
Institut für Informatik der Technischen Universität München

Lehrstuhl für Informatik XI

Social Relationship Management in Internet-based Communication
and Shared Information Spaces

Michael Galla

Institut für Informatik der Technischen Universität München

Lehrstuhl für Informatik XI

Social Relationship Management in Internet-based Communication
and Shared Information Spaces

Michael Galla

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

 Vorsitzender: Univ.-Prof. Rudolf Bayer, Ph.D.

 Prüfer der Dissertation: 1. Univ.-Prof. Dr. Johann Schlichter

 2. Univ.-Prof. Dr. Florian Matthes

Die Dissertation wurde am 21.01.2004 bei der Technischen Universität München eingereicht und durch die
Fakultät für Informatik am 28.04.2004 angenommen.

All references to web resources (URLs) both in the main parts and in the bibliography have been verified at
January 07, 2004, unless otherwise noted.

Abstract

Communication and collaboration based on the internet are important factors in business, research,
and everyday life. The term virtualization denotes the phenomenon that more and more aspects of
our lives take place online. In today’s markets, companies have to be quick and flexible in order to
be successful. One of the strategies to achieve this is the virtualization of organizations, leading to
the abolishment of classical spatial and temporal constraints and to a greater flexibility. The dynamic
collaboration of small, modular organizational units is the key idea of this strategy. The partnering
problem becomes the pivotal point in such organization networks, raising the question of how to assess
the trustworthiness of personally unknown potential partners.

Similarly, in online auction houses, customers often do not know whether to trust vendors with
respect to the quality of the goods offered. Traditionally, such problems are solved by exploring
the personal social network and looking for trusted persons who know the person or organization in
question. Yet, due to the increasing variety of communication media, it is difficult to keep aware of
all people in one’s personal social network. Therefore it is necessary to support the management of
social relationships.

The goal of this thesis is the development of a general framework for social relationship manage-
ment. Starting from observations concerning the aforementioned virtualization tendencies, this work
examines internet-based communication and shared information spaces with respect to the kinds of
social network data that can be extracted from them. Existing approaches to social relationship man-
agement are discussed. Such systems, however, concentrate on only one or very few kinds of social
relationships and thus only manage special aspects of a user’s social network. Therefore, a general
representation of social relationships is needed which allows for the combination of various kinds of
relationships and sources of social network data.

On the basis of this analysis and the characterization of social relationships in terms of sociology,
this work introduces a formal model of social relationships based on semantic web technologies. The
main design goals of this formalization are fostering interoperability, independence from proprietary
applications, extensibility, and integration of privacy protection.

Building upon the formalization of social relationships, a multiagent system for distributed re-
lationship management is developed. Agents act on behalf of one or several persons and exchange
relationship information in order to answer queries initiated by their users or by applications. Three
query types can be distinguished:

• Exploring the social network up to a certain depth

• Checking if a relationship chain with certain characteristics from one person to another exists

• Retrieving relationship chains with certain characteristics from one user to another

With the help of these three query types both the problem of how to get a trusted estimation of another

iii

iv

person’s reputation and the problem of how to keep aware of all people in one’s personal social
network can be solved.

The concepts developed in this work have been prototypically implemented and represent a com-
prehensive solution of the aforementioned problems of social relationship management in internet-
based communication and shared information spaces.

Acknowledgements

This work emerged from my activities as a research assistant at the chair for Infomatics XI: Applied
Informatics / Cooperative Systems (Prof. Schlichter) at Technische Universität München.

First and foremost, I would like to thank Prof. Dr. Johann Schlichter for giving me the opportunity
for this work and for many helpful comments and suggestions, which have been substantial for the
success of this work. I would also like to thank the second referee, Prof. Dr. Florian Matthes, for
helpful comments.

This work could not have been done without the countless, fruitful discussions with my colleagues.
I am grateful for an excellent and friendly working atmosphere and effective cooperation. Special
thanks go to Georg Groh for bearing my countless disturbances and to Dr. Wolfgang Wörndl for
viewing a preliminary version of this thesis.

I would also like to thank Helmut Schönenberger and all other staff members of UnternehmerTUM
GmbH, for the excellent cooperation. Furthermore, I am indebted to Claudia Moranz and Michael
Wagner for discussing psychological and economical aspects of this work.

Finally, I would like to thank Marion Br̈oer for proofreading and giving suggestions for improving
my English.

v

vi

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Virtualization . 2
1.3 Online Auction Houses and Information Systems 4
1.4 Reputation Systems . 5
1.5 Social Networks and Social Awareness . 6
1.6 Goals and Roadmap of this Work . 7

1.6.1 Supporting the User in Assessing the Reputation of Other Users 7
1.6.2 Structuring the Personal Social Network . 8
1.6.3 Roadmap of this Work . 9

1.7 Thesis Structure . 9

2 Social Networks 13
2.1 The Sociological Perspective on Relationships . 13
2.2 Strong Ties and Weak Ties . 16
2.3 Algebraic Properties of Relationships . 16
2.4 Groups . 17
2.5 Networks of Networks . 19
2.6 Collecting Data about Relationships . 20
2.7 Conclusions . 21

3 Internet-based Communication and Shared Information Spaces 23
3.1 Classification of Groupware Systems . 23
3.2 Communication . 25

3.2.1 Email . 25
3.2.2 Usenet . 29
3.2.3 Visualizing Usenet Relationships . 32
3.2.4 Instant Messaging . 36

3.3 Shared Information Spaces . 37

vii

viii Contents

3.3.1 Hypertext Systems, Wikis, and Weblogs . 37
3.3.2 Supporting Virtual Communities . 38

3.4 Workflow Management . 47
3.5 Workgroup Computing . 49
3.6 Related Work . 50
3.7 Conclusions . 52

4 Basic Technologies of the Semantic Web 55
4.1 The Semantic Web Layer Cake . 55
4.2 The Resource Description Framework . 57

4.2.1 RDF Models . 58
4.2.2 Blank Nodes in RDF Graphs . 59
4.2.3 Typed RDF nodes . 59
4.2.4 RDF/XML Serialization . 59

4.3 RDF Schema . 60
4.4 The Web Ontology Language . 61

4.4.1 OWL Syntax . 62
4.4.2 OWL Class Descriptions . 62
4.4.3 OWL Class Axioms . 63
4.4.4 OWL Properties and OWL Property Axioms 63
4.4.5 Practical OWL — Software Packages Supporting OWL 64

4.5 The Semantic Web and Social Relationships . 64

5 Formalizing Relationships 67
5.1 Modeling Social Relationships . 67

5.1.1 Modeling Relationship Types . 69
5.1.2 Representing Persons . 72
5.1.3 Representing Groups . 74
5.1.4 Social Relationships Based on User Profile Comparisons 75

5.2 Which Formalism to Use? . 79
5.3 An OWL Vocabulary for Modeling Social Relationships 80

5.3.1 Persons and Groups . 81
5.3.2 Types of Relationship . 82
5.3.3 Strength of Relationships and Profile Relations 84
5.3.4 Algebraic Properties . 86
5.3.5 Attributes . 86
5.3.6 Age of Relationship Information and Expiration 87
5.3.7 Equivalence of Relationship Information 87
5.3.8 Relationship Information Templates . 88
5.3.9 Inference . 89

5.4 Extension of the OWL Ontology . 89
5.4.1 Preliminary Remarks on the Transformation T 90
5.4.2 Symmetry . 91
5.4.3 Transitivity . 91
5.4.4 Antisymmetry and Asymmetry . 92

5.5 Basic Types of Relationship . 93
5.5.1 Remarks on the Type Hierarchy . 95

Contents ix

5.5.2 Examples of Formalizations . 96
5.6 Conclusions and Intermediary Results . 98

6 Distributed Relationship Management 99
6.1 Distributed Relationship Information . 99
6.2 Storing and Accessing User Profiles . 101
6.3 Identity Federation . 103
6.4 The Relationship Management Extension . 105
6.5 Privacy . 107

6.5.1 Basic Principles of Access Control . 108
6.5.2 Rule-based Privacy Management for Relationship Information 108
6.5.3 Relationship-centric Access Control in Other Applications 112

6.6 A Multiagent System for Relationship Management 112
6.6.1 Software Agents . 112
6.6.2 General Purpose and Design of the Multiagent System 113
6.6.3 Overall Behavior and Communication of User Agents 115
6.6.4 Agent-internal Processing of Requests and Resolution of Access Rules . . . 118

6.7 Summary and Applications . 124
6.7.1 Supporting Users in Assessing the Reputation of Other Users 124
6.7.2 Structuring the Personal Social Network . 126

6.8 Comparison with Existing Approaches . 126

7 Implementation — The InReM Framework 129
7.1 The InReM Framework . 129

7.1.1 Relationship Type Management . 130
7.1.2 Ontology Management . 130
7.1.3 Person Management . 132
7.1.4 Relationship Information Management . 132
7.1.5 Privacy Management . 133
7.1.6 RM extensions . 133

7.2 InReM Agents — Distributed Relationship Management 133
7.3 Prototypic Integration of InReM with Applications 136
7.4 Experiences with the Prototypic Implementation . 138

8 Conclusions and Future Prospects 141
8.1 Summary . 141
8.2 Future Prospects . 142

8.2.1 User Interfaces for Relationship Management 143
8.2.2 Security . 147
8.2.3 Anonymity and Identity/Pseudonymity Management 148
8.2.4 Concluding Remarks . 148

A The Relationship Ontology 151

B The Rule Vocabulary 159

Bibliography 163

x Contents

Index 175

List of Figures

1.1 Anytime/Anyplace matrix . 2
1.2 Forming of a virtual organization . 3
1.3 Roadmap of this thesis . 9
1.4 Thesis organization . 10

2.1 n-cliques,n-clans andn-clubs . 18
2.2 A network of networks . 20

3.1 Classification schema for CSCW applications . 25
3.2 A Usenet message posted to the newsgroupde.rec.outdoors 31
3.3 Reciprocated reply-relationships in the newsgroupde.rec.outdoors (GraphGr) 34
3.4 Unilateral reply-relationships in the newsgroupde.rec.outdoors (GraphGd) . 35
3.5 Cobricks data concepts and relations between them 42
3.6 Excerpt from a Cobricks user profile model definition 43
3.7 Evaluation of user attributes in Cobricks . 44
3.8 Category forest of the TUM entrepreneurship community www.UnternehmerTUM.de

(excerpt) . 45
3.9 Cobricks community support system architecture overview 48

4.1 Layers of the semantic web . 56
4.2 A simple RDF model. 58
4.3 Two approaches to representing social relationship in RDF. 65

5.1 The refined version of Peay’s measure is not associative 71
5.2 User IDs and abstract persons on the internet . 73
5.3 RDF graph of a Cobricks user profile based on the profile model shown in Fig. 3.6

(excerpt) . 76
5.4 RDF graph of a group definition . 82
5.5 RDF graph of an email-communication relationship 85
5.6 Hierarchy of methods for obtaining the strength of a relationship 85
5.7 Transformation for evaluating algebraic properties of relationships 92
5.8 Hierarchy of relationship types . 94
5.9 Roadmap of this thesis and intermediary results . 98

6.1 Sources of relationship information and exchange of relationship information among
several agents . 100

6.2 An identity management network . 102

xi

xii List of Figures

6.3 Global and local user ID . 104
6.4 General state diagram illustrating the processing of an RI request between two agents 109
6.5 Two examples of domain definitions for access rules 111
6.6 RDF representation of an access rule for relationship information 111
6.7 Types of agents in the relationship management multiagent system 114
6.8 Message flow following a query from agent 1 to agent 2 117
6.9 Internal structure of a user agent . 119
6.10 Evaluation of access rules . 120
6.11 Example of a (simple) social network between three persons. 122
6.12 Example of an access rule . 123
6.13 Roadmap of this thesis and intermediary results . 124

7.1 UML diagram of the main interfaces in the de.tum.inrem package 131
7.2 Interaction ofRelationInformationManager andPrivacyManager . . . 134
7.3 Screenshot of the prototypic InReM agent implementation 135
7.4 Prototypic integration of InReM with the Cobricks community support system 137

8.1 Geometric zoom (left) and semantic zoom (right) 145
8.2 Fisheye distortion . 145
8.3 Hyperbolic tree visualization in 3D . 146
8.4 An example cluster map . 147

List of Tables

3.1 Ties derived from an email header . 28
3.2 Kinds of social relationships in groupware and communityware 53

5.1 Allowed combination of algebraic properties of subtypes and supertypes 72
5.2 Operators allowed in the profile relation . 77
5.3 Grammar for profile relations . 78

6.1 An access control matrix for two subjects and four objects 108

xiii

xiv List of Tables

Chapter 1

Introduction

Communication and collaboration based on the internet are important factors considering busi-
ness, research, and everyday life. However, the personal social network of people, which con-
stitutes an important aspect of social interaction still lacks exhaustive technical support. This
chapter presents a quick overview of problems and perspectives of interpersonal relationship
management and related support systems.

1.1 Background

Modern communication systems, first of all the internet and related applications, offer a variety of new
possibilities for designing communication and cooperation. In the course of this ongoing development
distributed forms of collaboration and organization increasingly gain importance: Classical questions
about the optimal location for companies cannot be given a unique answer — some reasons for this are
the intensification of resource dependencies of companies, changes of ecological or political general
conditions and decreasing costs of telecooperation technologies that cause a re-evaluation of the four
target dimensions costs, time, quality and flexibility (Picot et al., 1996, pp. 262). Spatial distribution
of today’s companies is as often a consequence of this process as of the extended access to human
resources: the production of resources which can be transferred via telecommunication technologies
can easily be spatially outsourced, as can be observed in the field of software development. Caused by
the increasing re-focussing of companies on their core competencies we can observe a trend towards
modularization (Picot et al., 1996, parts 5 and 6) which also often leads to spatial distribution of the
modules. This culminates in the vision of thevirtual organization, which will be discussed in more
detail later in this work.

Also classical constraints of time are dissolved by the possibility of a company’s spatial distribu-
tion. Building upon telemedia, global acting companies can offer their services round-the-clock or
speed up their processes by exploiting different time zones. Besides, Krüger (1999) postulates an in-
creasing shift of competition for temporal head-starts and recognizes speed as one basic precondition
for market leadership.

Against this background, telemedia offer new organizational scopes for design and at the same
time impose the need of developing usage strategies. A basic systematization is presented by the
“Anytime/Anyplace matrix” (Fig. 1.1), which differentiates four types of situations according to the
spatial and temporal distribution of the actors. Section 3.1 presents a more detailed discussion of the
different CSCW (computer-supported cooperative work) systems.

1

2 Chapter 1. Introduction

��
�
��
���
�

�
�	
	�

�
��
��
�
��

�
�		
�

��
���
��
�

�
�		
�

��
���
�
��

��
�
��
���
�

��
�
��
�
��
�

�
�		
�

��
���
��
�

��
�
��
�
��
�

�������

�������
�������

�������

� �����

� ���������

� �������
����	�
������

� ���������
�������

� ���
������������

� ��
 ��������

� !���������
��

� "��� �

� #����
����
� ��������	���

� ��������
��

� �������
��

� �������
��
�$����
�

� �����

� %�
����
�������������

� #�����������	�
������

� #&��&���'����

� (��������
�������
���

� ��������	�
�����

����� ��

����
����

���
��

Figure 1.1: Anytime/Anyplace matrix (Reichwald et al. (2000, p. 7) according to O’Hara-Devereaux
and Johansen (1994))

1.2 Virtualization

Building upon telemedia, many new concepts of organization and work structuring have been devel-
oped which heavily depend on the dissolution of spatial and temporal constraints. Some of these
concepts are commonly subsumed under “virtual organization”, though mainly two different comple-
mentary approaches can be distinguished (according to Reichwald et al., 2000, p. 254):

• According to the first approach, virtualization aims at the emergence of virtual realities, which
allow for the replacement of concrete objects with electronic media, and makes it possible
that places of employment, organizational structures, and companies overcome their physical
constraints.

• The second approach in contrast focusses on virtualization as an organizational strategy which
aims at increasing the dynamics of formal organizational structures and establishing a flexible
network of workplaces, organizational units, and organizations.

If virtualization is particularly seen as a strategy to combine both approaches to form a new architec-
tural paradigm for organizations, this proves to be a sustainable competitive strategy, as spatial and
temporal constraints dissolve and the realization of complex coordination mechanisms is therefore less
costly. This strategy offers an increase of capacities and flexibility. The following section presents a
summary of this strategy, following the more detailed discussions of Reichwald and Möslein (1996,
1999).

Realization principles for virtual organizations. The starting point of every virtual organization
is a concrete task whose solution requires the combination of individual resources from the network

1.2. Virtualization 3

��������	
�������

��������	
�������

��������	
������ ��������	
���������������	
�������

��������	
�������

��������	
�������

��������������

��
��������	
���������
�����
�������	
���������

�������

�������

�	
���

��	���
��	�����

��������	
������� ��������	
�������

A virtual company is initiated by a customer order. For solving the customer order, suitable companies associate
to the virtual company. In some cases, a leading company is selected which takes responsibility for successful
completion of the order.

Figure 1.2: Forming of a virtual organization, according to Wüthrich et al. (1997, p. 102)

forming the basis for virtual organizations. Usually the completion of each task only requires a part
of the network. Once configured, each participant of such an organization contributes his own profile
of skills and qualities to the solution of the initial problem. Referring to the whole network this may
lead to an increase of capacities. Figure 1.2 illustrates the forming process of virtual organizations.

Virtual organizations are chiefly characterized by three realization principles concerning their
main characteristics modularity, heterogeneity, and spatial and temporal distribution: According to
theopen-closed-principlea virtual organization appears at the market as a self-contained unit, in spite
of its internal modular and open structure. The customer perceives a company which exactly matches
his specific needs, although the forming process of the virtual organization is not apparent for the cus-
tomer and does not take place until the problem solving process begins. The modular units of the so
formed organization supplement complementary competencies. This is reflected in thecomplementar-
ity principle. Finally, the concealment of the organization’s modularity is mirrored in thetransparency
principle, as is the concealment of the localization and time flow of the problem solution.

Design objectives of virtual organizations. The aim that the virtualization of organizations pur-
sues, is flexibility. The approach of virtual organizations to achieve flexibility differs from classical
flexibilization strategies insofar as it questions the constancy of the whole organizational structure,
whereas classical flexibilization strategies stick to the organizational structure and try to achieve im-
provements and better adaptability under constant general conditions. “Virtual size” in spite of “real
smallness” (Reichwald and M̈oslein, 1999) is one of the main benefits which helps virtual organiza-
tions to gain flexibility. Because of the open-closed principle, a virtual organization possesses size
when acting on the market and at the same time takes advantage of the flexibility of its small modular

4 Chapter 1. Introduction

subunits. But size is not only important when acting on the market. Size is also a precondition for
investments in technologies and innovation, which become increasingly important under the general
conditions of globalization of economic activities.

Owing to their heterogeneity, virtual organizations can achievegeneralism in their external activ-
ities, though their internal modular subunits can benefit from high specialization.Internal specializa-
tion mainly offers cost benefits and advanced efficiency.

Limits of virtualization. Telemedia allow virtual organizations to go beyond many boundaries.
Nevertheless this organizational form also has its limits. According to the principal-agent problem
(e.g. Reichwald et al. (2000), p. 53 et sqq., or Picot et al. (1996)) the quality of service, efforts, and
possibly hidden intentions of the partner are usually not verifiable in employer-contractor or employer-
employee interactions when information is not uniformly distributed. Traditionally the resulting need
for safeguarding is satisfied by formal contracts, whereas virtual organizations tend to avoid such
contracts for time saving reasons and try to providetrust as a substitute for formal contracts. This
makes trust the crucial coordination mechanism of virtual organizations and at the same time imposes
substantial constraints on virtual organizations. The main problem now is how to establish long-term
stable trust relationships in the dynamic and transient structures of virtual organizations (Koch et al.,
2000). In other words, aninformation problemconsisting in the difficulty of reliably assessing the
partner’s promises, credibility and reliability can be observed. Of course there are many other factors
imposing boundaries for virtual organizations, e.g. legal insecurity or the problem of building a high-
quality information base, which is a precondition for virtual organizations1. This thesis, however, will
focus on relationship aspects.

1.3 Online Auction Houses and Information Systems

Apart from the organization strategy of virtualization another aspect of modern telemedia’s influence
on interpersonal interaction and communication shall be sketched in this section: transactions in on-
line auction houses and the exchange of information in information systems based on the internet.

Online auction houses2 provide a platform on the internet where their clients can buy and sell
goods in an auction manner (Kollock, 1999). The platform provider just acts as a mediacy and does
not himself accept any responsibility for correctly carrying out transactions between vendors and
buyers — though of course there usually are terms of use which all users have to agree with before
they may use the platform. Similar to the discussion in the preceding sections partners often encounter
the problem of not knowing one another when initiating a transaction and therefore are faced with the
risk that the partner might not comply with promises given before (e.g. concerning the quality of
service). As spatial distances are often large between such partners, the truthfulness of these promises
usually cannot be verified before the deal is accomplished.

A similar problem exists in open information systems, which offer their users the possibility to
publish information which will then be accessible for other users. Examples of such systems are
recommender systems and opinion platforms3 (Koch et al., 2000; Resnick and Varian, 1997). The

1Especially the initiation phase of virtual organizations was subject of a research project of the munich tech-
nical university (Technische Universität München, project TiBiD). One main focus of research was the importance
of trust in the initiation phase and the development of tools for supporting the initiation of long term relationships
(cp. http://www.telekooperation.de/tibid/).

2e.g. http://www.alleauktionen.de, http://www.ebay.de, http://www.ricardo.de (closed for auctions since November 17,
2003), http://www.intoko.de

3e.g. http://www.dooyoo.de, http://ciao.de

1.4. Reputation Systems 5

reliability of the information published by other users in such systems can often not be verified objec-
tively. Many online auction houses and opinion platforms therefore offer mechanisms for assessing
transaction partners or information published by other users. Some of these mechanisms are subsumed
underreputation systems, which will be subject of the following section.

1.4 Reputation Systems

The enormous amount of information in large information systems such as the internet (and systems
building upon it) often leads to problems of how to choose relevant information for the respective task.
A lack of time or simply the costs associated with an extensive search often makes it inefficient to scan
all available information for their relevance with respect to the current problem. In some situations
this might even be impossible as holds true for online auction systems (see above).

In order to make the choice of relevant and reliable information easier, many service providers
like the online auction house eBay4 deploy reputation systems. Such systems try to give an objective
assessment of the reliability of information items or the author of those items (Kollock, 1999): at
eBay registered users can offer items for sale by auction. Each user is identified by a pseudonym he
may choose himself. After the completion of a transaction both users have the opportunity to rate the
transaction partner with respect to his reliability. Ratings may be positive or negative. Positive ratings
are added to an account associated with the user, whereas negative ratings are subtracted from this
account. Other users can view the user’s current account balance at all times, which is visualized by a
star whose color reflects the total number of positive ratings given to the user. Each rating should also
contain a natural language comment. All such comments for one user can be accessed on a detailed
page which lists all comments and displays the number of positive ratings the respective user received
from other users.

Although reputation systems are widely used, they entail a number of problems. First of all,
persons whose reputation is mainly negative are seldom found (Koch et al., 2000), which may be due
to the ease a user can get a new pseudonym for the respective service with. One possible solution
is to display a pseudonym annotated with its age always. This problem is discussed more deeply by
Friedman and Resnick (2000) and will not be subject of this thesis.

Another problem with reputation systems is how to avoid unfairly high ratings and unfairly low
ratings: users might give one another or — via creating a second pseudonym for the same service —
even themselves unfairly high ratings. Likewise it is possible that one person or a group of persons
knowingly provide unfairly low ratings to other users in order to affect the reputations of those. These
problems can partly be faced by hiding the mapping of pseudonyms to users and assigning random
pseudonyms for each login, which makes providing unfair ratings more difficult. Besides, cluster
algorithms may be used to filter out unfairly high ratings. Both approaches, however, have some
limitations. For example, it may not be possible in all use-cases to hide a users true identity by
assigning random pseudonyms. For a more detailed discussion of both approaches and their limits the
reader is referred to Dellarocas (2000).

As a different method of resolving the problems mentioned above a reputation system might only
consider ratings from users the user seeking information has positive experiences with when calculat-
ing the reputation of the user in question (Abdul-Rahman and Hailes, 1999). Lueg (1997) suggests
that recommender systems should pay more attention to the social context and especially to the rela-
tionship between the authors of the ratings and the recipient of the ratings.

4http://www.ebay.de

6 Chapter 1. Introduction

Furthermore it is possible not to represent the rating itself but suggest possible information sources
the seeking user has some relationship with (Granovetter, 1973). A support system implementing this
approach focusses on collecting and structuringrelationship information5 between persons. Informa-
tion sources can be email or transaction histories, but the analysis of publicly available newspaper
articles or websites is also valuable with respect to inferring relationships between persons (Kautz
et al., 1997a,b). The added value of a system like this consists in simply suggesting whom to ask in
order to get the information needed. It is remarkable that indirect relationships — i.e. chains of direct
relationships — can be integrated into this approach. Developing a general framework forstructuring
and visualizing the personal social networkin communication systems and shared information spaces
is the primary goal of this thesis.

1.5 Social Networks and Social Awareness

All approaches mentioned before have in common that they rely on interpersonal social networks. In
the field of virtual organizations the social network is that between employees or decision-makers,
or the social network between modular units or organizations themselves. The ties between persons
or organizations consist in communication relationships, cooperation histories, personal or business
acquaintances, formal or legal general conditions, interdependencies, etc. A similar list may be dis-
posed concerning the social network between users of an online auction house, whereas the attention
may be turned to relationships between persons concerning ratings and transactions, including their
histories. These aspects have partly been given consideration in existing implementations, including
the acquisition and the evaluation of transaction histories and interdependencies between vendors and
buyers in online auction houses, the management of trusted key relationships in encryption systems
like PGP6, the extraction of information indicating interpersonal relationships from public documents
in Referral Web (Kautz et al., 1997b), and the management of public or private buddy lists in virtual
communities7 and instant messaging systems8.

The term relationship has been mentioned several times in the preceding sections without giving
an exact definition. Chapter 2 deals with this term and related topics in more detail. The examples
mentioned above may be seen as systems for management and evaluation of specififc interpersonal
or interorganizational relationships. It is important to put emphasis on the word “specific”: so far
there are no approaches dealing with the information problems mentioned above in an exhaustive
manner. Instead, those approaches focus on a specific application. This thesis tries to contribute to
an exhaustive approach that takes into account interdependencies, interactions and communications
in networks of persons in a more abstract manner, and is thus not restricted to one specific application
area or support system.

Besides, it should not be overlooked that the analysis of social networks and their formalization
and evaluation is also relevant in other application areas than that of seeking reliable information:
sociometry, for example, deals with the analysis of relationships in groups of persons from the point of
view of educational and industrial psychology. In applications supporting knowledge management an

5In this thesis, the term “relationship information” is used to denote data describing a relationship between two persons
in an abstract manner. In contrast, the term “social network data” used by sociologists refers to concrete data obtained by
measuring certain properties of network ties. Social network data can often be used for inferring relationship information.

6PGP uses a common hybrid encryption system where an asynchronous method is used for the exchange of a secret
session key which is used for symmetric encryption of the message. Public keys can be signed by other persons in order to
prove their trust in that public key.

7A more detailed discussion of virtual communities will be presented in Sect. 3.3.2.
8Instant messaging systems will be discussed in Sect. 3.2.4.

1.6. Goals and Roadmap of this Work 7

analysis of “Who knows who?” and “Who knows who knows who?” are of interest (Contractor et al.,
1998). Sociology investigates the “small world problem”, whose aim is the analysis of the length
of relationship chains between a starting person and a target person9 (Wasserman and Faust, 1994,
p. 53). Nardi et al. (2002) report on a study suggesting that personal social networks increasingly gain
importance for accomplishing work. At the organizational level, personal social networks are used for
tasks like labor recruiting, partnering and information access. At the individual level social networks
are relevant for finding new job opportunities and gathering information. In more detail, some of the
tasks people reported in the study of Nardi et al. include:

• Remembering who was in their social network, particularly people who were important, but
were contacted infrequently

• Remembering connections between different people in the network

• Remembering which documents had been exchanged with whom and when

For an individual user not only these social networks are important, but also his own embeddedness
in and perception of them (Boyd, 2002, p. 60):

Self-awareness allows users to understand who they are in a particular environment, how facets
of their identity are manifested and aggregated, how other people and sites can see them. Such
awareness places an individual within the society at large, in relation to other people.

Taking into account these problems, it is obvious that improved support tools for managing per-
sonal social networks are needed.

1.6 Goals and Roadmap of this Work

This thesis aims at contributing to an exhaustive approach for solving the information problems in
social networks mentioned above. A formalization of interpersonal relationships is suggested, which
can serve as a basic technology for interoperable relationship management in distributed communica-
tion and collaboration environments. Relationship information is information describing the personal
social network of a person — i.e. that person’s ties to other persons. Services and applications may
collect relationship information during their use. For example, email-clients might extract relationship
information from incoming and outgoing emails. The term interoperability suggests that relationship
information can be exchanged between different systems. In particular relationship information col-
lected by one service may also be used by other services. Apparently it is essential to provide means
for transporting also thesemanticsof relationship information between different systems. This thesis
suggests a solution inspired by semantic web technologies: The Resource Description Framework
(RDF) and the Web Ontology Language (OWL) will play an important role in the representation of
relationship information. In more detail, this work addresses the application scenarios described in
the following two subsections.

1.6.1 Supporting the User in Assessing the Reputation of Other Users

In online auction houses or online market places, a user who is interested in buying an item from a
vendor needs information about the vendor’s reputation. In contrast to the classical approach of com-
municating the reputation of the vendor by collecting ratings from other users, this work suggests not

9The small world research project of the department of sociology of the Columbia University offers the opportunity of
taking part in a small world experiment: http://smallworld.sociology.columbia.edu.

8 Chapter 1. Introduction

to transport an indicator of the reputation but to find people who can give an assessment of the vendor
and with whom the buyer has a (possibly indirect) relationship. For that purpose, the relationship
management system explores the social network of the buyer and tries to find a relationship chain to
the vendor. The buyer should be able to define additional preferences like the kind of relationship to
be included or the maximal length of the chain. Relationship chains that have been found by exploring
social networks may either be directly used as a proof of trust in the vendor (e.g. if the relationship
chain is a chain of trust relationships), or of contacting a trusted person who knows the vendor in order
to ask for a rating of the vendor. A modification of the second approach is to assign weights to ratings
of persons to whom a relationship chain of a certain kind can be found and to give higher weights to
ratings originating from people with a close relationship to the buyer. This approach leads to a higher
reliability of the cumulative rating of a vendor.

To summarize, the task a relationship management has to resolve in this scenario is:Given a
personx and a persony, find a relationship chain of maximum lengthn from x to y and take into
account only relationships of a certain kind.

1.6.2 Structuring the Personal Social Network

Tendencies of virtualization of traditional organizational structures lead to high dynamics of people’s
environments. Social networks become more and more important and replace traditional hierarchies.
As reported by Nardi et al. (2002),

people rely heavily on their ownpersonal social networksto accomplish work. At the organiza-
tional level, personal social networks are activated for labor recruitment, partnering, and informa-
tion access [...]. At the individual level, people exploit their networks to advance their own careers
through finding new job opportunities and gathering information.

Recognizing the increasing importance of “networking”, Nardi et al. (2002) identified “expensive”
frequent tasks in networking. Some of these are the following.

• Remembering who is in one’s social network — particularly people who are important but
contacted infrequently

• Remembering relationships between people in the network

• Remembering which documents have been exchanged with whom and when

• Using multiple communication media easily

For this work, this boils down to the following tasks and requirements:

• Starting from a personx, recursively explore the social network of that person up to a certain
depth.

• In the preceding task, allow for the restriction to special kinds of relationship.

• Integrate relationship information of heterogeneous kinds that involves multiple communication
media. Integrate relationship management with communication media.

1.7. Thesis Structure 9

examine
application area,
view existing
approaches

understand
social
relationships

generate
requirements,
define model and
formalization

design solution
for distributed
relationship
management

Chapter 2 Chapters 3 and 4 Chapter 5 Chapter 6

evaluate
approach by
prototypic
implementation

Chapter 7

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 1.3: Roadmap of this thesis

1.6.3 Roadmap of this Work

On the basis of the two scenarios discussed above, a roadmap for this thesis can be set up, which is
shown in Fig. 1.3. At first, it is necessary to understand the concept “social relationship”. Questions
herein are: how are social relationships characterized? What different kinds of social relationships are
there? How can social relationships be measured?

Since this work addresses internet-based communication media and shared information spaces as
its primary application area, as a second step social relationships in such systems must be examined.
Which kinds of relationship do occur and where, how can specific kinds of relationship be measured,
are questions addressed in this step.

On the basis of sociology and the application area, requirements for a formalization of relation-
ships can now be defined. A model for social relationships must be developed on the basis of these
requirements and implemented by choosing a suitable formalism. This is done in step 3.

Step 4 deals with the management of relationship information. Step 3 has definedwhat is man-
aged, whereas in step 4, mechanisms forhow it is managed must be developed.

Finally, an evaluation is done by prototypically implementing the core concepts of this work.
This work doesnot address the design of user interfaces. This aspect is, however, very important,

because the technologies developed in this work turn out to be very complex. Future work must bridge
the gap between high complexity and expressive power on the one hand, and a good usability and high
security on the other hand.

1.7 Thesis Structure

This work is organized as follows (cf. Fig. 1.4): After presenting basic sociological notions for
describing social relationships in Chapt. 2, Chapt. 3 gives a brief overview about computer-supported
cooperative work and community support systems. Special attention is paid to the importance of
managing relationships between users of such systems, and to the question which systems generate
or use information about relationships. Internet-based communication and shared information spaces
are the primary application area of this work.

Recently, the vision of the semantic web has become more and more popular in the world wide
web community. Research on the semantic web aims at developing a rich framework which allows
for higher expressiveness and improved automatic processing in the world wide web. Chapter 4 deals
with technologies and visions of the semantic web, how these technologies can be applied to the
management of relationships, and why it is useful to model relationships in the semantic web.

Based on the discussion of the application area, Chapt. 5 focuses on developing a model for in-

10 Chapter 1. Introduction

���������	�
������������������

�����	��
���	��������

�����	��
���������������������������	�����	�

�����	��
����	�
��������������������� �����

�����	�!
����	����
����������������������

"�	�������	�������"�����

�����	�#
��	����$�� �������������

�����	�%
&������������ ����������"�������

'�

�����	�(
"������)����	��

�����	�*
��������������������	��+	�������

Figure 1.4: Thesis organization

1.7. Thesis Structure 11

terpersonal relationships. As mentioned before, technologies developed in the research area of the
semantic web will be of use here. Ontology languages provide means for modeling domain theories
which can be used for describing relationships. As an intermediary result, a relationship ontology vo-
cabulary is defined offering the possibility of exchanging relationship information between different
systems. Most notably, the relationship ontology vocabulary allows to express important characteris-
tics of the relationship types.

Every person usually interacts with several systems. This even holds true when concentrating on
one interaction partner: two people may use the email client of their own choice for sending emails
to one another. At the same time these two people may use a shared group calendar for arranging
meetings. As shown by this example, social network data concerning one person is usually distributed
among several applications. Besides, there are services which need relationship information about
groups of persons. The need to develop mechanisms allowing to draw conclusions in a distributed
relationship information knowledge base is obvious, therefore Chapt. 6 deals with this problem. As a
solution, the chapter suggests a multiagent system where each user possesses his own personal rela-
tionship information agent. The system also includes mechanisms for protecting personal relationship
information against illegitimate access. The formalization of relationships itself can contribute to
solving this problem. Traditional methods for privacy protection usually use artificial concepts like
groups or access tickets, which have to be explicitly defined by system administrators. A privacy
protection mechanism building upon relationship information may in contrast dispense with artificial
concepts and grants access rights based on the relationship between the requesting person and the
owner of the information.

Chapter 7 evaluates the concepts developed in Chapters 5 and 6 by presenting a concrete imple-
mentation of the core concepts discussed in the preceding chapters: the framework for interoperable
relationship management InReM and its applications.

Finally, Chapt. 8 gives a summary of the most important conclusions of this thesis. The extensibil-
ity and transferability of the ideas is discussed. Interesting problems for future works are presented.

12 Chapter 1. Introduction

Chapter 2

Social Networks

Investigating social relationships and social networks is a main research focus in the field of
sociology. This chapter introduces basic notions for describing social relationships and groups,
which form the basis for the formalization of relationships presented in Chapt. 5.

2.1 The Sociological Perspective on Relationships

In everyday life the term “relationship” stands for a variety of different concepts. On the one hand,
“relationship” denotes objectively measurable facts like legal or economic relationships. On the other
hand, this term is used to describe subjective emotional ties between persons like friendship, liking,
respect or trust. Sociometry focuses on the latter (Bjerstedt, 1956, cited by Dollase, 1979):

Wir können die Soziometrie als ein Gebiet betrachten, das sich mit der Messung jedweder Art von
zwischenmenschlicher und zwischentierischer Beziehungen befasst, wobei zur Zeit ein beson-
deres Schwergewicht auf die Erforschung zwischenmenschlicher Präferenzbeziehungen auf der
Grundlage subjektiver Einschätzungen gelegt wird.

One problem in sociometry research is the development of measuring processes allowing for con-
clusions about social positions of the members of some group. Indicators are used which depend on
the particular objective target of the sociometric test. Ties reflecting individual evaluation are put down
to objectively measurable facts. Depending on the application area and the objectives of a sociometric
test several methods for collecting data may be chosen. Two important examples are questionnaires
and observations (Dollase, 1976). In the first case, questionnaires containing introspective questions
are given to the members of a group. For example, questions might be “Which member of this group
you would like to carry out your next project with?”, or “Please rate each member of this group on
a scale from 0 (worst) to 5 (best) according to her/his reliability.” In observations, by contrast, no
explicit interaction with the group takes place. This method focusses on systematically observing the
group members’ behavior in order to draw conclusions about relationships.

Sociometric tests are applied in various application areas. They are widely used for examining
social structures in classes or work groups. This thesis will not discuss sociometric methods in more
detail. For further information the reader is referred to Dollase (1976).

The main focus of sociometric research are emotional ties. Nevertheless, in this thesis these
relationship types are only one aspect among others. In this chapter a more detailed review of basic
notions is given from a sociological point of view, where relationships are classified according to the
following types (Knoke, 1982; Wasserman and Faust, 1994):

13

14 Chapter 2. Social Networks

• Individual evaluations

• Exchange of material goods

• Exchange of immaterial goods

• Interaction

• Formal roles

• Kinship

Individual evaluations have been mentioned before with regard to sociometry. It is possible to differ-
entiate between positive and negative evaluations.

The second relationship type includes business transactions, imports or exports of goods, lending
or borrowing, and contacts made in order to secure valuable resources.

Examples of relationships based on exchange of immaterial goods are communication relation-
ships of any kind, for example, the sending or receiving of messages or passing on recommendations.
It is possible to further differentiate between subtypes according to communication media (Garton
et al., 1997).

Relationships based on interaction include all kinds of physical interaction of persons like attend-
ing the same event, sitting next to each other, visiting other persons’ homes. All kinds of emotional
support may be attributed to this type, too.

Formal roles reflect power or authority as can be observed between employee and superior, student
and teacher, or patient and doctor.

Finally, the last type subsumes kinship relationships of various kinds. These include marriage and
all kinds of family relationships as well as relationships between descendant and ancestor.

Some of the relationship types mentioned above cannot reasonably be represented in a computer-
based support system. Emotional support, for example, usually cannot be appropriately captured in
a computer system. Information concerning emotional support must be entered manually instead.
Obviously, there are other relationship types which map into computer support systems more easily,
for example, email communication, or interaction histories of a multi-user application. This thesis
is restricted to those relationship types which can reasonably be represented in computer support
systems.

Garton et al. (1997) give an overview of analyzing online social networks. Their attention is
mainly focused on social networks supported by computer networks and computer mediated commu-
nication. The following paragraphs present basic definitions for sociological terms on the basis of
Garton et al.’s discussion.

According to Garton et al. interpersonal relationships are characterized bycontent, direction, and
strength. “Content” refers to the object being exchanged. Objects may be files, programs or more
complex objects. With respect to communication, for example, objects may be meeting requests,
emotional support, or other administrative or social matters. In electronic commerce, objects also
may represent real world objects such as money, goods or services.

A relationship can be directed or undirected.1 Sending a file from one person to another, for
example, may be modeled in two different ways. First, a relationship exists from sender to recipient
(“sending a message to”). A second relationship exists from recipient to sender (“receiving a message

1Directed resp. undirected relationships are later referred to as anti-/asymmetric resp. symmetric relationships, but in
this paragraph, the notions of Garton et al. (1997) are adopted.

2.1. The Sociological Perspective on Relationships 15

from”). In the case of undirected relationships the order of the arguments is irrelevant. For example,
if one person works for the same company as another person, then the other person also works for
the same company as the first person. Undirected relationships, however, may be unbalanced. One
person may initiate communication more often than the other, or two persons’ evaluations of the same
relationship may be different.

Depending on the type of the relationship, the strength of a relationship reflects different as-
pects. Communication relationships might use the frequency of messages exchanged as a measure
for strength. Other relationship types use the importance or complexity of information exchanged or
the amount of capital transferred (Wellman, 1997; Wasserman and Faust, 1994). As has been men-
tioned in Chapt. 1, finding paths in social networks from one person to another can be important when
looking for reliable information. Sociologists have proposed a variety of units of measurement for
the strength values of paths of valued relationships (Yang and Knoke, 2001). The two most important
approaches are the following:

Path value. This approach assumes that the value of a path between two persons is the lowest value
of all path elements. Ifp1, ..., pn is a path from personp1 to personpn, then this path is
assigned the value pv(p1, ..., pn) = mini=1...n−1 s(pi, pi+1), where s(p, q) denotes the value
of the relationship fromp to q. This measure is occasionally referred to by “Peay’s measure”.
Yang and Knoke (2001) refine this measure by dividing it by the path lengthn, in order to
account for the costs required for involving a number of intermediaries:

apv(p1, ..., pn) =
mini=1...n−1 s(pi, pi+1)

n
(2.1)

Path length. The path length approach, which sometimes is referred to as “Flament’s measure” as-
sumes that the values of relationships are costs. The value of the path is then defined as the sum
of the values of all path elements: pl(p1, ..., pn) =

∑n−1
i=1 s(pi, pi+1). Again, Yang and Knoke

refine this measure by dividing it by the lengthn of the path, which again reflects costs imposed
by involving intermediaries:

apl(p1, ..., pn) =
∑n−1

i=1 s(pi, pi+1)
n

(2.2)

It is interesting that according to the refined measures apv and apl optimal connections between two
persons may involve paths longer than the minimal distance between the two persons. Besides, the two
measures may suggest different optimal connections for two given persons, since they stress different
aspects of valued relationships.

As defined by Garton et al. the term “tie” (between two persons) denotes the set of all relation-
ships between two persons. It must be noted that this definition does not agree with that of Wasserman
and Faust (Wasserman and Faust, 1994, p. 18 resp. p. 20), where ties are single aspects of a relation-
ship. In this thesis the term tie is used according to the definition of Garton et al. As ties sum up
relationships between persons, they also vary in content, direction and strength. Generally, ties are
often referred to as “weak” or “strong”, although there is no general definition for what “weak” or
“strong” means. Nevertheless some important characteristics may be given. Weak ties are generally
infrequently maintained and non-intimate. Strong ties include frequent contacts, close friendship and
provision of reciprocal services. Yet, especially weak ties are important for extending the own social
network, as is discussed in the following section.

16 Chapter 2. Social Networks

2.2 Strong Ties and Weak Ties

In a remarkable paper, Granovetter (1973) discusses the strength of ties in interpersonal networks.
Granovetter distinguishes between strong ties and weak ties, where strength is “a (probably linear)
combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and the
reciprocal services which characterize the tie”. The main hypothesis of this paper is the following: if
there exists a tie from a persona to a personc and also from a personb to c, then there most likely
also exists a tie betweena andb.2 In other words, the configuration(R(a, c) ∧R(b, c) ∧ ¬R(a, b)) is
very unlikely to occur3 (see below for an explanation of the notation). This hypothesis has important
consequences forbridgesin social networks: a bridge is a tie in a network, which provides the only
link between two persons. If the network is large, then bridges are probably rare. Nevertheless, when
restricting to subnetworks, by the same definition local bridges can be applied. Granovetter concludes
thatbridges never are strong ties. Consider the configuration(R(a, b) ∧ R(b, c)), whereR(b, c) is a
bridge. IfR(b, c) was a strong tie, then there most probably would also exist a tie betweena andc.
Weak ties are essential links between subnetworks and represent connections to other social networks
of (strong) ties. Thus weak ties provide means to facilitate moving from one social (sub-) network to
another (Pickering and King, 1992).

Another important consequence of Granovetters hypothesis is that, since weak ties are “more
effective in bridging social distance, [...] more people can be reached through weak ties” (Granovetter,
1973, p. 1369). Concerning the problems discussed in Chapt. 1 this suggests that weak ties are more
likely to provide short paths to the person in question than strong ties, if a person cannot be reached
via a direct tie. Thus, the strength of ties may be seen as an important variable for the application area
of this thesis.

2.3 Algebraic Properties of Relationships

Relationships may possess basic algebraic properties (Hage and Harary, 1983; Wasserman and Faust,
1994). These properties arereflexivity, symmetry, antisymmetry, asymmetryand transitivity. In the
following definitions well known notations from mathematics will be used: ifR denotes a relationship,
anda andb denote persons, then the fact thata relates tob is denoted byR(a, b) (slightly informal,
also the “R(a, b) holds true” will occasionally be used in this thesis). The basic properties are defined
as follows:

• A relationshipR is reflexive, ifR(a, a) holds true for all personsa.4

• A relationshipR is symmetric, if for all pairs(a, b) of personsR(a, b) impliesR(b, a).

• A relationshipR is antisymmetric, if for all pairs(a, b) of personsR(a, b) ∧ R(b, a) implies
a = b.

• A relationshipR is asymmetric, if for all pairs(a, b) of persons witha 6= b R(a, b) implies that
R(b, a) does not hold true.

• A relationshipR is transitive, if for all personsa, b, c, R(a, b) ∧R(b, c) impliesR(a, c).

2Granovetter presents some evidence for this hypothesis. A more detailed discussion, however, requires thorough defi-
nitions of the strength of ties and methods of analysis, which is beyond scope of this thesis.

3For this section, it is assumed thatR is symmetric.
4Reflexivity is sometimes needed due to formal reasons, which will become clear in Sect. 5.1.

2.4. Groups 17

• A relationshipR is non-symmetric, if it is neither symmetric nor antisymmetric nor asymmetric.

Note that every asymmetric relationship is also antisymmetric: becauseR is asymmetric, there is no
pair of persons(a, b), a 6= b with R(a, b) ∧ R(b, a). Furthermore, for each persona, R(a, a) implies
¬R(a, a). Thus, there is no persona with R(a, a). As has been mentioned before, asymmetric and
antisymmetric relationships are sometimes also called directed relations. Likewise, symmetric are
sometimes referred to as undirected relationships.

2.4 Groups

If one is interested not only in examining single relationships or ties between two persons but also
between the members of a set of persons, the concept of a group can be helpful. Wellman (1997)
defines a group as

a social network whose ties are tightly-bounded within a delimited set and are densely-knit so that
almost all network members are directly linked with each other.

Essentially, the following methods for modeling groups can be distinguished (Knoke, 1982;
Wasserman and Faust, 1994):

• Groups based on undirected relationships

• Groups based on directed relationships

• Groups based on nodal degree

• Groups based on the strength of relationships

In the following, this thesis uses the notations of Wasserman and Faust, who employ basic notations
from mathematical graph theory, where persons map to nodes of a graph and relationships map to
edges between nodes. Any reader not familiar with these basic concepts is kindly referred to Wasser-
man and Faust (1994, Chapt. 4). However, section 5.1 will give exact definitions for those graph-
theoretic terms needed for this thesis’ modeling of interpersonal relationships. For a more exhaustive
discussion of the different approaches for modeling groups the reader is referred to Wasserman and
Faust (1994, Chapt. 7).

Cliques based on undirected relationships. A clique is a maximal5 subset of the set of persons,
where each person is related to every other person by a undirected relationship. Usually, only rela-
tionships of one special type are concerned. Every person may be a member of multiple cliques, so
cliques may overlap.

The concept of a clique can be extended as follows: ann-clique is a maximal subset of the set of
persons, where any two persons of the subset are connected by a path6 (in the original graph) of the
maximum lengthn.

Cliques as defined before are1-cliques according to this definition. It is important to note that
this definition causesn-cliques to have undesirable properties. Since in the preceding definition paths

5“Maximal” means that no additional persons can be added to the subset without violating the constraints constituting
the subset (in this case: completeness of the subgraph).

6A path of lengthn from persona to personb is a sequence of personsa, c1, c2, c3, ..., cn−1, b, wherea is related toc1,
c1 is related toc2, and so on, andcn−1 is related tob.

18 Chapter 2. Social Networks

1

2

3

4

5

6

2-cliques:{1, 2, 3, 4, 5} and{2, 3, 4, 5, 6}
2-clan:{2, 3, 4, 5, 6}
2-clubs:{1, 2, 3, 4}, {1, 2, 3, 5} and{2, 3, 4, 5, 6}

Figure 2.1:n-cliques,n-clans andn-clubs (Wasserman and Faust, 1994)

between persons may also contain persons not included in the subset of persons constituting then-
clique, the minimal length of a path within then-clique might be greater thann. Even worse, for
some pairs of persons there might even exist no path within then-clique.

In order to improven-cliques, the following two additional definitions are given. Ann-clan is an
n-clique, where any two persons of the clique are connected by a path of maximum lengthn within
then-clique, whereas ann-club is a maximal subset of the set of persons, where any two persons of
the subset are connected by a path of maximum lengthn within the subset.

What is the difference between these two definitions?n-clans are restrictions ofn-cliques, so
everyn-clan also is ann-clique. A similar implication does not hold forn-clubs, because the condition
that cliques are “maximal” subsets of persons refers to different constraints forn-cliques andn-clubs
(see Fig. 2.1 for examples). However, it is true that everyn-club either is ann-clique or a subgraph of
ann-clique.

Cliques based on directed relationships. Concerning directed relationships, the definitions pre-
sented above have to be slightly modified. For directed relationships it is generally not true that for
any relationshipR(a, b) between two personsa andb there also exists a relationshipR(b, a) with
opposite direction. Of course the simplest solution to this problem is to explicitly demand for each
relationshipR(a, b) the existence of a relationshipR(b, a): a clique based on a directed relationship
of typeR is a maximal subset of the set of persons, where for any two personsa, b in this subset both
R(a, b) andR(b, a) hold. This, however, imposes heavy restrictions on cliques, leading to cliques
being rare phenomenons when directed relationships are concerned. Hence it is useful to also give
some weaker definitions for cliques based on directed relationships.

Two personsa andb are:

1. Weaklyn-connected, if there exists a path betweena andb of lengthn or less, where directions
of relationships are ignored

2. Unilaterallyn-connected, if there exists a path froma to b or a path fromb to a of lengthn or
less

3. Stronglyn-connected, if there exists both a path froma to b and fromb to a of lengthn or less

4. Recursivelyn-connected, ifa andb are stronglyn-connected, and the path froma to b uses
exactly the same persons as the path fromb to a, in reverse order

Based on these four types of connectivity four different kinds ofn-cliques can be defined:

1. A weakly connectedn-clique is a maximal subset of the set of persons in which any two nodes
are weaklyn-connected.

2.5. Networks of Networks 19

2. A unilaterally connectedn-clique is a maximal subset of the set of persons in which any two
persons are unilaterallyn-connected.

3. A strongly connectedn-clique is a maximal subset of the set of persons in which any two
persons are stronglyn-connected.

4. A recursively connectedn-clique is a maximal subset of the set of persons in which any two
persons are recursivelyn-connected.

Obviously, recursively connected1-cliques are also cliques according to the preceding definition.

Groups based on nodal degree. Concerning undirected relationships, Wasserman and Faust present
two methods for defining groups according to nodal degree:

• A k-plex is a maximal subset of the set of persons, in which each person is related to at least
g − k other persons in the subset (g denotes the cardinality of the subset).

• A k-core is a maximal subset of the set of persons, in which each person is related to at leastk
other persons in the subset.

It is clear that every1-plex also is a1-clique.

Groups based on the strength of relationships. When relationships possessing strength values are
concerned, it may be useful to consider the strength for defining groups. The definitions presented
above can easily be extended to relations with strength values by defining a mappingσ from the set
of strength values to the set{0, 1}. Then a new relationship can be defined as follows. IfχR(a, b)
denotes the strength of the relationshipR betweena andb (if there is any),R′(a, b) holds true if, and
only if, σ(χR(a, b)) = 1.

If strength values are real numbers andc ∈ R, a common example of such a mapping is the
following:

σc(x) =
{

1 if x ≥ c
0 otherwise.

In this special case, ann-clique (n-plex, n-core) at levelc referring to the original relationshipR
includes exactly those persons forming ann-clique (n-plex, n-core) with respect to the relationship
R′ obtained viaσc.

2.5 Networks of Networks

Social network analysis is not restricted to single persons and relationships between persons, but can
also be shifted to a more abstract level taking into account networks of persons (like groups) instead
of persons themselves (Garton et al., 1997). In such “networks of networks”, nodes may correspond
to groups according to one of the definitions presented in the preceding section or to organizational
units such as companies or work groups. Figure 2.2 clarifies the idea of shifting from single persons
to groups.

How can relationships between networks be deduced from relationships between persons? A
relationship between two networks may be assumed if there is a persona in the first network and
another personb in the second network and there is a relationship froma to b. A special case is a

20 Chapter 2. Social Networks

� �

�

� �

� �

�

��

��

Figure 2.2: A network of networks, according to Garton et al. (1997). The upper part a) shows rela-
tionships between persons, the lower part b) shows relationships between the corresponding networks.

person being member of two or more networks — this also constitutes a relationship between those
networks (Wellman, 1996; Garton et al., 1997; Wasserman and Faust, 1994).

Relationships between networks are not restricted to groups as defined in the preceding section.
One might also be interested in relationships between networks corresponding to organizations or
work groups, for example, when investigating the flow of information across organizational borders
(Garton et al., 1997) or interdependencies between organizations.

2.6 Collecting Data about Relationships

How to collect data about relationships? Wasserman and Faust (1994, pp. 43–58) list the following
methods for data collection about social networks:

• Questionnaires

• Interviews

• Observations

• Archival records

Questionnaires. Questionnaires are commonly used for collecting social network data. Sociologists
differentiate between several types of questionnaires according to the type of questions and the
possible answers. These details, however, are of no consequence for this work. In general, data
collection via questionnaires includes explicitly questioning persons about their relationships
to other persons. Thus user interfaces of buddy list systems in virtual communities or instant
messaging systems like ICQ7 may be seen as analogues of questionnaires (cf. Sects. 3.3.2 and
3.2.4).

7http://www.icq.com

2.7. Conclusions 21

Interviews. If social network data cannot be collected via questionnaires, interviews (either face-to-
face or over the telephone) may be used instead. This method is irrelevant in the context of
this thesis, since analogs of interviews in computer-mediated communication entail the need
for natural language processing methods. Natural language processing, however, is out of the
scope of this thesis.

Observations. Observing interaction dispenses with the need for directly addressing persons and may
therefore be used when they are not accessible for questionnaires or interviews. Observations
are, for instance, suitable for relationships between persons attending the same event. In the
context of computer-supported cooperative work, observations coincide with archival records
in most cases.

Archival records. Collecting social network data by analyzing archival records is especially impor-
tant in the context of computer-mediated communication and computer-supported cooperative
work, since in most such systems there exist lots of archival records about communication and
interaction between persons or at least they can be created easily. An example is Referral Web
(Kautz et al., 1997b,a), a research project using websites as sources for social network data.
Websites are scanned for occurrences of names and based on that information, relationships
between persons are inferred. Another example is the analysis of newsgroups and discussion
forums (Smith and Fiore, 2001; Smith, 1999). Apart from name occurrences, the hierarchical
structure of newsgroups and some discussion forums can also be used as a source for social
network data. These and other examples will be discussed in more detail in Sects. 3.1–3.6.

Boyd (2002, p. 45) recognizes the

immense amounts of data [people produce whenever they go online] about themselves without
even realizing it (Behr 2002):

External logs (web, IM): login time, duration, files accessed, referring website, connecting to
what people
Personal ISP logs: time/date/duration, tracked web contact access, email messages
Profile data: age, sex, address, email, occupation, industry, income
Affiliations: website/email domain
Personal website content: links, interests, bio, photos
External websites references to an individual
Message content: email, chat, IM, SMS, Usenet/bboard posts, journals/blogs
Sharable data: MP3s and other files
Social networks: IM, email, chat, Usenet/bboard
Presence data: IM buddy lists, Outlook calendars
Shopping habits, browsing habits, recommendations
Reputation as buyer, seller, advisor
Archives of data over time: conversations, websites

Most of this data could be used for analyzing a person’s social network. However, since much of this
data is collected with the restriction of not being shared with other parties, the users’ explicit consent
to using such data for social network analysis is required.

2.7 Conclusions

Subsuming the preceding sections, the following conclusions about interpersonal relationships and
their representation can be drawn:

22 Chapter 2. Social Networks

1. There are different relationship types, which differ in meaning and attributes. For every relation-
ship type, there may be subtypes restricted to specific aspects of the general type, for example,
fixing the communication media for communication relationships.

2. Relationships may have basic algebraic properties: reflexivity, symmetry, antisymmetry, asym-
metry, and transitivity.

3. For asymmetric or antisymmetric relationship types there may be corresponding inversions, e.g.
sending and receiving of messages.

4. Relationships may possess additional attributes which characterize special aspects of a relation-
ship, e.g. the topic of communication relationships.

5. Relationships may have a special attribute called “strength”. Evaluations of the strength of a
relationship between two persons need not be equal for both persons.

6. There are various methods for describing groups in terms of interpersonal relationships. Vice
versa, groups define relationships between their members, and persons being members of two
groups constitute a relationship between those groups.There is a duality of persons and groups.

These statements will be referred to in Chapt. 5, where a formal model for interpersonal relationships
in communication systems and shared information spaces is presented.

Chapter 3

Internet-based Communication and
Shared Information Spaces

This chapter discusses the application area of this work — internet-based communication and
shared information spaces. Existing approaches to relationship management and their limitations
are discussed. The main focus is put on what kinds of relationship occur in the application area
and how they can be measured.

3.1 Classification of Groupware Systems

The development of computer-based support systems for cooperative work opened an interesting field
of research, which is characterized by a high level of multidisciplinarity. Computer-supported co-
operative work (CSCW) includes aspects of computer science, organization theory, psychology, and
sociology. One part of CSCW, which is concerned with software for supporting groups, is commonly
known as groupware. Ellis et al. (1991) define groupware as:

computer-based systems that support groups of people engaged in a common task (or goal) and
that provide an interface to a shared environment.

This thesis aims at supporting groups consisting of people which interact via electronic communi-
cation systems or shared information spaces. Such groups may have sharp borders (which may be
imposed by organizational structures) as holds true for teams working together on a task, or may not
have clear organizational borders as holds for the group of persons posting to a discussion board. For
this thesis, a group consists of at least two persons exchanging information (on a personal basis) and
thus influence each other (cp. Teufel et al., 1995). This definition implies that members of a group
know each other. The reader should be aware that this definition is quite less restrictive than that
imposed by the common usage of the term “groupware”, which rather concernsteamsworking on a
shared task. On the other hand, acommunityis a set of people who share something, but who do not
necessarily know each other or interact on a personal basis (Schlichter et al., 1998). Communities are
discussed in more detail in Sect. 3.3.2.

In this thesis the vast variety of groupware applications shall not be discussed in detail. However,
groupware is strongly related with social networks insofar as many groupware applications collect
data about their users’ social networks and many groupware applications can be improved if a general
framework for representing social networks becomes available. The following sections thus clas-
sify groupware applications according to Teufel et al. (1995) and discuss how the applications in the
different classes can provide and use social network data in order to improve their services.

23

24 Chapter 3. Internet-based Communication and Shared Information Spaces

While reading the following sections, the reader should bear in mind a warning given by Grudin
(1994): when designing groupware applications, special care to social taboos and existing social struc-
tures should be paid. Especially software collecting information about people’s social networks risks
violating social conventions. Hence, due diligence is required in order to protect everyone’s privacy
and not to misuse social network data. Privacy protection is a very important problem, therefore
Sect. 6.5 shows how social network data can be protected against unauthorized use. Furthermore, as
holds for all groupware applications, relationship management tools (if viewed as a class of group-
ware applications on its own) must be carefully integrated with existing social and political structures.
Nevertheless, this thesis does not focus on these social and political aspects of integrating relationship
management tools with existing structures but concentrates on the technical aspects of relationship
management.

Teufel et al. (1995) classify groupware according to the three dimensionscommunication, co-
ordination, andcollaboration, and distinguish between four classes of groupware applications (see
Fig. 3.1):

Communication. This class of groupware applications focusses mainly on supporting communica-
tion among group members that are spatially distributed. Applications in this class can further
be divided in synchronous and asynchronous applications. Synchronous applications often offer
audio and video transmission. A common example is Microsoft NetMeeting, which comes as
a standard tool with the Microsoft Windows XP operating system. Also instant messaging sys-
tems like ICQ or MSN support near synchronous communication. The most common examples
of asynchronous communication are email and bulletin boards.

Shared Information Spaces.Sharing information is often essential for successfully completing
tasks. Shared information spaces support the exchange and evolution of information items.
Mainly, two classes can be distinguished: hypertext systems and community support systems.

Workflow Management. Workflow management applications provide support for administrating
and executing business process chains (workflows). In many cases, workflow management is
used in connection with business process automation. Usually, a workflow contains a list of
those people involved in the process and their roles with respect to the process. These roles
may constitute relationships among the people involved in the workflow. Depending on the
workflow model these relationships may be stated explicitly (e.g. in communication-oriented
models, see below), or implicitly (e.g. in form-oriented models, see below).

Workgroup Computing. Workgroup computing subsumes those applications which support coop-
eration in groups of people sharing common goals, which are characterized by a rather low
structural complexity. Applications in this class are typically highly specialized for the domain
they have been designed for. Common examples are planning systems, decision and conference
management systems, group editors, and distributed hypertext systems.

The following sections describe some groupware applications in more detail and give examples
of systems generating and/or using social network data. Therein, special emphasis is put on the ap-
plication classes communication and shared information spaces, since the prototypic implementations
described in Chapt. 7 are built on selected applications in these classes. The two classes workgroup
computing and workflow management are just sketched for completeness.

3.2. Communication 25

�����

�����	�����

����

��	����

����
�����

�������

������

���	�

�������

����	�����������	������������

������

������� ������������������	����

�����	���������

	���������	�

�����	�����������	�

�������������������	�

���	��������������	�

���������������

�������������

��	���������
�����

���	�������	�������������

��	�
	������������

�������������
��

���������

�����	�

�������

Figure 3.1: Classification schema for CSCW applications, according to Teufel et al. (1995).

3.2 Communication

In the application class communication, especially electronic mail, bulletin board, and instant mes-
saging systems are interesting sources of social relationships.

3.2.1 Email

Electronic mail systems can be regarded as the most successful groupware applications and are widely
used today. This success is due to several aspects as pointed out by Grudin (1994): email provides
a benefit both for sender and recipient of messages (for the sender there is no extra work to do and
the recipient can read the message at any convenient time). Email systems do not need a critical
mass to be useful, even for two persons email can provide a benefit. Besides, the use of email allows
for the application of social conventions. Email systems usually do not impose any structure on the
communication process. Thus, email is used in a variety of contexts, ranging from formal job-related
use to informal private use.

Wellman et al. (Garton et al., 1997; Wellman and Hampton, 1999; Wellman, 2001, 2002; Wellman
et al., 2002) have shown that email offers a good insight into a person’s social network. Most notably,
the increasing use of the internet and internet-based applications like email does neither increase nor
destroy social live but integrates with daily activities. Surveys show that a high percentage of people
using email often are high in phone contact, too (Wellman et al., 2002). These observations document
that email is a good indicator for the analysis of social networks. Email can furthermore help to extend
and link social networks due to the ease with which messages can be forwarded to other persons. The
forwarding of messages allows indirect ties to become direct ties and thus fosters the integration of

26 Chapter 3. Internet-based Communication and Shared Information Spaces

social groups (Wellman, 1996).
Recognizing email as a good starting point the analysis of social networks based on communica-

tion tools, Nardi et al. (2002) developed ContactMap. The primary design objective of ContactMap
is to integrate both information and communication capabilities in a single user interface. Contact
map analyzes the user’s history of email interaction in order to gain social network data. In contrast
to traditional social network analysis, ContactMap does not use this information for the generation
of network graphs, but assists the user in arranging his contacts (which have been extracted from the
email analysis) according to his own perception of his social network. For each contact found, the
user may decide whether to include him or not. Additionally, ContactMap supports the association
of contacts to groups. Currently, ContactMap does not support the exchange of data between two
instances. The information gathered by two ContactMap installations of two different users therefore
cannot be shared and ContactMap cannot be used to retrieve information about contacts of contacts.
Another drawback is that currently only email relationships are considered. However, Nardi et al.
have recognized these limitations and scheduled them as future work.

There have been several other approaches of analyzing email traffic in order to draw conclusions
about social networks. Eick and Wills (1993) modified the standard UNIX mail program so that it
logs each message it deals with. Based on this data, they ran network analysis and spring system
visualization algorithms1. Eick and Wills observed that according to link strengths (which resemble
the number of messages exchanged between two persons) groups with frequent email traffic could
be identified. Another conclusion based on observing email traffic for several months is “that it takes
about two months for most [newcomers] to establish communication patterns and settle in to their new
position” (Eick and Wills, 1993).

The goal of PostHistory (Viegas, 2002) is to provide an opportunity for reflection about and in-
sight in personal email usage patterns by visualizing one’s personal email history. PostHistory only
uses email headers (from, to, cc, bcc), not the message body itself. These message headers are then
interpreted with respect to who knows who, contact strength and responsibility of a user in relation to
other people in his network. The main perspective of PostHistory is to perceive how email contacts
develop over time — especially when new contacts appear and when ties fade out. Like ContactMap,
PostHistory is a personal tool and does not exchange data with other instances of PostHistory. Hence,
though PostHistory assists with managing one’s personal contacts it does not assist with managing
one’s personal socialnetwork.

Visual Who (Donath, 1995) aims at visualizing communication patterns based on mailing lists
instead of individual emails. Visual Who runs on UNIX systems and takes standard UNIX alias files
as input. If there are a total ofn lists, for each listi, a profile vectorpi is calculated which hasn
entries, one for each list:

pj
i =

(N(i ∩ j))2

N(i)N(j)
, 1 ≤ i, j ≤ n,

whereN(i) is the number of people subscribing to the listi andN(i∩ j) is the number of people sub-
scribing to both listsi andj. Profile vectors can be viewed as subscription-based similarity measures
for mailing lists. For each personk and each listi, a resemblance is then calculated, which is the sum
of the profile vectors of all lists the user is a member of:

R(k, i) =
n∑

j=0

M(k, j)pj
i ,

1Spring system visualization algorithms can be used to draw graphs of nodes connected with valued ties (“springs”).
The values of the ties are used to calculate a spring constant for each tie and the nodes are arranged such that an equilibrium
is reached (Eick and Wills, 1993).

3.2. Communication 27

whereM(k, i) is the membership function that returns1, if personk is on listi and0 otherwise. The
main idea of Visual Who’s visualization is the simulation of a system of springs, where persons are
attached to mailing lists by springs. For a spring tying personk to mailing list i, R(k, i) is taken as
spring constant. It is important to note that the user running the visualization tool can choose, which
mailing lists are to be displayed and that springs are set up only for those lists. Once started, the system
simulates the movement of persons between mailing lists step by step, trying to reach equilibrium.
Because a constant of friction is used, the movement will eventually halt. For screenshots of the
visualization, the reader is referred to Donath (1995).

There are some points that are noteworthy with respect to this thesis. First of all, this example
illustrates that mailing lists can provide useful information for social network analysis. But even
more interesting, Visual Who shows that analyzing simple mailing list structures can yield interesting
information about group membership: Donath reports on a situation where the visualization algorithm
placed a professor right in a cluster of students associated with a mailing list about skateboarding. The
professor, however, probably had never posted to the skateboarding list but it turned out that most of
the skateboarders were musicians and the professor was a professor of music, who was involved
in many projects together with the skateboarding musicians. Therefore, the visualization was quite
right. In this way, Visual Who helps to understand the structure of the social network and points out
relationships to other persons and groups one might not be aware of.

Social Network Fragments (Boyd, 2002) is another approach to visualize email communication.
The data input consists of the message history and some additional information about which email
addresses are actually mailing lists and a collapsing of all email addresses associated with one in-
dividual. The main difference to the approaches described above is that Boyd deals with different
headers of the message in a more subtle way. The headers analyzed are to, from, cc and bcc. Based
on this information, five categories of ties are distinguished:

Knowledge ties. If a persona sends a message to personb, then it is assumed thata “knows” b. (If b
receives the message via a mailing list, then this is not assumed.)

Awareness ties.If b receives a message froma, it is assumed thatb “is aware of”a.

Weak awareness ties.If both b andc receive a message ofa via the to or cc header, it is assumed
thatb andc “are weakly aware of each other”.

List awareness ties.If b receives a message froma via a mailing list, it is assumed thatb “is mailing
list aware of”a.

Trusted ties. If a sends a message tob and blind carbon copies (bcc)d, it is assumed thata “knows”
and “trusts”d, becaused has the ability to respond and reveal thata included people without
the other recipients’ awareness.

Each type of tie is given an importance, such that trusted ties have higher values than knowledge
ties, which have higher values than awareness ties, etc. Values are additive, such that more intense
conversation yields higher values. Based on this social network data, Social Network Fragments
draws a graphical visualization which is based on simulating a system of springs, where springs
connect persons and spring constants are the added values of ties between persons. By adding a
default repulsion between all persons the system is prevented from collapsing to one point.

Like PostHistory, Social Network Fragments primarily aims at visualizing communication net-
works over time. Therefore, the Social Network Fragments visualization tool provides an animation

28 Chapter 3. Internet-based Communication and Shared Information Spaces

Email header Explicit ties Implicit ties

From: A
To: X,Y A ⇒ X X ⇒ Y

A ⇒ Y Y ⇒ X
CC: Z A ⇒ Z X ⇒ Z

Y ⇒ Z
Z ⇒ X
Z ⇒ Y

Table 3.1: Ties derived from an email header, according to Ogata et al. (2001)

of the spring system where one second corresponds to one day, such that people can watch their
contacts appear, settle and move in their social network.

Ogata et al. (2001) use email traffic in order to analyze social communication networks. This
social network data is used by a prototype (called Peco-Meditaor-II) for mediating cooperation —
especially providing assistance with solving problems — in a work group. Ogata et al. (2001) extract
explicit and implicit relationships from email-headers (see Tab. 3.1). Each explicit tie is assigned a
strength value according to the formula

Mi,j =

(
P∑

k=1

wk · nij(k)
Si(k)

+ wk · nji(k)
Ri(k)

)
,

where

wk =
P − k + 1
P (P + 1)

is the weight of periodk if P past periods are accounted for,nij(k) denotes the number of messages
sent from personi to personj in periodk, andSi(k) andRi(k) are the number of messages sent by
i in periodk and received byi in periodk, respectively. The main idea of this formula is that a tie
is strong, if emails are exchanged frequently, recently, and reciprocally. The version of the formula
presented above is slightly different from the original formula of Ogata et al. (2001). Two constant
factors have been left out so that the formula yields values between0 and1. Mij = 1 indicates that
all of i’s emails were sent toj, andi received emails fromj, only.

Note thatM is not symmetric ini and j. If a symmetric measure is required, the arithmetic
average ofMi,j andMj,i can be taken:

si,j =
Mi,j + Mj,i

2
(3.1)

All systems described above have in common that they take a rather statistical approach which
aims at visualizing email communication networks. These systems, however, do not model the con-
cept of a relationship between two persons as such. Although this approach is certainly useful for the
visualization, the obvious disadvantage is that it does not allow for the exchange of social network
data between different instances of an application with reasonable effort. Therefore, the analysis of
“who knows who” can only be done in a centralized manner, where all social network data is gathered
in one place and analyzed with statistical means. Yet, a centralized approach has serious drawbacks:
people cannot directly control what is done with the data they provided — email logs are certainly
private information and people are usually not willing to make them publicly accessible. Additionally,

3.2. Communication 29

the knowledge generated by analyzing email logs cannot be shared with other applications (like email
clients or personal electronic address books) as long as there does not exist a “universal” modeling of
email communication relationships.

3.2.2 Usenet

Usenet news is a distributed decentralized bulletin board system whose origin dates back to 1979
(Pfaffenberger, 2003; Rheingold, 1993). First versions of Usenet were implemented as UNIX scripts
until in the mid-1980s the Network News Transport Protocol (NNTP) was developed, which provided
faster exchange of messages and improved control for server administrators (Kantor and Lapsley,
1986). Usenet servers store local copies of Usenet messages, which can be read by users via various
Usenet clients, such as Microsoft Outlook or Mozilla Mail. Besides reading messages, users can post
messages and replies which are then propagated to other servers. Messages are hierarchically orga-
nized in newsgroups reflecting different topics. Some examples of newsgroups arecomp.lang.c++
which contains messages about C++ programming,rec.travel.asia for posting messages about
traveling Asia or the vast hierarchy ofalt.* -newsgroups containing newsgroups for almost every
special topic. Besides, there are localized newsgroups as those starting withde. which contain Ger-
man messages. The number of Usenet newsgroups is growing. As reported by Miller et al. (2003), in
2001 there were more than 60,000 newsgroups and about 1.3 million messages per day. Estimates for
the number of newsgroups vary, however, since this number is hard to determine due to Usenet’s de-
centralized organization. Google tries to provide an entire archive of Usenet discussion groups dating
back to 1981.2

Usenet is decentralized: there is no central authority managing the exchange of messages. Instead,
each Usenet server decides itself which messages it stores locally and which ones it propagates to
other servers. Thus, two users’ views on Usenet may be different depending on the servers their
clients connect to. When a message is posted to a newsgroup it is passed from server to server without
any central control. Hence, the path a message takes from its author to a reader cannot be determined
in advance but depends on the local propagation strategies of the servers on the message’s way and
the servers the author and the reader choose to connect to (Fisher and Lueg, 2003).

A newsgroup messagem1 may contain a reference to another messagesm2 indicating thatm2

is a reply tom1. Similar to email messages, each newsgroup message header contains a (unique) id,
which is used as a reference in replies. Fig. 3.2 depicts an example of a Usenet message which is a
reply to some other message. Usenet message headers are defined in RFC 1036 (Horton and Adams,
1987). RFC 2076 (Palme, 1997) and RFC 822 (Crocker, 1982) contain additional information about
possible message headers. The following headers of Usenet messages are especially important with
respect to relationship management.

From. TheFrom-header identifies the author of the message. The content of this header must con-
form to the email address format defined in RFC 822.

Message-ID.This header is used to uniquely identify a message. Message-ID’s may not be reused
in the lifetime of a previous message with the same Message-ID. According to RFC 822, the
Message-ID -header must have the format<local_id@full_domain_name> , where
local_id is a locally unique identifier (e.g. a number) andfull_domain_name is the
name of the host the message was posted to.

2http://groups.google.com/

30 Chapter 3. Internet-based Communication and Shared Information Spaces

References.The presence of this header indicates that the message is a reply to another message,
which is identified by the content of this header. If the original message contains a reference
header, the reference header must contain the Message-ID of the original message, a blank and
the previous reference. Although RFC 1036 allows shortening theReferences header, this
is not encouraged in practice.

In-Reply-To. For Usenet messages, meaning and syntax of this header are the same as for
References , i.e. both headers indicate that a message is a reply to the message(s) listed.
Although RFC 1036 definesReferences for this purpose, theIn-Reply-To should be
used preferably, as RFC 1036 is intended to be compliant with RFC 822, which only allows
In-Reply-To in this case.3

A considerable amount of research has been done on the social impact of Usenet message ex-
change. Starting with Netscan from Microsoft Research, some of these approaches will be mirrored
in the following paragraphs.

Netscan is an experimental tool for analyzing Usenet communication developed at Microsoft Re-
search (Smith, 2003; Smith and Fiore, 2001; Smith, 1999). Since 1996 the system has been collecting
data about Usenet usage, which can be accessed via a web interface.4 The goals of the Netscan project
are both providing empirical data about Usenet and developing enhanced interfaces to Usenet which
take into account the social context of messages. “What’s going on and where and who is around?”
are some of the questions not sufficiently answered by common newsreaders. It is not easy for peo-
ple to identify newsgroups of interest and to assess the history of participants or estimate how many
people are active participants in a newsgroup. Also patterns of interaction may be of interest: does a
newsgroup contain vivid discussion among participants or are there few “experts” replying to many
messages but not initiating threads themselves? Without this information, both finding an appropriate
newsgroup and establishing “trusted” relationships to other Usenet participants may be hard (Smith,
2003). The Netscan project aims at developing improved interfaces for Usenet addressing these prob-
lems. Reports and interfaces available in the public prototype include:

Newsgroup Grid. This report is the Netscan main page and offers an overview on a set of newsgroups
whose name match a query which can be entered at the top of the page. The data presented
includes the number of postings, posters, replies, and repliers in each group. The report period
may be chosen between day, week, or month.

Newsgroup “Report Cards”. For every newsgroup Netscan provides a “Report Card” which offers
more detailed information about the group, such as a timechart for every day of the selected
period, average message length or number of posters and a list of related groups, where relations
between newsgroups are determined by analyzing cross-posting patterns (see below).

Thread and Message Browsing Interfaces.The thread and message browsing interfaces enable
navigating threads and messages in a graphical tree representation. Every reply is connected
by a line to the original message. By clicking on a message symbol, all other messages in the
current thread posted by the same author are highlighted.

Author Profile. The author profile report provides information about which newsgroup an author has
posted to and how often, how many threads he has touched and how many days the author has
been active.

3RFC 822 also definesReferences , but the intended meaning is that ofSee-Also in RFC 1036. There is an Internet
Draft known as “son-of-1036” (Spencer, 1994) which deals with these issues.

4The experimental Netscan prototype can be found at http://netscan.research.microsoft.com/.

3.2. Communication 31

Path: informatik.tu-muenchen.de!not-for-mail
From: Michael <mic267g@hotmail.com>
Newsgroups: de.rec.outdoors
Subject: Re: Wandern in Norwegen oder Schweden?
Date: Fri, 02 May 2003 10:56:25 +0200
Organization: Technische Universitaet Muenchen, Germany
Lines: 21
Message-ID: <b8tbut$5ffla$1@sunsystem5.informatik.tu-muenchen.de>
References: <20030428204846.4a63ee65.nobbie@web.de>
NNTP-Posting-Host: atschlichter56.informatik.tu-muenchen.de
Mime-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: sunsystem5.informatik.tu-muenchen.de 1051865885 5750442

131.159.24.64 (2 May 2003 08:58:05 GMT)
X-Complaints-To: usenet@in.tum.de
NNTP-Posting-Date: Fri, 2 May 2003 08:58:05 +0000 (UTC)
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.3)

Gecko/20030312
X-Accept-Language: en-us, en
In-Reply-To: <20030428204846.4a63ee65.nobbie@web.de>
Xref: informatik.tu-muenchen.de de.rec.outdoors:51018

Servus,

Ich w ürde mich der Empfehlung f ür Jotunheimen anschließen. Das ist zwar
die alpinste Region und damit gewissermaßen auch eine der
anstrengendsten in Norwegen, aber ich h ätte keine Bedenken das
"Einsteigern" zu empfehlen. Ist halt so am interessantesten, und man
kann auch gleich die beiden h öchsten Berge mitnehmen, Glittertind und
Galdhoeppigen.

Hardangervidda fand ich pers önlich etwas langweilig, ist halt groß und
"flach". Es kann einem passieren, dass man den ganzen Nachmittag lang
auf die h ütte zul äuft, und sie nicht so recht n äherkommen will ;-)

Abisko in Schweden ist auch ein guter Ausgangspunkt, insbesondere kann
man das mit der sehenswerten Bahnfahrt nach Narvik verbinden und von
dort aus die Lofoten besuchen, die sich zum Tourenwandern aber nicht
eignen, wohl aber f ür Tagesausfl üge (wobei ein Fahrzeug von Vorteil
ẅare).

Mit dem Scanrail-Ticket bekommt man dort, wo keine Z üge fahren, auch
Ermäßigung auf die Überland-Busse.

Figure 3.2: A Usenet message posted to the newsgroupde.rec.outdoors which is a reply to the
message identified by the headersIn-Reply-To andReferences .

32 Chapter 3. Internet-based Communication and Shared Information Spaces

Cross-posting patterns.Cross-posting analysis takes into account that message threads need not be
restricted to one newsgroup. During its lifetime a thread may touch various newsgroups as
its focus shifts. Netscan analyzes these cross-posting patterns and calculates cross-posting-
relationships between newsgroups.

The report on interpersonal connections described by Smith and Fiore (2001) is missing in the current
prototype. Nevertheless, it is very interesting with respect to this thesis as it visualizes interpersonal
connections between authors in a thread. In that report, authors are arranged in a two-dimensional
space where thex-axis indicates the number of replies posted by each author and they-axis reflects
the number of messages that are posted in reply to their messages. If one author replied to some other
author, these two persons are connected with a line. The thickness of the line is determined by the
number of replies exchanged between these persons.

There are some other reports and visualizations like the TreeMap visualization of Usenet providing
interesting information for a sociological analysis of Usenet. With respect to this thesis, however,
those reports and visualizations are of little importance.

Similar to Netscan, the goal of Communication Map (Sack, 2003) is to provide an alternative to
traditional Usenet browsers including the social context of messages.5 The graphical user interface
includes a social network pane, which displays connections between participants in the selected group.
Persons are displayed as nodes with optional labels. Two persons are connected by a line, if they have
reciprocally replied to each other. The more frequently two users have replied to each other, the closer
the corresponding nodes are arranged. The interface supports interactivity, such as clicking on nodes
and thus highlighting portions of the social network.6 Another interesting aspect of Sack’s work is the
”semantic network” display of terms used in message bodies. Sack employs text analysis procedures
including linguistic databases like WordNet (Miller, 1995) in order to identify important terms in
every message. These terms can then be used for a topic-based navigation through the set of messages
in a newsgroup.

The Loom2 project (Donath et al., 1999; Donath, 2002; Donath et al., 2001) aims at developing
visualizations of Usenet newsgroups in consideration of social structures of groups.7 More specifi-
cally, some of the questions the Loom2 project tries to address are ”How many members post in a
given group?”, ”Do a few individuals dominate the group?”, ”How active is a group?”, or ”How many
groups are people involved in?” (Donath et al., 2001). Although these questions concern the social
structure of Usenet, Loom2 does not address issues of social networks directly. Nevertheless, graphi-
cal Loom2 spring visualizations (Donath, 2002) contain implicit information about the social network
between Usenet participants, for example, the gathering of people to circles representing conversa-
tions. Size and density of circles correlate with the vibrancy of conversation threads. A newcomer
can easily find vivid threads in a group and thus more easily identify important actors in the social
network of that group.

3.2.3 Visualizing Usenet Relationships

In order to get a better impression of what social networks based on newsgroup relationships look like
I did some empiric research. It must be emphasized that the analysis reported on in this paragraph is far
from being representative of social networks in newsgroups in general. A more representative analysis

5Communication Map was designed and implemented by Warren Sack at UC Berkeley. A prototype can be found at
http://www.sims.berkeley.edu/∼sack/cm/.

6A similar approach is reported on by Fisher (2000).
7The Loom2 project page is situated at http://smg.media.mit.edu/projects/loom2/.

3.2. Communication 33

requires a thorough choice of samples and more exhaustive analysis methods, which is beyond the
scope of this thesis. Nevertheless, I think the results presented below provide a first insight in social
networks in newsgroups.

The sample the following analysis is based on was collected from May 16 to May 22, 2003. It
contains those messages the news server news.lrz-muenchen.de provided via anonymous access from
inside the TU network8 for the newsgroupsde.rec.outdoors , de.rec.alpinismus , and all
groups in thetum hierarchy (tum.* -groups are dedicated to discussing issues concerning Technische
Universiẗat München). Based on this sample, relationships are evaluated as follows. A messagex is
a reply to a messagey if either x contains a header lineIn-Reply-To whose latest element is
the Message-ID ofy, or if this is not the case,x contains a header lineReferences whose latest
element is the Message-ID ofy. Persons are identified by their email-address, where different email-
addresses are assumed to refer to different persons.9 The relationshipreplies-tobetween two persons
a, b can be defined in two different ways. First, there is a directed relationshipRd(a, b) from person
a to personb, if a is author of messagex, b is author if messagey andx is a reply toy. Rd(a, b)
has strengthn, if n such pairs(x, y) of messages exist. Second, there is a reciprocated relationship
Rr(a, b) betweena andb, if there exist two sets of messagesX andY , whereX contains all those
messages ofa which are replies to any messages ofb (not necessarily inY), Y contains all those
messages ofb which are replies to any messages ofa (not necessarily inX), and both sets are not
empty.Rr(a, b) has strengthm, if m = card(X) + card(Y). Figures 3.3 and 3.4 show graphsGr of
Rr andGd of Rd respectively, based on a data sample ranging from May 16 to May 22, 2003 for the
newsgroupde.rec.outdoors .10

The first impression of both graphs is that they are pretty densely connected. The undirected graph
Gr contains six cohesive subgroups where the biggest contains 26 nodes, two contain three nodes and
the three small ones each two nodes. Strength values of most edges are rather balanced, i.e. the
numbers of messages sent in each direction are about the same — in most cases one message in each
direction. An exception is dyad(4, 30), where person 30 posted three messages vs. one message of
person 4. The most active persons (2, 5, 8 and 18) can easily be identified. Most remarkably, person
2 is central to this group of persons and has rather strong relationships to persons 5, 8 and 18 (of
strength 1:1, 2:3, and 5:4 respectively).

The graphGd is much bigger thanGr, however, many persons have just received or sent one
single message. Person 2 is also central in this graph insofar as it has received several additional
replies (from 1, 13, 24, 32, 37, 42, and 93) and has sent additional messages (to 12, 14, 20, 22, 62,
70, and 107) and thus is socially the most active person in this newsgroup. On the other hand, three
persons (62, 70, and 87) can be identified who mainly receive replies. About two-thirds of all persons
have only posted one reply message, and about half the persons have received only one reply. Most
non-reciprocated relationships have strength one (in Fig. 3.4, for the sake of lucidity, strength values
are not indicated). However, it is questionable if such edges should be considered as relationships
at all — sending a single reply to someone will probably not lead to remembering that person for a
long time. Hence, when interested in answering questions like “who knows whom?”, reciprocated
relationships probably provide better clues.

8The sample of newsgroups offered by the server depends on the location the client connects from.
9Sect. 6.2 will deal with the problem of having multiple identifiers per person.

10The layout of both figures was done with the Graphviz package from AT&T Labs Research (Gansner and North, 2000).
Further information is available at http://www.research.att.com/sw/tools/graphviz/.

34 Chapter 3. Internet-based Communication and Shared Information Spaces

5

2

5:1/2:1

6

6:1/5:1

7

7:1/5:1

8

8:3/2:2

9

9:1/2:1

18

18:4/2:5

21

20

21:1/20:1

22

22:1/8:1

23

23:1/22:1

30

4

30:3/4:1

33
33:2/18:1

3636:1/18:1

38

38:1/8:1

39

39:1/8:1

41

41:2/2:1

43

43:1/2:1

47

47:1/2:1

48

48:2/2:1

5353:2/2:2

55

54

55:2/54:1

56

56:1/2:1

60

60:1/2:1

66
64

66:1/64:1

67

67:1/48:1

69

69:1/2:2

73

73:1/54:1

74

74:1/2:2

75

75:1/2:1

76

52

76:2/52:1

81

80

81:1/80:1

82

82:1/81:1

84

84:1/2:2

62

84:1/62:1

90

90:1/62:1

Figure 3.3: Reciprocated reply-relationships in the newsgroupde.rec.outdoors (GraphGr).
The figure shows relationships based on messages which were posted between May 16 and May 22.
If a persona postedx messages in reply to personb, and personb postedy messages in reply toa, the
edge betweena andb is labeleda:x/b:yor vice versa. In Figures 3.3 and 3.4, the same node numbers
refer to the same email address.

3.2. Communication 35

1

2

70

5

8

9

12

14

18

20 22

41

43

47

48

53

56

60

62

69 74

75

84

107

3

4

30

6

7

38

39

10 11

13

72

15

16

17

87

33

36

19

21

23

46

78

24

25

26

27

28

29

31

42

32

34

35

37

93

40

52

44

45

67

101

49

50

51

76

54

55
73

81

57

58

59

103

61

90

63

64

66

65

68

71

96

77

79

80

82

83

85

86

88

89

91

92

94

95

97

98

99

100

102

104

105

106

108
109

110

111

112

113

114

115

116

Figure 3.4: Unilateral reply-relationships in the newsgroupde.rec.outdoors (GraphGd). The
figure shows relationships based on messages which were posted between May 16 and May 22. Edge
labels are omitted for the sake of lucidity. In Figures 3.3 and 3.4, the same node numbers refer to the
same email address.

36 Chapter 3. Internet-based Communication and Shared Information Spaces

3.2.4 Instant Messaging

Instant messaging applications have gained importance both at home and at work (Lenhart et al.,
2001; Cain, 2003; Jupiterresearch, 2001, 2002). Instant messaging offers near-synchronous one-to-
one communication. Unlike traditional chat systems, instant messaging is based on a person-to-person
communication model — at the beginning of a communication, one person opens a “connection” to
another person, which may respond after the first message being sent or not. During conversations,
many instant messaging clients offer functions for file exchange, initiating video/audio conferences,
shared whiteboard sessions, application sharing, or starting multi user games. Instant messaging
systems usually support the management of “buddylists” — i.e. the set-up of lists with persons (“bud-
dies”) the user has some relationship with. Some instant messaging clients support the management
of several buddy lists depending on the kind of relationship. Most commonly, lists for family mem-
bers, friends, and co-workers are distinguished. In some instant messaging systems users can object
against being put on someone else’s buddylist or even ignore certain users so that messages from them
are blocked. Most instant messaging systems provide awareness information about buddies: next to
each buddy a symbol or text is displayed indicating if the user is currently “available” (online and
active), “away” (online, but not active), or “offline”. In some systems, users can explicitly set their
status to “invisible” (an invisible user is displayed as “offline” to other users) or to “do not disturb”. In
2002, the most popular instant messaging systems were AOL AIM11, Yahoo! Messenger12, Trillian13

(which has no protocol on its own but can log on all other systems in this list), ICQ Instant Message14,
MSN Messenger Service15 (also included in Microsoft Windows XP), and AOL Instant Message16, in
this order (Jupiterresearch, 2002).

Instant messaging has been especially used by teenagers (Lenhart et al., 2001), however, studies
suggest that instant messaging will increasingly gain importance in professional settings (Osterman
Research, 2002; Cain, 2003). This is partly due to the informal character of instant messaging com-
munication, as reported by Nardi et al. (2000). According to the study of Nardi et. al., the central use
of instant messaging is “to support quick questions and clarifications about ongoing work tasks”, “co-
ordination and scheduling”, “to coordinate impromptu social meetings”, and “to keep in touch with
friends and family”. Extending these findings, Isaacs et al. (2002) conclude that the single-purpose
character of instant messaging should not be overemphasized. Instant messaging is also used for ex-
tended work discussions being characterized by intense communication “with many short messages
in a short period of time”.

Although integration of instant messaging systems into traditional applications is starting to be-
come reality (e.g., integration of MSN Messenger into Microsoft Outlook), much work still has to be
done with respect to interoperability of different instant messaging systems. Currently, buddylists are
only available in the system they were set up with. If two buddies use different systems, accounts for
both systems are necessary — possibly even with different user names. Also integration of instant
messaging with email can still be improved: although some instant messaging systems like MSN
and Yahoo! automatically create an email account which can be accessed via the instant messaging
client, this is not possible for arbitrary email accounts. Representing relationships based on buddylist-
membership or instant messaging logs in a general framework can fill this gap and improve integration

11http://www.aim.com/
12http://messenger.yahoo.com/
13http://www.ceruleanstudios.com/trillian/
14http://www.icq.com
15http://messenger.msn.com/
16AOL Instant Message refers to the messaging service included in AOL’s fee-based online network, whereas AOL AIM

is the stand-alone instant messaging client.

3.3. Shared Information Spaces 37

of different instant messaging systems as well as integration of such systems into other applications.

3.3 Shared Information Spaces

Sharing and exchanging information are common tasks in cooperative work. Shared information may
concern general knowledge and facts, or may document ongoing or completed group work. Two main
subclasses of shared information space systems can be distinguished. The first class are hypertext
systems like the world wide web. The second class contains systems supporting groups of people who
share common interests or common goals (“communities”) — often these systems are accessible via
web interfaces and thus show hypertext features, too.

3.3.1 Hypertext Systems, Wikis, and Weblogs

Hypertext is a combination of natural language text elements and structural information allowing the
interactive display of and the navigation through the text elements. Many shared information spaces
consist of hypertext (Borghoff and Schlichter, 2000), since hypertext allows for more flexible refer-
ences and structures (including heterogeneous data formats) than traditional linear texts. Hypertext
consist ofnodesand links, where nodes are small, logical information units, and links are relations
between nodes, which are usually used for navigation. Nodes may be typed in order to determine
the content format of the node. For example, nodes can contain plain text, markup text, graphics,
video, or audio. Links between nodes may be either uni- or bidirectional. The specific semantics of
each link depends on the type of the node, the type of the link, and the interpretation of the reader.
Because several hypertext systems exist containing different hypertext models, the Dexter reference
model was introduced in order to provide a standard for interoperability between different hypertext
systems (Halasz, 1994).

Hypertext systems — especially the world wide web — are often used in research and business
contexts in order to provide information about projects, organizations, or persons. Thus, the link
topology of a hypertext can often yield information about social networks. For example, Contractor
et al. (1998) capture knowledge-relationships between persons by analyzing links between their web-
sites, common links to third party websites, and content analysis of the persons’ websites. Kautz et al.
(1997b) use lists of co-authors in technical papers and citations of papers as data sources about social
networks. Xiong and Brittain (1999) as well as Minar and Donath (1999) visualize web usage by
displaying a graphical map of a website indicating who is viewing which page. If the website consists
of pages about persons and projects, the visualization can provide good hints about who knows who
or who knows which project.

Many websites in the world wide web (still) contain static pages, which are edited offline and then
transferred to a web server. However, there are systems supporting dynamic creation and editing of
web pages. In the CoWebs system, for example, which was originally inspired by the Wiki project17,
every user can edit a page directly in the web browser (Dieberger and Guzdial, 2003). By simply
inserting a link to a non-existing page, a new page is created and may be edited afterwards. Like
reading a web page, editing a page constitutes a relationship between the person editing the web page
and the original author of the page. Hypertext systems are thus sources of relationship information.

Apart from traditional web pages and Wikis, weblogs emerged as a new way of publishing infor-
mation on the web in the late 1990’s. The term “weblog” was coined in 1997 by Jorn Barger.18 We-

17http://wiki.org
18http://www.robotwisdom.com/ (checked Dec. 2003)

38 Chapter 3. Internet-based Communication and Shared Information Spaces

blogs are personal webpages collecting all kinds of information their owners find interesting. Weblogs
are usually regularly updated. Entries of a weblog are displayed in reverse order, i.e. the latest entry
is usually displayed at the top of the page. Examples of personal weblogs are personal home pages
or (sometimes categorized) link collections. Other weblogs are maintained by teams, e.g. project
weblogs or news weblogs. Often, weblogs link to other weblogs, establishing a “weblog network”.

The remarkable thing about weblogs is that the information they contain can be attributed to
a person, or at least a group of persons. This means that reading a weblog establishes a directed
relationship between the reader and the author(s) of the weblog. Similarly, linking to another weblog
indicates a directed relationship between the owners of the two weblogs.

One of the reasons why weblogs have become popular is that weblogs are maintained via
standard web browsers — no source editing is necessary. This makes publishing information
quite easy. Weblog communities, such as http://www.blogger.com/, http://www.xanga.com/, or
http://www.livejournal.com/ provide servers hosting weblog software, such that anybody can start his
own weblog without needing to know anything about web page programming.

3.3.2 Supporting Virtual Communities

Computers and the Internet increasingly pervade our everyday life. More and more people “go online”
for retrieving and sharing information or just communicating with friends, relatives and colleagues.
Also many classicalcommunitiestend to (partially) move online, and even new communities evolve
based on electronic communication (Rheingold, 1993; Wellman and Gulia, 1999). Communities us-
ing shared information spaces in the internet as their primary communication media are often called
virtual communities, or, synonymously,online communities.

The term virtual community was coined by Rheingold (1993), who reports on his own experiences
with a very early world wide virtual community, called The Well. A variety of definitions for the terms
community and virtual community exist. Mynatt et al. (1997) find

[a] loose consensus around community as referring to a multidimensional, cohesive social group-
ing that includes, in varying degrees: shared spatial relations, social conventions, a sense of mem-
bership and boundaries, and an ongoing rhythm of social interaction.

According to Koch (2003b), a central aspect of communities is that people voluntarily affiliate to a
network, which defines some commonness between them, and which all participants benefit from.
This social network forms the basis for shared activities and learning of the community.

Belonging to the same community implies influencing each other, either directly (e.g., via direct
communication) or indirectly (e.g., via providing and retrieving public information). Thus, supporting
virtual communities is strongly related to relationship management. While communicating with each
other or providing and retrieving shared information, people constitute relationships to other people.

Classification of Communities

There are many different types of virtual communities. Carotenuto et al. (1999) distinguish between
communities of interest, communities of practice, communities of purpose, and communities of pas-
sion. Communities of interest typically consist of people sharing common backgrounds or interests.
Usually, such communities are not very sharply bounded. Communities of practice focus on shared
professional responsibilities or activities. Common examples are programmers’ communities in a
large company (Vivacqua, 1999). Communities of purpose are composed of people sharing the desire
to bring forward the group or organization as a whole. Knowledge management communities may
be seen as examples of this type of communities. Communities of passion usually are rather small,

3.3. Shared Information Spaces 39

tightly focussed, and consist of people sharing common interests. Different from communities of
interest, their members strongly identify with the topic.

Lazar and Preece (1998) classify virtual communities according to attributes, supporting soft-
ware, relationship to physical communities, and boundedness. Attributes of a community may be
shared goals or interests, strong ties among members, shared activities, shared resources, support
among members, or social conventions. The more of these attributes a virtual community exhibits,
the clearer it truly is a community (Whittaker et al., 1997). The classification by supporting software
is motivated by the variety of different technologies which have been developed for supporting com-
munities, such as Internet Relay Chat (IRC), web-based or proprietary bulletin boards (even Usenet
may be regarded as a community support system), or mailing lists. Many community support sys-
tems, however, offer a combination of these services. Virtual communities can also be classified
by the degree of relationship to physical communities. On the one hand, virtual communities may
emerge from geographically-focused “real-life”-communities, for example, a community of citizens
of a small town. On the other hand, there may be communities not related to any physical community.
This type of community is especially relevant with respect to anonymity — in certain domains, mem-
bers may not want their real identity to be revealed, as may be the case in communities about diseases
(Leimeister et al., 2003). Another example of virtual communities not related to physical connections
are communities bridging large distances, as holds for the COSMOS19 cancer community (Leimeister
et al., 2003). Communities can finally be classified according to their boundedness: in tightly bounded
communities, most ties among members are within the community (“strong” ties), whereas in loosely
bounded communities, members have more ties to people outside the community (“weak” ties).

Depending on the specific goal or intention, different purposes of virtual communities need to be
supported. The most prominent (partly overlapping) purposes are the following.

Sharing information. The most obvious feature of many communities is the possibility for its mem-
bers to share information. In the university domain, for example, shared information includes com-
ments on courses, study groups, or events (Koch et al., 2001). In an entrepreneurship community,
information about project proposals, courses, management know-how, and personal experiences may
be exchanged (Schlichter et al., 2003). Personal experiences are also shared in the COSMOS cancer
community (Leimeister et al., 2003), which also enables members to search for and publish profes-
sional medical information. Finally, binary data (e.g., mp3 music files) may be subject of information
sharing, as is the case with peer-to-peer file-sharing software (Lechner et al., 2001).

Knowledge management. Knowledge management does not only address the management of ex-
plicit knowledge but also answering the questions “who knows what?”, “who knows who?”, and
“who knows who knows what?” (Contractor et al., 1998). According to Wenger and Snyder (2000),
communities of practice20 are especially valuable for developing business strategies, solving prob-
lems, transferring best practices, and developing professional skills. The main approach to supporting
knowledge management in communities of practice is to help people to get together and find the right
persons for the problem they are trying to solve. That way, social networks make up a community’s
capital — the better this network is supported (including appropriate means for privacy protection),
the more effective the community can be.

19COSMOS (http://www.cosmos-community.org) is a research project targeted at developing community support plat-
forms especially in mobile environments. It is situated at Technische Universität München.

20Wenger and Snyder’s definition of communities of practice also includes communities of purpose in terms of Carotenuto
et al. (1999).

40 Chapter 3. Internet-based Communication and Shared Information Spaces

Supporting Awareness. To know which people are around is important for many tasks in every-
day life. This includes group awareness of co-workers currently editing the same documents (Koch,
1997; B̈urger, 1999) as well as awareness of friends or colleagues who are available for spontaneous
communication or meetings (Nardi et al., 2000). Awareness of other people’s knowledge is especially
valuable for knowledge management in communities of practice.

Virtual communities are sometimes used to find other people sharing one’s interests in order to
initiate meetings “in real life”. For example, in the role-playing community of ADRV21, role-players
can register and provide data about themselves, including their name, real-life address, contact infor-
mation, the role-playing games they play, and if they would rather be game-master or player.22 Each
member of the community can query the database and look for players for the desired game, who live
in the same city. Especially interesting about role playing is the fact that peopledependon other peo-
ple sharing the interest in role-playing games. However, role-playing is not too popular, and it is often
difficult to find other players. Therefore, the virtual role-playing community can be very important if
players are looking for other people to join their role-playing group.

Recommendation and Matchmaking. The amount of information stored in shared information
spaces is often very large. Traditionally, people rely on the word of mouth when looking for reliable
information or good products. In order to support this process in virtual communities, a number of
recommender systems have been introduced (Resnick and Varian, 1997). These systems analyze the
user’s preferences, public data, and sometimes even behavior, and suggest interesting information
(recommendation) or interesting persons (matchmaking). An example of a popular recommender
system is the Amazon.com item recommendation system (Linden et al., 2003). Examples of the latter
are Yenta (Foner, 1997) and Referral Web (Kautz et al., 1997a).

A Modular Architecture for Community Support Systems

In recent years web-based community platforms have become rather popular. Many companies rec-
ognized their value for marketing purposes, customer retention, and knowledge management. It is,
however, expensive to develop and deploy virtual community platforms from scratch. Hence, generic
community support systems have been developed, which can be adopted to the users’ specific needs.
At Technische Universität München, a java-based community support system called “Cobricks” has
been developed, which follows the idea of modularization. In this section, the Cobricks community
support system is briefly discussed. For a more detailed explanation of the Cobricks architecture
and data concepts the reader is referred to Koch (2003b). Cobricks is also used as a testbed for the
relationship management system developed in this thesis (see Sect. 7.3). At Technische Universität
München, the Cobricks community support system has been deployed in several contexts, including
the information system of the department of informatics23, the MBA portal24, the UnternehmerTUM

21Allgemeiner Deutscher Rollenspieler Verein (Association of German Role-Players), http://www.adrv.de
22A typical role-playing game needs one game-master (“storyteller” or director), and several players, who meet “in real

life”. The idea of the game is that each player creates a character represented by a sheet of paper with the description of
the character on it, and describes the actions of the character in the story the game-master tells. These pen- and paper-based
role-playing games are very similar to computer based role-playing games. In fact, many of the latter are based on rule
systems originating from pen- and paper based role-playing games.

23http://www.in.tum.de
24http://portal.mba.tum.de

3.3. Shared Information Spaces 41

community25, the COSMOS cancer community26, and the COSMOS lifestyle community27.
The basic model for Cobricks includes the following data concepts:

• User Profiles

• Items

• Item Annotations

• Categories

• Shared Buddylists

• Messages

• Social Relationships

These concepts can be grouped to the four main modules User Management, Item Management,
Context, and Communication. Figure 3.5 depicts the basic concepts and their relations. The Social
Relationship component of the User Management module is one result of this thesis and will be
discussed in more detail in Sect. 7.3. In the following paragraphs the basic concepts are described
briefly.

User Profiles. Each user of a Cobricks-based community support system is represented by a user
profile that stores data about the user. In all cases, this data includes a user-ID which is used as a
unique identifier for the user in the system. A user-ID is usually a nickname the user may choose
when registering. The component providing access to the user profiles is from now on referred to as
profile manager. Each user profile contains a number of attributes and their values. By specifying a
user profile model for a concrete installation of Cobricks, standard attributes can be defined including
types and allowed values (see Fig. 3.6). One basic design decision is to allow any Cobricks component
to store arbitrary additional attributes in user profiles.

For each attribute, a user may define a set of rules which is used for access control. The concrete
rule syntax depends on the rule processor chosen for the Cobricks installation. In general, possible
parameters for a rule are the user-ID associated with the user profile which is accessed, and the user-
ID of the user requesting access to the user profile. Based on the user profile which is accessed, the
rule processor calculates the attribute value, which is then returned to the caller. For calculating the
return value, the rule processor may call the profile manager and request those attributes referenced
in the rule from both user profiles without applying rules (see Fig. 3.7). Thus, different values may
be returned for the same attribute depending on the attributes of both users. In a mobile context, for
example, a user might define a rule which returns his exact location only to members of his buddylist,
and just the city to others. Any rule processor implementation must particularly take care of:

• Privacy issues. Since during rule evaluation true attribute values of both users are available, the
rule syntax must ensure that return values do not allow conclusions about values of otherwise
inaccessible attributes.

25http://www.unternehmertum.de
26http://www.krebsgemeinschaft.de
27http://www.studiosity.de

42 Chapter 3. Internet-based Communication and Shared Information Spaces

���������	���

	��

	������	�	���

	���		������	

���������������	

��	�����

������������

�����������������	������

����	���	���

�����	��������

����	�	��

��	����	�����

���������

��������	�����

������

����	��
���

	������������	

���	��	

��������������	

�������

�������	�

	�

Figure 3.5: Cobricks data concepts and relations between them — according to Koch (2003b). Dashed
lines indicate sources of social network data.

• Rule Priorities. The Cobricks profile manager only offers the storage and retrieval of unordered
sets of rules. Any ordering of rules must be encoded in the rule syntax. Based on rule priorities,
the rule processor can choose which rule to apply.

The Cobricks profile manager offers methods for managing personal buddylists. Personal bud-
dylists are modeled as special set-valued user attributes. This allows for specifying multiple buddylists
per person. Personal buddylists may be used by other Cobricks components for various purposes. The
message component, for example, makes use of personal buddylists as one method for specifying
the recipients of a message. In cooperation with a concrete presentation layer (see below), presence
awareness information (i.e. which buddies are currently online) may be displayed to the user.

Items and Item Annotations. An item is a semi-structured data object representing an information
entity. Each item possesses a unique ID, a number of basic attributes, such as item type, title, publisher,
date of publication, etc., and a set of arbitrary attributes depending on the type of the item. The syntax
of predefined attributes is standardized, whereas additional attributes may have arbitrary syntax (yet
must be text-based — for binary data, item attachments can be used). Each item may be linked to
one or more categories (see below), indicating the topic of the item or kind of information the item
represents.

Each item may be annotated by one or more annotations. An item annotation is a user comment
on the item. It contains an annotation ID, a title, natural language content, a (numeric) rating, the
date of publication and the user-ID of the publisher. Annotations can be threaded, i.e. an annotation
may either annotate an item or another annotation. Hence, item annotations are somewhat similar to
hierarchic bulletin boards like Usenet, where the item forms the context for communication.

3.3. Shared Information Spaces 43

<userattributes>
<attribute key="interests">

<type multivalue="true"><![CDATA[TYPE_STRING(255)]]></type>
<description lang="en"><![CDATA[Interests]]></description>

</attribute>
<branch key="basic">

<branch key="personal">
<attribute key="firstname" core="true">

<type><![CDATA[TYPE_STRING(100)]]></type>
<description lande"><![CDATA[Firstname]]></description>

</attribute>
<attribute key="lastname" core="true">

<type><![CDATA[TYPE_STRING(100)]]></type>
<description lang="en"><![CDATA[Lastname]]></description>

</attribute>
<attribute key="maidenname">

<type><![CDATA[TYPE_STRING(100)]]></type>
<description lang="en"><![CDATA[Maidenname]]></description>

</attribute>
<attribute key="birthday">

<type><![CDATA[TYPE_STRING(20)]]></type>
<description lang="en"><![CDATA[Birthday]]></description>

</attribute>
<attribute key="form_of_address">

<type><![CDATA[TYPE_STRING(40)]]></type>
<description lang="en"><![CDATA[Form of address]]></description>
<value><![CDATA[Mrs.]]></value>
<value><![CDATA[Mr.]]></value>

</attribute>
<attribute key="title">

<type><![CDATA[TYPE_STRING(40)]]></type>
<description lang="en"><![CDATA[Title]]></description>

</attribute>
</branch>
<branch key="contact" instances="true">

<instance key="private">
<description lang="en"><![CDATA[private]]></description>

</instance>
<instance key="work">

<description lang="en"><![CDATA[business]]></description>
</instance>
<branch key="online">

<attribute key="email">
<type><![CDATA[TYPE_STRING(100)]]></type>
<description lang="en"><![CDATA[Email]]></description>

</attribute>

...

Figure 3.6: Excerpt from a Cobricks user profile model definition

44 Chapter 3. Internet-based Communication and Shared Information Spaces

Let a, b be users,x an attribute andRx = {rx,1, ..., rx,n} the set of rules of usera for attributex. A request
getAttribute(a, x, b) of userb for attributex of usera is evaluated as follows:

1. Profile manager gets current (true) valuev of attributex for usera from storage.

2. Profile manager invokes rule processor with parametersv, Rx, a, b.

3. Rule processor parses rules inRx and decides which rule to apply. Letr∗x be the rule chosen.r∗x
contains references to (other) attributes, if the access to the attribute depends on the values of those
other attributes.

4. Rule processor evaluatesr∗x and uses profile manager for retrieving true attribute values (i.e. without
applying rules) of usersa andb, if necessary.

5. Rule processor returnsv∗ to profile manager.

6. Profile manager returns valuev∗ to caller.

Figure 3.7: Evaluation of user attributes in Cobricks

Categories and Shared Buddylists. Categories represent domain information which can be at-
tributed to items. Categories are hierarchically arranged in a forest, where a (directed) edge from
categoryc1 to categoryc2 indicates thatc1 is a subcategory ofc2. The subcategory-relation should
be thought of as specialization — the concrete semantics depend on the design of the category for-
est. Figure 3.8 depicts an excerpt of the category forest of the TUM entrepreneurship community
www.UnternehmerTUM.de. A second relation, referred to as “related-to”, can be used to link two
categories where neither of both is a subcategory of the other, but which are considered similar. For
example, a category “branch←informatics←development←SAP” might be considered related to a
category “branch←consulting←ERP←SAP”.

Apart from these basic categories, there is a special kind of category called shared buddylists.
A shared buddylist is a set of users which is referred to by the name of the shared buddylist. The
intended usage of shared buddylists is for the management of small, informal groups. Every user
may create a shared buddylist and grant membership to other users. Each user on a shared buddylist
may in turn grant membership to other users or cancel his membership. Because shared buddylists
are special categories, they can be used to attribute information items. This is particularly useful
for marking items as relevant for the group. In the current category management implementation, a
shared buddylist is never related to any other category (neither by the subcategory-of relation nor by
the related-to relation).

The category forest of a Cobricks installation may be viewed as a strongly simplifiedontology.
Ontologies and the Semantic Web are discussed in more detail in Chapt. 4. In future versions of
Cobricks, category management will probably be replaced by more powerful ontology management,
which incorporates new standards like OWL28 and RDF(S)29.

Messages. Messages are information entities which are directed from a user or a component of the
community support system (e.g. the recommendation service) to a specific group of recipients. A
message consists of the following data:

• Subject
28Web Ontology Language (see Chapt. 4).
29Resource Description Framework and corresponding schema language (see Chapt. 4).

3.3. Shared Information Spaces 45

branch

automobile

bank

building

chemistry

architecture

engineering

technology

material

processengineering

groups

alumni

enterprise

female

serviceprovider

accountant

agency

consultant

it

Figure 3.8: Category forest of the TUM entrepreneurship community www.UnternehmerTUM.de
(excerpt)

46 Chapter 3. Internet-based Communication and Shared Information Spaces

• Message content

• Specification of recipients

• Sender of the message

• Date and time when the message was sent

Recipients can be specified by their user-ID, the name of a personal or shared buddylist, or selection
conditions for the set of user profiles. The last method allows for specifying recipients according to
their user profiles — for instance, all users with certain interests or all users currently located close to
a special location.

Social Relationships. The social network underlying a virtual community is essential to the value
of the community. Cobricks has been integrated with the InReM framework for relationship man-
agement, which is one of the results of this thesis. The InReM framework is discussed in detail in
Chapt. 7. As indicated in Fig. 3.5, in Cobricks there are a variety of sources of social network data:

Messages from one user to other users.Sending a message from one member of a community to
another implies relationships between sender and recipient as well as among recipients, if the
message is sent to several persons at the same time. Sending a message inside a virtual com-
munity is very similar to sending an email, thus analysis patterns developed for email exchange
(see Sect. 3.2.1) can be applied for internal messages with little adoption.

Membership of personal buddylists. Personal buddylists in Cobricks are very similar to buddylists
in instant-messaging systems (see Sect. 3.2.4). Since Cobricks allows for multiple buddylists
per user, different buddylists may be used in order to categorize buddies according to the kind
of relationship with them (e.g., colleagues, family, friends). Buddylist relationships are usually
directed from the owner of the buddylist to the person put on the buddylist.

Membership of shared buddylists. Similarly to personal buddylists, putting a person on a shared
buddylist implies a (directed) relationship from the person granting membership to the new
member of the buddylist. A shared buddylist, however, may also be viewed as a kind of mailing
list. Hence, the approaches of Donath (1995) and Boyd (2002) (see Sect. 3.2.1) may be applied
in order to deduce relationships among members of a shared buddylist.

Reading information items. When a person views some information which has been published by
some other member of the community, a directed relationship from the reader to the publisher
may be inferred. This relationship should rather not be interpreted as acquaintanceship with
the publisher, but as knowledge about style and quality of that person’s publications. The more
different items by one publisher a reader views, the more intense is his relationship with the
publisher. Although the reader gains knowledge about the content of the item, this aspect is of
minor importance with respect to relationship management. Knowledge about the content does
not indicate a relationship between the reader and the publisher of the item but only the reader’s
interest in the content of the item. Yet, the content of items published by two persons may be
taken into account to derive a relationship based on shared interests between the two persons
(similar to, e.g., the approach followed by Foner, 1997).

Annotating and rating items or item annotations. Publishing an annotation to an item constitutes
a relationship from the annotation publisher to the item publisher. Similarly to reading infor-
mation items, this indicates knowledge of the item author’s style and publication quality. If the

3.4. Workflow Management 47

annotation contains a rating of the item, even the annotator’s assessment of the item is available.
Besides annotating items, it is also possible to annotate annotations. An annotation puts strong
emphasis on its author, since it usually reflects the author’s personal opinion, whereas items put
more emphasis on the content. Hence, the relationship deduced from annotating an item or an
annotation is usually stronger than one deduced from simply viewing an item.

Viewing other persons’ user profiles.A user viewing another user’s profile is obviously aware of
him — yet viewing a profile only once usually does not indicate a relationship. Viewing a
profile repeatedly, however, often does indicate a relationship, particularly in those cases when
the profile contains contact or expertise information.

Relations on user profiles.Not only interaction of users with the community support system indicate
relationships with other users, but also relations on user profiles. For example, if data about the
current residence is stored in the profile, a relationship may be deduced between two members
living close to each other. Another example is a relationship inferred from comparing interests
stored in user profiles.

Cobricks architecture overview. An installation of a Cobricks community support system consist
of two layers (see Fig. 3.9). The lower layer contains the Cobricks core, which provides all manage-
ment functions for the data concepts described above. The main components are Item Management,
User Management, Communication, Personalization, and Context. Furthermore, import and export
interfaces are provided, which can be used to synchronize data with other Cobricks installations or
other proprietary systems. At the bottom of the lower layer, one might also depict a database layer.
Cobricks requires an SQL database for persistent storage of community data. A special data access
component provides generic access to different implementations of SQL databases and handles the
peculiarities of different database systems.

The Cobricks core does not offer a built-in presentation layer — particularly there are no built-in
session management or legitimization mechanisms. Instead, different implementations for the upper
presentation layer of a Cobricks installation have been developed which also take care of registration
and legitimization. The two most prominent are web-based presentation via Java Servlets (also known
as “Portal-Toolkit”) and client-based presentation via RMI/SOAP. A presentation layer building on the
Cassiopeia Community Application Server Release 5.230 has additionally been implemented, which
makes use of this server’s session management and template processing capabilities.

The Cobricks core always runs on one computer and may not be distributed. Thus, a Cobricks
community support system is always centralized. For user profiles, however, there are means to
use external services managing user profiles via specialized interfaces as primary storage. For more
information on these issues the reader is referred to Koch (2003b, 2002b).

3.4 Workflow Management

The class workflow management covers a wide range of applications. One central aspect of workflow
management systems is creating business process awareness. Borghoff and Schlichter (2000) define
workflow and workflow management as follows:

“A workflow is a finite set of sequential and / or parallel activities which are triggered by events.
The activities have a defined start and completion. The terms procedure, process chain or business

30The Cassiopeia Community Application Server Release 5.2 was developed by Cassiopeia AG, Munich, Germany, in
2002. Currently, no public resources about this product are known to the author.

48 Chapter 3. Internet-based Communication and Shared Information Spaces

��������	����

����	�

��������������

���������������

��������������

������������

�������
���������������������
���

��������	����

���������������������

 !�"����"����#

�����������������������

 $����%&�#

Figure 3.9: Cobricks community support system architecture overview, according to Koch (2003b)

transaction are often used as synonyms for workflow. [...] Workflow management encompasses all
the functions of modeling, specifying, simulating, analyzing, executing and monitoring a work-
flow.”

Coordination is another central aspect of workflow management. Four different types of models for
describing and defining coordination processes can be distinguished (Prinz, 1989; Teufel et al., 1995):

Procedure-oriented models.Procedure-oriented models describe a workflow as a strictly regulated
process which is controlled by a central entity storing the entire information about the process.

Form-oriented models. In form-oriented models, a workflow is modeled as an “intelligent” docu-
ment containing information about the route through the organization it needs to take in order
to complete the business process. Form-oriented models are highly decentralized, since no cen-
tral control entity is required. The document is often passed on via email. Hence these models
are especially suitable for mainly serial processes.

Communication structure-oriented models. Assuming that coordination is based on communica-
tion, this group of models emphasizes communication structures in organizations. Information
items are passed along communication edges connecting processing nodes. Processing nodes
may be abstract organizational roles (each individual in an organization may be associated with
one or several roles) or individual persons. When an information item arrives at a processing
node, the node decides according to the attributes of the information item if it is passed on
and which communication edge is used. Communication edges highly reflect communication
structures in an organization and may also be viewed as social or organizational relationships.

Conversation-oriented models.Conversation-oriented models build on speech act theory. Accord-
ing to Borghoff and Schlichter (2000), “speech act theory analyzes speech as meaningful acts
by communication partners in situations of shared activity.” In such systems, messages can be
classified according to predefined classes of speech acts, which define the intended reaction of
the recipient of the message (Medina-Mora et al., 1992). An example of a speech act based
system is The Coordinater (Winograd, 1988).

Workflow management systems can be regarded as important sources of social network data.
Central entities of procedure-oriented models store information about message routes, which may

3.5. Workgroup Computing 49

be used to derive social relationships between actors in the workflow. Similarly, in form-oriented
models, the document itself contains routing information. Additionally, the communication system
used for passing the document can be used to obtain social network data. Communication structure-
oriented models obviously contain explicit social network data by defining information flow edges
between processing nodes. Finally, in conversation-oriented models, speech acts can be viewed as
social network data. In Action Workflow (Medina-Mora et al., 1992), for example, workflows consist
of a network of atomic loops between a customer and a performer, where each loop passes through
the four phases proposal, agreement, performance and satisfaction. Each such loop may be viewed as
a special relationship between the customer and the performer.

The issue of social relationships in workflow management should be investigated more in depth
with respect to concrete implementations. This is, however, not the primary focus of this thesis and is
therefore left to future work.

3.5 Workgroup Computing

Workgroup computing includes applications for coordination support as well as for collaboration
support. Examples of the former are planning systems like group calendars for supporting scheduling
meetings. The latter includes decision support systems, conference management systems and all kinds
of group editors. Distributed hypermedia systems — which may also be viewed as shared information
spaces — can be attributed to this class, too, especially those including means for editing hypertext
documents and thus serving as group editors for sets of hypertext documents.

Planning systems help to coordinate resources and capacities. With respect to social networks,
planning systems are interesting since they often contain information about shared meetings or tasks.
In most electronic shared calendar applications, for example, group meetings can be scheduled. For
each such meeting, a list of participants is stored. Regularly attending the same meetings may be
viewed as a special kind of relationship between two persons. If meetings often affect the same group
of persons, this group may also be made explicit by inferring a symmetric transitive relationship
between each pair of participants. In reality, however, introducing electronic shared calendars in an
organization often fails, since not enough attention is paid to the balance of benefits and costs for each
individual user (Grudin, 1988). Examples of systems including shared calendars are Lotus Notes31,
Microsoft Outlook32, or Sun’s CDE33.

Shared calendars are also often used in conference management systems. Conferences may be
“real” conferences with all participants in the same room or “virtual” conferences, where participants
are spatially distributed. In both cases, attendance to the same conference constitutes relationships
between participants.

In group editors, relationships between co-authors of documents appear. Group editors support
the process of cooperative document creation. Koch (1997) defines this process as

“joint editing of a document by multiple participants, whose shared (sub-)goal is creating the
document. Because of interdependencies between individual parts of the document, the authors’
activities influence each other. Thus, communication and coordination between the authors is
necessary in order to achieve the common goal.”34

31http://www.lotus.com
32http://www.microsoft.com/office/outlook/default.asp
33http://wwws.sun.com/software/solaris/cde/
34Translated by the author of this thesis.

50 Chapter 3. Internet-based Communication and Shared Information Spaces

During this process, the exchange of information about recent changes of parts of the document
or about which users are currently working on the document is required. In general, supporting
awarenessabout other persons’ activities is a prerequisite for cooperative work in shared workspaces.
Awareness is the link between group members which enables them to coordinate their contributions
in an effective manner and to avoid or dissolve conflicts (Bürger, 1999; Koch, 1997). Thus, awareness
is strongly related to social relationships. Obviously, co-author-relationships can be found in group
editors, but there may be more detailed information available, depending on the document model of
the group editor. A content analysis, for example, may yield information about the topic of the doc-
ument, which might also be attributed to the relationship. Structural information may also be taken
into account, for instance, if all authors contribute equally to the document, or if their sections are
hierarchically organized. However, in order to explore these issues more in depth, a detailed study of
the document models and cooperation and coordination protocols is necessary, which is beyond the
scope of this work.

3.6 Related Work

Several existing approaches related to this work have been already mentioned in previous sections:
PeCo Mediator II by Ogata et al. (2001) (see Sect. 3.2.1, p. 28), ContactMap by Nardi et al. (2002)
(see Sect. 3.2.1, p. 26), Boyd’s Social Network Fragments (Boyd, 2002) (see Sect. 3.2.1, p. 27), and
Sack’s Communication Map (Sack, 2003) (see Sect. 3.2.2, p. 32). Parts of the work of Donath et al.
on visualizing conversation (Donath, 1995, 2002; Donath et al., 1999, 2001) have been outlined in
Sect. 3.2.1, pp. 26 and 32.

In the remainder of this section, further approaches related to this thesis are briefly listed which
have not been discussed previously.

Analysis and Exploration of Social Networks. Referral Web (Kautz et al., 1997a,b) aims at assist-
ing people with finding trusted information on the web. Kautz et al. assume that information about
trustworthiness is not publicly available on the web. Hence, such information must be gathered by
finding people holding the information privately. Referral Web tries to support this process by analyz-
ing the social network among people in a given domain (e.g., a field of research) and offering a tool
which finds referral chains from one person to another. Referral Web uses co-occurrence of names in
documents publicly available on the web (references on home pages, co-authorship of articles, etc.) as
evidence for relationships between persons. Since only public information is used for social network
analysis in order not to have to deal with privacy issues, most likely large parts of the social network
keep invisible. Thus, the tool’s usefulness heavily depends on people making their relationships avail-
able publicly — this may be accepted for professional and research domains, but it is certainly not for
private usage of the world wide web.

Contractor et al. (1998) examine knowledge networks and how community support systems can
support them. Their community support system IKNOW analyzes the social network of community
members based on task and project links between them, shared skills and expertise, link topology of
websites, shared links to third party websites, and content analysis of members’ websites. One of
the main benefits of IKNOW is effectively supporting team assembly by identifying members with
shared/complementary skills.

Formalizing Trust. Abdul-Rahman and Hailes (1999) propose a model determining the trustworthi-
ness of agents in large distributed systems. The trustworthiness of an agent depends both on personal

3.6. Related Work 51

experiences of the agent (“direct trust”) and recommendations of other agents (“recommender trust”).
The recommender trust degreeta(x) of an agenta in an agentx expresses, how close most recom-
mendations ofx are to the “true” experience ofa. For calculating the recommender trust degree, the
direct trust degree is considered. Recommendations of agentx are then adjusted according to the rec-
ommender trust degreeta(x). After an experience of agenta with an agentb, the direct trust degree
of a in b is adjusted. Furthermore, if the experience was a result of relying on a recommendation from
x, the recommender trustta(x) is adjusted (positively, if the recommendation was worse than the true
experience, and negatively, otherwise). For a more detailed discussion of the algorithm and precise
formulas, the reader is referred to Abdul-Rahman and Hailes (1999).

Trust in digital certificates is often established by tracing back chains of credentials (Blaze et al.,
1996; Creutzig et al., 1999; Winslett et al., 2002). Credentials may be viewed as documents written
in a specific credential language which are signed by the issuer by means of asymmetric encryption
technologies. In order to decide whether to trust someone’s credentials the credentials of the issuer
can be checked, and so on, until a trusted issuer is found. Although sophisticated languages are used
in such systems, credentials may simply be viewed as special relationships between the issuer and the
object of the credentials. Any restrictions on or detailed description of credentials may be regarded as
attributes of the relationship. Going further into detail about this topic, however, requires a discussion
of the various credential languages, which is not the primary scope of this work.

Modeling Social Structures. Several approaches to formalize social structures exist. Parunak and
Odell (2001) formalize social structures by using UML. Their approach particularly focuses on the
definition ofroles in multi-agent systems and is based on dependency theory and speech act theory.

Koch (2003a) proposes a formalization for virtual communities which can be used as a basis for
developing community support systems. Special attention is paid to supporting the initiation phase of
communities. Like the Cobricks data model, Koch’s model is based on user profiles and information
items. Although social relationships are not explicitly represented, Koch’s analysis provides inter-
esting measures for determining social relationships based on communication and shared interests.
Therein not only explicitly provided interests are considered, but interests are also inferred from item
usage patterns.

In the course of the ongoing development of the semantic web, some approaches for modeling
social relationships with semantic web technologies have been proposed. Staab et al. (2001) model
social relationships as RDF properties accompanied by special axioms expressing algebraic properties
of these properties. A second approach is FOAF (Dumbill, 2002; RDFWeb.org, 2003), which defines
a simple RDF vocabulary for expressing information about persons including very simple social rela-
tionships. The FOAF vocabulary contains the RDF propertyfoaf:knows , whose domain and range
are persons. The property expresses a kind of reciprocal personal acquaintance between two persons.
In its current version, however, FOAF does not allow for a greater variety of relationships or structured
relationships. Like this thesis, both approaches mentioned in this paragraph build upon semantic web
technologies (see Chapt. 4). This work may be viewed as a generalization of those approaches.

The Stanford Framework for Interoperable Rights Management (FIRM) (Röscheisen, 1997;
Röscheisen and Winograd, 1997) uses relationships for the specification of access rights. The frame-
work is based on the assumption “that there always exists an agreement on the boundary conditions
of the communication relationship” (R̈oscheisen, 1997, p. 15). FIRM defines how to specify these
agreements, yet it is not alanguagefor specifying them. Specification of access rights in FIRM is
neither server-centric (like access control lists) nor client-centric (like capability lists). Instead, access
rights are defined with the help of so-called communication pacts (“commpacts”) representing the

52 Chapter 3. Internet-based Communication and Shared Information Spaces

relationship between the subject and the object of the access. Commpacts are results of negotiation
processes. Hence, relationships in the FIRM framework are targeted towards formally describing the
constituting aspects of a relationship without taking into account the social network between actors,
which is the focus of this thesis. It would be interesting and promising to combine both approaches
— this is one possible direction for future work.

3.7 Conclusions

This chapter has summarized the significance of social relationships in groupware and community-
ware applications. Table 3.2 summarizes the kinds of relationship which have been mentioned in
this chapter. Several approaches for analyzing social networks have been presented. Yet a serious
drawback of all approaches is the lack of interoperability and privacy protection:

• Each system uses its own representation of social network data and its own detection mecha-
nisms.

• Since no generally accepted data exchange format for social network data exists, it is not possi-
ble to combine different approaches in order to exchange social network data.

• Most approaches mentioned use central entities managing social network data and are thus
restricted to public social network data.

• So far, privacy issues are not addressed at all — but most people do not want their social network
data to be publicly available.

This thesis bridges this gap by proposing a general framework for expressing social network data
which allows for interoperability as well as privacy protection. The framework builds upon technolo-
gies of the semantic web, which will be subject of the next chapter.

3.7. Conclusions 53

Kind of relationship Sources / methods of analysis AP P References
acquaintance buddylists as 36
acquaintance personal address book as
reciprocated
acquaintance

co-occurrence of names at websites and
other public documents

s 50 Kautz et al.
(1997a,b); Con-
tractor et al. (1998)

reciprocated
acquaintance

FOAF-powered homepage s 51 RDFWeb.org (2003)

acquaintance reading public documents of an author as 37
acquaintance annotating public documents of an authoras 46
acquaintance (shared) electronic calendars as 49
group membership (shared) electronic calendars s,

t
49

acquaintance /
communication

sending an email to somebody as 27,
28

Ogata et al. (2001);
Boyd (2002)

acquaintance /
communication

receiving an email from somebody as 27,
28

Ogata et al. (2001);
Boyd (2002)

acquaintance receiving the same mail (via a “to” header
or a “cc” header)

as 27,
28

Ogata et al. (2001);
Boyd (2002)

acquaintance /
communication

replying to a Usenet / discussion board
posting

as 32 Smith (2003); Sack
(2003)

communication reciprocally sending emails s 27,
28

Ogata et al. (2001);
Boyd (2002)

communication reciprocally replying to Usenet /
discussion board postings

s 32 Smith and Fiore
(2001); Sack (2003)

communication instant-messaging each other s 36
group membership subscriptions to mailing lists s 26 Donath (1995)
communication chatting with each other s
evaluation annotating / rating public documents of an

author
as Dellarocas (2000);

Kollock (1999)
evaluation special buddylists (e.g. “friends”) as 36
same or similar
attributes (residence,
employer, interests,
expertise, etc.)

comparison of user profiles s 47 Koch (2003a) (inter-
ests)

customer-supplier buying something at an online auction
house or marketplace

as

trust lists of trusted keys in PGP as,
t

50 Creutzig et al. (1999)

trust credentials as,
(t)

50 Abdul-Rahman and
Hailes (1999); Blaze
et al. (1996)

trust vendor and customer rating at online
auction houses or marketplaces

as,
(t)

structural /
organizational
relationships

workflow management systems,
particularly speech acts

48 Medina-Mora et al.
(1992)

collaboration group editors, shared workspaces 49 Koch (1997)

AP: algebraic property (as: asymmetric, s: symmetric, t: transitive) P: page in this thesis

Table 3.2: Kinds of social relationships in groupware and communityware

54 Chapter 3. Internet-based Communication and Shared Information Spaces

Chapter 4

Basic Technologies of the Semantic Web

The previous chapter discussed the application area of this work — internet-based communication
and shared information spaces. Especially concerning the application class “shared information
spaces,” both research and industry have recognized the importance of developing advanced and
more flexible means for representing information and structuring information spaces. From a re-
search perspective, one of these approaches is the semantic web. Evolving from the world wide
web as it is today, the semantic web is expected to bring structure to web pages and documents
and make them machine-understandable. This chapter presents an overview of the layers of the
semantic web and its basic technology. It is primarily intended for readers not familiar with
technologies of the semantic web in order to prepare them for understanding the formal represen-
tation of social relationships presented in Chapt. 5. Readers who are familiar with semantic web
technologies may thus skip this chapter and proceed directly to Chapt. 5.

4.1 The Semantic Web Layer Cake

The world wide web (WWW) as it exists today contains huge amounts of information. 2002, there
were about 3 billion static documents and over 300 million users (Patel-Schneider and Fensel, 2002).
Most of that information is, however, poorly structured and written in natural language. The current
WWW is addressed tohumans— it is not machine-understandable. We experience this everyday
when we use search engines. Although great improvements concerning the quality of results have
been achieved in the last few years, it is still obvious that search engines do not really “understand”
what we are looking for and thus have difficulties when it comes to different meanings of the same
term and the context of terms. If we enter the term “jaguar”, for example, a search engine is not able
to find out if we are interested in the animal or the car (cf. Guha et al., 2003; Maedche et al., 2001).

The semantic web is envisioned to extend the current web and to “enable machines to comprehend
semantic documents and data” (Berners-Lee et al., 2001). It is expected to make parts of the web
machine-understandable, such that many tasks done by humans today can be delegated to software
agents in the future (cf. Berners-Lee et al., 2001).

For the realization of this vision of the semantic web, Tim Berners-Lee proposed the semantic web
layer cake (Fig. 4.1). Based on the standard technologies Unicode, URI, and XML, higher layers add
more powerful languages. The remainder of this section briefly sketches these layers and afterwards
discusses the RDF(S)1 layer and the ontology layer in more detail, since these two layers are closely
related to this work (see Patel-Schneider and Fensel, 2002; Fensel et al., 2003, for a more detailed
description of the semantic web layer cake and related problems).

1RDF(S) will be used from now on to refer to both RDF and RDF Schema.

55

56 Chapter 4. Basic Technologies of the Semantic Web

������� ��	

���������������

���

���������������� �

�����

! ��"

���

�
��

��
��

�
��

�
��

�
 �

���������

Figure 4.1: Layers of the semantic web, according to Berners-Lee (2000)

The lowest layer of the semantic web cake is provided by Unicode and URI (Berners-Lee et al.,
1998). It defines standards for referencing resources on the web. URIs are generalized URLs — in
contrast to a URL, which is used mainly for retrieving an object from the web, a URI simplyidentifies
it.

Each URI starts with a scheme identifier. There are a variety of different URI schemes2, e.g. http,
mailto, ldap, or ftp. The scheme identifier defines the semantics of the URI and its structure.

Based upon Unicode and URI, the XML layer defines a generic representation for tree-structured
documents. XML has become the standard for exchanging information on the internet. The XML
namespace mechanism allows for the combination of heterogeneous XML documents and thus pro-
vides means for integrating information from various sources. XML is the syntax both for semantic
web documents and for semantic annotations to these documents.

The Resource Description Framework (RDF) layer provides a mechanism for expressing state-
ments about resources identified by URIs (Lassila and Swick, 1999). RDF is sometimes referred to as
a framework for representing metadata.

The most important concept in RDF is thestatement. A statement is a triple consisting of a subject,
a predicate, and an object, and represents an assertion about the subject. A statement(s, p, o) should
be interpreted as“the propertyp of the resources has the valueo.” RDF Statements are often referred
to asRDF triples.

Although the RDF core is independent from XML, the most important way of serializing RDF
data is a special XML dialect (cf. Beckett, 2003). There are, however, other forms of serializing RDF
data, but they are of minor importance for this thesis and will be skipped here.

The upper half of the RDF and RDF Schema (RDF(S) from now on) layer is made up by RDF
Schema (Brickley and Guha, 2003). RDF Schema allows the definition of RDF vocabularies — i.e. it
provides a simple modeling language. RDF Schema is expressed in RDF itself. Its expressive power
is, however, rather limited. RDF Schema introduces the concepts of classes and properties and special
relations on classes and properties, i.e. a subclass-relation, a subproperty-relation, domain-restrictions

2http://www.iana.org/assignments/uri-schemes

4.2. The Resource Description Framework 57

of properties, and range-restrictions of properties. The benefits of RDF Schema are mainly checking
RDF models for consistency or providing assistance for data input in RDF editors. For modeling the
semanticsof information, RDF Schema is by far not expressive enough. Sections 4.2 and 4.3 will
discuss RDF(S) in more detail.

The ontology layer makes up the next level of the semantic web layer cake. An ontology is
“a shared and common understanding of a domain that can be communicated between people and
application systems” (Davies et al., 2003). An ontology defines relationships between concepts of a
domain and thus formalizes certain aspects of the semantics of these concepts. Currently, the Web
Ontology Language OWL is being developed (Dean and Schreiber, 2003), which uses RDF(S) as its
syntax. It is supposed to be the standard ontology language for the semantic web. OWL will be the
formalism chosen for representing social relationships in this work. Section 5.2 will explain in more
detail, why this work chooses OWL. As OWL is the basic technology for Chapters 5 and 6, Sect. 4.3
will present a more detailed discussion of OWL.

The upper layers of the semantic web cake are still rather cloudy. The existence of a logic layer
somehow suggests that there should be a richer logic for the semantic web extending the logic foun-
dations of the ontology layer (Patel-Schneider and Fensel, 2002). The two top layers Proof and Trust
are even more vague — Berners-Lee (2000) envisions mechanisms to prove the reliability and truth
of assertions in the semantic web. Yet, most current efforts are concentrated on the lower levels and
do not address these advanced concepts.

4.2 The Resource Description Framework

The Resource Description Framework (RDF) is the basic technology in the semantic web for repre-
senting assertions. RDF forms the syntactic basis of the Web Ontology Language (OWL). This section
presents those parts of RDF which will be needed for that purpose.

“[RDF] is a foundation for processing metadata” (Lassila and Swick, 1999). It defines a standard
for representing statements about resources on the web based on the four object typesresource, literal,
property,andstatement.

Resources.The set of resources is the set of all things being described by RDF assertions. Resources
may be objects on the web, such as entire web pages, email addresses, or documents, physical
objects like persons or books, but also immaterial things. Anything which can be talked about
can be a resource. Resources are usually referenced by URI references — there are, however,
means to represent anonymous resources (see Sect. 4.2.2).

Literals. A literal is a string with an optional language identifier. A typed literal is a string accompa-
nied by a URI referencing an XML Schema Part 2 datatype.3 The set of literals and the set of
resources are disjoint.

Properties. A property represents a certain characteristic of a resource. Properties link resources to
other resources or literals. Properties are referenced by URI references. The set of properties
is a subset of the set of resources — i.e. properties are entities that can be subjects of RDF
statements.

3Language identifiers and typed literals are additional features defined by the RDF Concepts and Abstract Syntax Work-
ing Draft (Klyne and Carroll, 2003) and are not fully covered by the RDF Model and Syntax Specification (Lassila and
Swick, 1999).

58 Chapter 4. Basic Technologies of the Semantic Web

�������������	
���������	�������
�������

�������������	
���������	���������	���������	������

��	����������	
������

�	�����

�������������	
���������	���������	�������	���
���

Figure 4.2: A simple RDF model. Ellipses correspond to resources, rectangles to literals.

Statements.An RDF statement consists of a reference to a resource (thesubjectof the statement), a
reference to a property (thepredicate), and either a reference to another resource or a literal (the
object). A statement represents the assertion that the characteristic referenced by the predicate
of the subject has the value referenced/represented by the object. RDF statements are sometimes
referred to by the termtriple. This work will use the notation convention(s p o) to refer to an
RDF statement with the subjects, the predicatep, and the objecto. For each RDF statement
there is a corresponding resource known as thereificationof the statement — i.e. each statement
can be subject or object of another statement. Reification is, however, of no importance for this
work and is thus skipped.

The RDF model and syntax specification defines additional constructs, such as container classes,
collections, and the corresponding membership properties. Since these additional features are of no
relevance with respect to this work, the reader is referred to Lassila and Swick (1999) and Hayes
(2003) for further details.

4.2.1 RDF Models

Later sections of this thesis will use the notion of anRDF model. An RDF model is a setM of
RDF triplesM = {(s p o)|s ∈ R, p ∈ P, o ∈ R ∪ L}, whereR is a set of resources,P is a set of
properties, andL is a set of literals. Considering an OWL ontology definition, which is expressed
as an RDF description, for example, the RDF model of the ontology definition consists of all triples
making up the ontology definition.

RDF models are sometimes visualized as directed labeled graphs, where resources and literals are
vertices, and properties are edges (such graphs are also referred to asRDF graphs). Figure 4.2 depicts
a simple RDF modelM consisting of two triples:

M = { (http://www11.in.tum.de/uris/persons#galla
http://www11.in.tum.de/uris/properties#hasEmailAddress
mailto:galla@in.tum.de),
(http://www11.in.tum.de/uris/persons#galla
http://www11.in.tum.de/uris/properties#hasFirstname
“Michael”) } .

4.2. The Resource Description Framework 59

4.2.2 Blank Nodes in RDF Graphs

Resources in an RDF graph need not necessarily be assigned an URI reference. If for any reason
the URI reference of the resource is unknown or irrelevant, it may be omitted, leaving ablank node
representing the resource. Note that for serializing RDF graphs, it may be necessary to assign local
resource identifiers to resources represented by blank nodes (for further details see Beckett, 2003).

4.2.3 Typed RDF nodes

Although RDF does not contain means for defining classes, RDF defines the concept of aclassand a
typing property, known asrdf:type 4. It is used in core RDF for typing resources with respect to one
of the pre-defined classesrdf:Seq , rdf:Bag , rdf:Alt , rdf:Statement , rdf:Property
andrdf:List . For the semantics of these pre-defined node types, the reader is referred to Lassila
and Swick (1999) and Hayes (2003). The RDF Schema and OWL layers of the semantic web layer
cake provide mechanisms for defining additional classes. In general, a typed resource is defined by a
triple (Resourcerdf:type Class).

4.2.4 RDF/XML Serialization

The most common serialization format for RDF is RDF/XML (Beckett, 2003).5 This work cannot
discuss RDF/XML in detail. In this subsection, only the most basic aspects of RDF/XML will be in-
formally discussed, in order to provide a basic understanding that suffices for reading the relationship
ontology definition excerpts presented in Sect. 5.3.

The RDF model depicted in Fig. 4.2 can be serialized in RDF/XML as follows.

<?xml version="1.0"?>
<!DOCTYPE rdf [

<!ENTITY www11persons "http://www11.in.tum.de/uris/persons#">
<!ENTITY www11props "http://www11.in.tum.de/uris/properties#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:www11persons="http://www11.in.tum.de/uris/persons#"
xmlns:www11props="http://www11.in.tum.de/uris/properties#">

<rdf:Description rdf:about="&www11persons;galla">
<www11props:hasEmailAddress rdf:resource="mailto:galla@in.tum.de" />
<www11props:hasFirstname>Michael</www11props:hasFirstname>

</rdf:Description>

</rdf:RDF>

The serialization example starts with a standard XML document head defining two entities
for conveniently referencing URIs of persons and properties. Therdf:RDF element and
the associated namespace declarations form the document root of the XML document. The
rdf:Description tag marks the beginning of a description of a resource, which is refer-
enced by therdf:about attribute. For each statement about that resource, an XML child node is
defined that is named like the corresponding property — in the example above these XML nodes

4The RDF namespace prefixrdf refers to http://www.w3.org/1999/02/22-rdf-syntax-ns#.
5The RDF/XML serialization was originally defined by Lassila and Swick (1999). Due to certain ambiguities, the W3C

is currently working on a revised version of the RDF/XML specification (Beckett, 2003).

60 Chapter 4. Basic Technologies of the Semantic Web

arewww11props:hasEmailAddress andwww11props:hasFirstname . The first attribute
value (a resource) is referenced by therdf:resource attribute, the second attribute value (a literal)
is the value of the XML node.

rdf:Description tags may be nested — i.e. it is possible to use anrdf:Description
XML node as the value of a property. Anrdf:Description tag may also omit the URI of the
resource being described — this corresponds to blank nodes in the corresponding RDF graph. The
following example illustrates nestedrdf:Description tags with a blank node.6

<rdf:Description rdf:about="&www11persons;galla">
<www11props:authorOf>

<rdf:Description>
<dc:Title>Improving Trust and Privacy in the Semantic Web

through Identity Management
</dc:Title>
<dc:Subject>Semantic Web, Trust, Privacy</dc:Subject>

</rdf:Description>
</www11props:authorOf>

</rdf:Description>

RDF/XML provides a syntactic shorthand for typing resources. The RDF model

M = { (http://www11.in.tum.de/uris/persons#galla
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www11.in.tum.de/projects/inrem/ns/inrem-ns#Person) }

can be serialized either as

<rdf:Description rdf:about="&www11persons;galla">
<rdf:type rdf:resource="&inrem;Person" />

</rdf:Description>

or as

<inrem:Person rdf:about="&www11persons;galla" />.

This abbreviated syntax is often used in later examples, because it is more compact and easier to read.

4.3 RDF Schema

The RDF Schema Working Draft (Brickley and Guha, 2003) describes how to define RDF vocabular-
ies in terms of RDF. The central concept defined by RDF Schema is theClass. Classes are used to
group RDF resources according to their type. The members of a class are calledinstancesof the class.
Note that there is a difference between the class as such and the set of its members (theextension
of the class) — two classes may have the same extension but nevertheless be different classes. The
second central concept defined by RDF Schema is a special class calledrdfs:Property . This is
the class of all resources that are RDF properties. Therdf:type property that has been mentioned
before is a member of this class. Apart from the classrdf:Property , RDF Schema defines some
other classes, which are, however, of minor importance for this work.

RDF Schema defines a number of members of the classrdf:Property , which are relevant for
this work, because they are used by the Web Ontology Language (OWL). These properties are:

6Thedc namespace refers to the Dublin Core Metadata Element set (see http://dublincore.org/documents/dces/).

4.4. The Web Ontology Language 61

rdfs:range . This property can be applied to members ofrdfs:Property and states that the
values of that property are resources of a specific class.

rdfs:domain . This property states that a specific property can be applied to members of certain
classes only.

rdfs:subClassOf . The semantics of therdfs:subClassOf property are: if(a rdf:type c1),
and (c1 rdfs:subClassOf c2), then(a rdf:type c2). The rdfs:subClassOf prop-
erty is transitive.

rdfs:subPropertyOf . This property can be used to indicate that all resources which are related
by a specific property are also related by a certain other property — i.e. if two resourcesa and
b are related by a propertyp1, andp1 is ardfs:subPropertyOf another propertyp2, then
a andb are also related byp2. Therdfs:subPropertyOf is transitive.

rdfs:comment . Therdfs:label property may be used to provide a human-readable name of a
resource.

rdfs:label . This property may be used to provide a human-readable description of a resource.

RDF Schema’s expressiveness is rather limited. Apart from therdfs:subClassOf property
and therdfs:subPropertyOf property there are no means for defining interdependencies be-
tween classes or properties. Furthermore, it is not possible to define restrictions on the membership
to classes — i.e. which features a resource must exhibit in order to be a member of a specific class.
RDF Schema provides means for defining RDF vocabulary, but does not allow for the definition of
thesemanticsof the terms being defined. This is where OWL comes in.

4.4 The Web Ontology Language

“The Web Ontology Language OWL is a semantic markup language for publishing and sharing on-
tologies on the World Wide Web” (Dean and Schreiber, 2003). OWL is based on DAML+OIL7, which
is in turn a combination of the two earlier approaches DAML (Darpa Agent Markup Language)8 and
OIL (Fensel et al., 2000). Like RDF Schema, OWL defines means for specifying RDF vocabularies,
but it is much more expressive. Although, according to the semantic web layer cake, ontologies should
be layered on top of RDF Schema, this is not quite true with respect to OWL. More precisely, it is nec-
essary to explicitly definehowOWL is layered on top of RDF Schema (Patel-Schneider and Fensel,
2002). For instance, both RDF Schema and OWL define the concept of a class, but its semantics are
slightly different.9

This work cannot give a complete introduction to OWL, its complexity classes, and how it is
layered on top of RDF(S) (see Smith et al., 2003; Dean and Schreiber, 2003, for a detailed guide to
OWL). Instead, it will explain central features of OWL which are important for understanding the
relationship ontology vocabulary presented in Chapt. 5.

7http://www.daml.org/2001/03/daml+oil-index.html
8http://www.daml.org/
9The restricted versions OWL Lite and OWL DL do not allow classes to be members of other classes. RDF Schema does

not impose this restriction. Hence, on the OWL Lite or OWL DL level, the semantics of OWL classes and RDF Schema
classes are different. On the OWL Full level, the restriction is dropped. The class concepts of OWL Full and RDF Schema
are equivalent. For the sake of compactness, this thesis will not explain these issues in more detail. The reader is referred to
Dean and Schreiber (2003) for a detailed discussion of related topics.

62 Chapter 4. Basic Technologies of the Semantic Web

4.4.1 OWL Syntax

OWL builds upon RDF — it uses RDF as its representation. Hence, each valid serialization method
for RDF provides a serialization method for OWL. The most common serialization, which will be also
used in Sect. 5.3 of this thesis, is RDF/XML.

Disregarding which serialization syntax is used, two OWL documents are equivalent if, and only
if, the corresponding RDF models are equivalent.

4.4.2 OWL Class Descriptions

There are six different methods of describing an OWL class. Remark: In the OWL terminology,
members of a class are sometimes calledindividuals.

Class identifier. The simplest way of defining a OWL class is to provide a URI reference for it,
e.g. <owl:Class rdf:ID="Woman" /> . This class description does not impose any
restrictions on the extension of the class — it simply claims its existence.

Enumeration of members. The second way of describing a class is to explicitly enumerate all of its
members:

<owl:Class rdf:ID="AllowedUsage">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Public"/>
<owl:Thing rdf:about="#Anonymous"/>
<owl:Thing rdf:about="#Private"/>

</owl:oneOf>
</owl:Class>

Property restriction. The most important method of describing a class is the definition of property
restrictions. This method describes restrictions on the characteristics of the members of the
class. For example, a class description by property restriction is “the class of all individuals,
who are female”. In RDF/XML this would be:

<owl:Restriction>
<owl:onProperty rdf:about="#gender">
<owl:hasValue rdf:about="#Female"/>

</owl:Restriction>

OWL defines a number of property restrictions, which cannot be discussed in detail here. The
reader is referred to Smith et al. (2003) for further details.

Intersection. Classes can be defined as the intersection of several classes. IfC1, ..., Cn are classes,
andC is defined as the intersection of these classes, then an individuala is a member ofC if,
and only if, it is a member of each of the classesC1, ..., Cn.

Union. Similarly, a classC can be defined as the union of several classesC1, ..., Cn. In this case,C
consists of all individuals, which are member of at least one of the classesC1, ..., Cn.

Complement. The definition that a classC1 is the complement of a classC2 means that an individual
is a member ofC1 if, and only if, it is not a member ofC2.

4.4. The Web Ontology Language 63

4.4.3 OWL Class Axioms

OWL introduces three constructs for expressing class axioms, namelyrdfs:subClassOf ,
owl:equivalentClass , andowl:disjointWith . The meaning of therdfs:subClassOf
construct is essentially the same as in RDF Schema — the difference is that it is applied to OWL
classes instead of RDF Schema classes. The two other constructs can be used in order to state that the
class extensions of two classes consist of exactly the same members (owl:equivalentClass) or
have no members in common (disjointWith).

Therdfs:subClassOf construct is often used for linking a named class to a class restriction:

<owl:Class rdf:ID="Woman">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:about="#gender">
<owl:hasValue rdf:about="#Female"/>

</owl:Restriction>
</rdfs:subClassOf>

</owlClass>

In this example, the classWomanis defined as a subclass of the class of all individuals whosegender
is Female . This kind of construction will be frequently used in Sect. 5.3.

4.4.4 OWL Properties and OWL Property Axioms

Similar to RDF Schema properties, OWL properties link individuals to other individuals or to literal
values. Yet, OWL defines two basic property concepts: object properties and datatype properties.
Entities of the former type link individuals to individuals, whereas entities of the latter type link
individuals to literal values.

OWL defines a number of property axioms:

• RDF Schema constructs:rdfs:subPropertyOf , rdfs:domain andrdfs:range .

• Relations to other properties:owl:equivalentProperty andowl:inverseOf .

• Global cardinality constraints:owl:FunctionalProperty and
owl:InverseFunctionalProperty .

• Logical property characteristics:owl:SymmetricProperty and
owl:TransitiveProperty .

The RDF Schema constructs have already been explained. Their meaning in OWL is essentially the
same as in RDF Schema. The axiomowl:equivalentProperty states that two properties have
the same property extension10, whereasowl:inverseOf declares an inverse relation between two
properties — i.e. ifp1 andp2 are inverse, then(a p1 b) implies(b p2 a) and vice versa.

Functional properties can take only one unique value for each individual they are applied to. For
instance, an individual may have at most one father — the corresponding propertyhasFather
should thus be declared functional. For inverse functional properties, the value of the property
uniquely determines the subject. For instance, for every person, the person’s father is uniquely iden-
tified — the propertyisFatherOf should thus be declared inverse functional. Symmetry and tran-
sitivity have been explained in Sect. 2.3.

10Theproperty extensionof an OWL property is the set of ordered pairs of entities linked by the property.

64 Chapter 4. Basic Technologies of the Semantic Web

4.4.5 Practical OWL — Software Packages Supporting OWL

Although OWL itself is a pretty new emerging standard, its foundations are rather old. Therefore, a
number of OWL Software Packages are currently being developed on the basis of older packages, or
old packages are ported to OWL. The W3C maintains a list of OWL implementation projects.11 Some
of the most popular OWL-related software packages are the following.

Jena2. The Jena2 Semantic Web Framework for Java12 has emerged from the popular Jena RDF API.
In its second release, the Jena API includes ontology support for RDF Schema, DAML+OIL,
and OWL.

FaCT reasoner. The FaCT reasoner13 is a Description Logic classifier, which can be used for OWL
reasoning.

Protéǵe-2000.Prot́eǵe-200014 is an ontology editor, for which an OWL export and import tool is
available.

OilEd. The OilEd15 ontology editor was originally built for OIL and DAML+OIL (Bechhofer et al.,
2001). OWL support is planned for the near future. OilEd uses the FaCT reasoner for ontology
reasoning.

4.5 The Semantic Web and Social Relationships

The Resource Description Framework and its extensions (RDF Schema, OWL) are a framework for
describing resources andrelationshipsbetween resources. It is quite obvious that RDF and its ex-
tensions might be used for describing social relationships between persons. The naive approach to
representing social relationships in RDF is to define resources corresponding to persons and proper-
ties corresponding to relationships. This is the approach followed by FOAF (Dumbill, 2002, see also
Sect. 3.6) and Staab et al. (2001).

The main drawback of this approach is that it is not possible to further explain the relationship
between two persons — the only possibility is to declare a type by using a specific RDF or OWL
property indicating the relationship type. RDF(S) and its extensions are not capable of representing
structured relationships — strength values or further attributes of relationships like communication
topics cannot be expressed.

Therefore, this work takes a different approach. Although it chooses semantic web technologies
for modeling social relationships, it does not use properties for representing relationships, but individ-
uals. This allows for arbitrary attributes of relationships. The difference between the OWL models of
the two approaches is shown in Fig. 4.3.

The drawback of this approach is the loss of built-in support for symmetry and transitivity. The
marriedTo relationship obviously is symmetric — if Mary is married to Peter, then Peter is, of course,
married to Mary. Whereas in approach a) in Fig. 4.3, the marriedTo relationship could be repre-
sented by a symmetric OWL property, there is no corresponding construct when the relationship is
represented by an individual like in approach b). Yet, the much higher expressiveness outweighs this

11http://www.w3.org/2001/sw/WebOnt/impls
12http://www.hpl.hp.com/semweb/jena2.htm, http://jena.sourceforge.net/
13http://www.cs.man.ac.uk/∼horrocks/FaCT/
14http://protege.stanford.edu/
15http://oiled.man.ac.uk/

4.5. The Semantic Web and Social Relationships 65

���� �������	
 �����

�������

������
�����

���� �����

��
� �

��

��

Figure 4.3: Two approaches to representing social relationship in RDF. Approach a) uses properties
for representing relationship. Approach b), which this work commits to, uses resources (individuals)
instead.

drawback by far. Section 5.4 explains in detail how the lack of built-in support for symmetry and
transitivity can be fixed.

66 Chapter 4. Basic Technologies of the Semantic Web

Chapter 5

Formalizing Relationships

A formal model of social relationships is presented, which takes into account aspects of sociol-
ogy and knowledge representation. The chapter suggests forms of representation of persons, user
profiles, and groups, building on the Web Ontology Language. Examples of formalizations of rela-
tionship types are presented, which are common in CSCW. After resuming detection mechanisms
for relationship information, possible applications of the formalization are discussed.

5.1 Modeling Social Relationships

As has been discussed in Chapt. 3, social relationships play an important role in groupware and
communityware applications. Several approaches to supporting relationship management have been
sketched. Those approaches, however, have serious drawbacks. Most notably, they do not model
social relationshipsas such. Instead, they take a rather statistical approach, whose primary aim is the
visualization of relationship networks. Although this may be sufficient for visualization, it is certainly
not for a large-scale approach to relationship management. The absence of a formal representation
of relationships leads to a lack of interoperability: social network data which has been gathered by
statistical procedures is useless without the knowledge of the measuring method. Therefore, such
social network data can only be exchanged between systems using identical measuring methods and
parameters. Yet, Chapt. 3 has pointed out that data about personal relationships is usually distributed
among several applications. In order to solve the information problems discussed in Chapt. 1, all such
applications must thus be considered for collecting relationship information. Furthermore, social net-
works consist of relationships of various types. Common tasks in social relationship management —
such as exploring the own personal network or finding relationship chains to other persons — must
therefore incorporate and combine relationships of various types. Existing approaches, however, fail
to do so.

In this chapter, a formal representation of social relationships is suggested, which is based on
semantic web technologies. This formal representation enables applications to exchange relationship
information including important aspects of their meaning and algebraic properties.

In the following, the termmeasuring methoddenotes means for the detection of social relation-
ships including their strength and other attributes. Measuring methods may be applied to all kinds
of data (cf. Tab. 3.2) including explicitly stated relationships like formal roles or formal hierarchies,
which are not represented electronically. The termmeasuring methodthus subsumes all means to
build a formal representation of a “real-world” relationship.

Against the background of the application area sketched in Chapters 1 and 3, the main design
objectives of the formalization of social relationships are the following:

67

68 Chapter 5. Formalizing Relationships

• Interoperability

• Independence from proprietary applications

• Extensibility

• Integration of privacy protection

Interoperability. Interoperability is “the ability of two or more systems or components to exchange
information and to use the information that has been exchanged” (Institute of Electrical and Electron-
ics Engineers, 1990). By employing the formalization presented in this chapter, applications should be
enabled to exchange relationship information and combine it with their own data about relationships.
Two dimensions of interoperability can be distinguished. First, different systems may use different
internal representations of the same relationship type information. The formalization should therefore
provide a common language for exchanging data about relationships. Second, different applications
may use different relationship types. The formalization should thus allow for the definition of inter-
relations between different relationship types, such as specialization (e.g. sending emails is a special
kind of communication). Furthermore, the exchange of relationship information should be situated at
a high abstraction level and not depend on special communication protocols or low-level data formats.

Independence from proprietary applications. The formal representation of relationships should
not depend on proprietary applications. As much as possible of the relationship’s semantics should
be represented, instead of an application’s proprietary model of the relationship. If relationship infor-
mation is to be exchanged between different applications, measuring methods for relationships must
be defined globally for each relationship type. Where possible, this definition should be formal and
declarative. Otherwise, natural language may be used for defining the measuring method. The claim
for independence from proprietary applications leads to the need for a general representation of per-
sons (users) and their attributes (user profiles). It should be possible to include common standards for
user representation such as Microsoft Passport1 (Microsoft Corporation, 2003) or Liberty Alliance2

(Liberty Alliance Project, 2003). If the representation of a relationship needs to be linked to further
information, such as a topic of a communication relationship, this information must be represented in
an application-independent form as well. This can be achieved by applying knowledge representation
technologies, such as those developed in the field of the semantic web.

Extensibility. Common relationship types, like those in Tab. 3.2, should be predefined so that appli-
cations can use these relationship types straightforward. Special organizational structures or business
processes may, however, require the definition of specialized relationship types. It should be easy to
publish these definitions so that other applications can make use of the specialized relationship types.
It should also be possible to incorporate future standards for user (profile) representation.

Integration of privacy protection. Due to the importance of social relationships in today’s business
networks, relationship information must be protected against unauthorized use. At the same time, the
exchange of relationship information must still be possible in order to solve the information problems
discussed in Chapt. 1. Furthermore, many people simply do not want their personal data (including
data about their personal social network) to be publicly available on the internet. Hence, advanced

1http://www.passport.net/
2http://www.projectliberty.org/

5.1. Modeling Social Relationships 69

privacy protection mechanisms must be employed, which allow for a controlled exchange of relation-
ship information. Since privacy protection is mainly relevant in distributed systems, these issues will
be discussed in Sect. 6.5.

5.1.1 Modeling Relationship Types

According to Chapt. 2, there are different relationship types, such as individual evaluations, communi-
cation, or formal roles. As can be seen in Tab. 3.2, relationship types may be specialized with respect
to aspects such as the communication media (e.g. email, usenet, etc.), or the type of evaluation (e.g.
positive ratings, negative ratings, trust, distrust). The formalization of social relationships presented
in this chapter thus arranges relationship types in aspecialization hierarchy.

Similar to classes in object-oriented programming defining the semantics and the behavior of
their instances, relationship types define the semantics of the corresponding relationship information.
Referring to Sect. 2.7, a relationship type is defined by:

1. A globally unique identifier

2. A meaningful name

3. A natural language description

4. A set of algebraic properties

5. An optional strength attribute

6. An optional set of attribute declarations

7. An optional binary relation on pairs of user profiles

8. An optional set of references to relationship types representing generalizations

Globally unique identifier. Due to the claim for interoperability and extensibility, relationship types
must be assigned a globally unique identifier. Since relationship types are resources on the internet,
uniform resource identifiers (URIs) appear to be a good choice. URIs are generalizations of uniform
resource locators (URLs). Different from URLs, URIs only identify objects on the web without saying
anything about how to retrieve those objects (for a detailed discussion of URIs and their syntax see
Berners-Lee et al., 1998).

Meaningful name. Every relationship type is assigned a meaningful name which provides a first
impression of the semantics of relationships of that type. Different names can be provided for different
languages. The name is intended to be used in user interfaces (e.g. for labeling edges in a graph
visualization). It is not assumed to be globally unique and must thus not be used on a technical level
for identifying a relationship type.

Natural language description. Like the name, the natural language description is intended for user
interfaces. It clearly defines the semantics of the relationship type. This includes describing mea-
suring methods, even if these are defined formally in a binary relation on user profiles (see below).
The description of the measuring methods is necessary, because it is not sufficient to only roughly

70 Chapter 5. Formalizing Relationships

understand the meaning of a relationship type when used in an application. Especially for imple-
menting detection procedures it is essential to provide a precise definition of the detection algorithm
reflecting the semantics of the relationship type in order to avoid misinterpretations. If the relationship
type defines a profile relation (see below), the profile relation already defines the detection algorithm.
Otherwise, the detection algorithm must be defined in the natural language description as precisely
as possible. If the relationship type declares a strength attribute (see below), the range and semantics
of the strength must be defined as well. For different languages, different versions of the description
may be provided.

Set of algebraic properties. Referring to Sect. 2.3, a relationship type may possess a set of al-
gebraic properties. The set of algebraic properties of a relationship type must be contradiction-free.
Possible algebraic properties are symmetry, antisymmetry, asymmetry, transitivity, and non-symmetry
(for definitions see Sect. 2.3). If no algebraic properties are defined, the relationship type is assumed
to be non-symmetric.

The algebraic properties usually should comply with the measuring method of the relationship
type: letM be the measuring method for the relationship type. Assume, the application ofM to
the set of dataD1 — denoted byM(D1) — yields a relationshipR(a, b) between Personsa and
b. Then, if R is a symmetric relationship,M(D1) must also yieldR(b, a). If R is antisymmetric,
M(D1) must not entailR(b, a) unlessa = b. If R is asymmetric,M(D1) must not entailR(b, a),
or R(c, c) for any personc. Furthermore, letD2 be a second set of data yielding the relationship
R(b, c) via the application ofM . Then, ifR is transitive,M(D1∪D2) must entailR(a, c). There are,
however, some exceptions from these rules: in those cases where the underlying data isincomplete,
algebraic properties of relationship types may be used to generateadditional knowledge. For example,
if trust relationships are assumed to be transitive, additional “trusted ties” in the social network may
be inferred by calculating the transitive closure of the trust-relationship.

Strength attribute. The strength value of a relationship measures the intensity of the relationship.
Common examples are the number of messages exchanged, the value of goods transferred between
two persons, or a rating given to another user of an online auction house. In some cases, it is useful
to normalize the strength value to the interval[0...1] (e.g. for trust relationships:0 for no trust,1 for
complete trust). The normalization of strength values allows for the comparison of the strength values
of relationships of different types, which would not be possible otherwise.

Not all relationship types possess a strength value. For those relationship types the value1 may
be assumed, if the relationship between the two persons exists, and0 otherwise. If a relationship type
formally defines a strength function (see below), applications should use that definition in order to
determine the strength values of relationships.

Referring to Sect. 2.1, there are various methods for assigning strength values to paths of relation-
ships. There are, however, problems if these methods are applied to transitive relationships directly.
First, neither the refined version of Peay’s measure (Eqn. 2.1, p. 15) nor the refined version of Fla-
ment’s measure (Eqn. 2.2, p. 15) are associative: applying the measure “step-by-step” for parts of the
path first and then combining the results by applying the measure again may yield different results
from applying the measure to the whole path (see Fig. 5.1). Second, if Peay’s measure or Flament’s
measure is applied, the strength of the inferred relationship may differ from the strength value result-
ing from the measuring method. In the representation of the relationship it should thus be marked
if the strength value was obtained by applying the transitivity property or directly via the measuring
method.

5.1. Modeling Social Relationships 71

1

2

0.5

3
0.25

4

0.125

0.9

0.3

1

2

0.5

4

0.1

3

0.9

0.3

a) b)

In the left graph, first the strength of the relationship between1 and3 was calculated by using the refined version
of Peay’s measure (Eqn. 2.1). Afterwards, the strength of the relationship between1 and4 was calculated by
applying the refined version of Peay’s measure to the previous result. In the right graph, the strength of the
relationship between1 and4 was calculated directly. The two methods yield different results.

Figure 5.1: The refined version of Peay’s measure is not associative

Against this background, transitive relationship types which declare a strength attribute must also
define the method for measuring the strength of paths. The following methods are available (cf. p. 15):

• Peay’s measure:s(p1, ..., pn) = mini=1...n−1 s(pi, pi+1)

• Flament’s measure:s(p1, ..., pn) =
∑n−1

i=1 s(pi, pi+1)

• Product measure:s(p1, ..., pn) =
∏n−1

i=1 s(pi, pi+1) — This measure is especially suitable for
normalized strength values.

Set of attribute declarations. A relationship type may declare additional attributes. Attributes may
be single-valued or multi-valued. Examples for attributes are topics of communication relationships
or shared interests (for further examples see Sect. 5.5).

Attribute values can be literal values (e.g. strings, numbers, XML), or classes/individuals of an
ontology. The latter case is especially interesting, because referring to classes of an ontology allows
for the inclusion of reasoning procedures. If there is a relationship with the attributey between two
persons, andy is a subclass ofx, then consulting a reasoning engine yields that there also exists a
relationship with attributex between the two persons. Assume that, for example, someone is visualiz-
ing his java-programming communication network. Of course, not only communication relationships
with the topic “java programming” should be visualized, but also those with the topics “java database
programming”, or “java swing programming”. Using concepts of an ontology to attribute relation-
ships may, however, be difficult in practice, because this requires that either all people use the same
ontology, or a mapping between the ontologies exists. In the examples presented later, a list of key-
words will thus be used instead of concepts (see McArthur and Bruza, 2003, for a detailed discussion
about discovering connections between people by means of email analysis).

Binary relation on pairs of user profiles. By defining a binary relation on user profiles — in
the following referred to asprofile relation— it is possible to formalize the measuring method for

72 Chapter 5. Formalizing Relationships

Supertype
non-symmetric symmetric antisymmetric asymmetric transitive

non-symmetric yes yes yes yes yes
symmetric yes yes no no yes

Subtype antisymmetric yes no yes yes* yes
asymmetric yes no yes yes yes
transitive yes yes yes yes yes

*This is a direct consequence of the supertype being asymmetric.

Table 5.1: Allowed combination of algebraic properties of subtypes and supertypes

the relationship type. If the profile relation holds true for two personsa andb, then there exists a
relationship of the respective type. The profile relationB of a relationship type representing the fact
of living in the same city, for example, may be defined as

B(a, b) :⇐⇒ residence ofa ./ residence ofb.

Therein, the operator./ assumes that its operands are classes of an ontology:

x ./ y :⇐⇒ (x = y ∨ x subclass ofy ∨ y subclass ofx).

The profile relation obviously assumes a certain structure of the user profile — i.e. a profile relation
can only be applied to a pair of user profiles, if both profiles comply with this structure. This issue
will be discussed in more detail below.

Apart from formally defining the condition for a relationship, it makes sense to formally define
the strength of a relationship. A relationship representing shared interests, for example, may define a
strength measures based on the similarity of the sets of interests of the two personsa andb:

s(a, b) = 2
card(interests ofa u interests ofb)

card(interests ofa) + card(interests ofb)
,

where card(S) denotes the cardinality of the setS, andS1uS2 denotes the intersection of the two sets
S1 andS2 in consideration of subclass-relationships (see Sect. 5.1.4). For two equal sets of interest,
this formula yields1, and0 if no shared interests exists. Again, the issue of assuming a certain
structure of the user profiles is will be discussed below.

Set of generalizations. As has been mentioned above, relationship types are arranged in a hierarchy.
Every relationship type may declare a list of generalizations — i.e. supertypes. Like subclasses in
object-oriented programming, subtypes inherit the characteristics of the supertypes. The subtype may
define additional algebraic properties and additional attributes. Algebraic properties of the subtype
and all of its supertypes must be compatible: e.g. if the subtype is symmetric, then none of its
generalizations may be antisymmetric (see Tab. 5.1). It is not possible for subtypes to refine the
profile relation or the strength function.

5.1.2 Representing Persons

Against the background of the increasing personalization of websites, users are faced with the need
to identify themselves on the internet. In most cases, the user is asked to provide a user ID which

5.1. Modeling Social Relationships 73

�
��
�
��
�
�	
�

��
�	
�

������

�����

���������

���������

���������

���������

��������������
�

���������������

�����

���

Figure 5.2: User IDs and abstract persons on the internet

uniquely identifies him with respect to the current service. Yet, when using different services, a
user may have to use different user IDs: the user ID schemes of the services may vary, or a user’s
first choice may have been assigned to someone else already. Furthermore, a user may choose to
use different user IDs due to privacy considerations (Koch, 2002b), e.g. in order to separate private
accounts from business accounts. For social relationship management it is therefore necessary to
distinguish between user IDs and “real” persons.

For this thesis, anabstract personis the abstract representation of a human being, a group or a
legal person. This mapping is one-to-one — i.e. the abstract person uniquely identifies the human
being, group, or legal person, and vice versa. An abstract person is uniquely referred to by one or
moreuser IDs(i.e. the user IDs chosen for using services on the internet). These definitions are
depicted in Fig. 5.2. Interoperable social relationship management must build on abstract persons
instead of separate user IDs. In other words, different user IDs of a person must be linked to each other
in such a way as to enable relationship management applications to combine relationship information
associated with different user IDs of the same person (see Sect. 6.2 for more details). From now on
the term “abstract” is omitted when referring to abstract persons. References to physical persons will
be stated explicitly, where needed.

When talking about resources on the web, URIs are used for identification. The formalization
suggested in this thesis therefore uses URIs to identify persons. Among the variety of URI schemes3,
candidates for the identification of persons are the following:

mailto scheme.The mailto URI scheme (Hoffman et al., 1998; Crocker, 1982) is the most ob-
vious candidate for identifying persons. It describes URIs containing email-addresses (e.g.
mailto:galla@in.tum.de). In order to allow only “reasonable” mailto-URIs, some re-
strictions to RFC 2368 have to be applied. First, the URI must contain exactly one email-
address (RFC 2368 allows multiple addresses). Second, a complete domain specifier must be
given (RFC 822 allows abbreviations if messages are sent within a domain). Third, no headers
may be given in the URI apart from theto -header. If theto -header is used, it must be consid-
ered equivalent to specifying the recipient directly:mailto:galla@in.tum.de must be

3http://www.iana.org/assignments/uri-schemes

74 Chapter 5. Formalizing Relationships

equivalent tomailto:?to=galla@in.tum.de . Using mailto URIs to identify persons on
the internet, however, raises problems: the mailto scheme’s primary purpose is to identify an
email-address. Thus, if a mailto URI is used to express statements about the person associated
with the email-address and about the email-address itself, conflicts or misinterpretations may
occur. Assume there are two sets of RDF statements somewhere on the web, where one uses
a mailto URI to identify a person (setting the value of therdf:type property toPerson)
and the other one describes a property of the email-address (setting the value of therdf:type
property toEmailAdress). An reasoning engine will not be able to resolve the conflict. The
resource identified by the URI may not be a person and an email-address at the same time.
Against this background, mailto URIs should rather not be used to identify persons.

LDAP scheme. The LDAP URI scheme (Howes and Smith, 1997) defines how to express LDAP
distinguished names and LDAP queries as URIs. The scheme is quite powerful and must be
limited if used with relationship management. The subset of LDAP URIs which is suitable to
identify persons is defined by the grammarldapuri = "ldap:///" dn , wheredn is an
LDAP distinguished name, e.g.cn=galla,dc=info11,dc=in,dc=tum,dc=de . More
complicated LDAP URIs are not meaningful with respect to identifying persons on the internet,
because they describe actions to be performed by an LDAP server (retrieve an entry, update an
entry).

http scheme. The most prominent URI scheme is the http scheme (Fielding et al., 1999). It is
mainly used for retrieving web pages. As defined by RFC 2368, fragment identifiers (“#”)
are only allowed if the content type of the referenced document is known.4 Additional re-
strictions of the scheme are not necessary. In order to avoid conflicts, a http URI used for
identifying a person may not be a valid URL of a web page at the same time. The URI
http://www11.in.tum.de/persons/galla , for example, may not be used to iden-
tify a person, because it locates the web page of this work’s author.

Apart from email and news services, most services on the internet do not use URIs as user IDs. Those
services should define a URI template which can be extended with the user ID. A website located at
http://www.in.tum.de/ , for example, might define the template
http://www.in.tum.de/uris/persons#ID , whereID is replaced with the corresponding
user ID.

5.1.3 Representing Groups

In addition to physical and legal persons, groups need to be represented in a formalization of so-
cial relationship. In a work group, for example, there is a relationship between the group leader and
the group as such, which cannot be represented by a set of relationships to each individual member.
Therefore, the definition of a person is inductively refined: ifR is a symmetric and transitive relation-
ship, then each equivalence class of the set of persons with respect to the relationshipR is a person,
too. Strictly speaking,R has to be transitive as well in order to be an equivalence relation. This can,
however, be assumed without loss of generality — reflexivity is irrelevant with respect to this work,
which is targeted at managing social relationships betweendifferentpersons.

In order to uniquely identify a group, the relationship describing the group and an “anchor” (i.e.
one member of the group who serves as a representative of the equivalence class) must be given.

4The semantics of fragment identifiers are defined according to the document type of the corresponding document and
are therefore meaningless if no document is linked to the URI.

5.1. Modeling Social Relationships 75

URIs for groups can be defined in two ways. The first one is to define an “artificial” URI, e.g.
http://www11.in.tum.de/uris/persons#info11 . This URI, however, does not contain
any semantics of the group. The second possibility is to provide the formal representation and the
anchor. In this case, a serialization of the formalization and the anchor is needed (see Sect. 5.3)
along with a special URI scheme. A group URI is then defined by the following simple grammar:
"inrem:group=" groupxml , wheregroupxml is a URI-encoded XML serialization of the
RDF model of the group.

These two possibilities to define URIs for groups reflect two slightly different qualities of groups.
On the one hand, membership of a group constitutes relationships between group members (e.g. the
relationship between two members of a chair). On the other hand, the group is defined based on a
symmetric and transitive relationship among persons (e.g. the group of all people sharing an apart-
ment). Hence, both ways to define group URIs are allowed in the formalization suggested in this work.
The first one is more suitable for “explicit” groups (where group membership indicates relationships
between group members), the second one is better for groups derived on the basis of symmetric and
transitive relationships. For some groups, however, both approaches may be suitable. Hence, there
may be several URIs for the same group as is the case for single persons.

5.1.4 Social Relationships Based on User Profile Comparisons

Many services on the internet gather information about their users, e.g. email addresses and other
personal data. The set of all such information collected by a service with respect to a specific user ID is
called theuser profileof the specific user. Apart from the personalization of services, this information
can be used to derive social relationships between two persons, e.g. living in the same city, or sharing
interests. So far, most services on the internet use proprietary profile models, which are intended for
internal use, only. User profiles can thus not be shared by several applications. Each application must
collect the required data itself. There are, however, several approaches to deal with this problem. Most
prominent, Microsoft Passport5 (Microsoft Corporation, 2003) offers a standard for single sign-in and
the sharing of profile data. A similar approach has been proposed by the Liberty Alliance Project6

(Liberty Alliance Project, 2003), which in its current version includes identity federation and a single
sign-in mechanism. Future versions are expected to include interoperability services for user profiles.
Additional research has been done by Koch and Wörndl (Koch and Ẅorndl, 2001; Koch, 2002a,b).
They propose an identity management network consisting of several so-called ID-Repositories —
each storing profile data about users. Their approach includes the signature of profile data and the
propagation of data between linked identities in different ID-Repositories. Section 6.2 will discuss
this approach in more detail. All three approaches have in common that they aim at the separation of
the user profile from the services that use it. This leads to the question how the privacy of the profile
owner can be protected. This work, however, will not deal with this question in more detail.

Profile Structure

For defining profile relations it is essential that a standardized user profiles structure exists. This does
not mean that it is necessary to define all possible user attributes in advance. It rather means that
a standardrepresentationfor user profiles must be defined which the profile relation can build on.
Hence, this work makes the following assumptions on how user profiles are represented:

5http://www.passport.com/
6http://www.project-liberty.org

76 Chapter 5. Formalizing Relationships

�����������	
�

���
�
������

��� �	����� �����

����
��	�	�
����
�
�		� ��	
��������	�

����	��
�	����
�
 ����	��
�	����
�
 ����	��
�	����
�

����	��
������������

 ����	��
��	�
���� ����	��
���
����

Figure 5.3: RDF graph of a Cobricks user profile based on the profile model shown in Fig. 3.6 (ex-
cerpt). Namespace prefixes (cobricks, sports, leisure) must be properly defined — the cobricks prefix
is used to reference user attributes, the sports and leisure prefixes refer to ontologies about sports and
leisure, respectively (of course, the sports ontology might be considered a sub-ontology of the leisure
ontology, but that depends on the concrete definitions of both ontologies).

• A user profile is expressed as an RDF model.

• The user is represented by a resource, which is identified by a suitable person URI.

• User attributes correspond to OWL datatype properties, or OWL object properties.

• Attribute values may be literals (e.g. age, body height, etc.), or classes or individuals of an
OWL ontology (e.g. interests, skills, etc.).

Referring to Fig. 3.6, an excerpt of the RDF model of a Cobricks user profile is depicted in Fig. 5.3.
The ID-Repositories (see Sect. 6.2) used in a concrete implementation of these concepts are responsi-
ble for resolving user attribute URIs and retrieving the correct value.

Comparing User Profiles

User profiles are compared by testing if the profile relation defined in the relationship type holds true.
If this is the case, a relationship of the corresponding type exists between the two persons. Apart from
conjunction, disjunction, and negation, the operators defined in Tab. 5.2 are available. The set of all
profile relations is defined by the grammar presented in Tab. 5.3.

As discussed in Sect.5.1, the strength of a relationship may also be formally defined. Referring to
Tab. 5.3, the set of all strength functions is defined by the grammarstrengthfct = number . As
has been discussed above, it should be also stated if the strength value is normalized.

Profile-centric vs. application-centric approach

The approach of detecting relationships by comparing user profiles is quite powerful. Yet, many
assumptions about the profile structure and storage must be made. A higher expressiveness requires

5.1. Modeling Social Relationships 77

v For two classesa, b, the relationa v b holds true if, and only if,a is a
subclass ofb, or a is the same class asb.

w For two classesa, b, a w b is equivalent tob v a.
= For two classesa, b, a = b holds true if, and only if,a is the same class

asb.
./ For two classesa, b, a ./ b holds true if, and only if,a v b or b v a. For

two individualsa, b, a ./ b holds true if, and only if,a = b (if a andb
are classes at the same time, which is permitted in OWL full, the former
definition applies). For a combination of a class and an individual, the
./ relation never holds true (unless a reduction to one of the former
cases is possible, since the individual is also a class or the class is also
an individual).

t For two sets of classes and individualsA,B, A t B is the union of the
two sets.

u For two sets of classes and individualsA, B, AuB is the union of the set
of all individualsi wherei ∈ A andi ∈ B, the set of all individualsj ∈
A where∃a ∈ A : j rdf:type a (analogously for the individuals in
B), and the set of all classesc ∈ AtB, where∃a ∈ A andb ∈ B : c v
a andc v b.

rdf:type For an individuala and a classc, a rdf:typec holds true if, and only if,
a is an instance ofc.

⊆ For two sets of classesA, B, A ⊆ B holds true if, and only if, for all
classesa ∈ A there existsb ∈ B : a v b and for all individualsi ∈ A
alsoi ∈ B holds true.

⊇ For two sets of classesA,B, A ⊇ B holds true if, and only if,B ⊆ A.
= For two sets of classesA,B, A = B holds true if, and only if,A ⊆ A

andB ⊆ A.
any OWL object property Let P be an object property. For two classes or individualsa, b, aPb

holds true if, and only if, the corresponding triple (cf. Sect. 4.2) exists
in the underlying ontology. (The operatorsv,w, ./, and = are special
object properties.)

any OWL datatype property Let P be a datatype property. For a class or individuala and a literal
valuev, aPv holds true if, and only if, the corresponding triple exists in
the underlying ontology.

card (·) For a set of resourcesA, card (A) denotes the cardinality ofA.
+,−,×, /,>, <,≤,≥,= For two numbers, these mathematical operators are defined straightfor-

ward. All numbers are treated as rational numbers. The operator= may
also be applied to a pair of strings, as usual.

geodist (·, ·) For geo-coordinatesc1, c2, geodist (c1, c2) is the shortest distance
betweenc1 andc2 (rational number, in meters).

attr (·, ·) For p ∈ {1, 2} and a user profile attribute URIu, attr (p, u) is the
value of the attribute referenced byu of the person in positionp of
the relationship (a note on terminology: with respect to a relationship
R(a, b), a is in position 1 andb is in position 2 — i.e.R is directed
from a to b). The result may be a single value or a set of values. The
value must be a class or an individual.

numattr (·, ·) Like attr (·, ·), except that the (single) value must be a rational num-
ber.

strattr (·, ·) Like attr (·, ·), except that the (single) value must be a string.
geoattr (·, ·) Like attr (·, ·), except that the (single) value must be a geo-coordinate.

Class expressions such as “subclass of” or “same class as” refer to the OWL definition
(Dean and Schreiber, 2003).

Table 5.2: Operators allowed in the profile relation

78 Chapter 5. Formalizing Relationships

profilerelation = comparison / literal-comparison /
set-comparison / string-comparison /
number-comparison / "not(" profilerelation
")" / "(" profilerelation ("and" / "or")
profilerelation ")"

comparison = resource resourceoperator resource
literal-comparison = resource owldp owlliteral
set-comparison = set setoperator set
string-comparison = string stringoperator string
number-comparison = number numberoperator number
string = literalstring / stringattribute
number = literalnumber / numberattribute / geodist /

card / mathexpression
card = "card(" set ")"
set = attribute / "(" set " u" set ")" / "(" set " t"

set ")"
resource = attribute / uri
geodist = "geodist(" geocoordinate "," geocoordinate ")"
geocoordinate = literalgeocoordinate / geoattribute
stringattribute = "strattr(" position "," uri ")"
numberattribute = "numattr(" position "," uri ")"
geoattribute = "geoattr(" position "," uri ")"
attribute = "attr(" position "," uri ")"
position = "1" / "2"
mathexpression = "(" number mathop number ")"
resourceoperator = " v" / " w" / " ./" / "=" / "rdf:type" / owlop
owlop = uri ; URI of an OWL object property
owldp = uri ; URI of an OWL datatype property
setoperator = " ⊆" / " ⊇" / "="
mathop = "+" / "-" / " ×" / "/"
numberoperator = "<" / ">" / " ≤" / " ≥" / "="
stringoperator = "="

The definitions ofuri , owlliteral , literalstring , literalnumber , and
literalgeocoordinate (see Open GIS Consortium, Inc., 2002) are omitted, since the syntactical details
are irrelevant on this conceptual level.

Table 5.3: Grammar for profile relations (on a conceptual level and in the style of Crocker and Overell,
1997)

5.2. Which Formalism to Use? 79

richer profiles and thus imposes more restrictions on how user profiles are represented and accessed.
Although this approach is quite feasible as far as “standard” attributes like residence, interests, and
skills are concerned, it appears to be very difficult with respect to other user-related data (e.g. sending
and receiving emails, group membership, etc.). In its final consequence, this approach would lead to
centralized storage of all user-related data in the user profile. The user profile model would thus need
to have a very high complexity in order to provide a sufficient expressiveness.

This thesis suggests a hybrid approach, allowing both methods depending on which appears con-
venient. In those cases mentioned above (addresses, interests, skills), the definition of reasonable
profile relations is easy — assuming the existence of appropriate ontologies. Future work on user
profile modeling will possibly provide new possibilities for the extension of these ideas to a higher
expressiveness without loosing decentrality.

5.2 Which Formalism to Use?

The preceding section discussed how social relationships can be modeled in an internet-based con-
text. But it has not committed to a specific formalism. Without a specific formalism it is, however,
impossible to define the precise semantics of social relationships.

Reverting to the beginning of the preceding section, a number of requirements for the formal
representation have been discussed:

• Interoperability

• Independence from proprietary applications

• Extensibility

• Integration of privacy protection

Relationship information is knowledge — managing relationship information is a special case of
knowledge management. Hence, relationship management in an internet-context may be viewed as
a special case of internet-based knowledge management. Technologies developed for knowledge
management in the internet are thus likely to be good candidates for relationship management, too.

The semantic web is one of the approaches to fostering knowledge management in the world wide
web. The most important component of the semantic web is a powerful ontology language which
allows for the definition of extensible domain ontologies. Those approaches developed in the context
of the semantic web fulfill the requirements presented above.

The two lowest levels of the semantic web layer cake (cf. Fig. 4.1) are Unicode, URI, and XML.
They form the basis for a generic representation of structured data. The namespace mechanism of
XML allows for the extension of XML tag vocabularies and the integration of different XML docu-
ments. On the basis of XML and URI, the RDF(S) layer defines a generic representation for objects
(resources) and relationships between objects in the world wide web. In its current implementation
— the Ontology Web Language (OWL) — the ontology layer provides means for describing domain
vocabularies via the definition of classes, individuals, properties, and restrictions. OWL ontologies
in the semantic web are extensible — ontologies can reference other ontologies and add additional
knowledge — i.e. new classes, individuals, properties, or restrictions.

The OWL Reference is a W3C Candidate Recommendation and will likely be used as the stan-
dard for representing ontologies in the semantic web. This work chooses OWL as the formalism for
representing knowledge about social relationships for the following reasons:

80 Chapter 5. Formalizing Relationships

• OWL ontologies fulfill the requirements interoperability (this is one of the purposes the seman-
tic web is designed for), independence from proprietary applications (via the generic represen-
tation of resources, individuals, properties, and restrictions), and extensibility (via namespace-
mechanisms and ontology importing).

• OWL is likely to be a future standard for domain knowledge representation — tools for devel-
oping and supporting OWL ontologies are currently under development (for example, Version 2
of the Jena framework7 includes OWL support).

• OWL is powerful enough to deal with the model for social relationships presented in the pre-
ceding section.

The following section presents an OWL ontology vocabulary for social relationships building on the
Web Ontology Language OWL. Although OWL is powerful enough to define the main model for
social relationships, it will be necessary to define additional semantics of algebraic properties and
implications. This is partly due to the fact that relationship information is assumed to be distributed
among several sources and that each source is assumed to apply privacy protection mechanisms (cf.
Chapt. 6).

5.3 An OWL Vocabulary for Modeling Social Relationships

This section introduces an OWL vocabulary for the formal representation of social relationships. The
central statements of Sect. 5.1 are:

• Persons are referenced by URIs. Suitable URI schemes are the http scheme and the LDAP
scheme.

• Groups are equivalence classes of persons with respect to a symmetric and transitive relation-
ship. They are defined by a representative (an “anchor”) and the relationship constituting the
group.

• Groups are special persons — i.e. they may be arguments of a relationship, or members of
groups.

• For each relationship type, a number of algebraic properties can be defined. Possible properties
are symmetry, antisymmetry, asymmetry, transitivity, and non-symmetry.

• Each relationship type may define a strength attribute, which may be normalized. Strength
values may also be obtained by the evaluation of a formally defined strength function, or by the
application of the transitivity property.

• Values of attributes of a relationship can be literals, or classes and individuals of an ontology.

• A binary relation on user profiles can be defined, which formally defines the condition under
which the relationship exists between two persons.

• The definition of the strength function and the profile relation is only meaningful with respect
to a specific user profile model.

7http://www.hpl.hp.com/semweb/jena2.htm

5.3. An OWL Vocabulary for Modeling Social Relationships 81

• Types of relationship are arranged in a specialization hierarchy.

As a note on terminology, in the following, the term “class” shall refer to OWL classes, and the
term “property” shall refer to OWL properties — subsuming the two subclasses “datatype property”
and “object property”.

For convenience and improved readability, namespace prefixes referring to the relationship ontol-
ogy are omitted in the following sections. Proper namespaces must be defined for an implementation.

One of the most prominent questions when starting to design an ontology about social relation-
ships is, whether to model relationships as classes or as properties (cf. Sect 4.5). There are good argu-
ments for both approaches. Modeling relationships as properties allows for the use of the ontology-
built-in support of algebraic properties, such as symmetry, transitivity, and inversion. The hierarchy of
relationships may be expressed by defining sub-properties. There is, however, an important drawback
which makes this approach insufficient. Since in a set-theoretic sense, properties are in fact binary
relations, it is not possible to define further attributes for the application of a property to a pair of
resources. The property either is or is not present between two resources. It is not possible to define a
specific strength or annotations (i.e. attribute values). This work thus embarks on the second strategy
and models relationships as classes.

The ontology presented in the remainder of this section is intended to belong to the complexity
class “OWL DL”. For syntactic and semantic details, the reader is referred to Dean and Schreiber
(2003) and Smith et al. (2003). In the following, only fragments of the ontology will be shown. The
complete ontology is presented in App. A.

5.3.1 Persons and Groups

A person is a member of the trivial class defined by:

<owl:Class rdf:ID="Person" />

This general class does not impose any restrictions on persons, such as a specific profile model. This
class may, however, be specialized in order to refer to a special user profile model. Relationships
referring to special user attributes can then restrict their range to relevant subclasses ofPerson . An
ID-Repository, for example, might offer its data as an OWL ontology about the user profiles stored
in the repository. A reasoning engine can then combine both the relationship ontology and the profile
ontology. Another specialization of the classPerson is the classGroup :

<owl:Class rdf:ID="Group">
<rdfs:subClassOf rdf:resource="#Person" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAnchor" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#definedBy" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

82 Chapter 5. Formalizing Relationships

����������	 �
������������

�
������

��������������

�����	������������
����	����

���	�
��

������������

��� �����

���������!��	����"�

#������	����

�
������������

�
������

��������������

�����	���	��$$
%�� �����

The group is defined by the symmetric and transitive relationshipMembersOfSameWorkGroup ,
which describes the relationship between two members of the group (cf. Fig. 5.8). The anchor
is defined by the URI referencehttp://.../uris/persons#schlichter . An additional re-
lationship may be defined between this person and the group defined by this graph, indicating that
http://.../uris/persons#schlichter is the leader of the work group.

Figure 5.4: RDF graph of a group definition

Therein, the two propertieshasAnchor anddefinedBy are defined as follows:

<owl:ObjectProperty rdf:ID="hasAnchor">
<rdfs:domain rdf:resource="#Group" />
<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="definedBy">
<rdfs:domain rdf:resource="#Group" />
<rdfs:range rdf:resource="#SymmetricTransitiveRelationship" />

</owl:ObjectProperty>

The classSymmetricTransitiveRelationship subsumes those relationship types which are
symmetric and transitive and may thus serve as an equivalence relation for persons. Figure 5.4 depicts
the RDF graph of a group which is defined by the relationship representing membership of a work
group. Note that the membership relationship describes the relationship between two members of the
group, not between a member of the group and the group itself.

5.3.2 Types of Relationship

Types of relationship are modeled as OWL classes. The most general relationship is represented
by the classRelationship , whose definition is shown below. The standard RDFS properties
rdfs:label andrdfs:comment are used for defining the name and the description of the type,
respectively. As defined by the revised RDF/XML syntax (Beckett, 2003), anxml:lang attribute is
used to define the language of the content. It is thus possible to provide different versions of the label
and the comment for different languages. Members of the classRelationship may be related to
one Person via afrom -property and to one Person via ato -property. The remaining constraints are
explained in the following paragraphs.

5.3. An OWL Vocabulary for Modeling Social Relationships 83

<owl:Class rdf:ID="Relationship">
<rdfs:label xml:lang="en">Generic Relationship</rdfs:label>
<rdfs:comment xml:lang="en">

This is the generic relationship type all other types are
specializations of. Relationships of this type are not assumed
to have any special meaning.

</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#from" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#to" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#strength" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#normalizedStrength" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStrengthSource" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#requiresTransitivityMeasure" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasProfileRelation" />
<owl:maxCardinality

84 Chapter 5. Formalizing Relationships

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasTimestamp" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Because relationship types are represented by OWL classes, instances of relationships are members
(individuals) of these classes. Particularly, this entails that every relationship between two persons
must be viewed as a resource in the sense of RDF — i.e. it may be assigned an URI. Although this
is nice, when relationships are to be referenced by other statements in the semantic web, it raises
the problem of accidently producing redundant information. Assume two applications use the same
set of data in order to produce relationship information, but assign different URIs to the relationship
resource. Although the two representations might be equivalent except for the different URIs, any rea-
soning engine will assume that the two representations represent different relationships. This problem
may be solved by either not assigning URIs to relationship resources, or by explicitly applying the
propertyowl:sameAs : if an application finds out that two pieces of relationship information are
equivalent except for their URIs (leta andb be the URIs of the corresponding relationship resources),
it could explicitly add the triple(a owl:sameAs b) (or vice versa).

The specialization hierarchy of relationship types is expressed by applying the property
rdfs:subClassOf to a class representing a relationship type. A subclass inherits all proper-
ties and restrictions defined for the superclass. If a special relationship type, for example, describes
the relationship between a team and its leader, the range of theto -property may be restricted to teams,
which are special persons. Any relationships that are subclasses of this type inherit this restriction.

5.3.3 Strength of Relationships and Profile Relations

The strength of a relationship is expressed by astrength property whose domain is a relationship,
and range is an XML Schema decimal (XML Schema Datatypes are defined in Biron and Malhotra,
2001). The additional propertyhasStrengthSource indicates if the strength of the relation-
ship was explicitly provided by the measuring method (Explicit), inferred by applying transitivity
(members of the classTransitivityMeasure), or obtained by evaluation of the strength func-
tion (StrengthFunction). Figure 5.6 depicts the class hierarchy of possible strength sources.
If the propertyhasStrengthSource is missing,Explicit should be assumed by applica-
tions. The propertyrequiresTransitivityMeasure with domainRelationship and
rangeTransitivityMeasure can be used in order to prescribe a specific transitivity measure to
be used by applications for relationships of the corresponding type.

By applying the propertynormalizedStrength (range: XML Schema boolean), it is possible
to define if the strength is normalized to[0...1] (true), or not normalized (false). If the property
normalized is not set,xsd:false should be assumed. The classStrengthFunction is
defined as follows:

<owl:Class rdf:ID="StrengthFunction">
<rdfs:subClassOf rdf:resource="#StrengthSource" />
<rdfs:subClassOf>

5.3. An OWL Vocabulary for Modeling Social Relationships 85

�����

�����	�
����	

�������

��������������

�����	�������

��������������

�����	�������
���� ��

�����

����	���

����

	������������	���

��������
 �����!

����	�
����	

"��� ���� �������	��

���
���
����	�
����	

�������	����� #�����

������#�� ����
����	�

�������	�������
�

�$���
��

The classEmailCommunication is assumed to be a subclass of the classCommunication represent-
ing symmetric communication relationships (see also Fig. 5.8). Therdfs:subClassOf property linking
EmailCommunication to Communication and the classCommunication are not shown in this fig-
ure. The strength is measured according to the (normalized) formula 3.1 (p. 28). The description contains a
precise definition of this formula.

Figure 5.5: RDF graph of an email-communication relationship

����������	�
�

����
�� ���������	�
����

�����	���������������

����������������	��

������	��������

���

������

����	
�

�������
�������

�������

The three transitivity measures Min, Length, and Product refer to Peay’s measure, Flament’s measure, and the
Product measure, respectively (see Sect. 5.1.1).

Figure 5.6: Hierarchy of methods for obtaining the strength of a relationship

86 Chapter 5. Formalizing Relationships

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStrengthDefinition" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

The profile relation of a relationship type can be defined by simply applying the string-valued
propertyhasProfileRelation :

<owl:DatatypeProperty rdf:ID="hasProfileRelation">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

The string-valued datatype propertieshasStrengthDefinition andhasProfileRelation
refer to the definition of the profile relation and to the strength function, respectively (in terms of
Tab. 5.3 with a suitable replacement of non-ASCII symbols).

5.3.4 Algebraic Properties

For defining algebraic properties of relationship types, the propertyhasAlgebraicProperty
is provided. Its domain isRelationship and its range isAlgebraicProperty . The
class AlgebraicProperty consists of the individualsSymmetric , Antisymmetric ,
Asymmetric , andTransitive . Non-symmetry does not need to be explicitly defined, since it
does not impose any restrictions. Every relationship lacking an explicit definition of one or more al-
gebraic properties is thus assumed to be non-symmetric. For conveniently defining classes possessing
algebraic properties, there exists a subclass of the classRelationship for each property.
The classSymmetricRelationship , for example, is defined as follows:

<owl:Class rdf:ID="SymmetricRelationship">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAlgebraicProperty" />
<owl:hasValue rdf:resource="#Symmetric" />

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#AntisymmetricRelationship" />

</owl:Class>

By defining the class to be disjoint with the class representing antisymmetric relationships, it
is ensured that a class cannot at the same time be a subclass ofSymmetricRelationship
and a subclass ofAntisymmetricRelationship . Similarly, by explicitly stating that
AsymmetricRelationship is a subclass ofAntisymmetricRelationship , the im-
plication that all asymmetric relationship types are also antisymmetric (see Sect. 2.3) is accounted
for.

5.3.5 Attributes

Attributes of relationships are represented by arbitrary properties. The topic of a communication
relationship, for example, might be indicated by the propertyhasTopic :

5.3. An OWL Vocabulary for Modeling Social Relationships 87

<owl:ObjectProperty rdf:ID="hasTopic">
<rdfs:domain rdf:resource="#CommunicationRelationship" />

</owl:ObjectProperty>

<owl:Class rdf:ID="CommunicationRelationship">
...
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasTopic">
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:minCardinality>

<owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Multi-valued attributes are represented by a multiple application of the corresponding property. Values
of multi-valued attributes are disjunctive — i.e. in the case of two relationships with different numbers
of values of the same attribute, the relationship with less values is more restricted.

Note that in the example above, omitting the range definition for the propertyhasTopic leads
to the ontology being OWL Full. Hence, if a special ontology is to be used for topics, a generic class
representing all possible topics should be defined in order to keep the complexity of OWL DL.

By using an OWL datatype property instead of an OWL object property, it is possible to refer to
literal attribute values (e.g. XML schema strings, numbers, etc.). In particular, this allows for the
definition of lists of keywords, which are not defined in an ontology.

5.3.6 Age of Relationship Information and Expiration

Social relationships are subject to temporal evolution. Relationships may fade, or change their focus,
and new relationships are established. It is thus necessary to store the date and the time of measure-
ment for each piece of relationship information. Since relationship information is to be exchanged
among applications, an additional expiration date should be provided in those cases, when the expi-
ration date of the relationship is known in advance (e.g. for formal relationships based on temporary
contracts). In order to provide information about the date of detection and expiration of relationship
information, the two propertieshasTimestamp andhasExpirationDate can be used:

<owl:DatatypeProperty rdf:ID="hasTimestamp">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;datetime" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasExpirationDate">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;datetime" />

</owl:DatatypeProperty>

Note that according to the definition of the classRelationship , the timestamp is obligatory,
whereas the expiration date is optional.

5.3.7 Equivalence of Relationship Information

If relationship information is exchanged between applications, it is possible that two applications
possess information representing the same “real-world” relationship — this may, for example, be due

88 Chapter 5. Formalizing Relationships

to overlapping data sets for measurement. It is thus necessary to define equivalence conditions for
relationship information in order to prevent applications from storing redundant data.

As defined by the OWL Web Ontology Language Reference (Dean and Schreiber, 2003), the
equivalence of two owl ontologies must be checked via the comparison of the corresponding RDF
graphs instead of the serialization (because all valid methods of RDF serialization are also valid meth-
ods of OWL serialization, there are a variety of valid serializations of an OWL ontology). In fact, it is
not even sufficient to compare the RDF graphs in a graph-theoretic sense. It is necessary to check the
semantic equivalenceof the two graphs. The central problem with respect to the relationship ontology
presented above is to check the equivalence of two classes or individuals. More precisely, there are
two complexity levels of equivalence:

Explicit Equivalence. Explicit equivalence is expressed by theowl:sameAs -property and can thus
easily be checked. This case is especially important with respect to identity management (see
Sect. 5.1.4) — theowl:sameAs -property may be applied by ID-Repositories (cf. Sect. 6.2)
in order to state that two URIs refer to the same person. Explicit equivalence might, however,
also occur in ontologies referenced by values of additional attributes.

Implicit Equivalence. This case involves all advanced concepts which may lead to two classes or
individuals being equivalent (e.g. because of being subclasses of each other, or because of
being subjects of an inverse-functional property, etc.).

Since the resolution of the second case involves complex reasoning algorithms, it should be delegated
to an OWL reasoning engine. Explicit equivalence should, however, be dealt with by applications in
any case, even if they do not contain advanced reasoning support.

5.3.8 Relationship Information Templates

For later sections of this work, it is convenient to define how to represent patterns of (incomplete) rela-
tionship information, which can be used in queries and rules. Arelationship information template(RI
template) is an incomplete formalization of a relationship, containing at least a triple(r rdf:type c),
wherec v Relationship . Let T be the model (i.e. the set of all triples of the corresponding RDF
graph, cf. Sect. 4.2.1) of such an incomplete formalization. LetM be a (complete) model of a re-
lationship. Letr, r′ be the resources representing the relationship inT,M , respectively. Then,M
matchesT if all of the following conditions hold true.

• For each triple(r P o) ∈ T , whereP is an object property ando is a class (and no individual),
there exists a triple(r′ P o′) ∈ M , whereo′ is a class, ando′ v o.

• For each triple(r P o) ∈ T , whereP is an object property ando is an individual, there exists a
triple (r′ P o′) ∈ M , whereo′ is an individual, ando′ = o.

• For each triple(r P o) ∈ T , whereP is a datatype property (different fromstrength) ando
is a literal, there exists a triple(r′ P o′) ∈ M , whereO′ is a literal, ando′ = o.

• If there is a triple(r strength s) ∈ T , there is a triple(r′ strength s′) ∈ M with s′ ≥ s
(higher strength values indicate higher strength).

A piece of relationship information matches a relationship information template, if the correspond-
ing models match. Relationship information templates are used in access rules (cf. Sect. 6.5.2) and
requests between relationship management agents (cf. Sect. 6.6).

5.4. Extension of the OWL Ontology 89

5.3.9 Inference

OWL permits a high expressiveness of relationship ontologies. In order to make use of this high ex-
pressiveness, relationship management applications need an inference engine for answering queries
to the ontology. Assume that, for instance, an ontology defines email-communication relationships
to be specialized communication relationships. Both possess an attribute indicating the topics of the
communication. Furthermore, assume that a relationship management application stores data about an
email-communication relationship with the topicjavadatabaseprogramming (being a subclass
of javaprogramming). If another application (e.g. a GUI) queries the relationship management
application about communication relationships aboutjavaprogramming , the relationship manage-
ment application can encode all relationship information it stores into an OWL ontology (as described
in this section) and run an OWL inference engine on the resulting ontology. The inference engine will
then yield the email-communication relationship aboutjavadatabaseprogramming . Note that
the subclass relationships in this example do not have to be explicitly defined, but may also be inferred
by the inference engine’s classification algorithm.

Since relationship types are modeled as OWL classes, OWL’s built-in support for symmetric and
transitive properties cannot be used with respect to relationships. Instead, applications must handle
symmetry, antisymmetry, asymmetry, and transitivity themselves. This requirement will be explained
in more detail in the following section.

5.4 Extension of the OWL Ontology

According to the relationship ontology suggested in Sect. 5.3, relationship types are represented by
OWL classes, and relationships are represented by OWL individuals. Although this allows for the
definition of the strength and additional attributes of a relationship, it causes a limitation of possi-
ble algebraic properties. Apart from the repeatedly discussed properties symmetry, antisymmetry,
asymmetry, and transitivity, the algebraic properties functionality and inverse-functionality may be
of interest. Furthermore, it cannot be expressed that two relationship types are inverse to each other.
These properties are defined as follows:

• A binary relationR is functional, if for allx, y, z, R(x, y) ∧R(x, z) impliesy = z.

• A binary relationR is inverse-functional, if for allx, y, z, R(x, z) ∧R(y, z) impliesx = y.

• A binary relationR is inverse to a binary relationS, if for all x, y, R(x, y) impliesS(y, x) and
vice versa.

An example of a functional relationship type is the marriage-relationship — the same individual may
only be married to one individual (at least in western societies). The has-father-relationship is an
inverse-functional relationship type, since an individual may only have one father. Finally, the two
relationship types parent-of and child-of are inverse to each other.

Concerning both object properties and datatype properties, OWL Full offers support for all of these
algebraic properties (restricted versions are also available in OWL DL and OWL Lite). Yet, because
relationship types are classes instead of properties, built-in support of OWL inference engines for
these features cannot be used. Instead, the semantics of algebraic properties must be definedoutside
the relationship ontology.

In order to keep things as simple as possible, only the four algebraic properties symmetry, antisym-
metry, asymmetry, and transitivity are accounted for in the relationship ontology. Relationship man-
agement applications must contain support for these properties. Concerning the additional properties

90 Chapter 5. Formalizing Relationships

defined above, functionality and inverse-functionality mainly offer additional means for expressing
equivalence, whereas the inversion-property mainly contributes to the convenience of the user. Since
inversion is not included in the relationship ontology, it should be avoided to define both a relationship
and its inverse — this comes down to expressing the same information in different terms and does not
add any meaningful information.

The evaluation of symmetry, antisymmetry, asymmetry and transitivity is a cyclic process. The
starting point of the transformation is the modelM being the union of the model (i.e. the set of all
triples of the corresponding RDF description, cf. Sect. 4.2.1) of the corresponding OWL relationship
ontology and the set of all triples which can be generated from that ontology by an OWL reasoning
engine. Then the transformationT is recursively applied to the modelM , until a fixed point is reached
— i.e. no additional triples can be generated by applying the transformation. Note that, because both
the initial model and the transformation rules are finite, a fixed point will eventually be reached.
Figure 5.7 depicts this approach. The transformationT is defined as follows:

1. Let M ′ = M .

2. Process symmetry, adding new triples toM ′.

3. Process transitivity, adding new triples toM ′.

4. Process antisymmetry and asymmetry, adding new triples toM ′.

5. Check consistency. If the model is inconsistent, quit the transformation and report the error.

6. If M = M ′, a fixed point is reached — in this case, quit the transformation and return the
resulting modelM ′.

The following subsections describe the transformation procedure for each of the four algebraic prop-
erties in more detail.

5.4.1 Preliminary Remarks on the Transformation T

In order to simplify the description of the transformation, some basic notational conventions shall be
introduced in this subsection. All special operators are defined in Tab. 5.2. LetM be the model of the
relationship network.

Correlation. Assumer1 andr2 are resources representing relationships (between the same persons
in the same direction) with typest1, t2, respectively. Then,r1 andr2 arecorrelatedif t1 ./ t2, and
either the more general relationship does not have any additional attributes, or both of the following
conditions are met:

• For all object propertiesP representing additional attributes of the more general relationship
type, one of the following conditions holds true.

– There exist two triples(r1 P o) ∈ M and(r2 P o′) ∈ M , whereP is an object property
representing an additional attribute of the relationship, ando, o′ are classes, such that
o ./ o′.

– There exist two triples(r1 P o) ∈ M and(r2 P o′) ∈ M , whereP is an object property
representing an additional attribute of the relationship, ando is a class, whereaso′ is an
individual and a member ofo, or vice versa.

5.4. Extension of the OWL Ontology 91

– There exist two triples(r1 P o) ∈ M and(r2 P o) ∈ M , whereP is an object property
representing an additional attribute of the relationship, ando is an individual.

• For all datatype propertiesD representing additional attributes of the more general relationship
type, there exist two triples(r1 D v) ∈ M and(r2 D v) ∈ M , wherev is a literal.

Coverage. Assumer1 andr2 are resources representing relationships of the same type (between the
same persons in the same direction). Then,r1 is coveredby r2, if all of the following conditions hold
true.

• For all triples(r1 P o) ∈ M , whereP is an object property representing an additional attribute
of the relationship, ando is a class, there exists a classo′ such that(r2 P o′) ∈ M ando is a
subclass of or equivalent too′, or o is a member ofo′ (only possible in OWL Full).

• For all triples(r1 P o) ∈ M , whereP is an object property representing an additional attribute
of the relationship, ando is an individual (ando is not a class at the same time, as would be
possible in OWL Full), either(r2 P o) ∈ M holds true, or there exists a triple(r2 P o′), where
o is a member of the classo′.

• For all triples(r1 D v) ∈ M whereD is a datatype property representing an additional attribute
of the relationship,(r2 D v) ∈ M holds true.

• If the relationship type defines a strength value, the strength ofr2 is greater than or equal to the
strength ofr1.

Equivalence. Assumer1 andr2 are resources representing relationships. Then,r1 andr2 areequiv-
alent, if r1 is covered byr2 andr2 is covered byr1.

5.4.2 Symmetry

For symmetric relationships, the transformation is defined as follows.

1. Let r be a resource representing a symmetric relationship. Letr′ be a new resource, which does
not occur inM . Let R be an empty model.

2. For all propertiesP exceptto andfrom , and all triples(r P o) ∈ M , add(r′ P o) to R.

3. Assume(r from p1) and(r to p2). Add (r′ from p2) and(r′ to p1) to R.

4. If there exists a resources representing a relationship which occurs inM ′ such thats is equiva-
lent tor′, replace the corresponding triples with those fromR, setting timestamp and expiration
date properly.

5. Otherwise, add all triples fromR to M ′, setting timestamp and expiration date properly.

5.4.3 Transitivity

For two correlated transitive relationshipsr1, r2 of the typest1, t2, respectively, wheret1 ./ t2,
(r1 to p) ∈ M , (r2 from p) ∈ M , the transformation is defined as follows.

1. Let r′ be a new resource, which does not occur inM ′. Let R be an empty set.

92 Chapter 5. Formalizing Relationships

�������

�	
���	�
������

�����������

��������

�� ����������	���	���� ���

��
	�

Figure 5.7: Transformation for evaluating algebraic properties of relationships

2. For all datatype propertiesD and all literalsv such that(r1 D v) ∈ M and(r2 D v) ∈ M , add
(r′D v) to R.

3. For each object propertyP representing an additional attribute of the more general relationship,
let O1 andO2 be the sets of values. For eacho ∈ O1 uO2 add the triple(r′ P o) to R.

4. For each remaining object propertyP of the more specific relationship and all valueso of that
property, add the triple(r′ P o) to R.

5. For each datatype propertyD representing an additional attribute of the more general relation-
ship, letV1 andV2 be the sets of values. For eachv ∈ V1 ∩ V2 add the triple(r′D v) to
R.

6. For each remaining datatype propertyD of the more specific relationship and all valuesv of
that property, add the triple(r′D v) to R.

7. Assume(r1 from p1) and(r2 to p2). Add (r′ from p1) and(r′ to p2) to R.

8. If there exists a resources representing a relationship and occurring inM ′ such thats is equiv-
alent tor′, replace the corresponding triples with those fromR, setting strength-related proper-
ties, timestamp and expiration date properly.

9. Otherwise, add all triples fromR to M ′, setting strength-related properties, timestamp and
expiration date properly.

5.4.4 Antisymmetry and Asymmetry

Let r1, r2 be correlated resources, representing antisymmetric relationships. If(r1 from p1) ∈ M ,
(r1 to p2) ∈ M , (r2 from p2) ∈ M , and(r2 to p1) ∈ M , add(p1 owl:sameAs p2) to
M ′.

If both relationships are antisymmetric, and the conditions above apply, the model is inconsistent.

5.5. Basic Types of Relationship 93

5.5 Basic Types of Relationship

The previous sections have presented a formalization of social relationships in form of an OWL on-
tology. This section gives examples of relationship types, which can be represented using that formal-
ization. This list of types is not exhaustive. Still, it provides an insight into how frequent relationship
types can be properly modeled using the previously discussed modeling primitives. Figure 5.8 depicts
the hierarchy of common relationship types which are described in the following list.

Acquaintance. This general relationship type represents the fact that a person knows the other. It
does neither imply any evaluations of the other person, nor a face-to-face contact between the
two persons.

PositiveEvaluation. PositiveEvaluationis a subtype ofAcquaintance. It reflects a kind of friendly
attitude towards the target of the relationship, e.g. good experiences, fondness, or trust.

BuddylistMembership. This type represents relationships based on membership of the target person
on a person’s buddylist. It is a subtype ofPositiveEvaluationand has one attribute referring to
the list the target is a member of, e.g. “friends”, “family”, or “co-workers”.

Trust. For expressing a trust-relationship from one person to another, this type can be used. It indi-
cates general trust and is a subtype ofPositiveEvaluation. A strength value must be provided,
ranging from0 (no trust, equivalent to the absence of the relationship) to1 (complete trust).
Note that this type is not transitive. Special subtypes should be defined with respect to more
specific situations, e.g.RecommenderTrust(see below).

RecommenderTrust. These relationships are specialized trust relationships. They indicate that a
person trusts the other person’s recommendations, e.g. product ratings, or vendor ratings. Note
that this type is transitive. For inferring the strength of relationship paths, the product measure
is to be used. Since strength values are normalized, this implies that the strength of relationship
chains decreases with increasing length (except if all relationships have strength1).

NegativeEvaluation, BlacklistMembership, Distrust, RecommenderDistrust.These types are
analogs toPositiveEvaluationand the corresponding subtypes. They express, however, nega-
tive attitudes. (It is not true that a trust relationship of strength0 indicates a distrust relationship
of strength> 0. Trust and distrust relationships of low strength indicate neutral evaluation.)

Communication. Relationships of this type represent all kinds of communication. Communication
relationships are assumed to be symmetric. The attribute “topic” indicates the topics of the
relationship as a set of literals.

EmailCommunication. This type specializes the previous type by specifying email as the medium of
the communication. Relationships of this type possess a normalized strength value as defined
by formula 3.1 (p. 28). The RDF graph of a relationship of this type is depicted in Fig. 5.5
(topics are omitted in the graph).

Transaction. Transactionrelationships subsume all relationships consisting in the transfer or ex-
change of goods or money. Subtypes of this type should be defined in order to specialize the
kind of transaction, e.g.BuysFrom(see below).

94 Chapter 5. Formalizing Relationships

�����������	

�����	��������� �������������

���������

�	
��

�	����	��������� �����������

�	��	�������	�����

��������������������

��	�

����������	��	�� ��

�������

�����

�����������	����

!	����	��	������

�����������
�	�����

�����������	����

����"�����	��	�� ��

�������

#�������

�����������	����

!	����	��	�#�������

�����������
�	�����

�����������	����

������������������

�����������	����

����$���

�		��

���������������	���		���

�	��	�������	��������� �	��	�������	%��"�����

�	��	�������	�	��

%��"�����	!	�����	

���	����

&�	���	��������	

�	��	��� $�����!��	

!	����	

��	����

���������

$�� 	��� ��� 	���

����������	�

���������������������	����
�

'�	(����	����

�	����������	�

Figure 5.8: Hierarchy of relationship types

5.5. Basic Types of Relationship 95

BuysFrom. Relationships of this type are specialTransactionrelationships. They posses an attribute
“goods”, referring to the goods transferred, and a strength value, which reflects the value of the
goods.

MembersOfSameGroup. The relationship between two members of a group can be represented by
the typeMembersOfSameGroup. Relationships of this type are symmetric and transitive and
may thus be used as equivalence relations for defining groups. The attribute “group” refers to the
group the persons are members of. Note that this relationship type does not imply acquaintance
relationships between the group members.

MembersOfSameCommunity. Compared to the previous type, this type adds the idea that two per-
sons “share something (e.g. a language, network access, ...) but do not necessarily know each
other or interact on a personal basis” (Schlichter et al., 1998). This type is a subtype of the
previous type.

HaveSameAttributes. This relationship type is a subtype ofMembersOfSameCommunity. It speci-
fies the “shared thing” between members of the community — in this case equality of profile
attributes. Subtypes of this type (e.g.LiveInSameCity) may define a profile relation explicitly
defining the equality constraint.

MembersOfSameWorkGroup. This relationship type subsumes relationships among persons be-
longing to the same work group. According to Schlichter et al. (1998), belonging to the same
work group implies knowing each other. The more general kind of group is a community (see
above), the more specific one is a team (see below). This type is a subtype ofAcquaintanceand
a subtype ofMembersOfSameCommunity.

MembersOfSameTeam.According to Schlichter et al. (1998), “the members of a team know each
other and are cooperating to achieve a common goal”. The relationship between two members
of a team can be represented by applying the typeMembersOfSameTeam. This type is a subtype
of MembersOfSameWorkGroup.

WorkOnSameResource.Being a subtype of the previous relationship type,WorkOnSameResource
defines the additional attribute “resource” referring to the shared resource (e.g. jointly edited
document).

MemberOf. This branch of types subsumes all kinds of membership relationships, i.e. someone’s
membership of a group, family, company, club, etc. According to the specific situation, special-
izations of this type may be useful, e.g. in order to indicate group leadership.

FormalRole. The typeFormalRolerepresents relationships related to organizations, e.g. between
leader and team, teacher and student, or doctor and patient. Formal roles are likely to be asym-
metric (e.g. this is usually the case for superiority).

Relative. Kinship of any kind can be represented by a subtype ofRelative, such asParentOf, Fa-
therOf, SiblingOf, or MarriedTo.

5.5.1 Remarks on the Type Hierarchy

The arrangement of relationship types in the hierarchy must be done with great care, in order to avoid
contradictions to the common understanding of the types. Assume, for example, the typeAncestorOf

96 Chapter 5. Formalizing Relationships

is asymmetric and transitive, andParentOf is a subtype ofAncestorOf. Then, the transitivity property
is also inherited byParentOf. This is, however, a contradiction to the common understanding of
parenthood.

To give a second example, assume thatMembersOfSameFamiliyis a subtype ofMembersOf-
SameGroup. AlthoughParentOf might be expected to be a subtype ofMembersOfSameFamily, this
may not hold true. Otherwise,ParentOfwould inherit transitivity and symmetry from the supertype,
which is, again, contradictory to the common understanding of parenthood.

5.5.2 Examples of Formalizations

The following example shows the formalization of the three relationship typesAcquaintance, Com-
munication,andEmailCommunication.

Acquaintance

<owl:Class rdf:ID="Acquaintance">
<rdfs:subClassOf rdf:resource="#Relationship" />
<rdfs:label xml:lang="en">Acquaintance</rdfs:label>
<rdfs:comment xml:lang="en">

This general relationship type represents the fact that
a person knows the other. It does neither imply any
evaluations of the other person, nor a face-to-face contact
between the two persons.

</rdfs:comment>
</owl:Class>

Communication

The restriction expresses that a communication relationship must have at least one topic keyword.
Topic keywords may, for example, be extracted from message contents (emails, chat, IM, newsgroup
postings) by applying standard keyword extraction procedures (e.g. Turney, 2003, 1997).

<owl:Class rdf:ID="Communication">
<rdfs:subClassOf rdf:resource="#Acquaintance" />
<rdfs:subClassOf rdf:resource="#SymmetricRelationship" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasTopic" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:label xml:lang="en">Communication</rdfs:label>
<rdfs:comment xml:lang="en">

Relationships of this type represent all kinds of communication.
Communication relationships are assumed to be symmetric.
The property hasTopic indicates the topics of the relationship
as a set of string literals. Apply the property separately for
each keyword. Supply at least one keyword for each relationship.

</rdfs:comment>
</owl:Class>

5.5. Basic Types of Relationship 97

<owl:DatatypeProperty rdf:ID="hasTopic">
<rdfs:domain rdf:resource="#Communication" />
<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

EmailCommunication

The additional restrictions define that an email-communication relationship has a strength value,
which is normalized, and explicitly given by the strength function defined in the comment.

<owl:Class rdf:ID="EmailCommunication">
<rdfs:subClassOf rdf:resource="#Communication" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#strength" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#normalizedStrength" />
<owl:hasValue rdf:datatype="&xsd;boolean">true</owl:hasValue>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStrengthSource" />
<owl:hasValue rdf:resource="#Explicit" />

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:label xml:lang="en">Symmetric email-communication</rdfs:label>
<rdfs:comment xml:lang="en">

This type represents special communication relationships by
specifying email as the medium of the communication.
Relationships of this type possess a normalized strength
value as defined by the following formula:
Let n12(k) be the number of emails sent (via to, cc, or bcc)
in period k from person 1 to person 2, and n21(k) the number of
emails sent in period k from 2 to 1.
Period 1 is the current day, period 2 is the day
before, and so on. Let S1(k) and S2(k) be the number of
messages sent to any person by 1 and 2, respectively, in
period k, and R1(k), R2(k) the number of messages received from
any person in period k by 1 and 2, respectively.
Let w(k)=(366-k)/(133590). Then, the strength s is defined as
1/2 * sum(k=1,...,365) w(k) * (n12(k)/S1(k) + n21/R1(k)
+ n21(k)/S2(k) + n12/R2(k)). Periods in which any
of the denominators is 0 or for which no data is available
must be skipped in the sum.

</rdfs:comment>
</owl:Class>

98 Chapter 5. Formalizing Relationships

examine
application area,
view existing
approaches

understand
social
relationships

generate
requirements,
define model and
formalization

design solution
for distributed
relationship
management

Chapter 2 Chapters 3 and 4 Chapter 5 Chapter 6

evaluate
approach by
prototypic
implementation

Chapter 7

Figure 5.9: Roadmap of this thesis and intermediary results

5.6 Conclusions and Intermediary Results

This chapter has discussed requirements for social relationship management on the internet. On the
basis of these requirements, a model for social relationships has been developed and formalized in
terms of the Web Ontology Language OWL. Extending the semantics of the OWL ontology, seman-
tics of algebraic properties have been defined in terms of a transformation algorithm for relationship
knowledge bases. The ontology vocabulary has been applied for sketching the definition of basic
relationship types.

What has been achieved so far in this work? Social relationships have been discussed, the appli-
cation area has been explored, and a formal model for social relationships has been developed (cf.
Fig. 5.9). The intermediary result up to here isan ontology vocabulary for relationship information.
On the basis of the formal representation, it is possible for applications to exchange knowledge about
those aspects of social relationships, which are relevant with respect to internet-based communication
and shared information spaces. It has, however, not yet been discussedhow the exchange of relation-
ship information should take place — “how” refers tosocial protocolsbetween entities storing social
relationship information on behalf of one or several users.

Social relationship information is of great value — economists often refer to it as “social capital.”
The social protocols for the exchange of social relationship information must thus address privacy
protection. This is one of the goals of the next chapter.

The following chapter addresses relationship management. The discussion of the application area
in Chapters 3 and 4 has shown that relationship information originates from heterogeneous sources.
Chapter 6 introduces mechanisms for integrating such relationship information. User agents are devel-
oped which manage relationship information on behalf of the users. These user agents for relationship
management act on the basis of social protocols enforcing the compliance with privacy preferences of
users.

Chapter 6

Distributed Relationship Management

For accomplishing everyday work we interact with a variety of communication and information
systems. The social network between persons is not restricted to one specific context and one
system, but distributed among several contexts and systems. Recognizing this distribution, in this
chapter a strategy for interoperable relationship management is presented, which is based on a
multiagent system. Special attention is paid to privacy protection. Two application examples show
how the concepts developed in this chapter can be applied in order to improve reputation systems
(cf. Chapt. 1) and to structure the own social network.

6.1 Distributed Relationship Information

Due to the variety of communication and information systems that we use for accomplishing everyday
work, data about personal relationships is distributed among several applications. Summarizing earlier
sections of this work (Chapts. 3 and 4, Tab. 3.2), some of these are:

• Email clients

• Usenet news clients

• Instant messaging and chat clients

• Semantic annotations of websites and documents (e.g. FOAF-powered home pages)

• Personal information managing (PIM) software (calendars, personal address books)

• Web platforms (e-commerce platforms, virtual community platforms)

• Groupware applications (group editors, shared work spaces)

For evaluation, exploration, or visualization of the personal social network, all of these applications
must be taken into account.

Consider, for example, the problem of whom to trust on an internet-based auction platform. If a
persona is interested in buying an item from personb, but does not know that person,a might use the
relationship visualization component of the platform in order to find a relationship chain froma to b.
Taking into account only “internal” relationships — i.e. those based on the interaction of users on the
auction platform — leads to disregarding large parts of the social network among those users. This
approach will thus probably not yield an optimal chain. If the relationship management component of
the platform could also access relationship information concerning different contexts and originating

99

100 Chapter 6. Distributed Relationship Management

���������	�
��

����
�����

�����������
	���

�
���������	�

���
����

���	
��

�����������	�

������������
����	
�����������
�	�

	���
���������

����
	

�����������
	���

�
���������	�

���
����

���	
�� �����������
	���

�
���������	�

���
����

���	
��

���������	
������	��������
	����	�

�������	����������	
������	��������
	����	�

Figure 6.1: Sources of relationship information and exchange of relationship information among sev-
eral agents

from different systems, the platform’s model of the social network among its users would be much
closer to reality and thus yield more optimal chains.

Yet, the direct exchange of relationship information between applications is not possible in prac-
tice. Every application would have to exchange relationship information with all other applications
used by its users. Although this may be feasible in a “local” network of a few central applications
(e.g. inside a company), it is certainly not in a large scale approach. The list of applications used by a
person is not available to the applications due to privacy protection. Furthermore, many applications
are run on local computers behind firewalls (e.g. email clients, PIM, etc.), and cannot be accessed by
remote applications.

This work thus suggests anagent-basedapproach (see Sect. 6.6 for a discussion of software agents
and agent-based relationship management), where all relationship information concerning a person is
managed by a personal relationship management agent. Applications generating or using relationship
information consult these agents via theirrelationship management extension(relationship manage-
ment extensions are discussed in Sect. 6.4, see also Fig. 6.3). Agents communicate with each other
and exchange relationship information in order to explore the social network, or to find relationship
chains from one person to another. Figure 6.1 depicts this approach. This work does not assume a
1:1 but a 1:n mapping between agents and users. Especially in those cases, where users’ computing
devices are shielded by firewalls or not permanently “online” — as is the case for most private and
office PCs — there may be agencies, run by third parties, which manage relationship information on
behalf of several users.

Agents apply the relationship ontology vocabulary presented in Chapt. 5 for exchanging relation-
ship information. Each application generating or using relationship information is equipped with an

6.2. Storing and Accessing User Profiles 101

extension for transferring relationship information to the agent and retrieving relationship information
from the agent. Agents may thus be viewed as mediators for the exchange of relationship information
between applications.

Apart from the formalization of relationships, important features of this approach are:

• Identity management — mapping different identities of the same user

• Design of the relationship management extension linking applications and agents

• Privacy — shielding relationship information from unauthorized access

The rest of this Chapter is organized as follows. In Sect. 6.2, basic mechanisms for user pro-
file management are discussed. User profiles are referred to in relationship types declaring a profile
relation — relationship management applications using such types must thus access user profiles.

Section 6.3 deals with the problem of linking a person’s local user IDs which are used for access-
ing applications with the global user ID used by the relationship management system. A high-level
protocol is presented which establishes the identity federation between the global ID and the various
local IDs of a user.

Additional high-level protocols for the exchange of relationship information between applications
and relationship management agents are discussed in Sect. 6.4.

Section 6.5 addresses the importance of privacy protection in the field of relationship manage-
ment. A relationship-centric and rule-based approach to access control for relationship information is
presented.

Building upon the preceding sections, Sect. 6.6 presents a multiagent system for relationship man-
agement. High-level social protocols for the exchange of relationship information between relation-
ship management agents are defined.

In Sect. 6.7, solutions for the two scenarios “assessing the reputation of other users” and “struc-
turing the own social network” presented in Sect. 1.6 are suggested, which is based on the multiagent
system. Section 6.8 compares the approach of this thesis with existing work.

6.2 Storing and Accessing User Profiles

Section 5.1.4 has introduced profile relations for declaratively defining the conditions for the exis-
tence of a relationship between two persons. In the definition of a profile relation, user attributes are
referenced. In order to evaluate of the profile relation, applications need access to the values of those
attributes. They must therefore contact the entity storing the user profile.

Concerning the storage of and access to user profiles, this thesis adopts the approach of Koch and
Wörndl (2001). According to their work, user profiles are stored inID-Repositories.1 The user retains
full control over his profile — i.e. he defines who may access which parts of the profile and is aware
which services have been given which parts of the profile. ID-Repositories are arranged in an identity
management network (see Fig. 6.2) and may be operated by different organizations. This allows the
user to choose an organization he trusts for storing his profile data. User profiles may, however, be
cached by other repositories (taking into account the profile owner’s privacy preferences) in order to
improve the scalability of the approach.

1In order to differentiate the novelties of this work, this thesis assumes a conceptual (and possibly physical) separation
of relationship management components and user profile management components. It is, however, likely that in the future,
there will be components for both user profile management and relationship management.

102 Chapter 6. Distributed Relationship Management

��������	
���

���
��������	
���

��������	
���

�����������

����	��

��
���������
	�����
����

�	�����	���
	
	�� �����������

����	��

Figure 6.2: An identity management network, adopted from Koch and Wörndl (2001)

Each user profile is associated with one or more user IDs. In the case of this work these user IDs
are URIs as described in Sect. 5.1.2. The mapping of user URIs to the associated profiles is maintained
by theID-Resolverservice. For scalability, the ID-Resolver service may be replicated.

The vision of global identity management assumes that all user-related information is stored in the
user profile — also including relationship information — and accessible via standards for user profile
management. This is, however, not reality today. One reason is the lack of an accepted standardized
representation of user attributes and their values. Yet, there are promising approaches like the Platform
for Privacy Preferences (P3P), which includes a standardized representation of user profiles (Cranor
et al., 2002). In the context of the semantic web, one of the main drawbacks of P3P is the lack of a
semantic model for profile attributes. Most attributes (e.g. the user’s address, or his employer) are
represented as unstructured values. It is thus difficult to compare these attribute values automatically.
The problem of generic user modeling is, however, a complicated issue on its own and cannot be
discussed in detail in this thesis (see, for example, Kobsa, 2001). The following paragraphs therefore
just present simple examples which have to be adopted and extended to implementations of future
standardized user profiles.

With respect to relationship management, the following kinds of user profile data are especially
interesting:

• Private and business addresses

• Interests

• Skills/profession

Private and business addresses.Address data is usually represented by a set of strings containing
street, number, zip code, city, state or province, and country. Additionally, geo-coordinates may
be provided.2 Common examples of relationships based on address data are living in the same
street, city, or region, or working in adjacent offices.

2Geo-coordinates and related issues are, for example, addressed in the OpenGIS Geography Markup Language (Open
GIS Consortium, Inc., 2002). Details of encoding geo-references and coordinate transformations are not discussed in this
thesis.

6.3. Identity Federation 103

Interests, skills and profession.Interests and skills are typically set-valued attributes. These sets
may either contain linguistically pre-processed keywords or classes or individuals of an ontol-
ogy. Examples of relationships based on this type of profile data are sharing interests or skills,
or pursuing the same profession.

Other profile data which can be relevant for relationship management are affiliations with companies
or organizations (these can be straightforwardly transformed into relationships), PIM (personal in-
formation manager) information (e.g. calendars, address books, or special buddy-lists), transaction
histories, and ratings. Without a standardized representation of such data it is, however, of little use
to discuss these kinds of data in more detail.

Once the user profile scheme is defined, each user attribute is accessible via its identifier (a URI
in this work). Suitable URIs are LDAP URIs (especially in those cases where the user ID is an LDAP
URI, too), http URIs, or specific URI schemes depending on the profile scheme (e.g. a URI scheme
for the P3P profile scheme might be defined).

Note that for any attribute whose values are classes or individuals of an ontology, the ontology
must be known to the application. There are two possibilities to achieve this:

• Each ID-Repository provides a list of ontologies used and URLs where to retrieve them.

• URLs for ontologies are registered at a central ontology registry.

Locating the ontology for a given URI is, however, not a problem of social relationship management
alone, but of the whole semantic web. Future work is expected to address this issue. For this work, it
can be assumed that each ID-Repository provides a registry of URLs of relevant ontologies.

6.3 Identity Federation

For different applications, a person may have different user IDs — e.g. an email-address for email-
and usenet-accounts, a special email-address used for a Microsoft Passport3 account, a URI used for
semantic web annotations, or several local user IDs for community platforms or groupware applica-
tions.

Currently, standards are being developed which aim at linking these different user IDs in order to
increase interoperability (e.g. Microsoft Passport, Liberty Alliance4, live ID5, identity management
components in Sun ONE6, or Extensible Name Service7). Yet, since none of these approaches have
been widely accepted so far, it is not likely that in the near future all user IDs of a person will be
linked.

Hence, the multiagent system for relationship management presented in this chapter must also
link the different user IDs of a person. For each person, there needs to be a user ID (theglobal ID)
for the relationship management multiagent system which is used for the exchange of relationship
information between different agents and between an agent and an application. In practice, it is con-
venient if this is the same user ID as that used for accessing the user’s user profile (cf. Sect. 6.2). The
relationship management extension (cf. Sect. 6.4) of each application generating or using relationship
information maintains a mapping of global IDs to the corresponding local IDs (cf. Fig. 6.3).

3http://www.passport.com
4http://www.projectliberty.org
5http://www.live-id.org
6http://www.sun.com/software/sunone
7http://www.xns.org

104 Chapter 6. Distributed Relationship Management

�����������	�
��	

�
������������

���
�����

����
��

��	���	�
��������������

���	����	�
�������� ��
��
�	
�

��
	
��
�

�
�
��
�

��
�
�
��

�	
�

�����������	�
��	

�
������������

���
�����

����
��
��������������

������������� ��������������

������������� ��������������

Figure 6.3: Global and local user ID

On a conceptual level, the federation of a local ID and the corresponding global ID is established
as follows.

1. A user logs into an application supporting relationship management.

2. The user is asked if he wants to federate his local ID with his global ID for relationship man-
agement.

3. If the user chooses to do so, he enters his global user ID and a reference to his user agent.
The reference to the agent may not be necessary if a global registry for user IDs and agents is
available — this depends, however, on the actual implementation of these concepts.

4. The relationship management extension (RM extension) of the application contacts the user
agent via a secure connection. The RM extension and the agent exchange an authentication
handshake (e.g. based on X.509 certificates). The RM extension sends the message
ID-federation-request(GlobalID gID, Date expirationDate)
for identity federation, including a requested expiration date.

5. The user agent contacts the user and asks him if he wants to accept the request, and how long
the federation should be valid.

6. If the user accepts and enters an expiration date, the agent generates anaccess ticket— i.e. a
representation of the access rights granted to the RM extension — and delivers it to the RM
extension, accompanied by the expiration date, via the message
ID-federation-accepted(AccessTicket at1, Date expirationDate) .
Otherwise, the request is rejected by sending the message
ID-federation-rejected() .

7. The RM extension generates an access ticket and sends it to the agent, via the message
ID-federation-confirmed(AccessTicket at2) .

8. The local ID and the global ID are now federated up to the expiration date the user entered.

From now on, every time the remote application wants to access relationship information concerning
the user, it contacts the corresponding agent via the RM extension, provides his access ticket, and may

6.4. The Relationship Management Extension 105

then access the required information (if the access ticket has not yet expired). Vice versa, if an agent
requires relationship information from the application, it contacts the application’s RM extension,
uses his access ticket, and may then access the information.

Relationship information that an application has retrieved from an agent may under no circum-
stances be delivered to other users. It may only be used for processing a task the owner of the re-
lationship information has initiated. In the case of online auction houses, for example, the auction
platform may contact the relationship agent in order to find relationship chains between the user and
another person and present those chains to the user. The auction platform may not deliver this infor-
mation to any other user. It may, however, store it in a local cache for some time in order to improve
performance.

6.4 The Relationship Management Extension

Relationship management extensions of applications have been repeatedly mentioned, without ex-
plaining them in more detail. The extension links the application and the relationship management
multiagent system — it may thus be viewed as a special agent. Its functions are the following:

• Establish ID federation

• Revoke ID federation

• Deliver relationship information stored locally to an agent

• Retrieve relationship information needed by the application from agents

• Integrate ontologies for relationship management

In the remainder of this section, these functions are described on a conceptual level. Instead of an
actual implementation, messages are described that are exchanged between the extension and an agent.
Implementations of these concepts depend on the agent framework and the application and may, for
example, apply RPC implementations, Enterprise Java Beans (EJB)8, or SOAP9.

Establish an ID federation. Upon initiation by the application, the relationship management ex-
tension contacts the user’s agent in order to establish the federation of the local ID and the global ID,
as described above.

Revoke ID federation. The federation of a local and a global ID may be revoked by both parties
at any time — e.g. because a user deregisters at a web platform, or the user does not want the two
identities to be federated any more. The message flow for federation revocation is:

1. The initiator of the revocation (agent or application) sends the message
revoke-ID-federation(GlobalID gID) .

2. The other party replies withrevocation-confirmed() .

The revocation of an ID federation does not affect any relationship information exchanged before.

8http://java.sun.com/products/ejb/
9http://www.w3.org/TR/SOAP/

106 Chapter 6. Distributed Relationship Management

Deliver relationship information to agents. There are two strategies for transferring relationship
information from applications to agents: an extension-triggered approach and an agent-triggered ap-
proach.

Extension-triggered approach. This approach assumes that the extension informs the agent about
new relationship information. Messages are exchanged as follows.

1. The extension sendsupdate-RI(GlobalID gID, RDFdata update, RDFdata
remove) .

2. The agent processes the update message (i.e. it adds/removes all relation information
contained in the RDF models represented byupdate and remove , respectively) and
repliesupdate-confirmed() on success. If any problems occur (e.g. any resources
are currently not accessible), it repliesupdate-failed() . The extension must then try
to send an update-message later on. The listupdate contains relationship information
which has been changed or newly created since the last update. The second listremove
contains relationship information that has been invalidated since the last update.

Agent-triggered approach. According to this approach, an agent decides when it needs updated re-
lationship information from the application. The message flow of this approach is the following.

1. The agents sendsrequest-update-RI(GlobalID gID, Date startdate)
to the extension of the RI application.

2. The extension repliesupdate-RI(GlobalID gID, RDFdata update,
RDFdata remove) , including all relationship information that has been added,
changed, or invalidated sincestartdate .

3. The agent processes the update message and repliesupdate-confirmed() on suc-
cess. If any problems occur, it repliesupdate-failed() , and may try again later
on.

TheRDFdata -structures used in the messages above contain valid RDF-serializations of the corre-
sponding relationship information — e.g. in RDF/XML. Which serialization syntaxes are valid must
be defined by an actual implementation of these concepts.

An application does not have to support both approaches. An instant messaging application of-
fering relationship information about buddylist membership, for example, may decide to support only
the extension-triggered approach, because updates of relationship information are rather rare. On the
other hand, a community web platform should support the agent-triggered approach, because agents
running on a personal computer behind a firewall may not be accessible from outside the local area
network they belong to.

Retrieve relationship information from agents. The RM extension of an application may contact
an agent in order to retrieve relationship information. The four possible kinds of queries the extension
may send to an agent are the following:

• Return a list of relationships from personx to a persony:
query-RI-to-person(GlobalID x, GlobalID y)

6.5. Privacy 107

• Starting from personx, explore the social network up to depthd, taking into account rela-
tionship information of a certain kind, only:query-explore-network(GlobalID x,
RITemplate template, Integer d) 10

• Find relationship chains of a certain kind from personx to persony with maximum lengthd —
i.e. return all relationships the chains consist of:query-chains-to-person(GlobalID
x, GlobalID y, RITemplate template, Integer d)

• Check, if a relationship chain of a certain kind of relationship with maximum lengthd exists
from personx to persony — i.e. do not return all relationships the chain consists of:
query-exists-chain-to-person(GlobalID x, GlobalID y, GlobalID
initiator, RITemplate template, Integer d)

The messages exchanged for these queries and the structures therein are the same as those used be-
tween two relationship management agents of different persons. Hence, the description of the mes-
sages is delayed until Sect. 6.6.3.

Integrate ontologies for relationship management. The RM extension of an application is respon-
sible for translating relationship information from the application-internal representation to the formal
representation and vice versa. It must thus contain reasoning components for relationship ontologies,
algorithms for resolving URI references, and methods for retrieving the associated ontologies from
the web.

6.5 Privacy

Relationship information is personal data of high value. We use our relationship network for accom-
plishing everyday work — we seek expertise and advice from people we know, and establish new
relationships with the help of people we know. In a professional setting, the relationship network
of managers makes up a huge amount of “social capital”, and plays an important role for success or
failure.

Recognizing the high value of relationship information, it is obvious that a system facilitating the
management and the exchange of relationship information must consider it’s users’ privacy. Those
aspects of privacy concerning personal data are subsumed under the terminformation privacy. Ac-
cording to Clarke (1999),

information privacy refers to the claims of individuals that data about themselves should gener-
ally not be available to other individuals and organizations, and that, where data is possessed by
another party, the individual must be able to exercise a substantial degree of control over that data
and its use.

Other aspects of privacy — e.g. concerning the physical person and the “right to be let alone” (Warren
and Brandeis, 1890) — are of minor importance with respect to this work. Hence, in the following,
the term “privacy” always refers to information privacy.

According to Clarke’s definition, privacy encompasses access control and a substantial degree of
control over the use of personal data such that personal information cannot be accessed by third parties
which have not been authorized for the use of that data. The following subsection thus gives a quick
introduction to the basics of access control. Afterwards, a rule-based approach to privacy management
in the field of relationship management is presented.

10The structureRITemplates refers to relationship information templates as described in Sect. 5.3.8.

108 Chapter 6. Distributed Relationship Management

o1 o2 o3 o4

s1 read read, write read
s2 read, write read

Table 6.1: An access control matrix for two subjects and four objects

6.5.1 Basic Principles of Access Control

Access control refers to means for dealing with requests of subjects to access certain objects within a
system / application. The following three classes of entities can be distinguished:

• Subjects: (active) entities which access objects

• Objects: (passive) entities which are accessed by subjects

• Actions: different kinds of access to objects (e.g. read, write, create)

With respect to relationship management, subjects correspond to users (resp. their agents), and objects
correspond to individual pieces of relationship information.

The core artifact for access control is the access control matrix (ACM). Each row of this matrix
corresponds to one subject, whereas each column corresponds to one object. The entries in the ACM
define the allowed actions for each subject-object-pair. Table 6.1 shows an example of an ACM.

Implementations of the ACM may be either done row by row, or column by column. The former
approach corresponds to linking an access control list (ACL) to each object, whereas the latter leads
to issuing documents containing a representation of the access rights granted to the user with respect
to each object (capabilities, “access tickets”). For details see, e.g., Coulouris et al. (2001).

Both approaches have certain drawbacks. Access tickets are usually independent from the person
they were issued to, in order to allow the delegation of access rights. Hence, if a ticket is stolen, the
thief can use it in order to gain access to the object the ticket was issued for. Furthermore, it is difficult
to revoke access tickets.

Access control lists, in contrast, are safe against ticket theft, but are far less flexible. This ap-
proach is thus often extended by assigningroles to subjects (role-based access control, RBAC). In
this approach the rows of the ACM correspond to the roles, and allowed actions are assigned to role-
object-pairs (see Ferraiolo and Kuhn, 1992, for details).

It is interesting that, in all of these approaches, access rights are either defined explicitly (ACLs)
or via the introduction of additional artifacts (capabilities, RBAC). Relationship information is, how-
ever, highly dynamic information. It quickly changes, new relationships are established (this leads to
additional columns in the ACM), relationships fade (drop the corresponding columns of the ACM),
or formerly unknown persons move into the social network (add rows to the ACM). None of the ap-
proaches mentioned above can deal properly with these dynamics without the need of highly frequent
user-interaction (explicitly defining access rights, assigning roles to persons, or issuing access tick-
ets). The following subsection thus suggest a relationship-centric and rule-based approach to access
control for relationship information.

6.5.2 Rule-based Privacy Management for Relationship Information

For defining access rules for relationship information, this work suggests a relationship-centric ap-
proach. Different from classical solutions, this approach is neither focused on the subjects accessing

6.5. Privacy 109

���������������	�
���������

�����������������������������������
	���������

����
����������������������

�������������

��	�
������������������

������	�������
�����������

�������	�
��������������������� �������	�
���������������������

Boxes denote states, arrows indicate state transitions. The dashed arrow indicates a flow of data without trans-
ferring control. The solid circle indicates the start state, the solid circle with an additional circle surrounding it
marks the end state.

Figure 6.4: General state diagram illustrating the processing of an RI request between two agents

relationship information, nor on the objects (i.e. individual pieces of relationship information). In-
stead, it focuses on therelationshipbetween the subject accessing relationship information, and the
owner of that information. Considering the two aspects of privacy mentioned by Clarke, privacy
management must provide answers to the following two questions:

• Who may access certain pieces of relationship information?

• What may an agent do with relationship information received from another agent?

In order to answer both questions, each relationship management agent possesses a set of rules for each
user the agent is acting on behalf of, defining who may access what kind of relationship information
and for what purpose. Based on these rules, a query of relationship information between two agents
is processed as follows.

1. Agent 1, acting on behalf of personx, requests relationship information from agent 2, acting on
behalf of persony.

2. By evaluating the set of access rules agent 2 decides which pieces of relationship information
matching the request may be returned to agent 1.

3. Agent 2 returns those pieces of relationship information to agent 1, accompanied by a restriction
on the allowed usage.

The overall processing of a request for relationship information is depicted in Fig. 6.4. In more detail,
the access rules consist of the four components rule priority, domain, condition, and allowed usage:

110 Chapter 6. Distributed Relationship Management

Rule priority. The priority defines the order for processing the rules. 1 is the highest priority, larger
numbers indicate lower priorities. Rule priorities define the order, in which the rules are applied.
For each priority, there may thus be at most one rule.

Domain. The domain describes to which kinds of relationship information the rule applies. It is
expressed as a relationship information template as defined in Sect. 5.3.8. The domain of an
access rule for communication relationships, for example, might be defined by the RDF graph
depicted in Fig. 6.5 a. An example of a more complicated domain of an access rule for specific
group relationships is shown in Fig. 6.5 b.

Condition. The condition is a conjunction ofn chain expressions each consisting of a relationship
information templateti, and an integerdi. n may be0 in order to indicate an empty condition,
which is always fulfilled. If agent 1, acting on behalf of personx, requests relationship informa-
tion from agent 2, acting on behalf of persony, agent 1 may access the requested relationship
information, if for all i, 1 ≤ i ≤ n, there exists a relationship chain of maximum lengthdi

betweenx andy, where each individual relationship of that chain matchesti (cf. Sect. 5.3.8).
Note that it is possible to express disjunctions of chain expressions by defining a separate rule
for each term of the disjunction. Figure 6.6 depicts an RDF graph of a rule whose condition
consists of two chain expressions.

Allowed usage.The possible values for this element arepublic, anonymous,andprivate. Assume the
condition of a ruler is fulfilled. Let R refer to those pieces of relationship information passed
to the requesting agent in accordance withr. Then, the allowed usage element of the ruler
defines, what the requesting agent may do with the relationship information:

• public: R may be used and passed to other agents and applications as desired by the
requesting agent.

• anonymous: R may be used by the requesting agent, but only be passed to other agents
and applications if the user ID of the owner of the relationship information is replaced by
a random pseudonym.R may be used for forwarding a query concerning the existence of
a relationship chain (cf. Sect. 6.6.3).

• private: R may only be used internally by the agent and must not be passed to other agents
or applications, not even indirectly by forwarding a query concerning the existence of a
relationship chain.

If a rule is applied and the relationship type of the rule domain is a supertype of the relationship
type of the relationship information being accessed, only the information corresponding to the super-
type may be returned — i.e. the relationship information must be casted to the supertype. If a trust
relationship is accessed and there is no rule with the corresponding domain, for example, and the
rule for acquaintance relationships is applied instead (assuming that acquaintance is a supertype of
trust), the trust relationship must be dealt with as if it was an acquaintance relationship — i.e. in the
result, the type must be refined and additional attributes and properties which are not defined by the
acquaintance relationship must be removed.

It is important to distinguish between conditions of depth 1 (i.e.di = 1 for all terms of the
conjunction) and conditions of higher depths. Conditions of depth 1 can be evaluated on the basis
of the knowledge of the agent itself without the need to query other agents. Checking conditions of
depth 1 is thus much more efficient than checking conditions of higher depths. As will be discussed
in the following section, the checking of conditions of higher depths may not even always terminate.
For simplifying language, rules are classified according to their conditions:

6.5. Privacy 111

���������	���
��	���

��	��� �����
���������
��
���

�		������
���

�
�����������

�
���

��

��

Figure 6.5: Two examples of domain definitions for access rules

���� ����	
��

��������	
�����
�����

��������������

�����

��������	���

�������	

����
���

���������������

���
���

���

��������	
�����
�����

��������������

���
��� ���

�����	

�����

��	�

�����	

�����

��	�

��������	���

�������	�

��������	
�����
�����

��������������

���
��� ���

�������	�

�

������	�

�

������	�

Figure 6.6: RDF representation of an access rule for relationship information possessing a condition
consisting of two chain expressions (represented by the two resources of typeChainExpression)
with maximum lengths 5 and 1

112 Chapter 6. Distributed Relationship Management

• A level 0 ruleis a rule with an empty condition.

• A level 1 ruleis a rule with a condition of depth 1.

• All other rules arelevel 2 rules.

Concerning the rule syntax, this work suggest to represent rules in terms of OWL/RDF, for the
sake of uniformity with the rest of relationship-related data. Figure 6.6 depicts the RDF graph of a
rule definition (see also Fig. 6.11, p. 122). The rule ontology is presented in App. B.

6.5.3 Relationship-centric Access Control in Other Applications

Relationship-centric access control is not limited to relationship management — it may be applied in
other application domains as well. A simplified version — based on buddylist-relationships — has
been applied in the Cobricks user management module (cf. p. 40 et sqq.). Based on the Cobricks
relationship management module sketched in Chapt. 7, a Cobricks rule processor (cf. Fig. 3.7, p. 44)
can be implemented allowing for the use of relationship information templates in rule conditions.

Integrating relationship management with a general identity management architecture, such as
that suggested by Koch and Wörndl (2001), see also Fig. 6.2, is a promising approach. Access rules
for user profile data might be defined in terms of relationship information templates, offering both a
high flexibility and a high expressiveness.

Apart from these two examples, relationship-centric access control may also be applied to shared
information spaces, offering the main benefit of gaining flexible and expressive access control without
having to introduce additional artifacts like groups, or access tickets. This work will, however, not go
into detail here.

6.6 A Multiagent System for Relationship Management

The term “agent” has been repeatedly used in this chapter without defining it properly. Figure 6.1 has
suggested the existence of several agents acting on behalf of different persons and exchanging rela-
tionship information. This section elaborates on the multiagent system. At first, it throws a glance at
the term “agent”, and then defines messages and (social) protocols between the agents for exchanging
relationship information.

6.6.1 Software Agents

There has been a considerable amount of research on software agents (e.g. Weiss, 1999; Bradshaw,
1997; Foner, 1997, 1993). This thesis cannot even try to summarize the most important approaches
discussed in that work. It can, however, briefly discuss common characteristics of software agents and
how these attributes apply to relationship management agents.

In fact, there is still no agreement upon a definition of the term “software agent”. For this work, it
is appropriate to view a software agent as a special piece of software exhibiting certain characteristics.
Wooldridge (1999) emphasizes the following important characteristics of intelligent agents11:

Autonomy. An agent has control over its own internal state and its behavior and pursues a certain
goal. In the case of relationship management, this goal is to manage the user’s relationship
information, keep it up-to-date, gain new knowledge about the user’s social network, and protect
the user’s privacy.

11For the scope of this work, the terms “software agent”, “intelligent agent”, and “agent” are synonyms.

6.6. A Multiagent System for Relationship Management 113

Reactivity. An agent can react on changes of its environment — e.g. incoming messages from other
agents or applications. In the case of relationship information, this characteristic refers to an-
swering queries from other agents or applications.

Proactiveness.This characteristic expresses that an agent is capable of taking the initiative in order to
pursue its goals — e.g. for updating relationship information or gaining additional knowledge
about the user’s relationships.

Social ability. Agents are usually expected to exhibit social behavior. Relationship management
agents, for example, collaborate to check conditions of access rules, or to answer queries con-
cerning the disclosure or existence of relationship chains.

These four characteristics are mostly agreed upon in standard literature about software agents. Ad-
ditionally, the ability to learn is frequently mentioned in connection with intelligent agents (Weiss,
1999; Bradshaw, 1997; Borghoff and Schlichter, 2000) — in the case of this work, an agent learns by
integrating relationship information gathered from applications or other agents into its own knowledge
base.

There are several other characteristics software agents may exhibit, e.g. mobility, personality,
adaptivity (Bradshaw, 1997). This thesis, however, will not go into detail here.

6.6.2 General Purpose and Design of the Multiagent System

The overall goal of the multiagent system is the management of relationship information. From the
perspective of each individual agent, acting on behalf of one or several user(s), this means the follow-
ing:

• Store relationship information concerning the users’ social networks

• Keep that information up-to-date and detect new relationships

• Control access to and usage of relationship information

• Answer queries for relationship information from (federated) applications

• Cooperate with other agents in order to increase the own knowledge about the users’ social
networks

The environment the agents are situated in thus consists of all agents and applications supporting
relationship management. The domain of discourse of the agents is relationship information in the
formal representation presented in Chapt. 5.

Types of Agents and their Functions

In more detail, the following types of agents can be distinguished:

User agents.These are agents managing relationship information on behalf of one or several user(s).
As has been mentioned above, it may be useful not to run agents on personal desktops or mobile
devices, but on a trusted server, in order to increase the availability of the agent. The overall
goals of agents of this type have been mentioned before.

114 Chapter 6. Distributed Relationship Management

���������	

���������	

���
�	��

���������	�

��	���
��

�

��	���
��

���

�����
	���

���

�����
	���

�����������

����	�������������

����
���

��	���������	
��

��	������
���������
���

����	����������
��	
������������

����	
����
��
������	
��

����	������	�����������	�

�����
������������

����	�������������

����	������	�����

�����
	��
��

Figure 6.7: Types of agents in the relationship management multiagent system

RM extensions of applications.This type of agent fulfills the functions of a relationship manage-
ment extension, as described in Sect. 6.4. It is somewhat questionable if a relationship manage-
ment extension should be viewed as an agent, because its autonomy is rather limited. Yet, since
RM extensions collaborate with user agents, it is convenient to view them as agents, too.

User agent registry. This agent is responsible for maintaining a registry of user agents and their as-
sociated user IDs. Other agents consult this agent in order to find the user agent acting on behalf
of a certain person. The user agent registry may be replicated in order to enhance performance.

ID-Repositories. ID-Repositories are responsible for storing user profile data and providing access
to user profile data to authorized users and services. With respect to relationship management,
ID-Repositories are needed for the in order to evaluate of profile relations (cf. Sect. 5.1.4).

ID-Resolver. The function of this agent is to resolve the ID-Repository agent storing the profile of a
certain user (cf. Fig. 6.2). Like the user agent registry, this service may be replicated in order
to enhance performance. It is likely that in implementations, there will be agents fulfilling both
the functions of the user agent registry and the ID-Resolver.

The following sections will elaborate on relationship management user agents. The RM extension has
been discussed in Sect. 6.4. Main functions of ID-Repositories and ID-Resolvers have been sketched
in Sect. 5.1.4 — the reader is referred to Koch and Wörndl (2001) and Koch (2003b) for details.

Implementation

There are a variety of approaches for implementing multiagent systems (see Mangina, 2002, for a
review of relevant software prodcuts) — e.g. the standards of the Foundation for Intelligent Phys-

6.6. A Multiagent System for Relationship Management 115

ical Agents (FIPA)12 and the corresponding open source implementation FIPA-OS13, or the JADE
Framework14 (also based on FIPA standards). The main concern of most of these approaches is the
definition of a framework and a technical environment the software agents are situated in — e.g. in
the case of FIPA, a message transport system, an agent management system (registry, “white pages”),
and a directory service (“yellow pages”). Agents interact via the exchange of messages, whose ba-
sic structure is also defined in the approaches mentioned above. The contents of the message are,
however, interpreted by the agents themselves and are thus dependent on the application scenario.

For the rest of this chapter, the agent framework is taken for granted — including a directory agent
fulfilling the functions of the user agent registry. The following subsections thus concentrate on the
contents of the messages exchanged between user agents.

6.6.3 Overall Behavior and Communication of User Agents

The general behavior of a user agent can be split up into reactive behavior and proactive behavior. In
both cases, user agents may interact with other user agents or RM extensions.

Reactive Behavior

The reactive behavior defines the way an agent reacts on requests for relationship information from
other agents. It has already been described in Sect. 6.5.2 (cf. Fig. 6.4).

Proactive Behavior

The proactive behavior of an agent refers to keeping the relationship information knowledge base
up-to-date:

• If a piece of relationship information has expired, the agent contacts the application or agent
the piece of relationship information originates from and asks for an update.

• The agent periodically requests new relationship information from other agents and applica-
tions.

Actual strategies of an agent depend on its purpose. Agents may pursue minimal strategies aiming at
keeping the relationship knowledge base small, or exhaustive strategies aiming at gathering as much
information as possible. The level of proactiveness of an agent is defined by its implementation and
is a decision of the agent designer.

Communication between user agent and RM extension

The interaction between an agent and an RM extension has already been discussed in Sect. 6.4. The
set of messages for retrieving relationship information from an agent, which had been skipped there,
will be subject of the following subsection.

12http://www.fipa.org
13http://sourceforge.net/projects/fipa-os/
14http://sharon.cselt.it/projects/jade/

116 Chapter 6. Distributed Relationship Management

Communication between two user agents

Communication between two user agents is always initiated by an authentication handshake. Since a
user agent may be acting on behalf of several users, it is necessary to state on whose behalf the agent
is acting with respect to actual queries, and to whom (i.e. to whichperson) the following queries are
addressed. The result of the authentication handshake is an abstractcommunication channelbetween
the two agents. All communication across that channel is associated with the persons on whose
behalf the authentication handshake has been exchanged. For the general behavior of user agents the
technical details of the authentication handshake and the communication channel are, however, of
minor importance, and are thus left to implementations of these concepts. From now on it is assumed
that all query-related communication takes place via such abstract communication channels and is
thus associated with twopersons, not their agents only. An agent receiving a query may therefore
only take into account relationship information it is managing on behalf of the respective person.

Each individual query is initiated by a query message, and (if the query terminates at all) termi-
nated by a message indicating the closure of that query. Upon sending a query, the agent receiving the
query confirms the query, generates a query ID and sends the query ID back to the requesting agent.
The query ID is used in later messages referring to the query, which submit (maybe partial) results
to the requesting agent, and in the closing message. Note that, for answering a query, an agent may
submit several result messages to the requesting agent. As a basic principle, an agent should return
partial results to the requesting agent, as soon as it has evaluated the corresponding access rules and
decided that some pieces of relationship information may be submitted to the agents. The message
flow between two user agents is depicted in Fig. 6.8. In more detail, the following messages are used
in the communication between two user agents.

query-RI-to-person(GlobalID x, GlobalID y)
This is a request for all relationship information between personx and persony . The results
are RDF documents containing the RDF models of all relationships the agent wants to submit
to the requesting agent. For submitting results, areturn-RDF-result -message is used.

query-explore-network(GlobalID x, RITemplate template, Integer d)
The result of this query is an RDF document describing the social network ofx up to a
depthd, where only relationships matching the RI templatetemplate are taken into ac-
count. For answering this query, the user agent may decide to initiate subqueries of the form
query-explore-network(y, template, d-i) , in order to extend chains of length
i , which have been found in the local relationship information knowledge base. Results (i.e. an
RDF model of the network) are submitted via areturn-RDF-result -message.

query-chains-to-person(GlobalID x, GlobalID y, RITemplate template,
Integer d)
According to this query, the agent searches for chains of maximum lengthd from personx to
persony , where each relationship contained in the chain matches the RI templatetemplate .
In order to answer this query, the user agent may decide to initiate subqueries of the form
query-chains-to-person(z, y, template, d-i) , in order to extend chains
of length i , which have been found in the local relationship information knowledge base.
Results (i.e. an RDF model describing all chains which have been found) are submitted via a
return-RDF-result -message.

query-exists-chain-to-person(GlobalID x, GlobalID y,
GlobalID initiator, RITemplate template, Integer d, Integer l)

6.6. A Multiagent System for Relationship Management 117

������� �������

��������			

��������	
���	
����

���
����������
��	
��������
���

���
����������
��	
��������
���

������	
���	
����

			
			

			

			
			

			

The messagequery-X(...) stands for one of the following messages (with appropriate pa-
rameters): query-RI-to-person , query-explore-network , query-chains-to-person , or
query-exists-chain-to-person . In the latter case, agent 2 (or another agent the query has been
forwarded to) replies withreturn-chain-found instead ofreturn-RDF-result . Note that the eval-
uation of access rules may incorporate sending queries to other agents. Such queries are not shown in this
figure.

Figure 6.8: Message flow following a query from agent 1 to agent 2

118 Chapter 6. Distributed Relationship Management

Like queries of the previous type, queries of this type aim at finding a chain of maximum length
d from personx to persony , where each relationship contained in the chain matches the RI
templatetemplate . The parameterl indicates the length of the chain. The agent may initi-
ate subqueries of the formquery-exists-chain-to-person(x, y, initiator,
template, d-i, l+i) , in order to extend chains of lengthi , which have been found in
the local relationship information knowledge base (the initiall -value for new queries is 0).
An important difference to the previous queries is that results are not sent to the requesting
agent, but to the user agent acting on behalf of the person referred to asinitiator . The
parameterinitiator may be omitted (i.e. set tonull) — in this case results are sent to
the requesting agent. For submitting the result, areturn-chain-found -message (with
length = l) is used. If no chain can be found, the closing message is sent without having
sent areturn-chain-found -message before.

confirm-query(QueryID query)
By sending this message, an agent confirms the acceptance of a query sent to him. The param-
eterquery is a query ID, which will be used in later messages concerning the query.

return-RDF-result(QueryID query, RDFdata result)
This message is used for returning results of a query. The parameterquery is the query ID of
the original query, and the parameterresult is an RDF graph containing the (maybe partial)
result of the query.

return-chain-found(QueryID query, Boolean chainFound,
Integer length)
Queries for the pure existence of a chain are answered by this message if a chain is found. The
function of the parameterquery is the same as in the previous message. The integerlength
indicates the length of the chain.

close-query(QueryID query)
This message closes the query with the query IDquery — i.e. no further result messages will
follow.

6.6.4 Agent-internal Processing of Requests and Resolution of Access Rules

The internal components of a user agent are the following (cf. Fig. 6.9).

Communicator. This component is responsible for the communication with other agents in the mul-
tiagent system. The messages used for communication have already been discussed.

Agent control. The agent control component defines the behavior of a user agent. The internal con-
trol algorithms for answering queries and evaluating access rules are sketched below.

List of queries to answer. This list contains all queries that have been received and confirmed by the
agent, but not yet closed. A query is stored on this list, if the agent decides to initiate subqueries
for answering the query and is waiting for the results of these subqueries.

List of processed queries.Queries for the existence of a relationship chain, which have been pro-
cessed by an agent are stored on this list for some time.

6.6. A Multiagent System for Relationship Management 119

��������	
�������������

������������	�

����		�����	

��

��

��

��

��

���

��	���������������	

��

��

��

��

��

���

��	����������	������	���

�������������

������������

��������

���	�����
���������������

��		���	������������
��������	

��

��

��

��

��

���

��	���������		���������	

Figure 6.9: Internal structure of a user agent

List of open queries. Every time an agent sends a query to another agent and receives the corre-
sponding confirmation, the query is stored on this list. Upon receiving a closing message, the
corresponding query is removed from the list.

Relationship information knowledge base.This is the set of relationship information and relation-
ship ontologies managed/known by the agent. The ontology reasoning component is used for
querying the RI knowledge base.

Access rules.Every agent stores a set of rules defining who may access which kinds of relation-
ship information. Access rules for relationship information have already been discussed in
Sect. 6.5.2. They are defined by the user the agent is acting on behalf of via the agent’s user
interface.

In the remainder of this subsection, the agent control component is discussed in more detail.

Processing of a Query of Relationship Information

A queryq of an agent acting on behalf of personk, whereq is one of the queries
query-RI-to-person , query-explore-network , or query-chains-to-person , is
processed as follows (cf. Figs. 6.4 and 6.10).

1. The agent retrieves relevant relationship information from its RI knowledge base.

2. For each piece of relationship information, the agent evaluates the corresponding access rules,
starting with the highest priority. As soon as the condition of a rule is satisfied, the agent stops
evaluating rules. For each rule which has been evaluated and the condition for which is not
satisfied, the agent may decide to initiate subqueries, trying to gain additional knowledge that
leads to the satisfaction of the condition:

120 Chapter 6. Distributed Relationship Management

�������������

	
	�	����������������	
������	��

���������������	�����	�	���	

�����
������	
��	��	
�����	

��
�	�	
����	��	���

����	�	��

������

���	����������	�����	�	���	�
	
	�	�����������	��

������

Figure 6.10: Evaluation of access rules

(a) For each chain expression in the condition, the agent formulates subqueries, if a corre-
sponding chain cannot be found in the RI knowledge base. In order to avoid redundant
communication, the agent should cache positive and negative (sub-)query results for some
time.

(b) Those subqueries not on the list of open queries are initiated and put on the list of open
queries.

(c) The subqueries (those which have been newly initiated and those which had already been
on the list) are linked to the original query, such that on receiving a result / closing message
of a subquery the agent can find the original query.

(d) The original query is put on the list of queries to answer.

3. The agent may need to initiate subqueries as described before in order to answer a query, even
if the condition of the rule with the highest priority is satisfied (see below).

4. If step 2 yielded relationship information to be returned to the requesting agent, the agent returns
these results to the requesting agent. If the original query has been put on the list of queries to
answer, the results which have been sent to the requesting agents are linked to the original query,
such that the agent can later on figure out which partial results have been already reported.

The initiation of subqueries in step 3 is especially useful if the requesting agent is an RM extension,
and both agent and RM extension are acting on behalf of the same user. In general, the user agent
should try to give a complete answer to the query — i.e. try to find as much relevant relationship
information as possible.

If the requesting agent is another user agent, the agent the query was addressed to is free to choose
if it only uses its own RI knowledge base to answer the query (and hence shows a low cooperativeness),

6.6. A Multiagent System for Relationship Management 121

or if it tries to obtain additional relationship information from other agents (and hence shows a high
cooperativeness). The decision between low and high cooperativeness may, for example, depend on
the relationship with the person the requesting agent is acting on behalf of.

Processing of a (Partial) Result

Upon receiving a (partial) result of a subquery, the agent proceeds as follows.

1. The agent adds the result to its RI knowledge base.

2. The agent checks the queries on the list of queries to answer. If for any of those queries new
(partial) results are available, which have not been sent to the respective requesting agent, the
new results are submitted to the requesting agent (in compliance with the allowed usage and the
agent’s access rules).

3. If new results have been submitted, these are linked to the original queries.

Processing of a Closing Message

When an agent receives a closing message, it removes the corresponding query from the list of open
queries. If the query, which has been closed, was the last open subquery of one or more queries on
the list of queries to answer, those queries are removed from that list and closed by sending a closing
message to the respective agent.

If the closing message refers to a query concerning the existence of a relationship chain, and there
are no open subqueries of that query left, the query is removed from the list of processed queries, and
a closing message is sent to the agent who had sent the query.

Processing of a Query for the Existence of a Relationship Chain

Upon receiving aquery-exists-chain-to-person(x, y, initiator, template,
d) -message, an agent proceeds as follows.

1. If the agent has processed this query before — i.e. a message
query-exists-chain-to-person(x, y, initiator, template, d+j) ,
wherej ≥ 0 — it quits processing the query.

2. If the agent is acting on behalf of the target persony , it closes the query:

(a) The agent sends areturn-chain-found(query, "true") -message to the ini-
tiator of the query.

(b) The agent sends a closing message for the query to the requesting agent.

3. If the maximum lengthd of the chain is greater than0, the agent generates a list of all
relationship information from his user to any other user (except the user of the request-
ing agent), which matches the RI templatetemplate . The agent sends a subquery
query-exists-chain-to-person(x, y, initiator, template, d-1) to
each agent acting on behalf of one of these users.

4. If d = 0 and the agent is not acting on behalf ofy , the agent sends a closing message for the
query to the requesting agent.

5. If the query has not been closed, the agent puts it on the list of processed queries.

122 Chapter 6. Distributed Relationship Management

� �

�

Figure 6.11: Example of a (simple) social network between three persons. Arrows indicate directed
“trust” relationships.

Resolution of Access Rules

Access rules for relationship management have already been discussed in Sect. 6.5.2. Yet, strategies
for checking if a condition is fulfilled have been omitted up to now. For checking if the condition
of a rule is fulfilled, an agent must check all chain expressions of that rule — i.e. it must try to find
a relationship chain with the respective maximum length and matching the RI template of the chain
expression between the agent’s user and the requesting agent’s user. First, the agent may use its RI
knowledge base for finding relevant relationship chains. Second, if an agent cannot decide on the
basis of its RI knowledge base if a condition is fulfilled, it may pursue two different strategies for
finding the missing relationship chains:

• Exploration of the network and disclosure of a relationship chain

• Checking for the pure existence of a relationship chain

Network exploration and disclosure of chain. The naive approach to checking if the condition
of a rule is fulfilled is to gather as much information about the social network as possible and to
search for relevant relationship chains therein. According to this approach, agents use the messages
query-RI-to-person , query-explore-network , andquery-chains-to-person in
order to increase their knowledge about their users’ social networks. This approach, however, only
works if all agents (resp. their users) rather permit unreserved access to relationship information,
because the search for relationship chains is performed locally by the requesting agent. Note that the
evaluation of the fulfillment of an access rule may not even terminate in this approach:

Assume a scenario of three personsx, y, andz (for simplicity, letx , y , z be the URIs ofx, y, and
z, respectively), and a simple social network consisting of three trust relationships fromx to y, y to
z, andz to x (cf. Fig. 6.11). Furthermore, assume that the access rules of all three persons permit
access to trust relationships only if a trust relationship chain of maximum length 5 to the requesting
person exists (cf. Fig. 6.12). LetR be a serialization of the RDF model of the RI templateR in that
figure. A query-chains-to-person(x,y,R,5) -query directed from the agent ofz to the
agent ofx would then result in the following message flow (for simplicity, agents are named like the
persons they are acting on behalf of):

1. z sends a queryquery-chains-to-person(x,y,R,4) to x

2. x finds out that in order to allow access to the trust relationship betweenx andy, a trust rela-
tionship chain fromx to z is needed

3. x sends a subqueryquery-chains-to-person(y,z,R,4) to y

6.6. A Multiagent System for Relationship Management 123

������

�

�	��	�
�

��������

���������������

������

��	
������

��������
���

	�������
�

�������
�

�	�

	���
���

	���
���

��

�
	���
�

���
�����
� �

	���	���	��

Figure 6.12: Example of an access rule allowing access to trust-relationships if a chain of maximum
length 5 and strength 1 can be found between the requesting person and the owner of the information

4. y finds out that he can answer the query, but his rules only permit access to the information if a
trust relationship chain tox exists

5. y initiates a subqueryquery-chains-to-person(z,x,R,4) to z

6. z finds out that he can answer the query, but his rules only permit access to the information if a
trust relationship chain toy exists

7. z formulates a subqueryquery-chains-to-person(x,y,R,4) to x

8. z notices that he has sent this query tox before.z thus waits for the closure of the query instead
of sending it again

The closure of the query will, however, never occur. Although in fact all conditions are fulfilled, the
agents cannot find that out and thus deny access to the requested relationship information.

Check for pure existence of relationship chain. Instead of dissolving the relationship chain, this
approach aims at providing a proof for the existence of a suitable relationship chain without referenc-
ing the persons along that chain. For checking the existence of a relationship chain, an agent sends
a query-exists-chain-to-person -message to all agents, with whose user the agent’s user
has a matching relationship. When areturn-chain-found -message arrives, the existence of a
relationship chain is proven. Note that on receiving a single closing message, the agent may not con-
clude, that no chain exists. Only if all initial branches of the query have been closed and no result has
been found before, the agent may conclude that no chain exists.

By incorporating digital signatures it is possible to guarantee that thereturn-chain-found -
message does in fact refer to an authentic query — details on signature and security are, however,
skipped in this work and left to concrete implementations of these concepts.

124 Chapter 6. Distributed Relationship Management

examine
application area,
view existing
approaches

understand
social
relationships

generate
requirements,
define model and
formalization

design solution
for distributed
relationship
management

Chapter 2 Chapters 3 and 4 Chapter 5 Chapter 6

evaluate
approach by
prototypic
implementation

Chapter 7

Figure 6.13: Roadmap of this thesis and intermediary results

6.7 Summary and Applications

Referring to Fig. 6.13, the main work of this thesis has now been done. Building upon the summary
of sociologic concepts concerning social relationships (Chapt. 2) and the discussion of the application
area (Chapts. 3 and 4), Chapter 5 has defined a formal representation of social relationships in terms of
an OWL ontology vocabulary. This chapter discussed how relationship information can be managed
in distributed systems by defining social protocols of software agents for relationship management.

In this approach, each user possesses a personal relationship management agent which is re-
sponsible for storing and managing relationship information on behalf of the user. By id federation,
agents are linked to RM extensions of applications generating or using relationship information (cf.
Sect. 6.3). Relationship management agents interact with each other in order to perform the following
tasks (cf. Sect. 6.6.3):

• Exploring the social network up to a certain depth

• Checking if a relationship chain with certain characteristics from one person to another exists

• Retrieving relationship chains with certain characteristics from one user to another

When exchanging relationship information, agents consult their users’ access rules in order to prevent
unauthorized access to relationship information. Different from access control lists, capabilities, or
role-based access control, this work takes a relationship-centric approach to access control. Access
to relationship information is granted, if a corresponding access rule exists and a relationship chain
matching the condition of that rule between the requesting person and the owner of the relationship
information can be found (cf. Sect. 6.5.2).

The rest of this section picks up the discussion of the two scenarios presented in Sect. 1.6. The
approaches developed in this work are applied to these scenarios on a conceptual level, illustrating the
benefits this work yields with respect to the scenarios.

6.7.1 Supporting Users in Assessing the Reputation of Other Users

In this scenario, a user needs information about the reputation of a vendor in an online auction house
or marketplace (cf. Sects. 1.3 and 1.6.1). On the basis of the relationship management multiagent
system, the problems in this scenario can be solved as follows.

Basic infrastructure. The online auction house or marketplace fulfills the function of an application
(the term “web platform” will be used to refer to this application in the following), as shown in Fig. 6.1.
It must be equipped with an RM extension (cf. Sect. 6.4). Each user of the web platform possesses a
relationship management agent.

6.7. Summary and Applications 125

Approach 1: Finding senior experts. This approach aims at finding a person who “knows” the
vendor the user needs information about and with whom the user has a (possibly indirect) relationship.

1. On the web platform, the user requests the federation of the local user ID and the global user
ID (cf. Sect. 6.3). The identity federation is established. This step has to be done only once for
each application.

2. On the web platform, the user selects the vendor he needs information about. He defines a list of
relationship types which should be taken into account for finding a senior expert and an upper
bound for the length of relationship chains.

3. The RM extension of the web platform retrieves the global user ID of the target person. If
the target user has not federated his global user ID with his local user ID, the task cannot be
completed and is aborted here.

4. The RM extension sends aquery-chains-to-person(x,y,T,d) -query to the agent
acting on behalf of the user, including the relationship type and the maximum length as param-
eters.

5. The agent processes the query as described in Sect. 6.6.4 and sends results to the application
(i.e. its RM extension). For processing the query, the agent will most probably have to initiate
subqueries15 to all other agents with whose user the user of the agent has a relationship matching
the RI templateT.

6. The RM extension visualizes the query results and presents the visualization to the user.16

7. If the query was successful, the user is now aware of persons in his own relationship network
who know the vendor he needs information about.

Approach 2: Using weighted ratings depending on relationship chains. The second approach
uses weighted ratings to calculate the cumulative rating, which depend on the “closeness” of the
relationship between the issuer of the respective rating and the object of the rating. This approach
assumes that the user’s local user ID and his global user ID have been federated as described in
Sect. 6.3. When the user requests a cumulative rating of a vendor, the web platform generates a list
of all ratings the vendor has achieved on the platform. For each entry on this list, the web platform
proceeds as follows.

1. If the user who issued the rating has not federated his local user ID with his global user ID, the
rating is not taken into account for calculating the cumulative rating.

2. Otherwise, the RM extension of the application sends aquery-chains-to-person -
query to the agent acting on behalf of the user, where only relationships of the type
RecommenderTrust (cf. Sect. 5.5) should be taken into account. The maximum length
parameter of the query may either be a default value defined by the web platform, or chosen by
the user in his general web platform preferences.

15Subqueries should be initiated unless the query can be answered by consulting the local relationship knowledge base.
16Although methods for the visualization of social networks are not addressed in this work, Fig. 7.4 (p. 137) depicts a

prototypic visualization embedded in a web platform. It is likely that implementations of these approaches will also provide
visualization components, which can be plugged into applications.

126 Chapter 6. Distributed Relationship Management

3. The agent processes the query as described in Sect. 6.6.4 and sends results to the application
(i.e. its RM extension).

4. For each chain found, the RM extension calculates the strength of the chain. The highest
strength value obtained this way is the weighting factor for the rating.

The cumulative rating is then calculated on the basis of all weighted ratings. This ensures that only
“trusted” ratings are considered in the cumulative rating. The obvious drawback of this approach
is performance. Calculating weights “just in time” is impractical due to the high communication
overhead. Applications choosing this approach should therefore proactively search for relationship
chains and cache relevant relationship information concerning their users.

6.7.2 Structuring the Personal Social Network

This scenario aims at increasing the awareness about one’s own social network — i.e. assist the user
to remember and find persons in his social network and find connections between two persons in his
network. The results of this work can be applied to develop a social network browser. This is a special
application connected to the relationship management application acting on behalf of the user, which
addresses the questions raised in Sect. 1.6.2. The social network browser can especially assist the user
with keeping aware of weak relationships (cf. Sect. 2.2). Useful tasks that should be fulfilled by the
social network browser are the following:

• Visualize the social network of the user

• Provide exhaustive means of selecting parts of the network to visualize — e.g. on the basis of
the relationship type, or the strength value

• Highlight the temporal evolution of the social network — show people moving into or moving
out of the social network

• Keep relationship information up-to-date and extend the knowledge about the social network
(in collaboration with special strategies for proactiveness of the user agent)

The main challenge in this scenario is the design of good user interfaces providing intuitive access
to the social network and hiding the high complexity of the formalization and the agent society. This
issue is, however, too complicated to be appropriately addressed in this thesis and is thus left for future
work.

6.8 Comparison with Existing Approaches

This work has presented an exhaustive approach to social relationship management in internet-based
communication and shared information spaces. No existing approach with a comparable scope is
known to the author. Yet, there are approaches addressing small fragments of the scope of this thesis
(cf. Sect. 3.6). This section aims at exposing the main advantages of this approach compared to those
existing approaches.

6.8. Comparison with Existing Approaches 127

Centrality vs. decentrality. On of the most important advantages of the approach presented in this
thesis is decentrality. Different from existing approaches like Referral Web (Kautz et al., 1997b), PeCo
Mediator II (Ogata et al., 2001), Social Network Fragments (Boyd, 2002), and IKNOW (Contractor
et al., 1998), relationship information is stored in a decentral manner by an agent of the user’s choice.
This approach allows the user to retain full control over his relationship information at all times. The
user is always aware what information is currently stored by his agent and may remove it, if desired.

Extensibility vs. static vocabulary. The approach of this work is highly adaptive — with respect
to specific applications or application areas, additional relationship types can be defined matching the
respective requirements. At the same time, specific relationship information is still understandable for
other applications due to the use of a general ontology language.

In contrast, existing approaches (e.g. ContactMap (Nardi et al., 2002), IKNOW, ReferralWeb)
rely on static relationship types and do not define interrelations between different types. However,
this leads to a limited expressiveness.

Private vs. public sources of relationship information. Concerning private relationship infor-
mation (e.g. email histories, buddylist membership, address book entries, etc.), existing approaches
pursue two different strategies. Some approaches assume or require the users’ consent to use private
relationship information and present it to other users (e.g. PeCo Mediator II, Social Network Frag-
ments, Visual Who (Donath, 1995)). Other approaches do not use private relationship information but
only take into account public data (e.g. Referral Web, IKNOW).

This work allows the incorporation of private relationship information without requiring the users’
general consent to making it public. Instead, a powerful and flexible rule-based access control is
applied for the protection of private relationship information against illegitimate access. This leads to
a very complete view on each user’s social network with respect to internet-based communication and
shared information spaces.

General representation vs. proprietary applications. Existing approaches use proprietary rep-
resentations of relationships which only address those aspects needed for the application. This pre-
vents the exchange of relationship information with identical semantics that originates from different
sources. In contrast, this work has defined a general, application-independent representation of social
relationships which enables the integration of relationship information from heterogeneous sources.

128 Chapter 6. Distributed Relationship Management

Chapter 7

Implementation — The InReM
Framework

Building on the modeling of social relationships presented in Chapt. 5 and the conceptual presen-
tation of the multiagent system for distributed relationship management in Chapt. 6, this chapter
discusses the prototypic implementation of these concepts — the InReM framework.1 The InReM
framework may thus be regarded as an evaluation of those concepts consisting in the proof of their
practicability. The InReM framework integrates with the Cobricks community support system and
can thus be integrated with any Cobricks-based community platform. Apart from integrating In-
ReM with Cobricks, RM extensions for Email and Usenet will be sketched.

7.1 The InReM Framework

The goal of the InReM framework2 is to provide a prototypic implementation of the concepts devel-
oped in this thesis. It is designed to be suited both for use in a web-platform-based approach and in
an agent approach:

• InReM integrates with the Cobricks Community Support System and may thus be deployed in
any Cobricks-based virtual community platform (see Sect. 7.3).

• Due to its modular design, InReM may also be used in a Java-based multiagent system (see
Sect. 7.2).

The InReM framework is implemented in Java and consists of six packages:

de.tum.inrem. This package contains all interfaces of the InReM framework core — i.e. those inter-
faces for managing relationship types, relationship information, and ontologies.

de.tum.inrem.impl. The implementations of the interfaces defined in de.tum.inrem can be found in
the package de.tum.inrem.impl.

de.tum.inrem.cobricks. The de.tum.inrem.cobricks package contains all classes necessary for the
integration of InReM with the Cobricks community support system — i.e. a bridge to the Co-
bricks user management and a wrapper for the InReM relationship management classes which
can be deployed in a Cobricks-installation.

1I am indepted to the students Andreas Scheerer and Wolfgang Sprung, who have done important parts of the implemen-
tation on the basis of my specifications.

2InReM is an acronym forIn teroperableRelationshipManagement.

129

130 Chapter 7. Implementation — The InReM Framework

de.tum.inrem.visualization. This package contains interfaces for visualizing relationship networks.

de.tum.inrem.visualization.impl. The implementations of the visualization interfaces can be found
in this package. The implementation is based on the Royere framework for graph visualization
(Marshall et al., 2001) and produces SVG3 output.

de.tum.inrem.agent. The de.tum.inrem.agent package and its subpackages contain an implementa-
tion of the concepts discussed in Chapt. 6.4 The package provides an InReM agent, which can
be run as a client/server application on any desktop PC. The agent communicates with other
agents via socket connections and exchanges relationship information with them.

Figure 7.1 depicts an UML diagram of the most important interfaces in the de.tum.inrem package.
The rest of this section describes the de.tum.inrem package in more detail.

7.1.1 Relationship Type Management

The prototypic InReM framework does not use the OWL vocabulary introduced in Chapt. 5 for defin-
ing relationship types, but a proprietary XML format. This is due to the fact that at the time the InReM
framework was outlined and implemented, OWL support was not yet available. The Jena2 semantic
web toolkit offers basic OWL support, but was not released before 2003 — at that time, most of the
InReM core implementation had been already done. It is, however, possible to replace the relationship
type management classes with OWL-based implementations in the future (as soon as Jena2’s OWL
support gets stable), without having to change much in the rest of the InReM packages. The waiving
of OWL support, however, leads to a slightly reduced expressiveness of the relationship type model.
Yet, all main concepts of Chapt. 5 are accounted for in the prototypic InReM implementation. Lim-
itations mainly consist in the lack of classification mechanisms for relationship types and ontology
concepts (see below).

The InReM framework defines the interfaceRelationTypeManager for managing relation-
ship types. Implementations of this interface are responsible for retrieving type definitions, parsing
them, and storing the models of relationship types. Relationship types are defined in XML documents
which are retrieved from web servers via the http protocol. In Fig. 7.1,RelationTypeServer
does not actually refer to a java interface, but to a web server offering type definitions.

Internally, relationship types are represented by instances of a class implementing the
RelationType interface. Each such instance may in turn contain a reference to an instance of
a class implementing theProfileRelation interface, if the relationship type defines a profile
relation and/or a strength function.

The interfaceRelationTypeManager offers methods for retrievingRelationType ob-
jects, checking if one relationship type is a generalization of another type, and checking the consis-
tency of the type hierarchy (cf. Tab. 5.1).

7.1.2 Ontology Management

As mentioned above, InReM does not yet contain OWL support. Ontologies for attribute values of
relationship information (e.g. the topic of a communication relationship; see also Sect. 5.1.1, p. 71)
are not defined in OWL, but in RDF Schema. InReM essentially adopts the RDF Schema model for
representing ontologies — i.e. there are resources and a special subset of resources called classes.

3http://www.w3.org/Graphics/SVG/
4The implementation has been done in the course of a “Systementwicklungsprojekt” on the basis of this thesis.

7.1. The InReM Framework 131

���������	�
��������������������

����
������	��������������

����
������	�������������	
������
�����

����
������	�	��������	��

��������	�
���������������

����	��������

���� ����!��������������������

���������"��!��������������

�������������

����
������������
�������

����	���	��#������!�����	

���$�!�����#������!�����	

���������������

��������

���
�����������������������

����������	
��������������	
���

�����
���������	
��������		���

��������
���	
�����	
�����
�������		���

�������������������

��������	�
��������

��������	�
���������������

�%��&#������
������
�����

��������������

�

�

�

� �

�

�
�

� �

�����

�

�

�

�

�
�

�

�

� �

�

�

������������������

�

�

 �!��"	#����$�����������%��#��	���"����%��	��&	$�&�
����

�����

���	&����	
�'��"�$(�����&�������
#�
�)���������

)���"��

Figure 7.1: UML diagram of the main interfaces in the de.tum.inrem package. Only the most im-
portant methods are shown for each class. Methods for setting and retrieving object attributes are
generally omitted.

132 Chapter 7. Implementation — The InReM Framework

Resources may be instances of classes and at the same time be classes themselves. The instantiation
operation is indicated by therdf:type property. Classes may be arranged in a subclass-hierarchy.
The subclass-relation between two classes is indicated by therdfs:subClassOf property.

Essentially, theOntologyManager interface offers methods for:

• Loading ontologies — i.e. retrieving and parsing RDF Schema documents and setting up the
corresponding internal model (methodvoid loadOntology(String url))

• Retrieving a resource for a given URI
(methodResource getResource(String uri))

• Checking, if a resource is an instance of a certain class
(methodboolean isInstanceOf(Resource individual, Resource class))

• Checking, if a class in a subclass of another class
(methodboolean isSubClassOf(Resource subclass, Resource class))

7.1.3 Person Management

The PersonManager interface is responsible for managing URIs and profiles of persons.
As has been discussed in Chapt. 5, groups may also be viewed as persons. Therefore, the
PersonManager interface provides methods for explicitly defining groups by listing their
members (methods String defineGroup(String groupuri, Vector members) ,
Vector getGroupMembers(String groupuri)).

Although thePersonManager interface offers a method for retrieving attribute values from
the user profile concerning a specific person, it does not provide methods for setting those values.
Concrete implementations of the interface must define how attribute values can be set — e.g. by using
the Cobricks user management module for storing and managing user profiles.

7.1.4 Relationship Information Management

The central interface in the InReM framework isRelationInformationManager . Its functions
are the following.

• Persistent storage of and access toRelationInformation objects (via an implementation
of RelationInformationStorage) — i.e. manage a relationship knowledge base

• Add relationship information to the relationship knowledge base
(methodvoid setRelationInformation(Relationinformation ri))

• Check if a person has a relationship of a certain type with another person
(methodBooleanRequestResult hasRelationTo(String personURI1,
String personURI2, RelationType relationType,
String requestingPerson))

• Retrieve all relationships between two persons
(methodVector getRelationsTo(String personURI1,
String personURI2, String requestingPerson))

7.2. InReM Agents — Distributed Relationship Management 133

• Retrieve all persons connected to a certain person by a relationship of a specific type
(methodVector getPersonsRelatedToBy(String personURI,
RelationType relationType, String requestingPerson))

Implementations ofRelationInformationManager are also responsible for calculating the
extension of the relationship knowledge base (in terms of Sect. 5.4).

The RelationInformationManager interface is designed to be used in a centralized
system — e.g. a Cobricks community support system. There is a second interface called
PersonalRelationInformationManager offering essentially the same functions. This
interface is, however, designated to be used in client software — e.g. the agents of a multiagent
system for relationship management. The additional methods can be used to bind an instance of the
interface to a specific person.

Concerning theRelationInformationStorage interface, two implementations have been
done. The first one uses a mysql database5 as storage system and is mainly targeted at a server-
based solution. The second implementation takes a file-based approach and is especially suitable for
relationship management agents residing on client devices.

7.1.5 Privacy Management

The PrivacyManager interface is responsible for rule-based access control of relationship
information. For this purpose, it offers the methodRequestResult viewOf(String
ownerPersonURI, String otherPersonURI, RelationInformation ri) . This
method checks if the person identified byotherPersonURI may access the relationship informa-
tion objectri , which is owned by the person identified byownerPersonURI .

For managing access rules, the interface provides two methods for defining and delet-
ing rules. The current implementation of thePrivacyManager interface supports level 0
rules and level 1 rules (cf. Sect. 6.5.2). Figure 7.2 illustrates the interaction of an instance
of RelationInformationManager and the associatedPrivacyManager . When the
PrivacyManager contacts theRelationInformationManager in order to check if a cer-
tain relationship between two persons exists, it uses a special method, which does not recursively
invoke thePrivacyManager for checking access rights.

7.1.6 RM extensions

The InReM package supplies the interfacePollInterface for accessing RM extensions of ap-
plications. An RM extension implementing this interface can be easily connected to an instance of
RelationInformationManager by using a registration method provided by the manager. This
kind of connection between an RM extension and aRelationInformationManager realizes
the agent-triggered approach for exchanging relationship information (cf. Sect. 6.4).

7.2 InReM Agents — Distributed Relationship Management

The de.tum.inrem.agent package and its subpackages contain an implementation of a multiagent
system, which is based on the concepts discussed in Chapt. 6. The main class of the pack-
age — de.tum.inrem.agent.AgentMain — can be started as a client/server application

5http://www.mysql.org

134 Chapter 7. Implementation — The InReM Framework

��������	�
�������������� �������������

�����
��

������

��
����������������������������� ������������!���"���

����#���

���������������
$������������������������������%��%

������������	�
������������������

�������
���������
��������������������

�&����'

Figure 7.2: Interaction ofRelationInformationManager andPrivacyManager

on a user’s desktop PC. The main class initializes an InReM agent (an instance of the class
de.tum.inrem.agent.InremAgent). Figure 7.3 depicts a screenshot of an InReM agent.

An InReM agent has the following features.

• Use of a standard LDAP server as agent registry

• Flexible binding of RM extensions (agent-triggered approach, cf. Sect. 6.4)

• Privacy management on the basis of level 1 rules

• Support of multiple query types (cf. Fig. 7.3):

– Check, if a relationship of a certain kind exists between two persons

– Find persons to whom a relationship of a certain kind exists

– Explore the social network

• Social network visualization in SVG format

The de.tum.inrem.agent* packages are based on the de.tum.inrem package and the corresponding
implementation. In order to keep the installation simple, theRelationInformationStorage
interface has been implemented on the basis of the local filesystem. Hence, no local database is
needed, all data is stored in the filesystem. Communication with other agents takes place via standard
peer-to-peer socket connections.

7.2. InReM Agents — Distributed Relationship Management 135

Figure 7.3: Screenshot of the prototypic InReM agent implementation. The left window contains the
query interface for initiating queries for paths from one person to another person, the center window is
the main window of the agent and contains the main menu, and the right window contains the dialog
for exploring the social network up to a certain depth.

136 Chapter 7. Implementation — The InReM Framework

7.3 Prototypic Integration of InReM with Applications

The de.tum.inrem package contains interfaces for managing relationship information. Apart from
these interfaces it is, however, necessary to implement RM extensions for those sources of relationship
information which are to be accounted for in the InReM framework. This kind of integration of InReM
with other applications has prototypically been implemented for the Cobricks community support
system, IMAP mail, and Usenet news. These three approaches are briefly sketched in the remainder
of this section.

Integration with Cobricks. The InReM framework has been integrated with the Cobricks com-
munity support system. The package de.tum.inrem.cobricks contains two classes implementing the
integration:

• The classCobricksRelInfoManager implements the Cobricks manager interface and the
RelationInformationManager interface. An object of this class can be deployed as a
Cobricks manager by customizing the Cobricks configuration files. Other Cobricks components
may locate and access the relationship management component just like any other component
(e.g. the item management component or the user management component).

• The classCobricksPersonManager implements thePersonManager interface. For
retrieving attribute values of users, it uses the Cobricks user management component.

The integration has been tested in the development system of the UnternehmerTUM community6,
which is based on Cobricks. In order to evaluate the integration, an RM extension (i.e. an imple-
mentation of the interfacePollInterface) for the buddylist component of the UnternehmerTUM
community has been implemented and connected to the relationship management component. A visu-
alization module has been deployed using SVG as its output format. Figure 7.4 depicts a screenshot of
the UnternehmerTUM development system showing a buddylist relationship network visualization.

Integration with Usenet. For integrating InReM with Usenet, aPollInterface implementa-
tion has been developed which analyzes selected newsgroups. The headers of usenet postings to these
newsgroups are stored in a database in order to increase performance. This database also solves the
problem that most usenet servers drop old messages after some time, so that those messages are not
available for analysis anymore. The generation of relationship information is done as described in
Sect. 3.2.3.

Integration with IMAP. For the prototypic integration of InReM with email, the IMAP protocol
has been chosen. The IMAP protocol is a rather popular protocol for accessing emails. Different from
the POP3 protocol, that downloads messages to a local mailbox and (usually) removes them from the
server, IMAP organizes messages on the mail server in such a way that the messages can be read from
any client device. Thus, an IMAP email account is a good starting point for analyzing personal email
communication.

6The UnternehmerTUM community is located at http://www.unternehmertum.de/. It is a virtual community platform
targeted at students and scientists at Technische Universität München, who are interested in entrepreneurship. The Un-
ternehmerTUM community has been developed in the course of the TiBiD project at Technische Universität München, and
is hosted by UnternehmerTUM GmbH, Garching. Its latest version was launched in September 2003.

7.3. Prototypic Integration of InReM with Applications 137

Figure 7.4: Prototypic integration of InReM with the Cobricks community support system. This
screenshot was taken from the www.unternehmertum.de development system, which is based on Co-
bricks and uses a Cassiopeia Community Application Server as environment. The Adobe SVG plugin
(http://www.adobe.com/svg/viewer/install/) — which has been used in this picture — supports zoom-
ing and panning, such that the user can interact with the presentation in order to focus on details.

138 Chapter 7. Implementation — The InReM Framework

In the configuration of theIMAPPollInterface implementation ofPollInterface , a list
of incoming folders and a list of outgoing folders must be defined. Messages in these folders are
interpreted as incoming mail and outgoing mail, respectively.

7.4 Experiences with the Prototypic Implementation

First experiences with the prototypic implementation have shown the feasibility of the approach of
this thesis. Of course, the validity of these results are limited and should be interpreted as “proof of
concept” rather than as a thorough evaluation of the concepts developed in this thesis. A thorough
validation, however, requires much larger efforts — in particular with respect to user interface design,
performance, robustness and user studies. Therefore, this is out of the scope of this thesis. Yet,
tests with the prototypic implementation have yielded important hints for future work, which will be
discussed in the rest of this section.

One of the design goals of the InReM implementation was to provide simple programming inter-
faces for the relationship management system without exposing the full complexity of the relationship
ontology reasoning processes. Although the current implementation does not yet use OWL for mod-
eling relationship types but a proprietary typing mechanism based on XML documents, a similar set
of interfaces can be easily implemented on the basis of OWL — as soon as stable OWL support is
available. One of the benefits of providing specific interfaces for relationship management instead of
exposing the full ontology to the application is that the implementation can be more efficient because
it does not need OWL’s full expressiveness. Reasoning algorithms can be optimized according to the
specific requirements of the relationship model.

The integration with the UnternehmerTUM community7 has been done in a centralized manner
— i.e. the social relationship management module has been integrated with the Cobricks community
support system and deployed on the community test server (cf. Fig. 7.4). This approach dispenses
with the need for installing a relationship management client on each user’s personal computer. Pri-
marily, the integration proves the feasibility of the approach developed in this work with respect to a
centralized community support system.

An important experience with respect to the integration with the UnternehmerTUM community
is that users are strongly concerned about their privacy. In discussions, many people reported that
they fear to loose control about who gains access to their social network. Although this problem can
be dealt with by appropriately defining access rules for relationship information, advanced concepts
are needed because people shy at the complexity of this process. A possible solution might be the
definition of documented sets of “standard rules” with various restrictiveness. The user could choose
one of those sets without needing to worry about syntactic and logic details of the rule management
process. Thus, improvements concerning privacy are strongly related to good user interfaces for the
relationship management system which hide the underlying the complexity of the system and at the
same time do not impose functional limitations on the system. These issues are, however, left for
future work, because they require large programming efforts.

Tests with the InReM agent implementation have shown the feasibility of the agent-based ap-
proach to distributed relationship management. An InReM agent is a simple java application which
does not rely on additional components (such as a database). Its installation is thus very easy. Limi-
tations of the InReM agent implementation (the development and test of which has been done in the
course of a “Systementwicklungsprojekt” by a student) are robustness, the user interface — because
of the limited time, only a very simple user interface could be developed which provides access to

7http://www.unternehmertum.de/

7.4. Experiences with the Prototypic Implementation 139

all important functions — and the visualization. The visualization of social networks is based on the
Apache Batik library8, which is, however, limited in some SVG language details (e.g. interactivity).

Future work concerning the InReM agent implementation should address the question of how
to deal with users who are not permanently online. The current implementation just ignores offline
users, leading to the social network being possibly incomplete if some users are not online while a
query is solved. As has been suggested before, a solution to this problem might be to extent the agent
implementation such that an agent can act on behalf of several users at the same time. Such agents
could be run by third parties on a server which is permanently online and could offer a web interface
for the interaction between the agent and its users.

Finally, as has been mentioned above, the InReM implementation is not yet based on OWL, be-
cause at the time the system was designed, no stable OWL library was available. Current development
efforts concerning Jena2, however, include OWL support. By using Jena2, future versions of the In-
ReM implementation can dispense with the proprietary typing mechanism for relationships and offer
the full power of the relationship ontology vocabulary defined in Chapt. 5.

8http://xml.apache.org/batik/

140 Chapter 7. Implementation — The InReM Framework

Chapter 8

Conclusions and Future Prospects

This final chapter summarizes the central results of this work. Directions for future work are
suggested, especially with respect to the design of user interfaces, visualization, security, and
identity management. Because good visualization methods are key factors for the acceptance of
implementations of the concepts developed in this thesis, promising approaches for visualizing
social networks and ontologies are discussed in more detail.

8.1 Summary

Starting from virtualization tendencies in today’s organizational structures and everyday life, this work
has discussed two main challenges of internet-based communication systems and shared information
spaces: “how can the reputation of another (not personally known) user be assessed?” and “how can
people keep aware of their (online) social network?” The first challenge is especially relevant with
respect to partnering in virtual organizations (B2B), online auction houses (C2C/C2B), and opinion
platforms (C2C). The second challenge is important for navigating the own social network — e.g. for
finding a new job or acquiring knowledge.

From these two challenges, it has been concluded that a general representation of social rela-
tionships is required. By assisting the user in finding relationship chains to unknown people, the
partnering challenge can be solved. By visualization of the social network, particularly including
weak relationships, navigation in the social network can be supported.

Realizing the demand for a general representation of social relationships in internet-based com-
munication systems and shared information spaces, this thesis has discussed basic sociological notions
and summarized central characteristics of social relationships (Chapt. 2).

Apart from discussing social relationships from a sociological point of view, their importance
has been analyzed in the domain of internet-based communication and shared information spaces
(Chapt. 3). Existing approaches to relationship management have been reviewed. The discussion
of the application area has been completed by a list of relationship types occurring frequently in
groupware and communityware.

Building upon the analysis of the application area and the summary of characteristics of social
relationships, Chapt. 5 has introduced a formalization of social relationships based on semantic web
technologies. The main design goals of the formalization have been the following:

• Fostering interoperability

• Independence from proprietary applications

141

142 Chapter 8. Conclusions and Future Prospects

• Extensibility

• Integration of privacy protection

Interoperability and extensibility are achieved by using the Web Ontology Language (OWL) for rep-
resenting social relationships. OWL is part of the semantic web layer cake and builds upon RDF(S)
and XML, which are targeted at providing general frameworks for representing metadata and tree-
structured documents, respectively. The formalization of social relationships is thus clearly layered
on top of the ontology layer of the semantic web layer cake. On the one hand, this guarantees in-
teroperability with respect to different applications exchanging relationship information, because the
semantics of OWL ontologies is well-defined. On the other hand, by using OWL, extensibility is guar-
anteed, because OWL includes mechanisms for importing and merging ontologies. Hence, it is not
necessary to provide an overall ontology about social relationships. Starting from a basic ontology
defining most common relationship types, modular ontologies can build upon these core types and
specialize them, if needed.

Independence from proprietary applications is achieved by including the definition of measuring
methods in type definitions. The profile relation allows for the explicit definition of measuring meth-
ods for relationships based on user profile comparison. In the absence of a profile relation, measuring
methods can be provided in a natural language description. The representation of social relationships
is based on general concepts originating from sociology: algebraic properties, a strength value, a pro-
file relation, and generalizations. It is thus independent from proprietary relationship models, which
usually contain only those aspects of relationships needed for the application.

Privacy protection has been addressed in connection with distributed relationship management
(Chapt. 6). Different from existing approaches, this work has taken a relationship-centric approach to
privacy protection. Access to relationship information is granted if certain relationship chains from
the owner of the information to the requesting person can be found. The kind of relationship chains
required is defined by the user in a set of rules. This approach allows for a higher flexibility and
dispenses with additional artifacts like access tickets or roles.

Building upon the formalization of social relationships, this work has designed a multiagent sys-
tem for distributed relationship management. Agents act on behalf of one or several persons and
exchange relationship information in order to answer queries initiated by their users or by applica-
tions. Three query types can be distinguished:

• Exploring the social network up to a certain depth

• Checking if a relationship chain with certain characteristics from one person to another exists

• Retrieving relationship chains with certain characteristics from one user to another

On the basis of these query types, solutions for the two challenges mentioned above have been de-
scribed.

Finally, Chapt. 7 presented a prototypic implementation of the concepts developed in this work.
An integration with the Cobricks community support system has been sketched as well as RM exten-
sions for buddy lists, Usenet news, and IMAP mail.

8.2 Future Prospects

This thesis has presented a general approach to social relationship management in internet-based
communication systems and shared information spaces. In order to present the core ideas of this

8.2. Future Prospects 143

approach as clearly as possible, some aspects have been disregarded. The most important among
these aspects are:

• User interfaces

• Security

• Anonymity and Identity/Pseudonymity Management

The remainder of this section briefly discusses each of these aspects, presenting suggestions for future
work.

8.2.1 User Interfaces for Relationship Management

Relationship management is a highly complex task. Relationship management applications must deal
with the complexity of relationship information and exchange mechanisms on the application level.
At the same time, they must have simple and intuitive user interfaces, because usability is a key factor
for applications to be widely accepted. User interface design for relationship management has to cope
with three dimensions of complexity:

• Social networks are often large and densely knit. The visualization must be able to cope with
dense graphs in an effective and efficient way and it must reduce the graph’s complexity. Users
should be able to browse the social network and focus relationships of special types.

• The visualization should hide the complexity of the underlying ontologies. The main chal-
lenge here is to develop appropriate means for ontology visualization (both for the relationship
ontology and for ontologies referenced in values of additional attributes).

• The user interface must find intuitive ways for displaying and editing access rules. Research
in the COSMOS project1 at Technische Universität München has shown that people do not
adopt complex rule systems very easily. Reducing the complexity of such systems is a major
challenge for user interface development.

Rule-based systems for access control are increasingly gaining importance especially for exchanging
user-related information on the internet.2 It is thus likely that the problem of developing intuitive and
at the same time powerful user interfaces for rule management will be addressed in future work.

The visualization of large graphs has been a common topic for some time. This thesis will not try
to give an overview about the vast field of graph visualization but highlight some promising directions
for visualizing and navigating large graphs and ontologies “in a nutshell”.

Drawing and Navigating Large Graphs

Social networks can be visualized as graphs in an obvious manner by drawing persons as nodes and
relationships as (possibly annotated and/or colored) edges. How to layout a graph is, however, not
a trivial question (see Herman et al., 2000, for an excellent overview about graph visualization and
navigation techniques). One important criterion to judge a good graph visualization is the compliance
with aestheticguidelines (Herman et al., 2000):

1These results have not yet been published and thus have an informal character.
2Wörndl (2003), for example, discusses privacy in distributed user profile management. His approach is based on the

negotiation of access tickets building upon a set of rules defined by the user.

144 Chapter 8. Conclusions and Future Prospects

• Nodes and edges should be evenly distributed.

• Edges should have about the same length.

• Isomorphic substructures should be displayed in the same manner.

• The number of edge-crossings should be minimal (this raises the question of how to find out if
graphs are planar).

Some of these criteria, however, are to a certain degree dependent on the type of graph which is
visualized or on the layout method. If clustering methods are used for the graph layout, for example,
the requirement that nodes and edges should be evenly distributed may be relaxed to some extent.

Another important aspect is thepredictabilityof layout algorithms. Predictability means that two
runs on the same or very similar graph should lead to identical or very similar layouts. Especially
for social network visualization, predictability is an inevitable feature of the layout algorithm. If
non-predictable layout algorithms were used, even small changes to the network might lead to a radi-
cally different layout and to the user’s complete disorientation, because the “mental map” previously
acquired would be completely invalid.

If a relationship management agent traces relationships up to a depth greater than 2 or 3, the result-
ing social network can be quite large. Static visualization of large social networks may quickly prove
infeasible, because the information might simply not fit on the screen or at least become unreadable.
Methods for navigating such graphs are thus necessary. Traditional approaches for graph navigation
are zoom and pan (Herman et al., 2000). Panning means that the area of the graph which is displayed
is changed. Zooming means that certain regions of the graph are displayed on a more detailed level.
Two variants of zoom can be distinguished:geometric zoomsimply “blows up” the graph (without
altering its content/structure) such that more details become visible.Semantic zoommeans that the
content of the graph is adopted according to the zoom level (e.g. in a clustered graph, on a high level,
clusters might be collapsed to one node). Figure 8.1 depicts the two zooming variants.

Semantic zoom is strongly connected tograph clustering. Graph clustering refers to clustering
the set of nodes into (ideally) disjoint sets of nodes. These clusters can either be used for reducing
the complexity of the graph, as in Fig. 8.1, or for advanced layout algorithms: recursive clustering of
a graph yields a hierarchic structure of the nodes which may be used as input for tree-based layout
algorithms (Herman et al., 2000).

A classical method for combining zooming and panning isfisheye distortion. Fisheye views are
applied to a given graph layout and imitate the optical distortion of the view as if the user was look-
ing through a fisheye lens. The effect of the distortion is that focal areas are enlarged, whereas the
periphery is shown with less detail. Figure 8.2 shows an example of a graph layout to which a fisheye
distortion has been applied. A second approach to zooming and panning ishyperbolic graph layout,
which will be explained below.

Ontology visualization

Apart from the visualization of social networks, the visualization of ontologies is a challenge. Whereas
the relationship type ontology is essentially a hierarchy, domain-dependent topics referenced in addi-
tional attributes of relationships can be quite complex.

The subclass-relationship, which is available in most ontology languages including OWL, defines
a hierarchy on the classes of an ontology. Although it is usually not required that this hierarchy is
a tree (OWL, for instance, allows a class to have more than one superclass), it is often “somewhat

8.2. Future Prospects 145

Figure 8.1: Geometric zoom (left) and semantic zoom (right)

Figure 8.2: Fisheye distortion. The left screenshot shows the original graph layout. Obviously, the
visualization is of little use due to the overlapping of node labels and nodes themselves. The right
screenshot depicts the effect of a fisheye view on the same graph. The center cluster is shown with
more detail. The periphery, however, is still visible. Both visualizations have been produced with
the Royere toolkit (Marshall et al., 2001) on the basis of the same usenet data that has been used for
Fig. 3.3.

146 Chapter 8. Conclusions and Future Prospects

Figure 8.3: Hyperbolic tree visualization in 3D. This figure was created with H3Viewer (from
http://graphics.stanford.edu/∼munzner/h3/).

like a tree” — i.e. a tree with comparatively few additional non-tree edges.Hyperbolic layoutshave
turned out to be especially suitable for tree visualization (Lamping et al., 1995). Munzner (1998),
for instance, suggests a 3D layout for trees and tree-like graphs, which allows the user to rotate the
graph and zoom in on areas of interests (see also Fig. 8.3). Hyperbolic layout algorithms do not use
Euclidean space but hyperbolic space. In hyperbolic space, to a given (infinite) linel and a given
point p not on that line, there existmore thanone (infinite) linesr1, ..., rn such thatl is parallel to
each ofr1, ..., rn (this doesnot imply that r1, ..., rn are pairwise parallel), andp ∈ ri, 1 ≤ i ≤ n
(in Euclidean geometry, there is exactly one such line). The result of the layout algorithm is then
mapped to a Euclidean model of the hyperbolic space. In essence, in hyperbolic space there is simply
more room so that that the distance (in the hyperbolic space) between parents, children, and siblings
is approximately the same everywhere in the tree. Herman et al. (2000) present some more details on
this procedure. For a detailed mathematical theory, see Coxeter (1961).

Although hyperbolic graph layout is good for visualizing the tree aspects of an ontology, a lot of
information contained in an ontology is lost. For instance, it is usually not visible if two classes have
common members. Fluit et al. (2003) propose a different (2D) approach, which aims at displaying
such relationships between classes. Their basic ontology model is a simple superclass-subclass hi-

8.2. Future Prospects 147

�
�

�

�

Figure 8.4: An example cluster map, according to Fluit et al. (2003). The three classes X, Y, and Z
are subclasses of the class A (indicated by the arrows). Classes X and Y are connected by an edge
indicating that X and Y have one member in common. Similarly, Y and Z have three members in
common. The “bubbles” attached to X, Y, and Z indicate the number of members of X, Y, and Z,
respectively, not including those members shared with other classes. The “bubble” attached to class
A indicates that there are members of A not belonging to one of A’s subclasses. Since members are
clusteredaccording to class membership, this approach is called acluster map.The layout algorithm
for positioning nodes and clusters is spring-based.

erarchy, where each class has a number of members. The main idea is to display additional edges
indicating the number of members two classes have in common. Figure 8.4 sketches a sample visual-
ization.

8.2.2 Security

The focus of this work has been the modeling and the exchange of relationship information. Security,
however, has not been addressed. Relationship information is personal data of great value. Implemen-
tations of the concepts developed in this work should therefore incorporate security technologies:

Authentication. The multiagent system presented in Chapt. 6 relies on the mapping between agents
and persons, which is maintained by the user agent registry (cf. Fig. 6.7). It is, however, impor-
tant that this mapping istrustworthy— i.e. that the mapping is certified by a trusted authority.
Otherwise, an agent could register for an arbitrary person and gain relationship information it
is not authorized for. For these tasks, standard public key infrastructures on the basis of X.509
certificates3 can be applied.

3http://www.ietf.org/html.charters/pkix-charter.html

148 Chapter 8. Conclusions and Future Prospects

Digital Signature. Authentication is closely related to digital signature, because digital signatures
can be used for certifying the authenticity of documents/statements. In general, digital signa-
tures should be attached to all messages exchanged in the multiagent system. An agent can be
sure that a messagem of another agentx who pretends to be acting on behalf of personp is
authentic ifm is digitally signed byp and the agent ID ofx is included inm.

Cryptography. Along with digital signature messages should be encrypted (e.g. by using SSL4), so
that agent communication cannot be eavesdropped by third parties.

8.2.3 Anonymity and Identity/Pseudonymity Management

One basic assumption in this work has been that the mapping between persons and IDs is public.
Consequently, any message sent in the multiagent system can not only be attributed to the agent who
sent it but also to the person the agent is acting on behalf of. People are, however, increasingly
concerned about which aspects of their identity are visible online. Thus, it would be interesting to
extend the solution developed in this work by incorporating anonymization technologies.

Another aspect is identity management: many people tend to have several identities each repre-
senting a special role. A common example is the differentiation between a business identity and a
private identity. Relationship information, however, often cannot be clearly attributed to only one of
these identities, e.g. there might be persons both in the business network and in the private network.
The approach of this work assumes that all these different identities of a person are publicly linked.
It would thus be interesting to extend the ideas of this work by incorporating mechanisms for identity
management, which still allow for the combination of relationship information linked to the different
identities of a person without publicly linking those identities.

8.2.4 Concluding Remarks

Social relationship management is an integral part of our lives. As more and more activities move
online, data about large parts of our social networks is stored online. This thesis has shown that
an expressive combination of such social network data is feasible in the domain of internet-based
communication and shared information spaces. Hopefully, the results of this work will provide new
impulses for future systems supporting partnering and knowledge management.

Although expressive relationship management is generally feasible, some work remains to be done
with respect to ontology management. Current implementations of semantic web technologies must
be considered research prototypes rather than suitable solutions for professional end-user applications.
Yet, there are promising projects, such as the Jena2 semantic web toolkit (cf. Sect.4.4.5).

Much work must still be done with respect to user interfaces and visualization. This does, how-
ever, not only apply to this work, but also to semantic web technologies and social network applica-
tions in general. Some promising approaches have been presented in this work. Yet, apart from few
exceptions, these are mainly research prototypes, too.

The technical feasibility of the ideas presented in this thesis does not necessarily imply their
general acceptance by the user. Therefore, future research should investigate user interaction with
implementations of these concepts. Such research, however, should not be done on the basis of a
research prototype. Research prototypes often lack professional user interfaces and are thus often
not accepted by end-users. A poorly-designed user interface, which fails to hide the complexity of

4Secure Sockets Layer (SSL) is a general standard for authentication and encryption between clients and servers on the
internet (see http://developer.netscape.com/docs/manuals/security/sslin/index.htm).

8.2. Future Prospects 149

the underlying technologies, will most likely cause a user to reject the technology without having a
chance to get to know the technology’s benefits. Thus, user interfaces are a pivotal aspect concerning
the technology’s success or failure. Due to the immense effort necessary for developing really good
user interfaces, studies of the acceptance of relationship management technology could not be done
within the scope of this thesis. The author assumes that future work will fill this gap and will be able
to suggest improvements of the ideas presented in this thesis.

The field of social relationship management in internet-based applications is not well explored.
This work has tried to combine existing approaches and at the same time draw a “big” picture of social
relationship management in internet-based communication and shared information spaces. This work
can serve as a building block for future approaches addressing similar issues.

150 Chapter 8. Conclusions and Future Prospects

Appendix A

The Relationship Ontology

<!DOCTYPE owl [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY inrem "http://www11.in.tum.de/projects/inrem/ns/inrem-ns#">
]>

<rdf:RDF
xmlns="http://www11.in.tum.de/projects/inrem/ns/inrem-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">
</owl:Ontology>

<owl:Class rdf:ID="Relationship">
<rdfs:label xml:lang="en">Generic Relationship</rdfs:label>
<rdfs:comment xml:lang="en">

This is the generic relationship type all other types are
specializations of. Relationships of this type are not assumed
to have any special meaning.

</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#from" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#to" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

151

152 Appendix A. The Relationship Ontology

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#strength" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#normalizedStrength" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStrengthSource" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#requiresTransitivityMeasure" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasProfileRelation" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasTimestamp" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Person" />

<owl:Class rdf:ID="Group">
<rdfs:subClassOf rdf:resource="#Person" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAnchor" />
<owl:cardinality

153

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#definedBy" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasAnchor">
<rdfs:domain rdf:resource="#Group" />
<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="definedBy">
<rdfs:domain rdf:resource="#Group" />
<rdfs:range rdf:resource="#Relationship" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="from">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="to">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>

<owl:Class rdf:ID="AlgebraicProperty" />

<owl:Thing rdf:ID="Symmetric" />
<owl:Thing rdf:about="#Symmetric">

<rdf:type rdf:resource="#AlgebraicProperty" />
</owl:Thing>

<owl:Thing rdf:ID="Antisymmetric" />
<owl:Thing rdf:about="#Antisymmetric">

<rdf:type rdf:resource="#AlgebraicProperty" />
</owl:Thing>

<owl:Thing rdf:ID="Asymmetric" />
<owl:Thing rdf:about="#Asymmetric">

<rdf:type rdf:resource="#AlgebraicProperty" />
</owl:Thing>

<owl:Thing rdf:ID="Transitive" />
<owl:Thing rdf:about="#Transitive">

<rdf:type rdf:resource="#AlgebraicProperty" />
</owl:Thing>

154 Appendix A. The Relationship Ontology

<owl:ObjectProperty rdf:ID="hasAlgebraicProperty">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="#AlgebraicProperty" />

</owl:ObjectProperty>

<owl:Class rdf:ID="SymmetricRelationship">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAlgebraicProperty" />
<owl:hasValue rdf:resource="#Symmetric" />

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#AntisymmetricRelationship" />

</owl:Class>

<owl:Class rdf:ID="AntisymmetricRelationship">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAlgebraicProperty" />
<owl:hasValue rdf:resource="#Antisymmetric" />

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#SymmetricRelationship" />

</owl:Class>

<owl:Class rdf:ID="AsymmetricRelationship">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAlgebraicProperty" />
<owl:hasValue rdf:resource="#Asymmetric" />

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#AntisymmetricRelationship" />
<owl:disjointWith rdf:resource="#SymmetricRelationship" />

</owl:Class>

<owl:Class rdf:ID="TransitiveRelationship">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAlgebraicProperty" />
<owl:hasValue rdf:resource="#Transitive" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="strength">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;decimal" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="normalizedStrength">
<rdfs:domain rdf:resource="#Relationship" />

155

<rdfs:range rdf:resource="&xsd;boolean" />
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasStrengthSource">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="#StrengthSource" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="requiresTransitivityMeasure">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="#TransitivityMeasure" />

</owl:ObjectProperty>

<owl:Class rdf:ID="StrengthSource" />

<owl:Thing rdf:ID="Explicit" />
<owl:Thing rdf:about="#Explicit">

<rdf:type rdf:resource="#StrengthSource" />
</owl:Thing>

<owl:Class rdf:ID="StrengthFunction">
<rdfs:subClassOf rdf:resource="#StrengthSource" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStrengthDefinition" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="TransitivityMeasure">
<rdfs:subClassOf rdf:resource="#StrengthSource" />

</owl:Class>

<owl:Thing rdf:ID="Min" />
<owl:Thing rdf:about="#Min">

<rdf:type rdf:resource="#TransitivityMeasure" />
</owl:Thing>

<owl:Thing rdf:ID="Length" />
<owl:Thing rdf:about="#Length">

<rdf:type rdf:resource="#TransitivityMeasure" />
</owl:Thing>

<owl:Thing rdf:ID="Product" />
<owl:Thing rdf:about="#Product">

<rdf:type rdf:resource="#TransitivityMeasure" />
</owl:Thing>

<owl:DatatypeProperty rdf:ID="hasStrengthDefinition">
<rdfs:domain rdf:resource="#StrengthFunction" />
<rdfs:range rdf:resource="&xsd;string" />

156 Appendix A. The Relationship Ontology

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasProfileRelation">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasTimestamp">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;datetime" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasExpirationDate">
<rdfs:domain rdf:resource="#Relationship" />
<rdfs:range rdf:resource="&xsd;datetime" />

</owl:DatatypeProperty>

<!-- End of basic vocabulary -->
<!-- Start of Examples -->

<owl:Class rdf:ID="Acquaintance">
<rdfs:subClassOf rdf:resource="#Relationship" />
<rdfs:label xml:lang="en">Acquaintance</rdfs:label>
<rdfs:comment xml:lang="en">

This general relationship type represents the fact that
a person knows the other. It does neither imply any
evaluations of the other person, nor a face-to-face contact
between the two persons.

</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Communication">
<rdfs:subClassOf rdf:resource="#Acquaintance" />
<rdfs:subClassOf rdf:resource="#SymmetricRelationship" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasTopic" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:label xml:lang="en">Communication</rdfs:label>
<rdfs:comment xml:lang="en">

Relationships of this type represent all kinds of communication.
Communication relationships are assumed to be symmetric.
The property hasTopic indicates the topics of the relationship
as a set of string literals. Apply the property separately for
each keyword. Supply at least one keyword for each relationship.

</rdfs:comment>
</owl:Class>

<owl:DatatypeProperty rdf:ID="hasTopic">
<rdfs:domain rdf:resource="#Communication" />

157

<rdfs:range rdf:resource="&xsd;string" />
</owl:DatatypeProperty>

<owl:Class rdf:ID="EmailCommunication">
<rdfs:subClassOf rdf:resource="#Communication" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#strength" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#normalizedStrength" />
<owl:hasValue rdf:datatype="&xsd;boolean">true</owl:hasValue>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStrengthSource" />
<owl:hasValue rdf:resource="#Explicit" />

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:label xml:lang="en">Symmetric email-communication</rdfs:label>
<rdfs:comment xml:lang="en">

This type represents special communication relationships by
specifying email as the medium of the communication.
Relationships of this type possess a normalized strength
value as defined by the following formula:
Let n12(k) be the number of emails sent (via to, cc, or bcc)
in period k from person 1 to person 2, and n21(k) the number of
emails sent in period k from 2 to 1.
Period 1 is the current day, period 2 is the day
before, and so on. Let S1(k) and S2(k) be the number of
messages sent to any person by 1 and 2, respectively, in
period k, and R1(k), R2(k) the number of messages received from
any person in period k by 1 and 2, respectively.
Let w(k)=(366-k)/(133590). Then, the strength s is defined as
1/2 * sum(k=1,...,365) w(k) * (n12(k)/S1(k) + n21/R1(k)
+ n21(k)/S2(k) + n12/R2(k)). Periods in which any
of the denominators is 0 or for which no data is available
must be skipped in the sum.

</rdfs:comment>
</owl:Class>

</rdf:RDF>

158 Appendix A. The Relationship Ontology

Appendix B

The Rule Vocabulary

<!DOCTYPE owl [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY inrem "http://www11.in.tum.de/proj/inrem/ns/inrem-ns#">
]>

<rdf:RDF
xmlns="http://www11.in.tum.de/proj/inrem/ns/rule-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:inrem="http://www11.in.tum.de/proj/inrem/ns/inrem-ns#">

<owl:Ontology rdf:about="">
<owl:imports

rdf:resource="http://www11.in.tum.de/proj/inrem/ns/inrem-ns"/>
</owl:Ontology>

<owl:Class rdf:ID="Rule">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#priority" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#domain" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>

159

160 Appendix B. The Rule Vocabulary

<owl:onProperty rdf:resource="#hasAllowedUsage" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="ChainExpression">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#riTemplate" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#maxLength" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="AllowedUsage">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Public"/>
<owl:Thing rdf:about="#Anonymous"/>
<owl:Thing rdf:about="#Private"/>

</owl:oneOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="domain">
<rdfs:domain rdf:resource="#Rule" />
<rdfs:range rdf:resource="&inrem;Relationship" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasCondition">
<rdfs:domain rdf:resource="#Rule" />
<rdfs:range rdf:resource="#ChainExpression" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="riTemplate">
<rdfs:domain rdf:resource="#ChainExpression" />
<rdfs:range rdf:resource="&inrem;Relationship" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasAllowedUsage">
<rdfs:domain rdf:resource="#Rule" />
<rdfs:range rdf:resource="#AllowedUsage" />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="priority">

161

<rdfs:domain rdf:resource="#Rule" />
<rdfs:range rdf:resource="&xsd;nonegativeInteger" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="maxLength">
<rdfs:domain rdf:resource="#ChainExpression" />
<rdfs:range rdf:resource="&xsd;nonegativeInteger" />

</owl:DatatypeProperty>

</rdf:RDF>

162 Appendix B. The Rule Vocabulary

Bibliography

Alfarez Abdul-Rahman and Stephen Hailes. Relying on trust to find reliable information. InPro-
ceedings 1999 International Syposium on Databes, Web and Cooperative Systems (DWACOS’99),
Baden-Baden, Germany, August 1999.

Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a reason-able ontology
editor for the semantic web. InProceedings of KI2001, Joint German/Austrian conference on Arti-
ficial Intelligence, number 2174 in Lecture Notes in Computer Science, pages 396–408. Springer,
Vienna, September 2001.

Dave Beckett, editor. RDF/XML Syntax Specification (Revised). 2003. W3C Working Draft
05 September 2003, http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030905, work in
progress.

Mary Behr. All eyes are on you.Popular Science, 2002.

T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. Uniform resource identifiers (URI): generic
syntax (RFC 2396). http://www.faqs.org/rfcs/rfc2396.html, August 1998.

Tim Berners-Lee. Semantic Web — XML2000. Talk, slides available at
http://www.w3.org/2000/Talks/1206-xml2k-tbl/, 2000.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.Scientific American, May 2001.

Paul V. Biron and Ashok Malhotra, editors.XML Schema Part 2: Datatypes. 2001. W3C Recom-
mendation 02 May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. InProceedings 1996
IEEE Symposium on Security and Privacy, pages 164–173, May 1996.

Uwe M. Borghoff and Johann H. Schlichter.Computer-Supported Cooperative Work: Introduction to
Distributed Applications.Springer, Berlin, Heidelberg, New York, Barcelona, Hong Kong, London,
Milan, Paris, Singapore, Tokyo, 2000.

Danah Boyd. Faceted id/entity: Managing representation in a digital world. Master’s thesis, Mas-
sachusetts Institute of Technology, September 2002.

Jeffrey M. Bradshaw. An introduction to software agents. In Jeffrey M. Bradshaw, editor,Software
Agents, pages 3–46, Menlo Park, California; Cambridge, Massachusetts; London, England, 1997.
AAAI Press / The MIT Press.

Martin Bürger. Untersẗutzung von Awareness bei der Gruppenarbeit mit gemeinsamen Arbeitsbere-
ichen. Utz, Wiss., M̈unchen, 1999.

163

164 Bibliography

Dan Brickley and R. V. Guha, editors.RDF Vocabulary Description Language 1.0: RDF Schema.
2003. W3C Working Draft 10 October 2003, http://www.w3.org/TR/2003/WD-rdf-schema-
20031010/, work in progress.

Matt Cain. Instant messaging market development. META Group — Web & Collaboration Strategies
— WCS 1230, February 2003.

Linda Carotenuto, William Etienne, Michael Fontaine, Jessica Friedman, Helene Newberg, Michael
Muller, Matthew Simpson, Jason Slusher, and Kenneth Stevenson. Communityspace: Toward flex-
ible support for voluntary knowledge communities. InProceedings of the Workshop “Changing
Places” on Workspace Models for Collaboration, London, 1999.

Roger Clarke. Internet privacy concerns confirm the case for intervention.Communications of the
ACM, 42(2), February 1999.

Noshir S. Contractor, Dan Zink, and Mike Chan. IKNOW: A tool to assist and study the creation,
maintenance, and dissolution of knowledge networks. In Toru Ishida, editor,Community Computing
and Support Systems, Lecture Notes in Computer Science 1519, pages 201–217. Springer, Berlin,
1998.

George Coulouris, Jean Dollimore, and Tim Kindberg.Distributed Systems — Concepts and Design
(Third edition). Addison-Wesley, Harlow, (England), London, New York, Reading (Massachusetts),
San Francisco, Toronto, Don Mills (Ontario), Sydney, Tokio, Singapore, Hong Kong, Seoul, Taipei,
Cape Town, Madrid, Mexico City, Amsterdam, Munich, Paris, Milan, 2001.

H. S. M. Coxeter.Introduction to Geometry. John Wiley & Sons, Inc., New York, London, 1961.

Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, and Joseph Reagle.
The platform for privacy preferences 1.0 (P3P1.0) specification. W3C Recommendation 16 April
2002, http://www.w3.org/TR/P3P/, April 2002.

Christopher Creutzig, Andreas Buhl, and Phil Zimmermann.PGP Pretty Good Privacy — Der
Briefumschlag f̈ur Ihre elektronische Post. Art d’Ameublement, Bielefeld, 1999.

D. Crocker and P. Overell. Augmented BNF for syntax specifications: ABNF (RFC 2616).
http://www.faqs.org/rfcs/rfc2234.html, November 1997.

David H. Crocker. Standard for the format of arpa internet text messages (RFC 822).
http://www.faqs.org/rfcs/rfc822.html, August 1982.

John Davies, Dieter Fensel, and Frank van Harmelen. Introduction. In John Davies, Dieter Fensel,
and Frank van Harmelen, editors,Towards the Semantic Web — Ontology-Driven Knowledge Man-
agement, pages 1–9. John Wiley & Sons Ltd, Chichester, England, 2003.

Mike Dean and Guus Schreiber, editors.OWL Web Ontology Language Reference. 2003. W3C Work-
ing Draft 31 March 2003, http://www.w3.org/TR/2003/WD-owl-ref-20030331/, work in progress.

Chrysantos Dellarocas. Immunizing online reputation reporting systems against unfair ratings and
discriminatory behavior. InProceedings of the 2nd ACM Conference on Electronic Commerce,
Minneapolis, MN, October 17–20 2000.

Bibliography 165

Andreas Dieberger and Mark Guzdial. Cowebs — experiences with collaborative web spaces. In
Lueg and Fisher (2003), pages 155–166.

Rainer Dollase.Soziometrische Techniken — Techniken der Erfassung und Analyse zwischenmen-
schlicher Beziehungen in Gruppen. Beltz, Weinheim (u. a.), 1976.

Rainer Dollase. Soziometrie. InPsychologie des 20. Jahrhunderts, Band VII: Levin und die Folgen.
Kindler, Zürich, 1979.

Judith Donath. Visual who: Animating the affinities and activities of an electronic community. In
Proceedings of ACM Multimedia ’95, San Francisco, CA, November 5–9 1995.

Judith Donath. A semantic approach to visualizing online conversations.Communications of the
ACM, 45(4), April 2002.

Judith Donath, Karrie Karahalios, and Fernanda Viegas. Visual who: Animating the affinities and
activities of an electronic community. InProceedings of the Thirty-Second Annual Hawaii Inter-
national Conference on System Sciences. Computer Society Press, January 1999.

Judith Donath, Hyun-Yeul Lee, Danah Boyd, and Jonathan Goler. Loom2: Intuitively visualizing
usenet. CSCW 2001 Workshop,
http://smg.media.mit.edu/papers/danah/CSCW2001PositionPaper.pdf, 2001.

Edd Dumbill. Finding friends with XML and RDF — The friend-of-a-friend vocabulary can make it
easier to manage online communities.
http://www-106.ibm.com/developerworks/xml/library/x-foaf.html, June 2002.

Stephen G. Eick and Graham J. Wills. Navigating large networks with hierarchies. InProceedings of
the IEEE Conference on Visualization, Los Alamitos, CA, 1993.

C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: Some issues and experiences.Communications of
the ACM, 34(1):35–58, 1991.

Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker, Michael Erdmann, and Michael
Klein. OIL in a nutshell. In Rose Dieng and Olivier Corby, editors,Knowledge Acquisition, Mod-
eling and Management, pages 1–16. Springer, Berlin, 2000.

Dieter Fensel, Frank van Harmelen, and Ian Horrocks. OIL and DAML+OIL: Ontology languages
for the semantic web. In John Davies, Dieter Fensel, and Frank van Harmelen, editors,Towards the
Semantic Web — Ontology-Driven Knowledge Management, pages 11–31. John Wiley & Sons Ltd,
Chichester, England, 2003.

David Ferraiolo and Richard Kuhn. Role-based access control. InProceedings of the 15th National
Computer Security Conference, 1992.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol — HTTP/1.1 (RFC 2616). http://www.faqs.org/rfcs/rfc2616.html, June 1999.

Danyel Fisher. Visualizing social newsgroup interaction. CHI 2000 Workshop: Electronic Commu-
nities: Places and Spaces, Contents and Boundaries, 2000.

Danyel Fisher and Christopher Lueg. Studying online newsgroups. In Lueg and Fisher (2003), pages
253–260.

166 Bibliography

Christiaan Fluit, Marta Sabou, and Frank van Harmelen. Ontology-based information visualization.
In Vladimir Geroimenko and Chaomei Chen, editors,Visualizing the Semantic Web – XML-based
Internet and Information Visualization, pages 36–48. Springer, London, Berlin, Heidelberg, New
York, Barcelona, Hong Kong, Milan, Paris, Singapore, Tokyo, 2003.

Leonard N. Foner. What’s an agent, anyway? A sociological case study. Agents Memo 93-01, Agents
Group, MIT Media Lab, Cambridge, MA, 1993.

Leonard N. Foner. Yenta: A multi-agent, referral-based matchmaking system. InProceedings of the
First International Conference on Autonomous Agents (Agents ’97), 1997.

Eric J. Friedman and Paul Resnick. The social cost of cheap pseudonyms.Journal of Economics and
Management Strategy, 10(2):173–199, 2000.

Emden R. Gansner and Stephen C. North. An open graph visualization system and its applications to
software engineering.Software—-Practice and Experience, 33(11):1203–1233, 2000.

Laura Garton, Caroline Haythornthwaite, and Barry Wellman. Studying online social networks.Jour-
nal of Computer Mediated Communication, 3(1), 1997.
http://www.ascusc.org/jcmc/vol3/issue1/garton.html.

Mark S. Granovetter. The strength of weak ties.American Journal of Sociology, 78:1360–1380, 1973.

Jonathan Grudin. Why cscw applications fail: Problems in the design and evaluation of organizational
interfaces. Portland, Oregon, United States, 1988.

Jonathan Grudin. Groupware and social dynamics: Eight challenges for developers.Communications
of the ACM, 37(1), January 1994.

R. Guha, Rob McCool, and Eric Miller. Semantic search. InProceedings of the twelfth international
conference on World Wide Web, pages 700–709. ACM Press, 2003.

Per Hage and Frank Harary.Structural models in anthropology. Cambridge Univ. Pr., Cambridge
(and others), 1983.

Frank G. Halasz. The dexter hypertext reference model.Communications of the ACM, 37(2):30–39,
1994.

Patrick Hayes, editor. RDF Semantics. 2003. W3C Working Draft 10 October 2003,
http://www.w3.org/TR/2003/WD-rdf-mt-20031010/, work in progress.

Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and navigation in infor-
mation visualization: A survey.IEEE Transactions on Visualization and Computer Graphics, 6(1):
24–43, 2000.

P. Hoffman, L. Masinter, and J. Zawinski. The mailto URL scheme (RFC 2368).
http://www.faqs.org/rfcs/rfc2368.html, July 1998.

Mark R. Horton and R. Adams. Standard for interchange of usenet messages (RFC 1036).
http://www.faqs.org/rfcs/rfc1036.html, December 1987.

T. Howes and M. Smith. The LDAP URI format. http://www.faqs.org/rfcs/rfc2255.html, December
1997.

Bibliography 167

Institute of Electrical and Electronics Engineers.IEEE Standard Computer Dictionary: A Compila-
tion of IEEE Standard Computer Glossaries. New York, 1990.

Ellen Isaacs, Alan Walendowski, Steve Whittaker, Diane J. Schiano, and Candace Kamm. The char-
acter, functions and styles of instant messaging in the workplace. InProceedings of the Conference
on Computer-Supportet Cooperative Work (CSCW), New Orleans, LA, 2002.

Jupiterresearch. Total time spent using instant messaging jumps 110 percent at work
and 48 percent at home versus last year, reports jupiter media matrix. Press Release,
http://www.jupiterresearch.com/xp/jmm/press/2001/pr111401.html, November 14, 2001.

Jupiterresearch. New instant messaging application poses threat to major services, according to media
metrix internet ratings. Press Release,
http://www.jupiterresearch.com/xp/jmm/press/2002/pr052902.html, May 29, 2002.

Brian Kantor and Phil Lapsley. Network news transfer protocol: A proposed standard for the stream-
based transmission of news (RFC 977). http://www.faqs.org/rfcs/rfc977.html, February 1986.

Henry Kautz, Bart Selman, and Mehul Shah. The hidden web.AI Magazine, 18(2):27–36, 1997a.

Henry Kautz, Bart Selman, and Mehul Shah. Referralweb: Combining social networks and collabo-
rative filtering.Communications of the ACM, 40(3):63–65, 1997b.

Graham Klyne and Jeremy J. Carroll, editors.Resource Description Framework (RDF): Concepts and
Abstract Syntax. 2003. W3C Working Draft 10 October 2003, http://www.w3.org/TR/2003/WD-
rdf-concepts-20031010/, work in progress.

David Knoke.Network analysis. Sage Publ., Beverly Hills (and others), 1982.

Alfred Kobsa. Generic user modeling systems. InUser Modelung and User-Adapted Interaction 11,
pages 49–63. Kluver Academic Publishers, 2001.

Jürgen Hartmut Koch.Untersẗutzung der Formierung und Analyse von virtuellen Communitites. Peter
Lang, Frankfurt am Main, Berlin, Bern, Bruxelles, New York, Oxford, Wien, 2003a.

Michael Koch. Kooperation bei der Dokumentenbearbeitung — Entwicklung einer Gruppenedito-
rumgebung f̈ur das Internet. Deutscher Universitäts-Verlag, Wiesbaden, 1997.

Michael Koch. An architecture for community support platforms — modularization and integration.
In H. Luczak, A. E. Cakir, and G. Cakir, editors,Proc. 6th Intl. Conf. on Work With Display Units
— World Wide Work (WWDU2002), pages 533–535, 2002a.

Michael Koch. Global identity management to boost personalization. In Petra Schubert and Uwe
Leimstoll, editors,Proc. 9th Research Symp. on Emerging Electronic Markets, pages 137–147,
Basel, September 2002b.

Michael Koch. Community-Unterstützungssysteme — Architektur und Interoperabilität. Professorial
dissertation, Department of Informatics, Technische Universität München, February 2003b.

Michael Koch, Michael Galla, and Helmut Schönenberger. Interoperable Community-Plattformen
und Identiẗatsmanagement im Universitätsumfeld. In Martin Engelien and Jens Homann, editors,
Virtuelle Organisation und Neue Medien 2001 — Workshop GeNeMe2001 — Gemeinschaften in
Neuen Medien, pages 215–235. Josef Eul Verlag, September 2001.

168 Bibliography

Michael Koch, Kathrin M̈oslein, and Michael Wagner. Vertrauen und Reputation in Online-
Anwendungen und virtuellen Gemeinschaften. In M. Engelien and D. Neumann, editors,Virtuelle
Organisation und Neue Medien, pages 69–84. Josef Eul Verlag, Lohmar, Köln, 2000.

Michael Koch and Wolfgang Ẅorndl. Community-support and identity management. InProc. Euro-
pean Conference on Computer-Supported Cooperative Work (ECSCW2001), pages 319–338, Bonn,
Germany, 2001.

Peter Kollock. The production of trust in online markets. In E. J. Lawler, M. Macy, S. Thyne, and
H. A. Walker, editors,Advances in Group Processes (Vol. 16). JAI Press, Greenwich, CT, 1999.

Wilfried Krüger. Konsequenzen der Globalisierung für Strategien, F̈ahigkeiten und Strukturen der
Unternehmung. In Franz Giesel and Martin Glaum, editors,Globalisierung — Herausforderung an
die Unternehmensführung zu Beginn des 21. Jahrhunderts. C. H. Beck, M̈unchen, 1999.

John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic geom-
etry for visualizing large hierarchies. InProc. ACM Conf. Human Factors in Computing Systems,
CHI, pages 401–408. ACM, 1995.

Ora Lassila and Ralph R. Swick, editors.Resource Description Framework (RDF) Model and Syntax
Specification. 1999. W3C Recommendation 22 February 1999, http://www.w3.org/TR/1999/REC-
rdf-syntax-19990222.

Jonathan Lazar and Jennifer Preece. Classification schema for online communities. InAssociation
for Information Systems 1998 Americas Conference, 1998.

Ulrike Lechner, Johannes Hummel, and Carl-Friedrich zu Inn- und Knyphausen. Peer-to-Peer Ar-
chitekturen f̈ur Kollaboration in Communities. In Martin Engelien and Jens Homann, editors,
Virtuelle Organisation und Neue Medien 2001 — Workshop GeNeMe2001 — Gemeinschaften in
Neuen Medien, pages 237–253. Josef Eul Verlag, September 2001.

Vanda Lehel, Florian Matthes, and Klaus Steinfatt. Weblogs als ein innovatives Instrument des
betrieblichen Wissensmanagements. InTagungsband der Konferenz Mensch & Computer 2003,
September 2003.

Jan Marco Leimeister, Miriam Daum, and Helmut Krcmar. Towoards m-communities: The case of
cosmos healthcare. InProceedings of the Hawaii International Conference on System Sciences
(HICSS 36), 2003.

Amanda Lenhart, Lee Rainie, and Oliver Lewis. Teenage life online — the rise of the instant-message
generation and the internet’s impact on friendschips and family relationships. Pew Internet &
American Life Project, http://www.pewinternet.org/reports/toc.asp?Report=36, 2001.

Liberty Alliance Project. Introduction to the liberty alliance identity architecture. White paper from
http://www.projectliberty.org/resources/whitepapers/, 2003.

Greg Linden, Brend Smith, and Jeremy York. Amazon.com recommendations: Item-to-item collabo-
rative filtering. IEEE Internet Computing, 7(1):76–80, January/February 2003.

Christopher Lueg. Social filtering and social reality. InProceedings of the Delos Workshop on Col-
laborative Filtering, Budapest, 1997.

Bibliography 169

Christopher Lueg and Danyel Fisher, editors.From Usenet to CoWebs: interacting with social in-
formation spaces. Springer, London, Berlin, Heidelberg, New York, Hong Kong, Mailand, Paris,
Tokyo, 2003.

Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure. SEAL – A frame-
work for developing SEmantic Web PortALs.Lecture Notes in Computer Science, 2097, 2001.

Eleni Mangina. Review of software products for multi-agent systems. Report (Draft), AgentLink II,
the European Network of Excellence for Agent-Based Computing (IST-1999-29003), 2002.

M. S. Marshall, I. Herman, and G. Melançon. An object-oriented design for graph visualization.
Software — Practice and Experience, 31(8):739–756, 2001.

Robert McArthur and Peter Bruza. Discovery of implicit and explicit connections between people
using email utterance. In K. Kuutti, E. H. Karsten, G. Fitzpatrick, P. Dourish, and K. Schmitt,
editors,ESCW 2003: Proceedings of the Eighth European Conference on Computer Supported
Cooperative Work, 14-18 September 2003, Helsinki, Finland, pages 21–40, 2003.

Rául Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flores. The action workflow
approach to workflow management technology. InProceedings of the 1992 ACM conference on
Computer-supported cooperative work, pages 281–288. ACM Press, 1992.

Microsoft Corporation. Microsoft .NET Passport Review Guide.
http://www.microsoft.com/net/services/passport/reviewguide.asp (URL checked 2003), 2003.

Bradley N. Miller, John R. Riedl, and Joseph A. Konstan. Grouplens for usenet: Experiences in
applying collaborative filtering to a social information system. In Lueg and Fisher (2003), pages
207–231.

George A. Miller. Wordnet: A lexical database for english.Communications of the ACM, 38(11):
39–41, November 1995.

Nelson Minar and Judith Donath. Visualizing the crowds at a web site. InCHI’99 late-breaking
papers. ACM Press, 1999.

Tamara Munzner. Exploring large graphs in 3d hyperbolic space.IEEE Comput. Graph. Appl., 18(4):
18–23, 1998.

Elizabeth D. Mynatt, Annette Adler, Mizuko Ito, and Vicki L. O’Day. Design for nework commu-
nities. InProceedings of the SIGCHI conference on Human factors in computing systems, pages
210–217. ACM Press, 1997.

Bonnie A. Nardi, Steve Whittaker, and Erin Bradner. Iteraction and outeraction: Instant messaging
in action. InProceedings of the 2000 ACM Conference on Computer supported cooperative work,
pages 79–88, New York, 2000. ACM Press.

Bonnie A. Nardi, Steve Whittaker, Ellen Isaacs, Mike Creech, Jeff Johnson, and John Hainsworth.
Contactmap: Integrating communication and information through visualizing personal social net-
works. Communications of the ACM, 45(4):89–95, 2002.

H. Ogata, Y. Yano, N. Furugori, and Q. Jin. Computer supported social networking for augmenting
cooperation.Computer Supported Cooperative Work, 10:189–209, 2001.

170 Bibliography

Mary O’Hara-Devereaux and Robert Johansen.Global Work: Bridging Distance, Culture and Time.
Jossey-Bass, San Francisco, CA, 1994.

Open GIS Consortium, Inc. OpenGISR© geography markup language (GML) implementation specifi-
cation, version 2.1.2. OpenGIS Project Document Number 02-069, http://www.opengis.net/gml/02-
069/GML2-12.html (checked 2003), September 2002.

Osterman Research. Osterman research survey on instant messaging — highlights from a study con-
ducted sepember 10–18, 2002.
http://www.ostermanresearch.com/results/surveyresultsim0902.htm, 2002.

Jacob Palme. Common internet message headers (RFC 2076). http://www.faqs.org/rfcs/rfc2076.html,
February 1997.

Uta Pankoke-Babatz, editor.Computer Based Group Communication. The AMIGO Activity Model.
Ellis Horwood Limited, 1989.

H. Van Dyke Parunak and James Odell. Representing social structures in UML. InProceedings of
the Workshop on Agent-Oriented Software Engineering (AOSE) 2001 (at Autonomous Agents 2001
Conference), 2001.

Peter F. Patel-Schneider and Dieter Fensel. Layering the semantic web: Problems and directions. In
The Semantic Web — ISWC 2002, pages 16–29, June 2002.

Bryan Pfaffenberger. “A standing wave in the web of our communications”: Usenet and the socio-
technical construction of cyberspace values. In Lueg and Fisher (2003), pages 20–43.

Jeanne M. Pickering and John Leslie King. Hardwiring weak ties: Individual and institutional issues
in computer mediated communication. InProceedings of the 1992 ACM conference on Computer
Supported Cooperative Work, pages 356–361, Toronto, Ontario, Canada, 1992.

Arnold Picot, Ralf Reichwald, and Rolf Wigand.Die Grenzenlose Unternehmung. Gabler, Wiesbaden,
1996.

Wolfgang Prinz. Survey of group communication models and systems. In Pankoke-Babatz (1989),
pages 127–180.

RDFWeb.org. The ‘friend of a friend’ project: FOAF. Website (deployed but changing),
http://rdfweb.org/foaf/, 2003.

Ralf Reichwald and Kathrin M̈oslein. Auf dem Weg zur virtuellen Organisation: Wie Telekooperation
Unternehmen verändert. In Ralf E. Strauß G̈unter Müller, Ulrich Kohl, editor,Zukunftsperspektiven
der digitalen Vernetzung, pages 209–233. dpunkt Verlag, Heidelberg, 1996.

Ralf Reichwald and Kathrin M̈oslein. The virtual company. InEuropean conference on the future of
working conditions. BAuA Publications, June 8–9 1999.

Ralf Reichwald, Kathrin M̈oslein, Hans Sachenbacher, and Hermann Englberger.Telekooperation
— Verteilte Arbeits- und Organisationsformen. Springer, London, Berlin, Heidelberg, New York,
Hong Kong, Mailand, Paris, Tokyo, second edition, 2000.

Paul Resnick and Hal R. Varian. Recommender systems.Introduction to special section of Commu-
nications of the ACM, 40(3), March 1997.

Bibliography 171

Howard Rheingold. The Virtual Community. Homesteading on the Electronic Frontier.Addison-
Wesley, Reading (Massachusetts), Menlo Park (California), New York, Don Mills (Ontario), Wok-
ingham (England), Amsterdam, Bonn, Sydney, Singapore, Tokyo, Madrid, San Juan, Paris, Seoul,
Milan, Mexico City, Taipei, 1993.

Martin Röscheisen and Terry Winograd. A network-centric design for relationship-based security and
access control.Journal of Computer Security, Special Issue on Security in the World-Wide Web,
1997.

R. Martin R̈oscheisen.A Network-Centric Design for Relationship-Based Rights Management. PhD
thesis, Stanford University, December 1997.

Warren Sack. Conversationmap: A content-based usenet newsgroup browser. In Lueg and Fisher
(2003), pages 92–109.

Johann Schlichter, André Büssing, Ralf Reichwald, Michael Galla, Claudia Moranz, and Michael
Wagner. Wissen und Vertrauen bei der Kontaktanbahnung in Gründernetzwerken. In Peter Mam-
brey, Volkmar Pipek, and Markus Rohde, editors,Wissen und Lernen in virtuellen Organisationen.
Physica-Verlag, Heidelberg, 2003.

Johann Schlichter, Michael Koch, and Chengmao Xu. Awareness — the common link between group-
ware and communityware. In Toru Ishida, editor,Community Computing and Support Systems,
pages 77–93. Springer, Heidelberg, 1998.

Marc Smith. Invisible crowds in cyberspace: Measuring and mapping the social structure of usenet.
In Marc Smith and Peter Kollock, editors,Communities in Cyberspace. Routledge Presse, London,
1999.

Marc A. Smith. Measures and maps of usenet. In Lueg and Fisher (2003), pages 47–78.

Marc A. Smith and Andrew T. Fiore. Visualization components for persistent conversations. In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 136–143,
Seattle, Washington, United States, 2001.

Michael K. Smith, Chris Welty, and Deborah McGuinness, editors.OWL Web Ontology Language
Guide. 2003. W3C Working Draft 31 March 2003, http://www.w3.org/TR/2003/WD-owl-guide-
20030331/, work in progress.

Henry Spencer. News article format and transmission. “Son-of-1036” (http://www.chemie.fu-
berlin.de/outerspace/netnews/son-of-1036.html), June 1994.

Steffen Staab, Michael Erdmann, and Alexander Maedche. Ontologies in RDF(S).Linköping
Electronic Articles in Computer and Information Science,Vol. 6(2001): nr 9, December 2001.
http://www.ep.liu.se/ea/cis/2001/009/.

Stephanie Teufel, Christian Sauter, Thomas Mühlherr, and Kurt Bauknecht.Computerunterstützung
für die Gruppenarbeit. Addison-Wesley, Bonn, 1995.

Peter D. Turney. Extraction of keyphrases from text: evaluation of four algorithms. Technical Report
NRC 41550, National Research Council of Canada, 1997.

172 Bibliography

Peter D. Turney. Coherent keyphrase extraction via web mining. InProceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI-03), pages 434–439, Acapulco,
Mexico, 2003.

Fernanda Viegas. Post history. http://web.media.mit.edu/∼fviegas/posthistory/, 2002.

Adriana S. Vivacqua. Agents for expertise location. InProceedings of AAAI Spring Symposium on
Intelligent Agents in Cyberspace, Stanford, CA, United States, March 1999.

Samuel Warren and Louis D. Brandeis. The right to privacy.Harvard Law Review, 4(5), 1890.

Stanley Wasserman and Katherine Faust.Social Network Analysis: Methods and Applications. Cam-
bridge University Press, 1994.

Gerhard Weiss, editor.Multiagent Systems — A Modern Approach to Distributed Artificial Intelli-
gence. The MIT Press, Cambridge, Massachusetts, 1999.

Barry Wellman. For a social network analysis of computer networks. InProceedings of the 1996
conference on ACM SIGCPR/SIGMIS conference, pages 1–11, Denver, Colorado, United States,
1996.

Barry Wellman. An electronic group is virtually a social network. In Sara Kiesler, editor,Cultures of
the Internet, pages 179–205. Lawrence Erlbaum Publications, Mahwah, New Jersey, 1997.

Barry Wellman. Computer networks as social networks.Science, 293, September 2001.

Barry Wellman. Designing the internet for a networked society: Little boxes, glocalization, and
networked individualism.Communications of the ACM, 45(5), May 2002.

Barry Wellman, Jeffrey Boase, and Wenhong Chen. The networked nature of community: Online and
offline. IT&Society, 1(1):151–165, 2002.

Barry Wellman and Milena Gulia. Net surfers don’t ride alone: Virtual communities as communities.
In Communities in Cyberspace, pages 167–194. Routledge, London, 1999.

Barry Wellman and Keith Hampton. Living networked in a wired world.Contemporary Sociology,
28(6), 1999.

Etienne C. Wenger and William M. Snyder. Communities of practice: The organizational frontier.
Harvard Business Review, January/February 2000.

Steve Whittaker, Ellen Isaacs, and Vicky O’Day. Widening the net: Workshop report on the theory
and practice of physical and network communities.SIGCHI Bulletin, 29(3), 1997.

Terry Winograd. A language/action perspective on the design of cooperative work.Human-Computer
Interaction, 3(1):3–30, 1988.

Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacobson, Ryan Jarvis, Bryan
Smith, and Lina Yu. Negotiating trust on the web.IEEE Internet Computing, 6(6):30–37, 2002.

Michael Wooldridge. Intelligent agents. In Weiss (1999), pages 27–77.

Wolfgang Ẅorndl. Privatheit bei dezentraler Verwaltung von Benutzerprofilen. Doctoral thesis, De-
partment of Informatics, Technische Universität München, August 2003.

Bibliography 173

Hans A. Ẅuthrich, Andreas F. Philipp, and Martin H. Frentz.Vorsprung durch Virtualisierung —
Lernen von virtuellen Pilotunternehmen. Gabler, Wiesbaden, 1997.

Rebecca Xiong and Eric Brittain. Liveweb: Visualizing live user activities on the web. Siggraph 1999
conference, Sketches & Applications, 1999.

Song Yang and David Knoke. Optimal connections: Strength and distance in valued graphs.Social
Networks, 23(4):285–295, 2001.

174 Bibliography

Index

access control, 108
access right, 51
access ticket, 104
acquaintance, 93, 96
Action Workflow, 49
agent, 55, 100, 106, 112–123, 133

communication, 115–118
algebraic properties, 70, 80, 81, 86
anonymity, 148
antisymmetry, 16, 70, 90, 92
Anytime/Anyplace matrix, 1
AOL AIM, 36
archival records, 21
asymmetry, 16, 70, 90, 92
attribute, 81, 86, 90–92, 95
attribute declaration, 71
authentication, 147
authentication handshake, 116
autonomy, 112
awareness, 36, 40

blacklist, 93
blank node, 59
bridge, 16
buddylist, 36, 93

personal (Cobricks), 42, 46
shared (Cobricks), 44, 46

business transaction, 48

calendar, 49
category, 44
Chat, 39
class, 59, 60, 62–63, 71, 81, 130
clique, 17–19
n-clique, 17, 19
Cobricks, 40–47, 76, 129, 133, 136
communication, 48, 93, 96
Communication Map, 32
community, 23, 95, 106

of interest, 38
of passion, 38
of practice, 38, 39
of purpose, 38, 39

complementarity principle, 3
complexity, 81, 87
computer-mediated communication, 14
conference management, 49
consistency, 90
consistency of RDF model, 57
ContactMap, 26
content (of a relationship), 14
cooperative work, 23
coordination, 48
k-core, 19
correlation, 90
coverage, 91
CoWebs, 37
cryptography, 148
CSCW, 23

DAML, 61
DAML+OIL, 61
decision support, 49
dependency theory, 51
description, 69, 82
digital signature, 148
direction, 14
distributed relationship information, 99
distrust, 93

eBay, 5
email, 25–28, 93, 97
equivalence, 88, 91
equivalence class, 80
equivalence relation, 82
evaluation, 93
exchange, 68
expiration date, 87, 91, 92

175

176 Index

extension, 60

FaCT reasoner, 64
FIPA, 115
FIRM, 51
fisheye view, 144
Flament’s measure, 15, 71, 85
flexibility, 3
FOAF, 51
formal representation, 67
formal role, 95
functional, 89

global ID, 104
group, 17, 23, 80, 81, 95
group calendar, 49
group editor, 49
groupware, 23

hierarchy, 69, 81
hyperbolic graph layout, 146
hypertext, 37

ICQ Instant Message, 36
ID-Repository, 76, 81, 101, 114
ID-Resolver, 102, 114
identity federation, 103
identity management, 101, 112, 148
IKNOW, 50
inconsistency, 92
individual, 62, 71, 84
inference, 89
InReM, 129–139
instance, 60
instant messaging, 6, 36–37, 106
interoperability, 67, 68, 73, 142
interview, 21
inverse, 89
inverse-functional, 89
IRC, 39
item, 42, 46

annotation, 42, 46

JADE, 115
Jena2, 64

keyword list, 87
kinship, 95

knowledge management, 39
knowledge network, 50

level, 19
literal, 57
literal value, 71
local ID, 104
logic, 57
Loom2, 32
Lotus Notes, 49

mail (UNIX), 26
mailing list, 26, 27, 46
matchmaking, 40
meaning of terms, 55
measuring method, 67, 68
member, 62
membership, 95
message, 44, 46
metadata, 56, 57
model, 90–92
MSN Messenger Service, 36
multiagent, 133
multiagent system, 112, 123, 133, 142

name of a relationship type, 69, 82
Netscan, 32
newsgroups, 29
NNTP, 29
nodal degree, 19
non-symmetry, 70

object of an RDF statement, 56
observation, 13, 21
OIL, 61
OilEd, 64
online auction house, 4, 99, 105, 124–126
ontology, 44, 57, 61, 80–92, 107, 130
open-closed-principle, 3
OWL, 44, 57, 60–64, 80–92

path length, 15
path value, 15
Peay’s measure, 15, 71, 85
person, 72–74, 80, 81

abstract, 73
legal, 73

personalization, 72

Index 177

planning system, 49
k-plex, 19
PollInterface, 133, 136, 138
PostHistory, 26
predicate of an RDF statement, 56
principal-agent problem, 4
privacy, 68, 107, 133
proactiveness, 113, 115
Product measure, 71
profile relation, 71, 80, 86
proof layer, 57
property, 81
property (OWL), 63, 81
property (RDF), 57, 60
Prot́eǵe-2000, 64
pseudonym, 5

query, 116–121
questionnaire, 13, 20

RDF, 44, 56–60
graph, 58, 82
model, 58
triple, 56, 58
vocabulary, 56

RDF Schema, 56, 61, 130
RDF/XML, 59–60, 62
RDFS, 44
reactivity, 113, 115
reasoning engine, 81
recommendation, 93
recommender system, 40
Referral Web, 6, 40, 50
reflexivity, 16
registry, 104, 114
relationship information template, 88, 110
relationship type, 13, 68, 69, 93, 130
relative, 95
resource, 57, 84, 130
RI template, 88
RM extension, 104–107, 114, 115, 133
rule-based access control, 108, 118, 123, 133

user interfaces for, 143

search engine, 55
security, 147
semantic web, 55–65, 84
semantic web layer cake, 55, 61

small world problem, 7
social ability, 113
social network, 6, 100, 126
Social Network Fragments, 27
sociometry, 13
speech act theory, 48, 51
spring system visualization, 26, 27, 32
statement, 56, 58
strength, 14, 19, 70–71, 76, 80, 81, 84, 92, 93,

126
strength function, 70, 76, 80, 86
subclass, 71, 84, 132
subject of an RDF statement, 56
symmetry, 16, 70, 82, 90, 91

team, 23, 95
template, 88
temporal evolution, 87
tie, 15–16, 39
timestamp, 87, 91, 92
transaction, 93
transformation, 90
transitivity, 16, 70, 82, 90, 91
transparency principle, 3
Trillian, 36
triple, 56
trust, 50, 93
trust layer, 57
typed RDF nodes, 59

Unicode, 56
UnternehmerTUM, 136
URI, 56, 69, 73, 84

http scheme, 74
LDAP scheme, 74
mailto scheme, 73

URI reference, 57
URL, 74
Usenet, 29–33, 39
user agent, 113
user ID, 72, 74, 102
user interface, 143, 148
user profile, 68, 75–79, 81, 101–103

in Cobricks, 41–42

virtual community, 6, 38–47
classification of, 38

virtual organization, 2

178 Index

virtualization, 2–4, 141
Visual Who, 26
visualization, 130, 143–147

Wiki, 37
WordNet, 32
work group, 82, 95
workflow management, 47–49
workgroup computing, 49–50
world wide web, 55

XML, 56
XML Schema, 57

Yahoo! Messenger, 36
Yenta, 40

