web services, and copies of pieces of information should be stored near the consumers
that need this particular information.

In this thesis, we present the MDV ystem, a distributed metadata management system.
MDV has a 3-tier architecture and supports caching and replication in the middle-tier
so that queries can be evaluated locally. Thus, no expensive communication across the
Internet is necessary. Users and applications specify the information they want to be
replicated using a specialized subscription language. This reduces the amount of data
that has to be queried locally resulting in a better query execution performance. MDV
implements a novel, scalable, DBMS-based publish & subscribe algorithm to keep replicas
up-to-date and initiate the replication of new and relevant information.

We further address the usage of the Web services technology as a new and promising
technology for enterprise application integration on the Internet. As application integration
is still a difficult task, because most applications were not designed with interoperability
in mind, there are open problems regarding the development of flexible, reliable, and per-
sonalizable Web services.

Therefore, we developed a technique called dynamic service selection, which offers the

1.1 Purpose of this Thesis 3

possibility of selecting and invoking services at runtime based on a technical specification of
the desired service. Thus, it provides a layer of abstraction from the actual services. Con-
straints enable users and Web services to influence dynamic service selection, for example,
services can be selected based on the relevant metadata.

The heterogeneous consumer groups on the Internet as well as the trend towards per-
vasive computing requires Web services that understand and respect the needs, the pref-
erences, and the current environment of their consumers. Generally, all this information
about a consumer is called context. More precisely, in our work context constitutes in-
formation about consumers and their environment that may be used by Web services to
provide consumers with a customized and personalized behavior. Web services should use
such context information to adjust their internal control flow as well as the content and
format of their replies.

We developed a context framework that facilitates the development and deployment
of context-aware adaptable Web services. The framework consists of two main parts: a
distributed infrastructure, which transmits context between clients and Web services and
which manages the context processing, and the context types, which are the supported
types of context information and which are extensible at any time. The actual context
processing is done by three components: Web services themselves, context plugins, and
context services. Context plugins and context services are provided by the context frame-
work, and they pre- and postprocess Web service messages according to the available con-
text information. Both components are essential for automatic context processing, that is,
for processing context without the support of Web services, and for automatic adaption of
Web services to new context types. We also provide means for controlling the way context
is processed. Context processing instructions can be used to specify hosts to which context
is transmitted and at which hosts and by which components it is actually processed.

We present dynamic service selection and our context framework within the scope of the
ServiceGlobe system [KSK03a, KSK02], our open and distributed Web service platform.
ServiceGlobe provides a platform on which services can be implemented, stored, published,
discovered, and deployed. The ServiceGlobe system is fully implemented in Java and based
on standards like XML, SOAP, UDDI, and WSDL. ServiceGlobe supports mobile code, that
is, Web services can be distributed on demand and instantiated during runtime at arbitrary
Internet servers participating in the ServiceGlobe federation. Also, it offers all standard
functionality of a service platform like SOAP communication, a transaction system, and a
security system [SBK01].

The ServiceGlobe project is a successor of our ObjectGlobe project. It transfers Ob-
jectGlobe’s mobile query processing capabilities into the area of Web services. Whereas
ObjectGlobe provides an infrastructure to distribute query processing operators across the
Internet to execute them close to the data they process, the goal of ServiceGlobe is to cre-
ate an infrastructure to distribute Web services across the Internet to execute them close
to data or other Web services which they require during their execution. As additional
optimization, Web services can be instantiated on machines having the optimal execution
environment, e.g., a fast processor, huge memory, or a high-speed network connection.

4 Introduction

1.2 Outline of this Work

The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview of the ObjectGlobe system, our open and distributed
query processing system for data processing services on the Internet. The MDV
system was developed as part of the ObjectGlobe system. Therefore, we use Object-
Globe as an example client of MDV.

• Chapter 3 presents the MDV system, its architecture, and core components. We also
describe our publish & subscribe algorithm and several performance experiments
conducted using our prototype implementation.

• Chapter 4 describes the deployment of MDV within the ObjectGlobe system. The
MDV system is used as a lookup service for resources and as (distributed) data storage
for security-related data by the security system of ObjectGlobe.

• Chapter 5 presents the ServiceGlobe system, our open and distributed Web service
platform. We also give a short introduction into Web service standards that are
important in our work.

• Chapter 6 describes dynamic service selection, a technique that we realized within the
ServiceGlobe system. It provides a layer of abstraction for service invocation offering
Web services the possibility of selecting and invoking services at runtime based on a
technical specification of the desired service.

• Chapter 7 presents our context framework, which we also implemented within the
ServiceGlobe system. It facilitates the development and deployment of context-aware
adaptable Web services.

• Chapter 8 summarizes this thesis and gives an outline of possible future research.

Chapter 2

ObjectGlobe - Open and Distributed
Query Processing

In this chapter, we present the design of ObjectGlobe, our open and distributed query
processor for Internet data sources. The goal of the ObjectGlobe project is to distribute
powerful query processing capabilities (including those found in traditional database man-
agement systems) across the Internet. The idea is to create an open marketplace for
three kinds of suppliers: data providers which supply data, function providers which offer
query operators to process the data, and cycle providers which are contracted to exe-
cute query operators. Of course, a single site (even a single machine) can comprise all
three services, i.e., act as data, function, and cycle provider. In fact, we expect that
most data and function providers will also act as cycle providers. ObjectGlobe enables
applications to execute complex queries involving the execution of operators from mul-
tiple function providers at different sites (cycle providers) and the retrieval of data and
documents from multiple data sources. A detailed description of the ObjectGlobe sys-
tem is given in [BKK+01a, BKK+01b, BKK+00, BKK+99]. The HyperQuery project, an
extension of ObjectGlobe for implementing scalable electronic marketplaces, is described
in [KW04, KW01].

The remainder of this chapter is structured as follows: In Section 2.1, we outline how
queries are processed in ObjectGlobe. We give an example and present the basic features
of our system. The lookup service of ObjectGlobe and its relationship with the query
optimizer are described in Section 2.2. Finally, we outline ObjectGlobe’s quality of ser-
vice management in Section 2.3 and discuss the security requirements of ObjectGlobe in
Section 2.4.

2.1 Query Processing in ObjectGlobe

Processing a query in ObjectGlobe involves four major steps, as shown in Figure 2.1:

• Lookup: In this phase, the ObjectGlobe lookup service is queried to find relevant
data sources, cycle providers, and query operators that might be useful executing

6 ObjectGlobe - Open and Distributed Query Processing

Parse/Lookup

Lookup Service

Optimize Plug Execute
Query

Resources

List Query Plan

XMLXML

Search
Resources

XML

Query

Result

XML

Figure 2.1: Processing a Query in ObjectGlobe

the query. In addition, the lookup service provides the authorization data—mirrored
and integrated from the individual providers—to determine what resources may be
accessed by the user who initiated the query and what other restrictions apply for
processing the query.

• Optimize: The information obtained from the lookup service is used by a quality-
aware query optimizer to compile a valid (as far as user privileges are concerned)
query execution plan believed to fulfill the users’ quality constraints. This plan is
annotated with site information indicating on which cycle provider each operator is
executed and from which function provider the external query operators involved in
the plan are loaded.

• Plug: The generated plan is distributed to the cycle providers, and the external
query operators are loaded and instantiated at each cycle provider. Furthermore, the
communication paths (sockets) are established.

• Execute: The plan is executed following an iterator model [Gra93]. In addition
to the external query operators provided by function providers, ObjectGlobe has
built-in query operators for selection, projection, join, union, nesting, unnesting,
sending data, and receiving data. If necessary, communication is encrypted and
authenticated. Furthermore, the execution of the plan is monitored in order to detect
failures, look for alternatives, and possibly halt the execution of a plan.

The whole system is written in Java for two reasons. First, Java is portable so that
ObjectGlobe can be installed with very little effort on various platforms; in particular, cycle
providers, which need to install the ObjectGlobe core functionality, can very easily join an
ObjectGlobe system. The only requirement is that a site runs the ObjectGlobe server on a
Java virtual machine. Second, Java provides secure extensibility. Like ObjectGlobe itself,
external query operators are written in Java: They are loaded on demand (from function
providers), and they are executed at cycle providers in their own Java “sandbox”. Just like
data and cycle providers, function providers and their external query operators must be
registered in the lookup service before they can be used.

ObjectGlobe supports a nested relational data model in order for relational, object-
relational, and XML data sources to be easily integrated. Other data formats, e.g., HTML,

2.2 Lookup Service and Optimization 7

Data Provider A

Function Provider

Client

ObjectGlobe

Query Engine

display

recvrecv

send

wrap_Sscan

...

...

...

R S

Data Provider B

send

thumbnail

scan

...

...

...

T

wrap_S

thumbnail

Load

Operator Load

Operator

ObjectGlobe

Query Engine

ObjectGlobe

Query Engine

Figure 2.2: Distributed Query Processing with ObjectGlobe

however, can be integrated by the use of wrappers that transform the data into the required
nested relational format. Wrappers are treated by the system as external query operators.
As shown in Figure 2.1, XML is used as data exchange format between the individual
ObjectGlobe components. Part of the ObjectGlobe philosophy is that the individual Ob-
jectGlobe components can be used separately. XML is used so that the output of every
component can be easily visualized and modified. For example, users can browse through
the lookup service in order to find interesting functions that they might want to use in the
query. Furthermore, a user can look at and change the plan generated by the optimizer.

To illustrate query processing in ObjectGlobe, let us consider the example shown in
Figure 2.2. In this example, there are two data providers, A and B, and one function
provider. We assume that the data providers also operate as cycle providers so that the
ObjectGlobe system is installed on the machines of A and B. Furthermore, the client can
act as a cycle provider in this example. Data provider A supplies two data collections: a
relational table R and some other collection S which needs to be transformed (wrapped)
for query processing. Data provider B has a (nested) relational table T . The function
provider supplies two relevant query operators: a wrapper (wrap S) to transform S into
nested relational format and a compression algorithm (thumbnail) to apply on an image
attribute of T .

2.2 Lookup Service and Optimization

The lookup service in ObjectGlobe plays the same role as the catalog or metadata manage-
ment of a traditional query processor. Providers are registered before they can participate

8 ObjectGlobe - Open and Distributed Query Processing

in ObjectGlobe. In this way, the information about available services is incrementally
extended as necessary. A similar approach for integrating various business services in
business-to-business (B2B) e-commerce has been proposed in the UDDI standardization
effort [UDD00].

The main challenge of the lookup service is to provide global access to the metadata of
all registered providers, but also to allow a selective grouping of somehow related metadata
in order to reduce the effort to query the metadata. Thus, the ObjectGlobe system uses
the metadata management system MDV as its lookup service. MDV uses a distributed
3-tier architecture. Metadata, e.g., about providers and their services, must be specified as
RDF documents [LS99]. A detailed description of the MDV system is given in Chapter 3.
Information about the deployment of the MDV system within ObjectGlobe is presented in
Chapter 4.

The metadata in the providers’ RDF documents must conform to our meta-schema
which defines the structures of the service descriptions of each kind of provider. These
descriptions are rather detailed since they are the only information about services the op-
timizer gets in order to construct a valid and quality-aware query evaluation plan. For
example, for each external query operator offered by a function provider, metadata about
its name, category, signature, and cost model must be available. The optimizer also needs
performance characteristics of cycle providers as well as schema information and statistics
for data collections of data providers. Furthermore, authorization data for the services is
used to construct compatibility matrices during the optimization process which represent
the information about legal combinations of the services possibly involved in the query exe-
cution at a specific position in the query evaluation plan. Due to authorization constraints,
our optimizer might not be able to find a query evaluation plan although necessary services
could be retrieved from the lookup service.

We expect the registration of providers’ services to become a similar market as the
market for the providers themselves. So, someone interested in using a service will register
this service; service providers themselves need not necessarily do this on their own. For
example, wrapper developers are of course interested in registering data sources for which
they have written the corresponding wrappers. Such an incremental schema enhancement
by an authorized user is possible in the ObjectGlobe lookup service just as in any other
database system. This means that an ObjectGlobe system normally is not tailored for a
specific data integration problem, but can be extended dynamically with new data, cycle,
and function providers by augmenting the metadata of its lookup service.

The ObjectGlobe optimizer consults the lookup service in order to find relevant re-
sources to execute a query and obtain statistics. It enumerates alternative query evalua-
tion plans using a System-R style dynamic programming algorithm, that is, the optimizer
builds plans in a bottom-up way: First, so-called access plans are constructed that specify
how each collection is read (i.e., at which cycle provider and with which scan or wrap-
per operator). After that, join plans are constructed from these access plans and (later)
from simpler join plans. Evidently, the search space can become too large for full dynamic
programming to work for complex ObjectGlobe queries. To deal with such queries, we
developed another extension that we call iterative dynamic programming (IDP for short).

2.3 Quality of Service (QoS) 9

IDP is adaptive; it starts like dynamic programming, and if the query is simple enough,
then IDP behaves exactly like dynamic programming. If the query turns out to be too
complex, then IDP applies heuristics in order to find an acceptable plan. Details and a
complete analysis of IDP are given in [KS00].

2.3 Quality of Service (QoS)

Although the example in Section 2.1 is rather small (in order to be illustrative), we expect
ObjectGlobe systems to comprise a large number of cycle providers and data providers.
For example, think of an ObjectGlobe federation that incorporates the online databases of
several real estate brokers. A traditional optimizer would produce a plan for a query in this
federation that reads all the relevant data (i.e., considers all real-estate data providers).
Therefore, the plan produced by a traditional optimizer will consume much more time and
money than an ObjectGlobe user is willing to spend. In such an open query processing
system, it is essential that a user can specify quality constraints on the execution itself.
These constraints can be separated into three different dimensions:

• Result: Users may want to restrict the size of the result sets returned by their queries
in the form of lower or upper bounds (an upper bound corresponds to a stop after
query [CK98]). Constraints on the amount of data used for answering the query (e.g.,
at least 50% of the data registered for the theme Real Estate should be used for a
specific query) and its freshness (e.g., the last update should have happened within
the last day) can be used to get results that are based on a current and sufficiently
large subset of the available data.

• Cost: Since providers can charge for their services in our scenario, a user should be
able to specify an upper bound for the respective consumption by a query.

• Time: The response time is another important quality parameter of an interactive
query execution. A user can be interested in a fast production of the first answer
tuples or in a fast overall execution of the query. A fast production of the first tuples
can be important so that the user can look at these tuples while the remainder is
computed in the background.

In many cases, not all quality parameters will be interesting. Just like in real-time
systems, some constraints could be strict (or hard) and others could be soft and handled
in a relaxed way. A detailed description of the QoS management in ObjectGlobe as well
as a comparison with existing approaches are given in [BKK03, Bra01a].

The starting point for query processing in our system is a description of the query itself,
the QoS constraints for it, and statistics about the resources (providers and communica-
tion links). QoS constraints will be treated during all phases of query processing. First,
the optimizer generates a query evaluation plan whose estimated quality parameters are
believed to fulfill the user-specified quality constraints of the query. For every sub-plan, the

10 ObjectGlobe - Open and Distributed Query Processing

optimizer states the minimum quality constraints it must obey in order to fulfill the overall
quality estimations of the chosen plan and the resource requirements deemed necessary
to produce these quality constraints. If, during the plug phase, the resource requirements
cannot be satisfied with the available resources, the plan is adapted or aborted. The QoS
management reacts in the same way if, during query execution, the monitoring component
forecasts an eventual violation of the QoS constraints.

2.4 Security and Privacy Issues

Obviously, security is crucial to the success of an open and distributed system like Ob-
jectGlobe. Dependent on the point of view, different security interests are important. On
the one hand, cycle and data providers need a powerful security system to protect their
resources against unauthorized access and attacks of malicious external operators. Apart
from that, cycle and data providers might have a legitimate interest in the identity of users
for authorization issues. Users of ObjectGlobe on the other hand want to feel certain about
the semantics of external operators to rely upon the results of a query. For that purpose, it
is also necessary to protect communication channels against tampering. Another interest of
users is privacy, i.e., other parties must not be able to read confidential data. Furthermore,
users normally want to stay anonymous as far as possible. Below we sketch our conception
of the security system of ObjectGlobe. The security measures are classified by the time of
application.

2.4.1 Preventive Measures

Preventive measures take place before an operator is actually used for queries and include
checking of the results produced by the operator in test runs, stress testing, and validation
of the cost model. These checkups are done by a trustworthy third party which generates
a digitally signed document containing the diagnosis for the tested operator. To support
the checkups, we developed a validation server that semi-automatically generates test data,
runs the operator, and compares the results generated by the operator with results acquired
from an executable formal specification or a reference implementation of the operator.
Additionally, the validation server ensures that execution costs are within the limits given
by the cost model of the operator.

Preventive measures should increase the trust in the non-malicious behavior of external
operators. They are optional in ObjectGlobe, but users with a high demand of security
will exclusively use certified external operators to ensure that all operators will calculate
the result of the query according to the given semantics.

2.4.2 Checks during Plan Distribution

Three security related actions take place during plan distribution: setup of secure commu-
nication channels, authentication, and authorization.

2.4 Security and Privacy Issues 11

ObjectGlobe is using the well-established secure communication standards SSL (Secure
Sockets Layer) [FKK96] and/or TLS (Transport Layer Security) [DA99] for encrypting
and authenticating (digitally signing) messages. Both protocols can carry out the authen-
tication of ObjectGlobe communication partners via X.509 certificates [HFPS99]. If users
digitally sign plans, such certificates are used for authentication of users, too. Additionally,
ObjectGlobe supports the embedding of encrypted passwords into query plans which can
be used by wrappers to access legacy systems using password-based authentication. Of
course, users can stay anonymous when they use publicly available resources.

Based on the identity of a user, a provider can autonomously decide whether a user
is authorized to, e.g., execute operators, access data, or load external operators. Thus,
providers can (but need not) constrain the access or use of their resources to particular
user groups. Additionally, they can constrain the information (respectively function code)
flow to ensure that only trusted cycle providers are used during query execution. In order to
generate valid query execution plans and avoid authorization failures at execution time, the
authorization constraints are integrated into the lookup service of ObjectGlobe. For a more
detailed description of authentication and authorization in ObjectGlobe, see Section 4.2.

2.4.3 Runtime Measures

To prevent malicious actions of external operators, ObjectGlobe is based on Java’s security
infrastructure to isolate external operators by executing them in protected areas, so-called
“sandboxes”. As a result, cycle providers can prohibit external operators from accessing cru-
cial resources, e.g., the filesystem or network sockets. External operators are also prevented
from leaking confidential data through, for instance, network connections. Additionally, a
runtime monitoring component can react on denial of service attacks. Therefore, the mon-
itoring component evaluates cost models of operators and supervises resource consumption
(e.g., memory usage and processor cycles). When an operator uses more resources than
the cost model predicted, it is aborted. A detailed description of these issues is given
in [SBK01].

Chapter 3

MDV - Distributed Metadata
Management

In this chapter, we present the MDV system, our distributed metadata management sys-
tem. MDV has a 3-tier architecture and supports caching and replication in the middle-
tier so that queries can be evaluated locally. Users and applications specify the infor-
mation they want to be replicated using a specialized subscription language. In order
to keep replicas up-to-date and initiate the replication of new and relevant information,
MDV implements a novel, scalable publish & subscribe algorithm. We describe this al-
gorithm in detail, show how it can be implemented using a standard relational database
management system, and present the results of performance experiments conducted us-
ing our prototype implementation. Parts of this chapter have already been presented
in [KKKK02b, KKKK02a, KKKK01].

The remainder of this chapter is structured as follows: Section 3.1 motivates the ne-
cessity of distributed metadata management for services and applications on the Internet.
Section 3.2 presents the MDV system, its architecture, and core components. Section 3.3
describes our publish & subscribe algorithm, particularly the filter algorithm. Performance
experiments conducted using our prototype implementation are presented in Section 3.4.
Finally, Section 3.5 discusses related work.

3.1 Motivation

Nowadays, the Web is one of the main driving forces behind the development of new and
innovative applications. The emergence of electronic marketplaces and other electronic
services and applications on the Internet is creating a growing demand for effective man-
agement of resources. Dynamic composition of such services requires extensive metadata
for the description, administration, and discovery of these services. Due to the nature of
the Internet, such information changes rapidly. Furthermore, such information must be
available for a large number of users and applications, and copies of pieces of information
should be stored near the users that need this particular information. Thus, metadata

14 MDV - Distributed Metadata Management

about such resources and services is a key to the success of these services.
In this chapter, we present the architecture of the MDV system, a distributed metadata

management system. MDV has a 3-tier architecture and supports caching and replication in
the middle-tier so that queries can be evaluated locally. Thus, no expensive communication
across the Internet is necessary. This supports fast discovery of metadata which is, e.g.,
necessary in Web service composition or query optimization. Users and applications specify
the information they want to be replicated using a specialized subscription language. This
reduces the amount of data that has to be queried locally resulting in a better query
execution performance.

MDV implements a novel, scalable publish & subscribe algorithm to keep replicas up-
to-date and initiate the replication of new and relevant information. We describe this
algorithm in detail, especially how it deals with the possibly huge set of subscription rules.
We show how the algorithm can be implemented using a standard relational database man-
agement system (RDBMS) thereby taking advantage of their matured storing, indexing,
and querying abilities. Although the algorithm is described in the context of RDF [LS99]
and MDV’s subscription language, it is also applicable to XML [BPSM+04] and the XQuery
language [BCF+03]. The MDV system was developed as part of our ObjectGlobe project,
an open and distributed query processing system for data processing services on the Inter-
net. We therefore use ObjectGlobe as an example client of MDV.

3.2 Overview of the MDV System

In this section, we describe the architecture of the MDV metadata management system
and give a general overview of its components. The main features of our system are a 3-tier
architecture that eases the adjustment to varying workloads and activity hot spots, efficient
metadata access using caching, and a publish & subscribe mechanism for preserving cache
consistency.

The MDV system is intended for managing metadata about resources on the Internet.
There are already established Internet standards, developed by the W3C, for describing and
interchanging such metadata: RDF (Resource Description Framework) [LS99] to represent
metadata about Web resources and RDF Schema [BG99] to define the schema the RDF
metadata must conform to. Consequently, we adopted these standards. As RDF was
specifically developed for describing metadata, it has some advantages over XML in this
area [Bra01b]. For the MDV system, advantages are, e.g, that every resource has an unique
URI (Uniform Resource Identifier) specified by the attribute rdf:ID, that resources can
reference one another, and that RDF provides a graph-based data model including an
XML-based syntax for serializing RDF metadata.

3.2.1 Example

Figure 3.1 shows an excerpt from an RDF document doc.rdf. The excerpt defines two
resources: a CycleProvider and a ServerInformation. The former is a server on the In-

3.2 Overview of the MDV System 15

<CycleProvider rdf:ID="host">

<serverHost>pirates.uni-passau.de</serverHost>

<serverPort>5874</serverPort>

<serverInformation>

<ServerInformation rdf:ID="info" memory="92" cpu="600"/>

</serverInformation>

</CycleProvider>

Figure 3.1: Excerpt from an MDV RDF Document

ternet capable of executing arbitrary ObjectGlobe services, the latter contains information
about the computer running the provider. The rdf:ID property defines a local identifier
for each resource, host and info in the example. A unique identifier, called URI reference,
is constructed by combining the local identifier of a resource with the (globally unique)
URI associated with an RDF document. The CycleProvider resource contains three fur-
ther properties: serverHost which contains the server’s DNS name, serverPort which
contains the provider’s port, and serverInformation which is a reference to the Server-
Information resource storing data about the computer running the provider. It contains
the size of the computer’s main memory in MB (property memory) and the speed of its
CPU in MHz (property cpu). Properties (like serverInformation) always reference resources
using their URI reference, i.e., RDF does not distinguish between nested and referenced
resources. So it is irrelevant if resources are defined as nested elements (as in Figure 3.1)
or somewhere else in the same or even in another document.

3.2.2 Architecture Overview

Figure 3.2 depicts the MDV system’s 3-tier architecture, consisting of metadata providers,
local metadata repositories, and MDV clients.

Metadata providers (MDPs), referred to as (MDV) backbone, are distributed all over
the Internet to provide a uniform access regarding network latency and metadata content.
MDPs accomplish the latter by sharing the same schema and consistently replicating meta-
data among each other. Basically, the backbone is an extension of a distributed DBMS
with a flat hierarchy, full synchronization, and replication.1 All metadata stored at MDPs
is regarded as global and publicly available.

Local metadata repositories (LMRs) are the components of the MDV system that do
the actual metadata query processing. For efficiency reasons, i.e., to avoid communication
across the Internet, LMRs cache global metadata and use only locally available metadata
for query processing. Consequently, LMRs should be running close to the applications
querying the metadata, e.g., in the same LAN. The cache of an LMR should contain

1A more sophisticated distributed architecture regarding partitioning and replication is possible in the
backbone. But this is not the focus of our work. Work on partitioning and replication for distributed
database management systems is, e.g., described in [ÖV99].

16 MDV - Distributed Metadata Management

Provider
Metadata
Provider

Metadata
Provider

Metadata

MDV Clients

Metadata
Provider Backbone

Provider

Publish
Subscribe

Specialized Topics
Repositories for
Metadata

Metadata

Parser
ObjectGlobe

Repository
Local MetadataLocal Metadata

Repository

Provider
Metadata

C
ac

he

C
ac

he

��
��
��
��
��

��
��
��
��
��

��������
��������
��������
��������

����
����
����

����
����
����

Figure 3.2: Overview of MDV’s Architecture

relevant metadata, appropriate to the users or applications using it. LMRs use a publish
& subscribe mechanism to fetch relevant metadata from an MDP and to receive updates
to their data, that is, to keep their caches consistent. When subscribing to an MDP, an
LMR registers a set of subscription rules that define the parts of the MDP’s metadata it
wants to cache. MDPs use subscription rules to publish updates, insertions, or deletions
in the metadata to LMRs. In addition to global metadata, LMRs store local metadata
that should not be accessible to the public and therefore is not forwarded to the backbone.
Local metadata must be explicitly marked as such at registration time.

Applications and users accessing the MDV system are referred to as MDV clients. MDV
clients can query metadata at an LMR using MDV’s (declarative) query language, which
is quite similar to the rule language that is explained in Section 3.2.3. Basically, the only
difference is that the keyword select is used instead of the keyword register. Real users
can also browse metadata at an MDP (as depicted in Figure 3.2) and select it for caching.
Their LMR will generate appropriate rules and update its set of subscription rules.

Metadata administration, i.e., registering new metadata and updating or deleting old
metadata, is done at MDPs. New metadata must be registered within a valid RDF docu-
ment; updating metadata essentially means re-registering a modified version of an already
registered document. Deleting can be done either by removing parts from a document and
updating it or by removing the complete document with all its content. This is the only
way to add, update, or delete metadata. MDV’s query language does not provide any
update or delete functionality.

MDV is implemented in Java so that it is portable which allows installation with very
little effort, and it uses a relational database management system as basic data storage.
RDF documents are mapped to tables as described in [FK99]. Search requests are trans-
lated into SQL join queries. This translation is not one-to-one as MDV hides the details
of how the metadata is stored. Translating search requests into SQL queries is quite com-

3.2 Overview of the MDV System 17

plicated (albeit straightforward) and describing all the details is beyond the scope of this
thesis.

3.2.3 Rule System

Subscription rules are specified by users browsing and selecting metadata or by adminis-
trators of LMRs. Rules must describe the kind of metadata that local MDV clients are
interested in because only metadata matching these rules is cached locally and used for
metadata query evaluation. Currently, MDV uses a proprietary rule language which sup-
ports path expressions and joins. A rule is (informally) defined using the following SQL-like
syntax:

search Extension1 e1, Extension2 e2, . . . , Extensionn en

register ei

where Predicates(e1, e2, . . . , en)

This rule matches or registers all resources ei that are an element of extension
Extensioni and that satisfy the rule’s where part (i ∈ {1, . . . , n}). Every extension
Extensionk for k = 1, . . . , n is either some class defined in the schema or another sub-
scription rule. Predicates is a conjunction of elementary predicates of the form X ◦ Y
with X and Y either constants or valid path expressions (according to the schema) and
◦ ∈ {=, !=, <, <=, >, >=, contains}. MDV provides a special any operator ”?” that can be
applied to set-valued properties.2 Currently, our implementation does not support an or

operator, but rules containing this operator can be easily transformed into rules without it
using the algebra of logic and negated operators. Predicates can also contain join predi-
cates, i.e., predicates that join two extensions by referring to different extensions in X and
Y . For an example, see the subscription rule in Section 3.3.3.

The following rule subscribes to all resources that are an instance of class CycleProvider,
which must be defined in the schema, and that have a property serverHost that contains
’uni-passsau.de’ and a serverInformation property that references a ServerInformation re-
source with a memory property value greater than 64:

search CycleProvider c
register c
where c.serverHost contains ’uni-passau.de’ and

c.serverInformation.memory > 64

So, this rule subscribes to all cycle providers that run on computers in the ’uni-
passau.de’ domain with more than 64 MB of main memory. For example, the CycleProvider
resource defined in the document excerpt of Figure 3.1 matches this rule.

2With set-valued properties, all set elements must have the same type even though RDF does not
formally enforce this.

18 MDV - Distributed Metadata Management

3.2.4 References

The previous example shows one problem: The rule, applied to the metadata of Figure 3.1,
will register the CycleProvider resource with reference host and transmit it to an LMR. But
obviously, the referenced ServerInformation resource must be transmitted, too. Otherwise,
the CycleProvider resource will contain a dangling reference. There are three possible
solutions to deal with referenced resources: a) never transmit them with a resource, b)
follow all references until no new references are found (i.e., calculating the closure), or c)
do something in between. The first two solutions both have major drawbacks, ranging
from dangling references to a possible transmission of the complete database. Therefore,
we introduced strong and weak references. Resources referenced by strong references are
always transmitted together with the referencing resource whereas resources referenced by
weak references are never transmitted. MDV augments RDF schema with the necessary
RDF properties to allow the definition of strong and weak references.

Currently, the designer of the metadata schema is responsible for defining strong and
weak references as the decision which references are strong and which are weak is part
of the schema design. In the following, we sketch a solution that determines strong and
weak references automatically by analyzing the queries stated at the LMRs. For example,
assume the following query:

search CycleProvider c
select c
where c.serverHost contains ’uni-passau.de’ and c.serverInformation.memory > 64

At an LMR, this query can only be answered if its cache contains all necessary Cy-
cleProvider and ServerInformation resources. Notice that the ServerInformation resources
are necessary because of the serverInformation property restriction. All necessary resources
are in the LMR’s cache either if they are registered directly by appropriate subscription
rules or if the necessary CycleProvider resources are registered directly and the serverIn-
formation property is referenced using a strong reference. In conclusion, a query cannot
be answered at an LMR if it contains a predicate with a path expression that contains a
weak reference and if there is no subscription rule that registers the resources referenced by
this weak reference directly. Obviously, such a weak reference is a candidate for changing
it into a strong reference.

Queries at LMRs can be analyzed to detect this kind of weak references. If the same
weak reference is a strong reference candidate at several LMRs, the metadata schema
should be adjusted automatically by changing this weak reference into a strong reference.
Otherwise, it is sufficient to create appropriate subscription rules at the corresponding
LMRs. This approach can also be extended to determine obsolete strong references that
should be changed into weak references or even resource classes that are used in queries
but not yet cached locally.

With strong references, an LMR can receive resources for which there is no correspond-
ing rule. An LMR must take care in deleting such resources if the resource that caused their
transmission is deleted, e.g., because the according rule is changed or removed. MDV uses

3.3 Publish & Subscribe Algorithm 19

a garbage collector (based on reference counting) to detect such resources and to remove
them, if necessary.

3.3 Publish & Subscribe Algorithm

In this section, we describe our publish & subscribe algorithm, particularly one of its core
components, the filter algorithm. One of the main challenges in publishing data is the
evaluation of subscription rules. The evaluation is necessary to obtain all subscribers that
have to be notified of new, updated, or deleted data. To avoid the evaluation of the possibly
huge set of all subscription rules, our filter determines a (small) subset of subscription rules
that are at most affected by the modification of the data. Additionally, our filter takes
advantage of rule/predicate redundancy and evaluates affected rules incrementally, i.e.,
using only the modified data as far as possible.

Our filter algorithm is solely based on standard relational database technology, mainly
for the advantages in robustness, scalability, and query abilities. We implemented a pro-
totype based on the MDV system, its rule language, and the RDF data model.

3.3.1 Overview of the Approach

Consider the following rule that registers all cycle providers (their resources) that are
running in the domain ’uni-passau.de’:

search CycleProvider c register c where c.serverHost contains ’uni-passau.de’

This rule must be evaluated when a resource of class CycleProvider is registered, up-
dated, or deleted. The following rule, which registers all cycle providers that are running
on a computer with more than 64 MB of memory, shows that it is not that simple:

search CycleProvider c register c where c.serverInformation.memory > 64

This rule must be evaluated not only when a CycleProvider resource is registered,
updated, or deleted, but also when the referenced ServerInformation resource is updated.
For example, if the ServerInformation resource’s memory property is updated from 32 to
128, all CycleProvider resources referencing the updated resource are then matching the
above rule.

Figure 3.3 illustrates the basic idea of our filter algorithm. Both, documents and sub-
scription rules are decomposed into so-called atoms, i.e., basically tuples of a table. For
RDF documents, an atom is basically an RDF statement (or triple, as described in [LS99]).
For subscription rules, an atom is composed of the rule parts that refer to a single class.
The filter algorithm joins the document atoms with the rule atoms obtained from the sub-
scription rule base to determine all rules that may register resources of the document and,
therefore, have to be evaluated.

20 MDV - Distributed Metadata Management

Document Excerpt: doc.rdf

Rule Atoms

Subscription Rule

Document Atoms

<CycleProvider rdf:ID="host">

 <serverHost>pirates.uni-passau.de</serverHost>

 <serverPort>5874</serverPort>

 <serverInformation>

 <ServerInformation rdf:ID="info"

 memory="92"

 cpu="600" />

 </serverInformation>

</CycleProvider>

uri_reference class property value

doc.rdf#host

doc.rdf#host

doc.rdf#host

doc.rdf#host

doc.rdf#info

doc.rdf#info

doc.rdf#info

CycleProvider

CycleProvider

CycleProvider

CycleProvider

ServerInformation

ServerInformation

ServerInformation

rdf#subject

serverHost

serverPort

serverInformation

rdf#subject

memory

cpu

doc.rdf#host

pirates.uni-passau.de

5874

doc.rdf#info

doc.rdf#info

92

600

class property value

CycleProvider

ServerInformation

serverHost

memory

uni-passau.de

64

search CycleProvider c

register c

where

 c.serverHost contains 'uni-passau.de'

 and

 c.serverInformation.memory > 64

Figure 3.3: Basic Idea of the Filter Algorithm

In summary, our publish & subscribe algorithm proceeds in three steps: First, newly
registered documents are decomposed. Second, newly registered rules are decomposed.
Third, document atoms and rule atoms are matched, and rules that may register new
resources are evaluated incrementally. We describe each of these steps in the following
sections.

3.3.2 Decomposition of Documents

Any newly registered RDF document is decomposed into its atoms, i.e., RDF statements,
as described in [LS99]. These statements and some additional information (necessary for
filter execution) are inserted into the table FilterData (see Figure 3.4 for an example).
Additionally, for each resource a tuple is inserted containing the URI reference and the
class name (with the property attribute set to rdf#subject and the value attribute set to
the resource’s URI reference). Thus, rules are able to register a single resource using its
URI reference.

3.3.3 Decomposition of Rules

To obtain the rule atoms, a new subscription rule is processed in three steps: First, the
rule is normalized, basically to ease decomposition. Afterwards, the normalized rule is

3.3 Publish & Subscribe Algorithm 21

FilterData
uri reference class property value

doc.rdf#host CycleProvider rdf#subject doc.rdf#host
doc.rdf#host CycleProvider serverHost pirates.uni-passau.de
doc.rdf#host CycleProvider serverPort 5874
doc.rdf#host CycleProvider serverInformation doc.rdf#info
doc.rdf#info ServerInformation rdf#subject doc.rdf#info
doc.rdf#info ServerInformation memory 92
doc.rdf#info ServerInformation cpu 600

Figure 3.4: Table FilterData based on the RDF document of Figure 3.1

decomposed into so-called atomic rules. Finally, a dependency tree is created based on
information obtained from the decomposition step and merged with a global dependency
graph.

We distinguish two types of atomic rules: A triggering rule refers to a single class; it
requires no results of other atomic rules and contains no path expressions, i.e., it contains
only accesses to properties. A join rule represents a join of two extensions with a join
predicate. It contains no other predicates, and it always depends on two other atomic
rules.

The normalization of rules is not crucial for the correctness of rule decomposition, but
it eases its explanation and implementation. We call a rule normalized if its search part
contains all classes that are used in its where part, not only directly using a variable but
also in path expressions. Path expressions are not allowed in normalized rules, only accesses
to properties (including the ”?” operator), and they are split up therefore. As an example,
we present the normalized form of the rule from Section 3.2.3:

search CycleProvider c, ServerInformation s
register c
where c.serverHost contains ’uni-passau.de’ and c.serverInformation = s

and s.memory > 64

3.3.3.1 Rule Decomposition

The decomposition of a subscription rule into atomic rules is done based on the predicates
used in it: In a first step, all predicates with a constant are removed from the original rule,
and for each of them a triggering rule is created with the predicate as where part, i.e., the
triggering rule matches all resources that satisfy the predicate. If there are classes in the
search clause without such a predicate, a triggering rule without where clause is created.
After this, the original rule is adjusted to use the results of the triggering rules as input
instead of evaluating the removed predicates. As an example, consider the (normalized)
rule

22 MDV - Distributed Metadata Management

search CycleProvider c, ServerInformation s
register c
where c.serverHost contains ’uni-passau.de’ and c.serverInformation = s

and s.memory > 64 and s.cpu > 500

All predicates with constants are considered and appropriate triggering rules are generated:

search ServerInformation s register s where s.memory > 64 (RuleA)

search ServerInformation s register s where s.cpu > 500 (RuleB)

search CycleProvider c
register c
where c.serverHost contains ’uni-passau.de’ (RuleC)

The original rule is adjusted afterwards:

search RuleA a, RuleB b, RuleC c
register c
where a = b and c.serverInformation = a (RuleD)

Notice that a rule’s type is the type of the resources it registers, e.g., the type of RuleD
is CycleProvider. All remaining predicates in the original rule are join predicates. Now,
subsequently each such predicate is removed, and a join rule is created with the removed
predicate in its where part. The original rule is again adjusted. This is done until the
original rule is itself a join rule. In our example, two join rules are generated:

search RuleA a, RuleB b register a where a = b (RuleE)

search RuleE a, RuleC c register c where c.serverInformation = a (RuleF)

The subscription rule is now decomposed into the atomic rules RuleA, RuleB, RuleC,
RuleE, and RuleF.

3.3.3.2 Creation of the Dependency Graph

The decomposition always creates non-cyclic dependencies between the generated atomic
rules. These dependencies are represented in a dependency tree in which nodes represent
atomic rules and directed edges represent dependencies. The tree contains an end rule
(an atomic rule that produces the result of the subscription rule) as root node, one or
more triggering rules as leave nodes, and join rules as inner nodes. Figure 3.5 depicts a
dependency tree that is based on the atomic rules in Section 3.3.3.1.

After decomposition, the generated atomic rules are merged with already existing
atomic rules (stemming from previously registered rules). This is equivalent to merging
the dependency tree of the newly registered rule with the global dependency graph, which
is a directed, acyclic graph that consists of the merged dependency trees of previously
registered rules. By merging dependency trees, the filter algorithm takes advantage of rule
and predicate redundancy and, as a consequence, evaluates equivalent rules and atomic
rules only once.

3.3 Publish & Subscribe Algorithm 23

RuleF

CycleProvider

a = b

ServerInformation

RuleC

ServerInformation

isTriggering

isEnd

RuleA RuleB

c.serverInformation = a

Triggering Rule

Join Rule

Extension of a ClassRuleE

s.memory > 64 s.cpu > 500 c.serverHost contains ’uni-passau.de’

isTriggering isTriggering

Figure 3.5: Dependency Tree of the Example Rule in Section 3.3.3.1

3.3.3.3 Rule Groups

Although the decomposition algorithm already considers redundancies, there remain similar
atomic rules. Consider the following example:

search CycleProvider c register c where c.serverInformation.memory > 64

search CycleProvider c register c where c.serverInformation.cpu > 500

Decomposition results in the following atomic rules (notice that RuleA is already shared):

search CycleProvider register c where c (RuleA)

search ServerInformation s register s where s.memory > 64 (RuleB1)

search RuleA c, RuleB1 s register c where c.serverInformation = s (RuleC1)

search ServerInformation s register s where s.cpu > 500 (RuleB2)

search RuleA c, RuleB2 s register c where c.serverInformation = s (RuleC2)

Comparing RuleC1 and RuleC2 reveals that both atomic rules have equal register
and where parts and that even the classes that the variables are bound to are equal.3 But
the resources used to evaluate the rules are different. To avoid individual evaluation of
such join rules, rule groups are introduced. A rule group combines join rules that have an
equal where part and where the corresponding variables are bound to the same classes.
All grouped join rules are evaluated at once by combining their input data, evaluating the
shared where part, and splitting up the result afterwards. Figure 3.6 depicts this for the
above example.

3Notice that variable names need not be equal.

24 MDV - Distributed Metadata Management

RuleA

RuleC1 RuleC2

Rule Group

RuleB2

CycleProvider ServerInformation

RuleB1

ServerInformation

RuleB2

ServerInformation

RuleA

ServerInformation

RuleC1

CycleProvider

RuleC2

isTriggering

{ RuleC1, Rule C2 }

isTriggering

s.cpu > 500

c.serverInformation = a c.serverInformation = ac.serverInformation = a

RuleB1

isEndisEnd

s.memory > 64

isTriggering

s.memory > 64

isTriggering

s.cpu > 500

isTriggering isTriggering

Figure 3.6: Generation of Rule Groups

AtomicRules
rule id text group

1 search ServerInformation s register s where s.memory > 64
2 search ServerInformation s register s where s.cpu > 500
3 search CycleProvider c

register c
where c.serverHost contains ’uni-passau.de’

4 search view(1, ServerInformation) a, view(2, ServerInformation) b 1
register a
where a = b

5 search view(4, ServerInformation) a, view(3, CycleProvider) c 2
register c
where c.serverInformation = a

Figure 3.7: Table AtomicRules based on the Example in Section 3.3.3.1

3.3.3.4 Implementation Issues

We now describe the most important tables used by the filter algorithm. For brevity rea-
sons, we omit tables that are not directly related to it, e.g., tables that store the subscription
rules of LMRs. A key concept to an efficient filter implementation is the physical database
design. First, the filter tables are used as indexes to all triggering rules affected by newly
registered metadata. Given some metadata, the tables allow an efficient determination of
all triggering rules that have a where part that evaluates to true given the new metadata.
Second, the tables themselves are created with indexes supporting an efficient access on
the database level.

Table AtomicRules4 stores all atomic rules (see Figure 3.7 for an example). There
are no duplicates, i.e., no rules having the same rule text, but different values in their
rule id attribute. RuleDependencies stores the global dependency graph (see Figure 3.8).

4We use view(rule id, class) to refer to another atomic rule (instead of, e.g., RuleA).

3.3 Publish & Subscribe Algorithm 25

RuleDependencies
source target param group

1 4 1 1
2 4 2 1
4 5 1 2
3 5 2 2

Figure 3.8: Table RuleDependencies based on the Example in Section 3.3.3.1

RuleGroups
group text

1 search group(ServerInformation) a, group(ServerInformation) b
register a
where a = b

2 search group(ServerInformation) a, group(CycleProvider) c
register c
where c.serverInformation = a

Figure 3.9: Table RuleGroups based on the Example in Section 3.3.3.1

A reference to the rule group of an atomic rule is stored in its AtomicRules tuple and, for
efficiency reasons, in RuleDependencies, in the tuples where the atomic rule is the target.
The rule groups themselves are stored in RuleGroups (see Figure 3.9).

Triggering rules are additionally inserted into one of the tables FilterRulesOP or Fil-
terRules depending on the operator used in their where part. Our current implementation
supports comparisons with operators <, <=, >, and >= only on numerical constants. To
avoid the creation of an own FilterRulesOP table with an appropriate type of the value
attribute for all numerical types, constants are stored as strings and re-converted when
joining the tables with the FilterData table. Figure 3.10 shows an example extension of
the FilterRules/FilterRulesOP tables based on the triggering rules from Section 3.3.3.1.

3.3.4 Filter Algorithm: Matching Documents and Rules

The filter algorithm is started after a new document has been registered and decomposed.
It consists of two steps: First, all triggering rules are determined that are affected by
the registration of new metadata. Subsequently, all join rules depending on the affected
triggering rules are evaluated incrementally, as defined by the global dependency graph.

3.3.4.1 Determination of Affected Triggering Rules

It is crucial that a triggering rule refers to a single class. Its where part is either empty or
a comparison with a constant. If it is empty, the atomic rule matches any newly registered

26 MDV - Distributed Metadata Management

FilterRulesGT
rule id class property value

1 ServerInformation memory 64
2 ServerInformation cpu 500

FilterRulesCON
rule id class property value

3 CycleProvider serverHost uni-passau.de

Figure 3.10: Triggering Rules of Example 3.3.3.1

resource that is an instance of the class the rule refers to. If it is a comparison with a
constant, the rule’s predicate has to be evaluated based on the atoms of the document.
One matching atom is sufficient for a triggering rule to be affected. Our prototype imple-
mentation starts with joining the table FilterData with FilterRules and all FilterRulesOP
tables using a join predicate depending on the actual FilterRules/FilterRulesOP table.
The table ResultObjects always contains the result of a filter step. The left table of Fig-
ure 3.11 shows the result of this step based on the FilterData table in Figure 3.4 and the
FilterRules/FilterRulesOP tables in Figure 3.10.

3.3.4.2 Evaluation of Join Rules

Now, all join rules depending on affected triggering rules are evaluated. With join rules,
complete incremental evaluation is not possible, so the results of atomic rules which join
rules depend on are materialized.

The evaluation consists of several iterations. In each iteration, all atomic rules de-
pending on the atomic rules currently stored in ResultObjects are determined using the
table RuleDependencies. Then, the rule groups of these atomic rules are evaluated using
the resources currently stored in ResultObjects and, if necessary, materialized data as in-
put. The result of this evaluation, i.e., the matching resources and the atomic rules they
match, are again stored in ResultObjects and used as input of the next iteration. Any
resources matching an end rule are saved for later. The algorithm terminates if there are
no more dependent join rules. Termination is guaranteed because the dependency graph
is an acyclic, directed graph, so there is a longest path from a triggering rule leaf to an
end rule node, which has no dependent join rules. The length of this path is the maximum
number of iterations executed by the filter algorithm. Figure 3.11 shows an example filter
run based on the tables presented in Section 3.3.3.4. The filter terminates with the resource
doc.rdf#host as result.

After the filter terminated, all resources produced by end rules are transmitted to the
appropriate LMRs.

3.3 Publish & Subscribe Algorithm 27

Initial Iteration
uri reference rule id

doc.rdf#info 1
doc.rdf#info 2
doc.rdf#host 3

Iteration 1
uri reference rule id

doc.rdf#info 4

Iteration 2
uri reference rule id

doc.rdf#host 5

Figure 3.11: Table ResultObjects for an Example Execution of the Filter

3.3.5 Updates and Deletions

Updated and deleted resources can be determined by comparing the original RDF document
with the updated, re-registered one. A resource is updated if it is contained in both
documents, but at least one property is changed, added, or removed. A resource is deleted
if it was contained in the original document, but it is then no longer contained in the
updated one. If a complete document is deleted, all contained resources are deleted.

One execution of the MDV filter is not sufficient if updates and deletions are allowed.
If a resource is updated, three situations can be distinguished:

• The resource is no longer matched by a rule that matched the resource before. It
must be removed from an LMR’s cache if this was the only rule the resource matched.
If the resource still matches other rules, it must stay in the cache.

• The resource is matched by a rule that did not match the resource before. This
situation is handled properly by the filter.

• The resource is still matched by all rules that matched it before. All LMRs that
cache this resource must update their cache to contain the modified resource.

Furthermore, resources referencing an updated or deleted resource must be considered.
Assume the following subscription rule:

search CycleProvider c register c where c.serverInformation.memory > 64

If a ServerInformation resource is updated, i.e., its memory property is set to 128, there
can be CycleProvider resources that now match this rule. Whereas, if the ServerInformation
resource’s memory property is set to 32 or if the resource is deleted, there can be cached
CycleProvider resources that now must be removed from the cache because they no longer
match the rule, but only if there are no other rules that the resources match. Notice that
resources that are cached because of strong references are removed by the garbage collector,
if necessary.

Our approach to solve all of this is to execute the filter multiple times, each time with
different input data. First, the filter is executed with the original version of updated and
deleted resources as input. The result is a set of so-called candidate resources. Each of
these resources no longer matches at least one rule. We call them candidates because

28 MDV - Distributed Metadata Management

OID: search CycleProvider c register c where c = URI

COMP: search CycleProvider c register c where c.synthValue > INT

PATH: search CycleProvider c
register c
where c.serverInformation.memory = INT

JOIN: search CycleProvider c
register c
where c.serverHost contains ’uni-passau.de’ and

c.serverInformation.cpu = 600 and c.serverInformation.memory = INT

Figure 3.12: Benchmark Rule Types

there can be other rules they still match or new rules they now match (after an update).
Second, the modified metadata is written into the database, and the filter is executed a
second time, with the candidate resources as input. The result of the execution is a set of
wrong candidate resources, that is, resources that must not be deleted. All true candidate
resources (i.e., the set of resources determined in the first iteration excluding those obtained
in the second iteration) can be deleted from LMRs’ caches. Finally, the filter is executed
a third time, now with the modified metadata as input. The last execution corresponds to
the single filter execution that would suffice if no updates and deletions were allowed.

Alternatives to executing the filter multiple times are, for example, to store a list of the
LMRs which cache a resource (for each resource); or to use periodical cache invalidation
based on a time-to-live approach, resulting in resources dropping out of an LMR cache if
they are not reinserted periodically.

3.4 Performance Experiments

Now, we present some performance experiments conducted using our prototype implemen-
tation of the filter algorithm. The results are important to decide if the filter should be
started either when a new document is registered or periodically, to process several docu-
ments in one batch. All benchmarks were conducted on a Sun Enterprise 450 with 4GB
memory running Solaris 2.7 and using Sun’s Java JDK 1.2.2. As a back-end, we used a
major commercial RDBMS.

We registered RDF documents similar to the document of Figure 3.1, each containing
two resources: one of class CycleProvider and one of class ServerInformation. As rule base,
we used the rule types shown in Figure 3.12. For a single measurement, documents and
rules of type OID, PATH, and JOIN were created in such a way that the CycleProvider
resource in a document was matched by exactly one rule and that each rule matched
exactly one resource (stored in one document) of all newly registered resources. COMP
rules and corresponding documents were created in a way that a CycleProvider resource

3.4 Performance Experiments 29

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
eg

is
tr

at
io

n
C

os
ts

 [
m

s]

No. of batch−registered RDF Documents

10000 Rules
100000 Rules

Figure 3.13: OID Rules

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
eg

is
tr

at
io

n
C

os
ts

 [
m

s]

No. of batch−registered RDF Documents

10000 Rules
40000 Rules
70000 Rules

100000 Rules

Figure 3.14: PATH Rules

was matched by a certain percentage of the rules stored in the rule base, e.g., 10%. OID
rules, which register a single CycleProvider resource with a given URI reference URI, and
COMP rules, which register all CycleProvider resources with a synthValue property greater
than the parameter INT, were both triggering rules. No decomposition was necessary, and
the filter algorithm did not need to evaluate any join rules. On the other hand, PATH and
JOIN rules contained accesses to properties of referenced resources, so decomposition was
necessary and join rules were created. Therefore, the complete filter algorithm was used to
evaluate them.

We conducted the measurements with various batch sizes, an increasing rule base size,
and different rule types. In a single measurement, we first created a rule base consisting
of rules of the same type. Then, we registered a number of RDF documents and measured
the overall runtime of the filter algorithm to process them. Depending on the rule type,
the algorithm terminated after the evaluation of all triggering rules (OID, COMP) or after
the evaluation of all dependent join rules (PATH, JOIN). The average registration time
of a single RDF document was calculated by dividing the overall runtime by the batch
size. From the filter’s point of view, registering several small documents and registering
one large document is the same. So, these measurements also illustrate the behavior of the
filter algorithm regarding different document sizes.

Figures 3.13, 3.14, 3.15, and 3.16 show the dependency of the average registration costs
from the batch size, i.e., the number of documents registered in one batch, for different rule
types and rule base sizes.5 For OID, PATH, and JOIN rules the behavior is basically the
same. Registration of a small number of documents is more expensive than the registration
of a lot of documents in one batch. From a certain batch size on (dependent on the rule
type), the average registration costs are nearly constant. For COMP rules this is different;
although the registrations costs are again nearly constant from a certain batch size on,
registering few documents in one batch is preferable.

For simple OID rules, the rule base size does not influence the runtime of the algorithm

5Minor variations of the graphs are a consequence of the timing based on Java.

30 MDV - Distributed Metadata Management

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
eg

is
tr

at
io

n
C

os
ts

 [
m

s]

No. of batch−registered RDF Documents

10000 Rules
40000 Rules
70000 Rules

100000 Rules

Figure 3.15: COMP Rules (10% of Rule
Base)

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
eg

is
tr

at
io

n
C

os
ts

 [
m

s]

No. of batch−registered RDF Documents

1000 Rules
4000 Rules
7000 Rules

10000 Rules

Figure 3.16: JOIN Rules

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
eg

is
tr

at
io

n
C

os
ts

 [
m

s]

No. of batch−registered RDF Documents

Slot 10%
Slot 20%
Slot 30%
Slot 40%

0

5000

10000

15000

20000

25000

10 15 20 25 30 35 40

A
ve

ra
ge

 R
eg

is
tr

at
io

n
C

os
ts

 [
m

s]

Percentage of Matched Objects

Batch Size 1
Batch Size 10
Batch Size 50

Batch Size 100

Figure 3.17: 10,000 COMP Rules - Varying Batch Sizes and Triggered Rule Base Percent-
age

as the curves for 10,000 and 100,000 are almost identical. This is different for PATH, JOIN,
and COMP rules where the registration costs do—as expected—depend on the rule base
size, as Figures 3.14, 3.15, and 3.16 show.

Figure 3.17 shows the influence of the percentage of rules that match resources from
the registered documents on the average registration costs. Not surprisingly, a higher rule
percentage results in higher registration costs independent of the batch size.

3.5 Related Work

Metadata management systems, data repositories, and catalogs are used in DBMSs since
many years to store metadata about tables, indexes, and other data structures [WDH+82].
With the emergence of the Internet, new metadata management systems with new chal-

3.5 Related Work 31

lenges arose. UDDI [UDD00] is a framework for storing and searching services provided by
companies on the Internet. Contrary to MDV, UDDI defines a fixed metadata schema and
no automatic notification on data changes is provided. WebSemantics [MRT98] searches
the Internet for HTML pages that contain metadata about data sources and integrates
them into a catalog. The middleware system MOCHA [RMR00] uses a (centralized) meta-
data repository to store Java classes and documentation about these classes in RDF. The
Secure Service Discovery Service [CZH+99] stores metadata about network services in XML
format. Lookup services like Jini [Wal01], UPnP [UPN], and SLP [GPVD99] allow the dis-
covery of plug-and-play services in networks but do not support large quantities of data or
a query language.

Our filter algorithm uses triggering rules as an index to all subscription rules that are
affected by new metadata. A similar approach is used in the publish & subscribe system
Le Subscribe [PFLS00, FJL+01]. It uses the predicates of subscription queries as index but
within the scope of a main memory algorithm. The Gryphon system [ASS+99] creates a
tree from queries composed of simple predicates where each node represents a comparison.
In [HCKW90], an Interval Binary Search Tree is introduced that stores intervals and allows
it to find all intervals that contain some given value efficiently. Whereas most publish
& subscribe systems assume a distinguished data format, the information dissemination
system SIFT [YGM99] allows arbitrary (text) documents to be published. [AF00] presents
a filter algorithm that uses XQL queries to select specific XML documents from an incoming
stream of documents. To our knowledge none of these systems allows references between
the information that is published, i.e., between different documents, as MDV does.

The NiagaraCQ [CDTW00] system evaluates queries continuously against a database.
Queries are decomposed into partial queries so that common partial queries are evaluated
only once. A similar concept is implemented in OpenCQ [LPT99] where queries are decom-
posed into events connected by the operators of the original query. Events are triggered
by changes of the underlying data. Both systems and MDV can handle the insertion, up-
date, and deletion of data. [TGNO92] introduced the concept of continuous queries but is
restricted to append-only databases.

The cache of an LMR can be viewed as a set of materialized views with the corre-
sponding rules as view definitions. [GMS93, BLT86, LHM+86] present some algorithms
for updating materialized views. In [Han87], different strategies to update materialized
views are investigated with respect to their performance. There are also similarities with
semantic caching as described in [DFJ+96].

Chapter 4

Deployment of MDV within
ObjectGlobe

In this chapter, we describe the deployment of the MDV system within the ObjectGlobe
system. In particular, in Section 4.1 we describe the MDV lookup service, which provides
global access to the metadata of all registered providers. It is also consulted by the Object-
Globe query optimizer in order to find relevant resources to execute a query and to obtain
statistics. In Section 4.2, we describe the MDV security provider, which is a central part
of ObjectGlobe’s security system. The MDV security provider is responsible for authenti-
cation and authorization of users and their query plans, and it deploys the MDV system to
store and administrate security information. We also show how MDV’s publish & subscribe
mechanism is used to distribute authorization data throughout the ObjectGlobe federation
so that it is available to all query optimizers, which need this data in order to generate
valid query plans.

4.1 MDV Lookup Service

The ObjectGlobe system deploys the metadata management system MDV as its lookup
service. The MDV lookup service is used to store the metadata of all registered data,
function, and cycle providers. It is also used by the ObjectGlobe query optimizer in order
to find relevant resources for query optimization and to obtain statistics and authorization
data. Furthermore, end users can browse through the metadata of the MDV lookup service
and search for available query capabilities and data sources for their applications. The MDV
lookup service has already been presented in [BKK+01a, BKK+01b, BKK+00, BKK+99].

4.1.1 ObjectGlobe’s Metadata

Within the ObjectGlobe system, the MDV lookup service records the following information:

• Data Provider Metadata: Each collection of objects stored by a data provider
and the attributes of each collection are recorded by the MDV lookup service. A col-

34 Deployment of MDV within ObjectGlobe

lection is either a materialized partition conforming to ObjectGlobe’s internal nested
relational format or a virtual collection, i.e., an Internet data source transformed into
the collection’s recorded schema by a wrapper. Collections are associated to a specific
theme. A theme describes a special concept with a set of terms, called attributes.
A theme’s attributes can be viewed as the union of all attributes meaningful for the
theme. Queries are formulated over the themes and their attributes.

Integration of a new data source is achieved by registering it as a new collection
and associating it to a theme. So collections can be seen as horizontal (possibly
overlapping) partitions. The attributes provided by the new collection must be a
subset of the attributes defined by the associated theme. Currently, ObjectGlobe
uses a non-hierarchical set of themes, but more complex ontologies [BCV99] could be
added on top of our flat theme structure. As an example, www.hotelbook.com and
www.hotelguide.com provide different collections which are associated to the theme
Hotel.

Furthermore, the MDV lookup service stores binding patterns of a collection, statis-
tics about a collection like histograms for estimating the selectivity of simple (non-
external) predicates, and information about replicas (mirrors) of a collection that
could be provided by some other data provider.

• Cycle Provider Metadata: The CPU power, the size of the main memory, and
the temporary disk space of each cycle provider are recorded. The load on the cycle
provider regarding CPU power and available main memory is stored as a function of
time, and likewise we store the latency and bandwidth information for the network
links between cycle providers.

• Function Provider Metadata: The name and signature of each query operator
are recorded. Furthermore, formulas to estimate the consumption of CPU cycles,
main memory, disk space, and the selectivity for each query operator are kept by
the MDV lookup service. These formulas use a set of parameters that describe the
characteristics of the executing cycle provider (e.g., the available CPU power/main
memory) and the input data for a specific application of this operator.

ObjectGlobe differentiates between iterators like join or display and transformers
such as thumbnail. (In addition, ObjectGlobe also has special categories for predi-
cates and aggregate functions.) Any kind of function, however, will automatically be
wrapped by ObjectGlobe into an iterator so that we ignore these distinctions in this
thesis and use the words function and query operator interchangeably for the general
concept.

Figure 4.1 shows an example RDF document that can be used by a data provider
to register a Hotel collection.1 The relevant information about a data provider can be

1We shortened and simplified the example RDF fragments in this thesis to a reasonable degree and
removed all namespaces from the presented documents for better readability and a more concise presenta-
tion.

4.1 MDV Lookup Service 35

found enclosed in the DataProvider element. It contains information about the name of
the provider and a URL with which the data provider can be contacted. The Partition

element contains information about the collection that the data provider makes available.
At the beginning of the collection description, we can find the data provider of the

collection, a plain-text description of the content of the collection, the theme (Hotel) this
collection is associated with, etc. The element wrapper specifies a reference for the wrapper
which performs the necessary transformations to integrate the collection into the Object-
Globe system. More interesting is the content of the attributes element. It contains the
description of the type of the tuples given by the collection. In our case, the type contains
three attributes, and for each attribute the name and the type of the attribute are specified.
It is possible to insert additional information about attributes which is omitted for brevity.

The metadata kept in the MDV lookup service can be outdated or incomplete. It is
possible, for instance, that a function provider removes a query operator from its repository
without notifying the MDV lookup service. As a result, the execution of a query might fail
due to a missing operator which is detected at execution time. ObjectGlobe relies on data,
function, and cycle providers to notify the MDV lookup service if important metadata
changes. If a plan fails due to stale metadata in the MDV lookup service, all relevant
metadata is invalidated so that providers that do not update their metadata are eventually
excluded from the ObjectGlobe federation. As an alternative, [CZH+99] proposes to use a
time-to-live scheme; in that scheme, providers must periodically contact the lookup service
if they want to continue to remain in the federation.

4.1.2 Using the MDV Lookup Service

As mentioned before, data, function, and cycle providers are registered by generating RDF
documents describing their services. We use RDF because it is very flexible and an Internet
standard for describing resources [LS99]. Typical collections such as relational or XML data
sources can very easily be described using RDF; it is also possible to automatically produce
large fractions of an RDF description from, say, an XML DTD or a relational schema. An
RDF document is also used to update the metadata if a provider changes or extends its
services, and the URI reference of an RDF object is used to unregister (delete) services.

To find relevant resources and obtain statistics and authorization data, the MDV lookup
service provides a declarative query language. As an example, the following query shows
how to ask the MDV lookup service for all collections that supply data for the Hotel theme:

search Partition d
register d.uniqueId, d.attributes.∗
where d.theme.name=’Hotel’ and d.attritutes.?.topic=’city’ and

d.attritutes.?.topic=’address’ and d.attritutes.?.topic=’price’

More specifically, the above query asks for Hotel collections that have city, address,
and price attributes, and the query asks for the uniqueId of the collection (used to identify
replicas) and information about all attributes. (The ”?” in the query is an any operator.)

36 Deployment of MDV within ObjectGlobe

<RDF>
<DataProvider rdf:ID="HotelBook">
<dataProviderName>HotelBook</dataProviderName>
<dataProviderUrl>http://www.hotelbook.com</dataProviderUrl>

</DataProvider>
<Partition rdf:ID="HotelBookPartition">
<dataProvider rdf:resource="#HotelBook"/>
<partitionDescription>
Description of hotels worldwide

</partitionDescription>
<theme rdf:resource="http://example.org/Themes#Hotel"/>
<localName>hotelBookPartition</localName>
<wrapper rdf:resource="http://example.org/Operators#HotelBookWrapper"/>
<uniqueID>4711</uniqueID>
<cardinality>30000</cardinality>
<attributes>
<rdf:Bag>
<rdf:li>
<Attribute>
<topic rdf:resource="http://example.org/Themes#cityTopic"/>
<domain rdf:resource="http://example.org/Themes#StringDomain"/>

</Attribute>
</rdf:li>
<rdf:li>
<Attribute>
<topic rdf:resource="http://example.org/Themes#addressTopic"/>
<domain rdf:resource="http://example.org/Themes#StringDomain"/>
</Attribute>

</rdf:li>
<rdf:li>
<Attribute>
<topic rdf:resource="http://example.org/Themes#priceTopic"/>
<domain rdf:resource="http://example.org/Themes#IntegerDomain"/>

</Attribute>
</rdf:li>

</rdf:Bag>
</attributes>

</Partition>
</RDF>

Figure 4.1: RDF Registration Code for a Data Collection

The result of this query is shown in Figure 4.2. Here, we show the results for the Hotel
collection specified in the RDF document of Figure 4.1.

4.2 MDV Security Provider 37

<collection>

<uniqueId>4711</uniqueId>

<attribute topic="city" domain="String" />

<attribute topic="price" domain="Integer" />

<attribute topic="address" domain="String" />

</collection>

Figure 4.2: Example Search Result

The MDV lookup service also allows the definition of views. These views can be materi-
alized. Such materialized views are very helpful to support sessions in which search results
are iteratively refined. For example, it is possible to first ask for all cycle providers that are
allowed to process objects of a specific collection and then, in a separate search request,
ask which of these cycle providers are capable to execute a specific query operator.2 This
feature is important for parsing and optimization and for users who interactively browse
the metadata.

4.2 MDV Security Provider

In this section, we describe the MDV security provider, which is a central part of Object-
Globe’s security system. A general conception of the security system as well as a description
of its security measures were already given in Section 2.4. Within this security system, the
MDV security provider is responsible for authentication and authorization as well as the
distribution of authorization data, which is needed throughout query optimization to gen-
erate valid query plans. Parts of the MDV security provider have already been presented
in [KKKK01, BKK+01a].

In ObjectGlobe, a cycle, function, or data provider is autonomous regarding authen-
tication and authorization, that is, the provider is free to choose its own authentication
and authorization policy and it is also free to choose the actual security system which en-
forces this policy and to which every decision regarding authentication and authorization
is delegated. A cycle, function, or data provider has two choices: If available, it can use its
own internal security system (for instance, Web servers or DBMSs have their own built-in
security system). If such a security system is not available, the cycle, function, or data
provider can use the ObjectGlobe security system. Within ObjectGlobe’s security system,
the MDV security provider (not to be mixed up with common providers which are cycle,
data, or function providers3) is responsible for authentication and authorization, i.e., every
decision regarding authentication and authorization is delegated to it.

In the following, we first present the MDV security provider. Then, we describe the

2Of course, these cycle providers could also be found in a single search request.
3In the following, the term provider always means cycle, data, or function provider. We never use it to

refer to an MDV security provider.

38 Deployment of MDV within ObjectGlobe

LMR M

Cycle Provider C

send

wrap_Sscan

C
ac

h
e Local Metadata

 with

 Security Information

...

...

...

R S

MDV Security Provider

Security Provider’s Local MDV

Figure 4.3: Architecture of the MDV Security Provider

distribution of authorization data in order to support query optimization. Finally, we show
how the security systems of (cycle, function, or data) providers that use their own internal
security system are integrated.

4.2.1 Architecture of the MDV Security Provider

The architecture of the MDV security provider is shown in Figure 4.3. Every provider
that uses the ObjectGlobe security system contains an MDV security provider. Every
decision of the provider regarding authentication and authorization is delegated to its
MDV security provider. The MDV security provider stores all its security information in a
local metadata repository (LMR) of the MDV system. The security information is stored
as local metadata, independent of any cached global metadata.4 We refer to the LMR in
which an MDV security provider stores its data as its local MDV.

Using an LMR for storing security information has the advantage that MDV’s public &
subscribe mechanism can be used to distribute parts of the stored security information to
the local MDVs of other MDV security providers, which is necessary for generating valid
query plans in query optimization, see Section 4.2.2. A further advantage is that related
providers, e.g., all providers of a company, are able to share the same security information
even if the providers are distributed widely throughout the Internet. They can, e.g., share
the same group of users.

Authentication and authorization are carried out by the individual cycle, data, or func-
tion providers when a query plan is received, i.e., during the plug phase. Prior to the query

4Basically, other systems than the MDV system could be used as well, e.g., RDBMSs or LDAP reposi-
tories [WHK97].

4.2 MDV Security Provider 39

plan’s instantiation, a provider asks its MDV security provider if access should be granted,
i.e., if the query plan should be executed locally. The MDV security provider requests all
necessary information from its local MDV to authenticate the user and to verify if the user
that initiated the query has the proper access rights. If so, the access is granted; otherwise,
the query plan is rejected.

4.2.1.1 Authentication

ObjectGlobe supports a flexible authentication policy. Users and applications that only
access free and publicly available resources can be anonymous and no authentication is
required. Authentication is only required for authorization or accounting purposes of
providers. Cycle providers can also require authenticated external operators to restrict
the function providers, e.g., to execute only code originating from trusted sources within
the same company or Intranet. A detailed description of this issue is given in [SBK01].

Two possible authentication schemes are supported. In both schemes, the authentica-
tion data is inserted into the query plan generated from the user’s query:

• A user can provide a password. The password is used to generate a secret key (using
the PKCS #5 password-based encryption standard [PKC99]) which is afterwards
used to calculate a MAC (Message Authentication Code) of the query plan and some
additional data.

• The user possesses a valid X.509 certificate [HFPS99, PKI]. The private key corre-
sponding to the certificate is used to calculate a digital signature of the query plan
and some additional data.

If a data provider does not support one of these schemes, i.e., requires the password in plain
text, the password is inserted (as authentication data) into the query plan. The wrapper
accessing the data provider extracts the password and passes it to the data provider. To
keep the password secure, it is encrypted with the public key of the cycle provider that
executes the wrapper. So no other cycle provider is able to access the plain password.

Locally at a provider, the authentication data contained within the query plan is com-
pared with authentication data generated based on the received query plan and the user’s
authentication data stored in the local MDV (the users identity is contained within the
query plan). If they are equal, the user is successfully authenticated; otherwise, authenti-
cation failed and the query plan is rejected.

4.2.1.2 Authorization

Contrary to the Internet, where most of the information is available for everyone, providers
will constrain access to their resources, e. g. machine cycles, relations and operators. Au-
thorization guarantees that only users having the proper access rights can access the re-
sources of the providers.

40 Deployment of MDV within ObjectGlobe

ObjectGlobe and the MDV security provider use a role-based access control (RBAC)
model [SCFY96] to specify authorization rules. RBAC distinguishes between three sets of
entities:

• Users: This set contains the legal users of the system. Users in the ObjectGlobe
system are the human beings who are allowed to use the system.

• Roles: Roles are used to model the functions that can be occupied by the users,
for instance, within a company or an organization. Thus, roles depend to a high
degree on the scope in which they are used, i.e., they depend on an actual company
or organization. Role inheritance allows modeling of relationships and hierarchies
between roles. As a result, a role hierarchy is created in which a more powerful (or
derived) role inherits permissions from a less powerful (or base) role.

• Permissions: Permissions represent the privileges available within the system. Just
as roles, they depend highly on the scope in which they are used.

ObjectGlobe provides the following permissions:

– Read Permissions: These permissions allow the access to a data collection on
a data provider (e.g., executing a wrapper or using a scan operator). If a data
collection is accessed using a wrapper, the permission to access the data collec-
tion implicitly includes the permission to execute the corresponding wrapper.

– Execute Permissions: Execute permissions allow users to execute a given
query operator at a cycle provider, e.g., the thumbnail operator at cycle provider
C in the example query plan from Figure 2.2.

– Load Permissions: These permissions allow users to load a query operator
from a function provider.

Relations exist between the sets users and roles and between roles and permissions.
Every user can be assigned to several roles, depending on the function the user occupies
within a company or an organization. Likewise, a role can be assigned to several users.
Also, a role can be assigned to one or more permissions, just as a permission can be assigned
to several roles. So in summary, RBAC distinguishes between users, roles that are assigned
to users, and permissions that are assigned to roles.

When a provider receives a query plan, it uses the local parts of the query plan to
determine a list of permissions that the user requires to execute the query plan at the
provider. The security provider compares these list of required permissions with the per-
missions that are stored within its local MDV for the corresponding user. If a required
permission is missing, the query plan is rejected.

For example, to execute the query plan in Figure 4.3 (which is a sub-plan of the example
query plan in Figure 2.2), a user requires the following permissions on cycle provider C : the
permission to execute the query operator scan (send is an internal operator for which no
permission is required), the permission to access data collection R (with the scan operator),

4.2 MDV Security Provider 41

<User rdf:ID="keidl">

<userName>Markus Keidl</userName>

<authenticationType>password</authenticationType>

<authenticationData>qZ8uiXFEePpGu</authenticationData>

<assignedRoles>

<rdf:Bag>

<rdf:li rdf:resource="example-role" />

<rdf:li rdf:resource="other-role" />

</rdf:Bag>

</assignedRoles>

</User>

Figure 4.4: User Security Information in RDF Format

the permission to load the wrapper wrap S from a function provider, and the permission
to access data collection S using the wrapper wrap S. As said above, the last permission
implicitly includes the permission to execute the wrapper wrap S.

4.2.1.3 The MDV Security Provider’s Metadata

A MDV security provider stores all its security information within an LMR of the MDV
system as local metadata. It records the following security information as RDF metadata:

• User Security Information: User security information constitutes data about a
user’s identity, data for the user’s authentication (password or certificate), and the
roles that the user is assigned to. Figure 4.4 shows an RDF fragment with security
information about the user Markus Keidl.5 The user is authenticated by a password
and assigned to two roles. The roles are specified by their URI reference.

• Role Security Information: The security information about a role encompasses
its name and the permissions that are assigned to it. As roles can be derived from
one another, a base role can also be specified. The derived role then inherits all per-
missions of its base role. Currently, the MDV security provider only supports single
inheritance. Figure 4.5 shows an RDF fragment that defines the role ExampleRole.
The role has four permissions assigned to it specified by their URI reference, and it
is not derived from another role.

• Permission Security Information: The MDV security provider supports three
different types of permissions: read, execute, and load permissions. The permissions
stored within an LMR are only valid at the providers that use this LMR as their local
MDV. For example, in Figure 4.3 an execute permission for the thumbnail operator

5Passwords (the content of the property authenticationData) are stored in encrypted format, of
course.

42 Deployment of MDV within ObjectGlobe

<Role rdf:ID="example-role" roleName="ExampleRole">

<assignedPermissions>

<rdf:Bag>

<rdf:li rdf:resource="execute-scan" />

<rdf:li rdf:resource="access-R" />

<rdf:li rdf:resource="access-S" />

<rdf:li rdf:resource="load-wrap-S" />

</rdf:Bag>

</assignedPermissions>

</Role>

Figure 4.5: Role Security Information in RDF format

<ExecutePermission rdf:ID="execute-scan" operatorName="scan" />

<ReadPermission rdf:ID="access-R">

<partitionName>R</partitionName>

</ReadPermission>

<ReadPermission rdf:ID="access-S" wrapperName="wrap_S">

<partitionName>S</partitionName>

</ReadPermission>

<LoadPermission rdf:ID="load-wrap-S" operatorName="wrap_S" />

Figure 4.6: Permission Security Information in RDF format

stored within the LMR M is valid at all cycle providers that use the LMR M as their
local MDV, e.g., it is valid at cycle provider C.

All permissions require some additional data, which depends on the actual type of
the permission:

– For a read permission, the name of the data collection and the name of its data
provider (at which the data collection is located) must be specified. If the data
provider is omitted, the data collection can be accessed at any data provider
using the LMR with this security information. If the data collection is accessed
using a wrapper, the wrapper’s class name must also be specified.

– An execute permission requires the query operator’s class name as additional
data.

– For a load permission, the query operator’s name and (optionally) the function
provider from which the operator can be loaded must be specified.

To execute the query plan in Figure 4.3 on cycle provider C, a user requires the
permissions shown in Figure 4.6. Notice that the ReadPermission for data collection
S implicitly includes an ExecutePermission for the execution of wrapper wrap S.

4.2 MDV Security Provider 43

LMR M

Cycle Provider C

Cycle Provider

ObjectGlobe

Optimizer

C
ac

h
e Local Metadata

 with

 Security Information

LMR N

C
ac

h
eLocal Metadata

 with

 Security Information

Publish Authorization Constraints

Security Provider’s Local MDV Security Provider’s Local MDV

MDV Security Provider

Figure 4.7: Distribution of Authorization Constraints

An MDV security provider obtains the security information for authentication and
authorization of a user and the user’s query plan using MDV’s query language. For example,
the following query determines if the user Markus Keidl has the necessary permissions to
access data collection S using the wrapper wrap S:

search User u, Role r, ReadPermission p
select p
where u.userName=’Markus Keidl’ and u.assignedRoles.?=r and

r.assignedPermissions.?=p and

p.partitionName=’S’ and p.wrapperName=’wrap S’

4.2.2 Distribution of Authorization Constraints

Providers constrain the access or use of their resources to particular user groups. In order
to generate valid query execution plans and avoid failures at execution time, an Object-
Globe query optimizer must know about these authorization constraints, i.e., information
about the data sources a user is allowed to access, about the cycle providers the user is
allowed to execute code on, and the query operators the user is allowed to load. For query
optimization, these constraints are required from all providers that should be considered
throughout plan optimization.

ObjectGlobe uses the MDV system’s publish & subscribe mechanism to distribute these
authorization constraints. An example situation is illustrated in Figure 4.7. On the left,
cycle provider C and its MDV security provider are shown. The security provider uses the
LMR M as its local MDV to store and administrate security information. Parts of this
security information are distributed, as authorization constraints, to LMR N on the right

44 Deployment of MDV within ObjectGlobe

using MDV’s publish & subscribe mechanism. LMR N acts as local MDV for the illustrated
ObjectGlobe optimizer. Consequently, the query optimizer considers the authorization
data of cycle provider C and its MDV security provider throughout query optimization.

In the above scenario, the LMR M builds its own backbone. The subscribers to this
backbone are other local MDVs, which are, for example, used by ObjectGlobe query op-
timizers. As authorization data and therefore authorization constraints are critical infor-
mation, the subscription to this data is handled differently than the subscription to public
metadata: The subscription rules for authorization data are not specified by the subscribers
themselves as it is done when subscribing to public metadata. Instead, these subscription
rules are given by the administrator of the MDV security provider (and its associated local
MDV) which stores and administrates the corresponding security information. The actual
authorization data a subscriber is allowed to subscribe to must be negotiated between the
suppliers of the MDV security provider and the query optimizer, respectively.

The following subscription rules subscribe to all authorization data of user Markus
Keidl (including the permissions):

search User u
register u
where u.userName = ’Markus Keidl’

search Permission p, Role r, User u
register p
where u.userName=’Markus Keidl’ and u.assignedRoles.?=r and

r.assignedPermissions.?=p

Updates to the authorization data of this user, e.g., updates to the user’s permissions,
are automatically propagated as authorization constraints to all subscribers using MDV’s
publish & subscribe mechanism.

4.2.3 Internal Security Systems of Providers

As said above, providers may have their own internal security system to which they delegate
every decision regarding authentication and authorization. An example is a Web server
that allows to download query operators. The Web server participates in the ObjectGlobe
federation as function provider, but it does not use the MDV security provider.

ObjectGlobe’s security system supports such providers in two ways. First, it allows to
delegate authentication and authorization to the provider’s own internal security system.
Second, it enables the extraction of authorization data from the internal security system
to consider it in query optimization, similar as it is done with authorization data stored in
local MDVs.

4.2.3.1 Delegation of Authentication and Authorization

For data providers that use their own internal security system, like, e.g., DBMSs or Web
servers, ObjectGlobe supports the handover of authentication data contained within query

4.2 MDV Security Provider 45

plans to the provider’s internal security system. Authentication and authorization of users
and their local query plans are then performed solely by the provider’s internal security
system.

The handover is done by passing the authentication data to the wrapper that is used
to access the data provider. The wrapper is responsible for forwarding this data to the
internal security system in an appropriate way. While contained within the query plan, the
authentication data is encrypted using public key cryptography. Only the receiving cycle
provider, which executes the corresponding wrapper, is able to decrypt it.

4.2.3.2 Authorization Constraints of Internal Security Systems

Initially, the authorization data of internal security systems is not contained within any
local MDV (which are used by ObjectGlobe query optimizers to find relevant resources
and obtain statistics). So, this data would not be known and considered throughout query
optimization. But in order to generate valid query execution plans and avoid failures
at execution time, ObjectGlobe must know about this authorization data, which means
that it must be incorporated into the local MDVs. Further problems are updates and
modifications of this data, which are not performed within the local MDVs but within the
internal security systems.

ObjectGlobe supports the integration of such authorization data as authorization con-
straints by the use of extractors. They provide the necessary functionality to extract
authorization data from a provider’s internal security system. Every provider that wants
to allow ObjectGlobe the extraction of this data must provide a suitable extractor. This
is similar to the concept of wrappers used to integrate data sources.

When accessing a provider’s data collection for the first time, the corresponding ex-
tractor (if available) is used to extract all available authorization data from the internal
security system and to store it in the security provider’s local MDV. MDV’s publish &
subscribe mechanism distributes the data to other local MDVs the same way it distributes
the authorization data of MDV security providers.

Updates and modifications of internal authorization data are determined in the following
ways:

• The query of a wrapper is rejected by a provider’s internal security system. Ob-
viously, the query plan was generated based on obsolete authorization data. The
wrapper notifies its cycle provider of the failure. The cycle provider at first cancels
the query. Then, it uses the appropriate extractor to re-extract any updated or mod-
ified authorization data from the internal security system. Finally, it updates the
local metadata of its security provider’s local MDV.

• The administrator of a provider’s internal security system notifies all cycle providers
that are allowed to access the provider (using a wrapper) of modifications. The
cycle providers will extract the modified authorization data and update their security
providers’ local MDVs accordingly.

46 Deployment of MDV within ObjectGlobe

• Using the extractor, cycle providers check in periodical intervals if the authorization
data in internal security systems of providers and therefore authorization constraints
have changed. If so, they update their local MDVs accordingly.

Chapter 5

ServiceGlobe - Open and Distributed
Web Services

Web services are a new technology for the development of distributed applications on the
Internet. A Web service (also called service) is an autonomous software component that
is uniquely identified by a URI and that can be accessed by using XML and standard In-
ternet protocols like SOAP or HTTP [RV02]. A service may combine several applications
that a user needs such as the different pieces of a supply chain architecture. For a client,
however, the entire infrastructure will appear as a single application. Due to its potential
of changing the Internet to a platform of application collaboration and integration, Web
service technology gains more and more attention in research and industry; products like
Sun ONE, Microsoft .NET, or IBM WebSphere show this development. All these frame-
works implement respectively use Web service standards published by the World Wide Web
Consortium (W3C) and other consortia, for example, SOAP, WSDL, and UDDI.

In this chapter, we introduce the ServiceGlobe system, our open and distributed Web
service platform. It is fully implemented in Java and based on standards like XML, SOAP,
UDDI, and WSDL. ServiceGlobe supports mobile code, i.e., Web services can be distributed
on demand and instantiated at runtime at arbitrary Internet servers participating in the
ServiceGlobe federation. It offers all standard functionality of a service platform like SOAP
communication, a transaction system, and a security system [SBK01]. These areas are well
covered by existing technologies and are therefore not the focus of our work. We also assume
that appropriate standards will be developed and incorporated into service platforms. Parts
of this chapter have already been presented in [KSK03a, KSKK03, KSK03b, KSK02]. A
demo of the ServiceGlobe system was given at the VLDB’02 conference [KSSK02].

The remainder of this chapter is structured as follows: Section 5.1 presents a moti-
vating scenario that is used as an example in the following sections. In Section 5.2, we
present a short introduction into Web service standards that are important in our work.
In Section 5.3, our ServiceGlobe system is described. Finally, Section 5.4 presents related
work.

48 ServiceGlobe - Open and Distributed Web Services

Client

SearchAttractions

Web Service TravelPlanner

SearchFlights

Lufthansa

British Airways

SearchHotels Sheraton

AttractionsSearch

Local Web Services in New York

Request

Response

tModel: SearchFlights

tModel: SearchHotels

tModel: SearchAttractions

Empire State Building

tModel: Attraction

Statue Of Liberty

Central Park

Figure 5.1: Motivating Scenario: A Travel Agency Portal

5.1 Motivating Scenario

In the following, we use an information service scenario from the travel agency field as
a motivating example. Currently, services in this area are mostly available as plain Web
pages or HTML forms. In the future, the Internet will provide a lot of information services
in this area, e.g., Web services for searching for flights, hotels, attractions, and so on. These
Web services can help, e.g., travel agencies, to plan and carry out journeys.1

The motivating scenario is depicted in Figure 5.1. We assume a portal for travel agencies
that provides Web services for travel agencies as well as for consumers to plan and book
trips, including flights, hotels, attractions and so on. Information about the available
Web services of different providers is stored within a UDDI repository. In this repository,
the services are assigned to so-called tModels (short for ”technical model”). A tModel
provides a semantic classification of a Web service’s functionality and a formal description
of its interfaces. All Web services assigned to the same tModel must provide the same
functionality. More information on UDDI and tModels is given in Section 5.2.2.

Besides Web services of providers, the travel agency portal also provides own Web
services with extended functionality that combine several of the providers’ Web services.
The Web service TravelPlanner is one of these services. It allows one to plan a holiday
or business trip. Figure 5.1 shows an example execution of this service in order to plan
a trip to New York. To begin, TravelPlanner searches for suitable flights. For this pur-
pose, it obtains all Web services assigned to the tModel SearchFlights, which describes
Web services for searching for flight information, and invokes one or more of them. In
the example, two services are found (Lufthansa and British Airways) and invoked. Next,

1Travel portals like MapQuest.com are a first step in this direction.

5.2 Web Services Fundamentals 49

TravelPlanner searches for suitable hotels by invoking Web services assigned to the tModel
SearchHotels. Finally, TravelPlanner searches for local attractions at the holiday resort.
Therefore, it invokes the Web service AttractionsSearch to retrieve a list of suitable attrac-
tions. AttractionsSearch itself uses UDDI to find Web services close to New York and to
obtain detailed and up-to-date information about, e.g., fees, opening hours, or calendars
of events.

5.2 Web Services Fundamentals

There exist a variety of XML-based standards concerning Web services. We will briefly
survey the most important ones needed to understand our work.

5.2.1 The SOAP Standard

SOAP [Mit03] is an XML-based communication protocol for distributed applications.
SOAP is designed to exchange messages containing structured and typed data and can
be used on top of several different transfer protocols like HTTP, SMTP (Simple Mail
Transfer Protocol), or FTP (File Transfer Protocol). The use of SOAP over HTTP is the
de-facto standard in the current landscape of Web services.

SOAP itself does not define any application semantics and therefore can be used in
a broad range of applications. It can be used to simply deliver a single message or for
complex tasks like request/response message exchange or RPC (Remote Procedure Call).
The following XML document shows the basic structure of a SOAP message, consisting of
three parts: an envelope, an optional header, and a mandatory body.

<Envelope encodingStyle="...">

<Header>

<!-- The header is optional -->

</Header>

<Body>

<!-- Serialized object data -->

</Body>

</Envelope>

The Envelope element is the root element of a message and contains the other two
elements Header and Body. The Header element of a message offers a generic mechanism
for extending the SOAP protocol in a decentralized manner. This is used for extensions like
Web Service Security [ADLH+02]. We defined a SOAP header extension to transmit Web
service context within SOAP messages, see Chapter 7. The Body element of the message
contains the payload of the message.

50 ServiceGlobe - Open and Distributed Web Services

businessEntity

WSDL DocumentbindingTemplate

businessService tModel

Figure 5.2: UDDI Data Structures

SOAP offers a standard encoding style2, i.e., serialization mechanism, to convert ar-
bitrary graphs of objects to an XML-based representation, but user-defined serialization
schemes can be used as well.

5.2.2 The UDDI Standard

UDDI (Universal Description, Discovery and Integration) is designed to “provide a
platform-independent way of describing services, discovering businesses, and integrating
business services using the Internet” [UDD00]. Four main data structures constitute the
basic schema: businessEntity, businessService, bindingTemplate, and tModel. While the
first three data structures form a hierarchy, the tModel can be seen as an independent
structure providing concepts, ideas, and technical fingerprints of services (see Figure 5.2).

• businessEntity: This data structure contains data about an entire company or
party which offers a family of services. For example, a travel agency can register its
company name, address information, and contact persons. The concept of categories
allows for the classification of businesses in several dimensions, e.g., industry codes
or geographic locations. User-defined dimensions are also possible. Normally, a
businessEntity registers several services.

• businessService: This structure contains information about a particular service
offered by a businessEntity. For example, a travel agency may have search and
booking services. It also contains one or more bindingTemplates specifying binding
information for this service.

2The standard serialization can be referenced by the URL http://schemas.xmlsoap.org/soap/
encoding/.

5.2 Web Services Fundamentals 51

• bindingTemplate: The most important component of this structure is the access
point of a service, i.e., the actual URL, phone number, etc., by which a service can be
invoked. In ServiceGlobe, each service host is specified by a bindingTemplate with its
URL as an access point. A bindingTemplate may have several references to tModels.

• tModel: As a technical fingerprint, tModels describe various concepts and classifi-
cations. In ServiceGlobe, for example, tModels are used as functionality descriptions
for services like searching attractions or service hosting. A tModel may contain a link
to a WSDL document that specifies the signature of the service in detail [CER02].
Besides these service-classification-oriented tModels, concept-oriented tModels like
geographical locations or industry codes are possible as well.

Invoking a service requires knowledge of the signature and the access point of the service.
The signature of the service provides the structure of the SOAP document to communicate
with the service (input parameters, output parameters, and data types). This signature is
defined in the WSDL document referenced by the tModel of the service. The access point,
which is stored in the bindingTemplate structure, references an actual implementation of
a service.

5.2.3 The WSDL Standard

WSDL (Web Service Description Language) [CCMW01] is an XML-based language for
describing the technical specifications of a Web service. In particular, it describes the
operations offered by a Web service, the syntax of the input and output documents, and
the communication protocol to use for communication with the service. The exact structure
of a WSDL document is complex and beyond the scope of this thesis, but we will give a brief
overview of the WSDL standard. First, a service in WSDL is described on an abstract level
and then bound to a specific protocol, network address (normally a URL), and message
format.

On the abstract level, port types are defined. A port type is a set of operations. Every
operation is associated with a number of input and output messages, defining the order
and type of the messages sent to/received from the operation. There are four message
exchange patterns defined within the WSDL specification: one-way, request/response, so-
licit/response, and notification. An operation expects one message as input and generates
one output message. The messages themselves are assembled from several typed parts.
The types are defined using XML Schema [Fal01].

On the non-abstract level, port types are bound to concrete communication protocols
and concrete formats of the messages using so-called bindings. The most commonly used
binding today is the SOAP 1.1 binding defined in the WSDL 1.1 specification. Messages
are serialized according to a set of rules defined by an encoding style. Finally, a service in
WSDL is defined as a set of ports, i.e., bindings with associated network addresses.

52 ServiceGlobe - Open and Distributed Web Services

Mobility
Classification by

Classifications
Orthogonal

C
om

po
si

tio
n

L
ev

el
C

la
ss

if
ic

at
io

n
by

���
���
���
���

������ ���� ������

���
���
���
���

��
��
��
��

(location-dependent)

(location-independent)

Static Service

Dynamic Service

C
om

po
si

te
 S

er
vi

ce

Si
m

pl
e

Se
rv

ic
e

A
da

pt
or

Internal ServiceExternal Service

Figure 5.3: Classification of Services

5.3 Architecture of ServiceGlobe

The ServiceGlobe system provides a lightweight infrastructure for an open, distributed, and
extensible service platform. It is completely implemented in Java and based on standards
like XML, SOAP, UDDI, and WSDL. In this section, we present the basic components of
the ServiceGlobe infrastructure. First of all, we distinguish two different types of services:
external and internal services (see Figure 5.3).

External services are services currently deployed on the Internet that are not provided
by ServiceGlobe itself. Such services are normally stationary, i.e., running only on a dedi-
cated host, may be realized on arbitrary systems on the Internet, and may have arbitrary
interfaces for their invocation. Since we want to integrate these services independent of
their actual invocation interface, e.g., RPC, we use adaptors to transpose internal requests
to the external interface (and vice versa). This way we are also able to access arbitrary ap-
plications, e.g., ERP applications. Thus, external services can be used like internal services
and, from now on, we consider only internal services.

Internal services are native ServiceGlobe services. They are implemented in Java using
the Service API provided by the ServiceGlobe system. ServiceGlobe services use SOAP
to communicate with other services. Services receive a single XML document as input
parameter and generate a single XML document as a result. There are two kinds of
internal services, namely dynamic services and static services. Static services are location-
dependent, i.e., they cannot be executed dynamically on arbitrary ServiceGlobe servers.
Such services may require access to certain local resources, e.g., a local DBMS to store
data, or require certain permissions, e.g., access to the file system, that are only available
on dedicated servers. These restrictions prevent the execution of static services on arbitrary

5.3 Architecture of ServiceGlobe 53

Client

UDDI Repository

Code RepositoryService Host

Service Host

AttractionsSearch

AttractionsSearch

Internet Server

Service HostInternet Server

ServiceGlobe Runtime Engine

Statue Of Liberty

External

Service

Central Park

External

Service

Empire State Building

External

Service

SO
A

P

SOAP

SOAP

TravelPlanner

Load

Web Service

SOAP

Figure 5.4: Architecture of the ServiceGlobe System

ServiceGlobe servers. In contrast, dynamic services are location-independent. They are
state-less, i.e., the internal state of such a service is discarded after a request was processed,
and do not require special resources or permissions. Therefore, they can be executed on
arbitrary ServiceGlobe servers.

There is an orthogonal categorization for internal services: adaptors, simple services,
and composite services. We have already defined adaptors. Simple services are internal
services not using any other service. Composite services are higher-value services assembled
from other internal services. These services are, in this context, called basis services because
the composite service is based on them. Notice that a composite service can also be used as
a basis service for another higher-value composite service. Of course it is feasible to use a
specialized programming language, e.g., XL [FK01], or a GUI tool to draw a representation
(similar to a workflow graph) of a service, but that is not the focus of our work.

Internal services are executed on service hosts, i.e., hosts connected to the Internet
that are running the ServiceGlobe runtime engine. ServiceGlobe’s internal services are
mobile code, therefore their executables are loaded on demand from code repositories onto
service hosts or, more precisely, into the service hosts’ runtime engines. A UDDI server is
used to find an appropriate code repository storing a certain service. Service hosts offer a
SOAP service (called runtime service loading) to execute dynamic services. Thus, the set
of available services is not fixed and can be extended at runtime by everyone participating
in the ServiceGlobe federation. If internal services have the appropriate permissions, they

54 ServiceGlobe - Open and Distributed Web Services

can also use resources of service hosts, e.g., databases. These permissions are part of the
security system of ServiceGlobe, which is based on [SBK01]. The permissions are managed
autonomously by the administrators of the service hosts. This security system also deals
with the security issues of mobile code introduced by runtime service loading. Thus, service
hosts are protected against malicious services.

Runtime service loading allows service distribution of dynamic services to arbitrary
service hosts, opening a great optimization potential: Several instances of a dynamic service
can be executed on different hosts for load balancing and parallelization purposes. Dynamic
services can be instantiated on service hosts having the optimal execution environment, e.g.,
a fast processor, huge memory, or a high-speed network connection to other services. Of
course, this feature also contributes to reliable service execution because unavailable service
hosts can be replaced dynamically by available service hosts. Together with runtime service
loading this provides a large flexibility in order to consider load balancing or optimization
issues.

Figure 5.4 gives an overview of the basic components of the ServiceGlobe system and
their mutual interaction (based on the travel agency scenario in Section 5.1). At first, a
client sends a SOAP request to a service host to invoke the static service TravelPlanner.
This Web service deploys the dynamic service AttractionsSearch as basis service during
its execution. Therefore, a suitable service host is located by UDDI requests and the
AttractionsSearch service is loaded from a code repository (if not already cached). Then,
it is instantiated and executed on the service host on behalf of the TravelPlanner service.
The AttractionsSearch service deploys three external Web services (adaptors are omitted
in the figure) to obtain detailed information about attractions.

5.4 Related Work

The success of Web services results in a large number of commercial service platforms and
products, e.g., the Sun ONE framework [Sunb] that is based on J2EE [J2E], Microsoft
.NET [NET], and IBM WebSphere [IBM]. All these products and platforms rely on the
well-known standards XML, SOAP, UDDI, and WSDL. They all provide tools for fast
and straightforward deployment of existing applications as Web services. Furthermore,
there are research platforms like ServiceGlobe and SELV-SERV [BDSN02] which focus on
certain aspects in the Web service area. SELV-SERV, for example, focuses on composing
Web services using state charts.

Although service composition languages are not the focus of our work, we are aware
of work in this area. IBM’s WSFL (Web Services Flow Language) [Ley01], Microsoft’s
XLang [Tha01], and HP’s WSCL (Web Services Conversation Language) [BBB+02] are
languages for describing how to compose existing services, i.e., to describe some kind
of conversation. Compaq’s Web Language [Mar99] (formerly WebL) specializes in fetch-
ing, parsing, and generating HTML and XML content. Besides service composition, the
XL language [FK01] additionally offers very powerful statements for easy and efficient
programming of services. HP’s eFlow [CS01] is similar but more workflow oriented and

5.4 Related Work 55

based on a graphical notation. Regarding services and their composition, there is also the
ebXML [ebX] standardization effort that defines a standard for global electronic business.

Chapter 6

Dynamic Service Selection

In this chapter, we present dynamic service selection, a novel technique for flexible and
reliable execution and deployment of Web services in dynamic environments, which can be
integrated into existing service platforms. It offers the possibility of selecting and invoking
services at runtime based on a technical specification of the desired service. Therewith, it
provides a layer of abstraction from the actual services. Constraints enable Web services
to influence dynamic service selection. Web services can be selected based on the relevant
metadata, or replies may be checked for defined properties and discarded, if necessary.
Constraints also allow the specification of the number of services that should be invoked
and how they should be invoked. Constraints may be specified directly when invoking
Web services, but they may also be stored in a service’s context. In the latter case,
they are extracted and used automatically for dynamic service selection by the service
platform. We implemented dynamic service selection within the ServiceGlobe system,
our open and distributed Web service platform. Parts of this chapter have already been
presented in [KSK03a, KSKK03, KSK03b, KSK02].

The remainder of this chapter is structured as follows: Section 6.1 presents an overview
of dynamic service selection. Next, Section 6.2 describes the constraints that can influence
dynamic service selection, and Section 6.3 explains how these constraints can be combined
to form complex constraints. Section 6.4 shows how constraints are evaluated throughout
dynamic service selection. Finally, Section 6.5 presents related work.

6.1 Overview of the Approach

In general, Web services invoke other Web services by passing the Web service’s URL or
access point to the service platform. In contrast, dynamic service selection (DSS) enables
Web services to state a technical specification of the services that should be invoked. It
is the service platform’s task to select suitable Web services, possibly utilizing UDDI.
Additionally to the technical specification, different kinds of constraints can be passed over
to influence dynamic service selection. The approach of dynamic service selection offers
three main advantages:

58 Dynamic Service Selection

• An important goal in distributed systems is a high reliability rate and fault tolerance.
When using other Web services, it can occur that some of them are not reachable,
e.g., due to network partitioning, unavailable service hosts, or the unexpected crash
of a basis service.1 For this reason, hard-coded access points within a Web service
are not desirable. Dynamic service selection provides a solution for this problem.

• Using constraints to influence dynamic service selection allows developing generic
Web services. As will be shown, it is not necessary to code special properties of the
invoked Web services into a Web service itself. Instead, these properties are specified
as (declarative) constraints and passed to the Web service at runtime. As new kinds
of constraints become available, they can be used without modifying or re-compiling
the Web service. Constraints can, for example, specify that only free Web services
are used or that services of a given company should be preferred, if possible.

• Dynamic services are instantiated at runtime. Combining this with dynamic service
selection offers potential for various optimizations. For example, constraints allow to
specify that all dynamic services must be instantiated within a LAN or on a given
set of hosts.

In the following, a more detailed description of dynamic service selection will be given.
In the description, UDDI is used as Web service repository. Basically, because it is the
de-facto standard for such a kind of repository and because it provides the necessary
functionality to use it in conjunction with dynamic service selection.

In UDDI, every service is assigned to a tModel2 which provides a semantic classification
of a service’s functionality and a formal description of its interfaces. So, a service can be
called an implementation or an instance of its tModel. With dynamic service selection,
instead of explicitly stating an actual access point in a service, it is also possible to reference
or “call” a tModel. Thus, one defines the functionality of the service that should be called
rather than its actual implementation. Without DSS, the selection of services from UDDI
based on a search criteria like a tModel has to be done manually by a programmer when
implementing a Web service. Furthermore, the search criteria available in UDDI are less
general, and there are no criteria for influencing service invocation or for filtering service
replies.

As an example of DSS, see Figure 6.1: Three services are assigned to tModel T: Service
A, B, and C. Assume, that a programmer wants to implement a new Web service that
should invoke a service assigned to tModel T. Without DSS, the programmer would search
UDDI for an appropriate service, e.g., Service A, and use its access point in the new
Service N1. With DSS, the programmer will instead develop Service N2. This service does
not contain any hard-coded access points, instead it contains a call to the tModel T. At
runtime, the service will query UDDI for an appropriate Web service and invoke it. If an

1Related problems, although in the context of Web scripting languages, have been studied in [CD99a].
2In fact, a service in UDDI can be assigned to several tModels. DSS could be adjusted to allow calling

services which implement several tModels. As there is no essential difference to calling a single tModel,
this will not be considered in the following.

6.2 Constraints 59

UDDI Repository
Service N1 Service A

tModel: T

Service B

Service C

Service A

Service B

Service C Service N2

Programmer

Search

Search at Runtime

Implement Invoke

Invoke

Failed

Invocation
=

Figure 6.1: Example of Dynamic Service Selection

invocation fails, alternative services are tried until an invocation succeeds (as depicted in
Figure 6.1) or no more alternative services are available.

As already mentioned, DSS is implemented within ServiceGlobe. The ServiceGlobe API
provides methods for Web services to invoke tModels and to optionally specify constraints
and/or use constraints contained in the service’s context.

6.2 Constraints

Constraints are used to influence DSS. They can be passed to a service platform within a
service’s context or by specifying them directly when calling a tModel. The term context
refers to information about clients that may be utilized to provide personalized behavior. In
the ServiceGlobe system, context is transmitted in the header of the SOAP messages that
services send and receive. The integration of constraints into context information enables
not only the invoked services to take advantage of them but also further services invoked by
these services as the context information of a service is (automatically) included into SOAP
messages sent by it. More information about the use of context within the ServiceGlobe
system is given in Chapter 7.

Constraints can be differentiated into preferences and conditions.3 Conditions must
be fulfilled whereas preferences should be fulfilled. When considering preferences in DSS,
a service platform at first invokes services that fulfill these preferences. If there is an
insufficient number of such services, additional services are invoked that do not fulfill all
preferences (but, of course, they must fulfill all conditions).

Orthogonally, there are five different types of constraints: metadata, location, mode,
reply, and result constraints. Every constraint type influences a certain phase of dynamic
service selection, as depicted in Figure 6.2. Location constraints additionally influence the
selection of service hosts at which dynamic services are instantiated. For each type, there
are preferences and conditions; though, for mode and result constraints, preferences are
useless.

3A similar classification of conditions of SQL statements in hard and soft constraints is described
in [Kie02].

60 Dynamic Service Selection

Communication System

Call of tModel

Replies

Service A

Service B

Service C

T

Verification of Metadata

Invocation of Web Services

Processing of Results

Metadata Constraints

Location Constraints

Mode Constraints

Reply Constraints

Result Constraints

UDDI Repository

XML Repository

Figure 6.2: Phases of Dynamic Service Selection

Metadata Constraints

Prior to the invocation of services, when the service platform requests all services assigned
to a tModel, metadata constraints are applied as filter on all services returned by UDDI
(as depicted in Figure 6.2). Metadata constraints are basically XPath [CD99b] queries that
are applied to the metadata of a service. Metadata about a service includes primarily its
UDDI data. Also, additional metadata that is stored in other metadata repositories like
the MDV system, which is described in Chapter 3, and that cannot be found in UDDI
may be contained.The following example shows a metadata preference that favors services
assigned to a businessEntity with name MyTravelAgency:

<metadataPreference>

/businessEntity/name="MyTravelAgency"

</metadataPreference>

Location Constraints

Location constraints are used to specify the place of execution of a Web service, i.e., the
service host. For static services, this allows their selection based on their location. For dy-
namic services, this ensures that they are instantiated and executed preferably (preference)
or strictly (condition) at the given location. The information about the location of services
and service hosts is retrieved from the UDDI repository. The location can be specified by,
e. g., a host’s network address or geographically based on GPS coordinates or ISO 3166
codes. For example, the following location constraint specifies that selected services must
be located or instantiated in an area around the city Passau (ISO 3166 code DE-BY-PAS),

6.2 Constraints 61

within a radius of 50 kilometers:

<locationCondition addressType="Geographical">

<center>DE-BY-PAS</center>

<maxDistance>50km</maxDistance>

</locationCondition>

Mode Constraints

DSS is not limited to invoke only one instance of a given tModel; it is also possible to invoke
several instances. With a mode constraint, the number of services that should be invoked
can be specified. As Figure 6.2 shows, mode constraints are central for the invocation
of services and the processing of their replies. When processing the reply of a service,
the service platform decides based on a mode constraint if an alternative service must be
invoked, if the invocation is finished and the replies must be returned as result, or if it is
necessary to wait for further replies.

There are three modes available:4 Using the one mode, only one instance out of all
tModel instances is called. In case of a failure, e.g., unavailability of a service, an alternative
service is tried. Using the some mode, a subset of all services returned by UDDI is called
in parallel.5 The number of services is specified as an absolute value or as a percentage.
Services that fail are replaced with alternative services. Using the all mode, all returned
tModel instances are called. Obviously, no alternative services can be called if failures
occur. The following example shows a mode constraint that specifies that five percent of
the available services should be invoked:

<modeCondition modeType="Some" number="5" numberType="Percentage" />

Reply Constraints

Reply constraints are evaluated after receiving of a reply of an invoked service. All replies
not fulfilling all relevant reply constraints are discarded. There are two kinds of reply
constraints. Selection constraints are XPath queries that are applied to the reply of a
service, including its SOAP parts. With property constraints, replies can be selected based
on a set of properties in the reply. Properties must be provided either by the service
platform or by the invoked service. A service accomplishes this by including corresponding
XML elements in its reply. ServiceGlobe itself supports properties for encryption, signature,
and age of data. Using the first two properties, it is possible to verify if a reply is encrypted
or signed, respectively, and by whom it is signed. The third property can be used to check
the age of the returned data.

4These modes are similar to unicast, multicast, and broadcast communication on networks.
5It should be noticed that the one and the all mode are obviously special cases of the some mode.

62 Dynamic Service Selection

<andGroup>

<metadataCondition>

/businessEntity/name="MyTravelAgency"

</metadataCondition>

<locationCondition addressType="Geographical">

<center>DE-BY-PAS</center>

<maxDistance>50km</maxDistance>

</locationCondition>

</andGroup>

Figure 6.3: Example of the Combination of Constraints

Result Constraints

Result constraints refer to all replies received so far. There are two kinds of result con-
straints. With a timeout constraint, a maximal waiting time for replies of invoked services
can be set. After its expiry, all pending services are aborted, and all replies received so
far are returned to the calling service. The following constraint is an example of a timeout
constraint:

<timeoutCondition value="100" valueUnit="Seconds" />

With first-n constraints, the call to a tModel can be ended after a predetermined number
of replies has been received. The calling service gets only these replies as result of its call.
Services that have not responded until this moment are aborted. The number of replies to
wait for can be set by an absolute number or by a percentage depending on the number of
services invoked initially. The following constraint would end a call after ten percent of all
replies having been received:

<firstNCondition number="10" numberType="Percentage" />

6.3 Combination of Constraints

Constraints can be combined using the operators AND and OR. Figure 6.3 shows an exam-
ple of an AND combination of two constraints (andGroup represents the AND operator).
The (combined) constraint specifies that only Web services should be selected and invoked
that are assigned to a businessEntity with name MyTravelAgency and that are located
close to the city Passau (ISO 3166 code DE-BY-PAS).

By the combination of constraints, conflicts can be created that may prevent the ful-
fillment of all given constraints. As a consequence, only a subset of the given constraints

6.4 Evaluation of Constraints 63

may be fulfillable, as the following example shows (orGroup represents the OR operator):

<orGroup>

<metadataCondition>

/businessEntity/name="MyTravelAgency"

</metadataCondition>

<timeoutCondition value="100" valueUnit="Seconds" />

</orGroup>

Initially, the service platform has two choices: On the one hand, it can invoke only
services of the company MyTravelAgency and wait for their replies (therewith fulfilling
only the first constraint). On the other hand, it can invoke all services assigned to the
tModel. But if a timeout occurs, the service platform faces the situation that it either
must return all replies received so far immediately (therewith fulfilling only the second
constraint) or that it must ignore the timeout and wait for all replies (therewith fulfilling
only the first constraint). In the latter case, though, it invoked too many services initially.
So, in general, the service platform is unable to fulfill both constraints at the same time.

6.4 Evaluation of Constraints

This section explains how a tModel call is actually executed and how constraints are eval-
uated in this process. At first, constraints from all different sources are combined con-
junctively into one single combined constraint, called main constraint, using the AND
operator. This constraint is passed as an input to the tModel call. Its evaluation consists
of two phases: First, it is transformed into disjunctive normal form (DNF), and conflicts
are resolved. Second, UDDI is queried for services assigned to the given tModel, and the
services are invoked considering the main constraint.

6.4.1 Preprocessing of Constraints

First, the main constraint is transformed into DNF. Notice that the same constraint can
now be present multiple times in the transformed constraint. Afterwards, all constraints
of an AND term, i.e., a term only containing AND operators, are sorted according to their
time of evaluation. The order is: metadata, location, mode, reply, and result constraints.

Then, the main constraint is checked for conflicts. Only conflicts within a single AND
term are resolved in this phase, conflicts between different AND terms are resolved later
during the invocation phase. Within an AND term, a conflict occurs if it either contains
more than one mode constraint or more than one result constraint. For mode constraints,
this is obvious. For result constraints, there are some rare situations where several result
constraints would make sense. But, as we see no real benefit, two or more result constraints
per AND term are prohibited.6 Of course, conflicts between metadata, location, or reply

6The implementation would be straightforward although requiring many even though simple case dis-
criminations.

64 Dynamic Service Selection

constraints are possible in principle, e.g., an AND term that contains metadata constraints
with contradictory XPath queries. Detecting this type of conflict would require a detailed
investigation of the XPath queries.

Conflicts are resolved by keeping only the constraint with the maximum priority and
removing all other conflicting constraints. Priorities range from 0 (minimum) to ∞ (max-
imum) and they can be assigned to a term by its creator, e.g., the consumer or a Web
service. An additional, implicit prioritization is given by the sequence of the terms in their
XML representation. The later a term is defined there, the less its priority is. If two terms
have the same explicit priority, their implicit priority decides which one has the higher
priority.

Finally, identical mode and result constraints that are contained in several AND terms
because of the transformation into DNF are merged.7 The resulting terms are called merged
AND terms. Without merging, a service platform would evaluate identical mode and result
constraints multiple times which would result in a different result. Only mode and result
constraints are considered for merging because, unlike the other constraint types, they
are restrictions on sets of services respectively replies, not on single services or replies.
Therefore, the result of the main constraint is only modified by duplicating them when
transforming the main constraint into DNF.

6.4.2 Invocation of Web Services

After the main constraint has been preprocessed, UDDI is queried for all information about
services assigned to the given tModel. These services as well as their metadata are stored in
a services list. Initially, there is one such services list for every merged AND term, i.e., the
initial list of Web services is duplicated as many times as there are merged AND terms.8

At first, all these lists are identical. But while the constraints are processed, the lists start
to get different because different constraints are applied to them in different merged AND
terms. In the following, services which do not fulfill a condition are removed from a services
list. Preferences are used to sort this list.

Now, metadata constraints are applied to the services list of their merged AND term,
followed by location constraints. For the evaluation of location constraints for dynamic
services, all available service hosts are retrieved from UDDI first. Then, the location
constraints are used to filter and sort this list of service hosts (similar to services lists).
Notice that the location constraints in the merged AND terms are probably different so
that the service hosts lists will probably be different, too. For each merged AND term, the
corresponding service hosts list is assigned to all dynamic services of this term.

Next, all mode constraints of the main constraint are evaluated in parallel, i.e., Web
services are invoked as specified by the mode constraints considering all relevant services
lists. As a consequence of the merging of identical mode constraints, services lists from

7Basically, merging means factoring out identical mode and result constraints.
8In our implementation, the services lists are not duplicated for efficiency reasons. Instead, only one

list is used in which all necessary data is stored, separated by the merged AND term the data belongs to.

6.5 Related Work 65

more than one merged AND term may have to be considered. For each invocation of Web
services based on a single mode constraint, the corresponding services list is processed
sequentially, starting with the service at the top (which has the highest priority). Thereby
static services are invoked only once, dynamic services can be invoked as often as there are
service hosts in their service hosts list (service host are chosen according to their priority).

Every time the reply of a Web service is received, all relevant reply constraints are
applied to it. Notice that the Web service may be contained in several services lists, so
there can be more than one merged AND term with relevant reply constraints. The service
platform must also check whether the invocation phase must be ended. This is the case if
the result constraint with the highest priority is fulfilled. After the invocation phase has
ended, all outstanding requests are aborted and all replies are returned to the calling Web
service.

6.5 Related Work

The eFlow system [CS01] models composite services as business processes, specified in
eFlow’s own composition language and provides techniques similar to DSS. With dynamic
service discovery, a composite service searches for services based on available metadata,
its own internal state, and a rating function. Multiservice nodes allow several services to
be invoked in parallel similar to DSS mode and result constraints though with different
termination criteria. In contrast to eFlow, DSS allows the combination of all these different
constraints in a flexible way. In addition, eFlow does not utilize standards like UDDI or
WSDL for its adaptive techniques.

In [MS03], an agent-based architecture is presented that provides service selection based
on a rating system for Web services. Ratings are gathered by monitoring the usage of
Web services by clients, fetching rating information from other agents, and a feedback
mechanism. The CB-SeC framework [MM03] follows a similar approach though ratings are
calculated using so-called context of interest functions based on context information about
consumers and services. In Jini [Wal01], clients utilize a lookup service to discover services
based on the Java interfaces they implement and service attributes. The lookup service’s
attribute search is limited to searching only for exact matches [MJ01]. Extensions have been
proposed to support, e.g., attributes providing context information about services [LH03]
or more sophisticated match types [MJ01]. Based on WSDL, WSIF [WSI03] allows a Web
service to select a specific port of a service it wants to invoke, i.e., its actual access point
and the communication protocol and message format to use, at runtime. The selection is
limited to the information provided by WSDL documents as no service repositories like
UDDI are considered.

Chapter 7

Context-Aware Adaptable Services

In this chapter, we present our context framework that facilitates the development and
deployment of context-aware adaptable Web services. Web services are provided with
context information about clients that may be utilized to provide personalized behavior.
Context is extensible with new types of information at any time without any changes
to the underlying infrastructure. Context processing is done by Web services, context
plugins, and context services. Context plugins and context services pre- and postprocess
Web service messages based on the available context information. Both are essential for
automatic context processing and automatic adaption of Web services to new context types
without the necessity to adjust the Web services themselves. We implemented the context
framework within the ServiceGlobe system, our open and distributed Web service platform.
Parts of this chapter have already been presented in [KK04b, KSKK03]. A demo of the
our context framework was given at the EDBT’04 conference [KK04a].

The remainder of this chapter is structured as follows: In Section 7.1, we motivate the
usage of context-aware adaptable Web services. Section 7.2 presents an adjusted version
of the motivating scenario, which is used as an example in this chapter. In Section 7.3,
our context framework is described. Several types of context information available in our
framework are presented in Section 7.4. Finally, Section 7.5 presents related work.

7.1 Motivation

Today, consumers want to use several ways to access information services on the Internet,
e.g., browsers on desktop computers, PDAs, or cell phones. As the trend to an increasing
number of ubiquitous, connected devices—called pervasive computing—continues to grow,
the heterogeneity of client capabilities and the number of methods for accessing information
services also increases. Nevertheless, consumers expect Web services to be accessible from
all of these devices in a similar fashion. They also expect that Web services are aware of
their current environment, e.g., the type of device they are using, their preferences, or their
location. Generally, this kind of information is called context.

More precisely, in our work context constitutes information about clients and their

68 Context-Aware Adaptable Services

AttractionsSearch

Client

Figure 7.1: Motivating Scenario: No Context Processing

environment that may be used by Web services to provide clients with customized and
personalized behavior. So, context contains, e.g., a consumer’s name, address, and current
location, the type of client device (hard- and software) the consumer is using, or all kinds
of preferences regarding the communication, the format of the Web services’ replies, or—in
case of information services—the maximum amount of data that should be returned. Web
services use such context information to adjust their internal control flow as well as content
and format of their replies.

In this chapter, we present a context framework that facilitates the development and
deployment of context-aware adaptable Web services. The framework consists of two main
parts: a distributed infrastructure, which transmits context between clients and Web ser-
vices and manages the context processing, and the context types, which are the supported
types of context information and which are extensible at any time.

The actual context processing is done by three components: Web services themselves,
context plugins, and context services. Context plugins and context services are provided
by the context framework, and they pre- and postprocess Web service messages based
on available context information. Both components are essential for automatic context
processing, i.e., for processing context without the support of the original Web services,
and automatic adaption of Web services to new context types.

Context plugins are basically Java objects implementing a dedicated interface. They
are loaded by the service platform during startup, and they support locally executed Web
services, i.e., a context plugin cannot be used if it is not locally available. Context services,
on the other hand, are Web services (implementing a special interface defined using the
WSDL standard), and they might be available anywhere on the Internet. They provide
similar functionality as context plugins but need not be locally available.

In our context framework, the set of context types is extensible at any time without any
changes to the underlying infrastructure. By adding appropriate context services or context
plugins, new context types are used instantly and automatically. If using these new context
types is achieved by pre- and postprocessing Web service messages, the implementations
of Web services need not be adjusted. This way Web services may even utilize context
information that was unknown at the time of their development.

7.2 Motivating Scenario

For the following sections, we extend the travel agency scenario that we presented in
Section 5.1. Assume that one of the travel agency’s providers, e.g., the provider of the

7.2 Motivating Scenario 69

AttractionsSearch

Client

Location

RoutePlanner
Context Processing:

Location

Figure 7.2: Motivating Scenario: Internal Context Processing

Client

Location

RoutePlanner
Context Processing:

Location

AttractionsSearch

Figure 7.3: Motivating Scenario: External Context Processing

AttractionsSearch Web service (depicted in Figure 7.1), starts to allow the use of context
information with its services. The provider extends its AttractionsSearch Web service with
a component that uses a consumer’s location to include driving directions into the Web
service’s reply (the necessary data is retrieved from an appropriate Web service, e.g., the
Web service RoutePlanner). Therefore, the implementation of the AttractionsSearch Web
service has to be changed (as depicted in Figure 7.2).

Consumers are accepting this new feature. So, the provider of another Web service, e.g.,
HotelsSearch, also wants to enable context processing for its service. Thus, the provider
must adjust the implementation of its Web service to utilize location context information.
Although the Web services AttractionsSearch and HotelsSearch share the same function-
ality, both implement their own version of it. So, both Web service implementations have
to be changed. Furthermore, if one of these providers wants to extend its Web service
again, e.g., to use context information about the consumers’ clients, it must adjust the
Web service’s implementation a second time.

The functionality to process and use context information should not be (deeply) inte-
grated into the Web services themselves. Instead, the different functional duties should
be isolated, and they should be implemented in separate components. These components
should be provided externally, as depicted in Figure 7.3. Their usage must be transparent
for Web services, and they must be used automatically if a Web service’s request contains
context information. Additionally, they must provide a generic solution, i.e., the same
component must be usable for a variety of Web services, e.g., the AttractionsSearch Web
service as well as the HotelsSearch Web service.

Our context framework presents a solution for the problems outlined above as it has
precisely the desired properties: It is transparent for Web services, context processing
components are automatically deployed, and these components can be used generically (of

70 Context-Aware Adaptable Services

course, they must be implemented properly). In Section 7.4, we describe how the above
scenario can be implemented with our context framework.

7.3 Context for Web Services

In the literature, there are a number of different definitions and uses of the term con-
text [MM03, DSA99, SAT+99, HBS02, PLdH03, IRRH03, RB03]. In our work, context
encompasses all information about the client of a Web service which may be utilized by
the Web service to adjust execution and output to provide the client with customized and
personalized behavior.

Context is different from the parameters of a Web service: First of all, the same context
information is interesting for a number of Web services whereas parameters are only used
by the exact Web service they belong to. As a consequence, context can often be evaluated
automatically, e.g., by the service platform. This simplifies the development of Web services
as the evaluation of such context does not need to be integrated into the Web services
themselves. A further difference is that context information is optional whereas parameters
are mandatory. Context information does not need to be passed to a Web service and if it
is, the Web service does not necessarily need to understand and process it.

7.3.1 Context Infrastructure

In our framework, context is transmitted as a SOAP header block within the SOAP mes-
sages that Web services receive and send (see Figures 7.4 and 7.5 for an example). Legacy
Web service platforms that do not support context information may ignore this specific
header block (in conformity with the SOAP standard).1 As context information is op-
tional, Web services executed on legacy platforms are nevertheless able to process such
requests, but they lose the benefit of the context information.

Analogous to a SOAP header, context consists of several context blocks. Each context
block is associated to one context type which precisely defines the type of context informa-
tion the context block is allowed to contain. At most one context block is allowed for a
specific context type, i.e., no two context blocks can be associated to the same context type.
The context in Figure 7.4 contains two context blocks: one associated to the context type
Location (with information about a consumer’s current location) and another one of con-
text type Client (with information about the client’s hard- and software). More information
about the context types supported by our context framework is given in Section 7.4.

Every context type has a unique context type identifier. This identifier is equal to
the qualified name of the XML element that represents corresponding context blocks, i.e.,
identifiers must be valid qualified names. The qualified name of an XML element is com-
posed of its namespace and element name. For example, in Figure 7.5 there is a context

1If the attribute mustUnderstand is set in a context header block, Web service platforms must process
the context or fail processing the message [Mit03].

7.3 Context for Web Services 71

SOAP Envelope

SOAP Header

SOAP Body

Header Block: Context

Context Block Context Type: Location

Context Block

Header Block

Context Type: Client

Figure 7.4: Context within a SOAP Message

block element Client with namespace http://sg.fmi.uni-passau.de/context. Conse-
quently, the associated context type is http://sg.fmi.uni-passau.de/context:Client.
We omit the namespace part in the following and reference context blocks (and context
types) only by the corresponding element names.

Context types are basically used to distinguish context blocks. For example, if a Web
service wants to access information of its context, it specifies the type of context information
it wants to retrieve, i.e., a context type identifier. The context infrastructure determines
the corresponding context block using this identifier and returns it. For the infrastructure,
the knowledge of a context type identifier is sufficient for allowing access to the context
type and for guaranteeing that a context contains at most one context block of any context
type.

Though the infrastructure does not require the validation of a context block’s content
against the schema of its context type, it does provide the possibility for it, especially to
free Web services themselves from this task. For this purpose, a context type has to be
published in a UDDI repository as a tModel.2 In the tModel, the identifier of the context
type must be specified. Also, if content validation should be possible, an XML schema
document must be referenced that defines the schema to which corresponding context
blocks have to conform to. If the validation of a context block fails, the context block is
marked as incorrect and not used further on.

Figure 7.6 gives an example of a tModel which defines the context type Location. The

2These tModels are also used by other parts of the context framework, see Section 7.3.4 for further
details.

72 Context-Aware Adaptable Services

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

<env:Header>

<Context xmlns="http://sg.fmi.uni-passau.de/context">

<Location>

<address useType="Office">

<addressLine keyName="Street" keyValue="60">

Innstrasse 33

</addressLine>

<addressLine keyName="City" keyValue="40">

D-94032 Passau

</addressLine>

</address>

</Location>

<Client>

<DeviceDefaults>

http://example.org/context/device/PDA

</DeviceDefaults>

<Hardware>

<ScreenSize>320x200</ScreenSize>

<IsColorCapable>Yes</IsColorCapable>

</Hardware>

</Client>

</Context>

</env:Header>

<env:Body>

<!-- serialized object data -->

</env:Body>

</env:Envelope>

Figure 7.5: SOAP Message with a Context Header Block

context type’s identifier http://sg.fmi.uni-passau.de/context:Location is specified
as a keyedReference in the tModel’s identifierBag. In the categoryBag, it is specified that
the tModel is derived from the tModel ContextType, which serves as base tModel. The
overviewDoc entry contains a URL that links to the XSL schema document which defines
the context type’s schema.

7.3.2 Life-Cycle of Context Information

The life-cycle of a Web service’s context, illustrated in Figure 7.7, starts at a client’s site:
First, the client gathers all relevant context information and inserts it into the SOAP
request as a context header block. Then, the request is sent to the host executing the Web
service.

7.3 Context for Web Services 73

<tModel>

<name>Location Context Type</name>

<overviewDoc>

<overviewURL useType="xmlSchema">

http://sg.fmi.uni-passau.de/context/context-location.xsd

</overviewURL>

</overviewDoc>

<identifierBag>

<keyedReference keyName="ContextTypeID"

keyValue="http://sg.fmi.uni-passau.de/context:Location"

tModelKey="uddi:serviceglobe:identifier:contexttype"/>

</identifierBag>

<categoryBag>

<keyedReference keyName="derivedFrom:ContextType"

keyValue="uddi:serviceglobe:categorization:contexttypes"

tModelKey="uddi:uddi.org:categorization:derivedFrom"/>

<keyedReference keyName="uddi-org:types"

keyValue="categorization"

tModelKey="uddi:uddi.org:categorization:types"/>

</categoryBag>

</tModel>

Figure 7.6: tModel for the Location Context Type

After the request has been received by a Web service platform, the context is extracted
by the context framework and provided to the invoked Web service as its current context.
During its execution, the Web service can access and modify this current context using
the Context API provided by the framework. For example, in Figure 7.7 the first context
block is modified (illustrated by the color change to gray) and a new context block (the
third, black rectangle) is inserted.

When the Web service invokes another service during its execution, its current context
is automatically inserted into the outgoing request. The response to such a request may
also contain context information. In this case, the Web service can extract the interesting
parts of the context data from the response and insert them into its current context.

After the Web service’s termination, its (possibly modified) current context is automat-
ically inserted into its response and sent back to the invoker. If the invoker is a client, as
in Figure 7.7, it may integrate portions of the returned context into its local context (for
use in future requests). Furthermore, the returned context may be utilized by the client to
adjust the Web service’s response.

In the entire context life-cycle, potential privacy and security issues have to be consid-
ered. For example, clients should be able to specify what modifications a Web service is
allowed to perform on the context and also what parts of the context the Web service is

74 Context-Aware Adaptable Services

Web Service Platform

Client

Context

Web Service

C
o

n
te

x
t

SOAP Request

SOAP Response

Context

Context

Figure 7.7: Context Life-Cycle

allowed to insert into requests to other Web services. Furthermore, the policies must state
if and how a client is allowed to modify its local context. These issues are partly considered
in Section 7.3.4. Elaborate privacy and security policies are beyond the scope of this thesis.

7.3.3 Context Processing

In our context framework, we distinguish two types of context processing: explicit process-
ing by Web services or clients and automatic processing by the context framework.

Explicit Context Processing

Explicit processing means that Web services or clients directly access the context contained
in a SOAP message using the framework’s Context API and, consequently, that the context
processing functionality is part of their code. Thus, there is a tight coupling between such
Web services and clients and the context types they are able to process. That is, such
Web services and clients can only utilize context types that were known and integrated at
the time of their development. A further disadvantage is the additional coding effort as
the same or at least similar context processing functionality is basically contained in many
Web services and clients. A strict separation of concerns is also missing. An advantage of
this type of context processing is that Web services and clients have full control over how
the context information influences their control flow and their replies. Additionally, they
can access the context information to modify it.

An example of explicit processing is the client we implemented. It processes the returned
context information to finally adjust the response to its device capabilities, e.g., by using
stylesheet information inserted into the returned context.

7.3 Context for Web Services 75

Automatic Context Processing

Automatic context processing means that SOAP messages are pre- and/or postprocessed
(from a Web service’s point of view) based on the context information they contain. Au-
tomatic context processing is done by the context framework, i.e., Web services are not
involved in it. As a consequence, the context processing task is moved from the Web
services to the service platform, and the coding effort for Web services is reduced. A dis-
advantage is, of course, that only a Web service’s requests and responses can be modified;
its internal process flow cannot be adjusted by this means.

There are four different points in time at which context is processed automatically (see
Figure 7.8): First, the incoming SOAP request of an invoked Web service is preprocessed (1)
based on the context in the request. Furthermore, whenever the Web service invokes other
services (using the invocation manager), outgoing messages, i.e., requests to other services,
are postprocessed before they are actually sent (2) and incoming messages, i.e., responses
to outgoing requests, are preprocessed before they are returned to the Web service (3).
Finally, the outgoing response of the invoked Web service is postprocessed (4) based on
the service’s current context (which might be a modified version of the received one). To
sum up, this means that all messages to and from an invoked Web service can be modified
based on context information.3

Of course, modification of messages also implies that the messages’ content can be
modified, e.g., the content of a Web service’s reply. For example, in our demonstration
at the EDBT’04 conference [KK04a], we used automatic context processing to convert the
price information within a Web service’s reply content into the currency of the consumer’s
location.

In the following, we refer to the procedures when a Web service’s message is pre-
or postprocessed as context operations, and we call them PreprocessRequest (1), Post-
processMessageRequest (2), PreprocessMessageResponse (3), and PostprocessResponse (4),
respectively.

In every context operation, automatic context processing is done by processing the
context blocks of the SOAP message’s context in arbitrary order. Consequently, during
the processing of a context block, no assumptions can be made on the processing state of
any other context block, i.e., if some other context block has already been processed or
not.

After selecting an arbitrary, not yet processed context block, the context framework
determines its context type. For every context type, the context manager (see Figure 7.8)
manages a list of components capable of processing context information of the associated
type. The actual processing of the selected context block is delegated to these components,
which are described below. There are several ways to configure which of these components
should actually be used for processing and in what order. Details are given in Section 7.3.4.

3In our work, we assume a request-response message exchange pattern as, e.g., used for RPC. If a
different exchange pattern is used, e.g., if a Web service does not return a response, the corresponding
processing steps are omitted.

76 Context-Aware Adaptable Services

Web Service Platform

Web Service Manager

Web Service

SOAP Request

C
o

n
te

x
t

M
an

ag
er

Context Plugins

Context Services

S
O

A
P

 R
eq

u
es

t
P

ro
ce

ss
in

g

Context

Header Block

Preprocessing

SOAP Response

SOAP Payload

Processing

(1)

(4)

Invocation

Manager

Context

Context

(2)

P
re

p
ro

ce
ss

R
eq

u
es

t

P
o
st

p
ro

ce
ss

R
es

p
o
n
se

ContextPlugin Interface

P
re

p
ro

ce
ss

M
es

sa
g
e

P
o
st

p
ro

ce
ss

M
es

sa
g
e

(3)

Context

Header Block

Postprocessing

Figure 7.8: Components for Context Processing

Components for Automatic Context Processing

The context framework delegates automatic context processing to two types of components,
as shown in Figure 7.8: context plugins and context services. Context plugins are basically
Java objects implementing a special Java interface. They must be installed locally at a
host, and they are loaded by the service platform during startup. Context services are Web
services that implement the ContextService interface. This interface, defined using the
WSDL standard, describes the four context operations a context service should implement.
A UDDI tModel ContextService is provided that links to the WSDL document with
the interface description. Context services should refer to this tModel when published in
UDDI. In their bindingTemplate entries, context services may also specify which context
operations they actually support.

Every component, i.e., every context plugin and every context service, is associated with
one context type, and it is used to process context information of this type only. When
invoked, a component requires two parameters: The first one is a context block of the
component’s associated context type. The second one depends on the context operation
that is invoked on the component: It is the request to a Web service, the service’s response,
an outgoing request of the Web service (to invoke another Web service), or an incoming
response of such an invoked service.

Context services are very similar to context plugins as they basically implement the
same interface. Both enable automatic processing of context information and are essential
for the easy extensibility of context. On the other hand, context services are Web ser-
vices. They need not be installed locally, as context plugins must be, but can be available
anywhere on the Internet. If implemented as dynamic services, as it is possible in the Ser-

7.3 Context for Web Services 77

viceGlobe system, context services may be loaded dynamically and on demand, and they
may be executed on the local host.

Besides the reduction of the coding effort, context plugins and context services have
the advantage that they constitute a generic solution. A context plugin or service for a
specific context type can be used for a variety of Web services without any need for specific
adjustments. Even more important, Web services can now utilize context types they do
not support themselves. This is also beneficial for legacy Web services which cannot be
modified.

7.3.4 Context Processing Instructions

In Section 7.3.3, several components for context processing were introduced. A context
block in a SOAP request is possibly processed by context plugins, context services, and the
invoked Web service itself. Therefore, rules of precedence are required and also information
about which components should actually be used for processing. Additionally, the same
context block is probably not only processed at a Web service’s local host but also at
hosts on which the Web service invokes other services, as context is inserted into outgoing
messages.

Precautions have to be taken to prevent these problems and ambiguities. In our frame-
work, context processing instructions are used for this purpose.4 If no context processing
instructions are specified, defaults are used: Context plugins are invoked as configured
locally at the service platform (default here is alphabetical order according to the class
name). Context services are not used by default. Invoked Web services themselves can
always process their context information.

Context processing instructions are specified within a ContextProcessingInstruc-

tions element, as depicted in the example in Figure 7.9 (for the moment, we ignore
the enclosing UDDI elements). For every context type, they can contain at most one
ContextType child element. Within this child element, instructions for the corresponding
context type are specified. Currently, component instructions and processing guidelines
can be specified. But we are still investigating these issues and are going to consider them
in more detail in future work.

Component Instructions

With component instructions, context plugins and context services that should be used
for processing context information of the enclosing context type and their execution order
are specified. Context plugin instructions must be defined using ContextPlugin elements,
context service instructions using ContextService elements. If several context plugins and
services are specified, they are executed in the same order as they are specified.

4Apart from their name, context processing instructions and XML processing instructions are very
different. Context processing instructions are ordinary context information just like location or client
context information.

78 Context-Aware Adaptable Services

<tModelInstanceInfo

tModelKey="uddi:serviceglobe:context:processing-instructions">

<instanceDetails>

<instanceParms><![CDATA[

<?xml version="1.0" encoding="utf-8" ?>

<pi:ContextProcessingInstructions

xmlns:pi="urn:serviceglobe:context">

<pi:ContextType ID="http://sg.fmi.uni-passau.de/context:Location">

<pi:ContextService>

<pi:AccessPoint useType="http">

http://example.org/services/CurrencyConverter

</pi:AccessPoint>

<pi:ContextOperations>post</pi:ContextOperations>

</pi:ContextService>

<pi:ProcessingGuideline>

<pi:ServiceHost>Next</pi:ServiceHost>

<pi:ComponentTypes>

ContextPlugin+ContextService

</pi:ComponentTypes>

</pi:ProcessingGuideline>

</pi:ContextType>

<pi:ContextType ID="http://sg.fmi.uni-passau.de/context:Client">

<pi:ContextPlugin>

serviceglobe.context.plugins.StylesheetFinder

</pi:ContextPlugin>

</pi:ContextType>

</pi:ContextProcessingInstructions>]]>

</instanceParms>

</instanceDetails>

</tModelInstanceInfo>

Figure 7.9: Context Processing Instructions in the tModelInstanceInfo entry of a bind-
ingTemplate

In the example in Figure 7.9, a context service with access point http://example.

org/services/CurrencyConverter is used for processing Location context. The context
framework supports several types of access points: SOAP-HTTP URLs (as in the example),
ServiceGlobe URLs, or bindingTemplate UUIDs referencing context services published in
a UDDI repository. The instructions in the example also state that only the context
operation PostprocessResponse (keyword post) should be invoked. Other keywords are pre
for PreprocessRequest, postmessage for PostprocessMessageRequest, and premessage for
PreprocessMessageResponse. Furthermore, the context plugin StylesheetFinder (specified

7.3 Context for Web Services 79

by its class name) is used for processing Client context (for a description of this plugin, see
Section 7.4).

Processing Guidelines

With processing guidelines, the types of components that should be used to process a
certain context block are specified as well as the hosts at which the context block should
be processed. A processing guideline is defined using the ProcessingGuideline element
(which must be a child element of the ContextType element for which the guideline is
specified). Figure 7.9 shows an example. The child element ServiceHost specifies the
host at which corresponding context blocks should be processed, and the child element
ComponentTypes specifies the actual component types that should be used for processing.

Possible values of the ServiceHost element are Next and All. (The meaning of this
element is similar to the role attribute that can be used in SOAP header blocks [Mit03].)
If Next is specified, only the next host should receive and process a context block. For that
reason, the context block is not included into outgoing requests of the invoked Web service.
When using All, the corresponding context block is inserted into outgoing requests, and
all hosts that receive it may also process it. Possible values that can be used within
the ComponentTypes element are ContextPlugin and ContextService. Their meaning is
obvious. Both values can be combined using the + operator. In this case, both components
are used sequentially for processing. In the example of Figure 7.9, context plugins are
applied first. Then, context services are invoked. Without any processing guidelines,
defaults are used: Next for ServiceHost and ContextPlugin for ComponentTypes.

Web services themselves can always access and process any context block passed to
them even if a context block was already processed by a context plugin or context service.
Obviously, it would be possible to remove a processed context block from the context to
prevent Web services from processing it a second time. But in this case the context block
would only be used to modify the Web services’ messages (due to the constraints of context
plugins and context services).

Providing Context Processing Instructions

There are several possibilities to make context processing instructions available to the
context framework. The first two possibilities are especially useful if it should be enforced
that only particular context plugins and context services are used to process context blocks
of certain context types.

First of all, the context itself can contain context processing instructions. For this pur-
pose, the instructions, e.g., the ContextProcessingInstructions element of the example
in Figure 7.9, are inserted into the context as a self-contained context block. The context
block is then processed by a special context plugin provided by the context framework.

Second, a Web service’s UDDI metadata may be annotated with context processing in-
structions. Therefore, the bindingTemplate entry of the Web service must contain a tMod-
elInstanceInfo entry that specifies the instructions. An example is shown in Figure 7.9.

80 Context-Aware Adaptable Services

<businessService>

<name>CurrencyConverterContextService</name>

<categoryBag>

<keyedReference keyName="ContextService"

keyValue="true"

tModelKey="uddi:serviceglobe:interfaces:contextservice"/>

<keyedReference keyName="ContextType"

keyValue="http://sg.fmi.uni-passau.de/context:Location"

tModelKey="uddi:serviceglobe:categorization:contexttypes"/>

</categoryBag>

</businessService>

Figure 7.10: UDDI Metadata of a Context Service

The context processing instructions are contained within the instanceParms element (as
a string, according to the UDDI standard5). The format of the context processing instruc-
tions is the same as if used within the context of a SOAP request.

Providers or developers of Web services can use this second option to specify context
services that should be used for processing certain context blocks. Even operators of hosts
executing Web services may utilize UDDI this way to force the use of certain context
plugins or context services with Web services executed at their hosts.

The third possibility is different to the preceding ones: Instead of relying on explicitly
specified context processing instructions, the context framework uses available UDDI meta-
data to automatically determine available context services for context processing. Context
plugin instructions and processing guidelines cannot be determined this way.

Just as ordinary Web services, context services may be published in UDDI. Every con-
text service that should be found by the context framework when searching for appropriate
context services must be associated to two tModels: the tModel ContextService, which
marks a Web service as context service, and the tModel ContextType. The ContextType’s
association contains a parameter that specifies the context type the context service is able to
process. For an example, see Figure 7.10. When processing a context block, the framework
queries UDDI for all services associated to both tModels and having the correct parame-
ters. As all of these services provide semantically equivalent functionality, one of them is
chosen randomly. For the future, we are going to consider the utilization of ServiceGlobe’s
dynamic service selection in this process.

7.4 Context Types

In this section, several context types provided by our context framework are explained as
well as some of the context services and context plugins we implemented. Our framework

5According to [UDD00], the content of an instanceParms element must be of type string. The suggested
format is a namespace-qualified XML document.

7.4 Context Types 81

<tModelInstanceInfo

tModelKey="uddi:serviceglobe:contexttype:client:stylesheets">

<instanceDetails>

<instanceParms><![CDATA[

<?xml version="1.0" encoding="utf-8" ?>

<UDDIinstanceParmsContainer

xmlns="urn:uddi-org:policy_v3_instanceParms">

<Stylesheet deviceType="http://example.org/context/device/PDA">

http://example.org/service-stylesheet-pda.xsl

</Stylesheet>

<Stylesheet deviceType="http://example.org/context/device/Desktop">

http://example.org/service-stylesheet-desktop.xsl

</Stylesheet>

</UDDIinstanceParmsContainer>]]>

</instanceParms>

</instanceDetails>

</tModelInstanceInfo>

Figure 7.11: UDDI Metadata: Stylesheets for a Web Service’s Reply

<ReplyProperties xmlns="urn:serviceglobe:context">

<Stylesheet>

http://example.org/service-stylesheet-desktop.xsl

</Stylesheet>

</ReplyProperties>

Figure 7.12: Context Block of Context Type ReplyProperties

is not limited to this set of context types, context plugins, and context services. As it
is extensible at any time, new context types can be added by inserting corresponding
context information into the context and providing appropriate context services and/or
context plugins for processing it. Neither the context framework nor Web services must be
adjusted for this.

An important context type is Location. It contains information about the consumer’s
current location, e.g., the consumer’s current address, GPS coordinates, country, or lo-
cal time and time-zone. An example was shown in Figure 7.5. Location context may also
include semantic location information, e.g., that a consumer is currently at work. We imple-
mented, for example, a context service CurrencyConverter that converts price information
included in a Web service’s reply to the currency of the consumer’s location.

Client context information comprises data about a client’s device. It includes infor-
mation about hardware, e.g., processor type or display resolution, as well as software,
e.g, operating system or Web browser type and version. An example of such a context

82 Context-Aware Adaptable Services

AttractionsSearch

StylesheetFinder

Context Plugin

Client

Location

RoutePlanner

CurrencyConverter

Context Service

DrivingDirections

Context Service

Client

Figure 7.13: Motivating Scenario: Context Processing with the Context Framework

block was also shown in Figure 7.5. Two schemas are supported for this context type: a
rather simple one as used in Figure 7.5 and an RDF-based one as defined in the CC/PP
standard [KRW+04] of the W3C.

The main purpose of this context type is to allow Web services to adjust their output
to the client device’s properties. For example, Web services from the information systems
area, which often query data from a DBMS, can use this context information to optimize
their database queries and to query only data that can actually be displayed at the client.
The Amazon Web service [Ama] is an example of such a Web service. In its replies, it
includes several lengthy customer reviews. If viewing a reply of this Web service on a PDA
or cell phone, the inclusion of these reviews is rather pointless as they require too much
space. Optimally, the corresponding data should not be retrieved from the DBMS in the
first place. But if this is not possible, e.g., because modifications of the Web service are
impossible, context services can be used to adjust the reply of the Web service.

We also implemented a context plugin StylesheetFinder which uses the Client context
to provide the client with a stylesheet that can be used to format the Web service reply. A
Web service must specify XSL stylesheets that should be used for the various client types
in its UDDI metadata. Figure 7.11 shows an example of such metadata. Based on this
metadata and the Client context information, the plugin inserts a new context block of
type ReplyProperties. This context block, see Figure 7.12 for an example, is processed by
clients. They use the specified stylesheet to transform the reply’s XML data into HTML.

The Consumer context type contains information about the consumer invoking the Web
service, e.g., name, email address, and so on. Although it is very important, it can actually
be used only by the Web services themselves in a sensible way.

The Connection Preferences context type allows to specify properties of the connec-
tions to Web services. It was added by implementing a context service ConnnectionPrefer-
encesService. Based on the content of the corresponding context block, the context service
compresses and decompresses Web service messages using gzip [Deu96] or the XML com-
pressor XMill [LS00]. The context service could, e.g., be extended to support encryption,
too.

7.5 Related Work 83

With these context types, the motivating scenario in Section 7.2 can be implemented
as depicted in Figure 7.13. Although the AttractionsSearch Web service was not modified,
the reply that the client receives contains personalized, context-dependent information.
Client and Location context information is processed automatically by two context ser-
vices and one context plugin. After AttractionsSearch generated its reply, the context
service DrivingDirections uses the RoutePlanner Web service to insert driving directions
from the client’s location into the reply. Then, the context service CurrencyConverter con-
verts all price information included in the AttractionsSearch’s reply to the currency of the
consumer’s location. CurrencyConverter determines the XML elements that contain such
price information from the WSDL document of AttractionsSearch, which it retrieves from
the UDDI repository. This document describes the type of AttractionsSearch’s reply using
XML schema. Finally, the context plugin StylesheetFinder chooses an XSL stylesheet that
fits best to the current client device and inserts this information into the reply. After the
client receives the reply, this stylesheet information is used to display the XML reply on
the specified device in the appropriate way.

We also implemented clients for different types of client devices, e.g., Java-based clients
for PDAs and cell phones. They are used to demonstrate the usefulness and the advantages
of context information based on the example Web services of our motivating scenario.
Furthermore, we implemented a Web-based client. With this client, the influence of various
types of context information can be investigated in more detail. A demonstration of our
context framework and these clients was presented at the EDBT’04 conference [KK04a].

7.5 Related Work

There are several technologies which are related to our context processing architecture, i.e.,
the automatic context processing of context by successively invoking context plugins and
context services. The Chain of Responsibility design pattern [GHJV97], for example, de-
scribes how to decouple the receiver of a request from the sender by chaining the receiving
objects and passing the request along the chain until an object handles it. On the other
hand, in our framework several receivers, i.e., context plugins and services, can process the
same request. Aspect-oriented programming (AOP) [KLM+97] allows the modification of
applications with so-called aspects. Aspects are modular units of functionality that are
used across the application’s code. They are woven into an application’s code at so-called
pointcuts, thereby allowing to transparently extend, e.g., objects with new functionality.
This is similar to the way Web services are extended with new context processing func-
tionality using context plugins and services. In Java, AOP is supported, for example, by
the AspectJ toolkit [KHH+01] or in the J2EE application server JBoss [JBo].

In CORBA, technologies like interceptors or smart proxies can be used to insert new
functionality into existing applications. They are, for example, supported in IANA’s Or-
bix [ION]. Interceptors and smart proxies have also been integrated into Java RMI [SMS02].
The Java Servlet specification [Suna] describes filters that could be used to intercept and
modify messages. In the Axis framework [Axi], chains of handlers can be created. Re-

84 Context-Aware Adaptable Services

quests and responses are passed along these chains, and they may be modified by the
chains’ handlers.

Although our context framework shares similarities with the above approaches, there
are also differences. In our framework, the context information contained within the re-
quest determines which context plugins and context services are actually invoked. Context
plugins and services are not chained sequentially, and not all of them are invoked ev-
ery time. With context services, our context framework is extensible at runtime, just by
adding appropriate context information into requests. Furthermore, context plugins and
services selection may depend on the consumer’s preferences, which can be integrated into
the client’s context as context processing instructions. Thus, we facilitate fine-grained
dynamic control over the context processing.

In the mobile computing area, context has been investigated for several years. Best
known are the location-based services. The PLIM framework [PLdH03], for example,
provides an infrastructure for the distribution and retrieval of location information of
(Bluetooth-connected) mobile devices using a publish & subscribe mechanism. [IRRH03]
presents a context model for pervasive systems based on the CC/PP standard and points
out some limitations of this standard. [HHS+02] describes a system that builds a dynamic
model of the environment where the locations of the environment’s objects are updated
using location sensors. Also, an event-based monitoring system is provided that allows ap-
plications to detect location changes and to query the relationship of objects regarding their
location. In Jini [Wal01], a Java lookup service for services, extensions have been proposed
to support search attributes that provide context information about services [LH03].

In the Web service area, there are several research projects that deal with context.
The CB-SeC framework [MM03] is an agent-based architecture that provides service se-
lection based on a rating system for Web services. The ratings are calculated using so-
called context of interest functions and context information about consumers and services.
Aura [SG02] is an architectural framework that models user tasks as coalitions of abstract
services. Aura migrates such tasks from one environment to another one if the user’s lo-
cation changes. Also, tasks can be adjusted if the environment changes, e.g., if a provider
for a currently used service disappears. In [DCMC01], the concept of dynamic bookmarks
is presented. Dynamic bookmarks are descriptions of services that are bound to actual
services based on a user’s location. Clients use a dynamic bookmark service to update
their dynamic bookmarks if their location changes. [DSA99] describes a distributed infras-
tructure to support context-aware applications based on context widgets. Context widgets
gather context information from low-level sensors. They may also aggregate and interpret
it. Applications use these widgets by subscribing to them. In [Men01], an architecture is
presented that allows to develop applications where the application logic is decoupled of
the UI based on an event-graph. With it, UIs for different client types can be developed
independent of the implementation of the application itself.

Our focus in this thesis is on automatic and transparent processing of context and on
easy extensibility of context types, not on how the context is stored locally at clients. A
distributed storage system for context information is, e.g., presented in [RB03]. In this
system, context data is pro-actively replicated and migrated on mobile devices, dependent

7.5 Related Work 85

on the clients’ behavior. In [EHL01], a context service is presented that is basically a
storage for context information. Context sources deliver their information to this service.
Applications access the context service to query for context information. [HBS02] discusses
requirements for a representation format for context information and examines different
existing formats. As result of the discussion, they present a novel RDF-based representation
format. In [SAT+99], data about the environment is collected using collections of low-
level sensors. This data is analyzed and the context—a set of two-dimensional vectors—is
updated accordingly. Using a script language, actions can be defined based on context
changes. Actions can, e.g., be commands to applications.

The need for Web service personalization also poses challenges to other areas of com-
puter science. In the information systems area, preferences are gaining noticeable atten-
tion [Kie02, AW00, Cho02] as they are a way to support personalization of Web services,
especially for information services that often use a DBMS as back-end. Preferences, also
called soft constraints, are more like wishes: The result of a query should be a perfect match,
but a best possible match is also acceptable. For example, [BKK03] shows how quality of
service preferences can be considered in distributed query processing. Recently, approaches
to integrate preferences into Web services have also been proposed [BKU03, KH02].

Chapter 8

Conclusions and Future Work

In this thesis, we addressed the challenges for data integration systems imposed by the
large number of resources available on the Internet. We also introduced techniques that
facilitate application integration based on Web services and support the development of
Web services with regard to flexibility, reliability, and personalization.

We first presented the MDV system, our distributed metadata management system.
MDV has a 3-tier architecture and supports caching and replication in the middle-tier
so that information is stored near the users that need it and queries can be evaluated
locally. By adding servers to (or removing servers from) the middle-tier as necessary, our
system can be adjusted easily to varying workloads. In order to keep replicas up-to-date
and initiate the replication of new and relevant information, MDV implements a scalable
publish & subscribe algorithm. We described this algorithm in detail, showed how it can
be implemented using a standard relational database management system, and presented
the results of performance experiments conducted using our prototype implementation.

The MDV system was developed as part of the ObjectGlobe system, our open and
distributed query processing system for data processing services on the Internet. We,
therefore, used ObjectGlobe as an example client of MDV. The goal of ObjectGlobe is to
establish an open marketplace in which data, function, and cycle providers can offer/sell
their services. We gave details of ObjectGlobe’s architecture, its lookup service, its QoS
management, and its security system, including the different security measures to pro-
tect the providers’ resources against unauthorized access and attacks of malicious external
operators.

We also described the deployment of the MDV system within ObjectGlobe. In particu-
lar, we described the MDV lookup service, which provides global access to the metadata of
registered providers and which is consulted by ObjectGlobe’s query optimizer in order to
find relevant resources to execute a query and to obtain statistics. We presented the MDV
security provider, which is responsible for authentication and authorization of users and
their query plans and which deploys the MDV system to store and administrate security
information. We also showed how MDV’s publish & subscribe mechanism is used to dis-
tribute authentication data throughout the ObjectGlobe federation so that it is available
to all query optimizers, which need this information in order to generate valid query plans.

88 Conclusions and Future Work

Next, we presented the ServiceGlobe system, our open and distributed Web service
platform. It supports mobile code, that is, Web services can be distributed on demand
and instantiated at runtime at arbitrary Internet servers participating in the ServiceGlobe
federation. Also, it offers all standard functionality of a service platform like SOAP com-
munication, a transaction system, and a security system.

We introduced dynamic service selection, which offers Web services the possibility to
select and invoke services at runtime based on a technical specification of the desired
service. We showed how constraints can be used to influence dynamic service selection.
Using them, services can be selected based on the relevant metadata. After invocation,
replies may be checked for defined properties and discarded, if necessary. Constraints also
allow the specification of the number of services that should be invoked and how they
should be invoked. Constraints may be specified directly when invoking Web services or in
a Web service’s context.

We presented our context framework, which facilitates the development and deploy-
ment of context-aware adaptable Web services. We introduced our context model and
gave a detailed description of the framework’s main parts: the distributed infrastructure,
which transmits context between clients and Web services and which manages the context
processing, and the context types, which are extensible at any time. We showed how the
actual context processing is done by Web services themselves, context plugins, and context
services. Context plugins and context services pre- and postprocess Web service messages
based on available context information. Context processing instructions, specified within
the UDDI metadata of Web services or within the consumers’ context, are a means to spec-
ify the host to which context is transmitted and at which hosts and by which components
it is actually processed. We also introduced a basic set of context types that are supported
by our context framework.

For the future, the MDV system can be extended to support XML as data format and
XPath/XQuery as rule language—particularly within the publish & subscribe algorithm.
Also, the integration of and the support for Web service standards like UDDI and WSDL
could be beneficial for MDV and its clients. For ServiceGlobe’s context framework, addi-
tional context types can be investigated and context processing instructions can be studied
in more detail. Further issues of interest in this area are elaborate privacy and security
policies that enable clients to specify which Web services should receive their context and
what operations these services are allowed to perform on it.

Bibliography

[ACK+02] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@home: An Experiment in Public-Resource Computing. Communica-
tions of the ACM (CACM), 45(11):56–61, 2002.

[ADLH+02] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein,
B.LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Na-
garatnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web Service Secu-
rity (WS-Security). http://www.ibm.com/developerworks/webservices/

library/ws-secure, April 2002.

[AF00] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents for
Selective Dissemination of Information. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 53–64, Cairo, Egypt,
September 2000.

[Ama] Amazon.com. Amazon Web Services. http://soap.amazon.com/.

[ASS+99] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chan-
dra. Matching Events in a Content-Based Subscription System. In Proceed-
ings of the Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 53–61, Atlanta, GA, USA, May 1999.

[AW00] R. Agrawal and E. L. Wimmers. A Framework for Expressing and Combining
Preferences. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 297–306, Dallas, TX, USA, May
2000.

[Axi] Axis Architecture Guide. http://ws.apache.org/axis/java/

architecture-guide.html.

[BBB+02] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp,
H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams. Web
Services Conversation Language (WSCL). http://www.w3.org/TR/2002/

NOTE-wscl10-20020314, March 2002. World Wide Web Consortium (W3C),
W3C Note.

90 Bibliography

[BCF+03] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. http://www.w3.org/

TR/2003/WD-xquery-20031112, November 2003. World Wide Web Consor-
tium (W3C), W3C Working Draft.

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of
semistructured and structured data sources. ACM SIGMOD Record, 28(1):54–
59, 1999.

[BDSN02] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu. Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web Services. In
Proceedings of the International Conference on Data Engineering (ICDE),
pages 297–308, San Jose, CA, USA, February 2002.

[BG99] D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0. http://www.w3.org/TR/1999/PR-rdf-schema-19990303,
March 1999. World Wide Web Consortium (W3C), W3C Proposed Recom-
mendation.

[BKK+99] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Pröls,
S. Seltzsam, and K. Stocker. ObjectGlobe: Ubiquitous Query Processing
on the Internet. Technical Report MIP-9909, Universität Passau, Passau,
Germany, 1999.

[BKK+00] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Pröls,
S. Seltzsam, and K. Stocker. ObjectGlobe: Ubiquitous Query Processing on
the Internet. In Proceedings of the International Workshop on Technologies
for E-Services (TES), pages 247–268, Cairo, Egypt, September 2000.

[BKK+01a] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam,
and K. Stocker. ObjectGlobe: Ubiquitous Query Processing on the Internet.
The VLDB Journal: Special Issue on E-Services, 10(1):48–71, 2001.

[BKK+01b] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, S. Seltzsam, and
K. Stocker. ObjectGlobe: Open Distributed Query Processing Services on
the Internet. IEEE Data Engineering Bulletin, 24(1):64–70, 2001.

[BKK03] R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in an
Information Economy. ACM Transactions on Internet Technology (TOIT),
3(4):291–333, 2003.

[BKU03] W.-T. Balke, W. Kießling, and C. Unbehend. Performance and Quality Evalu-
ation of a Personalized Route Planning System. In Proceedings of the Brazilian
Symposium on Databases (SBBD), pages 328–340, Manaus, Brazil, October
2003.

Bibliography 91

[BLT86] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently Updating Materi-
alized Views. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 61–71, Washington, DC, USA,
May 1986.

[BPSM+04] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). http://www.w3.org/
TR/2004/REC-xml-20040204, February 2004. World Wide Web Consortium
(W3C), W3C Recommendation.

[Bra01a] R. Braumandl. Quality of Service and Query Processing in an Information
Economy. PhD thesis, Universität Passau, Fakultät für Mathematik und
Informatik, Passau, Germany, 2001.

[Bra01b] T. Bray. What is RDF? http://www.xml.com/pub/a/2001/01/24/rdf.

html, January 2001. XML.com.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/2001/

NOTE-wsdl-20010315, March 2001. World Wide Web Consortium (W3C),
W3C Note.

[CD99a] L. Cardelli and R. Davies. Service Combinators for Web Computing. IEEE
Transactions on Software Engineering (TSE), 25(3):309–316, 1999.

[CD99b] J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. http:

//www.w3.org/TR/1999/REC-xpath-19991116, November 1999. World Wide
Web Consortium (W3C), W3C Recommendation.

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Contin-
uous Query System for Internet Databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD), pages
379–390, Dallas, TX, USA, May 2000.

[CER02] F. Curbera, D. Ehnebuske, and D. Rogers. Using WSDL in a UDDI Reg-
istry, Version 1.07 - UDDI Best Practice. http://www.uddi.org/pubs/

wsdlbestpractices-V1.07-Open-20020521.pdf, 2002.

[Cho02] J. Chomicki. Querying with Intrinsic Preferences. In Proceedings of the In-
ternational Conference on Extending Database Technology (EDBT), volume
2287 of Lecture Notes in Computer Science (LNCS), pages 34–51, Prague,
Czech Republic, March 2002.

[CK98] M. Carey and D. Kossmann. Reducing the Braking Distance of an SQL Query
Engine. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 158–169, New York, NY, USA, August 1998.

92 Bibliography

[CS01] F. Casati and M.-C. Shan. Dynamic and adaptive composition of e-services.
Information Systems, 26(3):143–163, 2001.

[CZH+99] S. Czerwinsky, B. Zhao, T. Hodes, A. Joseph, and R. H. Katz. An Architecture
for a Secure Service Discovery Service. In Proceedings of the ACM/IEEE In-
ternational Conference on Mobile Computing and Networking (MOBICOM),
pages 24–35, Seattle, WA, USA, August 1999.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0. http://www.

rfc-editor.org/rfc/rfc2246.txt, January 1999. RFC 2246.

[DCMC01] S. Duri, A. Cole, J. Munson, and J. Christensen. An Approach to Providing
a Seamless End-User Experience for Location-Aware Applications. In Pro-
ceedings of the International Workshop on Mobile Commerce (WMC), pages
20–25, Rome, Italy, July 2001.

[Deu96] P. Deutsch. GZIP file format specification version 4.3. http://www.

rfc-editor.org/rfc/rfc1952.txt, May 1996. RFC 1952.

[DFJ+96] S. Dar, M. Franklin, B. Jónsson, D. Srivastava, and M. Tan. Semantic Data
Caching and Replacement. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 330–341, Bombay, India, September
1996.

[DSA99] A. K. Dey, D. Salber, and G. D. Abowd. A Context-based Infrastructure for
Smart Environments. In Proceedings of the International Workshop on Man-
aging Interactions in Smart Environments (MANSE), pages 114–128, Dublin,
Ireland, December 1999.

[ebX] Electronic Business XML Initiative (ebXML). http://www.ebxml.org/.

[EHL01] M. Ebling, G. Hunt, and H. Lei. Issues for Context Services for Pervasive
Computing. In Proceedings of the Advanced Workshop on Middleware for
Mobile Computing, Heidelberg, Germany, November 2001.

[Fal01] D. C. Fallside. XML Schema Part 0: Primer. http://www.w3.org/TR/

2001/REC-xmlschema-0-20010502, May 2001. World Wide Web Consor-
tium (W3C), W3C Recommendation.

[FJL+01] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering Algorithms and Implementation for Very Fast Publish/Subscribe
Systems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 115–126, Santa Barbara, CA, USA,
May 2001.

[FK99] D. Florescu and D. Kossmann. Storing and Querying XML Data Using an
RDBMS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

Bibliography 93

[FK01] D. Florescu and D. Kossmann. An XML Programming Language for Web
Service Specification and Composition. IEEE Data Engineering Bulletin,
24(2):48–56, 2001.

[FKK96] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. http://home.

netscape.com/eng/ssl3, November 1996. Netscape Communications Corp.

[GHJV97] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
USA, 1997.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views In-
crementally. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 157–166, Washington, DC, USA,
May 1993.

[GPVD99] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Proto-
col, Version 2. http://www.rfc-editor.org/rfc/rfc2608.txt, June 1999.
RFC 2608.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Com-
puting Surveys, 25(2):73–170, 1993.

[Han87] E. Hanson. A Performance Analysis of View Materialization Strategies. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 440–453, San Francisco, CA, USA, May 1987.

[HBS02] A. Held, S. Buchholz, and A. Schill. Modeling of Context Information for
Pervasive Computing Applications. In Proceedings of the World Multiconfer-
ence on Systemics, Cybernetics and Informatics (SCI), Orlando, FL, USA,
July 2002.

[HCKW90] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A Predicate
Matching Algorithm for Database Rule Systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD),
pages 271–280, Atlantic City, NJ, USA, May 1990.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. http://www.rfc-editor.org/

rfc/rfc2459.txt, January 1999. RFC 2459.

[HHS+02] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The Anatomy
of a Context-Aware Application. Wireless Networks, 8(2-3):187–197, 2002.

[IBM] IBM Web Sphere. http://www.ibm.com/websphere.

94 Bibliography

[ION] IONA Technologies Inc. Orbix. http://www.iona.com/products/orbix.

htm.

[IRRH03] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen. Experiences
in Using CC/PP in Context-Aware Systems. In Proceedings of the Inter-
national Conference on Mobile Data Management (MDM), volume 2574 of
Lecture Notes in Computer Science (LNCS), pages 247–261, Melbourne, Aus-
tralia, January 2003.

[J2E] Java 2 Platform Enterprise Edition (J2EE). http://java.sun.com/j2ee.

[JBo] JBoss Aspect Oriented Programming. http://www.jboss.org/developers/
projects/jboss/aop.

[KH02] W. Kießling and B. Hafenrichter. Optimizing Preference Queries for Person-
alized Web Services. In Proceedings of the IASTED International Conference
on Communications, Internet and Information Technology (CIIT), pages 461–
466, St. Thomas, VI, USA, November 2002.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. An Overview of AspectJ. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), volume 2072 of Lecture Notes in
Computer Science (LNCS), pages 327–353, Budapest, Hungary, June 2001.

[Kie02] W. Kießling. Foundations of Preferences in Database Systems. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages
311–322, Hong Kong, China, August 2002.

[KK04a] M. Keidl and A. Kemper. A Framework for Context-Aware Adaptable Web
Services (Demonstration). In Proceedings of the International Conference on
Extending Database Technology (EDBT), volume 2992 of Lecture Notes in
Computer Science (LNCS), pages 826–829, Heraklion, Crete, Greece, March
2004.

[KK04b] M. Keidl and A. Kemper. Towards Context-Aware Adaptable Web Services.
In Proceedings of the International World Wide Web Conference (WWW),
Manhattan, NY, USA, May 2004. Accepted for publication.

[KKKK01] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. Verteilte Metadaten-
verwaltung für die Anfragebearbeitung auf Internet-Datenquellen. In Pro-
ceedings of the GI Conference on Database Systems for Business, Technology,
and Web (BTW), Informatik Aktuell, pages 107–126, Oldenburg, Germany,
March 2001.

[KKKK02a] M. Keidl, A. Kemper, D. Kossmann, and A. Kreutz. Verteilte Metadaten-
verwaltung und Anfragebearbeitung für Internet-Datenquellen. Informatik -
Forschung und Entwicklung, 17(3):123–134, 2002.

Bibliography 95

[KKKK02b] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A Publish & Subscribe
Architecture for Distributed Metadata Management. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 309–320, San
Jose, CA, USA, February 2002.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming (ECOOP), volume 1241
of Lecture Notes in Computer Science (LNCS), pages 220–242, Jyväskylä,
Finland, June 1997.

[KRW+04] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. H. But-
ler, and L. Tran. Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies 1.0. http://www.w3.org/TR/2004/

REC-CCPP-struct-vocab-20040115, January 2004. World Wide Web
Consortium (W3C), W3C Recommendation.

[KS00] D. Kossmann and K. Stocker. Iterative Dynamic Programming: A New Class
of Query Optimization Algorithms. ACM Transactions on Database Systems
(TODS), 25(1):43–82, 2000.

[KSK02] M. Keidl, S. Seltzsam, and A. Kemper. Flexible and Reliable Web Service
Execution. In Proceedings of the Workshop on Entwicklung von Anwendungen
auf der Basis der XML Web-Service Technologie, pages 17–30, Darmstadt,
Germany, July 2002.

[KSK03a] M. Keidl, S. Seltzsam, and A. Kemper. Reliable Web Service Execution
and Deployment in Dynamic Environments. In Proceedings of the Interna-
tional Workshop on Technologies for E-Services (TES), volume 2819 of Lec-
ture Notes in Computer Science (LNCS), pages 104–118, Berlin, Germany,
September 2003.

[KSK03b] M. Keidl, S. Seltzsam, and A. Kemper. ServiceGlobe: Flexible and Reliable
Web Services on the Internet (Poster Presentation). In Proceedings of the In-
ternational World Wide Web Conference (WWW), Budapest, Hungary, May
2003.

[KSKK03] M. Keidl, S. Seltzsam, C. König, and A. Kemper. Kontext-basierte Personal-
isierung von Web Services. In Proceedings of the GI Conference on Database
Systems for Business, Technology, and Web (BTW), volume 26 of Lecture
Notes in Informatics (LNI), pages 344–363, Leipzig, Germany, February 2003.

[KSSK02] M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper. ServiceGlobe: Distributing
E-Services across the Internet (Demonstration). In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 1047–1050,
Hong Kong, China, August 2002.

96 Bibliography

[KW01] A. Kemper and C. Wiesner. Hyperqueries: Dynamic Distributed Query Pro-
cessing on the Internet. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 551–560, Rome, Italy, September 2001.

[KW04] A. Kemper and C. Wiesner. Building Scalable Electronic Market Places using
HyperQuery-Based Distributed Query Processing. World Wide Web, 2004.
Accepted for publication.

[Ley01] F. Leymann. Web Services Flow Language (WSFL 1.0). http://www.ibm.

com/software/solutions/webservices/pdf/WSFL.pdf, May 2001. IBM
Software Group.

[LH03] C. Lee and S. Helal. Context Attributes: An Approach to Enable Context-
awareness for Service Discovery. In Proceedings of the Symposium on Appli-
cations and the Internet (SAINT), pages 22–30, Orlando, FL, USA, January
2003.

[LHM+86] B. G. Lindsay, L. M. Haas, C. Mohan, H. Pirahesh, and P. F. Wilms. A
Snapshot Differential Refresh Algorithm. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD), pages
53–60, Washington, DC,USA, June 1986.

[LPT99] L. Liu, C. Pu, and W. Tang. Continual Queries for Internet Scale Event-
Driven Information Delivery. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 11(4):610–628, 1999.

[LS99] O. Lassila and R. R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. http://www.w3.org/TR/1999/

REC-rdf-syntax-19990222, February 1999. World Wide Web Consortium
(W3C), W3C Recommendation.

[LS00] H. Liefke and D. Suciu. XMill: An Efficient Compressor for XML Data. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 153–164, Dallas, TX, USA, May 2000.

[Mar99] H. Marais. Compaq’s web language. http://www.research.compaq.com/

SRC/WebL/WebL.pdf, 1999. Compaq Systems Research Center (SRC).

[Men01] G. Menkhaus. Architecture for Client-Independent Web-Based Applications.
In Proceedings of the International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS), pages 32–40, Zurich, Switzerland,
March 2001.

[Mit03] N. Mitra. SOAP Version 1.2 Part 0: Primer. http://www.w3.org/TR/2003/
REC-soap12-part0-20030624, June 2003. World Wide Web Consortium
(W3C), W3C Recommendation.

Bibliography 97

[MJ01] M. B. Møller and B. N. Jørgensen. Enhancing Jini’s Lookup Service Using
XML-Based Service Templates. In Proceedings of the International Confer-
ence on Technology of Object-Oriented Languages and Systems (TOOLS),
pages 19–31, Zurich, Switzerland, March 2001.

[MM03] S. K. Mostéfaoui and G. K. Mostéfaoui. Towards A Contextualisation of
Service Discovery and Composition for Pervasive Environments. In Proceed-
ings of the AAMAS Workshop on Web-services and Agent-based Engineering
(WSABE), Melbourne, Australia, July 2003.

[MRT98] G. A. Mihaila, L. Raschid, and A. Tomasic. Equal Time for Data on the
Internet with WebSemantics. In Proceedings of the International Conference
on Extending Database Technology (EDBT), volume 1377 of Lecture Notes in
Computer Science (LNCS), pages 87–101, Valencia, Spain, March 1998.

[MS03] E. M. Maximilien and M. P. Singh. Agent-based Architecture for Autonomic
Web Service Selection. In Proceedings of the AAMAS Workshop on Web-
services and Agent-based Engineering (WSABE), Melbourne, Australia, July
2003.

[NET] Microsoft .NET. http://www.microsoft.com/net.

[ÖV99] T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Pren-
tice Hall, Englewood Cliffs, NJ, USA, 1999.

[PFLS00] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient Matching for Web-
Based Publish/Subscribe Systems. In Proceedings of the International Con-
ference on Cooperative Information Systems (CoopIS), volume 1901 of Lecture
Notes in Computer Science (LNCS), pages 162–173, Eilat, Israel, September
2000.

[PKC99] PKCS #5 v2.0: Password-Based Cryptography Standard. ftp://ftp.

rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf, March 1999. RSA
Laboratories.

[PKI] Public-Key Infrastructure (X.509) (PKIX). http://www.ietf.org/html.

charters/pkix-charter.html. The Internet Engineering Task Force
(IETF).

[PLdH03] A. J. H. Peddemors, M. M. Lankhorst, and J. de Heer. Presence, Location, and
Instant Messaging in a Context-Aware Application Framework. In Proceed-
ings of the International Conference on Mobile Data Management (MDM),
volume 2574 of Lecture Notes in Computer Science (LNCS), pages 325–330,
Melbourne, Australia, January 2003.

98 Bibliography

[RB03] S. Riché and G. Brebner. Storing and Accessing User Context. In Proceedings
of the International Conference on Mobile Data Management (MDM), volume
2574 of Lecture Notes in Computer Science (LNCS), pages 1–12, Melbourne,
Australia, January 2003.

[RMR00] M. Rodriguez-Martinez and N. Roussopoulos. MOCHA: A Self-Extensible
Database Middleware System for Distributed Data Sources. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 213–224, Dallas, TX, USA, May 2000.

[RV02] E. Rahm and G. Vossen, editors. Web & Datenbanken: Konzepte, Architek-
turen, Anwendungen. dpunkt-Verlag, Heidelberg, Germany, 2002.

[SAT+99] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven,
and W. Van de Velde. Advanced Interaction in Context. In Proceedings of
the International Symposium on Handheld and Ubiquitous Computing (HUC),
volume 1707 of Lecture Notes in Computer Science (LNCS), pages 89–101,
Karlsruhe, Germany, September 1999.

[SBK01] S. Seltzsam, S. Börzsönyi, and A. Kemper. Security for Distributed E-Service
Composition. In Proceedings of the International Workshop on Technologies
for E-Services (TES), volume 2193 of Lecture Notes in Computer Science
(LNCS), pages 147–162, Rome, Italy, September 2001.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based
Access Control Models. IEEE Computer, 29(2):38–47, 1996.

[SG02] J. P. Sousa and D. Garlan. Aura: an Architectural Framework for User Mo-
bility in Ubiquitous Computing Environments. In Proceedings of the Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA), pages 29–43,
Montréal, Québec, Canada, August 2002.

[SMS02] N. Santos, P. Marques, and L. Silva. A Framework for Smart Proxies and
Interceptors in RMI. In Proceedings of the ISCA International Conference on
Parallel and Distributed Computing Systems (ISCA PDCS), Louisville, KY,
USA, September 2002.

[Sto99] M. Stonebraker. Integrating Islands of Information. EAI Journal, pages 1–
5, September 1999. http://www.bijonline.com/Article.asp?ArticleID=

130.

[Suna] Sun Microsystems Inc. The Java Servlet Specification 2.4. http://java.

sun.com.

[Sunb] Sun Open Net Environment (Sun ONE). http://www.sun.com/sunone.

Bibliography 99

[TGNO92] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous Queries over
Append-Only Databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 321–330, San Diego,
CA, USA, June 1992.

[Tha01] S. Thatte. XLANG: Web Services for Business Process Design. http://www.
gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm, 2001. Microsoft
Corp.

[UDD00] Universal Description, Discovery and Integration (UDDI) Technical White
Paper. http://www.uddi.org, 2000. Ariba Inc., IBM Corp., and Microsoft
Corp.

[UPN] Universal Plug and Play Device Architecture. http://www.upnp.org. Mi-
crosoft Corp.

[Wal01] J. Waldo. The Jini Specifications. Addison-Wesley, Reading, MA, USA, 2001.

[WDH+82] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck,
P. Selinger, A. Walker, P. Wilms, and R. Yost. R∗: An Overview of the
Architecture, June 1982.

[WHK97] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Proto-
col (v3). http://www.rfc-editor.org/rfc/rfc2251.txt, December 1997.
RFC 1997.

[WSI03] Web Services Invocation Framework (WSIF). http://ws.apache.org/wsif,
2003. The Apache Software Foundation.

[YGM99] T. W. Yan and H. Garcia-Molina. The SIFT Information Dissemination Sys-
tem. ACM Transactions on Database Systems (TODS), 24(4):529–565, 1999.

	Title Page
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Purpose of this Thesis
	1.2 Outline of this Work

	2 ObjectGlobe - Open and Distributed Query Processing
	2.1 Query Processing in ObjectGlobe
	2.2 Lookup Service and Optimization
	2.3 Quality of Service (QoS)
	2.4 Security and Privacy Issues
	2.4.1 Preventive Measures
	2.4.2 Checks during Plan Distribution
	2.4.3 Runtime Measures

	3 MDV - Distributed Metadata Management
	3.1 Motivation
	3.2 Overview of the MDV System
	3.2.1 Example
	3.2.2 Architecture Overview
	3.2.3 Rule System
	3.2.4 References

	3.3 Publish & Subscribe Algorithm
	3.3.1 Overview of the Approach
	3.3.2 Decomposition of Documents
	3.3.3 Decomposition of Rules
	3.3.4 Filter Algorithm: Matching Documents and Rules
	3.3.5 Updates and Deletions

	3.4 Performance Experiments
	3.5 Related Work

	4 Deployment of MDV within ObjectGlobe
	4.1 MDV Lookup Service
	4.1.1 ObjectGlobe's Metadata
	4.1.2 Using the MDV Lookup Service

	4.2 MDV Security Provider
	4.2.1 Architecture of the MDV Security Provider
	4.2.2 Distribution of Authorization Constraints
	4.2.3 Internal Security Systems of Providers

	5 ServiceGlobe - Open and Distributed Web Services
	5.1 Motivating Scenario
	5.2 Web Services Fundamentals
	5.2.1 The SOAP Standard
	5.2.2 The UDDI Standard
	5.2.3 The WSDL Standard

	5.3 Architecture of ServiceGlobe
	5.4 Related Work

	6 Dynamic Service Selection
	6.1 Overview of the Approach
	6.2 Constraints
	6.3 Combination of Constraints
	6.4 Evaluation of Constraints
	6.4.1 Preprocessing of Constraints
	6.4.2 Invocation of Web Services

	6.5 Related Work

	7 Context-Aware Adaptable Services
	7.1 Motivation
	7.2 Motivating Scenario
	7.3 Context for Web Services
	7.3.1 Context Infrastructure
	7.3.2 Life-Cycle of Context Information
	7.3.3 Context Processing
	7.3.4 Context Processing Instructions

	7.4 Context Types
	7.5 Related Work

	8 Conclusions and Future Work
	Bibliography

