TECHNISCHE UNIVERSITAT MUNCHEN
INSTITUT FUR INFORMATIK

A Software Architecture for Knowledge
Acquisition and Retrieval for Global
Software Development Teams

Andreas Braun

INSTITUT FUR INFORMATIK 2400
DER TECHNISCHEN
UNIVERSITAT MUNCHEN

Forschungs- und Lehreinheit I
Angewandte Softwaretechnik

A Software Architecture for Knowledge
Acquisition and Retrieval for Global
Software Development Teams

Andreas Braun

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitdt
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.
Vorsitzender: Univ.-Prof. Dr. Helmut Krcmar

Priifer der Dissertation: Univ.-Prof. Dr. Johann Schlichter

Univ.-Prof. Bernd Briigge, Ph.D.

Die Dissertation wurde am 24.03.2004 bei de Technischen Universitit Miinchen einge-
reicht und durch die Fakultit fiir Informatik am 01.07.2004 angenommen.

— Kurzfassung —

Software-Projekte erfordern intensive Kommunikation sowie die Zusammenarbeit verschiedener
Parteien und Vertreter von Interessensgruppen, die jeweils unterschiedliche Positionen einneh-
men. Ein Grofiteil dieser Kommunikation ist informell und dient z.B. der Diskussion, der Klarung
von Fragen, Verhandlung, bzw. dem Aufdecken von Wissen. Projektbezogene Kommunikation
wird zunehmend vielschichtig durch den kombinierten Einsatz elektronischer und nicht elektroni-
scher Kommunikationsmittel. Dies gilt sowohl fiir lokal an einem Ort durchgefiihrte Projekte, als
auch — in besonderem Maf3e — fiir verteilte oder gar globale Software-Projekte. Kommunikations-
fehler sind in diesem Zusammenhang kostspielig und gefihrden den Projekterfolg, insbesondere
wenn sie in den frithen Phasen des Lebenszyklus auftreten. Aus diesem Grund ist die wissensba-
sierte Kommunikations- und Kooperationsunterstiitzung aller Phasen des Projektes erforderlich.

Ausgehend von Studien, die auf grossen und verteilten Projekten durchgefiihrt wurden, darun-
ter einer Studie des Autors, haben wir iBistro entworfen. iBistro ist eine experimentelle Umgebung
zur Erfassung von Wissen in den verschiedenen Phasen globaler Software-Projekte. Dabei wer-
den die gesammelten Informationen in einem Rationale-basierten Ansatz strukturiert. Das so ge-
sammelte Wissen wird den verschiedenen Projektbeteiligten in spéteren Projektphasen oder neuen
Projekten durch das System zur Verfiigung gestellt. Dabei ist das Ziel von iBistro, die bestehenden
Prozesse und Methodiken einer Organisation so wenig wie moglich zu beeinflussen und dennoch
sowohl Umfang und Qualitdt des erfassten Wissens zu verbessern. iBistro sammelt somit Infor-
mationen durch eine Vielzahl von Wissensquellen (Knowledge Sources) und stellt dieses Wissen
iiber anpassbare Wissens-Sichten (Knowledge Views) wieder zur Verfiigung. Das somit aufgebaute
Wissens- und Informationsnetz bildet ein elektronisches Gruppengedichtnis (Group Memory).

Diese Dissertation stellt eine gemeinsame Architektur fiir Wissenserfassung, Wissensaquise und
Wissensverwendung von Projektwissen vor. Dartiber hinaus bezieht sich der Begriff ,,Projektwis-
sen” auch auf Ergebnisse der Arbeitsprozesse, wie zum Beispiel Dokumente oder Quellcode. Dies
fithrt zu komplexen Querverbindungen zwischen solchen Artifakten und allgemeinen Wissens-
Informationen. Die Architektur, genannt Distributed Concurrent Blackboard Architecture (DC-
BA), erweitert das aus der Kiuinstlichen Intelligenz bekannte Konzept der Blackboard-Architektur.
Die DCBA-Architektur ermdéglicht die nebenldufige Erfassung von informellen Informationen
und Wissen in vielschichtigen Kommunikationsmitteln und -wegen, wie z.B. Arbeitstreffen, in
Brainstorming-Treffen, Email, oder bei der Verwendung von Entwicklungswerkzeugen, wie z.B.
der Versionskontrolle. Die DCBA-Architektur wurde dabei speziell fiir die Unterstiitzung verteil-
ter Teams in synchronen und asynchronen Szenarien entwickelt.

In einer Fallstudie wurde die Implementierung der DCBA-Architektur zwischen der National
University of Singapore und der TU Miinchen getestet und iterativ weiterentwickelt. Dabei deckte
das verteilte Szenario die Schwierigkeiten bei der verteilten Projektarbeit mit unstrukturierten und
nicht integrierten Werkzeugen im Vergleich zur Verwendung der DCBA als Wissensquelle fiir eine
kleine verteilte Arbeitsgruppe auf. Diese Dissertation schldgt eine spezielle Team-Formation fir
Globale Software Entwicklung, das balancierte Team, vor und diskutiert deren Unterstiitzung in
iBistro.

A Software Architecture for
Knowledge Acquisition and Retrieval
for Global Software Teams

“The soul is the same in all living creatures,
although the body is different.” [HIPPOCRATES]

andreas.braun@accenture.com
Pfefferstrafle 3
82194 Grobenzell

Version of
29th July 2004

— Abstract —

Global software development is communication intensive. It requires the collaboration
of many stakeholders representing different positions. The stages of the development life
cycle are characterized by many informal interactions, often face-to-face, whose aim is
to clarify, brainstorm, negotiate, or recover knowledge. Project-related communication is
also becoming more and more diverse, especially if distributed globally. It includes various
electronic and non-electronic means of communication, both for on-site and off-site de-
velopment. Moreover, project knowledge refers to artifacts of the development life cycle,
such as source code or documents. This results in complex cross references between ar-
tifacts and knowledge items. Misunderstandings and communication mistakes are costly,
especially those introduced early in the life cycle. Hence, it is essential to support commu-
nication and cooperation during the overall life cycle.

Based on the results of studies in distributed and large projects, including one per-
formed by the author, we have designed iBistro, an experimental environment for cap-
turing knowledge during the various stages of both distributed and single site software
projects, structuring the knowledge during a rationale-based approach, and retrieving the
knowledge during subsequent stages of the development process or later projects in the
same organization. In developing iBistro, our goal is to interfere as little as possible with
the development methodology and tools of an organization, while improving the cover-
age and the quality of the knowledge captured. Thus, iBistro collects information using
a variety of knowledge sources and provides customizable knowledge views to build up
what we call group memory.

This research further proposes a common architecture for knowledge capture, acqui-
sition, and retrieval. This architecture, called the distributed concurrent blackboard archi-
tecture (DCBA), extends the concept of a blackboard architecture in artificial intelligence.
The DCBA enables the concurrent capture of information and knowledge through many
communication vehicles, such as meetings or brainstorming sessions (using i.e., SMART
Boards), email, or artifact-based tools (e.g., version control). The DCBA in its distributed
nature is designed specifically to support distributed balanced teams in synchronous and
especially asynchronous settings.

An implementation of the DCBA has been developed and tested in a distributed setting
between the National University of Singapore and Technische Universitit Miinchen. The
distributed scenario revealed the difficulties in distributed work introduced by unstruc-
tured and non-integrated communication tools in contrast to the DCBA as a knowledge
repository for the small workgroup. The dissertation suggests a team-formation to deal
with global software engineering, the balanced team, and how they can be supported by
the DCBA.

Keywords: Technologies & tools for distributed development; Communication, col-
laboration, and knowledge management in distributed organizations

ACKNOWLEDGMENTS

Pursuing this thesis made clear to me that this would have never been possible
without the support and encouragement of a lot of people.

First, I would like to thank my counselor at Accenture and founder of this
research, Frank Mang. Frank has been my mentor, my confidant, my colleague,
and a fount of moral support in pursuing this dissertation and balance it with the
challenges of project work at Accenture.

At Accenture, I found an open and interested atmosphere and much support
right from the start. Martin Illsley, Ph.D., at the Accenture Technology Labs (for-
merly C-Star), Sophia Antipolis, France, supported me in my ambition to visit
researchers at Accenture Technology Labs and discuss my research proposal and
current areas of research at Accenture. Edy Liongosari and Igor Gordon at Ac-
centure Technology Labs in Northbrook, Il., and Luis Monterro, 161 North Clark
office, Chicago, hosted me and introduced me to recent Accenture research (and
by the way made possible an interesting stay at Chicago). Wolfgang Behr sup-
ported me in designing and especially performing the communication study.

I also want to thank the fellow employees, colleagues, and doctoral students
at the chair for Applied Software Engineering and specifically the members of
the Global Software Engineering (GSE) research group at TU-Miinchen. The
informal meetings in the GSE group helped to clarify a lot and also enabled a
larger research program, including related efforts and research in the GSE group.

I am also grateful for the industry contributions I received. I have to thank
SMART Technologies Inc., Toronto, Canada, for accepting my research proposal
and supporting the chair with two SMART Boards™.

Many research projects at university would not be successful without the sup-
port of students writing diploma, master’s, or bachelor thesises. In my case, I
have to thank Oliver Hengstenberg, Lilith Al-Jadiri, Roland Zumbkeller, Guying
Hu, and Florian Nikitsch.

Especially the students in longer-term appointments made important con-
tributions to iBistro. Oliver Hengstenberg implemented and tested the MEET-
INGGENERATOR tool during his diploma thesis “Video-based Capture of Rationale
Information in Informal Meetings”. Roland Zumkeller started with evaluation
and installation of the SMART Boards at the chair and ported the MEETINGGEN-
ERATOR to the SMART Board. Roland also started with implementing and evalu-
ating the knowledge taxonomy for the repository and designed an initial version
of the database.

Guying Hu implemented the first prototype of iBistro’s architecture during
his bachelor thesis. Guying also supported the case study between Singapore and
Munich and participated in several “global debugging sessions” — often in the

early morning at Munich. Florian Nikitsch jumped right into the project with
many hours of bug-fixing. Roland also worked from Singapore in the globally
distributed case study. Roland finally implemented and tested the distributed
concurrent blackboard architecture. Florian also investigated the performance of
the iBistro system in this global setting and made important changes to improve
iBistro’s speed.

I want to acknowledge my supervisor and principal reviewer, Prof. Bernd
Briigge, Ph.D., for his guidance and comments on this dissertation and the pub-
lications that were written while pursuing my dissertation.

[also want to thank my second reviewer, Prof. Dr. Johann Schlichter, for his
comments on related work during the earlier stages of the dissertation and for his
fast review and valuable comments on the final draft.

Finally, I want to thank Allen Dutoit, Ph.D. for his guidance, support, and
coaching during three and a half years of dissertation and for helping to nego-
tiate a suitable and contributional research setting between TU-Miinchen and
Accenture.

CONTENTS

Introduction. L 1
1.1 Thesis ContributionsandGoals. 4
1.2 DissertationQutline. 6
1.3 Notation. v v v v it ittt e e e e e 8
Terms and Definitions. 9
2.1 Usersof Groupware Systems. v v v v v v v o u .. 10
22 Distribution. o0 e 12
2.2.1 Levels of Distribution 13
2.2.2 Levelsof Cooperation 14
2.3 Dimensions of Distribution. 16
2.4 Global Software Development Teams 16
2.5 The Standard Blackboard Model 18
2.5.1 The Blackboard Pattern 24
2.5.2 The Broker Architecture for Blackboard Systems 25
2.6 Empirical Methods in Social Research. 26
2.6.1 Qualitative vs. Quantitative Methods & Data 26
2.6.2 Qualitative Methods for Data Collection 27
2.6.3 Combination of Qualitative and Quantitative Methods 31
2.6.4 Data Analysis Methods. 31
2.7 Quantitative Metrics ¢ v i i i e e e e e e e e 32
2.7.1 Overview of Empirical Methods 34

Problem Definition. 35

3.1 Distributed Software Development 35
3.1.1 Project Communication 42
3.1.2 Project-based and Functionally Structured Organizations. . . 43
32 ResearchlIssues 46
3.2.1 CommunicationIssues. 46
3.2.2 Organizational Issues. 48
3.2.3 Issues Related to Knowledge & Artifact Management 49
Communication in Software Development Projects 53
4.1 ResearchContext v v v v v v v v v v v v v v un 56
41.1iBistro 56
4.1.2 Academic Projectso 56
4.1.3 Industrial Projects, 57
4.2 Experimental Environment 57
4.2.1 The Customer: A Banking Corporation. 57
4.2.2 The Consultancy: Accenture 58
4.2.3 The Project: A Post-Merger Project. 58
4.2.4 Technical Architecture and Framework 59
4.2.5 Team Performance Metrics 62
4.2.6 The Release under Investigation: Release4 63
4.2.7 The Development Teams 65
4.3 Setup of the CommunicationStudy 67
4.3.1 Approach and Data Collection 67
4.3.2 Quantitative Performance Metrics 70
4.3.3 Potential Restraints to Scientific Validity 70
44 Results e e 71
4.4.1 Team Performance. 71
4.4.2 Electronic vs. Face-to-Face Communication 72
4.4.3 Intra-team versus Inter-team Communication 74
444 CommunicationPeers 75
4.4.5 Roles and Responsibilities 76
4.5 SummaryofResults. 77

i

4.6 Related Studies and Comparison 78

4.6.1 Overview of Related Studies 78
4.6.2 Results Compared to Related Studies 79
The iBistro System 81
5.1 Visionaryscenariost v v e e e e e 81
5.2 iBistroScenarios 000 o o e e 82
5.2.1 A Single-Site Meeting iniBistro. 84
5.2.2 Resumption of a Meeting iniBistro. 86
5.2.3 A Distributed Meeting iniBistro 88
53 RelatedWork 920
5.3.1 Live Single-Site Meeting Support. 90
5.3.2 Live Remote Conferencing 91
5.3.3 Asynchronous Groupware Systems 94
5.3.4 Related Projects 95
iBistro Architecture and Framework 99
6.1 Chapteroverview v v v v v v v v v vt e e 929
6.2 The Distributed Concurrent Blackboard Architecture (DCBA) . . 102
6.2.1 The Blackboard class 103
6.2.2 The DCBAConnectorclass 104
6.2.3 The Control and Strategy classes 105
6.2.4 The Historyclass 106
6.3 Knowledge Storage & Representation 109
6.3.1 Ontology & Knowledge Modelingin UML 109
6.3.2 Object Linkage. 110
6.3.3 Persistent Storage L. 113
6.4 MeetingCapture. v v ittt e e e 114
6.4.1 ContextCapture 115
6.4.2 Artifact and Video Capture. 116
6.5 Knowledge Acquisition00, 117
6.5.1 Manual vs. Computational Knowledge Acquisition 118
6.5.2 Knowledge Sources. 118
6.5.3 Knowledge Source Scheduling and Execution. 119

il

6.6 Knowledge ViewsandRetrieval 120
6.6.1 Temporal Knowledge Views 121
6.6.2 Meeting Browsers00 121
6.6.3 3D Knowledge Views. 121
6.7 System Summary and Propertiesof the DCBA. 123
6.7.1 Transparency.o oo 123
6.7.2 The Effectsof Scale. 124
6.7.3 Comparison with the Original Blackboard Metaphor 124
Empirical Approach and Research Prototypes 127
7.1 TIteration 1: The MEETINGGENERATOR v v v v v o .. 129
7.1.1 Scope e 129
7.1.2 Approach o 130
713 Conclusion.o 138
7.2 Iteration 2: The Single Blackboard Architecture. 139
7.2.1 Scopeo 140
722 Approach Lo Lo 140
7.2.3 Lessons Learned and Next Steps 142
7.3 Iteration 3: The Distributed Concurrent Blackboard Architecture. 143
7.3.1 Scope ..o e 143
732 Approacho Lo 144
733 Lessons Learned 144
74 Discussion. 00 o e e e e e e e 147
Discussion 149
81 Obstacles e 150
8.1.1 Standardization of Infrastructures 150
8.1.2 Social, Organizational, & Management Impediments 151
8.2 Related and OngoingResearch 151
8.2.1 ABX: Group Awareness. 152
8.2.2 ADReaM: Distributed Modeling 152
8.2.3 REQuest: Rationale Use in Distributed Software Engineering . 152
8.2.4 Smart Aquarium: User Modelling 153
8.3 Outlookand FutureWork. 153
8.3.1 Domain Expert Knowledge and Intelligent Support. 153

iv

8.3.2 FutureStudies o 154

Research Material 155
Al Interviewguide oo 155
Abbreviationsand Glossary 161
B.1 Abbreviations. 162
B2 Glossary. oo e e e e e 163
Bibliography. 167

vi

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9
2.10
2.11

3.1
3.2

4.1
4.2
4.3
4.4
4.5

4.6
4.7

LIST OF FIGURES

Exponential cost of change leading to project failure.

Distribution over space, time, and community.
Classification of CSCW systems according to the 3C-Model.

The Evolution of Blackboard Systems.
The standard blackboard model.
The layered blackboard architecture.
The dynamic model of the standard blackboard architecture. . . .

The dynamic model in a generic broker architecture (collabora-
tiondiagram). L.

Structured interview example. L.
Semi-structured interview example. L. ...
Standardized interview example. L.

Coding example during a semi-structured qualitative interview. .

Levels of distribution in software development projects.

The project-based organization model used in iBistro.

Distributed balanced teams using the iBistro infrastructure.

Overview of the project under investigation.
Release planning (retrospective view).
Simplified common technical framework for Release 4.

Project Management Workbench (PMW) estimation and status
trackingsheet.

Life cyclefor Release4.

Teamstructure and Organization Chart for Release 4.

3

14
15
19
21
22
23

25
29
30
30
32

39

64

4.8
4.9
4.10
4.11
4.12
4.13

5.1

5.2
5.3

5.4

5.5

6.1
6.2
6.3
6.4

6.5

6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2

7.3

Demographic distribution and mean age of the interviewees. . . . 70

Team performance. 71
Rating of communication vehicles. 73
Quality of intra versus extra-team communication. 74
Communicating Peers. 75
Roles and Responsibilities 76

Overview of scenario distribution over space, time, and commu-
NILY. . o oo e e e e e e 83

Temporal flow of events in an iBistro single-site meeting example. 84

Flow of events in the ‘Singapore’ remote meeting example with
link to the preceding meeting held in Munich. The links shown
in the preceding Munich-meeting were created during the post-

mortem process by the Munich meeting champion. 87
Overview of related work — competing versus complementary

work. .o 90
Overview of the CIFE iRoom configuration and architecture [Fis-

cheretal,2002] 97
Informal overview of the iBistro system. 100
Classes in the Distributed Concurrent Blackboard Architecture. . . 104
The 4-tiers in the iBistro Architecture. 106
The flow of events and control in the DCBA (collaboration dia-

GrAM). .« v v v v e e e e e e e e e e e e e e e e e 108
Workflow from ontology modeling in UML to concrete know-

ledgeinobjects. 111
The basic model of a project-ontology in iBistro. 112
Collaboration of components to process a query. 114

Capture of contextual events in the DCBA’s CaptureComponents. 115

Capture of artifacts and video streams 116
Knowledge source evaluation and scheduling. 120
Information in iBistro seen as a 3D-model of knowledge. 122
Overview of the overall iBistro architecture. 123
Overview of the incremental development and case studies. . . . 127
The three iterations and resulting deliverables during iBistro im-

plementation and evaluation. 128
AQOCdiagram. 129

7.4
7.5
7.6

7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

7.15
7.16
7.17
7.18
7.19

7.20

7.21

7.22

7.23

7.24
7.25

A.l
A2
A3
A4
A5
A.6

The model of a meeting in iBistro (UML class diagram). 130
Actors in the MEETINGGENERATOR tool (UML use case diagram). 131

The record meeting use cases for meeting recording (UML use

casediagram)..o 132
The record meeting (UML use case diagram). 133
A screenshot of the MEETINGGENERATOR in recording mode. . . . 133
A screenshot of the MEETINGGENERATOR in editing mode. 133
View the QOC representation of the meeting. 134
Add a QOC-option to the meeting minute. 134
Meeting minute navigation by highlighting linked events. 135
Object diagram of generic context to knowledge item linkage. . . 135
Add a revised version of an existing criteria, hence creating a new

VEISIOM. . o v v v vt i e e e e e e e e 135
Highlight all versions of the selected criteria. 136
Object diagram for version linkage. 136
Meeting minute navigation by highlighting linked events. 136
Class diagram of QOC linkage. 136
Taxonomy of data items and events stored in iBistro (UML class

diagram). 137
Objects and model of the MEETINGGENERATOR (UML class dia-

GrAM). « v v v v e e e e e e e e e e e e e e e e 137
Model of the iBistro taxonomy using the JDOM API (UML class

diagram). 137
Setup of the first experiment between Singapore and Munich

(UML component diagram). 141
Hierarchy of iBistro services used in the single blackboard archi-

tecture (UML class diagram). 141
DCBA deployment diagram. 143
The final implementation of the distributed blackboard architec-

ture. e 145
Interview guidepage 1 156
Interview guidepage2 156
Interview guidepage3 157
Interview guide page4 157
Interview guidepage5 158
Interview guidepage6 158

X

A.7 Interview guide page 7
A.8 Interview guide page 8
A9 Interview guide page 9

2.1
2.2

3.1

3.2

5.1

7.1
7.2
7.3

8.1

LIST OF TABLES

Distribution over space and time. 13

Overview of methods used in empirical software engineering. . . 34

Meeting attributes (shown in the left column) related to types of

informal meetings. 44
Roles and related instanced of roles in a software development

Project. e 46
Comparison of related projects. 98
System and hardware configuration for the Benchmark. 146

Benchmark: Cached objects versus objects restored from database. 146

Benchmark: Local versus remote DCBA access time. 146

Related and ongoing research in the GSE group. 152

xii

CHAPTER 1

INTRODUCTION

“Software is Hard.”

[DONALD E. KNUTH],
Oct. 5th, 2001, at Technische Universitit Miinchen.

We believe that globalization and distribution of companies and teams is a matter
of fact for the future work environment. Just as one would diversify the risk in a
stock portfolio companies need to diversify geographic locations. With advances
in technology, no longer is it essential for employees to be located in one location.
Many companies are reevaluating their location strategy and deciding to diversify
their risk, because the permanent availability of company-resources, such as IT
infrastructure, is vitally important for most organizations. Investigations in the
banking industry showed, that a complete breakdown of IT infrastructure for
two days would likely ruin an international banking corporation [Kaufman et al.,
2002].

In the short term many companies simply distribute operations and employ-
ees in different buildings in different parts of the city or in nearby locations.
However in the long term, technology advances such as video conferencing, video
streaming and local broadband make distributed work look like local work again
and hence enable the virtual workplace. There should be little or no limitations
on where business operations and employees can be located.

The experiences and problems with software labs with students at Technis-
che Universitit Miinchen, Carnegie Mellon University, and National University
of Singapore inspired our desire for an “intelligent workplace” for all locations
the student classes would take place at. This dissertation describes the software
architecture and specific tool support for iBistro'. iBistro is originally meant to be
an informal coffee room to support any type of casual meeting or brainstorming

!The term iBistro goes back to the initial idea of an augmented coffee room. The atmosphere
of a bistro, so the idea, shall foster the informal nature of meeting in iBistro.

Chapter 1 e Introduction

session and therefore help vanquish the differences in time, location, and culture.

During several stages of testing and working with iBistro prototypes, the im-
portance of supporting local teams in their location, while interconnecting such
teams in different sites became obvious. iBistro hence allows for synchronous
support of local team meetings and makes the outcome (minutes) of the local
meeting available to asynchronous users. (For instance, remote users at a differ-
ent time or for later use in the same location.)

This dissertation inspects the requirements for iBistro as an exemplary proto-
type for an intelligent meeting room and describes the realization of five funda-
mental concepts of iBistro: knowledge capture, knowledge acquisition, storage,
knowledge representation, and knowledge retrieval. The main focus of this dis-
sertation is to collect sufficient insights and actual data to allow for the design
and implementation of a technical infrastructure — in terms of a framework —
for improved project communication and project management in typical soft-
ware projects, regardless of the chosen approach (i.e., programming language,
development methodology, and tool support).

DeMarco and Lister observed 1979 in a survey that fully twenty-five percent
of projects that lasted twenty-five man-years of work or more failed to complete.
In the early surveys, they discarded these failed data points and analyzed the oth-
ers. Since then, DeMarco and Lister have been contacting whoever is left of the
project staff to find out what went wrong. For the overwhelming majority of the
bankrupt projects studied, there was not a single technological issue to explain the
failure. [DeMarco and Lister, 1979]

In the majority, the surveyed team members named organizational ‘politics’
as cause for the project to fail. Politics, however, is a rather broad term in the con-
text of software engineering. In many cases, further investigation showed that
the real reasons for project failure are to be found among the following prob-
lems: communication, staffing, disenchantment with the boss or the client, lack
of motivation, or lack of turnover [DeMarco and Lister, 1979].

DeMarco’s and Lister’s final assessment? is: “The major problems of our work
[software development or IT consulting] are not so much technological as soci-
ological in nature.”

Following DeMarco and Lister, the project sociology, including communica-
tion, is the main trigger for project failure. Communication in turn, is responsi-
ble for the exponential increase in cost of change [Brooks, 1995]. The resulting
negative return on investment (ROI) is an indicator for failure of such a project.

Figure 1.1 shows the coherence between cost of change and return on investment
leading to project failure. The figure shows three phases. First, on project incep-
tion, the cost curve is flat and ROI is positive. Second, the cost starts increasing

Further studies and investigations are discussed in Chapter 4.

with the number of changes. Cost quickly overcome additional value added from
the features or change implementation. Third, changes made after the cost be-
come exponential, the additional cost overwhelms all return gathered from the
product so far, leading to project failure.

Cost cost of development

A

> returns from product

negative ROI

A

—
positive ROI » Change

Phase 1 Phase 2 Phase 3

Project failure...)

Figure 1.1: Exponential cost of change leading to project failure.

Today, complete failure is not the only and might not be the major threat to
a project manager.Management understands the importance of teams and team-
work, human aspects in development, and sociology. However, software is still
frequently delivered late, over-budget, and with many remaining errors. Addi-
tionally, a competitive market places extreme demands on software development
managers, teams, and the products they produce. In many cases a barely accept-
able product developed quickly will be preferred to an excellent one produced
slowly, especially under time to market pressure. Many invisible attributes of a
product as well as attributes of the process that created the product are often the
most compromised in the name of acquired market share or a better cost to profit
ratio. Examples for attributes neglected are the software architecture on the tech-
nical side, and design rationale documentation on the process side. Both add
overhead to the project that pays off only in a subsequent project, for instance in
a new release or a new project.

Software developers have to deal with three categories of problems: First,
“soft” issues such as people matters and related issues in communication, human
performance, and work organization; Second, essential and technical problems
of deciding what to develop; Third, accidental and methodical problems of de-
ciding how to develop (for instance, how to model it, what tools to use, what

Chapter 1 e Introduction

1.1

operating system to install).

The “soft” issues of software development are inextricably bound to the struc-
tures, processes, tools, and outcomes of the organization. By building and under-
standing these elements, project managers can engineer them to enable them-
selves and their developers to create successful systems. The categories of issues
in software engineering — knowledge, communication, technology, and manage-
ment — are interlocked. For instance, an essential problem in developing a soft-
ware system is to specify, design, and test the conceptual constructs of data sets,
data items, and algorithms. During the early phases of the project, one has to
communicate a lot with various stakeholders. The challenge is to save this in-
formation for later re-use to start the process of translating requirements into
software. During design and implementation, one has to recapitulate informa-
tion and knowledge captured earlier. And during all the phases in a concrete
project, we have to deal with people, essence, and accidents.

The key is to find a way to integrate the essence/ technical issues, the acciden-
tal/ metholodical issues, and people in a software development project.

THESIS CONTRIBUTIONS AND GOALS

This dissertation proposes integrated tool-support to take into account three ma-
jor issues in software development: First, human communication during the
overall process in single-site and globally distributed settings. Second, deciding
‘what” to develop, during the proposal and requirements engineering; Third, the
transition from requirements to implementation by recapturing earlier know-
ledge during design and implementation, including later phases, such as testing
or roll- out.

The early phases in a software project, while being crucial for the eventual
success, are difficult to structure and much of the content and rationale generated
during those phases is often lost. Requirements engineering is communication
intensive and requires the collaboration of many stakeholders representing dif-
ferent positions. For example, the early stages of requirements are characterized
by many informal interactions, often happening face-to-face. The aim of early re-
quirements meetings is to clarify, brainstorm, and negotiate requirements. While
the final requirements describe “what to build”, part of the discussion leading to
that stage contain the rationale argumentation; stakeholders in this process, such
as clients, domain experts, consultants, or developers, are consolidated as identi-
ties; the location a meeting took place in represents the “where” in this model.

iBistro’s group memory is a knowledge base that is designed to answer ques-
tions that occur during the distributed software development process, for exam-
ple to find responsible stakeholders or artifacts such as documents or source code.
Many of these issues are answered during requirements elicitation. It is, however,

1.1 e Thesis Contributions and Goals 5

very important to capture those early phases to have the issues available in the
later phases of development. For instance to automatically create a list of all is-
sues stakeholders identified during requirements meetings in the design phase.
This can also be used to automatically create a list of all open issues.

Because requirements are the hardest part in development [Brooks, 1995], we
specifically investigated requirements engineering. Misunderstandings and mis-
takes introduced during the early phases are costly, as they impact on all other
phases of software development’. Also, content, knowledge, and rationale that
have been lost are hard to reconstruct, if ever possible. Hence, the key is to sup-
portand capture communication during requirements engineering. While much
research in requirements engineering has been done to support formal negoti-
ation during requirements [Boehm et al., 1998; Damian et al., 2000; Kotonya
and Sommerville, 1996; Sutcliffe and Ryan, 1998; Al-Rawas and Easterbrook,
1996], much less attention has been paid to brainstorming and informal meet-
ings [Nakanishi et al., 1999; Dourish, 1996; Braun et al., 2001a].

We describe features of iBistro, an experimental environment for capturing
informal meetings with roomware* technology, structuring the meeting minutes
along with other project-related information using a rationale-based approach,
and retrieving the minutes during subsequent informal and formal meetings.
Along with capture and retrieval of knowledge, iBistro features knowledge acqui-
sition and links knowledge and information from distributed different-location
and different-time meetings in shared and distributed knowledge repositories.

In summary, the scope of the dissertation is:

e To support requirements for distributed projects by providing a tool for
collaboration support.

e To support informal meetings and brainstorming sessions.

e To realize a 'group memory’ to support distributed balanced global devel-
opment teams.

e An ontology and taxonomy to allow for information to knowledge transi-
tion.

The technical contributions in iBistro are:

e A new software architecture exceeding the capabilities of the original black-
board model. This comprehends a transparent infrastructure for know-
ledge acquisition and search for answers to development problems.

3This issue is also addressed, but with a different approach, by agile and iterative software
development [Beck, 1999; Kruchten, 2000].

*Roomware is a collective term for electronic equipment to equip rooms with in order to
improve collaboration and foster team-work.

Chapter 1 e Introduction

1.2

e An implementation and evaluation of the transition from the distributed
concurrent blackboard model to persistent relational data storage.

e Implementation of specific knowledge sources for audio and video capture
of informal meetings.

e Implementation and evaluation of a group memory that enables the inte-
gration of various communication media.

e Implementation and evaluation of a common framework and architec-
ture to allow for future development of distributed knowledge sources and
views for iBistro or similar tool support.

DISSERTATION OUTLINE

The dissertation is structured in three parts. Part 1 describes the problem do-
main and identifies requirements for a tool support. Part 2 describes the analysis
and design for a visionary iBistro system on the base of scenarios. A software
architecture and a framework for iBistro is suggested. Part 3 describes the actual
implementation, lessons learned during testing and a case study of a distributed
project between TUM and the National University of Singapore.

PART 1. REQUIREMENTS ELICITATION & ANALYSIS

Chapters 2 through 4 serve as input for the requirements and provide require-
ments specification for the collaborative tool support:

Chapter 2 defines various terms and introduces the solution space. In the
chapter, we categorize group work and computer supported cooperative work,
human-computer interaction, knowledge management, introduces blackboard
software architecture style, and discusses empirical methods in social research
and quantitative metrics.

In Chapter 3 we introduce informal meeting support as an application do-
main in distributed and global software projects and describe typical organi-
zational structures in industrial software projects. We argue that global soft-
ware projects, given the advancements in software engineering over the past two
decades, are a consequence of “division of labor”in non-distributed organiza-
tions. We then describe the research context and test beds for the implementation
prototypes and tool-support.

In Chapter 4, we take a closer look at the non-technical aspects, in particu-
lar the communication vehicles used in team communication and cooperation
during a industry software project. We investigate the specific requirements for

1.2 e Dissertation Outline 7

iBistro as a team support tool by examining intra and extra-team communica-
tion during the implementation phase of a large software development project in
the banking industry.

The chapter introduces the concept of a “balanced team” to allow for both
improved project success as well as distributed development. We compare two
teams that were organized as a balanced team against eight teams with a more
traditional composition as found in large projects.

We look at the project situation that built up the environment and exper-
imental conditions for our survey. Based on a scientific evaluation using the
quantitative and qualitative methods introduced in Chapter 2, we then present
and assess the results of our survey and relate them to global software engineer-
ing.

PART 2: VISIONARY SCENARIOS AND DESIGN

In Chapter 5, we describe iBistro as a testbed for experimentation with distributed
software teams, in particular for support of augmented and informal meeting
spaces.

We also discuss related and competing systems to iBistro. In particular, we
investigate support systems for (synchronous) face-to-face meetings and live re-
mote conferencing.

Chapter 6 starts with an overview of the technical architecture of the solution,
and argues for a blackboard-based approach to support distributed teams of de-
velopers. The approach is broken down into five fundamental concepts for the
system: information and meeting capture, knowledge acquisition, knowledge
storage, knowledge representation, and knowledge retrieval. These concepts
are then mapped to components of the architectureand discussed in detail. Fi-
nally, we give an overview of the resulting system and discuss its properties.

PART 3: ITERATIONS, DISCUSSION AND FUTURE DIRECTIONS

Chapter 7 describes the empirical approach of our research. We present the
iBistro prototypes and components used during our case study. The iBistro com-
ponents were developed in several iterations. In the first iteration we designed,
developed, and evaluated the MEETINGGENERATOR component. In the second
and third iteration, the software architecture, the framework for the distributed
concurrent blackboard architecture, and the test harnesses used were designed,
implemented, and tested. The chapter also discusses the lessons learned from the
research prototype.

In the final chapter we describe expected obstacles and issues that likely would
occur if iBistro or the distributed concurrent blackboard architecture is used out-

Chapter 1 e Introduction

1.3

side an academic context, for example in the IT consulting industry. We close
with an outlook on how this research could be used and continued at the Chair
for Applied Software Engineering at the Technische Universitit Miinchen and
specifically within the Global Software Engineering research group at TUM.

The appendix contains a glossary, a catalog of a abbreviations, further imple-
mentation details, research material, such as interview guides and statistic mate-
rial, and finally a bibliography.

NOTATION

Throughout this dissertation, we will use the following notation and typesetting:
Italic typeface indicates the introduction of a special keyword or term that will
be used consecutively. Boldface is used to emphasize important catchwords or
results. Sans-serif font in the navigational text refers to names and labels used in
a figure or table; the typesetter font is used for computer text, such as classes
and programming language.

CHAPTER 2

TERMS AND DEFINITIONS

Die meisten Definitionen
sind Konfessionen.

[LUDWIG MARCUSE]

In 1984, Paul Cashman and Irene Grief coined the term “computer-supported co-
operative work” (CSCW) during a workshop of people from various disciplines
who shared the common interest in how people work and how technology could
support them. Since then, researchers have continually worked on electronical
support for cooperating people and groups. Even though researchers were in-
terested in group support earlier, CSCW started a new era by integrating new
technology, such as minicomputers, and, more importantly, various scientific
disciplines [Grudin, 1994].

While CSCW refers to the abstract application domain, groupware usually
refers to the corresponding software solutions or systems. We use the following
definition for groupware:

Definition. Groupware are computer-based systems that support
groups of people engaged in a common task (or goal) and that pro-
vide an interface to a shared environment. [Ellis et al., 1991]

Groupware systems can support both interactive and non-interactive collab-
oration. Examples for non-interactive collaboration are people collaborating via
newsgroups, electronic messaging, or shared filesystems that address the asyn-
chronous remote collaboration of people. In interactive collaboration, participants
work together synchronously. Examples are meetings, telephone calls, conversa-
tions and related technical support, such as whiteboards etc.

The users of a groupware system are interconnected people who work towards
a common goal and share common interests. Groupware systems include the

10

Chapter 2 @ Terms and Definitions

2.1

notification of users and the awareness of other participants, in particular the
awareness of the concurrency of their work.

USERS OF GROUPWARE SYSTEMS

The users of groupware systems can be teams or communities. In this disserta-
tion, we will consecutively use the following definitions.

If an organization spans social or other borders that delimit communities,
it is likely that teams from different communities have a working contact. The
term community spans two areas: first, actual social groupings and second the
particular quality of relationship. A community indicates actual social groups by
comprehending people with common interests or living in a particular area. The
community describes a state of organized, while traditionally relatively small, so-
ciety, and the locality (for instance the people of a district). The particular quality
of relationship is indicated by the quality of holding something in common (as
in community of interests or communities of goods) and the sense of common
identity and characteristics.

Local groupings are based on proximity and sometimes on face-to-face re-
lationships (as in a local community or in community work). Communities of
interest are for instance research or business communities. Community charac-
teristics occur in ethnic communities. The community has a specific quality of
relationships by sharing of similar attributes, values, identities, and by partici-
patory decision. In a community, this is connected with emotional and moral
investments.

In this dissertation, we will use the following definition for community:

Definition. A community is a group of people who are sharing some
similarities, such as language and having a particular quality of social
relationship.

If the common similarity of a community is, for instance, common language
and social togetherness, community borders are crossed if communication ex-
ceeds these properties by addressing external persons belonging to a different
social class, i.e. speaking a different first language.

Definition. Community borders are the boundaries of a community.
If communication exceeds the limits between two specific commu-
nities by overcoming the common similarities which define the com-
munity, it crosses community borders.

2.1 e Users of Groupware Systems 11

If a community works together based on electronic means, it becomes a vir-
tual community. A virtual community is a community of people sharing com-
mon interests, ideas, and feelings over the Internet or other collaborative net-
works. Rheingold defines virtual communities as follows:

Definition. A virtual community is a social aggregation that emerges
from electronic communication (for instance using the Internet) when
people carry on public discussions with sufficient human feeling to
form webs of personal relationships in the electronic media. [Rhein-
gold, 2000]

In other words, the virtual community is a team formation that spans local-
ity and is interwoven by electronic communication vehicles. Virtual communi-
ties existed before the world wide web (WWW) on bulletin board services (BBS).
Some virtual communities or facilitators of them use the metaphor of a coffee
house to help users visualize the concept. In general, there are two kinds of com-
munication among virtual community members: asynchronous message post-
ings and synchronous chat. Usenet newsgroups are an example of the former.
Many Web sites, such as Geocities focus on subject information exchanges. For
real-time chat, Internet Relay Chat (IRC) is a system used by many Web sites that
foster virtual communities.

The notion of a community can be split in two variants, depending on the
objectives that led to the formation of a community. In large organizations, ex-
perts of local or virtual teams together can form a community of interest sharing
some common interest. For instance, the IT security experts for all professional
practices may form a worldwide community of interest for the specific domain of
IT security, while all software developers interested in software architecture may
form an architecture speciality independently of their application domain.

Definition. A grouping of users who generate a majority of their
communication traffic in calls to other members of the group is
called community of interest (also known as special interest group).
The community of interest may be related to a geographic area or to
an administrative organization.

The second variant is the community of practice, which is build from the con-
forming involvement in a common process.

Definition. The community of practice shares the joint possession of
a common process, still pursuing different professional goals. [Koch,
2003]

The most advanced form of a community is a team [Borghoff and Schlichter,
2000].

12

Chapter 2 @ Terms and Definitions

2.2

Definition. A team is a group of interconnected people who work
together on a temporary assignment, such as a project. The team
works towards a common goal, sharing some artifacts [Borghoff and
Schlichter, 2000].

Teams are a omnipresent reality in today’s projects and define how people
relate to one another in the integration of their task, social, and emotional activ-
ities. For instance, a local requirements engineering team in Germany can be in
contact and work together with a software development team in Asia.

Professional software development teams in non-distributed scenarios work
based on proximity in a sense of working for instance in the same building. They
share the same professional interest as they work on the same problem and to-
wards a common goal. Software development teams typically share the same
company culture.

eXtreme Programming (XP) [Beck, 1999], for instance, is based on small and
co-located teams. Co-located teams cover almost all of the affected groups and in-
dividuals in the software development process. The three most important success
factors for co-located teams are culture, people, and communication [Lindvall
et al., 2002]. Agile Methods need cultural support otherwise they will not suc-
ceed. Competent team members are crucial. Agile Methods use fewer, but more
competent people. Physically co-located teams and pair programming support
rapid communication. Close interaction with the customer and frequent cus-
tomer feedback are critical success factors. Large distributed teams may need to
rely on more documentation and adopt RUP [Kruchten, 2000] or other less agile
processes.

DISTRIBUTION

Teams and software developers were organized co-located to improve commu-
nication, hence reducing communication errors and finally risk. In distributed
scenarios, communication media is needed to interconnect teams and distributed
communities. Being virtual communities, distributed communities of interest are
typically interconnected using electronic means, such as a shared knowledge base
or discussion forums. Communication media such as the internet or video-
conferencing and the broad availability of affordable and fast travel enable dis-
tribution in various professional scenarios, including development of software
on two or more different continents.

2.2 e Distribution 13

2.2.1 LEVELS OF DISTRIBUTION

Independently from the geographic location, a meeting can take place at the
same time (synchronous meeting) or at different time (asynchronous meeting).
A face-to-face conversation or a phone call are examples of synchronous meet-
ings. Communication can also take place asynchronously (different time). Asyn-
chronous communication is important in scenarios where co-workers are located
in different time zones.

Grudin [Grudin, 1994] considers the distribution in time and space with re-
spect to mobile communications and extends the time-place matrix by aspects of
mobile communication. (See Table 2.1.)

Mobility is an important aspect in distributed scenarios. In a virtual com-
munity, it is more difficult to predict the location a user is reached in if mobile
communication is used. Mobile developers cannot fall back on the full set of re-
sources (such as documents, files, technology, ...) as a team member in the office

could.
Same time Different time
Synchronously Asynchronously
Predictable Unpredictable
Same place Face-to-face meeting Work shifts Blackboard,
team room

Different place | Video conferencing, Email Collaborative group editing

Predictable phone call
Different place Mobile phone Non-realtime Transaction processing,
Unpredictable conferencing computer conference workflow, b-boards

Table 2.1: Distribution over space, time, including aspects of mobile communication.
[Grudin, 1994; Borghoff and Schlichter, 2000]

Users can be reached in an unpredictable location if they are using a mobile
phone. A mobile user, for instance, might be reached away from the workplace.
As a result, a mobile user could be unable to cooperate with a colleague, for in-
stance due to missing resources or documents. In contrast, the location of a same
time/ different place non-mobile phone call, is predictable, as the location of the
telephone is known (if the telephone call is not forwarded).

Unpredictable time, on the other hand, results from the latency of the an-
swer. While an answer to a question in an ongoing telephone conversation can
be expected immediately, the latency for a email is less predictable.

In addition to the distribution over time and space, globally distributed teams
have also to deal with social and community borders. Figure 2.1 shows the dis-
tribution over time, space, and community in a 3-dimensional space.

This research started by supporting same place informal meetings, whether
they occur synchronously or not and in the same community or not (Cells A and

14

Chapter 2 @ Terms and Definitions

2.2.2

Place p
A Place p

tp.) A

Different place (1,(6:,0) (120)

A B
Same place (0,0,0) ©0,1.0)

|

Time t Same Different | Timet
time time

Community ¢
Community ¢

Figure 2.1: Distribution over space, time, and community. In the matrix on the right,
only distribution over place and time is shown in the same community. The matrix hence
represents the grey layer (p, ¢,0) in the 3-dimensional distribution space shown on the
left.

B) in the matrix on the right in Figure 2.1 [Braun et al., 2001a]. We then refine
iBistro’s features to support distributed meetings (Cells C and D). Due to our
focus on global software development teams, asynchronous communication is a
central issue in iBistro (Cells B and D).

The distribution scenarios shown in the distribution matrix in Figure 2.1 (A,
B, C, and D) all take place in the same community. As we are specifically inter-
ested in supporting international projects, iBistro has to support different com-
munities as well. By different communities in this context, we understand local
and remote groups who, while building a project team by working towards the
same project goal, do not share cultural and social similarities and properties be-
tween them. Community distribution would take place in Cell ¢ = (1,0,1)
and Cell D" = (1, 1, 1), where vector (p, t,0) denotes for instance the local com-
munity, while vector (p',#', 1) denotes the remote community. (Omitted in the
matrix shown on the right in Figure 2.1.)

LEVELS OF COOPERATION

Different distribution scenarios require electronic support for teams to cooper-
ate. Teufel [Teufel et al., 1995] classifies the level of support in electronic tools by
considering the intensity of cooperation. The intensity of cooperation is classified
into Communication, Coordination, and Collaboration. (Called the “3C”-Model.)

The lowest level of support is provided by communication tools, such as email,
or video- or teleconferencing. Communication can take place synchronously,

2.2 e Distribution 15

such as in a chat, meeting, or telephone conversation, or asynchronously, such as
in regular mail, email, or voicemail. Communication can take place with or with-
out physical presence. Communication represents the lowest level of support, as
it requires only an infrastructure for content exchange, regardless of what is actu-
ally transmitted. Beyond this, various communication vehicles or communication
media, the means of communication, provide point-to-point communication,
multicast communication, and broadcast communication.

Systems that help to coordinate the work of teams or individuals, such as
project management tools, are called coordination tools. While there are some
project management and coordination support tools, such as schedule planning
tools in Microsoft Outlook or Lotus Notes, it is worth mentioning that many
project management tools that are actually used are not necessarily electronically
based (such as the project managers’s calendar and notes book etc.). They are to
be considered in the design for a (informal) meeting support tool.

The highest level of support is provided by collaborative tools, such as group
editors or electronic meeting rooms. Collaborative tools support several team-
members to work together on the same artifact of work. A group editor, for
example, allows several authors to work on the same document while tracking
the changes made by each individual author and managing concurrent changes
on the same portions of the document.

Figure 2.2 shows the 3C-Model.

Communication
A

Messaging Email

Conferencing

Project Management Common Information
) Spaces Group Editing
Team Schedule Planning .
Calendar Tools EIeCtr%rggrﬁgssion

Coordination Collaboration

Figure 2.2: Classification of CSCW systems according to the 3C-Model and related tool
support (taken from [Borghoff and Schlichter, 2000]).

16

Chapter 2 @ Terms and Definitions

2.3

2.4

DIMENSIONS OF DISTRIBUTION

In distributed development we distinguish three dimensions of distribution: Geo-
graphical distribution, temporal distribution, and communication crossing com-
munity borders (community distribution).

Geographical distribution occurs in projects where the distance between sites
as well as the amount of different sites negatively impacts on an organization’s
communication and information exchange. Two reasons for this are that distance
complicates sharing resources and (technical) infrastructure and with increasing
distance the possibility of meeting in person is reduced.

Temporal distribution affects teams working in different time-zones, such as
on different continents or different work shifts. Temporal distribution is a result
of distance or shift-work. If the working hours of sites overlap, synchronous
communication is possible, for instance in face-to-face meetings or telephone
calls. With none or little overlapping hours, asynchronous media, such as email
or fax, has to be used, resulting in much higher latency.

Community distribution affects people in a community who do not necessar-
ily know each other or interact on a personal basis. In the case of global compa-
nies and world-wide staffing, people from different organizational cultures work
together in a single project. Each group may have its own language, terminology,
tools, and methods, making collaboration difficult.

Geographical distribution, depending on the distance, also may entail tem-
poral and community distribution, for instance if an organization is distributed
over two continents. Human project communication is party affected by the
company culture, team composition, community composition and other aspects
that result partly from the distribution scenarios.

GLOBAL SOFTWARE DEVELOPMENT TEAMS

Global software development teams access complementary resources from multi-
ple countries. They provide a structured partnerships in different countries and
leverage capabilities of each center to create cost-effective solutions. We intro-
duce the following definition for a global software development team:

Definition. A global software development team (GSD team) com-
prises the involvement of at least two collaborating teams with ge-
ographical distribution so that (1) different social groups of people
working in the teams are involved, (2) the resulting time-shift allows
no or little synchronous work (temporal distribution), and (3) com-
munication is supported by electronic means.

2.4 e Global Software Development Teams 17

The main issues for CSCW in larger organizations are related to communi-
cation. Borghoff and Schlichter identify three communication issues in larger
organizations [Borghoff and Schlichter, 2000]:

1. inefficient internal communication
2. restricted internal and external communication possibilities
3. limited information technology

In the following, we will introduce a software architecture to address the is-
sues for GSD team support.

18

Chapter 2 @ Terms and Definitions

2.5

THE STANDARD BLACKBOARD MODEL

Blackboard style [Carver and Lesser, 1992; Buschmann et al., 1996; Bass et al.,
1998] refers to a particular way of organizing computing systems in general. The
name ‘blackboard’ was chosen because it is reminiscent of the type of brain-
storming situations in which human experts sit in front of a real blackboard
and work together to solve a problem. The problem can be split into several
sub-problems, each belonging to an individual domain of expertise. The experts
work together by applying the following rules: Every contribution to the problem
made by the experts has to be written to the blackboard; the blackboard can only
be used by one expert at a time (no concurrency); the experts are only allowed to
communicate with each other via the blackboard. The experts may use additional
resources, for instance a (private) library, to work on their sub-problem.

The primary domain for blackboard systems is to solve problems where no
deterministic solution strategies are known. In such cases, only patchy knowledge
about how to tackle the ‘overall’ problem is available and expertise from various
domains is needed. In the blackboard system, several specialized sub-systems,
also called knowledge sources, assemble their knowledge. Each knowledge source
contributes to the problem solving process by adding its specific expertise to the
blackboard similar to the process of several human experts sitting around a ta-
ble and adding their individual expertise. The knowledge sources assemble their
knowledge to build a possible partial or approximate solution. The blackboard
arrives at layers of solutions. The layers result from the level of abstraction of
the individual contributions. A layered blackboard stores several levels of defaults
(or preconditions), partial solutions and intermediate data, called hypothesis, and
finally full solutions. Every hypothesis is evaluated for being reused to built a
solution, or dropped.

The blackboard system is a data-centered architecture. Data-centered archi-
tectures [Bass et al., 1998] offer a solution to the problem of integrating data into
larger systems in a structured manner. They are used in an environment were
the access and update of widely accessed data is a primary focus. The structured
approach enables adding, removing, modifying, and searching the data-centered
architecture. By adding or removing components, data-centered architectures
offer a scalable architectural style which is increasingly important for today’s sys-
tems.

There are two different coordination models for data-centered architectures:
the repository and the blackboard architecture.

A repository consists of an amount of independent clients built around a cen-
tral shared data repository. In the passive repository, all activity is triggered by the
(remote) components. The repository remains passive and waits for transactions
which are initiated by components.

2.5 e The Standard Blackboard Model 19

An active repository, such as a blackboard, can send notifications to compo-
nents. Components can subscribe to data items or activities of interest and will
be notified if a change occurs. The active repository initiates activity by calling
the components.

The HEARSAY-II [Erman et al., 1980] speech understanding system devel-
oped at Carnegie Mellon in the early 1970s was the first system that was com-
pletely developed accordingly to the blackboard style. Another system, the HASP
[Nii et al., 1982; Nii, 1986b] project at CMU, developed from 1973 to 1976, was
built to interpret continuous passive sonar data.

HEARSAY-II

e
VISIONS
M (CRYsALIS)
CRYSALIS

A/ 4 X AGE
HEARSAY-III
Umass lBBl
MXA
1977-84 (BLOBS
o

(et
TRICER
1981-87
D)

Vi
MUSE v
! ,/ :/j
CAGE/POLYGON
1985-91 — @

Figure 2.3: The Evolution of Blackboard Systems (based on [Drogoul, 2001]). All black-
board systems are based on the early research at CMU. The systems shown differ es-

pecially in their application domain, while still implementing features of the standard
blackboard model.

1971-76

OPM

SIGHTPLAN)
"4

After 1976, many other blackboard systems were developed based on the stan-
dard blackboard principles that were investigated and used in HEARSAY-II and
HASP at Carnegie Mellon in the 1972s. Figure 2.3 shows the history and evo-
lution of blackboard systems based on the early research at Carnegie Mellon
University. The blackboard systems shown in the figure, while sharing common
principles or architecture, differ only in their application domain. The black-
board systems were built for one specific application domain from scratch. The

20

Chapter 2 @ Terms and Definitions

usability of one blackboard system in a different application domain was not in
the scope of development [Nii et al., 1982]. As a consequence, no canonical ab-
straction of the blackboard system design has ever existed. All systems shown in
Figure 2.3 use similar technology and architecture for different specific applica-
tion domains. The application domain specific knowledge and expertise is hard-
coded and embedded in the system. Hence, the application domain can hardly
be changed.

Typically, three levels of detail are considered: blackboard application refers
to a blackboard system that was actually designed for a particular task. A less
detailed view that still abstracts some detailed features and implementations is
referred to as a blackboard framework. The framework provides the basis to be
refined in a specific application context. The blackboard model refers to the most
abstract level. The term blackboard architecture is synonymous with blackboard
framework, with a stronger focus on the conceptional view of the system archi-
tecture [Buschmann et al., 1996].

Figure 2.4 shows the basic blackboard model consisting of four major com-
ponents: the blackboard, several independent knowledge sources, and central
control and strategy instances.

In a repository architecture, subsystems access and modify data in a sin-
gle data structure — the repository. The control flow is imposed either by the
subsystems or by the repository itself. If the control flow is based on the state
of the central data, the resulting variant of the repository architecture is called
Blackboard. A blackboard sends notification to subscribers when data of interest
changes [Bass et al., 1998]. The subsystems (or clients) of a blackboard system
are called Knowledge Sources.

The blackboard is very general in what kinds of data (Data Items) it might
store. Typically, there are three types of data items: Default Data, partial solu-
tions (Hypothesis), and Solutions. Most data items are created and stored during
runtime, such as events. However, a blackboard can also store static informa-
tion created at compile-time. The data items are incrementally modified by the
knowledge sources and developed incrementally towards solutions as the system
executes.

Figure 2.5 shows a standard blackboard architecture with additional layers.
Information at different levels of abstraction or detail is stored in different layers
(sometimes also called levels) in the blackboard system. The layers are arranged
to correspond to a particular abstraction hierarchy, such as a part-of hierarchy.

A special characteristic of blackboard systems is the possibility of smooth in-
tegration of bottom-up and top-down analysis. In bottom-up analysis, a know-
ledge source works on a number of data items on lower level layers and creates a
new entry at a higher level. In top-down analysis a new entry in one level results
from examination of higher level layers. Each layer stores a particular abstrac-

2.5 e The Standard Blackboard Model 21

Active Repository

1 : Control ni Strategy
notify() schedule()
L 1
: Blackboard
*
_dataltems]]
: Knowledge Source
s
ge
register() :elj/g%ate()
“Data ltem : Body : Precondition

Z% run() evaluate()

[I]
: Default Data | | : Hypothesis | |: Solutions

Figure 2.4: The standard blackboard model consists of the Blackboard which stores the
Data Items, several Knowledge Sources, and a Control component that schedules the
Knowledge Sources.

tion of objects, called Node. Layers represent classes of nodes. A node can have
a number of attributes, such as a confidence factor or time-out value to limit
computational time. A node can also be linked to other layers.

If a blackboard system requires more flexible partitioning of data, multiple
blackboard panels (not shown in Figures 2.4 and 2.5), each containing its own
layers, are used. This organization is needed if a blackboard system needs more
than one hierarchy, for example, if a blackboard system combines two or more
independent areas of expertise.

Two concepts are used to record the history of knowledge source scheduling
in a blackboard system. Event lists are used to log all or specific classes of data item
manipulation. In some systems all changes made to the blackboard are treated
as events and are recorded [Nii, 1986a]. Such events are also used to schedule
knowledge sources. The events are classified into categories of discrete sets and
used as part of the control strategy. The control strategy may use the history of
events in the blackboard to balance the execution of knowledge sources.

History lists record the history of data manipulation on the blackboard. In
contrast to recording what changed, history lists log specific information on how

22

Chapter 2 e Terms and Definitions

Active Repository

. Strategy
*
: AbstractLayer : Blackboard 1 1 : Control
7 [[}
1.n ¥
[| : ConcreteLayer | Event List || History List
Node

: Data Item

: KnowledgeSource

1 1

:Defaullt Data | | : Hylpothesis||:SoI|utions| | :Body | | : Precondition |

Figure 2.5: In the layered blackboard architecture, the blackboard is organized in several
layers of abstraction. The knowledge sources consist of a precondition which is executed
by the control. If the result is ‘true’, the knowledge source’s body is executed on a specific
set of data. (Attributes and operations are omitted.)

that change came about, such as knowledge sources involved and any variable and
surrounding information and context that influenced the flow of events. History
lists are typically used for debugging and system evaluation. History lists store the
complete problem solving steps in a specific blackboard system and are therefore
usable for development of new or improved systems and knowledge sources.

Most aspects of the blackboard architecture, such as organization of layers
and panels, are static. Knowledge sources are the flexible part in the blackboard
model, as they can be easily exchanged, added, or removed to use the system in a
different context or improve the system.

The knowledge sources are computational entities which embody domain
specific knowledge. Knowledge sources work exclusively with data items stored in
the blackboard. The following properties characterize the most important rules
for knowledge sources in the blackboard model:

e Knowledge sources register to the system and wait for execution. The
knowledge sources and the reasoning style of the system itself is no sys-
tematic process and not predictable. Hence, it is an opportunistic process.

An opportunity is a favorable circumstance that arises at just the right mo-
ment. Its occurrence is not predictable. In problem-solving situations, an

2.5 e The Standard Blackboard Model 23

opportunity presents an unanticipated chance to make progress towards
a goal. To take advantage of opportunities as quickly as they develop, a
problem-solver must have the ability to change course rapidly during its
exploration of the developing search space. Sufficiently flexible systems
pay close attention to the world and to the effects of their own decisions to
facilitate quick reaction to both expected and unexpected developments.
These systems are generally described as exhibiting opportunism in their
control strategies, by continually redirecting their attention to the most
urgent or promising issues at hand [Erman et al., 1980; Smith et al., 1990;
Carver and Lesser, 1992]. Less flexible systems tend to wait until a pre-
viously determined and possibly extensive course of action has completed
before they pause to update their current focus of attention.

e Due to the opportunistic order of knowledge source execution, the com-
putation in a blackboard system does not follow any predictable or prede-
fined order. Hence, the order of knowledge source execution and therefore
the development of data items stored in the blackboard might develop in
different paths for each (nondeterministic) execution time. The order of
execution and type of reasoning is determined at run-time based on the
current state of the blackboard, by previous knowledge source invocation,
and by external events.

e Knowledge sources are not allowed to communicate directly with each
other. All communication runs through the blackboard. This also implies
that knowledge sources have no awareness of other knowledge sources con-
nected to the same blackboard. However, a knowledge source can be part
of two or more blackboards.

Blackboard

change state

Control Body(KSn)

[Precondition(KSn)vJ

return state execute

Figure 2.6: The dynamic model of the standard blackboard architecture.

24 Chapter 2 @ Terms and Definitions

Figure 2.6 shows the dynamic behavior in the standard blackboard model:
The Control class schedules the knowledge sources. The Control class is notified
on Data Item modifications by the Blackboard. Knowledge sources have to reg-
ister with the Control class. The Control then iterates through the list of Know-
ledge Sources and evaluates their Precondition with provided data item as input.
The Precondition can be seen as a rule which returns true if the given data item
meets the precondition’s expectation, and false otherwise. If the Precondition
returns true, the Body (which is the code) of the knowledge source is executed.

While the Blackboard itself only knows about changes of Data Items to notify
the Control, the Control and Knowledge source components have a restricted
view on the overall process of knowledge acquisition. Knowledge sources work
on one or two levels of abstraction (= levels or layers in the Blackboard). To di-
rect the overall process of knowledge building and finding solutions, the Strategy
component is used by the Control to provide a global view (“big picture”) of the
process seen over all levels of abstraction.

2.5.1 THE BLACKBOARD PATTERN

The blackboard model is an architectural pattern to design larger software sys-
tems. Complex software systems, especially business software, cannot be struc-
tured according to a single architectural pattern. Several system requirements
have to be addressed by specific and suitable (architectural) patterns. The re-
sulting combination of several patterns builds up a structural framework for a
software system that needs further specification and detailed implementation.

In pattern-oriented software development [Buschmann et al., 1996], the black-
board is specifically listed as an architectural pattern. The architectural pattern
represents the highest level of abstraction in the system of patterns. In a top-
down approach, architectural patterns are used to specify the (initial) funda-
mental structure of the system. The blackboard pattern, for instance, belongs
to a group of three architectural styles' that enable what Buschmann calls the
transition from “mud to structure”.

The rationale for pattern-oriented development lies in the perception that
approaches from the application domain will not work sufficiently for technical
aspects of the system for two reasons in particular: First, because a big software
system consists of many components that do not have a direct relationship to the
application domain (examples are for instance manager and helper functionali-
ties). Second, we expect more than just a system that meets functional require-
ments from the application domain only. Many (non-functional) requirements
and qualities have to be met, such as portability, maintainability, understand-
ability, and stability [Buschmann et al., 1996] that are not directly related to the

'The other two styles are the layers pattern and the pipes and filters pattern.

2.5 e The Standard Blackboard Model 25

2.5.2

application domain but to the solution domain.

THE BROKER ARCHITECTURE FOR BLACKBOARD SYSTEMS

A broker architecture [Lyons, 1991; Borghoff and Schlichter, 2000] serves as the
basic communication model in the standard blackboard model. The generic bro-
ker architecture consists of several servers which register their exported services
at a broker. Clients can call the broker for procurement of a suitable service. In
principle, two categories of brokers are distinguished: white pages are brokers
which deliver a suitable server by its name. This is used in nameservers, for in-
stance. Yellow pages, in contrast, suggest a suitable server based on the type of
service offered.

4: requestData

Blackboard
: Responder

Knowledge Source
:Requestor

\

<
<

5: provideData

Control
: Broker

Figure 2.7: The dynamic model in a generic broker architecture (collaboration diagram).

3: notify 1: register 2: register

Figure 2.7 depicts dynamic model of the broker architecture used in the black-
board model. Two components (Requestor and Responder) register them-
selves at the Broker by providing information on what type of service they deliver
(export), and what type of information they are interested in (Steps 1 and 2 in
Figure 2.7). The broker notifies the requestor upon availability of the requested
type of service or information (Step 3) and where this information is available.
The requestor then directly contacts the provider of the information (responder)
and asks for the information (Step 4), which is then delivered by the service (Step
5).

26

Chapter 2 @ Terms and Definitions

2.6

2.6.1

EMPIRICAL METHODS IN SOCIAL RESEARCH

The communication study (see Chapter 4) was planned and carried out as a ret-
rospective study to analyze the actual team work in a large industry project. We
investigated how project teams communicate and cooperate, how they assess the
communication and cooperation, and what communication vehicles they used.
To study the non-technical and human aspects of team interaction in software
development projects, new research methods are needed in a challenging area of
research. Methods from social sciences have been developed and applied in many
other disciplines. Qualitative methods are used to handle the complexity and
richness of issues involving human behavior. We start by presenting some quali-
tative methods for data collection and analysis and describe how those methods
can be used in empirical studies of software development in general, and how
they are used in this dissertation in particular.

QUALITATIVE VS. QUANTITATIVE METHODS & DATA

Qualitative methods are based on the interpretation of human language and be-
havior. Qualitative analysis offers a complete and detailed description of all phe-
nomena. In contrast to quantitative methods, they include even rare phenomena
which receive the same amount of attention as frequent ones. Ambiguities which
are inherent to human language [Seaman, 1999] are recognized in the analy-
sis (text analysis). However, qualitative studies can not be extended to a wider
population (for instance, extension from software development to generic devel-
opment) with the same degree of certainty the quantitative analysis can. Further,
the findings can not be tested for statistical significance easily.

Quantitative analysis produces statistically reliable and generalizable results
by classifying and counting features of a given set. The findings can be general-
ized to a larger population and can be compared directly. Quantitative analysis
relies on valid sampling and significance techniques, thus, it allows to discover
which phenomena are likely to be genuine reflections of the behavior of a team
or variety, and which are merely chance occurrences [Fuchs et al., 1978].

In other words, the difference between qualitative and quantitative data is
how the information is elicited and represented. Quantitative data is elicited
and represented in numbers or other discrete categories, while qualitative data
is recorded in text or pictures. A typical misunderstanding of qualitative and
quantitative methods is that qualitative data is considered to be subjective, while
quantitative data is thought to be objective. Essentially, the type of data, either
quantitative or qualitative, only affects the way the information is stored (qualita-
tive data as text versus quantitative data as numbers), not its (relative) subjectivity
or objectivity.

2.6 e Empirical Methods in Social Research 27

2.6.2

QUALITATIVE METHODS FOR DATA COLLECTION

Data collection methods, as well as studies, can be divided into prospective and
retrospective. Prospective investigations are started early, for instance at project
start, and accompany the project. In a prospective study, future measures are
part of the investigation and are reflected in the study. In a retrospective study,
the project is reviewed after its actual end, or after reaching a critical milestone.
No measures during the survey are adapted to the investigation dynamically.

Participant observations have to be planned and set up in advance and are
transacted during an ongoing project. Interviewing techniques, in contrast, can
be both executed during an project or in hindsight. For capturing as much in-
sights and experiences, interviews are executed retrospectively after the project or
an important stage ended. For capturing a maximum of knowledge, prospective
and retrospective approaches can be combined.

Participant Observations

Participant observations (sometimes also referred to as ethnographic observa-
tions), refer to “research that involves social interaction between the researcher
and informants in the milieu of the latter, during which data are systematically
and unobtrusively collected” [Seaman, 1999]. The results from observing partic-
ipants (or developers) in a software project is limited, because much of software
development work takes place inside the heads of developers. Additionally, large
software projects often are lengthy with many involved people. This makes obser-
vations practically difficult. However, as on today’s projects much work is done
in a PC, new ways of technical observation could be used (we introduce commu-
nication and software metrics later on.)

In the following, we introduce observation techniques that are used to col-
lect information during software development (see [Taylor and Bogdan, 1984;
Seaman, 1999]):

Think aloud protocols are often used in usability testing. Users have to ver-
balize the thought process so that observers can understand the process going
on. There are a number of issues with observational techniques. First of all, ob-
servers should be as unobtrusive as possible (“like a fly on the wall”), in order not
to affect or bias the observed phenomenon. Our appraisal of observational tech-
niques, hence, is that observers definitely do affect the observed phenomenon,
though positively in a sense that participants try to give a good impression of
their professionalism and behavior.

Field notes are used to write down observational records. Observers start to
fill in field notes as the observation starts. Field notes are later augmented with
as much of the information that can be remembered. Any information relevant
for the observed phenomenon should be included, for instance place, time, par-

28

Chapter 2 @ Terms and Definitions

ticipants, topic. Thus, the notes are very time-consuming to record and evaluate.
Field notes also contain subjective ratings by the observer, such as an individual
assessment of the project or company situation. Hence, field notes have to be
kept confidential throughout the whole investigation.

In rater agreement exercises, a second observer randomly attends meetings to
compare the field notes of the two observers and make sure the same amount
of information is captured in all meetings and by all observers. Moreover, codes
are used to categorize discussions or meetings. Briefing by the principal observer
helps the observers to deal with lack of familiarity with the project and lack of
experience with the instrument (i.e., coding categories). During the rater agree-
ment exercise, the investigative setup is checked for accuracy and that data col-
lection techniques used are confirmed being robust. Rater agreement exercises
are used to evaluate the validity and consistency of data collected during partic-
ipant observations. Further, rater agreement exercises are used to ensure that an
observer records data in a way that is not only understandable to him or her and
that this information is normalized against bias.

Electronic capture of observed meetings and interviews is based on combined
audio and video capturing. Electronic recording ensures that all information of
a meeting is recorded by recording the whole meeting. If electronic meeting cap-
ture is used, the field notes can be written after the meeting takes place. In this
approach, the observer can take as much time as is needed to write down his or
her observations. Any passage that is unclear in the first cycle can be repeated.
Inaccuracies are much less likely to be introduced. It is worth mentioning briefly,
that audio/ video capture might experience resistance from some users. In that
case, planning for alternatives that still enable comparability of field notes is nec-
essary. (This principle is also used in iBistro for post-mortem meeting annota-
tion. See Chapter 5.)

Interviewing

Interviewing is a method for data collection, where a trained investigator (inter-
viewer) directly asks oral questions to a subject (interviewee). Interviewing is
commonly used for retrospective collection of qualitative data. In an interview,
historical information (for instance at the end of a project) is elicitated from the
interviewee’s memory. Interviews are specifically suitable to collect opinions or
impressions of the observer, while observational techniques reflect more the ob-
server’s view of a meeting. However, interviews are sometimes combined with
observational techniques to clarify or elicit the impression of a meeting. Inter-
views are also used to identify special knowledge or terminology used in a partic-
ular setting.

1. Unstructured interviews. In an unstructured interview, the interviewee is
both the source of questions and answers. The objective is to elicit as much

2.6 e Empirical Methods in Social Research 29

qualitative information as possible by asking open-ended questions. Thus,
the answers are hard to classify.

. Structured interview. During a structured interview, the interviewer has
very specific objectives which are addressed by asking a sequence of pre-
pared questions. The sequence is stipulated in an interview guide or inter-
view form?, which has to be used for every individual interviewee. Struc-
tured interviews are also used to collect quantitative data.

Figure 2.8 is an example of a structured interview with an interviewer fol-
lowing directions given in the interview guide.

Introduction: “In the following stage, we will present you with a list of communi-

cation vehicles. At the end, you will have the possibility to comment
on this vehicles or name additional means of communication used.
For every means of communication, we are particularly interested
in the following three questions:

(a) How often did you use this communication vehicle?

(b) Would you rate the amount of usage of this vehicle as used too
often, just right, or too seldom?

(c) How do you rate this vehicle accordingly to its effectiveness in
solving problems within your context?

Do you have any questions at this point?”

Question: “How often did you use email?"

Answer: “Well, T used it quite often.”

Question: “How would you assess the amount of email usage?"

Answer: “Just right”

Question: “How do you rate the effectiveness of email communication in solv-
ing problems within your context?"

Answer: “Very effective”

Figure 2.8: Example for a structured interview, conducted by an interviewer following
specific questions listed in an interview guide. The answers given by the subject (“An-
swer:”) are captured in field notes.

The study and field notes must be designed flexible enough to record un-
foreseen information, such as other means of communication used by some
interviewees, or additional information on specific questions. For instance,
some interviewees in the study introduced in Chapter 4 used the Windows
net send shell command and instant messaging tools to send short screen
messages to a colleague’s computer. Some developers reported, that espe-
cially during assembly testing this turned out very useful. While this infor-

2The interview guide for the communication survey introduced in Chapter 4 is shown in the
appendix.

30

Chapter 2 @ Terms and Definitions

mation was expected in the design of the structured interview, this valuable
information is to be recorded.

. Semi-structured interviews include a mix of structured and unstructured

interviews, i.e., a combination of open-ended and specific questions. This
approach is chosen when much relevant but unforeseen information is ex-
pected.

Figure 2.9 is an example of a semi-structured interview with an interviewer
following directions given in the interview guide and following up on un-
expected answers.

Question: “How often did you use email: very often, often, seldom, or never?"

Answer: “Actually, we used network chat utilities instead of email in the
team.”

Question: “What chat utilities? This is interesting. Why did you prefer those
tools over email?"

Answer: “We used Messenger, because it is more interactive and easily in-
cludes more people in the communication loop — compared to
email.”

Figure 2.9: Example for a semi-structured interview. The interviewer starts with specific
questions listed in an interview guide. When unexpected or interesting answers are given
by the subject, the interviewer may follow up on them.

4. Standardized interviews are a specific form of an interview where all details

of the question and response behavior of the investigator is predefined to
achieve a maximum of comparability. This form of interview is especially
well-suited to verify a hypothesis.

Figure 2.10 is an example of a standardized interview.

1.

Question: “How often did you use email: hourly, severaltimes a day,
daily, every second day, or weekly?"

Answer: “several times a day.”
(The interviewee is only allowed to select an answer from the prede-
fined set of answers, shown as underlined text.)

Figure 2.10: Example for a standardized interview with predefined answers.

Interview planning. To achieve comparable and reliable results, planning an

interview is an important step. During interview planning, the goal for the inves-
tigation and approach is defined. Depending on the type of interview and level of
formalism, field notes or an interview guide have to be prepared. Field notes are
a more formal way of recording the information, typically by filling in forms. An

2.6 e Empirical Methods in Social Research 31

2.6.3

2.6.4

interview guide, while being less formal, helps the interviewer organizing the in-
terview. It contains a list of all open-ended questions, with notes about directions
and maybe arranged with some “if-then” conditions, which lead the investigator
along several paths depending on the answers to previous questions.

Interviewer briefing. As some of the interviewers are often not familiar with
the interviewing approach, the project under investigation, or other details which
an interviewee might confront them with, interviewer briefing permits the inter-
viewer to understand subjects. During the briefing, the goal for the investigation
is clarified, the interview is planned, the forms are explained and introduced,
measures are taken to ensure comparability and equality of interviews, interview-
ing style is checked and trained, and dry-runs are performed to ensure compa-
rability both between several interviewers and between the first interviews held
versus subsequent interviews of a single interviewer.

A full description of interviewing techniques can be found in [Fuchs et al.,
1978; Friedrichs, 1984; Guba and Lincoln, 1985]. Interviewing with special focus
on empirical software engineering is found in [Seaman, 1999].

COMBINATION OF QUALITATIVE AND QUANTITATIVE METHODS

If a combination of qualitative and quantitative data is used in a study, the re-
lated qualitative data has to be transformed to extract values for quantitative or
statistical analysis. This process is called “coding”.

During coding, qualitative data is classified into quantitative variables. Qual-
itative data is information typically expressed in text, while quantitative data is
represented as numbers or other discrete categories.

Figure 2.11 shows an example for coding:

DATA ANALYSIS METHODS

There are two possibilities for data analysis:

1. Generate a hypothesis that fits the data (or is “grounded” in that data).
2. Build-up the “weight of evidence” necessary to confirm the hypothesis.

In the first case, a hypothesis is generated after the survey. The results of data
analysis are used to phrase a hypothesis that best describes the elicited informa-
tion. This hypothesis is then refined and verified using the second possibility (2)
for data analysis. The results of the survey are used to assess and evaluate a given
hypothesis. The hypothesis might arise from theoretical reflections, practical ex-
perience, or from an earlier study.

32 Chapter 2 e Terms and Definitions

Introduction: “Let us have alook on the proportion of communication with people
outside your own team boundaries and communication with people
within your own team.”

Question: “Did you communicate only internally, mostly internally, half-half,
mostly externally, or only externally?”

Answer: “Well, I usually try to fix problems with the responsible expert. How-
ever, of course I ask my team mates first, as they are located in the
same room. This typically answers most questions...”

Interviewer: ~ So what would you say was your communication pattern accordingly
to the categories mentioned?

Answer: Mostly internal.

Figure 2.11: Example for coding during a semi-structured qualitative interview. The
spoken (and potentially captured) textual explanation has to be classified into quanti-
tative values (i.e., “only internally”, “mostly internally”, “half-half”, “mostly externally”,
and “only externally”). This is achieved through interpretation, which has to be protected
against potential bias.

2.7 QUANTITATIVE METRICS

Quantitative metrics focus on samples that are directly measurable with metrics.
In this dissertation, three categories of quantitative metrics are taken into consid-
eration: software metrics, communication metrics, and project and performance
metrics.

Software metrics [Perlis et al., 1981; Grady and Caswell, 1987] are measur-
able directly from the artifacts of software development, typically from source
code. The goals for software metrics are to assess the complexity or program-
ming ‘quality’ of a given source code. If certain measured values exceed a defined
range of values, they are used as indicators for bad programming style (such as
“spaghetti code”), or to identify exceedingly complex parts of the system.

The measurement of software recognizes an increasing importance with the
generic growth of software systems. The measurement of functionally decom-
posed software has been studied with great success for a while. Today, many soft-
ware projects, including the project under investigation in Chapter 4, deal with
object-oriented development. Metrics for object-oriented systems [Henderson-
Sellers, 1996] are more challenging and error-prone for several reasons: The
emergence of object-oriented programming languages was accompanied by new
programming paradigms and new levels of abstraction. Especially the measure-
ment of complexity of object-oriented programs is more difficult than that of
functional/ procedural programming languages. In particular, the use of ‘good’
object-oriented programming techniques, such as the usage of design and archi-
tectural patterns, are challenges for measurement of object-oriented programs.

2.7 e Quantitative Metrics 33

Communication metrics result from the measurement of communication ar-
tifacts, such as in groupware tools, email, etc. Metrics on communication arti-
facts can be used to gain significant insight into the development process that
produced them [Dutoit and Bruegge, 1998]. The advantage of communication
metrics is that they are independent of the implementation technology and devel-
opment infrastructure used. Communication metrics can be used to construct
and visualize communication paths, including timestamps, stakeholders, com-
municating peers, and other interesting traces in project communication. Com-
munication metrics can also be used in distributed projects.

Communication, in particular informal communication, is difficult to mea-
sure. This is crucial, as personal and informal communication is considered rel-
evant for project success in particular [Kraut and Streeter, 1995]. Moreover, in
many organizations and companies, communication metrics cannot be captured
due to limitations imposed by the works council and specific laws, especially the
Works Constitutions Act and Data Protection Act®. This applies to most, if not
all, countries within the European Union.

While many of the technical and application-domain specific properties can
be defined from a technical point of view, an approach to finally implement the
system in an organization has to regard for instance user acceptance and usability.

Some of the attitudes towards change in general are well described in social
sciences. Two definitions which are consecutively used in the communication
survey (Chapter 4) and in evaluation and lessons learned (Chapters 7 and 8) are
value orientation and action orientation.

Value orientation is related to aspects of the orientation of an actor which
oblige him or her to consider certain norms, standards, options, and criteria any-
time the actor is in a situation to choose. The value orientation within a certain
culture (for instance, society or community) tends to build-up a structured sys-
tem. [Friedrichs, 1984]

In other words, inherent and implicit values are known to influence people’s
attitude and decisions, whereas the individuals are often not (fully) aware of the
influence of those values.

The term action orientation denotes considerations for the behavior of an ac-
tor towards a social, physical, or cultural object. [Friedrichs, 1984]

Table 2.2 shows an overview of methods used in empirical software engineer-
ing that are used in this dissertation.

Isee Directive 95/46/EC of the European Parliament, Official Journal of the European Commu-
nities of 23rd. November 1995 No L. 281 p. 31.

34

Chapter 2 @ Terms and Definitions

2.7.1 OVERVIEW OF EMPIRICAL METHODS

Participant Observations ‘

Think aloud protocols

Interviewees have to verbalize the thought process of what they are
doing. An unobtrusive observer watches the interviewee and makes
notes. Often used in usability testing.

Field notes

Field notes are used in observational methods to write down relevant
observations. Field notes are written during an observation and aug-
mented later. Field notes will always contain subjective ratings of the
observer, hence they are to be kept confidentially.

Rater agreement

A rater agreement exercise is used to evaluate the validity and consis-
tency of data collected and to make sure that all records (field notes)
are understandable to people other than the original observer. They
are, more generally, used to categorize interviewees, identify possible
bias, and classify field notes/ interviewees after they were recorded.

Electronic observations

Electronic observations ensure capture of a maximum of informa-
tion. Field notes are typically extracted later, based on the electronic
(video and/ or audio) capture.

‘ Interviewing ‘
Unstructured In an unstructured interview, the interviewer asks open ended ques-
tions (without an interview guide) to elicit as much qualitative infor-
mation as possible.
Structured In a structured interview, very specific objectives are addressed by

asking prepared questions. An interview guide, listing those ques-
tions, is used.

Semi-structured

A mix of structured and unstructured interviews, for instance a com-
bination of open-ended and specific questions. Use when much rel-
evant but unforeseen information is expected.

Standardized

Any interview type (structured, unstructured, and semi-structured)
can be standardized to achieve a maximum of comparability and re-
duce bias. In a standardized interview, all detail of the interviewer’s
behavior is predefined. Standardized interviews are in particular
used to verify a hypothesis.

Combination of Qualitative and Quantitative Methods ‘

Coding

The process of classifying qualitative data into quantitative sets is
called coding. The challenge is to identify the quantitative variable
that fits best the information described by qualitative text.

Data Analysis ‘

Generation of theory

Draft a hypothesis out of the elicited data. The hypothesis is created
retrospectively.

Confirmation of theory

Evaluate a pre-existing hypothesis. The study is executed prospec-
tively.

Table 2.2: Overview of methods used in empirical software engineering.

3.1

CHAPTER 3

PROBLEM DEFINITION

A group of production workers at a NASA contractor had found a
simple way to improve the calibration of the rocket engines. The
foreman wrote a memo with his suggestions to his superiors two

years ago, but nothing happened. When he asked why, he was told

his suggestion was too expensive. “Too expensive to paint four

little lines?” He said in disbelief. They all laughed, “It’s not the

paint, it’s the paperwork. They would have to revise all the
manuals.”

[RICHARD P. FEYNMAN]
in “Personal Observations on the Reliability of the Shuttle”, 1988.

In the following, we consider software development in industrial and related or-
ganizations, and then progress to specific problems resulting from the various
levels of distribution. Finally, we discuss formal and informal project communi-
cation and roles in software development.

DISTRIBUTED SOFTWARE DEVELOPMENT

Software development is no isolated activity of individual programmers, like it
might have been in the past. While single programmers could initially hand-
craft small programs, the workload in industry projects soon grew beyond the
amount that could be handled by individuals. Especially business software sys-
tems are sometimes developed by huge teams. The success of managing teams of
a dozen or more professionals was mixed. Regardless, the scale of development
work still grows. Watts Humphrey observed, associated with his work on the Ca-
pability Maturity Model (CMM) for development organizations that “the history
of software development is one of increasing scale” (in [Booch, 2000]).

As companies and applications grow and become more complex, industrial

36

Chapter 3 e Problem Definition

teams have to deal with increasing size, complexity, cost, and time to market pres-
sure. The source code of Windows 2000, for instance, has more than 30 million
lines of code in the base operating system. Windows NT 4.0, in comparison, had
16.5 million lines of code [Johnson, 1998]. Software developers experience pre-
defined requirements specifications, schedules, and release dates. On the other
side, software development is increasingly complicated due to the sheer size of
the projects and the resulting growth in headcount and length of projects. As a
consequence, organizational models were adapted and social aspects in working
together and soft issues become increasingly important.

Software companies typically address social aspects and resulting challenges
with a flat hierarchy. For instance, at Accenture, a project manager reports to
some kind of executive director. From the project manager downwards, positions
in the hierarchy are sub-project managers, team leads, and team members. The
teams are supported by human resource representative staff and team assistants.
To bring teams up to speed, team building activities are dispatched to constitute
a sense of “teamness” to disburden the synergy in teams.

When systems and application software become bigger and more complex,
the modules are decomposed into smaller parts, called subsystems, to handle
complexity. If the resulting subsystems are split to be processed by separate pro-
grammers or teams, subsystem decomposition leads to “division of labor”. Indi-
vidual developers work on the smaller parts which altogether build a larger com-
ponent of the final system. This creates demand for distributed development.
Some of the reasons for distributed development are for instance:

e Skilled developers and IT specialists are scarce and expensive in many parts
of the industrial world. In countries of the third world and in emerging
nations, skilled IT workforce is available at far lower wages.

e Software developers often prefer to work in a well-known social environ-
ment with little or no travel [Weinberg, 2001]. This is a seminal challenge,
especially for consulting firms, which develop software as a general rule at
the client’s site, putting up with additional cost and workforces working
out of town.

e Software companies increasingly work in a competitive market place with
short product cycles, cost, and time to market pressure. Similar to other
industries, for instance production and manufacturing, this leads to global
development. In such a scenario, software development “following the
sun” and therefore leveraging the different time zones around the world for
the purpose of some form of shift work seems to promise improvement.

Carmel in his book on Global Software Teams summarizes a typical project
manager’s perception of distributed development as follows: “No one in their
right mind would do this.” [Carmel, 1999]

3.1 e Distributed Software Development 37

The divide and conquer technique breaks a larger problem into smaller parts
to be solved independently. The final solution is composed of the integration
of resulting sub-solutions. Divide and conquer prepares the way for subsystem
decomposition, where a large system is decomposed into smaller parts that can
be handled by individual teams of developers. This is also a means of managing
the development of software systems that are too large to be completed in time
by one individual or few programmers by partitioning work and allowing for
concurrent development. In this case, subsystem decomposition is accompanied
by division of labor [Brooks, 1995], which made large systems’ development a lot
different from the development of smaller software. Large projects are split-up
into many smaller sub-projects, components or parts. These sub-tasks then are
assigned to loosely coupled development teams. While improving development
speed by concurrent development and making large projects possible, division of
labor introduces new organizational and managerial challenges project managers
and software engineering researchers have to deal with.

Our claim is, that many of the challenges in distributed projects that are re-
lated to the fact of division of labor (e.g., organizing work in teams, communica-
tion, getting control for several concurrent teams, managing dependencies, ...)
are similar to large projects. We claim that many advancements computer sci-
entists and software engineers made to address division of labor also help with
distributed development.

This dissertation presents the following hypothesis:

Hypothesis. Distributed development projects do not differ much
from large software development projects due to division of labor.

In this thesis, we present strong anecdotal and empirical evidence that exist-
ing experiences from large software projects can be transformed into (globally)
distributed projects, given a suitable team structure. We present an empirical
survey done at a large software project to support this hypothesis in Chapter 4.

One example is the process of unit and assembly testing procedures versus
system testing, which is used in large software projects to ensure that the indi-
vidual parts of the system work as specified and interface correctly and that the
final (assembled) system still works correctly as a whole (without side-effects)
and satisfies the requirements.

Distributed software development is practiced in several forms. Three exam-
ples of distributed software development settings are detailed in the following
sections:

First, we introduce industrial approaches to develop and run software re-
motely. Specifically, solution centers (near shore), offshore development, and
outsourcing are discussed. Second, in the open-source community software is

38

Chapter 3 e Problem Definition

build by various developers around the world who communicate over the inter-
net. Third, we discuss virtual corporations as an upcoming temporary organi-
zational form for distributed software development.

Industrial approaches

The concept to develop software and build, test, and run solutions in ded-
icated solution centers is derived from development companies that build off-
the-shelf software or reusable components. Development in solution centers
can be considered distributed because clients and other stakeholders responsi-
ble for identifying and analyzing requirements work separated from the develop-
ers. Consultancies, in contrast, typically work and develop software at the client
site. I'T consultants avoid distribution and often even work in mixed development
teams with both client and third-party personnel, as well as consultants working
together in one team.

The approach provided by solution centers is promising for companies that
produce client-specific software, too. Solution centers offer a “design, build, run”
approach to fast, reliable, and recurring delivery of software or services. Solution
centers also help to deal with specific organizational issues in software develop-
ment that especially consultancies have to deal with. For instance, it is easier
to staff a solution center than to hire personal that is willing to travel to client
locations.

The focus of solution centers is on developing reusable solutions. Integra-
tion of legacy systems and using business critical, security relevant, or confiden-
tial material in solution centers is difficult. Further, projects that are pursued
with intense client interaction, e.g., in projects where client personal works to-
gether with external personal in mixed development teams, can not be handled
in solution centers. In such situations, only small parts that are loosely coupled
with the development work can be outsourced to a solution center. In general,
projects with changing or vague requirements and iterative life cycles are critical
and hence still pursued at the client site.

Figure 3.1 shows the spectrum of distribution scenarios in professional real-
world, single-site and distributed software development projects. Crossing one
or more level of distribution — either spatial, temporal, or community — leads to
distributed software development. Such distributed development scenarios also
depend on the level of cooperation. This results in the following categories of
distributed software development projects:

In on-site development, local members of staff develop software internally.
This approach is the traditional approach in software development and still im-
plement in many organizations. This approach is used for instance where oft-
the-shelf software is to be developed, or if the software developed comprehends
specific unique selling propositions so that including external staff might be a

3.1 e Distributed Software Development 39
Persistence
of Service
« Complementary
A skills and
= . - resources from
2 Clieliy trer)d multiple countries
T * Vendor provides S
off-shore center P
. -) tnersh
entsoncing, | -Noonste tClentsEns Giielch Chontes
+ Client servicing, DErEis service contract oL
[t ? ﬁisinrcigk > Eljpalii capabilities of
« External team :;taénagement on- g gﬁ;?];:ll:r;:;ts each local team to
« Traditional works on-site « Application internal standards create cost-
roach * Well-defined effective solutions
e scope e IopmE R RS and fast deliver:
« Staff P « Better flexibility, y
2 | augmentation © TSI @3 scalability, stability
1 | ownership | | | .
.’
)))) | . Complexity
On-site On-site On-site Virtual Teams/ Solution Global
Development Project Distributed Virtual Projects Centers Software
Project Development
Teams

Figure 3.1: Levels of distribution in software development projects.

risk, for instance for intellectual property.

In an on-site project, external teams work on-site in a project-based setting
with a well defined scope in which the team takes ownership. The local staft is
augmented by adding external resources, such as freelancers or consultants, or a
third-party contractor. The on-site project, however, is still single-site.

The on-site distributed project is a combination of local client servicing and
on-site project management augmented with off-shore application development.
The on-site distributed project offers better flexibility, scalability, and stability by
adding external remote resources.

Virtual teams or virtual projects are rarely adopted in industry today due to
high risk. Virtual projects are conducted without on-site presence.

Solution centers are a growing trend in software development. A vendor pro-
vides development capabilities in an off-shore center. A service contract between
the vendor and the client defines the types and levels of service provided. The
support provided by the solution center complements the client’s and internal
standards and procedures.

Global software development (GSD) teams are a vision introduced in this the-
sis and not a actual industrial practice. As defined in Section 2.4, a GSD team
consists of at least two collaborating teams with geographical distribution where
different social groups of people are involved. The global distribution also leads
to time-shifts which allows no or little synchronous work. Communication is
supported by electronic means.

The GSD team uses skills from multiple countries, for instance programmers
in India and a requirements team at the client site in Germany. Each local team
draws on specific resources. Structured partnerships, for instance with vendors

40

Chapter 3 e Problem Definition

and clients, are managed through the bigger organization of the GSD team to as-
sist the local team. The goal of the GSD team is to leverage the specific capabilities
of each local team to create cost-effective solutions and achieve fast delivery.

Offshore development denotes distribution scenarios where the software de-
velopment work is performed at remote sites. In offshore development, the soft-
ware requirements are still specified for one specific client (no “off-the-shelf”
software). In offshore-projects, however, an on-site team works on the require-
ments specification and coordinates development, testing, and roll-out.

The software solutions developed “offshore” from the client site are still de-
ployed to client-operated IT operations which install, run, and maintain the soft-
ware. While the development stages of the software life cycle are outsourced,
running the solution is still done in-house. IT Outsourcing closes the externaliza-
tion loop started by solution centers, because an outsourced IT solution is also
operated by an outsourcing partner in a third-party IT hosting. This includes
all IT related work and service, including system operations and maintenance,
responsibility for faults, upgrades and services. The properties of these services
are defined in a service level agreement, which legaly defines guaranteed qualities
of the service, such as response times.

Open-Source Software Development

Open-source software development naturally has to deal with global distri-
bution of the development process. In open-source projects, distributed pro-
grammers develop parts of a larger program without ever meeting each other
in person. The properties of a open-source project, however, differ a lot from
commercial software development. Open-source projects typically implement
technical software from the domain of computer science, for instance software
development tools (compilers, editors), operating systems. Such programs are
not implemented on user’s requirements and many of the users are also (poten-
tial) users of the software (unlike in business software development).

Examples are GCC (the GNU C Compiler), a free compiler collection for C,
C++, Fortran, Objective C and other languages, Linux, a UNIX-like operating
system based on MINIX [Tanenbaum, 2001], or JBoss, a J2EE based application
server written in Java. These applications written by the open-source community
clone features of their commercial role models. Open-source development usu-
ally skips requirements elicitation. GIMP, for instance, an image-editing appli-
cation, implements a subset of the professional image-editing standard software
PhotoShop™ by Adobe and skips its own requirements elicitation.

Testing in global distributed open-source projects is done explicitly by the
developers, who are also users. The development process is incremental. New
functionality is added upon user request without having a pre-defined sched-
ule or list of functionality. Open-source developers and communities developed

3.1 e Distributed Software Development 41

interesting and remarkable tools for communication and cooperation in global
distributed software development. We discuss SOURCEFORGE™ [SourceForge,
2001] as one example for cooperative platforms. SOURCEFORGE offers a variety
of project-related services, such as:

SourceForge considers several project-related roles, such as an administra-
tor, who is the initiator and kind-of project manager, developers (who can be
sub-divided into several roles if needed), and users. SourceForge offers several
services related to those roles. The Collaborative Development System (CDS)
offers various web-based tools for the administrator role for maintenance of the
project. CDS allows the administrator to post news items, administrate the de-
velopers (e.g., assign tasks or roles), post issues and ask for help, and manage the
use of other services.

The single common point of contact for users and developers of a specific
project is the Project Web Server. From this web page, further user and developer-
related services can be accessed. Tracker, for instance, offers integrated support
management tools for bug reporting, and support requests. Issues and requests
can be classified and categorized by their importance. Mailing lists and discussion
forums help developers stay in contact with their administrator and users.

SourceForge also provides services related to the software development life
cycle, such as an Internet-based release service, shell services and a compile farm,
test databases, version control (Project CVS Services), and a web-based service
to increase the visibility of the project within the community (called “Trove List-

ing”).

Virtual corporations

Virtual corporations are temporary networks of independent companies which
are linked together by technical means to share skills, costs, and access to one
another’s markets. In a virtual corporation geographically distributed teams of
each contributing companies are coordinated through electronic communica-
tions. The resulting organizational model is team-based, while the composition
of the teams may cross the boundaries of the contributing companies.

The virtual corporation is a specific example of a networked organization.
Smaller companies are realizing the benefits of being part of a virtual corpora-
tion, which can give them the benefits of the resources (e.g., financial resources,
job opportunities, man power) of a large organization while retaining the agility
and independence of a small one.

An example for a virtual corporation is when multiple companies working
together for a single customer in a common project. Often, the single contractor
or a leading company acts as the integrator, while different sub-contractors do the
development. The sub-contractors add manpower and specified services to the
project and are more or less exchangeable depending on the type of service they

42

Chapter 3 e Problem Definition

3.1.1

provide. These projects require a project based organization [Bruegge and Du-
toit, 2003]. The assumption behind virtual companies are that the right mixture
of skilled staff can be put together dynamically and relatively fast for a specific
project, hence shortening product setup time, and lowering training needs. Un-
der these conditions, a project can be staffed on- demand to help with employ-
ment related issues and balance headcount accordingly to the actual workload
determined by the project.

PROJECT COMMUNICATION

Project communication can be classified by identifying the “level of formalism”.
Formal communication has a strong focus on the following meeting attributes:
agenda, process, schedule, location, participants, relationship, and objectives [Braun
et al., 2001a].

Depending on the type of meeting or communication, the meeting process
might be predefined in detail, sometimes even by legal regulations (e.g., for a
meeting of the supervisory board or for a stockholders’ meeting the process,
agenda, and audience is predefined). A formal meeting, for instance, typically
has an agenda distributed in advance to all the invited participants. The meeting
will have a specific schedule due to time constraints of the participants, and will
take place at a predefined location. The participant’s relationship results from
social aspects, their company’s culture, their hierarchical structure, their affilia-
tions, etc.

A meeting is informal if the influence of one or more of the meeting attributes
is reduced. This is illustrated by having a exemplary look on three different types
of informal meetings:

Casual meetings in FreeWalk [Nakanishi et al., 1999] are held in a pleasant at-
mosphere with subtly hierarchical structures. Casual meetings are held with-
out or with low ceremony (process), in casual attire, and often with beverages
or snacks to support a convenient feeling. The expectations on the findings
and outcome of the meeting are reduced.

Casual meetings are difficult to capture. They are often used as a kick-off to
introduce people to each other, or as an ice-breaker.

Ad-hoc or impromptu meetings are unscheduled (or unpredictable) meetings in
terms of time and place. Examples include people meeting each other by
chance in the coffee-room or in the hallway. This kind of meeting, while
fostering teamness and social relationships of colleagues, is totally unstruc-
tured (no agenda, no schedule, no list of participants, no expected outcome)
and therefore much of the content or information is lost after a while. The

3.1 e Distributed Software Development 43

3.1.2

conversation is also not available to team members who did not attend the
meeting.

There is no expectation on the outcome of ad hoc meetings. Ad hoc meetings,
however, can strengthen human bindings and foster a sense of community.

Brainstorming sessions in iBistro [Braun et al., 2001a] are held in a casual
manner and might even be unscheduled. The main distinction to ad hoc
and casual meetings is that they do have objectives. Therefore, on the one
hand knowledge capture as well as representation of related material during
such a brainstorming session is important.

Brainstorming sessions in iBistro are one type of source of information that
can be later used in asynchronous collaboration.

Brainstorming sessions in iBistro can take place in a dedicated room with ap-
propriate roomware, along with the iBistro tools, for instance meeting cap-
turing and post-mortem structuring tools. Brainstorming sessions can also
take place in ubiquitous meetings (derived from ubiquitous computing), where
specific technical support, such as micro devices in the room, is used to sup-
port meeting participants.

Table 3.1 summarizes these three types of informal meetings and relates the
type of the meeting to the meeting attributes that define the relative level of for-
malism. In addition to the meeting attributes that define the level of formalism
of a meeting, we also distinguish the level of support for different social groups
(row “Community support”) in the table.

PROJECT-BASED AND
FUNCTIONALLY STRUCTURED ORGANIZATIONS

The classic organizational form is the functionally structured organization. In a
functionally structured organization the staff members are grouped into depart-
ments according to speciality, such as marketing and engineering. The perceived
range of a project is limited to the boundaries of the function, as each department
works independently. In the project-based organization the functional structure
still exists. The organization is built from several projects.

Matrix organizations are a combination of the classic functional and project-
based structures. The matrix is built up by functional lines of authority in vertical
direction and horizontal lines of project management. In weak matrices, many of
the properties of the functional organization are retained and the project man-
ager’s role is diminished. The opposite organizational model is the project-based
organization with a strong role of the project manager.

44

Chapter 3 e Problem Definition

Casual Ad Hoc or Brainstorming
Meetings Impromptu Meetings Sessions
in FreeWalk in iBistro
Agenda list of issues, no optional
prepared
presentations
Community same same balanced teams
support
Time same same same and different
Process low no none or optional
Schedule scheduled impromptu optional
Location dedicated room anywhere, but likely meeting room1
in specific rooms
of Participants fixed variable, small variable, small
Relationship casual variable informal
Objective2 low no yes

! Meetings in iBistro, either physical or virtual, take place in a specifically equipped room.
2 Describes whether an objective is expected.

Table 3.1: Meeting attributes (shown in the left column) related to types of informal
meetings.

The project manager draws on resources owned by the functional managers.
This is where the vertical lines of functional management and horizontal lines of
project management overlap and conflict. (Figure 4.7 in Chapter 4 displays this
issue for the project in our communication survey.)

Figure 3.2 shows the project-based organizational model used in this disser-
tation. A project is a group of activities (Tasks) performed in a logical sequence
(i.e. organized in Sub-Projects) to meet one or more basic objectives: to cre-
ate change, to implement strategic plans, to fulfill contractual agreements, or to
solve specified problems [SkillSoft, 2002]. A project is a temporary endeavor —
it has a date of commencement and a date of completion. The end of a project
is reached when the project’s objectives have been reached or when it becomes
obvious that the project’s objectives cannot be met. In that case, the project is
terminated. Each project is unique and non repetitive. During a project, lim-
ited resources from many different departments of an organization and poten-
tially external contractors need to be coordinated. These resources include: labor
and management personnel (Programmer and Executive in Figure 3.2), equip-
ment and materials, facilities, and finances.

A group of related projects managed in a synchronized way is often called a
program'. Programs are ongoing and continuous and achieve a long-term goal
within an organization. Projects, in contrast, are finite.

'Not to be confused with a computer program.

3.1 e Distributed Software Development 45

Organization ¢ Human
<<work in>> Resource
]
Project-based ZF
Organization Personnel
/\

T

* [| [|
| Program l— |Programmer|repow Team repors 10 Project <coordinate] Program
N

Lead Manager Manager

| Project | |ProjectWorker|

*subordinate

| Technical | |Manageria|| |Organizational| | Cross-Functional | |Applicati0n Domain

[
Role

Figure 3.2: The project-based organization model used in iBistro.

Projects are performed by people. The people are working in several roles
with according responsibilities. A project manager typically is the single point of
responsibility. The roles and responsibilities are defined for all personnel working
on the project. The roles are not static, but subject to change during the project’s
execution.

The role of an individual defines his or her responsibilities on the project.
Each individual team member is assigned one or more roles and related expecta-
tions to be fulfilled®. Both are aligned with the individual’s level within the hier-
archy of the company or organization. A role describes the technical, functional,
or managerial categories that might be assigned to a person. The expectations
define the expected outcome of the work an individual performs in his or her
assigned role. The expectations also define what type of tasks or issues which
might occur while working on an assignment are to be addressed by the individ-
ual directly as opposed to being escalated to a higher level within the hierarchy.
It is important to define and clarify the roles and expectations for all people in
the project team as early as possible and revise them whenever needed. Roles and
expectations define the basis for performance assessment and deliver a guideline
for all personnel.

We distinguish between the types of roles in a software development project
shown in Table 3.2.

2In practice, user specific access rights for information systems are typically assigned based on
the instances of roles as shown in Table 3.2. However, in this section we focus on the managerial
aspect of roles and expectations.

46 Chapter 3 e Problem Definition
| Categoryofrole | Instances | Description |
Management Project manager, program man- Roles with direct responsibility
ager. and leadership.
Organizational Human resources, staffing, Roles that administer and ful-
project secretary. fill organizational tasks for exec-
utives without leadership and re-
sponsibility.
Technical roles Software architecture, deploy- Technical skills and expertise.
ment, infrastructure, deploy-
ment, test support, migration
Application domain requirements specification and Application domain-specific
verification, system testing skills and expertise.
Cross-functional Requirements, implementation Especially helper roles with lower
teams, testing requirement of technical skills.
Table 3.2: Roles and related instanced of roles in a software development project.
3.2 RESEARCH ISSUES
We specifically identify issues for both generic software development projects
(e.g., single-site) and distributed projects. In particular, we identify three dif-
ferent categories of research issues:
1. Communication issues
2. Organization and control
3. Knowledge & artifact management
3.2.1 COMMUNICATION ISSUES

Communication issues includes problems related to the communication of indi-
viduals and teams over distance, time, and communities, including technical and
non-technical aspects of human (project) communication.

Communication is crucial factor for project success [Curtis et al., 1988; Grin-
ter et al., 1999; Blackburn et al., 2000; Braun et al., 2002b]. Many aspects in
communication are strongly related to the dimensions of distribution defined
before (Section 2.3). Communication issues get worse with increasing geograph-
ical, temporal, or community distribution [Grinter et al., 1999]. Moreover, the
importance of the coherent presence of all categories of communication such as
formal and informal is recognized [Kraut and Streeter, 1995]. Even so, an in-
tegrated approach to consider the importance of the interplay of this variety of
cooperating categories and of capturing knowledge in these categories has not
yet been addressed. The integration of informal-type meetings into knowledge

3.2 e Research Issues 47

capture and acquisition is challenging in particular, because logging a meeting
will disrupt its informality.

Additionally, community distribution is an important and upcoming issue
with impacts not limited to social aspects. (Community distribution also inter-
feres with legal and organizational aspects, for instance.) Distribution is also a
challenge, as personal contact is known to facilitate and ease impersonal com-
munication, for example by lowering hurdles in initially approaching people or
by helping to identify suitable contact persons [Picot et al., 1996; Pribilla et al.,
1996].

Presently, no single (technical) communication infrastructure is available to
incorporate means of project-wide communication with extra-project knowledge
repositories of a larger organization®. As there is no such support tool available,
the responsibility for the processing of information and knowledge contained in
project communication is left to each individual user. Each user has to find a new
and very individual way of information processing without making this know-
ledge available to colleagues. Without a common repository for organizational
and project knowledge, the information remains hidden to the organization as a
whole as it is embedded in scattered and unlinked emails, artifacts, documents,
and individuals. With either increasing scale of the organization or increasing
distribution, the problem of a missing common communication infrastructure
degrades, as documents and artifacts in general are distributed.

The problem of visualizing software, for instance in models, during software
development is described as one of the essential problems in software develop-
ment [Brooks, 1986; Brooks, 1995]. Software invisibility (the lack of suitable
tools and notation to visualize a software design graphically) is one of the essen-
tial problems in developing and understanding software. Brooks argues that (1)
software structure is not embedded in a three dimensional space, resulting in lack
of a natural single mapping from a conceptual design to a diagram and (2) that
multiple diagrams are needed, each covering some distinct aspect.

We argue that visualization does not promise to (automatically) “find” map-
pings, e.g. from a design into a solution space. Instead, visualization helps pro-
grammers to find suitable mappings easier. Software diagrams and models en-
able negotiation and communication. Today, the Unified Modeling Language
(UML, [Rumbaugh et al., 1998]) claims to solve this problem for most practical
problems.

Visualization in software development projects is important if teams are dis-
tributed. Pictographic software models facilitate the communication over soft-
ware design and models over distance. The UML offers a standardized notation
for software model exchange. The iBistro framework and especially the iBistro

3Organizational knowledge repositories are, for instance, information and artifacts from re-
lated projects, a company knowledge base system, or community of interest knowledge bases.

48

Chapter 3 e Problem Definition

3.2.2

meeting room and its roomware can be used to discuss a software design col-
laboratively given suitable front-end tools, for instance D-UML [Boulila et al.,
2003].

ORGANIZATIONAL ISSUES

Organizational and managerial issues in project collaboration and control are
important aspects of management which are difficult to achieve if people do not
regularly meet in person and with increasing distance [Carmel, 1999; Kotlarsky,
2001].

Coordination is the ability of a project manager to direct work efforts of teams.
Coordination is also the ability of a team lead to direct activities in the team, as
well as it is the ability of each individual to manage his or her own workload.
Control is necessary to assess whether measures taken are successful and how
the project progresses. Coordination and control is a basis for successful project
management. The dispersion of work makes it difficult to establish personal con-
tact with individuals which eases a trustworthy assessment of the current project
situation. All three dimensions of distribution (Section 2.3) complicate build-
ing up personal relationship, therefore reducing coordination and control. This
issue is addressed by organizational means and special team formations, such
as the “balanced team” introduced in Chapter 4. This research, however, pro-
vides a technical infrastructure which makes communication, information and
knowledge, and artifacts available to teams, including managerial roles. Thus,
performance and metrics can be applied.

The work in distributed environments display different human behavior com-
pared to people who are working together physically on an every-day basis. Some
authors [Grinter et al., 1999; Bruegge et al., 1999] also report a communication
breakdown in distributed teams if people working together do not know each
other in person. In other words, personal contact is an essential basis for elec-
tronic communication media, such as email or telephone. Loss of teamness es-
pecially affects distributed people, who do not develop or identify common at-
tributes, which would build up a ‘community’.

Advances in software development languages and tools focus primarily on
improving the productivity of the individual programmer, rather than the team
of developers as a whole [Booch, 2000]. Given the importance of teams to mod-
ern work life and especially distributed software development, such advances in
individual productivity have “diminishing returns relative to winning the game”
[Booch, 2000]. We focus on the software development team and ways to improve
its productivity.

In concurrent and distributed development, different perspectives can be at
different stages of elaboration and may each be subject to different development

3.2 e Research Issues 49

3.2.3

strategies. In distributed software development, this leads to projects with many
actors, many representation schemes, diverse domain knowledge, and differing
development strategies at different project sites. The problem of how to guide
and organize development in this setting is called the multiple perspective problem
[Easterbrook et al., 1994]. Issues related to the problem of multiple perspectives
are addressed by a common ontology for global teams and by a suitable team
culture (which comprehends a company jargon and terminology).

Conflicts follow an unstructured and even chaotic path. A conflict typically
has two or more opposing parties who seek for public acceptance which is man-
aged by communication activities. Mediation systems, for instance, offer a dis-
cussion forum with special support for deliberation and support the process of
discussing, arguing, communicating, and negotiating issues of practical impor-
tance. Mediation systems provide particular support for trusted third parties who
are responsible for moderating these kind of discussion. Features of mediation
systems include issue-based discussion forums and exchange of classified docu-
ments. While conflicts in on-site projects are already challenging, global software
teams need electronic support for argumentation, mediation, and negotiation
due to their spatial and temporal distribution.

ISSUES RELATED TO KNOWLEDGE & ARTIFACT MANAGEMENT

During software development projects, many different artifacts, such as source
code, (design) documents, and emails, are produced and become part of the
project knowledge. Artifact management focuses on integrating those work prod-
ucts into a knowledge-based approach, allowing for tracking and exchange of
relevant artifacts.

Tacit knowledge [Polanyi, 1966] is hard to formalize and capture in electronic
repositories. While knowledge capture and acquisition always has to cover man-
agerial and organizational means, the resulting artifacts have to be stored in ways
that satisfy requirements for electronic storage systems. In other words, to store
knowledge in electronic systems and later retrieve the stored information so that
it is usable in a specific context, both the structure and the actual knowledge
content have to be kept electronically.

The challenge is to find a way to chronicle or record both the structure of
knowledge (given in some taxonomy or hierarchy) and the content (knowledge)
itself while dealing with the mutable character of both aspects. Concretely, this
means that both the content of knowledge objects and especially the structure of
knowledge must be assumed to be dynamically modifiable.

This issue is addressed in the iBistro knowledge ontology and representation.
We specifically suggest ontology modeling in the UML and knowledge instantia-
tion in Java objects.

50

Chapter 3 e Problem Definition

To achieve the goal of “offering the right information to the right people at the
right time”, two opposing views of the notion of knowledge can be used. The
functionalist perspective and the interpretivist perspective.

The functionalist view regards knowledge as a technical object. Knowledge is
considered as objects (or artifacts), such as text, notes, documents, email, source-
code and so on. This kind of knowledge is easy to store and retrieve.

In the interpretivist view knowledge is seen as an inherent attribute of hu-
man beings. Accordingly, knowledge can not exist independently of human ex-
perience, social practice, and human knowledge use. Knowledge therefore is
shaped by the social practices of communities of individuals. A craftsman, for
instance, might have deep knowledge and skills in a specific domain, however,
being unable to formalize and write down ‘how to do it. Typically, those skills
are given from one foreman to his apprentice. And as the apprenticeship takes
several years, this approach is obviously a long-term effort.

While typical design and requirements documentation only reflects the final
decisions and hence the resulting and actually implemented artifact (software, for
instance), design rationale research aims at documenting the process that led to
a decision. This allows learning from earlier decisions, alternatives, and debates
to improve future versions or reuse knowledge in new projects. The notion of a
“design rationale” stems from the fact that design rationale were originally used
during the design phase. Dutoit and Paech illustrate that principles from design
rationale research also apply to other phases in the software development life
cycle, specifically requirements engineering [Dutoit and Paech, 2001b]. Hence,
we will use the term rationale to stress that rationale may be captured throughout
the whole life cycle.

Rationale is still no established tool in software development, in spite of its
potential importance. Engineering in general is about tradeoffs and conflict of
goals. During development, engineers (and software developers) have to solve
many issues during development. After finding a solution to a problem, the
process of finding a solution is lost due to additional overhead, a missing tool-
support for seamless integration in regular project work, and a missing method
to capture rationale during the types of meetings during which they normally
occur: informal meetings and brainstorming sessions.

The capture of rationale information is closely related to knowledge captur-
ing. Rationale enable human readers to understand more about the knowledge
and information provided. Explanatory statements further allow people to apply
given knowledge in different situations and improve it. iBistro addresses issues
resulting from unrecorded knowledge in the domain globally distributed soft-
ware development. iBistro focuses on various knowledge sources* to capture raw

*The notion of a knowledge source also depicts a technical term in the context of the concept
of blackboard systems in artificial intelligence. See Chapters 5.3 and 6 for more on this concept.

3.2 e Research Issues 51

information/ data and knowledge, specifically in informal type of meetings, as
informal communication is considered crucial for success, but difficult to cap-
ture.

52

Chapter 3 e Problem Definition

CHAPTER 4

COMMUNICATION IN SOFTWARE
DEVELOPMENT PROJECTS

“Software development used to be the domain of engineers clad in
white lab coats working inside air-conditioned data centers in a
handful of advanced, industrial countries.

The PC revolution changed all that. In the 1990s, software
development has become global.”

[ERRAN CARMEL]

The performance of individual programmers often differs by an order of mag-
nitude [Brooks, 1986; Booch, 2000]. In the following, we argue that this is also
valid for team performance, due to the typical team composition of a mix of
experienced and not so experienced personnel. We found that the most effec-
tive teams showed little extra-team communication and very intense intra- team
communication.

In Chapter 3, we distinguished technical and functional roles in software de-
velopment teams (Table 3.2). These roles categorize teams into technical teams
and functional teams. Technical teams will especially work in technical roles, and
sometimes in cross-functional roles. Technical teams consist of technical experts,
like programmers, while functional teams consist of application domain experts.
In either category a set of tasks is assigned to team leaders. The team leaders staff
their teams accordingly to the assignment and availability of people. The result-
ing team formation in this case is partly a random result, for instance based on
availability of human resources.

Our hypothesis, then, is that a team that is composed of a balance of technical
experts, application domain experts (e.g., banking, finance), and less experienced
staff performs best and enables reduced communication overhead. This team
composition still yields a maximum of coaching and incorporation of less expe-
rienced or weak team members. We call the resulting team formation a balanced

54

Chapter 4 ¢ Communication in Software Development Projects

team [Braun et al., 2002b]:

Hypothesis. Balanced teams display higher team performance and
greater potential for distributed work.

| Project |

*

~77 inter-team |
| Balanced Team I: - -+ communication

/\

Personnel

------------------- 1 Team Member P-Tﬁt}é—iééﬁl-- Team Lead |————————————|
communication

Figure 4.1: Distributed balanced teams using the iBistro infrastructure.

Figure 4.1 shows a balanced team formation. Balanced teams display higher
intra-team communication and lower inter-team communication than unbal-
anced teams. Most of the inter-team communication is channeled through a
small number of communication peers (such as the team lead, for instance). By
communication peers we understand the parties involved in direct communica-
tion, such as the sender and the receiver of a message, or the direct counterparts
in a face-to-face discussion. To enable optimal inter-team communication and
coaching, the balanced team itself is a local team of co-located team members.

Definition. A balanced team consists of co-located experts for tech-
nical and application-domain related issues along with a team lead
who serves as a primary contact for internal communication as well
as the primary peer for external communication. The communica-
tion metrics for a balanced team display higher intra-team commu-
nication and lower extra-team communication compared to typical
team compositions.

55

Given a project with n persons, there are up to @ potential communi-

cation interfaces (or pairs) — as any person could address anybody else on the
project. In this communication scenario, all communication paths are treated
equally. This is not valid for distributed projects. In distributed project scenarios,
communication that extravagates one or more of the three dimensions of distri-
bution (Section 2.3) is more “expensive” than local or internal communication.
The resulting communication effort has to consider the cost of each communi-
cation path. This results in a matrix that lists whether a communication path
between two nodes (team members) exists, and what the cost of this path is.

The balanced team addresses this issue by providing pre-defined communi-
cation paths between two distributed balanced teams. This means that commu-
nication between two balanced teams is channeled through the team leads or
specific stakeholders in the teams. Software projects include challenges from the
technical side (e.g., programming or computer science related issues) as well as in
the application domain (e.g., banking or finance). In co-located teams in XP the
client has to be present at the project site. In the balanced team, in contrast, the
team experts for each domain of expertise act as stakeholders for technical or ap-
plication domain issues. The stakeholders act as primary contact for all questions
in their domain. If specific issues can not be solved by the team expert, this ex-
pert also acts as single point of contact for extra-team communication for remote
stakeholders, including a remote client expert. The main advantage anticipated
by this procedure is, beyond the improved relationship between the stakeholders
due to scarce change of stakeholders, that experts rephrase the problem and gain
quicker agreement with expert members of the other team. Further, communi-
cation overhead is reduced, by not simply allowing everybody to contact anybody
else.

The balanced team approach addresses the “productivity paradox” observed
by Blackburn [Blackburn et al., 2000]:

e almost every project manager names “best people” as the most influential
single factor for project success, while best people are hard to find;

e faster firms tend to have smaller teams (except for requirements);

e more people often decrease performance on a project.

These observations are made by several authors, for instance [DeMarco and
Lister, 1979; Brooks, 1995; Booch, 2000]. In a balanced team, hence, the very
good people are identified based on their performance assessment from previous
projects and skills list. They are distributed evenly among the project teams. This
prevents, however, that one single “dream team” outperforms other teams and at
the same time allows for the coaching of new and less experienced team mem-
bers. Given a company culture that prevents information hiding, for instance

56

Chapter 4 « Communication in Software Development Projects

4.1

4.1.1

4.1.2

by fostering intra-team coaching and developing related skills, this team forma-
tion can be used for teaching less experienced people by more experienced team
members.

RESEARCH CONTEXT

IBISTRO

iBistro is an exemplary prototype for a distributed intelligent meeting room.
iBistro is distributed, so that several local iBistros are interconnected and draw
on shared resources. iBistro is an intelligent workplace by offering automated
services to local or remote users, such as suggestions and (partly) automated ac-
quisition of meeting knowledge. Finally, iBistro provides a dedicated meeting
room with meeting-support and roomware.

Local iBistro’s at each project site are connected over the Internet. Five fun-
damental concepts in iBistro support distributed informal meetings: knowledge
capture, storage, knowledge representation, knowledge acquisition, and know-
ledge retrieval. iBistro had been developed with an empirical approach in several
iterative cycles. The tool support for informal meetings were developed and eval-
uated at university. Because the student case studies at university are different
from professional development teams, the requirements elicitation for team sup-
port were done in a large industry software development project implemented by
Accenture.

ACADEMIC PROJECTS

We evaluated the tool-support for informal meetings in university projects. To
evaluate knowledge capture and acquisition in informal meetings, we choose
weekly status reviews held during a diploma or bachelor thesis and a three-month
system development project. Such reviews are held between the supervisor and
the student who is pursuing the thesis. In these case studies we focus on informal
meetings and brainstorming sessions which take place between several students
and researchers.

Globally distributed software development is evaluated during a distributed
diploma thesis, done in Singapore and Munich between August and December
2002.

4.2 e Experimental Environment 57

4.1.3

4.2

4.2.1

INDUSTRIAL PROJECTS

To identify actual project needs, requirements, and user acceptance criteria, we
used the implementation phase of a very large banking project performed by a
consultancy as source of information during requirements. We specifically ana-
lyzed project communication and project metrics [Braun et al., 2002b]. In the
project under investigation, more than two hundred professionals from the con-
sulting company, the banking corporation’s IT subsidiary, the bank worked to-
gether at two project sites (both in Germany). The team members, together with
banking specialists and freelancers, specified, designed, and implemented a new
Enterprise Java Beans (EJB) based system to support branch office personal in
real estate finance.

In the following sections in this chapter, we introduce the project under in-
vestigation and detail our findings used for iBistro requirements elicitation.

EXPERIMENTAL ENVIRONMENT

We introduce seven aspects that were characteristic for the project (see also Fig-
ure 4.2): the engagement, the consultancy, the project itself, release planning,
the common technical architecture, common project metrics, the release under
investigation, and finally, the team organizational structure.

| Consultancy |—*| Engagement I—* Project H Release |—*| Team
Architecture

Figure 4.2: Overview of the project under investigation.

In the following sections, we instantiate these aspects for our communication
survey.

THE CUSTOMER: A BANKING CORPORATION

The customer is one of the largest banking corporations and real estate financing
companies in Europe. The bank had approximately more than 1,000 branches
with over 65,000 employees at the time the survey was conducted.

The bank’s goal was to redesign its real-estate business processes and soft-
ware. This goal was based on strategic considerations with far reaching effects
for this bank, as it specifically has a special focus on real estate financing. As a

58

Chapter 4 « Communication in Software Development Projects

4.2.2

4.2.3

result, the project heavily affected the banking corporation’s core business pro-
cesses. This change had also some technical implications, managerial challenges,
and additionally puts some risk on continuous business. To deal with such a fun-
damental change, the overall project was divided into a number of releases, each
of which implemented a certain amount of functionality or modules, without
affecting the working legacy system (incremental approach). The bank has both
an outsourced IT operational service as well as an IT systems engineering and
software development subsidiary. Nevertheless, the bank decided to give the lead
and the realization of the reengineered real estate financing system to an external
consultancy.

THE CONSULTANCY: ACCENTURE

The assignment for the consultants included the following tasks: Defining the
scope of the system, requirements engineering and business process reengineer-
ing, development and ongoing maintenance of a common software architec-
ture. Definition of the functional design and implement and test the new system.
Project management wise, the responsibilities included team leadership for de-
velopers and testing teams which are composed of client and external personal,
freelancers, and people from subcontractors. Finally, the system rollout planning
and initial support during the rollout phase are to be managed and accomplished.

Consultants started early to analyze the specific functional and technical as-
pects of the banking post-merger project. A small team started defining and
specifying aspects of the technical architecture by leveraging off similar experi-
ences in the organization. Stakeholders and technical architects are found using
KX, Accenture’s “Knowledge eXchange” system [Brody et al., 1999]. At project
start, experienced and specialized technical architects are staffed to the project to

support the local teams at project initiation.

Most of the project had been conducted at two client sites in Munich and
Hamburg, including requirements engineering, design, implementation, and roll-
out. This approach enabled continuous interaction with the client but is costly
and put additional challenges to the client’s infrastructure with respect to office
space, technical equipment, and other resources.

THE PROJECT: A POST-MERGER PROJECT

The bank merged with another large banking corporation some time ago. In
addition, another competitor had been acquired. In the project the following
objectives had to be achieved: backoffice credit processes had to be shortened and
integrated into an user-friendly system with reduced paper work and improved
risk management (e.g., incorporate risks in prices of banking products). Other
goals included improved sales hit rate and cost cut and increased productivity.

4.2 e Experimental Environment 59

4.2.4

Moreover, the new system shall be the technical basis to integrate external sales
channel, such as resellers or internet portals, into the system. The system also
has to cope with some new or improved legal aspects of real estate financing that
were or still are to be introduced by the European Union (for instance client
assessment according to the Basel-II [BIS, 2003] rating standards).

To handle the risks of such a complex change, the new system was designed
to be implemented and introduced step by step in several releases. Each release
focused on a specific functionality of the overall system. The releases were de-
signed to work as independently as possible from the final system. They are also
designed to work together with the legacy system. However, some of the releases
are known to be coupled tightly (i.e., sharing the same data sets or host modules,
depending on data from each other). To handle this, some releases were planned
to be realized concurrently. (See Figure 4.3.)

— YEAR Year 1 Year 2 Year 3 Year 4 Year 5

March ISeptember March |September March |September March |September

avchitecture |0 OO0 TO00 T8 00 T] I
Release 1
E= |
Release 2 - _-
Release 2b ‘ .
Release 2d EJB i _'_l_'_i
i !
Release 3b ‘ |
| [_S==mam

Release 4

Figure 4.3: Release planning (retrospective view).

The bank decided at the end of Release 2c to change the server architecture
from Microsoft COM to Sun’s Enterprise Java Beans (EJB) architecture. This
redirection heavily affected the architecture team and the release planning. The
survey focuses on Release number 4 (the last line in Figure 4.3). This release was
already developed using the new Java-based architecture.

TECHNICAL ARCHITECTURE AND FRAMEWORK

Part of the project was to establish a common technical architecture as a con-
solidated basis for all parts of the system. Even though the architecture changed
from Microsoft COM to Java Enterprise Beans during the project, the compari-
son of teams working in an single release is made easier, as every developer has
to face comparable technical challenges and uses the services and advice of the
same architecture team. These preconditions are critical to compare the team
performances.

60

Chapter 4 « Communication in Software Development Projects

The latest version of the technical infrastructure served as a framework for
the application developers. Therefore, at least from the technical point of view,
all developers faced the same challenges and had to implement the same type of
code.

The basic data set for the window was defined in the eXtended Markup Lan-
guage (XML, [W3C, 1998b]). The window specific XML structure comprehends
all potential sub data sets which might be needed in that specific part of the ap-
plication or business logic. The business logic and dynamic behavior itself was
implemented in a Java Activity Bean, basically an implementation provided by
the framework. Similar to the Activity Bean, which visually interfaces the front
end, Data Beans offer basic functionality to the mainframe and host systems.

Both the Activity and Data Beans were based on Enterprise Java Beans [Green,
2002].

The static part of the user interface was implemented in the eXtended Stylesheet
Language (XSL, [W3C, 1998c]). The XSL stylesheet allowed the transformation
of forms and data to either HTML to be displayed in the web-browser, or, for
instance, Portable Document Format (PDF) for document printing or archiving.

4.2 e Experimental Environment 61

Web Server : Server Machine

Client Desktop PC

MSII: Web Server \

% : Cocoon % : Codestables I iHTML

— =~ XML/ XSL Rep. ~ = ~|

Sorviet R T r JavaScript
g: ervlet Reposi ?y ,‘ ~o
m h ~
4 N Sendback

~ HTTP/HTTPS 1
7 ~N I
N~ Send back
icati ; i . | Request XML
Application Server /Server Machine ~ HTTP/ HTTPS q
L Request XML \\ 1
Weblogic : Application Seryer \ RMI N |
AN 4
. . e ———— -7
% : ActivityBean f % DataBean X’ \\\
\
X A \ \|
~N - ’I
PA - !
omoY 4 N
\ RN
\ Internet)
1 L or I/’
, Local Area Network 1
~
S/390 : Mainframe | /’ /l
: Host System \ I ‘\ y’
[\\ T T =~
-
OPA v S
e d
- -

DB2 Tables
V4

Figure 4.4: The common technical architecture used during the project. The implemen-
tation teams under investigation in this survey developed ActivityBeans and DataBeans
shown in grey in the figure. The framework established a common basis for all imple-
mentation teams, resulting in comparable technical challenges. Therefore the results of
the teams as well as performance metrics were comparable.

‘OPA’ is a specific middleware for server to host/ mainframe peer-to-peer transaction
processing. Apache’s ‘Cocoon’ is a framework for building web publications and appli-
cations, that are based on serverside XML and XSLT technologies. Cocoon was used to
merge XML data and XSL stylesheets that built components for the frontend.

62

Chapter 4 ¢ Communication in Software Development Projects

4.2.5

TEAM PERFORMANCE METRICS

The metrics used to measure the performance of the individual teams were based
on project relevant data and known to the teams. Hence, team leads and team
members knew in advance how the performance assessment was made.

Project relevant data is recorded in a Project Management Workbench (PMW)
sheet, which is an electronic spreadsheet document. The PMW lists the following
information: tasks, initially estimated total effort per task, actual invested time
per task, and estimated to complete. This information is recorded per-project,
sub-project, task, and individual team member. Tasks are listed accordingly to
the initial specification of the system and further subdivided per-team with esti-
mations made by the responsible team lead. Figure 4.5 shows an example PMW
sheet.

PMW Overview

857 Team 2, Sub-Project B

Hours 0 1.756 1.241 77 0 1.318 439
Person Days 0 220 155 10 0 165 55 24,97
TOTALS Hours 252 14.156 12.976 2.136 0 15.112 -955
Person Days 32 1770 1.622 267 0 1.889 -119
Detalled EV\
Period as of Date: 17.12.2001 Tasks not completed
Team 2, Project B
Totals View in Hours
ID Name Abbr. Budget ATD [E10C EAC Variance
ATD+ETC
857100 Project B Total 1756
85710010 Budget Review Project B 242
85710011 - Review Project B ™1 177 60 127 187 +10
85710012 - Review Project B T™M2 65 0 65 65 0
ATD Actuals To Date ETC Estimated To Complete

EAC Estimated Actual Completion

Figure 4.5: Project Management Workbench (PMW) estimation and status tracking
sheet.

The PMW overview sheet (the upper part of Figure 4.5, labeled “PMW Over-
view”) shows a typical summary for the overall project. The individual calcula-
tions for each sub-project are made in the specific sub-project sheets (one exam-
ple is given in the lower part of Figure 4.5, labeled “PMW Detailed View”).

The following parameters assess the performance for an individual task: The
actuals to date (ATD) denote the actual amount of time invested in a specific
task. The hours estimated to complete (ETC) denotes how many hours the team

4.2 e Experimental Environment 63

4.2.6

lead estimates the specific task to take until full completion. The estimated actual
completion (EAC) is the result from the actual amount of time already invested
(ATD) plus the estimated time the task will need for full completion (ETC). The
later figure can be compared with the budget, which is the initial estimation for
the specific task.

By tracking all specific tasks in a sub-project accordingly to the work break-
down structure, the overall project success is visualized at any time during the
project. The summary is shown in the PMW overview sheet.

The PMW sheet can also be used to compare team performance. The indi-
vidual task are initially assigned to the project teams. This is achieved through
negotiation in a common session with the project manager and the team leads.
The goal is to find a fair and well-balanced assignment. During and especially
after the project, the estimates for the individual assignments were compared to
the EAC at the time the project ends. Assuming that all initial estimates of the
budget per task do have the same quality of estimation, the comparison of budget
and EAC at completion time display the team performance.

Project Management Workbenches (PMW) have been used during the whole
project, including Release 4, to measure and assess team performance, project
progress, and status. The initial PMW spreadsheets are built from the original
estimations and the requirements documentation. The overall PMW is broken
down into sub-projects. For each sub-project, the PMW lists basic and recurring
tasks, such as detail design, implementation, unit and assembly testing, and so
on. These basic tasks occur in every component in the release. Each member of
the project team fills in his or her PMW sheet by assigning the time spent on the
specific task to the corresponding PMW entries. Thus, team leads and project
management knows how many time is spent and, after the task is completely
finished, what the status of the overall project is.

The PMW spreadsheets are set-up in advance and are the same for every
project team. Beyond this, every team implemented more than one sub-project.
We therefore use the PMW for team-performance assessment in this survey.

THE RELEASE UNDER INVESTIGATION: RELEASE 4

The scope of Release 4 was to grasp and assess securities for the loan, to collect
relevant information and properties of the real estate to be financed, and finally
to calculate the costs of financing, such as charged interest, monthly rates, or
taxes.

The requirements for Release 4 were defined and specified in a document,
called “Fachkonzept”. The Fachkonzept spans more than a requirements analysis
document. It also includes a top level design and the key architecture and design
decisions.

64

Chapter 4 ¢ Communication in Software Development Projects

Some ill-defined aspects of real estate finance strategy and some legal issues
remained open after the project kick off. As a result, the project from the start
required much interaction with domain experts from the client side during the
project life cycle. This led to an interactive development process as illustrated
in Figure 4.6. This study specifically focuses on the following three iterations
in Release 4: Implementation and Unit Testing, Assembly Test, and System Test.
Initial planning and deployment are introduced for completeness and introduc-
tional purposes for the other iterations.

During the initial planning and requirements engineering phase, a basic pro-
totype was developed to demonstrate usage and flow of events of the system. This
prototype was also used to check for completeness of data for the business pro-
cesses and the workflow. The prototype, along with the Fachkonzept, was part of
the contract and mandatory for all developers. For instance, information given
in the Fachkonzept was used for test planning and to write testscripts.

Scope of the Communication Survey

Inception

Initial Planning
+ Requirements
+ Prototype

+ Fachkonzept
Analysis & Design

Implementation

[Assem bly Test

System Test

Figure 4.6: Life cycle for Release 4.

As a non-linear process was used in the project, many errors in requirements
and in the Fachkonzept were found during implementation, assembly testing,
and during system testing. Errors in code, design, requirements, and usability
had to be fixed iteratively in the Fachkonzept, in the designs, and in the code. Ad-
ditionally, many Change Requests (CR) to the Fachkonzept occurred during the
iterations. A Change Request is a change to the actual specifications made in the
signed-off concept and is therefore a change with impact on the contract. A SIR

4.2 e Experimental Environment 65

4.2.7

(System Investigation Request) is an unexpected behavior of the system deviating
from specification made in the Fachkonzept, either functionally or technically. A
SIR is entered to a specific SIR-database and assigned to a team or individual for
investigation. The SIR then might be considered a bug or limitation, which re-
quires fixing of the code. A SIR can also be a functional deficiency, that is that the
bug is in the Fachkonzept (in which case the Fachkonzept needs to be corrected
and the code re-written or fixed accordingly.) A SIR can also have many technical
reasons (such as incorrect test data, dependencies, ...). Finally, the SIR can be
rejected.

THE DEVELOPMENT TEAMS

Figure 4.7 displays the team structure and organization used during Release 4.
Functionally-structured positions are shown in vertical direction, the project-
based organization is shown in horizontal direction.

Executive Board

1
*
s | Executive Director |
8 1
% *
=y - -
5 Department > Clﬁgnzggsm
3 lL..n
IS . 1 !
3]
E Employee
= 1 1
g 1.n 1.n BANIE
5 = n Consulting Project -
()
2 | Team |—| Team Lead |— Manager ﬁ| Engagement Partner |m| Client Partner
1

1
| Program Manager |

A
A\ 4

Horizontal (Project-based) Organization

Figure 4.7: Teamstructure and Organization Chart for Release 4.

On the consulting side, the following roles were important:

The client partner was responsible for socializing and establishing contact to
the higher level management of the client corporation, e.g., the members of the
board. Typically, the client partner together with responsible board members de-
fines the strategic need and proposes a draft for a solution. The client partner is
often involved in the early proposal phases of a new project, but is not directly in-
volved in later stages. The client partner is the topmost executive in the hierarchy,
however less occupied with the actual project after inception.

The engagement partner is responsible for the integration of various projects

66

Chapter 4 « Communication in Software Development Projects

that together strive to achieve a common goal in terms of a business case. The en-
gagement partner is typically the lead executive for several projects at one client,
while the client partner is responsible for more than one client.

The program manager directed several projects to achieve one common strate-
gic goal or solve a business case. A program consists of several projects which
consist of several releases. The program manager is therefore responsible to co-
ordinate each project’s managers to achieve the common goal. While the pro-
gram manager is more on the strategic side, the engagement partner, who is also
responsible for the integration of several projects, works more on the executive
side.

The project manager leads one project and directly reports to the engagement
partner. A project manager is responsible for all coordination and control related
activities in one project and directly interacts with the team leaders.

The team leader runs a team, either an implementation, testing, architectural
or other team that belong to a project. Team leaders are responsible for tracking
progress within their team and identifying issues. They coordinate cooperation
with other teams and foster team work. The team lead directly reports to the
project manager.

Team-members came from the consultancy, the client side, and from third-
parties:

Team members are either consultants, bank personnel, freelancers', or staff
from sub contractors. Team members responsibilities range from detailed design,
clarifying and negotiation of technical and application specific detail, implemen-
tation, testing, and rollout to organizational tasks, like status reporting, tracking
and so on.

On the banking side, the following roles are of interest:

The executive board identifies a business need or charges an executive director
to identify call for action. Eventually, the board awards the contract to a consul-
tancy or internal department.

The executive director further is responsible for the project. Responsible de-
partment and project managers are assigned by an executive director.

Department managers and project managers lead the execution of the project.
If a department hosts more than one project, project managers might be assigned
by a department manager. The role of a project manager is typically not related to
a company’s hierarchy (it is a project related position), while a department man-
ager is. Both parties (consultancy and client) appoint their own project manager,
typically with higher conventionary responsibilities at the consulting side.

!Freelancers were increasingly used to augment the project personnel and to add human re-
sources to the project for a limited time frame. Freelancers act like a one-man company and work
for their own account.

4.3 e Setup of the Communication Study 67

4.3

4.3.1

SETUP OF THE COMMUNICATION STUDY

The goal of this survey was to analyze the communication preferences and actual
communication tool usage in relation to the actual measured performance of the
teams. Hence, we have chosen a combined qualitative/ quantitative approach for
this survey. Quantitative data was captured throughout the whole project for
each person and task weekly in a so called turn around sheet. The turn around
sheet listed the achievements and estimates for each individual task in the project.
The resulting data on progress and effort was transferred to the PMW sheet per
team. This task was typically performed by the team leader.

We have chosen the combined qualitative/ quantitative approach to validate
our ‘balanced team’ hypothesis (see Page 53). As much of the relevant input from
our subjects was based on their personal rating and assessment, we have chosen
semi-structured qualitative interviews for data collection. The rationale for this
choice were as follows:

e Our goal is to investigate project member’s assessment of their actual ex-
periences with off-the-shelf communication tools used in one specific in-
dustry project. Thus, the study was set up retrospectively.

e Personal interviewing of all project members helps us to get a realistic and
comparable assessment.

e As one of our goals is to elicit knowledge for future tool support, we are
also interested in unforeseen ideas or solutions provided by interviewees.
Several interviewees, for instance, used communication tools that were not
provided by the project, such as messaging tools.

APPROACH AND DATA COLLECTION

In the qualitative part of the survey, the following topics were investigated in
semi-structured interviews in six stages:

Stage 1: Communication vehicles
The goals for the first stage of the interview were:

e identify means of communication actually used at the project,
e clicit unknown, forgotten, or rarely used communication vehicles;
e assess user acceptance of communication vehicles and tools;

e assess user rating and effectiveness of communication vehicles.

68

Chapter 4 « Communication in Software Development Projects

We investigated the frequency of occurrence of communication vehicles used
at the project. We started the interview by offering a full list of communication
vehicles, ranging from electronic asynchronous means of communication (such
as email), over spontaneous face-to-face meetings (such as hallway meetings) to
scheduled formal meetings (status meetings, for instance). Like in every stage of
the interview, the interviewees also had the possibility to name alternate ideas or
add communication vehicles that were used, but missing in the initial list.

During this stage, we asked all interviewees to assess the actual versus the
nominal condition of communication usage (the actual usage compared to the
ideal situation), and finally rate the effectiveness of different means of communi-
cation accordingly.

Stage 2: Proportion of intra vs. extra-team communication

The primary goal of stage two was to categorize the actual interviewee by his or
her communication pattern.

We studied the proportion of intra-team and extra-team communication han-
dled by individual interviewees. This information was not treated isolated, but
particularly meaningful in the context of the communication vehicles used (Stage
1), the role and responsibility of the specific interviewee (Stage 6), and finally in
the facet of the interviewee’s team performance (quantitative part of the survey).

Stage 3, 4: Triggers for internal (3) and external (4) communication
The goal was to compare the following categories of triggers:

technical issues

application domain specific issues
organizational and management issues
value-oriented topics

and interfaces to other teams or individuals

Stages 3 and 4 compared five categories of triggers that start internal and
external communication and compares the effectiveness in finding appropriate
solutions and the quality of solutions found.

Stage 5: Communicating peers

The goal for stage 5 was to analyse the communication network and identify the
communicating peers (the communicating persons and teams):

o technical issues: infrastructure, host architecture, server architecture;
e application domain: application domain department;

4.3 e Setup of the Communication Study 69

e organizational, management, and value-oriented topics: team leader-
ship, project management (consulting), project management at client’s I'T
subsidiary, program management, and engagement partner;

e Interfaces: other implementation teams within the same release, other im-
plementation teams within other releases.

Stage 6: Roles & responsibilities

Stage 5 focused on the communication peers (teams or individuals within other
teams). The communication peers emerge from the organizational model (shown
in Figure 4.7), the communication triggers (Stages 3 and 4), and the roles of
the interviewees (Stage 6). Therefore, to align the communication network both
team internal and external, we had to ask for the interviewee’s roles and respon-
sibilities.

In Stage 6, we identified the interviewee’s role accordingly to the organizational
model:

e project management;
e team lead;
e team member.

The final stage of our survey was strongly related with earlier stages and needs
to assess the interviewee’s ratings accordingly to his or her role. To do so, the in-
terviewee’s answers had to consider his or her role. A team lead, for instance, typ-
ically will communicate much more with project management than team mem-
bers. Team leads also display different communication patterns, as they have to
attend certain formal meetings (status meetings, for instance). Moreover, people
who are working in requirements engineering typically display more communi-
cation with the application domain specialists.

The following categories of responsibilities were offered:

e requirements, top level design; e system test;

e detailed design server; e deployment;

e detailed design host; e architecture;

e implementation server; e administration;

e implementation host; e team leadership;

e assembly test; e user support;

e system test preparation; e ordering, acquisition;
e system test support; e roll-out.

e fixing during system test;

70

Chapter 4 « Communication in Software Development Projects

4.3.2

4.3.3

QUANTITATIVE PERFORMANCE METRICS

Our hypothesis was that teams that display a team formation and communica-
tion patterns accordingly to a balanced team perform better than other teams.
The qualitative part of the analysis, as described before, allowed us to elicit how
teams actually worked together. The quantitative part of the analysis determined
who are actually the good performers.

POTENTIAL RESTRAINTS TO SCIENTIFIC VALIDITY

Even though the survey was supported by executives, due to the German law the
bank’s works council must approve such a questionnaire, as worker’s interests
could potentially be affected. Apprehension in our case was, that the collected
data could be used to assess an individual’s performance, or gather further in-
sights about specific behavior, attitudes, or to learn about personal communi-
cation traces (the study also asked for personal relationship of colleagues). The
survey therefore did not include subcontractors and bank employees. Hence, the
final sample only contained the answers of consultants and freelancers.

Consultants and freelancers are often considered to have a different work atti-
tude than regular employees. While we do not know of any investigation to prove
or disprove this rating, we believe that at least those parts of the survey that de-
scribe facts of the project communication and cooperation are not biased. How-
ever, in the following we explicitly mark passages, especially assessing statements,
where it is important to note that the results do only reflect the consultant’s view.

Figure 4.8 shows the demogra-
phy of the interviewees. All project
members, including executives, were
younger than 40 years, with 29 years in
an average. Moreover, the team mem-
bers and programmers were at most 30
years. In contrast to a survey by Black- |, . | .. VN |
burn et al. [Blackburn et al.’ 2000], all 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Age
people working in Release 4 were fluent
with email and internet. All intervie-
wees were trained in using many elec-
tronic work tools for communication
and other tasks.

o

mean = 28.7 years

Headcount
[§]

IN

Figure 4.8: Demographic distribution and
mean age of the interviewees. The aver-
age age of the participants of the study was
28.7 years with a quantum of 25 intervie-
wees.

4.4 e Results 71

4.4

44.1

RESULTS

In this section we display the results to identify the “best” performing teams and
the findings of the six stages of the qualitative survey.

TEAM PERFORMANCE

Figure 4.9 shows the comparison of the estimated cumulative effort (or estima-
tion) for the tasks assigned to each individual team, which is the total budget for
the team. The estimated cumulative effort is shown as a black bar in Figure 4.9).
The estimation is compared with the final actuals to date (ATD) at completion,
shown as a light-grey bar in Figure 4.9. The comparison shows how each team
performed compared to the estimates and in relation to other teams.

g 350
© I
[a}
S 300
&
&
250
200 il
[-
150
100 i i
wlﬁ _ _ |
0 o CIS ~ v » v b © A
< S @ & K I K IS K K I
A Q‘PQ‘Z’@ g
@
S
Legend:
- Estimation/ budget

|:| Actuals at completion/ final ATD

Figure 4.9: Team performance, measured by comparing the estimations (based on the
work breakdown structure) and the actual effort per team in person days.

The teams demonstrated about the same performance. The actuals to date
for the teams were actually close to the estimates. The individual performance of
the teams is discussed consecutively:

Team 1 and 2: These teams only are organized accordingly to the balanced team
idea. The teams display a well-balanced composition of application-
domain and technical expertise, new hires and less experienced
staff as well as experienced team members. Communication is

72 Chapter 4 ¢ Communication in Software Development Projects
fostered inside the team and much of the communication is chan-
neled through and addressed by the team lead.

Team 3: This team performed close to the estimates and within the expec-
tations, that included some contingency.

Team 4: This team notably underperformed. The team overall struggled
with managerial issues and functional misinterpretations. As a
consequence, the team composition had been changed in the mid
term.

Team 5: This team started late and did not finish by the end of the survey
due to missing requirements and change requests.

Team 6: This task was a change request for additional functionality. The
task has not been estimated and has been charged besides the
main project.

Team 7: This small context-project implemented an internet-portal for
external service providers, including the necessary security ar-
chitecture. The team performed close to the estimates, while still
showing some delay (within contingency).

There are no estimates listed for infrastructure and technical architecture in
Figure 4.9, as those tasks can hardly be compared directly to implementation
teams.

4.4.2 ELECTRONIC VS. FACE-TO-FACE COMMUNICATION

Figure 4.10 displays the usage of communication vehicles, the ideal situation, and
the assessment. We analyzed the usage of all three major types of communica-
tion vehicles — electronically supported communication, face-to-face meetings,
and ad-hoc meetings. The results were that all of these types of communication
were used regularly, with a notably decrease from electronic document exchange
down to ad-hoc meetings. Email was by far the most often used individual com-
munication vehicle, while ad-hoc meetings, including accidental meetings at the
coffee machine, occurred seldom.

Nominal condition describes how the situation as it would be in a perfect
or ideal project environment accordingly to the rating of the interviewees. The
nominal condition for electronic means of communication is rated as “used too
seldom”, especially the Knowledge Xchange (KX) ? database. Few (1.5%) people
rated phone calls to be used too often.

2Knowledge Xchange (KX) is an Accenture knowledge base with project and technology re-
lated company-wide information. Moreover, KX identifies stakeholders within Accenture, there-
fore fostering collaboration.

4.4 e Results 73

Effectiveness rating describes how valuable each communication media was
for the project success accordingly to the interviewees. When we take a closer
look on effectiveness rating, we find that electronic means of communication
and electronically exchanged documents are rated “very effective” and “effective”,
while the effectiveness rating for in-person meetings was slightly worse, and ad-
hoc meetings were rated notable worse.

Communication Vehicles Communication Vehicles
— Actual Condition — Nominal Condition

IIIIIIIIIIIII il I
75% I 75% [1 [| A nrQnTrnr

B I I I I I
25% III

50% [1 [T

25% [1 [

0% 0%!wac»o; 5 2S00 59 _J.:
g ISFSETEILEFTTEESS 8
g GERF SIS §Le88

S gSE a5 a5 8
Sfesste FEefsT
§5§5 & Fg59¢F8
Fe gL & 399 L
2 s 9 §< 3
2 S g
&
mvery often ooften mrare/ seldom mnever mtoo rare Ojust right mtoo often
Communication Vehicles
— Effectiveness Legend:
100%
SIR-DB:

A database for bugs, errors, and other incidents
found in programs or modules during testing
(system investigation request).

75%

50%

Outlook KX-DB:
A project-wide knowledge base system based
on Microsoft Outlook.

25%

& & ; DS Intranet_: _ .

> 3 The project offered project Intranet web-sites as
a portal for many other project-relevant
resources.

mvery effective oeffective mineffective
m counter productive @ unknown

Figure 4.10: Overview of actual condition, nominal condition, and effectiveness of com-
munication vehicles used.

74

Chapter 4 « Communication in Software Development Projects

4.4.3

INTRA-TEAM VERSUS INTER-TEAM COMMUNICATION

The majority of consultants working at the project (45%) had most of their com-
municating peers within their own team; about 40%, rated the intra versus inter-
team communication to be distributed evenly. Finally, 15% observed an overbal-
ance of communication toward extra-team peers. The “roles & responsibilities”
part of the survey shows that the latter group of people is mainly in the role of
team leads or project managers.

We then took a close look on the issues or problems that triggered either in-
tra or extra-team communication. We found that beyond problems that were
expected to be solved inside the team (for instance work assignment and organi-
zation), many issues that were typically expected to be discussed outside the team
were actually addressed internally in Teams 1 and 2 (for instance technical and
domain-specific issues). The reason might be that in the Balanced Teams 1 and
2 stakeholders for all kinds of problems that were typically addressed externally
were available within the same team.

Overall, both the frequency of occurrence of internal communication and
the quality of the solutions found surpasses the results for extra-team communi-
cation with one exception. The server architecture team at this specific project
performed very well, both accordingly to the performance assessment in Stage 1
as well as due to the rating by the supported team. Interestingly, nevertheless the
rating for their advice on technical issues was rated similar, in fact slightly worse,
than the quality of solution found internally.

Figure 4.11 shows a side-by-side aggregated comparison of intra versus extra-
team communication for all groups.

only external 0%

only internal 0%
mostly external

15%

half-half

40% \
mostly internal

45%

M very good [good [acceptable B bad/ never [unknown

Figure 4.11: Quality of intra versus extra-team communication. The graph on the left
shows the percentage of extra versus intra-team communication. The graph in the mid-
dle shows the rating of the quality and effectiveness found internally. The graph on the
right displays the rating for solutions found through external communication.

4.4 e Results

75

4.4.4

COMMUNICATION PEERS

The communication peers addressed in
extra-team communication reflect the
roles of the interviewees. This results
in an even distribution of communica-
tion peers according to their responsibil-
ities. Hence, we focus on a smaller selec-
tion of peers which are more meaning-
ful: the infrastructure (technical equip-
ment and related services), mainframe
architecture, server architecture, and
upper management (project and pro-
gram management, engagement part-
ner). First, we focus on the “bad
performers” in this part of the survey,
namely the infrastructure and main-
frame architecture teams. In both cases,
communication efficiency with those
teams is rated ineffective or even coun-
terproductive in terms of finding a suit-
able solution in 50% or more of the an-
swers. The interviewees reported, that as
a result, people tried to avoid commu-
nicating with those teams and tried to
compensate this either internally or by
finding experts in other teams.

In contrast, the server architecture
team was rated “very effective” and “ef-
fective” in terms of finding a solution in
more than 94% of all answers. Upper
management also received ratings above
the average. This might be also a re-
sult of the continuous personal avail-
ability of managers at the project loca-
tion. However, regular personal contact
with executives is considered a crucial
and motivating aspect in the intervie-
wee’s worklife.

Intensity of Communication by Peers
— Actual Condition

100%

75%

50%

25%

mvery often ooften mrare/ seldom mnever

Intensity of Communication by Peers
—Nominal Condition

100% H T T
75% Ao r
50% Ao r
25% Ao r
0%

Q QT QW LA E K o o D00 0
oS S0 088 LSS ES S
S TLEESF 883588 F¢4°
SEESFF I8P P I 55 9& »

LT QU 958 g QL0 8 I &
$9 9 &5 5 5§ § 8 £ ¢ & .0
5T ok & 8 &K ISR
N o< & § IS LS (€)
§8 ¢ s 3 $ ©Og5¢
gL 2 S & 9
ST 5 (§ 'Qi"t{»v 5S
1%} Q &S5 9}
Qa::‘t/

mtoo seldom ojust right mtoo often

Effectiveness of Communication

by Peers
100%
75% T rrrr
50% T rrrr
25% T rrrr
L T
0% L | L,
s o5 &
fpesopersossope
§ 5 5§53 9.838 IS T
ST I8ETF g g 878 SFEN
S5 F & & Q9 O O TS s 9 85 o
55935388 5898585
S S T I LS NG
S5 6 SSEE§§L go70
£ = T §E& g
T § s g &8 35
%] Q S S g 9
T o w

mvery effective oeffective mineffective
m counter productive = unknown

Figure 4.12: Communicating Peers.

76

Chapter 4 ¢ Communication in Software Development Projects

4.4.5

ROLES AND RESPONSIBILITIES

Most of the interviewees were members of a team with no management or team
leader responsibilities (76%), 16% were team leaders, and 8% were project man-
agers or in a management-related role. The detailed view of responsibilities helps
us to deskew the answers given in the communication peers stage. Most inter-
viewees addressed communication peers accordingly to their role, especially if
those peers were located outside their team. Respectively, most of the extra-
team communication was performed by team leads. Team leads of the highly
effective Teams 1 and 2 established contact to extra-team peers. While all team
members typically had multiple responsibilities, especially teams that performed
better than the average showed comparable communication patterns. This was a
result of well-defined assignment of responsibilities and related communication
peers.

Interviewee’s Roles Interviewee’s Responsibilities

20% [~
Project Management 8%

15%
13% 13%

Team Lead 8%
10%

5%

% 1% 1%

Team Member 76%

i
2
g
o Team Member o Teamlead = Project Management §D
S
&

Figure 4.13: Roles and Responsibilities

Typically, external communication occurs accordingly to the roles, instead of
the level within the hierarchy. For Teams 1 and 2, much external communication
had been addressed by the team leads after rephrasing the questions inside the
team. Other teams were seeking advice outside the team regularly. Especially
members of the least effective Team 4 were known for contacting the architecture
team very often, instead of first addressing technical questions inside the team.
This created a disbalance of high external versus low internal communication.

4.5 e Summary of Results 77

4.5

SUMMARY OF RESULTS

Team-communication was strongly related to team performance. The best per-
forming Teams 1 and 2 displayed much more internal than external communica-
tion. The worst performing Team 4, in contrast, communicated more externally
than internally. We further found that the two extremes — Team 1/2 vs. Team 4
— differed especially in the team composition: both teams had experienced and
less experienced people. However, while Teams 1 and 2 named dedicated people
responsible for technical and functional issues to serve as a single point of contact
for internal as well as for external communication, Team 4 did not make such a
decision. This directly resulted in different team communication patterns and
performance. In the Balanced Teams 1 and 2, different communication peers
were addressed by the same people within the team (for instance, technical vs.
application domain) and the amount of extra-team communication is reduced
tremendously (Figure 4.11). The balanced teams displayed a behavior that re-
quires minimal extra-team communication while yielding best performance. In
the non-balanced teams (Teams 3, 4, 5, and 7 in Figure 4.9), team members had
to contact external peers for those domains of expertise with no stakeholder avail-
able in their team. This fact had also been reported as a problem specifically by
the architecture team, as technical questions put a huge workload on them.

The data also showed that electronic forms of communication, especially
computer-based, are widely accepted by users and rated very efficient (Figure
4.10). Informal face-to-face meetings are still very important and known to be a
crucial factor in setting a suitable basis for later electronic communication [Kraut
and Streeter, 1995; Grinter et al., 1999]. However, due to reduced extra-team
communication, a project with mostly balanced teams could be distributed with-
out the usual penalties incurred by distributed projects due to the organization
of extra-team communication through specific peers.

The results display a high acceptance and even preference of email and face-
to-face meetings. The effectiveness of meeting face-to-face in the workplace is
rated specifically high. There is no resentment or disfavor of electronic com-
munication, however, the importance of personal meetings is very high. The
importance of ad-hoc meetings, however, is rated relatively low.

Teams 1 and 2 display strong inter-team communication for the application-
domain as well as technical issues. Teams 1 and 2 performed extra-team commu-
nication by-level (team lead) instead of by-role. If the external communication
was performed by a single (dedicated) person, the request first generates internal
discussion. The process of rephrasing the question and trying to understand its
impact involved discussion and further research (for instance to look up technical
terms or terminology). This at times already leads to a solution or at least eases
further steps in finding a resolution. Moreover, the output of this discussion was

78 Chapter 4 ¢ Communication in Software Development Projects

documented, as it was written text (in a document or email).

The assessment that a more formal process supports quality and improves
effectiveness is supported by a study performed during requirements engineering
by Damian et al. [Damian et al., 2000].

4.6 RELATED STUDIES AND COMPARISON

4.6.1 OVERVIEW OF RELATED STUDIES

Blackburn, Scudder, and Wassenhove [Blackburn et al., 2000] started interview-
ing managers at hardware and software developers in Europe in 1992 to gain
insight into the management practices that best support shorter development
cycles and greater productivity and the differences between hardware and soft-
ware development. Later, the empirical study was extended to projects in Japan
and the United States. The study specifically investigated certain project man-
agement factors that reduce overall software development time. Eleven factors
were chosen and rated accordingly to a 1-5 Likert® scale. These factors were: The
use of prototyping, better initial customer specifications, the use of CASE tools
and technology, concurrent development, less rework, improved project man-
agement, better testing strategies, reuse, smaller modules/ units, improved team
communication, and finally better people.

In summary, Blackburn et al. rated people and communication as the most
important factors, while smaller modules/ units, CASE tools, and prototyping
were rated with much less relative importance. Blackburn et al., in contrast to
our survey, also found low acceptance of electronic communication media and
electronic support in general.

Curtis et al. [Curtis et al., 1988], in a field study of several large projects, ob-
served that documentation does not reduce the need for communication, in par-
ticular, during the early phases of the project, when stakeholders coordinate their
representational conventions, and create informal communication networks. Cur-
tis et al. also observed that obstacles in informal communication (e.g., organi-
zational barriers and geographical distance) can lead to misunderstandings in
design conventions and rationale.

Kraut and Streeter [Kraut and Streeter, 1995] noted that formal commu-
nication (e.g., structured meeting, formal specifications, inspections) is useful
for routine coordination while informal communication (e.g., hallway conver-
sations, telephone calls, brainstorming) is needed in the face of uncertainty and
unanticipated problems, which are typical for software development. In their
study, they observed that the need for informal communication increases dra-

3 An unidimensional scaling method to related pre-defined values.

4.6 e Related Studies and Comparison 79

4.6.2

matically as the size and complexity of the software increases.

Grinter et al. [Grinter et al., 1999] focused on distributed projects. They stud-
ied several cases using different organizational models for coordination. They
confirmed the findings of Kraut and Streeter about breakdowns in informal com-
munication in the distributed case. In addition, they found that unequal distri-
bution of project mass around sites and the difficulty in finding experts were
recurring issues, independent of project organization.

Dutoit and Bruegge [Dutoit and Bruegge, 1998] studied the relationship be-
tween communication and performance in team-based projects. They related
metrics on communication media with metrics on products and observed changes
in communication can have a significant impact on outcome. Some evidence also
indicated that an excess of inter-team communication (in relation to intra-team
communication) is a symptom of poor team performance.

Seaman and Basili [Seaman and Basili, 1998] studied the impact of organi-
zational roles on communication and performance, in particular during inspec-
tions. They note that organizational barriers (e.g., the presence of a manager
during an inspection) can degrade communication and result in a degraded out-
come.

Damian, Eberlein, Shaw, and Gaines [Damian et al., 2000] challenge the
claims of traditional media-effect theories. They present their findings that, con-
trary to traditional wisdom, teams using face-to-face meetings in requirements
negotiation do not perform any better than those using video conferencing and
computer-based communication. The study evaluates four distributed group
configurations using several compositions of facilitators, customers, and system
analysts. The analysis and comparison of the team performance do not support
traditional claims that those groups using the richest communication media per-
form any better than those using leaner media.

RESULTS COMPARED TO RELATED STUDIES

In contrast to Blackburn, Scudder, and Wassenhove [Blackburn et al., 2000], elec-
tronic communication and related tools clearly experienced the highest ratings
for both user acceptance and effectiveness assessments in our survey. We fur-
ther do not unrestrictedly support Blackburn et al’s conclusion that ‘best peo-
ple’ within a team are the most influential factor for project success. The main
differences, in detail, are the roles of the interviewees and the age of both the
interviewees and electronic tools used. While Blackburn et al. exclusively con-
sidered executives (project managers) in their survey, we asked all team members
(executives, team leaders, and team members/ programmers) in the project. The
second differing aspect considers the age of interviewees and the age of tools used.
In our survey, the interviewees were clearly younger than 30 years in an average.

80

Chapter 4 « Communication in Software Development Projects

(The mean age was 28.7 years. Figure 4.8 displays the demographic distribution
of all project members, including executives.) The younger people are typically
used to electronic communication tools from university or private life. Black-
burn et al’s study suggests itself that the interviewees were older, as all of them
were in an executive position. Regarding the age of tools used, in our project
situation all electronic tools were introduced some years before, but are updated
and improved regularly. Blackburn et al’s study was conducted 10 years earlier
(1992). This suggests that the tools available at that time did not meet the user’s
requirements as one would expect ten years after. Moreover, the (elder) intervie-
wees obviously were not used to computers, email, and internet as younger users
today are. This led to user resistance in Blackburn et al’s study.

Finally, we experienced that the increased effort from rephrasing communi-
cation to be done by team leads in Teams 1 and 2 improved communication in
general and moreover made the process and its outcome available for later reuse.
This experience is in accordance with the study done in requirements engineering
by Damian et al [Damian et al., 2000].

The teams under investigation worked in a non-distributed setting in a large
organization. However, the organization of balanced teams in this experimental
setup allows us to transfer part of the encountered advantages, such as organized
team-external communication, to distributed projects. In turn, this suggests that
balanced teams are also well-prepared to tackle distribution issues and scenarios.
We will discuss this in more detail in the next chapter. iBistro, hence, should in
particular address the specific need of face-to-face conversation of project mem-
bers, for instance contact to upper management, counseling, and communica-
tion peers in other teams.

5.1

CHAPTER 5

THE IBISTRO SYSTEM

“The problem with WYSIWYG is that
what you see is also all you’ve got.”

Attributed to
[BRIAN REID] and/or [BRIAN KERNIGHAN]

In this chapter, we describe features of iBistro, an augmented and informal meet-
ing space for distributed teams. It serves as our testbed for experimentation with
distributed software teams. iBistro allows to evaluate related ideas for the support
of distributed balanced teams in software development.

We start by illustrating several visionary scenarios with two development sites
at Singapore and Munich. We then introduce several levels of distribution and
relate them to those scenarios. Finally, we detail three representative scenarios
with distribution according to time, place, and community.

VISIONARY SCENARIOS

For the following description we assume a small project with two globally dis-
tributed teams. We further assume that teams, either in single-site or the dis-
tributed scenarios, are organized as balanced teams from a small group of people
with complementary skills and roles. Every person is assigned several tasks ac-
cordingly to his or her role within the team. Most tasks, including organizational
and managerial tasks, produce a work product. The roles and expectations, tasks,
work breakdown structure are embedded in documents and spreadsheets. Arti-
facts of development are for instance UML diagrams and files stored under ver-
sion control. By using iBistro’s services as described in the following scenarios,
the stored information and artifacts become the group memory and knowledge
for the balanced teams.

82

Chapter 5 e The iBistro System

5.2

In the following sections we use the example of a distributed scenario be-
tween the National University of Singapore (NUS) and Technische Universitit
Miinchen (TUM) for illustrative purposes. This example is chosen because many
insights can be taken directly from our testbed between NUS and TUM in Fall
and Winter 2002. It does not mean, however, that the number of sites in iBistro
is limited to two sites.

IBISTRO SCENARIOS

Figure 5.1 shows the three dimensions of distribution (introduced in Section 2.3):
The x-axis denotes different time (distribution in time), the y-axis shows same
place (on the positive axis) versus different place (on the negative axis) scenarios.
Different community scenarios are designated on the positive z-axis, while same
community scenarios are shown on the negative z-axis.

The first example scenario is a single-site, same place/ same time informal
meeting held in Munich (Cell A in Figure 5.1). After that, we depict how the
content of a meeting held in Munich is used in Singapore a few days later. This
scenario also reflects aspect of different communities (Cell Dy). Our final sce-
nario (see Cell Cy) illustrates a real-time synchronous meeting between Singa-
pore and Munich. In this scenario the live-support of different communities is
our main concern. We set aside, however, the many technical and HCI challenges
which would occur in the scenario, accordingly.

5.2 e iBistro Scenarios

83

Cube

Same Place
+y

A

<& ¢
N '&'\6 — @'b“/f\/

(1Y

C 2

Y

Different Place

Scenario

Time

Place

Time
>
+X

Community

Spatial
Distribution

Scenario

A single-site meeting in Munich

same

same

same

Section 5.2.1

Resumption of a meeting in the same
meeting room in Munich.

different

same

same

C1

A live meeting between two sites in
Munich. Meetings located in differ-
ent places are considered to be in the
same community in this scenario, if a
meeting is located in two office build-
ings within the same town.

same

different

same

A live meeting distributed between
Munich and Singapore Meetings lo-
cated in different places are consid-
ered in different communities for the
scenario, if a meeting is distributed
over two continents.

same

different

different

Section 5.2.3

Dy

Resumption of a previous meeting at
a different site within the same town.

different

different

same

Do

In this scenario, a meeting held previ-
ously in Munich is continued later re-
spectively used as source of informa-
tion for a meeting that takes place in
Singapore.

different

different

different

Section 5.2.2

Figure 5.1: Overview of scenarios and their distribution over space, time, and community. The
y-axis denotes the spatial distribution boundaries. Community boundaries are visualized from the
rear to the front on the z-axis. Scenarios for different communities located in the same place are

omitted.

84

Chapter 5 e The iBistro System

5.2.1

A SINGLE-SITE MEETING IN IBISTRO

The simplest form of a meeting within iBistro is the same time/same place meet-
ing (Cell A in Figure 5.1). Assume three meeting participants who are devel-
oping scenarios during a requirements elicitation session: Alice is a consultant
responsible for system development. Bob is a user of the system to be built and
a domain specialist, e.g., investment banking. Claire represents the customer of
Alice’s consulting firm, e.g., a bank. Figure 5.2 shows the timely occurrence of
meeting events in the single-site meeting scenario.

5
O?Q’
Level of Maturity/ & o o S &
Abstraction Layer F &K S @ . &
A Q\O . c}o‘Q QOQ xR O o &Q,& <Q
S X - $° ’ 3
P RCRFC N & & &
& F &£ o S & & & @ & &
§ P e @ ¢ o &
& & QQ’ IR Q ®
N3

Q"\ ol g

Al
P T

& | |
. O . . S
¥ S & &
& & v & I S I
» D S N I M o N !
AN 3 ‘ 3 i |
RGN 2 | Q S N
o7 & | & & L |
& | &S |
‘ | X
< | ¢ |
: : |
| | |
|
9:00 am 9:11 am 10:00 am

Legend: |j Meeting Event and Associated Index.
[F"..9 Meeting Duration and Associated Meeting Video/ Audio-Stream (gey bar at Laye 0).
2 —
1—

oy

{ Layers of Abstraction. The grey panes denote Levels 0-1 and 1-2.

Figure 5.2: Flow of events in the iBistro ‘Munich’ single-site meeting example. The cho-
sen representation displays the chronological occurrence of events in a meeting. This
view is therefore also called temporal view. (See Section 6.6 for an overview of knowledge
retrieval and visualizations.)

Using electronic badges (such as the Active Badge Location System [Want
et al., 1992]) given to each of the meeting participants at the entrance of the
building, iBistro knows about the presence of the individual stakeholders and is
able to deal with a varying number of meeting participants. This is important to
allow for the assignment of the content (e.g., a single requirement) to the indi-
vidual stakeholders. While sketches and notes on the electronic whiteboard can

5.2 e iBistro Scenarios 85

be assigned to a meeting participant automatically by assigning one specific elec-
tronic pen (with a specific color) to each participant, higher-level content, such
as audio comments or video gestures, are assigned to a participant during the
post-meeting process.

In our scenario, Bob is late for the meeting and arrives in iBistro after Al-
ice and Claire have already started. Before Bob’s arrival, Alice and Claire, after
talking informally and privately, also talked about organizational issues, such
as how to arrange the consultant’s arrival at the client site and what rooms to
use for software developers. However, the discussion prior to Bob’s arrival also
briefly touched private topics; in this case, both women play golf and shared some
thoughts about their play over the weekend.

Knowledge acquisition is done by capturing the audio and video of the meet-
ing as well as by capturing any sketches, notes, and drawings made throughout
the meeting. The meeting video is shown as an artifact (“Video recording : Ar-
tifact”) in Figure 5.2. The grey bar at Abstraction Layer 0 represents the video
and audio file. Video and audio capture is triggered by the “Meeting Start” event
and spans through the whole meeting until the “Meeting End” event stops video
capturing. By allowing the manual orientation of the camera, meeting partici-
pants may use a laptop computer, paper, or even napkins to draw or to write on.
For this scenario, the meeting community uses an electronic whiteboard. The
whiteboards’ content is captured in a separate movie by the electronic white-
board itself in iBistro (as opposed to whiteboard-capture systems such as Zom-
bieboard [Saund, 1998], which use static images). The history of drawings or
notes is saved in a sequence of images.

Alice, Bob, and Claire are able to talk easily about the requirements of their
project. They can also be sure that critical team interaction is saved in the audio/
video stream and is available for later processing and structuring. During the
course of the meeting, two different application concepts are developed. The
first one is a context sensitive computer advisor who guides the user by offering
suggestions based on the state of their accounts with the bank. The second one is
a computer catalog that enables users to browse and search through the complete
range of products offered by the bank. At a critical point during the meeting,
Claire, the client decides to set aside the catalog concept in favor of the advisor
concept. Alice decides that this is a crucial point in this meeting and creates a
comment. The whiteboard is then erased and the remainder of the meeting is
dedicated to the advisor concept.

After the meeting, during the post-processing phase, Alice navigates through
the meeting record, which consists of the audio/ video stream, and the set of
events captured (including the whiteboard sketches).Alice navigates through the
meeting along its timeline using the MEETINGGENERATOR tool. The time needed
for post-processing the meeting is shortened drastically by offering any contex-
tual event as well as subsequent changing content of the whiteboard as an index

86

Chapter 5 e The iBistro System

5.2.2

into the captured meeting. From Bob’s late arrival to the meeting, for instance,
Alice can easily distinguish between the strategy topics first discussed with Claire
from the domain specific topics discussed after Bob’s arrival. The event associated
with wiping the white board is used to visualize a context switch. Hence, Alice is
able to isolate the discussion associated with the two application concepts. She
creates two option events representing each concept and a decision event that she
associates with the video segment when Claire made her decision. During this
process, Alice creates the knowledge base for that meeting by evaluating the seg-
ments of the captured videos. In contrast to reviewing the whole meeting video
stream, Alice only annotates smaller chunks of the video which are indexed by
the events (as shown in Figure 5.2). This approach drastically shortens the post-
mortem process comparable to the amount of time which would be needed to
take conventional minutes.

The post-mortem process translates lower-level captured information (such
as audio and video streams and whiteboard snapshots) into higher level content
(such as requirements and their rationale). One crucial point during that phase
is that information interpreted that way is linked automatically with its originat-
ing source and related contextual information, e.g., a stakeholder (identity) to
allow for the later sorting of knowledge by different criteria (e.g., author, time of
occurrence, type of event).

RESUMPTION OF A MEETING IN IBISTRO

Some days after the meeting between Alice, Bob, and Claire, a team of devel-
opers located in Singapore browses the iBistro knowledge repository for further
information regarding the application concept to be developed. While the first
meeting held in Munich was rather at executive level, the two developers located
in Singapore, Guying and Florian, are assigned to develop an initial prototype of
the application to prepare a feasibility study for the chosen application concept.
Figure 5.3 shows the timely occurrence of context and events in the Singapore
meeting example.

The two developers find the decision for the advisor concept by browsing the
meeting on the search key “decision”. They also identify Claire and Alice as the re-
sponsible stakeholders by tracing the annotations in reverse order. Unfortunately
they do not know the participants of the Munich meeting and their roles. They
received their job-assignment to develop a initial prototype for the new system
through a Singapore-based team lead, Tom. Tom is the head of their balanced
team and responsible for issues related to the application domain and organiza-
tion/ management.

Subsequently, before developing the prototype, Guying and Florian plan to
have a closer look at the other option that was discussed (the computer catalog),
as understanding the discarded option would likely improve the understanding

5.2 e iBistro Scenarios 87

5
OQ/
i o)
Level of Maturity/ o S o
Abstraction Layer L & S &0 &
A & K e & &

1—

(Munich)07

(Singapore) 0.0
)
O
N
ey

Figure 5.3: Flow of events in the ‘Singapore’ remote meeting example with link to the
preceding meeting held in Munich. The links shown in the preceding Munich-meeting
were created during the post-mortem process by the Munich meeting champion.

of the overall problem and the criteria against the options were assessed. Thus,
they check the criteria against which both alternatives were assessed. To get an
overview of the arguments and discussion preceding the decision for the advisor
concept, the two programmers use iBistro’s graphical meeting view which shows
much of the meeting’s content in a graph along with the relationship of events,
content, artifacts, and stakeholders. In doing so, they quickly identify Bob, the
third participant of the meeting. They find that Bob’s comments heavily affected
the decision and that most of the technical constraints and rationale for the cho-
sen concept are actually introduced by Bob. During their brainstorming session,
Florian and Guying reveal some open issues regarding the prototype. They fur-
ther identify a list of both technical and domain specific questions to be clarified
before starting development. To support discussion and visualize their under-
standing of the problem at hand, Florian and Guying draw some mockups of the
planned application and store them as artifacts in iBistro.

The time difference between Singapore and Munich is seven hours and the
meeting in Singapore takes place in the morning. Thus, it is difficult to get into
synchronous contact with Bob. Consequently, they decide to stop the meeting,
knowing that all the critical information, issues, and open questions are saved.

Florian is the meeting champion for the meeting just held. The meeting cham-
pion is responsible for annotating the captured video stream during the post-

88

Chapter 5 e The iBistro System

5.2.3

mortem process. Florian navigates through the meeting video using the events
collected throughout the whole meeting. As the MEETINGVIEW creates events for
any reference to the dated back meeting in Munich, Florian can easily identify the
stakeholder for a specific issue. At the end of the post-mortem process, Florian
creates messages for the individual stakeholders that point to the list of open is-
sues in their domain. By doing so, the system now also knows about the current
status and can notify subscribers.

The follow-up on the questions and issues generated during the Singapore
meeting is later done by Tom, the team lead. Tom sends the open questions,
annotated by references to the iBistro knowledge repository, to Bob located in
Munich. Bob is now able to asynchronously browse the foregoing discussion
held in Singapore to close some of the open issues.

A DISTRIBUTED MEETING IN IBISTRO

After the two meetings held at Singapore and Munich, the concerned stakehold-
ers, Florian, Guying, and Bob, decide to hold another live meeting to go through
the list of questions the two programmers have. They schedule another meeting
to take place in the late afternoon, Singapore time, to catch Bob in his early work-
ing hours at Munich. The central issue in the scenario arises from the community
distribution, which has a more drastic effect in a live meeting. Problems result
from language differences (even though English is the common project language)
and from the different context regarding the work environment and educational
background (programming vs. banking).

iBistro supports the three project members with electronic meeting support.
The electronic whiteboard lists an initial agenda, which prevents misunderstand-
ing due to language or audio problems. The whiteboards also display any com-
ments and ideas from both locations. Thus, the meeting uses a richer communi-
cation media compared to traditional video conferencing alone. The program-
mers are able to show drawings of a prototype, use cases, and other artifacts to
Bob. They can be assured that any interaction is automatically captured and
stored. This is important, as the two programmers might not be able to un-
derstand all aspects in the first run and, for instance due to cultural differences,
might not be willing to clarify misunderstandings immediately. The captured
meeting, including audio, video, snapshots, and events, is structured as meeting
minutes. These minutes are also accessible from Munich. Thus, Bob is able to
have a look on what the two programmers showed and can comment, clarify, or
subsequently revise the meeting minutes accordingly.

The question whether to use a computer advisor or a computer catalog as
an application concept implies many further questions and options which were
discussed previously. The expected outcome for this meeting, however, is to pro-
vide the two programmers and specialists with all information needed to start

5.2 e iBistro Scenarios 89

their work on writing a technical paper for the application to build. This paper
shall further discuss the two application concepts, list the pros and cons of the
two concepts (including cost, development time, risk), and finally recommend a
solution. Much of the information needed to set up an agenda for this meeting
as well as to create an initial list of questions is already available in iBistro. By
browsing iBistro using the indices created automatically (timestamps, meeting
events) or manually (during post-processing), the original argumentation can be
viewed as a video-stream. By using this information and working with it, the
knowledge, interlinkage, and indices get increasingly rich through working with
the system over and over again.

90

Chapter 5 e The iBistro System

5.3

5.3.1

RELATED WORK

iBistro aims at solving problems in the application domain of distributed soft-
ware development by offering a common infrastructure (or system architecture)
to integrate HCI and CSCW into a knowledge management system.

Competing Systems \ Complementary Work \

| Teleconference |~\
N

SW-Architecture |

| Roomware |~\ \\

| KXIVX |‘ - ‘\‘\-\-\::\-::->| iBistro béé‘ |

| Project Oxygen |' -7 R

| iRoom |'/

Figure 5.4: Overview of related work — competing versus complementary work.

In the following, we distinguish between self-contained and competing re-
search, such as commercial groupware, CSCW systems, or tools that basically aim
at solving a related problem as iBistro. These systems are potentially influential
to our work but most of them are not used directly in iBistro (for instance due to
availability or cost). Complementary research, in contrast, is likely to be used in
the iBistro project. (See Figure 5.4.)

LIVE SINGLE-SITE MEETING SUPPORT

Specific tools for team and group support in meeting rooms are much older than
CSCW and in fact much older than computers at all. Meeting room equipment,
such as a blackboard (chalkboard), overhead projectors, flipcharts, or white-
boards are used in schools, at universities, or in industry for a long time to help
illustrating ideas, to display topics or keywords to be visible for all participants, or
in general, to support participant’s retrospection. As those tools provide almost
no predefined process and leaves the way they are used open to the facilitator,
usage of the tools may degenerate and negatively affect the culture and purpose
of meetings or lectures. For instance, especially at colleges and schools, some
teachers use blackboards to write down the whole lecture word-by-word, there-
fore limiting the possibilities of the meeting (of type “lecture”) and neglecting
the original reason why people come together, which is interaction. The benefit
for the participants of actually meeting in person is reduced with the reduced

5.3 e Related Work 91

5.3.2

amount of participant interaction. However, given proper usage, blackboards,
flipcharts, and whiteboards are great support for meetings. They are widely ac-
cepted and available, simple to use, and relatively cheap. Additionally, the maxi-
mum freedom in using for instance a flipchart and the absence of any pre- defined
process makes them usable in almost any environment and supports creativity in
using them.

Electronic support for single-site meetings can be divided into two categories:
First, so called liveboards, such as the SMART Board™ [SMART, 2000b], are
interactive computer displays with integrated touch-sensitive tableaus. The user
interacts with the SMART Board using a particular pen or her fingertip instead of
a keyboard and a mouse. Liveboards can display any desired information, as they
are simply computer displays. For instance, a liveboard can be used to pop-up an
UML diagram by opening a UML modeling tool, such as Rational Rose™. The
degree of meeting support depends on the software provided.

The second category are whiteboard-based capturing systems. Examples in-
clude ZombieBoard [Saund, 1998; Moran et al., 1999] or Hawkeye™ [SMART,
2000a], a commercial whiteboard capture system based on ZombieBoard. Those
systems simply capture the content written on a whiteboard by digitalizing it.
The resulting image then is accessible as a bitmap.

Liveboards, as opposed to “zombie”-boards, enable displaying related digi-
tal material and artifacts. They also allow for the use of software to support an
ongoing meeting. Both liveboards and zombie-boards allow a natural way of in-
teracting with the system and are used more like conventional roomware than
like a computer.

LIVE REMOTE CONFERENCING

Live remote conferencing, also referred to as video or teleconferencing, experi-
enced remarkable gains in demand especially after the events of September 11th
2001 [Kaufman et al., 2002]. Larger companies, for instance Accenture, tried to
reduce travel whenever possible. Video conferencing promises to transfer the ad-
vantages of human face-to-face communication to an electronically supported,
distributed medium. The demand for face-to-face meetings is derived from the
insight that human communication is more than just words. By looking at their
conversational partner, people gather much richer information, such as gesture
and facial expression. This sort of “contextual information” [Moran and Dour-
ish, 2001; Winograd, 2001] provides estimations about intentions, whether the
opponent in a discussion tends to agree or rather disagrees, or if the speaker is
clear or not.

The Portland Experiment [Bly et al., 1993] was one of the first video-based
systems to support informal ad-hoc meetings. Between 1985 and 1988, two Xerox

92

Chapter 5 e The iBistro System

PARC laboratories were distributed between Palo Alto in California and Portland,
Oregon. Research groups were distributed between both locations to investigate
collaboration over distance using video-conferencing. The research focus was
on the technical infrastructure, design methodologies for collaboration systems,
and on the mediaspace. The insights from this research are exemplary for video-
conferencing systems in general:

e the unification of two physically divided and distributed spaces to build
one common virtual space experienced resistance from users;

e using technology mainly to simulate face-to-face meetings has been re-
ported as the causal reason for user resistance;

e ashared electronic drawing board which was used in both locations, how-
ever, was not affected negatively;

e the issue of common resource usage versus reduced dependency of the dis-
tributed locations in terms of the technical infrastructure was a neglected
issue. This resulted in developing the so called “Object Server”;

e from the organizational and managerial point of view, there was no dis-
tributed decision making. As the organizational hierarchy was shifted to-
wards Palo Alto, Portland was not really independent in terms of decid-
ing. This fact, however, could not be solved by the video-communication,
which was not able to lower the necessity of physical presence in Palo Alto
to participate in decision making;

e video cameras in private areas created a floating transition from public to
private spaces. The so called “ethic video” was accepted by the users, as the
hook-up of remote users was ever apparent and thus transparent for local
users;

e the experiment delivered good results with control by management and in
decentral control, as part of the control always lied in the hands of the em-
ployees and the assessment of remote employees has been reported being
less subjective.

A similar experiment at Accenture between Northbrook (near Chicago), Illi-
nois, and Palo Alto reported comparable results (Magic Wall [Hughes, 1999]).
However, due to improved bandwidth, Magic Wall is often used for distributed
conferencing and team meetings. In both locations, Northbrook, Il., and Palo
Alto, Ca., a specific meeting room is equipped with a large flat-screen computer
display on the wall (the “magic” wall). The Magic Wall creates a video-supported
view into the other room in the remote location. This creates a larger virtual

5.3 e Related Work 93

meeting room with the remote colleagues visible face-to-face. Specific audio sup-
port is used to allow for real-time conversation between various meeting partic-
ipants. Magic Wall is more than a video conferencing tool. Its computer display
can be used to overlay any kind of information that is available electronically,
such as sketches, programming language source code, screen mockups, or soft-
ware user interfaces in general.

Today, there is a large variety of commercial and academic teleconferencing
systems available. We will subdivide teleconferencing systems into commercial
and academic systems. The main difference is that commercial systems tend to
rely on proven concepts and technology. Academic systems, in contrast, pro-
totypically inspect new concepts and techniques, while putting up with several
problems in usability, user acceptance, and steadiness.

Commercial Video Conferencing Systems

Commercial video conferencing systems are offered at a broad range of func-
tionality and cost, starting with small software packages or add-ons to operating
systems to provide a basic functionality, such as Microsoft’s NetMeeting™. Co-
hesive systems are available from PictureTel, PolyCom, CUSeeMe, Sony, V-Tel,
and many other corporations. Many commercial video conferencing systems are
similar in their basic functionality. As an illustrative example, we focus on Pic-
tureTel’s [PictureTel Corporation, 2001] system. PictureTel offers two types of
systems. The personal system product line enables peer-to-peer live conferenc-
ing, while the group systems promise natural meeting experience for distributed
groups of people.

PictureTel’s 550 personal system is based on Microsoft NetMeeting. Thus, its
use is restricted to Microsoft operating systems. NetMeeting provides a picture-
in-picture view with a large window to display the remote person and a small
window for the local person. PictureTel allows users to share artifacts electron-
ically, such as documents or files. As a communication infrastructure, both the
Internet Protocol (IP) as well as ISDN are supported.

While PictureTel’s personal system is meant to connect two conferencing peo-
ple peer- to-peer, group meetings are supported in PictureTel’s group video con-
ferencing systems, called iPower 600 and 900. The iPower systems offer con-
trolled pan-tilt-zoom cameras and microphone arrays. The microphone arrays
identify the position of the voice’s source and thus enable speaker tracking with
the video camera and improved speech quality. iPower systems also feature TV-
based interfaces to connect larger screens. Further, PictureTel’s so called “En-
hanced Continuous Presence” technology allows users to display multiple meet-
ing sites on-screen at the same time. Remote users can choose six different screen
layouts, like full-screen, 2-way (side-by-side, above/ below), 4-way quad, 1+5 (1
large window, 5 smaller windows), and 9-way. The system also features meeting

94

Chapter 5 e The iBistro System

5.3.3

recording and on-demand viewing.

Research Systems for Video Conferencing

Academic video conferencing systems explore many aspects of video conferenc-
ing that are more difficult to grasp and go beyond basic support for video and
audio transfer over a network. Research systems attempt to support sophisti-
cated features at the risk of behavior which might bother people working with
the system. Buxton, Sellen, and Sheasby in their book “Video Mediated Com-
munications” embrace research goals of academic video conferencing tools, such
as Hydra, LiveWire, Portholes, and BradyBunch [Buxton et al., 1997]:

e establishing eye contact;

e awareness of others;

e who is attending to whom;

e parallel conversations;

e ability to hold side conversations;
e perception of group as a whole;

e ability to deal with shared documents and artifacts.

It is obvious that these goals are difficult to achieve and attract some resis-
tance from users. Prototypes also raise new issues, for instance privacy (which
collides with awareness of others), technical challenges (e.g., establishing eye con-
tact or video and audio quality), and organizational and social implications (e.g.,
perception of group as a whole). Monitoring eye contact and trying to identify
“who is attending whom”, for instance, lead to frequent camera switching and
flickering and zapping video presentation. (More information on user resistance
is listed in [Sellen, 1995; Buxton et al., 1997].

While most of the results achieved are far from reaching maturity for a com-
mercial product, they address key issues in making video conferencing systems
usable for a broader community of users.

ASYNCHRONOUS GROUPWARE SYSTEMS

Argumentation, negotiation, and decision support systems enable asynchronous
collaboration. All those systems are somehow based on the ideas of bulletin-
board systems (b-boards) or the Usenet. In a few words, b-boards allow vari-
ous users to ask questions and to reply to questions. Any user may browse the

5.3 e Related Work 95

5.3.4

set of questions and answers at anytime and thus answer questions or read asyn-
chronously. A similar system can also be used to store information in a rationale-
based approach. This approach has been followed in IBIS [Rittel and Weber,
1973] and gIBIS [Conklin and Begeman, 1988], using issue-based argumenta-
tion, and by [MacLean et al., 1996], using the Question, Option, and Criteria
(QOC) approach.

ReQuest [Dutoit and Paech, 2001a] is a tool support for requirements en-
gineering through a process called rationale use-case specification. ReQuest is a
web-based collaborative application to write use-cases and model questions, is-
sues, challenges, and justifications using question, option, and criteria (QOC)
tables (as opposed to QOC diagrams). ReQuest focuses on supporting require-
ments specification and the rationale behind them. Beyond providing tool sup-
port, ReQuest offers its own method of requirements specification by combin-
ing use cases and rationale information. Moreover, ReQuest guides participating
stakeholders by modeling the process in the tool. This also integrates used prin-
ciples such as use cases and QOC. ReQuest is also integrated with discussion
support (like a b-board) to enable and track discussions related to requirements
engineering.

RELATED PROJECTS

Carnegie Mellon University’s BARN

The BARN meeting room [Anthes, 2003] is an upcoming prototype conference
room capable of recording everything that happens during a meeting through
an array of microphones, cameras, projectors, and other equipment. The Barn
was specifically designed to support small local teams in elaborational design
meetings. Barn supports brainstorming, idea generation, knowledge generation,
and knowledge transfer. Conference participants register their presence by radio-
frequency identification tags, while wearable sensors allow the Barn to confirm
their identity and constantly track their location. The adjustment of the rooms’
environmental settings, so far lighting and microphones are calibrated accord-
ingly to attendees’ physical position, is called social geometry in BARN. A key
component of the meeting area is a digital whiteboard outfitted with an interac-
tive display, the Thinking Surface. The Thinking Surface is used to display con-
cepts. Major decisions or brainstorms are flagged in meeting logs when someone
pushes a TWI button (“that was important”) on his computer. TWI markers are
useful for people who miss meetings and need to be brought up to speed quickly.

The BARN is a very recent research effort. So far', there are no publications
available to summarize the actual features of the BARN. However, there is a list of
missing features and upcoming extensions for BARN. For instance, future BARN

TAs of 9th March 2004.

96

Chapter 5 e The iBistro System

research will focus on avoiding contradictory decisions among semi-independent
subgroups within large project teams.

Stanford’s iRoom

The iRoom project developed at Stanford University [Fox et al., 2000] presents
an approach to integrate information appliances into an interactive workspace
called the iRoom. The research project offers a project infrastructure and software
architecture built around three SMART Boards. The iRoom smoothly integrates
the wall-mounted displays with laptops and PDA’s brought into the room.

The iRoom software infrastructure consists of three basic components: the
EventHeap, MultiBrowsing, and PointRight. The EventHeap provides the ba-
sic communication and coordination mechanism for the room. MultiBrows-
ing manages content across multiple displays using the EventHeap. PointRight
manages user interaction by integrating various input devices, such as mice, key-
boards, touch panels, and other input devices in the room. The three compo-
nents together enable users to interact with information that is typically handled
in workstation environments. Figure 5.5 illustrates the CIFE iRoom configura-
tion and architecture.

MIT’s Project Oxygen

Project Oxygen is a joint project of the MIT Artificial Intelligence Laboratory
(MIT-AI) and the MIT Laboratory for Computer Science (MIT-LCS). Oxygen
aims at yielding a profound leap in human productivity by enabling people to
use spoken and visual cues to automate routine tasks, access knowledge, and
collaborate with other people “anywhere, anytime”. Hence, Oxygen uses ideas
from ubiquitous computing [Weiser, 1991] and pervasive computing to achieve
its goals. Oxygen, however, is more a technology-driven approach with a strong
focus of integration of various new technologies, sensors, and virtual and aug-
mented reality. Research and prototypes of Oxygen mainly focus on what would
be called the input-side in iBistro. Oxygen offers a variety of human-computer
interaction interfaces, such as speech recognition and hand-held devices and
aims at integrating ubiquitous computing, wearable and mobile computing, and
augmented reality efforts.

Discussion

The three related approaches focus on development and appliance of sensors and
gadgets to be used in an augmented meeting space. They choose the support of
synchronous (live) meetings of a small team in non-distributed settings as ap-
plication domain. In contrast, this dissertation focuses on the integration of ar-
bitrary sensors and gadget, including third party developments potentially from

5.3 e Related Work 97

Smartboard 1 Smartboard 2 Smartboard 3 CIFE
(\ (\ (\ Services
iR iRoom iRoom iRoom (local on each
U 09m Services Services Services device)
Services -
device) CIFE CIFE CIFE Widget
Services Services Services
eHea;_) Client :
Windows Windows Windows MS rolgc ad
Applications Applications Applications o .
N J L - -
Windows 2000 Windows 2000 Windows 2000 Doc viewe
JDK 1.3 JDK 1.3 JDK 1.3

CIFE iRoom
Model

! ! !

T
iRoom CIFE

services Services

Apache Server] [iRoom Web-base P CIFE Web-based
(local on web ot Services ﬂ [PointRight] (local on web
server, accessed server, accessed
via URL) iRoom Server via URL)

CIFE model
RoomController Excelon XML Portal database viewer/
Applet/ Servlet

Project Database (XML: Excelon) L S
Model database XML Product Model XML Process Model XML Cost Model
9 . 5

g J CIFE iRoom Project Server
|:| Commercially |:| Stanford iRoom CIFE iRoom
Available Project Project

Figure 5.5: Overview of the CIFE iRoom configuration and architecture [Fischer et al.,
2002]

the three cited projects. We offer an standardized way of integrating data, infor-
mation, and knowledge into a common distributed knowledge space (repository)
for several distributed teams. To achieve the goal of supporting several globally
distributed teams, this dissertation offers a common distributed software archi-
tecture and meeting post-mortem structuring, while integrating mainly third-
party context-aware devices and sensors.

All three competing systems lack a unified way of integrating various know-
ledge sources to capture information from synchronous or asynchronous com-
munication and retrieve that information in related meetings in different loca-
tions. Further, there is no support for transforming low-level raw information,
such as a meeting video and audio stream, into high-level knowledge, such as ma-
chine readable meeting minutes. Live systems run the risk of being restricted to
simple communication, just like telephones, while argumentation systems miss
much information, as they are cumbersome to use, especially during a meeting.
The discussed systems also do not offer an extendable knowledge structure and
taxonomy to capture and organize knowledge and information and deal with

98

Chapter 5 e The iBistro System

community issues that occur in global teamwork.

The three systems support local meetings respectively brainstorming sessions
with a strong focus of integration of HCI and context-aware devices. So far, issues
resulting from the distribution of teams or from scale are not addressed.

Table 5.1 summarizes related research projects:

| Requirement or Attribute | BARN Project | Project Oxygen | CIFEiRoom | iBistro

Synchronous collaboration yes yes yes yes
Asynchronous collaboration no no no yes
Team support yes no no yes
Distributed team support no no no yes
Large projects/ several teams | no (upcoming) no no yes
Meeting support yes no yes yes
Roomware support yes yes yes yes
Context-aware system yes yes no yes
Augmented reality system yes yes no no
Knowledge space/ base no no yes yes

Table 5.1: Comparison of related projects.

6.1

CHAPTER 6

IBISTRO ARCHITECTURE AND
FRAMEWORK

“AI has been thought controversial because it challenged the
uniqueness of human thought, as Darwin challenged the
uniqueness of human origins.

The boundaries of Al continue to expand rapidly, settling the
controversy for those who know the evidence.”

[HERBERT A. SIMON]

CHAPTER OVERVIEW

To fulfill the functionality of iBistro as described in the previous chapters and in
the scenarios, we extend the standard blackboard model to enable concurrency
and distribution.

The distributed concurrent blackboard architecture (DCBA) [Braun et al., 2003]
shown in the figure is built up from two local blackboard installations at the client
site (“client-site teams”) and at the remote location (“offshore teams”) in the ex-
ample shown in Figure 6.1'. The distributed concurrent blackboard provides a
transparent means for knowledge sources and users to access one single ‘portal,
regardless of its actual technical implementation. A local client-site team works
at the client’s place of work, while an offshore software development team works
remotely in a different distant location.

Figure 6.1 shows an informal overview of the iBistro system.

IThe exemplary scenario of two iBistro sites, one local at the client site and a remote devel-
opment site, is used as a graphic example during this chapter, regardless of the fact that an actual
installation might similarly consist of more than two sites.

100

Chapter 6 e iBistro Architecture and Framework

Meeting Captur O O Knowledge Acquisitio Knowledge Retrieval
See Section 6.3 | _ See Section 6.4 See Section 6.5
‘e ; : x =
()

LocationService

: MeetingCapture MeetingGenerator O e
: KnowledgeSource e
'l
.l
GetVideo
_______________ }/: MeetingView
~
= Distributed Concurrent Blackboard Architecture (DCBA) N
oo \’
S S e ——-——— o« TTTTmmmme—o -
1 ¢ N (_—‘\ Oﬂ: h T \I ————— >
%<7 Client-site Teams‘~-==s shoré feams =-=-=-,-
Sttt s : Blackboard SLERC)
{: 'g\;.{—-— O N !(’/

Knowledge Representatio
Software Architecture .- See Section 6.2

See Section 6.1

Client-site Teams Offshore Teams
: RDBMS :RDBMS

Figure 6.1: Informal overview of the iBistro system and this chapter. (A more detailed
view of the overall architecture is displayed in Figure 6.12 in Section 6.7.) The figure
shows the distributed concurrent blackboard architecture and concepts for knowledge rep-
resentation and storage, capture, acquisition, and retrieval.

The figure displays five fundamental concepts for iBistro which are detailed
as described in the following overview:

1. The Distributed Concurrent Blackboard Architecture

The distributed concurrent blackboard architecture (DCBA) serves as a primary
data repository. Local components (for instance the MEETINGGENERATOR or Lo-
cationService in Figure 6.1) are running on machines hosted by the local project
teams. They are connected to the blackboard and local events are captured and
stored in the blackboard as they occur. The blackboard is distributed because
knowledge sources can connect to one distributed transparent repository. The
DCBA itself is built from several servers which together form the overall system
as a primary and transparent communication and storage infrastructure. The
blackboard is concurrent because several components can access the repository at
the same time, and the local blackboards can operate independently. The black-
board builds up a knowledge space for data and knowledge storage.

2. Knowledge Representation and Storage

Data and knowledge stored in the knowledge space is recorded accordingly
to a taxonomy of data items. The hierarchy used is represented in the layers

6.1 e Chapter overview 101

(or levels) of the blackboard model. Basic types of information (video streams,
context events) are stored at lower levels of the blackboard, while higher-level
information (hypothesis, solutions) is stored at higher-levels. Such partitions are
necessary to structure the distributed domain knowledge, which is represented in
the collection of knowledge sources. The structure of the levels is also necessary
to control the data on the blackboard and to organize the levels of hypotheses.

3. Meeting Capture, Capture Components

Meeting and information capture components capture a particular type of
contextual information, for instance sensor-based events. This information is
then offered to the system, regardless of its potential use. In iBistro, specific cap-
ture components capture various types of context, such as people entering or
leaving the meeting room (location-based), people using specific equipment in
the electronic meeting room, such as the electronic whiteboard (activity-based),
or access to project-relevant artifacts, such as source-code (artifact-based), and
many others. All capture components have in common that they track informa-
tion that can be easily electronically recorded and caught. The resulting informa-
tion is stored as a basic type of “knowledge” at a low and raw level of abstraction
(data items). The video capture component, for instance, simply records audio
and video of a meeting and puts the resulting video-stream (as an artifact) into
the knowledge space.

4. Knowledge Acquisition

Knowledge sources pick up basic or abstract data items (like a whiteboard
snapshot stored in a bitmap) and work on them, potentially by using and com-
bining the information captured by several different meeting capture compo-
nents. Knowledge sources exclusively work with information stored on the know-
ledge space. They are only able to communicate indirectly with other knowledge
sources using the blackboard.

The MEETINGGENERATOR is a concrete knowledge source that works on the
diverse information created during one single meeting, including the recorded
video stream.

5. Knowledge Retrieval

Knowledge views provide access to the contents and structure of the know-
ledge space. Similar to the model-view-controller paradigm [Burbeck, 1987],
a variety of knowledge views provide different visualizations of the state of the
knowledge space. In iBistro, the knowledge space can be viewed by stakeholders
and responsibilities, or by events, or by replaying a meeting video-stream. Know-
ledge views are used in particular to provide a human-computer-interface (HCI)
to the information and knowledge stored in a knowledge space.

102

Chapter 6 e iBistro Architecture and Framework

6.2

THE DISTRIBUTED CONCURRENT
BLACKBOARD ARCHITECTURE (DCBA)

The distributed concurrent blackboard architecture (DCBA) is an extension of the
standard blackboard model. Two major design limitations of the standard black-
board model necessitate its extension for iBistro: first, the standard model does
not allow concurrent work on the blackboard. Second, the standard model does
not allow distribution, especially a distributed knowledge space (blackboard).
(See Section 2.5.)

The specific characteristics of both (informal) meetings and software devel-
opment substantiate our design decision for the DCBA. The scenarios in Chap-
ter 5 show that there is no single or consistent way, or algorithm, to capture the
richness of an informal meeting. In the informal meeting, numerous and het-
erogeneous types of ‘events’ occur concurrently. Moreover, information such as
stakeholder names, task assignments, or responsibilities for e.g. a specific source
code is related to organizational or project knowledge, building up a complex
network that spans across multiple stakeholders, meetings, teams, problem do-
mains, locations, and potentially organizations and projects. The DCBA provides
a means to gather the information and store and process the mesh of knowledge.
We sacrifice the claim of unconditional consistency for the benefit of complete-
ness and especially information richness. Hence, our goal in iBistro is to capture
as much of a meeting as possible, while only the part of the information which
can be understood and used is reused to further build solutions. By adding new
and improved components to work on information not used so far, the system
improves step-by-step and is able to better capture, store, and represent the di-
verse events in human communication.

Software development is a problem-solving activity. In a large software project,
many different distributed stakeholders contribute to the resolution with their
individual knowledge of how to find a (partial) solution to (parts of) the prob-
lem. During the process of finding a resolution or partial solutions, stakeholders
gather and contribute many different types of information. For instance, one
single source file that builds a partial solution for the whole system is built using
many different types of contributions, such as programming expertise, applica-
tion domain knowledge, social skills, and many others. The final version of the
artifact (the executables and companion files) eventually contains many, but not
all, of the contributions made. These contributions, however, are often not used
as contributed initially, but in some revised and improved version. Further, the
flow of events and contributions made is not predictable. Thus, finding a resolu-
tion is an opportunistic, as opposed to systematic, process.

In other words, the process of building software is reminiscent of the process
of a puzzle assembly from little pieces “step-by-step”. It can be seen as knowledge

6.2 e The Distributed Concurrent Blackboard Architecture (DCBA) 103

6.2.1

assembly, in contrast to the (non-opportunistic) search for solutions.

This distributed view of the problem domain suggests an approach based on
the blackboard model [Buschmann et al., 1996]. The blackboard model supports
opportunistic problem solving by incorporating a variety of expertise from com-
plementary domains, embedded in knowledge sources. Just like on a software
development project, a central component directs knowledge acquisition and
problem solving by scheduling the “experts”. Hence, the blackboard assembles
solutions that satisfy a given threshold; there is no exhaustive computation un-
til the very best solution is achieved. The blackboard will likely come up with
several solutions solving the problem. (See Section 2.5 for more information on
problem solving in the standard blackboard model.) The distributed concurrent
blackboard architecture is based on this architectural model. It consists of sev-
eral specialized subsystems which assemble their knowledge to build a possibly
partial or approximate solution.

The blackboard pattern as described by Buschmann et al. consists of three
fundamental classes: the Blackboard, Control, and the Knowledge Sources.
In iBistro, the standard blackboard pattern has been extended by five fundamen-
tal classes: Strategy, DatabaseConnector, Capture, History, and View. In
iBistro, the blackboard class is further split into a LocalBlackboard, which
represents the suitable repository for local balanced teams and extended by a
DCBAConnector to interface remote sites and their local blackboard implemen-
tations.

Figure 6.2 illustrates the DCBA and its components as an extension to the
standard blackboard model. In the following we give detailed description of the
classes used in the DCBA architecture.

THE BLACKBOARD CLASS

The blackboard is a common data structure in the standard blackboard model.
One single blackboard serves as a medium for all communication within the sys-
tem. The blackboard can store any kind of information derived from its basic
type (DataItem). The DCBA provides a common interface and communication
infrastructure for connected components and users (DCBAConnector in Figure
6.2). The DCBA hence is a virtual connector made from many blackboards,
for instance “Client-site Teams” and "Offshore Teams” in Figure 6.1 (Page 100).
While the DCBAConnector provides a transparent way of accessing the system
and hides the underlying layout, the local blackboards perform actual data stor-
age. The blackboard is organized into several layers in which data is organized.
The layers (and therefore the blackboard) are a non-permanent data storage, sim-
ilar to a caching device. The objects cached in the blackboard are stored persis-
tently in a relational database (the DatabaseConnector). When a local black-
board system is not available, crashes, or is shut down, the contents of the black-

104

Chapter 6 e iBistro Architecture and Framework

6.2.2

O

O

DCBAConnector DistributedControl
put() notify()
get()
register()
QueryLayer Strategy
query() schedule()
| AbstractLayer) 1
<<implements>>
<<extends>>
Control
>—
| ConcreteLayer LocalBlackboard notify()
_dataltems]] O
_bb_state : Boolean
put()
get()
register()
X* *
T | KnowledgeSource |
DatabaseConnector View CaptureComponent Body Precondition
query() run() run() run() evaluate()
: g ; Manual Computational
MeetingBrowser MeetingViewer History KnowledgeSource| | KnowledgeSource

MeetingGenerator

Figure 6.2: Classes in the Distributed Concurrent Blackboard Architecture.

board are still stored in the data base. When the local blackboard is started again,
the layers are empty at first. By working with the blackboard, the used objects
are retrieved from the SQL data base and cached in the layers of the blackboard
accordingly to their level of abstraction. An important side effect is, that query ob-
jects can be created in the structured query language (SQL). Hence, all our black-
board implementations understand SQL as a query language (QueryLayer).

THE DCBACONNECTOR CLASS

The DCBAConnector provides the interface layer for all components to access
the DCBA architecture. It provides a central way of accessing the DCBA and
directs the operations to the local instance of a blackboard. The DCBA also di-

6.2 e The Distributed Concurrent Blackboard Architecture (DCBA) 105

6.2.3

rects the replication of knowledge from a local instance of a blackboard to an-
other. Queries are directed to a local instance of a DCBAConnector. The Query
is forwarded to the local blackboard as well as to other blackboards known to the
DCBAConnector layer. The responses then are replicated to the local instance to
which the requesting knowledge source is physically bound. Thus, remote know-
ledge items are replicated on first use (lazy copy).

THE CONTROL AND STRATEGY CLASSES

The control and strategy classes direct the process of knowledge building by con-
trolling and directing knowledge acquisition. As described in Chapter 5.3 and
especially in Figure 2.6, the Control class evaluates which knowledge sources are
to be invoked, given the current state of the blackboard. The current state of
the blackboard or the relevant portion of the blackboard that is meaningful for
knowledge source execution is also called context. The context is an important
part of the focus of attention.

The Focus of Attention

Knowledge source activation and context selection is conducted following the so
called focus of attention principle [Nii, 1986a; Nii, 1986b]. In iBistro, various
kinds of global information are kept in the DCBA, including the control infor-
mation used by the control components to identify the focus of attention. The
focus of attention indicates the next objects or components, or combination of
both, to schedule for execution. In other words, the objects on the blackboard are
the context, the knowledge sources represent the activity (or action). The activity,
hence, happens within the given context. If o is the function that creates the focus
of attention, then o ({01, ...,0,},{c1, ..., c,}) is the focus of attention o, with
O,, being the bound objects and ¢,, the involved components. The result of the
function o is a set of objects O,, and knowledge source components c,.

The selection of the focus of attention also influences which knowledge source
is activated next. Therefore, the choice of a focus of attention affects the sequence
of knowledge source activation. The selection of a focus of attention is triggered
by external events, especially put () operations on the blackboard. The actual
selection of a focus of attention is directed by the Strategy component in the
DCBA. The Control component uses the focus of attention to schedule the next
activity.

The solution in legacy blackboard systems is built one step at a time. In
the DCBA, many knowledge sources concurrently work on objects on the black-
board(s), potentially overlapping. This is made possible by strict version control.
(See Section 6.3.2.)

106

Chapter 6 e iBistro Architecture and Framework

6.2.4

The Data and Control Flow in the DCBA

In the DCBA, the distributed control class acts as a broker. The distributed con-
trol (DistributedControl) delegates component registration to the local im-
plementations (Control). Figure 6.4 depicts the flow of events and collaboration
of components in the DCBA in a collaboration diagram.

| Frontend Tier + ----------- Capture Components, Knowledge
* Sources, and Meeting Views.

1

| Virtual Tier +- ------------------ Encapsulation, transparency. B‘
1

*

| Local Tier + --------------------- Local blackboards. B‘

1
1
| Storage Tier +- ---------------------------- Local backend storage B‘

(RDBMS)

Figure 6.3: The 4-tiers in the iBistro Architecture.

The architecture can be seen as four tiers. (See Figure 6.3.) On the frontend
tier, users and components, such as knowledge sources reside. The frontend con-
nects to the virtual tier. The virtual tier encapsulates the underlying concrete
layout and composition of the system. Thus, frontend components do not need
to know about the actual number of blackboards the DCBA is made of, or about
their location?. The local tier is composed of the dynamic collection of intercon-
nected local blackboard infrastructures. A local blackboard infrastructure con-
sists of the local blackboard, control, and strategy components. The composition
of this tier is dynamic because local blackboards might be stopped or unavailable,
while others may connect to the system dynamically. The fourth tier, storage tier,
is responsible for persistent data storage in a relational database.

The sequence shown in Figure 6.4 illustrates the flow of events in knowledge
source scheduling and focus of attention in the DCBA.

THE HISTORY CLASS

The History class logs any activity on the local blackboard, as well as the schedul-
ing actions taken by the Control class. As iBistro is chiefly meant to be an exper-
imental system for global software development, the historical entries are used
for analysis and improvement of the system. Moreover, the entries can be used
by specific strategy classes to optimize the scheduling strategy for knowledge

2As knowledge sources typically run in a physical environment provided by the IT services of a
location (i.e., client-site or offshore), the components may connect to any local DCBA connector
to connect to the virtual tier.

6.2 e The Distributed Concurrent Blackboard Architecture (DCBA) 107

sources. This is specifically used to gather performance related information for
data replication between the different local blackboard implementations.

Events captured in iBistro can cause subsequent events, as events might be
used to trigger an activity. This creates networks of events. One knowledge source,
for instance, might create an event if one specific user of the system enters the
meeting room. Another knowledge source then possibly notifies two other users
that this person is available for a chat. While events may span local blackboards,
the history entries will be recorded locally only. The history entries itself, how-
ever, are stored in the DCBA, and hence are available globally (for instance for
the DistributedControl class). The history of such context events, however,
is considered an important additional source of information. By the history of
context we understand how the events develop and span over time; which events
likely create other events or trigger user activity, and so on.

108 Chapter 6 e iBistro Architecture and Framework
Frontend Tier \
CaptureComponent KnowledgeSource
: Client : Client
AR
1.1: register()
2.1: put() 1.2: 6.1° 6.4: putResult()
Broker Tier \ register \ 9810\‘
N — / \1—\) DistributedBlackboard
DIStrl.bgtr(Ce)(ig:)ntrol 4 selectFocy > : Responder
. A A
0: 6.2: 2.2
13:][3.2 5: 7 *[register()] read ()| [write()
Local Tier \ register() | | notify() @ecute() terminated()
|
Control[1..n] LocalBlackboard[1..n]
. : Broker < 3.2 oty . : Responder —H
T T
6.3: 2.3
Storage Tier \ query () store()
Storage[1..n]
: Database —H
T
0 register() Registration of local blackboards at the start of the system
1.1-1.3 register() Each knowledge source and capture component initially indicates the contribution it can make
to the problem solving process by registering itself at a control component. While a cap-
ture component simply adds data of a specific type to the repository, a knowledge source
expresses its contribution by the expected type of input, the resulting type of output, and the
precondition. The precondition expresses a rule that delivers true if the knowledge source
shall be applied on the given input.
2.1-23 put(), write(),
store() One or more objects in the blackboard space are added or changed. This can be done either
by knowledge sources or capture components.
3.1-3.2 notify() Notify control components on object change.
4. selectFocus() The local control component selects (from the information given in points 1 and 2) a focus of
attention.
5. execute() Depending on the information contained in the focus of attention, the control component pre-
pares knowledge source scheduling as follows:

1. IF the focus of attention is a knowledge source, THEN a blackboard object or a
set of objects is forwarded to that knowledge source upon invocation (knowledge-
scheduling approach).

2. IF the focus of attention is a blackboard entry, THEN a suitable knowledge source is
chosen by checking the layer and preconditions (event-scheduling approach).

3. IFthe focus of attention is a knowledge source AND an object, THEN the knowledge
source is executed with the packed object(s).

6.1-6.4 run: get(), read(),
query(), putResult() The knowledge source is executed without being controlled by the Control component. Dur-
ing execution, the knowledge source might use the blackboard or other sources of information
(such as local filesystem, the web, or databases) to gather information other than delivered
along with the focus of attention, or put data on the blackboard.
7. terminate() On termination, the knowledge source puts its work product on the (local) blackboard. The
control component is notified on knowledge source termination.

Figure 6.4: The flow of events and control in the DCBA (collaboration diagram).

6.3 e Knowledge Storage & Representation 109

6.3

6.3.1

KNOWLEDGE STORAGE & REPRESENTATION

The collection of local blackboards, consolidated in the DCBA, serves as a repos-
itory for all information. While capture components only add data to the black-
boards, knowledge sources produce changes on the blackboards based on the
data already available. Interaction among the knowledge sources is only possible
through the blackboard. The blackboard consists of objects from the solution
space and information used by the system itself, such as control data.

The objects on the blackboard are hierarchically organized into levels of analy-
sis [Nii, 1986a]. The hierarchical information on objects is used by the knowledge
source’s precondition to identify suitable input data. This information, called
properties is contained in the knowledge taxonomy used in iBistro. The levels of
analysis divide the storage space into several layers of abstraction: the knowledge
space is partitioned into multiple hierarchies.

Beyond the hierarchical order, there are two more types of relationships be-
tween objects: named links describe how an object is related to another object,
independently of its hierarchical position; version links denote how objects evolve
through several versions.

Eventually, the blackboard is a non-persistent storage system. It “caches”
knowledge objects during its running time. To permanently store knowledge
objects represented in the blackboard data structure, a relational database is the
endmost tier of each local blackboard.

In the following, we describe the concepts of knowledge storage and represen-
tation: the hierarchy and knowledge taxonomy, named links and version control, the
layers of abstraction, and finally, persistent data storage.

ONTOLOGY & KNOWLEDGE MODELING IN UML

Definition’. An ontology is a formal and explicit specification of a
shared conceptualization. A conceptualization refers to an abstract
model of some phenomenon in the world which identifies the rele-
vant concepts of that phenomenon. Explicit means that the type of
concepts used and the constraints on their use are explicitly defined.
Formal refers to the fact that the ontology should be machine under-
standable, i.e. the machine should be able to interpret the semantics
of the information provided. Shared reflects the notion that an on-
tology captures consensual knowledge, that is, it is not restricted to
some individual, but accepted by a group.

An ontology is an explicit notation of a conceptualization [Gruber, 1992].

3Based on related definitions in [Broekstra et al., 2002; Gruber, 1992; Gruber, 1993].

110

Chapter 6 e iBistro Architecture and Framework

6.3.2

The ontology represents the potential of information and knowledge that could
be represented in the system: for Al systems in general, what “exists” is that which
can be represented. An ontology supports modeling of concepts in a domain and
the expression of information and knowledge in terms of those concepts.

One problem in the DCBA — similar to problems in Al and expert systems — is
that the ontology is never complete and will likely be changed and revised while
the system is used. To approach this problem along with the problem of finding
usable knowledge representations for an object-oriented system, we use the Uni-
fied Modeling Language (UML, [Rumbaugh et al., 1999]) as a semi-formal nota-
tion for ontology specification. Figure 6.5 illustrates the design of an ontology in
UML and further use in the DCBA. The UML is used increasingly in the domain
of problem modeling [Arlow et al., 1999; Cranefield and Purvis, 1999; OMG and
Meta Group, 2000]. The UML in particular provides a graphical notation used
for ontology design in the DCBA. The UML further provides a powerful and
highly expressive constraint language, the object constraint language (OCL). Fi-
nally, several commercial and non-commercial UML design tools are available.
The UML design can be either transformed directly to programming language
representation, such as Java, or to the XML Metadata Interchange format (XMI).
The Resource Description Framework (RDF) is originally built for the Web. The
RDF is a standardized metadata (information about information) description to
describe which information is actually there and to name and identify chunks
of data and information. XSLT, the eXtended Stylesheet Transformation language,
enables and empowers interoperability by offering a standardized way of describ-
ing and programming XML transformations to other data formats. An XSLT
stylesheet, for instance, would allow to transform an XML file (data) to HTML,
while another XSLT stylesheet would transform the same data to the Portable
Document Format (PDF). Both, XSLT and RDF are standardized by the W3C.

The process shown in Figure 6.5 illustrates the design of an ontology in UML
and further use in the DCBA. It allows an ontology designer to design and model
an ontology using an UML tool, such as Rational Rose.

However, if an existing ontology is replaced by a new one rather than ex-
tended, this approach has implications on the existing knowledge stored in the
DCBA. The migration of data in an old knowledge repository to a new ontology
model is not supported.

Figure 6.6 represents a UML class diagram of organizational knowledge. The
diagram describes a schema for the domain of project knowledge in iBistro.

OBJECT LINKAGE

Named links and version links are similar concepts, albeit solving different needs.
Both concepts link a data item to another. Named links denote a relationship be-

6.3 ® Knowledge Storage & Representation 111

: Knowledge
3.1 :compile Source

\ .class

4.2 : instantiate

2.1 :XSLT = |- -

1:export —» |- " 3.2 : compile—>»
Rose
- UML Modeller .)
T 4.1 :instantiate
I<<references>>
| e
2.2:><S|_T\ s
“on b _ “<references>>
Ve
Lz
RDF-Schema.xml
1 An UML design tool, such as Rational Rose, is used to model the ontology. To
export the UML model, a XML Model Interchange file (.xmi) is exported.
2.1 The XMl file is transformed to a Java source file (. java) using an Extensible
Stylesheet Language Transformation (XSLT) stylesheet.
2.2 At the same stage, the XMl file is also transformed to a RDF schema description

embedded in an XML file (.xml) by another XSLT stylesheet.

3.{1,2}: Theresulting . java and RDF .xml files are then compiled into a java class file;
the compilation process also relies on the Java RDF API [Melnik, 2000].

4: The class file is finally instantiated by the DCBA or knowledge sources.

Figure 6.5: Workflow from ontology modeling in UML to concrete knowledge in objects.

tween two objects, or a list of objects, that is not defined implicit by the hierarchi-
cal structure of the taxonomy. Version links designate several emerging versions
of an object, like a predecessor (older version) and its successors (newer versions).
The linkage of objects in the DCBA builds up a complex multi-dimensional net-
work of knowledge interlinked between the different local blackboards.

Named Links

The meaning of a named link is derived from two sources of information. The
referenced objects describe what is connected and in which direction (the link is
directed). The link itself saves information on how the relationship is made and
when. The “how” is a textual description (for instance “created by”), either from a
predefined list or user defined, along with a machine readable token. The “when”
is defined by a local timestamp. The concept of linking by using objects that can
hold additional information on a relationship also enables viewing and browsing
the mesh by linking information. It is further extendable (by any attribute) and
translates well to the relational model used in the database backend storage.

The concepts of named links and version links can be also combined. A new

112

Chapter 6 e iBistro Architecture and Framework

Virtual Tier \

| Organizational Knowledge |

*

Group Memory

Local Tier \

*

MeetingMinute

*

10,
Dataltem [=3
relates o < Named Link F————— — >
| Artifact

| captured Data | [Hypothesis | [solution |

Storage Tier \

Figure 6.6: The basic model of a project-ontology and knowledge taxonomy for iBistro
represented in an UML class diagram. (The complete ontology model is shown in Chap-
ter 7.)

version of an existing object, for instance, likely has a creator, who is designated
by a named link.

Version Links

The DCBA control and strategy components typically identify many different
and overlapping contexts and foci of attention®*. In the DCBA knowledge sources
are scheduled concurrently. Several instances of the same knowledge source might
be executed at a time on overlapping focuses of attention. As a result, knowledge
sources work simultaneously on the same or overlapping data items. They fur-
ther put the result of their work on the blackboard, consequently creating new
events that trigger knowledge source activation by enabling the selection of a
new focus of attention. This results in a multi-dimensional mesh of data and
knowledge.

The potential problems and side effects are addressed by strict version control
with the following rules:

e All data in the knowledge space is encapsulated in objects which are read-
able concurrently by the get () operation and its transactions;

e data items cannot be changed. The change () operation creates a new ver-
sion reflecting the changes.

*Unlike in the standard blackboard model and due to concurrency of Control classes in the
DCBA, there may be several concurrent (and overlapping) foci of attention.

6.3 ® Knowledge Storage & Representation 113

6.3.3

e asaresult, the getWait () operation from the standard blackboard model
(Section 2.5) is dropped in the DCBA; (getWait() waits for an object to be
released by other knowledge sources and then returns the object.)

e the take () operation doesn’t actually remove the object.

The strict version control also enables a precise tracking of how the capture
and knowledge building process works, and which alternatives are further se-
lected, explored, or dropped.

Two concurrent changes, for instance, will produce two unrelated versions
originating from the old version (i.e., a main trunk and a branch or two branches
depending how you look at it). The two branches of an older version later can be
merged in a new main trunk, one of the versions might be continued, or both are
dropped.

The information stored in the blackboard is organized in several layers of ab-
straction. The lower layers represent lower levels of abstraction, such as raw data.
Such data is stored as Captured Data in Figure 6.6. Raw data is information that
is typically captured automatically, for instance context-events or video, audio, or
image snapshots. This information is uninterpreted and potentially not ‘under-
stood’ by the system for the time being. A whiteboard snapshot, for example, is
stored in a bitmap. This bitmap is stored as an object by the CaptureComponent
in the lowest layer of abstraction. The whiteboard snapshot may contain im-
portant information, the meeting’s agenda for instance. The captured bitmap,
however, is not ‘understood’ by the system at first. It needs to be interpreted by a
knowledge source through knowledge acquisition and then elevated to a higher
level of abstraction. In our example, the meeting agenda might be transformed
to text, linked with video indices, and stored at a higher level of abstraction (i.e.,
Hypothesis in Figure 6.6). In the blackboard model, every partial solution or
intermediate result is called a hypothesis®. Knowledge in iBistro can also be seen
as explored alternatives and selected alternatives. Explored alternatives, however,
are still considered a hypothesis.

PERSISTENT STORAGE

The local blackboards are volatile memory in the runtime RAM storage of each
local implementation. In case the blackboard is halted for some reason, its con-
tents are lost. Moreover, complex queries for blackboard items are expensive.
Objects in the standard blackboard are found by comparing them against a tem-
plate object. Thus, objects of a specific type, or with given attributes can be

>A solution is a finalyzed hypothesis. This means, it will be no further subject to process of
knowledge assembly. As a implementation detail in the DCBA, however, there may be several
solutions in parallel (alternatives), each being a candidate for the selected alternative (final solu-
tion).

114

Chapter 6 e iBistro Architecture and Framework

6.4

found. Objects can also be retrieved from the blackboard by their unique iden-
tification (UID). More complex queries, like searching for parts of names, com-
binations, links, or intersections of subqueries are not possible. The basic model
does also not support complex results for queries, like collections or networks of
objects.

To address these problems, the DCBA connects to a relational database system
for persistent storage and queries based on the structured query language (SQL).
While all data items written to the blackboard are directly written to the database,
just like in a caching device using “write-through strategy”, queries sent to the
DCBA are forwarded to the local blackboards. The local blackboards check for
a suitable query result on the blackboard. If no such object is available, they
check for the result in the local database. The overall result in the virtual tier
of the DCBA is made from the collection of sub-results in the local queries. By
this means, the DCBA is filled incrementally with the most current data items
from the database. Consequently, the database represents the leading and binding
instance in data storage in the overall system. The persistent storage is organized
as a replicated database system, as indicated in Step 4.3 in Figure 6.7. The overall
result is synchronized and replicated to all inquirers (knowledge sources).

Singapore : 3.1 query(SingaporeDB
Blackboard : Database
4.1 : return()

: DCBAConnector 4—" 4.3 : return()
5 :return()
N Munich : 4.2 :return MunichDB
2:get) Blackboard : Database
3.2 : query()

Figure 6.7: Collaboration of components to process a query. The composite result of
the query is built from many sub-queries in the DCBA. The figure shows a synchronized
call (call-by-value). Asynchronous invocation (call-by-reference) is possible using Java
RemoteObjects [Sun Microsystems, 1998]

1:get()

A query cannot deliver conflicting results from different local blackboards,
because every item in the DCBA is under strict version control. This means, that
no knowledge item is overwritten or definitely deleted. However, if a specific sub-
query delivers an outdated version of a knowledge item, the items are prioritized
accordingly to their version number (newest first).

MEETING CAPTURE

Information capture in iBistro is strictly event-based. Any type of data item in
iBistro is stored according to its timely occurrence. Thus, the flow of events in a
single meeting follows a common timeline. Incidents captured later, such as the

6.4 e Meeting Capture 115

6.4.1

manual post-interpretation of the meeting video, which might result in a (sin-
gle) requirement, are added with a timestamp representing their post-meeting
creation. Surrounding contextual information is linked to the event to indicate
the originator (the identity of the person who mentioned the requirement), the
time when the requirement was first mentioned, location, and so forth is linked
along with the event in the database.

The DCBA connects a many different capture components. Each capture
component listens for a specific type of event and forwards it to the DCBA inter-
face. Capture components actively propagate the captured data, information, or
events to the DCBA. All components have in common that they track events and
data that is easily electronically recordable. This spans the possible items into two
categories: context and artifacts.

CONTEXT CAPTURE

An iBistro room consists of many context-aware devices to capture user activ-
ity. Context capturing is performed by small active components which propagate
any occurring event to the DCBA. Each capture component is typically respon-
sible for a specific type of context. The captured event is written to the local
blackboard (“Singapore” in Figure 6.8). The local blackboard writes the event to
the persistent storage as described in Section 6.3.3 (this step is omitted in Figure
6.8). Captured meeting events are only propagated to other local blackboards on
their first usage.

O 1: trigger event: 2 put()—>> 3 put()—>> i :
994_)| : CaptureComponent Pt :DCBA Puo Singapore :
X * * * 1 * 1| Blackboard

Figure 6.8: Capture of contextual events in the DCBA’s CaptureComponents.

For instance, a meeting participant using a SMART Board™will trigger an
event in iBistro by taking an electronic pen from its pen tray. The pen’s color is
assigned to the meeting participants (Peter uses green color, Florian the red pen,
and so on). At the context capture stage, the sensor only knows about the event
(taking the green pen). The semantic interpretation of the event is performed by
a knowledge source (this is actually also a simple form of knowledge acquisition
by translating the lower-level information“green pen taken” to the higher-level
knowledge of “assigning a sketch to Peter being the actuating stakeholder”.)

The capture component propagates the event to the DCBA and triggers no-
tification. The capture component can be both an active or passive component
which either repeatedly checks for events or gets notified.

116

Chapter 6 e iBistro Architecture and Framework

6.4.2

ARTIFACT AND VIDEO CAPTURE

By artifacts in the iBistro model, we understand software artifacts used in the
development process. Artifacts are typically files containing source code, docu-
mentation, etc. In artifact capture, events are triggered by changes of monitored
software artifacts. The main difference to context capture is a technical rather
than a conceptional limitation: While a ‘change-event’ is generated and propa-
gated to the DCBA, the artifact itself cannot be directly stored in the DCBA for
performance and legacy reasons® and due to storage space available”.

If an artifact capture component, for instance, monitors a source file, the
source file cannot be transferred to the repository each time it changes. During
development, the programmer likely changes (and saves) the file over and over
again. The version checked into the version control system, however, must have
a defined status (such as under work, fails to compile, tested, ready to deploy, ...).
All changed artifacts thus need to be accessible by the system to save the change
history. Hence, the artifact capture components have to collaborate with specific
second level storage systems, for instance a web-server reference specified by an
URL, a local or remote file identified by the filesystem path or remote access path,
or a version control system such as the Concurrent Version System (CVS).

O 3 put() > 4 :put) —=>»| Si :
K | : CaptureComponent Putd :DCBA Putd B:Zgigg; d

~X 2: capture event 8 : store proxy object 5 : notify()
1: change artifact
5 - I : KnowledgeSource l—@
< 7: access artifact < 6 : execute()
Source File
: Artifact

Figure 6.9: Capture of artifacts and video streams and knowledge source scheduling as a
consequence (collaboration diagram).

Figure 6.9 displays capturing of artifacts that are under version control, for
instance CVS, in the DCBA:

1. User checks out an artifact (for instance source code). The User works on
the artifact and successively saves changed versions to the file system for
compiling and testing. Finally, the user declares a version as under work
and checks in that version of the artifact.

®Legacy compilers, text editors, and IDEs will operate on source code files and not on a DCBA.

’Object space for DCBA storage is limited to approximately 5 megabytes per object with the
current default Java settings. While larger objects could be stored easily in a changed config-
uration, the storage of large objects in the DCBA proofed neither efficient nor suggestive. See
Chapter 7 for details on the prototype implementation.

6.5 e Knowledge Acquisition 117

6.5

2. A specific tracker captures the event of a changed source file.

3. The change event is written to the DCBA.

4. The event is written to the affected local blackboard (i.e., at the client-site).
5. The blackboard notifies control of an artifact change.

6. Control schedules a knowledge source for artifact capture and generation
of a proxy object.

7. The knowledge source checks the artifact, for instance by accessing it using
the version control system. (The knowledge source does not need to check
the respective proxy object in the blackboard explicitly, as it is part of the
focus of attention which is sent to the knowledge source at its invocation.)

8. The proxy object which represents the artifact in the DCBA is generated
and stored.

KNOWLEDGE ACQUISITION

The underlying concept behind knowledge acquisition is to transform informa-
tion that is already there in principle to a usable (and understandable®) form.
The term knowledge acquisition is derived from knowledge management to de-
note the fact that, while information is available within an organization, it might
not be usable. In an organization, specific categories of knowledge can only be
properly used by specific domain experts, for instance. Every so often, several do-
main experts need to collaborate on a set of data to collectively assemble partial
solutions and hypotheses to find a resolution.

This process is modeled in iBistro. Specific knowledge sources work on well-
formed categories of data items. Knowledge sources are very flexible and can
be simple rules or very complex, or anywhere in between. The term knowledge
source refers to the original idea that each knowledge source contributes a bit of
knowledge to the solution of the problem. From a software engineering point
of view, knowledge sources allow for the modularization and composition of the
1Bistro system.

8The term knowledge acquisition is used both with the notion of human understanding and
making s.th. readable or interpretable for machines. A useful generalization used in this context
in knowledge management is that machines know and humans understand [Gordon, 1999].

118

Chapter 6 e iBistro Architecture and Framework

6.5.1

6.5.2

MANUAL VS. COMPUTATIONAL KNOWLEDGE ACQUISITION

The DCBA architecture supports two generic types of knowledge sources’. The
first are computational knowledge sources which are triggered by an event and
work on objects from the repository automatically and self-sufficiently. The sec-
ond category are manual knowledge sources which provide a user interface for
knowledge acquisition to a human user. An example for the first category, com-
putational, is a group recognition service which identifies a specific work group
by the presence of the individual group members. An example for the second
category (manual knowledge source) is the MEETINGGENERATOR tool, which is
scheduled after a meeting and is used by a human meeting champion for post-
mortem editing and authoring of the meeting.

KNOWLEDGE SOURCES

Knowledge sources (see Figure 6.2), in contrast to capture components, are pas-
sive components in the DCBA. Knowledge sources are scheduled and executed
by the Control class. If evaluation of a knowledge sources’ precondition is true,
the knowledge sources’ code (body) is executed. The evaluation whether to ex-
ecute the knowledge source is done using the object or objects that caused the
notification as input parameter(s) to the precondition. While the evaluation of a
knowledge source is triggered by the Control class, the evaluation code (the pre-
condition) is embedded in the knowledge source’s precondition. The knowledge
source typically creates a resulting object either on the same level of abstraction
or one level higher.

The Knowledge Source Precondition

A knowledge source’s precondition is a rule, expressed in a function. The pre-
condition is part of the knowledge source and is scheduled along with the focus
of attention. As the DCBA is a concurrent system, all knowledge sources with
satisfied preconditions on the given set of objects are ready for execution. This
behavior is similar to the Official Production System 5 (OPS 5) rule-based sys-
tem [Forgy and McDermott, 1977]. In the DCBA, the knowledge sources con-
taining the preconditions are bound with their context (related objects) in the
focus of attention. The preconditions in the focus of attention are then evalu-
ated. The focus of attention is spent after usage and is re-built in each control
cycle. All preconditions are re-evaluated in each control cycle.

All knowledge sources remain enabled until they are stopped explicitly, even
though the state of the blackboard changes. The potential constraints which typ-

9The History class shown in Figure 6.2 is omitted here, because it is only used for internal
logging and research purposes.

6.5 e Knowledge Acquisition 119

6.5.3

ically arise from this do not apply in the DCBA due to the strict version control:
the context of execution for one specific knowledge source remains the same
during his execution, at least for one specific instance of the knowledge. The
knowledge source, however, might continue exploring an alternative which gets
outdated during execution of the knowledge source.

As knowledge sources in the DCBA are executed in parallel, the precondition
is a boolean function. Strategy, however, may decide whether to actually start a
knowledge source if its precondition returns true based on global information,
for instance system workload.

The Knowledge Source Body

The body is the executable knowledge generating portion of the knowledge source.
The body can be any kind of executable code, for instance embedded code or ex-
ternal programs and scripts. The body is not restricted to the context or focus
of attention used during knowledge source scheduling and in the precondition
as source of data. The body has reading access to any portion of the local or vir-
tual global blackboard (the DCBAConnector) and can access all objects that were
already there at the time of the knowledge source’s invocation (identified by the
time stamps). In practice, however, the body will likely work only on a small por-
tion of the blackboard and likely with other sources, such as local information.
The results of the computation are put to the blackboard. In bottom-up rea-
soning, the result is put one abstraction layer above the layer data is taken from.
In top-down reasoning, in contrast, the result is put to the layer just below the
source layer.

The body is not restricted to accessing context information in the DCBA.
It can also access artifacts, which are stored externally via the proxy objects in
the DCBA. Communication between knowledge sources, however, is restricted
to using the blackboard as an infrastructure. The DCBA as the common repos-
itory also offers a means for knowledge source’s body to store internal state in-
formation on the blackboard for later usage (for instance learning), or persistent
storage.

KNOWLEDGE SOURCE SCHEDULING AND EXECUTION

Figure 6.10 shows the procedure of knowledge source scheduling and execution.
If the state of the blackboard changes, the local blackboard notifies the DCBA
which notifies central control. The Control class then uses the affected item or
items to select the focus of attention, which is a collection of blackboard objects
(from any local blackboard, but available at the virtual layer) and knowledge
sources. As this collection is identified at the broker tier, it might span several
objects and knowledge sources on distributed sites (i.e., the client-site and the

120

Chapter 6 e iBistro Architecture and Framework

6.6

offshore development site). To further identify which foci of attention are to be
executed, the current instance of the strategy component is used for evaluation. A
very simple strategy class might simply call each knowledge source’s precondition
and add the knowledge source to the scheduling list if it returns ‘true’. A more
complex Strategy class might weigh the results of the preconditions and sched-
ule the knowledge source in a defined order according to the weighting. Finally,
the generated scheduling list of knowledge sources is executed concurrently with
their according focus of attention (which still contains the relevant data items).

while(_bb_state == changed) {
collection += selectFocusOfAttention(notification.getNextEvent());
schedule += strategy.evaluate(collection);

}

for(i=0; i<schedule.length(); i++) {
schedule.get (i) .body.run(schedule.getCollection[i]);

}

Figure 6.10: Knowledge source evaluation and scheduling.

KNOWLEDGE VIEWS AND RETRIEVAL

The data, information, and knowledge stored in the DCBA are nodes in large
graphs of interconnected data items and other objects representing meetings and
information in its timely order. It includes external annotations from other sites
or an individual’s personal computer. Knowledge retrieval gathers the contents
and structure of the knowledge and information stored in the DCBA and pro-
vides a application specific view on that knowledge. During knowledge retrieval
the users need different views that only include the relevant details that are useful
for the current task. Presenting the knowledge gathered during a meeting in a
chronological order might be useful during the postprocessing. Presenting the
same knowledge focusing on the decisions that were taken might be useful for
establishing the context for the next meeting.

Like in the model-view-controller pattern various knowledge views provide
different visualizations of the state of the repository, information, and structure
of a knowledge space. Knowledge views are used in particular to provide an in-
terface for human users of the system.

Accordingly, the knowledge space can be seen in its timely occurrence (tem-
poral views), by browsing it based on various key of search, or by following the
links which connect the data items.

6.6 e Knowledge Views and Retrieval 121

6.6.1

6.6.2

6.6.3

TEMPORAL KNOWLEDGE VIEWS

A self-evident way to view a meeting is to playback the meeting as a multimedia
archive, thus enabling non participants to access the raw information. In iBistro,
the MEETINGVIEWER generates on-demand a SMIL [W3C, 1998a] file (or data
stream) to represent the meeting along with the captured requirements, context,
rationale, and so on. This allows interested people to navigate through a meet-
ing using any SMIL compliant video player, such as RealPlayer™ or Quicktime’s
Movie Player to view the meeting. As the content of the meeting follows a com-
mon timeline, a “clip position” slider is used to navigate through the captured
audio, video, as well as other content such as requirements. Alternatively, the
history events can be used to jump to specific segments of the meeting min-
utes, for example, navigating an option will move the position slider to the frame
where the option was first suggested. Graphical views of requirements or ratio-
nale can be displayed using HTML or by generating bitmaps on demand. How-
ever, displaying multi-dimensional components, such as context-links between
stored entries which allow navigation, is not possible in this simple view..

MEETING BROWSERS

As knowledge in iBistro is stored along with its related contextual information,
navigation is possible using various types of input (or keys in a search). Meet-
ing minutes consist of contextual information (e.g., location, identity, activity,
history, and time) which can serve as keys for searching. For example, meet-
ing minutes may be sorted by requirements authored by a certain participant,
by time, or on any other key. Navigation is possible on any of those keys: the
stakeholder of an issue is found by clicking on that issue. Related information,
like time or location where the meeting took place, is displayed accordingly and
might be used for further navigation. Thus, iBistro’s database can be used to find
stakeholders over various meetings or even projects. While a MEETINGVIEW pro-
vides a meeting-based index into the knowledge base, other knowledge sources
can provide an artifact-based view into the knowledge base.

As currently implemented in the MEETINGGENERATOR, the knowledge base
must be searchable by any type of context, e.g., by stakeholders, location, topic,
versions, and so on. Hence, in addition to the raw context information captured
during the meeting, the user also sees all the annotations and structure that were
added during the post-processing.

3D KNOWLEDGE VIEWS

The post-mortem process generates interlinkage of knowledge stored in the repos-
itory. This information can be translated to a three-dimensional model as shown

122 Chapter 6 e iBistro Architecture and Framework

in Figure 6.11.

>
. &
Level of Maturity/ &2 Version Ik f
Abstraction Layer Rl ersion fink from
.\}00 N predecessor D.1 to
A \)@6 successor D.2.
Level N). oo, Q. o

& Qo . _
cﬁ?}o @c',\e\o ~ »Time
,I/O New Version of
& Q- Decision.1,
(\\‘2\ Named Link to ‘. _potentlally creat_ed
&é\o denote the creation Y, ‘V/?), in another meeting.

W of the Question 60, /éo,
from the two
Artifacts

Figure 6.11: Information in iBistro seen as a 3D-model of knowledge.

The three axes represent the timeline (x-axis), the level of abstraction (rep-
resented in the blackboard layer, y-axis), and version or knowledge-interlinkage
(z-axis).

For example, one could modify the REQuest [Dutoit and Paech, 2001a] re-
quirements engineering tool so that developers can browse meeting segments
based on a specific scenario or use case. By providing a seamless integration be-
tween meetings, models, and documents, the value of iBistro will be more visible
to the meeting participants.

6.7 e System Summary and Properties of the DCBA 123

6.7

6.7.1

SYSTEM SUMMARY AND PROPERTIES OF THE DCBA

Figure 6.12 shows the overall iBistro system with the DCBA as a virtual tier which
is built from the two local iBistro sites, Munich and Singapore. The figure shows
all components in a global iBistro system built on the DCBA.

See B O O See See
Section [~~__ Section Section
6.3 Te-le X __J64 . 6.5
LocationService ®-" Seal ULt
: CaptureComponent Stalrtcdaptsure @) A

1 : KnowledgeSource K LT s
See o - OO
gzctlon SMIL ;;

:View MeetingBrowser

V- R~ :View

_____________ \ write|

Munich
MeetingMinute

Distributed Concurrent

j) | Meetnghinute
[EndMeeting - £) Y
l% Blackboard Architecture [swi-rie A

VideoStream
Artifact

O (OCBA)
videocapure /T
: CaptureComponent runQuery() runQuery()
Munich Singapore :
@) : DatabaseConnector DatabaseConnector

2 1 l

MeetingGenerator
: ManualKnowledgeSource

| Munich : RDBMS | | Singapore : RDBMS |

Figure 6.12: Overview of the distributed concurrent blackboard architecture used in
iBistro. The DCBA blackboard realizes transparency for both users and components
used in the system, such as knowledge sources. The actual local blackboards are omitted
in the figure.

TRANSPARENCY

The DCBA is a virtual connector for users and components (KnowledgeSources,
CaptureComponents, and Views). It is built up from local blackboards which
serve as a caching and data storage middleware. Regardless of the actual loca-
tion of the server a component connects to, the content and functionality of the
communication infrastructure and repository is the same. The DCBA provides
transparency by hiding the underlying technical conditions. This is contrary with
existing blackboard systems. As iBistro is a globally distributed system, compo-
nents would have to be aware of the location of the system and the knowledge

124

Chapter 6 e iBistro Architecture and Framework

6.7.2

6.7.3

state of the system they are connecting to. For instance, if a user in Singapore
needs to access a document from Munich, she would have to know about the ex-
istence of the Munich document (or find out by searching) and connect to the
Munich repository. In a transparent system, in contrast, this process is hidden in
the architecture without being apparent to users and connected components.

THE EFFECTS OF SCALE

In the standard blackboard model, knowledge sources are not arbitrary access-
ing the blackboard due to the strict and non-concurrent scheduling. In the
DCBA, in contrast, distributed components are free of choice. Especially the
CaptureComponents do what they want, when they want, and make their de-
cisions without knowing anything about the other components except for the
results they produced so far. Nevertheless, they appear to be scale effective [Mc-
Manus, 1992]. An organization of software components is scale effective if its
performance improves with size. An organization based on the distributed con-
current blackboard architecture is scale effective if there are components whose
addition improves the quality of solutions or systems whose addition improves
solution-speed.

Scale effectiveness is an desirable property for distributed systems. The prob-
lem of improving the performance of a scale effective organization reduces to the
problem of finding which components to add. A non-scale effective organization
faces the much more difficult problem of finding which of its parts to eliminate
or modify before additions can be of benefit. Synthetic organizations are often
scale ineffective. The proverb, “too many cooks spoil the broth” describe this sit-
uation. That is, if some size is reached, the addition of another “cook”, no matter
how competent, has a negative impact on overall performance. In a scale effec-
tive organization there can never be too many “cooks”, as long as it retains it’s
property of being scale effective.

The DCBA is scale effective because adding new local blackboards scales up
the performance for larger teams, more sites, or more teams. A greater amount of
teams is then able to accomplish more complex projects. The quality of solutions
or the difficulty of solved problems will not be affected. However, the addition
of improved knowledge sources and components can increase the level of team
support. In the next chapter we will have a discussion of performance of the
DCBA compared to a single blackboard system.

COMPARISON WITH THE ORIGINAL BLACKBOARD METAPHOR

In contrast to the generic blackboard model or other blackboard-based systems,
our system embodies several specialities:

6.7 e System Summary and Properties of the DCBA 125

e Knowledge sources work concurrently on the DCBA and even on the local
blackboards. The system, however, needs no locking, such as mutexes or
semaphores (except for some atomic operations) on the blackboard. Every
knowledge source that works on the same data item never changes this
item, but generates new versions which are derived from the ancestor.

e As a result, each layer stores several concurrent versions of knowledge ob-
jects. This also implies that, unlike other blackboard systems, data items
that were already used are not deleted from the blackboard. Hence, the
complete history of knowledge assembly is stored in the blackboard. As
an implementation detail, versioning is handled within the layers (Class
AbstractionLayer in Figure 6.2).

e To support the empirical evaluation capabilities of iBistro, the DCBA uses
logging entries created by the history component to store log files and ra-
tionale information on knowledge source activation (such as which rules
triggered knowledge source activation on a certain object) and event log-
ging for both contextual events that occur during the meeting and event
and object notification within the blackboard system. This information
is also needed to control the advancement of finding solutions within the
system, as used objects are not deleted from the blackboard. Logging is
triggered directly by the Control-class. (See Figure 6.2.)

e Data items and artifacts are stored in a relational database. This allows
persistent and efficient storage of data items and powerful item interlinkage
(relations) and queries. The main advantage of relational data storage is the
persistent storage of knowledge, in contrast to the non-persistent storage in
the blackboard layers. This enables failover robustness for the blackboard.

e The second reason for using a relational database is that the structured
query language (SQL) can be used as a standardized query language for
knowledge sources and other components.

e One single DCBA installation, for example in Munich, interfaces other
servers (e.g., Singapore) by implementing the DCBAConnector class shown
in Figure 6.2. The overall DCBA is built from several server’s connected
DCBA interfaces. Any DCBAConnector serves as a single point of contact
for any knowledge source, hence providing transparency.

In this chapter we discussed the design and details of the iBistro architecture,
the distributed concurrent blackboard architecture (DCBA). In the next chapter,
we introduce several actually implemented prototypes and tools and related case
studies and tests.

126 Chapter 6 e iBistro Architecture and Framework

CHAPTER 7

EMPIRICAL APPROACH AND
RESEARCH PROTOTYPES

Inside every large program is a small program
struggling to get out.

[HOARE’S LAW OF LARGE PROGRAMS]

The iBistro system was developed incrementally. Figure 7.1 summarizes the
timeline for implementation, testing, and experimentation. This chapter illus-
trates the iBistro system and test plan used during three iterations.

—> YEAR
00 01 02 03

Nov | Dec]Jan Feb Mar Apr May Jun Jul jAug,Sep,Oct Nov, Dec|Jan Feb Mar Apr May,Jun Jul /Aug Sep Oct Nov DecjJan Feb Mar Apr May,Jun

— el 5 - Iteration 1

Iteration 2

— Iteration 3
Local
IS |

Figure 7.1: Overview of the incremental development and case studies.

The focus of the first iteration was the development of the MEETINGGENER-
ATOR tool to capture informal meetings in annotated video and audio. In the
first iteration, SMART Boards were used during informal meetings and espe-
cially in post-mortem processing the meeting with the MEETINGGENERATOR. The

128

Chapter 7 e Empirical Approach and Research Prototypes

SMART Boards also allowed for collaborative usage of the iBistro tools in small
local workgroups and in seminars.

The focus in the second iteration was the development of the single black-
board architecture to prepare the MEETINGGENERATOR and iBistro for an actually
distributed project between TU Miinchen (TUM) and the National University of
Singapore (NUS). In the third iteration, based on the experiences with the single
blackboard architecture, the distributed concurrent blackboard architecture was
developed as an improved version. This version of the system was tested locally
at Munich using a test harness.

Iteration 1 Iteration 2 Iteration 3
Deliverables: Deliverable: Deliverable:
MeetingGenerator Roomware/ Single Blackboard DCBA
SMART Boards Architecture

Case study
Singapore-Munich

[‘ﬂ Implementation Issues from the
Distributed testing Single Blackboard
i3 Evaluation Architecture

Issues, Design
Implementation
[0] Inception Benchmark, test

Distributed
Evaluation

RE, Design

(2] Implementation

[3] Unit/ local Test

(4] Evaluation

[5] Communication [6] Roomware usage
survey Issues

Implementation,
Local unit testing
[9] Single Blackboard
Architecture

17

Figure 7.2: The three iterations and resulting deliverables during iBistro implementation
and evaluation.

The iterative approach with the individual steps for the three iterations to
produce the respective deliverables (the MEETINGGENERATOR, the support for
roomware/ SMART Boards, the Single Blackboard Architecture (SBBA), and the
Distributed Concurrent Blackboard Architecture (DCBA) is shown in Figure 7.2.
In the following sections, we will detail the iterations and their associated deliv-
erables.

7.1 e Iteration 1: The MEETINGGENERATOR 129

7.1

7.1.1

ITERATION 1: THE MEETINGGENERATOR

The MEETINGGENERATOR [Braun et al., 2001a; Hengstenberg, 2001] provides a
meeting recording and editor tool to capture informal team meetings and related
contextual information in XML annotated audio and video. After the meeting,
the recorded video stream is edited by the meeting champion who is assisted by
the editor component in the tool. The meeting champion is a meeting participant
(for instance, a consultant or team-member), who is preferably not a meeting
facilitator.

The MEETINGGENERATOR uses a rationale-based approach to structure an in-
formal meeting accordingly to questions that come up or are discussed during the
meeting, options that suggest alternatives and ideas to address the questions, and
criteria against which the options are evaluated by assessments. Figure 7.3 shows
a QOC table as used in the meeting generation. The approach used is derived
from QOC design space analysis [MacLean et al., 1996].

Question ‘ Criterion Cy ‘ Criterion Cy

Option Oy + o]
Option Oy - -

Figure 7.3: A QOC diagram. The options O; and O3 are assessed against criteria C;
and Cy. The assessments in this example are ‘+” (for “pro”), ‘= (for “con”), and ‘o’ (for
“neutral”).

SCOPE

Figure 7.4 shows the model of a meeting in iBistro. Meetings in iBistro, in con-
trast to impromptu meetings and hallway conversations, are work meetings with
an expected project or business impact and outcome. Due to the result-oriented
character of meetings in iBistro, the post-mortem structuring of captured know-
ledge is crucial. In general, this takes place after the brainstorming session. The
post-meeting structuring is typically performed by the meeting champion.

During the post-meeting, the meeting champion annotates the captured au-
dio and video stream with higher-level information to provide an index into the
raw material. In iBistro, we use the question, option, criteria paradigm as a basis
for these annotations. The meeting champion identifies topics that were dis-
cussed by attaching a Question event to a segment of the tape. Within that seg-
ment, the meeting champion identifies different alternatives with different Option
events. The meeting champion documents decisions, such as the selection of an
alternative or the discarding of others, by creating a Decision event. Since History
events, like all other iBistro events, have an attribute identifying the originator

130 Chapter 7 e Empirical Approach and Research Prototypes
— : -
nception |—>| Execution |—>| End |—>| Post-mortem |
A\
+
Meeting Activities perform Participants | |Non—Participants|
*trigger [r
Events | Meeting Champion |
. *uses
““yideo/ audio Meeting Minutes ““structures MeetingGenerator |
capture
+stores
DCBA |
I—l < prowse/ replay
Figure 7.4: The model of a meeting in iBistro (UML class diagram).
of the event (in this case the person who suggested the option or who made the
decision), traceability to human sources is ensured. In addition to history events,
the editor can also attach other types of information using Link events, such as
references to other material, for example, a problem statement from the client,
scenarios, and questions generated by REQuest!, or a class diagram generated by
a CASE tool.
7.1.2 APPROACH

The MEETINGGENERATOR supports the meeting champion during the meeting
and in post-mortem editing of the meeting minutes. The meeting champion is
in a similar role to a minute taker. The meeting champion, however, does not
need to take notes during the meeting.

Figure 7.5 shows the roles of the meeting champion and meeting participant
and displays the basic use cases for the MEETINGGENERATOR tool. During the
meeting, the meeting participants trigger context events (for instance by enter-
ing or leaving the room, using electronic whiteboards etc.) which are forwarded
to the capture event use case. The meeting champion directs the recording of
the meeting minutes and may capture additional events for which no automated
capturing mechanism exists, such as adding markers for important milestones
of the meeting. Context-events captured automatically may also trigger events
in the MEETINGGENERATOR. For instance, using the electronic whiteboard starts
minute capturing, while switching off the whiteboard stops the electronic minute
recording. Figure 7.6 displays the use cases during meeting recording.

'REQuest [Dutoit and Paech, 2001a] is a Web-tool for rationale-based use case specification.
REQuest enables users propose requirements and their justifications, to review and to discuss

7.1 e Iteration 1: The MEETINGGENERATOR 131

C >——

trigger context event capture context

U

I{include}

O¢

capture event

record meeting

U

O O capture video/
Meeting Meeting O
Participant Champion

annotate minutes

U

post-mortem edit QOC edit

U

create links

Figure 7.5: Actors in the MEETINGGENERATOR tool (UML use case diagram).

Figure 7.8 shows the MEETINGGENERATOR tool in recording mode. The left
window shows the control panel and the meeting minutes, represented as a list of
captured events and knowledge items. The right window shows the video frame
with the current camera view.

During the meeting, the lower minutes panel is filled with context events.
Context events can also be created manually by the meeting champion using “Add
un-/named Mark/ Topic” to add a marker (add marker use case).

”Simulate Context Event” manually creates a context event which is added
to the meeting minutes. This is used during experimentation or testing when
only few automatic context sensors exist. For instance, an event for a person
joining the meeting can be created manually if no active badges location tracking
is available. After the meeting is ended, the meeting champion stops the meeting
capture (“Stop Minute”). This brings the MEETINGGENERATOR in editor mode
for minute post-processing and QOC-annotation.

In editor mode, the MEETINGGENERATOR is used to post-process and struc-
ture the meeting minutes after the meeting participants have left the room. Fig-
ure 7.7 shows the use cases for the post-mortem process after the actual meeting.

them using the QOC paradigm.

132

Chapter 7 e Empirical Approach and Research Prototypes

A -C D

Meeting trigger event

Participant O

start meeting

C

stop meeting / add event
{include}

/
/
/ 7

view minutes
Zlinclude}

//include

add context add topic

U

i

Meeting
Champion

0

add marker

AN

U

Figure 7.6: The record meeting use cases for meeting recording (UML use case diagram).

After the meeting, the meeting champion edits (post-mortem edit) the recorded
meeting minutes by annotating (annotate minutes), structuring (QOC edit), and
linking (create links) the captured context and information. At the beginning of
the post-mortem process, the captured meeting minutes which contain the audio
and video of the meeting and captured events (either automatically captured or
added manually) can be browsed (navigate minute). The content is then edited in
two ways: post-mortem context can be added after the meeting with hindsight
(for instance adding question, option, criteria, or comment tags) or the existing
content can be linked (for instance by linking questions to stakeholders).

Figure 7.9 shows a screenshot of the MEETINGGENERATOR in editor mode.
The video player window displays the video stream of the meeting and plays back
the meeting audio. By clicking on a meeting event in the meeting minute win-
dow, the video player window will display the corresponding video position. By
selecting a video position in the video player window using the timestamp slider,
the meeting minutes will be displayed accordingly.

Contents of the SMART Boards can also be linked with the video/ audio

stream. This is achieved by linking an event or higher-level object representing
the SMART Board content with the video.

7.1 e Iteration 1: The MEETINGGENERATOR

133

©)

AN

Meeting
Champion

/\\

add question add opion

O {|nc|ude}

navigate minute

O {mclude}

add context

O

{mclude} v

browse video

O

browse context

O

mark position

{include} . §

0

O add QOC

link context

add criteria add comment

Figure 7.7: The record meeting (UML use case diagram).

[iBistro Meeting Minute
File View Options

Recording Minute |

|

"Md un-named

Simulate Context Event
Identity Activity
Commit
I | N e |
Type Texd Identity I Activity
context minute
video videod.avi minute
Hopic a topic minute
context ali

File View Options
Edit Meeting Minute
Video Editor: guest

r [o] E [a][o] [n] [add postmortem

¥ Type Text Identity Aotivity
' context minute start
I videa wideod avi minute add
S criteria oz aues mark
] opt! erit2 pos |gues! matk
S note allen came in h.._other mark
L topic tapic rainute add
% question question auest mark
& option optd
 option opt2
S criteria eril
| context
S option optnew 1
S option dydfy
4 decision sadfs

Figure 7.8: A screenshot of the MEET- Figure 7.9: A screenshot of the MEET-

INGGENERATOR in recording mode.

INGGENERATOR in editing mode.

134

Chapter 7 e Empirical Approach and Research Prototypes

For each question in the meeting minutes, an QOC table view can be dis-
played (Figure 7.10) by clicking with the right mouse button on the question.
The QOC table displays the options, criteria, and assessments linked to a ques-
tion. Further links can be linked to a question by dragging and dropping options,
criteria, and assessments into the QOC table window.

Using the editor mode, the meeting champion is able to add QOC events
using the Buttons Q, O, and C, as well as assessments (the button labeled “A”),
decisions (Button “D”), and to take notes (Button “N”). Figure 7.11 shows how
an option event is added. The timestamp (leftmost column in the event table)
is taken from the meeting video’s current time position by default. The “add
postmortem” box can be used to add information that is not taken directly from
the meeting video. If the checkbox is activated, the added event is created with
the post-meeting timestamp add linked to the actual video position.

iﬂﬂale—* & aoc Table =13 e

@ @ @ @ |: : Whic pp(::::::on;nczr:pp"c. Speed ||— ’J@ @ @ m @ @ ¥ add postmortern

Tirne W L[Tyl o: wen A0 A1 |

0214 _ contel[0: Fat-Client| A2 A3 Titne [w]L] Tyne [Text [tdentity | Activity
0215 | |video 02:15| | |_Icontext |minute |start
0214 || topic a topic rminute |ladd 02149 e nfl s |rinite |arin

0z15 _| context nohody [nothing 02132 ' Egjldinule Editor
0217 |=|% yuestion Which Applicat. gusst |rark 0315 inigy
02:47 %! question anather guest |add 0247 ||| fegit Add opiion to Minute k
0247 | b o BYRERHIT Wev - Gl et 0217 | |-|-hin,(;|igm| [|
0217 |3 option Fat-Client guest |add 0217 |
0217 -1 [% criteria Roll-Out ussl |add 02:17 | - cancel
0217 | |% criteria Applic. Speed guest |add 0217 | m 4
0217 |-l |% assessment a0 guest |aud UETT | e— - = =]
0217)=l |% assessment a1 guest |add 02:17 |¥ |- & criteria jerit 2 |auest |add

+

AT L pp——— ot (A2 lenee laaa A7l Bl ascacema wt lmeend lana =4 lana

Figure 7.10: View the QOC representation Figure 7.11: Add a QOC-option to the
of the meeting. meeting minute.

Events and knowledge items in a meeting minute can be linked by three types
of links. Generic links connect two items, for instance a bitmap to its originator.
QOC links connect items which together build a QOC table. Version links connect
the initial version of a knowledge item with all its successors.

Figure 7.12 shows the highlighting of generic links in the meeting minutes
event list. Generic links connect related context-events or knowledge items in
the meeting minutes list. As shown in Figure 7.13, a predecessor can be linked to
several successors on the same level. Each successor can be linked to it’s successors
in turn.

New versions are added to existing minute entries by choosing “Revise En-
try”. Each revision will automatically create a new version linked to its originator.
Figure 7.14 shows the creation of a new version of an existing criterion. In the
example, the criterion labeled “Roll-Out” is changed to “Deployment: Training”,
for instance regarding the fact that the roll-out phase was discussed in several in-

7.1 e Iteration 1: The MEETINGGENERATOR 135
Time|w|L Type Text Identity Activity
14:08 | contaxt minuta start
14:08 _lvideo wide 02 avi minute add
14:08 % critoria cri2 guest matk
14:00 * assessment |opt! orit? pos guest mark
14:08 % note allen came in h.. other matk
1..% 14:00| |-l |_|topic trimie rinta add
14:09] |- & question QOC Diagram... matk
| : MinuteEvent | 14:00 |1 |- 4 option Highlight Versions mark
14:08 * option = matk
ZF 14:09| = ¥ criteria ! AELELE mark
1440 | context % stop
| | 14:15|% | % option oot new GUes add
14:20 & option o g dfiy yuest A
predecessor successor 1431 | Mdecision |sadfs other i
: MinuteEvent : MinuteEvent

Figure 7.12: Meeting minute navigation by

Figure 7.13: Object diagram of generic

highlighting linked events. context to knowledge item linkage.

dividual phases in the meeting. In the minutes list, all versions of an individual
QOC item are shown by choosing “Highlight Versions” in the context-menu as
shown in Figure 7.15.

: I
rContext Q: Which Application concept? —
ionale |C: Roll-0ut | C: Applic. Speed
0: Web A-0 A1
= Re on Hatio
tivi iy
a E New Version of criteria: Roll-Out start
0 ; = add
i |Dep|uyment. UserTralnlngl T
1] | | nothing
0 | OK | Cancel R
i dd
0217 | = % option opt 0 guest add
0z17 & option opt 1 st add
0217 |- Y criteria critn fLest add

Figure 7.14: Add a revised version of an existing criteria, hence creating a new version.

By creating versions of QOC items, the resulting meeting minute history rep-
resents the actual history of the meeting. During brainstorming in a meeting,
typically initial ideas and phrasings are replaced later with new versions. Storing
those versions saves and visualizes the thinking process in the meeting and over
a sequence of meetings.

Figure 7.15 shows the highlighting of linked versions for minute navigation.
All subsequent and precedent versions of a selected knowledge item are selected
and highlighted. Figure 7.12 shows how generic links are highlighted for a se-
lected knowledge item or event in the meeting minutes. Figure 7.17 shows the
highlighting of joined QOC items.

136 Chapter 7 e Empirical Approach and Research Prototypes

Time [¥[L] Tne [Teut [ety | Actiity
0215 _| context minute shart
s . . 0z1s | video videol, avi minute add
| initialVersion : MinuteEvent I— 0215 | |Jtopic 2 toplc minte Jadd
0215 _| context nobody naothing
v.0 v.0 0247 |- [& question guestd guest mark
[% guestion another guest add
0247 |~ [% option aptl guest add
- - 0zar & option opt 1 guest add
4' »Version | | rVersion | 0247 | |« [criteria critd guest add
az17 % criteria crit 1 guest add
0217 ¥ || % eriteria cril 2
0247 |« /% assessment |ass 01
07 % assessment [ass 11 Highlight Yersions
v.1l 0103 % criteria crit 22
0115 ¥ % criteria crit 222 [JUEST t=1h10}
| revisionl : MinuteEvent |

Figure 7.15: Highlight all versions of the Figure 7.16: Object diagram for version

selected criteria. linkage.

Time %[L] Type | Text [1dentity | Activity

0214 | context minute start — -

0715 _| viden wideall avi rrinute add | Decision : MinuteEvent |
0215 _| topic a topic rinute add 1

0215 _| context r by nathing

0217 | |- question llest (1 Allest rmark | 1

017 % question | QOC Diagram... add | Question : MinuteEvent |
0217 |2l % option add

0217 % optioh e add

0217 | |l |" criteria Highlight QOC Memb. 2dd * *

017 * criteria crit 1 guest add B H . H : . H
T B o e HTE: = = Criterion: MinuteEvent | | Option : MinuteEvent
0217 | |- assessment |as50 1 guest add 1 1

0zl % assessment 335 11 guest add 1 1

01:03 % criteria crit 22 guest add "

01:15 W |M eriteria crit 222 guest add | Assessment: MinuteEvent |

Figure 7.17: Meeting minute navigation by Figure 7.18: Class diagram of QOC link-
highlighting linked events. age.

The meeting minute is the central abstraction in the MEETINGGENERATOR.
The meeting minute is mapped into a flat XML file. The entries in the meet-
ing minute are structured time-based events, along with three types of links
(generic, version, and QOC links). The meeting minutes refer to external data
files (the video stream and snapshots) using URL references. A Data Type Defi-
nition (DTD) for the minutes is used to define the valid structure and entries as
shown in the meeting minute model in Figure 7.19. The Simple API for XML
(SAX) is used for XML parsing in the MEETINGGENERATOR. A Document Object
Model (DOM) is used for meeting minute representation in memory (Figure
7.21).

7.1 e Iteration 1: The MEETINGGENERATOR 137

I
| Hypothesis | | Solution |

|
[identity |[Arifact |[Activity |[Time][Location | [Topic | [Rationale |

[Source-File] [Video | [Snapshot | [Question][Option][Criteria_ | [Assessment | [Decision |

Figure 7.19: Taxonomy of data items and events stored in iBistro (UML class diagram).

| RecordingGUI i iJavaMediaFramework|

ContextSensor | VideoStream |

| VideoGUI |—\ : | :
/{ MeetingMinute |

MinuteGenerator
| EditorGUI |

I
| QOCtableView | | SAX/ DOMFramework|

| RecordingDevice | |

Figure 7.20: Objects and model of the MEETINGGENERATOR (UML class diagram).

| MeetingMinute |<>

T

MinuteEvent
| XMLMeetingMinute |

7 7 | |

<<JDOM>> <<JDOM>> .)
Document Element K>—— XMLMinuteEvent MinuteEventimpl

Figure 7.21: Model of the iBistro taxonomy using the JDOM API (UML class diagram).

138 Chapter 7 e Empirical Approach and Research Prototypes

7.1.3 CONCLUSION

During experimentation with the MEETINGGENERATOR tool we find that peo-
ple using a PC or laptop computer during meetings disrupt the flow of a meet-
ing. Hence, we investigated the possibilities of using roomware, such as SMART
Boards™. SMART Boards are used to display information during a meeting and
for instance for collaborative group UML editing. The SMART Boards are also
used instead of a laptop or PC computer to be used by the meeting champion
during the post-mortem process. The SMART Boards are big touch- sensitive
displays to bring-up a computer’s desktop screen which can be controlled man-
ually without a mouse or even without a keyboard. Electronic pens provided
with the SMART Boards are used to identify several different meeting partici-
pants by assigning each participant an individual pen color. We used the SMART
Boards in status reports and meetings consecutively. The use of the large dis-
play increased the acceptance of electronic and software support during informal
meetings compared to the initial use of a PC or laptop computer with the same
software (for instance the MEETINGGENERATOR.)

Most of the reported limitations of the displays result from the specific type
of SMART Boards used in the project, for instance:

e The SMART Boards in the MEETINGGENERATOR case study [Braun et al.,
2001a] used a normal beamer with front projection. This typically led to
partially shaded displays when a meeting participant stood between the
beamer and the SMART Board.

e We used the iBistro server to run both the MEETINGGENERATOR and SMART
Board tools and display drivers. The noise of the machines (server, beamer)
disturbed the meetings. However, due to the limited length of the serial
connection between the SMART Board and the controlling machine, the
server had to stay in the same room.

This issue is addresses by using a powerful but muted laptop computer.

e The SMART Board’s touch screen is controlled by a serial connection when
using a PC. This connection is rather slow and leads to delayed and back-
logged recognition of the pen position, especially in continuous writing or
drawing on the SMART Board.

Meanwhile, this issue is addressed by the manufacturer. SMART Boards
can now be connected to a PC using a variety of powerful connections,
including Wireless LAN IEEE 802.11b WiFi and Ultra Serial Bus (USB).

In contrast to these limitations, the used meeting approach where post-mortem
structuring takes place after the meeting was is largely accepted. This is not sur-
prisingly, because it does not at all affect the meeting itself.

7.2 e |teration 2: The Single Blackboard Architecture 139

7.2

Beyond roomware and SMART Board usage, we identify the following lessons
learned in iBistro: Context events are added to the MEETINGGENERATOR’s meet-
ing minutes list manually or by using the MEETINGGENERATOR as a Java API for
context recording devices. Automatic context capture in the MEETINGGENERATOR
proved to be not flexible enough due to the variety of potential context widgets.
Much logic for context capture and processing would to be implemented in the
MEETINGGENERATOR itself. As the use of third-party context widgets and tools is
desirable re-use available technology and limit own work. However, third-party
context capture APIs, for instance the Context Toolkit [Andind K. Dey, 2001], is
difficult to integrate in the MEETINGGENERATOR.

The MEETINGGENERATOR encapsulated meeting minutes and post-mortem
annotations in XML files. The meeting minute taxonomy and external artifacts,
such as the audio/ video stream or whiteboard snapshots, are stored in flat files
stored in a local filesystem.

This approach did not satisfy two requirements. First, the local filesystem
does not work well in distributed settings, even though if the files are shared. In a
shared filesystem, the entity shared is per file, which represents a whole meeting,
instead of per event or knowledge item. Moreover, shared filesystems are too
slow for Internet connections. Second, queries on flat files are slow and need to
be implemented from scratch.

The lessons learned and issues identified during the first iteration led to an
improved version of the MEETINGGENERATOR built on a specific software archi-
tecture as described in the next section.

ITERATION 2:
THE SINGLE BLACKBOARD ARCHITECTURE

The MEETINGGENERATOR used in the first iteration was a stand-alone solution to
capture and annotate a single-site meeting. The distributed software architecture
provides a technical infrastructure for iBistro. (Discussed in Chapter 6.) Using
this infrastructure, MEETINGGENERATOR becomes a collaborative tool to be used
from several project sites.

The software architecture for iBistro further addresses the issues identified
during experimentation (see Iteration 1, Section 7.1.3) with the MEETINGGENER-
ATOR, specifically:

e The integration of remote context-aware and roomware devices addresses the
usability and context capturing issues.

e An active repository enables automatic context and event processing and
enables intelligent suggestions made by the system.

140

Chapter 7 e Empirical Approach and Research Prototypes

7.2.1

7.2.2

o A distributed knowledge repository allows for knowledge cross-linking be-
tween several sites and knowledge reuse independent of the user’s location.

e A common programming architecture and framework enables easier devel-
opment of knowledge sources and experimentation with the system.

To meet with the experimental plan at Singapore, we split the architecture
into two versions:

The first version, the single blackboard architecture approach was chosen to
quickly implement an initial version that consecutively would be refined during
testing and evaluation. The single blackboard practically has all important func-
tional features to deal with distributed settings in general, such as random access
from remote sites over the internet, a common knowledge repository, and so on.

The experiences with the single blackboard architecture are then addressed
in the second version, the distributed concurrent blackboard architecture (DCBA).
In this version, we first focused on problems identified in everyday usage of the
iBistro system, for instance performance, ease of use and extendability, and bugs.
We then improved the approach by extending the iBistro capabilities for trans-
parent access of iBistro resources from remote sites and by making it a net-centric
system with all resources and knowledge items stored in a distributed manner on
several sites.

SCOPE

The single blackboard architecture implements a framework for iBistro consist-
ing of one central blackboard with control and strategy components, several re-
mote knowledge sources and remote knowledge views. The blackboard serves
as one single central repository with remote components connected via network
connections based on JINI/ Java RMI services. This setting provides easy col-
laboration, as there is no need for knowledge replication or synchronization for
several concurrent instances. The central blackboard is able to coordinate all
queries from remote components.

APPROACH

Figure 7.22 shows the single blackboard installation in Munich and several local
and remote components of the system. All data items are forwarded to the single
blackboard server in Munich. Remote knowledge sources will work on the data
and knowledge items using the rather slow internet connection between Munich
and Singapore.

The single blackboard architecture implements the basic iBistro architecture
based on the standard blackboard model. The single blackboard architecture is

7.2 e |teration 2: The Single Blackboard Architecture 141

Whiteboard : -
CaptureComponent w B $ I’g:gﬁ;ﬁgggﬁfée
T Control [[~ '
4 E

7 LT
P — =

_______ L— | VideoCamera
- : MeetingCapture

Blackboard access
via JavaSpace
interface.

JavaSpace

| Munich BI | Singapore BI

Figure 7.22: Setup of the first experiment between Singapore and Munich (UML com-
ponent diagram).

implemented based on the JavaSpaces framework [Sun Microsystems, 2003]. In
the case study, two teams collaborate in the same project by accessing a central
Munich-based iBistro server. Meeting room devices (capture components) and
knowledge sources connect to the central repository via LAN or WAN connec-
tions. Remote components have to use a narrow and slow Internet connection
for all data transferred.

O

Service
(from ibistro)

=
O O O

ServeControlService CaptureComponentService ControlService
(from ibistro) (from capturecomponent) (from control)
KnowledgeSourceService ViewerService
(from knowledgesource) (from viewercomponent)

Figure 7.23: Hierarchy of iBistro services used in the single blackboard architecture
(UML class diagram).

The remote components in the iBistro architecture are based on several iBistro
services as shown in Figure 7.23. iBistro services extend the Java Remote Inter-
face to enable remote invocation. Each interface provides methods to register and
unregister an iBistro service in the iBistro architecture. There are three services
derived from the basic iBistro remote service (Service). iBistro components

142

Chapter 7 e Empirical Approach and Research Prototypes

7.2.3

scheduled by the control component are based on the ServeControlService.

The two scheduled services in iBistro are the KnowledgeSourceService for

knowledge sources and the ViewerService for knowledge views and browser

components. The CaptureComponentService provides connectivity for non-

scheduled components, especially context-capturing components to interface sen-
sors. The ControlService finally connects the scheduling instance, the Control
component.

LESSONS LEARNED AND NEXT STEPS

The single blackboard architecture implemented a basic framework for further
testing in the distributed scenario. While the single blackboard system did not
yet meet all the desirable features for iBistro, the following goals were achieved:

e The implementation of a basic framework for further evaluation and im-
provement. The framework allows the integration of knowledge sources
and capture components, as well as the MEETINGGENERATOR.

e A distributed, while central, active knowledge repository.

e A test harness replaces context-sensitive devices that were not available to
the project (for instance active location tracking is replaced by a small PC
tool to allow passive user tracking).

e Knowledge sources and capture components for whiteboard capturing were
implemented for the case study.

Two major design drawbacks were identified during the distributed experi-
ment. First, the lack of persistent storage. The knowledge and content, except
artifacts, were stored in Java objects only in the single blackboard architecture.
Whenever the application was stopped and restarted, the content of the Java
memory was lost. The files storing the artifacts, however, stayed available in the
file system, but without any attached information in the taxonomy. Second, the
lack of powerful queries on the knowledge space. Even simple queries are very
time consuming in the knowledge space. Complex queries, such as “list all pro-
grams written by User A before January in Singapore”, were not possible.

Most of the other problems encountered were primarily related to perfor-
mance” and system stability in distributed settings. Performance becomes specif-
ically critical when many local context-events are promoted to the central know-
ledge space. All these issues were consecutively addressed in the DCBA architec-
ture.

2A Benchmark test of the single blackboard architecture vs. the DCBA is discussed and illus-
trated in Section 7.3 in Table 7.3.

7.3 e |teration 3: The Distributed Concurrent Blackboard Architecture

143

7.3

7.3.1

ITERATION 3: THE DISTRIBUTED
CONCURRENT BLACKBOARD ARCHITECTURE

SCOPE

The distributed concurrent blackboard architecture (DCBA) is designed and built
to address the specific requirements identified during the project communication

study and the case study between Singapore and Munich. The DCBA architec-

ture realizes a distributed knowledge repository to support balanced teams by
providing each team with a local blackboard [Nikitsch, 2003].

:Knowledge
Source

Control system ;iBistroControl

:DistributedSpace
OperationWrappe|

Application system 1

:DistributedSpace
OperationWrapper

= :JavaSpaceExt

N—
[]

:Distributed
[_1 JavaSpace

[_] :Distributed
[_1 JavaSpace

:DistributedSpace

OperationWrappe|

[]
:Knowledge
Source

Application system 2

C] :JavaSpaceExt

Comey

:Distributed
JavaSpace

Storage-only system

:JavaSpaceExt

Database

[

/

http server

% httpd

Jini Lookup Service

% Jini-Lookup

Jini TransactionManager
Service

Jini-Transaction
Manager

Figure 7.24: DCBA deployment diagram.

144

Chapter 7 e Empirical Approach and Research Prototypes

7.3.2

7.3.3

APPROACH

The local blackboard, while enabling high performance access for on-site work
and queries, is still distributed in that it is accessible from remote sites seamlessly
as well. The DCBA creates a local environment for technical components, such as
knowledge sources or context-capture devices, as well as local team members. All
replication and synchronization of data and knowledge items is handled within
the framework.

The second important point is that as the DCBA framework is built step-
by-step through testing and evaluation. It is much more stable and debugged
compared to the first version used in the single blackboard architecture. Dur-
ing continuous testing, however, one more problem had been identified in the
DCBA: for simplicity of knowledge source scheduling, the first release of the
DCBA had, differing from the design (see Figure 6.2 in the previous chapter)
only one central control component. While this allows for easy global know-
ledge source scheduling, the main drawback is that all notification has to be sent
to the singular control component. In case of event notification in an iBistro
room with many context-aware devices, for instance, this results in tremendous
network traffic. This issue is addressed with cascaded control. In the cascaded
control, any event is first propagated through the local instance of the control
component. Only if the local control component could not handle the event, it
is forwarded to global control (by simply following the inheritance hierarchy of
control components).

The DCBA stores data items in a relational database system (mySQL [MySQL,
2003]) for persistent storage. The virtual tier (see Figure 6.3) serves as the global
infrastructure and middleware and acts like a caching device between the com-
ponents and the persistent storage, hence hiding the underlying storage architec-
ture.

LESSONS LEARNED

Test scenarios with globally distributed teams who are developing software col-
laboratively are expensive to set up. To further test the architectural framework,
the scenarios are simulated by automatically generating contextual events. Slow
network connections are simulated by using wireless network cards which allow
to reduce the transfer speed manually. The iBistro test harness allows to simu-
late many of the events which might occur in a distributed project setting. The
iBistro control center allows to start, stop, and manually add or remove com-
ponents and hence simulate additional sites, or crashing of components. Even
sites that are temporarily unavailable, for instance due to network connections
lost, can be simulated. Moreover, the test harness can be used to add testing how
the framework would work with components which are not yet actually imple-

7.3 e |teration 3: The Distributed Concurrent Blackboard Architecture

145

<<Interface>>
JavaSpace

+NO_WAIT:long

(net.jini.space

#write(): Lease
#read(): Entry
#readIfExists(): Entry
#take(): Entry
#takelfExists(): Entry
#notify(): EventRegi:

JavaSpaceExt
(ibistro.bbmemory)
<<implements>> -javaspace: JavaSpace
-hostinetAddressinetAddress
+name: String

#snapshot(): Entry

+JavaSpaceExt() <<constructor:
+getJavaSpace(): JavaSpace

SpaceOperationWrapper
(ibistro.util)

DistributedSpaceOperationWrapper
(ibistro.util)

#VERY_LONG_TIME: long
#MAX_READ_WAIT: long
-MAX_NUMBER_SPACES: int
#d. : Distributed. e
#txManager: TransactionManager
#myTransaction: Transaction

nager: LeaseRer ager
-myTSG: TimetampGenerator
-eidBuffer: Vector
-eidTable: EIDTable
+DistributedSpaceOperationWrapper() <<Constructq
+readAllType(): Dataltem[]
+read():Dataltem
+writelt()
+writelt()
+indJT(): EventRegistration
+eventRegistrationMultiple(): EventRegistration[]
+everiRegister()
+isSet(): Boolean

+getHostAddress(): String

jsVector,
zeroSpace

DistributedJavaSpace
(ibistro.bbmemory)

+VERY_LONG_TIME: long
+NO_WAIT: long
-jsVector: Vector
-zeroSpace: JavaSpaceExt

+DistributedJavaSpace() <<Constructo
+addSpace()

+removeSpace()

+spacesExist(): boolean

+read(): Dataltem

+readlExists(): Dataltem

+take(): Dataltem

+takelfExists(): Dataltem

+write(): Lease

+notify(): EventRegistration
+notifyMultiple(): EventRegistration[]
+getByJS(): JavaSpaceExt
+getByName(): JavaSpaceExt

-mirrorToLocalSpace(): Lease
-writeToTarget(): Lease
-isLatestVersion(): boolean

=

N —

statement.executeQuery(), :
statement.executeUpdate()‘

<<Interface>>

Driver
(java.sq)

<<implements>>

Driver
(com.mysql.jdby

registerDriver(

i dJavaSpace | -getLatestlocation(): JavaSpace

+isSpaceSet(): Boolean -readFromTarget(): Dataltem

+isTxManagerSet(): Boolean -readFromTargetlfExists(): Dataltem

+notify() -takeFromTarget(): Dataltem
-takeFromTargetlfExists(): Dataltem

-setJavaspace() -executeReadTake(): Dataltem

-getSpaceName(): String -executeReadTakeFromTarget(): Datalt]

myTSG

spacewrappe|

init()

writeToTarget(),
executeReadTake(),
executeReadTake-
FromTarget()

I
<<Interface>:
Connection

(java.gyl)

getConnection()

Driver Manager
(java.gyl)

read(),
take(),
write()

DistributedDBOperationWrapper
(ibistro.bbmemory)

-STD_HOST: String
-STD_LOGIN: String

TimestampGenerator
(ibistro.util)
+logFile: String
-startMillisec: long
-endMillisec: long
T +TimestanpGenerator() <<Constructor>>
! +TimestampGenerator(String) <<Constructor

All Control components D +printTimestamp(): long

<<Interface>>
IBistroServicelnternal
(ibistro)

-STD_PASSWORD: String
-STD_DB: String

-url: String

-con: Connection

+DistributedDBOperationWrapper() <<Constructor>>
+DistributedDBOperationWrapper(String) <<Constructor>
+DistributedDBOperationWrapper(String[]) <<Constructol
-init(host, db, login, password:String)

+read(): Dataltem

and KnowledgeSources :begi_PTiming()
inherit IBistroServicelnternal endTiming()

+printCommentToTi

pFile()

(via intermediate classes)

+take(): Dataltem
+write()

Figure 7.25: The final implementation of the distributed blackboard architecture.

mented (like we did with automatic location tracking of team members during

the first iteration).

Tables 7.2 and 7.3 show performance benchmarks of the distributed black-
board architecture [Nikitsch, 2003]. The benchmarks were made based on the
system and hardware configuration shown in Table 7.1. For the following com-
parison it is important to note that the DCBA architecture also benefits from
hardware performance. The table shows that the system Munich is much more
powerful than the laptop computer Singapore.

Table 7.2 compares the speed of a cached blackboard access to a request that
needs full replication from the database for the two installations at Munich and
Singapore. The comparison shows the improvements in performance and espe-
cially in response time for cached queries. The comparison also shows that the

146 Chapter 7 e Empirical Approach and Research Prototypes

Munich: Pentium 4, 1.6 GHz, 256 MB RAM, 30 GB hard disk,
Windows XP Professional, Java 1.4.1 SE, Jini 1.2.1, MySQL 3.23

Singapore: Pentium 3, 500 MHz, 192 MB RAM, 30 GB hard disk,
Windows 2000 Professional, Java 1.4.1 SE, Jini 1.2.1, MySQL 3.23

LAN: 100 MBIt/s Ethernet LAN

WLAN: 11 MBit/s WLAN (IEEE 802.11), both locally as well as in the intranet of the National
University of Singapore

Table 7.1: System and hardware configuration for the Benchmark.

overall DCBA performance benefits largely from hardware performance.

Location Object size get() put() DCBA DCBA
(KBytes) | from cache | to cache || restore from db | restore from db
Singapore <10 0.23s 0.30s 0.27s 0.90s
700 2.00s 6.60 s 2.50s 8.50s
Munich <10 0.15s 0.17 s 0.17 s 0.37 s
700 0.55s 0.88 s 1.10 s 2.20s

Table 7.2: Benchmark: Cached objects versus objects restored from database.

Table 7.3 compares the performance of the local system in Singapore with
remote access from Singapore to Munich. The table shows that remote access of
cached objects is nearly as fast as local access in Singapore even though object IDs
have to be checked whether replication is needed. For very large amounts of data
items (one million objects), a & 21% increase in access time is recorded.

of get() connect || connect | put() connect | connect
data items +get() +put()
Singapore 100 || 4.66 ms | 490 ms 495ms | 5.61ms | 520ms | 526 ms

10,000 140 ms 490 ms 630ms | 5.51 ms 510 ms 516 ms
1,000,000 72.9s 510 ms 73.4s | 6.57 ms 520 ms 527 ms

Munich 100 || 2.10 ms 200 ms 202 ms | 2.10 ms 210 ms 212 ms
10,000 || 60.9 ms 200 ms 261 ms | 2.24 ms 200 ms 402 ms
1,000,000 16.0 ms 200 ms 16.2ms | 6.25 ms 210 ms 835 ms

Indexed 1,000,000 592s 200 ms 6.12s | 375ms 200 ms 575 ms
remote 100 || 4.76 ms 510 ms 515ms | 5.84 ms 500 ms 506 ms
access 10,000 111 ms 490 ms 601 ms | 5.11 ms 510 ms 515 ms

1,000,000 || 92.9 ms 500 ms 93.4ms | 5.10 ms 510 ms 515 ms

Table 7.3: Benchmark: Local versus remote DCBA access time.

Overall, the DCBA displayed much faster reactions to user requests and queries
than the single blackboard architecture. Due to cached saving, the DCBA also al-
lows knowledge sources to write large amounts of data, for instance video streams
or captured whiteboard images, or large numbers of items, for instance sensor
data, fast and in quick sequences.

7.4 e Discussion 147

7.4

DISCUSSION

iBistro has been developed iteratively in three stages through experimentation in
local and distributed settings. During the case studies, we had a strong focus on
an architecture that allows us to capture as much as possible of informal meetings
and provides that information to distributed stakeholders. As the subjects of
our investigation were primarily students and research assistants, we encountered
low resistance from users, if at all. However, especially during video and audio
capturing of meetings and automatic tracking of users and user activity, we were
faced with privacy concerns. iBistro does not yet support any means of protecting
the privacy of users, such as allowing only certified users to see specific entries.
As iBistro is meant to be a research system to investigate the basic principles of
cooperation based on knowledge from informal meetings in global distributed
software development, we also did not implement any encryption or protection
beyond the capabilities, provided by the underlying operating systems.

148 Chapter 7 e Empirical Approach and Research Prototypes

CHAPTER 8

DISCUSSION

Die hichste Philosophie des Naturforschers besteht eben darin, eine
unvollendete Weltanschauung zu ertragen und einer scheinbar
abgeschlossenen, aber unzureichenden vorzuziehen.

Die Mechanik in ihrer Entwicklung, [ERNST MACH]

The only thing that stays the same
is change.

Change, [MELISSA ETHERIDGE]

From a functional perspective, iBistro supports globally distributed software de-
velopment. This includes the early and non-technical phases in software devel-
opment, such as writing proposals and requirements elicitation. iBistro sup-
ports globally distributed software development teams by providing organiza-
tional knowledge which is built-up by a network of many linked and connected
instances of group memories, for instance recorded and annotated meetings.
This network of knowledge stores the information, issues, argumentation, and
artifacts of several projects.

iBistro focuses on distributed teams as opposed to individuals by providing a
common infrastructure to make the distribution as transparent as possible. The
distributed concurrent blackboard architecture interlinks pieces of knowledge as-
sembled by global teams and enables both distributed usage and hindsight usage
by providing the necessary contextual information, such as rationale or argumen-
tation. An ontology allows for information to knowledge transition and know-
ledge crossover. Finally, iBistro supports informal meetings and brainstorming
sessions as source of information and knowledge in a distributed context.

On the technical side, iBistro provides a transparent infrastructure for know-
ledge acquisition and search for solutions in a distributed concurrent blackboard
architecture (DCBA). The DCBA is an extension of the standard blackboard ar-
chitecture. The DCBA enables the concurrency of components and adds a dis-

150

Chapter 8 e Discussion

8.1

8.1.1

tributed shared repository. Moreover, the DCBA realizes persistent data storage
in a relational database management system. The database also enables SQL to
be used as query language for all components in the system. The iBistro infras-
tructure is encapsulated in a Java framework with base implementations for all
suggested components of the system, such as knowledge sources, capture com-
ponents, views, and the blackboard itself.

The research prototypes developed for evaluation of the system provide spe-
cific knowledge sources for audio and video capturing, meeting minute edit-
ing, viewing, and testing. In related efforts and during a one semester software
development course, support for roomware has been evaluated using SMART
Boards™. Building a group memory that enables the integration of various com-
munication media is now possible using the suggested common framework for
future developments.

OBSTACLES

iBistro has been used as a research system for data collection and experimenta-
tion in distributed projects at universities during our experiment between the
National University of Singapore and TU-Miinchen. The subjects working with
the system so far were either students or researchers.

The envisioned user group for iBistro are project members in larger projec-
based organizations. In the following, we identify and discuss issues in using
iBistro related to the technical and organizational aspects of the system.

STANDARDIZATION OF INFRASTRUCTURES

iBistro suggests a standardized infrastructure which is based on JINI services in
the implementation. This architecture serves as a middleware and is based on
existing technology. The infrastructure connects a variety of devices, including
‘ubiquitous’ devices in an active room. However, to include recent and upcom-
ing technology, knowledge sources might serve as a wrapper for those devices or
communication media to interface the iBistro system. This could be useful for
e.g. Bluetooth devices.

To be usable in a broader context, the iBistro infrastructure and software ar-
chitecture is to be made available throughout an organization as a whole.

CSCW systems in general have to be accepted by all members of the user
group. Different users have differing preferences on tools, they have different ex-
pectations, different value-oriented attitudes, and a different background (for in-
stance company, professional context, or education). Moreover, groupware sys-
tems have to consider various actual roles in a workgroup.

8.2 e Related and Ongoing Research 151

8.1.2

8.2

SOCIAL, ORGANIZATIONAL, & MANAGEMENT IMPEDIMENTS

iBistro aims at capturing as much information and knowledge within an orga-
nization as possible. In iBistro, a variety of knowledge sources are using many
different automated and semi-automated approaches to capture information in
informal meetings and from other sources. As such knowledge sources are con-
tinuously and dynamically added to the system, users will likely lose the per-
ception of what information is actually captured and may get the feeling of being
monitored and restricted in their privacy. This can result in resistance from users,
clients, and from the works council, if applicable.

Social, security, and privacy issues have to be addressed prior to rolling the
system out to a professional environment. Privacy issues are currently under
investigation in the GSE research group at the Chair for Applied Software En-
gineering with two specific focuses: First, user models and user profiles will be
developed to allow users to view and alter the way any information related to
their person is used. (This is done in the “Smart Aquarium” sub-project shown
in Table 8.1.) Second, the information should be encrypted. A public key method
could be used to encrypt any event (or data item) using a freely available public
key. Only components (knowledge sources and views) authorized by the user
receive the suitable private key to decrypt and therefore use or propagate the
knowledge.

Beyond the social, security, and privacy issues which may result in resistance
from users, resistance from management is expected due to the introduction of
new and risky to use technology. Given sufficient experience with the system and
approaches in an academic environment, the system promises to address upcom-
ing issues in distributed projects. If the current trend to reduce development cost
and time to market by offshore software development continues, the system by
addressing many of the key issues would experience low resistance from manage-
ment.

On the organizational side, however, specific users would have to be assigned
to fulfill specific tasks in the iBistro system, such as the meeting champion and
so on. This potentially affects organizational culture and the human resources
department.

RELATED AND ONGOING RESEARCH

The Global Software Engineering (GSE) group an the chair for applied software
engineering at Technische Universitit Miinchen works towards understanding
the major collaboration issues in distributed and global software development.
The group develops integrated tools and guidance for supporting the collabora-
tion of globally distributed teams and evaluates these methods and tools in an

152

Chapter 8 e Discussion

8.2.1

8.2.2

8.2.3

empirical environment.

Effective solutions will include a combination of technical, social, method-
ological factors. Hence, the GSE group adopts an empirical approach using
around a distributed software engineering project course as an experimental en-
vironment.

Infra- Col- Knowledge Artifact App- | HCI
Sub-Project structure | laboration | Management | Management | liance
iBistro v v v v
ABX V4
ADReaM v v
REQuest v/ V4
Smart Aquarium v v v

Table 8.1: Related and ongoing research in the GSE group.

ABX: GROUP AWARENESS

ABX focuses on improving awareness across sites and project participants. ABX
collects events generated by development and communication tools and then
uses user-specified interests and system rules to determine which events may be
interesting for a specific user.

ADREAM: DISTRIBUTED MODELING

Augmented Distributed Real-time Modeling (ADReaM) focuses on providing an
Augmented Reality environment for supporting the real time collaboration of
small groups of developers over UML and QOC models. Developers use aug-
mented reality to manipulate and annotate a virtual model on a table top and to
collaborate from different sites.

REQUEST: RATIONALE USE IN DISTRIBUTED SOFTWARE ENGI-
NEERING

Rationale-based Use Case Specification (REQuest) focuses on capturing and lever-
aging off explicit decision making knowledge during requirements specification.

Participants write use cases using a web-based collaborative tool, and model

questions, issues, challenges, and justifications using QOC matrices.

8.3 @ Outlook and Future Work 153

8.2.4

8.3

8.3.1

SMART AQUARIUM: USER MODELLING

The “smart aquarium” project focuses on the Human-Computer-Interaction in
a context-aware environment. With help of an rule-based framework, the end
users are given the control over such an environment and can build customized
context-aware applications without programming skills.

OUTLOOK AND FUTURE WORK

DOMAIN EXPERT KNOWLEDGE AND INTELLIGENT SUPPORT

With techniques from intelligent tutoring systems (ITS) and computer supported
collaborative learning (CSCL) systems we can get a learning environment with
many facilities for supporting work and learning processes: the means for this
encompassing support are the use of student models and the explicit represen-
tation of expert knowledge in the problem domain (in our case software engi-
neering). Student models enable us to address one of the problems described in
the introduction, that is the inability to find stakeholders quickly. With a combi-
nation of self-assessment from the student’s side and diagnosis of the student’s
problem solving behavior we can get a representation of the student’s capabili-
ties, expertise and weaknesses, that is a student model. This can be used to help
the students finding stakeholders and experts in certain areas much more quickly,
just by requesting help from the system to get a recommendation which person
should be contacted. For example a student in the software engineering course,
whose task is the implementation of a subsystem, runs into problems with the
design the team planned. At that moment he needs the help of a design expert
in the team. Based on self-assessment of the students and on diagnosis of the
previous work, iBistro could recommend a team member meeting the criteria
the other student asks for. The process for finding specific stakeholders or roles
is very similar to that in Opportunistic Group Formation [Ikeda et al., 1997], a
well-known procedure in the field of computer supported collaborative learning.
With the explicit representation of expert domain knowledge (here with the topic
of software engineering, like process models, rationale, design, and its refactor-
ing) the learning environment iBistro may also provide intelligent support on its
own, if a human expert is not available (due to asynchronous work or different
time zones). The fundament of that expert knowledge is the definition of an on-
tology of the domain, which defines all the important terms and relations of the
expert domain. We plan to adapt an authoring tool for the definition of con-
cept maps and ontologies. For the user-interface of the artificial domain expert
we propose the technique of synthetic interviews and synthetic agents [Johnson,
1999], that provide an artificial anthropomorphic partner for the human group
members.

154

Appendix 8 e Discussion

8.3.2

FUTURE STUDIES

Our major concern regarding future studies are extendability to larger/ different
populations and repeatability. One could plan to extend the survey to a group
of students at Technische Universitit Miinchen (TUM). The main interest would
be to assess the comparability of professionals (consultants) and master students.
This idea is motivated by the fact that samples for early tool evaluation and em-
pirical software engineering are found much easier at universities than in indus-
try. Moreover, universities provide a suitable environment for prototype and tool
development in many aspects. However, one typical allegation, especially from
industry, is that students are not comparable to professionals for several reasons
(not working exclusively for one project, no payment, less experienced, loose or-
ganizational ties, ...). Our goal for a follow-up survey is to identify and assess
the differences between professional consultants (as investigated in this study)
and students. If feasible, we aim at defining an environment that allows for
professional-style software development at universities (for instance software de-
velopment internships with ‘real’ client interaction).

APPENDIX A

RESEARCH MATERIAL

A.1 INTERVIEW GUIDE

156 Appendix A e Research Material

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

Einfiihrung

Im Rahmen einer Studie zu Kommunikationsstrukturen in
Softwareentwicklungsprojekten méchten wir die
Kommunikationsmuster in den Projekten ImmoFin-Entscheidung und
ImmoFin-Neugeschéft anhand dieses Fragebogens erheben.

Ziel ist es, den EinfluB z.B. von Kommunikationsformen (Email,
Meetings etc.), Kommunikationspartnern (innerhalb und auBerhalb
des eigenen Teams) auf die Effektivitat und Effizienz der
Softwareentwicklung in den genannten Projekten zu untersuchen.

Alle Fragen beziehen sich auf den gesamten Zeitraum, in dem der/die
Befragte fir die genannten Projekte gearbeitet hat.

Alle Angaben werden vertraulich und anonym behandelt!

1-1 18.08.02

Figure A.1: Interview guide page 1

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

1. Kommunikationsformen
a) Welche Kommunikationsformen hast du wie oft genutzt ?
b) Empfindest du die Haufigkeit, mit der du die jeweilige Kommunikationsform genutzt hast, als genau richtig, zu selten oder zu héufig ?
c) Wie beurteilst du die jeweilige Kommunikationsform hinsichtlich ihrer Effektivitat, Probleme zu l6sen (in Bezug auf das Projekt KRIBS-
Baufi und die Arbeit in deinem Team)?

Kc ikati m_ | a) Haufig b) Soll c) Effektivitat
Sehr haufig Eher nie u genau | zu Sehr Effektiv | Wenig | Kontrapro | unbekannt
haufig selten selten richtig haufig effektiv effektiv duktiv.

Email

Telefon

Am Arbeitsplatz
Status- / Teammeeting
Arbeitsmeetings zu
bestimmten Themen
Adhoc-Arbeitsmeetings
Statusbericht

Offene Punkte Listen
0.4.

“Kaffeemaschine”,
Gang, etc.
Mittagessen
SIR-Datenbank
Outlook KXDatenbank
Andere, namlich:

2-2 18.08.02

Figure A.2: Interview guide page 2

A.1 e Interview guide

157

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

2. Teamexterne Kommunikation

Von deiner gesamten Kommunikation, wie héufig hast du mit Gruppen, Teams, Personen auBerhalb deines eigenen Teams kommuniziert ?

Anteil teamexterne
Kommunikation

® I | O O

O

Anteil teamexterne
Kommunikation

@ Nurintern

3-3

O Vorwiegend intern O gleichmaRig

Q Vorwiegend extern

18.08.02

O Nur extern

Figure A.3: Interview guide page 3

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

3. Fragestellungen / Problembereiche teamintern

a) Bei der teaminternen Kommunikation: Welche Fragestellungen nahmen welchen Anteil ein ?
b) Wie gut konnte der genannte Problembereich rein teamintern (ohne Absprachen mit Mitarbeitern auBerhalb des eigenen Teams) gelést

werden ?

(,sehr gut“ in der ersten Zeile bedeutet bspw., daB3 z.B. technische Fragestellungen so gut wie immer innerhalb des Teams, also ohne
Hinzuziehung des Architekturteams, geldst werden konnten.)

Int eich a) Anteil b) T ne Losung
Sehr hoch Eher Gleich | Sehr gut Weniger | Schlecht/ | unbekannt
hoch niedrig | null gut gut gar nicht
Technische Fragestellungen
Beispiel: ,wie funktioniert der Codesloader?*
Funktionale oder fachliche Fragestellungen
Beispiel: ,sollen / missen die Daten bei einer bestimmten Aktion
gespeichert werden oder nicht?“
Aufgabenverteilung / Organisation
Beispiel:
» Wer macht wann was?
» Wer macht die Abstimmung mit dem Fachbereich?
» Wer stellt die Zeitplanung auf?
4-4 18.08.02

Figure A.4: Interview guide page 4

158 Appendix A e Research Material

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

Inhaltsbereich a) Anteil b) T i ne Losung
Sehr hoch Eher Gleich | Sehr gut Weniger | Schlecht/ | unbekannt
hoch niedrig | null gut gut gar nicht

Wertbezogene Fragestellungen (grundlegende Fragestellungen zu
Themen wie Arbeits- und Vorgehensweise, Verwendung bzw.
Nichtverwendung bestimmter Tools, zwischenmenschliche ,Do’s and
Dont’ts*) Beispiel:

» Warum benétigen wir ein Detailed Design vor der
Implementierung?
Warum missen alle Teammitglieder in einem Raum sitzen?
Warum ist ein wochentlicher Statusreport notwendig?
Inwieweit kimmere ich mich um Dinge, die nicht in meinem
direkten Aufgabenbereich liegen?

YV Vv

Schnittstellenabstimmung (Fragestellungen technischer Art)
Beispiel:

> Ubergabestruktur

» Aufrufparameter
» Aktionscodes

Andere, namlich:

5-5 18.08.02

Figure A.5: Interview guide page 5

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

4. Fragestellungen / Problembereiche teamextern

a) Bei der teamexternen Kommunikation: Welche Fragestellungen nahmen welchen Anteil ein ?
b) Wie gut konnte der genannte Problembereich nur teamextern (d.h. nur durch Absprache mit anderen Mitarbeitern, z.B. anderer Teams)

gelést werden ?

Inhaltsbereich a) Anteil b) Teamexterne Lésung
Sehr hoch Eher Gleich | Sehr gut Weniger | Schlecht/ | unbekannt
hoch niedrig | null gut gut gar nicht

Technische Fragestellungen
Beispiel: ,wie funktioniert der Codesloader ?“

Funktionale oder fachliche Fragestellungen
Beispiel: ,sollen / missen die Daten bei einer bestimmten Aktion
gespeichert werden oder nicht?“

Aufgabenverteilung / Organisation

Beispiel:
» Wer macht wann was?
» Wer macht die Abstimmung mit dem Fachbereich?
» Wer stellt die Zeitplanung auf?

6-6 18.08.02

Figure A.6: Interview guide page 6

A.1l e Interview guide

159

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

Inhaltsbereich a) Anteil b) Teamexterne Lésung
Sehr hoch Eher Gleich | Sehr gut Weniger | Schlecht/ | unbekannt
hoch niedrig | null gut gut gar nicht

Wertbezogene Fragestellungen (grundlegende Fragestellungen zu
Themen wie Arbeits- und Vorgehensweise, Verwendung bzw.
Nichtverwendung bestimmter Tools, zwischenmenschliche ,Do’s and
Don'ts”) Beispiel:

» Warum benétigen wir ein Detailed Design vor der

Implementierung?

» Warum miissen alle Teammitglieder in einem Raum sitzen?

» Warum ist ein wochentlicher Statusreport notwendig?

» Inwieweit kiimmere ich mich um Dinge, die nicht in meinem

direkten Aufgabenbereich liegen?

Schnittstellenabstimmung (Fragestellungen technischer Art)
Beispiel:

» Ubergabestruktur

» Aufrufparameter

» Aktionscodes
Andere, namlich:

7-7 18.08.02

Figure A.7: Interview guide page 7

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

5. Kommunikation mit anderen Teams / Personen

a) Wie haufig hast du mit den folgenden Teams/ Gruppen/ Personen kommuniziert ?
b) Empfindest du die Haufigkeit, mit der du mit dem jeweiligen Team kommuniziert hast, als genau richtig, zu selten oder zu haufig ?

c) Wie effektiv im Hinblick auf die zu I6senden Aufgaben beurteilst du die Kommunikation mit diesen Teams/Gruppen/Personen ?

K¢ ikati tner a) Haufigkeit [b) Soll

[c) Effektivitat

Sehr haufig Eher nie zu
haufig selten selten

genau
richtig

zu
haufig

Sehr Effektiv
effektiv

Wenig
effektiv

Kontra-
produktiv

unbekannt

Infrastruktur

Architektur Host

Architektur Server

Andere Implementierungs-
teams KRIBS-Baufi

Implementierungs-teams
KRIBS-Darlehen

Fachabteilung

Projektmanagement
HVBSystems

Projektmanagement
Accenture

Programm-Management

Engagement Partner

Andere, namlich:

8-8

18.08.02

Figure A.8: Interview guide page 8

160

Appendix A e Research Material

Fragebogen ,Kommunikationsstrukturen in einem Softwareentwicklungsprojekt*

6. Angaben zur Rolle und Aufgabenbereich

a) Bitte mache uns jetzt noch eine Angabe zu deinen Rollen (Mehrfachnennungen sind méglich) !

Bitte
ankreuzen

Teamleitung

Teammitglied

Projektmanagement

a) Bitte mache uns jetzt noch eine Angabe zu deinen Aufgabenbereichen (Mehrfachnennungen sind méglich) !

Bitte
ankreuzen

Fachkonzeption / fachliche
Abstimmung

Detailed Design Server

Detailed Design Host

Implementierung Server

Implementierung Host

Assembly Test

Systemtestvorbereitung

Systemtestbetreuung

Fixing Systemtest

Migration

Architektur

Admin (TA, etc.)

Teamleadfunktionen

Andere, namlich:

9-9

Vielen Dank, das wars!

18.08.02

Figure A.9: Interview guide page 9

APPENDIX B

ABBREVIATIONS AND GLOSSARY

162

Appendix B e Abbreviations and Glossary

B.1

ABBREVIATIONS

ATD Actuals To Date

API Application Programming Inter-
face

BB Blackboard

BBS Bulletin Board Services

CDS Collaborative Development Sys-
tem

CMM Capability Maturity Model

CR Change Request

DCBA Distributed Concurrent
Blackboard Architecture

DOM Document Object Model

DTD Data Type Definition

ETC Estimated To Complete

CSCL Computer-Supported Collabora-
tive Learning

CSCW Computer-Supported Cooperative
Work

GDT Geographically Dispersed Team

GSD Global Software Development

GSE Global Software Engineering

GUI Graphical User Interface

HCI Human-Computer Interface

IDE Integrated Development Environ-
ments

IRC Internet Relay Chat

ISDN Integrated Services Digital Net-
work

J2EE Java2 Enterprise Edition

J2SE Java2 Standard Edition

JDK Java Development Kit

JSDK Java Server Development Kit

JSP JavaServer Pages

JRE Java Runtime Evironment

JFC
JVM
JWS
KS
KX
LAN
MVC
NIS
NUS
PMW
QOC
QoS
RMI
ROI
RPC
SAX
SBBA
SDK
SIR
SMIL

SQL
SsL
TCP
TUM
UML
URI
URL
XML
XP
XSL
WAN

Java Foundation Classes

Java Virtual Machine

Java Web Server

Knowledge Source

Knowledge eXchange

Local Area Network
Model-View-Controller
Network Information Service
National University of Singapore
Project Management Workbenches
Question, Option, Criteria
Quality of Service

Remote Method Invocation
Return on Investment

Remote Procedure Call

Simple API for XML

Single BlackBoard Architecture
Servlet Development Kit

System Investigation Request

Synchronized Multimedia Integra-
tion Language

Structured Query Language
Secure Socket Layer
Transmission Control Protocol
Technische Universitit Miinchen
Unified Modelling Language
Uniform Remote Identifier
Uniform Remote Locator
Extensible Markup Language
eXtreme Programming
Extensible Stylesheet Language
Wide-Area Network

World Wide Web

B.2 e Glossary 163

B.2

GLOSSARY

Computer-Supported Cooperative Work.

The computer-supported cooperative work (CSCW) community has been addressing issues
of shared development of knowledge artifacts for many years. The community has at least one
annual conference in the United States. Groupware is sometimes used as a synonym for CSCW,
and Lotus Notes often appears to be the defining CSCW application — even though there are other
groupware products.

The term artifact-based collaboration is often used in association with CSCW technology
because the result of the activity is an artifact — for example, a document authored by many
people.

Recent developments in corporate intranets are likely to dramatically increasing the level
of interest in CSCW, as IP-based technologies replace or complement proprietary products like
Notes.

— See also shared [work]spaces.

Data Mining.

The process of discovering new valuable coherences, patterns, and trends through the anal-
ysis of large amounts of information using pattern-recognition as well as statistical and mathe-
matical methods (Erick Brethenoux, Gartner Group).

Information & Knowledge Mining.

Intellectual assets — especially in computer-supported resources — can be tapped through
information mining (or knowledge mining), which typically involves using technology to extract
(additional) value from those assets. Knowledge and information mining, however, is not just a
matter of technology. It often takes a combination of technology and marketing talents to extract
value from the intellectual assets of the company.

The process of information mining begins with finding and managing the right data sources.
The systems and marketing research department presides over an impressive array of informa-
tion feeds and repositories, from vast databases of trials of information (used to position the
company’s products) to data purchased from information vendors that cater to the pharmaceu-
ticals industry. Sources of competitive intelligence and general information about the healthcare
industry include an organization’s own sales force, news feeds, online search services and tradi-
tional library resources as well as Internet discussion groups and World Wide Web sites devoted
to specific diseases.

Intellectual Assets, Capital.

Intellectual assets and intellectual capital (also intangible assets and invisible assets) generally
refer to an organization’s recorded information (and, increasingly, human talent itself), and often
in particular to patents. The terms reflect the understanding that information is a growing part
of every company’s assets, and that such information is typically either inefficiently warehoused
or simply lost, especially in large, physically dispersed organizations.

Intellectual capital is becoming the corporate country’s most valuable asset and can be its
sharpest competitive weapon. The challenge is to find what you have and use it.

— See also corporate repositories, information mining, knowledge mapping.

164

Appendix B e Abbreviations and Glossary

Knowledge Acquisition.

Knowledge acquisition is the primary job function of a knowledge engineer, for instance a
meeting champion in the iBistro context. Knowledge acquisition traditionally consists of “the
reduction of a large body of knowledge to a precise set of facts and rules” and is associated with
expert systems technology (see Brian R. Gaines and Mildred L. G. Shaw, “Eliciting Knowledge and
Transferring It Effectively to a Knowledge-Based System”). Recently, these functions (and related
job description) seem to be making a transition from addressing specific project requirements to
meeting broad organizational objectives.

— See also knowledge engineers, knowledge base, and meeting champions.

Knowledge Base.

Knowledge base has traditionally referred to the data and “rules of thumb” produced by the
knowledge-acquisition and compilation phases of creating an expert system application. This
definition is now often broadened to include every imaginable corporate intellectual asset. “The
knowledge base is the absolute collection of all expertise, experience and knowledge of those
within any organization.”

Design Rationale.

Design rationale methods focus on modeling the justification and argumentation behind de-
cisions. The hypothesis is that rationale information is critical when changing a system, as many
defects are introduced due to lack of knowledge of the original rationale. Also, it has been found
that rational methods facilitate negotiation among different stakeholders by making underlying
arguments explicit.

Software Engineering.

Software Engineering is the process of developing quality software; it’s methods focus on
modeling the system under construction at different levels of abstraction. (See [Bruegge and
Dutoit, 1999; Bruegge and Dutoit, 2003].)

Structured Analysis.
Design is the simple and recursive process by which the designer refines a functional descrip-
tion of the problem into smaller subproblems. [Potts, 1996]

Knowledge.

Our perspective is that knowledge is information transformed into capabilities for effective
action. In effect, knowledge is action. In spite of the many different definitions of knowledge,
the common ground in almost every discussion of knowledge is that raw information in large
quantities does not by itself solve business problems, produce value, or enhance competitiveness.

Knowledge Management.

From the economic point of view, knowledge management is a strategy that turns an orga-
nization’s —intellectual assets — both recorded information and the talents of its members — into
greater productivity, new value, and increased competitiveness. It teaches corporations, from
managers to employees, how to produce and optimize skills as a collective entity.

B.2 e Glossary 165

Knowledge transfer.
Knowledge transfer is the tactical dimension of converting knowledge requirements into
working solutions.

Tacit vs. Explicit Knowledge.

Michael Polanyi in 1966 defined the distinction between explicit knowledge, which can be ar-
ticulated in formal language and transmitted among individuals, and tacit knowledge, personal
knowledge embedded in individual experience and involving such intangible factors as personal
belief, perspective, and values [Polanyi, 1966]. Polanyi’s distinction is mentioned frequently in
discussions of knowledge and knowledge management, and it is one of the key premises under-
lying assertions about the close connection between knowledge and action.

The basic problem, of course, is that tacit knowledge is rarely recorded and shared in business
organizations. .. even though tacit knowledge may be the real key to getting things done.

There are plenty of variations on this terminology, including Jeff Conklin’s comparable use
of informal knowledge and formal knowledge [Conklin, 1997].

Focal Knowledge.
Corporate Memory, Institutional Memory.

In practice, there may be little or no difference between corporate intellectual assets and
corporate memory. Intellectual assets, however, seem to connote existing information in explicit
form.

There is an increasing industrial interest in the capitalization of know-how of (geograph-
ically) dispersed groups of people in an organization. This know-how may relate to problem
solving expertise in functional disciplines (e.g., design, testing, production), experiences of hu-
man resources, and project experiences in terms of project management issues (e.g., social and
organizational aspects related to the project team), design technical issues (e.g., design rationale,
history of solution space explored, concurrent engineering techniques), and lessons learned. The
coherent integration of this dispersed know-how in a corporation is called corporate memory.

The use of a corporate memory is to enable concurrent engineering, to benefit from previ-
ous experiences to improve quality and efficiency of development/service efforts and to support
dynamic, opportunistic project management and coordination. For example, a corporate mem-
ory may serve (1) to enable and support a gradual change of the way people in an enterprise
work from a functional oriented discipline to a project-driven, cross-functional work; (2) to en-
able management of expertise available in an organization and to stimulate learning (through
expertise transfer, cross- project fertilizations, dynamic project teams, and distributed control);
and (3) to enable and support the formation of virtual corporations (temporal alliances among
enterprises based on key competence).

Object-Oriented Design.

Software design is the process by which a system is divided into a number of objects, each
of which stands for some concrete thing in the problem domain and with interfaces to other
objects [Potts, 1996]. See — Design.

Organizational Memory.
See — Corporate Memory, Institutional Memory.

166

Appendix B e Abbreviations and Glossary

Ontology.

An Ontology is an explicit notation of a conceptualization. The term is borrowed from phi-
losophy, where an Ontology is a systematic account of Existence. For Al systems, what “exists” is
that which can be representated.

Virtual Team.

A Virtual Team — also known as a Geographically Dispersed Team (GDT) — is a group of
individuals who work across time, space, and organizational boundaries with links strengthened
by webs of communication technology. They have complementary skills and are committed to
a common purpose, have interdependent performance goals, and share an approach to work for
which they hold themselves mutually accountable. Geographically dispersed teams allow organi-
zations to hire and retain the best people regardless of location. A virtual team does not always
mean teleworkers. Teleworkers are defined as individuals who work from home. Many virtual
teams in today’s organizations consist of employees both working at home and small groups in
the office but in different geographic locations.

Knowledge Representation.

Knowledge representation — explicit specification of “knowledge objects” and relationships
among those objects — takes many forms, with variations in emphasis and major variations in
formalisms.

Knowledge representation allows computers to reconfigure and reuse information that they
store in ways not narrowly prespecified in advance.

Concept mapping.
Seems to be rooted primarily in educational techniques for improving understanding, reten-
tion, and as an aid to writing.

A concept map is a picture of the ideas or topics in the information and the ways these ideas
or topics are related to each other. It is a visual summary that shows the structure of the material
the writer will describe.

Semantic networks.

Are often closely associated with detailed analysis of texts and networks of ideas. One of the
important ways they are distinguished from hypertext systems is their support of semantic typing
of links — for example, the relationship between "murder" and “death” might be described as “is
a cause of” The inverse relationship might be expressed as "is caused by."

Semantic networks are a technique for representing knowledge. As with other networks, they
consist of nodes with links between them. The nodes in a semantic network represent concepts.
A concept is an abstract class, or set, whose members are things that are grouped together because
they share common features or properties. The "things" are called instances of the concept. For
example, Femur is a concept representing the set of all femurs in the world; John Smith’s left
femur is an instance of the concept Femur.

Links in the network represent relations between concepts. Links are labeled to indicate
which relation they represent. Links are paired to represent a relation and its inverse relation. For
example, the concept Femur is related to the concept Upper Leg with the relation has-location.
The inverse of has-location is the relation location-of, which relates Upper Leg to Femur.

Hypertext.

Known to most people these days by its implementation in the World Wide Web, is some-
times described as a semantic network with [substantial] content at the nodes. But the content
itself — the traditional document model — seems to be the driving organizational force, not the

B.2 e Glossary 167

network of links. In most hypertext documents, the links are not semantically typed, although
they are typed at times according to the medium of the object displayed by traversing the link.

— See also Distributed Hypertext Systems.
Information modeling.

Information modeling nterests itself in precise specification of the meaning in a text, and in
making relationships of meaning explicit — often with the objective of rapid and accurate devel-
opment of new software applications for business requirements.

Some of the essence of information modeling is expressed in the proceedings of a recent
workshop on object-oriented systems:

How do we: elicit requirements from domain experts, formulate a complete and precise
specification understandable to both domain experts and developers, and refine it using existing
(or possible) implementation mechanisms.

Fuzzy terminology results in fuzzy thinking: precise and explicit definitions are essential for
understanding and reuse. ..

Conceptual indexing.

Conceptual (or "back-of-the-book") indexes are rarely discussed in the same breath as hyper-
text, conceptual maps, and semantic networks — perhaps because indexers themselves sometimes
relish the aura of “black art” surrounding indexing — but the connection is fundamental. Con-
ceptual indexes traditionally map key ideas and objects in a single work:

An index is a structured sequence — resulting from a thorough and complete analysis of
text — of synthesized access points to all the information contained in the text. The structured
arrangement of the index enables users to locate information efficiently. [p. 4]

Metadata.

is simply information added to a document (or a smaller unit of information) that makes it
easier to access and re-use that content. It’s also referred to as simply "data about data." You’ll
find metadata in many different forms, including key words in a software help system, the doc-
ument profile information attached to documents in a document management system, and the
classification information in a library card catalog.

There are, of course, distinctions in how these various disciplines and technologies imple-
ment metadata — in substance as well as in formalisms. But the value of metadata for critical
information is widely accepted as a basic element of knowledge management implementations.
In fact, the term metadata has become so popular that it recently merited its own IEEE confer-
ence.

There is a strong interest in metadata in the geographic information systems (GIS) community
— the one concerned with maps, not the technology for graphic representation of the location of
corporate intellectual assets. Claritech’s Elise Yoder observes that the “motherlist” for current
work on Metadata seems to be “Metadata Resources”

168 Appendix B e Abbreviations and Glossary

BIBLIOGRAPHY

[Al-Rawas and Easterbrook, 1996] Al-Rawas, A. and Easterbrook, S. (1996).
Communication problems in requirements engineering: A field study. In
Proc. First Westminster Conf. Professional Awareness in Software Engineering,
Univ. Westminster, London.

[Andind K. Dey, 2001] Andind K. Dey, Daniel Salber, G. D. A. (2001). A concep-
tual framework and a toolkit for supporting the rapid prototyping of context-
aware applications. Human-Computer Interaction, 16.

[Anthes, 2003] Anthes, G. H. (2003). Smart rooms: It assisted workspaces can
boost design productivity. Technical report, Computerworld.

[Arlow et al., 1999] Arlow, J., Emmerich, W., and Quinn, J. (1999). Literate
modelling — capturing business knowledge with the uml. In J. Bezivin and
P.-A. Muller (eds) The Unified Modeling Language: «UML ’98»: Beyond the
Notation, volume 1618, pages 189—199, Mulhouse, France. Springer Verlag.

[Bass et al., 1998] Bass, L., Clements, P., and Kazman, R., editors (1998). Soft-
ware Architecture in Practice. Addision Wesley Longman, Inc., Upper Saddle
River, NJ.

[Beck, 1999] Beck, K. (1999). Extreme Programming Explained: Embrace
Change. Addison-Wesley Publishing Corp.

[BIS, 2003] BIS (2003). The new basel capital accord. Technical report, Basel
Committee on Banking Supervision.

[Blackburn et al., 2000] Blackburn, J., Scudder, G., and Wassenhove, L. N. V.
(2000). Concurrent software development. In Communications of the ACM,
volume 43, pages 200-214. ACM Press.

[Bly et al., 1993] Bly, S., Harrison, S., and Irwin, S. (1993). Media spaces: Bring-
ing people together in a video, audio, and computing environment. In Com-
munications of the ACM, volume 36(1), pages 28—47.

170

Appendix B e Bibliography

[Boehm et al., 1998] Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and
Madachy, R. (1998). Using the WinWin spiral model: A case study. In IEEE
Computer. University of Southern California.

[Booch, 2000] Booch, G. (2000). The software development team. Technical
report, Rational Software.

[Borghoff and Schlichter, 2000] Borghoff, U. M. and Schlichter,]J. H. (2000).
Computer-Supported Cooperative Work: Introduction to Distributed Applica-
tions. Springer. also available in german.

[Boulila et al., 2003] Boulila, N., Bruegge, B., and Dutoit, A. H. (2003). D-
meeting: an object-oriented framework for supporting distributed modeling
of software. In Proceedings of ICSE 2003, Portland, Oregon.

[Braun et al., 2001a] Braun, A., Bruegge, B., and Dutoit, A. H. (2001a). Sup-
porting informal requirements meetings. In 7th International Workshop on
Requirements Engineering: Foundation for Software Quality. (REFSQ’2001),
volume 7, Interlaken, Switzerland.

[Braun et al., 2003] Braun, A., Bruegge, B., and Dutoit, A. H. (2003). A soft-
ware architecture for knowledge acquisition and retrieval in global software
development. In Proceedings of ICSE 2003, Portland, Oregon.

[Braun et al., 2001b] Braun, A., Bruegge, B., Dutoit, A. H., and Harrer, A. G.
(2001b). iBistro: A learning environment for knowledge construction in dis-
tributed software engineering courses. In Proceedings of the International Con-
ference on Computers in Education (ICCE’2001), Seoul, Korea.

[Braun et al., 2002a] Braun, A., Bruegge, B., Dutoit, A. H., and Harrer, A. G.
(2002a). iBistro: A learning environment for knowledge construction in dis-
tributed software engineering courses. In Proceedings of APSEC 2002; Ex-
tended and updated version of [Braun et al., 2001b], Queensland, Australia.

[Braun and Harrer, 2000] Braun, A. and Harrer, A. G. (2000). A framework for
internet-based distributed learning. In Proceedings of the International Con-
ference on Computers in Education, volume 6, Taipei, Taiwan.

[Braun et al., 2002b] Braun, A., Mang, E, Behr, W., Bruegge, B., and Dutoit,
A. H. (2002b). A communication field study in a large, team-based consulting
project. Submitted to the Proceedings of APSEC 2002.

[Brody et al., 1999] Brody, A. B., Dempski, K. L., Kaplan, J. E., Kurth, S. W,,
Liongosari, E. S., and Swaminathan, K. S. (1999). Integrating disperate know-
ledge sources. In Proc. of the Second International Conference on The Practical
Application of Knowledge Management (PAKeM °99), London. Accenture.

171

[Broekstra et al., 2002] Broekstra, J., Klein, M., Decker, S., Fensel, D., van
Harmelen, F., and Horrocks, I. (2002). Enabling knowledge representation
on the web by extending rdf schema. In Computer Networks, volume 39(5),
pages 609—634. Elsevier Science B.V.

[Brooks, 1986] Brooks, F. P. (1986). No silver bullet. In H.J.Kugler, editor, Infor-
mation Processing 1986: Proceedings of the IFIP Tenth World Computing Con-
ference, pages 1069—1076, Amsterdam, The Netherlands.

[Brooks, 1995] Brooks, E. P. (1995). The Mythical Man-month. Addison Wesley,
San Diego, 2nd. edition.

[Bruegge and Dutoit, 1999] Bruegge, B. and Dutoit, A. H. (1999). Object-
Oriented Software Engineering: Conquering Complex and Changing Systems.
Prentice Hall, Upper Saddle River, NJ, 1st. edition.

[Bruegge and Dutoit, 2003] Bruegge, B. and Dutoit, A. H. (2003). Object-
Oriented Software Engineering: Conquering Complex and Changing Systems.
Prentice Hall, Upper Saddle River, NJ, 2nd. edition.

[Bruegge et al., 1999] Bruegge, B., Dutoit, A. H., Kobylinski, R., and Teubner, G.
(1999). Transatlantic software development: Teaching distributed software
engineering. In IEEE, Singapore. IEEE.

[Burbeck, 1987] Burbeck, S. (1987). Application programming in Smalltalk-80:
How to use Model-View-Controller (MVC).

[Buschmann et al., 1996] Buschmann, F.,, Meunier, R., Rohnert, H., Sommerlad,
P, and Stal, M., editors (1996). Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley & Sons Ltd., Chichester, West Sussex, England.

[Buxton et al., 1997] Buxton, W., Sellen, A., and Sheasby, M. (1997). Interfaces
for multiparty videoconferences, Video-mediated communication. Lawrence
Erlbaum Associates.

[Carmel, 1999] Carmel, E. (1999). Global Software Teams: Collaborating Across
Borders and Time Zones. Prentice Hall, Upper Saddle River, NJ.

[Carver and Lesser, 1992] Carver, N. and Lesser, V. (1992). The evolution of
blackboard control architectures. Technical report, CMPSCI Technical Re-
port 92-71.

[Conklin, 1997] Conklin, E. J. (1997). Designing organizational memory: Pre-
serving intellectual assets in a knowledge economy. Glebe Creek, MD:
CogNexus Institute.

172

Appendix B e Bibliography

[Conklin and Begeman, 1988] Conklin, J. and Begeman, M. (1988). gIBIS: A hy-
pertext tool for exploratory policy discussion. In ACM Transactions on Office
Information Systems, volume 6, pages 303-331.

[Cranefield and Purvis, 1999] Cranefield, S. and Purvis, M. (1999). Uml as an
ontology modelling language. In Proceedings of the Workshop on Intelligent In-
formation Integration, volume 16. International Joint Conference on Artificial
Intelligence (IJCAI-99).

[Curtis et al., 1988] Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of
the software design process for large systems. In Communications of the ACM,
volume 31(11).

[Damian et al., 2000] Damian, D., Eberlein, A., Shaw, M., and Gaines, B. (2000).
Using different communication media in requirements negotiation. In IEEE
Software, pages 28-36.

[DeMarco and Lister, 1979] DeMarco, T. and Lister, T. (1979). Peopleware: Pro-
ductive Projects and Teams. Dorset House, San Diego, 1st. edition.

[Dourish, 1996] Dourish, P. (1996). Open Implementation and Flexibility in
CSCW Toolkits. PhD thesis, Departement of Computer Science, University
College London.

[Drogoul, 2001] Drogoul, A. (2001). Dess ia - intelligence artificielle distribuée.
Technical report, Le Laboratoire d’Informatique de Paris 6.

[Dutoit and Bruegge, 1998] Dutoit, A. and Bruegge, B. (1998). Communication
metrics for software development. In IEEE Transactions on Software Engineer-
ing, volume 24(8).

[Dutoit and Paech, 2001a] Dutoit, A. H. and Paech, B. (2001a). Developing
guidance and tool support for use case-based specification. In Proceedings

of the 7th International Workshop on Requirements Engineering: Foundation for
Software Quality. (REFSQ’2001), volume 7, Interlaken, Switzerland.

[Dutoit and Paech, 2001b] Dutoit, A. H. and Paech, B. (2001b). Rationale man-
agement in software engineering. In Chang, S., editor, Handbook on Software
Engineering and Knowledge Engineering, chapter 1.2. World Scientific Publish-
ing, River Edge, NJ, USA.

[Easterbrook et al., 1994] Easterbrook, S., Finkelstein, A., Kramer, J., and Nu-
seibeh, B. (1994). Co-ordinating distributed viewpoints: the anatomy of a
consistency check. Technical report, Department of Computing, Imperial
College, London, UK.

173

[Ellis et al., 1991] Ellis, C. A., Gibbs, S. J., and Rein, G. L. (1991). Groupware —
some issues and experiences. In Communications of the ACM, volume 34(1),
pages 38-58.

[Erman et al., 1980] Erman, L. D., Hayes-Roth, E, Lesser, V. R., and Reddy, D. R.
(1980). The hearsay-ii speech-understanding system: Integrating knowledge
to resolve uncertainty. In ACM Computing Surveys, volume 12 (2), pages 213—
253.

[Fischer et al., 2002] Fischer, M., Hanrahan, P., Kunz, J., and Winograd, T.
(2002). Cife interactive information workspace and cife iroom to go. Techni-
cal report, Stanford University.

[Forgy and McDermott, 1977] Forgy, C. and McDermott, J. P. (1977). Ops, a
domain-independent production system language. International Joint Confer-
ence on Artificial Intelligence (IJCAI-77), pages 933-939.

[Fox et al., 2000] Fox, A., Johanson, B., Hanrahan, P., and Winograd, T. (2000).
Integrating information appliances into an interactive workspace. In IEEE
Information Appliances.

[Friedrichs, 1984] Friedrichs, J., editor (1984). Methoden empirischer Sozial-
forschung. Westdeutscher Verlag.

[Fuchs et al., 1978] Fuchs, W., Klima, R., Lautmann, R., Rammstedt, O., and
Wienold, H., editors (1978). Lexikon zur Soziologie. Westdeutscher Verlag,
2nd edition.

[Gordon, 1999] Gordon, J. L. (1999). Creating knowledge maps by exploiting
dependent relationships. Technical report, Applied Knowledge Research In-
stitute, Blackburn College, Feilden Street, Blackburn, England.

[Grady and Caswell, 1987] Grady, R. B. and Caswell, D. L., editors (1987). Soft-
ware Metrics: Establishing a Company-wide Program. Prentice Hall.

[Green, 2002] Green, D. (2002). The J2EE™ tutorial.

[Grinter et al., 1999] Grinter, R., Herbsleb, J., and Perry, D. (1999). The geogra-
phy of coordination: Dealing with distance in r& d work. In Communications
of the ACM.

[Gruber, 1992] Gruber, T. R. (1992). Technical report ksl 92-71: A transla-
tion approach to portable ontology specifications. Technical report, Know-
ledge Systems Laboratory, Computer Science Department, Stanford Univer-
sity, Stanford, California 94305.

174

Appendix B e Bibliography

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontol-
ogy specifications. In Knowledge Acquisition, volume 5(2).

[Grudin, 1994] Grudin, J. (1994). Cscw: History and focus. IEEE Computer,
27(5):16-19.

[Guba and Lincoln, 1985] Guba, E. and Lincoln, Y., editors (1985). Naturalistic
Inquiry. Sage Publications.

[Henderson-Sellers, 1996] Henderson-Sellers, B., editor (1996). Object-Oriented
Software Metrics. Prentice Hall.

[Hengstenberg, 2001] Hengstenberg, O. (2001). Video-based capture of ratio-
nale information in informal meetings. Diploma thesis.

[Hughes, 1999] Hughes, L. (1999). Magic wall.

[Ikeda et al., 1997] Ikeda, M., Shogo, G., and Mizoguchi, R. (1997). Oppor-
tunistic group formation. In Proceedings of AI-ED 1997, pages 167—174, Kobe,
Japan.

[Johnson, 1999] Johnson, L., editor (1999). Instructional Uses of Synthetic
Agents, LeMans, France.

[Johnson, 1998] Johnson, P. A. (1998). Nt 5.0 is too much of a good thing. Tech-
nical report, LanTimes.

[Kaufman et al., 2002] Kaufman, N., Pullara, J., Davenport, M. G., and Thomp-
son, C. (2002). Insights from the events of september 11th: Is your organisa-
tion prepared? Technical report, PriceWaterhouseCoopers.

[Koch, 2003] Koch, M. (2003). Communixx.de: Community. Technical report,
TU-Miinchen.

[Kotlarsky, 2001] Kotlarsky, J. (2001). Developing internet-based integrated ar-
chitecture for managing globally distributed software development projects.
Technical report, Department of Decision & Information Sciences, Erasmus
University, Rotterdam, The Netherlands.

[Kotonya and Sommerville, 1996] Kotonya, G. and Sommerville, I. (1996). Re-
quirements engineering with viewpoints. In BCS/IEE Software Engineering
Journal, volume 11(1), pages 5-18.

[Kraut and Streeter, 1995] Kraut, R. and Streeter, L. (1995). Coordination in
software development. In Communications of the ACM, volume 38(3).

[Kruchten, 2000] Kruchten, P. (2000). The Rational Unified Process: An Intro-
duction. Addison-Wesley Publishing Corp.

175

[Lindvall et al., 2002] Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K.,
Shull, E, Tesoriero, R., Williams, L., and Zelkowitz, M. (2002). Empirical find-
ings in agile methods. Proceedings Extreme Programming and Agile Methods -
XP/Agile Universe 2002: Second XP Universe and First Agile Universe Confer-
ence, 2418:197-207.

[Lyons, 1991] Lyons, T. (1991). Network Computing System Tutorial. Prentice
Hall, Englewood Cliffs, NJ.

[MacLean et al., 1996] MacLean, A., Young, R. M., Bellotti, V. M., and Moran,
T. P. (1996). Questions, Options, and Criteria: Elements of Design Space Anal-
ysis, chapter 3, pages 53—106. Design Rationale: Concepts, Techniques, and
Use. Lawrence Erlbaum Associates, Hillsdale, N7, first edition.

[McManus, 1992] McManus, J. W. (1992). Design and Analysis Techniques for
Concurrent Blackboard Systems. PhD thesis, The College of William and Mary
in Virginia.

[Melnik, 2000] Melnik, S. (2000). Uml in rdf. Technical report, Stanford Uni-
versity.

[Moran et al., 1999] Moran, T., van Melle, B., and Saund, E. (1999). Walls
at Work — Physical and Electronic Walls in the Workplace, pages 191-208.
Deutsche Verlags Anstalt, Stuttgart.

[Moran and Dourish, 2001] Moran, T. P. and Dourish, P., editors (2001).
Context-Aware Computing, volume 16.

[MySQL, 2003] MySQL (2003). The mysql open source database website. Tech-
nical report, MySQL Organization.

[Nakanishi et al., 1999] Nakanishi, H., Yoshida, C., Nishimura, T., and Ishida, T.
(1999). Freewalk: A 3d virtual space for casual meetings. IEEE Micro.

[Nii, 1986a] Nii, H. P. (1986a). Part 1- blackboard systems: The blackboard
model of problem solving and the evolution of blackboard architectures. In
AI Magazine, volume 7(2), pages 38-53.

[Nii, 1986b] Nii, H. P. (1986b). Part 2— blackboard application systems and a
knowledge engineering perspective. In AI Magazine, volume 7(3), pages 82—
107.

[Nii et al., 1982] Nii, H. P, Feigenbaum, E., Anton, J., and Rockmore, A. J.
(1982). Signal-to-symbol transformation: Hasp/ slap case study. In AI Maga-
zine, volume 3(1), pages 23-35.

176

Appendix B e Bibliography

[Nikitsch, 2003] Nikitsch, E (2003). Design and implementation of a shared
knowledge repository for ibistro. Diploma thesis.

[OMG and Meta Group, 2000] OMG and Meta Group (2000). Meta data coali-
tion home page. Technical report, Object Management Group (OMG).

[Perlis et al., 1981] Perlis, A. J., Sayward, E, and Shaw, M., editors (1981). Soft-
ware Metrics: A Rigorous and Practical Approach. MIT Press.

[Picot et al., 1996] Picot, A., Reichwald, R., and Wigand, R. T. (1996). Grenzen-
lose Unternehmung. Gabler.

[PictureTel Corporation, 2001] PictureTel Corporation (2001). PictureTel
videoconferencing.

[Polanyi, 1966] Polanyi, M. (1966). The Tacit Dimension. Routledge & Kegan
Paul, London.

[Potts, 1996] Potts, C. (1996). Supporting Software Design: Integrating Design
Methods and Design Rationale, chapter 10, pages 295-321. Design Rationale:
Concepts, Techniques, and Use. Lawrence Erlbaum Associates, Hillsdale, NJ,
first edition.

[Pribilla et al., 1996] Pribilla, P., Reichwald, R., and Goecke, R. (1996). Telekom-
munikation im Management oder Startegien fiir den Globalen Wettbewerb.
Schiffer-Poeschel Verlag Stuttgart.

[Rheingold, 2000] Rheingold, H. (2000). The Virtual Community: Homesteading
on the Electronic Frontier. MIT Press.

[Rittel and Weber, 1973] Rittel, H. and Weber, M. (1973). Dilemmas in a general
theory of planning. In Policy Science, volume 4, pages 155-169.

[Rumbaugh et al., 1998] Rumbaugh, J., Jacobson, 1., and Booch, G. (1998). The
Unified Modeling Language Reference Manual. Addision Wesley Longman,
Inc., Reading Mass.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, 1., and Booch, G. (1999). The
Unified Modeling Language Reference Manual. Addison Wesley Longman, San
Diego.

[Saund, 1998] Saund, E. (1998). Image mosaicing and a diagrammatic user in-
terface for an office whiteboard scanner. Technical report, Xerox PARC.

[Seaman and Basili, 1998] Seaman, C. and Basili, V. (1998). Communication
and organization: An empirical study of discussion in inspection meetings.
In IEEE Transactions on Software Engineering, volume 24(6).

177

[Seaman, 1999] Seaman, C. B. (1999). Qualitative methods in empirical stud-
ies of software engineering. [EEE Transactions on Software Engineering,
25(4):557-572.

[Sellen, 1995] Sellen, A. (1995). Remote conversations: the effects of mediating
talk with technology. Human-Computer Interaction, 10(4):401-444.

[SkillSoft, 2002] SkillSoft (2002). Project management fundamentals. Technical
report, SkillSoft — The eLearning Solutions Company.

[SMART, 2000a] SMART (2000a). Hawkeye.
[SMART, 2000b] SMART (2000b). SMART Board.

[Smith et al., 1990] Smith, S. E, Ow, P. S., Muscettola, N., Potvin, J.-Y., and
Matthys, D. C. (1990). An integrated framework for generating and revis-
ing factory schedules. In Journal of the Operational Research Society, volume
41(6), page 539-552.

[SourceForge, 2001] SourceForge (2001). SourceForge: SourceForge services.
Technical report, SourceForge.

[Sun Microsystems, 1998] Sun Microsystems (1998). Java remote method invo-
cation specification, revision 1.50, jdk 1.2.

[Sun Microsystems, 2003] Sun Microsystems (2003). The javaspaces technology.

[Sutcliffe and Ryan, 1998] Sutcliffe, A. and Ryan, M. (1998). Experience with
scram, a scenario requirements analysis method. In Proc. of the 3rd Interna-
tional Conference on Requirements Engineering, pages 164—171.

[Tanenbaum, 2001] Tanenbaum, A. S. (2001). Modern Operating Systems. Pren-
tice Hall, 2nd. edition.

[Taylor and Bogdan, 1984] Taylor, S. and Bogdan, R. (1984). Introduction to
Qualitative Research Methods. John Wiley and Sons, New York.

[Teufel et al., 1995] Teufel, S., Sauter, C., and Mihlherr, T. (1995). Computerun-
terstiitzung fiir die Gruppenarbeit. ~Addison-Wesley Publishing Company,
Bonn/ Paris.

[W3C, 1998a] W3C (1998a). SMIL. Technical report, World Wide Web Con-
sortium.

[W3C, 1998b] W3C (1998b). XML. Technical report, World Wide Web Con-
sortium.

178

Appendix B e Bibliography

[W3C, 1998c] W3C (1998c¢). XSL and XSLT. Technical report, World Wide Web
Consortium.

[Want et al., 1992] Want, R., Hopper, A., Falcao, V., and Gibbons, J. (1992). The
active badge location system. In ACM Transactions on Information Systems,
volume 10(1), pages 91-102.

[Weinberg, 2001] Weinberg, G. (2001). The Secrets of Consulting: A Guide to
Giving and Getting Advice Successfully. Dorset House Publishing Company,
Incorporated.

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. In Scien-
tific American, pages 66—75.

[Winograd, 2001] Winograd, T. (2001). Architectures for context. HCI Journal
Special Issue on Context-aware Computing, 16.

