
f f f f
fff fff fff ff

f
f f ff

Proofs, Programs and Executable Specifications
in Higher Order Logic

Stefan Berghofer

Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Proofs, Programs and Executable Specifications
in Higher Order Logic

Stefan Berghofer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. Wilfried Brauer

Prüfer der Dissertation: 1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Dr. Helmut Schwichtenberg,
Ludwig-Maximilians-Universität München

Die Dissertation wurde am 18. Juni 2003 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 7. Oktober 2003 angenommen.

Kurzfassung

Diese Arbeit präsentiert mehrere Erweiterungen des generischen Theorembeweisers Isabelle.
Der zentrale Beitrag der Arbeit ist die Erweiterung von Isabelle um einen Kalkül für primitive
Beweisterme, in dem Beweise als Lambda-Terme repräsentiert werden. Primitive Beweisterme
erlauben eine unabhängige Verifikation von in Isabelle konstruierten Beweisen durch einen
kleinen und vertrauenswürdigen Beweisprüfer und bilden eine wichtige Voraussetzung für den
Austausch von Beweisen mit anderen Systemen.
Der Beweistermkalkül wird insbesondere dazu verwendet, um die Beziehung zwischen Beweisen
und Programmen zu studieren. Hierzu wird ein Mechanismus zur Extraktion von beweisbar
korrekten Programmen aus konstruktiven Beweisen entwickelt und auf verschiedene Fallstudien
angewandt.
Darüberhinaus stellen wir einen alternativen Ansatz zur Gewinnung von Programmen aus
Spezifikationen vor, der induktive Definitionen direkt als Logikprogramme interpretiert.

i

ii

Abstract

This thesis presents several extensions to the generic theorem prover Isabelle, a logical frame-
work based on higher order logic.
The central contribution of this thesis is the extension of Isabelle with a calculus of primitive
proof terms, in which proofs are represented using λ-terms in the spirit of the Curry-Howard
isomorphism. Primitive proof terms allow for an independent verification of proofs constructed
in Isabelle by a small and reliable proof checker, and are an important prerequisite for the
application of proof transformation and analysis techniques, as well as the exchange of proofs
with other systems.
In particular, the proof term calculus is used to study the relationship between proofs and
programs. For this purpose, we first develop a generic mechanism for the extraction of prov-
ably correct programs from constructive proofs, then instantiate it for the particular object
logic Isabelle/HOL, and finally apply it to several case studies, ranging from simple textbook
examples to complex applications from the field of combinatorics or the theory of λ-calculus.
Moreover, we introduce an alternative approach for obtaining programs from specifications by
directly interpreting inductive definitions as logic programs.

iii

iv

Acknowledgements

First of all, I would like to thank Tobias Nipkow, my supervisor, for introducing me to the
field of theorem proving, for offering me a position in his research group and for all his advice
and support. I am indebted to Helmut Schwichtenberg for agreeing to act as a referee, for
the numerous interesting discussions we had about constructive logic and program extraction,
which greatly helped me to shape the ideas presented in this thesis, and for chairing the DFG
Graduiertenkolleg “Logic in Computer Science” of which I had the pleasure to be a member.
A big thank-you goes to my former colleague and roommate Markus Wenzel for many in-
spiring and often controversial discussions, for letting me benefit from his amazing technical
knowledge, and for his sometimes unconventional views. Thanks are due to my colleagues Se-
bastian Skalberg, Martin Strecker, and Tjark Weber for reading draft versions of this thesis and
suggesting numerous improvements. I would also like to thank my other current and former
colleagues at TU München for the pleasant working atmosphere in our group: Clemens Bal-
larin, Gertrud Bauer, Gerwin Klein, Farhad Mehta, David von Oheimb, Leonor Prensa-Nieto,
Cornelia Pusch, Norbert Schirmer and Martin Wildmoser.
I very much appreciated the lively interaction with my fellow members of the Graduiertenkolleg,
which helped to broaden my horizon enormously. In particular, I would like to thank Andreas
Abel for discussing with me various questions related to logical frameworks, Laura Crosilla
for her comments on parts of this thesis and her encouragement, Felix Joachimski and Ralph
Matthes for insightful discussions about λ-calculus and normalization proofs, which inspired
me to do a case study on this topic, as well as Monika Seisenberger for a very pleasant and
stimulating collaboration, which led to the formalization of Higman’s lemma presented in this
thesis.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Overview . 5
1.4 Preliminaries . 6

1.4.1 Notation . 6
1.4.2 Styles of proof presentation . 7

2 Proof terms for higher order logic 11
2.1 Introduction . 11
2.2 Basic concepts . 12

2.2.1 A logical framework with proofs . 12
2.2.2 Formalizing object logics . 14

2.3 Representing backward resolution proofs . 16
2.3.1 Encoding the proof steps . 16
2.3.2 Constructing an example proof . 17

2.4 Partial proof terms . 20
2.4.1 Reconstruction . 21
2.4.2 Compression . 25
2.4.3 A static compression algorithm . 28
2.4.4 A refined strategy for omitting terms . 34
2.4.5 A bidirectional compression algorithm 40
2.4.6 Practical results . 46

2.5 Related work . 49

3 Proofs for equational logic 51
3.1 Introduction . 51
3.2 Contextual rewriting . 52
3.3 Transforming equational proofs . 56

3.3.1 Rewriting on propositions . 56
3.3.2 Eliminating meta equality rules . 57

3.4 Related work . 58

vii

viii CONTENTS

4 Program extraction 61
4.1 Introduction . 61
4.2 A generic framework for program extraction . 62

4.2.1 Extracting types . 62
4.2.2 Extracting terms . 64
4.2.3 Correctness and realizability . 65
4.2.4 Limitations . 69

4.3 Program extraction for Isabelle/HOL . 70
4.3.1 Type extraction . 71
4.3.2 Realizability . 71
4.3.3 Realizing terms . 72
4.3.4 Realizers for inductive datatypes . 74

4.3.4.1 Introduction . 74
4.3.4.2 General scheme . 76

4.3.5 Realizers for inductive predicates . 78
4.3.5.1 Introduction . 78
4.3.5.2 General scheme . 82
4.3.5.3 Examples . 86

4.4 Related work . 90

5 Case studies 91
5.1 Quotient and remainder . 91

5.1.1 The Isabelle proof . 91
5.1.2 Comparison with Coq . 96

5.2 Warshall’s algorithm . 100
5.3 Higman’s lemma . 103
5.4 Weak normalization for simply-typed Lambda-calculus 115

5.4.1 Basic definitions . 115
5.4.2 Typed Lambda terms . 117
5.4.3 Terms in normal form . 119
5.4.4 Main theorems . 120
5.4.5 Extracted programs . 126

5.5 Discussion . 130

6 Executing higher order logic specifications 133
6.1 Introduction . 133
6.2 An executable subset of Isabelle/HOL . 134
6.3 Compiling functional logic specifications . 136

6.3.1 Mode analysis . 136
6.3.2 Translation scheme . 139
6.3.3 Extending the mode system . 142
6.3.4 Discussion . 143

CONTENTS ix

6.4 Related work . 144

7 Conclusion 147
7.1 Achievements . 147
7.2 Future work . 147

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Interactive theorem provers are tools which allow to build abstract system models, often in some
kind of functional programming language involving datatypes and recursive functions. They
also allow to capture interesting properties of the system to be modelled by a specification,
which can be expressed in the language of predicate logic. Most importantly, they aid in the
construction of proofs, i.e. formal arguments, showing that a system model satisfies a given
specification. This thesis addresses two central issues in theorem proving: The representation
of proofs, and the transformation of specifications into executable programs.

Representation of proofs The user interface layer of a theorem prover usually offers rich and
expressive tactic languages for encoding proof search strategies, or even languages for writing
“human-readable” proof documents. During the construction of a proof, the user may also
invoke specific decision procedures for fragments of arithmetic, or proof search procedures for
propositional or predicate logic, which are built into the theorem prover. Due to this expres-
siveness, verifying the correctness of such high-level proof descriptions requires a relatively
complex machinery, and usually cannot be done independently of the theorem prover. In order
to allow for an independent checking of proofs by a relatively small program, a more primitive
notion of proof is needed.
The insight that checking proofs is easier than finding proofs already dates back to Aristotle.
N.G. de Bruijn, one of the pioneers of computer-assisted theorem proving, was the first to point
out that proofs produced by theorem provers should be independently checkable by a small
program, in order to achieve a higher confidence in the correctness of the produced results.
His Automath system [31] was consequently designed with this principle in mind. Recently,
this approach has also been applied to the design of general purpose decision procedures,
notably the Cooperative Validity Checker (CVC) developed at Stanford [114]. Instead of
simply reporting whether or not a formula is true, CVC also produces proofs for the formulae
it claims to be valid. These proofs are formulated in an extension of the Edinburgh Logical
Framework [45], and can be verified with a small proof checker called flea, which is distributed
together with CVC. A recent application of independent proof checking to system security is
the proof-carrying code methodology by Necula [75, 76]. Proof-carrying code allows for a safe
execution of untrusted code, such as device drivers or dynamic web applications, by packaging
the code together with a proof that it adheres to a specific security policy. This proof can then

1

2 CHAPTER 1. INTRODUCTION

be checked by a simple program on the client side prior to the execution of the code.
Most standard theorem provers such as Isabelle [92] or the HOL system [42] are based on the
so-called LCF approach, pioneered by Milner in the early 1970’s, and named after the LCF
theorem prover [43] for Scott’s logic of computable functions in which it was first used. The
LCF methodology, which is sometimes advertized as an alternative to de Bruijn’s approach of
independently checkable proof objects, requires that all functions in a theorem proving system
that produce theorems must eventually call functions of a primitive kernel implementing the
basic inference rules of the logic. Provided that the implementation of these rules is correct,
all theorems obtained in this way are guaranteed to be sound. Hence it is often claimed that
constructing explicit proof objects for each theorem is unnecessary in such systems. This is only
partially true, however. Since even the inference kernels of LCF-style theorem provers are often
relatively large, their correctness is difficult to ensure. Being able to verify proofs by a small
and independent proof checker helps to minimize the risks. Moreover, a precise notion of proof
objects facilitates the exchange of proofs between different theorem proving systems. Finally,
proof objects are a prerequisite for proof transformation and analysis or the extraction of
computational content from proofs. This activity of revealing additional information inherent
in proofs, which is not immediately obvious at first sight, is often summarized by the catchy
slogan “proof mining”.
The importance of producing proofs that can be checked independently of a theorem prover has
also been recognized quite early by the HOL community. As a response to the needs of safety
and security conscious users of the HOL system, Cambridge University and SRI initiated the
Foundations of Secure Formal Methods project, whose main deliverables were the verification of
a proof checker for HOL carried out in HOL itself by von Wright [117], as well as an extension
of the HOL system with a library for recording proofs by Wong [122]. Although the proof
recorder and checker have been tested on small proofs, their performance on larger proofs has
never been examined, and they have not found their way into any of the recent releases of the
HOL system.

From specifications to executable programs In order for a theorem prover to be useful
as a tool for software development, it should ideally support all phases of the development
process, ranging from the abstract specification of a system to the generation of executable
code. It is therefore not surprising that the design of calculi supporting the formally verified
transition from specifications to code has long been an area of active research. This research
has led to algebraic specification languages accompanied by various notions of implementation,
as proposed by Sannella, Tarlecki and Wirsing [106, 107], or to refinement calculi, such as the
one by Back and von Wright [9], to name just a few examples. In this respect, a formalism
which is particularly attractive for computer scientists is that of constructive logic, since it
comes with a built-in notion of computability (or executability). Constructive logic rejects
the unrestricted usage of the law of excluded middle, which means that P ∨ ¬P may only be
assumed if an algorithm for deciding the property P has been shown to exist. In contrast
to more heavyweight formalisms for reasoning about decidability, such as recursive function
theory, constructive logic has the advantage of offering very much the same look and feel as
ordinary mathematics.

Proofs as programs One of the central insights of computer science, which connects the
two previously mentioned topics, is that logic and computation are closely interrelated. The
fact that theorem proving is similar to programming, and therefore many techniques for the

1.1. MOTIVATION 3

construction and analysis of programs are also applicable to proofs, has first been pointed
out by Brouwer, Heyting and Kolmogorov [25, 49, 60], as well as Curry and Howard [51].
Informally, the relationship between proofs and programs can be summarized as follows:

• A proof of A −→ B is a program that transforms a proof of A into a proof of B

• A proof of ∀x. P x is a program that transforms an element x into a proof of P x

• A proof of ∃x. P x is a pair consisting of an element x and a proof of P x

• A proof of A ∧B is a pair consisting of a proof of A and a proof of B

• A proof of A∨B is either a proof of A or a proof of B, together with a tag telling which
alternative has been chosen

In this setting, proof checking simply amounts to type checking, and the elimination of detours
in proofs corresponds to β-reduction of functional programs.
It is commonly agreed that assigning types to programs can avoid a substantial amount of
programming errors. However, in most programming languages, the fact that a program is
well-typed usually does not guarantee its correctness. As an example, consider the typing
judgement

pred : nat ⇒ nat

It merely states that pred is a function that takes a natural number as an input and again yields
a natural number as an output, but does not say anything about the relationship between the
input and the output value. Clearly, such a judgement is not particularly informative. A way
to improve this situation is to use more expressive type systems, which are powerful enough
to capture specifications of programs. If we view a proof as a program, and the proposition
established by it as its type, we can rephrase the above judgement to

pred : ∀x :: nat . x 6= 0 −→ (∃y :: nat . x = Suc y)

which says that the function pred yields the predecessor y of any non-zero natural number
x. This approach, which is often summarized by the slogan “proofs as programs, propositions
as types”, forms the basis for most modern type theories, as implemented for example in the
proof assistants Coq [12] developed under the direction of G. Huet at INRIA, as well as the
Nuprl system [27] by R. Constable from Cornell University. Certainly the most important
consequence of the proofs as programs approach is the possibility to extract provably correct
programs from constructive proofs. Since a constructive proof contains a program together
with its proof of correctness, program extraction can also be viewed as a somewhat extreme
form of proof-carrying code, or rather “code-carrying proof”.

Logical frameworks The reuse of existing components and well-established technology is a
major issue in software engineering. This has resulted in the creation of libraries and so-called
frameworks for specific purposes, such as graphical user interfaces or business applications,
which help to shorten the development process by factoring out common functionality. Since
a theorem prover is essentially a piece of software, the concept of a framework can be applied
to its development as well. Instead of reimplementing theorem provers from scratch for every
conceivable logic, it is more advantageous to provide generic algorithms and data structures

4 CHAPTER 1. INTRODUCTION

for representing and reasoning within logics and deductive systems once and for all in the form
of a logical framework.
Examples of logical frameworks are the Elf system by Pfenning [94], which is an implementa-
tion of the Edinburgh Logical Framework (LF), a dependent type theory proposed by Harper,
Honsell and Plotkin [45], as well as the Isabelle system by Paulson and Nipkow [92], which
implements simply typed, minimal higher order logic. While logical frameworks allow to repre-
sent and reason within deductive sytems (so-called object logics), meta-logical frameworks also
support reasoning about such systems, e.g. by induction on the structure of derivations. An ex-
ample for such a meta-logical framework is the Twelf system [99] by Pfenning and Schürmann,
which is the successor of the Elf system.

1.2 Contributions

This thesis is concerned with the development of several extensions to the generic theorem
prover Isabelle, a logical framework based on simply typed, minimal higher order logic. Apart
from studying theoretical foundations, the emphasis in this thesis is on providing a practically
usable implementation. Therefore, all the presented concepts and methods have been imple-
mented in Isabelle, and most of them are part of the current release (Isabelle2003). Although
the implementation has been done for a particular theorem proving system, we believe that
most of the concepts are actually rather generic and are therefore also applicable to a wide
range of other provers, such as the HOL system.

A logical framework with proof terms The central contribution of this thesis is a calculus of
primitive proof terms for Isabelle, in which proofs are represented using λ-terms in the spirit
of the Curry-Howard isomorphism. We present a method for synthesizing proof terms step by
step via higher order resolution, which is the central principle of proof construction in Isabelle.
The representation of proofs as terms allows techniques from the area of type checking and
term rewriting to be applied to them quite easily, which is in contrast to proof formats such
as the one proposed for HOL by von Wright and Wong [117, 122], where a proof is essentially
viewed as a “flat” and unstructured list of inferences.
To make the proof term calculus suitable for practical applications, which usually involve proofs
of considerable size, we introduce an extended version of the original proof term calculus,
allowing for the omission of redundant information in proofs. This calculus of partial proofs
is accompanied by an algorithm for the reconstruction of omitted information in proofs, using
a constraint solving strategy similar to type inference algorithms in functional programming
languages. Based on this calculus, we then develop several algorithms for eliminating syntactic
redundancies in proof terms, and analyze their performance. The most powerful of these
algorithms achieve a compression ratio of over 90%.
This new calculus for proof terms allows to check proofs constructed in Isabelle by a small
proof checker, which leads to a much higher degree of reliability. Interestingly, the addition of
proof terms to Isabelle even helped to uncover a rather subtle soundness bug in the kernel, and
to spot some inefficiencies in proof procedures. Apart from increasing the reliability of Isabelle,
the proof term calculus also opens up new fields of applications, such as proof-carrying code,
program extraction or the exchange of proofs with other theorem provers.

Proofs for equational logic Without additional support in the form of automated proof
procedures for specific purposes, interactive theorem provers would be rather tedious to use.

1.3. OVERVIEW 5

One of the central proof methods of every theorem prover is term rewriting. We have redesigned
the term rewriting algorithm used in Isabelle such that it generates proofs and therefore can
be implemented in a safe way outside the trusted kernel of the theorem prover. Moreover,
our algorithm improves on previous ones in that it allows contextual rewriting with unlimited
mutual simplification of premises.

A generic framework for program extraction To demonstrate that our proof term calculus
is suitable for nontrivial applications, we use it to develop a generic framework for extract-
ing programs from constructive proofs. While the correctness of similar program extraction
mechanisms to be found in other theorem provers such as Coq is often justified by com-
plex meta-theoretic arguments on paper only [86], which is somewhat unsatisfactory from the
viewpoint of machine-checked proofs, our framework also yields a correctness proof for each
extracted program, which can be checked inside the logic. The program extraction framework
is based on the concept of modified realizability due to Kreisel and Kleene [59].
Moreover, we present an instantiation of the generic framework to the object logic Isabelle/HOL,
which also covers advanced constructs such as inductive datatypes and predicates, for which
we introduce specific realizability interpretations. Our implementation of program extraction
is the first one for a theorem prover of the HOL family. Although, strictly speaking, HOL
is a classical logic, our work shows that this has very little impact on program extraction.
This confirms an observation already made by Harrison [46, §8], who pointed out that very
few theorems in the HOL library are inherently classical, and therefore suggested to introduce
classical axioms as late as possible in the development process.

Case studies By means of several case studies, we show the practical applicability of the
framework for program extraction, and also give an overview of the techniques necessary for
program development using constructive logic. The case studies range from relatively simple
examples to fairly complex ones, showing that our framework scales up well to larger applica-
tions. Among the examples which we have treated is Higman’s lemma, an interesting result
from the theory of combinatorics, as well as a novel formalization of an elegant and short proof
of weak normalization for the simply-typed λ-calculus, from which an algorithm for normalizing
terms can be extracted.

Specifications as logic programs As an alternative approach to obtaining executable pro-
grams from constructive proofs, we examine how specifications involving inductive predicates,
which are essentially PROLOG-style Horn clauses, can be directly interpreted as logic pro-
grams. We present a lightweight mechanism for translating logic programs to functional pro-
grams, which is based on an annotation of predicates with possible directions of dataflow,
so-called modes. We give an algorithm for the automatic inference of modes and explain how
the mode system can be extended to handle combinations of functions and predicates or higher
order concepts.

1.3 Overview

The remaining part of this chapter is concerned with preliminaries, such as notation and styles
of proof presentation. The rest of the thesis is structured as follows:

6 CHAPTER 1. INTRODUCTION

Chapter 2 introduces a logical framework with proof terms, together with algorithms and
techniques for proof synthesis, compression, and reconstruction.

Chapter 3 deals with strategies for the construction of proofs in equational logic.

Chapter 4 describes a generic framework for the extraction of programs from proofs, which
is based on the calculus introduced in Chapter 2, as well as its instantiation to the object
logic Isabelle/HOL.

Chapter 5 presents several case studies demonstrating the applicability of the program ex-
traction framework introduced in Chapter 4.

Chapter 6 discusses an alternative approach for obtaining programs from specifications, based
on logic programming techniques.

Chapter 7 summarizes the achievements made in this thesis, and gives directions for future
work.

1.4 Preliminaries

This section introduces some general notation, which will be used in the rest of this thesis. We
also give a very brief overview of proof presentation in Isabelle, and introduce some very basic
constructs of the object logic Isabelle/HOL. A more formal definition of the Isabelle logical
framework will be given later on in §2.2.

1.4.1 Notation

Vector notation We use the notation a to denote a list a1 . . . an of elements. To emphasize
that a list has a certain length n, we write a〈n〉. The brackets around n are used to avoid
confusion with ai, which denotes an element of a family of vectors, such as a1 . . . an. To
express that a list a contains an element ai with ai = x, we write x ∈ a.

Substitutions We use {x1 7→ t1, . . . , xn 7→ tn} to denote substitutions on types, terms, and
proofs. Application of a substitution is written as u{x1 7→ t1, . . . , xn 7→ tn}.

Basic types Type variables are denoted by α, β, In concrete Isabelle examples, we will
also use the ML-like notation ′a, ′b, The type of functions from σ to τ is written as σ ⇒ τ .

Isabelle/HOL Most examples in this thesis will be done in the logic Isabelle/HOL. Apart
from the type bool of truth values, one of the most central types of HOL is the type α set of
sets with elements of type α. The fact that x is an element of set S is denoted by x ∈ S, where
∈:: α⇒ α set ⇒ bool . Set comprehension, i.e. the set of all elements with a particular property
P is written as {x. P x}, which is syntactic sugar for Collect P , where Collect :: (α⇒ bool)⇒
α set . The distinction between the type of sets α set and the type of predicates α ⇒ bool
is mainly of technical nature, and we will often treat these types as if they were identical.
Isabelle/HOL also supports inductive datatypes. We will not formally introduce the concept of
a datatype here, but refer the reader to §4.3.4. Some of the most important datatypes defined
in Isabelle/HOL are:

1.4. PRELIMINARIES 7

Natural numbers The type nat of natural numbers has the constructors 0 :: nat and
Suc :: nat ⇒ nat .

Lists The type α list of lists has the constructors Nil :: α list and Cons :: α⇒ α list ⇒ α list ,
for which there is the concrete syntax [] and x # xs, respectively. Concatenation of two
lists xs and ys is denoted by xs @ ys.

Products The type α × β of products has the constructor Pair :: α ⇒ β ⇒ α × β, with
concrete syntax (x, y). The destructor for pairs is split :: (α ⇒ β ⇒ γ) ⇒ α × β ⇒ γ,
and λ(x, y). t is syntactic sugar for split (λx y. t).

Sums The type α + β of disjoint sums has the constructors Inl :: α ⇒ α + β and Inr :: β ⇒
α+ β.

The logical operators and inference rules of Isabelle/HOL will be described when introducing
the logical framework in §2.2.2. More information about Isabelle/HOL can be found e.g. in
the tutorial by Nipkow, Paulson and Wenzel [83].

1.4.2 Styles of proof presentation

All the proofs in the case studies presented in this thesis have been carried out in Isabelle, and
the most important of them will be discussed in more detail. Therefore, this section briefly
introduces the formats of proof presentation supported by Isabelle. Essentially, the user can
choose between two main styles of describing proofs, namely tactic scripts and readable proof
documents. In this thesis, mainly the latter approach is used.
Like most interactive theorem provers, Isabelle can be operated using a set of tactic commands,
which allow a step-by-step refinement of proof goals. Tactic-based proofs are usually conducted
in a backward manner, i.e. a complex goal, which is used as a starting point, is successively
broken down into simpler goals by the application of tactics, until ending up with a collection
of goals which are trivial to solve, because they directly follow from axioms or assumptions in
the context. The proof of thm1 shown in Figure 1.1 is an example for such a tactic-based proof.
Tactics (or proof methods) are applied using the apply command, where the rule method is
used for the application of introduction rules, while erule denotes application of elimination
rules. Unsurprisingly, the assumption method solves the current goal by choosing a suitable
assumption from the goal’s current context.
An obvious problem with the proof of thm1 is that it is almost incomprehensible without ex-
ecuting it step by step in a theorem prover. By just looking at the proof script, it is neither
clear which goal has to be proved in a particular step, nor how the current context of assump-
tions looks like. The Isar proof language (where Isar stands for Intelligible semi-automated
reasoning) developed by Markus Wenzel [120] addresses these deficiencies. In contrast to tac-
tic scripts, proofs written in Isar are quite close to the style of proofs to be found in usual
textbooks about mathematics. Isar proof documents are interpreted using a kind of virtual
machine. Since this virtual machine only relies on functions offered by the underlying core
inference kernel of the theorem prover, this guarantees soundness of the theorems produced as
a result of this interpretation process.
The proof of thm2 shown in Figure 1.1 is a reformulation of the proof of thm1 using Isar.
Proofs in Isar either consist of a single application of a proof method, which has the form
by 〈. . .〉, or a more complex proof block of the form proof 〈. . .〉 qed containing further proofs.
Each proof block may be started with the application of a proof method, such as rule impI.

8 CHAPTER 1. INTRODUCTION

theorem thm1 : (∃ x . ∀ y . P x y) −→ (∀ y . ∃ x . P x y)
apply (rule impI)
apply (rule allI)
apply (erule exE)
apply (erule allE)
apply (rule exI)
apply assumption
done

theorem thm2 : (∃ x . ∀ y . P x y) −→ (∀ y . ∃ x . P x y)
proof (rule impI)
assume H : ∃ x . ∀ y . P x y
show ∀ y . ∃ x . P x y
proof (rule allI)
fix y
from H obtain x where ∀ y . P x y by (rule exE)
then have P x y by (rule allE)
then show ∃ x . P x y by (rule exI)

qed
qed

theorem thm3 : (∃ x . ∀ y . P x y) −→ (∀ y . ∃ x . P x y)
proof
assume H : ∃ x . ∀ y . P x y
show ∀ y . ∃ x . P x y
proof
fix y
from H obtain x where ∀ y . P x y ..
hence P x y ..
thus ∃ x . P x y ..

qed
qed

Figure 1.1: Different styles of proof

Contexts of local parameters and assumptions are built up using fix and assumes, respec-
tively. While forward proofs using tactic scripts often tend to be rather cumbersome, Isar
supports such proofs just as well as backward proofs. Before finally solving a pending goal us-
ing show 〈. . .〉, several intermediate statements may be established via have 〈. . .〉. The then
command indicates that the current result should be used as an input for the following proof
step. This is sometimes referred to as forward chaining. The from command has a similar
effect, with the difference that instead of the current result, a list of named facts is used. The
command obtain x where ϕ 〈. . .〉 introduces a new parameter x representing a witness for
the statement ϕ, where 〈. . .〉 stands for a proof showing that such a witness actually exists.
Usually, this proof just consists of an application of the existential elimination rule.
It should be noted that the proof of thm2 is unnecessarily verbose. As it happens, the system
can figure out itself which rules to apply in most situations. In the proof of thm3, we have
therefore left out all explicit references to inference rules. The .. command instructs the system
to choose a suitable rule from a global set of inference rules suitable for solving the current
goal. Moreover, the commands then have and then show have been replaced by the shortcuts
hence and thus, respectively.
Of course, this brief introduction is by no means complete. A detailed presentation of all

1.4. PRELIMINARIES 9

concepts and techniques related to readable Isar proof documents is given by Wenzel [120].
For a more gentle introduction, see e.g. the tutorial on Isabelle/Isar by Nipkow [82].

10 CHAPTER 1. INTRODUCTION

Chapter 2

Proof terms for higher order logic

2.1 Introduction

Isabelle is a generic theorem prover. It is generic in the sense that it does not just support
a single logic, which is hard-wired into the system, but rather serves as a platform for the
implementation of various different logics. Such platforms for implementing logics are usually
referred to as logical frameworks [97]. In this context, logics implemented using a logical
framework are called object logics, whereas the language for describing operators, inference
rules and proofs of object logics is called the meta logic.
This chapter is concerned with the representation of proofs in simply-typed, minimal higher
order logic, the meta logic provided by Isabelle. We start by introducing the basic calculus
in §2.2, which is based on a representation of proofs as λ-terms. In §2.3, we discuss the rep-
resentation of proofs conducted using higher-order resolution, the central proof construction
principle in Isabelle. In §2.4, we develop several algorithms for eliminating syntactic redundan-
cies from proofs. This helps to keep proof terms small, which is an indispensable requirement
for practical applications. In order to model proofs with omitted syntactic information, we in-
troduce a calculus of partial proofs, together with a constraint based reconstruction algorithm
for recovering this information.
Figure 2.1 gives an overview of the core infrastructure for proof terms available in Isabelle,
which was developed as a part of this thesis. The grey box in the upper left part of the
diagram shows the LCF-style kernel of Isabelle, which performs all operations on theorems.
It also has to be used by interpreters for tactic scripts or readable formal proof documents.
A theorem is essentially an abstract datatype consisting of several fields. Most importantly,
one of these contains the proposition of the theorem, while other fields contain the current list
of open hypotheses used in the proof of the theorem, or the signature with respect to which
the theorem was proved. In order to add proof terms to the kernel, it suffices to extend the
theorem datatype with another field, say prf, which holds the proof term corresponding to the
theorem. Whenever the theorem is transformed, this proof term is transformed as well, in order
to correctly reflect the inferences necessary to establish the theorem. It should be noted that
the kernel works with partial proofs internally, from which syntactic redundancies have been
omitted, since working with full proofs turned out to be too inefficient for practical applications.
The elimination of detours, as well as other transformations on proofs can be expressed using
proof rewrite rules. Due to the isomorphism between proofs and terms, rewriting on proofs can
be carried out by an algorithm similar to the one for terms described in §3. It is often useful
to be able to do rewriting even on partial proofs, although some rewrite rules may require

11

12 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Proof−carrying
code

Proof
generalization

.

Program
extraction

reconstruction
Proof

transformation
rewriting &

Proof

script
Tactic Isar proof

document

inference engine

Isabelle core

Proof replaying

Theorem

prop = ϕ
prf = pp
· · ·

pp

pp′p
pp

p′

Figure 2.1: Core infrastructure for proof terms

information which is only present in fully reconstructed proofs. A transformed proof may be
replayed later on, i.e. checked again by executing primitive functions from the inference kernel,
which, upon successful completion, again yields a theorem. The program extraction framework
described in §4 can be seen as an advanced application for proof transformation and replaying.

2.2 Basic concepts

2.2.1 A logical framework with proofs

Isabelle’s meta logic, also called Isabelle/Pure, consists of three layers, which are summarized
in Figure 2.2. Isabelle/Pure offers simple types according to Church, for which type inference
is decidable. The set of type constructors includes the nullary type constructor prop for the
type of meta level truth values as well as the binary type constructor⇒ for the function space.
The layer of terms is simply-typed λ-calculus, enriched with additional constants, with the
usual typing rules. The connectives of the meta logic, namely universal quantification

∧
and

implication =⇒, are just specific constants, and logical formulae are terms of type prop. The
signature Σ is a function mapping each constant to a type, possibly with free type variables.
In particular,

Σ(=⇒) = prop⇒ prop⇒ prop
Σ(
∧

) = (α⇒ prop)⇒ prop

Isabelle offers schematic polymorphism in the style of Hindley and Milner: when referring to a
constant c, one may instantiate the type variables occurring in its declared type Σ(c). Unlike
in more expressive dependent type theories, no explicit abstraction and application is provided
for types.

2.2. BASIC CONCEPTS 13

τ, σ = α | (τ1, . . . , τn)tc where tc ∈ {prop,⇒, . . .}

Types

t, u, ϕ, ψ = x | c{α7→τ} | t u | λx :: τ. t where c ∈ {
∧
,=⇒, . . .}

Γ, x :: τ,Γ′ ` x :: τ
Σ(c) = τ

Γ ` c{α7→τ} : τ{α 7→ τ}

Γ ` t :: τ ⇒ σ Γ ` u :: τ
Γ ` t u :: σ

Γ, x :: τ ` t :: σ
Γ ` λx :: τ. t :: τ ⇒ σ

Terms

p, q = h | c{α7→τ} | p · t | p · q | λx :: τ. p | λh : ϕ. p

Γ, h : t,Γ′ ` h : t
Σ(c) = ϕ

Γ ` c{α7→τ} : ϕ{α 7→ τ}

Γ ` p :
∧
x :: τ. ϕ Γ ` t :: τ

Γ ` p · t : P{x 7→ t}
Γ, x :: τ ` p : ϕ

Γ ` λx :: τ. p :
∧
x :: τ. ϕ

Γ ` p : ϕ =⇒ ψ Γ ` q : ϕ
Γ ` p · q : ψ

Γ, h : ϕ ` p : ψ Γ ` ψ : prop

Γ ` λh : ϕ. p : ϕ =⇒ ψ

Proofs

Figure 2.2: The Isabelle/Pure logical framework

The layer of proofs is built on top of the layers of terms and types. The central idea behind the
proof layer is the Curry-Howard isomorphism, according to which proofs can be represented
as λ-terms. Consequently, the proof layer looks quite similar to the term layer, with the
difference that there are two kinds of abstractions and two kinds of applications, corresponding
to introduction and elimination of universal quantifiers and implications, respectively. The
proof checking rules for =⇒ can be seen as non-dependent variants of the rules for

∧
. While

the abstraction (λx :: τ. p) corresponding to
∧

introduction abstracts over a term variable
x of type τ , the abstraction (λh : ϕ. p) corresponding to =⇒ introduction abstracts over a
hypothesis variable (or proof variable) h standing for a proof of the proposition ϕ. The formulae
ϕ and ψ in the proof checking rules are terms of type prop. Proof constants c are references to
axioms or other theorems that have already been proved. Function Σ maps each proof constant
to a term of type prop. Similar to term constants, one may give an instantiation for the free
type variables occurring in the proposition corresponding to the proof constant.
The rules for β-reduction on terms and proofs are as usual:

(λx :: τ. t) u 7−→ t{x 7→ u} (λx :: τ. p) · t 7−→ p{x 7→ t} (λh : ϕ. p) · q 7−→ p{h 7→ q}

We tacitly allow β-reductions to be performed on terms during proof checking, so there is no
need to explicitly record such reduction steps, of which there may be numerous, in the proof

14 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Textbook notation Logical framework notation

[P]....
Q

P −→ Q

∧
P Q. (Tr P =⇒ Tr Q) =⇒ Tr (P −→ Q)

[x]....
P x
∀x. P x

∧
P. (

∧
x. Tr (P x)) =⇒ Tr (∀x. P x)

Figure 2.3: Comparison of textbook and logical framework notation

term. This is a restricted form of what Barendregt [10] calls the Poincaré principle, which says
that certain computations need not be recorded in the proof term. Other theorem provers such
as Coq allow even more complex computation steps to be performed implicitly, in particular
δ and ι-reduction, which correspond to unfolding of definitions and application of reduction
rules for recursion combinators of inductive datatypes, respectively.
Checking of terms and proofs is performed relative to a context Γ, mapping term variables
to types and hypothesis variables to propositions. All contexts occurring in the above proof
checking rules are assumed to be well-formed. Intuitively, this means that each term variable
must be declared in the context before it may be used in a hypothesis h : ϕ ∈ Γ, and all ϕ must
be well-typed terms of type prop. More formally, well-formedness of contexts can be expressed
by the following judgement `wf :

`wf []
`wf Γ Γ ` ϕ : prop

`wf Γ, h : ϕ

Often, one also requires that each variable is declared at most once in the context, although
in an implementation using de Bruijn indices, this is not so much of an issue.

2.2.2 Formalizing object logics

Object logics are formalized by introducing a new type of object level truth values, say bool,
and by declaring their logical operators as new constants. In order to embed logical formu-
lae of the object logic into the meta logic, one also needs to introduce a coercion function
Tr :: bool⇒ prop, which turns object level truth values into meta level truth values. Intu-
itively, Tr P should be read as “P is true”. Meta-level implication =⇒ and meta-level uni-
versal quantification

∧
allow for an elegant formalization of assumption contexts, as well as

variable conditions of inference rules with quantifiers, such as “x not free in . . .”, which are
often found in textbook presentations of logics. A comparison of the usual textbook notation
and logical framework notation for inference rules is shown in Figure 2.3. The representation
of logics in Isabelle is based on the higher-order abstract syntax approach, which means that
variable bindings are formalized using the λ-abstraction of the underlying term calculus. For
example, ∀x. P x is just an abbreviation for ∀ (λx. P x). The coercion function Tr, as well as
outermost quantifiers binding variables such as P and Q, which we call the parameters of an
inference rule, are usually omitted for the sake of readability. Figure 2.4 shows the operators
and inference rules for the constructive fragment of the object logic Isabelle/HOL. Instead of

2.2. BASIC CONCEPTS 15

Tr :: bool⇒ prop
True, False :: bool
¬ :: bool⇒ bool
−→, ∧, ∨ :: bool⇒ bool⇒ bool
∀, ∃ :: (α⇒ bool)⇒ bool
= :: α⇒ α⇒ bool

Logical operators

impI : (P =⇒ Q) =⇒ P −→ Q mp : P −→ Q =⇒ P =⇒ Q
allI : (

∧
x. P x) =⇒ ∀x. P x spec : ∀x. P x =⇒ P x

exI : P x =⇒ ∃x. P x exE : ∃x. P x =⇒ (
∧
x. P x =⇒ Q) =⇒ Q

conjunct1 : P ∧Q =⇒ PconjI : P =⇒ Q =⇒ P ∧Q
conjunct2 : P ∧Q =⇒ Q

disjI1 : P =⇒ P ∨Q
disjI2 : Q =⇒ P ∨Q disjE : P ∨Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

notI : (P =⇒ False) =⇒ ¬P notE : ¬P =⇒ P =⇒ R
FalseE : False =⇒ P

TrueI : True
refl : x = x subst : x = y =⇒ P x =⇒ P y

Inference rules

Figure 2.4: Constructive fragment of Isabelle/HOL

the rules conjunct1 and conjunct2, as well as spec given above, the rules

conjE : P ∧Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R
allE : ∀x. P x =⇒ (P x =⇒ R) =⇒ R

are sometimes more convenient to use in backward proofs. Classical logic can be obtained by
adding the rule

ccontr : (¬P =⇒ False) =⇒ P

It is also useful to specify rewrite rules for eliminating detours in HOL proofs, such as

(mp ·A ·B · (impI ·A ·B · prf)) 7−→ prf

(impI ·A ·B · (mp ·A ·B · prf)) 7−→ prf

(spec · P · x · (allI · P · prf)) 7−→ prf · x

(allI · P · (λx. spec · P · x · prf)) 7−→ prf

(exE · P ·Q · (exI · P · x · prf1) · prf2) 7−→ (prf2 · x · prf1)

(exE · P ·Q · prf · (exI · P)) 7−→ prf

(disjE · P ·Q ·R · (disjI1 · P ·Q · prf1) · prf2 · prf3) 7−→ (prf2 · prf1)

(disjE · P ·Q ·R · (disjI2 ·Q · P · prf1) · prf2 · prf3) 7−→ (prf3 · prf1)

(conjunct1 · P ·Q · (conjI · P ·Q · prf1 · prf2)) 7−→ prf1

(conjunct2 · P ·Q · (conjI · P ·Q · prf1 · prf2)) 7−→ prf2

16 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

2.3 Representing backward resolution proofs

In principle, a kernel implementing just the primitive introduction and elimination rules for
∧

and =⇒ shown in Figure 2.2 would already be sufficient for a generic theorem prover. However,
it would be quite tedious to conduct proofs using only these rules. Therefore, most theorem
provers offer tactics for breaking down complex goals into simpler ones, thus allowing to build
up a proof of a theorem step by step in a backward manner. The main tool for conducting such
backward proofs in Isabelle is higher-order resolution, which was first introduced by Paulson
[90]. Since it can be implemented using only the primitive rules of the meta logic, resolution
is actually a derived rule. However, due to efficiency reasons, it is part of the trusted kernel of
Isabelle. To put the kernel of Isabelle on a more firm theoretical basis and to ensure that the
proofs it produces can be verified by a checker implementing just the rules from Figure 2.2,
this section explains how resolution and related proof principles can be expressed as terms of
the primitive proof term calculus.

2.3.1 Encoding the proof steps

What sets Isabelle apart from similar theorem provers, like e.g. the HOL system, is its treatment
of proof states. In Isabelle, any proof state is represented by a theorem of the form

ψ1 =⇒ · · · =⇒ ψn =⇒ ϕ

where ϕ is the proposition to be proved and ψ1, . . ., ψn are the remaining subgoals. Each
subgoal is of the form

∧
xi. Ai =⇒ Pi, where xi and Ai is a context of parameters and local

assumptions. This form is sometimes referred to as Harrop normal form [120, 69].

Resolution A proof of a proposition ϕ starts with the trivial theorem ϕ =⇒ ϕ whose proof
term is the identity function λh : ϕ. h. The initial proof state is then refined successively using
the resolution rule

P1 . . . Pm

C
R

P ′1 . . . P
′
i . . . P

′
m′

C ′
R′
7→ θ

(
P ′1 . . . P ′i−1 P1 . . . Pm P ′i+1 . . . P ′m′

C ′

)
where θ C = θ P ′i

until a proof state with no more premises is reached. When refining a proof state having the
proof term R′ using a rule having the proof term R, the proof term for the resulting proof
state can be expressed by

θ
(
λq〈i−1〉 p〈m〉. R

′ · q〈i−1〉 ·
(
R · p〈m〉

))
where θ is a unifier of C and P ′

i . The first i − 1 abstractions are used to skip the first i − 1
premises of R′. The next m abstractions correspond to the new subgoals introduced by R.
Seen from the proofs-as-programs perspective, resolution is simply function composition.

Proof by assumption If the formula Pj in a subgoal
∧
x〈k〉. P〈n〉 =⇒ Pj of a proof state

having the proof term R equals one of the assumptions in P〈n〉, i.e. Pj ∈ {P1, . . . , Pn} = P〈n〉,

2.3. REPRESENTING BACKWARD RESOLUTION PROOFS 17

this subgoal trivially holds and can therefore be removed from the proof state

Q1 . . . Qi−1

∧
x〈k〉. P〈n〉 =⇒ Pj Qi+1 . . . Qm

C
R 7→

Q1 . . . Qi−1 Qi+1 . . . Qm

C

where 1 ≤ j ≤ n

The proof term of the new proof state is obtained by supplying a suitable projection function
as an argument to R:

λq〈i−1〉. R · q〈i−1〉 ·
(
λx〈k〉 p〈n〉. pj

)
Lifting rules into a context Before a subgoal of a proof state can be refined by resolution
with a certain rule, the context of both the premises and the conclusion of this rule has to be
augmented with additional parameters and assumptions in order to be compatible with the
context of the subgoal. This process is called lifting. Isabelle distinguishes between two kinds
of lifting: lifting over assumptions and lifting over parameters. The former simply adds a list
of assumptions Q〈n〉 to both the premises and the conclusion of a rule:

P1 . . . Pm

C
R 7→

Q〈n〉 =⇒ P1 . . . Q〈n〉 =⇒ Pm

Q〈n〉 =⇒ C

The proof term for the lifted rule is

λr〈m〉 q〈n〉. R ·
(
r〈m〉 · q〈n〉

)
where the first m abstractions correspond to the new premises (with additional assumptions)
and the next n abstractions correspond to the additional assumptions.
Lifting over parameters replaces all free variables ai in a rule R[a〈k〉] by new variables a′i of
function type, which are applied to a list of new parameters x〈n〉. The new parameters are
bound by universal quantifiers.

P1

[
a〈k〉

]
. . . Pm

[
a〈k〉

]
C
[
a〈k〉

] R
[
a〈k〉

]
7→

∧
x〈n〉. P1

[
a′〈k〉 x〈n〉

]
. . .

∧
x〈n〉. Pm

[
a′〈k〉 x〈n〉

]∧
x〈n〉. C

[
a′〈k〉 x〈n〉

]
The proof term for the lifted rule looks similar to the one in the previous case:

λr〈m〉 x〈n〉. R
[
a′〈k〉 x〈n〉

]
·
(
r〈m〉 · x〈n〉

)
2.3.2 Constructing an example proof

We will now demonstrate how a proof term can be synthesized incrementally while proving a
theorem in backward style. A proof term corresponding to a proof state will have the general
form

λ(g1 : ϕ1) . . . (gn : ϕn). . . . (gi xi hi) . . .

where the bound variables g1, . . ., gn stand for proofs of the current subgoals which are still to
be found. The xi and hi appearing in the proof term (gi xi hi) are parameters and assumptions
which may be used in the proof of subgoal i. They are bound by abstractions occurring in the

18 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

context of (gi xi hi) denoted by . . . in the above proof term. As an example, the construction
of a proof term for the theorem

(∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)

will be shown by giving a proof term for each proof state. The parts of the proof terms, which
are affected by the application of a rule will be shaded. Initially, the proof state is the trivial
theorem:

step 0, remaining subgoal: (∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)

λg : ((∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)). g

We first apply rule impI . Applying a suitable instance of this rule to the trivial initial proof
term yields

λg : (∃x. ∀y. P x y) =⇒ (∀y. ∃x. P x y).
(λg′ : ((∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)). g′) · }proof term from step 0

(impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y)︸ ︷︷ ︸
instance of impI

· g)

and by βη reduction of this proof term we obtain

step 1, remaining subgoal: (∃x. ∀y. P x y) =⇒ (∀y. ∃x. P x y)

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y)

We now apply allI to the above proof state. Before resolving allI with the proof state, its
context has to be augmented with the assumption ∃x. ∀y. P x y of the current goal. The
resulting proof term is

λg : (
∧
y. ∃x. ∀y. P x y =⇒ ∃x. P x y).

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y) · }proof term from step 1
((λh2 : (∃x. ∀y. P x y =⇒

∧
y. ∃x. P x y).

λh1 : (∃x. ∀y. P x y).
allI · (λy. ∃x. P x y) · (h2 · h1)) ·

 lifted instance of allI

(λh3 : (∃x. ∀y. P x y).
λy :: β. g · y · h3))

}
rearranging quantifiers

Note that the premise of allI , which will become the new subgoal of the proof state, has
the form ∃x. ∀y. P x y =⇒

∧
y. ∃x. P x y after having been lifted over the assumption

∃x. ∀y. P x y. Since Isabelle expects the goal g to be in Harrop normal form, we have to
apply an additional function to g, which exchanges the quantifier

∧
y and the assumption

∃x. ∀y. P x y. As before, we apply β reduction to the proof term, which yields

step 2, remaining subgoal:
∧
y. ∃x. ∀y. P x y =⇒ ∃x. P x y

λg : (
∧
y. ∃x. ∀y. P x y =⇒ ∃x. P x y).

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y) ·
(λh1 : (∃x. ∀y. P x y).

allI · (λy. ∃x. P x y) · (λy :: β. g · y · h1))

By eliminating the existential quantifier using exE we get

2.3. REPRESENTING BACKWARD RESOLUTION PROOFS 19

step 3, remaining subgoal:
∧
y x. ∀y. P x y =⇒ ∃x. P x y

λg : (
∧
y x. ∀y. P x y =⇒ ∃x. P x y).

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y) ·
(λh1 : (∃x. ∀y. P x y).

allI · (λy. ∃x. P x y) ·
(λy :: β. exE · (λx. ∀y. P x y) · (∃x. P x y) · h1 · (g · y)))

Applying the introduction rule exI for the existential quantifier results in

step 4, remaining subgoal:
∧
y x. ∀y. P x y =⇒ P (?x y x) y

λg : (
∧
y x. ∀y. P x y =⇒ P (?x y x) y).

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y) ·
(λh1 : (∃x. ∀y. P x y).

allI · (λy. ∃x. P x y) ·
(λy :: β. exE · (λx. ∀y. P x y) · (∃x. P x y) · h1 ·

(λx :: α.
λh2 : (∀y. P x y).

exI · (λx. P x y) · (?x y x) · (g · y · x · h2))))

Note that we do not have to give the witness for the existential statement immediately. In
place of the witness, a unification variable ?x y x is introduced, which may get instantiated
later on in the proof. The unification variable is lifted over all parameters occurring in the
context of the current subgoal.
We now eliminate the universal quantifier using allE , which yields

step 5, remaining subgoal:
∧
y x. P x (?y y x) =⇒ P (?x y x) y

λg : (
∧
y x. P x (?y y x) =⇒ P (?x y x) y).

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y) ·
(λh1 : (∃x. ∀y. P x y).

allI · (λy. ∃x. P x y) ·
(λy :: β. exE · (λx. ∀y. P x y) · (∃x. P x y) · h1 ·

(λx :: α.
λh2 : (∀y. P x y).

exI · (λx. P x y) · (?x y x) ·
(allE · (P x) · (?y y x) · (P (?x y x) y) · h2 · (g · y · x)))))

Again, no specific term needs to be provided for instantiating the universally quantified vari-
able. Similar to the case of ∃-introduction, the quantified variable is replaced by a unification
variable ?y y x.
We can now prove the remaining subgoal by assumption, which is done by substituting the
projection function λ(y :: β) (x :: α). λh3 : (P x y). h3 for g. In order for the goal to be
solvable by assumption, we have to solve the unification problem {x =??x y x, ?y y x =? y},
which has the most general unifier1 θ = {?x 7→ (λy x. x), ?y 7→ (λy x. y)}. Thus, the final
proof state is

1More details of the unification algorithm used in Isabelle are given in §2.4.1

20 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

step 6, no subgoals

impI · (∃x. ∀y. P x y) · (∀y. ∃x. P x y) ·
(λh1 : (∃x. ∀y. P x y).

allI · (λy. ∃x. P x y) ·
(λy :: β. exE · (λx. ∀y. P x y) · (∃x. P x y) · h1 ·

(λx :: α.
λh2 : (∀y. P x y).

exI · (λx. P x y) · x ·
(allE · (P x) · y · (P x y) · h2 · (λh3 : (P x y). h3)))))

When examining the proof objects synthesized for each single step of the proof, in particular
for step 2 , which has been explained in more detail above, it should become obvious that the
straightforward application of the rules presented in §2.3.1 often leads to proof objects which
contain a considerable amount of detours. These detours can be eliminated by normalizing
the proof term. Although normalization of λ-terms and derivations can be expensive and may
also blow up their size, it is usually well-behaved in practice. For example, normalizing the
above proof leads to a reduction in size of about 77%. As will be shown in §2.4.2, the fact that
a proof term is in normal form is also crucial for the applicability of proof compression and
reconstruction algorithms.
Concerning the implementation, it is important to note that no normalization is performed
until proof synthesis is completed. This is due to the fact that often not only proof construction,
but also proof search is done using the resolution tactic from the kernel of Isabelle. Therefore,
it is important that the rules presented in §2.3.1 can be implemented efficiently. This would
not be possible if normalization was applied after each resolution step, since this would each
time require a traversal of the whole proof term.

2.4 Partial proof terms

Realistic applications often lead to proof objects of enormous size. For example, Necula [74]
reports that his implementation of proof-carrying code based on LFi produced a security proof
with a size of 11 MB for a program which was 2.7 MB in size. Therefore, a proof term calculus
must come with a suitable compression technique in order to be practically usable. As a
motivating example, consider the following proof of the theorem A ∨B −→ B ∨A:

impI · A ∨ B · B ∨ A ·
(λH : A ∨ B .

disjE · A · B · B ∨ A · H · (disjI2 · A · B) ·
(disjI1 · B · A))

Clearly, this proof term contains quite a lot of redundancies: Both A ∨ B and B ∨ A occur
two times, while A and B alone occur even more often. Actually, much of the information in
subproofs can be reconstructed from the context they occur in. For example, in the subproof
(disjI1 · B · A) the term arguments A and B could be reconstructed from the context, which
expects this subproof to prove the proposition B =⇒ B∨A. It is the purpose of a compression
algorithm to identify and eliminate such redundancies. In the sequel, we will call a proof from
which information has been omitted a partial (or implicit) proof. Due to the Curry-Howard
isomorphism, which states that proofs are isomorphic to functional programs, reconstruction of
omitted information in proofs works quite similar to type inference in functional programming
languages. Type inference eliminates the need for annotating terms with their types, since one
can obtain constraints on the required types of terms by examining the context they occur in.
Viewing the above proof as an ML program, it would be completely sufficient to write

2.4. PARTIAL PROOF TERMS 21

(fn x => case x of disjI1 p => disjI2 p | disjI2 p => disjI1 p);

where

datatype (’a, ’b) or = disjI1 of ’a | disjI2 of ’b;

instead of the much more verbose variant

(fn (x : (’a, ’b) or) => case x of
disjI1 p => (disjI2 : ’a -> (’b, ’a) or) p

| disjI2 p => (disjI1 : ’b -> (’b, ’a) or) p);

with explicit type constraints. Even without explicit type information, any ML compiler can
figure out that the given function is type correct and has the most general type (’a, ’b) or
-> (’b, ’a) or.

2.4.1 Reconstruction

This section is concerned with a formal description of the strategy used for reconstructing
omitted information in proofs. Since the layer of proofs is built on the layer of terms, this
also involves a reconstruction strategy for terms. As mentioned in the introduction, recon-
struction works by collecting and solving constraints. The process of collecting constraints is
formalized using so-called reconstruction judgements, which are defined inductively by a set of
inference rules shown in Figure 2.5. The reconstruction judgements for terms and proofs are
quite similar in style to the type checking and proof checking judgements presented in Figure
2.2. Omitted information in partial proofs pp and terms tp is denoted by placeholders “ ”.
Intuitively, Γ ` pp � (p, ϕ, C) means that the partial proof pp with placeholders corresponds
to a placeholder-free proof p of the proposition ϕ, provided the constraints C can be satisfied.
Constraints, which are usually denoted by the letters C and D, are sets of equations of the
form τ =? σ or t =? u, i.e. equations between types or between terms. We denote by Ct and
Cτ the set of all term and type constraints in C, respectively. The positions in partial terms
and proofs, in which information may be omitted, are specified by a grammar for tp and pp.

• In partial terms, only types may be omitted. Types may appear in two places in Isabelle’s
term calculus: They may be attached to constants, due to schematic polymorphism, as
well as to variables in abstractions.

• In partial proofs, both types and terms may be omitted. In proofs, types may be at-
tached to proof constants, i.e. pre-proved theorems or axioms, as well as to variables in
abstractions over term variables, which correspond to

∧
introduction. Terms may occur

in applications of proofs to terms, which correspond to
∧

elimination, and may also be
attached to abstractions over hypothesis variables, which correspond to =⇒ introduction.

It does not seem reasonable to allow entire subproofs to be omitted, since this would require
actual proof search to be performed during reconstruction. This can make the reconstruction
algorithm almost as complex as a theorem prover, which somehow contradicts the design goal
of having an independent proof checking and reconstruction algorithm which is as small as
possible. We can view this as a trade-off between the size of the proof and the size of the
program needed to check or reconstruct the proof.
During reconstruction, placeholders are replaced by unification variables, which are prefixed
with a question mark, e.g. ?α for type variables, or ?f for term variables, in order to distinguish

22 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

them from other variables. Unification variables belong to the set UV, which is assumed to be
disjoint from the set V of ordinary variables. In particular, an abstraction (λx. t) may only be
formed with x ∈ V. As usual, all unification variables occurring in the rules presented in Figure
2.5 are assumed to be new. We will sometimes write ?fτ to emphasize that ?f has type τ . For
each of the term and proof constructors which may involve placeholders, there are two inference
rules: one with placeholders, and one without. On the term layer, the rules Constp and Absp
introducing type variables for type placeholders correspond to the placeholder-free versions
Const and Abs, respectively. On the proof layer, the rules PConstp and AllIp, which introduce
type unification variables for type placeholders correspond to PConst and AllI, whereas the rules
ImpIp and AllEp which introduce term unification variables for term placeholders correspond to
ImpI and AllE, respectively. Note that an additional premise for checking the well-typedness of
terms ϕp or tp, as in the rules ImpI and AllE, is missing in the rules ImpIp and AllEp. Since a
term placeholder may stand for a term depending on any of the term variables in the current
context Γ, term unification variables introduced by the rules ImpIp and AllEp have to be “lifted”.
For example, (λh : . pp) becomes (λh : ?f τΓ⇒prop VΓ. p), where VΓ denotes the list of all term
variables declared in the context Γ, and τΓ denotes the list of their types, i.e. VΓ = x1 . . . xn

and τΓ = τ1 . . . τn for Γ = x1 :: τ1 . . . xn :: τn. This lifting also applies to term unification
variables introduced in a more indirect way by the rules AllE and ImpE.
The reconstruction algorithm on terms, which collects type constraints, is essentially the type
inference algorithm which has already been part of Isabelle for quite some time. It is quite
similar to Milner’s famous algorithm W which is used in ML. Strictly speaking, the algorithm
actually used in Isabelle is a bit more complex than the one shown in Figure 2.5, due to order-
sorted polymorphism and type classes à la Haskell [80]. Since these concepts do not add to the
complexity of proof reconstruction, which is the main subject of this chapter, they have been
omitted here.
Due to the Curry-Howard isomorphism, the reconstruction algorithm on proofs, which collects
both term and type constraints, can be viewed as a generalization of the reconstruction algo-
rithm on terms. For example, the intuition behind the proof reconstruction rule ImpE, which
is the counterpart of the term reconstruction rule App, is as follows: if p proves proposition ϕ,
then ϕ must be some implication and the proposition ψ proved by q must be the premise of this
implication. Moreover, the proposition proved by (p · q) is the conclusion of the implication.
The set of constraints for (p · q) is the union of the constraints for p and q, plus one additional
constraint expressing that ϕ is a suitable implication.
Constraints between terms and types generated by the reconstruction judgements are solved
using unification. Unification computes a substitution θ for unification variables such as ?α
and ?f . We assume that Vars(θ(?v)) ⊆ UV, i.e. the term substituted for a term unification
variable ?v may not contain any free variables other than unification variables. Since terms
contain types, solving a constraint between terms may also yield an instantiation for some of
the type variables occurring in the terms.

Definition 2.1 (Solution of constraints) A substitution θ is called a solution of the con-
straint set C iff

• for all τ =? σ ∈ C, θ(τ) = θ(σ), and

• for all t =? u ∈ C, θ(t) =βη θ(u)

The correspondence between type checking and term reconstruction, as well as proof checking
and proof reconstruction, can now be stated as follows:

2.4. PARTIAL PROOF TERMS 23

Theorem 2.1 (Soundness of term and proof reconstruction)

• If Γ ` tp � (t, τ, C) and θ is a solution of C, then θ(Γ) ` θ(t) :: θ(τ)

• If Γ ` pp � (p, ϕ, C) and θ is a solution of C, then θ(Γ) ` θ(p) : θ(ϕ)

Proof: by induction on the derivations of Γ ` tp � (t, τ, C) and Γ ` pp � (p, ϕ, C).

Type variables in Isabelle are first order in the sense that they may not range over type
constructors. Therefore, first order unification suffices to solve constraints between types,
which is decidable and yields most general solutions. In particular, it is decidable for a given
term tp with Γ ` tp � (t, τ, C), whether a (most general) solution of C exists. Thus, we may
safely omit any typing information from a term, without compromising decidability of type
inference.
Unfortunately, the same cannot be said for constraints between terms. Since term unification
variables may also range over functions, solving constraints between terms requires higher
order unification, which has been shown to be undecidable in general by Huet [39]. Miller
[69] has identified a fragment of higher order terms, so-called higher order patterns, for which
unification is decidable and yields most general solutions.

Definition 2.2 (Higher order pattern) A term t is a higher order pattern, t ∈ Pat for
short, if all occurrences of unification variables ?v in t are of the form (?v x1 . . . xn), where
x1 . . . xn are distinct bound variables.

For example, (λx y. ?v y x) is a higher order pattern, whereas (?v ?w) and (λx. ?v x x) are
not. To see why the above restriction is necessary to guarantee the existence of a most general
solution, consider the constraints (?v ?w) =? ?w and (λx. ?v x x) =? (λx. ?w x). The former has
the solutions θ1 = {?v 7→ (λx. x)} and θ2 = {?v 7→ (λx. ?w)}, while the latter has the solutions
θ1 = {?v 7→ (λx y. ?w x)} and θ2 = {?v 7→ (λx y. ?w y)}. The process of solving constraints is
usually specified as a set of transformation rules. The following definition closely follows the
one given by Nipkow [79]. A similar description of unification for the more expressive Calculus
of Constructions is given by Pfenning [95].

Definition 2.3 (Solvability using pattern unification) Let the relation −→S for solving
a single constraint be characterized by the rules2

({(λx. t) =? (λx. u)}] C, θ) −→S ({t =? u} ∪ C, θ)

({a t =? a u}] C, θ) −→S ({t1 =? u1, . . . , tn =? un} ∪ C, θ) where a /∈ UV

({?v x =? ?v y}] C, θ) −→S 〈C | {?v 7→ (λx. ?w {xi | xi = yi})} ◦ θ〉

({?v x =? ?w y}] C, θ) −→S 〈C | {?v 7→ (λx. ?u x ∩ y), ?w 7→ (λy. ?u x ∩ y)} ◦ θ〉 where ?v 6= ?w

({?v x =? a t}] C, θ) −→S 〈C ∪ {?w1 x =? t1, . . . , ?wn x =? tn} | {?v 7→ λx. a (?w x)} ◦ θ〉
where a ∈ x or a ∈ C and ?v /∈ Vars(t)

where UV and C denote the sets of unification variables and constants, respectively, x and y
denote lists3 of distinct bound variables, and

〈C | θ〉 = (↓β (θ(C)), θ)

Then C is called solvable using pattern unification iff (C, {}) −→∗
S ({}, θ)

2Note that we ignore constraints on types for the moment.
3In situations where the order of arguments is immaterial, we sometimes use sets in place of lists.

24 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

tp, up, ϕp, ψp = x | c{α7→τ} | tp up | λx :: τ. tp | c{α7→ } | λx :: . tp

Γ′, x :: τ,Γ ` x� (x, τ, {}) Var
Σ(c) = τ

Γ ` c{α7→τ} � (c{α7→τ}, τ{α 7→ τ}, {}) Const

Γ, x :: τ ` tp � (t, σ, C)
Γ ` (λx :: τ. tp) � ((λx :: τ. t), τ ⇒ σ, C) Abs

Γ ` tp � (t, %, C) Γ ` up � (u, τ, D)

Γ ` (tp up) � ((t u), ?σ, {% =? τ ⇒ ?σ} ∪ C ∪D)
App

Σ(c) = τ

Γ ` c{α7→ } � (c{α7→?α}, τ{α 7→ ?α}, {})
Constp

Γ, x :: ?α ` tp � (t, σ, C)
Γ ` (λx :: . tp) � ((λx :: ?α. t), ?α⇒ σ, C)

Absp

Terms

pp, qp = h | c{α7→τ} | pp · tp | pp · qp | λx :: τ. pp | λh : ϕp. pp | c{α7→ } | pp · | λx :: . pp | λh : . pp

Γ′, h : ϕ,Γ ` h� (h, ϕ, {})
Hyp

Σ(c) = ϕ

Γ ` c{α7→τ} � (c{τ/α}, ϕ{τ/α}, {})
PConst

Γ ` ϕp � (ϕ, τ, C) Γ, h : ϕ ` pp � (p, ψ, D)

Γ ` (λh : ϕp. pp) � ((λh : ϕ. p), ϕ =⇒ ψ, C ∪D ∪ {τ =? prop})
ImpI

Γ, x :: τ ` pp � (p, ϕ, C)

Γ ` (λx : τ. pp) � ((λx : τ. p),
∧
x :: τ. ϕ, {λx :: τ. r =? λx :: τ. s | (r =? s) ∈ Ct} ∪ Cτ)

AllI

Γ ` pp � (p, ϕ, C) Γ ` qp � (q, ψ, D)

Γ ` (pp · qp) � ((p · q), ?f τΓ⇒prop VΓ, {ϕ =? (ψ =⇒ ?f τΓ⇒prop VΓ)} ∪ C ∪D)
ImpE

Γ ` pp � (p, ϕ, C) Γ ` tp � (t, τ, D)

Γ ` (pp · tp) � ((p · t), ?f τΓ,τ⇒prop VΓ t, {ϕ =?
∧
x :: τ. ?f τΓ,τ⇒prop VΓ x} ∪ C ∪D)

AllE

Σ(c) = ϕ

Γ ` c{α7→ } � (c{α7→?α}, ϕ{α 7→ ?α}, {})
PConstp

Γ, h : ?f τΓ⇒prop VΓ ` pp � (p, ψ, C)

Γ ` (λh : . pp) � ((λh : ?f τΓ⇒prop VΓ. p), ?f τΓ⇒prop VΓ =⇒ ψ, C)
ImpIp

Γ, x :: ?α ` pp � (p, ϕ, C)

Γ ` (λx :: . pp) � ((λx :: ?α. p),
∧
x :: ?α. ϕ, {λx :: ?α. r =? λx :: ?α. s | (r =? s) ∈ Ct} ∪ Cτ)

AllIp

Γ ` pp � (p, ϕ, C)

Γ ` (pp ·) � ((p · ?gτΓ⇒?α VΓ), ?f τΓ,τ⇒prop VΓ (?gτΓ⇒?α VΓ), {ϕ =?
∧
x :: ?α. ?f τΓ,τ⇒prop VΓ x} ∪ C)

AllEp

Proofs

Figure 2.5: Reconstruction judgements

2.4. PARTIAL PROOF TERMS 25

Note that in order for a set of constraints C between terms to be solvable by pattern unification,
not all terms in C necessarily need to be patterns. For example,

C = {(λx. ?v x ?w) =? (λx. f a x), (λx y. f x y) =? (λx y. ?v y x)}

is solvable using pattern unification, since

(C, {}) −→S ({(λx. f ?w x) =? (λx. f a x)}, {?v 7→ (λy x. f x y)}) −→S
({}, {?v 7→ (λy x. f x y), ?w 7→ a})

although (λx. ?v x ?w) is not a pattern. Note that the functional unification algorithm described
in [79] is more restrictive than the transformation-based version described above: since it insists
on solving constraints in a left-to-right order, it would refuse to solve the unification problem

c (λx. ?v x ?w) (λx y. f x y) =? c (λx. f a x) (λx y. ?v y x)

although, as shown above, it could be solved using the transformation-based approach. It
should also be noted that if C is large, searching for a solvable constraint (t =? u) and applying
a substitution θ to all constraints in C can be expensive. Therefore, in the implementation of
the calculus presented in Figure 2.5, it has turned out to be more advantageous not to collect
all constraints first and then try to solve them, but to immediately solve constraints “on the
fly” which are in the pattern fragment, and accumulate only those in the constraint set C
which are not immediately solvable.

2.4.2 Compression

The aim of this section is to develop compression strategies for omitting as much information
from proofs as possible, while still being able to reconstruct the omitted information, i.e. solve
the constraints generated by the reconstruction judgement using only pattern unification. More
formally, we will focus on the question of how to obtain from a proof p with Γ ` p : ϕ a partial
proof pp with Γ ` pp � (p′, ϕ′, C) such that C∪{ϕ′ =? ϕ} is solvable using pattern unification.
As noted in the previous section, all typing information can safely be omitted, since type
variables are first order and their reconstruction is decidable. Thus, the main issue to be dealt
with is the omission of terms.
Roughly speaking, compression algorithms for proof terms fall into two categories:

Static algorithms determine redundant term arguments of a proof constant c solely by using
information from the signature Σ, i.e. by examining the structure of the proposition Σ(c)
corresponding to c.

Dynamic algorithms determine the redundant term arguments by considering not only in-
formation from the signature Σ, but also from the context a proof of the form (c·t1 ·· · ··tn)
occurs in. This essentially amounts to performing a kind of dataflow analysis on the proof.

Other authors, e.g. Necula [77], use a similar distinction between local and global algorithms.
While dynamic algorithms may sometimes be able to omit more information than static algo-
rithms, they are potentially slower. Moreover, a static compression scheme may also be used
effectively to already decrease the size of a proof while it is synthesized as described in §2.3.
This is of particular importance for the practical usability of the infrastructure for proof terms:
The larger the proofs are which arise during synthesis, the slower proof synthesis will be, since

26 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

some of the operations performed during proof synthesis require a traversal of the whole proof
term. A dynamic algorithm cannot be used effectively on such “incomplete” proofs, since fur-
ther synthesis steps may introduce additional context information into the proof, which may
allow for more term arguments to be omitted. Thus, a dynamic algorithm would have to be
run again and again during proof synthesis, e.g. when the proof size exceeds a certain limit,
each time performing a traversal of the whole proof term. This could slow down proof synthesis
considerably.
Before starting with the discussion of different compression techniques, we list some design
considerations which are common to all of the approaches:

1. In an abstraction (λh : ϕ. p) over a hypothesis variable h, the term annotation ϕ will
always be omitted by the compression algorithm.

2. Term arguments of proof constants c, i.e. some of the terms ti in a proof of the form
(c · t1 · · · · · tn) will be omitted by the compression algorithm under specific conditions.

3. Unlike term arguments of proof constants, term arguments of hypothesis variables will
never be omitted by the compression algorithm, i.e. in a proof of the form (h · t1 · · · · · tn),
none of the ti will be omitted.

The first of these design decisions is based on the observation that it is still possible to re-
construct a proof if all term annotations in abstractions over hypothesis variables are omitted,
provided the proof is in normal form, contains no other placeholders and we already know the
proposition it is supposed to prove.

Theorem 2.2 (Reconstruction of proofs in normal form) Let pp be a proof in normal
form such that

1. all abstractions over hypothesis variables are of the form (λh : . qp), and

2. for all applications (qp · tp) we have tp 6= and tp is ground.

Moreover, let Γ be a context and θ be a substitution such that θ(ϕi) is ground for all (hi :
ϕi) ∈ Γ. Finally, let Γ ` pp � (p, ϕ, C) and ψ be ground. Then the constraints C ∪ {ϕ =? ψ}
are either solvable using pattern unification, i.e.

〈C ∪ {ϕ =? ψ} | θ〉 −→∗
S ({}, θ′)

or no solution exists.
Proof: By induction on the size of pp. There are essentially two cases to consider:

• pp is an abstraction, i.e. pp = (λh : . qp) or pp = (λx :: . qp). We just consider the
former case, where Γ, h : ?f VΓ ` qp � (q, ϕ′, C) and ϕ = ?f VΓ =⇒ ϕ′. Now assume that
ψ = ψ′′ =⇒ ψ′ for ψ′′ and ψ′ ground. Note that

〈C ∪ {ϕ =? ψ} | θ〉 −→S 〈C ∪ {ϕ′ =? ψ′, ?f VΓ =? ψ′′} | θ〉 −→S
〈C ∪ {ϕ′ =? ψ′} | {?f 7→ (λVΓ. ψ

′′)} ◦ θ〉

Since qp is smaller than pp, we have by induction hypothesis that either

〈C ∪ {ϕ′ =? ψ′}) | {?f 7→ (λVΓ. ψ
′′)} ◦ θ〉 −→∗

S ({}, θ′)

or no solution exists. Hence, also 〈C ∪ {ϕ =? ψ} | θ〉 −→∗
S ({}, θ′) or no solution of

C ∪ {ϕ =? ψ} exists. If ψ is not of the form ψ′′ =⇒ ψ′, the constraints are unsolvable.

2.4. PARTIAL PROOF TERMS 27

• pp is an application. Since pp is in normal form, the head of pp must either be a hypothesis
variable or a constant, i.e. pp = hi · ap or pp = c · ap. In the sequel, we just consider the
former case. By side induction on the length of the argument list ap, we prove that if
Γ ` hi · ap � (hi · a, ϕ, C), then

〈C | θ〉 −→∗
S ({}, θ′) and θ′(ϕ) is ground

or no solution exists. As a consequence, we then also get that either

〈C ∪ {ϕ =? ψ} | θ〉 −→∗
S 〈{ϕ =? ψ} | θ′〉 −→S ({}, θ′′)

or no solution exists.

– If a is empty, we have pp = hi and hence Γ ` hi � (hi, ϕi, {}), for (hi : ϕi) ∈ Γ.
Since C = {} we have θ′ = θ and therefore θ′(ϕi) is ground by assumption.

– In the step case, we have either pp = (hi · ap) · qp or pp = (hi · ap) · tp. In the former
case, we have Γ ` hi · ap � (hi · a, ϕ1, C1) and Γ ` qp � (q, ϕ2, C2), as well as
ϕ = ?f VΓ. By side induction hypothesis, we have that 〈C1, | θ〉 −→∗

S ({}, θ′) and
θ′(ϕ1) is ground, or no solution exists. Now assume that θ′(ϕ1) = ϕ′2 =⇒ ϕ3 for ϕ′2
and ϕ3 ground. If θ′(ϕ1) is not of this form, no solution exists. Note that

〈C1 ∪ {ϕ1 =? ϕ2 =⇒ ?f VΓ} ∪ C2 | θ〉 −→∗
S 〈{ϕ1 =? ϕ2 =⇒ ?f VΓ} ∪ C2 | θ′〉 −→S

〈{ϕ′2 =? ϕ2, ϕ3 =? ?f VΓ} ∪ C2 | θ′〉 −→S 〈{ϕ′2 =? ϕ2} ∪ C2 | {?f 7→ (λVΓ. ϕ3)} ◦ θ′〉

Since qp is smaller than pp and ϕ′2 is ground, we have by main induction hypothesis
that either

〈{ϕ′2 =? ϕ2} ∪ C2 | {?f 7→ (λVΓ. ϕ3)} ◦ θ′〉 −→∗
S ({}, θ′′)

or no solution exists. Summing up, we have either

〈C1 ∪ {ϕ1 =? ϕ2 =⇒ ?f VΓ} ∪ C2 | θ〉 −→∗
S ({}, θ′′)

and θ′′(?f VΓ) is ground, or no solution exists.
The case where pp = (hi ·ap)·tp is similar, with the difference that Γ ` tp�(t, τ, C2)
and ϕ = ?f VΓ t. Note that this time, C2 contains only type constraints, which are
solvable using first order unification. By side induction hypothesis, we either have

〈C1 ∪ {ϕ1 =? (
∧
x. ?f VΓ x)} ∪ C2 | θ〉 −→∗

S 〈{ϕ1 =? (
∧
x. ?f VΓ x)} ∪ C2 | θ′〉 −→∗

S
〈C2 | θ′〉 −→∗

S ({}, θ′′)

where both θ′(ϕ1) and hence also θ′′(?f VΓ t) are ground4, or no solution exists.

To see why it is crucial that the proof to be reconstructed is in normal form, consider the
following non-normal proof

λ(h :) y x. (λ(h1 :) (h2 :). h1)︸ ︷︷ ︸
p1

·(h · x · y) · (λ(h3 :). h3 · x · x)︸ ︷︷ ︸
p2

of (
∧
x y. P x y) =⇒ (

∧
y x. P x y). Assuming that h3 is a proof of a proposition ?v1 y x

which may depend on y and x, the subproof p2 generates the constraints

C = {(?v1 y x) =? (
∧
z. ?v2 y x z), (?v2 y x x) =? (

∧
z. ?v3 y x z)}

4t may actually contain type unification variables, but this is unproblematic for pattern unification

28 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

of which the second is a non-pattern constraint. For p2, the proposition ?v1 y x =⇒ ?v3 y x x
is inferred. If a ground term denoting the proposition of p2 was known, this could be used to
obtain a ground term for ?v1 , and therefore, by solving the first constraint, also for ?v2 . This
would then turn the second constraint into a pattern constraint, yielding also a ground term
for ?v3 . However, since we cannot infer the proposition of the second argument of p1 from its
“result proposition” (

∧
y x. P x y), reconstruction gets stuck.

The two main cases in the above proof dealing with abstractions and applications closely
correspond to the concepts of canonical and atomic objects, which play an important role in
the theory of logical frameworks [97, §6, §7]. Although the proof reconstruction judgement
presented in Figure 2.5 does not impose a particular direction of dataflow, it is given implicitly
in the above proof of theorem 2.2 by the order in which the constraints are solved. During
reconstruction of abstractions, the dataflow is essentially bottom-up, i.e. from the root of the
proof term to the leaves, whereas during reconstruction of applications, the dataflow is top-
down, i.e. from the leaves to the root. This clear direction of dataflow guarantees that in
each step of the constraint solution process, we can always find a constraint (ϕ =? ψ) ∈ C
such that ϕ is a pattern and ψ is ground. Since ψ is ground, in this case even matching
instead of unification would suffice. It is interesting to note that the idea behind the above
proof also forms the basis of so-called bidirectional or local type checking and type inference
algorithms. In this context, “local” means that these algorithms only use (typing) information
from adjacent nodes in the syntax tree and therefore in principle eliminate the need for “long-
distance constraints” such as unification variables. There has been considerable interest in
algorithms of this kind by researchers from the functional programming community recently,
notably by Pierce and Turner [100], who presented a local type inference algorithm for a type
system with subtyping and parametric polymorphism, which was too difficult to handle for
conventional type inference techniques. Recent work by Pfenning [96] shows that the idea of
bidirectional type checking can also be applied successfully in the field of logical frameworks.

2.4.3 A static compression algorithm

We will now examine which of the restrictions made in the proof of theorem 2.2 can be relaxed,
while still being able to solve the constraints arising during reconstruction using pattern unifi-
cation. An important question is which parts of the argument used in the proof of theorem 2.2
still work if we have only pattern terms instead of ground terms, for example if the proposition
ψ against which the inferred proposition ϕ is to be checked is a pattern instead of a ground
term. In this case, it is no longer guaranteed that when solving the constraints for (hi · t),
where (hi : ϕ) ∈ Γ, we can compute a substitution θ, such that θ(ϕ) is ground. If θ(ϕ) is
a pattern and 〈{ϕ =?

∧
x. ?f VΓ x} | θ〉 −→∗

S ({}, θ′), then θ′(?f VΓ) is a pattern, but the
proposition θ′(?f VΓ t) synthesized for the proof (hi · t) will not necessarily be a pattern.
In particular, we want to relax condition 2 and replace at least some of the term arguments
ti in proofs of the form (c · t1 · · · · · tn) by placeholders. Clearly, if ti = for some i, we are
no longer able to infer a ground term for (c · t1 · · · · · tn). To ensure that we can at least infer
a pattern term and therefore do not generate constraints which are unsolvable using pattern
unification, we may only omit specific arguments of c. The approach pursued in this section
is to find out statically using information from the signature Σ, i.e. by examining the shape of
the proposition Σ(c), which arguments can safely be omitted. In general, Σ(c) has the form
(
∧
a1 . . . an. ϕ), where ϕ, which we call the body of Σ(c), does not start with a

∧
quantifier

and a1 . . . an are called the parameters of c. A concept which is crucial for the solvability of
proof reconstruction is that of a strict occurrence of a parameter. The notion of strictness has

2.4. PARTIAL PROOF TERMS 29

been introduced by Pfenning and Schürmann [98] and closely corresponds to the notion of a
pattern introduced in §2.4.1. It is also related to the rigid path criterion introduced by Huet
in the context of full higher order unification [52].

Definition 2.4 (Strict occurrence) Let A = {a1, . . . , an}. Then the sets of parameters
with strict and non-strict occurrences are defined by the two functions

strictA (a x1 · · · xn) = {a} where a ∈ A, xi ∈ V\A and xi 6= xj for i 6= j
strictA (a t1 · · · tn) = {} where a ∈ A
strictA (b t1 · · · tn) =

⋃
1≤i≤n strictA (ti) where b /∈ A

strictA (λx. t) = strictA (t)

nstrictA (a x1 · · · xn) = {} where a ∈ A, xi ∈ V\A and xi 6= xj for i 6= j
nstrictA (a t1 · · · tn) = Vars(a t1 · · · tn) ∩ A where a ∈ A
nstrictA (b t1 · · · tn) =

⋃
1≤i≤n nstrictA (ti) where b /∈ A

nstrictA (λx. t) = nstrictA (t)

We say that a parameter a ∈ A has a strict occurrence in t, where t is in β-normal form, if
a ∈ strictA t, whereas it has a non-strict occurrence if a ∈ nstrictA t.

In other words, an occurrence of a parameter a is called strict, if

1. it has only distinct bound variables as arguments, and

2. it does not occur in the argument of another parameter

For example, in the rule

exE :
∧
P Q. Tr (∃x. P x) =⇒ (

∧
x. Tr (P x) =⇒ Tr Q) =⇒ Tr Q

all occurrences of P and Q are strict, whereas in the rule

exI :
∧
P x. Tr (

non-strict︷︸︸︷
P x) =⇒ Tr (∃x.

strict︷︸︸︷
P x)

only the occurrence of P in the conclusion is strict, since its argument x is locally bound
by an existential quantifier. In the premise, both the occurrences of P and x are non-strict:
the occurrence of P is non-strict, because it has the parameter x as an argument, and the
occurrence of x is non-strict, too, since it is in the argument of the parameter P . Inference
rules of propositional logic, such as

disjE :
∧
P Q R. Tr (P ∨Q) =⇒ (Tr P =⇒ Tr R) =⇒ (Tr Q =⇒ Tr R) =⇒ Tr R

contain only strict occurrences of parameters.
Due to the close correspondence between the concept of a pattern and that of a strict occur-
rence, it easily follows that by replacing all parameters in ϕ having only strict occurrences
by unification variables, and any other parameters by ground terms, a pattern is obtained.
Therefore, if Σ(c) = (

∧
a1 . . . an. ϕ) and for all i with ti = , we have that ai /∈ nstrictA ϕ, then

we can synthesize a proposition for (c · t1 · · · tn) which is a pattern, i.e. if

Γ ` c · t1 · · · tn � (c · t′1 · · · t′n, ϕ, C) and (C, {}) −→∗
S ({}, θ)

then θ(ϕ) is a pattern.

30 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

It is not immediately obvious why condition 2 in the above definition of strictness is needed.
To see why it is necessary, note that a parameter, say x, which occurs in the argument of
another parameter, say P , as in the term P x, may not in general be instantiated with a
unification variable if the resulting term is supposed to be a pattern, even if the parameter x
has only distinct bound variables as arguments. As an example, consider again the rule exI
above. Now assume that P is replaced by the ground term (λx :: τ ⇒ σ. d (x c)), where c
and d are constants with Σ(c) = τ and Σ(d) = σ ⇒ bool. If x is now replaced by a unification
variable ?x τ⇒σ, the rule exI is turned into

Tr (d (?x c)) =⇒ Tr (∃x. d (x c))

which is a non-pattern term, since ?x has been projected into a head position. Note that such
a situation can only arise if the variable x in P x has a function type. This means that e.g. the
parameter n :: nat occurring in the conclusion P (n :: nat) of the induction rule for natural
numbers (see also §4.3.4) could be omitted from the proof, although the occurrence of n is not
strict.
Unfortunately, the strictness criterion alone is not enough to determine the parameters of an
inference rule which can safely be omitted, since already the omission of parameters which
have only strict occurrences can give rise to constraints which are not solvable using pattern
unification. This may happen for inference rules r, where the body of Σ(r) contains a meta
level universal quantifier “

∧
”. As an example, consider an inference rule r of the form

r :
∧
P. ((

∧
x. Tr (P x)) =⇒ · · ·) =⇒ · · ·

where P has only a strict occurrence. Now consider the proof

r · · (λh : . · · · (h · t) · · ·)

If we cannot infer a ground term for the omitted parameter P of rule r from the context, but
only a pattern term, we can only infer a pattern term for the proposition associated with h,
too. Hence, for reasons which have already been explained at the beginning of this section,
the subproof (h · t) may give rise to a non-pattern constraint. Similar problems can arise in
connection with rules containing predicate variables of type α ⇒ prop. For example, consider
the rule

thin :
∧

(P :: prop) (Q :: prop). Pprop =⇒ Qprop =⇒ Qprop

which might be used in a proof of the form

thin · · · (λh : . · · · (h · t) · · ·)

Due to the structure of the rule thin, it will not in general be possible to infer a ground
term for the omitted argument P , if just the proposition corresponding to the above proof
is given. As in the previous example, the subproof (h · t) may therefore give rise to a non-
pattern constraint. Note that the above problem can only be caused by predicate variables
which appear on the “top level” of a formula, i.e. as immediate subformulae of ϕ =⇒ ψ or
(
∧
x. ϕ). Predicate variables appearing as arguments of other constants, such as the variables

Pprop and Qprop in the meta equality Pprop ≡ Qprop are unproblematic, since another rule, such
as ≡-elimination would have to be applied first, before any

∧
quantifiers occurring in P or Q

could be eliminated, which could then produce a non-pattern constraint. This idea is captured
by the following definition:

2.4. PARTIAL PROOF TERMS 31

Definition 2.5 (Top level predicate variables) The set propvA (ϕ) of top level predicate
variables of a proposition ϕ is defined as follows:

propvA (ϕ =⇒ ψ) = propvA(ϕ) ∪ propvA(ψ)
propvA (

∧
x. ϕ) = propvA(ϕ)

propvA (Pα⇒prop t) = {Pα⇒prop} if P ∈ A
propvA (ϕ) = {} otherwise

We will now show that the problematic situations described above can only be caused by
inference rules r, where the body of Σ(r) contains either a

∧
quantifier in a positive position,

or top level predicate variables.

Theorem 2.3 If p is a proof containing a subproof of the form (h · · · · t), i.e. an application of
a hypothesis to a term, and Γ ` p : ϕ, then one of the following conditions must be satisfied:

1. there is some (hi : ψi) ∈ Γ such that
∧

occurs positively in ψi

2.
∧

occurs negatively in ϕ

3. p contains some proof constant r such that the body of Σ(r) either contains a positive
occurrence of

∧
, or contains top level predicate variables.

Proof: by induction on the size of p, which we assume to be in normal form. We need to
consider the following cases:

• p is an application.

– If the head of p is a hypothesis variable, then p must either have the form (hi ·p·t · · ·)
or (hi · p1 · · · · · pn) where some pi contains an application of a hypothesis to a term.
In the former case, we have ϕ = (· · · =⇒ (

∧
x. ϕ′ x)), i.e.

∧
occurs positively in

ϕ. In the latter case, note that Γ ` pi : ϕi. By induction hypothesis, either
∧

occurs positively in some ψj with (hj : ψj) ∈ Γ, or pi contains a proof constant r of
the kind described in condition 3 above, or

∧
occurs negatively in ϕi. In the first

two cases, the claim follows directly. In the last case, note that we must have some
(hi : ψi) ∈ Γ where

ψi = (ϕ1 =⇒ · · · =⇒ ϕi =⇒ · · · =⇒ ϕn =⇒ ψ)

Hence, since
∧

occurs negatively in ϕi, it must occur positively in ψi.

– If the head of p is a constant r, then p = (r · t · · · · · q · · ·), where q contains an
application of a hypothesis to a term. Now the argument is similar to the one used
in the previous case: if, by induction hypothesis, we have Γ ` q : ϕ′ and

∧
occurs

negatively in ϕ′, then Σ(r) must have one of the following two forms:

∗ Σ(r) = (
∧
a. · · · =⇒ · · · =⇒ ai x) and ti = (λx. ϕ′ =⇒ · · ·), or

∗ Σ(r) = (
∧
a. · · · =⇒ ϕ′′ =⇒ · · ·), where ϕ′′{a 7→ t} =β ϕ

′

In the latter case, if ϕ′′ contains no top level predicate variables, the
∧

quantifiers
in ϕ′′ must occur in exactly the same positions as they do in ϕ′. Since

∧
occurs

negatively in ϕ′, it must therefore occur positively in the body of Σ(r)

• p is an abstraction, i.e.

p = (λ(x1 :: τ1) (h′1 : ψ′1) . . . (xn :: τn) (h′n : ψ′n) (xn+1 :: τn+1). q)

32 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

For p to be correct, we must have Γ,Γ′ ` q : ϕ′, where

Γ′ = x1 :: τ1, h′1 : ψ′1, . . . , xn :: τn, h′n : ψ′n, xn+1 :: τn+1

and

ϕ = (
∧
x1 :: τ1. ψ′1 =⇒ (· · · =⇒ (

∧
xn :: τn. ψ′n =⇒ (

∧
xn+1 :: τn+1. ϕ

′)) · · ·))

By induction hypothesis, we either have that
∧

occurs negatively in ϕ′, or q contains a
proof constant r of the kind described in condition 3 above, or (h : ψ) ∈ Γ∪Γ′, where

∧
occurs positively in ψ. In the first case, it easily follows that

∧
must also occur negatively

in ϕ, whereas in the second case, the claim follows immediately. In the last case, we have
to distinguish whether (h : ψ) ∈ Γ or (h : ψ) ∈ Γ′. In the former case, the claim follows
immediately. In the latter case, h = h′i and ψ = ψ′i for some i, where

∧
occurs positively

in ψ′i. Hence,
∧

must occur negatively in ϕ.

Based on the above considerations, we can now specify a criterion to statically determine
the parameters of an inference rule, which can safely be omitted without producing any non-
pattern constraints during reconstruction. To this end, we introduce the concept of an unsafe
occurrence of a parameter, which is a strengthened version of the concept of non-strictness
presented above.

Definition 2.6 (Unsafe occurrence) Let A = {a1, . . . , an} be a set of parameters. Then
the set of parameters with unsafe occurrences in a formula is defined by

unsafe+
A Q (

∧
y. ϕ) = unsafe+

A ({y} ∪ Q) (ϕ)

unsafe−A Q (
∧
y. ϕ) = unsafe−A Q (ϕ)

unsafeπ
A Q (ϕ =⇒ ψ) = unsafe−π

A Q (ϕ) ∪ unsafeπ
A Q (ψ)

unsafeπ
A Q (Pα⇒prop t1 · · · tn) = Vars(Pα⇒prop t1 · · · tn) ∩ A if P ∈ A ∪Q

unsafeπ
A Q (ϕ) = nstrictA∪Q (ϕ) otherwise

where π ∈ {−,+} is called the polarity of the formula, and

−π =
{
− if π = +
+ if π = −

We say that a parameter a ∈ A has an unsafe occurrence in a formula ϕ, where ϕ is in β-normal
form, if a ∈ unsafe+

A {} (ϕ).

The concept of a safe occurrence could be defined analogously. In other words, an occurrence
of a parameter is unsafe, if

1. it is non-strict, or

2. it has a variable bound by a positive
∧

quantifier as an argument, or

3. it occurs in the argument of a variable bound by a positive
∧

quantifier, or

4. it is a top level predicate variable

2.4. PARTIAL PROOF TERMS 33

Due to theorem 2.3, the additional restrictions concerning predicate variables and variables
bound by

∧
quantifiers guarantee that we can always reconstruct the proposition ϕ corre-

sponding to a hypothesis variable (h : ϕ) ∈ Γ, which could be subject to
∧

-elimination.
As a consequence, given an inference rule r with Σ(r) = (

∧
a1 . . . an. ϕ) and a proof term

(r · t1 · · · · · tn), we may safely omit any argument ti for which ai /∈ unsafe+
A {} (ϕ), where

A = {a1, . . . , an}.
At first sight, the additional conditions required for a parameter in order to be safe might seem
overly restrictive. However, it turns out in practice that most inference rules of standard object
logics do not involve deeper nestings of the meta level connectives

∧
and =⇒, and therefore

do not contain positive occurrences of
∧

, apart from the outermost quantifiers binding the
parameters. For example, the quantifier (

∧
x. . . .) occurs negatively in the rule exE given

above. An example for a rule with a quantifier having a positive occurrence is the induction
rule for the accessible part of a relation (see also §4.3.3)

acc.induct :
∧
z r P. Tr (x ∈ acc r) =⇒ (

∧
x. (
∧
y. Tr ((y, x) ∈ r) =⇒ Tr (y ∈ acc r)) =⇒

(
∧
y. Tr ((y, x) ∈ r) =⇒ Tr (P y)) =⇒ Tr (P x)) =⇒ Tr (P z)

where the quantifier
∧
y occurs positively. Since in the subterm P y, the parameter P has the

quantified variable y as an argument, it may not be omitted. Note that we would not even have
been allowed to omit P if

∧
y had had no positive occurrence, since in the subterm P z, the

parameter P has another parameter z as an argument. Rules like the above are hard to work
with in connection with old-style tactic scripts, because the standard resolution tactic only
allows the elimination of object-level connectives such as −→ and ∀, whereas there is no direct
way of eliminating the meta-level connectives =⇒ and

∧
occurring in the premises introduced

by acc.induct . Therefore, such rules will seldom be encountered in older Isabelle theories,
but may occur in newer theories based on Isar, which allows for a more smooth handling of
formulae containing meta-level connectives [120, §5.2.5]. Rules involving top level predicate
variables such as

cut :
∧

(P :: prop) (Q :: prop). (Pprop =⇒ Qprop) =⇒ Pprop =⇒ Qprop

or the thin rule given above can easily be eliminated by expanding their derivations. While
the expansion of cut may occasionally lead to a slightly larger proof, expanding the derivation

λ(P :: prop) (Q :: prop) (h1 : Pprop) (h2 : Qprop). h2

of thin is clearly advantageous, since this, in connection with proof normalization, removes the
superfluous proof of Pprop from the proof term. Top level predicate variables also occur in the
introduction and elimination rules for meta-equality on propositions (see also §3)

eqI :
∧

(P :: prop) (Q :: prop). (Pprop =⇒ Qprop) =⇒ (Qprop =⇒ Pprop) =⇒ Pprop ≡ Qprop

eqE :
∧

(P :: prop) (Q :: prop). Pprop ≡ Qprop =⇒ Pprop =⇒ Qprop

In specific situations, which are described in more detail in §3.3.1, these rules can (and should)
be eliminated from a proof term as well. Inference rules for object logics, i.e. the majority of
the rules used in the construction of proofs, usually do not contain any meta level predicate
variables of type τ ⇒ prop at all, but only object level predicate variables of type τ ⇒ bool,
where bool is the type of object level truth values. Such variables may only occur in the
argument of a coercion function Tr :: bool⇒ prop, as in Tr Pbool.
Based on the above definition of unsafe, we can now develop a static compression algorithm.
The algorithm is given by a compression judgement Γ ` p � (pp, r), which is characterized

34 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Σ(c) =
∧
a. ϕ

Γ ` c{α7→τ} � (c{α7→ }, recipea,ϕ a) Γ ` h� (h, [])

Γ ` p� (pp, − .r)
Γ ` p · t� (pp · , r)

Γ ` p� (pp, • .r)
Γ ` p · t� (pp · t, r)

Γ ` p� (pp, [])
Γ ` p · t� (pp · t, [])

Γ ` p� (pp, r) Γ ` q � (qp, r′)
Γ ` p · q � (pp · qp, [])

Γ, x :: τ ` p� (pp, r)
Γ ` (λx :: τ. p)� (λx :: . pp, [])

Γ, h : ϕ ` p� (pp, r)
Γ ` (λh : ϕ. p)� (λh : . pp, [])

r = − .r | • .r | []

recipeA,ϕ [] = []

recipeA,ϕ (a, a) =
{
•.recipeA,ϕ a if a ∈ unsafe+

A {} (ϕ)
−.recipeA,ϕ a otherwise

Figure 2.6: Static compression algorithm

by the inference rules shown in Figure 2.6. Given a context Γ and a proof p, the compression
judgement returns a compressed proof pp. To indicate which term arguments of pp may be
omitted, the judgement also returns a so-called representation recipe5 r. A representation recipe
is essentially a list of elements from the set {−, •}, where “−” means that the corresponding
argument may be omitted, while “•” means that the argument has to be retained. The
representation recipe is only relevant when compressing proofs of the form (p·t), i.e. applications
of proofs to terms. Representation recipes are generated by the rule for compressing proof
constants c, which produces a recipe having the same length as the parameter list a of c, where
Σ(c) =

∧
a. ϕ. For example, the representation recipes for the rules exE , exI , and disjE are

−.−, •.•, and −.− .−, respectively. Representation recipes are decomposed when compressing
the term argument list of a proof constant. When compressing the proof (((c · t) · t) · t′),
the representation recipe %.r returned by the reconstruction judgement for the subproof (c · t)
is first decomposed into its head element % ∈ {−, •}, which determines whether or not the
argument t is to be omitted, and a residual representation recipe r, which is then used for the
compression of the subsequent arguments t′. Note that the compression rule for proof variables
h just returns the dummy representation recipe [], which means that none of the arguments of
h may be omitted.

2.4.4 A refined strategy for omitting terms

So far, the strategy used for omitting terms in proofs has been an “all or nothing” approach,
i.e. either a term may be completely omitted, or it may not be omitted at all. To improve this
situation, we now refine the grammars and the reconstruction judgements for partial proofs pp

and terms tp presented in Figure 2.5, such that placeholders “ ” standing for terms may not
just occur as immediate arguments of the proof term constructors for =⇒-introduction and∧

-elimination, i.e. in (λh : . pp) and (pp ·), but may occur anywhere in a term. For example,

5The term representation recipe was coined by Necula and Lee [76, 77].

2.4. PARTIAL PROOF TERMS 35

we would like to be able to construct a partial proof term of the form

subst · (λx. c x) · s · t · p1 · p2

where

subst :
∧
P s t. s = t =⇒ P s =⇒ P t

and c is a constant of type α⇒ β ⇒ bool . This allows for a more fine-grained proof compression
strategy, which just retains those parts of a term which are sufficient to guarantee that only
pattern constraints arise during reconstruction, instead of keeping the whole (possibly large)
term in the proof object.
As has been noted in §2.4.1, placeholders may depend on variables bound in the context, which
is why unification variables inserted for placeholders during reconstruction have to be lifted.
However, when looking at the above example involving the subst rule, we easily notice that
lifting a unification variable, such that it depends on the bound variable x causes a problem.
If we turn the partial term (λx. c x) into the placeholder-free term (λx. c x (?v x)), then
an attempt to reconstruct the above proof will inevitably lead to the non-pattern constraint
c s (?v s) =? ϕ, where ϕ is the proposition synthesized for the subproof p2. We therefore
stipulate that placeholders occurring in a term may not depend on any variables bound by
outer abstractions, i.e. in a partial term tp = (λx. up), none of the placeholders occurring in up

may depend on any of the variables in x. The same restrictions apply to variables which are
bound by outer abstractions of a subterm, which is an argument of a variable bound by an outer
abstraction, e.g. in a partial term of the form tp = (λx. . . . (xi (λy. up)) . . .), where xi ∈ x,
none of the placeholders occurring in up may depend on variables in x∪ y. To understand the
intuition behind this restriction, consider e.g. the terms f = (λx. x (λy. ?v y)) and g = (λz. z c),
which are patterns, but the application ↓β (f g) = ?v c is not. Consequently, the compression
algorithm may not replace any subterm of a term to be compressed by a placeholder, which
contains a variable bound by an outer abstraction. In contrast, a placeholder occurring in the
subterm up of the partial term tp = c (λx. up) may depend on any of the variables in x. Note
that this compression strategy crucially relies on the fact that constants have to be unfolded
explicitely. In the presence of implicit “on-the-fly” expansion of constants, a detailed analysis
of the definition of c occurring in the above term tp would be required, in order to decide
whether one may introduce placeholders in up depending on the bound variable x. Besides,
such a constant expansion mechanism may also lead to other subtle problems in connection
with unification, as e.g. described by Pfenning and Schürmann [98].
We will now formalize what we have just explained informally. First of all, we define a class of
terms, which, when substituted for variables in a term t, turn t into a pattern term. Essentially,
we define a subset of higher-order patterns, which are closed under application. Note that
although the term P = (λx. c x (?v x)) from the above example is a pattern term, its application
(P s) to another term s is usually not a pattern6, since after β-reduction, the unification
variable ?v will have the term s as an argument. The purpose of the two mutually recursive
judgements `outer and `inner presented in Figure 2.7 is now exactly to rule out terms like P
above. Each of the judgements involves two variable contexts Γ1 and Γ2 containing variables
bound by “outer” and “inner” abstractions, respectively. These judgements enforce that none
of the unification variables occurring in a term t, for which Γ1 | Γ2 `outer t or Γ1 | Γ2 `inner t,
may have variables from Γ1 as arguments. Moreover, if Γ1 | Γ2 `outer (λx :: τ. u), none of

6assuming that s is not a bound variable

36 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Γ1, x :: τ | Γ2 `outer t
Γ1 | Γ2 `outer λx :: τ. t

Γ1 | Γ2 `̀ inner t z /∈ VΓ1 z /∈ UV
Γ1 | Γ2 `outer z t

Γ1 | Γ2 `̀outer t z ∈ VΓ1

Γ1 | Γ2 `outer z t

∀i. i 6= j → xi 6= xj ∀i. xi ∈ V\VΓ1 Γ1,Γ2 6` ?v x1 · · · xn :: τ ⇒ σ

Γ1 | Γ2 `outer ?v x1 · · · xn

Γ1 | Γ2 `̀ inner []
Γ1 | Γ2 `inner t Γ1 | Γ2 `̀ inner t

Γ1 | Γ2 `̀ inner t, t

Γ1 | Γ2, x :: τ `inner t

Γ1 | Γ2 `inner λx :: τ. t
Γ1 | Γ2 `̀ inner t z /∈ VΓ1 z /∈ UV

Γ1 | Γ2 `inner z t

Γ1 | Γ2 `̀outer t z ∈ VΓ1

Γ1 | Γ2 `inner z t

∀i. i 6= j → xi 6= xj ∀i. xi ∈ V\VΓ1

Γ1 | Γ2 `inner ?v x1 · · · xn

Γ1 | Γ2 `̀outer []
Γ1 | Γ2 `outer t Γ1 | Γ2 `̀outer t

Γ1 | Γ2 `̀outer t, t

Figure 2.7: Higher-order patterns closed under application

the unification variables in u may depend on the variable x bound by the outer abstraction.
For example, for the term P given above, we have Γ1 | Γ2 6`outer P . In contrast, note that
unification variables occurring in u′, for which Γ1 | Γ2 `inner (λx :: τ. u′), may have x as an
argument. The judgement `outer also rules out terms of the form (?v x1 · · · xn), which have
a function type, i.e. where ?v :: τ1 ⇒ · · · ⇒ τn+1 ⇒ σ, since applying them to another term
will usually not yield a pattern either. The judgements `̀outer and `̀ inner are just extensions
of the judgements `outer and `inner to lists of terms. Moreover, the set of terms characterized
by the above judgements is also a subset of the set of β-normal terms. We are now ready to
formulate the main properties of `outer and `inner :

Theorem 2.4 (Closure under application and substitution)

1. If Γ1,Γ2 ` t : σ ⇒ τ , and Γ1 | Γ2 `outer t, and Γ1,Γ2 ` u : σ, and Γ1 | Γ2 `outer u, then
Γ1 | Γ2 `outer ↓β (t u)

2. If Γ1, x :: σ,Γ2 ` t : τ , and Γ1, x :: σ | Γ2 `outer t, and Γ1,Γ2 ` u :: σ, and Γ1 | Γ2 `outer u,
then Γ1 | Γ2 `outer ↓β (t{x 7→ u})

3. If Γ1, x :: σ,Γ2 ` t : τ , and Γ1, x :: σ | Γ2 `inner t, and Γ1,Γ2 ` u :: σ, and Γ1 | Γ2 `outer u,
then Γ1 | Γ2 `inner ↓β (t{x 7→ u})

4. If Γ1 | Γ2 `outer t, then Γ1 | Γ2 `inner t

5. If Γ1 | Γ2 `outer t or Γ1 | Γ2 `inner t, then t ∈ Pat

The properties 1 to 3 can be proved by an argument similar to the one used in proofs of weak
normalization for the simply-typed λ-calculus, as described e.g. by Matthes and Joachimski
[56]. One first proves properties 2 and 3 by main induction on the type σ and side induction

2.4. PARTIAL PROOF TERMS 37

tp, up, ϕp, ψp = x | c{α7→τ} | tp up | λx :: τ. tp | c{α7→ } | λx :: . tp |

(x :: τ) ∈ Γ1 ∪ Γ2

Γ1 | Γ2 ` x� (x, τ, {}) Var
Σ(c) = τ

Γ1 | Γ2 ` c{α7→τ} � (c{α7→τ}, τ{α 7→ τ}, {}) Const

Γ1, x :: τ | Γ2 ` tp �outer (t, σ, C)
Γ1 | Γ2 ` (λx :: τ. tp) �outer ((λx :: τ. t), τ ⇒ σ, C)

Absouter

Γ1 | Γ2, x :: τ ` tp �inner (t, σ, C)
Γ1 | Γ2 ` (λx :: τ. tp) �inner ((λx :: τ. t), τ ⇒ σ, C)

Absinner

Γ1 | Γ2 ` tp � (t, %, C) Γ1 | Γ2 ` up �outer (u, τ, D) tp = x sp x ∈ VΓ1

Γ1 | Γ2 ` (tp up) � ((t u), ?σ, {% =? τ ⇒ ?σ} ∪ C ∪D)
Appouter

Γ1 | Γ2 ` tp � (t, %, C) Γ1 | Γ2 ` up �inner (u, τ, D) tp = a sp a ∈ VΓ2 ∪ C
Γ1 | Γ2 ` (tp up) � ((t u), ?σ, {% =? τ ⇒ ?σ} ∪ C ∪D)

Appinner

Γ1 | Γ2 ` � (?vτΓ2⇒?α VΓ2 , ?α, {})
Dummy

Figure 2.8: Refined term reconstruction judgement

on the derivations of Γ1, x :: σ | Γ2 `outer t and Γ1, x :: σ | Γ2 `inner t. Using properties 2 and
3, one may then prove property 1. Properties 4 and 5, expressing that `outer is stronger than
`inner and that `outer and `inner characterize a subset of higher-order patterns, can be proved
by induction on the derivation of `outer and `inner .
We now show how the rules for reconstruction on terms given in Figure 2.5 can be extended to
deal with terms containing term placeholders “ ”. To this end, we introduce the reconstruction
judgement Γ1 | Γ2 ` tp �m (t, τ, C). The rules characterizing this judgement, which have
been obtained by modifying the rules from Figure 2.5, are shown in Figure 2.8. In analogy to
the judgements `outer and `inner , the refined reconstruction judgement involves two variable
contexts Γ1 and Γ2, where Γ1 again contains all variables bound by outer abstractions or
abstractions which occur as an argument of a variable bound by an outer abstraction, while
Γ2 contains all other bound variables. Moreover, the refined reconstruction judgement is
parameterized with a mode m, where m ∈ {inner , outer}. If the mode has no significance,
as e.g. in the rules Var, Const, and Dummy, we just write Γ1 | Γ2 ` tp � (t, τ, C) instead of
Γ1 | Γ2 ` tp �m (t, τ, C). The rules Var and Const from Figure 2.8 are almost the same as
their counterparts from Figure 2.5, the only difference being the representation of the variable
context. The Dummy rule deals which the newly-introduced term placeholder “ ”, which is
replaced by a unification variable depending only on the variables in Γ2 during reconstruction.
A variable x :: τ bound by a λ-abstraction is added to the context Γ1 when reconstruction
is in “outer” mode, and to Γ2 when in “inner” mode by the rules Absouter and Absinner ,
respectively. Reconstruction of applications (tp up) is performed by the rules Appouter and
Appinner . Reconstruction of the argument term up is performed in “outer” mode if the head
of tp is a variable x which is contained in the context Γ1, otherwise (i.e. if the head is some
other variable or a constant) in “inner” mode. Note that the mode is of no significance for
the reconstruction of tp. We again assume (tp up) to be in normal form, so the head of tp
may not be an abstraction. As in Figure 2.5, similar rules are required for the reconstruction
of terms involving type placeholders. These have been omitted here in order to shorten the
presentation. Since the term placeholder “ ” is now part of the term language, the rules ImpIp

38 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

and AllEp from Figure 2.5 are no longer needed. Instead, the premises Γ ` ϕp � (ϕ, τ, C) and
Γ ` tp � (t, τ, D) of the rules ImpI and AllE are replaced by [] | Γ ` ϕp �outer (ϕ, τ, C) and
[] | Γ ` tp �outer (t, τ, D), respectively, where [] denotes the empty context.
The last missing piece is the compression algorithm for terms. Similar to the compression
algorithm for proofs shown in Figure 2.6, this algorithm is given by a judgement Γ1 | Γ2 ` t�m

tp which, in analogy to the reconstruction judgement Γ1 | Γ2 ` tp�m(t, τ, C), is parameterized
by a modem ∈ {inner , outer} and involves two variable contexts Γ1 and Γ2. The inference rules
characterizing this judgement are presented in Figure 2.9. The judgement Γ1 | Γ2 ` t�inner tp
replaces all terms t that do not contain any of the variables in Γ1 by a placeholder, whereas
the judgement Γ1 | Γ2 ` t �outer tp only does so under the additional condition that t does
not have a function type. When compressing a term which is an application (a t) containing
variables from Γ1, its head a is retained and its parameter list t is replaced by the compressed
parameter list tp, which is obtained by a recursive application of the compression algorithm.
As an example, consider the following term, which occurs in the proof of theorem List .lexn-conv
from the Isabelle/HOL library [53]:

λu. xys = a # list −→ (x , y) ∈ r −→ Suc (size list + size ys ′) = u −→
lexn r u =
{ua. (λ(xs, ys). size xs = u ∧ size ys = u ∧

(∃ xys x .
(∃ xs ′. xs = xys @ x # xs ′) ∧
(∃ y . (∃ ys ′. ys = xys @ y # ys ′) ∧ (x , y) ∈ r))) ua} −→

¬ (∃ xys xa. (∃ xs ′a. list @ x # xs ′ = xys @ xa # xs ′a) ∧
(∃ ya. (∃ ys ′a. list @ y # ys ′ = xys @ ya # ys ′a) ∧ (xa, ya) ∈ r)) −→

(a, a) ∈ r

The only variable bound by an outer abstraction is u, whereas all other variables such as ua,
xs or ys are bound by inner abstractions. The compression algorithm may therefore omit all
subterms not containing the variable u, which yields the term

λu. −→ −→ = u −→ lexn u = {ua. (λ(xs, ys). = u ∧ = u ∧) } −→

Compared to the original term consisting of 120 constructors, the compressed term only has
30 constructors, which is a compression ratio of 75%.
In order to integrate the term compression algorithm with the proof compression algorithm
shown in Figure 2.6, we have to replace one of the rules for the compression of applications
(p · t) by a rule involving the term compression judgement Γ1 | Γ2 ` t�outer tp. It should be
noted that the term compression judgement is not immediately applicable to the compression
of term arguments corresponding to top level predicate variables of type α ⇒ prop, since
this would require a more detailed analysis of both the polarity of the predicate variable and
the structure of the formula denoted by the term. For example, in a proof (c · · · · t), where
Σ(c) =

∧
a. ϕ and t corresponds to a top level predicate variable P ∈ a, t may only be omitted

if P occurs only positively in ϕ and t contains no positive occurences of quantifiers
∧

, or
P occurs only negatively in ϕ and t contains no negative occurrences of quantifiers, or if t
contains no quantifiers at all. We therefore leave such term arguments unchanged. To this
end, we introduce the additional representation recipe ◦.r denoting an argument corresponding
to such a predicate variable and also modify the function for generating representation recipes.
The modified function, together with the modified rules for proof reconstruction, is shown in
Figure 2.9 as well.
We are now ready to state the main result, relating the refined compression and reconstruction
judgements:

2.4. PARTIAL PROOF TERMS 39

Γ1, x :: τ | Γ2 ` t�outer tp

Γ1 | Γ2 ` (λx :: τ. t)�outer (λx :: . tp)

Vars(t) ∩ VΓ1 = ∅ Γ1,Γ2 6` σ ⇒ τ

Γ1 | Γ2 ` t�outer

Γ1 | Γ2 `̀ t�outer tp x ∈ VΓ1

Γ1 | Γ2 ` x t�outer x tp

Γ1 | Γ2 `̀ t�inner tp a ∈ VΓ2 ∪ C Vars(t) ∩ VΓ1 6= ∅ or Γ1,Γ2 ` σ ⇒ τ

Γ1 | Γ2 ` a t�outer a tp

Γ1 | Γ2 `̀ []�outer []

Γ1 | Γ2 ` t�outer tp Γ1 | Γ2 `̀ t�outer tp

Γ1 | Γ2 `̀ t, t�outer tp, tp

Γ1 | Γ2, x :: τ ` t�inner tp Vars(λx :: τ. t) ∩ VΓ1 6= ∅
Γ1 | Γ2 ` (λx :: τ. t)�inner (λx :: . tp)

Vars(t) ∩ VΓ1 = ∅
Γ1 | Γ2 ` t�inner

Γ1 | Γ2 `̀ t�outer tp x ∈ VΓ1

Γ1 | Γ2 ` x t�inner x tp

Γ1 | Γ2 `̀ t�inner tp a ∈ VΓ2 ∪ C Vars(t) ∩ VΓ1 6= ∅
Γ1 | Γ2 ` a t�inner a tp

Γ1 | Γ2 `̀ []�inner []

Γ1 | Γ2 ` t�inner tp Γ1 | Γ2 `̀ t�inner tp

Γ1 | Γ2 `̀ t, t�inner tp, tp

Γ ` p� (pp, − .r)
Γ ` p · t� (pp · , r)

Γ ` p� (pp, ◦ .r)
Γ ` p · t� (pp · t, r)

Γ ` p� (pp, • .r) [] | Γ ` t�outer tp

Γ ` p · t� (pp · tp, r)

r = − .r | ◦ .r | • .r | []

recipeA,ϕ [] = []

recipeA,ϕ (a, a) =

◦.recipeA,ϕ a if a ∈ propvA (ϕ)
•.recipeA,ϕ a if a ∈ unsafe+

A {} (ϕ)
−.recipeA,ϕ a otherwise

Figure 2.9: Refined compression of terms

40 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Theorem 2.5 (Refined compression)

1. If t is ground, Γ1 | Γ2 ` t�inner tp and Γ1 | Γ2 ` tp�inner (t′, τ, C), then Γ1 | Γ2 `inner t
′

2. If t is ground, Γ1 | Γ2 ` t�outer tp and Γ1 | Γ2 ` tp �outer (t′, τ, C), then Γ1 | Γ2 `outer t
′

3. If Γ ` p : ϕ and Γ ` p� (pp, r) and Γ ` pp � (p′, ϕ′, C), then C ∪ {ϕ =? ϕ′} is solvable
using pattern unification.

2.4.5 A bidirectional compression algorithm

As has been noted in §2.4.3, a parameter of an inference rule r, where Σ(r) =
∧
a. ϕ, may be

omitted if it has only strict occurrences in ϕ, since this preserves solvability of the constraints
generated during reconstruction using pattern unification. It is therefore tempting to ask if
this also holds for parameters having both strict and non-strict occurrences, as in the rules

exI :
∧
P x. Tr (

non-strict︷︸︸︷
P x) =⇒ Tr (∃x.

strict︷︸︸︷
P x)

spec :
∧
P x. Tr (∀x. P︸︷︷︸

strict

x) =⇒ Tr (P x︸︷︷︸
non-strict

)

where the parameter P has both a strict and a non-strict occurrence, whereas the parameter
x has only a non-strict occurrence. The following example shows that this is not the case in
general. For the purpose of the example, assume we already have a proof of the theorem

example :
∧
P. Tr (∀x. ∀y. P x y −→ P x y)

where the parameter P occurring in the proposition of example has only positive occurrences.
Now consider the partial proof

spec · · c · (spec · · c · (example ·))

where c is some constant. According to §2.4.3, we may clearly omit the parameter P of the
rule example, since it has only positive occurrences. However, if we go even further and also
omit the parameter P of spec, we run into a problem. To see this, consider the reconstruction
problem

spec · ?P1 · c · (spec · ?P2 · c · (example · ?P3)) : Tr (P c c −→ P c c)

which generates the following set of constraints:

{?P1 c =? P c c −→ P c c, ?P2 c =? (∀x. ?P1 x), (∀x. ∀y. ?P3 x y −→ ?P3 x y) =? (∀x. ?P2 x)}

These constraints are not solvable using pattern unification, and although we can deduce the
substitution

{?P1 7→ (λy. ?P3 c y −→ ?P3 c y), ?P2 7→ (λx. ∀y. ?P3 x y −→ ?P3 x y)}

which simplifies the above constraint set to

{?P3 c c −→ ?P3 c c =? P c c −→ P c c}

2.4. PARTIAL PROOF TERMS 41

no unique most general solution exists. For example, some of the solutions of the above
constraint set are ?P1 7→ λy. P c y −→ P c y

?P2 7→ λx. ∀y. P x y −→ P x y
?P3 7→ P

 ,

 ?P1 7→ λy. P c c −→ P c c
?P2 7→ λx. ∀y. P c c −→ P c c
?P3 7→ λx y. P c c

 , . . .

In contrast to the above example, consider the partial proof

impI · · · (λH : . exI · · c · (spec · · c ·H))

where the parameter P of exI has been omitted. Although P has both a strict and a non-strict
occurrence, reconstruction of this proof is unproblematic. The reconstruction problem

impI · ?A · ?B · (λH : ?C . exI · ?P1 · c · (spec · ?P2 · c ·H)) : Tr ((∀x. P x) −→ (∃x. P x))

generates the constraints

C =
{

?A −→ ?B =? (∀x. P x) −→ (∃x. P x), ?C =⇒ Tr (∃x. ?P1 x) =? Tr ?A =⇒ Tr ?B
?C =? Tr (∀x. ?P2 x), ?P2 c =? ?P1 c

}
which are solvable using pattern unification, since

(C, {}) −→∗
S({

?C =⇒ Tr (∃x. ?P1 x) =? Tr (∀x. P x) =⇒ Tr (∃x. P x)
?C =? Tr (∀x. ?P2 x), ?P2 c =? ?P1 c

}
,

{
?A 7→ (∀x. P x)
?B 7→ (∃x. P x)

})
−→∗

S({
Tr (∀x. P x) =? Tr (∀x. ?P2 x)
?P2 c =? P c

}
,

{
?A 7→ (∀x. P x), ?B 7→ (∃x. P x)
?C 7→ Tr (∀x. P x), ?P1 7→ P

})
−→∗

S

({}, {?A 7→ (∀x. P x), ?B 7→ (∃x. P x), ?C 7→ Tr (∀x. P x), ?P1 7→ P, ?P2 7→ P})

The reason why reconstruction fails in the first example, whereas it succeeds in the second
example, is that the rules exI and spec only admit specific directions of dataflow. The rule
exI requires the dataflow to be bottom-up: when given a ground term to match with the
conclusion (∃x. ?P x) of (exI · ?P · t), a ground instantiation for ?P can be computed, which,
assuming that t is ground, also instantiates the premise (?P t) to a ground term. However, if
we are given a ground term to match with the premise (?P t), we can not uniquely determine
an instantiation for ?P . In contrast, the rule spec requires the dataflow to be top-down: when
given a ground term to match with the premise (∀x. ?P x) of (spec · ?P ·), we can compute a
ground instantiation for ?P , which also instantiates the conclusion (?P t). However, when we
are just given a ground term to match with the conclusion, we again cannot uniquely determine
?P . In the second example, the direction of dataflow is exactly as it should be: working bottom-
up starting from the specified result proposition Tr ((∀x. P x) −→ (∃x. P x)), we can first
reconstruct the conclusion of (exI · ?P1 · c) and hence also its premise, which then allows us to
reconstruct the conclusion of (spec · ?P2 · c). Unfortunately, in the first example, the dataflow
is in the “wrong” direction. Although we are given the result proposition Tr (P c c −→ P c c),
this does not help very much, since we cannot use it to determine a ground instantiation for
the variable ?P1 in the conclusion of (spec · ?P1 · c). A way out of this problem is to keep the
argument of example in the proof, instead of replacing it by a placeholder, which then gives
rise to the unification variable ?P3 during reconstruction. Working top-down, which is the
preferred direction of dataflow for the rule spec, we could thus determine ?P2 and hence also
?P1 .

42 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

The idea behind the bidirectional compression algorithm which will be developed in this section
is to assign dataflow annotations to each inference rule. This is similar to the concept of mode
analysis, which will be introduced in §6.3.1 for the purpose of translating logic programs into
functional programs. The set of possible dataflow annotations is specified by the following
grammar:

F1, F2, F = ↑ | ↓ | F1 =⇒ F2

Intuitively, ↑ means that the direction of dataflow is bottom-up, whereas ↓ means that it is
top-down. For example, the preferred direction of dataflow for the rule exI described above is
denoted by the annotation ↑ =⇒ ↑, i.e. information flows from the conclusion to the premise,
whereas the annotation for the rule spec is ↓=⇒ ↓, i.e. information flows from the premise to
the conclusion. These dataflow annotations are then used to guide the compression algorithm.
For each dataflow annotation of a specific rule, we can determine a set of parameters, which
need to be retained during compression, in order to allow for a successful reconstruction of the
proof. For example, given the above annotations for the rules exI and spec, the term argument
corresponding to the parameter x always has to be retained in the proof. Formally, the set of
parameters of an inference rule r, for which an instantiation can be inferred, given a particular
dataflow direction F , is defined as follows:

Definition 2.7 (Inferrable parameters) Let r be an inference rule (proof constant) with
Σ(r) =

∧
a1 . . . an. ϕ, where A = {a1, . . . , an} is the set of its parameters. Then the set

inferrableA F ϕ of inferrable parameters of r wrt. the dataflow annotation F is given by the
following equations:

inferrable+
A ↑ ϕ = strictA ϕ

inferrable−A ↑ ϕ = {}
inferrable+

A ↓ ϕ = {}
inferrable−A ↓ ϕ = strictA ϕ

inferrableπ
A F (

∧
x. ϕ) = inferrableπ

A F ϕ

inferrableπ
A (F1 =⇒ F2) (ϕ1 =⇒ ϕ2) = inferrable−π

A F1 ϕ1 ∪ inferrableπ
A F2 ϕ2

Intuitively, if ↑ occurs positively in a dataflow annotation, this means that we may assume that
we have a ground term to match with the corresponding subformula ϕ, and thus can infer a
ground instantiation for all parameters having a strict occurrence in ϕ. The same holds for
negative occurrences of ↓ in a dataflow annotation. In contrast, if ↑ occurs negatively, or if ↓
occurs positively in a dataflow annotation, we have to ensure that it is possible to obtain ground
terms for all parameters occurring in the corresponding subformula ϕ. Figure 2.10 shows a
list of dataflow annotations for the standard inference rules of Isabelle/HOL. Note that for
each rule, there are usually several possible annotations. These may differ in the number of
non-inferrable parameters, and the most common annotation is listed first. Not all dataflow
annotations are meaningful. For example, the annotation

↓=⇒ (↓=⇒↓) =⇒ (↓=⇒↓) =⇒↓

for the rule

disjE :
∧
P Q R. P ∨Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

2.4. PARTIAL PROOF TERMS 43

rule annotation non-inferrable
parameters

↑=⇒↑ {}
allI ↓=⇒↓ {}

↑=⇒↓ {P}
↓=⇒↓ {x}spec ↑=⇒↓ {P, x}
↑=⇒↑ {x}exI ↑=⇒↓ {P, x}
↓=⇒ (↓=⇒↑) =⇒↑ {}
↓=⇒ (↓=⇒↓) =⇒↓ {}exE ↓=⇒ (↓=⇒↑) =⇒↓ {Q}

...
...

(↓=⇒↑) =⇒↑ {}
impI (↓=⇒↓) =⇒↓ {P}

...
...

↓=⇒↑=⇒↓ {}
↑=⇒↓=⇒↑ {}mp ↑=⇒↑=⇒↑ {P}

...
...

↑=⇒↑=⇒↑ {}
↓=⇒↓=⇒↓ {}conjI ↓=⇒↑=⇒↓ {Q}

...
...

↓=⇒↓ {}
conjunct1 ↑=⇒↑ {Q}

↑=⇒↓ {P,Q}
↓=⇒↓ {}

conjunct2 ↑=⇒↑ {P}
↑=⇒↓ {P,Q}
↑=⇒↑ {}

disjI1 ↓=⇒↓ {Q}
↑=⇒↓ {P,Q}
↑=⇒↑ {}

disjI2 ↓=⇒↓ {P}
↑=⇒↓ {P,Q}
↓=⇒ (↓=⇒↑) =⇒ (↓=⇒↑) =⇒↑ {}
↓=⇒ (↓=⇒↓) =⇒ (↓=⇒↑) =⇒↓ {}

disjE ↓=⇒ (↓=⇒↑) =⇒ (↓=⇒↓) =⇒↓ {}
↓=⇒ (↓=⇒↑) =⇒ (↓=⇒↑) =⇒↓ {R}

...
...

Figure 2.10: Dataflow annotations for standard inference rules

44 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

does not make sense, since if we have already synthesized R from the proof of (P =⇒ R), there
is no point in synthesizing it again from the proof of (Q =⇒ R). Instead, we may already use
the knowledge of R when reconstructing the proof of (Q =⇒ R), which is expressed by the
annotation

↓=⇒ (↓=⇒↓) =⇒ (↓=⇒↑) =⇒↓

Moreover, neither ↓ =⇒ ↑ nor ↓ =⇒ ↓ would make sense as an annotation for exI , since the
knowledge of a ground term to match against the premise P x would not help in inferring any
of the parameters, since none of them has a strict occurrence in the premise. More precisely, a
dataflow annotation is considered meaningful if it is not redundant in the sense of the following
definition.

Definition 2.8 (Redundant annotation) Let r be an inference rule (proof constant) with
Σ(r) =

∧
a1 . . . an. ϕ, where A = {a1, . . . , an} is the set of its parameters. A dataflow annota-

tion F for r is called redundant, iff redundant+A F ϕ, where

redundant+A ↑ ϕ = (strictA ϕ = ∅)
redundant−A ↑ ϕ = False

redundant+A ↓ ϕ = False

redundant−A ↓ ϕ = (strictA ϕ = ∅)
redundantπA F (

∧
x. ϕ) = redundantπA F ϕ

redundantπA (F1 =⇒ F2) (ϕ1 −→ ϕ2) = redundant−π
A F1 ϕ1 ∨ redundantπA F2 ϕ2 ∨

∅ 6= inferrable−π
A F1 ϕ1 ⊆ inferrableπ

A F2 ϕ2 ∨
inferrable−π

A F1 ϕ1 ⊇ inferrableπ
A F2 ϕ2 6= ∅

In the sequel, we will assume all dataflow annotations to be non-redundant.
The bidirectional compression algorithm is given by two judgements Γ ` p : F � pp and
Γ ` p � (pp, r, F), which are characterized by the inference rules in Figure 2.11. The first
of the two judgements handles the compression of proofs whose outermost constructor is an
abstraction, whereas the second one is intended for compressing applications. As in the static
compression algorithm from §2.4.3, representation recipes are only needed for the compression
of applications. During compression, we will sometimes have to mediate between different
directions of dataflow. For example, a proof which can synthesize its proposition may appear
in any context expecting a proof which can be checked against a given proposition. In other
words, a proof in which the direction of dataflow is top-down (indicated by ↓) may appear in
any context in which the dataflow is bottom-up (indicated by ↑). To this end, we introduce a
subsumption relation � on dataflow annotations, together with a rule Sub for the compression
judgement, which allows a proof with dataflow F ′ to appear in a context with dataflow F ,
provided that F � F ′. As is customary for subtyping relations, � is contravariant in the first
argument F , and covariant in the second argument G of F =⇒ G. Moreover, � also allows
to convert between dataflow annotations with different degrees of granularity. For example, ↑
and ↓ are equivalent to ↓ =⇒ ↑ and ↑ =⇒ ↓, respectively. As an invariant of the compression
algorithm, we require that the propositions corresponding to hypotheses in the context Γ can
always be synthesized. Therefore, when compressing an abstraction of the form (λh : ϕ. p)
using the rules Abs1 and Abs2, the dataflow must either be completely bottom-up (↑), or such
that it at least allows a synthesis of the argument proposition ϕ, which can be captured by the
annotation ↓ =⇒ F . Consequently, the Hyp rule for processing hypotheses assumes that the
direction of dataflow is top-down, which means that information flows from the hypotheses to

2.4. PARTIAL PROOF TERMS 45

Γ, h : ϕ ` p : F � pp

Γ ` (λh : ϕ. p) : ↓=⇒ F � (λh : . pp)
Abs1

Γ, h : ϕ ` p : ↑� pp

Γ ` (λh : ϕ. p) : ↑� (λh : . pp)
Abs2

Γ ` p : F � pp

Γ ` (λx :: τ. p) : F � (λx :: . pp)
Abs3

F � F ′ Γ ` p� (pp, r, F
′)

Γ ` p : F � pp
Sub

Σ(c) =
∧
a. ϕ F ∈ F(c)

Γ ` c{α7→τ} � (c{α7→ }, recipea,ϕ,F a, F) Const Γ ` h� (h, [], ↓)
Hyp

Γ ` p� (pp, − .r, F)
Γ ` p · t� (pp · , r, F) App−

Γ ` p� (pp, • .r, F)
Γ ` p · t� (pp · t, r, F)

App•
Γ ` p� (pp, [], ↓)

Γ ` p · t� (pp · t, r, ↓)
App[]

Γ ` p� (pp, r, F =⇒ F ′) Γ ` q : F � qp

Γ ` p · q � (pp · qp, [], F ′)
Γ ` p� (pp, r, ↓) Γ ` q : ↑� qp

Γ ` p · q � (pp · qp, [], ↓)

↑ � ↑ ↑ � ↓ ↓ � ↓

F ′ � F G � G′
F =⇒ G � F ′ =⇒ G′

F � ↓ ↑ � G
↑ � F =⇒ G

F � ↑ ↓ � G
↓ � F =⇒ G

↓ � F G � ↑
F =⇒ G � ↑

↑ � F G � ↓
F =⇒ G � ↓

recipeA,ϕ,F [] = []

recipeA,ϕ,F (a, a) =
{
•.recipeA,ϕ,F a if a /∈ inferrable+

A F ϕ
−.recipeA,ϕ,F a otherwise

Figure 2.11: Bidirectional compression

the root of the proof. Note that the above restriction on dataflow annotations for abstractions
rules out annotations such as

↑=⇒ (↑=⇒↑) =⇒ (↑=⇒↑) =⇒↑

for the rule disjE . Similar to the static compression algorithm described in §2.4.3, representa-
tion recipes are generated by the rule Const for processing proof constants. This rule allows to
choose a suitable dataflow annotation F from the set F(c) of possible dataflow annotations for
the constant c. The generated representation recipe is a list containing all variables which are
not inferrable wrt. the chosen dataflow annotation F . The rules for compressing applications
of the form p · t are quite similar to their counterparts in §2.4.3. When compressing an appli-
cation of the form p · q, where p has the dataflow F =⇒ F ′, the proof q is compressed using
the dataflow F , and F ′ is returned as the resulting dataflow annotation of the whole proof.
Alternatively, if the dataflow corresponding to p is completely top-down (↓), which means that
we can synthesize both the premise ϕ and the conclusion ψ of the proposition ϕ =⇒ ψ proved
by p, we may compress q in bottom-up mode (↑), and the dataflow for the whole proof is again
top-down (↓).

46 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Similar to the previous compression strategy, the interplay between compression and recon-
struction can be characterized as follows:

Theorem 2.6 (Bidirectional compression) If Γ ` p : ϕ and Γ ` p : ↑ � pp and Γ `
pp � (p′, ϕ′, C), then C ∪ {ϕ =? ϕ′} is solvable using pattern unification.

It should be noted that the system of inference rules presented in Figure 2.11 does not imme-
diately yield an executable program, since it still contains several degrees of freedom. First of
all, we have to make more precise which dataflow annotation F ∈ F(c) to choose in the Const
rule. As a rule of thumb, one should always try to choose a dataflow annotation with the
smallest possible number of non-inferrable parameters. Moreover, when selecting the dataflow
annonation, we also have to take into account the direction of dataflow expected by the con-
text. For example, if the context requires the proof c · t · · · · to synthesize its proposition, we
have to choose a dataflow annotation of the form · · · =⇒↓ for c. If the context expects a proof
which can be checked against a given proposition, it is usually more advantageous to choose a
dataflow annotation of the form · · · =⇒↑, although, according to the Sub rule, · · · =⇒↓ would
be acceptable as well. For example, the annotations

↓=⇒ (↓=⇒↑) =⇒ (↓=⇒↑) =⇒↑
↓=⇒ (↓=⇒↓) =⇒ (↓=⇒↑) =⇒↓

for disjE both allow all parameters to be inferred, but when compressing a proof of the form

disjE · P ·Q ·R · prf 1 · prf 2 · prf 3

the first annotation is likely to allow for more terms to be omitted in the subproof prf 2,
since the annotation ↓=⇒↑ (as opposed to ↓=⇒↓) corresponding to prf 2 indicates that more
information can be propagated upwards to prf 2, where it may help in reconstructing omitted
arguments. Thus, in an actual implementation, the rules Const and Sub need to be more tightly
integrated.
An important property of the bidirectional compression algorithm is that the reconstruction
algorithm can infer ground terms for all placeholders in the compressed term. Thus, there
may be cases where the compression achieved by this algorithm is less optimal than the one
achieved by the static compression algorithm, which only requires that pattern terms can be
inferred. For example, the proof

disjE · True · P · True · (disjI1 · True · P · TrueI) · (λH : True. H) · (λH : P. TrueI)

is compressed to

disjE · · · · (disjI1 · · P · TrueI) · (λH : . H) · (λH : . TrueI)

by the bidirectional compression algorithm. While the static algorithm would also omit P ,
the bidirectional algorithm cannot do so, since there is no way to fully reconstruct it from the
context.

2.4.6 Practical results

We now conclude the presentation of the various compression algorithms given in the previous
sections with an analysis of their performance. To this end, we have tested the compression
algorithms on all (roughly 4000) theorems of the Isabelle/HOL library [53]. The detailed results

2.4. PARTIAL PROOF TERMS 47

of this test for the 30 largest proofs in the library are shown in the table in Figure 2.12. The first
three columns of the table show the name of the theorem whose proof is considered, the number
of terms appearing in the uncompressed (full) proof, as well as the total size of these terms.
The remaining eight columns show the results of four different compression algorithms, namely
the algorithm currently used in Isabelle, the static compression algorithm from §2.4.3, the
refined compression algorithm from §2.4.4, as well as the bidirectional compression algorithm
presented in §2.4.5. For each algorithm, there are two columns, showing the total size of the
terms occurring in the compressed proof, as well as the compression ratio (in %) compared
with the original proof. The diagram below the table in Figure 2.12 shows the correlation
between the proof size and the compression ratio.
As expected, the algorithm with the poorest performance is the static algorithm, which only
achieves a compression ratio of about 50-60%. The refined compression algorithm is already
much better, yielding a compression ratio of about 80%. An even better compression ratio of
about 90% can be achieved using the bidirectional compression algorithm. The compression
algorithm currently used in Isabelle is essentially a static algorithm similar to the one described
in §2.4.3, but with a specific optimization for equational proofs, borrowing some ideas from
§2.4.5. This optimization is based on the observation that equational proofs mainly consist of
applications of the congruence rule

comb :
∧
f g x y. f ≡ g =⇒ x ≡ y =⇒ f x ≡ g y

Using the static algorithm, none of the parameters f , g, x and y may be omitted, because
each of them has a non-strict occurrence in the conclusion of the above rule. However, if
the direction of dataflow in the proof is top-down, which can be expressed by the dataflow
annotation ↓ =⇒↓ =⇒↓, we can actually omit all parameters. This is due to the fact that f ,
g, x and y have only strict occurrences in the premises of comb. Hence, when given ground
terms to match against the premises f ≡ g and x ≡ y, all parameters can be reconstructed.
Therefore, when compressing a proof of the form

comb · f · g · x · y · prf 1 · prf 2

the following strategy is used: If prf 1 is again a proof starting with the comb rule, or a
transitivity rule applied to two proofs starting with comb, we can rely on the fact that we can
reconstruct the proposition corresponding to this proof, and can therefore omit the parameters
f and g. In fact, it actually suffices if we can just reconstruct a pattern term whose head is
a constant, since this is already sufficient to guarantee that also f x and g x are patterns. If
prf 1 is not of the form described above, the parameters f and g are retained in the proof.
Provided that the heads of f and g are constants, we can also omit the parameters x and y,
respectively. As an example, we consider the derivation of f c s t (g c u) ≡ f d s t (g d u)
from prf : c ≡ d, where f , g, c and d are constants. The uncompressed version of the proof of
the above equation, which is generated by Isabelle’s term rewriting module, looks as follows:

comb · f c s t · f d s t · g c u · g d u ·
(comb · f c s · f d s · t · t ·

(comb · f c · f d · s · s ·
(comb · f · f · c · d · (refl · f) · prf) ·
(refl · s)) ·

(refl · t)) ·
(comb · g c · g d · u · u · (comb · g · g · c · d · (refl · g) · prf) ·

(refl · u))

48 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Full proof Current impl. Static Refined Bidirectional
Theorem name

terms size size ratio size ratio size ratio size ratio
IntArith.pos-zmult-eq-1 -iff 49046 247726 5615 97.73 119232 51.87 46386 81.28 19892 91.97
IntDiv .pos-zdiv -mult-2 46985 245920 6218 97.47 125602 48.93 47319 80.76 18875 92.32
IntDiv .pos-zmod-mult-2 33013 175819 4457 97.47 89557 49.06 33708 80.83 13661 92.23
Presburger .int-ge-induct 29603 206508 4441 97.85 85474 58.61 29849 85.55 19000 90.80
List .nibble.split 27938 114541 1792 98.44 46086 59.76 19056 83.36 6824 94.04
IntDiv .self -quotient 27310 149712 3722 97.51 72859 51.33 27437 81.67 12256 91.81
IntArith.int-le-induct 25381 191215 4055 97.88 78631 58.88 26390 86.20 17933 90.62
IntArith.int-ge-induct 24962 187436 3962 97.89 76442 59.22 25854 86.21 17658 90.58
List .list-all2 -append1 23900 116870 2821 97.59 53897 53.88 22532 80.72 8511 92.72
IntDiv .divAlg-correct 23886 117037 2892 97.53 54007 53.85 22355 80.90 8520 92.72
List .nibble.split-asm 23762 116263 1808 98.44 50540 56.53 17344 85.08 7263 93.75
List .nth-upt 21721 101355 2454 97.58 47273 53.36 21092 79.19 7014 93.08
IntDiv .zminus1 -lemma 18485 99613 3082 96.91 45480 54.34 18343 81.59 7993 91.98
IntDiv .zadd1 -lemma 17716 94929 3554 96.26 45242 52.34 18010 81.03 7745 91.84
IntDiv .quorem-neg 17329 91425 2678 97.07 43515 52.40 17365 81.01 7420 91.88
IntArith.nat-abs-mult-distrib 17253 122440 2291 98.13 49490 59.58 16836 86.25 10182 91.68
IntArith.triangle-ineq 14042 87446 1868 97.86 38984 55.42 13765 84.26 7539 91.38
IntArith.abs-mult 13490 73762 1754 97.62 34657 53.02 13720 81.40 5384 92.70
Presburger .decr -lemma 12994 99165 1901 98.08 44937 54.68 13644 86.24 8902 91.02
Presburger .cpmi-eq 12490 151005 1867 98.76 49780 67.03 13521 91.05 15436 89.78
Presburger .cppi-eq 12490 151005 1867 98.76 49780 67.03 13521 91.05 15436 89.78
NatBin.zpower -number -of -odd 11857 73052 1749 97.61 36196 50.45 13173 81.97 5949 91.86
IntDiv .dvd-int-iff 11612 52667 1316 97.50 24350 53.77 10199 80.63 4088 92.24
Presburger .incr -lemma 11452 85426 1731 97.97 36992 56.70 11573 86.45 7917 90.73
List .nth-list-update-neq 10440 48047 1246 97.41 22260 53.67 10003 79.18 3525 92.66
IntArith.abs-abs 10279 49475 1164 97.65 20419 58.73 7845 84.14 3993 91.93
IntDiv .zdiv -mono2 -lemma 10223 54615 1186 97.83 26626 51.25 9851 81.96 4477 91.80
List .upt-rec 9766 45499 1048 97.70 19772 56.54 8379 81.58 3494 92.32
Presburger .nnf -sdj 9349 44312 3612 91.85 4056 90.85 2080 95.31 3694 91.66
IntDiv .zmult1 -lemma 9187 54221 1960 96.39 25030 53.84 9547 82.39 4630 91.46

30

40

50

60

70

80

90

100

0 50000 100000 150000 200000 250000

co
m

pr
es

si
on

 r
at

io

size of terms

current implementation
bidirectional

refined
static

Figure 2.12: Performance of different compression algorithms

2.5. RELATED WORK 49

By applying the technique described above, we can compress this to the proof

comb · · · · ·
(comb · · · · ·

(comb · · · · ·
(comb · f · · · · (refl ·) · prf) ·
(refl ·)) ·

(refl ·)) ·
(comb · · · · · (comb · g · · · · (refl ·) · prf) ·

(refl ·))

By propagating the information in the proof downwards from the leaves to the root, we can
infer that the proved equation has the form

f c ?x ?y (g c ?z) ≡ f d ?x ?y (g d ?z)

which is a pattern, where ?x , ?y and ?z are unification variables introduced during reconstruc-
tion. Interestingly, this relatively simple optimization turned out to be the most effective
compression strategy, resulting in a compression ratio of about 95%. This is due to the dom-
inance of rewriting in most proofs. In the whole Isabelle/HOL library, the comb rule is used
about 160000 times, reflexivity about 150000 times and transitivity about 60000 times. In
contrast, ordinary natural deduction rules are used much less frequently. For example, the
implication introduction rule is only used about 8000 times.

2.5 Related work

Dowek [34] presents a proof synthesis method for the systems of the λ-cube. This also includes
an encoding of resolution in type theory similar to the one described in §2.3.1, which has found
its way into the theorem prover Coq [12, §7.3] in the form of the Intro and Apply tactics.
Pfenning [94] describes several algorithms for unification and proof search in the Elf system, an
implementation of the LF logical framework. The algorithm for the reconstruction of implicit
arguments used in Elf, which is only sketched in [94, §5.5], seems to be quite comparable to
ours (§2.4.1). Both in Elf and the more recent Twelf implementation [99], the user can mark
certain outermost quantifiers in the type of a constant as explicit, while leaving others implicit.
When applying a constant, only the arguments corresponding to explicit quantifiers need to
be given, and the type checker automatically inserts placeholders for arguments corresponding
to implicit quantifiers. For example, in the example signature defining first order logic, which
is part of the Twelf distribution, the declaration for the existential introduction rule is

existsi : {T:i} nd (A T) -> nd (exists A).

where {T:i} denotes a dependent product, which plays the role of a universal quantifier, and
i is the type of individuals. Here, only the witness T for the existential statement has to
be given explicitly, while the formula A denoting the body of the existential quantifier is left
implicit. As noted in §2.4.5, this annotation only guarantees successful reconstruction of a
term, if the direction of dataflow is bottom-up. In contrast to Isabelle, Twelf currently does
not determine automatically which arguments of a constant have to be made explicit in order
to ensure successful reconstruction. As in Isabelle, the user may also freely use placeholders
to be filled in by the reconstruction algorithm elsewhere in a term.

50 CHAPTER 2. PROOF TERMS FOR HIGHER ORDER LOGIC

Similar but more restricted strategies for synthesizing arguments, which are usually referred to
as implicit syntax, have also been implemented by Pollack [102] in the LEGO proof assistant
based on the Extended Calculus of Constructions (ECC), and, albeit in a somewhat crude
form, in Coq [12]. Pollack’s calculus for uniform argument synthesis contains two kinds of
abstractions [x : A]M and [x | A]M , as well as two product types {x : A}B and {x | A}B,
corresponding to functions with explicit and implicit arguments, respectively. Pollack specifies
a transformation for turning implicit terms into placeholder-free ones on a relative abstract
level, but does not describe how to actually reconstruct omitted terms, e.g. via constraint
collection and unification as described in §2.4.1. A similar implicit version of the Calculus of
Constructions is also proposed by Miquel [70], although, as he admits, his system seems to be
a poor candidate for being used in a proof assistant, since it is unclear under which conditions
type checking is decidable.
Luther [64] develops compression and reconstruction algorithms for the ECC, which improve
on the algorithms for argument synthesis currently implemented in LEGO or Coq. Similar
to the bidirectional algorithm presented in §2.4.5, Luther’s reconstruction and compression
algorithms operate either in checking or synthesis mode, which corresponds to bottom-up and
top-down dataflow, respectively.

Chapter 3

Proofs for equational logic

3.1 Introduction

Equational reasoning and rewriting play a central role in theorem proving. While there are
specific systems tailored to support proofs in equational logic, such as ELAN [23], or in first
order logic with equality, such as Otter [66] or Spass [118], it is also indispensable for a general
purpose theorem prover like Isabelle or HOL to offer support for conducting proofs involving
equational reasoning. One of the first implementations of rewriting in an interactive theorem
prover was done by Paulson [89] in the Cambridge LCF system.
This section is concerned with a description of the term rewriting algorithm used in Isabelle.
The previous implementation of rewriting, due to Tobias Nipkow, was part of Isabelle’s trusted
kernel. In contrast, the present implementation described here actually generates proofs and
can therefore be implemented outside the kernel. Moreover, it improves on the old implemen-
tation by allowing contextual rewriting with unlimited mutual simplification of premises.
Term rewriting consists in replacing terms by equal terms using a set of rewrite rules. These
are equations of the form t ≡ u, which are considered to be directed, i.e. they are applied in
a left-to-right manner. Rewriting is justified by the rules of equational logic. The equational
rules used in Isabelle/Pure are shown in Figure 3.1. We will sometimes refer to ≡ as meta-
equality, to distinguish it from other notions of equality defined in object logics. While the
rules refl, sym and trans just state that ≡ is an equivalence relation, the rules comb and abs,
which state that ≡ is a congruence with respect to function application and abstraction, are
used to justify the application of rewriting steps in subterms. A specific property of simply-
typed higher order logic as implemented in Isabelle/Pure is that the type prop of propositions
is a type like any other. Consequently, ≡ can also be used to express equality of propositions.

x ≡ x refl
x ≡ y
y ≡ x sym

x ≡ y y ≡ z
x ≡ z trans

f ≡ g x ≡ y
f x ≡ g y comb

∧
x. f x ≡ g x

(λx. f x) ≡ (λx. g x) abs

P =⇒ Q Q =⇒ P

P ≡ Q eqI
P ≡ Q P

Q
eqE

Figure 3.1: Equational rules for Isabelle/Pure

51

52 CHAPTER 3. PROOFS FOR EQUATIONAL LOGIC

rewc r t =
{
bθ(eq)c if eq ∈ r and t = θ(lhs eq)
⊥ otherwise

botc r t = case subc r t of
⊥ ⇒ (case rewc r t of
⊥ ⇒ ⊥
| beq2 c ⇒ trans beq2 c (botc r (rhs eq2)))

| beq1 c ⇒ (case rewc r (rhs eq1) of
⊥ ⇒ beq1 c
| beq2 c ⇒ trans (trans beq1 c beq2 c) (botc r (rhs eq2)))

subc r (λx. t) = (case botc r t of
⊥ ⇒ ⊥
| beqc ⇒ babs x eqc)

subc r ((λx. t) u) = (case subc r (rhs eq1) of
⊥ ⇒ beq1 c
| beq2 c ⇒ trans beq1 c beq2 c)

where eq1 = beta ((λx. t) u)
subc r (P =⇒ Q) = impc r [] P Q []
subc r (t u) = (case botc r t of

⊥ ⇒ (case botc r u of
⊥ ⇒ ⊥
| beq2 c ⇒ bcomb (refl t) eq2 c)

| beq1 c ⇒ (case botc r u of
⊥ ⇒ bcomb eq1 (refl u)c
| beq2 c ⇒ bcomb eq1 eq2 c))

Figure 3.2: Basic bottom-up rewriting algorithm

The fact that P ≡ Q for P and Q of type prop just means “if and only if” is reflected by the
rules eqI and eqE. This is in contrast to the usual definition of equality which one can find in
type theories such as the Calculus of Constructions, where ≡ : α → α → Prop and α : Prop,
where Prop is the universe of types (or propositions). In this case, α cannot be instantiated
with Prop, since we do not have Prop : Prop but Prop : Type. This treatment of equality of
propositions in Isabelle/Pure is not completely unproblematic, as we will show later.

3.2 Contextual rewriting

Isabelle’s rewriting engine is based on so-called conversions, which were first introduced by
Paulson in the LCF system [89]. A conversion is a function of type term⇒ thm which, given
a term t, returns a theorem t ≡ u. The rewriting strategy used in Isabelle is bottom-up. This
corresponds to the call-by-value evaluation scheme found e.g. in the functional programming
language ML. In the presence of rewrite rules with several occurrences of the same variable on
the right-hand side, this strategy avoids having to rewrite identical terms several times, but
may also lead to unnecessary rewriting steps when a variable occurring on the left-hand side of
a rewrite rule does not occur on the right-hand side. The basic rewriting algorithm is shown in
Figure 3.2. It consists of three conversions rewc, botc and subc. All of these conversions have
a set of rewrite rules r as an argument. In order to signal a failed attempt to rewrite a term,
they actually return elements of an option datatype with constructors ⊥ and b c. To reduce

3.2. CONTEXTUAL REWRITING 53

A =⇒ B ≡ B′

(A =⇒ B) ≡ (A =⇒ B′)
imp cong1

B =⇒ (A =⇒ C) ≡ (A′ =⇒ C)
(A =⇒ B =⇒ C) ≡ (A′ =⇒ B =⇒ C)

imp cong2

A ≡ A′
(A =⇒ B) ≡ (A′ =⇒ B)

imp cong3

Figure 3.3: Congruence rules for =⇒

the number of case distinctions in the above presentation of the algorithm, we extend trans to
operate on the option datatype, i.e.

trans ⊥ ⊥ = ⊥
trans beq1 c ⊥ = beq1 c
trans ⊥ beq2 c = beq2 c

Moreover, we define a lifting operator ()⊥ on functions as follows:

(f)⊥ ⊥ = ⊥
(f)⊥ bxc = bf xc

We also use the functions lhs and rhs for mapping a theorem of the form t ≡ u to the terms
t and u, respectively. Conversion rewc tries to apply a rewrite rule eq from r at the top
level of term t. This involves finding a most general matcher θ of t and the left-hand side of
eq , which is computed using a variant of the unification algorithm for higher order patterns
proposed by Miller [69, 79]. The main work is done by the mutually recursive conversions
botc and subc, where the former serves as the entry point. By calling subc, conversion botc
first descends recursively into the term t to be rewritten and then tries to apply a rewrite
rule at the top level using rewc. If a rewrite rule was applicable, the whole process is started
all over again with the new term. Conversion subc decomposes the term to be rewritten and
recursively applies botc to its subterms. The equation for rewriting the input term is then
obtained from the equations for the subterms by applying the congruence rules abs or comb
from Figure 3.1. Moreover, subc also applies β-reduction steps if possible. Terms of the form
P1 =⇒ · · · =⇒ Pn =⇒ Q receive a special treatment. When rewriting a formula of this kind,
there are essentially two main cases to consider:

• The premises P1, . . ., Pn may be used to rewrite each other, i.e. any premise Pj may be
used in the derivation of an equation Pi ≡ P ′

i where i 6= j.

• Premises may be used in rewriting the conclusion, i.e. in the derivation of an equation
(Pi =⇒ · · · =⇒ Pn =⇒ Q) ≡ R we may use any Pj with j < i.

This kind of contextual rewriting is justified by specific congruence rules for =⇒, which are
shown in Figure 3.3. They are easily derived from the basic rules for equality shown in Figure
3.1. Rewriting of premises in general is justified by rule imp cong3. Using a premise Pj in
rewriting a premise Pi can be justified by the congruence rule imp cong1 if j < i, i.e. the
premise to be rewritten is to the right of the premise used in deriving the equation Pi ≡ P ′

i ,
whereas imp cong2 can be used as a justification if i < j, i.e. the premise to be rewritten is to
the left of the premise used. Rule imp cong1 also serves as a justification for using premises in
rewriting the conclusion. Rewriting of implications is performed by the conversion impc, which
is shown in Figure 3.4. To write down the algorithm, we introduce a little more notation. We
use [] to denote the empty list. The notation (.) is used both for appending two lists, as well

54 CHAPTER 3. PROOFS FOR EQUATIONAL LOGIC

disch P eq = imp cong1 (implies intr P eq)

dischr P eq = imp cong2 (implies intr P eq)

rebuild r [] Q eq = eq

rebuild r (P .P) Q eq =

let R =
{
P =⇒ Q if eq = ⊥
P =⇒ rhs eq ′ if eq = beq ′c

in case rewc (r ∪ rews of P) R of
⊥ ⇒ rebuild r P R ((disch P)⊥ eq)
| beq′c ⇒

let P ′ =⇒ Q′ = rhs eq ′

in trans (fold disch P (trans ((disch P)⊥ eq) beq ′c)) (impc r [] (P .P ′) Q′ [])

impc r P [] Q eq = (case fold (λ(eq1 , P) eq2 . trans eq1 ((disch P)⊥ eq2)) ⊥ (zip eq P) of
⊥ ⇒ rebuild r P Q (botc (r ∪ rews of P) Q)
| beqc ⇒ trans beqc (impc r [] P Q []))

impc r P (P.Pr) Q eq = (case botc (r ∪ rews of (P ∪ Pr)) P of
⊥ ⇒ impc r (P .P) Pr (eq.⊥)
| beqc ⇒ impc r (P .rhs eq) Pr

(
eq.
⌊
fold dischr Pr (imp cong3 Q eq)

⌋)
)

Figure 3.4: Contextual rewriting

as for inserting a single element at the head or at the end of a list. Since we use e.g. P to
denote a list and P to denote a list element, it is clear what version of (.) we are referring
to. We also introduce the operations

fold f [] b = b
fold f (a.a) b = f a (fold f a b)

zip [] [] = []
zip (a.a) (b.b) = (a, b).zip a b

which are well-known in functional programming. Rewriting of premises proceeds from left
to right. To accomplish this, impc takes two lists of premises as an argument, the first of
which is initially empty. The first list contains all premises P1 . . . Pi−1 which are to the left
of the premise which is currently being rewritten, whereas the second list Pi . . . Pn contains
the current premise as well as all premises to the right. In order to use a premise in rewriting
another premise, we first have to extract rewrite rules from it. This is done by function rews of.
For example, the set of rewrite rules extracted from a premise of the form A∧B is the union of
the rewrite rules extracted from A and B. Moreover, a premise of the form ¬A could be turned
into the rewrite rule A ≡ False, whereas a non-negated premise P , which is not a conjunction,
could be turned into the rewrite rule P ≡ True. In each step, impc tries to rewrite the first
premise Pi from the second list and then appends a possibly rewritten version to the end of
the first list. Each step produces an equation of the form Pi ≡ P ′

i , whose proof may depend
on assumptions P ′

1 . . . P
′
i−1 and Pi+1 . . . Pn. Assumptions Pi+1 . . . Pn, which may get rewritten

in subsequent steps, are discharged immediately using dischr. This yields an equation eqi of
the form

(Pi =⇒ Pi+1 =⇒ · · · =⇒ Pn =⇒ Q) ≡ (P ′i =⇒ Pi+1 =⇒ · · · =⇒ Pn =⇒ Q)

3.2. CONTEXTUAL REWRITING 55

P2 ≡ P ′2

⇓ ⇓

⇓

P1 ≡ P ′1

⇓

P ′1

P2

⇓

. . .

Pn−1

⇓

...
...

⇓

Pn−1

⇓ ⇓

P ′n−1Pn−1≡P ′n−1

⇓

P ′n−2

⇓

Pn ≡ P ′n

⇓

Q

Pn

⇓

Q

PnPn

⇓ ⇓

Q Q

· · ·

...

Figure 3.5: Mutual simplification of premises

The discharging of other assumptions is postponed until the end. The equations eqi are accu-
mulated in the list eq . When all premises have been processed, the accumulated equations are
put together using a kind of “staircase” technique illustrated in Figure 3.5. More precisely, we
apply a sequence of discharging and transitivity operations, using the last equation eqn as a
starting point. By combining equations eqi+1 . . . eqn , we obtain the equation

(Pi+1 =⇒ · · · =⇒ Pn =⇒ Q) ≡ (P ′i+1 =⇒ · · · =⇒ P ′n =⇒ Q)

By discharging assumption P ′
i , we get the equation

(P ′i =⇒ Pi+1 =⇒ · · · =⇒ Pn =⇒ Q) ≡ (P ′i =⇒ P ′i+1 =⇒ · · · =⇒ P ′n =⇒ Q)

Using transitivity together with eqi , we can finally turn this into the equation

(Pi =⇒ Pi+1 =⇒ · · · =⇒ Pn =⇒ Q) ≡ (P ′i =⇒ P ′i+1 =⇒ · · · =⇒ P ′n =⇒ Q)

Note that by using this technique, we avoid having to discharge the hypotheses P1 . . . Pn−1

several times, i.e. for each of the equations eq2 . . . eqn , which improves the efficiency of the
algorithm. If some of the premises have been rewritten successfully, the list of premises is
processed once more, since the rewrite rules extracted from the rewritten premises can give

56 CHAPTER 3. PROOFS FOR EQUATIONAL LOGIC

rise to new redexes. This is done by the recursive call in the first clause defining impc. Actually,
we have to re-inspect at least all of the premises which are to the left of the rightmost premise
just simplified. After rewriting the premises, the conclusion Q is rewritten, which yields an
equation of the form Q ≡ Q′ whose derivation may depend on the assumptions P ′

1 . . . P
′
n.

Again, these assumptions need to be discharged. This is taken care of by function rebuild.
After discharging an assumption P ′

i , we also check whether a rewrite rule of the form (· · · =⇒
· · ·) ≡ R, whose left-hand side is an implication, such as (True =⇒ P) ≡ P is applicable to
the term P ′

i =⇒ · · · =⇒ P ′
n =⇒ Q′. If this is the case, we obtain the equation

(P ′i =⇒ · · · =⇒ P ′n =⇒ Q) ≡ R

by transitivity, and hence

(P ′1 =⇒ · · · =⇒ P ′n =⇒ Q) ≡ (P ′1 =⇒ · · · =⇒ P ′i−1 =⇒ R)

The application of a rule of the form (· · · =⇒ · · ·) ≡ R may affect the premises and can,
similar to the application of an equation Pi ≡ P ′

i , give rise to new redexes due to rewrite rules
extracted from the modified premises. If such a rule was applied, we therefore have to perform
another iteration of the rewriting algorithm by calling function impc.

3.3 Transforming equational proofs

3.3.1 Rewriting on propositions

It has already been mentioned that ≡ may also be used to express equality between propo-
sitions. While this seems to make proofs simpler at first sight, since we can use the equality
rules uniformly on any type, it can be quite problematic from a proof-theoretic point of view.
For example, we can construct a proof of the form

eqE · (A =⇒ B) · (A′ =⇒ B′) · (comb · (=⇒ A) · (=⇒ A′) ·B ·B′ ·
(comb ·=⇒ ·=⇒ ·A ·A′ · (refl ·=⇒) · prf1) · prf2) · prf3 · prf4

where prf1 : A ≡ A′, prf2 : B ≡ B′, prf3 : A =⇒ B and prf4 : A′. Now the problem with the
above proof is that it contains a potential redex, which is hidden by the comb rule. We can
exhibit this redex by replacing the subproof containing comb by a more informative derivation
using eqI and eqE:

eqE · (A =⇒ B) · (A′ =⇒ B′) ·
(eqI · (A =⇒ B) · (A′ =⇒ B′) ·

(λH1 : (A =⇒ B) H2 : A′. eqE ·B ·B′ · prf2 ·
(H1 (eqE ·A′ ·A · (sym ·A ·A′ · prf1) ·H2))) ·

(λH1 : (A′ =⇒ B′) H2 : A. eqE ·B′ ·B · (sym ·B ·B′ · prf2) ·
(H1 (eqE ·A ·A′ · prf1 ·H2)))) · prf3 · prf4

Now consider the following reduction rules for proofs involving eqI and eqE:

eqE · · · (eqI · · · prf1 · prf2) 7−→ prf1

eqE · · · (sym · · · (eqI · · · prf1 · prf2)) 7−→ prf2

3.3. TRANSFORMING EQUATIONAL PROOFS 57

Using the first of these rules, the above proof finally reduces to

eqE ·B ·B′ · prf2 · (prf3 · (eqE ·A′ ·A · (sym ·A ·A′ · prf1) · prf4))

Since the intermediate step duplicates prf1 and prf2 , which can lead to an exponential blowup
of the proof size, it is more advantageous to combine the two proof rewriting steps in a single
rule, i.e.

eqE · · · (comb · (=⇒ A) · (=⇒ A′) ·B ·B′ ·
(comb ·=⇒ ·=⇒ ·A ·A′ · (refl ·=⇒) · prf1) · prf2) 7−→

(λH1 : (A =⇒ B) H2 : A′. eqE ·B ·B′ · prf2 ·
(H1 · (eqE ·A′ ·A · (sym ·A ·A′ · prf1) ·H2)))

eqE · · · (sym · · · (comb · (=⇒ A) · (=⇒ A′) ·B ·B′ ·
(comb ·=⇒ ·=⇒ ·A ·A′ · (refl ·=⇒) · prf1) · prf2)) 7−→

(λH1 : (A′ =⇒ B′) H2 : A. eqE ·B′ ·B · (sym ·B ·B′ · prf2) ·
(H1 · (eqE ·A ·A′ · prf1 ·H2)))

We can perform similar transformations on proofs of equalities of the form (
∧
x. P) ≡ (

∧
x. P ′).

Note that in contrast to =⇒, the meta universal quantifier
∧

is not even mentioned in the
rewriting function presented in Figure 3.2, since rewriting under

∧
can be justified using comb

and abs. However, the usage of these rules is actually unnecessary in this case, since they can
be eliminated by the following transformation:

eqE · · · (comb ·
∧
·
∧
· (λx. P x) · (λx. P ′ x) · (refl ·

∧
) · (abs · P · P ′ · prf)) 7−→

(λ(H :
∧
x. P x) x. eqE · P x · P ′ x · (prf · x) · (H · x))

eqE · · · (sym · · · (comb ·
∧
·
∧
· (λx. P x) · (λx. P ′ x) · (refl ·

∧
) · (abs · P · P ′ · prf))) 7−→

(λ(H :
∧
x. P ′ x) x. eqE · P ′ x · P x · (sym · P x · P ′ x · (prf · x)) · (H · x))

We can also replace instances of trans and refl for type prop by alternative derivations:

eqE ·A · C · (trans ·A ·B · C · prf1 · prf2) · prf3 7−→ eqE ·B · C · prf2 · (eqE ·A ·B · prf1 · prf3)

eqE ·A · C · (sym · C ·A · (trans · C ·B ·A · prf1 · prf2)) · prf3 7−→
eqE ·B · C · (sym · C ·B · prf1) · (eqE ·A ·B · (sym ·B ·A · prf2) · prf3)

eqE ·A ·A · (refl ·A) · prf 7−→ prf

eqE ·A ·A · (sym ·A ·A · (refl ·A)) · prf 7−→ prf

3.3.2 Eliminating meta equality rules

The rewriting algorithm presented in the previous section only accepts meta-equalities s ≡ t
as rewrite rules. To allow object level equalities s = t to be used as well, a rule of the form

eq reflection : s = t =⇒ s ≡ t

is needed, which states that equality on the object level implies equality on the meta level.
Although the rule

meta eq to obj eq : s ≡ t =⇒ s = t

for the opposite direction is easily derived using the rules for meta-equality presented in Figure
3.1, together with the reflexivity rule for =, this is usually not the case for eq reflection, except

58 CHAPTER 3. PROOFS FOR EQUATIONAL LOGIC

if the types for meta level and object level truth values coincide. For example, the object level
substitution rule of the form s = t =⇒ P s =⇒ P t, which is used e.g. in HOL, requires P
to have type α ⇒ bool and is therefore unsuitable to turn s ≡ t into t ≡ t, since this would
require P to be instantiated with λx. x ≡ t, which is of type α ⇒ prop. Hence, eq reflection
is usually assumed as an axiom.
To show that this axiom is actually admissible, we demonstrate that it can be eliminated from
proofs by replacing meta level equality rules by object level equality rules. This can be done
using the following set of rewrite rules for equational proofs:

(eqE · x1 · x2 · (comb · Tr · x3 ·A ·B · (refl · x4) · prf1) · prf2) 7−→
(HOL.iffD1 ·A ·B · (meta eq to obj eq ·A ·B · prf1) · prf2)

(eqE · x1 · x2 · (sym · x3 · x4 · (comb · Tr · x5 ·A ·B · (refl · x6) · prf1)) · prf2) 7−→
(HOL.iffD2 ·A ·B · (meta eq to obj eq ·A ·B · prf1) · prf2)

(meta eq to obj eq · x1 · x2 · (comb · f · g · x · y · prf1 · prf2)) 7−→
(HOL.cong · f · g · x · y · (meta eq to obj eq · f · g · prf1) · (meta eq to obj eq · x · y · prf2))

(meta eq to obj eq · x1 · x2 · (trans · x · y · z · prf1 · prf2)) 7−→
(HOL.trans · x · y · z · (meta eq to obj eq · x · y · prf1) · (meta eq to obj eq · y · z · prf2))

(meta eq to obj eq · x · x · (refl · x)) 7−→ (HOL.refl · x)

(meta eq to obj eq · x · y · (sym · x · y · prf)) 7−→ (HOL.sym · x · y · (meta eq to obj eq · x · y · prf))

(meta eq to obj eq · x1 · x2 · (abs · f · g · prf)) 7−→
(HOL.ext · f · g · (λx. meta eq to obj eq · f x · g x · (prf · x)))

(meta eq to obj eq · x · y · (eq reflection · x · y · prf)) 7−→ prf

The underlying idea is as follows: In order to rewrite an object logic goal of the form Tr A, one
can derive an equation of the form Tr A ≡ Tr B. Applying sym and eqE yields Tr B =⇒ Tr A,
which allows us to replace the original goal by the rewritten goal Tr B. Assuming there are
no other rules for deriving meta equalities except for eq reflection and the rules from Figure
3.1, the only way to derive Tr A ≡ Tr B is by finding a proof prf1 of A ≡ B, from which
we can obtain the aforementioned equation by applying the congruence rule comb. Since the
equality of A and B may also be expressed on the object level, we may turn the meta level
equality A ≡ B into the object level equality A = B using meta eq to obj eq and use iffD2

instead of cong and eqE to obtain Tr A ≡ Tr B. This transformation is described by the
second rule. The first rule describes the symmetric case of replacing a subgoal Tr B by Tr A.
The rule meta eq to obj eq is then simply pushed upwards in the proof tree, replacing the meta
level equality rules comb, trans, refl, sym and abs by their object level conterparts HOL.cong,
HOL.trans, HOL.refl, HOL.sym and HOL.ext, respectively. The last rule specifies what to do
when meta eq to obj eq reaches a leaf of the equational proof consisting of an application of
the rule eq reflection to a proof prf of an object level equality. In this case, meta eq to obj eq
absorbs eq reflection, yielding just prf .

3.4 Related work

Boulton [24] describes a modular, conversion-based rewriting algorithm for the HOL theorem
prover. His article mainly focuses on simplifying arithmetic expressions and therefore does not
cover contextual rewriting or mutual simplification of premises. He also discusses several tech-
niques for optimizing rewriting algorithms, such as avoiding processing of unchanged subterms.

3.4. RELATED WORK 59

For this problem, Boulton investigates several solutions, such as signaling unchanged terms via
exceptions or by introducing a specific datatype similar to the one introduced in §3.2, with two
constructors ⊥ and b c corresponding to unchanged and changed terms, respectively. Apart
from discussing the implementation of these approaches in detail, Boulton also gives a good
survey of the history of rewriting algorithms in HOL and related systems. Boulton also points
out that for the purpose of producing proof logs or viewing proofs as programs, not only the
execution time of rewriting algorithms, but also the size of the produced equational proofs is
of importance.
A description of rewriting algorithms from the perspective of constructive type theory can be
found in Jackson’s PhD thesis [54, §4], who presents an implementation of rewriting in the
Nuprl proof development system.
The transformation of equational proofs by rewriting has also been studied by Nipkow [78, §3],
although for slightly different purposes than described in §3.3. Thanks to the representation
of proofs as terms, such transformations can now be performed inside Isabelle as well.

60 CHAPTER 3. PROOFS FOR EQUATIONAL LOGIC

Chapter 4

Program extraction

4.1 Introduction

One of the most fascinating properties of constructive logic is that a proof of a specification
contains an algorithm which, by construction, satisfies this specification. This idea forms the
basis for program extraction mechanisms, which can be found in theorem provers such as Coq
[12] or Nuprl [27]. To date, program extraction has mainly been restricted to theorem provers
based on expressive dependent type theories such as the Calculus of Constructions [28]. A
notable exception is the Minlog System by Schwichtenberg [15], which is based on minimal
first order logic. Although Isabelle is based on simply-typed minimal higher order logic, which
is purely constructive, little effort has been devoted to the issue of program extraction in this
system so far.
The aim of this chapter is to demonstrate that Isabelle is indeed quite suitable as a basis for
program extraction. Based on the encoding of proofs as λ-terms presented in §2.2, we describe
a mechanism that turns an Isabelle proof into a functional program. Since Isabelle is a generic
theorem prover, this mechanism will be generic, too. In order to instantiate it for a particular
object logic, one has to assign programs to each of its primitive inference rules. By induction on
the structure of proof terms, one can then build programs from more complex proofs making use
of these inference rules. Since the essence of program extraction is to systematically produce
programs that are correct by construction, we also describe a transformation that turns a
proof into a correctness proof of the program extracted from it. The precise definition of what
is meant by correctness will be given by a so-called realizability interpretation, that relates
programs to logical formulae. The overall architecture of the program extraction framework
is shown in Figure 4.1. It should be noted that the extracted program is actually available
as a function in the object logic. Therefore, its proof of correctness can be checked inside
Isabelle. The checking process turns the correctness proof into a genuine theorem, which may
be used in other formalizations together with the extracted program. Finally, using Isabelle’s
code generator [20], the extracted function can be compiled into an efficiently executable ML
program.
The rest of the chapter is structured as follows: In §4.2, the generic program extraction mech-
anism will be introduced, whereas §4.3 describes its adaption to Isabelle/HOL. This involves
associating basic inference rules with suitable programs, as well as handling proofs involving
more advanced constructs such as inductive datatypes and predicates. A suite of case studies
is presented in the following Chapter 5.

61

62 CHAPTER 4. PROGRAM EXTRACTION

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

ML program

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Correctness proof

HOL term

Specification proof

OK!

Code generator

Proof checker

inference engine
Isabelle core Program extractor

corr p : realizes (extr p) ϕ

p : ϕ

extr p :: typeof ϕ

Figure 4.1: Architecture of the Isabelle program extraction framework

4.2 A generic framework for program extraction

We now come to the definition of the generic program extraction framework. As described in
Figure 4.1, it consists of the following ingredients:

• A function typeof which maps a logical formula to the type of the term extracted from
its proof

• The actual extraction function extr which extracts a term (i.e. a program) from a proof
p with Γ ` p : ϕ, such that Γ ` extr Γ p :: typeof ϕ

• A function realizes which, given a term and a logical formula (the specification), returns
a logical formula describing that the term in some sense satisfies (“realizes”) the specifi-
cation

• A function corr which yields a proof that the program extracted from a proof p realizes
the formula proved by p, i.e. R(Γ) ` corr Γ p : realizes (extr Γ p) ϕ

4.2.1 Extracting types

Terms of the λ-calculus contain typing information, and so does the program extracted from
a proof. Therefore, the first step on the way from a proof to a program is the definition of
a function computing this typing information. In order to determine the type of a program
extracted from a proof p : ϕ, it suffices to analyze the proposition ϕ established by the proof.
In the sequel, this analysis process will be referred to as type extraction. For example, intuition
suggests that a program extracted from a proof of P =⇒ Q should be some function of
type σ ⇒ τ . An important observation in this context is that often only some parts of
a formula correspond to actual computations, whereas other parts specify properties of the
data manipulated by the algorithm underlying the proof, and therefore serve for justifying
the correctness of the extracted program. For example, in a formula x 6= 0 =⇒ · · ·, the
premise x 6= 0 merely verifies that x has the right value. To capture such formulae without
computational content, we introduce a dummy type Null, having the constant Null as its only

4.2. A GENERIC FRAMEWORK FOR PROGRAM EXTRACTION 63

inhabitant. One possibility of giving a type to the formula x 6= 0 =⇒ · · · would be to simply
assign it a function type with a dummy argument type, i.e. Null ⇒ τ . Unfortunately, such
dummy arguments would lead to a considerable amount of garbage appearing in the extracted
program. Even worse, when recursively extracting programs from lemmas appearing in a proof,
one would be forced to extract useless dummy programs for all lemmas involved, regardless
of their actual computational content. To remedy this, a more fine-grained definition of type
extraction is needed. More precisely, the type corresponding to a formula will be specified by
several rules, depending on the computational content of its subformulae. For example, if P
is a formula without computational content, P =⇒ Q would simply correspond to the type τ
instead of Null⇒ τ . It is a central property of this optimized type extraction mechanism that
neither the type nor the constant Null may actually occur in extracted programs.
Type extraction will be performed by the function typeof, which maps each term P :: τ to a
type, where τ is of the form σ ⇒ β with β ∈ IP, and IP denotes the set of propositional types,
i.e. IP = {prop, bool, . . .}. It is important that typeof also operates on function types, since
it will also be used to extract types from term arguments of inference rules corresponding to
predicate variables. This issue will be discussed in more detail later on. The function typeof is
specified as a set of (conditional) rewrite rules. It can easily be adapted to specific object logics
by adding new rules. The rules below specify the extracted type corresponding to formulae of
Isabelle/Pure. They should be read like a functional program, i.e. earlier rules have precedence
over rules appearing later.

typeof P ≡ Null =⇒ typeof Q ≡ τ =⇒ typeof (P =⇒ Q) ≡ τ

typeof Q ≡ Null =⇒ typeof (P =⇒ Q) ≡ Null

typeof P ≡ σ =⇒ typeof Q ≡ τ =⇒ typeof (P =⇒ Q) ≡ σ ⇒ τ

(
∧
x. typeof (P x) ≡ Null) =⇒ typeof (

∧
x. P x) ≡ Null

(
∧
x. typeof (P x) ≡ σ) =⇒ typeof (

∧
x :: α. P x) ≡ α⇒ σ

(
∧
x. typeof (P x) ≡ τ) =⇒ typeof P ≡ τ

The rules describing the type extracted from P =⇒ Q are relatively straightforward. If P
has no computational content, the type extracted from P =⇒ Q is just the type extracted
from Q. If Q has no computational content, the whole formula has no computational content
either. Otherwise, the type extracted from P =⇒ Q is a function type, where the argument
type is the type extracted from P , while the result type is the type extracted from Q. The two
rules for extracting the type of (

∧
x. P x) are quite similar to the rules for implication. An

important thing to note is the universal quantifier in the premise of the rules, which ensures
that the type σ extracted from the body P x of the quantifier does not depend on the value
of the quantified variable x. The last rule describes the type extracted from a predicate, i.e.
a term of type σ ⇒ β, where σ 6= []. This rule is useful for the extraction of types from the
parameters of an inference rule (see the function TInst described below). As in the case of the
universal quantifier, the type extracted from P x must be the same for all values of x.
We also need to deal with predicate variables occurring in a formula. It depends on the formula
a predicate variable is instantiated with, whether or not it contributes to the computational
content of the formula it occurs in. If the variable is instantiated with a formula having com-
putational content, we call the variable computationally relevant, otherwise computationally
irrelevant. A computationally relevant predicate variable corresponds to a type variable in
the type of the extracted program. During extraction, each computationally relevant predi-
cate variable P is assigned a specific type variable αP , i.e. typeof (P t) ≡ αP . In contrast,

64 CHAPTER 4. PROGRAM EXTRACTION

typeof (Q t) ≡ Null for each computationally irrelevant variable Q. For a theorem with n
predicate variables, there are 2n possibilities for variables being computationally relevant or
irrelevant. Thus, we may need to extract up to 2n different programs from this theorem,
depending on the context it is used in. For example, the program extracted from a proof of

(P =⇒ Q =⇒ R) =⇒ (P =⇒ Q) =⇒ P =⇒ R

will have type

(αP ⇒ αQ ⇒ αR)⇒ (αP ⇒ αQ)⇒ αP ⇒ αR

if P , Q and R are computationally relevant, whereas it will have type

(αQ ⇒ αR)⇒ αQ ⇒ αR

if just Q and R are computationally relevant. Fortunately, only few of these variants are
actually needed in practice, and our extraction mechanism can generate them on demand.
Function RVars assigns to each theorem c with parameters t the set of its computationally
relevant variables. Analogously, TInst yields a suitable type substitution for the type variables
corresponding to computationally relevant predicate variables of c. Finally, we use PVars to
denote the set of all predicate variables of a theorem c.

RVars c t = {xi | Σ(c) = (
∧
x :: τ . ϕ), τi = σ ⇒ β, β ∈ IP, typeof ti 6= Null}

TInst c t = {αxi
7→ τ | Σ(c) = (

∧
x :: τ . ϕ), τi = σ ⇒ β, β ∈ IP, typeof ti = τ, τ 6= Null}

PVars c = {xi | Σ(c) = (
∧
x :: τ . ϕ), τi = σ ⇒ β, β ∈ IP}

From the implementation point of view, it is interesting to note that the rewrite rules for typeof
given above can be formulated using Isabelle’s term calculus introduced in §2.2.1. In order to
explicitly encode type constraints on the level of terms, we use a technique originally introduced
by Wenzel [119] for the purpose of formalizing axiomatic type classes in Isabelle. We introduce
a new polymorphic type α itself together with a constant TYPE :: α itself. On top of this,
we add a type Type together with a coercion function α itself ⇒ Type. Then, typeof can be
modelled as a function of type τ ⇒ Type, where τ is of the form σ ⇒ β with β ∈ IP. Using this
formalism, equations of the form typeof ϕ ≡ τ occurring in the above presentation are actually
encoded as typeof ϕ ≡ Type (TYPE :: τ itself), where TYPE :: τ itself is usually abbreviated
by TYPE(τ). It should be noted that the functions typeof and Type are not actually defined
within Isabelle/Pure, since doing so would require a kind of meta-logical framework [99], but
rather serve as syntax to formulate the rewrite rules above.

4.2.2 Extracting terms

We are now ready to give the definition of the extraction function extr. In addition to the
actual proof, extr takes a context Γ as an argument, which associates term variables with types
and proof variables with propositions. The extracted term is built up by recursion over the
structure of a proof. The proof may refer to other theorems, for which we also need extracted
programs. We therefore introduce a function E which maps a theorem name and a set of
predicate variables to a term. We assume E to contain terms for both complex theorems,
whose extracted term has already been computed by earlier invocations of extr, and primitive
inference rules such as exI, for which a corresponding term has been specified by the author of
the object logic. In the former case, the result of E will usually just be some constant referring

4.2. A GENERIC FRAMEWORK FOR PROGRAM EXTRACTION 65

to a more complex program, which helps to keep the extracted program more modular. As
mentioned in §4.2.1, for theorems with predicate variables, the type of the corresponding
program depends on the set of relevant predicate variables, which is passed as an additional
argument to E .

extr Γ (c{α7→τ} · t) = E(c,RVars c t)({α 7→ τ} ∪ TInst c t) (Eargs(t))

extr Γ h = ĥ

extr Γ (λx :: τ. p) = λx :: τ. extr (Γ, x :: τ) p

extr Γ (λh : P. p) =
{

extr (Γ, h : P) p if τ = Null

λĥ :: τ. extr (Γ, h : P) p otherwise
where typeof P = τ

extr Γ (p · t) = (extr Γ p) t

extr Γ (p1 · p2) =
{

extr Γ p1 if τ = Null
(extr Γ p1) (extr Γ p2) otherwise

where Γ ` p2 : P
typeof P = τ

where

Eargs [] = []

Eargs (tτ , t) =
{
Eargs(t) if τ = σ ⇒ β, β ∈ IP
tτ , Eargs(t) otherwise

The first clause of extr deals with proof constants, i.e. references to axioms or theorems. For
a theorem Σ(c) =

∧
x. ϕ, the computational relevance of predicate variables in x, and hence

the computational content of the whole theorem, depends on the structure of the formulae
the predicate variables are instantiated with. This instantiation can be read off from the
context of c, i.e. from its argument list t. Using RVars, we can infer the set of relevant
predicate variables from the argument list t, which is then used to select a suitable variant
from the set of programs corresponding to c. The selected program contains type variables
αP corresponding to predicate variables P ⊆ x, for which an instantiation is computed from t
using TInst. Although terms of propositional type (i.e. predicates) in the argument list t have
an influence on the type of the extracted program, they do not constitute programs themselves
and therefore must not occur in the extracted program. Therefore, such terms are filtered
out using the function Eargs. The second clause of extr says that proof variables become term
variables in the extracted program. To avoid clashes with already existing term variables,
we map each proof variable h to a term variable ĥ that does not occur in the original proof.
Abstractions on the proof level, i.e. introduction of

∧
and =⇒, are turned into abstractions

on the program level. In the case of a proof of P =⇒ Q, where P has no computational
content, the extracted program is a degenerate “function” with no arguments. Analogously,
applications on the proof level, i.e. elimination of

∧
and =⇒, are turned into applications on

the program level. In the case of an elimination of P =⇒ Q, where P has no computational
content, the function argument is omitted. Note that the clause for proofs of the form (p · t)
does not apply to proofs p whose head is a constant, since these are handled by the first clause.

4.2.3 Correctness and realizability

It has already been mentioned in §4.1 that for each extracted program, one can obtain a
correctness proof. For this correctness proof to make sense, we first have to make clear what is

66 CHAPTER 4. PROGRAM EXTRACTION

actually meant by correctness. The key for understanding the correctness of extracted programs
is the notion of realizability. Realizability establishes a connection between a program and its
specification. More precisely, we will specify a predicate realizes which relates terms (so-called
realizers) with logical formulae. The notion of realizability was first introduced by Kleene [59]
to study the semantics of intuitionistic logic. In his original formulation, realizers were Gödel
numbers, which were somewhat hard to work with. To improve on this, Kreisel introduced
so-called modified realizability, where realizers were actual terms of a kind of programming
language, namely Gödel’s system T. Our characterization of realizability, as well as the one
which is described by Schwichtenberg [15], is inspired by Kreisel’s modified realizability.
The following set of conditional rewrite rules characterizes realizability for formulae of the
meta-logic Isabelle/Pure. As before, earlier rules have higher priority.

typeof P ≡ Null =⇒ realizes r (P =⇒ Q) ≡ (realizes Null P =⇒ realizes r Q)

typeof P ≡ σ =⇒ typeof Q ≡ Null =⇒
realizes r (P =⇒ Q) ≡ (

∧
x :: σ. realizes x P =⇒ realizes Null Q)

realizes r (P =⇒ Q) ≡ (
∧
x. realizes x P =⇒ realizes (r x) Q)

(
∧
x. typeof (P x) ≡ Null) =⇒ realizes r (

∧
x. P x) ≡ (

∧
x. realizes Null (P x))

realizes r (
∧
x. P x) ≡ (

∧
x. realizes (r x) (P x))

For example, in the third clause defining realizability for P =⇒ Q, P can be thought of as a
specification of the input of program r, whereas Q specifies its output.
It is important to note that the above rules for realizes are still insufficient to cover cases where
predicate variables occur in the formula to be realized. For example, how can we express that
the induction principle for natural numbers

P 0 =⇒ (
∧
n. P n =⇒ P (Suc n)) =⇒ P n

is realized by the program r? Since the above induction rule can be used in many different
contexts, we do not know what realizes r (P x) actually means, since we do not know in
advance what formula P will get instantiated with. To solve this problem, we replace all
computationally relevant predicate variables P with n arguments by a new predicate variable
PR with n+ 1 arguments, where the additional argument is the realizing term:

realizes r (P t) ≡ PR r t if r 6= Null

Later on, when an instantiation for P is known, we can substitute λr x. realizes r (P x) for
PR. Similarly, a computationally irrelevant predicate variable P is replaced by a new predicate
variable PR with the same number of arguments, i.e.

realizes Null (P t) ≡ PR t

Thus, the fact that r realizes the induction principle on natural numbers can be expressed as

4.2. A GENERIC FRAMEWORK FOR PROGRAM EXTRACTION 67

follows:

realizes r (P 0 =⇒ (
∧
x. P x =⇒ P (Suc x)) =⇒ P n) ≡∧

p0. realizes p0 (P 0) =⇒ (
∧
pS . realizes pS (

∧
x. P x =⇒ P (Suc x)) =⇒

realizes (r p0 pS) (P n)) ≡∧
p0. realizes p0 (P 0) =⇒ (

∧
pS . (

∧
x. realizes (pS x) (P x =⇒ P (Suc x))) =⇒

realizes (r p0 pS) (P n)) ≡∧
p0. realizes p0 (P 0) =⇒ (

∧
pS . (

∧
x h. realizes h (P x) =⇒ realizes (pS x h) (P (Suc x))) =⇒

realizes (r p0 pS) (P n)) ≡∧
p0. P

R p0 0 =⇒ (
∧
pS . (

∧
x h. PR h x =⇒ PR (pS x h) (Suc x)) =⇒ PR (r p0 pS) n)

We can now give a specification of function corr, which produces a correctness proof for the
program computed by extr. It has a similar structure as function extr and again works by
recursion on the proof. Since a proof may refer to other theorems, we also need a function C
which yields correctness proofs for the programs extracted from these theorems. Its parameters
are the same as those for function E described in §4.2.2.

corr Γ (c{α7→τ} · t) = C(c,RVars c t)({α 7→ τ} ∪ TInst c t) · Rargs(t)

corr Γ h = h

corr Γ (λx :: τ. p) = λx :: τ. corr (Γ, x :: τ) p

corr Γ (λh : P. p) =
{

λh : realizes Null P. corr (Γ, h : P) p if τ = Null

λ(ĥ :: τ) (h : realizes ĥ P). corr (Γ, h : P) p otherwise
where typeof P = τ

corr Γ (p · t) = (corr Γ p) · t

corr Γ (p1 · p2) =
{

corr Γ p1 · corr Γ p2 if τ = Null
corr Γ p1 · extr Γ p2 · corr Γ p2 otherwise

where Γ ` p2 : P
typeof P = τ

where the function

Rargs [] = []

Rargs (tτ , t) =

 λx :: σ. realizes Null (t x), Rargs(t) if τ = σ ⇒ β, β ∈ IP, typeof t = Null
λ(r :: %) (x :: σ). realizes r (t x), Rargs(t) if τ = σ ⇒ β, β ∈ IP, typeof t = % 6= Null
t, Rargs(t) otherwise

is used to compute an instantiation for the parameters of the correctness theorems for programs
corresponding to proof constants. The main correctness property relating functions extr and
corr can now be stated as follows:

Theorem 4.1 (Correctness of program extraction) Let

` C(c, V) : realizes (E(c, V)) (Σ(c))

for all c and V ⊆ PVars(c). Then

R(Γ) ` corr Γ q : realizes Null ϕ if typeof ϕ = Null
R(Γ) ` corr Γ q : realizes (extr Γ q) ϕ otherwise

68 CHAPTER 4. PROGRAM EXTRACTION

for all Γ, q and ϕ with Γ ` q : ϕ, where

R [] = []
R (x :: τ,Γ) = (x :: τ,R(Γ))

R (h : P,Γ) =
{

(h : realizes Null P,R(Γ)) if τ = Null

(ĥ :: τ, h : realizes ĥ P,R(Γ)) otherwise
where typeof P = τ

Function R is used to express that, when producing a correctness proof for q, one may already
assume to have suitable realizers and correctness proofs for each assumption in Γ. Since extr
and corr depend on context information t for theorems, we require that each occurrence of a
theorem (or proof constant) in q is fully applied, i.e. each theorem has as many term arguments
as it has outermost

∧
-quantifiers. In the proof of the correctness theorem, we need the following

substitution property for realizes:

• (realizes r ϕ){x 7→ tτ} = realizes (r{x 7→ tτ}) (ϕ{x 7→ tτ}), if τ 6= σ ⇒ β, where β ∈ IP

• (realizes r ϕ){PR 7→ λx :: σ. realizes Null (ψ x)} = realizes r (ϕ{P 7→ ψ}),
if typeof ϕ = Null

• (realizes r ϕ){PR 7→ λ(r :: %) (x :: σ). realizes r (ψ x)} = realizes r (ϕ{P 7→ ψ}),
if typeof ϕ = % 6= Null

The proof of the correctness theorem, of which we only show some particularly interesting
cases, is by induction on the structure of the proof q.

Case q = h Since h : ϕ ∈ Γ, we have R(Γ) ` h : realizes Null ϕ or R(Γ) ` h : realizes ĥ ϕ, as
required.

Case q = (λh : P. p) Let ϕ = P =⇒ Q. If typeof P = τ 6= Null and typeof Q 6= Null, then
(R(Γ), ĥ :: τ, h : realizes ĥ P) ` corr (Γ, h : P) p : realizes (extr (Γ, h : P) p) Q by
induction hypothesis. Hence

R(Γ) ` λ(ĥ :: τ) (h : realizes ĥ P). corr (Γ, h : P) p :∧
ĥ :: τ. realizes ĥ P =⇒ realizes (extr (Γ, h : P) p) Q

and therefore

R(Γ) ` corr Γ (λh : P. p) : realizes (extr Γ (λh : P. p)) (P =⇒ Q)

as required. The other three subcases are similar.

Case q = (λx :: τ. p) Let ϕ = (
∧
x :: τ. P). If typeof P 6= Null, then R(Γ, x :: τ) ` corr (Γ, x ::

τ) p : realizes (extr (Γ, x :: τ) p) P by induction hypothesis. Hence

R(Γ) ` λx :: τ. corr (Γ, x :: τ) p :
∧
x :: τ. realizes (extr (Γ, x :: τ) p) P

and therefore

R(Γ) ` corr Γ (λx :: τ. p) : realizes (extr Γ (λx :: τ. p)) (
∧
x :: τ. P)

as required. The subcase for typeof P = Null is similar.

4.2. A GENERIC FRAMEWORK FOR PROGRAM EXTRACTION 69

Case q = p1 · p2 Let ϕ = Q where Γ ` p1 : P =⇒ Q and Γ ` p2 : P . If typeof P = τ 6= Null
and typeof Q 6= Null, then R(Γ) ` corr Γ p1 : realizes (extr Γ p1) (P =⇒ Q) and
R(Γ) ` corr Γ p2 : realizes (extr Γ p2) Q by induction hypothesis. The former is equivalent
to R(Γ) ` corr Γ p1 :

∧
x :: τ. realizes x P =⇒ realizes ((extr Γ p1) x) Q. Hence

R(Γ) ` corr Γ p1 · (extr Γ p1) · corr Γ p2 : realizes ((extr Γ p1) (extr Γ p2)) Q

and therefore

R(Γ) ` corr Γ (p1 · p2) : realizes (extr Γ (p1 · p2)) Q

as required. The other subcases are similar.

Case q = p · t Let ϕ = P t where Γ ` p :
∧
x. P x and typeof P 6= Null. By induction

hypothesis, we have R(Γ) ` corr Γ p : realizes (extr Γ p) (
∧
x. P x), which is equivalent

to R(Γ) ` corr Γ p :
∧
x. realizes ((extr Γ p) x) (P x). Hence

R(Γ) ` corr Γ p · t : realizes ((extr Γ p) t) (P t)

due to the substitution property, and therefore

R(Γ) ` corr Γ (p · t) : realizes (extr Γ (p t)) (P t)

as required. The subcase for typeof P = Null is similar.

Case q = c{α 7→τ} · t Let Σ(c) =
∧
x. ψ and ϕ = ψ{α 7→ τ , x 7→ t}. Hence the claim

R(Γ) ` C(c,RVars c t)({α 7→ τ} ∪ TInst c t) · Rargs(t) :
realizes (E(c,RVars c t)({α 7→ τ} ∪ TInst c t) (Eargs(t))) (ψ{α 7→ τ , x 7→ t})

follows from the assumption about C and E together with the substitution property.

4.2.4 Limitations

It is important to note that the type extraction scheme outlined in §4.2.1 is not applicable to all
formulae of higher order logic in an unrestricted way. We briefly discuss two restrictions which
have to be taken into account when writing specifications intended for program extraction.

Impredicativity Predicate variables in a specification become type variables in the type of
the program extracted from the proof of the specification. Consequently, quantification over
predicate variables in the specification corresponds to quantification over type variables in the
type of the extracted program. Isabelle/Pure offers schematic polymorphism à la Hindley and
Milner, where type variables are considered to be implicitly quantified at the outermost level,
but there is no way to explicitly abstract or quantify over type variables. Thus, in order for the
extracted program to be typable in Isabelle/Pure, predicate variables in specifications may only
be quantified at the outermost level, too. This rules out specifications involving unrestricted
impredicative quantification, such as in

wf R ≡ (
∧
P. (

∧
x. (
∧
y. R y x =⇒ P y) =⇒ P x) =⇒ (

∧
x. P x))

70 CHAPTER 4. PROGRAM EXTRACTION

which characterizes the well-foundedness of the relation R. To see why this is problematic,
imagine a proof of a theorem wf R =⇒ ϕ, in which the assumption wf R is used to establish
several different computationally relevant propositions by well-founded induction. Hence, in
the function of type typeof (wf R)⇒ typeof ϕ extracted from this proof, the type variable αP

corresponding to the quantified predicate variable P in wf R would have to be instantiated to
several different types, which is impossible with Hindley-Milner polymorphism.
Fortunately, impredicative specifications can often be rephrased using inductive definitions,
which have a natural computational interpretation. For example, instead of the predicate wf
given above, one could as well use an inductive characterization of the accessible part of the
relation R (§4.3.5.3).
It has been shown by Paulin-Mohring [85, 86] that programs extracted from proofs in the
pure Calculus of Constructions [28], which is impredicative, too, are only typable in systems
that are at least as expressive as Fω. This also makes it difficult to use standard functional
programming languages such as ML as a target language for program extraction from proofs
in the pure Calculus of Constructions. According to Werner [121, §1.6.1], this observation was
one of the main reasons for the introduction of inductive definitions as a primitive concept into
the Calculus of Constructions.

Strong eliminations Some object logics allow for the definition of predicates by recursion
over some inductive datatype. In type theory jargon, such a construction is referred to as a
strong elimination [87, §3.2.2]. For example, in Isabelle/HOL we can write

datatype dt = C1 · · · | C2 · · ·

consts p :: dt ⇒ bool

primrec
p (C1 · · ·) = ϕ
p (C2 · · ·) = ψ

This is problematic if the formula p x is supposed to have a computational content, since
the type extracted from it depends on the value of x, which cannot be expressed in a target
language without dependent types.

4.3 Program extraction for Isabelle/HOL

So far, we have presented a generic framework for program extraction. We will now show how to
instantiate it to a specific object logic, namely Isabelle/HOL. This is done by giving additional
clauses for the functions typeof, realizes, E and C. For the security conscious user, it may be
reassuring to know that the introduction of new clauses cannot give rise to unsound theorems.
More precisely, it is impossible to produce “wrong” correctness theorems falsely claiming that
a program satisfies its specification. This is due to the architecture of the program extraction
framework outlined in §4.1, which always requires correctness proofs to be verified by the proof
checker.

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 71

4.3.1 Type extraction

First of all, we need to assign types to logical formulae of HOL, i.e. add new equations char-
acterizing typeof.

typeof (Tr P) ≡ typeof P

(
∧
x. typeof (P x) ≡ Null) =⇒ typeof (∃x :: α. P x) ≡ α

(
∧
x. typeof (P x) ≡ τ) =⇒ typeof (∃x :: α. P x) ≡ (α× τ)

typeof P ≡ Null =⇒ typeof Q ≡ Null =⇒ typeof (P ∨Q) ≡ sumbool

typeof P ≡ Null =⇒ typeof Q ≡ τ =⇒ typeof (P ∨Q) ≡ τ option

typeof P ≡ σ =⇒ typeof Q ≡ Null =⇒ typeof (P ∨Q) ≡ σ option

typeof P ≡ σ =⇒ typeof Q ≡ τ =⇒ typeof (P ∨Q) ≡ (σ + τ)

typeof A ≡ Null if A atomic, i.e. A ∈ {x = y, True, False, . . .}

We only show the equations for ∃ and ∨. The equations for ∧ are quite similar and those
for ∀ and −→ look almost the same as their meta level counterparts introduced in 4.2.1.
The first equation states that typeof can simply be pushed through the coercion function
Tr. The computational content of ∃x. P x is either a pair consisting of the witness and the
computational content of P x, if there is one, otherwise it is just the witness. If both P and
Q have a computational content, then the computational content of P ∨Q is a disjoint sum

datatype (α+ β) = Inl α | Inr β

If just one of P and Q has a computational content, the result is of type

datatype α option = None | Some α

i.e. a program satisfying this specification will either return a proper value or signal an error. If
neither P nor Q has a computational content, the result is just a boolean value, i.e. an element
of type

datatype sumbool = Left | Right

4.3.2 Realizability

In order to reason about correctness of programs extracted from HOL proofs, we also need to
add equations for realizes.

realizes t (Tr P) ≡ Tr (realizes t P)

(
∧
x. typeof (P x) ≡ Null) =⇒ realizes t (∃x. P x) ≡ realizes Null (P t)

realizes t (∃x. P x) ≡ realizes (snd t) (P (fst t))

typeof P ≡ Null =⇒ typeof Q ≡ Null =⇒
realizes t (P ∨Q)) ≡ (case t of Left ⇒ realizes Null P | Right ⇒ realizes Null Q)

typeof P ≡ Null =⇒
realizes t (P ∨Q) ≡ (case t of None ⇒ realizes Null P | Some q ⇒ realizes q Q)

typeof Q ≡ Null =⇒
realizes t (P ∨Q) ≡ (case t of None ⇒ realizes Null Q | Some p⇒ realizes p P)

realizes t (P ∨Q) ≡ (case t of Inl p⇒ realizes p P | Inr q ⇒ realizes q Q)

72 CHAPTER 4. PROGRAM EXTRACTION

Again, the equations for ∧ are similar and those for ∀ and −→ look almost the same as their
meta level counterparts from 4.2.3. For atomic predicates A, we set realizes Null A = A. The
above characterization of realizes can be applied to ¬ as follows: Let typeof P = τ and τ 6= Null.
Then

realizes Null (¬P)
= realizes Null (P −→ False) {definition of ¬}
= ∀x :: τ. realizes x P −→ realizes Null False {definition of realizes}
= ∀x :: τ. realizes x P −→ False {definition of realizes}
= ∀x :: τ. ¬realizes x P {definition of ¬}

If τ = Null, then realizes Null (¬P) is simply ¬realizes Null P . Note that for P without
computational content, we do not necessarily have realizes Null P = P , but only if P contains
neither ∃ nor ∨. For example, realizes Null (¬(∃x. x = c)) = ∀x. ¬x = c.

4.3.3 Realizing terms

What remains to do is to specify how the functions E and C introduced in 4.2.2 and 4.2.3 act on
theorems of Isabelle/HOL. This means that for each basic inference rule of the logic, we have
to give a realizing term and a correctness proof. As before, we only treat some particularly
interesting cases. Figure 4.2 shows the realizing terms corresponding to some of the inference
rules of HOL. As mentioned in §4.2.1, there may be more than one realizer for each inference
rule. The correctness of these programs, i.e. the fact that they realize the corresponding
inference rules, follows quite easily from the basic properties of the functions and datatypes
involved. For example, the correctness of the programs extracted from rule disjE

P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

is expressed by the theorems1

case x of Inl p ⇒ PR p | Inr q ⇒ QR q =⇒
(
∧

p. PR p =⇒ RR (f p)) =⇒
(
∧

q . QR q =⇒ RR (g q)) =⇒ RR (case x of Inl p ⇒ f p | Inr q ⇒ g q)

case x of None ⇒ PR | Some q ⇒ QR q =⇒
(PR =⇒ RR f) =⇒
(
∧

q . QR q =⇒ RR (g q)) =⇒ RR (case x of None ⇒ f | Some q ⇒ g q)

case x of Left ⇒ PR | Right ⇒ QR =⇒
(PR =⇒ RR f) =⇒ (QR =⇒ RR g) =⇒ RR (case x of Left ⇒ f | Right ⇒ g)

which correspond to the cases where the set of computationally relevant variables is {P , Q ,
R}, {Q , R} or {R}, respectively. The above theorems can be proved by case analysis on x
followed by an application of the rewrite rules for the case combinators involved. Similarly,
the correctness theorem for the program extracted from rule exI

P x =⇒ ∃ x . P x

for the case where the variable P is computationally relevant is expressed by
1Note that we actually show the Harrop normal form of the correctness statements, i.e. we write e.g. P x

=⇒ Q x y =⇒ R x y instead of
V

x . P x =⇒ (
V

y . Q x y =⇒ R x y).

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 73

name V E(name, V)
{P , Q} λpq . pqimpI {Q} λq . q
{P , Q} λpq . pqmp {Q} λq . q

allI {P} λp. p
spec {P} λx p. p x

{P} λx y . (x , y)exI {} λx . x
{P , Q} λp pq . case p of (x , y) ⇒ pq x yexE {Q} λx pq . pq x
{P , Q} λx p. (x , p)

conjI {P} λp. p
{Q} λq . q
{P , Q} fstconjunct1 {P} λp. p
{P , Q} sndconjunct2 {Q} λp. p
{P , Q} Inl
{P} SomedisjI1 {Q} None
{} Left
{P , Q} Inr
{P} NonedisjI2 {Q} Some
{} Right
{P , Q , R} λpq pr qr . case pq of Inl p ⇒ pr p | Inr q ⇒ qr q
{Q , R} λpq pr qr . case pq of None ⇒ pr | Some q ⇒ qr qdisjE {P , R} λpq pr qr . case pq of None ⇒ qr | Some p ⇒ pr p
{R} λpq pr qr . case pq of Left ⇒ pr | Right ⇒ qr

FalseE {P} arbitrary
subst {P} λs t ps. ps

Figure 4.2: Realizers for basic inference rules of Isabelle/HOL

PR y x =⇒ PR (snd (x , y)) (fst (x , y))

where x is the existential witness and y is the computational content of P x. For the program
corresponding to the existential elimination rule exE

∃ x . P x =⇒ (
∧

x . P x =⇒ Q) =⇒ Q

the correctness theorem is

PR (snd p) (fst p) =⇒
(
∧

x y . PR y x =⇒ QR (f x y)) =⇒ QR (case p of (x , y) ⇒ f x y)

Note that in order to avoid unnecessary duplication of the term p in the extracted program,
the computational content of exE is expressed using the case operator for pairs instead of fst
and snd. The program corresponding to the elimination rule FalseE

False =⇒ P

74 CHAPTER 4. PROGRAM EXTRACTION

may look a bit peculiar at first sight. However, since we may prove anything in a context
containing the assumption False, we may in particular prove that any program realizes the
specification P, which is why we take the default constant arbitrary as a realizer for FalseE.
Finally, we turn to the computational content of the substitution rule

s = t =⇒ P s =⇒ P t

Intuitively, applying a substitution should not change the computational content. For example,
it should be possible to extract the same program from a proof of ∃ y . P (x + 0) y as one can
extract from a proof of ∃ y . P x y. Therefore, the substitution rule is realized by the identity
function. To see why this is correct, recall that

realizes (λps. ps) (s = t =⇒ P s =⇒ P t)
= realizes Null (s = t) =⇒ realizes (λps. ps) (P s =⇒ P t)
= realizes Null (s = t) =⇒ (

∧
r . realizes r (P s) =⇒ realizes r (P t))

= s = t =⇒ (
∧

r . PR r s =⇒ PR r t)

i.e. the correctness statement is again an instance of the substitution rule itself. However,
when using the substitution rule in proofs from which one wants to extract programs, some
care is required: Since in HOL, the type bool is a type like any other, the substitution rule
may also be used if s and t are of type bool. Since s = t is identified with (s −→ t) ∧ (t −→
s) for s and t of type bool, equality on booleans actually has a computational content itself.
For example, a proof of (A ∧ B) = (B ∧ A) would correspond to the program

(λab. (snd ab, fst ab), λba. (snd ba, fst ba))

Moreover, applying a boolean substitution would change the computational content: A sub-
stitution of B ∧ A for A ∧ B in the context λX . X ∧ C would correspond to the program

λabc. ((snd (fst abc), fst (fst abc)), snd abc)

In particular, finding out the program corresponding to such a substitution would also require
a rather cumbersome analysis of the substitution context (denoted by P in the above rule) that
would not fit nicely into the program extraction framework presented in §4.2. We therefore
stipulate that proofs to which the functions extr and corr are applied, do not contain any
boolean substitutions. These have to be replaced by suitable congruence rules for logical
operators in a preprocessing step prior to the invocation of the extraction function.

4.3.4 Realizers for inductive datatypes

4.3.4.1 Introduction

So far we have only covered the computational content of basic inference rules. However, just
the basic inference rules alone are often insufficient for practical applications. An important
proof principle which is frequently used in realistic proofs is structural induction on datatypes.
This section is concerned with a definition of the computational content of such proofs. Al-
though we will review the basic properties of datatypes, as far as they are relevant for program
extraction, we will not discuss the actual construction of such datatypes in HOL by means of
fixpoint operators. The interested reader may find the details e.g. in the articles by Paulson
[93] as well as Berghofer and Wenzel [21].

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 75

As an introductory example, consider the datatype

datatype nat = 0 | Suc nat

of natural numbers. The induction principle for this datatype is

P 0 =⇒ (
∧

n. P n =⇒ P (Suc n)) =⇒ P n

According to the definition of type extraction given in §4.2.1, a program corresponding to this
rule must have the type αP ⇒ (nat ⇒ αP ⇒ αP) ⇒ αP , which is the type of the recursion
combinator

nat-rec f g 0 = f
nat-rec f g (Suc nat) = g nat (nat-rec f g nat)

To see that nat-rec is indeed a correct realizer for the induction rule on natural numbers, note
that

realizes (λf g . nat-rec f g n) (P 0 =⇒ (
∧

n. P n =⇒ P (Suc n)) =⇒ P n)
=

∧
f . PR f 0 =⇒ (

∧
g . (
∧

n x . PR x n =⇒ PR (g n x) (Suc n)) =⇒ PR (nat-rec f g n) n)

as has already been mentioned in §4.2.3. This correctness statement can easily be proved as
follows. Assume we have suitable realizers f and g for the induction basis and induction step,
respectively, i.e. the corresponding correctness statements are PR f 0 and

∧
n x . PR x n =⇒

PR (g n x) (Suc n). By induction on n, we then show that PR (nat-rec f g n) n. For the
induction basis, we need to show PR (nat-rec f g 0) 0, which easily follows from the correctness
statement for f, together with the characteristic equations for nat-rec. For the induction step,
we may already assume that P (nat-rec f g n) n holds for some n. Because of the correctness
statement for g, this implies PR (g n (nat-rec f g n)) (Suc n) and therefore PR (nat-rec f g
(Suc n)) (Suc n), again due to the characteristic equations for nat-rec, which concludes the
proof. This proof can easily be expressed in Isabelle/Isar as follows:

theorem nat-ind-correctness:
assumes r0 : PR f 0
and rSuc:

∧
n x . PR x n =⇒ PR (g n x) (Suc n)

shows PR (nat-rec f g n) n
proof (induct n)
from r0 show PR (nat-rec f g 0) 0 by simp

next
fix n assume PR (nat-rec f g n) n
hence PR (g n (nat-rec f g n)) (Suc n) by (rule rSuc)
thus PR (nat-rec f g (Suc n)) (Suc n) by simp

qed

Similarly, the program corresponding to the weaker case analysis theorem

(y = 0 =⇒ P) =⇒ (
∧

nat . y = Suc nat =⇒ P) =⇒ P

must have type αP ⇒ (nat ⇒ αP)⇒ αP , which is the type of the case combinator

nat-case f g 0 = f
nat-case f g (Suc nat) = g nat

76 CHAPTER 4. PROGRAM EXTRACTION

By an argument similar to the one used for the induction theorem above, we can show that
nat-case is a suitable realizer for the case analysis theorem, i.e.

realizes (λf g . nat-case f g n) ((n = 0 =⇒ P) =⇒ (
∧

n ′. n = Suc n ′ =⇒ P) =⇒ P)
=

∧
f . (n = 0 =⇒ PR f) =⇒

(
∧

g . (
∧

n ′. n = Suc n ′ =⇒ PR (g n ′)) =⇒ PR (nat-case f g n))

This correctness statement is easily proved by a case analysis on n, which can be phrased in
Isabelle/Isar as follows
theorem nat-case-correctness:
assumes r0 : n = 0 =⇒ PR f
and rSuc:

∧
n ′. n = Suc n ′ =⇒ PR (g n ′)

shows PR (nat-case f g n)
proof (cases n)
assume n = 0
thus PR (nat-case f g n) by simp (rule r0)

next
fix n ′ assume n = Suc n ′

thus PR (nat-case f g n) by simp (rule rSuc)
qed

4.3.4.2 General scheme

We will now generalize what we have just explained with an example. Consider the general
case of a datatype definition

datatype α t1 = C1
1 τ

1
1,1 . . . τ1

1,m1
1
| . . . | C1

k1
τ1
k1,1 . . . τ1

k1,m1
k1

...
and α tn = Cn

1 τn
1,1 . . . τn

1,mn
1
| . . . | Cn

kn
τn
kn,1 . . . τn

kn,mn
kn

We call a type argument τ j
i,i′ recursive, if it contains any of the newly defined type constructors

t1, . . . , tn, otherwise nonrecursive. We denote by rj
i,1, . . . , r

j

i,lji
the positions of the recursive

arguments of the i-th constructor of the j-th datatype. A recursive type argument τ j

i,rj
i,l

must

have the form σj
i,l ⇒ α t

sj
i,l

, where 1 ≤ l ≤ lji and σj
i,l does not contain any of the newly defined

type constructors. This means that t1, . . . , tn may only occur strictly positive in τ j
i,i′ .

Induction The rule for simultaneous structural induction on the types α t1, . . ., α tn has the
form

I1
1 =⇒ · · · =⇒ I1

k1
=⇒ · · · =⇒ In

1 =⇒ · · · =⇒ In
kn

=⇒ P1 x1 ∧ . . . ∧ Pn xn

where

Ij
i =

∧
xj

i .
(∧

zj
i,1. Psj

i,1

(
xrj

i,1
zj
i,1

))
=⇒ · · · =⇒

(∧
zj

i,lji
. Psj

i,l
j
i

(
xrj

i,l
j
i

zj

i,lji

))
=⇒ Pj

(
Cj

i x
j
i

)
xj

i = x1 . . . xmj
i

Case analysis The rule for case analysis on the type α tj has the form(∧
xj

1. y = Cj
1 x

j
1 =⇒ P

)
=⇒ · · · =⇒

(∧
xj

kj
. y = Cj

kj
xj

kj
=⇒ P

)
=⇒ P

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 77

Recursion The combinators t1-rec, . . ., tn-rec for mutual recursion on the types α t1, . . ., α tn
are characterized by the equations

tj-rec f1
1 . . . f

n
kn

(
Cj

i x
j
i

)
= f j

i x
j
i p1 . . . plji

where

pl = λzj
i,l. tsj

i,l
-rec f1

1 . . . f
n
kn

(
xrj

i,l
zj
i,l

)
Realizer for induction rule To simplify the presentation, we assume that all of the predicates
P1, . . ., Pn have a computational content. Then, the above simultaneous induction rule is
realized by the term

λf1
1 . . . f

n
kn
.
(
t1-rec f1

1 . . . f
n
kn
x1, . . . , tn-rec f1

1 . . . f
n
kn
xn

)
The fact that this term is a correct realizer can be expressed as follows

R1
1 f

1
1 =⇒ · · · =⇒ R1

k1
f1

k1
=⇒ · · · =⇒ Rn

1 f
n
1 =⇒ · · · =⇒ Rn

kn
fn

kn
=⇒

PR
1

(
fst

(
· · ·
(
fst

(
t1-rec f1

1 . . . f
n
kn
x1, . . . , tn-rec f1

1 . . . f
n
kn
xn

))
· · ·
))

x1 ∧ . . .∧
PR

n

(
snd

(
· · ·
(
snd

(
t1-rec f1

1 . . . f
n
kn
x1, . . . , tn-rec f1

1 . . . f
n
kn
xn

))
· · ·
))

xn

where

Rj
i f =

∧
xj

i p1.

(∧
zj
i,1. P

R
sj

i,1

(
p1 z

j
i,1

) (
xrj

i,1
zj
i,1

))
=⇒

(
· · · =⇒(∧

plji
.

(∧
zj

i,lji
. PR

sj

i,l
j
i

(
plji

zj

i,lji

) (
xri

j,l
j
i

zj

i,lji

))
=⇒ PR

j

(
f xj

i p
j
i

) (
Cj

i x
j
i

))
· · ·

)
pj

i = p1 . . . plji

This correctness theorem is proved by simultaneous induction on x1 . . . xn. Assume we have
R1

1 f
1
1 , . . ., Rn

kn
fn

kn
. For constructor Cj

i , we obtain the induction hypotheses

∧
zj
i,1. P

R
sj

i,1

(
tsj

i,1
-rec f1

1 . . . f
n
kn

(
xrj

i,1
zj
i,1

)) (
xrj

i,1
zj
i,1

)
...∧

zj

i,lji
. PR

sj

i,l
j
i

(
tsj

i,l
j
i

-rec f1
1 . . . f

n
kn

(
xrj

i,l
j
i

zj

i,lji

)) (
xrj

i,l
j
i

zj

i,lji

)

from which we have to show

PR
j

(
tj-rec f1

1 . . . f
n
kn

(
Cj

i x
j
i

)) (
Cj

i x
j
i

)
for all xj

i . This is equivalent to

PR
j

(
f j

i x
j
i p1 . . . plji

) (
Cj

i x
j
i

)
where

pl = λzj
i,l. tsj

i,l
-rec f1

1 . . . f
n
kn

(
xrj

i,l
zj
i,l

)
which can easily be deduced from the induction hypotheses using Rj

i f
j
i .

78 CHAPTER 4. PROGRAM EXTRACTION

Realizer for case analysis rule The rule for case analysis on the type α tj is realized by the
term

λf1 . . . fkj . tj-case f1 . . . fkj y

The correctness of this realizer is expressed by the statement

Rj
1 f1 y =⇒ · · · =⇒ Rj

kj
fkj y =⇒ PR (tj-case f1 . . . fkj y)

where

Rj
i f y =

(∧
xj

i . y = Cj
i x

j
i =⇒ PR

(
f xj

i

))
This can be proved by case analysis on y. Assume we have Rj

1 f1 y, . . ., Rj
kj
fkj

y. For

constructor Cj
i , we have to show

PR
(
tj-case f1 . . . fkj

(
Cj

i x
j
i

))
for all xj

i . This is equivalent to

PR
(
fi x

j
i

)
which directly follows from Rj

i fi y.

4.3.5 Realizers for inductive predicates

4.3.5.1 Introduction

The concept of an inductive predicate is quite similar to that of an inductive datatype: While
a datatype is characterized by a list of constructors together with their types, an inductive
predicate is characterized by a list of introduction rules.
As an example, consider the definition of the transitive closure of a relation r, which is given
by the following introduction rules:

rtrancl-refl : (a, a) ∈ r∗

rtrancl-into-rtrancl : (a, b) ∈ r∗ =⇒ (b, c) ∈ r =⇒ (a, c) ∈ r∗

In order to prove that a property P x y holds for all x and y with (x , y) ∈ r∗, one often
performs induction on the derivation of (x , y) ∈ r∗, which is sometimes referred to as rule
induction. This proof rule can be expressed as follows:

(x , y) ∈ r∗ =⇒
(
∧

a. P a a) =⇒ (
∧

a b c. (a, b) ∈ r∗ =⇒ P a b =⇒ (b, c) ∈ r =⇒ P a c) =⇒ P x y

One may now ask which program should correspond to such a proof rule. In §4.3.4, we have
seen that the program corresponding to a proof by structural induction on a datatype is a
function defined by recursion on the very same datatype. Analogously, the program extracted
from a proof by induction on the derivation of an inductive predicate should be a recursive
function, too, where the recursion runs over a datatype which encodes the derivation. This
datatype can be derived from the introduction rules in a canonical way: Each introduction

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 79

rule corresponds to a constructor, whose type can be derived from the proposition of the
respective introduction rule using the type extraction mechanism introduced in §4.2.1. We will
illustrate this idea using the transitive closure predicate described above. When defining a
datatype representing a derivation of (x , y) ∈ r∗, we need to distinguish whether or not r
has a computational content. If it has no computational content, the corresponding datatype
has just one type parameter α, i.e. the element type of the relation, otherwise it has one more
parameter αr, which corresponds to the type representing a derivation of (x , y) ∈ r. More
formally,

(
∧
x y. typeof ((x, y) ∈ r) ≡ Null) =⇒ typeof ((x :: α, y) ∈ r∗) ≡ α rtranclT

(
∧
x y. typeof ((x, y) ∈ r) ≡ αr) =⇒ typeof ((x :: α, y) ∈ r∗) ≡ (αr, α) rtranclT -r

Using the above equations for typeof, we can deduce that the types of the constructors corre-
sponding to the introduction rules are

rtrancl -refl :: α⇒ α rtranclT
rtrancl -into-rtrancl :: α⇒ α⇒ α⇒ α rtranclT ⇒ α rtranclT

for the case where r has no computational content, and

rtrancl -refl :: α⇒ (αr, α) rtranclT -r
rtrancl -into-rtrancl :: α⇒ α⇒ α⇒ (αr, α) rtranclT -r ⇒ αr ⇒ (αr, α) rtranclT -r

for the case where r has a computational content. Note that the variables a, b and c occurring
in the introduction rules are assumed to be bound by implicit universal quantifiers, which is
why the above constructor functions expect one and three arguments of type α, respectively.
The datatypes α rtranclT and (αr, α) rtranclT -r can therefore be defined as

datatype α rtranclT = rtrancl -refl α
| rtrancl -into-rtrancl α α α (α rtranclT)

and

datatype (αr, α) rtranclT -r = rtrancl -refl α
| rtrancl -into-rtrancl α α α ((αr, α) rtranclT -r) αr

We also need to define a suitable realizability predicate, expressing that an element of the
above datatype represents a derivation of (x , y) ∈ r∗. Like the predicate r∗, this realizability
predicate will be defined inductively. While r∗ is a relation with two arguments, the realiz-
ability predicate will take one more argument, which is the realizing term. Again, we need
to distinguish whether or not r has a computational content. For each of the two datatypes
defined above, there will be a specific realizability predicate. More formally,

(
∧
x y. typeof ((x, y) ∈ r) ≡ Null) =⇒

realizes p ((x, y) ∈ r∗) ≡ (p, x, y) ∈ rtranclR (λt. realizes Null (t ∈ r))

(
∧
x y. typeof ((x, y) ∈ r) ≡ αr) =⇒

realizes p ((x, y) ∈ r∗) ≡ (p, x, y) ∈ rtranclR-r (λq t. realizes q (t ∈ r))

Using the above equations for realizes together with the formalism introduced in §4.2.3, we
can turn the introduction rules rtrancl-refl and rtrancl-into-rtrancl into rules expressing that
the constructors of the datatypes rtranclT and rtranclT -r realize the respective introduction
rules. These rules will serve as introduction rules for the inductive definition of the realizability
predicates rtranctR and rtranclR-r, i.e. the realizability predicates will be defined to be the

80 CHAPTER 4. PROGRAM EXTRACTION

least2 predicates closed under the rules presented below. If r has a computational content, we
have

realizes rtranclT-r .rtrancl-refl (
∧

a. (a, a) ∈ r∗)
=

∧
a. realizes (rtranclT-r .rtrancl-refl a) ((a, a) ∈ r∗)

=
∧

a. (rtranclT-r .rtrancl-refl a, a, a) ∈ rtranclR-r (λp t . realizes p (t ∈ r))
=

∧
a. (rtranclT-r .rtrancl-refl a, a, a) ∈ rtranclR-r rR

and

realizes rtranclT-r .rtrancl-into-rtrancl
(
∧

a b c. (a, b) ∈ r∗ =⇒ (b, c) ∈ r =⇒ (a, c) ∈ r∗)
=

∧
a b c p.
realizes p ((a, b) ∈ r∗) =⇒
(
∧

q . realizes q ((b, c) ∈ r) =⇒
realizes (rtranclT-r .rtrancl-into-rtrancl a b c p q) ((a, c) ∈ r∗))

=
∧

a b c p.
(p, a, b) ∈ rtranclR-r (λp t . realizes p (t ∈ r)) =⇒
(
∧

q . realizes q ((b, c) ∈ r) =⇒
(rtranclT-r .rtrancl-into-rtrancl a b c p q , a, c)
∈ rtranclR-r (λp t . realizes p (t ∈ r)))

=
∧

a b c p.
(p, a, b) ∈ rtranclR-r rR =⇒
(
∧

q . rR q (b, c) =⇒
(rtranclT-r .rtrancl-into-rtrancl a b c p q , a, c) ∈ rtranclR-r rR)

Similarly, for r without computational content, we obtain the rules

(rtranclT .rtrancl-refl a, a, a) ∈ rtranclR rR

(p, a, b) ∈ rtranclR rR =⇒
rR (b, c) =⇒ (rtranclT .rtrancl-into-rtrancl a b c p, a, c) ∈ rtranclR rR

Using this definition of realizability, we can now show that the rule for induction on the
derivation of (x , y) ∈ r∗ is realized by the recursion combinators for the datatypes rtranclT
and rtranclT-r. For simplicity, we consider the case where r has no computational content.
Assume we have a realizer p for (x , y) ∈ r∗, i.e. (p, x , y) ∈ rtranclR rR. Then the fact that
the recursion combinator

rtranclT-rec f g (rtranclT .rtrancl-refl a) = f a
rtranclT-rec f g (rtranclT .rtrancl-into-rtrancl a b c p) =
g a b c p (rtranclT-rec f g p)

realizes the induction rule

(x , y) ∈ r∗ =⇒
(
∧

a. P a a) =⇒ (
∧

a b c. (a, b) ∈ r∗ =⇒ P a b =⇒ (b, c) ∈ r =⇒ P a c) =⇒ P x y

can be proved by induction on the derivation of (p, x , y) ∈ rtranclR rR, which is expressed
by the rule

(p, x , y) ∈ rtranclR rR =⇒
(
∧

a. P (rtranclT .rtrancl-refl a) a a) =⇒
(
∧

a b c p.
(p, a, b) ∈ rtranclR rR =⇒
P p a b =⇒ rR (b, c) =⇒ P (rtranclT .rtrancl-into-rtrancl a b c p) a c) =⇒

P p x y
2wrt. set inclusion

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 81

The proof can be formalized in Isabelle as follows:

theorem induct-correctness:
assumes R: (p, x , y) ∈ rtranclR rR

— p is a realizer for (x , y) ∈ r∗

and f :
∧

a. PR (f a) a a
— f is a realizer for the induction basis

and g :
∧

a b c p q . (p, a, b) ∈ rtranclR rR =⇒ PR q a b =⇒
rR (b, c) =⇒ PR (g a b c p q) a c
— g is a realizer for the induction step

shows PR (rtranclT-rec f g p) x y using R
proof induct — induction on the derivation of R
fix a
show PR (rtranclT-rec f g (rtranclT .rtrancl-refl a)) a a by simp (rule f)

next
fix a b c p
assume (p, a, b) ∈ rtranclR rR and PR (rtranclT-rec f g p) a b and rR (b, c)
show PR (rtranclT-rec f g (rtranclT .rtrancl-into-rtrancl a b c p)) a c
by simp (rule g)

qed

As in the case of inductive datatypes, there is also a weaker case analysis rule

z ∈ r∗ =⇒
(
∧

a. z = (a, a) =⇒ P) =⇒ (
∧

a b c. z = (a, c) =⇒ (a, b) ∈ r∗ =⇒ (b, c) ∈ r =⇒ P) =⇒ P

for the predicate rtrancl, which is realized by the case analysis combinator

rtranclT-case f g (rtranclT .rtrancl-refl a) = f a
rtranclT-case f g (rtranclT .rtrancl-into-rtrancl a b c p) = g a b c p

for the datatype rtranclT. The correctness of this realizer is expressed by the rule

(p, z) ∈ rtranclR rR =⇒
(
∧

a. z = (a, a) =⇒ PR (f a)) =⇒
(
∧

a b c. z = (a, c) =⇒ (
∧

x . (x , a, b) ∈ rtranclR rR =⇒ rR (b, c) =⇒ PR (g a b c x))) =⇒
PR (rtranclT-case f g p)

It can be proved by case analysis on the derivation of (p, z) ∈ rtranclR rR, which is expressed
by the rule3

z ∈ rtranclR rR =⇒
(
∧

a. z = (rtranclT .rtrancl-refl a, a, a) =⇒ P) =⇒
(
∧

a b c p.
z = (rtranclT .rtrancl-into-rtrancl a b c p, a, c) =⇒
(p, a, b) ∈ rtranclR rR =⇒ rR (b, c) =⇒ P) =⇒

P

The correctness theorem can be proved in Isabelle as follows:

3Note that (a, b, c) just abbreviates (a, (b, c))

82 CHAPTER 4. PROGRAM EXTRACTION

lemma elim-correctness:
assumes R: (p, z) ∈ rtranclR rR

— p is a realizer for z ∈ r∗

and f :
∧

a. z = (a, a) =⇒ PR (f a)
— f is a realizer for the base case

and g :
∧

a b c q . z = (a, c) =⇒ (q , a, b) ∈ rtranclR rR =⇒ rR (b, c) =⇒ PR (g a b c q)
— g is a realizer for the step case

shows PR (rtranclT-case f g p) using R
proof cases — case analysis on the derivation of R
fix a
assume (p, z) = (rtranclT .rtrancl-refl a, (a, a))
thus PR (rtranclT-case f g p) by simp (rule f , rules)

next
fix a b c q
assume (p, z) = (rtranclT .rtrancl-into-rtrancl a b c q , (a, c))
and (q , a, b) ∈ rtranclR rR and rR (b, c)
thus PR (rtranclT-case f g p) by simp (rule g , rules)

qed

4.3.5.2 General scheme

We now come to a general treatment of realizability for inductive predicates. Consider the
general case of an inductive definition

inductive S1 a . . . Sn a

I1
1 :
∧
x1

1. ϕ
1
1,1 =⇒ · · · =⇒ ϕ1

1,m1
1

=⇒
(
t11

)
∈ S1 a

...
I1
k1

:
∧
x1

k1
. ϕ1

k1,1 =⇒ · · · =⇒ ϕ1
k1,m1

k1
=⇒

(
t1k1

)
∈ S1 a

...
In
1 :
∧
xn

1 . ϕ
n
1,1 =⇒ · · · =⇒ ϕn

1,mn
1

=⇒
(
tn1
)
∈ Sn a

...
In
kn

:
∧
xn

kn
. ϕn

kn,1 =⇒ · · · =⇒ ϕn
kn,mn

kn

=⇒
(
tnkn

)
∈ Sn a

All inductive predicates have a common list of parameters a which remain fixed throughout the
inductive definition. In an expression of the form (x) ∈ Sj a, we call a the fixed arguments and
x the flexible arguments of predicate Sj . By analogy to the case of inductive datatypes, we call
a premise ϕj

i,i′ of an introduction rule recursive, if it contains any of the newly defined inductive

predicates S1, . . . , Sn, otherwise nonrecursive. We denote by rj
i,1, . . . , r

j

i,lji
the positions of the

recursive premises of the i-th introduction rule of the j-th predicate. A recursive premise ϕj

i,rj
i,l

must have the form∧
zj
i,l. ψ

j
i,l =⇒

(
uj

i,l

)
∈ Ssj

i,l
a

where 1 ≤ l ≤ lji and ψj
i,l does not contain any of the newly defined inductive predicates. This

means that S1, . . . , Sn may only occur strictly positive in ϕj
i,i′ . It should be noted that the

general theory of inductive definitions in HOL even admits inductive predicates which are just
weakly positive. For example, a predicate S with an introduction rule of the form

((t ∈ S =⇒ · · ·) =⇒ · · ·) =⇒ u ∈ S

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 83

would also be legal in HOL. However, it turns out that weakly positive inductive definitions are
unsuitable for the purpose of program extraction: Since weakly positive recursive occurrences
of types are not allowed in HOL datatype definitions [21, §4.2], it will be impossible to define
a datatype representing a derivation of S in HOL.

Induction The rule for simultaneous induction on the derivations of S1, . . ., Sn has the form

I1
1 =⇒ · · · =⇒ I1

k1
=⇒ · · · =⇒ In

1 =⇒ · · · =⇒ In
kn

=⇒
(x1 ∈ S1 a −→ P1 x1) ∧ . . . ∧ (xn ∈ Sn a −→ Pn xn)

where

Ij
i =

∧
xj

i . ϕ
j
i,1 =⇒ · · · =⇒ ϕj

i,mj
i

=⇒(∧
zj
i,1. ψ

j
i,1 =⇒ Psj

i,1
uj

i,1

)
=⇒ · · · =⇒

(∧
zj

i,lji
. ψj

i,lji
=⇒ Psj

i,l
j
i

uj

i,lji

)
=⇒ Pj t

j
i

Case analysis The rule for case analysis on the derivation of Sj has the form

(z) ∈ Sj a =⇒ Ij
1 =⇒ · · · =⇒ Ij

kj
=⇒ P

where

Ij
i z =

∧
xj

i . (z) =
(
tji

)
=⇒ ϕj

i,1 =⇒ · · · =⇒ ϕj

i,mj
i

=⇒ P

Computational content of derivations To simplify the presentation, assume that all premises
of the introduction rules have a computational content. Then the datatype representing the
computational content of the derivations of x1 ∈ S1 a, . . ., xn ∈ Sn a is

datatype (αP , α) ST
1 =

I1
1 τ

1
1

(
typeof ϕ1

1,1

)
. . .

(
typeof ϕ1

1,m1
1

)
| . . . | I1

k1
τ1
k1

(
typeof ϕ1

k1,1

)
. . .

(
typeof ϕ1

k1,m1
k1

)
...

and (αP , α) ST
n =

In
1 τn

1

(
typeof ϕn

1,1

)
. . .

(
typeof ϕn

1,mn
1

)
| . . . | In

kn
τn
kn

(
typeof ϕn

kn,1

)
. . .

(
typeof ϕn

kn,mn
kn

)
Intuitively, the list of argument types of a constructor Ij

i corresponding to an introduction

rule consists of the types of the variables xj
i occurring in the introduction rule, and the types

extracted from the premises of the rule4. In the above definition, α is the list of type variables
occurring in the introduction rules Ij

i,i′ and αP is the list of all type variables representing the
computational content of the computationally relevant predicate variables P occurring in a,
i.e. P ⊆ a. For the rest of this section, we will assume that all predicate variables occurring
in a are computationally relevant. The set of equations characterizing the function typeof is
augmented with the equations

typeof P ≡ αP =⇒ typeof ((xj) ∈ Sj a) ≡ (αP , α) ST
j

For reasons which have already been discussed in §4.2.1, it may in general be necessary to
generate up to 2n variants of the datatypes ST

j , where n is the number of predicate variables
occurring in a.

4To guarantee the nonemptiness of the datatypes ST
1 , . . ., ST

n , which is a fundamental requirement for any
HOL type, it may be necessary to add extra dummy constructors to the above definition. See §4.3.5.3 for an
example.

84 CHAPTER 4. PROGRAM EXTRACTION

Realizability predicate The realizability predicates SR
1 , . . ., SR

n , which establish a connection
between elements of the datatypes ST

1 , . . ., ST
n and propositions of the form (x1) ∈ S1 a, . . .,

(xn) ∈ Sn a, are defined inductively using the introduction rules∧
xj

i p1. realizes p1 ϕ
j
i,1 =⇒

(
· · · =⇒

(∧
pmj

i
. realizes pmj

i
ϕj

i,mj
i

=⇒
(
Ij
i x

j
i p

j
i , t

j
i

)
∈ SR

j aR
)
· · ·
)

where 1 ≤ j ≤ n and 1 ≤ i ≤ kj . The set of equations characterizing the function realizes is
augmented with the equations

typeof P ≡ αP =⇒ realizes r ((xj) ∈ Sj a) ≡
(r, xj) ∈ SR

j (λp z1. realizes p (P1 z1)) · · · (λp zn. realizes p (Pn zn)) (a\P)

As before, P = {P1, . . . , Pn} ⊆ a, denotes the list of fixed arguments which are predicates. To
simplify the notation, we assume that the argument list of Sj is sorted such that predicate
arguments come first. Predicate arguments of Sj are turned into suitable realizability predi-
cates on the right-hand side of the above equation, whereas non-predicate arguments are left
unchanged.

Realizer for induction rule To simplify the presentation, we again assume that all of the
predicates P1, . . ., Pn have a computational content. Then, the rule for simultaneous induction
on the derivations of S1, . . ., Sn presented above is realized by the term

λf1
1 . . . f

n
kn
.
(
ST

1 -rec f1
1 . . . f

n
kn
, . . . , ST

n -rec f1
1 . . . f

n
kn

)
The fact that this term is a correct realizer can be expressed as follows

R1
1 f

1
1 =⇒ · · · =⇒ R1

k1
f1

k1
=⇒ · · · =⇒ Rn

1 f
n
1 =⇒ · · · =⇒ Rn

kn
fn

kn
=⇒(

∀q. (q, x1) ∈ SR
1 aR −→

PR
1

(
fst

(
· · ·
(
fst

(
ST

1 -rec f1
1 . . . f

n
kn
, . . . , ST

n -rec f1
1 . . . f

n
kn

))
· · ·
)
q
)
x1

)
∧ . . .∧(

∀q. (q, xn) ∈ SR
n aR −→

PR
n

(
snd

(
· · ·
(
snd

(
ST

1 -rec f1
1 . . . f

n
kn
, . . . , ST

n -rec f1
1 . . . f

n
kn

))
· · ·
)
q
)
xn

)
where

Rj
i f =

∧
xj

i p1. realizes p1 ϕ
j
i,1 =⇒

(
· · · =⇒

(∧
pmj

i
. realizes pmj

i
ϕj

i,mj
i

=⇒(∧
q1.

(∧
zj
i,1 y

j
i,1. realizes yj

i,1 ψ
j
i,1 =⇒ PR

sj
i,1

(
q1 z

j
i,1 y

j
i,1

)
uj

i,1

)
=⇒

(
· · · =⇒(∧

qlji
.

(∧
zj

i,lji
yj

i,lji
. realizes yj

i,lji
ψj

i,lji
=⇒ PR

sj

i,l
j
i

(
qlji

zj

i,lji
yj

i,lji

)
uj

i,lji

)
=⇒

PR
j

(
f xj

i p
j
i q

j
i

)
tji

)
· · ·
)))

· · ·
)

pj
i = p1 . . . pmj

i
and qj

i = q1 . . . qlji

This correctness theorem is proved by simultaneous induction on the derivations of SR
1 . . . S

R
n .

Assume we have R1
1 f1

1 , . . ., Rn
kn

fn
kn

. For introduction rule Ij
i , we obtain the induction

hypotheses∧
zj
i,1 y

j
i,1. realizes yj

i,1 ψ
j
i,1 =⇒ PR

sj
i,1

(
ST

sj
i,1

-rec f1
1 . . . f

n
kn

(
prj

i,1
zj
i,1 y

j
i,1

))
uj

i,1

...∧
zj

i,lji
yj

i,lji
. realizes yj

i,lji
ψj

i,lji
=⇒ PR

sj

i,l
j
i

(
ST

sj

i,l
j
i

-rec f1
1 . . . f

n
kn

(
prj

i,l
j
i

zj

i,lji
yj

i,lji

))
uj

i,lji

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 85

as well as

realizes p1 ϕ
j
i,1 . . . realizes pmj

i
ϕj

i,mj
i

from which we have to show

PR
j

(
ST

j -rec f1
1 . . . f

n
kn

(
Ij
i x

j
i p

j
i

))
tji

for all xj
i and pj

i . This is equivalent to

PR
j

(
f j

i x
j
i p

j
i q1 . . . qlji

)
tji

where

ql = λzj
i,l y

j
i,l. S

T
sj

i,l

-rec f1
1 . . . f

n
kn

(
prj

i,l
zj
i,l y

j
i,l

)
which can easily be deduced from the induction hypotheses using Rj

i f
j
i .

Realizer for case analysis rule The rule for case analysis on the derivation of Sj is realized
by the case analysis combinator for the datatype ST

j , i.e. by the term

λq f1 . . . fkj . S
T
j -case f1 . . . fkj q

The correctness of this realizer is expressed by the formula

(q, z) ∈ SR
j aR =⇒ Rj

1 f1 z =⇒ · · · =⇒ Rj
kj
fkj z =⇒ PR (ST

j -case f1 . . . fkj q)

where

Rj
i f z =

∧
xj

i . (z) = (tji) =⇒(∧
p1. realizes p1 ϕ

j
i,1 =⇒

(
· · · =⇒

(∧
pmj

i
. realizes pmj

i
ϕj

i,mj
i

=⇒ PR
(
f xj

i p
j
i

))))
This correctness theorem can be proved by case analysis on the derivation of (q, z) ∈ SR

j aR.
Assume we have Rj

1 f1 z, . . ., Rj
kj
fkj

z. For introduction rule Ij
i , we get the assumptions

(q, z) =
(
Ij
i x

j
i p

j
i , t

j
i

)
realizes p1 ϕ

j
i,1 . . . realizes pmj

i
ϕj

i,mj
i

from which we have to show

PR (ST
j -case f1 . . . fkj

q)

for all xj
i and pj

i . Due to the above assumption on the structure of q, this is equivalent to

PR
(
fj x

j
i p

j
i

)
which easily follows from the above assumptions using Rj

i fi z.

86 CHAPTER 4. PROGRAM EXTRACTION

Inductive predicates without computational content As is the case for other formulae, there
may also be inductive predicates that are only intended for specification purposes, but should
not contribute to the computational content of a proof. Our framework relies on a declarative
approach here, which means that the author of a formalization has to specify whether or not
an inductive predicate should have a computational content.
A particular restriction, which has to be taken care of in this context is that a proof must not
contain any proofs of computationally relevant statements by induction or case analysis on the
derivation of an inductive predicate, which has been declared to be computationally irrelevant
by the user. In this case, there is no way to construct a program from such a proof, since a
datatype representing the derivation over which to do recursion in the program is not available,
and hence program extraction fails. As will be described in §5.1.2, similar restrictions on proofs
by induction are also imposed by the Coq system [12, §4.5.4].
Moreover, as has already been noted in §4.3.2, we do not in general have realizes Null ((y) ∈ S) =
(y) ∈ S for an arbitrary inductive predicate S with typeof ((y) ∈ S) = Null. In particular,
this equation does not hold for inductive predicates without computational content whose
introduction rules I :

∧
x. ϕ =⇒ (t) ∈ S have premises containing inductive predicates with

computational content, and hence we do not have

realizes Null (
∧
x. ϕ =⇒ (t) ∈ S) = (

∧
x. ϕ =⇒ (t) ∈ S)

In this case, we need to inductively define a realizability predicate SR in a similar way as in the
case of a computationally relevant predicate, with the difference that SR has the same number
of arguments as S, since there is no argument corresponding to the realizer.

4.3.5.3 Examples

To convince ourselves of the generality of the approach we have just described, it is instructive
to have a look at some more examples. As a first example, we will examine inductive char-
acterizations of the usual basic logical operators such as conjunction, disjunction, existential
quantification and equality. This inductive characterization, which is due to Paulin-Mohring
[87], was first used in the Coq theorem prover based on the Calculus of Inductive Construc-
tions. As expected, it will turn out that the realizers and realizability predicates generated by
Isabelle’s program extraction module, which implements the theory described in the previous
section, are equivalent to those introduced in §4.3.3.
The inductive predicates And, Or and Exists, which represent conjunction, disjunction and
existential quantification, respectively, have predicate variables P and Q as their only fixed
arguments. Note that these predicates have no flexible arguments. Thus, the conlusions of the
corresponding introduction rules have the somewhat degenerate form () ∈ . . ., where the unit
element () denotes the empty argument tuple. Intuitively, we can also think of these predicates
to denote the empty set, if the proposition is False, and the singleton set consisting of just the
element (), if the proposition is True. In the sequel, we will assume that both P and Q are
computationally relevant.
The And predicate has just one introduction rule:

consts And :: bool ⇒ bool ⇒ unit set
inductive And P Q
intros AndI : P =⇒ Q =⇒ () ∈ And P Q

The introduction rule AndI is realized by a constructor with two arguments. The corresponding
realizability predicate is characterized by the introduction rule

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 87

PR p =⇒ QR q =⇒ (AndT-P-Q .AndI p q , ()) ∈ AndR-P-Q PR QR

The induction rule for predicate And

u ∈ And P Q =⇒ (P =⇒ Q =⇒ R ()) =⇒ R u

is the usual rule for conjunction elimination. Here, u can only be the unit element. This
elimination rule is realized by5

AndT-P-Q-rec f (AndT-P-Q .AndI P Q) = f P Q

The fact that this is a correct realizer is expressed by

(r , u) ∈ AndR-P-Q PR QR =⇒
(
∧

x . PR x =⇒ (
∧

xa. QR xa =⇒ RR (f x xa) ())) =⇒ RR (AndT-P-Q-rec f r) u

Analogously, the Or predicate is characterized by two introduction rules:

consts Or :: bool ⇒ bool ⇒ unit set
inductive Or P Q
intros

OrI1 : P =⇒ () ∈ Or P Q
OrI2 : Q =⇒ () ∈ Or P Q

The introduction rules OrI1 and OrI2 are realized by constructors, each of which has one
argument representing the computational content of P and Q, respectively. The corresponding
realizability predicate is characterized by the introduction rules

PR p =⇒ (OrT-P-Q .OrI1 p, ()) ∈ OrR-P-Q PR QR

QR q =⇒ (OrT-P-Q .OrI2 q , ()) ∈ OrR-P-Q PR QR

The induction rule for predicate Or

u ∈ Or P Q =⇒ (P =⇒ R ()) =⇒ (Q =⇒ R ()) =⇒ R u

is the usual rule for disjunction elimination. This elimination rule is realized by

OrT-P-Q-rec f g (OrT-P-Q .OrI1 P) = f P
OrT-P-Q-rec f g (OrT-P-Q .OrI2 Q) = g Q

The correctness theorem for this realizer is

(r , u) ∈ OrR-P-Q PR QR =⇒
(
∧

x . PR x =⇒ RR (f x) ()) =⇒
(
∧

x . QR x =⇒ RR (g x) ()) =⇒ RR (OrT-P-Q-rec f g r) u

The Exists predicate can be characterized inductively as follows:

consts Exists :: (′a ⇒ bool) ⇒ unit set
inductive Exists P
intros ExistsI : P x =⇒ () ∈ Exists P

The introduction rule ExistsI is realized by a constructor with two arguments: One argu-
ment is the value of variable x, whereas the other is the computational content of P x. The
corresponding realizability predicate is characterized by the introduction rule

5Note that the P and Q in AndT-P-Q-rec are not parameters, but are part of the function name. Since
a fixed parameter of an inductive predicate may either be computationally relevant or irrelevant, there may
be several variants of this function, which are distinguished by suffixing their names with the names of the
computationally relevant parameters.

88 CHAPTER 4. PROGRAM EXTRACTION

PR p x =⇒ (ExistsT-P .ExistsI x p, ()) ∈ ExistsR-P PR

The induction rule for predicate Exists

u ∈ Exists P =⇒ (
∧

x . P x =⇒ Q ()) =⇒ Q u

is the usual rule for existential elimination. This elimination rule is realized by

ExistsT-P-rec f (ExistsT-P .ExistsI a p) = f a p

The correctness theorem for this realizer is

(r , u) ∈ ExistsR-P PR =⇒
(
∧

x xa. PR xa x =⇒ QR (f x xa) ()) =⇒ QR (ExistsT-P-rec f r) u

Finally, we come to the inductive characterization of equality. The equality predicate Eq has
one fixed and one flexible argument, which are both of the same type. The formula x ∈ Eq
y should be read as ”x is equal to y”. Intuitively, Eq a can be thought of as the set of all
elements which are equal to a, which is the singleton set consisting of just the element a.

consts Eq :: ′a ⇒ ′a set
inductive Eq a
intros Refl : a ∈ Eq a

The only introduction rule for equality is reflexivity. Since fixed arguments are not part of the
datatype representing the computational content of Eq and the flexible argument of Eq in rule
Refl coincides with the fixed argument, the realizer for rule Refl is just a constructor with no
arguments. Thus, the realizability predicate for Eq is characterized by the rather trivial rule

(Refl , a) ∈ EqR a

The induction rule for predicate Eq

x ∈ Eq y =⇒ P y =⇒ P x

corresponds to the well-known substitution rule. This rule is realized by

EqT-rec f Refl = f

This is essentially the identity function, which confirms our observation made in §4.3.3 con-
cerning the computational content of the substitution rule. The correctness of this realizer is
expressed by

(e, x) ∈ EqR y =⇒ PR p y =⇒ PR (EqT-rec p e) x

It should be noted that the constructor Refl is actually useless, since it does not convey any
information which contributes to the computation of EqT-rec.

As a more advanced example, we consider the accessible part of a relation r. It is characterized
by the introduction rule

accI : (
∧

y . (y , x) ∈ r =⇒ y ∈ acc r) =⇒ x ∈ acc r

4.3. PROGRAM EXTRACTION FOR ISABELLE/HOL 89

3

10 2 Dummy · · ·

Dummy · · ·10Dummy0Dummy

Dummy Dummy 0 Dummy · · ·

Dummy · · ·

Figure 4.3: Realizer for 3 ∈ acc {(x ,y). x < y}

For the case where r is computationally irrelevant, the computational content of a derivation
of x ∈ acc r can be represented by the infinitely branching datatype

datatype α accT = Dummy unit | accI α (α⇒ α accT)

Note that this datatype has an additional Dummy constructor, because it would otherwise be
empty. The corresponding realizability predicate is characterized by the rule

(
∧

y . r (y , x) =⇒ (g y , y) ∈ accR r) =⇒ (accT .accI x g , x) ∈ accR r

Note that there is no rule for constructor Dummy, since it does not constitute a proper realizer.
Figure 4.3 shows a realizer for the accessibility of 3 with respect to the relation < on natural
numbers. The rule for induction on the derivation of acc is

x ∈ acc r =⇒
(
∧

x . (
∧

y . (y , x) ∈ r =⇒ y ∈ acc r) =⇒ (
∧

y . (y , x) ∈ r =⇒ P y) =⇒ P x) =⇒ P x

This rule is realized by the recursion combinator for accT

accT-rec err f (accT .Dummy u) = err u
accT-rec err f (accT .accI x g) = f x g (λy . accT-rec err f (g y))

It is interesting to note that this function actually allows to simulate well-founded recursion
by primitive recursion on a datatype encoding the termination relation. Recursive calls to
λy . accT-rec err f (g y) are only guaranteed to yield meaningful results for arguments y with
(y , x) ∈ r, whereas arguments not satisfying this restriction may cause the function err to be
called. This behaviour of accT-rec is expressed by the correctness theorem

(a, x) ∈ accR rR =⇒
(
∧

x g . (
∧

y . rR (y , x) =⇒ (g y , y) ∈ accR rR) =⇒
(
∧

h. (
∧

y . rR (y , x) =⇒ PR (h y) y) =⇒ PR (f x g h) x)) =⇒
PR (accT-rec arbitrary f a) x

90 CHAPTER 4. PROGRAM EXTRACTION

When generating executable code, arbitrary may be implemented by something like (fn =>
raise ERROR), where the dummy abstraction avoids spurious ERROR messages due to ML’s
eager evaluation.

4.4 Related work

The first theorem provers to support program extraction were Constable’s Nuprl system [27],
which is based on Martin-Löf type theory, and the PX system by Hayashi [48]. The Coq system
[12], which is based on the Calculus of Inductive Constructions (CIC), can extract programs
to OCaml [88] and Haskell. Paulin-Mohring [86, 85] has given a realizability interpretation for
the Calculus of Constructions and proved the correctness of extracted programs with respect
to this realizability interpretation. Although it would be possible in principle to check the
correctness proof corresponding to an extracted program inside Coq itself, this has not been
implemented yet. Moreover, it is not completely obvious how to do this in practice, because
Coq allows for the omission of termination arguments (e.g. wellordering types such as the accT
type introduced in §4.3.5.3) in the extracted program, which may render the program unty-
pable in CIC due to the occurrence of unguarded fixpoints [61, §3.4]. Instead of distinguishing
between relevant and irrelevant predicate variables as described in §4.2, the Coq system has
two universes Set and Prop, which are inhabited by computationally interesting and compu-
tationally noninteresting types, respectively (see also §5.1.2). Recently, Fernández, Severi and
Szasz [37, 110] have proposed an extension of the Calculus of Constructions called the Theory
of Specifications, which internalizes program extraction and realizability. The built-in reduc-
tion relation of this calculus reflects the behaviour of the functions corr and extr defined in
§4.2. A similar approach is taken in Burstall and McKinna’s theory of deliverables [67]. A
deliverable is a pair consisting of a program together with its correctness proof, which is mod-
eled using strong Σ types. Anderson [4] describes the embedding of a first order logic with
program extraction in Elf and proves several meta-theoretic properties of the extraction func-
tion, e.g. well-typedness of the extracted program. The Minlog system [15] by Schwichtenberg
can extract Scheme programs from proofs in minimal first order logic, enriched with induc-
tive datatypes and predicates. It has recently been extended to produce correctness proofs
for extracted programs as well. Moreover, it also supports program extraction from classical
proofs [17]. Isabelle has already been used for implementing program extraction calculi in the
past, too. Basin and Ayari [7] have shown how to simulate Manna and Waldinger’s “Deduc-
tive Tableau” in Isabelle/HOL. Coen [26] formalized his own “Classical Computational Logic”,
which is tailored specifically towards program extraction, whereas our framework is applicable
to common object logics such as HOL.

Chapter 5

Case studies

In this chapter, we will present several case studies, demonstrating the practical applicability
of the program extraction framework developed in the previous chapter. We start with two
relatively simple examples, namely the extraction of an algorithm for computing the quotient
and remainder of two natural numbers, as well as Warshall’s algorithm for computing the
transitive closure of a relation. To show that the extraction mechanism scales up well to
larger applications, we then present a formalization of Higman’s lemma, as well as a proof
of weak normalization for the simply-typed λ-calculus. While the first two examples only
involve induction on datatypes, the last two examples also make use of more advanced proof
techniques, such as induction on the derivation of inductively defined predicates.

5.1 Quotient and remainder

As an introductory example, we demonstrate how a program for computing the quotient and
remainder of two natural numbers can be derived using program extraction. We will also use
this example to compare Isabelle’s implementation of proof terms and program extraction with
the one used in the theorem prover Coq [12].

5.1.1 The Isabelle proof

The specification of the division algorithm is an existential statement of the form

∃ r q . a = Suc b ∗ q + r ∧ r ≤ b

asserting that there exists a remainder r and quotient q for each dividend a and divisor Suc b.
This formulation avoids an extra precondition stating that the divisor has to be greater than
0. The proof of this statement is by induction on the dividend a. In the base case, a is 0, and
hence both the quotient and remainder are 0, too. In the induction step, we need to find a
quotient q ′ and remainder r ′ for Suc a and Suc b, given that we already have a quotient and
remainder for a and Suc b, i.e. r and q such that a = Suc b ∗ q + r and r ≤ b. This is done
by considering the cases r = b and r 6= b. The case distinction is justified by the lemma

lemma nat-eq-dec:
∧

n::nat . m = n ∨ m 6= n

expressing the decidability of equality on natural numbers, which can be proved constructively
by induction on m followed by a case distinction on n. Now if r = b, we reset the remainder to

91

92 CHAPTER 5. CASE STUDIES

theorem division: ∃ r q . a = Suc b ∗ q + r ∧ r ≤ b
proof (induct a)
case 0
have 0 = Suc b ∗ 0 + 0 ∧ 0 ≤ b by simp
thus ?case by rules

next
case (Suc a)
then obtain r q where I : a = Suc b ∗ q + r and r ≤ b by rules
from nat-eq-dec show ?case
proof
assume r = b
with I have Suc a = Suc b ∗ (Suc q) + 0 ∧ 0 ≤ b by simp
thus ?case by rules

next
assume r 6= b
hence r < b by (simp add : order-less-le)
with I have Suc a = Suc b ∗ q + (Suc r) ∧ (Suc r) ≤ b by simp
thus ?case by rules

qed
qed

Figure 5.1: Proof of existence of quotient and remainder in Isar

0 and increment the quotient, i.e. r ′ = 0 and q ′ = Suc q. Otherwise, if r 6= b, we also have r
< b, since r ≤ b. In this case, we increment the remainder and leave the quotient unchanged,
i.e. r ′ = Suc r and q ′ = q. A formalization of this proof in Isabelle/Isar is shown in Figure 5.1.
As a result of processing this high-level proof description using the Isabelle/Isar interpreter, a
primitive proof object is generated, which is shown in Figure 5.2. This proof object is of course
much more detailed than its Isar counterpart. While the Isar proof description just abstractly
refers to proof methods such as rules or simp, the corresponding parts of the primitive proof
object contain e.g. a sequence of predicate logic rules, such as exI or exE, or of arithmetic rules
for natural numbers, such as le0 or Suc-not-Zero. The shaded subproofs do not contribute to
the computational content, but merely verify that the computed results satisfy the specification.
They mainly involve lengthy arithmetic reasoning involving numerals, and have therefore been
substantially abbreviated for the sake of readability. As it happens, the last of these subproofs
even contains classical reasoning by contradiction, using the rule ccontr. It is worth noting
that this does not affect program extraction, since the formula Suc r ≤ b, which is proved
classically, does not have a computational content.

From the primitive proof shown in Figure 5.2, the following program is extracted by Isabelle:

division ≡
λa b. nat-rec (0 , 0)

(λn H . case H of
(x , y) ⇒ case nat-eq-dec x b of Left ⇒ (0 , Suc y) | Right ⇒ (Suc x , y))

a

Since the proof of the division theorem relies on the proof of nat-eq-dec, extraction of the above
program also triggers the extraction of the program

5.1. QUOTIENT AND REMAINDER 93

nat .induct · (λu. ∃ r q . u = Suc b ∗ q + r ∧ r ≤ b) · a ·
(exI · TYPE (nat) · (λx . ∃ q . 0 = Suc b ∗ q + x ∧ x ≤ b) · 0 · ←− remainder

(exI · TYPE (nat) · (λx . 0 = Suc b ∗ x + 0 ∧ 0 ≤ b) · 0 · ←− quotient
(conjI · 0 = Suc b ∗ 0 + 0 · 0 ≤ b ·

(subst · TYPE (nat) · 0 · Suc b ∗ 0 + 0 · (λz . 0 = z) ·
· · · ·
(HOL.refl · TYPE (nat) · 0)) ·

(le0 · b)))) ·
(λn H : ∃ x xa. n = Suc b ∗ xa + x ∧ x ≤ b.

exE · TYPE (nat) · (λr . ∃ x . n = Suc b ∗ x + r ∧ r ≤ b) ·
∃ r q . Suc n = Suc b ∗ q + r ∧ r ≤ b ·
H ·
(λr H : ∃ x . n = Suc b ∗ x + r ∧ r ≤ b.

exE · TYPE (nat) · (λq . n = Suc b ∗ q + r ∧ r ≤ b) ·
∃ r q . Suc n = Suc b ∗ q + r ∧ r ≤ b ·
H ·
(λq H : n = Suc b ∗ q + r ∧ r ≤ b.

disjE · r = b · r 6= b · ∃ x q . Suc n = Suc b ∗ q + x ∧ x ≤ b ·
(nat-eq-dec · r · b) ·
(λHa: r = b.

exI · TYPE (nat) · (λx . ∃ q . Suc n = Suc b ∗ q + x ∧ x ≤ b) · 0 · ←− remainder
(exI · TYPE (nat) · (λx . Suc n = Suc b ∗ x + 0 ∧ 0 ≤ b) · Suc q · ←− quotient

(conjI · Suc n = Suc b ∗ Suc q + 0 · 0 ≤ b ·
(subst · TYPE (nat) · Suc (q + b ∗ q + b) · Suc n ·

(λz . z = Suc b ∗ Suc q + 0) ·
· · · ·
· · ·) ·

(le0 · b)))) ·
(λHa: r 6= b.

exI · TYPE (nat) · (λx . ∃ q . Suc n = Suc b ∗ q + x ∧ x ≤ b) · Suc r · ←− remainder
(exI · TYPE (nat) · (λx . Suc n = Suc b ∗ x + Suc r ∧ Suc r ≤ b) · q · ←− quotient

(conjI · Suc n = Suc b ∗ q + Suc r · Suc r ≤ b ·
(subst · TYPE (nat) · Suc (q + b ∗ q + r) · Suc n ·

(λz . z = Suc b ∗ q + Suc r) ·
· · · ·
· · ·) ·

(ccontr · Suc r ≤ b ·
(λHb: ¬ Suc r ≤ b.

notE · Suc 0 = 0 · False · (Suc-not-Zero · 0) ·
· · · ·
· · ·)))))

Figure 5.2: Primitive proof of existence of quotient and remainder

94 CHAPTER 5. CASE STUDIES

equal-elim · · · · · · · · ·
(symmetric · · · · · · · · ·

(combination · TYPE (prop) · TYPE (nat ⇒ nat ⇒ nat × nat) ·
(λx . a = Suc b ∗ snd (x a b) + fst (x a b) ∧ fst (x a b) ≤ b) · · · · ·
division ·
(λx xa. nat-rec (0 , 0)

(λn H . case H of (x , y) ⇒
case nat-eq-dec x xa of Left ⇒ (0 , Suc y) | Right ⇒ (Suc x , y)) x) ·

(reflexive · · · · · division-def)) · ←− expand the definition of division
(induct-P-correctness · TYPE (nat × nat) ·

(λx xa. xa = Suc b ∗ snd x + fst x ∧ fst x ≤ b) · (0 , 0) ·
(λn H . case H of

(x , y) ⇒ case nat-eq-dec x b of Left ⇒ (0 , Suc y) | Right ⇒ (Suc x , y)) · a ·
(exI-correctness · TYPE (nat) · TYPE (nat) · (λx xa. 0 = Suc b ∗ x + xa ∧ xa ≤ b) · 0 · 0 ·

(conjI · 0 = Suc b ∗ 0 + 0 · 0 ≤ b ·
(subst · TYPE (nat) · 0 · Suc b ∗ 0 + 0 · (λx . 0 = x) ·
· · · ·
(HOL.refl · TYPE (nat) · 0)) ·

(le0 · b))) ·
(λn H Ha: n = Suc b ∗ snd H + fst H ∧ fst H ≤ b.

exE-correctness · TYPE (nat × nat) · TYPE (nat) · TYPE (nat) ·
(λx xa. n = Suc b ∗ x + xa ∧ xa ≤ b) · H ·
(λx . Suc n = Suc b ∗ snd x + fst x ∧ fst x ≤ b) ·
(λr Ha. case nat-eq-dec r b of Left ⇒ (0 , Suc Ha) | Right ⇒ (Suc r , Ha)) · Ha ·
(λr Ha H : n = Suc b ∗ Ha + r ∧ r ≤ b.

disjE-correctness3 · TYPE (nat × nat) · r = b · r 6= b · nat-eq-dec r b ·
(λx . Suc n = Suc b ∗ snd x + fst x ∧ fst x ≤ b) · (0 , Suc Ha) · (Suc r , Ha) ·
(nat-eq-dec-correctness · r · b) ·
(λHb: r = b.

exI-correctness · TYPE (nat) · TYPE (nat) ·
(λx xa. Suc n = Suc b ∗ x + xa ∧ xa ≤ b) · Suc Ha · 0 ·
(conjI · Suc n = Suc b ∗ Suc Ha + 0 · 0 ≤ b ·

(subst · TYPE (nat) · Suc (Ha + b ∗ Ha + b) · Suc n ·
(λx . x = Suc b ∗ Suc Ha + 0) ·
· · · · · · ·) ·

(le0 · b))) ·
(λHb: r 6= b.

exI-correctness · TYPE (nat) · TYPE (nat) ·
(λx xa. Suc n = Suc b ∗ x + xa ∧ xa ≤ b) · Ha · Suc r ·
(conjI · Suc n = Suc b ∗ Ha + Suc r · Suc r ≤ b ·

(subst · TYPE (nat) · Suc (Ha + b ∗ Ha + r) · Suc n ·
(λx . x = Suc b ∗ Ha + Suc r) ·
· · · · · · ·) ·

(ccontr · Suc r ≤ b ·
(λHc: ¬ Suc r ≤ b.

notE · Suc 0 = 0 · False · (Suc-not-Zero · 0) ·
· · · · · · ·)))))))

Figure 5.3: Correctness proof for quotient and remainder

5.1. QUOTIENT AND REMAINDER 95

datatype nat = id0 | Suc of nat;

fun nat_rec f1 f2 id0 = f1
| nat_rec f1 f2 (Suc nat) = f2 nat (nat_rec f1 f2 nat);

datatype sumbool = Left | Right;

fun nat_eq_dec x =
(fn xa =>
nat_rec (fn x => (case x of id0 => Left | Suc x => Right))
(fn x => fn H2 => fn xa =>
(case xa of id0 => Right
| Suc x => (case H2 x of Left => Left | Right => Right)))

x xa);

fun division x =
(fn xa =>
nat_rec (id0, id0)
(fn n => fn H =>
(case H of
(x, xb) =>
(case nat_eq_dec x xa of Left => (id0, Suc xb)
| Right => (Suc x, xb))))

x);

Figure 5.4: ML code generated by Isabelle for division function

nat-eq-dec ≡
λx xa. nat-rec (λx . case x of 0 ⇒ Left | Suc x ⇒ Right)

(λx H2 xa.
case xa of 0 ⇒ Right | Suc nat ⇒ case H2 nat of Left ⇒ Left | Right ⇒ Right)

x xa

In order to keep the extracted program modular, the function division contains just a reference
to the auxiliary function nat-eq-dec. From the Isabelle/HOL definition of the division function
shown above, Isabelle’s code generator can automatically generate an executable ML program
which, together with the required auxiliary functions, is shown in Figure 5.4.
The correctness theorem corresponding to the division function is

a = Suc b ∗ snd (division a b) + fst (division a b) ∧ fst (division a b) ≤ b

The proof of this theorem, which is shown in Figure 5.3, is automatically derived by the program
extraction module by transforming the original proof using the function corr introduced in
§4.2.3. The correctness proof uses the theorems

exI-correctness: PR y x =⇒ PR (snd (x , y)) (fst (x , y))
exE-correctness: PR (snd p) (fst p) =⇒

(
∧

x y . PR y x =⇒ QR (f x y)) =⇒ QR (case p of (x , y) ⇒ f x y)
disjE-correctness3: case x of Left ⇒ PR | Right ⇒ QR =⇒

(PR =⇒ RR f) =⇒ (QR =⇒ RR g) =⇒ RR (case x of Left ⇒ f | Right ⇒ g)

introduced in §4.3.3, which assert the correctness of the programs corresponding to the basic
inference rules exI, exE, and disjE, as well as the correctness theorem

96 CHAPTER 5. CASE STUDIES

induct-P-correctness: PR f 0 =⇒
(
∧

nat rnat . PR rnat nat =⇒ PR (g nat rnat) (Suc nat)) =⇒
PR (nat-rec f g n) n

for the program corresponding to the induction principle on natural numbers, which has been
introduced in §4.3.4. Moreover, since the correctness proof is modular, it also relies on the
correctness of the program extracted from the proof of decidability of equality on natural
numbers, which is expressed by the theorem

nat-eq-dec-correctness: case nat-eq-dec m n of Left ⇒ m = n | Right ⇒ m 6= n

5.1.2 Comparison with Coq

To examine how Isabelle compares with a system based on dependent type theory, we now
reformulate the proof from the previous section in the Coq system [12]. As far as program
extraction is concerned, the main difference between Isabelle and Coq is the treatment of com-
putationally interesting and noninteresting objects. Isabelle’s program extraction mechanism
distinguishes between relevant and irrelevant predicate variables as described in §4.2. It is im-
portant to note that this information about the computational relevance of objects is not part
of Isabelle’s logic itself, but is an extra-logical concept. This is in contrast to the Coq system
based on the Calculus of Inductive Constructions, where this information is encoded into the
type system. The type system of Coq has two universes Set and Prop, which are inhabited
by computationally interesting and computationally noninteresting types, respectively. Note
that a type which is an inhabitant of Set cannot be an inhabitant of Prop, and vice versa. As
a consequence, the Coq library contains several versions of each logical operator, each having
a different computational content. As has already been mentioned in §4.3.5.3, most logical
operators in Coq are defined inductively. For example, the definitions of the most frequently
used variants of the existential quantifier look as follows:

Inductive ex [A:Set;P:A->Prop] : Prop
:= ex_intro : (x:A)(P x)->(ex A P).

Inductive sig [A:Set;P:A->Prop] : Set
:= exist : (x:A)(P x) -> (sig A P).

Inductive sigS [A:Set;P:A->Set] : Set
:= existS : (x:A)(P x) -> (sigS A P).

The syntax for ex, sig and sigS is (EX x | (P x)), {x:A | (P x)} and {x:A & (P x)},
respectively. The ex quantifier resides in the Prop universe and therefore has no computational
content at all. The sig quantifier resides in the Set universe, but its body (P x) is an
inhabitant of the Prop universe. This variant of the existential quantifier can therefore be
used if one is just interested in the existential witness, but not in the computational content of
the body of the quantifier. Finally, the sigS quantifier resides in the Set universe, too, but in
contrast to the sig quantifier, its body (P x) is an inhabitant of Set as well, i.e. this variant of
the existential quantifier is useful if one is interested in both the witness and the computational
content of the body of the quantifier. Note that the type A of the witness x always resides in
the Set universe, since this will usually be some kind of datatype, such as natural numbers or
lists, i.e. a computationally relevant type. Things are similar for disjunction, for which Coq
offers the three variants

5.1. QUOTIENT AND REMAINDER 97

Inductive or [A,B:Prop] : Prop :=
or_introl : A -> (or A B)

| or_intror : B -> (or A B).

Inductive sumbool [A,B:Prop] : Set
:= left : A -> (sumbool A B)
| right : B -> (sumbool A B).

Inductive sumor [A:Set;B:Prop] : Set
:= inleft : A -> (sumor A B)
| inright : B -> (sumor A B).

with syntax A \/ B, {A}+{B} and A+{B}, respecively.
The approach taken in Coq of marking the computational content via the type system was
found to be unsuitable for Isabelle, since the introduction of another type of truth values, say
bool′, for formulae with computational content, in addition to the already existing type bool,
would have made it impossible to use already existing theorems from standard libraries, which
are part of the Isabelle distribution. Apart from the necessity to redefine logical operators
and to reformulate many existing theorems for the type bool′, the introduction of a new type
of truth values would have been likely to confuse users not familiar with program extraction
and to interfere with existing applications. In contrast, the program extraction framework
introduced in §4.2 does not require a change of the very foundations of Isabelle’s meta and
object logics. Instead of the two quantifiers sig and sigS above, just one quantifier is needed
in Isabelle, since one can deduce from the structure of the formula in the body of the quantifier,
i.e. via the type extraction mechanism described in §4.2.1, which of the two variants is meant.
A counterpart of Coq’s ex quantifier withouth any computational content, though, is not
available in Isabelle/HOL by default.
We now get back to the task of proving the existence of a remainder r and quotient q for
a dividend a and divisor b. To write down the specification, we need two of the existential
quantifiers introduced above. The outer quantifier has the form {r:nat & . . .}, since its body
contains another quantifier with computational content. The inner quantifier, however, has
the form {q:nat | . . .}, since its body contains just a specification of the properties of r and
q, which does not contribute to the computational content. The whole theorem is stated in
Coq as follows:

(a,b:nat){r:nat & {q:nat | a=(plus (mult (S b) q) r) /\ (le r b)}}

Here, (x:P)(. . .) is a dependent product, which plays the role of a universal quantifier. The
script for proving this theorem in Coq1 is shown in Figure 5.5. The idea underlying the proof
is almost the same as for the Isar proof description presented in §5.1, although it is much less
readable than its Isar counterpart. Coq also does not offer as much automation as Isabelle,
which is why some of the rewrite rules needed in the proof have to be applied manually. The
primitive proof term, which is built by Coq behind the scenes when executing the above proof
script, is shown in Figure 5.6. Terms of the form [x:P](. . .) occurring in the proof denote
λ-abstractions. Again, as in the Isabelle version of the proof object shown in Figure 5.2, the
shaded subproofs are computationally irrelevant. In Coq, a subproof p is computationally
irrelevant if Γ ` p : P and Γ ` P : Prop. Functions with names of the form “. . . rec” or
“. . . ind” appearing in the proof correspond to elimination rules. The “. . . rec” versions, such

1This script has been tested with Coq 7.3.1 (October 2002)

98 CHAPTER 5. CASE STUDIES

Theorem division : (a,b:nat){r:nat & {q:nat | a=(plus (mult (S b) q) r) /\ (le r b)}}.
Intros.
Elim a.
Exists O; Exists O.
Rewrite <- (mult_n_O (S b)).
Auto with arith.
Intros n H1.
Elim H1; Intros r H2.
Elim H2; Intros q H3.
Elim H3.
Elim (eq_nat_dec r b).
Exists O; Exists (S q).
Rewrite <- mult_n_Sm.
Rewrite <- plus_n_O.
Rewrite <- plus_n_Sm.
Rewrite -> a0 in H.
Auto with arith.
Exists (S r); Exists q.
Rewrite <- plus_n_Sm.
Elim (le_lt_or_eq r b H0).
Auto.
Tauto.
Qed.

Figure 5.5: Coq proof script for existence of quotient and remainder

as sig rec, sigS rec and sumbool rec, which correspond to an elimination of the quantifiers
{x:A | (P x)} and {x:A & (P x)}, and of the computationally relevant disjunction {A}+{B},
respectively, prove computationally relevant statements, whereas the “. . . ind” versions, such
as eq ind, which essentially corresponds to the substitution rule, prove computationally irrele-
vant statements. Coq’s type system enforces that a statement with computational content may
not be proved by applying an elimination rule to a proof of a statement without computational
content. For example, we may not prove a computationally relevant existential statement of
the form {x:A | (P x)} by applying an elimination rule to a proof of a computationally ir-
relevant existential statement of the form (EX x | (P x)), i.e. there is only an ex ind, but
no ex rec rule. Intuitively, this makes sure that the parts of a proof which correspond to
computations do not rely on subproofs for which no program can be extracted, and subproofs
of statements which are in Prop can safely be deleted during extraction. In particular, it is
even safe to assume a classical axiom of the form

Axiom classic: (P:Prop)(P \/ ~(P)).

However, the variant

Axiom unsafe_classic: (P:Prop)({P}+{~P})

of the above axiom involving the computationally relevant disjunction is unsafe and must not
be assumed, since there is no program corresponding to this axiom. Worse yet, as has been
shown by Geuvers [40] recently, assuming this axiom even makes the logic inconsistent, i.e. one
can produce a proof of False using this axiom.

5.1. QUOTIENT AND REMAINDER 99

[a,b:nat]
(nat_rec
[n:nat]{r:nat & {q:nat | (n=(plus (mult (S b) q) r)/\(le r b))}}
(existS nat [r:nat]{q:nat | ((0)=(plus (mult (S b) q) r)/\(le r b))} (0)
(exist nat [q:nat](0)=(plus (mult (S b) q) (0))/\(le (0) b) (0)

(eq_ind nat (0) [n:nat](0)=(plus n (0))/\(le (0) b)

<((0)=(plus (0) (0))),(le (0) b)>{(plus_n_O (0)),(le_O_n b)}

(mult (S b) (0)) (mult_n_O (S b)))))
[n:nat;
H1:({r:nat & {q:nat | (n=(plus (mult (S b) q) r)/\(le r b))}})]
(sigS_rec nat
[r:nat]{q:nat | (n=(plus (mult (S b) q) r)/\(le r b))}
[_:({r:nat & {q:nat | (n=(plus (mult (S b) q) r)/\(le r b))}})]
{r:nat & {q:nat | ((S n)=(plus (mult (S b) q) r)/\(le r b))}}
[r:nat; H2:({q:nat | (n=(plus (mult (S b) q) r)/\(le r b))})]
(sig_rec nat [q:nat]n=(plus (mult (S b) q) r)/\(le r b)
[_:({q:nat | (n=(plus (mult (S b) q) r)/\(le r b))})]
{r0:nat & {q:nat | ((S n)=(plus (mult (S b) q) r0)/\(le r0 b))}}
[q:nat; H3:(n=(plus (mult (S b) q) r)/\(le r b))]
(and_rec n=(plus (mult (S b) q) r) (le r b)
{r0:nat & {q0:nat | ((S n)=(plus (mult (S b) q0) r0)/\(le r0 b))}}
(sumbool_rec r=b ~r=b
[_:({r=b}+{~r=b})]
n=(plus (mult (S b) q) r)
->(le r b)
->{r0:nat & {q0:nat | ((S n)=(plus (mult (S b) q0) r0)/\(le r0 b))}}
[a0:(r=b); H:(n=(plus (mult (S b) q) r)); _:(le r b)]
(existS nat
[r0:nat]
{q0:nat | ((S n)=(plus (mult (S b) q0) r0)/\(le r0 b))} (0)
(exist nat
[q0:nat](S n)=(plus (mult (S b) q0) (0))/\(le (0) b) (S q)

(eq_ind nat (plus (mult (S b) q) (S b))

[n0:nat](S n)=(plus n0 (0))/\(le (0) b)

· · ·
(mult (S b) (S q)) (mult_n_Sm (S b) q))))

[b0:(~r=b); H:(n=(plus (mult (S b) q) r)); H0:(le r b)]
(existS nat
[r0:nat]
{q0:nat | ((S n)=(plus (mult (S b) q0) r0)/\(le r0 b))} (S r)
(exist nat
[q0:nat](S n)=(plus (mult (S b) q0) (S r))/\(le (S r) b) q

(eq_ind nat (S (plus (mult (S b) q) r))

[n0:nat](S n)=n0/\(le (S r) b)
· · ·
(plus (mult (S b) q) (S r))

(plus_n_Sm (mult (S b) q) r)))) (eq_nat_dec r b))

H3) H2) H1) a)

Figure 5.6: Coq proof term for existence of quotient and remainder

100 CHAPTER 5. CASE STUDIES

type nat =
| O
| S of nat

type (’a, ’p) sigS =
| ExistS of ’a * ’p

type sumbool =
| Left
| Right

let rec eq_nat_dec n m =
match n with
| O -> (match m with

| O -> Left
| S n0 -> Right)

| S n0 -> (match m with
| O -> Right
| S n1 -> eq_nat_dec n0 n1)

let rec division a b =
match a with
| O -> ExistS (O, O)
| S n ->

let ExistS (x, x0) = division n b in
(match eq_nat_dec x b with

| Left -> ExistS (O, (S x0))
| Right -> ExistS ((S x), x0))

Figure 5.7: OCaml code generated by Coq from proof of division theorem

Since a distinction of computationally relevant and irrelevant objects via the type system is
not possible in Isabelle, one may actually use the Isabelle/HOL rule

excluded -middle : ¬P ∨ P

or the ccontr rule used in the proof shown in Figure 5.2, to prove a computationally relevant
statement. However, the evil hour comes when running the extraction function, which will
terminate with an error when applied to such a proof, whereas in Coq we would not have been
able to construct such a proof in the first place.
In contrast to Isabelle, which first defines the extracted program as a function inside the logic,
Coq directly generates OCaml code from proofs. Figure 5.7 shows the code which is generated
by Coq from the proof shown in Figure 5.6. Note that the Coq counterpart of the recursion
combinator nat rec, which appears in the ML code shown in Figure 5.4, has been unfolded in
the above program, which makes it a bit more readable.

5.2 Warshall’s algorithm

As a larger example, we show how Warshall’s algorithm for computing the transitive closure of
a relation can be derived using program extraction. The formalization is inspired by Berger et

5.2. WARSHALL’S ALGORITHM 101

al. [19]. It has also been treated in the Coq system [12] by Paulin-Mohring [86]. In the sequel,
a relation will be a function mapping two elements of a type to a boolean value.

datatype b = T | F
types ′a rel = ′a ⇒ ′a ⇒ b

To emphasize that the relation has to be decidable, we use the datatype b instead of the built-in
type bool of HOL for this purpose.
In order to write down the specification of the algorithm, it will be useful to introduce a
function is-path ′, where is-path ′ r x ys z holds iff there is a path from x to z with intermediate
nodes ys with respect to a relation r.

consts is-path ′ :: ′a rel ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool
primrec

is-path ′ r x [] z = (r x z = T)
is-path ′ r x (y # ys) z = (r x y = T ∧ is-path ′ r y ys z)

Paths will be modeled as triples consisting of a source node, a list of intermediate nodes and
a target node. In the sequel, nodes will be natural numbers. Using the auxiliary function
is-path ′ we can now define a function is-path, where is-path r p i j k holds iff p is a path from j
to k with intermediate nodes less than i. For brevity, a path with this property will be called
an i -path. We also introduce a function conc for concatenating two paths.

constdefs
is-path :: nat rel ⇒ (nat × nat list × nat) ⇒ nat ⇒ nat ⇒ nat ⇒ bool
is-path r p i j k ≡ fst p = j ∧ snd (snd p) = k ∧

list-all (λx . x < i) (fst (snd p)) ∧ is-path ′ r (fst p) (fst (snd p)) (snd (snd p))
conc :: (′a × ′a list × ′a) ⇒ (′a × ′a list × ′a) ⇒ (′a × ′a list × ′a)
conc p q ≡ (fst p, fst (snd p) @ fst q # fst (snd q), snd (snd q))

The main proof relies on several lemmas about properties of is-path. For example, if p is an
i -path from j to k, then p is also a Suc i -path.

lemma lemma1 :
∧

p. is-path r p i j k =⇒ is-path r p (Suc i) j k

If p is a 0 -path from j to k, then relation r has an edge connecting j and k.

lemma lemma2 :
∧

p. is-path r p 0 j k =⇒ r j k = T

If p is an i -path from j to i, and q is an i -path from i to k, then concatenating these paths
yields a Suc i -path from j to k.

lemma lemma3 :
∧

p q . is-path r p i j i =⇒ is-path r q i i k =⇒
is-path r (conc p q) (Suc i) j k

The last lemma is central to the proof of the main theorem. It says that if there is a Suc i -path
from j to k, but no i -path, then there must be i -paths from j to i and from i to k.

lemma lemma4 :
∧

p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒
(∃ q . is-path r q i j i) ∧ (∃ q . is-path r q i i k)

The first component of the conjunction can be proved by induction on the list of intermediate
nodes of path p. The proof of the second component is symmetric to the proof of the first
component, using ”reverse induction”. Although this lemma can be proved constructively, its
computational content is not used in the main theorem. To emphasize this, we rephrase it,
writing ¬ (∀ x . ¬ P x) instead of ∃ x . P x.

102 CHAPTER 5. CASE STUDIES

theorem warshall :
∧

j k . ¬ (∃ p. is-path r p i j k) ∨ (∃ p. is-path r p i j k)
proof (induct i)
case (0 j k) show ?case — induction basis
proof (cases r j k)
assume r j k = T
hence is-path r (j , [], k) 0 j k by (simp add : is-path-def)
hence ∃ p. is-path r p 0 j k .. thus ?thesis ..

next
assume r j k = F hence r j k 6= T by simp
hence ¬ (∃ p. is-path r p 0 j k) by (rules dest : lemma2) thus ?thesis ..

qed
next
case (Suc i j k) thus ?case — induction step
proof
assume ∃ p. is-path r p i j k
hence ∃ p. is-path r p (Suc i) j k by (rules intro: lemma1) thus ?case ..

next
assume h1 : ¬ (∃ p. is-path r p i j k)
from Suc show ?case
proof
assume ¬ (∃ p. is-path r p i j i)
with h1 have ¬ (∃ p. is-path r p (Suc i) j k) by (rules dest : lemma4 ′)
thus ?case ..

next
assume ∃ p. is-path r p i j i
then obtain p where h2 : is-path r p i j i ..
from Suc show ?case
proof
assume ¬ (∃ p. is-path r p i i k)
with h1 have ¬ (∃ p. is-path r p (Suc i) j k) by (rules dest : lemma4 ′)
thus ?case ..

next
assume ∃ q . is-path r q i i k
then obtain q where is-path r q i i k ..
with h2 have is-path r (conc p q) (Suc i) j k by (rule lemma3)
hence ∃ pq . is-path r pq (Suc i) j k .. thus ?case ..

qed
qed

qed
qed

Figure 5.8: Warshall’s algorithm formalized in Isabelle/Isar

lemma lemma4 ′:
∧

p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒
¬ (∀ q . ¬ is-path r q i j i) ∧ ¬ (∀ q . ¬ is-path r q i i k)

The main theorem can now be stated as follows: For a given relation r, for all i and for
every two nodes j and k there either exists an i -path p from j to k, or no such path exists.
Of course, this would be trivial to prove classically. However, a constructive proof of this
statement actually yields a function that either returns Some p if there is a path or returns
None otherwise.
The proof is by induction on i. In the base case, we have to find a 0 -path from j to k, which
can only exist if r has an edge connecting these two nodes. Otherwise there can be no such

5.3. HIGMAN’S LEMMA 103

path according to lemma2. In the step case, we are supposed to find a Suc i -path from j to k.
By appeal to the induction hypothesis, we can decide if we already have an i -path from j to k.
If this is the case, we can easily conclude by lemma1 that this is also a Suc i -path. Otherwise,
by appealing to the induction hypothesis two more times, we check whether we have i -paths
from j to i and from i to k. If there are such paths, we combine them to get a Suc i -path from
j to k by lemma3. Otherwise, if there is no i -path from j to i or from i to k, there can be
no Suc i -path from j to k either, because this would contradict lemma4 ′. The formalization
of this proof in Isabelle/Isar is shown in Figure 5.8. From this proof, the following program is
extracted by Isabelle:

warshall ≡
λr i j k .

nat-rec (λi j . case r i j of T ⇒ Some (i , [], j) | F ⇒ None)
(λk H i j .

case H i j of
None ⇒

case H i k of None ⇒ None
| Some p ⇒ case H k j of None ⇒ None | Some q ⇒ Some (conc p q)
| Some q ⇒ Some q)

i j k

Applying the definition of realizability presented in §4.3 yields the following correctness theo-
rem, which is automatically derived from the above proof:

case warshall r i j k of None ⇒ ∀ x . ¬ is-path r x i j k | Some q ⇒ is-path r q i j k

5.3 Higman’s lemma

Higman’s lemma [50] is an interesting problem from the field of combinatorics. It can be
considered as a specific instance of Kruskal’s famous tree theorem, which is useful for proving
the termination of term rewriting systems using so-called simplification orders. Higman’s
lemma states that every infinite sequence of words (wi)0≤i<ω contains two words wi and wj

with i < j such that wi can be embedded into wj . A sequence with this property is also
called good, otherwise bad. Although a quite elegant classical proof of this statement has been
given by Nash-Williams [73] using a so-called minimal bad sequence argument, there has been
a growing interest in obtaining constructive proofs of Higman’s lemma recently. This is due to
the additional informative content inherent in constructive proofs. For example, a termination
proof of a string rewrite system based on a constructive proof of Higman’s lemma could be
used to obtain upper bounds on the length of reduction sequences.
The first formalization of Higman’s lemma using a theorem prover was done by Murthy [71]
in the Nuprl system [27]. Murthy first formalized Nash-Williams’ classical proof, then trans-
lated it into a constructive proof using a double negation translation followed by Friedman’s
A-translation and finally extracted a program from the resulting proof. Unfortunately, al-
though correct in principle, the program obtained in this way was so huge that it was both
incomprehensible and impossible to execute within a reasonable amount of time even on the
fastest computing equipment available. This rather disappointing experience prompted sev-
eral scientists to think about direct formalizations of constructive proofs of Higman’s lemma,
notably Murthy and Russell [72], as well as Fridlender [38], who formalized Higman’s lemma
using the ALF proof editor [65] based on Martin-Löf’s type theory. Fridlender’s paper also

104 CHAPTER 5. CASE STUDIES

gives a detailed account of the history of Higman’s lemma. An excellent overview of various
different formalizations of Higman’s lemma is given by Seisenberger [108]. A particularly ele-
gant and short constructive proof, based entirely on inductive definitions, has been suggested
by Coquand and Fridlender [29]. This proof, which has also been formalized by Seisenberger
[108] in the Minlog theorem prover, will now be used as a test case for Isabelle’s program
extraction module. In contrast to the rather abstract exposition given by Coquand and Fri-
dlender, we also try to give an intuitive graphical description of the computational behaviour
of the extracted programs.
We start with a few basic definitions. Words are modelled as lists of letters from the two letter
alphabet2

datatype letter = A | B

The embedding relation on words is defined inductively as follows:

consts emb :: (letter list × letter list) set
inductive emb
intros

emb0 : [] � bs
emb1 : as � bs =⇒ as � b # bs
emb2 : as � bs =⇒ a # as � a # bs

Intuitively, a word as can be embedded into a word bs, if we can obtain as by deleting letters
from bs. For example, [A, A] � [B , A, B , A]. In order to formalize the notion of a good
sequence, it is useful to define the set L v of all lists of words containing a word which can be
embedded into v :

consts L :: letter list ⇒ letter list list set
inductive L v
intros

L0 : w � v =⇒ w # ws ∈ L v
L1 : ws ∈ L v =⇒ w # ws ∈ L v

A list of words is good if its tail is either good or contains a word which can be embedded into
the word occurring at the head position of the list:

consts good :: letter list list set
inductive good
intros

good0 : ws ∈ L w =⇒ w # ws ∈ good
good1 : ws ∈ good =⇒ w # ws ∈ good

In contrast to Coquand [29], who defines Cons such that it appends elements to the right of
the list, we use the usual definition of Cons, which appends elements to the left. Therefore,
the predicates on lists of words defined in this section, such as the good predicate introduced
above work “in the opposite direction”, e.g. [[A, A], [A, B], [B]] ∈ good, since [B] � [A, B].
In order to express the fact that every infinite sequence is good, we define a predicate bar as
follows:

consts bar :: letter list list set
inductive bar

2It is worth noting that the extension of the proof to an arbitrary finite alphabet is not at all trivial. For
details, see Seisenberger’s PhD. thesis [109].

5.3. HIGMAN’S LEMMA 105

S
S

S
SS �

�
�

��

S
S

S
SS �

�
�

��

%
%%

e
ee

bar2

bar2

bar2bar1

[A, A][A, B]

[B]

· · ·

· · ·

· · ·

Figure 5.9: Computational content of bar

intros
bar1 : ws ∈ good =⇒ ws ∈ bar
bar2 : (

∧
w . w # ws ∈ bar) =⇒ ws ∈ bar

Intuitively, ws ∈ bar means that either the list of words ws is already good, or successively
adding words will turn it into a good list. Consequently, [] ∈ bar means that every infinite
sequence (wi)0≤i<ω must be good, i.e. have a prefix w0 . . . wn with [wn, . . . , w0] ∈ good ,
since by successively adding words w0, w1, . . . to the empty list, we must eventually arrive at
a list which is good. Note that the above definition of bar is closely related to Brouwer’s more
general principle of bar induction [116, Chapter 4, §8]. Like the accessible part of a relation
defined in §4.3.5.3, the definition of bar embodies a kind of well-foundedness principle. The
datatype

datatype barT = bar1 (letter list list) | bar2 (letter list list) (letter list ⇒ barT)

representing the computational content of ws ∈ bar is an infinitely branching tree from which
one can read off how many words have to be appended to the sequence of words ws in order
to turn it into a good sequence. The branches of this tree are labelled with words. For each
appended word w, one moves one step closer to the leaves of the tree, following the branch
labelled with w. When a leaf, i.e. the constructor bar1 is reached, the resulting sequence of
words must be good. An example for such a tree is shown in Figure 5.9. The realizability
predicate for bar is characterized by the introduction rules

ws ∈ good =⇒ (bar1 ws, ws) ∈ barR
(
∧

w . (f w , w # ws) ∈ barR) =⇒ (bar2 ws f , ws) ∈ barR

This means that if (bar2 ws f 0, ws) ∈ barR and

f0 w0 = bar2 (w0 # ws) f1, f1 w1 = bar2 (w1 # w0 # ws) f2, . . . ,
fn−1 wn−1 = bar2 (wn−1 # · · · # w0 # ws) fn, fn wn = bar1 (wn # · · · # w0 # ws)

then (wn # · · · # w0 # ws) ∈ good . Note that this need not necessarily be the shortest
possible good sequence. The induction principle for the bar predicate is

vs ∈ bar =⇒
(
∧

ws. ws ∈ good =⇒ P ws) =⇒
(
∧

ws. (
∧

w . w # ws ∈ bar) =⇒ (
∧

w . P (w # ws)) =⇒ P ws) =⇒ P vs

106 CHAPTER 5. CASE STUDIES

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

b a bb b ba

w0 wf(0)−1 wf(0) wf(1)

· · · · · · · · ·

Figure 5.10: Minimal bad sequence argument

It is realized by the recursion combinator

barT-rec f g (bar1 list) = f list
barT-rec f g (bar2 list fun) = g list fun (λx . barT-rec f g (fun x))

The corresponding correctness theorem for this realizer is

(b, vs) ∈ barR =⇒
(
∧

ws. ws ∈ good =⇒ P (f ws) ws) =⇒
(
∧

ws x . (
∧

w . (x w , w # ws) ∈ barR) =⇒
(
∧

xa. (
∧

w . P (xa w) (w # ws)) =⇒ P (g ws x xa) ws)) =⇒
P (barT-rec f g b) vs

Before explaining the actual proof, we will briefly sketch the main idea of Nash-Williams’
classical proof3, since Coquand’s proof can be considered as a constructive version of it. In
order to show that every infinite sequence is good, we assume there is a bad sequence and
use this to derive a contradiction. If there is a bad sequence, we may also construct a bad
sequence (wi)0≤i<ω which is minimal wrt. word length4. Since any infinite sequence containing
the empty word is necessarily good, each wi must have the form ai # vi. We can find a strictly
monotone function f and a letter a ∈ {A,B} such that af(i) = a for all i. Now consider the
sequence (vf(i))0≤i<ω. If this sequence was bad, we could construct the sequence

s = w0 . . . wf(0)−1 vf(0) vf(1) . . .

Because the length of vf(0) is smaller than the length of wf(0), and (wi)0≤i<ω is minimal, this
sequence must be good. For this to be possible, there must be i and j with i < f(0) and
wi � vf(j), because both (wi)0≤i<ω and (vf(i))0≤i<ω are bad. However, since vf(j) � wf(j),
this implies that wi � wf(j), which contradicts the assumption that (wi)0≤i<ω is bad. Hence
(vf(i))0≤i<ω must be good, which means that there are i and j with i < j and vf(i) � vf(j),
which implies that a# vf(i) � a# vf(j) and therefore wf(i) �wf(j), which again contradicts the
assumption that (wi)0≤i<ω is bad.
To capture the idea underlying the construction of the sequence s shown above, we introduce
a relation T, where (vs, ws) ∈ T a means that vs is obtained from ws by first copying the
prefix of words starting with the letter b, where a 6= b, and then appending the tails of words
starting with a. This construction principle is illustrated in Figure 5.10, where the shaded

3A more general version of this proof for Kruskal’s theorem can e.g. be found in the textbook by Baader and
Nipkow [8].

4A sequence (wi)0≤i<ω is smaller than a sequence (vi)0≤i<ω wrt. word length, iff there is a k such that
wj = vj for all j < k and length(wk) < length(vk).

5.3. HIGMAN’S LEMMA 107

parts correspond to the sequence s above. In order to define T, we also introduce an auxiliary
relation R, where (vs, ws) ∈ R a means that ws can be obtained from vs by prefixing each
word with the letter a. It should be noted that we could as well have defined T a as a function
which, given a list ws, yields a list vs. However, we found the relational formulation more
convenient to work with.

consts R :: letter ⇒ (letter list list × letter list list) set
inductive R a
intros

R0 : ([], []) ∈ R a
R1 : (vs, ws) ∈ R a =⇒ (w # vs, (a # w) # ws) ∈ R a

consts T :: letter ⇒ (letter list list × letter list list) set
inductive T a
intros

T0 : a 6= b =⇒ (vs, ws) ∈ R b =⇒ (w # ws, (a # w) # ws) ∈ T a
T1 : (vs, ws) ∈ T a =⇒ (v # vs, (a # v) # ws) ∈ T a
T2 : a 6= b =⇒ (vs, ws) ∈ T a =⇒ (vs, (b # w) # ws) ∈ T a

For example,

([w5, w2, B # w1, B # w0],
[B # w6, A # w5, B # w4, B # w3, A # w2, B # w1, B # w0])
∈ T A

Before starting with the actual proof, it is useful to prove some lemmas concerning the con-
cepts just introduced. lemma1 states that each sequence ws containing a word which can be
embedded in the word as also contains a word which can be embedded into a # as. This easily
follows from the fact that as � a # as. lemma2 and lemma3 state that the property good is
preserved by the relations R and T. Since good is defined using L, it is useful to prove similar
lemmas for L first. Finally, lemma4 states that given a list zs of words starting with a, T a
yields a list ws consisting of the tails of the words in ws.

lemma lemma1 : ws ∈ L as =⇒ ws ∈ L (a # as)
lemma lemma2 ′: (vs, ws) ∈ R a =⇒ vs ∈ L as =⇒ ws ∈ L (a # as)
lemma lemma2 : (vs, ws) ∈ R a =⇒ vs ∈ good =⇒ ws ∈ good
lemma lemma3 ′: (vs, ws) ∈ T a =⇒ vs ∈ L as =⇒ ws ∈ L (a # as)
lemma lemma3 : (ws, zs) ∈ T a =⇒ ws ∈ good =⇒ zs ∈ good
lemma lemma4 : (ws, zs) ∈ R a =⇒ ws 6= [] =⇒ (ws, zs) ∈ T a

We will also need the following lemmas about equality on letters:

lemma letter-neq : (a::letter) 6= b =⇒ c 6= a =⇒ c = b
lemma letter-eq-dec: (a::letter) = b ∨ a 6= b

Note that letter-eq-dec actually yields an algorithm (using case distinctions) for deciding the
equality of letters. The actual proof of Higman’s lemma is divided into several parts, namely
prop1, prop2 and prop3. From the computational point of view, these theorems can be thought
of as functions transforming trees. Theorem prop1 states that each sequence ending with the
empty word satisfies predicate bar, since it can trivially be extended to a good sequence by
appending any word. This easily follows from the introduction rules for bar :

theorem prop1 : ([] # ws) ∈ bar by rules

108 CHAPTER 5. CASE STUDIES

The intuition behind prop2, which is shown in Figure 5.11, is a bit harder to grasp. Given two
trees encoding proofs of xs ∈ bar and ys ∈ bar, we produce a new tree encoding a proof of zs
∈ bar by interleaving the two input trees. In order to demonstrate that zs ∈ bar, we need to
show that, given a sequence of words, we can detect if appending this sequence to zs yields a
good sequence. This is done by inspecting each word in the sequence to be appended. If the
word has the form a # w, we move one step ahead in the tree witnessing xs ∈ bar, whereas
we move one step ahead in the tree witnessing ys ∈ bar if it has the form b # w. Whenever
we reach a leaf in one of these trees, we can be sure that, due to the additional constraints on
xs, ys and zs, we have turned zs into a good sequence. If the word to be appended is just the
empty word [], we know by prop1 that any following word will make the sequence good. The
proof of prop2 is by double induction on the derivation of xs ∈ bar and ys ∈ bar (yielding the
induction hypotheses I and I ′), followed by a case analysis on the word w to be appended to
the sequence zs.

Theorem prop3 states that we can turn a proof of xs ∈ bar into a proof of zs ∈ bar, where
zs is the list obtained by prefixing each word in the (nonempty) list xs with the letter a. The
proof together with its corresponding tree is shown in Figure 5.12. Note that the subtrees of
this tree (reachable via edges labelled with words w) are interleavings of other trees formed
using prop2. In order to prove zs ∈ bar, we again consider all possible words w to be appended
to zs. There are essentially two different cases which may occur:

1. If w consists only of b’s, i.e. w = bn for 0 ≤ n, appending words of the form bn.. or bm

with m < n to the sequence w # zs will lead to a good sequence due to prop1, whereas
appending words of the form bma.. with m < n will lead to a good sequence due to the
fact that xs ∈ bar. The subtrees named bar in Figure 5.12 correspond to witnesses of
this fact.

2. Similarly, if w contains the letter a, i.e. w = bna.. with 0 ≤ n, appending words of the
form bn.. to the sequence w # zs can be shown to lead to a good sequence by appealing
to the induction hypothesis. Computationally, this corresponds to a recursive call in the
function producing the tree, which is why the corresponding subtrees in Figure 5.12 are
named prop3. Appending words of the form bm or bma.. with m < n can be shown to
lead to a good sequence by exactly the same argument as in case 1.

The proof of prop3 is by induction on the derivation of xs ∈ bar, followed by an induction on
the word w combined with a case analysis on letters.

We can now put together the pieces and prove the main theorem. In order to prove that [] ∈
bar, it suffices to show that [w] ∈ bar for any word w. This can be proved by induction on w.
If w is empty, the claim follows by prop1. Otherwise, if w = c # cs, we have [cs] ∈ bar by
induction hypothesis, which we can turn into a proof of [c # cs] ∈ bar using prop3. It should
be noted that structural induction on lists can be viewed as the constructive counterpart of
the minimality argument used in Nash-Williams’ classical proof.
The proof, together with a diagram illustrating the intuition behind it, is shown in Figure
5.13. The shaded parts of the drawing correspond to sequences for which we already know
that they are good due to the induction hypothesis [cs] ∈ bar. Processing the word w1 in
Figure 5.13 corresponds to following the branch labelled with bba.. in Figure 5.12. Processing
the word w2 in Figure 5.13, which starts with at least as many b’s as the preceeding word w1,
corresponds to a step in the part of the rightmost subtree in Figure 5.12, which was produced

5.3. HIGMAN’S LEMMA 109

w0 aw0

w1 bw1

w2 aw2

w3 bw3

theorem prop2 :
assumes ab: a 6= b and bar : xs ∈ bar
shows

∧
ys zs. ys ∈ bar =⇒ (xs, zs) ∈ T a =⇒ (ys, zs) ∈ T b =⇒ zs ∈ bar using bar

proof induct
fix xs zs assume xs ∈ good and (xs, zs) ∈ T a
show zs ∈ bar by (rule bar1) (rule lemma3)

next
fix xs ys
assume I :

∧
w ys zs. ys ∈ bar =⇒ (w # xs, zs) ∈ T a =⇒ (ys, zs) ∈ T b =⇒ zs ∈ bar

assume ys ∈ bar
thus

∧
zs. (xs, zs) ∈ T a =⇒ (ys, zs) ∈ T b =⇒ zs ∈ bar

proof induct
fix ys zs assume ys ∈ good and (ys, zs) ∈ T b
show zs ∈ bar by (rule bar1) (rule lemma3)

next
fix ys zs assume I ′:

∧
w zs. (xs, zs) ∈ T a =⇒ (w # ys, zs) ∈ T b =⇒ zs ∈ bar

and ys:
∧

w . w # ys ∈ bar and Ta: (xs, zs) ∈ T a and Tb: (ys, zs) ∈ T b
show zs ∈ bar
proof (rule bar2)
fix w
show w # zs ∈ bar
proof (cases w)
case Nil
thus ?thesis by simp (rule prop1)

next
case (Cons c cs)
from letter-eq-dec show ?thesis
proof
assume ca: c = a
from ab have (a # cs) # zs ∈ bar by (rules intro: I ys Ta Tb)
thus ?thesis by (simp add : Cons ca)

next
assume c 6= a
with ab have cb: c = b by (rule letter-neq)
from ab have (b # cs) # zs ∈ bar by (rules intro: I ′ Ta Tb)
thus ?thesis by (simp add : Cons cb)

qed
qed

qed
qed

qed

Figure 5.11: Proposition 2

110 CHAPTER 5. CASE STUDIES

[] a.. b ba..

...

bb

...

bba..

prop1 prop3 prop1

[]
bar
a..

prop1

b..

prop1

[]
bar
a..

prop1

b

bar
ba..

prop3

bb..

theorem prop3 :
assumes bar : xs ∈ bar
shows

∧
zs. xs 6= [] =⇒ (xs, zs) ∈ R a =⇒ zs ∈ bar using bar

proof induct
fix xs zs
assume xs ∈ good and (xs, zs) ∈ R a
show zs ∈ bar by (rule bar1) (rule lemma2)

next
fix xs zs
assume I :

∧
w zs. w # xs 6= [] =⇒ (w # xs, zs) ∈ R a =⇒ zs ∈ bar

and xsb:
∧

w . w # xs ∈ bar and xsn: xs 6= [] and R: (xs, zs) ∈ R a
show zs ∈ bar
proof (rule bar2)
fix w
show w # zs ∈ bar
proof (induct w)
case Nil
show ?case by (rule prop1)

next
case (Cons c cs)
from letter-eq-dec show ?case
proof
assume c = a
thus ?thesis by (rules intro: I [simplified] R)

next
from R xsn have T : (xs, zs) ∈ T a by (rule lemma4)
assume c 6= a
thus ?thesis by (rules intro: prop2 Cons xsb xsn R T)

qed
qed

qed
qed

Figure 5.12: Proposition 3

5.3. HIGMAN’S LEMMA 111

���

���

��

��

��

��

b

b

a

��

��

b

b

b

b

a

b

a
	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���

��� ��

��

��

�� ��

��

a

��

��

w w1 w2 w3

theorem higman: [] ∈ bar
proof (rule bar2)
fix w
show [w] ∈ bar
proof (induct w)
show [[]] ∈ bar by (rule prop1)

next
fix c cs assume [cs] ∈ bar
thus [c # cs] ∈ bar by (rule prop3) (simp, rules)

qed
qed

Figure 5.13: Main theorem

by a recursive call to prop3. In contrast, processing the word w3, which starts with fewer b’s
than w1, corresponds to a step in the part of the rightmost subtree labelled with bar.
The computational content of the above theorem is an infinitely branching tree, which is a bit
difficult to inspect. Using this theorem, we therefore prove an additional statement yielding a
program that, given an infinite sequence of words, returns a finite prefix of this sequence which
is good. Infinite sequences are encoded as functions of type nat ⇒ α. The fact that a list is a
prefix of an infinite sequence can be characterized recursively as follows:

consts is-prefix :: ′a list ⇒ (nat ⇒ ′a) ⇒ bool
primrec

is-prefix [] f = True
is-prefix (x # xs) f = (x = f (length xs) ∧ is-prefix xs f)

We now prove that an infinite sequence f of words has a good prefix vs, provided there is a
prefix ws with ws ∈ bar. The proof of this theorem, which cannot be found in the paper by
Coquand and Fridlender, is by induction on the derivation of ws ∈ bar. If the derivation tree
is a leaf, this means that the current prefix is already good and we simply return it, otherwise
we move ahead one step in the tree and continue the search recursively, i.e. apply the induction
hypothesis.

theorem good-prefix-lemma:
assumes bar : ws ∈ bar
shows is-prefix ws f =⇒ ∃ vs. is-prefix vs f ∧ vs ∈ good using bar

proof induct
case bar1
thus ?case by rules

next
case (bar2 ws)
have is-prefix (f (length ws) # ws) f by simp
thus ?case by (rules intro: bar2)

qed

The fact that any infinite sequence has a good prefix can now be obtained as a corollary of
this theorem using higman:

theorem good-prefix : ∃ vs. is-prefix vs f ∧ vs ∈ good
using higman
by (rule good-prefix-lemma) simp+

112 CHAPTER 5. CASE STUDIES

As has already been noted, the function extracted from theorem good-prefix need not nec-
essarily find the shortest good prefix. As an example, consider the following three functions
representing sequences of words:

f1(i) =

[A, A] if i = 0
[B] if i = 1
[A, B] if i = 2
[] otherwise

f2(i) =

[A, A] if i = 0
[B] if i = 1
[B, A] if i = 2
[] otherwise

f3(i) =

[A, A] if i = 0
[B] if i = 1
[A, B, A] if i = 2
[] otherwise

When applied to f1, good-prefix returns the good prefix [[], [], [A, B], [B], [A, A]], which is
certainly not the shortest one. The reason for this should become clear when looking at Figure
5.13: In order for the algorithm to recognize that the word [B] can be embedded into some
subsequent word, this word has to start with at least one B. However, since the following
word starts with an A, the algorithm does not recognize that [B] can be embedded into it. In
contrast, when applied to f2 and f3, good-prefix returns the shortest good prefixes [[B , A], [B],
[A, A]] and [[A, B , A], [B], [A, A]], as expected. In the case of f2, the algorithm recognizes
that [B] can be embedded into [B , A], since the latter starts with as many B ’s as the former.
In the case of f3, the algorithm recognizes that [A] can be embedded into [B , A], and hence,
due to lemma prop3, also recognizes that [A, A] can be embedded into [A, B , A].

The Isabelle/HOL functions extracted from the proof of theorem good-prefix are shown in
Figure 5.14. The corresponding ML code, together with auxiliary functions, is presented in
Figure 5.15. The correctness theorem for good-prefix is

is-prefix (good-prefix f) f ∧ good-prefix f ∈ good

whereas for higman, it is simply

(higman, []) ∈ barR

The correctness theorems for prop2 and prop3 are

a 6= b =⇒
(
∧

x . (x , xs) ∈ barR =⇒
(
∧

xa. (xa, ys) ∈ barR =⇒
(xs, zs) ∈ T a =⇒ (ys, zs) ∈ T b =⇒ (prop2 a b ys zs x xa, zs) ∈ barR))

and∧
x . (x , xs) ∈ barR =⇒ xs 6= [] =⇒ (xs, zs) ∈ R a =⇒ (prop3 zs a x , zs) ∈ barR

To understand the computational behaviour of these functions, it is instructive to derive char-
acteristic equations from their definitions, where the barT-rec combinator has been unfolded.
For prop2, these equations are

prop2 a b ys zs (bar1 vs) (bar1 ws) = bar1 zs
prop2 a b ys zs (bar2 vs f) (bar1 ws) = bar1 zs
prop2 a b ys zs (bar1 vs) (bar2 ws g) = bar1 zs
prop2 a b ys zs (bar2 vs f) (bar2 ws g) =

bar2 zs
(λus. case us of [] ⇒ prop1 zs

| c # us ⇒
case letter-eq-dec c a of
Left ⇒ prop2 a b ws ((a # us) # zs) (f us) (bar2 ws g)
| Right ⇒ prop2 a b ws ((b # us) # zs) (bar2 vs f) (g us))

5.3. HIGMAN’S LEMMA 113

letter-eq-dec ≡
λx xa.

case x of A ⇒ case xa of A ⇒ Left | B ⇒ Right
| B ⇒ case xa of A ⇒ Right | B ⇒ Left

prop1 ≡ λx . bar2 ([] # x) (λw . bar1 (w # [] # x))

prop2 ≡
λx xa xb xc H Ha.

barT-rec (λws x xa H . bar1 xa)
(λws xb r xc xd H .

barT-rec (λws x . bar1 x)
(λws xb ra xc.

bar2 xc
(λw . case w of [] ⇒ prop1 xc

| a # list ⇒
case letter-eq-dec a x of Left ⇒ r list ws ((x # list) # xc) (bar2 ws xb)
| Right ⇒ ra list ((xa # list) # xc)))

H xd)
H xb xc Ha

prop3 ≡
λx xa H .

barT-rec (λws. bar1)
(λws x r xb.

bar2 xb
(list-rec (prop1 xb)

(λa list H .
case letter-eq-dec a xa of Left ⇒ r list ((xa # list) # xb)
| Right ⇒ prop2 a xa ws ((a # list) # xb) H (bar2 ws x))))

H x

higman ≡ bar2 [] (list-rec (prop1 []) (λa list . prop3 [a # list] a))

good-prefix-lemma ≡ λx . barT-rec (λws. ws) (λws xa r . r (x (length ws)))

good-prefix ≡ λx . good-prefix-lemma x higman

Figure 5.14: Program extracted from the proof of Higman’s lemma

114 CHAPTER 5. CASE STUDIES

datatype letter = A | B;

datatype nat = id0 | Suc of nat;

datatype barT = bar1 of letter list list | bar2 of letter list list * (letter list -> barT);

fun barT_rec f1 f2 (bar1 list) = f1 list

| barT_rec f1 f2 (bar2 (list, funa)) = f2 list funa (fn x => barT_rec f1 f2 (funa x));

fun op__43_def0 id0 n = n

| op__43_def0 (Suc m) n = Suc (op__43_def0 m n);

fun size_def3 [] = id0

| size_def3 (a :: list) = op__43_def0 (size_def3 list) (Suc id0);

fun good_prefix_lemma x =

(fn H => barT_rec (fn ws => ws) (fn ws => fn xa => fn r => r (x (size_def3 ws))) H);

fun list_rec f1 f2 [] = f1

| list_rec f1 f2 (a :: list) = f2 a list (list_rec f1 f2 list);

datatype sumbool = Left | Right;

fun letter_eq_dec x =

(fn xa =>

(case x of A => (case xa of A => Left | B => Right)

| B => (case xa of A => Right | B => Left)));

fun prop1 x = bar2 (([] :: x), (fn w => bar1 (w :: ([] :: x))));

fun prop2 x =

(fn xa => fn xb => fn xc => fn H => fn Ha =>

barT_rec (fn ws => fn x => fn xa => fn H => bar1 xa)

(fn ws => fn xb => fn r => fn xc => fn xd => fn H =>

barT_rec (fn ws => fn x => bar1 x)

(fn ws => fn xb => fn ra => fn xc =>

bar2 (xc, (fn w =>

(case w of [] => prop1 xc

| (xd :: xe) =>

(case letter_eq_dec xd x of

Left => r xe ws ((x :: xe) :: xc) (bar2 (ws, xb))

| Right => ra xe ((xa :: xe) :: xc))))))

H xd)

H xb xc Ha);

fun prop3 x =

(fn xa => fn H =>

barT_rec (fn ws => fn x => bar1 x)

(fn ws => fn x => fn r => fn xb =>

bar2 (xb, (fn w =>

list_rec (prop1 xb)

(fn a => fn list => fn H =>

(case letter_eq_dec a xa of Left => r list ((xa :: list) :: xb)

| Right => prop2 a xa ws ((a :: list) :: xb) H (bar2 (ws, x))))

w)))

H x);

val higman : barT =

bar2 ([], (fn w =>

list_rec (prop1 []) (fn a => fn list => fn H => prop3 ((a :: list) :: []) a H) w));

fun good_prefix x = good_prefix_lemma x higman;

Figure 5.15: ML code generated from proof of Higman’s lemma

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 115

whereas prop3 can be characterized by the equations

prop3 xs a (bar1 vs) = bar1 xs
prop3 xs a (bar2 vs f) =

bar2 xs
(list-rec (prop1 xs)

(λb bs H .
case letter-eq-dec b a of Left ⇒ prop3 ((a # bs) # xs) a (f bs)
| Right ⇒ prop2 b a vs ((b # bs) # xs) H (bar2 vs f)))

Note that of the inductive predicates defined in this section, only bar has a computational
content. If we were not just interested in a good prefix, but also in the exact positions of the
two words which can be embedded into each other, we would also have to assign the predicate
good a computational content.

5.4 Weak normalization for simply-typed Lambda-calculus

As the final and most complex example, we present a fully formalized proof of weak normal-
ization for the simply-typed λ-calculus, i.e. we show that each well-typed term has a β-normal
form. One might ask why we do not prove strong normalization in the first place, from which
the weak normalization property would then simply follow as a corollary. The reason is that the
strong normalization property just abstractly states that each reduction sequence terminates,
whereas a proof of weak normalization contains a particular reduction algorithm, which can
be uncovered using program extraction. Our formalization is inspired by a paper proof due to
Matthes and Joachimski [56]. In contrast to most other proofs to be found in the literature,
which are based on the concept of strong computability introduced by Tait [115], Matthes’ and
Joachimski’s proof uses a simple inductive characterization of β-normal terms, which turns out
to be quite well suited for the purpose of program extraction.
Admittedly, the idea of extracting normalization algorithms from proofs is not completely new.
It already dates back to the work of Berger [16], who describes an experiment in extracting a
program from a strong normalization proof in the style of Tait, which was formalized using the
Minlog theorem prover [15]. As he admits, this proof is not completely formalized inside the
theorem prover, since the main induction is done “on the meta level”. Strictly speaking, this
proof therefore does not yield a single normalization function, but a whole family of functions.
These functions then have to be put together manually, but the resulting program is not
typeable in an ML-style type system [16, §3.3]. Also Matthes and Joachimski [56] describe
how a program extracted from their proof could look like, but this is only done on paper.
Similar machine-checked formalizations have been carried out by Altenkirch [2, 3], who proved
strong normalization for System F using the LEGO proof assistant [63], as well as Barras and
Werner [13, 11] who proved decidability of type checking for the Calculus of Constructions and
extracted a type checker from this proof using the Coq [12] theorem prover. A formalization of
substantial parts of the metatheory of Pure Type Systems, also using the LEGO proof assistant,
has been done by Pollack [103].

5.4.1 Basic definitions

We start by introducing basic concepts such as terms and substitutions. The following defini-
tions are due to Nipkow [81], who used them as a basis for a proof of the Church-Rosser property
for β-reduction. They are reproduced here in order to make the exposition self-contained.

116 CHAPTER 5. CASE STUDIES

λ-terms are modelled by the datatype dB using de Bruijn indices, which are encoded by natural
numbers.

datatype dB = Var nat | App dB dB | Abs dB

We use t ◦ u as an infix notation for App t u. When substituting a term for a variable inside
an abstraction, the indices of all free variables in the term have to be incremented. This is
taken care of by the lift function

consts lift :: dB ⇒ nat ⇒ dB
primrec

lift (Var i) k = (if i < k then Var i else Var (i + 1))
lift (s ◦ t) k = lift s k ◦ lift t k
lift (Abs s) k = Abs (lift s (k + 1))

Using lift, we can now define the substitution t [u/i] of a term u for a variable i in a term t as
follows:

consts subst :: dB ⇒ dB ⇒ nat ⇒ dB
primrec

subst-Var : (Var i)[s/k] = (if k < i then Var (i − 1) else if i = k then s else Var i)
subst-App: (t ◦ u)[s/k] = t [s/k] ◦ u[s/k]
subst-Abs: (Abs t)[s/k] = Abs (t [lift s 0 / k+1])

Since the substitution function will be used to specify β-reduction, it actually does not only
substitute the term u for the variable i, but also decrements the indices of all other free variables
by 1, to compensate for the disappearance of abstractions during β-reduction. The definition
of β-reduction, which is denoted by s →β t, is as usual:

consts beta :: (dB × dB) set
inductive beta
intros

beta: Abs s ◦ t →β s[t/0]
appL: s →β t =⇒ s ◦ u →β t ◦ u
appR: s →β t =⇒ u ◦ s →β u ◦ t
abs: s →β t =⇒ Abs s →β Abs t

We also use →β
∗ to denote the transitive closure of →β. The following congruence rules for

→β
∗ are occasionally useful in proofs:

lemma rtrancl-beta-Abs: s →β
∗ s ′ =⇒ Abs s →β

∗ Abs s ′

lemma rtrancl-beta-AppL: s →β
∗ s ′ =⇒ s ◦ t →β

∗ s ′ ◦ t
lemma rtrancl-beta-AppR: t →β

∗ t ′ =⇒ s ◦ t →β
∗ s ◦ t ′

lemma rtrancl-beta-App: s →β
∗ s ′ =⇒ t →β

∗ t ′ =⇒ s ◦ t →β
∗ s ′ ◦ t ′

We will also need the following theorems, asserting that →β and →β
∗ are compatible with

lifting and substitution. The first two of these properties are called substitutivity in [56].

theorem subst-preserves-beta: r →β s =⇒ (
∧

t i . r [t/i] →β s[t/i])
theorem subst-preserves-beta ′: r →β

∗ s =⇒ r [t/i] →β
∗ s[t/i]

theorem lift-preserves-beta: r →β s =⇒ (
∧

i . lift r i →β lift s i)
theorem lift-preserves-beta ′: r →β

∗ s =⇒ lift r i →β
∗ lift s i

theorem subst-preserves-beta2 :
∧

r s i . r →β s =⇒ t [r/i] →β
∗ t [s/i]

theorem subst-preserves-beta2 ′: r →β
∗ s =⇒ t [r/i] →β

∗ t [s/i]

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 117

In addition to the usual binary application operator s ◦ t, it is often convenient to also have
an n-ary application operator t ◦◦ ts for applying a term t to a list of terms ts. To this end,
we introduce the abbreviation

translations t ◦◦ ts
 foldl (op ◦) t ts

The following equations, describing how lifting and substitution operate on such n-ary appli-
cations, are easily established by induction on the list ts:

lemma lift-map:
∧

t . lift (t ◦◦ ts) i = lift t i ◦◦ map (λt . lift t i) ts
lemma subst-map:

∧
t . (t ◦◦ ts)[u/i] = t [u/i] ◦◦ map (λt . t [u/i]) ts

5.4.2 Typed Lambda terms

In this section, we introduce the type system for simply-typed λ-calculus. The typing judge-
ment usually depends on some environment (or context), assigning types to the free variables
occurring in a term. Since variables are encoded using de Bruijn indices, it seems convenient
to model environments as functions from natural numbers to types. In order to insert a type
T into an environment e at a given position i, we define the function

constdefs
shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a
e〈i :T 〉 ≡ λj . if j < i then e j else if j = i then T else e (j − 1)

where e〈i :T 〉 is syntactic sugar for shift e i T. The types of variables with indices less than
i are left untouched, whereas the types of variables with indices greater than i are shifted
one position up. Instead of working directly with the above definition, we will mainly use the
following characteristic theorems for shift.

lemma shift-eq : i = j =⇒ (e〈i :T 〉) j = T
lemma shift-gt : j < i =⇒ (e〈i :T 〉) j = e j
lemma shift-lt : i < j =⇒ (e〈i :T 〉) j = e (j − 1)
lemma shift-commute: e〈i :U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i :U 〉

Note that the above definition is actually a bit more polymorphic than necessary. We now
come to the definition of types. In simply-typed λ-calculus, a type can either be an atomic
type or a function type:

datatype type = Atom nat | Fun type type

In the sequel, we use T ⇒ U as an infix notation for Fun T U. In analogy to the concept
of an n-ary application, it is also useful to have an n-ary function type operator, which is
characterized as follows:

translations Ts V T
 foldr Fun Ts T

Intuitively, Ts V T denotes the type of a function whose arguments have the types contained
in the list Ts and whose result type is T. The definition of the typing judgement e ` t : T is
rather straightforward:

inductive typing
intros

Var : e x = T =⇒ e ` Var x : T
Abs: e〈0 :T 〉 ` t : U =⇒ e ` Abs t : (T ⇒ U)
App: e ` s : T ⇒ U =⇒ e ` t : T =⇒ e ` (s ◦ t) : U

118 CHAPTER 5. CASE STUDIES

In the typing rule for abstractions, the argument type T of the function is inserted at position
0 in the environment e when checking the type of the body t. The above typing judgement
naturally extends to lists of terms. We write e `̀ ts : Ts to mean that the terms ts have types
Ts. Formally, this extension of the typing judgement to lists of terms is defined as follows:

primrec
(e `̀ [] : Ts) = (Ts = [])
(e `̀ (t # ts) : Ts) =

(case Ts of
[] ⇒ False
| T # Ts ⇒ e ` t : T ∧ e `̀ ts : Ts)

Using the above typing judgement for lists of terms, we can prove the following elimination
and introduction rules for types of n-ary applications:

lemma list-app-typeE : e ` t ◦◦ ts : T =⇒ (
∧

Ts. e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ P) =⇒ P
lemma list-app-typeI :

∧
t T Ts. e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ e ` t ◦◦ ts : T

When looking at the rule list-app-typeE from the program extraction point of view, it is
important to note that P may only be instantiated with a computationally relevant formula,
if also the premise e ` t ◦◦ ts : T is computationally relevant. This is due to the fact that for
an arbitrary term t, the types Ts of its argument terms ts can usually not be deduced from e,
t, ts and T alone, since t could be an abstraction (see also the discussion about normal proofs
in §2.4.2 for a related issue). This information therefore has to be obtained from the typing
derivation for t ◦◦ ts. However, if the head term t is a variable Var i, which is always the case
if t ◦◦ ts is in normal form, we can find out the argument types Ts without having to inspect
the typing derivation, since we can first look up the type of Var i in the environment e and
then obtain Ts by decomposing this type. We therefore prove the following variant of the rule
list-app-typeE above.

lemma var-app-typesE : e ` Var i ◦◦ ts : T =⇒
(
∧

Ts. e ` Var i : Ts V T =⇒ e `̀ ts : Ts =⇒ P) =⇒ P

The computational part of the proof uses induction on lists and case analysis on types, whereas
the elimination rule for the typing judgement is only needed to establish computationally
irrelevant statements at the leaves of the proof. The fact that the premise e ` Var i ◦◦ ts : T
of var-app-typesE need not have a computational content, even if P is computationally relevant,
is crucial for program extraction, since it leads to a much smaller program which does not
involve any computations on typing derivations.
Before we come to the subject reduction theorem, which is the main result of this section, we
need several additional results about lifting and substitution. The first two of these lemmas
state that lifting preserves the type of a term:

lemma lift-type: e ` t : T =⇒ (
∧

i U . e〈i :U 〉 ` lift t i : T)
lemma lift-types:

∧
Ts. e `̀ ts : Ts =⇒ e〈i :U 〉 `̀ (map (λt . lift t i) ts) : Ts

The first lemma is easily proved by induction on the typing derivation, whereas the second one,
which is just a generalization of the first lemma to lists of terms, can be proved by induction
on the list ts using the first result. The other two lemmas state that well-typed substitution
preserves the type of terms:

lemma subst-lemma: e ` t : T =⇒ (
∧

e ′ i U u. e ′ ` u : U =⇒ e = e ′〈i :U 〉 =⇒ e ′ ` t [u/i] : T)
lemma substs-lemma:

∧
Ts. e ` u : T =⇒ e〈i :T 〉 `̀ ts : Ts =⇒ e `̀ (map (λt . t [u/i]) ts) : Ts

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 119

Again, the proof of the first lemma is by induction on the typing derivation, while the second
one is proved by induction on ts. We are now ready to prove the subject reduction property,
i.e. that →β preserves the type of a term:

lemma subject-reduction: e ` t : T =⇒ (
∧

t ′. t →β t ′ =⇒ e ` t ′ : T)

The proof is by induction on the typing derivation, where the cases for variables and abstrac-
tions are fairly trivial. The case dealing with applications s ◦ t can be proved using elimination
on s ◦ t →β t ′ followed by an application of subst-lemma. This theorem easily extends to the
transitive closure →β

∗ of →β :

theorem subject-reduction ′: t →β
∗ t ′ =⇒ e ` t : T =⇒ e ` t ′ : T

5.4.3 Terms in normal form

The definition which is central to the proof of weak normalization is, of course, that of a term
in normal form. Intuitively, a term is in normal form, if it is either a variable applied to a list
of terms in normal form, or an abstraction whose body is a term in normal form. In order to
express the fact that all terms in a list are in normal form, it is convenient to have a predicate
listall P xs, asserting that a predicate P holds for all elements in the list xs:

constdefs
listall :: (′a ⇒ bool) ⇒ ′a list ⇒ bool
listall P xs ≡ (∀ i . i < length xs −→ P (xs ! i))

In the above definition, xs ! i denotes the i-th element of the list xs. The predicate listall
enjoys the following characteristic properties, which will be useful in subsequent proofs:

theorem listall-nil : listall P []
theorem listall-cons: P x =⇒ listall P xs =⇒ listall P (x # xs)
lemma listall-conj1 : listall (λx . P x ∧ Q x) xs =⇒ listall P xs
lemma listall-conj2 : listall (λx . P x ∧ Q x) xs =⇒ listall Q xs

With the help of listall, the set NF of terms in normal form can be defined inductively as
follows:

consts NF :: dB set
inductive NF
intros

App: listall (λt . t ∈ NF) ts =⇒ Var x ◦◦ ts ∈ NF
Abs: t ∈ NF =⇒ Abs t ∈ NF

We conclude this section by proving some properties of NF, which will be of particular impor-
tance for the main proof presented in the next section. As a trivial consequence of the above
definition of normal forms, a term consisting of just a variable is in normal form.

lemma Var-NF : Var n ∈ NF

By substituting a variable i for a variable j in a normal term t, we obtain a term which is still
in normal form:

lemma subst-Var-NF : t ∈ NF =⇒ (
∧

i j . t [Var i/j] ∈ NF)

The above lemma is easily proved by induction on the derivation of t ∈ NF. If t is in normal
form, the term t ◦ Var i possesses a normal form, too:

120 CHAPTER 5. CASE STUDIES

lemma app-Var-NF : t ∈ NF =⇒ ∃ t ′. t ◦ Var i →β
∗ t ′ ∧ t ′ ∈ NF

Again, this result can be proved by induction on the derivation of t ∈ NF, using the previous
lemma subst-Var-NF in the abstraction case. Finally, lifting a normal term t again yields a
normal term:

lemma lift-NF : t ∈ NF =⇒ (
∧

i . lift t i ∈ NF)

As usual, the proof is by induction on the derivation of t ∈ NF.

5.4.4 Main theorems

We are now just one step away from our main result, the weak normalization theorem. Actually,
the main difficulty is to prove a central lemma, from which weak normalization then follows
by a relatively simple argument. The essence of this lemma can be summarized by the slogan
“well-typed substitution preserves the existence of normal forms”. More formally, if we have
a well-typed term t in normal form containing a variable i of type U, then the term t [u/i]
obtained by substituting a term u of type U for the variable i can be reduced to a normal form
t ′. The proof of this statement, which we will now discuss in detail, is by main induction on
the type U, followed by a side induction on the derivation of t ∈ NF. An interesting point to
note is that the induction on the type U will not be performed using the standard structural
induction rule

(
∧

a. P (Atom a)) =⇒ (
∧

T1 T2 . P T1 =⇒ P T2 =⇒ P (T1 ⇒ T2)) =⇒ P T

for the datatype of types, but using the rule

(
∧

T . (
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T1) =⇒
(
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T2) =⇒ P T) =⇒
P T

which is easily derived from the standard one. The advantage of the latter rule over the
standard induction rule is that the application of the induction hypotheses and the case analysis
on T are decoupled. This is crucial since the actual structure of the type will be of importance
only for one case of the proof, in which the main induction hypothesis is used, whereas in all
the other cases, which are proved using the side induction hypothesis, the structure of the type
is immaterial.

lemma subst-type-NF :∧
t e T u i . t ∈ NF =⇒ e〈i :U 〉 ` t : T =⇒ u ∈ NF =⇒ e ` u : U =⇒ ∃ t ′. t [u/i] →β

∗ t ′ ∧ t ′ ∈ NF
(is PROP ?P U is

∧
t e T u i . - =⇒ PROP ?Q t e T u i U)

To make the presentation more compact, we use ?P to abbreviate the main induction hypothesis, and
?Q to abbreviate the side induction hypothesis, i.e. the above formula without the premise t ∈ NF. We
start the proof by performing induction on the type U.

proof (induct U)
fix T t

For technical reasons, we will also need the following variant of the side induction hypothesis ?Q, where
meta-level implications =⇒ have been replaced by object-level implications −→:

let ?R = λt . ∀ e T ′ u i .
e〈i :T 〉 ` t : T ′ −→ u ∈ NF −→ e ` u : T −→ (∃ t ′. t [u/i] →β

∗ t ′ ∧ t ′ ∈ NF)

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 121

Provided that T is a function type, we may use the main induction hypothesis for both the argument
and the result type.

assume MI1 :
∧

T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T1
assume MI2 :

∧
T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T2

We proceed by side induction on the derivation of t ∈ NF :

assume t ∈ NF
thus

∧
e T ′ u i . PROP ?Q t e T ′ u i T

proof induct
fix e T ′ u i assume uNF : u ∈ NF and uT : e ` u : T
{
case (App ts x e- T ′- u- i-)
assume appT : e〈i :T 〉 ` Var x ◦◦ ts : T ′

In the application case, we have to distinguish whether or not the variable x in the head of the term
coincides with the variable i to be substituted.

from nat-eq-dec show ∃ t ′. (Var x ◦◦ ts)[u/i] →β
∗ t ′ ∧ t ′ ∈ NF

proof
assume eq : x = i
show ?thesis

In this case, we do a case analysis on the argument list ts. If the argument list is empty, the claim
follows trivially.

proof (cases ts)
case Nil
with eq have (Var x ◦◦ [])[u/i] →β

∗ u by simp
with Nil and uNF show ?thesis by simp rules

next
case (Cons a as)

The most difficult case of the proof is the one where the argument list is nonempty, i.e. the term on
which the substitution has to be performed has the form Var x ◦◦ (a # as). We start by establishing
several typing properties:

with appT have e〈i :T 〉 ` Var x ◦◦ (a # as) : T ′ by simp
then obtain Us

where varT ′: e〈i :T 〉 ` Var x : Us V T ′ and argsT ′: e〈i :T 〉 `̀ a # as : Us
by (rule var-app-typesE)

from argsT ′ obtain T ′′ Ts where Us: Us = T ′′ # Ts
by (cases Us) (rule FalseE , simp+)

from varT ′ and Us have varT : e〈i :T 〉 ` Var x : T ′′⇒ Ts V T ′ by simp
from varT eq have T : T = T ′′⇒ Ts V T ′ by cases auto
with uT have uT ′: e ` u : T ′′⇒ Ts V T ′ by simp
from argsT ′ and Us have argsT : e〈i :T 〉 `̀ as : Ts by simp
from argsT ′ and Us have argT : e〈i :T 〉 ` a : T ′′ by simp
from argT uT refl have aT : e ` a[u/i] : T ′′ by (rule subst-lemma)

As already noted in §5.4.2, the argument types Us can be computed without inspecting the typing
derivation. Substitution and normalization will now be performed in several steps. As a first step, we
apply substitution and normalization to the tail as of the argument list. To this end, we prove the
following intermediate statement:

have as:
∧

Us. e〈i :T 〉 `̀ as : Us =⇒ listall ?R as =⇒
∃ as ′. Var 0 ◦◦ map (λt . lift (t [u/i]) 0) as →β

∗ Var 0 ◦◦ map (λt . lift t 0) as ′ ∧
Var 0 ◦◦ map (λt . lift t 0) as ′ ∈ NF

(is
∧

Us. - =⇒ - =⇒ ∃ as ′. ?ex Us as as ′)

122 CHAPTER 5. CASE STUDIES

The desired normal forms are guaranteed to exist due to the side induction hypothesis listall ?R as.
Since we later on want to substitute another term for the head variable Var 0, we also have to lift the
argument terms, in order to avoid that they are affected by the substitution. In other words, the head
variable has to be new. The above statement is proved by “reverse induction” on as, i.e. elements are
appended to the right of the list in the induction step. From the computational point of view, the
existentially quantified variable as ′ acts as a kind of accumulator for the normalized terms. To save
space, the body of the existential quantifier is abbreviated by ?ex. As expected, the base case for the
empty argument list is trivial.

proof (induct as rule: rev-induct)
case (Nil Us)
with Var-NF have ?ex Us [] [] by simp
thus ?case ..

next
case (snoc b bs Us)

In the step case, we need to perform substitution and normalization on the argument list bs @ [b].
By the “reverse induction” hypothesis, we already know the result for the argument list bs, whereas
the result of applying substitution and normalization to b can be computed by appeal to the side
induction hypothesis ?R b. We can then put together the normalized terms using the fact that →β

∗ is
a congruence wrt. application and the fact that →β

∗ is compatible with lifting.

have e〈i :T 〉 `̀ bs @ [b] : Us .
then obtain Vs W where Us: Us = Vs @ [W]
and bs: e〈i :T 〉 `̀ bs : Vs and bT : e〈i :T 〉 ` b : W by (rule types-snocE)

from snoc have listall ?R bs by simp
with bs have ∃ bs ′. ?ex Vs bs bs ′ by (rule snoc)
then obtain bs ′ where

bsred : Var 0 ◦◦ map (λt . lift (t [u/i]) 0) bs →β
∗ Var 0 ◦◦ map (λt . lift t 0) bs ′

and bsNF : Var 0 ◦◦ map (λt . lift t 0) bs ′ ∈ NF by rules
from snoc have ?R b by simp
with bT and uNF and uT have ∃ b ′. b[u/i] →β

∗ b ′ ∧ b ′ ∈ NF by rules
then obtain b ′ where bred : b[u/i] →β

∗ b ′ and bNF : b ′ ∈ NF by rules
from bsNF have listall (λt . t ∈ NF) (map (λt . lift t 0) bs ′) by (rule App-NF-D)
moreover have lift b ′ 0 ∈ NF by (rule lift-NF)
ultimately have listall (λt . t ∈ NF) (map (λt . lift t 0) (bs ′ @ [b ′]))
by simp

hence Var 0 ◦◦ map (λt . lift t 0) (bs ′ @ [b ′]) ∈ NF by (rule NF .App)
moreover from bred have lift (b[u/i]) 0 →β

∗ lift b ′ 0 by (rule lift-preserves-beta ′)
with bsred have (Var 0 ◦◦ map (λt . lift (t [u/i]) 0) bs) ◦ lift (b[u/i]) 0 →β

∗

(Var 0 ◦◦ map (λt . lift t 0) bs ′) ◦ lift b ′ 0 by (rule rtrancl-beta-App)
ultimately have ?ex Us (bs @ [b]) (bs ′ @ [b ′]) by simp
thus ?case ..

qed
from App and Cons have listall ?R as by simp (rules dest : listall-conj2)
with argsT have ∃ as ′. ?ex Ts as as ′ by (rule as)
then obtain as ′ where

asred : Var 0 ◦◦ map (λt . lift (t [u/i]) 0) as →β
∗ Var 0 ◦◦ map (λt . lift t 0) as ′

and asNF : Var 0 ◦◦ map (λt . lift t 0) as ′ ∈ NF by rules

By using the side induction hypothesis one more time, we can also apply substitution and normalization
to the head a of the argument list.

from App and Cons have ?R a by simp
with argT and uNF and uT have ∃ a ′. a[u/i] →β

∗ a ′ ∧ a ′ ∈ NF by rules
then obtain a ′ where ared : a[u/i] →β

∗ a ′ and aNF : a ′ ∈ NF by rules

In order to show that the application of u to a[u/i] has a normal form, too, we first note that the term

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 123

u applied to a new variable again has a normal form. Since the argument type T ′′ of u is smaller than
the type T = T ′′ ⇒ Ts V T ′, we can use the main induction hypothesis, together with the previous
result and compatibility of →β

∗ with substitution, to show that also u ◦ a[u/i] has a normal form.

from uNF have lift u 0 ∈ NF by (rule lift-NF)
hence ∃ u ′. lift u 0 ◦ Var 0 →β

∗ u ′ ∧ u ′ ∈ NF by (rule app-Var-NF)
then obtain u ′ where ured : lift u 0 ◦ Var 0 →β

∗ u ′ and u ′NF : u ′ ∈ NF by rules
from T and u ′NF have ∃ ua. u ′[a ′/0] →β

∗ ua ∧ ua ∈ NF
proof (rule MI1)
have e〈0 :T ′′〉 ` lift u 0 ◦ Var 0 : Ts V T ′

proof (rule typing .App)
from uT ′ show e〈0 :T ′′〉 ` lift u 0 : T ′′⇒ Ts V T ′ by (rule lift-type)
show e〈0 :T ′′〉 ` Var 0 : T ′′ by (rule typing .Var) simp

qed
with ured show e〈0 :T ′′〉 ` u ′ : Ts V T ′ by (rule subject-reduction ′)
from ared aT show e ` a ′ : T ′′ by (rule subject-reduction ′)

qed
then obtain ua where uared : u ′[a ′/0] →β

∗ ua and uaNF : ua ∈ NF by rules
from ared have (lift u 0 ◦ Var 0)[a[u/i]/0] →β

∗ (lift u 0 ◦ Var 0)[a ′/0]
by (rule subst-preserves-beta2 ′)

also from ured have (lift u 0 ◦ Var 0)[a ′/0] →β
∗ u ′[a ′/0]

by (rule subst-preserves-beta ′)
also note uared
finally have (lift u 0 ◦ Var 0)[a[u/i]/0] →β

∗ ua .
hence uared ′: u ◦ a[u/i] →β

∗ ua by simp

Finally, since the type Ts V T ′ of u ◦ a[u/i] is also smaller than the type T = T ′′ ⇒ Ts V T ′, we
may again use the main induction hypothesis, together with the previous result, the above intermediate
statement concerning the application of substitution and normalization to the argument list as, as well
as compatibility of →β

∗ with substitution, to show that also u ◦ a[u/i] ◦◦ map (λt . t [u/i]) as has a
normal form.

from T have ∃ r . (Var 0 ◦◦ map (λt . lift t 0) as ′)[ua/0] →β
∗ r ∧ r ∈ NF

proof (rule MI2)
have e〈0 :Ts V T ′〉 ` Var 0 ◦◦ map (λt . lift (t [u/i]) 0) as : T ′

proof (rule list-app-typeI)
show e〈0 :Ts V T ′〉 ` Var 0 : Ts V T ′ by (rule typing .Var) simp
from uT argsT have e `̀ map (λt . t [u/i]) as : Ts
by (rule substs-lemma)

hence e〈0 :Ts V T ′〉 `̀ map (λt . lift t 0) (map (λt . t [u/i]) as) : Ts
by (rule lift-types)

thus e〈0 :Ts V T ′〉 `̀ map (λt . lift (t [u/i]) 0) as : Ts
by (simp-all add : map-compose [symmetric] o-def)

qed
with asred show e〈0 :Ts V T ′〉 ` Var 0 ◦◦ map (λt . lift t 0) as ′ : T ′

by (rule subject-reduction ′)
from argT uT refl have e ` a[u/i] : T ′′ by (rule subst-lemma)
with uT ′ have e ` u ◦ a[u/i] : Ts V T ′ by (rule typing .App)
with uared ′ show e ` ua : Ts V T ′ by (rule subject-reduction ′)

qed
then obtain r where rred : (Var 0 ◦◦ map (λt . lift t 0) as ′)[ua/0] →β

∗ r
and rnf : r ∈ NF by rules

from asred have (Var 0 ◦◦ map (λt . lift (t [u/i]) 0) as)[u ◦ a[u/i]/0] →β
∗

(Var 0 ◦◦ map (λt . lift t 0) as ′)[u ◦ a[u/i]/0]
by (rule subst-preserves-beta ′)

also from uared ′ have (Var 0 ◦◦ map (λt . lift t 0) as ′)[u ◦ a[u/i]/0] →β
∗

124 CHAPTER 5. CASE STUDIES

(Var 0 ◦◦ map (λt . lift t 0) as ′)[ua/0] by (rule subst-preserves-beta2 ′)
also note rred
finally have (Var 0 ◦◦ map (λt . lift (t [u/i]) 0) as)[u ◦ a[u/i]/0] →β

∗ r .
with rnf Cons eq show ?thesis
by (simp add : map-compose [symmetric] o-def) rules

qed

This concludes the proof for the case where x = i.

next
assume neq : x 6= i
show ?thesis

The proof for this case is much easier than the previous one, although it is not, as claimed by Matthes
and Joachimski [56, §2.3], completely “trivial”. As in the previous case, the side induction hypothesis
has to be applied to all terms in the argument list ts, which is accomplished by proving an intermediate
statement using “reverse induction” on ts. Again, the fact that →β

∗ is a congruence wrt. application
is required in the step case, and the existentially quantified variable ts ′ acts as an accumulator for
normalized terms. This time, no lifting is involved, but the head variable may be decremented as a side
effect of substitution (see §5.4.1) if i < x, which is why we prove the statement for all head variables x ′

first and perform a case distinction later on.

proof −
from appT obtain Us

where varT : e〈i :T 〉 ` Var x : Us V T ′

and argsT : e〈i :T 〉 `̀ ts : Us
by (rule var-app-typesE)

have ts:
∧

Us. e〈i :T 〉 `̀ ts : Us =⇒ listall ?R ts =⇒
∃ ts ′. ∀ x ′. Var x ′ ◦◦ map (λt . t [u/i]) ts →β

∗ Var x ′ ◦◦ ts ′ ∧ Var x ′ ◦◦ ts ′ ∈ NF
(is
∧

Us. - =⇒ - =⇒ ∃ ts ′. ?ex Us ts ts ′)
proof (induct ts rule: rev-induct)
case (Nil Us)
with Var-NF have ?ex Us [] [] by simp
thus ?case ..

next
case (snoc b bs Us)
have e〈i :T 〉 `̀ bs @ [b] : Us .
then obtain Vs W where Us: Us = Vs @ [W]
and bs: e〈i :T 〉 `̀ bs : Vs and bT : e〈i :T 〉 ` b : W by (rule types-snocE)

from snoc have listall ?R bs by simp
with bs have ∃ bs ′. ?ex Vs bs bs ′ by (rule snoc)
then obtain bs ′ where

bsred :
∧

x ′. Var x ′ ◦◦ map (λt . t [u/i]) bs →β
∗ Var x ′ ◦◦ bs ′

and bsNF :
∧

x ′. Var x ′ ◦◦ bs ′ ∈ NF by rules
from snoc have ?R b by simp
with bT and uNF and uT have ∃ b ′. b[u/i] →β

∗ b ′ ∧ b ′ ∈ NF by rules
then obtain b ′ where bred : b[u/i] →β

∗ b ′ and bNF : b ′ ∈ NF by rules
from bsred bred have

∧
x ′. (Var x ′ ◦◦ map (λt . t [u/i]) bs) ◦ b[u/i] →β

∗

(Var x ′ ◦◦ bs ′) ◦ b ′ by (rule rtrancl-beta-App)
moreover from bsNF [of 0] have listall (λt . t ∈ NF) bs ′ by (rule App-NF-D)
with bNF have listall (λt . t ∈ NF) (bs ′ @ [b ′]) by simp
hence

∧
x ′. Var x ′ ◦◦ (bs ′ @ [b ′]) ∈ NF by (rule NF .App)

ultimately have ?ex Us (bs @ [b]) (bs ′ @ [b ′]) by simp
thus ?case ..

qed
from App have listall ?R ts by (rules dest : listall-conj2)
with argsT have ∃ ts ′. ?ex Ts ts ts ′ by (rule ts)

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 125

then obtain ts ′ where NF : ?ex Ts ts ts ′ ..
from nat-le-dec show ?thesis
proof
assume i < x
with NF show ?thesis by simp rules

next
assume ¬ (i < x)
with NF neq show ?thesis by (simp add : subst-Var) rules

qed
qed

qed

This concludes the proof for the application case. The abstraction case follows by an easy application
of the side induction hypothesis, using the fact that →β

∗ is a congruence wrt. abstraction.

next
case (Abs r e- T ′- u- i-)
assume absT : e〈i :T 〉 ` Abs r : T ′

then obtain R S where e〈0 :R〉〈Suc i :T 〉 ` r : S by (rule abs-typeE) simp
moreover have lift u 0 ∈ NF by (rule lift-NF)
moreover have e〈0 :R〉 ` lift u 0 : T by (rule lift-type)
ultimately have ∃ t ′. r [lift u 0/Suc i] →β

∗ t ′ ∧ t ′ ∈ NF by (rule Abs)
thus ∃ t ′. Abs r [u/i] →β

∗ t ′ ∧ t ′ ∈ NF
by simp (rules intro: rtrancl-beta-Abs NF .Abs)

}
qed

qed

Before we can embark on the proof of the main theorem of this section, stating that each
well-typed λ-term has a normal form, there is another problem to solve. As has already
been discussed before, all the typing information required in the proof of the central lemma
subst-type-NF was easy to reconstruct even without inspecting the typing derivation, since
the terms supplied as an input to the algorithm underlying the proof were already in normal
form. This is no longer the case for the main theorem, of course, since its very purpose is
the normalization of terms. As these terms do not contain any typing information themselves,
this information has to be obtained from the typing derivation. In order be able to formalize
the main theorem, we therefore define a computationally relevant copy e `R t : T of the
typing judgement e ` t : T, where the subscript R stands for Relevant. The introduction rules
characterizing this judgement are the same as for the original one. In order to plug the previous
lemma into the proof of the main theorem, we will need the following rule, stating that the
computationally relevant typing judgement implies the computationally irrelevant one:

lemma rtyping-imp-typing : e `R t : T =⇒ e ` t : T

This rule is easily proved by induction on e `R t : T. Note that the other direction would be
provable as well, although, from the program extraction point of view, this would not make
much sense, since there cannot be a program corresponding to the proof of a computationally
relevant statement by induction on a computationally irrelevant statement.
We are now ready to prove weak normalization, which will be done by induction on the typing
derivation e `R t : T. All cases except for the application case are trivial. In order to normalize
a term of the form s ◦ t, we first use the induction hypothesis to compute the normal forms s ′

and t ′ of s and t, respectively. To show that also s ′ ◦ t ′ has a normal form, we first note that

126 CHAPTER 5. CASE STUDIES

the application of a new variable to the term t ′ is in normal form, so the term obtained by
substituting the term s ′ for this variable has a normal form according to lemma subst-type-NF.
By transitivity, we can then put together the reduction sequences found in this way, to yield
a normal form of s ◦ t.

theorem type-NF : assumes T : e `R t : T
shows ∃ t ′. t →β

∗ t ′ ∧ t ′ ∈ NF using T
proof induct
case Var
show ?case by (rules intro: Var-NF)

next
case Abs
thus ?case by (rules intro: rtrancl-beta-Abs NF .Abs)

next
case (App T U e s t)
from App obtain s ′ t ′ where

sred : s →β
∗ s ′ and sNF : s ′ ∈ NF

and tred : t →β
∗ t ′ and tNF : t ′ ∈ NF by rules

have ∃ u. (Var 0 ◦ lift t ′ 0)[s ′/0] →β
∗ u ∧ u ∈ NF

proof (rule subst-type-NF)
have lift t ′ 0 ∈ NF by (rule lift-NF)
hence listall (λt . t ∈ NF) [lift t ′ 0] by (rule listall-cons) (rule listall-nil)
hence Var 0 ◦◦ [lift t ′ 0] ∈ NF by (rule NF .App)
thus Var 0 ◦ lift t ′ 0 ∈ NF by simp
show e〈0 :T ⇒ U 〉 ` Var 0 ◦ lift t ′ 0 : U
proof (rule typing .App)
show e〈0 :T ⇒ U 〉 ` Var 0 : T ⇒ U
by (rule typing .Var) simp

from tred have e ` t ′ : T
by (rule subject-reduction ′) (rule rtyping-imp-typing)

thus e〈0 :T ⇒ U 〉 ` lift t ′ 0 : T
by (rule lift-type)

qed
from sred show e ` s ′ : T ⇒ U
by (rule subject-reduction ′) (rule rtyping-imp-typing)

qed
then obtain u where ured : s ′ ◦ t ′→β

∗ u and unf : u ∈ NF by simp rules
from sred tred have s ◦ t →β

∗ s ′ ◦ t ′ by (rule rtrancl-beta-App)
hence s ◦ t →β

∗ u using ured by (rule rtrancl-trans)
with unf show ?case by rules

qed

5.4.5 Extracted programs

We conclude this case study with an analysis of the programs extracted from the proofs pre-
sented in the previous section. The program corresponding to the proof of the central lemma,
which performs substitution and normalization, is shown in Figure 5.16. The outer structure
of this program consists of two nested recursion combinators type-induct-P and NFT-rec corre-
sponding to induction on types and the derivation of normal forms, respectively. The datatype
representing the computational content of the inductive definition of normal forms is

datatype NFT = Dummy | App (dB list) nat (nat ⇒ NFT) | Abs dB NFT

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 127

subst-type-NF ≡
λx xa xb xc xd xe H Ha.

type-induct-P xc
(λx H2 H2a xa xb xc xd xe H .

NFT-rec arbitrary
(λts xa xaa r xb xc xd xe H .

case nat-eq-dec xa xe of
Left ⇒ case ts of [] ⇒ (xd , H)

| a # list ⇒
var-app-typesE-P (xb〈xe:x〉) xa (a # list)
(λUs. case Us of [] ⇒ arbitrary

| T ′′ # Ts ⇒
case rev-induct-P list (λx H . ([], Var-NF 0))

(λx xa H2 xc Ha.
types-snocE-P xa x xc
(λVs W .

case H2 Vs (fst (fst (listall-snoc-P xa) Ha)) of
(x , y) ⇒

case snd (fst (listall-snoc-P xa) Ha) xb W xd xe H of
(xa, ya) ⇒

(x @ [xa],
NFT .App (map (λt . lift t 0) (x @ [xa])) 0
(λxa. snd (listall-snoc-P (map (λt . lift t 0) x)) (App-NF-D y, lift-NF 0 ya) xa))))

Ts (listall-conj2-P-Q list
(λi . (xaa (Suc i), r (Suc i)))) of

(x , y) ⇒
case snd (xaa 0 , r 0) xb T ′′ xd xe H of
(xa, ya) ⇒

case app-Var-NF 0 (lift-NF 0 H) of
(xd , yb) ⇒

case H2 T ′′ (Ts V xc) xd xb (Ts V xc) xa 0 yb ya of
(xa, ya) ⇒

case H2a T ′′ (Ts V xc)
(foldl dB .App (dB .Var 0) (map (λt . lift t 0) x)) xb xc xa 0 y ya of

(x , y) ⇒ (x , y))
| Right ⇒

var-app-typesE-P (xb〈xe:x〉) xa ts
(λUs. case rev-induct-P ts (λx H . ([], λx . Var-NF x))

(λx xa H2 xc Ha.
types-snocE-P xa x xc
(λVs W . case H2 Vs (fst (fst (listall-snoc-P xa) Ha)) of

(x , y) ⇒
case snd (fst (listall-snoc-P xa) Ha) xb W xd xe H of
(xa, ya) ⇒

(x @ [xa],
λxb. NFT .App (x @ [xa]) xb (snd (listall-snoc-P x) (App-NF-D (y 0), ya)))))

Us (listall-conj2-P-Q ts (λz . (xaa z , r z))) of
(x , y) ⇒

case nat-le-dec xe xa of
Left ⇒ (foldl (λu ua. dB .App u ua) (dB .Var (xa − Suc 0)) x ,

y (xa − Suc 0))
| Right ⇒ (foldl (λu ua. dB .App u ua) (dB .Var xa) x , y xa)))

(λt x r xa xb xc xd H .
abs-typeE-P xb
(λU V . case case r (λu. (xa〈0 :U 〉) u) V (lift xc 0) (Suc xd) (lift-NF 0 H) of

(x , y) ⇒ (dB .Abs x , NFT .Abs x y) of
(x , y) ⇒ (x , y)))

H (λu. xb u) xc xd xe)
x xa xd xe xb H Ha

Figure 5.16: Program extracted from subst-type-NF

128 CHAPTER 5. CASE STUDIES

subst-Var-NF ≡
λx xa H .

NFT-rec arbitrary
(λts x xa r xb xc.

case nat-eq-dec x xc of
Left ⇒ NFT .App (map (λt . t [dB .Var xb/xc]) ts) xb

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz . (xa z , r z)))
(listall-conj2-P-Q ts (λz . (xa z , r z))))

| Right ⇒
case nat-le-dec xc x of
Left ⇒ NFT .App (map (λt . t [dB .Var xb/xc]) ts) (x − Suc 0)

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz . (xa z , r z)))
(listall-conj2-P-Q ts (λz . (xa z , r z))))

| Right ⇒
NFT .App (map (λt . t [dB .Var xb/xc]) ts) x
(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz . (xa z , r z)))

(listall-conj2-P-Q ts (λz . (xa z , r z)))))
(λt x r xa xb. NFT .Abs (t [dB .Var (Suc xa)/Suc xb]) (r (Suc xa) (Suc xb))) H x xa

app-Var-NF ≡
λx . NFT-rec arbitrary

(λts xa xaa r .
(foldl dB .App (dB .Var xa) (ts @ [dB .Var x]),
NFT .App (ts @ [dB .Var x]) xa
(snd (listall-app-P ts)

(listall-conj1-P-Q ts (λz . (xaa z , r z)),
listall-cons-P (Var-NF x) listall-nil-eq-P))))

(λt xa r . (t [dB .Var x/0], subst-Var-NF x 0 xa))

lift-NF ≡
λx H . NFT-rec arbitrary

(λts x xa r xb.
case nat-le-dec x xb of
Left ⇒ NFT .App (map (λt . lift t xb) ts) x

(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz . (xa z , r z)))
(listall-conj2-P-Q ts (λz . (xa z , r z))))

| Right ⇒
NFT .App (map (λt . lift t xb) ts) (Suc x)
(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz . (xa z , r z)))

(listall-conj2-P-Q ts (λz . (xa z , r z)))))
(λt x r xa. NFT .Abs (lift t (Suc xa)) (r (Suc xa))) H x

type-NF ≡
λH . rtypingT-rec (λe x T . (dB .Var x , Var-NF x))

(λe T t U x r . case r of (x , y) ⇒ (dB .Abs x , NFT .Abs x y))
(λe s T U t x xa r ra.

case r of
(x , y) ⇒

case ra of
(xa, ya) ⇒

case case subst-type-NF (dB .App (dB .Var 0) (lift xa 0)) e 0 (T ⇒ U) U x
(NFT .App [lift xa 0] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y of

(x , y) ⇒ (x , y) of
(x , y) ⇒ (x , y))

H

Figure 5.17: Program extracted from lemmas and main theorem

5.4. WEAK NORMALIZATION FOR SIMPLY-TYPED LAMBDA-CALCULUS 129

Note that the universal quantifier in the definition of the predicate listall, which is used in
the first introduction rule of NF shown in §5.4.3, gives rise to the function type nat ⇒ NFT
in the list of argument types for the constructor App in the above datatype definition. Since
the constructors App and Abs both refer to the type NFT to be defined recursively, another
Dummy constructor is required in order to ensure non-emptiness of the datatype.
The recursion combinator NFT-rec occurring in the program shown in Figure 5.16 has three
functions as arguments, corresponding to the constructors of the above datatype. The first
function corresponds to the Dummy constructor. Since this constructor may never occur, we
may supply an arbitrary function as an argument, which, when generating executable code,
may be implemented by a function raising an exception on invocation. The second function
corresponds to the application case of the proof. It contains a case distinction (using function
nat-eq-dec) on whether the variable xa coincides with the variable xe5. The first case (labelled
with Left), which is the more difficult one, contains another case distinction on the structure of
the argument list. The second case (labelled with Right) is the easier one. It contains another
case distinction (using function nat-le-dec) on whether xe < xa. In the “Left” case, the variable
in the head of the term is decremented, whereas it remains unchanged in the “Right” case.
In both the case for xa = xe and xa 6= xe the function rev-induct-P is used to apply the
normalization function to a list of terms. The last seven lines of the program shown in Figure
5.16 contain the relatively trivial program corresponding to the proof for the abstraction case.
The correctness theorem corresponding to the program subst-type-NF is∧

x . (x , t) ∈ NFR =⇒
e〈i :U 〉 ` t : T =⇒
(
∧

xa. (xa, u) ∈ NFR =⇒
e ` u : U =⇒
t [u/i] →β

∗ fst (subst-type-NF t e i U T u x xa) ∧
(snd (subst-type-NF t e i U T u x xa), fst (subst-type-NF t e i U T u x xa)) ∈ NFR)

where NFR is the realizability predicate corresponding to the datatype NFT, which is induc-
tively defined by the rules

∀ i . i < length ts −→ (nfs i , ts ! i) ∈ NFR =⇒
(NFT .App ts x nfs, foldl dB .App (dB .Var x) ts) ∈ NFR
(nf , t) ∈ NFR =⇒ (NFT .Abs t nf , dB .Abs t) ∈ NFR

Note that (nf , t) ∈ NFR =⇒ t ∈ NF, which is easily proved by induction on the derivation
of (nf , t) ∈ NFR.
The programs corresponding to the main theorem type-NF, as well as to some lemmas, are
shown in Figure 5.17. The function type-NF is defined by recursion on the datatype

datatype rtypingT =
Var (nat ⇒ type) nat type
| Abs (nat ⇒ type) type dB type rtypingT
| App (nat ⇒ type) dB type type dB rtypingT rtypingT

representing the computational content of the typing derivation. The correctness statement
for the main function type-NF is∧

x . (x , e, t , T) ∈ rtypingR =⇒ t →β
∗ fst (type-NF x) ∧ (snd (type-NF x), fst (type-NF x)) ∈ NFR

5Due to the numerous transformations, which are performed on the proof before extraction, variable names
in the extracted programs may often differ from those in the original Isar proof document.

130 CHAPTER 5. CASE STUDIES

where the realizability predicate rtypingR corresponding to the computationally relevant ver-
sion of the typing judgement is inductively defined by the rules

e x = T =⇒ (rtypingT .Var e x T , e, dB .Var x , T) ∈ rtypingR
(ty , e〈0 :T 〉, t , U) ∈ rtypingR =⇒ (rtypingT .Abs e T t U ty , e, dB .Abs t , T ⇒ U) ∈ rtypingR
(ty , e, s, T ⇒ U) ∈ rtypingR =⇒
(ty ′, e, t , T) ∈ rtypingR =⇒ (rtypingT .App e s T U t ty ty ′, e, dB .App s t , U) ∈ rtypingR

The reduction relation →β
∗ has been chosen to have no computational content, since we are

only interested in the normal form of a term, and not the actual reduction sequence leading to
it.
Compared to the programs which are extracted “manually” by Matthes and Joachimski [56,
§2.3], the automatically extracted programs presented in this section are certainly more com-
plicated and harder to read. This is due to the fact that, although (according to the proof) the
main recursion in the program given by Matthes and Joachimski should be over types, no type
information is mentioned in the extracted program at all. Moreover, the program looks as if it
were defined by recursion over terms, whereas, strictly speaking, it should involve recursion over
the datatype NFT representing the computational content of the inductive characterization of
normal forms.
Due to the considerable size of the proof of lemma subst-type-NF, some care was necessary in
order to arrive at an extracted program of reasonable size. In a first attempt, we extracted a
program of about 600 lines. The reason for this enormous size was the somewhat naive choice
of λp pq . pq (fst p) (snd p) as a realizer for the existential elimination rule, which lead to an
exponential blowup of the program size due to the double occurrence of the program p in the
term. Replacing this realizer by the more efficient λp pq . case p of (x , y) ⇒ pq x y helped to
cut down the size of the extracted program to slightly more than 100 lines (see also §4.3.3).

5.5 Discussion

A common prejudice about program extraction is that it is only applicable to toy examples
and leads to more complicated formalizations, since everything has to be proved constructively.
By the case studies in the previous sections, we have demonstrated that this is not the case,
though. In particular, the proof of weak normalization for the simply-typed λ-calculus is a
quite large example, consisting of over 500 lines of Isabelle code. It is interesting to note that
this proof was obtained by modifying a similar proof of strong normalization, which had been
done in Isabelle by the author of this thesis long before the program extraction framework
was available. Although this proof was done completely without program extraction in mind,
it did not make use of any classical proof principles, so no additional effort was necessary to
make it constructive.
A rather impressive example for the power of program extraction has been given by the Foun-
dations of Computer Science group from Nijmegen University. Cruz-Filipe and Spitters [30]
have shown how to extract a program from a proof of the Fundamental Theorem of Algebra
(FTA), which had already been formalized earlier in Coq by Geuvers et al. [41]. One of the
lessons learned from this project is that program extraction is not a magic push-button tech-
nique, which somehow yields programs for free. Due to the size of the FTA formalization,
which consisted of about 930K of Coq code, various optimization techniques had to be applied
in order to reduce the size of the extracted program from initially 15Mb to (currently) 3Mb

5.5. DISCUSSION 131

[30, §4.1]. Developing and investigating such optimization techniques is a promising research
area, and a lot of interesting applications are to be expected in the future.

132 CHAPTER 5. CASE STUDIES

Chapter 6

Executing higher order logic specifica-
tions

6.1 Introduction

It has long been recognized by the theorem proving community that the ability to generate ex-
ecutable code from specifications is essential for validation purposes. Due to the gap between a
“real world” system and its formal model in a theorem prover, trying out prototypes generated
from specifications on test cases helps to increase the confidence in the adequacy of the formal
model. Practical experience has shown that it can often be advantageous to execute speci-
fications already before one embarks on proving theorems about them. This helps to detect
flaws in specifications quite early in the development process, and thus avoids wasting time on
trying to carry out proof attempts based on a possibly faulty specification. One of the first
theorem provers to take the idea of executable specifications seriously, was the Boyer-Moore
system, as well as its successor ACL2 [58]. We have already mentioned earlier that the notion
of executability is also central to constructive type theories as implemented for example in Coq
[12] or Nuprl [27], which can be viewed as functional programming languages with a very rich
type system.
In the previous chapter about program extraction, we have already casually made use of the
possibility to generate executable code from definitions in an object logic. So far, these have
mainly been definitions of inductive datatypes and primitive recursive functions, whose transla-
tion to a functional programming language was fairly straightforward. However, many realistic
formalizations, such as specifications of operational semantics of programming languages, not
only involve recursive functions, but also inductive predicates (or relations), or even a mixture
of both. As an example of such a specification, consider again the β-reduction relation pre-
sented in the case study about weak normalization from §5.4. While the β-reduction relation
itself was defined inductively, it also made use of recursive functions, such as substitution and
lifting. In §5.4, our approach of getting from the inductive specification of β-reduction to an
executable program was to give a constructive proof of the fact that each well-typed λ-term
can be reduced to a normal form, and then extract a program from this proof which provably
satisfies the specification. In this chapter, we will present an alternative approach of giving
a computational meaning to inductively defined predicates by directly interpreting them as a
logic program.
Ordinary logic programming languages such as Prolog suffer from the problem that they do

133

134 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

not allow for a smooth combination of predicates and functions. Although functions could be
turned into predicates by “flattening” them, this seems somewhat unnatural. In this chapter,
we therefore present a method for translating inductively defined relations to functional pro-
grams. Instead of unification, the translated program will use the built-in pattern matching
mechanism of functional programming languages. In order to ensure that predicates can be ex-
ecuted in a functional style, we introduce a so-called mode system, which captures the direction
of dataflow in the rules characterizing an inductive relation. Although this translation cannot
handle full Prolog, it has turned out to be sufficient for most practical applications. Moreover,
it nicely integrates with functional programs, and can also be extended to the higher-order
case, e.g. to predicates taking other predicates as arguments.
A problem with higher order logic specifications is that executable and non-executable parts
are often not clearly separated. As a first step, we therefore identify an executable subset of
higher order logic.

6.2 An executable subset of Isabelle/HOL

As promised in the introduction, we now give a more precise definition of the executable
subset of Isabelle/HOL. As a starting point, we briefly review the main ingredients of HOL
specifications, which we have already encountered in previous chapters.

inductive datatypes can be defined by specifying their constructors, e.g.

datatype nat = 0 | Suc nat

recursive functions can be defined by specifying several characteristic equations, e.g.

primrec
add 0 y = y
add (Suc x) y = Suc (add x y)

All functions in HOL must be terminating. Supported recursion schemes are primitive
recursion (primrec) and well-founded recursion (recdef) [111].

inductive relations (or predicates) can be defined by specifying their introduction rules, e.g.

inductive
0 ∈ even
x ∈ even =⇒ Suc (Suc x) ∈ even

Introduction rules are essentially Horn Clauses, which are also used in logic programming
languages such as Prolog.

Recursive functions and inductive definitions may also be intermixed: For example, an induc-
tive predicate may refer to a recursive function and vice versa.

6.2. AN EXECUTABLE SUBSET OF ISABELLE/HOL 135

Executable elements of HOL specifications We now inductively define the elements an
executable HOL specification may consist of:

• Executable terms contain only executable constants

• Executable constants can be one of the following

– executable inductive relations

– executable recursive functions

– constructors, recursion and case combinators of executable datatypes

– operators on executable primitive types such as bool, i.e. the usual propositional
operators ∧, ∨ and ¬, as well as if then else .

• Executable datatypes, where each constructor argument type is again an executable
datatype or an executable primitive type such as bool or ⇒.

• Executable inductive relations, whose introduction rules have the form

(u1
1, . . . , u

1
n1

) ∈ q1 =⇒ . . . =⇒ (um
1 , . . . , u

m
nm

) ∈ qm =⇒ (t1, . . . , tk) ∈ p

where ui
j and ti are executable terms and qi is either p or some other executable inductive

relation. In addition, also arbitrary executable terms not of the form (. . .) ∈ pi, so-called
side conditions, which may not contain p, are allowed as premises of introduction rules.

• Executable recursive functions, i.e. sets of rewrite rules, whose left-hand side con-
tains only constructor patterns with distinct variables, and the right-hand side is an
executable term.

In the sequel, we write C to denote the set of datatype constructors. The non-executable
elements of HOL are, among others, arbitrary universal and existential quantification, equality
of objects having higher-order types, Hilbert’s selection operator ε, arbitrary type definitions
(other than datatypes) or inductive definitions whose introduction rules contain quantifiers,
like

(
∧
y. (y, x) ∈ r =⇒ y ∈ acc r) =⇒ x ∈ acc r

Execution What exactly do we mean by execution of specifications? Essentially, execution
means finding solutions to queries. A solution σ is a mapping of variables to closed solution
terms. A term t is called a solution term iff

• t is of function type, or

• t = c t1 . . . tn, where the ti are solution terms and c ∈ C.

Let solve be a function that returns for each query a set of solutions. We distinguish two kinds
of queries:

Functional queries have the form t = X, where t is a closed executable term and X is a vari-
able. Queries of this kind should return at most one solution, e.g. solve(add 0 (Suc 0) =
X) = {[X 7→ Suc 0]}

136 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

Relational queries have the form (t1, . . . , tn) ∈ r, where r is an executable inductively de-
fined relation and ti is either a closed executable term or a variable. A query Q of this
kind returns a set of solutions solve(Q). Note that the set returned by solve may also be
empty, e.g. solve(Suc 0 ∈ even) = {}, or infinite, e.g. solve(X ∈ even) = {[X 7→ 0], [X 7→
Suc (Suc 0)], . . .}.

All relational queries have to be well-moded in order to be executable. We will make this notion
more precise in §6.3.1.
It is important to point out the difference between the execution of inductively defined pred-
icates as a logic program, and the extraction of programs from proofs involving inductive
predicates as described in §4.3.5. The latter is concerned with representing derivations of
statements (t1, . . . , tn) ∈ r as elements of a datatype, whereas the former corresponds to the
search for such a derivation.

6.3 Compiling functional logic specifications

Functional-logic programming languages such as Curry [44] should be ideal target languages
for code generation from HOL specifications. But although such languages contain many of
the required concepts and there is an impressive amount of research in this area, the imple-
mentations which are currently available are not always satisfactory. We therefore decided
to choose ML, the implementation language of Isabelle, as a target language. Datatypes and
recursive functions can be translated to ML in a rather straightforward way, with only minor
syntactic modifications. Therefore, this section concentrates on the more interesting task of
translating inductive relations to ML. The translation is based on assigning modes to rela-
tions, a well-known standard technique for the analysis and optimization of logic programs
[68]. Mode systems similar to the one described here have also been studied by Stärk [113]
and Dubois [35].

6.3.1 Mode analysis

In order to translate a predicate into a function, the direction of dataflow has to be analyzed,
i.e. it has to be determined which arguments are input and which are output. Note that for
a predicate there may be more than one possible direction of dataflow. For example, the
predicate

(Nil , ys, ys) ∈ append
(xs, ys, zs) ∈ append =⇒ (Cons x xs, ys, Cons x zs) ∈ append

may be given two lists xs = [1, 2] and ys = [3, 4] as input, the output being the list zs =
[1, 2, 3, 4]. We may as well give a list zs = [1, 2, 3, 4] as an input, the output being a
sequence of pairs of lists xs and ys, where zs is the result of appending xs and ys, namely
xs = [1, 2, 3, 4] and ys = [], or xs = [1, 2, 3] and ys = [4], or xs = [1, 2] and ys = [3, 4], etc.

Mode assignment A specific direction of dataflow is called a mode. We describe a mode of a
predicate by a set of indices, which denote the positions of the input arguments. In the above
example, the two modes described were {1, 2} and {3}. Given a set of predicates P , a relation
modes is called a mode assignment if

modes ⊆ {(p, M) | p ∈ P ∧M ⊆ {1, . . . , arity p}}

6.3. COMPILING FUNCTIONAL LOGIC SPECIFICATIONS 137

The set

modes p = {M | (p, M) ∈ modes} ⊆ P({1, . . . , arity p})

is the set of modes assigned to predicate p.

Consistency of modes A mode M is called consistent with respect to a mode assignment
modes and a clause

(u1
1, . . . , u

1
n1

) ∈ q1 =⇒ . . . =⇒ (um
1 , . . . , u

m
nm

) ∈ qm =⇒ (t1, . . . , tk) ∈ p

if there exists a permutation π and sets of variable names v0, . . ., vm such that

(1) v0 = vars of (args of M (t1, . . . , tk))

(2) ∀1 ≤ i ≤ m. ∃M ′ ∈ modes qπ(i). M
′ ⊆ known args vi−1 (uπ(i)

1 , . . . , u
π(i)
nπ(i))

(3) ∀1 ≤ i ≤ m. vi = vi−1 ∪ vars of (uπ(i)
1 , . . . , u

π(i)
nπ(i))

(4) vars of (t1, . . . , tk) ⊆ vm

The permutation π denotes a suitable execution order for the predicates q1, . . ., qm in the
body of p, where vi is the set of variables whose value is known after the ith execution step.
Condition (1) means that initially, when invoking mode M of predicate p, the values of all
variables occurring in the input arguments of the clause head are known. Condition (2) means
that in order to invoke a mode M ′ of a predicate qπ(i), all of the predicate’s input arguments
which are specified by M ′ must be known. According to condition (3), the values of all
arguments of qπ(i) are known after its execution. Finally, condition (4) states that the values
of all variables occurring in the clause head of p must be known. Here, function args of M
returns the tuple of input arguments specified by mode M , e.g.

args of {1, 2} (Cons x xs, ys, Cons x zs) = (Cons x xs, ys)

Function vars of returns all variables occurring in a tuple, e.g.

vars of (Cons x xs, ys) = {x, xs, ys}

Given some set of variables and an argument tuple, known args returns the indices of all
arguments, whose value is fully known, provided the values of the variables given are known,
e.g.

known args {x, xs, ys} (Cons x xs, ys, Cons x zs) = {1, 2}

Mode inference We write

consistent (p, M) modes

if mode M of predicate p is consistent with respect to all clauses of p, under the mode assign-
ment modes. Let

Γ(modes) = {(p, M) | (p, M) ∈ modes ∧ consistent (p, M) modes}

Then the greatest set of allowable modes for a set of predicates P is the greatest fixpoint of
Γ. According to Kleene’s fixpoint theorem, since Γ is monotone and its domain is finite, this

138 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

fixpoint can be obtained by finite iteration: we successively apply Γ, starting from the greatest
mode assignment

{(p, M) | p ∈ P ∧M ⊆ {1, . . . , arity p}}

until a fixpoint is reached.

Example For append , the allowed modes are inferred as follows:

{} is illegal, because it is impossible to compute the value of ys in the first clause

{1} is illegal for the same reason

{2} is illegal, because it is impossible to compute the value of x in the second clause

{3} is legal, because

• in the first clause, we can compute the first and second argument (Nil , ys) from
the third argument ys

• in the second clause, we can compute x and zs from the third argument. By recur-
sively calling append with mode {3}, we can compute the value of xs and ys. Thus,
we also know the value of the first and second argument (Cons x xs, ys).

{1, 2} is legal, because

• in the first clause, we can compute the third argument ys from the first and second
argument

• in the second clause, we can compute x, xs and ys from the first and second argu-
ment. By recursively calling append with mode {1, 2}, we can compute the value
of zs. Thus, we also have the value of the third argument Cons x zs

{1, 3}, {2, 3}, {1, 2, 3} are legal as well (see e.g. {3})

Well-moded queries A query (t1, . . . , tn) ∈ p is called well-moded with respect to a mode
assignment modes iff

{i | ti is not a variable} ∈ modes p

Mixing predicates and functions The above conditions for the consistency of modes are
sufficient, if the only functions occurring in the clauses are constructor functions. If we allow
arbitrary functions to occur in the clauses, we have to impose some additional restrictions on
the positions of their occurrence. Since non-constructor functions may not be inverted, they
cannot appear in an input position in the clause head or in an output position in the clause
body. Thus, we rephrase conditions (1) and (2) to

(1′) v0 = vars of (args of {i ∈M | funs of ti ⊆ C} (t1, . . . , tk)) ∧
∀i ∈M. funs of ti 6⊆ C −→ eqtype ti

(2′) ∀1 ≤ i ≤ m. ∃M ′ ∈ modes qπ(i).

M ′ ⊆ known args vi−1 (uπ(i)
1 , . . . , u

π(i)
nπ(i)) ∧

funs of (args of ({1, . . . , arity qπ(i)}\M ′) (uπ(i)
1 , . . . , u

π(i)
nπ(i))) ⊆ C

6.3. COMPILING FUNCTIONAL LOGIC SPECIFICATIONS 139

where C is the set of constructor functions and funs of returns the set of all functions occurring
in a tuple. The intuition behind (1′) is as follows: if some of the input parameters specified
by M contain non-constructor functions, we try mode analysis with a subset of M that does
not contain the problematic input parameters. After successful execution, we compare the
computed values of tj , where j ∈ M ∧ funs of tj 6⊆ C, with the values provided as input
arguments to the predicate. For this to work properly, the terms tj need to have an equality
type, i.e. not be of a function type or a datatype involving function types. Note that any M2

with M1 ⊆M2 will be a valid mode, provided M1 is a valid mode and

∀j ∈M2\M1. funs of tj 6⊆ C −→ eqtype tj

As condition (2′) suggests, we can get around the restriction on the occurrence of non-
constructor functions in the clause body by choosing modes M ′ which are sufficiently large,
i.e. have sufficiently many input parameters.

6.3.2 Translation scheme

In the following section, we will explain how to translate predicates given by a set of Horn
Clauses into functional programs in the language ML. For each legal mode of a predicate, a
separate function will be generated. Given a tuple of input arguments, a predicate may return
a potentially infinite sequence of result tuples. Sequences are represented by the type ’a seq
which supports the following operations:

Seq.empty : ’a seq
Seq.single : ’a -> ’a seq
Seq.append : ’a seq * ’a seq -> ’a seq
Seq.map : (’a -> ’b) -> ’a seq -> ’b seq
Seq.flat : ’a seq seq -> ’a seq
Seq.pull : ’a seq -> (’a * ’a seq) option

Note that sequences are implemented lazily, i.e. the evaluation of elements is delayed. The
evaluation of the head element can be forced using the function Seq.pull, which either returns
the head element and the tail of the sequence, or the element None if the sequence is empty.
More information on how to implement such lazy data structures in an eager language such
as ML can be found e.g. in the book by Paulson [91]. In the sequel, we will write s1 ++ s2
instead of Seq.append (s1, s2). In addition, we define the operator

fun s :-> f = Seq.flat (Seq.map f s);

which will be used to compose subsequent calls of predicates. In order to embed additional
side conditions, i.e. boolean expressions, into this sequence programming scheme, we define
the function

fun ?? b = if b then Seq.single () else Seq.empty;

returning either a singleton sequence containing just the unit element () if b evaluates to true,
or the empty sequence if b evaluates to false. Conversely, if we want to use a sequence in an
ordinary boolean expression, it is useful to have a function

fun ?! s = (case Seq.pull s of None => false | Some _ => true);

that checks for the non-emptiness of the sequence s. Using the above operators on sequences,
the modes {1, 2} and {3} of predicate append can be translated into the ML functions

140 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

append_1_2 : ’a list * ’a list -> ’a list seq
append_3 : ’a list -> (’a list * ’a list) seq

which are defined as follows:

fun append_1_2 inp =
Seq.single inp :->
(fn (Nil, ys) => Seq.single (ys) | _ => Seq.empty) ++

Seq.single inp :->
(fn (Cons (x, xs), ys) =>
append_1_2 (xs, ys) :->
(fn (zs) => Seq.single (Cons (x, zs)) | _ => Seq.empty)

| _ => Seq.empty);

fun append_3 inp =
Seq.single inp :->
(fn (ys) => Seq.single (Nil, ys) | _ => Seq.empty) ++

Seq.single inp :->
(fn (Cons (x, zs)) =>
append_3 (zs) :->
(fn (xs, ys) => Seq.single (Cons (x, xs), ys)
| _ => Seq.empty)

| _ => Seq.empty);

In the above translation, every operand of ++ corresponds to one clause of the predicate.
Initially, the input is converted into a one-element sequence using Seq.single, to which suc-
cessively all predicates in the body of the clause are applied using :->. Therefore, the operator
:-> can also be interpreted as a visualization of dataflow.
We will now describe the general translation scheme. Assume the predicate to be translated
has the clause

(ipat1, opat1) ∈ q1 =⇒ . . . =⇒ (ipatm, opatm) ∈ qm =⇒ (ipat0, opat0) ∈ p

To simplify notation, we assume without loss of generality that the predicates in the body of
p are already sorted with respect to the permutation π calculated during mode analysis and
that the arguments of the predicates are already partitioned into input arguments ipat i and
output arguments opat i. Then, p is translated into the function

fun p inp =
Seq.single inp :->
(fn ipat0 => q1 ipat1 :->

(fn opat1 => q2 ipat2 :->
...

(fn opatm => Seq.single opat0

| _ => Seq.empty)
...

| _ => Seq.empty)
| _ => Seq.empty)

++
. . .;

where the . . . after the operator ++ correspond to the translation of the remaining clauses of
p. A characteristic feature of this translation is the usage of ML’s built-in pattern matching

6.3. COMPILING FUNCTIONAL LOGIC SPECIFICATIONS 141

mechanism instead of unification and logical variables. Before calling a predicate qi in the
body of the clause, the output pattern opat i−1 of the preceeding predicate is checked. Before
calling the first predicate q1, the input pattern ipat0 in the head of the clause is checked.

Relation to Haskell list comprehensions The above translation scheme is reminiscent of the
translation scheme for list comprehensions, which is described in the report on the Haskell
programming language [57, §3.11] and implemented in most Haskell compilers. Using list
comprehensions, the functions append 1 2 and append 3 could be written in Haskell in a more
compact way as follows:

append_1_2 inp =
[ys | ([], ys) <- [inp]] ++
[x : zs | (x : xs, ys) <- [inp], zs <- append_1_2 (xs, ys)]

append_3 inp =
[([], ys) | ys <- [inp]] ++
[(x : xs, ys) | x : zs <- [inp], (xs, ys) <- append_3 zs]

The general way of formulating a predicate using list comprehension notation is

p inp =
[opat0 | ipat0 <- [inp], opat1 <- q1 ipat1, . . ., opatm <- ipatm]
++
. . .

Example: executing β-reduction As an example of a program making use of both functional
and logical features, we now consider the specification of β-reduction for λ-terms in de Bruijn
notation, which was introduced in §5.4.1. The specification of the lifting and substitution
functions lift and subst used in the definition of →β is purely functional. Their translation
to ML is straightforward and is therefore not shown here. The specification of β-reduction is
essentially a functional logic program. Using the translation scheme described above, the HOL
specification of→β can be translated to the following ML program for mode {1}, which, given
a term s, computes the sequence of all terms t with s→β t:

fun beta_1 inp =
Seq.single inp :->
(fn (App (Abs s, t)) =>
Seq.single (subst s t 0) | _ => Seq.empty) ++

Seq.single inp :->
(fn (App (s, u)) =>
beta_1 (s) :->
(fn (t) => Seq.single (App (t, u)) | _ => Seq.empty)

| _ => Seq.empty) ++
Seq.single inp :->
(fn (App (u, s)) =>
beta_1 (s) :->
(fn (t) => Seq.single (App (u, t)) | _ => Seq.empty)

| _ => Seq.empty) ++
Seq.single inp :->
(fn (Abs s) =>
beta_1 (s) :->
(fn (t) => Seq.single (Abs t) | _ => Seq.empty)

| _ => Seq.empty);

142 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

Note that the recursive function subst can easily be called from within the logic program
beta 1.

Running the translated program We will now try out the compiled predicate on a small
example: the sequence

val test = beta_1 (Abs (Abs (App
(Abs (App (App (Var 2, Var 0), Var 0)),
App (Abs (App (App (Var 2, Var 0), Var 0)), Var 0)))));

contains the possible reducts of the term λf x. (λy. f y y) ((λz. f z z) x). The first element
of this sequence is

> Seq.hd test;
val it = Abs (Abs (App
(App (Var 1, App (Abs (App (App (Var 2, Var 0), Var 0)), Var 0)),
App (Abs (App (App (Var 2, Var 0), Var 0)), Var 0))))

which denotes the term λf x. f ((λz. f z z) x) ((λz. f z z) x). There is yet another solution
for our query, namely

> Seq.hd (Seq.tl test);
val it = Abs (Abs (App
(Abs (App (App (Var 2, Var 0), Var 0)),
App (App (Var 1, Var 0), Var 0))))

which corresponds to the term λf x. (λy. f y y) (f x x).

6.3.3 Extending the mode system

The mode system introduced in §6.3.1 is not always sufficient: For example, it does not cover
inductive relations such as the transitive closure

inductive
(x, x) ∈ rtrancl r
(x, y) ∈ r =⇒ (y, z) ∈ rtrancl r =⇒ (x, z) ∈ rtrancl r

which take other inductive relations as arguments. This case can be covered by introducing
so-called higher-order modes: a mode of a higher-order relation p taking n relations r1, . . ., rl
as arguments and returning a relation as result is an n+1 tuple, where the first n components
of the tuple correspond to the modes of the argument relations, and the last component
corresponds to the mode of the resulting relation, i.e.

modes p ⊆ P({1, . . . , arity r1})× · · · × P({1, . . . , arity rl})× P({1, . . . , arity p})

For example, rtrancl has modes {({1}, {1}), ({2}, {2}), ({1, 2}, {1, 2})}, i.e. if r has mode {1}
then rtrancl r has mode {1} as well. A higher-order relation may have clauses of the form

(u1
1, . . . , u

1
n1

) ∈ Q1 =⇒ . . . =⇒ (um
1 , . . . , u

m
nm

) ∈ Qm =⇒ (t1, . . . , tk) ∈ p r1 . . . rl
where Qi′ = ri | qj Q′%1

. . . Q′%l′

6.3. COMPILING FUNCTIONAL LOGIC SPECIFICATIONS 143

To describe the consistency of a higher order mode (M1, . . . , Ml, M) with respect to a
mode assignment modes and the above clause, we rephrase condition (2) of the definition of
consistency given in §6.3.1 to

(2′) ∀1 ≤ i ≤ m. ∃M ′ ∈ modes ′ Qπ(i). M
′ ⊆ known args vi−1 (uπ(i)

1 , . . . , u
π(i)
nπ(i))

where
modes ′ ri = {Mi}
modes ′ (qj Q′%1

. . . Q′%l′
) = {M ′ | ∃M ′

1 ∈ modes ′ Q′%1
. . .M ′

l′ ∈ modes ′ Q′%l′
.

(M ′
1, . . . , M

′
l′ , M

′) ∈ modes qj}

Mode ({1}, {1}) of rtrancl could be translated as follows

fun rtrancl_1__1 r inp =
Seq.single inp ++ r inp :-> rtrancl_1__1 r;

Analogously, the translation of mode ({2}, {2}) is

fun rtrancl_2__2 r inp =
Seq.single inp ++ rtrancl_2__2 r inp :-> r;

We can then use rtrancl_1__1 to define a function for computing the set of solutions to the
query s→∗

β X ∧ ¬(∃u. X →β u) as follows:

fun nf inp =
Seq.single inp :->
(fn s => rtrancl_1__1 beta_1 s :->
(fn t => ?? (not (?! (beta_1 t))) :->
(fn () => Seq.single t)));

In other words, nf searches for a normal form of the term s. For example, the normal form
λf x. f (f x x) (f x x) of the term λf x. (λy. f y y) ((λz. f z z) x) from the above example
can be computed by

> Seq.hd (nf (Abs (Abs (App
(Abs (App (App (Var 2, Var 0), Var 0)),
App (Abs (App (App (Var 2, Var 0), Var 0)), Var 0))))));

val it = Abs (Abs (App (App (Var 1, App
(App (Var 1, Var 0), Var 0)), App (App (Var 1, Var 0), Var 0))))

Note that the standard definition of the transitive closure from the Isabelle/HOL library,
which was presented in §4.3.5, cannot be used for this purpose. When executing the rule
rtrancl-into-rtrancl for the step case with the mode ({1}, {1}), the premise (a, b) ∈ r∗ contain-
ing the recursive call is evaluated before the premise (b, c) ∈ r, which leads to nontermination.

6.3.4 Discussion

We briefly discuss some problems encountered when translating specifications into a functional
programming language, which concern the completeness of the translation scheme described in
the previous sections.

144 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

Termination of logic programs A source of possible nontermination is the Prolog-style depth-
first execution strategy of the translated inductive relations. Breadth-first search is much
trickier to implement, but a depth-first iterative deepening strategy could easily be implemented
by giving the generated functions an additional integer argument denoting the recursion depth,
and cutting off the search if this depth exceeds a given limit. Moreover, some inferred modes
or permutations of predicates in the body of a clause may turn out to be non-terminating
(see e.g. the remark in §6.3.3). Termination of logic programs is an interesting problem in its
own right, which we do not attempt to solve here. A good survey of this topic is given by de
Schreye and Decorte [32]. Several algorithms for analyzing the termination of logic programs
have been proposed by Lindenstrauss and Sagiv [62], as well as Plümer [101], to name just a
few examples.

Mode system The somewhat coarse distinction between input and output arguments made
by the mode system given in §6.3.1 rules out specifications where actual unification of partially
instantiated data structures instead of just matching is required to synthesize results. For
example, it is impossible to find a suitable mode for the typing judgement e ` t : T given in
§5.4.2. The mode {1, 2}, which means that T has to be computed from e and t, is illegal since
we would have to “guess” the argument type T when executing e ` Abs t : (T ⇒ U). Even
the mode {1, 2, 3}, which means that also the expected type of the term is already given, does
not work since when executing e ` (s ◦ t) : U , we cannot deduce the type T ⇒ U of the term
s and hence cannot execute any of the premises of the typing rule for the application case.

Eager evaluation Another problem is due to ML’s eager evaluation strategy. For example,

defs
g ≡ λx y. x
f1 ≡ λx. g x (hd [])

recdef
f2 0 = 0
f2 (Suc x) = g (f2 x) (f2 (Suc x))

is an admissible HOL specification, but, if compiled naively, f1 raises an exception, because
the argument [] cannot be handled by hd , and f2 loops. To avoid this, the definition of g could
be expanded, or the critical arguments could be wrapped into dummy functions, to delay
evaluation. Paulin-Mohring and Werner [88] discuss this problem in detail and also propose
alternative target languages with lazy evaluation.

6.4 Related work

Previous work on executing HOL specifications There has already been some work on
generating executable programs from specifications written in HOL. One of the first papers
on this topic is by Rajan [104] who translates HOL datatypes and recursive functions to ML.
However, inductive definitions are not covered in this paper. Andrews [5] has chosen λProlog
as a target language. His translator for a higher order specification language called S can
also handle specifications of transition rules of programming languages such as CCS, although
these are given in a somewhat different way than the inductive definitions of Isabelle/HOL.
In contrast to our approach, all functions have to be translated into predicates in order to
be executable by λProlog. On the other hand it is possible to execute a wider range of

6.4. RELATED WORK 145

specifications and queries, as λProlog allows embedded universal quantifiers and implications
and supports higher-order unification. Although quite efficient implementations of λProlog
have been devised recently, the underlying execution strategy is comparable in complexity to a
fully-fledged theorem prover. Similar comments apply to the logical framework Elf [94], which
also provides a higher-order logic programming language.

Other theorem provers Aagaard et al [1] introduce a functional language called fl, together
with a suitable theorem prover. Thanks to a “lifting” mechanism, their system supports both
execution of fl functions as well as reasoning about fl functions in a seamless way.
In §5.1.2, we have already discussed the Coq [12] theorem prover based on the Calculus of
Inductive Constructions, and its philosophy of distinguishing between computable and non-
computable objects. This is in contrast to HOL, where specifications often tend to mix such
objects in an arbitrary manner. Coq can directly generate Haskell and OCaml code from
definitions of recursive datatypes and functions such as nat and add from §6.2. However, in
contrast to our framework, there is no possibility to directly interpret specifications such as
append as a logic program.
The latest version of the theorem prover PVS [84] includes a procedure for evaluating ground
terms. The PVS ground evaluator essentially consists of a translator from an executable
subset of PVS into Common Lisp. The unexecutable fragments are uninterpreted functions,
non-bounded quantification and higher-order equalities.
The Centaur system [55] is an environment for specifying programming languages. One of its
components is a Prolog-style language called Typol [33], in which transition rules of natural
semantics can be specified. Attali et al [6] have used Typol to specify a formal, executable
semantics of a large subset of the programming language Java. Originally, Typol specifications
were compiled to Prolog in order to execute them. Recently, Dubois and Gayraud [35] have
proposed a translation of Typol specifications to ML. The consistency conditions for modes
described in §6.3.1 are inspired by this paper.

Languages for combining functional and logic programming There are numerous different
approaches for the combination of functional and logic programming and we mention only a
few typical ones. The programming language Curry [44] uses narrowing as an execution model.
The programming language Mercury [112] has a very rich mode system and uses mode analysis
to generate efficient C code.

146 CHAPTER 6. EXECUTING HIGHER ORDER LOGIC SPECIFICATIONS

Chapter 7

Conclusion

7.1 Achievements

In this thesis, we have presented an extension of the higher order logical framework Isabelle
with primitive proof terms. The developed infrastructure includes algorithms for synthesizing
proof terms via higher order resolution, compressing proofs by omitting redundant syntactic
information, and reconstructing omitted information in compressed proofs. Moreover, we have
also looked at the problem of proof generation for equational logic, and proposed a new and
improved strategy for contextual rewriting.
Our work increases the reliability of Isabelle, and contributes to a better understanding of the
theoretical foundations of its kernel. It also forms an important basis for future applications
such as proof-carrying code.
The proof term calculus introduced in this thesis has been used to build a generic framework for
the extraction of programs from constructive proofs. This system, which, to our knowledge, is
the first one of this kind for a theorem prover of the HOL family, has been applied successfully
to several nontrivial case studies.
Finally, we have investigated an alternative approach for obtaining programs from specifications
by directly interpreting inductively defined predicates as logic programs. For this purpose,
we have developed a lightweight mechanism for translating logic programs into functional
programs.
With the introduction of program extraction and Prolog-style execution of inductive predicates,
we have come closer to the vision of Isabelle as an integrated environment for specification,
proving and programming. Moreover, the program extraction framework is very likely to make
Isabelle more attractive for users from communities interested in constructive logic.

7.2 Future work

To conclude, we describe some ideas for extending the work presented in this thesis.

Development of constructive proofs Now that a stable infrastructure for program extraction
is available in Isabelle, which has been successfully applied to first examples, the next step is to
tackle some more advanced case studies. Good candidates seem to be algorithms from graph
theory. For example, one could think of extracting a graph colouring algorithm from the proof

147

148 CHAPTER 7. CONCLUSION

of the Five Colour Theorem by Bauer and Nipkow [14]. Unfortunately, although the main
proof is essentially constructive, since it is by induction on the size of the graph, some other
parts of the proof, which contribute to the computational content, are not. For example, the
construction of the graph colouring relies on the fact that each near triangulation contains a
vertex with degree ≤ 5, which is proved by contradiction [14, §3.2].
Another promising area for the application of program extraction is that of constructive anal-
ysis, which was pioneered by Bishop and Bridges [22]. To date, all of the formalizations of
analysis that have been done in the HOL system and Isabelle are classical, and many standard
results of classical analysis, such as the intermediate value theorem, need to be reformulated in
order to be provable constructively. It is an interesting research project to examine how diffi-
cult such a constructive reformulation would be compared to the original classical formulation,
and what its benefits are.

Program extraction from classical proofs Recently, there has been considerable interest in
extending program extraction to classical proofs. Most of the approaches to this problem are
based on transforming classical proofs into constructive ones, usually by applying a variant of
the double negation translation. As has been mentioned in §5.3, a naive translation can lead
to huge programs and is therefore infeasible. This observation has given rise to several refined
methods for program extraction from classical proofs, such as the one proposed by Berger,
Buchholz and Schwichtenberg [17]. Often, there are subtle differences between these methods
with respect to their efficiency and the class of formulae covered by them. A future research
project could consist in assessing the feasibility of applying such methods to realistic classical
proofs in Isabelle/HOL, and in finding convincing applications for them.

Program extraction for other logics Another important point to study is how our framework
for program extraction can be instantiated to other logics, such as constructive versions of
Zermelo-Fränkel Set Theory (ZF). For the HOL instantiation described in §4.3, matters were
particularly simple, since HOL and Isabelle’s meta logic share the same type system. This is
in contrast to ZF, which is essentially untyped and simulates the concept of type checking by
explicit logical reasoning about set membership statements.

Optimizing proof procedures Although we have described several quite effective methods
for reducing the size of proofs by eliminating syntactic redundancies, these methods are not a
panacea. For example, practical experience has shown that many of the proof procedures for
arithmetic in Isabelle/HOL tend to produce huge proofs even for relatively trivial formulae.
In the quotient and remainder example discussed in §5.1, more than 85% of the proof term
produced by Isabelle consisted of lengthy computations on numerals, although the arithmetic
expressions involved were not particularly complicated. Such kinds of inefficiencies in proofs
usually cannot be addressed simply by applying proof compression algorithms as described in
§2.4.2, or proof rewrite rules for eliminating detours such as those given in §2.2.2. Instead,
a more fundamental redesign of proof procedures is required, taking the size of the produced
proofs into account. The problem of inefficient proof procedures is also well-known to imple-
mentors of proof assistants based on type theory, such as Coq. Sacerdoti Coen [105] calls this
the problem of “overkilling tactics” and gives several suggestions for reducing the size of proofs
generated by Coq’s procedure for associative-commutative rewriting on rings.

7.2. FUTURE WORK 149

Reflection By generating executable code from specifications, computations that would oth-
erwise have to be done inside the theorem prover, e.g. via term rewriting, can be performed
more efficiently in the target language. An important question is how results computed by an
external execution of generated code can be reimported into the theorem prover in a safe way,
which is sometimes referred to as reflection. Harrison [47] gives a good overview of different
kinds of reflection and discusses their integration into an LCF-style theorem prover. However,
his conclusion is that both the theoretical foundations and the practical applicability of reflec-
tion mechanisms still need to be studied in more detail. It also seems interesting to examine
how reflection relates to the approach of normalization by evaluation put forward by Berger
and Schwichtenberg [18], where the evaluation mechanism of the implementation language of
a theorem prover is used to efficiently perform operations like β-reduction of λ-terms.

Sharing theories between theorem provers The infrastructure for proof terms developed in
this thesis can also be used as a basis for exploring the possibilities of sharing theories, i.e.
collections of axioms, definitions and theorems together with their proofs, between different
theorem proving systems. Importing theories developed in Isabelle/HOL into the HOL system
(or vice versa) is relatively easy at least from the point of view of the underlying logics, although
the technical challenges involved in the development of such a translation mechanism should
not be underestimated. In contrast, sharing theories between Isabelle/HOL and systems based
on constructive type theories is much more complicated, since the classical and constructive
worlds have to be reconciled in some way. As already mentioned earlier, the careless addition of
certain classical axioms to constructive type theories can give rise to quite subtle inconsistencies
[40]. As a first step towards linking theorem provers based on classical and constructive logics,
Felty and Howe have proposed a method for hybrid interactive theorem proving using Nuprl
and HOL [36]. A central part of their approach is a new set-theoretic semantics for Nuprl,
which allows an embedding of HOL’s classical type theory. It is important to note that Felty
and Howe do not consider the translation of proofs from HOL to Nuprl, but simply rely on
the correctness of imported theorems. As a future research project, it would therefore be
interesting to study how this method can be extended to cover the translation of proofs, and
to examine similar embeddings of HOL in other theorem provers based on type theory, such as
Coq. To avoid the addition of classical axioms, one might also consider the restriction of such
a translation mechanism to a constructive fragment of HOL similar to the one used in §4.3 for
the purpose of program extraction.

150 CHAPTER 7. CONCLUSION

List of Figures

1.1 Different styles of proof . 8

2.1 Core infrastructure for proof terms . 12
2.2 The Isabelle/Pure logical framework . 13
2.3 Comparison of textbook and logical framework notation 14
2.4 Constructive fragment of Isabelle/HOL . 15
2.5 Reconstruction judgements . 24
2.6 Static compression algorithm . 34
2.7 Higher-order patterns closed under application 36
2.8 Refined term reconstruction judgement . 37
2.9 Refined compression of terms . 39
2.10 Dataflow annotations for standard inference rules 43
2.11 Bidirectional compression . 45
2.12 Performance of different compression algorithms 48

3.1 Equational rules for Isabelle/Pure . 51
3.2 Basic bottom-up rewriting algorithm . 52
3.3 Congruence rules for =⇒ . 53
3.4 Contextual rewriting . 54
3.5 Mutual simplification of premises . 55

4.1 Architecture of the Isabelle program extraction framework 62
4.2 Realizers for basic inference rules of Isabelle/HOL 73
4.3 Realizer for 3 ∈ acc {(x ,y). x < y} . 89

5.1 Proof of existence of quotient and remainder in Isar 92
5.2 Primitive proof of existence of quotient and remainder 93
5.3 Correctness proof for quotient and remainder 94
5.4 ML code generated by Isabelle for division function 95
5.5 Coq proof script for existence of quotient and remainder 98
5.6 Coq proof term for existence of quotient and remainder 99
5.7 OCaml code generated by Coq from proof of division theorem 100
5.8 Warshall’s algorithm formalized in Isabelle/Isar 102

151

152 LIST OF FIGURES

5.9 Computational content of bar . 105
5.10 Minimal bad sequence argument . 106
5.11 Proposition 2 . 109
5.12 Proposition 3 . 110
5.13 Main theorem . 111
5.14 Program extracted from the proof of Higman’s lemma 113
5.15 ML code generated from proof of Higman’s lemma 114
5.16 Program extracted from subst-type-NF . 127
5.17 Program extracted from lemmas and main theorem 128

Bibliography

[1] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A Pragmatic
Implementation of Combined Model Checking and Theorem Proving. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in Higher
Order Logics, 12th International Conference (TPHOLs’99), volume 1690 of Lecture Notes
in Computer Science, pages 323–340. Springer-Verlag, 1999.

[2] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh, November 1993.

[3] Thorsten Altenkirch. A formalization of the strong normalization proof for System F
in LEGO. In Jan F. Groote Marc Bezem, editor, Typed Lambda Calculi and Applica-
tions, International Conference (TLCA ’93), volume 664 of LNCS, pages 13–28. Springer-
Verlag, 1993.

[4] Penny Anderson. Program extraction in a logical framework setting. In Frank Pfen-
ning, editor, Proceedings of the 5th International Conference on Logic Programming and
Automated Reasoning, volume 822 of LNAI, pages 144–158. Springer-Verlag, July 1994.

[5] James H. Andrews. Executing formal specifications by translation to higher order logic
programming. In Elsa L. Gunter and Amy Felty, editors, 10th International Conference
on Theorem Proving in Higher Order Logics, volume 1275 of Lecture Notes in Computer
Science, pages 17–32. Springer-Verlag, 1997.

[6] Isabelle Attali, Denis Caromel, and Marjorie Russo. A formal and executable semantics
for Java. In Proceedings of Formal Underpinnings of Java, an OOPSLA’98 Workshop,
Vancouver, Canada, 1998. Technical report, Princeton University.

[7] Abdelwaheb Ayari and David Basin. A higher-order interpretation of deductive tableau.
Journal of Symbolic Computation, 31(5):487–520, May 2001.

[8] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[9] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Intro-
duction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

[10] Henk Barendregt and Herman Geuvers. Proof assistants using dependent type systems.
In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
chapter 18, pages 1149 – 1238. Elsevier Science Publishers, 2001.

[11] Bruno Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse
de doctorat, Université Paris 7, November 1999.

153

154 BIBLIOGRAPHY

[12] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David
Delahaye, Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo
Herbelin, Gérard Huet, Henri Laulhère, César Muñoz, Chetan Murthy, Catherine Parent-
Vigouroux, Patrick Loiseleur, Christine Paulin-Mohring, Amokrane Säıbi, and Benjamin
Werner. The Coq proof assistant reference manual – version 7.2. Technical Report 0255,
INRIA, February 2002.

[13] Bruno Barras and Benjamin Werner. Coq in Coq. To appear in Journal of Automated
Reasoning.

[14] Gertrud Bauer and Tobias Nipkow. The 5 colour theorem in Isabelle/Isar. In V. Carreño,
C. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics, volume 2410
of LNCS, pages 67–82. Springer-Verlag, 2002.

[15] Holger Benl, Ulrich Berger, Helmut Schwichtenberg, Monika Seisenberger, and Wolfgang
Zuber. Proof theory at work: Program development in the Minlog system. In W. Bibel
and P.H. Schmitt, editors, Automated Deduction – A Basis for Applications, volume II:
Systems and Implementation Techniques of Applied Logic Series, pages 41–71. Kluwer
Academic Publishers, Dordrecht, 1998.

[16] Ulrich Berger. Program extraction from normalization proofs. In Marc Bezem and
Jan F. Groote, editors, Typed Lambda Calculi and Applications, International Conference
(TLCA ’93), pages 91–106, Berlin, Germany, 1993. Springer-Verlag.

[17] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined program extrac-
tion from classical proofs. Annals of Pure and Applied Logic, 114:3–25, 2002.

[18] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for
typed λ-calculus. In R. Vemuri, editor, Proceedings of the 6th Annual IEEE Symposium
on Logic in Computer Science, pages 203–211. IEEE Computer Society Press, 1991.

[19] Ulrich Berger, Helmut Schwichtenberg, and Monika Seisenberger. The Warshall algo-
rithm and Dickson’s lemma: Two examples of realistic program extraction. Journal of
Automated Reasoning, 26:205–221, 2001.

[20] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs and Programs:
TYPES’2000, volume 2277 of LNCS. Springer-Verlag, 2002.

[21] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL — lessons learned
in Formal-Logic Engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs ’99, volume 1690
of LNCS. Springer-Verlag, 1999.

[22] Errett Bishop and Douglas S. Bridges. Constructive Analysis. Springer-Verlag, 1985.

[23] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and
Christophe Ringeissen. An overview of ELAN. In Claude Kirchner and Hélène Kirch-
ner, editors, Proceedings Second International Workshop on Rewriting Logic and its
Applications, WRLA’98, Pont-à-Mousson, France, September 1–4, 1998, volume 15
of Electronic Notes in Theoretical Computer Science, pages 329–344. Elsevier, 1998.
http://www.elsevier.nl/locate/entcs/volume15.html.

http://www.elsevier.nl/locate/entcs/volume15.html

BIBLIOGRAPHY 155

[24] Richard J. Boulton. Transparent optimisation of rewriting combinators. Journal of
Functional Programming, 9(2):113–146, March 1999.

[25] Luitzen Egbertus Jan Brouwer. Intüıtionistische splitsing van mathematische grondbe-
grippen. Nederl. Akad. Wetensch. Verslagen, 32:877–880, 1923.

[26] Martin David Coen. Interactive program derivation. PhD thesis, Cambridge University,
November 1992.

[27] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, NJ, 1986.

[28] Thierry Coquand. Une Théorie des Constructions. PhD thesis, Université Paris 7,
January 1985.

[29] Thierry Coquand and Daniel Fridlender. A proof of Higman’s lemma by structural induc-
tion. Unpublished draft, available at http://www.math.chalmers.se/~frito/Papers/
open.ps.gz, November 1993.

[30] Lúıs Cruz-Filipe and Bas Spitters. Program extraction from large proof developments. In
David Basin and Burkhart Wolff, editors, Theorem Proving in Higher Order Logics, 16th
International Conference, Lecture Notes in Computer Science. Springer-Verlag, 2003.

[31] N. G. de Bruijn. A survey of the project AUTOMATH. In J. R. Hindley and J. P. Seldin,
editors, Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 580–606.
Academic Press, London, 1980.

[32] Danny De Schreye and S Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

[33] Thierry Despeyroux. Typol: a formalism to implement natural semantics. Technical
Report 94, INRIA, 1988.

[34] Gilles Dowek. A Complete Proof Synthesis Method for the Cube of Type Systems.
In Gérard Huet, Gordon Plotkin, and Claire Jones, editors, Proceedings of the second
workshop on Logical Frameworks, Edinburgh, pages 135–163, 1991.

[35] Catherine Dubois and Richard Gayraud. Compilation de la sémantique naturelle vers
ML. In Proceedings of journées francophones des langages applicatifs (JFLA99), 1999.
Available via http://pauillac.inria.fr/~weis/jfla99/ps/dubois.ps.

[36] Amy P. Felty and Douglas J. Howe. Hybrid interactive theorem proving using Nuprl and
HOL. In William McCune, editor, Proceedings of the 14th International Conference on
Automated Deduction (CADE-14), volume 1249 of Lecture Notes in Computer Science,
pages 351–365. Springer-Verlag, 1997.

[37] Maribel Fernández and Paula Severi. An operational approach to program extraction
in the Calculus of Constructions. In International Workshop on Logic Based Program
Development and Transformation (LOPSTR’02), LNCS. Springer, 2002.

http://www.math.chalmers.se/~frito/Papers/open.ps.gz
http://www.math.chalmers.se/~frito/Papers/open.ps.gz
http://pauillac.inria.fr/~weis/jfla99/ps/dubois.ps

156 BIBLIOGRAPHY

[38] Daniel Fridlender. Higman’s lemma in type theory. In Eduardo Giménez and Chris-
tine Paulin-Mohring, editors, Types for Proofs and Programs, International Workshop
TYPES’96, volume 1512 of Lecture Notes in Computer Science, pages 112–133. Springer-
Verlag, 1998.

[39] Gérard Huet. The undecidability of unification in third order logic. Information and
Control, 22(3):257–367, 1973.

[40] Herman Geuvers. Inconsistency of classical logic in type theory. Unpublished note,
available at http://www.cs.kun.nl/~herman/note.ps.gz, November 2001.

[41] Herman Geuvers, Randy Pollack, Freek Wiedijk, and Jan Zwanenburg. The algebraic
hierarchy of the FTA Project. Journal of Symbolic Computation, Special issue on the In-
tegration of Automated Reasoning and Computer Algebra Systems, pages 271–286, 2002.

[42] Michael J. C. Gordon and Tom F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[43] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF:
A Mechanized Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[44] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional logic lan-
guage. In Proc. ILPS’95 Workshop on Visions for the Future of Logic Programming,
pages 95–107, 1995.

[45] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

[46] John Harrison. HOL Done Right. Unpublished draft, available at http://www.cl.cam.
ac.uk/users/jrh/papers/holright.html, August 1995.

[47] John Harrison. Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995. Avail-
able on the Web as http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz.

[48] S. Hayashi and H. Nakano. PX, a Computational Logic. Foundations of Computing.
MIT Press, 1988.

[49] Arend Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie.
Springer, 1934.

[50] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 3(2):326–336, 1952.

[51] William A. Howard. The formulae-as-types notion of construction. In J. R. Hindley and
J.P. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479–490. Academic Press, 1980.

[52] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1(1):27–57, June 1975.

[53] Isabelle/HOL theory library. http://isabelle.in.tum.de/library/HOL/.

http://www.cs.kun.nl/~herman/note.ps.gz
http://www.cl.cam.ac.uk/users/jrh/papers/holright.html
http://www.cl.cam.ac.uk/users/jrh/papers/holright.html
http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz
http://isabelle.in.tum.de/library/HOL/

BIBLIOGRAPHY 157

[54] Paul Jackson. Enhancing the Nuprl Proof Development System and Applying it to Com-
putational Abstract Algebra. PhD thesis, Department of Computer Science, Cornell Uni-
versity, Ithaca, New York, 1995. Technical Report TR 95-1509.

[55] Ian Jacobs and Laurence Rideau-Gallot. A Centaur tutorial. Technical Report 140,
INRIA Sophia-Antipolis, July 1992.

[56] Felix Joachimski and Ralph Matthes. Short proofs of normalization for the simply-typed
λ-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic,
42(1):59–87, 2003.

[57] Simon Peyton Jones and John Hughes. Report on the programming language Haskell
98, February 1999.

[58] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reason-
ing: An Approach. Kluwer Academic Publishers, June 2000.

[59] S.C. Kleene. Introduction to Metamathematics. North Holland, 1952.

[60] Andrei Kolmogorov. Zur Deutung der intuitionistischen Logik. Mathematische
Zeitschrift, 35:58–65, 1932.

[61] Pierre Letouzey. A new Extraction for Coq. In Herman Geuvers and Freek Wiedijk,
editors, Types for Proofs and Programs (TYPES 2002), volume 2646 of LNCS, pages
200–219. Springer-Verlag, 2003.

[62] Naomi Lindenstrauss and Yehoshua Sagiv. Automatic Termination Analysis of Logic
Programs. In Lee Naish, editor, Proceedings of the Fourteenth International Conference
on Logic Programming, pages 63–77. MIT Press, 1997.

[63] Zhaohui Luo and Robert Pollack. The LEGO proof development system: A user’s man-
ual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

[64] Marko Luther. More on Implicit Syntax. In Rajeev Goré, Alexander Leitsch, and Tobias
Nipkow, editors, Proceedings of the First International Joint Conference on Automated
Reasoning (IJCAR 2001), Siena, volume 2083 of LNAI, pages 386–400. Springer-Verlag,
2001.

[65] Lena Magnusson. The Implementation of ALF—a Proof Editor Based on Martin-Löf ’s
Monomorphic Type Theory with Explicit Substitution. Phd thesis, Dept. of Computing
Science, Chalmers Univ. of Technology and Univ. of Göteborg, 1994.

[66] William McCune. OTTER 2.0. In Mark Stickel, editor, Proceedings of the 10th Interna-
tional Conference on Automated Deduction, Lecture Notes in Artificial Intelligence, Vol.
449, pages 663–664, New York, July 1990. Springer-Verlag. Extended abstract.

[67] James McKinna and Rod M. Burstall. Deliverables: A categorical approach to program
development in type theory. In Andrzej M. Borzyszkowski and Stefan Sokolowski, editors,
Mathematical Foundations of Computer Science 1993, 18th International Symposium,
volume 711 of LNCS, pages 32–67, Gdansk, Poland, 30 August– 3 September 1993.
Springer.

158 BIBLIOGRAPHY

[68] C. S. Mellish. The automatic generation of mode declarations for Prolog programs.
Technical Report 163, Department of Artificial Intelligence, University of Edinburgh,
August 1981.

[69] Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[70] Alexandre Miquel. The Implicit Calculus of Constructions. In Samson Abramsky, editor,
Proceedings of the 5th International Conference on Typed Lambda Calculi and Applica-
tions (TLCA 2001), volume 2044 of Lecture Notes in Computer Science, pages 344–359.
Springer-Verlag, 2001.

[71] Chetan Murthy. Extracting Constructive Content from Classical Proofs. PhD thesis,
Cornell University, 1990.

[72] Chetan R. Murthy and James R. Russell. A constructive proof of Higman’s lemma. In
John C. Mitchell, editor, Proceedings of the 5th Annual IEEE Symposium on Logic in
Computer Science, pages 257–269, Philadelphia, PA, June 1990. IEEE Computer Society
Press.

[73] C. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the Cambridge
Philosophical Society, 59(4):833–835, 1963.

[74] George Necula. A scalable architecture for Proof-Carrying Code. In Herbert Kuchen and
Kazunori Ueda, editors, Functional and Logic Programming, 5th International Sympo-
sium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Proceedings, volume 2024 of Lecture
Notes in Computer Science. Springer, 2001.

[75] George C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
106–119. ACM Press, New York, 1997.

[76] George C. Necula. Compiling with Proofs. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1998.

[77] George C. Necula and Peter Lee. Efficient representation and validation of proofs. In
13th IEEE Symp. Logic in Computer Science (LICS’98), pages 93–104. IEEE Computer
Society Press, 1998.

[78] Tobias Nipkow. Proof transformations for equational theories. In Proc. 5th IEEE Symp.
Logic in Computer Science, pages 278–288, 1990.

[79] Tobias Nipkow. Functional unification of higher-order patterns. In 8th IEEE Symp. Logic
in Computer Science, pages 64–74. IEEE Computer Society Press, 1993.

[80] Tobias Nipkow. Order-sorted polymorphism in Isabelle. In Gérard Huet and Gordon
Plotkin, editors, Logical Environments, pages 164–188. Cambridge University Press,
1993.

[81] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Journal of Automated
Reasoning, 26:51–66, 2001.

BIBLIOGRAPHY 159

[82] Tobias Nipkow. Structured Proofs in Isar/HOL. In Herman Geuvers and Freek Wiedijk,
editors, Types for Proofs and Programs (TYPES 2002), volume 2646 of Lecture Notes in
Computer Science, pages 259–278. Springer-Verlag, 2003.

[83] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[84] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide
version 2.3. Technical report, SRI International Computer Science Laboratory, Menlo
Park CA, September 1999.

[85] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus of
Constructions. In Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, January 1989. ACM.

[86] Christine Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions.
Thèse d’université, Paris 7, January 1989.

[87] Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Proper-
ties. In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, number 664 in Lecture Notes in Computer Science, 1993. LIP
research report 92-49.

[88] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in the system
Coq. Journal of Symbolic Computation, 15:607–640, 1993.

[89] Lawrence C. Paulson. A higher-order implementation of rewriting. Science of Computer
Programming, 3:119–149, 1983.

[90] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated
Reasoning, 5:363–397, 1989.

[91] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

[92] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer, 1994.

[93] Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.
Journal of Logic and Computation, 7(2):175–204, April 1997.

[94] Frank Pfenning. Logic programming in the LF Logical Framework. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 66–78. Cambridge University Press,
1991.

[95] Frank Pfenning. Unification and anti-unification in the calculus of constructions. In 6th
IEEE Symposium on Logic in Computer Science, pages 74–85. IEEE Computer Society
Press, 1991.

[96] Frank Pfenning. Logical and meta-logical frameworks. Marktoberdorf Summer School
Lectures, available online at http://www.cs.cmu.edu/~fp/talks/mdorf01-slides.
pdf, July 2001.

http://www.cs.cmu.edu/~fp/talks/mdorf01-slides.pdf
http://www.cs.cmu.edu/~fp/talks/mdorf01-slides.pdf

160 BIBLIOGRAPHY

[97] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, chapter 17, pages 1063–1147. Elsevier Science Pub-
lishers, 2001.

[98] Frank Pfenning and Carsten Schürmann. Algorithms for equality and unification in the
presence of notational definitions. In T. Altenkirch, W. Naraschewski, and B. Reus,
editors, Types for Proofs and Programs, pages 179–193, Kloster Irsee, Germany, March
1998. Springer-Verlag LNCS 1657.

[99] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-logical
framework for deductive systems. In Harald Ganzinger, editor, CADE-16, 16th Interna-
tional Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, volume 1632
of Lecture Notes in Computer Science, pages 202–206, 1999.

[100] Benjamin C. Pierce and David N. Turner. Local type inference. In Conference Record
of POPL 98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Diego, California, pages 252–265, New York, NY, January 1998.
ACM.

[101] Lutz Plümer. Termination Proofs for Logic Programs, volume 446 of LNAI. Springer-
Verlag, 1990.

[102] Randy Pollack. Implicit Syntax. In Gérard Huet and Gordon Plotkin, editors, Informal
Proceedings of the 1st Workshop on Logical Frameworks (LF’90), Antibes, pages 421–433,
1990.

[103] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of
Constructions. PhD thesis, University of Edinburgh, 1994.

[104] P. Sreeranga Rajan. Executing HOL specifications: Towards an evaluation semantics for
classical higher order logic. In L. J. M. Claesen and M. J. C. Gordon, editors, Higher
order Logic Theorem Proving and its Applications, Leuven, Belgium, September 1992.
Elsevier.

[105] Claudio Sacerdoti Coen. Tactics in modern proof-assistants: The bad habit of overkilling.
In Richard J. Boulton and Paul B. Jackson, editors, TPHOLs 2001: Supplemental Pro-
ceedings, number EDI-INF-RR-0046 in Informatics Report Series, pages 352–367. Di-
vision of Informatics, University of Edinburgh, Edinburgh, Scotland, UK, September
2001.

[106] Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisited. Acta Informatica, 25:233–281, 1988.

[107] Donald Sannella and Martin Wirsing. A kernel language for algebraic specification and
implementation. In Proc. 1983 Intl. Conf. on Foundations of Computation Theory, vol-
ume 158 of Lecture Notes in Computer Science, pages 413–427. Springer, 1983.

[108] Monika Seisenberger. Konstruktive Aspekte von Higmans Lemma. Master’s thesis,
Fakultät für Mathematik, Ludwig-Maximilians-Universität München, 1998.

[109] Monika Seisenberger. On the Constructive Content of Proofs. PhD thesis, Fakultät für
Mathematik, Ludwig-Maximilians-Universität München, 2003.

BIBLIOGRAPHY 161

[110] Paula Severi and Nora Szasz. Studies of a theory of specifications with built-in program
extraction. Journal of Automated Reasoning, 27 (1):61–87, July 2001.

[111] Konrad Slind. Reasoning about Terminating Functional Programs. PhD thesis, Institut
für Informatik, TU München, 1999.

[112] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an efficient purely
declarative logic programming language. In Proceedings of the Australian Computer
Science Conference, Glenelg, Australia, pages 499–512, 1995.

[113] Robert F. Stärk. Input/output dependencies of normal logic programs. Journal of Logic
and Computation, 4(3):249–262, 1994.

[114] Aaron Stump. Checking Validities and Proofs with CVC and flea. PhD thesis, Stanford
University, August 2002.

[115] William W. Tait. Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32(2):198–212, June 1967.

[116] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, Volume 1,
volume 121 of Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1988.

[117] Joakim von Wright. Representing higher-order logic proofs in HOL. In Thomas F.
Melham and Juanito Camilleri, editors, Higher Order Logic Theorem Proving and Its
Applications, 7th International Workshop, volume 859 of Lecture Notes in Computer
Science, pages 456–470. Springer-Verlag, 1994.

[118] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian
Theobalt, and Dalibor Topic. SPASS version 2.0. In Andrei Voronkov, editor, Auto-
mated Deduction – CADE-18, volume 2392 of Lecture Notes in Computer Science, pages
275–279. Springer-Verlag, July 27-30 2002.

[119] Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter
and Amy Felty, editors, Theorem Proving in Higher Order Logics: TPHOLs’97, LNCS
1275, 1997.

[120] Markus Wenzel. Isabelle/Isar — a versatile environment for human-readable formal
proof documents. PhD thesis, Institut für Informatik, TU München, 2002. http://
tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.

[121] Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, Université
Paris 7, 1994.

[122] Wai Wong. Recording and checking HOL proofs. In E. Thomas Schubert, Phillip J.
Windley, and James Alves-Foss, editors, Higher Order Logic Theorem Proving and Its
Applications. 8th International Workshop, volume 971 of LNCS, pages 353–68. Springer-
Verlag, Berlin, 1995.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

	Introduction
	Motivation
	Contributions
	Overview
	Preliminaries
	Notation
	Styles of proof presentation

	Proof terms for higher order logic
	Introduction
	Basic concepts
	A logical framework with proofs
	Formalizing object logics

	Representing backward resolution proofs
	Encoding the proof steps
	Constructing an example proof

	Partial proof terms
	Reconstruction
	Compression
	A static compression algorithm
	A refined strategy for omitting terms
	A bidirectional compression algorithm
	Practical results

	Related work

	Proofs for equational logic
	Introduction
	Contextual rewriting
	Transforming equational proofs
	Rewriting on propositions
	Eliminating meta equality rules

	Related work

	Program extraction
	Introduction
	A generic framework for program extraction
	Extracting types
	Extracting terms
	Correctness and realizability
	Limitations

	Program extraction for Isabelle/HOL
	Type extraction
	Realizability
	Realizing terms
	Realizers for inductive datatypes
	Introduction
	General scheme

	Realizers for inductive predicates
	Introduction
	General scheme
	Examples

	Related work

	Case studies
	Quotient and remainder
	The Isabelle proof
	Comparison with Coq

	Warshall's algorithm
	Higman's lemma
	Weak normalization for simply-typed Lambda-calculus
	Basic definitions
	Typed Lambda terms
	Terms in normal form
	Main theorems
	Extracted programs

	Discussion

	Executing higher order logic specifications
	Introduction
	An executable subset of Isabelle/HOL
	Compiling functional logic specifications
	Mode analysis
	Translation scheme
	Extending the mode system
	Discussion

	Related work

	Conclusion
	Achievements
	Future work

