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Kurzfassung

Auktionen spielen eine wesentliche Rolle im elektronischen Handel. Regie-
rungen versteigern Lizenzen für Funkfrequenzen (wie kürzlich die UMTS-
Mobilfunklizenzen), Millionen Bieter nehmen an Internet-Versteigerungen
teil und Aufgabenverteilung in Multiagentensystemen sowie Beschaffung von
Waren oder Dienstleistungen für Unternehmen erfolgen häufig durch Auktio-
nen. Diese Arbeit gliedert sich in zwei Teile. Während sich der erste Teil mit
strategischem Bietverhalten beschäftigt, werden im zweiten Teil Aspekte der
Sicherheit und des Datenschutzes in Auktionen behandelt.

Es gibt Auktionsmechanismen, die bewiesenermaßen zu einer Güterver-
teilung führen, die den Nutzen aller beteiligten Personen (Käufer und Ver-
käufer) maximiert, und die strategisches Bieten überflüssig machen. Um diese
Eigenschaften zu garantieren, werden jedoch einschränkende Annahmen im
zu Grunde liegenden theoretischen Modell gemacht. So werden beispielsweise
Absprachen zwischen Bietern (sog. Kollusionen) oder betrügerische Auktio-
natoren nicht betrachtet. In der vorliegenden Arbeit wird diese Liste um
sog.

”
antisoziale“ Agenten ergänzt. Das Ziel dieser Agenten ist, neben der

Maximierung ihres eigenen Nutzens, den Nutzen ihrer Konkurrenten zu mini-
mieren. Es werden optimale Bietstrategien für antisoziale Agenten präsentiert
und die Unmöglichkeit der Konstruktion eines Auktionsmechanismus gezeigt,
der oben genannte Grundeigenschaften in Gegenwart von mindestens einem
antisozialen Agenten aufweisen kann.

Im zweiten Teil dieser Arbeit wird der Schutz von verdeckten Geboten
(beispielsweise bei Ausschreibungen) untersucht. Üblicherweise wird die Ver-
traulichkeit von verdeckten Geboten durch die Zuhilfenahme eines Dritten,
dem Auktionator, sicher gestellt. Die Richtigkeit des Auktionsergebnisses und
der tatsächliche Schutz der Gebote hängen allerdings vollkommen von der
Vertrauenswürdigkeit dieser Instanz ab. Der Hauptbeitrag dieser Dissertati-
on ist die schrittweise Entwicklung von verteilten Protokollen, die Auktions-
mechanismen nachbilden ohne sich auf vertrauenswürdige Instanzen zu stüt-
zen. Dies wird unter anderem mit kürzlich entwickelten, kryptographischen
Verfahren wie

”
multiparty computation“ und der Grundidee, die Bestimmung
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ii KURZFASSUNG

des Auktionsergebnisses auf die Bieter zu verteilen, erreicht. Die vorgestellten
Protokolle sind sicher, unabhängig davon wie viele Bieter ihr Wissen teilen. In
einigen können die Gebote selbst mit unbeschränktem Rechenaufwand nicht
aufgedeckt werden.



Acknowledgements

First of all, my sincere thanks are due to Prof. Brauer, my supervisor. With-
out the pleasant working atmosphere provided at chair VII and his uncon-
ditional support, this work would not have been possible. Moreover, his
comments greatly improved the presentation of this thesis.

I am much obliged to Prof. Bichler for interesting discussions and serving
as an additional referee. Gerhard Weiß, co-author of some joint papers and
leader of our research group, introduced me to auctions. So, in a way, he
can be made responsible for the following pages. Thanks for the exciting and
fruitful collaboration.

Many thanks have to go to my colleagues Michael Rovatsos, Klaus Stein,
and Felix Fischer for proof-reading. The most exhaustive proof-reading was
done by my girl-friend Monika. Thank you so much and sorry for countless
days (and especially nights) that I spent working on this thesis.
Thanks to my colleagues Volker Baier, Markus Holzer, Matthias Nickles,
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Abstract

Auctions have become a major phenomenon of electronic commerce. Gov-
ernments use auctions to sell spectrum licenses, millions of users trade goods
in Internet auctions, and task assignment in multiagent systems as well as
procurement in the “real world” is handled via auctions. The contribution
of this dissertation is two-fold. The first part addresses strategic bidding
whereas the second part deals with privacy issues.

There are auction mechanisms that have been proven to lead to alloca-
tions of goods that maximize utility among participants (bidders and sellers)
and to remove counter-speculation in the bid-preparation process. However,
the theoretical model makes several restrictive assumptions to achieve those
properties. For example, agreements between bidders (“bidder collusion”) or
untruthful auctioneers are not considered. This thesis extends this list by
adding the notion of “antisocial” agents, i.e., agents that intend to maximize
their own utility while minimizing their competitors’ utilities. We present
optimal antisocial bidding strategies and show that it is impossible to con-
struct an auction mechanism that provides the properties mentioned above
in the presence of at least one antisocial agent.

In the second part of this thesis, the privacy of sealed-bid auctions is inves-
tigated. Traditionally, privacy is obtained by consulting a trusted third-party,
the auctioneer. However, the correctness of the outcome and the privacy of
bids completely depend on the trustworthiness of the auctioneer. The major
contribution of this dissertation is the incremental development of distributed
protocols that emulate auction mechanisms without relying on any trusted
party. This is achieved by applying recently developed cryptographic tech-
niques of secure multiparty computation and distributing the determination
of the auction outcome on bidders. The proposed protocols are secure despite
any collusion of bidders. Some of them even provide partial privacy against
computationally unbounded adversaries.
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Chapter 1

Introduction

Auctions have become a major phenomenon of electronic commerce. In con-
trast to popular belief, auctions have not been invented for the purpose of
entertainment and excitement alone. They represent mechanisms to solve a
crucial economic problem. A person that wants to gainfully sell a good faces
two problems:

• To whom does he deliver the good?

• And how much should he demand for it?

The assignment problem and pricing problem arise because there is a knowl-
edge asymmetry between buyers and the seller. Each buyer has some indi-
vidual information on a good’s value but neither he nor the seller know the
exact valuations of other potential buyers. Even in the simplest case (the so-
called “independent private-value model”, see Section 2.1.1), when a buyer’s
valuation does not depend on others’ valuations, it is a non-trivial task to
determine the appropriate price of a good. It may seem straightforward and
optimal to have each potential buyer submit his valuation, award the good
to the bidder who submitted the highest bid, and make this bidder pay the
amount that he bid. This mechanism is called “first-price sealed-bid” auction
(see Section 2.2.2). The main problem with this type of auction is that it is
not a bidder’s best strategy to submit his true valuation. In fact, as we will
see in Section 3.3.1, bidders are best off bidding somewhat less than their
private valuation, depending on their estimation of other bidders’ valuations.
It is obvious that this uncertainty may lead to sub-optimal outcomes. The
field of mechanism design provides other, more sophisticated, mechanisms
that solve this and various other problems (see Chapter 3). Giving up the
private-value model, selling several goods at once, or allowing more than one
seller obviously makes the task of finding an appropriate mechanism even
more complex.

1



2 CHAPTER 1. INTRODUCTION

In short, auctions are mechanisms that determine the optimal pricing of
goods while assigning the goods to buyers who value them the most. From
an economic point of view, auctions thus belong to the field of pricing mech-
anisms. According to [Cas67] there are three common ways of pricing goods:

1. fixed pricing

2. private treaty pricing (1 : 1 bargaining)

3. auctions (1 : n, i.e. one seller and many buyers, or m : n, i.e. many
sellers and many buyers)

Historically, bargaining is the oldest form of pricing and is still common
in emerging countries and even in advanced societies at pre-retail level. It
turned out that negotiating each price one-on-one is rather impractical for
larger businesses. Fixed or “take-it-or-leave-it” pricing is much more con-
venient when some knowledge on the buyers’ valuations is known to the
seller. On the other hand, fixed pricing is unsuitable when the seller has
little, or no knowledge at all, about these valuations. The only way for con-
sumers to express their preferences is to either buy or to refuse buying. The
seller can then make a price adjustment based on these observations, result-
ing in another “take-it-or-leave-it” offer. Due to this inflexibility, auctioning
off hard-to-value goods like art, antiques, and ground estates became pop-
ular. However, with the extension from classic marketplaces to corporate,
national, and world-wide businesses, auctions became infeasible for the sell-
ing of mass products. As a consequence, fixed pricing has risen to the most
popular pricing method in developed economies. Yet, with the emergence of
large computer networks like the Internet, suddenly the logistical problems
of large-scale auctions became tractable. The success story of ebay, amazon,
and many other virtual marketplaces began.

In a simplified way, Figure 1.1 illustrates the flexibility of dynamic pric-
ing (bargaining and auctions) in contrast to fixed pricing1. The variety of
economic transactions that are conducted through auctions today is huge.
Governments sell treasury bills, foreign exchange, mineral rights, radio spec-
trum rights, and firms to be privatized via auctions. Many types of contracts
are awarded by procurement (reverse) auctions. Ground estates, houses, agri-
cultural produce, livestock, art, antiques, and collectibles are commonly sold
by auction. This list could be endlessly extended by the whole spectrum of
goods that are sold in Internet auctions since the late nineties.

1In reality, dynamic pricing can flexibly react on more factors than just varying pro-
duction cost, e.g. consumer demand or the underlying market structure.
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time

money

fixed price

dynamic price
production cost

Figure 1.1: Fixed vs. dynamic pricing

1.1 A Brief History of Auctions

One of the earliest reports on auctions states that marriageable women have
been sold in Babylon around 500 B.C. via auctions. Interestingly, bidding
sometimes started at a negative price, meaning that “buyers” could receive
a monetary compensation for marrying supposedly unattractive women. In
ancient Rome, auctions were used for commercial trade in a building called
“atrium auctionarium”. Unfortunately, little is known about the auction
system used by the Romans. However, it is believed that they used some
type of ascending English auction (see Section 2.2.1) as the word “auction” is
derived from the Latin word “augere” which means “to increase”. One of the
most bizarre and biggest auctions to date, was held by the Praetorian Guard
after having killed the previous emperor Pertinax. Literally, the entire Roman
empire was on auction in 193 A.D. Didius Julianus outbid all his competitors
and the guard declared him the new emperor. After being in power for just
two months he was put to death by the legions of his rival Septimius Severus
who gained power and seized the capital. This tragic event can be explained
by an effect called the “winner’s curse” (see Section 2.2.2) [KT01].

After at least hundred years of increasing occurrences of auctions in Great
Britain, the most-prominent classic auction houses Sotheby’s and Christie’s
were established in 1744 and 1766, respectively. In early America, auctions
became popular for selling second-hand household furnishings, farm utensils,
domestic animals, and, unfortunately, slaves. The nineteenth century saw
the rise of fruits, vegetables, and flower auctions in the Netherlands and fish
auctions in Germany.

Today, more than 62 million users are participating in auctions conducted
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by the world’s largest Internet auction house ebay alone (Table 1.1)2. Fur-
thermore, there are countless business-to-business (B2B) marketplaces and
procurement auctions.

Registered Users 62, 000, 000

Listings 638, 000, 000

Gross Merchandise Sales (per day) $ 50, 000, 000

Net Revenue $ 1, 214, 000, 000

Table 1.1: ebay company information 2002 [eba03]

1.2 Preference Aggregation

From an abstract point of view, auctions can be seen as a special case of
preference aggregation mechanisms. Whenever a group of agents intends to
come to a decision that affects the entire group, they need to aggregate their
individual preferences3, i.e., they have to compromise in order to find global
preferences. The aggregation of conflicting preferences is one of the central
topics of economics and multiagent systems. Two major problems have been
considered in this context so far [MWG95, Var99].

Social choice problem The problem is to find a function that “fairly” ag-
gregates conflicting preferences. The most important theorem in this
context, Arrow’s impossibility theorem4, states that it is impossible
to find such a function when preferences are unrestricted. When only
allowing restricted preferences like so-called single-peaked preferences,
fair social choice functions can be specified.

Mechanism design problem In order to be able to apply a social choice
function, agents need to reveal their preferences. The mechanism design
problem is to construct mechanisms that urge self-interested agents to
reveal preferences truthfully. A mechanism is said to implement a social
choice function if it leads to the same outcome as the social choice func-
tion and agents are best off submitting their true preferences. Similarly

2Interestingly, Germany is the fastest-growing market for ebay world-wide (including
the U.S.).

3unless the group is led by a dictator
4As a consequence of Nobel Prize Laureate Kenneth J. Arrow’s celebrated theorem,

there are no sufficiently fair voting systems with more than two candidates.
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to Arrow’s theorem, the Gibbard-Satterthwaite theorem (Theorem 3.2)
states the impossibility of finding such a mechanism for general prefer-
ences. However, there are solutions for restricted sub-domains, e.g. the
Clarke tax mechanism for quasilinear preferences (see Section 3.2).

Traditionally, the existence of a central institution that receives all prefer-
ences and resolves the mechanism is assumed. In auctions, this party is
usually called the auctioneer. However, as there is no reason to fully trust
this third-party, neither the correctness of the result nor the privacy of the
individual inputs can be guaranteed. Especially, incentive-compatible, i.e.
truth-promoting, mechanisms might deter agents from participating as they
require the submission of true valuations. Confidentiality of these valuations
is essential for future negotiations and its revelation can be disastrous. This
leads to a specification of the “preference protection problem”.

Preference protection problem The problem, introduced in this thesis,
is to enable the correct execution of a mechanism without trusted third-
parties while preventing agents to learn preferences of other partici-
pants.

Figure 1.2 shows the resulting three-layer model. A protocol emulates a
mechanism which in turn implements a social choice function.

1 2 3

Preferences Preferences

Mechanism

Social Choice Function

emulates

implements

Protocol

Figure 1.2: A three-layer model of preference aggregation
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In the following, the abstract notions and problems described so far will
be broken down to the case of single-unit auctions. First, the social choice
problem for such auctions can be specified as follows. In a group of agents
that have differing values for a good to be sold, to whom should the good be
awarded? Preferences are severely restricted because a bidder is only able to
evaluate a single outcome: the good being awarded to him. For this reason,
the social choice problem can easily be solved by awarding the good to the
agent who values it the most5. In order to identify the agent who values the
good the most, agents need to reveal their individual values. So far, agents
have no incentive to reveal their values truthfully. In fact, agents are best
off submitting a bid as high as possible. The mechanism design problem
is to make it an agent’s optimal strategy to submit his true private value.
This can be achieved by assigning payments to the agents that are based
on their submitted bids. It turns out that assigning a payment that equals
the second highest bid to the agent who values the good the most, the so-
called Vickrey auction, is a very strong mechanism: An agent is always best
off submitting his private value, no matter what all other agents do. The
preference protection problem for auctions, whose solution is the main goal
of this thesis, can be stated as follows:

Is there an interaction protocol that yields the outcome of the
Vickrey auction without requiring agents to reveal their valuations
to anybody?

Usually, agents submit their values in a closed envelope (as “sealed bids”) to
the auctioneer. After having opened all envelopes, the auctioneer is able to
compute the auction outcome. This approach is very critical for two reasons:
The confidentiality of bids remains in the hands of the auctioneer and there
is no way for the auctioneer to prove the correctness of the outcome (without
revealing all bids). The preference protection problem is addressed in Chap-
ters 5 and 6. Protocols in Section 5.3 are based on the incremental opening of
commitment values whereas Chapter 6 introduces “secure multiparty compu-
tation”, a sub-field of cryptography, in order to solve the preference protection
problem.

Figure 1.3 shows the embedding of this work within classic fields of com-
puter science and economics. There are numerous other research fields that
investigate aspects of (electronic) auctions like operations research, data min-
ing, or marketing which are not covered in this thesis.

5As we will see in Section 3.3.3, computational problems can arise when determining
the winners in combinatorial auctions, however.
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Figure 1.3: Related Fields

1.3 About this Thesis

This dissertation consists of two parts. The first part addresses strategic
bidding and introduces antisocial agents whereas the second part deals with
privacy issues and contains the secure auction protocol vX-share as a high-
light. The remainder of the thesis is structured as follows.

Chapter 2 The second chapter defines basic models that enable the the-
oretical analysis of auctions and explains the most common auction
types.

Chapter 3 This chapter introduces the economic fields of social choice the-
ory and mechanism design. It explains how the Gibbard-Satterthwaite
impossibility theorem is classically circumvented by assuming quasilin-
ear preferences and proposes the Clarke tax mechanism as a solution
to the mechanism design problem in this context. While Section 3.1,
3.2, and 3.4 compactly summarize the relevant economic literature, Sec-
tion 3.3 represents a consequent application of these insights to the case
of auctions.
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Chapter 4 After introducing several well-known examples of deceptive be-
haviour in auctions like bidder collusion, shills, and sniping, the novel
notion of “antisocial” agents is proposed. In the remainder of this chap-
ter, the effects of this antisocial attitude in auctions are investigated
theoretically and practically. Some of the obtained results have been
previously published in [Bra00, BW01b, BW01a].

Chapter 5 The second part of this thesis begins by motivating the need for
privacy protection in auctions and states the two main desiderata for se-
cure auction protocols: privacy and correctness. The key observation of
Section 5.2 is that no third-party can be fully trusted. For this reason,
auctioneers are completely omitted and the determination of the auc-
tion outcome is designated to bidders themselves. Section 5.3 presents
our first approach to provide privacy without trusted third-parties. The
classification of collusion forms and the three partial revelation proto-
cols have been published in [Bra01].

Chapter 6 This chapter establishes a general connection between preference
aggregation and secure multiparty computation which is the most far-
reaching contribution of this thesis [Bra03c, Bra03b]. For this purpose,
essential properties like weak robustness and full privacy are introduced.
Moreover, several concrete secure auction protocols that do not require
any trusted third-parties are proposed. The most efficient protocol,
vX-share, privately computes Vickrey auction outcomes in a constant
number of rounds. The protocols have been previously published in
[Bra02a, Bra02b, Bra03a]. At the end of Chapter 6, a choice of existing
secure auction protocols is briefly discussed.

Appendices Two of the most important underlying cryptographic concepts
of the proposed protocols are explained in Appendix A: the discrete
exponential function and commitment schemes. Appendix B briefly
introduces two software programs that were implemented during the
work on this dissertation.
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Strategic Bidding

9





Chapter 2

Auctions

In order to enable the theoretical analysis of auctions, the various aspects
of auctions have to be captured in models. The essential part of modeling
is how bidders value goods and how they appraise money. This chapter
explains the three basic value models: private, common, and correlated value,
and the three basic agent models: risk-neutral, risk-averse, and risk-seeking.
A presentation of the four most common auction types (English, 1st-price
sealed-bid, Vickrey, and Dutch) is followed by short descriptions of three
popular contemporary auction formats: consumer Internet auctions, B2B
reverse auctions, and spectrum license auctions.

More extensive overviews are presented in [Kle99, Wol96]. The classic
results can be found in [MM87, MW82, Mil89]. A chapter about auctions in
the context of game theory is included in [Ras95].

2.1 Auction Models

It is often assumed that an agent’s utility is linear in its wealth. Such agents
are called“risk-neutral”. However, in practice, it can be observed that agents,
in particular humans, have diminishing value of money. They are “risk-
averse”. The reader can quickly check if he is risk-averse by asking himself
whether he would prefer a guaranteed amount of $ 1,000,000 over a fifty-fifty
chance of getting $ 2,000,000. Risk-averse agents prefer the former, whereas
risk-neutral agents are indifferent. There would be no insurance companies
if most of us were not risk-averse. The categorization can be completed by
introducing “risk-seeking” agents. These agents would choose the fifty-fifty
chance of receiving $ 2,000,000 in the example above. Figure 2.1 shows the
agents’ utility functions subject to their wealth. Risk-neutral agents have
linear utility functions, while the utility functions of risk-averse and risk-
seeking agents are concave and convex, respectively.

11
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wealth

utility

risk−seeking 

risk−averse

risk−neutral

Figure 2.1: Risk models

As mentioned in Chapter 1, a key feature of auctions is the presence of
asymmetric information. This asymmetry can be modeled in several ways
to capture different types of goods to be sold. We will distinguish between
the value and the valuation of a good in the following. An agent’s value of
a good exactly prescribes how much the good is worth to him. As the agent
might not know the true value of a good (while bidding in an auction), he
needs to compute an estimated value: his valuation.

The first two value models presented in the following are special cases of
the third general model. In the remainder of this thesis, we will assume the
private-value model and risk-neutral agents unless otherwise noted.

2.1.1 Private Values

In the private-value model, bidders have private, independent valuations of
the object to be sold. They do not have to estimate their values. Thus,
values and valuations are equal in this model. An example is the selling of a
piece of cake that will be eaten after the auction. The good’s purpose is to be
consumed by the buyer. He does not intend to resell it to other bidders. As
the value is independent of other bidders’ values, knowing all other values in
advance will not change one’s own valuation. However, this knowledge might
likely affect a bidder’s strategy (depending on the auction type). Figure 2.2
illustrates this model by depicting three bidders who all precisely know how
much the good is worth to them (vi).
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Figure 2.2: Private independent values model

2.1.2 Common Value

In the common-value model, the good to be sold has exactly the same value
to all bidders. However, the bidders have differing valuations depending on
private information that is available to them. To give an example, the selling
of a jar filled with coins belongs to this category. Obviously, the real value
is identical for all bidders. However, each bidder has a different valuation
based on his private estimation. These estimations are based on internal
information and so-called “signals” that are available to subsets of agents.

In the setting of Figure 2.3, the good has identical value v to all three
agents. Yet, all bidders have their own valuation functions v̂i(·) subject to
internal knowledge and signals. Bidder 1 has access to signal s1 and s2,
whereas bidder 2’s valuation function is founded on signal s2 alone. The
third bidder has no access to any of the signals.

The auctioning of treasury bills or oil tracts are well-known examples of
common-value auctions. In a famous experiment [BS83], jars filled with coins
have been auctioned off to students at Boston university. The secret value
of each jar was exactly $ 8. After a series of auctions, it turned out that the
average bid was $ 5.13. The average winning bid, however, was $ 10.01. It
follows that the average winning bidder lost money by winning an auction.
This important problem is called “winner’s curse”. All reasonable auction
types have in common that the bidder with the highest valuation wins the
auction. However, the true value of the good, which is equal to all bidders,
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Figure 2.3: Common-value model

statistically lies somewhere in the middle of the different valuations. As a
consequence, the bidder that overestimated the good the most is declared the
winner. He likely paid too much for the good which in turn leads to bidders
biasing their bids downwards. The strategic implications of the winner’s
curse are far-reaching and hard to analyze [LK02]. The winner’s curse is
made responsible for low profits of oil and gas corporations on drilling rights
in the Gulf of Mexico that have been sold in auctions [Ras95].

2.1.3 Correlated Values

Finally, the correlated value model is a general model that includes the pre-
vious two as special cases. Bidders have private estimations regarding their
real values. These values may differ and can depend on other bidders’ values.
The correlated-value model is the one most likely to come across in real-world
auctions. However, auction theory mostly uses the private-value model (and
sometimes the common-value model) as it simplifies theoretical analysis.
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2.2 Auction Types

2.2.1 English

The English or “ascending open-cry” auction is by far the most prominent
auction type. The price is raised successively until only one bidder remains.
This bidder wins the good at the final price. There are various ways to
conduct English auctions. The seller can announce prices, or the bidders
can call out prices themselves. Moreover, many different realizations of bid
increments are possible. The most common variation used in auction theory
is the so-called Japanese auction. The price rises progressively while bidders
quit the auction one after another. Bidders can observe when someone quits
and no bidder is able to re-enter the auction.

2.2.2 1st-Price Sealed-Bid

In a 1st-price sealed-bid auction, each bidder independently submits a single
sealed bid. The bidder that submitted the highest bid is awarded the good
and pays the amount that he specified in his bid. This type of auction is
frequently used in procurement scenarios where competing contractees sub-
mit bids and the lowest bidder is awarded the contract. More generally, in
a regular auction there is one seller and many buyers whereas in a so-called
reverse auction there are many sellers and one buyer.

The winner’s curse problem that we mentioned in Section 2.1.2 appears in
another form in 1st-price sealed-bid auctions, even in the private-value model.
The winner of an auction can easily figure out that he could have won the
auction by bidding less, namely slightly more than the second highest bid
(which is unknown to him).

2.2.3 Vickrey

The Vickrey or “2nd-price sealed-bid” auction was proposed by Nobel Prize
Laureate William S. Vickrey in 1961 [Vic61]. It is almost identical to the
previous auction type. The only difference is that the winning bidder has to
pay the amount of the second highest bid1. Figure 2.4 shows how the Vickrey
auction works (discrete bars represent bids).

In the private-value model, the Vickrey auction has a dominant strategy,
which means that if an agent applies this strategy he receives the highest
possible payoff, no matter which strategies are used by other bidders. The

1If two or more bidders tie for the highest bid, the winner is picked at random and has
to pay the amount of his bid (because it is equal to the second highest bid in this case).
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Figure 2.4: An example Vickrey auction

dominant strategy is to bid one’s true valuation of a good. Even if an agent
knows all the other bids in advance, he still does best by bidding his private
value. This leads to a so-called “dominant-strategy equilibrium” (to be for-
mally defined on page 29): All agents are best off using the same strategy2.
It can easily be seen by case analysis why bidding the private value is an
optimal strategy.

Theorem 2.1 (Dominant strategy in Vickrey auctions)
Assuming the private-value model, it is a dominant strategy to bid one’s true
valuation of a good in Vickrey auctions.

Proof: Given two agents, A and B, and their corresponding private values
va and vb, the profit or utility of each agent can be written as a function of

2If bidders don’t have to estimate their private values, the dominant strategy equilib-
rium exists independently of risk neutrality [Ras95].
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submitted bids (ba and bb).

ua(ba, bb, va) =

{
va − bb if ba ≥ bb

0 if ba ≤ bb

ub(ba, bb, vb) =

{
0 if ba ≥ bb

vb − ba if ba ≤ bb

(2.1)
We consider agent A and investigate the possible profits he would make by
not bidding his private value3. It suffices to model only one opposing agent
B representing the entire competition because A only cares whether he wins
or loses. He does not draw distinctions between his fellow bidders.

If A bids less than his private value (ba < va) there are three subcases
conditional on agent B’s bid bb. (The outcome that would have occurred if
A had bid va is displayed at the top of figures. The outcome shown at the
bottom of figures relates to the case in which he deviates from the dominant
strategy4.)

i) bb < ba < va: A wins the auction, but does not make more profit
then the profit he would have made when bidding va, because the price
remains bb and his profit is still va − bb.

b

vb

a

ab

A’s profit

A’s profit

ii) ba ≤ bb < va: A loses the auction, instead of winning it by bidding va.
If ba = bb, he might win the auction but does not make more profit
than when bidding va.

b

vb

a

ab

A’s profit

"B’s profit"

3There are certainly shorter proofs for this theorem, but case vi) of the following case
analysis is essential for introducing antisocial bidders in Chapter 4.

4In the figures, B’s profit is in quotation marks because this only marks his profit if he
bid his private value. The proof, however, works no matter which strategy B adopts.
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iii) ba < va < bb: B wins the auction and has to pay less money than if A
had bid va.

b

v b

a

a b

"B’s profit"

"B’s profit"

If A bids ba > va the following cases describe the resulting situations.

iv) bb < va < ba: A wins, but has to pay the same amount of money (bb)
that he would have paid by bidding va.

b

vb

a

a

A’s profit

A’s profit

b

v) va < bb ≤ ba: A wins, but has to pay more than the good is worth to
him, i.e., he is losing bb − va. If ba = bb, he might lose the auction.

b

v b

a

a

A’s loss!

b

"B’s profit"

vi) va < ba < bb: A loses and reduces B’s profit by ba − va.

b

v b

a

a b

"B’s profit"

"B’s profit"



2.2. AUCTION TYPES 19

Concluding, bidding anything else than va cannot yield more profit than
bidding the true valuation va. �

Obviously, this extremely simplifies the bid preparation, due to the ab-
sence of wasteful counter-speculation which is required for example in 1st-
price auctions. Surprisingly, the Vickrey auction is rarely used in practice.
Reasons for the Vickrey auction’s sparseness will be given in Chapter 5.

Similar to the 1st-price sealed-bid auction, the Vickrey auction can be
used as a reverse auction, e.g. to assign tasks. Contractees submit bids that
indicate how much money they want to receive for accomplishing the task.
The cheapest contractee wins the auction and receives the amount submitted
by the second cheapest bidder.

In the private-value model, the Vickrey and the English auction are strate-
gically equivalent , i.e., there is a mapping from Vickrey auction strategies to
English auction strategies and vice versa (see Table 2.1). Bidding b in a Vick-
rey auction and “bidding as high as b” in an English auction yield exactly the
same outcome. This only holds in the private-value model as bid information
revealed during an English auction affects bidders’ strategies. Bidders tend
to bid more in English auctions.

2.2.4 Dutch

In a Dutch auction, the auctioneer announces a decreasing bid starting with
the highest possible price. The price decrease can happen continuously or in
discrete intervals. The first bidder that stops the auction by expressing his
willingness to pay is awarded the contract for the amount of the actual bid.
The Dutch auction’s name originates from the selling of Dutch flowers where
an electronic device with buzzers connected to a clock is used to implement
the Dutch auction mechanism. Fish are sold in Israel in a similar way, as is
tobacco in Canada. Dutch auctions are particularly suitable for perishable
goods that lose value during the auction5. [Wol96] describes an interesting
form of the Dutch auction “in disguise” that is used to sell clothes in the
United States. Items are sold at a fixed price minus a discount that depends
on how many weeks an item is on the shelf. Thus, the price constantly
decreases (until some minimum price is reached).

Interestingly, it turns out that the Dutch auction and the 1st-price sealed-
bid auction are strategically equivalent , i.e. the Dutch auction generates ex-
actly the same outcome as the 1st-price sealed-bid auction. This holds in-
dependently of the assumed value model. The continuous price decrease

5Obviously, this is not covered by the theoretical value models described at the begin-
ning of this chapter.
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reveals no information that bidders could use to update their valuations and
the highest bidder wins the auction.

Figure 2.1 summarizes the equivalences of the presented auction types.
Auction types listed in the same row are strategically equivalent in the given
value model. The 2nd-price Dutch auction (see page 79) is listed in brackets
because it is not used in practice (as far as the author knows). Due to these
equivalences, we will use the term “1st-price” auctions for Dutch and 1st-
price sealed-bid auctions, and “2nd-price” auctions for English and Vickrey
auctions.

Value model Sealed-bid Ascending Descending

any 1st-price — Dutch

private-value Vickrey English (2nd-price Dutch)

Table 2.1: Strategic equivalences of major auction types

2.3 Contemporary Auctions

In recent times, the rise of computers and the Internet gave birth to countless
virtual marketplaces and modern auction sites. Besides well-known consumer
Internet auctions, a vast amount of goods and services is sold in B2B reverse
auctions. Recently, the selling of next generation mobile phone spectrum li-
censes via auctions across Europe gained much attention. Moreover, auctions
are used to sell electrical power (on a daily basis in the United Kingdom),
treasury bills, or oil field drilling rights.

2.3.1 Consumer Internet Auctions

Since the formation of ebay in 1995, various Internet auction houses attract
millions of users world-wide. The type of articles to be sold ranges from CDs
and mobile phones to cars and pieces of real estates on the moon. English
auctions are predominantly used by Internet auction houses, though there
are subtle differences in the particular auction rules. Some auction houses
(e.g. ebay) allow the submission of bids until some pre-determined point of
time whereas others (e.g. amazon) only stop the auction when no bid has
been submitted for a certain period of time. The former seemingly attracts
a phenomenon called “sniping” (see Section 4.1.2).
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There are two interesting additions that have recently been made to
ebay’s auction rules. The first is the disposition of “bidding agents”,
i.e. agents that keep raising one’s bid if necessary until a private value that
can be specified by the user is reached. This removes an interested bidder’s
obligation to constantly monitor an auction and adjust his bid accordingly.
The following excerpt explains what happens if all participants are using
bidding agents.

“From a game theoretic point of view, the ‘agents’ in traditional
Internet auctions convert the auction protocol from an English
auction to a Vickrey auction: the participant with the highest
willingness to pay gets the item at the price of the willingness to
pay of the second highest participant. This is an interesting real
world manifestation of the revelation principle [Theorem 3.1]. It
states that any outcome that can be supported in equilibrium
via a complex protocol can be supported in an equilibrium via a
protocol where the agents reveal their types truthfully in a single
step. The proof is based on having the new protocol incorporate
a virtual player for each real world participant such that the vir-
tual player will find and play the best strategy for the original
complex protocol on behalf of the real world participant—given
that the participant reveals his preferences to the virtual player.
Because the virtual player will play optimally for the participant,
the participant is motivated to reveal his preferences truthfully.
Each ‘agent’ in current Internet auctions is a materialization of
such a theoretical virtual player”. [San00]

It is important to note that, using a bidding agent, one might reveal unnec-
essary information. When monitoring an auction oneself, it may turn out to
be unnecessary to bid at all due to submitted bids that are higher than one’s
valuation.

A second innovation is ebay’s so-called “private auction” in which the
identities of bidders that (temporarily) submitted the highest bid are not
disclosed. Of course, this method does not apply cryptographic means (as
described in Chapters 5 and 6) and there is apparently no need in using real
privacy-enhancing techniques for the type of articles sold on ebay. However,
it is quite evident that privacy completely depends on the trustworthiness of
the auction provider in this case.

As mentioned before, Internet auctions are extremely successful nowa-
days. The only shortcoming that could be attributed to these auctions is the
growing number of fraud cases and the inability to prevent fraud in general
(see Chapter 4).
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2.3.2 B2B Reverse Auctions

Instead of using conventional means of acquiring supplies, many companies
have begun to rely on B2B (business-to-business) reverse auctions to source
their business requirements and bring about cost savings in the supply chain.
As mentioned earlier, all of the auction types proposed in Section 2.2 can be
used as a “reverse auction”. More specifically, a company wanting to source
products or services holds an auction in order to buy these products from the
bidder with the lowest prices and best terms. Typically, a small number of
pre-qualified suppliers are invited to participate in an auction, and bid against
one another in order to win a supply contract. Two characteristic examples
for such B2B auctions, held by the German B2B marketplace econia, are
the purchase of 6,500 personal computers (including monitors and printers)
for a major German bank or the acquisition of 700,000 cotton carrying bags
for a trading concern.

According to a recent report from Forrester Research, B2B reverse auc-
tions are predicted to generate $ 745.8 billion in sales by 2004.

2.3.3 3G Spectrum License Auctions (UMTS)

The third generation (3G) mobile phone spectrum licenses, also called “Uni-
versal Mobile Telecommunications System“ (UMTS), have been assigned
from 1999 to 2001. Few countries (e.g. Spain) used administrative reviews
(so-called “beauty contests”) to award licenses. Most countries decided to
sell licenses via auctions, some of which turned out to be the most revenue
generating auctions in modern times. Apart from the Danish sealed-bid auc-
tion6, all other countries used some type of simultaneous ascending auction
(SAA) for different spectrum blocks7. However, there were subtle differences
in the applied auction types and rules. While the UK and German auctions
performed very well (in terms of revenue generation: they earned 37.5 billion
Euro and 50.8 billion Euro, respectively), some countries like The Nether-
lands, Austria and Switzerland performed very poorly which was mostly due
to dramatically falling valuations of UMTS licenses (estimated value shrank
to about one-tenth in a single year [Kle02a]). This deterred many potential
bidders to take part in such auctions at all and can clearly be seen by looking
at the Swiss auction where the number of bidders shrank from nine to four,
just weeks before the auction. As there were just four licenses for sale and

6in which all (four) winners had to pay the amount of the fourth highest bid which was
the only bid revealed to the public

7Each spectrum block is sold in a separate English auction. All auctions are synchro-
nized and take place simultaneously.
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it was foreseeable that missing competition will lead to a disastrous result,
the Swiss government postponed the auction and tried to change its rules,
in vain. Adding the fact that the reservation price (the “minimum bid”) was
ridiculously low (due to the positive experiences made in the UK and Ger-
many), Switzerland earned just 2% of the revenue generated by the German
auction per capita. A sealed-bid auction might have attracted more bid-
ders. However, SAAs have been preferred in most countries for three reasons
[dVV01]:

• The U.S. FCC (Federal Communications Commission) has a long his-
tory of successful spectrum bandwidth auctions using SAAs.

• Open-cry auctions are completely transparent to the public. It is diffi-
cult to accuse the auctioneer of favouritism (see Chapter 5).

• Spectrum licenses strongly relate to the common-value model defined
in Section 2.1.2. Open-cry auctions generate more revenue than sealed-
bid auctions in the common-value model.

In the following, we address two observations that have been made in the
German UMTS auction and that relate to the focus of this thesis. The Ger-
man (and Austrian) auction differed from other 3G license auctions in that
the number of licenses to be sold was not fixed. Financially strong bidders
were able to acquire more spectrum blocks than others and thus prevent weak
competitors from attaining a license at all. In both auctions, the number of
licenses to be allocated was between four and six (in contrast to all other
auctions where it was fixed to either four or five). As price arrangements
in auctions are usually illegal, it has become common practice in ascend-
ing auctions to use the last digits8 of bids to signal one’s intentions or to
attempt to coordinate actions [GRW02]. In fact, three major providers (Ger-
man Telekom, Mannesmann-Vodafone, and 3G (which changed its name to
“Quam” later)) constantly used the digit “6” in their public bids without
any obvious reasons. This behaviour has been interpreted as an attempt
to indicate the willingness to settle with a market structure of six licenses
[GRW02]. Interestingly, German Telekom later signalled the digit “5” which
some observers explained by Telekom’s decision to crowd out another bid-
der and indicating that purpose to Mannesmann-Vodafone, the other major
provider. As a matter of fact, German Telekom kept raising the price at a

8The smallest bid increment in the German UMTS auction was set to DM 100,000 for
this reason. Furthermore, only the highest bid and the corresponding bidder have been
revealed by the auctioneer after each bidding round. Apparently, this did not prevent
signalling.
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point of time at which only six bidders were remaining and it was in Telekom’s
hands to stop the auction. After a while, Telekom gave up to crowd out one
of the weak competitors and the record number of six licenses was awarded.

Two conclusions can be drawn from theses events. First, signalling is a
serious problem in SAAs (that can be avoided by (partly) using sealed-bid
auctions instead), and secondly, the behaviour of German Telekom can be
explained by the “antisocial attitude” as described in Section 4.3. Experts
wondered why Telekom gave up to crowd out competitors at some point
because in the end its behaviour only resulted in higher prices for every
participant [Kle02a, GRW02]. However, the situation could be explained
by stating that Telekom invested money in order to inflict losses to weak
competitors that may not be able to cope with the high amounts spent for the
licenses. Actually, as this is written, one of the weak providers (Mobilcom)
is desperately trying to sell its license and another one (Quam) discontinued
its operative business. Experts believe that the only two telecommunications
providers being able to survive the current crisis for sure are German Telekom
and Mannesmann-Vodafone.

There is an ongoing debate why some of the 3G spectrum auction schemes
apparently failed and others did not, e.g., there are assertions that German
Telekom’s objectives were affected by the fact that it was majority-owned by
the German government. More details on the 3G auctions can be found in
[Kle02a, dVV01, GRW02, Kle02b, BE00].



Chapter 3

Microeconomic Foundations

This chapter provides the theoretical basis for the analysis of auctions and
auction strategies and the construction of desirable auction mechanisms. Mi-
croeconomic theory in general and especially game theory has emerged as an
indispensable fundament of agent research as it formally describes systems of
rational, self-interested agents. Our view on microeconomics will be limited
to some basic game-theoretic solution concepts and mechanism design. More
extensive overviews are included in [MWG95, Var99, Ras95]. A nice and short
introduction to mechanism design and its applications to electronic commerce
can be found in [Var95]. [Par01] contains a very good introduction and deals
with the computational aspects of mechanism design. [RZ94, NR99] provide
further examples of computer science problems that can be approached by
using game theory and mechanism design.

We will first consider social choice under the simplistic assumption of
complete information and then, for the major part of this chapter, assume a
model of incomplete information. Most of the proofs will be omitted1. [n]
denotes the set of natural numbers less or equal than n ([n] = {1, 2, . . . , n}).

3.1 Social Choice and Incentives

Consider a group of n self-interested agents that has to make a collective de-
cision that affects all agents. After having agreed on a“social choice function”
that prescribes which decision is to be made subject to the agents’ private
preferences over the different outcomes, e.g. the choice that maximizes total
utility, the agents run into the following problem.

As their preferences are private information, they need to reveal them in

1We did not include Arrow’s impossibility theorem despite its beauty because it does
not hold in allocation scenarios in which utilitarian social welfare is maximized.

25
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order to be able to determine the social choice. But what if lying about one’s
preferences can lead to a higher individual utility than telling the truth?
The “mechanism design problem” is to construct a mechanism that imple-
ments a social choice function while meeting miscellaneous, useful demands,
e.g. pointlessness of lying or allocative efficiency. A mechanism defines the
possible actions of the agents and a mapping from the agents’ actions to the
outcome.

Agents’ preferences can be modeled in various ways, e.g. by defining a
preference relation or by assigning values of utility for specific outcomes2.
The latter is appropriate when allocating goods. Furthermore, it is quite
useful to define the “utility function” in dependence of an agent’s “type”. An
agent’s type θi ∈ Θi specifies the individual preferences of the agent.

The utility of an agent depends on the outcome of a social choice function
(or a mechanism) and his type, and prescribes the agent’s benefit from a given
outcome.

Definition 3.1 (Utility)
ui(o, θi) is called the utility of agent i for the outcome o ∈ O given his type
θi.

We henceforth assume that agents are expected utility maximizers. To
save space, we will use the abbreviations θ = (θ1, θ2, . . . , θn) and Θ = Θ1 ×
Θ2 × · · · ×Θn.

Definition 3.2 (Social choice function)
A social choice function f : Θ 7→ O assigns an outcome f(θ) ∈ O to each
possible profile of agents’ types θ ∈ Θ.

The left part of Figure 3.1 illustrates that a social function computes the
outcome based on the individual types. Agents receive utility depending on
the outcome and their personal type. One of the most important features of
a social choice function is that we want it to yield outcomes that are socially
preferable.

2Every rational, i.e. complete and transitive, preference relation (on a finite set of
alternatives) can be mapped to a utility function.
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Figure 3.1: Social choice

Definition 3.3 (Pareto-optimality)
A social choice function f(θ) = o is Pareto-optimal (or Pareto-efficient or ex
post efficient) if ∀i ∈ [n], o′ ∈ O, θ ∈ Θ with o′ 6= o

ui(o
′, θi) > ui(o, θi) ⇒ ∃j ∈ [n] : uj(o

′, θj) < uj(o, θj) .

In other words, a social choice function is Pareto-optimal if, given its
outcome, no agent could be made better off without reducing another agent’s
utility. A nice property of Pareto-optimality is that it is independent of the
actual utility values; only the utility ordering is considered.

Unfortunately, there are usually numerous Pareto-optimal outcomes. For
example, a dictatorial social choice function that selects the outcome that
gives a single agent, the dictator, the highest utility is trivially Pareto-
optimal. In order to be able to measure the“quality”of social choice functions
more precisely, the notion of social welfare has been introduced. Social wel-
fare functions aggregate the individual utility functions into a single function
that describes the “social utility”. A reasonable restriction seems to only
allow welfare functions that are increasing in each individual’s utility. We
will stick with the classic utilitarian setting of social welfare which is defined
as the sum of all individual utility functions. The most desirable outcome
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maximizes social welfare and thus is also Pareto-optimal3.

Definition 3.4 (Social welfare)
A social choice function f(θ) = o is social-welfare-maximizing if ∀o′ ∈ O,
θ ∈ Θ

n∑
i=1

ui(o, θi) ≥
n∑

i=1

ui(o
′, θi) .

So far, we only regarded social choice as a function of agents’ preferences.
In the following, we will extend the model to allow for strategic revelation of
false preferences which will lead us to the mechanism design problem.

Definition 3.5 (Strategy)
A strategy si(θi) ∈ Si defines the action an agent will take in every possible
state of a mechanism, given its type θi.

Strategies can be deterministic (pure) as well as stochastic (mixed). It
is deliberately left open what strategies are precisely. They can be single
numbers or complex sets of rules. Like above, we will use the short forms
s = (s1, s2, . . . , sn) and S = S1 × S2 × · · · × Sn.

Definition 3.6 (Mechanism)
A mechanism Γ = (S, g(·)) consists of n strategy sets Si and an outcome
function g : S 7→ O.

Analogous to the definition of a social choice function (Definition 3.2),
a mechanism yields an outcome. This time, the outcome depends on the
individual strategies rather than the true preferences (see Figure 3.1). Note
that the execution of a mechanism can be a lengthy process of actions and
counter-actions by the agents based on their strategies.

3Of course, there are other conceivable social welfare functions, e.g. the minimax (or
Rawlsian) function that defines welfare as the utility of the worst off agent, but the utili-
tarian setting especially makes sense in allocation scenarios that we are considering.
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Definition 3.7 (Mechanism implementation)
A mechanism Γ = (S, g(·)) implements a social choice function f(·) if there is
an equilibrium strategy profile (s∗1(·), s∗2(·), . . . , s∗n(·)) for Γ such that ∀θ ∈ Θ

g(s∗1(θ1), s
∗
2(θ2), . . . , s

∗
n(θn)) = f(θ) .

The mechanism design problem is to find a mechanism that implements
a given social function “in equilibrium”. In the following, we will present
several equilibrium concepts. An equilibrium or solution concept specifies
when a strategy profile is “best” for all players.

The strongest equilibrium concept possible is that of dominant strategies.
In a dominant strategy equilibrium each agent is best off using his equilibrium
strategy no matter which strategies the other players choose. We will use
the notation s−i = (s1, s2, . . . , si−1, si+1, si+2, . . . , sn) to denote the strategy
profile without i’s strategy si. S−i = S1×S2×· · ·×Si−1×Si+1×Si+2 · · ·×Sn

is defined analogically.

Definition 3.8 (Dominant-strategy equilibrium)
The strategy profile s is in dominant-strategy equilibrium of mechanism Γ =
(S, g(·)) if ∀i ∈ [n], θ ∈ Θ, s′i ∈ Si, s−i ∈ S−i

ui(g(si(θi), s−i(θ−i)), θi) ≥ ui(g(s′i(θi), s−i(θ−i)), θi) .

A dominant-strategy equilibrium is very robust, because an agent’s strat-
egy is independent of available information on other agents. Obviously,
dominant-strategy equilibria do not always exist. A weaker, less demand-
ing solution concept is that of a Nash equilibrium, named after Nobel Prize
Laureate John F. Nash. In a Nash equilibrium, there is no reason to devi-
ate from the equilibrium strategy as long as all other players choose their
equilibrium strategy. In a way, the equilibrium strategies are well-balanced.
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Definition 3.9 (Nash equilibrium)
The strategy profile s is in Nash equilibrium of mechanism Γ = (S, g(·)) if
∀i ∈ [n], θ ∈ Θ, s′i ∈ Si

ui(g(si(θi), s−i(θ−i)), θi) ≥ ui(g(s′i(θi), s−i(θ−i)), θi) .

In contrast to the dominant-strategy equilibrium, a Nash equilibrium is
generally not unique and, like with dominant strategies, there are cases in
which no Nash equilibrium exists. However, when allowing mixed, i.e. ran-
domized, strategies, it has been proven that there is at least one Nash equi-
librium in any “game”. Nevertheless, the concept of a Nash equilibrium is
somewhat useless in the context of mechanism design as it requires agents
to have complete information about the other agents’ preferences (and their
rationality) in order to be able to identify the equilibrium. If preferences
were common knowledge, there would be no need to design a mechanism.
The asymmetry of information demands a solution concept that is based on
beliefs about others’ preferences rather than knowledge.

Definition 3.10 (Bayesian Nash equilibrium)
The strategy profile s is in Bayesian Nash equilibrium of mechanism Γ =
(S, g(·)) if ∀i ∈ [n], θ ∈ Θ, s′i ∈ Si

uE
i (g(si(θi), s−i(θ−i)), θi) ≥ uE

i (g(s′i(θi), s−i(θ−i)), θi)

where uE
i is the expected utility over an assumed distribution of types.

In other words, a Bayesian Nash equilibrium is a Nash equilibrium with
incomplete information. Another, less prominent4, solution concept is the
maximin equilibrium [Ras95]. A maximin equilibrium solution consists of
strategies in which a single agent chooses the strategy that maximizes his
utility given the worst possible combination of strategies selectable by other
agents.

4It is listed here because it will be used in Theorem 4.2.
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Definition 3.11 (Maximin equilibrium)
The strategy profile s is in maximin equilibrium of mechanism Γ = (S, g(·))
if ∀i ∈ [n], θ ∈ Θ, s′i ∈ Si

min
s−i∈S−i

(ui(g(si(θi), s−i(θ−i)), θi)) ≥ min
s−i∈S−i

(ui(g(s′i(θi), s−i(θ−i)), θi)) .

The concept of implementation allows us to transfer basic properties of
social choice functions to mechanisms. In the remainder of this thesis, we
refer to a Pareto-optimal or social-welfare-maximizing mechanism as a mech-
anism that implements a Pareto-optimal or social-welfare-maximizing social
choice function, respectively.

It may seem almost impossible to identify implementable social choice
functions because the set of possible mechanisms is extremely large. Fortu-
nately, there is a theorem called the revelation principle (Theorem 3.1) which
tells us that we can restrict our attention to direct-revelation mechanisms,
i.e. mechanisms where the agents are asked to reveal their types in a sin-
gle step. In other words, the only strategies available in a direct-revelation
mechanism are to submit a claim about one’s preferences.

Definition 3.12 (Direct-revelation mechanism)
A mechanism Γ = (S, g(·)) is called a direct-revelation mechanism if S = Θ .

Furthermore, the revelation principle tells use that every social choice
function that can be implemented by an arbitrary mechanism in equilibrium,
can also be implemented by a direct-revelation mechanism in which the equi-
librium strategy is to submit one’s preferences truthfully.

Definition 3.13 (Incentive-compatibility)
A direct-revelation mechanism Γ is incentive-compatible if there is an equi-
librium (s∗1(·), s∗2(·), . . . , s∗n(·)) in which ∀i ∈ [n], ∀θi ∈ Θi : s∗i (θi) = θi.

The underlying equilibrium concept is deliberately left unspecified; it can
be a dominant-strategy equilibrium or Bayesian Nash equilibrium.

If a direct-revelation mechanism is an incentive-compatible implementa-
tion of a social choice function, the outcome rule of the mechanism is equal
to the social choice rule: g(θ) = f(θ).
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Theorem 3.1 (Revelation principle)
For any mechanism Γ that implements a social choice function f(·) in equi-
librium, there is a direct-revelation mechanism implementing f(·) incentive-
compatibly.

Proof: The proof is based on the fact that the direct-revelation mechanism
can “simulate” the strategies and outcome rule of the non-direct mechanism
(see e.g. [MWG95] for details). �

The first version (for dominant strategies) of this outstanding result was
found by Allan Gibbard in 1973. There also is a formulation for Bayesian
Nash equilibria.

If the equilibrium concept is that of dominant strategies, incentive-
compatibleness is of particular importance, because it lies in each agent’s
interest to assist in selecting a socially preferable outcome of the social choice
function independently of knowledge about other agents’ preferences or their
rationality. Such a mechanism is called strategy-proof.

Definition 3.14 (Strategy-proofness)
A direct-revelation mechanism Γ is strategy-proof if there is a dominant-
strategy equilibrium (s∗1(·), s∗2(·), . . . , s∗n(·)) in which ∀i ∈ [n], ∀θi ∈ Θi :
s∗i (θi) = θi.

Concluding, the revelation principle states the following. Assume we have
a social choice rule that computes a desired outcome given the agents’ true
preferences. If this social choice function can be implemented by a mechanism
in equilibrium, i.e., there is a strategy profile that is optimal in some way, then
it is possible to construct a single-shot mechanism in which revealing your
preferences truthfully is the optimal strategy. The “optimality” of strategies
depends on the corresponding equilibrium concept with dominant-strategies
being truly optimal as submitting forged preferences will never give you more
utility.

Please notice that the revelation principle does not tell us how to find
such a direct-revelation mechanism. Neither does it say that the resulting
mechanism is computationally efficient for the mechanism infrastructure or
the agents. In fact, having to determine one’s entire set of preferences can
be a computational problem, for instance in combinatorial auctions (see Sec-
tion 3.3.3). Additionally, truthful preference submission poses a problem of
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privacy. An incentive-compatible mechanism gives much more information
to the mechanism infrastructure than a possibly equivalent non-direct mech-
anism does.

Following the previous positive result, now comes a very significant im-
possibility result that unfortunately renders it impossible to design strategy-
proof mechanisms for unrestricted preferences.

Theorem 3.2 (Gibbard-Satterthwaite impossibility theorem)
If there are at least two agents (n > 1), three different outcomes (|O| >
2), and no restrictions in agents’ preferences, then a social choice function
can only be implemented by a strategy-proof mechanism if and only if it is
dictatorial.

Proof: The direction from right to left can easily be seen. Any dictatorial
social choice function can be implemented by a strategy-proof mechanism
because the outcome to be chosen directly correlates to a single agent’s pref-
erences. The other direction is not trivial (see e.g. [MWG95]) and has a great
(negative) impact on mechanism design. �

3.2 The Clarke Tax Mechanism

Fortunately, non-dictatorial mechanisms are not completely impossible, be-
cause preferences may belong to a restricted domain, invalidating one of the
conditions of Theorem 3.2. One of these restricted domains is that of quasi-
linear preferences5.

Definition 3.15 (Quasilinearity)
Agent i’s utility function ui(·) is quasilinear if it is of the form

ui(o, θi) = wi(x, θi) + πi .

The outcome in this special case is of the form o = (x, π1, π2, . . . , πn) where
x is an element of a finite set X, to be called the “project choice”, and πi is a
transfer term assigned to agent i. The valuation function wi(x, θi) yields the
utility that agent i derives from project choice x given his type θi.

5Another possibility to circumvent the negative results of Theorem 3.2 is to choose the
dictator at random, thus providing ex ante fairness. This will not lead to a social-welfare-
maximizing outcome and is questionable for obvious reasons.



34 CHAPTER 3. MICROECONOMIC FOUNDATIONS

When πi is positive, agent i receives money. If it is negative, he has to
make a payment. This kind of utility function is called “quasilinear” because
it is partly linear in the transfer term πi. These payments enable the transfer
of utility among participants and can thus be used to influence an agent’s op-
timal strategy. As we will see in Proposition 3.3, a clever setting of payments
can lead to a dominant-strategy equilibrium.

A quasilinear embodiment of utility allows us to evaluate social choice
and payments separately: An important attribute of social choice func-
tions for quasilinear preferences is allocative efficiency whereas the essen-
tial property of payments is budget-balance. π(θ) is an abbreviation for
(π1(θ), π2(θ), . . . , πn(θ)).

Definition 3.16 (Allocative efficiency)
A social choice function f(θ) = (x(θ), π(θ)) is (allocatively) efficient if ∀x′ ∈
X, θ ∈ Θ

n∑
i=1

wi(x(θ), θi) ≥
n∑

i=1

wi(x
′, θi) .

If the sum of transfer terms πi is negative, the Clarke tax mechanism yields
a surplus of money. This surplus can be paid to any outside party, institution,
or mechanism infrastructure as long as none of the involved agents gets it.
It has to vanish from the system. For this reason, it seems to be desirable
that the sum of all payments is zero (making an outside party or money
burning unnecessary) or, if this is not possible, non-positive. Otherwise, if∑n

i=1 πi > 0, a subsidy would be needed to pay for the execution of the
mechanism.

Definition 3.17 (Budget-balance)
Social choice function f(θ) = (x(θ), π(θ)) is budget-balanced or weakly budget-
balanced if ∀θ ∈ Θ

n∑
i=1

πi(θ) = 0 or
n∑

i=1

πi(θ) ≤ 0 , respectively.

Social welfare is maximized when the social choice function is efficient
and budget-balanced.
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Proposition 3.1 (Efficiency & budget-balance)
A social choice function f(θ) = (x(θ), π(θ)) is social-welfare-maximizing if
and only if it is allocatively efficient and budget-balanced.

Proof:

n∑
i=1

ui(o, θ)
3.15
=

n∑
i=1

wi(x, θi) +
n∑

i=1

πi(θ)
3.17
=

n∑
i=1

wi(x, θi)
3.16

≥

n∑
i=1

wi(x
′, θi)

3.15+3.17
=

n∑
i=1

ui(o
′, θi) ∀x′ ∈ X, o′ ∈ O

�

As all social-welfare-maximizing social choice functions are Pareto-
optimal, efficiency and budget-balance imply Pareto-optimality.

In the case of quasilinearity, there is a unique family of direct-revelation
mechanisms, the so-called Groves mechanisms , named after Theodore
Groves, that are strategy-proof and efficient. Different members of this family
of mechanisms make differing trade-offs across budget-balance and individual
rationality. A mechanism is individually rational if an agent receives always
more utility from participating in the mechanism than from not participating.

Definition 3.18 (Individual rationality)
A mechanism Γ implementing social choice function f(·) is individually ra-
tional if ∀θ ∈ Θ, i ∈ [n]

ui(f(θ), θi) ≥ ūi(θi) .

ūi(θi) is the utility of agent i when not participating in the mechanism.

Technically, this is ex post individual rationality. Sometimes, it is useful
to use interim individual rationality, which means that expected utility is
always higher than utility when not participating.

The Clarke tax or pivotal mechanism is the most prominent member of the
Groves family. It provides individual rationality6 and simultaneously max-

6Individual rationality is provided if the participation of an agent does not reduce the
outcome set O and if ∀i ∈ [n], θi ∈ Θi : wi

(
x∗−i(θ−i), θi

)
≥ 0.
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imizes the payments made by the agents to the mechanism. Weak budget-
balance is achieved whenever that is possible in a strategy-proof and efficient
mechanism.

Definition 3.19 (Clarke tax mechanism)
In the Clarke tax mechanism, the payments from the mechanism to agents
are defined by

πi(θ) =
∑
j 6=i

wj(x
∗(θ), θj)−

∑
j 6=i

wj

(
x∗−i (θ−i) , θj

)
where

x∗(θ) = arg max
x∈X

n∑
i=1

wi(x, θi)

is the efficient project choice and

x∗−i(θ−i) = arg max
x∈X

n∑
j=1,j 6=i

wj(x, θj)

is the project choice that would have been taken without agent i.

In the Clarke tax mechanism, agents that are pivotal, i.e. agents whose
presence changes the outcome, internalize the externality they pose on other
agents by paying a tax. Non-pivotal agents do not have to make any pay-
ments. The payment structure in the Clarke tax mechanism provides an
incentive to reveal one’s preferences truthfully.

Theorem 3.3
The Clarke tax mechanism is efficient, strategy-proof, individually rational,
and weakly budget-balanceda for agents with quasilinear preferences.

aWeak budget-balance holds if any agent can be removed without having a negative
effect on the best choice available to the remaining agents.

Proof: See e.g. [MWG95]. �

Concluding, any rational agent should participate in a Clarke tax mech-
anism, because this can have no negative effect on his utility (individual
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rationality). Moreover, it is impossible to increase one’s utility by submit-
ting untruthful preferences (strategy-proofness) and the derived social choice
maximizes total value (efficiency). Finally, the mechanism needs no subsidy
to work (weak budget-balance).
Despite these impressive theoretical properties, the Clarke tax mechanism
has some weaknesses. It does not maintain budget-balance which implies
that it is not Pareto-optimal since the tax revenue has to vanish from the
system. In settings with a large number of agents, the probability that a sin-
gle agent is pivotal is not very high (there might be no pivotal agents at all).
As only pivotal agents pay taxes, this problem can lose its importance in large
groups or societies. Another problem of the Clarke tax mechanism is, that
it is not coalition-proof. Colluding agents can coordinate their untruthful
preference revelations to gain more utility (see Section 4.1.3 for an example).
And finally, preferences are assumed to be quasilinear which implies that

• agents are risk-neutral (see Section 2.1),

• they value the possible outcomes independently of the preferences of
other agents (see Section 2.1.1), and

• they do not consider the utility of other agents (see Section 4.3).

3.3 Extended Example: Auctions

In this section, the theoretical framework presented in the previous sections
is applied to the auction problem. We consider a single seller who possesses
a number of goods and n buyers that intend to buy these goods. Auctions
can be seen as social choice scenarios, where outcomes represent different
allocations of goods. An allocation is efficient if it maximizes the sum of
reported values.

In the private-value model (see Section 2.1.1), the utility of risk-neutral
agents is quasilinear; it is defined as the valuations minus the costs of the
goods like in Equation 2.1 on page 17. According to the revelation principle,
we can restrict our attention to sealed-bid auctions.

3.3.1 Single-Unit Auctions

In the simplest case, there is an indivisible, single good that has to be allo-
cated to one of n agents. As a consequence, there are n outcomes. Table 3.1
shows the different “project choices” for an auction with three bidders. This
setting is equivalent to a voting situation in which three possible choices are
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“1 gets the good”, “2 gets the good”, or “3 gets the good”. Each voter can
only express his value for the outcome relating to him receiving the good.

Allocation Values

Choice 1 2 3 1 2 3 Total value

1 × v1 0 0 v1

2 × 0 v2 0 v2

3 × 0 0 v3 v3

Table 3.1: Choices in an example single-unit auction

An agent’s type is equal to his valuation of the good (θi = vi). This
valuation represents how he values outcome i, i.e. the good being awarded
to him. His strategy is represented by his bid (si = bi). The project choice
can be seen as a vector x = (x1, x2, . . . , xn) where xi = 0 if bidder i lost
the auction and xi = 1 if bidder i won it. There can be only one winner
(
∑n

i=1 xi = 1). An outcome o = (x, π1, π2, . . . , πn) consists of the project
choice and the transfer terms for the individual bidders. The utility function
takes the quasilinear form

ui(o, vi) = wi(xi, vi) + πi = xivi + πi . (3.1)

In auctions, we also need to model the seller. He can be seen as an outside
party that derives no value from the good and collects all the payments. In
this case, his utility is also quasilinear and takes the following form7.

u0(o) = π0 = −
n∑

i=1

πi (3.2)

Given these utility functions and the reasonable assumption that we intend to
achieve a socially desirable outcome, the“project choice”x can be determined
straight-forward.

Proposition 3.2 (Social-welfare-maximizing auctions)
Every auction in which the bidder who submitted the highest bid is awarded
the good is social-welfare-maximizing.

7The seller has no possibility to influence the auction outcome in this model. If possible,
it would be in his interest to submit a bid by himself or set a “reservation price” (see
Section 3.3.1 and 3.4).
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Proof: We can neglect the payments because Equation 3.2 ensures budget-
balance (

∑n
i=0 πi = 0). All possible auction outcomes o = (x, π) are Pareto-

optimal since there is always only a single bidder whose utility is positive.
The more specific measure of social welfare is appropriate here. According
to Proposition 3.1, social welfare is maximized if the outcome is allocatively
efficient. This clearly is only the case when the good is awarded to the bidder
who values it the most (see also Figure 4.12).

max
o∈O

(
u0(o) +

n∑
i=1

ui(o, vi)

)
= max

o∈O

(
n∑

i=1

xivi +
n∑

i=1

πi −
n∑

i=1

πi

)
= vh1(v)

hi(·) is a function of the bid profile b = (b1, b2, . . . , bn) or value profile
v = (v1, v2, . . . , vb) that yields the index of the ith highest bid or value,
respectively. If two or more bidders have the highest bid/value in common,
the bidder with the lowest index is chosen. �

As a consequence, an auction mechanism that implements a social-
welfare-maximizing social choice function in equilibrium should award the
good the bidder who declared the highest value for the good, namely the
winner that submitted the highest bid.

xi(b) =

{
1 if i = h1(b)

0 otherwise
(3.3)

Auctions are individually rational if no payment is assigned to losing bidders
and if the winner’s payment never exceeds his valuation (−πi ≤ vi).

Now that we have outlined a social choice function that provides a social-
welfare-maximizing outcome, we investigate how setting the payment rule
affects bidding strategies.

1st-Price Sealed-Bid Auction

It seems reasonable to assign a payment to the winner that equals his bid
and no payments to losing bidders.

πi(b) = −bixi(b) (3.4)

It can easily be seen that there is no dominant strategy in this case by the
“winner’s curse” argument (see Section 2.2.2).

Proposition 3.3 (Impossibility of 1st-price dominant strategy)
There is no dominant-strategy equilibrium in the 1st-price sealed-bid auction.
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Proof: Suppose there are two bidders, A and B, and their private values are
vb < va. If B bids bb < va, A’s optimal, i.e. utility-maximizing, strategy is to
bid

b∗a = arg max
ba

(
va − ba if ba > bb

0 else

)
= bb + ε

where ε is the smallest possible bid increment, e.g. ε = 1 when bids have to
be integers. As this strategy completely depends on B’s bid bb, it cannot be
dominant because dominant strategies are optimal no matter which strategies
the opponents choose. �

There is a Bayesian Nash equilibrium when it is general knowledge that
valuations are drawn from a uniform distribution.

Theorem 3.4 (1st-price sealed-bid Bayesian Nash equilibrium)
In a 1st-price sealed-bid auction with n risk-neutral bidders whose valuations
are independently and uniformly distributed in the interval [0, v̄], bidding

bi =
n− 1

n
vi + ε

is in Bayesian Nash equilibrium.

Proof: Let us consider the strategy for bidder i. If bidder i does not have
the highest value, we do not need to model his strategy, because he will lose
anyway. He can maximize his utility by bidding slightly above his expectation
of the second highest value conditional on his bid being the highest. The
probability that bidder j’s value vj, which is uniformly distributed in the
interval [0, vi], equals an arbitrary value v lower than vi is 1

vi
. The probability

that vj is less or equal than v is v
vi

. Thus, the probability that v is the second
highest value is (

1

vi

)(
v

vi

)n−2

. (*)

The probability that one of the n − 1 other bidders has the second highest
value v is n− 1 times expression (*). The expected value of v is

E(v) =

∫ vi

0

v(n− 1)

(
1

vi

)(
v

vi

)n−2

dv =
n− 1

vn−1
i

∫ vi

0

vn−1dv =
n− 1

n
vi .

Concluding, bidder i should bid
n− 1

n
vi + ε where ε is the smallest possible

bid difference. �
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Vickrey Auction

Since we have quasilinear preferences, we can apply the Clarke tax mecha-
nism (Definition 3.19) to achieve strategy-proofness in the good-allocation
scenario that we are considering. The transfer term πi is defined as the
summed up values (excluding i’s) of the project choice minus the summed
up values (again, excluding i’s) of the choice that would have been taken
without bidder i. In single-unit auctions, there is just one winner which
simplifies this definition. If bidder i does not win the auction and thus is
not pivotal, he pays nothing because the minuend and the subtrahend of
the transfer term are equal. The winner of an auction “receives” the others’
valuation of him winning the auction, i.e. zero, minus the total value of the
choice that would have been taken without him, i.e. the second highest bid.

πi(b1, b2, . . . , bn) = −bh2(b)xi(b1, b2, . . . , bn) (3.5)

According to Proposition 3.3, the mechanism induced by this payment rule
is strategy-proof. This has also been proven by case analysis in Theorem 2.1.
It follows that the Vickrey auction even leads to an efficient outcome when
values are drawn from different probability distributions (asymmetric bid-
ders). This is not the case in 1st-price auctions which can be demonstrated
by the following example.

Suppose there are two bidders, A and B, whose valuations are uniformly
drawn from intervals [va, va] and [vb, vb], respectively. Assume that va < vb.
B’s optimal strategy is to bid slightly more than A’s expected value, namely
va−va

2
+ ε. A can bid whatever he wants as long as his bid is lower than

his private value. This can lead to A winning the auction inefficiently. The
fragility of Bayesian Nash equilibria, in contrast to robust dominant-strategy
equilibria, is emphasized by this example.

Seller’s Revenue

So far, we have concentrated on allocative efficiency rather than maximiza-
tion of the seller’s expected revenue. It may seem that the Vickrey auction
produces less revenue than the 1st-price sealed-bid auction because the selling
price is the second highest bid instead of the highest8. On the other hand,
rational bidders have to bid less than their valuations in 1st-price auctions
(see Theorem 3.4). It surprisingly turns out that both auctions generate ex-
actly the same expected revenue9 in the case of risk-neutral bidders in the

8This false assertion was even included in early literature on auctions, e.g. [Cas67].
9When values are drawn from a uniform distribution in the interval [0, v̄], the expected

price is n−1
n+1 v̄, independently of the applied auction type.
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private-value model. This is one of the most celebrated theorems of auction
theory.

Theorem 3.5 (Revenue Equivalence)
All four major auction protocols (English, Dutch, 1st-price sealed-bid, Vick-
rey) lead to the same expected revenue if agents are risk-neutral and have
private, independent values drawn from a common distributiona.

aThis can be generalized to any auction in which the highest bidder is awarded the
item and thus also holds for other, less common auction types like the “all-pay” auction in
which each bidder has to pay what he bid.

Proof: See e.g. [Wol96, Kle99]. �

In other words, all reasonable auction types result in the same outcome
on average. This does not imply that all auction types are the same. A
dominant-strategy equilibrium like in the Vickrey auction is still much more
desirable than a 1st-price auction’s Nash equilibrium.

Revenue equivalence breaks down when removing any of the conditions
stated in Theorem 3.5. When bidders are risk-averse, 1st-price auctions yield
more revenue than 2nd-price auctions. The opposite holds, when the seller is
risk-averse as the variance of the selling price is higher in 2nd-price auctions.
If there are more than two bidders in the common-value or correlated-value
model, i.e. valuations are not independent, the English auction generates
the highest revenue, followed by the Vickrey auction and then the 1st-price
auction (Table 3.2). This is not surprising because the open-cry character of
English auctions tends to increase bidders’ valuations.

risk-averse bidders risk-averse seller non-private values

1st-price, Dutch Vickrey, English English

Vickrey, English 1st-price, Dutch Vickrey

1st-price, Dutch

Revenue decreases from top to bottom.

Table 3.2: Seller’s revenue

Roger Myerson [Mye81] investigated auctions that maximize the seller’s
expected revenue. When bidders are symmetric, the construction of such
an auction can be reduced to finding an appropriate reservation price, i.e. a
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minimum bid set by the seller, in a Vickrey auction. If private values are
uniformly distributed in the interval [0, v̄], the optimal reservation price is
v̄+v0

2
where v0 denotes the private value of the seller10. As a consequence, even

when we assume that the seller derives no value from the good (like we did in
Equation 3.2 on page 38), he should set a positive reservation price. Setting a
reservation price that is higher than the seller’s valuation can obviously lead
to inefficient allocations and thus invalidates the conditions of Theorem 3.5
(the good is not always awarded to the agent who values it most). As we will
see in Section 3.4, there is no social-welfare-maximizing and strategy-proof
allocation mechanism when the seller is allowed to set a reservation price
(Theorem 3.6).

3.3.2 Multi-Unit Auctions

Another convenient auction protocol, due to Vickrey [Vic61] and later re-
discovered in [WWW98], can be constructed by applying the Clarke tax
mechanism to the case when there are M units of the same item for sale
and each bidder has a demand of exactly one unit. The number of choices
is
(

n
M

)
and a bid values the

(
n−1
M−1

)
choices in which the corresponding bidder

is awarded a unit (see Table 3.3 for an example with three bidders and two
units).

Allocation Values

Choice 1 2 3 1 2 3 Total value

1 × × v1 v2 0 v1 + v2

2 × × v1 0 v3 v1 + v3

3 × × 0 v2 v3 v2 + v3

Table 3.3: Choices in an example multi-unit auction

There are M winners (
∑n

i=1 xi = M) that each get one unit of the good.
These are the bidders that submitted the M highest bids, because the sum
of their bids is maximal which leads to a social-welfare-maximizing outcome.

xi(b) =

{
1 if i ∈

⋃M
j=1{hj(b)}

0 otherwise
(3.6)

10Surprisingly, the optimal setting of the reservation price does not depend on the
number of bidders n.
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Like in the previous section, the Clarke tax mechanism is applied to achieve
strategy-proofness in this allocation scenario. According to Definition 3.19,
a winning bidder receives the summed up values of the M − 1 other winners
minus the summed values of the allocation that would have been chosen
without his participation, i.e. the allocation in which he is replaced by the
(M + 1)st highest bidder (see Figure 3.2). This yields

πi(b) =

 M∑
j=1,hj(b) 6=i

bhj(b) −
M+1∑

j=1,hj(b) 6=i

bhj(b)

xi(b) = −bhM+1(b)xi(b) . (3.7)

− = −

i i i

winners’ bids except i’s winners’ bids when i

(M+1)st highest bid

did not participate

Figure 3.2: Payment assigned to winner i in a multi-unit auction

All winners have to pay the amount of the (M +1)st highest bid. For this
reason, the resulting auction is sometimes called “(M +1)st-price auction” or
“uniform-price” auction. The Vickrey auction is a special case for the selling
of a single unit (M = 1).
It might seem like this mechanism gives the seller less revenue than the
repeated selling of M goods in single-unit Vickrey auctions. In the first
auction, the highest bidder is awarded a unit for the second highest bid and
quits. The second highest bidder becomes the winner in the next auction
for the third highest price and so on. However, the mechanism consisting of
successive Vickrey auctions is not strategy-proof. In the description above we
assumed that“submitting your private value in consecutive auctions until you
win” is a dominant strategy. Given that all bidders participate like described,
it is certainly wiser to just take part in the final auction and pay less. As a
matter of fact, there is no dominant strategy for the described mechanism.

If we advance to the case when bidders are allowed to bid on specific
amounts of units, we already have a special case of the most general auction
mechanism: the combinatorial auction.
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3.3.3 Combinatorial Auctions

In a combinatorial auction, m different items are sold in a single auction.
Bidders can express their willingness to pay for sets of goods. This is desirable
when values of items are non-additive, i.e., they are either complementary (a
bundle of items is worth more than the sum of its parts) or substitutable (a
bundle of items is worth less than the sum of its parts). Figure 3.4 illustrates
a combinatorial auction with two goods (× and ◦).

Allocation Values

Choice 1 2 3 1 2 3 Total value

1 ×◦ v×◦1 0 0 v×◦1

2 ◦ × v◦1 v×2 0 v◦1 + v×2
3 ◦ × v◦1 0 v×3 v◦1 + v×3
4 × ◦ v×1 v◦2 0 v×1 + v◦2
5 ×◦ 0 v×◦2 0 v×◦2

6 ◦ × 0 v◦2 v×3 v◦2 + v×3
7 × ◦ v×1 0 v◦3 v×1 + v◦3
8 × ◦ 0 v×2 v◦3 v×2 + v◦3
9 ×◦ 0 0 v×◦3 v×◦3

Table 3.4: Choices in an example combinatorial auction

In a way, a combinatorial auction is the mother of all auctions and can
be used to allocate any kind of resources among agents. In fact, they are
relevant for scheduling, logistics, and network computation. The Clarke tax
mechanism for this particular problem is sometimes called generalized Vickrey
auction (GVA). Although the Clarke tax mechanism guarantees several im-
portant properties (strategy-proofness, efficiency, individual rationality, and
weak budget-balance), it poses some problems in combinatorial auctions due
to its “direct revelation nature”.

The number of possible bundles is 2m − 1. In the example auction of
Figure 3.4 each bidder must submit three (= 22 − 1) bids: one for each item
and one for the bundle consisting of both items. This leads to the following
computational problems.

• Each bidder needs to compute his value for exponentially many bundles.

• Finding a combination of bids that is allocatively efficient is an NP-
complete optimization problem (winner determination is an instance
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of the weighted set packing problem [San99]).

• In order to compute the Clarke tax payments, several more NP-
complete problems have to be solved.

Be aware that despite the NP-hardness of the general combinatorial auction
winner determination problem, combinatorial auctions are tractable in many
special cases. For example, when allowing only bundles that contain at most
two items, winner determination is tractable. We will now give two further
important examples of tractable combinatorial auctions [Ten00].

General multi-unit auction A constant number of goods, of which there
are arbitrarily many, indistinguishable units, is to be sold. Bidders
submit how they value combinations of any given number of each good.

Linear goods auction An ordered list of items is sold. Bidders can submit
bids for blocks of items (without “holes”). This type of auction can be
useful for the selling of one-dimensional arrays like radio spectrums,
time slots, or parts of a seashore.

Besides the computational aspects of determining the winners and the ap-
propriate prices, the following problems arise11.

• The submission of exponentially many bids of which only a fraction
is needed to compute the auction outcome wastes communication re-
sources.

• The complete revelation of preferences is unnecessary and raises privacy
questions.

Due to these problems, there has recently been a large body of research on
non-direct (iterative) mechanisms that lead to the GVA outcome (e.g. [Par01,
CS02a]). On the other hand, there have been recent advances in efficient
winner determination algorithms (e.g. [SSGL01]). Generally, combinatorial
auctions are currently the most active field of auction theory [Kle99].

3.4 Further Important Results

When further generalizing auctions to exchanges12 (markets with sellers and
buyers), it becomes apparent that the “trick” we used in Equation 3.2 on

11These problems are existent in single- and multi-unit auctions as well, but they have
much more relevance in combinatorial auctions.

12So-called double auctions, stock markets, and many other scenarios belong to this
category.
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page 38 to achieve budget-balance does not work anymore because sellers
assign values to goods. Furthermore, sellers are able to actively participate
in exchange mechanisms. The following theorem (that is accounted to Hur-
wicz in [Par01]) declares the impossibility of a social-welfare-maximizing and
strategy-proof exchange mechanism with quasilinear preferences.

Theorem 3.6 (Hurwicz impossibility theorem)
There is no strategy-proof mechanism that implements an efficient, budget-
balanced social choice function for simple exchange economies with quasilin-
ear preferences.

Proof: See e.g. [Par01]. �

As if this result was not negative enough, the impossibility of a Bayesian
Nash incentive-compatible exchange mechanism under quite reasonable as-
sumptions has been proven as well.

Theorem 3.7 (Myerson-Satterthwaite impossibility theorem)
There is no Bayesian Nash incentive-compatible mechanism that implements
an efficient, budget-balanced, and individual-rational social choice function
for simple exchange economies, even with quasilinear preferences.

Proof: See e.g. [MWG95]. �

To give an elementary example, let us consider that agent A wants to
sell a good to agent B. Both have private valuations of the good (drawn
from a common distribution) and need a Bayesian Nash incentive-compatible
mechanism that determines whether the good is sold and, if so, compute the
selling price. Other reasonable conditions are:

• The good is only sold if B values it higher than A (efficiency).

• Money is transferred only between A and B (budget-balance).

• A’s and B’s expected utility for participating in the mechanism is at
least as high as when not participating (individual rationality).

According to Theorem 3.7, there is no mechanism that satisfies all of those
(modest) desiderata. As a consequence, the best we can achieve is to pro-
vide two of the three mentioned properties in an exchange mechanism. The
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Clarke tax mechanism, for example, achieves efficiency and individual ratio-
nality, but lacks budget-balance. A similar mechanism, the so-called dAGVA
mechanism provides efficiency and budget-balance, but lacks individual ra-
tionality. Furthermore, in contrast to the Clarke tax mechanism, the dAGVA
mechanism is only Bayesian Nash incentive-compatible.



Chapter 4

Fraud and Deception

According to the FBI [FBI02], auction fraud is the most stated offense at
the Internet Fraud Complaint Center (IFCC) (see Figure 4.1). In 2001, the
average loss per consumer complaint in the case of auction fraud was $ 395.
Most of these frauds involve non-delivery of goods or money, false statements
about goods, or manipulation of reputation systems (like ebay’s) [Ben01].
Escrow services (e.g. by the auctioneer) and insurances can prevent some of
those problems.

Auction Fraud

Nigerian Letter Fraud

Credit/Debit Card Fraud

Confidence Fraud

Investment Fraud

Business Fraud

Identity Theft

Check Fraud

Communications Fraud

20.3%

15.5%

9.4%

3.1%

1.7%

1.4%

1.3%

0.7%

0.6%

Non−Delivery (mdse and payment)

42.8%

Figure 4.1: Top ten IFCC complaints (2001) [FBI02]

On the other hand, there are ways of “cheating” in an auction that are
not necessarily illegal. We make a distinction between fraud, i.e. antino-
mian cheating, and deception, i.e. undesirable behaviour that can be blamed

49
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to poor auction design. Here is an example of the latter case (taken from
[McM94]). In 1993, the Australian government auctioned off two licenses
for satellite-television services. They used 1st-price sealed-bid auctions. In
one of those auctions, an unknown company called UCOM won a license
for A$ 212 million (beating a consortium of Rupert Murdoch, Kerry Packer,
and Telecom Australia among others). All the bids were revealed and the
government hailed the auction outcome as opening up “a whole new era”,
bringing new firms into the closed shop of Australian television industry. It
turned out that UCOM decided to default on their bid, which resulted in
the second best bidder being awarded the corresponding license. But UCOM
submitted the second highest bid as well! Moreover, they submitted the
third highest, fourth highest and so forth. After defaulting on several more
bids, they finally paid A$ 117 million for the license (saving A$ 95 million).
Shortly afterwards, they sold the license, earning A$ 21 million. The poor
auction rules (free defaulting) resulted in at least a year’s delay into pay TV
in Australia.

In this chapter, we will focus on deception, i.e. undesirable strategic bid-
ding that is not covered by the theoretic models or that cannot be prevented
in real auctions for practical reasons. After mentioning some classic phenom-
ena like bidder collusion, “shills”, or “sniping”, we analyze antisocial bidding
in detail. Antisocial agents are defined as agents who, in order to outperform
their competitors, have an incentive to reduce their competitors’ profit. The
chapter closes with some brief experimental results that show the (negative)
impact antisocial agents can have in auctions and a theorem that basically
states that it is not possible to construct an auction mechanism that provides
elementary properties in the presence of antisocial agents.

4.1 Deceptive Bidding

In the drastic example given above, the deceptive behaviour of UCOM could
have been prevented by better designed auction rules. In this section, we will
present forms of deception that can not be easily prohibited.

4.1.1 Shills

Shills are bids that are placed by the seller under fictious names or by re-
cruiting other people to bid in order to raise the price of a good. Shills can
only occur in open-cry ascending (English) auctions. Furthermore, shills only
make sense if the good to be sold somehow relates to the common-value oder
correlated-value model, i.e., bidders valuations depend on another. Placing a
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shill bid then makes other bidders overestimate the good’s value. Although
shills are illegal in many auctions, they are ubiquitous because it is almost
impossible to detect them.

Electronic auction houses often charge fees that are defined as a fraction of
the selling price. Placing shills in such auctions has to be evaluated carefully
because winning the auction accidently (by placing a shill bid too high) will
result in deficits (and the seller inefficiently keeping the item). Most auctions
allow the seller to influence the auction outcome in a limited way by setting a
reservation price (see Section 3.3.1). However, he is not capable of changing
that value once the auction started.

Sellers placing shills and antisocial bidders (to be defined in Section 4.3)
share the same goal, i.e. to increase the selling price. Yet, they have different
motivations: The seller simply wants to increase his revenue whereas the
antisocial bidder intends to weaken his competitors.

4.1.2 Sniping

As mentioned in Section 2.3.1, most Internet auction houses (like ebay) use
English auctions that last for a fixed period of time. It turned out that
most users – despite the possibility of using “bidding agents” as described in
Section 2.3.1 – bid at the very end of an auction, mostly in the last seconds,
giving other bidders no time to react. One explanation for this behaviour is
the intention to keep one’s valuation private. This is of particular relevance
when the private-value model does not hold as any public bid might make
other bidders increase their valuations. Actually, the only difference between
using the bidding agent and sniping is the information revealed by the bidding
agent. There are dozens of commercial programs and websites (like esnipe)
that bid in the very last seconds of an auction on the behalf of the user.
ebay has filed several lawsuits against the makers of such sniping agents.
It is interesting to observe that, like bidding agents, sniping converts the
English auction into a Vickrey auction.

“For example, if sniping and sniping agents become even more
widespread on eBay than they are today, eBay would be gradually
transformed into a sealed bid second price auction. If a large
part of the bidding action were taking place on third-party sites
like esnipe, eBay would face a number of choices. One would be
to recapture the sniping market by offering a sniping option on
eBay itself. (Under this option, last minute bids submitted in
advance directly to eBay could all be counted at the same time,
immediately after the auction close, thus giving bidders certainty
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both that their bids would be successfully transmitted, and that
there would be no time for other bidders to react.) Of course, if all
bidders used this option, the auction would be precisely a sealed
bid auction. eBay, and sellers who list items for sale on eBay,
might prefer not to encourage this development (for example if
they believe that bidders are likely to bid more in auctions in
which they can form some estimates of how much other bidders
value the item for sale)”. [OR02]

It is a well-known fact that open-cry auctions generate more revenue than
sealed-bid auctions in scenarios that do not belong to the private-value model
(see Table 3.2). However, generating more revenue certainly does not lie in
bidders’ interests. For this reason, if bidders have the possibility to transform
an auction into a sealed-bid auction (like in ebay’s auctions), they will do
so. In the auctions conducted at amazon for example, extra time is added
whenever a late bid is submitted. As a consequence, sniping is almost non-
existent in amazon auctions. [RO02, OR02] give reasons for late bidding that
occurs even in the private-value model.

4.1.3 Bidder Collusion

A fundamental deficiency that affects all auction types is bidder collusion
(sometimes called “bidding rings”). Auction mechanisms are build upon the
principles of competition and asymmetry of information. If this asymmetry
is removed, bidders can manipulate the action outcome and increase their
utility. For example, in a 1st-price sealed-bid auction, bidders can form a
coalition and coordinate their bids by having all bidders but one bid zero.
The remaining bidder bids an arbitrarily small amount. After having won
the auction, he can share some of the savings he made with cooperating
bidders. However, the other bidders have a substantial incentive to cheat
on the agreement by not bidding zero as they have the possibility to receive
the good at a bargain price. The situation is different in 2nd-price auctions.
In this case, the designated winning bidder does not need to adjust his bid
downwards. He can bid his private value while all other bidders bid zero
(or any other small amount). There is no incentive for any of the colluding
bidders to break the agreement because it is impossible for them to obtain the
good without a loss. This is why it is said that collusions are “self-enforcing”
in 2nd-price auctions [Rob85].

A collusion of bidders is faced with the problem of determining their
highest bidder, preferably using a strategy-proof mechanism in order to avoid
strategic behaviour. In [GM87], this problem is solved by running a pre-
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auction in which it is every colluder’s optimal strategy to submit his valuation
truthfully. The highest bidder is designated as the winner. If this agent also
wins the main auction, he has to pay the difference between the selling price
and the second highest bid of the pre-auction to the remaining collusion
members. Efficient collusion schemes for 1st-price and 2nd-price sealed-bid
auctions have been identified in [MM92] and [GM87, MZ91], respectively.
The former even deals with the case when side payments are impossible.
[LBST00] contains a more general approach that covers arbitrary auction
mechanisms and parallel executions of these mechanisms.

According to the US Justice Department’s antitrust chief, bidder collusion
by highway contractors increased the cost of building roads by ten percent
or more [MM92]. [McM91] explains a widespread form of bidder collusion in
Japan’s public-works contracting.

In combinatorial auctions, a new subform of collusion is particularly inter-
esting. Colluding agents can increase their profit by introducing new bidders
to the auction. In fact, it is sufficient to submit several bids under different
names to manipulate the auction outcome. Clearly, in virtual marketplaces
this form of deception is almost undetectable since identifying the true ori-
gins of bids is extremely hard. The general behaviour is called “false-name
bidding” and has been extensively studied by Yokoo et al. They were able to
prove that there is no “false-name-proof” combinatorial auction mechanism
that satisfies allocative efficiency [YSM03].

4.2 Insincere Auctioneer

The problem of an insincere auctioneer obviously belongs to the fraud cate-
gory and is important when bidders pay prices that are different than their
bids, which implies that it is a particular problem in Vickrey auctions. Con-
sider a Vickrey auction with three sealed bids: 10, 20, and 30. The auctioneer
might tell the winning bidder that the second highest bid was 29. In a sealed-
bid auction, this bidder has virtually no means to verify the correctness of
the auctioneer. Even when the auctioneer is forced to prove that the second
highest bid is indeed a submitted bid by showing a digital signature of the
corresponding bidder, he can cheat with the help of a fellow bidder who signs
a bid after the auctioneer opened the other bids. We will discuss solution
concepts to this problem in Chapter 5.
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4.3 Antisocial Agents

In most economic models as well as multiagent applications it is assumed
that the objective of an agent is to maximize his absolute profit without
caring for the profits made by other agents. However, in many real-world
applications, it is more realistic to assume that some agents try to gain as
much money (or utility) as possible relative to others (their competitors).
In other words, in many scenarios it is wise to take into consideration the
availability of “antisocial agents,” that is, agents who are willing to reduce
the profit of competitors.

4.3.1 Suffering when Others Win

When having another look at Table 3.1 on page 38, it stands out that bidders
are indifferent to choices, in which they do not get the good. When supposing
that bidders obtain negative utility if another bidders wins the auction, the
table can be modified to look like Table 4.1. As bidders are assumed to be
symmetric, bidder i cannot have preferences on who gets the item, but he is
able to assign negative value ai to the cases when someone else does. We are
now assuming that the mechanism allows to express one’s preferences on ev-
ery possible project choice. The utility function has the following quasilinear
form.

ui(o, vi, ai) = xivi − (1− xi)ai + πi (4.1)

Allocation Values

Choice 1 2 3 1 2 3 Total value

1 × v1 −a2 −a3 v1 − a2 − a3

2 × −a1 v2 −a3 −a1 + v2 − a3

3 × −a1 −a2 v3 −a1 − a2 + v3

Table 4.1: Choices in an example single-unit auction with “anti-bids”

The Clarke tax mechanism yields πi(b) =
∑n

j=1 aj −
∑n

j=1 aj + ah2(b) +
bh2(b) = ah2(b) + bh2(b) as a payment for the auction winner. This outcome
can obviously be reached more easily if each bidder bids bi = vi + ai in
a regular Vickrey auction. However, this is not possible when bidders are
able to distinguish between fellow bidders, i.e., they have different (negative)
values for each other bidder winning the auction (see [JMS96]).



4.3. ANTISOCIAL AGENTS 55

So far we have merely taken into account that a bidder derives negative
utility if someone else wins an auction. In the next section, we will treat
bidders that consider their rivals’ profit.

4.3.2 Suffering from Others’ Utility

As a starting point for the formalization of antisocial utility, it appears to
be reasonable to assume that an antisocial agent wants to maximize the
difference between his profit and the gain of his competitors; this means that
the own profit on the one hand and the other agents’ losses on the other
hand are considered to be of equal importance from the point of view of this
antisocial agent. In a two-player scenario, this view captures the antisocial
agent’s intention to be better than his rival. To achieve a higher degree
of flexibility in describing and analyzing antisocial agents, it is useful to
think of different degrees of antisociality like “aggressive antisociality” (where
it is an agent’s objective to harm competitors at any cost) and “moderate
antisociality” (where an agent puts somewhat more emphasis on his own
profit rather than the loss of other agents).

self−interested

social antisocial

Figure 4.2: Simplified scale of social behaviour

These considerations lead to the formal specification of an antisocial agent
(or an agent’s antisocial attitude) as an agent who tries to maximize the
weighted difference of his own profit and the profit of his competitors. We
used the term“profit” instead of “utility” in the description above to motivate
that antisocial behaviour can indeed be rational. Formally, an antisocial
agent can be defined as follows.

Definition 4.1 (Antisocial agent)
An antisocial agent intends to maximize the utility given by the equation

uA
i (o, θ, di) = (1− di)ui(o, θi)− di

n∑
j=1,j 6=i

uj(o, θj) ,

where di ∈ [0, 1] is a parameter called derogation rate.
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The derogation rate is crucial because it formally captures, and allows
to modify, an agent’s degree of antisocial behavior. It is obvious that this
formula covers “regular” agents by setting di = 0. We say that agent i is
antisocial if di > 0 (see Figure 4.2). If di is greater than 0.5, hurting others has
greater priority than helping yourself. A purely destructive agent is defined
by d = 1. We say an agent is balanced antisocial if di = 0.5, e.g., his own
utility and the utility of his competitors are of equal importance. Please note
that the above definition assumes that an antisocial agent knows the types
and utility functions of other agents. The utility functions are unproblematic
because we will only consider quasilinear utility in simple auctions. We will
dicuss methods to estimate and learn types, i.e. private values, later in this
chapter. Other possible embodiments of antisocial utility functions include
the average non-negative utility of competitors

uA
i (o, θi, di) = (1− di)ui(o, θi)− di

∑n
j=1,j 6=i uj(o, θj)

|{j | uj(o, θj) > 0}|
(4.2)

or the maximum utility of any rival.

uA
i (o, θi, di) = (1− di)ui(o, θi)− di max{uj(o, θj)}n

j=1,j 6=i (4.3)

However, we will stick with Definition 4.1 because we only consider single-
unit auctions, which means that all utilities except the winner’s are zero.

4.3.3 Antisociality and Vickrey Auctions

In this Section, the implications of antisocial utility in Vickrey auctions are
theoretically investigated. In order to simplify such analysis, we first investi-
gate a setting with complete information, i.e., all types are publicly known.

Like in Section 3.3, types θi are private values vi of a good in the following.
Utility ui is defined by the quasilinear function in Equation 3.1 and v =
(v1, v2, . . . , vn).

uA
i (o, v, di) = (1− di)(xivi − πi)− di

∑
j 6=i

(xjvj − πj) (4.4)

We will refer to an agent’s regular, non-antisocial utility xivi − πi as his
“profit” in the following. Let us now consider an auction with two bidders,
A and B. Similar to Equation 2.1 on page 17, the antisocial utility of agent
A can be written as a function of the bids ba and bb.

uA
a (ba, bb, va, vb, da) =

{
(1− da)(va − bb) if ba ≥ bb

−da(vb − ba) if ba ≤ bb

(4.5)
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The first striking consequence of the new definition of utility is that the
Vickrey auction’s dominant-strategy equilibrium breaks down for antisocial
agents.

Proposition 4.1 (Antisocial non-strategy-proofness)
Bidding one’s private value is not a dominant strategy for antisocial agents
in Vickrey auctions.

Proof: It suffices to construct a single case in which deviating from the
dominant strategy can lead to higher profit. Consider case vi) of the proof
of Theorem 2.1 on page 18. We now assume that agent A’s derogation rate
da is greater than 0 and that vb − va > ε. A is not able to effectively win
the auction, but the price agent B pays completely depends on A’s bid. So,
if A carefully adjusts his bid upwards, he is capable of reducing B’s utility.
Supposing that A knows B’s private value vb, his optimal strategy would
be to bid vb − ε (see Figure 4.3), which reduces B’s profit to the absolute
minimum of ε.

bavbva

eliminated profit

Figure 4.3: A reduces B’s profit to a minimum

We can assume bb = vb without loss of generality, because a dominant
strategy should yield the highest utility for all possible strategies by other
agents. When applying the “dominant strategy” (ba = va), A’s antisocial
utility is

uA
a (va, vb, va, vb, da) = −da(vb − va) .

However, bidding ba = vb − ε yields more utility,

uA
a (vb − ε, vb, va, vb, da) = −daε ,

if vb − va > ε. �

Please note that non-antisocial agents are best off bidding their private
values, even when antisocial agents are present (otherwise the strategy would
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not be dominant). It has merely been shown that the dominant strategy is
not optimal for antisocial agents. This raises the question whether there is a
dominant-strategy equilibrium for antisocial agents at all. The answer is no
if agents are not purely destructive.

Proposition 4.2 (Impossibility of antisocial dominant strategy)
There only is a dominant Vickrey auction strategy for antisocial agents when
their derogation rate d is 1.

Proof: Clearly, if d = 1, bidding the highest possible value will always yield
zero utility which is the highest utility a purely antisocial agent can achieve.
To prove the rest of the statement, let us again consider the case of the
previous proof and assume, without loss of generality, vb − va > 2da+1

1−da
.

If B bids vb, A’s optimal strategy is to bid vb − ε resulting in −daε utility.
If B bids vb − 2ε however, this strategy is sub-optimal because it only yields
the negative utility (1− da)(va − vb + ε) which is lower than uA

a (vb − 3ε, vb −
2ε, va, vb, da) = −da(3ε).

(1− da)(va − vb + ε) > −da(3ε)

⇔ (vb − va)(da − 1) + ε− daε > −3daε

⇔ vb − va >
2da + 1

1− da

�

It is self-evident to seek weaker equilibria that might fit this scenario.
In the previous two propositions, the other bidders’ utility functions and in
particular their derogation rates were irrelevant, because we only dealt with
dominant-strategy equilibria. In the proof of Proposition 4.2, agent B bid
slightly less than his private value vb, rejecting a possible gain of ε and making
A lose vb − va − 2ε. This behaviour makes perfect sense if B is antisocial as
well.

As a consequence, if A’s derogation rate da is 0.5, A should only bid
va + vb−va

2
− ε to be safe from being underbid by B (see Figure 4.4). If B still

undercuts A’s bid, he waives more money than A loses. If db = 0.5 as well,
B’s best strategy is to bid vb − vb−va

2
.

Returning to the case of more than two bidders, the following bidding
strategy seems to be “safe” for an antisocial agent i. We still assume the
(unrealistic) model of complete information (vh1(b) is the highest private value,
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va ba bb vb

eliminated profit

Figure 4.4: Careful antisocial bidding

vh2(b) the second highest)1.

bi =

{
vi − di(vi − vh2(v)) if i = h1(v)

vi + di(vh1(v) − vi) else
(4.6)

Theorem 4.1 (Balanced antisocial Nash equilibrium)
In Vickrey auctions with balanced antisocial bidders (∀i ∈ [n] : di = 0.5),
the strategy defined by Equation 4.6 is in Nash equilibrium.

Proof: According to Definition 3.9, the assumption states that under the
supposition that all agents apply this strategy, there is no reason for a single
agent to deviate from it. We consider the utility of agent A. It suffices to take
only one opposing agent B into account as A does not differentiate between
the individual bidders and the Vickrey auction has a sole victor.
According to Equation 4.6, agent B’s strategy is to bid right in the middle
of both private values.

bb =

{
vb − 1

2
(vb − va) if va ≤ vb

vb + 1
2
(va − vb) if va ≥ vb

=
va + vb

2

The antisocial utility of agent A takes the following form and is depicted in
Figure 4.5.

uA
a (ba, bb, va, vb) = uA

a

(
ba,

va + vb

2
, va, vb

)
4.5
=

{
va−vb

4
if ba ≥ va+vb

2
ba−vb

2
if ba ≤ va+vb

2

1The margin ε can be omitted here. When two or more bidders share the winning bid,
the winner is picked at random.
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Figure 4.5: A’s utility (da = 0.5)

max
ba

uA
a

(
ba,

va + vb

2
, va, vb

)
=

va − vb

4
⇒ ba ≥

va + vb

2

Concluding, if A bids more than va+vb

2
, he only receives equal utility; if he

bids less, his utility is diminishing. �

When allowing arbitrary derogation rates, a weaker equilibrium concept
is appropriate (see Definition 3.11 on page 31).

Theorem 4.2 (Antisocial maximin equilibrium)
The bidding strategy defined by Equation 4.6 is in maximin equilibrium (for
arbitrary derogation rates in Vickrey auctions).

Proof: It is claimed that the strategy is an optimal strategy to reduce the
possible losses that occur in worst case encounters (Definition 3.11). “Worst-
case” means that the other bidders (represented by a single agent B again)
try to reduce agent A’s utility as much as possible.

min
bb

uA
a (ba, bb, va, vb, da)

4.5
= min

bb

(
(1− da)(va − bb) if ba ≥ bb

−da(vb − ba) if ba ≤ bb

)
(∗)
= min{(1− da)(va − ba)︸ ︷︷ ︸

f(ba)

,−da(vb − ba)︸ ︷︷ ︸
g(ba)

}
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B’s bid bb can be eliminated in step (∗) because the term of the first case
is minimal if bb = ba. f yields the minimum profit if A wins and g yields
the minimum profit if he loses the auction. In the following, we consider the
maximum of these minima (see Figure 4.6).

max
ba

min
bb

uA
a (ba, bb, va, vb, da) = max

ba

min{f(ba), g(ba)}

b
a

b
v v

a

a a
v v

a b a bv  > v v  < v

min u min u

ab

a b

a a
v  −d  (v  −v  )

a

bf

g

g

f

v  +d  (v  −v  )

A A
a a

b

a

Figure 4.6: A’s minimum utility

Due to the fact that f is decreasing and g is increasing, the maximin
equilibrium point can be computed by setting f(ba) = g(ba).

f(ba) = g(ba) ⇔ (1− da)(va − ba) = −da(vb − ba)

⇔ va − bb − dava + dabb = −davb + daba

⇔ ba = va + da(vb − va)

�

4.3.4 Bidding Strategies with Incomplete Information

On the basis of the theoretical foundations of the previous section, we now
develop antisocial bidding strategies that can actually be used in realistic
environments.
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In contrast to the previous section, we consider a setting of incomplete in-
formation in the following. In the general case, an agent does not know the
private values of other bidders, but he has several possibilities to figure out
these values.

1. by estimation based on common knowledge

2. by learning from previous auctions

3. by means of espionage (e.g. bribing or colluding with the auctioneer)

We will now present strategies for the first two cases. The latter case can be
prevented by techniques presented in Chapter 5 and 6.

Uniform Distribution

General assumptions about the distribution of unknown values can be used to
turn the Nash equilibrium of Theorem 4.1 into a Bayesian Nash equilibrium
with incomplete information.

Corollary 4.1 (Antisocial Bayesian Nash equilibrium)
The bidding strategy

bi =

{
vi + di

(
n−1

n
v̄ − vi

)
if vi < n−1

n
v̄(

1− di

n

)
vi else

is in Bayesian Nash equilibrium if private values are uniformly distributed
in the interval [0, v̄] and derogation rates are uniformly distributed in the
interval [0, 1].

Proof: The expected value of another bidder’s derogation rate is 0.5. We
can therefore modify the (complete information) strategy from Theorem 4.1.
If i’s private value is not the highest value, bidder i needs to adjust his bid
upwards according to Equation 4.6. This is the case if his value is less than
the expected highest value of the other bidders: n−1

n
v̄.

vi + di

(
n− 1

n
v̄ − vi

)
If he possesses the highest private value, he needs to bid less than his private
value.
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vi − di

(
vi −

n− 1

n
vi

)
=

(
1− di

n

)
vi

�

Revealing Private Values by Underbidding

We now consider a multiagent task-assignment scenario that we have
extensively investigated in [BW99, BW00a, BW00b, BBW00]. A fixed
number of tasks is auctioned by using reverse Vickrey auctions. After they
have been assigned and executed, the same tasks are auctioned again. This
procedure repeats for many rounds.

Zero-Bidding Suppose a balanced antisocial agent loses an auction in the
first round. When the same task is auctioned for the second time, he bids
zero. As a consequence, he wins the auction2, and receives an amount equal-
ing the second lowest bid, which is the private value of the cheapest agent
(supposing this agent applied the dominant strategy). Thus, he is able to
figure out the needed private value and can place his next bid right in the
middle between the two private values. Using this technique, he loses the
difference between both values once, but can safely cut off 50% of the com-
petitor’s profit for all following auction rounds. If the total number of rounds
is high enough, the investment pays.

In a scenario where all other agents simply follow the dominant bidding
strategy and no counter-speculation is needed, an effective bidding strategy
for an antisocial agent who lost in the first round looks like this.

1. Bid 0 (p=received price)

2. Bid vi + di(p− vi) in all following rounds

Step-by-Step Approach Bidding zero is elegant but dangerous, espe-
cially if more than one agent is applying this strategy. In this case, one of
the zero-bidding agents wins the auction, but is paid no money at all (be-
cause the second lowest bid is zero as well), thus producing a huge deficit.
Moreover, he does not learn information on private values. It’s safer to re-
duce a bid from round to round by a small margin s until the lowest bid is
reached. Figure 4.7 displays the modified strategy.

2unless some other agent bids zero as well
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won
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start here

bid v

bid last_bid−s
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lost

p>=v

(p=price)
won

won
(p=price)

lost

won (p=price)

bid v+d(p−v)

p<v

bid v−d(v−p)+ε

Figure 4.7: Antisocial strategy for repeated reverse Vickrey auctions

If the step size s equals the private value (s = v), this algorithm emulates
the aggressive zero-bidding strategy. The algorithm works somewhat stable
in dynamic environments where agents can vanish and new ones appear from
time to time. However, the strategy is not very robust, e.g., if two balanced
antisocial agents apply this strategy, the more expensive agent is only able
to reduce the winning agent’s profit by 25% because he is usually not able
to figure out the real private value of the cheaper agent in time.

Generally, a careful agent should use a small step size s in order to be
safe that the competitor already suffered huge losses before he makes negative
profit himself. A reasonable setting of s depends on the number of rounds,
the distribution of private values and the derogation rate.

For example, let us consider the case of two agents A and B (va > vb) and
an appropriate setting of the step size sa when the number of total auction
rounds is unknown. Let A’s step size be a fraction of the difference of both
private values: sa = va−vb

r
. It is now possible to compute how many rounds

are needed to ensure that the loss inflicted to B is greater than the loss



4.3. ANTISOCIAL AGENTS 65

induced by underbidding him. This yields an upper bound for sa.

da

r−1∑
i=0

i

r
(va − vb) ≥ (1− da)(va − vb)

⇔ da
r − 1

2
≥ 1− da

⇔ r ≥ 2− da

da

⇒ sa ≤
da

2− da

(va − vb)

In reality (model of incomplete information), vb is unknown to agent A. How-
ever, assuming that all private values are uniformly distributed, the expected
value of vb is va

2
. This implies the following inequation:

sa ≤
da

4− 2da

va (4.7)

For example, the step size sa for an agent with derogation rate da = 0.5 should
be lower or equal than 1

6
of his private value. This result can not easily be

generalized to other cases as it just takes two bidders into account. If there
is more than one bidder that intends to harm agent B and the bidders do
not arrange, the situation gets much more complicated. Besides, we assumed
that agent B constantly applies the dominant strategy (db = 0).

Leveled Commitment Contracting If the task execution contracts are
not binding and can be breached by paying a penalty (leveled commitment
contracting [SL95, SL96, AS98, SSN99, BBW00]), the unavoidable loss an
agent produces by underbidding the cheapest competitor can be reduced by
breaking the negative contract. Due to the fact that the only reason for
closing that deal is to figure out the private value of another agent, the agent
has no incentive to really accomplish the task. Therefore, a contractee will
break the contract if the loss he makes by accepting the contract is greater
than the penalty he pays by breaking the deal. Supposing the common
definition of a penalty as a fraction of the contract value [SL96, BBW00],
agent i is better off breaching the contract if

p ≤ vi

pr + 1
(4.8)

with p being the actual task price and pr ∈ [0; 1] the penalty rate. To give
an example, under the assumption that pr = 0.25, an agent should break a
contract if the task price is less or equal than 4

5
of his private value. When

the distribution of prime costs is uniform, an antisocial agent is better off
breaking a contract in 80% of all possible cases.
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4.3.5 Experimental Results

The experimental scenario investigated in this section is based on the ABC
implementation described in Appendix B.1. There is a number of contractees
(CEi) who are willing to execute tasks. Contractees associate prime costs
with task execution and are interested in tasks whose prices are higher than
their own costs. All prices and bids are integer values (ε = 1).

Whenever the selling of a task is announced, each interested contractee
calculates and submits one sealed bid. The contractee who submitted the
lowest bid is declared the winner of the auction, and the second lowest bid is
taken as the price of the announced task; the contractee is paid this price and
executes the task. If there are two or more equal winning bids, the winner
is picked randomly. As mentioned above, this kind of auctioning is called a
reverse Vickrey auction. As a contractee wants to earn money for handling
tasks, his private value of a task is his prime costs plus ε.

In contrast to the setting described in Appendix B.1, it is assumed that
each contractee can execute as many tasks as he wants during one round.
Antisocial strategies can also be used in conjunction with leveled commit-
ment, but in order to keep things simple we only consider full commitment
contracting here.

Task 1 Task 2 Task 3

CE1 70 50 30

CE2 50 30 70

CE3 30 70 50

Table 4.2: Fair cost table

Task 1 Task 2 Task 3 Task 4

CE1 38 47 39 67

CE2 43 84 23 49

CE3 81 10 22 69

CE4 98 66 18 67

Table 4.3: Random cost table
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Identical Contractees

Table 4.2 contains the prime costs of three contractees with exactly identical
abilities. Each contractee has one task, that he can handle for the cheapest
price. If all three truly bid their private values for 100 rounds, each one would
gain $ 21 · 100=$ 2100.
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Figure 4.8: Identical contractees, CE3 is antisocial (d3 = 1, s3 = ε)

Figure 4.8 shows the profits accumulated by the contractees in 100 rounds.
CE1 and CE2 apply the dominant strategy and bid their prime costs plus one.
CE3, however, is antisocial and tries to harm his competitors by reducing
their profits to a minimum. As CE3 is the only antisocial agent and because
his derogation rate is 1, he could use a very large step size, e.g., s3 = v3. We
chose a careful step size setting (s3 = ε) for two reasons. First of all, CE3 may
not know he is the only antisocial bidder, and secondly, this setting superiorly
visualizes how the antisocial strategy works. In contrast to the normal case
(all contractees apply the dominant strategy and make equal profits), CE3

outperforms his rivals by losing only $ 60. The summed up profit of the
entire group of contractees is reduced by more than 50% by actions from a
single agent who himself only loses a negligible amount. This emphasizes the
particular vulnerability of Vickrey auctions to antisocial bidding.
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Figure 4.9: Identical antisocial contractees (di = 0.5, si = ε)

It might appear confusing at the first glance that an agent who does
not care for his own profit at all (d3 = 1) nevertheless makes the highest
profit. This effect can be explained by the conservative strategies of his
fellow bidders. CE3 risks his entire profit in order to hurt CE1 and CE2,
but as both are completely “harmless”, i.e. not antisocial, he keeps his gain.

If all three contractees are antisocial, overall performance breaks down
(Figure 4.9). The agents almost cut off 50% of profits of their rivals.

Random Contractees

In order to examine the performance of antisocial behavior in a more realistic
scenario that does not use artificial prime costs, experiments with a random
cost table (Table 4.3), that includes four contractees of varying quality, have
been conducted.

Figure 4.10 shows the accumulated profit for 200 rounds if one contractee
(CE4, the weakest of them) uses an antisocial strategy. He effectively min-
imizes the profit of his competitors after figuring out their prime costs. In
round 493 he surpasses CE3 and thus becomes the most successful contractee,
even though he has the poorest abilities, i.e. the lowest prime costs compared
to the competition.
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Figure 4.10: Random contractees, CE4 is antisocial (d4 = 1, s4 = ε)

Figure 4.11 shows the profit development for four antisocial contractees.
The final profit ranking (CE3, CE2, CE1, then CE4) does not differ from
the result for dominant strategies. However, their overall profits are reduced
by 31% to 54% compared to the profits they would accumulate when none
of them were antisocial.

4.3.6 Further Implications

As the Vickrey and the English auction are strategically equivalent in the
private-value model (see Table 2.1 on page 20), antisocial strategies can be
used in English auctions as well. The presence of antisocial agents also affects
the bidding strategies in 1st-price sealed-bid auctions. However, in contrast
to the Vickrey auction, antisocial bidding can only yield to more (antisocial)
utility when making negative profit oneself. The Vickrey auction’s 2nd-price
policy enables easy price manipulation. If an antisocial bidder knows the
highest bid in a Vickrey auction, he can reduce the winning bidder’s utility
without losing anything. This is not possible in 1st-price auctions.

Although there is no dominant-strategy equilibrium in the Vickrey auc-
tion when agents are antisocial, there might be an auction mechanism in
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Figure 4.11: Random antisocial contractees (di = 0.5, si = ε)

which agents submit their private values and derogation rates in dominant-
strategy (or Bayesian Nash) equilibrium and that yields a social-welfare-
maximizing outcome. As antisocial utility is clearly not quasilinear (com-
pare Definition 3.15), we cannot find a strategy-proof mechanism by apply-
ing the Clarke tax mechanism. Anyhow, this does not rule out the existence
of such a mechanism (or at least an incentive-compatible mechanism). The
following theorem states that there is no auction mechanism that provides
basic reasonable properties in the presence of antisocial agents.

Theorem 4.3 (Impossibility of “antisocial-proof” auction)
There is no individually rational auction that maximizes social welfare in
equilibrium if at least one of the bidders is antisocial.

Proof: By saying “auction” we mean a mechanism that implements a social
choice function that allocates a single good, and that yields outcome o =
(x, π) where x prescribes who is awarded the good and π is a vector of transfer
terms (see Section 3.3.1). We furthermore assume that the seller collects all
the payments made by bidders. In order to prove the statement, we outline
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a social choice function with the desired properties. It turns out that these
constraints completely determine the underlying mechanism by prescribing a
particular payment rule. Truth-telling must be an equilibrium strategy in this
mechanism in order to implement the corresponding social choice function.
As this is not the case, the statement is proven by contradiction.

Lemma 4.1
Social welfare in an auction with at least one antisocial agent is maximized
if bidders’ payments are infinitely high.

Proof: Let us consider two bidders A and B with private values va and vb

(va < vb, without loss of generality). At least one of the bidders is antisocial
which means that d = da + db > 0. If B is awarded the good, the utilities of
A, B, and the seller are as follows.

ua = (1−da)πa−da(vb+πb), ub = (1−db)(vb+πb)−dbπa, u0 = −πa−πb

Let Ub be the social welfare, i.e. the sum of individual utilities, when B is
awarded the good (xb = 1). We consider Ub subject to πa and πb as we seek
transfer terms that maximize welfare.

Ub(πa, πb) = ua +ub +u0 = (vb +πb)(1−da−db)+πa(1−da−db)−πa−πb =

= (vb + πa + πb)(1− da − db)− πa − πb

As the social welfare only depends on the sum of transfer terms, we set
π = πa + πb.

Ub(π) = (1− d)(vb + π)− π = (1− d)vb − dπ

Similarly, we can compute the social welfare when A is awarded the good
(xa = 1).

Ua(π) = (1− d)va − dπ

Please note that transfer terms are negative as bidders pay to receive the
good.
In order to obtain an outcome that maximizes social welfare, we need to
compute maxπ(Ua(π), Ub(π)). It turns out that this is not possible because
it would require infinitely high payments by bidders.

arg max
π

(
(1− d)vb − dπ if xb = 1
(1− d)va − dπ if xa = 1

)
= −∞

Figure 4.12 shows that welfare is linear increasing in −π, no matter who is
awarded the good3.

3In the case of non-antisocial utilities, two dashed horizontal lines at va and vb denote
“regular” social welfare. It can be clearly seen that, no matter how π is set, awarding the
good to B is the social-welfare-maximizing outcome in that case.
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Figure 4.12: (Anti-)social welfare

If there were more than two bidders, the figure would include more and
steeper parallel welfare straight lines because the sum of derogation rates
d would be higher. Like in the case of non-antisocial agents (see Proposi-
tion 3.2), social welfare is highest when the good is delivered to the bidder
who values it the most. However, the payments cannot be high enough4. �

An auction that assigns infinitely high payments to bidders is obviously
not individually rational. When introducing individual rationality to the
model, a feasible payment rule can be found.

Lemma 4.2
In an individually rational and social-welfare-maximizing auction with at
least one antisocial agent, the winning bidder has to pay his private value of
the good.

Proof: Assigning payments to losing bidders cannot be individual rational
because participation would always result in less utility (even for antisocial
agents). As a consequence, we can focus on finding the highest possible pay-
ment for the winning bidder that still ensures individual rationality. We will
now prove by complete induction that this optimal payment is the winner’s
private value, independent from all derogation rates.
Induction start: If there is just a single bidder with private value v and dero-
gation rate d, his utility from participating is u = (1−d)(v+π) and his utility

4Even when excluding the seller from the social welfare measurement, payments are
infinitely high if

∑n
i=1 di > 1.



4.3. ANTISOCIAL AGENTS 73

when not participating is zero. Thus, participation is individual rational as
long as −π ≤ v. In order to maximize social welfare, the payment needs to
be as high as possible, i.e. π = −v.
Induction step: Let us assume that in an auction with n bidders, the winning
bidder has to pay his private value (π′ = −v′). When introducing an addi-
tional highest bid, the corresponding bidder’s utility from not participating
is ū = −d(v′+π′) = 0 and his utility from participating is u = (1−d)(v+π),
which, as above, implies that π = −v in order to maximize social welfare. �

Concluding, the auction mechanism has to assign a payment to the win-
ning bidder that equals his private value in order to implement the desired
social choice function. Interestingly, the specific derogation rates are irrele-
vant as long as d > 0. The highest private value can only be known to the
mechanism infrastructure if truth-telling would be an equilibrium strategy
in 1st-price sealed-bid auctions. However, we have seen in Chapter 3 (see
Proposition 3.3 and Theorem 3.4) that this is not the case. �
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Chapter 5

Security and Partial Revelation

Sealed-bid auctions are desirable auction mechanisms in many areas because
they require just a single round of bidding, and thus save bandwidth and
time. The main advantage of sealed-bid auctions, however, is the protection
of participants’ preferences. Depending on the application, these preferences
can be extremely sensitive information, e.g. valuations in large-scale B2B
auctions or prime costs in procurement reverse auctions. Privacy is of par-
ticular importance in auctions with software agents. As the internationally
recognized economist Hal Varian puts it:

“Hence privacy appears to be a critical problem for ‘computerized
purchasing agents’. This consideration usually does not arise with
purely human participants, since it is generally thought that they
can keep their private values secret. Even if current information
can be safeguarded, records of past behaviour can be extremely
valuable, since historical data can be used to estimate willingness
to pay. What should be the technological and social safeguards
to deal with this problem”? [Var95]

Furthermore, in scenarios where communication between the participants is
not allowed (see Section 2.3.3), sealed-bid auctions prohibit the placing of sig-
nals in public bids. A drawback of open-cry auctions like the English auction
is the possibility of identifying other bidders, especially the highest bidder,
even during the auction process. Members of a bidder collusion can prevent a
non-member from winning. Additionally, colluding agents will perceive when
a bidder breaks their agreement and are thus able to fine or punish this agent.
For these reasons, it can be said that open-cry auctions support bidder collu-
sion [Mea87]. Moreover, in the private-value model, there is no reason to use
open-cry auctions at all (except for transparency) as disclosed bids do not

77
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change bidders’ valuations. E.g., as stated in Section 2.2.3, the English and
the Vickrey auction are strategically equivalent in the private-value model.

The strategy-proof Vickrey auction seems to be the ideal sealed-bid
auction mechanism. However, despite its impressive theoretical proper-
ties, the Vickrey auction is rarely used in practice. It is generally agreed
[RTK90, RH95, San96, San00] that the Vickrey auction’s sparseness is due
to two major reasons:

• the fear of an untruthful auctioneer and

• the reluctance of bidders to reveal their true valuations.

The winner of an auction has to doubt whether the price the auctioneer tells
him to pay actually is the second highest bid. The auctioneer could easily
make up a “second highest” bid to increase his (or the seller’s) revenue (see
Section 4.2)1. William Vickrey himself identified this flaw in the 1961 paper
in which he introduced the Vickrey auction:

“It would be necessary to show the second-best bid to the suc-
cessful top bidder so that he would be able to assure himself that
the price he is being asked to pay is based upon a bona fide bid.
To prevent the use of a ‘shill’ to jack the price up by putting in a
late bid just under the top bid, it would probably be desirable to
have all bids delivered to and certified by a trustworthy holder,
who would then deliver all bids simultaneously to the seller. [. . . ]
If corruption of this order cannot be prevented, then this would
constitute a serious disadvantage of the second-price method”.
[Vic61]

In addition to a possibly insincere auctioneer, bidders have to reveal their
private values to the auctioneer. There are numerous ways to misuse these
values by giving them away to other bidders or the seller. It remains in the
hands of the auctioneer whether the auction really is a sealed-bid auction.
Revelation of bids can be disastrous due to its possible relevance for subse-
quent negotiations and because criminal sellers or antisocial bidders might
use this information, even in the very same auction, in order to increase their
utility. In other words, the downside of the existence of a dominant strategy

1Even in 1st-price sealed-bid auctions, an untruthful auctioneer could manipulate the
auction outcome by determining a winner that did not submit the highest bid. However,
since auctioneers usually receive a fraction of the selling price and because this behaviour
can be prevented by publicly announcing the selling price, this type of fraud is less signif-
icant.
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that urges bidders to submit their values truthfully is the fact that a single
instance, the auctioneer, receives all these private values2.

There are various ways how value information can be used strategically.
We distinguish the following types of collusive agreements (as depicted in
Figure 5.1, the auctioneer is treated like a mediator between bidders and the
seller).

• auctioneer/seller (A/S)

• auctioneer/bidder(s) (A/B)

• bidder/bidder (B/B)

B/B collusion can be seen as the most common type of collusion. As the
English auction, the Vickrey auction is in particular vulnerable to B/B col-
lusions, i.e., agents that team up to eliminate rivalry, resulting in lower selling
prices (see Section 4.1.3).

A classic example of A/S collusion is an auctioneer that overstates the
second highest bid to increase the seller’s revenue. Another example is an
auctioneer that declares a non-existent winning bidder due to too low bids.

An often neglected form of collusion is A/B collusion, e.g., an auctioneer
that collaborates with the winning bidder and therefore intends to under-
state the selling price, or an auctioneer that sells private values to antisocial
bidders. Collusions involving the auctioneer (A/S and A/B) are of particular
interest in the context of information privacy because they allow agents to
receive sensitive information from the auctioneer.

Concluding, in sealed-bid auctions, bidders have to trust the auctioneer
that their bids are treated confidentially and all participants (bidders and
seller) have to rely on the auctioneer selecting the correct outcome (see Fig-
ure 5.1).

In the remainder of this thesis, we will focus on the development of proto-
cols that compute auction outcomes (primarily from Vickrey auctions) with-
out revealing unnecessary information. More than four decades ago, William
Vickrey roughly described a mechanical apparatus that fulfills this task. He
used a machine applied for Dutch flower auctions as a starting point.

“As presently practiced, speed is achieved by having a motor-
driven pointer or register started downward from a prohibitively
high price by the auctioneer; each bidder may at any time press

2In 1st-price sealed-bid auctions, there is a similar problem. However, it is less sig-
nificant as bids are not equal to private values. Counter-speculation leads to strategic
bidding.
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Figure 5.1: Trust centralization in traditional sealed-bid auctions

a button which will, if no other button has been pushed before,
stop the register, thus indicating the selling price, flash a signal
indicating the identity of the successful bidder, and disconnect
all other buttons, preventing any further signals from being acti-
vated. There would be no particular difficulty in modifying the
apparatus so that the first button pushed would merely preselect
the signal to be flashed, but there would be no overt indication
until the second button is pushed, whereupon the register would
stop, indicating the price, and the signal would flash, indicating
the purchaser [. . . ] An even more rapid procedure could be de-
veloped, with relatively little increase in the apparatus required,
if each bidder were provided with a set of dials or switches which
could be set to any desired bid, with the electronic or relay ap-
paratus arranged to search out the two top bids and indicate the
person making the top bid and the amount of the second bid”.
[Vic61]

Obviously, such a machine is only trustworthy if one trusts the manufacturer.
Even when it is possible to assure oneself of the correctness of the machine
before the auction, it might secretly be modified after that. The same holds
for software programs or auctioneer agents. Cryptography is an indispensable
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tool to provide provable security.

5.1 Related Work

There has been a very fast-growing interest in cryptographic protocols for
auctions during the last years. In particular, Vickrey auctions and recently
the more general (M + 1)st-price auctions attracted much attention. Start-
ing with the work by Nurmi and Salomaa [NS93] and Franklin and Reiter
[FR96], which introduced the basic problems of sealed-bid auctions, but dis-
regarded the privacy of bids after the auction is finished, many secure auction
mechanisms have been proposed, e.g. [AS02a, AS02b, BS01, Cac99, HTK98,
JJ00, JS02, Kik01, KHT98, HKI03, KHAN00, Kud98, KO02, LAN02, NPS99,
Sak00, SM99, SM00a, SM00b, SA99, VBD00, WI00].

When taking away all the protocols that (in their current form) are only
suitable for the secure execution of first-price auctions or reveal (partial)
information after the auction is finished [FR96, AS02b, JJ00, Kud98, NS93,
Sak00, SM99, SM00a, SA99, VBD00, WI00], the remaining work can be
divided into two categories.

Most of the publications rely on threshold computation that is dis-
tributed among auctioneers [HKI03, HTK98, Kik01, KHT98, KHAN00,
KO02, SM00b]. This technique requires several auctioneers, out of which
a fraction (mostly a majority) must be trustworthy (see Section 6.8.4). Bid-
ders send shares of their bids to each auctioneer. The auctioneers jointly
compute the selling price without ever knowing a single bid. This is achieved
by using techniques like verifiable secret sharing and secure multiparty func-
tion evaluation (see Chapter 6). However, a collusion of, e.g., three out of
five auctioneer servers can already exploit the bidders’ trust. We argue that
distributing the trust onto several distinct auctioneers does not solve the pri-
vacy problem, because you can never rule out that some of them, or even all
of them, collude.

The remaining auction protocols prune the auctioneer’s ability to forge
the auction outcome and reveal confidential information by introducing a
new third-party that is not fully trusted (see Sections 6.8.1, 6.8.3, and 6.8.6).
However, all of these approaches make weak assumptions about the trust-
worthiness of this third-party. In [BS01, Cac99] the third-party may not
collude with any participating bidder; in [AS02a, LAN02, NPS99, JS02] it is
prohibited that the third-party and the auctioneer collude.

Concluding, all present work on secure auction protocols more or less
relies on the exclusion of third-party collusion, may it be auctioneers or other
semi-trusted institutions. Additionally, many of the existing schemes publicly



82 CHAPTER 5. SECURITY AND PARTIAL REVELATION

announce the winner’s identity and all of them publicly declare the selling
price rather than making this information only visible to the seller and the
winners.

5.2 Auctions without Auctioneers

As stated at the beginning of this chapter, the Vickrey (and other sealed-
bid) auctions suffer from the possibility of an untruthful auctioneer and the
reluctance of bidders to reveal private information. It would be nice to have
an auction protocol in which it is impossible for the auctioneer to cheat and
that only reveals the Vickrey auction outcome, but no additional information.
Thus, the two main demands for such a protocol are privacy of information
and correctness of the outcome:

Privacy It is required that no information concerning bids and the cor-
responding bidders’ identities is revealed. The only information that
naturally has to be delivered is the information that is needed to carry
out the transaction, i.e.,

• the winning bidder and the seller learn the selling price, and

• the seller gets to know the winner’s identity.

As [SM00a] pointed out, anonymity of the winners is crucial. Otherwise,
a bidder that breaks a collusive agreement could be identified by his
partners, thus strengthening the power of collusions. It is important
to note that privacy, as defined here, includes that bids can never be
revealed, even after the auction is finished3.

Correctness Obviously, the winner and the selling price should be deter-
mined correctly. This requirement includes non-repudiation (a winning
bidder cannot deny having made the highest bid) and robustness (no
subset of malicious bidders can render the auction outcome invalid).
Correctness is usually obtained by making the outcome publicly verifi-
able.

Privacy and correctness have to be ensured in a hostile environment as we
allow every feasible type of collusion categorized at the beginning of this
chapter. We assume that up to n − 1 bidders might share their knowledge

3In [AS02b], it is even prohibited that bidders can prove to others how much they
bid (receipt-freeness). We do not demand receipt-freeness because it requires untappable
channels, which are hard to provide in reality.
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and act as a team. This implies that each bidder can have arbitrarily many
bidder sub-agents, controlled by him. Besides, the seller might collude with
bidders, and any number of auctioneers or other third-parties might collude
and are therefore not trustworthy. We furthermore assume that there are
private communication channels and a public broadcast channel (that we
will refer to as a “blackboard”). Both can be provided if one-way functions
exist (see Section 6.1.1 and Appendix A.1).

As auctioneers and other third-parties cannot be trusted, we completely
omit them and leave the determination of the outcome to bidders themselves.
Auction protocols without auctioneers are called bidder-resolved in the fol-
lowing. All auction protocols described in this thesis have in common that
the auction process is divided into two parts. In the initial phase, bidders
publish their somehow encrypted bids (or bid shares) on a blackboard. No-
body is capable of opening a bid without the bidder’s help. This phase ends
at some pre-determined time and it is impossible to alter existing or add
new bids after that deadline. Bidders are committed to their submitted bids.
They are not able to decrypt them to anything else than the original value.
In the protocols of the following section, the auction outcome is determined
by partial decryption of bids.

5.3 Partial Revelation Protocols

Given the two-phase procedure of the previous section, nobody is able to
manipulate the outcome of an auction by submitting or changing bids after
learning about others’ bids. What remains to be done is to determine the
outcome of the auction without revealing unnecessary information. The tech-
niques presented in this section identify the selling-price by partially opening
bids. They are designed to reveal as little information as possible.

Partial revelation is achieved by the iterative opening of binary bid
vectors. After having agreed on a public vector of k possible bids ~p =
(p1, p2 . . . pk), each bidder submits a bid vector (bi1, bi2, . . . , bik) that con-
sists of commitments to k binary values denoting whether he is willing to
pay a given price or not. For example, when ~p = (10, 20, 30, 40, 50), private
value 30 is encoded to the bid vector (C(1), C(1), C(1), C(0), C(0)), where
C(b) denotes a commitment to bit b. The commitment to bids requires a
cryptographic primitive called “bit commitment” (see Appendix A.2).

The bid vectors are put together to form the so-called bid matrix (see
Table 5.1) and are published on a blackboard. Given this matrix, the goal
is to find an opening sequence that rapidly locates the second highest bid by
revealing as little information as possible.
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Bidder 1 Bidder 2 . . . Bidder n

pk C(b1k) C(b2k) . . . C(bnk)

pk−1 C(b1,k−1) C(b2,k−1) . . . C(bn,k−1)
...

...
...

. . .
...

p1 C(b11) C(b21) . . . C(bn1)

Table 5.1: Bid matrix

The minimal set of bits that proves the position of the second highest
bid and reveals no additional information is called the set of essential bits
E. This set can be used to prove the auction outcome to outsiders (non-
bidders) after the second highest bid py has been found at position (x, y) (In
the case of equal winning bids, (x′, y) denotes another “second-highest” bid.
Otherwise, x′ = x).

E = {bxy} ∪ {bx′y} ∪ {bi,min(y+1,k) | i ∈ {1, 2 . . . n}}

Figure 5.2 shows an example bid matrix (n = 10, k = 15, p1 = 5, p2 =
10 . . . p15 = 75) and the set of essential bits.

The restriction to a finite set of possible bids (or prices) ~p rather than
real-numbered bids is not necessarily a limitation since all intervals treated
by digital computers are discrete in the end. Additionally, the differences of
consecutive bid prices do not have to be equal: Logarithmic scales are possible
for example. In a more abstract setting, possible bid prices do not have to
be numbers at all. They can be arbitrary objects that are linearly ordered.
On the other hand, bid vectors obviously contain redundant information and
require linear instead of logarithmic space.

In the following sections, we propose three different search procedures
that locate and return the second highest bid. The framework for these
procedures is given as follows:

• Phase 1: Each bidder i publishes his bid vector consisting of k com-
mitted bits.

— Bid submission deadline —

• Phase 2: The following step is repeated until the second highest bid is
uncovered and (if desired) until all essential bits (E) have been opened.

– Bidder i opens his commitment to bit C(bij) (i and j are yielded
by one of the algorithms in the subsequent sections).
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Figure 5.2: Essential bits

If he fails to fulfill this task in time, a default bid is used and
bidder i is fined, if necessary.

• The seller and the winning bidder get in contact and initiate the trans-
action.

We assume that bidders’ indices are randomized to avoid complex random-
ization in the algorithms.

5.3.1 Downward Bid Search (dbs)

A straightforward method to open bits is to start at the highest price and
open each row of bids downwards until at least two bidders are willing to pay
a given price. This is similar to the second-price Dutch (descending) auction
described on page 79.

The following algorithm fulfills this task. The algorithm is decomposed
into two separate procedures (dbs and dbs2) because we will reuse the sec-
ond procedure for the binary search technique in Section 5.3.3. Opened bit
commitments are denoted by numbered frames in the example bid matrix in
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Figure 5.3, thus illustrating the opening sequence. The search begins in the
upper left corner of the bid matrix by evaluating dbs(1,k).

procedure int dbs(i, j)
while j > 0 do

for n times do
if bij = true then

return dbs2(i, j, {i})
end if
i = i + 1
if i > n then i = 1 endif

end for
j = j − 1

end while

procedure int dbs2(i, j, F )
while j > 0 do

for n times do
if i /∈ F ∧ bij = true then

return j
end if
i = i + 1
if i > n then i = 1 endif

end for
j = j − 1

end while
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Figure 5.3: Downward bid search (dbs)

The maximal number of bits to open (and thus the round complexity) is
O(nk). After the opening process, the bidders know just two out of n bids
(the highest and the mandatory second highest) and have no information on
other bids. Although, revealing only one private value may seem a fairly
good result, a disadvantage of this procedure is that the highest bid usually
requires the highest secrecy of all bids in real auctions.
Once the highest bid is revealed, the remaining bidders can falsify the selling
price by refusing to open their commitment. It is therefore necessary to
assign the default bit 1. As the deliberate refusal of opening a price setting
commitment is in an antisocial bidder’s interest, such a bidder should be
fined appropriately, e.g. by paying pj for not opening C(bij).
Bidders cannot take advantage of submitting inconsistent bid vectors, i.e.,
vectors that do not represent a private value like (1, 0, 1, 0, 0), as only the
first occurrence of a set bit counts.
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5.3.2 Upward Bid Search (ubs)

The following algorithm avoids the revelation of the highest bid by opening
low bids first. When searching upwards, one can skip to the next higher row
when at least one bidder is willing to pay at a given price. This must not
be triggered by the same bidder for two times consecutively. ubs’s searching
technique resembles an English auction (Figure 5.4). The search starts in
the lower left corner of the bid matrix (ubs(1,1)).

procedure int ubs(i, j)
F = ∅
while j ≤ k do

p = 0
F ′ = ∅
for n− 1 times do

if i /∈F then
if bij = true then p = 1
else F ′ = F ′ ∪ i endif

end if
i = i + 1
if i > n then i = 1 endif
if p = 1 then break endif

end for
if p = 0 then break endif
j = j + 1
i′ = i
F = F ∪F ′

end while
i = i′

for n− 1 times do
if i /∈F ∧ bi,j−1 = true then

return j − 1
end if
i = i + 1
if i > n then i = 1 endif

end for
return j − 2
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Figure 5.4: Upward bid search (ubs)

This algorithm is significantly faster than dbs. O(n + k) rounds are re-
quired to determine the second highest bid. Bidders learn partial information
about losing bids and no information at all about the highest bid. Informa-
tion about losing bids becomes more and more precise the higher the bids
are. The lowest bid can be narrowed down to be in a set of at most n values.
The third highest bid is barely hidden after ubs has been executed: it has to
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be one out of two possible values.
The default bit 0 should be assigned to commitments that cannot be opened.
It is usually not required to fine such uncooperative bidders as bidders re-
fusing to open their commitment lose the chance of winning the auction.
However, a winning bidder is able to repudiate his bid by denying to open a
commitment.
Another undesirable effect is that bidders can make their bids conditional on
other participants’ bids by submitting inconsistent vectors. E.g., bidder 2 in
Figure 5.4 can make his bid conditional on bidder 1’s bid by submitting bid
vector (0, 1, 1, 1, 1, 0, 0, . . . , 0). If bid 1 is greater than 5, bidder 2 bids 25.
Otherwise, his bid is 0.

5.3.3 Binary Bid Search (bbs)

Like standard binary search, bbs begins in the middle of an interval by open-
ing consecutive bids. After two set bits have been found, the row is finished
and bbs is called recursively for the upper half of the interval. If, after having
opened all bits in a row, none of them is 1, the search is continued recursively
in the lower half. If exactly one set bid is found, dbs2 is called from this point.
dbs2 reveals no additional information, except the required second highest
bid. The search is initiated by executing bbs(1,1,k,∅).

This method is a compromise between both previous techniques. Be-
cause this algorithm uses dbs2 to determine the second highest bid, it has
the same worst-case round complexity as dbs (yet, the average round com-
plexity is lower). Applying binary search until the end would reduce the
number of opened bits to O(n log(k)), but this could reveal more informa-
tion than needed. The search time can be further decreased by starting at
the expected value of the second highest bid instead of the middle of the
bid interval. bbs is somewhat similar to the consecutive opening of bits in
standard binary radix representations of bids, but it has the advantage of
uncovering less information.
Default bit 0 should be assigned in procedure bbs and default bit 1 in proce-
dure dbs2. Like in the previous protocol ubs, the submission of inconsistent
bid vectors allows bidders to make their bids conditional on other bids.

5.3.4 Analysis

The three suggested search techniques clearly illustrate the equivalence of
Vickrey, 2nd-price Dutch and English auctions in the private-value model. In
addition, the binary search procedure is a novel method to locate the second
highest bid. All protocols need more than n rounds because at least one
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procedure int bbs(i, a, z, F )
j = a + b z−a

2 c
p = 0
F ′ = ∅
for n times do

if i /∈F then
if bij = true then p = p + 1
else F ′ = F ′ ∪ i endif

end if
if p = 2 then break endif
i = i + 1
if i > n then i = 1 endif

end for
if p = 2 then return bbs(i, j, z, F ∪ F ′)
endif
if p = 0 then return bbs(i, a, j, F )
else return dbs2(i, j + 1, F ∪ i) endif
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Figure 5.5: Binary bid search (bbs)

bit of each bidder has to be opened. The computational complexity is O(k)
per bidder. When accepting more information revelation, the computational
complexity can be reduced to O(log k) by using radix representations of bids.

Correctness

If all bidders behave correctly, the protocols yield the correct Vickrey auc-
tion outcome. If participants refuse to open a requested commitment, the
outcome is altered. Fines are used to establish an incentive to follow the
protocol. Clearly, fines can only be imposed when it is possible to somehow
prosecute bidders. As a consequence, bidders can not be anonymous and a
legal institution is required. In theory, computationally unbounded bidders
are able to arbitrarily change their commitments (see Appendix A.2) during
the protocol without being detected. However, it is impossible to alter other
bids, regardless of computational power. The construction of inconsistent
bid vectors allows malicious bidders to submit bids that depend on other
participants’ bids (in a limited way). Some form of robustness is guaran-
teed as malicious agents can be removed from the set of bidders without any
problems.
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Privacy

All three proposed protocols uncover partial information about bids. In fact,
some information is uncovered on every bid in all of the protocols. Roughly
speaking, the closer a bid is to the desired second highest bid, the more precise
is the revealed information. E.g., dbs completely uncovers the highest bid,
and ubs almost completely uncovers the third highest bid. Besides the partial
revelation, bids are unconditionally secure (see Appendix A.2).

It lies in the nature of partial revelation protocols that bidders are able
to quit a protocol after having learned information. As this behaviour can
only be confined by assigning penalties to uncooperative bidders which in
turn is not possible in many cases, the protocols of the following chapter do
not disclose any information before the protocol is finished.



Chapter 6

Cryptographic Protocols

In this chapter, sophisticated cryptographic techniques like secret sharing and
secure multiparty computation (MPC) will be applied to enable the secret
execution of auctions. Beyond the limited scope of auctions, we establish a
general link between the fields of mechanism design and MPC by specifying
conditions that allow the secret execution of mechanisms without any trusted
parties. Unfortunately, existing generic MPC protocols are extremely ineffi-
cient. Therefore, the focus of this chapter lies in the construction of efficient
special purpose auction protocols. Our main goal is to construct an efficient
Vickrey auction protocol.

The first two proposed protocols, B-share and MB-share, introduce
how MPC that is distributed on bidders can be used for the private execu-
tion of 1st-price sealed-bid auctions. These plain protocols are not optimal
but easy to comprehend and analyze. We then approach the more relevant
and difficult problem of designing a protocol that privately computes the
outcome of Vickrey, i.e. 2nd-price, auctions. The Vickrey auction protocol
YMB-share satisfies our demand for “full privacy”, i.e., privacy is guaran-
teed despite any collusion of participants. However, all protocols mentioned
so far lack a satisfying level of robustness.

vMB-share and vX-share (“v” stands for “verifiable”) provide ro-
bustness by making the correctness of each protocol step universally ver-
ifiable. Moreover, the most advanced protocol, vX-share, just needs a
constant number of rounds. Round complexity is one of the most impor-
tant complexity measures in distributed protocols as interaction over com-
puter network connections is usually the most time-consuming operation (see
e.g. [GIKR01]). We therefore intend to minimize the number of rounds rather
than computational complexity.

91
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6.1 Secure Multiparty Computation

Secure multiparty computation (MPC) [CD02, FGY92, Cra00] deals
with protocols that allow n parties to jointly compute a function
f(x1, x2, . . . , xn) = (y1, y2, . . . , yn) on their individual private inputs xi, so
that agent i only learns yi but nothing else. A classic example is the so-called
“millionaires’ problem” [Yao86] in which two millionaires want to determine
who is richer without revealing their wealth.

The common model defines passive adversaries (or “eavesdropping adver-
saries”) as agents that follow the protocol but try to derive additional infor-
mation. Active adversaries, on the other hand, try to violate privacy and
correctness by any means including the sending of faulty messages. Further-
more, there are two basic security models: computational and unconditional
security. The security of computational protocols is based on complexity
assumptions, i.e., they are only safe against computationally polynomially
bounded adversaries1. Unconditional (or information-theoretic) protocols,
on the other hand, provide perfect security given that agents can communi-
cate via private channels. In other words, the input of unconditional secure
protocols can never be revealed, whereas inputs of computationally secure
can be revealed, but the revelation requires computing power that should not
be available for decades, centuries, or even longer2.

Typically, secure MPC is accomplished by having each agent distribute
shares of his individual input to the other participants. This has to be carried
out in conjunction with a commitment scheme, so that agents can verify the
consistency of shares. This primitive is called verifiable secret sharing . In the
following, the participants verifiably evaluate a Boolean circuit representing
function f(·) with their shares as inputs and new shares as outputs. When
the evaluation of the circuit is finished, agents broadcast their resulting shares
and reconstruct the final result. In the following, we will call such an MPC
scheme “protocol”.

Table 6.1 shows the classic results of proven bounds of adversaries tol-
erable in general secure multiparty computation3. The table entries denote
how many adversaries of a given kind are tolerable at most. The results for

1All practical encryption techniques, symmetric and asymmetric, belong to this cate-
gory.

2Clearly, this requires technological assumptions and complexity theory (see Ap-
pendix A.1). However, if an algorithm’s running time is exponential, the problem is said to
be “intractable”. “Performing the exponential algorithm is futile, no matter how well you
extrapolate computing power, parallel processing, or contact with superintelligent aliens”.
([Sch96], page 239)

3bn−1
2 c active adversaries are tolerable in the unconditional case when allowing non-zero

error probability and a broadcast channel.
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the computational case have been proposed in [GMW87]. The bounds for
unconditional adversaries have been found simultaneously by [BGW88] and
[CCD88].

Adversary polynomially bounded unbounded

passive n− 1 bn−1
2
c

active bn−1
2
c bn−1

3
c

Table 6.1: General secure multiparty computation bounds

A protocol is called “t-private” if a collusion of up to t agents is incapable
of revealing private information. For example, according to Table 6.1, MPC
that is secure against active, bounded adversaries can be at most bn−1

2
c-

private. As we want to distribute the emulation of a mechanism on the
participants themselves, only (n− 1)-privacy is acceptable.

Definition 6.1 (Full privacy)
A protocol is fully private if a coalition of n − 1 participants can not reveal
the input of the remaining agent.

Clearly, this is the highest bound possible since in the case of n colluding
agents, there would be nobody left to spy on.

6.1.1 Unconditional MPC

Let us first consider unconditional multiparty computation and its applicabil-
ity to secure mechanism design. Without making any assumptions, verifiable
secret sharing can only be accomplished when more than one third of the
participants are honest. Furthermore, it has been proven that the secure
computation of essential Boolean gates like or and and in the unconditional
model can only be achieved when a minority of (passive) adversaries are able
to pool their knowledge [BGW88]. Broadcasting , i.e. sending one message
to all other agents, is not generally possible (without a trusted third-party)
because it has to be guaranteed that all agents receive the same message.
It has been shown in [LSP82] that reliable broadcasting can be achieved in
the presence of at most bn−1

3
c (active) adversaries in the unconditional case.

Finally, agents that quit the protocol in progress render it impossible to com-
plete the computation of f(·) in their absence. This is a particular problem
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in the final stage of a protocol as share revelation cannot be synchronized
without a trusted party. As a consequence, a bidder is able to construct the
result by using the shares that have been published so far and then decide not
to release his share, thus leaving the other agent uninformed about the result.
If a majority of participants are assumed to be cooperating, shares can be
distributed in a way that allows any majority of agents to reconstruct the
original values. This ensures robustness as no minority quitting the protocol
can prevent the correct execution of the protocol.

Definition 6.2 (Robustness)
A protocol is (strongly) robust if the correct computation of function
f(x1, x2, . . . , xn) with private inputs x1, x2, . . . , xn can be completed even
when participants quit during the protocol.

Robustness obviously implies the critical property of fairness.

Definition 6.3 (Fairness)
A protocol is fair if no agent can learn yi and then prevent the other partic-
ipants from learning y1, y2, . . . , yi−1, yi+1, yi+2, . . . , yn.

Concluding, unconditionally secure MPC is possible if there are not more
than bn−1

3
c active adversaries (see Table 6.1). Recapitulating, the reasons for

thresholds in unconditional multiparty computation are:

1. Robustness, threshold: n
2

2. Feasibility of secure broadcasting, threshold: n
3

3. Feasibility of verifiable secret sharing, threshold: n
3

(n
2

with error probability and broadcast channel)

4. Feasibility of secure or, threshold: n
2

(even with only passive adversaries)

Any threshold of trusted participants is unacceptable when requiring full
privacy. However, it might be possible to make weak assumptions that al-
low unconditional secure MPC without thresholds. In the following, we will
analyze each of the above thresholds with respect to this aspect.
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Robustness

First of all, robustness against active adversaries in MPC is defined to allow
correct completion of the computation even if active adversaries do not follow
the protocol. Even when bn−1

2
c cheaters were forced to quit the protocol,

there are enough agents left (i.e. a majority) to compute f(x1, x2, . . . , xn),
including the inputs of malicious participants.

When presuming that active adversaries can be “kicked out”, including
their inputs, this leads to a weaker notion of robustness.

Definition 6.4 (Weak robustness)
A protocol is weakly robust if the correct computation of a function f(X)
of inputs supplied by non-adversaries X ⊆ {x1, x2, . . . , xn} can always be
completed.

Of course, this only makes sense if f(·) is defined for any number of
inputs up to n. A weakly robust protocol then terminates after at most n−1
protocol runs. If participation in a mechanism is voluntary, the outcome
function g(s1, s2, . . . , sn) of a mechanism is defined for an arbitrary number
of inputs n. To give an example, function f(·) can be the outcome function
of a Vickrey auction, i.e. a function that computes the identity of the highest
bidder and the amount of the second highest bid given the individual bids
as inputs. Clearly, this function is defined for any number of inputs greater
than one.

Public verifiability of the protocol is sufficient to provide weak robustness.
Unfortunately, when abandoning strong robustness, we also lose fairness. In
the end of a protocol run, each participant holds a share of the result. As si-
multaneous publication of these shares is impossible, a malicious agent might
quit the protocol after having learned the result but before others were able
to learn it. There are various techniques to approximate fairness by gradu-
ally releasing parts of the secrets to be swapped (see e.g. [Yao82]). Another
possibility is to introduce a third-party that publishes the outcome after it
received all shares. This third-party does not learn confidential information.
It is only assumed not to leave the protocol prematurely. We will see that in
auctions with a single seller, it is practical to assign this role to the seller4.

4This obviously leaves the possibility of a “cheating seller” who quits the protocol after
having learned the (possibly unsatisfying) result. However, such a seller could be forced to
sell the good for the resulting price as bidders can compute the auction outcome on their
own (or with another fairness-providing third-party).
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Broadcasting

Providing a secure broadcast channel eliminates the second threshold. This
is not a significant restriction. In fact, a broadcast channel is required in
many security models. The Internet, especially the world-wide web, can be
used very well as a broadcast channel. There is no absolute guarantee that
all viewers see the same web page. However, it would be very hard for a
content provider to deliberately change content for specific viewers due to
the quasi-anonymity of viewers.

Verifiable Secret Sharing

As we will see in Section 6.6.1, without a threshold, verifiable secret sharing
can only provide unconditional security of either the shares’ correctness or
the secret, but not both. The latter seems much more practical since it
means that the individuals’ preferences can never be revealed. A malicious
agent, however, can manipulate the protocol by applying super-polynomial
computational power during the protocol. Given that protocol run times
are between a few seconds and some hours in practice, this restriction seems
acceptable.

Secure or

The impossibility of securely evaluating or (and and) gates cannot be re-
moved without restricting the participants’ abilities5 (either memory-wise or
computational, see [CD02]). A complete characterization of functions that
can be computed in the unconditional model without loss of privacy has been
given in [Kus89]. Unfortunately, the maximum function, which is needed for
auctions as well as other mechanisms, does not belong to this set. This can
easily be seen by the fact that the maximum function for two one-bit inputs
is equal to the or-function.

Proposition 6.1 (Unconditional mechanism emulation)
It is impossible to emulate arbitrary mechanisms by fully private protocols
in the unconditional model, even when assuming weak robustness, provid-
ing a broadcast channel, and accepting the possibility of manipulation by
computationally unbounded cheaters.

5A noisy communications channel can also enable secure or-gates, but this is of rather
theoretical interest.
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Proof: The following proof shows the impossibility of computing the or of
two bits without loss of privacy6. We therefore assume that two agents, A
and B, intend to privately compute a mechanism outcome that is defined as
the or of their individual preference bits: b = ba ∨ bb.

Without loss of generality, we assume that the computation protocol is
of the following form. Each of the agents knows his private input bit bi

(i ∈ {a, b}) and a chosen private random bit string ri of appropriate length.
The entire protocol is uniquely determined by these initial choices. A starts
the protocol by sending message ma1. B replies by sending mb1 and so forth
until A finally sends b = ba ∨ bb to B. The transcript of this conversation is
called T = (ma1, mb1, ma2, mb2, . . . ,mat, mbt, b).

If one of the agents’ input bits is 0, the corresponding agent can easily
figure out the other agent’s input bit due to the nature of the or function:
the other’s bit must be equal to the result b. We will now describe how A
can determine bb, even when ba = 1, thus making it possible to always reveal
the other agent’s input bit.

1. A selects ba = 1 and a random bit string ra.

2. A and B execute the protocol, resulting in transcript T =
(ma1, mb1, ma2, mb2, . . . ,mat, mbt, b) (known to both parties).

3. If bb = 1, B does not learn anything about A’s input bit. As a con-
sequence, it must be possible to generate the very same transcript for
the case that ba = 0.
A now tries every possible setting of ra to find a combination of ra and
ba = 0 that leads to his original first message ma1. This would result
in B sending mb1. If his next message would not be ma2, he continues
searching for an appropriate ra until he has found a tuple (ba = 0, ra)
that would yield transcript T . If he finds such an initial random value,
bb = 1. Otherwise, bb = 0.

It follows that the and of two bits and all somewhat complex functions
cannot be computed privately in the unconditional model. The unbounded
abilities of A are essential for the proof as a computationally bounded agent
certainly cannot try out all settings of ra if the bit string has a certain length.
�

Please note that like the impossibility of strategy-proof implementations
for general preferences in the Gibbard-Satterthwaite Theorem (Theorem 3.2),

6The proof basically consists of an argument described in [BGW88].
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Proposition 6.1 only states the impossibility of a general mapping from mech-
anisms to protocols, i.e., there are (many) mechanisms that cannot be emu-
lated by a fully private protocol. However, there are some primitive mecha-
nisms that can be emulated under the assumptions of Proposition 6.1, e.g.,
the sum of n input values can be computed fully privately and weakly ro-
bustly in the unconditional model if we accept the (theoretical) possibility
of manipulations by computationally unbounded participants and provide a
broadcast channel. This is possible because some MPC protocols work on
finite rings instead on binary values. In these arithmetic protocols, additions
(and thus xor and not gates) are feasible while multiplication of shares is
impossible without a trusted threshold assumption (multiplication could be
used to build or and and gates).

As unconditional protocols require private channels, there is a problem
of message disputes: A participant who did not send a message may claim
that he did, while on the other hand, a participant may state that he did
not receive a message that he in fact received. It is reasonable to isolate
this conflict at the beginning of the protocol by applying the following pro-
cedure [CGS97]. The two parties agree on a symmetric, unconditional secure
encryption key K, i.e. a one-time pad, and an information-theoretic secure
commitment to this key, and broadcast a signed copy of the commitment. If
both published commitments are equal, the two parties can henceforth com-
municate by broadcasting messages encrypted with the private key K. If the
commitments are different, the dispute has to be resolved before the protocol
itself begins.

6.1.2 Computational MPC

When allowing intractability assumptions, most of the reasons why uncondi-
tional MPC is impossible can be removed. The classic results are based on
the existence of trapdoor one-way permutations7 like the problem of factor-
ing large composite numbers, or the decisional Diffie-Hellman problem (see
Appendix A.1).

Proposition 6.2 (Computational mechanism emulation)
Any mechanism can be emulated by a fully private, weakly robust protocol
in the computational model.

7All the assumptions needed in the computational model can be reduced to the existence
of “oblivious transfer” which can be achieved by noisy channels, trapdoor functions, or
quantum channels (see e.g. [Kil88]).
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Proof: It suffices to invalidate the four reasons for threshold trust on page 94.

1. Robustness
We assume that weak robustness (Definition 6.4) is sufficient.

2. Broadcasting
It has been shown in [LSP82] that message signatures are sufficient to
enable secure broadcasting without any trusted threshold assumptions.
There are many signature schemes based on intractability.

3. Verifiable secret sharing
It has been shown in [Ped91] that verifiable secret sharing is possible
without any trusted fraction assumptions in the computational model.

4. Secure or
The construction in the proof of Theorem 6.1 does not work if partici-
pants have limited computational power. The first schemes that allowed
the evaluation of arbitrary Boolean circuits in the computational model
have been given in [GMW87].

�

The naive emulation of a mechanism can be extremely inefficient because
general cryptographic multiparty computation protocols work on single bits
and have excessive complexities. E.g., the general purpose MPC protocol
presented in [CvdGT95] takes O(n2l3D) rounds and has a computational
complexity of O(n2l3C) operations where l is a security parameter, C the
size, and D the depth of the boolean circuit8.

Recently, probabilistic homomorphic encryption has attracted attention
in the context of MPC [CDN01]. It allows more efficient MPC by sharing just
one secret key instead of all input values. The computation can be performed
directly on encrypted values. This results in just O(D) rounds and O(nlC)
sent bits. However, this is currently only possible for factorization based
encryption schemes like Paillier encryption [Pai99]. The joint generation of
secret keys needed for such schemes is quite inefficient [ACS02, BF97, DK01],
especially when requiring full privacy. On the other hand, key generation is
only needed once at the beginning of a protocol and this kind of MPC can
be very effective for large circuits. It would be nice to build an MPC scheme
on a discrete logarithm based encryption technique like ElGamal [ElG85]
because distributed key generation is much simpler in such cryptosystems

8Faster implementations like [GRR98] rely on the assumption that a majority of the
participants is honest.
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[GJKR99]. Concluding, there is yet no efficient general purpose MPC scheme.
We therefore intend to design efficient specialized protocols.

To enable further differentiation of protocol security against active adver-
saries, we introduce non-manipulability.

Definition 6.5 (Non-manipulability)
A protocol is non-manipulable if the malicious behavior of (computationally
bounded) agents can never lead to a valid outcome that is different from the
correct one.

Obviously, all protocols should be at least non-manipulable. This is an
even weaker property than weak robustness. It states that manipulation
by active adversaries will always be detected, but it remains unknown who
prevented the execution of the protocol, making it impossible to execute
the protocol again without those agents like in a weakly robust protocol.
Once commitments are involved in the protocol (and this will be the case in
all of the proposed protocols), unbounded active adversaries can manipulate
the outcome by opening their commitments to a different value than they
committed to.

6.2 Bidder-resolved Auctions

Like in the previous chapter, we argue that no third-party can be trusted
and therefore distribute the trust onto bidders themselves. This allows us
to set a new standard for privacy. In a scenario with multiple auctioneers
(see Section 6.8), it cannot be ruled out that all of them collude. However,
when distributing the computation on n bidders, we can assume that it will
never happen that all bidders share their knowledge due to the competition
between them. If they did, each of them would completely abandon his own
privacy, resulting in a public auction. We therefore argue, that only bidder-
resolved auctions provide full privacy , i.e., no information on any bid can be
retrieved unless all bidders collude. It should be noted however, that bidders
do learn the number of participants. Clearly, this is unavoidable because
bidders have to interact in order to determine the auction outcome.

It is difficult to assure robustness in bidder-resolved auctions. However,
verifiability can be used to provide weak robustness (Definition 6.4), so that
malicious bidders will be detected immediately (without additional commu-
nication and information revelation) and can be excluded from the set of
bidders. The protocol can then be restarted with the remaining bidders
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proving that their bids did not change9. This guarantees termination (after
at most n−M iterations in a (M +1)st-price auction) and correctness (if we
agree that the removal of malicious bidders (and their bids) does not violate
correctness). As malicious bidders can easily be fined in verifiable protocols
and they do not gain any information, there should be no incentive to perturb
the auction and we henceforth assume that a single protocol run suffices.

The naive approach of building a Boolean circuit that computes the auc-
tion outcome on binary representations of bids by applying a general MPC
scheme is not feasible as those schemes are quite inefficient (see Section 6.1.2)
and the circuit depth, and thus the round complexity, depends on the num-
ber of bidders and the bid size. Like in the partial revelation protocols of
the previous chapter, we therefore use a vector of k possible prices (or valu-
ations) ~p = (p1, p2, . . . , pk). This results in linear computational complexity
but enables special purpose protocols that do not require a general MPC
scheme. In fact, the most sophisticated protocol vX-share has constant
round complexity because it only uses additions and no multiplications. For
ease of notation, bi denotes the index of the corresponding bid in the price
vector ~p rather than the bid amount itself. A framework for bidder-resolved
auction protocols could look like this:

• The seller publicly announces the selling of a certain good by publishing

– the good’s description,

– the amount of units to be sold,

– the registration deadline,

– lower and upper bounds of the valuation interval, and

– the bid function, i.e. a function that prescribes how and how many
valuations (p1, p2, . . . , pk) are distributed among that interval sub-
ject to the number of bidders n (allowing linear, logarithmic, or
any other form of scaling)

on a blackboard.

• Interested bidders publish their id’s on the blackboard.

— registration deadline —

• The bidders jointly compute the winners and the selling price.

9This is not mandatory as their should be no reason to strategically change a bid after
a bidder has been excluded (assuming the private-value model).
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6.3 Protocol B-share

Let us consider 1st-price auctions at first. In a 1st-price sealed-bid auction,
each bidder submits a sealed bid and the highest bidder wins the auction
by paying the amount of his bid. Thus, n bidders need to secretly compute
the maximum of n values. There already is a fully private first-price auction
protocol: the Dutch auction (see Section 2.2.4). The auctioneer announces a
decreasing bid from round to round starting with the highest possible price.
The first bidder that stops the auction by expressing his willingness to pay
is awarded the good for the amount of the actual bid. This might take some
time (depending on the number of possible bids), but no information except
the selling price is revealed.

One might wonder if there are more efficient protocols that take less than
k rounds. The following simple protocol B-share (“B” stands for “bid”) only
needs a constant number of rounds to emulate a 1st-price sealed-bid auction.
Bidder i submits k binary values denoting whether he is willing to pay a
given price pj (bij 6= 0) or not (bij = 0). After that, bidders jointly compute
the sum of their submitted numbers for each possible price.

Bj =
n∑

i=1

bij (6.1)

Besides in 〈Zl, +〉, this function could be computed in any other finite Abelian
group, e.g. 〈{0, 1}l,xor〉. Harkavy et al [HTK98] were the first to propose
this kind of protocol. However, they distributed bids on m auctioneers in-
stead on bidders.

In order to protect his bid, each bidder decomposes his bij value into n
addends, so-called additive shares , that are spreaded among the bidders. Due
to the commutativity of addition, the sum of each bidder’s shares is Bj (see
Figure 6.1). The ith additive share of baj is denoted by b+i

aj .

6.3.1 Formal Description

The following protocol steps have to be executed by bidder a. i ∈ [n] and
j, ba ∈ [k]. All calculations take place in the finite Abelian group 〈Zl, +〉 with
neutral element 0.

Create codes

1. Choose Yaj for each j at random and commit to each Yaj.
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Figure 6.1: B-share

Share bids

2. Choose b+i
aj for each j and i, so that

n∑
i=1

b+i
aj =

{
Yaj if j ≤ ba

0 else
.

3. Send b+i
aj for each j to bidder i for each i 6= a.

4. Receive b+a
ij for each i 6= a and j.

5. Publish a commitment to b+a
j =

n∑
i=1

b+a
ij for each j.

6. After all commitments have been revealed, publish b+a
j for each j.

Outcome Determination

7. Compute Bj =
n∑

a=1

b+a
j for each j by using the published b+a

j .

8. If Bj = Yaj for any j, then bidder a won the auction. The selling price
pw for w = min{j|Bj = 0} − 1 is visible to all bidders. The winner can
prove that he won by opening his commitment to Yaw.

Let us illustrate B-share by an example.
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Example: All computations take place in the additive group Z11. There
are three bidders (n = 3) and four possible valuations (k = 4): ~p =
(10, 20, 30, 40). b1 = 1, b2 = 3, and b3 = 1. Each bidder chooses vector
~yi = (Yi1, Yi2, . . . , Yik), (~y1 = (4, 10, 3, 5), ~y2 = (8, 1, 5, 9), ~y3 = (2, 8, 10, 7)),

and commits to it. He then generates his bid vector ~bi = (bi1, bi2, . . . , bik)

according to ~y and bi, and creates a 3-partition of ~bi.

~b1 =


0
0
0
4

 = ~b+1
1 +~b+2

1 +~b+3
1 =


5
1
7
8

+


2
8
6
0

+


4
2
9
7


~b2 =


0
5
1
8

 = ~b+1
2 +~b+2

2 +~b+3
2 =


9
1
2
6

+


3
7
5
3

+


10
8
5

10


~b3 =


0
0
0
2

 = ~b+1
3 +~b+2

3 +~b+3
3 =


4

10
0
3

+


6
8
2
2

+


1
4
9
8


Bidder 1 keeps b+1

1 , sends b+2
1 to bidder 2 and b+3

1 to bidder 3. Bidder 2 and
3 do likewise. Then, each bidder sums up the two shares he received plus the
one that he kept in the first place and publishes the resulting vector.

~b+1 =
n∑

i=1

~b+1
i =


7
1
9
6

 , ~b+2 =
n∑

i=1

~b+2
i =


0
1
2
5

 , ~b+3 =
n∑

i=1

~b+3
i =


4
3
1
3


Each bidder can derive the result by summing up the published vectors.

~B =
n∑

i=1

~bi =
n∑

i=1

~b+i =


0
5
1
3


The selling price 30 (the lowest price at which nobody bid) can be seen by
all bidders. Bidder 2 can tell that he won the auction because the second
and the third component of ~B are equal to the corresponding components of
~y2. He can prove this to the seller by showing that he committed to y2,3 = 5.
The two losing bidders cannot identify the winner or reveal each other’s bid,
when they are acting on their own.
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6.3.2 Analysis

The entire protocol is finished after three rounds (sending the shares and
publishing the sums in two steps) in contrast to the Dutch auction’s execution
time that is linear in k.

Correctness

The publication of intermediate sums (step 6) is “synchronized” by using
some form of commitment to prevent manipulation. Otherwise, the result
could be forged by the bidder who releases his sum at last. As the individ-
ual codes are randomized and unknown to other bidders, the worst that can
happen is that the protocol yields no winner because an active adversary
did not follow the protocol. Yet, well directed manipulation is impossible
in the computational model: the protocol is non-manipulable. There is a
very small probability of failure depending on n and l if two or more bidders
chose the same code for the same price or if several codes add up to zero by
chance, but this is negligible for large l. In fact, the probability of failure can
be reduced exponentially by increasing the code size. Computationally un-
bounded bidders can manipulate the outcome by forging their commitments
(see Appendix A.2).

Generally, B-share fails in the following cases:

• A malicious bidder does not follow the protocol (by sending faulty or
no messages).

• The highest and the second highest bid are equal (tie).

Failure implies that no bidder is able to prove that he won the auction. A
possible solution is to force all bidders to reveal their messages (b+i

aj ) consec-
utively for each j beginning at j = k. This procedure is executed until the
cause of failure is detected. It only reveals the identity of the highest bidder.
Malicious bidders (including bidders that do not participate in the failure
detection) can then be fined. In other words, a Dutch auction with pre-
committed bids (see Section 5.3) is used as a backup solution that obviously
needs a relatively high amount of additional communication rounds.

Privacy

At first glance, B-share is unconditionally (n− 2)-private because it takes
n−1 malicious bidders to reveal the last remaining bid by inverting the com-
putation of Equation 6.1. This is the highest level of privacy possible in the
unconditional model. However, the protocol has a major flaw. The second
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highest bid can be read by the winner of the auction. E.g., in the example
given above, bidder 2 learns that the second highest bid is 10, because the
fourth component of ~B is the first component that does equal his correspond-
ing Y2j-value. More generally, the cth highest bid can be read by a collusion
of the c−1 highest bidders. This flaw will be fixed in the subsequent protocol.

6.4 Protocol MB-share

In order to mask the sums of the previous protocol, they can be multiplied
with shared random multipliers Mj =

∏n
i=1 m×i

j that are not known to any
of the bidders. Like in the previous protocol, each bidder holds a share of
each Mj, only that shares are multiplicative now. A similar solution was pro-
posed in [KHAN00]. However, the implementation in [KHAN00] provides at
most bn−1

2
c-privacy due to an unconditionally secure multiplication technique

[BGW88]. Protocol MB-share, where “M” stands for the shared multiplier,
uses a one-way function and the propagation of values from bidder to bidder
(“ring transfer”) to realize the masking (see Figure 6.2).
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Figure 6.2: MB-share

All calculations take place in a finite multiplicative group. The exponen-
tial (one-way) function ensures privacy of the shared exponents, based on the
intractability of the discrete logarithm problem (see Appendix A.1). Bidders
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jointly compute the following function.

Bj =

(
n∏

i=1

bij

)∏n
i=1 m×i

j

(6.2)

6.4.1 Formal Description

The following protocol has to be executed by bidder a. i ∈ [n] and j, ba ∈ [k].
All calculations take place in the finite multiplicative group Gq. p and q are
primes so that q divides p− 1. Gq is Z∗

p’s unique multiplicative subgroup of
order q (see Appendix A.1 for details). In order to enable ring exponentiation,
we need an ordering on bidders. S(i) returns the successor to bidder i.

S(i) = ((i + 1) mod n) + 1 (6.3)

Create codes /Commit to bid

1. Choose Yaj ∈ Gq and m×a
j ∈ Z∗

q for each j and ra at random.

2. Send a commitment to bid ba to the seller.

Share bids

3. Choose b×i
aj for each j and i, so that

n∏
i=1

b×i
aj =

{
Yaj if j ≤ ba

1 else
.

4. Send b×i
aj for each j to bidder i for each i 6= a.

5. Receive b×a
ij for each i 6= a and j.

Ring exponentiation

6. Compute n−1B
×a
j =

(
n∏

i=1

b×a
ij

)m×a
j

for each j and send them to bidder

S(a).

7. When receiving rB
×i
j , compute r−1B

×i
j = (rB

×i
j )m×a

j . If r > 1, send it

to bidder S(a); else, publish a commitment to B×i
j = 0B

×i
j .

Repeat this step until all bid shares (for each i) have been exponenti-
ated.

8. After all commitments have been revealed, publish B×i
j for each j.
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Outcome determination

9. Compute Bj =
n∏

i=1

B×i
j for each j by using the published B×i

j .

10. The selling price pmin{j|Bj=1}−1 is visible to all bidders. The winning
bidder authenticates to the seller by opening the commitment to his
bid.

6.4.2 Analysis

Ring exponentiation requires n additional rounds, but after all the message
complexity remains O(n). It lies in each bidder’s interest to choose his codes
Yij in Gq as Yij’s with low order might reveal his bid. Ring exponentiation
should be synchronized and subsume messages to identical bidders in order
to minimize the number of messages.

Correctness

Like B-share, MB-share is non-manipulable and has an exponentially
small probability of failure. If there is more than one highest bid, a tie,
the protocol will lead to an invalid outcome. It turns out that the problem
of ties is hard to circumvent in this kind of protocols.

Privacy

The privacy flaw of the previous protocol has been fixed by “masking expo-
nentiations”. Moreover, due to the intractability of the discrete logarithm
problem, protocol MB-share is fully private in the computational model
(apart from publicly declaring the selling price). Similar to B-share, it
takes n − 2 unbounded passive adversaries to reveal all bids. However, the
mentioned flaw of B-share remains for unbounded adversaries: Given super-
polynomial computing power, the c highest bidders can read the (c + 1)-
highest bid.

6.5 Protocol YMB-share

Now, that we have found a technique to acquire the outcome of a 1st-price
auction in a fully private protocol, let us consider the Vickrey auction. The
previous protocol can not be adapted straightforward to 2nd-price auctions
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for several reasons, e.g the highest bid must be protected. Protocol YMB-
share is based on a new approach, where each bidder has two different codes
for each price, denoting whether he is willing to pay at the given price ((Yi)

2:
“yes”) or not (Yi: “no”). Bidders submit shares of their bids Bij that are
either Yi or (Yi)

2 and jointly compute

Bj =

(
n∏

i=1

bij

)∏n
i=1 m×i

j

(6.4)

for each price j. Personalized “keys”

Kij =

(
Yi

n∏
h=1

Yh

)∏n
h=1 m×h

j

(6.5)

are jointly computed for each bidder i and price j, so that in the end only
bidder i knows the value of Kij. By comparing his keys with the published
Bj, a bidder can find out whether he won the auction (see Figure 6.3). In
order to prevent manipulation of keys, each Yi value is jointly created by all
bidders.
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Figure 6.3: YMB-share
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6.5.1 Formal Description

Like in the previous sections, this is the step-by-step protocol specification for
bidder a, taking place in the multiplicative group Gq. i ∈ [n] and j, ba ∈ [k].
The successor function S(i) is defined as in Equation 6.3.

Create shared codes

1. Choose y×a
i ∈ Gq for each i and m×a

j ∈ Z∗
q for each i and j at random.

Compute keys (using ring exponentiation)

2. Compute nK
×a
ij =

(
y×a

i

n∏
h=1

y×a
h

)m×a
j

for each j and i and send them

to bidder S(a).

3. When receiving rK
×h
ij :

If r = 0, set K×h
aj = 0K

×h
ij .

Else, compute r−1K
×h
ij = (rK

×h
ij )m×a

j and send it to bidder S(a) if r > 2

or send a commitment to 0K
×h
ij to bidder i if r = 1.

Repeat this step until all key shares (for each i and h) have been ex-
ponentiated.

4. After all commitments have been revealed, send 0K
×h
ij to bidder i for

each i 6= a and h.

5. Compute Kaj =
n∏

i=1

K×i
aj for each j.

De-share codes / Share bids

6. Send y×a
i to bidder i for each i 6= a.

7. Compute Ya =
n∏

i=1

y×i
a .

8. Choose b×i
aj for each j and i, so that

n∏
i=1

b×i
aj =

{
(Ya)

2 if j ≤ ba

Ya else
.

9. Send b×i
aj for each j to bidder i for each i 6= a.

10. Receive b×a
ij for each i 6= a and j.
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Ring exponentiation

11. Compute nB
×a
j =

(
n∏

h=1

b×a
hj

)m×a
j

for each j and send them to bidder

S(a).

12. When receiving rB
×i
j , compute r−1B

×i
j = (rB

×i
j )m×a

j . If r > 1, send it

to bidder S(a); else, publish a commitment to B×i
j = 0B

×i
j .

Repeat this step until all bid shares (for each i) have been exponenti-
ated.

13. After all commitments have been revealed, publish B×i
j for each i.

Outcome determination

14. Compute Bj =
n∏

i=1

B×i
j for each j.

15. If Bj = Kaj for any j, then bidder a won the auction. He then contacts
the seller and authenticates by supplying the signed messages contain-
ing K×i

aw for each i and w = min{j|Bj = Kaj}. The selling price is
pw−1.

6.5.2 Analysis

The computation of personalized keys for each bidder does not increase the
asymptotical number of messages or rounds, but results in a high demand
for bandwidth (O(n2k)) when compared to the previous protocols. The huge
amount of numbers to exponentiate can be reduced by substituting r−1K

×h
ij

with an arbitrary random number when j ≤ ba because it is unnecessary to
compute keys for a price at which bidder i can not win as his bid is lower
than bidder a’s.

Correctness

The protocol has been carefully designed to make it impossible to deliberately
change the outcome by sending faulty messages. In other words, YMB-
share is non-manipulable. It yields no result when a malicious bidder sent
faulty messages or when the two highest bids are equal. Distributed random
generation of Yi ensures that Yi 6= 1 and Yi 6= Yh for any i, h ∈ [n] (with
exponentially small error probability). The codes for “yes” and “no” cannot
be equal because Yi 6= (Yi)

2 in any but the trivial singleton group. Yi values
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are not revealed to the corresponding bidders until the computation of keys
is finished. This is of particular importance because the creation of keys only
consisting of no-codes ((

∏n
i=1 Yi)

Mj) has to be prevented. Such a key would
reveal the amount of the highest bid.

Privacy

Many efforts have been made to guarantee privacy while designing this pro-
tocol. As a matter of fact, YMB-share provides full privacy in the com-
putational model. This is mainly due to the computational immutability of
Bj and Kij. Even in the unconditional model, some level of privacy can be
maintained. A single passive unbounded adversary a can determine Mj for

any j and thus read the highest bid by testing Bj · y
Mj
a = Kaj. All other

bids, however, cannot be opened by this bidder because all Yi codes, except
his own, are unknown to him. It takes n−2 unbounded adversaries to reveal
the remaining bids.

In contrast to the previous two protocols, the selling price is only visible
to the winning bidder and the seller. This is achieved by issuing individual
keys for each bidder. However, as correct behaviour of bidders can not be
guaranteed, the winning bidder might decide not to contact the seller (if he is
unhappy with the selling price for example). In order to resolve such conflicts,
intricate methods involving the revelation of all messages (as described in
Section 6.3.2) and the fining of agents have to be applied. It is not possible
to send copies of all individual keys to the seller, because this would reveal
the highest bid to the seller.

6.6 Protocol vMB-share

YMB-share, as well as B-share and MB-share, suffer from the fact that
malicious behaviour by active adversaries can not be prevented because these
protocols are only non-manipulable but not weakly robust. Weak robustness
could be reached if each of the protocol steps were universally verifiable.

Moreover, verifiability of protocol steps enables more general protocols be-
cause certain misbehaviour can be ruled out. The following auction protocol
is applicable to a generalized version of the Vickrey auction, the (M + 1)st-
price auction (see Section 3.3.2). In an (M + 1)st-price auction, the seller
offers M identical items and each bidder intends to buy one of them. It is
a strategy-proof mechanism to sell those items to the M highest bidders for
the uniform price given by the (M + 1)st highest bid.
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6.6.1 Building Blocks

In order to gain public verifiability, we need cryptographic primitives like
verifiable secret sharing and various interactive and non-interactive proofs
of correctness. These proofs are “zero-knowledge” [GMR85] which, loosely
speaking, means that someone is able to prove knowledge of a certain secret,
e.g. a discrete logarithm, without revealing any information about that se-
cret. The most important result regarding zero-knowledge proofs is that any
statement in NP can be proven by a zero-knowledge proof [GMW86a].

Please note that interactive proofs can be made non-interactive by using
the Fiat-Shamir heuristic in which the random challenge (c) is derived from
the first message of the proof, e.g., by applying a suitable hash function on
the message and the sender’s id (to avoid proof duplication). This common
speed-up of interactive zero-knowledge proofs relies on the so-called random
oracle model in which it is assumed that agents have access to an oracle
that generates true random numbers. In the case of hash functions like MD5
or SHA-1, it is assumed that a cryptographic secure hash functions yields
unpredictable numbers.

p and q are large primes, so that q divides p − 1. Gq is the unique
multiplicative subgroup of Z∗

p with order q (see Appendix A.1). g1 and g2 are
random elements of Gq, so that no participant knows logg1

g2.

Verifiable secret sharing

So far, we shared secrets by simply dividing them into additive or multiplica-
tive shares in a finite Abelian group. Linear combinations of secrets could
easily be computed by applying the group operation on these shares. How-
ever, there was no possibility to verify the correctness of the resulting shares,
i.e. to check if each participant truthfully applied the prescribed calculation
rules.

In Shamir’s secret sharing scheme [Sha79], a secret is shared among n
participants as n points f(i) (1 ≤ i ≤ n) of an arbitrary, degree n − 1
polynomial f(x) with f(0) = s. A shared secret (SS) can be retrieved by
computing f(0) with Lagrange interpolation from these n points.

f(0) =
n∑

i=1

γif(i) with γi =
n∏

j=1 j 6=i

j

j − i
(Lagrange)

Figure 6.4 illustrates the modus operandi. n − 1 points of the polynomial
yield absolutely no information about the secret value. As we want to achieve
full privacy, we will not make use of the threshold capabilities of this scheme
and always use degree n− 1 polynomials.
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x
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Figure 6.4: Shamir’s polynomial secret sharing scheme

Lagrange interpolation can also be applied when shares are only available
as exponentiated values f̂(i) = gf(i) to compute the exponentiated shared
secret (eSS) f̂(0) = gs.

f̂(0) =
n∏

i=1

(f̂(i))γi (6.6)

The correctness of shares can be proven by using Pedersen’s commitment
scheme [Ped91]. It provides non-interactive verification of shares and their
linear combinations as the commitment scheme is homomorphic. The dealer,
who distributes s, chooses two polynomials

f(x) = s + F1x + F2x
2 + · · ·+ Fn−1x

n−1 and

h(x) = H0 + H1x + · · ·+ Hn−1x
n−1

and publishes

E0 = gs
1g

H0
2 and ∀l ∈ {1, 2, . . . , n− 1} : El = gFl

1 gHl
2 .

He sends shares f(i) and h(i) to participant i. Participant i can verify the
correctness of the share by testing

g
f(i)
1 g

h(i)
2 =

n∏
l=0

(El)
il .

The commitment values El reveal absolutely no information about the secret
s. The secret is unconditionally secure. However, the holder of the secret can
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distribute incorrect shares if he is able to solve the discrete logarithm prob-
lem. This is inevitable because unconditional security of the secret and the
unconditional correctness of shares is impossible in (n− 1)-private verifiable
secret sharing [Ped91].

Proof of equality of two SSs

After distributing two SSs with commitment values E ′
0 = g

G′
0

1 g
H′

0
2 and E ′′

0 =

g
G′′

0
1 g

H′′
0

2 , Alice10 is capable of proving the equality of those secrets by sending

t = H ′
0−H ′′

0 to Bob who then verifies that
E ′

0

E ′′
0

= gt
2. No information on any of

the secrets is revealed [Ped91]. Please note that this proof is non-interactive.

Verifiable linear combination computation

Correctness of any linear combination of SSs can be proven without interac-
tion [Ped91].

Two secrets s′ and s′′ are verifiably distributed. E ′
l and E ′′

l are the corre-
sponding commitment values, f ′(i) and f ′′(i) the secret shares. The partici-
pants want to compute s’s shares with s = s′ + s′′. Any observer can verify
that (f(i) = f ′(i) + f ′′(i), h(i) = h′(i) + h′′(i)) is a correct share of s′ + s′′ by
testing whether

g
f(i)
1 g

h(i)
2 =

n∏
l=0

(E ′
lE

′′
l )il .

When computing s = as′ for any a ∈ Z∗
q, a share (f(i) = af ′(i), h(i) = ah′(i))

can be proven correct by testing

g
f(i)
1 g

h(i)
2 =

n∏
l=0

((E ′
l)

a)
il

.

A publicly known summand a can simply be added to each f -share (f(i) =

f ′(i) + a). The share is correct when g
f(i)
1 g

h(i)
2 =

n∏
l=0

(ga
1E

′
l)

il .

Proof of knowledge of a discrete logarithm

This is a classic, interactive, three-step, zero-knowledge proof by Schnorr
[Sch91]. Alice and Bob know v and g, but only Alice knows x, so that
v = gx.

10The cryptographic literature usually denotes two parties by “Alice” and “Bob”.
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1. Alice chooses z at random and sends a = gz to Bob.

2. Bob chooses a challenge c at random and sends it to Alice.

3. Alice sends r = (z + cx) mod q to Bob

4. Bob checks that gr = avc.

Proof of equality of two discrete logarithms

When executing the previous protocol in parallel, the equality of two discrete
logarithms can be proven [CP92]. Alice and Bob know v, w, g1, and g2, but
only Alice knows x, so that v = gx

1 and w = gx
2 .

1. Alice chooses z at random and sends a = gz
1 and b = gz

2 to Bob.

2. Bob chooses a challenge c at random and sends it to Alice.

3. Alice sends r = (z + cx) mod q to Bob

4. Bob checks that gr
1 = avc and that gr

2 = bwc.

Proof that a SS is one out of two values

We designed the following protocol according to the results of Cramer et al
[CDS94, CGS97]. Alice shows that a SS is either z or 0 by proving that the
corresponding commitment value x = E0 is either gz

1g
t
2 or gt

2.

1. If x = gz
1g

t
2, Alice chooses r1, d1, and w at random and sends x, a1 =

gr1
2 xd1 , and a2 = gw

2 to Bob.
If x = gt

2, Alice chooses r2, d2, and w at random and sends x, a1 = gw
2 ,

and a2 = gr2
2 (xg−z

1 )d2 to Bob.

2. Bob chooses a challenge c at random and sends it to Alice.

3. If x = gz
1g

t
2, Alice sends d1, d2 = c − d1 mod q, r1, and r2 = w − d2t

mod q to Bob.
If x = gt

2, Alice sends d1 = c− d2 mod q, d2, r1 = w− d1t mod q, and
r2 to Bob.

4. Bob checks that c = d1 + d2 mod q, a1 = gr1
2 xd1 , and a2 = gr2

2 (xg−z
1 )d2 .
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Verifiable random multiplication of an eSS

In contrast to addition, multiplication of shared secrets is hard and all exist-
ing techniques require a threshold secret sharing scheme because the point-
wise multiplication of polynomials generally results in a higher degree poly-
nomial. However, for the auction protocol, we only need to multiply a SS
with a jointly created random number (s = s′M) that is unknown to all
participants (M =

∏n
i=1 mi). This is obtained by raising each exponentiated

share f̂(i) = gf(i) to the power of each participant’s multiplier factor mi until
gf(i)M is computed. It must be impossible for a bounded adversary to reveal
s′, gs′ , or gM and the protocol must be completely verifiable. For this rea-
son, participants are required to spread their shares as exponentiated shares.
A combination of Schnorr’s and Pedersen’s proofs are then used to guaran-
tee the correctness of the first step of ring exponentiation. The details of
this novel technique can be seen in the formal specification of vMB-share
(Section 6.6.3).

6.6.2 General Description

With all the described cryptographic means at hand, we are able to design a
protocol that has several advantages over YMB-share and is applicable to
(M + 1)st-price auctions. In the following abstract description, computation
takes place in a finite additive group with neutral element 0.

Each bidder sets the bid vector

~bi = (bi1, bi2, . . . , bik) = (0, . . . , 0︸ ︷︷ ︸
bi−1

, Y, 0, . . . , 0︸ ︷︷ ︸
k−bi

)

according to his bid bi ∈ [k], distributes its shares, and shows its correctness
by proving ∀j ∈ [k] : bij ∈ {0, Y } and

∑k
j=1 bij = Y in zero-knowledge

manner [AS02a]. Y 6= 0 is a publicly known element, e.g. 1.

Verifiable secret sharing allows verifiable computation of linear combina-
tions of SSs in a single round. When computing on vectors of SSs (like ~bi),
this means that besides addition and subtraction of shared vectors, multipli-
cation with (known) matrices is feasible. For example, the “integrated” bid
vector (as introduced in [AS02a])

~b′i = (Y, . . . , Y︸ ︷︷ ︸
bi

, 0, . . . , 0︸ ︷︷ ︸
k−bi

) = (bi1 + b′i2, bi2 + b′i3, . . . , bik)

can be derived by multiplying the bid vector with the k× k lower triangular
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matrix L (~b′i = L~bi).

L =


1 0 · · · 0
...

. . . . . .
...

...
. . . 0

1 · · · · · · 1

 (lower triangular matrix)

Multiplying a vector with L − I, where I is the k × k identity matrix, yields
~b′i shifted down by one component.

I =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 (identity matrix)

If we sum up all integrated bid vectors and down-shifted integrated bid vec-
tors, we obtain a vector that has the following structure (let us for now
disregard the possibility of equal bids, we will refer to this case in Section
6.7.3).

(2L− I)
n∑

i=1

~bi = (. . . , 6Y, . . . , 6Y, 5Y, 4Y, . . . , 4Y, 3Y, 2Y, . . . , 2Y, Y, 0, . . . , 0)

The position of the (single) component that equals 3Y denotes the second
highest bid, 5Y the third highest bid, and so forth. Subtracting (2M + 1)Y ~e
with ~e = (1, . . . , 1), thus yields a vector in which the component, that refers
to the amount of the (M + 1)st highest bid, is zero. All other components
are not zero.
As we intend to create personal indicators for each bidder, we mask the
resulting vector so that only winning bidders can read the selling price. This
is achieved by adding U~bi.

U =


1 · · · · · · 1

0
. . .

...
...

. . . . . .
...

0 · · · 0 1

 (upper triangular matrix)

For an arbitrary bidder a, the vector

(2L− I)
n∑

i=1

~bi − (2M + 1)Y ~e + (2M + 2)U~ba
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only contains a component equal to zero, when a qualifies as a winner of the
auction. The position of this component then indicates the selling price.
In order to get rid of all information besides the selling price, each component
is multiplied with a different random multiplier Mij that is jointly created and
unknown to any subset of bidders. Finally, each bidder’s personal indication
vector is computed according to the following equation.

~va =

(
(2L− I)

n∑
i=1

~bi − (2M + 1)Y ~e + (2M + 2)U~ba

)
R∗

a (6.7)

R∗
i =


Mik 0 · · · 0

0 Mi,k−1
. . .

...
...

. . . . . . 0
0 · · · 0 Mi1

 (random multiplication matrix)

The components Mij are unknown to bidders.

The invariant of this“blinding”transformation are components that equal
zero11. Only bidder i and the seller get to know ~vi.

vij = 0 ⇐⇒ Bidder i won and has to pay pj

The following simple example for two bidders illustrates the functionality of
the protocol.

Example: The computations take place in Z11 and the auction to be con-
ducted is a Vickrey auction (M = 1). Let the vector of possible prices be
~p = (10, 20, 30, 40, 50, 60). The two bids are 20 (b1 = 2) and 50 (b2 = 5):
~b1 = (0, 1, 0, 0, 0, 0), ~b2 = (0, 0, 0, 0, 1, 0). The selling price can be determined

11As described in the previous section, random exponentiation works on exponentiated
shares, resulting in exponentiated vector ~̂vi and 1s instead of 0s.
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by computing

(2L− I)
n∑

i=1

~bi − (2M + 1)Y ~e =

=


1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 2 1 0 0
2 2 2 2 1 0
2 2 2 2 2 1






0
0
0
0
1
0

+


0
1
0
0
0
0



−


3
3
3
3
3
3

 =

=


0
1
2
2
3
4

−


3
3
3
3
3
3

 =


8
9

10
10
0
1

 = ~x .

Now, the selling price has to be masked to losing bidders. Bidder 1 is un-
able to identify the selling price. His indication vector (~v1) contains random
numbers.

~v1 = ~x + (2M + 2)U~b1 =

=


8
9

10
10
0
1

+ 4


1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1




0
0
0
0
1
0

 =


8
9

10
10
0
1

+


4
4
4
4
4
0

 =

=


1
2
3
3
4
1


×R∗

1−→


.
.
.
.
.
.


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Bidder 2’s indication vector ~v2, however, indicates the selling price at the
second component (bottom-up).

~v2 = ~x + (2M + 2)U~b2 =

=


8
9

10
10
0
1

+ 4


1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1




0
1
0
0
0
0

 =


8
9

10
10
0
1

+


4
4
0
0
0
0

 =

=


1
2

10
10
0
1


×R∗

2−→


.
.
.
.
0
.



6.6.3 Formal Description

In this section, the abstract protocol of the previous section is implemented
using verifiable secret sharing. The following protocol rules are specified for
bidder a. i, h ∈ [n], j, ba ∈ [k], and l ∈ {0, 1, . . . , n − 1} unless otherwise
noted. All calculations are done in the multiplicative group Gq. Y ∈ Z∗

q is
known to all bidders, e.g. Y = 1. g1, g2 ∈ Gq.

Like in MB-share and YMB-share, an ordering on bidders is needed
for ring exponentiation. S(i) and P (i) return the successor and predecessor
to bidder i, respectively.

S(i) = ((i + 1) mod n) + 1, P (i) = ((i− 1) mod n) + 1 (6.8)

Verifiably share bid

1. Choose random multipliers maij ∈ Z∗
q for each i and j, and 2j polyno-

mials with random coefficients in Zq and Faj0 =

{
Y if j = ba

0 else
.

faj(x) = Faj0 + Faj1x + · · ·+ Faj,n−1x
n−1

haj(x) = Haj0 + Haj1x + · · ·+ Haj,n−1x
n−1
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2. Publish Eajl = g
Fajl

1 g
Hajl

2 for each j and l.

3. Prove that Eaj0 ∈ {gY
1 gt

2, g
t
2} for each j, and

k∏
j=1

Eaj0 = gY
1 gHa

2 by

publishing Ha =
∑k

j=1 Haj0.

4. Publish

E∗
ijl =


(∏n

h=1

∏k
d=j EhdlEh,d+1,l

)(∏j
d=1 Eidl

)2M+2

g
(2M+1)Y
1


maij

for each i,

j, and l, and prove the discrete logarithm knowledge.

5. Send f̂aj(i) = g
faj(i)
1 and ĥaj(i) = g

haj(i)
2 to bidder i for each i 6= a and

j.

6. Publish 2nk exponentiated random numbers ŷaij = g
yaij

1 and ẑaij =
g

zaij

2 .

7. Choose c+a ∈ Zq at random and publicly commit to it.

8. Publish c+a after all bidders published their commitments.

9. Compute c =
∑n

i=1 c+i
j mod q and send raij = yaij + cfaj(i) mod q

and saij = zaij + chaj(i) mod q to bidder i for each i 6= a and each j.

10. Verify

g
riaj

1 = ŷiaj +
(
f̂ij(a)

)c

, g
siaj

2 = ẑiaj +
(
ĥij(a)

)c

, and

f̂ij(a)ĥij(a) =
n−1∏
l=0

(Eijl)
al

for each i 6= a, j.
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Ring exponentiation

11. Publish for each i and j:

av̂ij(a) =


(∏n

h=1

∏k
d=j f̂hd(a)f̂h,d+1(a)

)(∏j
d=1 f̂id(a)

)2M+2

g
(2M+1)Y
1


maij

,

aŵij(a) =

( n∏
h=1

k∏
d=j

ĥhd(a)ĥh,d+1(a)

)(
j∏

d=1

ĥid(a)

)2M+2
maij

,

ŷ∗iaj =

( n∏
h=1

k∏
d=j

ŷhadŷha,d+1

)(
j∏

d=1

ŷiad

)2M+2
maij

, and

ẑ∗iaj =

( n∏
h=1

k∏
d=j

ẑhadẑha,d+1

)(
j∏

d=1

ẑiad

)2M+2
maij

and prove the equality of the discrete logarithms of ŷ∗iaj and ẑ∗haj, and
the ones used in step 4.

12. Send

r∗iaj =

((
n∑

h=1

k∑
d=j

rhadrha,d+1

)
+

j∑
d=1

(2M + 2)riad − (2M + 1)Y

)
maij

mod q and

s∗iaj =

((
n∑

h=1

k∑
d=j

shadsha,d+1

)
+

j∑
d=1

(2M + 2)siad

)
maij mod q

to bidder i for each i 6= a and each j.

13. Verify

g
r∗ihj

1 = ŷ∗ihj + (v̂ij(h))c , g
s∗ihj

2 = ẑihj +
(
ĥij(h)

)c

, and

v̂ij(h)ŵij(h) =
n−1∏
l=0

(E∗
ijl)

hl

for each i, j, and h 6= a.

14. Compute and publish ∀i, j, h : av̂ij(h) =
(

P (a)v̂ij(h)
)maij and prove its

correctness by showing the equality of logarithms. Repeat this step
until all P (P (h))v̂ij(h) are computed.
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15. Compute ∀i, j : av̂ij(S(a)) =
(

P (a)v̂ij(S(a))
)maij and privately send it

and a proof of its correctness to the seller who publishes all hv̂ij(S(h))
and the corresponding proofs of correctness for each i, j, h 6= i after
having received all of them.

Outcome determination

16. Compute vaj =
∏n

i=1

(
P (i)v̂aj(i)

)γi for each j.

17. If vaw = 1 for any w, then bidder a is a winner of the auction. pw is
the selling price.

6.6.4 Analysis

Like in YMB-share, the computation of personalized indicators for each
bidder results in a high demand for bandwidth and computation (O(n2k)
for each bidder). To give an example, in an auction with hundred bidders
(n = 100) and 200 possible prices (k = 200)12, each bidder has to compute
and publish hundreds of megabytes of data when p and q are 1024-bit primes.

Correctness

vMB-share computes the outcome of an (M + 1)st-price auction. As the
protocol is publicly verifiable, malicious bidders that do not follow the proto-
col will be detected immediately and can be excluded from the set of bidders
which makes the protocol weakly robust, except in the case of ties. When
two or more bidders have the (M + 1)st highest bid in common, the proto-
col yields no winners at all. There is no information revelation in this case,
except that there has been a tie. Items could be re-auctioned in another auc-
tion, in which bidders slightly change their bids to avoid ties. Nevertheless,
tieing bidders remain an important problem and Section 6.7.3 proposes three
methods to resolve ties.

Privacy

The final ring exponentiation steps are conducted in a way that allows the
seller to see all indication vectors before bidders can compute them. This
prevents a bidder from aborting the protocol after having learned the auc-
tion result. vMB-share is fully private in the computational model due to

12Usually the number of different prices or valuations is much lower than one would
expect, e.g., Lipmaa et al argue that k ≤ 500 is sufficient for most auctions [LAN02].
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exponentiated vector components. An unbounded adversary, however, can
reveal all bids.

When the selling price does not need to be protected, the computational
complexity can be reduced to O(nk) by just computing one indication vector
that indicates the selling price w to all bidders (public price mode).

~v =

(
(2L− I)

n∑
i=1

~bi − (2M + 1)Y ~e

)
R∗ (6.9)

Winning bidders can prove their claims to the seller by providing t, so that
Ei,w+1,0 = gY

1 gt
2. However, winning bidders are able to remain silent if they

dislike the selling price like in YMB-share. In public price mode, a single
unbounded adversary can only read bid statistics, i.e. all bid amounts, but
no relation on who bid which amount. n − 1 unbounded bidders can reveal
all information.

6.7 Protocol vX-share

vMB-share fulfills our demands for correctness and privacy: It is weakly
robust and fully private. However, it is not very efficient as it takes n rounds
of interaction and because the computational amount per bidder is quadratic
in n. The following protocol is based on the same ideas presented in Sec-
tion 6.6.2. The major difference is that it is based on distributed homomor-
phic probabilistic encryption (ElGamal) instead of verifiable secret sharing.
Homomorphic encryption gained much attention in the context of voting and
recently in general multiparty computation [CDN01].

6.7.1 ElGamal Cipher

Instead of computing on distributed shares of secret values, it would be nice
to be able to compute on encrypted values directly, thus drastically reduc-
ing complexity as this would result in only two operations that require the
cooperation of all participants:

• the joint generation of a generally known public key and a shared pri-
vate key, and

• the joint decryption of the result.

In order to be able to compute on encrypted values like on shared secrets, a
cryptosystem needs to be homomorphic.
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Definition 6.6 (Homomorphic Encryption)
A cryptosystem is called homomorphic if there is an efficient (polynomial-
time) algorithm that computes an encryption of a ◦ b from encryptions of a
and b without revealing a or b. ◦ denotes an arbitrary algebraic operation,
e.g. addition, in the plaintext space.

A problem that arises when multiparty computation is based on homo-
morphic encryption is that adversaries can try to “guess” secret values by
encrypting likely values with the public key and comparing these ciphertexts
with the secret’s ciphertext. As a matter of fact, deterministic public-key
cryptosystems always leak information. In particular, these cryptosystems
are vulnerable to chosen-plaintext attacks. Let us consider a homomorphic
encryption based version of the previous protocol vMB-share. Bid values
could easily be identified because each encryption of Y in the bid vector has
the same ciphertext. In a probabilistic cryptosystem, the encryption algo-
rithm is probabilistic rather than deterministic. A large number of different
ciphertexts will decrypt to the same plaintext. As a consequence, the cipher-
text space has to be larger than the plaintext space. The most important
property of a probabilistic encryption scheme is semantical security.

Definition 6.7 (Semantically secure probabilistic encryption)
A probabilistic cryptosystem is called semantically secure if it is impossible to
distinguish between the encryptions of any two given messages in polynomial
time.

ElGamal cipher [ElG85] is a probabilistic public-key cryptosystem. p
and q are large primes so that q divides p − 1. Gq denotes Z∗

p’s unique
multiplicative subgroup of order q. The private key is x ∈ Zq, the public
key y = gx (g ∈ Gq). A message m ∈ Gq is encrypted by computing the
ciphertext tuple

(α, β) = (myr, gr) (6.10)

where r is an arbitrary number in Zq. A message is decrypted by computing

α

βx
=

mya

(ga)x
= m . (6.11)
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Proposition 6.3 (ElGamal homomorphicity)
The ElGamal cryptosystem is homomorphic.

Proof: The component-wise product of two ciphertexts (αα′, ββ′) =
(mm′yr+r′ , gr+r′) represents an encryption of the plaintexts’ product mm′.
�

Theorem 6.1 (ElGamal semantical security)
The ElGamal cryptosystem is semantically secure (assuming the intractabil-
ity of the decisional Diffie-Hellman problem, see Appendix A.1).

Proof: See [TY98] �

We will now describe how to apply the ElGamal cryptosystem as a fully
private, i.e. non-threshold, multiparty computation scheme.

Distributed key generation: Each participant chooses x+i at random and
publishes y×i = gx+i along with a zero-knowledge proof of knowledge
of y×i’s discrete logarithm. The public key is y =

∏n
i=1 y×i, the pri-

vate key is x =
∑n

i=1 x+i. The broadcast round complexity and the
computational complexity of the key generation are O(1).

Distributed decryption: Given an encrypted message (α, β), each partic-
ipant publishes β×i = βx+i and proves its correctness. The plaintext
can be derived by computing α∏n

i=1 β×i
. Like the key generation, the

decryption can be performed in constant time.

Random Exponentiation: A given encrypted value (α, β) can easily be
raised to the power of an unknown random number M =

∑n
i=1 m+i

whose addends can be freely chosen by the participants if each bid-
der publishes (αm+i , βm+i) and proves the equality of logarithms. The
product of published ciphertexts yields (αM , βM). Random Exponenti-
ation can thus be executed simultaneously with distributed decryption
in a single step. Random exponentiation was the bottleneck of vMB-
share (ring exponentiation).
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6.7.2 Formal Description

What follows is the step-by-step protocol specification for bidder a. i, h ∈ [n],
and j, ba ∈ [k]. Y ∈ Gq\{1} is known to all bidders.

Share key /Publish encrypted bid

1. Choose x+a ∈ Zq and m+a
ij , raj ∈ Zq for each i and j at random.

2. Publish y×a = gx+a along with a zero-knowledge proof of knowledge of
y×a’s discrete logarithm. Compute y =

∏n
i=1 y×i.

3. Set baj =

{
Y if j = ba

1 else
and publish αaj = bajy

raj and βaj = graj for

each j.

4. Prove that αaj ∈ {Y yraj , yraj} for each j and
k∏

j=1

αaj = Y yra .

Compute and decrypt outcome

5. Compute γij =

∏n
h=1

∏k
d=j(αhdαh,d+1)

(∏j
d=1 αid

)2M+2

(2M + 1)Y
and δij =

n∏
h=1

k∏
d=j

(βhdβh,d+1)

(
j∏

d=1

βid

)2M+2

for each i and j.

6. Send γ×a
ij = (γij)

m+a
ij and δ×a

ij = (δij)
m+a

ij x+a for each i and j with a proof

of their correctness to the seller who publishes all γ×h
ij and δ×h

ij and the
corresponding proofs of correctness for each i, j, and h 6= i after having
received all of them.

Outcome determination

7. Compute vaj =

∏n
i=1 γ×i

aj∏n
i=1 δ×i

aj

for each j.

8. If vaw = 1 for any w, then bidder a is a winner of the auction. pw is
the selling price.

Like in vMB-share, the final steps are conducted in a way that allows
the seller to assemble all decrypted indication vectors before the bidders
can compute them. This prevents a bidder from aborting the protocol after
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having learned the auction result. Alternatively, a sub-protocol that enables
fair exchange of secrets (see e.g. [Yao82]) could be used while including the
seller into the secret sharing process.

6.7.3 The Problem of Equal Bids

When two or more bidders have the (M + 1)st highest bid in common, vX-
share (and vMB-share) yield no winners. There is no information revela-
tion in this case, except that there has been a tie on the (M + 1)st highest
bid. However, this might be used by a group of malicious bidders who submit
equal bids on purpose to learn about the selling price. If the tie is undetected,
their bids were lower than the selling price. If the protocol fails, their bids
were at least as high as the selling price would have been (without their par-
ticipation). Besides, ties can be used to impair the protocol’s robustness, as
tieing bidders can anonymously disrupt the auction. In the following, we will
discuss three different methods to circumvent the tie problem. The first two
avoid ties while the last one identifies ties.

“Interlacing” Vector Components (Int)

A straightforward way to avoid the problem is to increase the number of
components in ~vi from k to nk and insert bidder i’s bid in row nj + i − 1.
This increases the computational complexity to O(n2k). Unfortunately, this
method reveals the identity of one of the (M + 1)st highest bidders to the
winners.

Preventing Equal Bids (Pre)

Bid amount bi can be computed from bid vector~bi by summing up the compo-
nents of L~bi. The equality of bids can be detected by computing (bi− bh)Mih

for each pair of bids, requiring n2−n
2

comparisons. When equal bids have been
detected, k extra rows might be inserted similar to the previous technique.
As n < k in most reasonable auction settings, the computational complex-
ity per bidder remains O(nk) when bids are pairwise different. The exact
complexity is O(nkT ), where T is the maximum number of equal bids. This
technique is usually less complex than the previous one (they are equally
complex for the extreme case when all bids are equal). Due to the revelation
of equal bids, there is no incentive for malicious bidders to use ties on purpose
anymore. However, malicious bidders can try to “guess” bids, i.e., they sub-
mit numerous different bids and hope for ties, because ties reveal opponents’
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bids. Moreover, bidders are able to leave the protocol after having learned
some information (about equal bids).

Determining Ties (Det)

Instead of trying to avoid ties, we can locate the position of ties. As men-
tioned before, ties only inhibit the protocol when they occur at the (M +1)st-
highest bid. For this reason, “bad” ties always indicate the selling price.
The following method marks ties if they prevent the regular protocol from
working.

∑n
i=1

~bi − t~e is a vector that contains zeros if t bidders share the
same bid at the corresponding position (1 < t ≤ n). “Good” ties can be

masked by adding (n + 1)
(
L
∑n

i=1
~bi − (t + u)~e

)
where 0 ≤ u ≤ M and

M + 1 ≤ t + u ≤ n. The resulting vector contains a zero when t bids
are equal and there are u bids higher than the tie. The preceding factor
(n + 1) is large enough to ensure that both addends do not add up to zero.
Finally, the position of the tie (which is the selling price) has to be made
invisible to losing bidders like in Section 6.6.2. This can be done by adding
(n2 + 2n + 1)(U− I)~ba. Concluding, this method requires the computation of
additional indication vectors

~v′atu =

(∑n
i=1

~bi − t~e + (n + 1)

(
L
∑n

i=1
~bi − (t + u)~e

)
+(n2 + 2n + 1)(U− I)~ba

)
R∗

atu =

=

(
(L + (n + 1)I)

∑n
i=1

~bi −
(

nt + nu + 2t + u

)
~e

+(n2 + 2n + 1)(U− I)~ba

)
R∗

atu ,

(6.12)

which increases the overall computational complexity to O(n2kM). Infor-
mation revelation is low compared to the previous two methods. Winning
bidders learn that the selling price was shared by t bidders and that there
were u higher bids. Losing bidders do not learn anything. In contrast to
the previous two methods not a single bid origin, i.e. a bidder’s identity, is
uncovered.

Example: Suppose we have the following compilation of bids (M = 1,
computation takes place in Z11):



6.7. PROTOCOL VX-SHARE 131

~b1 =


0
1
0
0
0
0

 , ~b2 =


0
1
0
0
0
0

 , ~b3 =


0
0
0
1
0
0

 , and ~b4 =


0
0
0
1
0
0

 .

The first two (t = 2, u ∈ {0, 1}) indication vectors look like this (before being
masked for each bidder):


0
2
0
2
0
0

−


2
2
2
2
2
2

+ 5




0
2
2
4
4
4

−


2
2
2
2
2
2



 =


10
0
9

10
8
8


×R∗

1,2,0−→


.
0
.
.
.
.




0
2
0
2
0
0

−


2
2
2
2
2
2

+ 5




0
2
2
4
4
4

−


3
3
3
3
3
3



 =


5
6
4
5
3
3


×R∗

1,2,1−→


.
.
.
.
.
.



For t > 2 the first difference contains no zeros, leading to random vectors.

6.7.4 Analysis

Like vMB-share, vX-share is weakly robust and fully private in the com-
putational model. However, vX-share fulfills these demands in a constant
number of rounds and consumes much less resources (bandwidth and com-
putation). Like described in Section 6.6.1, the interactive proofs of knowl-
edge can be made non-interactive. As a consequence, the entire execution
of vX-share needs just three rounds of interaction. Figure 6.5 illustrates
the modus operandi of the protocol (garbled characters on the blackboard
represent encrypted information). The seller broadcasts the type of good to
be sold, the number of units, a deadline, and the bid function. Interested
bidders then have the chance to publish their id’s before the deadline expires.
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In the following, each bidder broadcasts two encrypted messages and sends
one encrypted message to the seller who broadcasts the encrypted result, so
that only winning bidders are able to read it.

S

B B B

Blackboard

good, units, deadline, bid function

bidder id’s

§%!&"#*[?=¤%?3−!&$\"

#!??]%$%\§!¤=7$#−"*§3

&7]"$¤"?!#*!+%#§=?&/

1

2

3

4

56

Figure 6.5: vX-share

Three methods to provide robustness in the case of ties, that can also
be used in vMB-share, have been presented. In a nutshell, vX-share
achieves the lowest round complexity and the highest level of privacy13 and
robustness possible in bidder-resolved auctions.

Computational complexity can be reduced by computing just one indi-
cation vector for all bidders and publicly announcing the selling price. In
the previous protocol vMB-share, the main problem in public price mode
is that the seller is unable to identify who won the auction. This allows
a winning bidder to repudiate the auction outcome. The encryption-based
approach of vX-share enables the computation of an additional outcome
vector that indicates the selling price and the winners’ identities (to the
seller). Let Yi be an arbitrary, publicly known id code of bidder i, so that
∀i, h ∈ [n] : Yi 6= Yh and∑

1≤m1<m2<···<mi<···<mM≤n

Ymi
6=

∑
1≤n1<n2<···<ni<···<nM≤n

Yni

13when disregarding the negligible tie information revelation
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(using the additive notation of Section 6.6.2).
Besides vector ~v specified in Equation 6.9 on page 125, bidders jointly

compute vector ~w.

~w =

(
(2L− I)

n∑
i=1

~bi − (2M + 1)Y ~e

)
R′∗ + (L− I)

n∑
i=1

Yi
~bi (6.13)

Vector ~w contains the sum of all winners’ id’s at the position of the selling
price with negligibly small error probability (because

(
n
M

)
is much smaller

than the (exponential) number of group elements). It is essential that the
seller broadcasts a proof of the selling price (~v) because this proves to los-
ing bidders that they lost. The identity of the winner, however, remains
confidential.

6.8 Other Protocols

It was mentioned in Section 5.1 that parallel to our work, numerous cryp-
tographic auction protocols have been proposed in the literature. In the
following, a selection of these protocols will be briefly discussed. The list
of protocols is certainly not complete. They have merely been selected to
illustrate the variety of solutions to a common problem. The main difference
between these protocols and the ones presented in this thesis is that privacy
can be breached by a collusion of trusted third-parties in all of them. For this
reason, we specify the type of collusion that leads to information revelation
for each protocol.

6.8.1 Naor, Pinkas, & Sumner 1999

The scheme by Naor et al [NPS99] is based on two servers (the auctioneer and
the “auction issuer”) and is applicable to general secure Boolean two-party
computation. The auction issuer generates a “garbled” Boolean circuit that
computes the auction outcome for any given set of bids. The bidders then
submit their encrypted bids. The auction issuer produces garbled inputs to
the circuit from the bids and sends them to the auctioneer who then evaluates
the circuit and publishes the result.
The basic scheme is very efficient as it works on binary representations of
bids. The size of a Boolean circuit that computes the outcome of an (M +
1)st-price auction is O((n + M) log k). However, the auctioneer needs to
verify that the auction issuer’s garbled circuit is correct. This is solved by
the “cut-and-choose” technique in which the auction issuer provides several
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copies of the garbled circuit out of which the auctioneer chooses some to be
opened and verified. The remaining circuits are used to resolve the auction
and it is checked whether they produce the same output. This expensive
method can never guarantee the correctness of the circuit, but it can provide
exponentially small error probability. Although this scheme is based on a
sophisticated trust model (e.g., “the auction issuer is typically an established
party such as a financial institution or large company, which supplies services
to numerous auctioneers” [NPS99]), privacy vanishes if the auction issuer and
the auctioneer collude.

Juels and Szydlo [JS02] removed a critical security flaw in the original
protocol and based their version on RSA which results in less computational
complexity for the bidders but even more complexity for the auction servers.

Privacy can be invaded by: auctioneer and auction issuer collusion

6.8.2 Sako 2000

Sako’s protocol [Sak00] uses a probabilistic encryption scheme and a list of k
possible bids to implement a 1st-price sealed-bid auction. There is a number
of auctioneers that generate k values Mi and k public/private key pairs Ei

and Di. The public keys and all Mi are published. In the bidding phase each
bidder publishes Mbi

encrypted with public key Ebi
where bi denotes bidder

i’s bid. Thus, even though the scheme works on linear lists of valuations,
each bidder only needs to submit a single encrypted value. The auctioneers
then jointly decrypt all bids with the private key belonging to the highest
valuation Dk. If none of the values decrypts to Mk, the auctioneers try the
key belonging to the next valuation. This step is repeated until one of the
bids correctly decrypts to Mi. The corresponding bidder is the winner and
i refers to the selling price. The author gives two examples of the proposed
scheme based on ElGamal and RSA encryption, respectively. Basing the
scheme on RSA has the advantage that no list containing Mi, Ei, and Di

needs to be published as those values can be derived from i. On the other
hand, semantical security and other required properties are not proven for
RSA and the joint generation of RSA keys is very complicated.
Clearly, the scheme has the strong advantage of minimal bidder effort. Bid-
ders just submit one encrypted value and do not need to participate any
further. However, the “Dutch auction style” approach makes it only applica-
ble to 1st-price auctions with very little hope of a possible generalization for
other auction types like Vickrey auctions. Additionally, the auctioneers need
O(k) rounds to determine the highest bid and this bid is publicly revealed.

Privacy can be invaded by: auctioneer collusion
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6.8.3 Baudron & Stern 2001

The Baudron & Stern scheme [BS01] uses a semi-trusted third-party that does
not learn any information if it does not collude with a bidder. The scheme
is quite complex and is based on the joint evaluation of a special-purpose
Boolean circuit with the help of a third-party. Bidders encrypt each bit of the
binary representations of their bids n times with each bidder’s public key of a
homomorphic cryptosystem. In the following, each logical gate of a Boolean
circuit that computes the auction outcome is blindly evaluated by the third-
party with assistance by bidders. This process is optimized by taking into
account the level of Boolean gates in the special-purpose circuit. The result’s
size is exponential in the number of bidders (O (n(log k)n−1) where n is the
number of bidders and k the number of possible prices) which makes the
scheme only applicable to a very limited number of bidders (four to five, as
stated in [BS01]). After the result is broadcasted, the winner is required to
claim that he won (violating non-repudiation). When computing the outcome
of a Vickrey auction, additional interaction is required to compute the second
highest bid. The bidders’ actions are verifiable. However, it is not possible
to verify if the third-party behaves correctly.

Privacy can be invaded by: third-party and bidder collusion

6.8.4 Kikuchi 2001

The protocols by Kikuchi [Kik02, Kik01] make use of a clever idea. They are
based on polynomial secret sharing as explained in Section 6.6.1. However,
the secret (one out of k bids) is hidden in the degree of a polynomial. Com-
putation is distributed among m auctioneers out of which less than c can
not disclose any information. As the bids are hidden in the degree of shared
polynomials, this implies that m > k + c. The author proposes a protocol for
1st-price auctions and for the more general (M + 1)-st price auctions. The
1st-price protocols exploit the fact that the sum of two polynomials results in
a polynomial whose degree is the maximum degree of the input polynomials.
This enables quite efficient auction protocols. The computational complex-
ity of bidders in the 1st-price auction protocol is only O(m) and auctioneers
need just O(n) rounds to determine the winner. Bidders’ actions are publicly
verifiable. However, this does not hold for auctioneers. They can manipulate
the auction outcome without being detected. This becomes even worse in the
(M +1)-st price auction protocols. Either the actions of auctioneers and bid-
ders are not verifiable (and thus not robust against active adversaries), or the
bids of all M winners are publicly revealed. Moreover, one of the protocols
can not handle ties and, generally speaking, the encoding of secrets in the
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degree of a polynomial poses several problems. The number of auctioneers
m is required to be greater than the number of possible prices k. As a result,
the complexity of the protocols is higher than it seems because there have to
be umpteen auctioneers. Even though the proposed protocols are not based
on any threshold assumptions, the underlying technique can not be used for
bidder-resolved (m = n) auction protocols because full privacy implies c = n
and this yields k < 0.

Privacy can be invaded by: auctioneer collusion

6.8.5 Abe & Suzuki 2002

Abe and Suzuki’s scheme [AS02a] is similar to vX-share, but differs in
using a technique called “mix-and-match” [JJ00] and in a trust model with
two third-parties: the auctioneer and a “trusted authority” (which can be
distributed to achieve threshold security). It is based on a homomorphic
cryptosystem like ElGamal [ElG85] or Paillier [Pai99]. Bidders encrypt bid-
ding vectors that are defined as in Equation 6.6.2 on page 117 with a public
key of the trusted authority, send them to the auctioneer, and prove their cor-
rectness. The auctioneer computes the sum of integrated bid vectors based
on the homomorphic property of the cryptosystem. The resulting vector’s
components denote how many bidders are willing to pay a given price. In the
following, the position of the (M + 1)st highest bid is determined by binary
searching the lowest price that exactly M bidders are willing to pay. This is
achieved by gradually releasing vector components to the authority who de-
crypts them and proves in zero-knowledge (using mix-and-match) that there
were either more than M bidders or less than M + 1 bidders willing to pay.
The whole process takes log k rounds where k is the number of possible bids.
Obviously, the authority learns statistical information during this process.
The entire protocol is publicly verifiable and thus achieves robustness. Ap-
parently, a collusion of the auctioneer and the trusted authority can learn
complete information. Furthermore, the selling price must be publicly an-
nounced to convince losing bidders of their failure14.

Privacy can be invaded by: auctioneer and trusted authority collusion

14When distributing the mix-and-match technique on bidders in order to realize a bidder-
resolved protocol with a private-key shared among bidders and discarding binary search
to minimize the round complexity, mixing [Abe99] would require n rounds. The computa-
tional and message complexity per bidder would beO(kM log(M)) with no need for further
efforts to resolve ties. The drawbacks of such a scheme would be the public announcement
of the selling price and n rounds of bidder interaction.
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6.8.6 Lipmaa, Asokan, & Niemi 2002

The protocol by Lipmaa et al [LAN02] requires a single semi-trusted third-
party: the auction authority. Bidders encrypt their bids using the auction
authority’s public key and send them to the seller who checks accompanying
signatures, sorts the encrypted bids according to a pre-determined scheme
(e.g. in lexicographic ciphertext order), and broadcasts them. The auction
authority then opens all bids, determines the selling price (e.g. the second
highest bid), sends it to the seller, and proves its correctness by applying
a novel, sophisticated zero-knowledge proof. Winning bidders are required
to claim that they won (violating non-repudiation). The protocol is very
efficient, but only provides limited privacy as the selling price is published
and the auction authority learns all bids. The only information hidden from
the authority is the connection between bidders and bids. The scheme easily
scales to a high number of bidders as k log n < log |M| where n is the number
of bidders, k the number of possible bids, and M the message space of the
applied cryptosystem. However, the number of possible bids k is severely
limited. Neither the seller nor the auction authority can manipulate the
outcome without being detected. A collusion of both instances uncovers
complete information.

Privacy can be invaded by: seller and auction authority collusion
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Chapter 7

Conclusion

The contribution of this thesis is two-fold. In the first part, a particular novel
form of strategic bidding behaviour was introduced and analyzed, whereas
the main part identified privacy problems in auctions (and mechanisms in
general) and presented solutions to these problems.

There are several known types of deceptive behaviour in auctions, such
as bidder collusion, shills, or sniping. We extended this list by introducing
so-called antisocial agents, i.e. agents who intend to maximize the difference
of their profit and the profit of other agents. When bidding in Vickrey auc-
tions, antisocial agents are not best off bidding their true valuation of the
good to be sold. The truth-revealing dominant-strategy equilibrium does not
hold anymore and there is no other dominant-strategy equilibrium, except for
purely destructive agents. An antisocial agent’s optimal strategy depends on
the highest and second highest private value of participating agents. As other
bidders’ private values are unknown to an antisocial bidder, we proposed a
Bayesian Nash equilibrium strategy that assumes that values are uniformly
distributed in a given interval, and a strategy that learns the desired pri-
vate values in a multiagent task-allocation scenario where identical tasks are
auctioned off in sequential reverse auctions. The latter strategy was success-
fully evaluated in an experimental implementation. A third possibility to
acquire private values would be to buy this information from the auction-
eer. However, the cryptographic protocols presented in the second part of
this dissertation allow the execution of Vickrey auctions without revealing
confidential information to an auctioneer.

In the following, we investigated how the presence of antisocial agents
can be incorporated in the design of an auction mechanism. More precisely,
there might be a mechanism in which bidders submit their valuations and
their degree of antisociality, i.e. their derogation rate, in equilibrium and
that yields a socially desirable outcome. As a matter of fact, the aggregation

139
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of conflicting preferences is the purpose of mechanism design. However, we
have proven the impossibility of such a mechanism under quite reasonable
assumptions. For the future, it might be interesting to analyze the concept
of antisocial agents in other application scenarios than auctions.

In the second part, novel cryptographic auction protocols where bidders
jointly compute the outcome were presented. In contrast to all existing auc-
tion protocols, distributing the outcome determination on bidders enables
what we call full privacy, i.e. bids can not be revealed despite any collusion
of participants. The protocols make differing tradeoffs across (unconditional)
privacy, robustness and efficiency (see Table 7.1). The most advanced pro-
tocol, vX-share, requires just a constant number of broadcasting rounds.
The price we pay for low round complexity is computational complexity that
is linear in the number of possible bids. However, experimental results (see
Appendix B.2) indicate that the computational amount and message sizes
are manageable in many realistic settings, despite its linearity in k.

It is possible to apply variations of the proposed protocols to securely
emulate ascending auctions, e.g. English auctions in which the identity of
the current highest bidder is hidden. This might be useful to generate more
revenue than in sealed-bid auctions when the common- or correlated-value
model is appropriate. If desired, e.g. to achieve strong robustness, the pre-
sented protocols can be distributed on two (or more) auctioneers instead on
bidders. The advantages would be minimal bidder effort and robustness. On
the other hand, privacy could only be guaranteed if the auctioneers do not
collude.

From a more abstract point of view, vX-share is an interaction protocol
that provides a solution to the problem stated at the beginning of Chapter 1:
An agent possessing an object1 of undetermined value is willing to sell this
object. There is a group of agents that have differing valuations of the good.
The problem is: To whom does he sell the good, for what price, and how
can agents determine this information without disclosing their valuations?
vX-share provides various desirable properties2.

Social-welfare-maximization The sum of all agents’ utilities is maxi-
mized. As a consequence, the good is sold to the agent that values
it the most.

1As a matter of fact, vX-share can also be applied to scenarios in which the seller has
several identical units for sale.

2We assume quasilinear utility functions, the private value model, and the existence
of trapdoor one-way permutations. Obviously, some properties hold because vX-share
emulates the Vickrey auction [Vic61].
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Individual rationality No agent will have a disadvantage from participat-
ing in the protocol. This now holds even with respect to information
secrecy (the revelation of private information might be a disadvantage).

Strategy-proofness There is no need for strategic behaviour by any of the
agents. They are best off by simply submitting their true valuations.

Full privacy No unnecessary information on any of the agents’ valuations
is revealed. The seller learns the identity of the buyer and both get
to know the selling price3. There is no third-party that learns any
information.

Correctness Every participant can verify that the outcome is determined
correctly. There is no risk of an insincere auctioneer. Together with
full privacy, this removes the two, generally accepted, major drawbacks
of Vickrey auctions (see Chapter 5).

Efficiency Each agent just needs to compute and broadcast three messages,
independently of the number of participants or possible prices (see Fig-
ure 6.5).

Besides secure auction protocols, the most far-reaching contribution of
this thesis is the establishment of a general connection between preference
aggregation and secure multiparty computation (MPC). Starting from the
three-layer model depicted in Figure 1.2, we analyzed the feasibility of ex-
ecuting mechanisms without a trusted mechanism infrastructure. We have
shown that this is generally possible when allowing intractability assumptions
(such as that a discrete logarithm is hard to compute). In the unconditional
model, when intractability assumptions can not be made, only very limited
mechanisms can be emulated by cryptographic protocols. Furthermore, the
unconditional model requires a broadcast channel and allows manipulation
by agents that have unlimited computing power. Of course, such agents are
not likely to exist. But nevertheless the unconditional model is important,
because it ensures that preferences of participants will never be revealed,
something that can not be guaranteed in the cryptographic model due to
constantly increasing computing power4.

On the basis of these observations and taking into account that there
is (yet) no efficient general MPC protocol, there is a broad spectrum of
future work. In particular, it would be worthwhile to construct protocols

3Negligible information is revealed to the winner if there are certain ties.
4It is debatable whether the revelation of votes of an election that happened decades

ago can pose a problem.
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Revelation to Adversaries weakly Bandw./

Protocol Price bounded unbounded1 robust Rounds Msgs. Comp.

Dutch 1st price — yes O(k) O(1) O(1)

dbs 2nd bh1(b) — yes O(nk) O(k) O(k)

ubs 2nd part. info. — yes O(n + k) O(k) O(k)

bbs 2nd part. info. — yes O(nk) O(k) O(k)

B-share 1st bhc+1(b) — no O(1) O(n) O(nk)

MB-share 1st price bhc+1(b) no O(n) O(n) O(nk)

YMB-share 2nd — bh1(b) no O(n) O(n) O(n2k)

vMB-shareINT uniform a everything yes O(n) O(n) O(n3k)

vMB-sharePRE uniform ab everything yes O(n) O(n) O(n2kT )

vMB-shareDET uniform c everything yes O(n) O(n) O(n3kM)

vMB-shareINT
pp uniform price, d bid stats.g yes O(n) O(n) O(n2k)

vMB-sharePRE
pp uniform price, db bid stats.g yes O(n) O(n) O(nkT )

vMB-shareDET
pp uniform price, e bid stats.g yes O(n) O(n) O(n2kM)

vX-shareINT uniform a everything yes O(1) O(1) O(n2k)

vX-sharePRE uniform ab everything yes O(1) O(1) O(nkT )

vX-shareDET uniform c everything yes O(1) O(1) O(n2kM)

vX-shareINT
pp uniform price, d everything yes O(1) O(1) O(nk)

vX-sharePRE
pp uniform price, db everything yes O(1) O(1) O(kT )f

vX-shareDET
pp uniform price, e everything yes O(1) O(1) O(nkM)

Messages and Bandwidth/Computation are measured per bidder.
n: bidders, k: prices/possible bids, M : units to be sold, T : maximum number of equal bids
Index “pp” denotes public price mode. Int, Pre, and Det are three methods to resolve ties (see Sec-
tion 6.7.3).

1 besides the information already revealed to bounded adversaries
a tie at (M + 1)st highest bid: reveals identity of one of (M + 1)st highest bidders to winners
b reveals equals bids to corresponding bidders
c tie at (M + 1)st highest bid: reveals number of tieing bidders and number of bidders with higher bids

to winners
d tie at (M + 1)st highest bid: reveals identity of one of (M + 1)st highest bidders
e tie at (M + 1)st highest bid: reveals number of tieing bidders and number of bidders with higher bids
f more precisely, the complexity is O(max(kT, n2))
g all bid amounts, but no information on who bid which amount

Table 7.1: Overview of proposed protocols
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that emulate the following example mechanisms fully privately, i.e. without
any trusted infrastructure.

Combinatorial auctions Since we found protocols that emulate (M +1)st-
price auctions, tractable instances of combinatorial auctions (e.g. multi-
unit auctions or linear-good auctions, see Section 3.3.3) are the next
logical step. There were recent efforts to design cryptographic proto-
cols for general combinatorial auctions [YS02, SY02]. However, these
approaches are not fully private and very inefficient.

Clarke tax mechanism The Clarke tax mechanism is applicable whenever
a group of agents has to make a global decision and side-payments are
possible. A classic example is the joint acquisition of a good such as a
street-light for neighbouring residents, a shared TV set in an apartment,
or the acquisition of a subsidiary by an association of companies. The
first protocol to emulate the Clarke tax mechanism was proposed in
[Bra03b].

Veto voting Such a protocol would only disclose if more than a fixed num-
ber of agents do not agree with a decision, but the identities of these
agents would remain secret. Clearly, this can be very desirable in some
scenarios.

Voting There are numerous voting procedures, such as majority voting,
Borda count, or vote by approval, that would benefit when votes would
not have to be revealed to a central institution. Moreover, voting proto-
cols could only yield the final result, if wished. E.g., a majority voting
protocol could only reveal who received the most votes but not dis-
close each candidate’s vote percentage (or only the winner’s if this is
desirable).

Due to the universality of mechanism design, it was recently applied to algo-
rithmic problems in a distributed setting, like finding the shortest path in a
computer network, task scheduling, or determining a maximum independent
set in a linear processor array [NR99]. Decentralized mechanisms that solve
these problems fully privately are certainly desirable. Concluding, we believe
that the proposed combination of cryptography and preference aggregation
will lead to more preferable decision protocols in a variety of application
fields.
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Appendix A

Cryptographic Background

Since 1976, cryptography has undergone a major revolution. After the sem-
inal paper by Diffie and Hellman [DH76], cryptography has grown from the
science of encrypting messages to the field now known as modern cryptography
[Gol97, BSW01, Sch96, MvOV96]. Modern cryptography is closely related
to complexity theory and includes techniques such as public-key encryption,
digital signatures, secret sharing, zero-knowledge proofs, multiparty compu-
tation, commitment schemes, and many more. This appendix will just briefly
explain two concepts: discrete exponentiation as a candidate for a one-way
function and commitment schemes.

A.1 The Discrete Logarithm Problem

One of the most vital concepts of cryptography is that of one-way functions.
A one-way function is easy to compute, but hard to invert. In [Sch96],
breaking a plate is given as an example of a one-way function in real life. It
is easy to smash a plate into thousands of tiny pieces. However, it is much
harder to put all pieces back together into a plate. Formally, f is a one-way
function if there is a deterministic polynomial-time algorithm that computes
f(x) whereas there is no such algorithm to compute x from f(x). As the
existence of one-way functions would imply P 6= NP , no function has been
proven to be one-way.

Besides the multiplication of large primes, exponentiation in certain
groups is a common (conjectured) one-way function. Multiplicative (sub-)
groups of finite fields1 or elliptic curve groups over finite fields are candidates
where the computation of the discrete logarithm is considered to be hard.

1Interestingly computing discrete logarithms in the Galois field GF (2n) seems to be
substantially easier than in residue class groups Zn.
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Figure A.1 visualizes that inverting the discrete exponential function might
be hard.
In the multiplicative group of a finite prime field Zp, the discrete logarithm
of ax mod p can be easily computed when a has low order. We could re-
quire a to be a generator or at least an element with very high order, but
this leaves the problem of finding such elements. Furthermore, it might be
a problem that not all discrete logarithms in this group have a solution and
that the product of two generators is not a generator as well. As a solution to
these problems, it has become common practice to work in a multiplicative
subgroup Gq of order q, where q is a large prime that divides p − 1. Every
element in Gq besides 1 generates the group, i.e., all elements have order q.
Gq is called a “simple group”. Elements of Gq can easily be found by com-
puting a(p−1)/q for an arbitrary a ∈ Z∗

p. A given element a is in Gq if aq ≡ 1
(mod p). When p− 1 = 2q, then Gq is the group of quadratic residues in Z∗

p.

Example: Let p = 11 and q = 5 (of course, in reality, the discrete logarithm
problem is only hard for very large primes). An arbitrary element of Gq can
be found by computing a2 for an arbitrary a ∈ Z∗

p, e.g. 22 = 4. As 4 generates
Gq, Gq = {40, 41, 42, 43, 44} = {1, 4, 5, 9, 3}

The discrete exponential function f(n) = gn can be efficiently computed
by applying the square-and-multiply algorithm. This technique builds upon
the fact that instead of multiplying g by itself n times, gn can be computed
by repeatedly squaring g and then multiplying g to the result. For example,

the computation of g10 =
(
(g2)

2
)2

· g · g needs five modular multiplications

instead of ten when using the naive approach. Generally, the algorithm
requires O(log n) multiplications to compute gn.

Numerous algorithms to compute discrete logarithms in finite groups have
been proposed [Sch96]. The most important, besides the well-known baby-
step giant-step algorithm (that requires

√
p operations), is the Silver-Pohlig-

Hellman algorithm. This algorithm’s complexity is polynomial in q (p− 1’s
largest divisor). This is one of the reasons why we required q to be a large
prime above.

Another reason is that the so-called decisional Diffie-Hellman problem
is not intractable if the group order has small prime divisors. Hardness of
the decisional Diffie-Hellman problem is essential for many security proofs
(e.g. Theorem 6.1). The problem is to distinguish between the two distribu-
tions 〈ga, gb, gab〉 and 〈ga, gb, gc〉 where a, b, c are elements of a cyclic group
generated by g.
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Figure A.1: Discrete exponential function: f(n) = 99n mod 101

A.2 Commitment Schemes

A Commitment scheme can be described as a sealable opaque envelope. The
envelope’s content cannot be changed once it has been sealed (even not by
the owner) and cannot be read until the envelope is opened by the owner.
Please note that conventional encryption techniques do not necessarily fulfill
these demands because different keys could decrypt a given ciphertext into
different plaintexts.

Commitment schemes are usually based on one-way functions like mod-
ular exponentiation or integer multiplication. An efficient way to implement
bit commitment, i.e. commitment to a single bit, is to use a cryptographic
one-way hash function f(·) (e.g. SHA-1 or MD5), compute and send f(b|r)
where b is the committed bit and r a random value. The commitment can
be opened by sending (b|r). Collision-freeness prevents a (computationally
bounded) agent from changing his commitment.

There are commitment schemes that provide unconditional privacy of
the committed value, i.e., even an computationally unbounded adversary is
incapable of revealing the secret. However, the committed value can be forged
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by the committer if he possesses unbounded computational power. Generally,
it has been shown that commitment schemes that are unconditionally binding
and unconditionally private are impossible.

A well-known commitment scheme works as follows. Let Gq be a multi-
plicative group as described in the previous section. Let g be an arbitrary
element of Gq. An agent can commit to a secret s ∈ Gq by choosing t ∈ Zq

and publishing E = sgt. The commitment value E reveals absolutely no in-
formation about the secret s (it is uniformly distributed in Gq for randomly
uniformly chosen t). The agent can open the commitment by providing s and
t. He is incapable of forging the commitment unless he can compute logg s
which is intractable for sufficiently large primes p and q.



Appendix B

Implementation

During the work on this dissertation, two software systems were implemented.
They roughly relate to both parts of this thesis as the first system was imple-
mented to investigate strategic behaviour in various auction types whereas
the second system is an implementation of early cryptographic auction pro-
tocols presented in Chapter 6.

B.1 ABC (Auction-based Contracting)

ABC (see Figure B.1) is a multiagent task-assignment environment that has
been extensively studied in [BW99, BW00a, BW00b, BBW00] and later has
been used to evaluate antisocial agents [Bra00, BW01b, BW01a]. The basic
framework works as follows. We consider a group of agents that contains two
different types of business partners. Contractors CRi (i = 1, 2, . . . ,m) who
offer a unique task i and Contractees CEj (j = 1, 2, . . . , n) who are willing
to execute tasks. A contractor CRi is capable of executing task i by himself
for his prime costs C[CRi]. A contractee CEj is able to do each task i for
C[CEj, i]. We assume that contractees can accomplish tasks cheaper than
contractors by defining two intervals.

∀i : C[CRi] ∈ [crmin, crmax]

∀j, i : C[CEj, i] ∈ [cemin, cemax]

cemax ≤ crmin

This ensures that both, contractors and contractees, are interested in signing
contracts with each other. Pursuing conflicting goals, both types of agents
are “true capitalists”: Contractors intend to pay the lowest feasible price for
a task, while contractees try to earn as much money as possible.
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An experiment consists of a fixed number of rounds. During each round,
each contractor offers his task one after another, where the contractor se-
quence randomly varies from round to round. Applying an auction mech-
anism (English, Dutch, or Vickrey) the agents then come to an agreement
which contractee will execute the task. A contractee is only able to accept
one task per round. For this reason, two basic types of contract obligation
are considered: full commitment (a contractee has to stay with the first deal
he made) and leveled commitment (contractors can breach contracts by pay-
ing a fine to the concerning contractor CRi). Different types of fines, e.g. a
fraction of the contract value, are possible. Simple, adaptive strategies for
different types of auctions were evaluated in this scenario.

Figure B.1: Screenshot of ABC
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Figure B.2: Screenshot of CAP

B.2 CAP (Cryptographic Auction Protocol)

CAP (see Figure B.2) is an implementation by Willy Chen that includes auc-
tion protocols B-share, MB-share, and YMB-share (Sections 6.3 – 6.5)
and a graphical user interface. The reason for implementing these protocols
was to measure their practical performance in a realistic network environ-
ment. It turned out that despite a computational/bandwidth complexity
which is quadratic in the number of bidders, YMB-share is feasible for a
moderate number of bidders. In one of the experiments, a Vickrey auction
with 20 bidders and 200 possible bids was resolved in less than eight hours
in a network of consumer computers with mediocre computing power. This
result is of particular convenience as the newer protocol vX-share is signifi-
cantly faster. For further information regarding the implementation, consult
[Che02].
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