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Abstract

Many real-time machine control skills are too complex and laborious to be coded
by hand. Preferably, such skills are acquired by learning algorithms. Suitable
algorithms should learn automatically and based on experience from interaction
with the machine’s environment. But unfortunately, typical learning methods
for real world machine control tasks have a number of problems: Huge high-
dimensional state spaces complicate inductive learning, and it might be difficult
to get a sufficient amount of appropriate training data for learning either because
it takes too long or because it is extremely difficult to obtain good examples for
learning from exploration. Furthermore, most current learning algorithms rely on
a discrete MDP-model of the continuous state space, suffer from the incremental
summation of errors during learning, and neglect the existence of undesirable
states.

The idea behind our approach of experience-based control is to exploit trajecto-
ries of successful explorations to approximate a value-function for the state space.
To overcome the lack of training data we employ a realistic neural simulation of
the machine’s dynamics and introduce adequate exploration techniques, such as
backward exploration, to acquire learning data. The combination of different
exploration techniques allows for the integration of various types of initial know-
ledge and undesirable states can be integrated in the learning model. Since the
majority of machine control tasks in technical applications shows deterministic
behavior – or at least a unimodal probability distribution with a small variance
– it is possible to use a simple projection-function instead of a complex MDP-
model that was originally designed for discrete states. Our algorithms operate
directly in a continuous state space and perform a number of explorations before
we exploit the data. This is the main reason why our approach is robust against
the incremental summation of noise which is often encountered in conventional
learning algorithms. For the practical and efficient approximation of continuous
functions we employ neural networks and networks of radial basis functions. Our
methods have successfully been applied to numerous navigation tasks and tasks
of situation dependent algorithm-selection.
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Zusammenfassung

Viele Maschinensteuerungsaufgaben sind so komplex, dass es zu aufwändig wäre,
sie von Hand zu programmieren. Im Idealfall wird hier das gewünschte Verhalten
durch Lernalgorithmen erreicht. Geeignete Algorithmen müssen automatisch und
basierend auf Erfahrungen aus der Interaktion mit der Umwelt der Maschine ler-
nen. Leider zeigen viele gängige Lernalgorithmen für reale Maschinensteuerungs-
aufgaben einige Probleme: Sehr große und hochdimensionale Zustandsräume er-
schweren induktives Lernen, und es kann schwierig sein, eine ausreichende Menge
geeigneter Trainingsdaten zu bekommen. Ursache dafür kann einerseits ein Man-
gel an Zeit sein; andererseits ist es vielleicht schwierig, überhaupt gute Beispiele
zum Lernen zu finden. Darüber hinaus basieren die meisten gebräuchlichen Lern-
algorithmen auf einem diskreten MDP-Modell des kontinuierlichen Zustandsrau-
mes, leiden unter der inkrementellen Summierung von Fehlern während des Ler-
nens und vernachlässigen die Existenz von unerwünschten Zuständen.

Die Idee, die dem vorgestellten Ansatz für erfahrungsbasierte Regelung zugrunde
liegt, basiert auf der Ausnutzung von Trajektorien erfolgreicher Explorationen zur
Approximation einer Bewertungsfunktion für den Zustandsraum. Um auch mit
wenigen Trainingsdaten zum Erfolg zu gelangen, wird eine realistische neuronale
Simulation der Dynamik der Maschine verwendet. Weiter werden intelligente Ex-
plorationstechniken wie z.B. Rückwärtsexploration eingesetzt, um an Trainings-
daten zu gelangen. Die Kombination verschiedener Explorationstechniken erlaubt
die Integration verschiedensten initialen Wissens, und unerwünschte Zustände
können vorab spezifiziert werden. Da die Mehrheit der technischen Maschinen-
steuerungsaufgaben deterministisches Verhalten – oder zumindest eine unimodale
Verteilung mit kleiner Varianz – zeigt, ist es möglich, das komplexe MDP-Modell,
das ohnehin für diskrete Zustände entwickelt wurde, durch eine einfache Projek-
tionsfunktion zu ersetzen. Die vorgestellten Algorithmen arbeiten direkt in einem
kontinuierlichen Zustandsraum und führen eine Anzahl von Explorationen durch,
bevor die gesammelten Daten zum Lernen eingesetzt werden. Das ist auch der
Hauptgrund, warum der vorgestellte Ansatz gegen die inkrementelle Summierung
von Fehlern robust ist, die in konventionellen Lernalgorithmen weit verbreitet
ist. Zur praktikablen und effizienten Approximation kontinuierlicher Funktio-
nen werden neuronale Netze und Netze von radialen Basisfunktionen eingesetzt.
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Die vorgestellten Methoden wurden erfolgreich in mehreren Navigationsaufgaben
sowie in der situationsabhängigen Algorithmenauswahl eingesetzt.
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Chapter 1

Introduction

The development of intelligent systems that can solve complex control tasks,
both in industrial applications and in our daily life, is expected to be one of
the key achievements of science and engineering in the first half of the current
century. Applications such as autonomous cleaning robots, unmanned operating
trains and airplanes, cars that can perform their driving operations in a self-
directed manner, as well as the sophistication of recent space missions mark just
the beginning of a new age of automation. All of these tasks demand reliable
and accurate control algorithms that can cope with the requirements and the
subtleties of the tasks’ environment. This dissertation provides a framework
of algorithms for automatic experience-based learning of such control tasks. To
show the benefits of this framework, we focus on a number of well known problems
that current learning algorithms suffer from and we propose various methods to
overcome them.

1.1 Goals of the Dissertation

Typical source code of current state-of-the-art control programs for industrial
applications contains innumerable hand-coded decision rules and parameters:
Special cases are treated by if-statements. Parameters that define the control
behavior are manually tuned based on human experience. For example, handling
and extending a program with a big number of if...then-statements is likely to
become incredibly complicated because the source code is long and its numer-
ous branches are incomprehensible. Further, countless parameters have to be
tuned in order to specify the desired behavior for all different situations that
might occur. Oftentimes these parameters are magic numbers. Substantial ex-
pert knowledge is required to understand their impact on the machine’s behavior.
These parameters have to be tuned manually by human experts.

1



2 CHAPTER 1. INTRODUCTION

Preferably, a machine should receive a task as an input and then perform the
task completely autonomous without any further intervention of the user. The
machine itself has to acquire the skills needed to solve the task. Moreover, it
must work reliably and be user-friendly and comfortable. Many machine control
applications demand highly autonomous software agents that can cope with com-
plex control problems. But in fact, the ideal notion of an agent that is capable
of learning how to solve a complex task in an entirely self-directed manner is an
allurement and an utopia altogether. The major goal of this dissertation is to
provide methods that work in a largely automated fashion and make the learning
process comfortable, transparent, and practicable on real machines. In our con-
text, this means that the methods must be easy to implement and understand,
and that they must work accurately, reliably, and in real-time.

1.2 Contributions of the Dissertation

The methods proposed in this dissertation learn by induction from expe-
rience and interaction with their environment. The learning process is per-
formed autonomously by the machine. The user only needs to specify how and
for how long the machine acquires experience. It is essentially our intention to
reduce both the time and the intellectual resources required to produce machine
control code.

The approaches introduced in this dissertation affect problems that occur in the
practical application of autonomous machine control. Among the key contribu-
tions of this dissertation are:

• The development of high-performance autonomous machine control systems
requires intensive experimentation in controllable, repeatable, and realistic
settings. The need for experimentation is even higher in applications where
the machine should automatically learn substantial parts of its behavior.
The high accuracy of our proposed machine simulation based on neural
learning allows for an efficient development of learned controller systems
even in the case of a strongly limited availability of training data of the real
machine.

• Unfortunately, typical learning methods for real world machine control tasks
have a number of problems: It might be difficult to get a sufficient amount
of training data for learning either because it takes too long or because no
appropriate training data can be obtained from exploration at all. Further-
more, most current learning algorithms suffer from the incremental sum-
mation of errors during learning. In order to obtain a sufficient amount of
training data we introduce adequate exploration techniques, such as back-
ward exploration, and discuss how to acquire appropriate training data.
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The non-incremental learning process described in this work avoids by de-
sign the incremental accumulation of errors during learning.

• Most machine control tasks have continuous state space. For the majority
of tasks, the machine’s response to control commands given a particular
state is close to deterministic. But most current learning algorithms rely
on a complex and often discrete MDP-model of the continuous state space.
Operating in a discrete state space, the control output is not smooth and
using a fine discretization the number of states becomes huge. The proposed
methods require no discretization or any other kind of preprocessing of the
machine’s state space. In particular, no discrete MDP-model is needed.
Our methods work reliably in continuous state spaces and continuous action
spaces.

Furthermore, we propose ways to integrate a priori knowledge, such as undesirable
states, in our learning algorithms. We choose suitable function approximators for
the introduced learning methods and substantiate our choice. These approxima-
tors yield reliable controllers even if there are only very few training samples. In
addition, we discuss how different layers of learning can be combined in case of
hierarchical learning as well as in case of distributed learning agents.

Most of the approaches proposed in this dissertation have been developed in the
context of robot soccer. Therefore, our learning methods depend on the physical
behavior of real machines and are designed in order to run on real robots. More-
over, the proposed algorithms have been applied to real robot problems where
they have succeeded under competitive conditions, such as robot tournaments.
The algorithms have been extensively evaluated in simulation and on real ma-
chines to prove their reliability.

1.3 Outline of the Dissertation

In chapter 2 we present an introduction to control systems and the problems
related to learned controllers. Chapter 3 delineates how we simulate machines
in order to use the obtained simulators as a powerful tool in the development of
control software. In chapter 4 we introduce the learning methods that we employ
in our experience-based approach to control. Chapter 5 contains descriptions
of the tasks that we successfully applied our approach to. Chapter 6 shows
how layered experience-based control can be applied to highly complex tasks.
In chapter 7 we discuss related work of both theoretical and practical nature
and put it in relation to our methods. Finally, chapter 8 closes with a set of
conclusions that we have drawn from this work. In the appendix, we describe
function approximators and the specific control application RoboCup in greater
detail.
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Chapter 2

Control of Autonomous Mobile
Systems

Generally speaking, the word control is used to describe a process of adaptation.
In this process, one or more parameters represent the state of a separate system.
These parameters are adapted in order to reach a desired value using a feedback
loop based on measurements. According to this definition anything from a toaster
oven to an autonomous space mission can be regarded as containing some level of
control. In this thesis, we confine ourselves to the control of autonomous mobile
systems. These systems are characterized as being able to autonomously guide
mobile objects, e.g. mobile robots, auto-pilots, and grasping arms. All these
applications become more and more important in our daily life.

In this chapter, we introduce some definitions for control and address and describe
typical properties of real world control problems and what these properties mean
for the development of reliable control software and, especially, for the develop-
ment of control software using experience-based learning. For a general intro-
duction to control theory [Doyle et al. 1992, Jacobs 1993, Franklin et al. 1994,
Kuo 1995] are recommended.

2.1 Introduction to Control

2.1.1 Relevant Definitions for Control

Controlling and Steering In contrast to just steering a machine, control
includes the existence of a closed control-loop. The control software must have
knowledge of the parameters to control. These are called controlled variables.
They are obtained from sensors directly or indirectly.

5
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+targetζ ζ ccontrol impact of action
action

environment

influences
environmental

(transfer function)

Figure 2.1: A simple control loop: The control unit performs an action given the
current state ζc and a target state ζtarget. The impact of the action and environmental
influences affect the current state ζc which is fed back to the control unit.

The following example illustrates the difference between steering and control. A
driver of a car usually only steers the car by tuning manipulating variables. But
if the driver keeps checking the speedometer in order to implement his intention
of accelerating from say 60km/h to 100km/h he controls the car. In this case,
the control-loop is closed since the controlled variables are known and there is a
direct feedback.

System State and Actions In the context of control systems, we call the
set of controlled variables the state (ζ) of a system. The tuning or modifying
of the system state (using manipulating variables) is referred to as performing
an action (a). Actions are chosen from a defined action space A. The control
error is defined as the distance between the measured controlled variables (start
state) and the desired controlled variables (target state). The state of a system
is described by a set of components, its features.

As an example consider a mobile object that is placed at a start state ζstart = (0, 0)
in a two-dimensional coordinate system with the Euclidean distance metric and
a target state ζtarget = (1, 1). The control error, or distance between ζstart and
ζtarget, is

√
2. The features of the state space S are the coordinates of the system.

At times, at least one feature of the target state is not fixed to a specific value
but can rather be selected from an interval or range of values. As a consequence,
the target state is replaced by a target space (Starget ⊂ S).

While the majority of control tasks of practical interest have a one-dimensional
state space (dim(S) = 1), i.e. there is only one controlled variable, in this work
we will focus on multi-dimensional control tasks. Multi-dimensional action spaces
are considered as well.
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Figure 2.2: Two types of transfer functions: Subfigure (a): A direct (linear) transfer
function. It is seldom found in real world control problems. Subfigure (b): A hysteresis.
This nonlinear function is common in electromagnetic processes (e.g. motors).

Note, that the state space S and the action space A are not necessarily limited
to real numbers. The action space could contain a number of possible algorithms
for example. The state space could have colors as components.

The Basic Control Loop The process of control consists of a repeated gener-
ation of actions and a subsequent update of the current state. The development
of the state depends on the impact of the action as well as on external factors
of the environment that are beyond the influence of the control system. We call
these external factors the environmental influences. Figure 2.1 illustrates a sim-
ple control loop. The state ζ(t + ∆t) at time t + ∆t depends on the state ζ(t) at
time t and the action a(t) at time t and is given by

ζ(t + ∆t) = ζ(t) + ∆ζ(ζ(t), a(t), ∆t) (2.1)

where ∆ζ is an update function that computes the change in state. If we assume
∆t to be a unit of discretion in a discrete control process ζ(t + ∆t) depends only
on the previous state ζ(t) and the previous action a(t). The new state is then
computed by a projection-function P :

ζ(t + ∆t) = P(ζ(t), a(t)) (2.2)

2.1.2 Control Task Properties

Controllers differ widely in their properties concerning signal transmission, dead
time, and oscillation. These aspects are described in the following.
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Figure 2.3: Oscillation: Subfigure (a): Increasing oscillation, the target state cannot
be reached. Subfigure (b): Solid line: Decreasing oscillation, the target state is reached
slowly. Dashed and dotted lines: The target state is reached without oscillation.

Transfer Function A basic component of every control loop is the transfer
function. It defines the behavior of the system. Usually, the exact nature of
this behavior is unknown and it contains the reaction of the environment to a
certain state and a certain action. It may also contain environmental influences
that include behavior that is out of the influence of the controller (see fig. 2.1).
We distinguish between linear and nonlinear transfer functions. The term linear
refers to the shape of the function, which maps from time to state, applying a
constant action at every time interval (see fig. 2.2), and with it to the underlying
differential equations. If, for example, a robot which is not moving receives
actions to move forward we look at the changes in state over time, dependent on
the time (and with it on the actions). If this curve is not linear we talk about
a nonlinear transfer function. In real world control most transfer functions are
nonlinear.

Oscillation In the majority of cases controlling a system towards a defined
target state involves a tradeoff between time need and accuracy. A good controller
quickly reaches the target state and maintains it stably. On the other hand, a
high update rate in the controller always bears the risk of creating oscillation. In
the worst case an increasing oscillation is created that finally results in a system
collapse (see figure 2.3(a)). A system that shows a decreasing oscillation will
ultimately reach the target state (see figure 2.3(b) solid line). A good controller
reaches the target state without oscillation (2.3(b) dashed and dotted lines).

Changes in the Transfer Function The behavior of a transfer function may
vary over time. This can be caused by situations such as a change in temperature
or the wear and tear of mechanical parts. In these cases the control unit must be
adaptive in order to be able to cope with the changes.
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Dead Time Delays If the action chosen by the control unit affects the state
of the system only after a certain time delay, this time delay is called dead time.
No real world machine control loop works without dead time. The point is to
keep it minimal. Excessive dead times lead to oscillation since actions are chosen
at a time far away from the time that the actions influence the system.

Adversarial Environments In some cases, the transfer function not only de-
pends on the action chosen by the control unit but on certain external factors,
too. This influence is summarized under the term environmental influences in
figure 2.1. Environmental influences can be an inherent behavior of the mechan-
ics of the system at hand. But it can also be the result of another intelligent
external component. Especially in competitive environments such a component
can and will have a negative impact on the control process of a system. As an
example consider two non-cooperating robots that want to manipulate the same
object independently and in a different way. To cope with such a scenario we
have to include information about independent external components in our state
space.

Applications There are many real world problems in which controlling can be
applied successfully. However, most of them have a one-dimensional state space.
A simple example for this is a refrigerator which only has to keep a certain
temperature. These kinds of applications are generally fairly straightforward to
solve and do not call for sophisticated software solutions. From a scientific point
of view, the more interesting tasks have a multi-dimensional state space and
sometimes even a multi-dimensional action space. Tasks like auto-pilots, robot
navigation, and cooperative multi-machine control belong into this category. It
is this class of tasks that we want to apply experience-based learning techniques
to.

2.1.3 Control and Experience-Based Learning

Learning

If we talk about learning in the context of control we first need to understand what
learning strategies exist and which ones can be applied successfully. Learning
itself has been defined in various ways. Some of the most popular definitions
are provided in [Simon 1983, Michalski 1986]. In a general sense, we understand
learning as the ability to apply knowledge gained from experience. The long
term result of learning must be an increasing efficiency (in terms of well-defined
criteria) in solving a particular task.
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Deduction and Induction

Deduction is a process in which no new knowledge is gained. Instead, knowledge
is only exploited for reformulation. For example the terms b1 → b2 and b2 → b3

can be combined to b1 → b3 by deductive learning. In terms of control this means
that deductive learning can only store experiences and apply them to the exact
same situations that happened during the collection of the experiences. In any
other situation a deductive controller will fail.

Induction is the generalization of knowledge obtained from experience. For ex-
ample the term b1 → b2 could be generalized to b̃1 → b2 if b̃1 is similar to b1.
A good induction might even generalize to b̃1 → b̃2 with b̃2 being similar to and
more appropriate than b2. This ability makes inductive learning a very promising
method for the learning of a controller.

Supervised and Unsupervised Learning

Equipped with our understanding of the notion of learning the question remains
of how to actually perform learning. The most common approach is supervised
learning. In supervised learning a usually human teacher produces training data
(such as a rule b1 → b2) and provides it for learning. In control, training data
can be obtained automatically from randomly steering for example. Common
representatives of supervised learning are multi layer perceptrons, decision trees,
and CMACs. These are all described in the appendix.

If a system uses unsupervised learning it must be capable of organizing its know-
ledge autonomously. This could mean that the rule b1 → b2 is created out of the
data points b1 and b2 only. In general, unsupervised learning is applicable to con-
trol problems but requires sophisticated data organization algorithms. Popular
methods of unsupervised learning are Kohonen networks [Kohonen 1988] as well
as various clustering algorithms [Duda and Hart 1973].

Besides supervised and unsupervised learning there are some techniques that do
not fit in either of these schemes. Reinforcement learning (see section 7.1), to
name a major method, applies supervised learning to data that before has been
acquired autonomously by only rewarding the algorithm based on the quality of
its actions. So there is a supervised component to reinforcement learning that
can be classified as indirect supervised learning.

2.2 Problems of Learned Controllers

If we want to use direct or indirect supervised learning to solve control tasks,
we have to think about a variety of issues. These include the representation and
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acquisition of training data, the structure of the state space and the action space,
and the approximation of the functions we employ for learning.

2.2.1 Training Data

Both, the quality and the quantity of the training data at hand determine to
a great extent if the system performs well given specific control task. In the
following the most important things to consider about training data are discussed.

Representation

In the context of this work, we assume the training data to be a set of patterns
that can be used to learn a function f : IRd → IRn that defines a mapping from
a d-dimensional input space to an n-dimensional output space.

To approach a new control task, we first have to define the input space and the
associated output space. In practice this means nothing else but to describe
states and actions with numbers. In many cases, real numbers are a good choice
but in certain cases integer numbers can be more appropriate. Note that the
number of dimensions we need to describe the state space and the action spaces
can provide information about the complexity of the learning task.

Reduction of the state space

Before generating learning data it is advisable to think if there might be redun-
dancy in the data. For example consider a machine that when given action a
in state ζ0 reaches state ζ, and that when given action −a in state ζ0 it reaches
state −ζ. To learn this behavior we only need a semi-space for learning. Along
similar lines, there might be symmetries in points or planes which can allow for
a significant reduction of the input space. Furthermore, an action a in state ζ
might have the same impact as an action a+∆a in state ζ+∆ζ where the relation
between ∆a and ∆ζ is known in advance. In this case learning can be simplified
substantially by only learning the relation between a and ζ.

Scaling and Transformation

Usually, each dimension of the state space (and action space) has a particular
interval where most of the data is concentrated. In fact, typically only a limited
interval of the real numbers IR is suitable to characterize a state or an action at
all. For example the temperature of a refrigerator will never be outside a limited
interval, say 0C and 10C, during normal use. Along the same lines, the velocity
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of a robot is limited by variables such as the power of the robot’s motor, friction,
and others. Hence the robot’s velocity will not exceed a certain value.

If the input space has more than one dimension it is possible and likely that
the data is scattered over different regions of IR. For example the data of a
two-dimensional input may be distributed over [0.7, 0.8] × [−10000, +10000]. It
can be difficult for certain learning algorithms to deal with these differences in
scale. This can be especially true if small changes in a small interval have a
greater impact than big changes in a big interval. As a consequence, the data
is generally normalized by scaling the relevant interval of every dimension to the
same particular interval across all dimensions (usually [0, 1]).

Furthermore, it is possible that the data of a dimension of the input space is of
highly nonlinear nature. Consider an input interval [0, 100]. It is possible that
the difference between 0 and 10 has no noticeable impact on the output but that
the difference between 50 and 51 accounts for a significant change. This behavior
can be observed, for example, by the response of an electric motor to changes
in the voltage of the input current. In such cases it has proven superior to scale
the data using nonlinear functions (e.g. logarithm, sigmoid, square root, and
polynoms).

It is problematic to use features of periodic nature, such as angles, as dimensions
of the state space. Depending on the application, an angle of 360 degrees might
have the same meaning as an angle of zero degrees. However, learning algorithms
are not readily aware of this fact and might be presented with two learning
patterns with nearly the same input but an entirely different output (0 and 360,
respectively). In our experiments we avoid periodic features by transforming them
into other, non-periodic features or by computing relative deviations instead.

Finally we want to address the problem of unbounded numbers in the output
space. Learning algorithms like neural networks inherently make use of functions
that map to [0, 1] so they work with output spaces [0, 1]n only.

Data Acquisition

The acquisition of training data is an important part of the learning process:
Both, the amount and the quality of the data at hand have a significant impact
on the success of the learning. A general rule says: The more training data, the
better the result. This holds true as long as the data meets certain precondi-
tions. If the available training data does not (more or less) uniformly cover the
valid input space it may be difficult for the approximator to generalize to input
samples that lie in areas of the input space for which no training patterns are
provided regardless of how much data is available (see figure 2.4(a)). Therefore
it is essential to cover the state space as uniformly as possible with training data
(see figure 2.4(b)).
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Figure 2.4: Subfigure (a): The training data covers only a small part of the input
space. As a consequence a partially wrong mapping might be learned. Subfigure (b):
The input space is uniformly covered by training data. The learned mapping is more
reliable.

Noise In machine control tasks the training data is usually obtained from sen-
sors. Due to noise in every sensor, its measurements are typically not 100 percent
accurate. We have to design our learning algorithm such that it is robust enough
to deal with this inaccuracy. As long as the noise can be kept moderate it is fair
to learn the noise with the learning function. Also, if the type of sensory error
is known in advance the data can be preprocessed to eliminate or minimize this
error. If a very noisy sensor is used to obtain learning data from exploration and
if this compromised learning data, in turn, is used for further exploration there
is a significant risk that the error becomes magnified. Over time, this may lead
to an error that can decrease the performance of the controller substantially or,
worse yet, make it completely useless. In sections 4.4.3 to 4.4.6 we explain how
our approach to experience-based control manages to avoid the magnification of
such errors.

Lack of Training Data For complex high-dimensional learning tasks vast
amounts of training data are required but in practice it is a laborious task to
collect and prepare a sufficient quantity of data. One way to overcome this is to
construct an induction of the basic behavior of the machine. This will give us the
opportunity to generate training data offline. One such technique is described in
chapter 3.

Unsuccessful Exploration Some control tasks demand great skills. The sim-
ple example of a computer game shows that some tasks cannot even be performed
by inexperienced humans. For the experience-based learning of control software
this brings a fundamental problem to the surface: What if there is no learning
data that tells us how to get to a particular target state? How can we train a
controller to reach a target state if it has never been in that state before? How do
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we determine whether an action or a state is good or bad if we do not know how
to reach the target from there? Up to now, these questions, have been largely
neglected by the research that has been conducted on learning in control systems.
By exploiting knowledge about the relation between states and actions we can
overcome this problem as shown in section 4.3.2.

A priori Knowledge

In some applications a priori knowledge about the transfer function may be avail-
able. It makes sense to exploit this knowledge if there are indications that it will
help to improve the performance of the system. If, for instance, a machine gets
hot it might become necessary to suspend it for a period of time to avoid the
risk of a fire. Dependent on the application, the handling of other exceptions
might be appropriate. To reflect this knowledge in the training data patterns
that describe such special cases could be constructed. Another possibility is to
keep these special cases out of the learned controller altogether and instead em-
ploy a competent hand-coded decision module for these cases alongside with the
learned controller.

Undesirable States In many practical applications not only do we want to
reach a certain target state but we also want to avoid certain undesirable (e.g.
potentially harmful) states. For example, we might want for a mobile robot to
avoid areas of strong magnetic fields as these might have a noticeable negative
impact on the system. To handle such cases we need to be able to model them
explicitly in the controller. So far, most learned controllers do not provide this
capability. In section 4.4.4 we describe how we managed to add this capability
to our learned controller.

2.2.2 Discrete and Continuous State Space

Most state spaces of real world problems can be described sufficiently by a set
of continuous features. This implies that the system can assume an unlimited
number of states. But some learning algorithms rely on the assumption that the
state space is discrete, i.e. that there is only a finite number of states that the
system can assume. For example the basic model of a finite Markov Decision
Process [Ross 1983, Bertsekas 1987] assumes discrete states with discrete actions
as transitions between them.

Practical state spaces can include features such as distances, angles, and the
velocities of machines or parts thereof, and other objects. Since acceleration, in
general, is nonlinear velocity values will be hard to be discretized reasonably. In
a high-dimensional state space that includes nonlinearities, determining the set
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of states that can be reached from a given discrete state with one action becomes
virtually impossible.

Further discretization may lead to extremely discontinuous behavior. This is
especially true in cases where small deviations in the input can cause substan-
tial deviations in the output. So, when a coarse discretization is applied, the
control output is not smooth, when a fine discretization is used, the number of
states becomes unmanageably large, especially in high dimensional state spaces
[Doya 2000].

2.2.3 Function Approximation

The actual process of learning consists of the approximation of an unknown
function f : IRd → IRn that maps from a d-dimensional input space to an n-
dimensional output space. In the simplest form, the learning data can be rep-
resented by storing it verbatim in a discrete lookup table. This is transparent
and without loss of any original training information. And it is efficient up to a
certain degree of complexity of the approximated function. If the input space,
and as such the learning data, becomes very high-dimensional it will become un-
manageable to represent all learning patterns explicitly in a lookup table. The
patterns have to be learned by a function approximator.

Models of Functions

If mathematical characteristics of the function to be approximated are known a
parameterized model of it can be developed. Then only the parameters of this
model need to be learned. A very simple model is the linear function f(x) =
b1x + b2. Other common models are polynoms f(x) =

∑n
i=0 bix

i or functions
of the form f(x) = b1 · sin(b2x). All of these models have the drawback that
they can only be used for applications that they are suitable for and that their
modeling complexity is limited by their model.

Approximators

Unlike lookup tables nearest neighbor algorithms can deal with continuous output
spaces. Patterns are stored efficiently and the approximator output is computed
by the weighted output of the input’s nearest neighbor training patterns (see
appendix A.4 for details).

CMACs (Cerebellar Model Articulation Controllers, see appendix A.1 for details)
consist of receptive fields that are responsible for certain regions of the input space
and are often used for function approximation in reinforcement learning. But they
are not without drawbacks, (1) the resulting function is not continuous in its
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Function Rule Runtime Runtime Type of Modeling

Approximator Transparency (Training) (Application) Input/Output Power

Lookup good good satisfactory continuous/ any(∗)

Tables discrete

Model satisfactory good good continuous/ limited

of Function continuous

Nearest satisfactory satisfactory satisfactory continuous/ any(∗)

Neighbor continuous

CMAC satisfactory satisfactory satisfactory continuous/ any(∗)

discrete

RBF satisfactory satisfactory satisfactory continuous/ any

Network continuous

Multi Layer poor poor good continuous/ any

Perceptron continuous

Decision good satisfactory good continuous/ any(∗)

Tree discrete

Table 2.1: Function approximators and their characteristics. (∗) Any level of complex-
ity can be modeled but the required amount of parameters for complex functions can
be very high.

output and (2) the number of receptive fields becomes huge when approximating
complex functions with high-dimensional input spaces.

Networks of Radial Basis Functions (RBF-Networks) also consist of units that are
responsible for certain regions of the input space. Their basic units are Gaussian
functions (see appendix A.3 for details). The output function is continuous and
the number of Gaussian functions can be kept manageably small as long as the
learning patterns with similar input also have similar output.

Multi Layer Perceptrons (see appendix A.2 for details) are neural networks based
on the basic Perceptron [Rosenblatt 1957, Rosenblatt 1958, Rosenblatt 1962].
Their high level of structural complexity makes them very powerful but also very
intransparent. Their computational complexity for training tends to be high but
the amount of computation required to determine the output for a given input is
very low. MLPs have the potential to approximate functions of arbitrary com-
plexity.

Decision Trees contain the output in their leaves while the input is used as a
means to find a corresponding leaf. At each inner node a choice between a finite
number of paths has to be made. That means that decision trees (see appendix
A.5 for details) are suitable for discrete output spaces. Furthermore, they are
very transparent since they are based on rules of the form if ∧#rules

i=0 ci then o = . . .
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where ci are conditions at inner nodes, #rules is the number of rules, and o is
the output of the tree.

In appendix A the most common function approximators are described in further
detail. The software implementations of the function approximators that we used
in our experiments is introduced in section 5.8.

Incremental and Non-Incremental Learning Function approximation can
be implemented as an online or as an offline process. Approximating online means
that the approximator continues to learn individual training patterns incremen-
tally. In offline learning a set of training patterns is regarded as one block of
training data and it is learned at the same time (at least from the user’s point
of view). Both methods, online and offline learning, have their respective ad-
vantages and disadvantages: Online learning is able to keep adapting to changes
in the environment lifelong. On the other hand, the impact of old patterns (i.e.
patterns that were learned a long time ago) might converge to zero. In contrast,
offline learning guarantees that all information gained from learning is retained
but the system is not able to adapt to any environmental changes. In general,
a system that uses offline learning has two modes of operation: (1) learning and
(2) exploitation.

For the most part, incremental learning techniques are more laborious to imple-
ment and only used if necessary. And since most machines act in state spaces
whose dynamics are encoded in the state itself and do not change significantly
over time, offline learning is suitable for a large variety of tasks. This will also
be substantiated by our experiments in chapter 5. However in practice, combi-
nations of online and offline learning techniques are also used in order to make
an offline trained system more adaptive. Obviously, this approach is even more
complex than any of the single methods it employs.

2.2.4 Discrete and Continuous Action Space

The action space of a control system can be discrete or continuous. When a
discrete action space is also finite and it has a moderate number of actions, an
exhaustive search over all possible actions can be performed to find the globally
optimal action, i.e. the action that leads to the best successor state (according to
some criterion). However, practical action spaces are typically too complex for
such a search to be feasible. In these cases heuristics are needed that allow for
an informed and nondestructive reduction of the search space to a size that an
exhaustive search can be performed on in practice. In our context nondestructive
means that the reduction will very likely not eliminate the best or at least most of
the very good actions from the search. For example, first a search using a coarse
discretization can be performed to determine a preliminary optimal action. Then,
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using a fine discretization, a second search can be performed in the vicinity of
that action to find a better and locally optimal action.

In practice, machines are generally controlled by continuous manipulating vari-
ables rather than discrete ones. As a consequence, a continuous action space is
most often a more appropriate choice for a control system than a discrete action
space. However, in systems with a continuous action space the number of possi-
ble actions for any given system state is infinite. Hence, again, heuristics need to
be applied to find the action promising the best successor state in a reasonable
amount of time. The only way to avoid the use of heuristics is by learning a
direct mapping from a state to an action rather than by learning the impact of
an action and the appropriateness of the resulting state. We will introduce this
approach in section 4.4.6.

2.2.5 Control Tasks of High Complexity

There are control tasks that have such a high-dimensional state space that learn-
ing in this space is possible in theory, but in practice it is not feasible. Consider,
for instance, the task of controlling a team of eleven soccer players. The dimen-
sion of this state space is at least 46 (i.e. two teams with eleven players each
and a ball with their respective positions in 2D) and the action space has at least
11 dimensions (one-dimensional action space for each player to be controlled).
To achieve a reasonable level of learning an unimaginable amount of learning
patterns would be required. The resulting computational complexity is too high
even for today’s powerful computers. Even chess with its finite and discrete state
and action space has so far not been played well with learned software. The state
of the art method to master such high-complexity tasks is to use a divide-and-
conquer approach. In it the learning task is divided into a hierarchy of smaller,
more manageable tasks, each of which is then solved by itself. We call this method
layered learning and describe it in greater detail in chapter 6.



Chapter 3

Simulation of Dynamic Processes
as a Development Tool for
Machine Control Systems

3.1 Introduction

The development of high-performance machine control software requires exten-
sive controllable and repeatable experimentation in the target environment of
the control system or a realistic approximation of it. If a machine is required
to learn substantial parts of its control system autonomously the demand for
experimentation is even greater.

Simulation is a very powerful tool in the development of intelligent machine con-
trol systems as it enables the developer to perform countless controllable and
repeatable experiments and to make fast and inexpensive predictions. In fact,
experiments can be run safely in faster than real-time using time lapse. Simula-
tion eliminates the risk of hardware damage and can potentially reduce the cost
for hardware and other materials significantly. Furthermore simulation allows
for efficient diagnosis and correction of software errors through monitoring and
stepping. However, the simulation environment must provide a close enough ap-
proximation of the actual target environment to warrant that the control software
will operate flawlessly in the real system.

In this chapter, we propose and describe such a simulation environment and
provide empirical evidence that it can in fact serve as a powerful tool in the
development of even complex control modules for real robots. The control loop
described in chapter 2, figure 2.1 is extended by a simulation component (see fig.
3.1).

19
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Figure 3.1: A control loop with a simulator: The control unit is tested by sending its
actions to the simulator. Once the controller works reliably it can be applied to its real
world environment.

3.2 Simulation as an Induction

In section 2.2.1 we stated that the acquisition of training data is an important
precondition for the learning process and that we want to generate as much trai-
ning data as possible. In practice, the quantity of available training data is a
(roughly linear) function of time. Since time is limited, especially in the develop-
ment of real-time control software, we need to find ways to acquire large amounts
of training data quickly and economically. Let us consider the task of data col-
lection through experimentation for the training of a real multi robot control
system. Let the duration of an experiment with a real robot be two minutes (ex-
cluding the recharging of batteries, maintenance, etc). Given a simulator that is
capable of mimicking the exact behavior of this robot, the experiments could be
performed automatically, each of them started from a randomly selected initial
state. If this simulator completes two experiments per second (which allows for
quite complex tasks) the speed-up would be 24, 000%.

For two reasons, this example does not provide an accurate estimate: (1) It
assumes an exact simulator. (2) It neglects the time needed to develop the
simulation. While a sufficiently accurate simulation is possible for most practical
applications requires a more thorough discussion:

If the given control task has a high-dimensional state space that includes features
from the robot’s environment that can be set artificially in the simulation then
the use of a simulator is very likely beneficial. Using field training data from a
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Figure 3.2: A sample learning task: Acquiring data needed to learn a robot’s dynamics
takes roughly two hours. Acquiring data required to learn the task in the simulator
takes about two hours. In comparison, learning the same task in the real world without
the simulator requires on the order of 330 hours.

small local state space of the robot (e.g. only the robot’s velocity) an induction
can be performed and used for the simulation of experiments in a much more
complex state space. For instance, to determine how long it takes for a robot to
reach a certain target state starting from a particular start state, we only need
to learn the impact of the robot’s control commands (actions) in certain states.
Then, all expensive experiments that need to be performed to learn the task can
be done in simulation. Using temporally inexpensive training data from a lower
level we can do high-level experiments in simulation.

As a result, we propose to solve such learning tasks in a three step process. First,
we learn a simulation of the machine’s basic dynamics. Second, we perform the
high-level learning tasks using this simulator. And third, we port the result-
ing controller onto the actual machine and cross-validate the performance gains
obtained from the new controller. For example, we can use this method to de-
termine how long it takes for a robot to reach a particular target state given a
particular start state. We collect a mere two hours of training data using the
real robot’s dynamics and then perform the learning task in another two hours
through 10,000 unsupervised simulator experiments (see figure 3.2). Assuming
that setting up and executing a task takes only two minutes for the real robot,
we would have had to spend more than 330 hours of experimentation with a real
robot (not including recharging of battery, maintenance, sleeping and any other
breaks). Obviously, this is not feasible.

A major precondition that the proposed method will work is the accuracy of the
simulation. Although we will not be able to construct a perfect imitation of the
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machine’s behavior we can reach a certain degree of accuracy that suffices for
most applications.

3.3 Simulation of Dynamical Properties

In addition to an accurate modeling of the target machine’s sensors and its motion
a simulator should be able to simulate different kinds of machines with their
respective motion profile acting at the same time. A model of the machine’s static
environment as well as models of dynamic objects should be easy to integrate.
Furthermore it is essential that a high number of learning data can be obtained
in a reasonable period of time. This constraint forces us to use computationally
inexpensive methods for the simulation. In general there are two different basic
concepts for simulation:

White-Box Simulation If we know how to hand-code the simulation of the
machine’s dynamics or we can understand how a learned simulator works in
detail we talk about a white-box simulation. In this case we are able to change
the simulator’s behavior in order to achieve improvements.

Black-Box Simulation If we do not know anything about the details of the
simulation and are not able to predict what impact a change in the code of the
simulator will have we talk about a black-box simulation.

In practice there are many simulators that are partly white-box and partly black-
box. The parts of a system where the background is well understood by humans
is put in a white-box simulation while the remaining parts (mostly impossible
to be hand-coded) are implemented by learning algorithms, which are usually
black-box and will not be edited directly.

3.3.1 Analytic Simulation of Dynamic Processes

The analytic simulation requires knowledge about the machine to be simulated
in terms of laws of physics. Obviously, to provide a realistic simulation from a
physics point of view we have to include a gigantic number of laws: Many fac-
tors such as temperature, atmospheric humidity, atmospheric pressure, magnetic
fields, gravitation, luminous intensity, radiation of other frequency etc. might
have influence on the machine. It would be absurd to construct a simulator that
contains all physical properties of the real world. Therefore it is absolutely nec-
essary to know which factors have a major impact on the behavior of a machine.
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In many cases, fortunately, it is sufficient to take the most important factors into
account to obtain a simulation of high quality.

Let us assume we have a mobile robot that we can give target positions ptarget to
go to. Let us further assume that we know that this robot will directly move there
and can reach a maximal velocity of Vmax. In this case a very simple simulation
would be to compute the current position p(t+∆t) of the robot for each discrete
time interval of ∆t by

p(t + ∆t) =

{

ptarget if |ptarget − p(t)| ≤ ∆t · Vmax

ptarget · ∆t·Vmax

|ptarget−p(t)|
+ p(t) · (1 − ∆t·Vmax

|ptarget−p(t)|
) else

(3.1)

Obviously, this model inherently neglects acceleration. A correct physical simu-
lation computes the forces affecting the movement (and with it the velocity) of
an object:

V (t + ∆t) = V (t) +

∑

i Fi · ∆t

m
(3.2)

Fi are the forces affecting the movement of the respective object. As previously
mentioned, it is necessary to know all relevant forces. Others that are of a low
absolute value can be neglected. m is the mass of the object regarded. The new
state of the object after a discrete time step ∆t is computed by

ζ(t + ∆t) = ζ(t) + V (t + ∆t) · ∆t (3.3)

The degree of discretization is selectable while a fine discretization needs a higher
amount of computational resources and a coarse discretization will be less precise.

The main advantage of an analytic simulation is its white-box character and the
fact that it relies on laws of physics that have been proven to be correct. On
the other hand the disadvantages are that all relevant forces Fi must be known
(completeness of the model) and constants and parameters (for instance a cw-
value) must be set as well.

3.3.2 Neural Simulation of Dynamic Processes

A neural simulation of a dynamic real world process requires the opportunity to
record data that results from interaction of states and actions. This training data
is essential for the neural learning of the dynamical behavior. In contrast to an
analytic simulation we do not have to care about the physical background of the
process. We need no knowledge on the relevance of forces, rules, constants or any
kind of parameters.
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The information to be recorded consists of two data streams: (1) The sequence of
control commands (actions) that are sent to the machine. (2) We need to know as
much as possible about the changes in the state of the machine. All these pieces
of information are essential for learning a relation between states and actions that
can describe the dynamical behavior of the machine.

Sequences of States and Actions The actions of a machine can easily be
recorded by just writing them in a file using time stamps. The result will be a
sequence of actions Ā

Ā = 〈a(t0), a(t1), a(t2), ...〉 (3.4)

where a(ti) is the command (action) sent to the robot at time ti. Similarly, we
need a sequence of the machine’s states S̄

S̄ = 〈ζ(t0), ζ(t1), ζ(t2), ...〉 (3.5)

where ζ(ti) is the state of the machine measured at time ti. While actions are
easy to obtain states must be measured by sensors but sensors are noisy. So if
we construct a simulation we must be aware of the fact that it relies on some
sensors that might cause errors. To find out to what extent the given sensors are
noisy we can compare the results of different sensors or even compare them to
measurements done by hand. As long as sensors provide accurate data in between
short intervals of time they are good enough to be used for recording states for
simulation. An error that results from the summation of a number of small and
negligible errors over time is not problematic. Such an error can be balanced by
a high-level feedback control loop.

Time Delay and Synchronization Since we use a relation between states and

time

actions

states

Figure 3.3: Executing actions and measuring states
should be done synchronously to support the under-
standing of the relation between actions and states.

actions for simulation we must
have a look at which control
commands actually have an
impact on the current change
in state of the respective ma-
chine. For example, if we have
a hardware system with a high
dead time delay it is probably
not the last action executed
that has the most impact on

the next state measured. To support the understanding of the temporal relation-
ship between actions and affected states it is extremely helpful if we can rely on
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synchronous sequences of states and actions, both with a fixed cycle-time (see
figure 3.3).

Learning a Relation between States and Actions Once we have all the
data necessary to learn a relation between states and actions (the sequences
introduced above) we need to generate patterns for learning from this data. Let
us define the cycle-time of the recording of the actions ∆ta and the cycle-time of
the measurements of the states ∆tζ . Further, let tla be the time where the last
action was executed. To learn which actions have an impact on the change in
state from ζ(t) to ζ(t + ∆tζ) we generate patterns

〈ζ(t), 〈a(tla), a(tla − ∆ta), a(tla − 2∆ta), a(tla − 3∆ta), ...〉〉, ζ(t + ∆tζ) (3.6)

These patterns are used to learn a mapping

P =

{

S × Ā → S
ζ(t), 〈a(tla), a(tla − ∆ta), ...〉 7→ ζ(t + ∆tζ)

(3.7)

that maps from a state at time t, ζ(t) and a sequence of past actions to the
succeeding state at time t + ∆tζ , ζ(t + ∆tζ). We regard only the information of
the current state, ζ(t). With it, we formally assume the Markov property. In
fact, we consider further information by regarding the sequence of actions, Ā.
These actions may have an impact on previous states. The sequence of the last
actions is chosen dependent on the application, its dead time behavior, and the
cycle-times. In cases that are optimal from the developer’s point of view the
sequence of the last actions can be shrunk to at least one action. The complexity
of the learning task, inherently, depends on the size of the sequence of the last
actions. If we do not know how to choose this sequence it is advantageous to first
choose a bigger number of past actions rather than a number too small.

The patterns generated from recorded data (equation (3.6)) can be learned by
function approximators (see appendix A). We propose to learn them using multi
layer neural networks (see appendix A.2). The neural simulation, naturally, is
a black-box simulation since we do not know what exactly happens inside the
neural networks. The big advantage of this simulation is that we do not have to
know anything about the physical background of the simulated machine. Neural
networks can learn even highly nonlinear functions. The drawbacks are that
we cannot adapt the simulation because of its black-box character and that for
different discretizations (different cycle-times) we have to train different neural
networks.
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3.4 Simulation of Sensory Properties

Besides the simulation of dynamical properties we have to think about the sim-
ulation of sensory properties as well. Similar to the simulation of the machine’s
dynamics we have to build a model for another part of the machine’s hardware.
There are a number of “easy” methods that typically achieve only a limited de-
gree of accuracy; on the other hand a precise simulation of sensors (especially
cameras) is a laborious task.

The Truth-Assumption A trivial way to solve the problem of the simulation
of sensory properties is for the machine to receive its current “true” state as it is
computed by the simulation of the dynamical properties. Doing so we assume that
the sensors of our robots are near perfect which obviously is a wrong assumption.
But this approach works well with accurate sensors. The higher the accuracy of
the sensors the better are the results achieved with this approach. There is a
great chance that the control software developed using this approach will work
with accurate sensors.

Gaussian Fuzzifying An extension of the truth-assumption is to have
the machine receive its current state data (as it is computed by the
simulation of the dynamical properties) with some amount of simulated
noise. Using Gaussian functions for the computation of the noise we
cover a lot of possible sensory errors that may occur in practice. Fur-
thermore, we can integrate knowledge about sensory errors of the respec-
tive application because a Gaussian fuzzifier is a white-box simulation.

camera fuzzified position of features

machine

Figure 3.4: Gaussian fuzzifying. Features close to
the camera of the machine will receive less noise than
distant features. The angle will be less noisy than
the distance.

For instance, a typical behav-
ior of visual localization is that
distant features are located
with an error much higher
than features that are close to
the camera. Typically, the er-
ror in the distance of a feature
is greater than the error in the
angle. This knowledge can be
integrated in Gaussian fuzzify-
ing by using multi-dimensional
Gaussian functions to simulate
the noise (see figure 3.4 for an
example).
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Learning the Simulation of Sensory Properties The methods described
above both make assumptions about the sensors of a machine. Since these as-
sumptions usually are not met in practice we have to work on a more realistic
approach. To achieve a realistic simulation of the sensors we must learn the
mapping

I : ζ(t) 7→ Υ(t) (3.8)

from a machine’s state ζ(t) at time t in the simulator to the sensory data vector
at time t, Υ(t). This task brings along some major problems. The first issue
is where to get training data for I from. In the real world we can measure the
vector of sensory data Υ(t) but how can we reliably measure the “true” state of
the machine, ζ(t)? In terms of a mobile robot we can record the “true” state
of the robot, ζ(t) by a camera mounted at the ceiling of the room and record
the sensory data vector, Υ(t) in parallel. This solution would only include errors
of the camera mounted at the ceiling. These errors can be kept moderate. But
cameras, in general, depend on factors like the illumination of the environment.
So another major problem is the simulation of visual sensors under different
lighting conditions. Data obtained from the recordings of ζ(t) and Υ(t) can be
learned by using a function approximator (see appendix A for details on function
approximation).

3.5 Multi Robot Simulation

Robot simulation, as machine simulation in general, is a powerful tool for the
development of intelligent control software because it allows for fast and cheap
predictions and makes experiments controllable, repeatable, and scalable without
the danger of damaging hardware.

However, the use of a robot simulator also bears a number of problems. For
the purpose of simulation, typically time has to be discretized. Also, simula-
tors normally work in an abstract feature space and might therefore ignore key
factors for the real robot behavior [Lee et al. 1999]. Others argue that simu-
lated controllers are doomed to succeed because of the design of the simulators
[Brooks and Mataric 1993]. As a consequence, software that succeeds in simula-
tion may fail on a real robot [Brooks 1992]. Accurate and analytic simulations
can typically become extremely complex and expensive in terms of computa-
tional resources (see section 3.3.1). Thus they are often performed in parallel
and distributed simulations [Jugel and Sydow 1998, Mehlhaus and Rausch 1993].
Despite these problems a number of robot simulators have proven to be a
valuable resource in the development of robot controllers [Jakobi et al. 1995,
Buck et al. 2002c].
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(a) (b)

Figure 3.5: The development of the rotational velocity (degrees per second) of a
Pioneer I robot over time ( 1

10s). The robot starts at Vrot = 0. Subfigure (a): The
robot is constantly given the control command a = (0, 45). Subfigure (b): The robot
is constantly given the control command a = (0, 90).

Multi robot simulation includes the simulation of sensing as well as the simula-
tion of motion dynamics. The neural simulation of motion maps the dynamic
state of the robot and a sequence of low level robot commands into a successor
state (see equation (3.7), section 3.3.2). Sensor simulation (see section 3.4) maps
the local surroundings and the sensor model into the sensed data. A substantial
amount of research work has been done on either one or both of these aspects:
[Lee et al. 1998] generates an artificial neural network based model of the environ-
ment within a simulator of a Nomad robot, to learn an action model in an MDP
framework simulators have been used [Belker and Beetz 2001], and many exper-
iments of the successful well known rhino robot [Thrun et al. 1998] were done in
simulation. Furthermore the soccerserver [Kitano et al. 1997, Noda et al. 1998]
used in the RoboCup Simulation League mimics some sensory and motion abilities
of a human-like soccer player. Another RoboCup simulator [Kobialka et al. 2000]
is able to simulate a large number of different sensors (infrared, bumper, cam-
era, and laser) while motion is simulated by using the values of translational and
rotational control commands directly in order to compute a succeeding state.

While most of the above work concentrates on the simulation of sensors by more
or less neglecting the simulation of motion, our main goal in this section is to
construct an accurate simulation of the robot’s dynamical behavior. This becomes
very important in high-speed environments such as autonomous robot soccer or
automated packing applications. In robot soccer abrupt changes in speed and
direction are as common as they are in a real soccer game. We will apply the
neural learning from real robot data as described in section 3.3.2 and show that
it is a highly qualified approach because of its high accuracy.
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3.5.1 Neural Simulation of the Dynamical Properties of a
Pioneer I Robot

In this section we describe how to learn a dynamical model of the motion behavior
of a Pioneer I robot. Models can be learned similarly for other robots with the
respective data at hand.

The Pioneer I Robot

The dynamic state of a Pioneer I robot at a certain time t is given by the quintuple

ζ(t) = 〈x, y, ϕ, Vtr, Vrot〉 (3.9)

where x and y are coordinates in a global system (in meters), ϕ is the orientation
of the robot (in degrees, ∈ [0, 360)) and Vtr (Vrot) is the translational (rotational)
velocity in meters per second (degrees per second [−180, 180]). The robot control
system issues driving commands

a = 〈Vtr, Vrot〉 (3.10)

at a frequency of 10 Hz. The parameters of the driving command denote the
desired target velocity. Naturally, the robot needs some time to reach the target
velocity and it will not be able to drive exactly at the desired velocity.

Figure 3.6: The resulting translational velocity
(cm/s) depending on the robot’s previous velocity
(frequency 10 Hz). Four runs of a Pioneer I robot
are shown. In each experiment the robot starts at
Vtr = 0 and is constantly given the control command
a = (0.75, 0).

Before we start to learn a sim-
ulator we take a look at the dy-
namical behavior of the robot
as measured by its odometry
sensors. Figure 3.5(a) depicts
the rotational velocity Vrot of
a Pioneer I robot that starts
with Vrot = 0 and is given the
control command a = (0, 45)
repeatedly every 1

10
s. As we

can see, the actual rotational
velocity (after a period of ac-
celeration) is around 15 de-
grees per second only with a
high degree of oscillation. Fig-
ure 3.5(b) shows a similar be-
havior for the control com-
mand a = (0, 90): The actual
rotational velocity is around
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30 degrees per second. In figure 3.6 we can see how the translational velocity
Vtr of a Pioneer I robot changes over time if the robot starts with Vtr = 0 and
is given control commands a = (0.75, 0) repeatedly. Four experiments were done
under the same conditions1.

The conclusions we can draw from the above measurements are

(1) Either the odometry sensors of the robot are extremely noisy or the
hardware-unit responsible for the control of the velocity is oscillating enor-
mously (see figures 3.5). Since it is unlikely that the velocity changes that
quickly we assume the sensors are noisy.

(2) The resulting rotational velocity is around one third of the desired rotational
velocity (see figures 3.5). The relation may even be nonlinear.

(3) The dynamical behavior of the robot is inherently indeterministic: The four
experiments depicted in figure 3.6 lead to different results under the same
conditions.

(4) The acceleration of the velocity is nonlinear and cannot be described by a
trivial hand-coded function (see figure 3.6).

The consequences these factors have on the development of our simulator are

(1) It would be inappropriate to map the oscillating behavior into our sim-
ulation. We are interested in a less volatile function that approximates
the curves of the figures 3.5(a) and 3.5(b). This will make our simulation
smooth and realistic. We can learn such an approximation if we simply use
all training data (including oscillation) and perform neural learning (see
appendix A.2). While the error on the training data may remain high even
after extensive training the trained function will be an approximation ap-
propriate for simulation, especially if we use a sufficient amount of training
data and validation data.

(2) The fact that the robot actually only reaches around one third of its desired
rotational velocity affects us not. We can learn this behavior.

(3) The indeterministic behavior can be treated the same way the oscillation
is treated. If wanted we can add noise to the simulation or explicitly learn
the noise to achieve an indeterministic behavior in simulation too.

(4) The fact that acceleration, in practice, could be any nonlinear function
forces us to use learning methods that can deal with nonlinear relations.
We will use neural networks (see appendix A.2 for details) because of their
advantageous run-times in application.

1at least from a human point of view the conditions were the same
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Dead Time Delays All robots are dealing more or less with a dead time.
This means that at the moment a robot is performing a low level control com-
mand it has already sent control commands (e.g. translational and rotational
target velocity) for further movements. In the case of Pioneer I robots the dead
time is around 300ms (see figure 5.12(a), p. 71) while the controller accepts ten
commands per second. In simulation the dead time must be considered as well.

Learning the Simulation

The dynamical model for the change in state from the current state ζ(t) to the
successor state ζ(t + ∆tζ) used by the simulator is acquired by learning the
mapping of equation (3.7). In case of a Pioneer I robot where the cycle times
are set to ∆tζ = 100ms and ∆ta = 100ms, and the dead time delay is 300ms (=
three cycles) this mapping will be specified by

P =

{

S ×A → S
ζ(t), a(t − 3 · ∆ta) 7→ ζ(t + ∆tζ)

(3.11)

P is learned from experience, that is recorded data from real robot runs. But
before we perform neural learning we preprocess the learning data. The input
space of P is 7-dimensional (5-dim. state plus 2-dim. action). Considering the
current state ζ(t) at x = 0, y = 0, and ϕ = 0 in a local system we can reduce
the input dimension to 4 by converting the successor state’s (ζ(t + ∆tζ)’s) x, y, ϕ
into this local system (this means we regard ∆x, ∆y, ∆ϕ instead of x, y, ϕ). So
we simplify P to

P : 〈Vtr(t), Vrot(t), Vtr, Vrot〉 7→ 〈∆x, ∆y, ∆ϕ, Vtr(t + ∆tζ), Vrot(t + ∆tζ)〉 (3.12)

Since ∆x, ∆y, an ∆ϕ can be approximated from Vtr(t), Vrot(t) and Vtr(t +
∆tζ), Vrot(t + ∆tζ) we will further simplify P to

P : 〈Vtr(t), Vrot(t), Vtr, Vrot〉 7→ 〈Vtr(t + ∆tζ), Vrot(t + ∆tζ)〉 (3.13)

Our simulator learns this mapping using standard multi layer neural networks
[Hecht-Nielsen 1990, Hertz et al. 1991, Bishop 1995, Rojas 1996] (see appendix
A.2) with 4-10-16-10-2-topology, supervised learning with the RPROP algorithm
[Riedmiller and Braun 1993] and early stopping [Sarle 1995]. During data ac-
quisition we have executed a wide variety of navigation scenarios covering even
abrupt changes in velocity and orientation to comply with the requirements of
high-speed navigation. We have collected a total of more than 100,000 training
patterns from runs with a real Pioneer I robot. 80% of this data has been used
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for training while 20% are used as validation data. Although the learning time
amounted to a few hours on a 800 MHz machine the computational amount of
the neural network while running the simulation is infinitesimal.

Considering the Dead Time Delay In consideration of the dead time delay
of 300ms in simulation we write low level control commands in a queue and wait
300ms before executing the commands.

Accuracy We evaluated on about 100 trajectories, each driven with a real
Pioneer I robot ten seconds in length. None of them were used for learning.
We found an average error of 2% in the simulation of position and orientation.
This error largely results from the inherent indeterministic behavior of the robot
controller (see figure 3.6).

Figure 3.7: A navigation including extreme changes
in translational and rotational velocity. The picture
shows the simulated and the real path of the robot
(coordinates of position in meters).

This indeterministic behav-
ior itself usually accounts for
an average error of around
one percent. After ex-
treme navigation situations
where the translational ve-
locity was set from full to
zero and the rotational ve-
locity was set from zero to
full (or both the other way
around) sometimes an error
of up to 10% in orientation
occurred (see figure 3.7 for
example). These cases are
likely the hardest to predict
at all and not very com-
mon in real robot navigation.
Figure 3.8 shows real robot
data and predicted data of

the simulator in two prevalent trajectories. Obviously the match of predicted
and real robot data looks satisfying. The remaining small errors in simulation
are balanced by the high-level control loop running at a frequency of 10 Hz in
real-time.

Scalability of the Method In addition to our Pioneer robots the simulation
method introduced above can be used for any other real robots such as B21 or
Nomad robots.
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Figure 3.8: A comparison between the position data of a real robot and the data
simulated. Subfigure (a): A robot driving a jink around an obstacle. Subfigure (b): A
robot driving a curve.

Comparison with the RoboCup Simulation League

The main difference between our simulation and the well known RoboCup soc-
cerserver simulation environment [Kitano et al. 1997, Noda et al. 1998] is that
we can simulate a team of real Pioneer I robots while soccerserver simulates
a hybrid, in some aspects human-like, soccer player. Our robot soccer team
(the AGILO RoboCuppers [Beetz et al. 2002]) consists of four Pioneer I robots
[Pioneer 1998] that have a number of serious disadvantages concerning their dy-
namical behavior compared to an agent of the soccerserver:

• Pioneer robots (like a number of other real robots) cannot hold the ball if
it comes not directly into their ball-guiding device.

• Path planning with real robots becomes more complicated than in the soc-
cerserver where the field is about 105 times 70 meters and a player has a
diameter of 0.3 meters only.

• A Pioneer robot (like any other real robot) has to deal with time delays,
nonlinear acceleration, and noisy sensors.

Moreover if the ball is fast enough it can go through a player in soccerserver. It
can be given a velocity vector by a player having it in his kicking range. Teams
like the Karlsruhe Brainstormers [Riedmiller and Merke 2002] have shown that
in the soccerserver environment learning algorithms perform beautifully and, in
fact, a lot better than a human being can control a player with a joystick.
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Chapter 4

Experience-Based Control

4.1 Introduction

Many machine control skills are difficult and tedious to code by hand. Preferably,
such skills should be learned automatically by the machine – for instance, through
experience-based learning techniques. Unfortunately, many of these learning
tasks in the context of skill acquisition are very difficult to solve: Their state
spaces are high dimensional, variables and command parameters are continuous
values, there may be a lack of training data, the exploration may be unsuccessful,
and the influence of noise may be high (see section 2.2). This situation calls for
pragmatic solutions to machine control problems.

Properties of Experience-Based Control In machine control we are looking
for a mapping

π :

{

S → A
ζ(t) 7→ a(t)

(4.1)

called policy that maps a current state, ζ(t) to the action to be performed, a(t).
We want to know how the machine should behave, which action should be per-
formed in which situation to reach the target state (as soon as possible). In the
following we will describe the main properties of our approach of experience-based
control (EBC) and explain why they are necessary for the successful learning of
machine control tasks.

• Learning from Experience and Interaction To obtain control software
that copes with the problems of real world applications we need to base our
learning on experience. Learning depends on feedback from trials performed

35
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in the real world. Software developed without any feedback from interaction
with the environment has little chance to work reliably.

• Inductive Learning Since we want our control software to work not only
in the cases observed during the acquisition of experience but also in cases
not observed before, we have to apply inductive learning to obtain a high
degree of generalization.

• Automatic, Indirect Supervised Learning Supervised learning means
to use a teacher who has to provide training patterns for the learning algo-
rithm in order to improve its performance. Since it is (1) very laborious and
(2) in some cases impossible to use a human teacher to generate training
patterns we want the patterns to be generated automatically.

• Exploration with an Initial Policy To automatically generate training
patterns we explore the state space by performing actions that are chosen
(1) randomly and (2) based on initial knowledge. This will enable us to
exploit a priori knowledge and to explore the state space randomly too.
Before performing an action the respective successor state is unknown. The
obtained trajectory of states is used for learning.

• Non-Incremental Learning During exploration we receive no immediate
feedback through rewards. This avoids (1) the incremental summation of
errors, (2) the mono-directed exploration of the state space based on pre-
vious experiences, and (3) the forgetting of experiences acquired long ago.
Learning is completely performed offline. In applications with dynamic en-
vironments the dynamic components must be included in the state space
because they cannot be learned online.

In experience-based control we try to learn from trajectories of past explorations
by generalization. Our methods rely on a three step process: First, states visited
during exploration are assigned values dependent on their temporal distance to the
target state. In the second step, these values, together with the respective states,
are used for learning a temporal distance metric for the state space. Function
approximators support the learning process. Finally, we exploit the learned metric
in order to control the machine. Thus exploration, learning, and exploitation
are strictly divided. For some applications we can even learn a direct mapping
from state space to action space instead of a distance metric. The different
techniques for exploration and learning will be introduced in the sections 4.3
and 4.4, respectively. But first, we describe the pre-exploration as a necessary
precondition for all following methods.
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4.2 Pre-Exploration

As a precondition for applying the learning methods that will be introduced below
we have to learn projection-functions that enable us to efficiently explore the state
space and find the successor (or predecessor) state of any state-action-pair.

Forward-Projection The function used for forward-projection is given by

P+ :

{

S ×A → S
〈ζ(t), a(t)〉 7→ ζ(t + 1)

(4.2)

where a state, ζ(t) and an action at time t, a(t) are mapped to a successor state,
ζ(t + 1). The forward-projection is used for predicting the successor state of a
proposed action. The proposed action can then be evaluated according to the
appropriateness of its successor state. Further P+ can be used for means of
simulation if Ā contains one action only (see chapter 3). This is very important
if the costs (in terms of time and/or money) for exploration with the real machine
are high. In this context, we assume P+ to be a deterministic function.

Backward-Projection Similar to the forward-projection (equation (4.2)) we
define a function that implements a backward-projection:

P− :

{

S ×A → S
〈ζ(t + 1), a(t)〉 7→ ζ(t)

(4.3)

Here, a state, ζ(t + 1) and its preceding action at time t, a(t) are mapped to the
predecessor state, ζ(t). Like P+, we assume P− to be a deterministic function.
Fortunately, for the majority of real world control processes, P− can be regarded
as a deterministic function. At least P− is unimodal distributed with a small
variance. The backward exploration following in section 4.3.2 is based on this
backward-projection.

Learning the Projection-Functions Accurate projection-functions are es-
sential for the reliability of the control methods described in this chapter. They
work as a basis for the learning of control behaviors. The requirements for training
data as explicated in section 2.2.1 apply to the training of the projection-functions
in particular. To obtain functions that implement nearly the same behavior as
a real machine we need large amounts of training data covering the entire state
space.

Either training patterns are acquired by simply performing actions on the real
machine and recording all actions and states over time or training patterns are
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acquired by doing the same but in simulation. While the first approach will
likely lead to more precise projection-functions the second one allows for a more
efficient collection of training data. Patterns contain two consecutive states, ζ(t)
and ζ(t + 1), and the action responsible for the respective change in state, a(t):

pattern for P+ pattern for P−

〈ζ(t), a(t)〉, ζ(t + 1) 〈ζ(t + 1), a(t)〉, ζ(t)
(4.4)

The data at hand is learned by means of function approximation. Useful approx-
imators for learning projection-functions include neural networks (see appendix
A.2) and networks of radial basis functions (see appendix A.3).

4.3 Exploration

The exploration of the state space of a machine provides an opportunity to gather
information (1) about the states the machine can reach in extreme situations
and, even more important, (2) about the behavior of the machine depending on
the actions that were executed before. Since we want to perform experience-
based learning, for us, the exploration of the state space is the key to acquiring
experience. In the following subsections we first describe the standard way of
exploration (forward exploration) and then introduce sophisticated exploration
techniques to overcome problems occurring in forward exploration.

4.3.1 Forward Exploration

The most plausible way of exploration is the simple forward exploration. The
machine starts at a preselected or randomly defined start state ζstart and performs
actions according to a well defined initial policy. All states visited during this
exploration are recorded. As soon as the machine reaches a state fulfilling the
constraints of the target state the exploration is ended successfully (figure 4.1(a)
depicts such a scenario). Then the data of the recorded states is used to generate
learning data to train a functioning controller. To perform a forward exploration
in simulation the forward-projection P+ (equation (4.2)) is inherently needed.

Initial Policies All explorations that reach the target are called successful.
The success of an exploration, however, depends on the initial policy employed
for the selection of actions. This policy can be to choose any action of the action
space by random. Alternatively, it can be hand-coded. This is also the easiest
way to include a priori knowledge. It is advisable to use a hybrid policy which
chooses partly by random and which has a component that sometimes chooses
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Figure 4.1: Subfigure (a): A forward exploration in continuous state space. ζtarget

is reached after a number of actions (a1, a2, ...). Subfigure (b): After a long forward
exploration ζtarget is reached. There probably would have been a better way.

greedily based on an a priori defined simple distance metric that is assumed to
be not entirely wrong.

Problems

Detours Let us assume that some trajectories from exploration runs are given.
These trajectories lead from different states in the state space to the target state.
Since we usually do not know a reasonable distance metric for the state space
we might not be competent to tell if the performed successful exploration runs
were detours or not. Even if we think they are detours we cannot directly extract
information about more efficient trajectories to the target. Since we want to
create an efficient controller we have to take care that we do not use too many
inefficient trajectories for learning. Figure 4.1(b) shows a detour assuming the
Euclidean distance metric.

Unsuccessful Exploration Naturally, not all exploration runs will reach the
target space (see figure 4.2(a) for an example), especially if the target space is
very small compared to the whole state space or even consists of one single target
state only. In fact, usually there are many more exploration runs that do not
reach the target state than runs that do. But if none of the exploration runs
reaches the target state we will not be able to learn how to control the machine
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in order to reach the target state from this experience. We essentially must obtain
trajectories from exploration that lead to the target state.

Insufficient Exploration of Interesting Regions Furthermore there is the
question if the state space was covered sufficiently during exploration. Maybe
there are regions which are explored but need to be explored more in detail
because changes in state are enormous even for marginal changes in the actions.

Solutions

Obviously, the more exploration runs we do the smaller the problems will be: (1)
The more runs we do, the greater the chance of obtaining successful explorations.
(2) Relying on a great number of exploration runs the error of single detours will
be balanced. However, we do not have unlimited training data and time.

Restrictions on Trajectories To avoid detours the following restrictions for
explorations are proposed:

(1) The time per exploration, and with it the length of the corresponding tra-
jectory, should be limited. The length of the trajectory can be increased
iteratively if it is not sufficient. To find the optimal length requires some
domain specific knowledge but is manageable.

(2) Actions should change smoothly. In the context of choosing a direction this
means not to go north directly after going south but to go, for example,
north-west in the next step. In particular two consecutive actions should
not be inverse. This means that performing two actions should not keep
the state almost constant. Further, a smooth change of actions will lead
to a smooth behavior of the learned controller. The user can easily define
criteria in order to determine if an action is inverse or not.

(3) Regions already explored during the current exploration run should be
widely avoided.

However, to explore regions of interest more in detail we have to explore these
regions more than one time (as proposed by [Moore and Atkeson 1995] for rein-
forcement learning in discrete state spaces).

Other Exploration Techniques While all the above are modifications of the
forward exploration the following techniques are based on different ideas.



4.3. EXPLORATION 41

(a) (b)

ζ

S

start

target

S

ζ

S

start

target

S

Figure 4.2: Subfigure (a): From the start state ζstart no successful exploration can be
found that leads to the target space Starget. Subfigure (b): The backward exploration
provides trajectories leading from some states in state space to the target space Starget.

4.3.2 Backward Exploration

To overcome the problem of unsuccessful exploration we propose the method
of backward exploration. After unsuccessful exploration runs we cannot give
any information about the distance to the target state. Backward exploration
works the same way as forward exploration but the exploration starts at the
target state. The state space is then explored backwards from the target state by
using the backward-projection P− (equation (4.3), figure 4.2(b)). Inherently this
can only be done in simulation but not in the real world. The goal of backward
exploration is to cover the state space with trajectories from explorations starting
at the target state. It is not necessary to reach any certain start state because
the temporal distance to the target is given for a number of states and can be
computed by generalization of these states for any other state.

Since in backward exploration all exploration runs are successful (because they
all connect non-target states with the target state) we need less training time
for the same number of successful explorations. This leads, dependent on the
application at hand, to an enormous speed-up in learning. In fact, in cases where
no successful explorations can be made using forward exploration, it is essential to
use backward exploration. However, there might be very few applications where
the backward-projection P− is not deterministic and therefore difficult to use.
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Figure 4.3: Subfigure (a): Fixed-action exploration. The action chosen is kept fixed
during the entire exploration. Subfigure (b): Supervised exploration. A predefined
sequence of actions (a1, a2, ...) is performed from ζstart. The resulting state at the end
of the exploration is called target state.

4.3.3 Fixed-Action Exploration

In applications where trajectories that lead to the target are known in advance
and we want to know how to get there as quickly as possible we can use a
different type of exploration style. Imagine, for instance, in the real world there
is a mountain to climb and there are a number of hiking trails that lead to the
mountain’s peak. We may want to know which hiking trail to use to reach the
target as quickly as possible. In this case the action space is discrete and consists
of a number of trails. The action is fixed for the whole exploration run. The state
space contains features that describe the characteristics of the current situation.
In the example this could be the length of the different trails, the altitude (maybe
a particular trail requires us to walk down and up again), and so on. In terms of
machine control we could have the choice between different control policies that
take different amounts of time to reach a target state. In fixed-action exploration
we assume a finite number of possible actions that lead to the target and we
perform them all in order to find the most efficient one.

4.3.4 Supervised Exploration

Sometimes we want to teach a particular behavior to a controller by providing
a sequence of actions without knowing the explicit target state in advance. But
without an explicit target state all the above exploration techniques will not work.
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The idea behind supervised exploration is to perform a sequence of actions until
we reach a state that we think that is useful to know how to reach. Then we
name the reached state target state and compute all previous states relative to
this target state. This means we effectively redefine the origin of the state space.
All states visited during the exploration run are regarded from the target state’s
point of view.

Unfortunately this method only works if the state space is invariant in all di-
mensions. This means that the change in state ∆ζ(ζ(t), a(t), ∆t) depends on the
action, a(t) and a constant time value, ∆t only and is independent of the current
state, ζ(t). Otherwise we cannot redefine the origin of the state space.

4.4 Learning Policies

After having introduced different methods for the exploration of the state space
we now take a look at how to learn a policy-function (equation (4.1)). Depending
on a priori knowledge and complexity of the task at hand different approaches will
be used to construct a policy function. First, we will shortly distinguish between
local and global optimization (subsections 4.4.1 and 4.4.2) before we describe the
single approaches in detail.

A value-function (subsection 4.4.3) receives a state as an input only. Additionally,
we need a projection-function to implement the policy-function. The approxima-
tion of a Q-function (subsection 4.4.5) that receives a state and an action as
an input is more difficult to be implemented but does not require a projection-
function. Finally, the direct approximation of the policy-function (subsection
4.4.6) is most straightforward but in many cases not possible because of its com-
plexity.

4.4.1 Local Optimization

A number of control problems can be solved by using only local optimization:
Moving to a target place inside a room without any obstacles is such a case: We
can act greedily and take an action (direction) that minimizes the distance to
the target state. The action that is optimal from a local point of view is the
optimal action from a global point of view, too. However, we should not use local
optimization if there are obstacles in the room. In this case we might walk into
a direction that is optimal from a local point of view but not from a global point
of view because we might come across some obstacles later on by following this
direction.

If a distance metric that gives the distance to the target for any state is available
(for instance the Minkowski metric), the target state can be easily reached, pro-
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Figure 4.4: Subfigure (a): The way to the target state is strictly monotone. Subfig-
ure (b): The way to the target state is not strictly monotone regarding the depicted
dimension of the state space. Performing greedy actions (arrow marked greedy) might
not lead to the target state.

vided that the distance metric δ is strictly monotonic decreasing. If this is the
case, we simply always choose the action that leads to a state with the minimal
distance to the target:

π(ζ(t)) = arg min
a∈A

δ(P+(ζ(t), a), ζtarget) (4.5)

In case of the Minkowski metric local optimization works well if the optimal
way to the target state is strictly monotonic increasing (or decreasing) in all
dimensions of the state space.

4.4.2 Global Optimization

For a great number of control problems we do not know a distance metric that
fulfills the requirements mentioned above. Here, we cannot use equation (4.5)
with a simple metric (for instance the Minkowski metric). The way to the target
state does not have to be strictly monotonic increasing (or decreasing) in all
dimensions of the state space. Figure 4.4(a) shows a state space where the way
to the target state is strictly monotone. In Figure 4.4(b) the way is not strictly
monotone. Therefore simple metrics should not be used for finding a way. In
the following we introduce different methods for learning the policy. While the
approximation of the value-function and the approximation of the Q-function
aim at an indirect learning of the policy-function it can be learned directly by an
approximation of the policy-function itself.
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Figure 4.5: Subfigure (a): The maximum of the value-function corresponds to the tar-
get state. Minima denote undesirable states. Subfigure (b): The generalized function
V is a lower bound for the optimal value-function and has a shape similar to it.

4.4.3 Value-Function Approximation

As mentioned in section 4.1, we want to learn a temporal distance metric in
the state space S. According to the syntax of a value-function in reinforcement
learning1 (see section 7.1) we call this metric V and define that high values corre-
spond to states close to the target and low values correspond to states far away.
To have an upper bound for the time to reach the target state, ζtarget or the target
space, Starget from a particular start state we have to navigate there through state
space and record the time needed. An upper bound for the time corresponds to
a lower bound for the optimal value function. Once we know the value for all
states by having learned a continuous value-function we perform gradient ascent
to get to the target state (see figure 4.5(a)).

Exploration For the approximation of the value-function we use forward ex-
ploration (see section 4.3.1) and backward exploration (see section 4.3.2, figure
4.6(a)). As we explore states ζ(t) at time t until we arrive at the target space
Starget we can assign values to these states:

V(ζ(t)) =

{

+1 if ζ(t) ∈ Starget

γ · V(ζ(t + 1)) else
(4.6)

If we reach Starget at time t we assign V(ζ(t)) = 1 to ζ(t) and V(ζ(t− i)) = γ i to
all predecessor states where γ is a discount factor (γ ∈ (0, 1), see figure 4.6(b)).
Thus we get patterns

ζ(t),V(ζ(t)) ζ(t) ∈ S, V(ζ(t)) ∈ (0, 1] (4.7)

1In reinforcement learning V is defined as the sum of reinforcements received when following
some fixed policy to a terminal state.
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Figure 4.6: Subfigure (a): Using the backward-projection the state space is explored
starting at the target state. Subfigure (b): During exploration the value of each state
visited is computed according to equation (4.6).

that we can use for learning a lower bound for the optimal value-function. The
idea is that having a sufficient number of those patterns (unlimited in theory but
a reasonable number in practice) we will be able to approximate a function V
whose local extrema are located at almost the same points in state space as those
of the optimal value-function (see figure 4.5(b)). If we randomly explore the state
space a point near the target space will more likely get a high value than a point
far away.

Learning The value-function V is represented by a function approximator
fapprox that maps a state ζ(i) to a real value:

V :

{

S → IR
ζ(i) 7→ fapprox(ζ(i))

(4.8)

The approximator fapprox is learned using the patterns of equation (4.7). We
can use different function approximators (see appendix A for function approxi-
mators). [Bertsekas and Tsitsiklis 1996] propose to use multi layer artificial neu-
ral networks [Hecht-Nielsen 1990, Hertz et al. 1991, Bishop 1995, Rojas 1996] for
the approximation of a value-function (in reinforcement learning). We mainly
prefer multi layer neural networks (see appendix A.2) and networks of radial ba-
sis functions [Powell 1985, Broomhead and Lowe 1988, Poggio and Giorosi 1989,
Moody and Darken 1989] (see appendix A.3). RBF-networks are appropriate
because we can easily build attractors around trajectories using them. Both
methods, neural networks and RBF-networks, can deal with continuous input
and output spaces, they can approximate highly complex functions, and they are
very efficient during exploitation.

Using a sufficient number of training and validation patterns for learning we are
able to detect if a low measured value corresponds to a local minimum in state
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Figure 4.7: Detecting outliers in state space: Subfigure (a): Which of the measured
values are outliers? Subfigure (b): The dashed line is learned from training data (filled
circles) using validation data (other circles). Outliers are identified.

space or if the exploration was a detour (see figure 4.7). The computational
amount for learning is around O(nexpl

d) where nexpl is the estimated amount for
the sufficient exploration per dimension and d is the number of dimensions of the
state space. However, as the size of the state space grows exponentially with the
number of dimensions the amount needed for learning in that space does as well.
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Figure 4.8: Exploita-
tion: We choose the action
promising the highest value
for the successor state (in
this case a1).

Exploitation Assuming we have managed to learn
the value-function V we need to know which action a
in a given state ζ(t) leads to the best successor state
ζ(t + 1). This is done in two steps: First, we heuris-
tically generate a number of possible actions. In case
of a continuous action space this can be done by an
equidistant covering of the action space. An inter-
polation between different actions is possible too. In
case of a finite and relatively small discrete action
space we can evaluate all possible actions. Secondly,
we predict the supposed successor state for each pos-
sible action a and choose the action corresponding to
the best-valued successor state (see figure 4.8). Thus our policy π is defined

π(ζ(t)) = arg max
a∈A

V(ζ(t + 1)) = arg max
a∈A

V(P+(ζ(t), a)) (4.9)

Here, P+ is the forward-projection defined in section 4.2 (equation (4.2)).
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Figure 4.9: Subfigure (a): Using two value-functions V+ and V−. Undesirable states
(obstacles) are minima. They are circumnavigated. Subfigure (b): The target state is
surrounded by states with minimal value. It may not be possible to find a way to the
target state by using the policy of equation (4.13).

4.4.4 Using Two Value-Functions

So far, we cannot specify undesirable states (states we do not want to visit) with
the value-function we introduced in the last section.

Exploration Equally to assigning positive values to states of successful ex-
plorations (explorations that lead to the target state in the end) we can assign
negative values V− to states of explorations that lead to undesirable states. In
the latter case we assign values according to the following equation:

V−(ζ(t)) =

{

−1 if ζ(t) ∈ Sundesirable

γ · V−(ζ(t + 1)) else
(4.10)

where Sundesirable is the space containing all undesirable states and γ is a discount
factor (γ ∈ (0, 1)). If we reach an undesirable state we penalize ζ(t) with the
value V(ζ(t)) = −1 and all its predecessor states according to γ. The patterns
obtained contain

ζ(t),V−(ζ(t)) ζ(t) ∈ S, V−(ζ(t)) ∈ [−1, 0) (4.11)

Learning The above patterns are used to learn the function

V− :

{

S → IR
ζ(t) 7→ fapprox(ζ(t))

(4.12)
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by means of function approximation (the same approximators as for V+ can be
used). In addition to V− we have to learn V (equation (4.8)) too. In the following
we name V+ = V .

Exploitation When we have learned the value-functions V+ and V− (for target
states and undesirable states respectively) we determine which action a leads to
the best successor state ζ(t+1) for a given state ζ(t). This can be done by using
the policy

π(ζ(t)) = arg max
a∈A

[V+(P+(ζ(t), a)) + V−(P+(ζ(t), a))] (4.13)

Then, the function [V+ + V−] is used to find the action corresponding to the
best-valued successor state. This avoids undesirable states (see figure 4.9(a)).

But what happens for example if we define a number of undesirable states (with
minimal value −1) around the target state? This could correspond to a robot
which is to navigate through a narrow passage. The resulting value-function may
have local maxima and the robot may not find a way to its target avoiding the
states with negative values (see figure 4.9(b)). This problem is similar to prob-
lems occurring in path planning using potential fields. In addition to numerous
variations of the potential field method that overcome the problem of local max-
ima (see [Barraquand et al. 1992] for example) we propose a special solution to
this problem in our context. We use a threshold ΘV− that denotes the absolute
minimum of V− we are willing to tolerate (ΘV− ∈ [−1, 0]). Thus ΘV− is a well
understood parameter. The policy is to use V+ as defined in section 4.4.3 and to
select an action only if the value of V− for its successor state is better than ΘV− :

π(ζ(t)) = arg max
a∈A

V+(P+(ζ(t), a)) · Eval[V−(P+(ζ(t), a)) > ΘV− ] (4.14)

Herein Eval[· > ·] is an evaluation function that tells us if one number is bigger
than another one:

Eval[b1 > b2] =

{

1 if b1 > b2

0 else
(4.15)

This approach guides us not only towards the target space. It even allows us to
define undesirable states (or spaces) we definitely do not want to visit.

4.4.5 Q-Function Approximation

If we do not want to use the forward-projection P+ (or if we cannot use it because
we cannot compute it for some reason) we have to use another approach. For a
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number of applications it is possible to learn a Q-function2 that maps from state
and action to a value that we call Q-value then. If we are able to learn such a
function we can use it similar to using a value-function:

Q(ζ(t), a) = V(ζ(t + 1)) = V(P+(ζ(t), a)) ∀ζ(t) ∈ S,∀a ∈ A (4.16)

While a value-function maps from the state space to a single value, a Q-function
maps from a state-action space to a value.

Exploration For the approximation of a Q-function we can use forward explo-
ration (section 4.3.1) and backward exploration (section 4.3.2). In contrast to
the exploration runs for learning a value-function we record states and actions
this time. If we have collected a number of successful explorations leading to the
target we assign Q-values according to the following rule:

Q(ζ(t), a(t)) =

{

+1 if ζ(t + 1) ∈ Starget

γ · Q(ζ(t + 1), a(t + 1)) else
(4.17)

Here, γ is a discount factor (γ ∈ (0, 1)). Similarly, we can use the linear rule

Q(ζ(t), a(t)) =

{

+1 if ζ(t + 1) ∈ Starget

Q(ζ(t + 1), a(t + 1)) − 1
texpl

else (4.18)

where texpl is the maximal number of steps needed for an exploration run. Ap-
plying the above equations we obtain patterns

〈ζ(t), a(t)〉, Q(ζ(t), a(t)) ζ(t) ∈ S, a(t) ∈ A, Q(ζ(t), a(t)) ∈ (0, 1] (4.19)

that we can use for learning.

Learning Once we have a sufficient number of patterns we can use them in
order to learn the Q-function

Q :

{

S ×A → IR
〈ζ(t), a〉 7→ fapprox(ζ(t), a)

(4.20)

by means of a function approximator fapprox. We prefer to use neural networks
(see appendix A.2) and networks of radial basis functions (see appendix A.3)
for the approximation of Q. These preferences are based on the same reasons
specified for the approximation of value-functions in section 4.4.3.

2The name Q is given in analogy to Q-learning [Watkins and Dayan 1992]
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Exploitation Assuming we have learned the Q-function we want to know which
action a in a given state ζ(t) leads to the best successor state ζ(t + 1). This is
done by heuristically generating a number of possible actions and evaluating each
action’s Q-value for the current state. In case of using the Q-function, the policy
π is defined

π(ζ(t)) = arg max
a∈A

Q(ζ(t), a) (4.21)

4.4.6 Policy-Function Approximation

If heuristically generating actions and computing a value (or a Q-value) for each
action becomes too laborious there is another way to learn the policy: We can
directly learn the policy-function that maps from a state to an action. In the
following we explain the procedure for directly learning the policy-function.

Exploration For exploration we use forward exploration (section 4.3.1), back-
ward exploration (section 4.3.2), fixed-action exploration (section 4.3.3), or su-
pervised exploration (section 4.3.4) dependent on the initial knowledge about the
task at hand. We record states and actions and assign actions

π(ζ(t)) = a(t) (4.22)

to obtain patterns

〈ζ(t1), ζ(t2)〉, a(t1) ζ(t1), ζ(t2) ∈ S, a(t1) ∈ A (4.23)

where ζ(t1) is the current state and ζ(t2) any succeeding state of the trajectory
gained from exploration. If we assume the target state to be implicitly defined
or if we can compute ζ(t2) relative to ζ(t1) (only if the state space is invariant in
all dimensions) we can simplify the patterns to

ζ(t), a(t) ζ(t) ∈ S, a(t) ∈ A (4.24)

and use the simplified patterns for learning. Otherwise we have to learn a more
complex policy-function.

Learning Dependent on the patterns at hand we use a function approximator
to learn

π(ζ(t)) = fapprox(ζ(t)) (4.25)
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approximation ↓ exploration→ forward backward fixed-action supervised

value-function 5.1, 5.2 5.1, 5.7 - -
two value-functions 5.4 - - -
Q-function 5.3 - - -
policy-function - - 5.6 5.5

Table 4.1: Exploration strategies and function approximations used in chapter 5.

or to learn a more complex policy-function:

π(ζ(t), ζtarget) = fapprox(ζ(t), ζtarget) (4.26)

Suitable approximators include neural networks (appendix A.2) and networks of
radial basis functions (appendix A.3).

Exploitation Since π is computed directly using a function approximator we
simply give the current state as an input to π and obtain the action recommended.
In case of a dynamic target state we have to put the target state into the policy-
function to.

4.4.7 Comparison of the Different Policies

In the previous subsections we have introduced a number of different approaches
to compute the policy of a task. The main difference between the individual
methods proposed is on which level we apply function approximation.

While the approximation of the policy-function is straightforward it is the most
complex task for function approximation because we have to estimate a direct
mapping from the state space to the action space. The action space might be
multi-dimensional. So the policy-function has an output completely different
from the output of the value-function or the Q-function. These functions map to
one dimension only. Further the policy-function might be far from smooth with
a lot of local extrema. Unfortunately we cannot approximate a policy-function
for all tasks. This is the main reason why we are forced to use other functions as
well.

The Q-function needs heuristics to generate possible actions by the advantage
that we have to approximate a less complex function that will be relatively
smooth: Similar states and actions will result in similar successor states. As
defined above, the Q-function has state and action as input. If even this is too
complex to learn (this is the case in quite a lot of interesting tasks) we have to use
a value-function supported by a projection-function. In this case we “only” have
to learn a mapping from the state space to an interval and a projection-function.
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Despite the differences between the individual methods introduced, they all have
in common the inductive and non-incremental learning from experience and in-
teraction.

Table 4.1 depicts what kind of exploration strategies and function approximations
are used to solve the tasks following in chapter 5.
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Chapter 5

Applications of Experience-Based
Control

In this chapter, we present a number of problems that have been solved us-
ing experience-based learning. The tasks are related to various applications,
mostly in the field of robotics and especially robot soccer. The tasks intro-
duced here have different degrees of complexity. Some of them are obviously
more complex than well known standard problems that have been solved by
a number researchers. These standard problems include the cart-pole problem
[Barto et al. 1983, Riedmiller 1993, Schaal 1997] or the mountain-car problem
[Sutton 1996, Smart 2000]. Dependent on the task at hand we employ one of the
methods introduced in the preceding chapter. We show that experience-based
learning is a reliable approach for solving different kinds of tasks. For each task,
we describe in detail what the situation of the experiments was, what algorithms
were applied, and what was the result.

5.1 An Abstract Navigation Task

Before we start to apply experience-based learning techniques to more concrete
tasks we begin with an abstract task. The objective, here, is to move a mobile
object towards a certain target position in 2D. The continuous state space is
given by

S = [−5.0m, +5.0m] × [−5.0m, +5.0m] (5.1)

The target space is given by

Starget = {ζ ∈ S | δ0(ζ) ≤ 0.5m} (5.2)

55
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Figure 5.1: Value-functions obtained from learning. Both functions are trained with
data from 1000 runs of forward exploration. 90 explorations were successful. Subfigure
(a): A trained multi-layer perceptron (2-8-4-1 topology). Subfigure (b): A trained
RBF-network (5 kernels).

S target
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Figure 5.2: State space and
possible actions of the ab-
stract navigation task.

where δ0(ζ) is the length of ζ relative to the origin of
the state space (using the Euclidean metric). Figure
5.2 shows the scenario. In each discrete time step,
the object is moved 1m. The continuous action space
contains the available directions of the movement and
is defined

A = [0, 360) (5.3)

where an action denotes the direction in degrees. Ob-
viously this kind of movement is a strong simplifica-
tion of real movements. Further this task can easily
be solved using a hand-coded implementation. But

this task is a suitable testbed for the experience-based learning methods intro-
duced. Action space, state space, and transfer function can easily be changed to
perform more difficult tasks.

Exploration For the exploration of the state space we use forward explo-
ration (section 4.3.1) and backward exploration (section 4.3.2). For this task,
the projection-functions P+ and P− are hand-coded. We perform explorations
with 1000 (100) runs for forward (backward) exploration. In addition we perform
a backward exploration with one run only. The states of successful explorations
are assigned values according to
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Figure 5.3: Value-functions obtained from learning. Subfigure (a): A trained RBF-
network (5 kernels). Only one exploration run was performed. Subfigure (b): A trained
RBF-network (5 kernels). 100 exploration runs were performed.

V(ζ(t)) =

{

+1 if ζ(t) ∈ Starget

γ · V(ζ(t + 1)) else
(5.4)

in order to learn a value-function V (see section 4.4.3). The length of an explo-
ration is limited to 20 steps. From 1000 forward explorations performed only 90
were successful. Naturally, all of the 100 backward explorations can be used in
order to generate patterns ζ(t),V(ζ(t)). γ was set to 0.9. For validation by means
of early stopping a second set of 1000 forward explorations was performed. 105
of the runs of this set were successful.

Learning For learning the patterns we use multi-layer neural networks (ap-
pendix A.2) and networks of radial basis functions (appendix A.3). The neural
network has a relatively simple topology (2-8-4-1), while the RBF-networks have
5 kernels. The neural network was trained using the validation set of 105 success-
ful explorations for early stopping [Sarle 1995] (the n++ software, section 5.8.1,
was used). The RBF-networks were trained using features for automatic opti-
mization as described in the software section 5.8.2. The resulting value-functions
are depicted in figures 5.1 and 5.3.

Exploitation As written in section 4.4.3, equation (4.9) we choose the action
promising the highest value for the successor state for execution. In our exper-
iments we define a set of 1000 randomly chosen start states and use them for
exploitation with the different value-functions. Table 5.1 depicts the percentage
of successful exploitations and the average number of steps to the target for four
different value functions.
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Value-function successful average time steps
exploitations per exploitation

MLP 2-8-4-1 forw1000 86.4% 6.274
RBF 5kernels forw1000 100.0% 4.473
RBF 5kernels back001 100.0% 4.493
RBF 5kernels back100 100.0% 4.279

Table 5.1: Percentage of successful exploitations and average number of steps for
different value-functions.

Herein MLP 2-8-4-1 forw1000 means the value-function approximated by the
multi-layer neural network based on 1000 forward explorations, RBF 5kernels
forw1000 means the value-function approximated by an RBF-network of 5 kernels
based on 1000 forward explorations, RBF 5kernels back001 means the value-
function approximated by an RBF-network of 5 kernels based on one backward
exploration, and RBF 5kernels back100 means the value-function approximated
by an RBF-network of 5 kernels based on 100 backward explorations.

As we can see, the RBF-networks performs a lot better than the multi-layer neural
network. This is not surprising since the RBF-networks use Gaussian kernels and
these are appropriate means to represent the nonlinear distance metric of this task
because their natural shape is similar to the desired value-function.

The value-function of the multi-layer neural network (figure 5.1(a)) is not strictly
monotonic increasing towards the target. The reason for that is probably a lack of
training data. It depends on the validation data how long the network is trained.
If the explorations of the validation data are totally different from those of the
training data the result might be poor.

Obviously the performance of the RBF-networks is best using backward explo-
ration. This makes sense since all backward explorations can effectively be used
for generating training data. Inherently, more training data improve the perfor-
mance of the learned value-function.

5.2 The Corridor-Following-Task

The corridor-following task involves learning to control a robot in order to nav-
igate through a corridor towards a target point at the end of the corridor. The
state space S consists of the distance to the end of the corridor, δtarget (in meters)
the orientation of the robot relative to the corridor, ∆ϕ (in rad (−180, 180]) and
the coordinate of the robot (in terms of the perpendicular of the corridor) in
relation the middle of the corridor, δy (in meters):
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robot

δδy

target spacestart
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Figure 5.4: The corridor following task: A robot has to navigate from a start state to
a target state in a corridor.

ζ = 〈δtarget, ∆ϕ, δy〉 (5.5)

Figure 5.4 shows a possible scenario. In our experiments the objective of the
policy π is to minimize the amount of time the robot needs to reach the target
state by choosing an appropriate rotational velocity (in degree per second) while
the translational velocity of the robot is fixed. The target space Starget is reached
if the robot is at the end of the corridor (independent of ∆ϕ and δy).

An only slightly different task has been defined by [Smart and Kaelbling 2000]
and has been used for the evaluation of their reinforcement learning algorithms.
In this work, the robot uses a laser range-finder to localize itself on the corridor.
Around 60 training runs were performed.

In our case the distance between start and target state is 8 meters while the
width of the corridor is 0.8 meters and the diameter of the robot is 0.4 meters.
This means the robot has very little space for moving at all.

Exploration During exploration we chose a random rotational velocity Vrot ∈
N(0, 30) (N is the Gaussian distribution). The maximal absolute value for Vrot

is 180. We change the velocity after a random time. Thus the action space
A is [−180, +180]. The robot starts at ζstart = (8.0, 0.0, 0.0). We use forward
exploration (section 4.3.1) in order to learn a value-function for the given state
space. Reaching the target or colliding with the wall are terminal states. If the
robot collides with the wall we ignore all data of the exploration. Otherwise we
assign values to the states recorded according to

V(ζ(t)) =

{

+1 if robot has reached end of corridor
γ · V(ζ(t + 1)) else

(5.6)

We perform ten forward explorations of which only two were successful. The
patterns obtained are used for learning the value-function.
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Figure 5.5: The value-function after 10 exploration runs. Subfigure (a): V dependent
on δtarget and δy . Subfigure (b): V dependent on δtarget and ∆ϕ .

Learning To learn the patterns ζ(t),V(ζ(t)) we employ multi-layer neural net-
works (appendix A.2) because of their global generalization behavior which is, in
contrast to RBF-networks, not limited to the local neighborhood of training data
but covers the whole state space. The network was trained using the RPROP al-
gorithm [Riedmiller and Braun 1993], and early stopping [Sarle 1995]. A simple
3-8-1 topology was sufficient for a reasonable performance of the network. The
n++ software described in section 5.8.1 was used. The resulting value-function is
depicted in figure 5.5(a) dependent on δtarget and δy and in figure 5.5(b) dependent
on δtarget and ∆ϕ.

Exploitation We choose the action promising the highest value for the suc-
cessor state for execution (according to section 4.4.3, equation (4.9)). During
exploitation we choose actions from

Vrot ∈ {−180,−170, . . . , 0, . . . , +170, +180} (5.7)

and evaluate all 37 possible successor states at a frequency of 10 Hz. In practice
we achieve a success rate of 100% in reaching the target while in the ten runs of
exploration the success rate was 20% only. The optimal time to reach the target
(driving almost straight) is 10.9 seconds. The time needed by our policy is 10.9
seconds as well. If we add Gaussian noise on our chosen action

Vrot = π(ζ(t)) + N(0, 60) (5.8)

the time needed is 11.1 seconds only. Due to its acceleration behavior the robot
never reaches a high rotational velocity. The policy automatically controls the
robot in order to keep it in the middle of the corridor.
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Figure 5.6: Subfigure (a): The simulated robot perceives objects up to a distance of
1m all around it and up to 4m in its view-angle. Subfigure (b): The Q-function of
obstacle avoidance for a fixed action a = 0.0.

As we can see, the value-function is strictly monotonic increasing towards the
target and not of a rugged shape. This underlines its quality.

However, the corridor-following task is still easy to solve by hand-coded imple-
mentations. Furthermore, the optimal value function is strictly monotonic in-
creasing in all dimensions of the state space what proves this task to be a simple
one. But the fact that only two successful exploration runs are enough to learn
a value-function that enables the robot to reach its target in minimal time earns
attention.

Robot Platform

The robot used for the corridor-following task was a Pioneer I robot
[Pioneer 1998]. To generate training data it was accurately simulated by
means of neural networks (described in section 3.5.1). Details can be found
in [Buck et al. 2002c] too.

5.3 Obstacle Avoidance

In this task we want a robot to learn to avoid obstacles that occupy spaces in the
robot’s local environment. Experiences are made from collisions with obstacles
during exploration. The robot and all the obstacles have circular floor plan and
a diameter of 1 meter. The robot moves 1 meter forward per discrete time step.
After every meter it decides whether to turn by maximal 45 degrees to the left
or right. Thus the action space is defined
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A = [−45, +45] (5.9)

The simulated robot perceives objects up to a distance of 1 meter all around it
and up to 4 meters if they are in its view (see figure 5.6(a)). The robot gets
information on the distance and the angle of the obstacles. Its view ranges up
to 90 degrees to the left and to the right. The state of the robot regarding one
certain obstacle O is defined

ζO = 〈d, α〉 (5.10)

with d (α) being the distance to (angle to) obstacle O. d is measured in meters
and α is measured in degrees; α ∈ (−180, 180].

In this application, we choose to approximate a Q-function because the state
space is two-dimensional only. The combined state-action space (the input of the
Q-function) has only three dimensions. For exploration we train the robot with
static obstacles while during exploitation we will try the Q-function for static and
dynamic obstacles. The advantage of this procedure is that the size of the state
space can be kept moderate for learning.

Exploration During exploration we put the robot on a random position in a
room of 40 × 40 square meters. 100 obstacles are placed in the room randomly.
Figure 5.7 depicts a part of the scenario. Then the robot chooses random actions,
a ∈ A. Patterns are generated by regarding sequences of k actions. If the robot
moves k steps without a collision with obstacle O we assign values to all preceding
combinations of states and actions according to

Q(ζO(t), a(t)) = 1 ∀t ∈ {1, . . . , k} (5.11)

In the other case, if the robot collides with obstacle O in the ith step, we assign
values according to

Q(ζO(t), a(t)) =
i − t

k
∀t ∈ {1, . . . , i} (5.12)

Patterns can be generated only for obstacles that are perceived by the robot.

Learning For the approximation of the Q-function we use multi-layer neu-
ral networks (appendix A.2) because of their minimal computational amount
during exploitation. We need to compute the network’s values several
times per cycle. The network was trained using the RPROP algorithm
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[Riedmiller and Braun 1993], and early stopping [Sarle 1995] (the n++ soft-
ware, section 5.8.1, was used.) A simple 3-5-1 topology performed good
enough for this task. The trained Q-function resulting from the patterns
〈ζO(t), a(t)〉, Q(ζO(t), a(t)) is depicted in figure 5.6(b) for the action a = 0.0.

Exploitation The policies used for exploitation are given in the following sub-
sections dependent on the number of obstacles.

5.3.1 One Obstacle

If we have to take one obstacle into account the policy given in section 4.4.5,
equation (4.21) can be used. The Q-function learned (figure 5.6(b)) shows that
we get low Q-values for obstacles close to the robot (low values for d) and that
we get bad values even for distant obstacles if they are in the robot’s moving
direction.

5.3.2 Multiple Obstacles

Figure 5.7: Obstacle avoid-
ance: An environment con-
taining for exploration and
exploitation with multiple
robots.

Now we regard the same scenario but with multiple
obstacles. The robot has to go through a room of
40×40 square meters with 250 moving obstacles this
time. The robot must move 1 meter per simulation
cycle but can choose an angle between −45 and +45
degrees. Obstacles move at 1 meter per cycle as well.
They move to randomly defined targets.

Since the Q-function was trained for one obstacle only
but we have multiple obstacles now, we need to define
a new policy-function. This policy chooses the action
promising the maximal Q-value for the current state
minimizing the Q-value over all obstacles in the range
of the robot’s perception. In the following equation O
denotes the set of obstacles perceivable by the robot.

πO∈O(ζO(t)) = arg max
a∈A

[min
O∈O

Q(ζO(t), a)] (5.13)

In our exploitation runs we generate 40 possible actions and evaluate all their Q-
values for the current states of all obstacles perceived. That leads to a success rate
of 98.8% for static obstacles and to a success rate of 88.6% for dynamic obstacles.
The tests include around 3000 trials for each of both exploitations. Herein success
means that the robot does not collide with any obstacle. Regarding the lower rate
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Figure 5.8: The dribble-task: The forward (with ball) must pass by the defender.

for dynamic obstacles one must consider that there are cases in which the robot
cannot avoid all obstacles by any action. The robot can even be surrounded by
obstacles in this crowded environment (see figure 5.7). Further exploration was
done with static obstacles only. The success rate during exploration was close to
zero.

A short animation related to this experiments can be found at
http://www9.in.tum.de/archive/agilo/ObstacleAvoidance.gif

Robot Simulation

For this task we used a virtual robot. The position of the robot in 2D at time t,
p(t) is computed by

p(t) = p(t − 1) +

(

cos(ϕ(t))
sin(ϕ(t))

)

(5.14)

where ϕ(t) is the current orientation of the robot normed to the interval [0, 360).
It is updated by

ϕ(t) = ||ϕ(t − 1) + a(t − 1)||[0,360) (5.15)

5.4 The Dribble-Task

All the tasks described in the preceding sections have at most three-dimensional
state space. Most of those tasks can be solved by hand-coded controllers. The
task introduced in this section deals with a fast changing and adversarial real
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Figure 5.9: The dribble-task. Subfigure (a): The initial setting of the task. The
forward has to dribble around the defender to reach the target space. Subfigure (b):
Some features of the state space.

world environment and is therefore much more complex. As we will see later, an
optimal value-function will not be strictly monotonic increasing (or decreasing)
in all dimensions of the state space. Learning to dribble in autonomous robot
soccer provides a good testbed for a multi-dimensional robot control problem.

Let us consider the following problem: A soccer robot in possession of the ball
has to dribble around an opponent defender. The opponent robot wants to hinder
it and tries to get the ball (figure 5.8). Especially the adversarial environment
(namely the defender) makes this task a very difficult one. An appropriate state
space for this environment must include relative distances, angles, and velocities
of the robots. Hence the dimension of the state space will be much more than
three.

In human soccer, players can quickly change their direction and, not seldom, try
to deke opponent players by performing fake-out motions. They move into one
direction for a moment just to make the opponent move in that direction too.
Exploiting the delay of the opponent’s perception as well as its physical inertia
players quickly change their direction. We try to learn such a behavior for robot
soccer using value-function approximation (section 4.4.3).

Let us now introduce the scenario of the dribble-task [Buck et al. 2002b]: There
is one robot (called forward) that has a ball in its guiding device. A second
robot (called defender) tries to get the ball from the forward using a fixed and
deterministic policy. At the beginning the defender is placed at (3m, 0m) and the
forward (with ball) at (−2m, y) with y ∈ [−2m, +2m] and (0m, 0m) being the
center of a robot soccer field. The forward’s target space is defined by all points
behind the defender in terms of the x-coordinate.
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Figure 5.10: The point of interception for
the defender.

The state space consists of the features
d (the distance between forward and de-
fender), α (the angle between forward
and defender), ϕ (the forward’s orienta-
tion relative to α), Vtr and Vrot (the for-
ward’s translational and rotational ve-
locities), ddef (the distance between for-
ward and defender observed by the de-
fender), αdef (α observed by the de-
fender), ϕdef (ϕ observed by the de-
fender), Vdef (Vtr observed by the de-
fender), and Vmax (the maximal veloc-
ity of the defender). Figure 5.9 depicts
the task (subfigure(a)) and some compo-
nents of the state space (subfigure (b)).

The policy of the defender is to intercept the ball at the point where the direction
of its velocity-vector touches the range of the defender (as a function of time).
Figure 5.10 illustrates the behavior. The policy of the defender is assumed to be
deterministic. However, its movement must not be deterministic.

The policy of the forward has to be learned. Actually, for the dribble-task two
subtasks have to be solved:

(1) A model of the defender’s behavior has to be generated because the policy
depends on the defender’s behavior.

(2) The forward must learn a policy to pass by the defender.

In this work, we concentrate on the learning of motion control (subtask (2) in the
above context), and therefore neglect subtask (1) although this is a tough task
too.

One can see, the learning of a policy for the dribble-task obviously is much more
complex than, for instance, for the corridor-following task:

• A reasonable state space will have about ten dimensions.

• The value-function is not strictly monotonic increasing (decreasing) in all
dimensions of the state space.

• Any successor state depends not only on the behavior of the controlled
robot but on the behavior of the opponent too (adversarial environment).
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According to the subtasks (1) and (2) we split the state space S into a part
dependent on the perception of the forward, Sforw and a part dependent on the
perception of the defender, Sdef :

S = Sforw × Sdef (5.16)

The part of the state concerning the perception of the forward consists of

ζforw = 〈d, α, ϕ, Vtr, Vrot〉 (5.17)

while the part of the state concerning the perception of the defender consists of

ζdef = 〈ddef , αdef , ϕdef , Vdef , Vmax〉 (5.18)

As written above deking is based on delays in perception and motion. Further
the perception of the defender, ζdef definitely has something to do with some
former perception of the forward. Since we know the defender will compute a
point where it can intercept the ball (figure 5.10) and will simply go there we need
to construct a model of its perception and motion abilities (subtask (1)). This
can be done by online estimating delay parameters and computing the defender’s
maximal velocity. Since this would be another chapter (obtaining a model for
hidden state is not a goal of this work) we provide reasonable values of Sdef to the
forward robot in the following experiments in order to learn a policy. We want to
learn the policy by means of value-function approximation. For the computation
of the value of a state we need the state as observed by the forward, ζ(t)forw

and the provided information about the defender, ζ(t)def . The value-function is
defined

V :

{

S → IR
ζ(t) 7→ V(ζ(t))

(5.19)

The forward-projection-function P+ (which is part of the input for V (V+ and
V− respectively) according to equations (4.9) and (4.13)) maps to Sforw:

P+ :

{

Sforw × Sdef ×A → Sforw

〈ζforw(t), ζdef (t)〉, a(t) 7→ ζforw(t + 1)
(5.20)

Analogously to the split of S we split our projection-function P+ as well:

P+ = M◦ (P+
forw × P+

def ) (5.21)

where P+
forw is a projection-function for the change in state of Sforw (only de-

pending on the robot’s action because the defender’s behavior is deterministic
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Figure 5.11: Generalization of the trained neural network. The graphic shows the
output of the network computing the value-function with fixed input in all but two
dimensions.

and depends on the state only). P+
def is a projection-function for the change in

state of Sdef , and M is a merging-function:

P+
forw :

{

Sforw ×A → Sforw

ζforw(t), a(t) 7→ ζforw(t)succ
(5.22)

P+
def :

{

Sdef → IR2

ζdef (t) 7→ 〈∆x, ∆y〉 (5.23)

M :

{

Sforw × IR2 → Sforw

ζforw(t)succ, 〈∆x, ∆y〉 7→ ζforw(t + 1)
(5.24)

P+
forw computes the movement of the forward in the part of the state space

perceivable by the forward (Sforw) dependent on the action chosen, a(t). P+
def

computes the change in the position of the defender, 〈∆x, ∆y〉 (relative to its
previous position). This change depends on the part of the state space perceivable
by the defender, Sdef , only. The merging-function M maps the movement of the
forward and the change in position of the defender to a successor state in Sforw

(perceivable by the forward) that can be used as a part of the input for the
value-function (equation (5.19)).
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The action space of the dribble-task is [−180, +180] where an action denotes the
rotational velocity of the forward (a = Vrot). The translational velocity of the
forward is assumed to be 0.75m/s, constantly.

Exploration During exploration the robot performs random actions each for
a random time. This means the robot drives into different directions and for a
certain time in each direction. An initial hand-coded policy is also used: In this
policy the robot is given a direction and at a randomly chosen point the robot
suddenly changes its direction rapidly. We perform a set of 500 explorations with
an average duration of about 6 seconds (this means we get sequences of 60 states
at a frequency of 10 Hz). Further 250 explorations were performed to obtain
validation data for an early stopping of the function approximation. Altogether
that leads to around 45000 patterns obtained in less than two hours of simulation.
The success rate for passing by the defender is less than 10% during exploration.

The states visited during exploration are assigned values according to

V+(ζ(t)) =

{

+1 if ζ(t) ∈ Starget

γ · V+(ζ(t + 1)) else
(5.25)

V−(ζ(t)) =

{

−1 if defender touches the forward
γ · V−(ζ(t + 1)) else

(5.26)

V−(ζ(t)) is set to −1 if the defender touches the forward or the forward exceeds
the time limit for exploration. V+(ζ(t)) is set to +1 if the forward reaches the
target space. Otherwise the discount-factor γ is used in order to assign values to
the preceding states.

Learning The patterns 〈ζ(t),V+/−(ζ(t))〉 are trained using neural networks
with 10-8-1 topology in order to learn the value-function V . One hidden layer
was enough to achieve a good performance. We choose neural networks because
of their global generalization behavior. This behavior is not limited to the local
neighborhood of the training data. Additional features for learning like RPROP
[Riedmiller and Braun 1993] and early stopping [Sarle 1995] were used (see ap-
pendix A.2 and section 5.8.1 for detailed descriptions).

Exploitation During exploitation actions are chosen from

a ∈ {−120, 0, 120} (5.27)

which is a quite coarse selection. The policy of equation (4.13) was used for
choosing actions (V = V++V−). Surprisingly, the success rate in the exploitation
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phase was 100% although the action was chosen out of three possibilities only.
These results are based on 250 runs and the experimental setup described above.
Figure 5.11 shows two dimensions of our trained value-function with the other
dimensions set by fixed rules. One can see the smooth surface as an indication
for good generalization.

An animation (gif,870KB) of a typical dribble scene can be viewed at
http://www9.in.tum.de/archive/agilo/DribbleTask.gif.

Robot Platform

For the forward we used a Pioneer I robot [Pioneer 1998]. Using means of neu-
ral networks (described in section 3.5.1) it was accurately simulated to gener-
ate training data. Further information about the simulation can be found in
[Buck et al. 2002c] too.

For the defender we use a Pioneer I robot too. It was simulated the same way
the forward was. The state as perceived by the defender, ζdef (t) was computed
as a function of a sequence of states perceived by the forward in the past:

ζdef (t) = f(ζforw(t − 100ms), . . . , ζforw(t − 1000ms)) (5.28)

Herein the delay for the position is very small while the delay for the components
of ζdef (t) concerning velocities is up to one second.

5.5 Robot Navigation

current state

target state

Figure 5.13: Differ-
ent ways to reach the
target.

The basic component of a navigation system is a controller
that enables the robot to achieve specified dynamic states
quickly. Such a controller receives the target state (for ex-
ample, the next state on a planned path) of a robot and re-
turns low level commands that transform the current state
into the target state.

As shown in figure 5.13 there are different ways to solve
this problem (the width of the trajectories indicates the
robot’s translational velocity). To arrive at the target state
different trajectories are possible. What makes this task
difficult is that the dynamic state of a robot contains not

only its position but its orientation and its velocity too [Buck et al. 2001b]. In
certain applications the target state of a robot includes a high velocity. Therefore
a robot cannot drive directly towards the target and then turn on the spot. In this
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Figure 5.12: Subfigure (a): The acceleration curve of a Pioneer I robot resulting from
a = (0, 0) for any t < 0 and a = (0.75, 0) for t ≥ 0. The dead time delay is about
300ms. Subfigure (b): Overcoming the dead time delay by assigning a to the change
in state taking place 300ms ahead.

section, we consider no obstacles (this would make the task much more complex).
Real path planning is considered in section 5.6.

The dynamic state of a Pioneer I robot [Pioneer 1998] can be summarized as a
quintuple

ζ = 〈x, y, ϕ, Vtr, Vrot〉 (5.29)

where x and y are coordinates in a global system, ϕ is the orientation of the robot
and Vtr (Vrot) are the translational (rotational) velocities. Using the Saphira
software [Konolige et al. 1997] one can set a command (=action)

a = 〈Vtr, Vrot〉 (5.30)

at the frequency of 10 Hz where Vtr(Vrot) denotes the target velocity in meters
per second (degrees per second).

The question for the low-level-controller now is, how to set Vtr and Vrot given a
current state, ζ(t) and a target state, ζtarget in order to reach the target state
precisely and quickly. We have measured a time delay of around 300ms from the
setting of the action a until the robot executes the command (see fig. 5.12(a)
and section 3.5.1). In order to take this delay into account we assign commands
a(t) to the change in state ζ(t + 3) → ζ(t + 4) as depicted in figure 5.12(b). In
the remainder of this section ζ(t), ζ(t + 1) and a(t) denote a change in state and
the respective command causing it.
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Figure 5.15: Recursive generation of training pat-
terns for the neural controller: Two successive
changes in state observed are inverted and combined
to one new pattern.

In this navigation task, we
want to learn a mapping from
a start state and a target
state to an action according to
section 4.4.6 (Policy-Function
Approximation). Thus the in-
put of the policy-function de-
pends on the robot’s current
state and the robot’s target
state.

Exploration To collect training data we do several runs where we set the action
a to certain values by performing supervised exploration (section 4.3.4). We
always try to drive fast and not to set actions canceling out each other. For
example, driving with only half speed on a straight line will teach the controller
to do so even if it could reach the target state faster. But decreasing the robot’s
velocity on a straight line will teach the controller to do so. In parallel to setting
actions we record the changes in state resulting. Out of it we get a huge number
of patterns

〈ζ(t), a(t)〉, ζ(t + 1) (5.31)

These patterns are inverted to
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(a) (b)

Figure 5.16: Subfigure (a): The trajectory of the robot for ζ(t) = 〈0.0, 0.0, 0.0, 0.0, 0.0〉
and ζtarget = 〈2.0, 2.0, 90.0, 0.0, 0.0〉. Subfigure (b): The trajectory of the robot for
ζ(t) = 〈0.0, 0.0, 0.0, 0.0, 0.0〉 and ζtarget = 〈−3.0,−4.0, 0.0, 0.0, 0.0〉.

〈ζ(t), ζ(t + 1)〉, a(t) (5.32)

Successive patterns

〈ζ(t), ζ(t + 1)〉, a(t) and 〈ζ(t + 1), ζ(t + 2)〉, a(t + 1) (5.33)

can recursively be combined to

〈ζ(t), ζ(t + 2)〉, a(t) (5.34)

as illustrated in figure 5.15. From one simple trajectory we get lots of useful
training patterns as we can see in figure 5.14. Patterns are created not only from
start state and target state but from any two consecutive states or patterns of
the trajectory. Recapitulatory, we want to learn the dynamical driving behavior
of a Pioneer I robot resulting from specified sequences of actions and exploit this
knowledge for navigation.
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Figure 5.17: The trajectory of the robot for ζ(t) = 〈0.0, 0.0, 0.0, 0.0, 0.0〉 and ζtarget =
〈2.85, 0.40, 90.0, 0.0, 0.0〉.

Figure 5.18: The trajectory of the
robot for ζ(t) = 〈0.0, 0.0, 0.0, 0.0, 0.0〉 and
ζtarget = 〈2.0, 2.2, 270.0, 0.0, 0.0〉

Learning We want to learn a policy-
function, a direct mapping from the
robot’s current state and the robot’s
target state to the next command to
be executed. We use multi layer ar-
tificial neural networks (see appendix
A.2 for details) and the RPROP algo-
rithm [Riedmiller and Braun 1993] be-
cause of the network’s abilities in ex-
trapolation. Considering the start
state at x = 0, y = 0, and ϕ = 0 in
a local system we can reduce the in-
put dimension of the function to be ap-
proximated to 7 by converting the tar-
get states’ x, y, ϕ into that local system
(this means we regard ∆x, ∆y, ∆ϕ).
We can further reduce the input di-
mension to 5 by neglecting the rota-
tional velocities. If we scale the net-
work’s output to a certain transla-
tional target velocity if the robot is
close to its target position we can even
reduce the input to three dimensions.
This time, we have to use a more com-
plex network with 3-6-8-6-1 topology
for learning. The output of the net-
work gives us the quotient q = Vrot

Vtr
.

Exploitation During exploitation, we put ∆x, ∆y, and ∆ϕ into the trained
neural network. The network then computes a quotient q that tells us how to set
Vrot in relation to Vtr = 0.75 (meters per second). If the absolute value of Vrot is
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more than 180 (degrees per second) we set Vrot = 180 and Vtr = Vrot

q
. Otherwise

we set Vtr = 0.75 and Vrot = q · Vtr. Altogether this means we directly map the
input to an action by performing policy-function approximation as proposed in
section 4.4.6.

Figures 5.16 to 5.18 show trajectories obtained from the learned low-level-
controller. While the trajectories in figures 5.16(a) and 5.17 show convincing
results the trajectories to distant points in state space (figures 5.16(b) and 5.18)
are obviously not optimal. This is caused by the fact that the training data
covered local navigations only. This has two reasons:

(1) The purpose of the learned controller is to find a smooth trajectory from one
state to another state that is relatively close (as mentioned at the beginning
of this section). We want to employ this controller to navigate to states
proposed by a higher-level path planning module.

(2) We used a huge amount of training data for our experiments. The time
to train the neural network was around one week on a 500 MHz double
Pentium machine. More training data means even more training time. In
this case learning is not convenient any more.

The fact that the controller reaches distant target states too (without explicitly
having learned these cases) demonstrates its robustness and its qualified abilities
in extrapolation.

Robot Platform For the experiments in this section we used a Pioneer I robot
[Pioneer 1998].

5.6 Multi Robot Path Planning for Static and

Dynamic Environments

5.6.1 Introduction

Path planning is one of the fundamental computational problems in autonomous
robot control. A wide variety of path planning algorithms have been developed
and studied. Several textbooks, such as [Latombe 1991], give systematic accounts
of the navigation problem and possible solution methods.

While the computational properties of planning algorithms, that is their correct-
ness, their completeness, the optimality of their results, and their time and space
complexity have been thoroughly investigated, the problem of how to choose the
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(a) (b)

Figure 5.19: Robot navigation tasks in a typical robot soccer scenario: Subfigure (a)
shows navigation plans for one robot proposed by different path planning methods.
Subfigure (b) shows the trajectories that the robots followed in a multi robot scenario.
The width of the trajectory indicates the robot’s translational velocity.

right planning algorithm for a particular application and parameterize it opti-
mally has received surprisingly little attention [Buck et al. 2001a].

In our work we regard path planning as a control problem. In fact, path planning
and control have a lot in common: Both have start states and target states,
both depend on a particular distance metric and on the (mostly not well known)
dynamics of the machine at hand, and both have to generate a path through a
multi-dimensional state space to reach a defined target state.

Consider, for example, navigation problems that arise in autonomous robot soccer
(see appendix B for details on the RoboCup challenge). In robot soccer (mid-size
league) two teams of four autonomous robots play against each other. In order to
make a particular play, the robots of one team have to perform a joint navigation
task, given by a target position for each robot. Thus to make competent plays the
robots must be capable of solving the following category of navigation planning
problems: Given the current positions of three robots, the field players, and their
respective target positions, compute a navigation path for each robot such that
when the three navigation plans are executed concurrently the expected time for
reaching the goal configuration is minimal. Figure 5.19(a) depicts a single robot
navigation task in a typical game situation and the navigation plans proposed
by different navigation planning algorithms. The figure illustrates that the paths
computed by the different methods are qualitatively very different. While one
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path is longer and keeps larger distances to the next obstacles another one is
shorter but requires more abrupt directional changes. The performance that the
paths accomplish depends on many factors that the planning algorithms have not
taken into account (see figure 5.19(b)). These factors include whether the robot
is holonomic or not, the dynamical properties of the robot, the characteristics of
changes in the environment, and so on.

The conclusion that we draw from this example is that the choice of problem-
adequate navigation planning methods should be based on empirical investiga-
tions, that is exploration runs with different algorithms. In experience-based
control, the choice of an algorithm corresponds to an action. In this section we
develop a method for choosing the appropriate path planning algorithms (=ac-
tions) based on experiences gained from explorations.

Because in many multi robot applications the path planning tasks are heteroge-
neous and there are typical distributions of navigation tasks we develop a feature
language that allows us to classify navigation tasks along dimensions that chal-
lenge planning methods. The features of a path planning task represent the
current state. The state space includes all possible states. We show how a
robot can make up classes of path planning tasks and choose the right planning
mechanisms for a given task. Therefore we learn a policy-function (see section
4.4.6) that maps from the space of features of navigation tasks to an appropriate
planning algorithm which is, in the context of our learning methods, an action.

5.6.2 Algorithms for Single Robot Path Planning

Let us now introduce the path planning methods that we will use in our sub-
sequent experiments. We categorize these methods according to the objectives
they try to optimize into four categories. We consider methods that are based on
attraction-forces to the destination, ones that try to minimize path length, ones
that consider a path as a sequence of circumnavigation steps, and ones that aim
at maximizing the clearance of the paths.

Potential Fields

Potential fields are popular and often used means for path planning. The basic
idea of potential field navigation planning [Khatib 1986, Hwang and Ahuja 1992]
is to assign a value V(p) to each location p in the discretized environment. V(p)
results from the superposition of an attractive force towards the destination and
repulsive forces caused by obstacles:

V(p) = btarget · δtarget + bO

∑

i

1

δOi

(5.35)
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btarget and bO are factors to weight the influence of the distances, δtarget (distance
to the target) and δOi

(distance to obstacle Oi).

O

O

1

2

target

start

Figure 5.20: Potential
field path planning.

The navigation plan then is the steepest descent path
from the robot’s current state to its target state (fig-
ure 5.20). A drawback of the basic algorithm is
the likelihood of local minima which causes the algo-
rithm to return paths that get stuck in a local op-
timum. These problems have been eliminated in a
number of extensions of the basic algorithm (see for
example [Tournassoud 1986, Volpe and Khosla 1990,
Barraquand et al. 1992]). The plans generated by po-
tential field methods trade off safety, the distance to
the closest obstacles, and path length.

Backward Gradient Approach

Another class of planning algorithms aims at
minimizing the path length [Lengyel et al. 1990,
Konolige 2000].
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Figure 5.21: The short-
est path method for path
planning.

These algorithms tessellate the environment into small
grid cells and assign to each grid cell the length of the
shortest path to the destination (figure 5.21). The tar-
get state is labeled with a value of zero. All other states
of the grid are initially labeled with very high values.
The algorithm starts with the target state and in each
iteration visits all adjacent states. The value V(pi+1)
for a state pi+1 adjacent to state pi is infinity if pi+1 is
inside an obstacle and

V(pi+1) = min(V(pi) + 1,V(pi+1)) (5.36)

else.

This class of planning methods has drawbacks in that
the methods do not have a notion of path curvature.
This may result in paths that require frequent changes

of the robot’s direction and speed. In addition, in their basic realization the
methods prefer paths that are close to obstacles. This problem can be alleviated
by either artificially growing the obstacles or by viewing navigation as a Markov
decision process [Kaelbling et al. 1996] where the actions have nondeterministic
effects. The latter approach, however, tends to yield computationally expensive
solution methods. Further, the grid-based backward gradient approach causes



5.6. MULTI ROBOT PATH PLANNING 79

serious computational problems if applied to state spaces with more than three
dimensions.

Circumnavigation of Obstacles

O2

1O

target

start

Figure 5.22: The viapoint al-
gorithm for path planning.

This class of methods considers path planning
as finding a sequence of navigation actions that
circumnavigate the obstacles that intersect the
straight line paths to the destinations. The A* al-
gorithm [Hart et al. 1968] computes the shortest
path using the given points for circumnavigation.

This category of path planning methods includes
the viapoint method [Schweikard 1992] (figure
5.22) and the elastic band algorithm (for dynamic
obstacles) and visibility graph planning (for static
obstacles) [Latombe 1991]. These methods some-
times cause problems when the start state or the
target state is too close to an obstacle.

Maximum Clearance Algorithms

This category of navigation planning algorithms aims at the computation of paths
that keep maximal distance to the obstacles.
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Figure 5.23: The maximum clearance algorithm.

A well known member of this family is the Voronoi path planning algorithm
[Latombe 1991] that guides the robots on paths that have equal distances to
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Figure 5.24: Several strategies for merging and repairing multi robot navigation plans
by combining single robot navigation plans. Subfigure (a): Waiting strategy. Subfigure
(b): Temporary targets. Subfigure (c): Hallucination of obstacles. Subfigure (d):
Priority-based perception.

the closest obstacles. Another planning algorithm that aims at maximizing the
clearance in the face of moving obstacles is the maximum clearance planning
algorithm used in [Buck et al. 2000] that we use in our experiments as well. In
this algorithm critical points, points that have equal distance to at least two
obstacles, are computed and proposed as intermediate points on the way to the
target (see figure 5.23). Due to the large average distance to obstacles these
algorithms tend to propose paths that have a lower curvature than those proposed
by other algorithms at the cost that the paths are becoming longer.

5.6.3 Algorithms for Plan Merging and Repair

After having detailed the algorithms for single robot path planning we will now
address the question of how to combine the individual plans in order to obtain a
good performance on the joint navigation tasks. Therefore we employ a number
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of methods that merge different single robot paths in order to achieve a consistent
set of plans that can be executed in parallel. The methods employed contain:

Waiting

Simply combining the paths computed by each robot without taking further pre-
cautions entails the danger that two robots might collide if their paths intersect.
When two robots are to reach an intersection at about the same time the simplest
fix is to let one robot wait until the other robot has crossed the intersection. In
figure 5.24(a) robot r2 waits until robot r1 has passed and then continues driving
(dotted path). One can make this strategy smarter by assigning priorities to the
different robots, such that the robot with the more urgent task can go first. For
instance, [Buckley 1989] assigns higher priority to a robot that can drive on a
straight line. In this case it can keep a better dynamic state.

The remaining methods try to revise the individual plans such that no negative
interferences will occur. Again we assign priorities to the robots according to the
importance of their navigation tasks and ask the robots with lower priority to re-
vise their plans to avoid conflicts with the paths of the higher priority robots. We
have considered three different methods for path revision. The first one modifies
the path by introducing additional intermediate target points. The second one
hallucinates additional obstacles at the positions where collisions might occur.
The third one simply considers the other robot at its respective position as a
static obstacle.

Temporary Targets

To avoid possible collisions, we can constrain a path by specifying additional
intermediate target points. A natural constraint to impose on the path of the
lower priority robot is that it is to intersect the path of the other robot behind
the robot. This can be easily accomplished by setting an additional intermediate
target point behind the robot with the higher priority. In figure 5.24(b) robot r2

moves to a point behind robot r1 as long as their paths intersect. The disadvan-
tage with respect to the waiting strategy is that the paths of side stepping robots
become longer. The advantage with respect to the waiting strategy is that the
side stepping robots can keep a better dynamic state, that is they do not have to
stop.

Hallucination of Obstacles

Another alternative for path revision is the insertion of additional artificial ob-
stacles at the problematic path intersections. In this solution the robot with



82 CHAPTER 5. APPLICATIONS OF EXPERIENCE-BASED CONTROL

O
44

O2

1O

3O

start

start

start

f   m  bounding box
f   mindist start−start

f   mindist line−line
f   mindist target−target

f   max line length

f   # crosspoints = 0
2

1

target 1 2target

3

target 32

f   # obstacles in bound. box = 3

2

1

3

f6
6

4

5

7

f

f

f

f

5

4

3

2

Figure 5.25: Visualization of navigation task features that are used for classifying
navigation tasks. start and target points of the robots are indicated.

the lower priority hallucinates an obstacle at the intersection position and there-
fore plans a path around the critical area. The success of this path replanning
technique depends on a competent placement of the intermediate target points.
Figure 5.24(c) shows the insertion of an additional obstacle at the intersection
point. However, new critical areas might arise from path replanning.

Priority-Based Perception

If we determine different priorities for the robots we let the robots with the lower
priority perceive those with higher priority as obstacles. In figure 5.24(d) robot
r2 (low priority) repeatedly perceives robot r1 (high priority) as an obstacle. The
lower priority robot (r2) has to replan its path. However, this insertion tactics
has a drawback in that it might cause the lower priority robots to repeatedly
replan or cause paths with unnecessarily high curvature.

5.6.4 A State Space for Multi Robot Path Planning Tasks

As we can see in the preceding subsection, a large variety of different single robot
navigation planning and plan merging methods exists. All these methods have
different strengths and weaknesses, and they make different assumptions about
the navigation problems at hand. This observation suggests that we need a
state space of characteristical features that describe the properties of navigation
problems in a given robot control application and use these features to select the
appropriate new planning method.

In our investigations we will use seven different features to describe a navigation
task (see figure 5.25). These features are:
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(f1) The number of intersections between the line segments that represent the
navigation task.

(f2) The size of the bounding box of the navigation task.

(f3) The minimal linear distance between the different start states of the robots
(mini6=j δ(starti, startj)).

(f4) The minimal linear distance between the different target states of the robots
(mini6=j δ(targeti, targetj)).

(f5) The minimal linear distance between the line segments that represent the
navigation tasks. This is zero if lines intersect.

(f6) The maximum length of the linear distances of the individual navigation
tasks (maxi δ(starti, targeti)).

(f7) The number of obstacles in the bounding box of the joint navigation task.

The number of intersections between navigation tasks gives us a measure of the
expected complications caused by negative interactions of the individual navi-
gation tasks (1). The size of the bounding box, the minimal linear distances
between different start states as well as target states is intended to provide us
with a measure of crowdedness caused by the individual navigation tasks (2-4).
Navigation tasks with line segments that are close to each other can be expected
to require a higher degree of synchronization (5). The maximum length of the
linear distances of the individual navigation tasks gives us a crude measure of
the expected duration of the joint navigation task (6). Finally, the number of
obstacles in the bounding box of the joint navigation task should be correlated
with the necessary jinks (7).

5.6.5 Empirical Investigations in Robot Soccer

For our control task, the action space is given by

A = Asrpm ×Aprm (5.37)

An action consists of a single robot path planning method (srpm) and a plan
repair method (prm). Asrpm contains the algorithms introduced in section 5.6.2
while Aprm contains the methods of section 5.6.3:

Asrpm = {potential field, backw. gradient, circumnav., max. clearance} (5.38)
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Aprm = {waiting, temp. targets, hallucination, pr.based perception} (5.39)

The components of the state space have been defined in section 5.6.4 by the
features f1, . . . , f7. Thus a state is given by

ζ = 〈f1, . . . , f7〉 (5.40)

After having introduced different navigation strategies and a state space for char-
acterizing multi robot navigation problems we will now try to assess the strengths
and weaknesses of the different methods in a particular application: Autonomous
robot soccer. We will do so by making a simple quantitative comparison with
respect to the average performance of the individual methods. We try to find
clusters of navigation tasks within the state space that the individual methods
solve well or poorly. Finally, we use that learned characterization of the kind
of navigation problems that a method solves well in order to choose the naviga-
tion strategies in problem specific ways. We will show that such a deliberating
navigation planner outperforms the individual methods that it uses.
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Figure 5.26: Mean values µ and standard
deviation (both in seconds) of the compared
path planning algorithms.

Exploration In our experiments we
set the number of obstacles to |O| = 4.
This is because the team size in the
RoboCup mid-size league is four. We
carry out experiments with |R| = 3
robots (resulting from 3 field players
in RoboCup). All our experiments
underlie the same randomly gener-
ated situations: The soccer field has
a length of ten meters and a width of
four meters. A robot starts at a ran-
domly defined state in its configuration
space and needs to move to an also ran-
domly defined target state. The obsta-
cles move linearly from one randomly
generated start point to a randomly

defined target. If an obstacle reaches its target a new target is defined immedi-
ately. Obstacles move with a randomly chosen but constant velocity from one
point to another. We apply fix-action exploration (see section 4.3.3) by perform-
ing each navigation task with every single method (=action) and recording the
time needed for completion. Figure 5.26 pictures the mean value and the stan-
dard deviation of the time resources required to complete a joint navigation task
using the different single robot planning methods. The data for the statistics was
acquired by performing 1000 randomly chosen navigation problems.
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The results show that based on the empirical data we cannot determine a single
method (a certain action) that outperforms the other ones in a statistically sig-
nificant way. This suggests that we should try to identify specializations of the
navigation problems (regions of the state space) for which one specific planning
method (a certain action) outperforms the other ones. In the following we will
look at this problem.

Learning A natural way for encoding a predictive model of the expected per-
formance of different navigation planning methods in a given application domain
is the specification of rules that have the following form:

if c1 ∧ . . . ∧ cn

then fastest-method(〈srpm,prm 〉)

In this rule pattern the ci represent conditions over the features that we use to
classify navigation problems (see section 5.6.4). The then-part of the rule asserts
that for navigation problems that satisfy the conditions ci the combination of the
single robot planning method srpm together with the plan repair method prm can
be expected to accomplish the navigation task faster then any other combination
of single robot planning and plan repair method.

The advantage of a predictive model that consists of such rules is that it can be
learned automatically by decision tree learning [Quinlan 1986] (see sections 5.8.3,
A.5). For our experiments, we have used the public domain version of Quinlan’s
C4.5 algorithm. We obtain the data set that is necessary for the learning task in
the following way.

(1) Generate a random navigation task from a given distribution of navigation
tasks and compute the feature vector (state) ζ(t) = 〈f1, . . . , f7〉 of the
navigation task.

(2) Solve the navigation task with each combination a = 〈srpm,prm〉 of the
single robot planning methods and plan repairs to be investigated.

(3) Store the data record 〈ζ(t), a(t)〉 where a(t) is the combination of single
robot planning methods and plan repairs that achieved the best perfor-
mance in the data set that is used for learning the decision tree.

Using this data collection method we have collected a training set of 1000 data
records and used it for decision tree learning. From this training set the C4.5
algorithm with standard parameterization and subsequent rule extraction has
learned a set of 10 rules including the following two:
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1. if there is one intersection of the navigation problems
∧ the navigation problems cover a small area (≤ 10.7m2)
∧ the target states are close to each other (≤ 1.1m)
∧ the start/target state distances are small (≤ 5m)

then fastest-method(〈potential field,temp. targets〉)

2. if there is no intersection of the navigation problems
∧ the navigation problems cover a medium area
∧ the distance between target states is moderate

then fastest-method(〈max. clearance,temp. targets〉)

The first rule essentially says that the potential field method is appropriate if
there is only one intersection and the joint navigation problem covers at most
one fourth of the field, and the target states are close to each other. This is
because the potential field algorithm tends to generate smooth paths even for
cluttered neighborhoods. The second rule says that for typical size navigation
problems where the navigation problems do not intersect, the maximum clearance
method performs well. The rationale of the second rule is the maximal clearance
causes the individual robots to take similar paths and therefore it becomes more
likely that the robots pass the intersection area at the same time.

The accuracy of the ruleset for predicting the fastest navigation method is about
50% both for the training and the test set. A substantially slower algorithm
(more than 110% of the optimal time) was chosen in less than 10% of the cases.
The inaccuracies of the rules have several reasons. First, the state space as it has
been introduced may not be expressive enough. We can expect that the accuracy
of the rules can substantially be increased by adding additional features to the
state space. Second, in many navigation problems different methods achieved
almost the same performance (one might suppose this a priori by having a look
at the bars of figure 5.26). In those cases we only selected the best one even
when the margins where very narrow. Obviously, these data records are very
noise sensitive. Third, in many runs collisions were caused by dynamic obstacles
and have caused robots to get stuck. These runs resulted in outlier results that
are not caused by the planning methods. Thus, for higher accuracy those runs
have to be handled differently.

The conclusion that we draw from this experiment are that even with a crude
feature language, without sophisticated data transformations and outlier han-
dling a robot can learn useful predictive models for the performance of different
navigation methods in a given application domain.

Exploitation An obvious idea for exploiting the predictive model that we have
learned is the implementation of a hybrid navigation planner that uses a set of
navigation methods and picks for every single navigation problem the navigation
methods (=action) that are proposed by the decision tree. The decision tree then
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Figure 5.27: Real robot path planning under competitive conditions. The pic-
tures are from a friendly game with the CS Freiburg team [Weigel et al. 2002] in
September 2001. The video sequence can be viewed at www9.in.tum.de/archive/agilo/
RoboCup2001 20.mpg.

represents a direct approximation of a policy-function (see section 4.4.6). Thus
for the next experiment we have implemented such a hybrid navigation planner
and compared its performance with the performance obtained by the individual
navigation methods. Figure 5.27 shows one of our Pioneer I robots planning a
path under competitive conditions.

We have performed a bootstrapping t-test based on 1000 different joint navi-
gation tasks in order to empirically validate that the hybrid navigation planner
performs better than the individual planning methods that we are using. Based
on these experiments we obtained a 99.9% confidence in the test set (99.9% in

Mean time values of 1000 training and 1000 test problems
Algorithm TRAIN TEST

µ/sec significance level µ/sec significance level
P (µtree < µ) P (µtree < µ)

Simple Potential Field 15.49 99.99 % 15.92 99.99 %
Shortest Path 13.36 99.99 % 13.14 99.99 %
Maximum Clearance 12.35 99.71 % 12.31 99.84 %
Viapoint 12.14 94.62 % 11.95 96.25 %
Decision Tree 11.64 11.44

Table 5.2: Results of four evaluated algorithms and the trained decision tree. The
significance level is based on a t-test.
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Figure 5.28: Subfigure (a): The state of the autolanding-task. Subfigure (b): Forces
used for the simulation of the aircraft. Subfigure (c): The buoyancy-factor ca as a
function of α.

the training set) that the hybrid method outperforms the potential field method
(with its respective parameterization). The respective probabilities for the back-
ward gradient method are 99.9% (99.9%), for the maximum clearance method
99.84% (99.71%), and for the circumnavigation method 96.25% (94.62%). This
means that our hypothesis that the hybrid planner dominates the other planning
methods could be validated with statistical significance (≥ 95%).

Robot Platform The robot platform used for the path planning tasks were
Pioneer I robots [Pioneer 1998]. The training data was acquired by using the
neural simulation described in section 3.5.1 and [Buck et al. 2002c].

5.7 The Aircraft-Autolanding-Task

After having applied experience-based learning techniques to a number of prob-
lems in the field of robotics, we now want to show that the proposed methods
work well in other machine control domains too. For instance, the landing of an
aircraft is a very difficult control problem for the following reasons: If an aircraft
is landing its velocity both in horizontal and in vertical direction must be very
small. But to get a small sinking-velocity a high horizontal velocity is necessary.
Further the landing position and angle must satisfy some very special constraints.
Some airports have only very short landing strips. Thus landing must occur in
a limited space. For all these reasons, looking ahead is inevitable in this control
task. Moreover, the target state can definitely not be reached by any random or
simple policy. Even a pilot must take a long and extensive training to satisfy the
requirements for safely landing an aircraft.

In the autolanding-task [Buck et al. 2002a] we strongly simplify the landing of a
real aircraft by regarding an only five-dimensional state space in our simulations.
Nevertheless, our simulation is quite realistic concerning the basic problems of
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Variable unit range ζstart range ζtarget

dx km ∈ [20, 30] ∈ [0, 3]

dh km ∈ [6, 8] = 0

α degrees ∈ [−10, +10] ∈ [0, +30]

Vx km/h ∈ [500, 800] ∈ [0, 300]

Vh km/h ∈ [−200, +100] ∈ [−25, 0]

Table 5.3: Constraints for start and target states.

controlling an aircraft. A state includes the distance to the end of the landing
strip projected on the ground (dx), the height of the aircraft (dh), the angle of
the aircraft (α = 0 means horizontal flight), the horizontal velocity Vx, and the
vertical velocity Vh (see figure 5.28(a)):

ζ = 〈dx, dh, α, Vx, Vh〉 (5.41)

Even with this simplification it is extremely difficult for a human to safely land
an aircraft (by means of the keyboard of a PC) simulated by the means described
below (see paragraph Analytic Simulation, equations (5.44) to (5.48)). In contrast
to the work described in [Perez-Uribe 1997] our task is not to follow a given
trajectory but to find a trajectory and follow it towards the target state.

The action space is two-dimensional and consists of the power pow that controls
the propulsive force and the rotational factor rot that can make the aircraft rise
or sink by adjusting α:

a = 〈pow, rot〉 (5.42)

pow must be out of [0, Fsmax
] and rot ∈ [−10, +10], where Fsmax

is the maximal
propulsive force of the aircraft (see table 5.4).

The scenario is the following: An aircraft is placed at ζstart. Then, the control
policy must land the aircraft at ζtarget. Table 5.3 specifies the constraints for the
start state and the target state.

Exploration During forward exploration a simple initial policy never managed
to reach a target state. Trials of humans controlling of the simulated aircraft via
the keyboard of a PC remained unsuccessful to. These fact forces us to use back-
ward exploration (section 4.3.2). Employing this method trajectories backwards
from the target are obtained. Only one of the exploration runs was used to gen-
erate patterns for learning. Patterns are generated in order to approximate a
value-function. We assign values to states according to
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V(ζ(t)) =

{

+1 if ζ(t) ∈ Starget

γ · V(ζ(t + 1)) else
(5.43)

Learning The patterns obtained from the successful trajectory (consisting of
state and corresponding value) are used in order to train a network of radial basis
functions (see appendix A.3 and section 5.8.2 for details). This time, we employ
radial basis functions for the approximation of the value-function because they
work as attractors for given trajectories. Further they tend to return low values
for states not visited before and do not exaggerate. The network’s topology is
optimized automatically and consists of a maximum of 80 Gaussian kernels.

Exploitation Actions are chosen according to equation (4.9) during exploita-
tion. The trained value-function V is partly depicted in figure 5.29. In this figure
a typical trajectory of a landing aircraft can be viewed. Figure 5.30 shows an ex-
ample for the development of the aircraft’s state over time. In more than 500 runs
the value-function always attracted the aircraft and lead it towards the target.

An animation related to the above experiment can be found at
http://www9.in.tum.de/archive/agilo/AircraftAutolanding.gif.

Analytic Simulation

The simulator used for the above experiments relies only on the basic physical
rules concerning forces and acceleration. It cannot be compared to a real flight
simulator. Nevertheless the behavior of the aircraft, to a surprisingly high extent,
is realistic.

This analytic simulation (see section 3.3.1) is based on the equations (3.2) and
(3.3). The following forces are taken into account (see figure 5.28(b)).

Gravitation The force of gravity is computed by Fg = mg, where m is the
mass of the aircraft and g is the earth constant.

Propulsive Force The propulsive force Fs is directly controlled by the policy
(Fs = pow). It ranges from 0 to Fsmax

.

Buoyancy Buoyancy is computed by

Fa =
1

2
ρ · ca(α)AF · |V |2 (5.44)
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Figure 5.29: The approximated value-function V represented by radial basis functions.
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Figure 5.30: The state of a simulated aircraft over time. The vertical line marks the
landing.
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where ρ is the atmospheric pressure, ca(α) is the buoyancy-factor (see figure
5.28(c)), AF is the vane area of the aircraft, and V is the velocity of the aircraft.

Air Drag The force of air drag is computed by

Fw = −1

2
ρ · cwA · |V |2 (5.45)

where ρ is the atmospheric pressure, cw is the air drag coefficient of the aircraft,
A is the cross section of the vanes of the aircraft, and V is the velocity of the
aircraft.

Acceleration The velocity of the aircraft is computed by

V (t + ∆t) = V (t) +
(Fg + Fs + Fa + Fw) · ∆t

m
(5.46)

where ∆t is set to one second. Thus the acceleration directly depends on the
forces.

Changes in State The change in state depends on the velocities and is com-
puted as follows:

〈dx, dh〉(t + ∆t) = 〈dx, dh〉(t) + V (t + ∆t) · ∆t (5.47)

Once again ∆t is set to one second. The angle of the aircraft (α) directly depends
on the surface control devices which are controlled by the policy:

α(t + ∆t) = α(t) + rot(t) (5.48)

Table of Used Constants For our simulation certain constants are used. Each
constant’s value and meaning is described in table 5.4. Most values correspond
to the values of a filled real Boeing 747.

The software for the simulation is accessible at
http://www9.in.tum.de/archive/agilo/AircraftAutolandingSimulation.tar and
may be used for research purpose only and without any support or warranty.
It is written in C++ and runs at least under Linux, Solaris, and HP-UX.
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Var. Meaning Value Unit

ρ atmospheric pressure 1.3 kg/m3

cw air drag coefficient 2.0 -

ca buoyancy constant f(α) -

g earth constant 9.81 m/sec2

A cross section of vanes 10.0 m2

AF vane area of a 747 528.20 m2

m mass of a filled 747 350000 kg

Fsmax max. propulsive force 1030.4 kN
(4 × 257.6 kN)
(engine GE CF6-80C2B1F)

Table 5.4: Constants used for the simulation of the autolanding-task.

5.8 Software for Experience-Based Control

In the following we shortly describe the software used for the applications above.

5.8.1 n++ (Multi Layer Perceptrons)

The n++ neural network simulator [Riedmiller 1995, Riedmiller 1999] is a non-
commercial C++ library for neural function approximation. It was developed
at the University of Karlsruhe in the mid-90s and has successfully been used
by researchers and students of various affiliations. In the following we describe
the special features of n++. For a general introduction to neural networks see
appendix A.2.

The basic features of n++ include the construction of the topology of a network,
the computation of the output of a network, error backpropagation, automatic
adaptation of the networks’ weights, and loading and saving of networks. The
software can be included in any C++ application or can be used separately.
Special features include

• Simulation of multiple neural networks in parallel.

• Different types of initializations for weights and connections.

• RPROP algorithm.

• Momentum.

• Weight decay.
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• Learning with validation data (for early stopping).

• Scaling of input and output neurons.

• Support for temporal difference learning.

• Automatic generation of gnuplot files containing the error.

• Learning with multiple runs.

5.8.2 RBF++ (Networks of Radial Basis Functions)

RBF++ [Buck 2002] is a noncommercial tool for function approximation by
means of radial basis functions.
It can be obtained from http://www9.in.tum.de/archive/agilo/RBF++ 1.2.tgz.
For a general description of networks of radial basis functions see appendix A.3.

The basic features of RBF++ include the construction of the topology of a net-
work, the computation of the output of a network, error backpropagation, auto-
matic adaptation of the networks’ weights, and loading and saving of networks.
Special features of RBF++ include

• Simulation of multiple RBF-networks in parallel.

• RPROP algorithm.

• Learning with validation data (for early stopping).

• Automatic merging of Gaussian kernels.

• Automatic insertion of new Gaussian kernels to reduce the error to a spec-
ified level.

• Automatic deletion of irrelevant Gaussian kernels.

• Smart initial positioning of Gaussian kernels on characteristic patterns.

5.8.3 C4.5 (Decision Trees)

The C4.5 decision tree library [Quinlan 1986] implements decision trees for clas-
sification tasks. A public domain version for download exists in the internet:
http://www.cse.unsw.edu.au/˜quinlan/. For a general description of decision
trees see appendix A.5.
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C4.5 generates rules for classification using a set of training data. The program
is given files defining classes, features and examples. Special features include

• Generation of decision trees in batch mode or iteratively.

• Automatic pruning of trees to simplify them.

• Evaluation of generated trees with validation data.

• Construction of rules from decision trees generated.

• Automatic optimization of rules.

• Evaluation of generated rules with validation data.
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Chapter 6

Layered Experience-Based
Control

6.1 Introduction

In the previous section we have seen a number of problems and respective imple-
mentations of solutions based on experience-based control. In subsection 2.2.5
we already referred to the problem of highly complex tasks briefly. In this sec-
tion, we explain how to apply experience-based learning techniques successfully
to complex problems that cannot be learned in one shot.

A standard approach to reduce the complexity of a learning task is to di-
vide it into different layers. Then, in each single layer, problems of lower
complexity have to be solved. This method is widely reported in the lit-
erature [Arkin 1989, Arkin 1998, Dudek and Jenkin 2000, Murphy 2000] and
has been used in many applications [Stone 2000, Riedmiller and Merke 2002,
Beetz et al. 2002, Burkhard et al. 2002]. For example, if we want robots to learn
to play soccer, it makes no sense to let the robots autonomously learn the whole
task by only providing the information whether a goal was scored or not. It is
much more better to let the robots learn which high level action (dribble shoot to
the goal,...) to perform in which situation after learning which low level actions
to perform in order to make the single high level actions work most efficiently.
As we can see in this example, the different layers, namely the high-level actions
and the low-level actions, are not completely independent. The performance of
every single high-level action depends on the reliability of the policy learned in
the lower layer. If the robot has learned how to dribble but not how to shoot the
ball it makes no sense to try to shoot even if the robot is in a good position for
a shot.

In the context of this work we regard layered learning not only in terms of one
learning agent but in applications where at least two learning agents cooperate in

97
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order to solve a common task. In the latter case layered learning means to divide
a complex learning task into several tasks that can be performed by different
agents in parallel [Buck et al. 2002d].

6.2 Gain and Feasibility

If we perform layered experience-based learning we have to consider the different
state spaces S l and action spaces Al of the respective layers l (l ∈ {I, II, ..}).

Gain The term gain defines the appropriateness of an action al in state ζ l in
a certain layer l considering the respective layer only. It describes how good it
would be to perform the action al no matter what amount it takes to perform
it and what the predicted rate of success might be. In case of a soccer robot
the action shoot2goal always has a higher gain than for instance dribble because
a goal has a greater impact on the result of the game. Here, the time it takes
to execute shoot2goal is not considered. Represented by a Q-function the gain is
given by Ql(ζ l, al).

Feasibility The feasibility defines the appropriateness of an action al in state
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Figure 6.1: The robot possessing the ball
can choose from two actions. The actions
differ in gain and feasibility.

ζ l in a certain layer l considering the
state ζ l−1(al) in the layer below re-
sulting from the action al in layer l.
The feasibility gives us a measure if it
is feasible or what amount it takes to
choose the action al. Represented by
a Q-function the feasibility is given by
Ql−1(ζ l−1(al), πl−1∗(ζ l−1(al))). Herein
πl∗ is the optimal policy for a particu-
lar layer l:

πl∗(ζ l) = arg max
al∈Al

Ql(ζ l, al) (6.1)

To illustrate the definitions of gain and
feasibility we provide an example. Let us assume a soccer robot in possession of
the ball as depicted in figure 6.1. The robot can choose from two actions in layer
I:

AI = {aI
1, a

I
2} (6.2)
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Action aI
1 means to go to position p1 while action aI

2 means to go to position
p2. In layer II the robot can specify its target velocity in meters per second and
degrees per second. The action space is given by

AII = [−1.0, +1.0] × [−180, +180] (6.3)

Obviously, position p1 is much more better to score a goal than position p2. This
means aI

1 has a higher gain than aI
2. On the other hand, the defender in figure

6.1 is more likely to hinder the player possessing the ball if it moves to p1. As a
consequence, the feasibility of the action aI

1 is lower than the feasibility of aI
2. For

instance let us assume the following values for gain and feasibility of the different
actions.

goto position p1 (action aI
1) goto position p2 (action aI

2)

gain QI(ζI , aI
1) = 0.5 QI(ζI , aI

2) = 0.3

feasibility QII(ζII(aI
1), π

II∗(ζII(aI
1))) = 0.4 QII(ζII(aI

2), π
II∗(ζII(aI

2))) = 0.8
(6.4)

The decision of the soccer robot depends on how the different values of feasibility
and gain are weighted. In the following we propose different methods to support
decision making if there is more than one layer.

6.2.1 Combinations of Q-Functions

In order to be able to choose actions consistently we need to compute one global
value out of the Q-functions of all layers. Dependent on the application the Q-
functions might be combined by a sum or by a product. In the case of a weighted
sum we maximize the following term:

max
aI

i
∈AI

Q̂(ζI , aI
i ) = max

aI
i
∈AI

[wI · QI(ζI , aI
i ) +

∑

l>I

wl · Ql(ζ l(al−I), πl∗(ζ l(al−I)))] (6.5)

Herein the wl are the weights of the Q-functions of the respective layers. Q̂
evaluates action al

i and state ζI depending on the weighted sum of the Q-functions
of all layers. For a system containing two layers the overall policy πI in the higher
layer is defined by

πI(ζI) = arg maxaI
i
∈AI Q̂(ζI , aI

i )

= arg maxaI
i
∈AI wI · QI(ζI , aI

i ) + wII · QII(ζII(aI), πII∗(ζII(aI)))
(6.6)
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Along the same lines, we can use a product instead of a sum. In this case we
maximize the term

max
aI

i
∈AI

Q̂(ζI , aI
i ) = max

aI
i
∈AI

[QI(ζI , aI
i ) ·

∏

l>I

Ql(ζ l(al−I), πl∗(ζ l(al−I)))] (6.7)

Consequently, for a system containing two layers the overall policy πI in the
higher layer is given by

πI(ζI) = arg maxaI
i
∈AI Q̂(ζI , aI

i )

= arg maxaI
i
∈AI QI(ζI , aI

i ) · QII(ζII(aI), πII∗(ζII(aI)))
(6.8)

The advantage of using a weighted sum is that each single layer can be param-
eterized depending on its importance. This is not possible if a product is used.
On the other hand, using a product ensures that the Q-function of each layer has
a certain value. If using a sum the Q-function of one layer can be zero for the
best action overall. Usually, this is not desired.

6.2.2 Thresholds

If we want to ensure that the feasibility of an action is above a certain level
and the best action fulfilling this requirement is chosen we can use thresholds
to specify the minimum level of feasibility [Buck and Riedmiller 2000]. Then the
policy πI in layer I is given by

πI(ζI) = arg maxaI
i
∈AI Q̂(ζI , aI

i )

= arg maxaI
i
∈AI

Θ

QI(ζI , aI
i )

(6.9)

where AI
Θ is the set of actions that exceeds the minimum level of feasibility:

AI
Θ = {aI

j ∈ AI |QII(ζII(aI
j), π

II∗(ζII(aI
j ))) > ΘII} (6.10)

The advantage of this method is that a certain value can be guaranteed for the
Q-function. However, for the special case of AI

Θ = ∅ an exception-handling must
be implemented.

6.3 Multi Agent Layered EBC

In the preceding subsection we provided several methods to combine the Q-
functions of different layers in order to obtain a single value that we can use
for choosing an action. In the following, we regard the scenario of layered
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learning with multiple agents. The main advantages of multi agent systems
over single agent systems are speed-up and fault tolerance [Cao et al. 1997,
Dudek et al. 1996]. But without a reasonable coordination a multi agent sys-
tem can even be less efficient than a single agent system (e.g. two robots block
each other). Therefore [Mataric 1998a, Mataric 1998b] suggest that control in
multi agent systems must be addressed as a separate, novel, and unified problem,
not an additional ’module’ within a single agent approach.

To underline the problems occurring in multi agent systems we take a look at an
example first. Let us once again consider robot soccer. In contrast to the last
example, we have a team of two robots now. Further we have one defender of an
opponent team and the situation depicted in figure 6.2.

2

1

Figure 6.2: Robot 1 and robot 2 have to
coordinate their behavior.

This time, the possible actions for
robot 1 and robot 2 are go2ball or
block ball. The robots have to co-
ordinate their actions such that one
robot tries to get the ball (go2ball)
and the second robot tries to hinder
the opponent defender from attacking
(block ball) 1. While robot 2 is closer
to the ball robot 1 is in a better po-
sition to score a goal once it gets the
ball. Here, we have to think about the
coordination of the robots. In the de-
picted situation it makes no sense if
both robots choose the action go2ball.

As a precondition for coordinated behavior we need to synchronize the percep-
tions of the single agents in such a multi-agent learning scenario. In terms of our
example we have to ensure that the robots choose their actions based on shared
information in order to act consistently.

6.3.1 Shared Information

Information acquisition of agents in general occurs by sensors or communica-
tion. To achieve consistency and cooperation in multi agent behavior some kind
of common basis for situation assessment is necessary (e.g. synchronization or
a shared world model) [Tews and Wyeth 2000]. [Young et al. 2002] distinguish
between leader-following and behavioral schemes.

1In our example we consider only this possibility. Of course there are a lot more options.
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Leader-Following Schemes

In the leader-following approach one agent organizes the whole coordination and
assigns actions to all other agents of the team. Success strongly depends on the
leader-agent and therefore fault tolerance is poor. If the leader-agent is out of
order the whole system may collapse. [Chen and Luh 1994] provide an example
for a leader-robot system.

Behavioral Schemes

In contrast to leader-following schemes, in behavioral schemes, agents au-
tonomously decide what to do supported by more or less communication. This
requires intelligent software and computational resources for all agents. Behav-
ioral systems can be categorized in those with a shared model of the environ-
ment, those with a shared abstract description of the environment’s state (e.g.
at the planning level), and those without shared information. Examples for
systems using global maps are the collaborative exploration systems described
in [Burgard et al. 2000, Simmons et al. 2000]. [Alur et al. 1999] periodically ex-
changes information at discrete time intervals. Many other systems rely on com-
munication too [Levesque et al. 1990, Jennings 1995, Saffiotti et al. 2000]. The
system MAPS [Tews and Wyeth 1999] uses globally shared information remod-
eled in an abstract virtual space. Multi agent systems with a shared model of
the environment require the computation of such a model. This is not triv-
ial. In systems with a synchronization on an abstract description level we are
forced to change the implementation everytime anything changes on the ab-
stract level (e.g. priorities in planning). Furthermore it is argued that com-
munication may lead to delays in information acquisition and can increase com-
plexity and degrade multi robot systems [Kube and Zhang 1994, Sen et al. 1994,
Garland and Alterman 1996]. However, using no shared information means to
be dependent on an accurate state estimation of the environment.

Exchange of Key Features for a Consistent Assignment of Actions To
meet the requirements for a consistent assignment of actions we rely on behav-
ioral schemes using information shared among the agents of the team. Each agent
receives its own sensor data and key features from its team mates via commu-
nication. Out of this information a model of the agent’s environment is built.
Thereby principally local information is used while the other agents’ key features
(if available) are used for evidence. Additionally the agent constructs a model of
the environment from each other agent’s local view by primarily relying on the
key features of the respective agent. If those features are not available only lo-
cal information is used and the system will keep working despite communication
capabilities being corrupted.



6.3. MULTI AGENT LAYERED EBC 103

If each agent has a model of the environment from each other agent’s local view
it can put itself in its team mate’s situation. This mechanism allows an agent
to consider its team mates’ intentions in the process of choosing an action2.
Moreover, if the same software is running on all agents each agent can compute
its team mates’ actions.

6.3.2 Exhaustive Search

In the following we consider a multi robot system (or multi agent system) R.
Herein ri ∈ R means a particular robot with its respective state. Action selection
from a set of actions A in the context of the multi robot system R means to find
a mapping

π : R → A (6.11)

that assigns each robot (and its respective state) of the system a different action
aj ∈ A in a way that the defined common goal can be performed with a maxi-
mal QII-value over all robots. This means we regard the feasibility of an action
depending on the robot performing it. QII(ri, aj) is the QII-value (feasibility) for
robot ri performing action aj. Hence we want to maximize the following term:

max
|R|
∑

i=1

QII(ri, π(ri)) i 6= j ⇔ π(ri) 6= π(rj) (6.12)

Since this combinatorial problem is NP-hard it is advisable to employ heuristics
for maximizing the feasibility function. Assuming there is only a small number of
robots (e.g. |R| = 4) and a small number of actions this problem can be solved
exactly by an exhaustive search over all combinations possible.

6.3.3 Priorities of Actions

In the case of an exhaustive search, we regard only the feasibility of an action
depending on the robot, that is, we consider if the robot can execute the action
and for what cost. Here we make the assumption that the performance of all
actions is equally important. Obviously, in many real world applications this is
not the case: In autonomous mine sweeping for example, disabling the mines close
to a village or even a building is more important than disabling distant mines.
In robot soccer, shooting the ball is prior to any other action in an offensive
situation. Consequently, we construct a priority list of actions AI

pr to support

2Interestingly, this ability distinguishes humans and apes on one side from all other mammals
on the other side
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the computation of π. AI
pr contains all actions of AI in the order of their priority.

Below an example for AI
pr is given.

action ∈ AI QI(action)
aI

1 1.0
aI

2 0.8
aI

3 0.5
: :

priority(aI
i ) > priority(aI

j) ⇔ i < j

6.3.4 Combining Agent-Dependent Feasibilities and Gain

While the above considerations concerning priorities of actions are based on the
assumption that each robot can perform all actions we will consider the feasibility
of actions and their gain (or priority) in the following. A number of examples
show that we cannot ignore the feasibility of an action: For instance, a soccer
robot without ball cannot perform the action shoot2goal, a robot that is stuck
cannot move to a distant target position, and a robot short of energy resources
has to move back to its home location. Recapitulatory this means that for certain
applications the use of a priority list AI

pr and a feasibility function QII is necessary.

In the following algorithm AI
pr (R̂) denotes the priority list of actions (the set of

idle robots). This algorithm takes into account that the actions are not equally
important and not necessarily feasible for all robots.

R̂ = R
for i = 1 to |R̂|

π(ri) = no operation
for i = 1 to |AI

pr|
if R̂ 6= ∅ ∧ maxr∈R̂(QII(r, ai)) > 0

rj = arg maxr∈R̂(QII(r, ai))
π(rj) = ai

R̂ = R̂ \ rj

The algorithm initializes all robots with the action no operation and then loops
over all actions in the order of their priority. If there is an idle robot left that
can perform the current action the robot with the maximal feasibility to perform
this action is chosen to do so. The feasibility QII(r, a) is set to zero if a robot
r cannot perform the action a and to a value dependent on the predicted cost
C(r, a) otherwise:
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QII(r, a) =

{

0 if robot r cannot perform action a
1

1+C(r,a)
otherwise

(6.13)

Herein the predicted cost C depends on the application and its specific definition
of cost. In section 6.4.1 we will see an example for the representation of C.

6.4 Prediction-Based Coordination of Multiple

Soccer Robots

Multiple collaborating robots with a common goal have to coordinate their actions
in order to avoid physical interferences and to achieve a maximum of speed-up.
Reasonably, in cooperative multi robot systems the common goal is decomposed
into several tasks related to the individual robots of the system. The decomposi-
tion in terms of tasks is unique and changes depending on the current situation.
Assuming such tasks can be performed by a single action each the question is
how to assign tasks (=actions) to the robots. Actually a sequence of actions is
required for each robot to achieve the common goal. Typical multi robot applica-
tions dealing with cooperative action selection include robot soccer, exploration,
mine sweeping, messenger systems, and more. For an appropriate action assign-
ment the cost C(r, a) of a robot r executing an action a must be well known. This
requires an accurate prediction of the cost.

Assuming there is a common basis for action selection (see section 6.3.1) that
characterizes the current state of the whole multi robot system the question
remains how to best coordinate the robots’ actions. Robots must reason about
expected team utilities of future team states [Tambe and Zhang 1998]. In general,
forestalling interferences and estimating the team utility requires the prediction
of the consequences of a particular action assignment for the robot team.

To coordinate a team of multiple robots with a common goal in a shared environ-
ment we use a layered hybrid system containing a state estimation module, an
action selection unit, and a multi robot navigation system. The hybrid architec-
ture works as follows (see fig. 6.3). The robot’s state estimation is based on local
sensor data and key features from the other robots of the system (if available via
communication). Local key features are sent to the other robots. The robot esti-
mates the environment’s state from its local view and from the views of the other
robots. Cooperative action selection is done by the utility function that relies on
all of the robots’ local views. A neural projector supports the utility function by
predicting the time need for desired changes in state. Thereafter the target states
of the actions are given to the multi robot navigation system that considers path
planning and computes an appropriate low level control command for the robot.
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Communication
Other 
Robots

Local Sensor Data

State Estimation

Estimated State (Local View)
Estimated State (Local View of Robot n)

Estimated State (Local View of Robot i)

Local Key Features

Key Features from Robot n

Key Features from Robot i

Actions Utility Function

Action Selection

Target States for all Robots

Multi Robot Navigation System

Low Level Control Command

Projector

Figure 6.3: A robot architecture in a multi robot system to facilitate cooperative
behavior.

This technique enables the action selection unit of a robot to put the robot in
another robot’s situation, and thereby, to consider the choice of the respective
robot. This consistency allows the robots to behave cooperatively and avoids
robots interfering one another. Action selection is done by the utility function
(described by the algorithm in section 6.3.4) which is based on a priority list of
actions. It is supported by a sophisticated neural prediction system (described
in section 6.4.1) that estimates the time need for a requested change in state.
Actions are assigned at a frequency of 10 Hz and may change depending on the
current situation even if the respective task was not completed. There is no ex-
plicit synchronization between the robots but each robot deciding every 100ms
allows only for very short times of double assignments.

Using the algorithm described in section 6.3.4 each robot employs the function C
to predict its own cost and to compare it with the values computed for its team
mates. Relying on identical software and the same local environment data the
action selection of this algorithm is unique and consistent. C can already rely
on the knowledge which robots are to perform the more important actions by
predicting the cost for robot ri performing a less important action aj. In case
there is any interference C(ri, aj) will increase. This mechanism forces cooperative
behavior and informs all robots on the action selection of their team mates. The
major advantages of this approach are

• A robot can put itself into the situation of a team mate. Therefore it will
behave cooperatively by considering the team mates’ decisions.
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• All sequences of chosen actions can be stored locally and toggling situations
in action selection can easily be detected and avoided.

• The algorithm is resistant against a crash of a single robot. Such an incident
will be detected (for instance if the robot is not moving and not communi-
cating for a certain time). Likewise a new robot can easily be integrated in
the system. Systems using a high-accuracy state estimation will even work
if there is no communication.

• The concept works fine with homogeneous and heterogenous robots. In case
of heterogenous robots C must be implemented for each different robot.

• The laborious computation of a global map of the environment is not nec-
essary. There is no loss of time for computing and broadcasting a global
map.

6.4.1 Prediction of Time Needs

To improve the competence of our robot soccer team we have learned a model in
order to predict the time need for performing a given single robot navigation task.
To learn such a model with an expected inaccuracy of less than three percent we
had to collect data from more than 10000 navigation episodes. Assuming that
setting up and executing a navigation task takes only two minutes we would have
had to spend more than 330 hours of experimentation with the real robots (see
the example in chapter 3 too). Obviously, this is not feasible.

As stated in section 6.3.4 the cost C(ri, aj) (in equation (6.13)) for robot ri per-
forming action aj depends on the specific application. In traveling it may be the
way, in mine sweeping it may be the time need per mine, and in robot soccer it
can be the time to score or prevent a goal. In our case the cost C(ri, aj) can be
described as the time robot ri needs to complete action aj. Assuming that to
complete an action means to reach a certain target state we try to predict the
time a robot needs to complete a single robot navigation task. This will give
us an information how suitable it is that this robot performs the task proposed.
This means we have to estimate the time need for a robot completing an action
considering the following:

(1) Knowledge about the dynamical behavior of the robot must be acquired.

(2) Actions of team mates must be taken into account.

(3) Other dynamic objects must be regarded as moving obstacles.
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a b c

Figure 6.4: A training scenario in the multi robot simulation environment.

Due to the physical complexity of this problem it seems impossible to estimate
the amount of time without learning algorithms. But, once again, learning the
prediction

C : R×A → time (6.14)

with data from real robot runs would require an impractical huge amount of time
for data acquisition. It is less expensive to use the robot simulator described
in section 3.5.1 and in [Buck et al. 2002c]. This simulator mimics the physical
behavior of the robots.

Learning a Neural Prediction Neural Networks have been shown to be an
accurate means for the prediction of run-times (see [Smith et al. 1999] for ex-
ample). Hence we choose neural learning to obtain C. We apply multi layer
neural networks (see appendix A.2) and the backpropagation derivative RPROP
[Riedmiller and Braun 1993] because of its adaptive step-size computation in gra-
dient descent. The data we use to train the neural prediction C is completely
obtained from the learned simulator in minimal time. The training patterns have
the form

〈ζs, ζt〉, time (6.15)

where ζs is the randomly chosen start state of the robot and ζt its randomly
chosen target state in the simulation. We get the necessary value for time by
simulating a robot driving from ζs to ζt (see fig. 6.4): The simulated robot is set
to ζs (position of the robot in subfigure (a)) and has to drive to the target state
ζt indicated by the dashed arrow. The direction and length of this arrow indicate
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the target state’s orientation and velocity. The time the robot needs to reach
its target state (subfigures (b) and (c)) is taken to complete the training pattern
(equation (6.15)). C was trained with around 300.000 patterns using a network
with input layer, output layer, and two hidden layers. At learning time there
are no other objects or team mates taken into consideration. Using validation
patterns for early stopping [Sarle 1995] the trained network achieved an average
error of 0.13 seconds per prediction on a test set not used for learning. Due to
the complexity of this learning problem this is an appropriate result.

Taking the Actions of Team Mates into Account If we use the algorithm
proposed in section 6.3.4 in order to select a robot to execute a particular action
aj we can consider the behavior of all robots executing actions ai under the
condition that i < j (ai prior to aj). This is possible because we compute C(r, aj)

for any robot r ∈ R̂ dependent on the intentions of all robots performing actions
ak (k ≤ j). For these robots, a set of start states and target states as well as the
priority of each target state (action) is given. A multi robot navigation system
can receive this data and computes the paths for all concerned robots including
r. This multi robot navigation system consists of three components:

(1) The neural network controller described in section 5.5.

(2) A library of software tools for planning and plan merging including the
methods presented in sections 5.6.2 and 5.6.3.

(3) The learned decision tree described in section 5.6.5 that selects the appro-
priate planning methods in a situation-specific way.

If the multi robot navigation system proposes to apply a path planning method
for r to get from its start state ζs to its target state ζt and the first intermediate
state on the computed path is ζi the time need is set to

C(ζs, ζt) = C(ζs, ζi) + C(ζi, ζt) (6.16)

This equation may be used recursively for the computation of C(ζi, ζt) if ζi is not
the last intermediate state of the computed path.

6.4.2 Cooperative Action Selection

The algorithm described in section 6.3.4 has been implemented and tested in sim-
ulation as well as in a real robot environment. Being highly reliant on cooperation,
soccer robots are a suitable appliance for testing this algorithm. We observed (1)
the behavior of a team of 11 autonomous soccer robots in the RoboCup simula-
tion league environment and (2) the behavior of four real robots belonging to the
RoboCup mid-size league.
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Communication Match. rate pass player/receiver Average goals per game

full 82.1% 8.1
breakdown each 120 s 76.2% 7.4
breakdown each 60 s 70.1% 6.5
breakdown each 30 s 66.1% 6.1
no communication 63.9% 5.7

Table 6.1: Average goals per game and matching rates for pass play depending on
different communication modes.

Simulation Experiments

In the RoboCup simulation environment a soccer team consists of 11 autonomous
software agents communicating with a server program [Kitano et al. 1997,
Noda et al. 1998]. The agents receive sensory data and send low level con-
trol commands. We use the Karlsruhe Brainstormers agent of RoboCup 1999
[Riedmiller et al. 1999] as a basis for our experiments. Each agent can choose
from a set of actions

AI = {shoot2goal,pass2player,dribble,receive pass,go2ball,offer4pass,gohome}
(6.17)

QI(r, a) is represented by a priority list (see section 6.3.4). The feasibility QII(r, a)
is instantiated by hand-coded functions based on situation dependent features.
For action selection thresholds are used (see section 6.2.2). Actions are chosen at
a frequency of 10 Hz. There is no direct communication between the agents but
a limited communication via the soccer server simulation program. Exploiting
this communication, the agents share their current perceptions of the system’s
state.

Pass Play We played several games and recorded the locally selected actions
of all agents. We measured how many times the agent chosen to receive a pass
by the agent playing the pass was identic with the agent planning to receive a
pass in relation to all passes played. Herein, we rated a match within a temporal
difference of 0.1 seconds (1 simulation cycle) as positive. This quotient gives
us a measure of cooperation since pass play is a paradigm of cooperation. The
experiments were performed with working communication and temporary disor-
dered communication. In table 6.1 one can see the above explained quotient with
working communication and with a communication breakdown every 30, 60, and
120 seconds which lasts tbd seconds with tbd uniformly distributed over [0s, 30s].
Furthermore we played games without any communication. Each result is based
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a b

c d

Figure 6.5: A double pass scenario in the RoboCup soccer server environment.

on 10 games respectively. One can see that an increasing frequency of commu-
nication breakdown accompanies with a decreasing number of scored goals per
game. Moreover less communication means less successful planning of pass play
and with it less coordination. Nevertheless a team using no communication is
able to score around 70% of the goals a team with full communication scores.
Additionally 77.8% of the matching quotient of a team using full communication
is reached by a team without any communication. These results document that
our algorithm for action selection and coordination is robust and can deal very
well with temporary failures.

Double Pass Play Without ever explicitly learning to play a double pass
and no special plan for a double pass specified not seldom double pass play was
observed. Analyzing some cases of double pass play we found a reasonable pattern
to explain this effect (see fig. 6.5). Robot number 3 holds the ball and decides to
pass to player number 2. Meanwhile player number 2 puts itself in the situation
of player number 3 and recognizes that it has to receive a pass (subfigure (a)):

πI(r3) = pass2player2 πI(r2) = receive pass3
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Immediately after having played the ball player 3 performs πI(r3) = offer4pass
to offer itself for a receipt of a pass. As player 2 receives the ball it chooses to
play a pass to player 3. Meanwhile player 3 puts itself in the situation of player
number 2 and recognizes that it has to receive a pass (subfigure (b)):

πI(r2) = pass2player3 πI(r3) = receive pass2

Further player 3 performs πI(r3) = receive pass while player 2 performs πI(r2) =
offer4pass after playing the pass back to player 3 (subfigure (c)). Receiving
the ball again player 3 is to choose from {shoot2goal,pass2player,dribble} again
(subfigure (d)).

Real Robot Experiments

To evaluate our approach in a real robot environment we choose the RoboCup
mid-size league (see appendix B about RoboCup). Two teams of 4 players com-
pete on a field of about 9 meters in length and 5 meters in width. Compared with
the RoboCup simulation league there are a number of new challenging problems:
The sensory data is not provided by a server program but must be acquired by
the robot itself. Furthermore most robots are not able to receive a pass from
any direction unlike in the simulation league. Further, path planning becomes
more important on a comparably small field (the field in the simulation league
is 105 meters long). For our experiments we use the Agilo RoboCuppers team
(appendix B.2,[Beetz et al. 2002]) as a basis. As stated above these robots have
to acquire information about their environment autonomously. In the following
we will shortly describe the methods employed for state estimation before we
regard the experiment itself.

Probabilistic State Estimation We employ the state estimation module for
individual autonomous robots described in [Schmitt et al. 2001a] that enables a
team of robots to estimate their joint positions in a known environment (such
as a soccer field or an office building) and track the positions of autonomously
moving objects. The state estimation modules of different robots cooperate to
increase the accuracy and reliability of the estimation process. In particular,
the cooperation between the robots enables them to track temporarily occluded
objects and to faster recover their position after they have lost track of it.

The state estimation module of a single robot is decomposed into subcomponents
for self-localization [Hanek and Schmitt 2000] and for tracking different kinds of
objects. This decomposition reduces the overall complexity of the state estima-
tion process and enables the robots to exploit the structures and assumptions
underlying the different subtasks of the complete estimation task. Accuracy and
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#robots performing go2ball quota in relation to
at the same time the whole time played

0 00.34%
1 98.64%

> 1 01.02%

Table 6.2: The number of robots performing go2ball at the same time.

reliability is further increased through the cooperation of these subcomponents.
In this cooperation the estimated state of one subcomponent is used as evidence
by the other subcomponents.

Considering further Physical Properties for State Estimation So far
physical properties like dead time and acceleration of robots are not considered
for the state estimation. All robots are dealing more or less with a dead time
which means that at the moment a robot is performing visual localization it has
already sent control commands (e.g. an action a to control translational and
rotational velocity) for further movements. These sent commands can be used to
predict the robot’s state a little time ahead. This requires a mapping

P : ζc × a 7→ ζsucc (6.18)

from a current state ζc and a sent command a to the successor state ζsucc. This
mapping is a special case of the mapping in equation (3.7), chapter 3. P is
learned from experience, as described in section 3.5.1. Depending on the number
of command cycles equating with the dead time, P has to be applied repeatedly
to the current state. This enables a robot to perform action selection and path
planning considering its future state which is predetermined anyway.

In many mobile robot applications the machines can get stuck or blocked by other
objects. It is very useful to detect such a situation because it might strongly
change the process of action selection, for the robot affected and for its team
mates. To detect such a situation we employ P once again. Recording the low
level commands sent to the robot we can predict the robot’s changes in state. If
they differ significantly from the measured changes in state we assume the robot
is not able to move correctly. This information is posted among the robots of the
team and will be considered by the action selection unit.

Approaching the Ball In the following the list of actions theoretically avail-
able for each robot of the team is defined by
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AI = {shoot2goal,dribble,clear ball,go2ball,gohome,get unstuck} (6.19)

Action selection is supported by thresholds (see section 6.2.2 for details). QI(r, a)
is represented by a priority list (see section 6.3.4). The feasibility QII(r, a) is
computed dependent on a learned cost function (equation (6.13), section 6.4.1).
To demonstrate the coordination of the team we measure the number of robots
performing go2ball at the same time. Further we observe how long the same
robot performs go2ball without being interrupted by another robot. Here we rate
only actions that last for more than one cycle (> 200ms) as an interruption.
The data was acquired from five real robot games against different opponent
teams at the international robot soccer world cup 2001. Table 6.2 depicts in
how many percent of the whole time played no robot, one robot, or more than
one robot performed go2ball. The frequency of action selection is around 10 Hz.
The average time one robot performs go2ball or handles the ball without being
interrupted by a decision of a team mate is 3.35 seconds. In only 0.25% of the
time a robot that is stuck is determined to go for the ball by the other robots.
However, the positioning of the robots supports the surprisingly good results of
this experiment: (1) Normally, the robots’ positions are far from each other. This
leads to less conflicts in decision making. (2) If a robot has the ball in its guiding
device no other robot will decide to go for the ball.

Nevertheless, these results show that, in the context of robot soccer, coordination
can be achieved to a great extent. There are hardly ever situations where no robot
or more than one robot approaches the ball at a time and the situations in which
it is not clear which robot is to go for the ball are just a few.

Solving Situations with Stuck Robots Not seldom, in a highly dynamic
environment like robot soccer a robot gets stuck due to another robot blocking
it. The following example shows how such incidents were handled by the robots
in our experiments (see fig. 6.6). Robot number 2 is supposed to be the fastest
to get the ball and therefore approaches the ball (subfigure (a)):

πI(r2) = go2ball

Near the ball robot 2 collides with an opponent robot. Robot 2 is in a deadlock
situation and cannot move forward anymore. The only action feasible to execute
remains get unstuck. Thus robot 3 approaches the ball now (subfigure (b)):

QII(r2, a) = 0 ∀a ∈ A \ get unstuck πI(r2) = get unstuck πI(r3) = go2ball

Having reached the ball robot 3 dribbles towards the opponent goal while robot
2 is moving backwards (subfigure (c)):
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a

c d

b

Figure 6.6: An example for intelligent cooperation in a real robot soccer environment.

QII(r2, a) = 0 ∀a ∈ A \ get unstuck πI(r2) = get unstuck πI(r3) = dribble

Further on robot 2 is no more stuck and robot 3 is still dribbling (subfigure (d)):

QII(r2, go2ball) > 0 πI(r2) = gohome πI(r3) = dribble

Finally the feasibility for robot 2 performing go2ball is not zero any more but
since robot 3 has the ball robot 2 chooses another action.

The above experiments show that the ability of a robot to put itself in its team
mate’s situation supports cooperative behavior among the robots. It is shown
that the proposed approach is reliable and, to a high extent, fault tolerant even
if there is no communication between the robots but a reliable localization. The
neural prediction (section 6.4.1) to estimate the time need for a robot itself or for
other robots to reach a certain state is extremely helpful to determine the feasi-
bility of an action. Compared to most previous methods our concept described
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in section 6.3.4 is neither leader-following nor dependent on a shared global map
of the environment. Each robot decides completely autonomous supported by a
neural prediction. In action selection we consider the feasibility of an action as
well as its priority.



Chapter 7

Related Work

In this chapter, we consider previous research that aims at goals similar to ours
and put it in relation with our work.

7.1 Reinforcement Learning

The idea of automatic learning based on experience has been surveyed by many
researchers. In relation to the algorithms described in this work, the techniques
of reinforcement learning are of special interest. Reinforcement learning1 can be
characterized by learning from interaction with the environment using a trial and
error search with feedback through a delayed reward. The goal of reinforcement
learning is to obtain a policy-function π that maps from a situation to an ap-
propriate action. Further, all common reinforcement learning algorithms rely on
finite Markov decision processes.

Markov Decision Processes

Markov decision processes (MDPs) [Ross 1983, Bertsekas 1987] are a fundamental
basis for reinforcement learning. They provide a model for actions, states, and
transitions between them. Finite MDPs consist of the following components:

MDP = 〈S,A, P, R〉 (7.1)

S is a finite set containing all states a machine can be in. A state ζ ∈ S must
provide all information that is necessary to choose the optimal action in order
to have the Markov property. A is a finite set of actions from which actions can

1[Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998] give a good introduction to rein-
forcement learning
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be chosen to be executed depending on the current state. P denotes probability
distributions for changes in state. For instance, P (ζ(t), a, ζ ′) gives the probability
for a transition from state ζ(t) to state ζ ′ if choosing action a ∈ A. R(t + 1)
represents the immediate reward the learning algorithm obtains for executing
action a in state ζ(t).

7.1.1 Temporal Difference Learning Methods

As a central method in reinforcement learning, temporal difference learning
[Sutton 1988] incrementally updates the estimates of a value-function or a Q-
function partly based on existing estimates and partly based on immediate re-
wards. The success of this strategy is documented by a number of applications
such as Tesauro’s learned backgammon player [Tesauro 1994] that was among
the best players of the world. The basic TD(0) algorithm incrementally updates
a value-function over the state space using the following equation:

V(ζ(t)) = V(ζ(t)) + α[R(t + 1) + γV(ζ(t + 1)) − V(ζ(t))] (7.2)

Herein α is a learning rate tuning the impact of the immediate reward R and
the existing estimate of the successor state ζ(t+1). γ is a discount factor tuning
the influence of the existing estimate of the successor state only. If we want to
exploit a learned value-function actions are chosen by the policy:

π(ζ(t)) = arg max
a∈A

R(t + 1) + γ ·
∑

ζ′
P (ζ(t), a, ζ ′) · V(ζ ′) (7.3)

SARSA Instead of a value-function, SARSA [Rummery and Niranjan 1994]
learns a Q-function depending on state and action. The resulting equation (of
the basic SARSA) for updating the Q-function is given by

Q(ζ(t), a(t)) = Q(ζ(t), a(t)) + α[R(t + 1) + γQ(ζ(t + 1), a(t + 1))−Q(ζ(t), a(t))]
(7.4)

Unlike in the following Q-learning, this update is dependent on the Q-value for
ζ(t + 1) and a(t + 1) that must be defined in advance. [Stone and Sutton 2001]
have applied the SARSA(λ) algorithm to multiple agents in the RoboCup
soccerserver simulation environment [Kitano et al. 1997, Noda et al. 1998] and
learned playing behaviors for a 2 vs. 3 scenario.
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Q-Learning The Q-learning algorithm [Watkins and Dayan 1992] directly ap-
proximates the optimal Q-function. It is by far the most applied technique in
reinforcement learning. Like SARSA, Q-learning incrementally learns a state-
action Q-function from experience. Q(ζ, a) computes how good it is to perform
action a in state ζ. According to

Q(ζ(t), a(t)) =
Q(ζ(t), a(t)) + α(R(t + 1) + γ maxa Q(ζ(t + 1), a) − Q(ζ(t), a(t)))

(7.5)

Q is updated incrementally where γ is a discount factor tuning the impact of
the maximized Q-value of the successor state. R(t + 1) is the immediate reward
received for performing action a(t) in state ζ(t). In order to exploit a given
Q-function we use the following policy

π(ζ(t)) = arg max
a∈A

Q(ζ(t), a) (7.6)

for choosing an appropriate action. A lot of successful work has been
done with Q-learning: [Asada et al. 1996] has transformed camera images
into discrete states and applied Q-learning in that space. In further work,
[Takahashi and Asada 2000] applied vision-guided multi-layer Q-learning where
the robot autonomously determines subtasks without the intervention of a hu-
man developer. Low-level skills and 2 vs. 1 behavior have been learned in the
RoboCup simulation environment [Riedmiller and Merke 2001]. Navigation tasks
[Lin 1992] and multi robot cooperation [Mataric 1997] have been learned with Q-
learning. [McCallum 1995] has learned a highway driving task including other
cars and overtaking scenarios. [Forbes 2000] has used Q-learning for autonomous
vehicle control. [Martinson et al. 2002] have learned a high-level behavior selec-
tion using Q-learning, and composition policies for basic controllers have been
learned too [Huber and Grupen 1997].

Eligibility Traces As an extension for all temporal difference learning meth-
ods, [Watkins 1989] introduced the use of eligibility traces. In this mechanism,
rewards are not assigned immediately after each action (1-step algorithms) but
backups after a certain number of steps are used for learning.

Dyna-Q and Prioritized Sweeping In addition to Q-learning, in the Dyna-
Q architecture [Sutton 1990] a model of the environment is acquired during 1-
step Q-learning and exploited for simulated experiences made in parallel to ob-
served real experiences. The environment is assumed to be deterministic, and
1-step simulations are made with state-action-pairs visited previously only. Pri-
oritized sweeping [Peng and Williams 1993, Moore and Atkeson 1993] is based
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on the idea that the values of predecessor states of those states whose value has
changed a lot are more likely to change also a lot. Thus the simulated experiences
of Dyna-Q are directed to those states whose values have changed most.

7.1.2 Recent Improvements

Grid Size of Discretization In order to both, limit the number of discrete
states and smooth the control output, [Moore and Atkeson 1995] propose to in-
crease the resolution of the state space in interesting regions while decreasing it
in less interesting regions. [Kondo and Ito 2002] propose to divide the state space
gradually according to the progress of learning.

Continuous Approximations of the Value-Function One standard ap-
proach for reinforcement learning in continuous state spaces is to use the gra-
dient of the value-function to choose an action [Werbos 1990]. But only replac-
ing the discrete value-function by a continuous approximation has been shown
to fail [Boyan and Moore 1995]. [Thrun and Schwartz 1993] find the overesti-
mation phenomenon to be the main reason for that. Overestimation results
from noise which is likely in real world applications. Since temporal difference
methods are incremental algorithms there is the danger of an accumulation of
such errors. Recent work on approximating a continuous value-function in rein-
forcement learning include the HEDGER algorithm [Smart and Kaelbling 2000],
barycentric interpolators [Munos and Moore 1999], and instance-based learning
[Forbes and Andre 2000]. [Takahashi et al. 1999] introduced continuous valued
Q-learning where some kind of interpolation between discrete states is performed
based on contribution vectors. Another problem reported in the literature is the
discontinuity problem [Takeda et al. 2001]. It addresses the question what hap-
pens if the optimal value-function (or Q-function) is discontinuous. Nearly all
common function approximators will fail here. Happily, in practice this case is
not of major interest because most value-functions are continuous.

Hidden State Traditional reinforcement learning assumes that all factors rel-
evant for the computation of the value-function (or Q-function) are observable.
But in practice this constraint might fail. Due to unobservable parts of the state
space this problem is called hidden state. For example, in the dribble-task in sec-
tion 5.4 there is hidden state, namely the perception of the defending robot. In
this application we overcome the hidden state by a specific model for the hidden
part. In general, such a model is not provided. [McCallum 1995] has developed
successful solutions to deal with hidden state.
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7.1.3 Comparing Reinforcement Learning and EBC

The methods of experience-based control (EBC) introduced in this dissertation,
on one hand, share a lot with reinforcement learning while, on the other hand,
we can delineate quite a few differences between the two approaches.

Common Background of Reinforcement Learning and EBC Obviously,
reinforcement learning and EBC both exploit experiences from interaction with
the environment. The key idea for both approaches is to use feedback gained from
exploration to improve the controller’s performance. Exploration is implemented
as a trial and error search in the action space.

Differences between Reinforcement Learning and EBC In EBC learning
is performed directly in a continuous state space. To apply temporal difference
learning methods for tasks in continuous domains like machine control the state
space is usually discretized [Kalmar et al. 1998]. But in general, operating in a
discrete state space brings some well known problems: Using a coarse discretiza-
tion the control output is not smooth and using a fine discretization the number
of states becomes huge, especially in high-dimensional spaces [Doya 2000].
The non-incremental learning in EBC avoids the summation of errors which is
a frequent problem in temporal difference learning. Moreover old information is
not forgotten. On the other hand, EBC is not able to keep adapting to changes
in the environment lifelong.
So far, in reinforcement learning the danger of unsuccessful exploration2 has
been widely neglected. In EBC, we overcome this negligence by introducing
the backward exploration that guarantees to find trajectories that lead to the
target state. One might regard robot shaping [Dorigo and Colombetti 1994,
Perkins and Hayes 1996] as a related approach for reinforcement learning. In
robot shaping the machine starts to explore close to its target state first. In the
following, the start state is incrementally moved further away from the target
state.
In reinforcement learning three parameters, namely the reward, the discount
factor, and the learning rate have an impact on the approximation of the value-
function (or the Q-function). In EBC we employ a discount factor γ only. There
is no reward at any time. The discount factor tunes the relation between consec-
utive states (or state-action pairs).
Reinforcement learning relies on MDPs that work with probability distributions.
State spaces in machine control are likely to include some nonlinearities result-
ing from angles, acceleration, etc. These nonlinearities are hard to discretize

2In chapter 4 unsuccessful exploration is defined as an exploration where the target state
has not been reached.
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reasonably. It is extremely difficult to determine the neighborhood of a state ac-
cessible by any action in a high dimensional state space including nonlinearities.
Therefore it may be difficult to apply MDPs for certain problems. In EBC, the
projection-function P is learned from experience (see section 4.2) and replaces
the probability distributions P of the MDP. No MDP model is needed at all.
This is possible because in EBC we make the assumption of a deterministic en-
vironment or at least of an unimodal distribution with a small variance for the
impact of actions. In fact, most real world machine control tasks suffice these
requirements3. However, in highly stochastic applications like games (throwing
dice etc.) the use of a deterministic projection-function will not work.
The consideration of undesirable states, and especially negative terminal states,
for reinforcement learning has received surprisingly little attention in the past. In
EBC, undesirable states can easily be integrated in the value-function approxima-
tion. [Geibel 2001] has worked on the integration of fatal states in reinforcement
learning.
While reinforcement learning methods like Q-learning, Dyna-Q, and others are
theoretically designed under the assumption that there is unlimited time for ex-
ploration, in EBC we perform an inductive approximation of a distance metric
that can generalize even from very few patterns.
Furthermore, EBC provides methods to directly learn the policy-function. EBC
reliably solves complex machine control problems in highly dynamic, high-
dimensional, and continuous state spaces based on a very small number of explo-
rations even if exploration remains unsuccessful using conventional techniques.

7.2 Conventional Control Methods

In this section, we briefly consider PID controllers and fuzzy control and put it
in relation with the control methods of EBC. For more details on conventional
controllers see [Jacobs 1993] for example.

7.2.1 PID Control

For many practical applications, the well surveyed PID controller is used. Here,
we go briefly over its main characteristics to compare it with the methods of EBC.
PID stands for proportional, integral, and differential. The controller consists of
three components that have different objectives:

a = KR(E +
1

TN

∫ t

0
Edτ + TV · E ′) (7.7)

3Our preceding experiments in chapter 5 underline this.
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The first component, the proportional part of the controller, adjusts the action a
proportional to the error E weighted by the factor KR. The integral component
increases the accuracy of the controller. It is weighted by KR

TN
. Finally, the third

component, the differential part, aims at a fast control of the system. KR · TV

weights the differential part. Using only three parameters, this controller can
implement a wide variety of control behavior. This makes it one of the most used
controllers in practice. However, due to its structure, the PID controller assumes
the state-value to be monotone towards the target state in all dimensions. Inher-
ently, control problems where the state-value of a particular dimension behaves
not monotonic cannot be solved. In EBC, we learn a problem-specific distance
metric to overcome this problem.

7.2.2 Fuzzy Control

In contrast to a PID controller, the transfer behavior of a fuzzy controller is not
implemented explicitly but implicitly by means of characteristic diagrams. The
action depends on the errors in the single dimensions of the state space:

a = f(E1, E2, . . .) (7.8)

Therefore cases where the state-value is not monotone in all dimensions can be
solved. The characteristic diagrams are represented by fuzzy-sets and rules. How-
ever, the rules are usually designed based on a priori knowledge. Therefore, the
complexity of the control problem should be known in advance. Fuzzy controllers
have been used for technical applications for a long time now. Two of numer-
ous examples are warm water plants [Kickert and van Nauta Lemke 1976] and
train operation systems [Yasunobo and Mamdani 1985]. For a good overview
on fuzzy control see [Cox 1992, Driankov et al. 1993, Graham and Ollero 1996].
Like fuzzy controllers, EBC relies on characteristic diagrams. In EBC, they are
represented by a learned value-function for example. Therefore, without any prior
knowledge, it is much more feasible to develop controllers in EBC than in fuzzy
control.

7.3 Robot Control

Over the past ten years, a number of impressive demonstrations have shown
that robots controlled by artificial intelligence are already able to solve tasks in
real world environments. The vehicle ALVINN is a neural controlled small truck
trained with data from human drivers [Pomerleau 1993, Sukthankar et al. 1993].
In extensive tests it proved a high reliability. The autonomous mobile robots
Rhino [Thrun et al. 1998] and Minerva [Thrun et al. 2000] successfully guided



124 CHAPTER 7. RELATED WORK

thousands of visitors through museums in the USA and in Germany. The RoboX
system consisting of ten autonomous interactive robots worked as a tour guide at
the swiss Expo.02 [Jensen et al. 2002]. Besides sensor integration and cognitive
interaction, path planning in crowded and highly dynamic environments is one
of the fundamental computational problems of such robot control systems.

7.3.1 Path Planning

Besides the methods for robot path planning introduced in sections 5.6.2 and
5.6.3 there exists a wide variety of algorithms. For a general introduction to
path planning [Latombe 1991] is recommended. One of the keys for the success-
ful application of path planning methods to real robots is the consideration of
the robot’s dynamical properties. While in section 5.6 we learn to choose the
appropriate planning methods dependent on the current situation without using
explicit knowledge about the robots’ velocities, some algorithms explicitly include
the robots’ velocities in their planning process. Here, recent work includes the
dynamic window approach (DWA) [Fox et al. 1997, Brock and Khatib 1999]. In
this method, a trajectory in the velocity space of the robot is planned considering
the robot’s dynamic constraints. A linear evaluation function chooses the veloc-
ities to be set weighing clearance, speed, and the heading towards the target.
[Belker and Schulz 2002] propose an extension of the DWA using optimal utility
functions. [Minguez et al. 2002] extend standard path planning algorithms by
integrating the robot’s dynamics into the algorithms. [Bruce and Veloso 2002]
propose the rapid exploring of random trees and apply it successfully to the
RoboCup small-size league.

Multiple Robots In a nutshell one can classify multi robot navigation plan-
ning methods into ones that plan the joint navigation task in one shot such
as [Leroy et al. 1999, Bennewitz and Burgard 2000] who operate in a combined
configuration time space and ones that essentially decompose a multi robot navi-
gation task into single navigation tasks and merge and repair the resulting plans
in order to avoid conflicts with the navigation plans of other robots. For example,
[Kant and Zucker 1986] propose an algorithm for navigation problems in dynamic
environments that decomposes navigation planning into planning a collision free
path with respect to the static obstacles and then determines the velocity along
this path in order to avoid collisions with the moving obstacles. Unfortunately
the application of such methods for planning in dynamic environments requires
predictive models of the obstacles’ movements, which in many applications cannot
be provided for all obstacles because of likely frequent, abrupt, and unpredictable
changes in the speed and in the orientation of the obstacles’ movements. The
situation dependent selection of planning methods using EBC described in sec-
tion 5.6 was trained assuming random movement of the obstacles. This might
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not lead to an optimal behavior but produces a defensive rather than a risky
behavior. To obtain an optimal behavior, however, the laborious and sometimes
even online computation of a model of the obstacles’ movements is necessary.

7.3.2 Multi Robot Coordination

A number of tasks require multiple cooperating agents in order to be solved.
The two different approaches of leader-following and behavioral (decentralized)
schemes have already been introduced in section 6.3.1. In this work, we fo-
cus on the latter method because it is much more fault tolerant than a leader-
following system. In the robot soccer environment, [Castelpietra et al. 2000] co-
ordinate their robots by a greedy algorithm that assigns actions to all robots.
While our soccer robots decide supported by neural predictions of the actions’
cost, [Weigel et al. 2002] employ behavior networks for the action selection of
their soccer robots. In this approach, actions are connected to, and trig-
gered by, special features that are suitable to characterize the current situation.
[Khoo and Horswill 2002] have developed the HIVEMind architecture for the co-
ordination of robot groups and applied it to search tasks. All robots of the
group share sensory data by treating other team mates’ sensors and actuators
as virtual parts of their own. [Jäger 2002] has successfully implemented a to-
tally decentralized approach using communication only in a local neighborhood
to coordinate multiple cleaning robots working in a supermarket. The M+ archi-
tecture [Alami and Botelho 2002] employs the CN-Protocol that puts up actions
for auction among the robots with their respective utilities. M+ has been used
for bed cleaning and object transfer in a hospital environment. A survey on re-
cent work on multi-agent coordination is given in [Pynadath and Tambe 2002].
From a more theoretically point of view [Gerkey and Mataric 2002] state that
multi robot task allocation can be reduced to an instance of the Optimal Assign-
ment Problem. They compare different well known approaches considering their
computational and communicational amount.
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Chapter 8

Conclusions and Future Work

In this chapter, we summarize the scientific contributions of this dissertation and
suggest promising directions for further research in this area.

8.1 Conclusions

In this dissertation, we have introduced algorithms for autonomous machine con-
trol that learn by induction from experience and interaction with their environ-
ment. The most important aspect was to develop algorithms that work reliably
in real robot settings. Most of the proposed approaches have been developed in
the context of robot soccer in order to work on real robots. In our work, learning
algorithms are not only implemented for virtual environments. In fact, the phys-
ical behavior of real machines is considered as well. Thus our methods have been
shown to run on real robots. The techniques have succeeded under competitive
conditions, such as robot tournaments, without any intervention from a human
user.

In chapter 1 we stated that we are interested in developing methods that are easy
to implement and that work automatically to a large extent. The algorithms pre-
sented in this dissertation are indeed easy to implement as they require very little
a priori knowledge of the problems to solve. In addition, the tuning of parame-
ters is reduced to a minimum while remaining parameters such as the discount
factor γ are not magic numbers but parameters whose impact on the learning
process is well understood. The entire learning process can be automated by a
program consisting of two subprograms, one for exploration and one for function
approximation. In chapter 5 we have seen a number of different applications
that have been solved successfully with the methods that are introduced in this
dissertation. In extensive experiments we have applied different strategies for
exploration in order to construct patterns for learning. These applications show
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that our algorithms work reliably, accurately, and in real-time. We have studied
tasks with high-dimensional state spaces where it is not sufficient to simply use
the Euclidean or Minkowski distance metric for global optimization. We have
seen that it is practicable to learn a nontrivial distance metric and to represent
it by a value-function. The success of the proposed methods is founded in their
technical contributions that we will refer to in the following.

The curse of dimensionality makes learning by induction in high-dimensional
state spaces difficult: Unexplored regions of the state space must be represented
in an appropriate way. In our approach, we can learn a value-function even
from very few example patterns. If, for instance, there is only one successful
exploration we are still able to learn a value-function from that data. However,
in nearly all cases the more learning data is available, the better the performance
will be. But in practice, the amount of learning data is limited by the time
available for data acquisition. For complex learning tasks, it may take several
minutes to perform just one experiment with a real machine. In this case it
becomes impractical to perform thousands of experiments. To perform a big
number of experiments it is inevitable to use simulation techniques. However,
the simulation of a complex task is likely to fail. Therefore in chapter 3, we
propose to decompose such simulations into sets of less complex subsimulations.
For example, the simulation of a multi robot system is decomposed into a number
of single robot simulations. The neural simulation of the dynamics of robots in
section 3.5.1 has been shown to be accurate and has been used as a basis for more
complex learning problems.

Since we rely on a limited amount of training data, we cannot guarantee that our
algorithms will find the optimal solution to a problem. But the approximated
value-function is guaranteed to be a lower bound of the optimal value-function
if the employed function approximator works reliably. Furthermore, with an in-
creasing number of successful explorations it is very likely that the approximated
value-function converges towards a good solution. The experiments in this dis-
sertation have confirmed these findings. Moreover, a priori knowledge regarding
undesirable states can be included in the learning process by defining such un-
desirable states and evaluating explorations not only concerning the target state
but concerning these undesirable states as well.

Because of their aggressive learning behavior and local competence in approxi-
mation, networks of radial basis functions have turned out to be a suitable choice
for the approximation of value-functions in EBC. Additionally, their behavior is
transparent and hence easy to grasp by a human. Multi layer perceptrons are
an accurate means for value-function approximation in EBC, too. In contrast to
networks of radial basis functions multi layer perceptrons tend to interpolate and
extrapolate for unknown regions. They should only be used if a huge amount of
training data is available.
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In section 4.3, we provide various exploration policies which were designed for
different kinds of problems: The backward exploration has been shown to work
in cases where no conventional exploration policy manages to find a path to
the target state. In case we already know a number of actions (or policies)
that lead to the target state, the fixed-action exploration will help us to find
out which is the appropriate action (or policy) for a certain region of the state
space to reach the target as fast as possible. Supervised exploration has been
shown to be very powerful to teach a machine particular behaviors. Any level of
initial knowledge can be integrated in the process of exploration by combining
the proposed exploration strategies.

The majority of machine control tasks in technical applications are deterministic
or at least they possess a unimodal probability distribution with a small variance.
As a consequence, it is possible to use a simple projection-function instead of a
complex MDP-model, which itself was initially designed for discrete state spaces.
In our approach, we work directly in a continuous state space and perform a
number of explorations before we exploit the data. This is the main reason why
our approach is robust against the incremental summation of noise and other
errors that are common in conventional reinforcement learning.

8.2 Future Work

Although we have presented, discussed, and tested a set of algorithms for
experience-based learning, a number of questions remain to be addressed in the
future.

Future Improvements

Since the proposed EBC algorithms work non-incrementally it would be advan-
tageous to know how many exploration runs are needed until the control system
has reached a specified quality target. Ideally, we could use a formal estimation
to compute in advance how much training data is needed to reach a certain level
of controller quality. In reinforcement learning, a similar question is to what ex-
tent we want to exploit gained information in order to explore the state space.
If we compare EBC with Q-learning we can see that in Q-learning – in theory –
the optimal solution is found. But in practice it may take a very long time to
find it, especially if there is a huge number of discrete states which is the case in
high-dimensional state spaces.

In chapter 4 we introduced a number of different exploration techniques. In
addition, it would be interesting to construct a formal definition of a “reasonable”
policy for exploration. At this point, we have named a number of properties that
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such a policy should have but we cannot determine in advance what a good
policy is. The same point holds true for the majority of reinforcement learning
algorithms.

If we do not approximate the policy-function directly we use the value-function or
the Q-function. In the latter two cases we can propose an action and estimate the
value of the successor state. As long as the set of actions is limited or the action
space is small this leads to good results. But if we have to choose an action from a
high-dimensional action space it may take a lot of time to find a good action and
moreover we cannot guarantee that the chosen action is optimal. Here, we have
to interpolate between different actions, perform local searches, or employ other
heuristics to obtain an appropriate solution. This problem is already known from
conventional reinforcement learning. Future research efforts might focus on this
area to further improve the situation.

Outlook on Future Systems

Recapitulatory, we have described a set of methods that supports the design and
development of autonomous intelligent systems. The ultimate goal for future
systems is that machines autonomously solve complex control tasks with a user
only specifying the task. However, present machine learning algorithms do not
met this goal yet. Nevertheless, in this dissertation, we provide highly practicable
methods that already work in a largely automated fashion. One can see this as
a major step towards fully automated intelligent systems of the future. If the
open improvements specified above are satisfactorily solved the entire learning
process can be automated. In practice, the experience-based learning methods
of this dissertation contribute to the implementation of intelligent autonomous
machines in industrial applications as well as in our daily life.



Appendix A

Methods of Function
Approximation

A.1 CMACs
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Figure A.1: CMAC with three receptive fields that cover parts of the input space S.
Each receptive field returns a certain value. In the overlappings of the receptive fields
mean values of the receptive fields involved are returned.

CMACs (Cerebellar Model Articulation Controllers) [Albus 1975a, Albus 1975b,
Albus 1981] represent functions that map from multi-dimensional input space to
a one-dimensional target space (using one CMAC per output dimension they can
map to multi-dimensional spaces as well). They consist of a number of receptive
fields that are responsible for computing the output of certain regions of the
input space. In general the single receptive fields do overlap and in regions of
overlappings the computed output is the mean value of the output of all receptive
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fields involved (see fig. A.1). This means that any output of a CMAC is element of
[omin, omax], where omin (omax) is the minimal (maximal) output of any receptive
field.

Training a CMAC Before training a CMAC the output values of the receptive
fields should be initialized (by random for example). Assuming we want train
a CMAC using patterns 〈x, y〉, (x ∈ IRd, d is the dimension of the input space,
y ∈ IR) we need to compare the current output of the CMAC to x, CMAC(x)
with the output wanted, y. Afterwards the output values oi of all receptive fields
i that are responsible for x are adapted according to the following rule:

oi = oi + α · (y − CMAC(x)) (A.1)

where α ∈ (0, 1] is the learning rate. Using α = 1 means to learn aggressively by
forgetting all previous data while a small α stands for learning slowly.

Number and Size of Receptive Fields A big number of receptive fields
enables a CMAC to learn more complex functions but, however, more training
data is needed. Small sized receptive fields allow for great discontinuities in the
represented function while large receptive fields and many overlappings help to
represent smoother functions.

Value-Function Approximation with CMACs CMACs are popular and
often used means for value-function approximation in reinforcement learning.
For example, [Kleiner et al. 2002] have successfully learned the behavior of soccer
robots.

A.2 Multi Layer Perceptrons

Multi Layer Perceptrons (MLPs) are the most popular representatives of neural
networks [Hecht-Nielsen 1990, Hertz et al. 1991, Bishop 1995, Rojas 1996]. They
are based on the ideas of the early model of the perceptron [Rosenblatt 1957,
Rosenblatt 1958, Rosenblatt 1962] and represent multi-dimensional functions
whose free parameters are tuned by learning algorithms according to the problem
at hand. The parameters include the network’s weights. As an example a single
neuron s with its input x1 and a weight w1 represents a linear function:

s = w1x1 − Θ (A.2)
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Figure A.2: A MLP-network with a 3-5-1-architecture.

Θ is called the threshold. Weights and thresholds are adapted by learning. There-
fore training patterns 〈X,Y 〉 (X ∈ IRd, Y ∈ IRn) are used to specify on which
input X = (x1, .., xd) the network should return which output Y = (y1, .., yn).
To approximate nonlinear functions several layers of neurons can be used. In
figure A.2 a network with a 3-5-1-architecture is depicted. This network maps
from a three-dimensional input space to a one-dimensional output space using
five neurons in one hidden layer. For instance, the value of s4 is computed by

s4 = f(
3
∑

j=1

w4jsj − Θ4) (A.3)

where f is an activation-function mapping a real number to [0, 1]. In most cases
the sigmoid function is used for representing f :

f(x) = fsig(x) =
1

1 + e−βx

∂fsig(x)

∂x
= fsig(x) · (1 − fsig(x)) (A.4)

In general the value of any neuron can be computed by

si = fsig(
∑

j∈pred(i)

wijsj − Θi) (A.5)

where pred(i) is the numbers of neurons of the predecessor layer of neuron i.

Gradient Descent The most popular and well known method to adapt
the network’s weights is the gradient descent algorithm Backpropagation
[Rumelhart and McClelland 1986]. The error of a network can be computed by
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(a) (b)

w

−E

|E| small −−> step size small
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E(t) * E(t−1) < 0 −−> decrease step size
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Figure A.3: Subfigure (a): Standard backpropagation uses a small step-size in case
of a flat error-function and a big step-size in case of a steep error-function. RPROP
works the other way around. Subfigure (b): Momentum term avoids zigzag-movements
in rugged error-functions.

E =
1

2

n
∑

k=1

(sk − yk)
2 (A.6)

where sk are the outputs of the network and yk are the outputs wanted (obtained
from the training patterns). From the weights of the network, wij, a part of the
gradient is subtracted to reach a minimum of the error-function E:

wij(t + 1) = wij(t) − α
∂E

∂wij

(t) − ∂E

∂wij

= −∂E

∂si

· ∂si

∂wij

(A.7)

where α is a learning rate (which usually is less than 1). Details on Back-
propagation can be found in [Hecht-Nielsen 1990, Hertz et al. 1991, Bishop 1995,
Rojas 1996].

Problems of Backpropagation

Regarding the standard backpropagation algorithm the question remains how to
set the learning rate α for the gradient descent. As in equation (A.7) the step-size
of the gradient descent is proportional to the absolute value of the gradient. This
yields big steps for steep gradients and small steps for flat gradients. According
to figure A.3(a) the relation should be the other way around. Further we want
to avoid zigzag-movements in the adaptation of the parameters that might occur
at rugged passages of the error-function (see figure A.3(b)).
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Modifications of Backpropagation

Momentum This method includes a moment of inertia λ (called momentum)
in the computation of the new weights:

wij(t + 1) = wij(t) − α
∂E

∂wij

(t) + λ · (wij(t) − wij(t − 1)) (A.8)

The momentum makes the adaptation more smooth. As a result, the optimization
process gets not stuck in rugged passages of the error-function that easy.

RPROP The idea behind RPROP [Riedmiller and Braun 1993] is that only
the sign of the gradient but not its absolute value has influence on the adapta-
tion of the parameters. If the current gradient and the gradient of the previous
learning step have the same sign the step-size is increased, if not it is decreased:

wij(t + 1) =















wij(t) − dij(t) if ∂E
∂wij

(t) > 0

wij(t) if ∂E
∂wij

(t) = 0

wij(t) + dij(t) if ∂E
∂wij

(t) < 0

(A.9)

dij(t) tells us by what absolute value the weights are changed:

dij(t) =















κ+ · dij(t − 1) if ∂E
∂wij

(t) · ∂E
∂wij

(t − 1) > 0

dij(t − 1) if ∂E
∂wij

(t) · ∂E
∂wij

(t − 1) = 0

κ− · dij(t − 1) if ∂E
∂wij

(t) · ∂E
∂wij

(t − 1) < 0

(A.10)

κ+ and κ− are element of (1,∞) and (0, 1), respectively. Experiments have shown
that in general κ+ = 1.2 and κ− = 0.5 work well.

Other algorithms that use an adaptive computation of the step-size include
SuperSAB [Tollenaere 1990], Quickprop [Fahlmann 1988], and Delta-Bar-Delta
[Jacobs 1988].

Efficient Training of Multi Layer Perceptrons

Learning by Pattern, Block, and Epoch If we use gradient descent algo-
rithms for the adaptation of the parameters of the network there are different
possibilities how to do this: We can update the network’s parameters after each
single computation of a pattern’s error. This method is called learning by pattern
and works well especially for noisy data. If we do not want to update the pa-
rameters after computing the gradient for each single pattern we can do it after
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a finite number of patterns. This method is called learning by block and is com-
putationally less expensive. If we have a finite number of patterns to be trained
and want each of them to be virtually learned in parallel we choose learning by
epoch: We compute the gradients of all training patterns and then, in one step,
we adapt the parameters by using the sum of all respective gradients. This is
called learning by epoch. The advantage, here, is that all patterns are equally
considered for learning contrary to learning by pattern (block) where the cur-
rent pattern (block) has the greatest impact on the parameters and old patterns
(blocks) can even be forgotten.

Early Stopping Learning too many epochs can lead to the phenomenon that
the error of the training patterns still sinks by every epoch but the ability of
generalization (wanted for practical application) gets lost. This phenomenon is
called overfitting and forces us to have a look on how our network performs on
validation data (not used for training) after each epoch of learning. If we learn
over a big number of epochs we can choose the network from the epoch with
the least error on the validation data for application. Since the validation data
are used in order to decide which network is chosen the results of the validation
data cannot be presented from a scientific point of view. To see how the chosen
network performs on completely unknown data we need a set of test data (a third
set of data). This approach is called early stopping [Sarle 1995].

Weight Decay To keep the weights of a network inside a reasonable interval
the idea of weight decay was proposed. Experiments showed that this influenced
the network’s ability of generalization positively [Hinton 1987]. Each learning
update forces a decrease of the absolute value of the weights over time:

wij(t + 1) = wij(t) − α · ( ∂E

∂wij

(t) + ξ · wij(t)) (A.11)

The parameter ξ determines how strong the decrease of the weights is.

Optimization of the Topology of Multi Layer Perceptrons

In advance, it is difficult to determine how many layers of neurons and how many
neurons are necessary to solve a certain learning problem. Even experienced
researchers are sometimes surprised about the complexity of the network that is
supposed to be the best one for a certain learning task. Beside human experience
there are helpful algorithms that automatize the optimization of the network’s
topology. These algorithms can be classified into two groups: Constructive and
destructive algorithms.
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Constructive Algorithms Constructive algorithms build up a network bot-
tom up by iteratively inserting new neurons and connections. Some well known
methods are Upstart [Frean 1990], Tiling [Mezard and Nadal 1989], and Cascade
Correlation [Fahlman and Lebiere 1989].

Destructive Algorithms Contrary to incrementally building up a network
one can start with a big network and remove components that are not relevant.
Pruning, for instance, removes all connections of weights that have a very small
value and thus little impact on the network’s performance. Optimal Brain Dam-
age [Cun et al. 1990] and Optimal Brain Surgeon [Hassibi and Stork 1993] both
use the Hessian matrix of the weights in order to decide which connections are
removed.

A.3 Networks of Radial Basis Functions

RBF-networks were introduced by [Powell 1985, Broomhead and Lowe 1988] and
by [Moody and Darken 1989, Poggio and Giorosi 1989]. They employ neurons
that consist of radial basis functions. In contrast to multi layer perceptrons (see
appendix A.2) the activation of a neuron is not given by the weighted sum of
all its inputs but by the computation of a radial basis function. Generally the
Gaussian function

Gi(x) = e
−

|x−µi|
2

2σ2

i (A.12)

is used, where x is the input of neuron i, µi is the basis of neuron i, and σi is the
amplitude of neuron i.

RBF-Networks are feed forward run and consist of one input layer (x), one hidden
layer of Gaussian neurons (Gi), and one output layer (o). The topology of a
sample network can be viewed in figure A.4.

The value of an output unit ok (given a network input x) is computed by

ok =
g−1
∑

i=0

wkiGi(x) − θk (A.13)

where wki is the weight (=height) of neuron Gi for output ok and θk is a gen-
eral threshold of output ok subtracted from the weighted inputs. The Gaussian
neurons work as experts for certain areas of the d-dimensional input space. Each
neuron’s activation depends on its distance to the input vector. In case there
is a large quantity of Gaussian neurons, it is sufficient to consider the nearest
Gaussian kernels only. Efficient algorithms also used for the nearest neighbor
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Figure A.4: A sample network with input units x = 〈x0 . . . xd−1〉, Gaussian neurons
G0 . . . Gg−1, and output units o = 〈o0 . . . on−1〉. The neurons of adjacent layers are
fully connected.

approach (such as [Arya et al. 1994]) can be employed to find relevant Gaussian
kernels.

Learning algorithms like Backpropagation and its derivates can be used to adjust
the variable parameters of the network:

µj, σj, wki, θk

j ∈ {0, .., d − 1}, k ∈ {0, .., n − 1}, i ∈ {0, .., g − 1} (A.14)

The following Gradients are used to adapt the network’s parameters:

∂E

∂µi

=
∑

k,p

(op
k − yp

k) · wki ·
xp − µi

σ2
i

· e
−

|xp−µi|
2

2σ2

i (A.15)

∂E

∂σi

=
∑

k,p

(op
k − yp

k) · wki ·
|xp − µi|2

2σ3
i

· e
−

|xp−µi|
2

2σ2

i (A.16)

∂E

∂wki

=
∑

p

(op
k − yp

k) · e
−

|xp−µi|
2

2σ2

i (A.17)

∂E

∂θk

= −
∑

p

(op
k − yp

k) (A.18)

In the above equations, p denotes a specific pattern to be learned while the
gradients are computed considering all patterns to be learned. It is even possible
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to independently regard the σj values for all d dimensions but investigations have
shown that there is little if no difference in complexity between a low number
of Gaussian neurons with more parameters and a greater number of Gaussian
neurons with only one σj per neuron. Tools for optimizing the topology are also
common in some implementations [Buck 2002]. This means that we dynamically
increase or decrease g (the number of Gaussian neurons) while learning (see
section 5.8.2 for details).

Efficient Training of RBF-Networks The training is performed similar to
training MLPs (see appendix A.2). In addition it is possible to place single
Gaussian neurons at strategically reasonable places in the input space. Doing so
a priori knowledge can be used.

A.4 Nearest Neighbor Approximation

8−nearest neighbor
approximation

S

S

Figure A.5: An example for a k-nearest neighbor approximation. The output is com-
puted depending on the outputs of the k (in this case k = 8) nearest inputs.

If we have a large quantity of training data and these data cover the input space
reasonably the nearest neighbor approximation is an interesting option for func-
tion approximation. The basic idea is simple: Take the k nearest training patterns
of an input and compute the output depending on their outputs (see figure A.5).
The output o can be computed by simply using the average of the k nearest
patterns’ outputs (oi):

o =
1

k

k
∑

i=1

oi (A.19)
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This is useful in cases of huge quantities of training data. [Arya et al. 1994],
for example, have developed efficient methods to find the k nearest neighbors in
high-dimensional spaces. Using the equation above the result is a discontinuous
function. To get a more smooth function the influence of each neighbor’s output
must be dependent on the neighbor’s distance:

o =
1

∑k
i=1

1
1+δi

·
k
∑

i=1

oi

1 + δi

(A.20)

δi is the distance of neighbor i to the input. Obviously, the drawback of this
method is that a metric for the δi must be known.

A.5 Decision Trees

A decision tree consists of a number of nodes, leaves, and edges. Each node
represents an attribute (see below). The satisfaction of an attribute decides
whether one or another edge is chosen to go on towards a leave. Each leave
marks the discrete output for a certain subset of the input space.

Definitions

Attributes An attribute of a state is a certain property of the state. It specifies
conditions for the state’s features. Two examples are: (1) Red can be an attribute
if one feature of the state space is the color. (2) The term δ ≤ 2.0 can be an
attribute if a certain distance δ is a feature of the state space. In general, the
satisfaction of attributes splits a space into (at least) two subspaces.

Information To construct a decision tree from training data algorithms rely on
the information of an attribute. If we set s+ the states of the training data that
satisfy a particular attribute and set s− the states that do not, the information
I of an attribute is given by

I(s+, s−) = − s+

s+ + s−
· ld s+

s+ + s−
− s−

s+ + s−
· ld s−

s+ + s−
(A.21)

Depending on its information, an attribute is located at the beginning of a deci-
sion tree or at the end (closer to the leaves). Some common algorithms include
ID3, ID5R, and C4.5 [Quinlan 1986].



Appendix B

Robot Soccer

B.1 The RoboCup Challenge

RoboCup is an international research and education program. It focuses on
research in AI and intelligent robotics by providing different standard problems
related to robot soccer. Robot soccer is a suitable domain for the demonstration
of robot skills to the public. But the idea behind this is that methods that can
make robots play soccer, can solve other tasks too.

The construction of intelligent autonomous systems, from screw to software, is
a big challenge for researchers all over the world. The official motivation of the
RoboCup initiative is

By the year 2050, develop a team of fully autonomous humanoid robots that can
win against the human world soccer champion team.

The AGILO RoboCuppers participate in the RoboCup mid-size league. Rules
and regulations for the mid-size league consist of three parts:

(1) Official FIFA laws that apply for all RoboCup games.

(2) Additional RoboCup rules that apply for RoboCup games only.

(3) Competition rules that are effective for a certain tournament only.

More informations about RoboCup and the effective rules can be obtained from
http://www.robocup.org

141
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(a) (b)

Figure B.1: Subfigure (a): Theodo (goal keeper) and Hugibert (attacker) in 2001.
Subfigure (b): What the robots perceive of the world around them.

B.2 The AGILO RoboCuppers

B.2.1 Introduction

The purpose behind the AGILO RoboCuppers (http://www9.in.tum.de/agilo) is
to provide a reliable platform for (1) pursuing research in multiple fields such
as game state estimation, multi-robot cooperation, experience-based learning,
and plan-based control, (2) supporting undergraduate and graduate education in
computer vision, artificial intelligence, and robotics, and (3) performing software
engineering in highly complex software systems. The robot team is described in
[Buck et al. 2000, Schmitt et al. 2001b, Beetz et al. 2002] in detail.

B.2.2 Hardware Architecture

The platform of the AGILO RoboCup team is realized using inexpensive and
standard hardware components and a standard software environment based on
C++.

The robot soccer team consists of four Pioneer I robots [Pioneer 1998] each
equipped with an onboard Siemens Lifebook (Pentium 900 MHz CPU, 256 MB
RAM, 8 GB hard disk, USB, and Firewire) running under Linux. From 1998 to
2001 an onboard Linux PC (Pentium 200 MHz CPU, 64 MB) was used. The com-
puters are supported by an additional PC outside the playing field used to fuse
observations made by the individual robots and to monitor the robots’ current
states. All the Lifebooks and the PC are linked via a 10 Mbps wireless ethernet
(5.8 GHz) [DeltaNetwork, RadioLAN].
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Fig. B.1(a) shows two of our Pioneer I robots in 2001. All attackers and defenders
have identical shape and equipment except the goalkeeper. The wheels of the
robot are controlled by a self-designed controller-board (used for reading the
wheel encoders too) that communicates with the Lifebook via the RS232 serial
port. Until 2001 we used the original controller-board of the Pioneer I robot for
controlling the motors and reading the wheel encoders and the seven ultrasonic
sonars.

A color CCD camera is mounted on top of the robot and linked to the Lifebook via
Firewire. For a better guidance of the ball we have mounted a simple concave-
shaped bar in front of each robot. A custom made kicking device enables the
robot to kick the ball in direction of the robot’s current orientation.

B.2.3 Fundamental Software Concepts

The software architecture of our system is based on several concurrent modules
[Klupsch 1998]. The modules are organized hierarchically into main, intermedi-
ate, and basic modules while high-level modules employ modules of lower levels.
The main modules are image (sensor) analysis, information fusion, action selec-
tion, path planning, and robot control. Beside the main modules the system uses
auxiliary modules for monitoring the robots’ current states. The key software
methods employed by the AGILO RoboCuppers software are:

1. vision-based cooperative state estimation for dynamic environments,

2. synergetic coupling of programming and experience-based learning for
movement control and situated action selection, and

3. plan-based control of robot teams using structured reactive controllers
(SRCs).

Self Localization, Object Tracking and Data Fusion

The vision module is an essential part of our system. Given a raw video stream,
the module has to estimate the state of the robot, the ball, and the opponent
robots. Low-level image processing operations are performed using the image
processing library HALCON [HALCON].

The AGILO RoboCuppers employ a probabilistic vision-based state estimation
method for individual autonomous robots. This method enables a team of mobile
robots to estimate their positions in a known environment and track the positions
of autonomously moving other objects. All positions of the state estimation mod-
ule contain a covariance matrix for the description of their uncertainty. The state
estimators of different robots cooperate to increase the accuracy and reliability
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of the estimations. Cooperation also enables the robots to track temporarily oc-
cluded objects and to faster recover their positions after they have lost track of
them. A detailed description of the self localization algorithm can be found in
[Hanek and Schmitt 2000] and the algorithms used for cooperative multi-object
tracking are explained in [Reid 1979, Schmitt et al. 2001a].

Experience-Based Learning

The software modules related to experience-based learning have been described
in detail in the previous chapters. Videos that show the behavior of the robots
can be viewed at http://www9.in.tum.de/agilo/agilo videos.html.

Plan-based Control

Beside experience-based learning the AGILO RoboCuppers employ a robot soc-
cer playbook which is a library of plan schemata that contain how to perform
individual team plays. The plays are triggered by opportunities, for example, if
the opponent team leaves one side open. The plays themselves specify highly re-
active, conditional, and properly synchronized behavior for the individual players
of the team. This high-level controller is realized as a structured reactive con-
troller (SRC) [Beetz 2001] and implemented in an extended RPL plan language
[McDermott 1991].

B.3 Competitions

The AGILO RoboCuppers conducted RoboCup related research since 1998 and
participated in all mid-size league World-Cup-tournaments from 1998 and in
three German competitions. The techniques described in this work are part of
the AGILO RoboCuppers’ software since the year 2000. Both, in the years 2000
and 2001, the AGILO RoboCuppers entered the quarter final. At the RoboCup
2002 in Fukuoka the team participated in the technical challenge competition
only. This competition includes one path planning task and one task related to
robot cooperation. In this competition the AGILO RoboCuppers took the third
place out of 16.

However, the ranking of a team of robots depends on many factors beside the
quality of its software. Especially the hardware components of the team have a
great impact. In contrast to other teams, the AGILO RoboCuppers use cameras
with a view-angle of 45 degrees (to both sides) only and have some of the slowest
robots in the mid-size league. For these reasons the results achieved are even
more encouraging.
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Summary of Notation

Symbol Meaning First Mentioned on Page

A action space of the machine to be controlled 6
Ā sequence of actions 24
a action of the machine to be controlled 6
C cost function 104
c conditions (decision trees) 16
E error 123
F force 23
G Gaussian kernel 137
f function 11
fi feature with index i 82
I simulation function for sensory data 27
m mass 23
O set of obstacles 63
O obstacle 62
o output 132
P projection-function 7
P+ forward-projection 37
P− backward-projection 37
P probability distribution 117
p position 23
Q function evaluating state and action 49
Ql function evaluating state and action in a particular layer l 98

Q̂ function evaluating state and action over all layers 99
R set of robots 103
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Symbol Meaning First Mentioned on Page

IR set of real numbers 11
R reward 117
r robot 80
S state space of the machine to be controlled 6
S̄ sequence of states 24
s neuron 132
t time 7
V value-function evaluating a state 45
V+ value-function considering the target state 49
V− value-function considering undesirable states 48
V velocity 23
Vtr translational velocity 29
Vrot rotational velocity 29
w weight 99
α angle 62
α learning rate 118
β parameter of sigmoid function 133
γ discount factor 45
∆ difference 7
∆t temporal difference 7
∆ζ update function 7
δ distance (dependent on a specific metric) 44
ϕ orientation 29
π policy mapping from a state to an action 35
Θ threshold 49
Υ sensory data vector 27
ζ state of the machine to be controlled 6



Index

a priori knowledge, 14
A* algorithm, 79
abstract navigation task, 55
acceleration, 113
acquisition, of training data, 12
action, 6
action selection, cooperative, 109
action space, 6
action space, continuous, 17
action space, discrete, 17
activation-function, 133
adversarial environment, 9
AGILO RoboCuppers, 142
aircraft-autolanding-task, 88
algorithms for single robot path plan-

ning, 77
analytic simulation, 22
analytic simulation, autolanding-

task, 90
applications of experience-based con-

trol, 55
approaching the ball, 113
approximation, of the value-function,

120
attribute, of a decision tree, 140
autolanding-task, 88
autonomous mobile systems, 5

backpropagation, 133
backpropagation, modifications, 135
backpropagation, problems, 134
backward exploration, 41, 121
backward gradient, 78
backward-projection, 37
behavior, of a system, 8

behavioral organization, of multiple
robots, 102

black-box simulation, 22

C4.5, 94, 140
circumnavigation, of obstacles, 79
CMAC, 15, 131
combinations, of Q-functions, 99
comparison of different policies, 52
competitions, RoboCup, 144
complex control tasks, 18
constants, autolanding-task, 92
continuous action space, 17
continuous state space, 14, 121
control, 5
control loop, 5, 7
control task, complex, 18
control tasks, complex, 97
control, experience-based, 35
control, layered, 18
control, plan-based, 144
control-error, 6
controlled variables, 5
cooperative action selection, 109
coordination, of multiple robots, 105,

125
corridor-following task, 58
critical points, 79

data acquisition, 12
data fusion, 143
dead time, 8, 24, 113
dead time, Pioneer I robot, 31, 32
decision trees, 15, 140
decision trees, rules, 15, 94
decision trees, software, 94
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deduction, 10
detour, exploration, 39
discount factor, 45, 121
discrete action space, 17
discrete state space, 14
discretization, grid size, 120
double pass, 111
dribble-task, 64
Dyna-Q, 119
dynamic processes, simulation of, 19
dynamical properties, simulation of,

22
dynamics, of a Pioneer I robot, 30

early stopping, 136
EBC, 35
EBC, applications, 55
EBC, layered, 97
EBC, multi agent, 100
elastic band algorithm, 79
eligibility traces, 119
environmental influences, 8
error-function, neural networks, 134
exhaustive search, in multi agent

EBC, 103
experience-based control, 35
experience-based control, applica-

tions, 55
exploitation, 36
exploitation, autolanding-task, 90
exploitation, corridor following task,

60
exploitation, dribble-task, 69
exploitation, obstacle avoidance, 63
exploitation, of a value-function, 57
exploitation, of policy-functions, 52
exploitation, of Q-functions, 51
exploitation, of two value-functions,

49
exploitation, of value-functions, 47
exploitation, path planning, 86
exploitation, robot navigation, 74
exploration, 36, 38

exploration, abstract navigation
task, 56

exploration, autolanding-task, 89
exploration, backward, 41, 121
exploration, corridor-following task,

59
exploration, dribble-task, 69
exploration, fixed-action, 42
exploration, for policy-functions, 51
exploration, for Q-functions, 50
exploration, for two value-functions,

48
exploration, for value-functions, 45
exploration, insufficient, 40
exploration, obstacle avoidance, 62
exploration, path planning, 84
exploration, problems, 39
exploration, restrictions, 40
exploration, robot navigation, 72
exploration, solutions, 40
exploration, supervised, 42
exploration, unsuccessful, 13, 39, 121

fatal states, 122
feasibility and gain, combinations,

104
feasibility, of an action, 98
features, 6
features, of a navigation task, 82
fixed-action exploration, 42
forces, analytic simulation, 22
forces, autolanding-task, 90
format, of training data, 11
forward exploration, 38
forward-projection, 37
function approximation, 15, 131
fuzzifying, of sensor data, 26
fuzzy control, 123

gain, of an action, 98
Gaussian kernel, 137
global optimization, 44
gradient descent, 133
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gradients, of a RBF-network, 137
grid size, of discretization, 120

hallucination of obstacles, 81
hardware, of the AGILO RoboCup-

pers, 142
hidden state, 120
hysteresis, 8

impact of an action, 6
incremental learning, 17
induction, 10, 36
induction, simulation, 20
information, of an attribute, 140
information, shared among robots,

101
initial policy, 36, 38
insertion of temporary targets, 81
insufficient exploration, 40
interaction, 35

key features, 102

lack of training data, 13
layer, 97
layered control, 18, 97
layered EBC, 97
leader-following, 102
learning, 9
learning by block, 135
learning by epoch, 135
learning by pattern, 135
learning, abstract navigation task, 57
learning, autolanding-task, 90
learning, automatic, 36
learning, corridor-following task, 60
learning, dribble-task, 69
learning, incremental, 17
learning, indirect supervised, 36
learning, inductive, 36
learning, lifelong, 17
learning, non-incremental, 17, 36,

121
learning, obstacle avoidance, 62

learning, of a Q-function, 50
learning, of policy-functions, 51
learning, of two value-functions, 48
learning, of value-functions, 46
learning, offline, 17, 36
learning, online, 17, 36
learning, path planning, 85
learning, projection-functions, 37
learning, robot navigation, 73
learning, sensor simulation, 26
learning, simulation of a Pioneer I

robot, 31
learning, states/action relation, 25
learning, supervised, 10
learning, unsupervised, 10
lifelong learning, 17
linear transfer, 8
local minima, 77
local optimization, 43
lookup table, 15

manipulating variables, 5
maximum clearance, 79
MDP, 117, 121
MLP, 132
models of functions, 15
momentum, 135
multi agent EBC, 100
multi layer perceptron, 132
multi layer perceptrons, 15
multi robot path planning, 75, 80,

124

n++, 93
navigation task, abstract, 55
navigation, of robots, 70
nearest neighbor, 15, 139
networks of radial basis functions, 15,

137
neural networks, 15, 132
neural networks, software, 93
neural simulation, 23
neural simulation, of a Pioneer I

robot, 29
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noise, in training data, 13
non-incremental learning, 17, 36, 121
notation, 161

OBD, 137
object tracking, 143
OBS, 137
obstacle avoidance, 61
obstacles, circumnavigation, 79
obstacles, hallucination of, 81
offline learning, 17, 36
online learning, 17, 36
optimization, global, 44
optimization, local, 43
oscillation, 8
overfitting, 136

pass play, 110
path planning, 75, 124
path planning, multiple robots, 80,

124
path planning, single robot, 77, 124
perception, priority-based, 82
perceptron, 132
PID, 122
Pioneer I robot, 29
plan merging, path planning, 80
plan repair, 80
plan-based control, 144
policies, comparisons, 52
policy, 35, 43
policy, initial, 36, 38
policy-function, 51
potential fields, 77
pre-exploration, 37
prediction of time needs, 107
prediction-based coordination, 105
prioritized sweeping, 119
priority, of an action, 103
priority-based perception, 82
probabilistic state estimation, 112
projection-function, 37, 121
projection-function, learning of, 37

Q-function, 49
Q-functions, combined, 99
Q-learning, 119

radial basis functions, 137
radial basis functions, software, 94
RBF++, 94
RBF-networks, 15, 137
receptive field, 132
reduction, of the state space, 11
reinforcement learning, 117
representation, of training data, 11
reward, 117, 121
RoboCup, 141
RoboCup, mid-size league, 141
RoboCup, simulation league, 33
robot navigation, 70
robot shaping, 121
robot soccer, 141
robot soccer, dribble-task, 64
RPROP, 135
rules, for robot soccer, 141

SARSA, 118
scaling, training data, 11
self localization, 143
sensor simulation, learning, 26
sensors, simulation of, 26
sequences, of actions, 24
sequences, of states, 24
sharing, of information, 101
sigmoid function, 133
simulation, 19
simulation, analytic, 22
simulation, autolanding-task, 90
simulation, black-box, 22
simulation, neural, 23
simulation, of a Pioneer I robot, 29
simulation, of dynamical properties,

22
simulation, of multiple robots, 27
simulation, of sensors, 26
simulation, white-box, 22
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single robot path planning, algo-
rithms, 77

software, decision trees, 94
software, for experience-based con-

trol, 93
software, neural networks, 93
software, of the AGILO RoboCup-

pers, 143
software, radial basis functions, 94
start state, 6
state, 6
state estimation, 112
state space, 6
state space, continuous, 14, 121
state space, discrete, 14
state space, reduction of, 11
steering, 5
stuck robots, 114
supervised exploration, 42
synchronization, of states and ac-

tions, 24

target space, 6
target state, 6
temporal difference learning, 118
temporary targets, 81
thresholds in layered learning, 100
time need, for an action, 107
topology, of a neural network, 133
topology, of a RBF-network, 137
tracking, 143
training data, 11
training, neural networks, 135
training, of RBF-networks, 139
transfer function, 8
transformation, of training data, 11
trees, 140
two value-functions, 48

undesirable states, 14, 48, 122
unsuccessful exploration, 13, 39, 121
update-function, 7

value-function, 45

value-function approximation, 45
value-function, approximation, 120
value-functions, two, 48
visibility graph planning, 79
Voronoi path planning, 79

waiting, path planning, 81
weight decay, 136
weights, update, 134
white-box simulation, 22


