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Kurzfassung

Auktionen spielen eine wesentliche Rolle im elektronischen Handel. Regie-
rungen versteigern Lizenzen fiir Funkfrequenzen (wie kiirzlich die UMTS-
Mobilfunklizenzen), Millionen Bieter nehmen an Internet-Versteigerungen
teil und Aufgabenverteilung in Multiagentensystemen sowie Beschaffung von
Waren oder Dienstleistungen fiir Unternehmen erfolgen héufig durch Auktio-
nen. Diese Arbeit gliedert sich in zwei Teile. Wéahrend sich der erste Teil mit
strategischem Bietverhalten beschéftigt, werden im zweiten Teil Aspekte der
Sicherheit und des Datenschutzes in Auktionen behandelt.

Es gibt Auktionsmechanismen, die bewiesenermaflen zu einer Giiterver-
teilung fithren, die den Nutzen aller beteiligten Personen (K&ufer und Ver-
kédufer) maximiert, und die strategisches Bieten iiberfliissig machen. Um diese
Eigenschaften zu garantieren, werden jedoch einschridnkende Annahmen im
zu Grunde liegenden theoretischen Modell gemacht. So werden beispielsweise
Absprachen zwischen Bietern (sog. Kollusionen) oder betriigerische Auktio-
natoren nicht betrachtet. In der vorliegenden Arbeit wird diese Liste um
sog. ,antisoziale“ Agenten ergénzt. Das Ziel dieser Agenten ist, neben der
Maximierung ihres eigenen Nutzens, den Nutzen ihrer Konkurrenten zu mini-
mieren. Es werden optimale Bietstrategien fiir antisoziale Agenten prisentiert
und die Unmoglichkeit der Konstruktion eines Auktionsmechanismus gezeigt,
der oben genannte Grundeigenschaften in Gegenwart von mindestens einem
antisozialen Agenten aufweisen kann.

Im zweiten Teil dieser Arbeit wird der Schutz von verdeckten Geboten
(beispielsweise bei Ausschreibungen) untersucht. Ublicherweise wird die Ver-
traulichkeit von verdeckten Geboten durch die Zuhilfenahme eines Dritten,
dem Auktionator, sicher gestellt. Die Richtigkeit des Auktionsergebnisses und
der tatséchliche Schutz der Gebote hingen allerdings vollkommen von der
Vertrauenswiirdigkeit dieser Instanz ab. Der Hauptbeitrag dieser Dissertati-
on ist die schrittweise Entwicklung von verteilten Protokollen, die Auktions-
mechanismen nachbilden ohne sich auf vertrauenswiirdige Instanzen zu stiit-
zen. Dies wird unter anderem mit kiirzlich entwickelten, kryptographischen
Verfahren wie ,,multiparty computation“ und der Grundidee, die Bestimmung
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des Auktionsergebnisses auf die Bieter zu verteilen, erreicht. Die vorgestellten
Protokolle sind sicher, unabhéngig davon wie viele Bieter ihr Wissen teilen. In
einigen konnen die Gebote selbst mit unbeschranktem Rechenaufwand nicht
aufgedeckt werden.
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Abstract

Auctions have become a major phenomenon of electronic commerce. Gov-
ernments use auctions to sell spectrum licenses, millions of users trade goods
in Internet auctions, and task assignment in multiagent systems as well as
procurement in the “real world” is handled via auctions. The contribution
of this dissertation is two-fold. The first part addresses strategic bidding
whereas the second part deals with privacy issues.

There are auction mechanisms that have been proven to lead to alloca-
tions of goods that maximize utility among participants (bidders and sellers)
and to remove counter-speculation in the bid-preparation process. However,
the theoretical model makes several restrictive assumptions to achieve those
properties. For example, agreements between bidders (“bidder collusion”) or
untruthful auctioneers are not considered. This thesis extends this list by
adding the notion of “antisocial” agents, i.e., agents that intend to maximize
their own utility while minimizing their competitors’ utilities. We present
optimal antisocial bidding strategies and show that it is impossible to con-
struct an auction mechanism that provides the properties mentioned above
in the presence of at least one antisocial agent.

In the second part of this thesis, the privacy of sealed-bid auctions is inves-
tigated. Traditionally, privacy is obtained by consulting a trusted third-party,
the auctioneer. However, the correctness of the outcome and the privacy of
bids completely depend on the trustworthiness of the auctioneer. The major
contribution of this dissertation is the incremental development of distributed
protocols that emulate auction mechanisms without relying on any trusted
party. This is achieved by applying recently developed cryptographic tech-
niques of secure multiparty computation and distributing the determination
of the auction outcome on bidders. The proposed protocols are secure despite
any collusion of bidders. Some of them even provide partial privacy against
computationally unbounded adversaries.
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Chapter 1

Introduction

Auctions have become a major phenomenon of electronic commerce. In con-
trast to popular belief, auctions have not been invented for the purpose of
entertainment and excitement alone. They represent mechanisms to solve a
crucial economic problem. A person that wants to gainfully sell a good faces
two problems:

e To whom does he deliver the good?

e And how much should he demand for it?

The assignment problem and pricing problem arise because there is a knowl-
edge asymmetry between buyers and the seller. Each buyer has some indi-
vidual information on a good’s value but neither he nor the seller know the
exact valuations of other potential buyers. Even in the simplest case (the so-
called “independent private-value model”; see Section 2.1.1), when a buyer’s
valuation does not depend on others’ valuations, it is a non-trivial task to
determine the appropriate price of a good. It may seem straightforward and
optimal to have each potential buyer submit his valuation, award the good
to the bidder who submitted the highest bid, and make this bidder pay the
amount that he bid. This mechanism is called “first-price sealed-bid” auction
(see Section 2.2.2). The main problem with this type of auction is that it is
not a bidder’s best strategy to submit his true valuation. In fact, as we will
see in Section 3.3.1, bidders are best off bidding somewhat less than their
private valuation, depending on their estimation of other bidders’ valuations.
It is obvious that this uncertainty may lead to sub-optimal outcomes. The
field of mechanism design provides other, more sophisticated, mechanisms
that solve this and various other problems (see Chapter 3). Giving up the
private-value model, selling several goods at once, or allowing more than one
seller obviously makes the task of finding an appropriate mechanism even
more complex.
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In short, auctions are mechanisms that determine the optimal pricing of
goods while assigning the goods to buyers who value them the most. From
an economic point of view, auctions thus belong to the field of pricing mech-
anisms. According to [Cas67] there are three common ways of pricing goods:

1. fixed pricing
2. private treaty pricing (1 : 1 bargaining)

3. auctions (1 :mn, ie. one seller and many buyers, or m : n, i.e. many
sellers and many buyers)

Historically, bargaining is the oldest form of pricing and is still common
in emerging countries and even in advanced societies at pre-retail level. It
turned out that negotiating each price one-on-one is rather impractical for
larger businesses. Fixed or “take-it-or-leave-it” pricing is much more con-
venient when some knowledge on the buyers’ valuations is known to the
seller. On the other hand, fixed pricing is unsuitable when the seller has
little, or no knowledge at all, about these valuations. The only way for con-
sumers to express their preferences is to either buy or to refuse buying. The
seller can then make a price adjustment based on these observations, result-
ing in another “take-it-or-leave-it” offer. Due to this inflexibility, auctioning
off hard-to-value goods like art, antiques, and ground estates became pop-
ular. However, with the extension from classic marketplaces to corporate,
national, and world-wide businesses, auctions became infeasible for the sell-
ing of mass products. As a consequence, fixed pricing has risen to the most
popular pricing method in developed economies. Yet, with the emergence of
large computer networks like the Internet, suddenly the logistical problems
of large-scale auctions became tractable. The success story of ebay, amazon,
and many other virtual marketplaces began.

In a simplified way, Figure 1.1 illustrates the flexibility of dynamic pric-
ing (bargaining and auctions) in contrast to fixed pricing!. The variety of
economic transactions that are conducted through auctions today is huge.
Governments sell treasury bills, foreign exchange, mineral rights, radio spec-
trum rights, and firms to be privatized via auctions. Many types of contracts
are awarded by procurement (reverse) auctions. Ground estates, houses, agri-
cultural produce, livestock, art, antiques, and collectibles are commonly sold
by auction. This list could be endlessly extended by the whole spectrum of
goods that are sold in Internet auctions since the late nineties.

In reality, dynamic pricing can flexibly react on more factors than just varying pro-
duction cost, e.g. consumer demand or the underlying market structure.
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————————————————————————————————————————————— fixed price

dynamic price
.- production cost

> time

Figure 1.1: Fixed vs. dynamic pricing

1.1 A Brief History of Auctions

One of the earliest reports on auctions states that marriageable women have
been sold in Babylon around 500 B.C. via auctions. Interestingly, bidding
sometimes started at a negative price, meaning that “buyers” could receive
a monetary compensation for marrying supposedly unattractive women. In
ancient Rome, auctions were used for commercial trade in a building called
“atrium auctionarium”. Unfortunately, little is known about the auction
system used by the Romans. However, it is believed that they used some
type of ascending English auction (see Section 2.2.1) as the word “auction” is
derived from the Latin word “augere” which means “to increase”. One of the
most bizarre and biggest auctions to date, was held by the Praetorian Guard
after having killed the previous emperor Pertinax. Literally, the entire Roman
empire was on auction in 193 A.D. Didius Julianus outbid all his competitors
and the guard declared him the new emperor. After being in power for just
two months he was put to death by the legions of his rival Septimius Severus
who gained power and seized the capital. This tragic event can be explained
by an effect called the “winner’s curse” (see Section 2.2.2) [KT01].

After at least hundred years of increasing occurrences of auctions in Great
Britain, the most-prominent classic auction houses Sotheby’s and Christie’s
were established in 1744 and 1766, respectively. In early America, auctions
became popular for selling second-hand household furnishings, farm utensils,
domestic animals, and, unfortunately, slaves. The nineteenth century saw
the rise of fruits, vegetables, and flower auctions in the Netherlands and fish
auctions in Germany.

Today, more than 62 million users are participating in auctions conducted
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by the world’s largest Internet auction house ebay alone (Table 1.1)%. Fur-
thermore, there are countless business-to-business (B2B) marketplaces and
procurement auctions.

Registered Users 62, 000, 000
Listings 638, 000, 000
Gross Merchandise Sales (per day) $ 50,000, 000
Net Revenue $ 1,214,000, 000

Table 1.1: ebay company information 2002 [eba03]

1.2 Preference Aggregation

From an abstract point of view, auctions can be seen as a special case of
preference aggregation mechanisms. Whenever a group of agents intends to
come to a decision that affects the entire group, they need to aggregate their
individual preferences?, i.e., they have to compromise in order to find global
preferences. The aggregation of conflicting preferences is one of the central
topics of economics and multiagent systems. T'wo major problems have been
considered in this context so far [MWG95, Var99].

Social choice problem The problem is to find a function that “fairly” ag-
gregates conflicting preferences. The most important theorem in this
context, Arrow’s impossibility theorem?, states that it is impossible
to find such a function when preferences are unrestricted. When only
allowing restricted preferences like so-called single-peaked preferences,
fair social choice functions can be specified.

Mechanism design problem In order to be able to apply a social choice
function, agents need to reveal their preferences. The mechanism design
problem is to construct mechanisms that urge self-interested agents to
reveal preferences truthfully. A mechanism is said to implement a social
choice function if it leads to the same outcome as the social choice func-
tion and agents are best off submitting their true preferences. Similarly

2Interestingly, Germany is the fastest-growing market for ebay world-wide (including
the U.S.).

3unless the group is led by a dictator

4As a consequence of Nobel Prize Laureate Kenneth J. Arrow’s celebrated theorem,
there are no sufficiently fair voting systems with more than two candidates.
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to Arrow’s theorem, the Gibbard-Satterthwaite theorem (Theorem 3.2)
states the impossibility of finding such a mechanism for general prefer-
ences. However, there are solutions for restricted sub-domains, e.g. the
Clarke tax mechanism for quasilinear preferences (see Section 3.2).

Traditionally, the existence of a central institution that receives all prefer-
ences and resolves the mechanism is assumed. In auctions, this party is
usually called the auctioneer. However, as there is no reason to fully trust
this third-party, neither the correctness of the result nor the privacy of the
individual inputs can be guaranteed. Especially, incentive-compatible, i.e.
truth-promoting, mechanisms might deter agents from participating as they
require the submission of true valuations. Confidentiality of these valuations
is essential for future negotiations and its revelation can be disastrous. This
leads to a specification of the “preference protection problem”.

Preference protection problem The problem, introduced in this thesis,
is to enable the correct execution of a mechanism without trusted third-
parties while preventing agents to learn preferences of other partici-
pants.

Figure 1.2 shows the resulting three-layer model. A protocol emulates a
mechanism which in turn implements a social choice function.

Protocol
emulates

Mechanism
implements

Social Choice Function

1 Preferences [ Preferences [

Figure 1.2: A three-layer model of preference aggregation
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In the following, the abstract notions and problems described so far will
be broken down to the case of single-unit auctions. First, the social choice
problem for such auctions can be specified as follows. In a group of agents
that have differing values for a good to be sold, to whom should the good be
awarded? Preferences are severely restricted because a bidder is only able to
evaluate a single outcome: the good being awarded to him. For this reason,
the social choice problem can easily be solved by awarding the good to the
agent who values it the most®. In order to identify the agent who values the
good the most, agents need to reveal their individual values. So far, agents
have no incentive to reveal their values truthfully. In fact, agents are best
off submitting a bid as high as possible. The mechanism design problem
is to make it an agent’s optimal strategy to submit his true private value.
This can be achieved by assigning payments to the agents that are based
on their submitted bids. It turns out that assigning a payment that equals
the second highest bid to the agent who values the good the most, the so-
called Vickrey auction, is a very strong mechanism: An agent is always best
off submitting his private value, no matter what all other agents do. The
preference protection problem for auctions, whose solution is the main goal
of this thesis, can be stated as follows:

Is there an interaction protocol that yields the outcome of the
Vickrey auction without requiring agents to reveal their valuations
to anybody?

Usually, agents submit their values in a closed envelope (as “sealed bids”) to
the auctioneer. After having opened all envelopes, the auctioneer is able to
compute the auction outcome. This approach is very critical for two reasons:
The confidentiality of bids remains in the hands of the auctioneer and there
is no way for the auctioneer to prove the correctness of the outcome (without
revealing all bids). The preference protection problem is addressed in Chap-
ters 5 and 6. Protocols in Section 5.3 are based on the incremental opening of
commitment values whereas Chapter 6 introduces “secure multiparty compu-
tation”, a sub-field of cryptography, in order to solve the preference protection
problem.

Figure 1.3 shows the embedding of this work within classic fields of com-
puter science and economics. There are numerous other research fields that
investigate aspects of (electronic) auctions like operations research, data min-
ing, or marketing which are not covered in this thesis.

5As we will see in Section 3.3.3, computational problems can arise when determining
the winners in combinatorial auctions, however.
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Computer
Science

Economics

Multiagent

Social
Rational | Choice
Decision | Theory

Making
s

THESIs) Design

Secure
Multiparty
Computation

Micro—
Economics

Cryptology

Figure 1.3: Related Fields

1.3 About this Thesis

This dissertation consists of two parts. The first part addresses strategic
bidding and introduces antisocial agents whereas the second part deals with
privacy issues and contains the secure auction protocol VX-SHARE as a high-
light. The remainder of the thesis is structured as follows.

Chapter 2 The second chapter defines basic models that enable the the-
oretical analysis of auctions and explains the most common auction

types.

Chapter 3 This chapter introduces the economic fields of social choice the-
ory and mechanism design. It explains how the Gibbard-Satterthwaite
impossibility theorem is classically circumvented by assuming quasilin-
ear preferences and proposes the Clarke tax mechanism as a solution
to the mechanism design problem in this context. While Section 3.1,
3.2, and 3.4 compactly summarize the relevant economic literature, Sec-
tion 3.3 represents a consequent application of these insights to the case
of auctions.
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Chapter 4 After introducing several well-known examples of deceptive be-
haviour in auctions like bidder collusion, shills, and sniping, the novel
notion of “antisocial” agents is proposed. In the remainder of this chap-
ter, the effects of this antisocial attitude in auctions are investigated
theoretically and practically. Some of the obtained results have been
previously published in [Bra00, BW01b, BW01a].

Chapter 5 The second part of this thesis begins by motivating the need for
privacy protection in auctions and states the two main desiderata for se-
cure auction protocols: privacy and correctness. The key observation of
Section 5.2 is that no third-party can be fully trusted. For this reason,
auctioneers are completely omitted and the determination of the auc-
tion outcome is designated to bidders themselves. Section 5.3 presents
our first approach to provide privacy without trusted third-parties. The
classification of collusion forms and the three partial revelation proto-
cols have been published in [Bra01].

Chapter 6 This chapter establishes a general connection between preference
aggregation and secure multiparty computation which is the most far-
reaching contribution of this thesis [Bra03c, Bra03b]. For this purpose,
essential properties like weak robustness and full privacy are introduced.
Moreover, several concrete secure auction protocols that do not require
any trusted third-parties are proposed. The most efficient protocol,
VvX-SHARE, privately computes Vickrey auction outcomes in a constant
number of rounds. The protocols have been previously published in
[Bra02a, Bra02b, Bra03a|. At the end of Chapter 6, a choice of existing
secure auction protocols is briefly discussed.

Appendices Two of the most important underlying cryptographic concepts
of the proposed protocols are explained in Appendix A: the discrete
exponential function and commitment schemes. Appendix B briefly
introduces two software programs that were implemented during the
work on this dissertation.
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Chapter 2

Auctions

In order to enable the theoretical analysis of auctions, the various aspects
of auctions have to be captured in models. The essential part of modeling
is how bidders value goods and how they appraise money. This chapter
explains the three basic value models: private, common, and correlated value,
and the three basic agent models: risk-neutral, risk-averse, and risk-seeking.
A presentation of the four most common auction types (English, 1%-price
sealed-bid, Vickrey, and Dutch) is followed by short descriptions of three
popular contemporary auction formats: consumer Internet auctions, B2B
reverse auctions, and spectrum license auctions.

More extensive overviews are presented in [Kle99, Wol96]. The classic
results can be found in [MM87, MW82, Mil89]. A chapter about auctions in
the context of game theory is included in [Ras95].

2.1 Auction Models

It is often assumed that an agent’s utility is linear in its wealth. Such agents
are called “risk-neutral”. However, in practice, it can be observed that agents,
in particular humans, have diminishing value of money. They are “risk-
averse”. The reader can quickly check if he is risk-averse by asking himself
whether he would prefer a guaranteed amount of $ 1,000,000 over a fifty-fifty
chance of getting $ 2,000,000. Risk-averse agents prefer the former, whereas
risk-neutral agents are indifferent. There would be no insurance companies
if most of us were not risk-averse. The categorization can be completed by
introducing “risk-seeking” agents. These agents would choose the fifty-fifty
chance of receiving $ 2,000,000 in the example above. Figure 2.1 shows the
agents’ utility functions subject to their wealth. Risk-neutral agents have
linear utility functions, while the utility functions of risk-averse and risk-
seeking agents are concave and convex, respectively.

11
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utility
A

risk—neutral

—————— risk—averse

- risk—seeking

» wealth

Figure 2.1: Risk models

As mentioned in Chapter 1, a key feature of auctions is the presence of
asymmetric information. This asymmetry can be modeled in several ways
to capture different types of goods to be sold. We will distinguish between
the value and the valuation of a good in the following. An agent’s value of
a good exactly prescribes how much the good is worth to him. As the agent
might not know the true value of a good (while bidding in an auction), he
needs to compute an estimated value: his valuation.

The first two value models presented in the following are special cases of
the third general model. In the remainder of this thesis, we will assume the
private-value model and risk-neutral agents unless otherwise noted.

2.1.1 Private Values

In the private-value model, bidders have private, independent valuations of
the object to be sold. They do not have to estimate their values. Thus,
values and valuations are equal in this model. An example is the selling of a
piece of cake that will be eaten after the auction. The good’s purpose is to be
consumed by the buyer. He does not intend to resell it to other bidders. As
the value is independent of other bidders’ values, knowing all other values in
advance will not change one’s own valuation. However, this knowledge might
likely affect a bidder’s strategy (depending on the auction type). Figure 2.2
illustrates this model by depicting three bidders who all precisely know how
much the good is worth to them (v;).
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Figure 2.2: Private independent values model

2.1.2 Common Value

In the common-value model, the good to be sold has exactly the same value
to all bidders. However, the bidders have differing valuations depending on
private information that is available to them. To give an example, the selling
of a jar filled with coins belongs to this category. Obviously, the real value
is identical for all bidders. However, each bidder has a different valuation
based on his private estimation. These estimations are based on internal
information and so-called “signals” that are available to subsets of agents.

In the setting of Figure 2.3, the good has identical value v to all three
agents. Yet, all bidders have their own valuation functions 9;(-) subject to
internal knowledge and signals. Bidder 1 has access to signal s; and s,,
whereas bidder 2’s valuation function is founded on signal s, alone. The
third bidder has no access to any of the signals.

The auctioning of treasury bills or oil tracts are well-known examples of
common-value auctions. In a famous experiment [BS83], jars filled with coins
have been auctioned off to students at Boston university. The secret value
of each jar was exactly $ 8. After a series of auctions, it turned out that the
average bid was $ 5.13. The average winning bid, however, was $ 10.01. It
follows that the average winning bidder lost money by winning an auction.
This important problem is called “winner’s curse”. All reasonable auction
types have in common that the bidder with the highest valuation wins the
auction. However, the true value of the good, which is equal to all bidders,
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<

Figure 2.3: Common-value model

statistically lies somewhere in the middle of the different valuations. As a
consequence, the bidder that overestimated the good the most is declared the
winner. He likely paid too much for the good which in turn leads to bidders
biasing their bids downwards. The strategic implications of the winner’s
curse are far-reaching and hard to analyze [LKO02]. The winner’s curse is
made responsible for low profits of oil and gas corporations on drilling rights
in the Gulf of Mexico that have been sold in auctions [Ras95].

2.1.3 Correlated Values

Finally, the correlated value model is a general model that includes the pre-
vious two as special cases. Bidders have private estimations regarding their
real values. These values may differ and can depend on other bidders’ values.
The correlated-value model is the one most likely to come across in real-world
auctions. However, auction theory mostly uses the private-value model (and
sometimes the common-value model) as it simplifies theoretical analysis.
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2.2 Auction Types

2.2.1 English

The English or “ascending open-cry” auction is by far the most prominent
auction type. The price is raised successively until only one bidder remains.
This bidder wins the good at the final price. There are various ways to
conduct English auctions. The seller can announce prices, or the bidders
can call out prices themselves. Moreover, many different realizations of bid
increments are possible. The most common variation used in auction theory
is the so-called Japanese auction. The price rises progressively while bidders
quit the auction one after another. Bidders can observe when someone quits
and no bidder is able to re-enter the auction.

2.2.2 15-Price Sealed-Bid

In a 1%-price sealed-bid auction, each bidder independently submits a single
sealed bid. The bidder that submitted the highest bid is awarded the good
and pays the amount that he specified in his bid. This type of auction is
frequently used in procurement scenarios where competing contractees sub-
mit bids and the lowest bidder is awarded the contract. More generally, in
a regular auction there is one seller and many buyers whereas in a so-called
reverse auction there are many sellers and one buyer.

The winner’s curse problem that we mentioned in Section 2.1.2 appears in
another form in 1%%-price sealed-bid auctions, even in the private-value model.
The winner of an auction can easily figure out that he could have won the
auction by bidding less, namely slightly more than the second highest bid
(which is unknown to him).

2.2.3 Vickrey

The Vickrey or “2"-price sealed-bid” auction was proposed by Nobel Prize
Laureate William S. Vickrey in 1961 [Vic61]. It is almost identical to the
previous auction type. The only difference is that the winning bidder has to
pay the amount of the second highest bid!'. Figure 2.4 shows how the Vickrey
auction works (discrete bars represent bids).

In the private-value model, the Vickrey auction has a dominant strategy,
which means that if an agent applies this strategy he receives the highest
possible payoff, no matter which strategies are used by other bidders. The

'If two or more bidders tie for the highest bid, the winner is picked at random and has
to pay the amount of his bid (because it is equal to the second highest bid in this case).
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SELLING PRICE
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Figure 2.4: An example Vickrey auction

dominant strategy is to bid one’s true valuation of a good. Even if an agent
knows all the other bids in advance, he still does best by bidding his private
value. This leads to a so-called “dominant-strategy equilibrium” (to be for-
mally defined on page 29): All agents are best off using the same strategy?.
It can easily be seen by case analysis why bidding the private value is an
optimal strategy.

THEOREM 2.1 (DOMINANT STRATEGY IN VICKREY AUCTIONS)
Assuming the private-value model, it is a dominant strategy to bid one’s true
valuation of a good in Vickrey auctions.

Proof: Given two agents, A and B, and their corresponding private values
v, and vy, the profit or utility of each agent can be written as a function of

2If bidders don’t have to estimate their private values, the dominant strategy equilib-
rium exists independently of risk neutrality [Ras95].
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submitted bids (b, and by).

—b, ifb, >0 ifb, >0

ua(baa bb,Ua) = t ’ 1 “= ub(baabbavb) = : 1 “="
0 if bagbb Ub—ba if bagbb
(2.1)

We consider agent A and investigate the possible profits he would make by
not bidding his private value?. It suffices to model only one opposing agent
B representing the entire competition because A only cares whether he wins
or loses. He does not draw distinctions between his fellow bidders.

If A bids less than his private value (b, < v,) there are three subcases
conditional on agent B’s bid b,. (The outcome that would have occurred if
A had bid v, is displayed at the top of figures. The outcome shown at the
bottom of figures relates to the case in which he deviates from the dominant
strategy?.)

i) by < by, < v,: A wins the auction, but does not make more profit
then the profit he would have made when bidding v,, because the price
remains b, and his profit is still v, — b.

A’s profit

b

a
A’s profit

ii) by < by < v,: A loses the auction, instead of winning it by bidding v,,.
If b, = by, he might win the auction but does not make more profit
than when bidding v,,.

A’s profit

e
b, v
| \
\

a

Y

| |
b

a

.

"B’s profit"”

3There are certainly shorter proofs for this theorem, but case vi) of the following case
analysis is essential for introducing antisocial bidders in Chapter 4.

4In the figures, B’s profit is in quotation marks because this only marks his profit if he
bid his private value. The proof, however, works no matter which strategy B adopts.
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iii) b, < v, < by: B wins the auction and has to pay less money than if A
had bid v,.
"B’s profit"
N
v ‘t‘)b
\

a
| \

y

"B’s profit"
If A bids b, > v, the following cases describe the resulting situations.

iv) b, < v, < b,: A wins, but has to pay the same amount of money (by)
that he would have paid by bidding v,.
A’s profit

A’s profit

V) v, < by < b,: A wins, but has to pay more than the good is worth to
him, i.e., he is losing b, — v,. If b, = by, he might lose the auction.
"B’s profit"
N
b,
\

a

v
\

y

|
b

a

.

A’s loss!

vi) v, < by < by: A loses and reduces B’s profit by b, — v,.

"B’s profit"
Vd bb
1 ‘ ‘ | .
b'd

"B’s profit"



2.2. AUCTION TYPES 19

Concluding, bidding anything else than v, cannot yield more profit than
bidding the true valuation v,. (I

Obviously, this extremely simplifies the bid preparation, due to the ab-
sence of wasteful counter-speculation which is required for example in 1%¢-
price auctions. Surprisingly, the Vickrey auction is rarely used in practice.
Reasons for the Vickrey auction’s sparseness will be given in Chapter 5.

Similar to the 1%%-price sealed-bid auction, the Vickrey auction can be
used as a reverse auction, e.g. to assign tasks. Contractees submit bids that
indicate how much money they want to receive for accomplishing the task.
The cheapest contractee wins the auction and receives the amount submitted
by the second cheapest bidder.

In the private-value model, the Vickrey and the English auction are strate-
gically equivalent, i.e., there is a mapping from Vickrey auction strategies to
English auction strategies and vice versa (see Table 2.1). Bidding b in a Vick-
rey auction and “bidding as high as 0” in an English auction yield exactly the
same outcome. This only holds in the private-value model as bid information
revealed during an English auction affects bidders’ strategies. Bidders tend
to bid more in English auctions.

2.2.4 Dutch

In a Dutch auction, the auctioneer announces a decreasing bid starting with
the highest possible price. The price decrease can happen continuously or in
discrete intervals. The first bidder that stops the auction by expressing his
willingness to pay is awarded the contract for the amount of the actual bid.
The Dutch auction’s name originates from the selling of Dutch flowers where
an electronic device with buzzers connected to a clock is used to implement
the Dutch auction mechanism. Fish are sold in Israel in a similar way, as is
tobacco in Canada. Dutch auctions are particularly suitable for perishable
goods that lose value during the auction®. [Wol96] describes an interesting
form of the Dutch auction “in disguise” that is used to sell clothes in the
United States. Items are sold at a fixed price minus a discount that depends
on how many weeks an item is on the shelf. Thus, the price constantly
decreases (until some minimum price is reached).

Interestingly, it turns out that the Dutch auction and the 15*-price sealed-
bid auction are strategically equivalent, i.e. the Dutch auction generates ex-
actly the same outcome as the 1'-price sealed-bid auction. This holds in-
dependently of the assumed value model. The continuous price decrease

5Obviously, this is not covered by the theoretical value models described at the begin-
ning of this chapter.
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reveals no information that bidders could use to update their valuations and
the highest bidder wins the auction.

Figure 2.1 summarizes the equivalences of the presented auction types.
Auction types listed in the same row are strategically equivalent in the given
value model. The 2"d-price Dutch auction (see page 79) is listed in brackets
because it is not used in practice (as far as the author knows). Due to these
equivalences, we will use the term “I%*-price” auctions for Dutch and 1%-
price sealed-bid auctions, and “2"-price” auctions for English and Vickrey
auctions.

Value model || Sealed-bid Ascending Descending

any 18-price ~ — Dutch

private-value || Vickrey English (2"_price Dutch)

Table 2.1: Strategic equivalences of major auction types

2.3 Contemporary Auctions

In recent times, the rise of computers and the Internet gave birth to countless
virtual marketplaces and modern auction sites. Besides well-known consumer
Internet auctions, a vast amount of goods and services is sold in B2B reverse
auctions. Recently, the selling of next generation mobile phone spectrum li-
censes via auctions across Europe gained much attention. Moreover, auctions
are used to sell electrical power (on a daily basis in the United Kingdom),
treasury bills, or oil field drilling rights.

2.3.1 Consumer Internet Auctions

Since the formation of ebay in 1995, various Internet auction houses attract
millions of users world-wide. The type of articles to be sold ranges from CDs
and mobile phones to cars and pieces of real estates on the moon. English
auctions are predominantly used by Internet auction houses, though there
are subtle differences in the particular auction rules. Some auction houses
(e.g. ebay) allow the submission of bids until some pre-determined point of
time whereas others (e.g. amazon) only stop the auction when no bid has
been submitted for a certain period of time. The former seemingly attracts
a phenomenon called “sniping” (see Section 4.1.2).
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There are two interesting additions that have recently been made to
ebay’s auction rules. The first is the disposition of “bidding agents”,
i.e. agents that keep raising one’s bid if necessary until a private value that
can be specified by the user is reached. This removes an interested bidder’s
obligation to constantly monitor an auction and adjust his bid accordingly.
The following excerpt explains what happens if all participants are using
bidding agents.

“From a game theoretic point of view, the ‘agents’ in traditional
Internet auctions convert the auction protocol from an English
auction to a Vickrey auction: the participant with the highest
willingness to pay gets the item at the price of the willingness to
pay of the second highest participant. This is an interesting real
world manifestation of the revelation principle [Theorem 3.1]. It
states that any outcome that can be supported in equilibrium
via a complex protocol can be supported in an equilibrium via a
protocol where the agents reveal their types truthfully in a single
step. The proof is based on having the new protocol incorporate
a virtual player for each real world participant such that the vir-
tual player will find and play the best strategy for the original
complex protocol on behalf of the real world participant—given
that the participant reveals his preferences to the virtual player.
Because the virtual player will play optimally for the participant,
the participant is motivated to reveal his preferences truthfully.
Each ‘agent’ in current Internet auctions is a materialization of
such a theoretical virtual player”. [San00]

It is important to note that, using a bidding agent, one might reveal unnec-
essary information. When monitoring an auction oneself, it may turn out to
be unnecessary to bid at all due to submitted bids that are higher than one’s
valuation.

A second innovation is ebay’s so-called “private auction” in which the
identities of bidders that (temporarily) submitted the highest bid are not
disclosed. Of course, this method does not apply cryptographic means (as
described in Chapters 5 and 6) and there is apparently no need in using real
privacy-enhancing techniques for the type of articles sold on ebay. However,
it is quite evident that privacy completely depends on the trustworthiness of
the auction provider in this case.

As mentioned before, Internet auctions are extremely successful nowa-
days. The only shortcoming that could be attributed to these auctions is the
growing number of fraud cases and the inability to prevent fraud in general
(see Chapter 4).
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2.3.2 B2B Reverse Auctions

Instead of using conventional means of acquiring supplies, many companies
have begun to rely on B2B (business-to-business) reverse auctions to source
their business requirements and bring about cost savings in the supply chain.
As mentioned earlier, all of the auction types proposed in Section 2.2 can be
used as a “reverse auction”. More specifically, a company wanting to source
products or services holds an auction in order to buy these products from the
bidder with the lowest prices and best terms. Typically, a small number of
pre-qualified suppliers are invited to participate in an auction, and bid against
one another in order to win a supply contract. Two characteristic examples
for such B2B auctions, held by the German B2B marketplace econia, are
the purchase of 6,500 personal computers (including monitors and printers)
for a major German bank or the acquisition of 700,000 cotton carrying bags
for a trading concern.

According to a recent report from Forrester Research, B2B reverse auc-
tions are predicted to generate $ 745.8 billion in sales by 2004.

2.3.3 3G Spectrum License Auctions (UMTS)

The third generation (3G) mobile phone spectrum licenses, also called “Uni-
versal Mobile Telecommunications System“ (UMTS), have been assigned
from 1999 to 2001. Few countries (e.g. Spain) used administrative reviews
(so-called “beauty contests”) to award licenses. Most countries decided to
sell licenses via auctions, some of which turned out to be the most revenue
generating auctions in modern times. Apart from the Danish sealed-bid auc-
tion®, all other countries used some type of simultaneous ascending auction
(SAA) for different spectrum blocks”. However, there were subtle differences
in the applied auction types and rules. While the UK and German auctions
performed very well (in terms of revenue generation: they earned 37.5 billion
Euro and 50.8 billion Euro, respectively), some countries like The Nether-
lands, Austria and Switzerland performed very poorly which was mostly due
to dramatically falling valuations of UMTS licenses (estimated value shrank
to about one-tenth in a single year [Kle02al]). This deterred many potential
bidders to take part in such auctions at all and can clearly be seen by looking
at the Swiss auction where the number of bidders shrank from nine to four,
just weeks before the auction. As there were just four licenses for sale and

Sin which all (four) winners had to pay the amount of the fourth highest bid which was
the only bid revealed to the public

"Each spectrum block is sold in a separate English auction. All auctions are synchro-
nized and take place simultaneously.
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it was foreseeable that missing competition will lead to a disastrous result,
the Swiss government postponed the auction and tried to change its rules,
in vain. Adding the fact that the reservation price (the “minimum bid”) was
ridiculously low (due to the positive experiences made in the UK and Ger-
many), Switzerland earned just 2% of the revenue generated by the German
auction per capita. A sealed-bid auction might have attracted more bid-
ders. However, SAAs have been preferred in most countries for three reasons

[dVVO01]:

e The U.S. FCC (Federal Communications Commission) has a long his-
tory of successful spectrum bandwidth auctions using SAAs.

e Open-cry auctions are completely transparent to the public. It is diffi-
cult to accuse the auctioneer of favouritism (see Chapter 5).

e Spectrum licenses strongly relate to the common-value model defined
in Section 2.1.2. Open-cry auctions generate more revenue than sealed-
bid auctions in the common-value model.

In the following, we address two observations that have been made in the
German UMTS auction and that relate to the focus of this thesis. The Ger-
man (and Austrian) auction differed from other 3G license auctions in that
the number of licenses to be sold was not fixed. Financially strong bidders
were able to acquire more spectrum blocks than others and thus prevent weak
competitors from attaining a license at all. In both auctions, the number of
licenses to be allocated was between four and six (in contrast to all other
auctions where it was fixed to either four or five). As price arrangements
in auctions are usually illegal, it has become common practice in ascend-
ing auctions to use the last digits® of bids to signal one’s intentions or to
attempt to coordinate actions [GRWO02]. In fact, three major providers (Ger-
man Telekom, Mannesmann-Vodafone, and 3G (which changed its name to
“Quam” later)) constantly used the digit “6” in their public bids without
any obvious reasons. This behaviour has been interpreted as an attempt
to indicate the willingness to settle with a market structure of six licenses
[GRWO02]. Interestingly, German Telekom later signalled the digit “5” which
some observers explained by Telekom’s decision to crowd out another bid-
der and indicating that purpose to Mannesmann-Vodafone, the other major
provider. As a matter of fact, German Telekom kept raising the price at a

8The smallest bid increment in the German UMTS auction was set to DM 100,000 for
this reason. Furthermore, only the highest bid and the corresponding bidder have been
revealed by the auctioneer after each bidding round. Apparently, this did not prevent
signalling.
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point of time at which only six bidders were remaining and it was in Telekom’s
hands to stop the auction. After a while, Telekom gave up to crowd out one
of the weak competitors and the record number of six licenses was awarded.

Two conclusions can be drawn from theses events. First, signalling is a
serious problem in SAAs (that can be avoided by (partly) using sealed-bid
auctions instead), and secondly, the behaviour of German Telekom can be
explained by the “antisocial attitude” as described in Section 4.3. Experts
wondered why Telekom gave up to crowd out competitors at some point
because in the end its behaviour only resulted in higher prices for every
participant [Kle02a, GRWO02]. However, the situation could be explained
by stating that Telekom invested money in order to inflict losses to weak
competitors that may not be able to cope with the high amounts spent for the
licenses. Actually, as this is written, one of the weak providers (Mobilcom)
is desperately trying to sell its license and another one (Quam) discontinued
its operative business. Experts believe that the only two telecommunications
providers being able to survive the current crisis for sure are German Telekom
and Mannesmann-Vodafone.

There is an ongoing debate why some of the 3G spectrum auction schemes
apparently failed and others did not, e.g., there are assertions that German
Telekom’s objectives were affected by the fact that it was majority-owned by
the German government. More details on the 3G auctions can be found in
[Kle02a, dVV01, GRW02, Kle02b, BE0O].



Chapter 3

Microeconomic Foundations

This chapter provides the theoretical basis for the analysis of auctions and
auction strategies and the construction of desirable auction mechanisms. Mi-
croeconomic theory in general and especially game theory has emerged as an
indispensable fundament of agent research as it formally describes systems of
rational, self-interested agents. Our view on microeconomics will be limited
to some basic game-theoretic solution concepts and mechanism design. More
extensive overviews are included in [MWG95, Var99, Ras95]. A nice and short
introduction to mechanism design and its applications to electronic commerce
can be found in [Var95]. [Par01] contains a very good introduction and deals
with the computational aspects of mechanism design. [RZ94, NR99] provide
further examples of computer science problems that can be approached by
using game theory and mechanism design.

We will first consider social choice under the simplistic assumption of
complete information and then, for the major part of this chapter, assume a
model of incomplete information. Most of the proofs will be omitted!. [n]
denotes the set of natural numbers less or equal than n ([n] = {1,2,...,n}).

3.1 Social Choice and Incentives

Consider a group of n self-interested agents that has to make a collective de-
cision that affects all agents. After having agreed on a “social choice function”
that prescribes which decision is to be made subject to the agents’ private
preferences over the different outcomes, e.g. the choice that maximizes total
utility, the agents run into the following problem.

As their preferences are private information, they need to reveal them in

'We did not include Arrow’s impossibility theorem despite its beauty because it does
not hold in allocation scenarios in which utilitarian social welfare is maximized.

25
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order to be able to determine the social choice. But what if lying about one’s
preferences can lead to a higher individual utility than telling the truth?
The “mechanism design problem” is to construct a mechanism that imple-
ments a social choice function while meeting miscellaneous, useful demands,
e.g. pointlessness of lying or allocative efficiency. A mechanism defines the
possible actions of the agents and a mapping from the agents’ actions to the
outcome.

Agents’ preferences can be modeled in various ways, e.g. by defining a
preference relation or by assigning values of utility for specific outcomes?.
The latter is appropriate when allocating goods. Furthermore, it is quite
useful to define the “utility function” in dependence of an agent’s “type”. An
agent’s type 0; € ©; specifies the individual preferences of the agent.

The utility of an agent depends on the outcome of a social choice function
(or a mechanism) and his type, and prescribes the agent’s benefit from a given
outcome.

DEFINITION 3.1 (UTILITY)

u;(0,0;) is called the wtility of agent i for the outcome o € O given his type
0;.

We henceforth assume that agents are expected utility maximizers. To
save space, we will use the abbreviations 6 = (01,6,,...,60,) and © = O X
Oy X -+ X O,.

DEFINITION 3.2 (SOCIAL CHOICE FUNCTION)
A social choice function f : © — O assigns an outcome f(#) € O to each
possible profile of agents’ types 6 € O.

The left part of Figure 3.1 illustrates that a social function computes the
outcome based on the individual types. Agents receive utility depending on
the outcome and their personal type. One of the most important features of
a social choice function is that we want it to yield outcomes that are socially
preferable.

2Every rational, i.e. complete and transitive, preference relation (on a finite set of
alternatives) can be mapped to a utility function.
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Figure 3.1: Social choice

DEFINITION 3.3 (PARETO-OPTIMALITY)
A social choice function f(#) = o is Pareto-optimal (or Pareto-efficient or ex
post efficient) if Vi € [n], 0’ € 0,0 € © with o' # o

ui(0',60;) > ui(0,0;) = Fjen]: u(d,0;) <uj(o,b;)

In other words, a social choice function is Pareto-optimal if, given its
outcome, no agent could be made better off without reducing another agent’s
utility. A nice property of Pareto-optimality is that it is independent of the
actual utility values; only the utility ordering is considered.

Unfortunately, there are usually numerous Pareto-optimal outcomes. For
example, a dictatorial social choice function that selects the outcome that
gives a single agent, the dictator, the highest utility is trivially Pareto-
optimal. In order to be able to measure the “quality” of social choice functions
more precisely, the notion of social welfare has been introduced. Social wel-
fare functions aggregate the individual utility functions into a single function
that describes the “social utility”. A reasonable restriction seems to only
allow welfare functions that are increasing in each individual’s utility. We
will stick with the classic utilitarian setting of social welfare which is defined
as the sum of all individual utility functions. The most desirable outcome
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maximizes social welfare and thus is also Pareto-optimal?.

DEFINITION 3.4 (SOCIAL WELFARE)
A social choice function f(0) = o is social-welfare-maximizing if Vo' € O,

0eo . .
Z 'LLI'(O, 61) Z Z UZ'<O/, 91)
=1 i=1

So far, we only regarded social choice as a function of agents’ preferences.
In the following, we will extend the model to allow for strategic revelation of
false preferences which will lead us to the mechanism design problem.

DEFINITION 3.5 (STRATEGY)
A strategy s;(0;) € S; defines the action an agent will take in every possible
state of a mechanism, given its type 6;.

Strategies can be deterministic (pure) as well as stochastic (mixed). It
is deliberately left open what strategies are precisely. They can be single
numbers or complex sets of rules. Like above, we will use the short forms
s=1(851,82,...,8,) and S = S; X Sy X -+ x S,,.

DEFINITION 3.6 (MECHANISM)
A mechanism T' = (S, g(-)) consists of n strategy sets S; and an outcome
function g : S +— O.

Analogous to the definition of a social choice function (Definition 3.2),
a mechanism yields an outcome. This time, the outcome depends on the
individual strategies rather than the true preferences (see Figure 3.1). Note
that the execution of a mechanism can be a lengthy process of actions and
counter-actions by the agents based on their strategies.

30f course, there are other conceivable social welfare functions, e.g. the minimax (or
Rawlsian) function that defines welfare as the utility of the worst off agent, but the utili-
tarian setting especially makes sense in allocation scenarios that we are considering.
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DEFINITION 3.7 (MECHANISM IMPLEMENTATION)
A mechanism I' = (S, g(+)) implements a social choice function f(-) if there is
an equilibrium strategy profile (s3(-), s5(-),...,s%(-)) for I" such that V0 € ©

g(si(91)> 5;(92)7 ooy S;(en)) = f(e)

The mechanism design problem is to find a mechanism that implements
a given social function “in equilibrium”. In the following, we will present
several equilibrium concepts. An equilibrium or solution concept specifies
when a strategy profile is “best” for all players.

The strongest equilibrium concept possible is that of dominant strategies.
In a dominant strategy equilibrium each agent is best off using his equilibrium
strategy no matter which strategies the other players choose. We will use
the notation s_; = (81,82, ..., Si—1, Sit1, Si+2, - - -, Sn) to denote the strategy
profile without ¢’s strategy s;. S_; = S1 X Sy X -+ X S;_1 X511 X Siya--- XS,
is defined analogically.

DEFINITION 3.8 (DOMINANT-STRATEGY EQUILIBRIUM)
The strategy profile s is in dominant-strategy equilibrium of mechanism I' =

(S,g9(-))ifVie[n], 0 €0, s,e€S;, s.; €5

A dominant-strategy equilibrium is very robust, because an agent’s strat-
egy is independent of available information on other agents. Obviously,
dominant-strategy equilibria do not always exist. A weaker, less demand-
ing solution concept is that of a Nash equilibrium, named after Nobel Prize
Laureate John F. Nash. In a Nash equilibrium, there is no reason to devi-
ate from the equilibrium strategy as long as all other players choose their
equilibrium strategy. In a way, the equilibrium strategies are well-balanced.



30 CHAPTER 3. MICROECONOMIC FOUNDATIONS

DEFINITION 3.9 (NASH EQUILIBRIUM)
The strategy profile s is in Nash equilibrium of mechanism I' = (5, g(+)) if
Vien], 6 €06, s, €S,

ui(g(5i(0:), 5-i(0-5)), 0:) > ui(g(s;(0:), s-i(60-)), 6:)

In contrast to the dominant-strategy equilibrium, a Nash equilibrium is
generally not unique and, like with dominant strategies, there are cases in
which no Nash equilibrium exists. However, when allowing mixed, i.e. ran-
domized, strategies, it has been proven that there is at least one Nash equi-
librium in any “game”. Nevertheless, the concept of a Nash equilibrium is
somewhat useless in the context of mechanism design as it requires agents
to have complete information about the other agents’ preferences (and their
rationality) in order to be able to identify the equilibrium. If preferences
were common knowledge, there would be no need to design a mechanism.
The asymmetry of information demands a solution concept that is based on
beliefs about others’ preferences rather than knowledge.

DEFINITION 3.10 (BAYESIAN NASH EQUILIBRIUM)
The strategy profile s is in Bayesian Nash equilibrium of mechanism I' =

(S,9(+)) if Vi € [n],0 € ©,s, € S,
uf(g(si(ei)aS—i(e—i))aei) > “?(9(5;(907S—i(e—i))aez‘)

where u is the expected utility over an assumed distribution of types.

In other words, a Bayesian Nash equilibrium is a Nash equilibrium with
incomplete information. Another, less prominent*, solution concept is the
maximin equilibrium [Ras95]. A maximin equilibrium solution consists of
strategies in which a single agent chooses the strategy that maximizes his
utility given the worst possible combination of strategies selectable by other
agents.

41t is listed here because it will be used in Theorem 4.2.
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DEFINITION 3.11 (MAXIMIN EQUILIBRIUM)

The strategy profile s is in mazimin equilibrium of mechanism I' = (5, g(+))
if Vi € [n],0 € ©,s; € S;

min (ui(g(si(6:), 5-:(0-:)),0:)) = min (ui(g(si(6:), s-:(6-:)),0:))

$—i€5—i S—i€S5—;

The concept of implementation allows us to transfer basic properties of
social choice functions to mechanisms. In the remainder of this thesis, we
refer to a Pareto-optimal or social-welfare-maximizing mechanism as a mech-
anism that implements a Pareto-optimal or social-welfare-maximizing social
choice function, respectively.

It may seem almost impossible to identify implementable social choice
functions because the set of possible mechanisms is extremely large. Fortu-
nately, there is a theorem called the revelation principle (Theorem 3.1) which
tells us that we can restrict our attention to direct-revelation mechanisms,
i.e. mechanisms where the agents are asked to reveal their types in a sin-
gle step. In other words, the only strategies available in a direct-revelation
mechanism are to submit a claim about one’s preferences.

DEFINITION 3.12 (DIRECT-REVELATION MECHANISM)
A mechanism I' = (5, g(+)) is called a direct-revelation mechanism if S = © .

Furthermore, the revelation principle tells use that every social choice
function that can be implemented by an arbitrary mechanism in equilibrium,
can also be implemented by a direct-revelation mechanism in which the equi-
librium strategy is to submit one’s preferences truthfully.

DEFINITION 3.13 (INCENTIVE-COMPATIBILITY)
A direct-revelation mechanism I' is incentive-compatible if there is an equi-
librium (s3(-), s5(+), ..., s5(-)) in which Vi € [n], V0, € ©; : s7(0;) = 0;.

ren

The underlying equilibrium concept is deliberately left unspecified; it can
be a dominant-strategy equilibrium or Bayesian Nash equilibrium.

If a direct-revelation mechanism is an incentive-compatible implementa-
tion of a social choice function, the outcome rule of the mechanism is equal
to the social choice rule: g(6) = f(6).
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THEOREM 3.1 (REVELATION PRINCIPLE)

For any mechanism I' that implements a social choice function f(-) in equi-
librium, there is a direct-revelation mechanism implementing f(-) incentive-
compatibly.

Proof: The proof is based on the fact that the direct-revelation mechanism
can “simulate” the strategies and outcome rule of the non-direct mechanism
(see e.g. [MWGY5] for details). O

The first version (for dominant strategies) of this outstanding result was
found by Allan Gibbard in 1973. There also is a formulation for Bayesian
Nash equilibria.

If the equilibrium concept is that of dominant strategies, incentive-
compatibleness is of particular importance, because it lies in each agent’s
interest to assist in selecting a socially preferable outcome of the social choice
function independently of knowledge about other agents’ preferences or their
rationality. Such a mechanism is called strategy-proof.

DEFINITION 3.14 (STRATEGY-PROOFNESS)
A direct-revelation mechanism I' is strategy-proof if there is a dominant-
strategy equilibrium (si(+), s3(:),...,s%(:)) in which Vi € [n], V0, € ©; :

)

Concluding, the revelation principle states the following. Assume we have
a social choice rule that computes a desired outcome given the agents’ true
preferences. If this social choice function can be implemented by a mechanism
in equilibrium, i.e., there is a strategy profile that is optimal in some way, then
it is possible to construct a single-shot mechanism in which revealing your
preferences truthfully is the optimal strategy. The “optimality” of strategies
depends on the corresponding equilibrium concept with dominant-strategies
being truly optimal as submitting forged preferences will never give you more
utility.

Please notice that the revelation principle does not tell us how to find
such a direct-revelation mechanism. Neither does it say that the resulting
mechanism is computationally efficient for the mechanism infrastructure or
the agents. In fact, having to determine one’s entire set of preferences can
be a computational problem, for instance in combinatorial auctions (see Sec-
tion 3.3.3). Additionally, truthful preference submission poses a problem of
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privacy. An incentive-compatible mechanism gives much more information
to the mechanism infrastructure than a possibly equivalent non-direct mech-
anism does.

Following the previous positive result, now comes a very significant im-
possibility result that unfortunately renders it impossible to design strategy-
proof mechanisms for unrestricted preferences.

THEOREM 3.2 (GIBBARD-SATTERTHWAITE IMPOSSIBILITY THEOREM)

If there are at least two agents (n > 1), three different outcomes (|O] >
2), and no restrictions in agents’ preferences, then a social choice function
can only be implemented by a strategy-proof mechanism if and only if it is
dictatorial.

Proof: The direction from right to left can easily be seen. Any dictatorial
social choice function can be implemented by a strategy-proof mechanism
because the outcome to be chosen directly correlates to a single agent’s pref-
erences. The other direction is not trivial (see e.g. [MWG95]) and has a great
(negative) impact on mechanism design. O

3.2 The Clarke Tax Mechanism

Fortunately, non-dictatorial mechanisms are not completely impossible, be-
cause preferences may belong to a restricted domain, invalidating one of the
conditions of Theorem 3.2. One of these restricted domains is that of quasi-

linear preferences®.

DEFINITION 3.15 (QUASILINEARITY)
Agent i’s utility function w;(-) is quasilinear if it is of the form

ui(o, (91) = U)Z'(.’L', 91) aF T

The outcome in this special case is of the form o = (x,m,m,...,m,) where
x is an element of a finite set X, to be called the “project choice”, and 7; is a
transfer term assigned to agent i. The valuation function w;(x,6;) yields the
utility that agent ¢ derives from project choice z given his type 6;.

5 Another possibility to circumvent the negative results of Theorem 3.2 is to choose the
dictator at random, thus providing ex ante fairness. This will not lead to a social-welfare-
maximizing outcome and is questionable for obvious reasons.
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When 7; is positive, agent ¢ receives money. If it is negative, he has to
make a payment. This kind of utility function is called “quasilinear” because
it is partly linear in the transfer term ;. These payments enable the transfer
of utility among participants and can thus be used to influence an agent’s op-
timal strategy. As we will see in Proposition 3.3, a clever setting of payments
can lead to a dominant-strategy equilibrium.

A quasilinear embodiment of utility allows us to evaluate social choice
and payments separately: An important attribute of social choice func-
tions for quasilinear preferences is allocative efficiency whereas the essen-
tial property of payments is budget-balance. w(f) is an abbreviation for

(m1(0),m2(0), ..., m,(0)).

DEFINITION 3.16 (ALLOCATIVE EFFICIENCY)
A social choice function f(0) = (z(0),n(6)) is (allocatively) efficient if Va' €
X, 0 €0

If the sum of transfer terms 7; is negative, the Clarke tax mechanism yields
a surplus of money. This surplus can be paid to any outside party, institution,
or mechanism infrastructure as long as none of the involved agents gets it.
It has to vanish from the system. For this reason, it seems to be desirable
that the sum of all payments is zero (making an outside party or money
burning unnecessary) or, if this is not possible, non-positive. Otherwise, if
Sorym > 0, a subsidy would be needed to pay for the execution of the
mechanism.

DEFINITION 3.17 (BUDGET-BALANCE)

Social choice function f(0) = (x(0),7(0)) is budget-balanced or weakly budget-
balanced if V8 € ©

Zm(@) =0 or Zm(@) <0 , respectively.
i=1 i=1

Social welfare is maximized when the social choice function is efficient
and budget-balanced.
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PROPOSITION 3.1 (EFFICIENCY & BUDGET-BALANCE)
A social choice function f(0) = (x(0),7(0)) is social-welfare-maximizing if
and only if it is allocatively efficient and budget-balanced.

Proof:

n n

i u;(0,0) 510 Z w;(x, 6;) + Z mi(0) iy i w;(x, 0;) 326
=1 i=1

i=1 i=1
n

> T wi(,0;) FPETY " wuy(0,0;) Vol € X,0 € O
=1

=1

g

As all social-welfare-maximizing social choice functions are Pareto-
optimal, efficiency and budget-balance imply Pareto-optimality.

In the case of quasilinearity, there is a unique family of direct-revelation
mechanisms, the so-called Groves mechanisms, named after Theodore
Groves, that are strategy-proof and efficient. Different members of this family
of mechanisms make differing trade-offs across budget-balance and individual
rationality. A mechanism is individually rational if an agent receives always
more utility from participating in the mechanism than from not participating.

DEFINITION 3.18 (INDIVIDUAL RATIONALITY)
A mechanism T implementing social choice function f(-) is individually ra-
tional if VO € ©,i € [n]

u;(f(0),0;) > ui(0;)

u;(6;) is the utility of agent i when not participating in the mechanism.

Technically, this is ez post individual rationality. Sometimes, it is useful
to use interim individual rationality, which means that exrpected utility is
always higher than utility when not participating.

The Clarke tax or pivotal mechanism is the most prominent member of the
Groves family. It provides individual rationality® and simultaneously max-

6Individual rationality is provided if the participation of an agent does not reduce the
outcome set O and if Vi € [n],0; € ©; : w; (J:*_Z-(H_i),Hi) > 0.
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imizes the payments made by the agents to the mechanism. Weak budget-
balance is achieved whenever that is possible in a strategy-proof and efficient
mechanism.

DEFINITION 3.19 (CLARKE TAX MECHANISM)
In the Clarke tax mechanism, the payments from the mechanism to agents
are defined by

mi(0) = > wi(@(0),6;) = > w; («2;(0-),6;)
Ji J#i
where

7"(0) = arg max Z:; wi(x, 6;)

is the efficient project choice and

z*,(0-;) = argr;lee_t%c Z w;(z, 0;)

=1,

is the project choice that would have been taken without agent .

In the Clarke tax mechanism, agents that are pivotal, i.e. agents whose
presence changes the outcome, internalize the externality they pose on other
agents by paying a tax. Non-pivotal agents do not have to make any pay-
ments. The payment structure in the Clarke tax mechanism provides an
incentive to reveal one’s preferences truthfully.

THEOREM 3.3
The Clarke tax mechanism is efficient, strategy-proof, individually rational,
and weakly budget-balanced® for agents with quasilinear preferences.

“Weak budget-balance holds if any agent can be removed without having a negative
effect on the best choice available to the remaining agents.

Proof: See e.g. [MWG95]. O

Concluding, any rational agent should participate in a Clarke tax mech-
anism, because this can have no negative effect on his utility (individual
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rationality). Moreover, it is impossible to increase one’s utility by submit-
ting untruthful preferences (strategy-proofness) and the derived social choice
maximizes total value (efficiency). Finally, the mechanism needs no subsidy
to work (weak budget-balance).

Despite these impressive theoretical properties, the Clarke tax mechanism
has some weaknesses. It does not maintain budget-balance which implies
that it is not Pareto-optimal since the tax revenue has to vanish from the
system. In settings with a large number of agents, the probability that a sin-
gle agent is pivotal is not very high (there might be no pivotal agents at all).
As only pivotal agents pay taxes, this problem can lose its importance in large
groups or societies. Another problem of the Clarke tax mechanism is, that
it is not coalition-proof. Colluding agents can coordinate their untruthful
preference revelations to gain more utility (see Section 4.1.3 for an example).
And finally, preferences are assumed to be quasilinear which implies that

e agents are risk-neutral (see Section 2.1),

e they value the possible outcomes independently of the preferences of
other agents (see Section 2.1.1), and

e they do not consider the utility of other agents (see Section 4.3).

3.3 Extended Example: Auctions

In this section, the theoretical framework presented in the previous sections
is applied to the auction problem. We consider a single seller who possesses
a number of goods and n buyers that intend to buy these goods. Auctions
can be seen as social choice scenarios, where outcomes represent different
allocations of goods. An allocation is efficient if it maximizes the sum of
reported values.

In the private-value model (see Section 2.1.1), the utility of risk-neutral
agents is quasilinear; it is defined as the valuations minus the costs of the
goods like in Equation 2.1 on page 17. According to the revelation principle,
we can restrict our attention to sealed-bid auctions.

3.3.1 Single-Unit Auctions

In the simplest case, there is an indivisible, single good that has to be allo-
cated to one of n agents. As a consequence, there are n outcomes. Table 3.1
shows the different “project choices” for an auction with three bidders. This
setting is equivalent to a voting situation in which three possible choices are



38 CHAPTER 3. MICROECONOMIC FOUNDATIONS

“1 gets the good”, “2 gets the good”, or “3 gets the good”. Each voter can
only express his value for the outcome relating to him receiving the good.

Allocation Values
Choice || 1 2 3 || 1 2 3 | Total value
1| x vy 0 O U1
2 X 0 v O Uy
3 x| 0 0 w3 V3

Table 3.1: Choices in an example single-unit auction

An agent’s type is equal to his valuation of the good (6; = v;). This
valuation represents how he values outcome ¢, i.e. the good being awarded
to him. His strategy is represented by his bid (s; = ;). The project choice
can be seen as a vector x = (z1,s,...,2,) where z; = 0 if bidder ¢ lost
the auction and x; = 1 if bidder ¢ won it. There can be only one winner
(>°% ,x = 1). An outcome o = (z,m,m2,...,m,) consists of the project
choice and the transfer terms for the individual bidders. The utility function
takes the quasilinear form

Ui(O, ’Ui) = wi(xi, Ui) + m = v + (31)

In auctions, we also need to model the seller. He can be seen as an outside
party that derives no value from the good and collects all the payments. In
this case, his utility is also quasilinear and takes the following form”.

n
up(0) = m = —Zm
i=1

Given these utility functions and the reasonable assumption that we intend to
achieve a socially desirable outcome, the “project choice” x can be determined
straight-forward.

(3.2)

PROPOSITION 3.2 (SOCIAL-WELFARE-MAXIMIZING AUCTIONS)
Every auction in which the bidder who submitted the highest bid is awarded
the good is social-welfare-maximizing.

"The seller has no possibility to influence the auction outcome in this model. If possible,
it would be in his interest to submit a bid by himself or set a “reservation price” (see
Section 3.3.1 and 3.4).
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Proof: We can neglect the payments because Equation 3.2 ensures budget-
balance (3 ,m = 0). All possible auction outcomes o = (z, w) are Pareto-
optimal since there is always only a single bidder whose utility is positive.
The more specific measure of social welfare is appropriate here. According
to Proposition 3.1, social welfare is maximized if the outcome is allocatively
efficient. This clearly is only the case when the good is awarded to the bidder
who values it the most (see also Figure 4.12).

max(uo —I—Zuzovz>:r£1€zg<<2$v,+2m Zm) Vhy (v

hi(+) is a function of the bid profile b = (b1,bs,...,b,) or value profile
v = (v1,v2,...,v) that yields the index of the ith highest bid or value,
respectively. If two or more bidders have the highest bid/value in common,
the bidder with the lowest index is chosen. O

As a consequence, an auction mechanism that implements a social-
welfare-maximizing social choice function in equilibrium should award the
good the bidder who declared the highest value for the good, namely the
winner that submitted the highest bid.

xi(b):{1 if i = hy (D) (33)

0 otherwise

Auctions are individually rational if no payment is assigned to losing bidders
and if the winner’s payment never exceeds his valuation (—m; < v;).

Now that we have outlined a social choice function that provides a social-
welfare-maximizing outcome, we investigate how setting the payment rule
affects bidding strategies.

15t-Price Sealed-Bid Auction

It seems reasonable to assign a payment to the winner that equals his bid
and no payments to losing bidders.

It can easily be seen that there is no dominant strategy in this case by the
“winner’s curse” argument (see Section 2.2.2).

PROPOSITION 3.3 (IMPOSSIBILITY OF 15"-PRICE DOMINANT STRATEGY )
There is no dominant-strategy equilibrium in the 1%%-price sealed-bid auction.
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Proof: Suppose there are two bidders, A and B, and their private values are
vy < v,. If B bids b, < v,, A’s optimal, i.e. utility-maximizing, strategy is to

bid b, ifb, >
* Vg — g 1L bg > 0p _
b, = arg max ( 0 else ) =b,+¢

a

where ¢ is the smallest possible bid increment, e.g. £¢ = 1 when bids have to
be integers. As this strategy completely depends on B’s bid by, it cannot be
dominant because dominant strategies are optimal no matter which strategies
the opponents choose. O

There is a Bayesian Nash equilibrium when it is general knowledge that
valuations are drawn from a uniform distribution.

THEOREM 3.4 (1°"-PRICE SEALED-BID BAYESIAN NASH EQUILIBRIUM)
In a 1%%-price sealed-bid auction with n risk-neutral bidders whose valuations
are independently and uniformly distributed in the interval [0, 7], bidding

-1
bi:n v + €
n

is in Bayesian Nash equilibrium.

Proof: Let us consider the strategy for bidder 7. If bidder ¢ does not have
the highest value, we do not need to model his strategy, because he will lose
anyway. He can maximize his utility by bidding slightly above his expectation
of the second highest value conditional on his bid being the highest. The
probability that bidder j’s value v;, which is uniformly distributed in the
interval [0, v;], equals an arbitrary value v lower than v; is vi The probability
that v; is less or equal than v is -. Thus, the probability that v is the second

highest value is
1 v\ 2 %)
Ui Uj .

The probability that one of the n — 1 other bidders has the second highest
value v is n — 1 times expression (*). The expected value of v is

b= [T (D) (L) w= [ ="
v—ovn At U_vi"’I Ov V=

n—1

Concluding, bidder 7 should bid v; + € where ¢ is the smallest possible
n
bid difference. O
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Vickrey Auction

Since we have quasilinear preferences, we can apply the Clarke tax mecha-
nism (Definition 3.19) to achieve strategy-proofness in the good-allocation
scenario that we are considering. The transfer term 7; is defined as the
summed up values (excluding i’s) of the project choice minus the summed
up values (again, excluding i’s) of the choice that would have been taken
without bidder i. In single-unit auctions, there is just one winner which
simplifies this definition. If bidder ¢ does not win the auction and thus is
not pivotal, he pays nothing because the minuend and the subtrahend of
the transfer term are equal. The winner of an auction “receives” the others’
valuation of him winning the auction, i.e. zero, minus the total value of the
choice that would have been taken without him, i.e. the second highest bid.

7Tl'<b1, b2, . ,bn) = _bhg(b)xi(b17 b2, ey bn) (35)

According to Proposition 3.3, the mechanism induced by this payment rule
is strategy-proof. This has also been proven by case analysis in Theorem 2.1.
It follows that the Vickrey auction even leads to an efficient outcome when
values are drawn from different probability distributions (asymmetric bid-
ders). This is not the case in 1%*-price auctions which can be demonstrated
by the following example.

Suppose there are two bidders, A and B, whose valuations are uniformly
drawn from intervals [v,,7,] and [v,, Ty, respectively. Assume that v, < v,.
B’s optimal strategy is to bid slightly more than A’s expected value, namely
E“%y“ + ¢e. A can bid whatever he wants as long as his bid is lower than
his private value. This can lead to A winning the auction inefficiently. The
fragility of Bayesian Nash equilibria, in contrast to robust dominant-strategy
equilibria, is emphasized by this example.

Seller’s Revenue

So far, we have concentrated on allocative efficiency rather than maximiza-
tion of the seller’s expected revenue. It may seem that the Vickrey auction
produces less revenue than the 13°-price sealed-bid auction because the selling
price is the second highest bid instead of the highest®. On the other hand,
rational bidders have to bid less than their valuations in 1%*-price auctions
(see Theorem 3.4). It surprisingly turns out that both auctions generate ex-
actly the same expected revenue’ in the case of risk-neutral bidders in the

8This false assertion was even included in early literature on auctions, e.g. [Cas67].

9When values are drawn from a uniform distribution in the interval [0, 7], the expected

price is Z—j&ﬁ, independently of the applied auction type.
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private-value model. This is one of the most celebrated theorems of auction
theory.

THEOREM 3.5 (REVENUE EQUIVALENCE)

All four major auction protocols (English, Dutch, 15*-price sealed-bid, Vick-
rey) lead to the same expected revenue if agents are risk-neutral and have
private, independent values drawn from a common distribution®.

®This can be generalized to any auction in which the highest bidder is awarded the
item and thus also holds for other, less common auction types like the “all-pay” auction in
which each bidder has to pay what he bid.

Proof: See e.g. [Wol96, Kle99]. O

In other words, all reasonable auction types result in the same outcome
on average. This does not imply that all auction types are the same. A
dominant-strategy equilibrium like in the Vickrey auction is still much more
desirable than a 1%-price auction’s Nash equilibrium.

Revenue equivalence breaks down when removing any of the conditions
stated in Theorem 3.5. When bidders are risk-averse, 15°-price auctions yield
more revenue than 2"%-price auctions. The opposite holds, when the seller is
risk-averse as the variance of the selling price is higher in 2"d-price auctions.
If there are more than two bidders in the common-value or correlated-value
model, i.e. valuations are not independent, the English auction generates
the highest revenue, followed by the Vickrey auction and then the 1%%-price
auction (Table 3.2). This is not surprising because the open-cry character of
English auctions tends to increase bidders’ valuations.

risk-averse bidders || risk-averse seller || non-private values
1%*-price, Dutch Vickrey, English English
Vickrey, English 1%-price, Dutch Vickrey

1%*-price, Dutch

Revenue decreases from top to bottom.

Table 3.2: Seller’s revenue

Roger Myerson [Mye81] investigated auctions that maximize the seller’s
expected revenue. When bidders are symmetric, the construction of such
an auction can be reduced to finding an appropriate reservation price, i.e. a
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minimum bid set by the seller, in a Vickrey auction. If private values are
uniformly distributed in the interval [0, 9], the optimal reservation price is
&2”0 where vy denotes the private value of the seller'®. As a consequence, even
when we assume that the seller derives no value from the good (like we did in
Equation 3.2 on page 38), he should set a positive reservation price. Setting a
reservation price that is higher than the seller’s valuation can obviously lead
to inefficient allocations and thus invalidates the conditions of Theorem 3.5
(the good is not always awarded to the agent who values it most). As we will
see in Section 3.4, there is no social-welfare-maximizing and strategy-proof
allocation mechanism when the seller is allowed to set a reservation price
(Theorem 3.6).

3.3.2 Multi-Unit Auctions

Another convenient auction protocol, due to Vickrey [Vic61] and later re-
discovered in [WWWO98], can be constructed by applying the Clarke tax
mechanism to the case when there are M units of the same item for sale
and each bidder has a demand of exactly one unit. The number of choices
is ( AZ) and a bid values the ( Arj[__ll) choices in which the corresponding bidder
is awarded a unit (see Table 3.3 for an example with three bidders and two
units).

Allocation Values
Choice || 1 2 3 1 2 3 || Total value

1 X X V1 Vg 0 U1 + V2
2 X X V1 0 V3 U1 + U3
3 X X 0 w9 U3 Vg + U3

Table 3.3: Choices in an example multi-unit auction

There are M winners (>, x; = M) that each get one unit of the good.
These are the bidders that submitted the M highest bids, because the sum
of their bids is maximal which leads to a social-welfare-maximizing outcome.

xi(b):{1 iti e U, {h(0)} 56)

0 otherwise

10Qurprisingly, the optimal setting of the reservation price does not depend on the
number of bidders n.
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Like in the previous section, the Clarke tax mechanism is applied to achieve
strategy-proofness in this allocation scenario. According to Definition 3.19,
a winning bidder receives the summed up values of the M — 1 other winners
minus the summed values of the allocation that would have been chosen
without his participation, i.e. the allocation in which he is replaced by the
(M + 1)st highest bidder (see Figure 3.2). This yields

M M+1
7Tz(b> = Z bhj(b) - Z bhj(b) :L‘l(b) = _thH(b)xi(b) . (37)
J=1h;(b)#i j=1,h;(b)#1

(M+1)st highest bid

i i i

winners’ bids when i

inners’ bi i’s B -
winners’ bids excepti’s did not participate

Figure 3.2: Payment assigned to winner ¢ in a multi-unit auction

All winners have to pay the amount of the (M + 1)st highest bid. For this

reason, the resulting auction is sometimes called “(M + 1)st-price auction” or
“uniform-price” auction. The Vickrey auction is a special case for the selling
of a single unit (M =1).
It might seem like this mechanism gives the seller less revenue than the
repeated selling of M goods in single-unit Vickrey auctions. In the first
auction, the highest bidder is awarded a unit for the second highest bid and
quits. The second highest bidder becomes the winner in the next auction
for the third highest price and so on. However, the mechanism consisting of
successive Vickrey auctions is not strategy-proof. In the description above we
assumed that “submitting your private value in consecutive auctions until you
win” is a dominant strategy. Given that all bidders participate like described,
it is certainly wiser to just take part in the final auction and pay less. As a
matter of fact, there is no dominant strategy for the described mechanism.

If we advance to the case when bidders are allowed to bid on specific
amounts of units, we already have a special case of the most general auction
mechanism: the combinatorial auction.
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3.3.3 Combinatorial Auctions

In a combinatorial auction, m different items are sold in a single auction.
Bidders can express their willingness to pay for sets of goods. This is desirable
when values of items are non-additive, i.e., they are either complementary (a
bundle of items is worth more than the sum of its parts) or substitutable (a
bundle of items is worth less than the sum of its parts). Figure 3.4 illustrates
a combinatorial auction with two goods (x and o).

Allocation Values
Choice || 1 2 3 1 2 3 || Total value
1 || xo v 0 0 vy°
21 o x v] vy 0 vy + vy
31 o x || vy 0w vy + 3
41 x o v vy 0 vy + U5
5 X0 0 wv° 0 vy°
6 o X 0 v v V5 + 3
7 x o || vy 0 w3 vy + g
8 X o 0 vy v vy + v§
9 xo || 0 0 wuy° v3°

Table 3.4: Choices in an example combinatorial auction

In a way, a combinatorial auction is the mother of all auctions and can
be used to allocate any kind of resources among agents. In fact, they are
relevant for scheduling, logistics, and network computation. The Clarke tax
mechanism for this particular problem is sometimes called generalized Vickrey
auction (GVA). Although the Clarke tax mechanism guarantees several im-
portant properties (strategy-proofness, efficiency, individual rationality, and
weak budget-balance), it poses some problems in combinatorial auctions due
to its “direct revelation nature”.

The number of possible bundles is 2" — 1. In the example auction of
Figure 3.4 each bidder must submit three (= 2% — 1) bids: one for each item
and one for the bundle consisting of both items. This leads to the following
computational problems.

e Each bidder needs to compute his value for exponentially many bundles.

e Finding a combination of bids that is allocatively efficient is an NP-
complete optimization problem (winner determination is an instance
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of the weighted set packing problem [San99]).

e In order to compute the Clarke tax payments, several more N7P-
complete problems have to be solved.

Be aware that despite the NP-hardness of the general combinatorial auction
winner determination problem, combinatorial auctions are tractable in many
special cases. For example, when allowing only bundles that contain at most
two items, winner determination is tractable. We will now give two further
important examples of tractable combinatorial auctions [Ten00].

General multi-unit auction A constant number of goods, of which there
are arbitrarily many, indistinguishable units, is to be sold. Bidders
submit how they value combinations of any given number of each good.

Linear goods auction An ordered list of items is sold. Bidders can submit
bids for blocks of items (without “holes”). This type of auction can be
useful for the selling of one-dimensional arrays like radio spectrums,
time slots, or parts of a seashore.

Besides the computational aspects of determining the winners and the ap-
propriate prices, the following problems arise!.

e The submission of exponentially many bids of which only a fraction
is needed to compute the auction outcome wastes communication re-
sources.

e The complete revelation of preferences is unnecessary and raises privacy
questions.

Due to these problems, there has recently been a large body of research on
non-direct (iterative) mechanisms that lead to the GVA outcome (e.g. [Par01,
CS02a]). On the other hand, there have been recent advances in efficient
winner determination algorithms (e.g. [SSGLO1]). Generally, combinatorial
auctions are currently the most active field of auction theory [Kle99].

3.4 Further Important Results

When further generalizing auctions to ezchanges'? (markets with sellers and
buyers), it becomes apparent that the “trick” we used in Equation 3.2 on

" These problems are existent in single- and multi-unit auctions as well, but they have
much more relevance in combinatorial auctions.

1280-called double auctions, stock markets, and many other scenarios belong to this
category.
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page 38 to achieve budget-balance does not work anymore because sellers
assign values to goods. Furthermore, sellers are able to actively participate
in exchange mechanisms. The following theorem (that is accounted to Hur-
wicz in [Par01]) declares the impossibility of a social-welfare-maximizing and
strategy-proof exchange mechanism with quasilinear preferences.

THEOREM 3.6 (HURWICZ IMPOSSIBILITY THEOREM)

There is no strategy-proof mechanism that implements an efficient, budget-
balanced social choice function for simple exchange economies with quasilin-
ear preferences.

Proof: See e.g. [Par01]. O

As if this result was not negative enough, the impossibility of a Bayesian
Nash incentive-compatible exchange mechanism under quite reasonable as-
sumptions has been proven as well.

THEOREM 3.7 (MYERSON-SATTERTHWAITE IMPOSSIBILITY THEOREM )
There is no Bayesian Nash incentive-compatible mechanism that implements
an efficient, budget-balanced, and individual-rational social choice function
for simple exchange economies, even with quasilinear preferences.

Proof: See e.g. [MWG95]. O

To give an elementary example, let us consider that agent A wants to
sell a good to agent B. Both have private valuations of the good (drawn
from a common distribution) and need a Bayesian Nash incentive-compatible
mechanism that determines whether the good is sold and, if so, compute the
selling price. Other reasonable conditions are:

e The good is only sold if B values it higher than A (efficiency).
e Money is transferred only between A and B (budget-balance).

e A’s and B’s expected utility for participating in the mechanism is at
least as high as when not participating (individual rationality).

According to Theorem 3.7, there is no mechanism that satisfies all of those
(modest) desiderata. As a consequence, the best we can achieve is to pro-
vide two of the three mentioned properties in an exchange mechanism. The
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Clarke tax mechanism, for example, achieves efficiency and individual ratio-
nality, but lacks budget-balance. A similar mechanism, the so-called dAGVA
mechanism provides efficiency and budget-balance, but lacks individual ra-
tionality. Furthermore, in contrast to the Clarke tax mechanism, the dAGVA
mechanism is only Bayesian Nash incentive-compatible.



Chapter 4

Fraud and Deception

According to the FBI [FBI02], auction fraud is the most stated offense at
the Internet Fraud Complaint Center (IFCC) (see Figure 4.1). In 2001, the
average loss per consumer complaint in the case of auction fraud was $ 395.
Most of these frauds involve non-delivery of goods or money, false statements
about goods, or manipulation of reputation systems (like ebay’s) [BenO1].
Escrow services (e.g. by the auctioneer) and insurances can prevent some of
those problems.

Auction Fraud | | 42.8%

Non—Delivery (mdse and payment) | | 20.3%
Nigerian Letter Fraud L ] 155%
Credit/Debit Card Fraud [ | 9.4%
Confidence Fraud [ ] 3.1%

Investment Fraud [ 1.7%
Business Fraud L] 1.4%
Identity Theft [ 1.3%
Check Fraud [ 0.7%

Communications Fraud [ 0.6%
Figure 4.1: Top ten IFCC complaints (2001) [FBI02]
On the other hand, there are ways of “cheating” in an auction that are
not necessarily illegal. We make a distinction between fraud, i.e. antino-

mian cheating, and deception, i.e. undesirable behaviour that can be blamed

49
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to poor auction design. Here is an example of the latter case (taken from
[McM94]). In 1993, the Australian government auctioned off two licenses
for satellite-television services. They used 1%'-price sealed-bid auctions. In
one of those auctions, an unknown company called UCOM won a license
for A$ 212 million (beating a consortium of Rupert Murdoch, Kerry Packer,
and Telecom Australia among others). All the bids were revealed and the
government hailed the auction outcome as opening up “a whole new era”,
bringing new firms into the closed shop of Australian television industry. It
turned out that UCOM decided to default on their bid, which resulted in
the second best bidder being awarded the corresponding license. But UCOM
submitted the second highest bid as welll Moreover, they submitted the
third highest, fourth highest and so forth. After defaulting on several more
bids, they finally paid A$ 117 million for the license (saving A$ 95 million).
Shortly afterwards, they sold the license, earning A$ 21 million. The poor
auction rules (free defaulting) resulted in at least a year’s delay into pay TV
in Australia.

In this chapter, we will focus on deception, i.e. undesirable strategic bid-
ding that is not covered by the theoretic models or that cannot be prevented
in real auctions for practical reasons. After mentioning some classic phenom-
ena like bidder collusion, “shills”, or “sniping”, we analyze antisocial bidding
in detail. Antisocial agents are defined as agents who, in order to outperform
their competitors, have an incentive to reduce their competitors’ profit. The
chapter closes with some brief experimental results that show the (negative)
impact antisocial agents can have in auctions and a theorem that basically
states that it is not possible to construct an auction mechanism that provides
elementary properties in the presence of antisocial agents.

4.1 Deceptive Bidding

In the drastic example given above, the deceptive behaviour of UCOM could
have been prevented by better designed auction rules. In this section, we will
present forms of deception that can not be easily prohibited.

4.1.1 Shills

Shills are bids that are placed by the seller under fictious names or by re-
cruiting other people to bid in order to raise the price of a good. Shills can
only occur in open-cry ascending (English) auctions. Furthermore, shills only
make sense if the good to be sold somehow relates to the common-value oder
correlated-value model, i.e., bidders valuations depend on another. Placing a
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shill bid then makes other bidders overestimate the good’s value. Although
shills are illegal in many auctions, they are ubiquitous because it is almost
impossible to detect them.

Electronic auction houses often charge fees that are defined as a fraction of
the selling price. Placing shills in such auctions has to be evaluated carefully
because winning the auction accidently (by placing a shill bid too high) will
result in deficits (and the seller inefficiently keeping the item). Most auctions
allow the seller to influence the auction outcome in a limited way by setting a
reservation price (see Section 3.3.1). However, he is not capable of changing
that value once the auction started.

Sellers placing shills and antisocial bidders (to be defined in Section 4.3)
share the same goal, i.e. to increase the selling price. Yet, they have different
motivations: The seller simply wants to increase his revenue whereas the
antisocial bidder intends to weaken his competitors.

4.1.2 Sniping

As mentioned in Section 2.3.1, most Internet auction houses (like ebay) use
English auctions that last for a fixed period of time. It turned out that
most users — despite the possibility of using “bidding agents” as described in
Section 2.3.1 — bid at the very end of an auction, mostly in the last seconds,
giving other bidders no time to react. One explanation for this behaviour is
the intention to keep one’s valuation private. This is of particular relevance
when the private-value model does not hold as any public bid might make
other bidders increase their valuations. Actually, the only difference between
using the bidding agent and sniping is the information revealed by the bidding
agent. There are dozens of commercial programs and websites (like esnipe)
that bid in the very last seconds of an auction on the behalf of the user.
ebay has filed several lawsuits against the makers of such sniping agents.
It is interesting to observe that, like bidding agents, sniping converts the
English auction into a Vickrey auction.

“For example, if sniping and sniping agents become even more
widespread on eBay than they are today, eBay would be gradually
transformed into a sealed bid second price auction. If a large
part of the bidding action were taking place on third-party sites
like esnipe, eBay would face a number of choices. One would be
to recapture the sniping market by offering a sniping option on
eBay itself. (Under this option, last minute bids submitted in
advance directly to eBay could all be counted at the same time,
immediately after the auction close, thus giving bidders certainty
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both that their bids would be successfully transmitted, and that
there would be no time for other bidders to react.) Of course, if all
bidders used this option, the auction would be precisely a sealed
bid auction. eBay, and sellers who list items for sale on eBay,
might prefer not to encourage this development (for example if
they believe that bidders are likely to bid more in auctions in
which they can form some estimates of how much other bidders
value the item for sale)”. [OR02]

It is a well-known fact that open-cry auctions generate more revenue than
sealed-bid auctions in scenarios that do not belong to the private-value model
(see Table 3.2). However, generating more revenue certainly does not lie in
bidders’ interests. For this reason, if bidders have the possibility to transform
an auction into a sealed-bid auction (like in ebay’s auctions), they will do
so. In the auctions conducted at amazon for example, extra time is added
whenever a late bid is submitted. As a consequence, sniping is almost non-
existent in amazon auctions. [RO02, OR02| give reasons for late bidding that
occurs even in the private-value model.

4.1.3 Bidder Collusion

A fundamental deficiency that affects all auction types is bidder collusion
(sometimes called “bidding rings”). Auction mechanisms are build upon the
principles of competition and asymmetry of information. If this asymmetry
is removed, bidders can manipulate the action outcome and increase their
utility. For example, in a 1%%-price sealed-bid auction, bidders can form a
coalition and coordinate their bids by having all bidders but one bid zero.
The remaining bidder bids an arbitrarily small amount. After having won
the auction, he can share some of the savings he made with cooperating
bidders. However, the other bidders have a substantial incentive to cheat
on the agreement by not bidding zero as they have the possibility to receive
the good at a bargain price. The situation is different in 2"-price auctions.
In this case, the designated winning bidder does not need to adjust his bid
downwards. He can bid his private value while all other bidders bid zero
(or any other small amount). There is no incentive for any of the colluding
bidders to break the agreement because it is impossible for them to obtain the
good without a loss. This is why it is said that collusions are “self-enforcing”
in 2%%price auctions [Rob85].

A collusion of bidders is faced with the problem of determining their
highest bidder, preferably using a strategy-proof mechanism in order to avoid
strategic behaviour. In [GMS87], this problem is solved by running a pre-
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auction in which it is every colluder’s optimal strategy to submit his valuation
truthfully. The highest bidder is designated as the winner. If this agent also
wins the main auction, he has to pay the difference between the selling price
and the second highest bid of the pre-auction to the remaining collusion
members. Efficient collusion schemes for 1%%-price and 2"d-price sealed-bid
auctions have been identified in [MM92] and [GM87, MZ91], respectively.
The former even deals with the case when side payments are impossible.
[LBSTO00] contains a more general approach that covers arbitrary auction
mechanisms and parallel executions of these mechanisms.

According to the US Justice Department’s antitrust chief, bidder collusion
by highway contractors increased the cost of building roads by ten percent
or more [MM92]. [McM91] explains a widespread form of bidder collusion in
Japan’s public-works contracting.

In combinatorial auctions, a new subform of collusion is particularly inter-
esting. Colluding agents can increase their profit by introducing new bidders
to the auction. In fact, it is sufficient to submit several bids under different
names to manipulate the auction outcome. Clearly, in virtual marketplaces
this form of deception is almost undetectable since identifying the true ori-
gins of bids is extremely hard. The general behaviour is called “false-name
bidding” and has been extensively studied by Yokoo et al. They were able to
prove that there is no “false-name-proof” combinatorial auction mechanism
that satisfies allocative efficiency [YSMO3].

4.2 Insincere Auctioneer

The problem of an insincere auctioneer obviously belongs to the fraud cate-
gory and is important when bidders pay prices that are different than their
bids, which implies that it is a particular problem in Vickrey auctions. Con-
sider a Vickrey auction with three sealed bids: 10, 20, and 30. The auctioneer
might tell the winning bidder that the second highest bid was 29. In a sealed-
bid auction, this bidder has virtually no means to verify the correctness of
the auctioneer. Even when the auctioneer is forced to prove that the second
highest bid is indeed a submitted bid by showing a digital signature of the
corresponding bidder, he can cheat with the help of a fellow bidder who signs
a bid after the auctioneer opened the other bids. We will discuss solution
concepts to this problem in Chapter 5.
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4.3 Antisocial Agents

In most economic models as well as multiagent applications it is assumed
that the objective of an agent is to maximize his absolute profit without
caring for the profits made by other agents. However, in many real-world
applications, it is more realistic to assume that some agents try to gain as
much money (or utility) as possible relative to others (their competitors).
In other words, in many scenarios it is wise to take into consideration the
availability of “antisocial agents,” that is, agents who are willing to reduce
the profit of competitors.

4.3.1 Suffering when Others Win

When having another look at Table 3.1 on page 38, it stands out that bidders
are indifferent to choices, in which they do not get the good. When supposing
that bidders obtain negative utility if another bidders wins the auction, the
table can be modified to look like Table 4.1. As bidders are assumed to be
symmetric, bidder ¢ cannot have preferences on who gets the item, but he is
able to assign negative value a; to the cases when someone else does. We are
now assuming that the mechanism allows to express one’s preferences on ev-
ery possible project choice. The utility function has the following quasilinear
form.

ui(0,v;, a;) = xiv; — (1 — xy)a; + (4.1)
Allocation Values
Choice || 1 2 3 1 2 3 Total value
1] x vy —ay —as V1 — Q9 — a3
2 X —a; vy —as || —a; + vy —as
3 X || —a; —as v3 —a1 — as + v3

Table 4.1: Choices in an example single-unit auction with “anti-bids”

The Clarke tax mechanism yields m;(b) = >°7_  a; — >0 aj + anyp) +
bhy(v) = Ahy(v) + bropy @s a payment for the auction winner. This outcome
can obviously be reached more easily if each bidder bids b; = v; + a; in
a regular Vickrey auction. However, this is not possible when bidders are
able to distinguish between fellow bidders, i.e., they have different (negative)

values for each other bidder winning the auction (see [JMS96]).
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So far we have merely taken into account that a bidder derives negative
utility if someone else wins an auction. In the next section, we will treat
bidders that consider their rivals’ profit.

4.3.2 Suffering from Others’ Utility

As a starting point for the formalization of antisocial utility, it appears to
be reasonable to assume that an antisocial agent wants to maximize the
difference between his profit and the gain of his competitors; this means that
the own profit on the one hand and the other agents’ losses on the other
hand are considered to be of equal importance from the point of view of this
antisocial agent. In a two-player scenario, this view captures the antisocial
agent’s intention to be better than his rival. To achieve a higher degree
of flexibility in describing and analyzing antisocial agents, it is useful to
think of different degrees of antisociality like “aggressive antisociality” (where
it is an agent’s objective to harm competitors at any cost) and “moderate
antisociality” (where an agent puts somewhat more emphasis on his own
profit rather than the loss of other agents).

self—interested

- % o
social antisocial

Figure 4.2: Simplified scale of social behaviour

These considerations lead to the formal specification of an antisocial agent
(or an agent’s antisocial attitude) as an agent who tries to maximize the
weighted difference of his own profit and the profit of his competitors. We
used the term “profit” instead of “utility” in the description above to motivate
that antisocial behaviour can indeed be rational. Formally, an antisocial
agent can be defined as follows.

DEFINITION 4.1 (ANTISOCIAL AGENT)
An antisocial agent intends to maximize the utility given by the equation

u(0,0,d;) = (1= di)u;(0,6;) —d; Y u;(0,6;)

=1,

where d; € [0,1] is a parameter called derogation rate.
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The derogation rate is crucial because it formally captures, and allows
to modify, an agent’s degree of antisocial behavior. It is obvious that this
formula covers “regular” agents by setting d; = 0. We say that agent 7 is
antisocial if d; > 0 (see Figure 4.2). If d; is greater than 0.5, hurting others has
greater priority than helping yourself. A purely destructive agent is defined
by d = 1. We say an agent is balanced antisocial if d; = 0.5, e.g., his own
utility and the utility of his competitors are of equal importance. Please note
that the above definition assumes that an antisocial agent knows the types
and utility functions of other agents. The utility functions are unproblematic
because we will only consider quasilinear utility in simple auctions. We will
dicuss methods to estimate and learn types, i.e. private values, later in this
chapter. Other possible embodiments of antisocial utility functions include
the average non-negative utility of competitors

‘ E?:l,j;éi%(oa 0;)
{7 [uj(0,0;) > 0}

or the mazimum utility of any rival.
uf(o, Qi, dz) = (]_ — di)ui(o, 91) - dz max{uj(o, 0]-)};-1:17#1- (43)

However, we will stick with Definition 4.1 because we only consider single-
unit auctions, which means that all utilities except the winner’s are zero.

4.3.3 Antisociality and Vickrey Auctions

In this Section, the implications of antisocial utility in Vickrey auctions are
theoretically investigated. In order to simplify such analysis, we first investi-
gate a setting with complete information, i.e., all types are publicly known.

Like in Section 3.3, types 6; are private values v; of a good in the following.
Utility wu; is defined by the quasilinear function in Equation 3.1 and v =
(1,09, ..., Uy).

U?(O, v, dz) = (1 — dz)(xﬂ)z — 7Ti> — dz Z (.Z‘jl)j — 7Tj) (44)
J#i
We will refer to an agent’s regular, non-antisocial utility x;v; — m; as his
“profit” in the following. Let us now consider an auction with two bidders,
A and B. Similar to Equation 2.1 on page 17, the antisocial utility of agent
A can be written as a function of the bids b, and b.

(1 — da)(va — bb) lf ba Z bb

4.5
—da(vp — ba) if by < by )

uf(baa bb, Vg, Up, da) = {
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The first striking consequence of the new definition of utility is that the
Vickrey auction’s dominant-strategy equilibrium breaks down for antisocial
agents.

PROPOSITION 4.1 (ANTISOCIAL NON-STRATEGY-PROOFNESS)
Bidding one’s private value is not a dominant strategy for antisocial agents
in Vickrey auctions.

Proof: It suffices to construct a single case in which deviating from the
dominant strategy can lead to higher profit. Consider case vi) of the proof
of Theorem 2.1 on page 18. We now assume that agent A’s derogation rate
d, is greater than 0 and that v, — v, > €. A is not able to effectively win
the auction, but the price agent B pays completely depends on A’s bid. So,
if A carefully adjusts his bid upwards, he is capable of reducing B’s utility.
Supposing that A knows B’s private value wv,, his optimal strategy would
be to bid v, — € (see Figure 4.3), which reduces B’s profit to the absolute
minimum of €.

eliminated profit

Figure 4.3: A reduces B’s profit to a minimum

We can assume b, = v, without loss of generality, because a dominant
strategy should yield the highest utility for all possible strategies by other
agents. When applying the “dominant strategy” (b, = v,), A’s antisocial
utility is

U2 (Va, Uy, Va, Uy, dg) = —dg(vy — v,)
However, bidding b, = v, — ¢ yields more utility,

A
U, (Ub —g,Ub,'Ua,UZ”da) = _daéj )

if vy — v, > €. O

Please note that non-antisocial agents are best off bidding their private
values, even when antisocial agents are present (otherwise the strategy would
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not be dominant). It has merely been shown that the dominant strategy is
not optimal for antisocial agents. This raises the question whether there is a
dominant-strategy equilibrium for antisocial agents at all. The answer is no
if agents are not purely destructive.

PROPOSITION 4.2 (IMPOSSIBILITY OF ANTISOCIAL DOMINANT STRATEGY)
There only is a dominant Vickrey auction strategy for antisocial agents when
their derogation rate d is 1.

Proof: Clearly, if d = 1, bidding the highest possible value will always yield
zero utility which is the highest utility a purely antisocial agent can achieve.
To prove the rest of the statement, let us again consider the case of the
previous proof and assume, without loss of generality, v, — v, > 2{‘_“—23.

If B bids vy, A’s optimal strategy is to bid v, — € resulting in —d,e utility.

If B bids v, — 2¢ however, this strategy is sub-optimal because it only yields

the negative utility (1 —d,)(v, — vp + €) which is lower than uZ (v, — 3¢, v, —
26,0, Uy, dy) = —da(3e).
(1 —do)(vg —vp+€) > —du(3¢)
S (v —ve)(dy — 1) + & —dye > —3d,e
o - 2d, +1
v,
O

It is self-evident to seek weaker equilibria that might fit this scenario.
In the previous two propositions, the other bidders’ utility functions and in
particular their derogation rates were irrelevant, because we only dealt with
dominant-strategy equilibria. In the proof of Proposition 4.2, agent B bid
slightly less than his private value vy, rejecting a possible gain of € and making
A lose vy, — v, — 2e. This behaviour makes perfect sense if B is antisocial as
well.

As a consequence, if A’s derogation rate d, is 0.5, A should only bid
Vg + 257 — ¢ to be safe from being underbid by B (see Figure 4.4). If B still
undercuts A’s bid, he waives more money than A loses. If d, = 0.5 as well,
B’s best strategy is to bid v, — *5%2.

Returning to the case of more than two bidders, the following bidding
strategy seems to be “safe” for an antisocial agent ¢. We still assume the
(unrealistic) model of complete information (v, (5 is the highest private value,
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eliminated profit

| I |
| | I | >
Va ba bb Vb
Figure 4.4: Careful antisocial bidding
Uny(v) the second highest)®.
bl- _ V; — dz(Ul — Uhg(v)) le = hl (U) (46)
V; + d;i(Vn, (v) — Vi) else

THEOREM 4.1 (BALANCED ANTISOCIAL NASH EQUILIBRIUM )
In Vickrey auctions with balanced antisocial bidders (Vi € [n] : d; = 0.5),
the strategy defined by Equation 4.6 is in Nash equilibrium.

Proof: According to Definition 3.9, the assumption states that under the
supposition that all agents apply this strategy, there is no reason for a single
agent to deviate from it. We consider the utility of agent A. It suffices to take
only one opposing agent B into account as A does not differentiate between
the individual bidders and the Vickrey auction has a sole victor.

According to Equation 4.6, agent B’s strategy is to bid right in the middle
of both private values.

1 vy — %(vb—va) if v, < vy Vg + Up
b p— . pu—
Vp + %(va —wp) if v, >y 2

The antisocial utility of agent A takes the following form and is depicted in
Figure 4.5.

A A Vg + Up 45 Ualvb if b, > tatte

U (bay by, Va, 0p) = U | bay ————, Vg, U | = 2
a \YayVby Ugy Up) — U, as 2 s Va,y Ub — ba—vp 1f b < Vat+vp
ba—vp , < Yot

!The margin € can be omitted here. When two or more bidders share the winning bid,
the winner is picked at random.
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Va>Vb Va<Vb

=

b Vo4V a a : b
a b .

Figure 4.5: A’s utility (d, = 0.5)

A Vg + Up Vg — Up Vg + Up
max u,, | by, ———,Va,0p | = = b, >
b ( 2 ”) 1 R
Concluding, if A bids more than %ﬂ, he only receives equal utility; if he

bids less, his utility is diminishing. ([l

When allowing arbitrary derogation rates, a weaker equilibrium concept
is appropriate (see Definition 3.11 on page 31).

THEOREM 4.2 (ANTISOCIAL MAXIMIN EQUILIBRIUM)
The bidding strategy defined by Equation 4.6 is in mazimin equilibrium (for
arbitrary derogation rates in Vickrey auctions).

Proof: It is claimed that the strategy is an optimal strategy to reduce the
possible losses that occur in worst case encounters (Definition 3.11). “Worst-
case” means that the other bidders (represented by a single agent B again)
try to reduce agent A’s utility as much as possible.

4.5 ((1 —dy)(vg — by) if by > bb>

min v (ba, by, Va, vy, dy) = min

by by —dg(vp —by) it by < by
Y min{(1 — dy)(ve — ba), —da(vy — b))}

f(ba) 9(ba)
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B’s bid b, can be eliminated in step (%) because the term of the first case
is minimal if b, = b,. f yields the minimum profit if A wins and ¢ yields
the minimum profit if he loses the auction. In the following, we consider the
maximum of these minima (see Figure 4.6).

max min w2 (bq, by, Va, Vs, dy) = maxmin{ f(b,), g(ba)}

ba bb ba
Va > Vy Va < Vy
min u* 7 min u*
. g,
f Va Vﬂ +da (Vb _Va ) Vb
— b _— . / b
Yy v, ~d, v, -y \A f

Figure 4.6: A’s minimum utility

Due to the fact that f is decreasing and g is increasing, the maximin
equilibrium point can be computed by setting f(b,) = g(ba)-

f<ba) = g(ba> <~ (1 - da)(va - ba) = _da(Ub - ba)
S v, — by — dyvg + dyby = —dguy + dyby,
& by = v + do(vy — V)

4.3.4 Bidding Strategies with Incomplete Information

On the basis of the theoretical foundations of the previous section, we now
develop antisocial bidding strategies that can actually be used in realistic
environments.
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In contrast to the previous section, we consider a setting of incomplete in-
formation in the following. In the general case, an agent does not know the
private values of other bidders, but he has several possibilities to figure out
these values.

1. by estimation based on common knowledge
2. by learning from previous auctions
3. by means of espionage (e.g. bribing or colluding with the auctioneer)

We will now present strategies for the first two cases. The latter case can be
prevented by techniques presented in Chapter 5 and 6.

Uniform Distribution

General assumptions about the distribution of unknown values can be used to
turn the Nash equilibrium of Theorem 4.1 into a Bayesian Nash equilibrium
with incomplete information.

COROLLARY 4.1 (ANTISOCIAL BAYESIAN NASH EQUILIBRIUM)
The bidding strategy

b {Ui + d; (";T) — vi) if v; < ”T_lﬁ

n
V; else

is in Bayesian Nash equilibrium if private values are uniformly distributed
in the interval [0,9] and derogation rates are uniformly distributed in the
interval [0, 1].

Proof: The expected value of another bidder’s derogation rate is 0.5. We
can therefore modify the (complete information) strategy from Theorem 4.1.
If +’s private value is not the highest value, bidder ¢ needs to adjust his bid
upwards according to Equation 4.6. This is the case if his value is less than

n—1 -

the expected highest value of the other bidders: *—1v.

—1
U1+dz(n 17—7}7;)
n

If he possesses the highest private value, he needs to bid less than his private
value.
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-1 :
vi—di(vi—n vi):(l—i)vi
n n

Revealing Private Values by Underbidding

We now consider a multiagent task-assignment scenario that we have
extensively investigated in [BW99, BW00a, BW00b, BBW00]. A fixed
number of tasks is auctioned by using reverse Vickrey auctions. After they
have been assigned and executed, the same tasks are auctioned again. This
procedure repeats for many rounds.

Zero-Bidding Suppose a balanced antisocial agent loses an auction in the
first round. When the same task is auctioned for the second time, he bids
zero. As a consequence, he wins the auction?, and receives an amount equal-
ing the second lowest bid, which is the private value of the cheapest agent
(supposing this agent applied the dominant strategy). Thus, he is able to
figure out the needed private value and can place his next bid right in the
middle between the two private values. Using this technique, he loses the
difference between both values once, but can safely cut off 50% of the com-
petitor’s profit for all following auction rounds. If the total number of rounds
is high enough, the investment pays.

In a scenario where all other agents simply follow the dominant bidding
strategy and no counter-speculation is needed, an effective bidding strategy
for an antisocial agent who lost in the first round looks like this.

1. Bid 0 (p=received price)

2. Bid v; + d;(p — v;) in all following rounds

Step-by-Step Approach Bidding zero is elegant but dangerous, espe-
cially if more than one agent is applying this strategy. In this case, one of
the zero-bidding agents wins the auction, but is paid no money at all (be-
cause the second lowest bid is zero as well), thus producing a huge deficit.
Moreover, he does not learn information on private values. It’s safer to re-
duce a bid from round to round by a small margin s until the lowest bid is
reached. Figure 4.7 displays the modified strategy.

2unless some other agent bids zero as well
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start here

bid v }
won lost
(p=price)

bid v+d(p—v) ] [ bid last_bid—s
won won
(p=price) Y lost

bid v—d(v—p)+¢€

p<v
won (p=price)

lost

p>=V

Figure 4.7: Antisocial strategy for repeated reverse Vickrey auctions

If the step size s equals the private value (s = v), this algorithm emulates
the aggressive zero-bidding strategy. The algorithm works somewhat stable
in dynamic environments where agents can vanish and new ones appear from
time to time. However, the strategy is not very robust, e.g., if two balanced
antisocial agents apply this strategy, the more expensive agent is only able
to reduce the winning agent’s profit by 25% because he is usually not able
to figure out the real private value of the cheaper agent in time.

Generally, a careful agent should use a small step size s in order to be
safe that the competitor already suffered huge losses before he makes negative
profit himself. A reasonable setting of s depends on the number of rounds,
the distribution of private values and the derogation rate.

For example, let us consider the case of two agents A and B (v, > vp) and
an appropriate setting of the step size s, when the number of total auction
rounds is unknown. Let A’s step size be a fraction of the difference of both
private values: s, = “==*. It is now possible to compute how many rounds
are needed to ensure that the loss inflicted to B is greater than the loss
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induced by underbidding him. This yields an upper bound for s,.

d. %(va — ) > (1= dy) (v — )

=0
1
s 4" 2>1-4,
9
o p» il <2 )
T S, < Vg — U
d, 2 d, b

In reality (model of incomplete information), v, is unknown to agent A. How-
ever, assuming that all private values are uniformly distributed, the expected
value of vy is %. This implies the following inequation:

da

<
S =0 o,

/U(l (4.7)

For example, the step size s, for an agent with derogation rate d, = 0.5 should
be lower or equal than % of his private value. This result can not easily be
generalized to other cases as it just takes two bidders into account. If there
is more than one bidder that intends to harm agent B and the bidders do
not arrange, the situation gets much more complicated. Besides, we assumed

that agent B constantly applies the dominant strategy (d, = 0).

Leveled Commitment Contracting If the task execution contracts are
not binding and can be breached by paying a penalty (leveled commitment
contracting [SL95, SL96, AS98, SSN99, BBWO00]), the unavoidable loss an
agent produces by underbidding the cheapest competitor can be reduced by
breaking the negative contract. Due to the fact that the only reason for
closing that deal is to figure out the private value of another agent, the agent
has no incentive to really accomplish the task. Therefore, a contractee will
break the contract if the loss he makes by accepting the contract is greater
than the penalty he pays by breaking the deal. Supposing the common
definition of a penalty as a fraction of the contract value [SL96, BBWO0O0],
agent 7 is better off breaching the contract if

p< —
pr—+1

(4.8)

with p being the actual task price and pr € [0;1] the penalty rate. To give
an example, under the assumption that pr = 0.25, an agent should break a
contract if the task price is less or equal than % of his private value. When
the distribution of prime costs is uniform, an antisocial agent is better off
breaking a contract in 80% of all possible cases.
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4.3.5 Experimental Results

The experimental scenario investigated in this section is based on the ABC
implementation described in Appendix B.1. There is a number of contractees
(CE;) who are willing to execute tasks. Contractees associate prime costs
with task execution and are interested in tasks whose prices are higher than
their own costs. All prices and bids are integer values (¢ = 1).

Whenever the selling of a task is announced, each interested contractee
calculates and submits one sealed bid. The contractee who submitted the
lowest bid is declared the winner of the auction, and the second lowest bid is
taken as the price of the announced task; the contractee is paid this price and
executes the task. If there are two or more equal winning bids, the winner
is picked randomly. As mentioned above, this kind of auctioning is called a
reverse Vickrey auction. As a contractee wants to earn money for handling
tasks, his private value of a task is his prime costs plus €.

In contrast to the setting described in Appendix B.1, it is assumed that
each contractee can execute as many tasks as he wants during one round.
Antisocial strategies can also be used in conjunction with leveled commit-
ment, but in order to keep things simple we only consider full commitment
contracting here.

Task 1 Task 2 Task 3
CF; 70 50 30
CFE, 50 30 70
CFEjs 30 70 50

Table 4.2: Fair cost table

Task 1 Task 2 Task 3 Task 4
CFE, 38 47 39 67
CE, 43 84 23 49
CEs 81 10 22 69
CE, 98 66 18 67

Table 4.3: Random cost table
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Identical Contractees

Table 4.2 contains the prime costs of three contractees with exactly identical
abilities. Each contractee has one task, that he can handle for the cheapest
price. If all three truly bid their private values for 100 rounds, each one would
gain $ 21 - 100=$ 2100.

CE1 ——
CE 2 -------
CE 3 -
2100 e

%

o

°

(0]

k]

>

= .

E

8 1000 i

g

0 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
Auction Rounds

Figure 4.8: Identical contractees, C'Ej3 is antisocial (d3 = 1, s3 = ¢)

Figure 4.8 shows the profits accumulated by the contractees in 100 rounds.
CFE; and C'E5 apply the dominant strategy and bid their prime costs plus one.
C'FEj3, however, is antisocial and tries to harm his competitors by reducing
their profits to a minimum. As C'Ej is the only antisocial agent and because
his derogation rate is 1, he could use a very large step size, e.g., s3 = v3. We
chose a careful step size setting (s3 = ) for two reasons. First of all, C'F3 may
not know he is the only antisocial bidder, and secondly, this setting superiorly
visualizes how the antisocial strategy works. In contrast to the normal case
(all contractees apply the dominant strategy and make equal profits), C'E3
outperforms his rivals by losing only $ 60. The summed up profit of the
entire group of contractees is reduced by more than 50% by actions from a
single agent who himself only loses a negligible amount. This emphasizes the
particular vulnerability of Vickrey auctions to antisocial bidding.
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Figure 4.9: Identical antisocial contractees (d; = 0.5, s; = ¢)

It might appear confusing at the first glance that an agent who does
not care for his own profit at all (d3 = 1) nevertheless makes the highest
profit. This effect can be explained by the conservative strategies of his
fellow bidders. CFEs5 risks his entire profit in order to hurt C'E; and C'E»,
but as both are completely “harmless”; i.e. not antisocial, he keeps his gain.

If all three contractees are antisocial, overall performance breaks down
(Figure 4.9). The agents almost cut off 50% of profits of their rivals.

Random Contractees

In order to examine the performance of antisocial behavior in a more realistic
scenario that does not use artificial prime costs, experiments with a random
cost table (Table 4.3), that includes four contractees of varying quality, have
been conducted.

Figure 4.10 shows the accumulated profit for 200 rounds if one contractee
(CEy, the weakest of them) uses an antisocial strategy. He effectively min-
imizes the profit of his competitors after figuring out their prime costs. In
round 493 he surpasses C'F3 and thus becomes the most successful contractee,
even though he has the poorest abilities, i.e. the lowest prime costs compared
to the competition.
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Figure 4.10: Random contractees, C'E} is antisocial (dy = 1,54 = €)

Figure 4.11 shows the profit development for four antisocial contractees.
The final profit ranking (CE3, CEy, CEy, then C'E,) does not differ from
the result for dominant strategies. However, their overall profits are reduced
by 31% to 54% compared to the profits they would accumulate when none
of them were antisocial.

4.3.6 Further Implications

As the Vickrey and the English auction are strategically equivalent in the
private-value model (see Table 2.1 on page 20), antisocial strategies can be
used in English auctions as well. The presence of antisocial agents also affects
the bidding strategies in 1%*-price sealed-bid auctions. However, in contrast
to the Vickrey auction, antisocial bidding can only yield to more (antisocial)
utility when making negative profit oneself. The Vickrey auction’s 2*%-price
policy enables easy price manipulation. If an antisocial bidder knows the
highest bid in a Vickrey auction, he can reduce the winning bidder’s utility
without losing anything. This is not possible in 1%%-price auctions.
Although there is no dominant-strategy equilibrium in the Vickrey auc-
tion when agents are antisocial, there might be an auction mechanism in



70 CHAPTER 4. FRAUD AND DECEPTION

2500 T T T T T T T T T

CE {1 ——
CE 2 -
CE3
CE 4 -
2000 F |
S 1500 | e
o
e)
(0]
kS
>
E
3
8 1000 | . i
e .
s0 T e
0 e T T | | | ] ] ]
20 40 60 80 100 120 140 160 180 200

Auction Rounds

Figure 4.11: Random antisocial contractees (d; = 0.5, s; = €)

which agents submit their private values and derogation rates in dominant-
strategy (or Bayesian Nash) equilibrium and that yields a social-welfare-
maximizing outcome. As antisocial utility is clearly not quasilinear (com-
pare Definition 3.15), we cannot find a strategy-proof mechanism by apply-
ing the Clarke tax mechanism. Anyhow, this does not rule out the existence
of such a mechanism (or at least an incentive-compatible mechanism). The
following theorem states that there is no auction mechanism that provides
basic reasonable properties in the presence of antisocial agents.

THEOREM 4.3 (IMPOSSIBILITY OF “ANTISOCIAL-PROOF” AUCTION)
There is no individually rational auction that maximizes social welfare in
equilibrium if at least one of the bidders is antisocial.

Proof: By saying “auction” we mean a mechanism that implements a social
choice function that allocates a single good, and that yields outcome o =
(x, ) where x prescribes who is awarded the good and 7 is a vector of transfer
terms (see Section 3.3.1). We furthermore assume that the seller collects all
the payments made by bidders. In order to prove the statement, we outline
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a social choice function with the desired properties. It turns out that these
constraints completely determine the underlying mechanism by prescribing a
particular payment rule. Truth-telling must be an equilibrium strategy in this
mechanism in order to implement the corresponding social choice function.
As this is not the case, the statement is proven by contradiction.

LEMMA 4.1
Social welfare in an auction with at least one antisocial agent is maximized
if bidders’ payments are infinitely high.

Proof: Let us consider two bidders A and B with private values v, and v,
(Vg < vp, without loss of generality). At least one of the bidders is antisocial
which means that d = d, + d, > 0. If B is awarded the good, the utilities of
A, B, and the seller are as follows.

g = (1—dy)me—do(vp+), up = (1—dyp) (vp+mp) —dpma, Uy = —TMg—Tp

Let U, be the social welfare, i.e. the sum of individual utilities, when B is
awarded the good (x, = 1). We consider U, subject to 7, and 7, as we seek
transfer terms that maximize welfare.

Ub(ﬂa,ﬂb) = Ug +Up+Ug = (Ub—l—ﬂb)(l—da—db)—i-ﬂ'a(l—da—db)—7Ta—7Tb =
= (v + 7o +m)(1 —dy — dpy) — g —

As the social welfare only depends on the sum of transfer terms, we set
T = Ty + Tp.

U(r)=1—=d)(vp+7) —m1=(1—d)v, —dn

Similarly, we can compute the social welfare when A is awarded the good
(g =1).

Un(m) = (1 = d)v, — drm
Please note that transfer terms are negative as bidders pay to receive the
good.
In order to obtain an outcome that maximizes social welfare, we need to
compute max, (U, (m), Up(m)). It turns out that this is not possible because
it would require infinitely high payments by bidders.

o (1 —=d)vy —dr ifxy,=1 L
arg mwax (1—-dw, —dr ifx,=1) o0

Figure 4.12 shows that welfare is linear increasing in —m, no matter who is
awarded the good?.

31n the case of non-antisocial utilities, two dashed horizontal lines at v, and v, denote
“regular” social welfare. It can be clearly seen that, no matter how 7 is set, awarding the
good to B is the social-welfare-maximizing outcome in that case.
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Figure 4.12: (Anti-)social welfare

If there were more than two bidders, the figure would include more and
steeper parallel welfare straight lines because the sum of derogation rates
d would be higher. Like in the case of non-antisocial agents (see Proposi-
tion 3.2), social welfare is highest when the good is delivered to the bidder
who values it the most. However, the payments cannot be high enough*. [J

An auction that assigns infinitely high payments to bidders is obviously
not individually rational. When introducing individual rationality to the
model, a feasible payment rule can be found.

LEMMA 4.2

In an individually rational and social-welfare-maximizing auction with at
least one antisocial agent, the winning bidder has to pay his private value of
the good.

Proof: Assigning payments to losing bidders cannot be individual rational
because participation would always result in less utility (even for antisocial
agents). As a consequence, we can focus on finding the highest possible pay-
ment for the winning bidder that still ensures individual rationality. We will
now prove by complete induction that this optimal payment is the winner’s
private value, independent from all derogation rates.

Induction start: If there is just a single bidder with private value v and dero-
gation rate d, his utility from participating is u = (1—d)(v+m) and his utility

4Even when excluding the seller from the social welfare measurement, payments are
infinitely high if Y7 | d; > 1.
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when not participating is zero. Thus, participation is individual rational as
long as —7m < v. In order to maximize social welfare, the payment needs to
be as high as possible, i.e. 7 = —wv.

Induction step: Let us assume that in an auction with n bidders, the winning
bidder has to pay his private value (7' = —v'). When introducing an addi-
tional highest bid, the corresponding bidder’s utility from not participating
is & = —d(v'+7') = 0 and his utility from participating is u = (1 —d)(v+m),
which, as above, implies that 7 = —v in order to maximize social welfare. [

Concluding, the auction mechanism has to assign a payment to the win-
ning bidder that equals his private value in order to implement the desired
social choice function. Interestingly, the specific derogation rates are irrele-
vant as long as d > 0. The highest private value can only be known to the
mechanism infrastructure if truth-telling would be an equilibrium strategy
in 1%-price sealed-bid auctions. However, we have seen in Chapter 3 (see
Proposition 3.3 and Theorem 3.4) that this is not the case. U



74

CHAPTER 4. FRAUD AND DECEPTION



PART 11

Privacy Protection

5






Chapter 5

Security and Partial Revelation

Sealed-bid auctions are desirable auction mechanisms in many areas because
they require just a single round of bidding, and thus save bandwidth and
time. The main advantage of sealed-bid auctions, however, is the protection
of participants’ preferences. Depending on the application, these preferences
can be extremely sensitive information, e.g. valuations in large-scale B2B
auctions or prime costs in procurement reverse auctions. Privacy is of par-
ticular importance in auctions with software agents. As the internationally
recognized economist Hal Varian puts it:

“Hence privacy appears to be a critical problem for ‘computerized
purchasing agents’. This consideration usually does not arise with
purely human participants, since it is generally thought that they
can keep their private values secret. Even if current information
can be safeguarded, records of past behaviour can be extremely
valuable, since historical data can be used to estimate willingness
to pay. What should be the technological and social safeguards
to deal with this problem”? [Var95]

Furthermore, in scenarios where communication between the participants is
not allowed (see Section 2.3.3), sealed-bid auctions prohibit the placing of sig-
nals in public bids. A drawback of open-cry auctions like the English auction
is the possibility of identifying other bidders, especially the highest bidder,
even during the auction process. Members of a bidder collusion can prevent a
non-member from winning. Additionally, colluding agents will perceive when
a bidder breaks their agreement and are thus able to fine or punish this agent.
For these reasons, it can be said that open-cry auctions support bidder collu-
sion [Mea87]. Moreover, in the private-value model, there is no reason to use
open-cry auctions at all (except for transparency) as disclosed bids do not

7
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change bidders’ valuations. E.g., as stated in Section 2.2.3, the English and
the Vickrey auction are strategically equivalent in the private-value model.

The strategy-proof Vickrey auction seems to be the ideal sealed-bid
auction mechanism. However, despite its impressive theoretical proper-
ties, the Vickrey auction is rarely used in practice. It is generally agreed
[RTK90, RH95, San96, San00] that the Vickrey auction’s sparseness is due
to two major reasons:

e the fear of an untruthful auctioneer and
e the reluctance of bidders to reveal their true valuations.

The winner of an auction has to doubt whether the price the auctioneer tells
him to pay actually is the second highest bid. The auctioneer could easily
make up a “second highest” bid to increase his (or the seller’s) revenue (see
Section 4.2)'. William Vickrey himself identified this flaw in the 1961 paper
in which he introduced the Vickrey auction:

“It would be necessary to show the second-best bid to the suc-
cessful top bidder so that he would be able to assure himself that
the price he is being asked to pay is based upon a bona fide bid.
To prevent the use of a ‘shill” to jack the price up by putting in a
late bid just under the top bid, it would probably be desirable to
have all bids delivered to and certified by a trustworthy holder,
who would then deliver all bids simultaneously to the seller. |...]
If corruption of this order cannot be prevented, then this would
constitute a serious disadvantage of the second-price method”.
[Vic61]

In addition to a possibly insincere auctioneer, bidders have to reveal their
private values to the auctioneer. There are numerous ways to misuse these
values by giving them away to other bidders or the seller. It remains in the
hands of the auctioneer whether the auction really is a sealed-bid auction.
Revelation of bids can be disastrous due to its possible relevance for subse-
quent negotiations and because criminal sellers or antisocial bidders might
use this information, even in the very same auction, in order to increase their
utility. In other words, the downside of the existence of a dominant strategy

'Even in 1%t-price sealed-bid auctions, an untruthful auctioneer could manipulate the
auction outcome by determining a winner that did not submit the highest bid. However,
since auctioneers usually receive a fraction of the selling price and because this behaviour
can be prevented by publicly announcing the selling price, this type of fraud is less signif-
icant.
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that urges bidders to submit their values truthfully is the fact that a single
instance, the auctioneer, receives all these private values?.

There are various ways how value information can be used strategically.
We distinguish the following types of collusive agreements (as depicted in
Figure 5.1, the auctioneer is treated like a mediator between bidders and the
seller).

e auctioneer/seller (A/S)
e auctioneer/bidder(s) (A/B)
e bidder/bidder (B/B)

B/B collusion can be seen as the most common type of collusion. As the
English auction, the Vickrey auction is in particular vulnerable to B/B col-
lusions, i.e., agents that team up to eliminate rivalry, resulting in lower selling
prices (see Section 4.1.3).

A classic example of A/S collusion is an auctioneer that overstates the
second highest bid to increase the seller’s revenue. Another example is an
auctioneer that declares a non-existent winning bidder due to too low bids.

An often neglected form of collusion is A/B collusion, e.g., an auctioneer
that collaborates with the winning bidder and therefore intends to under-
state the selling price, or an auctioneer that sells private values to antisocial
bidders. Collusions involving the auctioneer (A/S and A/B) are of particular
interest in the context of information privacy because they allow agents to
receive sensitive information from the auctioneer.

Concluding, in sealed-bid auctions, bidders have to trust the auctioneer
that their bids are treated confidentially and all participants (bidders and
seller) have to rely on the auctioneer selecting the correct outcome (see Fig-
ure 5.1).

In the remainder of this thesis, we will focus on the development of proto-
cols that compute auction outcomes (primarily from Vickrey auctions) with-
out revealing unnecessary information. More than four decades ago, William
Vickrey roughly described a mechanical apparatus that fulfills this task. He
used a machine applied for Dutch flower auctions as a starting point.

“As presently practiced, speed is achieved by having a motor-
driven pointer or register started downward from a prohibitively
high price by the auctioneer; each bidder may at any time press

2In 1%-price sealed-bid auctions, there is a similar problem. However, it is less sig-
nificant as bids are not equal to private values. Counter-speculation leads to strategic
bidding.
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[ Auctioneer

TRUST TRUST
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Figure 5.1: Trust centralization in traditional sealed-bid auctions

a button which will, if no other button has been pushed before,
stop the register, thus indicating the selling price, flash a signal
indicating the identity of the successful bidder, and disconnect
all other buttons, preventing any further signals from being acti-
vated. There would be no particular difficulty in modifying the
apparatus so that the first button pushed would merely preselect
the signal to be flashed, but there would be no overt indication
until the second button is pushed, whereupon the register would
stop, indicating the price, and the signal would flash, indicating
the purchaser [...] An even more rapid procedure could be de-
veloped, with relatively little increase in the apparatus required,
if each bidder were provided with a set of dials or switches which
could be set to any desired bid, with the electronic or relay ap-
paratus arranged to search out the two top bids and indicate the
person making the top bid and the amount of the second bid”.
[Vic61]

Obviously, such a machine is only trustworthy if one trusts the manufacturer.
Even when it is possible to assure oneself of the correctness of the machine
before the auction, it might secretly be modified after that. The same holds
for software programs or auctioneer agents. Cryptography is an indispensable
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tool to provide provable security.

5.1 Related Work

There has been a very fast-growing interest in cryptographic protocols for
auctions during the last years. In particular, Vickrey auctions and recently
the more general (M + 1)st-price auctions attracted much attention. Start-
ing with the work by Nurmi and Salomaa [NS93] and Franklin and Reiter
[FR96], which introduced the basic problems of sealed-bid auctions, but dis-
regarded the privacy of bids after the auction is finished, many secure auction
mechanisms have been proposed, e.g. [AS02a, AS02b, BS01, Cac99, HTKOS,
JJ00, JS02, Kik01, KHT98, HKI03, KHAN00, Kud98, KO02, LAN02, NPS99,
Sak00, SM99, SM00a, SM00b, SA99, VBD00, WI00].

When taking away all the protocols that (in their current form) are only
suitable for the secure execution of first-price auctions or reveal (partial)
information after the auction is finished [FR96, AS02b, JJ00, Kud98, NS93,
Sak00, SM99, SM00a, SA99, VBD00, WI00], the remaining work can be
divided into two categories.

Most of the publications rely on threshold computation that is dis-
tributed among auctioneers [HKI03, HTK98, Kik01, KHT98, KHANOO,
KO02, SM00b]. This technique requires several auctioneers, out of which
a fraction (mostly a majority) must be trustworthy (see Section 6.8.4). Bid-
ders send shares of their bids to each auctioneer. The auctioneers jointly
compute the selling price without ever knowing a single bid. This is achieved
by using techniques like verifiable secret sharing and secure multiparty func-
tion evaluation (see Chapter 6). However, a collusion of, e.g., three out of
five auctioneer servers can already exploit the bidders’ trust. We argue that
distributing the trust onto several distinct auctioneers does not solve the pri-
vacy problem, because you can never rule out that some of them, or even all
of them, collude.

The remaining auction protocols prune the auctioneer’s ability to forge
the auction outcome and reveal confidential information by introducing a
new third-party that is not fully trusted (see Sections 6.8.1, 6.8.3, and 6.8.6).
However, all of these approaches make weak assumptions about the trust-
worthiness of this third-party. In [BS01, Cac99] the third-party may not
collude with any participating bidder; in [AS02a, LAN02, NPS99, JS02] it is
prohibited that the third-party and the auctioneer collude.

Concluding, all present work on secure auction protocols more or less
relies on the exclusion of third-party collusion, may it be auctioneers or other
semi-trusted institutions. Additionally, many of the existing schemes publicly
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announce the winner’s identity and all of them publicly declare the selling
price rather than making this information only visible to the seller and the
winners.

5.2 Auctions without Auctioneers

As stated at the beginning of this chapter, the Vickrey (and other sealed-
bid) auctions suffer from the possibility of an untruthful auctioneer and the
reluctance of bidders to reveal private information. It would be nice to have
an auction protocol in which it is impossible for the auctioneer to cheat and
that only reveals the Vickrey auction outcome, but no additional information.
Thus, the two main demands for such a protocol are privacy of information
and correctness of the outcome:

Privacy It is required that no information concerning bids and the cor-
responding bidders’ identities is revealed. The only information that
naturally has to be delivered is the information that is needed to carry
out the transaction, i.e.,

e the winning bidder and the seller learn the selling price, and

e the seller gets to know the winner’s identity.

As [SMO00a] pointed out, anonymity of the winners is crucial. Otherwise,
a bidder that breaks a collusive agreement could be identified by his
partners, thus strengthening the power of collusions. It is important
to note that privacy, as defined here, includes that bids can never be
revealed, even after the auction is finished?®.

Correctness Obviously, the winner and the selling price should be deter-
mined correctly. This requirement includes non-repudiation (a winning
bidder cannot deny having made the highest bid) and robustness (no
subset of malicious bidders can render the auction outcome invalid).
Correctness is usually obtained by making the outcome publicly verifi-
able.

Privacy and correctness have to be ensured in a hostile environment as we
allow every feasible type of collusion categorized at the beginning of this
chapter. We assume that up to n — 1 bidders might share their knowledge

3In [ASO2b], it is even prohibited that bidders can prove to others how much they
bid (receipt-freeness). We do not demand receipt-freeness because it requires untappable
channels, which are hard to provide in reality.
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and act as a team. This implies that each bidder can have arbitrarily many
bidder sub-agents, controlled by him. Besides, the seller might collude with
bidders, and any number of auctioneers or other third-parties might collude
and are therefore not trustworthy. We furthermore assume that there are
private communication channels and a public broadcast channel (that we
will refer to as a “blackboard”). Both can be provided if one-way functions
exist (see Section 6.1.1 and Appendix A.1).

As auctioneers and other third-parties cannot be trusted, we completely
omit them and leave the determination of the outcome to bidders themselves.
Auction protocols without auctioneers are called bidder-resolved in the fol-
lowing. All auction protocols described in this thesis have in common that
the auction process is divided into two parts. In the initial phase, bidders
publish their somehow encrypted bids (or bid shares) on a blackboard. No-
body is capable of opening a bid without the bidder’s help. This phase ends
at some pre-determined time and it is impossible to alter existing or add
new bids after that deadline. Bidders are committed to their submitted bids.
They are not able to decrypt them to anything else than the original value.
In the protocols of the following section, the auction outcome is determined
by partial decryption of bids.

5.3 Partial Revelation Protocols

Given the two-phase procedure of the previous section, nobody is able to
manipulate the outcome of an auction by submitting or changing bids after
learning about others’ bids. What remains to be done is to determine the
outcome of the auction without revealing unnecessary information. The tech-
niques presented in this section identify the selling-price by partially opening
bids. They are designed to reveal as little information as possible.

Partial revelation is achieved by the iterative opening of binary bid
vectors. After having agreed on a public vector of k possible bids p =
(p1,p2--.pk), each bidder submits a bid vector (b, bja,...,b;) that con-
sists of commitments to k£ binary values denoting whether he is willing to
pay a given price or not. For example, when p' = (10, 20, 30, 40, 50), private
value 30 is encoded to the bid vector (C'(1),C(1),C(1),C(0),C(0)), where
C'(b) denotes a commitment to bit b. The commitment to bids requires a
cryptographic primitive called “bit commitment” (see Appendix A.2).

The bid vectors are put together to form the so-called bid matriz (see
Table 5.1) and are published on a blackboard. Given this matrix, the goal
is to find an opening sequence that rapidly locates the second highest bid by
revealing as little information as possible.
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Bidder 1 | Bidder 2 Bidder n
Pk O(bm) C(ka) C(bnk)
Pr—1 C(b1,k—1) C(bQ,k—l) C(bn,k—l)
p1 C(bn) 0(521) C(bnl)

Table 5.1: Bid matrix

The minimal set of bits that proves the position of the second highest
bid and reveals no additional information is called the set of essential bits
E. This set can be used to prove the auction outcome to outsiders (non-
bidders) after the second highest bid p, has been found at position (z,y) (In
the case of equal winning bids, (2’,y) denotes another “second-highest” bid.
Otherwise, 2’ = z).

E == {bxy} U {bz/y} U {bi,min(y—i—l,k) | 1€ {]_, 2... n}}

Figure 5.2 shows an example bid matrix (n = 10, k = 15, p; = 5,ps =
10...p15 = 75) and the set of essential bits.

The restriction to a finite set of possible bids (or prices) p rather than
real-numbered bids is not necessarily a limitation since all intervals treated
by digital computers are discrete in the end. Additionally, the differences of
consecutive bid prices do not have to be equal: Logarithmic scales are possible
for example. In a more abstract setting, possible bid prices do not have to
be numbers at all. They can be arbitrary objects that are linearly ordered.
On the other hand, bid vectors obviously contain redundant information and
require linear instead of logarithmic space.

In the following sections, we propose three different search procedures
that locate and return the second highest bid. The framework for these
procedures is given as follows:

e PHASE 1: Each bidder ¢ publishes his bid vector consisting of £ com-
mitted bits.

— Bid submission deadline —

e PHASE 2: The following step is repeated until the second highest bid is
uncovered and (if desired) until all essential bits (£) have been opened.

— Bidder ¢ opens his commitment to bit C'(b;;) (¢ and j are yielded
by one of the algorithms in the subsequent sections).
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75
70
65
60
55
50
45
40
35
30
25
20
15
10
05

Figure 5.2: Essential bits

If he fails to fulfill this task in time, a default bid is used and
bidder i is fined, if necessary.

e The seller and the winning bidder get in contact and initiate the trans-
action.

We assume that bidders’ indices are randomized to avoid complex random-
ization in the algorithms.

5.3.1 Downward Bid Search (dbs)

A straightforward method to open bits is to start at the highest price and
open each row of bids downwards until at least two bidders are willing to pay
a given price. This is similar to the second-price Dutch (descending) auction
described on page 79.

The following algorithm fulfills this task. The algorithm is decomposed
into two separate procedures (dbs and dbs2) because we will reuse the sec-
ond procedure for the binary search technique in Section 5.3.3. Opened bit
commitments are denoted by numbered frames in the example bid matrix in
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Figure 5.3, thus illustrating the opening sequence. The search begins in the
upper left corner of the bid matrix by evaluating dbs(1,k).

procedure int dbs(i, j)

while j > 0 do 75101]{02|03|04|05]06|07|08|09] 10
J
for n times do 70{ 11| 12]13] 14| 15] 16| 17| 18] 19| 20
if b;; = true then
return dbs2(i, j, {i}) 65(21(22(23 24|25/ 2627|2829
end if 60|30]31|32|  33|34|35|36|37]|38
i=i41
1> then i — 1 endif 55(39|40| 41 42| 43| 44| 45] 46| 47
end for 501 48| 49|50 51|52|53|54|55]|56
=1
o while 45|57|58|59|  60|61| 6263|6465
40| 66| 67| 68 69 | 70
procedure int dbs2(i,j, F) 35
while j > 0 do
for n times do 30
if i ¢ F' A b;; = true then
return j 25
end if 20
i=i41
if i > n then i = 1 endif 15
end for 10
j=3-1 05
end while

Figure 5.3: Downward bid search (dbs)

The maximal number of bits to open (and thus the round complexity) is
O(nk). After the opening process, the bidders know just two out of n bids
(the highest and the mandatory second highest) and have no information on
other bids. Although, revealing only one private value may seem a fairly
good result, a disadvantage of this procedure is that the highest bid usually
requires the highest secrecy of all bids in real auctions.

Once the highest bid is revealed, the remaining bidders can falsify the selling
price by refusing to open their commitment. It is therefore necessary to
assign the default bit 1. As the deliberate refusal of opening a price setting
commitment is in an antisocial bidder’s interest, such a bidder should be
fined appropriately, e.g. by paying p; for not opening C'(b;;).

Bidders cannot take advantage of submitting inconsistent bid vectors, i.e.,
vectors that do not represent a private value like (1,0,1,0,0), as only the
first occurrence of a set bit counts.
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5.3.2 Upward Bid Search (ubs)

The following algorithm avoids the revelation of the highest bid by opening
low bids first. When searching upwards, one can skip to the next higher row
when at least one bidder is willing to pay at a given price. This must not
be triggered by the same bidder for two times consecutively. ubs’s searching
technique resembles an English auction (Figure 5.4). The search starts in
the lower left corner of the bid matrix (ubs(1,1)).

procedure int ubs(i, j)

F=0
while j < k do
p=0
F' =0 75
for n — 1 times do 70
if i ¢ F then
if b;; = true then p =1 65
else F/ = F' Ui endif 60
end if
t=1+1 55
if i > n then i = 1 endif 50
if p = 1 then break endif
end for 45 15] 16 W
if p = 0 then break endif 40| 11| 12| 13] 14| 18] 19 10
j=J+1
v 35 07| 08| 09
F=FUF' 30 06
end while
P 25 05
for n — 1 times do 20 04
if 4 ¢F A bi,j—l = true then
return j — 1 15 o
end if 10 02
1=1+1
if i > n then ¢ = 1 endif 05 o1
end for

return j — 2

Figure 5.4: Upward bid search (ubs)

This algorithm is significantly faster than dbs. O(n + k) rounds are re-
quired to determine the second highest bid. Bidders learn partial information
about losing bids and no information at all about the highest bid. Informa-
tion about losing bids becomes more and more precise the higher the bids
are. The lowest bid can be narrowed down to be in a set of at most n values.
The third highest bid is barely hidden after ubs has been executed: it has to
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be one out of two possible values.

The default bit 0 should be assigned to commitments that cannot be opened.
It is usually not required to fine such uncooperative bidders as bidders re-
fusing to open their commitment lose the chance of winning the auction.
However, a winning bidder is able to repudiate his bid by denying to open a
commitment.

Another undesirable effect is that bidders can make their bids conditional on
other participants’ bids by submitting inconsistent vectors. E.g., bidder 2 in
Figure 5.4 can make his bid conditional on bidder 1’s bid by submitting bid
vector (0,1,1,1,1,0,0,...,0). If bid 1 is greater than 5, bidder 2 bids 25.
Otherwise, his bid is 0.

5.3.3 Binary Bid Search (bbs)

Like standard binary search, bbs begins in the middle of an interval by open-
ing consecutive bids. After two set bits have been found, the row is finished
and bbs is called recursively for the upper half of the interval. If, after having
opened all bits in a row, none of them is 1, the search is continued recursively
in the lower half. If exactly one set bid is found, dbs2 is called from this point.
dbs2 reveals no additional information, except the required second highest
bid. The search is initiated by executing bbs(1,1,k,0).

This method is a compromise between both previous techniques. Be-
cause this algorithm uses dbs2 to determine the second highest bid, it has
the same worst-case round complexity as dbs (yet, the average round com-
plexity is lower). Applying binary search until the end would reduce the
number of opened bits to O(nlog(k)), but this could reveal more informa-
tion than needed. The search time can be further decreased by starting at
the expected value of the second highest bid instead of the middle of the
bid interval. bbs is somewhat similar to the consecutive opening of bits in
standard binary radix representations of bids, but it has the advantage of
uncovering less information.

Default bit 0 should be assigned in procedure bbs and default bit 1 in proce-
dure dbs2. Like in the previous protocol ubs, the submission of inconsistent
bid vectors allows bidders to make their bids conditional on other bids.

5.3.4 Analysis

The three suggested search techniques clearly illustrate the equivalence of
Vickrey, 2"d-price Dutch and English auctions in the private-value model. In
addition, the binary search procedure is a novel method to locate the second
highest bid. All protocols need more than n rounds because at least one
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75
procedure int bbs(i, a, z, F) 70
j=a+ 5% 65
p=0
F =g 60 12/ 07] 08 09| 10
for n times do 55 17|13 14| 15/ 16
if ¢« ¢ F then
if b;; — true then p = p + 1 50 22118 19] 20| 21
else F' = F' Ui endif 45 271 23| 24| 25| 26
end if 40
if p = 2 then break endif 01]02] 03] 04] 05] 06
i=i+1 35
if i > n then ¢ = 1 endif
end for 30
if p = 2 then return bbs(4, 5,2, FUF’) 25
if p = 0 then return bbs(i, a, j, F)
else return dbs2(7,j + 1, F' U i) endif 15
10
05

Figure 5.5: Binary bid search (bbs)

bit of each bidder has to be opened. The computational complexity is O(k)
per bidder. When accepting more information revelation, the computational
complexity can be reduced to O(log k) by using radix representations of bids.

Correctness

If all bidders behave correctly, the protocols yield the correct Vickrey auc-
tion outcome. If participants refuse to open a requested commitment, the
outcome is altered. Fines are used to establish an incentive to follow the
protocol. Clearly, fines can only be imposed when it is possible to somehow
prosecute bidders. As a consequence, bidders can not be anonymous and a
legal institution is required. In theory, computationally unbounded bidders
are able to arbitrarily change their commitments (see Appendix A.2) during
the protocol without being detected. However, it is impossible to alter other
bids, regardless of computational power. The construction of inconsistent
bid vectors allows malicious bidders to submit bids that depend on other
participants’ bids (in a limited way). Some form of robustness is guaran-
teed as malicious agents can be removed from the set of bidders without any
problems.
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Privacy

All three proposed protocols uncover partial information about bids. In fact,
some information is uncovered on every bid in all of the protocols. Roughly
speaking, the closer a bid is to the desired second highest bid, the more precise
is the revealed information. E.g., dbs completely uncovers the highest bid,
and ubs almost completely uncovers the third highest bid. Besides the partial
revelation, bids are unconditionally secure (see Appendix A.2).

It lies in the nature of partial revelation protocols that bidders are able
to quit a protocol after having learned information. As this behaviour can
only be confined by assigning penalties to uncooperative bidders which in
turn is not possible in many cases, the protocols of the following chapter do
not disclose any information before the protocol is finished.



Chapter 6

Cryptographic Protocols

In this chapter, sophisticated cryptographic techniques like secret sharing and
secure multiparty computation (MPC) will be applied to enable the secret
execution of auctions. Beyond the limited scope of auctions, we establish a
general link between the fields of mechanism design and MPC by specifying
conditions that allow the secret execution of mechanisms without any trusted
parties. Unfortunately, existing generic MPC protocols are extremely ineffi-
cient. Therefore, the focus of this chapter lies in the construction of efficient
special purpose auction protocols. Our main goal is to construct an efficient
Vickrey auction protocol.

The first two proposed protocols, B-SHARE and MB-SHARE, introduce
how MPC that is distributed on bidders can be used for the private execu-
tion of 1%%-price sealed-bid auctions. These plain protocols are not optimal
but easy to comprehend and analyze. We then approach the more relevant
and difficult problem of designing a protocol that privately computes the
outcome of Vickrey, i.e. 2"-price, auctions. The Vickrey auction protocol
YMB-SHARE satisfies our demand for “full privacy”, i.e., privacy is guaran-
teed despite any collusion of participants. However, all protocols mentioned
so far lack a satisfying level of robustness.

VMB-SHARE and VX-SHARE (“V” stands for “verifiable”) provide ro-
bustness by making the correctness of each protocol step universally ver-
ifiable. Moreover, the most advanced protocol, VX-SHARE, just needs a
constant number of rounds. Round complexity is one of the most impor-
tant complexity measures in distributed protocols as interaction over com-
puter network connections is usually the most time-consuming operation (see
e.g. [GIKRO1]). We therefore intend to minimize the number of rounds rather
than computational complexity.

91
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6.1 Secure Multiparty Computation

Secure multiparty computation (MPC) [CD02, FGY92, Cra00] deals
with protocols that allow n parties to jointly compute a function
flzy, 29, ..., 20) = (Y1,Y2, .- .,Yn) on their individual private inputs z;, so
that agent ¢ only learns y; but nothing else. A classic example is the so-called
“millionaires’ problem” [Yao86] in which two millionaires want to determine
who is richer without revealing their wealth.

The common model defines passive adversaries (or “eavesdropping adver-
saries”) as agents that follow the protocol but try to derive additional infor-
mation. Active adversaries, on the other hand, try to violate privacy and
correctness by any means including the sending of faulty messages. Further-
more, there are two basic security models: computational and unconditional
security. The security of computational protocols is based on complexity
assumptions, i.e., they are only safe against computationally polynomially
bounded adversaries'. Unconditional (or information-theoretic) protocols,
on the other hand, provide perfect security given that agents can communi-
cate via private channels. In other words, the input of unconditional secure
protocols can never be revealed, whereas inputs of computationally secure
can be revealed, but the revelation requires computing power that should not
be available for decades, centuries, or even longer?.

Typically, secure MPC is accomplished by having each agent distribute
shares of his individual input to the other participants. This has to be carried
out in conjunction with a commitment scheme, so that agents can verify the
consistency of shares. This primitive is called verifiable secret sharing. In the
following, the participants verifiably evaluate a Boolean circuit representing
function f(-) with their shares as inputs and new shares as outputs. When
the evaluation of the circuit is finished, agents broadcast their resulting shares
and reconstruct the final result. In the following, we will call such an MPC
scheme “protocol”.

Table 6.1 shows the classic results of proven bounds of adversaries tol-
erable in general secure multiparty computation®. The table entries denote
how many adversaries of a given kind are tolerable at most. The results for

LAll practical encryption techniques, symmetric and asymmetric, belong to this cate-
gory.

2Clearly, this requires technological assumptions and complexity theory (see Ap-
pendix A.1). However, if an algorithm’s running time is exponential, the problem is said to
be “intractable”. “Performing the exponential algorithm is futile, no matter how well you
extrapolate computing power, parallel processing, or contact with superintelligent aliens”.
([Sch96], page 239)

3 L"T_lj active adversaries are tolerable in the unconditional case when allowing non-zero
error probability and a broadcast channel.
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the computational case have been proposed in [GMWS87]. The bounds for
unconditional adversaries have been found simultaneously by [BGW88] and

[CCDSS).

Adversary || polynomially bounded | unbounded

passive n—1 |2 ]

active |25+ |2 ]

Table 6.1: General secure multiparty computation bounds

A protocol is called “t-private” if a collusion of up to t agents is incapable
of revealing private information. For example, according to Table 6.1, MPC
that is secure against active, bounded adversaries can be at most L"T_IJ-
private. As we want to distribute the emulation of a mechanism on the
participants themselves, only (n — 1)-privacy is acceptable.

DEFINITION 6.1 (FULL PRIVACY)
A protocol is fully private if a coalition of n — 1 participants can not reveal
the input of the remaining agent.

Clearly, this is the highest bound possible since in the case of n colluding
agents, there would be nobody left to spy on.

6.1.1 Unconditional MPC

Let us first consider unconditional multiparty computation and its applicabil-
ity to secure mechanism design. Without making any assumptions, verifiable
secret sharing can only be accomplished when more than one third of the
participants are honest. Furthermore, it has been proven that the secure
computation of essential Boolean gates like OR and AND in the unconditional
model can only be achieved when a minority of (passive) adversaries are able
to pool their knowledge [BGWS8S|. Broadcasting, i.e. sending one message
to all other agents, is not generally possible (without a trusted third-party)
because it has to be guaranteed that all agents receive the same message.
It has been shown in [LSP82] that reliable broadcasting can be achieved in
the presence of at most [“5*| (active) adversaries in the unconditional case.
Finally, agents that quit the protocol in progress render it impossible to com-
plete the computation of f(-) in their absence. This is a particular problem
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in the final stage of a protocol as share revelation cannot be synchronized
without a trusted party. As a consequence, a bidder is able to construct the
result by using the shares that have been published so far and then decide not
to release his share, thus leaving the other agent uninformed about the result.
If a majority of participants are assumed to be cooperating, shares can be
distributed in a way that allows any majority of agents to reconstruct the
original values. This ensures robustness as no minority quitting the protocol
can prevent the correct execution of the protocol.

DEFINITION 6.2 (ROBUSTNESS)

A protocol is (strongly) robust if the correct computation of function
f(zy1,x9,...,2,) with private inputs x,zs,...,z, can be completed even
when participants quit during the protocol.

Robustness obviously implies the critical property of fairness.

DEFINITION 6.3 (FAIRNESS)
A protocol is fair if no agent can learn y; and then prevent the other partic-

ipants from learning 1, Y2, - - -, Yi—1, Yit+1, Yit+2; - - - » Yn-

Concluding, unconditionally secure MPC is possible if there are not more
than [“51] active adversaries (see Table 6.1). Recapitulating, the reasons for
thresholds in unconditional multiparty computation are:

1. Robustness, threshold: &
2. Feasibility of secure broadcasting, threshold: %

3. Feasibility of verifiable secret sharing, threshold: %

(% with error probability and broadcast channel)

4. Feasibility of secure OR, threshold: 7
(even with only passive adversaries)

Any threshold of trusted participants is unacceptable when requiring full
privacy. However, it might be possible to make weak assumptions that al-
low unconditional secure MPC without thresholds. In the following, we will
analyze each of the above thresholds with respect to this aspect.
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Robustness

First of all, robustness against active adversaries in MPC is defined to allow
correct completion of the computation even if active adversaries do not follow
the protocol. Even when L"T_lj cheaters were forced to quit the protocol,
there are enough agents left (i.e. a majority) to compute f(z1,z2,...,T,),
including the inputs of malicious participants.

When presuming that active adversaries can be “kicked out”, including
their inputs, this leads to a weaker notion of robustness.

DEFINITION 6.4 (WEAK ROBUSTNESS)

A protocol is weakly robust if the correct computation of a function f(X)
of inputs supplied by non-adversaries X C {z1,x,...,2,} can always be
complet