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Abstract

A classical theorem by Erdős, Kleitman and Rothschild on the structure of
triangle-free graphs states that with high probability such graphs are bipar-
tite. Our first main result refines this theorem by investigating the structure
of the ’few’ triangle-free graphs which are not bipartite. We prove that with
high probability these graphs are bipartite up to a few vertices. Similar re-
sults hold if we replace triangle-free by K`+1-free and bipartite by `-partite.

In our second main result we examine the class of ε-regular graphs in the
context of the famous Regularity Lemma by Szemerédi. Whereas the case of
dense graphs is well understood, the application of the Regularity Lemma
for sparse random graphs still lacks an important keystone. This led to a
conjecture by Kohayakawa, Łuczak and Rödl, which is considered one of
the most important open problems in the theory of random graphs. The
conjecture states that a fixed subgraph H occurs with extremely high proba-
bility in sufficiently dense ε-regular graphs. We prove this conjecture for the
subgraphs H = K4 and H = K5.
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1
Introduction

The importance of graphs in theoretical computer science and discrete
mathematics cannot probably be overrated. It is needless to count, for in-
stance, the numerous algorithmic applications, where graphs play an es-
sential rôle. Many real-world structures naturally map to graphs, which ex-
plains the outstanding practical impact of graph theoretical results. And, of
course, besides their influence on many fields of computer science, graphs
hold an eminent place in discrete mathematics. Their importance as fun-
damental combinatorial structure is highlighted by the beautiful and deep
results which the research in this field has produced in great number.

An important branch of graph theory studies the structure of random
graphs, e.g., the well-known modelsGn,p orGn,m. Since the pioneering work
by Erdős and Renyi around 1960 a rich theory on this subject has been de-
veloped (for an account on the history of random graph theory we refer the
reader to the monographs [Bol85] and [JŁR00]). Random graph theory has
become an invaluable tool, e.g., in the construction of graphs with specific
properties, in average case analysis, and in the design of algorithms.

Already in the seminal paper [ER60] the occurrence of fixed subgraphs has
been studied, and today this problem is well-understood for Gn,p and Gn,m.
However, for certain applications these models do not suffice. Whereas clas-
sical random graph theory deals with the problem

What is the structure of a typical, i.e., random graph (with a given
density)?
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it might be necessary to focus on graphs with a given property P . Given
such a property P like, e.g., ’the graph is planar’ or ’the graph does not
contain a triangle’, we would like to answer the question

What is the structure of a typical graph (with a given density) that
satisfies property P?

Formally speaking, we draw a graph uniformly at random from the family
of all graphs which satisfy P . In the sequel we will refer to such random
graphs as structural random graphs. In comparison to the extensive literature
on Gn,p and Gn,m, there are only few results on structural random graphs.
This might be due to the fact that many tools from probability theory, which
are so successful in Gn,p and Gn,m, cannot a priori be applied to structural
random graphs. Note that structural random graphs are not defined by a se-
quence of elementary random experiments like choosing the edges in Gn,p.
Thus the underlying probability space tends to be rather difficult to capture.

In this thesis we will discuss problems concerning structural random graphs
where the analysis is based on direct counting of the graphs under consider-
ation. For one of our results this even leads to an order of magnitude of
the probabilities which could not be achieved using classical probabilistic
bounds. In an impressive way this shows the power of direct counting.

Hence, from a technical point of view, direct counting represents the thread
which interweaves this thesis. Our specific results deal with the occurrence
of complete subgraphs K` in random graphs.

For a graph G = (V,E) the clique number ω(G) := max{` ∈ N | K` ⊆ G},
i.e., the size of the largest complete subgraph, is a frequently studied struc-
tural parameter. It is thus natural to ask for the typical structure of a graph,
given a bound on ω(G). This subject will be treated in Chapter 3, where we
investigate random K`-free graphs. A classical result by Erdős, Kleitman and
Rothschild [EKR76] and its generalization by Kolaitis, Prömel and Roth-
schild [KPR87] state that random K`+1-free graphs are almost always `-
partite. We further refine these results by looking at the family of K`+1-free
graphs which are not `-partite. It turns out that this family of graphs exhibits
a distinct hierarchical structure.

Via a conjecture by Kohayakawa, Łuczak and Rödl [KŁR97] the research on
the evolution of random H-free graphs (i.e., the characterization of their
structure depending on the number of edges in the graph) is closely in-
terconnected to the structure of random ε-regular graphs. Consider a fixed
graph H with chromatic number χ(H). If H can be shown to occur with ex-
tremely small (so-called subexponentially small) probability as a subgraph
in a random ε-regular graphs, this implies that random H-free graphs are
(χ(H)− 1)-partite up to an arbitrarily small fraction of edges [Łuc00].
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But the implications of the aforementioned conjecture extend far beyond
the evolution of H-free graphs. Generally speaking, this conjecture repre-
sents the missing keystone for applying the famous Regularity Lemma by
Szemerédi [Sze76] to sparse random graphs. In the monograph [JŁR00] this
conjecture was therefore termed one of the most important open questions in the
theory of random graphs. In Chapter 4 we prove the two ‘smallest’ open cases
of this conjecture, namely, H = K4 and H = K5.

Outline of this thesis In Chapter 2 we clarify some notation. Since we
mostly employ standard terminology, the reader may prefer to consult this
part of the thesis only on demand.

In the subsequent two chapters we discuss the results sketched above.
Chapter 3 deals with the structure of typical K`-free graphs. Then in Chap-
ter 4 our results on the conjecture by Kohayakawa, Łuczak and Rödl are
presented. Both chapters contain a section on the background of our results
which is meant to provide the reader which is not familiar with the topic
with a brief, intuitive overview.





2
Preliminaries

Graphs Let G = (V,E) be a graph. We use the notation vG := |V | and
eG := |E|. A graph with vG = n and eG = m will be called an (n,m)-graph.

Γ(v) denotes the neighborhood of vertex v ∈ V . For sets of vertices S ⊆ V we
let Γ(S) :=

⋃
v∈S Γ(v) \ S. In general, Γi(S) denotes the ith neighborhood of a

set S ⊆ V , i.e., Γ0(S) = S and

Γi+1(S) = {v ∈ V \ [Γ0(S) ∪ . . . ∪ Γi(S)] | ∃x ∈ Γi(S), {x, v} ∈ E}

for i ≥ 0.

The density of the (bipartite) subgraph introduced between two disjoint ver-
tex sets A,B ⊆ V is given by

d(A,B) =
e(A,B)

|A| · |B|
,

where e(A,B) := |{{u, v} ∈ E | u ∈ A ∧ v ∈ B}| denotes the number
of edges between A and B. We will also use the abbreviation E(A,B) :=
{{u, v} ∈ E | u ∈ A ∧ v ∈ B}.

We introduce identifiers for certain types of graphs. The circle on n vertices
is given by Cn. The complete graph on n vertices is denoted by Kn. The
complete `-partite graphKp

` consists of ` partitions of p vertices such that all
edges between all pairs of partitions are present but there is no edge inside
the partitions.

For W ⊆ V let G[W ] denote the subgraph induced by W , i.e., G[W ] consists
of the vertex set W and the edge set

(
W
2

)
∩ E. In contrast to that we say that
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H = (V ′, E ′) is a weak subgraph if V ′ ⊆ V and E ′ ⊆ E. In this case write
H ⊆ G. If H 6⊆ G, we say that G is H-free.

For a graph G we let χ(G) denote the chromatic number of G.

By Gn,p we denote, the binomial random graph on n vertices, where each
edge occurs independently with probability p. Furthermore, let Gn,m be a
graph on n vertices and m edges drawn uniformly at random. We say that a
random graph satisfies a certain property asymptotically almost surely if this
property occurs with probability 1− o(1).

Miscellaneous With log n = log2 n we denote the logarithm to base 2. For
i ≥ 1 the iterated logarithm log(i)(n) is recursively defined by log(1)(n) =

log(n) and log(i+1)(n) = log(log(i)(n)).

Let nk := n!/(n− k)! = n(n− 1) . . . (n− k+ 1) denote the k-th falling factorial.
A binomial coefficient

(
n
k

)
may then be written as

(
n
k

)
= nk/k!.

For binomial coefficients we will often use the following inequality which
follows immediately from Vandermonde’s convolution:(

a

x

)(
b

y

)
≤
(
a+ b

x+ y

)
,

which is immediately clear due to combinatorial arguments (Instead of
choosing x elements from a set of cardinality a and then y elements from
a set of cardinality b, we pick in total x+ y from the union of both sets. This
leads to over-counting, since we do not have to choose exactly x elements
from a in this case.).

H(x) denotes the entropy function and is defined as

H(x) := −x log x− (1− x) log(1− x).

This function is used in the well known bound(
n

λn

)
≤ 2nH(λ).



3
Structure of K`-free graphs

3.1 Introduction

What is a random triangle-free graph? – In 1976 Erdős, Kleitman and Roth-
schild [EKR76] showed that if one conditions a random graphGn, 1

2
on being

triangle-free, then such a graph is almost always bipartite, i.e.,

Pr[ G bipartite | G = Gn, 1
2

is triangle-free ] = 1− o(1). (3.1)

Recall that the probability space of random graphs Gn, 1
2

corresponds to the
uniform distribution on the set of all graphs with n vertices.

While (3.1) surely answers the question of what the structure of a random
triangle-free graph is, it is also in some sense unsatisfactory, as, clearly, a
bipartite graph does not capture many interesting properties a triangle-free
graph might have. Consider, for instance, the famous result of Erdős [Erd59]
which shows that there exist graphs with high chromatic number and high
girth (size of the smallest cycle). Hence, in particular, triangle-free graphs
may have a high chromatic number instead of being bipartite.

In this chapter we thus investigate the structure of those triangle-free graphs
which are not bipartite. As it turns out, this class is surprisingly well-
structured. Let us call a graph G = (V,E) i-quasibipartite if and only if there
exist i vertices v1, . . . , vi ∈ V such that G[V \ {v1, . . . , vi}] is bipartite. Then
we prove

• almost all triangle-free graphs which are not bipartite are 1-quasibi-
partite,
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• almost all triangle-free graphs which are not bipartite or 1-quasibi-
partite are 2-quasibipartite,

and in general for all i ≥ 1

• almost all triangle-free graphs which are not i′-quasibipartite for i′ ≤ i
are i+ 1-quasibipartite.

We also show that similar results hold for the class of all graphs which do
not contain a clique K`+1. For these graphs a hierarchy of i-quasi-`-par-
tite graphs can be found, extending a result of Kolaitis, Prömel and Roth-
schild [KPR87].

The results presented in this chapter have appeared in [PSS02] and [PSS01].

Outline of this chapter In Section 3.2 we briefly state the main result of
this chapter. Section 3.3 introduces the Kleitman-Rothschild method which
is essential for the proof of our results. Thereafter we discuss related results
in Section 3.4. In particular, we review the current knowledge on the struc-
ture of typical H-free graphs (including their evolution) and point out al-
gorithmic applications of these results. Section 3.5 presents a self-contained
proof of our main result limited to triangle-free graphs. Due to its simplicity
we believe that it has an instructive value on its own. The proof of the main
result in full generality then follows in Section 3.6.

3.2 Main result

In order to state our result precisely we introduce some notation. Through-
out the rest of the chapter we assume that ` is an arbitrary, but fixed integer
with ` ≥ 2.

We consider graphs with labeled vertices. With F `0(n) we denote the set of
all K`+1-free graphs on n vertices, and the set P`0(n) contains all `-partite
graphs. Using these abbreviations the result from Kolaitis, Prömel and Roth-
schild [KPR87] can be stated as follows.

Theorem 3.1 ([KPR87]) For ` ≥ 2 almost all K`+1-free graphs are `-partite, i.e.,

|F `0(n)| = (1 + o(1))|P`0(n)|.
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Note that the special case ` = 2 corresponds to the result of Erdős, Kleitman
and Rothschild [EKR76].

We extend this result as follows: Let P`i (n) denote the set of all K`+1-free
graphs G = (V,E) on n vertices which can be made `-partite by removing
i vertices but not by removing only i − 1 vertices, i.e., there exist vertices
v1, . . . , vi ∈ V such thatG[V \{v1. . . . , vi}] ∈ P`0(n−i), whereas for all choices
of vertices v′1, . . . , v′i−1 ∈ V we have G[V \ {v′1, . . . , v′i−1}] 6∈ P`0(n − (i − 1)).
We call these K`+1-free graphs i-quasi-`-partite.

Additionally, we define the set F `i (n) := F `0(n) \ [P`0(n) ∪ . . . ∪ P`i−1(n)], i.e.,
F `i (n) contains all K`+1-free graphs which cannot be made `-partite by re-
moving at most i − 1 vertices. For these graphs the following extension to
Theorem 3.1 can be shown.

Theorem 3.2 For all i ≥ 0 and ` ≥ 2,

|F `i (n)| = (1 + o(1))|P`i (n)|.

3.3 Background: Kleitman-Rothschild method

3.3.1 Motivation

For simplicity’s sake let us concentrate for the moment on the case i = 0
and ` = 2, i.e., we consider triangle-free and bipartite graphs. For brevity
of notation we let Fi(n) := F2

i (n) and Bi(n) := P2
i (n) for i ≥ 0. With this

notation the famous result of [EKR76] reads

Pr[G ∈ B0(n) | G = Gn, 1
2
∈ F0(n)] = 1− o(1), (3.2)

where G is a random graph Gn, 1
2
.

Typical tools in probability theory are designed for probability spaces which
are defined as the product of several independent random experiments, or,
more generally, as random processes. Unfortunately, no step by step con-
struction of graphs in F0(n) is known, and apparently such a construction
ought to have a rather intricate structure. This is due to the fact that the
condition G ∈ F0(n) introduces complicated dependencies between the
occurrences of different edges. A process that produces a random graph
G ∈ F0(n) would have to keep track of these dependencies, which seems to
be a quite difficult task.
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Moreover, if we were able to devise such a random construction of graphs
in F0(n), this would presumably yield a proof for (3.2), too. Due to B0(n) ⊆
F0(n) it suffices to show that

|F0(n)| ≤ (1 + o(1)) · |B0(n)|. (3.3)

The two abilities to randomly construct a combinatorial object and to count
the number of such objects usually go hand in hand. It is typically possible
to switch between these two sides of the medal by exchanging the random
choices with bounds on the number of possibilities.

Note that |B0(n)| is rather easy to determine. The upper bound |B0(n)| ≤
2n · 2n2/4 immediately follows from the observation that there are 2n pos-
sibilities to choose a 2-coloring of V . Furthermore, the number of possible
choices for the edges between two color classes of size x and n−x is bounded
by 2x(n−x) ≤ 2n

2/4. A rough lower bound on |B0(n)| can also be obtained
without too much technical effort (cf. e.g. [PS96b]). In [PS95] the following
quite precise estimate for the number of arbitrary `-partite graphs |P`0(n)|
has been given (see also [Prö86]).

Theorem 3.3 [PS95] For ` ≥ 2 we have

|P`0(n)| = Θ(2
`−1
2`
n2+n log `− `−1

2
logn).

�

Clearly, for bipartite graphs we obtain |B0(n)| = Θ(2
1
4
n2+n− 1

2
logn).

In brief, when we want to prove (3.3) and thus (3.2), we face the following
situation. We have to compare the cardinalities of the graph classes F0(n)
and B0(n), where we know precise bounds for |B0(n)|. However, there is not
much hope to determine |F0(n)|.

In the sequel we will describe the Kleitman-Rothschild method, which uses
an approach that involves neither probabilistic tools nor counting of the ab-
solute value of |F0(n)|. Instead, this method uses induction to compare the
rate of growth of |F0(n) \ B0(n)| and |B0(n)|. If the former cardinality, inter-
preted as a function of n, can be shown to grow much slower than |B0(n)|,
this will suffice to prove (3.3).

3.3.2 Technique

In a sequence of two papers ([KR70] and [KR75]) Kleitman and Rothschild
succeeded in counting the number of different partial orders on a set of n
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(labeled) elements. The method they invented for proving this result, sub-
sequently also called the Kleitman-Rothschild method, is based on a clever in-
ductive counting argument. Even though the Kleitman-Rothschild method
was first used for partial orders, its highlights were within graph theory.
Here the starting paper was by Erdős, Kleitman and Rothschild [EKR76]
who proved that almost all triangle-free graphs are bipartite (cf. (3.2) and
(3.3)). In the following years this result was generalized in many respects (cf.
e.g. [LR84], [KPR87], [PS92c], [PS92a]). For further discussion of the method
and its history, we refer the interested reader to [Ste93] or [PST01].

The Kleitman-Rothschild method is applicable in situations like the follow-
ing. Let two families of sets Xn and Yn be given such that G ∈ Yn implies
G ∈ Xn. For the sake of concreteness we will think of these sets as families
of graphs, where the parameter n denotes the number of vertices.

We intend to show that

|Xn| = (1 + o(1)) · |Yn|. (3.4)

Assume that we have rather good estimates on |Yn|, but we do not know
how to bound |Xn|. In classical applications of the Kleitman-Rothschild
method the actual goal is to estimate |Xn|. To this aim one tries to guess
the structure of most graphs in Xn and defines a corresponding family Yn
such that |Yn|, hopefully, can then be counted more easily. Together with
(3.4) this yields the desired bound on |Xn|.

For (3.4) it suffices to prove that there exist only very few graphs in Xn \ Yn,
or, more precisely, |Xn \ Yn|/|Yn| = o(1). This is achieved by the following
two steps:

1. Define suitable bad sets B1
n, . . . ,Bkn ⊆ Xn, for which it can be shown that

Xn \ Yn ⊆ B1
n ∪ . . . ∪ Bkn.

2. Prove that
|Bin|/|Yn| = o(1) for i = 1, . . . , k

using inductive counting.

The inductive counting approach used in the second step represents the core
idea of the Kleitman-Rothschild method. In order to prove that |Bin| is much
smaller than |Yn| it is not necessary to estimate the absolute cardinalities of
the sets. Instead it suffices to obtain bounds on the growth rates

|Yn|
|Yn−x|

and
|Bin|
|Xn−x|

for suitable x ∈ N.

A bound of the form
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|Yn|
|Yn−x|

≥ g(n) (3.5)

is usually straightforward, as we have assumed that |Yn| is comparatively
easy to count.

In classical applications of the Kleitman-Rothschild method the graph fam-
ilyXn is decreasing, i.e.,G ∈ Xn implies thatH ∈ Xn for all subgraphsH ⊆ G.
As a typical example for a decreasing family consider the set of triangle-free
graphs F0(n).

Let G = (V,E) ∈ Xn. The definition of a bad set Bin typically involves prop-
erties of a small part of G, e.g., a single vertex or a (small) set W ⊆ V . As Xn
is decreasing, it follows that G′ := G[V \W ] ∈ Xn−x for x := |W |. Hence a
bound of the form

|Bin|
|Xn−x|

≤ f(n) (3.6)

can be obtained by counting the number of possibilities to combine W and
G′ ∈ Xn−x such that the resulting graph belongs to Bin. A clever definition of
Bin implies severe restrictions on these possibilities and thus a small bound
f(n) can be shown. Combining (3.5) and (3.6) we conclude that

|Bin|
|Yn|

≤ |Bin|
|Xn−x|

· |Xn−x|
|Yn−x|

· |Yn−x|
|Yn|

≤ f(n)

g(n)
· (1 + o(1)),

where the bound on |Xn−x|/|Yn−x| follows by induction. If f(n)/g(n) = o(1),
the claim is proved.

Our application of the Kleitman-Rothschild method which will be presented
in the remainder of the chapter differs in one aspect from the ’standard’ ap-
proach described above. Observe that the set Fi(n) with i ≥ 1 is, in con-
trast to F0(n), not decreasing. We cope with this problem using two differ-
ent techniques. Firstly, we derive a rough estimate on the ratio Fi(n)/F0(n).
Thus we can compare the size of the bad sets to |F0(n)| as in the standard ap-
proach, which will suffice for certain parts of the proof. Secondly, for other
parts where higher accuracy is needed, we define the bad sets and the ver-
tices W which are removed for the inductive counting in such a way that
the remaining graph G[V \W ] still belongs to Fi(n). This can be achieved
although Fi(n) is not decreasing in general, i.e., for arbitrary subgraphs W .

3.4 Related work

Typical H-free graphs As we have already mentioned, the structure of
triangle-free graphs was first investigated in the seminal paper [EKR76].
Later this result was generalized in [KPR87] to K`-free graphs for arbitrary
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` ≥ 3 (cf. Theorem 3.1). Written in a probabilistic style the main result
of [KPR87] reads

Pr[G is `-partite | G = Gn, 1
2

is K`+1-free] = 1− o(1).

In addition to that, similar results have been proved for certain non-comple-
te subgraphs. In [LR84] almost all C`-free graphs are shown to be bipartite
for every odd integer `. Finally, in [PS92b] a characterization of graphs H is
given such that almost all H-free graphs are `-partite (see also [HPS93] for a
further refinement of this result).

For arbitrary graphs H the number of H-free graphs has been bounded

by 2(1− 1
χ(H)−1

)n
2

2
+o(n2) in [EFR86]. However, this bound is weaker than the

bounds for certain classes of H-free graphs which are implied by the results
mentioned above in combination with Theorem 3.3. For instance, the num-
ber of K`-free graphs for ` ≥ 3 is thus of order Θ(2

l−2
2l−2

n2+n log(l−1)− l−2
2

logn),
whereas [EFR86] only yields the estimate 2

l−2
2l−2

n2+o(n2) in this case.

In addition to this rich theory on H-free graphs in the classical sense, where
weak subgraphs H are forbidden, also graphs with forbidden induced sub-
graphsH have been studied. Interestingly, the results for such graphs closely
parallel the results for forbidden weak subgraphs (cf. [PS91] [PS92a] [PS92d]
[PS93b]). In [PS93a] a survey and comparison of the results for forbidden in-
duced and weak subgraphs is given.

Algorithmic applications Techniques and results like the ones we have
listed above also gain influence which extends well beyond the field of
’pure’ graph theory, focusing on structural insight. Random graphs have
had significant impact on the average case analysis of algorithms and on
the quest for hard instances, e.g., of NP-complete problems.

In [Wil84] it has been shown that graph-coloring, a classical NP-complete
problem, may be solved for random graphs in constant expected time. If we
wish to decide whether a graph is `-colorable, we simply search for cliques
K`+1. For a typical random graphGn, 1

2
such a clique can be found by looking

at just a few vertices. Of course, this suffices to show that the graph is not
`-colorable. For graphs which pass this test without a K`+1 being found the
problem is solved by complete enumeration. Since there are very few such
graphs, this still leads to constant execution time on the average.

Although elegant and simple, this ’solution’ of the coloring problem is in
some sense unsatisfactory and leads to a natural question. How crucial is
the rôle of cliques, i.e., can we still achieve good performance on the average
if the graph is K`+1-free? In [PS92c] (cf. also [DF89]) this question has been
answered in the affirmative by presenting an algorithm with expected run-
ning time O(n2) on random K`-free graphs. The proof of this result makes
substantial use of the Kleitman-Rothschild method.
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Evolution of H-free graphs Up to now we have discussed results on the
structure of a typical H-free graph, i.e., the structure of a graph randomly
chosen from the set of all H-free graphs. Hence note that such results do not
tell us much about the structure of sparse H-free graphs, i.e., graphs with
o(n2) edges, since such graphs are usually outnumbered by dense graphs
with Θ(n2) edges.

Thus a natural direction of further research is to study the evolution of H-
free graphs. Here the number of edges m is introduced as a new parameter
(in addition to the number of vertices n), and the structure of H-free graphs
on n vertices with m edges is investigated. This follows the usual approach
in classical random graph theory, introduced in the seminal paper [ER60],
where the structure of random graphs Gn,m depending on m is studied.

A first result for this line of research was given in [PS96b], where the evolu-
tion of triangle-free graphs was examined. However, the case that the order
of magnitude of m lies between n3/2 and n7/2 remained open. Finally, this
problem was solved in [OPT].

Theorem 3.4 [OPT] (Evolution of K3-free graphs) Let t3 =
√

3
4
n3/2
√

log n.
For ε > 0 we have

Pr[Gn,m is bipartite | Gn,m is K3-free] =


1− o(1) if m = o(n),
o(1) if n

2
≤ m ≤ (1− ε)t3,

1− o(1) if (1 + ε)t3 ≤ m. �

Remark 3.5 The main result of [OPT] is actually stronger than the statement of
Theorem 3.4. Similar thresholds t` are shown for arbitrary odd cycles C`.

For the proof of Theorem 3.4 a result from [Łuc00] is employed, which states
that all triangle-free graphs with m ≥ Cn3/2 edges are almost bipartite, i.e.,
they can be made bipartite by deleting bδmc edges. Here for any δ > 0 we
can find a sufficiently large constant C such that this claim holds.

This result of [Łuc00] is actually much stronger, as it is formulated for arbi-
trary H-free graphs, given any fixed graph H . However, the proof is based
on a conjecture by Kohayakawa, Łuczak and Rödl (cf. Conjecture 4.19 which
will be studied in Chapter 4), which has only been verified for the case that
H is a tree or a cycle (cf. Section 4.3.2).

For a formal statement of the result in [Łuc00] we call a graph (δ, `)-partite if
it can be made `-partite by deleting at most δm edges. Furthermore, for an
arbitrary graph H let
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d2(H) := max

{
eF − 1

vF − 2
| F ⊆ H, vF > 2

}
(3.7)

denote the 2-density of H . Observe that

d2(K`) =

(
`
2

)
− 1

`− 2
=

1

2

`2 − `− 2

`− 2
=

1

2
(`+ 1),

and thus d2(K3) = 2. Now the result in [Łuc00] reads as follows.

Theorem 3.6 [Łuc00] Let H be a graph with χ(H) = ` + 1 ≥ 3 for which
Conjecture 4.19 holds. Then for every δ > 0 there exists C > 0 such that

Pr[G is (δ, `)-partite | G = Gn,m is H-free] = 1− o(1),

provided that m ≥ Cn2−1/d2(H). �

Theorem 3.6 shows that there is a strong connection between the structure
of H-free graphs treated in this chapter and the occurrence of subgraphs
H ⊆ G in so-called ε-regular graphs treated in Conjecture 4.19 which we will
study in Chapter 4. Hence, progress in proving Conjecture 4.19 provides
new tools for attacking the evolution of H-free graphs. In Chapter 4 we
prove Conjecture 4.19 for H = K4 and H = K5.

There is also a second promising approach for studying the evolution of
H-free graphs. In [Ste99] an alternative proof is given (up to constants) for
the crucial part of Theorem 3.4, i.e, the second 1-statement (This statement
represents the actual breakthrough achieved by [OPT], as the other parts of
Theorem 3.4 were essentially proved before.). This alternative proof uses the
Kleitman-Rothschild method, which will also represent our most important
tool in this chapter.

The survey [PST01] summarizes the interrelations between counting com-
binatorial objects, analyzing their typical structure and studying their evo-
lution.

Typical structure of untypical K`-free graphs Among the above men-
tioned previous research the main result presented in this chapter takes
the following position. Primarily Theorem 3.2 generalizes Theorem 3.1 by
characterizing the typical structure of the untypical, i.e., rare graphs in
F `0(n) \ P`0(n).

Furthermore, the notion ’i-quasi-`-partite’, which is defined in terms of
deleted vertices, bears some similarity with the notion ’(δ, `)-partite’ used
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in [Łuc00], which is based on the deletion of edges. However, there is no
direct connection between [Łuc00] and Theorem 3.2, as [Łuc00] studies the
evolution of H-free graphs, whereas in this chapter we will not bound the
number of edges in the graph a priori.

3.5 Simple proof for bipartite graphs

In this section we give a proof of Theorem 3.2 for the case ` = 2 and i =
1, i.e., we show that almost all triangle-free graphs which are not bipartite
can be made bipartite by removing a single vertex. This corresponds to the
following special case of Theorem 3.2.

Theorem 3.7 Almost all triangle-free graphs which are not bipartite, are quasi-
bipartite, i.e.,

|F1(n)| = (1 + o(1)) · |B1(n)|.

The following definition specifies some properties which we expect to hold
for a ’typical’ bipartite graph. Based on the negation of these properties we
will later define sets of ’strange’ graphs, i.e., graphs with unusual properties.
These sets will be used as bad sets in the Kleitman-Rothschild method, i.e.,
we will show that the cardinality of these sets is negligible in comparison to
|B1(n)|.

Definition 3.8 We introduce the following abbreviations for properties of a graph
G = (V,E) with |V | = n:

(P1) Minimum degree is not too small: |Γ(v)| ≥ 2 log n for all v ∈ V .
(P2) Large second neighborhood: |Γ(Q)| ≥ (1

2
− 2

log logn
)n for all Q ⊆ V and

|Q| = log n.

The following lemmas show some results on the structure of graphs for
which the specified properties hold. The proofs of these results, i.e., of
Lemma 3.9 and Lemma 3.11, are implicit in [Ste93] and [PST01] but we also
briefly include them here for clarity and completeness.

Lemma 3.9 LetG = (V,E) be a graph on n vertices, where n is sufficiently large,
and C ⊆ V be a cycle with |C| ≤ 9. If it holds that |Γ2(v)| ≥ (1

2
− 2

log logn
)n for

all v ∈ C and that |Γ2(x)∩ Γ2(y)| ≤ 1
100
n for all edges {x, y} of C, then the cycle

cannot be odd.
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Proof For simplicity we will only show that there is no cycle C3. The proof
for C5, C7 and C9 is similar.

Let G = (V,E) denote a graph and let C = (v1, v2, v3) be a cycle in G which
satisfies the conditions of the lemma. In the sequel we writeRi := Γ2(vi) and
α := 2

log logn
, β := 1

100
for short. We directly obtain the following estimates:

|R1 ∪R2| = |R1|+ |R2| − |R1 ∩R2| ≥ (1− 2α− β)n

|R1 ∩R2| = n− |R1 ∪R2| ≤ (2α + β)n.

Hence,

|R3| ≤ |R1 ∩R2|+ |R3 ∩R1|+ |R3 ∩R2| ≤ (2α + 3β)n,

contradicting the assumption on the minimum size of R3. �

Now we define a property for sets of edges. If this property and also the
properties from Definition 3.8 hold for a graph, then this graph must be
bipartite.

Definition 3.10 Given a graph G = (V,E) with |V | = n we define the following
property for a set of edges F ⊆ E:

(P3) Few cycles C5: |Γ2(x) ∩ Γ2(y)| ≤ 1
100
n for all {x, y} ∈ F .

Lemma 3.11 If a graph G = (V,E) satisfies the properties (P1), (P2) and (P3)
for all edges and |V | = n is sufficiently large, then G is bipartite.

Proof We construct a 2-coloring of G as follows: By Lemma 3.9 G contains
neither a C3 nor a C5 nor a C7 nor a C9.

Now choose an arbitrary edge {x, y} ∈ E. For brevity let Qx := Γ(x), Qy :=
Γ(y), Rx := Γ2(x) and Ry := Γ2(y). Rx and Ry are stable because otherwise
we could find a C5. Similarly we conclude that Rx ∩Ry = ∅.

We denote all other vertices by S := V \ [Qx ∪ Qy ∪ Rx ∪ Ry] and partition
them in two classes:

Sx = {v ∈ S | Rv ∩Rx 6= ∅} and Sy = {v ∈ S | Rv ∩Ry 6= ∅}.

Observe that Sx∪Sy = S, sinceRx andRy cover almost the whole graph and
Rv is big for all v. Hence, for every vertex v the intersection Rv ∩ (Rx ∪ Ry)
cannot be empty. Moreover, Rx ∪ Sx and Ry ∪ Sy are stable and Sx ∩ Sy = ∅
because there are no cycles C7 and C9 (see Figure 3.1).
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PSfrag replacements

x y

Qx Qy

Rx Ry

Sx Sy

Figure 3.1: Finding color classes in Lemma 3.11

Hence, we have found a 2-coloring with the color classes Rx ∪ Sx ∪ Qy and
Ry ∪ Sy ∪Qx. �

Consider a graph G which satisfies properties (P1) and (P2). Furthermore,
assume that the graph is composed of a bipartite subgraph on n− 2 vertices
and two additional vertices. The following lemma shows how to find two
short vertex disjoint odd cycles in G. Later in the paper we will apply the
lemma in order to exploit the fact that a graph with two such cycles remains
non-bipartite even if an edge of a cycle is removed.

Lemma 3.12 Let G = (V,E) be a graph with two vertices v1, v2 ∈ V such that
G′ := G[V \ {v1, v2}] ∈ B0(n). Consider an arbitrary 2-coloring of G′ with color
classes S1, S2 and assume that for j ∈ {1, 2} there are vertices w(1)

j ∈ (S1∩Γ(vj))

and w(2)
j ∈ (S2 ∩ Γ(vj)) such that w(1)

1 , w
(2)
1 , w

(1)
2 , w

(2)
2 are pairwise different.

If G′ satisfies the properties (P1) and (P2) and n is sufficiently large we can find
two vertex disjoint cycles C7 in G.

Proof We look for vertex disjoint paths Pj in G′ of length five that connect
w

(1)
j and w

(2)
j for j ∈ {1, 2}: By (P1) we can find sets Q(1)

j ⊆ Γ(w
(1)
j ) ∩ S2 and

Q
(2)
j ⊆ Γ(w

(2)
j ) ∩ S1 of size at least log n. Since Γ(Q

(1)
j ) and Γ(Q

(2)
j ) are almost

as large as one partition of V they are obviously connected by an edge and
a path can be found.
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Assume that the cycle at v1 is fixed first. By (P1) the degrees of w(1)
j and w

(2)
j

are large and, hence, we are able to choose the set Q(1)
2 and Q

(2)
2 in such a

way that the resulting cycle at v2 is vertex disjoint from the cycle at v1. �

We also need a few results on the growth of |B0(n)| and |B1(n)|. Later we
will use them to show that the size of the ’bad sets’ grows asymptotically
slower than |B1(n)| and, thus, these sets contain only a negligible number of
graphs.

Lemma 3.13 For i ∈ {0, 1} and all sufficiently large n

log
|Bi(n− 1)|
|Bi(n)|

≤ −n− i− 1

2
.

Proof We construct pairwise different graphs in Bi(n) as follows. First we
choose a graph G ∈ Bi(n − 1) for the first n − 1 vertices. By definition, this
graph G contains a stable set of size at least n−i−1

2
. The n-th vertex can be

connected to this stable set in at least 2
n−i−1

2 many ways. This shows that

|Bi(n)| ≥ 2
n−i−1

2 · |Bi(n− 1)|,

which is equivalent to the claimed inequality. �

Note that Theorem 3.3 implies the case i = 0 of Lemma 3.13, but the above
rough estimate already suits our needs. However, we will use Theorem 3.3
to obtain a short proof for the following rather obvious technical lemma.

Lemma 3.14 There is a constant ρ > 0 such that for all sufficiently large n

log
|B0(n− 1)|
|B1(n)|

≤ ρ.

Proof The following procedure yields pairwise different graphs in B1(n):
We construct a cycle C = (v1, . . . , v5) on the first five vertices and choose a
graph G′ ∈ B0(n − 5) for the remaining n − 5 vertices. Let S1, S2 denote an
arbitrary 2-coloring of G′. We connect v1 and v3 to S1 and v2 and v4 to S2.
There are 22|S1|+2|S2| = 22(n−5) possibilities for this. Note that the resulting
graph contains no triangles because the neighbors in G′ of adjacent vertices
on the cycle are disjoint. Hence, we conclude that

|B1(n)| ≥ |B0(n− 5)| · 22(n−5).
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Using Theorem 3.3 one easily checks that

|B0(n− 1)|
|B0(n− 5)|

= Θ

(
2

1
4
n2− 1

2
n+ 1

4
+n−1− 1

2
log(n−1)

2
1
4
n2− 5

2
n+ 25

4
+n−5− 1

2
log(n−5)

)
= Θ(22n).

Then the lemma follows immediately. �

Remark 3.15 Note that |B0(n − 1)|/|B1(n)| is actually much smaller than the
bound in Lemma 3.14. Comparing Lemma 3.14 to Lemma 3.13 one would expect
an exponentially small expression. But since a rough estimate suffices for our proofs
we only state this almost trivial bound.

For the application of the Kleitman-Rothschild method we partition F1(n)
into B1(n) and several ’bad’ sets of graphs with ’unlikely’ properties based
on (P1) up to (P3). Then we show that the cardinality of those bad sets is
negligible.

X (n) The set of all graphs in F1(n)\B1(n) which contain a vertex v such
that |Γ(v)| ≤ 3 log n,

Y(n) The set of all graphs in F1(n) \ [B1(n) ∪ X (n)] which contain a set
Q of size log n such that |Γ(Q)| ≤ (1

2
− 1

log logn
)n,

Z(n) The set of all graphs G in F1(n) \ [B1(n) ∪ X (n) ∪ Y(n)] which
contain an edge {x, y} and sets Qx ⊆ Γ(x) and Qy ⊆ Γ(y) of size
|Qx| = |Qy| = log n such that G − {x, y} ∈ F1(n − 2) and |Γ(Qx) ∩
Γ(Qy)| > 1

100
n,

First we have to show that B1(n) and the ’bad’ sets cover F1(n).

Lemma 3.16 It holds that

F1(n) ⊆ B1(n) ∪ X (n) ∪ Y(n) ∪ Z(n)

for all sufficiently large n.

Proof Consider a graph G = (V,E) in F1(n) \ [B1(n) ∪ X (n) ∪ Y(n) ∪ Z(n)].
Then the properties (P1) and (P2) hold for G by the definitions of X (n) and
Y(n), and are still satisfied if one or two vertices are deleted from G.

Assume that there is an edge {x, y} such that G′ := G − {x, y} 6∈ F1(n − 2).
Since G′ ∈ F0(n − 2) = F1(n − 2) ∪ B0(n − 2) we may conclude that G′ ∈
B0(n− 2).
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Consider an arbitrary 2-coloring of G′. Note that Γ(x) ∩ Γ(y) = ∅ because
G is triangle-free. Furthermore, x and y must have neighbors in both color
classes S1 and S2 since they are part of odd cycles in G. Otherwise we could
deduce that G ∈ B0(n) ∪ B1(n) which contradicts our choice of G.

Assume that there is one color class, say S1, and a vertex w such that Γ(x) ∩
Γ(y) ∩ S1 = {w}. Then the vertices x, y, w would form a triangle and we get
a contradiction. Thus, x and y have at least two disjoint neighbors in both
color classes and we can find two vertex disjoint odd cycles C1 and C2 with
|C1|, |C2| ≤ 7 using Lemma 3.12. It follows by the definition of Z(n) that
(P3) holds for all edges of C1 and C2. Lemma 3.9 then shows that C1 and C2

cannot be odd and we obtain a contradiction. Therefore, we may conclude
that G− {x, y} ∈ F1(n− 2) for all edges {x, y}.

Hence, by the definition of Z(n) it holds for all {x, y} ∈ E that |Γ2(x) ∩
Γ2(y)| ≤ 1

100
n and Lemma 3.11 proves that G is bipartite, which once again

yields a contradiction. �

The following lemmas help us to estimate the cardinality of the bad sets.

Lemma 3.17 For all sufficiently large n

log
|X (n)|
|F1(n− 1)|

≤ 4(log n)2.

Proof Consider a graphG = (V,E) ∈ X (n) and a vertex x ∈ V . By definition
ofX (n) we know thatG[V \{x}] 6∈ B0(n−1). Hence, all graphs inX (n) can be
constructed as follows. First choose the vertex v and a graph G ∈ F1(n− 1)
on V \{v} (in at most n · |F1(n−1)|ways). Then choose the set Γ(v). As there
are at most

3 logn∑
j=0

(
n− 1

j

)
≤ n3 logn

ways to do this, it follows that

|X (n)| ≤ |F1(n− 1)| · n · n3 logn.

The lemma is an immediate consequence of this. �

Lemma 3.18 For all sufficiently large n

log
|Y(n)|

|F0(n− log n)|
≤
(

1

2
− 1

2 log log n

)
n log n.
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Proof Construct all graphs in Y(n) as follows. First choose the set Q and a
triangle-free graph G on V \ Q. This can be done in at most

(
n

logn

)
· |F0(n −

log n)|ways. Then, we have less than 2n possibilities to fix the set R = Γ(Q).
Additionally, there are at most 2|Q|·|R| ≤ 2logn·( 1

2
− 1

log logn
)n possible choices for

the edges between Q and R and less than 2(logn)2 possibilities for the edges
inside Q. All in all we get

log
|Y(n)|

|F0(n− log n)|
≤ 2(log n)2 + n+

(
1

2
− 1

log log n

)
n log n

≤
(

1

2
− 1

2 log log n

)
n log n

for n sufficiently large. �

Lemma 3.19 For all sufficiently large n

log
|Z(n)|

|F1(n− 2)|
≤
(

1− 1

2000

)
n.

Proof Construct all graphs in Z(n) as follows. First choose two vertices x
and y, a triangle-free graphG′ ∈ F1(n−2) on V \{x, y}, and appropriate sets
Qx, Qy in less than n2 · |Fi(n−2)| ·n2 logn ways. Let for conciseness of notation
Rx = Γ(Qx) and Ry = Γ(Qy) and observe that Rx and Ry are determined by
the choice of Qx and Qy. Finally, connect x and y to V \ {x, y}. As no vertex
in Rx (Ry) may be connected to x (y) and no vertex in V \ (Rx ∪ Ry) may be
connected to both x and y there are at most

2|Rx\Ry |+|Ry\Rx| · 3n−|Rx∪Ry |

≤ 2|Rx|+|Ry |−2|Rx∩Ry |+ 7
4

(n−|Rx|−|Ry |+|Rx∩Ry |)

≤ 2
7
4
n− 3

4
(|Rx|+|Ry |)− 1

4
|Rx∩Ry | ≤ 2n−

1
1000

n

ways to do this. Recall that by definition of Y(n) we have |Rx|, |Ry| ≥
(1

2
− 1

log logn
)n and that by assumption |Rx ∩ Ry| ≥ 1

100
n. Furthermore, one

immediately checks that log 3 ≤ 7
4
. Putting everything together we obtain

log
|Z(n)|
|Fi(n− 2)|

≤ 2 log n+ 2(log n)2 + n− 1

1000
n ≤

(
1− 1

2000

)
n

for n sufficiently large. �

Now that we have estimated the cardinality of all bad sets, we are in a posi-
tion to prove Theorem 3.7.
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Proof of Theorem 3.7 Set γ := 2
1

3000 . We will show that there exists a con-
stant c ≥ 1 such that

|F1(n)| ≤ (1 + cγ−n)|B1(n)| (3.8)

for all n ∈ N. Choose n0 large enough so that all lemmas above and all
asymptotic estimates below hold for n ≥ n0. Subsequently, choose c ≥ 1
such that (3.8) is satisfied for all n ≤ n0.

We conclude the proof by induction on n. So assume that (3.8) is satisfied
for all graphs on n′ vertices with n′ < n. By Lemma 3.16 we deduce that

|F1(n)| ≤ |B1(n)|+ |X (n)|+ |Y(n)|+ |Z(n)|.

Hence, it suffices to show that the ratio of |X (n)|, |Y(n)| and |Z(n)| to |B1(n)|
is at most c

3
γ−n.

By Lemma 3.17, Lemma 3.13 and the induction hypothesis we conclude that

|X (n)|
|B1(n)|

≤ |X (n)|
|F1(n− 1)|

· |F1(n− 1)|
|B1(n− 1)|

· |B1(n− 1)|
|B1(n)|

≤ 24(logn)2 · (1 + cγ−n+1)︸ ︷︷ ︸
≤ 2c

·2−
1
2

(n−2) ≤ c

3
γ−n.

Similarly, using Lemma 3.18, Lemma 3.13, Lemma 3.14 and Theorem 3.1
(resp. the result from [EKR76] which suffices here) we obtain

|Y(n)|
|B1(n)|

≤ |Y(n)|
|F0(n− log n)|

· |F0(n− log n)|
|B0(n− log n)|

·

|B0(n− log n)|
|B1(n− log n+ 1)|

·
logn−2∏
j=0

|B1(n− j − 1)|
|B1(n− j)|

≤ 2( 1
2
− 1

2 log logn
)n logn · 2c · ρ · 2

∑logn−2
j=0 [− 1

2
(n−j−2)]

≤ 2( 1
2
− 1

2 log logn
)n logn · 2c · ρ · 2−

1
2

(logn−1)(n−logn−4)

≤ c

3
· 2−

1
2 log logn

·n logn+n ≤ c

3
γ−n.

Finally, we use Lemma 3.19, Lemma 3.13 and the induction hypothesis to
show that

|Z(n)|
|B1(n)|

≤ |Z(n)|
|F1(n− 2)|

· |F1(n− 2)|
|B1(n− 2)|

· |B1(n− 2)|
|B1(n− 1)|

· |B1(n− 1)|
|B1(n)|

≤ 2(1− 1
2000

)n · (1 + cγ−n+2) · 2−
1
2

(n−3)− 1
2

(n−2) ≤ c

3
γ−n.

This completes the proof. �
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3.6 Proof of the general case

This section contains the proof of Theorem 3.2 for arbitrary values of ` and
i, and is organized as follows. In Section 3.6.1 we collect a few lemmas on
the growth rate of |P`i (n)|. In Section 3.6.2 the bad sets are defined and their
sizes are examined. The results of these two sections are then combined in
Section 3.6.3 and Theorem 3.2 is proved.

For our asymptotic estimates in this section we will often assume that n is
sufficiently large. This will not always be explicitly mentioned.

3.6.1 Growth rates of `-partite graphs

In this section we show some estimates on the growth rate of |P`i (n)| consid-
ered as a function of n and i. Later we will compare these growth rates to the
growth rates of the bad sets and it will turn out that these sets grow asymp-
totically slower than |P`i (n)|. Hence, for n sufficiently large the cardinality
of the bad sets is tiny in comparison to |P`i (n)|.

Lemma 3.20 For all i ≥ 0 and n sufficiently large,

log
|P`i (n− 1)|
|P`i (n)|

≤ −`− 1

`
n+ i+ 1.

Proof We construct pairwise different graphs G in P`i (n) as follows: We
choose a graph G′ = (V ′, E ′) ∈ P`i (n − 1) for the first n − 1 vertices. Con-
sider i vertices v1, . . . , vi ∈ V ′ such that G′′ := G′[V ′ \ {v1, . . . , vi}] is `-partite
and fix an arbitrary `-coloring of G′′. Clearly, this coloring contains a color
class S with at most n−1−i

`
vertices. If we don’t connect the n-th vertex v to

S ∪ {v1, . . . , vi} one easily verifies that the resulting graph G cannot contain
a K`+1.

Hence, there are at least 2n−1−i−n−1−i
` possibilities to connect v to G′. There-

fore,
|P`i (n)| ≥ |P`i (n− 1)| · 2(1− 1

`
)n−i−1

and the claim follows. �

From this lemma we easily deduce a corollary which will later come in
handy.
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Corollary 3.21 For i ≥ 0 and all integral positive functions g(n) ∈ O(log n),

log
|P`i (n− g(n))|
|P`i (n)|

= −`− 1

`
n · g(n) +O(g(n)2).

Proof We repeatedly apply Lemma 3.20 and obtain

log
|P`i (n− g(n))|
|P`i (n)|

=

g(n)−1∑
j=0

log
|P`i (n− g(n) + j)|
|P`i (n− g(n) + j + 1)|

≤
g(n)−1∑
j=0

(
−`− 1

`
(n− g(n)− j + 1) + i+ 1

)

=

(
−`− 1

`
n+ i+ 1

)
g(n)−

g(n)−1∑
j=0

j

= −`− 1

`
n · g(n) +O(g(n)2).

�

Finally, we will need a lemma on the relation between the number of `-
partite graphs and the number of i-quasi-`-partite graphs.

Lemma 3.22 For all i > 0 and n sufficiently large,

|P`0(n− i(2`+ 1))|
|P`i (n)|

≤ 1.

Proof For the proof of this lemma we need a small K`+1-free graph H with
chromatic number ` + 1. H will serve as a witness that a graph G which
contains H as a subgraph is not `-colorable.

Let H = (S, F ) be a graph on 2`+ 1 vertices with

S = {v, v1, . . . , v`, v
′
1, . . . , v

′
`}.

F is assumed to be a minimal set of edges such that

1. v is connected to all vertices v1, . . . , v`.

2. G[{v′1, . . . , v′`}] is a complete graph K`.
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3. For every i ∈ {1, . . . , `}: G[{vi, v′1, . . . , v′i−1, v
′
i+1, . . . , v

′
`}] is a complete

graph K`.

It is easy to see that such a graph H is K`+1-free (Observe that there is no
edge between vi and v′i. Furthermore, v clearly does not belong to a sub-
graph K`+1.). Moreover, at least ` + 1 colors are necessary to color it: As-
sume that there is a legal `-coloring. Then v′1, . . . , v

′
` must be colored with

all ` different colors. Hence, vi and v′i must receive the same color for all
i ∈ {1, . . . , `}. Since v is connected to all vertices v1, . . . , v` we obtain a con-
tradiction.

We construct pairwise different graphs G = (V,E) in P`i (n) as follows: On
the first i(2` + 1) vertices i disjoint copies of H are fixed. Then we choose a
graph G′ ∈ P`0(n− i(2`+ 1)) for the remaining vertices. �

3.6.2 Bad sets

In order to exploit the fact that we consider only K`+1-free graphs we want
to identify dense subgraphs and parts of the graph with many edges inci-
dent to such a dense subgraph. If we have found a dense subgraph, we can
conclude that it may be connected to the rest of the graph only in a quite
restricted way, since otherwise a K`+1 would be constructed.

We assume that
ε1, εA, εD, ε

′
D, εE , and εR

are positive constants. Later we will explain how these constants have to be
chosen.

Definition 3.23 A q(k)-set Q =
⋃k
j=1 Qj in a graph G = (V,E) on n = |V |

vertices consists of k pairwise disjoint vertex setsQ1, ..., Qk ⊆ V such that |Q1| =
. . . = |Qk| = fk(n) := dlog(k2−k+2)(n)e and {x, y} ∈ E for all x ∈ Qh, y ∈ Qj

with 1 ≤ h < j ≤ k.
Given a q(k)-set Q =

⋃k
j=1 Qj we denote by R(Q) the set

R(Q) := {v ∈ V \Q | |Γ(v) ∩Qj| ≥ εR|Qj| for all j = 1, . . . , k}.

For ease of notation we assume that a q(0)-set denotes the empty set and that
R(∅) = V . We also use the term q-set as short hand for a q(`− 1)-set.

In the sequel we assume without loss of generality that the constants ε1, εA,
εD, ε′D, εE , and εR are chosen such that they satisfy the following inequalities
for all sufficiently large n and arbitrary k and w with 1 ≤ k < ` and n

4`
≤

w ≤ n:
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...
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Figure 3.2: Structure of q(k)-set
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1. kεRfk(n)
(
fk(n)
εRfk(n)

)
≤ 2

1
4
εAfk(n)

2. 3εA ≤ ε1
1

16`

3.
(

w
w
2
−εDn

)
≤ 2w−ε1n

4. 1
2
εD ≤ ε′D

5. H
(

1
2
−ε′D

1−εD

)
≤ 1− ε1

6. ε′D ≤ 1
32`

7. 2`εA ≤ 1
64`

8. 2`εA ≤ εE
2`+1

9. εE ≤ 1
`
− (`− 1)εA

10. 2εA + 4`εE + `2εE ≤ 1
10`

In order to see that this set of inequalities has a solution consider the order-
ing

σ := (ε′D, εD, ε1, εE , εA, εR).

If the constants are fixed according to σ it is quite straightforward to check
that the inequalities can be satisfied by choosing values that are sufficiently
small.
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How to construct bad sets Using these constants we will now define a
family of bad sets. For every bad set two things will be done: First, the
cardinality of the bad set is compared to the cardinality of (quasi-)`-partite
graphs. In Section 3.6.3 it will turn out that these bounds are strong enough.
Additionally, structural results are shown for the graphs inF `i (n)\P`i (n) that
don’t belong to the bad sets defined so far. As we define more and more bad
sets we obtain more and more knowledge about the structure of the remain-
ing graphs. In the end we will derive contradictory results on this structure
and, thus, no such graphs remain. This means that we have covered the set
of graphs in F `i (n) \ P`i (n) with the bad sets.

Before going into details we will explain the intuition behind the bad sets:
Assume that Theorem 3.2 holds. Hence, most graphs in F `i (n) look like a
typical graph in P`i (n). Without a formal proof we claim that the structure
of a typical i-quasi-`-partite graph is similar to the structure of a random `-
partite graph with i additional vertices (connected to the rest of the graphs
in a suitable way). Note that the partitions of random `-partite graphs have
approximately equal cardinality, i.e., they contain about n

`
vertices, and

edges between the partitions occur independently with probability about 1
2
.

The bad sets are characterized by properties which violate this intuition.
Hence, we expect that these graphs occur very ’unlikely’. The lemmas on
the cardinality of the bad sets verify this intuitive argument.

Now we define the first two types of bad sets: Consider a typical graph in
F `i (n) and a set X of vertices that belongs to k color classes. Assume that
|X| is not too small and that there are many vertices of each of the k colors.
We expect for every vertex v ∈ V \X which does not belong to one of the k
color classes of X that |Γ(v)∩X| ≈ 1

2
|X|, because this is the typical situation

we would encounter in a random graph. We call this intuitive argument the
neighborhood assumption.

A q(k)-set Q belongs to k color classes. Hence, most of the about `−k
`
n ver-

tices in the other `− k color classes should have approximately 1
2
|Q| neigh-

bors in Q and, thus, |R(Q)| ≈ `−k
`
n, i.e., R(Q) contains almost all the other

` − k color classes. This intuition is violated by the definition of the sets
A`i(n, k). The intuition behind B`i (n, k) is similar.

Definition 3.24 For k ∈ {1, . . . , `− 1} and i ≥ 0 we define the following sets of
graphs

A`i(n, k) := {G ∈ F `i (n) \ P`i (n) | ∃ q(k)-set Q : |R(Q)| ≤ ( `−k
`
− εA)n},

and for k ∈ {0, . . . , `− 2} let
B`i (n, k) := {G ∈ F `i (n) \ P`i (n) | ∃ v ∈ V, ∃q(k)-set Q : Q ⊆ Γ(v),

|R(Q)| ≥ ( `−k
`
− εA)n, |R(Q) ∩ Γ(v)| ≤ fk(n)}.
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Lemma 3.25 For k ∈ {1, . . . , `− 1}, i ≥ 0 and n sufficiently large it holds that

log
|A`i(n, k)|

|F `0(n− kfk(n))|
≤
(
`− 1

`
− εA

2`

)
· kfk(n) · n.

Proof Figure 3.4 visualizes how the bad set A`i(n, k) is counted.
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Figure 3.4: Bad set A`i(n, k)

We construct all graphs G = (V,E) ∈ A`i(n, k) as follows: First we choose
k sets Q1, ..., Qk ⊆ V which form a q(k)-set Q = Q1 ∪ . . . ∪ Qk (at most(

n
fk(n)

)k ≤ nkfk(n) possibilities) and the edges inside Q (at most 2(kfk(n))2 pos-
sibilities). Then we fix a graph on the remaining n− kfk(n) vertices in V \Q
(at most |F `0(n − kfk(n))| possibilities) and a suitable set R(Q) ⊆ V \ Q (at
most 2n possibilities). Finally, we connect Q to R(Q) (at most 2kfk(n)·|R(Q)|

possibilities) and Q to V \ [Q∪R(Q)]: To this aim we choose for every vertex
x ∈ V \ [Q ∪ R(Q)] a set Qi0 with |Qi0 ∩ Γ(x)| ≤ εR|Qi0|. Then we fix these
neighbors and connect x in an arbitrary way to all other sets Qj . Hence, for
the edges from Q to V \ [Q ∪R(Q)] there are at mostk · εRfk(n)∑

j=0

(
fk(n)

j

)
· 2(k−1)fk(n))

(n−|R(Q)|−kfk(n))

.

possibilities. By Inequality 1 this expression is less than

2( 1
4
εAfk(n)+(k−1)fk(n))(n−|R(Q)|).

Thus, we deduce that

log
|A`i(n, k)|

|F `0(n− kfk(n))|
≤ kfk(n) log n+ (kfk(n))2 + n+ kfk(n) · |R(Q)|

+

(
1

4
εAfk(n) + (k − 1)fk(n)

)
(n− |R(Q)|)

≤
(

(k − 1)fk(n) +
1

2
εAfk(n)

)
· n+ |R(Q)| · fk(n)
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≤
(
k − 1 +

1

2
εA +

`− k
`
− εA

)
· fk(n) · n

≤
(
k − k

`
− 1

2
εA

)
· fk(n) · n.

�

In the next proofs we will repeatedly use the following observation: Let
G = (V,E) be a graph with G ∈ F `i (n) \ P`i (n). Now delete an arbitrary
vertex v ∈ V and consider the graph G′ := G[V \ {v}]. Then G′ ∈ F `i (n− 1).
This follows directly from the fact that G 6∈ P`0(n) ∪ . . . ∪ P`i−1(n) ∪ P`i (n) by
definition and, thus, G′ = G[V \ {v}] 6∈ P`0(n− 1) ∪ . . . ∪ P`i−1(n− 1).

Lemma 3.26 For k ∈ {0, . . . , `− 2}, i ≥ 0 and n sufficiently large it holds that

log
|B`i (n, k)|
|F `i (n− 1)|

≤
(
`− 1

`
− εA

)
· n.

Proof Figure 3.5 visualizes how the bad set B`i (n, k) is counted.
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Figure 3.5: Bad set B`i (n, k)

We construct all graphs G = (V,E) ∈ B`i (n, k) as follows: First we choose a
vertex v ∈ V and a graph G′ ∈ F `i (n − 1) on V \ {v} (at most n|F `i (n − 1)|
possibilities). Then we fix a suitable q(k)-setQ ⊆ V \{v} (at most nkfk(n) pos-
sibilities) and connect v toR(Q) (at most fk(n) ·

(|R(Q)|
fk(n)

)
≤ nfk(n) possibilities).

Finally, we connect v to V \ [{v} ∪R(Q)] (at most 2n−|R(Q)| possibilities).

All in all, we obtain

log
|B`i (n, k)|
|F `i (n− 1)|

≤ log n+ (k + 1)fk(n) · log n+ n− |R(Q)|

≤
(
k

`
+ 2εA

)
· n ≤

(
`− 1

`
− εA

)
· n.

�
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The exclusion of the sets A`i(n, k) and B`i (n, k) already enables us to obtain
our first structural corollary.

Corollary 3.27 Let A`i(n) =
⋃`−1
k=1A`i(n, k) and B`i (n) =

⋃`−2
k=0 B`i (n, k). For n

sufficiently large, all graphs G = (V,E) ∈ F `i (n) \ [P`i (n)∪A`i(n)∪B`i (n)] have
the property that for every vertex v ∈ V there exists a q-set Qv with Qv ⊆ Γ(v).

The proof of Corollary 3.27 is completely analogous to the corresponding
result (Lemma 1.7) in [KPR87]. In particular, we also employ the follow-
ing lemma from [KPR87] which generalizes a result of Bollobás and Erdős
[BE73]:

Lemma 3.28 ([KPR87]) Let 0 < ε < 1 and k ≥ 0. Then for all N ≥ N0(ε, k)
the following holds. If G is a graph with vertex set A0 ∪ ... ∪ Ak, where Aj are
pairwise disjoint sets of size |Aj| = N and |Γ(u) ∩ Aj| ≥ εN for all u ∈ A0

and all j = 1, ..., k, then there exist subsets A′0 ⊂ A0, ..., A
′
k ⊂ Ak such that

|A′j| = dlog(2k)(N)e for all j = 0, ..., k and such that A′0 is completely connected
to all A′j , i.e., we have Γ(u) ⊇

⋃k
j=1 A

′
j for all u ∈ A′0.
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Figure 3.6: Construction of cliques using Lemma 3.28

We include a proof of Corollary 3.27 for sake of completeness and as we will
also reuse the proof idea later on in the proof of Corollary 3.33.

Proof of Corollary 3.27 Consider an arbitrary graph G = (V,E) ∈ F `i (n) \
[P`i (n)∪A`i(n)∪B`i (n)] and an arbitrary vertex v ∈ V . We will show that Γ(v)
contains a q-set.
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Because of G 6∈ B`i (n, 0) we conclude that |Γ(v)| ≥ f0(n) ≥ f1(n) and, thus,
Γ(v) contains a q(1)-setQ of size f1(n). We finish the proof by induction on k.
Hence, assume that we have already found a q(k)-set Q =

⋃k
j=1 Qj in Γ(v)

for a certain k with 1 ≤ k ≤ `− 2.

SinceG 6∈ A`i(n, k) it holds that |R(Q)| ≥ ( `−k
`
−εA)n and due toG 6∈ B`i (n, k)

we deduce that |Γ(v)∩R(Q)| > fk(n). Thus, letA0 denote an arbitrary subset
of Γ(v) ∩ R(Q) with |A0| = fk(n). By applying Lemma 3.28 on A0 and Aj =
Qj, 1 ≤ i ≤ k we obtain sets Q′1, ..., Q′k+1 ⊆ Γ(v) which form a q(k + 1)-set
since

dlog(2k)(fk(n))e = dlog(2k)(dlog(k2−k+2)(n)e)e ≥ dlog((k+1)2−(k+1)+2)(n)e
= fk+1(n).

�

Up to now we have only excluded graphs which contain a q-set Q for which
R(Q) is too small. The next definition also excludes graphs for which R(Q)
is too large.

Definition 3.29 Let C`i (n) denote the set of all graphs G = (V,E) in F `i (n) \
[P`i (n)∪A`i(n)∪B`i (n)] that contain a vertex v and a q-set Q =

⋃`−1
j=1 Qj ⊆ Γ(v),

such that |R(Q)| ≥ (1
`

+ εA)n.

Lemma 3.30 For all i > 0 and n sufficiently large,

log
|C`i (n)|
|F `i (n− 1)|

≤
(
`− 1

`
− 1

2
εA

)
· n.

Proof Figure 3.7 visualizes how the bad set C`i (n) is counted.
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Figure 3.7: Bad set C`i (n)
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We construct all graphs G = (V,E) ∈ C`i (n) as follows: First we choose a
vertex v ∈ V and a graph G′ ∈ F `i (n − 1) on V \ {v} (at most n|F `i (n −
1)| possibilities). Then we choose an appropriate set Q in V \ {v} (at most
n(`−1)f`−1(n) possibilities).

Note that v cannot be connected to any vertex in R(Q), as otherwise G
would contain a K`+1. Therefore, if |R(Q)| ≥ (1

`
+ εA)n then there are at

most 2( `−1
`
−εA)n possibilities to connect v to V \ {v}. It follows that

log
|C`i (n)|
|F `i (n− 1)|

≤ log n+ (`− 1)f`−1(n) · log n+
`− 1

`
n− εAn

≤
(
`− 1

`
− 1

2
εA

)
· n.

�

Before we derive our next structural corollary we first introduce another bad
set. The bad setD`i (n) is once again based on the neighborhood assumption.

Definition 3.31 Let D`i (n) denote the set of all graphs G = (V,E) in F `i (n) \
[P`i (n) ∪ A`i(n) ∪ B`i (n) ∪ C`i (n)] that contain three vertices u, v, w and q-sets
Qu ⊆ Γ(u), Qv ⊆ Γ(v), Qw ⊆ Γ(w) such that the following conditions are
satisfied for W := R(Qw) \ [R(Qu) ∪R(Qv)]. |W | ≥ 1

4`
n and

(i) |Γ(u) ∩W | ≤ |W |
2
− εDn, or

(ii) |Γ(u) ∩ Γ(v) ∩W | ≤ |W |
4
− ε′Dn.

Lemma 3.32 For all i ≥ 0 and n sufficiently large,

log
|D`i (n)|
|F `i (n− 1)|

≤
(
`− 1

`
− εA

)
· n.

Proof Figure 3.8 visualizes how the bad set D`i (n) is counted.

We construct all graphs inD`i (n) as follows: First we choose the vertex u and
a graph G′ ∈ F `i (n− 1) for the remaining vertices. Then we fix the vertices v
and w and the q-sets Qu, Qv and Qw. There are at most

n3 ·
(

n

(`− 1)f`−1(n)

)3

· |F `i (n− 1)| ≤ n4 logn · |F `i (n− 1)|

possibilities for that.
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Figure 3.8: Bad set Di(n)

Assume that Condition (i) of Definition 3.31 holds. Note that |R(Qu)| ≥ (1
`
−

εA)n since G 6∈ A`i(n). This implies that the number of choices for the edges
from u to V \ [R(Qu) ∪W ] is bounded from above by

2n−|R(Qu)|−|W | ≤ 2(1− 1
`
+εA)n−|W |.

Furthermore, there are at most

1
2
|W |−εDn∑
j=0

(
|W |
j

)
≤ |W | ·

(
|W |

1
2
|W | − εDn

)
≤ n · 2|W |−ε1n

possibilities for the edges from u to W, where the last estimate follows by
Inequality 3. All in all, we obtain the following upper bound on the number
of choices:

n4 logn · |F `i (n− 1)| · 2(1− 1
`
+εA−ε1)n.

If, on the other hand, Condition (ii) of Definition 3.31 holds we may safely
assume that Condition (i) does not hold for any choice of the vertices u, v
and w and their q-sets. Hence, it follows that |Γ(v)∩W | =: ξ ≥ 1

2
|W |−εDn ≥

( 1
8`
− εD)n. First we fix the edges from u to V \ [R(Qu) ∪ (Γ(v) ∩W )]. The

number of choices is bounded from above by

2n−|R(Qu)|−|Γ(v)∩W | ≤ 2(1− 1
`
+εA)n−ξ.

For the edges from u to Γ(v) ∩W there are at most

1
4
|W |−ε′Dn∑
j=0

(
ξ

j

)
≤ n ·

(
ξ

1
4
|W | − ε′Dn

)
≤ n · 2ξ·H(( 1

4
|W |−ε′Dn)/ξ)

possibilities. For ε′D ≥ 1
2
εD (cf. Inequality 4) one easily checks that
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1
4
|W | − ε′Dn

ξ
≤

1
4
|W | − ε′Dn

1
2
|W | − εDn

≤
(1

2
− ε′D)n

(1− εD)n
≤ 1

2
.

Thus,

H

( 1
4
|W | − ε′Dn

ξ

)
≤ H

(
(1

2
− ε′D)n

(1− εD)n

)
≤ 1− ε1

by Inequality 5. The total number of choices is therefore bounded from
above by

n4 logn · |F `i (n− 1)| · 2(1− 1
`
+εA)n−ε1ξ

≤ n4 logn · |F `i (n− 1)| · 2(1− 1
`
+εA−ε1( 1

8`
−εD))n

≤ n4 logn · |F `i (n− 1)| · 2(1− 1
`
+εA−ε1 1

16`
)n,

applying Inequality 6. Using Inequality 2 we can combine the two cases and
obtain

log
|D`i (n)|
|F `i (n− 1)|

≤ 1 + 4(log n)2 + n ·
(

1− 1

`
+ εA − ε1

1

16`

)
≤ 5(log n)2 + n ·

(
1− 1

`
+ εA − 3εA

)
≤ n ·

(
1− 1

`
− εA

)
.

�

Now we are in a position to prove our next structural corollary. It shows
that all graphs which have not yet been excluded remain i-quasi-`-partite
after the deletion of at most ` vertices.

Corollary 3.33 For all graphs G ∈ F `i (n) \ [P`i (n) ∪ A`i(n) ∪ B`i (n) ∪ C`i (n) ∪
D`i (n)] and arbitrary vertices V ′ ⊆ V with |V ′| =: k ≤ ` it holds that G′ :=
G[V \ V ′] ∈ F `i (n− k).

Proof Consider a graph G ∈ F `i (n) \ [P`i (n) ∪A`i(n) ∪ B`i (n) ∪ C`i (n) ∪D`i (n)].
It suffices to show that G 6∈

⋃`+i
j=i+1P`j (n) because if this condition holds at

least `+ i+ 1 vertices must be deleted in order to make the graph `-partite.

Assume that G = (V,E) ∈ P`j (n) for some j ∈ {i + 1, . . . , ` + i}. Then we
can find vertices v1, . . . , vj such that G′ = (V ′, E ′) := G[V \ {v1, . . . , vj}] ∈
P`0(n− j). Let S1, . . . , S` be a valid `-coloring of G′. Figure 3.9 visualizes this
situation.

Consider an arbitrary vertex x ∈ S1 with q-set Qx ⊆ Γ(x). It is easy to see
that R(Qx) ⊆ S1 ∪ {v1, . . . , vj}. Hence, |S1| ≥ (1

`
− 2εA)n since G 6∈ A`i(n). By

symmetry this also holds for S2, . . . , S`.
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Figure 3.9: Situation in proof of Corollary 3.33

For brevity let v` =: v. By Qv we denote a q-set with Qv ⊆ Γ(v) which exists
due to Corollary 3.27. Without loss of generality we assume that S` is a color
class where the cardinality of the intersection with R(Qv) is maximum. By
G 6∈ C`i (n) it follows that |R(Qv) ∩ Sk| ≤ 1

2
(1
`

+ εA)n for k = 1, . . . , `− 1.

v must have a neighbor u in S`. Otherwise, G could be made `-partite by
removing just v2, . . . , vj . Let Qu ⊆ Γ(u) be a q-set. As we have already seen,
R(Qu) ⊆ S` ∪ {v1, . . . , vj}.

For the color classes S1, . . . , S`−1 we fix vertices z1, . . . , z`−1 with zk ∈ Sk and
q-sets Qzk ⊆ Γ(zk) for k = 1, . . . , `− 1. Note that R(Qzk) ⊆ Sk ∪ {v1, . . . , vj}.
Furthermore, we define Wk := R(Qzk) \ [R(Qu) ∪ R(Qv)]. Since R(Qzk) ∩
R(Qu) ⊆ {v1, . . . , vj} and R(Qv) ∩ R(Qzk) ⊆ (R(Qv) ∩ Sk) ∪ {v1, . . . , vj}, we
have

|Wk| ≥ |R(Qzk)| − j − |R(Qv) ∩ Sk| ≥
(

1

`
− εA

)
n− j − 1

2

(
1

`
+ εA

)
n

≥
(

1

2`
− 2εA

)
n ≥ 1

4`
· n,

where the last inequality is a consequence of Inequality 7. Since G 6∈ D`i (n)
and because of Inequality 6 it follows that

|Γ(u) ∩ Γ(v) ∩Wk| ≥
(

1

16`
− ε′D

)
n ≥ 1

32`
· n

Using the same approach as in the proof of Corollary 3.27 we construct a
K`−1 in Γ(u)∩Γ(v): By induction on k we show that Γ(u)∩Γ(v)∩ (S1 ∪ . . .∪
Sk) =: Nk contains a q(k)-set. The base case k = 0 is trivial.

Now assume that we have already found a q(k)-set Q with Q ⊆ Nk. Con-
sider the set L := [Γ(u) ∩ Γ(v) ∩ Sk+1] \ R(Q). |L| is small because, clearly,
R(Q) ∩ (S1 ∪ . . . ∪ Sk) = ∅ and, therefore,
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|V | = n ≥ |S1|+ . . .+ |Sk|+ |R(Q)|+ |L|

≥
(

1

`
− 2εA

)
· k · n+

(
`− k
`
− εA

)
n+ |L|

= (1− 2kεA − εA)n+ |L|

and, thus, |L| ≤ 2(k + 1)εAn ≤ 2`εAn ≤ 1
64`
· n by Inequality 7. This implies

that |Γ(u)∩ Γ(v)∩ Sk+1 ∩R(Q)| = |Γ(u)∩ Γ(v)∩ Sk+1| − |L| ≥ 1
64`
· n. Hence,

as in the proof of Corollary 3.27 we can construct a q(k)-set within Nk.

This yields a contradiction because we can easily find a K`+1 composed of
the vertices u, v and an arbitrary K`−1 taken from the q(` − 1)-set within
N`−1 ⊆ Γ(u) ∩ Γ(v). �

Finally, we define our last type of bad sets and derive a bound on their
cardinality.

Definition 3.34 For k ∈ {1, . . . , l} let Ei(n, k) denote the set of all graphs G =
(V,E) ∈ F `i (n)\ [P`i (n)∪A`i(n)∪B`i (n)∪C`i (n)∪D`i (n)] that contain a k-clique
Sk = {v1, . . . , vk} such that G′ := G[V \ Sk] ∈ F `i (n− k) with

Sk is not contained in a k + 1-clique, (3.1)

and for each vertex vj there exists a q-setQj ⊆ Γ(vj) such that |R(Qj)| ≥ n
l
−εAn

and

U := V \

(
Sk ∪

k⋃
j=1

R(Qj)

)
satisfies

|U | ≥ εEn. (3.2)

Lemma 3.35 For k ∈ {1, . . . , l}, i ≥ 0 and n sufficiently large,

log
|Ei(n, k)|
|F `i (n− k)|

≤ `− 1

`
nk − εE

2`+1
n.

Proof Figure 3.10 visualizes how the bad set Ei(n, k) is counted.

We construct all graphs G = (V,E) in Ei(n, k) as follows: First we choose
Sk = {v1, . . . , vk} and a suitable graph G′ ∈ F `i (n− k) on the vertices V \ Sk
(at most nk · |F `i (n− k)| possibilities).

Now we choose the q-sets Q1, . . . , Qk ⊆ V such that the corresponding sets
R(Qj) satisfy the conditions of Definition 3.34 (at most n(`−1)kf`−1(n) possibil-
ities).
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Finally, we connect Sk to V \ Sk. For every 1 ≤ h ≤ k and every h-tupel
1 ≤ i1 < . . . < ih ≤ k we define the set Ti1,...,ih = (R(Qi1) ∩ . . . ∩ R(Qih)) \⋃
j 6∈{i1,...,ih}R(Qj). Then the following holds for the set U by definition:

U = V \

(
k⋃

h=1

⋃
i1,...,ih

Ti1,...,ih ∪ Sk

)
,

The number of possibilities to connect Sk to Ti1,...,ih is at most 2(k−h)|Ti1,...,ih |.
To see this, observe that vj and R(Qj) cannot be connected.

By assumption (3.1) of Definition 3.34 there are at most (2k − 1)|U | ≤
2(k−2−k)·|U | possibilities to connect Sk to U . Putting all this together we ob-
tain at most

2(k−2−k)·|U | · 2
∑k
h=1

∑
i1,...,ih

|Ti1,...,ih |(k−h)

possible choices for the connections from Sk to V \ Sk. It holds that

k∑
h=1

∑
i1,...,ih

|Ti1,...,ih|(k − h) = k

(
k∑

h=1

∑
i1,...,ih

|Ti1,...,ih|

)
−

k∑
h=1

∑
i1,...,ih

|Ti1,...,ih|h

≤ k|V \ U | −
k∑
j=1

|R(Qj)|

≤ kn− k|U | − k
(n
l
− εAn

)
=

l − 1

l
nk − k|U |+ kεAn.

Now the lemma follows by Inequality 8:

log
|Ek(n)|
|F `i (n− k)|

≤ k log n+ (l − 1)kf`−1(n) log n+ (k − 2−k)|U |
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+
l − 1

l
nk − k|U |+ kεAn

≤ l − 1

l
nk − 2−k|U |+ 2kεAn ≤

l − 1

l
nk − εE

2k
n+ 2kεAn

≤ l − 1

l
nk − 1

2l+1
εEn.

�

Corollary 3.36 Let E `i (n) :=
⋃l
k=1 E `i (n, k). For all sufficiently large n, the

graphs G ∈ F `i (n) \ [P`i (n) ∪ A`i(n) ∪ B`i (n) ∪ C`i (n) ∪ D`i (n) ∪ E `i (n)] have
the following property:

For 1 ≤ k < `, every clique of size k is contained in a clique of size `.

Proof Consider an arbitrary graph G ∈ F `i (n) \ [P`i (n) ∪ A`i(n) ∪ B`i (n) ∪
C`i (n) ∪ D`i (n) ∪ E `i (n)]. Assume that S = {v1, . . . , vk} is a maximal clique in
G of size 1 ≤ k < `. For every vertex vj ∈ S there is a q-set Qj ⊆ Γ(vj). Since
G 6∈ C`i (n), it follows that

∑k
j=1 |R(Qj)| ≤ k(1

`
+ εA)n, i.e., we obtain for the

set U of Lemma 3.35 that

|U | ≥
(

1− k

`
− kεA

)
n ≥

(
1

`
− (`− 1)εA

)
n ≥ εEn,

where the last inequality is a consequence of Inequality 9. This contradicts
the assumption that G 6∈ E `k(n). �

Now we have defined enough bad sets in order to cover all graphs inF `i (n)\
P`i (n). This is shown in the following lemma.

Lemma 3.37 For all sufficiently large n,F `i (n)\[P`i (n)∪A`i(n)∪B`i (n)∪C`i (n)∪
D`i (n) ∪ E `i (n)] is empty.

Proof Assume there exists a graph G = (V,E) ∈ F `i (n) \ [P`i (n) ∪ A`i(n) ∪
B`i (n)∪C`i (n)∪D`i (n)∪E `i (n)]. We will show that G has to be `-partite, which
contradicts the definition of the set F `i (n).

Recall that due to Corollary 3.27 there exists a q-set Qv ⊆ Γ(v) for every ver-
tex v ∈ V . The corresponding sets R(Qv) are denoted by R(v) for brevity. In
the sequel we collect some auxiliary results on the structure of the graph G:

(1) For all v ∈ V it holds that (1
`
− εA) · n ≤ |R(v)| ≤ (1

`
+ εA) · n.

This is an immediate consequence of the fact thatG 6∈ A`i(n, `−1)∪C`i (n).
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(2) For v, v′ ∈ V with {v, v′} ∈ E it holds that |R(v) ∩R(v′)| ≤ 2εEn.

This can be seen as follows: By Corollary 3.36 we deduce that v and v′

belong to an `-clique S = {v1, . . . , v`}. Since this clique cannot be con-
tained in an (`+ 1)-clique it follows by Definition 3.34 that∣∣∣∣∣

l⋃
j=1

R(vj)

∣∣∣∣∣ ≥ n− εEn.

As |R(vj)| ≤ (1
`

+ εA)n for all 1 ≤ i ≤ ` by (1), we conclude that (cf.
Inequality 8)

|R(v) ∩R(v′)| ≤ (`εA + εE)n ≤ 2εEn.

(3) For all v ∈ V and x ∈ R(v) it holds that |R(v) ∩R(x)| ≥ 9
10`
n.

Since x ∈ R(v) we conclude by the definition of R(v) that there are ver-
tices v1, . . ., v`−1 in Qv such that v1, . . ., v`−1, x as well as v1, . . . , v`−1, v
form an `-clique. Set T :=

⋃`−1
j=1 R(vj). By (1) and (2) we deduce using

Inequality 8 that

|T | ≥
(

(`− 1)

(
1

`
− εA

)
−
(
`− 1

2

)
· 2εE

)
n

≥
(
`− 1

`
− (`− 1)εA − (`− 1)`εE

)
n ≥

(
`− 1

`
− `2εE

)
n

and that
|R(x) ∩ T | ≤ 2`εEn, |R(v) ∩ T | ≤ 2`εEn.

This implies that

|R(x)∪R(v)| ≤ |R(x)∩ T |+ |R(v)∩ T |+ (V \ T ) ≤
(

4`εE +
1

`
+ `2εE

)
n.

Due to |R(v)|, |R(x)| ≥ (1
l
− εA)n it follows that

|R(x) ∩R(v)| = |R(x)|+ |R(v)| − |R(x) ∪R(v)|

≥
(

2

`
− 2εA

)
n−

(
4`εE +

1

`
+ `2εE

)
n

≥
(

1

`
− 2εA − 4`εE − `2εE

)
n ≥ 9

10`
n

by Inequality 10.

After these preliminary observations we are in a position to prove the
lemma: Let S = {v1, . . . , v`} be an `-clique which exists due to Corollary 3.36.
For j = 1, . . . , ` we set
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S(vj) :=

{
v ∈ V

∣∣∣ |R(v) ∩R(vj)| ≥
2

3

n

`

}
.

Consider two vertices x, y that belong both to S(vj) and which are connected
by an edge. As |R(vj)| ≤ (1

`
+ εA)n by (1) it follows that |R(x) ∩ R(y)| is at

least, say, 1
4`
n. This contradicts (2) (cf. Inequality 7) and we conclude that the

sets S(vj) are stable.

On the other hand, observe that (1) together with |
⋃`
j=1 R(vj)| ≥ n − εEn

implies that for every vertex x ∈ V there must be an index j ∈ {1, . . . , `}
such that R(x) ∩ R(vj) 6= ∅. Consider an arbitrary vertex y ∈ R(x) ∩ R(vj).
By (3) it follows that |R(x) ∩ R(y)| ≥ 9

10`
n and |R(vj) ∩ R(y)| ≥ 9

10`
n. Since

|R(y)| ≤ (1
`

+ εA)n we conclude that |R(x) ∩ R(vj)| ≥ 2
3
n
`
. From that we

deduce that
⋃`
j=1 S(vj) = V , i.e., G is `-colorable. �

3.6.3 Inductive counting

Finally, we are in a position to show our main result of this chapter.

Proof of Theorem 3.2 We will show the slightly stronger statement that

|F `i (n)| = (1 + ci · 2−γn)|P`i (n)|.

for appropriate constants ci ≥ 1 (where c0 ≤ ci for i ≥ 1) and γ > 0.

By Lemma 3.37 it follows that

|F `i (n)| ≤ |P`i (n)|+ |A`i(n)|+ |B`i (n)|+ |C`i (n)|+ |D`i (n)|+ |E `i (n)|.

Thus, it suffices to show that |X (n)|/|P`i (n)| = 1
5`

2−γn for all bad sets X (n),
i.e.,

X (n) ∈ {A`i(n, 1), . . . ,A`i(n, `− 1),B`i (n, 0), . . . ,B`i (n, `− 2),

C`i (n),D`i (n), E `i (n, 1), . . . , E `i (n, `)}.

We proceed by induction on n. Note that we may assume without loss of
generality that the claim is true for all n ≤ n0 for an arbitrarily large con-
stant n0. This is due to the fact that we can simply choose ci ≥ 1 sufficiently
large. For the induction step we note that for all bad sets X (n) apart from
A`i(n, 1), . . . , A`i(n, ` − 1) one easily checks by Lemma 3.26, Lemma 3.30,
Lemma 3.32 and Lemma 3.35 that for γ > 0 sufficiently small we have

log
|X (n)|

|F `i (n− k)|
≤
(
`− 1

`
− 3γ

)
nk

for a suitable constant k ≥ 1 and n sufficiently large.

Furthermore, it holds that
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|X (n)|
|P`i (n)|

=
|X (n)|

|F `i (n− k)|
· |F

`
i (n− k)|
|P`i (n− k)|

· |P
`
i (n− k)|
|P`i (n)|

.

By the induction hypothesis and Corollary 3.21 we deduce that

log
|X (n)|
|P`i (n)|

≤
(
`− 1

`
− 3γ

)
nk + log(1 + ci)−

`− 1

`
nk +O(1)

≤ log(ci)− 2γn

and, consequently, |X (n)|/|P`i (n)| ≤ ci
5`

2−γn.

For the bad sets X (n) ∈ {A`i(n, 1), . . . ,A`i(n, `− 1)} we proceed similarly by
observing that

log
|X (n)|

|F `0(n− g(n))|
≤
(
`− 1

`
− 3γ

)
ng(n)

for g(n) = kfk(n) = O(log n) due to Lemma 3.25. Moreover, it holds that

|X (n)|
|P`i (n)|

=
|X (n)|

|F `0(n− g(n))|
· |F

`
0(n− g(n))|
|P`0(n− g(n))|

· |P`0(n− g(n))|
|P`i (n− g(n) + i(2`+ 1))|

·

|P`i (n− g(n) + i(2`+ 1))|
|P`i (n)|

.

Applying the induction hypothesis, Corollary 3.21 and Lemma 3.22 we con-
clude that

log
|X (n)|
|P`i (n)|

≤
(
`− 1

`
− 3γ

)
n g(n) + log(1 + c0) + 0

−`− 1

`
n g(n) +O(g(n)2)

≤ log(ci)− 2γn.

Once again, it follows that |X (n)|/|P`i (n)| ≤ ci
5`

2−γn and the induction step is
completed. �



4
Complete subgraphs of ε-regular graphs

4.1 Introduction

Szemerédi’s Regularity Lemma [Sze76] represents one of the most impor-
tant tools in modern combinatorics. In graph theory this lemma and its vari-
ants have been applied to numerous problems but its application is mainly
restricted to dense graphs, i.e., graphs with Θ(n2) edges.

Independently, Kohayakawa and Rödl [Koh97] have devised versions of the
Regularity Lemma which can be used for sparse graphs, too. However, the
power of the sparse Regularity Lemma is yet limited by the fact that an
additional lemma, which plays a crucial rôle in many applications and is
rather easy to prove in the dense case, does not immediately carry over to
sparse graphs.

It has been shown that this so-called embedding lemma does not hold for
all sparse graphs, but there is strong evidence that it should hold in a proba-
bilistic sense, i.e., for ’most’ graphs. Kohayakawa, Łuczak and Rödl [KŁR97]
have formulated a conjecture what such a sparse embedding lemma should
look like. Due to the importance of this conjecture for the applicability of
the Regularity Lemma to sparse random graphs, it is sometimes regarded
to be one of the most important open questions in the theory of random graphs (cf.
[JŁR00]). However, only a few special cases have been verified so far.

The main difficulty in proving the conjecture stems from the fact that the
statement involves extremely small probabilities. These probabilities are
too small to attack them with standard tools from probability theory. Thus
custom-tailored counting methods must be devised.
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In this chapter we prove the two ’smallest’ open cases of the conjecture
by Kohayakawa, Łuczak and Rödl. This also has immediate implications
for a conjecture related to extremal H-free subgraphs of random graphs. It
yields a conceptually simple proof of the case H = K4, previously verified
in [KŁR97], and solves the the caseH = K5, which has been open up to now.

The results discussed in this chapter have been presented in January 2002 at
workshops in Oberwolfach and Zürich but have not yet been published in
written form. A manuscript [GPS+02] for the case H = K4 has been submit-
ted for publication.

Outline of this chapter In Section 4.2 we briefly state our main result. Sec-
tion 4.3 is meant as a gentle introduction to the conjecture by Kohayakawa,
Łuczak and Rödl and its context. We briefly review Szemerédi’s Regularity
Lemma, its algorithmic variants, and its application in extremal graph the-
ory (cf. Section 4.3.1). Then we introduce a sparse variant and the initially
mentioned conjecture (cf. Section 4.3.2). Section 4.4 discusses related work.

The following sections contain the proof of our results and are organized as
follows. In general, the proofs for the two cases H = K4 and H = K5 are
intertwined as they are based on the same tools. Therefore, most parts of the
proof are equally important for both cases. However, certain sections which
refer only to one of the cases are marked with (K4) resp. (K5) in the heading.
A reader who is only interested in one of the two cases may safely skip parts
of the proof which deal with the other case. We prefer repeating certain parts
of the proof for the two cases rather than introducing cross-references in
order to render the sections for the different cases self-contained.

Section 4.5 contains an outline of the proof. Section 4.6 then introduces
some notation and comparatively simple but necessary technical results.
Section 4.7 presents a tool for proving that a certain set of graphs is small.
Finally, the rather lengthy Section 4.8 contains the main part of the proof for
both cases H = K4 and H = K5.

4.2 Main result

The conjecture by Kohayakawa et al. and thus also our main result deal with
`-partite graphs of the following structure.
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Definition 4.1 ((ε, n,m)-regular) A bipartite graph B = (U
·
∪W,E) with

|U | = |W | = n and |E| = m is called (ε, n,m)-regular if for all U ′ ⊆ U
and W ′ ⊆ W with |U ′| ≥ εn and |W ′| ≥ εn,∣∣∣|E(U ′,W ′)| −m · |U

′| · |W ′|
n2

∣∣∣ ≤ εm · |U
′| · |W ′|
n2

.

Definition 4.2 (Regular `-partite graphs) Consider a fixed graph H on ` ver-
tices. An `-partite graph G = (V1

·
∪ . . .

·
∪V`, E) is called (H,n,m)-graph if

• |V1| = . . . = |V`| = n, and

• |E(Vi, Vj)| = m for all {i, j} ∈ E(H), and E(Vi, Vj) = ∅ otherwise.

A (H,n,m)-graph is said to be (H,n,m; ε)-regular if G[Vi, Vj] is (ε, n,m)-
regular for all {i, j} ∈ E(H).

Let S(H,n,m; ε) denote the set of all (H,n,m; ε)-regular graphs and let

F(H,n,m; ε) := {G ∈ S(H,n,m; ε) | H 6⊆ G}.

Since in this chapter we concentrate on the case, when H is a complete
graph, we set S`(n,m; ε) := S(K`, n,m; ε) and F`(n,m; ε) := F(K`, n,m; ε).
Using this notation we now state the main result of this chapter.

Theorem 4.3 For any β > 0 and ` ∈ {4, 5} there exist constants ε0 > 0, C >
0, n0 > 0 such that

|F`(n,m; ε)| ≤ βm
(
n2

m

)(`2)

for all m ≥ Cn2−2/(`+1), n ≥ n0 and 0 < ε ≤ ε0.

Theorem 4.3 directly corresponds to the cases H = K4 and H = K5 of the
previously mentioned conjecture by Kohayakawa, Łuczak and Rödl. For a
formal statement we refer the reader to Conjecture 4.19 on page 56.
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4.3 Background: Regularity and sparse graphs

This section is intended to give a gentle introduction to the background of
the conjecture which we are going to (partially) prove in the remainder of
this chapter. However, this is not meant to attain the level neither of a com-
prehensive survey nor of a detailed text book. Instead, we will often appeal
to the intuition of the reader and skip lengthy and rather technical proofs.

For more details and applications we refer the reader to the excellent sur-
vey articles on the Regularity Lemma [KS96] and [Koh97] which deal with
dense resp. sparse graphs. Meanwhile the Regularity Lemma is also treated
in many text books on graph theory and random graphs in particular (cf.
e.g. [Die97] [Bol98] [Łuc00]).

4.3.1 Szemerédi’s Regularity Lemma for dense graphs

When proving a conjecture of Erdős and Turán [ET36] on arithmetic pro-
gressions, Szemerédi showed an auxiliary lemma [Sze75] [Sze76] which
since then has experienced a remarkable success story. This lemma, which
is nowadays known as Szemerédi’s Regularity Lemma, became a particularly
important tool in modern combinatorics and especially in graph theory. For
a comprehensive survey on applications of the Regularity Lemma we refer
the reader to [KS96].

Informally speaking, the Regularity Lemma states that the vertex set V of
any graph G = (V,E) can be partitioned into vertex sets V0, V1, . . . , Vk for a
(controllable) constant k such that most bipartite graphs induced by pairs
(Vi, Vj) have a pseudorandom structure.

This pseudorandomness is expressed by the notion of ε-regularity, which
means that the edges are very uniformly distributed in the graph, as it is the
case, e.g., for random graphs Gn,p. This leads to the following definition.

Definition 4.4 (ε-regularity) Let ε > 0 and consider a graph G = (V,E) with
two disjoint vertex sets A,B ⊆ V . The pair (A,B) is called ε-regular if

|d(X,Y )− d(A,B)| ≤ ε.

for all X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B|.

Recall that d(X, Y ) := e(X, Y )/(|X||Y |) denotes the density of the pair X, Y .
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Definition 4.4 can be interpreted as follows. Let the pair (A,B) be ε-regular.
Then in every pair of subsets (X, Y ), where X and Y contain at least a linear
number of vertices, we can find approximately as many edges e(X, Y ) as we
expect by the density d(A,B). More precisely we have

(d(A,B)− ε) · (|X| · |Y |) ≤ e(X,Y ) ≤ (d(A,B) + ε) · (|X| · |Y |). (4.1)

For a random graph Gn,p we expect E[e(X, Y )] = p · |X| · |Y | and by standard
concentration bounds from probability theory we easily obtain

|e(X,Y )− E[e(X, Y )]| = o(1) · E[e(X, Y )] ⇒ |d(X, Y )− p| = o(1)

with high probability. Thus, as far as the number of edges between ’large’,
i.e., linear, subsets is concerned, an ε-regular pair behaves as a random
graph Gn,p for p = d(A,B).

The Regularity Lemma shows that every graph may be decomposed into
such pseudorandom ε-regular structures. It can be stated as follows.

Definition 4.5 (Regular partitions) Let a graph G = (V,E) be given. A parti-
tion V0

·
∪V1

·
∪ · · ·

·
∪Vk = V is called (ε, k)-regular if

• |V1| = · · · = |Vk|,

• |V0| < εn = ε|V | (exceptional vertices),

• all but at most εk2 of the pairs (Vi, Vj) are ε-regular (exceptional pairs).

Lemma 4.6 [Sze76] (Regularity Lemma) For every ε > 0 and k0 ≥ 1 there
exist N0(ε, k0) ≥ 1 and K0(ε, k0) ≥ k0 such that for every G = (V,E) with
|V | ≥ N0 there is a (ε, k)-regular partition with k0 ≤ k ≤ K0,.

Obviously, such a decomposition can be extremely helpful for proving re-
sults on the structure of a graph. As we will see soon, it is quite straight-
forward to see that ε-regularity implies strong bounds, e.g., on the degree
of individual vertices and the overlap of neighborhoods. Hence standard
arguments often suffice to find certain structures first in the ε-regular pairs
and then in the original graph. This sometimes turns the proof of rather
deep results into a routine task. Due to its power the Regularity Lemma has
become an extremely valuable and widely used tool.

Note that there exist quite a few versions of Regularity Lemmas. In partic-
ular there are important variants which deal with multiple graphs sharing
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the same set of vertices or which extend to hypergraphs (cf. [Ste90] [Chu91]
[FR92]). However, for brevity we will refer to Lemma 4.6 as ’the’ Regularity
Lemma.

The original proof of the Regularity Lemma is non-constructive, but later
algorithms for finding (ε, k)-regular partitions have been developed (cf.
[ADL+92]). In particular, this led to new insight in the approximability of
well-known optimization problems, like, e.g., MAXCUT or QUADRATICAS-
SIGNMENT (cf. e.g. [FK96]). We refer the reader to [KR00] for a survey on
algorithmic variants and applications of the Regularity Lemma.

Structure of ε-regular pairs

In order to understand the importance of the Regularity Lemma it is neces-
sary to study the structure of ε-regular pairs. In the sequel we collect a few
well-known facts about this structure. For a more complete exposition we
refer the reader to the survey [KS96] or the books [Die97] [Bol98] [JŁR00].

Although the Regularity Lemma only concerns subsets of linear size, it is
easy to obtain the following rather strong result on the degree of individual
vertices.

Lemma 4.7 (Degrees in ε-regular pairs) Consider an ε-regular pair (A,B).
For any subset Y ⊆ B with |Y | ≥ ε|B| and dY (v) := |Γ(v) ∩ Y | we have

|{v ∈ A | dY (v) > (1 + ε)d(A,B) · |Y |}| < ε|A|,

and
|{v ∈ A | dY (v) < (1− ε)d(A,B) · |Y |}| < ε|A|.

Proof For the proof of the first claim let

X> := {v ∈ A | dY (v) > (1 + ε)d(A,B) · |Y |}

and check Definition 4.4 for the sets X> and B. For |X>| ≥ ε|A| this imme-
diately yields a contradiction. The proof of the second claim is analogous.

�

Lemma 4.7 shows that almost all vertices approximately have the ’right’
degree, i.e., the degree which we would expect in a random graph, into a
set Y of linear size. We can even strengthen this result without much effort.
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Lemma 4.8 (Intersection property) Consider an ε-regular pair (A,B) and let
` ≥ 1. For d = d(A,B) and any subset Y ⊆ B with (d − ε)`−1|Y | ≥ ε|B| we
have

|{{v1, . . . , v`} ⊆ A | |Y ∩ Γ(v1) ∩ . . . ∩ Γ(v`)| ≤ (d− ε)`|Y |}| < `ε|A|`.

Proof Similar to the proof of Lemma 4.7. Use induction on `. �

Applications of the Regularity Lemma usually aim at finding certain sub-
structures, i.e., subgraphs with a certain property. By means of Lemma 4.8
this is rather easily achieved. We are going to demonstrate this by a small
example (cf. Figure 4.1).
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Figure 4.1: A simple example for an embedding lemma

Consider a tripartite graph G = (V,E) with V = V1

·
∪V2

·
∪V3 and |V1| =

|V2| = |V3| = n. For all pairs {i, j} ⊆ {1, 2, 3} we assume that (Vi, Vj) is ε-
regular and that e(Vi, Vj) = m ≥ dn2 resp. d(Vi, Vj) ≥ d. We aim at finding a
subgraph K3 ⊆ G.

By Lemma 4.7 there exist at most 2εn vertices v ∈ V1 such that dj(v) < (1 −
ε)dn for j ∈ {2, 3}. Take one such vertex v and consider the neighborhoods
Qj := Γj(v). Provided that, say, d ≥ 10ε we obtain |Qj| ≥ (1 − ε)dn ≥ 5εn.
Thus we can apply Lemma 4.7 one more time to show that there exist at
most εn vertices v ∈ Q2 such that dQ3(v) < (1 − ε)d|Q3|. Consequently, we
can find a vertex w ∈ Q2 with dQ3(w) ≥ (1 − ε)d|Q3| ≥ (1 − ε)2d2n, and the
vertices v, w clearly belong to many triangles K3 ⊆ G.

Based on the ideas sketched in the preceding example the following lemma
can be proved. Embedding lemmas of that kind are common in applications
of the Regularity Lemma.
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Lemma 4.9 (An embedding lemma) For every d > 0, there exist ε > 0 and
N0 ≥ 1 such that the following holds. Let H = (VH , EH) be a graph with VH =
{1, . . . , k}. Consider a graph G = (VG, EG) and k disjoint subsets V1, . . . , Vk ⊆
VG with |V1| = . . . = |Vk| = N ≥ N0 such that all pairs (Vi, Vj) with {i, j} ∈ EH
are ε-regular and have density d(Vi, Vj) ≥ d. Then G contains H as a subgraph.

�

For a proof of Lemma 4.9 we refer the reader to the literature, e.g., [Die97].

Extremal graph theory and the Regularity Lemma

In extremal graph theory questions like ’What is the structure of a K`-free
graph with a maximum number of edges?’ are studied. Generally speaking,
we investigate the structure of graphs which are extremal for the occurrence
of certain substructures. If we put it the other way round, this means that we
are interested in properties which imply the existence of such substructures.

A quantity which plays a central rôle in many classical results of extremal
graph theory is given by

ex(F,G) := max{e(H) | G 6⊆ H ⊆ F}

for graphs F and G, i.e., ex(F,G) denotes the maximum number of edges a
G-free subgraph of F may have. Using this notation we state Turán’s The-
orem [Tur41], which is generally considered the starting point of extremal
graph theory.

Theorem 4.10 [Tur41] (Turán’s Theorem)

ex(Kn, K`) =

(
1− 1

`− 1

)
n2

2
=: t`−1(n).

�

Theorem 4.10 states that every graph with more that t`−1(n) edges contains
a subgraph G = K`. The following famous theorem by Erdős, Stone and
Simonovits generalizes this result to arbitrary subgraphs G. Theorem 4.11
basically says that the maximum number of edges which a G-free graph
may have is a function of the chromatic number χ(G).
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Theorem 4.11 [ES46] [ES66] (Erdős-Stone-Simonovits-Theorem) For every
graph G with χ(G) ≥ 3 we have

ex(Kn, G) =

(
1− 1

χ(G)− 1
+ o(1)

)(
n

2

)
.

The Regularity Lemma can be used to obtain a rather simple proof of The-
orem 4.11. We briefly sketch this proof here because it demonstrates the
fundamental strategy which recurs in many applications of the Regularity
Lemma.

Proof of Theorem 4.11 (Sketch) It is easy to show that it suffices to prove
Theorem 4.11 for graphs Kp

` (recall that Kp
` denotes the complete `-partite

graph where every partition consists of p vertices) and p ∈ N sufficiently
large. For a detailed discussion of this observation and of the remaining
proof see, e.g., [Die97].

Let G = (V,E) be a graph with more than (1 − 1
`−1

+ β)
(
n
2

)
edges for some

β > 0. Observe that χ(Kp
` ) = `. Hence it remains to show that G contains a

subgraph Kp
` , provided that |V | is sufficiently large.

Applications of the Regularity Lemma usually consist of the following three
steps:

1. Obtain an (ε, k)-regular partition V0

·
∪V1

·
∪ . . .

·
∪Vk = V by the Reg-

ularity Lemma (cf. Lemma 4.6), choosing ε sufficiently small and k0

sufficiently large (We will see later what ’sufficiently’ means.).

2. Consider a graph R = (VR, ER) on the vertex set VR = {1, . . . , k},
where {i, j} ∈ ER if and only if the pair (Vi, Vj) is ε-regular and con-
tains a non-negligible number of edges. R is often referred to as the
reduced graph.

If the constants for this ’non-negligible’ number and for the ’suffi-
ciently’ small resp. large values in the previous step are suitably cho-
sen, the graph R must contain many edges. Note that most edges in G
belong to pairs E(Vi, Vj) such that {i, j} ∈ R, since only the following
groups of edges are ’lost’:

(i) Edges inside a partition Vi. This can be controlled by choosing k0

sufficiently large and thus |Vi| ≤ n/k0 sufficiently small.

(ii) Edges incident to V0. As |V0| ≤ εn only few edges can belong to
this group if ε is small.
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(iii) Edges between pairs (Vi, Vj) such that e(Vi, Vj) is ’negligible’.
Only few pairs (Vi, Vj) may belong to this group, since otherwise
not enough space remains for the (many) edges in G which do
not belong to the first two groups.

Based on these arguments and by choosing ε and k0 in a suitable way,
one can show that |ER| > (1 − 1

`−1
)k

2

2
= t`−1. By Turán’s Theorem (cf.

Theorem 4.10) it follows that R contains a subgraph K`.

3. By Lemma 4.9 it follows that G contains a subgraph K`. Using a
strengthened version of Lemma 4.9 one can even show that Kp

` ⊆ G,
and Theorem 4.11 is proved.

Since this sketch of the proof strategy suffices for our purposes, we conclude
our exposition at this point and refer the reader to the literature for more
details. �

The above steps (construct an (ε, k)-regular partition using the Regularity
Lemma, find a suitable subgraph of the reduced graph R, go back to the
graph G using an embedding lemma) occur in many proofs which apply
the Regularity Lemma.

4.3.2 KŁR-Conjecture for sparse graphs

Regularity Lemmas for sparse graphs

Note that the statement of the Regularity Lemma is only useful for dense
graphs. In the sequel we will call a graph G = (V,E) dense if it has
Θ(n2) edges. Otherwise G is called sparse. For sparse pairs A,B ⊆ V with
e(A,B) = o(n2) it follows that d(A,B) = o(1). In this case (4.1) obviously
becomes meaningless.

However, by suitable modifications of the definition of regularity it is possi-
ble to derive Regularity Lemmas for sparse graphs. This was independently
observed by Kohayakawa and Rödl (cf. [Koh97]). In the sequel we present a
rather simple version of a sparse Regularity Lemma, which will suffice for
our introductory exposition.

Let a graph G = (V,E) be given. For a disjoint pair of sets A,B ⊆ V the
normalized density is defined by

d̄(A,B) :=
e(A,B)

|A||B|

(
V
2

)
|E|

= d(A,B) ·
(
V
2

)
|E|

.

For the sake of completeness we set d̄(A,B) = 0 if |E| = 0.
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The scaling factor
(
V
2

)
/|E| ensures that d̄(A,B) does not necessarily become

small for sparse graphs, i.e., for |E| = o(|V |2). By replacing the density
d(A,B) with the normalized density d̄(A,B) we get a new notion of reg-
ularity which is useful also for sparse graphs.

Definition 4.12 (Strong ε-regularity) Let ε > 0 and consider a graph G =
(V,E) with two disjoint sets A,B ⊆ V . The pair A,B is called strongly ε-
regular if

|d̄(X, Y )− d̄(A,B)| ≤ ε

for all X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B|.

The goal of a sparse Regularity Lemma is to find strongly ε-regular parti-
tions, which are identical to ε-regular partitions up to the fact that strong
ε-regularity must hold for most pairs (Vi, Vj).

Definition 4.13 (Strongly regular partitions) Let a graph G = (V,E) be
given. A partition V0

·
∪V1

·
∪ · · ·

·
∪Vk = V is called strongly (ε, k)-regular if

• |V1| = · · · = |Vk|,

• |V0| < εn = ε|V | (exceptional vertices),

• all but at most εk2 of the pairs (Vi, Vj) are strongly ε-regular (exceptional
pairs).

For reusing the idea of the proof of the original Regularity Lemma an ad-
ditional assumption has to be made. The graph G that shall be regularly
partitioned must satisfy certain bounds which show that the density of lin-
ear subgraphs is not too big. The concept of γ-boundedness stated below
represents one way to formalize that.

Definition 4.14 ((b, γ)-boundedness) Let b ≥ 1 and β > 0. A graph G =
(V,E) is (b, γ)-bounded if for every pair of disjoint subsets A,B ⊆ V with
|A|, |B| ≥ γ|V | we have d̄(A,B) ≤ b.

Now we are in a position to state a sparse version of the Regularity Lemma.
As in the dense case several versions of sparse Regularity Lemmas have
been devised. Lemma 4.15 is a rather simple and weak variant, but it should
suffice to point out the basic concepts. Our notation follows [JŁR00].



54 CHAPTER 4. COMPLETE SUBGRAPHS OF ε-REGULAR GRAPHS

Lemma 4.15 [Koh97] (Sparse Regularity Lemma) For every ε > 0 and k0, b ≥
1 there exist γ = γ(ε, b, k0) > 0, and K0(ε, k0, b) ≥ k0 such that for every (b, γ)-
bounded graph G = (V,E) with |V | ≥ k0 there is a strongly (ε, k)-regular parti-
tion. �

Applying the sparse Regularity Lemma to Gn,m

The restriction to (b, γ)-bounded graphs does not severely limit the appli-
cability of Lemma 4.15. In the sequel we will apply the Regularity Lemma
to sparse random graphs Gn,m, where m = o(n2). To this aim we will firstly
show that such random graphs are indeed (b, γ)-bounded.

Definition 4.16 (γ-uniformity) A graph G = (V,E) is γ-uniform if for every
pair of disjoint subsets A,B ⊆ V with |A|, |B| ≥ γ|V | we have

1− γ ≤ d̄(A,B) ≤ 1 + γ.

Lemma 4.17 (Uniformity of random graphs) For m = ω(n) and γ > 0 a
random graph G = Gn,m is asymptotically almost surely γ-uniform.

Proof Follows easily by Chernoff/Höffding bounds. �

Lemma 4.17 implies in particular that G is, say, (2, γ)-bounded.

It is tempting to transfer well-known (deterministic) results for dense graphs
which can be proved using the Regularity Lemma to sparse random graphs.
In [KŁR97] the following conjecture was presented, which resembles the
Erdös-Stone-Simonovits Theorem (cf. Theorem 4.11) in the deterministic set-
ting (see also [HKŁ95] [HKŁ96], where the conjecture was already outlined).

Conjecture 4.18 [KŁR97] (Conjecture on ex(Gn,m, H)) Let H be a non-empty
graph with vH ≥ 3. Then asymptotically almost surely

ex(Gn,m, H) =

(
1− 1

χ(H)− 1
+ o(1)

)
m,

provided that m = ω(n2−1/d2(H)).
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Similar to the place of the Erdős-Stone-Simonovits Theorem in extremal
graph theory, Conjecture 4.18 would be at the core of a random extremal graph
theory — a theory which would study the structure of extremal subgraphs
of random graphs and which is yet to be written.

A natural proof strategy for Conjecture 4.18 would proceed, analogously to
the proof of Theorem 4.11, by using the sparse Regularity Lemma. And, in-
deed, the first part of the proof goes through quite easily. Given a fixed con-
stant γ > 0, consider an arbitrary subgraph J of a random graph G = Gn,m

with at least (1− 1
χ(H)−1

+γ)m edges. We intend to show that asymptotically
almost surely H ⊆ J for any choice of J ⊆ G.

For Step 1 we use the sparse Regularity Lemma. In Step 2 we can bound the
edges outside the regular partition due to the uniformity of random graphs
(cf. Lemma 4.17). Hence, as in the deterministic case, a subgraph Kp can be
found in the reduced graph.

Unfortunately, Step 3 fails, since we do not have a counterpart of Lemma 4.9,
the embedding lemma, for sparse graphs. Recall that the basic idea for the
proof of Lemma 4.9 was to repeatedly exploit the fact that most vertices
in ε-regular graphs have the right degree into subsets of linear size (cf.
Lemma 4.7). Such a lemma still holds for sparse strongly ε-regular graphs.
However, the expected degree of a vertex is equal to Θ(n· m

n2 ) = Θ(m
n

) = o(n)
form = o(n2). As the size of the neighborhood of a typical vertex is thus sub-
linear, the repeated application of Lemma 4.7 for estimating the size of the
common neighborhood of several vertices fails. It even turns out that not
only the proof technique for Lemma 4.9 does not carry over to the sparse
case, but even that there are graphs which represent counterexamples for a
direct analog of Lemma 4.9. In [KR01] such a counterexample (attributed to
Łuczak) is cited and a result of a similar flavor is shown.

Conjecture by Kohayakawa, Łuczak and R ödl

Since there is no deterministic embedding lemma for sparse graphs, it is natu-
ral to ask, whether there is a probabilistic variant, which guarantees the exis-
tence of a specific subgraph with high probability. However, a rather simple
heuristic argument reveals that such a lemma would presumably have to
hold with extremely high probability in order to be useful in applications.
More specifically, it will turn out that we require a probability for the oc-
currence of a subgraph H which is at least as large as 1 − βm for a suitably
small β.

For the proof of Conjecture 4.18 we must show that H ⊆ J for every sub-
graph J ⊆ G = Gn,m with e(J) ≥ (1 − 1

χ(H)−1
+ γ)m. Note that there are

roughly 2m choices for the subgraph J . Furthermore, it appears to be in-
tractable to control the dependencies of the events ’H ⊆ J1’ and ’H ⊆ J2’



56 CHAPTER 4. COMPLETE SUBGRAPHS OF ε-REGULAR GRAPHS

for two different subgraphs J1, J2 ⊆ G. Thus there seems to be no better
approach than to estimate Pr[H 6⊆ J0] for an arbitrary but fixed subgraph
J0 ⊆ H and to use the trivial union bound

Pr[∃J 6⊆ G = Gn,m : H ⊆ J ] ≤ 2m · Pr[H 6⊆ J0].

Hence, the probabilistic embedding lemma should provide a bound on the
probability Pr[H 6⊆ J ] which is much smaller than 2−m.

A rather simple lower bound shows that such small probabilities are out of
reach for random graphs Gn,m. To see this, fix a partition of the n vertices
into k := χ(H)− 1 partitions of size n/k (for simplicity’s sake assume that k
divides n). Clearly, if none of the m edges of G = Gn,m lies within one of the
k partitions, it follows that H 6⊆ G. For m ≤ c

(
n
2

)
we deduce that

Pr[H 6⊆ G] ≥

{(
k − 1

k

(
n

2

)
−m

)
·
(
n

2

)−1
}m

≥
(

1− 1

k
− c
)m

.

This implies that a probabilistic embedding lemma must exploit the fact that
a fixed graph H shall be found in an ε-regular partition. From an intuitive
point of view it seems possible that the ε-regularity might lead to smaller
probabilities for the occurrence of a given subgraph H than in a classical
random graph Gn,m. This is due to the fact that in ε-regular structures the
edges are nicely distributed. More precisely, the bound on the number of
edges between linear sets of vertices should imply that in given parts of the
graph the local number of edges closely follows its expectation. For example
the degree of most vertices should be proportional to the density and also
the overlap of neighborhoods should occur as expected. This intuition turns
out to be justified, as the analysis of our main result in this chapter will
show.

In [KŁR97] Kohayakawa, Łuczak and Rödl conjectured that a probabilistic
embedding lemma indeed exists. We cite a simplified version from [KR01].

Conjecture 4.19 [KR01] (KŁR-Conjecture) Let H denote an arbitrary graph.
For any β > 0 there exist constants ε0 > 0, C > 0, n0 > 0 such that

|F(H,n,m; ε)| ≤ βm
(
n2

m

)e(H)

(4.2)

for all m ≥ Cn2−1/d2(H), n ≥ n0 and 0 < ε ≤ ε0.

Recall (3.7), where we have defined that
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d2(H) := max

{
eF − 1

vF − 2
| F ⊆ H, vF > 2

}
.

Observe that (H,n,m; ε)-regular graphs directly correspond to the ε-regular
structures which we encounter when we apply the (sparse) Regularity
Lemma and identify a subgraphH in the reduced graph. There are only two
minor technical differences. Firstly, the Regularity Lemma does not guaran-
tee that |E(Vi, Vj)| is identical for all {i, j} ∈ E(H). However, it easy to see
that a seemingly more general version of Conjecture 4.19 which holds for
non-identical values of |E(Vi, Vj)| can be deduced from the simpler version
stated above (cf. [Łuc00]). Secondly, the sparse Regularity Lemma was for-
mulated in terms of the normalized density d̄ which uses the normalization
factor |E|/

(|V |
2

)
, whereas in the definition of (ε, n,m)-regularity we have the

factor m/n2. But clearly these two quantities only differ by a constant.

Conjecture 4.19 can directly be rephrased in a probabilistic style. To this aim
letG(H,n,m) denote an (H,n,m)-graph drawn uniformly at random. Using
this notation (4.2) reads

Pr[G = G(H,n,m) ∈ S(H,n,m; ε) ∧ H 6⊆ G] ≤ βm.

Using Chernoff/Höffding-bounds it is easy to see that

Pr[G = G(H,n,m) ∈ S(H,n,m; ε)] = 1− o(1) (4.3)

for, say, m ≥ n log n, i.e., almost all (H,n,m)-graphs are (H,n,m; ε)-regular.
Due to (4.3) the statement (4.2) is equivalent to

Pr[H 6⊆ G | G = G(H,n,m) ∈ S(H,n,m; ε)] ≤ βm (4.4)

for suitably chosen constants ε and β. Thus Conjecture 4.19 indeed repre-
sents the probabilistic embedding lemma that we need for applications of
the sparse Regularity Lemma, e.g. for the proof of Conjecture 4.18.

Interpretation of the threshold n2−1/d2(H) The threshold n2−1/d2(H) has
the following intuitive interpretation. Assume that we generate a graph
G ∈ S(H,n,m; ε) edge by edge, and consider the situation when almost
all edges have been chosen. Only a linear fraction, say, κm, of the edges
E(Vi, Vj) between two arbitrary partitions Vi and Vj are about to be selected
at random. It should be the case that the choices for these edges dominate
the probability that G is H-free, since we need first the previously chosen
edges to get many subgraphs which are easy to complete to a subgraph H .
Then these edges impose strong restrictions on the choices for the remaining
edges if the graph shall remain H-free.

In order to achieve an overall probability of βm for the event ’H ⊆ G’, every
single edge must complete a subgraph H with probability at least 1 − γ for
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a sufficiently small γ. Then we would obtain an overall probability of about
γκm, boldly assuming that the probabilities for the edges are independent.
Such a small probability for a single edge can only be achieved if almost
all of the n2 positions for edges E(Vi, Vj) are incident to subgraphs which
are identical to H up to one missing edge. The expected number of such
’almost-H’ subgraphs should be approximately equal to

Θ

(
nvH ·

(m
n2

)eH−1
)
. (4.5)

In order to find out how big m has to be (restricting our attention merely to
the order of magnitude) when ’almost-H’ subgraphs occupy all but a tiny
fraction of the n2 positions for edges, we set

nvH ·
(m
n2

)eH−1 !
= n2 ⇐⇒ meH−1 = n2eH−vH ⇐⇒ m = n

2− vH−2

eH−1 . (4.6)

Observe that the number of occurrences of a subgraph H depends on the
subgraph F ⊆ H with the smallest expected number of occurrences (analo-
gously to the well-known result on the occurrence of subgraphs in random
graphs Gn,p, cf. e.g. [JŁR00]). Clearly, H cannot occur more often than F .
In order to avoid over-counting we should therefore consider the following
value of m as a suitable candidate for the searched threshold (cf. (3.7))

m = max
F⊆H

n
2− vF−2

eF−1 = n2−1/d2(H). (4.7)

A second, more formal argument to obtain a lower bound for the threshold
would be as follows. In [JŁR90] a quite precise bound on the probability
of the event ’H 6⊆ Gn,p’ has been given. This bound has been transferred to
random graphsGn,m in [PS96a]. Roughly speaking, for non-bipartite graphs
H it can be shown that

Pr[H 6⊆ Gn,m] = e−Θ(ΦH), (4.8)

where ΦH := minF⊆H{nvF ·(m/n2)eF } denotes the expected number of occur-
rences of the least-frequent subgraph F ⊆ H . Observe that ΦH is increasing
in m and that ΦH can be bounded by ΦH ≤ m (consider the subgraph F
which consists of a single edge).

We want to find out when we have Pr[H 6⊆ Gn,m] = e−Θ(m). Because of (4.8)
we set

ΦH ≥ m ⇐⇒ min
F⊆H

nvF ·
(m
n2

)eF
≥ m ⇐⇒ min

F⊆H
nvF ·

(m
n2

)eF−1

≥ n2.

Comparing this with (4.6) and (4.7), we see that we obtain ΦH = m for
m ≥ n2−1/d2(H).
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Analogously, it follows that ΦH = o(m) and thus Pr[H 6⊆ Gn,m] ≥ e−o(m)

for m = o(n2−1/d2(H)). Let ’REG’ denote the event that the random graph
is strongly ε-regular. A standard application of Chernoff/Höffding-bounds
shows that Pr[REG] ≥ 1− e−Θ(m) (similar to (4.3). We obtain

Pr[H 6⊆ Gn,m | REG] ≥ Pr[H 6⊆ Gn,m ∩REG]

≥ Pr[H 6⊆ Gn,m]− Pr[¬REG]

≥ e−o(m) − e−Θ(m) = e−o(m).

Thus a result like (4.4) cannot be true for m = o(n2−1/d2(H)).

Applications of the KŁR-conjecture Now let us return to applications of
Conjecture 4.19. We have introduced Conjecture 4.19 as a tool needed for
the proof of Conjecture 4.18 on ex(Gn,m, H). For a more detailed discussion
of this subject we refer the reader to [JŁR00] where also a proof of the case
H = K3 can be found.

As we have already seen in Chapter 3, [Łuc00] contains the following the-
orem, which is based on Conjecture 4.19. We restate this theorem here for
easier reference.

Theorem 3.6 [Łuc00] Let H be a graph with χ(H) = ` + 1 ≥ 3 for which
Conjecture 4.19 holds. Then for every δ > 0 there exists C > 0 such that

Pr[G is (δ, `)-partite | G = Gn,m is H-free] = 1− o(1),

provided that m ≥ Cn2−1/d2(H). �

The proof of Theorem 3.6 uses a sparse Regularity Lemma which slightly
differs from Lemma 4.15, but the modifications are rather technical. The ba-
sic approach for applying the Regularity Lemma stays the same and is based
on Conjecture 4.19 as probabilistic embedding lemma.

The following conjecture was formulated in [KŁR97] together with Con-
jecture 4.18. The statement refers to arbitrary subgraphs of random graphs
Gn,m and bears some similarity to Theorem 3.6. Therefore it comes as no
surprise that Conjecture 4.19 can be used to prove it (cf. [JŁR00] [Beh02]).

Conjecture 4.20 [KŁR97] Let H be a graph with χ(H) = ` + 1 ≥ 3. Then
for every δ > 0 there exists γ > 0 such that asymptotically almost surely every
H-free subgraph F ⊆ G of a random graph G = Gn,m with at least e(F ) ≥
(1− γ)ex(Gn,m, H) edges is (δ, `)-partite, provided that m = ω(n2−1/d2(H)). �
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It is worth mentioning that there exists an intimate connection between Con-
jecture 4.20 and Conjecture 4.18. For simplicity let us consider the case ` = 2,
and let H be a triangle. Observe that n2−1/d2(K3) = n2−1/2 = n3/2 and that
ex(Gn,m, K3) ≈ (1 − 1/2)m = m/2, provided that Conjecture 4.18 holds.
Now assume the following (analogous to the statement of Conjecture 4.20):

Every triangle-free subgraph F ⊆ G of a random graph G =
Gn,m with at least e(F ) ≥ m/2 edges is asymptotically almost
surely (δ, 2)-partite, provided that m ≥ Cn3/2 and C = C(δ) is
sufficiently large.

By Chernoff/Höffding-bounds it is rather easy to show that a random graph
G = Gn,m does not contain a bipartite subgraph with more than, say, m/2 +√
mn log n = (1/2 + o(1))m edges for m = Ω(n3/2).

Now we will argue that the above assumption implies Conjecture 4.18. Con-
sider a subgraph J ⊆ G with e(J) ≥ (1/2 + γ)m edges. We intend to show
that asymptotically almost surely all such subgraphs contain a triangle. As-
sume the contrary and let J ⊆ G be a counterexample. Then, by our previ-
ous assumption, J is almost surely (δ, 2)-partite. Thus there exists a bipartite
subgraph J ′ ⊆ G with e(J ′) ≥ (1/2 + γ − δ)m. By choosing δ smaller than,
say, γ/2 we get the desired contradiction.

In addition to Conjecture 4.18 and Conjecture 4.20 which deal with results
on extremal graphs, i.e., of the so-called Turán-type, there are also results of
the Ramsey-type, where the sparse Regularity Lemma and Conjecture 4.19
are applicable. Again we refer the reader to the literature (cf. e.g. [JŁR00]
[Beh02]) for more detailed accounts on this subject.

Given the powerful rôle which the Regularity Lemma plays for dense
graphs, one can hope that, in addition to the applications sketched above, a
proof of Conjecture 4.19 may lead to important insight and other new results
on random graphs.

4.4 Related work

Extremal subgraphs of random graphs Only a few special cases of Con-
jecture 4.18 have been proved up to now. In fact, these cases are restricted
to trees and cycles. For trees, Conjecture 4.18 follows from a simple applica-
tion of the sparse Regularity Lemma. The first non-trivial cases considered
in the literature areH = K3 in [FR86] andH = C4 in [Für94] (based on a idea
from [KW82]), where results are presented from which Conjecture 4.18 es-
sentially follows. Later Conjecture 4.18 has been fully verified for arbitrary
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cyclesH = C` (cf. [HKŁ95] [HKŁ96] [KKS98]). Apart from that only the case
H = K4 has been solved (cf. [KŁR97]).

Recently, significant progress has been made towards a proof of Conjec-
ture 4.18 for complete graphs H = K`. In [KRS02] a corresponding result for
arbitrary ` is shown, based on a technique introduced in [KR01]. However,
this result, stated for random graphs Gn,p, assumes that p = ω(n−1/(`−1)),
which is larger than the conjectured threshold n−1/d2(K`) = n−2/(`+1).

Embedding lemma for sparse graphs As far as Conjecture 4.19 is con-
cerned, the situation is very similar. The case that H is a tree can be shown
without any effort. For cycles the papers [Für94] [HKŁ95] [KKS98], which
deal with Conjecture 4.18, contain auxiliary results which come very close
to Conjecture 4.19. Related results can also be found in [KK97] [Kre97].
In [Beh02] it is shown how these results can be turned into a formal proof of
Conjecture 4.19 for arbitrary cycles.

In [KR01] a variant of Conjecture 4.19 for H = K` and arbitrary ` is an-
nounced. However, similar to the above mentioned result in [KRS02], this
result only holds for random graphs Gn,p with p = ω(n−1/(`−1)) (This formu-
lation for subgraphs of random graphs Gn,p essentially corresponds to the
formulation of Conjecture 4.19 given in this chapter.). Thus, it still remains
open to prove the conjecture for the threshold n−1/d2(K`) = n−2/(`+1).

Our results verify the smallest open cases H = K4 and H = K5 of Conjec-
ture 4.18, achieving exactly the presumed threshold. This yields a conceptu-
ally simple proof of the case H = K4 of Conjecture 4.18, previously settled
in [KŁR97], and a proof of the yet completely unsolved case H = K5.

4.5 Outline of the proof

Due to (4.3) we know that random graphsG(H,n,m) are typically ε-regular.
Hence we will base our following intuitive arguments on the assumption
that the structure of ε-regular graphs is similar to random graphs.

Note that here and in the sequel we use the terms (H,n,m; ε)-regular and
ε-regular interchangeably. Since we will never be dealing with ε-regular
graphs in the sense of Definition 4.4 or Definition 4.12 this should not cause
any confusion.

The case H = K4

Let G = G(n,m, 4) := G(K4, n,m) be a random subgraph of the complete
4-partite graph Kn,n,n,n with n vertices in each partition and with m edges



62 CHAPTER 4. COMPLETE SUBGRAPHS OF ε-REGULAR GRAPHS

between each pair of partitions. As an alternative we may consider a bi-
nomial random subgraph G = G(n, p, 4) of Kn,n,n,n in which all edges are
present independently with probability p := m/n2.

Let q := m/n. Note that in a random graph G(n, p, 4), the neighborhood of a
vertex v in one of the partitions has expected size q, since pn = (m/n2)n = q.
Intuitively, conditioning on the ε-regularity of G should even increase the
probability that the size of a neighborhood is close to its expectation because
the edges in ε-regular graphs are very evenly spread, i.e., the ε-regularity
helps to avoid untypical cases which may occur in random graphs (although
with small probability). Based on this intuition, which can clearly be trans-
ferred to other sets than neighborhoods (cf. Lemma 4.8), we will now intro-
duce the crucial ideas behind our proof strategy.

Finding K4-candidates For every vertex v ∈ V1 we try to find subgraphs
which can be turned into aK4 by adding a single edge from v to some vertex
v′ ∈ V4. We call such a vertex v′ a clique candidate of v. Note that we do not
insist on a clique candidate v′ being adjacent to v. We show that there are
Ω(n) vertices v ∈ V1 each of which has almost n clique candidates in V4.
Since it is very unlikely that the neighborhood of v does not intersect the big
set of clique candidates, this will suffice to prove Theorem 4.3.
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Figure 4.2: Idea for construction of K4-candidates.

Figure 4.2 illustrates how the clique candidates in V4 are found. As discussed
earlier, a vertex v ∈ V1 should have approximately q neighbors in V2 and V3.
We denote the neighborhood of v in Vi by Γi(v). Consider a vertex w ∈ Γ2(v).
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We expect that |Γ3(v)∩Γ3(w)| ≈ pq = (m/n2)(m/n) = m2/n3. The same argu-
ment shows that for every vertex u ∈ Γ3(v)∩ Γ3(w) there are approximately
m2/n3 vertices in Γ4(u) ∩ Γ4(w). These m2/n3 vertices are clique candidates
of v. Note that the same arguments still hold, as far as the order of magni-
tude of the results is concerned, if we forbid at most, say, (1 − ξ)n vertices
in V4, provided that ξ is not too tiny. Hence, we may find m2/n3 clique can-
didates for every vertex in Γ3(v) ∩ Γ3(w), yielding a total of (m2/n3)2 clique
candidates. Finally, we repeat this process for the q vertices in Γ2(v), and get
(m2/n3)2q = (m4/n6)(m/n) = m5/n7 clique candidates in V4. If m ≥ Cn8/5

for C sufficiently large, we may thus expect that almost all vertices in V4 are
clique candidates of v.

Introducing bad sets From a more technical point of view our proof strat-
egy proceeds as follows. We define families of ’bad’ graphs, i.e., graphs with
’unusual’ properties. By estimating the number of such graphs we show
that the overwhelming majority of graphs does not possess these proper-
ties. Hence we collect more and more information on structural properties
of typical ε-regular graphs. Based on this knowledge we identify certain
substructures in the graph which will, in the end, lead to K4-candidates.
As a red thread which may guide the reader through the proof we briefly
sketch the structural properties that we use.

Firstly, as an immediate (and well-known) consequence of ε-regularity, the
degrees of single vertices are approximately equal to their expectation q.

Secondly, the neighborhood of sets with cardinality Θ(n2/m) and Θ(m/n) =
Θ(q) is examined by introducing the notions of covers and multicovers. In
particular, it turns out the the neighborhood of a single vertex in a set of
cardinality Θ(q) has size Θ(q ·m/n2) = Θ(m2/n3), as one may expect due to
the affinity with random graphs G(n,m, 4).

Thirdly, we prove that a set of size Θ(m2/n3) and a single vertex have a
common neighborhood of size t = Ω(n2/m). Note that the expectation in a
random graph G(n,m, 4) amounts to Θ(m2/n3 ·n · (m/n2)2) = Θ(m4/n6) and
for m = ω(n8/5) this is larger than t. The results of this step correspond to
the auxiliary notion of a triangle candidate cover.

In a fourth step, we then combine multicovers and triangle candidate cov-
ers. Consider again a vertex v ∈ V1 and its neighborhood Γ3(v) of size Θ(q).
We prove that a single vertex w ∈ V2 indeed has a neighborhood of size
Θ(m2/n3) inside Γ3(v). This follows from the properties of a multicover.
Moreover, these Θ(m2/n3) vertices close Ω(n2/m) triangles (between the
partitions V2, V3, and V4), as implied by the properties of a triangle candi-
date cover. Together, this will enable us to introduce triangle covers, which
show that almost all vertices in V2 close many triangles with Γ3(v).
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Now the fifth step is straightforward. We prove that the neighborhood Γ2(v)
intersects with the many vertices in the triangle cover. This finally yields
the desired K4-candidates, since only the edge between V1 and V4 is missing
from the structure. For one such vertexw ∈ Γ2(v) we obtain t = Ω(n2/m)K4-
candidates. By iterating the process for Θ(q) vertices in Γ2(v) we get Ω(q·t) =
Ω(m/n · n2/m) = Ω(n) K4-candidates.

As indicated above, a simple sixth step of the proof shows that this implies
the existence of subgraphs K4, since Γ4(v) is likely to overlap with the large
set of K4-candidates..

Due to technical reasons, i.e., as to obtain a sufficiently small probability, one
major deviation from the scheme sketched above is necessary. When show-
ing the existence of triangle covers we have to examine the neighborhoods
of many vertices in V1 at once. This makes the proof a bit more hairy than
the rather clear strategy might suggest.

The case H = K5

Our intuitive arguments are based on a random subgraph G = G(n,m, 5) of
the complete 5-partite graph Kn,n,n,n,n with n vertices in each partition and
m edges between each pair of partitions, resp. the corresponding binomial
random graph G = G(n, p, 5) in which all edges occur independently with
probability p = m/n2.

Finding K5-candidates Our aim is to find Θ(n) K5-candidates for every
vertex v ∈ V1, i.e., vertices x ∈ V5 which are part of a subgraph that can be
turned into a K5 by adding a single edge from v to x. Figure 4.3 shows how
this goal is achieved.

Consider three fixed vertices, say, v ∈ V1, w ∈ V2, and u ∈ V3. The expected
size of their common neighborhood Γ4(v) ∩ Γ4(w) ∩ Γ4(u) is equal to Θ(n ·
(m/n2)3) = Θ(m3/n5). For m ≥ Cn5/3 and a sufficiently large constant C we
may thus assume that there exists a vertex y ∈ Γ4(v)∩Γ4(w)∩Γ4(u). For this
vertex we again obtain that Γ5(y) ∩ Γ5(w) ∩ Γ5(u) 6= ∅. Thus, for every triple
(v, w, u) of vertices we obtain one K5-candidate, provided that the vertices
v, w, and u form a triangle.

For a fixed vertex w ∈ Γ2(v), we expect Θ(n · (m/n2)2) = Θ(m2/n3) vertices
u ∈ Γ3(v) ∩ Γ3(w). Observe that n2/m = O(m2/n3) for m = Ω(n5/3). Hence,
we may assume that at least Θ(n2/m) suitable vertices u ∈ V3 exist. Note that
the neighborhood of Θ(n2/m) vertices has size Θ(n2/m · n ·m/n2) = Θ(n).
Thus, taking more vertices u into consideration does not yield more disjoint
K5-candidates, since the neighborhoods Γ5(u) of these vertices are likely to
overlap.
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Figure 4.3: Idea for construction of K5-candidates.

Finally, observe that there are Θ(m/n) vertices w ∈ Γ2(v). Hence, iterating
over all vertices w and u we obtain Θ(m/n ·n2/m · 1) = Θ(n) K5-candidates.

Introducing bad sets For the case H = K5 we use a similar proof tech-
nique as for the case H = K4, namely we investigate the structure of typi-
cal ε-regular graphs by introducing suitable families of bad, i.e., untypical
graphs.

Initially, we again rely on the previously mentioned results concerning the
degrees of single vertices, as well as covers and multicovers. Additionally,
we derive a result on the overlapping neighborhood, i.e., the common neigh-
borhood of two vertices. Similar to multicovers we will show that two ver-
tices share Θ(m2/n3) common neighbors.

Our next aim is to prove the existence of square candidate covers, which ex-
hibit an analogous structure to the above mentioned triangle candidates
covers. Basically, we want to show that a single vertex w ∈ V2 and a set
of size Θ(m2/n3) in V3 typically belong to many subgraphs K4 which ex-
tend over t = Ω(n2/m) vertices in V5. More precisely, we will also have an
additional fixed vertex v and an edge from v to the subgraph K4.

After having proved the existence of square candidate covers, we can finish
the proof as in the case H = K4. Consider a vertex v ∈ V1 and its neighbor-
hood Γ3(v) of size Θ(q). We prove that a single vertex w ∈ V2 indeed has
a neighborhood of size Θ(q · m/n2) = Θ(m2/n3) inside Γ3(v). This follows
from the properties of a multicover. Moreover, these Θ(m2/n3) vertices close
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t = Ω(n2/m) subgraphs K4 (between the partitions V2, V3, V4, and V5, with
additional edges from v to the vertices in V4), as implied by the properties
of a square candidate cover. Together, this will enable us to introduce square
covers, which show that almost all vertices in V2 close many squares with
Γj(v) for v ∈ V1 (with an additional edge from v to V4). Then K5-candidates
can be constructed analogously to the K4-candidates in the case H = K4

by combining the squares for all Θ(q) vertices in Γ2(v). This yields in total
Ω(q · t) = Ω(n) K5-candidates.

For the construction of square candidate covers we introduce yet another
auxiliary structure, the so-called cocovers. A cocover consists of a set in V3 of
size Θ(n2/m) and sets V4 of size Θ(m2/n3). Together these sets should have

Θ(n2/m ·m2/n3 · n · (m/n2)2) = Θ(m3/n4)

neighbors in V5. Note that m3/n4 = Θ(n) for m = Θ(n5/3). Hence, we
show that neighborhoods of the sets in the cocover ’tile’ the partition V5.
For larger m, i.e., for m = ω(n5/3), we control the overlap between these
neighborhoods by introducing the notion of quasidisjointness. Based on this
quasidisjointness, we will show that cocovers almost directly correspond to
the square candidate covers we have been looking for.

Technical difficulties

Of course, this outline of the proof is very rough and neglects several impor-
tant aspects. Firstly, we must deal with random ε-regular graphs. This rules
out many tools from probability theory which are formulated for product
spaces. Hence, most of the time we will directly count the number of graphs
with given properties. Secondly, a little deviation from the expectation has
to be tolerated and corresponding error terms must be taken into account.
Thirdly, so far we have only discussed the order of magnitude of the re-
sults, whereas the choice of suitable constants represents a delicate part of
the proof. Finally, the order in which the neighborhoods and intersections of
neighborhoods are considered is crucial because dependencies would spoil
our proof strategy.

4.6 Preliminaries

4.6.1 Conventions and notation

In order to increase the clarity of the presentation we make use of the fol-
lowing conventions:
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We will not introduce floors and ceilings when we are talking about integral
terms, e.g., cardinalities of sets. Since we are only interested in the asymp-
totic behavior of those quantities, this would merely introduce lower order
error terms which complicate the exposition. However, it would be a stan-
dard but laborious task to modify the proofs such that the integrality of all
terms is respected. Similarly we will ignore whether certain quantities are
integrally divisible, e.g., we will assume that we can partition a set of q ver-
tices into exactly q/p sets of size p.

For neighborhoods inside specific partitions we will use the abbreviations
Γi(v) := Γ(v) ∩ Vi and di(v) = |Γi(v)|. For F ⊆ E we let ΓFi (v) = {u ∈ Vi |
{v, u} ∈ F} and define dFi (v) accordingly.

To gain control over the size of certain sets, we will often need to determin-
istically fix a subset of a given cardinality in a larger set of vertices. In order
to do so we assume that the vertices in Vi are ordered in an arbitrary but
unique way, say Vi = {1, . . . , n}. By [A]x we denote the set B ⊆ A of size
|B| = x that contains the x smallest elements in A. If |A| < x, we define
[A]x := A.

All constants which are denoted by Greek letters are tacitly assumed to be
smaller than, say, 10−3. When we intend to show Theorem 4.3 for some fixed
β > 0 all other auxiliary constants will depend on β. More specifically we
assume that the auxiliary constants decrease as β decreases. In fact we will
even require that all auxiliary constants approach zero as β → 0. Formally
speaking, an auxiliary constant ν is a function ν = ν(β) depending on β.
Note that if suitable constants ε0, C > 0 and n0 > 0 exist for a specific value
of β, then these constants are also suitable for β′ ≥ β. Hence if the statement
of Theorem 4.3 is proved for β it also holds for β′. We may therefore assume
that certain constants are sufficiently small by choosing β sufficiently small.

For an auxiliary constant ν = ν(β) we will call quantities of the type νx

super-exponentially small in ν, as the basis ν can be made arbitrarily small by
choosing a sufficiently small value for β.

We will not be interested in the actual values of the auxiliary constants for a
given value of β. Instead we will be content to show that suitable auxiliary
constants exist. Since the dependencies between β and the auxiliary con-
stants are rather complicated to state explicitly, we introduce the relation
‘≪’. Let ν = ν(β) and µ = µ(β) denote two auxiliary constants. Essentially
ν ≪ µ means that νpoly(µ) ≤ µ for any polynomial poly(x) provided that β
and thus ν and µ are sufficiently small. This notion will suffice for all occa-
sions when we need that a specific constant is chosen ‘much’ smaller than a
certain other constant.
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Definition 4.21 (Relation ≪) Consider two functions ν, µ : (0, 1] → (0, 1]
such that limβ→0 ν(β) = limβ→0 µ(β) = 0. We write ν≪ µ if

∀C ≥ 1 ∃β0 > 0 ∀0 < β ≤ β0 : C · [ν(β)]µ(β)C/C ≤ µ(β)C .

The following example shows that auxiliary constants ν and µ with ν≪ µ
indeed exist.

Example 4.22 We have e−e1/x ≪ x, since for all C ≥ 1

C ·
(
e−e

1/x
)xC/C

= C · exp

(
− e1/x

C · (1/x)C

)
≤ C · e−1/xC ≤ xC

for x sufficiently small, with lots of room to spare.

The following proposition collects a few simple properties of≪.

Proposition 4.23 (Simple properties of≪)

(i) If ν≪ µ, then ν ≤ µ for sufficiently small β.

(ii) If ρ≪ ν and ν ≤ µ, then ρ≪ µ.

(iii) If ν≪ µ, then ν≪ µ/k and even ν≪ µk for all k > 0.

(iv) If ν≪ µ, then kν≪ µ and even ν1/k≪ µ for all k > 0.

(v) If ν≪ µ, then ν/µ ≤ ν1/2 for sufficiently small β.

Proof (i) and (ii) follow directly from the definition. The proof of (iii) and (iv)
is similar and we just show one case. Assume that ν ≪ µ and that k ≥ 1
(otherwise the claim is trivial). In order to show that ν≪ µk observe that

Cν(µk)C/C ≤ (kC)νµ
kC/(kC) ≤ µkC ≤ (µk)C

for β sufficiently small. Finally, (v) easily follows from ν1/2 ≪ µ. �

In the sequel, if we assume that ν is chosen such that ν≪ µ for a given µ ≥
0, we may assume for concreteness sake that µ = e−e

1/ν . This is summarized
in the following definition.
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Definition 4.24 ((µ)⊕ and (µ)	) Let f(x) := e−e
1/x . For a function ν : (0, 1]→

(0, 1] we define (ν)	 := f ◦ ν. Accordingly we set (ν)⊕ := f−1 ◦ ν. Furthermore,
(ν)⊕ and (ν)	 may be iterated. We let (ν)⊕1 := (ν)⊕ and (ν)⊕i+1 := ((ν)⊕i)⊕ for
i ≥ 1. The notation (ν)	i is defined accordingly.

Recall Example 4.22 and observe that ν≪ (ν)⊕ and (ν)	≪ ν.

Theorem 4.3 only holds asymptotically, i.e., we shall only prove it for suffi-
ciently large n. For the asymptotic estimates the number of edgesmmust be
interpreted as a function m = m(n) of the number of vertices. Furthermore,
we can assume that m ≥ t(n) with a threshold t(n) = Θ(n5/3) for the case
H = K5 and t(n) = Θ(n8/5) for H = K4. As we intend to prove a prob-
ability of βm in Theorem 4.3, only terms which are exponential in m will
really be important for our subsequent counting arguments. In particular,
polynomial terms in n may safely be ignored. But observe that terms like 2m

are also negligible in comparison to βm if β is sufficiently small. In order to
neglect such terms at an early stage of the proof we introduce the relation
.x. Let f(n), g(n) denote two functions in n. Intuitively, f .x g means that
f is at most a large as g up to a multiplicative term Cx for a suitably chosen
constant C.

Definition 4.25 (Relation.) Consider two functions f, g : N→ R
+. For x ≥ 0

we write f .x g if

∃C ≥ 1 ∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ Cx · g(n).

Instead of .0 we simply write ..

f(n) . g(n) means that f(n) ≤ g(n) for n sufficiently large. Observe that
f(n) .1 g(n) is equivalent to f(n) = O(g(n)).

The following lemma shows that the relations≪ and.work well together.
If ν ≪ µ and f .x g as well as g ≤ νµxh, then f ≤ µxh. Thus .x can be
replaced by ≤, which is of course our goal when proving bounds on the
number of graphs with a certain property. The only price that we have to
pay for this is to replace νµx by µx, which is however still superexponentially
small.
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Lemma 4.26 (Connection between≪ and.) Consider x > 0, ν = ν(β) > 0,
µ = µ(β) > 0 with ν≪ µ. Let f(n) .x g(n) and g(n) ≤ νµx · h(n). Then there
exists β0 > 0 such that for all 0 < β ≤ β0,

f(n) ≤ µx · h(n)

for n sufficiently large.

Proof Let C ≥ 1 be a constant as in Definition 4.25 of f(n) .x g(n). Now we
conclude by Definition 4.21 that there exists β0 > 0 such that

Cνµ ≤ Cνµ/C ≤ µC ≤ µ

for 0 < β ≤ β0. For sufficiently large n we deduce that

f(n) ≤ Cx · g(n) ≤ (C · νµ)x · h(n) ≤ µx · h(n).

�

4.6.2 Auxiliary technical results

Binomial coefficients

For future reference we collect a few bounds on binomial coefficients, which
will be used repeatedly throughout the proof of Theorem 4.3.

Lemma 4.27 (Technical inequalities for binomial coefficients)

(i) If 0 ≤ b+ x ≤ 0.9a, then (
a

b

)
≤
(
a− x
b

)
e10b.

(ii) If 0 ≤ x ≤ 1, then (
xa

b

)
≤
(
a

b

)
xb.

(iii) If b :=
∑k

i=1 bi ≤ a, then

k∏
i=1

(
a

bi

)
≤
(
a

b

)
(2k)b.
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Proof Using 1− z ≥ e−10z for z ≤ 0.9 we conclude that(
a
b

)(
a−x
b

) =
ab

(a− x)b
≤ ab

(a− x− b)b
=

(
1− x+ b

a

)−b
≤ e10(x+b)b/a ≤ e10b,

proving (i) (recall that nz denotes the z-th falling factorial of n).

For the proof of (ii) observe that(
xa

b

)
= xb ·

a(a− 1
x
) . . . (a− b−1

x
)

b!
≤
(
a

b

)
· xb

Inequality (iii) follows by combinatorial arguments. Instead of choosing in-
dividual sets with cardinalities b1, . . . , bk from a set with a elements we pick∑k

i=1 bi elements at once. Then we fix for each of the chosen elements to
which of the k subsets it shall belong. Since there are at most 2k possibilities
for each chosen element, the claim follows. �

Basic counting arguments

When counting graphs with certain properties some arguments will recur.
In the sequel we list these arguments in a form which abstracts from their
actual application.

The following lemma is inspired by a very simple observation. If in a bi-
partite graph G = (U

·
∪W,E) all vertices in U have large degree, then there

must also be many vertices in W with large degree. This is proved by an
easy counting argument.

Lemma 4.28 (Overlap lemma) Let α > 0, and let G = (U
·
∪W,E) be a bipar-

tite graph with d(u) ≥ α|W | for all u ∈ U . Then for all β > 0,

|{w ∈ W | d(w) ≥ β|U |}| ≥ α− β
1− β

|W |.

Proof Assume for a contradiction that there are less than α−β
1−β |W | vertices in

W with degree at least β|U |. It follows that

|E| < α− β
1− β

|W | · |U |+
(

1− α− β
1− β

)
|W | · β|U | = α|W | · |U |.

On the other hand it is clear by the lower bound on the degree of the vertices
in U that |E| ≥ α|W | · |U | and we get a contradiction. �

Although the idea behind Lemma 4.28 is quite simple, the following corol-
lary will become a key stone in the proof of our main result.
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Corollary 4.29 Let ε > 0. If a bipartite graph G = (U
·
∪W,E) satisfies d(u) ≥

(1− ε)|W | for all u ∈ U , then

|{w ∈ W | d(w) ≥ (1−
√
ε)|U |}| ≥ (1−

√
ε)|W |.

Proof Set α = 1− ε and β = 1−
√
ε in Lemma 4.28. �

The union of k disjoint sets A1, . . . , Ak with |A1| = . . . = |An| = a obviously
has cardinality k · a. The following definition and lemma generalize this
simple argument. Instead of assuming that X1, . . . , Xk are disjoint, we will
merely require that they overlap in a controlled manner.

Definition 4.30 (Quasidisjoint sets) A family of sets A1, . . . , Ab ⊆ V is called
s-quasidisjoint if

|{i ∈ {1, . . . , b} | x ∈ Ai}| ≤ s for all x ∈ V .

Lemma 4.31 (Sequential selection lemma) Consider two separate sets V and
B with |B| = b. The elements x ∈ B are assigned corresponding sets
Ax,1, . . . , Ax,h ⊆ V . Assume that there is a subset B∗ ⊆ B with |B∗| = (1− ν)b
such that |Ax,1| = . . . = |Ax,h| = a for x ∈ B∗ and the sets (Ax,l)x∈B∗,l∈{1,...,h}
are s-quasidisjoint.
A set C ⊆ B with |C| = c is called t-spreading if |

⋃
z∈C(Az,1 ∪ . . .∪Az,h)| ≥ t.

If

(i) h ≤ s,

(ii) 4ts ≤ νabh,

(iii) c ≥ 4t/a,

then
|{C ∈

(
V

c

)
| C is not t-spreading}| ≤ (8ν)c/2

(
n

c

)
.

Proof Assume that the elements of C ∈
(
V
c

)
are chosen one-by-one uni-

formly at random. Observe that the ordering of C which is introduced by
this random process does not influence whether C is t-spreading or not. We
construct a set X ⊆

⋃
z∈C Az using the following algorithm:

• X is initialized with X = ∅.
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• Assume that the elements {z1, . . . , zk−1} have already been chosen and
now zk is fixed uniformly at random in B \ {z1, . . . , zk−1}. The element
zk ∈ B is called ’good’ if the following conditions are satisfied. Firstly,
it must belong to B∗. Secondly, it must not yet have been added to C.
And, thirdly, there exists a set Azk,i such that |Azk,i \ X| ≥ a/2, i.e., at
least half of the elements inAzk,i do not belong to anA-set of an already
chosen element of C. For a good element zk we add [Azk,i \X]a/2 to X
(But note that the other sets Azk,i′ for i′ 6= i are not taken into account.).
Then the next iteration of the algorithm (for zk+1) begins.

Assume that at least k0 := 2t/a chosen elements are good. Then we have at
the end of the algorithm |X| ≥ k0 · a/2 = t. Thus C is t-spreading.

On the other hand we have |X| ≤ t as long as at most k0 good elements
have been chosen and added to C. Every single element of X belongs to
at most s sets Ax,l and thus the t elements in X correspond to at most ts
occurrences of good elements in sets Ax,l. Consequently, at most ts

a/2
sets Ax,l

contain less than a/2 elements which do not belong to X . We call these sets
Ax,l destructed.

For an yet unchosen element x ∈ B∗ to become bad, all h sets Ax,1, . . . , Ax,h
must be destructed. Consequently, at most

k0 +
2ts

ah
=

2t

a
+

2ts

ah

(i)
≤ 4ts

ah

(ii)
≤ νb

elements of B∗ are bad. Hence if we choose a vertex in B uniformly at ran-
dom, we get a good vertex in B∗ with probability at least (1− 2ν).

Recall that we have k0 = 2t/a
(iii)
≤ c/2, provided that at most k0 good vertices

have been chosen. Thus we can bound the probability

Pr[′at most k0 good vertices are chosen′]
≤ Pr[′at least c/2 bad vertices are chosen′] ≤ 2c · (2ν)c/2 ≤ (8ν)c/2.

This suffices to prove the claim. �

Technical counting lemmas

In our subsequent counting arguments we will show that certain substruc-
tures of the objects to be counted occur very rarely. This will then imply the
desired bound on the number of the actual objects. Since the corresponding
estimates are very much alike we prefer to state them in an abstract and
unified way.
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The objects which shall be counted will be referred to as ’bad’, because later
we will identify them with substructures of graphs for which the occur-
rence of a complete subgraph cannot be guaranteed. These structures must
be shown to occur very rarely in order to prove Theorem 4.3. Hence, for our
purposes they are ’bad’.

Let a ground set Z be given. Assume that we choose elements of a subset
X ⊆ Z one by one, and a single element is bad with probability at most ν.
Obviously, for ν sufficiently small, X will contain only few bad elements
with high probability (Such an argument has already been used in the proof
of Lemma 4.31.). Observe that choosing the elements of X one by one intro-
duces an ordering of X . This is important if the fact that a chosen vertex is
bad depends on the previously chosen vertices. However, if we define the
set X to be bad if and only if all orderings of the elements in X contain, say,
at least, say, δ|X| bad elements, this approach will suffice to show that bad
sets X occur very rarely.

The following lemma generalizes these arguments to choosing not only sin-
gle elements but subsets X1, . . . , Xr such that X = X1

·
∪ . . .

·
∪Xr. If the prob-

ability that an arbitrary subset Xi is bad, is sufficiently small, and the set
X is bad if and only if every partition of X into subsets X1, . . . , Xr contains
many bad sets Xi, then this implies that bad sets X occur only with very
small probability.

Lemma 4.32 (Bad steps lemma) Let ε > 0, δ > 0, and consider a set Z with
|Z| = n. A setX ∈

(
Z
t

)
is called (p, δ)-∀-bad if choosing disjoint (ordered) subsets

X1, . . . , Xr ⊆ X with |X1| = . . . = |Xr| = p and r = t/p always yields at least
a δ-fraction of bad sets Xi.
A subset Xi is bad if it satisfies a certain property Π(Xi;X1, . . . , Xi−1). Note that
Π may depend on the previously chosen subsets X1, . . . , Xi−1. For any choice of
X1, . . . , Xi−1 containing at most (1− δ)r good subsets Xi we assume that

|{Y ∈
(
Z \

⋃i−1
l=1 Xl

p

)
| Y satisfies Π(Y ;X1, . . . , Xi−1)}| ≤ εp

(
n

p

)
,

where εp is called exception probability.
For bad setsX with exception probability εp we have for t ≤ n/4 and

√
ε < e−11/δ

that
|{X ⊆

(
Z

t

)
| X is (p, δ)-∀-bad (wrt. Π) }| ≤ εδt/2

(
n

t

)
.

Proof It suffices to show that

Pr[’X is (p, δ)-∀-bad’] ≤ εδt/2
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for a randomly chosen set X ⊆ Z with |X| = t.

As far as the underlying probability space is concerned, we do not consider
the ’natural’ definition, where each set in

(
Z
t

)
is chosen with equal proba-

bility. Instead we assume that sets X1, . . . , Xr of size p are chosen one by
one and let X = X1 ∪ . . . ∪ Xr. Observe that the event ’X is bad’ does not
depend on this partial ordering of the elements in X , and thus we get the
same probability.

If X = X1 ∪ . . . ∪ Xr is bad, then at least δr sets Xi must be bad, as the
bound on the number of bad sets Xi holds for any ordered choice of subsets
X1, . . . , Xr ⊆ S. Applying Lemma 4.27 (i) and using p + t ≤ 2t ≤ 0.9n, we
obtain

Pr[’X is (p, δ)-∀-bad’] ≤ 2r

(
εp
(
n
p

)(
n−t
p

))δr

≤ 2r · (εpe10p)δr ≤ (εe11/δ)δt ≤ εδt/2.

�

Remark 4.33 An important special case of Lemma 4.32 arises for p = 1. Here
individual elements are judged to be bad and this is assumed to be the case for at
most εn elements of Z for any choice of x1, . . . , xi−1 ∈ X . The set X is bad if at
least δ|X| of its elements are bad for any ordering of X .

The arguments leading to Lemma 4.32 essentially also hold for the case that
X contains a subset which is (p, δ)-∀-bad. Only the constants have to be
adapted in a suitable way depending on the size of the bad subset. This
implies the following corollary.

Corollary 4.34 A set X ⊆
(
Z
t

)
is called α-partially (p, δ)-∀-bad if there exists

a subset X ′ ⊆ X with |X ′| ≥ αt which is (p, δ)-∀-bad (with respect to a certain
property Π).
If X ′ is bad with exception probability εp, and εαδ/4 ≤ 1/5, then

|{X ⊆
(
Z

t

)
| X is α-partially (p, δ)-∀-bad (wrt. Π)}| ≤ εαδt/4

(
n

t

)
,

provided that the preconditions of Lemma 4.32 hold.

Proof By Lemma 4.32 the number of possibilities to construct a suitable set
X is bounded from above by
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t · max
αt≤t′≤t

εδt
′/2

(
n

t′

)(
n

t− t′

)
≤ t · εαδt/2 max

αt≤t′≤t

(
n

αt

)(
n

t− αt

)
L4.27 (iii)
≤

(
5εαδ/2

)t(n
t

)
≤ εαδt/4

(
n

t

)
.

�

The following lemma deals with the case that a partition Z1 . . . , Zp of the
ground set Z for which certain setsX ⊆ Z shall be counted is already given.
X is bad if there is a non-negligible number of ’bad’ sets Xi ⊆ Zi ∩ X , i.e.,
there are very few possibilities to choose such sets. Note that X is bad if bad
subsets X1, . . . , Xp ⊆ X with Xi ⊆ Zi for i = 1, . . . , p exist. This contrasts to
Lemma 4.32, where any partition of X into subsets X1, . . . , Xp must contain
many bad subsets.

Lemma 4.35 (Bad choices lemma) Let ε > 0, δ > 0, and consider a set Z with
|Z| = n. Furthermore, pairwise disjoint subsets Z1, . . . , Zp ⊆ Z of equal size
|Z1| = . . . = |Zp| =: z are given. A set X ∈

(
Z
t

)
is called (p, r, δ)-∃-bad if there

exist subsets Xl ⊆
(
Zl
r

)
for δp indices l ∈ {1, . . . , p} such that all these subsets are

bad, i.e., they satisfy a certain property Π(Xl). If we have

|{Y ∈
(
Zl
r

)
| Y satisfies Π(Y )}| ≤ εr

(
z

r

)
for all l = 1, . . . , p, then εr is called exception probability.
For bad setsX with exception probability εr and pr ≥ αtwe have for ε sufficiently
small that

|{X ⊆
(
Z

t

)
| X is (p, r, δ)-∃-bad (wrt. Π and Z1, . . . , Zp)}| ≤ (8εαδ)t

(
n

t

)
.

Proof We directly estimate the number of bad subsets by

2p
(
εr
(
z

r

))δp(
n

t− δrp

)
≤ 2pεαδt

(
n

δrp

)(
n

t− δrp

)
L4.27 (iii)
≤ (8εαδ)t

(
n

t

)
.

�

4.7 General counting lemma

We want to investigate some properties of a typical regular graph and then
show that a graph satisfying these properties contains a K`. More precisely,
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we shall see that a graph is untypical or ‘bad’ if it contains linearly many
vertices which have a somewhat ‘irregular’ neighborhood.

The aim of this section is to provide a rather general counting lemma which
can be applied to various definitions of what we mean by an ‘irregular’
neighborhood.

We will construct and thus count the number of untypical graphs by first
fixing their edges up toE[B, Vj], whereB ⊆ Vi for i 6= j denotes a set of ’bad’
vertices with |B| = Θ(n). The key idea then is that an appropriate definition
of ‘irregular’ implies that, once all edges except those between B and Vj
have been chosen, the number of ‘irregular’ neighborhoods is very small
compared to the total number of possible neighborhoods (more precisely,
πdv
(
n
dv

)
instead of

(
n
dv

)
for some suitably small 0 < π, where dv = |Γj(v)|.)

Definition 4.36 (Neighborhood function) A neighborhood function N is
given an `-partite graph G = (V1 ∪ . . .∪ V`, E), an set B ⊆ Vi, and a value dv for
each v ∈ B and it computes sets N (v) ⊆

(
Vj
dv

)
for each v ∈ B.

Definition 4.37 (Bad neighborhood function) Let δ, π > 0 and let G ⊆
S`(n,m; ε). A neighborhood functionN is called a bad neighborhood function
for the graph family G and the parameters δ, π if the following condition holds:
For each G = (V,E) ∈ G there exist 1 ≤ i, j ≤ ` and an set B ⊆ Vi with
|B| ≥ δn and dj(v) ≥ q/2 (recall that q = m/n) for all v ∈ B such that for each
v ∈ B

Γj(v) ∈ N (v) and |N (v)| .q πdv
(
n

dv

)
,

whereN (v) is applied to the graphG′ = (V,E ′) with edge setE ′ := E\E(B, Vj),
the set B, and dv := dj(v).

Figure 4.4 illustrates the concept of a bad neighborhood function. The fol-
lowing lemma shows how bad neighborhood functions are used to prove
that the cardinality of a certain set of graphs is small.

Lemma 4.38 (Counting bad graphs) Let π, δ > 0 with π≪ δ. If N is a bad
neighborhood function for G ⊆ S`(n,m; ε) and parameters δ, π, then

|G| ≤ δm
(
n2

m

)(`2)

for m = ω(n log n) and n sufficiently large.
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PSfrag replacements

ViVi VjVj
BB

Γj(v)Γj(v)

N (v)N (v)

Figure 4.4: Bad neighborhood function

Proof We construct all graphs G ∈ G as follows: We start by choosing i, j
with i 6= j, the set B ⊆ Vi and the degree values dv := |Γj(v)| for v ∈ Vi.
Observe that there are at most `2 ·n! ·nn ≤ 2m possibilities for that, assuming
that n is sufficiently large. Then we fix the edges in E \ E(Vi, Vj) (at most(
n2

m

)(`2)−1
possibilities). For the vertices v ∈ Vi\B we have at most

(
n
dv

)
choices

to fix their remaining neighborhood Γj(v). For each vertex v ∈ B we choose
a set from N (v) as its neighborhood Γj(v). Observe that N (v) is completely
determined by the part of G which has already been constructed.

From the assumption that N is a bad neighborhood function it follows that
we may assume that there are at most πdv

(
n
dv

)
possibilities for that. Hence,

we obtain that the total number of possibilities for choosing the edges be-
tween Vi and Vj is bounded by (with respect to .m) ∏

v∈Vi\B

(
n

dv

) ·(∏
v∈B

πdv
(
n

dv

))
≤ π|B|·minv∈B{dv}

∏
v∈Vi

(
n

dv

)

≤ πδn·q/2
(
n2

m

)
= πδm/2

(
n2

m

)
.

Thus it follows that

|G| .m
(
n2

m

)(`2)−1

· πδm/2
(
n2

m

)
and, consequently, |G| ≤ δm ·

(
n2

m

)(`2)
,

which proves the claim. �
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4.8 Constructing complete subgraphs

This section contains the proof of Theorem 4.3. We will collect several prop-
erties that most graphs in S`(n,m; ε) satisfy. Finally, all these properties will
then be combined to the actual proof of our main theorem.

4.8.1 Constants

For the proof of Theorem 4.3 we will need the following constants which
depend on β:

ξ = (β)	2, µ = (ξ)	2, σ = (µ)	5, ν = (σ)	, ρ = (ν2)	.

The constant ε > 0 which specifies the regularity will be assumed to be
sufficiently small, in particular much smaller than all other constants.

We will fix the constants only at the very end of the proof. All auxiliary re-
sults are formulated for arbitrary values of the constants and the conditions
which must be satisfied are given explicitly. Nevertheless, the above list may
serve as a quick reference for the relations between the constants, e.g., ρ will
always be much smaller than all other constants (except ε).

In the sequel we will assume that C0n
5/3 ≤ m ≤ n2/4, where C0 := ρ−6, for

the case H = K5 and C0n
8/5 ≤ m ≤ n2/4 for the case H = K4. Note that

we have to proof Theorem 4.3 only up to m ≤ αn2 for an arbitrary constant
α > 0, since for m > αn2 the deterministic embedding lemma, Lemma 4.9,
takes over.

4.8.2 Further notation and conventions

By a property Π for some element x (e.g. a vertex or a set of vertices) we
mean a condition which may be true or false for x. For a property Π let Vi[Π]
denote the vertices in Vi which satisfy Π. The contraposition of a property is
given by ¬Π. The trivial property which is always satisfied is denoted by Ω.
If the definition of a property Π incorporates another property Π′, we will
write (Π | Π′). For simplicity (Π | Ω) will be abbreviated by (Π). For a family
of sets X ⊆

(
X
t

)
(satisfying a certain property) we let X̄ :=

(
X
t

)
\ X .

Throughout this section all results refer to a graphG ∈ S`(n,m; ε), and Vi, Vj
and Vk denote different partitions of this graph. When counting the graphs
which satisfy a certain property Π it makes no difference whether the values
of i, j and k are fixed or variable. Since the number of graphs will usually
be just a superexponentially small fraction of |S`(n,m; ε)|, the number of
choices for i, j and k, which is clearly less than `3, does not carry weight.
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However, it does not suffice to define the properties to hold for arbitrary
values of i, j and k. Recall our basic counting strategy introduced in Sec-
tion 4.7. We construct the graph by sequentially choosing the edges. The
crucial point is that there exist partitions Vi and Vj for which we can sig-
nificantly reduce the number of possible choices for the neighborhoods of
certain ’bad’ vertices B ⊆ Vi by introducing a bad neighborhood function.
Clearly, the definition of the bad neighborhood function must not depend
on the edges between B and Vj . Thus we must be able to control the set of
edges on which a property depends. We prefer to do this implicitly, as an ex-
plicit statement of these dependencies would result in very clumsy notation.
However, in Section 4.8.16 we will further elaborate on that and discuss on
which edges the various properties shall depend. For now we ignore this
issue and assume that the properties hold for arbitrary values of i, j and k,
whatever we need.

Furthermore, throughout the following counting arguments we first fix val-
ues of certain parameters, e.g., degrees of vertices or cardinalities of sets,
which will then be used in the bounds on the number of graphs to be
counted. By convention such parameters are assumed to take their worst-
case value, i.e., the value which maximizes the number to be estimated. For-
mally speaking, we do not explicitly write the maximum maxt for every free
parameter t in the formula.

The following cardinalities of sets of vertices will be used in the proof, where
λ will be replaced by one of various constants defined above:

q := m
n
,

qλ := (1− λ)λq,

pλ := 2λ−1 n2

m
,

rλ := (1− λ)λ2m2

n3 ,

tλ := λ−1 n2

m
,

hλ := λ−1m3

n5 ,

rλ(x) := x
2pλ

= 1
4
λm
n2x.

The following quantities depend on specific constants, which we have in-
troduced in Section 4.8.1:

oµ := σ−5/2 n2

m
,

sµ := rσ(rµ) = 1
4
(1− µ)µ2σm

3

n5 ,

dµ := 2sµ · qµ2oµ
= 1

4
(1− µ)2µ3σ7/2m5

n8 ,

p̃ := pµ/2 = µ−1 n2

m
,

r̃ := rµ(σ2qµ)/2 = 1
8
(1− µ)µ2σ2q,

q̂ := (1− (µ)⊕2)n/p̃,
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r̃1 := rµ(µqµ)/2 = 1
8
(1− µ)µ3m2

n3 ,

r̃2 := rρ(µqµ)/2 = 1
8
(1− µ)ρµ2m2

n3 .

The above definitions will be restated later but we collect them here for bet-
ter reference.

Obviously some of the above quantities are very similar, e.g., p̃ = tµ. How-
ever, these quantities will have a different meaning in the proof and we hope
that this redundancy will increase the readability of the exposition.

The constant ε will always refer to the regularity constant, i.e., to the con-
stant used to define the graph class S`(n,m; ε). We assume that ε is arbi-
trarily small, i.e., as small as we need it in all subsequent inequalities. In
particular, ε is much smaller than all other constants.

4.8.3 Homogeneous sets

Unfortunately, the ε-regularity of a graph does not help much when consid-
ering subgraphs with o(n) vertices. However, for our proofs we will mostly
be content with a weaker property, which we call homogeneity. This prop-
erty can be shown to be hereditary, i.e., it also holds for most subgraphs of
a homogeneous graph.

The basic idea behind homogeneity consists in a characterization of the
neighborhood of sets (not only of single vertices!).

Definition 4.39 (Vertices with a bad degree) For a graph G ∈ S`(n,m; ε) and
a set X ⊆ Vj we define

D̄i(X) := {v ∈ Vi | |dX(v)− |X| · m
n2 | ≥ ε · |X|m

n2}.

It is easy to see that in an ε-regular graph almost all vertices have the ’right’
degree into any other partition.

Lemma 4.40 (D̄ is small) Let X ⊆ Vj . If |X| ≥ εn then |D̄i(X)| ≤ 2εn.

Proof Follows directly from the definition of ε-regularity (similar to the
proof of Lemma 4.7). �
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Since almost all vertices in an ε-regular graph have Θ(m/n) neighbors, one
can deduce that the neighborhood of Θ(n2/m) vertices typically has size
Θ(m/n · n2/m) = Θ(n). Furthermore, the neighborhoods of the single ver-
tices have disjoint parts of size Θ(m/n), i.e., every vertex contributes an
equal part to the combined neighborhood of all vertices. In the sequel we
give a formal definition of this structure.

Definition 4.41 (Covering vertices) Let P ⊆ Vi. Ij(P ; ν) is defined as an (or-
dered) subset of P̃ ⊆ P with maximum cardinality such that the following prop-
erty is satisfied: Let P̃ = {v1, . . . , vk}, then there exist pairwise disjoint sets
W1 ⊆ Γj(v1), . . . ,Wk ⊆ Γj(vk) with |W1| = . . . = |Wk| = qν := (1 − ν)νq.
If there are several (ordered) sets P̃ with this property then Ij(P ; ν) is assigned
one of these sets in an arbitrary but unique way.
Furthermore, we may restrict the vertices from which the vertices P̃ are chosen to
all vertices in Vi which satisfy a certain property Π. Then we write Ij(P ; ν | Π)
and require that Ij(P ; ν | Π) ⊆ Vi[Π].

Definition 4.42 (Covered neighborhood) For P ⊆ Vi the set Wj(P ; ν) is de-
fined as follows. Let Ij(P ; ν) = {v1, . . . , vk} then

Wj(P ; ν) :=
k⋃
i=1

Wi.

In [KŁR96] (cf. Lemma 11) an argument has been presented which implies
that in an ε-regular graph almost all sets P with |P | = pν = ν−1 n2

m
have a

large neighborhood, i.e., |Wj(P ; ν)| ≥ (1 − ν)n. Intuitively, a set is homoge-
neous, if exactly this property holds. A weaker property than ε-regularity
suffices to show the desired bound on |Wj(P ; ν)| and this property forms
the basis of the definition of homogeneity. In Section 4.8.4 we will then see
how this property is used to prove the existence of sets P with large neigh-
borhoods.

Definition 4.43 (Homogeneous sets) A set X ⊆ Vi is called ρ-homogeneous
for Vj if for all ν ≥ ε and all P ⊆ X with |P | ≤ pε one of the following two
conditions is satisfied:

(i) |Wj(P ; ν)| ≥ (1− ν)n, or

(ii) |(X \ P ) ∩ D̄i(Vj \Wj(P ; ν))| ≤ ρ|X|.

The setHj(Z, t; ρ) ⊆
(
Z
t

)
contains all ρ-homogeneous sets in

(
Z
t

)
.
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The intuition behind this definition is as follows. Assume that we want to
assure that a typical set P with Θ(n2/m) vertices has a covered neighbor-
hood Wj(P ; ν) of size (1 − ν)n. We choose P vertex by vertex uniformly at
random and intend to show that with very high probability this leads to
a set P with the desired size of the covered neighborhood. Definition 4.43
guarantees that in every step of this random process the probability for do-
ing something ’wrong’ is small.

Condition (i) can be interpreted as the termination case. If the covered
neighborhood is already large enough, we are done. Condition (ii) assures
that there are only very few vertices in X (which have not yet been added
to P ) with an untypical degree into the part of Vj which is not yet covered
by Wj . This implies that by choosing a vertex in X \P uniformly at random,
we are likely to get a vertex v which contributes a new set Wv to the cov-
ered neighborhood. Thus the covered neighborhood is guaranteed to grow
quickly. This intuition will later lead to the proof of Lemma 4.49.

Now let us collect a few simple properties of homogeneity.

Proposition 4.44 (Simple properties of homogeneity)

(i) ε-regularity implies 2ε-homogeneity of Vi for Vj .

(ii) For ρ ≤ ρ′, ρ-homogeneous sets are also ρ′-homogeneous.

(iii) If a set X is ρ-homogeneous, then any subset X ′ ⊆ X with |X ′| ≥ α|X| is
ρ/α-homogeneous.

Proof (i) is a simple consequence of Lemma 4.40. The other claims follow
directly from the Definition 4.43. �

In a ρ-homogeneous set X we know that almost all vertices are ’good’ for
all choices of P ⊆ X . Here a vertex is ’good’ if it has the right number of
neighbors in the part of Vj which is not in the neighborhood Wj of P . When
we gain more and more knowledge about typical properties of most vertices
in the graph we have to strengthen the definition of homogeneity. For Π-
enhanced ρ-homogeneous sets we additionally require that ’good’ vertices
satisfy a given property Π.

Definition 4.45 (Enhanced homogeneous sets) A ρ-homogeneous set X ⊆ Vi
is called Π-enhanced for a property Π, if |X[¬Π]| ≤ ρ|X|. The set of Π-enhanced
ρ-homogeneous sets in

(
Z
t

)
is denoted byHj(Z, t; ρ | Π) ⊆

(
Z
t

)
.
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The following lemma shows the crucial property of homogeneity, namely
that this property is hereditary, i.e., it typically also holds for subsets.

Lemma 4.46 (Hereditary nature of homogeneity) Let ε−1 n2

m
log n ≤ t2 ≤

t1 ≤ n and ρ1 ≪ ρ2. Consider a set X ∈ Hj(Z, t1; ρ1 | Π). Then

|Hj(X; t2, ρ2 | Π)| ≤ ρt22

(
t1
t2

)
.

Proof Let us firstly consider the case Π = Ω. There are most npε+1 possi-
bilities to choose a set P ⊆ X with |P | ≤ pε. Furthermore, the number of
choices for ν ≥ ε which yield really different conditions in Definition 4.43
can be bounded from above by, say, n2. This is due to the fact that ν only
influences quantities which must (or can be assumed to) be integer, namely,
qν and the bound (1− ν)n in Definition 4.43 (i) (see also Remark 4.55 where
we encounter a similar problem). All together we obtain

n2 · npε+1 = 22ε−1 n2

m
logn+3 ≤ 22t2+3.

Since this bound is small enough compared to the superexponentially small
term ρt22 , it suffices to consider a fixed set P ⊆ X and calculate the number
of sets Y ∈

(
X
t

)
with P ⊆ Y for which the conditions given in Definition 4.43

and Definition 4.45 are violated. For such a set Y we must either have that

|(Y \ P ) ∩ D̄i(Vj \Wj(P ; ν))| > ρ2|Y | and |Wj(P ; ν)| < (1− ν)n,

or |Y [¬Π]| > ρ2|Y |. Note that

|(X \ P ) ∩ D̄i(Vj \Wj(P ; ν))| ≤ ρ1|X| if |Wj(P ; ν)| < (1− ν)n

and |X[¬Π]| ≤ ρ1|X|.

Consider a set Y ′ ⊆ Y \P with |Y ′| = |Y |/2 which contains all of the at least
ρ2|Y | ≥ ρ2|Y ′| bad vertices. Since such a set Y ′ exists, it follows that Y is 1/2-
partially (1, ρ2)-∀-bad with error probability 2ρ1. Applying Corollary 4.34
proves the claim. �

4.8.4 Simple covers

In the previous section we have already encountered the following intuitive
argument: In a random graph with edge probability m/n2 a set of size n2/m
has (n2/m) · n · (m/n2) = n incident edges on the average. Hence, we may
expect that a set P of size Θ(n2/m) in partition Vi covers a class Vj for j 6= i,
i.e., Γj(P ) ≈ Vj . Such covering sets or covers will play a crucial rôle in our
proof. Figure 4.5 illustrates the structure of a cover.
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Figure 4.5: A ν-cover.

Definition 4.47 (Covers) A set P ⊆ Vi with |P | = pν := 2ν−1 n2

m
is called a

ν-cover of Vj if |Ij(P ; ν)| ≥ pν/2. For a ν-cover P we let P ∗ := [Ij(P ; ν)]pν/2.

Note that for a ν-cover P we have

|Γj(P )| ≥ |Wj(P ; ν)| ≥ (pν/2) · qν = (1− ν)n. (4.9)

The following definition parallels the definition of Π-enhanced ρ-homoge-
neous sets. A cover is called Π-qualified if the covering vertices can be cho-
sen to satisfy Π.

Definition 4.48 (Qualified covers) A ν-cover P of Vj is Π-qualified for a given
property Π if |Ij(P ; ν | Π)| ≥ pν/2. Then we set P ∗ := [Ij(P ; ν | Π)]pν/2.
For the set of Π-qualified covers in X we introduce the notation Pj(X; ν | Π) ⊆(
X
pν

)
. Instead of Pj(X; ν | Ω) we simply write Pj(X; ν).

The following lemma establishes the connection between homogeneous sets
and covers. It shows that almost all sets of size pν (up to a superexponen-
tially small fraction) in ρ-homogeneous sets are ν-covers.

Lemma 4.49 (P̄ is small) If X is Π-enhanced ρ-homogeneous for Vj and ν ≥ ε
then

|P̄j(X; ν | Π)| ≤ (2ρ)pν/4
(
|X|
pν

)
.
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Proof Choose the vertices v1, . . . , vpν ∈ P one by one. Let Uk := {v1, . . . , vk}.
If vk satisfies Π and has at least qν neighbors in Vj \ Wj(Uk−1; ν), then
clearly |Ij(Uk; ν) \ Ij(Uk−1; ν)| ≥ 1. On the other hand we have |Ij(Uk; ν) \
Ij(Uk−1; ν)| ≤ 1 by the definition of Ij . If |Ij(Uk; ν) \ Ij(Uk−1; ν)| = 1, we call
vk a good vertex.

Provided that |Ij(Uk; ν)| ≥ pν/2, the set P is a ν-cover. Otherwise, we have
|Wj(Uk; ν)| < (pν/2)·qν = (1−ν)n. Note that the vertices inDi(Vj\Wj(Uk; ν))
which satisfy Π are good. Hence, by Definition 4.43 and Definition 4.45 there
are at most 2ρ|X| bad vertices in X \ P . Since P ∈ P̄j(X; ν | Π) contains at
least pν/2 bad vertices, the set P̄j(X; ν | Π) can be interpreted to be (1, 1/2)-
∀-bad with exception probability 2ρ, and the claim follows by Lemma 4.32.

�

4.8.5 Multicovers

In the previous section we have introduced covers of size Θ(n2/m), whereas
in our proof we will often be concerned with sets of size Θ(m/n) = Θ(q), i.e.,
neighborhoods of vertices. The following definition therefore transfers the
notion of a cover to such (larger) sets.

Definition 4.50 (Multicovers) Let ν > 0. We call a set Q ⊆ Vi a ν-multicover
of Vj if there exist pairwise disjoint subsets P1, . . . , Pr ⊆ Q with r = rν(|Q|) :=
|Q|
2pν

and |P1| = . . . = |Pr| = pν such that Pi is a ν-cover of Vj for all i = 1, . . . , r.
Furthermore, we let Q∗(ν) :=

⋃r
k=1 P

∗
k , where the parameter ν indicates that Q

shall be decomposed into ν-covers Pk in an arbitrary but unique way.

Figure 4.6 shows the structure of a ν-multicover. Note that the P -sets actu-
ally occupy only one half of Q.

Observe that a multicover Q with |Q| = Θ(m/n) can be decomposed into
Θ(m/n · m/n2) = Θ(m2/n3) covers P1, . . . , Pr. Since Γj(Pl) ≈ Vj for all l =
1, . . . , r, we expect that a typical vertex has degree r into Q (up to some
constant factor). Observe that the average number of neighbors is Θ((m/n) ·
(m/n2)) = Θ(m2/n3) = Θ(r). This intuition is confirmed by the following
definition and lemma.

Definition 4.51 (Covered neighborhood of multicovers) Let ν > 0. For a
ν-multicover Q ⊆ Vi we define

CF
j (Q; ν) := {w ∈ Vj | |ΓFi (w) ∩Q| ≥ rν(|Q|)/2}.
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Figure 4.6: ν-multicover

Lemma 4.52 (Large covered neighborhoods) Let Q∗(ν) =
⋃
k P
∗
k ⊆ Vi be a

ν-multicover of Vj for some ν > 0 with
√
ν ≤ 1

2
. Then

|Cj(Q; ν)| ≥ (1−
√
ν)n.

For F ⊆ E with dj(v)− dFj (v) ≤ ν2q we have

|CF
j (Q; ν)| ≥ (1− 3

√
ν)n.

Proof Let P1, . . . , Pr with r := rν(|Q|) denote pairwise disjoint sets of size pν
in Q which are ν-covers of Vj . Consider the auxiliary bipartite graph B =

({P1, . . . , Pr}
·
∪Vj, EB), where {Pi, w} ∈ EB if and only if w ∈ Γj(Pi) in G.

P1, . . . Pr can be interpreted as ’super-vertices’ inG. From |Γj(Pi)| ≥ (1−ν)n
we deduce that all super-vertices Pi have degree at least (1−ν)n inB. Hence,
we can apply Corollary 4.29 and obtain that

Z := {w ∈ Vj | |{i = 1, . . . , r | w ∈ Γj(Pi)}| ≥ (1−
√
ν)r}

satisfies |Z| ≥ (1−
√
ν)n. By

(1−
√
ν)r ≥ r/2 = rν(|Q|)/2

we conclude that Z ⊆ Cj(Q; ν).

The second claim follows from the observation that

|ΓFj (Pi)| ≥ (1− ν)n− pν · ν2q = (1− ν)n− 2ν
n2

m
· m
n

= (1− 3ν)n.

The rest of the proof is completely analogous to the case F = ∅. �

For a ν-multicover Q the constant ν can be interpreted as the accuracy of the
cover. The smaller ν is the more vertices in Vj belong to Cj . However, we
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have to pay a price for better accuracy. As ν decreases the size pν = 2ν−1 n2

m

of the covers inside the multicover increases. This leads to a decrease of
rν(|Q|). Thus vertices in Cj see less vertices inside Q as ν gets smaller. Due
to this tradeoff we will need multicovers of different accuracy in our proof.
Although it would be possible to list the different constants ν that we use,
we prefer to replace the notion of a multicover by the more powerful notion
of a supercover. Supercovers are ν-multicovers for a variety of constants ν.

Definition 4.53 (Supercovers) A set Q is called a τ -supercover if every subset
Q′ ⊆ Q with |Q′| ≥ τ |Q| is a ν-multicover for all ν ≥ ε.

At later stages of the proof we will not be content with finding multicov-
ers or supercovers. Additionally, we will need that the vertices which make
up the structure of the multicover, i.e., which possess the necessary cover-
ing neighborhoods, satisfy certain properties. To this aim we introduce the
following definition.

Definition 4.54 (Qualified multi- and supercovers) A ν-multicover Q of Vj
is Π-qualified if the ν-covers that make up Q may be chosen such that they are
Π-qualified. A τ -supercover Q is Π-qualified if every subset Q′ with |Q′| ≥ τ |Q|
is a Π-qualified ν-multicover for all ν ≥ ε.
Let X ⊆ Vi.MQj(X; t, ν | Π) denotes the set of Π-qualified ν-multicovers with
t vertices. For the set of Π-qualified τ -supercovers we write

Qj(X; t, τ | Π) := {Z ∈
(
X

t

)
| ∀Z ′ ⊆ Z, |Z ′| ≥ τt :

Z ′ ∈
⋂
ν≥ε

MQj(X; |Z ′|, ν | Π)}.

Remark 4.55 The notation
⋂
ν≥ε in Definition 4.54 is justified by the fact that

there is only a polynomial number of distinct choices for ν ≥ ε for which the sets
MQj(X; |Z ′|, ν | Π) are really different. Note that the parameter ν merely influ-
ences cardinalities of sets, namely pν and the bound on the size of Wj(P ; ν). These
quantities must be integers and thus there are at most, say, n2 possible values for
them.

Analogously to Lemma 4.49 for covers, we now show that almost all subsets
of a ρ-homogeneous set are ν-multicovers.
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Lemma 4.56 (Q̄ is small) Let t ≥ pρ. If X is Π-enhanced ρ-homogeneous, then

|Q̄j(X; t, (ρ)⊕ | Π)| ≤ ((ρ)⊕)t
(
|X|
t

)
.

Proof Assume that

|MQj(X; t′, ν | Π)| ≤ (2ρ)t
′/16

(
|X|
t′

)
, (4.10)

where (ρ)⊕t ≤ t′ ≤ t. By Remark 4.55 we conclude that (maximizing over t′)

|Q̄j(X; t, (ρ)⊕ | Π)| .t (2ρ)t
′/16

(
|X|
t′

)(
|X|
t− t′

)
L4.27 (iii)
≤ 4t · (2ρ)t

′/16

(
|X|
t

)
≤ (8ρ(ρ)⊕/16)t

(
|X|
t

)
,

and the lemma directly follows. Hence it suffices to show (4.10).

Due to Lemma 4.49 the sets in MQj(X; t′, ν | Π) are (pν , 1/2)-∀-bad with
exception probability (2ρ)pν/4. By Lemma 4.32, (4.10) follows. �

Remark 4.57 Observe that for the proof of Lemma 4.56 it would suffice to assume
that X is ρ1/k-homogeneous for some constant k ≥ 1.

The following definition and lemma show that the basic structure of a mul-
ticover remains intact if we forbid a set X ⊆ Vj . Only the number of vertices
with covering neighborhoods and the size of the covering neighborhoods
must be scaled down in a suitable way.

Definition 4.58 (Resistant multicovers) Let Q ⊆ Vi be a ν-multicover of Vj .
Q is called X-resistant for X ⊆ Vj if

∃Q∗∗ ⊆ Q∗, |Q∗∗| = ν|Q|
∀u ∈ Q∗∗ ∃W ′

u ⊆ Γj(u) \X, |W ′
u| = νqν :

the sets W ′
u are rν(|Q|)-quasidisjoint.

Lemma 4.59 (All multicovers are resistant) Every ν-multicover Q ⊆ Vi of Vj
is X-resistant for X ⊆ Vj , provided that |X| ≤ (1− 2

√
ν)n.
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Proof We count the number of occurrences of vertices x ∈ V4 in sets Wu of
the ν-multicoverQ. Every vertex inCj(Q; ν) corresponds to at least rν(|Q|)/2
such occurrences.

Since |Cj(Q; ν)| ≥ (1−
√
ν)n by Lemma 4.52, it follows that |Cj(Q; ν) \X| ≥√

νn. We conclude that at least

√
νn · rν(|Q|)/2 ≥

1

8
ν3/2m

n
|Q| (4.11)

occurrences remain if we restrict the sets Wu to vertices in Vj \X .

Assume that there are not enough vertices left from the original sets Wu

(i.e. in the ν-multicover) for the sets W ′
u in the X-resistant ν-multicover. If

the number of suitable sets is too small to meet the requirements of Defi-
nition 4.58, we can bound the number of remaining occurrences in sets Wu

as follows. Firstly, for every vertex in Q there may exist νqν such occur-
rences. Secondly, for at most ν|Q| vertices u ∈ Q we may have as many as
qν occurrences, i.e., the whole covering neighborhood Wu belongs to Vj \X .
Combining these choices (and counting over) we obtain

#occurrences ≤ |Q| · νqν + ν|Q| · qν = 2νqν |Q| ≤ 2ν2m

n
|Q|.

This obviously contradicts (4.11) for ν sufficiently small. �

4.8.6 Structure of simple neighborhoods

Now it is time to introduce the first few of several properties by which we
intend to characterize ’good’ graphs, i.e., graphs for which the occurrence
of a complete subgraphs can be guaranteed. These properties will refer to
the size and the structure of the neighborhood of a single vertex.

We say that a vertex v ∈ Vi satisfies the degree property if the following con-
dition (D) is met:

(D) (1− ε)q ≤ dj(v) ≤ (1 + ε)q. (4.12)

The next lemma shows that most vertices in ε-regular graphs satisfy (D).

Lemma 4.60 (Most vertices satisfy (D)) For a graph G ∈ S`(n,m; ε) we have

|Vi[(¬D)]| ≤ `2εn.
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Proof Follows directly from Lemma 4.40. �

A vertex v ∈ Vi satisfies the homogeneity property (Hρ) if the following condi-
tion is met:

(Hρ | Π) Γj(v) is (Π-enhanced) ρ-homogeneous for Vk. (4.13)

For the conjunction of properties (Hρ) ∧ (D) we introduce the shortcut
(Hρ, D). The following simple fact is stated here for future reference.

Proposition 4.61 For a vertex v which satisfies (Hρ, D) we conclude that any
subset Q′ ⊆ Q := Γj(v) with |Q′| ≥ τq is 2ρ/τ -homogeneous.

Proof To see this note that |Q| ≤ (1 + ε)q ≤ 2q due to property (D). Then
Proposition 4.61 follows directly from Proposition 4.44. �

We say that a vertex v ∈ Vi satisfies the cover property (Cρ) if the following
condition is met:

(Cρ | Π) Γj(v) is a (Π-qualified) ρ-supercover of Vk. (4.14)

Observe that (Cρ) is monotonous, i.e., (Cρ) implies (Cρ′) for ρ′ ≥ ρ. This is
due to the fact that a ρ-supercover is also a ρ′-supercover for ρ′ ≥ ρ. For (Hρ)
an analogous statement holds due to Proposition 4.44 (ii). This will facilitate
the handling of the constants later in the proof because we do not have to
pay attention that the constants do not get ’too small’.

Since the homogeneity property and the cover property bear some simi-
larity (namely both deal with the existence of covers and multicovers), we
combine them to the property

(Qρ | Π) := (Hρ | Π) ∧ (Cρ | Π).

As for all subsequently defined properties we introduce a set of bad graphs
with respect to (Qρ), namely

BQ` (n,m; ε, ρ) := {G ∈ S`(n,m; ε) | |Vi[(¬Qρ, D)]| ≥ (ρ)⊕n}, (4.15)

and show that only very few such bad graphs exist.

Lemma 4.62 (BQ` is small)

|BQ` (n,m; ε, ρ)| ≤ ((ρ)⊕)m
(
n2

m

)(`2)
.

Proof Consider the set of bad vertices B ⊆ Vi[(¬Qρ, D)] with |B| ≥ (ρ)⊕n
implied by (4.15).
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Case 1: There are at least (ρ)⊕n/2 bad vertices for which Γj(v) is not ρ-
homogeneous, i.e., (Hρ) is not satisfied. We define the neighborhood func-
tion

N (v) := {X ∈
(
Vj
dv

)
| X ∈ Hk(Vj; dv, ρ)}

Observe that dv ≥ q/2, and thus dv ≥ ε−1 n2

m
log n. Since Vi is 2ε-homogeneous

due to the ε-regularity of the graph and 2ε ≪ ρ by the assumption that
ε is sufficiently small, we deduce by Lemma 4.46 that |Hk(Vj; dv, ρ)| ≤
ρdv
(
n
dv

)
. We obtain |N (v)| ≤ ρdv

(
n
dv

)
. Now the claim follows for this case by

Lemma 4.38.

Case 2: There are at least (ρ)⊕n/2 bad vertices for which Γj(v) is no ρ-
supercover, i.e. (Cρ) is not satisfied. The corresponding neighborhood func-
tion is given by

N (v) := {X ∈
(
Vj
dv

)
| X ∈ Q̄k(Vj; dv, ρ)}

Recall that Vi is 2ε-homogeneous. By Lemma 4.56 we have |Q̄k(Vj; dv, ρ)| ≤
|Q̄k(Vj; dv, (ε)⊕)| ≤ ((ε)⊕)dv

(
n
dv

)
and we can thus derive a similar bound on

|N (v)| as in the previous case. This completes the proof. �

Remark 4.63 The proof of Lemma 4.62 merely relies on the fact that Vi is 2ε-
homogeneous and that (ε)⊕ ≤ ρ. The proof could remain unchanged if Vi were
just α-homogeneous for some α with (α)⊕ ≤ ρ.

Assume that vertex v ∈ Vi has a ν-multicover Q in its neighborhood Γk(v).
Since Cj(Q; ν) contains (1− ν)n vertices in Vj and ν is assumed to be small,
we expect that the neighborhood Γj(v) and Cj(Q; ν) overlap significantly.
This leads to the following property, which we will only need for the proof
of the case H = K5.

We say that a vertex v ∈ Vi satisfies the triangle property if the following
condition (Tρ) is met:

(Tρ) ∀Q ⊆ Γk(v), Q is a ρ-multicover : |Γj(v) \ Cj(Q; ρ)| ≤ (ρ)⊕q. (4.16)

This leads to the bad set

BT` (n,m; ε, ρ) := {G ∈ S`(n,m; ε) | |Vi[(¬Tρ, D)]| ≥ (ρ)⊕2n}, (4.17)
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which can be shown to be small. Figure 4.7 illustrates property (Tρ). The
picture also makes clear how BT` is counted. Since Cj comprises almost the
whole partition Vj , the number of possibilities to choose the neighbors of v
in Vj \ Cj is tiny. This immediately implies that BT` is small, too.

Lemma 4.64 (BT` is small)

|BT` (n,m; ε, ρ)| ≤ ((ρ)⊕2)m
(
n2

m

)(`2)
.

Proof We again use Lemma 4.38, i.e., we have to show that there exists an
appropriate definition of a bad neighborhood function N for (ρ)⊕2n bad
vertices B ⊆ Vi[(¬Tρ, D)]. We let

N (v) := {X ∈
(
Vj
dv

)
| ∃Q ⊆ Γk(v), Q is a ρ-multicover :

|X \ Cj(Qk; ρ)| ≥ (ρ)⊕q}.

When counting |N (v)|we first choose the setQ. SinceQ ⊆ Γk(v) and dk(v) ≤
(1+ε)q we can bound the number of choices for Q by 2(1+ε)q. As |Cj(Q; ρ)| ≥
(1−√ρ)n by Lemma 4.52, we deduce that

|N (v)| .q
(√

ρn

(ρ)⊕q

)(
n

dv − (ρ)⊕q

)
L4.27 (ii, iii)
≤ ρ(ρ)⊕q/2 · 4dv

(
n

dv

)
≤ ((ρ)⊕)dv

(
n

dv

)
,

proving the claim. �
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4.8.7 Overlapping neighborhoods ( K5)

After we have collected several properties in the preceding section concern-
ing the neighborhood of single vertices we will now examine the common
neighborhood of two vertices.

Definition 4.65 (Overlapping neighborhoods) For constants ρ, σ > 0 let
P ⊆ Vk denote an (Hρ)-qualified σ-cover of Vj . A vertex v ∈ Vi has an X-
resistant (ρ, σ)-overlapping neighborhood with P in Vj for X ⊆ Vj if

∃P̃ ⊆ P ∗, |P̃ | = 2
√
σpσ

∀u ∈ P̃ ∃Ru ⊆ (Γj(v) ∩ Γj(u)) \X, |Ru| = rσ := (1− σ)σ2m2

n3 :
Ru is a ρ′-supercover, where ρ′ := (ρ)⊕, and
the sets Ru are pairwise disjoint for all u.

The overlapping neighborhood is called Π-qualified if the sets Ru are Π-qualified
ρ′-supercovers.

A vertex v ∈ Vi satisfies the overlapping neighborhood property if the following
condition (Nρ,σ) is met:

(Nρ,σ[X]) ∀P ⊆ Vk, P is a (Hρ)-qualified σ-cover of Vj :
v has an X-resistant (ρ, σ)-overlapping neighborhood
with P in Vj

(4.18)

Figure 4.8 illustrates the structure of an overlapping neighborhood.
Let

BN` (n,m; ε, ρ, σ) := {G ∈ S`(n,m; ε) | (4.19)
∃X ⊆ Vj, |X| ≤ (1− (σ)⊕)n :

|Vi[(¬Nρ,σ[X], D)]| ≥ (σ)⊕2n}

denote the set of graphs which are bad with respect to property (Nρ,σ).

There are two possibilities why a vertex v ∈ Vi might fail to satisfy (Nρ,σ).
Firstly, there could be less than 2

√
σpσ vertices u ∈ P such that v and u have

a common neighborhood of size at least rσ. In order to gain control on the
location of the common neighborhood, we concentrate on vertices u ∈ P ∗

and on the overlap of the covering neighborhood Wu with Γj(v). Recall that
the covering neighborhoods Wu are disjoint. Assume that for almost all ver-
tices in P ∗ this overlap is tiny, i.e., there exist less than 2

√
σpσ vertices with
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a common neighborhood of size at least rσ. It will turn out that this is very
improbable. To see this, note that the overwhelming majority of the neigh-
bors of v must lie within a very small number of covering neighborhoods
Wu. Hence, v cannot properly be attached to Vj , and, in turn, this implies
that only very few graphs may have this property.

But there is a second way a vertex v might fail to satisfy (Nρ,σ). Up to now
we know that we can find a set P̃ and pairwise disjoint sets Ru of the right
cardinality (as required by Definition 4.65). However, we have not yet guar-
anteed that the sets Ru are supercovers. To see why this is the case, note that
the covering neighborhoodsWu are homogeneous, as we have assumed that
the cover P is (Hρ)-qualified. Recall that homogeneous sets contain very few
sets which are not supercovers. Hence, we obtain a sufficiently small bound
on the number of graphs for which too many vertices have too many non-
supercovers in their neighborhood.

The following lemma formalizes these arguments.

Lemma 4.66 Let ρ′ := (ρ)⊕≪ σ. Then

|BN` (n,m; ε, ρ, σ)| ≤ ((σ)⊕2)m
(
n2

m

)(`2)
.
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Proof Since there are at most 2n ≤ 2m possibilities to choose X it suffices to
count the graphs in BN` for fixed X . Let

|X| =: (1− λ)n ≤ (1− (σ)⊕)n. (4.20)

As sketched above the proof is divided into two cases. Later we will give
a formal proof that these cases are really sufficient, i.e., they comprise all
graphs in BN` .

Case 1: This case shows that we can find a set P̃ and sets Ru of the right
cardinality as required by Definition 4.65.

Assume that for at least (σ)⊕2n/2 vertices in Vi[(D)] there exists an (Hρ)-
qualified σ-cover P ⊆ Vk of Vj such that the following condition is satisfied:

|{u ∈ P ∗ | |(Wu ∩ Γj(v)) \X| ≥ rσ}| ≤ 3
√
σpσ. (4.21)

Due to (4.20) we conclude by Lemma 4.40 that |D̄j(Vj \X)| ≤ 2εn. Hence we
can find (σ)⊕2n/3 vertices v ∈ Vi[(D)] which satisfy (4.21) and with

|Γj(v) \X| ≥ (1− ε)m
n2
|V \X| ≥ (1− ε)λq.

We intend to apply Lemma 4.38 and define a suitable neighborhood func-
tion for these bad vertices by

N (v) := {Y ∈
(
Vj
dv

)
| |Y \X| ≥ (1− ε)λq ∧

∃P ⊆ Vk, P is an (Hρ)-qualified σ-cover of Vj
∃P̄ ⊆ P ∗, |P̄ | = |P ∗| − 3

√
σpσ = (1− 6

√
σ)pσ/2

∀u ∈ P̄ : |(Wu ∩ Y ) \X| ≤ rσ}.

In order to count |N (v)| we first choose P and P̄ (at most npσ · 2pσ . 2q

possibilities). Let F :=
⋃
u∈P̄ Wu and observe that

|F | = (1− 6
√
σ)pσ/2 · qσ = (1− 6

√
σ)(1− σ)n ≥ (1− 7

√
σ)n.

Now we fix

yv := |Y \X| ≥ (1− ε)λq ≥ (1− ε)(σ)⊕q and fv := |(Y \X) ∩ F |

(at most n · n . 2q possibilities; recall that dv is part of the input toN (v) and
thus does not have to be counted.). We choose dv− yv neighbors in X and yv
neighbors in Vj \ X . These yv vertices are further subdivided. fv neighbors
are selected from F \X and yv − fv neighbors come from Vj \ (F ∪X). Since

fv = |(Y \X) ∩ F | ≤ |P̄ | · rσ ≤ |P ∗| · rσ = pσ/2 · rσ ≤ σq
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and
yv − fv ≥ ((1− ε)(σ)⊕ − σ)q ≥ (σ)⊕dv/2,

we obtain (maximizing over yv and fv)

|N (v)| .q
(

n

dv − yv

)(
n

fv

)(
7
√
σn

yv − fv

)
L4.27 (ii, iii)
≤ (7

√
σ)yv−fv · 8dv ·

(
n

dv

)
≤

(
56
√
σ

(σ)⊕/2
)dv
·
(
n

dv

)
≤ ((σ)⊕)dv

(
n

dv

)
.

This completes the proof of the first case.

Case 2: This case shall show that the sets Ru (which exist due to the previ-
ous case) are indeed supercovers.

Assume that for at least (σ)⊕2n/2 vertices there exists a (Hρ)-qualified σ-
cover P ⊆ Vk such that

∃P̄ ⊆ P ∗, |P̄ | = σpσ
∀u ∈ P̄ ∃Ru ⊆ (Wu ∩ Γj(v)) \X, |Ru| = rσ : Ru is no ρ′-supercover}

Again we will apply Lemma 4.38 and define the neighborhood function

N (v) := {Y ∈
(
Vj
dv

)
| ∃P ⊆ Vk, P is an (Hρ)-qualified σ-cover

∃P̄ ⊆ P ∗, |P̄ | = σpσ

∀u ∈ P̄ ∃Ru ⊆ (Wu ∩ Y ) \X, |Ru| = rσ :

Ru is no ρ′-supercover}.

As in the previous case the number of possible choices for P and P̄ is of
lower order and can be neglected. Since P is assumed to be (Hρ)-qualified,
Γj(u) is ρ-homogeneous for all u ∈ P ∗ . By Proposition 4.44, Wu with

|Wu| = qσ ≥ 3
4
σq ≥ σ

2
dj(u)

is thus 2ρ/σ ≤ ρ1/2-homogeneous and the number of sets R ∈
(
Wu

rσ

)
which

are not ρ′-supercovers is bounded by ρ′rσ
(
qσ
rσ

)
due to Lemma 4.56 and Re-

mark 4.57. Now note that a set Y ∈ N (v) is (pσ/2, rσ, σ)-∃-bad with excep-
tion probability ρ′rσ . We have

pσ/2 · rσ = σ−1n
2

m
· (1− σ)σ2m

2

n3
= (1− σ)σq ≥ σdv/2.

Hence, it follows by Lemma 4.35 that

|N (v)| .q (8ρ′σ
2/2)dv

(
n

dv

)
≤ σdv

(
n

dv

)
,

as ρ′≪ σ. This proves the second case.
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Cases are sufficient It remains to show that both cases comprise all graphs
in BN` . For graphs which are not contained in one of the cases, at least (1 −
(σ)⊕2)n vertices in V1 remain which satisfy the following properties for all
(Hρ)-qualified σ-covers P ⊆ Vk. Due to case 1 we can find 3

√
σpσ vertices

u ∈ P ∗ for which a suitable setRu ⊆ (Wu∩Y )\X exists. By case 2 at most σpσ
of them do not satisfy the requirements of Definition 4.65. Hence, enough
vertices remain for the set P̃ and the proof is complete. �

4.8.8 Qualified vertices and covers

Graph classes for K5-proof

For finding subgraphs K5 we will consider vertices which satisfy certain
combinations of the properties (Qρ), (Tρ) and (Nρ,σ). Therefore we introduce
some abbreviations.

We let (HTρ) := (Hρ, Tρ) and (QTρ) := (Qρ, Tρ). For the graphs in

SQT` (n,m; ε, ρ) := S`(n,m; ε) \ (BQ` (n,m; ε, ρ) ∪ BT` (n,m; ε, ρ))

we may assume that

|Vi[¬(QTρ, D)]| ≤ |Vi[(¬D)]|+|Vi[(¬Qρ, D)]|+|Vi[(¬Tρ, D)]| ≤ 3(ρ)⊕2n (4.22)

by Lemma 4.60, (4.15) and (4.17).

Observe that the notation for the good sets SX` obeys the following con-
vention. The superscript X indicates which bad sets BX` have already been
excluded.

We define (HT+
ρ ) as (Hρ | HTρ) and let

BHT+
` (n,m; ε, ρ) := {G ∈ SQT` (n,m; ε, (ρ)	4) | |Vi[(¬HT+

ρ , D)]| ≥ (ρ)⊕n}.
(4.23)

The notation (Hρ | HTρ) probably looks a bit contrived at first sight. How-
ever, note that the statement of the property (Hρ) and thus also of (Hρ | HTρ)
refers to partitions Vi, Vj and Vk. Hence by restricting the possibilities for i, j
and k differently for (Hρ) and (HTρ) the property (Hρ | HTρ) is well-defined.
In Section 4.8.16 the reader will find a more detailed account on this. But for
the time being we will ignore this technical difficulty in order to render the
exposition simpler.

By (4.22) we have that

|Vi[(¬HTρ)]| ≤ |Vi[¬(QTρ, D)]| ≤ 3((ρ)	4)⊕2n = 3(ρ)	2n ≤ (ρ)	n



4.8 CONSTRUCTING COMPLETE SUBGRAPHS 99

for graphs in SQT` (n,m; ε, (ρ)	4), since . Thus Vi is (HTρ)-enhanced (ρ)	-
homogeneous. By Remark 4.63 we can proceed analogously to the proof
of Lemma 4.62 and obtain that

|BHT+
` (n,m; ε, ρ)| ≤ ((ρ)⊕)m

(
n2

m

)(`2)
. (4.24)

Accordingly, we define

SQT+
` (n,m; ε, ρ) := SQT` (n,m; ε, (ρ)	4) \ BHT+

` (n,m; ε, ρ),

For brevity we let (QT+
ρ ) := (HT+

ρ ) ∧ (QTρ) and note that for graphs G ∈
SQT+
` (n,m; ε, ρ),

|Vi[¬(QT+
ρ , D)] ≤ (3(ρ)	2 + (ρ)⊕)n ≤ 4(ρ)⊕n ≤ (ρ)⊕2 (4.25)

due to (4.22) and (4.23).

Furthermore, we let σ = σ(µ) := (µ)	5 and introduce the family of graphs

SQT+N
` (n,m; ε, ρ, µ) := SQT+

` (n,m; ε, ρ) \ BN` (n,m; ε, ρ, σ).

Recall that for ρ′ = (ρ)⊕≪ σ, we have

|BN` (n,m; ε, ρ, σ)| ≤ ((σ)⊕2)m
(
n2

m

)(`2)
(4.26)

by Lemma 4.66. For graphs G ∈ SQT+N
` (n,m; ε, ρ, µ) and all X ⊆ Vj with

|X| ≤ (1− (σ)⊕)n, we get

|Vi[¬(QT+
ρ , Nρ,σ[X], D)]| ≤ ((ρ)⊕2 + (σ)⊕2)n ≤ 2(σ)⊕2n ≤ (µ)	2n (4.27)

by (4.25) and (4.19).

Finally we deduce the property (N+
ρ,µ[X]) from (Nρ,µ[X]) by introducing the

additional condition that P is (HT+
ρ )-qualified instead of just (Hρ)-qualified

and that the overlapping neighborhoods Ru are also (HTρ)-qualified (cf.
(4.18)). We let

BN+
` (n,m; ε, ρ, µ) := {G ∈ S`(n,m; ε) | (4.28)

∃X ⊆ Vj, |X| ≤ (1− (µ)⊕)n :

|Vi[(¬N+
ρ,µ[X], D)]| ≥ (µ)⊕2n}.

Proceeding along the lines of the proof of Lemma 4.66 we can show that

|BN+
` (n,m; ε, ρ, µ)| ≤ ((µ)⊕2)m

(
n2

m

)(`2)
, (4.29)

provided that ρ′ = (ρ)⊕≪ µ.
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Graph classes for K4-proof

For finding subgraphs K4 we will not need the property (Tρ) of graphs in
SQT` (n,m; ε, ρ). Therefore, we define

SQ` (n,m; ε, ρ) := S`(n,m; ε) \ BQ` (n,m; ε, ρ).

Additionally, we will need the property (C+
ρ ) := (Cρ | Cρ). Again the two

occurrences of (Cρ) refer to different partitions Vi, Vj and Vk. We let

BC+
` (n,m; ε, ρ) := {G ∈ SQ` (n,m; ε, (ρ)	2) | |Vi[(¬C+

ρ , D)]| ≥ (ρ)⊕2n}. (4.30)

From Lemma 4.60 and (4.15) it follows immediately that for graphs G ∈
SQ` (n,m; ε, (ρ)	2),

|Vi[¬(Qρ, D)]| ≤ |Vi[(¬Q(ρ)	2 , D)]|+ Vi[(¬D)] ≤ 2(ρ)	n, (4.31)

and, consequently, Vi is (Cρ)-enhanced 2(ρ)	n-homogeneous. Thus we ob-
tain

|BC+
` (n,m; ε, ρ)| ≤ ((ρ)⊕)m

(
n2

m

)(`2)
(4.32)

due to Lemma 4.62 and Remark 4.63. Accordingly, we define

SQ+
` (n,m; ε, ρ) := SQ` (n,m; ε, (ρ)	2) \ BC+

` (n,m; ε, ρ).

For brevity we let (Q+
ρ ) := (C+

ρ ) ∧ (Qρ). For graphs in SQ+
` (n,m; ε, ρ) we get

|Vi[¬(Q+
ρ , D)]| ≤ (2(ρ)	 + (ρ)⊕2)n ≤ 2(ρ)⊕2n (4.33)

due to (4.30) and (4.31).

4.8.9 Triangle candidate covers ( K4)

In the sequel four or more partitions Vi, i ∈ {1, . . . , 4}will be involved in our
arguments for finding subgraphs K4. However, the following results will
just be used for a specific choice of these partitions. Therefore, we prefer to
formulate the definitions and lemmas with direct references to the partitions
under consideration.

Consider a vertex v ∈ V1 and a set Q ⊆ Γ3(v). Assume that we are able to
find a structure as the one shown in Figure 4.9, i.e., almost all vertices in
V2, namely the vertices in T , complete many triangles in V4. Then it would
be easy to show that there exists a vertex w ∈ Γ2(v) ∩ T , completing many
K4-candidates.

This leads to the following definition.
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Figure 4.9: Triangle cover

Definition 4.67 (Triangle covers) A set Q ⊆ V3 is called a (ρ, µ)-triangle cover
if there exists a set T = T (Q) ⊆ V2 with |T | ≥ (1− µ)n such that for all w ∈ T ,

|Γ4(R) ∩ Γ4(w)| ≥ tρ for R := Q ∩ Γ3(w),

where tρ := ρ−1 n2

m
.

Unfortunately, we are not able to show directly that most sets Q are trian-
gle covers. Instead we take a little detour and introduce triangle candidate
covers.

Definition 4.68 (Triangle candidate covers) LetG ∈ S4(n,m; ε) andX ⊆ V4.
A set Q ⊆ V3 with |Q| = qµ is called an X-resistant (ρ, µ)-triangle candidate
cover if there exist sets Q̃ ⊆ Q with |Q̃| = µqµ and T̃ = T̃ (Q) ⊆ V2 with
|T̃ | ≥ (1− ρ1/4)n such that the following condition is satisfied:

∀w ∈ T̃ ∃Q̃∗ ⊆ Q̃, |Q̃∗| ≥ (1− ρ1/4)µqµ

∀u ∈ Q̃∗ ∃Ru ⊆ Γ4(u) ∩ Γ4(w) \X, |Ru| = r̃2 :

the sets Ru are rµ(qµ)-quasidisjoint for u ∈ Q̃∗,

where r̃2 := rρ(µqµ)/2 = 1
8
(1− µ)ρµ2m2

n3 .
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A triangle candidate cover does not yet consider the edges between V2 and
V3. But its structure is chosen in such a way that the set R = Q ∩ Γ3(w) for
a typical vertex w ∈ V2 will have a sufficiently large neighborhood Γ4(R) ∩
Γ4(w). Note that most vertices in Q̃ have many common neighbors with w
in V4. Figure 4.10 illustrates the structure of a triangle candidate cover.
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Figure 4.10: (ρ, µ)-triangle candidate cover

The following lemma shows that we have already encountered triangle cov-
ers. A close examination of (Cρ)-qualified µ-multicovers Q will reveal that
such sets Q already satisfy Definition 4.68.

Lemma 4.69 (Qualified multicovers are triangle candidate covers) Let Q ⊆
V3 with |Q| = qµ be a (Cρ)-qualified µ-multicover of V4. Then Q is an X-resistant
(ρ, µ)-triangle candidate cover for everyX ⊆ V4 with |X| ≤ (1−2

√
µ)n, provided

that µ3 ≥ ρ.

Proof Let an arbitrary set X ⊆ V4 with |X| ≤ (1 − 2
√
µ)n be given. Due to

Lemma 4.59 we know that Q is an X-resistant µ-multicover. We will show
that Q∗∗ satisfies the properties of Q̃ in Definition 4.68. Note that |Q∗∗| = µqµ
by Definition 4.58, as required in Definition 4.68.

Since Q is a µ-multicover of V4, there exist rµ(qµ)-quasidisjoint covering
neighborhoods W ′

u ⊆ Γ4(u) \ X with |W ′
u| = µqµ for u ∈ Q∗∗. Note that

µqµ ≥ µ2q/2 ≥ µ3d4(u) and µ3 ≥ ρ. Hence, as Q is (Cρ)-qualified and the
vertices u ∈ Q∗∗ ⊆ Q∗ thus satisfy (Cρ), the sets W ′

u are ρ-multicovers of V2
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and by Lemma 4.52 we have |Cj(W ′
u; ρ)| ≥ (1 − √ρ)n for all u ∈ Q∗∗. By

Corollary 4.29 we conclude that there is a set T̃ ⊆ V2 with |T̃ | ≥ (1 − ρ1/4)n
such that every vertex w ∈ T̃ belongs to at least (1− ρ1/4)µqµ sets Cj(W ′

u; ρ)
for u ∈ Q∗∗.

In other words, for every w ∈ T̃ the set Q̃∗ := {u ∈ Q∗∗ | w ∈ Cj(W ′
u; ρ)} ⊆

Q∗∗
!

= Q̃ satisfies |Q̃∗| ≥ (1− ρ1/4)µqµ.

Now for every u ∈ Q̃∗ define Ru := Γ4(w) ∩ W ′
u for a fixed vertex w ∈

T̃ . Observe that by the definition of Q̃∗ we have w ∈ Cj(W
′
u; ρ), hence, by

definition of the latter, |Ru| = |Γ4(w) ∩W ′
u| ≥ rρ(µqµ)/2 = r̃2. On the other

hand, we have W ′
u ⊆ Γ4(u) \X by the definition of W ′

u, and therefore Ru ⊆
(Γ4(u)∩Γ4(w))\X . Finally, note that the setsRu are rµ(qµ)-quasidisjoint since
they are subsets of the rµ(qµ)-quasidisjoint sets W ′

u. �

As a first step from triangle candidate covers to triangle covers, we now
show that for a typical vertex w ∈ V2 the set R := Q∩Γ3(w) completes many
triangles with w. For |Q| = Θ(m/n) note that we may expect that |R| =
Θ(m/n·m/n2) = Θ(m2/n3). The following definition introduces ’bad’R-sets,
i.e., sets R ⊆ Q which have less than tρ := ρ−1 n2

m
common neighbors Γ4(R)∩

Γ4(w). The subsequent lemma then shows that for every vertex w ∈ T̃ (Q)
there exist only very few badR-sets. Since T̃ is large (cf. Definition 4.68), this
will later suffice to obtain triangle covers. Note that we expect Θ(m2/n3 · n ·
(m/n2)2) = Θ(m4/n6) common neighbors Γ4(R) ∩ Γ4(w), and that n2/m =
o(m4/n6) for m = ω(n8/5). Thus, at least in expectation, R-sets should have
tρ common neighbors.

Definition 4.70 (Bad R-sets) Consider a graph G ∈ S4(n,m; ε), X ⊆ V4,
w ∈ V2 and a set Q ⊆ V3 with |Q| = qµ which is an X-resistant (ρ, µ)-triangle
candidate cover. We define

R̄4(w,Q;X, ρ) := {R ∈
(
Q̃

r̃1

)
| |(Γ4(R) ∩ Γ4(w)) \X| < tρ},

where tρ := ρ−1 · n2

m
and r̃1 := rµ(µqµ)/2 = 1

8
(1− µ)µ3m2

n3 .

Lemma 4.71 (Few bad R-sets) Let Q be an X-resistant (ρ, µ)-triangle candi-
date cover and consider a vertex w ∈ T̃ (Q) ⊆ V2. Then

|R̄4(w,Q;X, ρ)| ≤ ρr̃1/20

(
µqµ
r̃1

)
.

for m ≥ Cn8/5 and C sufficiently large.
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Proof We intend to apply Lemma 4.31. To this aim we identify B ≡ Q̃,
B∗ ≡ Q̃∗, with |B∗| ≥ (1 − ρ1/4)|B| due to Definition 4.68, and Au,1 ≡ Ru

for u ∈ Q̃∗. Since Au,1 ⊆ Γ4(u) ∩ Γ4(w) \X , it suffices to bound the number
of non-tρ-spreading sets R ∈

(
Q̃
r̃1

)
.

Let us check the preconditions of Lemma 4.31. Condition (i) trivially holds
since we have h = 1.

For Condition (ii) the left-hand side evaluates to 4ρ−1 n2

m
rµ(qµ) = Θ(n2/m ·

m2/n3) = Θ(m/n), whereas the right-hand side amounts to ρ1/4 · r̃2 · µqµ =
Θ(m2/n3 ·m/n) = Θ(m3/n4). Observe that m/n = o(m3/n4) for m = ω(n3/2).
Thus for sufficiently large n Condition (ii) is obviously satisfied.

For Condition (iii) we obtain

1

8
(1− µ)µ3m

2

n3
= r̃1 ≤ 4ρ−1n

2

m
· 1

r̃2

=
32

ρ2(1− µ)µ2

n2n3

mm2
.

This condition is satisfied for m5 ≥ ρ−2µ−5n8.

Now the claim follows immediately by Lemma 4.31. �

4.8.10 Cocovers ( K5)

In the sequel four or more partitions Vi for i ∈ {1, . . . , 5} will be involved in
our arguments for finding subgraphs K5. However, as in the case H = K4,
the following results will just be used for a specific choice of these partitions.
Therefore, we prefer to formulate the definitions and lemmas with direct
references to the partitions under consideration.

In Section 4.8.7 we have seen that a constant fraction of a typical set P ⊆ V4

with Θ(n2/m) vertices has a common neighborhood of size Θ(m2/n3) with a
given vertex u ∈ V3, yielding Θ(n2/m·m2/n3) = Θ(m/n) common neighbors.
If these common neighborhoods were (rather) disjoint for Θ(n2/m) vertices
u1, u2, . . ., we could expect that all common neighborhoods together ’tile’
the n vertices in V5, since Θ(m/n · n2/m) = Θ(n). The aim of this section is
to show that this is indeed the case.

More specifically, we will fix a vertex v ∈ V1 and a vertex u ∈ V3 with com-
mon neighborhood R ∈ V4 of size Θ(m2/n3). Note that m2/n3 ≥ n2/m
for m ≥ n5/3. Hence, we can divide R into several subsets P1, P2, . . . of
size Θ(n2/m) for which the above arguments hold, i.e., the common neigh-
borhoods with u contain Θ(n2/m · m2/n3) = Θ(m/n) vertices. If we take
Θ(n2/m) vertices u1, u2, . . . ∈ V3, we expect their neighborhoods to tile V5

(cf. Figure 4.11).

Sets {u1, u2, . . .} ⊆ V3 for which such a structure as described above can be
found will be called cocovers. Before turning this into a formal definition,
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we will introduce a new auxiliary notion, which is in a certain sense com-
plementary to quasidisjointness (cf. Definition 4.30).

Definition 4.72 Let A1, . . . , Ab ⊆ V . Then the k-fold overlap OVk((Ai)i=1,...,b)
is defined by

OVk((Ai)i=1,...,b) := {x ∈ V | |{i ∈ {1, . . . , b} | x ∈ Ai}| ≥ k}.

Definition 4.73 (Cocovers) Let v ∈ V1. A set O ⊆ V3 with

|O| = oµ := σ−5/2n
2

m
, where σ := (µ)	5,

is called a (ρ, µ)-cocover of V5 via v and V4 if

∃O+ ⊆ O
∀u ∈ O+ ∃Ru ⊆ Γ4(u) ∩ Γ4(v), |Ru| =

√
σrµ

Ru is a (Tρ)-qualified
√

(ρ)⊕-supercover of V2

∀y ∈ Ru ∃Wu,y ⊆ Γ5(y) ∩ Γ5(u), |Wu,y| = rσ
Wu,y is a (ρ)⊕-supercover of V2,
the sets Wu,y are 2sµ-quasidisjoint for all u, y
and |OV5| ≥ (1− µ)n for OV5 := OVsµ((Wu,y)u∈O+,y∈Ru),

where sµ := rσ(rµ) = rµ/2pσ = 1
4
(1− µ)µ2σm

3

n5 .
Let CO3,5(v; ρ, µ) := {O ∈

(
V3

oµ

)
| O is a (ρ, µ)-cocover via v}.

Figure 4.11 illustrates the structure of a (ρ, µ)-cocover.

Since the definition of a cocover is rather lengthy, a few comments are in
order. Basically, a cocover results from a multiple application of property
(Nρ,σ). Note that the factor

√
σ for the size of the part of O resp. P̃ in a co-

cover resp. an overlapping neighborhood is identical. This is no coincidence,
as in the proof we will apply property (Nρ,σ) (cf. Definition 4.65) in order to
obtain the setsWu,y. The forbidden setX in the definition of (Nρ,σ[X]) can be
used to control the overlap between neighborhoods which stem from sev-
eral sequential applications of (Nρ,σ). The control on the overlap between
different sets Wu,y is crucial for the remainder of the proof, as we want these
sets to be as disjoint as possible (We will see later why this is so important.).

For future reference we note that

oµrµrσ
nsµ

=
4(1− µ)µ2(1− σ)σ2

σ5/2(1− µ)µ2σ
· n2m4n5

nmn6nm3
=

4(1− σ)

σ3/2
(4.34)
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PSfrag replacements

V1V1

V2V2V3V3

V4V4 V5V5

vv

uu

yy

O+O+

RuRu

Wu,yWu,y

≤ µn≤ µn

OV5OV5

Figure 4.11: (ρ, µ)-cocover

Observe that by the definition of OV5 there must be at least (1 − µ)n · sµ
occurrences of vertices in sets Wu,y if |OV5| ≥ (1 − µ)n. Hence we have for
|O+| =: αoµ,

(1− µ)n · sµ ≤ αoµ ·
√
σrµ · rσ ⇒ α ≥ (1− µ)nsµ√

σoµrµrσ

(4.34)
=

(1− µ)σ

4(1− σ)
≥ σ/5

and thus
|O+| ≥ σoµ/5. (4.35)

As the sets Wu,y are 2sµ-quasidisjoint, we can derive a similar upper bound
on the number of occurrences of vertices in sets Wu,y, and analogously we
conclude that (1− µ)n · 2sµ ≥ αoµ ·

√
σrµ · rσ. Hence we get

|O+| ≤ σoµ/2. (4.36)

The following lemma shows that almost all sets (of suitable size) are co-
covers. The proof is split into two cases which correspond to the following
approach.

Firstly, assume that sufficiently large sets R̃u ⊆ Γ4(u) ∩ Γ4(v) exist for many
vertices u ∈ O+. Then we apply (Nρ,σ) for a suitably chosen constant σ
(which will be much smaller than µ) in order to obtain sets Wu,y as required
by Definition 4.73. Note that this should be possible if we consider graphs
in SQT+N

` (n,m; ε, ρ, µ), since these graphs contain only very few vertices for
which (Nρ,σ) is not satisfied.
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The second case shows that we may indeed assume that suitable sets R̃u can
be found. To this aim we require that the given vertex v ∈ V1 satisfies (N+

ρ,µ).
It will turn out that sets R̃u can be found, provided that O is a σ-multicover.
This is achieved by decomposing O into µ-covers for which (N+

ρ,µ) is ap-
plied. Then the existence of the sets R̃u follows directly from the definition
of (N+

ρ,µ).

Lemma 4.74 (CO is small) Let ρ′ = (ρ)⊕ ≪ σ = (µ)	5. Consider G ∈
SQT+N
` (n,m; ε, ρ, µ) and a vertex v ∈ V1 which satisfies (N+

ρ,µ[∅]). Then

|CO3,5(v; ρ, µ)| ≤ ((µ)	)oµ
(
n

oµ

)
.

Proof We distinguish two kinds of sets P which may belong to CO3,5, as
discussed above. Later we will show that these two cases indeed comprise
all graphs in CO3,5.

Case 1: Firstly we count sets O ∈
(
V3

oµ

)
which contain µoµ ’bad’ vertices

u ∈ O with the property (¬CO). This property depends on an ordering
of O, where O is bad if all orderings result in µoµ bad vertices. Let O =
{u1, . . . , uoµ}. The vertex u ≡ ul is bad if it satisfies

(¬CO) (∃R̃u ⊆ Γ4(u) ∩ Γ4(v), |R̃u| = rµ :

R̃u is an (HTρ)-qualified ρ′-supercover) ∧
u does not satisfy (Nρ,σ[Yl]) for Yl as specified below.

Note the two different constants µ and σ which are used for the property
(N) in this lemma. We require that v ∈ V1 satisfies (N+

ρ,µ[∅]) but we look
for vertices u ∈ O with property (Nρ,σ[Yl]). It will be very important for
our subsequent estimates that σ has been chosen to be significantly smaller
than µ.

Determine vertex by vertex whether ul is bad for l = 1, . . . , oµ. Initially we
start with an empty set Y1 and an empty family Y1 ⊆

(
V5

rσ

)
of vertex sets.

If ul is a good vertex which satisfies (CO) and for which a suitable set R̃u

exists (as required by the definition of (¬CO)), then ul must satisfy (Nρ,σ[Yl]).
Assume that |Yl| ≤ (1 − µ)n. Since R̃u is an (HTρ)-qualified ρ′-supercover,
it is also an (HTρ)-qualified σ-multicover. Hence we can find sµ = rσ(rµ)
σ-covers in R̃u which are (Hρ)-qualified. We apply (4.18) and Definition 4.65
to every σ-cover and conclude that Ru satisfies
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∃Ru ⊆ R̃u, |Ru| =
√
σrµ

∀y ∈ Ru ∃Wu,y ⊆ (Γ5(v) ∩ Γ5(u)) \ Yl, |Wu,y| = rσ
Wu,y is a ρ′-supercover of V2, and the sets Wu,y are sµ-quasidisjoint.

For a good vertex ul ≡ u (for which such a structure exists) we set Yl+1 =
Yl ∪ {Wu,y | y ∈ Ru}. Then we proceed to choose ul+1. Otherwise, for a bad
vertex u, Yl remains unchanged, i.e., we set Yl+1 = Yl. In any case, we let
Yl+1 := OVsµ(Yl+1). If Yl has more than (1 − µ)n vertices, we stop adding
new vertices to Y and vertex sets to Y , setting Yl+1 = Yl and Yl+1 = Yl for all
future steps.

The sets Ru and Wu,y satisfy the requirements of Definition 4.73, which can
be seen as follows. Since R̃u is a (HTρ)-qualified ρ′-supercover and |Ru| =√
σ|R̃u|, we conclude that Ru is a (Tρ)-qualified ρ′/

√
σ-supercover. Now ob-

serve that ρ′/
√
σ ≤

√
ρ′. Furthermore, the sets Wu,y are 2sµ-quasidisjoint,

as the sets Wu,y which are added to Yl for one specific vertex u ≡ ul are
sµ-quasidisjoint and also the vertices in V5 \ Yl are sµ-quasidisjoint by the
definition of Yl.

Now let us return to counting the number of bad graphs. By the definition
of (¬CO), a bad vertex ul must satisfy (¬Nρ,σ[Yl]). By (4.27) we conclude
that sets O with the above mentioned property are (1, µ)-∀-bad with excep-
tion probability (µ)	2. Note that |Yl| ≤ (1 − µ/2)n ≤ (1 − (σ)⊕)n by con-
struction. Due to Lemma 4.32 we can bound the number of such sets by
((µ)	2)µoµ/2

(
n
oµ

)
≤ 1

2
((µ)	)oµ

(
n
oµ

)
.

Case 2: Secondly we consider sets O ∈
(
V3

oµ

)
which are not (HT+

ρ )-qualified
µ-multicovers of V4. Note that this implies O ∈ Q̄4(V3; oµ, 1 | (HT+

ρ )).

By (4.25) we conclude that V3 is (HT+
ρ )-enhanced (ρ)⊕2- and thus (µ)	3-

homogeneous. Hence, by Lemma 4.56 it follows that the number of such
sets O can be bounded by

((µ)	2)oµ
(
n

oµ

)
≤ 1

2
((µ)	)oµ

(
n

oµ

)
.

Cases are sufficient: To complete the proof it suffices to show that an
(HT+

ρ )-qualified µ-multicover O ∈
(
V3

oµ

)
, provided that an ordering exists

such that there at most µoµ vertices satisfying (¬CO) is a (ρ, µ)-cocover via
v.

Assume that we iterate through the vertices according to the given ordering
and finally obtain a set Y := Yµoµ ⊆ V5 with |Y | ≥ (1 − µ)n. As discussed
above the vertices for which new vertices have been added to Y form a set
O+ which satisfies the requirement of Definition 4.73. Thus the set O is in
fact a cocover.
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It remains to show that the case |Y | < (1 − µ)n cannot occur. Let O∗ =⋃r′

l=1 P
∗
l , where P ∗l is an (HT+

ρ )-qualified µ-cover and r′ = rµ(oµ). Since v
satisfies (N+

ρ,µ[∅]), it follows that v has an (HTρ)-qualified (ρ, µ)-overlapping
neighborhood with P ∗l in V4 for l = 1, . . . , r′. Hence there are at least r′ ·
2
√
µpµ =

√
µoµ vertices u ∈ O for which R̃u ⊆ (Γ4(v)∩ Γ4(u)) with |R̃u| = rµ

exists such that R̃u is an (HTρ)-qualified ρ′-supercover of V5. Let O∗ denote
the set of these vertices.

If we remove all vertices from O∗ which satisfy (¬CO), still at least µoµ ver-
tices remain, with lots of room to spare. Call the set of these vertices O∗∗.
Since we iterate through the vertices in O according to the ordering implied
by Case 1, the following holds. By the definition of property (¬CO) the ver-
tices ul ∈ O∗∗ satisfy (Nρ,σ[Yl]) where Yl is constructed as defined in Case 1.
Hence for each u ≡ ul ∈ O∗∗ the vertices in

⋃
y∈R̃uWu,y are added to Yl, as we

have assumed that |Yl| ≤ |Y | < (1−µ)n. Note that the vertices in O∗∗ satisfy
all properties of vertices in O+ given in Definition 4.73. Only the size of OV5

is not yet clear. But since |O∗∗| ≥ µoµ exceeds the upper bound on O+ given
in (4.36), we obtain a contradiction. Hence, O∗∗ cannot grow that large and
it follows that |Y | ≥ (1− µ)n. Thus we have constructed a (ρ, µ)-cocover. �

The strength of the cocovers relies on the fact that their structure is difficult
to destroy, since they incorporate many (quasi-)disjoint sets. Indeed we will
show that in every subset of V5 which is not too small a resistant cocover
can be found. A resistant cocover has the same basic structure as a cocover,
only the sizes of the various sets are suitably scaled down.

Definition 4.75 (Resistant Cocovers) Let v ∈ V1 and X ⊆ V5. A set O ⊆ V3

with |O| = oµ is called X-resistant (ρ, µ)-cocover of V5 via v if

∃O∗ ⊆ O, |O∗| = 2σ2oµ
∀u ∈ O∗ ∃Ru ⊆ Γ4(u) ∩ Γ4(v), |Ru| = σrµ

Ru is a (Tρ)-qualified ν-multicover of V2, where ν := (ρ)⊕

∀y ∈ Ru ∃Wu,y ⊆ Γ5(y) ∩ Γ5(u) \X, |Wu,y| = σrσ
Wu,y is a ρ-multicover of V2, and the sets Wu,y are 2sµ-quasidisjoint.

The following lemma shows that every cocover is X-resistant provided that
X is not too big.

Lemma 4.76 (All cocovers are resistant) Assume that ρ′ := (ρ)⊕≪ σ, where
σ := (µ)	5. Let O ⊆ V3 with |O| = oµ be a (ν, µ)-cocover and consider a set
X ⊆ V5 with |X| ≤ (1− 2µ)n. Then O is also an X-resistant (ν, µ)-cocover.
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Proof We count the number of occurrences of vertices x ∈ V5 in sets Wu,y for
the (ν, µ)-cocover O. By counting occurrences we mean that a single vertex
x ∈ V5 is counted as many times as it occurs in a setWu,y for different vertices
u, y.

Since |OV5 ∩ V5 \X| ≥ µn and every vertex x ∈ OV5 corresponds to at least
sµ such occurrences, we conclude that at least sµ · µn occurrences remain if
we restrict the sets Wu,y to vertices in V5 \X .

Assume that there are not enough vertices left from the original sets Ru and
Wu,y (i.e. in the (ν, µ)-cocover) for the X-resistant (ν, µ)-cocover. Let us de-
note these (original) sets by R̂u and Ŵu,y in order to distinguish them from
the sets to be found for the X-resistant cocover. Recall that |R̂u| =

√
σrµ and

|Ŵu,y| = rσ.

If the number of suitable sets Ru and Wu,y is too small, we obtain the follow-
ing bound on the number of remaining occurrences in sets Wu,y ⊆ Ŵu,y \X .
Note that for every vertex u ∈ O+ and all

√
σrµ neighbors y ∈ R̂u there may

remain σrσ neighbors in Ŵu,y. Secondly there may be σrµ neighbors y ∈ R̂u

such that all rσ neighbors in Ŵu,y remain. Finally, for at most 2σ2oµ vertices
in O+ and all

√
σrµ neighbors y ∈ R̂u all rσ neighbors in Ŵu,y may remain.

Combining these numbers of occurrences of vertices x ∈ V5 in W -sets leads
to

#occurrences ≤ |O+| ·
√
σrµ · σrσ + |O+| · σrµ · rσ + 2σ2oµ ·

√
σrµ · rσ

(4.36)

≤ σ2oµrµrσ,

using (4.36). Combining this with the lower bound sµ · µn we obtain using
(4.34),

µsµn ≤ σ2oµrµrσ ⇒ µ ≤ σ2 · 4(1− σ)

σ3/2
≤ 4
√
σ.

This is obviously a contradiction.

It remains to show that the sets Ru and Wu,y are indeed multicovers. This
easily follows from the fact that the corresponding sets in the original (ρ, µ)-
cocover were ρ′- or at least

√
ρ′-supercovers. Observe that the remaining

sets Ru and Wu,y are at least a σ-fraction of the original sets. As
√
ρ′ ≤ σ this

completes the proof. �

4.8.11 Square (candidate) covers ( K5)

The aim of this section is to find (many) squares K4 in the graph. If many
such subgraphs exist and their occurrences are scattered throughout the
graph it seems plausible that at least some of them can be enlarged to a
subgraph K5. To this aim we introduce the set SQU5(w,Q, v):
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SQU5(w,Q, v) := {x ∈ V5 | ∃u ∈ Γ3(w) ∩Q ∃y ∈ Γ4(v) ∩ Γ4(u) ∩ Γ4(w) :

x ∈ Γ5(u) ∩ Γ5(y) ∩ Γ5(w)}.

We will use this definition for Q ⊆ Γ3(v) and w ∈ Γ2(v). Observe that
SQU5(w,Q, v) then directly corresponds to the K5-candidates which we
want to construct in the end (cf. Figure 4.12).

The following definition introduces a structure which immediately leads to
many K5-candidates.

Definition 4.77 (Square covers) Let

S2(Q, v; ρ) := {w ∈ V2 | |SQU5(w,Q, v) \X| ≥ tρ},

where tρ := ρ−1 n2

m
. We call a set Q ⊆ V3 a (ρ, µ)-square cover of V2 via v if

|S2(Q, v; ρ)| ≥ (1− µ)n.

See Figure 4.12 for an illustration of the structure of a square cover.
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Figure 4.12: (ρ, µ)-square cover

Intuitively, for a square cover Q almost all vertices in V2 belong to squares.
Consider a vertex v ∈ V1 and a square cover Q ⊆ Γ3(v). It would be easy to
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show that with very high probability Γ2(v) and S2(Q, v; ρ) intersect, yielding
tρ K5-candidates.

Unfortunately, we are not able to give a direct proof that almost all setsQ are
square covers. Instead we will show a somewhat weaker statement which is
based on so-called square candidate covers. Such a square candidate cover
can be interpreted as a square cover where the edges from V2 to V3 are ig-
nored, i.e., their presence is not yet guaranteed.

Definition 4.78 (Square candidate covers) Let v ∈ V1 and X ⊆ V5. A set
Q ⊆ V3 with |Q| = qµ is called an X-resistant (ρ, µ)-square candidate cover if
there exist sets Q̃ ⊆ Q and T̃ = T̃ (Q) ⊆ V2 with |Q̃| = σ2qµ, |T̃ | = (1− 6ν1/8)n

and ν :=
√

(ρ)⊕ such that

∀w ∈ T̃ ∃Q̃∗ ⊆ Q̃, |Q̃∗| ≥ (1− 6ν1/8)σ2qµ
∀u ∈ Q̃∗ ∃Yu,w ⊆ Γ4(v) ∩ Γ4(u) ∩ Γ4(w), |Yu,w| = ν3m3

n5 =: hν
∀y ∈ Yu,w ∃Su,w,y ⊆ Γ5(u) ∩ Γ5(y) ∩ Γ5(w) \X, |Su,w,y| ≥ hρ

the sets Su,w,y are dµ-quasidisjoint for fixed w,

where dµ := 2sµ · qµ2oµ
.

Let SC3,2(v,X; ρ, µ) denote the set of X-resistant square candidates covers in V3.

Note that

dµ = 2sµ ·
qµ
2oµ

=
1

4
(1− µ)µ2σ

m3

n5
· (1− µ)µ

m

n
· σ5/2m

n2
≥ σ4m

5

n8
, (4.37)

and, accordingly,

dµ ≤ σ
m5

n8
. (4.38)

Even if Definition 4.78 looks perhaps somewhat scary, the structure of
square candidate covers is actually not too difficult, as Figure 4.13 illus-
trates.

In fact, it turns out that square candidate covers are not much more than co-
covers. By comparing the structure of (X-resistant) cocovers (cf. Figure 4.11)
and that of square candidate covers (cf. Figure 4.13) the astute reader will
immediately notice that the differences are only moderate. Firstly, there are
new edges between V2 and V4 resp. V2 and V5. However, these edges do not
come as a surprise. Observe that the sets Ru and Wu,y in a cocover are mul-
ticovers. Hence, we should expect the edges in the square candidate cover
to be indeed present.
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Figure 4.13: (ρ, µ)-square candidate cover

The second difference is even smaller. Square candidate covers have a larger
cardinality than cocovers. Thus we will construct the former by combining
sufficiently many cocovers.

The following lemma shows that a sufficiently large set Q which con-
tains many cocovers is indeed a square candidate cover. This implies that
the number of sets which are no square candidate cover is small. Let
SC3,2(v; ρ, µ) ⊆

(
V3

qµ

)
denote all sets which can be decomposed into sets

O1, . . . , Oqµ/oµ with |O1| = . . . = |Oqµ/oµ| = oµ such that at least half of these
sets are (ρ, µ)-cocovers. In the sequel we will see that almost all sets in

(
V3

qµ

)
belong to SC3,2(v; ρ, µ) and that the latter set contains the X-resistant square
candidate covers we have been looking for.

Lemma 4.79 (Many square candidate covers) Let (ρ)⊕≪ σ = (µ)	5. Con-
sider G ∈ SQT+N

` (n,m; ε, ρ, µ) and a vertex v ∈ V1 which satisfies (N+
ρ,µ[∅]).

Then
|SC3,2(v; ρ, µ)| ≤ µ2q

(
n

qµ

)
and

SC3,2(v; ρ, µ) ⊆ SC3,2(v,X; ρ, µ) for all X ⊆ V5 with |X| ≤ (1− 2µ)n,

i.e., every set in SC3,2(v; ρ, µ) is an X-resistant (ρ, µ)-square candidate cover.
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Proof We prove the two claims of the lemma separately.

SC is small To prove the first claim it suffices to see that due to Lemma 4.74
every set in SC3,2(v; ρ, µ) is (oµ, 1/2)-∀-bad with an exception probability
of ((µ)	)oµ . Hence by Lemma 4.32 we can deduce that there are at most
((µ)	)qµ/4

(
n
qµ

)
≤ µ2q

(
n
qµ

)
such sets.

SC3,2(v; ρ, µ) contains X-resistant square candidate covers For the proof
of the second claim let us consider arbitrary sets Q ∈ SC3,2(v; ρ, µ) and X ⊆
V5 with |X| ≤ (1 − 2µ)n. By assumption, Q contains at least qµ/(2oµ) (ρ, µ)-
cocovers, which must be X-resistant due to Lemma 4.76.

Properties of single cocovers Consider anX-resistant (ρ, µ)-cocoverO and
a vertex u ∈ O∗. We let

Fu := {{y, w} ∈ E(V4, V2) | y ∈ Ru, w ∈ Γ2(y) ∩ C2(Wu,y, ρ)}.

We intend to show the following auxiliary claim:

(i) For at least (1 − 3
√
ν)n vertices w ∈ CFu

2 (Ru; ν) suitable sets Yu,w
and Su,w,y for y ∈ Yu,w exist which satisfy the requirements of Defi-
nition 4.78.

Note that d2(y) − dFu2 (y) ≤ (ρ)⊕q ≤ ν2q for y ∈ Ru (recall that ν :=
√

(ρ)⊕,
cf. Definition 4.78), since Ru ⊆ Γ4(u) ∩ Γ4(v) is (Tρ)-qualified and Wu,y ⊆
Γ5(y) ∩ Γ5(u) \X is a ρ-multicover. Hence by Lemma 4.52 we deduce that

|CFu
2 (Ru; ν)| ≥ (1− 3

√
ν)n.

For every vertex w ∈ CFu
2 (Ru; ν) we have that

|ΓFu4 (w) ∩Ru| ≥ rν(σrµ)/2 =
1

8
νσrµ ·

m

n2
≥ 1

9
νσµ2m

3

n5
≥ ν3m

3

n5
= hν ,

asRu is a ν-multicover (of V2). Hence, we can find a set Yu,w ⊆ Γ4(v)∩Γ4(u)∩
Γ4(w) with |Yu,w| = hν for which the following property is satisfied. Every
vertex y ∈ Yu,w is incident to an edge {y, w} ∈ Fu. Due to the definition of
Fu we deduce that w ∈ C2(Wu,y, ρ). This leads to

|Γ5(w) ∩Wu,y| ≥ rρ(σrσ)/2 =
1

8
ρσrσ ·

m

n2
≥ 1

9
ρσ3m

3

n5
≥ ρ3m

3

n5
≥ hρ.

Thus we can find a set Su,w,y ⊆ Γ5(u)∩Γ5(y)∩Γ5(w)\X with |Su,w,y| = hρ as
required by Definition 4.78 for at least (1 − 3

√
ν)n vertices w ∈ CFu

2 (Ru; ν).
This shows claim (i).
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Now we combine claim (i) for a single vertex u ∈ O∗ to the subsequent
claim (ii) for many vertices in O∗. By Corollary 4.29 it follows from (i)
that at least (1 − 3ν1/4)n vertices in V2 belong to CFu

2 (Ru; ν) for at least
(1 − 3ν1/4)2σ2oµ vertices u ∈ O∗. This holds for every X-resistant (ρ, µ)-
cocover O.

The sets (Su,w,y)u∈O∗,y∈Yu,w are 2sµ-quasidisjoint because they are subsets of
2sµ-quasidisjoint sets Wu,y. We obtain the following auxiliary claim.

(ii) There exists a set GV2(O) ⊆ V2 with |GV2(O)| = (1 − 3ν1/4)n such that
for every vertexw ∈ GV2(O) there exist (1−3ν1/4)2σ2oµ vertices u ∈ O∗
such that suitable sets Yu,w and Su,w,y satisfying the requirements of
Definition 4.78 can be found. The sets Su,w,y are 2sµ-quasidisjoint for
fixed w.

Combining many cocovers Now assume that Q contains at least z :=
qµ/(2oµ) X-resistant (ρ, µ)-cocovers O1, . . . , Oz. By Corollary 4.29 and (ii)
we conclude that there are at least (1 − 3ν1/8)n vertices w ∈ V2 such that
w ∈ GV2(Ol) for at least (1 − 3ν1/8)z indices l ∈ {1, . . . , z}. Thus for such a
vertex w there are at least

(1− 3ν1/8)z · (1− 3ν1/4)2σ2oµ ≥ (1− 6ν1/8)σ2qµ

vertices u ∈
⋃z
l=1 O

∗
l such that suitable sets Yu,w and Su,w,y exist. These sets

Su,w,y are 2sµz-quasidisjoint by construction.

In order to show that such a set Q satisfies Definition 4.78 it suffices to iden-
tify Q̃ with

⋃z
l=1 O

∗
l , since |

⋃z
l=1 O

∗
l | = z · 2σ2oµ = σ2qµ. �

The following definition introduces square candidates of a set R ⊆ V3 and a
vertex w ∈ V2, i.e., vertices x ∈ V5 which would complete a square with w
and a vertex u ∈ R (with an additional edge to a given vertex v ∈ V1) if the
edge {u,w} were indeed present. However, note that these edges, i.e., the
edges between V2 and V3 are not yet taken into account.

Definition 4.80 (Square candidates) For v ∈ V1, w ∈ V2 and R ⊆ V3 the set of
square candidates is given by

SQC(w,R, v) := {x ∈ V5 | ∃u ∈ R ∃y ∈ Γ4(v) ∩ Γ4(u) ∩ Γ4(w) :

x ∈ Γ5(u) ∩ Γ5(y) ∩ Γ5(w)}

Square candidate covers Q were constructed in such a way that for a given
vertex w ∈ V2 almost all vertices in Q̃ complete hν · hρ = Θ(m6/n10) square
candidates with w.
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Now assume that we choose several vertices R ⊆ Q and require that the
square candidates which belong to the vertices in R are ’rather’ disjoint. If
|R| is sufficiently small, the quasidisjointness of the square candidates will
suffice to show that this is indeed the case. Recall that the square candi-
dates are Θ(m5/n8)-quasidisjoint and at the threshold m = Θ(n8/5) it fol-
lows that they are Θ(1)-quasidisjoint. Thus, the overlap should not cause
real problems. Our aim is to choose |R| = Θ(m2/n3) vertices which com-
plete Θ(n2/m) square candidates. Note that this should be possible since
Θ(m2/n3 ·m6/n10) = Θ(m8/n13) and n2/m = o(m8/n13) for m = ω(n5/3).

The following definition introduces good R-sets, i.e., sets R ⊆ Q̃ with many
square candidates, and the subsequent lemma shows that bad R-sets occur
indeed very rarely. Here it will turn out to be essential that the sets Su,w,y in
the square candidate cover have been shown to be quasidisjoint. Otherwise,
neighborhoods of the vertices in a set R could cluster and we would not
obtain the desired cardinality.

Definition 4.81 (Non-spreading R-sets) Consider v ∈ V1 and X ⊆ V5. Let
Q ⊆ V3 be an X-resistant (ρ, µ)-square candidate cover and consider a vertex
w ∈ T̃ (Q) ⊆ V2. We define

R̄5(w,Q, v;X, ρ) := {R ∈
(
Q̃

r̃

)
| |SQC(w,R, v) \X| < tρ},

where tρ := ρ−1 n2

m
and r̃ := rµ(σ2qµ)/2 = 1

8
(1− µ)µ2σ2m2

n3 .

Lemma 4.82 (Few non-spreading R-sets) Let Q be an X-resistant (ρ, µ)-
square candidate cover and consider a vertex w ∈ T̃ (Q) ⊆ V2. Let ν :=

√
(ρ)⊕.

Then

|R̄5(w,Q, v;X, ρ)| ≤ ν r̃/20

(
σ2q

r̃

)
for m ≥ Cn5/3 and C sufficiently large.

Proof We intend to apply Lemma 4.31. To this aim we identify B ≡ Q̃,
B∗ ≡ Q̃∗, with |B∗| ≥ (1 − 6ν1/8)|B|, and Au,1, . . . , Au,hν ≡ (Su,w,y)y∈Yu,w
for u ∈ Q̃∗ (cf. Definition 4.78). Note that Su,w,y ⊆ SQC(w, {u}, v)\X . Hence
it suffices to bound the number of non-tρ-spreading sets R ∈

(
Q̃
r̃

)
.

Let us check the preconditions of Lemma 4.31. For condition (i) observe that

hν ≤ dµ
(4.37)⇐ ν3m

3

n5
≤ σ4m

5

n8
,
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which clearly holds for m = ω(n3/2).

For condition (ii) we get

4tρ · dµ ≤ 6ν1/8 · hρ · σ2qµ · hν
(4.38)⇐ ρ−1n

2

m
σ
m5

n8
≤ νρ3m

3

n5
σ2µ

m

n
ν3m

3

n5
⇐ m4

n6
≤ µσρ4ν4m

7

n11
.

The last inequality is satisfied for, say, m3 ≥ ρ−6n5.

Condition (iii) is satisfied due to

r̃ ≥ 4
tρ
hρ
⇐ 1

9
µ2σ2m

2

n3
≥ 4ρ−1n

2

m
ρ−3 n

5

m3
⇐ µ2σ2m

2

n3
≥ 40ρ−4 n

7

m4

which is true for, say, m3 ≥ ρ−6n5.

Since all preconditions are satisfied, Lemma 4.31 gives

|R̄5(w,Q, v;X,µ)| ≤ (48ν1/8)r̃/2
(
σ2q

qµ

)
≤ ν r̃/20

(
σ2q

qµ

)
,

and the proof is complete. �

As we want to find many square candidate covers we are interested in ver-
tices which satisfy the following property:

(Sρ,µ) ∀Q ⊆ Γ3(v), |Q| = qµ : Q ∈ SC3,2(v; ρ, µ).

For this property we again define a corresponding set of bad graphs

BS5 (n,m; ε, ρ, µ) := {G ∈ SQT+N
5 (n,m; ε, ρ, µ) | (4.39)

|V1[(¬Sρ,µ, N+
ρ,µ[∅], D)]| ≥ (µ)⊕n}.

The following lemma shows that there are very few such bad graphs. A
routine application of Lemma 4.38 will suffice for that.

Lemma 4.83 (BS is small) Let (ρ)⊕≪ σ = (µ)	5. Then

|BS5 (n,m; ε, ρ, µ)| ≤ ((µ)⊕)m
(
n2

m

)10

.

Proof We define the neighborhood function

N (v) := {X ∈
(
V3

dv

)
| ∃Q ⊆ X, |Q| = qµ : Q ∈ SC3,2(v, ρ, µ)}
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By Lemma 4.79 we know that |SC3,2(v; ρ, µ)| ≤ µ2q
(
n
qµ

)
for v ∈ V1[(N+

ρ,µ[∅])].
Letting t := |Q|we deduce that

|N (B)| .q µ2q

(
n

qµ

)(
n

dv − qµ

)
L4.27 (iii)
≤ µdv

(
n

dv

)
,

and the claim follows by Lemma 4.38. �

For future reference we introduce the abbreviation

SQT+N+S
5 (n,m; ε, ρ, µ) := SQT+N

5 (n,m; ε, ρ, µ) \
(BN+

5 (n,m; ε, ρ, µ) ∪ BS5 (n,m; ε, ρ, µ)).

Note that for graphs G ∈ SQT+N+S
5 (n,m; ε, ρ, µ) we have that

|V1[(N+
ρ,µ[∅], Sρ,µ, QT+

ρ , D)]| ≥ (1− (µ)	2 − (n)⊕2 − (µ)⊕)n ≥ (1− 2(µ)⊕2)n
(4.40)

by (4.27) on page 99, (4.28) and (4.39).

4.8.12 Cover families

Motivation for H = K5 Although we have already defined square covers
we have not yet proved their occurrence in typical graphs. Instead we have
shown that there are many square candidate covers Q and that sets of size
Θ(m2/n3) inside Q close Θ(n2/m) square candidates. Observe that a typi-
cal vertex w ∈ V2 has Θ(m2/n3) neighbors in Q for |Q| = Θ(m/n). If these
neighbors indeed close Θ(n2/m) square candidates and this is true for most
vertices in V2, this suffices to show that Q is a square cover.

Unfortunately, by considering one square candidate cover alone we do not
achieve a sufficiently small probability for bad graphs. This is due to the fact
that by Lemma 4.82 we only gain a factor r̃ = Θ(m2/n3) in the exponent for a
single bad neighborhood of size Θ(m2/n3) inside a specific square candidate
cover Q. Observe that in the previous proofs we have needed Θ(m/n) in the
exponent to obtain sufficiently small probabilities. This technical difficulty
is overcome by considering a partition of V3 into Θ(n2/m) square candidate
covers Q. By applying the above arguments to all these sets at once, we gain
a factor of Θ(n2/m ·m2/n3) = Θ(m/n) in the exponent, which will suffice to
complete the proof.

Motivation for H = K4 For the case H = K4 we face a similar situation.
Actually we want prove that many triangle covers exist. However, up to
now we have only succeeded in proving that there are many triangle can-
didate covers Q and that most sets R ⊆ Q with |R| = Θ(m2/n3) close a
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sufficient number of triangles (cf. Lemma 4.71). Again we get only a fac-
tor of order Θ(m2/n3) in the exponent for one bad R-set. Thus we want to
combine Θ(n2/m) such R-sets in order to cut down the probability to a term
with exponent Θ(n2/m ·m2/n3) = Θ(m/n).

In the sequel we introduce such partitions of V3. When applying these def-
initions we will need to work with a set Xv ⊆ V` of forbidden vertices for
each vertex v ∈ V1. These sets Xv will depend on sets Av, the so-called pro-
cessed neighborhoods, and functions fv, named exclusion functions, which
map Av to Xv. The meaning of these names will later become clear, when
we use cover families to iteratively construct subgraphs K4 resp. K5.

Anyway, the reader may prefer to ignore these rather technical aspects for
the moment, pretending that Av = ∅ and fv(Av) = ∅. Just remember that
the cover families, which we will define now, may be restricted by choosing
certain sets Xv = fv(Av), but this feature is not essential to understand their
basic structure.

Definition 4.84 (Independent vertex functions) Let G ∈ S`(n,m; ε) and
{i, j, k} ⊆ {1, . . . , `}/ A function f : 2Vi → 2Vk is called (i, j)-independent
if f(Y ) does not depend on E[Vi \ Y, Vj] for all Y ⊆ Vi.

Definition 4.85 (Cover families) A µ-cover family consists of pairwise dis-
joint sets Q1, . . . , Qp̃ ⊆ V1 with p̃ := pµ/2, |Q1| = . . . = |Qp̃| = qµ. We consider
a cover family in conjunction with

• an inducing set P ∗ = {v1, . . . , vp̃} such that Ql ⊆ Γ3(vl) for l = 1, . . . , p̃,

• processed neighborhoods A1, . . . , Ap̃ ⊆ V2 with |A1|, . . . , |Ap̃| ≤ µ2q,
and

• (2, 3)-independent exclusion functions ~f = (f1, . . . , fp̃) with fl : 2V2 →
2V` for l = 1, . . . , p̃ (where fl may also depend on vl).

In the application of Definition 4.85, P ∗ will belong to a µ-cover P and we
will set Q1 = W1, . . . , Qp̃ = Wp̃.

A cover family is enhanced by a property Π if most sets Z of size Θ(m2/n3)
inside the sets Q1, . . . , Qp̃ of size Θ(m/n) satisfy Π. The sets Z can be in-
terpreted as potential neighborhoods of single vertices w ∈ V2 inside the
Q-sets. Our aim is to show that under this condition the real neighborhoods
of most vertices w ∈ V2 satisfy Π, too. If this is indeed the case, we call the
cover family qualified for Π. The following definitions formally introduce
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enhanced and qualified cover families. Afterwards we will study the ques-
tion under which conditions an enhanced cover family is qualified.

Definition 4.86 (Enhanced cover families) A µ-cover family (with given in-
ducing set, forbidden neighborhoods and exclusion functions) is called Π-(ν, τ)-
enhanced for a family of properties (Πw)w∈V2 if for l = 1, . . . , p̃ there exists
a set T̃l = T̃l(vl, Al) ⊆ V2 with |T̃l| ≥ (1 − µ)n, and a µ-multicover (of V2)
Q̃l ⊆ Ql ⊆ V3 with |Q̃l| = τqµ such that for all w ∈ T̃l,

|{Z ∈
(
Q̃l

r̃

)
| Z does not satisfy Πw}| ≤ (ν)r̃

(
τqµ
r̃

)
, (4.41)

where r̃ = r̃(τ, µ) := rµ(τqµ)/2 = 1
8
(1 − µ)µ2τ m

2

n3 . The properties Πw =
Πw(vl, Al) may depend on w and vl, as well as on Al and fl(Al).

Note that Definition 4.86 redefines r̃. When using enhanced cover families
for the case H = K5, r̃ will receive exactly the value given in Section 4.8.1.
For the case H = K4, however, we will set r̃ = r̃1. But reusing the identifier
r̃ may remind the reader for which values of r̃ we will apply Definition 4.86.

Figure 4.14 illustrates the structure of an enhanced cover family. Later in the
proof the sets Z with |Z| = r̃ will be neighborhoods of vertices w ∈ V2. Note
that the picture abstracts from the fact that the sets Z only reside in a small
subset Q̃l ⊆ Ql.

Definition 4.87 (Qualified cover families) A µ-cover family (with given in-
ducing set and exclusion functions) is called Π-τ -qualified for a family of
properties (Πw)w∈V2 if for all processed neighborhoods A1, . . . , Ap̃ ⊆ V2 with
|A1|, . . . , |Ap̃| ≤ µ2q there exist (1− µ1/10)p̃ indices l ∈ {1, . . . , p̃} such that

(TC) ∃T = T (vl, Al) ⊆ V2, |T | = (1− 3(µ)⊕)n
∀w ∈ T ∃R ⊆ Γ3(w) ∩Ql, |R| = r̃ = r̃(τ, ν) : R satisfies Πw(vl, Al).

For the sake of completeness let T (vl, Al) = ∅ for all indices l such that (TC) is
not satisfied.

Note that T depends on vl and Al via Πw(vl, Al) but not on vl′ and Al′ for
l′ 6= l.

Figure 4.15 shows that the structure of enhanced and of qualified cover fam-
ilies is rather similar. Hence, it will not cause surprise that most enhanced
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Figure 4.14: Π-(ν, τ)-enhanced cover family

cover families are also qualified. Assume that an enhanced cover family
is given. Note that the Q̃-sets in the cover family are multicovers. Hence
most vertices have Θ(m2/n3) neighborhoods inside the Q-sets. Due to (4.41)
we conclude that these neighborhoods will typically satisfy Πw. The follow-
ing lemma shows how these two properties (existence of neighborhood and
neighborhood satisfies Πw) can be combined formally. A condition is given
which implies that a Π-(ν, τ)-enhanced cover family is also Π-qualified. Af-
terwards we will prove a lemma which shows that this condition is almost
always satisfied.

Lemma 4.88 (Condition for qualified cover families) Consider a Π-(ν, τ)-
enhanced µ-cover family with inducing set and exclusion functions. For given
processed neighborhoods A1, . . . , Ap̃ ⊆ V2 with |A1|, . . . , |Ap̃| ≤ µ2q we call a
vertex w ∈ V2[(D)] \

⋃p̃
l=1 Al non-spreading if there exist at least µp̃ sets Ql

such that

w ∈ T̃l(vl, Al) ∧ ∃R ⊆ Γ3(w) ∩ Q̃l, |R| = r̃ : R does not satisfy Πw(vl, Al).

If there are at most (µ)⊕n non-spreading vertices for any choice of the processed
neighborhoods A1, . . . , Ap̃, then the cover family is also Πw-τ -qualified.

Proof Let arbitrary processed neighborhoodsA1, . . . , Ap̃ be given and define

C̃l := T̃l(vl, Al) ∩ C2(Q̃l;µ)
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for all indices l ∈ {1, . . . , p̃}. By Definition 4.86 and Lemma 4.52 we have

|C̃l| ≥ (1− µ−√µ)n ≥ (1− 2
√
µ)n. (4.42)

By Definition 4.51 such a vertex w ∈ C̃l ⊆ C2(Q̃l;µ) has many neighbors in
the corresponding sets Q̃l, i.e., |Q̃l ∩ Γ3(w)| ≥ rµ(τqµ)/2 = r̃.

For a vertex w ∈ V2 let

L(w) := {l ∈ {1, . . . , p̃} | w ∈ C̃l}.

We are interested in vertices w ∈ V2 such that L(w) is big. Thus we define

S := {w ∈ V2 | |L(w)| ≥ (1− 2µ1/4)p̃}.

Using Corollary 4.29 we deduce from (4.42) that |S| ≥ (1 − 2µ1/4)n. We
remove all non-spreading vertices and the vertices in

⋃p̃
l=1 Al from S and

call the remaining set S ′. Observe that |
⋃p̃
l=1 Al| ≤ µ2q · p̃ ≤ µn and thus

|S ′| ≥ (1− 2µ1/4 − (µ)⊕ − µ)n ≥ (1− 2(µ)⊕)n.

Let Rl := [Q̃l ∩ Γ3(w)]r̃ ⊆ Ql ∩ Γ3(w) and note that |Rl| = r̃ for l ∈ L(w). We
define

L′(w) := {l ∈ L(w) | Rl satisfies Πw(vl, Al)}.

Since a vertex w ∈ S ′ is not ’non-spreading’ there may exist at most µp̃ sets
Ql such that w ∈ T̃l(vl, Al) butRl does not satisfy Πw(vl, Al). As w ∈ T̃l(vl, Al)
for l ∈ L(w) we deduce that
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|L′(w)| ≥ |L(w)| − µp̃ ≥ (1− 2µ1/4 − µ)p̃ ≥ (1− 3µ1/4)p̃.

We apply Corollary 4.29 one more time and obtain that there are at least

(1− 3µ1/8) · |S ′| ≥ (1− 3µ1/8) · (1− 2(µ)⊕)n ≥ (1− 3(µ)⊕)n

vertices w ∈ S ′ such that we can find (1 − 3µ1/8)p̃ ≥ (1 − µ1/10)p̃ indices
l ∈ {1, . . . , p̃} such that l ∈ L′(w). Observe that for these indices l there
exists a suitable set R ⊆ Γ3(w) ∩Ql which satisfies Πw(vl, Al) as required by
Definition 4.87. This completes the proof. �

As announced previously, the following lemma achieves the desired prob-
ability of βm for cover families to be Π-qualified by considering many
cover families at once. These cover families will be induced by disjoint sets
P ∗1 , . . . , P

∗
q̂ ⊆ V1 for suitably chosen q̂. The forbidden neighborhoods for all

cover families will be denoted by (Av)v∈V1 . By arbitrarily numbering the ver-
tices in P ∗h for h = 1, . . . , q̂ we get a one to one correspondence between Al
and Avl for any vertex vl ∈ P ∗h . If the sets P ∗1 , . . . , P ∗q̂ are given, we use a
vertex v and its index l inside ’its’ P -set interchangeably, even without ex-
plicitly numbering the vertices in the P ∗-sets since every numbering suits
our needs.

Lemma 4.89 (Most graphs contain qualified cover families) Let ν ≪
τ ≤ µ. Consider a fixed tuple of (2, 3)-independent exclusion functions ~f =

(f1, . . . , fp̃). A graph G ∈ S`(n,m; ε) is ~f -non-spreading for a given property
Π if one of the following two conditions is satisfied:

(i) There exists a Π-(ν, τ)-enhanced µ-cover family Q1, . . . , Qp̃ ⊆ V3 induced
by a set P ∗ ⊆ V1, |P | = p̃ with processed neighborhoods A1, . . . , Ap̃ ⊆ V2

such that there are at least (µ)⊕n non-spreading vertices in V2.

(ii) (i) is not satisfied and we can find disjoint sets P ∗1 , . . . , P ∗q̂ ⊆ V1[(D)] which
induce Π-(ν, τ)-enhanced µ-cover families (which are also Π-τ -qualified due
to Lemma 4.88) with q̂ := (1− (µ)⊕3)n/p̃ and |P ∗1 | = . . . = |P ∗q̂ | = p̃ such
that there exist

• processed neighborhoods (Av)v∈V1 ∈ (2V2)n with Av ⊆ Γ2(v) and
|Av| ≤ µ2q for all v ∈ V1,

• (µ)⊕2q̂ indices l ∈ {1, . . . , q̂} such that there exist (µ)⊕2p̃ vertices v ∈
P ∗l with

(Γ2(v) \ Av) ∩ T (v, Av) = ∅. (4.43)

The set of ~f -non-spreading graphs B ~f` (n,m; ε, ν, µ, τ | Π) satisfies

|B ~f` (n,m; ε, ν, µ, τ | Π)| ≤ ((µ)⊕2)m
(
n2

m

)(`2)
.
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Proof We distinguish two cases corresponding to the conditions (i) and (ii).

Case 1: We consider the case that condition (i) is met.

For choosing the setsQ1, . . . , Qp̃ we have at most nqµ·p̃ possibilities. Note that
nqµ·p̃ ≤ nqp̃ ≤ 2m for m = ω(n log n). For A1, . . . , Ap̃ the same bound nqp̃ ≤ 2m

applies. Furthermore, we have np̃ possibilities to choose P . Hence there are
at most, say, 5m possibilities to fix the cover family. Consequently, it suffices
to count the number of graphs which are bad with respect to a specific cover
family.

To this aim we plan to apply Lemma 4.38, where the bad vertices B ⊆ V2

directly correspond to the (µ)⊕n non-spreading vertices in V2. We define the
neighborhood function

N (w) := {X ∈
(
V3

dw

)
| ∃L ⊆ {1, . . . , p̃}, |L| = µp̃ ∀l ∈ L :

∃R ⊆ X ∩ Q̃l, |R| = r̃ : R does not satisfy Πw(l, Al)}.

Now let us estimateN (w) forw ∈ B. Observe that we can determine the sets
which satisfy Πw independently of the edges E(V2, V3) (For that we need in
particular that the exclusion functions are (2, 3)-independent.). By Defini-
tion 4.86 the bad vertices are (p̃, r̃, µ)-∃-bad with error probability (ν)r̃, as
w ∈ T̃l(vl, Al) for w ∈ B. Note that

r̃ · p̃ =
1

8
(1− µ)µ2τ

m2

n3
· µ−1n

2

m
≥ 1

9
µτq ≥ 1

10
τ 2dw.

By Lemma 4.35 we obtain

|N (w)| ≤ (8ν)µτ
2dw/10

(
n

dw

)
≤ τ dw

(
n

dw

)
,

and the proof of the first case is complete.

Case 2: Now we consider the case that condition (ii) is met.

We will apply Lemma 4.35 to restrict the number of neighbors of bad ver-
tices B ⊆ V1 (which we will define later) in V2.

Let us first choose the sets P ∗1 , . . . , P ∗q̂ ⊆ V1 (at most nn ≤ 2m possibilities)
and the Q-sets of the induced cover families (at most 22q·n = 4m possibilities
since we know the edges E(B, V3)). Again this number of possible choices is
small enough that it does not carry weight when proving the desired bound
on the number of graphs in B ~f` . Note that by Lemma 4.88 and condition (i)
the chosen Π-ν-enhanced µ-cover families are also Π-qualified.
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Again we will use Lemma 4.38 to prove that the number of ’bad’ graphs is
small. Assume for the moment that the sets (Av)v∈V1 are known and con-
sider the (µ)⊕2q̂ ’bad’ indices l ∈ {1, . . . , q̂}. For every ’bad’ index there
exist (µ)⊕2p̃ vertices in P ∗l which satisfy (4.43). By Definition 4.87 at most
µ1/10p̃ ≤ (µ)⊕2p̃/2 vertices v ∈ P ∗l do not satisfy (TC). Hence we can find
(µ)⊕2p̃/2 bad vertices in every bad set P ∗l for which (TC) holds. These ver-
tices form the bad set B ⊆ V1. All in all we get

|B| ≥ (µ)⊕2q̂ · (µ)⊕2p̃/2 ≥ ((µ)⊕2)2n/4

bad vertices. For v ∈ B we let

N (v) := {X ∈
(
V2

dv

)
| ∃A ⊆ Xv, |A| ≤ µ2q : (X \ A) ∩ T (v, A) = ∅}

Let av := |Av| for v ∈ B. There are at most nn . 2m choices for the values
(av)v∈B. Hence we get (maximizing over av)

|N (v)| .q
(
n

av

)
·
(

3(µ)⊕n

dv − av

)
L4.27 (ii, iii)
≤ (3(µ)⊕)dv−av4dv ·

(
n

dv

)
≤ (200(µ)⊕)dv/2 ·

(
n

dv

)
.

This suffices to complete the proof using Lemma 4.38. �

The following corollary shows that Lemma 4.89 achieves the goal that for
a typical vertex v ∈ V1 we can find a neighbor w ∈ Γ2(v) such that v and
w have a common neighborhood R of size Θ(m2/n3) such that R satisfies a
given property Πw.

Corollary 4.90 (Almost all vertices have good neighborhoods R) Consider
a graph G ∈ S`(n,m; ε) \ B ~f` (n,m; ε, ν, µ, τ | Π) and arbitrary processed neigh-
borhoods (Av)v∈V1 with Av ⊆ Γ2(v) and |Av| ≤ µ2q for v ∈ V1. Assume that
there exist P ∗1 , . . . , P ∗q̂ ⊆ V1 inducing Π-(ν, τ)-enhanced cover families (as in (ii)
of Lemma 4.89). Then we can find TV1 ⊆ V1 with |TV1| ≥ (1 − 10(µ)⊕2)n such
that all vertices v ∈ TV1 satisfy the property

∃w ∈ Γ2(v) \ Av ∃R ⊆ Γ3(v) ∩ Γ3(w), |R| = r̃ : R satisfies Πw(v, Av).

Proof By Lemma 4.89 (ii) there are at least (1− (µ)⊕2)q̂ indices l such that P ∗l
contains at least (1− (µ)⊕2)p̃ vertices v ∈ P ∗l for which (4.43) is not satisfied.
For such a vertex v we conclude that there exists a vertex w ∈ Γ2(v) \ Av
such that w ∈ T (v, Av). By Definition 4.87 it follows that there exists a set
R ⊆ Γ3(w)∩Qv ⊆ Γ3(w)∩Γ3(v) with |R| = r̃ which satisfies Πw(v, Av). Note
that we can find at least
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(1− (µ)⊕2)q̂p̃− q̂(µ)⊕2p̃ = (1− 2(µ)⊕2)q̂p̃ ≥ (1− 10(µ)⊕3)n

such vertices v ∈ V1. This completes the proof of the corollary. �

The statement of Corollary 4.90 can be simplified further. To this aim we
introduce the following property of a vertex v ∈ V1:

(R | Π) ∀A ⊆ Γ2(v), |A| ≤ µ2q
∃w ∈ Γ2(v) \ A ∃R ⊆ Γ3(v) ∩ Γ3(w), |R| = r̃ :

R satisfies Πw(v, A).

Note the similarity between the property (R | Π) and the property of ver-
tices in TV1, introduced in Corollary 4.90. The only difference consists in the
fact that the ordering of the quantifiers has been swapped. In Corollary 4.90
we have seen that for all processed neighborhoods there exist many ’good’
vertices TV1. In contrast to that the following corollary shows that there exist
many vertices in V1 satisfying (R | Π), i.e., they are ’good’ for all processed
neighborhoods.

Corollary 4.91 (Almost all vertices satisfy (R | Π) For a graph G ∈
S`(n,m; ε)\B ~f` (n,m; ε, ν, µ, τ | Π). Assume that there exist sets P ∗1 , . . . , P ∗q̂ ⊆ V1

inducing Π-(ν, τ)-enhanced cover families. Then we have |GV1| ≥ (1−10(µ)⊕2)n,
where GV1 := V1[(R | Π)].

Proof Assume that |GV1| < (1− 10(µ)⊕3)n and consider corresponding pro-
cessed neighborhoods Av for v ∈ V1, i.e., for every vertex v ∈ V1 \ GV1 we
define Av in such a way that (R | Π) is violated. Thus there is no R-set satis-
fying Πw(v, Av) for these vertices.

Now observe that on the one hand the fact that a set R satisfies Πw(v, Av)
does not depend on the the choices for Av′ with v′ 6= v. Thus we have
TV1 ⊆ GV1 for the given processed neighborhoods. On the other hand,
Corollary 4.90 tells us that also for the given choice of the A-sets there must
exist a large set TV1, yielding a contradiction. �

When we want to apply Corollary 4.91 we will construct many µ-covers
P1, P2, . . . ⊆ V1 such that the sets P ∗1 , P ∗2 , . . . ⊆ V1 are disjoint and induce
enhanced cover families. The following lemma shows how these µ-covers
can be obtained.

Lemma 4.92 (Find many disjoint covers) Let ρ, µ > 0 and assume that
V1 is (Π-enhanced) ρ-homogeneous. Then we can find (Π-qualified) µ-covers
P1, . . . , Pq̂, where q̄ := (1−√ρ)n/p̃, such that the sets P ∗1 , . . . , P ∗q̄ are disjoint.
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Proof We construct the sets P1, . . . , Pq̂ one by one. For l ∈ {1, . . . , q̄} note that

|V1 \ (P ∗1 ∪ . . . ∪ P ∗l−1)| ≤ n− (l − 1)p̃ ≥ √ρn/2.

Hence, the remaining part of V1 is still 2
√
ρ-homogeneous and by means of

Lemma 4.49 we conclude that there exists a suitable set Pl. �

4.8.13 Finding cover families

Finding triangle cover families ( K4)

For v ∈ V1 and w ∈ V2 let

TRI(v, w) := Γ4(Γ3(v) ∩ Γ3(w)) ∩ Γ4(w).

For the case H = K4 we will consider cover families with the 2-3-indepen-
dent exclusion functions

fTRIl (Al) = [
⋃
w∈A

TRI(vl, w)](1−2
√
µ)n

and the family of properties

(R4
ρ)w |Γ4(R) ∩ Γ4(w) \ fTRIl (Al)| ≥ tρ

for w ∈ V2 and R ⊆ Ql ∩ Γ3(w) with |R| = r̃1.

We define

BR4 (n,m; ε, ρ, µ) := Bf
TRI

4 (n,m, ε, ρ1/20, µ, µ | R4
ρ), (4.44)

and accordingly we let

SC+R
4 (n,m; ε, ρ, µ) := SC+

4 (n,m; ε, ρ, µ) \ BR4 (n,m; ε, ρ, µ).

By Lemma 4.89 we conclude that,

|BR4 (n,m; ε, ρ, µ)| ≤ ((µ)⊕2)m
(
n2

m

)10

, (4.45)

since ρ1/20 ≪ µ.

We intend to apply Corollary 4.90 to graphs in SC+R
5 (n,m; ε, ρ, µ). To this

aim we first have to find suitable cover families. This is done as follows.

Lemma 4.93 (Covers induce triangle cover families) Let ρ ≪ µ. For a
(C+

ρ , Cρ, D)-qualified µ-cover P ⊆ V1 the set P ∗ induces a (R4
ρ)-(ρ1/20, µ)-

enhanced µ-cover family for arbitrary processed neighborhoods (Av)v∈V1 .
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Proof Let P ∗ = {v1, . . . , vp̃} and Q1 = W1, . . . , Qp̃ = Wp̃ with |Q1| = . . . =
|Qp̃| = qµ. Due to vl ∈ V1[(Cρ)] for l = 1, . . . , p̃, and since |Ql| = qµ ≥ ρ ·d3(vl),
it follows that Ql is a µ-multicover of V2.

Furthermore, by vl ∈ V1[(C+
ρ )] we conclude that Ql is a (Cρ)-qualified µ-

multicover of V4. Recall that |fTRIl (Al)| ≤ (1 − 2
√
µ)n. Thus Ql is also an

fTRIl (Al)-resistant (ρ, µ)-triangle candidate cover (cf. Lemma 4.69).

Note that |T̃ (Ql)| ≥ (1 − ρ1/4)n ≥ (1 − µ)n due to Definition 4.68. Further-
more, we have r̃(µ, µ) = rµ(µqµ)/2 = r̃1. By Lemma 4.71 it follows that
the cover family Q1, . . . , Qp̃ is indeed (R4

µ)-(ρ1/20, µ)-enhanced (cf. Defini-
tion 4.86). �

A cover family which is constructed using Lemma 4.93 yields the desired
triangle covers. Observe that property (R4

ρ) guarantees that the number of
triangle candidates in V4 \ fTRIl (Al) for a single vertex w is at least tρ. If there
are only few non-spreading vertices for the cover family, then the cover fam-
ily is also qualified (cf. Lemma 4.88). Observe that the large set T which
exists for most Q-sets in a qualified cover family (cf. Definition 4.87) thus
directly corresponds to the (large) set T in Definition 4.67 of triangle covers.

However, we do not have to construct the triangle covers explicitly. Recall
that Lemma 4.89 serves a two-fold purpose, expressed by the two prop-
erties (i) and (ii) of ~f -non-spreading graphs. Property (i) shows that most
graphs, i.e., the ’good’ graphs which are not ~f -non-spreading, contain few
non-spreading vertices and thus a cover family can be assumed to be qual-
ified. Hence, as discussed above, triangle covers exist. Additionally, the
neighborhood of most vertices in good graphs overlaps with the (large)
set T due to property (ii). In our application of Lemma 4.89 this means that
most vertices in V1 have neighbors inside the triangle cover, and thus K4-
candidates exist (cf. Figure 4.9 on page 101).

Finding square cover families ( K5)

For the construction of square covers we will consider cover families with
the 2-3-independent exclusion functions

fSQUl (Al) = [
⋃
w∈A

SQC(w,Γ3(w) ∩ Γ3(vl), vl)](1−2µ)n

and the family of properties

(R5
ρ)w |SQC(w,R, vl) \ fSQUl (Al)| ≥ tρ (4.46)

for w ∈ V2 and R ⊆ Ql ∩ Γ3(w) with |R| = r̃.

We define
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BR5 (n,m; ε, ρ, µ) := Bf
SQU

5 (n,m, ε, ν1/20, µ, σ2 | R5
µ), (4.47)

where ν =
√

(ρ)⊕ and σ = (µ)	5, and accordingly we let

SQT+N+SR
5 (n,m; ε, ρ, µ) := SQT+N+S

5 (n,m; ε, ρ, µ) \ BR5 (n,m; ε, ρ, µ).

By Lemma 4.89 we conclude that

|BR5 (n,m; ε, ρ, µ)| ≤ ((µ)⊕2)m
(
n2

m

)10

, (4.48)

since ν1/20 ≪ σ2 ≤ µ.

We intend to apply Corollary 4.90 to graphs in SQT+N+SR
5 (n,m; ε, ρ, µ). To

this aim we first have to find suitable cover families. This is done as follows.

Lemma 4.94 (Covers induce square cover families) Assume that (ρ)⊕ ≤ σ =

(µ)	5 and 6ν1/8 ≤ µ for ν =
√

(ρ)⊕. For a (N+
ρ,µ[∅], Sρ,µ, Cρ, D)-qualified µ-

cover P ⊆ V1 the set P ∗ induces a (R5
ρ)-(ν1/20, σ2)-enhanced µ-cover family for

arbitrary processed neighborhoods (Av)v∈V1 .

Proof LetQ1 = W1, . . . , Qp̃ = Wp̃. Due to the definition of (Sρ,µ) we conclude
that Q1, . . . , Qp̃ ∈ S3,2(v; ρ, µ) and by |fSQUl (Al)| ≤ (1− 2µ)n we deduce that

Ql ∈ S3,2(v, fSQUl (Al); ρ, µ) for all l = 1, . . . , p̃

due to Lemma 4.79, i.e., Ql is a fSQCl (Al)-resistant (ρ, µ)-square candidate
cover.

By the definition of (Cρ) it follows that the set Q̃l is a µ-multicover of V2,
as |Q̃l| = σ2|Q| and σ2 ≥ ρ. Note that |T̃ (Ql)| ≥ (1 − 6ν1/8)n ≥ (1 − µ)n
due to Definition 4.78. Furthermore, we have r̃(σ2, µ) = rµ(σ2qµ)/2 = r̃.
By Lemma 4.82 it follows that the cover family Q1, . . . , Qp̃ is indeed (R5

ρ)-
(ν1/20, σ2)-enhanced (cf. Definition 4.86). �

Analogously to Lemma 4.93, a cover family which is constructed using
Lemma 4.94 yields the desired square covers. The property (R5

ρ) guarantees
that the number of square candidates for a single vertex w is large. If there
are only few non-spreading vertices for the cover family, then the cover fam-
ily is also qualified (cf. Lemma 4.88), and the large set T which exists for
most Q-sets in a qualified cover family (cf. Definition 4.87) thus directly cor-
responds to the set S2 in Definition 4.77 of square covers. However, as we
already saw in the case H = K4, we do not have to construct the square
covers explicitly, since Lemma 4.89 also shows that in most graphs and for
most vertices v ∈ V1 the neighborhood Γ2(v) and the set T will overlap. This
implies the existence of K5-candidates (cf. Figure 4.12 on page 111).
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4.8.14 Clique candidates

Now we are finally in a position to construct clique candidates, i.e., sub-
graphs which are complete up to at most one edge.

Definition 4.95 (Clique candidates, owners and covers) An i-clique candi-
date is a subgraph K` up to the edge between Vi and V`, i.e., this edge does not
have to be present.
For two vertices v ∈ Vi and w ∈ Vj the set CC`(v, w) of clique candidates is given
by all vertices x ∈ V` such that there exist an i-clique candidate which contains
v and w. Accordingly, we define CC`(v, A) :=

⋃
w∈ACC`(v, w) for A ⊆ Vj . The

vertex v is a ξ-clique covering vertex if |CC`(v,Γj(v))| ≥ (1− ξ)n.

The following lemma shows that only very few clique free graphs with
many clique covering vertices exist.

Lemma 4.96 (Only few clique covering vertices exist) The number of graphs
G ∈ S`(n,m; ε) for which Vi contains (ξ)⊕n ξ-clique covering vertices which
satisfy (D) and

(¬K) Γ`(v) ∩ CC`(v,Γj(v)) = ∅

is bounded by

((ξ)⊕)m
(
n2

m

)(`2)
.

Proof A simple application of Lemma 4.38 proves the claim. The bad set B
consists of the (ξ)⊕n ξ-clique covering vertices v ∈ Vi. Let

N (v) := {X ∈
(
V`
dv

)
| X ∩ CC`(v,Γ2(v)) = ∅}.

It follows that |N (v)| ≤
(
ξn
dv

)
≤ ξdv

(
n
dv

)
, which completes the proof. �

If there exist many clique covering vertices, this implies for most graphs that
we can indeed find a clique due to Lemma 4.96. The following definition
and lemma show how we can find many clique covering vertices.

Definition 4.97 (Clique candidate rich vertices) A vertex v ∈ V1 is ξ-
resistant µ-clique candidate rich if

∀A ⊆ Γj(v), |A| ≤ µq :
(∃w ∈ Γj(v) \ A : |CC`(v, w) \ CC`(v, A)| ≥ tµ) ∨
|CC`(v, A)| ≥ (1− ξ)n
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Lemma 4.98 (Clique candidate rich implies clique covering) A ξ-resistant
µ-clique candidate rich vertex v ∈ V1 is also ξ-clique covering.

Proof We will prove the claim by iteratively constructing a set A ⊆ Γj(v)
with |A| ≤ µq such that |CC`(v, A)| ≥ (1 − ξ)n. Initially, A is empty. In
every step of the iteration we add a vertex w ∈ Γj(v) \ A to A such that
|CC`(v, w) \CC`(v, A)| ≥ tµ. Definition 4.97 ensures that this can be done as
long as |CC`(v, A)| < (1 − ξ)n. Since CC`(v, A) grows by at least tµ vertices
in every iteration and tµ · µq = n ≥ (1 − ξ)n, this suffices to complete the
proof. �

4.8.15 Proof of the main theorem

Case H = K4

In the sequel we show using Lemma 4.98 that graphs in SC+R
4 (n,m; ε, ρ, µ)

contain many clique covering vertices, which implies that they contain a K4

due to Lemma 4.96.

Lemma 4.99 (Find clique covering vertices for H = K4) For a graph G ∈
SC+R

4 (n,m; ε, ρ, µ) there exist at least (1 − γ)n vertices in V1 which are ξ-clique
covering for ξ ≥ 2

√
µ and γ ≥ 10(µ)⊕3.

Proof By Lemma 4.98 it suffices to show that V1 contains (1 − γ)n vertices
which are ξ-resistant µ2-clique candidate rich (we have to use µ2 instead
of µ here for technical reasons, cf. the bound on the size of the processed
neighborhoods in Definition 4.85).

Due to (4.33) on page 100 we conclude that V1 is (Q+
ρ , D)-enhanced 2(ρ)⊕2-

homogeneous. Observe that

q̄ = (1− 2
√

(ρ)⊕2)n/p̃ ≥ (1− (µ)⊕3)n/p̃ = q̂.

Thus, applying Lemma 4.92 we may construct (Q+
ρ , D)-qualified µ-covers

P1, . . . , Pq̂ ⊆ V1 such that the sets P ∗1 , . . . , P ∗q̂ ⊆ V1[(Q+
ρ , D)] ⊆ V1[(C+

ρ , Cρ, D)]

are disjoint. By Lemma 4.93 is follows that P1, . . . , Pq̂ induce (R4
ρ)-(ρ1/20, µ)-

enhanced cover families. Hence a set GV1 with |GV1| ≥ (1 − 10(µ)⊕2)n ≥
(1 − γ)n exists as indicated in Corollary 4.91. For a vertex v ∈ GV1 and
an arbitrary set A ⊆ Γj(v) with |A| ≤ µ2q we can find w ∈ Γ2(v) \ A and
R ⊆ Γ3(v) ∩ Γ3(w) such that
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|Γ4(R) ∩ Γ4(w) \ fTRIv (A)| ≥ tρ ≥ tµ2 .

Note that Γ4(R) ∩ Γ4(w) ⊆ CC4(v, w) and CC4(v, A) = fTRIv (A), provided
that |CC4(v, A)| ≤ (1 − 2

√
µ)n. Thus, for every vertex v ∈ GV1 we either

have |CC4(v, A)| ≥ (1− 2
√
µ)n ≥ (1− ξ)n or

|CC4(v, w) \ CC4(v, A)| ≥ |Γ4(R) ∩ Γ4(w) \ fTRIv (A)| ≥ tµ2 .

Consequently, the vertices in GV1 satisfy the conditions given in Defini-
tion 4.97, and by Lemma 4.98 the claim follows. �

Now the proof of Theorem 4.3 for H = K4 is essentially complete. By
Lemma 4.62, (4.32), (4.45) and Lemma 4.96 we obtain

|SC+R
4 (n,m; ε, ρ, µ)| ≥ (1− (10(ξ)⊕)m)

(
n2

m

)6

(4.49)

By Lemma 4.99 and Lemma 4.96 at most (11(ξ)⊕)m
(
n2

m

)
≤ βm

(
n2

m

)
graphs in

S4(n,m; ε) exist which do not contain a subgraph K4.

Case H = K5

Using Lemma 4.98 we will now show that graphs in SQT+N+SR
5 (n,m; ε, ρ, µ)

contain many clique covering vertices, which implies that they contain a K5

due to Lemma 4.96.

Lemma 4.100 (Find clique covering vertices) Assume that γ ≥ 10(µ)⊕3 and
ξ ≥ 2µ. For a graph G ∈ SQT+N+SR

5 (n,m; ε, ρ, µ) there exist at least (1 − γ)n
vertices in V1 which are ξ-clique covering.

Proof By Lemma 4.98 it suffices to show that V1 contains (1 − γ)n vertices
which are ξ-resistant µ2-clique candidate rich.

Due to (4.40) on page 118 we conclude that V1 is (N+
ρ,µ[∅], Sρ,µ, QT+

ρ , D)-en-
hanced 2(µ)⊕2-homogeneous. Using Lemma 4.92 we construct q̄ = (1 −√

2(µ)⊕2)n/p̃ ≥ (1− (µ)⊕3)n/p̃ = q̂ µ-covers P1, . . . , Pq̂ such that the sets

P ∗1 , . . . , P
∗
q̂ ⊆ V1[(N+

ρ,µ[∅], Sρ,µ, QT+
ρ , D)] ⊆ V1[(N+

ρ,µ[∅], Sρ,µ, Cρ, D)]

are disjoint. By Lemma 4.94 it follows that P ∗1 , . . . , P ∗q̂ induce (R5
ρ)-(ν1/20, σ2)-

enhanced µ-cover families. Hence a set GV1 with |GV1| ≥ (1 − 10(µ)⊕3)n ≥
(1 − γ)n exists as indicated in Corollary 4.91. For a vertex v ∈ GV1 and
an arbitrary set A ⊆ Γj(v) with |A| ≤ µ2q we can find w ∈ Γj(v) \ A and
R ⊆ Γk(v) ∩ Γk(w) such that
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|SQC(w,R, v) \ fSQUv (A)| ≥ tρ ≥ tµ2

due to (4.46). Note that SQC(w,R, v) ⊆ CC5(v, w) andCC5(v, A) = fSQUv (A),
provided that |CC5(v, A)| ≤ (1 − 2µ)n. Thus, for every vertex v ∈ TV1 we
either have |CC5(v, A)| ≥ (1− 2µ)n ≥ (1− ξ)n or

|CC5(v, w) \ CC5(v, A)| ≥ |SQC(w,R, v) \ fSQUv (A)| ≥ tµ2 .

Consequently, the vertices in GV1 satisfy the conditions given in Defini-
tion 4.97, and V1 is (γ, µ2)-clique candidate rich. By Lemma 4.98 the claim
follows. �

Now the proof of Theorem 4.3 is essentially complete for H = K5. Note
that by Lemma 4.62, Lemma 4.64, (4.26), (4.29), Lemma 4.83, (4.48) and
Lemma 4.96,

|SQT+N+SR
5 (n,m; ε, ρ, µ)| ≥ (1− (10(ξ)⊕)m)

(
n2

m

)10

(4.50)

By Lemma 4.100 and Lemma 4.96 at most (11(ξ)⊕)m
(
n2

m

)
≤ βm

(
n2

m

)
graphs in

S5(n,m; ε) exist which do not contain a subgraph K5.

Note that our proof actually yields a somewhat stronger result than Theo-
rem 4.3. The condition (K) could be strengthened to

(¬K ′) |Γ`(v) ∩ CC`(v,Γj(v))| ≤ (1− τ)q

for a suitable constant τ > 0 which is large in comparison to ξ. Using this
we obtain that almost all neighbors x ∈ Γ`(v) of almost all clique covering
vertices are part of a subgraph K` together with v.

4.8.16 Handling the dependencies

Up to now we have neglected for which partitions Vi, Vj , Vk the above de-
fined properties shall hold. Instead we have simply assumed that the prop-
erties were applicable whenever we needed them. This section is devoted to
an explicit treatment of this issue.

Note that we must not assume that the parameter i, j and k are all-quan-
tified, even if this introduced only a tiny number of choices which would
be negligible in the above counting arguments. However, this would cause
certain properties to depend on edges which we have assumed to be still
unfixed in our proofs, in particular in applications of Lemma 4.38.

In the sequel we will go through all properties which occur inside the def-
inition of other properties and we will state for which choices of i, j and k
we assume the properties to hold.
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Case H = K4

In the proof of the case H = K4 only the property (C+
ρ ) = (Cρ | Cρ) is based

on another property. Here the property (Cρ) on the righthand side will be
used for i = 3, j = 4 and k = 2, whereas (Cρ) on the lefthand side is applied
for i = 1, j = 3 and k = 4.

Case H = K5

Firstly, we consider the overlapping neighborhoods. Inside (Nρ,σ), (Hρ)-
qualified covers occur. Here (Hρ) is assumed to be satisfied for i = 4, j = 5,
k = 2. Later we derive (N+

ρ,µ) from (Nρ,µ). Here (HT+
ρ )-qualified covers

occur. Recall that (HT+
ρ ) = (Hρ | HTρ). Let us first examine the property

(HTρ) = (Hρ, Tρ). Here (Hρ) is assumed to be satisfied for i = 4, j = 5, k = 2
(this must be identical to the values of (Hρ) used in (Nρ,σ)). The property
(Tρ) shall hold for i = 4, j = 2 and k = 5.

We apply (Nρ,σ) for i = 3, j = 5, k = 4, and (N+
ρ,µ) is used with i = 1, j = 4,

k = 3. Note that (Hρ) used in (Nρ,σ) does not depend on the edges E(V3, V5),
and (HT+

ρ ) used in (N+
ρ,µ) does not depend on E(V1, V4). Thus in both cases

the edges E(Vi, Vj) for (i, j) = (3, 5) resp. (i, j) = (1, 4) are not necessary to
determine which vertices satisfy these auxiliary properties. Consequently,
the application of Lemma 4.38 in the proof of Lemma 4.66 (and its modified
variant for (N+

ρ,µ) which we have not stated explicitly) goes through.

In the application of the properties (Nρ,σ) and (N+
ρ,µ), and thus of Defini-

tion 4.65, we must specify for which partitions the sets Ru are supercovers.
In the case of (Nρ,σ) we assume that the sets Ru are supercovers of V2. For
(Nρ,µ)+ we need that the setsRu are supercovers of V5 and V2. The important
observation is that in neither case the edges E(V1, V3) are involved. Conse-
quently, the definition of cocovers (and the auxiliary property (¬CO)) does
not depend on the edges E(V1, V3). Hence, the proof of Lemma 4.79 goes
through as intended.
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[Koh97] Y. Kohayakawa. Szemerédi’s regularity lemma for sparse
graphs. In F. Cucker and M. Shub, editors, Foundations of Com-
putational Mathematics, pages 216–230, Berlin, Heidelberg, 1997.
Springer-Verlag. 43, 46, 52, 54

[KPR87] Ph. G. Kolaitis, H. J. Prömel, and B. L. Rothschild. Kl+1-free
graphs: Asymptotic structure and a 0–1 law. Trans. Amer. Math.
Soc., 303:637–671, 1987. 2, 8, 11, 12, 13, 31

[KR70] D. J. Kleitman and B. L. Rothschild. The number of finite topolo-
gies. Proc. Amer. Math. Soc., 25:276–282, 1970. 10

[KR75] D. J. Kleitman and B. L. Rothschild. Asymptotic enumeration of
partial orders on a finite set. Trans. Amer. Math. Soc., 205:205–220,
1975. 10
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[PS92a] H. J. Prömel and A. Steger. Almost all Berge graphs are perfect.
Combinatorics, Probability and Computing, 1:53–79, 1992. 11, 13

[PS92b] H. J. Prömel and A. Steger. The asymptotic number of graphs not
containing a fixed color-critical subgraph. Combinatorica, 12:463–
473, 1992. 13
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strongly ε-regular, 53
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