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Abstract:

Efficient star query processing is crucial for a performant data warchouse (DW)
implementation and much work is available on physical optimization (e.g., indexing and
schema design) and logical optimization (e.g., pre-aggregated materialized views with
query rewriting). Organizing fact tables with clustering multidimensional access methods
(like the UB-Tree) are a promising approach to speed up star queries. However, the
implementation into commercial products has not been done so far, since in addition to
the clustering index organization, many parts of a database management system must be
extended. For example, the query optimizer with corresponding cost model modifications
must support the new organization and various optimization topics.

In this thesis, we present EHC, the Encoding for Hierarchical Clustering in combination
with UB-Trees. EHC enables the use of clustering index structures also for hierarchical
data. EHC is extended to MHC, the multidimensional hierarchical clustering by
combining multiple dimensions. Based on the concept of MHC, we develop a number of
query optimization algorithms, in order to support hierarchical clustering with query
processing. For this purpose, we present a complete abstract processing plan that captures
all necessary steps in evaluating star queries in these environments. One important step in
the query processing phase is, however, still a bottleneck: the residual join of results from
the fact table with the dimension tables in combination with grouping and aggregation.
This phase typically consumes between 50% and 80% of the overall processing time. In
typical data warehouse scenarios pre-grouping methods only have a limited effect as the
grouping is usually specified on the hierarchy levels of the dimension tables and not on
the fact table itself. Therefore, we suggest a combination of hierarchical clustering and
pre-grouping. Exploiting hierarchy semantics for the pre-grouping of fact table result
tuples is several times faster than conventional query processing. The reason for this is
that hierarchical pre-grouping reduces the number of join operations significantly. With
this method even queries covering a large part of the fact table can be executed within a
time span acceptable for interactive query processing.

All these concepts have been implemented during this thesis into the commercial
database management system Transbase® Hypercube and already run productive at a
couple of customers of Transaction Software GmbH.

During the implementation further problems occurred, like complex aggregate
expressions, multiple query boxes, non-clustering dimensions, complex schemata, multi-
fact-table-joins etc. For these problems, solutions are described and have been
implemented.

We further address some theoretical aspects of multiple hierarchies and dynamic changes
of surrogates and a complete hierarchy model.

Finally, we present measurement results of a complex real-world sales transaction data
warehouse of an electronic retailer and of the APB standard benchmark for OLAP. These
measurements show the benefit of the implemented methods compared to conventional
state of the art techniques and database management systems.
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1.1 OBJECTIVE

1 Introduction

In the last decades, hardware has been improved, in order to solve current problems. The arguments of
large database management system (DBMS) manufacturers are to buy better hardware, faster CPU’s
etc. when conventional tuning is not sufficient. This leads to additional investment costs and makes IT
infrastructure more expensive. Not many algorithmic improvements have been implemented into
commercial DBMS, although research is still going on. Implementing new technologies into existing
DBMS is very expensive, has a long introduction and user acceptance time.

In addition, the large DBMS vendors modified their license policies and models recently. As
consequence, the customers have to pay much more for the same benefit of their DBMS environment.

On the other side it is very difficult for a small DBMS company to compete with the “three large” in
the market. You must have good arguments in order to convince customers to buy an unknown
DBMS!

The challenge is to sell a product pasing the very high market barriers and being successful.
Arguments for buying a new DBMS are for example:

¢ leading-edge technology

* cheap prices

* excellent support

¢ stability of the DBMS vendor

Thus, combining research and industry, i.e., implementing new technologies into commercial products
serves at least one of the arguments.

1.1 Objective

Transaction Software decided to compete in the data warehouse market. For this purpose, the UB-Tree
has been implemented as multidimensional index technique. However, in addition to a
multidimensional index we need hierarchical encoding methods, in order to support hierarchical
organized dimensions for data warehouses. This so called MHC, i.e., multidimensional hierarchical
clustering, combines the strengths of a multidimensional clustering index with the concept of
hierarchically structured dimensions for example in data warehouse applications.

The integration of MHC into Transbase® Hypercube, the relational DBMS of Transaction Software
with the integrated UB-Tree, requires modifications of various layers in the DBMS. New query
processing concepts and optimizing strategies must be added and transparency and applicability for
the usage must be provided.

In this thesis, we describe

* ageneral hierarchy model,

* the concepts of an encoding for hierarchical clustering,

* multidimensional hierarchical clustering,

* the integration of MHC into the Transbase® kernel,

e query processing with MHC organized DW schemata,

* problems and solutions originating of these extensions (e.g., handling of large number of
query boxes),

* optimizer extensions (considering MHC, special grouping techniques, complex aggregates,
complex schema design etc.),

» extensions for the user of the DBMS, in order to design and maintain MHC organized
schemata,

* dynamic aspects in combination with MHC



1 INTRODUCTION

We cover the complete spectrum of implementing MHC into the Transbase® DBMS kernel, the
problems and solutions.

1.2 Structureof the Thesis

Now we give an overview of the thesis in combination with hints for the reader.

The thesis consists of two main parts. Part I describes basic concepts about hierarchies (Section
dimensions, the design and modeling of dimensions and data warehouse schemata (Sections 2f3—4nd
, the UB-Tree (Section and some aspects of Transbase® Hypercube (Section 31.

The second part is the main part and contains the description of the encoding methods (Section 5[, the
encoding in combination with DW (61 and the integration into Transbase® Hypercube (Section 7
Section 8|contains all aspects how to compute and maintain the hierarchy encoding and use them
the context of DW. We especially address all practical issues to load and update DW applications.

The most important sections are Sections 9 Jand 1P7] These sections contain the complete query
processing and optimizing concepts. In particular, Sect10n|§| describes a framework of processing star
queries with MHC with an abstract execution plan (Section 9[3);] We describe the novel concept of
hierarchical pre-grouping (Section and usage of aggregation. Section ontains further aspects
w.r.t. complex schemata, i.e., non-clustering dimensions. In Section lw describe the complete
concept of optimizing star queries regarding MHC organized schemata: Section lontains the
recognition of such schemata and how to handle them. Section ddresses very practical problems
with aggregation, especially complex aggregations in star queries. In Section me describe
solutions for performance problems originating from a large number of multidimensional query boxes.
Section lnvestigates the space partitioning of MHC organized data and explanations about the
applicability of MHC. Section 1 covers also practical issues when dealing with DW schemata
where not all dimensions can be used for clustering the fact table. Similar to this, we give a solution
for schemata with multiple hierarchies on single dimensions in Section TeirISection lﬁontains
solutions how to handle schemata with several fact tables.

The remaining sections describe further concepts. Section s a more theoretical chapter how to deal
with complex hierarchies and Sectionl-li-ldescribes dynamic aspects and how to solve problems arising
in this context.

Finally, we summarize the work and point out what to do in the future, since there is still work to do
for a complete product suite of Transbase® Hypercube with MHC.



2.1 DATA WAREHOUSE

Part | —Preliminary Considerations

2 Terminology and Basic Concepts

2.1 DataWarehouse

Data warehouses (DW) got very popular in the last years and are expected to have great influence on
companies in the future. The definition of DW, however, has not yet been standardized. Many
different views on DW and data warehouse systems (DWS) are discussed in the DW community.

2.1.1 Classic Definition

One of the first definitions of a DW has been published by Inmon ( : “A data warehouse is a
subject oriented, integrated, non-volatile, and time variant collection of data in support of
management’s decisions.”

This definition, however, is incomplete for today’s DWs. According to Inmon, four basic properties
are used for decisions:

*  Subject Orientation: A DW must serve a special application goal, not fulfill a special task. The
application goal usually is more complex and general than a task (e.g. human resources).

* Integration: The data stored in a DW usually comes from several databases. They are
integrated into one large DW database.

* Non-volatile Data: Data stored in a DW will not be deleted or updated.

* Historic Data: DW applications analyze data with respect to the time. This time usually is
historic, i.e. a rather long time span.

2.1.2 Modern Definition

Inmon’s definition is too restrictive for the requirements of companies. Thus, we use a more general

view of DW ([GB+01]).

A data warehouse is a physical database with an integrated view onto arbitrary data stored in the DW.
The main applications on DWs are analyses of the data. For this purpose, a multidimensional view
enables complex analysis functionality and allows interactive, explorative data analysis (OLAP, i.e.,
OnLine Analytical Processing). The main users of a DW are controllers and managers that have to
deal with statistics, trends etc. Data stored in a DW usually are historic data, which means, that data is
not updated or deleted from the DW. Often aggregated and consolidated data is extracted from
operative systems (OLTP, i.e., OnLine Transaction Processing). Such data is extracted by ETL tools
(i.e., Extraction, Transformation, Loading).

A system that integrates ETL tools, the DW and report and analysis functionality is called a data
warehouse system (DWS). Usually a DW is combined with such tools.

Data often is loaded periodically into the DW, e.g. every day, every weekend. Thus it is often
necessary to provide efficient mass loading functionality to load a large amount of data within a time
window into the DW. Sometimes loading is required without a time window. Then, data consistency
must be ensured.

2.1.3 Dimensionsand Measures

The data stored in a DW, is organized multidimensionally. We distinguish between dimension and
measure data.
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Dimension attributes provide categorical (qualitative) data (e.g., products, customers, time), which
determine the context of the measures. In most cases hierarchies are defined on dimensions (see
Section 2p2)1 The time dimension often consists of the hierarchy all-year-month-day or all-year-
quarter- -day, where all represents all dimension elements. In most cases, dimensions are declared
by a context (e.g., by the business context, organization structure). Usually, dimensions are almost
static (e.g. a change on a geographic hierarchy, where Germany belongs to North America will seldom
occur). However, in some applications frequent changes are possible. Special semantics are necessary
to handle changes and data concerned by the changes(% Sometimes even the schema of
dimensions change (so called schema evolution, BlaOO

Measure attributes are numeric (quantitative) data (e.g., sales, cost, turnover) that are organized by
multiple dimensions. In real multidimensional systems, dimension and measure attributes often are not
distinguished.

2.2 Hierarchies

In data warehouses, the modeled business context can be very complex. The dimensions often
represent very complicated and flexible relationships. We therefore need a hierarchy model that fulfills
all possible hierarchical relationships.

Graphs represent relationships between vertices. Members in hierarchies are classified by
relationships (usually 1:n relationships), which in the following we call hierarchical relationships.
These hierarchical relationships can be represented as directed acyclic graphs. A hierarchy instance is
the actual instantiation of the hierarchical relationship. A special case of a hierarchy instance is a
hierarchy tree. In this thesis, we extend the simple structure of a hierarchy tree to a more complex
hierarchy graph. We use equivalence classes defined on the graph to describe hierarchy instances.

In DW community, some formal models of DW, dimensions, hierarchies etc. have already been
worked out. Some approaches do not explicitly include hierarchical classification in their data model
((hGS97]] [BPT97])] In [Bap01].][[Leh98a] Jand [[AIbO1] the authors provide a hierarchical
classification, defining hierarchy schemata with classify-relationships. In[[LW96], p MD model based
on relational elements is discussed.

Many publications propose first to establish the conceptual model and then to do the actual

implementation ([WB97]] [€TO98]] [MROI8])] [HALVO0] show how to systematically derive a

conceptual warehouse schema from a generalized multidimensional normal form.

ntroduce a conceptual data model that allows complex descriptions of the structure of
aggregated entities and multiply hierarchically organized dimensions. @resents an overview of
the understanding of commercial and scientific concepts of DW modeling.

%iscusses the linearization of a single hierarchy and presents the physical representation
1thin a DBMS. [MRB99T ektend the linearization to multiple dimensions and hierarchies and discuss
query processing of hierarchically organized multidimensional data.

In this thesis, we describe a hierarchy model that is specified by the instance (in contrast to e.g.,
‘. We further present a linearization method for complex hierarchies by transforming complex
hierarchies to simple hierarchies (Section }jl

In the first part of this section, we work out properties of directed acyclic graphs (DAG) as model to
describe hierarchies. The second part introduces hierarchy instances and schemata. We define some
special hierarchies and describe typical hierarchies of data warehouses.

Basically, a hierarchy instance H corresponds to a graph G = (V, E) with vertices v; [J V and typed
edges g [ E. Vis a finite set and E is a subset of VXV XN: ¢ 0E= (v, V2,)t, where vq, vo OV and t O
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N is a type determinator (type) specifying the type of the edge. We define a function TE: VXVxN 2N
that returns the type of an edge e: TE(e) = TE((v1, Vz)t) =t

2.2.1 Typed Directed Acyclic Graphs

We concentrate on DAGs (J[CLR90]) jwith typed edges, abbreviated by tDAG. In a DAG, a vertex V is
adjacent to u, if u = v or /7 (u, v)' E. Each vertex u has at most one out edge with type t, i.e., there
are no two vertices V; and V; adjacent to U that have the same type t.

Example 2-1 (Graph):

Figure 2-1 fJlustrates a sample graph. This graph is a tDAG (the direction of the edges is denoted by
arrows, the type of the edges is denoted by the edge style, a solid arrow denotes type 1, a dashed arrow
denotes type 2). The vertices v; are { Germany, Austria, North, South, East, West, ..., 6 }, the edges
are: E={A1-2Aldi\, Aldin 2?North, North->Germany, ..., West 2Austria} or equivalently a set of pairs

E={(AL, Aldi), (Aldin, North), ..., (West, Austria)}. :
Germany Austria
\\\ ///
S =7,
N\ \\\\ /////
\\ SO~ Prag -~
\ \\ \\\ -7
North South™. So N East West
N\ ~ N
N ~ ~ -
/\ X TG1 TG2 TGS TAl TA2 /\ /\
IS T
Aldiy Saturny Aldig I 4 I I \\ Hafery, Saturng Hofery, Saturny,
1/ | I l S
/ | | l AN
/7 | | | \
7 | | | \
a i I }
|
Al A2 $3 i I I | H1 H2 H13 H14 SI5
Lo 1 - N ] I | |
L I | R I i
R — — P
- T B O J
|

Figure 2-1: Directed Acyclic Graph

Definition 2-1 (Path @, Typed Path @, pathlength):

A path @from uto vis a sequence of adjacent vertices (V1, V2, ..., Vp), where V; 2 Vi+1,i =1, ..., n-1
and v = Uand v, = v. We say, v is reachable from uvia @ u[I3 V. We say, @contains the
vertices Vi, Vo, ..., Vn.

A typed path {pt is a path with a type t, the function T: (Ex .. XE)' = N returns the type:

otherwise
Two paths @ = (Vll, v, Vln) and @ = (V21, Ve, oo vzn) have the same type t, if the types of all
edges of @ and ¢ are the same: T(@) = T(¢@) = t and t£L.
The pathlength is the number of edges in path @ pathlength(¢") = pathlength(path(u, v)"), if
@'= udI® v and path(u,v)'is the path @from u to v with type t. m

T®) :{t if Ov,, v, 0O T(v,,v,)) =t (i =L..,n-1)

Note that a path always specifies a sequence of vertices, i.e., @= (V1, Vo, ..., Vp). If there is more than
one path from u to v, each of the paths has a path length.

Note that the type of a path is only defined, if all edges in the path have the same type.



2 TERMINOLOGY AND BASIC CONCEPTS

Example 2-2 (Path, pathlength):

We use Fijgure 2-2 ds example graph. There are two paths from “A1” to “Segment” @=(" A1”,
“Aldiy”, “ North”, “ Germany” , “ Segment” ) and @=(“ A1", “ TG1”, “ Germany” , “ Segment”).
pathlength(¢) = 4 and pathlength(¢) = 3, where T(@)=1 and T(¢) = 2

The path ¢z = (“ S1”, “ Saturny”, “ North” , “ Germany” , “ Segment” ) has the same type as @, because
all edges of @ and ¢ have the same type, but ¢ has a different type compared to ¢. m

Definition 2-2 (rooted tDAG):

A rooted tDAG is a tDAG that has one vertex r that is reachable from all vertices vi 0 V \{r}. Thus,
there is a path from all v; LV to r, viZr. Vertex r is called root vertex (or root). O

If the union of two tDAGs G1=(V1, E1) and Go=(V>, E») is not rooted (i.e., G=G1/7 Go=(V1/7 Vo, E1 [T
Ey) is not a rooted tDAG), but G1 and G are rooted tDAGs, we can construct a rooted tDAG G of
G1/7 Gy by adding a new vertex r /7V1/7V, and two edges €1 = (g1, I) and & = (re, ), where rg;
is root of Gy and rgp is root of Gy: G=(V1 7V, [Jr, Ex [JEy [7 (rea, ¥) [ (rea, r)). Note that the
direction G; and G, must be the same such that the union is a rooted tDAG again.

The graph of FMonsists of two rooted tDAGs G; and G, with the roots Germany for
G and Austria for G,. G; and G, are connected via an additional vertex Segment an

Segment) and (Austria, Segment). G=G1// G, now is a rooted tDAG (ngizl
Es?j[ we add edges of type 1 and type 2.

Segment

Figure 2-2: Rooted Directed Acyclic Graph

Definition 2-3 (Outdegree, Indegr ee, Degr ee):

The out-degree of a vertex u (outdegree(u)) is the number of edges leaving u, outdegreet(u) is the
number of edges with type t, leaving u.

The in-degree of u (indegree(u)) is the number of edges entering U, indegreet(u) is the number of
edges with type t entering U, correspondingly.

The degree of U is the sum of indegree(u) and outdegree(u). i

A rooted tDAG has a number of vertices V; with indegree(V;) = 0. These vertices are called leaf vertices
Viear (01 l€aves). In the graph of he leaf vertices are {Al, A2, S1, &, A3, H1, H2, $4, H3,
H4, S5, S6}. A root vertex (root) r has an out-degree of 0.
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We further consider graphs, where every leaf vertex has at least one typed path to the root. We
additionally require, that for every vertex v outdegreet(v)z 1. This requirement means that we consider
trees as explained later.

Example 2-3 (Indegree, Outdegree, Degree):

In Fig@ the vertex Saturny has the following degrees:
indegree(Safurny) = indegreel(SatumN) = 2, outdegree(Saturny)=1, degree(Saturny)=3.

The vertex Germany has the following degrees:
indegree(Germany)=5, i ndegreel(Ger many)=2, i ndegreez(Ger many)=3, outdegree(Germany)=0,
degree(Germany)=5. Germany is a root vertex.

The vertex Sl has the following degrees:
indegree(S1)=0, outdegree(S1)=2, outdegreel(Sl): 1, outdegree2(81)= 1, degree(S)=2. Sl is a leaf
with two outgoing typed edges (type 1 and 2). O

In the following, we discuss rooted tDAGs, where every path from the leaves to the root has a defined
type, i.e. every edge (Vi, Vj) of the path has the same type t. Every vertex v; and vj has at most one
outgoing edge of type t, i.e., outdegreetm(vi) = outdegreem(vj) =1, tm Zth.

Definition 2-4 (Subgraph):

A subgraph G’ of graph G=(V,E) is a graph, whose vertices V' and edges E’ are subsets of vertices V
and edges Eof G: G'=(V', E’), V'OV, E [IE. m

Definition 2-5 (Smple tDAG):
A simple tDAG (abbreviated as StDAG) T°=(V°, E) is a subgraph of G with edges of one type t. The

vertices of T are the vertices contained in all paths ¢ from leaves of G to the root and pathlength(g

‘)= pathlength(¢), i.e., all paths from leaves to root with same type and length.
O

In real applications, we often have more complex graphs, e.g., hierarchies in data warehouses. See

Sections @nd Bfor more details.

Theorem 2-1;

A simple tDAG T°is a balanced tree. O
Proof:

1. AstDAG is atree:
According to the definition of trees ([a tree T has the following properties:
T=(V, E), where ViV are the vertices and & /E are directed edges, where & = (root(T)),
root(T)), 1 j <mand T; are the roots of the sub-trees of T. T is a special case of a DAG,
where outdegree(vi)=1 for all viIV \ {root(T)}. For every vi(IV \ {root(T)}, there is a path from
Vi to r = root(T):
OviN\{root(T)} O vI$ r.
A stDAG (V, E) is a rooted DAG with edges of type t. outdegreet(vi)z 1 = outdegree(Vv)) (see
for v O V\{r}, where r is the root. For every vertex V; of the stDAG, there is a
path from v; to root: 7N \{r} @ vOI$ r.
Thus, a stDAG is a tree.

" A tree is a finite set T of one or more vertices such that there is one specially designated node called the root of
the tree, root(T), and the remaining nodes (excluding the root) are partitioned into m=0 disjoint sets T, ..., Tm
and each of these sets in turn is a tree. The trees T1, ..., Tmare called the subtrees of the root.
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2. A stDAG is a balanced tree:
In a balanced tree, the height (i.e., the maximum pathlength of the path from all leaves to the
root) of the subtrees is equal or has a difference of at most 1.
In a stDAG, the pathlength of all paths from the leaves to the root is equal.
Thus, a stDAG is a balanced tree.

g.e.d.

For example, in 'me tDAG with type 1 is a simple tDAG. The length of every path from the
leaves to root is 1 5

Definition 2-6 (Equivalence Class):

An equivalence class s a set of vertices with the following properties: Two vertices U, V of a stDAG
TS= (VS, ES), u, v O V® are elements of equivalence class ¢, if pathlength(path(u, root)) =
pathlength(path(v, root)), i.e., if the path length of the path from the vertices of C to the root is
identical (same distance). i

Note that the complete stDAG is one equivalence relation.
Example 2-4 (SimpletDAG, Equivalence Class):

In the graph of Higure 2-2;]two simple tDAGs T! and T2 are defined:

T = (V4 EY), where V! = {AL, A2, S1, 2, A3, H1, H2, $4, H3, H4, 5, 6, Aldin, Saturny, Aldis,
Hoferg, Saturng, Hofery, Saturny, North, South, East, West, Germany, Austria, Segment}

T? = (V2 E?), where V2 = {Al, A2, S, 2, A3, H1, H2, $4, H3, H4, S5, 6, TG1, TG2, TG5, TAL, TA2,
Germany, Austria, Segment}

Equivalence classes of T' are ¢;'={A1, A2, S1, S2, A3, H1, H2, S4, H3, H4, S5, S6 }, c,'={Aldiy,
Saturny, Aldis, Hoferg, Saturng, Hoferw, Saturnw}, C31={N01‘th, South, East, West}, C41={Germany,
Austria} and 051={Segment}. O

Equivalence classes of T2 are c1°={Al, A2, S1, S, A3, H1, H2, $4, H3, H4, S5, S}, ¢,°={TG1, TG2,
TG5, TAL, TA2}, cs?={Germany, Austria} and c4°={Segment}.

2.2.2 Hierarchies

With the definitions of graphs, we now can define hierarchies as semantic interpretation of graphs. We
draw a parallel of the concepts of rooted tDAGs to hierarchies. This section describes hierarchies and
their properties.

Definition 2-7 (Hierarchy I nstance):

A hierarchy instance H is a rooted tDAG H=(V, E) with vertices mV and directed, typed edges
g U E. We call the vertices members. The edges are called hierarchical relationships. We call a
member m; hierarchically dependent on my, if my = my (or equivalently (my, my) O E). We call a
member my indirect hierarchically dependent on m, if m is reachable from mj via a path @

m; [I$ m, also denoted by m;  m. O

We additionally define sub-hierarchies, called simple hierarchies H3=(V*,E®) that correspond to
simple graphs. The union of the simple hierarchies is the hierarchy instance H: U HiS =H . This
i

follows from the definition of simple hierarchies. The simple hierarchies must have the same direction

as already mentioned for D¢finition 2-2. ]
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Definition 2-8 (Hierarchy Level):

A hierarchy level or level is an equivalence class of a simple hierarchy containing members with the
same distance from the root. We call the level consisting of leaves leaf level and the level consisting of
the root root level. A simple hierarchy is a balanced hierarchy tree with a depth equal to the
pathlength of the path from the leaves to the root. |

Example 2-5 (Hierar chy Instance, Simple Hierarchy, Hierarchy Level):

The graph illustrated in Figure 2-2, is a hierarchy instance with two simple hierarchies Hy and Ho.
The levels of Hy=(V1, Eg)previ=thy" O hy' O hs' O hy* O hs', where hy’={A1, A2, S1, S, A3, H1,
H2, $4, H3, H4, S5, 6}, hy =ATdiy, Saturny, Aldis, Hoferg, Saturng, Hoferyy, Saturnwg, h31:{North,
South, East, West}, hy'={Germany, Austria} and hs'={Segment}.

The levels of Hy=(Va, Ep) are Vo={h:? O hy? 0 hg? O hs?), where °={A1, A2, S1, 2, A3, H1, H2, 4,
H3, H4, S5, 6}, hy’={TG1, TG2, TG5, TAL, TA2}, hs’={Germany, Austria} and hs;*={Segment}.

Definition 2-9 (Order of Levels):

The order O of a level hy is the path length of one representant (member) m j of hj to the root r:

O(hy) = pathlength(path(mi, ).

A level h; is smaller (greater) than hj, if O(hj) < O(h;) (O(hi)>O(h)).

The order of the root level is 0. i

Definition 2-10 (Hierar chically Dependent Member s):
The member m is hierarchically dependent on m, if there is an edge e = (m, m) L/E. m
Definition 2-11 (Hierarchically Dependent L evels):

A level hj is hierarchically dependent on hy, if all members mOh; are hierarchically dependent on
members MhDhj, i.e., Omy Oh OO hj: (r’dh, m'k) UE. The function HD computes the hierarchical
relationships {(hi, )} of the levels of a hierarchy instance H=(V, E), where h;, h; are levels of H and h;
is directly hierarchically dependent on hj. _

A level hj is indirect hierarchically dependent on hy, if all members M hj are indirect hierarchically
dependent on members mhO h. ]

We define the order of hierarchy levels from bottom to top. A simple example illustrates the correct
hierarchical dependencies: In a geographic hierarchy with levels country, state, and town, the level
state is hierarchically dependent on town, because state is determined by the towns. The level country
also is hierarchically dependent on town, however indirect (by level state).

Example 2-6 (Order of Levels, hierarchically dependent L evels):

According to he order of levels O(h11)= 4, O(h21)= 3, O(h31)= 2, O(h4l)= 1, O(h5l)= 0.
HD(H1) returns the following hierarchical dependencies: HD(H1) = {(hll, hzl), (hzl, h31), (h31, h4l),
(ha', hsh)}. O
Definition 2-12 (Shared Level):

Two levels h1={m<l} and h2={rr;2} are shared levels, if the intersection of hy and hy is not empty.
Otherwise the levels hy and hy are not shared. We call such levels h; and hy digoint levels.
We distinguish several qualities of shared levels:

1. hinhyZz[
2. hyOhy
3. h]_ = h2
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The first case requires, that h; and hy have at least one common member. Thus, if h; and hy are shared
and hy and hs are shared, h; and hz may be disjoint levels (i.e., no transitivity)

In the second case, hy contains hy. Thus, if hi0h, and ho[dhs, then hi0hs, and h; and hs are also shared
levels.

The third case is the strongest quality: hy and h, are equal levels, i.e., the set of members of h; is equal
to the set of members of hy. If hy=hy and ho=hgs, then h; and hg are also shared levels, even equal
levels. ]

Definition 2-13 (Distinct):

The operator distinct: L 2L returns a subset of levels L'={hy} of a set of levels L={h;}:
digtinct(L)={h}=L", where Ohy, hy O L": hg# h. There are not equal levels in L. m

If there are several paths from a member to the root (usually true for shared levels), we call these paths
alternative paths.

Example 2-7 (Shared Level, Distinct Operator):

According to Mhared levels are: h11= h12, h41= h32, h51= h42

For the hierarchy instance H = H;/7H,, the operator distinct returns the following levels:
disti nCt(H) ={ hll, h21, h31, h41, h51, h22 } O

The distinct operator generally is not deterministic. However, the members of the levels specified by
the distinct operator, are deterministic (e.g., the members of hll and h12 are the same). In order to
implement the operator, we check compare the members of the hierarchy levels. If all members of two
hierarchy levels are the same, the hierarchy, one hierarchy level is returned.

Definition 2-14 (Balanced Hierar chy):

A balanced hierarchy is a hierarchy, whose leaf members are contained in one (shared) level h.
Simple hierarchies are always balanced hierarchies, because a simple hierarchy is a balanced tree
having only one leaf level. O

Definition 2-15 (Hierarchy Schema):

The hierarchy schema HSis a rooted tDAG specified by HS=(LS, ES) where L%is a set of levels h;,
and E”is a set of hierarchical relationships E>= (hi, hy) between the levels, i.e., h; is hierarchically
dependent on h;.

A hierarchy schema is represented by a rooted DAG. i

Definition 2-16 (Schema-I nstance Confor mity):

A hierarchy schema HS=(LS, E5) conforms to a hierarchy instance H=(V", E™), if the number of levels
of HSand H is equal, and the hierarchical dependencies of these levels are equal:
ahShS O aht, h™ GHDH) 70", hY) OHDH): 4h® hS) OE° O

Example 2-8 (Hierar chy Schema and I nstance):

In Figure 2-3]a hierarchy schema is illustrated: HS=(L, E®), where L={Outlet, MicroMarket, Region,
TurnoverClass, Country, Dimension} and E’={(Outlet, MicroMarket), (MicroMarket, Region),
(Region, Country), (Outlet, TurnoverClass), (TurnoverClass, Country), (Country, Dimension)}.

As hierarchy instance H, we use E%H =H,0H, =(V, EH), where the levels are LH={h11,
h,', hy', hy', hs', hy?, hy, hy?, h42}. The distinct levels are distinct(LH) = {hll, h,', h;', hy', hs', hzz} and
the hierarchical dependencies are

HD(H) = {(h,', hy'), (ha', hy'), (hy', '), (h', hs), (hy', hy?), (hy”, hy'))

If we map Outlet to hll, MicroMarket to hzl, Region to h31, Country to h41, Dimensio !
TurnoverClass to h,’, the hierarchy schema HS conforms to hierarchy instance H of mj i

10
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Dimension

MicroMarket

Figure 2-3: Hierarchy Schema of a Complex Hierarchy

2.2.3 Conclusion

With the introduced concept of defining hierarchies from the instance of the hierarchy graph, we are
free to represent any kind of hierarchy (unbalanced, complex, overlapped etc.). The described
operators provide a complete toolset, in order to model any hierarchical relationships of existing
hierarchical dimensions.

For our investigation and implementation of multidimensional hierarchical clustering, however, we
have to normalize degenerated hierarchies (see Section 6].

2.2.4 Hierarchiesin Data Warehouses

Hierarchies are used to classify the dimensions of a DW. DW model complex business contexts.
Additional attributes are used to provide additional classification information, e.g., the screen size of
TV sets. These additional attributes are called classification features. Therefore, a member V in a
hierarchy graph is a pair v=(id, {fi}), where id is a unique identifier of the vertex, called member |abel
(or label), and {fi} is a set of additional attributes, called feature attributes. We call such a graph an
attributed tDAG.

Feature attributes are assigned to hierarchy members. Generally, a member can have an arbitrary
number of features. In many DW hierarchies, however, the hierarchy members of one hierarchy level
have the same set of feature attributestIn this case, features are assigned to hierarchy levels.

In a DW, hierarchies are assigned to dimensions. One dimension can contain several hierarchies. We
combine all hierarchies of one dimension to one hierarchy instance corresponding to a rooted tDAG,
where the root is the “All” level. Such a hierarchy instance is called DW-hierarchy. Usually, facts
have a base granularity with respect to every dimension. This base granularity corresponds to one leaf
level of the DW hierarchy. Thus, a DW-hierarchy only has one (shared) leaf level.

If facts are classified with respect to different ranularitleeaf hierarchy levels), new aggregation and
grouping semantics have to be introduced ([. Our hierarchy model, however, supports such
degenerated hierarchies. The same holds for unbalanced hierarchies. The paths (with different lengths)
can be modeled, but for a reasonable representation in a relational DBMS, the hierarchy instances
must be normalized. This normalization usually consists of introducing artificial hierarchy members,

? Hierarchy members of one hierarchy level usually categorize the same information, e.g., the level “country*
may have feature attributes like population, gross national product, etc. for every country stored in the hierarchy.
3 unbalanced hierarchies

11
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in order to get hierarchy paths of equal lengths. Especially for the EHC and MHC modeling, this
normalization is essential (see Section 6 for a description of the logical and physical modeling).

2.3 Star Schema

In relational DBMS, the schema of a data warechouse usually is represented by a star schema or
snowflake schema (see Section 2. This section contains the description of the concept of star
schemata.

A star schema combines the concepts of a relational DBMS with the multidimensional view to
multidimensional data stored in a relational DBMS. This method is widely used for relational OLAP
systems (ROLAP). Instead of storing all data (dimension attributes and measure attributes) in one
single table, the fact table FT, dimension data is normalized out of the fact table into dimension tables.
In contrast to the snowflake schema, dimension data is stored in one single dimension table for every
dimension. Higure 2-4 Jllustrates a star schema with n dimensions, expressed by the dimension

attributes dy, ..., dy of FT and the corresponding dimension tables Dy, ..., Dp.

The center of the “star” is the fact table. The attributes dj are the dimension attributes, the attributes my
are measure attributes. Every d; corresponds to Dj.hy, i.e. the leaf level of the hierarchies in D;. The
(shared) leaf level of the hierarchy is the key of the dimension table. We require this key constraint
due to two reasons: First, the composite key of the complete hierarchy path (hy, hy, ..., hy) would be
too long to store also in the fact table for every dimension (because of the foreign key relationship of
the dimension attributes in the fact table). The leaf level often is an artificial (short) key due to space
saving reasons. Second, if we have more than one hierarchy, the shared leaf level h; for all hierarchies
serves a common key.

Dl D2
hll nlz
h,t h;2
hml1 FT hm22
i d, f2
gz
ffl1 ff22
dy
ml
Dn
my hln
h,n
hmnn
i
ffnn

Figure 2-4: Star Schema

In addition to the hierarchy levels in Dj, feature attributes describe the dimension attributes and
hierarchy attributes in more detail. Feature attributes can be assigned to each level in the hierarchy and
thus may be stored redundantly in the dimension tables. Often the hierarchy levels are artificial keys
used for hierarchical dependencies and contain an additional description field (modeled as feature).

In general more than one hierarchy is allowed per dimension. Storing data in a star schema will always
guarantee correct hierarchies, because every tuple in the dimension table contains the full path of all
hierarchies on that dimension. This leads to more space than in a snowflake schema, but will not

12
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require a separate join for every hierarchy level. In this thesis, we call dimension tables of a star
schema flat dimensions, where the complete dimension with hierarchies and features is stored within
one dimension table.

Definition 2-17 (Flat Dimension):

A flat dimension table contains all dimension attributes, i.e., the hierarchy level attributes of all
hierarchies and their feature attributes. Thus the hierarchical relationship is modeled within this table
by storing the complete path within the tuple. i

In Fi@e show an example for a star schema with one fact table FACT and three dimension
tables Product, Segment, and Time. The dimension key attributes Item, Outlet, and Day are the
primary key of the fact table. The leaf levels of the hierarchies, i.e., I[tem for Product dimension,
Outlet for Segment dimension, and Day for Time dimension are the primary key of the corresponding
dimension tables.

Product Segment
Item Outlet
Item_text MicroMar ket
Group Region
Group_text FACT Country
Category ltem Population
Category_text aet TurnoverClass
Color Day

Sales

Price

Cost Time
Day
Month
Y ear

Figure 2-5: Sample Star Schema

2.4  Snowflake Schema

A snowflake schema is the standard and more general schema used in real data warehouses. Designing
applications with a snowflake schema provides complex hierarchical relationships, common use of
hierarchies for many applications, flexibility for queries and less requirements for data space.
However, in general, the performance of queries will suffer from the more complex schema, especially
the number of joins is higher than for a star schema. The DBMS must provide special methods, in
order to efficiently support snowflake schemata. In this thesis, we design and implement our
algorithms for both, star and snowflake schemata.

The snowflake schema is an “extended” star schema in the meaning, that there are several hierarchy
tables for every dimension — a kind of normalization (see m There are many different types
of snowflake schemata depending on the normalization. We describe completely normalized and
partial normalized snowflake schemata.

As in the star schema, the fact table FT is the center of the “snowflake” with the dimensions
surrounding FT. Every dimension attribute di of FT has a foreign key relation to the primary key of the

dimension table Dil.hli. In F we assume one hierarchy per dimension (in general, an
arbitrary number of hierarchies per dimension is possible), where the key of the hierarchy is the leaf

13
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level hy. Thus, the following relationship is required: FT.d; = Dil.hl. We call the dimension table Dil
the leaf dimension table LDT.

The higher dimension tables, i.e., the normalized dimension tables, contain one or more hierarchy
levels. Basically, each dimension table contains an arbitrary number of hierarchy levels (depending on
the kind of normalization). There must be a foreign key relationship between a lower dimension table
Di* and a higher dimension table D;***:

(D k', DX hjy', ., DX hjwm) 2 (DR, DY b, ., D*hiog)

This foreign key relationship requires that the attributes (D K1opt, DR h; 'y e
D**. hj4m) are primary key of dimension table D~

Each dimension table contains an arbitrary number of feature attributes, usually related to the
hierarchy levels (h;', hj.«', .., hjim).

D, D
1
h,2
hkil / ki
.r.].i \ S
t1 A9 D
. D,2 f,
) S ; {f)
h 1 hk22
k2
. D, D! /
h, .t h,* hy? i
N \ FT {f}
{fl} s
hkll Ql hkl2
{f} d th)

3|
=
|=
=51 O
)
N

{fi}

Figure 2-6: Snowflake Schema

Definition 2-18 (L eaf Dimension Table, LDT):

A leaf dimension table LDT of a dimension contains the key of the dimension, i.e., the dimension key
attribute of the corresponding dimension in the fact table. This attribute is the leaf level for every
hierarchy on the dimension. A LDT contains one or more foreign keys to hierarchy level tables and
feature attributes. i

Definition 2-19 (Hierarchy Level Table):

A hierarchy level table contains a number of hierarchy levels of one hierarchy and a foreign key to the
next (higher) hierarchy level. Additionally, feature attributes are stored in the hierarchy level table.
m

14
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In Fi@ﬁ%e show an example for a snowflake schema with a fact table FACT and three
dimensions uct, Segment and Time. The dimensions Product and Segment are normalized into
snowflake dimensions w.r.t. the feature attributes of the hierarchy levels. In the Segment hierarchy, the
Region level has no feature attribute and no separate table is used for this hierarchy level. The Time
dimension is modelled as a flat dimension.

For the sample snowflake schema, the foreign key relationships of Thble 2-1are necessary:

Dimension Product Dimension Segment Dimension Time

FACT(ltenm) - Product(ltem |FACT(Qutlet) - FACT( Day) -
Segnent (Qut | et) Ti me( Day)

Product (G oup) = Segnent (M cr ovar ket -

Pr oduct _G oup( G oup) Segnment _MM M cr omar ket )

Product _G oup(Category) > |[Segnment_MV Country) -

Product _Cat (Category) Segnent _Count ry( Country)

Table 2-1: Foreign Key Relationships for the Sample Snowflake Schema

Segment_Country

Product_Cat Segment_ MM Cou_ntry
cﬁ@gom_ Product_Group MicroMarket Population
Category_text Group Product TurnoverClass

Group_text Item Segment Region
Category Item_text Outlet Country
Group FACT MicroMarket

Color Item

Sales

Price

Cost Time
Day

Month

Year

Figure 2-7: Sample Snowflake Schema

2.4.1 Normalization of Dimensions

Normalization of dimensions is not equivalent to classic normalization of relations. We talk about
normalization, if a star schema is extended to a snowflake schema in the meaning, that hierarchy levels
are stored in separate tables. On the one hand, normalization will save disk space, if feature attributes
of higher levels are stored in a “higher” dimension level table and not redundant in the leaf dimension
table. On the other hand, the schema can express hierarchical relationships that enable optimizing
query processing, such as using properties of multidimensional hierarchical clustering. Additionally,
maintenance of dimensions will be easier and more intuitive.

Many DBMS prefer star schemata over snowflake schemata, because query processing is easier and
more performant. In a star schema, the number of joins is reduced to the dimension tables with the fact
table. In a snowflake schema, the number of joins is increased, because each dimension can consist of
several tables that must be joined for query processing. We prefer snowflake schemata, because more
hierarchical relationships can be expressed in snowflake schemata. Consider a hierarchy with feature
attributes. In a star schema, the feature attributes are stored in the dimension table and it is not clear to

15



2 TERMINOLOGY AND BASIC CONCEPTS

which hierarchy level the feature attributes belong}—A predicate on a feature attribute is not mapped to
a corresponding restriction on the hierarchy attribute and therefore cannot be optimized w.r.t. query
processing with MHC (see Section ﬁ

For efficient query processing, we require some prerequisites for normalized dimensions, i.e., a well-
formed snowflake schema. A well-formed snowflake schema can increase the query performance,
because in snowflake schemata, hierarchical relationships between feature and hierarchy attributes can
be expressed. A well-formed snowflake schema is a special type of snowflake schema which is
described in the following.

Definition 2-20 (well-formed Snowflake Schema):

A well-formed snowflake schema consists of a fact table with the dimension key attributes (dy, do, ...,
d,) as primary key and a leaf dimension table D" for every dimension. The leaf dimension tables
contain all hierarchy levels hy', h,, ..., h for all hierarchies of the dimension. The higher dimension
tables are connected with the leaf dimension table via foreign key relationships. Between every higher
dimension table D¥, a foreign key relationship with D{*"* exists. O

We require the leaf dimension table with all hierarchy levels for an efficient computation of compound
surrogates (see Section Conceptually, the leaf dimension table is a view over a general snowflake
dimension with the dimension tables Dy, Do, ..., D¢

CREATE VIEWD*® (h!, h? ., h') AS

SELECT D'. h%, D.h? ..D.h?' DAh¥™, D ht2 . DAh2 ., D hiki
.. DR

FROM D', [?, ., D _ _ _ _
WHERE D'. hi'*! = D2 hi*** AND D' hi'*2 = 2. hi**2 AND ...AND D' hi¥*™ = 2 hi¥*m
AND ...AND D! hik = Df. hik AND ... AND D! hik¥e = pf, hikto

Thus, the hierarchy is de-normalized into the leaf dimension table defining the join over the complete
hierarchy.

For the well-formed snowflake schema of F the leaf dimension view for the Product
dimension is the following:

CREATE VI EW Di nProduct ess (Item G oup, Category) AS
SELECT
DPitem I tem DPgroup. G Oup, DPcategory. Cat egory
FROM
Product DPjiem Product_G oup DPg oy, Prodcut _Cat DPcy
VWHERE
DPiiem Group = DPgy oup. G oup AND DPgyoup. Cat egory = DPcategory. Cat egory

An example for a well-formed snowflake schema are the field normalized and path normalized
schemata described in the following sections. Different types of normalization can be combined within
one snowflake schema, since normalization is a property of the dimension. Thus, one dimension can
be organized as field normalized dimension, another as path normalized, and a third dimension can be
organized as a different normalization.

For a field normalized and path normalized dimension we assume an LDT that contains all hierarchy
level attributes of all hierarchies in the dimension. Thus the complete path of the hierarchies is stored
in that LDT. In addition to the LDT, a number of hierarchy level tables define hierarchical
dependencies. Without loss of generality, we assume one hierarchy for the dimension in the following
sections.

* It is not possible to express functional dependencies between attributes within one table by standard SQL.
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2.4.2 Field Normalized Dimensions

In a field normalized dimension (FND), the leaf dimension table contains all hierarchy elements hy', ...,
h of the corresponding hierarchy. The key of the LDT is h'. For some or all h' (2<j £t), a dimension
level table D{ exists that contains the hierarchy level attribute h' and a number of feature attrlbutes
{f}. The following foreign key relationships of the hlerarchy attrlbutes in the LDT D. to the
correspondmg attribute in the dimension level table exist: D;* (h,) 2 D (h;), Di* (h3) =2 D3 (hy), .

D' (h)) =2 D (h[) (see MThe key of the satellite dimension table D/ is the h1erarch1cal
attribute: D}.hy"

A separate hierarchy level table Dij makes sense, if a feature attribute is assigned to the hierarchy
level j, otherwise no table D{ is necessary for the hierarchy attribute D{.h;.

To use a field normalized schema, the hierarchy attributes must be unique (in contrast to the path
normalized schema). This means, that the value of a hierarchy attribute must be unique in that level.
Otherwise a combination of levels is necessary to get the key for D;!!

Di2
h,
{1} o
Dik b1i
h i
hy ’
{fy} \
h
D! h
t
hf | f
1
{f.}

Figure 2-8: Field Normalized Dimension

2.4.3 Path Normalized Dimensions

In a path normalized dimension (PND), the leaf dimension table Di! contains all hierarchy attributes
hl', ..., h{ of the corresponding hierarchy. Key is h,.We additionally assume one hierarchy level table
D. for every hlerarchy level k (2 s’k <'t) that contains the path from the top of the hierarchy to the
level k (ht, heq, .. hk) Key of D can be the smallest hierarchy level hk or a combmatlog:f:l

_E{__E‘.L)_)ﬁchy levels. Additionally a number of feature attributes { fx } is stored in every Dik. (see Fi

A PND additionally requlres foreign key relationships for every hierarchy level table D. to ensure a
correct hierarchy: D; (ht het, ..., 1) 2 D.k+1(ht he1, ..., 1) for 2 sk st-1. Thus, the complete
prefix path of levels k+1 to t must also exist in the next h1erarchy level table. In order to define the
foreign key relationship, we have to introduce corresponding unique indexes or define the primary key
of the dimension tables correspondingly.

A PND can express hierarchical relationships between feature attributes and hierarchy levles, if the
members in the hierarchy level are not identified uniquely.
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2 TERMINOLOGY AND BASIC CONCEPTS

D!

h/

/ {f.}
D
b

Di1 hti
e {f,)

=1

hy
{fa}

Figure 2-9: Path Normalized Dimension

In Fwe show a path normalized dimension for the Product dimension of the sample
schema. The leaf dimension table Product contains all hierarchy levels Item, Group, and Category and
further feature attributes. The higher dimension table Product_Group contains the two hierarchy levels
Group and Category and the highest dimension table Product_Cat contains the Category hierarchy
level. We define the following foreign key relationships:

FACT(lten) - Product(ltem
Product (G oup, Category) - Product_ G oup(Goup, Category)
Product _G oup(Cat egory) -> Product _Cat (Cat egory)

Product_Cat

Product_Group

Category
Category_text \ Group Product
Category Item
Group_text ;(Jup
Category FACT
Item_text ltem
Group utlet
Color Day
Sales
Price
Cost

Figure 2-10: Sample Path Normalized Dimension

25 TheUB-Tree

We just give a short introduction to UB-Trees here, details can be found in ([Ba

The basic idea of the UB-Tree is to use a space-filling curve to map a multldlmensmnal
universe to one-dimensional space. Using the Z-curve for preserving multidimensional clustering it is
a variant of the zkd-B-TreemA Z-address o = z(X) is the ordinal number of the key attributes
of a tuple X on the z-curve, be efficiently computed by bit-interleaving. A standard B-Tree
is used to index the tuples taking the Z-addresses of the tuples as keys. The pagination of the B-Tree
creates a disjunctive partitioning of the multidimensional space into so-called z-regions. This allows
for very efficient processing of multidimensional range queries.
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2.5 THE UB-TREE

B*-Tree with Z-values

Z-region partitioning of 2-D space
Figure 2-11 UB-Tree: Z-region partitioning and underlying B-Tree

hows a z-region partitioning for a two-dimensional universe and the corresponding B-
tee. Ihe interval limits of the z-regions are also depicted.

The processing of basic operations, i.e., insertion, deletion, update, and point query, of the UB-Tree
are analogous to the basic operations of the B-Tree. For each tuple the corresponding z-address is
computed, and with the resulting value the underlying B-Tree is accessed. Thus, all basic operations
require only cost proportional to the height of the tree. The only recommendable modification to the
standard B-Tree algorithms is an adaptation of the split algorithm to achieve a “good” (as rectangular
as possible) z-region partitioning.

A UB-Tree is especially good in processing multidimensional range queries, as it only retrieves all z-
regions that properly intersect the query box (see also Section I|0.3.1 ) Consequently, it usually shows
the nice property that the response time of the range query processing is proportional to the result set
size.
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3 TRANSBASE® — A RELATIONAL DATABASE MANAGEMENT SYSTEM

3 Transbase® —a Relational Database Management System

Since most of the concepts are implemented in Transbase®, we now describe some basic concepts of
the DBMS Transbase® Hypercube. Transbase® is a relational DBMS implementing the SQL-92
standard and supporting the ACID concept for all operations (DML and DDL). It further allows server
client environments, multi-user access, and logging and recovery. The optimizer is a rule based
optimizer supporting a large amount of heuristics. Queries are optimized statically, i.e., at compilation
time.

The basic storage technique are B*-Trees ([fom79])] All tables are stored in B*-Trees w.r.t. the
primary key of the table. Thus, Transbase® provides physical clustering of all tables. Additionally,
secondary B*-Tree indexes can be created pointing to the primary B*-Tree (holding the table) via an
indirection (IK-Tree, i.e., internal key tree).

On top of the primary B*-Trees, the UB-Tree was implemented with the z-value for the key of the B*-
Tree ('EVEEU_]T' This extension resulted in the product Transbase® Hypercube. During this thesis,

the MHCT technique was implemented as described later.

For more information about Transbase® refer to MHd to later sections.
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2.5 THE UB-TREE

Part | —EHC Kerne Integration

In other commercial DBMS, multidimensional hierarchical clustering has not been implemented so
far. We provide a description of an implementation of this subject into the relational DBMS
Transbase® Hypercube ([ using the UB-Tree as clustering multidimensional index.

4  Motivation for EHC

Clustering is a very important technique to increase performance of a DBMS. It reduces the number of
disc accesses by placing tuples that are likely to be processed together close to each other. Thus, for
query processing, the likelihood to access tuples already read from disk and cached in main memory is
increased, because one disk access returns a number of tuples belonging to the result set of the query.
The performance increase depends on some parameters such as clustering quality, query predicates,
and page size. In the case of non-clustered data, one page only contains a small number of such tuples
or even only one tuple contributing to the result set of a query.

Hierarchical clustering is a concept that is useful to store hierarchically organized data ([[ZSL98]).le.g.,
hierarchies, as well as to store data characterized by hierarchical dimensions clustered with respect to

the hierarchies ((MRB991 [KS01]).]

In the goal is to access subtrees of the hierarchy efficiently by organizing them with respect
to hierarchical neighborhood. [MRB99] ¢nables efficient access to data in fact tables with hierarchical
organization in multiple dimensions for queries with hierarchical predicates on hierarchical
dimensions. We use an encoding of the hierarchy paths to process such queries and use a space saving
representation for hierarchical relationships. This Encoding for Hierarchical Clustering (EHC) is
organized dynamically and in a space saving way.

In a star schema ([Im dimension tables are connected to a large fact table via dimension
attributes (join attributes). The dimension table usually contains the hierarchies of the dimension,
where for every path an artificial unique id (dimiD) is used as join attribute. This dimID can be a
computed number with respect to EHC: dimID=surr(Vy, Vi1, ..., Viear). The function surr computes a
surrogate id for the path of the dimension tuple, Vm, Vi1, ..., Viear are the hierarchy members of the
levels hm ,bme1, ..., Nieat.

Germany Austria
North South East West
I\ll\lﬁell(r:lzgt Aldiy Saturny Aldig Hoferg, Saturng Hofery, Saturny,
Outlet Al A2 S1 S2 S3 S4 A3 A4 AS A6 H1 H2 H3 H4 H5 H6 S5 H7 H8 H9 H10H11 S6 S7
ID 5 9 2 8 4 12 19 1 15 13 3 2017 21 7 23 16 30 31 32 33 34 27 14

Figure 4-1: Hierarchy with artifical Surrogates without EHC

Queries that restrict dimensions, have predicates on hierarchy levels. These predicates usually are

point or interval restrictions ([nd result in large point sets_on ba anularity (i.e., the leaf
level of the hierarchy). The predicate ~“Germany” of the hierarchy in ould result in the leaf

members {“Al",“A2",“Sl",“"",“S3",“HA",“A3",“AL",“A5", “ A6" } or equivalently in a set
of IDs DID={5, 9, 2, 8, 5, 12, 19, 1, 15, 13}, and every such member is a join predicate to the fact
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4 MOTIVATION FOR EHC

table. If the surrogate numbers (dimID) are chosen w.r. to the hierarchical neighborhood, one interval

can replace a set of dimID’s for the join with the fact table (e.g., the predicate “ Hofery," results in the
dimID’s DID={30, 31, 32, 33, 34}, equal to the interval [30 : 34]).

An equi-join strategy between fact and dimension table requires a large number of disk accesses,
because for every element did Z/DID all join partners in the fact table have to be evaluated. With the
use of secondary indexes, first a number of tuple identifiers (TID) is retrieved (sometimes via
intersection methods, if multiple dimensions are involved), and for every TID, the base tuple must be
read resulting in an additional number of disk accesses (often one per tuple, because the tuples are
stored in insertion order, not in DID order). We call this disk access materialization of the result
tuples. When using a primary index on the fact table on DID, a sort merge join speeds up query
execution. No materialization is necessary in contrast to secondary indexes. However, a large number
of pages may be accessed that contain a small number of tuples belonging to the join condition. A
primary index clusters the fact table w.r. to a fixed ordered number of index attributes (composite or
compound index). Thus, a restriction on the most significant attribute is important for efficient query
processing. Typical DW queries, however, restrict any combination of dimensions, i.e., index
attributes.

4.1 Sample Schema

In the following we often refer to the sample schema, in order to illustrate basic concepts and design
alternatives. The sample schema is a DW schema with one fact table fact and the three dimension
tables dim_segment, dim_product and dim_time with the following hierarchies:

¢ dim segment: Country — Region — Micro Market — Outlet

¢ dim_product: Sector - Category — Product Group — Item

e dim time: Year — Month - Day

The conceptual schema is shown in F

dim_segment

Country
Region
. Micro
dim_product Market
Sector T
T Outlet
Category dim_time
T Year
Product T
GroTup Month
Item fact Day

Figure 4-2: Conceptual Sample Schema
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4.2 EHC — ENCODING FOR HIERARCHICAL CLUSTERING

4.2 EHC —Encoding for Hierarchical Clustering

We transform hierarchical restrictions on the dimension table into range restrictions on the fact table.
This method replaces an equi-join with the fact table via a set of dimID’s by a semi-join (range
restriction as “local” restriction on the fact table w. r. to the physical organization).

For each hierarchy level we assign surrogates to the children in the hierarchy, where the leftmost child
starts with 0, the next child is assigned 1 etc. The concatenation of all surrogates (from top to leaves)
is called compound surrogate and represents the whole hierarchy path (see Fi The
components of the compound surrogates, i.e., the surrogates of the corresponding hierarchy levels, are
delimited by dots.

Segment
0 Gy gt
0 North 1 South O East 1 West
l\'/\lllalslzgt 0Aldiy 1 Saturny 0 Aldig 0 Hofery 1 Saturng OHofery, 1 Saturny,

VARZANIZAN AN

Outlet Al A2 S1 S2 S3 S4 A3 A4 AS A6 Hl H2 H3 H4 H5 H6 S5 H7 H8 H9 HI0 HIl S6 87

ID 0.0.00 0.0.1.0 0.0.1.2 0.1.0.0 0.1.02 1.00.0 1.0.0.2 1.004 1010 1101 1103 1110
0.0.0.1 00.11 0.0.13 0.1.01 0.1.03 1.00.1 1003 10.05 1100 1102 1104 1111

Figure 4-3: Hierarchy Encoding with EHC

With this encoding ([MJMRB&%]_)J point sets of subtrees of the hierarchy can be replaced by
intervals. The predicate “Germany”, is mapped to the interval [0.0.0.0 : 0.1.0.3]. This interval is used
as predicate on the fact table. With the use of a clustering index, the tuples are read clustered and
require a relatively small number of disk accesses. Section 6|describes EHC in more detail.

In order to use intervals instead of point sets, we transform the equi-join query into a semi-join:

SELECT SUM F. turnover) FROM fact F, di msegnment D WHERE F. dsegment =
D.outletI D AND D. Region = "North’

SELECT SUM F. turnover) FROM fact F WHERE F. cs_segnment BETWEEN
M N (SELECT I D FROM di m segnment WHERE D. Region = "North’) AND
MAX( SELECT | D FROM di m segnment WHERE D. Region = "North’)

The operator MIN (MAX) in the stateme turns the smallest (highest) number of the hierarchy
for the corresponding predicate. For F‘m MIN returns 0.0.0.0 and MAX returns 0.0.1.3. A
clustering index on F.cs_segment efficiently processes the range query. Otherwise a nested loop join
(or sort merge join, if the fact table is sorted w.r.t. dsegmengjis used to process the query. A nested loop
join performs a direct index access for each result of the dimension table predicate. The semi-join
optimization is implemented into the optimizer of the DBMS and thus is transparent to the user (see
Sections ﬁnd 10).

4.3 MHC —Multidimensional Hierarchical Clustering

The multidimensional nature of typical DW queries makes the use of multidimensional indexes
attractive. With a multidimensional clustering index, query processing can be sped up significantly, if

> Also other join methods might be useful, e.g., hash joins, or the use of hash indexes.
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4 MOTIVATION FOR EHC

data is multidimensionally clustered with respect to the queries. Because queries in DW contain
hierarchical restrictions in multiple dimensions, we discuss a method to cluster data hierarchically and
multidimensionally. If every dimension is encoded by a compound surrogate for its hierarchy, the
records in the fact table are clustered with respect to these hierarchies. We call this the
Multidimensional Hierarchical Clustering, MHC. The performance of query execution benefits from
hierarchical predicates on several dimensions. The hierarchical predicates on the dimension tables are
transformed to one local predicate (multidimensional range query) on the fact table (see Section 9i.

4.4 Basic Design Decisionsfor the Implementation of EHC and MHC

EHC and the necessary surrogates are supposed to be transparent to the user. Instead of implementing
hi | language constructs for the definition of hierarchies and hierarchical dependencies
(Eﬁi we extend the CREATE TABLE statement by hierarchy specifications. We require, that all
levels of the hierarchies of one dimension are stored within one basic dimension table (Ieaf dimension
table) to efficiently compute the hierarchy encoding. This approach similar to a star schema may be
extended by normalization to a snowflake schema (see Section §.4.3).

4.4.1 Physical Design

The compound surrogates computed w.r.t. the hierarchy are stored as additional attributes in the leaf
dimension tables. Indexes with hierarchical attributes to efficiently compute the encoding are
necessary. These physical properties require that the user has to specify the EHC construct when he
creates the physical data model, i.e., the schema in the DBMS.

The compound surrogate is a physical construct in the dimension table, i.e., the properties of the
hierarchy such as the fanout (see Section Snd an identifier to reference the compound surrogate
are specified (see Section @ As alternative, a “high level” statement would be possible that specifies
the hierarchy with respect to one (or more) existing tables. In this case the existing dimension table is
extended by physical constructs, or a new relation replaces the dimension table. In this thesis, we will
not enlarge on this. Other DBMS like Oracle have such high level constructs (see[[Ora01] gnd Section

F-6]-

The advantage of the physical approach is, that high level constructs can be introduced that generate
DDL statements with the corresponding EHC extensions. Thus, at a later step of the implementation, a
create hierarchy statement may define compound surrogates transparently to the user. Another
approach is that a design tool specifies the physical EHC constructs transparently to the user.

Two kinds of surrogates are necessary for EHC. The compound surrogates specify the hierarchy and
are stored in the dimension table. Since the compound surrogates are used for hierarchical clustering in
the fact table, they are also stored in the fact table. We call them reference surrogates. The reference
surrogates in the fact table reference the corresponding compound surrogates in the dimension tables
(foreign key relationship). They are often used as index key attributes, in order to cluster the tuples in
the fact table w.r.t. the hierarchies.

The fact table contains the dimension keys and the reference surrogates. As alternative — especially to
save space — the dimension keys could be omitted and replaced by the reference surrogates, because
the reference surrogates are a bijective mapping of the dimension keys. The dimension keys
themselves are stored in the dimension table. For most queries (star queries) the performance will not
suffer from this optimization, but some basic queries will require additional joins to the dimension
tables instead of being executed locally on the fact table, e.g., sel ect * from fact oradump
of the fact table to a file requires additional lookups in all dimensions for all tuples.

An example for a fact table with dimension keys is shown in[SQL Statement 1.|This fact table contains
the dimension key attributes dseg, dprod, and dtime that reference the keys of the corresponding
dimension tables. Each dimension key is also represented by a reference surrogate. In SQL Statement
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4.4 BASIC DESIGN DECISIONS FOR THE IMPLEMENTATION OF EHC AND MHC

R, the dimension keys are removed. The reference surrogates have a reference to the keys of the
dimension tables. A detailed description about the extended DDL syntax is given in Section 7.6.

CREATE TABLE fact (
dseg | NTEGER REFERENCES di m segnent (outl et id),
dprod | NTEGER REFERENCES di m product (item.id),
dti me | NTEGER REFERENCES di m ti nme(day)
turnover NUMERI C(10, 2),
SURROGATE cs_seg FOR dseg
SURROGATE cs_prod FOR dprod,
SURROGATE cs_tinme FOR dtine
) HCKEY is cs_seg, cs_prod, cs_tine;

SQL Statement 1: DDL Fact Table with Dimension Key Attributes

CREATE TABLE fact (
turnover NUMERI C(10, 2),
SURROGATE cs_seg REFERENCES di m segnent (cs)
SURROGATE cs_prod REFERENCES di m product (cs)
SURROGATE cs_time REFERENCES di mtinme(cs)

) HCKEY is cs_seg, cs_prod, cs_tine;

SQL Statement 2: DDL Fact Table without Dimension Key Attributes

The schema design affects the join formulation of SQL statements, especially star queries. For a fact
table with dimension keys, the star join is

SELECT sun{(turnover)

FROM fact f, dimsegnment s, dimproduct p, dimtine t

WHERE f.dseg = s.outlet_id AND f.dprod = p.item.id AND
f.dtinme = t.day AND ...

SQL Statement 3:Star Join on Fact Table with Dimension Key Attributes

For a fact table without dimension keys, the join condition is based on the reference surrogates:

SELECT sun{turnover)
FROM fact f, dimsegnment s, dimproduct p, dimtine t
WHERE f.cs_seg = s.cs AND f.cs_prod = p.cs ANDf.cs_tinme = t.cs AND...

SQL Statement 4: Star Join on Fact Table without Dimension Key Attributes

As mentioned before, the surrogates should be considered as physical property of the fact table and
dimension tables. Thus, the user should not see the surrogates in the tables at all and should not
specify join conditions based on surrogates. We can define a view user_fact on the actual fact table
that hides the reference surrogates and projects the dimension keys into the fact table:

CREATE VI EW user _fact (dseg, dprod, dtime, turnover) AS

SELECT s.outlet_id, p.itemid, t.day, f.turnover

FROM fact f, dimsegnment s, dimproduct p, dimtine t

WHERE f.cs_seg = s.cs AND f.cs_prod = p.cs ANDf.cs_tinme =t.cs

SQL Statement 5: DDL View Definition to project Dimension Key Attributes into the
Fact Table
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4 MOTIVATION FOR EHC

The user now can formulate star joins in the following way:

SELECT sun{(turnover)

FROM fact _user f, dimsegnent s, dimproduct p, dimtinme t

VWHERE f.dseg = s.outlet_id AND f.dprod = p.item.id AND
f.dtime = t.day AND ...

SQL Statement 6: Star Join with View

The use of the view fact user instead of the actual fact table leads to query rewriting, because a view
usually is rewritten very simply by replacing the view name by the view definition, e.g., for SE

petemente]

SELECT sun{turnover) FROM
(SELECT s.outlet _id, p.itemid, t.day, f.turnover
FROM fact f, dimsegnment s, dimproduct p, dimtine t
WHERE f.cs_seg = s.cs AND f.cs_prod = p.cs AND
f.cs tine =t.cs
), fact_user f, dimsegnment s, dimproduct p, dimtine t
VHERE
f.dseg = s.outlet_id AND f.dprod = p.item.id AND
f.dtine = t.day AND ...

Enhanced re-writing methods are necessary to reduce this complicated query — subquery combination
to the same query as in JQL Statement 4. [We will not enlarge on this in the thesis, because in our
schema, we use the fact table with dimension key and surrogate attributes.

442 Denormalized Leaf Dimension Table

For the computation of EHC, all levels need to be stored within one relation. An index representing
the hierarchical structure enables efficient computation of the compound surrogates. The user has to
create a table that contains all levels of the hierarchy of the dimension. We call this table leaf
dimension table (LDT). This star schema approach can be extended and optimized by normalization
(see Section 4.4.3).

dim_segment

Outlet

Micromar ket \ -

Region ] . .

g Dim seg dim_time

Country Dim orod

cs —p—. ) /V Day
Dim_time Month
Turnover Year

dim_product
cs seg cs

Item cs prod

ProductGroup cs time

Category

Sector

cs

Figure 4-4: De-normalized Schema for Sample schema

For example, the segment dimension of the sample schema contains the hierarchy levels country —
region — micromarket — outlet. In the leaf dimension table, we store all hierarchy levels and the
compound surrogate cs: di m segnent (outlet, mcromarket, region, country,
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4.4 BASIC DESIGN DECISIONS FOR THE IMPLEMENTATION OF EHC AND MHC

cs) . Note that outlet is primary key of the segment dimension, i.e., outlet is a unique identifier for the
hierarchy paths. The schema is shown in Figure 4-4.

Alternatively, the levels can be referenced from foreign tables and stored implicitly and invisible in the
LDT. As consequence, the attributes of the hierarchy levels that are not located in LDT have to be
added to LDT and maintained accordingly. The hierarchy index can be created on the hierarchy
attributes and used for efficient computation of compound surrogates. The implementation would
provide a view on such a dimension table without the additional attributes.

For example, the segment dimension could be modeled in a snowflake approach (see :

segnent (outl et, m cromarket, .), seg_m cromarket(m cromarket,

region, .), seg_region(region, country, .), segmcountry(country, .)

where each table represents one level and contains the hierarchical relationship via foreign key
references. The dots “...” represent further feature attributes of the hierarchy levels. The handling of
the compound surrrogate cs has been explained in Section 4.4.T.] The physical schema where the leaf
dimension table segment_leaf replaces the dim_segment table Tooks like the following:

segnent | eaf (outlet, micromarket, region, country, cs, .).

The user has the view on the dimension:

CREATE VI EW di m segnent (outl et,
m cromar ket, ... FROM segnent _| eaf.

m cromarket, .) AS SELECT outl et,

seg_country
Country
seg_region
seg_micromar ket
Region
\ Micromarket
Country
Region
segment_|eaf
Country
Outlet
Micromarket \ fact
Region K E E
« Dim seg dim_time
Country Dim prod Day
= Dim _time / Month
Turnover
Year
product_|leaf
prod_productgrp Cs S8 cs
ProductGr tten os prod
o Hrocuctoroup — ProductGroup ¢cs time
rod_categor —
prod_category / Category — Category
Category / Sector —] Sector
prod_sector Sector
cs
Sector /

Figure 4-5: Path normalized Snowflake Schema for the Sample Schema

A second alternative is not to store the levels of foreign tables within the LDT but to use an index
containing the hierarchy attributes of different tables (join index). Join indexes are not implemented in
Transbase®, so we use the first case with the LDT forcing the user to explicitly store all levels of the
hierarchy in the LDT (see Section 7

4.4.3 Normalizing Hierarchies (Snowflake Schema)

The dimensions of DW applications may be very complex (complex structure of hierarchies, feature
attributes etc.). For maintenance reasons, a normalization of the dimension tables may be useful. For
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4 MOTIVATION FOR EHC

optimizing reasons, a normalization can make hierarchical queries recognizable for the optimizer and
result in more efficient query processing (see Section 9). We require that the leaf dimension table
again contains all hierarchy levels. Further normalization,lhowever, is not restricted by the optimizer

and is supported by the algorithms to process star queries (see Sections ﬁand ﬂ

444 |Indexes

As mentioned earlier, some indexes for the LDT are necessary for a fast computation of compound
surrogates and efficient query processing. Basically, the index key of the physical clustering primary
index of the LDT is the leaf level, i.e., the dimension key. This dimension key is the primary key of the
dimension table.

The hierarchy index, called DXh, is a secondary index on LDT with the hierarchical attributes, feature
attributes and a compound surrogate: LDT(hy, hy, ..., hy, 1, ..., fi, €S). DXh contains the hierarchy levels
and the compound surrogate cs: DXh = (ht h o hh cs), where h' is the top level and h' the leaf
level and dimension key. DXh is useful to compute a new surrogate. A sophisticated lookup method is
implemented that efficiently gets the next free surrogate (see Section § h is used to compute the
intervals in the query processing phase for the semi-join (see Section I%r(

We further need the secondary index DXcs that contains the compound surrogate: DXcs = (cs). It is
used to maintain compound surrogates and for query processing.

In the example for the product dimension, the following two indexes are created: DXNyoguer =
(category, productgroup, item, cs) and DXCSyroquet = (CS).

These indexes are “system indexes”, i.e., they are created automatically triggered by the surrogate
clause in the create table statement. They are invisible to the user and cannot be dropped to ensure
availability of the indexes.

Note that a LDT that contains n hierarchies has n DXh indexes and n DXcs indexes (one for each
hierarchy).
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5 Surrogates

It is a common method to encode information by numbers and use these so called surrogates as
representatives. This indirection is robust w. r. to changes, because the surrogates can be used also for
a changed string (e.g., if ‘Jan.” is changed to ‘January’, we do not have to change the surrogate and the
tables where these surrogates are used).

5.1 Concept of Surrogates

Surrogates are useful for many applications. Basically, a surrogate provides a mapping of an element
with an arbitrary data type to a number. Such a mapping is necessary for methods that only support
numeric values (e.g. queries on UB-Trees), for space saving reasons, anonymizing data, artificial
orders etc.

Definition 5-1 (Surrogate):

A surrogate function s: V¥ = Ny returns a number n, depending on the input parameter v, where v is a
set V= {V;}: s(v) = n. The function is injective, the invers function s N, 2 W returns the original
value v: S'l(n) = v. We call s(v) the surrogate of v. Thus a surrogate replaces an element or a set of
elements (e.g., a sequence of hierarchy levels) with arbitrary data type by a number. This number can
either include a semantics or not. i

Surrogates are useful due to several reasons:
e The replacement can save space (e.g., long strings that are stored repeatedly are replaced by
short numbers).
* For DBMS query optimizing, numbers with semantic can achieve advantages (e.g., properties
of physical structures such as generating ranges to make use of UB-Trees in data warehouses).

We distinguish two different types of surrogates:

¢ Non-Semantic Surrogates
*  Semantic Surrogates

Definition 5-2 (Non-Semantic Surrogates):

A non-semantic surrogate function S,s V =2 N, is a surrogate function that returns a number n
without any semantic information: Shg(V) = h, e.g., there is no semantical ordering on the generated
numbers. i

Example 5-1 (Non-Semantic Surrogate):

An example for a non-semantic surrogate is the enumeration surrogate that maps long character
strings to numbers using a mapping table. Usually this mapping is an explicit table, e.g., eNUMgys
containing the mapping. The result of the function Sys depends on insertion order of the strings into the
mapping table (i.e. no lexicographic order). The operations to insert and delete strings are straight
forward:

* insert(Sps, V) willinsertanew tuple (v, max(n)+1) in the mapping table enumgs.
* del ete(snps, V) will remove the tuple (v, ny) from the mapping table enumgns.

Snsis the mapping function and enumg,g(Vv, n) is the enumeration table with the attributes Vv for the
strings to map and n for the mapping value.

A DBMS can evaluate enumeration surrogates efficiently with indexes, e.g., the secondary index
enumy,s_sec(n, v). Enumeration surrogates can be used to replace long character strings.

Such a mapping method is useful for low cardinality domains (compared to the number of tuples in a
table). O
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5 SURROGATES

Definition 5-3 (Semantic Surrogates):

A semantic surrogate function Seem: V 2 Np is a surrogate function Sem(V)=n that returns a number n
including a semantic with respect to V. O

Example 5-2 (Semantic Surrogate):

A compound surrogate is an example for semantic surrogates. Compound surrogates are used for EHC
to replace a hierarchy path by a number. Thus, a compound surrogate depends on the path of the tuple
(see Section 5.51

Another example are intensional ogates that are also computed by a function and can be used for
many applications (see Section 5 i

The following sections describe the computation of semantic surrogates for intensional surrogates and
compound surrogates.

5.2 Intensional Surrogates

Intensional surrogates are semantic surrogates that are computed by the value of their arguments (i.e.,
no additional lookup table is used). In this Section, we discuss the string surrogates in more details.

521 Overview

An example for an intensional surrogate is the time surrogate. It can be useful for many applications.
It implies a hierarchy depending on the specification of the ranges for the time attribute, but is encoded
within one value without storing the hierarchy explicitly. For example, a time attribute spanning year —
month — day is a hierarchy with the three levels year, month and day. The time values of the tuples are
on day granularity. A predicate may restrict the year level (e.g., timeyear=2001), which is
transformed to an interval (e.g., time between 366 and 731, if time starts with the year 2000).

Strings can be stored in conventional B*-Trees, but are not integrated into the UB-Tree in Transbase®
Hypercubeq,:iaecause the domain of strings is too large to be used in z-addresses. However, some
applications require indexed attributes of string data type. The conventional way of encoding strings
assigns each string a unique numeric id. This method is unfeasible for range queries, because the
assignment of the id usually does not reflect the lexicographic order of strings if we assume random
insert order. An order preserving mapping is necessary to support range queries for strings in UB-
Trees. Thus, we introduce an order preserving mapping of strings to numbers: the intensional string
surrogates.

522 Strings

It is inefficient to encode strings with the UB-Tree in the straight forward way, because a large number
of bits is necessary to represent each string value by a bit string ([Mar99]).]For example to encode a
ten character string with the characters being coded with 8 bits (standard code page for the widely
used LATIN character set), we need 80 bits. Usually, the domain is very sparse, because many
characters will not occur in the strings. Depending on the data, the most frequently used characters are
letters and digits. Often, strings do not have a fix length (e.g., char(*) as attribute type). Other
encoding like UNICODE even require more bits for one character.

Applications, however, require to index strings multidimensionally in combination with other
attributes (e.g., telephone books with last name, first name, post code, age etc.). The user does not
want or even is not able to create order preserving surrogate numbers for the strings to store in the UB-
Tree. Even, if he is, he has to formulate the queries according to this user-mapping.

% Only numeric data types are feasible, such as integer, numeric, bit strings etc.
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5.2 INTENSIONAL SURROGATES

For example, the strings of ‘mﬁe stored in a UB-Tree with the attribute surr as index key, the
query SELECT * FROM rable ERE name BETWEEN ‘ Bush’ AND ‘dinton’ hasto
be rewritten into SELECT * FROM table WHERE surr BETWEEN 201 and 327 to
process it with the use of the UB-Tree. If the surrogates are not computable from the value of the
string attribute, the rewriting is not possible without additional information or effort (e.g., looking for
the bounds of the interval in a secondary index).

surr Name
201 Bush
327 Clinton
438 Demirel
1722 Stoiber

Table 5-1: Sample Mapping

Thus, we discuss a DBMS internal mapping between strings and bit strings that is efficient and not
space wasting in order to not disturb the properties of UB-Trees. Assuming that most strings mainly
contain letters, and digits, we encode a subset of all possible character values: digits, lower and upper
letters and some special letters (e.g., German umlauts like ‘4, ‘6’ etc.). The number of possible
character values grows, if we support larger character sets like UNICODE.

We additionally limit the number of encoded characters (length of the encoded string) to a
“reasonable” small number. For conventional strings, five or six characters should be enough, because
most natural words (independent on the language) seldom have longer common prefixes. For special
applications with composite words or equal prefixes, e.g., for SQL statements, this assumption is
wrong. Also for generated strings, this assumption might be wrong leading to a small selectivity and
therefore only a small reduction of the result set for multidimensional range queries. We will show
some examples where this encoding method is not very useful. In such cases, more characters must be
used for the encoding.

The limitation of the encoding to a prefix (such as the mapping of a number of seldom used characters
to one single surrogate value) violates the injectivity property of the surrogate function. This function
is not injective any more and the original argument, i.e., the string, must be stored separately in order
to get the original string from a surrogate. The surrogate resulting from the string encoding is seen as a
representative of the equivalence class of all strings with the same encoding.

The mapping can be applied to the SQL data types char(n), char(*), varchar(n), binchar(n), and
binchar(*). The mapping of the binchar data types differs from the mapping above, because in an
attribute of type binchar, binary information is stored. We use an 8-bit coding, i.e., no equivalence
classes are necessary for single characters, because every character of the binchar string has a unique

surrogate (see Section 5 @l

Note that we store the original string attribute in the table and use the encoding as index attribute of
the UB-Tree. A restriction via predicates such as BETWEEN or LI KE is mapped to a restriction on
the corresponding surrogate index attribute. The encoding nature creates a bounding box that contains
all strings with the same encoding, i.e., usually a superset of the tuples qualified by the predicate. Post-
filtering is necessary to get the final result (see Section 5@

5.2.2.1 Encoding Characters

As mentioned above, strings often do not contain all possible characters of a specified character set
(domain). Natural strings contain digits, lower and upper letters, and some special characters. For the
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5 SURROGATES

remaining characters we define equivalence classes, where a set of characters is represented by a
single value. The mapping function therefore is not injective and a re-transformation is not possible.
The goal is to use a minimum number of bits for the encoding.

One approach uses six bits per character, where 64 equivalence classes can be encoded: the digits (10),
lower letters (26), upper letters (26), special characters (1) = 10 + 26 + 26 + 1 = 63, where the special
characters are in one equivalence class (see -2).| The equivalence classes of this mapping have
the same order as the lexicographic order (apart from characters within one equivalence class). In the
mapping tables, we denote a character with the LATIN code 1 in C syntax by ‘\1' etc., because the
character cannot be represented graphically. For example, the equivalence class with code=0 contains
the characters with LATIN code 0, 1, ..., 48, i.e., the first 32 not printable characters and the printable
characters from blank * “ to ‘0’.

Character Code | Character Code | Character Code | Character Code
N AL L7070 ‘G’ 16 ‘W’ 32 ‘m’ 48
‘1 1 ‘H’ 17 ‘X’ 33 ‘n’ 49
2’ 2 ‘T 18 Y’ 34 ‘0’ 50
‘3’ 3 ‘r 19 /200 R 35 ‘P’ 51
‘4 4 ‘K 20 ‘a’ 36 ‘q’ 52
‘5’ 5 ‘L 21 ‘b’ 37 ‘r’ 53
‘6° 6 ‘M’ 22 ‘c’ 38 ‘s’ 54
A 7 ‘N’ 23 ‘d’ 39 ‘t 55
‘8’ 8 ‘o’ 24 ‘e’ 40 ‘u’ 56
9L '@ 9 ‘P’ 25 ‘f 41 ‘v’ 57
‘A’ 10 ‘Q’ 26 ‘g’ 42 ‘w’ 58
‘B’ 11 ‘R’ 27 ‘h’ 43 ‘x’ 59
‘C 12 ‘S’ 28 1 44 ‘y’ 60
‘D’ 13 ‘T 29 7 45 ‘z 61
‘E’ 14 ‘U’ 30 ‘k’ 46 ... 2557 |62
‘F 15 ‘v’ 31 T 47

Table 5-2: 6-Bit Encoding

Character Code | Character Code| Character | Code|Character Code
N AL Lo 0 ‘G’ ’g’ 8 ‘O’ ‘0’ 16 ‘W’ w’ 24
‘1722374567 Q| 1 ‘H” ‘h’ 9 ‘P’ p’ 17 ‘X x’ 25

L RN (7))

‘A’ ‘a’ 2 TP 10 ‘Qq’ 18 Yy 26
‘B> ‘b’ 3 ey 11 ‘R> ‘v 19 AR AR A Y
‘C ¢ 4 ‘K’ kK’ 12 ‘S’ ‘s’ 20 e 2557 |28
‘D’ ‘@’ 5 ‘L 13 ‘Tt 21

‘B> ‘e’ 6 ‘M ‘m’ 14 U v 22

‘F’ “f 7 ‘N’ ‘n’ 15 Vv 23

Table 5-3: 5-Bit Encoding (Case Insensitive Semantic)
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5.2 INTENSIONAL SURROGATES

If the number of bits should be reduced to five, we have to half the equivalence classes to at most 32.
In this case, the lower and upper letters are in one equivalence class (e.g., ‘a’ and ‘A’) and all digits
are in one equivalence class (see Tm. Another method is to store some “seldom” character
values within one equivalence class a 10 equivalence classes for the digits (see T@.

Character Code | Character Code | Character Code | Character Code
NP ALY L7070 ‘8’ 8 ‘G’’’ 16 ‘P’ p’‘Q q 24
‘r 1 9@ |9 ‘H” ‘i’ 17 ‘R’ ‘1’ 25
2’ 2 ‘A’ ‘a’ 10 ‘T 18 INRCE 26
‘3’ 3 ‘B> ‘b’ 11 TP Kk |19 ‘T 27
‘4 4 ‘C e’ 12 ‘L r 20 ‘U w’ 28
‘5’ 5 ‘D’ d’ 13 ‘M’ ‘m’ 21 VW w 29
‘6’ 6 ‘B’ ‘e’ 14 ‘N’ ‘n’ 22 X XYy 30
‘7 7 ‘F P 15 ‘0’ ‘o’ 23 % 2\555 31

Table 5-4: 5-Bit Encoding (seldom used Characters)

Other mappings are also possible. However, the mapping influences query processing, especially the
BETWEEN predicates (see Section 5@

5.2.2.2 Computing Surrogates for Strings

The computation of the surrogates is necessary for two operations: inserting a tuple into the UB-Tree
and computing the query predicates (especially the ranges for the multidimensional range query). In
the following we assume, that the string attribute is one of the index attributes of a UB-Tree.

Inserting a tuple into the UB-Tree is a two step procedure. First, we compute the z-value of the tuple
to insert. Second, the insertion into the B-Tree requires the computation of a number of z-values of the
tuples already stored on the leaf page, because the z-values of the tuples on the leaf pages are not
stored. In the Transbase® implementation of the UB-Tree the tuples on the leaf pages are stored in z-
value order. Therefore, for every UB-Tree operation, a transformation of the UB-Tree index attributes
to one z-value is necessary, especially for the insert on the leaf page (binary search). However, the
number of transformations is low. A binary search with 128 tuples on the leaf page requires at most
seven transformations to find the correct position to insert the tuple.

The algorithm for the computation of the surrogate and transfer into the z-value bit string is trivial (see
rxigorithm 5=1)7 In this algorithm, the constant NR_CHAR ENCODE contains the number of
characters that are used for the encoding, BITS PER CHARACTER is the number of bits used to
encode one character (e.g., 6 for standard strings, 8 for binary strings). The string to encode is stored
in sourceStr, the length of this string is strlen. The lookup table containing the encoding for each
character is stored in LOOKUP[0..255]. setBit(b, pos) sets the bit on position pos of bit string b to 1.
surrvalue is a bit string and contains the computed surrogate for the string. It is initialized with 00..00.
surrvalue is used later for the computation of the z-value of the UB-Tree.

Algorithm 5-1 (Computation of String Surrogates):
if (strlen > NR_CHAR ENCODE) NrChar = NR_CHAR _ENCODE
el se N\rChar = strlen /1 for shorter strings than length 6
for i =0 to NrChar-1
strsurr = LOOKUP(sourceStr[i])
for j =0 to BITS PER CHARACTER-1
if strsurr MOD 2 ==
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5 SURROGATES

setBi t (surrval ue, pos)
strsurr = strsurr DIV 2

In the algorithm we compute the surrogate strsurr for the character by a lookup in the encoding table
(e.g.,[Programming Example T) The bits of strsurr are transferred to the with 0-bits initialized z-value
zvalue by shifting the bits to right and setting only the 1-bits in zvalue.

The lookup table for the 6-Bit encoding (ooks like the following (in C syntax):
static unsigned char ub_code_tabl e[ 256] = {
o, o o0 O 0 O 0 0 o0 O,

o, o o0 O O O O O o0, o
o o o0 o0 ©O0 o0 o0 0 o0, 0
o, o o0 O O O O O, o0, Oo0
o, o o0 O O O O O O, 1, /* ... ... 01~/
2, 3, 4, 5 6, 7, 8 9 9 9 /*23456789...*
9 9 9 9 9, 10, 11, 12, 13, 14, /* .......... ABCDE*/

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* FGHI J KL MNO */
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, /* PQRSTUVWXY */
35, 35, 35, 35, 35, 35, 35, 36, 37, 38, /* .............. abc*/
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* def ghi j kI m*/
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, /* nopgr st uvw?*/
59, 60, 61, 62, 62, 62, 62, 62, 62, 62, /* XYy Z ............. */
62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62, 62, 62, 62, 62

62, 62, 62, 62, 62, 62

Programming Example 1: Lookup Table for 6-Bit Encoding

Example 5-3 (String Encoding):

The encoding for the string ‘Roland’ with 6 bit encoding is done in the following way:
strlen(*Roland’) = 6

NR_CHAR ENCCDE = 5

We compute the bits for each character of the prefix string ‘Rolan’ (the first 5 characters). The lookup
in the 6 bit encoding LOOKUP table returns the following encoding values:

‘R » 27 = 011011
‘0’ » 50 = 110010
‘17 » 47 = 101111
‘a’ » 36 = 100100
n" » 49 = 110001

34



5.2 INTENSIONAL SURROGATES

The resulting bit string is surrval ue = 011011110010101111100100110001. Note that for
all strings with the prefix ‘Rolan’ the surrogate is the same.

5.2.2.3 Query Processing

For strings in UB-Trees we need the mapping to transform string predicates to index key predicates
(surrogates). Especially, “range restrictions” on strings are interesting. Range restrictions are the
predicates BETWEEN and LI KE, where BETWEEN specifies an exact range: attr BETWEEN
val 1 AND val 2 isthesame asattr >= vall AND attr <= val 2. The LI KE predicate
in combination with wildcards is an implicit range: at tr LI KE ‘ pat % is true for strings with the
prefix ‘pat’ and any following suffix. This predicate is equivalent to attr > ' pas\ 255" AND
attr < ‘pau’ .

Excursion: Trailing Blank Semantic in SQL-92

It is not obvious, why the predicate attr LIKE ‘pat% is mapped to attr >
'pas\ 255" AND attr < ‘pau’. Especially, the lower bound intuitively could be
attr>='pat’ instead of attr>' pas\ 255" . According to the SQL-92 standard ([PD93]), Ja
string ‘pat’ is equal to a string with the prefix ‘pat’ and an arbitrary number of following blanks,
e.g., ‘pat™°, where ‘“*’ represents the blank character. However, the ASCII code for blanks
(usually, 32) is higher than the ASCII code for other characters, like ‘\t’ (<tabulator>: eight).
The lexicographic order w.r.t. ASCII of string ‘pat\t’ however is smaller than the string ‘pat™’,
where ‘“*” here represents a blank. Because the B-Tree uses ASCII order and does not interpret
the arguments of range queries, the lower bound of such queries must be changed to the next
smaller character combination. In the case of the LIKE predicate, this combination is
' pas\ 255" , where 255 is the highest possible code, and ‘S is the previous character to ‘t’ in
ASCII order.

A point restriction, suchasattr = val , is equivalent to a range restriction with the same lower and
upper bound: attr BETWEEN val AND val . In both cases, we use the mapping method to
compute the multidimensional interval, i.e., the z-value for the multidimensional range query on the
UB-Tree. In the operator tree, post-filtering with the original restriction checks all tuples returned by
the MD range query to get the correct tuples. Some tuples of the equivalence classes defined by the
mapping might not correspond with the range predicate, or additional restrictions can be specified in
the query.

Post-filtering is used for all queries on UB-Trees in the Transbase® implementation, because the
tuples on the B-Tree leaf pages do not contain the z-values. Instead of transforming the UB-Tree index
attributes into a z-value, the predicate tree of the query generated by the optimizer is used to post-filter
all tuples on the leaf page. Thus, there is no additional effort for the string mapping implementation in
the query processing phase.

If a UB-Tree index attribute of character data type is not restricted, the minimum and maximum bit
string values are used for the range query: all bits are set to 0 or 1 accordingly.

Note that for the 5-bit encoding we have a special case for range predicates. The mapping function
must distinguish between a range on upper letters, lower letters or mixed (from a upper letter to a
lower letter), because lexicographically, ‘b’ has a higher order than ‘Z’ (‘b’ > ‘Z’). Therefore a
restriction attr BETWEEN ‘' C  AND ‘ k' contains the letters ‘C’, ‘D’, ‘E’, ..., ‘Z’, ..., ‘a’, ‘b’,
..., 'k’. With the 5-bit encoding, however, the letters ‘C’, ‘c’ are in the same equivalence class such as
‘K, ‘k’. A simple transformation to arange f (attr) BETWEEN f(‘C ) AND f(‘k’), where f
is the mapping function, qualifies a too small number of characters (only the characters ‘C’, ‘D’, ...
‘K, ‘e, ‘d’, ..., k).
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Therefore we modify the transformation of the query to f(attr) BETWEEN f(‘A ) AND
f('Z),i.e.,the smallest and largest letter. Post-filtering with the original restriction will ensure that
the correct tuples are returned. Note that the characters in ASCII between ‘Z’ and ‘a’ are in the same
equivalence class as ‘Z’ and ‘z’. Thus they are “covered” by the transformation (see T@.

An optimization is possible, if a range like attr BETWEEN ‘K AND ‘b’ is specified (i.e., the
upper bound of the interval is alphabetically smaller than the lower bound). In this case, not the
transformation to the complete range f (attr) BETWEEN f('A") AND f(‘Z ) is necessary,
because the equivalence classes of {‘C’, ‘c’}, {‘D, ‘d’}, ..., {‘J’, J’} are not covered by the
restriction. In this case we can transform the restriction to two intervals f (attr) BETWEEN
f("K) ANDf('Z) ORf(attr) BETWEEN f(‘a’) AND f('b’).

An alternative is to use a different 5 bit mapping:
{A B}~> 1, { C D} » 2, .. {Y Z2} > 13,
{a b} >14, { c, d} > 15 ., {vy, z} > 26.

With this mapping, the transformed ranges are more exact.

The LIKE predicate does not cause problems with the 5-bit encoding, because the optimizer
transformation of the restriction attr LI KE ‘ B% is transformed to attr BETWEEN * A\ 255’
and ‘ C thatis transformed tof (attr) BETWEEN f (' A\ 255" ) and f (‘' C ) and qualifies
the corresponding range for the encoding. Post-filtering removes the (usually small number of) tuples
that do not fulfil the restriction.

5.2.2.4 Defining a Character Set

In some cases, the number of distinct characters used for the strings is limited to a couple of
characters. Therefore, many bits are “wasted”. The encoding could use much less bits and thus
improve the multidimensional clustering in the UB-Tree. For example, if only post codes of Austria
and Germany are stored, it is enough to use the characters ‘A’, ‘D’, ‘0°, ‘1°, ..., ‘9’ for strings like
‘D80686° or ‘A5122°. In this case, we need 12 distinct encodings, i.e., four bits per character are
sufficient.

The domain of a string attribute in the CREATE TABLE statement can be a CHARSET]. The
validation of the strings is done by the DBMS refusing all strings that contain other characters. For this
purpose, we extend the CREATE TABLE statement.

CREATE TABLE tab (
attr char(*) CHARSET (‘A, ‘D, ‘0, ‘1", ‘2,
L31, ‘4’, £51, ‘6’, £71, ‘8’, l91)’

)

The valid characters are listed. When inserting a string, the interpreter checks that only characters of
this character set occur.

The order of the characters is the lexicographic order (depending on the overall character set such as
LATIN). The lookup table is stored persistently in an additional system catalog table. The number b of
bits necessary for the mapping of a character depends on the cardinality C of the character set:
b =[log, C|. The number of characters used for the mapping is | MAXBITS/b |, where MAXBITS

is the maximum length of the bit string for the character attribute.

7 There is no SQL construct to define a character set on attribute level (see [DD93]). The CREATE
CHARACTER SET statement is on the top of the SQL interface and is valid for a complete session. Such a
character set must be a superset of all characters of SQL and the characters stored in the DBMS.
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5225 Problems

The mapping of string prefixes to surrogate bit strings is not bijective. Thus, different strings can have
the same surrogate value. This surrogate value, however, is used to calculate the UB-Tree z-value and
therefore the key value of the underlying B-Tree. It is not possible to use a unique z-value for the UB-
Tree. Therefore, an additional unique index must be created, in order to define the key of the table.

Non-unique B-Trees cause some performance overhead compared to unique B-Trees (see Section

5.3 Compound Surrogates

Compound surrogates are an example for extensional surrogates. They map hierarchy paths to
numbers that encode the path. Adjacent hierarchy members (i.e., members of a subtree in the
hierarchy) are mapped to adjacent numbers (i.e., an interval). We call this mapping a hierarchical
clustering. A hierarchy subtree, i.e., all children (and their successors), can be specified by an interval
instead of specifying all paths separately.

The following sections give an overview of the basic concepts of compound surrogates, discuss the
mapping schema and present an efficient computation for the compound surrogates.

5.3.1 Basic Concept

DW queries often have hierarchical predicates with point restrictions on a hierarchy level. Intervals on
a hierarchy level are seldom, because in most cases, no order is defined on hierarchy levels™ In this
thesis, we describe a mapping that clusters hierarchical data according to the partial order that is
defined by hierarchical relationships in the hierarchy.

A hierarchy provides a disjoint partitioning of the leaf level elements depending on the members of the
hierarchy levels. A partitioning with respect to a higher level (i.e., all leaf levels that belong to a higher
level) will reduce the number of partitions and increase the number of elements per partition, whereas
a partition according to a lower hierarchy level will produce a high number of small partitions. The
finest partitioning is on leaf level, where each partition contains one element and the number of
partitions is equal to the number of leaf elements.

Segment

North South East West
Aldiy Saturny A1d1S Hoferg Saturng Hofery, Saturny,
Al A2 S1 S2 S3 S4 A3 A4 AS A6 Hl H2 H3 H4 H5 H6 S5 H7 H8 H9 H10H11 S6 S7

Figure 5-1: Partitioning of leaf levels according to a higher level

¥ Hierarchies with an order on levels are the time dimension or spatial dimensions. The time dimension has an
order on years, months, days etc. A spatial dimension uses coordinates to establish an order.
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Segment
Germany Austria
Noxth South East West
| Aldiy | ! Saturny F ! Aldig | %'SammE | ! Hofery, ’ | Saturny, |
A1 A2 Sl S2 S3 S4 A3 A4 AS A6 H1 H2 H3 H4 H5 H6 S5 H7 H8 H9 H10H11 S6 S7

|

Figure 5-2: Partitioning of leaf levels according to a lower level

In Fi
membeTs O

h partitioning according to a high level is illustrated (two partitions), whereas the leaf
Higure 5-2jare partitioned according to a lower level (seven partitions).

In the following, we use the notation m for hierarchy members to assign the members to a specific
hierarchy level. The member m' is thej member of level h' of the hierarchy. The member of the top
level (hierarchy level h') is denoted by m 1 (always one single member), the members of the leaf level
(leaf members) are denoted by mlk.

Surrogates require simple hlerarchles We usually specify the path from a hierarchy member m' to the
top member in the order (my, m™, .. m') i.e., the path from the root to the corresponding rnember
Note that there is only one unique path from mtl to mj due to the simple hierarchy properties.

Definition 5-4 (Compound Surrogate, cs):

A compound surrogate cs of a rnember m; j s the concatenation of surrogates of the members of the
hierarchy path from the top member m'1 to member m i Cs(m j) = cS(@) denotes the compound
surrogate of member m j, where @is the path from m' 1tom: j- ]

Compound surrogates provide hierarchical clustering, because the most significant c¢s component
(surrogate) corresponds to the highest hierarchy levels, and the least significant ¢cs component is the
surrogate of the leaf hierarchy member. Members with the same father member have the same cs
prefix (i.e., they lie within an interval). Usually, compound surrogates represent complete paths from
top to leaf.

Definition 5-5 (Compound Surrogate Component, cs Component):

A compound surrogate component, denoted by cs , is the part of the compound surrogate that
corresponds to the surrogate of the member m|; of level h'. i

Definition 5-6 (Fanout):

The fanout: h; =2 Ny of a hierarchy level h; is the maximum number of children at level h4:

fanout(h;) = max (] children (mi”k) [), with 1 < k< number of | hi+1 |. o

The function children: h - 2™ returns the child members of member mij, | children (mi+lk) |

denotes the cardinality of the children, i.e., the number of children of m*%. The fanout function is
necessary to get a maximum cardinality for every cs component.
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5.3.2 Establishing an Enumeration Schema

A hierarchy level h' consists of a number of members m'j: h' = { mij }. Every member of level h' (top
level) to level h% where t is the depth of the hierarchy, has a set of children members m ™. We define
a bijective function ord to enumerate the members of the hierarchy with respect to hierarchical
clustering.

Definition 5-7 (ord):

The surrogate function ord: h' = N, Ord(mi j) = N, returns a number N with respect to the number of
the member in the child list of the father member, where 0 <n </ Children(m'+lk)-1 | } and m'j isa
child of m* . o

Each child is assigned a surrogate number between 0 and the maximum number of siblings ([Mar99]).]
llustrates this enumeration schema for the example hierarchy. The numbers in front of the
hierarchy members contribute to the numbers returned by the ord function. The top member (mtl)
usually is not enumerated, because it has only one member my: ord(mtl) = 0. The leaf members are
assigned compound surrogates (as concatenation of the surrogates of the upper levels and the
surrogates of the leaf level).

Example 5-4 (ord):

For the example hierarchy, ord(“ Saturng” ) = 1, because “ Saturng” is the second child of “ East” .
Usually the ord function returns a non semantic surrogate, because no order will be established on the

children of a member. |
Segment
Country 0 Germany 1 Austria
0 North 1 South O East 1 West

h’/\lﬂaiﬁzgt OAldiy 1 Saturny 0 Aldig 0 Hofery 1 Saturn, OHofer, 1 Saturny,
[ A m T A /\
Outlet [A; A2 s1 $2 S3 S4 A3 A4 AS A6 HI H2 H3 H4 H5 H6 S5 H7 H8 H9 HI0O HIl S6 S7

ID 0.0.00 0.0.10 00.1.2 0.1.00 0.1.0.2 1.0.00 1.0.0.2 1004 1.0.1.0 1101 1103 1110

0.0.01 00.11 0.0.1.3 0.1.0.1 0.1.03 1.001 1.003 1.0.05 1.1.00 1102 1104 1111

Figure 5-3: Sample Hierarchy with Enumeration Schema

5.3.3 Computation of Compound Surrogates

According to the definition of compound surrogates (see Definiti -4),I1we define a recursive
calculation formula for the compound surrogate of member m i ([1 ]
i ord(m) Jifi=t-1
cs(m;) = i i .
Cs(father(mj )) oord(m;), otherwise

For simple hierarchies, the function father: h'=> h'*! father (m',) = m*Y, returns the predecessor
(father) node in the hierarchy tree for levels ', ...,h"", where h'is the top level. This father member is
a unique member, because every member has a unique father member. t is the depth of the hierarchy.
The top hierarchy level h' always contains one member (i.e., the “all” level) that is not used for the
compound surrogate. Thus the recursion ends with the successor of the top level (i.e., the level h™?).
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Each member is identified uniquely by a compound surrogate. A compound surrogate is calculated by
concatenating the compound surrogate of the father member with the surrogate (ord function) of the
current member.

The compound surrogate for a path @with @= { mtl, mt'lkml, ey miki ﬂis computed by

es(@) = cs(m) = ord(m Yima) o ord(m™ema) © ... o ord(m)

A lexicographic order on compound surrogates is defined by ordering cs with respect to the
components beginning with the most significant CS component (highest level).

Example 5-5 (Compound Surrogate):

The compound surrogate for “Hoferw” of F the cs for the path “Austria” — “West” —
“Hofery” and is computed by cs(* Hofery” ) = 10 10 0.

The compound surrogate of the leaf member “A6” is calculated by the path “Germany” — “South” —
“Aldis” — “A6” and has the value cS(“ A6”) = 00 100 0 3. m

5.3.4 Bit Representation of Compound Surrogates

Instead of computing the compound surrogates via the recursive formula of Section @Iwe describe
a compact bit representation and an efficient calculation formula.

For every level, we reserve a number of bits contributing to the fanout of the level (seemﬁm
The number of bits reserved for cs component cs' for level h; is

|, =[log, fanout(h)].

We use |; instead of |c5. The complete compound surrogate requires | cg bits:

A compound surrogate of path @ = { mtl, mt'lkt-l, . miki } is computed by

CS(CD) - CS(mLI) = Ord(n'f(:) QIH +li, ot + Ol’d(m:) |1|t,2+lt,3+.“+li + + Ord(mLi ) Dl'i

The computation starts with level h™!, because the top level always contains one member that has the
surrogate ord(mtl) = 0. The compound surrogate for a leaf member for a path of members @ = { m,

Mg, ..., m]_) is

t-1 >
os(®) = 3 ord(m) 12

The compound surrogate has a fixed length, because all components have a fixed length.

’ We use a path from the top member to member mlki, because the order of cs components corresponds to this
path. The arrows of the edges of the graph denote the opposite direction to show the hierarchical dependencies.
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Example 5-6 (Computation of Compound Surrogate):

We assume the level fanouts of or the hierarchy as illustrated in The compound
surrogate of “A6” is

cs(“A6”)= 0000.0001. 0000000. 00000000000011, = 20971554.

All outlets (i.e., the leaf level) of the segment hierarchy, are identified by 4+5+3+12 = 24 bits. O
Hierarchy Leve Fanout Bits
Country 16 4
Region 19 5
Micromarket 6 3
Outlet 2202 12

Table 5-5: Fanout of Sample Hierarchy

Note that the size (length) of the compound surrogate components are fixed for each level. In reality,
hierarchy instances may change (paths are inserted, updated or deleted). Even the schema of
hierarchies may change. See Section @r a discussion about dynamic hierarchies.

5.3.5 Operationson Compound Surrogates

In this section we introduce the operations Mines, MaXgs, and ivals on compound surrogates. They are
useful to map a set of compound surrogates to intervals. These intervals are used to speed up query
processing.

Definition 5-8 (Min):

The function mings: hj = Ny, returns the minimum compound surrogate CSyin of a member m: i: CSmin =
mi ncs(m j). The minimum compound surrogate is the lowest complete surrogate that contains the
prefix cs from the top member to m); j- The remaining (least significant) bits are set to 0. Thus mi ncs(m i)

= Cs(mj) 0 00..00, where all bits of levels hL h2 ... htare setto 0. O
Definition 5-9 (max.,):

The function maXcs: h > No returns the maximum compound sorrogate CSmax of a member m J
CSmax = maxcs(m ). Analogously to mi ncs, the maximum compound surrogate of a member m; j is the

highest compound surrogate contammg m, j- The remaining bits are set to one: maxcs(m i) = Cs(m j) o
11..11, where all bits of levels h-t .h 2 h are set to one. ]

Definition 5-10 (ival.,):

The function ivale: h' 2 [No ; No] returns an interval of the minimum and maximum compound
surrogate of a member mJ |valcs(m‘) = [(mi ncs(mj) maXcs(mJ)]

The interval resulting from ivalis a closed interval. m
Example 5-7 (ming, maXcs, ivale):

The functions applied to the sample hierarchy return the following results:
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m nes(“Al di ) = 0000.0001. 0000000. 00000000000000, = 20971524
maxes(“Al di ') = 0000.0001. 0000000. 11111111111111, = 21135354
ival os(“Aldis’) = [20971524, 21135354 .

5.3.6 Remarksabout Compound Surrogates

The number of bits to encode compound surrogates is quite small compared to the number of elements
that such a compound surrogate can address. For example, a hierarchy tree with eight levels and eight
branches per node for every level can store 8% = 16.777.216 elements in 24 bits (log,16.777.216).

However, the number of bits necessary to calculate the compound surrogates for a hierarchy depends
on the instance of the hierarchy. If the hierarchy members are distributed regularly (i.e., the number of
children members is about the same for every member of a level), a relative small number of bits is
enough for the mapping, because the fanout of the hierarchy levels is quite small (see ]m In
Figure 5-4,]2 bits for level 3, 3 bits for level 2 and 1 bit for level 1 are enough to storé hy
elements (i.e., 6 bits for the complete hierarchy). In the case of an irregular distributed hierarchy as
shown in EES:_TP bits (2 for level 3, 4 for level 2 and 3 for level 1) are necessary to store the 42
hierarchy ¢lements.

Often, the structure and the number of hierarchy members are not known in advance. In this case,
some bits must be reserved to avoid overflows. Reserving one additional bit increases the fanout by a
factor of two, two additional bits increase the fanout by a factor of four etc. Thus, a small number of
additional reserved bits will reduce the chance of an overflow.

In data warehouses, some hierarchies are static (e.g. the time hierarchy or a geographical hierarchy). In
such cases the compound surrogate specification can be optimal for the hierarchy. Minor changes on
the hierarchy will seldom run into overflow problems.

AN A

Figure 5-4: Hierarchy with regular Distribution

AN

Figure 5-5: Hierarchy with irregular Distribution
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6.1 HIERARCHY AND ENCODING

6 EHC and Data Warehouses

This section contains a short introduction into EHC. Section@hortly describes the concept of EHC,
in Section §.2 e discuss the physical organization of the tables that use EHC.

6.1 Hierarchy and Encoding

The encoding for hierarchical clustering, EHC, establishes an enumeration schema for hierarchy
elements. Physical access structures that are optimized for dealing with intervals (e.g., clustering
indexes, such as B*-Tree or UB-Tree) gain advantage of EHC. EHC computes an artificial numeric
key (compound surrogate) for every leaf dimension member with respect to the hierarchy path of this
element.

Basically, EHC is useful for applications dealing with hierarchical data, e.g., classification hierarchies,
XML etc. Especially, in data warehouse applications the dimensions are structured w.r.t. hierarchies.
The multidimensional nature of a DW requires access structures to efficiently access data with
predicates on several dimensions (attributes in the fact table). Multidimensional clustering access
structures provide efficient multidimensional range query access. EHC is used to prepare hierarchical
data for hierarchical “non-range” predicates, in order to efficiently deal with clustering
multidimensional access structures (like UB-Trees).

For this purpose, we encode the hierarchy paths via compound surrogates (see Section 5.@. The
resulting compound surrogates are used as a surrogate for the dimension key in the fact table and
therefore as index key of the UB-Tree.

6.2 Physical Organization of Dimension and Fact Tables

EHC is a physical extension of the schema for dimension tables (with compound surrogates) and of
the fact table (with reference surrogates). Both types of surrogate are stored in a separate attribute of
bit string data type (see Section h The value of the attribute is dependent on one (reference
surrogate) or more (compound surrogate) attributes of the table. The surrogate attributes are calculated
attributes depending on other attributes and can be computed according to a function surr,e(a) and

SUrf comp(@, ..., ag).

6.2.1 Physical Organization of Dimension Tables

A compound surrogate CSis an additional attribute of the dimension table with special properties. It is
dependent on a number of attributes of the dimension table: €S = SUrfcomp(a, ..., a1). In the
Transbase® implementation, a special DDL construct specifies the components (and the order of the
levels) of cs. a; corresponds to the top level of the hierarchy and a; is the leaf level. a; additionally is
primary key of the dimension table. Thus, there is a one-to-one relationship between a; and cs, both
are candidate keys of the dimension table. In the following we choose &, as key.

The components (i.e., the attributes for the surrogates of cs) must be attributes of the dimension table.
This means, that the dimension table includes all levels of the hierarchy of the dimension (a star
schema w.r.t the hierarchy levels). Special algorithms are introduced in Section[9]to handle snowflake
schemata. An alternative to forcing the user to store and maintain the hierarchy levels in the dimension
table is to specify the components of ¢S from different tables and to physically store the corresponding
components in hidden attributes (see Section in the dimension table (or in a special join index).

43



6 EHC AND DATA WAREHOUSES

Storing all hierarchy levels in one access structure is crucial to efficiently compute and maintain
compound surrogates (see Section 8.2).

In the Transbase® implementation, the primary key (and clustering primary index attribute) is ay, i.e.,
the leaf level of the hierarchy. With such an organization, the lookup to get the corresponding cs for
a1, is a simple B-Tree search. Two secondary indexes are necessary for computation and query
processing. The index DXh is a secondary index on (@m, 8m1, ..., &1, CS) containing the hierarchy and
the compound surrogate to efficiently compute a compound surrogate for a new hierarchy path (see
Section SIEThe index DXcs is a unique secondary index on CS to support query processing. These
indexes are mandatory (and automatically created) and cannot be dropped by the user. For more
information about the secondary indexes refer to Section 4@

Note that @; must be the key of the dimension table, because in the case of several hierarchies on the
dimension, we have several paths as keys or several compound surrogates. Both of them (the hierarchy
path and the compound surrogate) are also key candidates of dimension tables.

6.2.2 Physical Organization of Fact Table

The fact table FACT contains reference surrogates CS., one for every dimension orgamized by
compound surrogates. The reference surrogates usually are index attributes for the UB-Tre¢ . In the
physical schema of the fact table, we replace the dimension key attributes by the corresponding
reference surrogate attributes. The dimension key values are obtained from the corresponding

dimension table via the surrogate reference (see figure 6-1).

The fact table has the following attributes:
fact _physical (csi;, €S, .., €S, {m}),

where CS are the reference surrogates (CS; references the compound surrogate of D, etc.) and my are
the measure attributes of the fact table. Note that we call this fact table fact_physical, because it is the
physical representation of the fact table.

Because surrogates are physical constructs and should not be visible for the user, we define a yiew on
the fact table to hide the surrogates and make the dimension keys accessible (see also Section A[w_d._ﬂﬁ

CREATE VI EWfact (di, d,, .., d,, {m}) AS

SELECT D,. h', D,.h', .., D..h', {F.m}

FROM fact _physical F, D, D, .. D

WHERE F.cs; = Di.cs AND F.cs, = D,.cs AND ... AND F.cs, = D,.cs

If there are multiple hierarchies on one dimension that are represented by compound surrogates, we
store one reference surrogate for each hierarchy in the fact table fact physical. Thus, we adapt the
view definition accordingly.

fact _physical (csi', c¢si?, .., csi®Y, cs,t, ©s2?, .., €S.% .., ¢s.", {m}),

CREATE VIEWfact (di, dp, .. dn, {m}) AS
SELECT Dy. h!, D,.h%, .. D, h, {F.m}
FROM fact _physical F, D, D, .. D
WHERE F.cs;! = D,.cs; AND F.cs,! = D,.cs; AND ... AND F. cs,! = D,.cs;

19 1t is not required that the reference surrogates are keys of the UB-Tree (there could be too many dimensions
for an appropriate multidimensional clustering), the optimizer also can make use of EHC organization of
dimensions without being part of the clustering. See Section 110.5 for detailed discussion.
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Note that all compound surrogates of one dimension are determined by h' (shared leaf level of all
hierarchies and primary key of the dimension table). Thus it is sufficient to specify the dimension key
of the view fact by a join from one reference surrogate to the corresponding compound surrogate in
the dimension table.

Hierarchy changes may lead to changes on the compound surrogates and thus will also change
reference surrogates of the fact table (see Section 8 The following section describes the
relationships and necessary physical constructs to achiev ect surrogate resolution.

6.2.3 Surrogates and Reference Constraints

For correct surrogate handling (i.e., computation, maintenance and query processing) some
dependencies are necessary. For a dimension with one hierarchy (and thus one compound surrogate),
we have to specify the foreign key dependency of Fm

Within D;, the compound surrogate ¢S depends on the hierarchy path CD(ht, ho hl), i.e., CSis
functional dependent on @: (ht, h o hl) - cs, where h'is the top level of the hierarchy. However,
cs determines the path (D(ht, ht . hl), i.e., @is functional dependent on cs: cS= @. Note that these
dependencies are expressed in DDL statements (Section ’@

h!
h2 \(\8’) """" g
Functiopial | ‘é\g‘\ ““““
Dependexcy | ht O £ |
R @é\ X< Cs,
{fy | 8%
cs “"‘ 9)“ { mI }

Figure 6-1: Dependencies of Dimension and Fact Table

For dimensions with several hierarchies (and several compound surrogates) these dependencies also
must be fulfilled. In this case some DDL extensions are mandatory for an exact specification of the
relationships (see Section 7@

In imension D, has two hierarchies h® —h? —h' and h° — h* — h%. The leaf level must be the
same for both hierarchies, because it is the dimension key and therefore is unique for the dimension
and for all hierarchies of this dimension. In this example the compound surrogates of both hierarchies
are used as index attributes in Fact (two reference surrogates in Fact).

Dim D, Fact
ht 1
0 W (hsh2hpcst e
(hS h h)Scs? Ei - %
e ) é\é'eg;@ fsr?q.}
g A < RN '
s

Figure 6-2: Dependencies of Dimension and Fact Table with multiple Hierarchies

In the case of several hierarchies as shown in Mt is not necessary to store all compound
surrogates in the fact table and use them ical clustering. However, for grouping
optimization (see Section 9.@, it is beneficial to store all compound surrogates in the fact table.
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7 Integration of EHC and MHC intoa DBM S

This section discusses basic implementation steps of the Transbase® implementation, such as the data
type for surrogates, changes of the data dictionary, physical schema extensions, and the extension of
the DDL. An example with DDL statements closes this section.

In contrast to Section @Ve use a modified physical representation of the fact table. For the sake of
easier maintenancme store the dimension keys also in the fact table factysca (replication from the
dimension tables)

fact pnysicar (d1, dz, .., dn, {m}, csi, €Sy .., CSp)

This is due to the fact that tables are standalone objects that must be maintained (created, dropped,
spooled into flat files etc.) themselves. The reference surrogates CS, are hidden from the user (they
only occur in the DDL statement, see Section the tuples of the fact table are identified by the
dimension keys (at least for mass loading and inserting). Thus, we define a view fact on the fact table
factynysica that is available to the user and occurs in the star join queries:

CREATE VIEWfact (dl1, d2, ., dn, {m}) AS
SELECT d1, d2, .., dn, {ni} FROM fact pnysica

Note that in Transbase®, inserting tuples into views generally is allowed as far as views only concern
one single table (i.e., no join is involved). Thus a physical representation as in Section E‘Zlis not
possible. In the following sections we assume the physical schema of fact_physical as described
above.

7.1 Basic Requirements

For the integration of MHC into the Transbase® DBMS, it is postulated, that all parts of the DBMS
support MHC. Thus, the user interface, such as programming interfaces, ODBC and JDBC drivers, the
data definition and data manipulation language, mass loading and spooling, archiving and schema
development tools must be adapted and integrated. Additionally, many internal structures and
processes are extended to support MHC, such as the system catalog, internal structures to maintain
MHC information, the query processor and optimizer. In addition to these MHC specific concepts,
some general DBMS concepts had to be implemented that were not yet available in Transbase®, e.g.,
the SQL-92 full level reference constraint support (ON UPDATE CASCADE and ON DELETE
CASCADE) and a general approach for hash tables for query processing (hash group, hash join etc.).

All extensions are implemented on the general EHC/MHC functionality, especially multiple
hierarchies lead to some additional effort for the design and implementation phases.

7.2 General Transhase® Architecture

Transbase® is a modularly designed DBMS with modules and interfaces easy to extend and adapt to
new requirements. Some layers are considerably more affected by the EHC/MHC integration, some
have minor changes and some layers are not modified at all. Figure 7-T kives an overview which
layers are modified in which extent.

" For dimensions with multiple hierarchies the schema for the fact table is extended by the additional reference
surrogates (see Section 16.2.2), but only one dimension key per dimension is added.
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The lowest layers that handle the object administration, locking, logging and recovery are not changed
at all. The Catalog Manager has minor changes (system catalog). The SQL and DDL Compiler are
affected in a larger extent, because the extensions of the DDL require some basic extensions. Most
changes occur in the Query Processor and Query Optimizer with sophisticated MHC algorithms to
efficiently optimize and process star join queries, e.g., surrogate specific computations for
maintenance queries, checks for surrogate handling etc..

Communication Manager

(new data type)

SQL and DDL Compiler
(DDL SURROGATE Extensions)

Query Optimizer

(Interval Generation, Pre-Grouping)

Catalog M anager
Query Processor (Catalog Extensions)
(cs2ival, Interval Generation,
Surrogate Computation Routines)
Lock Manager Access Structure Manager
Buffer Manager Storage M anager Recovery Manager

Minor Changes Some Changes Major Changes

Figure 7-1: Basic Transbase® Architecture

The following sections describe the extensions in more detail, especially query processing and query
optimizing are discussed in a large extent since these are crucial for a successful EHC/MHC
implementation.

In addition to Transbase® kernel extensions, also tools to administrate databases are affected. Due to
changes on the system catalog, a database created with a prior Transbase® version requires a
migration to Transbase®/MHC, because additional system tables must be created. This also includes
tools to archive and recover databases.

Additionally, the tools to check the correctness of databases must contain a consistency check of
compound and reference surrogates.

Major extensions are necessary for the interactive database access tools that contain methods to get the

physical schema of tables etc. In this case, some mechanisms to hide information (e.g., system
indexes) are implemented to prohibit the user to remove necessary physical structures.

7.3 Introducing a new datatype

Compound surrogates are represented by numbers that may get very large and thus would not fit into a
four byte integer value. On the other side, for small hierarchies a number of bits is necessary that may
be less than 32, such that space is wasted when using integer data type.
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The most efficient way to represent compound surrogates is to use only the necessary number of bits
(so called bit strings). The already existing BITS data type is declared with a fixed number of bits
(BITS(N)) or with a variable number of bits (BITS(*)). This data type consists of two components, the
first component contains the number of bits stored in the bit string. The second component is the bit
string. Because a byte is the finest granularity to store information, the space needed by the bit string is

a four byte integer (for the length) and the number of bytes required to store n bits (]_n / 8—|).

For conventional hierarchies, the number of bits required to represent the compound surrogate usually
is in the range of 16 to 64 bits. E.g., the compound surrogate for the product hierarchy of the SALES
DW needs 22 bits (3 byte for the bit combinations). Thus the four byte integer for the first BITS
component is dimensioned too large for compound surrogates (a four byte integer can represent
2%.1=4.294.967.295). A length field of a two byte integer (can store up to 65.535 bits) usually is
enough to represent realistic hierarchie$ 21U sing this new length description type, we reduce the space
significantly to store compound surrogates (e.g., fi 7 to 5 byte for the product hierarchy, i.e., more
than 25 percent). We call this new data type BITSZ2™;

Note that in an MHC organized fact table, these compound surrogates and therefore the bit strings are
used as index attributes. The multidimensional UB-Tree index benefits from the space savings,
because more index tuples can be stored in the leaf pages of the underlying B-Tree which reduces
access and maintenance costs and increases the number of tuples fitting on one page. The size of the
fact table is reduced, because every dimension organized by EHC requires at least one compound
surrogate.

7.4 Extendingthe System Catalog

Each DBMS has a data dictionary or a system catalog to persistently store meta information about
tables, views, indexes, constraints, users, privileges etc. Tables with compound or reference surrogates
require persistent information, such as the fanout of the levels for a compound surrogate or the
relationship between compound and reference surrogates etc.

In Transbase®, we extend some existing system tables and introduce a new system table especially for
compound surrogates. The system table syscolumn holding information about the attributes of a table
(e.g., name, data type, default value, null specification etc.) is extended by the attributes surrid and
surref. surrid contains an identifier for the surrogate (also used as foreign key to the new system table
syssurrogates) and is zero, if the attribute is no surrogate. The same holds for surref: surref is not zero,
if the attribute is a reference surrogate (i.e., a reference surrogate of the fact table). In this case, surref
contains the attribute position of the corresponding dimension key attribute of the fact table.

The system table Syssurrogate specifies the compound surrogates in more detail. Syssurrogate contains
one tuple for each component of the compound surrogates (i.e., hierarchy level). Each compound
surrogate has a unique identifier surrid used also in syscolumn. As redundant information the segment
number of the table with the compound surrogate is stored in order to get this information efficiently
for catalog queries. For each level we store the attribute position of the corresponding hierarchy level
attribute of the dimension table. The attribute siblings in Syssurrogate contains the fanout of the level
represented as the number of necessary bits to hold the siblings.

7.5 Indexing and Access Paths

Secondary indexes are necessary for efficient computation and maintenance of compound surrogates,
for query processing etc.. The two secondary indexes DXh and DXcs are created automatically for

'2 Such a hierarchy can store up to 2°°*° = 10'*"*® hierarchy members.
"> This data type is also used to represent z-values of the UB-Tree (in the index part of the B*-Trees and for
internal representation).
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each compound surrogate. These System indexes cannot be dropped as long as the dimension table
exists.

DXh is a unique index containing the hierarchy for the compound surrogate (see Section[#-44)] DXh =
(ht, ht ..., hh cs), where h'is the top level of the hierarchy. The hierarchy levels are attributes of the
leaf dimension table, but could also be distributed over several dimension tables. In this case, DXhis a
join index across many dimension tables. In the Transbase® implementation, the LDT must contain all
hierarchy levels. This index is used for the computation of the compound surrogates (see Section
surrogate maintenance (decision whether a compound surrogate must be recomputed) and for query
processini (computation of cs prefixes to get the intervals for the restriction on the UB-Tree, see
Section 9\

DXcs is a unique index holding the compound surrogate of the LDT. This index is necessary for the
computation of compound surrogates, especially for hole searches, and for some steps in the query
processing.

7.6 Extending DDL

The SQL standards, SQL-92 and SQL-99, do not explicitly support the concept of hierarchies. Usually
hierarchies are modeled by specifying reference constraints (foreign key references) representing
hierarchical relationships. No explicit language constructs are provided in order to semantically create
hierarchies.

Some DBMS, however, have such language extensions. For example, Oracle provides the declaration
of dimensions and hierarchies. This logical concept is on top of the physical schema providing
additional information for the optimizer to recognize the data warehouse schema and generate query
execution plans accordingly.

Because of the physical nature of EHC and MHC, we introduce the concept of dimensions and
hierarchies as a physical property of the DW schema by extending the DDL for the CREATE TABLE
statement.

In order to compare the concept used in the Transbase® implementation to the concept of Oracle, we
first describe the concept of hierarchies in Oracle and then discuss the specification of compound and
reference surrogates in Transbase® with simple and complex hierarchies.

7.6.1 Dimensionsand Hierarchiesin Oracle

In Oracle, the concept of dimensions and classification structures on dimensions like hierarchies
differs from the physical concept as discussed in this thesis. Oracle implements a logical warchouse
concept on top of the physical schema. Dimensions and hierarchies are created on existing tables.

7.6.1.1 General Concept

Dimensions can be denormalized (star schema) or normalized (snowflake schema). Hierarchies may
consist of levels (attributes) from different tables.

Each dimension can contain one or more hierarchies. Each dimension consists of a set of so called
levels, i.e., usually hierarchy levels. The hierarchy levels are a collection of levels of several
hierarchies for the dimension and can reside in different tables. There is no hierarchical dependency in
the dimension. The hierarchical relationships are defined in a separate H ERARCHY clause. For every
hierarchy, the level ALL is created implicitly. A hierarchy level can have one or more feature
attributes. A feature attribute is functionally dependent on the hierarchy levels and is specified via the
DETERM NES clause (see Section @

49



7 INTEGRATION OF EHC AND MHC INTO A DBMS

Because of the logical concept of dimensions and hierarchies, the physical organization of the fact
table is not affected by the hierarchies. Thus, changes on the hierarchies, dimensions etc. are possible.
Only meta information has to be changed.

For the hierarchies, a 1:n relationship between parent and child levels and a 1:1 relationship between
hierarchy levels and feature attributes is required. For normalized dimensions, i.e., when parent and
child levels are in different relations, they must be in a 1:n join relationship (ensured by corresponding
reference constraints).

7.6.1.2 DDL Statements

Now we show the DDL constructs to create a new dimension and the corresponding hierarchies. In
this example, the table segment is denormalized. In general, the dimension table could be normalized
in any way. The CREATE DI MENSI ON statement contains one or more HI ERARCHY clauses, each
representing one hierarchy. Every hierarchy has a number of levels and functional dependent feature
attributes. For the sample DW, the segment dimension is specified as follows:

CREATE TABLE segnent (

country id | NTEGER,
country_ txt CHAR(*),
region_id | NTEGER,
regi on_t xt CHAR(*),
m cronar ket _id | NTEGER,
m cromar ket _t xt CHAR(*),
turnoverclass_ id | NTEGER,
turnovercl ass_t xt CHAR(*),
outlet id | NTEGER,
outl et txt CHAR( *) );

Note, that the physical representation of the dimension table can be any star schema. In this case, the
primary key of the dimension table segment is outlet_id (as dimension key of the dimension segment).

CREATE DI MENSI ON segnent _di m

LEVEL country | S segnent.country_id

LEVEL region 'S segnent.region_id

LEVEL m cromar ket IS segnent. mcromarket _id

LEVEL turnoverlcass | S segnent.turnoverclass id

LEVEL outl et IS segnent.outlet id
H ERARCHY segnent _geo (

out | et CH LD OF

m cr omar ket CH LD OF

regi on CHI LD OF

country )
ATTRI BUTE country DETERM NES segnent. country_t xt
ATTRI BUTE r egi on DETERM NES segnent . regi on_t xt
ATTRI BUTE mi cronmar ket DETERM NES segnent. m cr omar ket _t xt
ATTRI BUTE out | et DETERM NES segnent. outl et _t xt
H ERARCHY segnent _cl ass (

out | et CH LD OF

turnoverclass CH LD OF

country )
ATTRI BUTE country DETERM NES segnent. country_txt
ATTRI BUTE t ur novercl ass DETERM NES segmnent . t urnover cl ass_t xt
ATTRI BUTE out | et DETERM NES segnent. outl et txt
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The above SQL block is one SQL statement (finished by the semicolon). In this example the
dimension is assigned to the segment dimension table (specified by LEVEL lev 1S
table.attribute,e.g,LEVEL country |S segnent. country_id).

Two hierarchies, segment_geo and segment_class are defined on the dimension segment_dim. There
can be shared levels between the hierarchies (in the example: outlet_id).

The ALTER DI MENSI ON ... DROP statement removes, the ALTER DI MENSI ON ... ADD
statement adds dimension attributes. Via this statement, dimension attributes, hierarchies and levels of
hierarchies are maintained.

7.6.2 Compound Surrogates

In contrast to the logical approach of dimensions and hierarchies in Oracle, compound surrogates in
Transbase® are an additional physical attribute of the leaf dimension table with the data type BITS2.
The CREATE TABLE statement is extended by a SURROGATE .. COVPOUND clause. For the
compound surrogate, the levels of the hierarchy are specified via a sequence of hierarchy levels and
their fanout (SI BLI NGS).

CREATE TABLE di m segnent (

country id | NTEGER NOT NULL,
country_txt CHAR(*),
region_id | NTEGER NOT NULL,
regi on_t xt CHAR(*),

m cromarket _id | NTEGER(*) NOT NULL,

m cromar ket _txt CHAR(*),

outlet_id | NTEGER NOT NULL

out | et _txt CHAR(*),

SURROGATE cs_segnent COVPOUND (country_id SIBLINGS 16,
region_id SIBLINGS 19, m cromarket _id SlIBLINGS 6,
outlet_id SIBLINGS 2202)

) KEY | S outlet_id;

The SQL statement above shows the specification of the geographic hierarchy of the segment
dimension of the sample DW. The SURROGATE clause is emphasized via bold style and includes the
name of the compound surrogate (Cs_segment) and the hierarchy levels (country_id, region_id,
micromarket_id, and outlet_id) in the order from top level to leaf level. These levels are stored in the
system catalog in Syssurrogates (see Section 7.@. The hierarchy levels must have the NOT NULL
constraint, thus all hierarchy paths are fully specified. It is also required that every hierarchy level
occurs only once in the hierarchy (no circles in the hierarchy) and the leaf level of the hierarchy must
be the primary key in the dimension table.

The specification of SI BLI NGSQetermines the computation of compound surrogates as they denote
the maximal fanout of the levels (see Section In the compound surrogate cs_segment we define
4 bits for the first (SIBLINGS=16), 5 bits for the seconds (SIBLINGS=19), 3 bits for the third
(SIBLINGS=6) and 12 bits for the fourth cs component (SIBLINGS=2202). With these information,
the computation formula of compound surrogates is defined exactly. Note that the ord function of
Section 5 s used for the computation of compound surrogates implicitly by index lookups and
usually de on insertion order (see Section 8E| for more details).

' We used the notion SI BLI NGS in order to specify the fanout, because there might be a misunderstanding
what fanout means (the number of successors of the level).
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7 INTEGRATION OF EHC AND MHC INTO A DBMS

Note further, that in the example the attributes with suffix _id are unique hierarchy level identifiers,
whereas the attributes with suffix _txt are descriptive attributes, i.e., feature attributes (there might be
duplicates of descriptive attributes for the different hierarchy level identifiers).

A formal specification of the DDL extension is found in Section @

7.6.3 Reference Surrogates

Reference surrogates are part of the fact table. Each reference surrogate is stored in an attribute of type
BITS2 (such as the corresponding compound surrogates in the leaf dimension table). As described in
Section the reference surrogate depends on the corresponding dimension key attribute in the fact
table. The value of the reference surrogate is determined by the corresponding compound surrogate in
the dimension table. These two dependencies are expressed in the CREATE TABLE statement for the
fact table.

CREATE TABLE fact (

dseg | NTEGER REFERENCES di m segnent (outl et _i d)
ON UPDATE CASCADE,

dprod | NTEGER REFERENCES di m product (i tem. d)
ON UPDATE CASCADE,

dtime | NTEGER REFERENCES di m ti me(nont h2peri od_i d)
ON UPDATE CASCADE,

turnover NUMERI C(10, 2)

SURROGATE cs_seg REFERENCES di m segnent (cs_segnent),
SURROGATE cs_prod FOR dprod,
SURROGATE cs_tinme FOR dtine

) HCKEY is cs_seg, cs_prod, cs_tineg;

The dimension attribute of the fact table must reference the corresponding dimension key of the LDT
in a reference constraint with the ON UPDATE CASCADE extension.

Basically, two different kinds of SURROGATE clauses are possible. If the dimension table contains
only one compound surrogate (one hierarchy in the dimension), the SURROGATE ... FOR clause is
sufficient expressing the functional dependency of the reference surrogate (via the reference constraint
of the corresponding compound surrogate of the dimension table).

The SURROGATE ... REFERENCES clause can be used alternatively, if only one reference
constraint is defined between the fact table and the corresponding dimension table. The REFERENCES
clause must be used, if multiple hierarchies are defined on the dimension, i.e., more than one
compound surrogates are specified in the LDT.

In the case of several reference constraints between fact and dimension table and multiple hierarchies
on the dimension, the combination of FOR and REFERENCES clauses is required to exactly specify
the relationships and functional dependencies of the reference surrogates.

The reference surrogates can be used as index attributes of the UB-Tree (HCKEY | S cs_seg, ...

7.6.4 MultipleHierarchies

In real world scenarios, dimensions often have multiple hierarchies. In such a case, it is difficult to
decide which hierarchy to prefer and use for physical clustering. Thus, the implementation of
EHC/MHC provides the possibility to define several hierarchies and therefore compound surrogates
on one LDT (see Section @and use them as clustering index attributes.
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7.6 EXTENDING DDL

All hierarchies of one dimension must have a common leaf level, because this level is the dimension
key and thus the foreign key of the fact table. If more than one hierarchy is used for physical clustering
in the fact table we define a reference surrogate for each hierarchy. The following DDL statements
show the definition of two alternative hierarchies for the segment dimension of the sample DW.

CREATE TABLE di m segnent (

country_id | NTEGER NOT NULL,
country_txt CHAR(*),
region_id | NTEGER NOT NULL,
regi on_t xt CHAR(*),
m cronar ket _id | NTEGER NOT NULL,
m cromar ket _t xt CHAR(*),
turnoverclass_id | NTEGER NOT NULL,
turnovercl ass_t xt CHAR(*),
outlet_id | NTEGER NOT NULL,
outl et txt CHAR(*),

SURROGATE cs_geo COMPOUND (country_id Sl BLINGS 16,
region_id SIBLINGS 19, m cromarket _id SIBLINGS 6,
outlet id SIBLINGS 2202)
SURROGATE cs_cl ass COVMPOUND (country_id SIBLINGS 16,
turnoverclass_id SIBLINGS 50, outlet _id SIBLINGS 15000)
) KEY IS outlet_id

The dimension table segment contains two hierarchies: country — region — micromarket — outlet
and country — turnoverclass — outlet. Every compound surrogate must have a unique identifier within
the dimension table. The dimension table is created with two additional attributes, one for every
compound surrogate. The common leaf level of the hierarchies (i.e., the least significant component of
the compound surrogates) is the primary key of the table: outlet_id.

The fact table contains both compound surrogates as reference surrogates:

CREATE TABLE fact (

dseg | NTEGER REFERENCES di m segnent (outl et _i d)
ON UPDATE CASCADE,

dprod | NTEGER REFERENCES di np_roduct (i tem. d)
ON UPDATE CASCADE,

dtime | NTEGER REFERENCES di m ti me(nont h2peri od_i d)
ON UPDATE CASCADE,

turnover NUMERI C(10, 2)

SURROGATE cs_seg_geo REFERENCES di m segnent (cs_geo),
SURROGATE cs_seg_cl ass REFERENCES di m segnent (cs_cl ass),
SURROGATE cs_prod FOR dprod,
SURROGATE cs_tinme FOR dtim

) HCKEY is cs_seg geo, cs_seg class, cs_prod, cs_tine;

It is required to use the REFERENCES clause for the reference surrogate specification of the
dimension segment, otherwise it is not decidable which compound surrogate of dim_segment is
referenced. The reference surrogates CS _geo and ¢S _class are assigned to the attribute dseg, because
there is only one foreign key reference from fact to dim _segment. If there are more foreign key
references, the combination of FOR and REFERENCES clause is necessary:
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CREATE TABLE fact (
dseg | NTEGER REFERENCES di m segnent (outl et _id)
ON UPDATE CASCADE,

éURROGATE cs_seg _geo FOR dseg REFERENCES di m segnent (cs_geo),
)

7.6.5 Formal DDL Specification

The previous sections already showed some example DDL statements. In this section we present the
formal DDL specification for compound and reference surrogates embedded in the CREATE TABLE
statement. Words written in upper case are key words, the remaining expressions are syntactic
variables that are combined to get the complete statement. Note that there are some Transbase®
specific extensions of the standard DDL ([l‘l"rlﬂ‘)tl

Creat eTabl eStatenent ::=
CREATE TABLE Tabl eName [ | kSpec ]
( TableElem|[ , TableElem] ... )
[ KeySpec ]

The create table statement basically is similar to the DDL statements of many other relational DBMS
with a table name and a sequence of table elements that are attributes (fields) or constraints. IkSpec is
an extension that specifies whether to use the internal key (rowid), i.e., whether secondary indexes can
be created on this table or not.

The constraint definitions Tabl eConstraintDefinition and Fi el dConstrai nt-
Definition correspond to the SQL-92 standard including FOREI GN KEY, NOT NULL,
DEFAULT and CHECK constraints.

| kSpec ::=
{ WTH | WTHOUT } | KACCESS

Tabl eElem : : =
Fi el dDefinition
| Tabl eConstrai ntDefinition

Fi el dDefinition ::=
St andar dFi el dDefinition
| SurrogateDefinition

The surrogate definition belongs to the field definition, because an additional attribute is created and
maintained for each surrogate.

St andar dFi el dDefinition ::=
Fi el dName Dat aTypeSpec [ Defaultd ause ]
[ FieldConstraintDefinition ]

SurrogateDefinition ::=
SURROCGATE Surr Nanme ConpoundDefi nition
| SURROGATE Surr Name ReferenceDefinition

CompoundDefinition ::=
COMPOUND ConpoundLi st

ConpoundLi st ::=
(Fi el dNane SI BLI NGS Nunber [, Fi el dNane SI BLI NGS Nunber] ...)
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Ref erenceDefinition ::=
For C ause Referencesd ause
| Ford ause
| Referencesd ause
Ref er encesd ause ::= REFERENCES Tabl eName( Sur Nane)

For Cl ause ::= FOR Fi el dNane

7.6.6 Sample Schema

This example shows the DDL of the complete sample schema.

CREATE TABLE di m product (

sector _id | NTEGER NOT NULL,
sector _txt CHAR(*),
category_id | NTEGER NOT NULL,
cat egory_txt CHAR(*),

product group_id | NTEGER NOT NULL,

product group_t xt CHAR(*),

itemid | NTEGER NOT NULL,

item txt CHAR(*),

SURROGATE cs_prod COVPOUND (sector _id SIBLINGS 14,
category_id SIBLINGS 9, productgoup_id SIBLINGS 83,
itemid SIBLINGS 15601)

) KEY is item.d;

CREATE TABLE di m segnent (

country_id | NTEGER NOT NULL,
country_txt CHAR(*),
region_id | NTEGER NOT NULL,
regi on_t xt CHAR(*),
nicromarket id | NTEGER NOT NULL,
ni cromar ket _t xt CHAR(*),
turnoverclass_id | NTEGER NOT NULL,
turnovercl ass_t xt CHAR(*),
outlet_id | NTEGER NOT NULL,
outl et txt CHAR(*),

SURROGATE cs_geo COMPOUND (country_id SIBLINGS 16, region_id
SI BLINGS 19, mcromarket_id Sl BLINGS 6,
outlet_id SIBLINGS 2202)
SURROGATE cs_cl ass COVMPOUND (country_id Sl BLINGS 16,
turnoverclass_id SIBLINGS 50, outlet SIBLINGS 15000)
) KEY IS outlet_id,

CREATE TABLE dimtine (

year | NTEGER NOT NULL,
nmont h | NTEGER NOT NULL,
day | NTEGER NOT NULL,

SURROGATE cs_tinme COVPOUND(year SIBLINGS 10, nonth SIBLINGS 12,
day SIBLINGS 31)
) KEY is day;
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CREATE TABLE fact (
dseg | NTEGER REFERENCES di m segnent (outl et _id)
ON UPDATE CASCADE,
dprod | NTEGER REFERENCES di m product (i tem.i d)
ON UPDATE CASCADE,
dti me | NTEGER REFERENCES di m ti me(day) ON UPDATE CASCADE,
turnover NUMERI C(10, 2),

SURROGATE cs_seg REFERENCES di m segnent (cs_geo),
SURROGATE cs_prod FOR dprod,
SURROGATE cs_tinme FOR dtine

) HCKEY is cs_seg, cs_prod, cs_tineg;

Note that the reference surrogate for the alternative hierarchy cs_class for the dimension dim_segment
can be incleded into the multidimensional index of the fact table. This example is shown in Section

re4
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8.1 COMPUTATION OF COMPOUND SURROGATES

8 EHC Processing

EHC influences the maintenance of tables and query processing, because the compound surrogates
replace predicates on hierarchies and they have to be maintained, if hierarchy members are changed.
This section contains a description of the maintenance operations, e.g., if hierarchy paths are inserted,
modified or deleted, or if data is inserted into fact tables. Section 9|Eescribes the query processing
within an MHC/EHC organized schema.

8.1 Computation of Compound Surrogates

The basic operation for EHC is the computation of the compound surrogates according to the
hierarchy paths. This section describes the algorithms to compute compound surrogates.

Informally, an insert (or update) of a tuple in the LDT, i.e., the insert of a new hierarchy path, triggers
the computation of the corresponding surrogate cs depending on the existing paths of the dimension.
For this purpose, we first compute the common prefix of the path as fixed (matching) component of
cs. Then the distinguishing component is computed, usually the maximum cs component (with the
same prefix path) incremented by one. The remaining components to the leaf level are filled with 0.

Segment
MP
Country 0 Germany 1 Ausgtria
Region 0 North 1 South OEast 1 West
l\'/\lﬂallflzgt 0Aldiy, 1 Saturny 0 Aldig 0 Hofer, Saturng OHofery, 1 Saturny,

EA AN A ART RG R

Outlet Al A2 SI S2 S3 S4 A3 A4 A5 A6 HI H2 H3 H4 H5 H6 S5 H7 H8 H9 HI0O HII

ID 0.0.0.0 0.0.1.0 0012 0.1.0.0 0.1.0.2 1.000 1.00.2 10.04 11.00 1102 1104 1111
0.0.0.1 0.0.1.1 0.0.1.3 0.1.01 0.1.03 10.0.1 10.03 1.005 1101 1103 1110

Figure 8-1: Insert of new Hierarchy Path

Figure 8-1 khows the insert operation of a new hierarchy path ®=(* Segment”, “ Austria”, “ East”,
“Saturng”, “ S5”), where the common prefix with existing paths is (“Segment”, “Austria”, “East”).
The matching level is 3 (hierarchy level Region, leaf level Outlet is 1, etc.). Thus the cs components
€S, and CS; (of the common prefix path) are c4=1 (“Austria”) and ¢s;=0 (“East”). The following level
MicroMarket is assigned a new surrogate S, i.e., the largest surrogate of the children of the matching
level incremented by one. In this case there is only one child “Hoferg” that has the surrogate 0. Thus,
the new surrogate S for “Saturng” is S= 0 + 1 = 1. The remaining level, i.e., level Outlet, is set to 0.
Thus, the compound surrogate for @is 1.0.1.0.

For an efficient computation of cs, we use two indexes DXh and DXcs (see Section where DXh
contains the levels of the hierarchy and cs, DXh = (ht, ht .t cs), and DXcs contains CS.

A compound surrogate CS consists of components €S;, CSp, ..., C for t hierarchy levels: cs = (Cs;, CS-1,
..., CS1), each representing the enumeration of the corresponding level h, h L hh

In the following, we call the new compound surrogate for path ®: CSpew.
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The following sections describe the steps in more detail that are necessary to compute the new
compound surrogate.

8.1.1 Matching Level

Definition 8-1 (Matching Level, Prefix Path):

The matching level is the lowest level of the longest common path from top level to leaf level of the
new tuple (inserted path) compared to the existing tuples. We call the path prefix path. o

The matching level is necessary to compute the final compound surrogate CS,qy consisting of fixed cs
components (due to the prefix path) and of new computed components (from the leaf level to the child

of the matching level, see Frgu-r&_&—&l

For an efficient computation of the matching level, we use the clustering property of B-trees. The
secondary index DXh s the hierarchy paths and compound surrogates in the lexicographical order
of the hierarchy levels~ {from top level to leaf level). A search in DXh with search argument
<D=(mt, m L m) e., the new path, positions between the (lexjcographically) “next smallest” and
“next largest” tuple the tuple does not exist in the B-tree”ows this positioning. For
tuple tphew, Where ts < thew < te, the B-tree scan points between ts and ts. The pr evr ead operation
returns ts and the next r ead operation returns tg.

to [t |l ta | tall ts | te || t7 || te

«— —>
prevread nextread

Figure 8-2: Positioning in Transbase® B-Tree

We call the next smaller tuple (i.e., the left tuple) tiet and the next larger tuple tright. One of the tuples
tieft and trignt (or both) contains the longest matching prefix paths of @.

We call ty, the tuple (either tigft or tright) with the longest prefix path of @and ml is the matching level.
We use a new compound surrogate CSpx for the computation of CS,ey. CSpx has the components Cs,
CS:-1, --- CSm. For further processing, we set the remaining c¢s components CSy-1, ..., CS1 to high, i.e., all
bits of the components are set to one. These components are changed in a later step, in order to
calculate the final compound surrogate.

Example 8-1 (Matching Level):

For example, we compute the compound surrogate for the hierarchy path @= tq, = (“ Segment” ,
“Austria” , “ East” , “ Saturng” , “ S5”) into our sample hierarchy (see Higure 8-T). A sear ch(®) in
DXh positions between the paths ti = (* Segment” , “ Austria” , “ East™, "Hoferg” , “ H4" ) and

trigne = (“ Segment” , “ Austria” , “ West” , “ Hofery” , “ H8” ). The matching level is 3, i.e., level Region
and tp, = ti.p. Thus, the cs components of CSgyare €S, = 1, ¢ = 0, cs, = 111...1, cs; = 111...1. If we
assume a maximum fanout of 63 for the levels MicroMarket and Outl€et, CS,en = 1.0.63.63. ]

'3 Usually we use character data types for hierarchy levels. If other data types are used, the paths are stored in the
“natural” order of the data types (e.g., “<” for numbers).

' Note that this is implementation specific for Transbase® B*-Trees.

'7 Note that the tuple must not exist in the B*-Tree, because the paths (and therefore tuples in the LDT) are
unique.

58



8.1 COMPUTATION OF COMPOUND SURROGATES

The surrogate computed so far contains the prefix (matching level). The remaining components are
computed in the following way.

8.1.2 Increment CS Component

The B-tree search with the new path as search argument positions to the lexicographically correct
position within DXh. The surrogates are numbered within the levels according insertion order. The
order of compound surrogates does not correspond to the order of the B-Tree attributes. Thus, the
position resulting from the sear ch operation in the B-Tree generally is not next to the largest
compound surrogate with the matching prefix, but can be next to any paths with the matching prefix.
The child level of the matching level is the maximum of the ¢s component in the hierarchy (w.r.t. the
prefix path) incremented by one.

As described in Section 8. the previous step returns a compound surrogate CSpx with the
components C%, CS-1, ..., CSn and the bits of the remaining components set to one, i.e., the maximum
compound surrogate with the prefix path. CSy is used as search argument in a B-tree search in
index DXcs to position “behind” the largest compound surrogate ¢S with the same prefix, if no such
surrogate exists =—The component CSy-1 of €S is the maximum component of level ml-1 w.r.t the
prefix path. We increment CSy.; by one. The remaining cs components CSy-2, CSmi-3, ..., CS1 are set to
Zero.

Thus, the compound surrogate CSyqy for the new path is computed: CSyey = €S 0 CS.1 O ... O CSyy O CSy1
0000...00...0000...0.

CShen= | 1.0.63.63

1.0.00 1.0.01 1.0.0.2J 1.0.03 11.01

1.0.0.0 1.0.0.1 1.0.0.2 1.0.0.3 || 1.0.1.0 1.1.01
= C5px

Figure 8-3: Positioning in DXcs

hows the positioning of sear ch( cSpx) with matching level ml=3 forl Example 8-1. £Sey

=1.0.63.63. The sear ch operation positions behind the largest compound surrogate with the prefix
path 1.0. The maximum surrogate for the matching level MicroMarket is 0, thus the incremented new
CSw-1 is 1, the remaining cs component are set to zero: CSpx = 1.0.1.0. CSpy is the final compound
surrogate for the new path @= (* Segment” , “ Austria” , “ East” , “ Saturng” , “ S57).

If all bits of csy-1 of the previous cs are already 1, then we cannot compute the ¢s component by
incrementing, i.e., an overflow occurs. However, deletion or update of paths may leave “holes” within
cs components that could be re-used. Section 8 [L.3]describes this hole search.

8.1.3 Hole Search

The hole search is necessary, if an overflow of bits within one level has occurred. Due to updates and
deletions of hierarchy paths, some bit combinations may be unused and can be reused for the new
compound surrogate. The bits of the upper cs components, i.e., the common prefix path, are fixed
according to the prefix path of the inserted tuple.

'8 Without loss of generality we assume at the moment that no such surrogate exists. If such a surrogate already
exists, we describe further proceeding in Section 18.1.3.
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Informally, all bit combinations of the ¢cs component successor level CSy-1 of the matching level from
0..0 to 1..1 are tested to find an unused bit combination. This unused bit combination depends on the
existing paths in the hierarchy and is most efficiently found in the secondary index DXcs. For every
such bit combination, a sear ch operation on DXcs sear ch(cSpref 0 CSyar 0 0..0) is
performed, where CSyref is the concatenation of the prefix path components, CSyr is the ¢s component
with the new bit combination (level CSy.1), the remaining ¢s components CSyj-2, CSn-3, ..., CS1 are set to
Zero.

The sear ch operation positions on CSpref O CSyar 0 0..0, if such a compound surrogate exists in DXcs,
otherwise before the lexicographically next compound surrogate cs. If no cs with CSpref 0 CSyar 0 0..0
exists, a hole has been found and we choose this surrogate combination.

Otherwise the next tuple CShext in DXcSis read (r eadnext ), i.e., the lexicographically smallest cs that
is larger than CSpref O CSyar 0 0..0. If CSnext consists of CSpref O CSyar O CSrest, Where CSreg can be any bit
combination, the bit combination CSyg exists and we try the next bit combination for CSyy. If CShext does
not have a prefix CSyef O CSyar, then the bit combination of CSyr is not used and is the new bit
combination for the compound surrogate.

The algorithm is shown in A|!g0r1thm 8-T Trhe variable max is decimal value of the highest bit
combination that CSyr can reach (2 -1 sets all bits to 1). sear ch positions in the corresponding
B-tree (here DXcs) on the tuple of the search argument (here CSyref O CSvar O CSrest). If the tuple is not
found, the B-tree scan is positioned before the smallest tuple with the lexicographical higher
order. r eadnext returns this “larger” tuple (a r eadpr ev would return the tuple in front of
the B-tree scan). The predicate | SPREFI X (cs®, cs?, k) tests whether cs' and cs have

the same cs components until a level K, i.e., | SPREFI X returns TRUE, if Cslm=cszm, Cslm
;chzml, . cslk=cszk.

Algorithm 8-1 (Hole Sear ch):

max = 2|csvar|_1
CSyar = 0..0
CSrest = 0..0
found = FALSE
whil e not found and csys; < max
i f not TUPFOUND(sear ch(DXcS, (CSpref O CSyar O CSrest)))
cs, = readnext ( DXcs)
i f not | SPREFI X(csS,, (CSprefs CSvars CSrest), M -1)
found = TRUE
br eak
CSvar = CSyar + 1

For a search on the leaf level, an optimization of the hole search is obvious. Instead of direct search in
the B-tree for every bit combination for the ¢s component one direct positioning with the smallest bit
combination and consecutive r eadnext operations are possible. r eadnext is much faster, because
usually the next tuple is on the same physical disk page and therefore already in the main memory. If
the cs component ¢s; (leaf level) of the tuple returned by r eadnext is larger than cs;+1 of the tuple
read before, a hole is found. This special case is much faster than consecutive direct positioning
(sear ch) operations.

8.1.4 Alternative Computation Method

The computation of compound surrogates cs is quite expensive, because for every cs direct search
lookups in DXh and DXcs indexes are necessary that may lead to one or more disk accesses.
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For initial bulk loading of a dimension table an alternative method for the compound surrogate
computation is possible. Instead of inserting each dimension tuple (hierarchy path), maintaining the
secondary indexes and computing the compound surrogate, we sort the tuples according to the
lexicographical order of the hierarchy levels, i.e., w.r.t. h;, hi.1, ..., h1. Now cs can be computed by
numbering the tuples w.r.t. the hierarchy path (see|Algorithm 8-2).| The new tuple is then inserted into
the dimension table.

Algorithm 8-2 (Alternative CS Computation):

i f EOD(sortedTups)
return
tCcSo g = readFirst(sortedTups)
tcsSggq.Cs = 0.0
writeTup(newTups, tcSgq)
whi |l e not EOD(sortedTups)
t CSpew = readNext (sortedTups)
m = MATCHI NGLEVEL(t CSqi4, tCSnew)
t CSpew CSt = 1 CSoid- CSt, tCSpew CSt-1 = tCSqig- CSt-1, -or
1 CSnew- CSi = tCSqig. CShi,
if (tCSoiq. CSp.1+1 < 2lcsm-1l)
t CSnew CSm-1 = 1 CSqig. CSm-1t+1

el se
ERRCOR = OVERFLOW
return
t CSnew CSm-2 = 0..0, tCSpew CSmi-z3 = 0..0, ...tCSpew.CS1 = 0.0

W iteTup(tcCSnew
t CSyl dzt CShew

Algorithm 8-2 shows the alternative computation method. sortedTups is the tuple stream ordered
according to the hierarchy levels h, h"%, ... hh newTups is the new tuple stream containing the
dimension tuples with the computed compound surrogates. The tuples of newTups are used for insert
into the dimension table and the secondary indexes. tCSiq, new are tuples, the attributes are denoted by
tCS(alg, new}.ht for the root hierarchy level or tCS(q, newj-CS for the compound surrogate of tCSoig, newj- The
predicate MATCHI NGLEVEL returns the level h', 1 < | st+1, of the two tuples (in this case of the old
and new tuple). The matching level must be at least two, i.e., the leaf level cannot be a matching level,
because h' is unique. If the matching level is t+1, there is a new value for root level h' and the bit
combination of the ¢ must be incremented. Note that an overflow occurs, if all bits are already set to
one for €Sy 4.CSn-1-

The bit combinations of the first | ¢s components are assigned to the corresponding c¢s components of
the new cs, the cs component I-1, i.c., the following level, is increased by one. The remaining bits are
set to zero.

Note that the new computation preprocesses the dimension table tuples by sorting and computation of
the compound surrogates. These tuples are then inserted into the empty dimension table via
conventional bulk insert. If the dimension table has not been empty before the insert, all existing tuples
have to be deleted and reinserted together with the new tuples. Thus this method is only useful for the
initial bulk load of the dimension tables.

8.2 Operationson Dimension Table

In a DW, loading and maintaining data is an important issue. Each operation generally affects
compound surrogates in an EHC organized DW schema. This section describes maintenance
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operations on dimension tables such as inserting, deleting, and updating tuples. Section 8.3 describes
these operations on the fact table.

Inserting a dimension tuple is straight forward. For every hierarchy (usually one per dimension) the
corresponding surrogate is computed before the insert operation. Because of the “attribute nature” of
the surrogates, the original tuple is completed by the computed compound surrogates.

The DML statement DELETE FROM <di nensi on> deletes dimension table tuples. Tuples in the
fact table reference the dimension tuples. The tuples of the dimension table that are referenced by
other tables cannot be removed i ON DELETE CASCADE clause on all tables referencing the
dimension table is specified ([ . A delete operation on the dimensions is twofold: First the fact
table tuples are removed (e.g., via a join to the dimension table with the same predicate as for the
deletion on the dimension table), second the dimension table tuples are deleted.

An UPDATE operation on the dimension table may cause re-computation of compound surrogates.
Affected compound surrogates are propagated to the compound surrogate of the fact table tuples that
reference the modified dimension table tuples.

The following sections describe the operations on dimension tables in more detail.

821 Insert

Basically, two different types of insertions are available in Transbase®. The standard SQL 92
| NSERT | NTO <t abl e> ([PD93]) ktatement for single tuples (or | NSERT | NTO <t abl e>
SELECT FROMfor tuples resulting from a SQL statement) inserts tuples via a statement (or from a
query). The bulk load SPOOL statement inserts a complete spool (flat) file into a table.

In the current implementation of EHC, compound surrogates are treated nearly as conventional
attributes. The calculation of compound surrogates is triggered when inserting the hierarchy path. For
the compound surrogate, the value NULL must be specified:

I NSERT | NTO di m segnent VALUES (‘ Austria’, ‘East’, ‘Saturng, 'S5,
NULL)

for the|Example 8-1. [The NULL is replaced by the computed compound surrogate via a trigger before
insert. If the compound surrogates in the CREATE TABLE statement are specified behind the last
“conventional” attribute, the value for the compound surrogate can be omitted =

I NSERT | NTO di m segnment VALUES (‘Austria , ‘East’, 'Saturng, 'S5)

For the SPOOL statement, the values in the flat file for the compound surrogates also can be pre-
computed, in order to load an archive of the DW into the DBMS. Note that the corresponding
reference surrogates of the fact table must have the same pre-computed surrogate values. It must be
ensured, that the surrogates are consistent. Pre-computed compound surrogates sometimes can be used
to speed up initial bulk loading (see Section §[T.4)]

8.2.2 Delete

As already mentioned, deleting dimension table tuples is only allowed if they are not referenced by
tuples in another table, if no ON DELETE CASCADE constraint exists. In this case, the tuples of the
referencing tables must be removed before deleting the dimension table tuples.

' If the SURROGATE clause is specified in between the other attributes of the table, it is not possible to assign
the values to the contributing attributes correctly and type errors may occur, if no explicit value is specified.
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Deletion of tuples means that hierarchy paths are removed. This means that bit combinations of one or
more hierarchy levels (depending on the predicate of the delete operation) become vacant (see also
Section mnd can be reused for new dimension tuples in a hole search (see Section 8 The bit
combina r the leaf level component always becomes vacant. Bit combination of othiier fiferarchy
levels only get free, if all paths through the member of a hierarchy level are removed, e.g., via the
predicate describing a prefix path: WHERE h'=v, AND h'"!=v,.; AND ... AND h¥*=v,. Here all
tuples of the dimension table containing the prefix path from root h' to level h* are deleted, i.e., the bit
combination of h* with the prefix path (h', h*%, ..., h*"%) becomes vacant.

The propagation of delete operations in a dimension table to the fact table requires efficient searching
of the fact tuples that have to be deleted (if the delete operation is cascaded). In order to find these
tuples, the reference surrogates of the deleted tuples in the dimension table are used to identify the fact
tuples, because they are usually index attributes of the UB-Tree (see also Section 8.

An alternative for the hole search is to store all deleted surrogates in a maintenance table and use these
information for the calculation of the compound surrogates. The same holds for the update operations.

8.2.3 Update

An updat e operation of a tuple semantically is equal to a del et e followed by an i nsert
operation of the modified tuple. The insert operation triggers the computation of the compound
surrogates for the dimension table. The modification of the compound surrogate results in an
additional update operation on the fact table, because the reference surrogates of the fact table
reference the compound surrogates of the dimension tables. Usually a large number of fact tuples
reference one tuple in the dimension table. Thus, a new computation of the compound surrogate
requires an update of many fact tuples.

However, not every update operation on the dimension table leads to a re-computation of the
compound surrogate cs (e.g., if feature attributes are modified or a hierarchy member is renamed) and
the original cs can be reused. We try to avoid re-computation as far as possible. This section describes
the conditions when surrogate computation can be omitted and gives implementation hints for efficient
update processing.

Basically there are two ways to recognize whether a new computation is necessary or not. The first
method uses structural information, i.e., the query predicates and catalog information. The second
method is dynamic and uses the result of the predicate to decide whether to compute a new compound
surrogate or not. In this thesis, we concentrate on static rules (see also Section 9'.

8.2.3.1 Update Template

An UPDATE statement contains a list of attributes to change and a search condition to specify the
tuples that are changed. The syntax for the SQL update statement is the following:

UPDATE Tabl eNane
SET Assi gnLi st
[ WHERE LOCPRED]

Assi gnLi st ::= Assignnment [, Assignment]

Assi gnment Fi el dnanme = Expression

LOCPRED is a predicate on the table to update, i.e., a number of restrictions that can contain sub-

queries. Expression specifies the new value of the attribute Fieldname, where this expression can be
formula that may be computed by a sub-query.
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This general update template is simplified w.r. to an update in the DW scenario. We talk about a
dimension table update for the following cases of LOCPRED. The attributes involved with LOCPRED
are cither feature attributes or hierarchical attributes. The restrictions of LOCPRED are equality
restrictions, i.e., attry = Expression for all attributes, where the restrictions are connected via AND
operators:

UPDATE ...\WHERE attr; = Expression AND attr; = Expression AND ...

Expression can be any formula returning one single value (e.g., a constant value, arithmetic formula or
sub-query returning one value).

8.2.3.2 Update Classes

Depending on the type of update compound surrogate computation can be omitted or optimized. For a
formal discussion we define four update classes:

e (Ul): Feature Update

¢ (U2): Renaming Hierarchy Members

e (U3): Moving a Hierarchy Sub-Tree

e (U4): Other Updates

Definition 8-2 (Feature Update):

A feature update is an update of the dimension table on a non-hierarchical attribute, i.e., an attribute
that does not occur in a hierarchy path of the hierarchies of one dimension. i

An update is a feature update, if AssignList only contains feature attributes:
UPDATE D SET f=f,y WHERE h, = val

Definition 8-3 (Renaming Hierar chy Members):

Renaming hierarchy membersis an update operation on a dimension table that does not change the
structure of the hierarchy. Only the value of one or more hierarchy members is changed. An update on
leaf level members (if no other hierarchical attributes are changed) always is a renaming operation.

m

UPDATE D SET hy = val jew WHERE h; = val; AND h;.; = val{.; AND ... AND hy
= val g4

An update on leaf level means that the path from the top level to the father node of the leaf remains
unchanged, the c¢s components remain. More generally, if the cs component for the leaf level is still
valid, no new computation of cs is necessary. Thus, an update on leaf level always is a renaming of a
hierarchy member.

Definition 8-4 (Moving Hierar chy Sub-trees):

If all paths of a hierarchy sub-tree are changed consistently, i.e., the prefix paths of the father member
of the sub-tree are the same, we call this update operation moving hierarchy sub-trees. m

UPDATE O SET h; = val ", h..; = val.,"®", .., hg = val ™"
VWHERE h; = val; AND h;.; = val.; AND ... AND hy = valx AND hy.; = val

In this example, we specify the hierarchy path from the top level h' to level h* and change the path for
the complete sub-tree. An example for the geographic hierarchy of the sample DW is shown in the
following:

UPDATE segnent SET country = ‘Germany’, region = ‘south’ WHERE
country = ‘Gernmany’ AND region = ‘north’ AND mcronarket = ‘Al diy
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8.2 OPERATIONS ON DIMENSION TABLE

This update class is needed for structural reorganization of dimensions, e.g., if customers are re-
classified, product groups are changed etc. In Fe show the reclassification of the Region
level of the Segment dimension and the effect for the compound surrogates.

Definition 8-5 (Other Updates):

If an update operation is none of the classes above, we call it other updates. O
8.2.3.3 Conditionsfor Update Classes

The update class depends on the predicate and the assign list. [Lable 81 kontains the conditions for the
update classes. In this table, we consider dimension tables with the attributes hy, h.q, ..., hy for the
hierarchy levels and fi, f,, ..., fy for the feature attributes. The assign list is denoted by assignments a, =
expr on attribute 8. LOCPRED is described as a set of equality restrictions on the dimension table
{R(&)}, i.e., a=expr for attribute & and expression expr.

Class LOCPRED AssignList

Feature Update any local predicate on D; f, = expr; }, 1sjsk

{
Renaming Hierarchy { R(hp) }, R(h)), where h; = expr;
Members 1<j <ps<t

Moving Sub-Trees {R(hy), R(hi1), .., hj=expr;, h;_i=exprj.., ..,
R(hy) } ,where 1 sk <t hc=expry, where k<j<t
Other Updates Any local predicate on D; any assign list

Table 8-1: Conditions for Update Classes

A feature update has only feature attributes in the assign list, but all attributes of the dimension table
can be involved in LOCPRED. No hierarchical attributes are modified and the hierarchy and the cs
components remain unchanged. There is no effect on tuples of the fact table, so this operation is
executed very efficiently.

When renaming hierarchy members the hierarchical attributes involved in LOCPRED specify a prefix
path (or a number of prefix paths), i.e., { R(hy) } of Tgbte8=17 A hierarchy member mk of hierarchy
level h; is specified additionally in LOCPRED, Wheree., R(h;) of T This hierarchy
member is modified as specified in the AssignList: hj = expr;. Since each hierarchy member is assigned
a unique surrogate value within its siblings, the modification with the conditions described does not
change the hierarchy structure and the compound surrogates remain valid. An update on a leaf member
(j = 1 i Table 8-1) leaves the compound surrogate valid, too, because the path from the top level to
the leaf level is the prefix path and the cs components remain the same. Note that renaming more than
one hierarchy member can be done in a sequence of these update operations. In [Figure 8-3,]we show
the renaming of the hierarchy member ‘Saturny,’ to ‘Mediamarkty,’. The SQL statement for this
operation is the following:

UPDATE segnent SET nicromar ket = ‘ Medi amar ktyw WHERE Country =
“Germany’ AND region = ‘West’ AND m cromarket = ‘ Saturny

If a sub-tree of a hierarchy is moved to another position in the hierarchy, i.e., the prefix path from the
top level of the hierarchy to the top level of the sub-tree is changed, we have the update class moving
sub-trees. LOCPRED specifies the complete prefix path from the hierarchy top level h; to a hierarchy
member of the top level of the sub-tree m¢. Moving means, that the prefix path changes, i.e., the
outgoing edge of m{ is changed. Such a reorganization requires a corresponding modification of the
compound surrogates (in the dimension table and in the fact table). Since the compound surrogates of
a hierarchy sub-tree form an interval, the lookup of the fact table tuples can be optimized. Note that a
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key attribute update (as it is necessary for the reference surrogate of the fact table) in a clustering
index requires a delete and an insert operation, we first delete the tuples that are modified, write them

to a tuple stream, modify the compound surrogates accordingly, sort them and insert them into the fact
table via bulk update.

In Fie show moving of sub-trees of the member ‘West’ to the member ‘East’. The SQL
statement for this operation is the following:

UPDATE segnent SET region = ‘East’ WHERE Country = ‘ Germany’ AND
regi on = ‘West’

Segment

0 Germany 1 Austria
0 North 1 South O East 1 West
0Aldiy 1 Saturny 0 Ald1S 0 Hofery 1 Saturng OHofery, 1 Saturny,
S4 A3 A4 A5 A6 H1 H2 H3 H4 H5 HS6 H7 H8 H9 HI0 HIL

0.0.0.00.0.0.1 0.0.1.0 0.0.1.1 0.0.1.2 0.0.1.3 0.1.0.0 0.1.0.1 0.1.0.2 0.1.0.3 1.0.0.0 1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4 1.0.0.5 1.0.1.0 1.1.0.0 1.1.0.1 1.1.0.2 1.1.0.3 1.1.04 1.1.1.0 1.1.1.1

Figure 8-4: Sample Hierarchy

Segment
0 Germany 1 Austria
0 North 1 South O East 1 West
OAldiy 1 Saturny 0 Aldig 0 Hofery, 1 Saturng OHofery, 1 Mediamarkt,

AN N NG T I A

A4 A5 A6 Hl H2 H3 H4 HS H6 S5 H7 H8 H9 HI10 HIl S6 S7
0.0.0.0 0.0.0.1 0.0.1.0 0.0.1.1 0.0.1.2 0.0.1.3 0.1.0.0 0.1.0.1 0.1.0.2 0.1.0.3 1.0.0.0 1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4 1.0.0.5 1.0.1.0 1.1.0.0 1.1.0.1 1.1.0.2 1.1.0.3 1.1.04 1.1.1.0 1.1.1.1

Figure 8-5: Renaming Hierarchy Members: Saturn,, = Mediamarkty,

Segm b
0 Germany 1 Austria
0 North 1 South 0 East
0Aldiy 1 Saturny 0 Aldig 0 Hofer, 1 Saturng 2Hofer,y 3saturny,
S4 A3 A4 A5 A6 H1 H2 H3 H4 HS He6 H7 H8 H9 HI10 HI1l1 S6 S7

0.0.0.00.0.0.1 0.0.1.00.0.1.1 0.0.1.2 0.0.1.3 0.1.0.0 0.1.0.1 0.1.0.2 0.1.0.3 1.0.0.0 1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4 1.0.0.5 1.0.1.0 1.0.2.0 1.0.2.1 1.0.2.2 1.0.2.3 1.0.24 1.0.3.0 1.0.3.1

Figure 8-6: Moving Sub-Tree: West =» East
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8.2.3.4 Processing of Update Statements

The update classes (U1) and (U2) do not require special processing algorithms because no compound
surrogates are changed and the update is performed efficiently. An update of the leaf level (i.e., the
dimension key attribute) will require a corresponding modification on the dimension key attribute of
the fact table (not a primary index attribute). In this case for every dimension tuple that is updated, the
corresponding fact tuples are searched via the reference surrogate. For the classes (U3) and (U4), we
need special methods to execute the dimension update and the following fact table update as
efficiently as possible.

For up, moving sub-trees (U3) the new compound surrogates have the same cs prefix (see
also F The corresponding dimension table tuples can be specified via an interval on the
compound surrogate, because a hierarchy sub-tree is encoded by a compound surrogate interval (see
Section . Thus, the affected fact tuples are specified via an interval on the reference surrogate on
this interval, i.e., a range query on one dimension. We delete these fact tuples and collect them in a
temporary container (e.g., main memory, if sufficient, or a file), modify the cs prefixes for the new
prefix path, sort them w.r.t. the z-value of the dimensions and insert them via bulk insert into the fact
table.

shows an example for this update class (U3). The paths containing hierarchy member
‘West” now contain hierarchy member ‘East’ instead. The cs components of the hierarchy paths for
hierarchy level Region are changed accordingly (from 1 to 0). Note that the successor members also
have to be modified (“ Hofery” = 2 and “ Saturny’ = 3).

For the update class other updates (U4) we propose a general method how to process such update
statements. Any dimension tuple may be affected by the update predicate LOCPRED with a
modification of the compound surrogates. The changed compound surrogate requires an update on the
reference surrogate of the referencing fact tuples. Such an update on the fact table is a primary index
attribute update, i.e., the tuples physically are deleted from the UB-Tree and inserted with the new
index attribute value. We delete the fact tuples for every changed dimension tuple, collect them like
for (U3), assign the new reference surrogate, sort them and insert them into the fact table. Depending
on the number of tuples in the fact table concerned by the update statement, this operation can take a
long time.

8.2.3.5 Alternative Update Processing

A naive method to cascade updates from the dimension table to the fact table is to perform for every
tuple tp of the dimension table that is updated, a lookup in the fact table. The tuples of the fact table
found by the lookup are updated correspondingly. The lookup is a multidimensional range query,
where one dimension is restricted to a point and the other dimensions are unspecified. This leads to a
very poor performance, because such a degenerated query box intersects a large number of pages and
thus takes a long time to perform. A large number of dimension table tuples tp leads to a
corresponding iterative processing (nested loop) of the update sequence. This processing serves the
query boxes in a pipeline manner. Often, the same pages are accessed by more than one query box.

We propose to use an optimized execution plan, where first all query boxes are collected, in order to
apply an extended multi-query box algorithm as described in Section 1()5 l’Vith this algorithm we first
collect the page identifiers of the fact table before actually reading them from disk. For each page, we
post-filter the tuples by all query boxes intersecting this page. Thus, we avoid multiple reading of

pages.
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8.3 Operationson the Fact Table

The amount of data stored in the fact table usually is very large compared to the dimension tables.
Maintenance of the fact table (i.e., insert, delete, and update) often affects a large number of tuples and
can take a long time to perform.

The initial load of the fact table inserts a large number of tuples (usually tens of millions or more). The
physical organization of the fact table with the clustering UB-Tree and the reference surrogates as
index attributes requires a lookup in each dimension table for every tuple. We additionally must ensure
the consistency of the dimension keys in the fact table and the dimension tables (reference
constraints). Special methods are necessary to speed up inserting data into the fact table.

Operations on the fact table often use dimension keys as restrictions to identify the tuples that are
maintained (the concatenation of the dimension keys is the primary key of the fact table). The
dimension keys, however, are not_index attributes of the UB-Tree. A full table scan is necessary to
perform such operations. Section escribes how to improve the performance via a transformation
of dimension key restrictions to reference surrogate restrictions.

8.3.1 Transforming Restrictions

In the fact table, the dimension keys are not indexed, i.e., the dimension keys are not index attributes
of the UB-Tree and usually are not indexed via secondary indexes. Thus, restrictions on dimension
keys are evaluated via a full table scan and are performed slowly. The physical model, however,
assigns each dimension key a reference surrogate that is an index attribute of the UB-Tree.
Transforming the restriction on the dimension keys into a restriction on the reference surrogates
efficiently evaluates the result via index access.

In the following, the predicate on the fact table is denoted by LOCPRED(f act) consisting of a
sequence of PRED(fact. d;) (dimension keys) and of PRED(fact. m) (measure attributes)
connected via AND operators. The predicates PRED( @) can be any SQL predicate determining
attribute a, e.g., & = expr ora BETWEEN expr; AND expr ; etc.

The transformation maps a predicate PRED(fact. d;) of the dimension key to a predicate
(fact.cs;) of the corresponding (indexed) reference surrogate. This mapping is provided by an
artificial join to the corresponding dimension table, i.e., a lookup into the dimension table with the
statement SELECT ¢s FROM D WHERE PRED(D. h;). PRED(D . h;) means that in the
original predicate PRED( f act . d;) we replace each occurrence of fact.d; with D;.hy, i.e., the leaf
level of the hierarchy of the dimension table D;. We get a set of compound surrogates (i.e., the
corresponding reference surrogates for d;) that is used as predicate on the reference surrogate.

The resulting ¢ complex operator tree is optimized in the conventional way as described in
Sections 9and 10] Especially, the combination of several dimensions leads to multidimensional point
queries, because the set of reference surrogates for each dimension contains single values. An
optimization to recognize intervals on the set ofmes can speed up processing significantly.
We use the cs2ival operator described in Sectiont04-81+that returns a number of intervals from a set
of compound surrogate values using the DXcs index.
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UPDATE
REL
Fact
‘ SET
TIMES :
TIMES
IVAL_GEN
TIMES (min, max)
/\ IVAL_GEN

IVAL_GEN IVAL_GEN
(min, max) (min, max)

(a) Original Operator Tree (b) Transformed Operator Tree

Figure 8-7: Operator Tree for Update on Fact Table

Example 8-2: (Transforming a Restriction):

‘mhows the operator tree for the transformed restrictions in the case of an UPDATE

S ith a SET clause and a predicate (see Section | . The original operator tree (not
optimized for EHC) is shown in Figfe‘l;_fﬁﬂa). The restriction evaluated by the RESTR operator
usually performs a full table scan on the Tact table (REL( Fact ) ), because no index access is possible
on the UB-Tree. The SET operator modifies the corresponding attributes of the fact table result tuples
as specified in the SET clause of the UPDATE statement. The transformed operator tree (
(b)) consists of three parts, the restrictions shifted to the dimension tables, the range query access to
the fact table and the SET operator for the UPDATE SET clause.

The | VAL_GEN operator is an abstract operator for the interval generation of the local restriction of h;
of dimension D;. Depending on the restriction, | VAL _GENreturns a set | of cs intervals, | = {(ming,
maX.s)}. Each element of | is joined with the cs intervals of the other restricted dimensions for a
number n of multidimensional range queries, N = N1 * N, *... * ny for K restricted dimensions. In
addition to the multidimensional range query, local predicates on feature attributes can further restrict
the fact table. These restrictions are summarized in the tree LOCPRED for the fact table. For each
resulting tuple the SET predicate is applied to update the corresponding attributes. Note that by the
optimization, a special algorithm to handle multiple query boxes is applied (see Section 1@.

8.3.2 Loading Data

The most performance critical maintenance operations in data warechouse systems is the periodic
incremental load of the DW. The DW is updated in periodic intervals (e.g., once a day, a week or
month) during a time window where no traffic is on the DBMS (dedicated load). Sometimes there are
no time windows because the warehouse must be available all the time (24 x 7 availability). In this
case, updates are performed during normal work load and may slow down retrieval performance.

This section describes how to speed up bulk loading in order to minimize the time window and reduce
the time to stress the DBMS by this operation.

Inserting a tuple into the fact table requires the lookup of the reference surrogates (see Section
A lookup for every reference surrogate (dimension) into the corresponding dimension table via
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dimension key (i.e., SELECT D .cs FROM FACT, D WHERE FACT. d;=D. h;) returns the
corresponding surrogate. The lookup is necessary for each dimension and therefore slows down the
performance to process the load (one | NSERT operation requires N index access operations, if a fact
table has n reference surrogates).

The lookup is processed via the primary index of the dimension table. An index lookup has the effort
of a B-Tree search. Sometimes the required pages of the dimension tables can be cached in main
memory (if the insert is local with respect to the dimensions), but a B-Tree organization is not the
most efficient main memory access structure. Often the primary indexes of all fact tables do not fit
into the main memory caches of the DBMS.

One solution is to store the necessary attributes, i.e., the dimension key and compound surrogate in a
hash table. Each dimension is associated a hash table that is stored in main memory. A lookup in a
hash table is very performant (depending on the length of the collision chains). There is a constant
overhead to read all dimension tables for the bulk load and store the two attributes — the dimension key
and the cs values — in the hash tables. The consecutive lookups are very fast.

It is important to chose a reasonable cardinality of the hash values depending on the number of objects
to insert into the hash table. A good tradeoff between chain length and space utilization is to use a
cardinality of n/3 if n objects are inserted into the hash table. In this case we have an average chain
length of three with an average of three main memory accesses for one lookup (one for the address of
the first object, another one to check whether it is the searched object and in the average one for the
address of the next object in the chain).

Compared to the insert into the fact table this lookup takes a short time. However, the amortization of
the constant effort to load the hash tables depends on the number of tuples that are inserted via the
bulk load. Thus, the bulk optimization should be applied, when the sum of the time to build the hash
tables and for the bulk insert is less than inserting all tuples with single inserts. In Sectionwe show
the insert behavior for both methods.

The reference constraints between the dimension attributes of the fact table and the dimension keys of
the dimension tables require a consistency check. The consistency check usually is performed in a
separate lookup in the referenced table. In the case of a reference surrogate lookup, however, this
check is done implicitly. If a reference surrogate for a dimension key has been found, a corresponding
dimension key in the dimension table also is found. The reference constraint is fulfilled. Thus, we can
omit the reference checks (for the reference constraints for the dimension keys) when inserting fact
tuples.

8.3.3 Insert

Inserting a tuple into the fact table requires a lookup into all dimension tables to get the reference
surrogates corresponding to the dimension key attributes. Each tuple is completed with the reference
surrogates for all dimensions. The complete tuple is inserted into the fact table, i.e., into the UB-Tree.

The lookup is done via primary index on the dimension table D; that has D;.h; as index key with the
condition FACT.d, = D;.h;. Thus the cost to insert the tuple into the fact table is n* lacc+UBIns, where
n is the number of dimensions for the fact table and lacc is the cost for a direct index access
(positioning). UBIns s the cost to insert a tuple into the UB-Tree.

Inserts concern a small number of tuples (compared to bulk insert, periodic updates and initial load).
The overhead to fill hash tables in order to speed up the surrogate lookup is too large. A hybrid
method is possible to get efficient lookup in the hash table and avoid the overhead to fill the hash
table. A hash table is created for each dimension without filling it. For every tuple to insert into the
fact table we search in the hash tables whether the reference surrogates are already stored. If the
dimension key is not found, we perform a lookup in the dimension table and store the new dimension
key (and reference surrogate) in the hash table. Because of the short lookup time for hash lookup, the
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performance in this case is nearly the same as for index lookup solely. This method makes also sense,
if a relatively small number of tuples is inserted via bulk insert (compared to the cardinality of the
dimension tables).

8.34 Delete

Deletion of tuples is a standard B-Tree (or UB-Tree) operation. To find the tuples that are deleted a
predicate is specified:

DELETE FROM t abl e WHERE LOCPRED

LOCPRED can be any predicate specifying the tuples to delete. If the restrictions of LOCPRED
concern dimension keys, the restriction can be mapped to a restriction on the reference surrogates via a
restriction transformation (see Section to get the tuples to delete efficiently via UB-Tree access.

8.3.5 Update

An UPDATE statement specifies the tuples to modify in the same way as a DELETE statement (see
Section 8|3lﬂvia the predicate LOCPRED. To efficiently find the corresponding tuples, the same
predicate transformation (dimension key restrictions are transformed estrictions on the reference
surrogates via a lookup in the dimension tables) is used (see Section 8 .

The modified tuples are not deleted and inserted into the UB-Tree as long as the primary index key
attributes (for the UB-Tree) are not changed, i.e., an update in place. An update in place computes for
each tuple the new attribute values. Some minor reorganization occurs, if the size of the tuple changes
by the update. In this case, the tuples on the same page that are “larger” (according to the index key
order) are shifted to provide enough space for the new tuple or to reuse the free space from the update
. This shift can result in a page overflow with a consecutive B-Tree page sp@ Figure
ows the effect of an update in place on tuple T, where the size of T4 increases by 10 byte. The
illustration depicts one page with the tuples T;, Ty, Ts, T4, Ts with the order O(T;) < O(T) < O(T3) <
O(T,) < O(Ts). The position array on the beginning (left side) of the disk page points to the position of
the corresponding tuples, i.e., the smallest tuple T; begins on position 90 etc. An update on Ty
increases the size of T4 and shifts the larger tuples to the left. If the size is reduced, Ts is shifted to the

right.
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Figure 8-8: Reorganization for Update in Place

If the primary key is changed by the UPDATE statement, i.e., an update of one of the reference
surrogates, the tuple is deleted and inserted with the new value of the attributes. A change on the
reference surrogates occurs, if the dimension key of a fact tuple is changed. A lookup in the
corresponding dimension table fetches the new reference surrogate values.

? The consequences depend on the implementation of the B-Tree operations. E.g., a page underflow could occur
and pages are merged etc.
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8 EHC PROCESSING

The most frequent updates on primary key attributes (reference surrogates) are triggered updates.
Triggered updates occur, if the compound surrogate of a dimension table is modified, and this
modification is propagated to the tuples in the fact table (see Section 8@

8.4 Measurements

This section describes some measurements with the implemented concepts. We describe maintenance
performance for dimension and fact tables. The measurements on the Sales DW are performed on a
two processor PC Pentium II, 400 MHz, with 768 MB RAM and a SCSI hard disk. Operating system
is Windows 2000.

8.4.1 Dimension Table Maintenance

An insert into a dimension table triggers the computation of the compound surrogates of the table (for
details see Section . In this section we compare mass loading of the dimension table customer of
the Sales DW with and without computation of the compound surrogate. There is one hierarchy
defined on the customer dimension: Country — Department — County — City — Area — Customer. Thus,
the compound surrogate consists of six components, one for each hierarchy level. The calculation
requires several index accesses. We loaded 10, 100, 1.000, 10.000, 100.000, and 1.000.000 tuples via
flat file into the empty customer dimension table. For each tuple the kernel first computes the
compound surrogate and inserts it into the B*-Tree immediately with maintenance of the two system
indexes DXh and DXcs. The index maintenance is necessary, because actual indexes are required for
the computation of the compound surrogates.

Note that single insert statements would have about the same performance, because they compute the
compound surrogates in the same way and require corresponding index maintenance.
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Figure 8-9: Load Performance of Dimension Tables

Figure 8-9]shows the comparison of inserting tuples with and without computation of compound
surrogates. Note that the axes are both logarithmic. Generally speaking, the insert complexity is linear
with the number of inserted tuples. The computation overhead is between 10% and 70% for more than
1.000 inserted tuples. For smaller amounts of tuples, there are further effects that make interpretation
difficult (e.g., cache effects).
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In the overall, the insert rate is about 1.000 tuples per second for large number of tuples. This usually
is enough for the daily update of changing dimensions.

8.4.2 Fact Table Maintenance

We measure the load performance of the fact table for the Sales DW with a modified fact table: The
number of measure attributes is reduced to 10. Five dimensions are used for MHC: product,
warehouse, calendar, transaction and sales payment. Each dimension has a compound surrogate in the
dimension table and one corresponding reference surrogate in the fact table. TEE ows the
dimensions and the cardinalities. Note that all dimensions are relatively small. The product dimension
is the largest dimension with 27.929 tuples.

Dimension Cardinality
Product 27929
Warehouse 226
Calendar 2922
Transaction 91
Sales Payment 44

Table 8-2: Dimensions and Cardinalities for the Measurements

In Figure 8-10 [we show the fact table load time for different load mechanisms. We compare the load
of 10, 100, 1.000, 10.000, 100.000 and 1.000.000 tuples with the four different methods:

¢ Random Insert: Tuples are inserted via single | NSERT | NTOSQL statements. Each
reference surrogate requires a lookup in the corresponding dimension table (index access).

e Spool Hash Lookup: Tuples are bulk loaded (via flat file) and the hash lookup optimization
method is used. Hash lookup means that all compound surrogates and the dimension key
values of all dimensions are loaded into internal hash tables before the load operation. The
reference surrogate lookup is done in-memory.

e Spool with CS: The reference surrogates are already in the flat file. No reference surrogate
lookup is necessary.

*  Spool B-Tree: The flat file is spooled into a standard B*-Tree.

Note that the scale is logarithmic for both axes.

The random inserts are almost linear w.r.t. the number of tuples inserted. We did not measure the
random insert for 1 million tuples, since the time is about 12 hours. For the bulk load operations, the
time is also almost linear for larger tuple sets (from 1 thousand to 1 million tuples). For both bulk load
methods, a constant overhead for loading the hash tables with the compound surrogates is necessary.
In these measurements, this constant time is very short (about 0,5 seconds), because the dimensions
are not very large. For the hash table load, the complete DXh index is read. Since this is a full index
scan, it is very fast: 0,5 seconds for all dimensions.

After reading the tuples from the flat file, they are supplemented (by the reference surrogate) and
sorted. Note that the sorter cache was large enough to hold them in cache (no external sorting has been
applied). We use heap sort as in-memory sort method. For 100 tuples, the time is less than for 10
tuples, because the index pages are already in cache.
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Figure 8-10: Comparison of Fact Table Load Performance

The time for Soool with CSis more than for the hash lookup method. This method is implemented by
loading a UB-Tree with the dimension keys as the reference surrogates, but without defining reference
surrogates. In this case, the tuples from the flat file are inserted with a computation of the z-value.
However, the time for the correctness check of the dimension attribute values (whether they are in the
proper range) takes a while, since it is implemented as a constraint operator tree and each tuple runs
through this operator tree. This means that the hash lookup is very efficient.

We do not need these range tests for standard B*-Trees. However, the load time is still not faster than
for the hash lookup. Some additional effects affect the performance. As for the other methods, sorting
is necessary. For B*-Trees we sort w.r.t. the compound key (in this case the reference surrogates), not
the z-value. Depending on the sort performance, there may be some deviation from the measured
results.

In general, the mass loading method is more than a factor of 100 faster than random insert (especially
for large number of tuples). With the implemented mass loading method, we load more then 3.800
tuples per second, i.e., 1 million tuples are loaded within 259 seconds.
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9 Query Processing

The users of a data warechouse gain information about the stored data via queries on the DBMS. We
call SQL statements on a star (or snowflake) schema which include the fact table star queries. The
processing of star queries considering MHC is described in this section.

One of the most important parts of a star query is the processing of the star join, i.e., the join of the
large fact table with the dimension tables. Star join processing has been studied extensively and
specific solutions have been implemented in commercial products. See M for an overview.

Bitmap indexes are used frequently to speed up the access to the fact table. The bitmaps corresponding
to the different dimension values are ANDed or ORed depending on the selection condition. The
resulting bitmap is used to extract tuples from the fact table ([@[ ). When the query
selectivity is high, only a few bits in the result bitmap are set. If there is no particular order among the
fact table tuples, we can expect each bit to access a tuple in a different page. Thus there will be as
many I/Os as there are bits set.

Multidimensional clustering has been discussed in the field of multidimensional access methods (e.g.,

nd [Sam90]).JTZSTI8T hddresses the issue of hierarchical clustering f(i.LLh.mue—dimensional
case. The importance of good physical clustering in OLAP has been shown in IKROR] Iwhere packed
R-trees are exploited for storing the results of the data cube operator (|GBLP96|)J In [DRSN98 _the
benefits of hierarchical clustering for star queries was observed as a side effect of using a chunked file
organization for enabling caching with chunk as the caching unit.

Several aspects of processing and optimizing star join queries on hierarchically clustered fact tables
are also presented in [[['TO1].| The paper considers a star schema with UB-Tree organized fact tables
and dimension tables stored sorted w.r.t. a composite surrogate key. For a particular class of star join
queries, the authors investigate the usage of sort-merge joins and a set of other heuristic optimizations.

Some further optimization w.r.t. grouping with hierarchically clustered data is the pre-grouping
method as described in Section 9 ’ZEI The publications contributing most to the pre-grouping methods
described in this thesis are [@and escribes three principles of pre-grouping, i.e.,
invariant grouping, simple coalescing and generalized coalescing. [[YL94] dnd [[YL95] describe an
early grouping and aggregation method very similar to the coalescing methods of [[CS94]] However,
these methods do not consider hierarchical pre-grouping.

In the last years two additional publications, [Lar97] hnd [[Lar0Z]] discuss pre-grouping. [
compares different grouping methods and introduces a mathematical model to estimate group sizes
and [tends pre-grouping by practical implementation issues such as partial pre-grouping.

'mescribes parallel query processing, where grouping is done on partial results (per node). The
final grouping operation merges the groups of the local results.

Other transformations are described in [[FTHQ95T dnd [LMS94]. We first published the basic abstract
execution plan as described in Section 9.3 th [KTS+02].[We present the basic abstract execution plan
for star queries on a schema with hierarchical encoding and a primary clustering multidimensional
index on the fact table. Also the concept of pre-grouping is introduced shortly. In this thesis we extend
the discussion of pre-grouping by implementation issues and an exact performance evaluation.
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9.1 Conventional Approach of Star Query Processing

The standard query processing algorithm to execute so called star join queries first evaluates the
predicates on the dimension tables (either on normalized (snowflake) or de-normalized (star)
schemata) resulting in a set R, of my tuples of dimension D;, and then builds a cartesian product of the
dimension result tuples (Ry X R, X ... X R,) for dimensions D1, Dy, ..., D,. The number of tuples t=(fy,
fo, ..., f), where f10Ry, f.0R,, ..., foR,, is my*mp* .. *my,. The tuples t are used for a direct index
access on the compound index on the fact table. For non-sparse fact tables and queries that restrict
most dimensions of the compound index in the order of the index attributes the access to the fact
tuples is quite fast. The next processing step joins the resulting fact tuples with the dimension tables
for grouping and aggregating.

However, for sparse fact tables and high dimensionality, such a query processing does not work
efficiently enough for large data volumes. The number of cartesian tuples resulting from the
dimension predicates grows very fast, whereas the number of affected tuples in the fact table may be
comparably small.

Due to the usually relatively small cardinality of the dimension keys compared to the numbe

e DBMS index the dimension keys in the fact table with bitmap indexes ( 5
mﬁm ith the use of bltma indexes, a different star join processing is possible (called star
transformation in Oracle, Ora01])| The star transformation first transforms the restrictions on the
dimension tables into local sub -queries, each containing the dimension restriction, that qualifies a
number of dimension keys. The dimension keys serve as restrictions on the bitmap indexes. The
bitmap intersection returns a number of tuple identifiers for the resulting tuples of the fact table. The
materialization of the resulting fact tuples, eventually reduced by additional local restrictions on the
fact table, retrieves the tuples in base granularity. These tuples now are joined with the dimension
tables, in order to group and aggregate them and get the resulting tuples of the query.

For example, consider the following query:

SELECT SUM F. sal es), P.group, L.area, T.nonth

FROM Fact F, Product P, Location L, Tine T

WHERE F.itemid = P.item AND F.store_id = L.store AND
F.day_id = T.day AND P.category = ‘catl” AND
L. popul ati on > 1000000 AND T.year = 2002

GROUP BY P.group, L.area, T.nonth

This query is rewritten into the following statement:

SELECT SUM F. sal es), P.group, L.area, T.nonth
FROM Fact F, Product P, Location L, Time t
WHERE F.itemid = P.item AND F.store_id = L.store AND
F.day_id = T.day AND
F.itemid IN
(SELECT item FROM Product WHERE category = ‘catl’) AND
F.store_id IN
( SELECT store FROM Locati on WHERE popul ati on > 1000000) AND
F.day id IN (SELECT day FROM Ti me WHERE year = 2002)
GROUP BY P.group, L.area, T.nonth

With this query rewriting, the secondary indexes (usually bitmap indexes in Oracle) on the dimension
keys of the fact table can be evaluated and intersected. The index intersection returns a set of tuple
identifiers TID that qualify tuples of the fact table. The TIDs are sorted, in order to read each page
only once. These tuples t = (item _id, store id, day _id, sales) are materialized, i.c., read from the fact
table via the TIDs (ROWD in Oracle, The tuples t now are joined with the dimension tables
and grouped and aggregated as specified in the query.
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This method allows for a fast evaluation of the qualified tuples on the fact table, however, the
materialization step can be very expensive, because for each TID, usually a random read access to the
secondary storage is necessary. Generally, the fact table tuples are not clustered w.r.t. one or more
dimensions as it is for clustering composite B-Trees or for clustering multidimensional indexes. Thus,
a very small number of tuples on one disk page contribute to the result. We usually have to read n
pages for n TIDs. However, the tuples can be “naturally” clustered, if they are inserted into the
warehouse w.r.t. the time dimension. Often, data is loaded periodically on the smallest time
granularity, e.g., every day. The load operation is an append to the data in fact table. Thus, each disk
page contains only data of one day.

The basic concept is the transformation from an equi-join (the dimension key attributes of the
dimension tables and the fact table) into a semi-join, in order to evaluate the fact table tuples
efficiently.

The concept of IBM DB2 UDB also implements a semi-join for the fact table access. The dimension
key attributes of the fact table are indexed by secondary indexes (usually standard B-Tree indexes).
The restriction on the dimensions are evaluated resulting in a number of dimension keys for each leaf
dimension table. These dimension keys are joined with the secondary indexes of the fact table. Each
join results in a set of row identifiers (RID). One set of RIDs R for dimension D; is used to build a
dynamic bitmap that sets the bit for the row, if it is in R. The remaining bits are set to 0.

The next dimension D; is chosen to compare it with the RID bitmap, in order to set bits that do not
occur in R to 0. With this step, all rows (tuples) of the fact table are identified that are qualified by the
restrictions of dimensions D; and D;. The remaining restricted dimensions are compared with the RID
bitmap correspondingly. After this iterative comparison and bit setting, the RID bitmap determines all
tuples of the fact table that have to be materialized. These tuples are read from the fact table
(materialization) and are joined with the dimension tables again, in order to get the dimension attribute
values necessary for grouping and aggregation. The tuples then are aggregated, grouped and sorted as
far as required.

There are some optimization issues to speed up the RID bitmap intersection. The position in the RID
bitmap B for the row id is not a bijective mapping (e.g., the identity: RID = 1 = B[1] is set etc.), but a
mathematical optimized hashing function is used, in order to occupy less space for the bitmap.
However, there are sometimes collisions resulting from the hash function. This means that some tuples
of the fact table are materialized that do not contribute to the dimension predicates. The residual join
has to post-filter, in order to decide that only correct tuples are processed.

The decision which dimension is used for building the bitmap depends on statistic information of the

optimizer. With a reasonable cardinality and initial dimension, the time to evaluate the dimension
intersection can be reduced significantly.

9.2 Star Query Template

In SQL Statement 9-1, e depict a SQL query template for ad hoc star-queries. The notation {X}
represents a set of X objects. The above template defines typical star queries and uses abstract terms
that act as placeholders. Note that the queries that conform to this template generally have a structure
that is a subset of the above template and they instantiate all abstract terms.

Our template is applied on a schema similar to the star and snowflake schemata as described in
Section 2nd 2@ We use the term star queries for queries on star schemata and snowflake
schemata. The JOINPRED expressions define the star join. Each dimension D; is joined with the fact
table via the leaf dimension table D;i: D;it.h; = FACT.d.. The higher dimension tables Dik of Dimension
D; are joined depending on the snowflake schema (Section
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Apart from the star-join, there is a GROUP BY and HAVI NG clause. In general any attribute
(hierarchical, feature, or measure) can appear in a GROUP BY clause. However, most queries will
impose a grouping on a number of hierarchical and/or feature attributes. Finally, the ORDER BY
clause controls the order of the presented results.

SELECT {D.h}, {D.f}, {FT.n},

{AGGR(FT.m) AS AM, {AGGR(D.h) AS AH}, AGGR(D.f) AS AF}
FROM FT,{D}, .., { D}
WWHERE JO NPRED(D;) AND

JO NPRED(D,) AND

JO NPRED(D,) AND
DI MPRED(D;)  AND
DI MPRED(D,) AND

DI MPRED( Dy AND
FRESTR({ FT. n})
GROUP BY {D.h},{D.f}, {FT.n}
HAVI NG HPRED( { AM} , { AH} , { AF})
ORDER BY <ordering fiel ds>

SQL Statement 9-1 : Query Template

AGGR( x) stands for a standard SQL aggregate function (M N, MAX, SUM COUNT, AVG). We
use atomic expressions for illustration. However, we will extend the expression complexity later and
discuss methods to handle complex expressions.

DI MPRED( D) contains restrictions on dimension D;. This restriction includes predicates on the leaf
dimension table D; and on the higher dimension tables D;¥. It triggers the filtering on each dimension
table. Also sub-queries can be part of DI MPRED. However, no joins with dimension tables of other
dimensions are allowed (see Section

FRESTR({ FT. n}) is a restriction that contains any constraints on measure attributes of the fact table,
e.g., to ask for sales that exceed a certain value threshold.

We assume that each dimension has one hierarchy with the hierarchy levels hy, hy, ..., hy, where h is
the most aggregated and h; the most detailed level of the hierarchy. A dimension with more than one
hierarchies can be split into several dimensions each containing one hierarchy. We will discuss
dimensions with multiple hierarchies in Section

9.2.1 Hierarchical Surrogates

In Section fg/e have already discussed the effect of hierarchical clustering and the usage of compound
surrogates. Hierarchical point restrictions are mapped to interval restrictions by using the hierarchical
surrogate encoding. For the discussion of query processing we abstract from the compound surrogate
encoding method, in order to discuss a general hierarchical encoding method.

We encode hierarchy paths by concatenating the hierarchy levels hy, h., ..., hy (h; being the most
aggregated level and h; the most detailed one). We use the notation hy/h.4/.../h; for these hierarchical
surrogates, called hierarchical surrogate key (hsk) or simply h-surrogate.

The components hy of the h-surrogate h/h.4/.../h; correspond to the (encoded) surrogate components
of the compound surrogates cs* (see [efinition 5-3). Other equivalent encoding are also possible.
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9.2.2 Sample Schemafor Grouping

As example throughout this section, we use a simple star DW schema as depicted in M‘T his
data warehouse stores sales transactions recorded per item, store, customer, and date. It contains one
fact table SALES FACT, which is defined over the dimensions: PRODUCT, CUSTOMER, DATE, and
LOCATION with the obvious meanings. The measures of SALES FACT are price, quantity, and sales
representing the values for an item bou omer at a store at a specific day. The schema

and dimension tables is shown in Md the dimension hierarchies are depicted in Ei:j

The meanings of the hierarchies are obvious.

CUSTOMER SALES FACT PRODUCT
person id < person id ¥ item id
profession product id group
name store id category
address day brand
hsk - hsk

~ 1 hsk_cust
LOCATION hsk_prod
gore id hsk_loc
F hsk_date . DATE
region rice \\\ oy th
country Fmantity K ;nec;?
Egl(ulatlon sales W hs

Figure 9-1. Sample schema

The CUSTOMER dimension has two hierarchical attributes (person_id, profession) and two feature
attributes (name, address). The dimension LOCATION has four hierarchical attributes (store_id, city,
region, country) and one feature attribute (population) that is assigned to the city level.

Country
?

Y ear Region Category
t t t
Month Profession City Group
t t t t
Day Person Store Item

DATE CUSTOMER LOCATION PRODUCT

Figure 9-2. The dimension hierarchies of the example

Finally, the PRODUCT dimension is organized into three levels: item — group — category . The
attribute brand characterizing each item is a feature attribute.

Note that all dimension tables contain the attribute hsk, i.e., the h-surrogate for the dimension

hierarchy. These h-surrogates are referenced by hsk_cust, hsk_prod, hsk_loc, and hsk_date in the fact
table.

9.2.3 Predicate Specification

The WHERE clause of a query instance for the star query template consists of join constraints and
predicates. All predicates determining one dimension are called dimension restriction (DIMRESTR).
All predicates specifying measure attributes are called fact restriction (FRESTR) and all restrictions of
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one query are called query restriction. Note that we use the terms restriction and predicate
equivalently.

Basically two different kinds of restrictions occur in star queries: hierarchical and non-hierarchical
restrictions.

9.2.3.1 Hierarchical Restrictions

Hierarchical restrictions restrict dimension hierarchy level attributes to one or several points. Also an
interval predicate on an enumeration data type can be seen as point restriction that specifies a number
of points, .e.g., year BETWEEN 2000 and 2002 is the same as year | N (2000, 2001,
2002) .

Hierarchical restrictions result in one or more intervals for hierarchical surrogates. We use the notation
h/he.4/* for an interval that contains all paths with the prefix h/h.;. A hierarchical restriction always
leads to exactly one interval, if a hierarchy prefix is restricted to one point, e.g., year = 2000 and
nmont h = 5. We call such a restriction a hierarchy prefix path (HPP) restriction.

Definition 9-1 (Hierar chy Prefix Path, HPP):

A hierarchy prefix path restriction, HPP, is a restriction on hierarchy level attributes of a dimension,
where alle levels from the most aggregated level h; to a hierarchy level hy are restricted to a point:

hy = vi AND hi.; = v¢{.; AND ... AND hy = vy. his the most aggregated level (top level) of
the hierarchy. A HPP always leads to one interval of the corresponding hierarchical surrogates:
h/hed/ .. Th/*. m

If more than one HPP restrictions exist on one dimension, several intervals on the h-surrogate qualify
the dimension result and consequently restrict the fact table.

A restriction on hierarchical predicates that do not form a hierarchy prefix is called hierarchy non
prefix path (HNPP) restriction.

Definition 9-2 (Hierarchy Non Prefix Path, HNPP):

A hierarchy non prefix path restriction, HNPP, is a predicate on hierarchy level attributes of a
dimension, where any hierarchy level attributes are restricted: hy; = Vs AND hyo=vy, AND ...
AND hy, = Vyn, where 1 < ki <t and is not a hierarchy prefix path restriction. A HNPP restriction
leads to one or more intervals. o

A HNPP restriction usually specifies several intervals, because the hierarchy prefix is not restricted
completely. For example consider the predicate mont h = 5. There are usually several years where
the month number 5, e.g., “May”, occurs. Assume that the years 2000, 2001 and 2002 are stored in the

hierarchy. Then the restriction nont h = 5, equal to */5/*, can be mapped to three HPP restrictions:
(year = 2000 AND nonth = 5) OR (year = 2001 AND nmonth = 5) OR (year

= 2002 AND nont h = 5) resulting in the three intervals 2000/5/*, 2001/5/*, and 2002/5/*.

Note that it cannot be decided statically (at query compile time), whether a HNPP restriction results in
one or several intervals without looking at the dimension table.

9.2.3.2 Non-Hierarchical Restrictions

Restrictions where not only hierarchy level attributes are involved, are called non-hierarchical
restrictions. Such predicates usually contain restrictions on feature attributes or measure attributes. We
consider non-hierarchical predicates for the dimensions for this predicate evaluation step. Measure
attributes of the fact table are handled later in the fact table access.
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A restriction on dimension D; is non-hierarchical, if it restricts at least one feature attribute fj of D;.
Non-hierarchical restrictions on dimensions lead to several intervals. Feature attributes can be
orthogonal to the hierarchy and split an interval defined by a HPP or HNPP restriction to a large
number of very small intervals, sometimes even points.

Consider for example a customer hierarchy with geographic hierarchy levels and the feature attribute
age (of the customer). Restricting the hierarchy to all customers living in “Germany” with an age of 30
results in a number of customers not necessarily forming an interval. We introduce a method how to
use hierarchical properties even in these cases (see Section for more details).

Restrictions on the fact table measure attributes are always non-hierarchical restrictions. Thus, a query

with a predicate FRESTR{FT.m}) (see SPL Statement 9-1) has a non-hierarchical restriction on the
fact table.

9.3 Abstract Execution Plan with Interval Generation

In this section we describe the major processing steps entailed when we want to answer star-queries
over a hierarchically clustered fact table. It has been shown ([IDRSN98]] [MRB99],| [KS01])]that
evaluating queries including hierarchical restrictions on a hierarchically clustered fact table provides
significant gains in performance.

We introduce an abstract execution plan (AEP) to illustrate the basic processing steps by abstract
operators. The abstract operators only define a semantic, e.g., a join operator does not specify how the
join is implemented (via sort merge, nested loop or hash join).

Order By

Group Select

Residual Join

Fact Table Access

Predicate Evaluation

Figure 9-3: Standard Abstract Execution Plan

The processing begins with the evaluation of the restrictions on the individual dimension tables, i.e.,
the evaluation of the predicates (Sectiormjn the Predicate Evaluation operator. We call the tuples
retrieved from the fact table fact tabler ples. These tuples are joined with the dimension tables
that are necessary for further processing, in order to retrieve dimension table attributes for grouping,
aggregating and projection. The Residual Join operator can be implemented also as n-way join,
depending on the capabilities of the DBMS. The Group Select operator groups and aggregates the
joined tuples according to the GROUP BY and SELECT clause. If post-filtering by a HAVI NG clause
is required, groups are removed from the result groups. Finally, the Order By operator sorts the result
set w.r.t. the attributes as specified in the ORDER BY clause of the query.
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Not all operators in the abstract plan may be needed for the execution of a particular query. The plan
rather represents the most complex abstract plan that might be required to answer a supported query.
For example, if the result records are not required in a specific order then the final Order By operator
will not be applied. Also, many queries will not restrict all available dimensions nor require feature or
hierarchical attributes from all dimension tables. This means that only a restricted number of Residual
Join operators will be used. In the simplest possible query (SELECT * FROM Fact) only the Fact
Table Access operator is needed.

The following sections describe the operators in more detail.

9.3.1 Predicate Evaluation

Recall that we assume a star schema with a hierarchically multidimensional clustered fact table. Also
the dimension tables are organized by hierarchical encoding. With this physical organization, we get a
special predicate evaluation optimization.

As described in Section a hierarchical prefix restriction on a dimension hierarchy, e.g., hy = v,
AND hi.; = v, A ... AND hy = vy describes an interval on the h-surrogates, i.c.,
h/h../.. /h/*. This interval can be evaluated efficiently by the underlying multidimensional index on
the fact table.

The original restriction DI MPRED of a dimension D; that is equi-joined with the fact table is
transformed to a semi-join specifying an interval for the fact table access.

Figute 9-4 [shows the abstract execution plan divided into two processing phases, the h-surrogate
processing and the main execution phase. The h-surrogate processing phase illustrates the semi-join
transformation by computing the intervals resulting from the DI MPRED restrictions for the dimensions
of the query.

Main Execution Phase

Order By

Residual Join

Fact Table Access

( Create Range ) ( Create Range )

A

h-surrogate processing

Figure 9-4: Abstract Execution Plan with Main Processing Phases

Create Range is responsible for evaluating the restrictions on each dimension table. This evaluation
results in an h-surrogate specification (set of ranges) for each dimension. All these together define one
(or more, disjoint) hyper-rectangle(s) in the multidimensional space of the fact table.
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Fact Table Access receives as input the h-surrogate specifications from the Create Range operators
and performs a “range query” on the underlying multidimensional structure that holds the fact table
data. Apart from the selection of data points that fall into the desired ranges, this operator can perform
further filtering based on predicates on the measure values and projection (without duplicate
elimination) of fact table attributes. In the case of many query boxes generated by the dimension
predicates, special optimization is necessary (see Section 1E|for more details).

For the vast majority of dimension restrictions, the Create Range operator can be implemented very
efficiently. If we consider hierarchical prefix path (HPP) restrictions (see Section then the first
matching tuple on each dimension suffices in order to retrieve the appropriate h-surrogate value that
generates the ranges. For example, if we have the restriction PRODUCT. cat egory = “air

condi tion” AND PRODUCT. cl ass = “A", then essentially what we want is all the leaves of
the sub-tree with root “air condition”/“A”/ defined in the tree instantiating the hierarchy of dimension
PRODUCT. Therefore, if we retrieve the h-surrogate value of the first tuple that qualifies and truncate
the part from the right that corresponds to level Item, then this will be the same for all matching tuples.
Next we can use this truncated h-surrogate value in order to create a range.

Moreover, if we have stored more information on the correlation between the attributes of a
dimension, apart from the definition of the hierarchy, then we can benefit from the above processing
scheme, even for non-HPP restrictions. Suppose we have a hierarchy hy, hyg,..., h; on a dimension and
we have a restriction of the form: hy = ¢; AND h, = ¢, AND ... h; = c;, where hy, hy,...,h do
not form a prefix of (hy,...,h;) and h; is the most detailed of the referenced attributes. If we know that h;
functionally determines hj, for all j > i, then we can still apply the above strategy. For example, for the
restriction DATE. nonth = “AU®9”, we know that the month attribute determines the year
attribute and thus only the first tuple that has this value for month suffices for our processing needs.
Similar observations hold for the restrictions on the feature attributes as well.

A very simple but also quite drastic optimization strategy for the processing of the Create Range
operator, is the use of a composite (B*-Tree) index, for each dimension table D;, defined over the
attributes hy, h.y,...,h;, hsk. This index’s purpose is twofold: (a) it can be used to speedup the retrieval
of Dj tuples, when a hierarchical prefix path restriction appears in a local predicate for D; and (b) it can
also be used as a table that stores the mapping between hierarchical prefix paths and h-surrogate
values. The former use is the classic exploitation of an index. The latter gives us the opportunity to use
this index solely to evaluate all predicates that contain restrictions on hierarchical attributes only (and
not on feature attributes), without accessing D;. This is possible regardless of the existence, or not, of a
hierarchical prefix match. Even if we do not have a match with the search-key of the index and we
have to fully scan the index, this will be obviously more efficient than scanning the dimension table
D;. Naturally, smaller tuples of the index will deliver us the required h-surrogate values with much less
I/O cost than if we had to read the D; tuples.

Such a physical schema, i.e., a secondary index DXh on the hierarchy level attributes and the h-
surrogate resp. compound surrogate are introduced in Section 4

Another issue worth mentioning is that in some cases, dimension restrictions can result in a number of
intervals or even distinct h-surrogate values. This inevitably will result in a large number of range
queries. However, very often this evaluation produces a set of h-surrogate values that belong to the
same “family” in the hierarchy and thus can be merged into a single interval, reducing this way the
total number of intervals created. For example, a restriction on the LOCATION dimension with
popul ati on > 1000000, could result in two areas that can be expressed by two intervals. The
restriction, however, may qualify a large number of hierarchy paths with a corresponding number of
distinct h-surrogates. A clever h-surrogate processing phase can detect such cases and reduce the
number of intervals by merging h-surrogates of the same area. This would generate two intervals
instead of a large number. We call such a method “values to interval”. An example for an

implementation that merges a number of h-surrogates (compound surrogates) to a set of intervals is the
cs2ival operator as described in Section 10.1.8.1.
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We describe the implementation of predicate classes, i.e., HPP, HNPP, and NH in more detail in

Section 1(@
9.3.2 Residual Join

Residual Join is a join on a key-foreign key equality condition among a dimension table and the tuples
originating from the Fact Table Access operator. Recall that the schema requires a foreign key
relationship between the dimension attributes of the fact table and the most detailed level of the
dimension table: Fact . d; = D . h;. Thus, each incoming fact table tuple is joined with at most one
dimension table record. The join is performed in order to enrich the fact table records with the required
dimension table attributes. These attributes may be required in the SELECT, GROUP BY, HAVI NG
and ORDER BY clauses.

For star queries we often have to join a large number of fact table result tuples. Since each tuple is
joined with a number of dimensions, the overall number of join operations is very high. Assume that
we have 100.000 fact table result tuples and four dimensions to join. The number of join operations is
4 x 100.000 = 400.000. Generally the number of join operations is n * fnr, where n is the number of
dimensions to join and fnr is the number of fact table result tuples.

For this purpose we suggest an implementation alternative. We use equivalence classes of dimension
attributes of the fact table and perform the join only once per equivalence class. Usually the join is
defined via the dimension key d; of the fact table and the most detailed hierarchy level h; of dimension
Di. An equivalence class is determined by a common h-surrogate prefix. The hierarchy levels h, hi.,
..., h are the same for all tuples of D; that have the same h-surrogate prefix h/h../.../h.. Thus, it is
enough to perform one join operation with Fact.d; resp. D;.h; for all fact table result tuples with the
same prefix hy, hyq, ..., hg (or functional dependent attributes).

We create a hash table for each dimension that has to be joined. In this hash table we use the
h-surrogate prefix h/hy4/../h as hash key and store the (joined) dimension table attributes for this
h-surrogate prefix as additional attributes in the hash table. For each fact table result tuple we look into
the corresponding hash table, if there is already a tuple with the same h-surrogate prefix. If there is no
tuple, the join Fact . d; = D. hy is performed and the result is stored in the hash table.

With this method, the number of lookups in the dimension table can be reduced significantly.
However, if feature attributes are needed that are not known to be functionally dependent on one of the
hierarchy levels of the h-surrogate prefix, we must perform the join conventionally, i.e., one join per
tuple and required dimension.

An additional reduction of join operations is to push down the Group Select operator, in order to group
on the h-surrogates of the fact table and thus reduce the number of fact table result tuples significantly.
The consecutive join affects a significantly smaller number of tuples. We discuss this optimization in
Section 9.E|

9.3.3 Group Select

The Group Select operator is responsible for the grouping of the fact table result tuples. Grouping is
usually done on hierarchical attributes or feature attributes. These attributes are not available in the
fact table and must have been joined by the former residual join, in order to have the grouping values
available.

The implementation of the Group Select operator depends on the optimizer decisions. In our
implementation we use a simple hash group algorithm.

The Group Select operator reduces the number of result tuples significantly, since we have usually
hierarchical grouping. For hierarchical grouping a performance optimization is possible. We group on
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h-surrogate prefixes of the fact table reducing the number of result tuples and thus the number of join
operations. This method is described in Section 9.4 in more detail.

9.34 Having

The HAVI NG clause, implemented by the Having operator post-filters the result of the query by
removing groups. The groups are removed w.r.t. predicates specified in the HAVI NG clause (see
SQL-92 standard and [

It is used usually in combination with a group by clause, in order to define predicates on aggregation
results:

SELECT gfield, AGH afield),

GROUP BY gfi el d
HAVI NG HAVI NG _CONDI Tl ON

where HAVI NG_CONDI TI ON is a sequence of expressions consisting of expressions like
AGG(afield)) OP expr. OP is an arithmetic operator, e.g., <, >, = and expr is an expression. An
example for a SQL statement with a HAVI NGclause is:

SELECT area, SUM popul ati on)
FROM ...

VWHERE ...

CGROUP BY area

HAVI NG SUM popul ati on) > 1000000

This statement returns the areas with a population larger than 1.000.000.

9.35 Order By

If the result of a star query has to be sorted, the sort attributes and the sort order are specified in the
ORDER BY clause. The sort operation is performed as last operation in the AEP by the Order By
operator. The implementation of the sort operation depends on the DBMS. Consider that sorting is
performed externally, if the available main memory is not sufficient.

9.3.6 Measurements

In this section, we present a comparison between conventional star join processing with secondary
indexes and the proposed execution plan with MHC and UB-Tree organized fact table. The
measurements are performed on a schema similar to the Sales DW. It consists of a fact table with three
dimensions Customer, Product, and Calendar and three measures: quantity, value, and unit_price. The
Customer dimension contains 1,4 million records, Product consists of 27.000 products and the
Calendar dimension covers 7 years on day granularity. The fact table data was enlarged to 15.543.380
records, amounting to 1,5 GB.

The query workload consists of 220 ad hoc star queries from the real world Sales DW application. We
classify the queries into three groups according to their selectivity on the fact table (i.e., number of
tuples retrieved from the fact table):

e [0.0-0.1]: 0% to 0.1% of fact table, i.e., O to about 15K records

¢ [0.1-1.0]: 0.1% to 1% of fact table, i.e., 15K to 160K records

e [1.0-5.0]: 1.0% to 5.0% of fact table, i.e., 160K to 780K records
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The goal of the performance evaluation was to measure two alternative execution plans:

* the conventional star join plan (STAR),
* the abstract execution plan as described before (called AEP)

STAR uses secondary indexes that are created on the dimension keys of the fact table. The restrictions
on the dimension tables are evaluated and the resulting dimension keys are used for index intersection
on the fact table. The resulting records are joined with the dimension tables, in order to perform
grouping and get the final result. This is the typical processing of star queries in commercial DBMSs
(e.g., star transformation as described in Section 4'. This processing has two major steps: the index
intersection and the tuple materialization. While the index intersection has largely been optimized
(e.g., with bitmap indexes qij}‘Q9_7‘D'| the materialization of results is still the bottleneck of non-
clustering indexes. Consequently, we neglect the index intersection time for STAR and just measure
the time for fact record materialization, residual joins and grouping. For AEP the complete processing
including index access is measured, therefore favoring STAR.

FT Sel. % [0.0-0.1] [0.1-1.0] [1.0-5.0]
STAR | AEP | STAR | AEP |[STAR| AEP
MIN 0 0 65 2 274 | 11
MAX 30 6 290 9 1219 | 47
MEDIAN 1 1 182 8 477 | 23
STD-DEV 5 1 76 3 346 | 14

Table 9-1: Response Time in Seconds of Secondary Indexes and MHC

mshows the response time analysis (in seconds) for the three alternative processing plans. As
lasses contain queries with different result set size and thus different response times we use
the maximum, minimum, median time and the standard deviation to analyze the performance.

Our results show that the standard STAR processing is outperformed by our approaches. However, for
small queries, i.e., the class [0.0-0.1], the speedup is below an order of magnitude. In general, for
small result sets, the advantage of clustering over non-clustering is not that large. The picture changes
drastically, when we consider larger queries (classes [0.1-1.0] and [1.0-5.0]), which are more typical
for OLAP applications. The hierarchical clustering of AEP leads to an average speedup compared to
STAR of 24.

Note also that STAR has a very high deviation in the response times for queries within one class. This
is mainly for two reasons: (a) STAR performance deteriorates very fast as the fact table selectivity is
increased and (b) since the fact table is not stored clustered the number of performed 1/Os may differ
significantly from one query to another. On the other hand, the deviation for AEP and OPT remains
low, showing a much more stable behavior.

9.4 Grouping Optimization: Pre-Grouping

Pre-grouping techniques have been proposed to reduce the number of join tuples by introducing a
grouping and aggregation phase before the first residual join [ These techniques rely on the
ability to exploit functional dependencies among attributes of a table. In DW applications, the
grouping and aggregation is usually specified on the hierarchies of the dimensions, limiting the effect
of these pre-grouping methods.

While the h-surrogates were originally designed to improve the clustering and indexing of the fact
table, they can also be used efficiently in pre-grouping. With the hierarchy semantics encapsulated in
the h-surrogates the pre-grouping algorithms can exploit more functional dependencies and thus
achieve a much higher reduction of the number of join tuples.
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A simple example illustrates the effects of the hierarchical pre-grouping method: Assume we have a
DW with a time dimension (besides other dimensions) categorized by year — month — day and a well
populated fact table. A query restricting the result to year 2001 (besides other restrictions) qualifies
100.000 fact table records. If the result has to be grouped w.r.t. month, we have to join 100.000
records with the time dimension table. When applying pre-grouping, the number of join operations is
reduced only marginally (depending on grouping on other dimensions). When applying hierarchical
pre-grouping, the number of join operations is reduced by a factor of 30, because all days of one
month are aggregated to the month using the hierarchical encoding information in the fact table. In
e introduced the concept of hierarchical pre-grouping.

We first explain the group operations in SQL queries and then discuss the concept of pre-grouping,
especially hierarchical pre-grouping.

9.4.1 Grouping

In SQL statements, it is possible to partition tuples into groups. All tuples that belong to one group
(same grouping attribute values) are represented by one tuple, where the non-grouping attribute values
are aggregated according to the aggregation functions.

9.4.1.1 General Description of Grouping

Grouping is a standard SQL operator. This GROUP BY operator partitions a set of tuples into disjoint
tuple sets Sy and then aggregates over each set resulting in one tuple t' per tuple set Sy.

Definition 9-3 (Grouping Attribute, Grouping Value):

The grouping attributes are the attributes that are specified in the GROUP BY operator. All tuples with
the same grouping values, i.e. the values of the grouping attributes, are merged to one tuple o

Definition 9-4 (Aggr egation Attribute):

The aggregation attributes occur in the SELECT list or HAVI NGclause and are used in aggregation
functions. i

Definition 9-5 (Aggregation Function):

An aggregation function agg: 2" 2 4,, agg({a}) = areturns a value a computed from a multi set of
values & of domain 4;. The domains 4; and 4,can be different domains. Aggregation functions of the
SQL-92 standard are M N, MAX, SUM COUNT, AVG ]

Note that in SQL also duplicates are allowed and are considered in the aggregation calculation. Thus,
we do not deal with relations in the sense of relational algebra, but with multi sets.

f hows the basic idea of grouping. The original set of tuples R is partitioned into n sets { S,
w where the grouping attributes g; and ¢, have the same values for each set S. The
aggregation attributes are aggregated according to the aggregation function, i.e., MIN for &, MAX for
a, and SUM for ag. The result of the grouping and aggregation operations isaset G= {t;', t;’, ..., ty' },
i.e., one tuple for each group S.

Grouping is a mapping ¢ from a set R of tuples to a set G of tuples: Ga1a, ..., ak agg1, age2, ..., aggj- 2T 27,
where T and T' are a set of tuples. ay, @, ..., & are the grouping attributes and agg;, aggy, ..., agg; are
the aggregation functions. Using R and G, grouping is the mapping Qaipaggi(R) = G, where R is the
source tuple set, R= { t; } and G is the set of resulting tuples, G = { t’ }. Note further that |R | 2| G|,
1.e., the grouping operation reduces the number of tuples.

After partitioning R into disjoint tuple sets S, S /72" the tuples of & are merged to one tuple via the
aggregation operation, i.c., f:2" 2T, f(S) = t.

87



9 QUERY PROCESSING

Q a a3

11317
s, 2 1212 ggbbbt‘

35109 1

4|23

5 12| 4

Q & a3

1 [ 3 | 7

6 |2 10 g9 % b, b, b ‘
S 11619 tz

2 |5 |2

6 1711

Q B a3

4 | 2|7

16 |4 g, g b, b, b
s, iz 7 B8 176728 ¢,

122

256

Figure 9-5: GROUP Operator: SELECT g3, 92, MIN(a;), MAX(a;), SUM(az) FROM R
GROUP BY J1, 02

9.4.1.2 Grouping Properties

This section considers some properties of grouping w.r.t. functional dependencies of attributes. We
discuss grouping extensions and grouping equivalences.

Definition 9-6 (Row Equivalence):
Consider a table R( ..., K, ...), where K = {ky, ky, ..., kn} is a set of attributes. Two rows t, t' //Rare

n
equivalent, w.r.t. K, if: [0 (t.k; =t'k;), which we also write as t.K =t'.K . O
I n

.....

Definition 9-7 (Functional Dependency, Functional Deter mination):

Consider a table R(K, A, ...), where K = {ky, k, ..., k} and A= {ay, &, ..., &} are a set of attributes. K
functionally determines A, denoted by K= A, if the following condition holds:

UL R {(t.K =t'K) = (1. A=t".A)}. We also say, A is functionally dependent on K. m

The key attributes (and candidate key attributes) always functionally determine all remaining attributes
of R There also can be chains of functional dependencies: & = & = ... 2 & In this case, & is also
functionally dependent on &;: & = ax For two different values of g there can be the same value for &,
ifg 2 a.

h-surrogates hsk are built from the combination of the corresponding hierarchy levels,
hsk = hy/hy.4/.../hy, where hy is the most aggregated (top level) and h; the most detailed level (leaf level)
of the hierarchy. Recall that due to the hierarchical relationship of the hierarchy levels hy, hy, ..., h; the
following hierarchical (functional) dependency holds: 2 h, 2 ... 2 h;.

In SQL-92 we are not able to express functional relationships h; = h, 2 ... 2 h, within one table.
Thus, additional meta data is necessary for this information. For example, in a time hierarchy we
usually have the functional dependency chain: Day - Month = Year (e.g., “20020630” -
“June2002” = “2002”).
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We use a similar notation as introduced with generalized projections in [ According to
m grouping can be considered as a projection. The framework described in S an
intuitive framework for aggregation operators as an extension of duplicate elminating projection

operators. Duplicate elimination projection is the simplest form of aggregation, because it can be
expressed as a simple GROUP BY statement that does not compute any aggregates. We write

Ty( R) for SELECT D FROM R GROUP BY Dand

Thgg(a), o( R) for SELECT agg(a), D FROM R GROUP BY D.

In general, we write

Tage). (91 (R) for SELECT { agg }, { g } D FROM R GROUP BY { g },

where { agg} is a set of aggregate functions agg(a), e.g., SUM a) and { g} is a set of grouping
attributes. For example we use

Teum a), ¢, d( R) for SELECT SUM a), ¢, d FROM R GROUP BY c, d
Consequently, for nested queries like
SELECT SsuM a'), f(D) FROM

SELECT SUMa) AS a’, D FROM R GROUP BY D
GROUP BY f (D)

we write

nsurr(a'),f(D)( Trsun(a) as a’', D( R) )
f(D) is for example a prefix of D, if D consists of components D = (dy, da, ..., d).

Thus, a generalized projection produces from a relation R a new relation according to the subscript.
The generalized projection results in exactly one tuple for each value of the grouping attributes and
produces not duplicates in its output ((GHQ951).

In this section we consider only M N, MAX and SUMas aggregation functions, because these functions
have the same implementation for a sequence of grouping operations. The aggregation functions
COUNT and AVG are explained later.

We use N,( R) as conventional projection operator doing the statement SELECT a FROM R We do
not consider aggregation explicitly in the following lemmata. Special computation algorithms are

necessary to do aggregation as explained in Sections 9|71‘.272‘|and r0'2—|

Lemmal:

(R = Mo, n(R)), ifa>b. O

Pr oof:

From the grouping properties follows, that for Tiy( R) for each tuple t; of the set S = { t; } the value v,
of ais the same. From ollows that for each value v, the value Vv, of the functional
dependent attribute b is the same. Thus all tuples t; /7S have the same values for (a, b) and T( R) is
equivalent to T, p( R) with a projection to a, i.e., [a( Th, b( R) ) . mi
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Lemma 2:

(R = Mu(mo(R),ifadl b. -
Pr oof:

For the functional dependency chain a I b=a=2ay2ae>... 2a, 2bthe following
grouping equivalences hold (w.r.t L:

TE’:I( R) = na( T%,akl( R)) = na( T%,akl,akz( R)) = = na( TG, ak1, ak2, .., akn( R)) =

rla( T[a,akl,akz, akn,b( R)) = rla( T[a, ak1, ak2, .., akn—l,b( R)) = .= rla( T[a,akl,akz, b( R)) =
na( TG, akl,b( R)) = na( T%l,b( R)) =
Lemma 3:

(T b(R)) = (R),ifa>b. 0
Proof:

TL(R) results in a set of tuples G = { t’ } where each tuple t;’ has a unique attribute combination &, b.
From Lmollows that each tuple ;" has a unique value for a. Since b can have the same value
for different a (functional dependency property), a grouping T,(R) can further reduce the numbers of
result tuples, but contains the same values a. |

9.4.1.3 Grouping and h-Surrogates

This section describes functional dependencies of h-surrogates and hierarchy levels. The h-surrogate
hsk is built from the combination of the corresponding hierarchy levels, hsk = h'/h™Y/.../n', where h' is
the most aggregated (top level) and h' the most detailed level (leaf level) of the hierarchy. Without
loss of generality, we assume that the hierarchical dependency for the hierarchy levels h', h? ..., h'is
given: ' 2 1* > ... 2h.

In general, we have the following functional dependencies: hy 2 {h,, hs, ..., h} 2 {hs, hs, ..., h} > ...
2 {h.1, hat} 2 h. The hierarchy path ,,20020427 — ,,200204 — ,,2002* is an example for a Date
hierarchy Day - {Month, Year} = Year.

In the following, we use hierarchy levels with h*= h?> = ... 2 h'. Such hierarchy levels are unique,
e.g., a hierarchy path for the Date dimension is “20020427” — “200204” — “2002”.

Definition 9-8 (h-surrogate infix, hsk infix):

An h-surrogate infix (hsk infix) hsk(m:n) consists of a subset of the h-surrogate components: hsk

(m:n) = ™Y, /h™Yh", where 1 < n< m<t, i.e., all hierarchy levels from h™ to h".
O

Informally speaking, hsk(m:n) specifies a sub-tree of the hierarchy with root level h™ and leaf level h".
Note that for the funcional dependency h*=> h? = ..h™ 2 h™*> ... 2 h"> h™'> .2 h' the path
from h™ to h' is defined completely and hsk(m:n) also specifies the hierarchy prefix.

Examples for hsk(m:n):

hsk(t:1) = hh""/.../h" = hsk

hsk(t:t) = h' (top level)

hsk(t:k) = h/h"'/.../h* (h-surrogate prefix)
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Definition 9-9 (h-surrogate prefix, hsk prefix):

An h-surrogate prefix (hsk prefix) is an h-surrogate infix with the top level h' as upper bound and a
level h* as lower bound: hsk(t:k) = hYh™Y/../h 1 <k <t. O

h-surrogate prefixes play an important role for hierarchical pre-grouping as described in Sectionlﬁl
We now discuss functional dependency properties between h-surrogate prefixes and hierarchy levels.

Lemma 4:

hsk(t:k) > {h', h"", ..., h*} O
Pr oof:

Trivial by construction of hsk(t:Kk), see D¢finition 9-9. | O
Lemma 5:

hsk(t:k) > h* O
Pr oof:

hsk(t:k) = h/h"'/../h* > h*, because h* > h*"' > ... > h' (first Armstrong Axiom). m
Lemma 6:

hsk(t:k) > h', where k <j <t. O
Pr oof:

j=t hsk(t:t)y=h'"> h'=H.

j =k: hsk(t:j) = h/h"'/../0 > K.

k <j <t: hsk(t:k) = h'/h""/../h* > h/h"/. /MW > . > hYh"'/. /= hsk(tj) > K O
Coroallary:

hsk(t:k) functionally determines all I, k < j < t and all combinations (h'', h"%, ..., W), where k < j, j»,
s n St m

Pr oof:

Applying Lbmma 4] Ldmma 5. I lemma 6] O
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9.4.2 Concept of Pre-Grouping

9.4.2.1 Early Grouping

The early grouping technique as proposed in [YL94T]and [€S94T Juses knowledge about functional
dependencies of the join tables. Consider a query restricting a table A and grouping on attribute g of
table B: B.g. The tables A and B are joined by the attributes a of A and b of B: A.a = B.b, where b is
primary key of B. We can group on A.a before joining with B, because A.a functionally determines B.g
via the join condition and the key properties.

The resulting groups of the early grouping step are a subset of the final groups, because B.g can have
the same value for distinct B.b. An additional final grouping step is necessary.

The abstract execution plan is the same as for hierarchical pre-grouping and is shown in Fl.gm:E_l
However, the implementation of the Pr e- G- oup operator differs from the early group operator.

The dimension tables Deg, ..., Dg are joined before post-grouping (e = early), Dy, ..., Dj, are joined
after post-grouping (1 = late). The second residual join (late residual join) is an optimization to delay
the residual join for the dimension tables Dyy, ..., Dy, This delay is possible, if the early grouping is
already exact (see also Section 1(L2).

9.4.2.2 Hierarchical Pre-Grouping

Hierarchical pre-grouping is an extension of early grouping. We use h-surrogate prefixes instead of
the grouping attributes as specified in the GROUP BY clause. We assume that the DBMS has
information about hierarchical relationships of the dimension attributes, e.g., via meta data in the data
dictionary. These metadata are used by the optimizer to determine the parameters of the pre-group
operator.

Instead of applying pre-grouping on the user defined join attribute which has the finest granularity of
the hierarchy, we group on the hierarchy level hy as specified in the GROUP BY clause. Note that hy is
not yet available in this pre-grouping step. Thus we use the corresponding h-surrogate (available in the
fact table). The h-surrogate prefix h/h.,/.../hy reduces the number of resulting groups dramatically.
Thus pre-grouping takes place on the fact table result tuples. Usually final grouping is necessary to
merge the groups of the pre-grouping phase.

The groups of the pre-grouping operation are joined with the dimension tables, in order to get the
values for the (user defined) grouping attributes. ows the execution plan with the Pr e-
G oup operator.

Example 9-1 (Star Query Example)

SELECT
P.category, L.city, max(L.population), D.nonth, SUMF. sal es)
FROM
SALESFACT F, LOCATION L, DATE D, PRODUCT P
VHERE
F.day = D.day AND F.store_id = L.store_id AND
F. product _id = P.product_id AND
D.year="1999' and L.regi on="North’
GROUP BY
| .category, L.city, D.nonth

92



9.4 GROUPING OPTIMIZATION: PRE-GROUPING

In this example query based on the schema of[Fi we can pre-group on the dimensions Product
on category level (hsk(3:3)), Location on cimm: 2)), if the feature attribute population is
known to be functionally dependent on area, on store level (hsk(4:1)) otherwise. Pre-grouping on the
Date dimension can be done on the year level (hsk(3:3)). For the Location dimension, we need final
grouping and a residual join between the groups of the pre-group phase and the Location dimension
table. After final grouping, we join the dimension tables Date and Product.

( Order By )

Figure 9-6: Abstract Execution Plan with Pre-Grouping

For a formal description of pre-grouping we need the following definitions.

Definition 9-10 (Hlevel):

The Hlevel of a hierarchy attribute hy in a dimension table is defined to be k. The Hlevel of a feature
attribute f of a dimension is k, if f is known to be functionally dependent on hy, 1 otherwise. O

Definition 9-11 (Grouping Order, GO):

Let gy, ..., Ok be the set of grouping attributes of the GROUP BY clause which belong to dimension D;.
For dimension D, the grouping order GO(D)) is defined to be the minimum Hlevel(g;) for 1 <i <k.
o

Note that the grouping attributes can be any attributes of dimension D;.
Definition 9-12 (Aggregation Order, AO):

Let ay, ..., & be the set of aggregation attributes in the SELECT or HAVI NG clause that belong to
dimension D;. The aggregation order AO(D;) for D; is defined to be the minimum Hlevel(a;) for
1<i <k m

Definition 9-13 (Dimension Order, DO):

The dimension order DO(D;) for D; is defined to be the minimum among AO(D;) and GO(D)). If
AO(D)) and GO(D;) are not defined then DO(D;)=c0. O
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Example 9-2 (Dimension Order):

For e have the following Orders:
GO(LOCATION) = 2,
if population is functional dependent on City

2
AO(LOCATION) = ]
1 otherwise

DO(LOCATION) = M N(GO, AO

GO(DATE) = DQ(DATE) = 2 (AO(DATE) is not defined)

GO PRODUCT) = DQ( PRODUCT) = 3 (AO(PRODUCT) is not defined)

Pre-grouping reduces the number of fact records which are subject to the residual join significantly
depending on DO (the higher the order, i.e., a shorter hsk prefix, the more pre-grouping reduces the

groups), since groups of fact records are combined by aggregation functions on measure attributes to
one record per group.

The following residual joins fetch the actual values of the grouping attributes. If the grouping is not

exact, the groups of the pre-grouping phase may be condensed further by the Post-Group operator
(lizure 9]

Post-grouping takes place on the (joined) dimension attributes and on the remaining dimensions
occurring in the SELECT, HAVI NG or GROUPI NGclause.

All dimensions that are not yet joined and are necessary in order to evaluate the SELECT or HAVG NG
clause, are joined after the final grouping in a residual join operation.

Definition 9-14 (exact grouping):

Let G= {01, g2, ..., O } be a set of grouping attributes of the GROUP BY clause for dimension D;. We
say that G is exact for D; (exact grouping), if all dimension attributes of D; occurring in G form a
hierarchical prefix h, hyg, ..., h, where h is the most aggregated level of the hierarchy. O

For the grouping attributes of dimension D; that fulfill the exact grouping criterium, i.e.,
exactGrouping(D;) = TRUE, we can delay the residual join with D; after the post-grouping phase. If
none of the hierarchy attributes occur in the SELECT or HAVI NG clause, we even can omit the
residual join.

If we have exact grouping for all dimensions of the grouping attributes, the post-grouping step can be
omitted.

For example, grouping on country and region is an exact grouping, grouping on region only is not an
exact grouping. The same holds for grouping on population.

9.4.3 Cost Estimation

Pre-grouping is not superior in all cases. Thus we need rules to decide in which cases an optimizer
should generate a plan with pre-grouping and in which not.

Consider a query where the result is grouped w.r.t. several dimensions. The result is a number of
groups that is almost the same as the fact table result tuples. In this case, two grouping operations, one
for pre-grouping and the second for post-grouping are applied, while the tuples for the residual join are
not reduced considerably. The additional grouping operation can be more expensive than the savings
by cardinality reduction of the pre-grouping.
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9.4 GROUPING OPTIMIZATION: PRE-GROUPING

Since statistics for multidimensional data are limited, we only consider the data distribution for a
single dimension. A simple heuristic is the following:

Compute the upper bound of the number of groups by the combination of the grouping attributes of
the query. If this number of groups is smaller than the number of estimated fact table result tuples,
then apply pre-grouping. Generally speaking, the optimizer has to decide whether the reduction of join
attributes is more beneficial than an additional grouping operation.

9.4.4 Algorithm for Execution Plan with Pre-Grouping

In this section we present an algorithm that builds an optimized AEP (OAEP) with pre-grouping.

The OAEP (Allgorithm 9-1) [contains the operators Fact Table Access, ResidualJoin, Having, and
OrderBy (as in the standard AEP) and Pre Group and Post Group as new operators (Fm

Algorithm 9-1 (generating the OAEP):

OAEP = Fact _Tabl e_Access(LOCPRED(D,), .., LOCPRED(D), MPRED(FT.m), .. MPRED(FT.m))
GD = groupi ngDi nmensi ons()

Normal Agg = { FT.m | FT.m O AGG SELECT }

Special Agg = {D.h, | D.h 0O AGG SELECT} 0O {D.f, | D.f, O AGG SELECT}

OQAEP += PreGoup ({(G&, GXG&))}, {FT.m}, normal Agg)
FOR ALL {GD O GO -exactGoup(GD) O extended(GD)}
OAEP += ResJoi n(GD)
hsk = HSK({ GD O GD| exactGoup(CGD) 0O -extended(GD)})
dattr = DimAtt({ GO O GO -exactGoup(G)) O -extended(GD)})
OAEP += Post Group(hsk, dattr, {FT.m}, normal Agg, Speci al Agg)
ResJoi nNecessary = { GD 0O G exactGoup(@G) O -extended(GD) O GO O Sel ectd ause}

FOR ALL { GO 0O ResJoinNecessary }
OAEP += ResJoi n(GD)
QAEP += Having + OrderBy

The generation of the execution plan is done by the concatenation of operators (built by the
corresponding function calls). The first operator is Fact Table Access specified by the local predicates
of the dimension tables and the predicates on the fact table.

The function groupingDimensions specifies the dimensions that are needed for further processing, i.e.,
the dimensions necessary for the SELECT, GROUP BY and HAVI NG clauses. The dimensions are
stored in GD = {GDy, ..., GDy}, if k dimensions are needed.

Normal Agg contains the fact table measure attributes, Special Agg contains the dimension attributes
that are aggregated due to the SELECT and HAVI NG clause specification. The aggregation attributes
are qualified by AGG_SELECT. The measure attributes are aggregated in a conventional way, whereas
the dimension attributes are handled differently (see Section . The PreGroup operator contains all
dimensions of GD. For each dimension, grouping is done orrtr=strrogate prefixes with grouping order
GO depending on the grouping attributes (see Section @The measure attributes of the grouping
clause are also used as grouping attributes.

The ResidualJoin operators are appended after the pre-grouping phase. For each dimension of GD that
is not an exact dimension w.r.t. the exactGroup property of Section[T0.2] a residual join is appended.
In addition to these dimensions we add the residual joins for dimensions that are extended dimensions
due to the grouping extension. An extended dimensions is a dimension that contains aggregation
attributes but does not have grouping attributes. Such a dimension is considered also for pre-grouping.
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The PostGroup operator uses h-surrogates, (joined) dimension attributes and measure attributes of the
fact table (if occurring in the GROUP BY clause) as grouping attributes. The h-surrogate attributes
(hsk) are used for the dimensions which are “exact” and not extended. For not exact groups the real
attribute values (dattr) are used as grouping attributes in order to get the final granularity of the
groups. The functions HXK resp. DimAtt return h-surrogate resp. dimension attributes. Aggregation is
applied on all attributes to aggregate. The special aggregate semantic is used for dimension attributes
as described in Section 1|UTZ£|

All dimensions that are not yet joined and needed for further processing are joined via ResidualJoin
operators. These dimensions are “exact” and not extended and occur in the select clause

Finally the Having and OrderBy operators are appended.

945 Measurements

In this section we describe measurements showing the benefit of pre-grouping.

The measurements are performed on a two processor PC Pentium II, 400 MHz, with 768 MB RAM
and a SCSI hard disk running Windows 2000. All data is stored on one disk. The queries are executed
with cold cache, i.e., cache effects (operating system and DBMS) are eliminated.

The data warehouse used for the measurements is the Sales DW with five dimensions organized with
MHC: Warehouse, Product, Calendar, Transaction, and Sales Payment and 49 measures, such as
sales, total etc. The tuples are very large (average size of the tuples is 349 byte) and the space
overhead of h-surrogates is 12 byte, i.e., about 3% of the complete tuple. The dimensions are

organized w.r.t. the hierarchies and cardinalities described in Section 1 The dimensions
Transaction and Sales Payment have no hierarchy. The fact table has 8.579.4 rds, i.e., 2,79 GB
raw data.

The query workload consists of 880 ad hoc star queries from a real-world application. We classify the
queries into three groups according to their selectivity on the fact table (i.e., number of tuples retrieved
from the fact table):

*  (C;=10.0-0.25]: 0% to 0.25% of fact table, i.e., 0 to about 21K records (502 queries)

e (C,=10.25-1.0]: 0.1% to 1% of fact table, i.e., 21K to 85K records (234 queries)

*  (C3=11.0-10.0]: 1.0% to 10.0% of fact table, i.e., 85K to 858K records (144 queries)

The classification All is used in the measurement results and is the union of C,, C,, and Cj:
All = Cl DCZ UCg
The queries vary in the following parameters:
¢ Dimension Predicates: different hierarchy levels
*  Grouping Attributes: different grouping attributes (nd different number of
grouping dimensions (from 0 to 3, see T@

In Table 9-2 fve show the occurrences of the hierarchy levels of the dimensions in the queries.

lists the number of grouping dimensions in the queries. Note that in most queries we have two or
e grouping dimensions, but there are also some queries without a grouping clause.

Warehouse Product Date

Country |116 |category [314 |Year 139
Geodept | 119 |Group 301 | Halfyear | 136
County [183 Quarter | 212
City 170 Month | 258

2l We require that reference constraints exist for the foreign key relationship of the dimension attributes in the
fact table to the most detailed level of the corresponding dimension tables. Otherwise the residual join would
further restrict the result set, if groups exist that contain grouping values not existing in the corresponding
dimension table.
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| Area [175 | | | | |

Table 9-2: Grouping Attributes in Queries

0 Dimensions: 7
1 Dimensions: 72
2 Dimensions: 352
3 Dimensions: 449

Table 9-3: Number of Dimensions in GROUP BY

The goal of the performance evaluation was to measure three alternative execution plans:

¢ the abstract execution plan as described in Section 9E| (NOPREGROUP),

¢ the early grouping without hierarchical surrogates as explained in Section
(EARLYGROUP) and

*  the hierarchical pre-grouping as described in Section §.4.2.2|(PREGROUP).

Since the time for the grouping and residual join phases covers a large part of the complete query
execution time (more than 50%), an optimization of tmeduces query execution time
significantly. As join strategy, we use a nested loop join. -4 dhows the average time that this
third phase consumes compared to the complete query execution in the case for NOPREGROUP,
EARLYGROUP, and PREGROUP for the Transbase® implementation.

For NOPREGROUP the phase is by far the longest. Both optimizations, i.e., EARLYGROUP and
PREGROUP, reduce the time for grouping and residual join. The phase requires more time of the
queries if the fact table result set is larger.

All Ci C; Cs
NOPREGROUP 58% 46% 72% 79%
EARLYGROUP 47% 39% 57% 61%
PREGROUP 30% 22% 38% 43%

Table 9-4: Average Time of 3™ Query Processing Phase

NOPREGROUP/EARLYGROUP NOPREGROUP/PREGROUP
All C C, Cs All C, C, Cs
MIN 1,0 1,0 L1 1,3 3,6 3,6 21,3 46,0
1. Quartile 1,5 1,4 1,7 1,8 245,8 135,1 911,3 816,2
MEDIAN 2,6 2,1 4,9 3,9 1.139,5 531,6| 2.270,4 5.938,9
3. Quartile 14,1 7,2 29,1 32,5 4.708,0| 1.905,6| 9.747,5 25.409,6
MAX 530.931,0| 1.210,6| 78.384,0| 53.0931,0| 593.280,0| 19.340,0 | 78.384,0| 593.280,0

Table 9-5: Comparison of the Grouping Cardinality

In, Tgble 9-5 |we show the improvement of pre-grouping w.r.t. the grouping cardinality.
NOPREGROUP/EARLYGROUP contains the reduction of numbers of groups of EARLYGROUP
compared to NOPREGROUP. A value of 1,0 means that there is no reduction, a value of 2 means that
the resulting number of groups for EARLYGROUP is 50% of NOPREGROUP etc.
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The improvement of EARLYGROUP is low compared to NOPREGROUP. 50% of all queries have an
improvement between 1,5 and 14,1, where the median is 2,6. For the PREGROUP case, the
improvement is 245,8 to 4.708,0 with a median of 1.139,5.

This explains the advantage of hierarchical grouping and thus the speedup of the query execution

tmes (TS0

EARLYGROUP/ PREGROUP/ PREGROUP/
NOPREGROUP NOPREGROUP EARLYGROUP
Al | C | C | C|Al|C|C|Co|AlI|C |C | Cs
MIN 03 03 06 06 03 03 08 06 04 04 04 04
1.Quartle | 09 09 10 09 30 24 39 46 10 12 09 08
MEDIAN 12l 11 1,8 17 44 36 58 66 24 23 27 39
3.Quartile | 34 22 45 59 65 52 72 78 58 49 70 74
MAX 152 848 152 132 255 14,3 255 126 351 19,7 351 149

Table 9-6: Speedup of EARLYGROUP and PREGROUP compared to NOPREGROUP

[able 9-6]shows the comparison of the complete user queries against the warehouse described above.
The table presents the speedup, i.e., EARLYGROUP/NOPREGROUP means the speedup of
EARLYGROUP compared to NOPREGROUP etc. The column All contains all queries, the column C;
contains the results for queries of class C; etc.

As one can see, the speedup of EARLYGROUP compared to the standard execution plan
(NOPREGROUP) is between 1,1 and 1,7 for the median. The speedup of PREGROUP compared to
EARLYGROUP is again between 2,3 and 3,9. This leads to a speedup of PREGROUP compared to
NOPREGROUP from 3,6 to 6,6 for the median. The speedup depends on the query classes. Generally
speaking, the speedup is the higher the more tuples belong to the fact table result set, i.e., for query
classes C;, because the number of join operations can be reduced significantly.

The speedup of PREGROUP compared to NOPREGROUP of 50% of all queries lies between 3,0 and
6,5 (the range from first to third quartile). The speedup of PREGROUP compared to EARLYGROUP
of 50% of all queries is between 1,0 and 5,8.

The maximum speedup of PREGROUP/EARLYGROUP of 35,1 comes from the fact that in this
query EARLYGROUP (14,8 seconds) is slower than NOPRGROUP (10,7 seconds) and PREGROUP
(0.4 seconds) is much faster than both. Thus, the speedup of PREGROUP compared to
EARLYGROUP is larger than compared to NOPREGROUP.

Considering the overall query execution times with optimized fact table access and pre-grouping
optimization, the queries do not take longer than 70 seconds (276 seconds for NOPREGROUP). In the
average for query class C; they take about 16 seconds (56 seconds for NOPREGROUP). Thus, even
queries covering a large fraction of the fact table are executed within acceptable time frames on a
machine with comparably low performance characteristics.

9.5 Secondary Dimensions

The discussion so far is based on the assumption that the tuples retrieved from the fact table (Predicate
Evaluation and Fact Table Access) is exact w.r.t. the predicates of the query.

However, in some cases, the optimizer could decide to retrieve a super set and reduce the tuples via a
post-filtering operation. For example, a superset can be the consequence, if an index on a dimension
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key is not used or does not exist. Usually a residual join is necessary to evaluate the final fact table
result tuples (the residual join acts as post-filtering operation).

9.5.1 Description of Secondary Dimensions

A secondary dimension is a dimension that is not used to restrict the tuples in the Fact Table Access
operator in the AEP. The restriction on such a dimension is evaluated after the Fact Table Access
operator, usually by post-filtering or residual join methods. There are several reasons, why a
dimension is used for delayed restriction evaluation. It depends on the optimizer decisions, which
access plans are generated for the fact table:

e The dimension is not indexed.

¢ The dimension is not an index attribute of the primary clustering index.

¢ An alternative access method (not via index) to the fact table is cheaper w.r.t. the costs
calculated by the optimizer

We call a dimension that is not a secondary dimension a primary dimension.

For a physical schema as proposed in Section nd used for the generation of AEP as described in
Section we assume that the fact table is organized by a primary clustering multidimensional index
with the h-surrogates as index attributes. Typically, we use compound surrogates as h-surrogate
implementation and the UB-Tree as multidimensional index. The AEP evaluates the intervals resulting
from the restrictions on the dimensions and builds one or more multidimensional query boxes as
restrictions on the UB-Tree.

We assume that secondary dimensions are also organized by h-surrogates that occur in the dimension
tables and in the fact table analogously to primary dimensions. The only difference is that the h-
surrogate in the fact table (reference surrogate in the implementation of Transbase®) is not part of the
clustering multidimensional index.

A secondary dimension typically is a dimension of the DW schema that is not used as index attribute
of the multidimensional index, because the index cannot handle a large number of dimensions or the
dimension is not regarded to be as important as other dimensions. Thus, secondary dimensions are
relevant in practice, because real data warehouses often have more than ten dimensions. Not all of
them can be used as index attributes of the multidimensional index.

9.5.2 Star Query Processing

The standard way of processing star queries with secondary dimensions is similar to the standard
abstract execution plan of Section 9. EThe Predlcate Evaluatlon of the dimensions for the fact table
access contains only primary dimensions D7 (see HT . The Fact Table Access operator delivers
a number of fact table result tuples R Ris the result of the restrictions on the primary dimensions D";.
Thus Ris a super set of the final fact table result tuples with the secondary dimensions D%, cons1dered.
R is joined with the secondary dimensions DS. This residual join evaluates the restriction on the
secondary dimensions and removes tuples that do not fulfill these predicates. The remaining steps in
the execution plan are equal to the standard execution plan and are described in Section 9E|

The residual join with secondary dimensions is performed before the residual join with the primary
dimensions, because the reduction of the fact table result tuples result in less join operations of the
Primary Dimension Residual Join.

Since the residual joins are used for post-filtering, the order of the residual joins influences the query
performance. If the first residual join reduces the fact table result set significantly, the next joins have
less join operations. Thus, we first perform the residual join that is estimated to reduce the cardinality
most etc.
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Predicaie
Evaluation

Predicaie
H Evaluation

C Create Range ) C Create Range )
e

h-surrogate processing

Figure 9-7: Standard Abstract Execution Plan with Secondary Dimensions

9.5.3 Pre-Grouping
9.5.3.1 Standard Pre-Grouping

Predicate Evaluation

Residual Join
Secondary Dim.

Predicate Evaluation

Figure 9-8: Pre-Grouping Plan with Secondary Dimensions

The pre-grouping optimization as described in Section 9¢his adapted straight forward to secondary
dimensions. The first approach is not to include secondary-dimensions into pre-grouping (see Fi

he Predicate Evaluation and the Fact Table Accessis done in the same way as in Sectionl%|
The Residual Join with the secondary dimensions is performed after the Fact Table Access. This
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residual join with secondary dimensions reduces the fact table result tuples and speeds up pre-
grouping and the remaining steps of the execution plan. Pre-grouping is done on h-surrogate prefixes
of the primary dimensions as described in Section 9]4_-rI

The advantage of this pre-grouping processing is that the grouping cardinality is not increased due to
additional grouping attributes of the secondary dimensions. After the residual restriction join with the
secondary dimensions, the attributes of these dimensions are available and can be used for grouping
and projection. For the primary dimensions, we apply pre-grouping on h-surrogates conventionally.
Note that each residual join with a secondary dimension usually reduces the fact table result set
correspondingly.

9.5.3.2 Pre-Grouping on Secondary Dimensions

In order to further optimize the query processing, we propose to apply pre-grouping on secondary
dimensions. Instead of performing the residual join on the fact table result set we first pre-group the
tuples w.r.t. h-surrogate prefixes of the primary and secondary dimensions. For the h-surrogate prefix
of a secondary dimension D;, we extend the dimension order DO for dimension D; as DO(D;) =
MIN(GO(Dy), AO(D;), RO(D;)), where RO(D)) is the restriction order of D; and corresponds to the
minimum hierarchy level of the restricted dimension.

Definition 9-15 (Restriction Order):

A restriction order RO(D;) of a dimension D; is the minimum Hlevel that is restricted in the query.
m

This leads to an extension of the definition of the dimension order (see Section m

Definition 9-16 (Dimension Order, DO):

The dimension order DO(D;) for D; is defined to be the minimum among AQ(D;), GO(D;), and RO(D;).
If AO(D;), GO(D;), and RO(D;) are not defined then DO(D;)=co. m

( Order By )

A

T

Residual Join
Secondary Dim.

Predicate Evaluation

Predicate Evaluation Pre-Group

e () [

Fact Table Access

Predicate Evaluation

Figure 9-9: Pre-Grouing on Secondary Dimensions
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The tuples of the fact table result set are pre-grouped w.r.t. h-surrogate prefixes of all participating
dimensions. The subsequent residual join filters the groups according to the restrictions on the

secondary dimensions (see Fi@l

Depending on the grouping attributes and on the data, the cardinality of the tuples can be reduced by
the pre-grouping step significantly. If h-surrogates do not exist, we have to pre-group on the most
detailed hierarchy level (the primary key) of the dimension. This can lead to severe disadvantages,
because the cardinality cannot be reduced in the same way as with pre-grouping on “higher” hierarchy
levels. Thus, the decision which pre-grouping method to use is an important issue for the optimizer.

9.5.3.3 Step-wise Pre-Grouping

In this section we propose a method to deal with secondary dimensions without h-surrogates. This
method also can be applied, if the grouping attributes of a dimension are feature attributes. Recall that
grouping on feature attributes that are not known to be functionally dependent on hierarchy attributes,
results in a pre-grouping on the complete h-surrogate instead on a prefix.

We therefore introduce step-wise pre-grouping, i.e., an iterative pre-grouping — residual join sequence,
one for each dimension, where we have to pre-group on the complete h-surrogate (or h;
correspondingly). The corresponding abstract execution plan is shown in FiWe first
perform the residual join with the secondary dimension that reduces most the cardinalify of the fact
table result set (dimension D% in the plan). Then we pre-group on all dimensions. This means that we
use the h-surrogate prefixes of all concerned dimensions in order to perform pre-grouping on the
reduced fact table result set. Then we join with the next secondary dimension and pre-group again. If
no h-surrogates exist on a secondary dimension, we use the dimension key attribute of the fact table
for pre-grouping.

If all secondary dimensions are joined, we perform the residual join with primary dimensions Dpeq,
D¢ The joined attribute allows pre-grouping on a higher hierarchy level and therefore a more
effective pre-grouping. The same is done with all other primary dimensions with a pre-grouping h-
surrogate prefix that corresponds to the complete h-surrogate. The remaining execution plan is the
same as described in Section 9.@
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Order By

Having

Residual Join

Post-Group

Residual Join

o
-
A T
Resdual Join e
Primary Dim.

Pre-Group

!

Residual Join
Primary Dim.

e
Resdual Jom
Predicate Evaluation DS, Secondary Dim.

Pre-Group

Resdual Jom
Predicate Evaluation DS, Secondary Dim.
Fact Table Access

Predicate Evaluation

Figure 9-10: Step-Wise Pre-Grouping with Primary and Secondary Dimensions

Note that a pre-grouping operation requires effort that depends on the number of the input tuples.
Depending on the implementation of the grouping operator, the costs can vary. It therefore is
important to estimate the cost of additional grouping operators compared to the cost of residual joins

on more tuples. In Section 0.9 Jve show some performance measurements with secondary
dimensions.

There can be also implemented a multi-way residual join, i.e., an optimization to join more than one
secondary (or primary) dimensions. This depends on the implementation of the DBMS.
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10 Implementation |ssues

In Section 9 Iave discussed the abstract query processing plan. We described concepts of the overall
query processing. This section gives more implementation hints, i.e., how are particular operators
implemented. We show some algorithms and operator trees of the Transbase® implementation.

We first describe how to recognize an MHC schema, i.e., the dimensions and hierarchies. The
knowledge about the schema is necessary for query processing. In a DBMS there can be any physical
schema, but only some special schemata are proper for star query processing.

We further discuss some advanced algorithms how to handle complex query requirements, such as
complex expressions, multiple query boxes, join orders etc.

A query first is transformed to a “raw operator tree” without any optimization. Several optimization
methods are applied, in order to optimize the operator tree and minimize query execution time. The
optimization steps depend on pre-defined rules (in Transbase®).

The entry point where star query optimization takes place is the join optimization. This is the third
optimization step in the optimization procedure. The first optimization step is the so called prodnorm
optimization that combines inner join sequences to Tl MES cluster. TI MES cluster enable efficient join
optimization. The second optimization step handles local restrictions, i.e., restrictions on tables each of
which is represented by a RESTR node. Restrictions of one table are coalesced to one RESTR node
by “ANDing” the predicates. Transitive restrictions are simplified and some further optimization for
special cases is done.

The third optimization step is the join optimization. This step was extended by the MHC star query
optimization. The following sections describe the star query optimization concerning the join
optimization, if not mentioned otherwise.

10.1 Recognizing the Schema and Building the Operator Tree

A star join query has a center fact table and surrounding dimension tables. We require a correctly
specified physical star or snowflake schema with the necessary reference constraints, compound and
reference surrogate attributes.

To check for a MHC star join scenario, internal structures are built and maintained. After analyzing
the operator tree, we get the star join decomposed into edges and vertices, where edges are the join
conditions and vertices are the corresponding relations.

Basically, we first look for the fact table, i.e., the center of the star join. The second step is to check
the correctness of join conditions to the dimensions and the specification of hierarchies and surrogates.
Now the dimensions can be identified and partitioned into dimension clusters, where every cluster
contains all relations belonging to the dimension. Every dimension cluster is handled individually
according to the restrictions. Further analyze steps modify the join conditions and dimension relations
by adding or removing joins and relations according to the predicates of the query. The next step
categorizes the dimension with respect to a query class (HPP, HNPP, NH) to build the interval
generation operator trees. Finally, a new MHC operator tree is built by generating a new operator tree
consisting of the operator trees of the dimensions and the fact table. The grouping and residual join
optimizations build the final operator tree.

As example, we use the following query for the Sales DW as described in Section lﬁlfor further
explanations:
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SELECT
country_str, dept_str, cat_str, grp_str, year, quarter, nonth,
SUMval ), SUMqty)

FROM
custoner c, custoner_country c_country, custoner_dept c_dept,

product p, product_category p_cat, product_group p_group, date d,
fact f

WHERE
f.custkey = c.customer AND
f.prodkey = p.itemkey AND
f.datekey = d.day AND
c.country = c_country.country AND
c.dept = c_dept.dept AND
p.category = p_cat.category AND
p.grp = p_group.grp AND
c_country.country_str = 'CGERMANY' AND

c_dept.dept_str = 'SOUTH AND
p_category.cat_str = 'TV AND
d.nonth = '10/2002' AND
d.quarter = '4q2002' AND
d.year = '2002'
GROUP BY
country_str, dept_str, cat_str, grp_str, year, quarter, nonth

SQL Statement 10-1: Sample Query

For the customer dimension, we use a snowflake dimension (field normalized dimension) with the leaf
dimension table customer and the higher dimension tables customer_dept and customer _country. The
product dimension is modeled in the same way with product as leaf dimension table and
product_group and product_category as higher dimension tables.

TIMES
/\REL
TIMES |
/\ fact

TIMES RESTR

REL /\AND
‘ REL /\
TIMES product_group ‘ S

TIMES RESTR - < yer 1002
. ES/\REL REL /:\momh 10/2002 quarter 4g2002
/\ L product_ cat v
TIMES RESTR Product category
REL RESTR REL =A
customer REL = customer_  dept SOUTH

/\ dept

customer_ country GERMANY
country

Figure 10-1: TIMES Cluster of the initial Operator Tree
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The query results into a (non-optimized) operator tree generated by the first two phases of the
optimization procedure (prodnorm and local restrictions). The complete operator tree in Transbase®

notation is shown in Fi@ The main part, i.e., TI MES cluster, is shown in F@

(NO:sel  { 9 "country_ str" "dept_str" "cat_str" "grp_str" "year"
"quarter" "ponth " "colum_7" "colum_8" }
(N1: proj
(N2:group { [ 11 14 21 23 24 28 29 ] sun{36] sun{37] }
(N3:sort  { +11 +14 +21 +23 +24 +28 +29 }
(Nd:restr
(N5:times { }
(N6:tinmes { }
(N7:tinmes { }
(N8:tinmes { }
(N9:times { }
(N1O:tines { }
(N11l:tines { }
(N12:rel { "customer" })
(N13:restr
(N14:rel { "custonmer_country" })
(N15:eq { }
(N16:attr { N13[3] } )
(N17: const{' GERVANY' char (3)} ))))
(N18:restr
(N19:rel { "custoner_dept" 1})
(N20:eq { }
(N21:attr { N18[3] } )
(N22:const { 'SQUTH char(4) ))))
(N23:rel { "product" 1}))
(N24:restr
(N25:rel { "product_category" })
(N26:eq { }
(N27:attr { N24[ 2]
(N28:const { 'TV' char(2) } ))))
(N29:rel { "product_group"” 1))

(N30:restr
(N31:rel { "date" })
(N32: and
(N33: and
(N34:eq { }

(N35:attr { N30[6] } )
(N36: const { '10/2002" char(7) } ))
(N37:eq { }
(N38:attr { N30[5] } )
(N39: const { '492002" <char(6) } )))
(N40:eq { }
(Ndl:attr { N30O[1] } )
(N42:const { '2002' char(4) } )))))
(N43:rel { "fact" }))

(N44: and
(N45: and
(N46: and
(N47: and
(N48: and
(N49: and
(N50:eq { }
(N51:attr { N4[33] } )
(N52:attr { N4[6] } ))
(N53:eq { }
(N54:attr { MN[1] } )
(Ns5:attr  { M[9] } )))
(Ns6:eq { }
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(Ns7:attr  { MN4[2] } )
(Ns8:attr { N4[12] } )))
(Ns9:eq { }
(N6O:attr { NA[34] } )
(N6l:attr { N4[17] } )))
(N62:eq { }
(N63:attr { N4[15] } )
(Ne4:attr { N4[20] } )))
(N65:eq { }
(N66:attr { N4[16] } )
(Ne7:attr { N4[22] } )))
(N68:eq { }
(N69:attr { MNA[35] } )
(N70:attr  { NA[27] } ))))))

(N71: build
(N72:attr { N1[1] } )
(N73:attr { N1[2] } )
(N74:attr { N1[3] } )
(N75:attr  { N1[4] } )
(N76:attr { N1[5] } )
(N77:attr { N1[6] } )
(N78:attr { N1[7] } )
(N79:attr { N1[9] } )
(N8O:attr { N1[8] } ))))

Figure 10-2: Operator Tree of non-Join Optimized Sample Query

The operator tree is presented in Transbase® notation, where N<nr > denotes the node with number
nr. These nodes can be referenced by other nodes. If a specific attribute of node N, is referenced, we
use the notation Nj[K] for the K™ attribute. The operators are denoted by the name of the operation. We
have the operator r el , which stands the access to a B-tree (index or table) via a primary key
(index key or primary key of the table)”. For example, (N19: rel { "custoner"” } ) means
that the table “customer” (dimension table) is accessed via the primary key, i.e., customer.

The operator r est r is a restriction with two successors, usually a data source and an expression tree.
The fragment

(N13:restr
(N14:rel { "customer_country" })
(N15:eq { }
(N16:attr { N13[3] } )
(N17:const { 'GERVMANY' char(3) } ))))

is an access to the table “ customer_country” and returns all tuples where attribue N13[3] (country in
the sample query) is equal to ‘GERMANY’.

The ti mes node represents a join operation. Between two sub-trees, usually at i nmes cluster (or a
single r est r node) for the left and a single r est r node for the right son are placed.

The sort node is a sort operation on some attributes denoted by the consecutive attribute positions
(in this case of the flattened join of all participating tables). The gr oup node represents grouping
(usually via sorting) with the grouping attributes denoted as attribute positions and the aggregation
functions, sum in the sample query. The pr oj node does the projection for the query, i.e., some
attributes are removed. Finally, the sel node is the projection with the names of the returned
columns (attributes).

2 Note that in Transbase® every table is stored in a clustering B-Tree with the primary key as index key.
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The operator tree of ontains a Tl MES cluster for the cartesian product of all tables that
are joined (fact, customer, customer_country, customer_dept, product, product category,

product_group and date).hows this Tl MES cluster in a graphical representation for the
ease of understanding. AIl tables are joined via a two-way join with local restrictions (on the
dimension tables).

In Fen we show the overall operator tree, with the times cluster as (abstracted) sub-tree. The
seqe top of the tree) SEL, PRQOJ, GROUP, SORT, RESTR (with consecutive join
restrictions) represent the overall query processing plan. All join conditions occur in the join condition
cluster (right son of the RESTR node). The tuples resulting from the times cluster and the join
condition cluster are sorted, in order to prepare for grouping and are finally grouped w.r.t. grouping
attributes of the query.

SEL
PROJ
GROUP
SORT

RESTR

N N

= P-O'P p_group.grp

RN

Ntegory P_cat.category

= c.dept c_dept.dept

s

c.country  c_country.country

/\/\

/\ Nalekey d.day

f.custkey c.customer f.prodkey p.itemkey

Figure 10-3: Overall Operator Tree

Note that this operator tree is not optimized, e.g., early projection is not done, special join optimization
is missing etc.

For the MHC schema check, we decompose the operator tree into another data structure

representation, i.e., into join nodes called joininput and edges for further processing. joininput
represents the tables and nodes in the original operator tree. It contains information about
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¢ The node in the operator tree, i.¢., a pointer to the corresponding TI MES node.

* Catalog information about the table, e.g., attributes, indexes, surrogates etc.

* Additional information for the MHC optimization, e.g., properties like flags to denote leaf
dimension tables, dimension number etc.

Each joininput represents a table in the join graph. The edges data structure captures information about
» the operator tree, i.e., pointer to the join predicate.
e properties of the join edge, e.g., i s_| eaf _di mensi on_j oi n, properties for the marking
algorithm, properties for handling the MHC optimization etc.

With the data structures operator tree, joininput, and edges, we can analyze the operator tree and
generate various execution plans. joininput and edges are modified during the analyze steps, in order
to store additional information.

10.1.1 Findingthe Fact Table

The first step is to find the fact table within a star join. For the optimization of queries, it is crucial to
recognize special patterns or dependencies, in order to apply special optimization methods. SQL-92
allows to formulate a vast number of queries that the DBMS has to support. Thus, there must be an
automatism to recognize some basic query classes, such as star join queries. For each query, the check
for star query is done. It is important to recognize very fast that the query does not contain a star join,
in order to proceed with standard query optimization. If there is no valid fact table, we can skip further
star query testing and continue with standard optimizing (in Transbase®).

The fact table fact as center of the star join must have the following properties:
« fact must be organized as UB-Tree.

* The joins with fact must be correct, i.e., for primary dimensions there must be valid reference
and compound surrogates, for secondary dimensions, there must be correct reference
constraints.

Thus, we go through the elements of joininput, in order to check whether the current table is organized
as UB-Tree. Second, we test the joins for all dimensions that are joined with this table by looking at
the edges structure, in order to decide, if each such leaf dimension table is joined correctly with the
fact table (inner join via dimension key attribute). We further check, if the foreign key references and
the reference and compound surrogates match with the query (see Section 6.. Each leaf dimension
table is marked. A leaf dimension table is not necessarily organized by compound surrogates and
needs not have a corresponding reference surrogate in the fact table. However, there must be a valid
foreign key relationship between the leaf dimension table and the fact table. If there is a table that is
joined with the fact table, but does not fulfill the leaf dimension criteria, we abort the star query
processing and proceed with standard optimizing.

After successfully checking and marking the leaf dimension tables, we build a join graph, in order to
further check for a correct star query schema.

If more than one fact tables exist (and are joined either with one or more fact tables or via common
dimension tables), we use one fact table as primary fact table and handle the remaining fact tables
either as secondary dimensions (if they are joined with the primary fact table) or as special higher
dimension table (if joined via common dimension tables). Section qupiscusses the order of fact
tables and further methods to deal with multiple fact tables.

10.1.2 Isolating the Dimensions

For the remaining steps, the dimensions are handled individually. Thus, we first partition the edges
and vertices according to the dimensions. The leaf dimension tables are handled in a special way and
are positioned before the dimension tables. Every dimension table belongs to one dimension.
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Otherwise there are cross references between dimensions. We mark the edges with a dimension id
dimid.

For better handling of the edges and vertices, we sort the array storing the vertices according to dimid,
where the vertex of the leaf dimension table is the first vertex in the dimension cluster. Also the edges
are sorted in this way with the edge having an LDT as vertex ranked first in the edges cluster.

After partitioning the dimensions, we check the correctness of the joins between dimensions. A join
between two dimension tables D;“ and D} of dimension D;, where Di¥ is the higher dimension table, is
correct, if for B ¥. hy,=D. h,, the attribute D;“hy, is “unique”. A higher dimension table is a
dimension table in a snowflake schema that is more on the edge of the snowflake than the other
dimension table (see Section . A unique attribute means that D;.h, is either the primary key of D;*
or has a unique index. We have to ensure that no duplicates occur for the dimension predicate
evaluation, because these duplicates are propagated to the leaf dimension table. It is not clear, what are
the consequences for the interval generation and evaluation of these intervals on the fact table. There
might be tuples with and without duplicates within one interval. This cannot be handled correctly,
because we transform the equi-join between the fact and leaf dimension tables to a semi-join.

Thus, we check for unique join conditions beginning with the joins between leaf dimension table and
the next higher dimension table. Then all further dimension tables are examined. Each table with a
valid join predicate is marked with the dimension number. If all tables of one dimension can be
marked in this way, the dimension join is correct.

During this procedure, all edges participating in unique joins are marked and represent a Spanning tree
for the star join, i.e., they form the necessary join conditions. Notice that there could be additional
joins that are redundant or not necessary. Such joins are not considered, when the spanning tree has
been created. Not necessary joins are joins with a higher dimension table that itself has no local
predicate and is joined with other higher dimension tables that also have no local predicates. However,
attributes of such dimension tables can occur in the GROUP BY or SELECT clause. In this case, we
consider such a dimension table later in the residual join graph. Unnecessary dimensions often occur
in queries that are generated w.r.t. query templates. For example, a template can be provided that
contains all join predicates and the application has to fill in the dimension predicates, grouping and
select attributes.

If the correctness of the joins are verified, we know that we have an MHC star join on a valid MHC
schema. We now can proceed with the interval generation on the dimension tables and the
optimization of the fact table processing.

10.1.3 Dimension Predicate Collection and Fact Table Predicate Mapping

The predicates of the dimension tables are collected in a data structure, in order to recognize query
classes. Thus, we traverse the operator tree and check for each RESTR node, whether it belongs to a
dimension table. The predicates are connected to the corresponding dimension entry in the joininput
structure.

Before evaluating the predicates on the dimension tables, we check whether there are restrictions on
the dimension attributes of the fact table as well. These dimension attributes on the fact table are not
supported by an index, because the index attributes of the multidimensional index are the reference
surrogates. However, such predicates can be mapped to predicates on the leaf dimension tables and
evaluated efficiently by the standard dimension predicate evaluation method (see Section 8.

In the case of a local dimension key restriction on the fact table, we map this restriction to a restriction
on the key of the corresponding leaf dimension table and proceed with the MHC optimization with this
modified predicate. If there is not yet a join to this dimension table, we add a join condition according
to the reference constraint of the dimension key in the fact table.
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10.1.4 Finding Predicate Classfor each Dimension

It is crucial for the optimization to get the predicat for each dimension, i.e., whether the
dimension is of class HPP, HNPP or NH (see Section 9-23for further details). For this purpose, we
look at the local restrictions on the dimension tables and on restrictions via join conditions.

A hierarchy consists of t levels h;, hi.1, ..., h1, where h; is the top level and h; is the leaf level. The
predicate class depends on the sequence of the restricted hierarchy levels. If a hierarchy level is
restricted locally in a dimension table or it is restricted via a join condition, the field denoting the
hierarchy levels for the corresponding dimension is set to TRUE, h_ | ev_restricted[i] =
TRUE, i.e., it is marked as restricted. A join condition on Dik.hj = Dih.hj is equivalent to a restriction
VWHERE D K, hj in select hy fromD " and thus is also considered for the query class. Also
snowflake dimensions are recognized in this way.

If a feature attribute (i.e., a non-hierarchical attribute) is restricted, the class is NH and the evaluation
of the query classes is finished. However, if a restricted feature attribute is correlated to a hierarchy
level, i.e., if a feature attribute is located in a higher dimension table, we also have a hierarchical
restriction, because the corresponding hierarchy level is restricted implicitly.

Depending on the values of h_| ev_restricted[], the predicate class of the dimension is HPP
(ht, ht-1, ..., hiare set to TRUE) or HNPP (hjq, hj2, ..., hjk are set to TRUE, where 1 <j; < j,< ... < ji
<t). h; is the most aggregated level of the hierarchy. The hierarchy degree hdg is the lowest restricted
hierarchy level, i.e., hdgnpe = k and hdguynee = j1.

For NH predicate class, the hierarchy degree is 1, because a feature attribute formally depends on the
key of the dimension table(h;).

In Section M\/e show some examples of the query classes and hierarchy degrees.

10.1.5 Building Dimension Join Operator Tree

With the information collected so far, we are able to build the operator trees for the interval generation
of the dimension tables. The operator trees of the dimensions are combined, in order to establish the
fact table access via a set of multidimensional intervals. We first describe the operator trees for the
dimension tables and then show the overall operator tree with the fact table access (Section 1.

The operator tree for a dimension table depends on the dimension predicates. Various access methods
are possible for the query classes. For a join with a secondary dimension, a different operator tree is
built, because the access to the multidimensional index is not supported. We then build an operator
tree that returns the values for the equi-join instead of a number of intervals.

The basic dimension operator trees are built without considering the query class, since only join
predicates and local dimension predicates occur. The information about the query class is stored as a
parameter to the operator tree of the dimension. A later optimization step (the index
optimization) cares about the interval generation and optimizes the index access (see Section 1

We divide the description about building the dimension operator tree into snowflake dimensions and
star dimensions. A snowflake dimension consists of a leaf dimension table and one or more higher
dimension tables. A star dimension consists of the leaf dimension table only.

10.1.5.1 Snowflake Dimension

If we have a snowflake schema with higher dimension tables in the join graph of the query (after
removing redundant joins), the join operator tree of the higher dimension tables is constructed.
schema used in the illustrations is the path normalized Sales DW schema as described in Section
No join optimization is done at this step, i.e., there is a TI MES cluster resulting eventually in a
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cartesian product (depending on the join restrictions and on the schema). In a later optimization step,
the standard join optimization is applied to this TI MES cluster.

The Tl MES cluster is combined with a RESTR node, in order to specify the join conditions. Figure |
hows an example for such a join operator tree of the customer dimension from the sample query
of SQL Statement 10-1.|The RESTR tree is used as driver table for a nested loop join into the leaf
dimension table. The join with the leaf dimension table is constructed in the same way, i.e., a TI MES
node with a RESTR node for the join condition between the leaf dimension table and the join cluster.

Above this RESTR node, we add a conceptual COMPSURR node. The COVMPSURR (compute
surrogates) node is used in a later optimization step, in order to generate the interval generation for
that dimension.

PROJ

A

TIMES BUILD

COMPSURR CSmin  CSmax

RESTR RESTR RESTR

N U

customer_ country germany Customer_  dept SouTH  customer = =

country dept /\ /\

customer_  customer.dept customer_ customer .country
dep.dept country.country

Figure 10-4: Operator Tree for Customer Dimension

For the interval generation, we add a PRQJ (projection) node at the top of the operator tree. The
BUI LD node specifies the projection attributes. We restrict the projection to the compound surrogates
(minimum and maximum) that specifies the interval for the customer dimension.

The operator tree for the product dimension is built analogously and is not shown explicitly here.

10.1.5.2 Star Dimension

For a dimension without higher dimension tables, i.e., the dimension consists of the leaf dimension
table, there is no dimension join. The operator tree is simpler and contains only dimension predicates
on the leaf dimension table. The preliminary COMPSURR node is again on top of the operator tree.

COMPSURR
RESTR
REL AND
date AND -~

month 10/2002 quarter 4q2002

Figure 10-5: Operator Tree for Date Dimension
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The date dimension of the sample query is a dimension that consists of the leaf dimension table date.

The resulting operator tree is shown in F.
10.1.5.3 Secondary Dimension Join

The join operator tree of a secondary dimension is a standard join operator tree, if the secondary
dimension is a secondary snowflake dimension. A secondary snowflake dimension is a secondary
dimension with a leaf dimension table and one or more higher dimension tables comparable to a
primary snowflake dimension. If the secondary dimension consists of the leaf dimension table only,
the operator tree contains the restrictions without additional join nodes.

The predicates of the secondary dimension are evaluated and used for the residual join, in order to
post-filter the fact table result tuples (see Section }'0%5?): If a secondary dimension is also organized
with hierarchies, i.e., the leaf dimension table of secondary dimension also has compound surrogates,
these information can be used for pre-grouping the secondary dimension (see Section .

10.1.6 Combining Fact Operator Treewith Dimension Operator Trees

The operator trees of the dimensions are combined to a complete operator tree of the query. We show
the corresponding operator tree for the three dimensions country, product and date for the sample
query in FimNote that this operator tree is not complete w.r.t. the interval generation, since

the COVPS have to be resolved (see Section 1In Appendix C in Fjgure 14-24, we

show the operator tree in Transbase® notation.

RT 3)‘RT

COMPSURR
PROJ TIMES BUILD RESTR

TIMES BUILD RESTR COMPSURR ~ CSmin  CSmax REL AND

TIMmRR comin Conax REL - RESTR dm% /:\
/\ \ ‘ /\ N
RESTR RESTR RESTR product_cat  category TV RTL = = - year
REL = REL S REL AND product product. product_cat. month 10/2002 quarter 4q2002
‘ /\ ‘ /\ | T category  category
customer_ country germany Customer_  dept SOUTH  CUSOmer = =
country dept /\ /\
customer_  customer.dept customer_  customer.country
dep.dept country.country

Figure 10-6: Combined Operator Tree

This operator tree does not yet contain the grouping and residual join operations, since it is only the
concatenation of the dimension operator trees for the dimension interval generation.

For the combination of the dimension operator trees, each operator tree is extended by a SORT node.
These nodes are necessary, because the dimension evaluation results in a set of intervals. The intervals
of one dimension are disjoint and must be sorted for the use of the extended range query algorithm as
described in Section he range query algorithm requires a sorted and disjoint stream of intervals.
Multiple intervals of one dimension cause multiple multidimensional query boxes. The number of
query boxes can be very large and special algorithms are necessary, in order to handle large number of
query boxes efficiently (see Section lfor more details).
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10.1.7 Building the Grouping Operators and Residual Joins

The basic operator tree already contains a grouping node. With MHC, however, grouping is handled in
a special way. We construct a new operator tree with_pre-grouping, if possible. For a detailed
discussion about the concept of pre-grouping see Section 94,

Grouping cannot be discussed isolated from the residual join handling, because these two optimization
steps influence each other.

After the combination of the fact table ac-mﬁr tree with the operator trees of the dimension,
we have an operator tree as shown in Fig ith the fact table access and evaluation of the
dimension tables. The grouping and residual join operators are still missing. We generate these
operations w.r.t. the following order (from bottom to top):

* Residual Join of Secondary Dimensions (Aggval Join)
*  Pre-Group operation

* Residual Join (Group Exact Join)

*  Post-Group operation

* Residual Join (Group Value Join)

* Standard Joins

The operator tree of Mshows the basic structure for the general groyping optimization. This

operator tree contains the residual join for secondary dimer ction B39, immediately above
the operator tree for the fact table access at the bottom of | he secondary dimensions are

denoted by D%. The PRQJ node ensures that only attributes are pipelined that are necessary for
further processing.

The GROUP node above the residual join of the secondary dimensions is the pre-grouping operator
and groups on h-surrogate prefixes as described in Section The pre-grouping optimization has to
consider the aggregate functions that may contain feature attributes of the fact table or hierarchy or
feature attributes of the dimension tables. Attributes of the dimension tables (except dimension key
attributes) are not available at pre-grouping and must be replaced by h-surrogate prefixes. The actual
values are fetched in the residual join. If an aggregate function contains an arithmetic expression, it
depends on the expression whether we can apply pre-grouping or not (see Section

After the pre-grouping step, the residual join to fetch the dimension attribute values is done, denoted
by the following Tl MES cluster and consecutive RESTR (inclusively the operator tree with the join
conditions) with the “early” dimensions Dg. The second grouping step is represented by the GROUP
node with a residual join operation, shown by the Tl MES cluster with the corresponding RESTR node
and the “late” dimensions Dy, The RESTR node finalizes the operator tree.
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RESTR

Group Value
Join

Post-Grouping

GROUP
|

PROJ
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PROJ

Pre-Grouping
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of Secondary

> Residual Join
Dimensions

for Join
Predicates

for Proj.
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Figure 10-7: Basic Operator Tree for Grouping and Residual Join

The algorithm (in a high level syntax) is shown in A@l

Algorithm 10-1 (Grouping and Residual Join):
makeOTf or G oupi ngAndResJoi n:

handl eG oupBy()

makeResi dual Joi n()

per f or nst dJoi n()

handl eG oupBy:
sear chMHCG oupBy()
get GroupProperties()
anal yzeSpl i t Aggr egati onFuncti ons()
makeResi dual Joi n()
makeG oup()
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makeResi dual Joi n:
nmakeTi mesFor Resi dJoi n()
makeRest r For Resi dJoi n()

Algorithm 10-1 phows the basic steps how to build the operator tree for grouping and residual join.
The main routine is nakeOTf or Gr oupi ngAndResJoi n with the sub-routines for the grouping,
for the final residual join and the standard join of the dimension tables (only for snowflake
dimensions). The algorithm first searches for the original GROUP node in the operator tree
(sear chiVHCGr oupBY) by a recursive search (traversed in pre-order, i.e., first the root, then the sub-
trees from left to right etc.). The routine get G oupPr operti es calculates the properties of the
grouping, e.g., the types of the aggregation function arguments. If we cannot apply hash grouping,
grouping is done via sorting and grouping (the standard method how Transbase® handles grouping).
This occurs, if the DI STI NCT operator occurs within an aggregation function, e.g., SUM DI STI NCT
a) . For further details refer to Section 1(@

The function anal yzeSpl i t Aggr egat i onFuncti ons is explained in Section 10.2 in more
detail. Basically it analyzes the aggregation function w.r.t. the available attributes and expressions to
split and builds a structure to keep these information. Splitting of expressions is necessary for
aggregates on dimension attributes. makeResi dual Joi n in handl eG oupBy is responsible for
the residual join of secondary dimensions. This residual join comes before the pre-grouping step, in
order to perform post-filtering on the secondary dimensions and delivers the required attributes for the
grouping operations. This call is also necessary, if no secondary dimensions occur, because it makes
the basic operator tree from the tables represented by the vertices and edges structures. The routine

makeG oup does the actual grouping. We show the steps in A more detail.

The makeResi dual Joi n function constructs the residual join depending on the status, i.e., an
aggval join or exact grouping join etc. It consists of the methods makeTi nesFor Resi dJoi n and
nmakeRest r For Resi dJoi n to build the Tl MES cluster and RESTR node with the join predicates.

In Algorithm 10-2 we show how to build the rouping nodes. The routine makeG oup that is called
by handl eG oupBy (see AIMIT%HS‘[ does the pre-grouping (makePr eG oup) and the
residual join and post-grouping, if necessary. Finally the groupValueJoin is done, in order to fetch the
needed attribute values. A special PRQJ node is added for the projection of the grouping and
aggregation attributes.

Algorithm 10-2 (Make Grouping):
makeG oup:
nmakePr eGroup()
i f needPost G oup
makeResi dual Joi n()
nmakePost G oup
i f groupVal ueJoi nNeeded
makeResi dual Joi n()
makeFi nal GroupPr oj ecti on()

makePr eG oup:
conmput eG oupTrunclLevel ()
FOR EACH grouping field gf
if gf available
initialize for exact grouping
el se /1l grouped by ref. surrogate or joined field
get Surrogat el nformati on()
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ext endBySurr O Nor el Fi el d
addSecDi mJoi nFi el dToG oupi ngFi el ds()
FOR EACH aggregate field af

if af avail able

appl yMappi ngToAttr ()

el se

set NeededAttr ()

FOR EACH primary di nensi on
addRepr esFuncti on()

| F noHashG oup
makeConvent i onal Sort ()

makePost Gr oup:
addPr oj ect i onFor Not Avai | abl eFi el ds()
handl eSpeci al Aggr egat eConpuati on()
FOR EACH di nensi on
addRepr esFuncti on()

The pre-grouping is the most complex operation in the generation of the grouping and residual join
operators. The mapping from the original attributes to h-surrogate prefixes must be computed for all
cases (see Section 9.4 for more details of the concepts).

First, we compute the prefix of the h-surrogates (comput eG oupTrunclLevel ) for every
dimension. For each grouping field we check, whether it is already available, i.e., in the fact table or
delivered by an already performed join (usually secondary dimensions). If the field is available, some
initialization parameters are set (we do not enlarge on this) and grouping is done wi ard
methods. If the field is not available, we have to handle it via an h-surrogate (see Sectior‘ly\iﬁi_iﬁd For
this purpose, we need some information about the corresponding surrogate (get Surrogat e-
I nf ormat i on) and extend the grouping field list by the surrogate, if it is not already listed
(ext endBySurr Or Nor nal Fi el d).

If a field of a secondary dimension occurs in the grouping clause, we add the corresponding field in
the grouping list (addSecDi mloi nFi el dToG oupi ngFi el ds).

The aggregation attributes can be available (similar to the grouping attributes), e.g., fact table measure
attributes. Otherwise they are missing attributes (e.g., dimension attributes) that are available later
after the residual join. If the attribute is available, we use the attribute w.r.t. the aggregation function
(SUM COUNT etc.). The value of the aggregation is computed during grouping. Not available
aggregation attributes are marked (set NeededAttr). These attributes are computed after the
residual join, and the calculation of the final result of the aggregate is done at this step (see Section

[025%

For the optimization of the residual join, we add a so called representative function
(addRepr esFunct i on). With this representative operation, denoted as parameter in the GROUP
node by r epr es, this join is implemented as conventional nested loop join, but as a quasi hash join.

If no hash group can be applied, we have to add a normal sort operator, in order to perform standard
grouping via a previous sorting (makeConvent i onal Sort ). Hash group cannot be applied, if a
DI STI NCT aggregation occurs within an aggregation function, e.g., SUM DI STI NCT a). A hash
group does aggregation at once and does not store the single values of the aggregation attribute. Thus,
the DI STI NCT a operation fails when using hash grouping (see Section }@
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Now we describe the algorithm for makePost G- oup. So far the pre-group and residual join
operators have been added to the operator tree. The post-group operator first builds the projection for
the attributes that have been joined by the previous residual join by the routine
addPr oj ecti onFor Not Avai | abl eFi el ds. This projection is necessary for the additional
computation resulting from the post-calculation of the dimension attributes that are available after the
actual aggregation calculation (at the residual join). This calculation is the product of the dimension
attribute value with the number of group members. For more complex aggregations, we call the
method handl eSpeci al Aggr egat eConpuat i on. Depending on the arithmetic expression
within the aggregation function, special calculation is necessary (see Section | For each
dimension to join, we again add the representative function, in order to speed up the 1 g residual
join (addRepr esFuncti on).

In the following we present the overall operator tree for JQL Statement 10-1. [The operator tree is
generated by the algorithm described. The operator tree as generated for the interval calculation is not
included, it already was shown in Above this operator tree, there is a PRQJ node with
three SUBRG nodes. Each SUBRGnode specifies for one reference surrogate, which bits are used for
pre-grouping. For example, for the surrogate CSygomer the first seven bits are used for pre-grouping.
The GROUP node represents the pre-grouping step. After the pre-grouping operation, six dimension
tables are joined: customer, product, customer_country, customer_dept, product_cat and
product_group. Now the post-group operation is performed (GROUP node) and the dimension table
date is joined (final TI MES node). SEL represents a node, in order to indicate a SELECT query and
name the attributes.

RESTR

TIMES T

REL =
time /\
TIMES fact.datekey date.day
/\ RESTR

TIMES RESTR REL

/\ /\ product_group /\
REL
product.  product_group.

RESTR

TIMES /\ produ e /\ ap Pro

product. product_cat.
:EL category category
TIMES RES’I’R i /\
customer.  customer_dept.
dept dept
RESTR REL
customer_ /\
TIMES country

REL customer. customer_country.
product country country
produa

RESTR prodkey item_key

PROJ customer /\

customer .
cuskey customer

CScustomer[1:7] CSprod[1:8] CSdate[1:11]

Figure 10-8: Operator Tree with Grouping and Residual Join Optimization

We show the same operator tree in prendix C) in Transbase® notation. This notation
contains additional information (especially for the grouping and the join operations). For example, the
TI MES nodes are marked with the corresponding residual join function (groupexactjoin,
groupvaluejoin). The representative join attributes are marked in the GROUP nodes by repres. The
join operators (TI MES) with the projection nodes enlarge the operator tree very much, because the
projection optimization is done in a later optimization step and the combination of all attributes of all
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dimensions occurs in this step in the PRQJ node. Thus, we shorten the illustration by leaving some of
the nodes out (denoted by “...”).

10.1.8 Interval Generation and Index Access

A later optimization step (indexacc) transforms the preliminary interval generation node COVPSURR
to the final interval generation operator tree depending on the query classes. This optimization step
also optimizes the index access, in order to efficiently retrieve the tuples and evaluate the dimension
predicates. The interval generation is done at this later step (not in the join optimization phase),
because the access to the indexes depends on the interval generation. The standard index opimization
method handles the access to specific indexes (primary or secondary) depending on the knowledge
about the access and needed and known attributes. The interval generation depends on the access plan
and can be done at this step. Thus, the index access intelligence is isolated from the MHC join
optimization.

The result is more or less the final operator tree, only some minor optimizations are performed after
the indexacc optimization (at least for star join queries).

We describe the interval generation for each query classe, i.e., HPP, HNPP, and NH. The query class
is coded into the COMPUSRR node as parameter. A COVPSURR node contains the parameters
COWSURR { attrpos hdg }, where attrpos denotes the attribute position of the compound
surrogate and hdg is the hierarchy degree of the dimension.

>0 if predicate classis HPP
hdg <<0 if predicate classis HNPP
=0 if predicate classis NH

In the sample query of SQL Statement 10-1 {field normalized snowflake schema of Sales DW as
described in Section 1 , hdgausome=35 for the customer dimension, i.e., the hierarchy prefix of the
hierarchy levels hg (country) and hs (department) is restricted. For the product dimension, hdgyroquc=3,
because the category level is restricted only. Note that the group level is restricted via a join predicate
to the dimension table product_group. However, there is no local predicate on that hierarchy level
resp. dimension table. If the foreign key constraint

FOREI GN KEY cust oner (group) REFERENCES customer _group (group)

exists, the restriction is superfluous and is not considered for the hierarchy search degree, because all
values of customer.group occur in customer_group.group. Otherwise, hdgproguc=2.

The time dimension has a hdgime=2, because the hierarchy levels year, quarter, and month are
restricted.

For the query of SMM@M&ZJ we have the following hierarchy degrees:
e hdguusiomer = 5 (HPP, i.e., COMPSURR { 8 5 }), because the hierarchy prefix country and

dept are restricted,

*  hdgproqut = -2 (HNPP, i.e., COWPSURR { 5 -2 }), because the hierarchy level grp (hy) is
restricted,

*  hdgge =0 (NH,ie., COWSURR { 9 0 }), because the feature attribute day_of week is
restricted.

In the following, we first discuss the operator CS2| VAL that is necessary for the interval generation of
HNPP and NH predicate classes. Then we describe the interval generation for each hierarchy class and
use as example the sample query of SQL Statement 10-2.|
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SELECT
country _str, dept_str, grp, year, quarter, nonth, SUMval), SUMqty)
FROM
customer c, custonmer_country c_country, custoner_dept c_dept,
product p, date d, fact f
VHERE
f.custkey = c.custonmer AND c.country = c_country.country AND
c.dept=c_dept.dept AND f.prodkey = p.itemkey AND f.tinekey=d. day
AND country_str = ' GERMANY' AND dept_str = 'SOUTH AND
grp = 'COLOR AND day_of week = 'Monday'
GROUP BY
country_str, dept_str, grp, year, quarter, nonth

SQL Statement 10-2: Query with HPP, HNPP and NH Predicates

10.1.8.1 CS2I VAL Operator

The CS21 VAL operator is used to find intervals from a set of compound surrogates cs resulting from a
dimension predicate. Not only consecutive cs values form an interval, but also two compound
surrogates CS; and CS,, CS; < CS,-1 and there is no CS; with CS; < €S3 < €S,. This means that there is no
(used) cs value between two compound surrogates. Due to the relationship of the reference surrogates
of the fact table and the compound surrogates of the dimension tables, all reference surrogates occur in
the dimension table and thus an interval generated by CS2| VAL operator covers the correct values
also in the fact table.

The CS2I VAL node works by processing its input against the index DXcs. Remember that DXcs is a
secondary index on the compound surrogate of the leaf dimension table.

CS21 VAL starts to fetch its sorted input sequence CS; CS; ,.., and first makes a direct access into DXcs
using CS; as search value (this and all following direct accesses must lead to a hit). After the direct
access, the input sequence is compared with the cs values which follow in the DXcS sequence in the
index. When a cs; input value is not found in the index as a direct successor of the previously found
value €Sy, then a result interval is built with (CS; , CS¢.1) as lower bound and upper bound values. Then
the next direct access with €S as search value is made and the method continues (Cs,will be the lower
bound of the next interval to be constructed).

cs=1{4,5,10,11,23,81,82}

1. 2. 3 5 6.

—=—] l{ o[ =]

3 4 51101 11 12 13| 22| 23| 24| ...| 81| 82| 83
DXcs Index

Figure 10-9: CS2IVAL Operator

Mhows an example for the CS2| VAL operator. We use a decimal representation of the
compound surrogates instead of bit strings. The total order is the same for bit strings (with equal
length) and decimal numbers. Assume that the cs values {4, 5, 10, 11, 23, 81, 82} result from the local
predicate of the dimension table. All of these values must also occur in the DXcs index. The first cs
value, i.e., ‘4’ is used as search argument for a direct search in the index (1.). Then we compare the
consecutive cs values of the input with the consecutive index entries until the incoming cs value is
larger than the next index entry (2.). In this case, it is the value ‘23’ that is larger than the next index
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entry ‘12°. The cs value ‘23’ is used again as direct search argument (3.). The next cs input value ‘81’
is larger than the next index entry (4.) and a direct search is done (5.) etc.

The result of the CS2l VAL operator of Fre three intervals, i.e., [4, 11], [23, 23] and
[81, 82] instead of seven cs values.

The CS2I VAL method generates compound surrogate intervals and the number of created intervals is
minimal and thus is optimal w.r.t. the resulting fact table accesses. The effort is linear with the number
n of incoming cs values. A maximum of n direct accesses to the index is performed. However, usually
less than n direct index searches are necessary. The number of next read operations and comparisons is
equal to the number of incoming cs values. The overall maximal cost of CS2| VAL is Ccgva. =

n* Cairectaccess T n* Crextread-

10.1.8.2 Predicate ClassHPP

The dimension operator tree for the customer dimension contains a HPP restriction with predicates on
the dimension tables customer_country and customer_dept. The access to the leaf dimension tables is
done via the secondary index customerDXh that contains the hierarchy levels and the compound
surrogate ( m

custonerDxh = (country, dept, county, city, area, customer, cS)

It is enough to evaluate one tuple of the index, because the predicates restrict a prefix of the hierarchy,
ie, country = ‘Cermany’ AND dept = *‘SOUTH . This is denoted by the property
singletup of the | NDEX node. We pipeline two attribute values from this tuple. The PROJ node
generates these values. These values are two compound surrogates that are computed from the
compound surrogate of the single tuple access to the index. The remaining bits of the compound
surrogate (except the prefix bits) are filled with ‘0’ for the minimum compound surrogate and with ‘1’
for the maximum surrogate (see Section . For this purpose, we mask the compound surrogate with
a Bl TAND operation with * 111..100..000’ for the minimum compound surrogate. With this mask
operation, the prefix bits are unchanged by ‘ANDing’ with* 111..111" and the remaining bits are set
to 0 by ‘ANDing’ with ‘ 000..000’ . The maximum compound surrogate is masked by Bl TOR
©000..011..1171" , i.e., the prefix bits are ‘ORed' by * 000..000’ and thus left unchanged, and the
remaining bits are set to 1.

IVMK

SORT

TIMES

TIMES /\
— T BUILD

RESTR RESTR INDEX
PN (singletup) /\

REL = REL = BITAND BITOR
customer_ country Germany customer_  dept SOUTH CSyugomer  111...100...000 CSyqomer  000...011...111
country dept

Figure 10-10: Operator Tree for Dimension Customer (HPP) with Interval Generation

The resulting compound surrogate pairs (CSmin, CSmax) are sorted in the SORT node. Each pair is
transformed to an interval in the | VIVK (interval make) node.
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This example of a HPP operator tree is typical, however, quite complex, for this predicate class. For a
star dimension (only leaf dimension table), the join between the index access to the leaf dimension
table and the higher dimension tables does not occur and the predicates on the dimension tables are
local predicates on the leaf dimension table. The index access and interval generation is the same as in

10.1.8.3 Predicate Class HNPP

The operator tree for the product dimension of SRQL Statement 10-2 ¢ontains a restriction on the
hierarchy level group: grp = ‘ COLOR' . In the physical schema, this hierarchy level is indexed by a
standard secondary index gr oup_secl X (group, cs) that additionally contains the compound
surrogate. This dimension has the predicate class HNPP, because only hierarchy attributes are
restricted.

The interval generation for dimensions of query class HNPP generally is done by evaluating the local
predicates on the dimension. For each tuple that qualifies the dimension predicate, we retrieve the
compound surrogate (either by accessing an index that is used for the evaluation and contains the
compound surrogate, or by materializing the compound surrogate from the dimension table itself). The
compound surrogates are combined to intervals as far as possible by applying the CS2| VAL operator
(see Section 1t0 the set of compound surrogates. This operator needs a sorted stream of
compound surrogates and delivers pairs of compound surrogates as lower and upper bounds of the
intervals.

The evaluation of the compound surrogates usually does not return sorted cs values. Thus, a SORT
operator is used before the CS2| VAL node. In Higure 10-11 fo SORT operator is necessary, because
the index access (a point restriction) returns the index tuples (group, cs), where group is restricted to

group = ‘ COLCR . The index tuples are stored sorted by (group, cs, IK).

The PRQJ node reduces the index tuple to the cs value only.

IVMK
|
CS2IVAL
/\
RESTR PROJ
INDEX = oL

N

group_secl X group COLOR

Figure 10-11: Operator Tree for Dimension Product (HNPP) with Interval Generation

The intervals generated by a HNPP query can be described as a set of cs intervals that cover a number
of compound surrogates (depending on the minimum restricted hierarchy level). The cardinality of the
intervals depends on the hierarchy degree hdg and on the hierarchy instance. Typically we have a
number of hierarchy sub-trees that correspond to the restriction. For example consider a restriction of a
date hierarchy: WHERE nont h = ‘ Jul y’ . The result of this restriction are 31*3 = 93 cs values for
‘July 2000', ‘July 2001, and ‘July 2002, if these three years are stored in the date dimension table.
The CS2| VAL operator transforms the 93 cs values into three intervals.
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10.1.8.4 Predicate Class NH

The operator tree for NH predicate classes is similar to HNPP. The predicate of the dimension results
in a number of compound surrogates that are mapped to a (smaller) number of intervals by the
CS2| VAL operator (see Section 10.1.8 1)

mmws the operator tree for the date dimension of 8QL. Statement 10-2_where the feature
attribute day_of_week is restricted to ‘“Monday’. In this case, the date dimension table (basic relation)
is accessed via a full table scan and the cs values for all tuples qualified by the predicate (RESTR
node) are returned (PRQOJ). These cs values are sorted (SORT) and serve as input for the CS21 VAL
operator. The result of the operator tree is a set of intervals built by the | VMK node that is minimal
w.r.t. the compound surrogates. The | VMK node builds the internal representation of an interval.

IVMK

CS2IVAL

SORT

PROJ
/\
RESTR cs

/\

REL =

| N

date day_of_week Monday

Figure 10-12: Operator Tree for Dimension Date (NH) with Interval Generation

Non-hierarchical predicates can lead to a large number of intervals, since feature attributes often are
orthogonal to the hierarchy (e.g., the population of cities in a geographical hierarchy). With the
CS2| VAL operator, we are able to build a minimal set of intervals for the restriction. However, the
overall number of intervals can be still very large and consequently the number of query boxes. If a
large number of intervals is generated for several dimensions, the number of multidimensional query
boxes is the cross product of the intervals of each dimensions. This can lead to seri erformance
problems and special optimization is necessary to handle such situations (see Section ?fasj))

In some hierarchies, the feature attributes also can correspond to hierarchy levels and determine
hierarchy levels, if the feature attributes are restricted. This leads to a small number of intervals
(comparable to HNPP restrictions). For example, a time hierarchy with year — month — day with an
additional feature attribute week. With the predicate year = ‘2002 AND week = 49, the
following days are restricted: 2002-12-01°, ‘2002-12-02", ‘2002-12-03", ‘2002-12-04", ‘2002-12-05,
2002-12-06, ‘2002-12-07°, These days form an interval (also for the compound surrogates) and the
CS2| VAL operator transforms the set of seven single values into one interval. Note that for the time
hierarchy, such relationships of feature attributes to hierarchy levels are very common. For other
hierarchies, e.g., the product hierarchy with a feature attribute color, additional effort is necessary, in
order to optimize the interval generation (see Section With the CS21 VAL operator we benefit
from such relationships.

Hierarchical pre-grouping for NH restrictions is not as efficient as for hierarchical restrictions, because
feature attributes usually are only functionally dependent on the most detailed hierarchy level h;. This
leads to h-surrogate prefixes consisting of the complete compound surrogate with only minor
advantages for pre-grouping. Feature attributes with hierarchical nature are suitable for pre-grouping.
A corresponding snowflake schema design enables the optimizer to recognize such hierarchical
relationships.
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10.1.9 Remarks

The methods for the recognition of the schema discussed so far do not consider all possible schemata
that are suitable for star query processing. For example, a schema could be designed without correct
definition of reference constraints. In this case, duplicates on the dimension tables might occur that
cause duplicate fact table tuples. According to SQL-92, such duplicates can be evaluated and must be
considered for the result of the query. The semi-join methods used in our star query processing
algorithm do not handle such duplicates and special algorithms must be implemented. However, in
reality, duplicates do not occur although there are missing constraints to prohibit duplicates (due to
bad schema design). Thus, we could use the standard star query processing algorithms without loss of
tuples. Some dynamic optimization aspects can solve this problem: Proceed with the proposed query
processing algorithms as long as there are not duplicates. If duplicates on one dimension occur, use
standard query processing methods that can be imperformant but deliver the correct result. This
dynamic optimization is not implemented since dynamic optimization requires changes in the overall
operator tree generation and execution.

Another problem is the join over several fact tables. Queries may contain a number of fact tables or
self joins on the fact table. For example, one of the business queries on the Sales DW requires a self
join on th t table. We implemented a method to deal with multiple fact table within one query (see
Section 10-7for more details).

10.2 Aggregation and Grouping

In SQL-92 the aggregation functions M N, MAX; COUNT, SUM and AVG exist. Each aggregation
function has at least one parameter, usually a single attribute. For COUNT two different applications
are possible: COUNT( E) , where E is an expression, computes the number of tuples where E does not
contain a NULL value. COUNT( *) computes the overall number of tuples. The other aggregation
functions also can contain expressions, e¢.g., M N( a+b) , where a and b are attributesptHjone of the
participating attributes for M N or MAX is NULL, the expression is ignored for the result™. If the value
of an attribute participating in an expression for SUMor AVGis NULL, then the complete expression
for the tuple is 07. SUM E) computes the sum of the expression E for all tuples, AVE E) computes
the average value of E.

The implementation of the aggregation functions is straightforward. AVGE E) is equal to
SUM E) / COUNT( E) . Thus, for AVG E) we store count and sum and do the cacluclation at the end.

In the context of pre-grouping, aggregation is more difficult, because for aggregates on dimension
attributes, the aggregation values are not available when pre-grouping (and aggregating). The
following sections describe how to do aggregation in such cases.

10.2.1 Implementation of Hash-based Grouping

We use a hash table implementation for grouping in MHC environments in Transbase®. The key of
the hash table is calculated w.r.t. one or more attributes. These attributes are the parameters for the
hash function. The hash function itself is quite simple, but provides good distribution for most data
investigated so far.

The crucial point when using hash table implementation is to estimate the number of objects (tuples)
to store in the hash table. Since we do not have statistics about the multidimensional data distribution
on the fact table, an (even rough) estimation of the number of resulting groups is not possible.

2 If each tuple contains a NULL value in the expression, then the result is NULL.
** Note, that also COUNT(a) returns the number of tuples where a is not NULL. Thus, AVG is computed
correctly also for a set of tuples where one or more tuples exist with a = NULL.
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Thus, we use a fixed cardinality of the hash table for pre-grouping (currently 10.000). The average
length of the collision chains is then n/10.000, if the number of groups is n. For most queries, 30.000
groups (an average chain length of three is still performant) are enough. The initialization of the hash
table with a cardinality of 10.000 requires 10.000 * 4 Byte + 16.384 Byte = 56.384 Byte, where the
16KB are used for the first (at the beginning empty) object container. Thus, the overhead of the
cardinality does not have large effects on the overall memory consumption and the fixed cardinality of
10.000 can be increased or decreased, if other sizes turn out to be reasonable.

The cardinality Np of the hash table for the post-grouping step depends on the number of groups
resulting from pre-grouping Ny, because Nye = Npost.

In the case, that there is not enough main memory available for the remaining objects, we established a
mechanism to write these tuples into a temporary container to disk. The size of the available main
memory depends on the database parameters. The parameter for the size of the local cache determines
how much space is available for the database kernel for, e.g., hash tables.

The implementation of grouping on hash tables is straightforward. The grouping attributes gy, @y, ...,
O, form the key for the hash value hv: hv = f.6(91, 92, ..., On). The hash lookup with hv returns a
pointer to the first object with the same hash value. All objects in the collision chain are tested,
whether the grouping attributes of the object (tuple) are equivalent with gy, Oy, ..., On. In this case, a
group already exists and the aggregation value must be re-calculated. For example, for an aggregation
function SUM(a), the attribute a in the group is adapted: a := a + apey, Where aney is the value of the
attribute a for the new tuple belonging to the group. For performance reasons, we calculate an update
of a in place, i.e., we write the new value of a at the corresponding memory position without
constructing and writing the complete group tuple. For attributes with variable length data type, e.g.,
CHAR(*), VARCHAR(n), BINCHAR(*) etc., we use a special method. An update that enlarges
the attribute value would cause a reconstruction of the tuple (change of the attribute pointers and the
required space) and a re-insertion of the tuple, because the object container is occupied densely. A
delete (and re-insert) would leave a hole in the object container that cannot be re-used without free-
space handling overhead. Thus, we do not store the attribute values for such data types (CHAR( *) ,
VARCHAR( n), BINCHAR(*), BINCHAR(n), BITS(*), BITS(n)).We store a pointer to a
special string container holding the values of these attributes. Within the container, it is relative easy
to handle string enlargements by re-allocation of heap space.

If no tuple with the same grouping attributes g, Oy, ..., 9, compared to the current tuple exists, the
group is appended to the chain of the hash objects with the same hash value. A new entry in the object
table is created that holds the grouping tuple and the collision chain is maintained accordingly.

After the calculation of all groups, i.e., all incoming tuples are handled, the groups are returned by
fetching all objects in the hash table. The first group is the first entry with the smallest hash value, the
second is the next object in the collision chain with the same hash value (if existing). After the objects
of the chain have been returned, the first object of the next smallest used hash value is returned etc.

Thus, the order of the returned groups depends on the hash function and insertion order of the groups.
Depending on the SQL statement, there can be an ORDER BY clause. In this case, the groups are
sorted in a later step.

In SQL we have to care about NULL values. Grouping on attributes that may contain NULL values
(e.g., measure attributes or dimension table feature attributes) is done in a standard way, where we
interpret the NULL value of such an attribute as a special value. The hash function returns a special
value for the NULL value. We do not have to care about further operations, because two tuples with a
NULL value in the grouping attribute are coalesced to one group.
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10.2.2 Basic Aggregation

For pre- and post-grouping, the aggregation functions M N, MAX and SUM are implemented
straightforward. COUNT (and AVG) has to be modified for the post-grouping step:

The aggregation function values for COUNT of the pre-grouping phase have to be added for all merged
groups (AVG=SUM COUNT and therefore is affected by the new COUNT computation). For example,
consider the following SQL statement that aggregates a measure FACT.a and groups w.r.t. hierarchy
level hy of dimension D, where hy is any hierarchy level of the hierarchy hy, hyq, ..., hy, heq, ..., hy with
h; ist the top level and h; the leaf level of the hierarchy.

SELECT COUNT(FACT.a) FROM FACT, D, ...\WHERE ... GROUP BY D. hy

This statement can be transformed to the following SQL statement, in order to show the aggregation
computation:

SELECT SUM cnt) FROM
SELECT COUNT(FACT.a) AS cnt, D.hy AS H FROM FACT, D WHERE ...
GROUP BY FACT. hsk(k)

GROUP BY H

Pre-grouping is done on the h-surrogate prefix for dimension D on level hy specified informally by
hsk(k), i.e., hsk(k) contains the components (h;, h.s, ..., hy). After pre-grouping, we add the counters
and group w.r.t. the actual grouping attribute h.

More sophisticated aggregation semantic is necessary for aggregation on dimension attributes (Section
(0.2.3) and for complex expressions in aggregation functions (Section 1j0.2.4).

10.2.3 Aggregation of Dimension Attributes

In most cases, star queries aggregate fact table measure attributes. The aggregation operation has to be
modified, if a dimension attribute a4 is involved in the aggregation. Pre-Grouping is done on the h-
surrogate prefix w.r.t. the grouping order GO of the dimension (see Section 9(4.2.2)] Each resulting
group from the pre-group operation represents a number of tuples with the same value of aq. The value
of ay, however, is still unknown. The aggregation operations M N and MAX are implemented
straightforward and evaluated after the residual join. SUM has to be modified: We additionally
compute COUNT( *) in the pre-group step and multiply it with the value of a4 after the residual join.

For example, the SQL statement
SELECT SUM D. a4), D. hy, ...FROM FACT, D, ...\WWHERE ... GROUP BY D. hy

groups the tuples according to D.hy. If a4 is known to be functionally dependent on hy, we perform
hierarchical pre-grouping on the compound surrogate prefix of hy. The groups from the pre-grouping
step contain the following attributes: (?, cs(hy), ..., COUNT), where “?” is a placeholder for the still
unknown value of a4, cS(hy) is the compound surrogate prefix corresponding to hy and COUNT is the
number of fact table tuples contributing to this group. After the residual join with D, the group tuple is
modified to (g * COUNT, D.hy, ...), i.e., SUM(D.ay) is computed by D.ag multiplied with the number
of tuples in this group.

AVGis computed by SUM COUNT and is also affected by the special SUMcomputation.

For example consider a query with SUM LOCATI ON. popul ati on) in the SELECT clause. For
each tuple t’ representing group S of the pre-grouping phase we store in ty’ .cnt the number of original
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10.2 AGGREGATION AND GROUPING

fact table result tuples contributing to this group (COUNT(*)). In the residual join phase with
LOCATION, we compute the aggregation value: a = t.cnt * LOCATION.population.

10.2.4 Expressionsin Aggregation

A more difficult problem are complex aggregations, i.e., expressions in the aggregation functions,
especially, if fact and dimension attributes occur within such an expression. An example is a measure
with different currencies and exchange rates. In this case, we have a currency dimension table
Currency (cid, exchrate) and the following SQL statement:

SELECT SUM F. turnover * C.exchrate) FROM Fact F, Currency C WHERE
F.dcurrency = C.cid AND ...

At pre-grouping F.turnover is known. Thus special preparation is necessary: We have to split the
expression into an expression that can be computed at pre-grouping and an expression that is
computed later (similar to Section In the example above, we have to delay the computation of
C.exchrate after the residual join.

Basically, the general form of an aggregation function is AGG(exp), where exp is an arithmetic
expression. exp also can contain the DI STINCT operator, e.g., SUM DI STI NCT
(F.turnover)). In the implementation, we can handle a special class of arithmetic expressions
exp: exp must be a product consisting of factors, where each factor is an arithmetic expression that
either contains only fact table attributes or only dimension table attributes. Such an expression is split
into a part that is evaluated during pre-grouping (aggregation of fact table attributes) and a part that is
evaluated after the residual join (dimension table attributes). The final result of the aggregation is
computed by these two results and multiplied with the number of tuples for this group (COUNT( *) ).

The decision whether to split the aggregation function and apply pre-grouping or not is done in the
routine anal yzeSpl i t Aggr egat i onFuncti ons (see Section 10.1.7).] The expression of the
aggregation is represented by an expression operator tree in the PRQJ node above the GROUP node

(see F{gure T0-13)] The BUI LD node in Higure T0-I3 Jcontains the expression, represented by the

MULT node and a number of other attributes needed for grouping. The SUBRG nodes represent the
compound surrogate prefixes, in this case, for pre-grouping.

We traverse the expression operator tree until we find a MULT node (for multiplication). We
recursively traverse the sons of the MULT node, in order to check that only fields of either the fact
table or the dimension tables occur. If there is an inconsistency, i.e., a mixture of fact and dimension
table attributes, we cannot split this expression and thus cannot use pre-grouping for the dimensions
that occur in the expression.

GROUP

PROJ

BUILD
A SUBRG SUBRG... MULT

F.sold F.price

Figure 10-13: Example Aggregate Expression
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The following expressions allow pre-grouping:

SUM fact.sold * fact. price)

SUM fact.sold * fact.price * 1.99434)

SUM (fact.sold + 10) * fact.price * 1.99434)

SUM fact.sold * fact.price * (currency.exchrate + cust_country.tax))
The following expression does not allow pre-grouping:

SUM fact.sold * fact.price * (currency.exchrate + fact.credit))

The following properties for complex expressions must be fulfilled, in order to allow for pre-grouping:

e Aggregation functions SUM AVG
¢ Product Form:e = f, * f, * ..* f,
¢ Each fact fi is an expression that either contains fact table attributes or dimension attributes

Note that various expressions can be split into expressions that can be handled as described, e.g.,
SUMF.m*D. h; + F. m*D. h;) is splitinto SUM F. m*D. h;) + SUM F. m*D. h) . Special
information has to be stored within the groups, i.e., the atomic expressions and the arithmetic
operations. These information contains the split operators of the arithmetic expression and eventually
some rules how to handle special cases. Handling of quotients is similar to products, but has not been
implemented. We must care about the division with zero. The divisor and dividend each may contain
either fact or dimension table attributes again.

Additionally, we must care about the NULL semantic. If one of the attributes involved in the
expression is NULL, the complete expression is 0 for SUM(and thus for AVG). Therefore, we have to
check if any attribute is NULL: for measure attributes at pre-grouping, for dimension attributes after
the residual join.

Complex expressions can be handled for the aggregation functions SUMand AVG. Complex M N and
MAX expressions cause a large effort to implement pre-grouping (see Section 1{0.2.5)

10.2.5 Failure of Pre-Grouping for Aggregations

Some aggregation functions cannot be handled in the current Transbase® implementation by pre-
grouping. Such functions are expressions containing a combination of fact table and dimension table
attributes like M N(F. m * D. hy) . For fact table processing it is not clear whether M N(F. m) or
MAX(F. m) has to be used for the aggregate, because D.hy can have opposite signs compared to
MN(F.m). Then MN(F.m) * MN(D. hy) > MAX(F.m) * MN(D. hy).

Such expressions can be handled only with huge effort and are not easy to implement for the general
case (consider complex expressions where all cases have to be stored for each group).

Another class of expressions where pre-grouping cannot be applied is the DI STI NCT operator within
an aggregation function, e.g., SUM DI STI NCT D. a) . Here, the aggregation in the grouping process
does not store the single values of a of dimension table D for the aggregation. The computation of
DI STI NCT fails.

If the foreign key reference constraints between the fact table and a secondary dimension table is not
specified, the dimension table must be post-filtered. The post-filtering takes place immediately after
the fact table access and before pre-grouping. Thus, for such dimensions, pre-grouping cannot be
applied.
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Summing up, some special expressions can be handled easily with pre-grouping. However, the vast
majority of expressions cause problems and huge implementation effort. Most data warehouses,
however, do not use such complex expressions. Complex metrics that reflect business content are
implemented in front-end tools.

10.2.6 Memory Consumption

Hierarchical pre-grouping reduces the amount of memory that is necessary for a hash based
implementation of grouping. Each group corresponds to one object (group tuple) in the hash table. If a
tuple belongs to an already existing group, only the aggregation values are modified. We therefore
need M*tg,, if M is the number of groups resulting from pre-grouping and tg, is the average size of
one tuple. Additionally we need some overhead for the implementation of hash grouping, i.e., k*4 byte
for the mapping of the hash values to the object container, where K is the cardinality of the hash table.
For each pointer to the next object in the case of collisions we again need a four byte pointer, i.c.,
K* | chain® 4, if | gnain 1S the average chain length in the hash table.

The overall main memory for grouping therefore is:
m*tsize + k*4 + k* Ichajn*4 byte

If the available main memory is not enough, we have two alternative strategies, in order to deal with
this too large number of groups.

The first alternative is to perform grouping until the available main memory is exhausted. Each tuple
that belongs to one of the already hashed groups can be handled by modifying the group. All other
tuples are written to a temporary container on disk. After all tuples have been handled, we empty the
hash table by pipelining all groups to the parent node in the operator tree and proceed with the pre-
grouping with the tuples of the container on disk. Note, that several iterations of this process can be
necessary, in order to group all tuples. This solution generates the same groups (number and values) as
a full in-memory hash-grouping.

The alternative is to pipeline and remove the group that has not been modified for the longest time
(some kind of LRU characteristics) from the hash table ([ Now a new group can be added to
the hash table. With this approach, the number of resulting groups is increased, but Larson shows in
his measurements that this method does not produce extremely larger numbers of groups. The
additional groups are coalesced at the post-grouping step. So this method requires a post-grouping
operator with all dimensions of the pre-grouping step. This approach needs no storing of tuples on the
disk, however, with the larger number of groups, the residual join will take longer correspondingly.
The post-grouping also has to deal with a larger number of incoming groups

Depending on the dimension predicates, hierarchical pre-grouping reduces the number of groups
dramatically (compared to the number of tuples resulting from the fact table access). Thus,
hierarchical pre-grouping reduces the necessary amount of memory. Less overall memory is necessary
or more parallel users can share the available memory.

10.2.7 Remarks

Handling complex expressions with pre-grouping is an interesting topic. Basically, if an aggregation
function can be decomposed, it is possible to apply pre-grouping on the expressions. However, a large
implementation and run-time effort must be spent for a general solution. This effort even might exceed
the benefit of pre-grouping. Further investigation is necessary to develop algorithms, data structures,
and implementation to generally handle complex expressions in aggregation functions.

The additional effort must be compared to the achieval speed-up by delaying residual joins after the
pre-grouping step. So a cost-based approach is necessary, in order to decide which optimization to

apply.
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10.3 Multi-Query-Box Handling

One serious problem for star queries on a database schema modeled with MHC is the occurrence of
many query boxes. If a hierarchical restriction in dimension D; leads to my intervals, then m query
boxes are created in combination with the other dimensions. If another dimension Dj leads to m
intervals, then m*m query boxes must be handled by the underlying indexing structure. Generally, the

n
number of query boxes for n dimensions Dy, Dy, ..., Dyis [] M . Some hierarchical restrictions lead to
i=l

a large number of intervals, e.g., restrictions on feature attributes. For example consider a query
restricting the age of customers, where age is a feature attribute to the usually geographical hierarchy.
The number of intervals can be several thousands.

A query like

SELECT SUM t ur nover)
FROM Fact F, Custoner C, Date D
WHERE F.cid = C.cid AND F.did
AND D.year = 2002

D.did AND C age BETWEEN 25 AND 30

can be rewritten into

SELECT SUMt ur nover)

FROM Fact F

VHERE
(F. hsk_cust BETWEEN 1 AND 4 AND F. hsk_date BETWEEN 1 AND 364) OR
(F. hsk_cust BETWEEN 7 AND 8 AND F. hsk_date BETWEEN 1 AND 364) OR ...

T

Figure 10-14: Two dimensional UB-Tree

Those intervals depend on the data, but the number of intervals can be very large. Often multiple
query boxes even intersect the same disk pages. The range query algorithm is performed on every
query box and requires multiple loading of the same pages (see Figure 10-15).

For illustration purpose we use a two dimensional UB-Tree with a page capacity of four tuples.
10-14 shows the UB-Tree with the tuples.

In Fi ultiple query boxes are shown. The query boxes are illustrated by transparent

rectangles. Not all query boxes contain tuples. We call such query boxes empty query boxes. For
example the four query boxes in the right upper quadrant of the universe all intersect the same two
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pages. Thus, these two pages are post-filtered four times with the predicates of the corresponding

query box.
| I [ pl - =
r L

Figure 10-15: Two dimensional UB-Tree with multiple Query Boxes

10.3.1 Standard Query Box Algorithm

The implementation of the UB-Tree in Transbase® is on top of the standard B-Trees (see

The index part of the B-Tree uses z-addresses as separators, whereas on the leaf levels (leaf pages) the
original tuples are stored. These tuples contain the n-dimensional UB-Tree key (dy, d, ..., d,) and are
ordered by their z-value Z(d;, dy, ..., d,). We have to post-filter the tuples on the leaf pages, in order to
decide which of them are inside the query box and which are not.

The standard query box algorithm is query box oriented, i.e., for each query box the sequence compute
next page — fetch page — filter tuples on page is executed. A simplified algorithm is shown in
Algorithm 10-3. See [Ram02] fbr more details.

Algorithm 10-3 (Standard Query Box Algorithm):

For each QB 0O B
start = Z(ql)

end = Z(gh)
cur = start
VHI LE( TRUE)

cur = get Regi onsSepar at or (cur)
post Fi | t er Page( Get Page(cur), QB)
if cur 2 end

br eak;
cur = get NextJunpln(cur, QB)

The query boxes are stored in QB = { QB; }. For each query box we execute the range query
algorithm. A query box is determined by a minimum gl and maximum gh corner. gl and gh are tuples,
Z(ql) (Z(gh)) computes the z-value of gl (gh), where Z(ql) = Z(gh). See [Ram02] Jor more details on
computing the z-value. We start with the minimum z-value of the query box and compute all pages
that are intersected by the query. The pages are computed by iteratively calculating the z-value for the
next intersection point of the z-curve with the query box. This continues until a z-value for cur is
found that is larger than end (Z(gh)).
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The function getRegionsSeparator returns the separator for the current z-value. The function
postFilterPage tests all tuples on the page if they are contained in the query box specified by gl and
gh. getPage(p) requests page p from the storage manager.

Figure 10-16: Range Query Algorithm

Figure T0-T6 shows an example of the range query algorithm. First we fetch the page with region R

that contains gl of the query box (Figure 10-16|(a)). Ris post-filtered and the next intersection point b
is calculated, i.e., the largest (according to the z-order) point a+1 of R b = a+1 in region S After
post-filtering § the next intersection point is calculated again. Because the largest point € of Sis not
inside the query box, the following next jump in computation computes point d of region U. Note that
the regions Ty, Ty, T3, and T, are skipped. After post-filtering U, the algorithm is finished, because the
largest point e of U has a larger z-address than gh.

A detailed description about the range query algorithm is found in [Ram02] 4nd [RMF 00]] See also
Section 2[5 for more details about the UB-Tree and the implementation in Transbase®. For the
Transbase® implementation, we first position on the leaf page of the UB-Tree that contains the tuple
Z(ql). Note that the tuple Z(qgl) needs not to exist, but the separator S, S <Z(ql), of the index part of the
tree points to that page. If the page has been found, we post-filter all tuples on that page by the ranges
of the query box specified by (gl, gh). The z-value of the last tuple, i.c., largest tuple w.r.t. z-order, is
used for the computation of the next jump in point nji into the query box. nji is the first point on the z-
curve that is inside the query box. In wo scenarios of a query box and the z-curve are
illustrated. On the left side, the z-curve enters and Ieaves the query box several times, on the right side,
it enters the query box one time and all points on the z-curve are contained in the query box until the
z-curve leaves the query box.

L4 /

njis  njig

(a) Many Jump In/Out (b) One Jump In/Out

Figure 10-17: Query Box Algorithm

132



10.3 MULTI-QUERY-BOX HANDLING

nji is used for the B-Tree search in the UB-Tree, i.e., we search for a separator that points to the page
containing nji. Depending on the B-Tree implementation, the search for nji can be done very
efficiently, if the search algorithm can jump on the index pages instead of performing a full path
search from the top of the B-Tree to the bottom index level (see Fj A corresponding B-
Tree implementation with pointer to siblings on index page level all%mp optimization.

\

Index

> Part

/

e AR I AN ,} Leaf

Pages

Figure 10-18: B-Tree Jump Algorithm

10.3.2 Optimization on UB-Tree Leve

Special algorithms are necessary to handle large numbers of query boxes. For the UB-Tree, see
[Fen98] ffor an algorithm. This method first sorts the minimum corner of the query boxes w.r.t. z-order
and processes the first page/region with the smallest z-address, i.e., the query box on top of the list.
After applying the range query algorithm on this region, the new region (resulting from the range
query algorithm) is inserted into the list at the corresponding place. With this iterative processing and
sorting method, we avoid fetching the same page multiple times.

For other multidimensional indexing structures see [PM98] where especially for the R-Tree some

algorithms are proposed that are similar to [ A formula is developed to decide when it is
applicable to merge two or more query boxes a ute them as one (see also Section 1 .

We propose a different solution for the integration of the UB-Tree with many query boxes in
Transbase®. The main problem is that with the standard query box algorithm, a page (region) is read
several times depending on the number of query boxes that intersect the page. With the proposed
algorithm, we read and process every page only once.

Compared to d other approaches, we sort the pages to test w.r.t. page numbers. These page
numbers are chosen by Transbase® and do not reflect any multidimensional order.

10.3.2.1 Collecting Pages

In the first step, we collect the page numbers by applying the range query algorithm in the index part
only. In the second step we fetch each page via the storage manager and post-filter the page with all
predicates contributing to this page. Note that in the case of MHC, multiple query boxes are in
disjunctive normal form, i.e., if a tuple lies inside one query box, it belongs to the result set
independently on other attributes. Sophisticated predicate testing algorithms are possible to speed up
post-filtering.

Collecting the page numbers requires a modification of the original UB-Tree range query algorithm.
We perform the next jump in algorithm get Next Junpl n on the index part of the UB-Tree only. The
use of separators as parameters for get Next Junpl n enables to get the identifier of the leaf page
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without accessing the leaf pages and finds all leaf pages that may contain tuples of the specified query

box (see Fi%re 10-19). The modified algorithm is presented in Al%orithm 10-4.
/

1CA1 ||/| .. CACaCal |}I};:g£s

Figure 10-19: Range Query Algorithm on Separators

Index
> Part

In Algorithm 10-4, he list of page numbers PNO is filled iteratively with page numbers resulting from
the get Next Junpl n call for the corresponding separators. The overall algorithm is very similar to
the original range query algorithm (see Instead of post-filtering the tuples, we add
the page numbers that may contain result tuples and delay post-filtering to a later step. The list of page
numbers is sorted after the evaluation of all query boxes, because several query boxes can intersect the
same pages. In this case, pages occur several times in PNO. Thus, we use the function
sort Di stinct to sort and eliminate duplicate pages. At the end of the algorithm, PNO contains a
list of page numbers with result tuples of all query boxes. Each page number occurs once.

Algorithm 10-4 (Range Query Algorithm on Separator s):
PNO = { }
For each QB 0O OB
start = Z(ql)
end = Z(gh)
curSep = start
VHI LE( TRUE)
cur Sep = get Regi onSepar at or ( cur Sep)
PNO = PNO O get Pno( cur Sep)
if curSep = end
br eak;
cur Sep = get Next Junpl n(cur Sep, QB)
PNO = sort Di stinct (PNO

The computation of the page number list accesses only index pages. Some index pages are accessed
multiple times, if one of its leaf pages is intersected by multiple query boxes. The comparable small
number of index pages allows keeping them in the cache and does not require to load them from disk
for each access.

After the page number collecting phase, we have a list PNO of page numbers PNO = {ps, pa, ..., P}
that contains all pages that are intersected by any query box of QB = { QB*, QB?, ..., QB™}. The query
boxes are generated by the Create Range operators of the processing plan. Assume that we have n
dimensions Dy, Do, ..., D,. The query boxes are specified by:

134



10.3 MULTI-QUERY-BOX HANDLING

q31 = ((I N E nl) ) (h11- ht, .., hnl))
q32 = ((I T T nz) ) (h12- h?, .., hnz))
(Bm = ((I 1m1 I Zml er I I"In) 1 (hlml h2m1 ey hnn))
The multidimensional interval for QB! is specified by a lower bound 1% 1Y .., 1.t in each dimension
and an upper bound h,%, h', ..., h.'. For example the query boxes of [Figure TO-TS fesulting from the
intervals [3.0, 3.5] [4.5, 5.0] [5.5, 6.0] [7.0, 7.5] [8.0, 8.5] [9.0, 9.5] for dimension D, and [6.0 , 8.0]

for dimension D, could have the following ranges:
B = ((3.0, 6.0) , (3.5, 8.0))

QB2 = ((4.5, 6.0) , (5.0, 8.0))
B = ((5.5, 6.0) , (6.0, 8.0))
®B* = ((7.0, 6.0) , (7.5, 8.0))
B =((8.0, 6.0) , (8.5, 8.0))
@®B® = ((9.0, 6.0) , (9.5, 8.0))

The query boxes are mapped to a predicate matrix structure that holds the ranges of the query boxes
for each dimension:

D [, hT [12, h®] o [1™, he'
D [, ht'T [122, h?l .. [1.™, h

Do [1at, hY [102, he?l )™, haM

Thus each query box QB' is reflected in the predicate matrix by the column
[1: , h] [12°, h'] ..[1. , h'].

Lemma 7:

The ranges of one dimension are either equal or disjoint. O

Pr oof:

Follows from the Create Range Operator that returns disjoint intervals for each dimension. The query
boxes therefore are disjoint, too. g.ed

The sample query boxes QB*, QB?, ... QB® result in the following predicate matrix:
D;: [3.0, 3.5] [4.5, 5.0] [5.5, 6.0] [7.0, 7.5] [8.0, 8.5] [9.0, 9.5]
D: [6.0, 8.0] [6.0, 80] [6.0, 8.0] [6.0, 8.0] [6.0, 8.0] [6.0, 8.0]

In the basic implementation, all tuples on pages of PNO are tested with the complete predicate matrix,
i.e., for each tuple one column of the predicate matrix is used as a multidimensional restriction. If the
tuple is inside one of the query boxes, then it is qualified by the restrictions of the range query. The
problem with this approach is, that query boxes are tested for tuples and pages that do not intersect the
page, because all tuples on a page are post-filtered with all predicates resulting from the predicate
matrix. If a tuple corresponds to one predicate, it is in the result of the query boxes.
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10.3.2.2 Optimizing Post-filtering: Predicate Bitmap

We introduce a predicate mapping structure holding for each page, which query boxes intersect this
page. This bitmap is TRUE for each query box intersecting the page: PBM = { by, by, ..., by }, where
b; are bits with the status 0 (FALSE) or 1 (TRUE). We test for each tuple on page p all query boxes
where PBM,[bi] = 1. PBM, represents the bitmap for page p. For example, the bitmaps for the pages
P1, P2, --., Ps that are accessed in the example look like the following:

PBM; = { 1, 0, 0, 0, 0, 0}
PBM, = { 1, 1, 0, 0, 0, 0}
PBMs = { 1, 1, 0, 0, 0, 0}
PBM, = { 0, 0, 1, 1, 1, 1}
PBMs = { 0, 0, 1, 1, 1, 1}

With this optimization we reduce the number of predicate comparisons for all tuples on the retrieved
pages, because the tuples on one page are post-filtered with the query boxes that intersect that page.
The overall number of comparisons still can be very large.

10.3.2.3 Optimization of Post-filtering: Predicate Structure

We suggest a further optimization. We sort the range of the predicate matrix, in order to speed up the
test whether a tuple lies within an interval or not. For this purpose, we modify the predicate matrix and
do not store the ranges of one query box as a column of the matrix, but sort the ranges for each
dimension ascending. Duplicate ranges for one dimension are removed.

Dl: [I 1k1 , hlkl] [I 1k2 , h1k2] [I 1kml. , hlkml.]
D2 [I Zkl 1 hzkl] [I 2k2 1 h2k2] [I kaz 1 hzkmz]

Dﬂ: [ [ nkl , hnkl] [ [ nk2 , hnkZ] [ [ r‘lkrm , hnkrm]

Thus not all fields of the matrix are filled out. Each row i contains k,; ranges. The sample matrix is
modified to:

D [3.0, 3.5] [4.5, 5.0] [5.5, 6.0] [7.0, 7.5] [8.0, 8.5] [9.0, 9.5]
D [6.0, 8.0]

It is important that all combinations of ranges of all dimensions are valid query boxes for the query.
This comes from the fact that intervals are created in_all dimensions as cartesian product (Create
Range operator of the abstract execution plan, see Fi We enumerate the query boxes by
combination of the ranges in the dimensions. The ranges in the dimensions are numbered starting from
0 to k-1, if k ranges exist for that dimension:

D R*R?... R*
D: R'R? ... R*

Dn: Rnl an o Rnkn
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The enumeration creates a list LQB of n-dimensional query boxes:
LAB ={}
FCOR dl =0to kl
FOR d, = 0 to k,

FOR d, = 0 TO ki,

LB = LB O {(R, R%, .., R}
NEXT kp

NEXT Kk,
NEXT ki

The elements of LOQB are numbered from 0 to ki*ky* .. *k, - 1. For the sample query, the enumeration
order of the query boxes corresponds to the order of the query boxes: LQB = { QB', QB?, QB®, QB*,

QB®, QB°}. Mhows the enumeration of the query boxes with two dimensions.

[3.0,3.5] [45,50] [55,60] [7.0,7.5] [8.0,85] [9.0,9.5]

0 1 2 4 5

[6.0, 8.0]

Figure 10-20: Query Box Enumeration

Each page px has a list of query boxes PL that intersect the page:
PL, = {0}, PL, = {0, 1}, PLs = {0, 1}, PL, = {2, 3, 4, 5},
PLs = {2, 3, 4, 5}

Given a page px where we have to post-filter the tuples, we proceed in the following way: We
iteratively check for each tuple t of py, if one of the query boxes of PL; contains t. If such a query box
is found, we add the tuple to the result set (see Algorithm 10-5).

Algorithm 10-5 (Query Box Testing Algorithm):

p:{tl, to, .., t]}

FOR EACH t;
FOR EACH ng, OPL,
I F ngy CONTAINS t;
R=RO0Ot;
br eak;

The algorithm for query box testing has a maximum of | * Ny comparisons, where | is the number of

tuples that are tested and Ny, 1is the average number of query boxes that intersect one page. The

CONTAINS operation checks whether tuple t; is inside query box Ng,. Ny is the number of the query
box.
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An optimization is possible for the query box testing. We do not test complete query boxes, but ranges
in the dimensions. We begin with dimension D; and test, to which range t.d; belongs. t.d; denotes the
attribute d; of t contributing to dimension D;. Note that there is only one range, where d; belongs to. If
this range exists and contributes to a valid query box for the page, we proceed in the same way for the
remaining dimensions. If we find for all dimensions a corresponding range, the tuple belongs to the
result. The search of the ranges can be done very efficiently by binary search.

10.3.2.4 Optimization w.r.t. Order of Query Boxes

In some situations, a high number of query boxes hits almost the same leaf pages (regions) of the UB-
Tree. In such a case, the page number collecting algorithm traverses the UB-Tree index part for each
query box and accesses and fetches the index pages multiple times. The final result can be very small
compared to the number of index page accesses. The algorithm therefore is CPU bound (the index
pages are usually in the cache). We can reduce the index part traversal by modifying the range query
algorithm in the following way.

We sort the query boxes w.r.t. z-order of gl and process not complete query boxes, but split up query
boxes into regions. This means that the algorithm is not performed for each query box. We collect
each region only once. Since multiple query boxes can intersect the same regions, we can skip the
calculation and thus the UB-Tree index access for all other query boxes for this region.

For the new algorithm we need a description of query boxes. A query box is specified by QB = (dl, gh,
a, gnr), where gl is the lower and gh the upper corner of the query box, ¢ is a running z-address
initialized with a = Z(gl) and gnr specifies the query box number. QBL is a sorted list of query boxes

QBL={QBj}. The query boxes are sorted w.r.t. @ = Z(ql). The algorithm is shown in Algorthm T0-6.]
Algorithm 10-6 (Query Box Algorithm with Query Box Splitting):

b=-= PNO={}
VWH LE QBL # { }
B = pop(QBL)
IF B.a > pu
PNO = PNO O get Pno( @B. a)
M = next Sep(@B. a)
@B. a = get NextJunpln(p , QB)
IF B.a < Z(@B. gh)
push(QBL, B)

We assume that the query box list is organized as heap ([@' with the operations head, pop, and
push. head qualifies the first (smallest w.r.t. heap order) element of the heap. The expression
head( QBL) . a returns the value of & (running z-address) of the first query box in the list. pop

deletes the first element of the heap and the next larger element is on the first position of the heap?>
push inserts a new element € into the heap. If e is the smallest element, it is on top of the heap and
can be accessed by the head operation.

In the query box algorithm, we use K for the current separator of the index part. f is initialized with
-c0. PNO is again the list of page numbers and is the empty set at the beginning. We run the
calculations as long as there are query boxes left in QBL. We remove the first query box from the heap
(pop), in order to resort the heap with the new computed next jump in address of the next separator.
First we check if the anchor a of the query box is larger than the current separator. This is an

» An implementation for this operation is to replace the first element with the last element in the heap array and
resort the heap by exchanging elements in the heap (logarithmic complexity due to the organization of heaps).
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optimization, because the regions for all query boxes with the anchor & smaller than the current
separator have already been inserted into PNO.

If a is larger than the current separator, we compute the page number and add it to PNO. The function
next Sep returns the following separator in the UB-Tree index part. We calculate the address of the
next jump in (get Next Junpl n) for i and store it as the anchor ¢ of the query box. If a is larger
than the right corner of the query box, i.e., Z(gh), the query box is finished. Otherwise we re-insert the
query box into the heap again (push) to the position w.r.t. the computed next jump in address.

If one or more query boxes have smaller anchors than the current separator, the region of the anchor
can be skipped and they are re-inserted with a new anchor (resulting from the next jump in
calculation).

This algorithm reduces the number of UB-Tree index page operations significantly if many query
boxes occur that intersect the same data pages.

The idea of the algorithm is very similar to [[Fen98] and the basic idea of sorting the query boxes w.r.t.
the z-order of the query boxes is taken from the proposed algorithm. However, predicate testing is
different in the meaning that the predicate optimization as described before is done.

10.3.2.5 Impact to the Operator Tree

With the original handling of query boxes with MHC, the operator tree is designed to process each
query box in a nested loop (Tl MES node). The left son is an operator subtree which delivers the set of
n-dimensional query boxes. Its right son is the access to the fact table with the current query box
actually delivered by the left son. In this way, a completely independent processing of each query box

is implemented (see

TIMES

REL
\\ Fact Table

Actual
Query Box

Figure 10-21: Operator Tree for handling Query Boxes sequentially

With the new technique, the computation of the query boxes is arranged under the REL node (which
does the fact table access) — in addition, the query boxes are not explicitly constructed but only the
constituents (one dimensional intervals) are constructed (see In this way, we only get
my + My + ...+ m, elements instead of My* my* ... *m, query boxes, where my is the number of intervals
resulting from the predicates of dimension Dy,

Of course, the nature of this improvement is closely coupled with the independence of the one-

dimensional intervals among the dimensions, in other words, the explicit construction of query boxes
as it has been done introduces a lot of redundancy.
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REL
Fact Table

Set of Intervals
{[CSnin: CSnad}

Set of Intervals
{[CSmin» CSnad}

Figure 10-22: Operator Tree for collecting Query Boxes with Predicate Matrix

10.3.2.6 Remarks

The optimization of the multi-query-box algorithm speeds up handling of many query boxes
significantly. The division into two phases, i.e., the page number collecting phase and the evaluation
of the tuples, allows for more parallelism. The first phase uses the range query algorithm and returns a
list of page numbers on which tuples for the query boxes are located. If a page number has been found,
the storage manager fetches the corresponding page either from the cache or from secondary storage.
This can be done in parallel to computing the remaining page numbers. The processing of each
retrieved page also can be done in parallel.

Thus, we have a three layer parallelism. Depending on the hardware environment and the
implementation of the DBMS this parallelism can speed up the query processing step significantly.
We have implemented a separate I/O process to perform page fetching and tuple evaluation on the
pages in parallel. However, first measurements showed that this optimization has only minor effects
on speeding up the overall query processing (probably caused by the implementation).

Another optimization can be applied, if the next jump out algorithm ([Ram02]) |s available. When
processing the UB-Tree range query algorithm, we can check whether the page is completely within
the query box without accessing the tuples of the page. The tuples of such a page are not post-filtered.
Further investigation is necessary to see how likely a page is completely within a query box.

Note that the optimization, especially the third optimization (Section 1@ is adapted for star
queries on an MHC designed schema. The optimizer has to generate the corresponding execution plan
with multiple disjoint ranges for every dimension. The proposed algorithm is not a general multiple
query box algorithm to handle many query boxes.

10.3.3 Merging Intervals

The optimization of the query box algorithm as discussed in Section 10.3.7 spffers, if the number of
predicates to test for the pages is very large. Especially if many query boxes are empty, this method is
inefficient. In this case, all tuples on the page are tested with many predicates (all query boxes
intersecting this page). Such problems occur especially, if there are many dimension tuples resulting
from the dimension restrictions that do not occur in the fact table. Also very sparse fact tables can
cause such problems.

Note that in this case, secondary indexes on the fact table dimension attributes prevent from testing on
non-existent dimension values. In secondary indexes only existing tuples are stored.

In order to reduce the number of predicates to test, we can merge query boxes. Instead of testing for a

large number of predicates, we test only for one multidimensional query box. The optimal case is to

merge query boxes such that no additional tuples lie within the new larger query box. In
the right enlarged query box contains the same number of tuples as the original three single query

boxes, i.e., one tuple. The left enlarged query box, however, contains an additional tuple between the

middle and right single query boxes. This tuple must be removed after result set evaluation.
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Removing the superfluous tuples can be delayed to the residual join step in the overall star query
execution plan. We can pre-group the super set of tuples and post-filter in the residual join (similar to
secondary dimensions). The predicate of the dimension must be evaluated again and must be used as
additional join restriction. The grouping order of pre-grouping (see Sectio is the minimum of
the conventional grouping order and the minimal hierarchy level of the dimenstomn predicate, because
the granularity of post-filtering must be suitable for the dimension predicate. This kind of optimization
is only possible for range query algorithm in the context of star queries with MHC.

|.1_I'"r .

Figure 10-23: Two dimensional UB-Tree with merged Query Boxes

The decision which query boxes to merge depends on the data stored in the UB-Tree. For this purpose,
statistics about the data distribution are necessary. If no statistics are available, as for the Transbase®
implementation, we have to decide w.r.t. rules at query compile time. In general, the goal is to get a
minimum m of merged query boxes from a number n of original query boxes that intersect the same
number of pages and do not contain significantly more tuples than the original query boxes. The
overhead for handling the superfluous tuples should be less than the effort to perform post-filtering of
many query boxes.

One strategy is to combine query boxes on compound surrogate level, i.e., to analyze the compound
surrogates that are the edges of the intervals of the query boxes. With an ordered list of intervals for
each dimension, we can decide, which intervals should be merged. For example, compound surrogates
that are distinct in some of the lower hierarchy levels are likely to form intervals that are near together.
Also the number of tuples that are superfluous after merging such intervals, is likely smaller than for
intervals with larger distances.

For the decision which intervals to merge, we introduce a distance arithmetic d(a, b) where a and b are
compound surrogates and a is the upper bound of interval |, and b is the lower bound of interval |,.
The distance is b — a, i.e., the number of compound surrogates that can lie between a and b. Since not
all compound surrogates are used in the hierarchy, such a computation can be very imprecise.

We suggest to compute the distance from the number of existing compound surrogates between a and
b. This number can be computed (or estimated) efficiently by processing the DXcs index (similar to
the CS2I VAL operator). The distance can be computed on the fly when processing the set of
compound surrogate intervals in the CS2| VAL operator. The overhead of the distance computation is
comparably low.

The merging process merges intervals with small distances. The decision depends on hierarchy

properties such as height of the hierarchy, fan-out etc. Also some statistical properties can be used,
e.g., the distribution of the hierarchy paths. Merging is done by replacing a number of intervals by a
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larger interval in the predicate structure. The range query algorithm is the same as described in Section
10.3.2.

The proposed method is a kind of dynamic optimization without modifying the operator tree. If after
the range query generation phase of the dimensions the number of query boxes is larger than a
threshold, we perform interval merging and reduce the number of query boxes. However, pre-grouping
and residual join with predicate evaluation must be foreseen in the operator tree, in order to do correct
post-filtering.

Note that merging query boxes is orthogonal to the optimization of multiple query boxes as described
in Section he alternative query box algorithm can be used in addition to merging query boxes.

10.3.4 Measurements

The measurements of this section address the multi query box optimization. We performed a set of
queries with
» the original query box algorithm (sequential processing of query boxes): Original
* the optimized query box algorithm with the collection of pages and post-filtering optimization
as implemented in Transbase®: Optimized

The queries are executed on the Sales-DW (see Section @ on a two processor PC Pentium II, 400
MHz, with 768 MB RAM and a SCSI hard disk. Operating system is Windows 2000. The queries
cover basically the same fact table data and the corresponding fact table leaf pages are in the DBMS
cache. Thus, we concentrate on the performance of the query box algorithms themselves. The template
for all queries is the same:

SELECT COUNT( *)
FROM fact f, product prd, cal endar cal, warehouse zap
WHERE f. cal _trans_dwh_key=cal . dwh_key and f. prd_dwh_key=prd. dwh_key
and f.whs_issue_dwh_key=zap. dwh_key
and zap.country code = '1" and zap. geodept code="1"'
and zap. county_code='8'
and prd. category_code='21" and prd. group_code = '21001'
and cal .year = '1999' and half_year = '1h1999'
and quarter = '2g1999' and nmonth = ' 06/ 1999
and day_of week=' Thur sday'

With the feature predicate day_of _week=" Thur sday' , the hierarchical restriction is split into
distinct compound surrogates CS, e.g., four CS values in the previous query. In order to increase the
number of intervals, we modified the feature predicate to (day_of week = 'Tuesday' OR
day_of _week ='Thursday'). This leads to eight distinct cs values. With a modification of the
hierarchical restriction for the Calendar dimension, we further increase the number of intervals, e.g., a
restriction to year = ‘1999’ only leads to 52 (“Thursday”) resp. 104 (“Tuesday or Thursday”)
intervals. For further increase of the number of intervals, we replaced the hierarchical restriction on
the Product dimension by prd.dwh_key/ <a>*<a>=prd. dwh_key. This results to

1
—*|Pr oduct| intervals assuming that dwh _key is numbered from 1 to 27.929. |Product| is the
a

number of records in the Product dimension. For a=2 means that 13.964 intervals are generated. We
used the values 4, 8, 16, 32 for the queries. In combination with the weekday feature restriction, we
have up to 86.008 query boxes.

The results are shown in F{gure T0-24] Both algorithms are linear w.r.t. the number of query boxes,
where the optimized algorithm 1s always faster by a factor of two to three.
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The original algorithm processes the leaf pages of the UB-Tree for each query box, triggered by the
UB-Tree range query algorithm. This results in loading the leaf pages multiple times, if more than one
query box intersects the same UB-Tree regions (see Section 1 3717 In contrast, the optimized
algorithm only stores the page numbers and processes each page nu nce for all query boxes.
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Figure 10-24: Comparison Multi Query Box Algorithm

hows the comparison of the numbers of read pages for both algorithms. The total
number of pages accessed by the original algorithm (Total PagesOriginal) is up to 25 million, whereas
for the optimized algorithm (TotalPagesOptimized) it is 3,2 million. For the original algorithm, the
number of index (IndexPagesOriginal) and leaf page accesses (LeafPagesOriginal) both is high. For
the optimized algorithm, the number of index pages accesses (IndexPagesOptimized) is high, but the
number of leaf pages (LeafPagesOptimized) is very low because of the unique access of leaf pages.
Thus, the overall number of accessed pages is almost the same as the number of accessed index pages.
The index pages often are cached and therefore are not expensive to access.

In the overall, the optimized algorithm accesses an order of magnitude less pages. Mainly index pages
are read, which are usually cached in memory. For multi-user environment, the optimized algorithm
will be even more beneficial, because leaf pages can be swapped out of the DBMS cache (depending
on the cache strategies).

However, there is a drawback for the optimized algorithm. The page numbers are stored within a list
in memory. If the list becomes too long to hold it in memory, it has to be written to a temporary file.
Sort operations and sequential read is done on this file and is slower compared to main memory
operations. This holds for very large number of query boxes, e.g., 1 million query boxes require
1¥10°*4 Bytes (page numbers are integer values). Such large number of query boxes occur very
seldom. The customers running Transbase® with MHC usually have queries with a maximum of
10.000 query boxes. Most queries have between 1 and 100 query boxes.

Note that the number of result tuples often does not correlate to the number of query boxes. Usually, in

queries with a large number of queries many query boxes are empty. For example, the last query with
86.008 query boxes qualifies 600 fact table tuples. There are still 3,2 million index pagge accesses
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necessary, in order to evaluate 600 tuples! With secondary indexes, such a query would be faster,
because the most effort is to evaluate the index intersection. The materialization requires at most 600
fact table page accesses. When executing the same query with an other commercial DBMS with
bitmap indexes (see Section ]]Di;l the time is 16 seconds.
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Figure 10-25: Comparison of Page Accesses

When merging query boxes, we can reduce the 86.008 query boxes to below 100 and therefore reduce
the time (and number of page accesses) to evaluate the query by several orders of magnitude.

10.3.5 Remarks

In the previous sections, we sometimes mentioned dynamic optimization. Dynamic optimization is a
method to modify the query execution operator tree during the execution of the operator tree. This is a
very interesting and quite new topic and for the best of our knowledge not much investigation has
been done so far. However, we believe that this will be one of the future methods to do query
optimization.

The problem is that statistics turn out to be not sufficient to choose the most appropriate operator trees
for complex queries. After the first join, it is not possible any more to estimate the number of resulting
tuples and large deviations occur. Thus, the generated operator tree often is not optmimal w.r.t. the
costs of the query. A dynamic behavior of the query optimizer with changes of some basic operators
can adapt optimally to query execution. So far, most DBMS (inclusive Transbase®) do not support
dynamic optimization. Beyond the mentioned approaches of dynamic optimization, we have to
investigate further conditions and adaptions.
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104 MHC and Partitioning of UB-Tree Data

The partitioning of a UB-Tree usually adapts very good to the data distribution (see F
This means, that the partitioning of the regions (disk pages) of the UB-Tree is very close to the
distribution of the data. Multidimensional query boxes that approximate the partitioning grid thus are
very performant, because the number of accessed pages is almost minimal.

However, for certain data distributions and queries the so called puff pastry effect increases the
number of loaded pages dramatically (see[[Mar99])| In this section we discuss the distribution of the
regions and data of a MHC organized fact table.
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Figure 10-26: Partitioning and Range Query for UB-Trees

10.4.1 Partitioning

For MHC, the dimensions of the UB-Tree usually are compound surrogates. A compound surrogate
represents a hierarchy path and consists of surrogates, one for each level of the hierarchy (see Section
. Each surrogate is encoded by a bit string. The number of bits reserved for the surrogate
(hierarchy level) depends on the expected maximum number of siblings for this level. Since the
maximum number of siblings often is higher than the number of used bit combinations for an instance
of a hierarchy, a large number of bit combinations is unused, so called holes. The occupation of the bit
combinations depends on the order of insertion of the hierarchy paths (see Section [@lly, the
used bit combinations form an interval from 0 to k, if the hierarchy node has k siblings™. All bit
combinations, i.e., from k+1 to n, where n = 2-1 for j reserved bits for the hierarchy level, remain

26 All siblings have the same father hierarchy node.
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unused. This characteristic of the distribution applies to all dimensions, and thus results in data
clusters.

igure 10-27 shows an example distribution for two dimensions, i.e., the customer and calendar
dimensions of the Sales DW. The x-axis represents the customer dimension, the y-axis represents the
calendar dimension. The customer dimension contains one country and four departments (the vertical
clusters). The calendar dimension contains two years with three quarters and seven months for each
year. We use seven months and three quarters for illustration purpose, in order to show the data
distribution.

The first department in the country contains most of the data (very small and numerous regions),
whereas the distribution w.r.t. the time is quite uniform.

Calendar Dimension

Customer Dimension

Figure 10-27: MHC Data Partitioning

A query on a MHC organized star schema generates intervals representing prefixes of the hierarchy.
These prefixes of the hierarchy form intervals including complete clusters (see the marked rectangle in
igure 10-27). Such a query box is optimal w.r.t. the number of pages intersected by the query box.

The concept of MHC clusters the fact table, in order to support hierarchical restrictions optimally. This
means that the multidimensional query boxes adapt very good to the data distribution of MHC
organized data. Conceptually, the query boxes resulting from hierarchical predicates are adapted to the
data and thus load a minimal number of pages.
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Jump regions can cause additional pages to load (see E@IA jump region is a region that is not a
continuous region in the multidimensional space, but comes from the z-curve that “jumps” into
another quarter of the space (see or more details). Also not optimal regions originating from
page splitting cause additional pm. So called fringes can require loading of additional pages.
In e show an example where such a page splitting requires the access to one additional

page.

We can adapt the page split algorithm, in order to get rectangular regions for MHC organized data.
This can easily be done by modifying the computation of the split separators. The split points are
calculated considering the bit positions of the hierarchy levels. Then no fringes occur. See [[Mar99] for
more information about modifying the split algorithm.

1

Figure 10-28: Query Box intersecting two Regions and Predicate Grid

In mglgure =28 we show a two dimensional space with a number of z-regions. Possible query boxes
from hierarchical predicates on a MHC organized UB-Tree are defined along the grid originating from
the recursive partitioning of the data space. These intervals are shown in[Fi n the left and

on the bottom side of the figure. The space is divided into 64 (8 x 8) rectangles. IThe query box is
defined by [4/8 ; 6/8] in X and [3/8 ; 4/8] in y direction, if the domain is [0 ; 1] for both dimensions.

An MHC predicate is a multidimensional interval originating from all dimensions of the UB-Tree.
Each dimension is represented by a compound surrogate consisting of surrogates for each hierarchy
level. Each hierarchy level is represented by a bit combination, i.e., each hierarchy level has 2 sub-
trees, each of which is represented by an interval, if K bits are used for the mapping of the hierarchy
level. In Krgure16=28;the top level is partitioned into two intervals, the next level into four intervals.
The remaining fevels are not shown in the figure. Thus, when restricting the Y dimension by h' = a
AND h'"! = Db and the X dimension by h* = d AND h'"! BETWEEN e AND f, the query box

of Figure 10-28 is generated.
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=

Figure 10-29: Impossible Query Box with MHC Predicate

ows a query box that cannot be defined by a hierarchical MHC interval, because the

ranges of the query box exceed the hierarchy levels. This is the reason why the clustering of an MHC

organized fact table is good for queries generated by MHC hierarchical predicates. In Section 1
we show with experimental results that the interval generation method for range queries is almost

optimal using hierarchical prefix paths of compound surrogates.

10.4.2 Hierarchical Clustering Effect

The partitioning of data in the multidimensional space using the z-curve is restricted to a number of
bits, i.e., a prefix of the z-value (see [Mar99] for more details). The bit strings of all dimensions are
interleaved.

The compound surrogates representing the dimensions are constructed from the surrogates of the
hierarchy levels. For the Sales DW, the compound surrogates consist of the components as listed in

‘ For each dimension product, warehouse, calendar, transaction and sales payment, we list
the bits, where p; has the values 1 or O etc.
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Figure 10-30: Compound Surrogates for the Dimensions of the Sales DW
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The z-value for the five dimensions is calculated by interleaving the bits of the compound surrogates
of all dimensions starting with the longest compound surrogate:

Z = P2o2WerC1ot 7Se P21We1C11t 6S5 P20oWeoC 1ot 5S4 P1oWigCol 4S3 P1eWigCst 3S2 P17Wi7C 7t 2Sy

P16Wi6Csl 1 P15WasC5 P1aWaaCs P13Wa3C3 P12Wa2Co P11WA1C1 P1oWao PoWWe PsWe P7Wr PeWs PsW
PaWy P3Ws P2V P1W

The number P of pages necessary to store the data of the fact table determines the number k of bits that

are used for the physical clustering ([Mar99])]
k =1log, P

In the Sales DW, we have 448.650 data pages of the UB-Tree for the fact table for 8.579.458 tuples.
Thus, we can use k = | 0g,P = 1009448650 = 18, 8 bits for physical clustering (see Figure |
- This means that only 18 of 69 bits are used for clustering. The highest bits of the compound
urrogates are preferred leading to a better clustering for the higher hierarchy levels. Fiﬂd—l

shows which bits are used for clustering.

Z = PpaWpiCiatsS6 P21 W2 1C111685 PogWaoCrolsSa P1oW19Co Ty S3P1sWisCstsS, - . P W,
N - _ J
Y \_Y_j Y
completely partitioned partly split  partitioned depending
on the data distribution

Figure 10-31: Split Levels for the z-Value

The z-value can be divided into three parts. The first part (bits 1 to 18) contributes to the clustering
independently on the data distribution (see [ The second part (bit 19, i.e., t;) is sometimes
split and sometimes not, i.e., it can be used for clustering in some situations. The remaining bits (bit 20
to 69) are used, if the data is not uniformly distributed. Otherwise these bits will not contribute to the
partitioning of the universe.

This means that for the product dimension only a subset (the first four bits of five) of h® (highest
hierarchy level) is granted to be used for partitioning. For the warechouse dimension, h® and h°, for
calendar, h°> and h* are used for partitioning. The flat dimensions transaction and sales payment can
use the first three bits.

In order to use h; for the product dimension completely, we have to increase the number of pages to at
least 2*'=2.097.152. This means that the number of tuples must be at least 40.103.483, i.e., about five
times of the current amount, if the page size remains at 8 KB.

Since in real data warehouses, however, the dimensions are not independent, i.e., they are correlated
highly, even these lower bits are used for the physical clustering. Indeed, for the Sales DW we have an
average split level for the z-value of 49 bits. This means that the first 49 bits contribute to the
clustering! The following z-value shows which hierarchy levels contribute to the clustering:

Z = P2o2WerC1ot 7Se P21We1C11t 6S5 P20oWooC 1ot 5S4 P1oWigCol 4S3 P1eWigCst 3S2 P17Wi7C 7t 2Sy
P16WisCel 1 P15WisC5 P1aWi4Ca P13Wa3C3 P12Wa2Co P11WAICT | P1oWio PoWe PsWs P7Wr PV PsWk
PaWy P3Ws P2V P1W

The dimensions calendar, transaction and sales payment contribute with the clustering in all hierarchy
levels, whereas the lower levels of the dimensions product (h;) and warehouse (h, and h;) do not (see

M. For the impact of correlation, split level and clustering properties, refer to m

Usually not all bit combinations are used for all instances of the hierarchy levels, because the number
of bits reserved for one hierarchy level depends on the maximum number of siblings of all hierarchy
level instances of this hierarchy level. Most hierarchies, however, are not distributed uniformly, i.e.,
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the hierarchy level instances vary in the number of siblings. Thus, for most hierarchy level instances,
not all bit combinations are used.

The calculation of the bit combinations by, by, ..., by starts with the bit combination 00..00, the next
bit combination is 00..01 etc. (see Section 53.3)] Therefore, the highest bits are always 0. Since a
restricted number of bits contributes to the physical clustering, e.g., by, b1, ..., b, these bits should
be used for clustering. Thus, a different bit calculation method can improve clustering. The goal is to
use as short common prefixes as possible. Assume that we use the bits by, by, ..., b for clustering.
The remaining bits by.1, byj-2, ..., Do are not used. Then we assign the bit combinations to the used bits
in the following way: 000..00, 100..00, 110..00 etc. If there is still the necessity of further bit
combinations, we proceed with 010..00, 1010..00 etc. After all bit combinations of the used bits for
clustering have been assigned, we have to distribute further bit combinations to the non-used bits.

10.4.3 Quality of MHC Partitioning

The quality of the UB-Tree w.r.t. the application and the queries can be seen when examining the
number of tuples per page contributing to the fact table result set. If a large fraction of the tuples
belongs to the result set, the partitioning is good, if only one (or even none) tuple of a page belongs to
the result set, there is no advantage compared to non-clustered fact tables (or even a disadvantage).

The average number of tuples per page is the number of tuples in the fact table divided by the number

8.579.458 _ 1912

of UB-Tree leaf pages: ,
48.650

This means that most pages contain 19 tuples and some pages contain 20 tuples. The average number
of tuples that belong to the result set is calculated by the number n, of tuples of the fact table result set
divided by the number of pages n, that are loaded to evaluate the multidimensional query box.

The clustering factor is the number of result set tuples divided by the number of loaded tuples:

#ResultTuples
#LoadedTuples

clusteringFactor =

Since we do not have the number of loaded tuples, we use the number of leaf pages loaded, in order to
estimate the fact table result tuples:

#ResultTuples

clusteringFactor =
#loadedPages * avgTuplesPerPage

This calculation is not exact, because the number of actual tuples per page is not the same as the
number of average tuples per page. For a sufficient number of loaded pages, however, the average
number of tuples per page adapts well to the computed average number.

In order to show the clustering factor, we executed a query suite with 1061 queries with different fact
table selectivities from 0% to 9%. We compare the average number of tu’mbaded leaf pages
of the UB-Tree (tuples per page) contributing to the fact table result set. hows the number
of average tuples per page and the average clustering factor in percent. 50% of the queries hit between
1,8 and 13,3 tuples per page, which is a clustering factor between 9,4 and 69,8 percent of the tuples
per page. The median number is 7,8 (40,9 %). The comparable low page clustering factor comes from
the distribution of the queries. Most queries have a very small result set: 50% of all queries have a fact
table selectivity from 0,02% to 0,46 %, i.e., the number of fact table result tuples lies between 1.708
and 39.726. The median is 0,12%. For small selectivities, only a small number of pages is loaded. The
pages can contain only a very small number of tuples contributing to the result set because of the
ranges of the query boxes. For larger query boxes, the page clustering factor improves.
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avg. result avg. Clustering
tuples per page Factor in %

Minimum 0,00 0,02
1* Quartile 1,80 9,39
3" Quartile 13,34 69,74
Maximum 20,60 107,71
Average 5,86 30,64
Median 7,83 40,94
Standard Deviation 6,53 34,16

Table 10-1: Clustering Factor

The maximum number of tuples is 20,60, which is larger than the page capacity. This comes from the
fact that not all pages contain exact the same number of tuples. If pages are loaded that contain 20
tuples instead of 19, the page clustering factor is more than 100%.

Clustering Factor in %
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Figure 10-32: Clustering Factor of the 1061 Query Suite

shows the page clustering factor (in %) depending on the selectivity of the query boxes
queries. Most queries are between 0% and 0,2% and have a clustering factor between 0%

and 40%. It turns out that queries with more result set tuples, i.e., selectivities larger than 1%, have
higher clustering factors (from 40% to 100%). Generally speaking, the results indicate that the higher
the number of fact table result tuples is, the better is the page clustering factor.
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Queries with small fact table result set size usually do not access many disk pages and are executed
within a comparably small amount of time. Large fact table result set sizes require many disk pages to
access, but are executed nearly optimally, because a large number of tuples per page contributes to the
result set.

‘mhows a qualitative comparison between different indexing techniques, i.e., the full table
Sean; ry indexes and UB-Tree (with MHC). The UB-Tree is similar to F%nd
obtained from the experimental results. The full table scan and secondary inde on

considerations about number of pages of the fact table depending on query boxes with selectivities
from 0% to 100%.

Since the full table scan reads the complete table, i.e., all pages of the table, the page clustering factor
function is linear: fryapiescan = (Ni/Pr)/Ny* 100 where N, is the number of tuples of the result set, py is the
number of pages hit by the query and n, = n/p; is the number of tuples per page (1, is the number of
tuples of the table and p; is the number of pages occupied by the table). Because p, = p; for the full
table scan, fryitaniescan = (N/P)/(NYPy) *100 = a*n,, where a = 100/n, is constant. Thus, the clustering
factor is equal to the selectivity.

Assuming that the secondary index has to access one page for each tuple in the result set (non-
clustered fact table), the function is constant until a specific selectivity: fecx = (N/pn)/Ny*100 =
(n/n;)/ng* 100 = 100/n,, because the number P, of pages hit is the same as the number N, of result
tuples and p is the same for all queries: 100/n, = 100/19,1 = 5,2 . If more than 5,2% of the fact table
are in the result set, each page contains more than one tuple in the average. The function now is the
same as for the full table scan. Note that the assumption that until 5,2%, each result tuple is stored in
an own page and requires a separate page access, is a worst case estimation. In general, tuples often
have a natural clustering and the constant clustering factor is shiftet to higher percentages.

The UB-Tree page clustering function is growing very fast to almost 100% and then is almost
constant. However, there are no worst-case guarantees, only the full table scan is a worst case
guarantee. Usually, for degenerated query boxes (e.g., with a point restriction in one dimension) the
clustering factor will be bad. For most query boxes, however, the clustering factor is very high even
for small fact table result sets.

100% + "“‘,«
R
4""“‘
-~
PO - ---- Sec. Index
S
LT Full Table
e Scan
5.2% = = = =
"""" — UB-Tree
“““ | |
! |
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Figure 10-33: Qualitative comparison of Clustering Factor of Secondary Index, Full
Table Scan and UB-Tree

In real data warehouses with non-clustered fact tables, the insertion order of the fact table tuples often
provides a natural clustering w.r.t. the date dimension. Consider a warehouse scenario where data is
loaded daily into the warehouse. If the DBMS provides non-clustered fact tables, the new tuples are
appended.

This natural clustering can improve the clustering factor for secondary indexes depending on the
predicates of the queries. For example, if the query is restricted to one day (without further predicates),
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this method provides a perfect clustering. However, most queries have restrictions in additional
dimensions. In such a case, the constant part of the page clustering function is shifted to a higher
percentage, but is still far below the clustering factor of the UB-Tree.

10.4.4 Optimizing the Interval Generation

The current implementation of the interval generation builds intervals with the bits of the restricted
hierarchy prefix and the remaining bits filled with 0 for the lower and with 1 for the upper bound. This
results in the largest interval covering all possible hierarchy sub-trees of the restricted hierarchy prefix
(see Section We call this method maximum intervals. As an alternative, we can shrink the
intervals to minimum intervals, i.e., the minimum and maximum used bit combinations of the
compound surrogates covered by the hierarchical predicate form the interval.

For example, for a date hierarchy with the hierarchy levels year, month and day, over four years, the
compound surrogates are Yy.mmmm.ddddd, e.g., 01.0010.01010 for “2001/February/10”. The
maximum interval for a restriction “2001/February” is [01.0010.00000 ; 01.0010.11111]. If only the
days 10, 11, 12, and 13 are used in the hierarchy, the minimum interval is [01.0010.01010 ;
01.0010.01101].

If the partitioning of the universe results in fringes of the regions, the maximal intervals can intersect
these fringes and force pages to load, although there are no tuples contributing to the restriction. A
minimal interval can prevent from intersecting the fringes and thus from loading superfluous disk

pages.

In this section we discuss some experimental results that show the effect of minimizing the intervals.
We compare the number of read leaf pages of the UB-Tree with maximum and minimum intervals.
The queries are standard OLAP ad-hoc queries on the Sales DW with restrictions varying in the
number of dimensions and hierarchy levels and in the selectivity of the qualifying fact table tuples. We
use a set of 572 queries.

Minimum 0,00 %
1* Quartile 0,00 %
3" Quartile 1,61 %
Maximum 22,49 %
Average 1,28 %
Median 0,38 %
Standard Deviation 2,40%

Table 10-2: Number of additional Pages in Percent

[able 10-2|shows the results for the number of pages for the maximum intervals compared to the
minimal intervals. The maximum intervals never load less pages than the minimal intervals. 50% of
the queries load between 0 and 1,61 percent more pages than the minimal intervals. The average
overhead of maximal intervals is 1,28 percent, which is actually not very much. The maximal
overhead of 22,49 % comes from a query where 676 leaf pages for the maximum interval and 524 for
the minimal interval are read. The query with this result is:
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SELECT cal . quarter_year, zap.city_code, SUMval gross)
FROM fact f, product p, cal endar ¢, warehouse w
VHERE
f.cal _key=c.dwh_key AND f.prd_key=prd. dwh_key AND
f.whs_key=w. dwh_key AND c.year = '2001' AND c. half_year = '1h2001'
AND p.category = '41' AND p.group = '41170" AND
w.country = 'Geece' AND w. geodept = "3 AND w. county = "1
group by c.quarter, wcity

Summing up, the overhead of maximal intervals compared to minimal intervals is very small. The
generation of minimum intervals requires additional effort, because the minimum and maximum
compound surrogate must be retrieved from the dimension table. This evaluation is an overhead
compared to the maximum interval generation, where only one index access to the DXh index is

necessary (see Section F971:8)] When applying the optimized split level calculation as described in
Section 1 the maxi nterval generation method loads the same number of pages as the
minimal i method due to rectangular regions.

10.5 Handling of Secondary Dimensions

A fact table contains dimension key attributes and measure attributes. The dimension key attributes
form the primary key of the fact table. The UB-Tree is used as primary clustering index with the
dimension key attributes as key attributes, i.e., the index attributes of the UB-Tree are identical with
the primary key of the fact table. However, for fact tables with a high number of dimensions, we
cannot specify every dimension key as UB-Tree index attribute. This leads to a not-unique UB-Tree
index. We distinguish between the primary key of the fact table and the clustering key of the UB-Tree.
We use the clustering key as primary key for the description of the B*-Tree and UB-Tree algorithms,
if not stated otherwise.

In Transbase®, the index attributes of a primary index correspond to the primary key of the table. This
is no problem, when dealing with standard composite B*-Tree indexes. The index attributes can be
supplemented by the attributes of the primary key without loss of storage or performance. In contrast,
the performance of UB-Trees depends on the number of index attributes.

For the UB-Tree and data warehouses, we implemented NOT UNIQUE primary indexes. Such indexes
do not have a logical primary key. The DDL extension of the CREATE TABLE statement is

CREATE TABLE t(a INTEGER, b INTEGER, .) KEY NOT UNQUE IS a, b

or
CREATE TABLE t(a INTEGER, b INTEGER, .) HCKEY NOT UNQUE IS a, b

for a table with the UB-Tree index (Hypercube Index). Some basic algorithms are modified, in order to
deal with such indexes:

* Insertion into B*-Tree

e Search on B*-Tree

*  Multiple query box algorithm for collecting page numbers

10.5.1 Modification of B*-Tree Algorithms

In a non-unique B*-Tree, the tuples on the leaf page have no total order any more. A new tuple tpg,
can be inserted at any position on the leaf page, such that o(t;) <0(ty) <... SO(tnen) < ... SO(ty), where
o(t) is the order of the primary key attributes of tuple t. t; is the smallest tuple and ty is the largest tuple
on the leaf page.
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Consequently, the following search algorithms (search on B*-Tree) must be adapted:

*  Search via the separator
e  Search within one leaf page

10.5.1.1 Search via the separator

In a B*-Tree, the separators are used to find the path from the root to the leaf page. The index pages in
a B*-Tree contain the separators (see FOne index page contains K separators and k+1
pointers to successor pages, i.e., one separator between two pointers. A separator specifies which path
has to be followed, in order to find the page with the searched tuple (if existing).

\
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Figure 10-34: Separator Search on Standard B*-Tree

An example for a standard B*-Tree with the separators is shown in ht The index pages
contain the index key (separators), the leaf pages contain the completmis illustration the
key attribute a only. If we search for the tuple with a = 10, we start at the root page and look for the
largest separator that is smaller or equal to 10. The successor index page that is specified by the
following pointer is loaded next. We again look for the largest separator that is smaller or equal to the
search value and proceed as before. This search is repeated for every level of the index pages in the
B*-Tree. The lowest index page points to the leaf pages. In Fi the found separator of the
lowest index page is 10 and the next pointer points to the leaf page with the tuples with the keys 10
and 11. Within the leaf page, usually binary search is done depending on the organization of the leaf
page. For more details about B*-Trees and separators refer to m‘?ﬂ
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Figure 10-35: Separator Search on Duplicate B*-Tree

we show an example for a non-unique B*-Tree. In non-unique B*-Trees, the

o of separators is modified. The left leaf page contains tuples that are smaller or equal to the
separator, the right leaf page contains tuples that are larger or equal to the separator. This is the
consequence of the case where only tuples with the same key are stored in the duplicate B*-Tree.
More than one tuple with the same key may exist on the leaf pages. Consequently several identical
separators can occur in the index pages of one level. The performance of the search of the leaf page is
worse, because it can be necessary that two leaf pages must be read, if the separator has the same
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value as the search value (see Figure 10-35). The left leaf page always must be read with a consecutive
tuple search, and the right lea f page also muft be read, if no tuple has been found on the left page.

If a leaf page is found that may contain tuples with the corresponding search value, the search within
the page positions on the first (“smallest”) matching tuple. If the largest tuple on the page has the same
search value, tuples with the search value on the next page may exist. The access to the next leaf page
is done via the next pointer on the leaf pages.

10.5.1.2 Search within one Leaf Page

The leaf page search of a tuple with search value a is done via binary search in the Transbase® B*-
Tree implementation. Without loss of generality, we use a search key consisting of one single key
attribute for the ease of description. The algorithms, however, are identical for compound search keys.
The tuples on one page are stored ordered w.r.t. the order of the key attributes. Thus, a maximum of

’_log ) n-| search operations is necessary, where n is the number of tuples stored on the page.

For non-unique B*-Trees more than one tuple with the same key value can be stored on one page. The
tuples are stored sorted again w.r.t. the order of the key attributes. The order of the tuples with the
same key attribute value is not defined and depends on the insertion order in the current
implementation. Thus, for the search of a tuple with key value a, the binary search is extended. If such
a tuple is found via binary search, also the tuples before and after the found tuple have to be checked
whether they also have the same key order. If the tuple before the found tuple has the same key order,
we have to perform iterative prev_read operations, until we find a tuple with a key order smaller than
the search key order. The semantic of the Transbase® search(a) operation is that the first tuple with
the key value a is returned. The following tuples can be fetched via the next_read operation.

10.5.1.3 Range Queries on non-unique B*-Trees

The range query algorithm of the standard B*-Tree is not modified for non-unique B*-Trees. A query
with a predicate WHERE a BETWEEN v; and v, is performed by searching for the first tuple with
the key value a = v;. For a non-unique B*-Tree, this point search is done as described in Sections
mhand 1d Iterative next_read operations are performed until a tuple is found with a > V..

For the range query algorithm with range predicates on more than one attributes (multidimensional
query boxes), no extension is necessary for non-unique B*-Trees. The algorithm works in the same
way as for one attribute.

The same holds for the multidimensional range query algorithm on non-unique UB-Trees. The UB-
Tree is a one-dimensional B*-Tree with a computed key value (z-value of the UB-Tree index
attributes). Thus, a range WHERE z(a;, a,, .., a, BETWEEN z(v'i;, v';, .., v%) AND
z(v?, V2%, ... V2, is performed by searching the first tuple with z-value z(v', V', ..., V') and
performing next_read operations until the z-value of the retrieved tuple is larger than z(V?;, V2, ..., V%).
Note that the range query algorithm on UB-Trees splits a multidimensional range query into a number
of one dimensional intervals that are handled in a standard way by the B*-Tree.

10.5.1.4 Multiple Query Box Algorithm

The extended algorithm for multi-query-box handling has to be modified when collecting the page
numbers from the separators of the index part (see Section [[0.3.2.T). The reason is that tuples on the
leaf pages can be placed on the left or on the right leaf page from the separator, if the separator has the
same value as the search value (see Section ﬁ Thus, the number of page numbers resulting
from the collection step is possibly larger than for unique UB-Trees.
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10.5.2 Non-unique UB-Treesin Data War ehouses

As mentioned earlier, the fact tables in data warehouses are often organized by non-unique UB-Trees.
With non-unique UB-Trees, the UB-Tree range query algorithm retrieves all tuples that are qualified
by the multidimensional range query on the UB-Tree index attributes. A post-filtering step is
necessary for additional restrictions on the secondary dimensions (see Section 9[3)).

In fact tables, we typically have large tuples. This means that a comparably small number of tuples fits
on one leaf page. For example, in the Sales DW, the tuple size is 361 Byte. For a page size of 8 KB,
i.e., 8192 Byte, 22 tuples can be stored on one page. Thus, with one read operation, a maximum of 22
tuples can be read from disk. From these tuples, p are qualified by the predicates of the
multidimensional query box and 22-p do not contribute to the result. The advantage of the UB-Tree
with good clustering and requiring a small number of disk accesses can be less for very large tuples.

Some DW have very large tuples and can only store a very small number of tuples, e.g., two to five,
on one disk page. A good natural physical clustering of the tuples, e.g., w.r.t. the date dimension, can
compete with the z-order when considering I/O. In such a case, a larger page size increases the number
of tuples on one disk page. However, the page size is chosen w.r.t. the number of blocks that are read
by one disk access from the operating system.

Another typical constellation in a fact table is a large number of secondary dimensions. The initial
evaluation of the tuples contributing to the range query of the UB-Tree can be a large super set of the
tuples qualified additionally by the predicates on the secondary dimensions. Post-filtering is very
expensive, because a residual join with every restricted secondary dimension is necessary to evaluate
the corresponding predicates for each restricted secondary dimension. A fast index intersection with
secondary indexes on all dimension key attributes has the advantage that only tuples are retrieved from
the fact table that are qualified by the restrictions of all dimensions. This comparably small result set is
used for further processing.

We have to speed up the residual join using advanced join methods, e.g., hash join, in order to speed
up post-filtering.

A further interesting approach for a fact table with many dimensions is to use secondary indexes on all
dimensions, e.g., bitmap indexes, and perform a fast index intersection on the restricted predicates. If
MHC is used on such a table, we can profit from hierarchical pre-grouping and speed up query
processing significantly.

10.5.3 Residual Joins

Since the residual joins with secondary dimensions are performed with a very large number of tuples
(see Section an optimization of the residual join speeds up the overall query processing
significantly.

The residual join is necessary for two purposes:

* applying the predicates of the secondary dimension
* retrieving the attribute values needed for further processing

The two join methods that are implemented in Transbase®, i.e., nested loop and sort merge join, do
not support the requirements for fast joining in the context of the residual join of secondary
dimensions. A sort merge join is not suitable, because the tuples resulting from the fact table are not
sorted w.r.t. the secondary dimension and additional sort effort is necessary to apply sort merge join.
Note that for the residual join of several secondary dimensions this sort effort is necessary for each
secondary dimension. A nested loop join performs a lookup in the dimension table (or in a
corresponding index), in order to test whether the tuple is qualified by the dimension predicate. The
lookup is done via B*-Tree search and therefore is expensive, because of the overhead of a B*-Tree
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search (locating the leaf page, performing a binary search on the page and extracting the tuple from the
page). Usually, often the same key is used for the lookup, because many tuples of the fact table have
the same dimension key of the secondary dimension. Even if the page is cached, the described
overhead has influence on the performance.

We therefore propose to use a hash join implementation.

10.5.3.1 Description of Hash Join

We only give a short outline about the implementation of hash joins. A lot of investigation already has

been done on this field ([CLYY92T,][PG83]] [HCY94])]

A hash-based join usually is applied on two sources, e.g., tables or intermediate results. One source is
the inner, the other source the outer table (see . We use the term table instead of source,
because the sources are often tables. An intermediate result also can be seen as a set of tuples
representing a table. The inner table is used to build the hash table, the outer table is used for the tuple
probing. We split the hash join into the two phases

e table building phase and

e tuple probing phase.

It depends on the optimizer which table is chosen as inner and outer table (often the smaller will be the
inner table). Special methods must be implemented, if the hash table built from the inner table does
not fit into the main memory (see Section 10.2.6 for more details about table hash overflow
mechanisms).

HASH
JOIN
REL REL
| |
R S

Figure 10-36: Operator Tree with Hash Join

The table building phase creates a hash table of the inner table using the hash function of the join
attribute. The tuple probing phase tests for each tuple of the outer table, whether a tuple in the hash
table exists with the same join key value. Note that with right deep operator trees ([m hash
joins fit into the concept of pipelining in operator trees.

In FM&@ illustrate a sequence of hash joins applied to the residual join of secondary
dimensions. The left son of the lowest HASH JOI N operator is the operator tree for the fact table
access (see Section| . The right son is a RESTR operator with the secondary dimension D®; that
is chosen to be joined first with the fact table result. In Section 1 we discuss the order of the
residual joins of the secondary dimensions. The operator tree for the predicate evaluation of D5 filters
the tuples before the hash table phases. Thus only tuples are used to build the hash table that are
qualified by the predicate of D®,. If these tuples are used for the tuple probing phase, only tuples that
correspond to the dimension predicate are probed.

The HASH JO N operator builds for each tuple that is probed successfully a new tuple as
combination of the hashed tuples and the probed tuple with all attributes needed for further processing.
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HASH
JOIN

/ RESTR
HASH
JOIN
HASH RESTR

Figure 10-37: Residual Join Sequence of Secondary Dimensions with Hash Joins

10.5.3.2 Usage of Hash filters

An optimization of the probing phase is the usage of hash filters. A hash filter built by an inner table
on the join attribute is an array of bits which are initialized with 0. The k™ bit of the hash filter is set to
one, if there exists a hash function value k with a tuple in the hash table gﬂm Thus, for each
hash value that is occupied, the corresponding bit is set to one in the hash filter. It 1s very performant
to check, whether a tuple from the probe phase has not a corresponding tuple in the hash table. There
is not a corresponding tuple in the hash table, if the bit in the hash filter hf is O for the value of the hash
function h of the tuple tyone that is probed: hff h(tyope)] = O.

If hf[ h(tprobe)] = 1, the tuples with the corresponding hash value have to be checked whether the value
of the join attribute of the probed and the hashed tuple are equal.

Note that these methods are a kind of semi-join.

10.5.3.3 Alternative Hash Join

A large dimension table results in a large hash table. If only a small subset of dimension table tuples
occurs in the fact table result set (e.g., due to the dimension restriction), the overhead to build the hash
table can exceed the benefit of the hash table join.

We therefore suggest an alternative, also hash-based join method. We access the dimension table via
conventional index lookup and use a hash table as cache to store already needed tuples. For each fact
table result tuple, we look into the hash table and use the tuple of the hash table, if it is already stored.
Otherwise we have to access the dimension table. If a fact table result set contains a large number m of
tuples with a small number n of distinct dimension key values, there are mhash table lookups and only
N dimension table accesses. With the conventional hash join, we have also m hash table lookups and
read the complete dimension table, in order to build the hash table. The lookup into the dimension
table can be less efficient, because a higher number of tuples is stored in the hash table (each tuple of
the dimension table) and the collision chains are longer and therefore the lookup time.
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Figure 10-38: Alternative Hash Join

ows the basic operator tree for such a hash join organization. The TI MES operator
represents the join between the fact table result set and the dimension table. The HASH JO N operator
is the special hash join with the lookup in the hash table and a lookup into the dimension table for non-
existing tuples. RESTR 1is the dimension table restriction operator tree and Attr denotes the
corresponding dimension key attribute necessary for the lookup into the dimension table.

Since secondary dimensions form an additional restriction on the fact table result set, some tuples are
filtered out by this residual join. Such a dimension key value requires a lookup in the hash table
(where it is not stored because of the dimension predicates) and then into the dimension table
evaluating the dimension restriction. No such tuple is found and the fact table result tuple is discarded.
For k fact table result tuples with such a dimension key value, this procedure is done k times.
Especially the dimension restriction evaluation is very expensive. Thus, we propose to also store non-
hit dimension key values in the hash table which are marked as filtering tuples. Each so found tuple
denotes that the fact table result tuple is filtered out. As alternative we can build two hash tables, one
for the hit tuples and the second for the filtering tuples. For each fact table result tuple we first look
into the two hash tables. If none has a corresponding tuple, we look into the dimension table and store
the result in one of the two hash tables.

This proposed method especially is better than conventional hash join, if the effort to build the hash
table exceeds the iterative lookup into the dimension table and evaluation of the dimension predicate.

10.5.3.4 Parallelism

Hash-based residual join is suitable for parallel intra query execution. We do not enlarge on this,
because parallelizing is beyond the scope of this thesis and a large amount of work has been spent on
this subject.

In mnd he authors describe a method to build operator trees that are suitable for
par: on ented right-deep trees for the execution of pipelined hash joins.

10.5.3.5 Order of Residual Joins

The order of residual joins is important for the performance of the query processing. A residual join
can reduce the number of fact table result tuples due to the predicates of the secondary dimension. If
the predicates reduce the result set significantly, the reduced result set is used for further processing,
e.g., for the residual join with the next secondary dimension.

Thus, the residual join with the secondary dimension that reduces the result set most should be chosen
as first residual join. For this decision a cost-based optimizer is necessary. However, it is not easy to
decide which dimension reduces the result most, since the selectivity of the restriction on the fact table
must be estimated. Statistics about the dimension tables and the fact table must be available as well as
“join statistics”. Heuristics depending on the hierarchy level of the dimension predicates also can be
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used for the decision of the order of residual joins. But such a decision is very imprecise and can lead
to bad operator trees.

10.5.4 Remarks

The hash join as optimization of the residual join for secondary dimensions can be also used for the
residual join of primary dimensions. The hash tables can be built when evaluating the restrictions on
the dimension table at the interval generating step. During the interval generating step, we already
evaluate the complete dimension predicates and collect the tuples, actually the compound surrogates,
for HNPP and NH predicate classes. During this evaluation we could insert the tuples with the
attributes needed for further processing into a hash table and perform the residual join after the pre-
grouping resp. post-grouping (see Section by probing the tuples resulting from the grouping
operations. Until now, hash joins are not implemented in Transbase®.

Non-unique UB-Trees that are necessary when dealing with secondary dimensions are also mandatory

for other applications. For example, the UB-Tree string indexing method as described in Section
requires non-unique UB-Trees, because the calculated codes can be the same for different string

prefixes.

10.6 Multiple Hierarchies

In real data warehouses, some dimensions have more than one hierarchy. For the physical schema,
usually one hierarchy is chosen that is considered to be the most important hierarchy. However,
sometimes more than one hierarchies are important for a large set of queries. Therefore, we have to
deal with multiple hierarchies. The Transbase® implementation allows the definition of several
compound surrogates for a dimension such as several reference surrogates referencing one dimension
(see Section The query processing must support multiple hierarchies, in order to evaluate such
queries efficiently.

In Section @ we introduced an example for a dimension with two alternative hierarchies, each of
which repesented in a separate compound surrogate. Both surrogates occur in the fact table as
reference surrogates. Since each of the reference surrogates is used as index key of the clustering
multidimensional index on the fact table, predicates on each of the hierarchies determine the
multidimensional range queries on the fact table.

Because the queries do not specify explicitly which hierarchy is used, the optimizer has to decide this
when generating the execution plan. Depending on the predicate of the dimension, one or more
interval restrictions are built from the dimension predicates. The selection of the hierarchy is done in
the schema recognition phase (see Section For each restricted hierarchy, we build the hierarchy
characteristics, in order to generate the predicate classes and corresponding operator trees.

Each hierarchy restriction leads to a restriction on the multidimensional index and therefore is used as
restriction on the fact table. The consequence is that one operator tree is generated for each hierarchy
representing the “dimension” restriction of the multidimensional index. Note that this terminology of
dimensions refers to the dimensions in the multidimensional index and does not necessarily
correspond to the primary dimensions of the schema.

If a hierarchy level occurs in more than one hierarchies, we use the restriction on such a hierarchy
level for all corresponding hierarchies. For example, the dimension key always is the leaf hierarchy
level of all hierarchies. However, higher hierarchy levels also can occur in more than one hierarchy
(see example of Section 7

For a restriction of a feature attribute in the leaf dimension table, the optimizer has to decide to which

hierarchy the feature attribute is assigned. Since there is no corresponding information in the schema,
it is difficult to chose the suitable hierarchy. For example, some feature attributes are correlated highly
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to one hierarchy level, but are orthogonal to other hierarchies. Thus, the number of intervals on the
compound surrogates depends on the choice of the compound surrogate.

With the availability of statistics it is possible to compare the distribution of the feature attribute with
the hierarchy levels. If the distribution is very similar to a hierarchy level, the probability to have
correlated attributes is very high. A false decision can lead to a very high number of compound
surrogate intervals with corresponding bad performance (see Section llﬁl

If no statistics are available, we can use one of the hierarchies or all. Note that using only one
compound surrogates qualifies the same fact table tuples because the restriction on the alternative
hierarchies serve as feature restrictions. Thus, a number of smaller intervals may follow. We can
decide dynamically which hierarchy is used for the fact table evaluation by modifying the predicate
structure of the page number collection phase (see Section 1@.

For snowflake dimensions with hierarchy levels and corresponding feature attributes in higher
dimension tables, it is easy to decide which hierarchy to chose for the interval generation. The
dependency of feature attributes and hierarchy levels is know in such a schema.

If not all reference surrogates for the hierarchies of one dimension are used as index keys in the
multidimensional index, the optimizer uses the hierarchy that is indexed in the fact table. A restriction
on an alternative hierarchy that is not indexed, is mapped to a restriction on one of the indexed
hierarchies, where the restricted hierarchy levels are treated as feature attributes. The interval
generation is done with standard methods.

The definition of multiple dimensions increases the number of physical dimensions on the
multidimensional clustering index on the fact table. If the number of these dimensions becomes high,
the clustering of the fact table is not good any more and slows down the evaluation of
multidimensional range queries. Thus, a reduction is necessary reducing the number of indexed
dimensions. Usually, less important hierarchies are removed from the index attributes. In some cases,
however, it is not decidable which hierarchies to remove. We therefore propose a method to merge
hierarchies and provide comparable good query performance for a large number of predicates (see
Section or more details). We call this method the transformation of so called complex hierarchies
to simple hierarchies.

10.7 Multiple Fact Tables

In some data warehouse applications several fact tables exist that share common dimension tables.
Queries contain several fact tables in the FROM clause, i.e., the fact tables are joined (directly or
indirectly) ' ndard algorithms described so far, we cannot handle such queries and
schemata. MOWS an example for such a schema. F*, F? and F° denote the fact tables and
D the correspondlng dimension tables that belong the the fact table where the dimensions D i belongs
to the fact table F' etc. Each D) represents a complete dimension, i.e., the dimension can be a
snowflake dimension and D'; represents the complete dimension join. The join tables between the fact
tables are dlmensmns again, denoted by D"* for the j _]OlIl between F' and F? and D** for the ]om
between F2 and F. Note that the join can be specified via such a connector dimension table or via a
dimension key attribute itself.

The standard approach is to use conventional join optimization features of the DBMS optimizer. This
results (in Transbase®) into a sort merge join between the fact tables and the dimension tables with
long query evaluation times.

A better approach is to choose one of the fact tables as standard fact table with the proposed star join
processing. The fact table result set is joined with the fact table result set of the remaining fact tables.
The join method depends on some criteria that are explained later. However, it is necessary to
recognize this kind of schema. In Section 1(|)T_l_|we discuss how to recognize a typical star schema.
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Similar methods are necessary to recognize a more complex data warehouse schema with multiple fact
tables. The algorithms must be extended to deal with additional information, e.g., to which fact table
each dimension table belongs. Especially shared dimensions often occur, and it must be checked to
which fact table they belong. These methods are not implemented yet in Transbase®, but are planned
for the future, in order to handle such complex schemata.

N N/

D1, —F!

o / Sy D |

Figure 10-39: Schema with multiple Fact Tables

The join method between the fact tables is similar to the join optimization of secondary dimensions.
We consider the join between two fact tables as a secondary dimension join. One of the fact tables is
used as primary fact table, the other fact table is considered as secondary dimension on the primary
fact table, i.e., as secondary fact table. The secondary fact table is evaluated before the join (via the
proposed star join processing algorithms for the interval generation) and is joined via hash join with
the result of the primary fact table.

Grouping and aggregation is done after the join. We cannot perform pre-grouping before joining with
the secondary fact tables, because the join between fact tables must be done on the lowest cardinality.
After the secondary fact table (dimension) join, however, pre-grouping is possible and advantageous.

We characterize three different kinds of schemata for multiple fact tables:
e Sequential Join
* Star Join
*  Snowflake Join

The sequential join is a chain of fact tables F*, F?, ..., F" (see where the first fact table
Fis joined via the connector dimension D"* with F?, this fact table 1s joined via D*® with F° etc. Each
fact table additionally can have a number of dimensions that are not shown in this figure.

The star join of fact tables is similar to a star schema with one fact table F* in the center and the other

fact tables surrounding ( As in the illustration for the sequential join, we do not show

the dimensions for each fact table

The snovvfl ake join of fact tables is a general join, i.e., a join graph with one center fact table, F* in
‘ ]1The sequential and star join of fact tables are special cases of the general snowflake join.
Note t at no cycles within the join graph are allowed (similar to connected dimensions for the star
query algorithms). Otherwise it is difficult to get an appropriate order of the join processing of the fact
tables. Shared dimensions that usually cause such cycles, are seen as separate dimensions for each fact
table.

10.7.1 Sequential Join

There are some different methods how to perform sequential fact table joins. The most intuitive
approach is to evaluate the first and the second fact table (F* and F? in F) éure 10-40i |and join the
results, then evaluate F> and join with the previous results etc. until the last fact table is joined.
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The second approach is to evaluate the fact tables in pairs and join them. These results are joined again
in pairs etc until all fact tables have been joined.

F1— D12—— F2 —— D23 DN-LN —— EN
Figure 10-40: Sequential Join of multiple Fact Tables

The first method works with a very small result set cardinality, because each join does not enlarge the
result set from one previous fact table join. The second method keeps the tuples resulting from each
join short, because the tuples contain only attributes of two fact tables (and the necessary dimension
tables).

10.7.2 Star Join

A star join of multiple fact tables is similar to the classic star schema with one fact table in the center
and the surrounding dimension tables. There is one fact table, the primary fact table, in the center of
the star and the remaining fact tables are connected via dimension tables with the primary fact table.
We use a similar method for the join processing as for standard star query processing. First, the edges
of the star are evaluated. We evaluate the result of all secondary fact tables via interval generation for
each fact table as described earlier. Then, we evaluate the result of the primary fact table, Flin W

i

The result of each fact table is considered as result of secondary dimensions for the primary fact table
and joined accordingly.

= F4
\ /
D13 D14
F2 D12 F1 D15 F5

D1,6
/ ~
EN F6

Figure 10-41: Star Join of multiple Fact Tables

10.7.3 Snowflake Join

We select one fact table as center of the snowflake join, usually one fact table that is surrounded by
several other fact tables and has a comparably small result set. In we use F' as primary
fact table and the remaining fact tables are secondary fact tables. The fact tables directly connected
with the primary fact table are called leaf fact tables (similar to leaf dimension tables in the snowflake
schema). We start with the evaluation of the fact tables at the edge of the snowflake join and join them
with the next fact tables until all leaf fact tables are evaluated and joined with the remaining secondary
fact tables.
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F3 F4 F7
DL3 D14 D27
F1 D12 F2 D28 F8
DN . D16
EN F6

Figure 10-42: Snowflake Join of multiple Fact Tables

One method to build the execution plan is to start with the evaluation of F° and F? in[Figure 10-42 gnd
join the results via D*®. Then we evaluate F’ and join with the previous result. After the evaluation of
F3, F%, F° ..., F" we join each of the results with the primary fact table F'. In general, we start with
the outer fact tables and finally join all of them with the center fact table. The selection of the center
fact table, however, is not deterministic, since different fact tables can be chosen.

As alternative, we can evaluate one fact table at the edge of the snowflake join and then iteratively join
with the remaining fact tables. The order of the joins depends on the result set cardinality of each fact
table.

10.8 Schemafor the M easur ements

This section describes the schema that is used in the following measurements. It is a real world data
warehouse schema of a large electronic retailer. We call the warehouse Sales DW.

10.8.1 Conceptual Schema

The Sales DW is a star schema with the fact table SALESFACT and 14 dimensions. It contains
measures for the daily business sales. In other words, each record in the fact table, gives values of the
sales of a particular product, on a particular day, to a particular customer, who carried out a particular
transaction type on a particular store with a particular salesman, along all the other dimensions, whose
roles and descriptions follow.

10.8.1.1 Overview

The dimensions of Sales DW are described in the following:

* CALENDAR: The star schema’s “time” dimension which is easily extendable to any arbitrary
date in the future. It contains several descriptor fields that classify a given date into a certain
higher level time period such as week, month, quarter, fiscal year, etc. There are actually three
dimensions with a “timely” aspect, i.e., transaction date, export date, and delivery date. They
all use the same dimension table in the logical schema. Depending on the time dimension,
different views on SALESFACT are possible, one for each time dimension.

¢ HOUR: The “hour” dimension. Has exactly 24 records each one representing an hour of the
day and includes classifier fields that group hours into, for example, peak or non-peak.

¢ PRODUCT: The “product” dimension represents all products classified among hierarchies as
described later.

¢  WAREHOUSE: Contains each warchouse (store) of the business. The warehouse dimension,
like the time dimension, has multiple roles for each fact record. There are three warehouses
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for the fact records, which represent the transaction warehouse, the export warehouse, and the
delivery warehouse. This means that actually the warehouse dimension table is used for three
conceptual warehouse dimensions. Again, a transaction, an export, and a delivery view is
possible on the data warehouse.
CUSTOMER: The customer dimension is by far the largest dimension in our schema. It
contains several transformed customer descriptors.
TRANSACTION: This dimension represents the type of a sales transaction. Representative
transaction types include for example an order, a return, or a wholesale order.
OFFERING: Contains the offering types. It is used in the fact table, in the case that there is an
offering involved in the transaction.
SALESMAN: In this dimension, the salesmen are stored that are involved in a transaction.
CASH_REGISTER: The cash register dimension describes the register that issued the invoice
of the transaction.
CURRENCY: The currency dimension contains the different currencies that may be accepted
at a selling point.
SALES PAYMENT: Contains the payment ways for the transactions.
LOAN_STATUS: This dimension describes the loan status for the cases that the transaction
involves loans.
SPECIAL _IDL: This dimension is actually the collection of other dimensions with very low
cardinality. Thus, it can be decomposed to the dimensions
1. The DELIVERY dimension which describes what kind of delivery method is used for
the transaction.
2. The RESERVED dimension which describes what kind of reservation method is used
for the transaction.
3. The COVERED dimension which describes whether the transaction is covered by
another transaction.

Basically there are three different warehouses combined to one, i.e., the transaction, export and
delivery warehouse. This has impact on the sparsity of the fact table. Each record in the fact table
contains either values for transaction or export or for delivery.

10.8.1.2 Dimensions and Hierarchies

This section contains a description of the dimensions. In particular, we show the hierarchies that are
necessary to understand the business context. Due to the large number of dimensions we concentrate
on a subset of the most important dimensions. These dimensions are also used in the context of
physical modelling for an MHC organized Sales DW.

The following sections describe some of the important dimensions. Appendix A shows the conceptual
schema for all relevant dimensions.

10.8.1.2.1 Dimension Calendar

The Calendar dimension has three alternative hierarchies (M:

Date — Month — Quarter — Half Year — Year
Date — Week — Year
Date — Day of Week

In addition to the hierarchy attributes, a number of feature attributes describe the hierarchy levels in
more detail. As mentioned before, the calendar hierarchy is used by three dimensions: transaction,
export, and delivery date.
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Half_Year
Half_Year_abs
A

Quarter
Quarter_abs
A
Week Month_Num Day_of_Week
Week_abs Month_abs Day_Name
Week_Begin_date Month_Name Day_Name_abbr
Month_Name_abbr Is_Weekday
A
Calendar_Date

Day Num_In_Month
Day_Num_In_Year
Day Num_ Overall
Is_Holiday
Is_Weeking_Day
Fiscal Month
Fiscal_Quarter
Fiscal Half Year
Fiscal Year

Season

Special Eventl
Special_Event2

Figure 10-43: Calendar Hierarchy

We show the conceptual schema. Each box contains the fields of one hierarchy level. A hierarchy
level consists of the hierarchy level attribute which is bold in the figures and of a number of feature
attributes. The arros denote the hierarchical relationships between the hierarchy levels. Note that there
are also hierarchy levels without feature attributes.

Basically, a feature attribute can be seen as a separate hierarchy level that is hierarchically dependent
on the actual hierarchy level attribute. For the distinction between feature and hierarchy level attribute
we need knowledge about the semantics of the fields of a dimension.

10.8.1.2.2 Dimension Hour

The hour dimension (Higure 10-44)]is used, in order to express events within one day. For each hour,

there is an entry in the dimension. Each hour is further categorized by a day period, e.g., noon, evening
etc., and a boolean flag is_peak indicates, whether the hour is a peak hour.

Day_Period IS_Peak

Figure 10-44: Hour Hierarchy

10.8.1.2.3 Dimension Product

In the product dimension (F we have four alternative hierarchies:

e Item — Group — Category
e Item — Brand
e Item — ABC Category
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* Item — Vat Category

The hierarchies contain feature attributes for a more exact description of the item, product group etc.
The most frequently used hierarchy is the Item — Group — Category hierarchy.

Category_Code
Category_Long
Category_Short
A

Group_Code Brand_Code ABC_Category_Code Vat_Category_Code
Group_Long Brand_Long ABC_Category_Long Vat_Category
Group_Short Brand_Short ABC_Category_Short

Code

Description
Country_Origin_Code
Country_Origin
Measurement_Code
Measurement_Unit
Measurement_abbr
Iltem_Type
Item_Status_Code
Item_Status
Negative_Value
Service_ltem
Creation_Date
Inactivation_Date

Figure 10-45: Product Hierarchy

10.8.1.2.4 Dimension Warehouse
The warehouse dimension (Fjgure 10-46) s complex. It has various alternative hierarchies. The most

important one is the geographic hierarchy: Warehouse — Area — City — County — Department —
Country. The remaining hierarchies are used for further evaluations.
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Cost_Center_Group

Area_Code
Area_Name

Branch_Code
Branch_Description

Cost_Center_Code
Cost_Center_Description

Price_Group_code
Price_Group

Area_Postcode
Area_Population

Code
Description
Abbreviation
Address
Street_Number
Postcode
Phone_Number

Commercial_Group_Code
Commercial_Group

Warehouse_Group_Code
Warehouse_Group_Short
Warehouse_Group_Long

Is_Third_Party_Warehouse ‘

—| Is_Store

Fax_Number
Responsible
Employess_Num
Sales_Area
Storage_Area
Warehouse_Status_Code
Warehouse_Status
Warehouse_Type

Is_Central_Warehouse ‘

Warehouse_Owner

Figure 10-46: Warehouse Hierarhcy

10.8.2 Measures

The Retailer warehouse has a list of measures, in order to quantify business transactions. In the
following, we list the measures that are stored in the fact table. The measures are divided into three

categories:
e Quantities:
e Qty_total,
* Qty Free,
*  Qty Net
* Unit Prices and Costs:
e Unit Cost, Unit Base Cost

e Unit Sale Price, Unit_Init Sale Price

e Unit_Interest, Unit Price Cost
e Unit_avg cost, Unit_min_price

e Total Values — Prices, Costs and Counts:
e Val gross, Val cost, Val taxable, Val vat

* Val _gross_free, Val vat free

e Val discount, Val surcharges

e Val_interest, Val capital, Val total
* Loans Num, Total instalments
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We do not enlarge on an exact description of the measures, since they reflect the business content that

is not of interest in this thesis.

10.8.3 Logical Schema for M easurements
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Figure 10-47: Logical Schema of Sales DW

The complete Retailer DW is very complex. Thus, for the measurements and analysis, we chose a
subset of all dimensions. All attributes of the fact table are used, but the dimensions are restricted to
the following 10 dimensions:

¢ Transaction Calendar
¢ Customer

e Hour
¢ Product

¢ Special IDL

¢ Warehouse

¢ Cash Register
¢ Salesman

e Sales Payment

¢ Transaction

170



10.8 SCHEMA FOR THE MEASUREMENTS

In Fim;ﬂ'e show the logical schema for Sales DW used in the remaining thesis, if not
described differently. The logical schema has a fact table SALESFACT and 10 dimension tables. The

key attributes are marked with underlines and the foreign key relationships are expressed by lines
between the corresponding attributes. E.g., SALESFACT.PRD_DWH_KEY is a foreign key to
Product. DWH_KEY. The hierarchies are not shown explicitly since in the star schema, there is no
hierarchical information available for the logical schema. Figure T0-47 shows the complete logical

schema.

10.8.4 Data Distribution of the Fact Table

In this section we describe some aspects of the data stored in the Sales DW. In particular, we discuss
the data distribution of the fact table.

The Fact table contains 8.579.458 tuples, i.e., the complete data of three years. In real data
warehouses, the data is distributed extremely non-uniformly. This section contains an analysis of the
data distribution w.r.t. the dimensions and hierarchies on the dimensions as they are used for the
measurements. The data distribution is shown graphically. The figures show the number of fact table
tuples that belong to the corresponding hierarchy members, e.g., 250.000 for “03/2000”, i.e., March
2000, in the calendar dimension. The x-axis contains the hierarchy path (usually a prefix path
depending on the hierarchy shown in the graph). For example, ‘1 1 1’ for the customer dimension with
country — department — county means the hierarchy path “17/°1”/”1”. The y-axis contains the number
of tuples of the fact table belonging to the hierarchy prefix. Each chart contains only hierarchy
members with corresponding tuples in the fact table. This means that members where no bars are
visible, have a very small number of corresponding tuples in the fact table. In Appendix B, we show
the data distribution of all dimensions.
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Figure 10-48: Data Distribution according to Calendar: Year — Month

Overall, most dimensions have a non-uniform data distribution. Only the calendar dimension contains

a comparable amount of data for most months stored in Sales DW (see Figure 10-48). [The geographic
customer and warehouse dimension only contain data of one country. A large number of fact table
tuples for the customer dimension is classified to one special path country — department — county —
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Figure 10-50: Data Distribution according to Customer: Country — Department - County

In the product dimension, there are several categories with a large number of tuples in the fact table.

The two categories 41 and 21 occur most frequently in the fact table (see Figure 10-51}, the products
w.r.t. the product group is shown in ith some data clusters around the categories with
the most tuples.
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Figure 10-51: Data Distribution according to Product: Category
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Figure 10-52: Data Distribution according to Product: Category — Product Group

Most tuples of the fact table have the sales payment ‘999999999’ which is a “not categorized”
classification. However, there are two sales payment types that belong to about 1.250.000 tuples in the
fact table. Most of the sales payment ways have only a small number of tuples (see FM
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Figure 10-53: Data Distribution according to Sales Payment

In the transaction dimension, there are three transactions with a very large number of tuples, i.e.,
between 1.200.000 and 2.500.000., all other transaction types belong to less than 500.000 tuples of the
fact table.
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Figure 10-54: Data Distribution according to Transaction

10.9 Further Measurements

In this section, we describe some measurements that are not assigned to specific implementation
sections:

e Scalability w.r.t. cache size

e Scalability w.r.t. fact table size

¢ Comparison with an other commercial DBMS
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These measurements show the applicability of MHC in combination with the introduced optimization
algorithms. We use the Sales DW as introduced in Section ]@&dth the five clustering dimensions
Product, Warehouse, Calendar, Transaction, and Sales Payment. The remaining dimensions are
secondary dimensions. The measurements are performed on a PC with 2 CPUs Pentium III Xeon,
866Mhz. The hard disks are IDE disks. Operating system is Windows NT4. All data is stored on one
disk. The queries are executed with cold cache, i.e., cache effects are eliminated.

10.9.1 Description of the Queries

The queries are real business queries and are based on the application of the Sales DW. We defined 13
different templates, each of them describing one business case:

¢ Actual turnover per warchouse, month, hour

¢ Product analysis of sales

e Monthly analysis of sales for product groups

e Sales analysis

* Analysis of sales after 3pm

¢ Actual turnover per warchouse and product

* Net sales for consignment notes sales transactions

* Pending sales transactions

e Analysis of sales for root warehouses (stores)

¢ Cancelling transactions

¢  Credit cards revenues

¢ Credit sales per month

e  Analysis of sales for Sales DW credit payment ways

Appendix D contains the query templates in SQL based on the logical schema as described in Section
The templates Q1 to Q13 corresponding to the different query types. The remaining templates
are modifications, e.g., template Q203 corresponds to template Q3, Q208 to Q8 etc.

For the measurements we generated instances from the templates. Each of these templates has a date
range parameter that was modified for different selectivities. Furthermore, the third and tenth
templates imposed a range restriction on the Product Group level of the Product dimension. Likewise,
template number eight imposed a restriction on the Warehouse dimension.

In order to generate a set of queries that would cover all possible cases (high selectivity and low
selectivity queries), we have performed an analysis of the restrictions on the selectivity that the
parameters of each template may enforce. During the analysis process, the number of tuples returned
by each of the query templates was computed, when deleting the GROUP BY clause and varying the
date range parameter.

Using these results, we have initially derived three classes for the group level of the Product
dimension of the query template number three. Next, three more classes were derived for the County
level of the Warehouse dimension of the query template number 8. Finally, we have defined three
additional classes for the group level of the Product dimension of the query template number ten.

In order to simplify the query generation process, the query templates three, eight and ten have been
transformed so that they had only one parameter: the date range. This process allowed us to use all
templates in the same manner since all templates would have only one parameter. At the end of this
process we had 22 query templates: 12 generated templates and 10 original. For each of these
templates sixty query versions were generated using date ranges from one month to two years. The
process described above generated the total number of 1320 queries that are used as the report query
set for the performance measurements.
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10.9.2 Cache Size Scalability M easur ements

We first examine two different cache sizes:

* Small: Data cache of Transbase® is 30 MB ([
* Large: Data cache of Transbase® is 300 MB.

Because of the large number of measured queries i nly a couple of query templates. The
complete measurement figures are in Appendix E. =55'shows the results for Transbase® with

small (TborigSmall) and large (TBorigLarge) cache. orig stands for the original database size (about 3
GB raw data for the fact table).

COMP TB Cache Orig: Q4

250
O TBorigSmall
200 B TBorigLarge
— 150
L,
(O]
£
F 100

Instance

Figure 10-55: Comparison of different Cache Sizes for Template Q4

The queries are ordered by the instances. The intervals for the calendar restriction is one month for the
first 36 queries and is enlarged up to three years (i.e., the complete time) for the last query. The rising
number of fact table result tuples is reflected in the query response times. The left bar is for the small
cache configuration, the right bar for the large one. Because of the elimination of DBMS cache effects
(we reboot the database before each query), the large configuration cannot gain profit from the
additional available memory. It even is slower in this environment to use a larger cache configuration,
because the cache is filled during query execution. This leads to the requirement of additional shared
memory for the Transbase® kernel. The operating system, however, uses most of the free memory as
file cache and additional overhead occurs when this memory is requested by the Transbase® kernel.
For larger caches, this overhead is larger and therefore the query execution time is slower. This is
especially true for the queries specifying a large number of fact table tuples (many pages are written to
the DBMS cache).

When not eliminating the cache effects, the results will be different. In this case, some (or most) of the

requested data (and index) pages are already in the shared memory and can be used without accessing
the secondary storage.
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10.9.3 Fact Table Size Scalability M easurements

The objective of these measurements is to show the scalability w.r.t. the fact table size. We built a
second database with more fact table records (a factor of 10, i.e., 30 GB raw data). The data was
enriched by inserting tuples with consecuting calendar dates. Thus, the result of the queries is the same
for both databases, the original and the 30 GB one. The queries are the same as described before. We
run the queries with the small cache size.

1gure 10-56 khows the results for query Q6. TBorigSmall is the original database size and TB30Small
stands for the large database size (with small cache configuration).
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Figure 10-56: Comparison of different Database Sizes for Template Q6

The first 36 queries restrict one month again, the remaining queries restrict up to three years. Most of
the queries have the same execution time for both database sizes. However, some of them take longer
for the TB30Small. This comes from the modified clustering due to the inserted new data. The new
data was generated by only modifying the calendar dates. The remaining dimensions are the same.
Thus, tuples of later calendar dates are stored in z-regions of the UB-Tree with data of the query result.
We therefore have to read more pages, in order to evaluate the queries.

For example, one page of TBorigSmall contains the tuples

p1: (“2003-01-23”, py, wy), (“2003-01-23", pa, Wy), (“2003-01-23", ps, w3), (“2003-01-23", p4, Wa)
After the enlargement of the data for TB30Small the page is split into two pages:

p:’: (“2003-01-23”, p;, wy), (“2003-01-24”, py, wy), (“2003-01-237, py, W2), (“2003-01-24", p,, W»)
p1’: (“2003-01-23”, ps, ws), (“2003-01-24”, ps, w3), (“2003-01-23", p4, Wa), (“2003-01-24", ps, W)

The same query (restricting to “2003-01-23") accesses two pages p;’ and p,’ for TB30Small instead of
one page p;.
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Some queries are evaluated faster for the large database size. This also results from the different
clustering properties. In general, the scalability is good. There are only minor effects to the query
execution time for larger database sizes. A complete list of measurement result figures for the query
templates Q1 to Q13 is shown in Appendix E.

10.9.4 Comparison with another commercial DBM S

In this section we compare the implementation of MHC in Transbase® with the implementation of a
different technology, i.e., bitmap index intersection and star transformation, of a well known and
popular commercial DBMS in its latest version with the best configuration according to our
knowledge. Note that we are not allowed to mention the name of this DBMS due to license restrictions
and call it CommDBMS

We built the same star schema with bitmap indexes in CommDBMS In the presented measurements
we compared the original database size (3 GB fact table raw data). We also ran the queries on the 30
GB size, but no significant differences occurred. The queries are the same as described before and
Appendix E contains the complete results for the templates Q1 to Q13 and Q208.
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Figure 10-57: Speedup of Transbase® MHC vs. CommDBMS for all Query Templates

shows the speedup of Transbase® with MHC compared to CommDBMS Each query
cd in the figure. The templates where Transbase® is faster are pictured with bars above
the 1 (equal) line. For templates where CommDBMS is faster (Q108, Q208 and Q308), the bars are
below the equal line. A speedup of two means that Transbase® needs half the time to run all queries of
the corresponding query template. A speedup of 0.5 means that CommDBMS needs half the time to
run all queries of the corresponding template.

Note that the speed up is calculated on the aggregated query exeuction times per template. There are
some templates with a very high speedup (Q10, Q12, Q103, Q110 and Q203), i.e., from an order of
magnitude up to a speedup of 32. For these queries, the MHC technology is very beneficial.
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Figure 10-58: Transbase® compared to CommDBMS for Template Q208

Transbase vs. Commercial DBMS: Q3
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Figure 10-59: Comparison of Transbase® and CommDBMS for Template Q3

The query templates where CommDBMS is faster, secondary dimensions are used for grouping and

restriction. This leads to expensive
larger number of tuples (see Section

post-filtering after the fact table access via residual joins on a
0.5)l Figure 10-58 Jshows one of these templates in more detail.

CommDBMS can use also the restrictions on the secondary dimensions via bitmap index intersection
(all dimensions are indexed by bitmap indexes) and therefore does not suffer from secondary

dimensions.

Most of the results are similar to F@rhere Transbase® is faster for all queries within the

template.
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In Fi e cost based optimizer of CommDBMS choses a different plan for some queries
(e.g., query e to the analysis of the restrictions and statistics. Obviously that is a bad plan.

Transbase vs. Commercial DBMS: Q2

O TBorigSmall
B CommOrigSmall

MY

I < N~ O
—

(32
—

(]
—

(o2}
—

N 0
N N

1;

N

—
o™

<
(92}

N~
(2]

o
=

(s2)
<

T
[(e]
<

49

52

55
58

Instance

Figure 10-60: Comparison of Transbase® and CommDBMS for Template Q2

For the complete list of queries and results please refer to Appendix E.

10.9.5 APB Benchmark

In addition to the real world Sales DW example, we compared the MHC technology for a standard

benchmark, the APB benchmark. The APB benchmark (B

It defines the whole process of loading, updating and

Month level
Quarter_level
Year_level

Planvars

Customer level
Time level
Product level
UnitsSold
Dollar Sales

Code level
Class level
Group_level
Family_level
Line_level
Division_level

%s a standard benchmark for OLAP.

f data warehouse. We compare the
performance of Transbase® with MHC and CommDBMS (see Section 1@'

Store level

Retailer_|evel

Actvars

Customer_level
Time level
Product level
Channel_level
UnitsSold
Dollar Sales
Dallar Cost

Figure 10-61: Logical Schema of the APB Benchmark with Main Fact Tables
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The schema consists of two main fact tables, i.e., Actvars and Planvars and four dimensions Time,
Customer, Product, and Channel (see . The hierarchies of the dimensions are shown in

[

Division
T
Line
f
Family
?
Year Group
0 t
Quarter Retailer Class All
t t f t
Month Store Code Baselevel
Timeleve Custlevel Prodlevel Chanlevel

Figure 10-62: Hierarchies of the Dimensions

In addition to the main fact tables, four further fact tables are used in the APB benchmark (see Figure |
Currlnventory, HistInventory, SdShipCost, and StdProdCost. For a detailed explanation about
the economical background please refer to [M

We implemented the APB benchmark with scaling factor 10, i.e., 124 million fact table records for the
largest fact table Actvars. All data is stored on one disk. [[able 10-3 khows the cardinality of all tables
and the sizes in MB or GB for Transbase®. For CommDBMS the sizes are very similar. We used
MHC for all fact tables with all dimensions as specified in the schema. The compound surrogates of
the dimension tables have the hierarchies as shown in w or CommDBMS we used bitmap
indexes on the dimension attributes of the fact tables.

DIM_ Timelevel
Month level
Quarter_level DIM_ Custlevel
Year_level Store level
Retailer_level
StdsShipCost
Time level HistInventory
;us(omw Customer level
Va?l]jlo Product level
1nv199501
1nv199502
1nv199503
1nv199605
StdProdCost
Time level
Product_level Currlnventory
Scenari Customer_level
Value Product level
DIM_ Prodlevel V199606
Code level 1
Class level
Group_level
Family_level
Line_level
Division_level

Figure 10-63: Logical Schema of the APB Benchmark with further Fact Tables

The measurements were performed on a two processor PC Pentium II, 400 MHz, with 768 MB RAM
and a SCSI hard disk. Operating system is Windows 2000. We eliminated cache effects by restarting
the DBMS before every query.
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Fact Table Cardinality Size Dimension Table | Cardinality
Actvars 123.930.000 15,6 GB Product 9.000
Planvars 44.311.800 4.2 GB Customer 900
Currlnventory 3.692.650 282,0 MB Time 24
HistInventory 3.692.650 562,3 MB Channel 9
StdShipcost 27.000 2,2 MB

StdProdCost 270.000 22,6 MB

Table 10-3: Sizes of the Tables of the APB Benchmark for Transbase®

In the APB benchmark 10 query templates are defined modelling economic processes such as channel
sales analysis, customer margin analysis etc. In data warehouses usually different kinds of queries
occur:

« Static, long running reports and analyses executed in regular time intervals and

¢ Dynamic ad hoc queries started by the user.

The instances of one query template differ in the restricted hierarchy level and in the value of the
restrictions. Thus, the instances of one query template have different selectivities. Some of the queries
consist of several single queries, e.g., query template Q08 consists of four parts, each of them is a
separate SQL statement:

e QO8-P1: part 1 of the query

e QO08-P2: part 2 of the query

e QO08-P3: part 3 of the query

¢ QO08-Prep: preparation SQL statement for the query

The number of instances pertemplate is between 125 and 500. The overall number of queries is 6.251.

@ hows the comparison between Transbase® and CommDBMS for each query template. It
contains the 1%, the 2™ and 3™, and the 4™ quartile of the speedup of the instances for each template.
For example, for template QO05, the minimum speedup of Transbase® compared to CommDBMS is
0,53 (CommDBMS needs only half the time), 50% of the queries have a speedup between 13 and 18
(Transbase® is between a factor of 13 and 18 faster than CommDBMS) and the maximum speedup is
28,5.
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Figure 10-64: APB Benchmark: Speedup of Query Templates

182



10.9 FURTHER MEASUREMENTS

Most of the queries are significantly faster for Transbase® compared to CommDBMS Only the
queries of Q03-P1 and Q6 are slower. In these queries, only two dimensions out of four are restricted.
Most of the instances of the remaining query templates are between a factor of two until a factor of 50
(and even more) faster.
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11 Handling Complex Hierarchies

11.1 Transforming Hierarchy Instancesto Simple Hierarchies

Queries that restrict dimensions, have predicates on hierarchy levels. Such predicates usually are point
or interval restrictions ([Sar97]) nd result in large point sets on base granularity (i.e., the leaf level of
the hierarchy). These point sets can be replaced by a smaller set of interval restrictions depending on
the predicate.

EHC is useful to transform a set of hierarchy paths to a small set of intervals (see Section 5[ However,
this encoding only is suitable for simple hierarchies. For complex hierarchies, it is necessary to select
one of several simple hierarchies of the complex hierarchy. Therefore, restrictions on the other
hierarchies probably will cause relatively bad performance. A large number of query boxes can be the
consequence (see Section 1@}

To enable hierarchy encoding for such a complex scenario, we present the transformation algorithm
HINTA that transforms a DW-hierarchy to a simple hierarchy, preserving hierarchical relationships of
the original levels. This algorithm has first been described in [Ml

First, we discuss some algorithms that are used by HINTA. Then we discuss HINTA in detail and
show a complete example of HINTA for the hierarchy instance of

11.1.1 Primitive Hierarchy Instances (phi)

We use the term primitive hierarchy instance, phi, for hierarchy instances that consist of two simple
hierarchies with one shared leaf level - the remaining levels are disjoint. Such a phi can be transformed
to one simple hierarchy instance. A phi is some kind of sub-hierarchy of a conventional hierarchy
instance consisting of two simple hierarchies.

A phi H consists of a number of hierarchically dependent disjoint levels and one shared leaf level.
Figure 11-1 illlustrates all possible hierarchy schemata of phi (phiy, phiy, phis).

PN hk hj J
phi, phi, phi,

Figure 11-1: Hierarchy Schema for Primitive Hierarchy Instances
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phi1 only contains one shared level, i.e., the leaf level of H. Such a phi can be constructed, if a
hierarchy has several hierarchically dependent shared levels. This sequence of levels is split into phi’s
of type phiy for every level. Usually, edges of both simple hierarchies “leave” phiy (illustrated by
dotted arrows). Thus, the original hierarchy has a level hierarchically dependent on hy, if hj is not the
root level.

phiz is the general case for a phi. Two simple hierarchies H; and Hj have one shared leaf level hj and a
number of hierarchically dependent levels h, ..., hy for Hy and hj, ..., h for Ho. Usually, a level hy
(shared level) is hierarchically dependent on hy and h;. The dotted arrows denote these hierarchical
relationships.

phi3 is a special case of phip, where Hy only consists of the shared leaf level h;, and H2 consists of
additional hierarchically dependent levels hyj, ..., hy.

In the splitting of a hierarchy schema of hierarchy H with the two simple hierarchies H%
and H>, into phi’s is illustrated. HS, consists of the levels {A,B,C,D,G,J}, HS, consists of the levels
{A, B, E, F, G, |, J}. Shared hierarchy paths (levels A and B) are from type phi,, the alternative paths
for levels G2D -2C and G-2F 2E are of type phi,, and the alternative paths J and J-2| are of type

ph|3

No other phi are possible for two simple hierarchies, because by all hierarchy instances for two simple
hierarchies can be constructed concatenating phi’s.

Figure 11-2: Example of phi’'s for a Hierarchy Schema

A phi of a hierarchy instance H=H1//H> formally is defined in the following way:

Definition 11-1 (Primitive Hierar chy I nstance, phi):

The primitive hierarchy instance (phi) of a hierarchy instance H consisting of two simple hierarchies

Hsl= (Vsl, Esl) and H%= (Vsz, Esz) is a hierarchy instance th'=(Vph', Eph'):

VP = ™ g™ e e ™ L ™, where hy™ resp. hy" are root levels of H) resp. H and

hlk and hzh are shared levels and /7h{, k< j sm hy, h<is<n hi, hy' are disjoint levels.

EP" = {a}, where & = (i, Vi) Z(EXLTED): vi, v; T{(VP" )}, vic 2 i, vie TV

EP" contains all original edges between the members of VP and the “leaving” edges. m
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Example 11-1 (Primitive Hierar chy I nstance):

This example shows the phi’s of the sample hierarchy instance H of Figure TI-3] Figure TT-4]shows
the schema of the hierarchy. H consists of three phi’s: HPY, HP? and H™.

HP! is of type phir. VP* = {Segment}, E™* = /7, because the root does not have leaving edges.

HP? is of type phi; again and consists of the members VP? = {Germany, Austria} and the edges EP =
{(Germany, Segment)l, (Austria, Segment)l, (Germany, Segment)z, (Austria, Segment)z}

The edges are of type 1 and 2 (see
ipsj of type phi, and consists of two alternative paths with shared leaf level Outlet (see @

V3 = {Al1, A2, S1, 2, A3, H1, H2, $4, H3, H4, S5, S6, Aldin, Saturny, Aldis, Hoferg, Saturng, Hofery,
Saturny, TGL, TG2, TG5, TAL, TA2, North, South, East, West}

EP™ = {(Al, Aldiy), (A2, Aldiy), (S1, Saturny), (S2, Saturny), (A3, Aldis), (H1, Hoferg), (H2,
Hoferg), (S4, Saturng), (H3, Hoferw), (H4, Hoferw), (S5, Saturny), (S6, Saturnw),

(A1, TG1), (A2, TG2), (S1, TGS), (S2, TG2), (A3, TG2), (H1, TA2), (H2, TA1), (S4, TA1), (H3,
TA1), (H4, TA1), (S5, TA2), (S6, TA1),

(Aldin, North), (Saturny, North), (Aldis, South), (Hoferg, East), (Saturng, East), (Hoferw, West),
(Saturny, West),

{(TG1, Germany), (TG2, Germany), (TGS, Germany), (TA1, Austria), (TA2, Austria),

(North, Germany), (South, Germany), (East, Austria), (West, Austria)} i

Segment

N\ NN -
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\\ \\:\\\ ///:://
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Figure 11-3: Sample Hierarchy
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Dimension

MicroMarket

Figure 11-4: Schema of Sample Hierarchy

11.1.2 Transformation of Primitive Hierarchy I nstances

A phi can be transformed to a simple hierarchy. In this section, members are denoted by v. If v is in
level h;, i.e., v O hj, we write vj, if v O hj, we write vj etc. We write Vyx and vy for members not within
the hierarchies. An edge (Vh, Vx) is a leaving edge of vi,. Depending on the type of the phi, the hierarchy
is transformed by deleting and adding special members and edges. A phi consists of two simple
hierarchies. For the transformation, one hierarchy is preferred, i.e., the levels of the preferred
hierarchy usually are more significant for the encoding than the levels of the other hierarchy (predicate
isPreferred). The isPreferred: E-2Bool predicate (i.e., i SPreferred(e) = TRUE | FALSE)
returns TRUE, if edge e is the edge of the preferred hierarchy. Usually, a hierarchy is preferred, if it is
used in more queries than the other hierarchy. There can be many preference criteria (e.g., numbers,
importance or kind of queries etc.).

The algorithm is specified in pseudo code:

Tr ansf or nPhi ToSi npl eH erarchy:
if type(H"™ =phi,, then
forall edges (Vvi, Vy)
if not isPreferred(v;, vy) then
del ete edge(Vvi, Vy)
/* delete |l eaving edges of the non-preferred hierarchy,
| eavi ng edges of preferred hierarchy remin*/
if type(H" =phi, then
forall edges (v, Vy)
if not isPreferred(v,, vy) then
del ete edges (Vvi, Vy)
/* delete | eaving edges of the non-preferred
hi erarchy */
forall edges (vi, Vi)
i f not pathexists(vi2vj' 2.2V, V)
insertpath(vi=>v;" 2.2V, 2V
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11 HANDLING COMPLEX HIERARCHIES

del ete edges (Vvi, Vi)

forall edges (vi, v;) delete edges (vi, Vvj)

/* make v indirect hierarchically dependent on v;
(instead of direct hierarchically dependent) by
duplicating vertices and edges */

if type(H") =phis then

for all edges (vi, Vy)

del ete edges (Vi, Vy)

For phi’s of type phi; and phig, only “leaving” edges must be removed. For a phiy, all leaving edges of
one of the two hierarchies must be removed (in this case, the non-preferred hierarchy). For a phis, we
must remove the “leaving” edges of the “small” hierarchy, because the levels of the other hierarchy
must remain for hierarchical classification.

For phi’s of type phip, a kind of hierarchy interleaving is performed. The alternative paths are
concatenated in the meaning, that the levels of the non-preferred hierarchy are made hierarchically
dependent on the levels of the preferred hierarchy. Members of the shared leaf level hj are not directly
hierarchically dependent on members of hy any more (see F The operation
I nsert pat h( pat h) inserts members and edges of path. This is necessary, because a member vj [
hj can be adjacent to several members Vv; [I h; that do not correspond to an equal number of members
Vi O hy. Thus, we have to duplicate the path to preserve hierarchical dependencies.

h.

Figure 11-5: Transformation of a phis

11.1.3 Hierarchy Instance Transformation Algorithm (HINTA)

The Hierarchy INstance Transformation Algorithm, HINTA, transforms a hierarchy instance H=(V,
E), represented by a rooted tDAG (e.g., a DW-hierarchy) into simple hierarchy H®= HI NTA(H) = (VS,
ES). The input of HINTA is a hierarchy instance that consists of an arbitrary number N of simple
hierarchies HSk. We transform two simple hierarchies Hsl and Hsz to one simple hierarchies by
splitting them into phi’sand transform each phi with Tr ansf or nPhi ToSi npl eHi er ar chy into a
primitive simple hierarchy. The primitive simple hierarchies are merged to the resulting simple
hierarchy Hslz. We now transform Hslz and the next simple hierarchy Hsg to HS;|_23 according to the
previous described steps etc. Thus, at the end of HINTA, we get one simple hierarchy H5123._n.
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In the following, we describe the proceeding in a more formal way:

The input hierarchy H is split into simple hierarchies HS: H = U H iS , where HSi is preferred to
i

S
H i+1.

HINTA: H® =HINTA(H)

According to the informal description of HINTA above, we transform a pair of simple hierarchies into
one simple hierarchy, starting with the first two simple hierarchies in preference order.

Hio = Transforn{Hy O H%)
The resulting simple hierarchy H12 and the next preferred simple hierarchy Hsg are transformed:
Hizz = Tr ansf or I’T( Hio O Hs3)

The resulting simple hierarchy Hi23 and the next preferred simple hierarchy HS4 are transformed etc.
Thus, we have n-1 calls of Tr ansf or mfor n simple hierarchies of H. The transformation calls also
can be summed up in one expression:

H, = Transfor m( H,0H)
H,s = Transforn{H,OH;) = Transforn( Transf or m( H5,0H%) O H%)

Hizs..n = Transfornm(Hy .1 O Hsn) =

Transform(Transforn(.... Transforn(H,0OH) O HS) O ...0 H,.
) O HY)

The function Tr ansf or msplits a hierarchy instance H consisting of two simple hierarchies into
phi’s, transforms each phi into a simple hierarchy (Tr ansf or mPhi ToSi npl eHi er ar chy) and
concatenates the resulting simple hierarchies to one simple hierarchy:

Transform (H):
if His phi then

Transform(H) = Transf ornPhi ToSi npl eH erarchy(H)
ot herw se
Transform(H) = TransfornPhi ToSi npl eH erarchy(phi (H)) O

Transform(H \ phi(H))

Transf or m is a recursive function that transforms the first phi of H into a simple hierarchy H® and

concatenates H with the rest of the transformed phi’s by calling Tr ansf or magain. It terminates,
when H is already a phi, i.e., if the last phi of the original hierarchy instance is the input parameter.

The “00” operator means, that for Hi// Hz the hierarchies Hj and H; are concatenated via the existing
edges of members of Hj and Ha.

The “\” operator is a splitting of the hierarchies Hj and Hy, i.e. H*= Hj \ Hy means, that H* is the

hierarchy Hy without the members and edges of Ha. Thus, H \ phi(H) is hierarchy H without the first
phi of H.
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11 HANDLING COMPLEX HIERARCHIES

Tr ansf or mis called n times, if H consists of n phi’s. Thus, Tr ansf or m terminates, because a
hierarchy instance H consists of a finite number n of phi’s.

11.1.4 Exampleof HINTA

To illustrate HINTA, we use the hierarchy instance H=(VH, EH) of here H contains two

simple hierarchies H1S and st (see E. We assume, that Hls is preferred to st. The
resulting simple hierarchy H®is computed by:

H°= HI NTA( H)

Countr y Germany [ 1 Austria

Figure 11-6: Schema and Instance of HPhi2
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MicroMarket . . 4’/‘& A N~ »
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>
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Figure 11-7: Schema and Instance of HPhi3
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Figure 11-8: Transforming the Hierarchy

The pair of simple hierarchies Hy and Hy is transformed by Tr ansf or n( Hy [/ H) , where Hy [/ Hp is
not a phi. (H1/7H2) consists of three phi, i.c., th'l, th|2’ and HP"3,

HP (of type phiy) is the root level without edges, because the root level does not have leaving edges.

HP? (of type phiy) consists of the members {Germany, Austria} and the corresponding edges to the

root (see Fimnd Ew
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11.1 TRANSFORMING HIERARCHY INSTANCES TO SIMPLE HIERARCHIES

HP® = (v, E) (of type phiy) consists of two alternative paths with shared leaf level Outlet (see m

[T jnd Efample TT-1)]

Now we transform H™, HP? and HP® to simple hierarchies:

H° = Transf or nPhi ToSi npl eHi er ar chy( H?)
H® = Transf or nPhi ToSi npl eHi er ar chy( H?)
H> = Transf or nPhi ToSi npl eHi er ar chy ( H?)

Hsl = ({Segment}, O}, i.e. the root without edges.

H, = ({Germany, Austria}, {(Germany, Segment), (Austria, Segment)}, because HP is a phi of type
phi1, the edges of type 2 are deleted.

H% = (V, E): HP3 is of type phizand

We delete the edges {(Al, Aldiy), (A2, Aldiy), (S1, Saturny), (82, Saturny), (A3, Aldis), (H1, Hoferg),
(H2, Hoferg), ($4, Saturng), (H3, Hofery), (H4, Hofery), (S5, Saturnw), (S5, Saturnw)} and the edges
{(TG1, Germany), (TG2, Germany), (TG5, Germany), (TAL, Austria), (TA2, Austria)}

igure 11-9 illustrates, which edges are deleted.

We delete members {TG1, TG2, TG5, TAL, TA2} and insert new members {TA1}, TG2}, TGS,
TG2%, TG2®, TA2', TA1Y, TA1? TAL®, TAL®, TA2%, TA1% and get the set of members:

V={Al A2, S, 2, A3, H1, H2, $4, H3, H4, b, $6, Aldiy, Saturny, Aldis, Hoferg, Saturng, Hofery,
Saturny, North, South, East, West, TA1Y, TG2!, TG5Y, TG22, TG23, TA2E, TA1Y, TA12, TA13, TAL®,
TA2?, TA1Y

We insert new ed?es of level TurnoverClass to Micromarket preserving hierarchical dependencies:
{(A1, TG1Y), (TG1Y Aldin), (A2, TG2Y), (TG2Y, Aldin), (SL, TG5Y), (TGS, Saturny), (2, TG2?),
(TG2?, Saturny), (A3,TG2%), (TG2%, Aldig), (H1, TA2Y), (TA2', Hoferg), (H2,TALY), (TALY, Hoferg),
(4, TA1?), (TA1?, Saturng), (H3, TA1%), (H4, TAL®), (TAL®, Hoferw), (S5, TA29), (TA2?, Saturnw), (S5,
TA1Y, (TAL®, Saturnw)}

After deleting and inserting, the edges are:

E = {(AL, TG1Y), (A2, TG2Y), (SL, TG5Y), (K2, TG2?), (A3, TG2Y), (H1, TA2Y), (H2, TALY), (4, TA1?),
(H3, TA1%), (H4, TA1®), (S5, TA2?), (S6, TALY,

(TG1Y, Aldin), (TG2Y, Aldin), (TG2?, Saturn), (TG23, Aldig), (TGS, Saturny), (TALY, Hoferg), (TA1?,
Saturng), (TAL®, Hoferw), (TAL*, Saturny), (TA2', Hoferg), (TA2?, Saturny),

(Aldin, North), (Saturny, North), (Aldis, South), (Hoferg, East), (Saturng, East), (Hofery, West),
(Saturnyy, West),

(North, Germany), (South, Germany), (East, Austria), (West, Austria)}

Figure TT-TO shows the new hierarchy instance with the inserted members and edges (including the
hierarchy schema).

The resulting simple hierarchy of HINTA is the union of Hsl, H52 and HS3, as 1llustrated in F

=]
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Figure 11-9: Deleting Members and Edges
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Figure 11-10: Inserting Members and Edges
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Figure 11-11: Final Simple Hierarchy Instance and Schema
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12.1 REUSING DELETED SURROGATES

12 Changeson Hierarchies (dynamic hierarchies)

Usually, dimensions in data warehouses have a static nature. This means that changes on dimension
tables are very seldom or even do not occur. For example, a calendar dimension will not be changed,
because the days of May 2002 will always belong to May 2002 and not to another month. However,
some dimensions may change, e.g., a customer C can move to another city or country within the
customer dimension. In this case, the hierarchy is modified, i.e., the path of ¢ is modified. In the MHC
schema, a change of a hierarchy results in a re-calculation of the compound surrogate and a (technical)
deletion and insertion into the dimension table is performed (see Section . A MHC organized
dimension table requires a reservation of a specific number of bits for each hierarchy level. This
number corresponds to the maximum number of children (from a higher hierarchy level) that this level
can hold. If this number is exceeded, the calculation of the compound surrogate fails (overflow).

In such a case, we must reorganize the dimension table. A reorganization requires the re-calculation of
all compound surrogates in the dimension table which actually is a rebuild of the complete dimension
table.

The problem with this approach is that the fact table contains reference surrogates, each of them
references a compound surrogate in the dimension table. Thus, all tuples of the fact table have to be
updated, too.

This section describes how to cope with the problem of surrogate overflow. We first describe how to
avoid overflow as long as possible for deleting and update scenarios (Sectior] 12.1).] Then we introduce
a method to handle overflow of surrogates without rebuilding the dimension and the fact table (Section
In Section [Z73 e present a script generator which easily supports all kinds of restructuring a
imension hierarchy including the necessary rebuilding steps on the database side. We further discuss
a broader framework for autonomic MHC maintenance in Section land finally mention some
approaches that we have followed, but which unfortunately do not work in general (Section ]@

12.1 Reusing Deleted Surrogates

The calculation of compound surrogates assigns to each new member m/ of hierarchy level h; the next
higher surrogate, e.g., surr(m/) = s+1, where surr(m™) = sand m'™* is the highest member so far
within the specific path. Thus, if a member that is not the last member of the hierarchy level is deleted,
the unoccupied surrogate is not immediately reused but each new member is assigned a surrogate
larger than the deleted one. The reason is that finding a new unused surrogate by the max+1 method is
well supported by the surrogate index (see Section §|.1|for more details).

To reuse a deleted surrogate, the holeSearch is used as described in Section This method finds
holes in the sequence of used surrogates on an arbitrary member level. The overhead to find a hole is
larger than the simple assignment of the next higher surrogate, so the hole search is done only when an
overflow has occurred on a certain hierarchy level.

This method does not avoid overflows of a hierarchy level, but guarantees that even in the event of

deletions and updates, the complete space as defined by the user is exhausted before an unavoidable
overflow occurs.

12.2 Overloading of Surrogates

Overloading of surrogates is a technique which does not require redefinition of existing surrogates. So
the fact table does not have to be rebuilt.
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12.2.1 Principlesof the Method

We allow a non-injective mapping from hierarchy members to surrogates. This means that several
different values of a hierarchy field get the same surrogate encoding. As a special technique, for each
level of the hierarchy, one special bit combination (e.g. 11..11) is reserved to encode all values for
which no free surrogate combination has been found. Thus, all overflow values are mapped to this
special bit combination.

E.g., let D be a leaf dimension table with hierarchy fields hs, hs, hy, h; and the corresponding
compound surrogate field cs. We assume for simplicity that two bits are used to encode each level
resulting in surrogates with a length of eight bits. F is a fact table with reference surrogate field CS.
referencing ¢S of D. Suppose that in dimension D, level h, has overflown and the bit combination 11
(as the third part of the surrogate) encodes all overflows of that level.

Figure 12-1: Hierarchy Tree with Surrogate Overloading

In the above example, we have one overflow element on hierarchy level h,. The two leaves |; and I,
now have the same surrogate encoding.

Surrogate overloading has some impacts on the query processing algorithms. The immediate
consequence of this non-unique mapping is that, in the fact table, a reference surrogate €S does not
uniquely encode the hierarchy field values of the corresponding leaf dimension table.

For the sake of clearness, we say that

e acsvalue has an overflow value on level h;, if the compound surrogate component which
belongs to level h; is the bit combination which encodes all overflow values of level h; ,
¢ acsvalue has an overflow value if it has an overflow value on any of its level.

Recall that in the MHC processing schema, first the local restrictions on dimension side are evaluated
and the results are internally represented by one or more compound surrogate intervals. Then the fact
table is accessed using the csintervals. For our discussion, it is sufficient to think of the cS intervals as
a set of single cs values which represent the result set on dimension side.

It is clear now that with the above encoding schema, the result set on dimension side is no more
uniquely representable as a set of €S values. In the above example, if a result value v has a surrogate
encoding cs, which has the 11 bit combination as the third part, the access to the fact table via cs,
produces result values on the fact table which might contain another value V' which has the same
encoding but is not in the result set on dimension side. This can easily been seen in the above example
if |1 is in the result set but |, is not.

12.2.2 Introduction of Postfiltering by Surrogate Overloading

Therefore, in the general case, a superset of the desired result is materialized in the fact table. Of
course it is possible to reduce the superset to the desired fact table result by a postfiltering approach
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(compare with secondary dimensions in Section 10.5). This requires a residual join with D as shown in

Fi%ure 12-2. This execution plan is discussed in hore Hetail in Section 9.
( Order By )

Residual Join

Post-Group

\ Del J

Residual Join
L )
] A

Predicate Evaluation

Figure 12-2: Overall Execution Plan

Obviously, the residual join before grouping is a drawback but the mechanism can be refined such that
the additional residual join often can be omitted. This is described in the next two sections.

12.2.3 Suppression of Residual Join with Surrogate Overloading

For suppression of postfiltering (residual join), a rule can be formulated which can be checked
statically. Informally, if overloading of surrogates occurs on a hierarchy level hy then predicates on
higher levels are not affected. More precisely, if the hierarchy search degree of the search predicate
(Section has the value sdg and sdg > ol for all overloaded levels hy then postfiltering is not
necessary. Thus, if we can avoid overloading in the higher hierarchy levels by reserving more bits for
the surrogates, residual joins can be suppressed more likely.

The reason is that in the above case, the cs result set on dimension side consists of subtrees of height
sdg — so whenever a non-uniquely coded value appears in the subtree then also all other values with
the same encoding are in the result set. Thus, only hits (and of course all hits) are materialized in the
fact table by the corresponding reference surrogates.

In our example, a search predicate on hierarchy level hs or h,; would not require postfiltering by
residual join whereas a predicate on h, or h; would require it.

If postfiltering can be suppressed then the next point of interest is the applicability of pre-grouping
(Section 9.4)] Similar arguments apply here. If the grouping fields have hierarchy degree greater than
ol then the described pre-grouping techniques can be applied. This is because pre-grouping then is
performed on surrogate prefixes which do not contain overloaded bit combinations.

It turns out that overloading of surrogates on a higher hierarchy level is worse than on a lower level
because — with a high level - more query types have a performance penalty.
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12.2.4 Additional System Requirements of Surrogate Overloading

Note that the technique of surrogate overloading requires additional entries in the system tables. This
is due to two reasons: First, on insertion it must be clear which surrogate levels are allowed to be
overloaded (and which bit combinations hold the overflows). Second, the query optimizer has to know
about the hierarchy levels where overflowing is permitted to decide about optimal or suboptimal
access plans on the fact table.

12.2.5 Suppression of Postfiltering with Surrogate Overloading -
Dynamic Rules

The preceeding section described a sufficient rule for exactness of the fact table result in case of
surrogate overloading. Another approach is the dynamic analysis of the result set on leaf dimension
side from the dimension predicates. This means that the result set is analyzed before the fact table
access is done.

We can state the following obvious rule:

Suppression of postfiltering is possible if for each v in the result set L of the dimension predicates it
holds that L also contains all result values which have the same surrogate encoding as V.

This can only be checked at runtime. Consequently, it can only be decided at runtime whether
postfiltering is necessary for the fact table result. In this case, a dynamic optimizer is necessary.

12.3 Redefinition of Surrogates

This section describes the steps which are necessary to reorganize the leaf dimension table in a most
flexible manner. If the hierarchy changes then a recomputation of surrogates is the consequence.

The natural way to modify hierarchies and compound surrogates is the following sequence of actions:

¢ Spool the fact table to file.

¢ Drop the fact table.

¢ Spool the dimension table to file.

¢ Drop the dimension table.

¢ Create the dimension table (with modified compound surrogate definition).
¢ Spool the data into the dimension table.

e Create the fact table.

¢ Spool the data into the fact table.

Of course, this sequence of actions can be performed automatically when a redefinition of surrogates
is inevitable.

Traditionally, Transbase® has supported a script generation for a most general redefinition of a table.
The script generator is located in the interactive frontend TBI and (given a table name) creates a
sequence of statements which is analogous to steps 3,4,5,6. The generated table redefinition script
recreates the table in identical form. For the user, it provides the basis for desired changes of the table,
for example adding or dropping columns or changing field types.

For MHC, the script generator has been extended. When a leaf dimension table with compound
surrogates is provided to the generator, it creates the above sequence of actions (1. — 8.), in order to
retain the consistency of compound surrogates and reference surrogates. If several fact tables reference
the (modified) dimension table, we generate reloading for each of them.
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12.4 Deferred fact table update

As mentioned in previous sections, updates on the dimension tables lead to cascading updates on the
fact table if surrogates of dimension members have to be recomputed. Consequently, a small update on
the dimension table may lead to a large and expensive operation on the fact table leading to large
execution times of the update statement. As both steps, the dimension update and the triggered fact
table update, have to be performed in one transaction, this may also influence multi-user performance,
e.g., queries can not be processed during update. This is tolerable as long as the maintenance window
is large enough, but in “24-7” environments other concepts have to be used.

One solution to this problem is to decouple the two steps, i.e., the dimension update and the updates on
the fact table. In case of MHC this is possible, as the update on the dimension table only triggers a re-
clustering of some tuples in the fact table — the tuple values (except the surrogates which determine the
clustering) are not changed. Instead of doing the reorganization of the fact table online a background
process does this in idle time. In the following, we briefly sketch the architecture of such an deferred
update mechanism and address the main problems that have to be solved.

In order to break the complete update into two (or more) separate steps, it is necessary that the overall
transactional semantics is already achieved after the first step. In case of MHC this means that it has to
be guaranteed that the fact table tuples are correctly associated to the dimension members. In case of
MHC processing we use the surrogates instead of the dimension keys to match the fact tuples to the
dimension members. The question that arises is how can we guarantee the correct mapping if the
surrogates change on the dimension side but we do not want to update the fact table immediately. This
is achieved by introducing — theoretically - a level of indirection: for each dimension member we keep
two surrogates, the current one and the last one. If these two are not identical, then the fact table has
not been reorganized according to the latest dimension update, yet. Consequently, the old surrogate
value has to be used to access the fact table. Thus it is guaranteed that queries always return the correct
results. However, as the clustering of the fact table may not always reflect the latest dimension status,
a small performance penalty has to be paid. A background process of the DBMS has then the
possibility to reorganize the fact table in idle time. The smallest granularity is the reclustering of all
fact tuples corresponding to a specific dimension member. Thus the locking overhead and the resulting
influence on the multi-user performance is reduced.

For the implementation of such a scheme, the MHC data model has to be revised, adding a second
surrogate field to the dimension tables. Also the query processing algorithms have to be extended to
detect non-propagated dimension updates in order to create the correct surrogate restrictions on the
fact table. An open issue is the extension of the advanced pre-grouping algorithms. Even though pre-
grouping still can be applied on the fact table results, the post-processing step also has to take care of
possible old surrogates. In such cases, more finer groups will be created by the pre-grouping phase,
i.e., the intermediate result set size may not be reduced so much, and consequently more merging has
to be done after the residual joins. For the deferred updates, the architecture for DBMS background
processes has to be designed and implemented.

The concept of deferred fact table updates allows to provide faster response time to dimension table
updates with only a modest decrease in query performance.

12.5 Further concepts

In this section, we briefly discuss concepts that have been considered to solve the dynamic MHC
problem, but that turned out not to be applicable to the general case. However, we think it is worth
mentioning these approaches as they provide nice solutions for some special cases.

If an overflow occurs at some hierarchy level, the fix-sized surrogates have to be extended leading to a
complete reorganization of the fact table. The approach of surrogate overloading as described above is
only a temporary solution. So the general question that we try to solve is, if there is a way to extend
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the fix-length surrogates in a way that the z-order is still preserved but the complete fact table does not
need to be reorganized.

12.5.1 Variable-length Surrogates

The problem of overflows stems from the fixed-size of surrogates, or to be more precise, the fix-sized
binary representation of the dimension values required for the UB-Tree. Consequently, to overcome
this deficit the natural idea is to work with variable length bit representations. This would give each
dimension enough room to grow and further provide compression as only as many bits are used as are
required to encode the value. The problem with this approach is the ordering function on such bit
representations. If one does not want to store expanded bit strings then a lexicographic ordering
function has to be used as we know for standard strings. The problem is that lexicographic comparison
does not work for bit representations of domains that do not adhere to lexicographic ordering, e.g., all
numeric domains. So, variable-length surrogates only work if all dimensions of the UB-Tree adhere to
lexicographic order.

12.5.2 Expansion of Surrogates

If we are bound to fix-length surrogates, is there then a possibility of expanding the surrogates without
violating the current clustering? The only way to extend the internal representation of UB-Tree keys
so that the z-ordering is not violated is to add bits at the beginning of the bit strings. In addition, the
comparison function has to be changed to take padded zero bits for the smaller values into account.
Thus one dimension, the first dimension in interleaving order to be precise, could be extendable.
However, the overall clustering would degenerate into a composite key clustering the more the
dimension is expanded.

12.6 Remarks

In the previous sections we have discussed some approaches how to deal with dynamics in hierarchies.
Most hierachies have a static nature, for slowly changing hierarchies, it is often not necessary to take
care of bit overflow (when using the hole search method), because enough bit combinations can be
reserved, in order to cover future hierarchies. Since the distribution of the hierarchy paths (see also the
distribution of the Sales DW in Section is very skewed, in most cases there is only one special
path that is a candidate for overflows.

However, when reserving a large number of bits for higher hierarchy levels (more than are needed),
the physical clustering for MHC will suffer (see Section 1 Thus, the best is to analyze the
hierarchies and estimate the future behaviour. The techniques to deal with overflow situations have
lack of performance (surrogate overloading) or require a large amount of time (reorganization).
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13 Summary

In this thesis, we present a complete implementation of MHC into the relational DBMS Transbase®
Hypercube and describe general concepts how to process and maintain hierarchically organized data
warchouse schemata. Most of the described concepts have been implemented into Transbase®
Hypercube. Several installations of Transbase® with MHC are already productive at customers of
Transaction Software.

Multidimensional hierarchical clustering (MHC) is an encoding of hierarchy paths, in order to map
hierarchical restrictions to interval restrictions. These interval restrictions can be used to efficiently
access the records stored in a multidimensional clustering index and thus improve the evaluation of the
fact table records. Since the hierarchical encoding is stored in the fact table in a data warchouse
application, special optimization techniques are possible. For example, in conventional star query
algorithms, grouping is done after the residual join with the dimension tables. With MHC, we can
group the fact table records w.r.t. hierarchical attributes without joining the dimension tables and
therefore speed up the query processing phase significantly. We call this method hierarchical pre-
grouping. Special algorithms are required for correct aggregation in combination with pre-grouping. In
this thesis, we describe the basic algorithms in the area of maintaining MHC, interval generation,
query optimization, hierarchical pre-grouping and aggregating as well as requirements from real world
scenarios, such as complex schemata (snowflake schema), complex aggregation expressions, multiple
fact tables (galaxies), large multidimensional query boxes, a large numbers of dimensions (secondary
dimensions), and multiple hierarchies per dimension.

The performance comparison of MHC with conventional techniques is very impressive, and the
comparison with another very popular commercial DBMS shows the benefit of MHC in the context of
Transbase® Hypercube. In combination with other “soft skills” of Transbase® Hypercube and
Transaction Software, the results make us confident that the technique and the product will be
accepted and used in a large scale.

In the following we outline some experiences, where MHC is beneficial and where not. MHC in
combination with multidimensional clustering indexes, e.g., the UB-Tree, is suitable for data
warehouse applications with a small number of “important” dimensions. This means that a relative
small number of dimensions should be restricted in most queries. In reality, such dimensions are
(among others) the calendar, product, or customer dimension. The scalability of MHC is very good,
i.e., the query performance does not suffer from larger data sets. We found that in combination with
the Transbase® DBMS, the hardware environment can be very small, in order to get acceptable query
response times.

However, for dimensions with many alternative hierarchies, the modeling with MHC requires to
choose one hierarchy for the physical clustering. Otherwise the number of dimensions for the
multidimensional index is very large and the multidimensional physical clustering suffers. We can use
HINTA, in order to deal with multiple hierarchies on dimensions, but this is only a “work around”.

If we do not use all dimensions for physical clustering, we have to deal with secondary dimensions.
Depending on the number of queries that restrict the secondary dimensions query performance will
also suffer.

It turned out that the maintenance overhead of MHC in a data warehouse is acceptable for loading new
data. For data warehouses with a very dynamic nature, updates on hierarchical attributes of the

dimensions may lead to significant performance problems for the update statements.

The implementation of MHC into the database kernel is quite smooth. A high effort is the extension of
the optimizer to consider MHC and the physical clustering when generating query execution plans. Of
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course not all optimizer rules are currently implemented in the Transbase® optimizer and a cost based
or dynamic approach probably would improve the query execution plans. In this area, a lot of
investigation still can be done.

13.1 FutureWork

Of course, there is still work to do, especially in the integration of additional and extended concepts in
the context of MHC and data warehousing.

13.1.1 Cost Model

Since Transbase® uses a rule-based optimizer, no costs are considered for optimizing query plans.
This is a general disadvantage, but is very important for some optimizer decisions that currently may
generate bad query plans. A cost model must be developed and used for the optimizer. However, we
think that a combination of rule-based and cost-based optimizer is the easiest and most robust way.

13.1.2 Dynamic Optimization

Dynamic optimization has been mentioned several times in this thesis. However, not much research is
available in the field of dynamic optimization and very new optimizer concepts and structures must be
implemented. We think, that there are some application areas, especially in the field of optimizing
MHC processing, where dynamic optimization would gain a significant advantage compared to rule-
based and cost-based optimizers.

13.1.3 Hash Joins

The concept of hash joins is basically implemented into Transbase® Hypercube, but there is still the
lack of using hash joins for conventional queries, also in the field of star queries. The effort to
integrate hash joins, however, is considered to be comparably low.

13.1.4 Complex Aggregation Expressions

In general, complex aggregate expressions are already supported by pre-grouping. These expressions
require a special structure, i.e., only products of factors where each fact contains either fact table or
dimension table attributes are required. Additional effort is necessary to handle general complex
expressions.

13.1.5 Multi Query Box Algorithm

We have implemented an algorithm to improve handling of many query boxes. However, there is still
one optimization that should be implemented: We have to order the query boxes w.r.t. z-order and
modify the processing of the query boxes correspondingly as described in Section 10.3.2.4.

13.1.6 Multiple Fact Tablesand multiple Hierarchies

There is still research necessary for complex schemata, e.g., for schemata with multiple fact tables and
multiple hierarchies. Some of the concepts are already implemented, but a cost model and
corresponding optimizer rules are still missing.
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13.1.7 Assistantsand Wizardsaround Transbase® Hypercube

In order to provide a complete DW suite consisting of a DBMS, schema design tools and further
assistants like tuning wizards etc., much work is necessary. Self-tuning wizards are a hot topic in
current DBMS development. The motivation and priorities mainly depend on the requirements of the
customers and how they understand the technology and can integrate and implement the concepts

described in this thesis.
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Appendices

Appendix A: Conceptual Schema of Sales DW
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Figure 14-1: Calendar Hierarchy

Dimension Hour

Figure 14-2: Hour Hierarchy

Day_Period

IS_Peak

205



APPENDIX A: CONCEPTUAL SCHEMA OF SALES DW
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Figure 14-3: Product Hierarchy

Dimension War ehouse

206

Country_Code
Country_Name
Country_Population

!

GeoDepartment_Code
GeoDepartment _Name
GeoDepartment _Population

A

County_Code
County_Name
County_Population
A

City_Code
City_Name
City_Telephone_Code
City_Population

!

Cost_Center_Group

Area_Code
Area_Name

Branch_Code
Branch_Description

Cost_Center_Code
Cost_Center_Description

Area_Postcode
Area_Population

Code
Description
Abbreviation
Address
Street_Number
Postcode
Phone_Number
Fax_Number
Responsible
Employess_Num
Sales_Area
Storage_Area

Warehouse_Status_Code
Warehouse_Status
Warehouse_Type

Price_Group_code
Price_Group

Commercial_Group_Code
Commercial_Group

Warehouse_Group_Code
Warehouse_Group_Short
Warehouse_Group_Long

Is_Third_Party_Warehouse ‘

—» Is_Store

Is_Central_Warehouse
Warehouse_Owner

Figure 14-4: Warehouse Hierarhcy



Dimension Customer
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Figure 14-5: Customer Hierarchy

Dimension Sales Transaction
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Figure 14-6: Sales Transaction Hierarchy
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Figure 14-7: Offering Dimension
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Figure 14-8: Salesman Hierarchy
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Dimension Currency
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Figure 14-10: Currency Dimension

Dimension Sales Payment

Cash_Credit Needs_Approval

Code
Description
Abbreviation

Pay Way_Codel
Pay Way Code2
Pay Way Code3

Concat_Description

Figure 14-11: Sales Payment Hierarchy
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Figure 14-12: Loan Status Hierarchy
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Figure 14-13: Three low-Cardinality Dimensions
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Appendix B: Data Distribution of Sales DW
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Appendix C: Operator Trees

(NO:rel { "fact" }
(NL:tinmes ({ keyaccess }
(N2:times ({ keyaccess }

(N3:ivnk { betw }

(Nd:sort  { +1}

(N5: pr oj
(N6:times { di m eaf }
(N7:times { di mhi gh }

(N8:restr
(N9:rel { "custoner_country" })
(N10:eq { }

(N11l:attr { N8[3] } )
(N12:const { 'GERMANY' char(3) } )))
(N13:restr
(N14:rel { "custoner_dept" 1})
(N15:eq { }
(N16:attr { N13[3] } )
(N17:const { 'SOQUTH char(4) } ))))
(N18: conpsurr { 8 5}

(N19:restr
(N20:rel { "customer” })
(N21: and
(N22:eq { }
(N23:attr { N19[1] } )
(N24:attr { Ne[1] } ))
(N25:eq { }
(N26:attr { N19[2] } )
(N27:attr  { N6[4] } ))))))
(N28: bui I d

(N29:attr { N5[7] } )
(N30:attr { N5[8] } )))))
(N31:ivnk { betw }
(N32:sort { +1}

(N33: proj
(N34:tinmes { di m eaf }
(N35:restr
(N36:rel { "product_cat" })
(N37:eq { }

(N38:attr { N35[2] } )
(N39:const { 'TV' char(2) } )))
(N4O: conpsurr  { 5 3}

(Ndl:restr
(N42:rel  { "product" })
(M3:eq { }
(Nd4:attr { N41[1] } )
(N45:attr  { N34[1] } )))))
(N46: bui l d
(N47:attr { N33[3] } )
(M8 attr { N33[4] } ))))))

(N49:ivnk { betw }
(NsO:sort  { +1}
(N51: conpsurr { 9 2}

(N52:restr
(N53:rel { "date" })
(N54: and
(N55: and
(N56:eq { }

(N57:attr { N52[6] } )
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(N58: const { '10/2002" char(7) } ))
(N59:eq { }
(N6O:attr { N52[5] } )
(N61:const { '4g2002' <char(6) } )))
(N62:eq { }
(Ne3:attr { N52[1] } )
(N64: const { '2002" <char(4) } )))))))))

Figure 14-24: Operator Tree of the combined Dimension Operator Trees

(NO:sel  { 9 "country_str" "dept_str" "cat_str" "grp_str" "year" "quarter
" "month " "colum_7" "colum_8" }
(N1: proj
(N2: pr oj
(N3:times { groupval uej oin }
(N4:group { ghash [ 20 23 30 32 3 ] sun{5] sun{6] repres[9 5]}
(N5: pr oj
(N6: pr oj
(N7:times { groupexactjoin }
(N8:times { groupexactjoin }
(N9:tinmes { groupexactjoin }
(N1O:tines { groupexactjoin }
(N11l:tinmes { groupexactjoin }
(N12:tinmes { groupexactjoin }
(N13:group { ghash [ 1 2 3]
count[*] sun{4] suni{5] repres[6 1] repres[7 2] repres[8 -3] }
(N14: proj
(N15:rel { "fact" }

< Qperator Tree for rel (“fact”) as in Hrgure 14-27245

(N72: build

(N73:subrg { false}
(N74:attr { N14[8] } )
(N75:const { 1 integer})
(N76: const {8 integer}))

(N77:subrg { false}
(N78:attr { N14[7] } )
(N79:const { 1 integer})
(N8O: const {11 integer}))

(N81:subrg { false}
(N82:attr { N14[9] } )
(N83:const {1 integer})
(N84:const {7 integer}))

(N85:attr { N14[4] } )

(N86:attr { N14[5] } )

(N87:attr { N14[1] } )

(N88:attr { N14[2] } )

(N89:attr { N14[3] } ))))
(N9O: restr

(N9l:rel { "customer" })
(N92:eq { nljoin}
(No3:attr { N12[7] } )
(N94:attr { NOO[6] } ))))
(N95: restr
(N96:rel { "product" 1})
(N97:eq { nljoin}
(No8:attr { N11[8] } )
(N99:attr { NO95[3] } ))))
(N10O: restr
(N101:rel { "custoner_country" })
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(N102: and
(N103:eq { }
(N104:attr { N1O[10] }
(N105:attr { N1OO[1] }
(N106:eq { }
(N107:attr { N10OO[3] } )
(N108: const {' GERVANY' char(3)})))))
(N109: restr
(N110:rel { "custoner_dept" })
(N111: and
(N112:eq { }
(N113:attr { NO[11] } )
(N114:attr { N109[1] } ))
(N115:eq { }
(N116:attr { N109[3] } )
(N117:const { 'SOUTH char(4)})))))
(N118:restr
(N119:rel { "product_cat" })
(N120: and
(N121:eq { }
(N122:attr { N8[18] } )
(N123:attr { N118[1] } ))
(N124:eq { }
(N125:attr { N118[2] } )
(N126:const { 'TV' char(2) } )))))

)

(N127:restr
(N128:rel { "product_grp" 1})
(N129:eq { }
(N130:attr { N7[19] } )
(N13l:attr { N127[1] } ))))
(N132: build
(N133:attr { N6[1] } )
(N134:attr { N6[2] } )

(N164:attr { N6[32] } )))
(N165: bui I d
(N166:attr { N5[1] } )
(N167:attr { N5[2] } )

(N197:attr { N5[32] } ))))
(N198:restr
(N199:rel  { "time" })
(N200:eq { nljoin}
(N201:attr { N3[8] } )
(N202:attr { N198[4] } ))))
(N203: bui I d
(N204:attr { N2[1] } )
(N205: attr  { N2[2] } )

(N212:attr { N2[7] } )))
(N213: bui I d
(N214:attr { N1[1] } )
(N215:attr { N1[2] }
(N222:attr { N1[8] } ))))

Figure 14-25: Operator Tree with Grouping and Residual Join Optimization
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Appendix D: Business Query Templatesfor M easurements
Template Q01

sel ect
hrs. hour _24 as hour
,cal . month_year as nonth_year
,zap. description as warehouse_description
,zap. war ehouse_group_short as warehouse_group_short _desc
,zap. area_nanme as war ehouse_ar ea_nane
,grp.description as grp_description
,sum(trxgrp.multiply_factor * factl.val _interest) as sumfact_val _interest
,sum(trxgrp.multiply_factor * fact.val _gross) as sum fact_val _gross

from
hour hrs
, cal endar cal
, war ehouse zap
, fact fact
,sl _trans_groups trxgrp
, sl _groups_ref grp
,transacti on trx
, fact factl
where cal . dwh_key = fact.cal _trans_dwh_key

and hrs. dwh_key

and zap. dwh_key

and trx. dwh_key

and trxgrp.trx_code

and trxgrp. grp_code

and fact.root _trans_seq
and fact.root _I|ine_nunber
and grp. description

fact. hrs_dwh_key
fact.whs_i ssue_dwh_key
fact.trx_dwh_key

trx. code

grp. code
factl.trans_seq
fact1.1ine_nunber

' BO O2EN O PUECOAUI

and zap.is_store "1 AE
and  zap. war ehouse_owner "EUOG AT EI O
and  hrs. peak "TAE
and cal.cal endar_date >= ${ BEG N_DATE}
and cal . cal endar _date <= ${ END_DATE}
group by

hrs. hour 24

,cal . mont h_year

,zap. description

,zap. war ehouse_gr oup_short
, Zap. ar ea_nane
,grp.description

Template Q02

sel ect
prd. description as product_description
, prd. brand_short as product_brand_short
, prd. prodgroup_short as product_group_short
, prd.category_short as product_category_short
,sum(trxgrp.multiply_factor*fact.val _total) as sumfact_val tota
,sum(trxgrp.multiply factor*fact.qty _total) as sumfact_total quantity
,sunm(fact.val _cost) as sumfact_val _cost

from
pr oduct prd
, cal endar cal
, fact fact

,sl _trans_groups trxgrp

, sl _groups_ref grp

,transaction trx
where prd. dwh_key

and cal . dwh_key

and trx.dwh_key

and trxgrp.trx_code

fact. prd_dwh_key
fact.cal _trans_dwh_key
fact.trx_dwh_key

trx. code
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and
and
and
and
group
prd.
, prd.
, prd.
, prd.

trxgrp. grp_code
grp. description
cal . cal endar _date
cal . cal endar _date
by

description
brand_short

pr odgr oup_short
cat egory_short

Template Q03

sel ect

= grp.code

= " BO ORI O PUECOAUI "

>= ${BEG N_DATE}
<= ${ END_DATE}

cal . cal endar_date as cal endar_date

,sum(trxgrp.multiply_factor*fact.val _total) as sumfact_val tota

,sun(trxgrp.multiply_factor*fact.val _gross) as sumfact_val _gross
,sun(trxgrp.multiply_factor*fact.qty_total) as sumfact_qty_tota
as sum fact_val _cost

from
pr oduct prd
, cal endar ca
, fact fact
,sl _trans_groups trxgrp
, sl _groups_ref grp
,transaction trx
where prd. dwh_key = fact. prd_dwh_key
and cal . dwh_key = fact.cal _trans_dwh_key
and trx.dwh_key = fact.trx_dwh_key
and trxgrp.trx_code = trx.code
and trxgrp.grp_code = grp.code
and prd. prodgroup_code <= '42160
and prd. prodgroup_code >= '01001
and grp.description = ' BO O4ENI O PUECOAUI
and cal . cal endar _date >= ${BEG N_DATE}
and cal.cal endar_date <= ${END_DATE}
group by
cal . cal endar _date
Template Q04
sel ect
prd. description as product_description
, prd. brand_short as product_short
, prd. omada_short as product_onada_short
, prd. kat hgori a_short as product_kat hgori a_short
,cal . nmonth_year as nonth_year
,sun(trxgrp.multiply_factor*fact. val _cost)
from
pr oduct prd
, cal endar ca
, fact f act
, sl _trans_groups trxgrp
, sl _groups_ref grp
,transaction trx
where prd. dwh_key = fact. prd_dwh_key
and cal . dwh_key = fact.cal _trans_dwh_key
and trx. dwh_key = fact.trx_dwh_key
and trxgrp.trx_code = trx.code
and trxgrp. grp_code = grp.code
and grp. description = ' BO O4ENI O PUECOAUI
and cal . cal endar_date >= ${BEG N_DATE}
and cal . cal endar_date <= ${END _DATE}
group by

prd. description

, prd. brand_short

, prd. omada_short

, prd. kat hgori a_short
,cal . mont h_year
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Template Q05

sel ect
hrs. hour _24 as hour
,zap. description as warehouse_description
,trx.description as transacti on_description
,sum(trxgrp.multiply_factor*fact.val _gross) as sumfact_val _gross

from

hour hrs

, cal endar cal

,sl _trans_groups trxgrp
, sl _groups_ref arp
,transaction trx
,war ehouse zap

, fact fact

where hrs. dwh_key
and cal . dwh_key
and trx.dwh_key
and trxgrp.trx_code
and trxgrp. grp_code
and zap. dwh_key
and grp.description
and cal . cal endar _date

fact. hrs_dwh_key
fact.cal _trans_dwh_key
fact.trx_dwh_key

trx. code

grp. code

fact.whs_i ssue_dwh_key
' BO OZEN O PUECOAU

= ${BEQ N_DATE}

= ${ END_DATE}

oA N

and cal . cal endar _date

and hrs.day_period "1 AGC ARE

and zap.is_store "1 AE

and zap.war ehouse_owner = ' EUOG Al El O
group by

hrs. hour 24

,zap. description
,trx.description

Template Q06

sel ect
zap. code as war ehouse_code
, prd. code as product_code
, prd. prodgroup_short as product_group_short
, prd.category_short as product_category_short
,sum(trxgrp.multiply_factor*fact.val total) as sumfact_val tota
,sum(trxgrp.multiply_factor*fact.val vat) as sumfact_val _vat
,sum(trxgrp.multiply_factor*fact.val _cost) as sumfact_val _cost
,sum(trxgrp.multiply_factor*fact.val _interest) as sumfact_val _interest

from
pr oduct prd
, cal endar ca
, fact f act

,sl _trans_groups trxgrp
, sl _groups_ref grp
,transaction trx
,war ehouse zap
where prd. dwh_key
and cal . dwh_key
and zap. dwh_key
and trx. dwh_key

fact. prd_dwh_key

fact.cal _trans_dwh_key
fact.whs_root _i ssue_dwh_key
fact.trx_dwh_key

and trxgrp.trx_code trx. code

and trxgrp. grp_code grp. code

and grp. description ' BO O4ENT O PUECOAUI
and zap. war ehouse_owner = ' EUOG Al El O

and cal . cal endar_date >= ${BEG N_DATE}
and cal . cal endar_date <= ${END_DATE}
group by
zap. code
, prd. code
, prd. prodgroup_short
, prd. category_short
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Template Q07

sel ect
cal . cal endar _date
, Ccre. code
, fact.doc_num
,fact.qty_total

as
as
as
as
as
as
as

,zap. code

, cus. code

, prd. code

,sun(fact.val _taxable) as
from

pr oduct prd

, cal endar cal

,war ehouse zap

,cash_register cre

, cust onmer cus

, fact fact

,transaction trx

where prd. dwh_key = fact.
and cal . dwh_key = fact.
and cus. dwh_key = fact.
and zap. dwh_key = fact.
and cre.dwh_key = fact.

and trx. dwh_key = fact.

prd_
cal
cus_
whs
cre_
trx_

cal endar _date
cash_regi ster_code
fact _docunment _num
fact _quantity_total
war ehouse_code
cust oner _code
product _code

sum val _t axabl e

dwh_key
trans_dwh_key
dwh_key
i ssue_dwh_key
dwh_key
dwh_key

and trx.abbreviation in ( 'AP9' )

and cal . cal endar _date
and cal . cal endar _date
group by
cal . cal endar _date
,cre. code

,fact. doc_num
,fact.qty_total
,Zap. code

, cus. code

, prd. code

Template Q08

sel ect
sl m code
,slmlast_nane
,slmfirst_name
, sl msal esman_type
,cal . cal endar_date
,zap. code
,zap. description
,sdl . covered_code
, cus. code
,cus. full _nane
, fact. doc_num
,trx.abbreviation

as
as
as
as
as
as
as
as
as
as
as
as

,sunm(fact.val _total) as

from

sal esman sl m
cal endar ca
,war ehouse zap
speci al _idl sdl
cust onmer cus
fact fact
transaction trx

where cal . dwh_key = fact.
and cus. dwh_key = fact.
and sl m dwh_key = fact.
and zap. dwh_key = fact
and sdl . dwh_key = fact
and trx.dwh_key = fact.

and cal . cal endar _date

cal t

>= ${ BEG N_DATE}
<= ${ END_DATE}

sal esnan_code

sal esman_| ast _nane
sal esman_first_name
sal esman_t ype

cal endar _date

war ehouse_code

war ehouse_descri ption
covered_code
cust oner _code
custoner_full _nane
fact _document _nunber
transacti on_abbreavi ation
sum fact_total _val

rans_dwh_key

cus_dwh_key
sl m dwh_key

.whs_i
. sdl _dwh_key

ssue_dwh_key

trx_dwh_key
and sdl . covered_code <> '3’

>= ${ BEG N_DATE}
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and cal.cal endar_date <= ${END_DATE}
group by
sl m code

,slmlast_nane
,slmfirst_name

, sl msal esman_type
,cal . cal endar_date
,zap. code

,zap. description
,sdl . covered_code
, Cus. code

,cus. full _name

, fact. doc_num
,trx. abbreviation

Template Q09
sel ect
zap. code as war ehouse_code
,sum(trxgrp.multiply_factor*fact.val _gross) as sum fact_val _gross
,sum(trxgrp.multiply_factor*fact.val vat) as sum fact_val _vat
,sum(trxgrp.multiply_factor*fact.val _taxable) as sumfact_val _taxable
from
cal endar ca
, sl _trans_groups trxgrp
, sl _groups_ref grp
,transaction trx
, war ehouse zap
, fact fact

where cal . dwh_key
and trx.dwh_key
and trxgrp.trx_code
and trxgrp.grp_code
and zap. dwh_key
and grp.description
and cal . cal endar _date

fact.cal _trans_dwh_key
fact.trx_dwh_key

trx. code

grp. code

fact.whs_i ssue_dwh_key
' BO O4ENT O PUECOAU

= ${BEG N_DATE}

= ${ END_DATE}

1 A VA R | I | R | I T A |

and cal . cal endar _date ${ E
and zap.is_store "1AE ]
and zap. war ehouse_owner "EUCA ATEl O
group by
zap. code
Template Q10
sel ect

prd. prodgroup_code as product _group_code
,cal .cal endar_date as cal endar_date

,zap. description as war ehouse_description

,fact.doc_num as fact_docunment _num

, prd. code as product _code

,trx. abbreviation as transacti on_abbrevi ation
from

pr oduct prd

, cal endar cal

, war ehouse zap

, fact fact

,transaction trx
where prd. dwh_key = fact. prd_dwh_key
and cal . dwh_key = fact.cal _trans_dwh_key
and zap. dwh_key fact.whs_i ssue_dwh_key
and trx. dwh_key fact.trx_dwh_key
and trx.abbreviation in (‘ANA",' DA3',' DA4',' DAD ,' BE1',' BE4',' PO, ' BOW')
and cal.cal endar_date >= ${ BEGA N_DATE}
and cal . cal endar _date <= ${END_DATE}
and prd. prodgroup_code in ('61001','61010')
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Template Q11

sel ect
sl p. descri ption as paynent _description
,sum(fact.val _total) as sumfact_val tota
from
fact fact
, cal endar cal
, sal es_paynent slp
where fact. sl p_dwh_key = sl p. dwh_key
and fact.cal _trans_dwh_key = cal.dwh_key
and sl p. cash_credit = "'CREDT
and cal . cal endar _date >= ${ BEG N_DATE}
and cal . cal endar_date <= ${ END_DATE}
group by
sl p. descri ption
Template Q12
sel ect
sl p. descri ption as paynent _description
,cal . week_year as week_year
,sum(fact.val _total) as sumfact_val tota
from
sal es_paynent slp
, cal endar cal
, fact fact

where cal . dwh_key
and sl p. dwh_key
and sl p. concat _description

fact.cal _trans_dwh_key
fact. sl p_dwh_key

and cal . cal endar _date >= ${BEG N_DATE}
and cal . cal endar_date <= ${END_DATE}
group by

sl p. descri ption
,cal . week_year

Template Q13

sel ect
prd. description as product _description
, prd. brand_short as product _brand_short

, prd. prodgroup_short as product_group_short
,prd.category_short as product_category_short

, sl p.description as paynent _description
,cal . week_year as week_year
,zap. description as war ehouse_description

,sumfact.qty_total) as sumfact_qty_tota
,sum(fact.val _gross) as sumfact_val _gross

from
pr oduct prd
, sal es_paynent slp
, cal endar ca
, fact f act
,war ehouse zap

where prd. dwh_key
and cal . dwh_key
and sl p. dwh_key
and zap. dwh_key
and sl p.concat_description

fact. prd_dwh_key
fact.cal _trans_dwh_key
fact. sl p_dwh_key
fact.whs_i ssue_dwh_key
' PEGOUGG EUOG AT El O

and cal . cal endar_date >= ${ BEG N_DATE}
and cal . cal endar _date <= ${ END_DATE}
group by

prd. description

, prd. brand_short

, prd. prodgroup_short
, prd. category_short
, sl p.description
,cal . week_year

,zap. description
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Template Q103

sel ect
cal . cal endar _date as cal endar _date
,sum(trxgrp.multiply _factor*fact.val total) as sumfact_val tota
from
pr oduct prd
, cal endar cal
, fact fact

,sl _trans_groups trxgrp
, sl _groups_ref grp
,transaction trx
where prd. dwh_key = fact. prd_dwh_key
and cal . dwh_key fact.cal _trans_dwh_key
and trx.dwh_key fact.trx_dwh_key
and trxgrp.trx_code trx. code
and trxgrp.grp_code grp. code
and prd. prodgroup_code >= '90000'
and grp.description = ' BO O4ENI O PUECOAUI
and cal.cal endar_date >= ${BEG N_DATE}
and cal.cal endar_date <= ${END DATE}
group by
cal . cal endar _date

Template Q108

sel ect
sl m code as sal esman_code
,slmlast_name as sal esman_| ast _nane
,slmfirst_nane as sal esman_first_nane

, sl msal esman_t ype as sal esman_t ype
,cal . cal endar_date as cal endar _date

,zap. code as war ehouse_code

,zap. description as war ehouse_description

,sdl . covered_code as covered_code

, cus. code as customner_code

,cus. full _name as customer_full _nane

, fact. doc_num as fact _document _nunber

,trx. abbreviation as transacti on_abbreavi ati on

,sum(fact.val _total) as sumfact_total val
from

sal esnman sl m

cal endar ca

war ehouse zap

speci al _idl sdl

cust oner cus

f act f act

transaction trx

where cal . dwh_key fact.cal _trans_dwh_key
and cus. dwh_key fact.cus_dwh_key

and sl m dwh_key fact.sl mdwh_key

and zap. dwh_key fact.whs_i ssue_dwh_key
and sdl . dwh_key fact. sdl _dwh_key

and trx. dwh_key fact.trx_dwh_key

and sdl . covered_code <> '3’

and cal.cal endar_date >= ${ BEGQ N_DATE}
and cal . cal endar _date <= ${END_DATE}
and zap. county_code > '3'
group by

sl m code

,slmlast_nane
,slmfirst_name

, sl msal esman_t ype
,cal . cal endar _date
,zap. code

,zap. description

, sdl . covered_code
, cus. code

,cus. full _nane
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, fact. doc_num
,trx.abbreviation

Template Q110

sel ect
prd. omada_code as product _onada_code
,cal .cal endar_date as cal endar_date
,zap. description as war ehouse_description

,fact.doc_num as fact_docunent _num

, prd. code as product _code

,trx.abbreviation as transaction_abbreviation
from

pr oduct prd

, cal endar cal

, war ehouse zap

, fact fact

,transaction trx
where prd. dwh_key = fact. prd_dwh_key
and cal . dwh_key = fact.cal _trans_dwh_key
and zap. dwh_key = fact.whs_i ssue_dwh_key
and trx. dwh_key = fact.trx_dwh_key
and trx.abbreviation in (‘ANA",' DA3',' DA4',' DAD ,' BE1',' BE4',' PO, ' POW')

and cal.cal endar_date >= ${ BEGA N_DATE}
and cal . cal endar _date <= ${END_DATE}
and prd. prodgroup_code >= ' 90000
Template Q203
sel ect
cal . cal endar _date as cal endar_date

,sum(trxgrp.multiply_factor*fact.val _total) as sumfact_val tota
from

pr oduct prd
, cal endar ca
, fact f act

,sl _trans_groups trxgrp

, sl _groups_ref grp

,transaction trx
where prd. dwh_key
and cal.dwh_key
and trx.dwh_key

fact. prd_dwh_key
fact.cal _trans_dwh_key
fact.trx_dwh_key

A I I I V|

and trxgrp.trx_code trx. code

and trxgrp.grp_code grp. code

and prd. onada_code ' 90000

and prd. omada_code >= ' 60000

and grp.description = ' BO O4ENi O PUECOAUI

and cal .cal endar_date >= ${BEG N _DATE}
and cal . cal endar _dat e <= ${END_DATE}

group by
cal . cal endar _date

Template Q208

sel ect
sl m code as sal esman_code
,slmlast_nane as sal esman_| ast _nane
,slmfirst_name as sal esman_first_nane

, sl msal esman_type as sal esman_t ype
,cal . cal endar_date as cal endar _date

,zap. code as war ehouse_code

,zap. description as war ehouse_description
,sdl . covered_code as covered_code

, cus. code as custoner_code

,cus. full _name as customer_full _nane

, fact. doc_num as fact _docunent _nunber

,trx. abbreviation as transacti on_abbreavi ation

,sum(fact.val _total) as sumfact_total val
from
sal esnman slm
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, cal endar ca
,war ehouse zap
,special _idl sd

, cust oner cus
, fact f act

,transaction trx

where cal . dwh_key = fact.cal _trans_dwh_key

and cus. dwh_key = fact.
and sl m dwh_key = fact.
and zap. dwh_key = fact.
and sdl . dwh_key = fact.
and trx.dwh_key = fact.
and sdl . covered_code <>
and cal . cal endar_date
and cal . cal endar _date
and zap. county_code <
group by

sl m code
,slmlast_nane
,slmfirst_name

, sl msal esman_t ype
,cal . cal endar _date
,zap. code

,zap. description

, sdl . covered_code
, cus. code

,cus. full _nane

, fact.doc_num
,trx.abbreviation

Template Q210

sel ect
prd. prodgroup_code as

,cal .cal endar_date as
,zap. description as
,fact.doc_num as

, prd. code as
,trx.abbreviation as
from
pr oduct prd
, cal endar cal
, war ehouse zap
, fact fact

,transaction trx
where prd. dwh_key = fact. pr

and cal . dwh_key = fact.
and zap. dwh_key = fact.
and trx.dwh_key = fact.
and trx.
and cal . cal endar_date
and cal . cal endar _date
and prd. prodgroup_code
and prd. prodgroup_code
Template Q303
sel ect

cal . cal endar _date

cus_dwh_key
sl m dwh_key
whs_i ssue_dwh_key
sdl _dwh_key
trx_dwh_key
Y
>= ${ BEG N_DATE}
<= ${ END_DATE}

Y

product _group_code

cal endar _date

war ehouse_descri ption
fact _document _num

pr oduct _code
transaction_abbreviation

d_dwh_key

cal _trans_dwh_key
whs_i ssue_dwh_key
trx_dwh_key

abbreviation in (' ANA ' DA3',' DA4',' DAD ,' BEL',' BE4',' BOL',' POA')

>= ${BEG N_DATE}
<= ${ END_DATE}

< 90000’

>= ' 60000'

as cal endar _date

,sum(trxgrp.multiply_factor*fact.val total) as sumfact_val tota

from
pr oduct prd
, cal endar cal
, fact fact
,sl _trans_groups trxgrp
, sl _groups_ref grp
,transacti on trx

where prd. dwh_key
and cal . dwh_key
and trx.dwh_key
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and trxgrp.trx_code = trx.code
and trxgrp.grp_code = grp.code
and prd. prodgroup_code < ' 60000

and grp.description ' BO OAENI O PUECOAU
and cal.cal endar_date >= ${BEG N _DATE}
and cal.cal endar_date <= ${END _DATE}
group by
cal . cal endar _date

Template Q308

sel ect
sl m code as sal esman_code
,slmlast_nane as sal esman_| ast _nane
,slmfirst_name as sal esman_first_nane

, sl msal esman_type as sal esman_t ype
,cal . cal endar_date as cal endar _date

,zap. code as war ehouse_code

,zap. description as war ehouse_description

,sdl . covered_code as covered_code

, cus. code as custoner_code

,cus. full _name as customer_full _nane

, fact. doc_num as fact _docunent _nunber

,trx. abbreviation as transacti on_abbreavi ation

,sum(fact.val _total) as sumfact_total val
from

sal esnman sl m

, cal endar ca

,war ehouse zap
,special _idl sd
, cust oner cus
, fact fact
,transaction trx
where cal . dwh_key = fact. cal _trans_dwh_key
and cus. dwh_key fact.cus_dwh_key
and sl m dwh_key fact.sl mdwh_key
and zap. dwh_key fact.whs_i ssue_dwh_key
and sdl . dwh_key fact.sdl _dwh_key
and trx. dwh_key fact.trx_dwh_key
and sdl . covered_code <> '3’

and cal . cal endar _date >= ${BEG N_DATE}
and cal.cal endar_date <= ${END_DATE}
and zap. county_code = '3'
group by
sl m code

,slmlast_nane
,slmfirst_name

, sl msal esman_t ype
,cal . cal endar _date
,zap. code

,zap. description

, sdl . covered_code
, cus. code

,cus. full _nane

, fact.doc_num
,trx. abbreviation

Template Q310

sel ect
prd. prodgroupo_code as product_group_code
,cal . cal endar _date as cal endar_date

,zap. description as war ehouse_description

,fact.doc_num as fact_docunent _num

, prd. code as product _code

,trx. abbreviation as transacti on_abbreviation
from

pr oduct prd

, cal endar cal

, war ehouse zap
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, fact fact
,transaction trx
where prd. dwh_key = fact. prd_dwh_key
and cal . dwh_key fact.cal _trans_dwh_key
and zap. dwh_key fact.whs_i ssue_dwh_key
and trx. dwh_key fact.trx_dwh_key
and trx.abbreviation in ("ANA,'DA3',' DA4',' DAD ,' BE1',' BE4' ' PO, BOW')

and cal . cal endar _date >= ${BEG N_DATE}
and cal.cal endar_date <= ${END _DATE}
and prd. prodgr oup_code < ' 60000
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APPENDIX F: QUERY TEMPLATES OF APB BENCHMARK

Appendix F: Query Templates of APB Benchmark
Template Q01

sel ect
prodl evel . $PROD_CHI LD _LEVEL_FNAME,
cust | evel . $CUST_CH LD _LEVEL_FNANME,
chanl evel . $CHAN_G VEN_LEVEL_FNANME,
timel evel . $TI ME_CHI LD_LEVEL_FNAME,
sum (a.unitssold) AS Units,
sum (a.dol | arsal es) AS Doll ars,
case when (sun(a.unitssold) <> 0) then sum (a.dollarsales) /
sum (a.unitssold) else 0 end AS AvgSel Ii ngPrice

from
fact _actvars a, dimproduct prodlevel, dimtinme tinelevel,
di m cust oner custl evel, di mchannel chanl evel
wher e
a. channel _| evel = ' $CHANVEMBER
and a.product _| evel = prodlevel.code_| evel
and a.tine_level = tinelevel.nonth_|evel
and a.custoner_|l evel = custlevel.store_|evel
and a.channel | evel = chanl evel . base_| evel
and prodl evel . $PROD_CH LD _LEVEL_FNAME in (
sel ect menber from di mproduct_tree where parent = '$PRODVEMBER
)
and tinmel evel . $TI ME_CH LD _LEVEL_FNAME in (
sel ect menber fromdimtine_tree where parent = '$TI MEMEMBER
)
and custl evel . $CUST_CH LD LEVEL_FNAME in (
sel ect menber from di mcustonmer_tree where parent = ' $CUSTMEMBER
)
group by
prodl evel . $PROD_CHI LD _LEVEL_FNAME,
chanl evel . $CHAN_G VEN_LEVEL_FNAME,
custl evel . $CUST_CHI LD LEVEL_FNAME,
tinel evel . $TI ME_CHI LD_LEVEL_FNAME
order by
prodl evel . $PROD_CHI LD_LEVEL_FNAME,
custl evel . $CUST_CHI LD LEVEL_FNAME,
tinel evel . $TI ME_CH LD _LEVEL_FNAME
Template Q02
QO02-P1.
sel ect
prodl evel . $PROD_CHI LD_LEVEL_FNAME,
cust | evel . $CUST_G VEN_LEVEL_FNANMNE,
' Channel top',
tinmel evel . $TI ME_G VEN_LEVEL_FNAME,
sum (a.unitssold) AS Units,
sum (a.dol | arsal es) as Dol | ar Sal es,
sum (a. dol |l arcost) as Dol | ar Cost,
sum (a. dol | arsal es) - sum (a.dollarcost) as Margin,
case when (sun{a.dollarsales) <> 0) then (sum (a.dollarsales) -
sum (a.dollarcost)) / sum (a.dollarsales) else 0 end as Margi nPct
from
fact _actvars a, dimproduct prodlevel, dimtinme tinelevel,
di m cust oner custl evel
wher e

a. product _| evel = prodl evel.code_| evel

254

and a.tine_level = tinelevel.nonth_|evel

and a.custoner_|l evel = custlevel.store_|level

and tinel evel . $TI ME_G VEN_LEVEL_FNAME = ' $TI MEMEMBER
and cust| evel . 3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER



and prodl evel . $PROD_CH LD LEVEL_FNAME in (
nmenmber from di m product _tree where parent = ' $PRODVEMBER

sel ect

)
group by
prodl eve
custl eve
tinel eve
order by
prodl eve
custl eve
tinel eve

QO2-P2:

sel ect
prodl eve
tinel eve

. $PROD_CHI LD_LEVEL_FNAME,
. $CUST_G VEN_LEVEL_FNAME,
.$TI ME_G VEN_LEVEL_FNAME

. $PROD_CHI LD_LEVEL_FNAME,
. $CUST_G VEN_LEVEL_FNAME,
. $TI ME_G VEN_LEVEL_FNAME

. $PROD_CHI LD_LEVEL_FNAME,
.$TI ME_G VEN_LEVEL_FNAME,

sum (a.val) as SPC

from

fact _stdprodcost

wher e

a. product _| eve

a, dimproduct prodlevel, dimtime tinmeleve

= prodl evel . code_| evel

and a.tine_level = tinelevel.nonth_|eve
and a.scenario = 'Actual’
and tinmel evel . $TI ME_G VEN_LEVEL_FNAME = ' $TI MEMEMBER

and prodl evel . $PROD_CH LD LEVEL_FNAME in (

nenber from di m product _tree where parent = ' $PRODMVMEMBER

sel ect

)
group by
prodl eve
timel eve
order by

. $PROD_CHI LD_LEVEL_FNAME,
. $TI ME_G VEN_LEVEL_FNAME

$PROD_CHI LD _LEVEL_FNAME,
$TI ME_G VEN_LEVEL_FNAMVE

QO02-P3:

sel ect
custl eve
tinel eve

. $CUST_G VEN_LEVEL_FNAME,
.$TI ME_G VEN_LEVEL_FNAME,

sum (a.val) as SSC

from

fact _stdshipcost a, dimtine tinelevel,

wher e

di m cust oner custl evel

a.time_level = tinelevel.nonth_|leve
and a.custoner_|l evel = custlevel.store_|level
and a.scenario = 'Actual

and tinel evel . $TI ME_G VEN_LEVEL_FNAVMVE
and cust| evel . $CUST_G VEN_LEVEL_FNAVE

group by
custl eve
tinmel eve
order by

. $CUST_G VEN_LEVEL_FNAME,
. $TI ME_G VEN_LEVEL_FNAME

$CUST_G VEN_LEVEL_FNAME,
$TI ME_G VEN_LEVEL_FNAMVE

Template Q03

QO3-P1:

sel ect

prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_CHI LD _LEVEL_FNANME

' Channel

Top',

timel evel . mont h_| evel ,
sum (a.unitssold) as Units,

sum (a. dol | arsal es) as Dol | ar Sal es

' $TI MEMEMBER
' $CUSTMEMBER
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, sum (a.dollarcost) as Dol | ar Cost

from
fact _actvars a, dimproduct prodlevel, dimtinme tinelevel,
di m cust oner custl evel
wher e
a. product _| evel = prodl evel.code_l evel
and a.tinme_level = tinelevel.nonth_|evel
and a.custoner_l evel = custlevel.store_|level
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custlevel . $CUST_CH LD LEVEL_FNAME in (
sel ect nenber from di m custoner_tree where parent = ' $CUSTMEMBER
)
group by

prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_CHI LD_LEVEL_FNAME,
tinmelevel.nonth | evel

order by
$PROD_G VEN_LEVEL_FNAME,
$CUST_CHI LD_LEVEL_FNAME,
mont h_| evel

QO03-P2:

sel ect
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_CH LD _LEVEL_FNANE,

' Channel Top',

sum (a.inv199501) as inv199501,
sum (a.inv199502) as inv199502,
sum (a.inv199503) as inv199503,
sum (a.inv199504) as inv199504,
sum (a.inv199505) as inv199505,
sum (a.inv199506) as inv199506,
sum (a.inv199507) as inv199507,
sum (a.inv199508) as inv199508,
sum (a.inv199509) as inv199509,
sum (a.inv199510) as inv199510,
sum (a.inv199511) as inv199511,
sum (a.inv199512) as inv199512,
sum (a.inv199601) as inv199601,
sum (a.inv199602) as inv199602,
sum (a.inv199603) as inv199603,
sum (a.inv199604) as inv199604,
sum (a.inv199605) as inv199605

from
fact _histinventory a, di mproduct prodlevel, dimcustoner custlevel
wher e
a. product _| evel = prodl evel.code_| evel
and a.custoner | evel = custlevel.store_|evel
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $CUST_CH LD LEVEL_FNAME in (
sel ect nenber from di m custoner_tree where parent = ' $CUSTMEMBER
)
group by
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_CHI LD _LEVEL_FNAME
order by
$PROD_G VEN_LEVEL_FNAME,
$CUST_CHI LD _LEVEL_FNAME

QO3-P3:

sel ect
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_CH LD _LEVEL_FNANE,
' Channel Top',
sum (a.inv199606) as inv199605
from
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fact _currinventory a, di mproduct prodlevel, dimcustoner custlevel
wher e
a. product _| evel = prodl evel . code_| evel
and a.custoner_| evel = custlevel.store_|level
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $CUST_CH LD LEVEL_FNAME in (
sel ect nmenber from di mcustoner_tree where parent = ' $CUSTMEMBER
)
group by
prodl evel . $PROD_G VEN_LEVEL_FNAME,
cust | evel . SCUST_CHI LD _LEVEL_FNAVE
order by
$PROD_G VEN_LEVEL_FNAME,
$CUST_CHI LD_LEVEL_FNAME

Template Q05

sel ect
' Product Top'
cust| evel . $CUST_G VEN_LEVEL_FNANME
timel evel . month_I evel ,
sum (a. uni tssol d) aS UnitsSol d,
sum (a. dol | arsal es) as Dol | ar Sal es
case when (sun(a.unitssold) <> 0) then sum (a.dollarsales) /
sum (a.unitssold) else 0 end as AvgSel li ngPrice
,sum (a.dol |l arcost) as Dol | ar Cost ,
sum (a.doll arsales) - sum (a.dollarcost) as Margin
from
fact _planvars a, dimtime tinelevel, dimcustonmer custleve
wher e

a.time_level = tinmelevel.nonth_|evel
and a.custoner | evel = custlevel.store_|evel
and cust| evel . $3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

group by
custl evel . $CUST_G VEN_LEVEL_FNAME,
tinmelevel.nonth | evel

order by
custl evel . $CUST_G VEN_LEVEL_FNAME,
timel evel . month_| evel

Template Q06

sel ect
prodl evel . $PROD_GQ VEN_LEVEL_FNAME,
' Cust oner Top',
timel evel . quarter_| evel,

sum (a. uni tssol d) as UnitsSold,

sum (a. dol | arsal es) as Dol | ar Sal es,
case when (sun{a.unitssold) <> 0) then sum (a.dollarsales) /
sum (a.unitssold) else 0 end as AvgSel l'i ngPrice
, sum (a.dollarcost) as Dol | ar Cost,

sum (a.doll arsales) - sum (a.dollarcost) as MarginDollars
from

fact _planvars a, dimtinme tinelevel, dimproduct prodlevel
wher e

a.time_level = timelevel.nonth_|evel
and a. product _| evel = prodl evel . code_| evel
and tinelevel.quarter_level in (
sel ect menber fromdimtinme_tree where parent = '1996'

)

and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
group by

prodl evel . $PROD_G VEN_LEVEL_FNAME,

timel evel . quarter_| evel
order by

$PROD_G VEN_LEVEL_FNAME,

quarter_| evel
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Template Q07

sel ect
prodl evel . $PROD_CHI LD _LEVEL_FNAME,
custl evel . $CUST_CHI LD _LEVEL_FNAME,
timel evel . $TI ME_G VEN_LEVEL_FNAME,
sum (a. uni tssol d) as Sunbnits,
sum (a. dol | arsal es) as SumbDol | ars,
case when (sun{a.unitssold) <> 0) then sum (a.dollarsales) /
sum (a.unitssold) else 0 end as Price,
sum (a. dol | arcost) as SuntCost,
sum (a.dol |l arsal es) - sum (a.dollarcost) as Margin
from
fcstnont hst oreproduct a, dimtinme tinelevel, dimproduct prodlevel,
di m cust oner custl evel
wher e
a.time_level = tinelevel.nonth_|evel
and a. product _| evel = prodl evel.code_| evel
and a.custoner | evel = custlevel.store_|evel
and tinmel evel . $TI ME_G VEN_LEVEL_FNAME = ' $TI MEMEMBER
and prodl evel . $PROD_CHI LD LEVEL_FNAME in (
sel ect nenber from di m product_tree where parent = ' $PRODMEMBER

)
and custl evel . $CUST_CH LD LEVEL_FNAME in (
sel ect nmenber from di mcustoner_tree where parent = ' $CUSTMEMBER

)
group by
prodl evel . $PROD_CHI LD_LEVEL_FNAME,
custl evel . $CUST_CHI LD LEVEL_FNAME,
tinel evel . $TI ME_Q VEN_LEVEL_FNAME
order by
$PROD_CHI LD_LEVEL_FNAME,
$CUST_CHI LD_LEVEL_FNAME,
$TI ME_G VEN_LEVEL_FNAME

Template Q08

QO08-Prep:

del ete FROM g8a_t mp
insert into g8a_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es

)
SELECT
prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,
custl evel . $CUST_G VEN_LEVEL_FNAME AS cust oner,
' 199606 ,
sum (a.dol | arsal es) AS dol | arsal es
FROM
fact _actvars a, di mproduct prodlevel, dimcustoner custlevel
VWHERE

a.tinme_level = '199606'
and a. product | evel = prodl evel.code_| evel
and a.custoner | evel = custlevel.store_|evel
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

insert into g8a_tnp (
pr oduct,
cust oner,
ti meper,
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)
SELECT

FROM
fact _actvars a, di mproduct prodlevel, dimcustoner custlevel
VWHERE
a.time_level in (
'199601', '199602', '199603', '199604', '199605', ' 199606
)
and a. product _| evel = prodl evel.code_| evel
and a.custoner_|l evel = custlevel.store_|level
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and cust| evel . 3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER
GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME
del ete FROM q8b_t mp
insert into q8b_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es
)
SELECT
prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,
custl evel . $CUST_G VEN_LEVEL _FNAME AS cust oner,
' 199606' ,
sum (a.dol | arsal es) AS dol | arsal es
FROM
fact _planvars a, di mproduct prodlevel, di mcustoner custlevel
VWHERE
a.tinme_level = '199606'
and a. product _| evel = prodl evel.code_| evel
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and a.custoner | evel = custlevel.store_|evel
and cust| evel . 3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER
GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME
insert into q8b_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es
)
SELECT
prodl evel . $PROD_Gd VEN_LEVEL_FNAME AS product,
custl evel . $CUST_G VEN_LEVEL _FNAME AS cust oner,
' 199606YTD ,
sum (a.dol | arsal es) AS doll arsal es
FROM
fact _planvars a, dimproduct prodlevel, di mcustomnmer custlevel
VWHERE
a.tine_level in (
'199601', '199602', '199603', '199604', '199605', '199606'
and a. product _| evel = prodl evel.code_| evel
and a.custoner_|l evel = custlevel.store_|evel
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER
GROUP BY

dol | arsal es

prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,
custl evel . 3CUST_G VEN_LEVEL_FNAME AS cust oner,
'199606YTD

sum (a.dol | arsal es) AS dol | arsal es

prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME
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del ete FROM q8c_t nmp

insert into gq8c_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es

)
SELECT
prodl evel . $PROD_d VEN_LEVEL_FNAME AS product ,
custl evel . $CUST_G VEN_LEVEL_FNAME AS cust oner,
' 199506' ,
sum (a. dol | arsal es) AS doll arsal es
FROM
fact _actvars a, dimproduct prodlevel, dimcustoner custlevel
WHERE

a.tinme_level = '199506'
and a. product _| evel = prodl evel.code_| evel
and a.custoner_|l evel = custlevel.store_|level
and prodl evel . SPROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and cust| evel . $CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

insert into gq8c_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es

)
SELECT

prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,

custl evel . $CUST_G VEN_LEVEL_FNAME AS cust oner,

' 199506YTD ,

sum (a.dol | arsal es) AS doll arsal es
FROM

fact _actvars a, dimproduct prodlevel, dimcustoner custlevel
WHERE

a.time_level in (
'199501', '199502', '199503', '199504', '199505', '199506'

and a. product _| evel = prodl evel.code_| evel

and a.custoner_|l evel = custlevel.store_|level

and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and cust| evel . 3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

QO8-P1:

SELECT

a. product,

a. cust omer,

"actual ',

a.tinmeper,

a. dol | arsal es
FROM

g8a_tnp a
VWHERE

a.tinmeper in ('199606', '199606YTD )
UNI ON
SELECT

a. product,

a. cust oner,

260



" budget ',
a.tinmeper,
a. dol | arsal es

FROM
g8b_tnp a
VWHERE
a.tinmeper in ('199606', '199606YTD )
QO08-P2:
SELECT
a. product,
a. cust oner,
a.tinmeper,
(a.dollarsales - b.dollarsales) AS valDiff,
case when (b.dollarsales <> 0) then (a.dollarsales / b.dollarsales)
- 1else 0 end AS PctDiff
FROM
g8a_tnp a, g8b_tnp b
VWHERE
a.tinmeper = b.tineper
and a.tinmeper in ('199606', '199606YTD )
and a. product = b. product
and a.customer = b.custoner
QO08-P3:
SELECT
a. product,
a. cust oner,
' 199606YTY"
(a.dol l arsales - b.dollarsal es) AS LastYearValDiff,
case when (b.dollarsales <> 0) then (a.dollarsales / b.dollarsales)
- 1 else 0 end AS Last YearPctDiff
FROM
g8a_tnp a, g8c_tnp b
VWHERE
a.timeper = '199606
and b.tinmeper = '199506
and a. product = b. product
and a.custoner = b.customer
UNI ON
SELECT
a. product,
a. custoner,
' 199606 YTDYTY' ,
(a.dol | arsal es - b.dollarsal es) AS LastYearValDiff,
case when (b.dollarsales <> 0) then (a.dollarsales / b.dollarsales)
- 1 else 0 end AS LastYearPctDiff
FROM
g8a_tnp a, q8c_tnp b
VWHERE
a.tinmeper = '199606YTD
and b.tineper = '199506YTD
and a. product = b. product
and a.custoner = b.customer
Template Q09
QO9-Prep:

del ete FROM q9a_t np

insert into gq9a_tnp (
pr oduct,
cust oner,
ti meper,
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dol | arsal es

)

SELECT
prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,
custl evel . 3CUST_G VEN_LEVEL_FNAME AS cust oner,
' 199606' ,
sum (a.dol | arsal es) AS dol | arsal es

FROM

fact _actvars a, di mproduct prodlevel, dimcustoner custlevel
VWHERE

a.tinme_level = '199606'

and a. product _| evel = prodl evel.code_| evel

and a.custoner_|l evel = custlevel.store_|level

and prodl evel . SPROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER

and cust| evel . $CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY

prodl evel . $PROD_G VEN_LEVEL_FNAME,

custl evel . $CUST_G VEN_LEVEL_FNAME
insert into g9a_tnp (

pr oduct,

cust oner,

ti meper,

dol | arsal es

)
SELECT

prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,

custl evel . $CUST_G VEN_LEVEL _FNAME AS cust oner,

' 199606YTD ,

sum (a.dol | arsal es) AS dol | arsal es
FROM

fact _actvars a, di mproduct prodlevel, dimcustoner custlevel
VWHERE

a.time_level in (
'199601', '199602', '199603', '199604', '199605', '199606'

and a. product _| evel = prodl evel.code_| evel

and a.custoner_|l evel = custlevel.store_|level

and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and cust| evel . $CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

ael ete FROM q9b_t mp

insert into q9b_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es

)
SELECT
prodl evel . $PROD_Gd VEN_LEVEL_FNAME AS product,
custl evel . $CUST_G VEN_LEVEL _FNAME AS cust oner,
' 199606' ,
sum (a.dol | arsal es) AS doll arsal es
FROM
f cst nont hst or eproduct a, di m product prodlevel, dimcustomer custlevel
VWHERE

a.tinme_level = '199606'
and a. product _| evel = prodl evel.code_| evel
and a.custoner_|l evel = custlevel.store_|evel
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

insert into q9b_tnp (
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pr oduct,
cust oner,

ti meper,

dol | arsal es

)
SELECT

prodl evel . $PROD_Ad VEN_LEVEL_FNAME AS pr oduct ,

custl evel . $CUST_G VEN_LEVEL_FNAME AS cust oner,

'199606YTD

sum (a.dol | arsal es) AS doll arsal es
FROM

f cst nont hst or eproduct a, di m product prodl evel, di mcustomer custlevel
VWHERE

a.time_level in (
'199601', '199602', '199603', '199604', '199605', '199606'

and a. product | evel = prodlevel.code_| evel

and a.custoner | evel = custlevel.store_|evel

and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

ael ete FROM q9c_t nmp

insert into q9c_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es

)
SELECT
prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,
custl evel . $CUST_G VEN_LEVEL_FNAME AS cust oner,
' 199605' ,
sum (a. dol | arsal es) AS dol | arsal es
FROM
fact _actvars a, di mproduct prodlevel, dimcustoner custlevel
VWHERE

a.tinme_level = '199605'
and a. product | evel = prodlevel.code_| evel
and a.custoner | evel = custlevel.store_|evel
and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODMVEMBER
and custl evel . $3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER

GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $CUST_G VEN_LEVEL_FNAME

insert into q9c_tnp (
pr oduct,
cust oner,
ti meper,
dol | arsal es

)
SELECT

prodl evel . $PROD_G VEN_LEVEL_FNAME AS product,

custl evel . 3CUST_A VEN_LEVEL_FNAME AS cust oner,

' 199605YTD ,

sum (a. dol | arsal es) AS doll arsal es
FROM

fact _actvars a, di mproduct prodlevel, dimcustoner custlevel
VWHERE

a.time_level in (
'199601', '199602', '199603', '199604', ' 199605

and a. product _| evel = prodl evel.code_| evel

and a.custoner | evel = custlevel.store_|evel

and prodl evel . $PROD_G VEN_LEVEL_FNAME = ' $PRODVEMBER
and custl evel . $3CUST_G VEN_LEVEL_FNAME = ' $CUSTMEMBER
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GROUP BY
prodl evel . $PROD_G VEN_LEVEL_FNAME,
custl evel . $3CUST_G VEN_LEVEL_FNAVE

QO09-P1:
SELECT
a. product,
a. custoner,
"actual ',
a.tinmeper,
a. dol | arsal es
FROM
g9a_tnp a
VWHERE
a.tinmeper in ('199606', '199606YTD )
UNI ON
SELECT
a. product,
a. custoner,
'forcst',
a.tinmeper,
a. dol | arsal es
FROM
gq9b_tnp a
VWHERE
a.tinmeper in ('199606', '199606YTD )
QO09-P2:
SELECT
a. product,
a. cust oner,
a.tinmeper,
(a.dollarsales - b.dollarsales) AS valDiff,
case when (b.dollarsales <> 0) then (a.dollarsales / b.dollarsales)
- 1else 0 end AS PctDiff
FROM
g9a_tnp a, q9b_tnp b
VWHERE
a.timeper = b.tineper
and a.tinmeper in ('199606', '199606YTD )
and a. product = b. product
and a.custoner = b.customer
QO09-P3:
SELECT
a. product,
a. custoner,
' 199606PTF' ,
(a.dol larsales - b.dollarsal es) AS LastPeriodValDiff,
case when (b.dollarsales <> 0) then (a.dollarsales / b.dollarsales)
- 1 else 0 end AS LastPeriodPctDiff
FROM
g9a_tnp a, q9c_tnp b
VWHERE
a.tinmeper = '199606
and b.timeper = '199605
and a. product = b. product
and a.customer = b.custoner
UNI ON
SELECT
a. product,
a. custoner,
' 199606 YTDPTF' ,

(a.dol larsales - b.dollarsal es) AS LastPeriodValDiff,
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case when (b.dollarsales <> 0) then (a.dollarsales / b.dollarsales)
- 1 else 0 end AS LastPeriodPctDiff

FROM
g9a_tnp a, q9c_tnp b
VWHERE
a.tinmeper = '199606YTD
and b.tinmeper = '199605YTD
and a. product = b. product

and a.custoner = b.custoner
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